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The Practitioner's Guide to Generalized Linear Models is written for the practicing actuary who 
would like to understand generalized linear models (GLMs) and use them to analyze insurance 
data.  The guide is divided into three sections.   

Section 1 provides a foundation for the statistical theory and gives illustrative examples and 
intuitive explanations which clarify the theory.  The intuitive explanations build upon more 
commonly understood actuarial methods such as linear models and the minimum bias 
procedures. 

Section 2 provides practical insights and realistic model output for each stage of a GLM analysis 
- including data preparation and preliminary analyses, model selection and iteration, model 
refinement and model interpretation.  This section is designed to boost the actuary's confidence 
in interpreting GLMs and applying them to solve business problems. 

Section 3 discusses other topics of interest relating to GLMs such as retention modeling and 
scoring algorithms.   

More technical material in the paper is set out in appendices. 
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1 GLMs - theory and intuition

1.1 Section 1 discusses how GLMs are formularized and solved.  The following topics are 
covered in detail: 

 background of GLMs - building upon traditional actuarial methods such as 
minimum bias procedures and linear models 

 introduction to the statistical framework of GLMs  

 formularization of GLMs - including the linear predictor, the link function, the 
offset term, the error term, the scale parameter and the prior weights 

 typical model forms 

 solving GLMs - maximum likelihood estimation and numerical techniques 

 aliasing  

 model diagnostics - standard errors and deviance tests. 

 Background 

1.2 Traditional ratemaking methods in the United States are not statistically sophisticated.  
Claims experience for many lines of business is often analyzed using simple one-way 
and two-way analyses.  Iterative methods known as minimum bias procedures, 
developed by actuaries in the 1960s, provide a significant improvement, but are still 
only part way toward a full statistical framework.   

1.3 The classical linear model and many of the most common minimum bias procedures 
are, in fact, special cases of generalized linear models (GLMs).  The statistical 
framework of GLMs allows explicit assumptions to be made about the nature of the 
insurance data and its relationship with predictive variables.  The method of solving 
GLMs is more technically efficient than iteratively standardized methods, which is not 
only elegant in theory but valuable in practice.  In addition, GLMs provide statistical 
diagnostics which aid in selecting only significant variables and in validating model 
assumptions.   

1.4 Today GLMs are widely recognized as the industry standard method for pricing 
private passenger auto and other personal lines and small commercial lines insurance 
in the European Union and many other markets.  Most British, Irish and French auto 
insurers use GLMs to analyze their portfolios and to the authors' knowledge GLMs are 
commonly used in Italy, the Netherlands, Scandinavia, Spain, Portugal, Belgium, 
Switzerland, South Africa, Israel and Australia.  The method is gaining popularity in 
Canada, Japan, Korea, Brazil, Singapore, Malaysia and eastern European countries. 

1.5 The primary applications of GLMs in insurance analysis are ratemaking and 
underwriting.  Circumstances that limit the ability to change rates at will (eg 
regulation) have increased the use of GLMs for target marketing analysis.   
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 The failings of one-way analysis 

1.6 In the past, actuaries have relied heavily on one-way analyses for pricing and 
monitoring performance.     

1.7 A one-way analysis summarizes insurance statistics, such as frequency or loss ratio, 
for each value of each explanatory variable, but without taking account of the effect of 
other variables.  Explanatory variables can be discrete or continuous.  Discrete 
variables are generally referred to as "factors", with values that each factor can take 
being referred to as "levels", and continuous variables are generally referred to as 
"variates".  The use of variates is generally less common in insurance modeling. 

1.8 One-way analyses can be distorted by correlations between rating factors.  For 
example, young drivers may in general drive older cars.  A one-way analysis of age of 
car may show high claims experience for older cars, however this may result mainly 
from the fact that such older cars are in general driven more by high risk younger 
drivers.  Relativities based on one-way analyses of age of vehicle and age of driver 
would double-count the effect of age of driver.  Traditional actuarial techniques for 
addressing this problem usually attempt to standardize the data in such a way as to 
remove the distorting effect of uneven business mix, for example by focusing on loss 
ratios on a one-way basis, or by standardizing for the effect of one or more factors.  
These methods are, however, only approximations. 

1.9 One-way analyses also do not consider interdependencies between factors in the way 
they affect claims experience.  These interdependencies, or interactions, exist when the 
effect of one factor varies depending on the levels of another factor.  For example, the 
pure premium differential between men and women may differ by levels of age. 

1.10 Multivariate methods, such as generalized linear models, adjust for correlations and 
allow investigation into interaction effects. 

 The failings of minimum bias procedures 

1.11 In the 1960s, actuaries developed a ratemaking technique known as minimum bias 
procedures.1  These procedures impose a set of equations relating the observed data, 
the rating variables, and a set of parameters to be determined.  An iterative procedure 
solves the system of equations by attempting to converge to the optimal solution.  The 
reader seeking more information may reference "The Minimum Bias Procedure:  A 
Practitioner's Guide" by Sholom Feldblum and Dr J. Eric Brosius.2 

                                                 
1 Bailey, Robert A. and LeRoy J. Simon, "Two Studies in Automobile Insurance Ratemaking," 
Proceedings of the Casualty Actuarial Society, XLVII, 1960. 
2 Feldblum, Sholom and Brosius, J Eric, "The Minimum Bias Procedures:  A Practitioner's 
Guide", Casualty Actuarial Society Forum, 2002  Vol: Fall  Page(s): 591-684 
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1.12 Once an optimal solution is calculated, however, the minimum bias procedures give no 
systematic way of testing whether a particular variable influences the result with 
statistical significance.  There is also no credible range provided for the parameter 
estimates.  The minimum bias procedures lack a statistical framework which would 
allow actuaries to assess better the quality of their modeling work. 

 The connection of minimum bias to GLM 

1.13 Stephen Mildenhall has written a comprehensive paper showing that many minimum 
bias procedures do correspond to generalized linear models.3  The following table 
summarizes the correspondence for many of the more common minimum bias 
procedures.  The GLM terminology link function and error function is explained in 
depth later in this section.  In brief, these functions are key components for specifying 
a generalized linear model.  

 
Generalized Linear Models Minimum Bias Procedures Link function Error function 

Multiplicative balance principle Logarithmic Poisson 
Additive balance principle Identity Normal 
Multiplicative least squares Logarithmic Normal 
Multiplicative maximum likelihood 
with exponential density function 

Logarithmic Gamma 

Multiplicative maximum likelihood 
with Normal density function 

Logarithmic Normal 

Additive maximum likelihood with 
Normal density function 

Identity Normal 

 

1.14 Not all minimum bias procedures have a generalized linear model analog and vice 
versa.  For example, the χ2 additive and multiplicative minimum bias models have no 
corresponding generalized linear model analog.  

Linear models 

1.15 A GLM is a generalized form of a linear model.  To understand the structure of 
generalized linear models it is helpful, therefore, to review classic linear models.   

1.16 The purpose of both linear models (LMs) and generalized linear models is to express 
the relationship between an observed response variable, Y, and a number of covariates 
(also called predictor variables), X.  Both models view the observations, Yi, as being 
realizations of the random variable Y.  

                                                 
3 Mildenhall, Stephen, "A Systematic Relationship between Minimum Bias and Generalized 
Linear Models", Proceedings of the Casualty Actuarial Society, LXXXVI, 1999. 
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1.17 Linear models conceptualize Y as the sum of its mean, μ, and a random variable, ε : 

Y = μ + ε 

1.18 They assume that  

a. the expected value of Y, μ, can be written as a linear combination of the covariates, 
X, and  

b. the error term, ε, is Normally distributed with mean zero and variance σ2. 

1.19 For example, suppose a simple private passenger auto classification system has two 
categorical rating variables: territory (urban or rural) and gender (male or female). 
Suppose the observed average claim severities are: 

 
 Urban Rural 
Male 800 500 
Female 400 200 

 

1.20 The response variable, Y, is the average claim severity.  The two factors, territory and 
gender, each have two levels resulting in the four covariates: male (X1), female (X2), 
urban (X3), and rural (X4).  These indicator variables take the value 1 or 0.  For 
example, the urban covariate, (X3), is equal to 1 if the territory is urban, and 0 
otherwise. 

1.21 The linear model seeks to express the observed item Y (in this case average claim 
severity) as a linear combination of a specified selection of the four variables, plus a 
Normal random variable ε with mean zero and variance σ2, often written ε ~ N(0,σ2).  
One such model might be  

 εββββ ++++= 44332211 XXXXY

1.22 However this model has as many parameters as it does combinations of rating factor 
levels being considered, and there is a linear dependency between the four covariates 
X1, X2, X3, X4.  This means that the model in the above form is not uniquely defined - if 
any arbitrary value k is added to both β1 and β2, and the same value k is subtracted 
from β3 and β4, the resulting model is equivalent.   
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1.23 To make the model uniquely defined in the parameters βi consider instead the model  

 εβββ +++= 332211 XXY X

1.24 This model is equivalent to assuming that there is an average response for men (β1) 
and an average response for women (β2), with the effect of being an urban 
policyholder (as opposed to being a rural one) having an additional additive effect (β3) 
which is the same regardless of gender.   

1.25 Alternatively this could be thought of as a model which assumes an average response 
for the "base case" of women in rural areas (β2) with additional additive effects for 
being male (β2-β1) and for being in an urban area (β3). 

1.26 Thus the four observations can be expressed as the system of equations: 
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1.27 The parameters β1, β2, β3 which best explain the observed data are then selected.  For 
the classical linear model this is done by minimizing the sum of squared errors (SSE):  
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1.28 This expression can be minimized by taking derivatives with respect to β1, β2 and β3 
and setting each of them to zero.  The resulting system of three equations in three 
unknowns is: 
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which can be solved to derive: 
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Vector and Matrix Notation 

1.29 Formulating the system of equations above quickly becomes complex as both the 
number of observations and the number of covariates increases; consequently, vector 
notation is used to express these equations in compact form.  

1.30 Let Y be a column vector with components corresponding to the observed values for 
the response variable: 
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1.31 Let X1, X2, and X3 denote the column vectors with components equal to the observed 
values for the respective indicator variables (eg the ith element of X1 is 1 when the ith 
observation is male, and 0 if female): 
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1.32 Let β denote a column vector of parameters, and for a given set of parameters let ε be 
the vector of residuals: 
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1.33 Then the system of equations takes the form: 

 
 εβββ +++= 332211 XXY X

 

1.34 To simplify this further the vectors X1, X2, and X3 can be aggregated into a single 
matrix X.  This matrix is called the design matrix and in the example above would be 
defined as: 
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1.35 Appendix A shows an example of the form of the design matrix X when explanatory 
variables include continuous variables, or "variates". 

1.36 The system of equations takes the form  

Y=X.β + ε 

1.37 In the case of the linear model, the goal is to find values of the components of β which 
minimize the sum of squares of the components of ε.  If there are n observations and p 
parameters in the model, ε will have n components and β will have p components 
(p<n). 

1.38 The basic ingredients for a linear model thus consist of two elements:  

a. a set of assumptions about  the relationship between Y and the predictor variables, 
and  

b. an objective function which is to be optimized in order to solve the problem.  
Standard statistical theory defines the objective function to be the likelihood 
function.  In the case of the classical linear model with an assumed Normal error it 
can be shown that the parameters which minimize sum of squared error also 
maximize likelihood.   

 10



Classical linear model assumptions 

1.39 Linear models assume all observations are independent and each comes from a Normal 
distribution.   

1.40 This assumption does not relate to the aggregate of the observed item, but to each 
observation individually.  An example may help illustrate this distinction.   

 
 Distribution of individual observations 

 

 

 

 

 

 

 

                                                   Women                                     Men  

 

1.41 An examination of average claim amounts by gender may identify that average claim 
amounts for men are Normally distributed, as are average claim amounts for women, 
and that the mean of the distribution for men is twice the mean of the distribution for 
women.  The total distribution of average claim amounts across all men and women is 
not Normally distributed.  The only distribution of interest is the distribution of the two 
separate classes.  (In this case there are only two classes being considered, but in a 
more complicated model there would be one such class for each combination of the 
rating factors being considered.) 

1.42 Linear models assume that the mean is a linear combination of the covariates, and that 
each component of the random variable is assumed to have a common variance.   
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1.43 The linear model can be written as follows: 

 βε .][,][ X=+= YEYEY
 

1.44 McCullagh and Nelder outline the explicit assumptions as follows:4 

(LM1)  Random component:  Each component of Y is independent and is Normally 
distributed.  The mean, μi, of each component is allowed to differ, but they all have 
common variance  

(LM2)  Systematic component:  The p covariates are combined to give the "linear 
predictor" η: 

2σ

 
βη .X=

 (LM3)  Link function:  The relationship between the random and systematic 
components is specified via a link function.  In the linear model the link function is 
equal to the identity function so that: 

 ημ =≡][YE
 

1.45 The identity link function assumption in (LM3) may appear to be superfluous at this 
point, but it will become more meaningful when discussing the generalization to 
GLMs. 

Limitations of Linear Models 

1.46 Linear models pose quite tractable problems that can be easily solved with well-known 
linear algebra approaches.  However it is easy to see that the required assumptions are 
not easy to guarantee in applications: 

 It is difficult to assert Normality and constant variance for response variables.  
Classical linear regression attempts to transform data so that these conditions hold.  
For example, Y may not satisfy the hypotheses but ln(Y) may.  However there is no 
reason why such a transformation should exist. 

 The values for the response variable may be restricted to be positive.  The 
assumption of Normality violates this restriction.  

 If the response variable is strictly non-negative then intuitively the variance of Y 
tends to zero as the mean of Y tends to zero. That is, the variance is a function of 
the mean. 

                                                 
4 McCullagh, P. and J. A. Nelder, Generalized Linear Models, 2nd Ed., Chapman & Hall/CRC, 
1989. 
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 The additivity of effects encapsulated in the second (LM2) and third (LM3) 
assumptions is not realistic for a variety of applications.  For example, suppose the 
response variable is equal to the area of the wings of a butterfly and the predictor 
variables are the width and length of the wings.  Clearly, these two predictor 
variables do not enter additively; rather, they enter multiplicatively.  More 
relevantly, many insurance risks tend to vary multiplicatively with rating factors 
(this is discussed in more detail in Section 2). 

 Generalized linear model assumptions 

1.47 GLMs consist of a wide range of models that include linear models as a special case.  
The LM restriction assumptions of Normality, constant variance and additivity of 
effects are removed.  Instead, the response variable is assumed to be a member of the 
exponential family of distributions5.  Also, the variance is permitted to vary with the 
mean of the distribution.  Finally, the effect of the covariates on the response variable 
is assumed to be additive on a transformed scale.  Thus the analog to the linear model 
assumptions (LM1), (LM2), and (LM3) are as follows. 

(GLM1)  Random component:  Each component of Y is independent and is from one of 
the exponential family of distributions.  

(GLM2)  Systematic component:  The p covariates are combined to give the linear 
predictor η: 

 

(GLM3)  Link function:  The relationship between the random and systematic 
components is specified via a link function, g, that is differentiable and monotonic 
such that:  

  

βη .X=

)(][ 1 ημ −=≡ gYE

1.48 Most statistical texts denote the first expression in (GLM3) with g(x) written on the left 
side of the equation; therefore, the systematic element is generally expressed on the 
right side as the inverse function, g-1. 

                                                 
5 The exponential family is a broader class of distributions sharing the same density form and 
including Normal, Poisson, gamma, inverse Gaussian, binomial, exponential and other 
distributions. 
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Exponential Family of Distributions 

1.49 Formally, the exponential family of distributions is a 2-parameter family defined as: 
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where ai(φ), b(θi), and c(yi,φ) are functions specified in advance; θi is a parameter 
related to the mean; and φ is a scale parameter related to the variance.  This formal 
definition is further explored in Appendix B.  For practical purposes it is useful to 
know that a member of the exponential family has the following two properties: 

a. the distribution is completely specified in terms of its mean and variance, 

b. the variance of Yi is a function of its mean. 

1.50 This second property is emphasized by expressing the variance as: 

 
i

i
i

V
YVar
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where V(x), called the variance function, is a specified function; the parameter φ scales 
the variance; and ωi is a constant that assigns a weight, or credibility, to observation i.   

1.51 A number of familiar distributions belong to the exponential family: the Normal, 
Poisson, binomial, gamma, and inverse Gaussian.6  The corresponding value of the 
variance function is summarized in the table below: 
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1.52 A special member of the exponential family is the Tweedie distribution.  The Tweedie 
distribution has a point mass at zero and a variance function proportional to μ p (where 
p<0 or 1<p<2 or p>2).  This distribution is typically used to model pure premium data 
directly and is discussed further in Appendix C. 

                                                 
6 A notable exception to this list is the lognormal distribution, which does not belong to the 
exponential family. 
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1.53 The choice of the variance function affects the results of the GLM.  For example, the 
graph below considers the result of fitting three different (and very simple) GLMs to 
three data points.  In each case the model form selected is a two-parameter model (the 
intercept and slope of a line), and the three points represent the individual observations 
(with the observed value Yi shown on the y-axis for different values of a single 
continuous explanatory variable shown on the x-axis).  

 Effect of varying the error term (simple example) 
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1.54 The three GLMs considered have a Normal, Poisson and gamma variance function 
respectively.  It can be seen that the GLM with a Normal variance function (which 
assumes that each observation has the same fixed variance) has produced fitted values 
which are attracted to the original data points with equal weight.  By contrast the GLM 
with a Poisson error assumes that the variance increases with the expected value of 
each observation.  Observations with smaller expected values have a smaller assumed 
variance, which results in greater credibility when estimating the parameters.  The 
model thus has produced fitted values which are more influenced by the observation on 
the left (with smaller expected value) than the observation on the right (which has a 
higher expected value and hence a higher assumed variance).   

1.55 It can be seen that the GLM with assumed gamma variance function is even more 
strongly influenced by the point on the left than the point on the right since that model 
assumes the variance increases with the square of the expected value. 
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1.56 A further, rather more realistic, example illustrates how selecting an appropriate 
variance function can improve the accuracy of a model.  This example considers an 
artificially generated dataset which represents an insurance portfolio.  This dataset 
contains several rating factors (some of which are correlated), and in each case the true 
effect of the rating factor is assumed to be known.  Claims experience (in this case 
average claim size experience) is then randomly generated for each policy using a 
gamma distribution, with the mean in each case being that implied by the assumed 
effect of the rating factors.  The claims experience is then analyzed using three models 
to see how closely the results of each model relate to the (in this case known) true 
factor effect. 

1.57 The three methods considered are 

 a one-way analysis 

 a GLM with assumed Normal variance function 

 a GLM with assumed gamma variance function. 

1.58 The results for one of the several rating factors considered are shown on the graph 
below.  It can be seen that owing to the correlations between the rating factors in the 
data, the one-way analysis is badly distorted.  The GLM with an assumed Normal 
distribution is closer to the correct relativities, but it can be seen that it is the GLM 
with an assumed gamma variance function which yields results that are the closest to 
the true effect. 

 Effect of varying the error term (insurance rating factor example) 
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1.59 In addition to the variance function V(x), two other parameters define the variance of 
each observation, the scale parameter φ and the prior weights ωi 
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Prior weights  

1.60 The prior weights allow information about the known credibility of each observation to 
be incorporated in the model.  For example, if modeling claims frequency, one 
observation might relate to one month's exposure, and another to one year's exposure.  
There is more information and less variability in the observation relating to the longer 
exposure period, and this can be incorporated in the model by defining ωi to be the 
exposure of each observation.  In this way observations with higher exposure are 
deemed to have lower variance, and the model will consequently be more influenced 
by these observations. 

1.61 An example demonstrates the appropriateness of this more clearly.  Consider a set of 
observations for personal auto claims under some classification system.  Let cell i 
denote some generic cell defined by this classification system. To analyze frequency 
let: 

mik be the number of claims arising from the kth unit of exposure in cell i 

ωi be the number of exposures in cell i 

Yi be the observed claim frequency in cell i: 
  
  ∑

=

=
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k
ik

i
i mY
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1.62 If the random process generating mik is Poisson with frequency fi for all exposures k 
then 

E[mik] = fi = Var[mik] 
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1.63 Assuming the exposures are independent then 
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1.64 So in this case V(μi) = μi, φ = 1, and the prior weights are the exposures in cell i. 

1.65 An alternative example would be to consider claims severity.  Let  

zik be the claim size of the kth claim in cell i 

ωi be the number of claims in cell i 

Yi be the observed mean claim size in cell i: 
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1.66 This time assume that the random process generating each individual claim is gamma 
distributed.  Denoting 

E[zik] = mi 

and 

Var[zik] = σ2 mi
2 

 

and assuming each claim is independent then  
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1.67 So for severity with a gamma distribution the variance of Yi follows the general form 
for all exponential distributions with V(μi) = μi

2, φ = σ2,  and prior weight equal to the 
number of claims in cell i. 
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1.68 Prior weights can also be used to attach a lower credibility to a part of the data which 
is known to be less reliable. 

The scale parameter 

1.69 In some cases (eg the Poisson distribution) the scale parameter φ is identically equal to 
1 and falls out of the GLM analysis entirely.  However in general and for the other 
familiar exponential distributions φ is not known in advance, and in these cases it must 
be estimated from the data. 

1.70 Estimation of the scale parameter is not actually necessary in order to solve for the 
GLM parameters β, however in order to determine certain statistics (such as standard 
errors, discussed below) it is necessary to estimate φ.  

1.71 φ can be treated as another parameter and estimated by maximum likelihood. The 
drawback of this approach is that it is not possible to derive an explicit formula for φ, 
and the maximum likelihood estimation process can take considerably longer. 

1.72 An alternative is to use an estimate of φ, such as 

a. the moment estimator (Pearson χ2 statistic) defined as 
   
 ∑ −

−
=

i i

iii

V
Y

pn )(
)(1ˆ

2

μ
μω

φ
 

b. the total deviance estimator  
 

pn
D
−

=φ̂ 
 

where D, the total deviance, is defined later in this paper. 

 Link Functions 

1.73 In practice when using classical linear regression practitioners sometimes attempt to 
transform data to satisfy the requirements of Normality and constant variance of the 
response variable and additivity of effects.  Generalized linear models, on the other 
hand, merely require that there be a link function that guarantees the last condition of 
additivity.  Whereas (LM3) requires that Y be additive in the covariates, the 
generalization (GLM3) instead requires that some transformation of Y, written as g(Y), 
be additive in the covariates.   
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1.74 It is more helpful to consider μi as a function of the linear predictor, so typically it is 
the inverse of g(x) which is considered: 

 
   )(1

ii g ημ −=

1.75 In theory a different link function could be used for each observation i, but in practice 
this is rarely done. 

1.76 The link function must satisfy the condition that it be differentiable and monotonic 
(either strictly increasing or strictly decreasing).  Some typical choices for a link 
function include) 
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1.77 Each error structure has associated with it a "canonical" link function which simplifies 
the mathematics of solving GLMs analytically.  These are discussed in Appendix D.  
When solving GLMs using modern computer software, however, the use of canonical 
link functions is not important and any pairing of link function and variance function 
which is deemed appropriate may be selected. 

1.78 The log-link function has the appealing property that the effect of the covariates are 
multiplicative.  Indeed, writing g(x) = ln(x) so that g-1(x) = ex results in   

 
   )exp()...exp()exp()...( 221111

1
ippiiippii xxxxxg βββββμ ⋅=++= −

 

1.79 In other words, when a log link function is used, rather than estimating additive 
effects, the GLM estimates logs of multiplicative effects. 

1.80 As mentioned previously, alternative choices of link functions and error structures can 
yield GLMs which are equivalent to a number of the minimum bias models as well as 
a simple linear model (see section "The Connection of Minimum Bias to GLM"). 
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The offset term 

1.81 There are occasions when the effect of an explanatory variable is known, and rather 
than estimating parameters β in respect of this variable it is appropriate to include 
information about this variable in the model as a known effect.  This can be achieved 
by introducing an "offset term" ξ into the definition of the linear predictor η: 

η = X.β + ξ 

which gives 

E[Y] = μ = g-1(η) = g-1(X.β + ξ) 

1.82 A common example of the use of an offset term is when fitting a multiplicative GLM 
to the observed number, or count, of claims (as opposed to claim frequency).  Each 
observation may relate to a different period of policy exposure.  An observation 
relating to one month's exposure will obviously have a lower expected number of 
claims (all other factors being equal) than an observation relating to a year's exposure.  
To make appropriate allowance for this, the assumption that the expected count of 
claims increases in proportion to the exposure of an observation (all other factors being 
equal) can be introduced in a multiplicative GLM by setting the offset term ξ to be 
equal to the log of the exposure of each observation, giving: 

 

 
⎜⎜
⎛

i
j

jiji XgYE exp][ 1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑− ξβ

 

i
j

jiji
j

jij eXeX .exp)log( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞

⎝
+ ∑∑ ββ

where ei = the exposure for observation i. 

1.83 In the particular case of a Poisson multiplicative GLM it can be shown that modeling 
claim counts with an offset term equal to the log of the exposure (and prior weights set 
to 1) produces identical results to modeling claim frequencies with no offset term but 
with prior weights set to be equal to the exposure of each observation. 
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Structure of a generalized linear model 

1.84 In summary, the assumed structure of a GLM can be specified as: 
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where 

 Yi is the vector of responses 

 g(x) is the link function: a specified (invertible) function which relates the expected 
response to the linear combination of observed factors 

 Xij is a matrix (the "design matrix") produced from the factors 

 βj is a vector of model parameters, which is to be estimated 

 ξi is a vector of known effects or "offsets" 

 φ is a parameter to scale the function V(x) 

 V(x) is the variance function 

 ωi is the prior weight that assigns a credibility or weight to each observation 

1.85 The vector of responses Yi, the design matrix Xij, the prior weights ωi, and the offset 
term ξi are based on data in a manner determined by the practitioner.  The assumptions 
which then further define the form of the model are the link function g(x), the variance 
function V(x), and whether φ is known or to be estimated. 

 Typical GLM model forms 

1.86 The typical model form for modeling insurance claim counts or frequencies is a 
multiplicative Poisson.  As well as being a commonly assumed distribution for claim 
numbers, the Poisson distribution also has a particular feature which makes it 
intuitively appropriate in that it is invariant to measures of time.  In other words, 
measuring frequencies per month and measuring frequencies per year will yield the 
same results using a Poisson multiplicative GLM.  This is not true of some other 
distributions such as gamma. 

 22



1.87 In the case of claim frequencies the prior weights are typically set to be the exposure of 
each record.  In the case of claim counts the offset term is set to be the log of the 
exposure. 

1.88 A common model form for modeling insurance severities is a multiplicative gamma.  
As well as often being appropriate because of its general form, the gamma distribution 
also has an intuitively attractive property for modeling claim amounts since it is 
invariant to measures of currency.  In other words measuring severities in dollars and 
measuring severities in cents will yield the same results using a gamma multiplicative 
GLM.  This is not true of some other distributions such as Poisson. 

1.89 The typical model form for modeling retention and new business conversion is a logit 
link function and binomial error term (together referred to as a logistic model).  The 
logit link function maps outcomes from the range of (0,1) to (-∞, +∞) and is 
consequently invariant to measuring successes or failures.  If the y-variate being 
modeled is generally close to zero, and if the results of a model are going to be used 
qualitatively rather than quantitatively, it may also be possible to use a multiplicative 
Poisson model form as an approximation given that the model output from a 
multiplicative GLM can be rather easier to explain to a non-technical audience. 

1.90 The below table summarizes some typical model forms. 

 

Y Claim 
frequencies 

Claim 
numbers or 

counts 

Average 
claim 

amounts 

Probability 
(eg of 

renewing) 

Link function g(x) ln(x) ln(x) ln(x) ln(x/(1-x)) 

Error Poisson Poisson Gamma Binomial 

Scale parameter φ 1 1 Estimated 1 

Variance function V(x) x x x2 x(1-x)* 

Prior weights ω Exposure 1 # of claims 1 

Offset ξ 0 ln(exposure) 0 0 

 * where the number of trials=1, or x(t-x)/t where the number of trials = t 
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GLM maximum likelihood estimators 

1.91 Having defined a model form in terms of X, g(x), ξ, V(x), φ, and ω, and given a set of 
observations Y, the components of β are derived by maximizing the likelihood function 
(or equivalently, the logarithm of the likelihood function).  In essence, this method 
seeks to find the parameters which, when applied to the assumed model form, produce 
the observed data with the highest probability. 

1.92 The likelihood is defined to be the product of probabilities of observing each value of 
the y-variate.  For continuous distributions such as the Normal and gamma 
distributions the probability density function is used in place of the probability.  It is 
usual to consider the log of the likelihood since being a summation across observations 
rather than a product, this yields more manageable calculations (and any maximum of 
the likelihood is also a maximum of the log-likelihood).  Maximum likelihood 
estimation in practice, therefore, seeks to find the values of the parameters that 
maximize this log-likelihood. 

1.93 In simple examples the procedure for maximizing likelihood involves finding the 
solution to a system of equations with linear algebra.  In practice, the large number of 
observations typically being considered means that this is rarely done.  Instead 
numerical techniques (and in particular multi-dimensional Newton-Raphson 
algorithms) are used.  Appendix E shows the system of equations for maximizing the 
likelihood function in the general case of an exponential distribution.  

1.94 An explicitly solved illustrative example and a discussion of numerical techniques 
used with large datasets are set out below. 

Solving simple examples 

1.95 To understand the mechanics involved in solving a GLM, a concrete example is 
presented.  Consider the same four observations discussed in a previous section for 
average claim severity: 

 Urban Rural 
Male 800 500 
Female 400 200 

1.96 The general procedure for solving a GLM involves the following steps: 

a. Specify the design matrix X and the vector of parameters β 

b. Choose the error structure and link function 

c. Identify the log-likelihood function 

d. Take the logarithm to convert the product of many terms into a sum 
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e. Maximize the logarithm of the likelihood function by taking partial derivatives 
with respect to each parameter, setting them to zero and solving the resulting 
system of equations 

f. Compute the predicted values.   

1.97 Recall that the vector of observations, the design matrix, and the vector of parameters 
are as follows: 
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where the first column of X indicates if an observation is male or not, the second 
column indicates whether the observation is female, and the last column specifies if the 
observation is in an urban territory or not.   

1.98 The following three alternative model structures are illustrated:  

 Normal error structure with an identity link function 

 Poisson error structure with a log link function 

 Gamma error structure with an inverse link function. 

1.99 These three model forms may not necessarily be appropriate models to use in practice - 
instead they illustrate the theory involved. 

1.100 In each case the elements of ω (the prior weights) will be assumed to be 1, and the 
offset term ξ assumed to be zero, and therefore these terms will, in this example, be 
ignored.   

Normal error structure with an identity link function 

1.101 The classical linear model case assumes a Normal error structure and an identity link 
function.  The predicted values in the example take the form: 
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1.102 The Normal distribution with mean μ and variance σ2 has the following density 
function: 
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1.103 Its likelihood function is:  
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1.104 Maximizing the likelihood function is equivalent to maximizing the log-likelihood 
function: 
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1.105 With the identity link function, μi=ΣjXijβj and the log-likelihood function becomes 
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1.106 In this example, up to a constant term of 2.ln(2πσ2), the log-likelihood is  
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1.107 To maximize l* take derivatives with respect to β1, β2 and β3 and set each of them to 
zero.  The resulting system of three equations in three unknowns is: 
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1.108 It can be seen that these equations are identical to those derived when minimizing the 
sum of squared error for a simple linear model.  Again, these can be solved to derive: 
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which produces the following predicted values: 
 

 Urban Rural 
Male 775 525 
Female 425 175 

 

The Poisson error structure with a logarithm link function 

1.109 For the Poisson model with a logarithm link function, the predicted values are given by 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

==
+

+

−

−

−

−

−

2

32

1

31

)(
)(

)(
)(

)(][

2
1

32
1

1
1

31
1

1

β

ββ

β

ββ

β
ββ

β
ββ

β

e
e

e
e

g
g

g
g

XgYE 

 

1.110 A Poisson distribution has the following density function 
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1.111 Its log-likelihood function is therefore 

 
 
 

1.112 With the logarithm link function, μi = exp(ΣjXijβj), and the log-likelihood function 
reduces to  

 
 

1.113 In this example, the equation is 
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1.114 Ignoring the constant of ln800! + ln500! + ln400! + ln200!, the following function is to 
be maximized: 
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1.115 To maximize l* the derivatives with respect to β1, β2 and β3 are set to zero and the 
following three equations are derived: 
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1.116 These can be solved to derive the following parameter estimates: 
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which produces the following predicted values: 
 

 Urban Rural 
Male 821.1 479.0 
Female 378.9 221.1 

 

The gamma error structure with an inverse link function 

1.117 This example is set out in Appendix F.   
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 Solving for large datasets using numerical techniques 

1.118 The general case for solving for maximum likelihood in the case of a GLM with an 
assumed exponential distribution is set out in Appendix E.  In insurance modeling 
there are typically many thousands if not millions of observations being modeled, and 
it is not practical to find values of β which maximize likelihood using the explicit 
techniques illustrated above and in Appendices E and F.  Instead iterative numerical 
techniques are used.   

1.119 As was the case in the simple examples above, the numerical techniques seek to 
optimize likelihood by seeking the values of β which set the first differential of the 
log-likelihood to zero, as there are a number of standard methods which can be applied 
to this problem.  In practice, this is done using an iterative process, for example 
Newton-Raphson iteration which uses the formula: 

βn+1 = βn – H-1.s 

where βn is the nth iterative estimate of the vector of the parameter estimates β (with p 
elements), s is the vector of the first derivatives of the log-likelihood and H is the (p by 
p) matrix containing the second derivatives of the log-likelihood.  This is simply the 
generalized form of the one-dimensional Newton-Raphson equation, 

xn+1 = xn - f'(xn) / f''(xn) 

which seeks to find a solution to f'(x)=0. 

1.120 The iterative process can be started using either values of zero for elements of β0 or 
alternatively the estimates implied by a one-way analysis of the data or of another 
previously fitted GLM.  

1.121 Several generic commercial packages are available to fit generalized linear models in 
this way (such as SAS®, S+, R, etc), and packages specifically built for the insurance 
industry, which fit models GLMs more quickly and with helpful interpretation of 
output, are also available. 
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Base levels and the intercept term  

1.122 The simple examples discussed above considered a three parameter model, where β1 
corresponded to men, β2 to women and β3 to the effect of being in an urban area.  In 
the case of an additive model (with identity link function) this could be thought of as 
either 

 assuming that there is an average response for men, β1, and an average response 
for women, β2, with the effect of being an urban policyholder (as opposed to being 
a rural one) having an additional additive effect β3 which is the same regardless of 
gender 

or 

 assuming there is an average response for the "base case" of women in rural areas, 
β2, with an additional additive effects for being male, β1-β2, and for being in an 
urban area, β3. 

1.123 In the case of a multiplicative model this three parameter form could be thought of as  

 assuming that there is an average response for men, exp(β1), and an average 
response for women, exp(β2), with the effect of being an urban policyholder (as 
opposed to being a rural one) having a multiplicative effect exp(β3), which is the 
same regardless of gender 

or 

 assuming there is an average response for the "base case" of women in rural areas 
exp(β2) with an additional multiplicative effects for being male, exp(β1-β2), and for 
being in an urban area exp(β3). 

1.124 In the example considered, some measure of the overall average response was 
incorporated in both the values of β1 and β2.  The decision to incorporate this in the 
parameters relating to gender rather than area was arbitrary. 

1.125 In practice when considering many factors each with many levels it is more helpful to 
parameterize the GLM by considering, in addition to observed factors, an "intercept 
term", which is a parameter that applies to all observations. 
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1.126 In the above example, this would have been achieved by defining the design matrix X 
as  
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that is, by redefining β1 as the intercept term, and only having one parameter relating 
to the gender of the policyholder.  It would not be appropriate to have an intercept term 
and a parameter for every value of gender since then the GLM would not be uniquely 
defined - any arbitrary constant k could be added to the intercept term and subtracted 
from each of the parameters relating to gender and the predicted values would remain 
the same. 

1.127 In practice when considering categorical factors and an intercept term, one level of 
each factor should have no parameter associated with it, in order that the model 
remains uniquely defined.   

1.128 For example consider a simple rating structure with three factors - age of driver (a 
factor with 9 levels), territory (a factor with 8 levels) and vehicle class (a factor with 5 
levels).  An appropriate parameterization might be represented as follows: 

 
Age of driver   Territory   Vehicle class  
        

  Factor level Parameter 
 

Factor level Parameter 
 

Factor level Parameter 

17-21 β2  A β10  A  
22-24 β3  B β11  B β17 
25-29 β4  C   C β18 
30-34 β5  D β12  D β19 
35-39 β6  E β13  E β20 
40-49   F β14    
50-59 β7  G β15    
60-69 β8  H β16    
70+ β9     Intercept term β1 

 

 

 

 

 

 

 

that is, an intercept term is defined for every policy, and each factor has a parameter 
associated with each level except one.  If a multiplicative GLM were fitted to claims 
frequency (by selecting a log link function) the exponentials of the parameter estimates 
β could be set out in tabular form also: 
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 Age of driver   Territory   Vehicle class  
        

  Factor level Multiplier 
 

Factor level Multiplier 
 

Factor level Multiplier 

17-21 1.6477  A 0.9407  A 1.0000 

22-24 1.5228  B 0.9567  B 0.9595 

25-29 1.5408  C 1.0000  C 1.0325 

30-34 1.2465  D 0.9505  D 0.9764 

35-39 1.2273  E 1.0975  E 1.1002 

40-49 1.0000  F 1.1295    
50-59 0.8244  G 1.1451    
60-69 0.9871  H 1.4529    
70+ 0.9466     Intercept term 0.1412 

 

 

 

 

 

 

 

1.129 In this example the claims frequency predicted by the model can be calculated for a 
given policy by taking the intercept term 0.1412 and multiplying it by the relevant 
factor relativities.  For the factor levels for which no parameter was estimated (the 
"base levels"), no multiplier is relevant, and this is shown in the above table by 
displaying multipliers of 1.  The intercept term relates to a policy with all factors at the 
base level (ie in this example the model predicts a claim frequency of 0.1412 for a 
40-49 year old in territory C and a vehicle in class A).  This intercept term is not an 
average rate since its value is entirely dependent upon the arbitrary choice of which 
level of each factor is selected to be the base level. 

1.130 If a model were structured with an intercept term but without each factor having a base 
level, then the GLM solving routine would remove as many parameters as necessary to 
make the model uniquely defined.  This process is known as aliasing. 

 Aliasing 

1.131 Aliasing occurs when there is a linear dependency among the observed covariates 
X1,…,Xp. That is, one covariate may be identical to some combination of other 
covariates.  For example, it may be observed that  

 
 213 54 XXX ++=

 

1.132 Equivalently, aliasing can be defined as a linear dependency among the columns of the 
design matrix X.   
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1.133 There are two types of aliasing: intrinsic aliasing and extrinsic aliasing. 

Intrinsic aliasing 

1.134 Intrinsic aliasing occurs because of dependencies inherent in the definition of the 
covariates.  These intrinsic dependencies arise most commonly whenever categorical 
factors are included in the model. 

1.135 For example, suppose a private passenger automobile classification system includes 
the factor vehicle age which has the four levels:  0-3 years (X1), 4-7 years (X2), 8-9 
years (X3), and 10+ years (X4).  Clearly if any of X1, X2, X3, is equal to 1 then X4 is equal 
to 0; and if all of X1, X2, X3, are equal to 0 then X4 must be equal to 1.  Thus  
X4  = 1 - X1 - X2 - X3.   

1.136 The linear predictor 

 
 2 4433211 XXXX ββββη +++=

 

(ignoring any other factors) can be uniquely expressed in terms of the first three levels: 
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1.137 Upon renaming the coefficients this becomes: 

 
 η 0332211α + α + α= XXX + α

 

1.138 The result is a linear predictor with an intercept term (if one did not already exist) and 
three covariates.  

1.139 GLM software will remove parameters which are aliased.  Which parameter is selected 
for exclusion depends on the software.  The choice of which parameter to alias does 
not affect the fitted values.  For example in some cases the last level declared (ie the 
last alphabetically) is aliased.  In other software the level with the maximum exposure 
is selected as the base level for each factor first, and then other levels are aliased 
dependent upon the order of declaration.  (This latter approach is helpful since it 
minimizes the standard errors associated with other parameter estimates - this subject 
is discussed later in this paper.) 
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Extrinsic Aliasing 

1.140 This type of aliasing again arises from a dependency among the covariates, but when 
the dependency results from the nature of the data rather than inherent properties of the 
covariates themselves.  This data characteristic arises if one level of a particular factor 
is perfectly correlated with a level of another factor.   

1.141 For example, suppose a dataset is enriched with external data and two new factors are 
added to the dataset: the factors number of doors and color of vehicle.  Suppose further 
that in a small number of cases the external data could not be linked with the existing 
data with the result that some records have an unknown color and an unknown number 
of doors.  

 
 Exposures # Doors

2 3 4 5 Unkn
Red 13,234 12,343 15,432 13,432 0
Green 4,543 4,543 13,243 2,345 0
Blue 6,544 5,443 15,654 4,565 0
Black 4,643 1,235 14,565 4,545 0
Unknown 0 0 0 0 3,2

Selected Base: # Doors = 4; Color = Red

Additional Aliasing: Color = Unknown

own
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1.142 In this case because of the way the new factors were derived, the level unknown for the 
factor color happens to be perfectly correlated with the level unknown for the factor # 
doors.  The covariate associated with unknown color is equal to 1 in every case for 
which the covariate for unknown # doors is equal to 1, and vice versa. 

1.143 Elimination of the base levels through intrinsic aliasing reduces the linear predictor 
from 10 covariates to 8, plus the introduction of an intercept term.  In addition, in this 
example, one further covariate needs to be removed as a result of extrinsic aliasing.  
This could either be the unknown color covariate or the unknown # doors covariate.  
Assuming in this case the GLM routine aliases on the basis of order of declaration, and 
assuming that the # doors factor is declared before color, the GLM routine would alias 
unknown color reducing the linear predictor to just 7 covariates. 
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"Near Aliasing" 

1.144 When modeling in practice a common problem occurs when two or more factors 
contain levels that are almost, but not quite, perfectly correlated.  For example, if the 
color of vehicle was known for a small number of policies for which the # doors was 
unknown, the two-way of exposure might appear as follows: 

 
Exposures # Doors

2 3 4 5 Unkn
Red 13,234 12,343 15,432 13,432 0
Green 4,543 4,543 13,243 2,345 0
Blue 6,544 5,443 15,654 4,565 0
Black 4,643 1,235 14,565 4,545
Unknown 0 0 0 0 3,2

Selected Base: # Doors = 4; Color = Red

 own
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1.145 In this case the unknown level of color factor is not perfectly correlated to the unknown 
level of the # doors factor, and so extrinsic aliasing will not occur. 

1.146 When levels of two factors are "nearly aliased" in this way, convergence problems can 
occur.  For example, if there were no claims for the 5 exposures indicated in black 
color level and unknown # doors level, and if a log link model were fitted to claims 
frequency, the model would attempt to estimate a very large and negative parameter 
for unknown # doors (for example, -20) and a very large parameter for unknown color 
(for example 20.2).  The sum (0.2 in this example) would be an appropriate reflection 
of the claims frequency for the 3,242 exposures having unknown # doors and unknown 
color, while the value of the unknown # doors parameter would be driven by the 
experience of the 5 rogue exposures having color black with unknown # doors.  This 
can either give rise to convergence problems, or to results which can appear very 
confusing. 

1.147 In order to understand the problem in such circumstances it is helpful to examine 
two-way tables of exposure and claim counts for the factors which contain very large 
parameter estimates.  From these it should be possible to identify those factor 
combinations which cause the near-aliasing.  The issue can then be resolved either by 
deleting or excluding those rogue records, or by reclassifying the rogue records into 
another, more appropriate, factor level.  
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Model diagnostics 

1.148 As well as deriving parameter estimates which maximize likelihood, a GLM can 
produce important additional information indicating the certainty of those parameter 
estimates (which themselves are estimates of some true underlying value). 

Standard errors  

1.149 Statistical theory can be used to give an estimate of the uncertainty.  In particular, the 
multivariate version of the Cramer-Rao lower bound (which states that the variance of 
a parameter estimate is greater than or equal to minus one over the second derivative of 
the log likelihood) can define "standard errors" for each parameter estimate.  Such 
standard errors are defined as being the diagonal element of the covariance matrix -H-1  

where H (the Hessian) is the second derivative matrix of the log likelihood.  

1.150 Intuitively the standard errors can be thought of as being indicators of the speed with 
which log-likelihood falls from the maximum given a change in a parameter.  For 
example consider the below diagram. 

 Intuitive illustration of standard errors 
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1.151 This diagram illustrates a simple case with two parameters (β1 and β2) and shows how 
log likelihood varies, for the dataset in question, for different values of the two 
parameters.  It can be seen that movements in parameter 1 from the optimal position 
reduce log likelihood more quickly than similar movements in parameter 2, that is to 
say the log likelihood curve becomes steeper in the parameter 1 direction than in the 
parameter 2 direction.  This can be thought of as the second partial differential of log 
likelihood with respect to parameter 1 being large and negative, with the result that the 
standard error for parameter 1 (being minus one over the second partial differential) is 
small.  Conversely the second partial differential of log likelihood with respect to 
parameter 2 is less large and negative, with the standard error for parameter 2 being 
larger (indicating greater uncertainty). 

1.152 Generally it is assumed that the parameter estimates are asymptotically Normally 
distributed; consequently it is in theory possible to undertake a simple statistical test on 
individual parameter estimates, comparing each estimate with zero (ie testing whether 
the effect of each level of the factor is significantly different from the base level of that 
factor).  This is usually performed using a χ2 test, with the square of the parameter 
estimate divided by its variance being compared to a χ2 distribution.  This test in fact 
compares the parameter with the base level of the factor.  This is not necessarily a fully 
useful test in isolation as the choice of base level is arbitrary.  It is theoretically 
possible to change repeatedly the base level and so construct a triangle of χ2 tests 
comparing every pair of parameter estimates.  If none of these differences is significant 
then this is good evidence that the factor is not significant. 

1.153 In practice graphical interpretation of the parameter estimates and standard errors are 
often more helpful, and these are discussed in Section 2. 

Deviance tests 

1.154 In addition to the parameter estimate standard errors, measures of deviance can be used 
to assess the theoretical significance of a particular factor.  In broad terms, a deviance 
is a measure of how much the fitted values differ from the observations.   

1.155 Consider a deviance function d(Yi,μi) defined by 
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Under the condition that V(x) is strictly positive, d(Yi,μi) is also strictly positive and 
satisfies the conditions for being a distance function.  Indeed it should be interpreted as 
such.   
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1.156 Consider an observation Yi and a GLM that makes a prediction μi for that observation.  
d(Yi,μi) is a measure of the difference between the fitted and actual observations which 
gives more weight to the difference between Yi and μi when the variance function V(x) 
is small. That is, if Yi is known to come from a distribution with small variance then 
any discrepancy between Yi and μi is given more emphasis.   

1.157 d(Yi,μ) can be thought of as a generalized form of the squared error.   

1.158 Summing the deviance function across all observations gives an overall measure of 
deviance referred to as the total deviance D: 
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1.159 Dividing this by the scale parameter φ gives the scaled deviance D*, which can be 
thought of as a generalized form of the sum of squared errors, adjusting for the shape 
of the distribution.   
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1.160 For the class of exponential distributions the scaled deviance can be shown to be equal 
to twice the difference between the maximum achievable likelihood (ie the likelihood 
where the fitted value is equal to the observation for every record) and the likelihood 
of the model. 

1.161 A range of statistical tests can be undertaken using deviance measures.  One of the 
most useful tests considers the ratio of the likelihood of two "nested" models, that is to 
say where one model contains explanatory variables which are a subset of the 
explanatory variables in a second model.  Such tests are often referred to as "type III" 
tests (as opposed to "type I" tests which consider the significance of factors as they are 
added sequentially to a model with only an intercept term, referred to as a null model). 

1.162 The change in scaled deviance between two nested models (which reflects the ratio of 
the likelihoods) can be considered to be a sample from a χ2 distribution with degrees of 
freedom equal to the difference in degrees of freedom between the two models (where 
the degrees of freedom for a model is defined as the number of observations less the  
number of parameters), ie 

 2*
2

*
1 21

~ dfdfDD −− χ
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1.163 This allows tests to be undertaken to assess the significance of the parameters that 
differ between the two models (with the null hypothesis that the extra parameters are 
not important).  Expressed crudely this measures whether the inclusion of an 
explanatory factor in a model improves the model enough (ie decreases the deviance 
enough) given the extra parameters which it adds to the model.  Adding any factor will 
improve the fit on the data in question - what matters is whether the improvement is 
significant given the extra parameterization. 

1.164 The χ2 tests depend on the scaled deviance.  For some distributions (such as the 
Poisson and the binomial) the scale parameter is assumed to be known, and it is 
possible to calculate the statistic accurately.  For other distributions the scale parameter 
is not known and has to be estimated, typically as the ratio of the deviance to the 
degrees of freedom.  This can decrease the reliability of this test if the estimate of the 
scale parameter used is not accurate. 

1.165 It is possible to show that, after adjusting for the degrees of freedom and the true scale 
parameter, the estimate of the scale parameter is also distributed with a χ2 distribution.  
The F-distribution is the ratio of χ2 distributions.  The ratio of the change in deviance 
and the adjusted estimate of the scale is therefore distributed with an F-distribution.  
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1.166 This means that the F-test is suitable for use when the scale parameter is not known 
(for example when using the gamma distribution).  There is no advantage to using this 
test where the scale is known. 
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2 GLMs in practice  

2.1 Section 1 discussed how GLMs are formularized and solved.  This section considers 
practical issues and presents a plan for undertaking a GLM analysis in four general 
stages:   

 pre-modeling analysis - considering data preparation as well as a range of helpful 
portfolio investigations 

 model iteration - typical model forms and the diagnostics used in both factor 
selection and model validation 

 model refinement - investigating interaction variables, the use of smoothing, and 
the incorporation of artificial constraints 

 interpretation of the results - how model results can be compared to existing rating 
structures both on a factor-by-factor basis and overall. 

 Data required  

2.2 GLM claim analyses require a certain volume of experience.  Depending on the 
underlying claim frequencies and the number of factors being analyzed, credible 
results on personal lines portfolios can generally be achieved with around 100,000 
exposures (which could for example be 50,000 in each of two years, etc).  Meaningful 
results can sometimes be achieved with smaller volumes of data (particularly on claim 
types with adequate claims volume), but it is best to have many 100,000s of exposures.  
As models fitted to only a single year of data could be distorted by events that occurred 
during that year, the data should ideally be based on two or three years of experience.  

2.3 In addition to combining different years of experience, combining states (or provinces) 
can also improve stability, assuming inputs are consistent across borders.7  In the case 
where one geographic area has sufficient exposure it may be more appropriate to fit a 
model just to that area's experience.  If a countrywide model has been run, the 
goodness of fit of that model on state data may be investigated, or the state and 
countrywide model results may be compared side-by-side.  Examining the interaction 
of state with each predictive factor may also identify where state patterns differ from 
countrywide; interaction variables are discussed later in this paper.  

                                                 
7 In this sense, inputs refer to explanatory criteria, not necessarily existing rating relativities.  
Data coding should be reviewed to ensure some level of consistency and care should be taken 
with recycled coding from one state to another (eg territory 1 in Virginia should not be added to 
territory 1 in Florida). 
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2.4 Different types of claim can be affected by rating factors in different ways and so often 
it is appropriate to analyze different types of claim with separate models.  Analyzing 
different claim elements separately will often identify clearer underlying trends than 
considering models based on a mixture of claims (for example, liability claims 
combined with theft claims).  Even if a single model is required ultimately, it is 
generally beneficial to model by individual claim type and later to produce a single 
model which fits the aggregate of the underlying models by claim type.  

2.5 The overall structure of a dataset for GLM claims analysis consists of linked policy 
and claims information at the individual risk level.  Typical data requirements and a 
more detailed discussion of issues such as dealing with IBNR are set out in 
Appendix G.  In summary, however, the following fields would typically be included 
in a GLM claims dataset.  

 Raw explanatory variables - whether discrete or continuous, internal or external to 
the company. 

 Dummy variables to standardize for time-related effects, geographic effects and 
certain historical underwriting effects. 

 Earned exposure fields - preferably by claim type if certain claim types are only 
present for some policies.  These fields should contain the amount of exposure 
attributable to the record (eg measured in years).   

 Number of incurred claims fields.  There should be one field for each claim type, 
giving the number of claims associated with the exposure period in question.   

 Incurred loss amounts fields.  There should be one field for each claim type, giving 
the incurred loss amount of claims associated with the exposure period in question, 
based on the most recent possible case reserve estimates.   

 Premium fields.  These give the premium earned during the period associated with 
the record.  If it is possible to split this premium between the claim types then this 
can be used to enhance the analysis.  This information is not directly required for 
modeling claims frequency and severity, however it can be helpful for a range of 
post-modeling analyses such as measuring the impact of moving to a new rating 
structure. 
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2.6 When analyzing policyholder retention or new business conversion, a different form of 
data is required.  For example to fit GLMs to policyholder renewal experience, a 
dataset would contain one record for each invitation to renew and would contain the 
following fields: 

 explanatory variables including, for example, 

 rating factors 

 other factors such as distribution channel, method of payment and number of 
terms with company 

 change in premium on latest renewal8  

 change in premium on previous renewal  

 measure of competitiveness on renewal premium 

 details of any mid-term adjustments occurring in the preceding policy period 

 number of invitations to renew (typically 1 for each record - this would be the 
measure of exposure)  

 whether or not the policy renewed. 

2.7 If several risks are written on a single policy, renewal may be defined at the policy 
level or at the individual risk level (for example, a personal automobile carrier may 
write all vehicles in a household on a single policy).  An understanding of how the 
model will be used will aid data preparation.  For example, models that will be part of 
a detailed model office scenario will benefit from data defined at the individual risk 
level.  Models used to gain an overall understanding of which criteria affect 
policyholder retention (perhaps for marketing purposes) would not require such detail. 

  

                                                 
8 Separation of premium change into rate change and risk criteria change would be beneficial.  
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Preliminary analyses  

2.8 Before modeling, it is generally helpful to undertake certain preliminary analyses.  
These analyses include data checks such as identification of records with negative or 
zero exposures, negative claim counts or losses, and blanks in any of the statistical 
fields.  In addition, certain logical tests may be run against the data - for example, 
identifying records with incurred losses but with no corresponding claim count.   

Analysis of distributions 

2.9 One helpful preliminary analysis is to consider the distribution of key data items for 
the purpose of identifying any unusual features or data problems that should be 
investigated prior to modeling.  Mainly this concerns the distribution of claim amounts 
(ie number of claim counts by average claim size), which are examined in order to 
identify features such as unusually large claims and distortions resulting from average 
reserves placed on newly reported claims.  A typical claim distribution graph is shown 
below. 

  Example job
Claim type 2 - Third party material damage
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2.10 This distribution, along with a distribution of loss amount by average claim size, will 
aid in understanding the tail of the distribution for a particular claim type.  (When 
modeling severity, it is often appropriate to apply a large loss threshold to certain claim 
types, and this helps assess possible thresholds.  A tabular representation of the 
distribution would also help quantify the percent of the claims distribution which 
would be affected by different large loss thresholds.) 
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2.11 Distribution analyses can also highlight specific anomalies that might require 
addressing prior to modeling.  For example, if many new claims have a standard 
average reserve allocated to them, it might be appropriate to adjust the amount of such 
an average reserve if it was felt that the average level was systematically below or 
above the ultimate average claims cost. 

One and two-way analyses 

2.12 Although GLMs are a multivariate method, there is generally benefit in reviewing 
some one-way and two-way analyses of the raw data prior to modeling.   

2.13 Firstly, the one-way distribution of exposure and claims across levels of each raw 
variable will indicate whether a variable contains enough information to be included in 
any models (for example, if 99.5% of a variable's exposures are in one level, it may not 
be suitable for modeling).   

2.14 Secondly, assuming there is some viable distribution by levels of the factor, 
consideration needs to be given to any individual levels containing very low exposure 
and claim count.  If these levels are not ultimately combined with other levels, the 
GLM maximum likelihood algorithm may not converge (if a factor level has zero 
claims and a multiplicative model is being fitted, the theoretically correct multiplier for 
that level will be close to zero, and the parameter estimate corresponding to the log of 
that multiplier may be so large and negative that the numerical algorithm seeking the 
maximum likelihood will not converge).   

2.15 In addition to investigating exposure and claim distribution, a query of one-way 
statistics (eg frequency, severity, loss ratio, pure premium) will give a preliminary 
indication of the effect of each factor. 

 Factor categorizations 

2.16 Before modeling, it is necessary to consider how explanatory variables should be 
categorized, and whether any variables should be modeled in a continuous fashion as 
variates (or polynomials in variates).  Although variates do not require any artificially 
imposed categorization, the main disadvantage is that the use of polynomials may 
smooth over interesting effects in the underlying experience.  Often it is better to begin 
modeling all variables as narrowly defined categorical factors (ensuring sufficient data 
in each category) and if the categorical factor presents GLM parameter estimates 
which appear appropriate for modeling with a polynomial, then the polynomial in the 
variate may be used in place of the categorical factor. 
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2.17 When using categorical factors consideration needs to be given to the way in which the 
factors are categorized.  If an example portfolio contained a sufficient amount of 
claims for each for each age of driver (say from age 16 to 99), the categorization of age 
of driver may consist of each individual age.  This is rarely the case in practice, 
however, and often it is necessary that levels of certain rating factors are combined. 

2.18 In deriving an appropriate categorization, the existing rating structure may provide 
initial guidance (particularly if the GLMs are to be applied in ratemaking), with factor 
levels with insufficient exposure then being grouped together and levels with sufficient 
exposure being considered separately.  In general such a manual approach tends to be 
the most appropriate.  One particular automated approach within the GLM framework 
is considered in Appendix H.  This approach, however, would not necessarily produce 
any more appropriate results than the manual approach. 

 Correlation analyses 

2.19 Once categorical factors have been defined, it can also be helpful to consider the 
degree to which the exposures of explanatory factors are correlated.   One commonly 
used correlation statistic for categorical factors is Cramer's V statistic.9  Further 
information about this statistic is set out in Appendix I. 

2.20 Although not used directly in the GLM process, an understanding of the correlations 
within a portfolio is helpful when interpreting the results of a GLM.  In particular it 
can explain why the multivariate results for a particular factor differ from the 
univariate results, and can indicate which factors may be affected by the removal or 
inclusion of any other factor in the GLM. 

 Data extracts 

2.21 In practice it is not necessary to fit every model to the entire dataset.  For example, 
modeling severity for a particular claim type only requires records that contain a claim 
of that type.  Running models against data subsets, or extracts, can improve model run 
speed. 

                                                 
9 Other correlation statistics for categorical factors include Pearson chi-square, Likelihood ratio 
chi-square, Phi coefficient and Contingency coefficient.  A thorough discussion of these 
statistics is beyond the scope of this paper. 
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2.22 The error term assumed for a model can also influence these data extracts.  In the case 
of claim counts, a particular property of Poisson multiplicative model is that the 
observed data Yi can be grouped by unique combination of rating factors being 
modeled (summing exposure and claim counts for each unique combination) and the 
GLM parameter estimates and the parameter estimate standard errors will remain 
unchanged.  This is helpful in practice since it can decrease model run times.  This is 
not the case for some other distributions.  

2.23 A gamma multiplicative model does not produce identical results if the observations 
are grouped by unique combinations of factors.  Such a grouping would not change 
parameter estimates, but it would affect the standard errors.  Depending on the line of 
business, however, it may be appropriate to group the small number of multiple claims 
which occur on the same policy in the same exposure period. 

 Model iteration and the role of diagnostics 

2.24 Given data relating to the actual observations and the assumptions about the model 
form, a GLM will yield parameter estimates which best fit the data given that model 
form.  The GLM will not automatically provide information indicating the 
appropriateness of the model fitted - for this it is necessary to examine a range of 
diagnostics.  This section reviews model forms typically used in practice and discusses 
the range of diagnostics which aid in both the selection of explanatory factors and the 
validation of statistical assumptions. 

 Factor selection 

2.25 One of the key issues to consider is which explanatory factors should be included in 
the model. The GLM will benefit from including factors which systematically affect 
experience, but excluding factors which have no systematic effect.  To distinguish 
whether a factor effect is systematic or random (and therefore unlikely to be repeated 
in the future) there are a number of criteria which can be considered, including 

 parameter estimate standard errors 

 deviance tests (type III tests) 

 consistency with time 

 common sense. 

Standard errors 

2.26 As discussed in Section 1, as well as deriving parameter estimates which maximize 
likelihood, a GLM can produce important additional information indicating the 
certainty of those parameter estimates. 
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2.27 One such helpful diagnostic is the standard errors of the parameter estimates, defined 
as being the square root of the diagonal element of -H-1 where H (the Hessian) is the 
second derivative matrix of the log likelihood. 

2.28 Although theoretically tests could be performed on individual parameter estimates 
using standard errors, in practice it is often more helpful to consider for each factor in 
the GLM the fitted parameter estimates alongside the associated standard errors (for 
one base level) in a graphical form thus: 

 GLM output (example of significant factor) 
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2.29 One such graph would be shown for each factor in the model.  In this case the factor in 
question is Vehicle Symbol with levels running from 1 to 13.   

2.30 The thick solid line shows the fitted parameter estimates.  In this case the model is a 
multiplicative model with a log link function and so the parameter estimates represent 
logs of multipliers.  For clarity the implied loadings are shown as labels by each point 
on the thick solid line.  For example - the parameter estimate for Vehicle Symbol 3 has 
value 0.27. This means that the model estimates that, all other factors being constant, 
exposures with Vehicle Symbol 3 will have a relativity of e0.27 = 1.31 times that 
expected for exposures at the base level (in this example Symbol 1).  This multiplier is 
shown on the graph as a "loading" of 31%.   
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2.31 The thin solid lines on each graph indicate two standard errors either side of the 
parameter estimate.  Very approximately this means that (assuming the fitted model is 
appropriate and correct) the data suggests that the true relativity for each level of rating 
factor will lie between the two thin solid lines with roughly 95% certainty.  The two 
bands will be wide apart, indicating great uncertainty in the parameter estimate where 
there is low exposure volume, where other correlated factors also explain the risk, or 
where the underlying experience is very variable. 

2.32 The dotted lines shows the relativities implied by a simple one-way analysis.  These 
relativities make no allowance for the fact that the difference in experience may be 
explained in part by other correlated factors.  These one-way estimates are of interest 
since they will differ from the multivariate estimates for a given factor when there are 
significant correlations between that factor and one or more other significant factors.  
The distribution of exposure for all business considered is also shown as a bar chart at 
the bottom of each graph.  This serves to illustrate which level of each factor may be 
financially significant. 

2.33 Even though the standard errors on the graph only indicate the estimated certainty of 
the parameter estimates relative to the base level, such graphs generally give a good 
intuitive feel for the significance of a factor.  For example in the above case it is clear 
that the factor is significant since the parameter estimates for Vehicle Symbols 3 to 13 
are considerably larger than twice the corresponding standard errors.  By contrast the 
graph below (an example of the same factor in a different model for a different claim 
type) illustrates an example where a factor is not significant - in this case there are no 
parameter estimates more than two standard errors from zero. 

      GLM output (example of insignificant factor) 
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2.34 Sometimes some levels of a categorical factor may be clearly significant, while other 
levels may be less so.  Although the factor as a whole may be statistically significant, 
this may indicate that it is appropriate to re-categorize the factor, grouping together the 
less significant levels with other levels. 

Deviance tests 

2.35 As discussed in Section 1, comparing measures of deviance of two nested models 
allows "type III" tests (χ2 or F-tests depending on whether or not the scale parameter φ 
is known) to be performed to determine the theoretical significance of individual 
factors. 

2.36 In the Vehicle Symbol examples above (which were based on frequency models of two 
different claim types, each with a Poisson error structure), the resulting probability 
values (or P values) from the χ2 tests are shown as footnotes to the graphs.  Each χ2 test 
compares a model with Vehicle Symbol to one without.  In the first case the χ2 test 
shows a probability level close to 0 (displayed to one decimal place as 0.0%).  This 
means that the probability of this factor having such an effect on the deviance by 
chance is almost zero, ie this factor (according to the χ2 test) is highly significant.  
Conversely in the second example the probability value is 52.5%, indicating that the 
factor is considerably less significant and should be excluded from the model.  
Typically factors with χ2 or F-test probability levels of 5% or less are considered 
significant. 

2.37 These kinds of type III likelihood ratio tests can provide additional information to the 
graphical interpretation of parameter estimates and standard errors.  For example if 
other correlated factors in a model could largely compensate for the exclusion of a 
factor, this would be indicated in the type III test.  Also the type III test is not 
influenced by the choice of the base level in the way that parameter estimate standard 
errors are. 

2.38 On the other hand, type III tests can be impractical on occasions - for example if a 20 
level factor contained only one level that had any discriminatory effect on experience, 
a type III test might indicate that the factor was statistically significant, whereas a 
graphical representation of the model results would show at a glance that the factor 
contained too many levels and needed to be re-categorized with fewer parameters. 
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Interaction with time 

2.39 In addition to classical statistical tests it can often be helpful to consider rather more 
pragmatic tests such as whether the observed effect of a rating factor is consistent over 
time.  For example if more than one year's experience is being considered it is possible 
to consider the effect of a particular factor in each calendar year of exposure (or 
alternatively policy year).  In theory this could be done by fitting separate models to 
each year and then comparing the results, however this can be hard to interpret since a 
movement in one factor in one year may to a large extent be compensated for by a 
movement in another correlated factor.  A potentially clearer test, therefore, is to fit a 
series of models each one of which considers the interaction of a single factor with 
time.  (Interactions are discussed in more detail later in this paper.) 

2.40 The below diagram shows one example factor interacted with calendar year of 
exposure.  It is clear from this result showing lines which are largely parallel that the 
factor effect is mainly consistent from year to year, suggesting that the factor is likely 
to be a good predictor of future experience.  

 GLM output - example showing factor consistent over time 
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2.41 Conversely the graph below shows an example of a factor (in this case territory 
classification) which, although significant according to classical type III tests, shows a 
pattern for some levels which differs from year to year.  In such a case it would be 
appropriate to investigate whether there was a possible explanation for such variations.  
If the variation can be attributed to some known change (for examples some event in 
one of the territories during one period) then that can be allowed when interpreting the 
results.  If no explanation can be found for variations over time, this may indicate that 
the factor will be an unreliable predictor of future experience. 

 GLM output - example showing factor inconsistent over time 
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Intuition 

2.42 In addition to statistical and other pragmatic tests, common sense can also play an 
important role in factor selection.  Issues which should be considered when assessing 
the significance of a factor include 

 whether the observed effect of a factor is similar across models which consider 
related types of claim (eg auto property damage liability and collision) 

 whether the observed effect makes logical sense (given the other factors in the 
model) 
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 whether the observed effects of a categorical factor which represents a continuous 
variable (such as the age of a vehicle) show a natural trend - the model has no way 
of knowing that factor levels have a natural order, therefore if a trend is observed 
this may suggest that the factor has a more significant effect than the pure 
statistical tests alone would suggest. 

Model iteration / stepwise macros 

2.43 It is not generally possible to determine from a single GLM which set of factors are 
significant since the inclusion or exclusion of one factor will change the observed 
effects and therefore possibly the significance of other correlated factors in the model.  
To determine the theoretically optimal set of factors, therefore, it is generally 
necessary to consider an iterated series of models.   

2.44 Often the model iteration starts with a GLM that includes all the main explanatory 
variables.  Insignificant factors can then be excluded, one at a time, refitting the model 
at each stage.   

2.45 When a factor is identified as being insignificant it is helpful to compare the GLM 
parameter estimates for that factor with the equivalent one-way relativities.  When the 
GLM parameter estimates are different from the one-way relativities this indicates that 
the factor in question is correlated with other factors in the model and that the removal 
of that factor from the model is likely to affect the parameter estimates for other factors 
and quite possibly also their significance.  Conversely if the one-way relativities are 
very similar to the GLM relativities for the factor to be excluded, it is likely that there 
will be no such consequences and that therefore to save time a second insignificant 
factor could be removed at that iteration also. 

2.46 If a very large number of factors are to be considered it can be impractical to start the 
factor iteration process with all possible factors in the model.  In such cases it is 
possible to select a model with certain factors which are known to be important, and 
then to test all other excluded factors by fitting a series of models which, one at a time, 
tests the consequences of including each of the excluded factors.  The most significant 
of the excluded factors can then be included in the model, and then the other excluded 
factors can be retested for significance. 
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2.47 Where possible it is generally best to iterate models manually by analyzing the various 
diagnostics described above for each factor.  In practice if many factors are being 
analyzed this can be impractical.  In such circumstances automatic "stepwise" model 
iterating algorithms can be programmed to iterate models on the basis of type III tests 
alone.  Such algorithms start with a specified model, and then: 

a. the significance of each factor in the model is tested with a type III test, and the 
least significant factor is removed from the model if the significance is below a 
certain specified threshold 

b. the significance of each factor not in the model (but in a specified list of potential 
factors) is tested by (one at a time) creating a new model containing the factors in 
the previous step plus the potential new factor.  The most significant factor not 
currently in the model (according to a type III test) is then included if the 
significance is above the specified threshold 

c. steps a. and b. are repeated until all factors in the model are deemed significant, 
and all factors not in the model are deemed insignificant. 

2.48 Such algorithms allow no human judgment to be exercised and can take a significant 
time to complete.  They are also heavily dependent on the type III test which has some 
practical shortcomings as described previously.  Nevertheless they can derive a 
theoretically optimal model which at the very least could form the starting point for a 
more considered manual iteration. 

Model validation 

2.49 As well as considering the significance of the modeled rating factors, there are a 
number of more general diagnostic tests which allow the appropriateness of other 
model assumptions to be assessed.  Diagnostics which aid in this investigation include: 

 residuals which test the appropriateness of the error term 

 leverage which identifies observations which have undue influence on a model 

 the Box-Cox transformation which examines the appropriateness of the link 
function 
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Residuals 

2.50 Various measures of residual can be derived to show, for each observation, how the 
fitted value differs from the actual observation. 

2.51 One measure of residual is the deviance residual 

 

 

which is the square root of the observation's contribution to the total deviance (ie a 
measure of the distance between the observation and the fitted value), multiplied by 1 
or -1 depending on whether the observation is more than or less than the fitted value.   
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2.52 The deviance residuals have various helpful properties.  In general they will be more 
closely Normally distributed than the raw residuals (defined simply as the difference 
between the actual observation and the expected value predicted by the GLM), as the 
deviance calculation corrects for the skewness of the distributions.  For continuous 
distributions it is possible to test the distribution of the deviance residuals to check that 
they are Normally distributed.  Any large deviation from this distribution is a good 
indication that the distributional assumptions are being violated.   

2.53 The below diagram shows a distribution of deviance residuals from an example model.  
In this case the residuals appear to be reasonably consistent with a Normal distribution. 

Histogram of Deviance Residuals
Run 12 (Final models with analysis) Model 8 (AD amounts) 
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2.54 For discrete distributions the deviance residuals based on individual observations tend 
not to appear Normally distributed.  This is because the calculation of the contribution 
to the deviance can adjust for the shape but not the discreteness of the observations.   
For example, in the case of fitting a model to claim numbers, a GLM might predict a 
fitted value for a record of say 0.1 representing an expected claims frequency of 10%.  
In reality (ignoring multiple claims) either a claim occurs for that record or it does not, 
with the result that the residual for that record will either correspond to an "actual 
minus expected" value of (0-0.1) = -0.1, or (with lower probability), the residual will 
correspond to an "actual minus expected" value of (1-0.1) = 0.9.   

2.55 Some practitioners group together the individual residuals into large groups of similar 
risks.  This aggregation can disguise the discreteness allowing some distributional tests 
to be performed.  For example, it is commonly thought that a Poisson with a suitably 
large mean can be thought of as being almost Normally distributed.  At this point the 
deviance residual calculated on the aggregate data should be smooth enough to test 
meaningfully. 

2.56 The deviance residuals are often standardized before being analyzed.  The purpose of 
this standardization is to transform the residuals so that they have variance 1 if the 
model assumptions hold.  This is achieved by adjusting by the square root of the scale 
parameter and also by the square root of one minus the "leverage" hi: 
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2.57 The leverage hi is a measure of how much influence an observation has over its own 
fitted value.  Its formal definition is complex but essentially it is a measure of how 
much a change in an observation affects the fitted value for that observation.  Leverage 
always lies strictly between 0 and 1.  A leverage close to 1 means that if the 
observation was changed by a small amount the fitted value would move by almost the 
same amount.  Where the leverage is close to 1 it is likely that the residual for that 
observation will be unusually small because of the high influence the observation has 
on its fitted value.  Dividing by the square root of one minus the leverage corrects for 
this by increasing the residual by an appropriate amount. 

2.58 Another commonly used measure of the residual is the Standardized Pearson residual.  
This is the raw residual adjusted for the expected variance and leverage (as described 
above): 
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2.59 This adjustment makes observations with different means comparable, but does not 
adjust for the shape of the distribution. 

eans comparable, but does not 
adjust for the shape of the distribution. 

2.60 Observing scatter plots of residuals against fitted values can give an indication of the 
appropriateness of the error function which has been assumed.  For example, if the 
model form is appropriate then the standardized deviance residuals should be 
distributed Normal (0,1) regardless of the fitted value.  The example scatter plot below 
shows the result of fitting a GLM with a gamma variance function to data which has 
been randomly generated on a hypothetical insurance dataset from a gamma 
distribution (with a mean based on assumed factor effects).  It can be seen that moving 
from the left to the right of the graph the general mean and variability of the deviance 
residuals is reasonably constant, suggesting (as is known to be the case in this artificial 
example) that the assumed variance function is appropriate. 

2.60 Observing scatter plots of residuals against fitted values can give an indication of the 
appropriateness of the error function which has been assumed.  For example, if the 
model form is appropriate then the standardized deviance residuals should be 
distributed Normal (0,1) regardless of the fitted value.  The example scatter plot below 
shows the result of fitting a GLM with a gamma variance function to data which has 
been randomly generated on a hypothetical insurance dataset from a gamma 
distribution (with a mean based on assumed factor effects).  It can be seen that moving 
from the left to the right of the graph the general mean and variability of the deviance 
residuals is reasonably constant, suggesting (as is known to be the case in this artificial 
example) that the assumed variance function is appropriate. 

  Plot of deviance residual against fitted value
Run 12 (All claim types, final models, N&A) Model 6 (Own damage, Amounts)
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2.61 Conversely the graph below shows the scaled deviance residuals obtained from fitting 
a GLM with an assumed Normal error to the same gamma data.  In this case the 
variability increases with fitted value, indicating that an inappropriate error function 
has been selected and that the variance of the observations increases with the fitted 
values to a greater extent than has been assumed.  This could occur, for example, when 
a Normal model is fitted to Poisson data, when a Poisson model is fitted to gamma 
data, or (as is the case here) where a Normal model is fitted to gamma data. 

 

Plot of deviance residual against fitted value
Run 12 (All claim types, final models, N&A) Model 7 (Own damage, Amounts)
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Leverage 

2.62 As well as being needed to calculate standardized residuals, the leverage statistic is 
also a helpful diagnostic in its own right, since it can identify particular observations 
which might have an undue influence on the model.  For example the graph below 
shows a scatter plot of leverage against fitted value.  In this case seven particular 
observations have clearly higher leverage than other observations (around 0.1) and it is 
possible that they are having an undue influence on the model.  An inspection of these 
observations may indicate whether or not it is appropriate to retain them in the model. 

 
Plot of leverage against fitted value
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Box Cox transformation and the case for a multiplicative model 

2.63 The Box Cox transformation can be used to assess the appropriateness of the assumed 
link function.  The transformation defines the following link function in terms of a 
scalar parameter λ: 
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2.64 If λ=1, g(x) = x-1.  This is equivalent to an identity link function (ie an additive model) 
with a base level shift. 

2.65 As λ→0, g(x) → ln(x) 10  

 

 

This is equivalent to a multiplicative model. 
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2.66 If λ=-1, g(x) = 1-x-1.  This is equivalent to an inverse link function with a base level 
shift. 

2.67 By fitting a series of GLMs to the data with many different values of λ (including real 
values between -1 & 0 and 0 & 1), and with all other model features identical in every 
other respect, it is possible to assess which value of λ is most appropriate for the 
dataset in question by seeing which value of λ yields the highest likelihood.  Optimal 
values of λ around 0 would suggest that a multiplicative structure with a log link 
function would be the most appropriate for the data in question, whereas optimal 
values of λ around 1 would suggest an additive structure would be best, with values 
around -1 indicating that an inverse link function would be most appropriate. 

2.68 Examples based on two real datasets are shown below. 

                                                 
10 Via L'Hôpital's Rule. 
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  Box Cox transformation results on frequency 
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  Box Cox transformation results on severity 
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2.69 The first graph shows various values of λ tested on two different datasets containing 
private passenger automobile property damage liability frequency experience.  The 
optimal λ in one case is very close to zero (suggesting a multiplicative model) but in 
the other is around 0.3, suggesting that the frequency in that case is largely influenced 
by explanatory variables in a multiplicative fashion, but to an extent also in an additive 
fashion. 

2.70 The second graph shows the results for claim amounts models for the same data.  Here 
the optimal values of λ are near zero (multiplicative), but this time slightly toward the 
direction of being partly inverse.   

2.71 In order to understand how significant the value of λ is upon the fitted values produced 
by the model it is helpful to consider the histogram graph below which shows, for one 
of the two frequency datasets considered above, the distribution of the ratio of fitted 
values produced by a GLM with λ=0 to an otherwise identical GLM with λ=0.3.  It 
can be seen that there is in fact little difference between the fitted values produced by 
these two models, with the great majority of fitted values being within 2 or 3% of each 
other. 

  Distribution of ratio of fitted values between model with λ = 0  
  and model with λ = 0.3 

0

50000

100000

150000

200000

250000

300000

350000

0.792
-

0.803

0.814
-

0.824

0.835
-

0.846

0.857
-

0.868

0.878
-

0.889

0.900
-

0.911

0.921
-

0.932

0.943
-

0.954

0.965
-

0.975

0.986
-

0.997

1.008
-

1.018

1.029
-

1.040

1.051
-

1.061

1.072
-

1.083

1.094
-

1.105

1.115
-

1.126

1.137
-

1.148

1.158
-

1.169

1.180
-

1.191

1.202
-

1.212

1.223
-

1.234

1.245
-

1.255

Ratio of fitted values for Lambda = 0 (mult) to Lambda = 0.3

C
ou

nt
 o

f r
ec

or
ds

0

50000

100000

150000

200000

250000

300000

350000

0.792
-

0.803

0.814
-

0.824

0.835
-

0.846

0.857
-

0.868

0.878
-

0.889

0.900
-

0.911

0.921
-

0.932

0.943
-

0.954

0.965
-

0.975

0.986
-

0.997

1.008
-

1.018

1.029
-

1.040

1.051
-

1.061

1.072
-

1.083

1.094
-

1.105

1.115
-

1.126

1.137
-

1.148

1.158
-

1.169

1.180
-

1.191

1.202
-

1.212

1.223
-

1.234

1.245
-

1.255

Ratio of fitted values for Lambda = 0 (mult) to Lambda = 0.3

C
ou

nt
 o

f r
ec

or
ds

 

 

 

 

 

 

 

 

2.72 In practice there are many significant advantages with using a multiplicative structure, 
not least because it is easy to understand.  In the above examples it seems that there is 
no strong evidence to use a structure other than a multiplicative structure. 
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2.73 While this should be tested in each case, it is often the case that multiplicative 
structures and log link functions are the most appropriate practical model for modeling 
insurance risk, and this may explain the high prevalence of multiplicative rating 
structures, especially in Europe where GLMs have been in use for many years. 

 Model refinement 

Interactions 

2.74 Thus far, the discussion has focused on the independent effect of factors in the model.  
Generalized linear models can also consider the interaction between two or more 
factors.  Interactions occur when the effect of one factor varies according to the level 
of another factor. 

2.75 Interactions relate to the effect which factors have upon the risk, and are not related to 
the correlation in exposure between two factors.  This is illustrated with two examples 
which consider two rating factors in a multiplicative rating structure. 

        Example 1 - correlation but no interaction 

Earned exposure 
 Town Countryside Total 
Male   200   100   300 
Female   100   200   300 
Total   300   300   600 

 
Number of claims 
 Town Countryside Total 
Male   80   20   100 
Female   20   20   40 
Total   100   40   140 

 
Claims frequency 
 Town Countryside 
Male   40%   20% 
Female   20%   10% 

 

2.76 In this example the exposure is not distributed evenly amongst the different rating cells 
- a higher proportion of town dwellers are male than is the case in the countryside.  
The effect of the two factors upon the risk, however, does not in this example depend 
on each other - men are twice the risk of women (regardless of location) and town 
dwellers are twice the risk of countryside dwellers (regardless of gender).  In this 
example there is therefore a correlation between the two rating factors, but no 
interaction. 
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        Example 2 - interaction but no correlation 

Earned exposure 
 Town Countryside Total 
Male   300   150   450 
Female   200   100   300 
Total   500   250   750 

 
Number of claims 
 Town Countryside Total 
Male   180   30   210 
Female   40   10   50 
Total   220   40   260 

 
Claims frequency 
 Town Countryside 
Male   60%   20% 
Female   20%   10% 

 

2.77 In this example the exposure is distributed evenly amongst the different rating cells - 
the same proportion of town dwellers are males as are countryside dwellers.  The effect 
of the two factors upon the risk, however, in this example depend on each other - it is 
not possible to represent accurately the effect of being male (compared with being 
female) in terms of a single multiplier, nor can the effect of location be represented by 
a single multiplier.  To reflect the situation accurately it is necessary in this case to 
consider multipliers dependent on the combined levels of gender and location. 

2.78 An interaction term can be included within a GLM simply by defining an explanatory 
variable in terms of two or more explanatory variables.  In the above example, rather 
than declaring location and gender as two explanatory variables (each with a base level 
and one parameter), a combined "gender-location" variable could be declared with four 
levels (a base level and three parameters). 

2.79 Interaction terms should only be included where there is statistical justification for the 
inclusion of the additional parameters.  In the above example the interaction term only 
involved the addition of one further parameter to the model, but if an interaction is 
introduced between two ten level factors (each with a base level and nine parameters), 
a further 81 parameters would be introduced into the model. 
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"Complete" and "marginal" interactions 

2.80 Interactions can be expressed in different ways.  For example consider the case of two 
factors each with four levels.  One way of expressing an interaction is to consider a 
single factor representing every combination of the two factors (or "complete" 
interaction).  A set of multipliers (in the case of a multiplicative model) could therefore 
be expressed as follows: 

 
Factor 1: A B C D 
      

Factor 2: W 0.72 0.80 0.88 0.96 
 X 0.90 1.00 1.10 1.20 
 Y 0.97 1.20 1.45 1.66 
 Z 1.26 1.40 1.85 2.10 

 

2.81 In this case the base level has been selected to be the level corresponding to level B of 
factor 1 and level X of factor 2, and the interaction term has 15 parameters. 

2.82 An alternative representation of this interaction is to consider the single factor effects 
of factor 1 and factor 2 and the additional effect of an interaction term over and above 
the single factor effects (or "marginal" interaction).  A set of multipliers in this form 
can be set as follows: 

 
  Factor 1: A B C D 

    0.90 - 1.10 1.20 
        

Factor 2: W 0.80  1 - 1 1 
 X -  - - - - 
 Y 1.20  0.9 - 1.1 1.15 
 Z 1.40  1 - 1.2 1.25 

 

2.83 In this case fewer parameters are present in the additional interaction term because the 
presence of the single factor effects makes some of the interaction terms redundant.  
When fitted in a GLM (assuming that the single factor effects were declared first) the 
redundant terms in the additional interaction term would be aliased.  Overall the three 
terms combined still have 15 parameters, and result in identical predicted values (for 
example in the case of factor 1 level D and factor 2 level Z, 1.2 * 1.4 * 1.25 = 2.1). 
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2.84 In practice sometimes it can be helpful to consider the "complete" interaction (ie just a 
single factor representation of all combinations of the two factors) and sometimes it 
can be helpful to consider the additional or "marginal" interaction term over and above 
the single factor effects.  While the fitted values from both approaches are identical, 
what differs is the statistical diagnostics available in the form of parameter estimate 
standard errors. 

e just a 
single factor representation of all combinations of the two factors) and sometimes it 
can be helpful to consider the additional or "marginal" interaction term over and above 
the single factor effects.  While the fitted values from both approaches are identical, 
what differs is the statistical diagnostics available in the form of parameter estimate 
standard errors. 

Example Example 

2.85 For example, the graph below shows the result of a "complete" interaction between the 
age of driver and the gender of driver for the claims frequency of a certain type of auto 
claim, with age relativities for men and women superimposed (with solid and dotted 
lines respectively) on the same x-axis.   
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claim, with age relativities for men and women superimposed (with solid and dotted 
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2.86 If there were no significant interaction between these two factors the solid and dotted 
lines (showing parameters from a log link GLM) would be parallel.  In this example 
they are clearly not parallel, showing that while younger drivers have higher 
frequencies, and while in general male drivers have higher frequencies, in this example 
(as in many real cases) young men experience a higher frequency than would be 
predicted by the average independent effects of the two factors. 

s the solid and dotted 
lines (showing parameters from a log link GLM) would be parallel.  In this example 
they are clearly not parallel, showing that while younger drivers have higher 
frequencies, and while in general male drivers have higher frequencies, in this example 
(as in many real cases) young men experience a higher frequency than would be 
predicted by the average independent effects of the two factors. 

2.87 The narrow standard error bands around the parameter estimate lines suggest the likely 
statistical significance of the result, however they do not provide any sound theoretical 
basis for assessing the significance of the factor.  A more theoretically appropriate test 
can be applied if a marginal interaction is considered. 
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2.88 The graphs below show the results of fitting age and then a marginal interaction of age 
and sex to the same data. 

2.88 The graphs below show the results of fitting age and then a marginal interaction of age 
and sex to the same data. 
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  Partial marginal interaction 
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2.89 The first graph shows the single factor effect for age, and the second shows the 
marginal interaction term over and above this single factor effect.  (In this case the 
single factor gender of the driver was not included since it proved not to be 
significant.) 

2.90 Since the male level of the gender factor is ordered after the female level, the male 
levels of the marginal factor have been aliased, with the result that the first graph 
represents the age effects for males, and the marginal graph shows the additional 
adjustment which is appropriate for females of different ages.   

2.91 The implied fitted values from the marginal interaction are the same as the complete 
interaction - for example: 

 Complete interaction effect for age 22-24 female = +46% or multiplier of 1.46 

 Marginal approach: 

 Single factor age effect for 22-24 = +138% or multiplier of 2.38 

 Marginal effect of women relative to men at age 22-24 = -38% or multiplier of 
0.62 

 Combined effect for age 22-24 female = 2.38 x 0.62 = 1.48 (differences due to 
rounding) 
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2.92 The marginal approach does however provide more meaningful diagnostics in the form 
of parameter estimate standard errors and type III tests.  The standard errors on the 
graph of the marginal term indicate that the marginal term is indeed significant, and the 
Type III P-value of 0.00% for this factor confirms that this is the case. 

2.93 An example of an interaction term which is not significant is shown below.  The first 
graph is the complete interaction (where the parameter estimate lines can be seen to be 
largely parallel). The second and third graphs show the main effects of age of driver 
and payment frequency, respectively. The fourth graph shows the marginal interaction 
(where the marginal interaction term can be seen to be insignificant, both visually and 
because of the type III p-value of 61.9%). 
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   Marginal interaction 

 

 

 

 

 

 

 

 

 

 

Interpreting marginal interactions 

2.94 Although the marginal form of an interaction provides a more sound theoretical basis 
for assessing the significance of a factor, in practice marginal interactions can be hard 
to interpret.  For example consider the example of two factors each with four levels.  It 
might be the case that the true underlying frequency (all other factors being at a certain 
level) was as follows: 
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Factor 1: A B C D 

      
Factor 2: W 7.2% 8.0% 8.8% 9.6% 

 X 9.0% 10.0% 11.0% 12.0% 
 Y 9.7% 12.0% 14.5% 16.6% 
 Z 12.6% 14.0% 18.5% 21.0% 
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2.95 However in reality the exposure available for this analysis might be low for some 
combinations of these two factors, for example: 

 
Exposure    Factor 1: A B C D 

      
Factor 2: W 1000 1000 1000 1000 

 X 1000 1000 1000 1 
 Y 1000 1000 1000 1000 
 Z 1000 1000 1000 1000 

 

2.96 If in general the claims experience was in line with the underlying frequencies but the 
one policy with factor 1 level D and factor 2 level X had one claim (resulting in a very 
high claims frequency of 100%), a marginal interaction would yield results which 
could be hard to interpret.  Specifically if a marginal interaction were fitted, the GLM 
would seek the following parameters: 

 
 Factor 1: A B C D 

    β1 - β2 β3 
        

Factor 2: W β4  β7 - β8 β9 
 X -  - - - - 
 Y β5  β10 - β11 β12 
 Z β6  β13 - β14 β15 

2.97 Since level X is the base level of factor 2, there is no single term in the marginal 
interaction which can represent the very high observed frequency for factor 1 level D / 
factor 2 level X.  Instead the model will yield parameter β3 with a very high value, and 
parameters β9, β12 and β15 with low values.  Although theoretically correct, the 
parameter estimates and standard errors for parameters β9, β12 and β15 would be hard to 
interpret.   

Searching for interactions 

2.98 In general the significance of an interaction can be assessed by considering 

 the standard errors of the parameter estimates of the marginal term 

 the type III P-value of the marginal term 

 general intuition given the overall "complete" interaction effect  

 the consistency of an interaction over time. 
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2.99 In theory all possible combinations of pairs or triplets of factors could be tested as 
interactions one at a time in a model.  In practice, the design of the current rating plan, 
the results of two-way analyses and wider experience will influence the choice of what 
is tested, as will the ease of interpretation and the ultimate application of the model. 

2.100 In some cases rather than considering every combination of two factors with many 
levels it can be appropriate to consider only the strongest effects.  For example, a 
marginal interaction of driver age, car symbol and the interaction of driver age - car 
symbol (denoted driver age*car symbol) may highlight an interesting effect in one 
"corner" of the interaction (eg young drivers driving high car symbols).  In practice, 
the interaction may be re-parameterized as a combination of detailed single factors for 
age of driver and car symbol, and an additional less detailed factor based on the 
combination of age of driver and car symbol which has the same level for many 
combinations, and a few levels representing certain combinations of young drivers 
driving high car symbols.  

2.101 The inclusion of several meaningful interactions which share factors (eg age*sex, 
age*multi-car and territory*multi-car) could provide a theoretically correct model but 
may be very difficult to interpret.  The practitioner may consider creating separate 
models for single and multi-car, and continue to investigate other interactions.   

Smoothing 

2.102 Once models have been iterated to include only significant effects and interactions 
have been investigated, smoothing of the parameter estimates may be considered in 
order to improve the predictive power of the model.  Much like the offset and prior 
weight terms in the formularization of GLMs, smoothing is used to incorporate some 
element of the practitioner's knowledge into the model.  In this sense, the practitioner 
may impart knowledge that some factors have a natural order (eg that age of car seven 
should fall between age of car six and age of car eight).  Outliers may also be 
tempered.  This tempering is not based on commercial selections at this point (ie 
tolerance for rate change) but rather an attempt to adjust an anomaly once a proper 
investigation has been done to ensure that the outlier is truly an anomaly and not 
something systematic in the experience.   

2.103 The selection of smoothed parameter estimates can be done in an unscientific fashion 
(for example - a visual modification to a curve) or in a more scientific fashion (for 
example - fitting polynomials to the observed parameter estimates, or electing to refit a 
model using polynomial terms as variates within the GLM).   If smoothing is rather 
severe, the practitioner may consider restricting the values of the smoothed factor and 
re-running a model to allow other factors to compensate.  (The concept of restrictions 
is discussed later in this paper.)  In general, however, this technique may only remove 
the random element from one factor and move it to another factor, and often it can be 
preferable not to refit using restrictions in this way. 
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 Risk Premium 

2.104 Fitting GLMs separately to frequency and severity experience can provide a better 
understanding of the way in which factors affect the cost of claims.  This more easily 
allows the identification and removal (via smoothing) of certain random effects from 
one element of the experience.  Ultimately, however, these underlying models 
generally need to be combined to give an indication of loss cost, or "risk premium", 
relativities.11   

2.105 In the case of multiplicative models for a single claim type, the calculation is 
straightforward - the frequency multipliers for each factor can simply be multiplied by 
the severity multipliers for the same factors (which is analogous to adding the 
parameter estimates when using a log link function).  Alternatively, models may be 
fitted directly to pure premium data using the Tweedie distribution (discussed in 
Appendix C).  The advantages and disadvantages of this alternative approach are 
discussed in Appendix J. 

2.106 Certain market conditions may warrant the development of a single theoretical risk 
premium model, even if different types of claim have been modeled separately.  An 
example is the aggregation of homeowners models by peril into a single rating 
algorithm at point of sale.  The derivation of a single model in this situation is not as 
straightforward since there is no direct way of combining the model results for the 
underlying claim types into a single overall expected cost of claims model.  In this 
situation, however, it is possible to approximate the overall effect of rating factors on 
the total cost of claims by using a further GLM to calculate a weighted average of the 
GLMs for each of the underlying frequency and severity models for each of the claim 
types.  Specifically this can be done by 

 selecting a dataset which most accurately reflects the likely future mix of business 

 calculating an expected claim frequency and severity by claim type for each record 
in the data 

  combining these fitted values, for each record, to derive the expected cost of 
claims (according to the individual GLMs) for each record 

  fitting a further generalized linear model to this total expected cost of claims, with 
this final GLM containing the union of all factors (and interactions) in all of the 
underlying models. 

                                                 
11 The term "risk premium" is used rather than pure premium in order to differentiate between a 
model fitted directly on pure premium data and a model derived by combining underlying 
frequency and severity models. 
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2.107 An illustrative example is shown below.  The top table represents the intercepts and 
multipliers from underlying frequency and severity models for claim types 1 and 2.  
The bottom table shows the calculation of the total risk premium, based on the 
underlying models, for the first four records in the data.  The additional GLM is fitted 
to this last column in this dataset in order have a single theoretical risk premium 
model. 

   

Claim type 1 Claim type 2 

  Frequency Severity Frequency Severity 

Intercept  0.32 1,000 0.12 4,860 

Sex: Male 1.00 1.00 1.00 1.00 

 Female 0.75 1.20 0.67 0.90 

Area: Town 1.00 1.00 1.00 1.00 

 Country 1.25 0.72 0.75 0.83 

      

Policy Sex Area Fitted 
freq 1 

Fitted 
sev 1 

Fitted
RP 1 

Fitted 
freq 2 

Fitted 
sev 2 

Fitted 
RP 2 

Total 
RP 

82155654 M T 32.00% 1,000.00 320.00 12.00% 4,860.00 583.20 903.20 

82168746 F T 24.00% 1,200.00 288.00 8.04% 4,374.00 351.67 639.67 

82179481 M C 40.00% 720.00 288.00 9.00% 4,033.80 363.04 651.04 

82186845 F C 30.00% 864.00 259.20 6.03% 3,630.42 218.91 478.11 

………… ……. ……. ……. ……. ……. ……. ……. ……. ……. 
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2.108 In addition to combining frequency and severity across multiple claim types, the 
technique of fitting an overall GLM to fitted values of other GLMs can be used to 
incorporate non-proportional expense elements into the modeled relativities.  For 
example, a constant dollar amount could be added to each observation's expected risk 
premium and then a GLM re-fitted to this new field.  The resulting "flattened" risk 
premium relativities will prevent high risk factor levels from being excessively loaded 
for expenses. 

2.109 Alternatively, the amount added to each observation's expected risk premium could be 
designed to vary according to the results of a separate retention study.  This would 
allow risks with a high propensity to lapse to receive a higher proportion of fixed 
expense than those risks with a low propensity to lapse.  As above, a further GLM is 
fitted to the sum of the expected risk premium and a (lapse-dependent) expense load. 

 Restrictions 

2.110 The theoretical risk premium results from a GLM claims analysis will differ from the 
rates implemented in practice since consideration needs to be given to price demand 
elasticity and the competitive situation.  There are, however, some situations where 
legal or commercial considerations may also impose rigid restrictions on the way 
particular factors are used in practice.  When the use of certain factors is restricted, if 
desired the model may be able to compensate to an extent for this artificial restriction 
by adjusting the fitted relativities for correlated factors.  This is achieved using the 
offset term in the GLM. 

2.111 Specifically, the required parameter estimates (logs of multipliers in the case of a 
multiplicative model) are calculated for each record and added to the offset term ξi.  
The factor in question is then not included as an explanatory factor in the GLM.  (This 
can intuitively be thought of as fixing some selected elements of βi to be specified 
values.) 

2.112 The graphs below illustrate the use of a restriction.  In the upper series of graphs, the 
dotted lines display the theoretically correct parameter estimates indicated by a GLM 
containing these four rating factors.  The dashed line in Factor 1 shows the intended 
restriction.  In the lower series of graphs, the solid lines show the output of the GLM 
after the restriction for Factor 1 has been incorporated and Factors 2, 3, 4 have been 
allowed to compensate.  It can be seen that the parameter estimates in Factors 2 and 3 
have hardly changed, suggesting little correlation between these factors and Factor 1.  
On the other hand the solid line in Factor 4 has moved away from the theoretically 
correct dotted line, suggesting a correlation between the restricted levels in Factor 1 
and those levels in Factor 4 which moved to compensate for the restriction. 
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  Example of restricting a factor 
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2.113 Although restrictions could be applied either to frequency or amounts models (or in 

part to both), generally it is more appropriate to impose the restriction on the model at 
the risk premium stage since this allows a more complete and balanced compensation 
by the other factors.  This can be achieved by calculating the expected cost of claims 
for each record, according to "unrestricted" GLMs, and then imposing the restriction in 
the final GLM which is then fitted to the total expected cost of claims.  (For restricted 
risk premium models this approach is necessary even in the case of a single claim 
type.) 

2.114 In the US, many personal lines rating plans contain discounts that were initially 
implemented for marketing appeal or perhaps mandated by regulation.  Today's models 
may indicate that these discounts are not supported by the claims experience - or in 
many cases may even indicate a surcharge.  If a company chooses to continue offering 
such discounts, it is important that these restrictions are incorporated into the modeling 
process since such restrictions can affect the relativities which become appropriate for 
other correlated factors.  Counterintuitive model results may occur on behavioral 
factors such as factors which policyholders self-select, for example limits and 
deductibles.  These factors may require restriction if they are to be used directly in 
ratemaking.  

2.115 Model restrictions are also used in US ratemaking to mitigate the number of factors 
which will change in a given rate review.  Companies may restrict certain existing 
rating factors and allow the GLM to measure only the effect of new rating factors.  
Restrictions may also come into play when applying the results of a countrywide 
model to a particular state. 

2.116 Prior to incorporating restrictions, it is still important to assess the true effect of all 
factors upon the risk by initially including them in the analysis as if they were ordinary 
factors.  In addition, a comparison of the fitted values of the theoretical model and the 
restricted models will demonstrate the degree to which other factors have compensated 
for the restriction.  The examples below show two such comparisons.  Each graph 
shows the number of policies (on the y-axis) that have different ratios of restricted to 
unrestricted fitted values (on the x-axis).  The graph is subdivided by levels of the 
restricted factor (shown in different shading).  If the GLM can compensate well for a 
factor restriction (because there are many other factors in the model correlated with the 
restricted factor) then this distribution will be narrow.  Conversely if the GLM cannot 
compensate well for the restriction, this distribution will be wider. 
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2.117 In this particular example the factors in the upper graph have not compensated well for 
the restriction.  The wide distribution of the restricted to unrestricted ratio implies that 
the restriction is moving the model away from the theoretical result.  The lower graph, 
on the other hand, shows a model which contains factors that are more correlated with 
the restricted factor, and which have compensated better for the restriction. 

  Distribution of ratio of fitted values between restricted and unrestricted models 
  (showing little compensation from other factors) 
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Interpreting the results 

2.118 To understand how the results of a GLM claims model differ from the existing rating 
relativities it is helpful to consider the results both on a factor-by-factor basis and also 
by measuring the overall effect of all factor differences combined.  

Comparing GLM indicated relativities to current relativities 

2.119 The final risk premium models can be plotted on graphs similar to those shown in 
previous sections.  Another line can be added to display the relativities implicit in the 
current rating structure.  This allows easy comparison of the relativities indicated by 
the model and those which are currently used.  An example graph is shown below.  In 
this example it can be seen that the current relativities for young drivers (shown as a 
dotted line) are too low. 

 Final risk premium model compared to current relativities Final risk premium model compared to current relativities 
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2.120 If the existing rating plan is purely multiplicative, superimposing current relativities on 
the graph above is very straightforward.  Superimposing relativities from a mixed 
multiplicative/additive rating plan is slightly less straightforward.  Some additive 
components may be re-expressed as an interaction variable (eg {A x B x (C+D)} may 
be re-expressed to consider the interaction of C and D12).  Existing rating plans with 
more complex additive components may be approximated by fitting a multiplicative 
model to a data field containing existing premium.  The appropriateness of this 
multiplicative proxy to the mixed rating plan can be evaluated by examining the 
distribution of the ratio of the premium produced by the multiplicative proxy and the 
actual premium.  Proxy models which estimate the rating plan within a narrow 
distribution (eg +/-5%) may well be appropriate to use. 

 Impact graphs 

2.121 The results of a GLM analysis are interdependent and must be considered together.  
For example, while a GLM analysis might suggest that young driver relativities are too 
low, it may also suggest that relativities for inexperienced drivers (eg less than two 
years licensed) are too high.  Although the existing rating structure may be 
theoretically wrong, it might be the case that to a large extent these errors compensate 
each other.  To understand the true "bottom line" difference between the existing rating 
structure and the theoretical claims cost, "impact" graphs such as the one below can be 
considered. 

          Impact on portfolio of moving to theoretically correct relativities 
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12 Where A, B, C and D represent factors each of which possibly have a different number of 
levels. 
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2.122 This graph above shows the number of exposures in the existing portfolio that would 
experience different changes in premium if the rating structure were to move from its 
existing form to the theoretically correct form immediately.  It is, of course, 
exceptionally unlikely that such dramatic change would be implemented in practice.  
The purpose of this analysis is to understand the magnitude of the existing cross-
subsidies by considering the effect of all rating factors at the same time.   

ented in practice.  
The purpose of this analysis is to understand the magnitude of the existing cross-
subsidies by considering the effect of all rating factors at the same time.   

2.123 This graph can also be divided by levels of a particular rating factor.  (Indeed one such 
graph can be produced for each rating factor.)  This identifies which sectors of the 
business are currently profitable, and which are currently unprofitable, taking into 
account the correct theoretical model and considering the effect of all factors at the 
same time.  In the example below, the impact graph is segmented by age of driver 
(notice the shape does not change, only how the histogram is patterned).   

2.123 This graph can also be divided by levels of a particular rating factor.  (Indeed one such 
graph can be produced for each rating factor.)  This identifies which sectors of the 
business are currently profitable, and which are currently unprofitable, taking into 
account the correct theoretical model and considering the effect of all factors at the 
same time.  In the example below, the impact graph is segmented by age of driver 
(notice the shape does not change, only how the histogram is patterned).   

  
  Impact on portfolio of moving to theoretically correct relativities  
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2.124 The histogram shows the impact of all rating factor changes (not just the age of driver 
factor) by age of driver levels.  It can be seen in this example that a large number of 
exposures which would experience large increases in premium if the rating structure 
were moved immediately to the theoretically correct structure are young drivers.  It 
had already been seen from the GLM risk premium graphs that young driver 
relativities were too low.  This graph suggests there are no effects from other 
correlated factors which noticeably mitigate this effect; otherwise, young drivers 
would not be so strongly on the "unprofitable" side of the impact graph.. 

2.125 An example may make interpretation of the graph above clearer.  Assume the 
multiplicative claims model uses age, gender, marital status, territory and credit as 
rating factors.  Consider the following young driver profile with indicated rate change 
for each criterion in parenthesis:  age 17-21 (+60%), male (+15%), single (-5%), urban 
territory (+15%), high credit score (-20%).  All factors considered, the total indicated 
rate change for this risk profile is +61% and so this policy would contribute a count of 
one to the bar at 1.60-1.65.  There are roughly 600 total exposures in this band; 
roughly one-third of which correspond to drivers age 17-21. 

2.126 The graph below adds a second (right hand) y-axis.  This y-axis contains the actual 
loss ratio present in the historical data.  This shows very clearly how the GLM has 
differentiated between segments of differing profitability - each band on the x-axis 
represents a band of differing expected profitability, and the solid line shows the actual 
profitability experienced for that band.  

  Impact on portfolio of moving to theoretically correct relativities  
(segmented by age of driver, with actual loss ratio also shown) 
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3 Other applications of GLMs

3.1 This section briefly discusses  

 the role of GLMs in the use of credit in personal lines ratemaking 

 the use of scoring algorithms in more general terms to consider underwriting and 
marketing scorecards not necessarily related to credit 

 the use of GLMs in retention/conversion analysis. 
 
 The role of GLMs in the use of credit-based insurance scores 

3.2 Credit-based insurance scores attempt to measure the predictive power of components 
of consumer credit report data on the cost of insurance claims.  The personal lines 
insurance industry in the US has been using credit-based insurance scoring for over a 
decade.  A 2001 Conning & Company survey reported that 92% of the respondents of 
a survey of the 100 largest personal automobile insurance writers in the US use some 
form of credit scoring.13   

3.3 The early published actuarial studies on the use of credit information in insurance 
demonstrated clear differences in univariate loss ratio by different bands of a credit-
based credit score.  Further studies examined this relationship by components of the 
Insurance Bureau score and also considered how loss ratio by credit component varied 
across certain traditional rating variables (ie a two-way approach).14 

3.4 These studies drew early criticism regarding possible double-counting of effects 
already present in risk classification schemes.15  Generalized linear models and other 
multivariate methods have played a critical role in addressing that criticism.  A study 
conducted by EPIC Actuaries LLC on behalf of the property-casualty insurance 
industry's four national trade associations, offered four major findings about credit-
based insurance scores:   

                                                 
13 "Insurance Scoring in Private Passenger Automobile Insurance – Breaking the Silence", 
Conning Report, Conning, (2001). 
 
14 The reader seeking more information may reference the summaries of the Tillinghast study 
and the James Monoghan paper in "Does Credit Score Really Explain Insurance Losses?  
Multivariate Analysis from a Data Mining Point of View" by Cheng-Sheng Peter Wu and James 
C Guszcza, Casualty Actuarial Society Forum 2003  Vol: Winter  Page(s): 120-125. 
 
15 The use of credit information in insurance underwriting and ratemaking has also drawn 
serious criticism regarding issues such as social equity, intuitive correlation with loss, disparate 
impact by race and level of wealth, etc.  These issues are beyond the scope of this paper. 
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a. using generalized linear models to adjust for correlations between factors, 
insurance scores were predictive of propensity for private passenger automobile 
insurance loss (particularly frequency); 

b. insurance scores are correlated with other risk characteristics, but after fully 
accounting for those correlations, the scores significantly increase the accuracy of 
risk assessment; 

c. insurance scores are among the three most important risk factors for each of the six 
automobile claim types studied; 

d. an analysis of property damage liability frequencies by insurance score group for 
each of the fifty states suggest consistent results across states.16 

3.5 Model vendors and insurance companies have developed credit-based insurance 
scoring algorithms which vary in complexity, application and proprietary nature.  The 
2001 Conning & Company survey concluded that smaller insurers were using credit 
scoring predominantly in their underwriting processes, whereas larger insurers 
appeared to be focusing on underwriting, pricing and sophisticated market 
segmentation. 

Insurance scores beyond credit 

3.6 Other scoring techniques can be used as a way to share vital information between the 
actuarial departments and the rest of the insurance organization.  For example, scores 
can be used to predict the profitability of an insurance policy given a certain rating 
structure (regardless of whether or not credit is considered).  This information can be 
used in underwriting, cession decisions, marketing, and agent compensation schemes. 

3.7 The most direct way to manage the profitability of a personal lines product is through 
effective ratemaking.  Often, however, regulatory, practical or commercial conditions 
restrict the degree to which premiums can be set to reflect the risk.   In these 
circumstances a score based on expected loss ratio can be used by insurers to gauge 
which customers are likely to be more profitable.  As various functional areas are 
familiar with the application of scoring algorithms, this provides a common language 
for communicating a desired strategy throughout the insurance organization.   

                                                 
16 "The Relationship of Credit-based Insurance Scores to Private Passenger Automobile 
Insurance Loss Propensity, an actuarial study by Epic Actuaries LLC"; principal authors 
Michael J. Miller and Richard A. Smith 
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3.8 For example, a scoring algorithm could help target marketing campaigns to those 
customers who are likely to be more profitable.  Scores can also be used as part of an 
incentive scheme for agents, where commission or bonus is linked to the average 
customer score.  Such applications can be particularly useful in highly regulated 
markets, as the score can include policyholder characteristics that are not permitted in 
the actual premium. 

Producing the score 

3.9 One method of deriving a scoring algorithm takes advantage of the "linear" part of 
generalized linear models (GLMs).  The output of a GLM is a series of additive 
parameters which is then transformed via the link function to give the expected value 
for an observation.  When calculating a score the link function can be omitted, leaving 
a simple additive structure which orders the risk.  A straightforward calculation can 
then transform the additive structure into a scoring algorithm which produces scores 
between a desired range, for example 0 to 100. 

3.10 To derive a profitability score, the starting point would be a standard analysis of claims 
experience using GLMs as discussed in detail in Section 2.  This would involve fitting 
a series of GLMs to historic claims data, considering frequency and severity separately 
for each claim type.  These models would include all standard rating factors, as well as 
any additional information that will be available at the time the score is to be 
calculated.  Such additional information could include geodemographic data. 

3.11 The expected cost of claims can then be calculated for each record in the data based 
upon the GLM claims models.  For each policy this can then be divided by the 
premium which will be charged to yield an expected loss ratio, which can then itself be 
modeled and re-scaled to derive the profitability score.   

3.12 The model of expected loss ratio should only include those factors that will be 
considered at the time the score is to be applied.  For direct mailing campaigns this 
will usually mean that traditional insurance rating factors used in the premium will 
have to be excluded at this point (since they are not known at the time of the mailing 
campaign). 
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Example results 

3.13 The graph below shows how a score can be used to segment very effectively between 
profitable and unprofitable business.  The bars on the graph show the number of 
policies that have been allocated different scores between 0 and 100.  The solid line 
shows the actual loss ratio experienced for business with differing scores.  It can be 
seen that the business towards the left of the graph, with low profitability scores, is 
experiencing loss ratios of 100% and above, while the business to the right of the 
graph, with high scores, is returning loss ratios of 50% and below. 

 Distribution of score 
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3.14 Scores are simple to produce, easy to explain and are increasingly used by insurers.  
Actuaries can play a vital role in the development of scoring models with the aid of 
generalized linear models. 

 Retention modeling using GLMs 

3.15 Traditional ratemaking techniques focus primarily on loss analysis in a static 
environment.  Rate changes developed by these techniques, especially when they are 
large, can actually contribute to a shortfall in projected premium volume and 
profitability if insufficient consideration is given to the effect of the rate change and 
other policy characteristics on customer retention and/or new business conversion.   
Modeling retention (or its complement, lapse rate) and new business conversion with 
GLMs can improve ratemaking decisions and profitability forecasts, as well as 
improve marketing decisions. 
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3.16 The data for a retention model must include information on individual policies that 
have been given a renewal offer, and whether or not each policy renewed.17  Similarly, 
data for a conversion model must contain individual past quotes and whether the quote 
converted to new business.  (While most insurers have access to appropriate retention 
data, many distributing via exclusive agents or independent brokers will not have 
access to appropriate individual conversion data.)  The explanatory variables to include 
in the data can be divided into three categories:  customer information, price change 
data, and information on the competitive position. 

3.17 The first category should encompass more than just the standard rating variables (eg 
age, territory, claim experience).  Other "softer" variables such as number of years 
with the company, other products held, payment plan and endorsement activity can 
determine much about a customer's behavior.  Distribution channel, too, can have a 
clear effect on the retention rate - and may interact significantly with other factors (eg 
the effect of age may be different with internet distribution than with agency 
distribution). 

3.18 Prior rate change, whether measured in percent change or dollar change, is often one of 
the most significant factors in a retention model.  Though it is intuitive that retention is 
a function of rate change, the slope of the elasticity curve at different rate changes may 
not be as obvious.  In addition, measuring retention using a generalized linear model 
will adjust for exposure correlations between price elasticity and other explanatory 
variables (eg a GLM will not show that a particular rating factor level has a low 
retention rate merely because historically there was aggressive rate activity with that 
level).   

3.19 The third type of variable, information on the competitive position, is often the hardest 
to gather in practice.  An example of a competitive index may be the ratio of the 
company's renewal quote to the third cheapest quote from a specified selection of 
major competitors at the time of the quote.   

3.20 Tracking the myriad of competitor rate changes in a multitude of states can be 
overwhelming - even with the availability of third party competitive rating software 
and advances in quote collection procedures.  Fortunately even the most rudimentary 
competitive index variables can prove to be predictive in a retention model (and more 
so in a conversion model).   

                                                 
17 Alternatively, retention data may be organized by risk if more than one risk is written on a 
single policy. 
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 Model form 

3.21 As mentioned previously in Section 1, the typical model form for modeling retention 
(or lapse) and new business conversion is a logit link function and binomial error term 
(together referred to as a logistic model).  The logit link function maps outcomes from 
the range of (0,1) to (-∞, +∞) and is consequently invariant to measuring successes or 
failures.  If the y-variate being modeled is generally close to zero, and if the results of a 
model are going to be used qualitatively rather than quantitatively, it may also be 
possible to use a multiplicative Poisson model form as an approximation given that the 
model output from a multiplicative GLM can be rather easier to explain to a non-
technical audience. 

Example results 

3.22 The graph below shows sample GLM output for a lapse model.  The main line on the 
graph demonstrates (on a log scale) the measured multiplicative effect of age of 
policyholder upon lapse rate.  The effect is measured relative to an arbitrarily selected 
base level, and the results take into account the effect of all other factors analyzed by 
the GLM.   

Poisson multiplicative lapse model output 
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3.23 In this example, which is fairly typical, it can be seen that young policyholders lapse 
considerably more than older policyholders, perhaps as a result of having more time 
and enthusiasm in searching for a better quotation, and perhaps also as a result of being 
generally less wealthy and therefore more interested in finding a competitive price.  

3.24 This next graph shows the effect of premium change on lapse rate.  This GLM output 
is from a UK Institute of Actuaries General Insurance Research Organisation (GIRO) 
study18 based on around 250,000 policies across several major UK insurers in 1996.  
The premium change is measured in ranges of monetary units (British pounds in this 
case), but the model could easily be based on the percentage change in premium.  As 
would be expected, increases in premium increase lapses.  The model, however, 
quantifies this accurately and enables investigations into potentially optimal rate 
increases to be undertaken.  It can be seen in this case (as is often the case) that 
decreases in premium beyond a small threshold do not decrease lapses. 
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18 Bland, R.H. et al, Institute of Actuaries GIRO Customer Selection and Retention Working 
Party, 1997 - ISBN 0 901066 45 1 
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3.25 Measures of premium change should ideally consider whether customers have an 
inherent expectation of premium change.  For example, customers with recent claims 
will anticipate a premium increase and may be prepared to accept their renewal offer 
rather than face the underwriting guides of a new company.  Conversely, customers 
who are rolling off an accident surcharge, hitting a milestone age or a change in 
marital status may expect a decrease.  A possible proxy for customer expectation is to 
adjust the premium change variable to be the ratio of proposed premium (based on new 
risk criteria and new rates) to adjusted proposed premium (new risk criteria based on 
last year's rates).  

3.26 In addition to including premium change, absolute premium can also be considered as 
a factor in a model.  This approach, though not theoretically incorrect, may make the 
model difficult to interpret since many other factors in the model will be a component 
of premium and therefore highly correlated with premium size.  Adding absolute 
premium to the model may significantly alter the observed relativities for other factors 
which may make the results hard to interpret.  One alternative to including absolute 
premium in such a case is to fit separate models for different bands of average 
premium. 

3.27 The next graph below shows an example of the effect of competitiveness in a new 
business conversion model.  The measure of competitiveness used in this case is the 
ratio of the proposed premium to the average of the three cheapest alterative premiums 
from a selection of alternative insurers.  It can be seen that the less competitive the 
premium, the lower the conversion rate.   

Logistic new business conversion model output 
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3.28 A further analysis which can be undertaken is to superimpose the results of two models 
on one graph:  one model that includes the competitiveness measure and one model 
that does not.  The disparity between these two models will show how much of a 
factor's effects are simply price-related. 

Applications 

3.29 In a fully deregulated market such as the UK, insurance companies can set premium 
rates according to what the market will bear.  In most US states and Canadian 
provinces, insurance companies need to demonstrate that rates are within a reasonable 
range of loss and expense cost estimates.  Companies can, however, measure the 
sensitivity of various point selections within those ranges (whether the point estimates 
pertain to overall rate level or classification ratemaking).   Future pricing reviews may 
not only present management with support on actuarial considerations such as trend 
and loss development, but also a forecast of how various rate change proposals are 
expected to affect retention, conversion, premium, overall loss ratio (incorporating 
both overall rate change and portfolio shift of classification changes) and profitability 
in the short term and/or long term.    

3.30 Retention analyses can also lead to operational actions which are unrelated to price.  
For example, in a highly rate-regulated state, consideration could be given to which 
segments of the population (given a restricted set of rates) are both profitable and most 
likely to renew in the future.  Such a measure could help form new underwriting 
guides or targeted marketing and cross-sell campaigns.   

3.31 Insurance expense analysis is another field of study that is often over-shadowed by 
loss analysis.  If acquisition expenses are higher than renewal expenses then an 
understanding of likely retention (and therefore expected life of a policy) can be used 
to amortize the higher acquisition cost over the expected life of the policy.   
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Conclusion 

3.32 A GLM statistically measures the effect that variables have on an observed item.  In 
insurance, GLMs are most often used to determine the effect rating variables have on 
claims experience and the effect that rating variables and other factors have on the 
probability of a policy renewing or a new business quotation being accepted.   

3.33 GLMs estimate the true effect of each variable upon the experience, making 
appropriate allowance for the effect of all other factors being considered.  Ignoring 
correlation can produce significant inaccuracies in rates. 

3.34 GLMs incorporate assumptions about the nature of the random process underlying 
claims experience.  Having the flexibility to specify a link function and probability 
distribution that matches the observed behavior increases the accuracy of the analysis. 

3.35 A further advantage of using GLMs is that as well as estimating the effect that a given 
factor has on the experience, a GLM provides information about the certainty of model 
results. 

3.36 GLMs are robust, transparent and easy to understand.  With advances in computer 
power, GLMs are widely recognized as the industry standard in European personal 
lines, and fast gaining acceptance from industry professionals in the US and Canada. 

3.37 GLMs in insurance are not limited to pricing.  Alternative applications of GLM claims 
analyses include underwriting, selective marketing and agency marketing. 

3.38 GLMs are grounded in statistical theory and offer a practical method for insurance 
companies to attain satisfactory profitability and a competitive advantage. 
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A The design matrix when variates are used 

Consider the example of a model which is based on two continuous rating variables: age of 
driver and age of car.     

Let Y be a column vector with components corresponding to the n observed values for the 
response variable, for example severity: 
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Let X1 and X2 denote the column vectors with components equal to the observed values for the 
continuous variables (eg X1 shows the actual age of the driver for each observation): 
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As before, β denotes a column vector of parameters, and ε the vector of residuals: 
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Then the system of equations takes the form: 

 
 

 = β + β 2211 XXY + ε

Or, defining the design matrix X as 
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The system of equations takes the form  

Y=X.β + ε 

 
Polynomials 
 
Rather than assuming that the value of X.β is linear in the variate, it is also possible to include in 
the definition of X.β terms based on polynomials in the variates.  For example, a model could be 
based on a third order polynomial in age of driver and a second order polynomial in age of 
vehicle.  In this case the design matrix would be defined as follows: 
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where 

 the first column represents the intercept term (driver age)0 

 the second column represents the values of (driver age)1 

 the third column represents the values of (driver age)2 

 the fourth column represents the values of (driver age)3 

 the fifth column represents the values of (vehicle age)1 

 the sixth column represents the values of (vehicle age)2 
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B The exponential family of distributions 

Formally the exponential family of distributions is a two-parameter family of functions defined 
by: 
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where a(φ), b(θ), and c(y, φ) are specified functions.  Conditions imposed on these functions are 
that  

a. a(φ) is positive and continuous;  

b. b(θ) is twice differentiable with the second derivative a positive function (in 
particular b(θ) is a convex function); and  

c. c(y, φ) is independent of the parameter θ.  

These three functions are related by the simple fact that f must be a probability density function 
and so it must integrate to 1 over its domain.  Different choices for a(φ), b(θ), and c(y, φ) define 
a different class of distributions and a different solution to the GLM problem.  The parameter θ 
is termed the canonical parameter and φ the scale parameter.  The chart below summarizes some 
familiar distributions that are members of the exponential family: 
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It can be seen that the standard choice for a(φ) is 
 

ω
φφ =)(a 

 
where ω is a prior weight, a constant that is specified in advance. For insurance applications 
common choices for the prior weight are equal to 1 (eg when modeling claim counts), the 
number of exposures (eg when modeling claim frequency), or the total number of claims (eg 
when modeling claim severity).  It is also clear from the chart that for certain distributions, such 
as the Poisson and binomial distributions, the scale parameter φ is equal to 1 and plays no 
further role in the modeling problem.  
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A distribution for each observation Yi  needs to be specified.  It is assumed that  
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Thus each observation has a different canonical parameter θi but the scale parameter φ is the 
same across all observations.  It is further assumed that the functions a(φ), b(θ), and c(y, φ) are 
the same for all i.  So each observation comes from the same class within the exponential 
family, but allowing θ to vary corresponds to allowing the mean of each observation to vary. 
 
The parameters θi and φ encapsulate the mean and variance information about Yi. It can be 
shown that for this family of distributions: 
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where the prime (') denotes differentiation with respect to θ.   
 
The first equation implicitly defines θi as a function of μi. If an explicit expression for the 
inverse of b'(θi) is known (as is the case for the familiar distributions) then the first equation can 
be solved to express the canonical parameter θi explicitly as a function of the mean of the 
distribution μi: 
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ii b μθ −′= 

 
Thus the canonical parameter is essentially equivalent to the mean.   
 
Section 1 describes how a GLM asserts that μi is a function of the linear predictor ηi where the 
linear predictor is a linear combination of the p covariates Xi1,…Xip: 
  
 )...( 11

1
ippii xxg ββμ ++= −

 
Thus θ is ultimately a complicated function of the elements of β: 
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This derivation makes explicit the manner in which the distribution of Yi depends on the GLM 
parameters β1,…,βp. 
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It can be seen from the table above that the expression for c(y, φ) can be complicated.  
Fortunately as long as c(y, φ) does not depend on θ - and hence not on μ and thus not on the 
GLM modeling parameters β - then the form of c(y, φ) is irrelevant to the solution of the 
maximum likelihood estimator. 
 
Given that θi is a function of the mean μi the equation  
 
 )().()( φθ abYVar ii ′′=
 
can be interpreted as establishing the variance of Yi as a function of the mean of Yi times some 
scaling term a(φ). Thus the scaling parameter φ is a function of the mean and variance of the 
distribution. 
 
Thus the exponential family has two desirable properties: 
 

 each distribution in the family is completely specified in terms of its mean and 
variance 

 the variance of Y is a function of its mean. 
 
This second property is emphasized by writing 
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where the function V is termed the variance function. The chart below summarizes the 
relationship between the mean and the canonical parameter, expresses f in terms of the standard 
parameters for the respective distribution, and lists the variance function for the familiar 
distributions: 
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C The Tweedie distribution

Direct modeling of pure premium or incurred loss data is problematic since a typical pure 
premium distribution will consist of a large spike at zero (where policies have not had claims) 
and then a wide range of amounts (where policies have had claims).  This is illustrated in the 
diagram below. 
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Many of the traditional members of the exponential family of distributions are not appropriate 
for modeling claims experience from such a distribution since they do not have a point mass at 
zero combined with an appropriate spread across non-zero amounts. 

The Tweedie distribution is a special member of the exponential family which has a variance 
function proportional to μ 

p , with p being an additional parameter. 

In the case of 1<p<2 the Tweedie distribution has a point mass at zero and corresponds to the 
compound distribution of a Poisson claim number process and a Gamma claim size distribution.  
The distribution can be Poisson-like (as p → 1) or Gamma-like (as p → 2). 

In total the distribution has three parameters - a mean parameter, a dispersion parameter, and the 
"shape" parameter p, which when 1<p<2 is often written in terms of α where 
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Its density function is rather complex, and in the case of 1<p<2 is defined as: 
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       ω is the prior weight corresponding to the exposure of the observation in question. 
  

It can be shown that the variance function for the above Tweedie distribution is given by  
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λ
μ 1)( = 

 

In practice the shape parameter can either be assumed to be a particular value or, more usefully, 
estimated as part of the maximum likelihood process.  Typically values of p just under 1.5 seem 
to be estimated for auto claims experience. 

Further information about the Tweedie distribution can be found in the paper "Fitting Tweedie's 
Compound Poisson Model to Insurance Claims Data" by Jørgenses, B and De Souza, M.C.P, 
Scand. Actuarial J. 1994 1:69-93. 
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D Canonical link functions

Each of the exponential distributions has a natural link function called the canonical link.  It has 
the property that θ = η where θ is the canonical parameter. This property means that the GLM 
parameters β1,…βp enter the expression for the distribution function in a simple way.  In general 
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but if θ = η this simplifies to  
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and subsequent differentiation with respect to the GLM parameters βj is thus significantly 
simplified. 
 
The canonical link functions associated with the familiar distributions are listed below 
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Note that the requirement to be a canonical link function: 
 

 ηηθ =′= −− ))(()( 11 gb
 
implies that the inverse of the link function, g-1, is the inverse of b'. 
 
In practice, with sophisticated software to solve GLM modeling problems there is no imperative 
to use the canonical link associated with a particular distribution. Instead any arbitrary pairings 
of the link function and the error structure can be made and such non-canonical pairings can in 
fact yield more predictive models. 
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E Solving for maximum likelihood in the general case 
of an exponential distribution 

In the case of the exponential family of distributions the log likelihood takes the form: 
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Log likelihood is maximized by taking, for each j, the first order partial derivative of l with 
respect to βi and setting equal to zero: 
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If there is an explicit expression for θi in terms of β1,…βp one can make this substitution into the 
log likelihood function and then carry out the differentiation. However, the calculations become 
complicated quite quickly. It is simpler just to apply the chain rule of calculus three times: 
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It can be deduced that 
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Although the theoretical system of equations which must be satisfied in order to maximize the 
likelihood can be (relatively) easily written, finding the solution to these equations is more 
complicated.  
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F Example of solving for maximum likelihood with a 
gamma error and inverse link function  

For the gamma error structure with an inverse link function, the predicted values take the form: 
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The gamma error structure has the following density function 
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Its log-likelihood function is 
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With an inverse link function, μi = 1/(ΣjXijβj) and the log-likelihood function reduces to  
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In this example,  
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Ignoring some constant terms and multiplying by φ, the following function is to be maximized 
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Again, to maximize l* take derivatives with respect to β1, β2 and β3.  Set the derivatives to zero 
and the following three equations are derived: 
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Solving these simultaneous equations gives the following solutions: 
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which result in the following predicted values: 

 
 Urban Rural 
Male 853.2 446.8 
Female 346.8 253.2 
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G Data required for a GLM claims analysis 
 

The overall structure of a dataset for GLM claims analysis consists of linked policy and claims 
information at the individual risk level.  The definition of individual risk level will vary 
according to the line of business and the type of model.  For instance, in a personal automobile 
claims model, the definition of risk may be a vehicle.  (In a personal automobile retention 
model, the definition of risk may be a policy containing several vehicles.) 

One record should be present for each period of time during which a policy was exposed to the 
risk of having a claim, and during which all factors remained unchanged.  Policy amendments 
should ideally appear as two records, with the previous exposure curtailed at the point of 
amendment.  Mid-term policy cancellations should also result in the exposure period being 
curtailed.  If this data is not available it is often possible to approximate it from less perfect data 
- for example the policies in force at one year end could be compared with the policies in force 
at the previous year end, with matching policies being assumed to be in force for the whole year, 
and appropriate approximations being made for non-matching policies.  

The dataset should contain fields defining the earned exposure and the rating factors applicable 
at the start of the exposure period.  Additionally, premium information (typically earned 
premium) can be attached to each record.  Although premium is not used directly in the 
development of the claims models, it can provide valuable information for measuring the impact 
of any new rating or underwriting actions, and for producing summary one-way and two-way 
analyses including loss ratios.  

All explanatory variables in the dataset should record the criteria which were applicable at the 
start of the policy exposure (or, strictly speaking, the point at which the premium was 
determined for the exposure period in question).  In the case of categorical variables such as 
territory or vehicle class, however, the data recorded should ideally be derived by applying the 
current method of categorization to the historic situation.   

Not all explanatory variables will be used to predict future claims experience.  Dummy variables 
may be used to absorb certain effects that could bias the parameter estimates.  For example, if 
conducting a countrywide study, it may be appropriate to create a dummy variable to 
standardize for differences in overall loss experience by geography.  This dummy variable may 
be state (province), territory within state (province), or groups of territories within state 
(province).  

Similarly, if combining data from several companies, a company identifier may be an 
appropriate dummy variable.  This dummy variable could absorb differences in underwriting 
standards and overall quality of business between the companies.  Dummy variables could also 
absorb some historical effect which is not expected to continue in the future.  Though dummy 
variables can be used in such a way, it is still preferable to have an experience period devoid of 
such disruptive effects. 
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GLM claims datasets are typically either based on a certain policy year period or a certain 
calendar-accident year period.  An example using the traditional parallelogram and rectangle 
diagrams illustrates the difference between the two.  

Dataset A:  policy year   Dataset B:  calendar-accident year  

 

 

 

  PY 01            PY 02                                                                       CAY 01        CAY 02 

 

Policy year:  Annual policies written between 1/1/01 and 12/31/02, earned as of 12/31/03.  
Claims incurred on these policies before 12/31/03 but losses evaluated as of 6/30/04. 

Calendar-accident year:  Annual policies earning between 1/1/01 and 12/31/02 in respect of 
policies written between 1/1/00 and 12/31/02.   Claims occurring on policies earning between 
1/1/01 and 12/31/02, incurred losses evaluated as of 6/30/03. 

There are benefits and disadvantages of each method of organization.  The policy year approach 
has the advantage of relating to a certain period of underwriting and method of selling a product.  
The earning pattern of any given policy year, however, extends beyond the 12 month period.  In 
order for policies to be fully earned, the cut-off date for exposures needs to extend 12 months (in 
the case of annual policies) or six months (in the case of semi-annual policies).   In addition, the 
need for some IBNR emergence builds in more delay, resulting in data analyzed being not very 
recent.   

The calendar-accident method of organization requires that each policy be split into its calendar 
year components (for example, an annual policy written on May 1 will be split into records 
defined by May 1 through December 31 and January 1 through April 30).  Although this adds to 
system requirements and increases the number of records in the dataset, this allows the creation 
of an accurate calendar year "dummy" explanatory variable which can be used to absorb trends 
in claim experience which purely relate to time.  If this is not possible, the policy year method of 
organization can be used, but the effect of any trends can be more difficult to identify. 
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Claims information 

Claim count and loss amount information should be attached to the relevant exposure records, 
based on the most recent reserve estimates.  The choice of definition of incurred claim count, 
specifically whether this pertains to number of claims or number of claimants, is not particularly 
important if ultimately the claim frequency and claim severity will be combined to the pure 
premium level.  It is generally easier to model loss information net of deductibles, but should 
ideally not be truncated according to any large loss threshold at this stage since this allows 
sensitivity testing of several different large loss thresholds when modeling. 

It is appropriate to leave some delay between the end of the experience period and the valuation 
date to allow for some IBNR claims to emerge and to allow for the case estimates to develop.  If 
there is a regular (annual or quarterly) review of case estimates, or any other known issue 
surrounding the reserves, the experience period and valuation date should be selected to take 
advantage of the most accurate information.   

The overall base level adjustment for pure IBNR and development of known claims will be 
made after models are finalized, but it is necessary to consider whether such time-related 
influences could bias the model rating factor relativities.  There is a range of options for 
investigating the consequences of claims development upon the relativities measured, including: 

 ignoring loss development and assuming that parameter estimates are unaffected  

 including a dummy variable (eg calendar year or policy year19) in the model to 
absorb time-related influences; once models are finalized, the dummy variable is 
simply removed and the base levels are adjusted via a separate calculation (this 
assumes the development of claims is similar for all types of policy) 

 before modeling the most recent experience, performing a series of GLM analyses 
on an older dataset which contains claims statistics as at various periods of 
development. By comparing GLM relativities based on data as at different 
development periods it is possible to assess whether claims development differs 
materially by type of risk - if they do it is possible to use the ratio of two models 
as at different development periods to derive multivariate development factors 
which can be applied to analyses based on a more recent dataset.  

                                                 
19 Dummy variables based on quarters or months may contain an element of seasonality 
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It is also necessary to consider the treatment of claims closed without payment (also known as 
CWPs).  Before modeling, it is generally most appropriate to remove such claims (setting the 
claim count field to zero in these cases), perhaps also creating a new claim type consisting of 
only CWPs (if they are to be modeled for expense allocation purposes).  If CWPs are not 
excluded it can become difficult to model average claim amounts since some common GLM 
forms (eg those with gamma error functions) cannot be fitted to data containing observations 
equal to zero. 

Generally, one period of policy exposure will have zero or one claim associated with it.  
Occasionally, there may be two or more accidents occurring in a given period of exposure.  
There are a number of alternative ways to deal with this situation:  

 Multiple claims could be attached to the single exposure record, with the number 
of such claims and the total amount of such claims being recorded.  This is the 
simplest method.  A small amount of information is lost as a result of storing 
information like this, but such a loss is not generally material. 

 Further records could be created in the database in the case of multiple claims.  
The exposure end date of the original record could be set to be the date of 
occurrence of the first accident, with the exposure start date of the second record 
being the day after.  Each claim could then be attached to one exposure record 
(and the "number of claims" fields would always be zero or one).  All rating 
factors recorded in the second record would be identical to the original record. 

 Further records could be created in the database as in the second option above, but 
with the exposure dates in the original record remaining unaltered, and with the 
exposure start and end dates in the second (and subsequent) copied records being 
equal to each other, so that the additional records had zero days exposure 
recorded.  (When analyzing claim amounts, the exposure information is not 
required, and when analyzing claim frequencies the experience could be 
summarized by unique combination of rating factor levels using an appropriate 
extract of the data, thus compressing this data to derive the correct exposure).  

In practice, the easiest way to program the last two of these three methods produces one extra 
record for every claim, so policies with one claim would produce two records, and policies with 
two claims would produce three records.  For example, using the second method, the exposure 
would be split at every claim date, so that there would always be one record with no claims (the 
last record). 
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General 

In addition to volume requirements, how the model is to be used should also be considered.  If 
the model were to be used to identify inaccuracies in the current rating plan, a line of business 
which undergoes significant rate intervention at point of sale would not be appropriate (unless 
being used to guide underwriters on the acceptable range of their intervention).  Similarly, if 
little is collected or stored in the way of explanatory variables, this too would limit the strength 
of the GLM. 
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H Automated approach for factor categorization  

One automated approach within the GLM framework is to replace a single factor with many 
levels with a series of factors each containing just two levels which are then tested for 
significance.  For example instead of modeling age of insured with a single factor, a series of 
binary factors could be created: 

 (binary factor 1) is the age less than 18? 

 (binary factor 2) is the age less than 19? 

 (binary factor 3) is the age less than 20? 

 (binary factor 4) is the age less than 21? 

  … 

 (binary factor 22) is the age less than 39? 

 (age 40 is the base level in this example) 

 (binary factor 23) is the age less than 41? 

 … 

 (binary factor 82) is the age less than 100? 

These single parameter binary factors could then be tested for significance using an automatic 
stepwise algorithm as discussed in Section 2. 

If, for example, ages 23, 24, 25 and 26 did not have a statistically different effect on the risk, the 
factors "is age less than 24", "is age less than 25" and "is age less than 26" would be deemed 
insignificant and excluded from the model.  Those binary factors deemed significant in the 
model would determine the appropriate age categorization, and implied parameter estimates for 
each age could then be determined by summing the appropriate binary factors - eg in the above 
example the implied parameter estimate for "age 20" would be the sum of the parameters for 
binary factors 4 to 82).  

An example result, based on real data, is shown below.  The dotted line shows the fitted 
parameter estimates when age is not grouped (and when a parameter is allocated to each 
individual age rounded to the nearest integer).  The solid line shows the parameter estimates 
implied by the results of the automatic grouping approach described above.  Only results up to 
age 29 are shown for reasons of confidentiality. 
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Example of automatic grouping 
(part result only - ages over 29, including base, not shown) 
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In this case it is not at all clear that the automatic approach produces a better categorization than 
a manual approach - for example it can be seen from the dotted line that age 23 has a parameter 
estimate between ages 22 and 24, and intuitively it appears wrong to group this level with ages 
25 to 26 as the automatic process suggests.  It is often the case that a manual approach to 
categorization can produce more appropriate results than an automated approach. 
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I Cramer's V   

Cramer's V statistic is a measure of correlation between two categorical factors and is defined as 
 

nba
e

en

ji ij

ijij

)).1(),1min((

)(

,

2

−−

−
∑ 

 
 
 
where:  
 
a = number of levels of factor one  
b = number of levels of factor two  
nij = amount of the exposure measure for the ith level of factor one and jth level of factor two  
n = Σij(nij)  
eij = Σi(nij) . Σj(nij) / n 
 
The statistic takes values between 0 and 1.  A value of 0 means that knowledge of one of the two 
factors gives no knowledge of the value of the other.  A value of 1 means that knowledge of one 
of the factors allows that value of the other factor to be deduced.   The two tables below show 
possible two-way exposure distributions of two categorical factors - each with only two levels, 
A and B, expressed as either rows or columns.  The top table shows a Cramer's V statistic of 0, 
and the bottom table gives an example of a Cramer's V of 1.  

   

 A B 
A 100 100 
B 100 100 

   
   

 A B 
A 100 0 
B 0 100 
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J Benefits of modeling frequency and severity 
separately rather than using Tweedie GLMs 

Tweedie GLMs fitted to pure premium directly can often give very similar results to those 
derived by the "traditional" approach of combining models fitted to claim frequencies and claim 
severities separately.  In these cases using Tweedie GLMs can reduce the amount of iterative 
modeling work required to produce satisfactory claims models.  

The traditional approach, however, can provide a better understanding of the way in which 
factors affect the cost of claims, and can more easily allow the identification and removal of 
certain random effects from one element of the experience, for example via smoothing or by 
excluding certain factors from one of the frequency or amounts models.   

For example, the graph below compares the risk premium results from the Tweedie model to 
those from the traditional approach for one rating factor.  Though the results between the two 
approaches are nearly identical, the traditional approach does provide additional information 
about the underlying frequency (numbers) and severity (amounts) effects - in this case the factor 
affects frequencies and severities in completely opposite ways. 

Comparison of Tweedie model with traditional frequency / severity approach 
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The three graphs below demonstrate a case where the results for a particular factor from a 
Tweedie GLM differ from those produced by the traditional approach.  The first two graphs 
show the underlying frequency and severity model output from the traditional approach.  
Because of the wide standard errors, meaningless pattern, and insignificant type III test, the 
factor has been removed from the severity model.  Consequently, the traditional risk premium 
reflects the underlying frequency experience only.  The Tweedie model is more affected by the 
volatility from the underlying severity experience, and produces results which may be less 
appropriate. 
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Comparison of Tweedie model with traditional frequency / severity approach -  
traditional frequency and severity models 
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Comparison of Tweedie model with traditional frequency / severity approach 
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	1.1 Section 1 discusses how GLMs are formularized and solved.  The following topics are covered in detail:
	1.2 Traditional ratemaking methods in the United States are not statistically sophisticated.  Claims experience for many lines of business is often analyzed using simple one-way and two-way analyses.  Iterative methods known as minimum bias procedures, developed by actuaries in the 1960s, provide a significant improvement, but are still only part way toward a full statistical framework.  
	1.3 The classical linear model and many of the most common minimum bias procedures are, in fact, special cases of generalized linear models (GLMs).  The statistical framework of GLMs allows explicit assumptions to be made about the nature of the insurance data and its relationship with predictive variables.  The method of solving GLMs is more technically efficient than iteratively standardized methods, which is not only elegant in theory but valuable in practice.  In addition, GLMs provide statistical diagnostics which aid in selecting only significant variables and in validating model assumptions.  
	1.4 Today GLMs are widely recognized as the industry standard method for pricing private passenger auto and other personal lines and small commercial lines insurance in the European Union and many other markets.  Most British, Irish and French auto insurers use GLMs to analyze their portfolios and to the authors' knowledge GLMs are commonly used in Italy, the Netherlands, Scandinavia, Spain, Portugal, Belgium, Switzerland, South Africa, Israel and Australia.  The method is gaining popularity in Canada, Japan, Korea, Brazil, Singapore, Malaysia and eastern European countries.
	1.5 The primary applications of GLMs in insurance analysis are ratemaking and underwriting.  Circumstances that limit the ability to change rates at will (eg regulation) have increased the use of GLMs for target marketing analysis.  
	1.6 In the past, actuaries have relied heavily on one-way analyses for pricing and monitoring performance.    
	1.7 A one-way analysis summarizes insurance statistics, such as frequency or loss ratio, for each value of each explanatory variable, but without taking account of the effect of other variables.  Explanatory variables can be discrete or continuous.  Discrete variables are generally referred to as "factors", with values that each factor can take being referred to as "levels", and continuous variables are generally referred to as "variates".  The use of variates is generally less common in insurance modeling.
	1.8 One-way analyses can be distorted by correlations between rating factors.  For example, young drivers may in general drive older cars.  A one-way analysis of age of car may show high claims experience for older cars, however this may result mainly from the fact that such older cars are in general driven more by high risk younger drivers.  Relativities based on one-way analyses of age of vehicle and age of driver would double-count the effect of age of driver.  Traditional actuarial techniques for addressing this problem usually attempt to standardize the data in such a way as to remove the distorting effect of uneven business mix, for example by focusing on loss ratios on a one-way basis, or by standardizing for the effect of one or more factors.  These methods are, however, only approximations.
	1.9 One-way analyses also do not consider interdependencies between factors in the way they affect claims experience.  These interdependencies, or interactions, exist when the effect of one factor varies depending on the levels of another factor.  For example, the pure premium differential between men and women may differ by levels of age.
	1.10 Multivariate methods, such as generalized linear models, adjust for correlations and allow investigation into interaction effects.
	1.11 In the 1960s, actuaries developed a ratemaking technique known as minimum bias procedures.  These procedures impose a set of equations relating the observed data, the rating variables, and a set of parameters to be determined.  An iterative procedure solves the system of equations by attempting to converge to the optimal solution.  The reader seeking more information may reference "The Minimum Bias Procedure:  A Practitioner's Guide" by Sholom Feldblum and Dr J. Eric Brosius.
	1.12 Once an optimal solution is calculated, however, the minimum bias procedures give no systematic way of testing whether a particular variable influences the result with statistical significance.  There is also no credible range provided for the parameter estimates.  The minimum bias procedures lack a statistical framework which would allow actuaries to assess better the quality of their modeling work.
	1.13 Stephen Mildenhall has written a comprehensive paper showing that many minimum bias procedures do correspond to generalized linear models.  The following table summarizes the correspondence for many of the more common minimum bias procedures.  The GLM terminology link function and error function is explained in depth later in this section.  In brief, these functions are key components for specifying a generalized linear model. 
	1.14 Not all minimum bias procedures have a generalized linear model analog and vice versa.  For example, the 2 additive and multiplicative minimum bias models have no corresponding generalized linear model analog. 
	1.15 A GLM is a generalized form of a linear model.  To understand the structure of generalized linear models it is helpful, therefore, to review classic linear models.  
	1.16 The purpose of both linear models (LMs) and generalized linear models is to express the relationship between an observed response variable, Y, and a number of covariates (also called predictor variables), X.  Both models view the observations, Yi, as being realizations of the random variable Y. 
	1.17 Linear models conceptualize Y as the sum of its mean, , and a random variable, :
	1.18 They assume that 
	a. the expected value of Y, , can be written as a linear combination of the covariates, X, and 
	b. the error term, , is Normally distributed with mean zero and variance 2.

	1.19 For example, suppose a simple private passenger auto classification system has two categorical rating variables: territory (urban or rural) and gender (male or female). Suppose the observed average claim severities are:
	1.20 The response variable, Y, is the average claim severity.  The two factors, territory and gender, each have two levels resulting in the four covariates: male (X1), female (X2), urban (X3), and rural (X4).  These indicator variables take the value 1 or 0.  For example, the urban covariate, (X3), is equal to 1 if the territory is urban, and 0 otherwise.
	1.21 The linear model seeks to express the observed item Y (in this case average claim severity) as a linear combination of a specified selection of the four variables, plus a Normal random variable  with mean zero and variance 2, often written  ~ N(0,2).  One such model might be 
	1.22 However this model has as many parameters as it does combinations of rating factor levels being considered, and there is a linear dependency between the four covariates X1, X2, X3, X4.  This means that the model in the above form is not uniquely defined - if any arbitrary value k is added to both 1 and 2, and the same value k is subtracted from 3 and 4, the resulting model is equivalent.  
	1.23 To make the model uniquely defined in the parameters i consider instead the model 
	1.24 This model is equivalent to assuming that there is an average response for men (1) and an average response for women (2), with the effect of being an urban policyholder (as opposed to being a rural one) having an additional additive effect (3) which is the same regardless of gender.  
	1.25 Alternatively this could be thought of as a model which assumes an average response for the "base case" of women in rural areas (2) with additional additive effects for being male (2-1) and for being in an urban area (3).
	1.26 Thus the four observations can be expressed as the system of equations:
	1.27 The parameters 1,2,3 which best explain the observed data are then selected.  For the classical linear model this is done by minimizing the sum of squared errors (SSE): 
	1.28 This expression can be minimized by taking derivatives with respect to 1, 2and 3 and setting each of them to zero.  The resulting system of three equations in three unknowns is:
	1.29 Formulating the system of equations above quickly becomes complex as both the number of observations and the number of covariates increases; consequently, vector notation is used to express these equations in compact form. 
	1.30 Let Y be a column vector with components corresponding to the observed values for the response variable:
	1.31 Let X1, X2, and X3 denote the column vectors with components equal to the observed values for the respective indicator variables (eg the ith element of X1 is 1 when the ith observation is male, and 0 if female):
	1.32 Let  denote a column vector of parameters, and for a given set of parameters let  be the vector of residuals:
	1.33 Then the system of equations takes the form:
	1.34 To simplify this further the vectors X1, X2, and X3 can be aggregated into a single matrix X.  This matrix is called the design matrix and in the example above would be defined as:
	1.35 Appendix A shows an example of the form of the design matrix X when explanatory variables include continuous variables, or "variates".
	1.36 The system of equations takes the form 
	1.37 In the case of the linear model, the goal is to find values of the components of  which minimize the sum of squares of the components of .  If there are n observations and p parameters in the model,  will have n components and  will have p components (p<n).
	1.38 The basic ingredients for a linear model thus consist of two elements: 
	a. a set of assumptions about  the relationship between Y and the predictor variables, and 
	b. an objective function which is to be optimized in order to solve the problem.  Standard statistical theory defines the objective function to be the likelihood function.  In the case of the classical linear model with an assumed Normal error it can be shown that the parameters which minimize sum of squared error also maximize likelihood.  

	Classical linear model assumptions
	1.39 Linear models assume all observations are independent and each comes from a Normal distribution.  
	1.40 This assumption does not relate to the aggregate of the observed item, but to each observation individually.  An example may help illustrate this distinction.  
	1.41 An examination of average claim amounts by gender may identify that average claim amounts for men are Normally distributed, as are average claim amounts for women, and that the mean of the distribution for men is twice the mean of the distribution for women.  The total distribution of average claim amounts across all men and women is not Normally distributed.  The only distribution of interest is the distribution of the two separate classes.  (In this case there are only two classes being considered, but in a more complicated model there would be one such class for each combination of the rating factors being considered.)
	1.42 Linear models assume that the mean is a linear combination of the covariates, and that each component of the random variable is assumed to have a common variance.  
	1.43 The linear model can be written as follows:
	1.44 McCullagh and Nelder outline the explicit assumptions as follows:
	1.45 The identity link function assumption in (LM3) may appear to be superfluous at this point, but it will become more meaningful when discussing the generalization to GLMs.
	1.46 Linear models pose quite tractable problems that can be easily solved with well-known linear algebra approaches.  However it is easy to see that the required assumptions are not easy to guarantee in applications:
	1.47 GLMs consist of a wide range of models that include linear models as a special case.  The LM restriction assumptions of Normality, constant variance and additivity of effects are removed.  Instead, the response variable is assumed to be a member of the exponential family of distributions.  Also, the variance is permitted to vary with the mean of the distribution.  Finally, the effect of the covariates on the response variable is assumed to be additive on a transformed scale.  Thus the analog to the linear model assumptions (LM1), (LM2), and (LM3) are as follows.
	1.48  Most statistical texts denote the first expression in (GLM3) with g(x) written on the left side of the equation; therefore, the systematic element is generally expressed on the right side as the inverse function, g-1.
	1.49 Formally, the exponential family of distributions is a 2-parameter family defined as:
	a. the distribution is completely specified in terms of its mean and variance,
	b. the variance of Yi is a function of its mean.

	This second property is emphasized by expressing the variance as:
	1.51 A number of familiar distributions belong to the exponential family: the Normal, Poisson, binomial, gamma, and inverse Gaussian.  The corresponding value of the variance function is summarized in the table below:
	1.52 A special member of the exponential family is the Tweedie distribution.  The Tweedie distribution has a point mass at zero and a variance function proportional to p (where p<0 or 1<p<2 or p>2).  This distribution is typically used to model pure premium data directly and is discussed further in Appendix C.
	1.53 The choice of the variance function affects the results of the GLM.  For example, the graph below considers the result of fitting three different (and very simple) GLMs to three data points.  In each case the model form selected is a two-parameter model (the intercept and slope of a line), and the three points represent the individual observations (with the observed value Yi shown on the y-axis for different values of a single continuous explanatory variable shown on the x-axis). 
	1.54 The three GLMs considered have a Normal, Poisson and gamma variance function respectively.  It can be seen that the GLM with a Normal variance function (which assumes that each observation has the same fixed variance) has produced fitted values which are attracted to the original data points with equal weight.  By contrast the GLM with a Poisson error assumes that the variance increases with the expected value of each observation.  Observations with smaller expected values have a smaller assumed variance, which results in greater credibility when estimating the parameters.  The model thus has produced fitted values which are more influenced by the observation on the left (with smaller expected value) than the observation on the right (which has a higher expected value and hence a higher assumed variance).  
	1.55 It can be seen that the GLM with assumed gamma variance function is even more strongly influenced by the point on the left than the point on the right since that model assumes the variance increases with the square of the expected value.
	1.56 A further, rather more realistic, example illustrates how selecting an appropriate variance function can improve the accuracy of a model.  This example considers an artificially generated dataset which represents an insurance portfolio.  This dataset contains several rating factors (some of which are correlated), and in each case the true effect of the rating factor is assumed to be known.  Claims experience (in this case average claim size experience) is then randomly generated for each policy using a gamma distribution, with the mean in each case being that implied by the assumed effect of the rating factors.  The claims experience is then analyzed using three models to see how closely the results of each model relate to the (in this case known) true factor effect.
	1.57 The three methods considered are
	1.58 The results for one of the several rating factors considered are shown on the graph below.  It can be seen that owing to the correlations between the rating factors in the data, the one-way analysis is badly distorted.  The GLM with an assumed Normal distribution is closer to the correct relativities, but it can be seen that it is the GLM with an assumed gamma variance function which yields results that are the closest to the true effect.
	1.59 In addition to the variance function V(x), two other parameters define the variance of each observation, the scale parameter  and the prior weights i
	1.60 The prior weights allow information about the known credibility of each observation to be incorporated in the model.  For example, if modeling claims frequency, one observation might relate to one month's exposure, and another to one year's exposure.  There is more information and less variability in the observation relating to the longer exposure period, and this can be incorporated in the model by defining i to be the exposure of each observation.  In this way observations with higher exposure are deemed to have lower variance, and the model will consequently be more influenced by these observations.
	1.61 An example demonstrates the appropriateness of this more clearly.  Consider a set of observations for personal auto claims under some classification system.  Let cell i denote some generic cell defined by this classification system. To analyze frequency let:
	1.62 If the random process generating mik is Poisson with frequency fi for all exposures k then
	1.63 Assuming the exposures are independent then
	1.64 So in this case V(i) = i,  = 1, and the prior weights are the exposures in cell i.
	1.65 An alternative example would be to consider claims severity.  Let 
	1.66 This time assume that the random process generating each individual claim is gamma distributed.  Denoting
	1.67 So for severity with a gamma distribution the variance of Yi follows the general form for all exponential distributions with V(i) = i2,  = 2,  and prior weight equal to the number of claims in cell i.
	1.68 Prior weights can also be used to attach a lower credibility to a part of the data which is known to be less reliable.
	1.69 In some cases (eg the Poisson distribution) the scale parameter  is identically equal to 1 and falls out of the GLM analysis entirely.  However in general and for the other familiar exponential distributions  is not known in advance, and in these cases it must be estimated from the data.
	1.70 Estimation of the scale parameter is not actually necessary in order to solve for the GLM parameters , however in order to determine certain statistics (such as standard errors, discussed below) it is necessary to estimate . 
	1.71 can be treated as another parameter and estimated by maximum likelihood. The drawback of this approach is that it is not possible to derive an explicit formula for , and the maximum likelihood estimation process can take considerably longer.
	1.72 An alternative is to use an estimate of  such as
	a. the moment estimator (Pearson 2 statistic) defined as
	b. the total deviance estimator 

	1.73 In practice when using classical linear regression practitioners sometimes attempt to transform data to satisfy the requirements of Normality and constant variance of the response variable and additivity of effects.  Generalized linear models, on the other hand, merely require that there be a link function that guarantees the last condition of additivity.  Whereas (LM3) requires that Y be additive in the covariates, the generalization (GLM3) instead requires that some transformation of Y, written as g(Y), be additive in the covariates.  
	1.74 It is more helpful to consider i as a function of the linear predictor, so typically it is the inverse of g(x) which is considered:
	1.75 In theory a different link function could be used for each observation i, but in practice this is rarely done.
	1.76 The link function must satisfy the condition that it be differentiable and monotonic (either strictly increasing or strictly decreasing).  Some typical choices for a link function include)
	1.77 Each error structure has associated with it a "canonical" link function which simplifies the mathematics of solving GLMs analytically.  These are discussed in Appendix D.  When solving GLMs using modern computer software, however, the use of canonical link functions is not important and any pairing of link function and variance function which is deemed appropriate may be selected.
	1.78 The log-link function has the appealing property that the effect of the covariates are multiplicative.  Indeed, writing g(x) = ln(x) so that g-1(x) = ex results in  
	1.79 In other words, when a log link function is used, rather than estimating additive effects, the GLM estimates logs of multiplicative effects.
	1.80 As mentioned previously, alternative choices of link functions and error structures can yield GLMs which are equivalent to a number of the minimum bias models as well as a simple linear model (see section "The Connection of Minimum Bias to GLM").
	1.81 There are occasions when the effect of an explanatory variable is known, and rather than estimating parameters  in respect of this variable it is appropriate to include information about this variable in the model as a known effect.  This can be achieved by introducing an "offset term"  into the definition of the linear predictor 
	1.82 A common example of the use of an offset term is when fitting a multiplicative GLM to the observed number, or count, of claims (as opposed to claim frequency).  Each observation may relate to a different period of policy exposure.  An observation relating to one month's exposure will obviously have a lower expected number of claims (all other factors being equal) than an observation relating to a year's exposure.  To make appropriate allowance for this, the assumption that the expected count of claims increases in proportion to the exposure of an observation (all other factors being equal) can be introduced in a multiplicative GLM by setting the offset term  to be equal to the log of the exposure of each observation, giving:
	1.83 In the particular case of a Poisson multiplicative GLM it can be shown that modeling claim counts with an offset term equal to the log of the exposure (and prior weights set to 1) produces identical results to modeling claim frequencies with no offset term but with prior weights set to be equal to the exposure of each observation.
	1.84 In summary, the assumed structure of a GLM can be specified as:
	1.85 The vector of responses Yi, the design matrix Xij, the prior weights i, and the offset term i are based on data in a manner determined by the practitioner.  The assumptions which then further define the form of the model are the link function g(x), the variance function V(x), and whether  is known or to be estimated.
	1.86 The typical model form for modeling insurance claim counts or frequencies is a multiplicative Poisson.  As well as being a commonly assumed distribution for claim numbers, the Poisson distribution also has a particular feature which makes it intuitively appropriate in that it is invariant to measures of time.  In other words, measuring frequencies per month and measuring frequencies per year will yield the same results using a Poisson multiplicative GLM.  This is not true of some other distributions such as gamma.
	1.87 In the case of claim frequencies the prior weights are typically set to be the exposure of each record.  In the case of claim counts the offset term is set to be the log of the exposure.
	1.88 A common model form for modeling insurance severities is a multiplicative gamma.  As well as often being appropriate because of its general form, the gamma distribution also has an intuitively attractive property for modeling claim amounts since it is invariant to measures of currency.  In other words measuring severities in dollars and measuring severities in cents will yield the same results using a gamma multiplicative GLM.  This is not true of some other distributions such as Poisson.
	1.89 The typical model form for modeling retention and new business conversion is a logit link function and binomial error term (together referred to as a logistic model).  The logit link function maps outcomes from the range of (0,1) to (-∞, +∞) and is consequently invariant to measuring successes or failures.  If the y-variate being modeled is generally close to zero, and if the results of a model are going to be used qualitatively rather than quantitatively, it may also be possible to use a multiplicative Poisson model form as an approximation given that the model output from a multiplicative GLM can be rather easier to explain to a non-technical audience.
	1.90 The below table summarizes some typical model forms.
	1.91 Having defined a model form in terms of X, g(x), , V(x), , and , and given a set of observations Y, the components of  are derived by maximizing the likelihood function (or equivalently, the logarithm of the likelihood function).  In essence, this method seeks to find the parameters which, when applied to the assumed model form, produce the observed data with the highest probability.
	1.92 The likelihood is defined to be the product of probabilities of observing each value of the y-variate.  For continuous distributions such as the Normal and gamma distributions the probability density function is used in place of the probability.  It is usual to consider the log of the likelihood since being a summation across observations rather than a product, this yields more manageable calculations (and any maximum of the likelihood is also a maximum of the log-likelihood).  Maximum likelihood estimation in practice, therefore, seeks to find the values of the parameters that maximize this log-likelihood.
	1.93 In simple examples the procedure for maximizing likelihood involves finding the solution to a system of equations with linear algebra.  In practice, the large number of observations typically being considered means that this is rarely done.  Instead numerical techniques (and in particular multi-dimensional Newton-Raphson algorithms) are used.  Appendix E shows the system of equations for maximizing the likelihood function in the general case of an exponential distribution. 
	1.94 An explicitly solved illustrative example and a discussion of numerical techniques used with large datasets are set out below.
	1.95 To understand the mechanics involved in solving a GLM, a concrete example is presented.  Consider the same four observations discussed in a previous section for average claim severity:
	1.96 The general procedure for solving a GLM involves the following steps:
	a. Specify the design matrix X and the vector of parameters 
	b. Choose the error structure and link function
	c. Identify the log-likelihood function
	d. Take the logarithm to convert the product of many terms into a sum
	e. Maximize the logarithm of the likelihood function by taking partial derivatives with respect to each parameter, setting them to zero and solving the resulting system of equations
	f. Compute the predicted values.  

	1.97 Recall that the vector of observations, the design matrix, and the vector of parameters are as follows:
	1.98 The following three alternative model structures are illustrated: 
	1.99 These three model forms may not necessarily be appropriate models to use in practice - instead they illustrate the theory involved.
	1.100 In each case the elements of  (the prior weights) will be assumed to be 1, and the offset term  assumed to be zero, and therefore these terms will, in this example, be ignored.  
	1.101 The classical linear model case assumes a Normal error structure and an identity link function.  The predicted values in the example take the form:
	1.102 The Normal distribution with mean  and variance 2 has the following density function:
	Its likelihood function is: 
	Maximizing the likelihood function is equivalent to maximizing the log-likelihood function:
	1.105 With the identity link function, i=jXijj and the log-likelihood function becomes
	1.106 In this example, up to a constant term of 2.ln(22), the log-likelihood is 
	1.107 To maximize l* take derivatives with respect to 1, 2and 3 and set each of them to zero.  The resulting system of three equations in three unknowns is:
	1.108 It can be seen that these equations are identical to those derived when minimizing the sum of squared error for a simple linear model.  Again, these can be solved to derive:
	1.109 For the Poisson model with a logarithm link function, the predicted values are given by
	1.110 A Poisson distribution has the following density function
	1.111 Its log-likelihood function is therefore
	With the logarithm link function, i = exp(jXijj), and the log-likelihood function reduces to 
	1.113 In this example, the equation is
	1.114 Ignoring the constant of ln800! + ln500! + ln400! + ln200!, the following function is to be maximized:
	1.115 To maximize l* the derivatives with respect to 1, 2and 3 are set to zero and the following three equations are derived:
	1.116 These can be solved to derive the following parameter estimates:
	1.117 This example is set out in Appendix F.  
	1.118 The general case for solving for maximum likelihood in the case of a GLM with an assumed exponential distribution is set out in Appendix E.  In insurance modeling there are typically many thousands if not millions of observations being modeled, and it is not practical to find values of  which maximize likelihood using the explicit techniques illustrated above and in Appendices E and F.  Instead iterative numerical techniques are used.  
	1.119 As was the case in the simple examples above, the numerical techniques seek to optimize likelihood by seeking the values of  which set the first differential of the log-likelihood to zero, as there are a number of standard methods which can be applied to this problem.  In practice, this is done using an iterative process, for example Newton-Raphson iteration which uses the formula:
	1.120 The iterative process can be started using either values of zero for elements of 0 or alternatively the estimates implied by a one-way analysis of the data or of another previously fitted GLM. 
	1.121 Several generic commercial packages are available to fit generalized linear models in this way (such as SAS®, S+, R, etc), and packages specifically built for the insurance industry, which fit models GLMs more quickly and with helpful interpretation of output, are also available.
	1.122 The simple examples discussed above considered a three parameter model, where 1 corresponded to men, 2 to women and 3 to the effect of being in an urban area.  In the case of an additive model (with identity link function) this could be thought of as either
	1.123 In the case of a multiplicative model this three parameter form could be thought of as 
	1.124 In the example considered, some measure of the overall average response was incorporated in both the values of 1 and 2.  The decision to incorporate this in the parameters relating to gender rather than area was arbitrary.
	1.125 In practice when considering many factors each with many levels it is more helpful to parameterize the GLM by considering, in addition to observed factors, an "intercept term", which is a parameter that applies to all observations.
	1.126 In the above example, this would have been achieved by defining the design matrix X as 
	1.127 In practice when considering categorical factors and an intercept term, one level of each factor should have no parameter associated with it, in order that the model remains uniquely defined.  
	1.128 For example consider a simple rating structure with three factors - age of driver (a factor with 9 levels), territory (a factor with 8 levels) and vehicle class (a factor with 5 levels).  An appropriate parameterization might be represented as follows:
	1.129 In this example the claims frequency predicted by the model can be calculated for a given policy by taking the intercept term 0.1412 and multiplying it by the relevant factor relativities.  For the factor levels for which no parameter was estimated (the "base levels"), no multiplier is relevant, and this is shown in the above table by displaying multipliers of 1.  The intercept term relates to a policy with all factors at the base level (ie in this example the model predicts a claim frequency of 0.1412 for a 4049 year old in territory C and a vehicle in class A).  This intercept term is not an average rate since its value is entirely dependent upon the arbitrary choice of which level of each factor is selected to be the base level.
	1.130 If a model were structured with an intercept term but without each factor having a base level, then the GLM solving routine would remove as many parameters as necessary to make the model uniquely defined.  This process is known as aliasing.
	1.131 Aliasing occurs when there is a linear dependency among the observed covariates X1,…,Xp. That is, one covariate may be identical to some combination of other covariates.  For example, it may be observed that 
	1.132 Equivalently, aliasing can be defined as a linear dependency among the columns of the design matrix X.  
	1.133 There are two types of aliasing: intrinsic aliasing and extrinsic aliasing.
	1.134 Intrinsic aliasing occurs because of dependencies inherent in the definition of the covariates.  These intrinsic dependencies arise most commonly whenever categorical factors are included in the model.
	1.135 For example, suppose a private passenger automobile classification system includes the factor vehicle age which has the four levels:  0-3 years (X1), 4-7 years (X2), 8-9 years (X3), and 10+ years (X4).  Clearly if any of X1, X2, X3, is equal to 1 then X4 is equal to 0; and if all of X1, X2, X3, are equal to 0 then X4 must be equal to 1.  Thus X4  = 1 - X1 - X2 - X3.  
	1.136 The linear predictor
	1.137 Upon renaming the coefficients this becomes:
	1.138 The result is a linear predictor with an intercept term (if one did not already exist) and three covariates. 
	1.139 GLM software will remove parameters which are aliased.  Which parameter is selected for exclusion depends on the software.  The choice of which parameter to alias does not affect the fitted values.  For example in some cases the last level declared (ie the last alphabetically) is aliased.  In other software the level with the maximum exposure is selected as the base level for each factor first, and then other levels are aliased dependent upon the order of declaration.  (This latter approach is helpful since it minimizes the standard errors associated with other parameter estimates - this subject is discussed later in this paper.)
	1.140 This type of aliasing again arises from a dependency among the covariates, but when the dependency results from the nature of the data rather than inherent properties of the covariates themselves.  This data characteristic arises if one level of a particular factor is perfectly correlated with a level of another factor.  
	1.141 For example, suppose a dataset is enriched with external data and two new factors are added to the dataset: the factors number of doors and color of vehicle.  Suppose further that in a small number of cases the external data could not be linked with the existing data with the result that some records have an unknown color and an unknown number of doors. 
	1.142 In this case because of the way the new factors were derived, the level unknown for the factor color happens to be perfectly correlated with the level unknown for the factor # doors.  The covariate associated with unknown color is equal to 1 in every case for which the covariate for unknown # doors is equal to 1, and vice versa.
	1.143 Elimination of the base levels through intrinsic aliasing reduces the linear predictor from 10 covariates to 8, plus the introduction of an intercept term.  In addition, in this example, one further covariate needs to be removed as a result of extrinsic aliasing.  This could either be the unknown color covariate or the unknown # doors covariate.  Assuming in this case the GLM routine aliases on the basis of order of declaration, and assuming that the # doors factor is declared before color, the GLM routine would alias unknown color reducing the linear predictor to just 7 covariates.
	1.144 When modeling in practice a common problem occurs when two or more factors contain levels that are almost, but not quite, perfectly correlated.  For example, if the color of vehicle was known for a small number of policies for which the # doors was unknown, the two-way of exposure might appear as follows:
	1.145 In this case the unknown level of color factor is not perfectly correlated to the unknown level of the # doors factor, and so extrinsic aliasing will not occur.
	1.146 When levels of two factors are "nearly aliased" in this way, convergence problems can occur.  For example, if there were no claims for the 5 exposures indicated in black color level and unknown # doors level, and if a log link model were fitted to claims frequency, the model would attempt to estimate a very large and negative parameter for unknown # doors (for example, -20) and a very large parameter for unknown color (for example 20.2).  The sum (0.2 in this example) would be an appropriate reflection of the claims frequency for the 3,242 exposures having unknown # doors and unknown color, while the value of the unknown # doors parameter would be driven by the experience of the 5 rogue exposures having color black with unknown # doors.  This can either give rise to convergence problems, or to results which can appear very confusing.
	1.147 In order to understand the problem in such circumstances it is helpful to examine twoway tables of exposure and claim counts for the factors which contain very large parameter estimates.  From these it should be possible to identify those factor combinations which cause the near-aliasing.  The issue can then be resolved either by deleting or excluding those rogue records, or by reclassifying the rogue records into another, more appropriate, factor level. 
	1.148 As well as deriving parameter estimates which maximize likelihood, a GLM can produce important additional information indicating the certainty of those parameter estimates (which themselves are estimates of some true underlying value).
	1.149 Statistical theory can be used to give an estimate of the uncertainty.  In particular, the multivariate version of the Cramer-Rao lower bound (which states that the variance of a parameter estimate is greater than or equal to minus one over the second derivative of the log likelihood) can define "standard errors" for each parameter estimate.  Such standard errors are defined as being the diagonal element of the covariance matrix -H-1  where H (the Hessian) is the second derivative matrix of the log likelihood. 
	Intuitively the standard errors can be thought of as being indicators of the speed with which log-likelihood falls from the maximum given a change in a parameter.  For example consider the below diagram.
	1.151 This diagram illustrates a simple case with two parameters (1 and 2) and shows how log likelihood varies, for the dataset in question, for different values of the two parameters.  It can be seen that movements in parameter 1 from the optimal position reduce log likelihood more quickly than similar movements in parameter 2, that is to say the log likelihood curve becomes steeper in the parameter 1 direction than in the parameter 2 direction.  This can be thought of as the second partial differential of log likelihood with respect to parameter 1 being large and negative, with the result that the standard error for parameter 1 (being minus one over the second partial differential) is small.  Conversely the second partial differential of log likelihood with respect to parameter 2 is less large and negative, with the standard error for parameter 2 being larger (indicating greater uncertainty).
	1.152 Generally it is assumed that the parameter estimates are asymptotically Normally distributed; consequently it is in theory possible to undertake a simple statistical test on individual parameter estimates, comparing each estimate with zero (ie testing whether the effect of each level of the factor is significantly different from the base level of that factor).  This is usually performed using a 2 test, with the square of the parameter estimate divided by its variance being compared to a 2 distribution.  This test in fact compares the parameter with the base level of the factor.  This is not necessarily a fully useful test in isolation as the choice of base level is arbitrary.  It is theoretically possible to change repeatedly the base level and so construct a triangle of 2 tests comparing every pair of parameter estimates.  If none of these differences is significant then this is good evidence that the factor is not significant.
	1.153 In practice graphical interpretation of the parameter estimates and standard errors are often more helpful, and these are discussed in Section 2.
	1.154 In addition to the parameter estimate standard errors, measures of deviance can be used to assess the theoretical significance of a particular factor.  In broad terms, a deviance is a measure of how much the fitted values differ from the observations.  
	1.155 Consider a deviance function d(Yi,i) defined by
	1.156 Consider an observation Yi and a GLM that makes a prediction i for that observation.  d(Yi,i) is a measure of the difference between the fitted and actual observations which gives more weight to the difference between Yi andi when the variance function V(x) is small. That is, if Yi is known to come from a distribution with small variance then any discrepancy between Yi andi is given more emphasis.  
	1.157 d(Yi,) can be thought of as a generalized form of the squared error.  
	1.158 Summing the deviance function across all observations gives an overall measure of deviance referred to as the total deviance D:
	1.159 Dividing this by the scale parameter  gives the scaled deviance D*, which can be thought of as a generalized form of the sum of squared errors, adjusting for the shape of the distribution.  
	1.160 For the class of exponential distributions the scaled deviance can be shown to be equal to twice the difference between the maximum achievable likelihood (ie the likelihood where the fitted value is equal to the observation for every record) and the likelihood of the model.
	1.161 A range of statistical tests can be undertaken using deviance measures.  One of the most useful tests considers the ratio of the likelihood of two "nested" models, that is to say where one model contains explanatory variables which are a subset of the explanatory variables in a second model.  Such tests are often referred to as "type III" tests (as opposed to "type I" tests which consider the significance of factors as they are added sequentially to a model with only an intercept term, referred to as a null model).
	1.162 The change in scaled deviance between two nested models (which reflects the ratio of the likelihoods) can be considered to be a sample from a 2 distribution with degrees of freedom equal to the difference in degrees of freedom between the two models (where the degrees of freedom for a model is defined as the number of observations less the  number of parameters), ie
	1.163 This allows tests to be undertaken to assess the significance of the parameters that differ between the two models (with the null hypothesis that the extra parameters are not important).  Expressed crudely this measures whether the inclusion of an explanatory factor in a model improves the model enough (ie decreases the deviance enough) given the extra parameters which it adds to the model.  Adding any factor will improve the fit on the data in question - what matters is whether the improvement is significant given the extra parameterization.
	1.164 The 2 tests depend on the scaled deviance.  For some distributions (such as the Poisson and the binomial) the scale parameter is assumed to be known, and it is possible to calculate the statistic accurately.  For other distributions the scale parameter is not known and has to be estimated, typically as the ratio of the deviance to the degrees of freedom.  This can decrease the reliability of this test if the estimate of the scale parameter used is not accurate.
	1.165 It is possible to show that, after adjusting for the degrees of freedom and the true scale parameter, the estimate of the scale parameter is also distributed with a 2 distribution.  The F-distribution is the ratio of 2 distributions.  The ratio of the change in deviance and the adjusted estimate of the scale is therefore distributed with an F-distribution. 
	1.166 This means that the F-test is suitable for use when the scale parameter is not known (for example when using the gamma distribution).  There is no advantage to using this test where the scale is known.
	2.1 Section 1 discussed how GLMs are formularized and solved.  This section considers practical issues and presents a plan for undertaking a GLM analysis in four general stages:  
	2.2 GLM claim analyses require a certain volume of experience.  Depending on the underlying claim frequencies and the number of factors being analyzed, credible results on personal lines portfolios can generally be achieved with around 100,000 exposures (which could for example be 50,000 in each of two years, etc).  Meaningful results can sometimes be achieved with smaller volumes of data (particularly on claim types with adequate claims volume), but it is best to have many 100,000s of exposures.  As models fitted to only a single year of data could be distorted by events that occurred during that year, the data should ideally be based on two or three years of experience. 
	2.3 In addition to combining different years of experience, combining states (or provinces) can also improve stability, assuming inputs are consistent across borders.  In the case where one geographic area has sufficient exposure it may be more appropriate to fit a model just to that area's experience.  If a countrywide model has been run, the goodness of fit of that model on state data may be investigated, or the state and countrywide model results may be compared side-by-side.  Examining the interaction of state with each predictive factor may also identify where state patterns differ from countrywide; interaction variables are discussed later in this paper. 
	2.4 Different types of claim can be affected by rating factors in different ways and so often it is appropriate to analyze different types of claim with separate models.  Analyzing different claim elements separately will often identify clearer underlying trends than considering models based on a mixture of claims (for example, liability claims combined with theft claims).  Even if a single model is required ultimately, it is generally beneficial to model by individual claim type and later to produce a single model which fits the aggregate of the underlying models by claim type. 
	2.5 The overall structure of a dataset for GLM claims analysis consists of linked policy and claims information at the individual risk level.  Typical data requirements and a more detailed discussion of issues such as dealing with IBNR are set out in Appendix G.  In summary, however, the following fields would typically be included in a GLM claims dataset. 
	2.6 When analyzing policyholder retention or new business conversion, a different form of data is required.  For example to fit GLMs to policyholder renewal experience, a dataset would contain one record for each invitation to renew and would contain the following fields:
	2.7 If several risks are written on a single policy, renewal may be defined at the policy level or at the individual risk level (for example, a personal automobile carrier may write all vehicles in a household on a single policy).  An understanding of how the model will be used will aid data preparation.  For example, models that will be part of a detailed model office scenario will benefit from data defined at the individual risk level.  Models used to gain an overall understanding of which criteria affect policyholder retention (perhaps for marketing purposes) would not require such detail.
	2.8 Before modeling, it is generally helpful to undertake certain preliminary analyses.  These analyses include data checks such as identification of records with negative or zero exposures, negative claim counts or losses, and blanks in any of the statistical fields.  In addition, certain logical tests may be run against the data - for example, identifying records with incurred losses but with no corresponding claim count.  
	2.9 One helpful preliminary analysis is to consider the distribution of key data items for the purpose of identifying any unusual features or data problems that should be investigated prior to modeling.  Mainly this concerns the distribution of claim amounts (ie number of claim counts by average claim size), which are examined in order to identify features such as unusually large claims and distortions resulting from average reserves placed on newly reported claims.  A typical claim distribution graph is shown below.
	2.10 This distribution, along with a distribution of loss amount by average claim size, will aid in understanding the tail of the distribution for a particular claim type.  (When modeling severity, it is often appropriate to apply a large loss threshold to certain claim types, and this helps assess possible thresholds.  A tabular representation of the distribution would also help quantify the percent of the claims distribution which would be affected by different large loss thresholds.)
	2.11 Distribution analyses can also highlight specific anomalies that might require addressing prior to modeling.  For example, if many new claims have a standard average reserve allocated to them, it might be appropriate to adjust the amount of such an average reserve if it was felt that the average level was systematically below or above the ultimate average claims cost.
	2.12 Although GLMs are a multivariate method, there is generally benefit in reviewing some one-way and two-way analyses of the raw data prior to modeling.  
	2.13 Firstly, the one-way distribution of exposure and claims across levels of each raw variable will indicate whether a variable contains enough information to be included in any models (for example, if 99.5% of a variable's exposures are in one level, it may not be suitable for modeling).  
	2.14 Secondly, assuming there is some viable distribution by levels of the factor, consideration needs to be given to any individual levels containing very low exposure and claim count.  If these levels are not ultimately combined with other levels, the GLM maximum likelihood algorithm may not converge (if a factor level has zero claims and a multiplicative model is being fitted, the theoretically correct multiplier for that level will be close to zero, and the parameter estimate corresponding to the log of that multiplier may be so large and negative that the numerical algorithm seeking the maximum likelihood will not converge).  
	2.15 In addition to investigating exposure and claim distribution, a query of one-way statistics (eg frequency, severity, loss ratio, pure premium) will give a preliminary indication of the effect of each factor.
	2.16 Before modeling, it is necessary to consider how explanatory variables should be categorized, and whether any variables should be modeled in a continuous fashion as variates (or polynomials in variates).  Although variates do not require any artificially imposed categorization, the main disadvantage is that the use of polynomials may smooth over interesting effects in the underlying experience.  Often it is better to begin modeling all variables as narrowly defined categorical factors (ensuring sufficient data in each category) and if the categorical factor presents GLM parameter estimates which appear appropriate for modeling with a polynomial, then the polynomial in the variate may be used in place of the categorical factor.
	2.17 When using categorical factors consideration needs to be given to the way in which the factors are categorized.  If an example portfolio contained a sufficient amount of claims for each for each age of driver (say from age 16 to 99), the categorization of age of driver may consist of each individual age.  This is rarely the case in practice, however, and often it is necessary that levels of certain rating factors are combined.
	2.18 In deriving an appropriate categorization, the existing rating structure may provide initial guidance (particularly if the GLMs are to be applied in ratemaking), with factor levels with insufficient exposure then being grouped together and levels with sufficient exposure being considered separately.  In general such a manual approach tends to be the most appropriate.  One particular automated approach within the GLM framework is considered in Appendix H.  This approach, however, would not necessarily produce any more appropriate results than the manual approach.
	2.19 Once categorical factors have been defined, it can also be helpful to consider the degree to which the exposures of explanatory factors are correlated.   One commonly used correlation statistic for categorical factors is Cramer's V statistic.  Further information about this statistic is set out in Appendix I.
	2.20 Although not used directly in the GLM process, an understanding of the correlations within a portfolio is helpful when interpreting the results of a GLM.  In particular it can explain why the multivariate results for a particular factor differ from the univariate results, and can indicate which factors may be affected by the removal or inclusion of any other factor in the GLM.
	2.21 In practice it is not necessary to fit every model to the entire dataset.  For example, modeling severity for a particular claim type only requires records that contain a claim of that type.  Running models against data subsets, or extracts, can improve model run speed.
	2.22 The error term assumed for a model can also influence these data extracts.  In the case of claim counts, a particular property of Poisson multiplicative model is that the observed data Yi can be grouped by unique combination of rating factors being modeled (summing exposure and claim counts for each unique combination) and the GLM parameter estimates and the parameter estimate standard errors will remain unchanged.  This is helpful in practice since it can decrease model run times.  This is not the case for some other distributions. 
	2.23 A gamma multiplicative model does not produce identical results if the observations are grouped by unique combinations of factors.  Such a grouping would not change parameter estimates, but it would affect the standard errors.  Depending on the line of business, however, it may be appropriate to group the small number of multiple claims which occur on the same policy in the same exposure period.
	2.24 Given data relating to the actual observations and the assumptions about the model form, a GLM will yield parameter estimates which best fit the data given that model form.  The GLM will not automatically provide information indicating the appropriateness of the model fitted - for this it is necessary to examine a range of diagnostics.  This section reviews model forms typically used in practice and discusses the range of diagnostics which aid in both the selection of explanatory factors and the validation of statistical assumptions.
	2.25 One of the key issues to consider is which explanatory factors should be included in the model. The GLM will benefit from including factors which systematically affect experience, but excluding factors which have no systematic effect.  To distinguish whether a factor effect is systematic or random (and therefore unlikely to be repeated in the future) there are a number of criteria which can be considered, including
	2.26 As discussed in Section 1, as well as deriving parameter estimates which maximize likelihood, a GLM can produce important additional information indicating the certainty of those parameter estimates.
	2.27 One such helpful diagnostic is the standard errors of the parameter estimates, defined as being the square root of the diagonal element of -H-1 where H (the Hessian) is the second derivative matrix of the log likelihood.
	2.28 Although theoretically tests could be performed on individual parameter estimates using standard errors, in practice it is often more helpful to consider for each factor in the GLM the fitted parameter estimates alongside the associated standard errors (for one base level) in a graphical form thus:
	2.29 One such graph would be shown for each factor in the model.  In this case the factor in question is Vehicle Symbol with levels running from 1 to 13.  
	2.30 The thick solid line shows the fitted parameter estimates.  In this case the model is a multiplicative model with a log link function and so the parameter estimates represent logs of multipliers.  For clarity the implied loadings are shown as labels by each point on the thick solid line.  For example - the parameter estimate for Vehicle Symbol 3 has value 0.27. This means that the model estimates that, all other factors being constant, exposures with Vehicle Symbol 3 will have a relativity of e0.27 = 1.31 times that expected for exposures at the base level (in this example Symbol 1).  This multiplier is shown on the graph as a "loading" of 31%.  
	2.31 The thin solid lines on each graph indicate two standard errors either side of the parameter estimate.  Very approximately this means that (assuming the fitted model is appropriate and correct) the data suggests that the true relativity for each level of rating factor will lie between the two thin solid lines with roughly 95% certainty.  The two bands will be wide apart, indicating great uncertainty in the parameter estimate where there is low exposure volume, where other correlated factors also explain the risk, or where the underlying experience is very variable.
	2.32 The dotted lines shows the relativities implied by a simple oneway analysis.  These relativities make no allowance for the fact that the difference in experience may be explained in part by other correlated factors.  These one-way estimates are of interest since they will differ from the multivariate estimates for a given factor when there are significant correlations between that factor and one or more other significant factors.  The distribution of exposure for all business considered is also shown as a bar chart at the bottom of each graph.  This serves to illustrate which level of each factor may be financially significant.
	2.33 Even though the standard errors on the graph only indicate the estimated certainty of the parameter estimates relative to the base level, such graphs generally give a good intuitive feel for the significance of a factor.  For example in the above case it is clear that the factor is significant since the parameter estimates for Vehicle Symbols 3 to 13 are considerably larger than twice the corresponding standard errors.  By contrast the graph below (an example of the same factor in a different model for a different claim type) illustrates an example where a factor is not significant - in this case there are no parameter estimates more than two standard errors from zero.
	2.34 Sometimes some levels of a categorical factor may be clearly significant, while other levels may be less so.  Although the factor as a whole may be statistically significant, this may indicate that it is appropriate to re-categorize the factor, grouping together the less significant levels with other levels.
	2.35 As discussed in Section 1, comparing measures of deviance of two nested models allows "type III" tests (2 or F-tests depending on whether or not the scale parameter  is known) to be performed to determine the theoretical significance of individual factors.
	2.36 In the Vehicle Symbol examples above (which were based on frequency models of two different claim types, each with a Poisson error structure), the resulting probability values (or P values) from the 2 tests are shown as footnotes to the graphs.  Each 2 test compares a model with Vehicle Symbol to one without.  In the first case the 2 test shows a probability level close to 0 (displayed to one decimal place as 0.0%).  This means that the probability of this factor having such an effect on the deviance by chance is almost zero, ie this factor (according to the 2 test) is highly significant.  Conversely in the second example the probability value is 52.5%, indicating that the factor is considerably less significant and should be excluded from the model.  Typically factors with 2 or F-test probability levels of 5% or less are considered significant.
	2.37 These kinds of type III likelihood ratio tests can provide additional information to the graphical interpretation of parameter estimates and standard errors.  For example if other correlated factors in a model could largely compensate for the exclusion of a factor, this would be indicated in the type III test.  Also the type III test is not influenced by the choice of the base level in the way that parameter estimate standard errors are.
	2.38 On the other hand, type III tests can be impractical on occasions - for example if a 20 level factor contained only one level that had any discriminatory effect on experience, a type III test might indicate that the factor was statistically significant, whereas a graphical representation of the model results would show at a glance that the factor contained too many levels and needed to be re-categorized with fewer parameters.
	2.39 In addition to classical statistical tests it can often be helpful to consider rather more pragmatic tests such as whether the observed effect of a rating factor is consistent over time.  For example if more than one year's experience is being considered it is possible to consider the effect of a particular factor in each calendar year of exposure (or alternatively policy year).  In theory this could be done by fitting separate models to each year and then comparing the results, however this can be hard to interpret since a movement in one factor in one year may to a large extent be compensated for by a movement in another correlated factor.  A potentially clearer test, therefore, is to fit a series of models each one of which considers the interaction of a single factor with time.  (Interactions are discussed in more detail later in this paper.)
	2.40 The below diagram shows one example factor interacted with calendar year of exposure.  It is clear from this result showing lines which are largely parallel that the factor effect is mainly consistent from year to year, suggesting that the factor is likely to be a good predictor of future experience. 
	2.41 Conversely the graph below shows an example of a factor (in this case territory classification) which, although significant according to classical type III tests, shows a pattern for some levels which differs from year to year.  In such a case it would be appropriate to investigate whether there was a possible explanation for such variations.  If the variation can be attributed to some known change (for examples some event in one of the territories during one period) then that can be allowed when interpreting the results.  If no explanation can be found for variations over time, this may indicate that the factor will be an unreliable predictor of future experience.
	2.42 In addition to statistical and other pragmatic tests, common sense can also play an important role in factor selection.  Issues which should be considered when assessing the significance of a factor include
	2.43 It is not generally possible to determine from a single GLM which set of factors are significant since the inclusion or exclusion of one factor will change the observed effects and therefore possibly the significance of other correlated factors in the model.  To determine the theoretically optimal set of factors, therefore, it is generally necessary to consider an iterated series of models.  
	2.44 Often the model iteration starts with a GLM that includes all the main explanatory variables.  Insignificant factors can then be excluded, one at a time, refitting the model at each stage.  
	2.45 When a factor is identified as being insignificant it is helpful to compare the GLM parameter estimates for that factor with the equivalent one-way relativities.  When the GLM parameter estimates are different from the one-way relativities this indicates that the factor in question is correlated with other factors in the model and that the removal of that factor from the model is likely to affect the parameter estimates for other factors and quite possibly also their significance.  Conversely if the one-way relativities are very similar to the GLM relativities for the factor to be excluded, it is likely that there will be no such consequences and that therefore to save time a second insignificant factor could be removed at that iteration also.
	2.46 If a very large number of factors are to be considered it can be impractical to start the factor iteration process with all possible factors in the model.  In such cases it is possible to select a model with certain factors which are known to be important, and then to test all other excluded factors by fitting a series of models which, one at a time, tests the consequences of including each of the excluded factors.  The most significant of the excluded factors can then be included in the model, and then the other excluded factors can be retested for significance.
	2.47 Where possible it is generally best to iterate models manually by analyzing the various diagnostics described above for each factor.  In practice if many factors are being analyzed this can be impractical.  In such circumstances automatic "stepwise" model iterating algorithms can be programmed to iterate models on the basis of type III tests alone.  Such algorithms start with a specified model, and then:
	a. the significance of each factor in the model is tested with a type III test, and the least significant factor is removed from the model if the significance is below a certain specified threshold
	b. the significance of each factor not in the model (but in a specified list of potential factors) is tested by (one at a time) creating a new model containing the factors in the previous step plus the potential new factor.  The most significant factor not currently in the model (according to a type III test) is then included if the significance is above the specified threshold
	c. steps a. and b. are repeated until all factors in the model are deemed significant, and all factors not in the model are deemed insignificant.

	2.48 Such algorithms allow no human judgment to be exercised and can take a significant time to complete.  They are also heavily dependent on the type III test which has some practical shortcomings as described previously.  Nevertheless they can derive a theoretically optimal model which at the very least could form the starting point for a more considered manual iteration.
	2.49 As well as considering the significance of the modeled rating factors, there are a number of more general diagnostic tests which allow the appropriateness of other model assumptions to be assessed.  Diagnostics which aid in this investigation include:
	2.50 Various measures of residual can be derived to show, for each observation, how the fitted value differs from the actual observation.
	2.51 One measure of residual is the deviance residual
	2.52 The deviance residuals have various helpful properties.  In general they will be more closely Normally distributed than the raw residuals (defined simply as the difference between the actual observation and the expected value predicted by the GLM), as the deviance calculation corrects for the skewness of the distributions.  For continuous distributions it is possible to test the distribution of the deviance residuals to check that they are Normally distributed.  Any large deviation from this distribution is a good indication that the distributional assumptions are being violated.  
	2.53 The below diagram shows a distribution of deviance residuals from an example model.  In this case the residuals appear to be reasonably consistent with a Normal distribution.
	2.54 For discrete distributions the deviance residuals based on individual observations tend not to appear Normally distributed.  This is because the calculation of the contribution to the deviance can adjust for the shape but not the discreteness of the observations.   For example, in the case of fitting a model to claim numbers, a GLM might predict a fitted value for a record of say 0.1 representing an expected claims frequency of 10%.  In reality (ignoring multiple claims) either a claim occurs for that record or it does not, with the result that the residual for that record will either correspond to an "actual minus expected" value of (0-0.1) = -0.1, or (with lower probability), the residual will correspond to an "actual minus expected" value of (1-0.1) = 0.9.  
	2.55 Some practitioners group together the individual residuals into large groups of similar risks.  This aggregation can disguise the discreteness allowing some distributional tests to be performed.  For example, it is commonly thought that a Poisson with a suitably large mean can be thought of as being almost Normally distributed.  At this point the deviance residual calculated on the aggregate data should be smooth enough to test meaningfully.
	2.56 The deviance residuals are often standardized before being analyzed.  The purpose of this standardization is to transform the residuals so that they have variance 1 if the model assumptions hold.  This is achieved by adjusting by the square root of the scale parameter and also by the square root of one minus the "leverage" hi:
	2.57 The leverage hi is a measure of how much influence an observation has over its own fitted value.  Its formal definition is complex but essentially it is a measure of how much a change in an observation affects the fitted value for that observation.  Leverage always lies strictly between 0 and 1.  A leverage close to 1 means that if the observation was changed by a small amount the fitted value would move by almost the same amount.  Where the leverage is close to 1 it is likely that the residual for that observation will be unusually small because of the high influence the observation has on its fitted value.  Dividing by the square root of one minus the leverage corrects for this by increasing the residual by an appropriate amount.
	Another commonly used measure of the residual is the Standardized Pearson residual.  This is the raw residual adjusted for the expected variance and leverage (as described above):
	2.59 This adjustment makes observations with different means comparable, but does not adjust for the shape of the distribution.
	2.60 Observing scatter plots of residuals against fitted values can give an indication of the appropriateness of the error function which has been assumed.  For example, if the model form is appropriate then the standardized deviance residuals should be distributed Normal (0,1) regardless of the fitted value.  The example scatter plot below shows the result of fitting a GLM with a gamma variance function to data which has been randomly generated on a hypothetical insurance dataset from a gamma distribution (with a mean based on assumed factor effects).  It can be seen that moving from the left to the right of the graph the general mean and variability of the deviance residuals is reasonably constant, suggesting (as is known to be the case in this artificial example) that the assumed variance function is appropriate.
	2.61 Conversely the graph below shows the scaled deviance residuals obtained from fitting a GLM with an assumed Normal error to the same gamma data.  In this case the variability increases with fitted value, indicating that an inappropriate error function has been selected and that the variance of the observations increases with the fitted values to a greater extent than has been assumed.  This could occur, for example, when a Normal model is fitted to Poisson data, when a Poisson model is fitted to gamma data, or (as is the case here) where a Normal model is fitted to gamma data.
	2.62 As well as being needed to calculate standardized residuals, the leverage statistic is also a helpful diagnostic in its own right, since it can identify particular observations which might have an undue influence on the model.  For example the graph below shows a scatter plot of leverage against fitted value.  In this case seven particular observations have clearly higher leverage than other observations (around 0.1) and it is possible that they are having an undue influence on the model.  An inspection of these observations may indicate whether or not it is appropriate to retain them in the model.
	The Box Cox transformation can be used to assess the appropriateness of the assumed link function.  The transformation defines the following link function in terms of a scalar parameter :
	2.64 If =1, g(x) = x-1.  This is equivalent to an identity link function (ie an additive model) with a base level shift.
	2.65 As (0, g(x) ( ln(x)  
	2.66 If =-1, g(x) = 1-x-1.  This is equivalent to an inverse link function with a base level shift.
	2.67 By fitting a series of GLMs to the data with many different values of  (including real values between -1 & 0 and 0 & 1), and with all other model features identical in every other respect, it is possible to assess which value of  is most appropriate for the dataset in question by seeing which value of yields the highest likelihood.  Optimal values of around 0 would suggest that a multiplicative structure with a log link function would be the most appropriate for the data in question, whereas optimal values of  around 1 would suggest an additive structure would be best, with values around -1 indicating that an inverse link function would be most appropriate.
	2.68 Examples based on two real datasets are shown below.
	2.69 The first graph shows various values of  tested on two different datasets containing private passenger automobile property damage liability frequency experience.  The optimal in one case is very close to zero (suggesting a multiplicative model) but in the other is around 0.3, suggesting that the frequency in that case is largely influenced by explanatory variables in a multiplicative fashion, but to an extent also in an additive fashion.
	2.70 The second graph shows the results for claim amounts models for the same data.  Here the optimal values of  are near zero (multiplicative), but this time slightly toward the direction of being partly inverse.  
	2.71 In order to understand how significant the value of is upon the fitted values produced by the model it is helpful to consider the histogram graph below which shows, for one of the two frequency datasets considered above, the distribution of the ratio of fitted values produced by a GLM with =0 to an otherwise identical GLM with =0.3.  It can be seen that there is in fact little difference between the fitted values produced by these two models, with the great majority of fitted values being within 2 or 3% of each other.
	2.72 In practice there are many significant advantages with using a multiplicative structure, not least because it is easy to understand.  In the above examples it seems that there is no strong evidence to use a structure other than a multiplicative structure.
	2.73 While this should be tested in each case, it is often the case that multiplicative structures and log link functions are the most appropriate practical model for modeling insurance risk, and this may explain the high prevalence of multiplicative rating structures, especially in Europe where GLMs have been in use for many years.
	2.74 Thus far, the discussion has focused on the independent effect of factors in the model.  Generalized linear models can also consider the interaction between two or more factors.  Interactions occur when the effect of one factor varies according to the level of another factor.
	2.75 Interactions relate to the effect which factors have upon the risk, and are not related to the correlation in exposure between two factors.  This is illustrated with two examples which consider two rating factors in a multiplicative rating structure.
	2.76 In this example the exposure is not distributed evenly amongst the different rating cells - a higher proportion of town dwellers are male than is the case in the countryside.  The effect of the two factors upon the risk, however, does not in this example depend on each other - men are twice the risk of women (regardless of location) and town dwellers are twice the risk of countryside dwellers (regardless of gender).  In this example there is therefore a correlation between the two rating factors, but no interaction.
	2.77 In this example the exposure is distributed evenly amongst the different rating cells - the same proportion of town dwellers are males as are countryside dwellers.  The effect of the two factors upon the risk, however, in this example depend on each other - it is not possible to represent accurately the effect of being male (compared with being female) in terms of a single multiplier, nor can the effect of location be represented by a single multiplier.  To reflect the situation accurately it is necessary in this case to consider multipliers dependent on the combined levels of gender and location.
	2.78 An interaction term can be included within a GLM simply by defining an explanatory variable in terms of two or more explanatory variables.  In the above example, rather than declaring location and gender as two explanatory variables (each with a base level and one parameter), a combined "gender-location" variable could be declared with four levels (a base level and three parameters).
	2.79 Interaction terms should only be included where there is statistical justification for the inclusion of the additional parameters.  In the above example the interaction term only involved the addition of one further parameter to the model, but if an interaction is introduced between two ten level factors (each with a base level and nine parameters), a further 81 parameters would be introduced into the model.
	2.80 Interactions can be expressed in different ways.  For example consider the case of two factors each with four levels.  One way of expressing an interaction is to consider a single factor representing every combination of the two factors (or "complete" interaction).  A set of multipliers (in the case of a multiplicative model) could therefore be expressed as follows:
	2.81 In this case the base level has been selected to be the level corresponding to level B of factor 1 and level X of factor 2, and the interaction term has 15 parameters.
	2.82 An alternative representation of this interaction is to consider the single factor effects of factor 1 and factor 2 and the additional effect of an interaction term over and above the single factor effects (or "marginal" interaction).  A set of multipliers in this form can be set as follows:
	2.83 In this case fewer parameters are present in the additional interaction term because the presence of the single factor effects makes some of the interaction terms redundant.  When fitted in a GLM (assuming that the single factor effects were declared first) the redundant terms in the additional interaction term would be aliased.  Overall the three terms combined still have 15 parameters, and result in identical predicted values (for example in the case of factor 1 level D and factor 2 level Z, 1.2 * 1.4 * 1.25 = 2.1).
	2.84 In practice sometimes it can be helpful to consider the "complete" interaction (ie just a single factor representation of all combinations of the two factors) and sometimes it can be helpful to consider the additional or "marginal" interaction term over and above the single factor effects.  While the fitted values from both approaches are identical, what differs is the statistical diagnostics available in the form of parameter estimate standard errors.
	2.85 For example, the graph below shows the result of a "complete" interaction between the age of driver and the gender of driver for the claims frequency of a certain type of auto claim, with age relativities for men and women superimposed (with solid and dotted lines respectively) on the same x-axis.  
	2.86 If there were no significant interaction between these two factors the solid and dotted lines (showing parameters from a log link GLM) would be parallel.  In this example they are clearly not parallel, showing that while younger drivers have higher frequencies, and while in general male drivers have higher frequencies, in this example (as in many real cases) young men experience a higher frequency than would be predicted by the average independent effects of the two factors.
	2.87 The narrow standard error bands around the parameter estimate lines suggest the likely statistical significance of the result, however they do not provide any sound theoretical basis for assessing the significance of the factor.  A more theoretically appropriate test can be applied if a marginal interaction is considered.
	2.88 The graphs below show the results of fitting age and then a marginal interaction of age and sex to the same data.
	2.89 The first graph shows the single factor effect for age, and the second shows the marginal interaction term over and above this single factor effect.  (In this case the single factor gender of the driver was not included since it proved not to be significant.)
	2.90 Since the male level of the gender factor is ordered after the female level, the male levels of the marginal factor have been aliased, with the result that the first graph represents the age effects for males, and the marginal graph shows the additional adjustment which is appropriate for females of different ages.  
	2.91 The implied fitted values from the marginal interaction are the same as the complete interaction - for example:
	2.92 The marginal approach does however provide more meaningful diagnostics in the form of parameter estimate standard errors and type III tests.  The standard errors on the graph of the marginal term indicate that the marginal term is indeed significant, and the Type III P-value of 0.00% for this factor confirms that this is the case.
	2.93 An example of an interaction term which is not significant is shown below.  The first graph is the complete interaction (where the parameter estimate lines can be seen to be largely parallel). The second and third graphs show the main effects of age of driver and payment frequency, respectively. The fourth graph shows the marginal interaction (where the marginal interaction term can be seen to be insignificant, both visually and because of the type III p-value of 61.9%).
	2.94 Although the marginal form of an interaction provides a more sound theoretical basis for assessing the significance of a factor, in practice marginal interactions can be hard to interpret.  For example consider the example of two factors each with four levels.  It might be the case that the true underlying frequency (all other factors being at a certain level) was as follows:
	2.95 However in reality the exposure available for this analysis might be low for some combinations of these two factors, for example:
	2.96 If in general the claims experience was in line with the underlying frequencies but the one policy with factor 1 level D and factor 2 level X had one claim (resulting in a very high claims frequency of 100%), a marginal interaction would yield results which could be hard to interpret.  Specifically if a marginal interaction were fitted, the GLM would seek the following parameters:
	2.97 Since level X is the base level of factor 2, there is no single term in the marginal interaction which can represent the very high observed frequency for factor 1 level D / factor 2 level X.  Instead the model will yield parameter 3 with a very high value, and parameters 9, 12 and 15 with low values.  Although theoretically correct, the parameter estimates and standard errors for parameters 9, 12 and 15 would be hard to interpret.  
	2.98 In general the significance of an interaction can be assessed by considering
	2.99 In theory all possible combinations of pairs or triplets of factors could be tested as interactions one at a time in a model.  In practice, the design of the current rating plan, the results of two-way analyses and wider experience will influence the choice of what is tested, as will the ease of interpretation and the ultimate application of the model.
	2.100 In some cases rather than considering every combination of two factors with many levels it can be appropriate to consider only the strongest effects.  For example, a marginal interaction of driver age, car symbol and the interaction of driver age - car symbol (denoted driver age*car symbol) may highlight an interesting effect in one "corner" of the interaction (eg young drivers driving high car symbols).  In practice, the interaction may be re-parameterized as a combination of detailed single factors for age of driver and car symbol, and an additional less detailed factor based on the combination of age of driver and car symbol which has the same level for many combinations, and a few levels representing certain combinations of young drivers driving high car symbols. 
	2.101 The inclusion of several meaningful interactions which share factors (eg age*sex, age*multi-car and territory*multi-car) could provide a theoretically correct model but may be very difficult to interpret.  The practitioner may consider creating separate models for single and multi-car, and continue to investigate other interactions.  
	2.102 Once models have been iterated to include only significant effects and interactions have been investigated, smoothing of the parameter estimates may be considered in order to improve the predictive power of the model.  Much like the offset and prior weight terms in the formularization of GLMs, smoothing is used to incorporate some element of the practitioner's knowledge into the model.  In this sense, the practitioner may impart knowledge that some factors have a natural order (eg that age of car seven should fall between age of car six and age of car eight).  Outliers may also be tempered.  This tempering is not based on commercial selections at this point (ie tolerance for rate change) but rather an attempt to adjust an anomaly once a proper investigation has been done to ensure that the outlier is truly an anomaly and not something systematic in the experience.  
	2.103 The selection of smoothed parameter estimates can be done in an unscientific fashion (for example - a visual modification to a curve) or in a more scientific fashion (for example - fitting polynomials to the observed parameter estimates, or electing to refit a model using polynomial terms as variates within the GLM).   If smoothing is rather severe, the practitioner may consider restricting the values of the smoothed factor and re-running a model to allow other factors to compensate.  (The concept of restrictions is discussed later in this paper.)  In general, however, this technique may only remove the random element from one factor and move it to another factor, and often it can be preferable not to refit using restrictions in this way.
	2.104 Fitting GLMs separately to frequency and severity experience can provide a better understanding of the way in which factors affect the cost of claims.  This more easily allows the identification and removal (via smoothing) of certain random effects from one element of the experience.  Ultimately, however, these underlying models generally need to be combined to give an indication of loss cost, or "risk premium", relativities.  
	2.105 In the case of multiplicative models for a single claim type, the calculation is straightforward - the frequency multipliers for each factor can simply be multiplied by the severity multipliers for the same factors (which is analogous to adding the parameter estimates when using a log link function).  Alternatively, models may be fitted directly to pure premium data using the Tweedie distribution (discussed in Appendix C).  The advantages and disadvantages of this alternative approach are discussed in Appendix J.
	2.106 Certain market conditions may warrant the development of a single theoretical risk premium model, even if different types of claim have been modeled separately.  An example is the aggregation of homeowners models by peril into a single rating algorithm at point of sale.  The derivation of a single model in this situation is not as straightforward since there is no direct way of combining the model results for the underlying claim types into a single overall expected cost of claims model.  In this situation, however, it is possible to approximate the overall effect of rating factors on the total cost of claims by using a further GLM to calculate a weighted average of the GLMs for each of the underlying frequency and severity models for each of the claim types.  Specifically this can be done by
	2.107 An illustrative example is shown below.  The top table represents the intercepts and multipliers from underlying frequency and severity models for claim types 1 and 2.  The bottom table shows the calculation of the total risk premium, based on the underlying models, for the first four records in the data.  The additional GLM is fitted to this last column in this dataset in order have a single theoretical risk premium model.
	2.108 In addition to combining frequency and severity across multiple claim types, the technique of fitting an overall GLM to fitted values of other GLMs can be used to incorporate non-proportional expense elements into the modeled relativities.  For example, a constant dollar amount could be added to each observation's expected risk premium and then a GLM re-fitted to this new field.  The resulting "flattened" risk premium relativities will prevent high risk factor levels from being excessively loaded for expenses.
	2.109 Alternatively, the amount added to each observation's expected risk premium could be designed to vary according to the results of a separate retention study.  This would allow risks with a high propensity to lapse to receive a higher proportion of fixed expense than those risks with a low propensity to lapse.  As above, a further GLM is fitted to the sum of the expected risk premium and a (lapse-dependent) expense load.
	2.110 The theoretical risk premium results from a GLM claims analysis will differ from the rates implemented in practice since consideration needs to be given to price demand elasticity and the competitive situation.  There are, however, some situations where legal or commercial considerations may also impose rigid restrictions on the way particular factors are used in practice.  When the use of certain factors is restricted, if desired the model may be able to compensate to an extent for this artificial restriction by adjusting the fitted relativities for correlated factors.  This is achieved using the offset term in the GLM.
	2.111 Specifically, the required parameter estimates (logs of multipliers in the case of a multiplicative model) are calculated for each record and added to the offset term i.  The factor in question is then not included as an explanatory factor in the GLM.  (This can intuitively be thought of as fixing some selected elements of i to be specified values.)
	2.112 The graphs below illustrate the use of a restriction.  In the upper series of graphs, the dotted lines display the theoretically correct parameter estimates indicated by a GLM containing these four rating factors.  The dashed line in Factor 1 shows the intended restriction.  In the lower series of graphs, the solid lines show the output of the GLM after the restriction for Factor 1 has been incorporated and Factors 2, 3, 4 have been allowed to compensate.  It can be seen that the parameter estimates in Factors 2 and 3 have hardly changed, suggesting little correlation between these factors and Factor 1.  On the other hand the solid line in Factor 4 has moved away from the theoretically correct dotted line, suggesting a correlation between the restricted levels in Factor 1 and those levels in Factor 4 which moved to compensate for the restriction.
	Although restrictions could be applied either to frequency or amounts models (or in part to both), generally it is more appropriate to impose the restriction on the model at the risk premium stage since this allows a more complete and balanced compensation by the other factors.  This can be achieved by calculating the expected cost of claims for each record, according to "unrestricted" GLMs, and then imposing the restriction in the final GLM which is then fitted to the total expected cost of claims.  (For restricted risk premium models this approach is necessary even in the case of a single claim type.)
	2.114 In the US, many personal lines rating plans contain discounts that were initially implemented for marketing appeal or perhaps mandated by regulation.  Today's models may indicate that these discounts are not supported by the claims experience - or in many cases may even indicate a surcharge.  If a company chooses to continue offering such discounts, it is important that these restrictions are incorporated into the modeling process since such restrictions can affect the relativities which become appropriate for other correlated factors.  Counterintuitive model results may occur on behavioral factors such as factors which policyholders self-select, for example limits and deductibles.  These factors may require restriction if they are to be used directly in ratemaking. 
	2.115 Model restrictions are also used in US ratemaking to mitigate the number of factors which will change in a given rate review.  Companies may restrict certain existing rating factors and allow the GLM to measure only the effect of new rating factors.  Restrictions may also come into play when applying the results of a countrywide model to a particular state.
	2.116 Prior to incorporating restrictions, it is still important to assess the true effect of all factors upon the risk by initially including them in the analysis as if they were ordinary factors.  In addition, a comparison of the fitted values of the theoretical model and the restricted models will demonstrate the degree to which other factors have compensated for the restriction.  The examples below show two such comparisons.  Each graph shows the number of policies (on the y-axis) that have different ratios of restricted to unrestricted fitted values (on the x-axis).  The graph is subdivided by levels of the restricted factor (shown in different shading).  If the GLM can compensate well for a factor restriction (because there are many other factors in the model correlated with the restricted factor) then this distribution will be narrow.  Conversely if the GLM cannot compensate well for the restriction, this distribution will be wider.
	2.117 In this particular example the factors in the upper graph have not compensated well for the restriction.  The wide distribution of the restricted to unrestricted ratio implies that the restriction is moving the model away from the theoretical result.  The lower graph, on the other hand, shows a model which contains factors that are more correlated with the restricted factor, and which have compensated better for the restriction.
	2.118 To understand how the results of a GLM claims model differ from the existing rating relativities it is helpful to consider the results both on a factor-by-factor basis and also by measuring the overall effect of all factor differences combined. 
	2.119 The final risk premium models can be plotted on graphs similar to those shown in previous sections.  Another line can be added to display the relativities implicit in the current rating structure.  This allows easy comparison of the relativities indicated by the model and those which are currently used.  An example graph is shown below.  In this example it can be seen that the current relativities for young drivers (shown as a dotted line) are too low.
	2.120 If the existing rating plan is purely multiplicative, superimposing current relativities on the graph above is very straightforward.  Superimposing relativities from a mixed multiplicative/additive rating plan is slightly less straightforward.  Some additive components may be re-expressed as an interaction variable (eg {A x B x (C+D)} may be re-expressed to consider the interaction of C and D).  Existing rating plans with more complex additive components may be approximated by fitting a multiplicative model to a data field containing existing premium.  The appropriateness of this multiplicative proxy to the mixed rating plan can be evaluated by examining the distribution of the ratio of the premium produced by the multiplicative proxy and the actual premium.  Proxy models which estimate the rating plan within a narrow distribution (eg +/-5%) may well be appropriate to use.
	2.121 The results of a GLM analysis are interdependent and must be considered together.  For example, while a GLM analysis might suggest that young driver relativities are too low, it may also suggest that relativities for inexperienced drivers (eg less than two years licensed) are too high.  Although the existing rating structure may be theoretically wrong, it might be the case that to a large extent these errors compensate each other.  To understand the true "bottom line" difference between the existing rating structure and the theoretical claims cost, "impact" graphs such as the one below can be considered.
	2.122 This graph above shows the number of exposures in the existing portfolio that would experience different changes in premium if the rating structure were to move from its existing form to the theoretically correct form immediately.  It is, of course, exceptionally unlikely that such dramatic change would be implemented in practice.  The purpose of this analysis is to understand the magnitude of the existing cross-subsidies by considering the effect of all rating factors at the same time.  
	2.123 This graph can also be divided by levels of a particular rating factor.  (Indeed one such graph can be produced for each rating factor.)  This identifies which sectors of the business are currently profitable, and which are currently unprofitable, taking into account the correct theoretical model and considering the effect of all factors at the same time.  In the example below, the impact graph is segmented by age of driver (notice the shape does not change, only how the histogram is patterned).  
	2.124 The histogram shows the impact of all rating factor changes (not just the age of driver factor) by age of driver levels.  It can be seen in this example that a large number of exposures which would experience large increases in premium if the rating structure were moved immediately to the theoretically correct structure are young drivers.  It had already been seen from the GLM risk premium graphs that young driver relativities were too low.  This graph suggests there are no effects from other correlated factors which noticeably mitigate this effect; otherwise, young drivers would not be so strongly on the "unprofitable" side of the impact graph..
	2.125 An example may make interpretation of the graph above clearer.  Assume the multiplicative claims model uses age, gender, marital status, territory and credit as rating factors.  Consider the following young driver profile with indicated rate change for each criterion in parenthesis:  age 17-21 (+60%), male (+15%), single (-5%), urban territory (+15%), high credit score (-20%).  All factors considered, the total indicated rate change for this risk profile is +61% and so this policy would contribute a count of one to the bar at 1.60-1.65.  There are roughly 600 total exposures in this band; roughly one-third of which correspond to drivers age 17-21.
	2.126 The graph below adds a second (right hand) y-axis.  This y-axis contains the actual loss ratio present in the historical data.  This shows very clearly how the GLM has differentiated between segments of differing profitability - each band on the x-axis represents a band of differing expected profitability, and the solid line shows the actual profitability experienced for that band. 
	3.1 This section briefly discusses 
	3.2 Credit-based insurance scores attempt to measure the predictive power of components of consumer credit report data on the cost of insurance claims.  The personal lines insurance industry in the US has been using credit-based insurance scoring for over a decade.  A 2001 Conning & Company survey reported that 92% of the respondents of a survey of the 100 largest personal automobile insurance writers in the US use some form of credit scoring.  
	3.3 The early published actuarial studies on the use of credit information in insurance demonstrated clear differences in univariate loss ratio by different bands of a credit-based credit score.  Further studies examined this relationship by components of the Insurance Bureau score and also considered how loss ratio by credit component varied across certain traditional rating variables (ie a two-way approach).
	3.4 These studies drew early criticism regarding possible double-counting of effects already present in risk classification schemes.  Generalized linear models and other multivariate methods have played a critical role in addressing that criticism.  A study conducted by EPIC Actuaries LLC on behalf of the property-casualty insurance industry's four national trade associations, offered four major findings about credit-based insurance scores:  
	a. using generalized linear models to adjust for correlations between factors, insurance scores were predictive of propensity for private passenger automobile insurance loss (particularly frequency);
	b. insurance scores are correlated with other risk characteristics, but after fully accounting for those correlations, the scores significantly increase the accuracy of risk assessment;
	c. insurance scores are among the three most important risk factors for each of the six automobile claim types studied;
	d. an analysis of property damage liability frequencies by insurance score group for each of the fifty states suggest consistent results across states.

	3.5 Model vendors and insurance companies have developed credit-based insurance scoring algorithms which vary in complexity, application and proprietary nature.  The 2001 Conning & Company survey concluded that smaller insurers were using credit scoring predominantly in their underwriting processes, whereas larger insurers appeared to be focusing on underwriting, pricing and sophisticated market segmentation.
	3.6 Other scoring techniques can be used as a way to share vital information between the actuarial departments and the rest of the insurance organization.  For example, scores can be used to predict the profitability of an insurance policy given a certain rating structure (regardless of whether or not credit is considered).  This information can be used in underwriting, cession decisions, marketing, and agent compensation schemes.
	3.7 The most direct way to manage the profitability of a personal lines product is through effective ratemaking.  Often, however, regulatory, practical or commercial conditions restrict the degree to which premiums can be set to reflect the risk.   In these circumstances a score based on expected loss ratio can be used by insurers to gauge which customers are likely to be more profitable.  As various functional areas are familiar with the application of scoring algorithms, this provides a common language for communicating a desired strategy throughout the insurance organization.  
	3.8 For example, a scoring algorithm could help target marketing campaigns to those customers who are likely to be more profitable.  Scores can also be used as part of an incentive scheme for agents, where commission or bonus is linked to the average customer score.  Such applications can be particularly useful in highly regulated markets, as the score can include policyholder characteristics that are not permitted in the actual premium.
	3.9 One method of deriving a scoring algorithm takes advantage of the "linear" part of generalized linear models (GLMs).  The output of a GLM is a series of additive parameters which is then transformed via the link function to give the expected value for an observation.  When calculating a score the link function can be omitted, leaving a simple additive structure which orders the risk.  A straightforward calculation can then transform the additive structure into a scoring algorithm which produces scores between a desired range, for example 0 to 100.
	3.10 To derive a profitability score, the starting point would be a standard analysis of claims experience using GLMs as discussed in detail in Section 2.  This would involve fitting a series of GLMs to historic claims data, considering frequency and severity separately for each claim type.  These models would include all standard rating factors, as well as any additional information that will be available at the time the score is to be calculated.  Such additional information could include geodemographic data.
	3.11 The expected cost of claims can then be calculated for each record in the data based upon the GLM claims models.  For each policy this can then be divided by the premium which will be charged to yield an expected loss ratio, which can then itself be modeled and re-scaled to derive the profitability score.  
	3.12 The model of expected loss ratio should only include those factors that will be considered at the time the score is to be applied.  For direct mailing campaigns this will usually mean that traditional insurance rating factors used in the premium will have to be excluded at this point (since they are not known at the time of the mailing campaign).
	3.13 The graph below shows how a score can be used to segment very effectively between profitable and unprofitable business.  The bars on the graph show the number of policies that have been allocated different scores between 0 and 100.  The solid line shows the actual loss ratio experienced for business with differing scores.  It can be seen that the business towards the left of the graph, with low profitability scores, is experiencing loss ratios of 100% and above, while the business to the right of the graph, with high scores, is returning loss ratios of 50% and below.
	3.14 Scores are simple to produce, easy to explain and are increasingly used by insurers.  Actuaries can play a vital role in the development of scoring models with the aid of generalized linear models.
	3.15 Traditional ratemaking techniques focus primarily on loss analysis in a static environment.  Rate changes developed by these techniques, especially when they are large, can actually contribute to a shortfall in projected premium volume and profitability if insufficient consideration is given to the effect of the rate change and other policy characteristics on customer retention and/or new business conversion.   Modeling retention (or its complement, lapse rate) and new business conversion with GLMs can improve ratemaking decisions and profitability forecasts, as well as improve marketing decisions.
	3.16 The data for a retention model must include information on individual policies that have been given a renewal offer, and whether or not each policy renewed.  Similarly, data for a conversion model must contain individual past quotes and whether the quote converted to new business.  (While most insurers have access to appropriate retention data, many distributing via exclusive agents or independent brokers will not have access to appropriate individual conversion data.)  The explanatory variables to include in the data can be divided into three categories:  customer information, price change data, and information on the competitive position.
	3.17 The first category should encompass more than just the standard rating variables (eg age, territory, claim experience).  Other "softer" variables such as number of years with the company, other products held, payment plan and endorsement activity can determine much about a customer's behavior.  Distribution channel, too, can have a clear effect on the retention rate - and may interact significantly with other factors (eg the effect of age may be different with internet distribution than with agency distribution).
	3.18 Prior rate change, whether measured in percent change or dollar change, is often one of the most significant factors in a retention model.  Though it is intuitive that retention is a function of rate change, the slope of the elasticity curve at different rate changes may not be as obvious.  In addition, measuring retention using a generalized linear model will adjust for exposure correlations between price elasticity and other explanatory variables (eg a GLM will not show that a particular rating factor level has a low retention rate merely because historically there was aggressive rate activity with that level).  
	3.19 The third type of variable, information on the competitive position, is often the hardest to gather in practice.  An example of a competitive index may be the ratio of the company's renewal quote to the third cheapest quote from a specified selection of major competitors at the time of the quote.  
	3.20 Tracking the myriad of competitor rate changes in a multitude of states can be overwhelming - even with the availability of third party competitive rating software and advances in quote collection procedures.  Fortunately even the most rudimentary competitive index variables can prove to be predictive in a retention model (and more so in a conversion model).  
	 Model form
	3.21 As mentioned previously in Section 1, the typical model form for modeling retention (or lapse) and new business conversion is a logit link function and binomial error term (together referred to as a logistic model).  The logit link function maps outcomes from the range of (0,1) to (-∞, +∞) and is consequently invariant to measuring successes or failures.  If the y-variate being modeled is generally close to zero, and if the results of a model are going to be used qualitatively rather than quantitatively, it may also be possible to use a multiplicative Poisson model form as an approximation given that the model output from a multiplicative GLM can be rather easier to explain to a non-technical audience.
	3.22 The graph below shows sample GLM output for a lapse model.  The main line on the graph demonstrates (on a log scale) the measured multiplicative effect of age of policyholder upon lapse rate.  The effect is measured relative to an arbitrarily selected base level, and the results take into account the effect of all other factors analyzed by the GLM.  
	3.23 In this example, which is fairly typical, it can be seen that young policyholders lapse considerably more than older policyholders, perhaps as a result of having more time and enthusiasm in searching for a better quotation, and perhaps also as a result of being generally less wealthy and therefore more interested in finding a competitive price. 
	3.24 This next graph shows the effect of premium change on lapse rate.  This GLM output is from a UK Institute of Actuaries General Insurance Research Organisation (GIRO) study based on around 250,000 policies across several major UK insurers in 1996.  The premium change is measured in ranges of monetary units (British pounds in this case), but the model could easily be based on the percentage change in premium.  As would be expected, increases in premium increase lapses.  The model, however, quantifies this accurately and enables investigations into potentially optimal rate increases to be undertaken.  It can be seen in this case (as is often the case) that decreases in premium beyond a small threshold do not decrease lapses.
	3.25 Measures of premium change should ideally consider whether customers have an inherent expectation of premium change.  For example, customers with recent claims will anticipate a premium increase and may be prepared to accept their renewal offer rather than face the underwriting guides of a new company.  Conversely, customers who are rolling off an accident surcharge, hitting a milestone age or a change in marital status may expect a decrease.  A possible proxy for customer expectation is to adjust the premium change variable to be the ratio of proposed premium (based on new risk criteria and new rates) to adjusted proposed premium (new risk criteria based on last year's rates). 
	3.26 In addition to including premium change, absolute premium can also be considered as a factor in a model.  This approach, though not theoretically incorrect, may make the model difficult to interpret since many other factors in the model will be a component of premium and therefore highly correlated with premium size.  Adding absolute premium to the model may significantly alter the observed relativities for other factors which may make the results hard to interpret.  One alternative to including absolute premium in such a case is to fit separate models for different bands of average premium.
	3.27 The next graph below shows an example of the effect of competitiveness in a new business conversion model.  The measure of competitiveness used in this case is the ratio of the proposed premium to the average of the three cheapest alterative premiums from a selection of alternative insurers.  It can be seen that the less competitive the premium, the lower the conversion rate.  
	3.28 A further analysis which can be undertaken is to superimpose the results of two models on one graph:  one model that includes the competitiveness measure and one model that does not.  The disparity between these two models will show how much of a factor's effects are simply price-related.
	3.29 In a fully deregulated market such as the UK, insurance companies can set premium rates according to what the market will bear.  In most US states and Canadian provinces, insurance companies need to demonstrate that rates are within a reasonable range of loss and expense cost estimates.  Companies can, however, measure the sensitivity of various point selections within those ranges (whether the point estimates pertain to overall rate level or classification ratemaking).   Future pricing reviews may not only present management with support on actuarial considerations such as trend and loss development, but also a forecast of how various rate change proposals are expected to affect retention, conversion, premium, overall loss ratio (incorporating both overall rate change and portfolio shift of classification changes) and profitability in the short term and/or long term.   
	3.30 Retention analyses can also lead to operational actions which are unrelated to price.  For example, in a highly rate-regulated state, consideration could be given to which segments of the population (given a restricted set of rates) are both profitable and most likely to renew in the future.  Such a measure could help form new underwriting guides or targeted marketing and cross-sell campaigns.  
	3.31 Insurance expense analysis is another field of study that is often over-shadowed by loss analysis.  If acquisition expenses are higher than renewal expenses then an understanding of likely retention (and therefore expected life of a policy) can be used to amortize the higher acquisition cost over the expected life of the policy.  
	3.32 A GLM statistically measures the effect that variables have on an observed item.  In insurance, GLMs are most often used to determine the effect rating variables have on claims experience and the effect that rating variables and other factors have on the probability of a policy renewing or a new business quotation being accepted.  
	3.33 GLMs estimate the true effect of each variable upon the experience, making appropriate allowance for the effect of all other factors being considered.  Ignoring correlation can produce significant inaccuracies in rates.
	3.34 GLMs incorporate assumptions about the nature of the random process underlying claims experience.  Having the flexibility to specify a link function and probability distribution that matches the observed behavior increases the accuracy of the analysis.
	3.35 A further advantage of using GLMs is that as well as estimating the effect that a given factor has on the experience, a GLM provides information about the certainty of model results.
	3.36 GLMs are robust, transparent and easy to understand.  With advances in computer power, GLMs are widely recognized as the industry standard in European personal lines, and fast gaining acceptance from industry professionals in the US and Canada.
	3.37 GLMs in insurance are not limited to pricing.  Alternative applications of GLM claims analyses include underwriting, selective marketing and agency marketing.
	3.38 GLMs are grounded in statistical theory and offer a practical method for insurance companies to attain satisfactory profitability and a competitive advantage.
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	Let Y be a column vector with components corresponding to the n observed values for the response variable, for example severity:
	Let X1 and X2 denote the column vectors with components equal to the observed values for the continuous variables (eg X1 shows the actual age of the driver for each observation):
	As before,  denotes a column vector of parameters, and  the vector of residuals:
	Then the system of equations takes the form:
	Or, defining the design matrix X as
	The system of equations takes the form 
	B
	a. a() is positive and continuous; 
	b. b() is twice differentiable with the second derivative a positive function (in particular b() is a convex function); and 
	c. c(y,) is independent of the parameter . 
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