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FOREWORD

Actuarial science originated in England in 1792 in the early days of life insurance. Because
of the technical nature of the business, the first actuaries were mathematicians. Eventually, their
numerical growth resulted in the formation of the Institute of Actuaries in England in 1848.
Eight years later, in Scotland, the Faculty of Actuaries was formed. In the United States, the
Actuarial Society of America was formed in 1889 and the American Institute of Actuaries in
1909. These two American organizations merged in 1949 to become the Society of Actuaries.

In the early years of the 20th century in the United States, problems requiring actuarial treat-
ment were emerging in sickness, disability, and casualty insurance—particularly in workers
compensation, which was introduced in 1911. The differences between the new problems and
those of traditional life insurance led to the organization of the Casualty Actuarial and Statistical
Society of America in 1914. Dr. I. M. Rubinow, who was responsible for the Society’s forma-
tion, became its first president. At the time of its formation, the Casualty Actuarial and
Statistical Society of America had 97 charter members of the grade of Fellow. The Society
adopted its present name, the Casualty Actuarial Society, on May 14, 1921.

The purposes of the Society are to advance the body of knowledge of actuarial science
applied to property, casualty, and similar risks exposures, to establish and maintain standards of
qualification for membership, to promote and maintain high standards of conduct and compe-
tence for the members, and to increase the awareness of actuarial science. The Society’s activ-
ities in support of this purpose include communication with those affected by insurance, pre-
sentation and discussion of papers, attendance at seminars and workshops, collection of a
library, research, and other means.

Since the problems of workers compensation were the most urgent at the time of the
Society’s formation, many of the Society’s original members played a leading part in develop-
ing the scientific basis for that line of insurance. From the beginning, however, the Society has
grown constantly, not only in membership, but also in range of interest and in scientific and
related contributions to all lines of insurance other than life, including automobile, liability
other than automobile, fire, homeowners, commercial multiple peril, and others. These contri-
butions are found principally in original papers prepared by members of the Society and pub-
lished annually in the Proceedings of the Casualty Actuarial Society. The presidential address-
es, also published in the Proceedings, have called attention to the most pressing actuarial prob-
lems, some of them still unsolved, that have faced the industry over the years.

The membership of the Society includes actuaries employed by insurance companies,
industry advisory organizations, national brokers, accounting firms, educational institutions,
state insurance departments, and the federal government. It also includes independent consul-
tants. The Society has three classes of members—Fellows, Associates, and Affiliates. Both
Fellowship and Associateship require successful completion of examinations, held in the spring
and fall of each year in various cities of the United States, Canada, Bermuda, and selected over-
seas sites. In addition, Associateship requires completion of the CAS Course on Profes-
sionalism. Affiliates are qualified actuaries who practice in the general insurance field and wish
to be active in the CAS but do not meet the qualifications to become a Fellow or Associate.

The publications of the Society and their respective prices are listed in the Society’s
Yearbook. The Syllabus of Examinations outlines the course of study recommended for the
examinations. Both the Yearbook, at a charge of $40 (U.S. funds), and the Syllabus of
Examinations, without charge, may be obtained from the Casualty Actuarial Society, 1100
North Glebe Road, Suite 600, Arlington, Virginia 22201.
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LEVELS OF DETERMINISM IN WORKERS
COMPENSATION REINSURANCE COMMUTATIONS

GARY BLUMSOHN

Abstract

When commuting workers compensation reinsurance
claims, the standard method is to project the future value
of the claims using stated assumptions for future medical
usage, medical inflation, cost-of-living adjustments, and
investment income. The actuary selects a best estimate
for each variable, and assumes this deterministic number
will be realized in the future. To account for the date of
death being stochastic, a mortality table is used to model
the future lifetime.
By assuming deterministic values for future medical

usage, medical inflation, cost-of-living adjustments, and
investment income, the calculation ignores the possibil-
ities of higher or lower values. It is shown that these do
not generally balance out, and that the standard method
produces biased results. In low reinsurance layers, the

1



2 LEVELS OF DETERMINISM

commutation amount is overstated, and in high layers it
is understated. By removing deterministic assumptions
from the calculation, bias is removed from the results.
The paper gives a detailed, realistic, example to illus-
trate this.
It is impossible to eliminate all determinism, but it

is often appropriate to judgmentally adjust the answers
to account for this. In discussing this, the paper draws
parallels to the work of economists on “genuine uncer-
tainty.”
The implications of the paper reach beyond the nar-

row realm of workers compensation reinsurance commu-
tations. The most obvious implications are for workers
compensation reserving, but the essential message ap-
plies to pricing and reserving of any excess insurance
and reinsurance: deterministic assumptions often lead to
biased results.

ACKNOWLEDGEMENT

The author is grateful to Eric Brosius, Sholom Feldblum,
Joe Gilles, Richard Homonoff, Tony Neghaiwi, Jill Petker, John
Rathgeber, Lee Steeneck, Mike Teng, Bryan Ware, Wendy Wit-
mer, and the anonymous referees of the Committee on Review
of Papers for providing comments on earlier drafts of this paper.
Remaining mistakes are, of course, my responsibility.

1. INTRODUCTION

Excess reinsurance for workers compensation generally pays
out over many decades. While workers compensation claims are
usually reported to the insurer soon after the accident, and the
insurer may soon report them to the reinsurer, the loss pay-
ments are slow, being made over the lifetime of the injured
worker or even the lifetime of uninjured dependents. Conse-
quently, even for reinsurance with a relatively modest retention,
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it can take many years to breach the retention, and many more
years to exhaust a layer. Gary Venter [17] has estimated that it
takes, on average, over 30 years to pay half the ultimate claim
amount.

At some point after an excess reinsurance treaty ends, but
before the losses have been fully paid, it is common to com-
mute either the reinsurance treaty or the individual reinsured
claims. The commutation entails having the reinsurer pay the
ceding company a flat amount, in exchange for canceling future
liabilities. This saves costs for both parties, since the expense
of reporting on claims to the reinsurer and the cost of paying
these claims are eliminated. It allows the parties to shut their
reinsurance files and spend their time on more profitable activi-
ties.

The actuarial techniques for evaluating workers compensa-
tion commutations differ from the techniques generally used in
commutations of other lines of business. With workers compen-
sation (and in some other cases, like unlimited medical ben-
efits for no-fault auto) the population of claims is generally
known at the time of the commutation—there is very little lag
in claims being reported to the primary company. Also, the
amount of the payments does not depend on some future court
verdict. The payments are based on a fixed annual indemnity
amount, subject, in some states, to an annual cost-of-living ad-
justment (COLA), and on the actual medical payments incurred
by the claimant. In the case of permanent-total disability cases,
these payments often continue for the rest of the claimant’s
life. Since the losses are so closely tied to the claimant’s life
span, it is natural to use the mortality techniques more generally
associated with life actuaries than with their property/casualty
brethren.

While the actuarial techniques in these calculations are by now
well-accepted, this paper will argue that the results are systemati-
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cally biased and can be improved upon. The life-table techniques
generally assume that mortality is stochastic, but that other vari-
ables (amount of medical care, inflation rates, investment yields)
are deterministic. These deterministic variables can be stripped
away, much as earlier actuaries stripped away the assumption of
deterministic mortality. By doing this, we improve the accuracy
of our calculations and eliminate some biases.

Though this paper will express the issues in terms of commu-
tations, the issues are similar when doing excess workers com-
pensation case reserving using life-table methods. And, as will
be noted later, the same issues find their way into most actuarial
work.

2. LIFE-TABLE TECHNIQUES

Method 1: Totally Deterministic Calculation

The simplest method for performing the calculation is to as-
sume the claimant will live to his life expectancy and then cal-
culate the present value of the future stream of payments for
this time. This method, though simple and appealing, is wrong.
As actuaries are well aware, and as will be discussed in detail
later, assuming a deterministic life-span leads to systematically
incorrect results.

Method 2: Stochastic Date Of Death

The actuarial literature contains several papers that discuss
the calculation of reserves for long-term workers compensation
cases, and the calculation of a commutation value only differs
in minor respects from the calculation of a reserve.1 Actuaries

1The classic paper is Ronald Ferguson’s Actuarial Note on Workmen’s Compensation Loss
Reserves [8], which applied life-table methods to excess indemnity reserves. He did not
address the issue of the medical portion of the reserve. Richard Snader [15] applied
similar methods to long-term medical claims. A recent valuable addition to the literature
is by Lee Steeneck [16], who uses an analysis very close to “Method 2” discussed in
this paper. Another approach is given in Venter and Gillam [18].
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and, to a lesser extent, the wider insurance community, generally
accept that the right way to reserve these claims is through the
life-table techniques routinely used by life actuaries. Life-table
techniques take into account the probabilities of the claimant
dying either earlier or later than his life expectancy, rather than
assuming he lives to his life expectancy and then dies.

Using a life table to make the number of payments stochastic,
rather than deterministic, is a crucial advance in the accuracy of
the calculation. A life-table approach allows for the possibility
that a claimant may live to age 95, and hence pierce reinsur-
ance layers that would not have been pierced if he had died at
his life expectancy. In other words, if the claimant lives to his
life expectancy of, say, 75, a retention of $5 million may not be
breached. But if he lives another 10 years, to 85, the total pay-
ments in the additional 10 years of life may be enough to breach
the $5 million retention, and if he lives to 95, it may breach a
$10 million retention. The probabilities of living to these ages,
and thus breaching higher layers, must be reflected in the com-
mutation price.

Put another way, there will be a positive commutation amount
in layers that we do not expect to get hit. The commutation is
effectively a purchase of reinsurance by the reinsurer, covering
the possibility of the claimant breaching the retention. There need
not be a guarantee that the retention will be breached in order
for the expected losses in the layer to be positive.

Assumptions

In doing the commutation calculation, the actuary needs to
make a number of assumptions:2

2In practice, some reinsurance contracts have commutation clauses in which the parties
have negotiated some of the parameters at the time the contract is drawn up. For exam-
ple, the clause may specify what mortality table to use and what interest rate to use in
discounting the future payments.
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! An appropriate mortality table must be selected.
! For workers compensation, the indemnity amount is gener-
ally known, but it may be subject to cost-of-living adjustments,
which depend usually on movements in the average weekly
wage in the state.

! The amount of medical expenses must be estimated for each
year in the future. This is usually done in two steps: first,
estimate the future annual medical expense in today’s dollars,
and, second, estimate future medical price inflation, to convert
today’s dollars into tomorrow’s dollars.

! The rate at which to discount future dollar payments to present
value.

Once assumptions have been chosen, the calculations can be
performed, and the parties can agree on an amount for settle-
ment.3

3. LEVELS OF DETERMINISM

The life-table method ignores fluctuations in other key vari-
ables. Just as it is wrong to assume a claimant’s life-span is
fixed, so it is wrong to assume that medical usage and inflation

3This paper will not address the crucial impact of income tax. In the calculations, one
must account for taxes without the commutation, compared to taxes with the commuta-
tion.

i) If the claim is not commuted, the reinsurer carries a reserve on its books. For tax
purposes, this reserve is discounted by the IRS discount factors, and the unwinding
of the discount is counted into the incurred losses of the company each year. On
the other hand, the investment income earned on the reserve is taxable.

ii) If the claim is commuted, the reinsurer takes down the reserves and puts up a paid
loss. If the reserve exceeds the paid loss (as it frequently does, because statutory ac-
counting demands undiscounted, or tabularly-discounted, reserves) the reinsurer’s
profit rises by the difference between the reserve and the paid loss. This profit is
taxable.

The ceding company has the reverse entries on its books.
The tax benefits or costs are as important as any other cash flows, but they are beyond

the scope of this paper. For a detailed discussion of the tax effects, see Connor and Olsen
[5].
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FIGURE 1

LEVELS OF DETERMINISM

are fixed. Assuming a deterministic life-span leads to inaccurate
calculations. Likewise, assuming deterministic medical care and
inflation will lead to inaccurate calculations. A deterministic life
span implies that high layers of reinsurance will not be hit, when
they do, in fact, have a chance of getting hit if the claimant lives
long enough. Likewise, deterministic medical care and determin-
istic inflation understate the costs to the highest reinsurance lay-
ers.

Actuarial calculations can contain varying levels of determin-
ism, and this can be represented as shown in Figure 1.

At the “completely deterministic” level, our calculations as-
sume we know what the future will bring. This is the viewpoint
of typical loss development work: we look at the historical loss
development patterns, select patterns to represent the future, and
develop the losses to ultimate. We assume that the selected pat-
terns represent loss emergence in the future, and we make no al-
lowance for deviations from the selected patterns. In many uses,



8 LEVELS OF DETERMINISM

this approach is perfectly reasonable. In others, and particularly
in dealing with excess reinsurance, it can generate misleading
results.

The next stopping point on the continuum of determinism is
what I call “stochastic determinism.” Here we do not assume
that we know what the future will be, but we assume that we
know the statistical distributions of the relevant variables. For
example, Ferguson [8] pointed out that we do not know when
a workers compensation claimant will die, but we have mortal-
ity tables that tell us the probability of dying at any given age.
Using these probabilities, Ferguson showed, generates a more
accurate answer to the required reserve for an excess workers
compensation claim.

Note, though, that the typical actuarial approach to workers
compensation cases does not have all variables stochastic. For ex-
ample, the rate of medical inflation, cost-of-living adjustments,
investment yields, and the annual real amount of medical ex-
penses are assumed to be fixed. The typical approach (to be
labeled “Method 2” later in this paper) is partway between com-
plete determinism and stochastic determinism. The calculations
in Section 4 of this paper will shift the approach further towards
stochastic determinism.

At the end of the continuum is “no determinism,” which is
where we assume that we do not know even the distributions
that underlie what will happen in the future. We can imagine
various scenarios occurring in the future, but we cannot assess
the probabilities. We know, for example, that doctors might find
a way to surgically fix the damage to a quadriplegic, and thus
get him back to work and end his workers compensation claim.
But we do not know the probability of this happening. This is
obviously the hardest level to deal with from an actuarial stand-
point.

We will return later to a more detailed discussion of these
various levels of determinism. At this point it is sufficient to
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notice that Ferguson’s paper stripped away some determinism
from the workers compensation calculation by making mortality
stochastic. To add even greater accuracy, we need to strip away
more determinism.

4. A COMPREHENSIVE EXAMPLE

This section gives a realistic example of how one can remove
more determinism from the model. The calculations are signifi-
cantly more complex than the standard life-table method. How-
ever, using computers, the problems are not insurmountable, and
the results are significantly less biased.

The Data

Suppose we are commuting the following claim:4

! Joe Soap has been permanently and totally disabled since
1993. On January 1, 1998, the effective date of the commuta-
tion, he will turn 35 years old.

! Through 12/31/97, the primary company has paid out
$300,000 in medical expenses and $70,000 in indemnity pay-
ments.5 This is an unusually large claim, but by no means un-
heard of. A smaller claim would not affect any of the conclu-
sions.

! In 1997, Mr. Soap received indemnity payments at the rate
of $20,000 per year, but these are subject to a cost-of-living
adjustment that is effective on January 1 of each year, based on

4A similar example was used in a previous version of this paper (Blumsohn [1]). Some
items have been updated to incorporate more recent data. Substantive changes from the
previous version will be noted.
5For simplicity, the example ignores ALAE, which is usually covered by reinsurance
and should be included in the calculations. ALAE is usually relatively small in workers
compensation, and including it would not change any of the principles discussed in this
paper.
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the increase in the state average weekly wage over the previous
year.

! The best estimate of his future medical expenses is $70,000
per year, in 1997 dollars. These will increase with medical
inflation.

! We assume that Joe’s mortality follows that for the overall
male population, as shown in the 1990 US census (Exhibit
1). Based on this mortality table, his life expectancy is 39.6
years.6

! We project future inflation of 4.11% per year.7 For conve-
nience, we assume that changes in the state average weekly

6Depending on the claimant’s condition, one may use impaired-mortality tables. Note
that, contrary to the usual intuition, workers compensation lifetime-pension cases do not,
overall, appear to have higher mortality rates than the general population. Gillam [9]
shows that at some ages, the mortality of workers compensation claimants is even lower
than the general population. Gillam’s technique weights each claimant equally. That may
not be the optimal approach, since some claims are bigger than others. In particular, many
of the really big claims are for people who are extremely badly injured and require, say,
24-hour attendant care. One might speculate that a dollar-weighted average of mortality
could be found to be significantly worse than the general population.
By using the 1990 census table, we ignore mortality improvements: as medical care

improves, mortality rates have historically dropped. By ignoring mortality improvements,
we are implicitly assuming Joe Soap has impaired mortality.
7The 4.11% rate is the average of Consumer Price Index changes from 1935 to 1997,
using data from the US Bureau of Labor Statistics. Using this average is a matter of
convenience, rather than a matter of believing that it is a good predictor of future inflation.
The data, though not a predictor of future inflation, give an idea of long-term inflationary
movements.
The earlier version of this paper (Blumsohn [1]) used 4.2%, based on data from 1935

to 1995. Steeneck ([16], p. 252), when faced with projecting indemnity inflation into the
indefinite future, selects 4.0% as his annual rate.
The author admits to cringing at the spurious accuracy implied in publishing an in-

flation average to two decimal places. Past inflation is a poor way of predicting future
inflation, and there’s no scientific way to project inflation decades into the future to
even the nearest whole percent, never mind two decimals. We are reminded of Gauss’s
comment that “Lack of mathematical culture is revealed nowhere so conspicuously as in
meaningless precision in numerical computations.” (Quoted in Coddington [4, p. 160].)
However, the problem is that we are trying to contrast various methods of doing the
computations, and this requires keeping the assumptions and arithmetic in the methods
as consistent as possible, to avoid obscuring the main message by implicitly switching
assumptions. The only way to transparently do this was to use more decimal places than
are meaningful.
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wage follow the overall price inflation in the economy. (Gen-
erally, wages actually rise faster than prices over the long run
because of productivity improvements.)

! Our best guess of future medical inflation is 5.25% per year.8

Exhibit 2 shows historical changes in the CPI and medical
CPI.

! Selecting an appropriate discount rate is somewhat tricky. The
future cash flows are highly uncertain, and the uncertainty
arises from two principal places:

i) Mortality: We do not know how long the claimant will
live. However, if the insurer and reinsurer both write rea-
sonably large books of workers compensation, the mortal-
ity risks of the individual claimants will be diversified
away.

ii) Inflation: Wage inflation affects cost-of-living adjustments
and medical inflation affects medical payments. This risk
cannot be diversified by writing a large book because all
claimants are subject to the highs and lows of inflation
together.

In setting its investment strategy, the insurer would be wise
to hedge against inflation by buying investments that rise when
inflation is high—for example common stocks. (See Feldblum
[7].) This strategy is particularly appealing for excess work-
ers compensation, where the payouts are extremely slow, so
the year-to-year volatility of stock prices are less of a con-
cern.

8As with CPI changes, this average is based on changes in the medical component of the
CPI from 1935 to 1997. The earlier version of this paper used data from 1935 to 1995
and had average medical inflation of 5.36% per year. As with the CPI, we are using this
number for illustrative purposes, rather than as a considered prediction of future medical
inflation. Steeneck [16, p. 252] projects annual medical inflation of 5.5%.
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Starting in 1997, another inflation hedge was introduced in
the market, namely, inflation-indexed Treasuries. Like other
Treasuries, they are considered “risk-free” in the sense of not
having default risk, and, unlike other Treasuries, they hedge
against inflation as well.9

For discounting, we will use inflation-indexed Treasuries.
At January 1, 1998, these had a real yield (above inflation)
of about 3.75%. In general, discounting should be based on
a rate below the investment yield, with the risk adjustment
accounting for the riskiness in the flows being discounted
(Butsic [3]). I will assume that a reasonable risk adjustment
for excess workers compensation is 2.5 percentage points.
In other words, we will discount at a real yield of 1.25%
(= 3:75%"2:5%).

As noted above, inflation is assumed to be 4.11% per year.
Discounting at a real yield of 1.25% thus entails adding 1.25%
to the assumed inflation of 4.11%, to get a discount rate of
5.36% per annum.10

! The primary insurer has purchased reinsurance in a number of
layers, as shown in Table 1.

9The hedge for excess layers of workers compensation is imperfect because:

i) They are indexed to the CPI, whereas the workers compensation risk is based on
changes to the state average weekly wage (for COLAs) and the medical component
of the CPI. The CPI is only a proxy for these.

ii) Excess reinsurance layers suffer a leveraged effect from inflation. For example,
suppose a reinsurer covers a layer of $1 million excess of $1 million, and there’s a
$1.1 million claim, with no inflation. In that case, the reinsurer will pay $100,000.
If there’s 10% inflation, raising the claim to $1.21 million, the reinsurer’s portion
more than doubles, to $210,000. (Of course, if the claim without inflation were,
say, $3 million, inflating it to $3.3 million would have no effect on the reinsurance
layer. This does not affect the general point that excess layers are typically more
sensitive to inflation than are ground-up layers.)

10The earlier version of the paper assumed the risk-adjusted discount rate was exactly
equal to the inflation rate.
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TABLE 1

REINSURANCE LAYERS

Layer 1 $130,000 excess of $370,000
Layer 2 $500,000 excess of $500,000
Layer 3 $1 million excess of $1 million
Layer 4 $3 million excess of $2 million
Layer 5 $5 million excess of $5 million
Layer 6 $5 million excess of $10 million
Layer 7 $5 million excess of $15 million
Layer 8 $10 million excess of $20 million
Layer 9 $10 million excess of $30 million
Layer 10 $10 million excess of $40 million
Layer 11 $10 million excess of $50 million
Layer 12 $10 million excess of $60 million
Layer 13 $10 million excess of $70 million
Layer 14 $10 million excess of $80 million
Layer 15 $10 million excess of $90 million
Layer 16 Unlimited excess of $100 million

The first layer is somewhat artificial: since $370,000 has al-
ready been paid by the end of 1997, the layer will pay from the
first dollar in 1998. This allows us to look at the value of all
future payments. Also, the top layer is somewhat unusual. Rein-
surers do not usually sell unlimited layers. However, it will be
instructive to see the value of reinsurance on the unlimited top
layer.

Method 1: Totally Deterministic Calculation

Though actuaries would not use a totally deterministic method
(i.e., one that assumes Joe lives exactly to his life expectancy
and then dies) it is interesting to see what result this produces.
Exhibit 3 shows this calculation, and Table 2 summarizes the
results.

Total payments are $11.2 million, exhausting the lowest five
layers and part of the sixth. The lack of payments in higher layers
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TABLE 2

RESULTS OF COMMUTATION CALCULATIONS USING METHOD 1

Present Value of
Layer Nominal Payments Payments

(in $000’s) (in $000’s) (in $000’s)

130 xs 370 130 125
500 xs 500 500 413

1,000 xs 1,000 1,000 612
3,000 xs 2,000 3,000 1,092
5,000 xs 5,000 5,000 970
5,000 xs 10,000 1,606 217
Higher Layers 0 0

Total, All Layers 11,236 3,430

implies these layers will not be breached, and no commutation
payment is needed.

This method ignores the chances of dying before or after one’s
life expectancy. We correct this by using a life-table approach,
following Ferguson [8].

Method 2: Stochastic Date of Death

In Method 2, a mortality table models Joe’s life span, as
shown in Exhibit 4. Table 3 compares the commutation amounts
from Methods 1 and 2.

Comparison of Method 2 Versus Method 1

Several points are worth noting:

! Using Method 2, twelve layers have non-zero commutation
amounts, compared to only six layers in Method 1. This is
because Method 2 recognizes that people can live beyond their
life expectancies. If the person lives to the outer reaches of the
mortality table, say to 110, many more layers will be breached.
The highest layer reached is $10 million excess of $60 million,
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TABLE 3

COMPARISON OF RESULTS OF COMMUTATION CALCULATIONS
FOR METHODS 1 AND 2

Expected Nominal Expected Present-Value
Layer Payments Payments

(in $000’s) (in $000’s) (in $000’s)

Method 1 Method 211 Method 1 Method 2

130 xs 370 130.0 129.7 124.9 124.6
500 xs 500 500.0 494.9 413.2 409.1

1,000 xs 1,000 1,000.0 970.4 611.7 594.1
3,000 xs 2,000 3,000.0 2,725.1 1,092.4 998.6
5,000 xs 5,000 5,000.0 3,703.0 970.4 729.8
5,000 xs 10,000 1,605.9 2,574.7 217.1 311.2
5,000 xs 15,000 0.0 1,607.4 0.0 139.8
10,000 xs 20,000 0.0 1,359.7 0.0 86.5
10,000 xs 30,000 0.0 293.0 0.0 13.2
10,000 xs 40,000 0.0 39.2 0.0 1.4
10,000 xs 50,000 0.0 3.1 0.0 0.1
10,000 xs 60,000 0.0 0.1 0.0 0.0
Higher layers 0.0 0.0 0.0 0.0

Total, All Layers 11,235.9 13,900.4 3,429.8 3,408.3

compared to only the $5 million excess of $10 million layer
using Method 1.12

! For all layers combined, which translates to the value of all fu-
ture amounts payable to the claimant, the nominal total from
Method 1 ($11.2 million) is considerably lower than the nomi-
nal total from Method 2 ($13.9 million). However, the present
value from Method 1 ($3.43 million) is about the same as the

11“Nominal” payments for Method 2 are discounted for mortality, but not for the time-
value of money.
12Exhibit 4 in fact shows that the maximum possible loss for Method 2 is $74 million,
which is one layer higher than is reflected in the text. The tiny probability of this hap-
pening means that the expected losses in the layers above $70 million are below $1,000,
and thus do not show up on Table 3. In other words, the numbers are different, even
though rounding makes them look the same.
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present value from Method 2 ($3.41 million). How can we
explain this?

i) Nominal total from Method 2 considerably greater than
Method 1 The easiest way to explain the relation between
the nominal totals is by analogy to a more familiar idea
involving annuities, namely, that the present value of a life
annuity is less than the present value of an annuity certain
for the person’s life expectancy. (Bowers [2], pp. 149–150
(example 5.13) and p. 158 (exercise 5.45).) In other words,
the expected cost of paying someone $1 per year for life
is less than the cost of paying $1 per year for a guaranteed
period equal to the person’s life expectancy. The intuition
is that if you pay for the person’s actual lifetime, there’s
a chance of living beyond the life expectancy, and those
payments are discounted at a higher rate than the earlier
payments. By contrast, the annuity certain ignores the pos-
sibility of these higher discounts.

How does this relate to the nominal payments from
Method 2 being much greater than Method 1? In our situa-
tion, we have inflation affecting the payments in two ways:
the indemnity amounts are increased by the annual cost-of-
living increase, and the medical amounts are increased by
the annual medical inflation. If the claimant lives to, say, 95
years old, there will be many years of inflation increasing
the annual payments beyond the inflation contemplated in
Method 1, which halts at the life expectancy. Thus, with-
out inflation, the nominal amounts from Methods 1 and
2 would be identical; with inflation, the nominal amount
from Method 1 will be lower than that for Method 2.

ii) Present value of Method 2 almost the same as Method 1
Without inflation, the payments would be the same each
year. Then, as noted above, the present value of Method
1 (an annuity certain for the life expectancy) would ex-
ceed the present value for Method 2 (a life annuity). When
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there is inflation, things are more complicated. The issue
is whether the effect of the additional inflation beyond the
life expectancy outweighs the effect of the additional dis-
counting. Depending on the rates used for inflation and
discounting, the present value of Method 2 could be either
higher or lower than the present value of Method 1. Though
the total present values for Methods 1 and 2 are close, the
amounts in particular layers differ considerably.

! On the layers that are pierced by Method 1, the commutation
value from Method 2 is lower than the value from Method
1. For example, on the $500,000 excess $500,000 layer, the
value under Method 1 is $413,200, while under Method 2
it’s $409,100. This is because Method 1 assumes the amounts
are paid for certain, and discounts only for the time-value of
money. By contrast, Method 2 recognizes that the claimant
may die early, so the amounts may not be paid. Of course, in
the layers not pierced in Method 1, the commutation value for
Method 2 is always higher.

! We can make no general statement about whether a commu-
tation calculated using Method 1 will produce a total amount,
for all layers combined, that is greater than or less than the
total for Method 2. For example, if the primary company buys
reinsurance on only very low layers, Method 1 will tend to be
higher. If it buys reinsurance only on high layers, Method 2
will tend to be higher.

Determinism and Risk

Once a claim has been commuted, the cedent takes the risk of
future losses. If the claimant lives to a ripe old age, the primary
company will suffer a loss—it would have been better off not to
have commuted. That’s not a problem: insurance is about taking
risks. The commutation calculation measured the mortality risk,
and included it in the commutation price. Though the primary
company may not be happy to have to pay higher than expected
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losses, the mortality risk has been priced into the commutation
amount.

But there are other risks faced by the ceding company that
have not been priced into the commutation amount. Medical in-
flation is one such example.

The assumed rate of medical inflation is often a contentious
issue in commutation negotiations. The parties may argue over
whether we should use the average for the past decade (cur-
rently about 6%), a longer term average (also about 6% if we
average back to World War II), or an econometrician’s projec-
tion for medical inflation for the next decade. In many cases
we are projecting inflation for 70 years or more, so we cannot
expect our numbers to be perfect. But often the parties find a
number on which they can agree—let us assume it is 5.25%,
and let us assume this number is, indeed, the future long-term
average medical inflation rate. If the parties use Method 2 with
5.25% medical inflation, and agree on the amount, the ceding
company appears to have been compensated for future infla-
tion.

But the ceding company has not, in fact, been compensated
for future inflation. It has been compensated for a fixed 5.25%
future inflation. It faces the risk that 2 or 3 years hence, there
will be high medical inflation, say 20% or 25% per year, for
3 or 4 years, after which medical inflation will drop back to
its long-term average. This period of abnormally high medical
inflation will quickly erode the retention, which is in nominal
dollars, and breach the excess layers much more quickly than
the commutation calculation assumes.

There is, similarly, a chance that medical inflation for the next
few years will be lower than the long term average, and high
medical inflation may not occur for another 60 years. Over the
course of the 70 years, one might expect things to even out. So,
the skeptic may ask, why should we care? If, on average, it evens
out, and if a company does a large number of commutations
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TABLE 4

MEDICAL AMOUNT PAYABLE EACH YEAR

Year

Scenario 1:
5% inflation
each year

Scenario 2:
20% inflation in
year 1; 0% in
all other years

Scenario 3:
20% inflation in
year 4; 0% in
all other years

0 100.00 100.00 100.00
1 105.00 120.00 100.00
2 110.25 120.00 100.00
3 115.76 120.00 100.00
4 121.55 120.00 120.00

Total 552.56 580.00 520.00

over a large number of years, the overall result will be about
right.

The problem is that it will not be “about right,” as things do
not average out in the long run. Just as Method 1 gave biased re-
sults, so Method 2, by assuming certain inputs are deterministic,
gives biased results.

The Effects of Variable Inflation

To see why things do not average out, let us examine the ef-
fects of variable inflation more closely. Consider, on Table 4,
an average inflation rate of 5% per year in each of 3 scenar-
ios, and assume the pre-inflation amount payable per year is
$100.

Inflation early on (scenario 2) raises the nominal dollar
amounts in all future years, causing the total nominal amount
to be higher. If there is reinsurance on these payments, the rein-
surance retention would be breached earlier, and perhaps a layer
will be breached that would not otherwise have been breached.
The average inflation over the three scenarios is the same, but
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Scenario 2 results in more dollars of medical expenses, and Sce-
nario 3 results in fewer dollars of medical expenses.13

For a given average inflation rate, the path of inflation over
the life of the claim will affect the future payments: high inflation
early on will result in higher amounts; low inflation early on will
result in lower amounts. While the total amount over all layers
of reinsurance may roughly average out to be the same when
present-valued, the amounts within the various layers will differ
significantly.

If there is high inflation early on, the reinsurance retention will
be breached earlier than expected. There is thus a greater chance
that the claimant will still be alive to receive the payment. This
greater possibility of payment directly affects the commutation
calculation.

The standard commutation calculation fails to include certain
risks, and thus neglects to price them. Method 2 assumes mortal-
ity is stochastic, but that medical inflation is deterministic. It also
assumes wage inflation (and hence cost-of-living adjustments, in
states that have them), investment income, and the annual medi-
cal usage of the claimant are deterministic. Analogous to Method
1 overstating the lower layers and understating the higher layers,
Method 2 will generally bias the commutation amount upwards
for lower layers and downwards for higher layers. (“Higher” and
“lower” is relative to the size of an individual claim.) Making
each of these factors stochastic removes some of the bias in the
calculation.

Method 3: Stochastic economic factors and medical costs

Method 3 incorporates several additional random variables
into the calculation:

13Lee Steeneck pointed out that it might be more appropriate to use a geometric mean
of inflation in this example, rather than an arithmetic mean. Doing so would somewhat
complicate the example, without changing the point being made.
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! Inflation is not constant over time. It fluctuates, with the year-
to-year rates correlated. [A note on terminology: by “infla-
tion,” with no modifier, we mean inflation relating to the over-
all economy, most popularly measured by the CPI. When re-
ferring specifically to price rises for medical care, we will refer
to “medical inflation.”]

! Medical inflation, while roughly tracking the ups and downs
of general inflation, will not be the same as inflation, or even
some constant difference from inflation.

! Investment yields fluctuate from year to year, but, like infla-
tion, years are correlated.

! The annual medical payment to the claimant will not be a con-
stant real amount each year. As the claimant’s health changes,
this amount will change. The claimant may take a turn for the
worse, and require $200,000 of hospitalization one year; or he
may have a stable period where his medical expense is a lot
lower than projected.

Each of these variables needs to be modeled. The specific ways
they have been modeled here is not the only way it could be
done. The details of the example are less important than the
general point being made, namely, that additional fluctuations
need to be taken into account.

Inflation

Inflation was modeled using an autoregressive process of the
following form:

Inflation rateYear t

=Long-term average inflation rate

+®[Inflation rateYear (t"1)
"Long-term average inflation rate]

+errorYear t
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Daykin, et al. [6, pp. 218–225], discusses this model, and a num-
ber of other inflation models that may better fit the data. In the
interests of simplicity, this model was chosen. The model starts
with a known inflation rate for 1997, and simulates a series of
future paths of inflation.

Using least-squares fitting of inflation data from the Bureau
of Labor Statistics from 1935–1995, the following parameters
were obtained:

Long-term average inflation = 4:11% per year

®= 0:511:

The error term was modeled using a lognormal distribution.
Since the error can be positive or negative, but a lognormal is
only defined for positive variables, I shifted the lognormal. The
best fit was obtained from a shifted lognormal with parameters
¹="2:76 and ¾ = 0:501. To ensure a zero mean for the error
term, the lognormal was shifted by the mean of this distribu-
tion, or about 0.0718. Exhibit 5 shows the derivation of these
parameters.

This inflation variable was used to model the cost-of-living
adjustment to the indemnity payments. COLAs are usually tied to
changes in the state average weekly wage, and wage inflation was
assumed to be the same as overall price inflation—a convenient
simplification, not necessarily correct. Since most COLAs are
capped, the COLA was assumed to not exceed 5% in any year.
It was also assumed that if inflation is negative, the indemnity
amount would not drop. Since COLAs are lagged a year, it was
assumed that the COLA in 1998 is based on 1997 inflation, etc.

Medical Inflation

Medical inflation may be higher or lower than inflation, but
they are linked: if the inflation rate were 20% for a sustained
period, one would not expect medical inflation to remain at 2%.
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The selected model of medical inflation is tied to the overall
inflation rate, but with a degree of error allowed. The model is:

Medical InflationYear t

= InflationYear t

+¯[Medical inflationYear (t"1)" InflationYear (t"1)]
+ [long-term average medical inflation

" long-term average inflation]

+errorYear t

The error term is assumed to be normally distributed, with a
mean of zero.14

The longest available data series was used to get these param-
eters. The Bureau of Labor Statistics has medical CPI numbers
back to 1935. From 1935 to 1997, average medical inflation was
1.14 percentage points higher than average inflation. This is what
was used for the third term of the above expression. We are as-
suming the long-term trend will continue, although, there is of
course no guarantee of this.

The fitted ¯ was 0.38, and the error term was normally dis-
tributed with a mean of 0 and a standard deviation of 0.027.
Exhibit 6 shows the derivation.

Investment Yields

As noted above, the firm is assumed to invest in inflation-
indexed Treasuries, to hedge the inflation risk.15 These currently
have a real yield of about 3.75%. For discounting purposes, a

14The inflation model had a lognormal error term, but the medical inflation model has a
normal error term. The author had a strong feeling that the error for inflation was skewed,
whereas it is less obvious, both from the data and intuitively, that the difference between
overall inflation and medical inflation (which largely drives the medical inflation model)
is skewed.
15It is beyond the scope of the paper to address the question of whether discounting
should be based on the firm’s (either the reinsurer’s or reinsured’s) actual investments,
or whether it should be based on market discount rates.
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2.5 percentage point risk adjustment was made to the rate, thus
discounting at 1.25 percentage points above the inflation rate.

For example, if the annual CPI in a particular year is 5.3%,
as generated by the autoregressive model discussed above, the
discounting for that year would be at 6.55%.

Even if inflation is negative, one would not expect interest
rates to drop below some threshold (e.g., 2.5% ), so the risk-
adjusted discount rate was assumed to not go below zero, i.e.,
the rate for discounting was set at the greater of the inflation rate
plus 1.25% and zero.

Medical Services Used By Claimant

Medical usage will fluctuate from year to year, but we would
expect the services from year to year to be correlated. For exam-
ple, if a claimant has surgery this year, the costs of post-operative
treatment may keep the costs higher than average in the next
year. One can model this process using an autoregressive model,
similar to the one for inflation:

Medical amountYear t

= Long-term average medical amount

+ °[Medical amountYear (t"1)
" long-term average medical amount]

+errorYear t

The long-term average medical amount for this case is, by as-
sumption, $70,000. Empirically, there does not appear to be a
very strong link between last year’s medical amount and this
year’s, so ° = 0:05 was used. The error term was modeled us-
ing a lognormal distribution with ¹= 10:80089 and ¾ = 0:75.
The mean of this lognormal is $65,000, so the distribution was
shifted by 65,000 to ensure the error term has a mean of zero.



LEVELS OF DETERMINISM 25

TABLE 5

COMPARISON OF RESULTS FROM METHODS 1, 2, AND 3

Layer
(in $000’s)

Expected Nominal Payments
(in $000’s)

Expected Present-Value
Payments
(in $000’s)

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

130 xs 370 130 130 130 125 125 125
500 xs 500 500 495 494 413 409 415

1,000 xs 1,000 1,000 970 969 612 594 609
3,000 xs 2,000 3,000 2,725 2,705 1,092 999 1,031
5,000 xs 5,000 5,000 3,703 3,643 970 730 766
5,000 xs 10,000 1,606 2,575 2,591 217 311 344
5,000 xs 15,000 0 1,607 1,788 0 140 175
10,000 xs 20,000 0 1,360 2,093 0 87 152
10,000 xs 30,000 0 293 1,047 0 13 55
10,000 xs 40,000 0 39 558 0 1 23
10,000 xs 50,000 0 3 316 0 0 11
10,000 xs 60,000 0 0 188 0 0 6
10,000 xs 70,000 0 0 117 0 0 3
10,000 xs 80,000 0 0 75 0 0 2
10,000 xs 90,000 0 0 49 0 0 1

Unlimited xs $100MM 0 0 120 0 0 2

Total, All Layers 11,236 13,900 16,881 3,430 3,408 3,719

Running the Model

Each of these parameters was then put into a simulation
model. By simulating inflation, medical inflation, and the annual
medical amount, one gets a set of input parameters for each sim-
ulation. These parameters are then run through the same model
as is used in Method 2. The difference is that each time it is
run through with different parameters, so that instead of getting
a single present value of the future payments, we get a distri-
bution. (Exhibit 7 shows a single simulation from this distribu-
tion.)

The means of these distributions, for each layer, are shown
on Table 5, compared with the results for Methods 1 and 2.
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It is worth noting a few things regarding these results:

! Unlike Methods 1 and 2, Method 3 hits all the reinsurance
layers. A less deterministic approach recognizes that higher
layers are exposed to loss. Thus, layers that might otherwise
have been thought to have no possibility of a loss, are shown
to have some commutation value.

! The total nominal value of Method 3 is higher than the nominal
value of Method 2 (and Method 2 is higher than Method 1, as
discussed earlier).

This is largely explained by the treatment of inflation. The
medical and indemnity amounts paid in some future period
depend on the products of (1+ inflation rate) for all prior peri-
ods. For example, the amount paid in period 3 depends on what
inflation was in periods 1 and 2. The inflation rates are not in-
dependent from period to period: the autocorrelation model en-
sures that they are positively correlated. With positive correla-
tion, the expected value of the product is greater than the prod-
uct of the expected values, making the overall nominal pay-
ments for Method 3 higher than the payments in Method 2.16

! The overall present value factor for Method 2 is 25%
(= 3,408#13,900), but the present value factor for Method
3 is only 22% (= 3,719#16,881). In other words, Method 3
has, on average, a steeper discount applied to it.

This is partly because the year-to-year discount factors (like
the inflation factors) are correlated, implying a higher average
discount. Also, high medical inflation is correlated with high
discount factors, so the higher nominal payments caused by
high inflation are more heavily discounted.

! The relationship between the present values of Methods 2 and
3 is complex, largely because the assumptions are not con-

16E(XY) = E(X)E(Y)+cov(X,Y). Thus, if X and Y are positively correlated, the expected
value of the product exceeds the product of the expected values.
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sistent between the two methods. Yes, we tried to make them
consistent, but the differences in the assumptions become clear
once we examine them more carefully.

Consider the indemnity cost-of-living adjustments. In Method
2 we used 4.11% for the cost-of-living adjustment. In Method
3, inflation varies stochastically, with a mean of 4.11%. But our
cost-of-living adjustment rules were that it couldn’t be above
5%, or below 0%. In Method 3, the average inflation rate is
4.11%, but the average cost-of-living adjustment is about 2.9%
because it is sometimes capped. A similar, though smaller,
discrepancy occurs in the discount rate, due to assuming that
the discount rate cannot be negative.

In general, the relationship between the present values of
Methods 2 and 3 will depend on the particular assumptions,
and how they interact with the various caps and correlations.

! The present value factor for Method 3 losses declines sharply
in the higher layers. For example, for the $5 million excess of
$5 million layer, the present value is $766,000, compared to
the nominal value of $3,643,000. This translates to a present
value factor of 21%. By contrast, in the $10 million excess of
$90 million layer, the present value factor is only 2%.

! In the lowest layers, the nominal value of Method 1 is higher
than Method 2, and Method 2 is higher than Method 3.17 This

17On the earlier table, the nominal values for Methods 2 and 3 look the same in the low
layers, but the numbers in the table are rounded. If the complete numbers had been shown,
the nominal values in the low layers would be systematically less (though admittedly by
a small amount) for Method 3 than for Method 2:

Nominal Value (in $000’s)

Layer Method 2 Method 3

1 129.74 129.69
2 494.88 494.44
3 970.39 968.63
4 2,725.08 2,704.59
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is because Method 1 implies these layers will be hit for certain,
whereas Methods 2 and 3 recognize that the claimant could die
before the layer is penetrated. In addition, Method 3 recognizes
that there could be years of unusually low claim amounts, so
that it may take longer than expected to breach the retention.
This reduces the commutation amount in two ways:

i) The longer it is until the retention is breached, the greater
the chance of the claimant dying before breaching the re-
tention.

ii) The longer it is until the retention is breached, the steeper
the effect of discounting.

In higher layers, which have a lower probability of being pen-
etrated, this situation reverses itself: Method 3 gives higher
results than Method 2. The upper layers are most vulnerable
to a period of sustained high inflation or high claim levels.
Methods 1 and 2 assume inflation and claim levels are fixed,
so they do not contemplate any chance of sustained high in-
flation or claim levels.

! For the lower layers, where the chances are good that the
claimant will live long enough to breach them, Method 2 gives
similar results to Method 3. But as the layers get higher, the
Method 2 number gets lower and lower as a percentage of
Method 3, as shown in Table 6.

5. ARE THERE FURTHER LEVELS OF DETERMINISM?

We have shown that the commutation calculation is sig-
nificantly affected by making a variety of variables non-
deterministic. Have we now stripped away all determinism? Put
another way, is Method 3 “the perfect” commutation calculation,
or is there further determinism that remains?

There is, indeed, further determinism. This paper has shown
how we can strip away determinism in the levels of inflation,
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TABLE 6

METHOD 2 RESULT AS PERCENTAGE OF METHOD 3 RESULT

Layer Nominal Present Value

1 100% 100%
2 100% 99%
3 100% 98%
4 101% 97%
5 102% 95%
6 99% 90%
7 90% 80%
8 65% 38%
9 28% 24%
10 7% 4%
11 1% 0%

Higher Layers 0% 0%

medical utilization, etc. But to measure the paths for these vari-
ables, we have relied on statistical measures on past data. Clearly,
the historical data may not be valid predictors of the future. For
example, the paper assumes that the best predictor of medical in-
flation is the last 60 years of medical CPI information. One can
plausibly argue that what drove medical inflation in the 1930s
and 1940s was completely different from what drove it in the
1970s and 1980s, and different from what will drive it in the
second half of the twenty-first century. It is quite possible that
the drivers of inflation will change periodically over the course
of the claimant’s lifetime. We have assumed that we know what
the future path of medical inflation will be, at the level of a sta-
tistical model. But the parameters of the model are deterministic,
and so is the structure of the model.

This same issue applies to other variables. For example, ad-
vances in medical care could affect the medical utilization for the
claimant’s condition—and perhaps render the assumed mortality
table inappropriate.

In other words, the parameters of our stochastic models could
shift, or the model structure itself could change. Method 3 is
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FIGURE 2

METHODS 1, 2, AND 3 IN PERSPECTIVE

closer to being “stochastically deterministic” than Method 2 is,
but it still contains determinism.

The problem is that this next level of determinism is not eas-
ily subject to measurement, and hence is not amenable to quan-
tification by the usual actuarial methods. But not being able to
quantify does not mean we can simply ignore something.

To put things in perspective, we return now to the graphic
introduced at the start of the paper. As Figure 2 makes clear,
Method 1 is completely deterministic, Method 2 is somewhat less
deterministic, and Method 3 is even less deterministic. But, note
carefully that Method 3 is not completely at the level of stochastic
determinism, though it is close. There are still various items in
Method 3 that are deterministic—for example, mortality rates
are assumed to be given. Also, we assume that the parameters
of our inflation and interest-rate generators are constant, whereas
we could make those parameters themselves stochastic. There are
doubts as to whether there is much use in adding these further
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FIGURE 3

THE ECONOMIC PERSPECTIVE ON LEVELS OF DETERMINISM

stochastic elements, but the simple point is that Method 3 is not
at the level of pure stochastic determinism.

The arrow on Figure 2 shows where we likely need to go after
Method 3. The next step requires jumping over the level of pure
stochastic determinism and going directly to those items that we
cannot measure. Before discussing this, it will be useful to take a
brief tour of how economists have viewed some of these issues.

6. THE ECONOMICS OF UNCERTAINTY

The earlier graphic is useful for showing how the ideas in this
paper relate to how economists think about risk and uncertainty.
Figure 3 repeats the earlier graphic, but now adds some ovals
on the right that relate the actuarial ideas to the way economists
think about uncertainty.

Many familiar economic models, notably that of perfect com-
petition, assume that people have perfect knowledge. This cor-
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responds with the one end of our continuum: in a completely
deterministic calculation, the actuary proceeds as if he or she
knows exactly what the future will be.

Moving away from perfect knowledge, economists distinguish
between “risk” and “uncertainty.”18 Risk includes things that can
be measured statistically, and uncertainty includes things that
cannot be measured, but which might occur. For example, if one
bets on a fair coin coming up heads, one is facing a risk. But
if one bets on the chance of intelligent life being found on an
as-yet-undiscovered planet, one faces uncertainty—we have no
way of measuring the associated probabilities.

Furthermore, there are events for which we not only do not
know the probabilities, but we don’t even realize that the event
can happen. For example, no actuary pricing liability insurance
in the 1930s could even have imagined the wave of asbestos
litigation that would hit those policies decades later. This lack
of knowledge is sometimes referred to as “sheer ignorance” or
“genuine uncertainty.”

The economist’s idea of risk corresponds to what we called
“stochastic determinism”: the future is known statistically. And
the economist’s notion of uncertainty corresponds to what we
have called “no determinism.”

In practice, most mainstream economics incorporates risk but
ignores uncertainty. It is rare to find an economist who deals
seriously with uncertainty. And this is, perhaps, for the same
reason that one finds so little discussion of this in the actuar-
ial literature—namely, that it is very difficult to include genuine
uncertainty in “rigorous” work. Dealing with uncertainty is dif-
ficult, and cannot be made numerically precise. Nevertheless, we
need to acknowledge that uncertainty is inherent in what we are
doing, and that we are fooling ourselves if we believe that our
results are perfectly accurate. This applies to both economists
and actuaries.

18The classic reference on risk and uncertainty is Knight [11]. For more recent discus-
sions of the economics of uncertainty, see O’Driscoll and Rizzo [13] and Kirzner [10].
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A focus on uncertainty is mainly found outside the main-
stream of economics, and is closely associated with the “Aus-
trian” school of economic thought.19 Their emphasis is on the
role of sheer ignorance in the economy:

For the Austrian approach, imperfect information is
seen as involving an element which cannot be fitted
at all into neoclassical models, that of “sheer” (i.e.,
unknown) ignorance: : :[S]heer ignorance differs from
imperfect information in that the discovery which re-
duces sheer ignorance is necessarily accompanied by
the element of surprise—one had not hitherto realized
one’s ignorance. (Kirzner, [10, p. 62])

For the Austrians, uncertainty is an inescapable part of human
decision-making. We cannot avoid uncertainty, and the fact that
it is difficult for economists to quantify and precisely model is
not a reason to ignore it.

7. RISK AND UNCERTAINTY IN INSURANCE

Most insurance problems consist of a mixture of risk and un-
certainty. Insurers are good at dealing with risk. By measuring
the probabilities of loss and pooling risk, we can work to elimi-
nate risk and make losses more stable in the aggregate. It is far
more difficult to deal with uncertainty.20

19The “Austrian” school’s roots were with Carl Menger at the University of Vienna
in the late nineteenth century. Perhaps the best-known Austrian in contemporary times
has been Friedrich Hayek, who won the Nobel Prize for Economics in 1974. Today, the
main concentrations of “Austrians” are at American universities, most notably New York
University and George Mason University. For an introduction to Austrian thought, see
Kirzner [10].
Uncertainty is also a concern of some other non-mainstream schools, especially the

Post-Keynesians. Some economists, notably George Shackle [14] and Ludwig Lachmann
[12] are considered by some to straddle the divide between the Austrians and the Post-
Keynesians. For a discussion of Shackle’s views on uncertainty, see Coddington [4].
20Readers may be tempted to equate the term “risk” with “process risk,” and “uncertainty”
with “parameter risk.” It is advisable to avoid this temptation. Risk, in the sense used by
economists, includes both process risk and parameter risk, at least when parameter risk
is narrowly defined as the risk of misestimating a parameter due to having a too-small
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In this paper, we have been measuring risk: we have only
dealt with those things that can be measured. (Insofar as they
cannot be modeled well, there are elements of uncertainty.) The
next level of determinism consists of uncertainty.

While we cannot easily measure the effect of uncertainty, we
can make some qualitative statements about its effects on com-
mutations. Just as removing earlier layers of determinism in-
creased the commutation amount in the higher layers, so remov-
ing yet another layer of determinism will increase the commu-
tation amount in higher layers, and higher layers that would not
otherwise have been pierced will have some commutation value.

Consider, for example, the inflation model postulated in the
example in this paper. There is a real, but very small, chance that
the model will generate years where inflation will run above,
say, 100% a year as the result of a random blip in the model.
In reality, if hyperinflation at that level occurs, it will be more
likely to be a result of a structural change in the economy rather
than a random event. Since this type of structural change was not
included in the data used to fit the model, it is not contemplated
in the resulting commutation amount.

Put another way, a completely deterministic model assumes
the future will be like the past. Our inflation model, while not
completely deterministic, assumes that fluctuations in future in-
flation will be like the past. While this may be more realistic
than a completely deterministic model, it is not necessarily true.

All the other variables in the commutation are subject to simi-
lar uncertainty: mortality rates might plummet as cures are found
for cancer and heart disease; or mortality rates might soar, as a

sample size. Narrowly defined in this way, parameter risk can be diversified away, just
like any other risk.
In popular usage, parameter risk has acquired a more elastic meaning, to include such

things as having an incorrectly structured model. (Uncertainty about the structure of
the model is sometimes separated from parameter risk, and called “specification risk”
or “model risk.”) This is much closer to the economist’s notion of uncertainty, and is
impossible to quantify. Models that quantify parameter risk almost always have a nar-
rower notion of parameter risk in mind, and so it is confusing to equate uncertainty with
parameter risk. Furthermore, uncertainty has connotations of the underlying structure of
the economy changing over time, and this is not contemplated by parameter risk.
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new virus kills half the population. The annual medical usage
might drop, if a cure is found for the claimant’s ailment, which
was previously thought to be permanent. Or the cost of medical
care might soar as a new drug is discovered that greatly improves
the claimant’s quality of life, at twice the cost. What if the gov-
ernment takes over the entire health-care system, and insurers
are no longer responsible for medical costs?

We can dream up many different situations that will change
what insurers owe to claimants. We can put probabilities on none
of these, and we also know that there are many possibilities that
we may not even think of, until they actually happen.

In commutations, it is common to ignore this uncertainty, and
to commute some of the very high layers without payment. This
is unwarranted. Commuting reinsurance is really a matter of pric-
ing future possibilities, and reinsurers do not give away free lay-
ers, even if they have only a remote chance of being hit. For
example, suppose I want to buy workers compensation reinsur-
ance for a layer of $1 million excess of $800 million. (To avoid
catastrophe issues, let us assume the reinsurance is per claim,
not per occurrence.) There has never been a workers compensa-
tion claim that large, or even remotely close to it. Yet, would a
reinsurer be willing to give the layer away free, even assuming
they have no costs to service the contract? Of course they won’t.
Reinsurers recognize the remote possibility of having to pay on
this contract, and they need to charge for that risk. The risk is
remote, but remote does not mean non-existent. The chance of
the layer being hit is not measurable, but not measurable does
not mean zero.

8. THE DILEMMA OF THE “AUSTRIAN” ACTUARY

The dilemma of an actuary who recognizes ubiquitous uncer-
tainty described by the Austrian economists is illustrated by a
supposed comment of Lord Kelvin that “If you cannot measure,
your knowledge is meager and unsatisfactory.”21

21Coddington [4, p. 160] notes that there is no record of Kelvin ever having said exactly
this, but it is inscribed on the facade of the Social Science Research Building at the
University of Chicago.
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As actuaries, we are paid to advise people on the numbers.
In the case of a commutation, we are paid to decide whether a
particular commutation offer is reasonable. If we are presented
with a commutation offer, we can recommend that it be accepted
or rejected. But saying “I don’t know because the future is un-
certain and I can’t measure that” won’t help. The dilemma of
the “Austrian” actuary is that he recognizes that his knowledge
is “meager and unsatisfactory,” but he has to make a recommen-
dation nevertheless.

One way of handling the dilemma is to take the advice of
Frank Knight, who commented that the meaning for social sci-
entists of Kelvin’s remark is that “If you cannot measure, mea-
sure anyhow.”22 But “measuring anyhow” just leads to ignoring
things that cannot be measured. If you have no reason to be-
lieve that these unmeasurables will bias your answers one way
or another, that doesn’t matter. But in many cases, especially
when dealing with excess reinsurance, the unmeasurables will
frequently bias the answers.

We must recognize that we will have to judgmentally adjust
our answers for the unmeasurables. Judgmental adjustments are
often uncomfortable, because they are hard to justify when at-
tacked by others. But we have no choice other than to make our
best judgments and explain the uncertainty of what we are doing.

9. POSSIBLE WAYS TO “MEASURE” THE UNMEASURABLE

When making judgmental adjustments, we are not completely
without guidance. For a workers compensation commutation,
here are some ways to check one’s judgments:

Check 1: How much difference does the uncertainty make?

The first issue is to check the level of uncertainty, and the
effects it can have. In the Joe Soap example discussed at length

22Quoted in Coddington [4, p. 160].
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above, the different reinsurance layers have very different levels
of uncertainty. One would expect that the lowest two or three
layers will be breached fairly quickly, if the claimant survives.
Even fairly dramatic changes in inflation and mortality rates will
have relatively little impact on the numbers. The real impact of
uncertainty is on the upper layers, where decades of compounded
inflation, investment yields, changes in medical practice, and the
claimant’s condition come together to make the results of the
calculations very fuzzy.

In the lower layers, Method 2 gives reasonable results. For
medium layers, Method 3, unadjusted, may be reasonable. For
higher layers, Method 3 results may need to be judgmentally
increased, with the higher the layer, the higher the increase.

Check 2: What would it take to breach the layer?

For high layers, one can ask what it would take to breach the
layer. For example, if it would take sustained medical inflation of
25% per annum to breach the layer, one would probably feel that
this possibility is remote. But if it would take medical inflation
of 10% per annum, which is considerably more likely, it should
get a bigger charge. One can do similar reasonability checks for
other parameters.

Check 3: What does the market charge?

We can get useful information from finding out what the mar-
ket charges. To get useful information from market prices, we do
not need to assume that the market price is exactly at its equilib-
rium level. The market price, as some consensus of supply and
demand, provides a reality check.

There are, of course, no large, liquid markets for workers
compensation commutations, but that doesn’t mean there is no
available information. A commutation is nothing more than rein-
surance pricing, albeit for accidents that have already happened
a number of years ago. It is quite reasonable to look at the rein-
surance market for help.
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For example, we generally find that the higher the layer being
covered, the higher the risk load for the layer. [This higher risk
load might be expressed in different ways—for example, a lower
discounted loss ratio, or a “capacity charge” for layers that are
seen to have a remote chance of being breached—but, in essence,
these are all just risk loads.] With a commutation, we can look
at the market structure of risk loads by layer, and use those to
develop commutation risk loads for corresponding layers.

10. OTHER LINES OF BUSINESS; PRICING AND RESERVING, TOO

The issues discussed in this paper apply more broadly than
just to workers compensation commutations. A commutation
calculation for a general liability treaty would usually develop
the expected losses to ultimate, and commute based on the dis-
counted value of those losses. But this ignores risks that are
transferred back to the ceding company in the commutation.
For example, a general liability treaty being commuted in 1978
would have relieved the reinsurer for liability for environmental
claims that were generated by the Superfund law, which passed
a couple of years later. It was unknown, at the time of the com-
mutation, that the cedent was giving up coverage for this risk,
but it was not unknown that the cedent was taking the risk of
some such change in the future. Just as a company selling gen-
eral liability reinsurance will not give away remote layers free of
charge, so the commutation should not be free for these layers
either.

And it is not just commutations that are affected by deter-
minism. It applies to regular pricing and reserving work as well.
The clearest example would be the reserving of workers com-
pensation reinsurance, where the methods used in this paper can
be directly applied. But for pricing and reserving of any excess
insurance or reinsurance, it is important to keep in mind the prob-
lems of determinism. If we simply assume the future will turn
out to be what was expected, or that the future will follow the
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patterns of the past, we are bound to be led astray. The scary
part of writing insurance is the uncertainty of what the future
will bring. The uncertainty cannot be quantified, but we must
not stick our heads in the sand and assume that if something
cannot be quantified, it doesn’t exist.
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EXHIBIT 1

1990 US LIFE TABLE (MALES)

Life Life Life
Age l(x) Expectancy Age l(x) Expectancy Age l(x) Expectancy

0 100,000.0 71.8 37 94,585.0 37.8 74 54,249.0 9.9
1 98,969.0 71.6 38 94,316.0 36.9 75 51,519.0 9.4
2 98,894.0 70.6 39 94,038.0 36.0 76 48,704.0 8.9
3 98,840.0 69.7 40 93,753.0 35.1 77 45,816.0 8.4
4 98,799.0 68.7 41 93,460.0 34.2 78 42,867.0 7.9
5 98,765.0 67.7 42 93,157.0 33.3 79 39,872.0 7.5
6 98,735.0 66.8 43 92,840.0 32.4 80 36,848.0 7.1
7 98,707.0 65.8 44 92,505.0 31.6 81 33,811.0 6.7
8 98,680.0 64.8 45 92,147.0 30.7 82 30,782.0 6.3
9 98,657.0 63.8 46 91,764.0 29.8 83 27,782.0 5.9
10 98,638.0 62.8 47 91,352.0 28.9 84 24,834.0 5.5
11 98,623.0 61.8 48 90,908.0 28.1 85 21,962.0 5.2
12 98,608.0 60.8 49 90,429.0 27.2 86 19,216.8 4.9
13 98,586.0 59.9 50 89,912.0 26.4 87 16,607.4 4.5
14 98,547.0 58.9 51 89,352.0 25.5 88 14,157.7 4.2
15 98,485.0 57.9 52 88,745.0 24.7 89 11,889.0 3.9
16 98,397.0 57.0 53 88,084.0 23.9 90 9,819.5 3.7
17 98,285.0 56.0 54 87,363.0 23.1 91 7,962.6 3.4
18 98,154.0 55.1 55 86,576.0 22.3 92 6,326.9 3.2
19 98,011.0 54.2 56 85,719.0 21.5 93 4,915.0 2.9
20 97,863.0 53.3 57 84,788.0 20.7 94 3,723.5 2.7
21 97,710.0 52.3 58 83,777.0 20.0 95 2,743.0 2.5
22 97,551.0 51.4 59 82,678.0 19.2 96 1,958.3 2.3
23 97,388.0 50.5 60 81,485.0 18.5 97 1,349.7 2.1
24 97,221.0 49.6 61 80,194.0 17.8 98 894.0 1.9
25 97,052.0 48.7 62 78,803.0 17.1 99 566.2 1.8
26 96,881.0 47.8 63 77,314.0 16.4 100 340.6 1.6
27 96,707.0 46.9 64 75,729.0 15.8 101 193.2 1.5
28 96,530.0 45.9 65 74,051.0 15.1 102 102.4 1.3
29 96,348.0 45.0 66 72,280.0 14.5 103 50.1 1.2
30 96,159.0 44.1 67 70,414.0 13.8 104 22.3 1.1
31 95,962.0 43.2 68 68,445.0 13.2 105 8.9 1.0
32 95,758.0 42.3 69 66,364.0 12.6 106 3.1 0.9
33 95,545.0 41.4 70 64,164.0 12.0 107 0.9 0.8
34 95,322.0 40.5 71 61,847.0 11.5 108 0.2 0.7
35 95,089.0 39.6 72 59,419.0 10.9 109 0.0 0.5
36 94,843.0 38.7 73 56,885.0 10.4 110 0.0

Source: Vital Statistics of the United States, 1990 [US Department of Health and Human Services,
1994].
Note that the published tables extend only to age 85; beyond 85, the numbers are extrapolations.



LEVELS OF DETERMINISM 43

EXHIBIT 2

INFLATION: CONSUMER PRICE INDEX AND MEDICAL
CONSUMER PRICE INDEX

Index at
December

Annual
Inflation

Index at
December

Annual
Inflation

Medical Medical Medical Medical
Year CPI CPI CPI CPI Year CPI CPI CPI CPI

1935 13.8 10.2 1967 33.9 28.9 3.0% 6.3%
1936 14.0 10.2 1:4% 0.0% 1968 35.5 30.7 4.7% 6.2%
1937 14.4 10.3 2:9% 1.0% 1969 37.7 32.6 6.2% 6.2%
1938 14.0 10.3 " 2:8% 0.0% 1970 39.8 35.0 5.6% 7.4%
1939 14.0 10.4 0:0% 1.0% 1971 41.1 36.6 3.3% 4.6%
1940 14.1 10.4 0:7% 0.0% 1972 42.5 37.8 3.4% 3.3%
1941 15.5 10.5 9:9% 1.0% 1973 46.2 39.8 8.7% 5.3%
1942 16.9 10.9 9:0% 3.8% 1974 51.9 44.8 12.3% 12.6%
1943 17.4 11.4 3:0% 4.6% 1975 55.5 49.2 6.9% 9.8%
1944 17.8 11.7 2:3% 2.6% 1976 58.2 54.1 4.9% 10.0%
1945 18.2 12.0 2:2% 2.6% 1977 62.1 58.9 6.7% 8.9%
1946 21.5 13.0 18:1% 8.3% 1978 67.7 64.1 9.0% 8.8%
1947 23.4 13.9 8:8% 6.9% 1979 76.7 70.6 13.3% 10.1%
1948 24.1 14.7 3:0% 5.8% 1980 86.3 77.6 12.5% 9.9%
1949 23.6 14.9 " 2:1% 1.4% 1981 94.0 87.3 8.9% 12.5%
1950 25.0 15.4 5:9% 3.4% 1982 97.6 96.9 3.8% 11.0%
1951 26.5 16.3 6:0% 5.8% 1983 101.3 103.1 3.8% 6.4%
1952 26.7 17.0 0:8% 4.3% 1984 105.3 109.4 3.9% 6.1%
1953 26.9 17.6 0:7% 3.5% 1985 109.3 116.8 3.8% 6.8%
1954 26.7 18.0 "0:7% 2.3% 1986 110.5 125.8 1.1% 7.7%
1955 26.8 18.6 0:4% 3.3% 1987 115.4 133.1 4.4% 5.8%
1956 27.6 19.2 3:0% 3.2% 1988 120.5 142.3 4.4% 6.9%
1957 28.4 20.1 2:9% 4.7% 1989 126.1 154.4 4.6% 8.5%
1958 28.9 21.0 1:8% 4.5% 1990 133.8 169.2 6.1% 9.6%
1959 29.4 21.8 1:7% 3.8% 1991 137.9 182.6 3.1% 7.9%
1960 29.8 22.5 1:4% 3.2% 1992 141.9 194.7 2.9% 6.6%
1961 30.0 23.2 0:7% 3.1% 1993 145.8 205.2 2.7% 5.4%
1962 30.4 23.7 1:3% 2.2% 1994 149.7 215.3 2.7% 4.9%
1963 30.9 24.3 1:6% 2.5% 1995 153.5 223.8 2.5% 3.9%
1964 31.2 24.8 1:0% 2.1% 1996 158.6 230.6 3.3% 3.0%
1965 31.8 25.5 1:9% 2.8% 1997 161.3 237.1 1.7% 2.8%
1966 32.9 27.2 3:5% 6.7%

Average 4.11% 5.25%

Source: US Department of Labor, Bureau of Labor Statistics.
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EXHIBIT 3

PART 1—PAGE 1

COMPLETELY DETERMINISTIC COMMUTATION CALCULATION

Parameters:

(A) Evaluation Date: 1/1/98
(B) Age at evaluation date: 35
(C) Annual indemnity payment 20,000
(D) Annual medical payment: (at mid-1997 price levels) 70,000
(E) Indemnity paid to date 70,000
(F) Medical paid to date 300,000
(G) Life expectancy: 39.6
(H) Cost-of-Living Adjustment: 4.11%
(I) Medical Inflation Rate: 5.25%
(J) Annual Discount Rate: 5.36%

(1) (2) (3) (4) (5) (6)
Cumulative
Total

Cost of Total Payment
Living Indemnity Medical Medical Payment Cumulative

Year Adjustment Payment Inflation Payment (2)+ (4) of (5)

1997 and prior 70,000 300,000 370,000 370,000
1998 4.11% 20,822 5.25% 73,675 94,497 464,497
1999 4.11% 21,678 5.25% 77,543 99,221 563,718
2000 4.11% 22,569 5.25% 81,614 104,183 667,900
2001 4.11% 23,496 5.25% 85,899 109,395 777,295
2002 4.11% 24,462 5.25% 90,408 114,870 892,166
2003 4.11% 25,467 5.25% 95,155 120,622 1,012,788
2004 4.11% 26,514 5.25% 100,150 126,665 1,139,452
2005 4.11% 27,604 5.25% 105,408 133,012 1,272,465
2006 4.11% 28,738 5.25% 110,942 139,681 1,412,145
2007 4.11% 29,920 5.25% 116,767 146,686 1,558,831
2008 4.11% 31,149 5.25% 122,897 154,046 1,712,878
2009 4.11% 32,429 5.25% 129,349 161,778 1,874,656
2010 4.11% 33,762 5.25% 136,140 169,902 2,044,558
2011 4.11% 35,150 5.25% 143,287 178,437 2,222,995
2012 4.11% 36,595 5.25% 150,810 187,404 2,410,400
2013 4.11% 38,099 5.25% 158,727 196,826 2,607,226
2014 4.11% 39,664 5.25% 167,061 206,725 2,813,951
2015 4.11% 41,295 5.25% 175,831 217,126 3,031,077
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EXHIBIT 3

PART 1—PAGE 2

(1) (2) (3) (4) (5) (6)
Cumulative
Total

Cost of Total Payment
Living Indemnity Medical Medical Payment Cumulative

Year Adjustment Payment Inflation Payment (2)+ (4) of (5)

2016 4.11% 42,992 5.25% 185,062 228,054 3,259,131
2017 4.11% 44,759 5.25% 194,778 239,537 3,498,668
2018 4.11% 46,598 5.25% 205,004 251,602 3,750,270
2019 4.11% 48,514 5.25% 215,767 264,280 4,014,551
2020 4.11% 50,508 5.25% 227,094 277,602 4,292,152
2021 4.11% 52,583 5.25% 239,017 291,600 4,583,753
2022 4.11% 54,745 5.25% 251,565 306,310 4,890,063
2023 4.11% 56,995 5.25% 264,772 321,767 5,211,830
2024 4.11% 59,337 5.25% 278,673 338,010 5,549,840
2025 4.11% 61,776 5.25% 293,303 355,079 5,904,919
2026 4.11% 64,315 5.25% 308,702 373,017 6,277,935
2027 4.11% 66,958 5.25% 324,909 391,867 6,669,802
2028 4.11% 69,710 5.25% 341,966 411,676 7,081,478
2029 4.11% 72,575 5.25% 359,920 432,495 7,513,973
2030 4.11% 75,558 5.25% 378,815 454,373 7,968,346
2031 4.11% 78,663 5.25% 398,703 477,367 8,445,713
2032 4.11% 81,897 5.25% 419,635 501,532 8,947,245
2033 4.11% 85,263 5.25% 441,666 526,928 9,474,173
2034 4.11% 88,767 5.25% 464,853 553,620 10,027,793
2035 4.11% 92,415 5.25% 489,258 581,673 10,609,466
2036 4.11% 96,213 5.25% 514,944 611,158 11,220,624
2037 4.11% 60,101 5.25% 325,187 385,288 11,605,912

Total 2,060,654 9,545,258

Future payments= 11,605,912" 370,000= 11,235,912
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EXHIBIT 4

PART 2—PAGE 1

(10) (11) (12) (13) (14) (15)
Incremental Payments by Layer

$130,000 xs $500,000 xs $1 million xs $3 million xs $5 million xs $5 million xs
Year $370,000 $500,000 $1 million $2 million $5 million $10 million

1997 and prior
1998 94,497 0 0 0 0 0
1999 35,503 63,718 0 0 0 0
2000 0 104,183 0 0 0 0
2001 0 109,395 0 0 0 0
2002 0 114,870 0 0 0 0
2003 0 107,834 12,788 0 0 0
2004 0 0 126,665 0 0 0
2005 0 0 133,012 0 0 0
2006 0 0 139,681 0 0 0
2007 0 0 146,686 0 0 0
2008 0 0 154,046 0 0 0
2009 0 0 161,778 0 0 0
2010 0 0 125,344 44,558 0 0
2011 0 0 0 178,437 0 0
2012 0 0 0 187,404 0 0
2013 0 0 0 196,826 0 0
2014 0 0 0 206,725 0 0
2015 0 0 0 217,126 0 0
2016 0 0 0 228,054 0 0
2017 0 0 0 239,537 0 0
2018 0 0 0 251,602 0 0
2019 0 0 0 264,280 0 0
2020 0 0 0 277,602 0 0
2021 0 0 0 291,600 0 0
2022 0 0 0 306,310 0 0
2023 0 0 0 109,937 211,830 0
2024 0 0 0 0 338,010 0
2025 0 0 0 0 355,079 0
2026 0 0 0 0 373,017 0
2027 0 0 0 0 391,867 0
2028 0 0 0 0 411,676 0
2029 0 0 0 0 432,495 0
2030 0 0 0 0 454,373 0
2031 0 0 0 0 477,367 0
2032 0 0 0 0 501,532 0
2033 0 0 0 0 526,928 0
2034 0 0 0 0 525,827 27,793
2035 0 0 0 0 0 581,673
2036 0 0 0 0 0 611,158
2037 0 0 0 0 0 642,146
2038 0 0 0 0 0 674,717
2039 0 0 0 0 0 708,951
2040 0 0 0 0 0 744,933
2041 0 0 0 0 0 782,754
2042 0 0 0 0 0 225,875
2043 0 0 0 0 0 0
2044 0 0 0 0 0 0
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(16) (17) (18) (19) (20) (21) (22)
Incremental Payments by Layer

$5 million xs $10 million xs $10 million xs $10 million xs $10 million xs $10 million xs $10 million xs
$15 million $20 million $30 million $40 million $50 million $60 million $70 million

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

596,632 0 0 0 0 0 0
864,292 0 0 0 0 0 0
908,213 0 0 0 0 0 0
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EXHIBIT 4

PART 2—PAGE 2

(10) (11) (12) (13) (14) (15)
Incremental Payments by Layer

$130,000 xs $500,000 xs $1 million xs $3 million xs $5 million xs $5 million xs
Year $370,000 $500,000 $1 million $2 million $5 million $10 million

2045 0 0 0 0 0 0
2046 0 0 0 0 0 0
2047 0 0 0 0 0 0
2048 0 0 0 0 0 0
2049 0 0 0 0 0 0
2050 0 0 0 0 0 0
2051 0 0 0 0 0 0
2052 0 0 0 0 0 0
2053 0 0 0 0 0 0
2054 0 0 0 0 0 0
2055 0 0 0 0 0 0
2056 0 0 0 0 0 0
2057 0 0 0 0 0 0
2058 0 0 0 0 0 0
2059 0 0 0 0 0 0
2060 0 0 0 0 0 0
2061 0 0 0 0 0 0
2062 0 0 0 0 0 0
2063 0 0 0 0 0 0
2064 0 0 0 0 0 0
2065 0 0 0 0 0 0
2066 0 0 0 0 0 0
2067 0 0 0 0 0 0
2068 0 0 0 0 0 0
2069 0 0 0 0 0 0
2070 0 0 0 0 0 0
2071 0 0 0 0 0 0
2072 0 0 0 0 0 0

130,000 500,000 1,000,000 3,000,000 5,000,000 5,000,000
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(16) (17) (18) (19) (20) (21) (22)
Incremental Payments by Layer

$5 million xs $10 million xs $10 million xs $10 million xs $10 million xs $10 million xs $10 million xs
$15 million $20 million $30 million $40 million $50 million $60 million $70 million

954,380 0 0 0 0 0 0
1,002,909 0 0 0 0 0 0
673,574 380,347 0 0 0 0 0

0 1,107,544 0 0 0 0 0
0 1,163,911 0 0 0 0 0
0 1,223,165 0 0 0 0 0
0 1,285,453 0 0 0 0 0
0 1,350,933 0 0 0 0 0
0 1,419,767 0 0 0 0 0
0 1,492,130 0 0 0 0 0
0 576,750 991,452 0 0 0 0
0 0 1,648,175 0 0 0 0
0 0 1,732,249 0 0 0 0
0 0 1,820,637 0 0 0 0
0 0 1,913,560 0 0 0 0
0 0 1,893,927 117,324 0 0 0
0 0 0 2,113,959 0 0 0
0 0 0 2,221,939 0 0 0
0 0 0 2,335,465 0 0 0
0 0 0 2,454,823 0 0 0
0 0 0 756,489 1,823,825 0 0
0 0 0 0 2,712,253 0 0
0 0 0 0 2,850,974 0 0
0 0 0 0 2,612,948 383,879 0
0 0 0 0 0 3,150,181 0
0 0 0 0 0 3,311,421 0
0 0 0 0 0 3,154,519 326,438
0 0 0 0 0 0 3,659,216

5,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 3,985,653
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(23) (24) (25) (26) (27) (28)
Commutation Value by Layer, Discounted for Both Mortality and Investment Income

Columns are derived by multiplying the corresponding column from Exhibit 4, pages 3 and 4, by
Column 9, from pages 1 and 2. For example, Column 23 = Column 10$Column 9

Year $500,000 xs $500,000 xs $1 million xs $3 million xs $5 million xs $5 million xs
$0 $500,000 $1 million $2 million $5 million $10 million

1997 and prior
1998 91,943 0 0 0 0 0
1999 32,699 58,685 0 0 0 0
2000 0 90,820 0 0 0 0
2001 0 90,250 0 0 0 0
2002 0 89,677 0 0 0 0
2003 0 79,655 9,446 0 0 0
2004 0 0 88,522 0 0 0
2005 0 0 87,936 0 0 0
2006 0 0 87,340 0 0 0
2007 0 0 86,729 0 0 0
2008 0 0 86,100 0 0 0
2009 0 0 85,451 0 0 0
2010 0 0 62,544 22,234 0 0
2011 0 0 0 84,079 0 0
2012 0 0 0 83,352 0 0
2013 0 0 0 82,593 0 0
2014 0 0 0 81,797 0 0
2015 0 0 0 80,962 0 0
2016 0 0 0 80,080 0 0
2017 0 0 0 79,147 0 0
2018 0 0 0 78,158 0 0
2019 0 0 0 77,111 0 0
2020 0 0 0 76,002 0 0
2021 0 0 0 74,825 0 0
2022 0 0 0 73,573 0 0
2023 0 0 0 24,684 47,561 0
2024 0 0 0 0 70,835 0
2025 0 0 0 0 69,348 0
2026 0 0 0 0 67,783 0
2027 0 0 0 0 66,145 0
2028 0 0 0 0 64,435 0
2029 0 0 0 0 62,653 0
2030 0 0 0 0 60,795 0
2031 0 0 0 0 58,854 0
2032 0 0 0 0 56,823 0
2033 0 0 0 0 54,703 0
2034 0 0 0 0 49,860 2,635
2035 0 0 0 0 0 50,208
2036 0 0 0 0 0 47,844
2037 0 0 0 0 0 45,408
2038 0 0 0 0 0 42,910
2039 0 0 0 0 0 40,359
2040 0 0 0 0 0 37,764
2041 0 0 0 0 0 35,138
2042 0 0 0 0 0 8,924
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(29) (30) (31) (32) (33) (34) (35)

$5 million xs $10 million xs $10 million xs $10 million xs $10 million xs $10 million xs $10 million xs
$15 million $20 million $30 million $40 million $50 million $60 million $70 million

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

23,571 0 0 0 0 0 0
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PART 2—PAGE 4

(23) (24) (25) (26) (27) (28)
Commutation Value by Layer, Discounted for Both Mortality and Investment Income

Columns are derived by multiplying the corresponding column from Exhibit 4, pages 3 and 4, by
Column 9, from pages 1 and 2. For example, Column 23 = Column 10$Column 9

Year $500,000 xs $500,000 xs $1 million xs $3 million xs $5 million xs $5 million xs
$0 $500,000 $1 million $2 million $5 million $10 million

2043 0 0 0 0 0 0
2044 0 0 0 0 0 0
2045 0 0 0 0 0 0
2046 0 0 0 0 0 0
2047 0 0 0 0 0 0
2048 0 0 0 0 0 0
2049 0 0 0 0 0 0
2050 0 0 0 0 0 0
2051 0 0 0 0 0 0
2052 0 0 0 0 0 0
2053 0 0 0 0 0 0
2054 0 0 0 0 0 0
2055 0 0 0 0 0 0
2056 0 0 0 0 0 0
2057 0 0 0 0 0 0
2058 0 0 0 0 0 0
2059 0 0 0 0 0 0
2060 0 0 0 0 0 0
2061 0 0 0 0 0 0
2062 0 0 0 0 0 0
2063 0 0 0 0 0 0
2064 0 0 0 0 0 0
2065 0 0 0 0 0 0
2066 0 0 0 0 0 0
2067 0 0 0 0 0 0
2068 0 0 0 0 0 0
2069 0 0 0 0 0 0
2070 0 0 0 0 0 0
2071 0 0 0 0 0 0
2072 0 0 0 0 0 0

124,642 409,088 594,069 998,595 729,794 311,190

Overall Total = 3,408,316
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(29) (30) (31) (32) (33) (34) (35)

$5 million xs $10 million xs $10 million xs $10 million xs $10 million xs $10 million xs $10 million xs
$15 million $20 million $30 million $40 million $50 million $60 million $70 million

29,848 0 0 0 0 0 0
27,214 0 0 0 0 0 0
24,609 0 0 0 0 0 0
22,052 0 0 0 0 0 0
12,502 7,060 0 0 0 0 0

0 17,169 0 0 0 0 0
0 14,898 0 0 0 0 0
0 12,762 0 0 0 0 0
0 10,777 0 0 0 0 0
0 8,959 0 0 0 0 0
0 7,320 0 0 0 0 0
0 5,868 0 0 0 0 0
0 1,694 2,911 0 0 0 0
0 0 3,530 0 0 0 0
0 0 2,636 0 0 0 0
0 0 1,912 0 0 0 0
0 0 1,342 0 0 0 0
0 0 855 53 0 0 0
0 0 0 589 0 0 0
0 0 0 365 0 0 0
0 0 0 214 0 0 0
0 0 0 118 0 0 0
0 0 0 18 43 0 0
0 0 0 0 29 0 0
0 0 0 0 12 0 0
0 0 0 0 4 1 0
0 0 0 0 0 2 0.00
0 0 0 0 0 0 0.00
0 0 0 0 0 0 0.01
0 0 0 0 0 0 0.01

139,796 86,507 13,185 1,358 88 3 0.02
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(10) (11) (12) (13) (14) (15)
Incremental Payments by Layer

Year $130,000 xs $500,000 xs $1 million xs $3 million xs $5 million xs $5 million xs
$370,000 $500,000 $1 million $2 million $5 million $10 million

1997 and prior
1998 130,000 44,467 0 0 0 0
1999 0 68,248 0 0 0 0
2000 0 176,657 0 0 0 0
2001 0 48,624 0 0 0 0
2002 0 127,329 0 0 0 0
2003 0 34,675 18,700 0 0 0
2004 0 0 120,166 0 0 0
2005 0 0 300,038 0 0 0
2006 0 0 102,832 0 0 0
2007 0 0 160,416 0 0 0
2008 0 0 117,075 0 0 0
2009 0 0 179,289 0 0 0
2010 0 0 1,484 307,263 0 0
2011 0 0 0 74,150 0 0
2012 0 0 0 123,159 0 0
2013 0 0 0 114,903 0 0
2014 0 0 0 110,506 0 0
2015 0 0 0 103,416 0 0
2016 0 0 0 160,291 0 0
2017 0 0 0 626,065 0 0
2018 0 0 0 311,780 0 0
2019 0 0 0 104,582 0 0
2020 0 0 0 273,458 0 0
2021 0 0 0 155,116 0 0
2022 0 0 0 113,675 0 0
2023 0 0 0 189,408 0 0
2024 0 0 0 173,353 0 0
2025 0 0 0 58,873 84,826 0
2026 0 0 0 0 112,523 0
2027 0 0 0 0 372,170 0
2028 0 0 0 0 336,143 0
2029 0 0 0 0 123,607 0
2030 0 0 0 0 526,807 0
2031 0 0 0 0 193,580 0
2032 0 0 0 0 273,961 0
2033 0 0 0 0 181,227 0
2034 0 0 0 0 297,950 0
2035 0 0 0 0 164,585 0
2036 0 0 0 0 166,996 0
2037 0 0 0 0 578,545 0
2038 0 0 0 0 1,021,823 0
2039 0 0 0 0 337,697 0
2040 0 0 0 0 227,558 120,231
2041 0 0 0 0 0 751,848
2042 0 0 0 0 0 540,950
2043 0 0 0 0 0 1,312,927
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(16) (17) (18) (19) (20) (21)
Incremental Payments by Layer

$5 million xs $10 million xs $10 million xs $10 million xs $10 million xs $10 million xs
$15 million $20 million $30 million $40 million $50 million $60 million

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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PART 2—PAGE 2

(10) (11) (12) (13) (14) (15)
Incremental Payments by Layer

Year $130,000 xs $500,000 xs $1 million xs $3 million xs $5 million xs $5 million xs
$370,000 $500,000 $1 million $2 million $5 million $10 million

2044 0 0 0 0 0 732,644
2045 0 0 0 0 0 556,676
2046 0 0 0 0 0 984,725
2047 0 0 0 0 0 0
2048 0 0 0 0 0 0
2049 0 0 0 0 0 0
2050 0 0 0 0 0 0
2051 0 0 0 0 0 0
2052 0 0 0 0 0 0
2053 0 0 0 0 0 0
2054 0 0 0 0 0 0
2055 0 0 0 0 0 0
2056 0 0 0 0 0 0
2057 0 0 0 0 0 0
2058 0 0 0 0 0 0
2059 0 0 0 0 0 0
2060 0 0 0 0 0 0
2061 0 0 0 0 0 0
2062 0 0 0 0 0 0
2063 0 0 0 0 0 0
2064 0 0 0 0 0 0
2065 0 0 0 0 0 0
2066 0 0 0 0 0 0
2067 0 0 0 0 0 0
2068 0 0 0 0 0 0
2069 0 0 0 0 0 0
2070 0 0 0 0 0 0
2071 0 0 0 0 0 0
2072 0 0 0 0 0 0

130,000 500,000 1,000,000 3,000,000 5,000,000 5,000,000
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(16) (17) (18) (19) (20) (21)
Incremental Payments by Layer

$5 million xs $10 million xs $10 million xs $10 million xs $10 million xs $10 million xs
$15 million $20 million $30 million $40 million $50 million $60 million

0 0 0 0 0 0
0 0 0 0 0 0

51,724 0 0 0 0 0
2,104,775 0 0 0 0 0
710,908 0 0 0 0 0

1,933,749 0 0 0 0 0
198,842 1,260,631 0 0 0 0

0 1,001,081 0 0 0 0
0 1,200,858 0 0 0 0
0 1,038,833 0 0 0 0
0 1,275,765 0 0 0 0
0 1,464,454 0 0 0 0
0 1,211,961 0 0 0 0
0 1,546,417 685,083 0 0 0
0 0 1,809,742 0 0 0
0 0 1,411,058 0 0 0
0 0 1,651,512 0 0 0
0 0 1,091,885 0 0 0
0 0 634,369 0 0 0
0 0 1,741,493 0 0 0
0 0 974,858 216,132 0 0
0 0 0 2,654,666 0 0
0 0 0 1,329,038 0 0
0 0 0 3,832,657 0 0
0 0 0 1,967,506 39,053 0
0 0 0 0 1,279,905 0
0 0 0 0 1,627,258 0
0 0 0 0 7,053,783 4,105,442
0 0 0 0 0 5,427,640

5,000,000 10,000,000 10,000,000 10,000,000 10,000,000 9,533,082
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(22) (23) (24) (25) (26) (27)
Commutation Value by Layer, Discounted for Both Mortality and Investment Income

Columns are derived by multiplying the corresponding column from Exhibit 4, pages 3 and 4, by
Column 9, from pages 1 and 2. For example, Column 24 = Column 10$Column 9

Year $500,000 xs $500,000 xs $1 million xs $3 million xs $5 million xs $5 million xs
$0 $500,000 $1 million $2 million $5 million $10 million

1997 and prior
1998 126,511 43,274 0 0 0 0
1999 0 63,463 0 0 0 0
2000 0 160,878 0 0 0 0
2001 0 42,396 0 0 0 0
2002 0 102,789 0 0 0 0
2003 0 26,835 14,472 0 0 0
2004 0 0 92,054 0 0 0
2005 0 0 226,638 0 0 0
2006 0 0 76,768 0 0 0
2007 0 0 116,211 0 0 0
2008 0 0 81,284 0 0 0
2009 0 0 119,565 0 0 0
2010 0 0 950 196,744 0 0
2011 0 0 0 45,935 0 0
2012 0 0 0 73,479 0 0
2013 0 0 0 66,570 0 0
2014 0 0 0 62,213 0 0
2015 0 0 0 55,868 0 0
2016 0 0 0 82,533 0 0
2017 0 0 0 307,205 0 0
2018 0 0 0 148,548 0 0
2019 0 0 0 48,501 0 0
2020 0 0 0 116,604 0 0
2021 0 0 0 57,106 0 0
2022 0 0 0 35,074 0 0
2023 0 0 0 50,503 0 0
2024 0 0 0 42,825 0 0
2025 0 0 0 14,011 20,187 0
2026 0 0 0 0 26,140 0
2027 0 0 0 0 84,370 0
2028 0 0 0 0 73,781 0
2029 0 0 0 0 26,296 0
2030 0 0 0 0 107,320 0
2031 0 0 0 0 37,540 0
2032 0 0 0 0 49,623 0
2033 0 0 0 0 29,549 0
2034 0 0 0 0 44,253 0
2035 0 0 0 0 22,578 0
2036 0 0 0 0 19,813 0
2037 0 0 0 0 57,891 0
2038 0 0 0 0 90,393 0
2039 0 0 0 0 27,092 0
2040 0 0 0 0 16,034 8,472
2041 0 0 0 0 0 44,133
2042 0 0 0 0 0 26,704
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(28) (29) (30) (31) (32) (33)

$5 million xs $10 million xs $10 million xs $10 million xs $10 million xs $10 million xs
$15 million $20 million $30 million $40 million $50 million $60 million

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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EXHIBIT 7

PART 3—PAGE 2

(22) (23) (24) (25) (26) (27)
Commutation Value by Layer, Discounted for Both Mortality and Investment Income

Columns are derived by multiplying the corresponding column from Exhibit 4, pages 3 and 4, by
Column 9, from pages 1 and 2. For example, Column 24 = Column 10$Column 9

Year $500,000 xs $500,000 xs $1 million xs $3 million xs $5 million xs $5 million xs
$0 $500,000 $1 million $2 million $5 million $10 million

2043 0 0 0 0 0 56,253
2044 0 0 0 0 0 27,654
2045 0 0 0 0 0 17,864
2046 0 0 0 0 0 26,577
2047 0 0 0 0 0 0
2048 0 0 0 0 0 0
2049 0 0 0 0 0 0
2050 0 0 0 0 0 0
2051 0 0 0 0 0 0
2052 0 0 0 0 0 0
2053 0 0 0 0 0 0
2054 0 0 0 0 0 0
2055 0 0 0 0 0 0
2056 0 0 0 0 0 0
2057 0 0 0 0 0 0
2058 0 0 0 0 0 0
2059 0 0 0 0 0 0
2060 0 0 0 0 0 0
2061 0 0 0 0 0 0
2062 0 0 0 0 0 0
2063 0 0 0 0 0 0
2064 0 0 0 0 0 0
2065 0 0 0 0 0 0
2066 0 0 0 0 0 0
2067 0 0 0 0 0 0
2068 0 0 0 0 0 0
2069 0 0 0 0 0 0
2070 0 0 0 0 0 0
2071 0 0 0 0 0 0
2072 0 0 0 0 0 0

126,511 439,635 727,941 1,403,719 732,859 207,656
Overall Total = 3,813,435
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(28) (29) (30) (31) (32) (33)

$5 million xs $10 million xs $10 million xs $10 million xs $10 million xs $10 million xs
$15 million $20 million $30 million $40 million $50 million $60 million

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1,396 0 0 0 0 0
48,369 0 0 0 0 0
13,781 0 0 0 0 0
31,742 0 0 0 0 0
2,731 17,315 0 0 0 0

0 11,188 0 0 0 0
0 10,837 0 0 0 0
0 7,573 0 0 0 0
0 7,274 0 0 0 0
0 6,402 0 0 0 0
0 4,021 0 0 0 0
0 3,779 1,674 0 0 0
0 0 3,058 0 0 0
0 0 1,568 0 0 0
0 0 1,196 0 0 0
0 0 506 0 0 0
0 0 177 0 0 0
0 0 269 0 0 0
0 0 78 17 0 0
0 0 0 104 0 0
0 0 0 24 0 0
0 0 0 28 0 0
0 0 0 5 0.11 0
0 0 0 0 1.18 0
0 0 0 0 0.41 0
0 0 0 0 0.38 0.22
0 0 0 0 0.00 0.04

98,019 68,389 8,526 178 2.07 0.26
Overall Total = 3,813,435



CALIFORNIA WORKERS COMPENSATION BENEFIT
UTILIZATION

A STUDY OF CHANGES IN FREQUENCY AND
SEVERITY IN RESPONSE TO CHANGES IN STATUTORY

WORKERS COMPENSATION BENEFIT LEVELS

WARD BROOKS

Abstract

Traditionally, workers compensation insurance rate-
making in California assumed that the utilization of ben-
efits was independent of changes in statutory benefit lev-
els. This assumption was retained for many years in the
face of growing evidence that changes in statutory ben-
efits indirectly affected the utilization of those benefits.
Because the overall level of benefit utilization is a func-
tion of many factors, however, it was difficult to isolate
which changes in utilization resulted from changes in
statutory benefits and which resulted from changes in
economic or social variables, randomness, or other fac-
tors. This paper explores and attempts to quantify the
causal link between changes in statutory benefit levels
and changes in the utilization of workers compensation
benefits.
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1. INTRODUCTION

Historically theWorkers’ Compensation Insurance Rating Bu-
reau of California (the Bureau) has assumed frequency will not

80
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change in response to benefit level changes and severity will
change by exactly the change in benefits.1 If benefits are in-
creased 10%, we expect no change in frequency and a 10%
increase in severity, all other things being equal. However, if
benefits are increased 10% and frequency increases 1% in re-
sponse, then we say we have observed a 1% change in frequency
benefit utilization, again, all other things being equal. If sever-
ity increases 12%, perhaps because durations have increased as
workers stay on claim longer, then we say we have observed a
2% change in severity benefit utilization.

If we chronically over- or underestimate changes in frequency
or severity by failing to recognize changes in utilization, then this
error will be reflected in the residual trend component of the
ratemaking process. We should be able to increase the accuracy
of the ratemaking process by quantifying changes in benefit uti-
lization and incorporating them into our on-leveling procedure,
thereby removing them from the residual trend. The accuracy of
both our on-leveling and trend procedures will be improved as
well as our understanding of the workers compensation system.

Some changes are administrative rather than statutory. When
we refer to statutory benefit levels, we mean both those pro-
mulgated by statute and those effected administratively.2 Each

1For the purposes of this paper, a change in benefit utilization means an indirect effect of
the benefit change. That is, a change in frequency or severity that is related to the change
in benefit level but not measured by the direct effect. The direct effect is measured by the
Bureau’s benefit level change estimate. Note that this definition is broader than that used
for utilization in other contexts. For an overview of workers compensation ratemaking,
including the role of benefit change estimates and their potential indirect effects, the
reader should consult Feldblum [1]. In particular, Sections 5.C and 10 will be helpful to
the reader not familiar with the issue of the indirect effects of benefit changes.
2As an example of an administrative change, in 1997 California’s Division of Industrial
Relations (DIR) revised the official Permanent Disability Rating Schedule (PDRS). The
PDRS is used to evaluate an injured worker’s loss of functional work capacity and cul-
minates in the assignment of a permanent disability rating. The injured worker’s weekly
indemnity benefit is based on this permanent disability rating according to a schedule
promulgated in California statute. The estimated impact of the DIR’s revisions became
controversial, highlighting the fact that these estimated cost impacts are just that, esti-
mates. Sometimes they are revised ex post facto, as more information becomes available.
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year the Bureau evaluates the expected impact of legislative and
administrative changes on the cost of benefits. For the more com-
mon changes, the Bureau uses a model to estimate the impact.
For the less common changes, the Bureau typically conducts a
special study. In both cases, the estimated impact is used in the
Bureau’s pure premium ratemaking to adjust historical accident
year indemnity losses to a current or prospective level. This es-
timated impact is for direct effects only.3 It assumes there will
be no change in benefit utilization. In economics parlance, it
assumes that the utilization of benefits is inelastic.

Finally, we note that benefit utilization is internal to the work-
ers compensation system. Changes in costs that result from
changes in statutory benefits are a matter of public policy. Cali-
fornia legislators and the administrators of the California work-
ers compensation system routinely solicit the Bureau’s estimated
cost impacts for proposed changes. Public policy decision mak-
ing will be enhanced if actuaries can estimate both the expected
direct and indirect fiscal impacts of proposed changes in benefits.

2. HISTORY

In 1996 the Bureau’s Governing Committee directed the Bu-
reau to conduct a study to determine an appropriate loading in
pure premium rates for changes in benefit utilization. The Bu-
reau had commissioned two prior studies: Meyer [2] in 1991 and
Appel [3] in 1992. Based on these studies, the Bureau incorpo-
rated into its pure premium ratemaking an adjustment to losses
to reflect expected changes in utilization resulting from benefit
level changes. The California Commissioner of Insurance, how-
ever, questioned the accuracy and method of incorporation of this
utilization adjustment in his October 13, 1995 decision (Ruling

3For indemnity costs, this is no longer true. An earlier version of this paper was accepted
by the California Department of Insurance as the basis for an adjustment to losses to re-
flect expected changes in utilization resulting from benefit level changes. This adjustment
has been incorporated in the Bureau’s filing for pure premium rates effective January 1,
1998.
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No. 287). The Commissioner directed that a more in-depth study
of utilization be undertaken before such an adjustment would be
acceptable in pure premium ratemaking. This paper documents
the findings of that study.

3. METHODOLOGY

The goal of this study is to quantify changes in frequency and
severity that occur in response to changes in benefit levels. The
model design selected assumes that the indirect effects of benefit
changes are a function of the direct effects. That is, changes in
benefit utilization are assumed to be a function of the Bureau’s
estimated changes in benefit levels. We will attempt to quan-
tify this relationship using multivariate regression supplemented
by nonparametric techniques where appropriate. Following is an
outline of the methodology we will use to investigate indemnity
frequency utilization. We will discuss medical frequency utiliza-
tion along the way. Severity utilization will be discussed in a
later section.

We will start by surveying graphically the candidate depen-
dent and independent variables. We will look at the level of each
variable over time and its annual percentage changes. We will
then look at the correlations among variables. Here we are look-
ing for combinations of the independent variables that are highly
correlated with the dependent variable but not highly correlated
with each other. We want to avoid highly correlated indepen-
dent variables in a regression to avoid multicollinearity with its
attendant risk of unstable and distorted least-squares estimates.
It will happen that we will encounter a group of highly corre-
lated independent variables that we wish to retain in the model.
We will apply a special transformation, principal components ex-
traction, to retain the explanatory variance while removing the
multicollinearity. We will discuss this further at that time.4

4Readers wanting a review or more information on analysis of variance, multicollinearity,
transformations, analysis of residuals, and other topics in regression analysis should see
Miller [4].
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The first correlations we will consider are the standard Pear-
son Product Moment Correlations. (These are the familiar corre-
lations obtained using the appropriate function in Lotus or Ex-
cel.) The Pearson Product Moment Correlation between two vari-
ables assumes each is drawn from a normally distributed pop-
ulation. The significance of the Pearson correlation is only as
strong as this assumption is valid. Because of this, we will also
look at a nonparametric statistic, the Spearman Rank Correlation
Coefficient. This statistic relies on much weaker assumptions.
Intuitively, we will be most comfortable when these two mea-
sures of correlation are in agreement. Before proceeding, let us
consider the common interpretation when these statistics are not
in agreement.

If there is a significant correlation indicated by the nonpara-
metric statistic but not the parametric statistic, then we propose
that a correlation exists, but that it cannot be precisely measured.
If there is a significant correlation indicated by the parametric
statistic but not the nonparametric statistic, then we propose that
the parametric statistic is erroneous, probably because of a vio-
lation of the underlying assumptions, though sometimes because
of an outlier.5

Following this examination of the variables (Exhibits 1
through 4), a series of candidate regression models will be pos-
tulated. Each will be regressed and we will diagnose each model
(Exhibit 5). We will first look to see if the coefficients make
sense. We will compare the models’ relative performance, ad-
justed for degrees of freedom. We will test each model for bias
and the normality of its residuals. For the better models we will
look more closely at performance and the appropriateness of the
model’s specification (Exhibit 6).

Following this, for the best models we will look at projected
performance in practice (Exhibits 7 through 10, and 12). We will

5Readers interested in more information on nonparametric statistics should see Ferguson
[5] or Siegel [6].
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do some sensitivity testing on our most novel variable (Exhibit
11). Finally, we will present the best model with confidence in-
tervals for our point estimates. The best model will be presented
along with three other models as a form of sensitivity testing of
our economic variables (Exhibit 13).

Before proceeding to the main analysis, a technical aside is in
order. During the following discussion the reader might wonder
if a transformation of the data relating to workers compensation
reporting bases was considered. It was. But to cut down on the
volume of analysis to be presented and discussed, we will deal
with this issue here, summarily.

Reporting Bases

In California, workers compensation rate level indications are
based on calendar-accident year data while classification rela-
tivities are based on policy year data. Variables that are col-
lected outside of the workers compensation system—economic
variables, for example—are generally on a calendar year ba-
sis. Therefore, variables of interest may be on different report-
ing bases. Because there is a timing difference between vari-
ables with different reporting bases, the correlations between
variables can be affected. This is essentially the same issue as
whether there is a lagged correlation between two variables; here
the lag would be due to the timing difference of the reporting
bases.

To eliminate this lag, we explored transforming calendar year
variables into policy year variables. For example, suppose premi-
ums are written and losses occur uniformly over a year. (We used
more exact distributions for our transformations.) Also, suppose
real gross state product increased 0.01% in 1982 and 4.93% in
1983. Then policy year 1982 real gross state product increased
2.47% [(0:0001+0:0493)=2]. It turned out, however, that match-
ing variables’ reporting bases delivered inferior results. This im-
plies that a slight lag exists between the calendar year events
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and their policy year manifestation.6 That is, there is a higher
correlation between a calendar year 1982 economic event and a
policy year 1982 (not transformed) event, with an implicit six-
month lag, than between the calendar year event and the policy
year event transformed to match average dates of occurrence.

The policy year variables used in this paper are developed
from the Bureau’s Unit Statistical Reporting (USR) system. In-
curred claim counts and exposures are defined per the Califor-
nia Workers’ Compensation Uniform Statistical Reporting Plan.
Frequencies are developed from the USR data in Appendix A;
severities are developed in Appendix I. The benefit level vari-
ables, which are used to adjust historical losses to a current or
projected benefit level, are calendar-accident year.

4. THE VARIABLES

We begin the analysis of indemnity frequency utilization by
reviewing all available candidate variables. We preface this sec-
tion by noting the importance of accounting for all significant
factors that affect indemnity frequency. In the end, we would
like to have accounted for as much variation as possible and we
would like the variation unaccounted for to be purely random
noise. We do not want any significant factors to be omitted from
the final regression model. If they are omitted, then the model
is misspecified. This misspecification may bias the estimates or
lead to erroneous conclusions about the confidence we have in
the estimates.

The variables considered in the analysis are presented graph-
ically in Exhibit 1. The top graph of each part of Exhibit 1 dis-
plays the value of each variable over time. The bottom graph
shows the annual percentage change in the original variable. A
tabular presentation of the variables and their annual percentage

6The average date of occurrence for both calendar year and accident year variables is
about July 1st. The average date of occurrence of a policy year variable is December
31st.
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changes is presented in Exhibit 2. Following is a discussion of
each variable.

Indemnity Claim Frequency

This is the dependent variable—our first target.

All frequencies are policy year claims per million dollars of
reported payroll, adjusted to a 1987 wage level. Claim counts
were taken from the Bureau’s USR system at third report level.
Payrolls were adjusted to a 1987 wage level using average wages
developed from the California Statistical Abstract (Appendix A).

Part 1 of Exhibit 1 shows the history of indemnity claim fre-
quency from policy year 1961 through 1994.

Medical-Only Claim Frequency

Medical-only claim frequency has exhibited a persistent long-
term downward trend for over three decades (Exhibit 1, Part 2).
This trend is counter-intuitive, as we would expect indemnity
and medical-only claim frequencies to move together. There is a
wide range of speculation regarding the causes of this trend. Sus-
pect causes include changes in medical-only reporting patterns,
the decreasing hazardousness of the California insured mix of
business, or an increasing tendency for all claims to have an
indemnity component. In any case, since medical-only claims
represent less than 5% of workers compensation costs and there
is a lack of consensus about this long-term trend’s causation, no
attempt was made to model medical-only utilization.

Total Claim Frequency

Total claim frequency (Exhibit 1, Part 3) was not analyzed.
Total claim frequency is dominated by medical-only claims,
which in policy year 1992 outnumbered indemnity claims by
roughly two-to-one.
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Indemnity Benefit Level

This is the key independent variable. The coefficient on this
variable will measure frequency benefit utilization. If benefit
level estimates are accurate and unbiased, then our a priori ex-
pectation is that the coefficient on this variable will be zero if no
utilization effect is present. Absent a utilization effect, a change
in benefit level will produce no change in frequency. If the coef-
ficient was 0.3 and significant, then in response to a 10% benefit
level increase we would expect a 3% (0:3!10%) increase in fre-
quency. The null hypothesis is that this coefficient equals zero. If
we can reject this hypothesis, then we can conclude a utilization
effect is present and that the coefficient measures it as a function
of the benefit level change.

Because the indemnity benefit level variable is key, it is critical
that it be as accurate as possible and, perhaps more importantly,
be unbiased. The process for quantifying the cost impact of ben-
efit level changes was discussed earlier. Clearly, if the process is
biased, we could inadvertently capture this bias in our model and
falsely conclude there is a utilization effect where there is only
systematic bias in our estimates of legislative changes. Some pre-
liminary analysis suggested that historical benefit level estimates
were indeed biased, and the Bureau revised its law amendment
evaluation models to remove the bias.7

7What was this bias? It was related to the Bureau’s prior use of an average wage level
intended to reflect the insured population. This has been replaced by an average wage
level intended to reflect the expected insured claimant population, based on the Bureau’s
Individual Case Report data. This change addressed the fact that the average wage and
wage distribution of the population of insured workers and the population of insured
claimants are different. The latter is a subset of the former. The author has experimented
with projecting the distribution of insured wages by fitting insured claimant wage dis-
tributions for successively higher levels of permanent partial disability. The underlying
assumption here—though unproven—is that a primary cause of the difference between
the insured and claimant wage distributions is self-selection and that the effect of self-
selection diminishes with the seriousness of injury. Further improvements in the pro-
cedure to evaluate legislative changes may be possible by quantifying the relationship
between the insured and claimant wage distributions as a function of benefit levels. Also,
we note that the Bureau’s evaluation methodology and the tables underlying the calcu-
lations were substantially the same throughout the period under study, so no bias was
introduced by a change in methodology.
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The calendar year indemnity benefit level history, revised to
correct the bias discussed above, is presented in Exhibit 1, Part
4 and developed in Appendix B.

Medical Benefit Level

The medical benefit level index captures changes in Califor-
nia’s Official Medical Fee Schedule and an index of hospital
inflation costs. Unlike indemnity benefit level changes, however,
a great many other factors affect medical costs in addition to the
costs of medical procedures and hospital costs. Examples include
the advent of managed care and the development of new tech-
nologies, such as magnetic resonance imaging and new arthro-
scopic surgery techniques. Indeed, these other factors are widely
believed to have dominated changes in medical costs over the
last several decades. For the task at hand, it may be impossible
to isolate utilization effects out of this larger body of factors.

The calendar year medical benefit level history is presented
in Exhibit 1, Part 5 and developed in Appendix B.

Total Benefit Level

The total benefit level combines the indemnity and medical
benefit levels, weighted by their respective partial pure premi-
ums. The calendar year total benefit level history is presented in
Exhibit 1, Part 6 and developed in Appendix B.

Economic Variables

The general state of the economy is important in workers
compensation. As an economy nears capacity, employees work
longer hours, less skilled workers are pulled into the production
cycle and the opportunity cost of safety measures may increase.
As a result, claim frequency per worker varies with the economic
cycle. We considered three economic variables in our analysis:
aggregate employment, real gross state product, and the unem-
ployment rate. The economic variables are shown graphically in
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Exhibit 1, Parts 7 through 9. Each variable is specific to Cali-
fornia, and its development is presented in Appendix C. These
variables, which are broad measures of the robustness of the
state’s economy and labor market, serve to quantify changes in
utilization that are a natural consequence of the economic cycle.

We note that the importance of economic influences in work-
ers compensation systems is an on-going area of research. In
this paper, we assume a priori that economic variables should be
considered in the model.

Hazardousness Indices

The prior utilization studies commissioned by the Bureau ex-
amined only a subset of classifications. Only 50 classes were ana-
lyzed over a 22-year period in the 1992 study. Unfortunately, the
selected classes may not be representative of the mix of business
throughout the experience period. Changes in the mix of busi-
ness may explain some of the changes in the overall utilization
level over time. So, as California shifted from a predominantly
manufacturing economy to a service economy over the last sev-
eral decades, the level of hazardousness shifted concurrently. In
1970, for example, manufacturing classifications accounted for
16.9% of total workers compensation payroll; in 1990, 13.6%.
The clerical standard classification 8810 grew from 20.7% of
payroll in 1970 to 28.5% in 1990. To capture this phenomenon,
we examined the entire insured population of classifications.

Additionally, two indices were developed to measure changes
in the hazardousness of the insured California workers compen-
sation population from policy year to policy year. The first index,
the indemnity frequency hazardousness index, captures changes
in frequency attributable to changes in the mix of business. The
second index, the pure premium hazardousness index, captures
changes in frequency and severity attributable to changes in the
mix of business. These indices are developed in Appendix D.
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These indices capture the subtle, long-term transformation of
the California economy’s level of hazardousness (Exhibit 1, Parts
10 and 11). Both illustrate the growing dominance of the service
sector in the California economy. Because manufacturing is both
more highly cyclical and more hazardous, the insured popula-
tion’s hazardousness fluctuates with the state’s economic cycles.
Throughout the period studied, the indemnity pure premium in-
dex fell sharply with the onset of recessions. This relationship
may change in the future if the relative frequency and severity
of claims among economic sectors changes.

Annual changes in these indices, however, were not highly
correlated with annual changes in indemnity frequency (Exhibit
4, Parts 7 and 8). Indeed, indemnity frequency persistently in-
creased over the period studied in spite of the decreasing haz-
ardousness of the insured population. This does not mean the
hazardousness indices are invalid or inaccurate. The hazardous-
ness indices capture a long-term trend, while we are looking at
annual changes. Further, the divergent trends in hazardousness
due to changes in the mix of business and in indemnity frequency
merely suggest there are other factors that are pushing indemnity
frequency from different directions. In any complex system there
may be a variety of forces that push in different directions at the
same time. Though annual changes in the hazardousness indices
did not prove relevant in the final model, we have included them
here for their relevance to the utilization phenomenon and to in-
troduce the concept of a metric for changes in mix of business.

Litigation Rates

Discretion makes benefit utilization possible and litigiousness
is commonly considered a proxy for discretion in the workers
compensation system. Benefit utilization exists because workers
can exercise some discretion in the filing of workers compen-
sation claims. In a textbook world, benefit utilization might not
exist. No one would use workers compensation instead of vaca-
tion time, health insurance or unemployment insurance. Highly
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paid workers would not opt to use sick pay and health insurance
benefits instead of workers compensation benefits.8 But in the
real world, many workers are presented with the choice to utilize
their workers compensation benefit, or not, and this discretionary
act is anecdotally correlated with litigation. To examine this, a
variable measuring litigiousness was developed.

From 1972 to 1992 (except 1990) the California Workers’
Compensation Institute (CWCI) collected information on the
number of Applications for Adjudication filed with the Work-
ers’ Compensation Appeals Board (Appendix E). The CWCI ra-
tioed the number of applications to the total number of claims
to arrive at a litigation rate. This litigation rate might serve as a
proxy for litigiousness. The denominator of this ratio, however,
includes medical-only claims, which are rarely litigated. A ratio
to indemnity claims would be a better measure. The litigation
rate history, adjusted to an indemnity claim basis, is presented
in Exhibit 1, Part 12. When the litigation rate is adjusted to an
indemnity claim basis, the marked upward trend in the litigation
rate disappears and the rate is fairly flat.

This result was surprising. The phenomenon of medical-only
claims decreasing as a share of total claims is the obvious math-
ematical “cause” of the flattening of the litigation rate. When
earlier years are adjusted to account for the lesser share of in-
demnity claims to total, the litigation rate for indemnity claims
soars. The level of litigation suggested by this data is much
higher than for other states. Some of this magnitude may be
due to peculiarities associated with the survey method or Cali-
fornia’s adjudication process. Nevertheless, this data suggest the
level of litigiousness in California not only is high, but also has
been so for several decades. Still more surprising, changes in the
litigation rate proved to be negatively correlated with changes in

8The higher a worker’s income over the maximum benefit, the lower the percentage
of pre-injury income workers compensation benefits replace. The benefit, therefore, de-
creases as a worker’s income increases, and at some point may actually present an addi-
tional burden.
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indemnity frequency, a result counter to our a priori expectation.
This raised uncertainty as to whether this variable is accurately
measuring litigiousness or some other phenomenon. Because of
this uncertainty, this variable was dropped from consideration in
the analysis.

Ratio of Cumulative Injuries to Total Indemnity Claims

This is the ratio of incurred claims coded as cumulative in-
jury as defined by the Unit Statistical Reporting system to to-
tal incurred indemnity claims for each policy year.9 Note that
this ratio does not necessarily rise or fall with changes in the
frequency or absolute number of cumulative injury or total in-
demnity claims. Cumulative injuries never comprised more than
10% of indemnity claims. Therefore, it is not appreciably cor-
related with indemnity frequency by definition. This variable is
probably a more direct measure of changes in the discretionary
element than litigiousness because cumulative injury claims have
a higher degree of discretion available. For example, if you have
an accident on the job, a nasty cut say, you are more likely to
be seen and sent to the human resources department to fill out a
form. But initiating a carpal tunnel or stress claim is much more
within a worker’s sole control. Note that in the presence of a
benefit level variable we expect the ratio to capture discretion
unrelated to changes in benefit levels.

The ratio of cumulative injuries to total indemnity claims is
presented in Exhibit 1, Part 13 and developed in Appendix F.

Principal Components of Economic Variables

The economic variables are highly correlated among them-
selves. The Pearson Product Moment Correlation between annual
changes in real gross state product (rGSP) and aggregate employ-
ment (AggE) is 0.655; between rGSP and the unemployment rate

9This variable was suggested by Mr. James J. Gebhard, FCAS, MAAA, following the
failure of the litigiousness proxy.
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(Unemp),"0:892; between AggE and Unemp, "0:677. If regres-
sion is to be used, these correlations are too high to use more
than one variable without risking multicollinearity—that is, the
linear dependence of the independent variables. If independent
variables in a model are linearly dependent, then least squares
estimates tend to be unstable and may be far from their expected
values. To extract any additional explanatory information lost
by using only one economic variable while not introducing
multicollinearity, the principal components of the economic var-
iables were formed. Principal components are the uncorrelated
linear combinations of the subject variables that maximize var-
iability.10

The first and second principal components of two sets of eco-
nomic variables were formed. The first set was annual changes
in rGSP and AggE. The second set was annual changes in rGSP,
AggE and Unemp. The principal components are presented in
Exhibit 1, Parts 14 through 17. Their development is presented
in Appendix G.

Self-Insurance Share Index

A complicating issue in virtually all analyses of the California
workers compensation market is the changing composition of the
insured population. The data collected by the Bureau represents
only the insured population. When an employer exits the insured
market by self-insuring, his experience under self-insurance is
lost to the Bureau while his insured history cannot be isolated
from the Bureau’s historical experience. The reverse is true when
an employer returns to the insured market from self-insurance.
Clearly, the comings and goings of employers has the potential
to distort the insured experience. This is particularly true when
large groups of employers with unique experience come and go
en masse.

10For more information on principal components see Chapter 8 of Johnson [7]. This is
also a good general reference for multivariate regression.
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This problem is neither unique to this analysis, nor to Cali-
fornia. In fact, the potential exists for changes in the self-insured
population to affect aggregate pure premium ratemaking. As an
example, if a group of risks with poorer experience than the ag-
gregate begins to exit the insured market over a period of time,
an improving loss ratio will be picked up by the residual trend
procedure. Not knowing that the improvement is due to a change
in the mix of insureds, the trend might be forecast to continue
beyond the time the insured population has stabilized. To address
this problem, a variable was developed to measure changes in the
self-insured market.

The self-insurance share index was developed to capture an-
nual changes in self-insurance costs as a share of total Califor-
nia workers compensation costs. This variable is developed from
information reported by the state and federal governments and
the Bureau and compiled by the Social Security Administration.
This variable is presented in Exhibit 1, Part 18; the development
is presented in Appendix H. This variable captures only changes
in the net volume of the self-insured market. Qualitative changes
are not captured (i.e., whether the experience of the self-insured
market is improving or deteriorating, absolutely or relatively).

There is no appreciable correlation between annual changes
in the self-insurance share index and indemnity frequency (Ex-
hibit 3 and Exhibit 4, Part 15). On this basis, we conclude that
change in the level of self-insurance is not a candidate indepen-
dent variable nor likely to affect the analysis.

5. THE MODELS

We first examined the correlations among the variables. The
Pearson Product Moment Correlations among the variables’ an-
nual changes and the significance of these correlations are sum-
marized in Exhibit 3. In all cases, the analysis was conducted
on the least common denominator of years for a given set
of subject variables. Note that the analysis was on the annual
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changes in these variables—not their absolute levels. For exam-
ple, the annual change in the unemployment rate is an indepen-
dent variable—not the unemployment rate itself. Further refer-
ences to variables will mean their annual percentage changes
unless otherwise stated.

The candidate variables were tested for normality (using
Kolmogorov–Smirnov). All variables except the changes in in-
demnity and total benefit levels, which are clearly skewed, passed
tests for normality. Note that interpretation of the significance of
the Pearson Product Moment Correlation between two variables
assumes both to be distributed normally and that our key inde-
pendent variable is not.

Exhibit 4 presents a graph of each candidate independent vari-
able against indemnity frequency as well as the regression of
indemnity frequency on the independent variable and the Spear-
man Rank Correlation Coefficients. The normality assumption
is not required of the Spearman Rank Correlation Coefficient.
For the benefit level changes, Exhibit 4 also presents regres-
sions with a dummy variable. The dummy variable is 1 for years
with an indemnity benefit change and 0 otherwise. Introduction
of the dummy variable did not improve the amount of varia-
tion explained by benefit changes alone. Note, however, that the
nonparametric Spearman Rank Correlation is strong and highly
significant.

We examined these variables to select candidates for mul-
tivariate regression. As discussed above, candidates should be
reasonably correlated with frequency but not highly correlated
with other variables in the model. From a review of the infor-
mation in Exhibits 3 and 4, and other exploratory analysis, we
chose models with the following structure.

Y-Intercept

Models with or without a constant term.
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Benefit Level

Calendar year indemnity benefit level changes, total benefit
level changes, or indemnity and medical benefit level changes
separately. The coefficient on the benefit level variable measures
frequency utilization. We will conclude there is no utilization
effect if this variable is not significantly different from zero.

Economic Variable

We considered models with the following economic variables:

1. Real gross state product (rGSP);

2. Aggregate employment (AggE);

3. Real gross state product and aggregate employment (for
comparison purposes only);

4. The first principal component of rGSP and AggE;

5. The first and second principal components of rGSP and
AggE;

6. The first principal component of rGSP, AggE and the
unemployment rate (Unemp);

7. The first and second principal components of rGSP,
AggE and Unemp.

Ratio of Cumulative Injury Claims to Total Indemnity Claims

Models with or without the cumulative injury index.

A simplemultivariate linear structurewas selected, as no strong
nonlinear or lagged patterns were present. We next performed
multivariate regressions using Manugistic’s STATGRAPHICS
Plus (1995) statistical software. Kalmia’s WinSTAT, Version 3.1
(1995) was also used for certain diagnostic tests and to confirm
results obtained using STATGRAPHICS Plus.
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6. THE RESULTS

Eighty-four multivariate regressions are possible with the
selected variables. A summary of selected statistics for these
eighty-four models is presented in Exhibit 5. Part 1 of Exhibit 5
summarizes all models using the indemnity benefit level; Part 2
summarizes all models using the total benefit level; Part 3, the
indemnity and medical benefit levels separately. For the better
models (as judged by R2 adjusted for degrees of freedom), the
indemnity benefit level consistently outperforms both the total
and component benefit level models. This is not surprising, be-
cause, as discussed above, the medical benefit level measures
only a narrow component of medical benefit costs and the con-
nection between changes in medical costs and indemnity benefit
utilization is tenuous.

The models are ordered by adjusted R2 on each part of Exhibit
5. The mean residual error is presented for each model. This indi-
cates whether or not the model is biased. We want a model whose
mean residual error is very close to zero. The normality of the
residual errors for each model was tested using the Kolmogorov–
Smirnov and Shapiro–Wilks tests. A low p-value on these tests
means we can conclude the residuals are not distributed normally.
The primary concern is that the residuals are skew. A low p-value
on the skewness test would indicate a model’s residuals are more
skew than the normal distribution’s. A low p-value on the kur-
tosis test would indicate a model’s residuals are not as kurtotic
as a normal distribution. A few models fail (p < 0:10) both the
Shapiro–Wilks and kurtosis tests—but neither the Kolmogorov–
Smirnov nor skewness tests. These models’ residuals are more
highly kurtotic than a normal distribution’s. This is not bad—it
means the actual data are more tightly distributed about the fitted
line than if they were normally distributed.

The seven models with the highest adjusted R2 include the
cumulative injury index variable and a constant term. The re-
gression output for these seven models is presented in Exhibit
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6. All seven models are significant based on an analysis of vari-
ance. The model with the highest adjusted R2 explains 91.4%
of the variance in annual changes in indemnity claim frequency.
However, the second principal component of this model is not
significant at a 90% or higher confidence level. The model ex-
cluding this term (with the second highest adjusted R2) explains
88.7% of the variance and all terms are significant at a 95%
confidence level. This model, Model 2, includes the indemnity
benefit level, a constant term, the first principal component of
rGSP, AggE and Unemp, and the cumulative injury index.

Three other models have terms that are all significant at a
95% confidence level, each differing in the choice of economic
variable. The fifth model includes the first principal component
of rGSP and AggE. The sixth model includes AggE. The seventh
model includes rGSP. These models explain 86.1%, 84.2% and
82.9% of the variance, respectively, as compared to the second
model, which explains 88.7%. Exhibits 7 through 10 present a
graphical analysis of each of the four models (Models 2, 5, 6
and 7).

The graph on Part 1 of Exhibits 7 through 10 shows the ac-
tual and fitted annual percentage changes. Part 2 of each ex-
hibit demonstrates application of the model to predict annual
frequency changes presuming we have past or estimated fre-
quency information. That is, Part 2 is analogous to the graph
on Part 1, but with a one, two or three period projection inter-
val. For example, in the first graph of Part 2 of Exhibit 7, if
we are projecting policy year 1997 we must know or have es-
timated the indemnity frequency for policy year 1996 and the
benefit level changes and economic variable changes for 1997.
The second graph, again projecting policy year 1997, assumes
we have the frequency for policy year 1995 and the benefit level
and economic variable changes for 1996 and 1997. These graphs
illustrate how the fitted models would perform in practice. Part
3 of Exhibits 7 through 10 parallels Part 2, but for the level of
indemnity claim frequency—not the annual changes in it.
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These results are promising. A large portion of the annual
variation in indemnity frequency is explained. The overall mod-
els are highly significant (based on an analysis of variance) and
all the variables in the models are significant at a 95% level of
confidence. The estimates of the coefficient on the indemnity
benefit level range from 0.221 to 0.321, with the estimate for the
most powerful model squarely inside this range at 0.262. So our
best estimates using a variety of economic variables fall within
a fairly narrow range.

One weakness of these results is the limited time frame of
observation. Only sixteen years of data were available concur-
rently for the included variables. This limitation was imposed by
the cumulative injury index, which was available beginning with
policy year 1977. A key concern here is the number of economic
cycles over which the economic variables were observed. With
economic variables we would like to include several economic
cycles to have greater confidence in our findings. To examine
what impact this limitation may have had, we look now to the
same models, but exclude the cumulative injury index.

Models Excluding the Ratio of Cumulative Injuries to Total
Indemnity Claims

Thirty years of data are available for models including the
indemnity benefit level, a constant term and the economic vari-
ables presented in Exhibits 7 through 10. Selected results for
these regressions appear on Exhibit 5, Part 1 and the regression
output is included in Exhibit 11. Although the models explain
only 18.8% to 20.3% of the total variation (adjusted for the de-
grees of freedom), all four are significant at the 95% confidence
level based on an analysis of variance. The coefficients on the
indemnity benefit level range from 0.287 to 0.330. This range
overlaps considerably the range of the models that include the
cumulative injury index. Additionally, these coefficients are sig-
nificant at the 90% confidence level in two models and the 95%
confidence level in the other two.
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Clearly, the introduction of the cumulative injury index does
not significantly affect the estimated indemnity benefit level
coefficient. The estimates would be only a few points higher
without this variable. The cumulative injury index does,
however, explain over 60% of the variance and allows us to be
confident our utilization estimates are not distorted due to a
misspecified model with a large portion of unaccounted-for var-
iance.

Interpretation of the Negative Constant Term

The constant term in the final model is statistically significant.
It is also negative, implying that, all other things equal, indemnity
frequency will fall 3.58% per year. Why might this be?

Note that the coefficient on the first principal component of
the three economic variables is negative. It happens here that a
negative first principal component corresponds to an expanding
economy while a positive first principal component corresponds
to a recessionary economy.

Consider the median value of the first principal component
over the fifteen-year fitting range. This value corresponds to
1989 and is "4:7881 (Exhibit 2, Part 2). In 1989 California’s
real gross state product grew 3.8%, aggregate employment grew
3.6% and the unemployment rate fell to 5.1% from 5.3% the
prior year. The increase in frequency for 1989 due to the state
of the economy is about 1.03% ["0:214998!"4:7881]. Indeed,
1989 seems representative of what we might expect for long-term
economic growth.

But long-term, frequency, which is a rate and not an abso-
lute number, cannot increase without bound. If it did, at some
point our model would project every insured to file a claim on
average! If our future were a series of 1989s without end, we
would project annual increases of 1.03% in frequency, with-
out end. Clearly the model would be misspecified. To balance
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the economic variable, the model must have some offset for the
long-term level of economic growth. This offset is reflected in
the constant term.

The situation with the indemnity benefit level is similar.
In California, statutory benefit levels are not indexed to in-
flation. To maintain the real (inflation adjusted) value of in-
demnity benefits, periodic increases must be made. Over the
years, we expect some portion of benefit level increases re-
flect adjustments to maintain purchasing power. But these ad-
justments have been made sporadically. In the intervening years,
the real purchasing power of indemnity benefits is decreas-
ing. It is being deflated by inflation. If frequency is sensitive
to changes in real benefit levels, then we expect frequency to
decline on average during the years when real benefit levels
are falling (i.e., in years when benefit level changes are less
than inflation). This phenomenon is reflected in the constant
term.

Finally, as discussed above in the development of the haz-
ardousness indices, the mix of business in California has been
changing over the last several decades. Although annual changes
in hazardousness did not predict annual changes in indemnity
frequency, this does not mean the long-term trend in hazardous-
ness is absent from our model. Both the average and median
change in indemnity frequency as measured by the indemnity
frequency hazardousness index are about "0:75% per year over
1978–1992. This long-term trend is reflected in the constant
term.

Returning to our fitted models, Exhibit 12 presents additional
performance information for the seven models in Exhibit 6. The
average absolute error and adjusted R2 are presented for the fit-
ted model and the projection interval models. The relative per-
formance of the projection interval models is consistent with the
performance of the original models. The accuracy of the models
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does not deteriorate excessively with the increasing projection
interval.

These results indicate that we can be highly confident that an
indemnity frequency benefit utilization response exists and is sta-
tistically significant. Our estimates of this response are remark-
ably stable over different time periods, a variety of economic
variables, and the inclusion or exclusion of a variable to capture
changes in the non-benefit-related discretionary element in the
workers compensation system.

7. APPLICATION

Exhibit 13 presents the indemnity frequency benefit utiliza-
tion point estimates and confidence intervals for the four models
in Exhibits 7 through 10. The best estimate of indemnity fre-
quency benefit utilization, Model 2’s estimate, is from Exhibit
7. The model indicates that indemnity frequency would increase
2.6% in response to a 10% increase in the indemnity benefit
level. The model is linear and might be interpreted also as im-
plying that a 10% decrease in the indemnity benefit level would
produce a 2.6% decrease in indemnity frequency. However, no
benefit level decreases were included in the parameterization of
the models, so any conclusions about the utilization response to
benefit level decreases would be extrapolating beyond the data,
with its attendant risks.

We should stress that the Bureau’s goal here was quantify-
ing the utilization effect—not forecasting the future level of in-
demnity frequency. Although the models developed here can be
used to project future levels of indemnity frequency (and we
tested their performance to do so), the Bureau’s first concern
was with the benefit level coefficient to estimate expected uti-
lization effects. We examined whole models under the theory
that our confidence would be higher if both the whole and its
parts were sound and because a regression approach is always
sounder when most of the variance is explained by the model.
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8. SEVERITY

Two analyses parallel to the above analysis of indemnity fre-
quency were performed for indemnity severity—one using calen-
dar year benefit level changes and one using policy year benefit
level changes. Exhibit 14 graphically presents indemnity sever-
ity and real indemnity severity (adjusted to a 1982-84 level using
the California Consumer Price Index). Exhibit 15 tabulates the
value of each variable and its annual percentage changes. Exhibit
16 shows the Pearson Product Moment Correlations among the
variables. Exhibit 17 shows a graph of the indemnity benefit
level against indemnity severity and real indemnity severity as
well as the regression of the severities on the indemnity benefit
level and the Spearman Rank Correlation Coefficients.

Note that while the Pearson Product Moment Correlations ap-
pear respectable, the nonparametric correlations are small and
insignificant. Nor do the graphs reveal any relationship between
changes in severities and changes in indemnity benefit levels. The
lack of any nonparametric correlation suggests that the parametric
statistics are spurious. This is bolstered by our visual inspection.

Because we can find no correlation with our target indepen-
dent variable—benefit level changes—our analysis stops here.
This does not mean, however, that we could not build a model
for changes in severity that are a function of economic or other
factors. Since we are reasonably confident that our approach will
not work here, today, with this data, we have tried to do no more.
We do not imply more could not be done. Remember, our goal
was to quantify changes in utilization as a function of changes
in benefit levels—not to create a model for severity.

This situation highlights a common trap in regression anal-
yses. Had we not looked at the dependent variable and target
independent variable graphically and used a nonparametric test,
it might have seemed appropriate to cobble together a model
with a deceptively satisfying R2. In fact, one can be put together.
Would the model have passed an analysis of variance or would
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the t-statistics on the individual parameters have been signifi-
cant? Perhaps. Would we have examined the mean residual error
for bias or tested the residuals for normality? Hopefully.

To summarize, we found no relationship between changes in
calendar year indemnity benefit levels and changes in indem-
nity severities. As discussed earlier in the text, we also looked at
the policy year transformation of the indemnity benefit levels to
confirm that the results were not a result of a poor matching be-
tween the dependent and independent variables.11 Using policy
year changes, we were able to develop models with high adjusted
R2, though they were very skew and, for the better models, the
coefficients on the benefit level changes were not significantly
different from zero. We also explored adding the self-insurance
share index. This variable never reached statistical significance
in any of the regressions.

9. CONCLUSION

We found no evidence of a benefit utilization effect for either
medical costs or indemnity severity. The lack of correlation for
medical costs did not surprise us. The delivery of medical bene-
fits in the California workers compensation market has been in a
state of flux for some time and will likely continue to be so in the
near future. Because of this, isolating medical benefit utilization
will likely be very challenging, if even possible, at present.

We were surprised to find no correlation between changes
in indemnity severity, real or nominal, and changes in indemnity
benefit levels. We had been conditioned by anecdotal evidence to
expect a relationship. But we found none. A difference in statisti-
cal approach and rigor may be involved. We remind the reader of
the importance of the visual inspection and nonparametric tests
in rejecting the seemingly significant parametric findings. Also,

11These results were presented at the March 31, 1997 Actuarial Committee meeting of the
Workers’ Compensation Insurance Rating Bureau of California. They are not reproduced
here but are available from the author or the Bureau.
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the experimental design assumed that indirect effects could be
modeled on the direct effects. Perhaps there is a relationship, but
it is just too complex for a linear model. Or perhaps there was
simply too much noise in California over this period of time.
Our findings are, of course, temporal and local and we do not
imply a relationship might not exist in the future or in other
states. Nevertheless, seeing how we cannot support a severity
utilization effect may be as important to our understanding as
finding one, though perhaps not as gratifying.

We have developed two metrics which measure changes in
hazardousness due to changes in mix of business—the indem-
nity frequency hazardousness index and the indemnity pure pre-
mium hazardousness index. As discussed above, although annual
changes in hazardousness did not predict annual changes in in-
demnity frequency, this does not mean the long-term trend in
hazardousness is absent from our model. This long-term trend
is reflected in the constant term, and our metric has allowed us
to quantify this trend. The hazardousness index may have other
applications and may yet prove to be a significant variable in a
model of a future, more stable economy and workers compen-
sation system.

We have succeeded in developing a sound model of indemnity
claim frequency. We can be highly confident that an indemnity
frequency benefit utilization response exists and is statistically
significant. This response is remarkably stable over different time
periods, a variety of economic variables, and the inclusion or
exclusion of a variable that captures changes in the non-benefit-
related discretionary element in the workers compensation sys-
tem. Our estimate of the utilization response to changes in in-
demnity benefit levels does not differ significantly from those
of prior studies, yet the model has improved on the accuracy of
the estimate and the level of confidence in the pure premium
ratemaking adjustment. While there is still much to be learned,
we are pleased to have made one solid step forward to a better
understanding of workers compensation benefit utilization.
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EXHIBIT 6

PART 1

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #1

Multiple Regression Analysis

Dependent variable: IndFrq

Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT "4:911830 1.070660 "4:58767 0.0010
CYIndBL 0:286573 0.069859 4:10215 0.0021
PCUGA 1 "0:209370 0.038628 "5:42019 0.0003
PCUGA 2 0:299701 0.170568 1:75708 0.1094
CumInjNDX 0:308297 0.042620 7:23363 0.0000

Analysis of Variance

Sum of Degrees of Mean Square
Source Squares Freedom Error F-Ratio P-Value

Model 674.4880 4 168.6220 26.4462 0.0000
Residual 63.7604 10 6.3760

Total (Corr.) 738.2484 14

R-squared = 91:3633 percent
R-squared (adjusted for d.f.) = 87:9086 percent
Standard Error of Est. = 2:52508
Mean absolute error = 1:65922
Durbin–Watson statistic = 2:14752

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relation-
ship between IndFrq and 4 independent variables. The equation of the fitted model is

IndFrq ="4:91183+0:286573#CYIndBL" 0:20937#PCUGA 1
+0:299701#PCUGA 2+0:308297#CumInjNDX:

Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship
between the variables at the 99% confidence level.
The R-Squared statistic indicates that the model as fitted explains 91.3633% of the variability in

IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different
numbers of independent variables, is 87.9086%. The standard error of the estimate shows the standard
deviation of the residuals to be 2.52508. This value can be used to construct prediction limits for new
observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of
1.65922 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals
to determine if there is any significant correlation based on the order in which they occur in your
data file. Since the DW value is greater than 1.4, there is probably not any serious autocorrelation in
the residuals.
In determining whether the model can be simplified, notice that the highest P-value on the inde-

pendent variables is 0.1094, belonging to PCUGA 2. Since the P-value is greater or equal to 0.10, that
term is not statistically significant at the 90% or higher confidence level. Consequently, you should
consider removing PCUGA 2 from the model.
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EXHIBIT 6

PART 2

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #2

Multiple Regression Analysis

Dependent variable: IndFrq

Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT "3:580310 0.824978 "4:33988 0.0012
CYIndBL 0:261897 0.074644 3:50862 0.0049
PCUGA 1 "0:214998 0.041989 "5:12040 0.0003
CumInjNDX 0:301076 0.046272 6:50673 0.0000

Analysis of Variance

Sum of Degrees of Mean Square
Source Squares Freedom Error F-Ratio P-Value

Model 654.8030 3 218.2677 28.77271 0.0000
Residual 83.4452 11 7.5859

Total (Corr.) 738.2480 14

R-squared = 88:6969 percent
R-squared (adjusted for d.f.) = 85:6142 percent
Standard Error of Est. = 2:75426
Mean absolute error = 1:95774
Durbin–Watson statistic = 1:71858

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relation-
ship between IndFrq and 3 independent variables. The equation of the fitted model is

IndFrq ="3:58031+0:261897 # CYIndBL" 0:214998#PCUGA 1+0:301076#CumInjNDX
Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship
between the variables at the 99% confidence level.
The R-Squared statistic indicates that the model as fitted explains 88.6969% of the variability in

IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different
numbers of independent variables, is 85.6142%. The standard error of the estimate shows the standard
deviation of the residuals to be 2.75426. This value can be used to construct prediction limits for new
observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of
1.95774 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals
to determine if there is any significant correlation based on the order in which they occur in your
data file. Since the DW value is greater than 1.4, there is probably not any serious autocorrelation in
the residuals.
In determining whether the model can be simplified, notice that the highest P-value on the inde-

pendent variables is 0.0049, belonging to CYIndBL. Since the P-value is less than 0.01, the highest
order term is statistically significant at the 99% confidence level. Consequently, you probably don’t
want to remove any variables from the model.
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EXHIBIT 6

PART 3

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #3

Multiple Regression Analysis

Dependent variable: IndFrq

Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT "7:726190 1.297840 "5:95310 0.0001
CYIndBL 0:272918 0.084933 3:21332 0.0093
PCGA 1 0:649210 0.141971 4:57282 0.0010
PCGA 2 0:584624 0.442156 1:32221 0.2155
CumInjNDX 0:290403 0.051592 5:62879 0.0002

Analysis of Variance

Sum of Degrees of Mean Square
Source Squares Freedom Error F-Ratio P-Value

Model 650.7490 4 162.6873 18.5931 0.0001
Residual 87.4989 10 8.7499

Total (Corr.) 738.2479 14

R-squared = 88:1478 percent
R-squared (adjusted for d.f.) = 83:4069 percent
Standard Error of Est. = 2:95802
Mean absolute error = 1:9507
Durbin–Watson statistic = 2:07557

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relation-
ship between IndFrq and 4 independent variables. The equation of the fitted model is

IndFrq = "7:72619+0:272918#CYIndBL+0:64921#PCGA 1
+0:584624#PCGA 2+0:290403#CumInjNDX

Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship
between the variables at the 99% confidence level.
The R-Squared statistic indicates that the model as fitted explains 88.1478% of the variability in

IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different
numbers of independent variables, is 83.4069%. The standard error of the estimate shows the standard
deviation of the residuals to be 2.95802. This value can be used to construct prediction limits for new
observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of
1.9507 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to
determine if there is any significant correlation based on the order in which they occur in your data
file. Since the DW value is greater than 1.4, there is probably not any serious autocorrelation in the
residuals.
In determining whether the model can be simplified, notice that the highest P-value on the inde-

pendent variables is 0.2155, belonging to PCGA 2. Since the P-value is greater or equal to 0.10, that
term is not statistically significant at the 90% or higher confidence level. Consequently, you should
consider removing PCGA 2 from the model.
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EXHIBIT 6

PART 4

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #4

Multiple Regression Analysis

Dependent variable: IndFrq

Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT "7:726180 1.297840 "5:95310 0.0001
CYIndBL 0:272919 0.084933 3:21332 0.0093
CYrGSP 0:769158 0.420688 1:82834 0.0974
CYAggE 0:414309 0.196672 2:10660 0.0614
CumInjNDX 0:290403 0.051592 5:62879 0.0002

Analysis of Variance

Sum of Degrees of Mean Square
Source Squares Freedom Error F-Ratio P-Value

Model 650.7490 4 162.6873 18.5931 0.0001
Residual 87.4989 10 8.7499

Total (Corr.) 738.2479 14

R-squared = 88:1478 percent
R-squared (adjusted for d.f.) = 83:4069 percent
Standard Error of Est. = 2:95802
Mean absolute error = 1:9507
Durbin–Watson statistic = 2:07557

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relation-
ship between IndFrq and 4 independent variables. The equation of the fitted model is

IndFrq ="7:72618+0:272919#CYIndBL+0:769158#CYrGSP
+0:414309#CYAggE+0:290403#CumInjNDX:

Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship
between the variables at the 99% confidence level.
The R-Squared statistic indicates that the model as fitted explains 88.1478% of the variability in

IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different
numbers of independent variables, is 83.4069%. The standard error of the estimate shows the standard
deviation of the residuals to be 2.95802. This value can be used to construct prediction limits for new
observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of
1.9507 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to
determine if there is any significant correlation based on the order in which they occur in your data
file. Since the DW value is greater than 1.4, there is probably not any serious autocorrelation in the
residuals.
In determining whether the model can be simplified, notice that the highest P-value on the inde-

pendent variables is 0.0974, belonging to CYrGSP. Since the P-value is less than 0.10, that term is
statistically significant at the 90% confidence level. Depending on the confidence level at which you
wish to work, you may or may not decide to remove CYrGSP from the model.
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EXHIBIT 6

PART 5

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #5

Multiple Regression Analysis

Dependent variable: IndFrq

Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT "6:852850 1.154560 "5:93544 0.0001
CYIndBL 0:309052 0.083107 3:71872 0.0034
PCGA 1 0:642720 0.146633 4:38319 0.0011
CumInjNDX 0:308337 0.051443 5:99380 0.0001

Analysis of Variance

Sum of Degrees of Mean Square
Source Squares Freedom Error F-Ratio P-Value

Model 635.4530 3 211.8177 22.6662 0.0001
Residual 102.7960 11 9.3451

Total (Corr.) 738.2490 14

R-squared = 86:0757 percent
R-squared (adjusted for d.f.) = 82:2782 percent
Standard Error of Est. = 3:05697
Mean absolute error = 2:09204
Durbin–Watson statistic = 2:27098

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relation-
ship between IndFrq and 3 independent variables. The equation of the fitted model is

IndFrq ="6:85285+0:309052#CYIndBL+0:64272#PCGA 1+0:308337#CumInjNDX
Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship
between the variables at the 99% confidence level.
The R-Squared statistic indicates that the model as fitted explains 86.0757% of the variability in

IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different
numbers of independent variables, is 82.2782%. The standard error of the estimate shows the standard
deviation of the residuals to be 3.05697. This value can be used to construct prediction limits for new
observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of
2.09204 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals
to determine if there is any significant correlation based on the order in which they occur in your
data file. Since the DW value is greater than 1.4, there is probably not any serious autocorrelation in
the residuals.
In determining whether the model can be simplified, notice that the highest P-value on the inde-

pendent variables is 0.0034, belonging to CYIndBL. Since the P-value is less than 0.01, the highest
order term is statistically significant at the 99% confidence level. Consequently, you probably don’t
want to remove any variables from the model.
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EXHIBIT 6

PART 6

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #6

Multiple Regression Analysis

Dependent variable: IndFrq

Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT "6:384760 1.179070 "5:41509 0.0002
CYIndBL 0:321087 0.088928 3:61065 0.0041
CYAggE 0:648742 0.164242 3:94990 0.0023
CumInjNDX 0:314359 0.054959 5:71994 0.0001

Analysis of Variance

Sum of Degrees of Mean Square
Source Squares Freedom Error F-Ratio P-Value

Model 621.5000 3 207.1667 19.5192 0.0001
Residual 116.7480 11 10.6135

Total (Corr.) 738.2480 14

R-squared = 84:1858 percent
R-squared (adjusted for d.f.) = 79:8728 percent
Standard Error of Est. = 3:25783
Mean absolute error = 2:23537
Durbin–Watson statistic = 2:22488

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relation-
ship between IndFrq and 3 independent variables. The equation of the fitted model is

IndFrq ="6:38476+0:321087#CYIndBL+0:648742#CYAggE+0:314359#CumInjNDX
Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship
between the variables at the 99% confidence level.
The R-Squared statistic indicates that the model as fitted explains 84.1858% of the variability in

IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different
numbers of independent variables, is 79.8728%. The standard error of the estimate shows the standard
deviation of the residuals to be 3.25783. This value can be used to construct prediction limits for new
observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of
2.23537 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals
to determine if there is any significant correlation based on the order in which they occur in your
data file. Since the DW value is greater than 1.4, there is probably not any serious autocorrelation in
the residuals.
In determining whether the model can be simplified, notice that the highest P-value on the inde-

pendent variables is 0.0041, belonging to CYIndBL. Since the P-value is less than 0.01, the highest
order term is statistically significant at the 99% confidence level. Consequently, you probably don’t
want to remove any variables from the model.
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EXHIBIT 6

PART 7

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #7

Multiple Regression Analysis

Dependent variable: IndFrq

Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT "7:771980 1.486670 "5:22778 0.0003
CYIndBL 0:220530 0.093040 2:37028 0.0371
CYAggE 1:346940 0.365450 3:68569 0.0036
CumInjNDX 0:264735 0.057435 4:60930 0.0008

Analysis of Variance

Sum of Degrees of Mean Square
Source Squares Freedom Error F-Ratio P-Value

Model 611.9200 3 203.9733 17.7608 0.0002
Residual 126.3290 11 11.4845

Total (Corr.) 738.2490 14

R-squared = 82:888 percent
R-squared (adjusted for d.f.) = 78:2211 percent
Standard Error of Est. = 3:38887
Mean absolute error = 2:47812
Durbin–Watson statistic = 1:39268

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relation-
ship between IndFrq and 3 independent variables. The equation of the fitted model is

IndFrq = "7:77198+0:22053#CYIndBL+1:34694#CYrGSP+0:264735#CumInjNDX
Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship
between the variables at the 99% confidence level.
The R-Squared statistic indicates that the model as fitted explains 82.888% of the variability in

IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different
numbers of independent variables, is 78.2211%. The standard error of the estimate shows the standard
deviation of the residuals to be 3.38887. This value can be used to construct prediction limits for new
observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of
2.47812 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to
determine if there is any significant correlation based on the order in which they occur in your data
file. Since the DW value is less than 1.4, there may be some indication of serial correlation. Plot the
residuals versus row order to see if there is any pattern which can be seen.
In determining whether the model can be simplified, notice that the highest P-value on the inde-

pendent variables is 0.0371, belonging to CYIndBL. Since the P-value is less than 0.05, that term is
statistically significant at the 95% confidence level. Consequently, you probably don’t want to remove
any variables from the model.
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EXHIBIT 11

PART 1

STATGRAPHICS PLUS REGRESSION RESULTS

Multiple Regression Analysis

Dependent variable: IndFrq

Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT "1:579230 1.698230 "0:92993 0.3610
CYIndBL 0:321818 0.153038 2:10287 0.0453
PCGA 1 0:477622 0.240282 1:98775 0.0575

Analysis of Variance

Sum of Degrees of Mean Square
Source Squares Freedom Error F-Ratio P-Value

Model 360.9690 2 180.4845 4.574216 0.0199
Residual 1025.8800 26 39.4569

Total (Corr.) 1386.8490 28

R-squared = 26:028 percent
R-squared (adjusted for d.f.) = 20:3379 percent
Standard Error of Est. = 6:28147
Mean absolute error = 4:3111
Durbin–Watson statistic = 1:19885

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relation-
ship between IndFrq and 2 independent variables. The equation of the fitted model is

IndFrq ="1:57923+0:321818#CYIndBL+0:477622#PCGA 1
Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant relationship
between the variables at the 95% confidence level.
The R-Squared statistic indicates that the model as fitted explains 26.028% of the variability in

IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different
numbers of independent variables, is 20.3379%. The standard error of the estimate shows the standard
deviation of the residuals to be 6.28147. This value can be used to construct prediction limits for new
observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of
4.3111 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to
determine if there is any significant correlation based on the order in which they occur in your data
file. Since the DW value is less than 1.4, there may be some indication of serial correlation. Plot the
residuals versus row order to see if there is any pattern which can be seen.
In determining whether the model can be simplified, notice that the highest P-value on the inde-

pendent variables is 0.0575, belonging to PCGA 1. Since the P-value is less than 0.10, that term is
statistically significant at the 90% confidence level. Depending on the confidence level at which you
wish to work, you may or may not decide to remove PCGA 1 from the model.
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EXHIBIT 11

PART 2

STATGRAPHICS PLUS REGRESSION RESULTS

Multiple Regression Analysis

Dependent variable: IndFrq

Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT "1:188410 1.610480 "0:73792 0.4672
CYIndBL 0:330217 0.153726 2:14809 0.0412
CYAggE 0:481486 0.254616 1:89103 0.0698

Analysis of Variance

Sum of Degrees of Mean Square
Source Squares Freedom Error F-Ratio P-Value

Model 347.9560 2 173.9780 4.354097 0.0234
Residual 1038.8900 26 39.9573

Total (Corr.) 1386.8460 28

R-squared = 25:0897 percent
R-squared (adjusted for d.f.) = 19:3274 percent
Standard Error of Est. = 6:32119
Mean absolute error = 4:36516
Durbin–Watson statistic = 1:19294

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relation-
ship between IndFrq and 2 independent variables. The equation of the fitted model is

IndFrq ="1:18841+0:330217#CYIndBL+0:481486#CYAggE:
Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant relationship
between the variables at the 95% confidence level.
The R-Squared statistic indicates that the model as fitted explains 25.0897% of the variability in

IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different
numbers of independent variables, is 19.3274%. The standard error of the estimate shows the standard
deviation of the residuals to be 6.32119. This value can be used to construct prediction limits for new
observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of
4.36516 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to
determine if there is any significant correlation based on the order in which they occur in your data
file. Since the DW value is less than 1.4, there may be some indication of serial correlation. Plot the
residuals versus row order to see if there is any pattern which can be seen.
In determining whether the model can be simplified, notice that the highest P-value on the inde-

pendent variables is 0.0698, belonging to CYAggE. Since the P-value is less than 0.10, that term is
statistically significant at the 90% confidence level. Depending on the confidence level at which you
wish to work, you may or may not decide to remove CYAggE from the model.
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EXHIBIT 11

PART 3

STATGRAPHICS PLUS REGRESSION RESULTS

Multiple Regression Analysis

Dependent variable: IndFrq

Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT "2:593800 2.146440 "1:20842 0.2378
CYIndBL 0:287312 0.156838 1:83191 0.0784
CYrGSP 1:016480 0.539883 1:88279 0.0710

Analysis of Variance

Sum of Degrees of Mean Square
Source Squares Freedom Error F-Ratio P-Value

Model 346.8620 2 173.4310 4.3358 0.0237
Residual 1039.9850 26 39.9994

Total (Corr.) 1386.8470 28

R-squared = 25:0108 percent
R-squared (adjusted for d.f.) = 19:2424 percent
Standard Error of Est. = 6:32451
Mean absolute error = 4:08829
Durbin–Watson statistic = 1:09492

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relation-
ship between IndFrq and 2 independent variables. The equation of the fitted model is

IndFrq ="2:5938+0:287312#CYIndBL+1:01648#CYrGSP:
Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant relationship
between the variables at the 95% confidence level.
The R-Squared statistic indicates that the model as fitted explains 25.0108% of the variability in

IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different
numbers of independent variables, is 19.2424%. The standard error of the estimate shows the standard
deviation of the residuals to be 6.32451. This value can be used to construct prediction limits for new
observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of
4.08829 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to
determine if there is any significant correlation based on the order in which they occur in your data
file. Since the DW value is less than 1.4, there may be some indication of serial correlation. Plot the
residuals versus row order to see if there is any pattern which can be seen.
In determining whether the model can be simplified, notice that the highest P-value on the inde-

pendent variables is 0.0784, belonging to CYIndBL. Since the P-value is less than 0.10, that term is
statistically significant at the 90% confidence level. Depending on the confidence level at which you
wish to work, you may or may not decide to remove CYIndBL from the model.
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EXHIBIT 11

PART 4

STATGRAPHICS PLUS REGRESSION RESULTS

Multiple Regression Analysis

Dependent variable: IndFrq

Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT 0:938789 1.304640 0:71958 0.4782
CYIndBL 0:316254 0.154940 2:04114 0.0515
PCUGA 1 "0:125809 0.068556 "1:83512 0.0780

Analysis of Variance

Sum of Degrees of Mean Square
Source Squares Freedom Error F-Ratio P-Value

Model 340.5860 2 170.2930 4.2319 0.0256
Residual 1046.2600 26 40.2408

Total (Corr.) 1386.8460 28

R-squared = 24:5583 percent
R-squared (adjusted for d.f.) = 18:7551 percent
Standard Error of Est. = 6:34357
Mean absolute error = 4:26624
Durbin–Watson statistic = 0:989726

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relation-
ship between IndFrq and 2 independent variables. The equation of the fitted model is

IndFrq = 0:938789+0:316254#CYIndBL" 0:125809#PCUGA 1:
Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant relationship
between the variables at the 95% confidence level.
The R-Squared statistic indicates that the model as fitted explains 24.5583% of the variability in

IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different
numbers of independent variables, is 18.7551%. The standard error of the estimate shows the standard
deviation of the residuals to be 6.34357. This value can be used to construct prediction limits for new
observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of
4.26624 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to
determine if there is any significant correlation based on the order in which they occur in your data
file. Since the DW value is less than 1.4, there may be some indication of serial correlation. Plot the
residuals versus row order to see if there is any pattern which can be seen.
In determining whether the model can be simplified, notice that the highest P-value on the inde-

pendent variables is 0.0780, belonging to PCUGA 1. Since the P-value is less than 0.10, that term is
statistically significant at the 90% confidence level. Depending on the confidence level at which you
wish to work, you may or may not decide to remove PCUGA 1 from the model.
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APPENDIX A

PART 2

DEVELOPMENT OF INDEX TO ADJUST FOR
WAGE LEVEL CHANGES

(B)! 1,000 19yy! 100
(A) (B) (C) (C) 1987

Class Experience Exposure (000s)
Wages Employees Avg Index

Year (millions) (thousands) Wage 1987 = 100 Nominal Real

1961 30,770 6,036 5,097.75 22.3 21,877,687 98,107,006
1962 33,260 6,262 5,311.40 23.2 23,612,513 101,627,186
1963 35,674 6,457 5,524.86 24.2 25,228,415 104,386,854

1964 38,273 6,659 5,747.56 25.1 26,203,849 104,221,777
1965 40,751 6,855 5,944.71 26.0 28,887,463 111,085,011
1966 44,914 7,218 6,222.50 27.2 31,220,478 114,696,870
1967 48,141 7,242 6,647.47 29.1 33,123,452 113,908,431
1968 52,824 7,369 7,168.41 31.4 37,504,640 119,602,193
1969 57,917 7,508 7,714.04 33.7 39,913,331 118,280,474
1970 61,250 7,575 8,085.81 35.4 40,951,049 115,775,975
1971 63,919 7,669 8,334.72 36.5 43,254,887 118,637,181
1972 69,895 7,996 8,741.25 38.2 47,004,364 122,925,428
1973 76,904 8,286 9,281.20 40.6 50,834,927 125,208,865
1974 84,419 8,638 9,772.98 42.8 54,238,668 126,869,984
1975 90,864 8,598 10,568.04 46.2 57,738,551 124,895,945
1976 100,674 8,990 11,198.44 49.0 62,193,123 126,958,448
1977 112,616 9,513 11,838.12 51.8 67,671,264 130,676,822
1978 128,880 10,137 12,713.82 55.6 75,054,494 134,951,430
1979 146,995 10,566 13,912.08 60.9 82,723,286 135,929,178
1980 164,271 10,794 15,218.73 66.6 89,813,215 134,908,287
1981 182,659 10,938 16,699.49 73.1 98,778,141 135,218,017
1982 193,764 10,967 17,667.91 77.3 103,443,974 133,843,357
1983 207,897 11,095 18,737.90 82.0 114,266,699 139,404,129
1984 230,983 11,631 19,859.26 86.9 129,672,576 149,266,396
1985 251,818 12,048 20,901.23 91.4 140,891,926 154,095,929
1986 270,983 12,442 21,779.70 95.3 153,916,015 161,550,696
1987 295,946 12,946 22,860.03 100.0 167,173,336 167,173,336
1988 320,917 13,385 23,975.87 104.9 181,245,258 172,810,122
1989 343,861 13,780 24,953.63 109.2 193,896,851 177,629,021
1990 368,635 14,286 25,803.93 112.9 197,318,717 174,807,166
1991 373,138 13,978 26,694.66 116.8 198,907,627 170,334,988
1992 383,971 13,939 27,546.52 120.5 200,370,929 166,281,823

1993 384,784 13,885 27,712.21 121.2 202,247,504 166,835,674
1994 395,707 14,141 27,982.96 122.4 210,773,228 172,186,345

Sources: Wages: California Statistical Abstract 1995, “Personal Income in California by Major Source
1969 to 1994”
Employees: California Statistical Abstract, “Employment and Unemployment, California and
Metropolitan Areas”
Exposure: WCIRB of California Class Experience (1961—88 3rd Report; 1989–1990 5th Report,
1991 4th Report, 1992 3rd Report, 1993 2nd Report and 1994 1st Report; 1990–1994 Preliminary
Summary as of 11/12/96).
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APPENDIX C

PART 1

DEVELOPMENT OF CANDIDATE VARIABLES
CALIFORNIA AGGREGATE EMPLOYMENT

Avg Monthly Annual Percent
Year Employees Change

1961 3,891,683 —
1962 4,071,877 4:6302
1963 4,216,436 3:5502
1964 4,346,448 3:0835
1965 4,464,625 2:7189
1966 4,707,406 5:4379
1967 4,840,158 2:8201
1968 5,041,894 4:1680
1969 5,272,325 4:5703
1970 5,240,190 "0:6095
1971 5,189,637 "0:9647
1972 5,913,892 13:9558
1973 6,383,331 7:9379
1974 6,588,356 3:2119
1975 6,564,524 "0:3617
1976 7,130,103 8:6157
1977 7,543,268 5:7947
1978 9,036,931 19:8013
1979 9,448,087 4:5497
1980 10,083,911 6:7297
1981 10,256,167 1:7082
1982 10,131,806 "1:2125
1983 10,312,305 1:7815
1984 10,900,212 5:7010
1985 11,378,074 4:3840
1986 11,644,237 2:3393
1987 12,094,751 3:8690
1988 12,556,920 3:8212
1989 13,005,986 3:5762
1990 13,328,057 2:4763
1991 12,796,072 "3:9915
1992 12,490,570 "2:3875
1993 12,253,883 "1:8949
1994 12,500,754 2:0146

Source: CA Statistical Abstract—Average Monthly Employment
Covered by Unemployment Insurance—All Industries
(1970 for 1961–1969; 1995 for 1970–1994).
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APPENDIX C

PART 2

DEVELOPMENT OF CANDIDATE VARIABLES
CALIFORNIA REAL GROSS STATE PRODUCT

Annual ChangeCA GSP Deflator Pct. Change
Year $ Millions 1982 = 100 CA GSP Deflator CA Real GSP

1961 — — — — —
1962 — — — — —
1963 65,905 31.4 — — —
1964 70,928 32.1 1.0762 1.0223 5:2747
1965 75,887 33.1 1.0699 1.0312 3:7592
1966 83,006 34.5 1.0938 1.0423 4:9424
1967 88,653 36.1 1.0680 1.0464 2:0695
1968 97,995 38.0 1.1054 1.0526 5:0108
1969 105,766 40.0 1.0793 1.0526 2:5335
1970 111,631 42.3 1.0555 1.0575 "0:1936
1971 119,192 44.9 1.0677 1.0615 0:5903
1972 132,199 47.0 1.1091 1.0468 5:9570
1973 146,473 49.9 1.1080 1.0617 4:3582
1974 160,979 53.9 1.0990 1.0802 1:7474
1975 179,858 59.1 1.1173 1.0965 1:8971
1976 201,536 62.9 1.1205 1.0643 5:2834
1977 227,590 67.3 1.1293 1.0700 5:5446

Series After Department of Commerce Methodology Revised

Annual ChangeCurrent Deflator Pct. Change
Year Dollars 1987 = 100 CA GSP Deflator CA Real GSP

1977 224,501 55.7 — — —
1978 255,552 60.2 1.1383 1.0808 5:3221
1979 287,821 65.4 1.1263 1.0864 3:6721
1980 319,804 71.5 1.1111 1.0933 1:6326
1981 358,920 78.4 1.1223 1.0965 2:3537
1982 382,317 83.5 1.0652 1.0651 0:0128
1983 416,061 86.6 1.0883 1.0371 4:9306
1984 468,127 90.5 1.1251 1.0450 7:6654
1985 511,110 93.7 1.0918 1.0354 5:4532
1986 552,110 96.5 1.0802 1.0299 4:8874
1987 599,088 100.0 1.0851 1.0363 4:7110
1988 650,313 103.9 1.0855 1.0390 4:4759
1989 702,755 108.2 1.0806 1.0414 3:7695
1990 752,761 113.1 1.0712 1.0453 2:4750
1991 767,189 117.5 1.0192 1.0389 "1:8998
1992 787,896 120.8 1.0270 1.0281 "0:1064
1993 — — — — —
1994 — — — — —

Source: U.S. Dept of Commerce, Bureau of Economic Analysis (1995 California Statistical Abstract).
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APPENDIX C

PART 3

DEVELOPMENT OF CANDIDATE VARIABLES
CALIFORNIA UNEMPLOYMENT RATE

Unemployment Annual Percent
Year Rate Change

1961 6.9 —
1962 5.8 "15:9420
1963 6.0 3:4483
1964 6.0 0:0000
1965 5.9 "1:6667
1966 4.9 "16:9492
1967 5.7 16:3265
1968 5.4 "5:2632
1969 5.2 "3:7037
1970 7.3 40:3846
1971 8.8 20:5479
1972 7.6 "13:6364
1973 7.0 "7:8947
1974 7.3 4:2857
1975 9.9 35:6164
1976 9.2 "7:0707
1977 8.2 "10:8696
1978 7.1 "13:4146
1979 6.2 "12:6761
1980 6.8 9:6774
1981 7.4 8:8235
1982 9.9 33:7838
1983 9.7 "2:0202
1984 7.8 "19:5876
1985 7.2 "7:6923
1986 6.7 "6:9444
1987 5.8 "13:4328
1988 5.3 "8:6207
1989 5.1 "3:7736
1990 5.6 9:8039
1991 7.5 33:9286
1992 9.1 21:3333
1993 9.2 1:0989

Source: CA Statistical Abstract (1970 for 1961–1967; 1974 for 1967–1969; 1995 for 1970–1994).
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APPENDIX D

HAZARDOUSNESS INDICES

Indemnity Frequency Hazardousness Index

To measure the change in hazardousness from policy year to
policy year, each classification was first assigned to one of fifteen
groups of similar hazardousness of both frequency and severity.
The fifteen groups were developed from California’s nine ret-
rospective rating hazard groups. Each of the fifteen groups is a
subset of one retrospective rating hazard group. That is, all mem-
bers of a group share the same retrospective rating hazard group
or severity profile. Several hazard groups were not subdivided
because their classifications’ frequency profiles were reasonably
homogenous. In all calculations, a class used the frequencies of
its respective group.

The change in hazardousness for year t was then calculated
in two ways. First, the exposures for year t+1 were extended
by the indemnity frequencies for year t and this sum divided by
the exposures for year t extended by the indemnity frequency
for year t. This is the Laspeyres method. Second, the exposures
for year t+1 were extended by the indemnity frequency for year
t+1 and this sum divided by the exposures for year t extended
by the indemnity frequency for year t+1. This is the Paasche
method. The geometric mean was then taken of the Laspeyres
and Paasche indices. This geometric mean is a Fisher index and
the index selected to measure the change in hazardousness for
year t.

Indemnity Pure Premium Hazardousness Index

The same procedure was performed to develop the indemnity
pure premium hazardousness index except that, instead of using
frequencies, indemnity pure premiums were used.
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APPENDIX E

PART 2

FACTOR TO ADJUST LITIGATION RATE TO INDEMNITY
CLAIMS ONLY BASIS

A B A+B (A+B)=B

Incurred Claims
Correction

Year Med-Only Indemnity Total Factor

1961 590,123 89,341 679,464 7.6053
1962 610,218 95,745 705,963 7.3734
1963 621,304 99,376 720,680 7.2521
1964 613,813 99,559 713,372 7.1653
1965 624,771 103,549 728,320 7.0336
1966 640,366 107,601 747,967 6.9513
1967 645,128 109,981 755,109 6.8658
1968 654,184 118,573 772,757 6.5171
1969 659,713 124,065 783,778 6.3175
1970 606,247 117,435 723,682 6.1624
1971 619,880 122,227 742,107 6.0715
1972 692,801 133,475 826,276 6.1905
1973 675,018 154,932 829,950 5.3569
1974 605,127 186,491 791,618 4.2448
1975 584,591 193,222 777,813 4.0255
1976 611,465 206,908 818,373 3.9553
1977 636,973 223,863 860,836 3.8454
1978 654,758 242,645 897,403 3.6984
1979 650,266 236,912 887,178 3.7448
1980 613,630 223,191 836,821 3.7493
1981 574,589 211,710 786,299 3.7140
1982 527,867 203,441 731,308 3.5947
1983 584,794 233,559 818,353 3.5038
1984 627,773 271,618 899,391 3.3112
1985 617,048 272,771 889,819 3.2621
1986 608,364 275,370 883,734 3.2093
1987 627,052 292,759 919,811 3.1419
1988 623,028 302,703 925,731 3.0582
1989 630,176 324,655 954,831 2.9411
1990 602,945 344,132 947,077 2.7521
1991 562,022 317,859 879,881 2.7681
1992 514,609 252,344 766,953 3.0393
1993 447,016 207,407 654,423 3.1553

Source: W.C.I.R.B. of California Unit Statistical Reporting Plan.
California Class Experience at 3rd report except 1992 at 2nd and 1993 at 1st report.
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APPENDIX F

RATIO OF CUMULATIVE INJURIES TO TOTAL INDEMNITY
CLAIMS

Total Cumulative Total Cumulative# Percent
Cumulative Indemnity Indemnity Total Indemnity Change

Year Injuries Injuries Claims Claims (%) in Ratio

1977 6,665 5,895 223,511 2.6375 —
1978 6,811 5,951 235,645 2.5254 "4:2482
1979 6,347 5,567 236,012 2.3588 "6:5982
1980 5,862 4,943 223,191 2.2147 "6:1084
1981 5,510 4,964 211,709 2.3447 5:8714
1982 6,717 6,032 203,441 2.9650 26:4534
1983 11,122 7,656 233,559 3.2780 10:5560
1984 14,041 10,506 271,618 3.8679 17:9977
1985 16,096 11,651 272,771 4.2713 10:4298
1986 16,195 12,254 275,370 4.4500 4:1829
1987 17,648 13,504 292,759 4.6127 3:6552
1988 21,103 15,948 302,703 5.2685 14:2187
1989 29,190 20,971 324,000 6.4725 22:8527
1990 41,568 29,318 345,517 8.4853 31:0964
1991 45,805 30,437 317,842 9.5761 12:8563
1992 27,075 15,977 251,233 6.3594 "33:5908
1993 17,561 9,360 207,412 4.5128 "29:0384
1994 16,365 8,590 200,642 4.2813 "5:1299

Source: W.C.I.R.B. of California Unit Statistical Reporting Plan.
California Class Experience at most current report level as of 4/22/97.



CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION 255

APPENDIX G

PART 1

DEVELOPMENT OF PRINCIPAL COMPONENTS
OF ECONOMIC VARIABLES

STATGRAPHICS PLUS RESULTS

CALIFORNIA AGGREGATE EMPLOYMENT
AND REAL GROSS STATE PRODUCT

Analysis Summary

Data variables:
Annual Percent Change in CY AggE
Annual Percent Change in CY rGSP

Data input: observations
Number of complete cases: 29
Missing value treatment: listwise
Standardized: no

Number of components extracted: 2

PRINCIPAL COMPONENTS ANALYSIS

Component Percent of Cumulative
Number Eigenvalue Variance Percentage

1 24.5843 90.363 90.363
2 2.6220 9.637 100.000

This procedure performs a principal components analysis. The
purpose of the analysis is to obtain a small number of linear
combinations of the two variables which account for most of the
variability in the data.
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TABLE OF COMPONENT WEIGHTS

Variable Component Component
(Annual Percent Change) 1 2

CYAggE 0.941545 "0:336888
CYrGSP 0.336888 0:941545

For example, the first principal component has the equation:

(0:941545!Annual Percent Change CYAggE)
+ (0:336888!Annual Percent Change CYrGSP)
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APPENDIX G

PART 2

DEVELOPMENT OF PRINCIPAL COMPONENTS
OF ECONOMIC VARIABLES

STATGRAPHICS PLUS RESULTS

CALIFORNIA AGGREGATE EMPLOYMENT, REAL GROSS STATE
PRODUCT AND UNEMPLOYMENT RATE

Analysis Summary

Data variables:
Annual Percent Change in CY AggE
Annual Percent Change in CY rGSP
Annual Percent Change in CY UnEmp

Data input: observations
Number of complete cases: 29
Missing value treatment: listwise
Standardized: no

Number of components extracted: 3

PRINCIPAL COMPONENTS ANALYSIS

Component Percent of Cumulative
Number Eigenvalue Variance Percentage

1 309.5550 96.098 96.098
2 11.5599 3.589 99.687
3 1.0082 0.313 100.000

This procedure performs a principal components analysis. The
purpose of the analysis is to obtain a small number of linear
combinations of the three variables which account for most of
the variability in the data.
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TABLE OF COMPONENT WEIGHTS

Variable Component Component Component
(Annual Percent Change) 1 2 3

CYAggE "0:188211 0.980960 "0:047901
CYrGSP "0:115259 0.026374 0:992985
CYUnEmp 0:975342 0.192412 0:108101

For example, the first principal component has the equation:

("0:188211!Annual Percent Change CYAggE)
" (0:115259!Annual Percent Change CYrGSP)
+ (0:975342!Annual Percent Change CYUnEmp)
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WORKERS COMPENSATION RESERVE UNCERTAINTY

DOUGLAS M. HODES, SHOLOM FELDBLUM,
AND GARY BLUMSOHN

Abstract

The increased emphasis on solvency monitoring of in-
surance companies, along with the American Academy
of Actuaries’ vision of an expanded role for the Ap-
pointed Actuary, have stimulated reserving specialists
to quantify the uncertainty in their estimates. This pa-
per measures the uncertainty in workers compensation
loss reserve indications, compares it to the “implicit in-
terest margin” in statutory (undiscounted) reserves, and
examines the implications for capital requirements.
The paper uses a stochastic simulation analysis to

model the loss reserving process, with separate but inter-
linked components for the process risk of loss develop-
ment, the parameter risk of estimating future age-to-age
link ratios, and autocorrelated future interest rates. In
addition, the past monetary inflation implicit in paid loss
development link ratios is replaced with stochastically
generated future inflation rates that are linked to both
the concurrent interest rates and the previous year’s dif-
ferential between the inflation rate and the interest rate.
Separate simulations are performed for each accident
year, and loss development tail factors are generated by
an inverse power curve fit to extend the development
from 23 years to ultimate.
An “expected policyholder deficit ratio” procedure is

used to calibrate the capital needed to guard against
reserve uncertainty. Because of the statutory benefits in
workers compensation, the steady payment patterns, and
the long average duration of compensation reserves, the
implicit interest margin in statutory reserves exceeds the

263
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capital required to guard against the variability in the
reserve estimates at a 1% expected policyholder deficit
level.
The appendices to the paper contain descriptions of

the simulation procedures, as well as a comparison of
the paper’s conclusions with those of the NAIC’s risk-
based capital formula.
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1. INTRODUCTION

Actuaries have developed a host of techniques for producing
point estimates of indicated reserves. Current regulatory con-
cerns, as reflected in the NAIC’s risk-based capital requirements,
and developing actuarial practice, as reflected in the American
Academy of Actuaries’ (AAA) vision of the future role of the
Appointed Actuary, now stress the uncertainty in the reserve es-
timates in addition to their expected values. This paper demon-
strates how the uncertainty in property/casualty loss reserves may
be analyzed, and it draws forth the implications for capital re-
quirements and actuarial opinions.

Genesis of this Paper

This paper was stimulated by the NAIC’s risk-based capital
efforts and by the AAA’s vision of the valuation actuary:

! The reserving risk charge, which measures the potential for
unanticipated adverse loss development by line of business,
is the centerpiece of the NAIC property/casualty risk-based
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capital formula, accounting for about 40% of total capital re-
quirements before the covariance adjustment and about 50%
after the covariance adjustment (see Feldblum [23]). Because
good actuarial analyses of loss reserve uncertainty are still
lacking, the reserving risk charges were based on simple ex-
trapolations from past experience, with a large dose of subjec-
tive judgment to keep the results reasonable.

! The Appointed Actuary presently opines on the reasonable-
ness of the Annual Statement’s point estimates of loss and
loss adjustment expense reserves. The American Academy of
Actuaries envisions an expanded role, in which the actuary
opines on the financial strength of a company under a vari-
ety of future conditions (see [1]). The greater the uncertainty
in the reserves, the greater the range of reasonable financial
conditions that the actuary must consider.

Issues Addressed

This paper focuses on the uncertainty in workers compensa-
tion loss reserves. Specifically, it addresses the following issues:

! How should the uncertainty in loss reserves be measured? In
other words: How might the variability in the loss reserve es-
timates best be quantified?

! What insurance characteristics, such as payment patterns and
contract obligations, affect reserve uncertainty?

! How does the measure of variability that underlies risk-based
capital requirements differ from the measure of variability that
underlies the actuarial opinion? More specifically, how does
the variability of the discounted, “net” reserves (i.e., loss obli-
gations after consideration of return premiums and additional
premiums on retrospectively rated policies, valued on an eco-
nomic basis) differ from the variability of the undiscounted,
“gross” reserves?
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The Mixing of Lines

Why concentrate on workers compensation? Why not dis-
cuss property/casualty loss reserves in general, of which workers
compensation is but one instance?

This is one of the primary errors that have hampered past
analyses of loss reserve variability. Many observers have con-
trasted short-tailed lines like homeowners and commercial prop-
erty with long-tailed lines like general liability and automobile
liability, and they have noted the greater reserve uncertainty asso-
ciated with the latter lines of business. Consequently, they have
reasoned that reserve uncertainty is associated with the length
of the average payment lag (i.e., reserves with longer average
payment lags have greater uncertainty).

To see the error in this reasoning, let us extend the comparison
to life insurance reserves. Single premium traditional life annu-
ities have the longest reserve duration of the major life insurance
products. Yet these products have low reserving risk, since the
benefits are fixed at policy inception and mortality fluctuations
are low.1

The bulk of workers compensation loss reserves that per-
sist more than two or three years after the accident date are
lifetime pension cases. The indemnity portions of these claims
are disabled life annuities, with long duration and low reserve
fluctuation for large compensation carriers. For the major in-
surance companies, the longest workers compensation reserves
often have relatively low risk.2

1These products have significant interest rate risk, which is indeed affected by the av-
erage payment lag of the liabilities. For the quantification of interest rate risk for prop-
erty/casualty insurance companies and the implications for risk-based capital require-
ments, see Hodes and Feldblum [35].
2See Feldblum [19], which compares reserve uncertainty among four property/casualty
lines of business: workers compensation, automobile liability, products liability, and prop-
erty. Compare also Meyers [47], who deals with same issue: “The purpose of this paper
is to continue the debate on risk loading and discounting of loss reserves.”
Meyers deals with workers compensation pension reserves, which have the highest

ratio of implicit interest discount to reserve uncertainty, particularly for a large portfolio



WORKERS COMPENSATION RESERVE UNCERTAINTY 267

The Peculiarities of Compensation Reserves

The quantification of reserve uncertainty must begin with the
characteristics of the line of business. Four aspects of workers
compensation reserves that affect the level of uncertainty are
dealt with in this paper:

! Payment Lag and Discount: The previous section noted that
most compensation reserves that persist more than two or three
years after the accident date are lifetime pension cases. We
compared these to life annuities, which are low risk reserves
for large insurance companies. But the analogy is incomplete,
since the statutory accounting treatment differs for these two
types of business. Life annuities are discounted at rates close
to current corporate bond rates. (The statutory discount rate
for single premium immediate annuities—the life insurance
product most comparable to workers compensation pension
cases—issued in the first half of the 1990s is about 7% per
annum.)

Most property-casualty companies discount the indemnity
portion of workers compensation lifetime pension cases at
3.5% or 4% per annum, which is well below their actual in-
vestment earnings. All other claims, as well as the medical
portion of life pension cases, must be shown at undiscounted
values in the statutory statements. The analysis in this paper
indicates that the low fluctuations in these reserves, combined

of reserves. We look at the distribution of age-to-age link ratios, using a lognormal
assumption and a Bayesian analysis of parameter risk; Meyers looks at the distribution of
ultimate pension costs, using Makeham’s mortality curve, again with a Bayesian analysis
of the parameter risk. We use an expected policyholder deficit analysis, using a 1% EPD
ratio, to calculate capital requirements; Meyers uses a utility function analysis to calculate
the needed risk load. The two methods differ, though the results are similar: the implicit
interest discount overwhelms the needed risk load or capital requirement. See especially
Meyers’ Tables 6.1 and 6.2 on page 182. The needed risk load in Meyers’ illustration is
about $400,000, with some variance depending on the parameters chosen in the utility
function. The implicit risk load is $34.5 million assuming no tabular discounts and $9.3
million assuming tabular discounts at a 3.5% annual interest rate.
Hayne [32] shows a method of calibrating the uncertainty in the loss reserves based

on loss frequency and loss severity assumptions. Hayne demonstrates his method, but
does not provide numerical illustrations based on insurance data.
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with the large implicit interest margin, create enormous hidden
equity in statutory balance sheets.

! Statutory Benefits: What about non-pension cases? Do non-
pension compensation reserves have the same uncertainty as
many commercial liability reserves have? After all, industry
studies have found similarly strong underwriting cycles and
reserve adequacy cycles in several of these lines of business.3

Yes, underwriting results are driven by industry cycles, and
so underwriting results vary greatly from year to year, whether
in workers compensation, general liability, or automobile lia-
bility. But underwriting cycles reflect primarily the movement
of premium levels, not fluctuations in loss experience. Reserve
adequacy cycles are a secondary effect, driven by management
desires to smooth calendar year operating results. They reflect
the accounting treatment of company results, not the uncer-
tainty inherent in the reserves themselves.4

When a products liability or medical malpractice accident
occurs, the claim may not be reported for some time. Even
after the claim is reported, the case may not be settled until
years later, and the amount of the loss liability depends on the
vagaries of court decisions, societal opinion, and jury awards.
This is a major source of reserve uncertainty in the liability
lines of business.

In workers compensation, most claims are reported rapidly.
(It is hard for the employer to be unaware that a worker has
been injured on the job and is on disability leave.) Benefits
are mandated by statute, and disputes are resolved relatively
quickly by administrative judges. For the major countrywide
insurers with broad mixes of business, the paid-loss link ra-
tios, or “age-to-age” factors, are stable in workers compensa-

3On the relationship between underwriting cycles and workers compensation reserve
fluctuations, see Ryan and Fein [51] and Butsic [14].
4On the loss and premium effects of underwriting cycles, see Daykin, Pentikainen, and
Pesonen [17], Cummins, Harrington, and Klein [16], and Feldblum [24].
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tion, both for pension and for non-pension cases, unlike the
comparable factors for the liability lines of business.5

! Tail Development: But don’t workers compensation reserve
estimates need large “tail factors,” just as liability reserve es-
timates need? And aren’t these tail factors highly uncertain,
even as the liability tail factors are?

Volatile commercial liability tail factors often reflect the
emergence or the settlement of claims decades after the oc-
currence of the accident, such as toxic tort and environmental
liability claims. This is true reserve uncertainty.

Much of the volatility of workers compensation tail factors
stems from two causes:

1. First, mortality among permanently disabled workers,
particularly for insurers with smaller blocks of business,
is uncertain. For insurers with larger volumes of busi-
ness, mortality fluctuations are less significant for annu-
ity reserves.

2. Second, workers compensation tail factors are affected
by monetary inflation, both for cost of living adjustments
to indemnity benefits and for all aspects of medical ben-
efits. Inflation levels, especially for 30 or 40 years into
the future, are extremely uncertain. This is parameter
risk, not process risk, so it affects both large and small
insurers.

5This paper emphasizes reserve estimates drawn from paid loss development methods.
To avoid issues of company case reserving philosophy, we use loss payments only, not
case reserves or reported losses, to quantify the uncertainty in the loss reserve estimates.
Reserving procedures based on case incurred loss development methods depend on

company case reserving philosophy and stability. Some of the fluctuations in case re-
serves stem from different causes than the fluctuations in paid amounts. For instance,
many temporary total disability claims are subsequently reclassified as permanent dis-
ability claims, causing an immediate change in the case reserve.
We do not have independent information about the reserve uncertainty inherent in

case incurred reserving methods. The procedure used in this paper to quantify reserve
uncertainty is not directly applicable to “incurred” methods. Analysis of the uncertainty
in “paid” methods versus “incurred” methods would be a worthwhile subject for future
studies.
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This creates great uncertainty in the undiscounted reserve,
and the actuary opining on reserve adequacy for statutory
statements should consider a wide range of “reasonable” esti-
mates. But the economic value of the reserve is less affected
by long-term inflation rates for two reasons: (a) Much of the
effect of high long-term inflation rate scenarios appears after
10 or 15 years, when the present value of these payments is
much reduced. (b) The effect of high long-term inflation rates
is often partially offset by high long-term interest rates.

! Policy Type: The type of insurance contract—such as “large
dollar deductible” policy versus retrospectively rated policy—
affects the degree of reserve uncertainty. A high percentage of
the workers compensation contracts covering large employers
are retrospectively rated. That is, the premium paid by the em-
ployer (the insured) is a function of the incurred losses. If loss
reserves develop adversely, the insurer will collect additional
retrospective premiums from the employer.

For loss-sensitive contracts, estimates of reserve uncertainty
must be distinguished from their implications for capital re-
quirements and actuarial opinions. Risk-based capital require-
ments reflect the equity needs of the insurer. Similarly, the
envisioned future role of the appointed actuary is to opine on
the financial strength of the insurer under various future con-
ditions. To the extent that adverse loss development on a book
of business is offset by favorable premium development, the
financial condition of the insurer is unaffected, and there is
less need for additional equity.

Other types of new insurance products have the opposite
characteristics. Large dollar deductible policies and excess lay-
ers of coverage have higher reserve uncertainty per dollar of
“net” reserves (i.e., reserves for the excess layer). A work-
ers compensation reinsurer covering loss layers above high
retentions may experience reserve variability unlike that expe-
rienced by a primary insurance carrier.
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We may summarize the previous discussion in this section as
follows. The novice actuary sees an insurer’s large book of com-
pensation reserves, notes the long payment lags and the strong
underwriting cycles, and concludes: “There must be great un-
certainty here. Moreover, unexpected development may severely
affect the insurer’s financial condition, so much capital is needed
to guard against this risk.” The experienced actuary replies: “No,
because of the steady compensation payment patterns and the
long payment lag of these claims, the reserving risk is low
enough that it is outweighed by the implicit interest margin in
the reserves.”

2. MEASURES OF UNCERTAINTY

We have differentiated between the inherent uncertainty in
reserve estimates and the accounting illusions caused by dis-
cretionary adjustments of reported reserves. Similarly, we may
differentiate between actuarial measures of reserve uncertainty
and regulatory measures of reserve uncertainty.

The Solvency Regulator and the Actuary

Suppose that the solvency regulator sees wide fluctuation in
reported reserve levels and concludes that there is great uncer-
tainty in the reserve estimates. The company actuary responds
that the actual reserve indications have been stable. The shift
in reported reserve levels from year to year stems simply from
a desire to smooth calendar year earnings (see Ryan and Fein
[51]).

“What difference does that make?” replies the solvency
regulator. “We are concerned that the reported reserves
may not be sufficient to cover the loss obligations of
the company. What difference does it make whether the
insufficiency stems from an inherent uncertainty in the
reserve indications or from discretionary adjustment of
the reported reserves?”
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We must differentiate between two types of reserve fluctua-
tions:

! The valuation actuary tells the company’s management how
much capital it needs to guard against unexpected adverse
events. Suppose the actuary’s reserve analysis yields a point
estimate of $800 million with a range of $650 million to $950
million, and the company is reporting $700 million on its statu-
tory statements. The actuary’s recommendation might be that
the company needs $250 million of capital: $100 million for
reserve “deficiencies” (the difference between the point es-
timate and the held reserves) and $150 million for reserve
uncertainties.6

! The solvency regulator can not easily distinguish between ad-
verse loss development stemming from unanticipated random
occurrences and adverse loss development stemming from re-
serve inadequacies. The regulator estimates the variability of
reported reserves and applies this figure to some base number.
The base number might be the company’s reported reserves (if
the regulator believes that they are adequate) or an indepen-
dent estimate of the company’s reserve needs (if the regulator
lacks confidence in the company’s financial statements).

Regulators concerned with reserve uncertainty take the sec-
ond viewpoint. Our primary interest in this paper is with the
uncertainty inherent in the reserve indications themselves, the
first viewpoint.

The difference is not in the magnitude of the uncertainty, but
in the method of quantifying the uncertainty.

! The solvency regulator begins with the reserves reported by
companies. How the companies determined these reserves, and

6In practice, the implicit interest margin in statutory reserves should be included in the
valuation actuary’s recommendation. To complete the illustration in the text, the actuary
might add that there is $200 million of implicit interest margin in the statutory reserves,
so only $50 million of capital is needed on an economic basis.
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whether the reported reserves accurately reflect the actuary’s
indications, is irrelevant.

! The actuary examines the factors used to quantify reserve
needs, such as age-to-age “link ratios,” to determine the un-
certainty in the reserve indications. How the company deviates
from the reserve indications in its financial statements is not
relevant to measuring the uncertainty inherent in the reserves.

Statistical and Financial Measures

We use several measures of reserve uncertainty in this pa-
per: standard deviations, percentiles, and “expected policyholder
deficits.” The “expected policyholder deficit” (EPD) concept de-
veloped by Robert Butsic [13] is used here as a yardstick for
the uncertainty in the reserve estimates. The EPD ratio allows us
to translate “reserve uncertainty” into a “capital charge,” thereby
transforming an abstruse actuarial concept into concrete business
terms. In Appendix A of this paper, we also discuss the “worst
case year” concept used to measure reserve uncertainty for the
reserving risk charge in the NAIC risk-based capital formula.7

Some readers will rightfully ask: “The NAIC worst case year
concept is a simple but arbitrary accounting yardstick that is not
supported by financial or actuarial theory. Why include it even
in the appendix of an actuarial paper?”

The answer is important. This paper demonstrates that the im-
plicit interest margin in full-value workers compensation reserves
exceeds the capital needed to guard against unexpected reserve
volatility. Some readers, aware of the 11%workers compensation
reserving risk charge in the NAIC’s risk-based capital formula,
may mistakenly conclude that the “regulatory” and “actuarial”
approaches to this problem yield different answers.

This is not so. The NAIC “regulatory” approach yields a sim-
ilar result to that arrived at here. However, the workers com-

7For the NAIC worst case year concept, see Kaufman and Liebers [41] or Feldblum [23].
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pensation charges were subjectively modified to produce capital
requirements that seemed more reasonable to some regulators.8

In fact, the apparent “unreasonableness” of the NAIC formula in-
dications to these regulators stemmed from a misunderstanding
of statutory accounting and of the risks of workers compensation
business, not from any artifacts in the risk-based capital formula.
A full discussion of the NAIC approach to reserve uncertainty
embodied in the risk-based capital formula is presented in Ap-
pendix A.

3. THE QUANTIFICATION OF UNCERTAINTY

Attempts to measure reserve “uncertainty” often dissolve for
failure to make clear (i) what exactly we seek to measure and
(ii) how we ought to measure it.

This paper combines three elements to analyze the uncertainty
of loss reserve estimates:

! A statistical procedure to quantify the uncertainty, relying on
a stochastic simulation of the loss reserve estimation process.

! A yardstick to measure the uncertainty, relying on the expected
policyholder deficit ratio.

! The intuition that explains the source of the reserve uncertainty,
focusing on payment patterns, interest rates, and inflation rates.

Actuarial Procedures

Loss reserve estimates stem from empirical data, such as re-
ported loss amounts or paid loss amounts, combined with actuar-

8For example, upon re-examining the workers compensation reserving risk charge in
November 1996, using the NAIC formula but with more accurate figures and no subjec-
tive adjustments, the American Academy of Actuaries task force on risk-based capital
found that the appropriate charge should be "12%, not the +11% in the NAIC risk-based
capital Instructions. However, the AAA task force noted that any worker’s compensation
charge less than +10% would be politically infeasible to implement, so no effort was
made to change the formula.
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ial procedures, such as chain ladder development methods. Loss
reserve uncertainty stems from both of these components.

! Random loss fluctuations may cause past experience to give
misleading estimates of future loss obligations, and systemic
changes (such as managed care) create uncertainty about future
patterns.

! Imperfect actuarial analysis of the data may lead to invalid
reserve estimates.

The two causes are intertwined. The ideal reserving actuary
is ever watchful of data anomalies and will adjust the reserving
procedures to avoid the most likely distortions (see, for instance,
Berquist and Sherman [5]).

In this paper we do not measure the uncertainty stemming
from imperfect actuarial practice. Rather, we assume a standard
reserving technique that is often used for workers compensation;
namely, a paid loss chain ladder development method.9

In practice, reserving actuaries use a variety of techniques.
Even when employing a paid loss chain ladder development
method, rarely does the reserving actuary follow the method by
rote, with no analysis of unusual patterns. To the extent that actu-
arial judgment improves the reserve estimate, this paper overes-
timates the reserve uncertainty. To the extent that actuarial judg-
ment masks the true reserve indications, this paper might under-
estimate the reserve uncertainty.

This paper measures the uncertainty inherent in the empiri-
cal data used to produce actuarial reserve estimates. It does not
attempt to measure the uncertainty added or subtracted by the
quality of actuarial analysis.

9We chose this technique, rather than a reported loss chain ladder development technique
or Bornhuetter–Ferguson (expected loss) techniques, because it is dependent on claim
payment patterns, and not on individual company case reserving practices. Thus, we are
measuring the uncertainty caused by fluctuations in actual claim patterns, and not by
changes in company case reserving practices.
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Empirical Data

How should we measure the uncertainty inherent in the em-
pirical data? The two extremes are described below, neither of
which is sufficient by itself.

! We may simulate experience data, develop reserve indications,
then continue the simulation to see how accurately the indica-
tions forecast the final outcomes.10 This method is entirely the-
oretical. The amount of “uncertainty” depends on the simula-
tion procedure. If the simulation procedure is firmly grounded
in actual experience, the method works well. If the simulation
procedure is chosen more for its mathematical tractability than
for its empirical accuracy, the results may not mirror reality.

! We may look at actual experience, develop reserve indications
at intermediate points in time, and then compare the indica-
tions with the final outcomes.11 This method is “practical”—so
practical, in fact, that the uncertainty measurements are often
distorted by historical happenstance.12

A good actuarial procedure charts a middle course. We use
stochastic simulation of the experience data to ensure statistically
valid results. But the simulation parameters are firmly grounded
in 25 years of actual paid loss histories from the country’s largest
workers compensation carrier.13

10See, for instance, Stanard and the Robertson discussion [56].
11This is the procedure used by the NAIC risk-based capital formula to estimate reserve
uncertainty by line of business.
12See the report of the American Academy of Actuaries Task Force on Risk-Based Capital
[44].
13Some reviewers of earlier drafts of this paper have questioned: Perhaps this insurer
has more stable paid loss triangles than other insurers have, because of its size, because
of its claim settlement practices, or because of its diversified mix of business. This is
a valid comment. Small regional insurers may have different degrees of volatility in
their reserve estimates. In particular, smaller insurers have greater process variance in
the occurrence of lifetime pension cases, many of which have large total costs, both
indemnity and medical. Expansion into new classifications or new states may similarly
increase the uncertainty in the reserve estimates. See also the following footnote.
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We describe the three elements of the analysis: (i) the stochas-
tic simulation, (ii) the expected policyholder deficit ratio “yard-
stick,” and (iii) the explanatory factors.

The Stochastic Simulation

We begin with 25 years of countrywide paid loss workers
compensation experience, separately for indemnity and medical
benefits, for accident years 1970 through 1994. From these data
we develop 20 columns of paid loss “age-to-age” link ratios, as
shown in Exhibits C-1 and C-2.14

We fit each column of “age-to-age” link ratios to lognormal
curves, determining “mu” (¹) and “sigma” (¾) parameters for
each. We perform 10,000 sets of simulations to generate the age-
to-age factors that drive the simulated loss payments.

Twenty-five accident years yields 24 columns of “age-to-age”
factors. The last four columns contain too few historical factors,

14Analysis of the uncertainty inherent in workers compensation loss reserve estimates
must be grounded in actual workers compensation experience. The empirical data is the
experience of the country’s largest workers compensation carrier, with about 10% of the
nation’s experience during the historical period. To ensure confidentiality of the data, the
dollar figures are normalized to a $100 million indicated undiscounted reserve.
Upon reviewing an earlier version of this paper, Stephen Lowe pointed out that “Be-

cause of its large market share, [your company’s] experience probably does not respond
to changes in mix of business by hazard group or state... . For smaller companies, changes
in mix of business may add uncertainty beyond what is captured in your model.” Simi-
larly, the Proceedings referees for this paper write “For many companies, especially those
with changes in mix of the type of business they write (different classes, different states)
or changes in claims administration practices, the factors are not so stable.”
This view is consistent with Allan Kaufman’s recommendation that a “small company

charge” be added to the risk-based capital formula because small companies experi-
ence greater fluctuation in underwriting results and in adverse reserve development. For
political reasons, the small company charge was never added to the risk-based capital
formula (see Feldblum [23]). In a review of the 1994 risk-based capital results, Barth
[2], a senior research associate in the NAIC’s research department, similarly concludes
that “the R4 RBC i.e., (reserving risk) for companies with large reserves may be higher
than necessary, relative to smaller companies.”
Lowe, Kaufman, Barth and the Proceedings referees are correct. Small companies,

or companies entering new markets or developing new products, may experience greater
reserve uncertainty than implied here. This paper shows a method for quantifying reserve
uncertainty, and it applies the method to the historical data of one particular insurer. To
estimate the uncertainty of their own reserve estimates, readers should apply the methods
described here to their own company’s data. The numerical results in this paper can not
necessarily be applied indiscriminately to other insurers.
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so instead of fitting these columns to lognormal curves we in-
clude these development periods in the “inverse power curve”
tail.15 See Appendix C for a full description of the reserve esti-
mation and simulation procedures.

Standard reserving methods, which forecast best-estimate fu-
ture age-to-age link ratios, assume that the same factor will recur
in each subsequent accident year. In actuarial parlance, when one
“squares the triangle,” the same age-to-age link ratios appear in
each column for all subsequent accident years.

The procedure in this paper uses separate simulations for each
subsequent accident year. We are simulating actual reserve de-
velopment, where the process risk in each future accident year
is independent of that in the other accident years.

Types of Risk

We categorize risk into two types: process risk and parameter
risk (Freifelder [29], Miccolis [48]). We illustrate these compo-
nents of risk with the fitting procedure described above.

Process Risk: Suppose that we knew that the observed (his-
torical) link ratios came from a probability distribution with a
mean of ¹ and a variance of ¾2, or “pdf (¹,¾2).” For the stochas-
tic analysis, we simulate new realizations of pdf (¹,¾2).

In this case, we know the expected value with certainty. The
uncertainty in the reserve estimate derives from the randomness
of loss occurrences and loss settlements: that is, from the process
risk in loss payments.

Parameter Risk: In truth, we do not know with certainty the
expected value of the link ratios or the particular distribution
from which they are a realization. We make two assumptions:
(a) that the actual link ratios realized in the past and which will
be realized in the future come from some distribution and (b)

15In addition, the Kreps parameter risk estimation procedure used in this paper does not
work when there are only a few historical data points.
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that this distribution has a particular form (such as lognormal).
We estimate the parameters of the distribution from the historical
values that we have observed.

This paper uses a parameter risk procedure developed by
Kreps [42]. Using a Bayesian analysis, Kreps shows how to sim-
ulate from an unknown lognormal distribution based on a limited
sample of data points.

The Kreps procedure is complex. To avoid repeating the math-
ematics of the Kreps paper [42], we simply note our choice of
parameters for the Bayesian prior (readers interested in this sub-
ject should refer to that paper). Appendix C of this paper shows
the equations we used to quantify the parameter risk. Appendix
F of this paper provides a lay explanation of the parameter risk
method, without attempting to reproduce the mathematics.

To use the Kreps procedure, one must assume a Bayesian prior
distribution. Kreps uses a uniform distribution for the “transla-
tion” parameter (¹) and a distribution for the “scaling” parameter
(¾) that depends on the user’s prior assumptions, as reflected in
a µ parameter. If the prior is uniform, then µ = 0. The more con-
ventional choice, if one is using a power-law prior, is to have
µ = 1. However, as Kreps pointed out to us (and as our own tests
showed), “the conventional choice seems to give large values
unreasonably often, given the nature of the business.” He noted
that µ = 2 generally gives more reasonable results.16

Our simulations use µ = 2. Even with this assumption, we
found that the simulations occasionally yielded “unreasonable”
results. By “unreasonable” we mean that workers compensation
payments are based on statutory rules and are generally paid
over the duration of a disability. Unlike some general liability
claims, one rarely finds huge and unexpected lump-sum pay-
ments. Consequently, it is unreasonable to find a link ratio of
say 3.0 as the factor for 15 years to 16 years of development.

16Kreps has also suggested that one might look for another distribution as a prior, based
on our actuarial judgments about the business (private communication).
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And yet, on rare occasions, that is what the simulations produce.
These rare anomalies greatly affect the mean of the distribution,
as well as measures of variability, like the standard deviation and
the expected policyholder deficit.

Part of using actuarial judgment is to judge when the numbers
being produced by mechanical formulas are not reasonable and
to adjust the formulas so the results accord with insurance prac-
tice. In our case, we set a rule that if any simulated link ratio fell
more than 50 standard deviations above the mean, the simulation
is eliminated. In other words, we are trying to eliminate only the
most extreme of the unreasonable simulations.

One might be concerned that a rule of this type would elimi-
nate the “high” cases and thus would bias the results downwards.
In fact, we found that the rule resulted in insignificant difference
in the median result, or even in the 95th percentile of the distri-
bution, and in most cases, the change in the mean was less than
1%. However, the change in the standard deviation and the ex-
pected policyholder deficit was more significant, and the results
after eliminating the “outliers” are more reasonable.17

17An alternative procedure to quantify parameter uncertainty, which we have also tested
on our data, is a procedure developed by Dickson and Zehnwirth [18]. The mean of the
sample, ¹, is an unbiased estimator of the mean of the distribution. If the distribution
has a variance ¾2, and the sample has “n” observations, then the mean of the sample, as
an estimator of the true mean of the distribution, has a variance of ¾2=n.
We want to use the sample data to simulate future realizations of the link ratios.

The distribution from which these link ratios derive has a variance of ¾2. Furthermore,
the whole distribution is “moving around” with a variance of ¾2=n. The total variance
of the distribution from which we should simulate future realizations therefore has a
variance of ¾2 +¾2=n. The mean of this distribution is the sample mean, ¹, which is an
unbiased estimator of the true mean, as noted above. In sum, we must simulate from pdf
(¹,¾2 +¾2=n), not from pdf (¹,¾2).
Hayne [32] suggests a similar procedure: if the estimate of the ¹ of the lognormal is

assumed to be unknown but to have a normal distribution with mean ¹ and variance ¾#2,
then the final distribution is lognormal with parameters (¹,¾2 +¾#2).
Dickson and Zehnwirth [18] refer to these two distributions as the fitted curve and

the predictive curve. The fitted curve is the best estimate of the probability distribution
function; it does not include parameter variance. The predictive curve is the distribution
function that one must use to simulate future realizations. It includes parameter variance,
which reflects the uncertainty in the choice of parameters for the fitted curve. Our re-
sults using the Dickson–Zehnwirth procedure were similar to those using the Kreps [42]
procedure. Consequently, we do not show the Dickson–Zehnwirth results in the text.
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Shifting Distributions: The parameter risk discussed above
assumes that there is a true distribution from which the observed
link ratios are drawn, though we do not know this distribution.
An additional source of variance is a shift in the true distribution,
whether during the past historical period or during the future
predictive period. For instance, the increasing involvement of
attorneys in workers compensation claims during the 1980s may
have contributed to the rising paid loss link ratios during this
period, thus shifting the mean and perhaps also the variance of
the distribution function. The change in the mix of claims from
temporary total disability to permanent partial disability would
similarly increase the mean and variance of the distribution (see
Kaufman [40]). Conversely, the introduction of managed care in
the 1990s may lead to a decrease in the mean of the paid loss
link ratios and perhaps also their variance during this decade.

Mahler [46] refers to this as “shifting risk parameters.” In his
analysis of experience rating plan credibilities, Mahler divides
the total expected claim variance into “within variance” and “be-
tween variance,” and he includes the risk stemming from shifting
risk parameters in the “within variance.” We proceed similarly
in our analysis. Following a suggestion by Mahler (private com-
munication), we divide risk into process risk, specification risk,
and parameter risk, where specification risk represents the risk of
shifting risk parameters. The variance of the historical age-to-age
link ratios stems from both process risk and from specification

Mathematically sophisticated readers may note some simplifications here, which are
dealt with more fully in the Dickson and Zehnwirth paper. In particular, when we used the
Dickson–Zehnwirth procedure, we assumed a lognormal prior distribution with known
variance for the mean of the lognormal distribution (see Dickson and Zehnwirth [18,
section 2.3, p. 4]. Dickson and Zehnwirth use normal distributions in their paper. As
Zehnwirth has explained to the authors (private communication), “the predictive equation
is lognormal, with a normal prior for the mean (¹) of the corresponding normal. The
prior for exp(¹), the median of the lognormal, is a lognormal. The prior for the mean of
the lognormal, exp(¹+0:5$¾2), is also a lognormal (scaled).”
Dickson and Zehnwirth also provide a parallel derivation for the predictive equation

when the observed mean of the lognormal distribution comes from a Gamma prior with
unknown variance. The predictive distribution is then a t-distribution, as shown in section
2.4 (pp. 4–5) and Appendix 2 (pp. 17–18) of Dickson and Zehnwirth [18]. See also
Francis [27] for a similar comparison of normal and “t” distributions.
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risk. Similarly, our quantification of future process includes both
process risk and specification risk.

Tail Development

The paid loss development for 25 years is based on observed
data. Workers compensation paid loss patterns extend well be-
yond 25 years. For each simulation, we complete the develop-
ment pattern as follows:

! Given the 20 paid loss “age-to-age” link ratios from the set of
stochastic simulations on the fitted lognormal curves, we fit
an inverse power curve to provide the remaining “age-to-age”
factors (see Sherman [52]). This fit is deterministic.

! The length of the development period is chosen (stochastically)
from a uniform distribution of 30 to 70 years. The paid loss
development is truncated at the stochastically selected age.

Because the simulated age-to-age link ratios in the first 20
development periods differ by accident year, the tail factors also
differ by accident year.

4. INFLATION AND DISCOUNTING

We are primarily concerned with the economic values, or dis-
counted values, of the reserves, not with undiscounted amounts.
The exhibits here show results for undiscounted values in addi-
tion to discounted values, because statutory accounting requires
the reporting of undiscounted reserves, and the Statement of Ac-
tuarial Opinion relates to the statutory figures. Butsic [13], how-
ever, emphasizes that his expected policyholder deficit (EPD)
procedure, which is used here as one method of quantifying
reserve uncertainty, is properly used only when balance sheet
entries are stated on an economic basis, thereby avoiding “mea-
surement bias.” The EPD ratios are shown for the discounted
values, not for undiscounted values.

Standard reserving procedures, when used to estimate dis-
counted reserves, assume a fixed discount rate for unpaid losses.
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Similarly, these procedures assume a fixed inflation rate for fu-
ture loss payments during each development period that equals
the inflation rate implicit in the historical age-to-age link ratios.

The treatment of inflation in this paper is more complex. Be-
cause of the long loss payment patterns, inflation strongly affects
ultimate loss amounts. The effects on reserve variability depend
on the manner in which inflation affects the loss amounts. For
workers compensation, inflation affects medical benefits through
the payment date. In about half of the U.S. jurisdictions, indem-
nity payments that extend beyond two years have cost of living
adjustments (COLA’s) that depend on inflation, so inflation af-
fects the indemnity reserves as well.18

We use two methods for incorporating the effects of inflation
into our simulation. One method leaves the effects of inflation
implicit in the simulated link ratios. The other method segregates
inflation from “real dollar” development and explicitly simulates
future inflation rates. The two methods are described below.

! Unadjusted paid loss development patterns combine true de-
velopment with the effects of inflation. That is to say, inflation
is implicit in each paid loss age-to-age link ratio.19 Were we to
choose a single “best-estimate” link ratio for each development
period, that would implicitly fix future inflation at the rate im-
plicit in that “best-estimate” link ratio. Since we stochastically

18On the effects of inflation through the “payment date” versus through the “accident
date,” see Butsic [11], and the discussion by Balcarek.
The statutory rules for cost of living adjustments for indemnity benefits vary greatly by

state. Some states have no COLA adjustments. Among the states which do have COLA’s,
most apply them only to disabilities extending beyond a certain time period, such as two
years. In addition, many of these states cap the COLA’s at specific levels, such as 5%
per annum.
Properly quantifying the effect of the COLA adjustments on workers compensation

indemnity reserve indications requires extensive work. For this paper we applied the
stochastic inflation model to medical benefits only, where a single index can be used
countrywide.
19For instance, the link ratio from 12 to 24 months equals the cumulative paid losses at
24 months divided by the cumulative paid losses at 12 months. A higher inflation rate
during this development period raises the 24 month figure compared to the 12 month
figure.
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simulate the link ratios for each future accident year, we have
a stochastic projection of inflation rates.

The simulated link ratios are independent of the simulated
interest rates, so the implicit inflation rates are also indepen-
dent of the interest rates. Although this is appropriate for link
ratios, it may not be reasonable for inflation rates.

! In the second method, we deal with inflation by (a) stripping
out past medical inflation from the historical loss triangles,
thereby converting the figures to “real dollar terms,” (b) deter-
mining “age-to-age” link ratios from the deflated loss amounts,
and (c) simulating future inflation patterns and building them
back into the projected (future) link ratios.

Future inflation is simulated based on an autoregressive
model that links the inflation rate both with the concurrent
interest rate in the future scenarios, and with the discrepancy
between the previous year’s inflation rate and interest rate. The
procedures used for doing this are described below.

Interest Rates

A stochastic model operates by first generating either interest
rates or inflation rates—generally by some type of autoregres-
sive function—and then generating the other index by a stochas-
tic model with a partial dependence upon the first index.20 Nu-
merous methods of generating future interest paths have been
developed. We used two of the simpler interest rate generators:
an adaptation of the Wilkie/Daykin model, which has been used
by the British Solvency Working Party, and the Cox, Ingersoll,
Ross (CIR) model, which is used by many financial analysts in
the United States. The generators produced comparable results.
We describe the equations and results for the Cox, Ingersoll,
Ross interest rate generator, which we have used for most of

20See Wilkie [58], Daykin, Pentikainen, and Pesonen [17], and the summary and discus-
sion by Francis [28]. For an application to workers compensation reinsurance commuta-
tions, see Blumsohn [7].
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our simulations. The procedures for the Wilkie/Daykin model
are described in the previous version of this paper [34].

We begin with interest rates, simulating short rates for the
CIR model, and then we simulate medical inflation rates.

The model begins by postulating a continuous process for in-
terest rates. CIR decomposes the change in the short rate over an
instantaneous period of time into a mean-reverting deterministic
part and a Brownian motion stochastic part that is proportional
to the square root of the current interest rate. That is

@r = a(b" r)@t+¾%r@Z,
where a is the mean-reverting parameter, b is the long-term aver-
age interest rate, ¾ is the annual volatility of the interest rates, and
@Z is a standard Wiener process.21 For our runs of the interest
rate generator, we used parameters of

! a= 0:2339,
! b = 0:050,
! ¾ = 0:0854:
As a continuous time interest rate process, the CIR model has

a “self-reflecting barrier” at r = 0. Interest rates cannot become
negative, since if the interest rate process ever touches the line
r = 0, the volatility is zero at that point and the interest rate
reverts toward a$b. In addition, CIR model provides for greater
volatility as the interest rate becomes larger, which accords with
our expectations about interest rate movements.

To run the continuous time CIR model in our simulation, we
used monthly increments, with a= 0:2339=12 = 0:0195 and with
¾ = 0:0854=(

%
12) = 0:0249:

Some investment analysts concerned with short term bond
options dislike equilibrium models, like the CIR model or the

21For an introduction to the CIR interest rate process, see Hull [38, Chapter 21].
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Wilkie/Daykin model, that do not reproduce the current yield
curve. Various arbitrage-free models have been proposed for
securities trading operations that depend on interest rate ex-
pectations. For long-term dynamic financial analyses—like the
quantification of uncertainty in loss reserves—equilibrium mod-
els seem satisfactory, and their parsimony perhaps make them
preferable.

Inflation Rates

As noted above, there are two methods for dealing with infla-
tion. Traditional reserving methods assume a continuation of the
inflation rates implicit in the historical age-to-age link ratios. This
procedure takes no account (i) of the autocorrelation in inflation
rates or (ii) of the partial correlation with interest rates.

For the analysis in this paper, we strip inflation out of the
historical age-to-age paid loss link ratios, and we stochastically
simulate future inflation rates.

If we desired to simulate future inflation independently of
future interest rates, we might use a procedure analogous to the
autoregressive interest rate model, such as

inflation rate = average inflation rate

+¯&(last year’s inflation rate" average inflation rate)
+an error term.

Similarly, one could use a formula analogous to the CIR
model for inflation rates. The parameters in each model would
differ, of course, such as the average rates, the ¯ coefficient, the
form of the error term, the volatility parameter, and the starting
value.

The stochastic inflation rate path would be independent of the
stochastic interest rate path, even over the long term. Since in-
terest rates and inflation rates are in fact correlated, the resulting
scenario set would have many unrealistic elements.
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Instead, we construct the autocorrelated model to include the
current interest rate. There are no “standard” models for the dual
generation of interest rates and inflation rates. We have used a
model developed by Kreps, namely:

Inflationt = c+ d
&(inflationt"1)" e&(Interest ratet"1)

+f&(interest ratet) + error(t):

The fitted parameters are:

c= 1:33%, d = 0:546, e= 0:264, f = 0:484:

The error term is normal, with a mean of zero and a standard
deviation of 1.83%.

Inflation and Loss Development

To separately account for the effects of inflation on reserve
development, we make the following adjustments to the data:22

! We convert the paid medical losses to real dollar amounts,
using the medical component of the CPI. We then determine
paid loss age-to-age link ratios from the deflated figures, we
fit lognormal curves to each column of historical link ratios,
and we run the simulation 10,000 times to determine the future
link ratios.

! For each simulation, we stochastically generate a future inter-
est rate path and a future inflation rate path, using the models
described above.

! For each set of simulated link ratios and future inflation rates,
we determine two required reserve amounts:

1. The undiscounted (full value) reserves, using the link
ratio and the inflation rate scenarios, and

22For a similar adjustment to reserving point estimates, see Richards [50, p. 387]: “These
steps are designed to factor out the effects of inflation from historical loss data prior to
forecasting, forecast the reserve using the current methodology and then replace the
effects of inflation including an assumption of future inflation.”
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TABLE 1

INFLATION IMPLICIT IN LINK RATIOS;
UNCORRELATED ACCIDENT YEARS

Average Standard 95th 5th Capital Needed
Reserve Deviation of Percentile Percentile for 1% EPD
Amount Reserve of Reserve of Reserve Ratio

Undiscounted 100.0 14.5 125.0 80.4 —
Discounted 57.4 6.4 68.4 47.3 6.4

2. The discounted reserves, using the link ratio, inflation
rate, and interest rate scenarios.

5. RESULTS

Table 1 shows results when inflation rates are not simulated
separately; rather, the effects of future inflation are implicit in
the simulated link ratios. Table 2 shows the results when infla-
tion is removed from the historical link ratios and independently
generated inflation rate paths are used for future years.

Exhibits 1 and 2 show the shapes of the probability distribu-
tions for the discounted and the undiscounted reserves. Exhibit
1, like Table 1, has no separate simulation of future inflation
rates. Rather, the inflation implicit in the historical link ratios
is presumed to continue into the future. Exhibit 2, like Table 2,
uses the separate stochastic model for future inflation rates, as
discussed above.

In Table 1, the average full value reserves are normalized to
$100 million to facilitate the interpretation of the figures. The
average discounted reserves are $57.4 million, with a standard
deviation of $6.4 million. The 5th percentile of the distribution
of required reserves is $47.3 million, and the 95th percentile is
$68.4 million. To achieve a 1% EPD ratio, capital of $6.4 million
is needed, above the $57.4 million of assets needed to support
the expected (discounted) loss payments.
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TABLE 2

INDEPENDENTLY GENERATED INFLATION RATES;
UNCORRELATED ACCIDENT YEARS

Average Standard 95th 5th Capital Needed
Reserve Deviation of Percentile Percentile for 1% EPD
Amount Reserve of Reserve of Reserve Ratio

Undiscounted 84.2 14.4 109.9 64.9 —
Discounted 49.8 4.6 57.6 42.6 4.1

Table 2 shows the corresponding figures when the future in-
flation rates are stochastically generated. The following items are
noteworthy:

! The average discounted reserve decreases to $49.8 million,
with a standard deviation of $4.6 million. High inflation sce-
narios, which strongly affect medium and long duration loss
payments, have a lesser effect on discounted reserves. More-
over, high long-term inflation rates are often partially offset
by high long-term interest rates.

! Nominal losses decrease to $84.2 million, since we are pro-
jecting lower future inflation than is implicit in the historical
loss triangle.

! The capital needed to achieve a 1% EPD ratio declines from
$6.4 million to $4.1 million. The rationale is similar to that
mentioned in the preceding paragraph. The high inflation sce-
narios that increase the capital requirement when inflation is
implicit in future link ratios have a dampened effect when fu-
ture inflation rates are linked to future interest rates.23

23When reserves are fully discounted, interest rate risk rises. This is particularly true for
lines of business that are inflation sensitive, where the ultimate value of the loss payments
depends on inflation up to the payment date. When inflation accelerates, nominal loss
payments increase and market values of bonds decrease (if interest rates are linked to
inflation rates). For further discussion of the capital required for interest rate risk, as well
as the interplay with the capital required for reserving risk, see Hodes and Feldblum [35].
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TABLE 3

INDEPENDENTLY GENERATED INFLATION RATES;
CORRELATED ACCIDENT YEARS

Average Standard 95th 5th Capital Needed
Reserve Deviation of Percentile Percentile for 1% EPD
Amount Reserve of Reserve of Reserve Ratio

Undiscounted 84.5 18.4 119.2 62.9 —
Discounted 49.8 5.7 59.9 41.7 6.5

For Tables 1 and 2, the age-to-age link ratios are separately
simulated for each future accident year. In other words, from
each column of historical link ratios, we fitted a lognormal curve
from which to simulate the future link ratios. We did not simulate
a single link ratio which would be applied to all accident years
that had not yet reached that stage of development. Rather, we
separately simulated link ratios for each future accident year.

This assumes that the development in each accident year is
independent of the development in other accident years at the
same maturity. To test the results if the opposite assumption is
made—namely, that the development at any given maturity is the
same in all future accident years—we simulated a single age-to-
age link ratio for each maturity and used it for all accident years.
The results are shown below in Table 3. Since this procedure
assumes perfect correlation among accident years, high or low
link ratios are repeated in all accident years and the reserve un-
certainty increases.

Uncertainty and Discounting

A common view is that discounted reserves are simply smaller
than undiscounted reserves, but they exhibit the same degree
of variability. This is not correct. As Exhibits 1 and 2 show,
the probability distributions for undiscounted reserves are wide,
whereas the corresponding probability distributions for dis-
counted reserves are far more compact. The rationale for this
is two-fold.



WORKERS COMPENSATION RESERVE UNCERTAINTY 291

! First, much of the reserve variability comes from uncertainty
in distant tail factors, which strongly wag estimates of undis-
counted reserves but have less effect on discounted reserve
estimates.

! Second, when using stochastic inflation rate paths with strong
autocorrelation, much additional reserve variability results
from high or low inflation scenarios. For discounted reserves,
part of this variability is offset by corresponding high and low
interest rate scenarios.

The magnitude of the difference between the two distributions
depends on the parameters of the interest rate generator and the
stochastic inflation process. The greater the volatility of interest
rate and inflation rates, and the stronger the correlation between
them, the greater the difference between the nominal and present
value distributions.

Because statutory accounting mandates that insurers hold
undiscounted reserves, we have shown results both for dis-
counted reserves and for undiscounted (or “nominal”) reserves
in the exhibits. In particular, the means, standard deviations, and
percentiles of the distributions are shown for both nominal and
discounted reserves, though the capital requirements based on
the expected policyholder deficit of 1% are applicable only to the
discounted values. (See the discussion below in the text and in
Appendix B regarding the expected policyholder deficit.) More-
over, the difference between the discounted and undiscounted
reserve amounts is the “implicit interest margin” in the reserves,
which is important for assessing the implications of the reserve
uncertainty on the financial position of the insurance company.

Assumptions and Results

It is instructive to consider the relative reserve variability re-
sulting from the different assumptions. Specifically, will the in-
dependent generation of future inflation rate paths increase or
decrease reserve variability?



292 WORKERS COMPENSATION RESERVE UNCERTAINTY

We begin with the results for our “base case,” and we con-
sider how each change in assumptions affects the estimated un-
certainty. The base case assumes that:

! Link ratios are generated stochastically, incorporating both
process risk and parameter risk.

! For the discounted reserves, autocorrelated interest rate paths
are generated stochastically.

! Future inflation rates are not generated independently. Rather,
the inflation embedded in the observed link ratios is assumed
(implicitly) to continue into the future.

For nominal reserves, the independent generation of stochastic
inflation rate paths adds an additional element of variability to
the reserves. Accordingly, the standard deviation of the nominal
reserve distribution is higher when inflation rates are indepen-
dently generated. The coefficient of variation for the base case
(Table 1) is about 14.5%, whereas it is about 17.1% when infla-
tion rates are independently generated (Table 2).

For discounted reserves, the opposite is true. In the base case,
the reserve discount rates are generated independently of the link
ratios, in which the inflation rates are implicitly embedded, so re-
serve variability is high. When inflation rates are generated inde-
pendently of the link ratios, they are correlated with the stochas-
tically generated interest rates, and their effects partially offset
each other, thereby dampening the reserve variability. For the
discounted reserves, the capital ratio required for a 1% expected
policyholder deficit ratio is 11.1% for the base case, while it is
9.2% when inflation rates are independently generated.

The implications of these results are important for the capital
structure of a workers compensation insurer. In our illustration,
the average undiscounted required reserves developed from a
traditional reserve analysis, with no independent generation of
future inflation rates, is $100 million. Most companies use tabu-
lar discounts for lifetime pension indemnity benefits, and some
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companies do not fully account for inflation of medical bene-
fits. For most companies, the held statutory reserves would be
between $80 million and $90 million.24

The average discounted required reserve is $49.8 million. The
implicit interest margin in the statutory reserves is about $25
million to $40 million.25

The capital required to achieve a 1% EPD ratio because of
reserve uncertainty is about $4.1 million, which is less than a
fifth of the implicit interest margin in the statutory reserves. In
other words, most insurers would need no additional capital to
support the uncertainty in their workers compensation reserves.26

A common view is that workers compensation reserve esti-
mates are highly uncertain, because of the long payment lags and
because of the unlimited nature of the insurance contract form.
This uncertainty creates a great need for capital to hedge against
unexpected reserve development.

In fact, the risks in workers compensation lie elsewhere. There
is great underwriting uncertainty in workers compensation, and
regulatory constraints on the pricing and marketing of this line of
business have disrupted markets and contributed to the financial
distress of several carriers. But once the policy term has expired
and the accidents have occurred, less uncertainty remains. The
difference between the economic value of the reserves and the
reported (statutory) reserves, or the implicit interest margin, is
generally greater than the capital needed to hedge against reserve
uncertainty.27

24The Proceedings reviewers have pointed out that some companies do not carry full value
reserves, even on the statutory blank. For such companies, the held statutory reserves
would be lower.
25The size of the implicit interest margin depends on the prevailing interest rates; it is
larger in the high interest rate environments of the 1980’s and smaller in the low interest
rate environments of the 1990’s.
26As noted earlier, some additional capital would be needed to support the default risks,
market risks, and interest rate risks on the assets supporting the reserves.
27The implications for capital allocation to lines of business are important; for a full
discussion, see Hodes, et al., [36]. For companies that carry adequate statutory reserves,
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The EPD Yardstick

Several elements of our analysis may require further explana-
tion. The following sections provide brief qualitative discussions
of certain aspects of the analysis. The appendices provide more
complete quantitative descriptions, as well as full documentation
of our procedures.

As a yardstick to measure reserve uncertainty, we use the
“expected policyholder deficit” (EPD) ratio developed by Butsic
[13] for solvency applications. The EPD ratio allows us to:

! Compare reserve uncertainty across different lines of business,
! Compare reserve uncertainty with either explicit margins in
held reserves or with the “implicit interest margins” in undis-
counted reserves,

! Quantify the effects of various factors (such as the presumed
variability of future inflation rates or the premium sensitivity
on loss sensitive contracts) on reserve uncertainty, and

! Translate actuarial concepts of reserve uncertainty into more
established measures of financial solidity.28

The Expected Policyholder Deficit

Were there no uncertainty in the future loss payments, the
insurer need hold funds just equal to the reserve amount to meet
its loss obligations. Since future loss payments are not certain,
funds equal to the expected loss amount sometimes will suffice
to meet future obligations, and sometimes they will fall short.
The “policyholder deficit” is this shortfall.

the capital needed to support compensation reserves is negative, though positive capital
is needed to support workers compensation underwriting operations. This is in contrast
to the statutory accounting procedures used in many surplus allocation procedures in
insurance pricing models. See, for instance, Feldblum [22], and particularly the Cum-
mins/NCCI dispute there on the proper funding of the underwriting loss in the internal
rate of return model.
28For a full discussion of the use of the EPD yardstick for measuring uncertainty, see
Appendix B.
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When the present value of the future loss obligations is less
than the funds held by the insurance company to meet these
obligations, the policyholder deficit is zero. When the present
value of the future loss obligations is greater than the funds held,
the policyholder deficit is the difference between the two. The
expected policyholder deficit (EPD) is the average deficit over
all scenarios, weighted by the probability of each scenario. In
the analysis here, the expected deficit is the average deficit over
all simulations, each of which is weighted equally.

Let us illustrate with the workers compensation reserve sim-
ulations in this paper. Suppose first that the company holds no
capital besides the funds supporting the reserves. For the dis-
counted analysis, the average reserve amount is $49.8 million
(see Table 2). About half the simulations give reserve amounts
less than $49.8 million. In these cases, the deficit is zero. The
remaining simulations give reserve amounts greater than $49.8
million; these give positive deficits. The average deficit over all
10,000 simulations is the EPD. The “EPD ratio” is the ratio of
the EPD to the expected losses, which are $49.8 million in this
case.

Clearly, if the probability distribution of the needed reserve
amounts is “compact,” or “tight,” then the EPD ratio is relatively
low. Conversely, if the probability distribution of the needed re-
serve amounts is “diffuse” —that is, if there is much uncertainty
in the loss reserves—then the EPD ratio is relatively great.

We have two ways of proceeding:

! We could assume that the company holds no assets besides
those needed to support the expected loss obligations, and
compare EPD ratios for different lines of business or oper-
ating environments.

! We may “fix” the EPD ratio at a desired level of financial
solidity and determine how much capital is needed to achieve
this EPD ratio.
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The second approach translates EPD ratios into capital
amounts, so we follow this method. We use a 1% EPD ratio
as our benchmark, since Butsic notes that the reserving risk
charges in the NAIC property-casualty insurance company risk-
based capital formula are of similar magnitude as the charges
needed for a 1% EPD ratio.29

Suppose the desired EPD ratio is 1%. If the reserve distribu-
tion were extremely compact, then even if the insurer held no
capital beyond that required to fund the expected loss payments,
the EPD ratio might be 1% or less. If the reserve distribution
is more diffuse, then the insurer must hold additional capital to
achieve an EPD ratio of 1%. The greater the reserve uncertainty,
the greater the required capital.

Trends and Correlations

Two additional issues are of importance to reserving actuaries:
correlations among link ratios and trends in link ratios.

! Correlations: The simulation procedure assumes that a par-
ticular link ratio is independent of the other link ratios in the
same row. If the link ratios are not independent, the results
may be overstated or understated.

For instance, suppose that accident year 1988 shows a high
paid loss link ratio from 24 to 36 months. Should one expect
a higher than average link ratio or a lower than average link
ratio from 36 to 48 months?

The answer depends on the cause of the high 24 to 36
month link ratio. If it is caused by a speeding up of the pay-
ment pattern, but the ultimate loss amount has not changed,
then one should expect a lower than average link ratio from 36
to 48 months. If it is caused by higher ultimate loss amounts

29For private solvency monitoring analyses, Butsic suggests that a higher ratio may be
appropriate, such as 0.1%; see Butsic [13].
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(e.g., because of lengthening durations of disability for in-
demnity benefits or because of greater utilization of medical
services), then one should expect a higher than average link
ratio from 36 to 48 months.30

! Trends: Our procedure uses unweighted averages of the link
ratios in each column. During the 1980s, industry-wide paid
loss link ratios showed strong upward trends, though this trend
ceased in the early 1990s.31 How would the recognition of
such trends affect the variability of the reserves estimates as
discussed here?

These two issues are related. First, the observed correlations
among the columns of link ratios in the historical data result
from the trends in these link ratios. When the trends are removed,
the correlations largely disappear. Second, the trends affect the
proper reserve estimate. The reserving actuary must investigate
these trends and their causes, and then project their likely effect
on future loss payments. That is not our interest in this paper.
Rather, we ask: “What is the inherent variability in the reserve
estimation process itself?”32

30For further explanation, see the discussion by H. G. White to Bornhuetter and Ferguson
[8], as well as Brosius [10]. Compare also Holmberg [37, p. 254]:

There are different reasons we might expect development at different stages to be
correlated. For instance, if unusually high loss development in one period were
the result of accelerated reporting, subsequent development would be lower than
average as the losses that would ordinarily be reported in those later periods
would have already been reported. In this instance, correlation between one stage
and subsequent stages would be negative. Positive correlation would occur if there
were a tendency for weaker-than-average initial reserving to be corrected over a
period of several years. In that case, an unusually high degree of development in
one period would be a warning of more to come.

Holmberg looks at incurred loss development. (To circumvent the effects of company
case reserving practices on the variability of reserve estimates, we use paid loss develop-
ment in this analysis.) Hayne [33] also discusses the possible correlations in the reserve
estimation procedure, though he deals with them in a different fashion.
31See Feldblum, [25, section 7, and the references cited therein].
32To incorporate trends in this model, one would restate (“detrend”) each column of
historical link ratios to the current calendar year level before fitting these observed link
ratios to a lognormal curve (see Berquist and Sherman [5]).
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Let us take each of these issues in turn.

! Correlations among columns: Suppose one has two columns
of observed link ratios, each from accident years 1971 through
1993, from 12 to 24 months and from 24 to 36 months, and
that they are not correlated. We then apply a strong upward
trend to both columns. That is, we increase the accident year
1972 link ratios by 1.02, the accident year 1973 link ratios by
(1:02)2, the accident year 1974 link ratios by (1:02)3, and so
forth.

The resulting link ratio show a strong positive correlation.
Indeed, we observe such a correlation in the historical link
ratios used in our simulation. But if we remove the trend, the
correlation disappears.

This trend was caused primarily by the increasing liberal-
ization of workers compensation benefit systems between the
mid-1970s and the late 1980s. This liberalization, along with
its associated effects (increasing paid loss link ratios, statewide
rate inadequacies, growth of involuntary markets) ceased by
the early 1990s, and has even reversed in many jurisdictions.
The advent of managed care, along with workers compensa-
tion reforms in several state legislatures, may lead to further
reduction in paid loss link ratios.

! Correlations among years: The chain ladder reserving tech-
nique involves “squaring the triangle.” From each column in
the observed triangle of age-to-age link ratio, we estimate a
future link ratio, which is applied to all cells in that column of
the triangle of future link ratios. When determining point es-
timates of indicated reserves, it is appropriate to use the same
projected “best estimate” link ratio for all future accident years
(i.e., for all the remaining cells in each column).

The analysis here is different. We are not simulating a re-
serve estimate, or a reserve indication. Rather, we are simu-
lating the potential future realization of loss development. In
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any simulation, the actual development will differ by accident
year.

This is particularly important when studying reserve un-
certainty. Our concern is not simply to quantify the expected
development but to measure the variability of this develop-
ment. Thus, when performing a stochastic analysis to deter-
mine reserve variability, it is proper to separately simulate the
projected link ratios for each future accident year.33

For instance, suppose we have accident years 1970 through
1994, valued through December 31, 1994, and we are simulat-
ing the link ratios for the 48 months to 60 months development
period. We need projected link ratios for accident years 1991,
1992, 1993, and 1994. We perform the stochastic simulation
using the predictive curve four times, to give independently
simulated link ratios for these four accident years. Similarly,
once we have the projected link ratios, we fit inverse power
curves to each accident year, to generate separate tail factors
for each year.

Practicing actuaries may wonder about the materiality of
this issue: does the increase in simulations increase or decrease
the resultant reserve variability, and how large is this increase
or decrease?

Consider the difference between (i) simulating once and
using the same projected link ratio for all four accident years
and (ii) simulating four times, once for each future accident
year. The more separate (independent) pieces there are in each
simulation of the total reserve requirements (as in the latter
procedure), the tighter will be the distribution of the total
reserve requirement. The fewer separate pieces there are in
each simulation of the total reserve requirement (as in the for-
mer procedure), the greater will be the effect of individual

33The statement in the text is true if the variability stems from process risk. For the
parameter risk component of the variability, one might argue that it is more proper to
simulate once and to use the same factor each future accident year.



300 WORKERS COMPENSATION RESERVE UNCERTAINTY

“outlying” factors, and the distribution of the total reserve re-
quirement will be more widely spread.

Thus, the use of separate simulations decreases the esti-
mated reserve variability. The effect is small, though, since
there are many independent development periods in each sim-
ulation. The figures are shown in Table 3.

! Trends: Yes, there were trends, at least in the 1980s. More-
over, there are multiple reserving methods. The mark of the
skilled actuary is to take the various reserve indications and the
manifold causes for discrepancies among them and to project
an estimate as close as possible to the true, unfolding loss
payments.

In our analysis, we have used the full column of observed
link ratios to fit the lognormal curve, and then we have com-
pared the simulated loss payments with their averages. Had we
incorporated the “trends,” and had we ignored old link ratios
(because they are not relevant for today’s environment), we
might have produced tighter reserve distributions.

If one places faith in the skills of reserving actuaries, then
the use of a solitary reserving method overstates the uncer-
tainty of the reserving process. Suppose the simulation pro-
duces actual loss payments considerably higher than the re-
serve estimate. Oftentimes, the experienced actuary would
have noted signs that the paid loss estimate was underesti-
mating the actual reserve need, and that other methods were
giving higher indications. By combining the indications from
several methods, the actuary might come closer to the actual
reserve need, thereby reducing the uncertainty in the estimates.

Perhaps uncertainty can be reduced by actuarial judgments
of trends and by actuarial weighing of various indications. The
concern of this paper is more fundamental: even in rote appli-
cations of basic reserving techniques, how much uncertainty is
produced by the fluctuations in loss data?
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Federal Income Taxes

We have ignored income taxes, since their effect is uniform
for most scenarios. Federal income taxes reduce the potential
profits of the insurance company, but they also reduce the po-
tential losses.

Suppose we determined that if there were no income taxes,
an insurer has a 5% chance of exhausting its surplus because of
the variability in loss reserves. Then with an income tax rate of
35%, the chance of exhausting its surplus is less than 5% for this
insurer.

In effect, the U.S. government acts as a pro-rata reinsurer for
all the company’s business. It takes 35% of the revenue, and it
pays 35% of losses plus expenses.

The risk on any particular insurance contract is not affected
by federal income taxes. Rather, the contract is reduced in size:
all revenues and expenditures are multiplied by 65%. Similarly,
the variability in the loss reserves is not affected by federal in-
come taxes. Rather, the reserves are simply reduced in size by a
factor of 65%. Yardsticks such as percentiles or the coefficient
of variation are not affected by federal income taxes.

Yardsticks such as the probability of ruin and the expected
policyholder deficit ratio, however, relate reserve variability to
the company’s capital. The capital is on a post-tax basis, so the
federal income tax rate is relevant. In addition, since the expected
losses are on the company’s books, taxes have already been paid
on the assumption that these will be the ultimate losses. This
means that the company’s surplus reflects taxes at the expected
level of losses. If one needs a certain amount of capital to pass a
given “probability of ruin” test or a given “EPD ratio” test when
one does not take into account federal income taxes, then one
needs only 65% as much capital to pass the same test if one does
take into account federal income taxes.34

34Similarly, Butsic [13] recommended that the charges in the NAIC risk-based capital
formula be reduced for the offsetting effects of federal income tax recoupments, though
his proposal was never implemented.
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Because the potential federal income tax returns are affected
by a host of factors, including the amount of taxes paid in the
past three years and the amount of taxable income in the insur-
ance enterprise’s other operations, we have stated all our results
on a pre-tax basis. For comparative analyses, a pre-tax basis is
sufficient, such as for comparing reserve uncertainty among lines
of business or among different policy forms. Practicing actuar-
ies measuring capital requirements, however, should convert the
results to a post-tax basis, using the particular tax situation of
their own company or client.

6. STATUTORY BENEFITS

For the insurer from which these data were drawn, workers
compensation reserves have about the same average payment
lags as general liability GL reserves. There is great uncertainty
in this company’s GL reserves, as an equivalent analysis to that
shown in this paper would show.35 The causes of the GL reserve
uncertainty illuminate the reasons for the compactness of the
workers compensation reserve distribution.

! IBNR Emergence: Many GL claims are not reported to the
insurer until years after the accident. For toxic tort and en-
vironmental impairment exposures, claims are still being re-
ported decades after the exposure period (see, for instance,
ISO [39] or Simpson, Smith, and Babbitt [53]). In contrast,
most workers compensation accidents are known to the em-

35A full actuarial study of reserve uncertainty would apply the techniques used in this
paper to all lines of business and compare the reserve distributions, EPD ratios, or cap-
ital requirements among them. The analysis must take into account the factors specific
to each line that affect reserve fluctuations. For instance, just as we examine loss sen-
sitive contracts for workers compensation, we must examine latent injury claims, such
as those stemming from asbestos and pollution exposures, for general liability. For lines
of business like general liability, results about reserve uncertainty can not always be
generalized, since company practices vary so widely: some companies write premises
and operations coverage for retail establishments, while other companies insure large
manufacturing concerns; some companies are inundated by asbestos claims, while other
companies have few of these cases. The extent of such analysis, of course, puts it beyond
the scope of this paper.
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ployer within days of the accident, and insurance companies
are notified soon thereafter.

! Claim Payment Patterns: General liability losses depend upon
judicial decisions and jury awards. Ultimate costs may not be
known until years after the claim has been reported to the
insurer. Even cases settled out-of-court are often settled “on
the courthouse steps,” after pre-trial discovery and litigation
efforts have provided good indications of the expected judicial
outcome.

Workers compensation benefits, in contrast, are fixed by
statute, both in magnitude and in timing. The benefits may be
determined either by agreement between the insurer and the
injured worker, or by a workers compensation hearing officer.
The major uncertainty in indemnity benefits is the duration
of disability on non-permanent cases and the mortality rates
on permanent cases. For sufficiently large blocks of business,
both of these have relatively compact distributions. The major
uncertainty for medical benefits is the rate of inflation and the
extent of utilization of medical services. Over a large enough
block of business, these risks also have relatively compact dis-
tributions, particularly when reserves are discounted.36

Butsic [12, p. 179], summarizes this view as follows:

For example, Workers Compensation reserves should
have a lower risk than Other Liability reserves, even
though the average payment durations are about the
same, because Workers Compensation loss reserves con-
sist partly of fixed, more predictable, life pension bene-
fits.

36Changes in the workers compensation system may either increase or decrease the re-
serve uncertainty. For instance, the advent of managed care may increase the uncertainty
of ultimate loss payments, since the efficacy of managed care is not well known. It is
equally possible that managed care will decrease reserve uncertainty, since the medical
benefits may become easier to estimate. Our analysis partially incorporates this “specifi-
cation risk” (to use Mahler’s [46] term) in the process risk of the lognormal distribution
(see the discussion above).
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This paper provides the statistical support for the workers
compensation half of this citation from Butsic.

7. CONCLUSIONS

Casualty actuaries have developed numerous methods of es-
timating required loss reserves. But reserves are uncertain, and
actuaries are now being asked to quantify the uncertainty inher-
ent in the reserve estimates.

Many past attempts to address this subject have foundered
on one of two shoals. Some attempts are silver vessels of pure
theory: loss frequencies are simulated by Poisson functions, loss
severity is simulated by lognormal distributions, inflation is sim-
ulated by Brownian movements, and the results are much prized
by hypothetical companies. Other attempts are steel vessels of
actual experience: actual reserve changes, taken from financial
statements, reveal how companies have acted in the past, though
they offer imperfect clues about the uncertainties inherent in the
reserve estimation process itself.

This paper glides between the shoals. Loss reserve uncertainty
must be tied to the line of business. The uncertainty in workers
compensation reserves is different from the uncertainty in gen-
eral liability reserves even as it is different from the uncertainty
in life insurance or annuity reserves. We begin with extensive
data—twenty five years of experience from the nation’s premier
workers compensation carrier.

These data allow the actuary to develop reserve indications.
Our concerns in this paper are different. We fit these data to
families of curves to develop probability distributions of required
reserves. The power of stochastic simulation techniques enables
us to develop thousands of potential outcomes that are solidly
rooted in the empirical data.

The analysis shows that workers compensation reserves, when
valued on a discounted basis, have a highly compact distribu-
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tion. To measure uncertainty, we use the “expected policyholder
deficit” (EPD) ratio. For workers compensation, the amount of
capital needed to achieve a 1% EPD ratio is only a small fraction
of the “implicit interest margin” in the reserves themselves.

The vicissitudes of inflation are a major cause of workers
compensation reserve fluctuations, and changes in interest rates
strongly influence discounted values. This paper uses stochas-
tically generated interest rates and inflation rates to model the
reserve uncertainty.

The combination of rigorous actuarial theory with an exten-
sive empirical database enables us to examine the uncertainty in
the reserves themselves. Similar analyses should be performed
for other lines of business, such as automobile insurance or gen-
eral liability. Comparisons among the lines, as well as compar-
isons of reserve uncertainty with underwriting risks and with
asset risks, would allow us to exchange preconceived notions
with well-supported facts.
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APPENDIX A

WORKERS COMPENSATION RESERVES AND RISK-BASED
CAPITAL REQUIREMENTS

The text of this paper distinguishes between “regulatory mea-
sures” of reserving risk, as used in the NAIC’s risk-based capital
formula, and “actuarial measures” of reserving risk, as quantified
here. The analysis in this paper shows that the volatility inherent
in workers compensation reserve estimates is well below the im-
plicit interest margin in statutory (undiscounted) reserves. The
NAIC risk-based capital formula, however, has a reserving risk
charge of 11% for workers compensation, even after incorpora-
tion of the expected investment income on the assets supporting
the reserves.

An actuary unfamiliar with the development of the work-
ers compensation reserving risk charge in the risk-based capital
formula might conclude that “regulatory measures” of workers
compensation reserving risk give high capital charges whereas
“actuarial measures” give low charges. This is not correct. The
risk-based capital formula gives a low charge for workers com-
pensation reserving risk, even as the actuarial analysis in this
paper provides. The final 11% charge in the risk-based capital
formula is an ad hoc revision intended to provide more “reason-
able” capital requirements.

The workers compensation reserving risk charge was one of
the most contested aspects of the risk-based capital formula, and
the derivation of the final 11% charge was never publicly re-
vealed. This appendix explains the issues relating to the workers
compensation reserving risk charge, and it shows the charge re-
sulting from the NAIC “worst-case year” method.

Adverse Development and Loss Reserve Discounting

The reserving risk charge in the risk-based capital formula
bases the capital requirements on the historical adverse loss de-
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velopment in each line of business. The “worst-case” industry-
wide adverse loss development as a percentage of initial reserves
is determined from Schedule P data, and this figure is then re-
duced by a conservative estimate of expected investment income.

For workers compensation, the original risk-based capital for-
mula produced a charge of 0.4%.37 The 1992 Best’s Aggregates
and Averages shows a gross “worst-case year” adverse develop-
ment of 24.2%, as derived in Exhibit A-1.

Two considerations related to loss reserve discounting com-
plicate the estimation of the reserving risk charge for workers
compensation.

! Statutory accounting conventions for property/casualty insur-
ers are conservative, particularly with regard to the reporting
of loss reserves. The Annual Statement shows undiscounted
reserves, leaving a large margin in the reserves themselves,
particularly for long-tailed lines of business.

In other words, property/casualty insurers have two poten-
tial margins to ensure adequacy of loss reserves: an implicit
interest margin in the reserves themselves, and an explicit cap-
ital requirement provided by the reserving risk charge. To
avoid “double counting,” the risk-based capital formula off-
sets the implicit interest margin against the explicit reserving
risk charge.

! The “double margin” occurs when reserves are reported on an
undiscounted basis. But some property/casualty reserves are
reported on at least a partially discounted basis. For instance,
many carriers use tabular discounts for workers compensa-
tion lifetime pension claims. The special statutory treatment
of workers compensation lifetime pension cases necessitates
adjustments to the reserving risk charge.

37For a full description of the risk-based capital reserving risk charges, see Feldblum
[23].
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Both the NAIC Risk-Based Capital Working Group and the
American Academy of Actuaries task force on risk-based capital
spent months working on these two topics. The issues are com-
plex, and no clear explanation is available for either regulators
or for industry personnel. To clarify the issues, this appendix
discusses the treatment of the implicit interest margin in statu-
tory reserves and the adjustments needed for tabular loss reserve
discounts in workers compensation.

Payment Patterns and Discount Rates

The amount of the implicit interest margin, or the difference
between undiscounted (full-value) reserves and discounted (eco-
nomic) reserves, depends on two items: the payout pattern of the
loss reserves and the interest rate used to discount them.

For most lines of business, the NAIC risk-based capital for-
mula uses the IRS loss reserve payment pattern along with a
flat 5% discount rate. These choices were made for simplicity.
Using the IRS discounting pattern avoids the need to examine
loss reserve payout patterns, and using a flat 5% discount rate
avoids the need to examine investment yields. For some lines of
business, these choices are acceptable proxies for good solvency
regulation. For workers compensation, greater complexities arise.

! Payment Pattern: The IRS procedure assumes that all losses
are paid out within 15 years. Moreover, the pattern is based on
the industry data for the first 10 years as reported in Sched-
ule P.

For short-tailed lines of business, this is not unreasonable,
since most losses are indeed paid out before the Schedule P
triangles end. Workers compensation reserves, however, have a
payout schedule of about 50 years, since permanent total disabil-
ity cases—which are a small percentage of the claim count but
a large percentage of the dollar amount—extend for the lifetime
of the injured worker.

! Discount Rate: For its discount rate, the IRS uses a 60 month
rolling average of the federal midterm rate, which is defined
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as the average yield on outstanding Treasury securities with
maturities between 3 and 9 years. Since 1986, the IRS discount
rate has ranged between 6% and 8%.

Actual portfolio yields have been about 100 to 200 basis
points higher, since insurance companies invest not only in Trea-
sury securities but also in corporate bonds, common stocks, real
estate, and mortgages. However, these latter investment vehicles
have additional risks, such as default risks, market risks, and liq-
uidity risks. As a loss reserve discounting rate, many casualty
actuaries would prefer the 6% to 8% “risk-free” Treasury rate to
the 8% to 10% portfolio rate, particularly for statutory financial
statements which emphasize solvency.

The NAIC risk-based capital formula uses a flat 5% discount
rate. A variety of justifications have been given, such as:

! The 5% rate is simple, obviating any need to examine actual
investment yields and cutting off any arguments about the “ap-
propriate” rate.

! The 5% rate adds an additional margin of conservatism, since
it is 1 to 3 points lower than the corresponding IRS rate.

For lines of business where the implicit interest margin in the
reserves is small, the difference between the 5% NAIC rate and
the 6% to 8% IRS rate is not that important in setting capital
requirements. For a line of business like workers compensation,
however, where the discount factor ranges from 60% to 83%,
depending upon the assumptions, the choice of discount rate has
a great effect.

We begin the analysis below with the current NAIC risk-based
capital assumptions to see the unadjusted charge produced by the
formula. We then turn to actual payment patterns and investment
yields to address the fundamental questions: “What is the risk
associated with workers compensation loss reserves? And how
much capital ought insurance companies to hold to guard against
this risk?”
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The IRS Discount Factor

The IRS determines the loss reserves payout pattern by ex-
amining the ratio of paid losses to incurred losses by line of
business for each accident year from Part 1 of Schedule P. The
data are drawn from Best’s Aggregates and Averages, and the
payout pattern is redetermined every five years.

Schedule P shows only 10 years of data, though several lines
of business, such as workers compensation, have payout sched-
ules extending up to 50 years. The IRS allows an extension of
the payout pattern beyond the 10 years shown in Schedule P for
up to an additional 6 years. The extension of the payout pattern
does not rely on either empirical data or financial expectations.
Rather, the payout percentage in the tenth year is repeated for
each succeeding year until all reserves are paid out.

Accident Years vs. Aggregate Reserves

The IRS determines a discount factor for each accident year.
The risk-based capital formula uses a single discount factor for
all accident years combined. Thus, one must use a weighted av-
erage of the discount factors, based on the expected reserves by
accident year.38

Exhibit A-2 shows the workers compensation payment pattern
using the IRS procedures and the Best’s Aggregates and Averages
Schedule P data.

! The left-most column shows the payment year. Because work-
ers compensation reserves are paid out so slowly, the IRS ex-
tends the payment schedule for the full 16 years. It is still far
too short, particularly for lifetime pension cases.

38For simplicity, the calculations in this paper assume that the volume of workers com-
pensation business is remaining steady from year to year. A theoretical refinement would
be to use the actual volume of industrywide workers compensation reserves in each of
the past ten years, though there is no significant difference in the result.
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FIGURE 1

WORKERS COMPENSATION PAYOUT PATTERNS

! The middle column shows the payment schedule for an indi-
vidual accident year. This payment schedule says that 22.34%
of an accident year’s incurred losses are paid in the first cal-
endar year, 28.36% in the next calendar year, and so forth.

! The right-most column shows the payment schedule for the ag-
gregate reserves, assuming no change in business volume over
the 16 year period. This payment schedule says that 25.42% of
the reserves will be paid in the immediately following calendar
year, 16.14% in the next calendar year, and so forth.

Figure 1 shows the payout patterns for an individual accident
year and for the aggregate reserves. The horizontal axis repre-
sents time since the inception of the most recent accident year.
The accident year payout pattern begins with the first losses paid
on the policy, soon after the inception of the accident year. The
valuation date of the reserves in the graph is the conclusion of
the most recent accident year, so the payout pattern begins in the
second year since inception.

The payout pattern is combined with an annual interest rate
to give the discount factor, or the ratio of discounted reserves to
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undiscounted reserves. With an interest rate of 5% per annum,
the discount factor for the reserves is 82.98%. The risk-based
capital formula would therefore indicate a reserving risk charge
of

[1:242$82:98%]" 1 = 3:06%:
The 3% reserving risk charge depends upon the conservative

5% annual interest rate and the short IRS payment pattern. More
realistic interest rates and payment patterns, even when still con-
taining margins for conservatism, lead to a negative charge. We
discuss these in conjunction with tabular loss reserve discounts
below.

Discounted Reserves

What if an insurer holds discounted reserves, or partially dis-
counted reserves? How should the reserving risk procedure de-
scribed above be modified to account for the reserve discount?

This question is most relevant for workers compensation.
Statutory accounting normally requires that insurers report undis-
counted, or full-value, reserves. An exception is made for work-
ers compensation lifetime pension cases, where insurers are al-
lowed to value indemnity (lost income) reserves on a discounted
basis. State statutes often mandate conservative discount rates,
usually between 3.5% and 5% per annum, with the most com-
mon being 4%. These reserve discounts are termed “tabular”
discounts, since they are determined from mortality tables, not
from aggregate cash flow analyses.

Adverse Development and Interest Unwinding

The combination of three factors—(a) adverse development,
(b) the unwinding of interest discounts, and (c) weekly claim
payments—produces intricate results that are difficult even for
the most technically oriented readers to follow. So let us begin
with a simple example, which illustrates the concepts discussed
above.
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Suppose we have one claim, which will be used for deter-
mining both the “worst case” adverse loss development and the
interest discount factor. The claim occurred in 1987, and it will
be paid in 1997 for $10,000.

Suppose first that the company accurately estimates the ulti-
mate settlement amount and sets up this value at its initial reserve.
Adverse loss development in this “worst case year” is 0%. Since
there is a substantial implicit interest offset—the claim is paid 10
years after it occurs—the final reserving risk charge would be
negative. In practice, there are no negative charges in the NAIC
risk-based capital formula, since all charges are bounded below
by 0%.

How large is the offset for the implicit interest discount? For a
claim paid ten years after it occurs with a 5% per annum discount
factor, the offset is 1' (1:05)10 = 61:39%. The final reserving
risk charge in this simplified illustration is 38.61%.

What if the company holds the reserve on a discounted basis,
using a 4% per annum discount rate? In 1987, the company sets
up a reserve of [$10,000' (1:04)10], or $6,756. In 1988, the
discounted reserve increases to [$10,000' (1:04)9], or $7,026.
In 1989, the discounted reserve increases to [$10,000' (1:04)8],
or $7,307.

The increases in the held reserve, from $6,756 to $7,026 in
1988, and from $7,026 to $7,307 in 1989, stem from the “un-
winding” of the interest discount. However, they show up in
Schedule P of the Annual Statement just like any other adverse
development.39

Figure 2 shows the unwinding of the 4% interest discount over
the course of the ten years that the reserve is on the company’s

39This was true for the pre-1995 Schedule P, when Part 2 was net of tabular discounts,
though it was gross of non-tabular discounts. In 1995 and subsequent Annual Statements,
Part 2 of Schedule P is gross of all discounts, so the unwinding of the interest discount
no longer shows up as adverse development (see Feldblum [20]). The NAIC risk-based
capital reserving risk charges were derived from the 1992 Schedule P.
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FIGURE 2

UNWINDING OF INTEREST DISCOUNT

books. Between 1987 and 1992, the held reserve increases from
$6,756 to $8,219, for observed adverse loss development during
this period of 21:67% [= (8,219"6,756)'6,756].
The unwinding of the interest discount during 1987 through

1992 is reflected in the observed adverse development, so it is
picked up by the NAIC calculation of the reserving risk charge.
That is,

! A valuation basis that uses undiscounted reserves shows no
adverse loss development on this claim.

! A valuation basis that uses reserves discounted at a 4% annual
rate shows 21.67% of observed loss development.

The higher risk-based capital reserving risk charge generated
by the discounted reserves is offset by the lower reserves held
by the company.

Future Interest Unwinding

The unwinding of the interest discount continues from 1992
through 1997. Since this future unwinding is not yet reflected in
the Schedule P exhibits of historical adverse loss development,
a modification of the standard reserving risk charge calculation
is needed.
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What adjustment is needed? Consider the assumptions under-
lying the reserving risk charge. The reserving risk charge implic-
itly says:

Let us select the “worst case” adverse loss development
that happened between 1983 and 1992, and let us as-
sume that it might happen again.

This procedure assumes that the 1992 reserves are adequate.
That is to say, we should not expect either adverse or favorable
development of the 1992 reserves.40

This is the proper assumption for the risk-based capital for-
mula. The observed adverse loss development is meant to capture
unanticipated external factors that cause higher or lower settle-
ment values for insurance claims. A line of business may show
adverse loss development even if the initial reserves were prop-
erly set on a “best estimate” basis. If a company is indeed hold-
ing inadequate reserves, it is the task of the financial examiners
of the domiciliary state’s insurance department to correct the
situation. This is not the role of the generic risk-based capital
formula.

If the reserves are valued on a discounted basis, however, they
will continue to show (apparent) adverse development until all
the claims are settled. In the example above,

! The unwinding of the interest discount between 1987 and 1992
is reflected in the observed adverse loss development, and no
further adjustments are needed.

! The unwinding of the interest discount between 1992 and 1997
is not reflected anywhere, so an adjustment to the calculation
procedure must be made.

40We do not expect either adverse or favorable development of the 1992 reserves. The
risk-based capital requirement guards against unexpected adverse development of the
reserves.
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Alternative Adjustments

There are two ways to make this adjustment: either in the
“worst case year” industry adverse loss development or in the
offset for the implicit interest discount.

! Adverse loss development: One might add the expected future
unwinding of the interest discount that will occur after the final
valuation date to the “worst case year” observed adverse loss
development. In the example above, the observed adverse loss
development from 1987 to 1992 is $1,464, giving a factor
of +21:7% as a percentage of beginning reserves. We expect
further adverse loss development of $1,781 from 1992 to 1997
because of continued unwinding of the interest discount. The
total adverse loss development is therefore $3,245, or +48:0%
as a percentage of beginning reserves.

! Implicit interest discount: The further unwinding of the actual
interest discount in the reserves may be used to reduce the
offset for the implicit interest discount. In the example above,
the observed adverse loss development is offset by ten years of
implicit interest discount at a 5% annual rate. However, there
are five years of unwinding of the actual 4% interest discount
that are still to come (1992 through 1997), and that are not
reflected in the observed adverse development.

In our illustration, ten years of implicit interest discount at
a 5% annual rate gives a discount factor of 61.4%. Five future
years of actual interest unwinding at a 4% annual rate gives a
discount factor of 82.2%. The interest margin that should offset
the “worst case year” adverse loss development is the excess of
the implicit interest cushion over the actual interest discount, or
74:7% [= 61:2%' 82:2%]:

Diversity and Other Obstacles

In practice, the needed adjustments for tabular discounts are
difficult to determine for a variety of reasons.
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! Industry Practice: There is great disparity among insurance
companies in the use of tabular reserve discounts. The preva-
lent practice is to use tabular discounts on indemnity benefits
for lifetime pension cases. But there are companies that do not
use tabular reserve discounts at all, and that report aggregate
loss reserves on a full-value basis.41

! Pension Identification: Some companies show tabular dis-
counts only for claims that have been identified as lifetime
pension cases. Other companies show tabular discounts for
the expected amount of claims that will ultimately be coded
as lifetime pension cases.

The distinction between “identified” and “unidentified”
lifetime pension cases is analogous to the distinction between
“reported” and “IBNR” claims. A workers compensation claim
may be reported to the company soon after it occurs, but it may
remain “unidentified” as a lifetime pension case for several
years.

! Indemnity vs. Medical Benefits: Workers compensation bene-
fits comprise two parts: indemnity benefits, which cover the
loss of income, and medical benefits, which cover such ex-
penses as hospital stays and physicians’ fees.

Lifetime pension cases may show continuing payments of
both types. For instance, an injured worker who becomes a
quadriplegic may receive a weekly indemnity check for loss
of income as well as compensation for the medical costs of
around-the-clock nursing care.

Some insurers will discount only the indemnity benefits,
since the weekly benefits are fixed by statute.42 Other insurers
will discount the medical benefits as well, since the payments

41More precisely, the case reserves generally show the tabular discounts. However, these
discounts are “grossed up,” or eliminated, by the actuarial “bulk” reserves.
42In some states, the indemnity benefit may depend on cost of living adjustments, so the
amounts are not entirely “fixed.”
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are regular and do not vary significantly, even if they are not
fixed by statute.

! Interest Rates: The interest rate used for the tabular reserve
discounts varies by company and by state of domicile. Some
companies use a 3.5% annual rate, since this is the interest rate
used in the NCCI statistical plan. Several New York and Penn-
sylvania domiciled companies use a 5% annual rate, since this
is the rate permitted by statute in these states. Other companies
may use a 4% annual rate, since this is the most common rate
in other state statutes.

Pension Discounts

The 3.06% reserving risk charge calculated above uses the
conservative 5% interest rate in the risk-based capital formula
and the short IRS payment pattern.

As we have discussed above, the NAIC reserving risk charge
presumes that loss reserves are reported at undiscounted values.
If reserves are valued on a discounted basis—as is true for certain
workers compensation cases—then one expects future “adverse
development,” so the NAIC procedure is incomplete.

What is the expected effect of tabular discounts on the reserv-
ing risk charge for workers compensation? Analysts unfamiliar
with workers compensation are tempted to say: It should increase
the charge.

This would indeed be true if lifetime pension cases had the
same payment pattern as other workers compensation claims and
the only difference between pension cases and other compensa-
tion claims were that the pension cases are reported on a dis-
counted basis whereas the other compensation claims are re-
ported on an undiscounted basis. But this is not so. In fact, the
very reason that tabular reserve discounts are permitted for life-
time pension cases is that they are paid slowly but steadily over
the course of decades.
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In other words, to properly incorporate tabular discounts into
the workers compensation reserving risk charge, two changes are
needed:

! One must increase the “worst case year” adverse development
to include the future unwinding of the interest discount on
the pension cases. Alternatively, one may adjust the “implicit
interest discount” offset to account for the discount already
included in the reported reserves.

! One must adjust the payout pattern from the IRS sixteen year
pattern to the longer pattern appropriate for lifetime pension
cases.

The net effect is to reduce the reserving risk charge. In fact,
the indicated charge becomes negative, so it would be capped at
0% by the NAIC formula rules.

This is expected. The NAIC risk-based capital formula im-
poses a reserving risk charge when the “worst case” adverse
development exceeds the implicit interest margin in the reserves.
For lines of business like products liability and non-proportional
reinsurance, the potential adverse development may far exceed
the implicit interest margin, so companies must hold substantial
amounts of capital to guard against reserving risk. For work-
ers compensation “non-pension” cases, the mandated statutory
benefits reduce the risk of adverse development while the slow
payment pattern increases the implicit interest discount, so that
the latter almost entirely offsets the former, resulting in the 3%
charge calculated above with the RBC formula’s exceedingly
conservative assumptions. For workers compensation lifetime
pension cases, true adverse development practically disappears,
since mortality rates do not fluctuate randomly, and only the
unwinding of the tabular discount remains. Because of the ex-
tremely long payout pattern for lifetime pension cases and the
low interest rate allowed for tabular discounts, the implicit inter-
est margin in lifetime pension reserves is well in excess of the
“worst case” adverse development.
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To calculate the appropriate reserving risk charge for work-
ers compensation, after taking into consideration the tabular dis-
counts on lifetime pension cases, we make the two adjustments
discussed above.

! We replace the IRS payment pattern with a 50 year payment
pattern derived from the historical experience of the nation’s
largest compensation carrier. At a 5% per annum interest rate,
the present value of the reserves is 65.6% of the ultimate value,
as shown in Exhibit A-3.43

! We increase the “worst case year” adverse development to in-
corporate the future interest unwinding on lifetime pension
cases. The observed “worst case year” adverse development
is 24.2% of initial reserves, from the 1985 statement date to
the 1992 statement date. This includes the unwinding of tab-
ular interest discount between 1985 and 1992. The post-1992
unwinding of interest discount on these pension cases adds
between 6% and 8% to this figure. To be conservative, we
use the 8% endpoint, giving a total adverse development of
34.1%.44

! The resulting reserving risk charge is (1:341$0:656)"1, or
"14:1%. In other words, industry-wide workers compensation
reserves have always been adequate on a discounted basis,
even during the worst of years.

43Are statistics from a single carrier, no matter how large, a valid proxy for industry-wide
figures? For loss ratios, expense ratios, and profit margins they are not appropriate, since
each carrier has its own operating strategy. But workers compensation payment patterns
are determined by statute; they do not differ significantly among companies, assuming
that they have a similar mix of business by state. In November 1996, the American
Academy of Actuaries task force on risk-based capital verified the pattern shown in the
exhibits here, using data from eight large workers compensation carriers.
44For the unwinding of the tabular interest discount, it is no longer appropriate to use
a single company’s experience as a proxy for the industry. Insurers vary in whether
they use tabular discounts at all, what types of benefits they apply the discounts to, and
what interest rate they use to discount the reserves. The “6% to 8%” range in the text
results from extended observation of reserving practices in workers compensation, along
with detailed analysis of one company’s own experience. With the reporting of tabular
discounts in the 1994 Schedule P, more refined estimates of industry-wide practice may
soon be available.
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EXHIBIT A-2

IRS Payment Pattern (1992–1996)

Payment Payment
Pattern Pattern

Payment Year (Single Accident Year) (Stationary Book)

Accident Year Payout Reserve Payout

1 22.34% 0.00%
2 28.36% 25.42%
3 15.49% 16.14%
4 8.23% 11.07%
5 5.14% 8.37%
6 4.16% 6.69%
7 2.41% 5.33%
8 2.31% 4.54%
9 0.52% 3.78%
10 0.96% 3.61%
11 0.96% 3.30%
12 0.96% 2.98%
13 0.96% 2.67%
14 0.96% 2.35%
15 0.96% 2.03%
16 5.25% 1.72%
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EXHIBIT A-3

Workers’ Compensation Payment Pattern

Payment Payment
Pattern Pattern

Year (Single Accident Year) (Stationary Book)

1 0.190
2 0.213 0.127
3 0.127 0.094
4 0.083 0.074
5 0.057 0.061
6 0.041 0.052
7 0.032 0.045
8 0.025 0.041
9 0.021 0.037
10 0.016 0.033
11 0.014 0.031
12 0.013 0.028
13 0.011 0.026
14 0.010 0.025
15 0.009 0.023
16 0.009 0.022
17 0.009 0.020
18 0.007 0.019
19 0.006 0.018
20 0.006 0.017
21 0.006 0.016
22 0.005 0.015
23 0.006 0.014
24 0.005 0.013
25 0.005 0.013
26 0.004 0.012
27 0.004 0.011
28 0.004 0.010
29 0.004 0.010
30 0.004 0.009
31 0.004 0.009
32 0.003 0.008
33 0.003 0.008
34 0.003 0.007
35 0.003 0.006
36 0.003 0.006
37 0.003 0.006
38 0.003 0.005
39 0.003 0.005
40 0.003 0.004
41 0.003 0.004
42 0.003 0.003
43 0.003 0.003
44 0.002 0.003
45 0.002 0.002
46 0.002 0.002
47 0.002 0.001
48 0.002 0.001
49 0.002 0.001
50 0.002 0.000

Total (Excluding first 12 months) 0.810 1.000
Present Value @ 5% 0.767 0.656
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APPENDIX B

THE “EXPECTED POLICYHOLDER DEFICIT” YARDSTICK

Quantifying Reserve Uncertainty

Reserve uncertainty is a slippery concept, difficult to grasp
and even more difficult to quantify. The actuary’s skill is in
forming a “best estimate” that accords with the data and that is
appropriate for the particular business environment, such as the
insurance marketplace for the premium rates, a statutory financial
statement for the reserve requirements, or a merger transaction
for the company valuation.

Quantifying reserve uncertainty is complex. A statistician
might discuss reserve uncertainty as a probability distribution.
One might show the mean of the distribution, its variance, and
its higher moments; one might show various percentiles; one
might even try to fit the empirical distribution to a mathematical
curve. Accordingly, the exhibits in this paper show the mean, the
standard deviation, the 95th percentile, and the 5th percentile of
each of the distributions.

Capital Requirements

In recent years, state and federal regulators have been set-
ting capital requirements for financial institutions, such as for
banks and insurance companies. In theory, “risk-based capital
requirements” relate the capital requirements to the uncertainty
in various balance sheet items. In practice, most of the risk-based
capital formulas that have been implemented in recent years use
crude, generic charges that are based more on ad hoc considera-
tions of what constitutes a “reasonable” charge than on rigorous
actuarial or financial analyses.

Risk-based capital theory, however, is a siren for some ac-
tuaries and academicians, who have examined the relationship
between uncertainty and capital requirements. In an ideal risk-
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based capital system, capital requirements should be calibrated
among the balance sheet items in proportion to the risk that each
poses to the company’s solvency. Suppose a company has $100
million of bonds and $100 million of loss reserves, and the theo-
retically correct risk-based capital system says that the company
needs $5 million of capital to guard against the uncertainty in
the bond returns and $15 million of capital to guard against the
uncertainty in the loss reserve payments. Then we can say that
the uncertainty in the loss reserve portfolio is “three times as
great” as the uncertainty in the bond portfolio.

Of course, we don’t really mean that “uncertainty” is an ab-
solute quantity that can be three times as great as some other
figure. Rather, our measuring rod gives us a figure that we use
as a proxy for the amount of uncertainty.

Moreover, our interest is not in absolute capital requirements
but in the relative uncertainty among the company’s various com-
ponents. The regulator must indeed calibrate the absolute capi-
tal requirements, deciding between (i) $5 million of capital for
bond risk and $15 million of capital for reserve risk versus (ii)
$10 million of capital for bond risk and $30 million of capital
for reserve risk. For the measurement of uncertainty, however,
we are most interested in relative figures, such as the relative
amount of capital needed to guard against reserve risk versus
the amount needed to guard against bond risk, or the percent-
age reduction in capital for business written on loss sensitive
contracts.

Calibrating Capital Requirements

There are two “actuarial” methods of calibrating capital re-
quirements.

! The “probability of ruin” method says: How much capital is
needed such that the chance of the company’s insolvency dur-
ing the coming time period is equal to or less than a given
percentage?
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! The “expected policyholder deficit” method says: How much
capital is needed such that the expected loss to policyholders
and claimants during the coming time period—as a percentage
of the company’s obligations to them—is equal to or less than
a given amount?45

In this paper, we use the “expected policyholder deficit”
(EPD) approach. The results would be no different if we used a
“probability of ruin” approach.

Computing the Expected Policyholder Deficit

The “expected policyholder deficit” is a relatively new con-
cept, having first been introduced in 1992. This appendix pro-
vides a brief explanation of the EPD analysis used in the paper.

Let us repeat the underlying question. The EPD analysis says:
“Given a probability distribution for an uncertain balance sheet
item, how much capital must the company hold such that the ratio
of the expected loss to policyholders to the obligations to poli-
cyholders is less than or equal to a desired amount?” The format
of the analysis depends on the type of probability distribution.

! For a simple discrete distribution, we can work out by hand
the exact capital requirement. The type of simple discrete dis-
tribution that we illustrate below never occurs in real life. We
use it only as a heuristic example, since the same procedure is
used in our simulation analysis.

! If the empirical probability distribution can be modeled by a
mathematically tractable curve, a closed-form analytic expres-
sion for the EPD can sometimes be found. In his previously
cited paper, Butsic [14] does this for the normal and lognor-

45The “probability of ruin” method is explained in Daykin, Pentikainen, and Pesonen
[17]. Probability of ruin analyses have long been used by European actuaries; see es-
pecially Beard, Pentikainen, and Pesonen [3] and Bowers, Gerber, Hickman, Jones, and
Nesbitt [9]. The “expected policyholder deficit” method is explained in Butsic [13].
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mal distributions, which can serve as reasonable proxies for
many balance sheet items.

! The distributions in this paper are derived by means of stochas-
tic simulation. Each distribution results from 10,000 Monte
Carlo simulations. We determine the amount of capital needed
to achieve a desired EPD ratio, as explained below.

Let us begin with the first case, the simple discrete distribu-
tion, to illustrate how the analysis proceeds. The extension to
the full stochastic simulation merely requires greater computer
power; there is no difference in the structure of the analysis.

Scenarios and Deficits

The distributions used in this paper are based on 10,000 sim-
ulations each. Think of this as 10,000 different scenarios. In fact,
however, these simulations are stochastic. We do not know what
these simulations are until after they have been realized. In other
words, there are an infinite number of possible scenarios, 10,000
of which will be realized in the simulation.

To clarify the meaning of the “expected policyholder deficit,”
let us assume that an insurer with $250 million of assets faces
two possible scenarios:

! In the favorable scenario, the company’s interpretation of its
insurance contracts will be upheld by the courts, and it must
pay losses of $200 million.

! In the adverse scenario, the company’s interpretation will not
be upheld by the courts, and it must pay losses of $300 million.

Suppose also that there is a 60% chance of the favorable sce-
nario being realized and a 40% chance of the adverse scenario
being realized.46

46In the simulation analysis in this paper, only reserves are uncertain; assets are not
uncertain. However, the same type of analysis applies to both assets and liabilities. Indeed,
a more complete model would examine the external (economic and financial) factors that
lead to variability in ultimate loss reserves, and it would analyze their effects on asset
values as well.
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What is the expected policyholder deficit? In the favorable
scenario, the company has a positive net worth at the end. Since
we are concerned only with deficits, a positive outcome of any
size is considered a $0 deficit.

In the adverse scenario, the final deficit is a $50 million
deficit, or "$50 million. Since there is a 40% chance of an ad-
verse outcome, the expected policyholder deficit is

$0 million$60%+("$50 million$40%) ="$20 million:

The EPD Ratio

The definition of the EPD ratio is:

EPD ratio = (expected policyholder deficit)' (expected loss):
In the example above, there is a 60% chance of a $200 mil-
lion payment to claimants and a 40% chance of a $300 million
payment to claimants. Thus, the expected loss is:

($200 million$60%)+ ($300 million$40%) = $240 million:

The EPD ratio is:

$20 million'$240 million = 8:33%:
Consistency

We use a 1% expected policyholder deficit ratio to determine
the capital requirements. We use 1% to be consistent with the
charges in the NAIC risk-based capital formula. In memoranda
submitted to the American Academy of Actuaries task force on
risk-based capital, Butsic estimates that the overall industrywide
reserving risk charge in the NAIC risk-based capital formula
amounts to approximately a 1% EPD ratio.

This allows us to compare the workers compensation loss re-
serve uncertainty to other sources of insurance company risk. If
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one believes that the overall capital requirements in the NAIC
risk-based capital formula are reasonable, so a 1% EPD ratio
is appropriate, then the degree of workers compensation loss
reserve uncertainty measured in this paper can be viewed in
light of the other NAIC capital requirements. As Butsic [12]
says:

The amount of risk-based capital for each source of
risk (e.g., underwriting, investment, or credit) must be
such that the risk of insolvency (or other applicable im-
pairment) is directly proportional to the amount of risk-
based capital for each source of risk.

Capital Requirements

We illustrate the calculation of capital requirements with the
example given above. The capital required depends on the EPD
ratio that the company (or the solvency regulator) seeks to main-
tain. We use a 1% target EPD ratio for this illustration.

If the company holds no capital, then its EPD ratio equals:

(expected policyholder deficit)' (expected loss)
= $20 million' $240 million = 8:33%:

This exceeds the 1% target EPD ratio. The company must hold
sufficient capital such that its revised EPD, or EPD&, satisfies the
relationship:

EPD& ' (expected loss) = EPD& '$240 million = 1%,
or EPD& = $2:4 million:

In the favorable scenario, the company already has sufficient
funds to pay the losses. Adding capital will not change the pol-
icyholder deficit. In the adverse scenario, the company’s assets
are not sufficient to pay the losses. Adding capital will reduce
the policyholder deficit. To achieve an EPD& of $2.4 million, we
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solve:

40%$ (current assets+additional capital" liabilities)
="$2:4 million,

40%$ ($250 million+additional capital"$300 million)
="$2:4 million,

"$50 million+additional capital
="$6:0 million,

additional capital = $44 million:

Since the current assets are $250 million, the additional capital
required is $44 million, and the expected losses are $240 million,
the total capital requirement for the company is $250 million+
$44 million"$240 million = $54 million:
Full Simulation

The full analysis in this paper proceeds in the same fashion.
The 10,000 simulations are run, each of which produces a “real-
ization” for the loss amount. The average of these 10,000 real-
izations is the expected loss. The probability of each realization
is 0.01%.

We first assume that the asset amount equals the expected
loss, and we determine the loss payment and the deficit in each
realization.

! If the loss amount is less than the asset amount, then the loss
payment equals the loss amount, and the deficit is zero.

! If the loss amount exceeds the asset amount, then the loss pay-
ment equals the asset amount, and the deficit is the difference
between the loss amount and the asset amount.

We sum the deficits in the 10,000 realizations, and we divide
by 10,000. This gives the expected policyholder deficit. We then
divide by the expected loss amount to give the EPD ratio.
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If the probability distribution for the loss reserves is extremely
compact, then the EPD ratio may be less than 1% even if no cap-
ital is held. For instance, suppose that the probability distribution
is uniform over the range $100 million( $4 million: Then the
expected policyholder deficit is 1% if no capital is held.47 This
makes sense—if the loss payments are practically certain, there
would be little need for surplus to support the reserves.

In practice, of course, the loss payments are not certain, and
the EPD ratio would be greater than 1% if no capital is held.
We proceed iteratively. We add capital and redetermine the loss
payment and deficit in each scenario. This gives a new expected
policyholder deficit and a new EPD ratio. If the EPD ratio still
exceeds 1%, we must add more capital. If the EPD ratio is now
less than 1%, we can subtract capital. With sufficient computer
power, we quickly converge to a 1% EPD ratio.

47If the actual loss is less than $100 million, then the deficit is zero. If the actual loss
exceeds $100 million, then the deficit is uniform over [$0, $4 million], for an average of
$2 million. The expected deficit over all cases is therefore $1 million, for an EPD ratio
of 1%.
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APPENDIX C

THE SIMULATION PROCEDURE

Casualty actuaries are accustomed to providing point esti-
mates of indicated reserves. The traditional procedures—such as
a chain ladder loss development using 25 accident years of expe-
rience, supplemented by an “inverse power curve” tail factor—
provide a sound basis for estimating workers compensation re-
serve needs. The actuary’s task is to examine the historical ex-
perience for trends, evaluate the effects of internal (operational)
changes on case reserving practices and settlement patterns, and
forecast the likely influence of future economic and legal devel-
opments on the company’s loss obligations.

Our perspective in this paper is different. We are not deter-
mining a point estimate of the reserve need; rather, we are de-
termining a probability distribution for the reserve need. We use
the same procedure and the same data as we would use for the
point estimate: a chain ladder loss development based on 25 ac-
cident years of experience, along with a tail factor based on an
inverse power curve fit. But now each step turns stochastic, and
the probability distribution is determined by a Monte Carlo sim-
ulation.

The traditional procedures for determining point estimates are
documented in various textbooks. This appendix shows the cor-
responding procedures for determining the probability distribu-
tion.

Data

We use a chain ladder paid loss development, since payment
patterns for workers compensation are relatively stable whereas
case reserving practices often differ from company to company
and from year to year. This enables readers to replicate our results
using their own companies’ data.
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We begin with accident year triangles with 25 years of cu-
mulative paid losses, separately for indemnity (wage loss) and
medical benefits. Indemnity and medical benefits have different
loss payment patterns, and they are affected by different factors.
For instance, medical benefits are strongly affected by medical
inflation and by changes in medical utilization rates.

From the historical data we determine paid loss “age-to-age”
factors (or “link ratios”). Exhibit C-1 shows 20 columns of paid
loss age-to-age factors for countrywide indemnity plus ALAE
benefits. For instance, the column labeled “12–24” shows the
ratio of cumulative paid indemnity losses at 24 months to the
corresponding cumulative paid indemnity losses at 12 months
for each accident year. Similarly, Exhibit C-2 shows the paid
loss age-to-age factors for countrywide medical benefits.

Point Estimates versus Realizations

The reserving actuary, when determining a point estimate,
would examine these factors for trends. For a point estimate, the
reserving actuary might use an average of the most recent five
factors, instead of an average of all the factors in the column.

In this paper, our goal is to estimate the uncertainty in the
reserve indications. Just as there was an upward trend in the
age-to-age factors during the 1980s, there may be subsequent
upward or downward trends in the 1990s. We therefore use the
entire column of factors in our analysis. An “outlying” factor
that is not a good estimator of the expected future value is an
important element in measuring the potential variability of the
future value.

We want to use the historical factors to simulate future “real-
izations.” We do this by fitting the observed factors to a curve,
thereby obtaining a probability distribution for the “12 to 24”
age-to-age factors. Note carefully—this is not the probability
distribution of the loss reserves, which will be the output of the
simulation and which is not modeled by any mathematical func-
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tion. This is the probability distribution of the age-to-age fac-
tors, which is the input to the simulation and is modeled by a
curve.

Lognormal Curve Fitting

In this analysis, we used lognormal curves, which gave good
fits to the data. Exhibit C-3 shows the curve fitting procedure for
the first column of “indemnity plus ALAE” age-to-age factors.

For the lognormal curve, the probability distribution function
is

f(x) =
e":5(ln(x)"¹=¾)

2

x¾
%
2¼

and the cumulative distribution function is

F(x) = ©
!
ln(x)"¹

¾

"
We fit the function with the “development” part of the link

ratios, or the “age-to-age factor minus one,” as shown in Column
2 of Exhibit C-3. Column 3 shows the natural logarithms of the
factors in Column 2. We use the method of moments to find the
parameters of the fitted curve. The “mu” (¹) parameter is the
mean of the figures in Column 3, and the “sigma” (¾) parameter
is the standard deviation of the figures in Column 3.

We do the same for each “age-to-age” development column.
The fitted parameters shown in the box in Exhibit C-3 are carried
back to the final two rows in Exhibit C-1. Thus, each column
has its own lognormal probability distribution function. We do
this for development through 252 months. There is still paid loss
development after 252 months, but there is insufficient historical
experience to generate the factors, so we use an inverse power
curve to estimate the loss development “tail” (discussed below).

For each run, we use a random number generator (Excel’s
built-in “RAND” function) to obtain simulated “age-to-age” fac-
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tors in each column. Column 3 of Exhibit C-4 shows the re-
sults of one simulation for indemnity plus ALAE payments. For
instance, the simulated age-to-age factor for 12 to 24 months
of development is 2.312. The simulations for each of the 20
columns are independent of each other. For instance, the simu-
lated 1.401 factor for “24 to 36” months in Column 3 of Exhibit
C-4 is independent of the simulated 2.312 factor for “12 to 24”
months.48

Parameter Variance

Two types of variance affect the simulation of future age-to-
age link ratios: process variance and parameter variance.

! Process variance is the variance caused by the random na-
ture of insurance losses. Even if the expected link ratios were
known with certainty, the observed link ratios would differ
from them because more losses than expected or less losses
than expected might be paid in any given period.

! Parameter variance reflects the actuary’s uncertainty about the
expected losses. We estimate the probability distribution of the
age-to-age link ratios from historical data. Our estimate may
not be perfectly accurate; that is, we may have misestimated
the parameters of the fitted probability distribution.

Quantifying Parameter Variance

To quantify parameter variance, we use a model developed by
Kreps [42]. We assume that the observed age-to-age link ratios
in a given development period come from the same lognormal
probability distribution. We estimate the parameters of the fitted
distribution as documented above, giving a lognormal distribu-
tion with parameters ¹ and ¾.

48Our analysis assumes independence among columns. Dependence among columns may
raise or lower the reserve variability, depending on whether the columns are positively
or negatively correlated with each other. See the text of this paper for further discussion
of trends in “age-to-age” factors on any observed correlations between columns, and see
Holmberg [37] for methods of quantifying these correlations.
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Think of our problem in the following fashion. We want to use
our fitted distribution to simulate new observations. The actual
future value may differ from the expected (mean) value because
of process variance. In addition, we are uncertain whether we
have chosen the proper expected (mean) value.

The Kreps procedure works as follows:

We fit a lognormal distribution to each column of the triangle.
We assume that there are n age-to-age factors in the column,
and that these are represented by x1,x2 : : :xn.

1. Calculate

¹0 = (1=n)$§ ln(xi)
¾0 = )(1=n)$§[ln(xi)"¹0]2*0:5:

These are the maximum likelihood estimators that would
typically be used for simulation in the absence of param-
eter uncertainty.

2. Generate 3 random variables:

i) z, which has a standard normal distribution,

ii) w, which has a Chi-squared distribution with pa-
rameter (n+ µ"1),
iii) v$ (n+ µ" 2)0:5, which has a t distribution, with

parameter (n+ µ"2).
The value of µ depends on the Bayesian prior that

is used. If the prior is a uniform distribution, µ = 0. A
power-law prior gives µ = 1. The lower the value of µ,
the more the effect of the parameter uncertainty. In pri-
vate correspondence, Kreps pointed out to us that select-
ing µ = 0 or 1 can give unreasonable results more often
than one would like. In experimenting with this model-
ing, we found the same thing: every so often, the model
would generate a gigantic age-to-age factor that would
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be totally unreasonable, given the nature of the business.
Consequently, we used µ = 2. (On rare occasions, even
this gave unreasonable results—see the discussion be-
low.)

3. Calculate

zeff = v+ z
&)n&(1+ v2)=w*0:5:

4. Calculate
x= exp[¹0 +¾

&
0zeff]:

x is then a single simulation from the lognormal, taking
parameter uncertainty into account.

As noted above, we occasionally found that an “unreason-
ably” large age-to-age factor would be generated. These factors
were so large that they ended up dominating the simulation re-
sults. To eliminate these unreasonable cases, we set a rule that if
any of the simulated age-to-age factors was more than 50 stan-
dard deviations from the mean, then that whole simulation would
be eliminated. We are dealing with 20 years of workers compen-
sation paid losses and are simulating a separate ATA factor for
every point in the lower triangle. Also, since we have separate tri-
angles for medical and indemnity, we are simulating 420 age-to-
age factors each time. The rule applies to each one individually;
in other words, if even 1 of the 420 was outside of 50 standard
deviations, we threw them all out, and simulated again. Even so,
we ended up throwing out the results in fewer than 3% of the
cases. (In private correspondence, Kreps described this rule as
“very generous” and suggested that he might have limited factors
to within 10 standard deviations.)

Accident Year Correlations

In standard reserve analyses, the actuary derives a “best-
estimate” age-to-age link ratio for each development period and
uses that estimate for all future accident years. The actuary seeks
a best-estimate reserve indication, so the best-estimate link ratios
should be used for all years.
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Our concern in this paper is with simulating the actual (future)
development of the reserves. Each future year will have a distinct
age-to-age link ratio in each period. To accurately model the
future development of the reserves, we simulate separate future
link ratios for each future accident year.

For example, suppose that our most recent accident year is
1994, our current valuation date is December 31, 1994, and we
are simulating age-to-age link ratios from 48 to 60 months from
accident years 1990 and prior. We use the simulated 48 to 60
month link ratios to develop accident years 1991 through 1994.
We do four separate simulations to obtain four different link
ratios for these four accident years.

Using separate simulated link ratios for each accident year
assumes that the years are uncorrelated with respect to loss de-
velopment. Using a single simulated link ratio for all accident
years assumes that the accident years are perfectly correlated
with each other. The independence assumption leads to a lower
estimate of reserve uncertainty, since high development in one
accident year may be offset by low development in another acci-
dent year. The dependence assumption leads to a higher estimate
of reserve uncertainty, since high development in one accident
year is associated with high development in all accident years.

The practical effect of using separate simulations versus us-
ing a single simulation for the link ratio for all future accident
years in a given development period depends on the number of
independent development periods in the simulation. The model
in this paper uses 20 independent development periods plus a
tail factor. Since the development periods are independent of
each other, high development in one period is generally offset
by low or average development in other periods. Therefore, the
difference between independence among the accident years and
dependence among the accident years is not great.

The tables in the text of this paper show results for both the
independence assumption and the dependence assumption. The
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discussion in the paper uses the results for the independence
assumption (i.e., for separate simulations by accident year).

Tail Development

Exhibit C-4 shows the fitting of the inverse power curve for
one simulation. To clarify the procedure, let us contrast this with
fitting an inverse power curve for a “best-estimate” reserve in-
dication. For the “best-estimate” indication, we would use “se-
lected” age-to-age factors in Column 3, such as averages of the
factors in each column, or averages of the most recent years,
or perhaps averages that exclude high and low factors. For the
indemnity plus ALAE “12 to 24” months factor, the overall av-
erage is 2.685 and the average of the most recent five factors is
2.887. For a “best estimate,” we would probably choose a factor
such as 2.500.

In our analysis, the 20 factors in Column 3 are the results of
simulations from the 20 fitted lognormal curves. For instance, the
2.312 factor is a simulation from the lognormal curve represent-
ing the probability distribution for the 12 to 24 month column.

From these simulated age-to-age factors, we fit an inverse
power curve to estimate the “tail” development.49 The inverse
power curve will vary from simulation to simulation, since we
have different “age-to-age” factors in each run. Moreover, the
inverse power curve varies from accident year to accident year,
since the simulated age-to-age link ratios vary by accident year.

The inverse power curve models the age-to-age (“ATA”) fac-
tors as

ATA = 1+ at"b

where “t” represents the “development year,” and “a” and “b”
are the parameters that we must fit. In workers compensation,

49For the rationale of using an inverse power curve for the tail development, see Sherman
[52].
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the shape of the loss payment pattern differs greatly between the
first several years and subsequent years. In early years, there are
many temporary total claims with rapid payment patterns. By the
tenth year, most of the remaining reserves are for lifetime pension
cases (fatalities and permanent total disability cases) with slow
payment patterns. Therefore, we fit the inverse power curve using
the simulated factors from the tenth through the 20th columns
only.50

Columns (4) and (5) of Exhibit C-4 show the fitting proce-
dure. Column (4) is the natural logarithm of the development
year in Column (2), and Column (5) is the natural logarithm of
the “simulated age-to-age [ATA] factor minus one” in Column
(3). The inverse power curve can be written as

ln(ATA"1) = ln(a)" b$ ln(t):
We use a least squares procedure to determine the parameters

a and b from the figures in Columns (4) and (5), giving ln(a) =
"0:722, or a= 0:486, and b = 1:498, as shown in the box at the
bottom of Exhibit C-4.

The fitted inverse power curve provides age-to-age factors for
development years 21 through 70. We don’t really know how
long paid loss development continues for workers compensa-
tion. Moreover, the factors are small. For development years 30
through 39 in this simulation, the age-to-age factors are about
1.002, and for development years 40 through 70, the factors are
about 1.001. (The actual factors, of course, differ in the subse-
quent decimal places.) We therefore choose the length of the tail
development stochastically; that is, the length of the total devel-
opment is chosen randomly from a uniform distribution between
30 and 70 years.

50For actual reserve indications, one would probably segment the data between non-
pension cases (temporary total and permanent partial cases) and lifetime pension cases
(fatalities and permanent total cases).
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Parameter Variance in the Tail

We have included both process variance and parameter vari-
ance in the simulated age-to-age link ratios for the first 20 de-
velopment periods. The tail factors are an inverse power curve
extension of each set of simulated age-to-age link ratios.

The tail factor selection procedure is a deterministic fit to the
simulated age-to-age link ratios.51 To the extent that process risk
and/or parameter risk affect the variability of the age-to-age link
ratios, they affect the variability of the tail factors.

One reviewer of an earlier draft of this paper wondered
whether parameter variance might be incorporated independently
in the tail factors. Specifically, the model currently has the fol-
lowing steps:

! We stochastically simulate age-to-age link ratios separately for
each accident year and each development period, incorporating
both process variance and parameter variance.

! We stochastically select the length of the development period,
between 30 years and 70 years.

! We fit an inverse power curve to the simulated age-to-age link
ratios to generate a tail factor.

The revised procedure would expand the third step in the list
above as follows:

! Fit an inverse power curve to the simulated age-to-age link
ratios. The inverse power curve is a two parameter family of
curves. The fitting procedure gives “best estimates” for each
of the two parameters.

! The current procedure considers the fitted parameters as the
final values for each simulation. In place of this, assume a
“structure function” for the distribution of these two param-

51The length of the tail development, though, is an independent stochastic choice, unre-
lated to the set of age-to-age link ratios.
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eters. The values derived by fitting the inverse power curve
would be the means of the distributions. The variance of the
distribution, as well as the type of distribution, would be cho-
sen subjectively.

! Stochastically select values for these two parameters from their
assumed probability distribution. Use these simulated values
of the two parameters to generate the inverse power curve tail
factor.

Although this procedure is complex, it is important to consider
all sources of variability, and to incorporate them, when feasi-
ble, into an actuarial model. Two factors, however, hampered the
implementation of this procedure in our analysis.

! We had no a priori expectations about the type of structure
function or the variance of the structure function.

! For the parameter risk in the link ratio estimation, we used a
mathematically tractable approximation to simplify the simu-
lation. For the parameter risk in the tail factor estimation, we
are not aware of any corresponding approximation.

Thus, the procedures used in this paper do not separately in-
corporate parameter risk into the tail factor estimation.

Selected Factors

In the simulation shown in Exhibit C-5, the stochastic selec-
tion produced a development period of 54 years. We therefore
have three sets of age-to-age factors:

! For development years 1 through 20, we use the simulated
age-to-age factors generated by the lognormal curves for each
column. For these development years, the “selected ATA” in
Column (4) equals the “simulated ATA” in Column (2), not
the “fitted ATA” in Column (3).

! For development years 21 through 53, we use the age-to-age
factors from the fitted inverse power curve. For these devel-
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opment years, the “selected ATA” in Column (4) equals the
“fitted ATA” in Column (3).

! For development years 54 through 70, we use age-to-age fac-
tors of unity.

We now have all the age-to-age factors for this simulation.
We “square the triangle” in the standard reserving fashion to
determine ultimate incurred losses, and we subtract cumulative
paid losses to date to obtain the required reserves. Exhibit C-6
shows the determination of the required medical reserves for one
simulation. The “ultimate paids” in Exhibit C-6 are the “paid-
to-date” times the “age-to-ultimate” factors, and the “indicated
reserves” are the “ultimate paids” minus the “paid-to-date.” The
right-most two columns of Exhibit C-6 show the determination
of the present value of the reserves. The “present value factors”
are discussed in Appendix D, which has a full explanation of
inflation effects.

We perform this simulation 10,000 times, giving a complete
probability distribution of the required reserves, and we deter-
mine the mean, standard deviation, 95th percentile, and 5th per-
centile of this distribution. For the manner of determining the
“capital required to achieve a 1% expected policyholder deficit
ratio” (the right-most column of the exhibits in the text of this
paper), see Appendix B.
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EXHIBIT C-3

Illustration of Fitting Lognormal Distributions to
Age-to-Age Factors

(1) (2) (3)
Age-to-Age Natural Logs of
Factor (Age-to-Age

12–24 Factors for minus 1 Factors minus 1)
Indemnity & ALAE (1) "1 ln (2)

1974 2.334 1.334 0.288
1975 2.310 1.310 0.270
1976 2.262 1.262 0.232
1977 2.192 1.192 0.175
1978 2.246 1.246 0.220
1979 2.199 1.199 0.181
1980 2.169 1.169 0.156
1981 2.191 1.191 0.175
1982 2.179 1.179 0.165
1983 2.283 1.283 0.249
1984 2.345 1.345 0.297
1985 2.422 1.422 0.352
1986 2.377 1.377 0.320
1987 2.452 1.452 0.373
1988 2.496 1.496 0.403
1989 2.502 1.502 0.407
1990 2.666 1.666 0.510
1991 2.529 1.529 0.425
1992 2.454 1.454 0.375
1993 2.426 1.426 0.355

Average 2.352 1.352 0.296
Variance 0.018 0.018 0.010

Fitted Lognormal
¹0 [=mean of the logs of (ATA-1)] 0.296
¾0 [= standard deviation of logs of (ATA-1)] 0.099

Parameter Risk Procedure
n (=number of ATA factors) 20
£ 2
z [=Std normal random variable (simulated)] "0:509
w [=Chi-square(n+£"1) random variable (simulated)] 14.475
v [= t(n+£"2) random variable (simulated) '(n+£" 2)0:5] 0.419
zeff [= v+ z$)n$ (1+ v2)=w*0:5] "0:230
Simulated ATA [= 1+exp(¹0 +¾0$ zeff )] 2.315

The simulated age-to-age factor is a single pick from a lognormal distribution with parameter risk
taken into account [Note that the “1+” at the start of the expression for the simulated ATA is needed
because we fit the curve to (ATA-1)] For each simulated ATA factor, we need to simulate from 3
random variables, to get z, w, and v This was done in Excel, by inverting the cumulative density
functions of the respective distributions.
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EXHIBIT C-4

Illustration of Fitting an Inverse Power Curve to the
Simulated Age-to-Age Factors

(1) (2) (3) (4) (5) (6)
Development Simulated ln(year) ln(ATA-1) Fitted ATA
Period Year ATA ln(2) ln[(3)"1] 1+ a$ (2)["b]

12–24 1 2.312 1.486
24–36 2 1.401 1.172
36–48 3 1.208 1.094
48–60 4 1.106 1.061
60–72 5 1.072 1.044
72–84 6 1.055 1.033
84–96 7 1.040 1.026
96–108 8 1.037 1.022
108–120 9 1.029 1.018
120–132 10 1.015 2.303 "4.211 1.015
132–144 11 1.011 2.398 "4.484 1.013
144–156 12 1.013 2.485 "4.360 1.012
156–168 13 1.012 2.565 "4.439 1.010
168–180 14 1.011 2.639 "4.544 1.009
180–192 15 1.013 2.708 "4.362 1.008
192–204 16 1.008 2.773 "4.807 1.008
204–216 17 1.003 2.833 "5.770 1.007
216–228 18 1.005 2.890 "5.365 1.006
228–240 19 1.008 2.944 "4.856 1.006
240–252 20 1.007 2.996 "4.985 1.005

Fitting a least squares line to columns (4) and (5), with (5) as the dependent variable
gives the following fitted paramenters:

slope="1:498
Intercept="0:722

Since the inverse power curve can be written in the form: ln(ATA-1)=ln(a)"b ln(t), we
have the following parameters for the inverse power curve:

a=exp(intercept)=0.486
b ="slope= 1:498
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EXHIBIT C-5

Illustration of Selecting Age-to-Age Factors

(1) (2) (3) (4) (1) (3) (4)
Fitted ATA Selected ATA Fitted ATA Selected ATA

Simulated a= 0:486 Cut-off for tail* a= 0:486 Cut-off for tail*
Year ATA b = 1:498 54 Year b = 1:498 54

1 2.312 2.626 2.312 36 1.008 1.008
2 1.401 1.576 1.401 37 1.007 1.007
3 1.208 1.314 1.208 38 1.007 1.007
4 1.106 1.204 1.106 39 1.007 1.007
5 1.072 1.146 1.072 40 1.006 1.006
6 1.055 1.111 1.055 41 1.006 1.006
7 1.040 1.088 1.040 42 1.006 1.006
8 1.037 1.072 1.037 43 1.006 1.006
9 1.029 1.060 1.029 44 1.006 1.006
10 1.015 1.052 1.015 45 1.005 1.005
11 1.011 1.045 1.011 46 1.005 1.005
12 1.013 1.039 1.013 47 1.005 1.005
13 1.012 1.035 1.012 48 1.005 1.005
14 1.011 1.031 1.011 49 1.005 1.005
15 1.013 1.028 1.013 50 1.005 1.005
16 1.008 1.026 1.008 51 1.004 1.004
17 1.003 1.023 1.003 52 1.004 1.004
18 1.005 1.021 1.005 53 1.004 1.004
19 1.008 1.020 1.008 54 1.004 1.000
20 1.007 1.018 1.007 55 1.004 1.000
21 1.017 1.017 56 1.004 1.000
22 1.016 1.016 57 1.004 1.000
23 1.015 1.015 58 1.004 1.000
24 1.014 1.014 59 1.004 1.000
25 1.013 1.013 60 1.004 1.000
26 1.012 1.012 61 1.003 1.000
27 1.012 1.012 62 1.003 1.000
28 1.011 1.011 63 1.003 1.000
29 1.010 1.010 64 1.003 1.000
30 1.010 1.010 65 1.003 1.000
31 1.009 1.009 66 1.003 1.000
32 1.009 1.009 67 1.003 1.000
33 1.009 1.009 68 1.003 1.000
34 1.008 1.008 69 1.003 1.000
35 1.008 1.008 70 1.003 1.000

*The cut off for the tail models the actuarial uncertainty in when to cut off the development from the
inverse power curve The cut-off is based on a uniform distribution from 30 to 70.
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EXHIBIT C-6

Calculation of Required Reserves for a Single
Simulation

(Medical Payments Only)

Age-to- Ultimate Indicated Present Value Present Value
Year Paid to Date Ultimate Paids Reserves Factor of Reserves

1994 1,787,601 3.202 5,723,852 3,936,251 0.697 2,744,063
1993 3,324,538 1.778 5,910,348 2,585,810 0.579 1,496,946
1992 4,208,871 1.538 6,474,177 2,265,307 0.514 1,164,422
1991 7,017,997 1.462 10,261,961 3,243,963 0.497 1,612,068
1990 7,547,277 1.393 10,511,828 2,964,552 0.470 1,392,487
1989 7,905,743 1.348 10,655,677 2,749,934 0.452 1,243,164
1988 8,507,321 1.306 11,112,168 2,604,846 0.427 1,112,307
1987 7,629,124 1.284 9,798,726 2,169,602 0.422 915,457
1986 6,621,638 1.270 8,409,386 1,787,748 0.426 761,993
1985 5,398,367 1.250 6,746,697 1,348,331 0.418 563,797
1984 3,997,086 1.234 4,932,840 935,754 0.415 388,306
1983 3,198,587 1.222 3,908,208 709,622 0.417 295,599
1982 2,895,279 1.210 3,504,490 609,210 0.418 254,948
1981 2,929,995 1.200 3,517,101 587,106 0.422 248,033
1980 2,704,128 1.192 3,222,023 517,895 0.429 221,946
1979 2,552,368 1.181 3,013,230 460,862 0.428 197,322
1978 2,375,139 1.173 2,786,341 411,202 0.436 179,325
1977 1,986,508 1.172 2,328,957 342,449 0.463 158,711
1976 1,680,001 1.163 1,954,084 274,083 0.469 128,469
1975 1,321,413 1.159 1,531,944 210,531 0.489 103,028
1974 1,154,614 1.146 1,323,337 168,723 0.483 81,430
1973 1,004,449 1.135 1,140,181 135,733 0.478 64,937
1972 908,372 1.124 1,021,158 112,786 0.470 53,015
1971 782,100 1.118 874,591 92,491 0.478 44,228
1970 776,907 1.113 864,352 87,445 0.487 42,566

Total 90,215,423 121,527,659 31,312,236 15,468,566
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APPENDIX D

INFLATION ADJUSTMENTS

For certain long-tailed lines of business, much reserve uncer-
tainty stems from changes in the rate of inflation. For workers
compensation medical benefits, as an example, the employer is
responsible for physician fees, which are affected by the rate of
inflation up through the date that the service is rendered.

Paid loss development analyses may overstate the uncertainty
in reserve indications, particularly if one is concerned with the
economic value of the reserves and not their nominal value. For
instance, suppose that the cumulative paid losses in real dollar
terms will increase by 30% over the coming year, for a “real dol-
lar” age-to-age factor of 1.300. If inflation is high, the nominal
age-to-age factor may be 1.350. If inflation is low, the nominal
age-to-age factor may be 1.320.

To some extent, this is “apparent” reserve uncertainty, not
real reserve uncertainty. We can get a better estimate of reserve
uncertainty by

! Stripping inflation out of the historical paid losses,
! Determining “age-to-age” factors in real dollar terms,
! Using the “real dollar” factors to produce all the simulations,
and

! Restoring nominal inflation, based upon a stochastically gen-
erated inflation rate path, to determine ultimate losses.52

Exhibit D-1 shows the procedure used to put the paid loss ex-
perience into real dollar terms (at a 1994 price level). We demon-

52These adjustments are equally important for standard “point estimates” of indicated
reserves. Nominal dollar paid loss “age-to-age” factors have the historical inflation rate
built into them (see Cook [15]). If future inflation is expected to be different from past
inflation, a rote application of the paid loss chain ladder technique may give misleading
reserve indications.
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strate the procedure for medical benefits, which we assume to
be fully inflation sensitive. Indemnity benefits, in contrast, are
only partially inflation sensitive. About half the states have “cost
of living” adjustments for wage loss benefits, but generally these
adjustments apply only to certain cases (such as cases that extend
for two years or more), and they are often capped (say, at 5%
per annum).

We begin with the medical component of the Consumer Price
Index, shown on the second row of Exhibit D-1. During the
1980s, the rate of increase in workers compensation medical
benefits exceeded the medical CPI. This additional WC medical
inflation is related to increases in utilization rates or, perhaps, to
the incurral of medical services to justify claims for increased
indemnity benefits.

For ratemaking, we would need a “loss cost trend factor” for
workers compensation medical benefits, of which the medical
CPI is but one component. For our purposes, we are concerned
only with medical inflation. Changes in utilization rates remain
embedded in the paid loss development factors. If the reserving
actuary believes that future changes in utilization rates will differ
from past changes in utilization rates, this expected difference
must be separately quantified.

We must convert the incremental paid losses during each
calendar year to their “real dollar” (calendar year 1994) val-
ues. For ease of application, the one dimensional index in the
second row of Exhibit D-1 is converted to a two-dimensional
triangle. For instance, the “0.76” in column (5) for accident
year 1990 means that accident year losses paid between 48 and
60 months (i.e., between January 1, 1995, and December 31,
1995) must be multiplied by 0.76 to bring them to accident year
1990 levels. The 0.76 factor is derived from the inflation index:
0:76 = 1=(1:0885$1:0805$1:0667$1:0536).
We now redo the entire simulation procedure as documented

in Appendix C, using the paid losses that have all been adjusted
to a 1994 cost level.
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Inflation Rate Generator

The derivation of the stochastic medical inflation rate model is
shown in Exhibit D-2. We use the medical CPI as the “monetary”
inflation component of workers compensation medical benefits,
since this is the index that we used to deflate the medical link
ratios in Exhibit D-1.

Workers compensation medical loss cost trends are not nec-
essarily the same as the medical CPI, whether year by year or
over a long-term average, since other factors (such as utilization
rates) affect medical loss cost trends. The historical link ratios
are not deflated for this residual trend, so the residual trend is not
added back for future periods. If the reserving actuary believes
that future utilization rate trends will differ from the historical
utilization rate trends, a further adjustment should be made to
the simulation model.53

Restoring Inflation

To properly estimate reserves, we must “restore” future in-
flation at the rates stochastically generated for this scenario. To
keep the calculations tractable, we assume (i) annual changes
in interest rates and inflation rates, and (ii) mid-year loss pay-
ments.54

The procedure consists of the following steps:

! Remove inflation from the historical link ratios, fit them to a
lognormal curve, accounting for parameter risk, and simulate
future link ratios for each accident year, as in Appendix C.

! From the simulated link ratios, determine age-to-ultimate fac-
tors and payment patterns for each accident year.

53The advent of managed care procedures in the 1990s may warrant such an additional
adjustment.
54Mid-year loss payments is the common proxy for loss payments spread evenly over
the year. For payments after the first year, this is a reasonable approximation.
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! Stochastically generate an interest rate path and an inflation
rate path.

! Assume all payments are made at mid-year. Inflate the “real
dollar” loss payments by the future inflation rates to determine
nominal loss payments. The sum of the loss payments is the
undiscounted required reserve.

! Discount the nominal loss payments by the future interest rates
to determine discounted loss payments. The sum of the dis-
counted loss payments is the discounted required reserve.

For example, suppose that in one simulation we had the fol-
lowing figures:

Simulated Development Payment Inflation Interest
Year Link Ratio Factor Pattern Rate Rate

1 1.776 2.446 0.409 5.7% 7.5%
2 1.105 1.378 0.317 6.3% 6.6%
3 1.057 1.247 0.076 6.2% 6.4%

The simulated link ratios are for a particular accident year in
a particular simulation. The simulated development factors are
the backward product of the simulated link ratios. For instance,
2:446 = 1:378$1:776.
The payment pattern is the percent of losses paid in the calen-

dar year preceding the development factor in the adjoining cell.
For instance, the development factor at the end of “year 1” is
2.446. This implies that the percent of losses paid in the first
12 months equals 1'2:446, or 40.9%. At the end of the second
year, the development factor is 1.378. This implies that the per-
cent of losses paid in the first 24 month is 1'1:378, or 72.6%.
Since 40.9% of losses have been paid in the first 12 months,
31.7% of losses are paid between 12 and 24 months.

To simplify the exposition of the inflation and discounting
procedures, assume that total “real dollar” losses are $1,000,000
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for the most recent accident year (1994 in our example). Of this
amount, $409,000 is paid in the first twelve months, and they
are not included in the loss reserves held at the end of the year.

Another $317,000 is paid on July 1 of the following cal-
endar year (1995 in our example). This amount is in Decem-
ber 31, 1994 dollars. The nominal losses paid are therefore
$317,000$ (1:057)0:5. The discounted dollars in this scenario
equal $317,000$ (1:057)0:5' (1:075)0:5.
Another $76,000 is paid on July 1 of the next calendar year

(1996 in our example). Again, this amount is in December 31,
1994 dollars. The nominal losses paid are therefore $76,000$
(1:057)$ (1:063)0:5. The discounted dollars in this scenario equal
$76,000$ (1:057)$ (1:063)0:5')(1:075)$ (1:066)0:5*.
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EXHIBIT D-2

Page 1

Fitting of Model for Medical Inflation

Model: Medical inflationt =
a$(interest ratet)+¯$[(medical inflationt"1)"®$(interest ratet"1)]
+(1"¯)$[(avg. medical inflation)"®$(avg. interest rate)]+errort

®= 0:484 ¯ = 0:546
® and ¯ are chosen to minimize the sum of the squared errors in column 6

(1) (2) (3) (4) (5) (6)
Least-

Annual % Yield on Squares Fit
Medical Increase in Intermediate of Medical
CPI at Medical Term Govt Inflation Squared

Year December CPI Bonds* Model** Error*** Error****

1935 10.2
1936 10.2 0.0% 1.3%
1937 10.3 1.0% 1.1% 1.5% "0.56% 0.00003
1938 10.3 0.0% 1.5% 2.3% "2.30% 0.00053
1939 10.4 1.0% 1.0% 1.4% "0.43% 0.00002
1940 10.4 0.0% 0.6% 1.9% "1.88% 0.00035
1941 10.5 1.0% 0.8% 1.6% "0.61% 0.00004
1942 10.9 3.8% 0.7% 2.0% 1.82% 0.00033
1943 11.4 4.6% 1.5% 3.9% 0.67% 0.00004
1944 11.7 2.6% 1.4% 4.1% "1.49% 0.00022
1945 12.0 2.6% 1.0% 2.9% "0.33% 0.00001
1946 13.0 8.3% 1.1% 3.0% 5.34% 0.00285
1947 13.9 6.9% 1.3% 6.2% 0.69% 0.00005
1948 14.7 5.8% 1.5% 5.5% 0.27% 0.00001
1949 14.9 1.4% 1.2% 4.7% "3.31% 0.00109
1950 15.4 3.4% 1.6% 2.5% 0.83% 0.00007
1951 16.3 5.8% 2.2% 3.8% 2.06% 0.00043
1952 17.0 4.3% 2.4% 5.1% "0.79% 0.00006
1953 17.6 3.5% 2.2% 4.1% "0.58% 0.00003
1954 18.0 2.3% 1.7% 3.5% "1.24% 0.00015
1955 18.6 3.3% 2.8% 3.5% "0.14% 0.00000
1956 19.2 3.2% 3.6% 4.2% "0.94% 0.00009
1957 20.1 4.7% 2.8% 3.5% 1.18% 0.00014
1958 21.0 4.5% 3.8% 5.0% "0.50% 0.00003
1959 21.8 3.8% 5.0% 5.2% "1.37% 0.00019
1960 22.5 3.2% 3.3% 3.7% "0.48% 0.00002
1961 23.2 3.1% 3.8% 4.1% "0.95% 0.00009
1962 23.7 2.2% 3.5% 3.7% "1.55% 0.00024
1963 24.3 2.5% 4.0% 3.5% "1.00% 0.00010
1964 24.8 2.1% 4.0% 3.6% "1.54% 0.00024
1965 25.5 2.8% 4.9% 3.8% "0.94% 0.00009
1966 27.2 6.7% 4.8% 3.9% 2.77% 0.00077
1967 28.9 6.3% 5.8% 6.5% "0.24% 0.00001
1968 30.7 6.2% 6.0% 6.1% 0.13% 0.00000
1969 32.6 6.2% 8.3% 7.2% "0.98% 0.00010
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EXHIBIT D-2

Page 2

Fitting of Model for Medical Inflation

(1) (2) (3) (4) (5) (6)
Least-

Annual % Yield on Squares Fit
Medical Increase in Intermediate of Medical
CPI at Medical Term Govt Inflation Squared

Year December CPI Bonds* Model** Error*** Error****

1970 35.0 7.4% 5.9% 5.4% 1.99% 0.00040
1971 36.6 4.6% 5.3% 6.3% "1.76% 0.00031
1972 37.8 3.3% 5.9% 5.3% "1.99% 0.00040
1973 39.8 5.3% 6.8% 4.9% 0.43% 0.00002
1974 44.8 126% 7.1% 5.9% 6.69% 0.00448
1975 49.2 9.8% 7.2% 9.8% 0.04% 0.00000
1976 54.1 10.0% 6.0% 7.7% 2.27% 0.00051
1977 58.9 8.9% 7.5% 8.8% 0.06% 0.00000
1978 64.1 8.8% 8.8% 8.5% 0.37% 0.00001
1979 70.6 10.1% 10.3% 8.8% 1.33% 0.00018
1980 77.6 9.9% 12.5% 10.2% "0.24% 0.00001
1981 87.3 12.5% 14.0% 10.2% 2.29% 0.00053
1982 96.9 11.0% 9.9% 9.3% 1.74% 0.00030
1983 103.1 6.4% 11.4% 10.2% "3.84% 0.00147
1984 109.4 6.1% 11.0% 7.1% "1.04% 0.00011
1985 116.8 6.8% 8.6% 5.9% 0.88% 0.00008
1986 125.8 7.7% 6.9% 6.1% 1.63% 0.00027
1987 133.1 5.8% 8.3% 7.8% "1.95% 0.00038
1988 142.3 6.9% 9.2% 6.7% 0.18% 0.00000
1989 154.4 8.5% 7.9% 6.5% 1.98% 0.00039
1990 169.2 9.6% 7.7% 7.6% 1.99% 0.00040
1991 182.6 7.9% 6.0% 7.4% 0.50% 0.00003
1992 194.7 6.6% 6.1% 7.0% "0.40% 0.00002
1993 205.2 5.4% 5.2% 5.9% "0.46% 0.00002
1994 215.3 4.9% 7.8% 6.7% "1.75% 0.00030

Mean 5.4% 5.0% 0.04% 0.00033

183% 0.01901
=Std Dev =Sum of
of errors square

errors

* Source: Ibbotson Associates: Stocks, Bonds, Bills, and Inflation, 1995 Edition
** Column 4 = ®[Col. 3 for current year]+¯[Col. 2 for previous year"®(Col. 3 for previous
year)]+(1"¯) [Avg. of Col. 2"®(Avg. of Col. 3)]
*** Column 5=Column 2"Column 4
**** Column 6= )Column 5*2
Fitted ® and ¯ minimize the sum of column 6.
The error term for the model is a normal distribution, with mean=0.00%
and standard deviation=1.83%
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APPENDIX E

LOSS-SENSITIVE CONTRACTS

In the text of this paper, we examine the uncertainty in the
loss reserves. In practice, reserve uncertainty varies with the type
of insurance contract. For instance, high-level workers compen-
sation excess-of-loss covers, as well as large dollar deductible
policies offered to large employers, have greater reserve uncer-
tainty, particularly in the early policy years when the insurer’s
estimated liability is subject to great variation.

For business written on loss-sensitive contracts, such as ret-
rospectively rated plans for large workers compensation risks or
reinsurance treaties with sliding scale reinsurance commissions,
the opposite is true. Companies are concerned with the uncer-
tainty in the net reserves, or the future loss payments after adjust-
ment for retrospective premiums and variable commissions.55

Large dollar deductible policies are relatively new, and we do
not yet have the requisite data to estimate the reserve uncertainty.
In addition, the slow payment patterns of workers compensation
excess covers and of large dollar deductible policies will delay
the empirical quantification of their reserving risk.

In contrast, we have relatively complete data on loss-sensitive
contracts. Moreover, the effects of loss sensitive contracts on re-
serve uncertainty has become a significant regulatory and actu-
arial issue in recent years. The NAIC risk-based capital formula
contains an offset of 15% to 30% to the reserving risk charge for
business written on loss-sensitive contracts (Feldblum [23]). In

55The discussion here assumes familiarity with retrospective rating plans and with their
parameters, such as loss limits, premium maximums, and premium minimums, as well as
with standard reserving techniques for retrospective premiums. More detailed information
on the retrospective rating plan pricing parameters may be found in Simon [54], Skurnick
[55], Lee [43], Gillam and Snader [30], Bender [4], and Mahler [45]. The retrospective
premium reserving techniques that underlie the analysis in this paper are discussed in
Fitzgibbon [26], Berry [6], Teng and Perkins [57], and Feldblum [21].
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1995, a new Part 7 was added to Schedule P of the Fire and Ca-
sualty Annual Statement to quantify the risk-based capital loss-
sensitive contract offset and to measure the premium sensitivity
to losses on loss-sensitive contracts (Feldblum [20], [21]).

This appendix presents an analysis of reserving risk on retro-
spectively rated policies. Insurers writing excess layers of cover-
age or large dollar deductible policies should perform a similar
analysis on those policy types.

When the retrospective rating plan contains loss limits or pre-
mium maximums and minimums, reserving risk remains, though
it is dampened. These plans are more risky in some ways and
less risky in other ways than traditional first dollar coverages are.
The “pure insurance portion” of the plan is more risky, since

! The consideration paid by the insured is the “insurance
charge”, and

! The benefits paid by the insurer are the difference between (a)
the value of the uncapped and unbounded premium and (b)
the value of the capped and bounded premiums.56

The “pure insurance portion” is like excess-of-loss reinsur-
ance, where the loss limit provides coverage like that of per-
accident excess-of-loss and the premium bounds provide cover-
age like that of aggregate excess-of-loss. The variability of re-
serves for excess layers of coverage, per dollar of reserve, is
generally greater than the corresponding variability of reserves
for first dollar coverage.

If the retrospectively rated policy is considered as a whole—
(both the insurance portion and the “pass-through” portion)—the
retrospectively rated plan is less risky, per dollar of loss, than

56“Caps” refer to the loss limits; “bounds” refer to the premium maximums and min-
imums. “Ratable losses” are paid by the insurer but reimbursed by the employer, so
there is no insurance risk. Acquisition expenses, underwriting expenses, and adjustment
expenses are paid by the insurer but reimbursed in the basic premium and in the loss
conversion factor, again eliminating much of the risk to the insurer.
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traditional first dollar coverage. In fact, if there are no loss limits
and no maximum or minimum bounds on the premium, then
the insurance contract becomes simply a financing vehicle and
the insurance company serves as a claims administrator, not as
a risk-taker. There is no underwriting or reserving uncertainty at
all, though there is still “credit risk” (see Greene [31]).

Premium Sensitivity

How potent are loss sensitive contracts in reducing “net” loss
reserve uncertainty? (By “net” loss reserve uncertainty, we mean
the variability in the insurer’s total reserves, or loss reserves mi-
nus retrospective premium reserves. The “accrued retrospective
premium reserves” are carried as an asset on statutory financial
statements, whereas loss reserves are carried as a liability.) The
answer depends on the “premium sensitivity” of the plan; that is,
the amount of additional premium generated by each additional
dollar of loss.

We quantify the net loss reserve uncertainty in the same fash-
ion as we did earlier, by asking: “How does reserve uncertainty
affect the financial condition of the insurer?” For instance, if the
required reserves turn out to be 15% higher than our current es-
timates, how much additional funds will the company need to
meet its loss obligations?

For business which is not written on loss sensitive contracts,
the answer is simple. The additional funds needed equal the ad-
ditional dollars of loss minus the amount of any implicit interest
cushion in the reserves.

For business written on loss sensitive contracts, the answer is
more complex, as the following illustration shows. Suppose that
the indicated workers compensation reserves are $800 million.
As a conservative range to guard against reserve uncertainty,
the valuation actuary chooses an upper bound of $1,050 million
as the worst case reserve estimate. The actuary estimates that
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there would be about $200 million of implicit interest margin
in this scenario, so the capital needed to guard against reserve
uncertainty is $50 million.57

Suppose now that half of the company’s workers compensa-
tion business is written on retrospectively rated policies, of two
types:

! Large accounts have plans with wide swings; loss limits and
premium maximums are high, so each additional dollar of loss
generates about a dollar of premium.

! Small and medium-size accounts have plans with narrower
swings. Loss limits and premium maximums are lower and
constrain the retro premiums. On average, each additional dol-
lar of loss generates about 65c= of additional premium.

For the entire book of retrospectively rated contracts, the pre-
mium sensitivity is 80%; that is, each additional dollar of loss
generates about 80c= of additional premium.

How much capital should this insurer hold to guard against
reserve uncertainty? Suppose the needed reserves increase to the
“worst case” scenario of $1,050 million. Half of this business is
written on retrospectively rated plans, and the average premium
sensitivity is 80%. In other words, of the adverse loss devel-
opment of $250 million, $125 million occurs on retrospectively
rated business. With a premium sensitivity of 80%, adverse loss
development of $125 million generates $100 million of addi-
tional premium.

We add the $100 million of additional premium to the $200
of implicit interest margin to arrive at a solvency cushion of
$300 million. Since the worst case adverse loss development is
$250 million, the company already has a $50 million surplus

57For the illustration, we assume that the company wishes to hold a margin for reserve
uncertainty even greater than the implicit interest margin. The text of this paper shows
that for workers compensation, this implies a very low EPD ratio.
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solvency cushion in the carried reserves, so no additional capital
is needed.58

In sum, loss sensitive contracts have potent implications for
the quantification of reserve uncertainty. We examine this subject
from two perspectives:

! A theoretical perspective, showing the factors affecting the
risks in loss sensitive contracts, and

! A simulation perspective, showing the effects of loss sensitive
contracts on our measures of reserve uncertainty.

Underwriting Risk and Reserving Risk

Before turning to reserve uncertainty, let us broaden our in-
quiry and ask: “To what extent do retrospectively rated policies
mitigate underwriting uncertainty in general?” We can answer
this question empirically, by comparing the variability of stan-
dard loss ratios and net loss ratios on a large and mature book
of retrospectively rated workers compensation policies.

! Standard loss ratios are incurred losses divided by standard
earned premium. These loss ratios are influenced by random
loss occurrences and premium rate fluctuations, and they vary
considerably over time.

! Net loss ratios are incurred losses divided by the final earned
premiums, as modified by retrospective adjustments. These ad-
justments counteract both the random loss occurrences and the

58An adjustment is needed to bring the accrued retrospective premiums to present value.
The magnitude of this adjustment depends on the type of retrospective rating plan. For
“paid loss” retro plans, the additional premium is collected when the losses are paid, so
the present value of the retro premium is less than $100 million. For “incurred loss” retro
plans, the additional premium is billed and collected when the case reserves develop
adversely, so a smaller adjustment is needed. In this illustration, the implicit interest
margin in the loss reserves is $200 million'$1,050 million, or 19%. If all the retro plans
in this illustration are paid loss retros, and the additional premium is collected when the
losses are paid, the present value of the additional premiums is $81 million.
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fluctuations in manual rate levels, so the net loss ratios should
be more stable over time.

Exhibit E-1 shows these loss ratios for retrospectively rated
policies issued by a large workers compensation insurer. Only
mature policies are used in this comparison, to ensure that the net
loss ratios are not subject to significant additional retrospective
adjustments.59

As expected, the mean loss ratios are similar for standard and
net—77.0% for standard and 78.8% for net. (The net loss ra-
tios are slightly higher, since more retrospective premiums are
returned than are collected.) The variances and standard devi-
ations, however, differ greatly. The standard loss ratios show a
variance of 46.9% and a standard deviation of 68.5%. Retrospec-
tive rating dampens the fluctuations in the loss ratios, leading to
a variance of 11.2% and a standard deviation of 33.4%.

Reserve Uncertainty

Exhibit E-1 deals with (prospective) underwriting risk, or the
risk that future underwriting returns will be lower than antic-
ipated. Let us return now to reserving risk. We ask “To what
extent is adverse development on existing losses mitigated by
loss sensitive contracts?”

To resolve this issue, we must know the premium sensitivity
of the retrospective rating plans, or the amount of additional pre-
mium received for each dollar of additional loss. Let us examine
the variables that affect the premium sensitivity: the plan param-
eters, the current loss ratio, and the maturity of the reserves.60

59The exhibit in this paper, along with the variances and standard deviations, was pro-
duced by Miriam Perkins. An earlier exhibit from the same book of business, produced
by Dr. J. Eric Brosius, was provided by the authors to the American Academy of Actu-
aries task force on risk-based capital. It was used by the Tillinghast consulting firm to
support the recommendations of the task force regarding the loss-sensitive contract offset
to the reserving and underwriting risk charges in the NAIC risk-based capital formula.
60Compare Bender [4, p. 36]: “The aggregate premium returned to a group of individual
risks that are subject to retrospective rating depends upon the retrospective rating formula,
the aggregate loss ratio of the risks, and the distribution of the individual risks’ loss ratios
around the aggregate.”
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Plan Parameters

If the retrospective rating plan had no loss limits and no con-
straints on the final premium, the premium sensitivity would
equal the loss conversion factor times the tax multiplier, which
is generally equal to or greater than one. In most cases—and
particularly for smaller risks—the loss limits and the premium
maximums constrain the swing of the plan, and the premium
sensitivity is lower than one.

Generally, larger insureds choose retrospective rating plans
with wide swings, while smaller insureds choose more con-
strained plans. To quantify premium sensitivity, therefore, the
book of business should be divided into relatively homogeneous
groups by size of risk, such as between medium sized risks and
“national accounts.”61 (Small risks rarely use retrospective rating
plans.)

The differences are dramatic. National accounts in our own
book of business, with annual premium of $2 million or more
per risk, almost always have wide swing plans, and the average
premium sensitivity is close to one. Medium sized risks in our

There are several additional items which should also be examined for a complete
analysis of the effects of loss-sensitive contracts on reserve uncertainty. As noted earlier,
we should look at the effects of “incurred loss” retros versus “paid loss” retros on the
implicit interest margin in the accrued retrospective premiums. To be conservative, we
assume here that all plans are paid loss retros; since the additional loss payments and the
additional premium collections occur at the same time, we simply net them out. Incurred
loss retros would show even greater dampening of the loss reserve uncertainty; since the
premiums have less implicit interest margin, the effective premium sensitivity is greater
than a nominal dollar analysis indicates.
In addition, a complete analysis should look at the effects of the plan parameters on the

credit risk of the company and on the size of the implicit interest margin. The accrued
retrospective premiums are a receivable, not an investable asset. As is true for losses,
they are held on statutory financial statements at ultimate value, not at present value. If
loss reserves are backed by accrued retrospective premiums, then either these premium
reserves should be reduced to present value or the implicit interest margin in the loss
reserves should be reduced.
61This subdivision of the data by size of insured or by “underwriting market” is generally
available in company files. Of course, if the company keeps data by type of plan (wide
swing plans vs. narrow swing plans and so forth), this more accurate subdivision is
preferable.
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book of business, with more constrained plans, have an average
premium sensitivity of about 65%.62

Loss Ratio

The premium maximum and the loss limits constrain the
swing of the plan. Ideally, we wish to know whether adverse loss
development causes the retrospectively rated premium on each
policy to hit the premium maximum or the loss to hit the loss
limit. However, we do not have information on each individual
change in reported losses. Actuaries estimate from aggregates,
not from details. We must determine which aggregate statistics
are suitable predictors of the average amount of retrospective
premium that will be collected.

Given the parameters of any retrospectively rated plan, the
loss ratio determines whether the retrospective premium will be
capped at the maximum. Given a distribution of loss ratios in
a book of business, all of which are written on similar retro-
spectively rated plans, we can estimate the percent of plans that
will hit the maximum premium. If the shape of this distribution
does not depend significantly upon the average loss ratio of the
book of business, and if we know the average loss ratio, then
we can determine the percent of plans that will hit the maximum
premium.

The general rule is that premium sensitivity declines as the
aggregate loss ratio increases. During poor underwriting years,

62These are empirical figures, using actual ratios of retrospective premium collected
to historical loss development. Bender [4], using theoretical relationships based on the
NCCI’s “Table M,” estimates premium sensitivity for various risk sizes. Bender’s analysis
is a useful check on our procedure, but it is not a substitute. His analysis posits that
the Table M relationships are correct and that compensation carriers actually use the
NCCI Table M insurance charges to price their retrospectively rated policies. In practice,
insurers use a variety of plans for their large insureds, and they often negotiate the loss
limits, premium maximum, and plan parameters in each case for their national accounts.
As emphasized in Howard Mahler’s [45] discussion of Bender’s paper, the premium

sensitivity is strongly dependent on the size of the risk. Bender analyzes primarily small
risks, where the premium sensitivity is weak. The sensitivity rises rapidly with the size
of the risk; see especially Bender’s [4] Table 5 on page 50, which shows the “slope” of
the plan as a function of the “loss group,” and Mahler’s [45] comments on pages 76–78.
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when loss ratios are higher, adverse loss development leads to
less additional premium than in good underwriting years, when
loss ratios are lower.

Reserve Maturity

In workers compensation, adverse loss development at early
maturities stems from delayed reporting of some cases and pri-
marily from the reclassification of less serious cases to more seri-
ous cases. For instance, almost all lower back sprains and strains
are initially classified as short-term temporary total cases. Sig-
nificant case reserve development is expected in the first two or
three years, as some of these claims develop into permanent par-
tial or permanent total cases. Much of this development is within
the “ratable” area of the retrospective rating plan; for instance, a
$10,000 claim is reclassified as a $100,000 claim, so premium
sensitivity is high.

At later maturities, adverse loss development stems primarily
from re-estimation of the costs of permanent cases. For a plan
with low or even moderate loss limits, most of the adverse loss
reserve development after five or six years occurs in the “non-
ratable” portion of the retrospective rating plan. For instance,
a $300,000 claim may be re-estimated at $400,000, when it be-
comes evident that the worker will not soon be returning to work.
For plans sold to medium-sized employers, the premium sensi-
tivity for this change is generally low.

Furthermore, many companies “close” their retrospective rat-
ing plans after, say, six or seven years, with a final accounting
between the company and the insured. Adverse development oc-
curring after this date would not affect the retrospective premi-
ums.63

63Retrospectively rated plans sold to large accounts are frequently kept open for longer
periods. In fact, plans sold to “national accounts” are often kept open indefinitely, or at
least until the insurer and the employer agree on a final reckoning.
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Effects on the Simulation

For the simulation, we use premium sensitivity factors based
on observed long-term patterns by market and by reserve matu-
rity in our countrywide book of business.64 From the empirical
data we produce two curves, each showing premium sensitiv-
ity by reserve duration, one for national accounts and one for
medium-sized risks. We weight these two curves by the volume
of business in these two markets.

In the simulation analysis, we first repeat the steps outlined
earlier. Based upon historical experience, we estimate (determin-
istically) the amount of case reserves associated with each cu-
mulative paid loss amount at each duration. From the change in
reported losses, we determine the change in retrospective premi-
ums, and thereby the change in “net reserves.”

The effects of loss sensitive contracts vary greatly by type
of plan and by company practice. Several reviewers of drafts of
this paper have pointed out to us: “Your company writes primar-
ily large accounts and uses highly sensitive, wide swing plans.
For this type of business, the net reserve uncertainty is clearly
mitigated. What about other companies, which use less sensitive
plans, recognize the adverse development later, and close their
plans after several years? Would they also show a significant
reduction in net reserve uncertainty?”

Accordingly, we made three adjustments, to model the loss
sensitive contracts often used for medium-sized risks:

! We assume that the retrospective plans are relatively insensi-
tive. For the most recent accident year, the assumed premium

64To avoid undue complexity, we do not consider aggregate loss ratios in the simulation
analysis. To incorporate the aggregate loss ratio dimension, we would have to evaluate
the effect of each simulated link ratio on the new accident year loss ratio and determine a
new premium sensitivity factor for every cell in every simulation. Moreover, since we are
using paid loss age-to-age factors, we would have to convert paid loss ratios to incurred
loss ratios. The benefits from these refinements are far less than the additional effort.
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sensitivity is 49%, with the sensitivity factor decreasing for
each older accident year.

! We assume that most adverse development is recognized late,
when premium sensitivity is lower.

! We assume that the plans are closed, on average, about five
to ten years after policy inception. With the late recognition
of the adverse development and the relative early closure of
the plans, even the limited premium sensitivity is markedly
reduced for older accident years.

We ran corresponding stochastic simulations for the loss-
sensitive book of business. Even with the assumptions listed
above, the projected reserve distribution is more compact, and
there is less “reserve uncertainty.” Specifically, the use of loss
sensitive contracts reduces the standard deviation of the reserve
realizations by about 35%, and it reduces the capital needed for
a 1% EPD ratio by about 20%.
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APPENDIX F

PARAMETER UNCERTAINTY IN RESERVE ESTIMATES:
THE KREPS PROCEDURE

The analysis in this paper estimates the uncertainty in work-
ers compensation loss reserves. The text and the other appendices
explain the method and its rationale, and they provide the simu-
lation equations in sufficient detail that practicing actuaries can
replicate our results. Most elements of our procedure are easily
visualized, so that the intuition behind each step is clear.

This is less true of the Kreps parameter risk estimation pro-
cess. The procedure itself is relatively new, having first appeared
in the 1997 issue of the Proceedings of the CAS. The simula-
tion equations that are shown in Appendix C are taken directly
from Kreps [42], which provides the justification for this pro-
cess. These equations are not self-explanatory, and we have not
reproduced the derivations that Kreps provides. Moreover, the
magnitude of the parameter risk depends on the choice of the
Bayesian prior selected by the analyst, which can be a difficult
decision. To aid the reader in understanding our procedure, this
appendix provides an intuitive overview of parameter risk and
of the Kreps estimation process.

Actuaries generally distinguish between two sources of uncer-
tainty: process risk and parameter risk. Process risk is the risk
that actual results will differ from our expected results because of
random loss occurrences. Parameter risk is the risk that our ex-
pected results are not the true expected results because we have
misestimated the parameters of our distributions.

Process risk can generally be estimated directly, as long as one
properly identifies all the sources of process risk. In the analy-
sis in the text of this paper, we consider the process risk from
age-to-age link ratios, from loss development tail factors, from
future interest rates, and from future inflation rates. Parameter
risk is more difficult to quantify. Some actuaries would argue
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that it is impossible to quantify completely, since any estimate
of parameter risk relies on assumptions about the nature of the
distributions.

In this paper, we use a procedure developed by Kreps [42] to
estimate parameter risk. The mathematically adept reader is re-
ferred to Kreps’s 1997 Proceedings paper, which is the basis for
the simulations which we use. Appendix C shows the equations
that we used in the simulations in incorporate parameter risk.
Kreps provides a similar but independent analysis of Homeown-
ers reserve uncertainty, using lognormal distributions of paid loss
age-to-age link ratios. Kreps uses fewer data points and a more
diffuse Bayesian prior, thus magnifying the parameter risk com-
pared to the process risk. However, workers compensation has
much larger paid loss development factors than Homeowners,
and the development extends over a much longer period, so the
total reserve uncertainty is greater in our analysis than in his.

This appendix does not purport to summarize Kreps’s paper,
which is already a succinct and clear exposition of a complex
topic. Rather, this appendix provides a non-mathematical “intu-
itive” explanation of what we are doing. It explains where the
parameter uncertainty resides in our analysis, what aspects of the
parameter uncertainty we purport to measure, how we do so, and
what choices we make in the estimation process.

Parameter Risk

Process risk and parameter risk are frequently discussed in re-
lation to policy pricing, particularly for estimating needed profit
margins and risk loads. We briefly summarize the pricing dis-
tinction between these two sources of risk, and then we extend
the distinction to loss reserving.

In traditional ratemaking, the pricing actuary estimates the
mean of future loss costs. This mean is based on both historical
data, such as two or three years of experience, and various ad-
justment factors, such as development factors and trend factors.
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The traditional procedure gives an expected mean for future
loss costs, frequently called a “best-estimate.”65 The traditional
procedure does not indicate how much uncertainty is associated
with the expected future loss costs.

The uncertainty can arise from two sources: process risk and
parameter risk. The pricing actuary is setting a premium rate,
which considers only the expected value of the future loss costs.
But losses are random occurrences, and actual losses will almost
never precisely equal the expected losses. Process risk is the risk
that actual losses will differ from the true expected losses.

The total pricing uncertainty, however, is the risk that actual
losses will differ from our estimate of future loss costs, not from
the true expected loss costs. Parameter risk is the risk that our
estimate of future loss costs differs from the true expected loss
costs. Parameter risk arises because the components of our pric-
ing procedure are estimates, not known values. This is clear for
such items as trend factors, since we can only estimate the effects
of monetary inflation and other “social” influences on insurance
losses. This is equally true, though, for our historical data. The
pricing actuary begins with past experience, which he or she
trends to a future policy period. In truth, the pricing actuary
wishes to begin with the expected past experience, or the losses
that were expected in the historical experience period. Sometimes
the actual past losses are the best estimate of the expected past
losses. At other times, the pricing actuary makes explicit cor-
rections to actual past experience; the smoothing of catastrophe
experience and the credibility weightings of historical loss ratios
are two examples of this. Parameter risk includes the risk that

65In fact, this estimated mean may not be the true “best estimate”; that is, it may not
be the true mean of the estimated distribution. This is because the distributions used to
generate the future loss costs, such as the distribution of historical losses, the distribution
of development factors, and the distribution of trend factors, are often highly skewed
and correlated. For example, the trend factor used in ratemaking is the product of several
annual trend rates, and these rates are autocorrelated. The mean of the product of several
skewed and correlated distributions is not the same as the product of the means of these
distributions.
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the historical experience was not the expected experience even
in the past.

Parameter Risk: Reserving

Loss reserve estimates show the same two sources of uncer-
tainty. Chain ladder loss development methods derive age-to-age
link ratios from past experience and use them to estimate future
development. Process risk is the risk that actual loss develop-
ment link ratios experienced in the future will differ from the
true expected link ratios, since the occurrence of IBNR claims,
the durations and the extent of disability on known claims, and
the decisions of hearing officers and courts on contested claims
are all unknown factors that influence the ultimate losses.

Traditional reserve analyses use the average historical link
ratios as estimates of future ones, adjusted perhaps for outlying
observations, “high” and “low” values, and systematic changes in
claims operations or in the insurance environment. In this paper,
we do not project “best-estimate” age-to-age link ratios. Instead,
we use the historical link ratios to estimate the distribution from
which future link ratios may emerge. We assume that the actual
link ratios in any given development period are members of a
lognormal family. We fit the parameters of the lognormal curve
for each development period from the historical observations.

Parameter risk may take several forms. Some types of param-
eter risk are dealt with in other parts of our simulation procedure.
For instance, the traditional reserve analysis is hampered by the
possibility that changes in inflation rates will modify the distri-
bution of link ratios. Our simulation procedure makes this risk
explicit by stochastically generating future inflation rate paths.

Another type of parameter risk is the risk that the distribution
of age-to-age link ratios is better modeled by some other curve,
not by a lognormal. Curve families differ in their skewness and
in the thickness of their tails, which affect the future (simulated)
link ratios.
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This risk definitely exists; the distributions of link ratios are
presumably not perfectly lognormal. To a large extent, this risk
is implicitly incorporated in our parameter risk estimation pro-
cedure, since the family of all lognormal distributions probably
covers most of the variability in the actual future link ratios.66

However, the reader should be aware that we have assumed that
the distribution of link ratios is lognormal.

The parameter risk that we model here is the risk that we
have incorrectly chosen the parameters of the lognormal distri-
bution. If we had an unlimited number of observations from a
distribution, we would be fully confident that the fitted distri-
bution was indeed the true distribution. With the small sample
of observations in actual reserving practice, the parameters of
the fitted distribution may differ from the parameters of the true
distribution.

There are other possible reasons for an incorrect choice of pa-
rameters. Perhaps we chose parameters which were correct for
the historical period, but the distribution has since changed. A
workers compensation insurance analogue would be a change in
the types of claims over time. For instance, temporary total dis-
ability claims have low paid loss link ratios, whereas permanent
partial disability claims have higher paid loss link ratios. If the
mix of claims has been changing from temporary total to per-
manent partial, this will cause a change in the overall paid loss
link ratios.

In his analysis of experience rating plan credibilities, Mahler
[46] divides the total expected variance into two parts: the within
variance and the between variance. He further divides the within
variance into two parts: the process risk for any individual, and
the change of the individual’s distribution over time (the fluc-
tuation of risk parameters over time). The standard techniques

66As noted by Hayne [32, p. 96], “Estimates of parameter variability may address some
of the uncertainty inherent in the choice of a particular distribution for the model.”
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for estimating within variance usually incorporate both of these
types of risk.

We have followed Mahler’s approach in our analysis. We have
estimated the distribution of link ratios from the full historical
experience. To the extent that this distribution has been changing
over time, the historical observations exhibit more variance than
would otherwise be the case. The process risk estimated in our
paper includes both the process risk from a stable distribution
as well as the risk stemming from changing distributions over
time, which Mahler terms “specification risk” (private commu-
nication).

The parameter risk incorporated in our analysis is the risk that
the historical sample of observed link ratios does not accurately
reflect the parameters of the true distribution. The magnitude of
this parameter risk depends on three items: (i) the size of the
sample, (ii) the variance of the sample observations, and (iii)
our prior knowledge (or our assumed prior knowledge) of the
distribution of link ratios. These factors have a strong effect on
our results. We explain the intuition by illustration.

Suppose that we are estimating paid loss link ratios for 24
months to 36 months. The historical experience gives us 5 ob-
servations, of 1.400, 1.450, 1.600, 1.425, and 1.500. The average
of these numbers is 1.475. We presume that these observations
come from a distribution with a mean of 1.475.

With only five observations, none of which is exactly 1.475,
our estimate of this mean is hardly certain. The true mean is
probably close to 1.475, but it could be 1.500, 1.525, or even
2.500. The more observations we have, the more confidence we
would have that the true mean is close to the sample mean. In our
parameter risk quantification procedure, fewer observations we
have, the greater the parameter risk, and the greater the reserve
uncertainty.

Similarly, the variation in our observations also affects our
confidence in the sample mean. Suppose that instead of the
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five observations in our illustration, we had five observations
of 1.200, 1.150, 1.450, 1.900, and 1.675. The sample mean is
still 1.475, but now we have less confidence that the true mean is
close to 1.475. Wemight think now that the true mean is probably
between 1.200 and 1.700. Conversely, if our observations were
1.470, 1.475, 1.480, 1.473, and 1.477, we would have greater
confidence that the true mean is about 1.475.

This is a simplistic explanation; the mathematically precise
version is Bayesian estimation. The chance of obtaining five ob-
servations of 1.470, 1.475, 1.480, 1.473, and 1.477 from a distri-
bution with a mean of 1.475 and a small variance is much greater
than the chance of obtaining these same five observations from
a distribution with a mean of 1.600 and a larger variance. If the
five observations are 1.200, 1.150, 1.450, 1.900, and 1.675, the
chance of obtaining these observations from a distribution with a
mean of 1.475 is still greater than the chance of obtaining them
from a distribution with a mean of 1.600, but it is no longer than
much greater.

In Bayesian analysis, we are concerned not just with the mean
and variance of our observations. Bayesian analysis looks at ev-
ery individual observation. That is, we examine the likelihood
of obtaining each observation from the universe of lognormal
distributions.

Our prior expectations of the true mean of the distribution
also affects the parameter risk. Suppose that we knew absolutely
nothing about link ratios. We have no prior expectations at all.
For all that we know, the true mean might lie anywhere from "+
to ++. The sample of five observations tells us something about
the true mean, but we are not about to rule out any possibilities
yet.

Suppose, however, that we are experienced reserving actuar-
ies. We have a good feel for the expected link ratio in this de-
velopment period for this book of business. Even before seeing
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any observations, we are certain that the true mean is between
1.000 and 2.000. From our reserving experience, we are fairly
confident that the mean is between 1.400 and 1.600. Given the
actual observations, we are much more confident that the true
mean is about 1.475.

Let us return to lognormal distributions of link ratios. The
intuition behind the Kreps estimation procedure for parameter
risk does not depend on the type of distributions. However, the
mathematics leading to Kreps’s quantification equations shown
in Appendix C assume a lognormal or a normal distribution of
the variable which we are estimating.67

With our sample observations (the historical link ratios), we
fit a lognormal curve and we determine the fitted parameters ¹
and ¾. Because we have only a limited number of observations
for each development period (between 5 and 25), there is signifi-
cant parameter risk; that is, our fitted ¹ and ¾ parameters may not
be the parameters of the true distribution. We turn to Bayesian
analysis. We take the universe of lognormal distributions, and
we say: “For each member of this universe of lognormal distri-
butions, but is the chance that it would produce a sample like the
one which we observe?” This is a standard likelihood question,
and Kreps uses a negative loglikelihood test. Bayesian analysis
allows us to invert this relationship and to say: “For the given
sample of observations, what is the chance that the true distribu-
tion is any given member of the universe of lognormal distribu-
tions?”

Fitted Distribution and Predictive Distribution

To clarify what is happening, we must distinguish between
the fitted distribution and the predictive distribution. Suppose
that we had an infinite number of observations, so there is no
error stemming from small sample size. That is to say, if all the

67The equations in Appendix C are for a lognormal distribution. The equations for a
normal distribution are similar.
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observations come from the same distribution, then the mean of
the sample is almost certainly the mean of the distribution.68

We use the sample to fit the lognormal distribution. There is
no parameter uncertainty here (or, more accurately, the parameter
uncertainty is 0% ), so we use the fitted distribution to generate
additional values for our stochastic simulation. In this case, the
fitted distribution is also the predictive distribution.

Suppose instead that we have a finite sample. Once again,
we fit a lognormal distribution. Our fitted lognormal may be the
exact same distribution that we fit with the infinite sample. With
the finite sample, though, there is parameter risk. That is, we are
not certain that the parameters of the fitted curve are indeed the
parameters of the true distribution.

In this case, we do not generate future realizations from the
fitted curve. The fitted curve is the most likely true distribution,
but it is not the only possible true distribution. In fact, with con-
tinuous parameters, as is true in the illustrations in this paper,
there are an infinite number of potential distributions.

Think of our Bayesian analysis as telling us the chance that
each possible lognormal distribution is the true distribution. That
is, the Bayesian analysis gives us a distribution of lognormal
curves. Think of our simulations as a two stage process. First
we simulate from this distribution of lognormal curves to get
the particular curve that we will use. We then simulate from this
lognormal distribution to get a future observation.

The “two stage process” was simply a manner of speaking;
we do not actually simulate in two stages. We are simulating

68“Almost certainly” means with 100% confidence. This is not the same as “definitely.”
Statistically, we can be 100% sure that the mean of the sample is the mean of the
distribution, yet the two means can certainly be different, even widely different. As a
heuristic example, suppose that the distribution is all integers between 1 and 10. The
mean of this distribution is 5.5. The probability of an observation being greater than
5 is 50% . It is clearly possible for every observation to be greater than 5, though the
probability of an infinite stream of such observations is 50% to the infinite power, or
0%. This is an example where the mean of an infinite sample differs from the mean of
the distribution, though the probability of this happening is 0%.
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in a single stage, but we are not simulating from a lognormal
distribution. We are simulating from another distribution, from a
distribution with more parameters than a lognormal has.69 This
is the predictive distribution, which is used to generate future
observations.

What is this distribution from which are simulating, this pre-
dictive distribution? There is a particular distribution, though it
depends not only on the historical observations and the assump-
tion that they are members of a lognormal distribution, but also
on the Bayesian prior that we use in the analysis. We could con-
sider this question empirically, as a heuristic exercise; we can’t
actually do this in practice. That is, we simulate several thou-
sand, or several million, observations, and we examine the new
sample to determine what distribution it comes from.

This method is good for thought experiments only; it is not
feasible. Instead, Kreps shows the analytic solution: the maxi-
mum likelihoods, the Bayesian analysis, the negative loglikeli-
hood procedure, and the formulation of the predictive distribu-
tion. One might think: “The result must be awfully complex.”
Yes, it is complex in the general case. But if we assume that the
distribution is a normal or lognormal distribution, and if we make
certain assumptions about the Bayesian prior, then the mathe-
matics is tractable, and Kreps obtains simple equations for the
simulation. These are the equations shown in Appendix C.

One view sometimes heard on this subject runs as follows:
“We know that our observations come from a lognormal distri-
bution; this is the assumption underlying the whole procedure.
We are not certain about the parameters of this lognormal distri-
bution because of the small sample size of our historical obser-
vations. This is the source of the parameter risk. This parameter
risk concerns the values of the parameters of the lognormal dis-

69The number of “parameters” of this distribution depends on our prior assumptions
about the universe of lognormal curves, or our “Bayesian prior”; we get to this in a
moment.
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tribution; it is not a question of what type of distribution the
observations come from. The predictive distribution may not be
the same as the fitted distribution, but it still must be a lognormal
distribution.”

This argument is specious. The predictive distribution is not
a lognormal; in fact, it is not even a two parameter distribution.
What kind of distribution is it? That depends on the Bayesian
prior that we use in the analysis.

Bayesian Priors

We have made several references already to Bayesian priors;
it’s time that we defined what we’re talking about. Suppose that
we knew that the link ratios come from a lognormal distributions,
but that we have no prior information at all about what type of
lognormal distribution it is. That is to say, we know that the
link ratios come from a lognormal distribution with parameters
¹ and ¾, but we have no assumptions about what ¹ and ¾ might
be. Mathematically, we say that our prior assumption about the
distribution of the ¹ parameter is that it is uniform over all num-
bers. It is just as likely that it equals 1 as that it equals 100 or one
million. The ¾ parameter must be positive, but that is the only as-
sumption that we make, so the prior distribution is uniform over
all positive numbers. In statistical jargon, we say that we have a
diffuse prior. Think of this as our having no prior assumptions
about the universe of lognormal distributions; every one is just
as reasonable as another.

Could we use this diffuse universe of lognormal distributions
as our predictive distribution? That is, if we have no observa-
tions at all, could we use this diffuse universe of lognormals?
Of course not. All we know is that the desired numbers come
from a lognormal distributions, but this could be any lognormal
distribution at all. The predictive distribution is so diffuse that
it has infinite variance. The simulations will not converge, no
matter how many simulations we use.
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The preceding statement warrants further explanation, since
this is a problem even for simulations which do converge. Sup-
pose that we have no observations, and we have no prior assump-
tions, so we simulate from the diffuse universe of lognormals.
Think of this in the two stage process: we first pick parame-
ters ¹ and ¾ by choosing a real number for ¹ and a positive
number for ¾. We have set no bounds for these numbers; they
could be anything. We then simulate a realization from this log-
normal; this realization is unbounded. No matter how many re-
alization we use, the expected mean of our realizations is un-
bounded.

If we have some observations, the Bayesian analysis makes
our posterior universe of lognormal distributions less diffuse. If
our five observations are 1.400, 1.450, 1.600, 1.425, and 1.500,
then it is much more likely that the true lognormal distribu-
tion has a mean of 1.475 than that it is has a mean of 10 or
of 100.

Parameters for the Bayesian Prior

In practice, a completely diffuse Bayesian prior is often un-
workable; moreover, it sometimes fails to make sense even in
theory. To clarify the procedure used in this paper, we must ex-
amine the method of choosing the Bayesian prior in the Kreps
procedure. Kreps determines ¹0 and ¾0 from the observations,
and he calculates a negative loglikelihood from these values for
a lognormal with parameters ¹ and ¾ (equation 2.25 on page
558). To simplify the analysis, he rescales the problem by defin-
ing normalized variables v and y such that:

¹= ¹0 + v¾0

and
¾ = y¾0:

The Bayesian prior for the distribution of ¹ and ¾ can be
restated as a prior assumption for the distribution of v and y.
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Kreps [42, pp. 559–560]:

We take a Bayesian approach and use diffuse prior
distributions for v and y. Since v runs along the full
axis from minus infinity to plus infinity, the prior used
is just 1. Since y runs along the semi-axis, the sug-
gested prior is proportional to 1=yµ where µ is either 0
or 1, depending on one’s preference. The choice µ = 1
emphasizes small values of y and corresponds to the
assumption that the prior distribution of ln(y) is flat;
the choice µ = 0 assumes that the prior distribution of y
is flat. Venter has emphasized that any choice of prior
has strong implications. Ideally, the nature of the data
being fitted would give some clues as to proper priors.

The comment by Venter referred to above is that “on a semi-
axis a flat prior corresponds to assuming that it is as likely for
the variable to lie between a million and a million and one as
it is for the variable to lie between zero and one, and that it is
infinitely more likely to be excess of any finite amount than to
be less than that amount” (Kreps [42, footnote 7]).

Even with a µ of 1, our simulations produced unreasonable
results. The text of our paper explains what we mean by “unrea-
sonable.” After much discussion with Dr. Kreps, we used a µ of
2. Dr. Kreps sums up the theory as follows (private communica-
tion):

On pages 83–74 of section 3.2.2 of Statistical Deci-
sion Theory and Bayesian Analysis, second edition, by
James O. Berger (Springer, 1980), there is the section
“Noninformative Priors for Location and Scale Prob-
lems” which outlines the arguments and the problems
with the Bayesian priors. The crude result is that for
a location parameter, the density is 1 and for a scale
parameter it is 1=µ. Berger goes on to talk about the
Jeffreys results in the next section, which in the case
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of normals reduce to powers of sigma. Which power
depends on what you like, but the choice theta = 2
is actually the computational Jeffreys result even if
Jeffreys himself prefers theta = 1. So you take your
choice; personally I think we always know something
about the data and a noninformative prior is something
like laziness on our part.

For workers compensation paid loss link ratios, we know a
great deal about the data. Simply picking a value of µ is in-
deed laziness. The problem, however, is two-fold. First, we have
great difficulty conceptualizing what any value of µ means for
the universe of lognormals as potentials distributions for paid
loss link ratios. Yes, we can state the mathematics, but we have
difficulty visualizing whether a µ = 2 is more reasonable than a
µ = 5 or vice versa. Second, if we use other ways of stating our
prior assumptions, we can’t work these assumptions into Kreps’s
equations.

Our final choice is summarized in the text of the paper. We
chose a µ of 2, to ensure as diffuse a Bayesian as practicable for
our application, and we discarded the extreme realizations with
means more than 50 standard deviations away from the overall
average. This may not be the ideal procedure, but we do not even
know if it is too conservative or too liberal.

The Kreps parameter risk estimation procedure had one ad-
ditional effect on our method. We noted above that the variance
of our predictive distribution depends on both the Bayesian prior
and the number of observations (“n”). Kreps discusses this prob-
lem in terms of the variance of zeff, where zeff is the effective de-
viate of ln(x), where x is the variable which we are simulating.
Kreps shows that for n+ µ , 4, the variance of zeff is infinite, and
he notes that “this formula also tempts one to choose µ = 5 so
that var(zeff) = 1 for all n” (page 564). Similarly, in discussing
the standard deviation of the underlying distribution, Kreps says:
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“The standard deviation does not exist if n+ µ , 4, but goes to
zero as the sample size increases” (page 561).

This is the problem of convergence discussed earlier. Kreps
[42, p. 561] says:

In simulation situations if the underlying distribution
does not have a finite variance then the mean of the
simulation will not converge, because the mean of the
simulation itself will have an infinite standard devi-
ation. In practice, this shows up as occasional large
jumps in the mean, even with millions of simulations
(in fact, no matter how many simulations are done).

We choose µ = 2. We deal with the variance problem by us-
ing only 20 columns of age-to-age link ratios, so that we always
have a sufficient number of observations. For development be-
yond the 21st year, we use the inverse power curve tail factor
approximation.

Conclusion

Neither the Kreps paper nor this paper is the definitive word
on parameter risk. Even with the Kreps procedure, the analyst
must choose a Bayesian prior based upon his or her own reserv-
ing knowledge and prejudices. Nevertheless, the thrust or the
Kreps paper is that parameter risk is a significant source of re-
serve uncertainty. Our analysis illustrates this uncertainty, though
we do not even pretend to have authoritatively measured it. How-
ever, by choosing a relatively diffuse Bayesian prior, and by dis-
carding only those realizations that were extremely far from the
sample mean, we have presumably erred on the side of caution,
by overestimating the parameter risk.



A SYSTEMATIC RELATIONSHIP BETWEEN MINIMUM
BIAS AND GENERALIZED LINEAR MODELS

STEPHEN MILDENHALL

Abstract

The minimum bias method is a natural tool to use
in parameterizing classification ratemaking plans. Such
plans build rates for a large, heterogeneous group of in-
sureds using arithmetic operations to combine a small
set of parameters in many different ways. Since the arith-
metic structure of a class plan is usually not wholly ap-
propriate, rates for some individual classification cells
may be biased. Classification ratemaking therefore re-
quires measures of bias, and minimum bias is a natural
objective to use when determining rates.
This paper introduces a family of linear bias mea-

sures and shows how classification rates with minimum
(zero) linear bias for each class are the same as those
obtained by solving a related generalized linear model
using maximum likelihood. The examples considered in-
clude the standard additive and multiplicative models
used by the Insurance Services Office (ISO) for pri-
vate passenger auto ratemaking and general liability
ratemaking (see ISO [11] and Graves and Castillo [8],
respectively).
Knowing how to associate a generalized linear model

with a linear bias function is useful for several rea-
sons. It makes the underlying statistical assumptions ex-
plicit so the user can judge their appropriateness for a
given application. It provides an alternative method to
solve for the model parameters, which is computation-
ally more efficient than using the minimum bias iterative
method. In fact not all linear bias functions allow an it-
erative solution; in these cases, solving a generalized
linear model using maximum likelihood provides an ef-

393
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fective way to determine model parameters. Finally, it
opens up the possibility of using statistical techniques
for parameter estimates, analysis of residuals and model
fit, significance of effects, and comparison of different
models.
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1. INTRODUCTION

History and Background

Bailey and Simon [2, 3], first considered bias in classification
ratemaking and introduced minimum bias models. Since clas-
sification plans use fewer variables than underwriting cells and
impose an arithmetic structure on the data, fitted rates in some
cells may be biased, that is, not equal to the expected rate. Bias
is a feature of the structure of the classification plan and not a
result of a small overall sample size; bias could still exist even
if there were sufficient data for all the cells to be individually
credible. Of course, in such a situation an actuary would not use
a classification plan.

Bailey and Simon [3] proposed their famous list of four cri-
teria for an acceptable set of relativities:

BaS1: It should reproduce experience for each class and over-
all (balanced for each class and overall).

BaS2: It should reflect the relative credibility of the various
groups.
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BaS3: It should provide the minimum amount of departure
from the raw data for the maximum number of peo-
ple.

BaS4: It should produce a rate for each sub-group of risks
which is close enough to the experience so that the
differences could reasonably be caused by chance.

Condition BaS1 means that classification rates for each class
should be balanced, that is, have zero bias. Obviously, zero bias
by class implies zero bias overall.

Bailey points out that since more than one set of rates can
be unbiased in the aggregate, it is necessary to have a method
for comparing them. The average bias has already been set to
zero, by criteria BaS1, and so it cannot be used. Bailey sug-
gests the average absolute deviation and the chi-square statistic,
particularly if cells are large enough to assume normality. He
mentions that neither of these statistics has a known theoretical
distribution and stresses that they should be used for compari-
son between models and not for tests of significance. This paper
shows there is a natural correspondence between linear bias func-
tions and generalized linear models. The theory of generalized
linear models can then be used to define and analyze various
measures of fit statistically, improving upon Bailey’s more ad
hoc methods.

In 1988, Brown [5] revisited minimum bias. His approach
was to replace the bias function with an expression from the
likelihood function and then solve for parameters to maximize
its value. By assuming a distribution for the underlying quantity
being modeled, he converts the problem to “an exercise in sta-
tistical modeling.” This paper takes the opposite approach and
goes from a particular class of bias functions to a statistical dis-
tribution. Brown also comments that “[t]o this point we have not
been able to use GLIM [generalized linear models] to reproduce
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results obtained by Bailey’s additive model”; see Section 4 below
for such a reconciliation.

Venter’s review [26] of Brown considers four alternatives to
Bailey’s methods:

V1: Alternatives to the balance principle.

V2: More general arithmetic functions to determine classifi-
cation rates.

V3: Allow individual cells to vary from an arithmetically de-
fined base.

V4: Do not use an arithmetic function to determine classifica-
tion rates.

Venter comments that Brown’s paper is mainly concerned
with V1. This paper is largely concerned with V1 and V2, but
also has comments on V3 and V4. Link functions, introduced
below, allow more general arithmetic functions. The Box–Cox
transformation, which Venter mentions, is an example of a link
function. Section 10 mentions a method related to mixed mod-
els which is exactly what Venter proposed in V3 to determine
unbiased rates.

Venter also comments that “the connection with general linear
models does not seem to be the primary emphasis of [Brown’s]
paper.” This paper builds on Brown’s initial work by focusing
on the connection between the minimum bias methods and gen-
eralized linear models, and by providing a more in-depth ex-
planation of generalized linear models based on ideas already
familiar to actuaries. Showing how they provide a unified treat-
ment of minimum bias models will give actuaries another reason
to learn more about generalized linear models. Other actuarial
applications of generalized linear models have been proposed
in McCullagh and Nelder [17], Renshaw [23], Haberman and
Renshaw [9], and Wright [27].
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Contents

Section 2 recalls some familiar material about linear models
and sets up the progression from general linear models to gen-
eralized linear models by analyzing the three components of a
general linear model.

Section 3 explains the non-uniqueness of solutions to a clas-
sification plan and how to get around the problem.

Section 4 explains the elementary, but unfamiliar, relation-
ship between the cross classification ratemaking notation used
in minimum bias models and the standard statistical, matrix no-
tation used in linear models. It derives a matrix version of Bai-
ley’s minimum bias equations, and shows how Bailey’s additive
model is a simple linear model. The section ends with a gen-
eral matrix formulation of balance and introduces a numerical
example.

Section 5 introduces a family of linear bias functions and an
associated measure of model fit called deviance, both related to
a variance function. By construction, minimum linear bias cor-
responds to the minimum deviance best-fit model. It also shows
how, in some cases, the minimum bias solution can be obtained
using iterative equations.

Section 6 defines the exponential family of distributions and
gives several examples. It explains the relationship between vari-
ance functions and distributions, which is then used to convert
the minimum bias models of Section 5 into fully defined statis-
tical models.

Section 7 introduces generalized linear models and their con-
nection with minimum linear bias. This correspondence holds
regardless of whether an iterative method can be used to solve
the minimum bias problem, so generalized linear models extend
the existing family of models. A detailed set of examples, com-
paring different linear bias assumptions, is also given.
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Section 8 discusses measures of model fit associated with gen-
eralized linear models. Fit is discussed at several different levels,
ranging from selection of covariates to selection of link functions
and variance functions.

Section 9 is concerned with numerical computations. It ex-
plains how and when the iterative equations obtained using Bai-
ley’s minimum bias equations converge. It also discusses how
to solve generalized linear models using iteratively re-weighted
least squares. Appendix B gives SAS computer code illustrating
a hands-on example of this approach.

Section 10 gives some suggestions for future work. It touches
on some recent work of Lee and Nelder [19] on mixed mod-
els and hierarchical generalized linear models, which can be
regarded as an extension of the work in this paper and which
provides unbiased predictors for all cells.

The theory is illustrated throughout with simple examples the
reader can reproduce.

In the first seven sections of the paper, most concepts are de-
veloped from first principles and very little background in statis-
tics is assumed. Sections 8 and 9 make greater demands on the
reader, assuming more statistical and mathematical background,
respectively.

Notation

Random variables will be denoted by capitals and realized
values in lower case. Vectors will be denoted by bold lower
case letters. Matrices will be denoted by bold upper case let-
ters, typically A, B, X and W. The (ij)th element of a ma-
trix X will be denoted xij , xi,j or X(i,j). Some matrices will
be given in block form. If W is a block matrix, then Wij will
denote the block in the (i,j)th place. Superscript t denotes trans-
pose. Random observations are denoted r, ri, rij ; Greek letters
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typically refer to model parameters or fitted values. Matrix di-
mensions are denoted m!n.

2. LINEAR MODELS

A statistical model is defined by specifying a probability dis-
tribution for the quantity being modeled. Fitted values, predicted
by the model, can then be determined from the relevant probabil-
ity distribution, usually as the mean. The goal of using a model
is to replace the data, which may have many thousands of obser-
vations, with a far smaller set of parameters without losing too
much information. A good model helps the actuary better under-
stand the data and make reasonable predictions from it. Models
can be designed to facilitate the construction of classification
ratemaking tables.

In a basic linear model the fitted values are linear combina-
tions of the model parameters. Examples of linear models include
analyses of variance (ANOVA), linear regression, and general
linear regression.

In order to find model parameter values, it is necessary to
select an objective function. The objective function can measure
the deviance between the underlying data and the fitted values for
different parameter choices, or it can be based on other criteria
such as minimum variance amongst unbiased estimators. Least
squares and maximum likelihood are two common examples of
the former type of objective function. A single statistical model
can give rise to different parameter solutions depending upon the
objective function used. Therefore it is necessary to include the
objective function in an effective description of the model.

The input data for all models considered here can be given
as a two-dimensional array. The rows correspond to the differ-
ent observations or units. The first column corresponds to the
response variate which can be continuous (such as pure pre-
mium, frequency or severity) or discrete (such as claim count).
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The remaining columns correspond to the explanatory variates,
or covariates, whose values are supposed to explain the values
of the response. Covariates can be qualitative or quantitative.
A qualitative covariate, called a factor, takes on non-numerical
values called levels, such as vehicle-use, vehicle type or sex.
Quantitative covariates have numeric values. Examples include
age, time, weight of vehicle, or price of vehicle. Age group is
a qualitative covariate. If the covariates are all factors, then the
rows of the input can be labeled by the levels of the factors
(as in Example 2.1 below). Classification ratemaking naturally
uses these coordinates. However, they are generally not used
if some of the some covariates are continuous, as in Example
2.2.

EXAMPLE 2:1 A two-way analysis of variance with no interac-
tions assumes each observation rij is a realization of an indepen-
dent, normally distributed random variable with mean ai+ bj and
variance ¾2. Parameters are selected using either maximum like-
lihood, minimum square error, or minimum variance amongst
unbiased estimators; the three are equivalent for this model. The
ai and bj are the effects corresponding to the different levels
of the two factors (classification variables). In texts on linear
models this example is often presented in the equivalent form
rij = ai+bj + eij, where the errors eij are independent, normally
distributed random variables with mean 0 and variance ¾2. For
example, rij could be the observed pure premium in cell i,j of
an auto classification plan, with ai the factor for age of operator
group i and bj the factor for vehicle use group j. If rij is the av-
erage of wij exposures, then it is a realization of a variable with
variance ¾2=wij and wij is called the weight of the i,jth cell.

EXAMPLE 2:2 A linear regression model assumes each observa-
tion ri is a realization of an independent, normally distributed
random variable with mean a+ bxi and variance ¾

2. There is a
single continuous covariate whose values are given by xi. The
same three objectives can be used to solve for a and b. The
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model can also be written ri = a+ bxi+ ei, where ei are inde-
pendent, normally distributed random variables with mean 0 and
variance ¾2. Actuaries use linear regression to compute trends,
in which case ri is the observed pure premium, or log of pure
premium, at time i and xi = i.

The input data for a linear model can be compactly de-
scribed using vectors and matrices. Suppose there are n obser-
vations. The responses can be put into an n!1 column vector
r= (r1, : : : ,rn)

t. The covariates can be arranged into a design ma-
trix X which has one row for each observation and one column
for each parameter of the model. Let p be the number of param-
eters and let xi be the ith row of X, so xi is a 1!p row vector.
If all the covariates are factors, then the design matrix has one
column for each level of each factor and consists of 0’s and 1’s.
In Example 2.1, if there are three age groups and three vehicle
use classes, then the design matrix would have six columns. In
Example 2.2, X has two columns, corresponding to a and b. The
first column is all 1’s, corresponding to the constant term; the
second is given by (x1, : : : ,xn)

t.

The parameters of a linear model can be arranged into a
p! 1 column vector ¯ = (¯1, : : : ,¯p)t. Finally, let ¹i =E(Ri) be
the fitted value of the ith response and let ¹= (¹1, : : : ,¹n)

t. A
general linear model, which includes both analysis of variance
and linear regression as special cases, assumes

r=X¯+ e, ¹=X¯, (2.1)

where the error term e= (e1, : : : ,en)
t has ei independent, normally

distributed with mean 0 and variance ¾2. Thus Ri is assumed to
be independent, normally distributed with mean ¹i = xi¯ and
variance ¾2.

Three important assumptions underlie a general linear model:

1. Constant variance: the ¾2 term does not vary between
different responses. When the ith response is an average
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of wi individual responses, each with variance ¾
2, then

the variance is ¾2=wi, and again ¾
2 does not vary between

observations. The wi are prior weights.

2. Normality of errors: the errors ei are independent, iden-
tically distributed normal random variables.

3. Linear: the fitted value ¹i = xi¯ =
!
j xij¯j is a linear

combination of the parameters, so the systematic effects
are additive.

In actuarial work it is common that the responses are averages
from populations with different sizes. In Example 2.1, there are
typically more exposures in the mature operator classes than in
youthful and senior operator classes. General linear models allow
for such differences in variance by using prior weights which
vary by observation—as in assumption (1) above.

The second assumption, normal errors, is frequently a prob-
lem in actuarial applications. Losses, severities, pure premiums
and frequencies are all positive and generally positively skewed;
they are therefore not normally distributed. The log transforma-
tion is often applied to the data prior to using a linear model in
order to improve normality. The log transformation is also ap-
plied in order to convert multiplicative effects into additive ones.

EXAMPLE 2:3 Example 2.1 modeled Rij as normally distributed
with mean ai+bj and variance ¾

2=wij , where wij is the number
of exposures in the i,jth cell. Applying the log transformation
to the response, we can consider the same model for log(Rij).
On the untransformed scale, the model for Rij is lognormal with
parameters ai+bj and ¾

2=wij (see the Appendix to Hogg and
Klugman [10] or Appendix A of Klugman, Panjer and Will-
mot [16]). The systematic effects are now multiplicative. Also
E(Rij) = exp(ai+ bj +¾

2=2wij), and the variance depends on the
fitted mean because Var(Rij) = (E(Rij))

2(exp(¾2=2wij)"1).
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Generalized Linear Models

In order to set up generalized linear models, consider a general
linear model as split into three components:

GLM1: A random component: observations ri are assumed to
come from an independent normal distribution Ri with
E(Ri) = ¹i.

GLM2: A systematic component: the covariates xi = (xi1, : : : ,
xip)

t give a linear predictor

´i =
"
j

xij¯j:

GLM3: A link between the random and systematic compo-
nents:

´ = ¹:

The parameters are selected using the maximum likelihood ob-
jective.

A generalized linear model allows extensions to GLM1 and
GLM3. GLM2 is retained since the model is still assumed to be
linear.

Assumption GLM1 is generalized to allow the Ri to have a
distribution from the exponential family, defined in Section 6.
The exponential family includes the normal, Poisson, binomial,
gamma and inverse Gaussian distributions. The lognormal dis-
tribution is not a member of the exponential family. The recent
book by Jørgensen [13] is a good reference on exponential dis-
tributions.

In GLM3, the identity link ´i = ¹i between the random and
systematic components is generalized to allow ´i = g(¹i) for
any strictly monotonic, differentiable function g. Three common
choices are g(x) = x, g(x) = log(x) and g(x) = 1=x. The log-link
has been discussed above. The reciprocal-link can be understood
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as representing rates: premium is the dollar rate per year; the re-
ciprocal of premium is therefore years of coverage per dollar of
premium. While not something that has been tried to date in ac-
tuarial applications, there is no reason why the systematic effects
should not be additive on the reciprocal scale. McCullagh and
Nelder [17, Section 8.4] gives an insurance example.

In a general linear model, scale transformations may be ap-
plied to the responses prior to fitting in order to increase the va-
lidity of GLM1-3. However, the three assumptions may be mutu-
ally incompatible and so the question of an appropriate scale can
be very problematic (see [17, Section 2.1] for an example). For a
generalized linear model, normality and constant variance are no
longer required. The choice of link-function (scale) is therefore
driven solely by the need to ensure additivity of effects. Since
transformations in generalized linear models are used to achieve
one end, rather than three in a general linear model, there is more
flexibility in the modeling process.

EXAMPLE 2:4 The next three items illustrate how generalized
linear models include, extend, and differ from general linear
models:

(a) A generalized linear model with identity link function and
normal errors is a general linear model.

(b) A generalized linear model version of Example 2.1 with
gamma error distribution and a reciprocal link, would
model Rij as an independent gamma random variable with
E(Rij) =¹ij =1=(ai+bj) and Var(Rij) =¹

2
ijÁ=wij . The con-

stant Á acts like ¾ in Example 2.1.

(c) A generalized linear model with log link and normal errors
is not the same as applying a general linear model to the
log responses. The generalized linear model assumes Rij is
normally distributed with mean exp(ai+bj) and variance
¾2=wij . The general linear model applied to the log trans-
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formed data (Example 2.3) assumes that Rij is lognormally
distributed and that log(Rij) has mean ai+bj and variance
¾2=wij . In the generalized linear model the log-link is only
trying to achieve additivity of effects; the error distribution
is specified separately. Exhibit 8, described fully in Section
7, shows the differences between these models applied to
an example dataset.

3. UNIQUENESS OF PARAMETERS

Going back to Example 2.1, it is clear that the parameters of
a linear model need not be unique. If ¹ij = ai+bj , then

¹ij = (ai+®) + (bj "®) (3.1)

for all constants ®. Similarly, if ¹ij = aibj then ¹ij = (®ai)(bj=®)
for all constants ® #= 0. If the model is ¹ijk = ai+bj + ck, then the
situation is even worse: there are two degrees of freedom because
¹ijk = (ai+®1 +®2)+ (bj "®1)+ (ck "®2) for all ®1 and ®2. In
general, it is easy to see there are q"1 degrees of freedom when
there are q classification variables. Therefore it is necessary to
select q"1 base classes in order to have unique parameters. This
is familiar from setting up rate classification plans. For example,
the personal auto plan has one base rate for the married, aged
25–50, pleasure-use, single standard vehicle, zero-points class,
and deviations for all other classes.

There is no canonical method for selecting the base classes
needed to ensure unique parameters. Here is one possible ap-
proach. First select one classification cell as a base. Then, select
one classification variable which will not have a base. Finally,
set the parameters corresponding to the base class in all the other
classification variables to zero (additive models) or one (multi-
plicative models). This specifies the values of q" 1 parameters
and so removes all degrees of freedom. Now the parameters
for all the non-base classification variables are deviations from
the base class for that variable. Picking different base classes
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leads to different parameters, but the fitted values remain the
same.1

In Example 2.1, we could select mature drivers and pleasure-
use as the base cell, and age as the base classification. This forces
pleasure-use to be the base class in the vehicle-use classification,
and so the parameter for pleasure-use is set to zero. Since b1
corresponds to pleasure use, this choice is the same as selecting
®= b1 in Equation 3.1.

In conclusion, a linear model or minimum bias method which
uses all the available parameters will generally not have a unique
solution. However, the non-uniqueness is of a trivial nature and
the fitted values will be unique. After making an arbitrary se-
lection of base classes, the remaining parameters will be unique.
This is what Bailey and Simon [3] mean when they say “[the pa-
rameters] can only be regarded in relationship to the coordinate
system in which they find themselves.”

4. MATRIX FORMULATION

As Venter [26] noted, it is not clear to those unfamiliar with
linear models how they are related to minimum bias methods.
Moreover, the translation from statistical linear models to min-
imum bias methods is hampered by different uses of the same
notation. We will follow Brown’s notation as much as possible,
since actuaries are probably most familiar with his approach.
This section explains the relationship between linear models and
minimum bias methods and provides a dictionary to translate
between the two. In order to keep difficulties of notation in the

1Selecting base classes corresponds to deleting columns from the design matrix. Selecting
q" 1 base classes ensures that the resulting design matrix X̂ has maximal rank. This in
turn implies X̂tX̂ is invertible and so the normal equations can be solved uniquely for the
remaining parameters. In general linear models, non-uniqueness is handled by computing
the generalized inverse of XtX. The generalized inverses can be regarded as a method
for picking base classes. See Rao [22, Chapter 1b.5], for more details.
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background, we consider only a simple additive model with two
variables. Extensions to more general models are easy to work
out—indeed the point of this section is to convince the reader
they will work out just as expected. The auto classification plan
will be used to provide examples.

Minimum Bias Method Language

The generic minimum bias method attempts to explain a
collection of observed values rij with two sets of parameters xi
and yj, i= 1, : : : ,n1, j = 1, : : : ,n2. For example, rij could be the
pure premium in the (i,j)th cell, xi may correspond to the
ith age classification, and yj to the jth vehicle use classification
such as pleasure, drive to work, or business. Let wij denote
the number of exposures in the (i,j)th cell. Minimum bias
methods then give iterative equations to solve for the xi’s and
yj’s.

For example, Bailey’s additive method models rij as xi+ yj
(hence the appellation “additive”) in such a way that, for
all i, "

j

wij(rij " (xi+ yj)) = 0, (4.1)

and similarly for j. Equation 4.1 means that the model is bal-
anced (i.e., has zero weighted bias) for each class i and in total
(summing over i), and so minimizes bias. Rearranging Equation
4.1 gives the familiar form of Bailey’s additive method:

xi =
"
j

wij(rij " yj)
#"

j

wij, (4.2)

and similarly

yj =
"
i

wij(rij " xi)
#"

i

wij: (4.3)
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This notation is shorthand for an iterative procedure, where the
transition from the lth to l+1st iteration is

x(l+1)i =
"
j

wij(rij " y(l)j )
#"

j

wij ,

and similarly for y(l+1)j in terms of x(l+1)i . The final result of
the iterative procedure is given by xi = liml$%x

(l)
i , and similarly

for y.

Translation

The key to translating from minimum bias notation to linear
model notation is how the observations are indexed. In linear
models they are indexed by one parameter, whereas in the mini-
mum bias method they are indexed by two parameters (or more
generally, by the number of classification variables). The trans-
lation is described by the following correspondences. In all cases
the left hand side gives the minimum bias notation and the right
hand side the linear model notation. Also, in this section commas
are inserted between subscript indices for clarity. The difference
in how observations are indexed is illustrated by the following
two correspondences between n1n2!1 column vectors:$%%%%%%%%%%%%%%%%%%%%%%&

r1,1

r1,2

...

r1,n2
r2,1

...

rn1,1

...

rn1,n2

'(((((((((((((((((((((()

&

$%%%%%%%%%%%%%%%%%%%%%%&

r1

r2
...

rn2
rn2+1

...

r(n1"1)n2+1
...

rn1n2

'(((((((((((((((((((((()

and

$%%%%%%%%%%%%%%%%%%%%%%&

w1,1

w1,2

...

w1,n2
w2,1

...

wn1,1

...

wn1,n2

'(((((((((((((((((((((()

&

$%%%%%%%%%%%%%%%%%%%%%%&

w1

w2
...

wn2
wn2+1

...

w(n1"1)n2+1
...

wn1n2

'(((((((((((((((((((((()

:
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The different levels of the two classifications (or effects) corre-
spond as $%%%%%%%%%%%%%%%&

x1

...

xn1

y1

...

yn2

'((((((((((((((()
&

$%%%%%%%%%%%%%%%&

¯1

...

¯n1

¯n1+1

...

¯n1+n2

'((((((((((((((()
: (4.4)

Let n= n1n2 be the number of observations, and p= n1 +n2 be
the number of model parameters. Our translation assumes there
are observations for each of the n= n1n2 possible combinations
of xi and yj . If necessary, the model can be brought into this
form by using zero weights in any empty cells.

Linear Model Language

A statistical linear model attempts to explain a collection of
observed values ri using linear combinations of a smaller number
of parameters. In our setting, the model explains pure premiums
ri, i= 1, : : : ,n, using linear combinations of parameters ¯1, : : : ,¯p
given by

ri =
"
j

xij¯j + ei,

where ei is a random error term. In matrix language this can be
written

r=X¯+ e,

where X= (xij) is the n!p design matrix of covariates, and
r= (r1, : : : ,rn)

t, e= (e1, : : : ,en)
t, and ¯ = (¯1, : : : ,¯p)

t are column
vectors.
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The design matrix corresponding to the two-variable additive
linear model is the n!p matrix

X=

$%%%&
A1 I
...

...

An1 I

'((() , (4.5)

where

Ai =

$%%&
0 ' ' ' 1 ' ' ' 0
... . . .

... . . .
...

0 ' ' ' 1 ' ' ' 0

'(() , (4.6)

with dimension n2!n1, has zero entries except for 1’s in the
ith column, and I is the n2!n2 identity matrix. Using the block
matrix form of X, and the translation Equation 4.4, it is easy to
see that

X¯ =X

$%%%%%%%%%%%%%&

x1
...

xn1
y1
...

yn2

'((((((((((((()
=

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%&

x1 + y1
...

x1 + yn2
x2 + y1
...

x2 + yn2
...

xn1 + y1
...

xn1 + yn2

'(((((((((((((((((((((((((((()

,

dimensions (n!p)(p! 1) = n! 1, demonstrating the translation
between minimum bias notation and linear model notation.



MINIMUM BIAS AND GENERALIZED LINEAR MODELS 411

Solution of Linear Models

It is well known that the maximum likelihood estimator ˆ̄

satisfies the following normal equations under the assumption of
independent and identically distributed normal errors (see Rao
[22, Section 4a.2])

XtX ˆ̄ =Xtr: (4.7)

If observation i has weight wi, the solution satisfies

XtWX ˆ̄ =XtWr, (4.8)

where W= diag(w1, : : : ,wn) is the diagonal matrix of weights.

Next we compute Equation 4.8, for the two-variable additive
model using the definitions and translations introduced above. In
minimum bias notation, the matrix of weights can be written as
a block matrix

W=

$%%%&
W1 ' ' ' 0
... . . .

...

0 ' ' ' Wn1

'((() dimension n! n, (4.9)

where

Wi =

$%%%&
wi1 ' ' ' 0
... . . .

...

0 ' ' ' win2

'((() dimension n2!n2:

Using the block matrix form of X and W, it is a simple compu-
tation to show

XtWX=

*
B C

Ct D

+
,
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dimension p!p, where B, C and D are given by

B=

$%%%%%%%%&

"
j

w1j ' ' ' 0

... . . .
...

0 ' ' '
"
j

wn1j

'(((((((()
dimension n1!n1,

C=

$%%%%&
w11 ' ' ' w1n2

...
...

wn11 ' ' ' wn1n2

'(((() dimension n1!n2,

and

D=

$%%%%%%%&

"
i

wi1 ' ' ' 0

... . . .
...

0 ' ' '
"
i

win2

'((((((()
dimension n2! n2:

Therefore

XtWX¯ =XtWX

*
x

y

+

=

*
B C

Ct D

+*
x

y

+

=

*
Bx+Cy

Ctx+Dy

+
,
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giving the p!1 vector equality

XtWX¯ =

$%%%%%%%%%%%%%%%%%%%%%%&

x1
"
j

w1j +
"
j

w1jyj

...

xn1

"
j

wn1j +
"
j

wn1jyj

"
i

wi1xi+ y1
"
i

wi1

..."
i

win2xi+ yn2
"
i

win2

'(((((((((((((((((((((()

: (4.10)

On the other hand,

XtWr=

$%%%%%%%%%%%%%%%%%%%%%%&

"
j

w1jr1j

..."
j

wn1jrn1j

"
i

wi1ri1

..."
i

win2rin2

'(((((((((((((((((((((()

dimension p!1: (4.11)

Equating corresponding rows of Equation 4.10 and Equation
4.11—the normal equations—gives exactly Equation 4.2 and
Equation 4.3, respectively, demonstrating that the results of a
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two-effect additive general linear model are the same as the Bai-
ley additive method.

This is a significant result for several reasons. First, it shows
the minimum bias parameters are the same as the maximum like-
lihood parameters assuming normal errors, which the user may
or may not regard as a reasonable assumption for his or her ap-
plication. Second, it is much more efficient to solve the normal
equations than perform the minimum bias iteration, which typ-
ically converges quite slowly (see Section 9). Third, knowing
that the result is the same as a linear model allows the statistics
developed to analyze linear models to be applied. For exam-
ple, information about residuals and influence of outliers can be
used.

General Theory and a Matrix Formulation of Balance

It is easy to generalize the preceding discussion to the case of
a general linear model with q classification variables. Let the ith
classification variable have ni levels, i= 1, : : : ,q. Thus there are
p= n1 + ' ' '+nq different parameters and, assuming no empty
cells, n= n1 ' ' 'nq observations.
The minimum bias notation associates an n! ni design ma-

trix Ai and an ni!1 parameter vector ai with the ith clas-
sification variable. The n!1 vector of modeled rates ¹=
(¹1,:::,1, : : : ,¹n1,:::,nq)

t is

¹= (A1 ' ' 'Aq)

$%%%&
a1
...

aq

'((()=A1a1 + ' ' '+Aqaq: (4.12)

In linear model language, the design matrix X has dimension
n!p and equals the horizontal concatenation (A1 ' ' 'Aq). The
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parameter vector ¯ has dimension p! 1 and equals (a1, : : : ,aq)t,
and Equation 4.12 becomes ¹=X¯.

Note that the linear model notation makes it possible to use
two-dimensional matrix notation to describe models with any
number of classification variables.

Using this notation and the same approach used to derive
Equation 4.10 and Equation 4.11 shows that the normal equation
condition

XtW(r"¹) = 0 (4.13)

is exactly a matrix formulation of condition BaS1—that relativi-
ties be balanced by class. This interpretation of Equation 4.13 is
important and will be used repeatedly below.

To see why Equation 4.13 is the balance condition, first use
the translation of Equation 4.2 to write it as:

XtW(r"¹) =

$%%%%%&
At1

...

Atq

'((((()W(r"¹)

=

$%%%%%&
At1W(r"¹)

...

AtqW(r"¹)

'((((()= 0: (4.14)

Consider balance over the first level of the first classification
variable. By permuting columns of X, this can be done with-
out loss of generality. Similarly, by permuting the observations,
assume that A1 has the form:
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$%%%%%%%%%%%%%%%%%%%%%%%%&

1 0 ' ' ' 0
...

...
...

...

1 0 ' ' ' 0

0 1 ' ' ' 0
...

...
...

...

0 1 ' ' ' 0

' ' '
0 0 ' ' ' 1
...

...
...

...

0 0 ' ' ' 1

'(((((((((((((((((((((((()

,

the vertical concatenation of n1 different matrices each with
n2 ' ' 'nq rows and n1 columns and one column of ones. Then
the first row of Equation 4.14 is given by the sum product of the
first column A1 (i.e., the first row of A

t
1) with W(r"¹), which

gives "
j2,:::jq

w1,j2,:::jq
(r1,j2,:::jq "¹1,j2,:::jq) = 0,

exactly the sum over all other classes required by the balance
condition.

Numerical Example

We now introduce a numerical example which will be used
throughout the paper to illustrate the theory. The data, shown
in Exhibit 1, gives average claim severity for private passenger
auto collision.2 The severities have been adjusted for severity
trend. There are n= 32 observations and two classification vari-
ables: age group and vehicle-use. Age group has eight levels and

2The data is derived from McCullagh and Nelder’s example [17, Section 8.4].
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vehicle-use four. The response variable r is average claim sever-
ity. The weights w are given by the number of claims underlying
the average severity. Exhibit 2 gives the one-way weighted av-
erage severities.

Exhibit 3 gives the design matrix A corresponding to the age
group classification.A has the block form shown in Equation 4.6.
Exhibit 4 gives the design matrix B corresponding to the vehicle-
use classification. Pleasure-use has been selected as the base (as
in Section 3) and the corresponding column of the design matrix
has been deleted; this accounts for the rows of zeros. The design
matrix for the whole model is X= (A B). Except for the deleted
column in B, X has the form given in Equation 4.5.

Exhibit 5 uses the iterative method, Equation 4.2, to fit an
additive minimum bias model to the data. There are 50 iterations
shown (column 1). Column 2 shows the length of the change in
the parameter vector from one iteration to the next. Columns 3–
13 show how the parameters change with each iteration. Columns
14–17 will be explained in Section 9. Exhibit 6 shows the so-
lution to the normal equations Equation 4.8. The resulting pa-
rameters are all within 2 cents of the values in the last row of
Exhibit 5 as expected. Had more iterations been performed the
results would have been closer.

This example will be continued in Sections 7, 8 and 9.

5. BIAS FUNCTIONS AND DEVIANCE FUNCTIONS

Bailey’s first criterion for a set of classification relativities,
that rates be balanced (unbiased) for each class and in total,
makes it necessary for the actuary to be able to measure the
bias in a set of rates. Bailey’s third and fourth conditions, which
require a minimum departure from the raw data and a departure
that could be caused by chance, make it necessary to measure
the deviance between the fitted rates and the data and to quantify
its likelihood.
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In the papers on minimum bias discussed in the Introduction,
none of the authors differentiated between a measure of bias and
a measure of deviance. A measure of bias should be proportional
to the predicted value minus the observed value, and can be pos-
itive or negative. A measure of deviance, or model goodness of
fit, should be like a distance: always positive with a minimum
of zero for an exact fit (zero bias). Deviance need not be sym-
metric; we may care more about negatively biased estimates than
positively biased ones or, vice versa.

This section will introduce three concepts: variance functions,
linear bias functions and deviance functions, and then show how
they are related. All three concepts have to do with specifying
distributions—a key part of a statistical model. However, they
are independent of the choice of covariates.

In this section r denotes the response, with individual units
being ri, or rij in the example. The fitted means are ¹ or ¹i.

Ordinary bias is the difference r"¹ between an observation
r and a fitted value ¹. When adding the biases of many obser-
vations and fitted values, there are two reasons why it may be
desirable to give more or less weight to different observations.
First, if the observations come from cells with different numbers
of exposures then their variances will be different. As explained
in Section 2, this possibility is handled by using prior weights
for each observation.

The second reason to weight the biases of individual observa-
tions differently is if the variance of the underlying distribution
is a function of its mean (the fitted value). This is a very impor-
tant departure from normal distribution models where the prior
weights do not depend on the fitted values. In Example 2.1, rij
is a sample from Rij which is normally distributed with mean
¹ij = ai+bj and variance ¾

2. The variance is independent of the
mean. In Example 2.4(b), rij is a sample from Rij which has a
gamma distribution with mean ¹ij and variance Á¹

2
ij (assuming

all weights are 1). Now the variance of an individual observation
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is a function of the fitted cell mean ¹ij. Clearly, large biases from
a cell with a large mean are more likely, and should be weighted
less, than those from a cell with a small mean. In this situation we
will use variance functions to give appropriate weights to each
cell when adding biases. Once again, it is important to realize
that variance functions are not a feature of normal distribution
models and that they represent a substantial generalization.

A variance function, typically denoted V, is any strictly pos-
itive function of a single variable. Three examples of variance
functions are V(¹)( 1 for ¹ ) ("%,%), V(¹) = ¹ for ¹ ) (0,%),
and V(¹) = ¹2 also for ¹ ) (0,%). It should not be a surprise that
the first can arise from the normal distribution, and the last can
arise from the gamma distribution.

Combining variance functions and prior weights—the two
reasons to weight biases from individual cells differently—we
define a linear bias function to be a function of the form

b(r;¹) =
w(r"¹)
V(¹)

,

where V is a variance function and w is a prior weight. The
weight may vary between observations, but is not a function of
the observation or of the fitted value.

In applications there would be many observations ri, each with
a fitted value ¹i and possibly different weights wi. The total bias
would then be "

i

b(ri;¹i) =
"
i

wi(ri"¹i)
V(¹i)

:

The functions r"¹, (r"¹)=¹, and (r"¹)=¹2 are three examples
of linear bias functions, each with w = 1, corresponding to the
variance functions given above.

A deviance function is some measure of the distance be-
tween an observation r and a fitted value ¹. The deviance d(r;¹)
should satisfy the following two conditions common to a dis-
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tance:

Dev1: d(r;r) = 0 for all r, and

Dev2: d(r;¹)> 0 for all r #= ¹.
The weighted squared difference d(r;¹) = w(r"¹)2, w > 0, is an
example of a deviance function.

An important difference between bias and deviance is that
deviance, which corresponds to distance, is always positive while
bias can be positive or negative. Deviance can be regarded as a
value judgment: “how concerned am I that r is this far from ¹?”
Deviance functions need not be symmetric about r = ¹.

It is possible to associate a deviance function with a linear
bias function by defining

d(r;¹) = 2w
, r

¹

(r" t)
V(t)

dt: (5.1)

Clearly this definition satisfies Dev1 and Dev2. Note that by the
Fundamental Theorem of Calculus,

@d

@¹
="2w (r"¹)

V(¹)
:

Examples of Deviance Functions

(a) If b(r;¹) = r"¹ is ordinary bias, then
d(r;¹) = 2

, r

¹
(r" t)dt= (r"¹)2

is the squared distance deviance, with weight w = 1.

(b) If b(r;¹) = (r"¹)=¹2 corresponds to V(¹) = ¹2 for ¹ )
(0,%), then

d(r;¹) = 2
, r

¹

(r" t)
t2

dt

= 2
-
r"¹
¹

" log
-
r

¹

..
,
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FIGURE 1

GAMMA DISTRIBUTION DENSITY

again with weight w = 1. In this case the deviance is not sym-
metric about r = ¹. Figures 1 and 2 show plots of the gamma
density and corresponding deviance function for three different
means ¹.

(c) The deviance d(r;¹) = w*r"¹*, w > 0, is an example
which does not correspond to a linear bias function.

Returning to the case of multiple observations ri with fitted
values ¹i, the total deviance is

D =
"
i

di =
"
i

d(ri;¹i):

Suppose ¹i = h(xi¯) is a function of a linear combination of
covariates xi = (xi1, : : : ,xip) and parameters ¯ = (¯1, : : : ,¯p), as it
would be in the generalized linear model setting.3 We find the

3The function h is the inverse of the link function which will be introduced in Section
6. The link function g relates the linear predictor to the mean: xi¯ = g(¹i).
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FIGURE 2

GAMMA DISTRIBUTION DEVIANCE

minimum deviance over the parameter vector ¯ by solving the
system of p equations

@D

@¯j
= 0, (5.2)

for j = 1, : : : ,p. Using the chain rule and assuming the deviance
function is related to a linear bias function as in Equation 5.1
gives:

@D

@¯j
=
"
i

@di
@¯j

=
"
i

@di
@¹i

@¹i
@¯j

="2
"
i

wi(ri"¹i)
V(¹i)

h+(xi¯)xij: (5.3)
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Let X be the design matrix with rows xi, W be the diagonal
matrix of weights with iith element wih

+(xi¯)=V(¹i), and ¹ equal
(h(x1¯), : : : ,h(xn¯))

t. Then Equation 5.3 can be written as

XtW(r"¹) = 0 (5.4)

which by Equation 4.13 is the zero bias equation. This shows
that Bailey and Simon’s balance criteria, BaS1, is equivalent to
a minimum deviance criteria when bias is measured using a linear
bias function, and weights are adjusted for the link function and
form of the model using h+(xi¯).

The adjustment in Equation 5.3, given by h+(xi¯)xij , depends
upon the form of the underlying statistical model. This shows
clearly how the bias function (which is related to the underlying
distribution) and the form of the linear model (link and covari-
ates) both impact the minimum bias parameters. The separation
mirrors that between the error distribution and the link function
exhibited in GLM1 and GLM3.

Examples of Minimum Bias Models

(a) V ( 1 and h(x) = x reproduces the familiar additive mini-
mum bias model which has already been considered in Section 4.

(b) Let V(¹) = ¹ and h(x) = ex. Using the minimum bias no-
tation from Section 4, the minimum deviance condition Equation
5.3, which sets the bias for the ith level of the first classification
variable to zero, is

n2"
j=1

wij(rij " eai+bj )
eai+bj

eai+bj =
n2"
j=1

wij(rij " eai+bj ) = 0,

including the link-related adjustment. Therefore

eai =
"
j

wijrij

#"
j

wije
bj
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and similarly

ebj =
"
i

wijrij

#"
i

wije
ai

giving Bailey’s multiplicative model.

See Section 7 for many more examples.

Summary

The definitions of linear bias function and deviance function
have set up a natural correspondence:

Deviance
@
@¹"$Linear Bias Function,

d(y;¹)"$ @d

@¹
,, r

¹
b(r; t)dt"$"b(r;¹), and

Minimum Deviance"$ Zero bias by class:

It follows from these definitions that the balance criterion sets the
average bias to zero. However, except in trivial cases, the total
minimum deviance is non-zero and is available as a model-fit
statistic which can be used to select between models. This is an
important step, especially since deviance has a reasonably well
understood distribution. It is developed in Section 8.

Many minimum bias equations can now be derived using dif-
ferent link functions and linear bias functions, several of which
lead to iterative equations. Everything in this section has been
developed with no explicitly defined statistical model—since no
probability distributions have been mentioned. Leaving out the
statistical model makes the presentation more elementary and
focuses on the intuitively reasonable roles of bias and deviance.
In order to put minimum bias methods onto a firm statistical
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footing, a goal of the paper, we turn next to the theory of gener-
alized linear models and exponential distributions and its relation
to linear bias functions and deviance.

6. EXPONENTIAL DISTRIBUTIONS

The following diagram gives a schematic of Section 5 for the
normal distribution.

Balanced by class ," Linear Bias Function = r"¹
Differentiation- -Differentiation

Least Squares ," Deviance Function = (r"¹)2

. /
Maximum Likelihood Parameters ," Normal Distribution.

To generalize to arbitrary linear bias functions, we need a family
of distributions extending the normal which fills out the lower
right hand corner of the diagram. It should have a likelihood
function related to the given deviance function in the same way
as the normal likelihood is related to the square distance de-
viance. Solving maximum likelihood for ¹ should correspond
to minimum deviance, and will give balanced (according to the
appropriate notion of bias) classification factors. The required
family of distributions is called the exponential family. This sec-
tion will define it and derive some of its important properties.

The exponential family of distributions4 is the two-parameter
family whose density functions can be written in the form

f(r;¹,Á) = c(r,Á)exp
-
" 1
2Á
d(r;¹)

.
, (6.1)

4This definition is slightly different from that in McCullagh and Nelder [17] and other
sources on generalized linear models. See Appendix A for a reconciliation with the usual
definition. The approach here is derived from Jørgensen [13] and McCullagh and Nelder
[17, Chapter 9].
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where d is a deviance function derived from a linear bias func-
tion using Equation 5.1. Using the squared distance deviance,
unit weights w = 1, and Á( ¾2 shows that the normal distri-
bution is in the exponential family, and that it corresponds to
V(¹) = 1. The gamma, binomial, Poisson and inverse Gaussian5

distributions are also members of the exponential family. The ex-
ponential distribution, being a special case of the gamma, is also
in the exponential family. It is important in Equation 6.1 that the
function c depends only on r and Á; the same constant has to
hold for all values of ¹. This is a hard condition to satisfy. For
example, it can be shown there is no such c when the deviance
is derived from the variance function V(¹) = ¹³ with 0< ³ < 1.

Equation 6.1 and the definition of linear bias functions in
terms of variance functions imply that an exponential family dis-
tribution is determined by the variance function.

If a random variable R has an exponential family distribution
given by Equation 6.1 then

E(R) = ¹ (6.2)

and

Var(R) =
Á

w
V(¹), (6.3)

which helps to explain the choice of ¹ as the first parameter and
also why V is called the variance function. Because of its role in
Equation 6.3, Á is called the dispersion parameter. Equations 6.2
and 6.3 follow immediately from two well-known results about
the loglikelihood function l = l(¹,Á;r) = logf(r;¹,Á). The first
is

E
-
@l

@¹

.
= 0, (6.4)

5For more information on the inverse Gaussian, see Johnson, Kotz and Balakrishnan [12]
and Panjer and Willmot [21]. It is similar to the lognormal distribution and can be used
to model severity distributions.
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(E(@l=@¹) =E(f +=f) =
/
f += @=@¹

/
f = @=@¹(1) = 0). Equation

6.4 implies Equation 6.2. The second is

E

*
@2l

@¹2

+
+E

0-
@l

@¹

.21
= 0, (6.5)

which is derived similarly and which implies Equation 6.3.

The next two subsections derive the deviance functions as-
sociated with the gamma distribution and the inverse Gaussian
distribution. The gamma example starts with the density and de-
rives the variance function. The inverse Gaussian example goes
in the opposite direction and starts with a variance function. In
both cases the reader may (correctly) suspect the calculations
are easier if one knows what the answer is going to be! Simi-
lar calculations can be performed for the Poisson and binomial
distributions.

Gamma Distribution in the Exponential Family

The usual parameterization of the gamma density is

f(r;®,¯) =
¯®

¡ (®)
r®"1e"¯r,

which has mean ®=¯ and variance ®=¯2. Since the parameter of
interest is the mean, it makes sense to reparameterize to ¹= ®=¯
and º = ®. The variance becomes ¹2=º and the density becomes

f(r;¹,º) =
-
º

¹

.º 1
¡ (º)

rº"1e"ºr=¹:

Assuming weight w, Equation 6.3 gives Á¹2=w = ¹2=º, so º =
w=Á. Rearranging the density gives:

f(r;¹,º) =
ººr"1

¡ (º)
exp(º log(r=¹)" ºr=¹)

=
ººr"1e"º

¡ (º)
exp

-
"º
2
2
--
r"¹
¹

.
" log

-
r

¹

...
:

(6.6)
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Since the deviance d = 2((r"¹)=¹" log(r=¹)) corresponds to
the variance function V(¹2)—see Example 5.1(b)—the gamma
distribution is in the exponential family.

Exponential Density Corresponding to the Variance Function
V(¹) = ¹3

The deviance function corresponding to V(¹) = ¹3 is given by

d(r;¹) = 2
, r

¹

r" t
t3
dt

=
1
r
+
r

¹2
" 2
¹

=
(r"¹)2
¹2r

:

The corresponding exponential family distribution when w = 1
is

f(r;¹,Á) = c(r,Á)exp

*
" 1
2Á
(r"¹)2
¹2r

+
,

which is exactly the inverse Gaussian distribution. The term
c(r,Á) is given by 2

1
2¼Ár3

:

The usual parameters for the inverse Gaussian are 1=Á and 1=¹.

The variance function corresponding to the Poisson distri-
bution is V(¹) = ¹; for the binomial distribution it is V(¹) =
¹(1"¹).
The modeling interpretation of V is clear from its role in linear

bias functions. Now that we know how some variance functions
and distributions match up we can make some further observa-
tions. The normal distribution model assumes constant variance,
which is why the second important adjustment in Section 5 is not
present in normal theory models. The Poisson model assumes the
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variance is proportional to the mean. The gamma model assumes
the variance is proportional to the square of the mean, that is,
that the coefficient of variation is constant. The inverse Gaussian
assumes that the variance is proportional to the cube of the mean.
The form of the variance function is very important in modeling,
since the modeler will generally attempt to give smaller weights
to observations with larger variances. Allowing the variance to
be a function of the fitted mean gives generalized linear models
a significant advantage over normal, constant variance, models.

Section 8 and Jørgensen [13] discuss other members of the
exponential family. In particular see Jørgensen’s Chapter 4 and
Table 4.1.

7. GENERALIZED LINEAR MODELS AND THEIR CONNECTION
WITH MINIMUM LINEAR BIAS

This section will explain how to solve generalized linear mod-
els using a maximum likelihood objective function, and show the
connection between such solutions and solutions of minimum
deviance models using linear bias functions. A thorough under-
standing of generalized linear models requires a more detailed
treatment than can be given in this paper. The book by McCul-
lagh and Nelder [17] is an excellent source for those desiring
more information.

Section 2 divided general linear models into three compo-
nents. The components were a random part, a systematic part and
a link between the two—see GLM1-3. The random component
can be any member of the exponential family, rather than just
the normal distribution. The link function can be any monotonic
function. Common choices include ´ = ¹, ´ = log(¹), ´ = 1=¹,
´ = 1=¹2 and the logit function ´ = log(¹=(1"¹)). The link in
a generalized linear model is a function of the predicted mean,
´ = g(¹), as opposed to the inverse link functions h used in Sec-
tion 5 which are functions of the linear predictor ¹= h(´).
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Specification of a Generalized Linear Model

The full specification of a generalized linear model consists
of:

0 input data,
0 model and distribution assumptions, and
0 an objective function.

The input data comprises n observations r= (r1, : : : ,rn)
t, n

prior weights w= (w1, : : : ,wn)
t, and p covariates xi = (xi1, : : : ,xip)

for each observation i= 1, : : : ,n. The covariates are the rows of
the design matrix X.

The model and distribution assumptions mirror the descrip-
tion GLM1-3. Observations ri are assumed to be sampled from
an exponential family distribution with mean ¹i and second pa-
rameter Á=wi. The mean is related to the linear predictor using a
link function

¹i = h(´i), ´i = g(¹i),

and the linear predictor is related to the covariates by

´i =
"
j

xij¯j = xi¯

for parameters ¯ = (¯1, : : : ,¯p)
t. Finally, the parameters are se-

lected using the maximum likelihood objective.

The differences between a generalized and general linear
model are the link function and the exponential family error dis-
tribution.

Maximum Likelihood Equations for a Generalized Linear Model

Let d be the deviance function associated with the exponential
distribution used to define the model. From the definition of
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TABLE 1
PARAMETERS FOR EXPONENTIAL FAMILY DISTRIBUTIONS

Quantity Normal Gamma Inverse Gaussian

V(¹) 1 ¹2 ¹3

Deviance, d(r;¹) (r"¹)2 2
3
r"¹
¹

" log
3
r

¹

44
(r"¹)2
¹2r

Dispersion, Á Á Á= 1=º Á

c (2¼Á)"1=2 ººr"1e"º=¡ (º) (2¼Ár3)"1=2

the exponential family, Equation 6.1, the loglikelihood is given
by

l = l(¯;r) =
n"
i=1

" 1
2Á
d(ri;¹i)+ log(c(ri,Á)): (7.1)

To help the reader work through some explicit examples, Table
1 gives a summary of the functions introduced so far for the
normal, gamma and inverse Gaussian distributions. If the weights
w #= 1, then replace Á with Á=w.
We find the maximum likelihood parameters ˆ̄ by solving the

system of p equations
@l

@¯j
= 0

for j = 1, : : : ,p. Calculating from Equation 7.1 gives:

@l

@¯j
="

"
i

1
2Á
@d(ri;¹i)
@¯j

="
"
i

wi
2Á

@

@¹i

*
2
, ri

¹i

ri" t
V(t)

dt

+
@¹i
@¯j

=
"
i

wi
Á

ri"¹i
V(¹i)

@h(xi¯)
@¯j

=
"
i

wi
Á

ri"¹i
V(¹i)

h+(xi¯)xij



432 MINIMUM BIAS AND GENERALIZED LINEAR MODELS

since xi¯ =
!
j xij¯j . Equating to zero, the Á cancels out (just as

¾ cancels out of normal error linear models) giving the maximum
likelihood equations for ¯j :

n"
i=1

ŵi(ri"¹i)xij = 0, (7.2)

where the adjusted weight is defined as

ŵi =
wih

+(xi¯)
V(¹i)

: (7.3)

LetW be the n! n diagonal matrix of adjusted weights ŵi. Then
writing Equation 7.2 in matrix notation gives

XtW(r"¹) = 0: (7.4)

As expected from the definition of exponential densities, Equa-
tion 7.4 is the same as the minimum deviance equations Equation
5.4. We have shown that the solution to the generalized linear
model specified above is the same as the solution to the min-
imum bias model with the same covariates, link function, and
associated variance function.

Special cases of the correspondence between generalized lin-
ear models and minimum linear bias models include:

Normal& V(¹) = 1,

Binomial& V(¹) = ¹(1"¹),
Poisson& V(¹) = ¹,

Gamma& V(¹) = ¹2, and

Inverse Gaussian& V(¹) = ¹3:

The correspondence holds for all link functions. It also holds
regardless of whether the minimum linear bias problem can be
converted into a set of iterative equations. If the iterative equa-
tions exist, they can be used to solve for the parameters. In all
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cases, the theory of generalized linear models can be used to find
the model parameters.

Canonical Link

If ŵi = wi in Equation 7.3, then h is called the canonical link
corresponding to the variance function V. Clearly the canonical
link satisfies the differential equation V(h(´)) = h+(´). For exam-
ple, if V(¹) = ¹, then h(´) = e´ is the canonical link. It is easier
to find the maximum likelihood parameters using the canonical
link because the weight matrix W is independent of the fitted
values. If the canonical link is used, then adjusted balance is the
same as balance in Bailey’s definition. Despite its name, there
is no need to use the canonical link associated with a particular
variance function.

Explicit Examples

This subsection presents some explicit forms of the corre-
spondence laid out above, including six of the eight different
minimum bias models given by Brown [5].

Assume there are two classification variables and use the min-
imum bias notation from Section 4. Thus i and j are used to label
both the observations and the parameters. Equation 7.4 translates
into

0=XtW(r"¹) =

$%%%%%%%%%%%%%%%%%%%&

"
j

ŵ1j(r1j "¹1j)

..."
j

ŵn1j(rn1j "¹n1j)"
i

ŵi1(ri1"¹i1)
..."

i

ŵin2(rin2 "¹in2)

'((((((((((((((((((()

, dimension p! 1,
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(compare with Equation 4.9 and Equation 4.10). An equation
from the first block gives

n2"
j=1

ŵij(rij "¹ij) = 0, i= 1, : : : ,n1, (7.5)

while one from the second block gives
n1"
i=1

ŵij(rij "¹ij) = 0, j = 1, : : : ,n2: (7.6)

The basic symmetry of the minimum bias method is already clear
in the above equations.

a) Identity Link Function

For the identity link function, ´ij = ¹ij and d´=d¹= 1, so

ŵij =
wij
V(¹ij)

:

Moreover, using an additive model, ´ij = xi+ yj, and so ¹ij =
xi+ yj . Substituting into the maximum likelihood equation Equa-
tion 7.5 gives

0 =
n2"
j=1

ŵij(rij "¹ij)

=
n2"
j=1

wij
V(¹ij)

(rij " (xi+ yj))

=
n2"
j=1

wij
V(¹ij)

(rij " yj)" xi
n2"
j=1

wij
V(¹ij)

,

for i= 1, : : : ,n1. Hence

xi =
n2"
j=1

wij(rij " yj)=V(¹ij)
# n2"

j=1

wij=V(¹ij), (7.7)
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and similarly

yj =
n1"
i=1

wij(rij " xi)=V(¹ij)
# n1"

i=1

wij=V(¹ij), (7.8)

for j = 1, : : : ,n2.

For the normal distribution, V(¹) = 1. Substituting into Equa-
tion 7.7 gives

xi =
"
j

wij(rij " yj)
#"

j

wij, (7.9)

which is Bailey’s additive model discussed in Section 4.

For the Poisson distribution, V(¹) = ¹, and so Equation 7.7
gives

xi =
"
j

wij(rij " yj)=¹ij
#"

j

wij=¹ij, (7.10)

which is a new minimum bias method. For the gamma distribu-
tion, V(¹) = ¹2, and so Equation 7.7 gives

xi =
"
j

wij(rij " yj)=¹2ij
#"

j

wij=¹
2
ij, (7.11)

which is another new method. Finally, for the inverse Gaussian
distribution, V(¹) = ¹3, and so Equation 7.7 gives

xi =
"
j

wij(rij " yj)=¹3ij
#"

j

wij=¹
3
ij, (7.12)

which is a third new method. The binomial distribution, with
V(¹) = ¹(1"¹), also gives a new method.
The models in Equations 7.10 to 7.12 give progressively less

and less weight to observations with higher predicted means
¹ij .
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b) Log Link Function

For the log link function, ´ = log(¹), so d´=d¹= 1=¹, which
gives

ŵij =
wij¹ij
V(¹ij)

:

In this case, ¹ij = exp(´ij) = exp(xi+ yj) =: aibj . As expected the
log link converts an additive model into a multiplicative one.
Substituting into Equation 7.5 gives:

0 =
n2"
j=1

ŵij(rij "¹ij)

=
n2"
j=1

wijaibj
V(¹ij)

(rij " aibj)

=
n2"
j=1

wijrijbj
V(¹ij)

" ai
n2"
j=1

wijb
2
j

V(¹ij)
,

for i= 1, : : : ,n1. Hence

ai =
n2"
j=1

wijrijbj=V(¹ij)

# n2"
j=1

wijb
2
j =V(¹ij), (7.13)

and similarly for bj.

Now substituting V’s for the normal, Poisson, gamma and
inverse Gaussian distributions gives the following four minimum
bias methods:

ai =
"
j

wijrijbj

#"
j

wijb
2
j , (7.14)

ai =
"
j

wijrij

#"
j

wijbj , (7.15)
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ai =
"
j

wijrij=bj

#"
j

wij , and (7.16)

ai =
"
j

wijrij=b
2
j

#"
j

wij=bj: (7.17)

Equation 7.15 is Bailey’s multiplicative model, and Equation
7.16 is Brown’s exponential model—which Venter comments
also works for the gamma. Equations 7.14 and 7.17 appear to
be new. Again, going from Equation 7.14 to Equation 7.17, the
models give less and less weight to observations with high pre-
dicted means.

c) Ad Hoc Methods

Other functions besides the identity, log, and logit can be used
as links. Two common choices are ´ = 1=¹ and ´ = 1=¹2. For the
inverse function, d´=d¹="1=¹2, so ŵ = w¹2=V(¹), and ¹ij =
1=´ij = 1=(xi+ yj). Substituting into Equation 7.5, it is easy to
see that only the inverse Gaussian produces a tractable minimum
bias method. For the inverse Gaussian, V(¹) = ¹3, so Equation
7.5 gives

0 =
n2"
j=1

ŵij(rij "¹ij)

=
"
j

wij
¹ij
(rij "¹ij)

=
"
j

wijrij
¹ij

"wij

=
"
j

wijrij(xi+ yj)"wij

= xi
"
j

wijrij +
"
j

wijrijyj "
"
j

wij,
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and hence we get another new iterative method:

xi =
"
j

wij(1" rijyj)
#"

j

wijrij : (7.18)

In this method one set of parameters will be negative and the
other positive.

Other Variance Assumptions

Brown proposes two models where the variance of rij is pro-
portional to 1=w2ij rather than 1=wij. Although, as Venter points
out, the latter is a more natural choice, the former assumption
can be handled within our framework by simply using weights
w2ij rather than wij . For example, Equation 7.9 becomes

xi =
"
j

w2ij(rij " yj)
#"

j

w2ij, (7.19)

which is Brown’s model 7.

Correspondence with Brown’s Models

For the reader’s convenience, this subsection identifies our
models with the nine models in Brown’s paper:

B1: Poisson, multiplicative, Equation 7.15.

B2: Normal, additive, Equation 7.9.

B3: Bailey–Simon, multiplicative—see [3, Equation 7] for
derivation. This method comes from minimizing a Â2-
statistic, rather than maximizing a likelihood function.
Since generalized linear models rely on maximum like-
lihood, we would not expect to be able to reproduce it.
Unlike B4, it does not use the Newton method.

B4: Bailey–Simon, additive—see [3, p. 12] for derivation.
This method (which certainly puzzled the author as a
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Part 9 exam candidate!) also minimizes a Â2-statistic. Its
derivation uses the Newton method.

B5: Gamma, multiplicative, Equation 7.16; note the exponen-
tial is a special case of the gamma.

B6: Normal, multiplicative with variance proportional to 1=w2,
Equation 7.14, upon replacing w with w2.

B7: Normal, additive, with variance proportional to 1=w2,
Equation 7.19.

B8: The same as B1.

B9: Normal, multiplicative, Equation 7.14. Brown derives B9
using least squares and Venter uses maximum likelihood.
The two approaches agree because the likelihood of a nor-
mally distributed observation is proportional to its squared
distance from the mean.

Numerical Example, Continued

We now present the results of fitting ten generalized linear
models to the data presented in Section 4. The models are de-
scribed in Table 2 below.

So far we have not been concerned with the value of the pa-
rameter Á. It is well known that in general linear models, param-
eter estimates and predicted values are independent of the vari-
ance of the error term (usually labeled ¾2 rather than Á). Since Á
does not appear in Equation 7.4, the same is true of generalized
linear models. However, just as for general linear models, it is
necessary to estimate Á in order to determine statistics such as
standard errors of predicted values. In general linear models,

¾̂2 =
"
i

wi(ri"¹i)2=(n"p)

is used as an estimator of ¾2, where n is the number of obser-
vations and p is the number of parameters. In generalized linear
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TABLE 2

DESCRIPTION OF MODELS

Model Error Link Variance
Number Distribution Function Function

1 Normal Identity V(¹) = 1
2 Normal Log V(¹) = 1
3 Normal Inverse V(¹) = 1
4 Gamma Identity V(¹) = ¹2

5 Gamma Log V(¹) = ¹2

6 Gamma Inverse V(¹) = ¹2

7 Inverse Gaussian Identity V(¹) = ¹3

8 Inverse Gaussian Log V(¹) = ¹3

9 Inverse Gaussian Inverse V(¹) = ¹3

10 Inverse Gaussian Inverse Square V(¹) = ¹3

models, Á is estimated using the moment estimator

Á̂=
1

n"p
"
i

wi
(ri"¹i)2
V(¹i)

: (7.20)

It can also be estimated using

Á̂=
D

n"p =
1

n"p
"
i

d(ri,¹i), (7.21)

where D is the total deviance (see McCullagh and Nelder [17]).
Note that the weights are included in the deviance d in Equation
7.21. Another way to estimate Á is to use the maximum likeli-
hood estimate. Equation 7.1 ensures that the maximum likelihood
parameters are unchanged whether or not Á is estimated. SAS’s
“proc genmod” uses maximum likelihood by default (see [24]),
and the statistics reported below are based on it unless otherwise
noted.

Exhibit 7 gives the parameters corresponding to the ten mod-
els in Table 2. Each panel of Exhibit 7 shows the parameter
estimates, the standard error of the estimate, the Â2-statistic to
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test if the parameter is significantly different from zero, and the
corresponding p-value from the Â2-distribution. (See Section 8
for more discussion of the Â2-statistic.) When the link function
is not the identity, Exhibit 7 also shows the parameter estimates
transformed by the inverse link. For example, in the first row
of Exhibit 7-2, 265:22 = e5:5806. The final row gives the scale
function, which is equal to

1
Á for the normal and inverse Gaus-

sian distributions, and 1=Á for the gamma distribution. Again,
maximum likelihood is used to estimate Á.

Examining Exhibit 7 shows that all parameters except “drive
to work (DTW) less than 10 miles” are significantly different
from zero for all models. All models indicate there is not a sta-
tistically significant difference between “drive to work less than
10 miles” and pleasure-use. The other two use classifications
are significantly different from one another. The estimates and
standard errors within the age classifications show there is not
a statistically significant difference among all levels. For exam-
ple, the 35–39 and 40–49 classes are not significantly different
for most models, although exact results depend on the choice of
Á. In the gamma model with identity link using maximum like-
lihood gives the estimate Á̂= 0:9741, and the contrast between
these two classes has a Â2-statistic of 4.07, which is significant at
the 5% level (p= 4:4%). However, using Equation 7.20 results
in an estimate Á̂= 1:4879 with a Â2-statistic of 2.839 which is
not significant at the 5% level (p= 9:2%). In the first case the
standard error of the 35–39 class is 8.13 (Exhibit 7-4); in the
second it is 10.04.

Exhibit 8 compares the fitted values from three models: the
standard linear model (column 5), a general linear model applied
to log(severity) (column 6), and a generalized linear model with
normal errors and log link (column 7). As pointed out in Example
2.4(c), the three are distinct and give different answers.

Exhibit 9 summarizes the predicted severities by class, by
model. The choice of link function and error distribution has a
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considerable impact on the predicted means in some cells. Us-
ing a gamma or inverse Gaussian error term generally results in a
greater range of estimates, as does the log or reciprocal link func-
tion. Since this is only illustrative data we will not comment on
the specific results. See Renshaw [23] for a more detailed analy-
sis of similar data, together with other suggestions for modeling
and assessing model fit.

Exhibit 10 gives the average bias"
i

wij(rij "¹ij)
#"

i

wij (7.22)

for each j and "
j

wij(rij "¹ij)
#"

j

wij

for each i, for each model. For the normal/identity model, the
average bias is zero, since this model is Bailey’s additive model.
The gamma/inverse model and inverse Gaussian/inverse square
models are also balanced because the respective link functions
are the canonical links (as discussed earlier in this section), and
so the adjustment to the weights in Equation 7.3 equals 1, re-
ducing Equation 7.4 to Equation 7.22. In the other cases, the
parameters are zero bias according to the relevant adjusted bias
function, but not according to that given by Equation 7.22. This
provides an interesting example of Venter’s V1—alternatives to
bias functions.

Exhibit 11 gives the average absolute bias suggested by Bailey
[2]: "

i

wij *rij "¹ij *
#"

i

wij (7.23)

for each i, and similarly for j. The gamma/identity model has the
lowest average absolute bias. Finally, the value of the likelihood
is available as a fit statistic, since these models were fit using
maximum likelihood over all parameters (including Á). The re-
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TABLE 3
MODEL LOGLIKELIHOODS

Model Distribution Link Loglikelihood

1 Normal Identity "144:303
2 Normal Log "144:435
3 Normal Inverse "145:792
4 Gamma Identity "140:753
5 Gamma Log "141:055
6 Gamma Inverse "143:267
7 Inverse Gaussian Identity "141:078
8 Inverse Gaussian Log "141:347
9 Inverse Gaussian Inverse "143:343
10 Inverse Gaussian Sqr Inverse "147:224

sults are shown in Table 3. Other statistics that can be used to
select between models are discussed in Section 8.

These examples hint at the power of the statistical viewpoint.
Using a minimum bias approach not within the statistical frame-
work, it would be impossible to discuss the standard error of
predicted values and parameters, or to ask whether two param-
eters are statistically significantly different. Having the tools to
answer such questions can provide useful information to help in
designing and parameterizing classification plans. The statistical
model also gives information on model fit, discussed in the next
section, which helps select covariates, as well as link and variance
functions within parameterized families. Again, these tools are
not available with the minimum bias approach. Fundamentally
it is the connection between variance functions and exponential
family distributions that makes the statistical viewpoint possible.

8. MODEL FIT STATISTICS

Generalized linear model and minimum bias methods allow
the actuary to consider a large number of models: different
choices of covariates, different link functions and different vari-
ance functions. It is obviously important to be able to determine
if one model fits the data better than the others. The specifica-
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tion of a generalized linear model in Section 7 shows there are
at least four distinct model fit questions:

1. comparing different sets of covariates for a given link
function and variance function (error distribution),

2. comparing different link functions and covariates for a
given variance function,

3. comparing different variance functions for a given set of
covariates and link function, and

4. simultaneously comparing different link and variance
functions and covariates.

In this section we will discuss some of the available statistical
tests of model fit. These methods extend the earlier work of
Bailey and Simon.

Comparing Sets of Covariates

The simplest test of model fit looks for information about the
best set of covariates assuming given link and variance func-
tions. In the numerical example, is anything really gained from
adding a vehicle-use classification? Analysis of variance is used
in normal-error model theory to assess the significance of ef-
fects and answer such questions. For generalized linear models,
we look at an analysis of deviance table, obtained from a nested
sequence of models. Unfortunately, unlike the normal-error the-
ory where the Â2- and F-distributions give exact results, only
approximations and asymptotic results are available for gener-
alized linear models. McCullagh and Nelder [17] recommend
analysis of deviance as a screening device for models and regard
this as an area where more work is required.

Consider the gamma distribution model with identity link.
With two explanatory variables available, we can consider a
nested sequence of four models: intercept only, age only, age
and vehicle type with no interaction, and age and vehicle type
with interaction. The last model is complete—it has as many
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TABLE 4
ANALYSIS OF DEVIANCE

Degrees of Mean
Model Deviance ¢ Deviance Freedom Deviance

Intercept 347.0331
Age 264.8553 82.1778 7 11.74
Age+Vehicle 31.2453 233.6100 3 77.87
Complete 0 31.2453 21 1.49

parameters as there are observations and so fits perfectly. Table
4 shows the resulting analysis of deviance. For each model, it
shows the deviance, the reduction in deviance from adding co-
variates, the number of incremental degrees of freedom, and the
mean incremental deviance per degree of freedom. The degrees
of freedom are computed as the incremental number of param-
eters from one model to the next. The model with an intercept
has only one parameter. Including age variables adds seven more
parameters, and so on. The complete model has one parameter
for each of the 32 observations.

The mean deviance has an approximate Â2-distribution.
Adding the age variable and then the vehicle type variable both
significantly improve the model fit. When more explanatory vari-
ables are available, an analysis of deviance is helpful in deciding
which to use in a model, and in particular, in assessing which
interaction effects are significant and should be included.

Comparing Link Functions

The models discussed in Section 7 used the identity, inverse
and log links, all of which belong to the power-link family6

´ =

5
¹¸ for ¸ #= 0,

log(¹) for ¸= 0:

6Considering (¹¸ "1)=¸ instead of ¹¸ makes the family appear more natural, because
(¹¸"1)=¸$ log(¹) as ¸$ 0. This form of the power-link function is called the Box–
Cox transformation. It is mentioned in Venter’s review [26].
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TABLE 5
DEVIANCE VS. LINK POWER ¸

¸ Deviance

"1:800 43.828
"1:300 38.966
"0:800 35.190
"0:300 32.724
0:200 31.464
0:700 31.129
1:200 31.418
1:450 31.717

According to Nelder and Lee [18, Section 2.3], we can use the
deviance to compare different link functions as well as different
covariates. Table 5 shows the deviance for various values of ¸,
again using the gamma distribution.

The deviance is relatively flat across the range 0:3252 ¸2
1:075, which includes the identity link. The deviance for the
inverse link ¸="1 is substantially greater than for ¸ in this
range.

More on Variance Functions

Before discussing tests over sets of variance functions, we
must mention a few facts about them. Jørgensen, [13] and [14],
discusses the exponential families corresponding to variance
functions beyond the simple examples we have considered so
far. His results include the following which are of interest to
actuaries:

1. V(¹) = ¹³ for 1< ³ < 2 corresponds to the Tweedie dis-
tribution, which is a compound distribution with Poisson
frequency component and gamma severity component.
It is a mixed distribution with a non-zero probability of
taking the value zero, which makes it useful in modeling
aggregate distributions. Jørgensen and deSouza [15] fit
the Tweedie model to Brazilian auto data.
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2. V(¹) = ¹³ for ³ < 0 corresponds to an extreme stable dis-
tribution. Non-normal stable distributions are thick tailed
distributions which may be useful in fitting loss data.

3. V(¹) = ¹³ for 2< ³ <%, ³ #= 3 corresponds to a positive
stable distribution.

4. V(¹) = ¹³ for 0< ³ < 1 does not give an exponential
family distribution.

5. V(¹) = ¹(1+¹=º) corresponds to the negative binomial
distribution.

6. V(¹) = ¹(1+ ¿¹2) corresponds to the Poisson-inverse
Gamma distribution. Renshaw [23] gives the deviance
functions for both of the last two distributions.

The power variance function family leads naturally to the
question of determining the best estimate for ³ , to which we
now turn.

Comparing Variance Functions

The deviance cannot be used to select an optimal ³ because the
deviance of an individual observation (r"¹)=¹³ $ 0 as ³$%
for ¹ > 1. This means a deviance-based objective would gen-
erally claim ³ should be very large and that the model fit was
excellent. Clearly it is necessary to include some measure of
the likelihood of ³ in the objective function to counter-balance
the effect of the variance function on the deviance. In general,
according to Nelder and Lee [18], deviance cannot be used to
compare different variance functions on the same data.

One way to include the likelihood of ³ would be to use the full
likelihood function for the corresponding density. This method
was used in the examples shown in Section 7 for the normal,
gamma and inverse Gaussian distributions—where the densities
are known. Unfortunately, for most exponential family distri-
butions, including the Tweedie and stable distributions, there is
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no simple closed form expression for the density or distribution
function. It is therefore not possible to write down the likelihood
function.

The way out of this impasse is to use a tractable approximation
to the density function, such as the saddlepoint approximation.
Details of the derivation are beyond the scope of this paper, but
the result is to replace the deviance function

d(ri;¹) = 2wi

, ri

¹

ri" t
V(t)

dt (8.1)

with an extended deviance function (extended quasi-likelihood
in the literature)

d(ri;¹) = 2
wi
Á

, ri

¹

ri" t
V(t)

dt+log(ÁV(ri)): (8.2)

The added term grows with V, thus providing the desired
counter-balance to the first term, which shrinks. Note that V is
evaluated at the responses ri rather than the fitted means ¹i. In-
cluding the scale parameter Á allows Equation 8.2 to be used
both for inference over parameterized families of variance func-
tions and for different values of Á. Jørgensen [13, Example 3.1 p.
104] explains the saddlepoint approximation for a gamma distri-
bution, which is just Stirling’s formula for the gamma function.
See McCullagh and Nelder [17, Chapter 9], Nelder and Lee [18],
and Renshaw [23] for more about extended deviance functions.
[18] also defines and compares other extensions of deviance.

Table 6 shows the extended deviances for various values of ³
modeled with the identity link function. The table shows a rea-
sonable range 1:952 ³ 2 3:45, which includes both the gamma
distribution ³ = 2 and inverse Gaussian distribution ³ = 3. Com-
bining the results of Tables 5 and 6 shows the gamma or in-
verse Gaussian distribution with identity link is still a reasonable
choice even if we are free to select from the power link family
and power variance function family. These conclusions are in
line with the full likelihood results in Table 3 and the average
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TABLE 6
EXTENDED DEVIANCE VS. VARIANCE FUNCTIONS V(¹) = ¹³

³ Deviance

1.20 372.740
1.45 372.020
1.70 371.422
1.95 370.946
2.20 370.597
2.45 370.374
2.70 370.282
2.95 370.321
3.20 370.494
3.45 370.800

absolute deviations in Exhibit 11, where the gamma/identity and
inverse Gaussian/identity models show the best results.

Deviance Profiles and Comparing Link and Variance Functions

The last step we will consider combines the power link and
variance functions and looks for the overall minimum extended
deviance estimators. Figure 3 shows a contour plot of extended
deviance over ³ and ¸. The results are as expected from the one
dimensional calculations. The dotted rectangle shows a range of
¸ from log link to the identity and ³ from gamma distribution to
inverse Gaussian.

9. COMPUTATIONS

Section 9 is in two parts. The first discusses the iterative
method for solving minimum bias models. For the additive model
with identity link, it gives a sufficient condition for the iterative
method to converge (no matter the initial conditions), explains
precisely how it converges in terms of the eigenvectors of a par-
ticular matrix, and gives a telescoping argument that jumps to
the solution of the iterative process once the first iteration has
been computed.
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FIGURE 3

DEVIANCE PROFILE POWER LINK AND VARIANCE FUNCTIONS
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The second section discusses how to find the maximum like-
lihood parameters in a generalized linear model. Even though
commercial software exists to solve generalized linear models, it
is instructive to perform the calculations by hand, and we explain
how to do this. Examples of SAS code to solve generalized linear
models using both the SAS/Stat procedure “genmod” and a “bare
hands” approach using matrix algebra are given in Appendix B.

At several points this section discusses a notion of compu-
tational efficiency. Two algorithms are of similar computational
efficiency if they will run in about the same time for all sizes of
input. (Technically, if n is the problem size, and f(n) and g(n) are
the number of elementary operations required to solve the prob-
lem using two methods, then they are of the same computational
efficiency if f =O(g) and g =O(f), Borwein and Borwein [4,
Chapter 6]. Recall f =O(g) means there is a constant K so that
f(n)2Kg(n) for all n.)

Iterative Methods

Bailey’s original paper [2] introduces the additive and mul-
tiplicative models and suggests the iterative method for finding
parameters:

Using a predetermined set of estimators for each ter-
ritory, construction, and protection, we can solve the
[minimum bias] formula for the estimator for each oc-
cupancy. We can then use these calculated estimators
for each occupancy to calculate a revised set of esti-
mators for each territory using a similar formula, and
continue this process until the estimators stabilize.

Since Bailey’s paper, it has become common for actuaries to use
this iterative method. For example, ISO [11] explicitly describes
the three-way minimum bias model for the personal auto classi-
fication plan as iterative.

Just because the minimum bias model suggests using an iter-
ative method to solve for the parameters, it does not follow that
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such a method is the best method to use. Section 4 showed that
the usual additive model is simply a general linear model; and
so it is far more computationally efficient to solve the normal
equations (no iterations, few matrix multiplications and one in-
verse) than it is to use the iterative method. Any actuaries still
using iterative methods should investigate whether the general-
ized linear model approach outlined in this paper would speed up
their calculations—as well as providing them with more useful
diagnostic information.

This section considers the iterative method for the additive
model with identity link which is used by ISO for the personal
auto class plan. The iterative method is considered in detail de-
spite its shortcomings, because many actuaries may have tried
the method (perhaps as Part 9 students) and may have wondered
what initial conditions are required for convergence and may also
have noted the strange way the models converge. We explain the
convergence in detail and also show it is not necessary to perform
many iterations, even if the iterative paradigm is followed. How-
ever, the final message of this section is do not use the iterative
method for Bailey’s additive model—solve the normal equations
instead!

We will use the notation of Section 4 and consider two classi-
fication variables—extensions are immediate. Assume that base
classes have been selected so that the sum-of-squares and prod-
ucts matrix XtWX is invertible, a has dimension n1!1 and b
has dimension n2!1. Finally assume n2 2 n1; if this is not the
case then swap a and b. For this example the adjusted weights
ŵ = w (see Equation 7.3).

From Equation 4.14 the minimum bias equations can be writ-
ten as

(A B)tW

*
r" (A B)

*
a

b

++

=

*
AtW(r"Aa"Bb)
AtW(r"Aa"Bb)

+
= 0(n1+n2)!1: (9.1)
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Re-arranging Equation 9.1 gives

a= (AtWA)"1AtW(r"Bb), and (9.2)

b= (BtWB)"1BtW(r"Aa): (9.3)

The iterative solution starts with some initial choice b(0) and
uses Equation 9.2 to solve for a(1). Substituting a(1) into the Equa-
tion 9.3 gives an expression for b(1). Iterating gives a(2), b(2), and
so forth. The procedure stops when the difference between suc-
cessive iterations is sufficiently small. Set v(m) = b(m)"b(m"1)
equal to the difference in the m and (m"1)th iterations for b.
Note there is an asymmetry between the a-iterations and the
b-iterations based on where we choose to start.

Set
M= (BtWB)"1BtWA(AtWA)"1AtWB, (9.4)

an n2! n2 matrix. A straightforward telescoping argument shows
that

b= (I"M)"1v(1) +b(0), (9.5)

provided Mm$ 0. We can guarantee that Mm$ 0 as m$%
if all the eigenvalues of M have absolute value less than 1.
This gives a necessary condition for the iterative method to
converge, and, moreover, Equation 9.5 shows how to “jump”
straight to the final solution after computing only one itera-
tion, a(1) and b(1). This method of solving the minimum bias
problem will run much faster than the iterative method, but
will still be slower than solving the normal equations (comput-
ing M alone involves eleven matrix multiplications and two in-
verses).

It is also possible to show that v(m) tends to a scalar multiple of
the eigenvector associated with the largest eigenvalue of M, and
the iterative method converges along the direction of that eigen-
vector. Moreover, the distance between subsequent iterations of
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b(m) decreases by approximately the absolute value of the largest
eigenvector for m large enough.

Numerical Example, Continued

Exhibit 5 illustrates the above theory. Column 2 gives the
length of v, Column 14 gives the ratio of successive iterations of
v, and Columns 15–17 give the three components of v(m). The
ratio of lengths of v should converge to the largest eigenvalue of
the matrix M defined by Equation 9.4. For the data underlying
Exhibit 5:

M=

$%&0:457572 0:300972 0:118435

0:431800 0:306347 0:122798

0:428349 0:309565 0:126608

'() , (9.6)

which has eigenvalues 0.000541, 0.010541 and 0.859445. This
explains the 0.85944’s that appear in Exhibit 5; their appearance
is quick since the largest eigenvalue is so much greater than the
other two. The overall convergence of the model is quite slow,
since 0.859 is close to 1.0.

Exhibits 12 and 13 show how the iterative method converges
for two other models: gamma/identity and gamma/inverse, re-
spectively. Convergence is particularly slow for the latter; after
25 iterations the parameters are nowhere near their final values.
The methods of this section do not apply to non-canonical link
functions because the weight matrixW must be re-evaluated be-
tween each iteration, and so the telescoping argument will not
hold.

Solving Generalized Linear Models

One conclusion of this paper is that many useful minimum
linear bias models correspond in a natural way with general-
ized linear models. However, not all minimum linear bias mod-
els have a tractable iterative solution. It is therefore useful to
know how to solve generalized linear models. Since there are
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pre-programmed routines for generalized linear models8 we give
only a brief overview here. This section follows McCullagh and
Nelder [17]. The notation is the same as the first part of Sec-
tion 7.

From Equation 7.4 the maximum likelihood equations for the
generalized linear model are given by

XtW(r"¹) = 0,
whereW is the diagonal matrix with entries ŵi = wih

+(xi¯)=V(¹i).

To find the maximum likelihood it is necessary to solve
@l=@¯j = 0, for j = 1, : : : ,p. This can be done using a method
related to the Newton–Raphson method. In one dimension the
Newton–Raphson method solves an equation f(x) = 0 by iterat-
ing xn+1 = xn"f(xn)=f +(xn). We are trying to solve the vector
equation u(¯) = 0, where

u(¯) = u= @l=@¯ = (@l=@¯1, : : : ,@l=@¯p)
t:

Looking at Newton–Raphson suggests trying ¯n+1 = ¯n" (@u=
@¯)"1u. The term @u=@¯ is called the Hessian. The negative
Hessian is called the observed information matrix (see Hogg and
Klugman [10, p. 121]); it is generally a random quantity. Fisher’s
scoring method simplifies the Newton–Raphson method by using
the expected value of the Hessian rather than the Hessian itself;
it often results in more staightforward calculations.

To apply Fisher’s scoring method, let

H="E
*

@2l

@¯j@¯k

+
="E

-
@u
@¯

.

8As well as GLIM, mentioned by Brown, SAS now includes a procedure, “proc genmod”
to solve generalized linear models in its SAS/Stat package. “Proc genmod” has the same
syntax as “proc glm”.



456 MINIMUM BIAS AND GENERALIZED LINEAR MODELS

be the negative expected value of the Hessian matrix. Given an
estimate ¯n of ¯, we find the next adjustment a by solving Ha=
u. (The adjustment term in the Newton–Raphson method, a=
f(xn)=f

+(xn), satisfies f +(xn)a= f(xn). Here, f& u and f + &H.)
From Equation 7.4, u=XtW(r"¹), and so

H="E
-
@u
@¯

.
="E

-
@

@¯
XtW(r"¹)

.
="E

-
@(XtW)
@¯

(r"¹)+ (XtW) @
@¯
(r"¹)

.
(9.7)

= E
-
XtW

@¹

@¯

.
(9.8)

= E
-
XtW

d¹

d´

@´

@¯

.
(9.9)

=XtW̃X, (9.10)

which is the weighted sums of squares and products matrix for
the model with weights

W̃= diag

*
wi(h

+(xi¯)2

V(¹i)

+
:

Equation 9.7 uses the chain rule; Equation 9.8 uses the fact that
E(r) =¹ and @r=@¯ = 0 (r is a vector of numbers); Equation
9.9 uses the chain rule and the fact that ´ = X¯; and, finally,
Equation 9.10 uses the fact that X is constant. Since ¯n+1 =
¯n+ a, H¯n+1 =H¯n+Ha=H¯n+u, and hence

XtW̃X¯n+1 =X
tW̃X¯n+u

=XtW̃´n+X
tW̃
d´n
d¹

(r"¹)

=XtW̃
-
´n+

d´n
d¹

(r"¹)
.
: (9.11)
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Equation 9.11 is the normal equation for a linear weighted least-
squares model of the data ´n+(d´n=d¹)(r"¹) using design ma-
trix X and weights W̃.

Note that

g(¹)+ (r"¹)g+(¹) = ´+(r"¹)d´
d¹

is a linear approximation to g(r) = h"1(r), and that

Var(g(¹)+ (r"¹)g+(¹)) = V(¹)
-
d´

d¹

.2
= W̃"1

up to a factor involving Á.

In order to implement this iteratively re-weighted least squares
method we can start by taking ¹= r. Certain observations may
need to be adjusted, for example zero values when the log or
inverse power links are used. The method is easy to implement
in a matrix programming language such as MATLAB, APL or
SAS IML. Annotated SAS IML code is given in Appendix B.

10. FUTURE RESEARCH

Bailey [2] points out that in statistics the best estimator is a
minimum variance unbiased estimator, but that in classification
ratemaking there are typically no unbiased estimators.

Venter’s third suggestion, of allowing individual cells to vary
from an arithmetically defined base, gives a way to produce unbi-
ased estimators. Credibility weighting the model pure premium
with the experience would give asymptotically unbiased rates,
because in a large enough sample each cell would be fully cred-
ible. Venter notes such an approach was used in the 1981 Mas-
sachusetts auto rate hearings. The credibility factor used was
Bühlmann credibility

Z =
n

n+K
, K =

Expected process variance
Variance of hypothetical means

,

(10.1)
where n is the number of exposures in the cell.
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A credibility approach was also hinted at by Bailey, who
discusses the problem of combining information about youth-
ful drivers and business classes into youthful business drivers:
“[The data] may be insufficient to be fully reliable but it will
always provide some information.”

The statistical theory of mixed models provides a method of
credibility weighting fitted values and raw data. The details of
mixed models are beyond the scope of this paper; the interested
reader should consult Searle, et al. [25]. In fact, Equation 42
on page 57 of Searle uses mixed models to give an unbiased
predictor for a cell pure premium as

(1"Z)!model fit+Z! cell average,
where credibility Z is given by Equation 10.1. A very nice re-
cent paper by Nelder and Verrall [20] extends the same result
to a certain family of generalized linear mixed models and dis-
cusses some possible actuarial applications. Lee and Nelder [19]
gives a more detailed description of the theory, together with
some (non-actuarial) examples. Aside from their application to
credibility theory, mixed models could also be used in territo-
rial ratemaking, just as they are currently used in geophysical
statistics (see Cressie [6]).

11. CONCLUSION

We have introduced generalized linear models by making a
connection between them and minimum bias models, with which
actuaries are already familiar. The connection is made possi-
ble by using variance functions to define linear bias functions
and then relating them to the exponential family of distribu-
tions. The definitions imply that minimum bias corresponds to
the maximum likelihood solution of the associated generalized
linear model. By starting with the known and familiar we have
provided an introduction to generalized linear models, which is
easier to understand than descriptions which start from abstract
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definitions. We have also explained how generalized linear mod-
els extend the well known ANOVA and regression analyses. Two
by-products of the exposition were to clarify uniqueness of pa-
rameters for class plans, and to explain the different notations
used in linear models and minimum bias methods. Finally, the
iterative paradigm for solving minimum bias models is shown
not to be useful given the more efficient algorithms available for
solving generalized linear models. Actuaries should not imple-
ment the iterative method. Whenever possible, they should use
explicit statistical models.

Linear bias functions are an alternative to the usual measure of
bias and so extend Venter’s first alternative to Bailey’s methods.
Link functions, introduced as part of the definition of general-
ized linear models, allow for more general arithmetic functions
to determine classification rates. However, since the models are
still linear they do not allow functions such as rijk = xiyj + zk
suggested by Venter.

In jumping from actuaries of the second kind, who use risk
theory and probabilistic models, to actuaries of the third kind
who use stochastic models and financial tools [see 7, p. 45],
I believe the profession may have overlooked an important in-
termediate step: the statistical actuary—perhaps actuary of the
5/2nds kind? A statistical approach is perfect for data-intensive
lines, such as personal auto and homeowners. I hope this and
other statistical papers which have appeared recently will en-
courage actuaries working in data-intensive lines to take statis-
tics beyond that which is required for an Associateship in either
North American actuarial society, and to start taking advantage
of its power in their work.
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EXHIBIT 1

UNDERLYING DATA FOR NUMERICAL EXAMPLES

Age Claim
Observation Group Vehicle-Use Severity Count

1 17–20 Pleasure 250.48 21
2 17–20 Drive to Work< 10 miles 274.78 40
3 17–20 Drive to Work> 10 miles 244.52 23
4 17–20 Business 797.80 5
5 21–24 Pleasure 213.71 63
6 21–24 Drive to Work< 10 miles 298.60 171
7 21–24 Drive to Work> 10 miles 298.13 92
8 21–24 Business 362.23 44
9 25–29 Pleasure 250.57 140
10 25–29 Drive to Work< 10 miles 248.56 343
11 25–29 Drive to Work> 10 miles 297.90 318
12 25–29 Business 342.31 129
13 30–34 Pleasure 229.09 123
14 30–34 Drive to Work< 10 miles 228.48 448
15 30–34 Drive to Work> 10 miles 293.87 361
16 30–34 Business 367.46 169
17 35–39 Pleasure 153.62 151
18 35–39 Drive to Work< 10 miles 201.67 479
19 35–39 Drive to Work> 10 miles 238.21 381
20 35–39 Business 256.21 166
21 40–49 Pleasure 208.59 245
22 40–49 Drive to Work< 10 miles 202.80 970
23 40–49 Drive to Work> 10 miles 236.06 719
24 40–49 Business 352.49 304
25 50–59 Pleasure 207.57 266
26 50–59 Drive to Work< 10 miles 202.67 859
27 50–59 Drive to Work> 10 miles 253.63 504
28 50–59 Business 340.56 162
29 60+ Pleasure 192.00 260
30 60+ Drive to Work< 10 miles 196.33 578
31 60+ Drive to Work> 10 miles 259.79 312
32 60+ Business 342.58 96
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EXHIBIT 2

ONE-WAY SUMMARY OF UNDERLYING DATA

Claim
Age Group Vehicle-Use Severity Count

All All 241.46 8,942
All Pleasure 206.00 1,269
All Drive to Work< 10 miles 213.62 3,888
All Drive to Work> 10 miles 259.50 2,710
All Business 338.54 1,075
17–20 All 290.61 89
21–24 All 291.60 370
25–29 All 278.74 930
30–34 All 271.32 1,101
35–39 All 215.03 1,177
40–49 All 234.45 2,238
50–59 All 230.21 1,791
60+ All 222.59 1,246
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EXHIBIT 3

DESIGN MATRIX FOR AGE GROUP CLASSIFICATION

Age Group

Observation 17–20 21–24 25–29 30–34 35–39 40–49 50–59 60+

1 1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0
6 0 1 0 0 0 0 0 0
7 0 1 0 0 0 0 0 0
8 0 1 0 0 0 0 0 0
9 0 0 1 0 0 0 0 0
10 0 0 1 0 0 0 0 0
11 0 0 1 0 0 0 0 0
12 0 0 1 0 0 0 0 0
13 0 0 0 1 0 0 0 0
14 0 0 0 1 0 0 0 0
15 0 0 0 1 0 0 0 0
16 0 0 0 1 0 0 0 0
17 0 0 0 0 1 0 0 0
18 0 0 0 0 1 0 0 0
19 0 0 0 0 1 0 0 0
20 0 0 0 0 1 0 0 0
21 0 0 0 0 0 1 0 0
22 0 0 0 0 0 1 0 0
23 0 0 0 0 0 1 0 0
24 0 0 0 0 0 1 0 0
25 0 0 0 0 0 0 1 0
26 0 0 0 0 0 0 1 0
27 0 0 0 0 0 0 1 0
28 0 0 0 0 0 0 1 0
29 0 0 0 0 0 0 0 1
30 0 0 0 0 0 0 0 1
31 0 0 0 0 0 0 0 1
32 0 0 0 0 0 0 0 1
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EXHIBIT 4

DESIGN MATRIX FOR VEHICLE-USE CLASSIFICATION

Vehicle-Use Classification

Observation Drive to Work< 10 miles Drive to Work> 10 miles Business

1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1
5 0 0 0
6 1 0 0
7 0 1 0
8 0 0 1
9 0 0 0
10 1 0 0
11 0 1 0
12 0 0 1
13 0 0 0
14 1 0 0
15 0 1 0
16 0 0 1
17 0 0 0
18 1 0 0
19 0 1 0
20 0 0 1
21 0 0 0
22 1 0 0
23 0 1 0
24 0 0 1
25 0 0 0
26 1 0 0
27 0 1 0
28 0 0 1
29 0 0 0
30 1 0 0
31 0 1 0
32 0 0 1
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EXHIBIT 6

GENERAL LINEAR MODEL PARAMETERS

Parameter Value

Age 17–20 265.29
Age 21–24 258.40
Age 25–29 238.71
Age 30–34 229.76
Age 35–39 175.34
Age 40–49 195.35
Age 50–59 198.86
Age 60+ 194.82

Drive to Work< 10 miles 8.76
Drive to Work> 10 miles 53.96

Business 132.28
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EXHIBIT 7-1

PARAMETER VALUES AND STATISTICS FOR NORMAL MODEL,
IDENTITY LINK

Standard Chi
Parameter Level Estimate Error Squared p value

Age 17–20 265.29 31.536 70.769 0.000
Age 21–24 258.40 16.797 236.658 0.000
Age 25–29 238.71 12.144 386.375 0.000
Age 30–34 229.76 11.773 380.880 0.000
Age 35–39 175.34 11.459 234.139 0.000
Age 40–49 195.35 9.992 382.258 0.000
Age 50–59 198.86 10.197 380.313 0.000
Age 60+ 194.82 10.814 324.582 0.000

Vehicle-Use DTW< 10 8.76 9.418 0.865 0.353
Vehicle-Use DTW> 10 53.96 9.936 29.498 0.000
Vehicle-Use Business 132.28 12.124 119.041 0.000
Scale 291.56 36.32

EXHIBIT 7-2

PARAMETER VALUES AND STATISTICS FOR NORMAL MODEL,
LOG LINK

Transformed Standard Chi
Parameter Level Estimated Estimate Error Squared p value

Age 17–20 5.581 265.22 0.108 2,650.726 0.000
Age 21–24 5.514 248.21 0.063 7,611.630 0.000
Age 25–29 5.444 231.37 0.051 11,339.710 0.000
Age 30–34 5.421 226.18 0.050 11,635.699 0.000
Age 35–39 5.186 178.76 0.055 9,038.202 0.000
Age 40–49 5.289 198.19 0.047 12,821.908 0.000
Age 50–59 5.301 200.49 0.048 12,326.811 0.000
Age 60+ 5.286 197.55 0.051 10,887.200 0.000

Vehicle-Use DTW< 10 0.041 1.04 0.045 0.822 0.365
Vehicle-Use DTW> 10 0.231 1.26 0.045 26.090 0.000
Vehicle-Use Business 0.495 1.64 0.048 107.072 0.000
Scale 291.75 36.47
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EXHIBIT 7-3

PARAMETER VALUES AND STATISTICS FOR NORMAL MODEL,
INVERSE LINK

Transformed Standard Chi
Parameter Level Estimated Estimate Error Squared p value

Age 17–20 3.7615e-03 265.85 0.0004 110.100 0.000
Age 21–24 4.2575e-03 234.88 0.0003 273.197 0.000
Age 25–29 4.4685e-03 223.79 0.0002 376.913 0.000
Age 30–34 4.5015e-03 222.15 0.0002 394.962 0.000
Age 35–39 5.4337e-03 184.04 0.0003 433.329 0.000
Age 40–49 4.9521e-03 201.93 0.0002 498.633 0.000
Age 50–59 4.9256e-03 203.02 0.0002 470.954 0.000
Age 60+ 4.9756e-03 200.98 0.0002 432.339 0.000

Vehicle-Use DTW< 10 "1.8560e-04 N/A 0.0002 0.690 0.406
Vehicle-Use DTW> 10 "9.7374e-04 N/A 0.0002 20.430 0.000
Vehicle-Use Business "1.8592e-03 N/A 0.0002 75.130 0.000
Scale 304.39 38.05

EXHIBIT 7-4

PARAMETER VALUES AND STATISTICS FOR GAMMA MODEL,
IDENTITY LINK

Standard Chi
Parameter Level Estimate Error Squared p value

Age 17–20 257.79 29.673 75.475 0.000
Age 21–24 261.08 15.670 277.578 0.000
Age 25–29 241.05 10.114 568.048 0.000
Age 30–34 228.18 9.442 584.056 0.000
Age 35–39 179.60 8.126 488.552 0.000
Age 40–49 194.89 7.016 771.627 0.000
Age 50–59 198.46 7.195 760.810 0.000
Age 60+ 193.04 7.600 645.146 0.000

Vehicle-Use DTW< 10 8.63 6.571 1.727 0.189
Vehicle-Use DTW> 10 53.74 7.482 51.590 0.000
Vehicle-Use Business 131.44 11.629 127.745 0.000
Scale 1.03 0.256
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EXHIBIT 7-5

PARAMETER VALUES AND STATISTICS FOR GAMMA MODEL,
LOG LINK

Transformed Standard Chi
Parameter Level Estimate Estimate Error Squared p value

Age 17–20 5.541 254.89 0.108 2,624.365 0.000
Age 21–24 5.536 253.70 0.058 9,118.370 0.000
Age 25–29 5.460 235.18 0.041 17,358.976 0.000
Age 30–34 5.418 225.37 0.040 18,045.458 0.000
Age 35–39 5.201 181.47 0.040 17,179.268 0.000
Age 40–49 5.280 196.33 0.034 23,972.547 0.000
Age 50–59 5.295 199.34 0.035 23,125.662 0.000
Age 60+ 5.273 195.00 0.037 20,170.519 0.000

Vehicle-Use DTW< 10 0.041 1.04 0.032 1.610 0.205
Vehicle-Use DTW> 10 0.234 1.26 0.034 47.306 0.000
Vehicle-Use Business 0.497 1.64 0.042 143.183 0.000
Scale 1.007 0.25

EXHIBIT 7-6

PARAMETER VALUES AND STATISTICS FOR GAMMA MODEL,
INVERSE LINK

Transformed Standard Chi
Parameter Level Estimate Estimate Error Squared p value

Age 17–20 3.9881e-03 250.75 0.000 97.894 0.000
Age 21–24 4.1205e-03 242.69 0.000 319.554 0.000
Age 25–29 4.3830e-03 228.15 0.000 557.756 0.000
Age 30–34 4.5016e-03 222.14 0.000 598.102 0.000
Age 35–39 5.4096e-03 184.86 0.000 733.982 0.000
Age 40–49 5.0241e-03 199.04 0.000 867.415 0.000
Age 50–59 4.9727e-03 201.10 0.000 813.669 0.000
Age 60+ 5.0559e-03 197.79 0.000 736.713 0.000

Vehicle-Use DTW< 10 "1.8995e-04 N/A 0.000 1.312 0.252
Vehicle-Use DTW> 10 "1.0005e-03 N/A 0.000 36.478 0.000
Vehicle-Use Business "1.8767e-03 N/A 0.000 115.193 0.000
Scale 8.7803e-01 0.2189
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EXHIBIT 7-7

PARAMETER VALUES AND STATISTICS INVERSE GAUSSIAN
MODEL, IDENTITY LINK

Standard Chi
Parameter Level Estimate Error Squared p value

Age 17–20 255.91 30.274 71.460 0.000
Age 21–24 261.83 16.277 258.748 0.000
Age 25–29 241.72 9.987 585.880 0.000
Age 30–34 227.34 9.032 633.606 0.000
Age 35–39 180.52 7.341 604.698 0.000
Age 40–49 194.90 6.246 973.654 0.000
Age 50–59 198.27 6.428 951.478 0.000
Age 60+ 192.28 6.747 812.169 0.000

Vehicle-Use DTW< 10 8.72 5.862 2.211 0.137
Vehicle-Use DTW> 10 53.77 7.000 59.003 0.000
Vehicle-Use Business 131.24 12.620 108.154 0.000
Scale 0.0616 0.0077

EXHIBIT 7-8

PARAMETER VALUES AND STATISTICS FOR INVERSE GAUSSIAN
MODEL, LOG LINK

Transformed Standard Chi
Parameter Level Estimate Estimate Error Squared p value

Age 17–20 5.532 252.65 0.112 2,440.618 0.000
Age 21–24 5.544 255.68 0.060 8,532.551 0.000
Age 25–29 5.466 236.62 0.040 18,319.266 0.000
Age 30–34 5.416 224.87 0.039 19,731.991 0.000
Age 35–39 5.205 182.20 0.036 20,832.767 0.000
Age 40–49 5.277 195.85 0.031 29,507.021 0.000
Age 50–59 5.293 198.91 0.031 28,397.992 0.000
Age 60+ 5.268 193.96 0.033 24,828.173 0.000

Vehicle-Use DTW< 10 0.041 1.04 0.029 2.025 0.155
Vehicle-Use DTW> 10 0.236 1.27 0.032 55.575 0.000
Vehicle-Use Business 0.499 1.65 0.043 134.646 0.000
Scale 0.062 0.008
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EXHIBIT 7-9

PARAMETER VALUES AND STATISTICS FOR INVERSE GAUSSIAN
MODEL, INVERSE LINK

Transformed Standard Chi
Parameter Level Estimate Estimate Error Squared p value

Age 17–20 4.0365e-03 247.74 4.2843e-04 88.766 0.000
Age 21–24 4.0590e-03 246.36 2.3219e-04 305.595 0.000
Age 25–29 4.3454e-03 230.13 1.7757e-04 598.851 0.000
Age 30–34 4.5071e-03 221.87 1.7487e-04 664.311 0.000
Age 35–39 5.4073e-03 184.94 1.8031e-04 899.289 0.000
Age 40–49 5.0537e-03 197.87 1.5568e-04 1,053.840 0.000
Age 50–59 4.9939e-03 200.24 1.5895e-04 987.095 0.000
Age 60+ 5.0932e-03 196.34 1.6946e-04 903.299 0.000

Vehicle-Use DTW< 10 "1.9182e-04 N/A 1.4885e-04 1.661 0.198
Vehicle-Use DTW> 10 "1.0146e-03 N/A 1.5237e-04 44.340 0.000
Vehicle-Use Business "1.9018e-03 N/A 1.7072e-04 124.096 0.000
Scale 6.6167e-02 8.2708e-03

EXHIBIT 7-10

PARAMETER VALUES AND STATISTICS FOR INVERSE GAUSSIAN
MODEL, INVERSE SQUARE LINK

Transformed Standard Chi
Parameter Level Estimate Estimate Error Squared p value

Age 17–20 1.7319e-05 240.29 3.1178e-06 30.858 0.000
Age 21–24 1.8382e-05 233.24 1.9533e-06 88.561 0.000
Age 25–29 2.0061e-05 223.27 1.6907e-06 140.795 0.000
Age 30–34 2.0853e-05 218.98 1.6894e-06 152.372 0.000
Age 35–39 2.8057e-05 188.79 1.9110e-06 215.555 0.000
Age 40–49 2.4743e-05 201.04 1.6212e-06 232.938 0.000
Age 50–59 2.4391e-05 202.48 1.6577e-06 216.488 0.000
Age 60+ 2.5133e-05 199.47 1.7745e-06 200.608 0.000

Vehicle-Use DTW< 10 "1.7550e-06 N/A 1.6060e-06 1.194 0.275
Vehicle-Use DTW> 10 "8.6033e-06 N/A 1.5708e-06 30.000 0.000
Vehicle-Use Business "1.4323e-05 N/A 1.5899e-06 81.153 0.000
Scale 0.0747 9.3373e-03
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EXHIBIT 8

PARAMETER VALUES AND STATISTICS FOR GENERALIZED
LINEAR MODEL WITH LOG LINK AND NORMAL ERRORS,

AND GENERAL LINEAR MODEL APPLIED TO LOG RESPONSES

(1) (2) (3) (4) (5) (6) (7)
General

Normal/ Linear Normal/
Vehicle- Claim Identity Model on Log

Age Use Severity Count Link Log(severity) Link

17–20 Pleasure 250.48 21 265.29 248.57 265.22
17–20 DTW< 15 274.78 40 274.05 259.50 276.34
17–20 DTW> 15 244.52 23 319.26 314.74 334.23
17–20 Business 797.80 5 397.58 407.54 435.21
21–24 Pleasure 213.71 63 258.40 251.48 248.21
21–24 DTW< 15 298.60 171 267.16 262.54 258.61
21–24 DTW> 15 298.13 92 312.37 318.43 312.79
21–24 Business 362.23 44 390.68 412.31 407.29
25–29 Pleasure 250.57 140 238.71 234.64 231.37
25–29 DTW< 15 248.56 343 247.46 244.96 241.06
25–29 DTW> 15 297.90 318 292.67 297.10 291.57
25–29 Business 342.31 129 370.99 384.70 379.65
30–34 Pleasure 229.09 123 229.76 225.07 226.18
30–34 DTW< 15 228.48 448 238.52 234.97 235.66
30–34 DTW> 15 293.87 361 283.72 284.98 285.04
30–34 Business 367.46 169 362.04 369.01 371.15
35–39 Pleasure 153.62 151 175.34 180.50 178.76
35–39 DTW< 15 201.67 479 184.09 188.44 186.25
35–39 DTW> 15 238.21 381 229.30 228.55 225.27
35–39 Business 256.21 166 307.62 295.94 293.33
40–49 Pleasure 208.59 245 195.35 195.89 198.19
40–49 DTW< 15 202.80 970 204.11 204.50 206.50
40–49 DTW> 15 236.06 719 249.32 248.04 249.76
40–49 Business 352.49 304 327.63 321.17 325.22
50–59 Pleasure 207.57 266 198.86 199.02 200.49
50–59 DTW< 15 202.67 859 207.62 207.77 208.90
50–59 DTW> 15 253.63 504 252.82 252.00 252.66
50–59 Business 340.56 162 331.14 326.30 328.99
60+ Pleasure 192.00 260 194.82 194.61 197.55
60+ DTW< 15 196.33 578 203.58 203.17 205.83
60+ DTW> 15 259.79 312 248.78 246.42 248.95
60+ Business 342.58 96 327.10 319.08 324.16
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APPENDIX A

RECONCILIATION OF NOTATION WITH THE LITERATURE

McCullagh and Nelder [17] define the exponential as a two-
parameter family of distributions whose density functions can be
written in the form:

f(r;µ,Á) = exp((rµ" b(µ))=a(Á)+ c(r,Á)): (A.1)

Generally a(Á) = Á=w where w is a known prior weight. We will
assume a has this form. Thus to reconcile Equation A.1 with 6.1
it is enough to explain what is meant by the identity

rµ"b(µ) ="1
2
d(r;¹) =

, ¹

r

(r" t)
V(t)

dt: (A.2)

We must define the function b. Differentiating Equation A.2 with
respect to µ gives

r"b+(µ) = r"¹
V(¹)

d¹

dµ
,

because r is a constant. Taking expected values over r shows ¹=
b+(µ) since E(r) = ¹ by Equation 6.2, and so the right hand side
vanishes. Substituting for ¹ and canceling r"¹ shows V(¹) =
b++(µ). Thus the function b satisfies the differential equation

V(b+(µ)) = b++(µ), (A.3)

which is enough to determine b; µ is simply an argument.

Example 6.1 Revisited

Example 6.1 showed that the gamma distribution belongs to
the exponential family by deriving the deviance function from
the density function. We now assume the form of the variance
function and derive the density using the function b. V(¹) = ¹2

corresponds to the gamma distribution, so Equation A.3 gives

(b+(µ))2 = b++(µ),
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whence
¹= b+(µ) ="1

µ
,

and
b(µ) =" log("µ):

Plugging into Equation A.1 gives exactly Equation 6.6 with Á=
1=º.

Connection with Generalized Linear Models

To solve for the parameters of a generalized linear model us-
ing maximum likelihood directly from Equation A.1, it is neces-
sary to differentiate the log likelihood of an observation ri:

l(µ,Á;ri) = l = wi(riµ" b(µ))=Á+ c(ri,Á)
with respect to ¯j . Using the chain rule and substituting ¹= b

+(µ),
d¹=dµ = b++(µ) =V(¹) gives

@l

@¯j
=
@l

@µ

dµ

d¹

d¹

d´

@´

@¯j

=
wi(ri"b+(µ))

Á

1
b++(µ)

d¹

d´
xij

=
wi(ri"¹)

Á

1
V(¹)

d¹

d´
xij,

which is Equation 5.3 for one observation ri = r, up to a factor
of Á which cancels out.
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APPENDIX B

COMPUTER SOLUTION OF GENERALIZED LINEAR MODELS

This section contains annotated SAS IML code to compute
the parameters for a generalized linear model with log link and
gamma errors.

The dataset CARDATA contains the following variables:

1. AGE, the age group classification

2. VUSE, the vehicle-use classification

3. LOSS, the average severity

4. NUMBER, the number of claim counts,

as shown in Exhibit 1.

Comments in SAS are enclosed between * and ; . In IML the
statement * denotes matrix multiplication, # denotes componen-
twise multiplication, and ## denotes componentwise exponenti-
ation.

The SAS IML code is as follows:

DATA CARDATA;

INPUT AGE VUSE LOSS NUMBER;

CARDS;

data lines

;

PROC IML;

* READ ALL VARIABLES INTO IML VARIABLES AGE, VUSE, R AND W ;

USE CARDATA;

READ ALL VAR AGE INTO AGE;

READ ALL VAR VUSE INTO VUSE;

READ ALL VAR LOSS INTO R;

READ ALL VAR NUMBER INTO W;
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* COMPUTE DESIGN MATRICES ;

A = DESIGN(AGE);

B = DESIGN(VUSE);

* SELECT A BASE CLASS BY DELETING A COLUMN OF B ;

* [,1:3] MEANS SELECT COLUMNS 1 THRU 3 ;

B = B[,1:3];

* MODEL DESIGN MATRIX = HORIZONTAL CONCATENATION OF A AND B ;

X = A.B;

* DEFINE A FUNCTION TO COMPUTE THE VARIANCE FUNCTION FOR A ;

* GAMMA DISTRIBUTION ;

START VARFUN(MUIN);

RETURN(MUIN# MUIN); * COMPONENTWISE MULTIPILCATION ;

FINISH;

* WEIGHTS FOR THE LOG LINK, PER Equation 7.3 ;

START W(MUIN);

ANS = MUIN# # 2 / VARFUN(MUIN);

RETURN(ANS);

FINISH;

* INITIALIZE WITH DATA ;

MU = R;

ETA = LOG(MU);

* SET UP HOLDERS FOR CURRENT AND PREVIOUS PARAMETERS ;

* J(NCOL(X),1,10) RETURNS A NCOL(X) x 1 MATRIX WITH VALUE 10, ETC ;

LASTBETA = J(NCOL(X),1,10);

BETA = J(NCOL(X),1,0);

* WHILE SQUARED DISTANCE BETWEEN BETA AND LAST BETA IS LARGE DO ;

DO WHILE((BETA-LASTBETA)‘ * (BETA-LASTBETA)>1E-9);

* COMPUTE AUXILLARY VARIABLE ;

Z = ETA + (R - MU) # DETADMU(MU);

* SAVE LAST BETA VECTOR ;

LASTBETA = BETA;

* DO WEIGHTED LEAST SQUARES;

* NOTE: GINV = INVERSE ;
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WEIGHT = W(MU) # W;

BETA = GINV(X‘ * ( WEIGHT # X)) * X‘ * (WEIGHT # Z);

* COMPUTE PREDICTED VALUES ;

ETA = X * BETA;

MU = EXP(ETA);

END;

* PRINT OUT PARAMETERS ;

PRINT I BETA[F = 8.4];

* NOW COMPUTE THE VARIOUS STATS, DEVIANCE AND SO FORTH ;

* MU AND ETA ALREADY HOLD THE LAST ESTIMATES OF PRED VALUES ETC;

* COMPUTE VAR;

VAR = VARFUN(MU);

* COMPUTE GAMMA DEVIANCE ;

DEV = 2 # W # (-LOG(R / MU) + ((R-MU) / MU));

* PEARSON RESIDUAL AND DEVIANCE RESIDUALS ;

PEARES = (R - MU ) / SQRT(VAR);

DEVRES = SIGN(R - MU) # SQRT(DEV);

NOBS = NROW(X); * NUMBER OF OBSERVATIONS ;

NPARAM = NCOL(X); * NUMBER OF PARAMETERS ;

DF = NOBS - NPARAM; * NUMBER OF DEGREES OF FREEDOM ;

PEARSON = (PEARES# PEARES)[+]; * [+] = SUM OVER COMPONENTS ;

DEVIANCE = DEV[+];

PRINT PEARSON, (PEARSON / DF)[LABEL = ”DISPERSION = PEARSON/DF”],

DEVIANCE, (DEVIANCE / DF)[LABEL =”DEVIANCE/DF”];

* LOGLIKELIHOOD FOR GAMMA DISTRIBUTION ;

PHI = DEVIANCE / DF; * ESTIMATE FOR PHI ;

LLH = (W/PHI) # LOG(W # R / (PHI # MU))

- W # R / (PHI # MU) - LOG(R) - LGAMMA(W/PHI);

* LGAMMA = LOG(GAMMA FUNCTION) ;

PRINT (LLH[+]);
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** ABOVE CODE WILL GIVE THE SAME RESULT AS THE FOLLOWING CODE ;

** USING THE BUILT-IN SAS GENERALIZED LINEAR MODEL ROUTINE, PROC ;

** GENMOD ;

PROC GENMOD DATA = CARDATA;

CLASS AGE VUSE;

SCWGT NUMBER;

MODEL R = AGE VUSE / NOINT DIST = GAMMA LINK = LOG DSCALE;

RUN;
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DISCUSSION BY DAVID RUHM AND CARLETON GROSE

1. INTRODUCTION

Dr. Bender has made the results obtained in Mr. Bingham’s
paper more accessible by focusing on the essential elements that
influence measurement of return, and by providing a variety of
detailed examples. In addition, Dr. Bender has extended the work
in several directions. Several of the results obtained in Dr. Ben-
der’s discussion paper are fundamental to the study of surplus
and return on equity (ROE). In particular, Dr. Bender describes
two basic tests of reasonableness that can be applied to any
rate-of-return model in order to check the model’s soundness.
Because of their universal applicability, these tests are a major
contribution.

Two major results presented in the discussion are: 1) the three
measures of return discussed in the paper are equal to each other
under a specific earnings release pattern, and 2) one of the mea-
sures (the NPV ratio) is constant with respect to the earnings
release pattern. As will be discussed below, there are some ac-
counting issues that must be dealt with in order to make use of
these results, and they do not generally hold true for a model
that does not include reserve margin (or some equivalent mech-
anism). Despite this caveat, Dr. Bender’s paper contains other

488
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important findings, and represents a substantial contribution to
the actuarial literature on surplus and profitability measurement.

2. CALENDAR YEAR MEASURES

In his introduction, Dr. Bender states: “When evaluating the
return earned by a particular product line, it is this long-term
investment of surplus that must be considered. This is in sharp
contrast to calendar year measures in which it is assumed that all
of the company surplus supports the currently written exposure.”

Dr. Bender correctly points out that surplus supports expo-
sures from all accident years that have not yet been closed, as
well as current writings. In particular, it should not be assumed
that surplus supports only the current year’s written premium.
Although this is a common interpretation of calendar year prof-
itability measures, no such assumption necessarily exists, even
when a premium-to-surplus ratio is used in profitability mea-
surement. Such calculations use premium as a measure of the
volume of business (including prior years’ exposures), while the
surplus serves as a measure of internal capitalization.

The premium-to-surplus ratio measure must be used with cau-
tion because the current year’s written premium is a very imper-
fect measure of the volume of the business. A hidden assumption
is that the ratio of outstanding liabilities plus the expected future
liabilities arising from the current writings to the current year’s
written premium is a constant. This is generally not true because
current writings will fluctuate according to many factors such as
entry into and exit from lines of business, pricing adequacy, mar-
ket conditions, etc. Additionally, it is affected through changes
on the liability side such as loss payout characteristics, inflation,
etc. It can be shown that in a steady-state situation (with no un-
derlying price, exposure, or loss characteristic changes) that the
current year’s written premium is an accurate measure of the
volume of liabilities of the business. Although the premium-to-
surplus ratio measure has problems, it is a convenient way to
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allocate capital in a model. If a premium-to-surplus ratio measure
is used, it must reflect current premiums and past liabilities and
the volatility inherent in both.

For example, suppose a company plans to write $1,000,000
of premium during a given calendar year and has $2,500,000 of
loss reserves at the beginning of the year. (For simplicity, un-
earned premium reserves will be omitted from this example.)
Also suppose that the company performs a comprehensive anal-
ysis of risk for its portfolio, determining that $250,000 of surplus
should be allocated to support the expected future liabilities from
the writing of the premium and $550,000 of surplus should be
allocated to supporting the outstanding loss reserves. The to-
tal surplus commitment is $800,000, which can be construed to
produce a written premium to surplus ratio of 1.25. This does
not imply that $100 of surplus supports each $125 of premium
written.

3. PRODUCT ACCOUNT AND SURPLUS ACCOUNT

Dr. Bender discusses a useful perspective that was developed
in the Bingham paper. In his overview of Bingham’s method-
ology, Dr. Bender writes, “The world can be divided into three
parts : : : the insurance product, shareholder funds [surplus], and
everything that is external to the other two parts.” The concep-
tual distinction between product account and surplus account can
either be directly incorporated into a model or at least kept in
mind by an actuary while developing and testing a model.

An application of this paradigm occurs later in the paper,
when Dr. Bender observes that the ROE must equal the invest-
ment rate of return if the insurance product account generates
an operating gain of zero. If one imagines the product account
generating no outflow or inflow of funds, and the surplus ac-
count generating the investment rate, then the result becomes
readily apparent without the need for calculations. This test can
be employed by an actuary to check the soundness of a return
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model being considered for use. Dr. Bender’s conclusion that the
calendar year steady-state model fails the test, and is therefore
inherently inaccurate, appears correct. Both the reasonableness
test and this conclusion are noteworthy contributions.

4. SURPLUS ACCOUNTING AND RETURN MEASUREMENT

An accounting problem arises when Dr. Bender discusses in-
come that is generated from funds in the product account (gen-
erally known as “income from insurance operations”). This in-
cludes earned premium and investment income on underwriting
funds (but not investment income on surplus) minus incurred
losses and expenses. Dr. Bender writes, “While reserves and sup-
porting surplus are clearly identified as ‘belonging’ to the insur-
ance product, the time at which other funds that arise from the
insurance product are released to the surplus account is some-
what arbitrary.”

The problem is that there is no such action as “releasing funds
to the surplus account.” Surplus by definition is the amount of
assets in excess of liabilities and is thus the balancing item on
the balance sheet. Assuming that liabilities are consistently stated
without bias (which is generally assumed in models of this kind),
the only way surplus can be deliberately increased or decreased is
through transactions with external shareholders. Operating gain
cannot remain in the insurance product account, even if generated
by funds in the product account: as soon as any such gain is
recognized, it immediately and automatically becomes surplus,
by the definitions of income and surplus.

The model shown in Dr. Bender’s exhibits allows income to
accumulate as “retained earnings” in the product account, rather
than as an increase in surplus. But these “retained earnings”
are actually additional surplus and must either be distributed to
shareholders or counted as surplus in the denominator of ROE.
Either way, the actual surplus levels and flows differ from those
shown in Dr. Bender’s exhibits. Although his demonstration and



492 SURPLUS—CONCEPTS, MEASURES OF RETURN, AND DETERMINATION

proof of the equality of the three return measures is mathemat-
ically sound, this equality is not a true representation of ROE
because the surplus is inaccurately stated.

That said, Dr. Bender’s analysis and results are valid when
reserve margin is included in the model. Reserve margin is the
amount by which a reserve (the stated value of a liability) exceeds
the unbiased estimate of the liability’s value. Reserve margins
have an important, legitimate use that has been documented in
the literature [1].

Reserve margin neatly fills the role of “retained earnings” in
the paper’s exhibits. Since reserve margin is part of total reserves,
it is in the product account. A reserve margin can be viewed as
an asset or “operating gain” that has not yet been recognized
as an increase to surplus, which is exactly what “retained earn-
ings” are. Dr. Bender notes that retained earnings act as “ : : :
an additional buffer against insolvency risk.” A positive reserve
margin does act as an additional buffer, absorbing the impact of
adverse results before surplus is affected. Finally, the level of re-
serve margin can be selected to increase or decrease the surplus
level, providing a mechanism for releasing funds to the surplus
account.

If we substitute the label “Reserve Margin” for “Retained
Earnings” in the paper’s exhibits, all of the paper’s results hold.
The only question is whether it is reasonable to include reserve
margin in a return model. This is a question to be decided by
the individual model designer, based in part on the particular
application for which the model is being developed.

A minor remaining problem is that the paper’s exhibits often
show a negative value for retained earnings. Negative reserve
margin implies inadequate nominal reserves, which would inflate
the calculated return. A negative reserve margin condition may
not be acceptable in some return modeling applications.
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5. NOMINAL VS. DISCOUNTED RESERVES

Dr. Bender makes an important point: if a company calculates
required supporting surplus based on nominal unpaid losses so
that a performance criterion (e.g., probability of ruin less than
2%) is met, then the result is a surplus requirement for the fu-
ture (when the loss payments are to be made). A lesser amount
of surplus is sufficient at the time of the evaluation, since the
surplus can accumulate investment income during the interim.
The question that Dr. Bender then addresses is how much sur-
plus is required at the time of evaluation to meet the performance
criterion.

Dr. Bender advocates calculating the surplus requirement
based on discounted loss reserves. His method is to apply a
leverage ratio to the discounted reserves. The leverage ratio is
calculated from the probability distribution of discounted future
payments, so that timing risk and investment return risk are ac-
counted for in the distribution. The resulting surplus meets the
performance criterion with respect to the discounted reserves at
the time of evaluation.

For example, suppose nominal loss reserves are $10,000 and
discounted reserves are $8,000. Suppose also that ultimate paid
losses will be less than $15,000 with 98% probability, and that
the distribution of discounted unpaid losses has its 98th per-
centile at $9,600 (considering all possible interest rate and pay-
out scenarios). To meet the performance criterion of P(ruin)<
2% using nominal loss reserves, the supporting surplus would
be $15,000!$10,000 = $5,000, which corresponds to a 2.00
reserves-to-surplus leverage ratio. Using discounted reserves, the
surplus required would be $9,600!$8,000 = $1,600 for a 5.00
leverage ratio. Although the 5.00 leverage ratio seems high, there
is a 98% probability that the $9,600 fund will accumulate suffi-
cient investment income to pay all claims as they come due.

This method meets the performance criterion on discounted
reserves at the date of evaluation and simultaneously provides
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proper funding to meet the performance criterion at the future
payment dates. It is a mathematically correct answer to the ques-
tion that was posed.

There are two notable objections to using Dr. Bender’s dis-
counted reserves approach: 1) it is presently impossible to ac-
curately quantify the probability distributions of future interest
rate levels and claims payment patterns, both of which are fun-
damental elements for determining the distribution of discounted
unpaid losses; 2) if claims develop adversely as of a later eval-
uation, more surplus may have to be obtained to continue to
meet the performance criterion. If additional surplus is available
at each evaluation point (as could be the case for an insurance
company within a holding company group), this is not a problem.
If not (as could be the case for a small stand-alone company),
there is no margin for such a contingency.

Both of these objections are addressed by using nominal loss
reserves. The only distribution to be considered is the aggregate
loss distribution, which can usually be estimated reasonably. If
additional surplus should be required at a later evaluation, a por-
tion of the investment income earned on surplus can be retained,
rather than released as earnings.

Future developments in financial analysis may eventually pro-
vide solutions to the first objection. The second objection could
be addressed by setting the surplus level a little higher, so as to
provide a prescribed cushion on top of the surplus level that is
dictated by the performance criterion. The amount of cushion
would thus be selected more precisely than the somewhat arbi-
trary investment income cushion provided by using nominal loss
reserves.

Dr. Bender did raise the possibility of adverse loss develop-
ment and the consequent need for additional surplus. He treated
this issue in Section 6 of his paper, using the following exam-
ple: expected nominal losses of $44 are initially allocated $22
of surplus (using a 2 : 1 rule), for a total funding requirement
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of $66. Two years later, the losses are re-evaluated, and the best
estimate is $60. Dr. Bender offered three possible solutions:

1. Allow the surplus level to drop as a result of the adverse
loss development. In the example, the additional $16 of
adverse development would be absorbed by the original
surplus allocation, and the new surplus level would be
$6. The total funding requirement is still $66.

2. Restore surplus to its original level. For the example,
this would mean increasing the surplus level to $22, for
a total funding requirement of $82.

3. Increase the surplus level, following the original surplus
rule. In this example, the rule was a 2 : 1 ratio, so the
new surplus level would be $30, and total funds would
be $90.

Which of these alternatives is used may depend on the ap-
plication. For example, the first approach is often implicit in
a pricing model, where surplus is set with the knowledge that
worse or better results will be achieved over the sample space of
lines and years. In fact, a total exhaustion of the surplus (“ruin”)
is actually expected to occur a certain percentage of the time, if
a probability of ruin method is used to set surplus.

None of these three alternatives corresponds to the surplus cal-
culation method that Dr. Bender proposes. The new information
that produced the higher reserve valuation should be incorporated
into the leverage ratio. We propose a fourth alternative: calcu-
late a new leverage ratio in the same way that the original 2 : 1
ratio was calculated, perhaps based on variability of outstanding
losses (nominal or discounted). Apply the leverage ratio to the
current valuation of outstanding losses to determine current sur-
plus requirements. This alternative resembles the third approach,
but is more consistent with the surplus calculation ideas that Dr.
Bender puts forth.



496 SURPLUS—CONCEPTS, MEASURES OF RETURN, AND DETERMINATION

Dr. Bender indicates that using discounted reserves to calcu-
late required surplus allows one to account for timing risk and
investment return risk. A caution is in order: simply applying a
leverage ratio to discounted reserves to calculate required sur-
plus does not account for either timing risk or investment return
risk. Both of these risks are higher for long payment patterns,
but discounted reserves are lower for longer patterns. Apply-
ing a fixed leverage ratio to discounted reserves would result
in less surplus being assigned to a longer pattern, but the in-
creased timing and investment risks would warrant more surplus
(all else being equal). If a leverage ratio is used with discounted
reserves, then the ratio must be explicitly calculated based on
the variability of the discounted future payments, as Dr. Bender
advises.

6. INACCURACY OF THE CALENDAR YEAR RETURN MEASURE

Dr. Bender provides excellent explanations and exhibits to
show that calendar year accounting distorts the measurement of
return. For Dr. Bender’s first “reasonableness test,” the insurance
product is priced at break-even so that the total return should
equal the investment rate obtained on surplus. In the paper’s
example, the calendar year return (under statutory accounting)
is 8.1%, much higher than the 5.0% investment rate. We con-
structed our own model and independently verified the accuracy
of this result, assuming the surplus levels presented in the paper’s
exhibit.

Dr. Bender continues with a discussion of the calendar year
distortion, explaining the result from several perspectives. His lu-
cid explanations make it possible for readers to understand how
the calendar year measure fails to produce the proper result. Dr.
Bender then notes that the exposure growth rate assumption in-
fluences the calendar year return, so that if the growth rate is
assumed to be equal to the investment rate, the calendar year re-
turn will then produce the correct result. Finally, another example
is given in which the insurance product clearly loses money, but
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the calendar year return is erroneously higher than the investment
rate.

The case that is made against calendar year return is so com-
pelling that the unavoidable conclusion seems to be that calendar
year return is (in general) an inaccurate measure of actual return.
But what if calendar year return is used to measure a company’s
performance, either by internal management or external parties?
An actuary who is building a return model for, say, pricing pur-
poses will probably still have to include calendar year return in
the model (perhaps alongside another return measure). The ac-
tuary also will have to consider the calendar year return in the
decision-making process, while at the same time recognizing that
the calendar year result does not accurately depict profitability.

The fact is that calendar year ROE is currently a prevalent
method of calculating return. Dr. Bender’s findings should mo-
tivate us to conduct research into alternative return measures.

7. SELF-SUPPORTING PREMIUM AND INFINITE RETURN

Dr. Bender’s second “reasonableness test” considers the sit-
uation where premium is large enough to produce its own sup-
porting surplus as it earns. Surplus allocation formulas often al-
locate surplus to a policy or line before any premium is earned,
on the theory that risk is related to the unearned premium and
is present from the time a policy is written. Another perspec-
tive is that losses are incurred as premium earns, so the surplus
associated with a portion of premium is not needed until the mo-
ment that premium is earned, because that’s the time when the
insurer is actually exposed to loss (not before). After the pre-
mium earns, some of the surplus then remains associated with
the corresponding loss reserves and runs off accordingly.

Both perspectives are useful. A surplus allocation formula can
be used to budget needed surplus for a line of business at an-
nual intervals, based on upward variability of losses from the
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expected level. The earning perspective can then be used to re-
duce the amount of budgeted surplus by the profit that the line is
expected to generate as the premium earns. This expected profit
will accrue to surplus if actually realized, so it is “future sur-
plus:” not available at the time of budgeting but also not needed
until realized and available. If losses are greater than expected,
the impact will first be a reduction in this “future surplus,” before
budgeted surplus is impacted.

As Dr. Bender states, if premium is high enough, the bud-
geted surplus requirement becomes zero, because the entire sur-
plus need is met by the earning of the premium. Therefore, no
investment is required up-front, and the return (under the ex-
pected losses scenario) is infinite. Dr. Bender then compares the
three return measures as the premium rises to the infinite-return
value and observes that only the internal rate of return (IRR)
measure yields the correct result. The other two measures pro-
duce finite values for return, even when the premium is high
enough to generate its own supporting surplus “on-the-fly.”

The problem again is that surplus is not being calculated ac-
cording to the correct formula. The liabilities are discounted at
the investment rate, and there is no recognition of the unearned
premium reserve liability at the beginning. (In earlier exhibits, it
appears that the concepts of “invested capital” and “surplus” are
being confused with each other.) In spite of this, the IRR results
that are presented in the paper can be reproduced under cor-
rect accounting by setting assets equal to Dr. Bender’s funding
requirement at each point in time.

In any case, the other two return measures (Calendar Year
ROE and net present value (NPV) Ratio) will not produce values
that approach infinity, no matter how high the premium is. This
is because both of these measures are ratios, with total surplus in
the denominator. Calendar Year ROE equals Total Income/Total
Surplus, and NPV Ratio equals NPV(Total Income)/NPV(Total
Surplus). The only way either ratio could be infinite is if the
surplus level is kept at zero for the entire period, which would
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not make any sense since some supporting surplus must be held
until losses are completely paid. Dr. Bender states that the NPV
Ratio measure would approach infinity if surplus requirements
were reduced “in recognition of the retained operating gain,” but
again this “retained operating gain” is actually surplus. The NPV
Ratio simply cannot produce the infinite return result.

Exhibit 1 shows a simple example that compares the three
return measures. The premium has been set to a high level, so
that the policy generates its own surplus (and then some) as pre-
mium earns. As the exhibit shows, IRR is infinite because there
is zero initial investment and all the cash flows to the investors
are positive. The other two return measures produce values that
are finite, though large.

The IRR measure produces an infinite return in this exam-
ple because it is focused on the flows between the company and
the shareholders (or the “surplus surplus” account, to use Dr.
Bender’s terminology), rather than on the company’s internal
surplus. The other measures implicitly identify the company’s
internal surplus as invested funds, and measure the return against
those funds. Ironically, the Internal Rate of Return (IRR) is dis-
tinguished here by its reliance on the company’s external trans-
actions with shareholders, versus the alternative return measures,
which are based on internal company surplus.

8. CONCLUSION

In summary, Dr. Bender has written a discussion paper that
stands on its own. All of Dr. Bender’s findings discussed above
are essential to a complete understanding of return measurement,
and many of them can be directly incorporated into return mod-
eling applications.
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EXHIBIT 1

A SELF-SUPPORTING LINE

Premium= $2,000
Loss = $1,000 paid 2 years after inception
Surplus = 50% of Nominal Loss Reserves

Investment Income = 5% per year
Taxes are omitted

Underwriting Quantities

Unearned
Written Earned Incurred Paid Premium Loss

Time, yrs Premium Premium Loss Loss Reserve Reserve

Inception 2,000 0 0 0 2,000 0
1 0 2,000 1,000 0 0 1,000
2 0 0 0 1,000 0 0

Total 2,000 2,000 1,000 1,000

Assets, Liabilities, and Surplus

UEP Loss Total Total
Time, yrs Reserve Reserve Liabilities Surplus Assets

Inception 2,000 0 2,000 0 2,000
1 0 1,000 1,000 500 1,500
2 0 0 0 0 0

Investment Income Calculation

Assets 5.00%
Total Not Investable Investment

Time, yrs Assets Investable Assets Income

Inception 2,000 0 2,000 0
1 1,500 0 1,500 100
2 0 0 0 75

Total 175
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EXHIBIT 1

PAGE 2

A SELF-SUPPORTING LINE

Calculation of Total Income

Earned Incurred Net U/W Investment Total
Time, yrs Premium Loss Income Income Income

Inception 0 0 0 0 0
1 2,000 1,000 1,000 100 1,100
2 0 0 0 75 75

Total 2,000 1,000 1,000 175 1,175

Calculation of Flows to Shareholder

Flows
Change in Total To/(From)

Time, yrs Surplus Surplus Income Shareholder

Inception 0 0 0 0
1 500 500 1,100 600
2 0 !500 75 575

Total 500 1,175
NPV 476 1,171

NPV(Income)/NPV(Surplus) = 1,171=476 = 246%
Calendar Year Average Return = 1,175=500 = 235%

IRR= Infinity



ADDRESS TO NEW MEMBERS—MAY 17, 1999

M. STANLEY HUGHEY

As a representative of the rather distant past, it is my privilege
to welcome all the new Fellows and new Associates into mem-
bership in the Casualty Actuarial Society. At the same time I want
to both compliment and congratulate each of you for reaching
this very significant milepost in your career.

Some of us oldsters can still remember the hours upon hours
of concentrated study, and the sacrifice of burning the midnight
oil to build actuarial knowledge, rather than reading light novels
or becoming a couch potato—and perhaps even more important,
the sacrifice of quality time with your family, while you hit the
actuarial books with the aim of long term benefit to that family.

Yes, this is a great and important milepost, and you are all to
be congratulated on reaching it.

In fact, as a sort of turning point in your lives, this occasion
takes on many of the characteristics of a graduation, and whether
or not you appreciate it, I am in the position of being asked
to make a sort of “Graduation Speech.” This is both good and
bad. The bad part is that you have undoubtedly had your fill of
graduation speeches, and can pretty well predict what I am going
to say. But the good part is that if I don’t finish within 8 or so
minutes from now, Steve Lehmann will open the trap door I’m
standing on, banishing forever any remaining words of wisdom.

Many of you are parents, and a very wise source, “anony-
mous,” once said that parents should supply their children with
two things—“roots” and “wings.” I’m going to adapt this to the
goals of the CAS, as expressed in the CAS Mission Statement.
As “roots,” the CAS is an organization designed “to establish and
maintain standards of qualification for membership, to promote
and maintain high standards of conduct and competence for the
members, and to increase the awareness of actuarial science.”
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As new Fellows and Associates, you have embraced these
very meaningful words and goals as part of your lives, but by
your acceptance into the CAS this morning, you have in turn
been embraced by these same meaningful words and goals, as
they make up the roots and goals of the Casualty Actuarial So-
ciety.

We will not spend a lot of time on history in these comments,
but our actuarial roots include ratemaking, credibility theory, loss
reserves, financial measurement, reinsurance, self-insurance and
classification systems. Many actuarial principles have been es-
tablished, tested and written into our standards. Others have not
stood the test of time, and we have had to grow a new root
structure.

To save you the trouble of looking it up, I became a Fellow
in 1947, and served as President in 1974. That means that I have
been around for 50+ years, and have been a witness to the form-
ing of these roots, as well as the mushrooming membership—
from about 200 in my early years to over 3,000 currently.

In 1989, I was privileged to summarize the CAS history up
to that date. In that effort, I used a quote from Carl Hubbell, the
great baseball pitcher from more years back than most of you
remember. I am taking the liberty of repeating it here, because it
so appropriately introduces the second part of my remarks—the
“Wings” part of the “Roots and Wings” theme.

Quoting Carl Hubbell:

A fellow doesn’t last long on what he has done. He’s
got to keep delivering as he goes along.

This is the challenge part of this graduation ceremony. Stated
simply, you have your roots in the CAS, but you can’t stop where
you are, and you must forge ahead into new horizons.

Referring back to the CAS Mission Statement, the CAS
is shouting at you to unlimber your wings and soar into the
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unknown—in a disciplined way, of course. Referring now to
“wings,” let me quote: “The purposes of the Casualty Actuar-
ial Society are to advance the body of knowledge of actuarial
science applied to property/casualty and similar business and fi-
nancial risks.”

The challenge of the CAS to new Fellows and new Associates
to “—keep delivering as you move along” is crystal clear.

Incidentally, I am delighted to be lifting these quotes about
the CAS from the March 15, 1999 letter and supporting ma-
terial Steve Lehmann sent to the CAS membership as a report
on the organization’s Strategic Plan. So, these quotes are both
authoritative and recent.

Further on the subject of new frontiers, and spreading your
wings, is the program material for this meeting. Most of it looks
forward and not back. Let me emphasize by listing some of the
discussion subjects. Your Program Committee is obviously look-
ing forward:

! European Union’s Impact
! Y2K Update
! Financial Markets
! Securitization of Risk
! Loss Portfolio Transfers
! Auto Insurance in the New Millennium
! Actuaries in Non-traditional Roles
! DFA in the Real World
! Emerging Financial Markets
Speaking from a 50-year vantage point, I’m impressed with

the new subjects. Thirty, twenty, and even ten years ago, these
subjects simply were not there.
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Now in closing, I want to get around to the subject that I
expect most of you have been wondering about since I first stood
up here. “Why in the world would Stan wear a jacket like that
for a serious business presentation?” Well, it was not an accident,
and I want to use it to make a point. In business days in Chicago,
I wore dark suits like everyone else, and today I would not wear
this jacket to a business meeting in Chicago. (Or New York or
Boston or Atlanta.)

But in case you hadn’t noticed, Florida is different—far more
casual and far more colorful. And so, in your business careers,
yes even as actuaries, you must learn to use your wings to adapt
to new and different situations. Changes come, and we must lead
or at least keep pace with any new solutions which are helpful
in solving both old and new problems.

In summary, I would like to emphasize two kernels of wisdom
from whatever store of knowledge I have accumulated over 50
years of experience:

Keep your roots deep in the CAS fundamentals.

Soar with the wings of new developments which provide bet-
ter solutions.



MINUTES OF THE 1999 SPRING MEETING

May 16–19, 1999

DISNEY’S CONTEMPORARY RESORT AT THE 
WALT DISNEY WORLD RESORT 

LAKE BUENA VISTA, FLORIDA

Sunday, May 16, 1999

The Board of Directors held their regular quarterly meeting
from noon to 5:00 p.m.

Registration was held from 4:00 p.m. to 6:00 p.m.

New Associates and their guests were honored with a special
presentation from 5:30 p.m. to 6:30 p.m. Members of the 1999
Executive Council discussed their roles in the Society with the
new members. In addition, Robert A. Anker, who is a past presi-
dent of the CAS, gave a short talk on the American Academy of
Actuaries’ (AAA) Casualty Practice Council.

A reception for all meeting attendees followed the new Associ-
ates reception and was held from 6:30 p.m. to 7:30 p.m.

Monday, May 17, 1999

Registration continued from 7:00 a.m. to 8:00 a.m.

The 1999 Business Session, which was held from 8:00
a.m. to 9:00 a.m., started off the first full day of activities for
the 1999 Spring Meeting. Mr. Lehmann introduced the CAS
Executive Council, the Board of Directors, and CAS past
presidents who were in attendance, including Robert A.
Anker (1996), Phillip N. Ben-Zvi (1985), Ronald L. Born-
huetter (1975), Charles A. Bryan (1990), David P. Flynn
(1992), Charles C. Hewitt Jr. (1972), M. Stanley Hughey
(1974), Allan M. Kaufman (1994), Michael L. Toothman
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(1991), Mavis A. Walters (1997), and Michael A. Walters
(1986).

Mr. Lehmann also recognized special guests in the audience:
Howard Bolnick, president of the Society of Actuaries; Stephen P.
D’Arcy, president-elect of the American Risk and Insurance Asso-
ciation; Linda Lamel, executive director of the Risk and Insurance
Management Society; and Michael L. Toothman, president-elect
of the Conference of Consulting Actuaries.

Curtis Gary Dean, Robert S. Miccolis, and Kevin B. Thompson
announced the 160 new Associates and Alice H. Gannon announced
the 13 new Fellows. The names of these individuals follow.

NEW FELLOWS

Mustafa Bin Ahmad
Betsy A. Branagan
Elliot Ross Burn
Brian Harris Deephouse
Alana C. Farrell

Bruce Daniel Fell
Claudine Helene

Kazanecki
Deborah M. King
Eleni Kourou

Dawn M. Lawson
Richard Borge Lord
Michael Shane
Christopher C.

Swetonic

NEW ASSOCIATES

Jason R. Abrams 
Michael Bryan Adams 
Anthony L. Alfieri 
Silvia J. Alvarez 
Gwendolyn Anderson 
Paul D. Anderson 
Amy Petea Angell 
Anju Arora 
Nathalie J. Auger 
Amy Lynn Baranek 
Patrick Beaudoin 
David James Belany 
Kristen Maria Bessette 
John T. Binder 

Mario Binetti 
Christopher David

Bohn 
Mark E. Bohrer 
David R. Border 
Thomas S. Botsko 
Stephane Brisson 
Karen Ann Brostrom 
Conni Jean Brown 
Paul Edward Budde 
Julie Burdick 
Derek D. Burkhalter 
Anthony Robert

Bustillo 

Allison F. Carp 
Daniel George

Charbonneau 
Nathalie Charbonneau 
Todd Douglas Cheema 
Yvonne W. Y. Cheng 
Julia Feng-Ming Chu 
Jeffrey Alan Clements 
Jeffrey J. Clinch 
Eric John Clymer 
Carolyn J. Coe 
Steven A. Cohen 
Larry Kevin Conlee 
Peter J. Cooper 
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Sean Oswald Curtis
Cooper 

Sharon R. Corrigan 
David Ernest Corsi 
Jose R. Couret 
John Edward Daniel 
Mujtaba H. Datoo 
Catherine L. DePolo 
Jean A. DeSantis 
Timothy Michael

DiLellio 
Sophie Duval 
James Robert Elicker 
Gregory James Engl 
Brian Michael

Fernandes 
Kenneth D. Fikes 
Janine Anne Finan 
Sean Paul Forbes 
Ronnie Samuel Fowler 
Mark R. Frank 
Serge Gagne 
James M. Gallagher 
Anne M. Garside 
Justin Gordon Gensler 
Emily C. Gilde 
Theresa Giunta 
Todd Bennett

Glassman 
Paul E. Green Jr. 
Joseph Paul

Greenwood 
Michael S. Harrington
Bryan Hartigan 
Jeffery Tim Hay 
Qing He 

Amy Louise Hicks 
Jay T. Hieb 
Glenn R. Hiltpold 
Glenn Steven Hochler 
Brook A. Hoffman 
Todd Harrison Hoivik 
Terrie Lynn Howard 
Paul Jerome Johnson 
Bryon Robert Jones 
Burt D. Jones 
Derek A. Jones 
Ung Min Kim 
Thomas F. Krause 
Isabelle La Palme 
Travis J. Lappe 
Borwen Lee 
Christian Lemay 
Brendan Michael

Leonard 
Karen N. Levine 
Sally Margaret Levy 
Sharon Xiaoyin Li 
Dengxing Lin 
Kelly A. Lysaght 
Kevin M. Madigan 
Vahan A. Mahdasian 
Atul Malhotra 
Albert Maroun 
Jason Aaron Martin 
Laura Smith McAnena 
Timothy L. McCarthy 
Rasa Varanka McKean 
Sarah Kathryn

McNair-Grove 
Kirk Francis

Menanson 

Ain Milner 
Michael W. Morro 
John-Giang L. Nguyen 
Michael Douglas

Nielsen 
Randall William Oja 
Sheri L. Oleshko 
Leo Martin Orth Jr. 
Gerard J. Palisi 
Prabha Pattabiraman 
Michael A. Pauletti 
Fanny C. Paz-Prizant 
Rosemary Catherine

Peck 
John Michael Pergrossi 
Sylvain Perrier 
Christopher Kent Perry 
Anthony J. Pipia 
Jordan J. Pitz 
Thomas LeRoy 

Poklen Jr. 
William Dwayne

Rader Jr. 
Sara Reinmann 
Sylvain Renaud 
Mario Richard 
David C. Riek 
Kathleen Frances

Robinson 
Joseph Francis 

Rosta Jr. 
Janelle Pamela

Rotondi 
Robert Allan Rowe 
Joseph John Sacala 
James C. Santo 
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Mr. Lehmann then introduced M. Stanley Hughey, a past presi-
dent of the Society, who presented the Address to New Members. 

David R. Chernick, CAS vice president-programs and commu-
nications, spoke to the meeting participants about the highlights of
this meeting and what was planned in the program.

James Surrago, vice chairperson of the Continuing Education
Committee, announced that three Proceedings papers and two dis-
cussions of Proceedings papers would be presented at this meet-
ing. In all, five papers were accepted for publication in the 1999
Proceedings of the Casualty Actuarial Society.

Mr. Surrago also gave a brief description of this year’s Call Pa-
per Program on Securitization of Risk. He announced that all of
the call papers would be presented at this meeting. In addition, the
papers were published in the 1999 CAS Discussion Paper Pro-
gram and could be found on the CAS Web Site. Mr. Surrago pre-
sented the Michelbacher Prize to Richard W. Gorvett for his
paper, “Insurance Securitization: The Development of a New As-
set Class,’’ and to Donald F. Mango for his paper, “Risk Load and
the Default Rate of Surplus.’’ The Michelbacher Prize commemo-
rates the work of Gustav F. Michelbacher and honors the authors
of the best paper(s) submitted in response to a call for discussion
papers. The papers are judged by a specifically appointed commit-

Frances Ginette Sarrel 
Jason Thomas Sash 
Jeremy Nelson

Scharnick 
Jeffery Wayne Scholl 
Annmarie Schuster 
Peter Abraham

Scourtis 
David Garrett Shafer 
Vladimir Shander 
Seth Shenghit 

Mark Richard Strona 
Jayme P. Stubitz 
Stephen James Talley 
Jo Dee Thiel-Westbrook
Robert M. Thomas II 
Jennifer L. Throm 
Gary Steven Traicoff 
Andrea Elisabeth

Trimble 
Brian K. Turner 
Jon S. Walters 

Douglas M. Warner 
David W. Warren 
Kevin Earl Weathers 
Trevar K. Withers 
Meredith Martin

Woodcock 
Jonathan Stanger

Woodruff 
Perry Keith Wooley 
Yin Zhang 
Steven Bradley Zielke 
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tee on the basis of originality, research, readability, and complete-
ness.

Mr. Lehmann then began the presentation of other awards. He
explained that the CAS Harold W. Schloss Memorial Scholarship
Fund benefits deserving and academically outstanding students 
in the actuarial program of the Department of Statistics and Act-
uarial Science at the University of Iowa. The student recipient is
selected by the Trustees of the CAS Trust, based on the 
recommendation of the department chair at the University of
Iowa. Mr. Lehmann  announced that Jingsu Pu is the recipient of
the 1999 CAS Harold W. Schloss  Memorial Scholarship Fund. Pu
will be presented with a $500 scholarship.

Mr. Lehmann then concluded the business session of the Spring
Meeting by calling for a review of Proceedings papers.

Mr. Lehmann next introduced the featured speaker, Lawrence
Kudlow, who is chief economist, director of research, and senior
vice president of American Skandia Life Assurance, as well as a
business commentator and noted economist.

The first General Session was held from 10:30 a.m. to noon. 
“European Union’s Impact on the Insurance Industry”

Moderator: Terry G. Clarke
Managing Principal
Tillinghast-Towers Perrin

Panelists: Catherine Cresswell
Chief Actuary
Government Actuary’s Department
Robert P. Hartwig
Vice President & Chief Economist
Insurance Information Institute
Jay B. Morrow
Vice President & Actuary
American International Underwriters
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After a luncheon, the afternoon was devoted to presentations of
concurrent sessions and discussion papers. The call papers pre-
sented from 1:15 p.m. to 2:45 p.m. were:

1. “Actuarial and Economic Aspects of Securitization of
Risk”
Authors: Samuel H. Cox

Georgia State University
Joseph R. Fairchild
Georgia State University
Hal W. Pedersen
Georgia State University

2. “Property/Liability Insurance Risk Management and 
Securitization”
Author: Trent R. Vaughn

GRE Insurance
3. “Eliminating Mortgage Insurance through Risk-Adjusted

Interest Rates (The Securitization of Mortgage Default
Risk)”
Authors: Bruce D. Fell

Arthur Andersen LLP
William S. Ober
Arthur Andersen LLP

4. “Risk Load and the Default Rate of Surplus”
Author: Donald F. Mango

Zurich Centre ReSource, Ltd.

The concurrent sessions presented from 1:15 p.m. to 2:45 p.m.
were:

1. The New Actuarial Exam Structure: Responses by 
Universities and Implications for Recruiting
Moderator: Richard W. Gorvett

Assistant Professor of Finance and 
Insurance
The College of Insurance
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Panelists: David M. Elkins
Senior Actuary
Allstate Insurance Company
Curtis E. Huntington
Professor of Mathematics
Director of Actuarial Program
University of Michigan
Dale S. Porfilio
Associate Actuary
Allstate Insurance Company

2. The Outlook for Automobile Insurance in the New 
Millennium
Moderator: Michael A. Walters 

Principal
Tillinghast-Towers Perrin

Panelists: J. Parker Boone
Senior Vice President 
InsWeb
Charles A. Bryan
Senior Vice President & Chief Actuary
Nationwide Insurance Company
Anne E. Kelly
Chief Casualty Actuary
New York State Insurance Department
Shirley Grogan
Assistant Vice President–Auto Pricing
The Hartford

3. What is the Right Mix: Blending of Governmental and
Private Funding for Catastrophic Exposure
Moderator: David R. Chernick

Assistant Vice President & Actuary
Allstate Insurance Company
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Panelists: Rade T. Musulin
Vice President–Actuary
Florida Farm Bureau Insurance 
Companies
Tim R. Richison
Chief Financial Officer
California Earthquake Authority

4. Professionalism Continuing Education
Moderator/ Gregory L. Hayward
Facilitator: Actuary

State Farm Mutual Automobile Insurance
Company

Facilitators: C. Gary Dean
Assistant Vice President & Actuary
SAFECO/American States Business 
Insurance
Thomas C. Griffin
Staff Attorney
American Academy of Actuaries
William J. VonSeggern
Assistant Vice President
Fireman’s Fund Insurance Companies

Proceedings papers presented during this time were:
1. “Workers Compensation Reserve Uncertainty”

Authors: Douglas M. Hodes
Liberty Mutual Group
Sholom Feldblum
Liberty Mutual Group
Gary Blumsohn
F & G Re, Inc.
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2. “Levels of Determinism in Workers Compensation 
Reinsurance Commutations”
Author: Gary Blumsohn

F & G Re, Inc.

After a refreshment break, presentations of call papers, concur-
rent sessions, and Proceedings papers continued from 3:15 p.m. to
4:45 p.m. Certain call papers and concurrent sessions presented
earlier were repeated. Additional call papers presented during this
time were:

1. “Pricing Catastrophe Risk: Could CAT Futures Have
Coped with Andrew?”
Authors: Stephen P. D’Arcy

University of Illinois
Virginia G. France
University of Illinois
Richard W. Gorvett
The College of Insurance

2. “Insurance Securitization: The Development of a New
Asset Class”
Author: Richard W. Gorvett

The College of Insurance

The additional concurrent sessions presented from 3:15 p.m. to
4:45 p.m. were:

1. Actuaries in Nontraditional Roles
Moderator/ Paul J. Brehm
Panelist: Vice President

St. Paul Fire & Marine Insurance 
Company

Panelists: Richard R. Anderson
Actuary
Risk Management Solutions
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Gregory V. Ostergren
President & CEO
American National Property & Casualty
Company
David G. Walker
Director/Associate Actuary
Allianz Insurance Company

2. The Path to Fellowship
Moderator: Patrick K. Devlin

Senior Consultant
PricewaterhouseCoopers LLP

Panelists: Daniel L. Hogan Jr.
Assistant Vice President
Hartford Financial Services
Steven A. Kelner
Vice President
American Re-Insurance Company
Dee Dee Mays
Senior Regional Actuary
National Council on Compensation 
Insurance
Christopher Tait
Consulting Actuary
Milliman & Robertson, Inc.

3. Questions and Answers with the CAS Board of Directors
Moderator: Alice H. Gannon

Vice President
United Services Automobile Association

Panelists: Jerome A. Degerness
President
Degerness Consulting Services, Inc.
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Gail M. Ross
Vice President 
Am-Re Consultants, Inc.
Michael L. Toothman
Partner
Arthur Andersen LLP

A reception for new Fellows and their guests was held from
5:30 p.m. to 6:30 p.m., and the general reception for all members
and their guests was held from 6:30 p.m. to 7:30 p.m.

Tuesday, May 18, 1999

Registration continued from 7:00 a.m. to 8:00 a.m.

Two General Sessions were held from 8:00 a.m. to 9:30 a.m.
The General Sessions presented were:

“Year 2000 Update”
Moderator/ Philip D. Miller
Panelist: Consulting Actuary

Tillinghast-Towers Perrin
Panelists: Dan Romito

Vice President, Year 2000
CNA Insurance Companies
Martin P. Sheffield
Vice President
A.M. Best Company

“Financial Markets and Their Impact on the Property/Casualty
Industry”

Moderator: David P. Flynn
Consultant

Panelists: Peter Bouyoucos
Principal
Morgan Stanley Dean Witter
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Kevin T. Cronin
President
International Insurance Council
Robert Klein
Director of the Center for Risk 
Management and 
Insurance Research
Georgia State University

Certain discussion papers and concurrent sessions that had
been presented earlier during the meeting were repeated this
morning from 10:00 a.m. to 11:30 a.m. Additional call papers pre-
sented during this time were:

1. “Index Heritage Performance: A Bootstrap Study of 
Hurricane Fran”
Authors: Xin Cao

IndexCo, LLP
Bruce Thomas
IndexCo, LLP

2. “Uncertainty in Hurricane Risk Modeling and 
Implications for Securitization”
Author: David Miller

Guy Carpenter

The additional concurrent sessions presented from 10:00 a.m.
to 11:30 a.m. were:

1. The Future of Workers Compensation Ratemaking
Moderator/ Timothy L. Wisecarver
Panelist: President

Pennsylvania and Delaware 
Compensation Rating Bureaus

Panelists: Michael Lamb
Casualty Actuary
Oregon Insurance Division
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Pamela Sealand Reale
Assistant Vice President & Actuary
Orion Capital/EBI Companies

2. DFA in the Real World
Moderator: Robert A. Daino

Vice President
Am-Re Consultants, Inc.

Panelists: Manuel Almagro
Vice President
Swiss Re Investors
Charles C. Emma
Consulting Actuary
Miller, Rapp, Herbers & Terry, Inc.
John W. Gradwell
Associate Actuary
Sedgwick Re Insurance Strategy, Inc.

3. Emerging Financial Products
Moderator: William F. Dove

Vice President
Centre Solutions

Panelists: Michael K. Curry
Senior Vice President
Capital Reinsurance Company
Eugene O’Keane
Vice President
American Re Financial Products
Scott M. Sanderson
Senior Vice President
J&H Marsh & McLennan

4. Loss Portfolio Transfers
Moderator/ Chris E. Nelson
Panelist: Vice President

CNA Re
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Panelists: Jean A. Connolly
Director
PricewaterhouseCoopers LLP
Elizabeth E. L. Hansen
Senior Vice President 
E. W. Blanch Company, Inc.

Various CAS committees met from 12:00 p.m. to 5:00 p.m.
Presentation of call papers, concurrent sessions, and Proceedings
papers continued from 12:30 p.m. to 2:00 p.m. Certain call papers
and concurrent sessions presented earlier were repeated. The addi-
tional call paper presented during this time was:

1. “Catastrophe Risk Securitization: Insurer and Investor”
Authors: Glenn G. Meyers

Insurance Services Office, Inc.
John J. Kollar
Insurance Services Office, Inc.

Proceedings papers presented during this time were:
1. Discussion of the discussion of “Surplus—Concepts,

Measures of Return, and Determination”
(by Russell E. Bingham, PCAS, LXXX, 1993, p. 55)
(Discussion by Robert K. Bender, PCAS, LXXXIV,
1997, p. 44)
Discussion by: David L. Ruhm

AIG Risk Finance
Carlton R. Grose
Universal Underwriters Group

2. “A Systematic Relationship Between Minimum Bias and 
Generalized Linear Model”
Author: Stephen J. Mildenhall

CNA Re
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3. Discussion of “The Complement of Credibility”
(by Joseph A. Boor, PCAS, LXXXIII, 1996, p. 1)
Discussion by: Sholom Fledblum

Liberty Mutual Group

All members and guests enjoyed dinner at a Coney Island
Beach Party from 6:30 p.m. to 10:00 p.m.

Wednesday, May 19, 1999

Certain call papers and concurrent sessions that had been pre-
sented earlier during the meeting were repeated this morning from
8:00 a.m. to 9:30 a.m. Additional concurrent sessions presented
were:

1. Joint Code of Professional Conduct
Moderator: Jack M. Turnquist

Totidem Verbis
Panelists: Lauren M. Bloom

General Counsel
American Academy of Actuaries
C. Gary Dean
Assistant Vice President & Actuary
SAFECO/American States Business 
Insurance
Roger A. Schultz
Assistant Vice President 
Allstate Insurance Company

2. Social Security
Moderator: Ron Gebhardtsbauer

Senior Pension Fellow
American Academy of Actuaries

Panelists: Gareth Davis
Policy Analyst
The Heritage Foundation
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Cori E. Uccello
Research Associate
The Urban Institute

3. Pricing Unique Exposures
Moderator/ Beth E. Fitzgerald
Panelist: Assistant Vice President

Insurance Services Office, Inc.
Panelists: Paul C. Martin

Consulting Actuary
Bernard H. Gilden
Property Actuary
The Hartford

4. Managing the “Managed”—Changing Liabilities Within
the Health Care System
Moderator: Bernard Horovitz

Actuary
Executive Risk Indemnity

Panelists: Susan Huntington
Director of Healthcare Risk Management
Executive Risk Indemnity
Richard B. Lord
Assistant Actuary
Milliman & Robertson, Inc.

After a refreshment break, the final General Session was held
from 10:00 a.m. to 11:30 a.m.:

“A Chief Actuary Discussion on Market Behavior”
Moderator: Phillip N. Ben-Zvi

Principal-In-Charge
PricewaterhouseCoopers LLP

Panelists: John C. Burville
Chief Actuary
ACE Limited
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Charles H. Dangelo
President
AIG Risk Management, Inc.
Frederick O. Kist
Senior Vice President and Corporate 
Actuary
CNA Insurance Companies

Steven G. Lehmann officially adjourned the 1999 CAS Spring
Meeting at 11:45 a.m. after closing remarks and an announcement
of future CAS meetings.

Attendees of the 1999 CAS Spring Meeting

The 1999 CAS Spring Meeting was attended by 319 Fellows,
264 Associates, and 62 Guests. The names of the Fellows and 
Associates in attendance follow:

FELLOWS 

Mark A. Addiego
Stephanie J. Albrinck
Terry J. Alfuth
Manuel Almagro Jr. 
Larry D. Anderson
Richard R. Anderson
Robert A. Anker
Lawrence J. Artes
Timothy J. Banick
W. Brian Barnes
Gregory S. Beaulieu
Douglas L. Beck
Allan R. Becker
Stephen A. Belden
David M. Bellusci
Phillip N. Ben-Zvi
Douglas S. Benedict
Regina M. Berens

Michele P. Bernal
William P. Biegaj
Richard A. Bill
Gavin C. Blair
Jean-François Blais
Ralph S. Blanchard III
Gary Blumsohn
J. Parker Boone
Joseph A. Boor
Ronald L. Bornhuetter
Wallis A. Boyd Jr.
George P. Bradley
Betsy A. Branagan
Paul J. Brehm
Charles A. Bryan
James E. Buck
George Burger
Mark E. Burgess

Elliot Ross Burn
John F. Butcher II
J’ne Elizabeth Byckovski
Christopher S. Carlson
Kenneth E. Carlton
Lynn R. Carroll
Michael J. Caulfield
Dennis K. Chan
Scott K. Charbonneau
David R. Chernick
Gary C.K. Cheung
Rita E. Ciccariello
Gregory J. Ciezadlo
Kay A. Cleary
Eugene C. Connell
Martin L. Couture
Catherine Cresswell
Frederick F. Cripe
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Alan M. Crowe
Michael K. Curry
Robert J. Curry
Michael T. Curtis
Stephen P. D’Arcy
Robert A. Daino
Joyce A. Dallessio
Charles H. Dangelo
Thomas J. DeFalco
Curtis Gary Dean
Brian H. Deephouse
Jerome A. Degerness
Howard V. Dempster
Patrick K. Devlin
Edward D. Dew
Stephen R. DiCenso
Jeffrey F. Deigl
James L. Dornfeld
Victor G. dos Santos
William F. Dove
Michael C. Dubin
Brian Duffy
Thomas J. Duffy
M. L. Butch Dye
Jeffrey Eddinger
Dale R. Edlefson
Douglas D. Eland
David M. Elkins
Thomas J. Ellefson
Charles C. Emma
Glenn A. Evans
Philip A. Evensen
John S. Ewert
Alana C. Farrell
Dennis D. Fasking
Sholom Feldblum

Bruce D. Fell
Carole M. Ferrero
Ginda Kaplan Fisher
Russell S. Fisher
Beth E. Fitzgerald
David P. Flynn
Edward W. Ford
Christian Fournier
Bruce F. Friedberg
Patricia A. Furst
Scott F. Galiardo
Alice H. Gannon
Louis Gariepy
Eric J. Gesick
Robert A. Giambo
John F. Gibson
Gregory S. Girard
Bradley J. Gleason
Daniel C. Goddard
Leonard R. Goldberg
Irwin H. Goldfarb
Charles T. Goldie
Richard W. Gorvett
Linda M. Goss
Gregory S. Grace
Steven A. Green
Russell H. Greig Jr.
Carleton R. Grose
Terry D. Gusler
David N. Hafling
Greg M. Haft
Robert C. Hallstrom
Elizabeth E. L. Hansen
Christopher L. Harris
Roger M. Hayne
David H. Hays

Gregory L. Hayward
Barton W. Hedges
Dennis R. Henry
Teresa J. Herderick
Steven C. Herman
Charles C. Hewitt Jr.
Daniel L. Hogan Jr.
Beth M. Hostager
Brian A. Hughes
M. Stanley Hughey
Robert P. Irvan
Christopher D. Jacks
Ronald W. Jean
Andrew P. Johnson
Daniel K. Johnson
Eric J. Johnson
Kurt J. Johnson
Mark R. Johnson
Thomas S. Johnston
Ira Mitchell Kaplan
Frank J. Karlinski III
Janet S. Katz
Allan M. Kaufman
Claudine H. Kazanecki
Hsien-Ming Keh
Brandon D. Keller
Tony J. Kellner
Anne E. Kelly
Steven A. Kelner
Kevin A. Kesby
Joe C. Kim
Deborah M. King
Frederick O. Kist
Charles D. Kline Jr.
Fredrick L. Klinker
Terry A. Knull
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John J. Kollar
Mikhael I. Koski
Eleni Kourou
Thomas J. Kozik
Gary R. Kratzer
John R. Kryczka
Ronald T. Kuehn
David R. Kunze
Paul E. Lacko
Blair W. Laddusaw
David A. Lalonde
Dean K. Lamb
John A. Lamb
R. Michael Lamb
Michael A. LaMonica
Nicholas J. Lannutti
Michael D. Larson
Paul W. Lavrey
Dawn M. Lawson
Robert H. Lee
Marc-Andre Lefebvre
Steven G. Lehmann
John J. Lewandowski
John J. Limpert
Richard A. Lino
Richard W. Lo
Deborah E. Logan
Richard Borge Lord
Stephen P. Lowe
Robert G. Lowery
Aileen C. Lyle
Mark J. Mahon
Gary P. Maile
Donald F. Mango
Anthony L. Manzitto
Paul C. Martin

Isaac Mashitz
Steven E. Math
Dee Dee Mays
Heidi J. McBride
Michael G. McCarter
Charles W. McConnell
Richard T. McDonald
Liam Michael

McFarlane
Stephen J. McGee
Dennis T. McNeese
Robert E. Meyer
Glenn G. Meyers
Robert S. Miccolis
Stephen J. Mildenhall
David L. Miller
Philip D. Miller
Susan M. Miller
Jay B. Morrow
Raymond D. Muller
Timothy O. Muzzey
Chris E. Nelson
Richard T. Newell Jr.
Peter M. Nonken
G. Chris Nyce
Marc F. Oberholtzer
Kevin Jon Olsen
Layne M. Onufer
Marlene D. Orr
Joanne M. Ottone
Rudy A. Palenik
Joseph M. Palmer
Chandrakant C. Patel
Bruce Paterson
Sarah L. Petersen
Steven Petlick

Dale S. Porfilio
Jeffrey H. Post
Virginia R. Prevosto
Deborah W. Price
David S. Pugel
Richard A. Quintano
Christine E. Radau
Rajagopalan K. Raman
Kiran Rasaretnam
Ralph L. Rathjen
Pamela Sealand Reale
John J. Reynolds III
Andrew S. Ribaudo
Brad M. Ritter
Kevin B. Robbins
A. Scott Romito
Deborah M. Rosenberg
Gail M. Ross
Richard J. Roth Jr.
Bradley H. Rowe
James B. Rowland
Jean Roy
Stuart G. Sadwin
Stephen Paul Sauthoff
Peter J. Schultheiss
Roger A. Schultz
Peter R. Schwanke
Robert F. Scott Jr.
Terry M. Seckel
Alan R. Seeley
Margaret E. Seiter
Peter Senak
Michael Shane
Derrick D. Shannon
Jerome J. Siewert
David Skurnick
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John Slusarski
Lee M. Smith
Bruce R. Spidell
David Spiegler
Elisabeth Stadler
Douglas W. Stang
Brian M. Stoll
Edward C. Stone
Kevin D. Strous
James Surrago
Russel L. Sutter
Collin J. Suttie
Jeanne E. Swanson
Ronald J. Swanstrom
Christopher C. Swetonic
Christopher Tait
Kathleen W. Terrill

Richard D. Thomas
Kevin B. Thompson
Michael L. Toothman
Janet A. Trafecanty
Patrick N. Tures
Gail E. Tverberg
James F. Tygh
Timothy J. Ungashick
Jeffrey A. Van Kley
Trent R. Vaughn
Joseph L. Volponi
William J. VonSeggern
Gregory M. Wacker
Robert H. Wainscott
Mavis A. Walters
Michael A. Walters
Bryan C. Ware

Dominic A. Weber
John P. Welch
Geoffrey T. Werner
David C. Westerholm
Charles S. White
David L. White
Mark Whitman
Kevin L. Wick
Chad C. Wischmeyer
Timothy L. Wisecarver
Paul E. Wulterkens
Floyd M. Yager
Richard P. Yocius
Heather E. Yow
James W. Yow
Doug A. Zearfoss

ASSOCIATES

Jason R. Abrams
Michael B. Adams
Stephen A. Alexander
Anthony L. Alfieri
Silvia J. Alvarez
Athula Alwis
Gwendolyn Anderson
Paul D. Anderson
Nancy L. Arico
Nathalie J. Auger
Glenn R. Balling
Joanne Balling
Phillip W. Banet
Amy L. Baranek
Patrick Beaudoin
David J. Belany
Kristen M. Bessette

John T. Binder
Mario Binetti
Christopher D. Bohn
Raju Bohra
Mark E. Bohrer
John P. Booher
David R. Border
Sherri L. Border
Thomas S. Botsko
Erik R. Bouvin
Steven A. Briggs
Stephane Brisson
Karen A. Brostrom
Conni J. Brown
Paul E. Budde
Julie Burdick
Hugh E. Burgess

Derek D. Burkhalter
William E. Burns
Anthony R. Bustillo
Sandra L. Cagley
Allison F. Carp
Paul A. Chabarek
Daniel G. Charbonneau
Nathalie Charbonneau
Debra S. Charlop
Todd D. Cheema
Yvonne W. Y. Cheng
Michael J. Christian
Theresa A. Christian
Julia Feng-Ming Chu
Christopher J. Claus
Jeffrey A. Clements
Jeffrey J. Clinch
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Eric J. Clymer
Carolyn J. Coe
Steven A. Cohen
Larry K. Conlee
Peter J. Cooper
Sean O. Cooper
Sharon R. Corrigan
David E. Corsi
William F. Costa
Jose R. Couret
Kathleen T.

Cunningham
John E. Daniel
Todd H. Dashoff
Mujtaba H. Datoo
Catherine L. DePolo
Timothy M. DiLellio
Kevin F. Downs
Sara P. Drexler
Sophie Duval
Brian M. Fernandes
Kenneth D. Fikes
Robert F. Flannery
Sean Paul Forbes
Sarah Jane Fore
Ronnie S. Fowler
Mark R. Frank
Serge Gagne
James M. Gallagher
Donald M.

Gambardella
Anne M. Garside
Lynn A. Gehant
Christine A. Gennett
Justin G. Gensler
Emily C. Gilde

Bernard H. Gilden
Steven B. Goldberg
Jay C. Gotelaere
John W. Gradwell
Gary Granoff
Paul E. Green Jr. 
Joseph P. Greenwood
David J. Gronski
Jacqueline Lewis

Gronski
William A. Guffey
Nasser Hadidi
John A. Hagglund
Aaron Halpert
Michael S. Harrington
Bryan Hartigan
Jeffery T. Hay
Qing He
Joseph A. Herbers
Amy L. Hicks
Jay T. Hieb
Glenn R. Hiltpold
Gary P. Hobart
Glenn S. Hochler
Brook A. Hoffman
Todd H. Hoivik
Eric J. Hornick
Bernard R. Horovitz
Terrie L. Howard
Gloria A. Huberman
John J. Javaruski
Brian E. Johnson
Paul J. Johnson
Bryon R. Jones
Burt D. Jones
Derek A. Jones

Daniel R. Kamen
Ung Min Kim
Martin T. King
Kirk L. Kutch
Isabelle La Palme
Travis J. Lappe
Betty F. Lee
Borwen Lee
Ramona C. Lee
Todd W. Lehmann
Christian Lemay
Bradley H. Lemons
Charles Letourneau
Karen N. Levine
Craig A. Levitz
John N. Levy
Sally M. Levy
Philip Lew
Sharon Xiaoyin Li
Dengxing Lin
Elizabeth Long
Ronald P. Lowe Jr.
Kelly A. Lysaght
Daniel P. Maguire
Cornwell H. Mah
Vahan A. Mahdasian
Atul Malhotra
Sudershan Malik
Albert Maroun
Joseph Marracello
Jason Aaron Martin
Tracey L. Matthew
Laura Smith McAnena
Timothy L. McCarthy
Phillip E. McKneely
Kirk F. Menanson
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William A. Mendralla
Ain Milner
Michael W. Morro
Michael J. Moss
Robert J. Moss
Rade T. Musulin
John-Giang L. Nguyen
Michael D. Nielsen
James D. O’Malley
Randall W. Oja
Sheri L. Oleshko
Douglas W. Oliver
Richard A. Olsen
Leo M. Orth Jr.
Gregory V. Ostergren
John A. Pagliaccio
Gerard J. Palisi
Prabha Pattabiraman
Michael A. Pauletti
Fanny C. Paz-Prizant
Rosemary C. Peck
Jeremy P. Pecora
Claude Penland
John M. Pergrossi
Sylvain Perrier
Christopher K. Perry
Anthony J. Pipia
Jordan J. Pitz
Thomas L. Poklen Jr.
Kathy Popejoy
Matthew H. Price
Patricia A. Pyle
Sasikala Raman
James E. Rech
Sara Reinmann
Sylvain Renaud

Karin M. Rhoads
W. Vernon Rice
Mario Richard
Christopher R. Ritter
Kathleen F. Robinson
Rebecca L. Roever
Christine R. Ross
Sandra L. Ross
Joseph F. Rosta Jr.
Scott J. Roth
Janelle P. Rotondi
Robert A. Rowe
David L. Ruhm
Joanne E. Russell
Stephen P. Russell
Maureen S. Ruth
John P. Ryan
Joseph J. Sacala
Asif M. Sardar
Frances G. Sarrel
Jason T. Sash
Susan C. Schoenberger
Jeffery W. Scholl
Annmarie Schuster
Peter A. Scourtis
Michael L. Scruggs
David G. Shafer
Vladimir Shander
Seth Shenghit
James J. Smaga
Katherine R. S. Smith
David C. Snow
Klayton N. Southwood
Mark R. Strona
Jayme P. Stubitz
Lisa M. Sukow

Brian K. Sullivan
Stephen J. Talley
Robert M. Thomas II
Jennifer L. Throm
Nanette Tingley
Gary S. Traicoff
Andrea E. Trimble
Brian K. Turner
Karen P. Valenti
Phillip C. Vigliaturo
Jerome F. Vogel
David G. Walker
Jon S. Walters
Gregory S. Wanner
Stephen D. Warfel
Douglas M. Warner
David W. Warren
Kevin E. Weathers
Lynne K. Wehmueller
Robert G. Weinberg
Russell B. Wenitsky
Jo Dee Westbrook
Michael W. Whatley
Lawrence White
Thomas J. White
Mary E. Wills
William F. Wilson
Bonnie S. Wittman
Robert F. Wolf
Meredith M. Woodcock
Jonathan S. Woodruff
Perry K. Wooley
Robert S. Yenke
Yin Zhang
Steven B. Zielke
Edward J. Zonenberg
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RESIDUAL MARKET PRICING

RICHARD B. AMUNDSON

Abstract

Residual market plans often review their rates based
on the experience of the plans themselves. The typi-
cal result is an indication for a large increase, which
the regulator then judgmentally reduces. To the extent
that equilibrium exists between voluntary and resid-
ual markets, it results from ignoring the indications.
Plans’ experience can call for rate decreases as well
as increases, especially with no allowance for profit.
Indications for decreases are politically harder to ig-
nore and could destroy the voluntary market if fol-
lowed.
Break-even residual market pricing, if truly followed,

has unpredictable consequences on prices and market
shares for the residual and the voluntary markets. This
paper proposes an alternative to break-even pricing.
With input from all concerned, a state should first

529
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establish specific goals for the residual market plan in
terms of market share, burden on insureds in the volun-
tary market, and maximum surcharge for insureds in the
plan. Regulators can then set plan prices at a consis-
tent level above voluntary prices to meet the established
goals.

1. INTRODUCTION

1.1. A Paradox

In 1983, the State of Minnesota merged its departments
of insurance, banking, and securities into a single Department
of Commerce. The first commissioner of the newly created
Department was determined to keep consumer prices down
wherever possible. Among the duties of the Department was
to review the rates of the assigned risk plan (ARP). Dur-
ing the seven years ending with 1989, despite many requests
for rate increases, the Department allowed only a single in-
crease in the state’s private passenger automobile assigned risk
plan. At the beginning of that period, ARP judged its rates
to be adequate; at the end, ARP calculated a needed increase
of 10.3%, with the one increase in the interim being 14.8%.
That implies an average annual needed increase of 3.4% dur-
ing those seven years (1:034 = (1:103!1:148)1=7). Annual in-
creases of 3.4% were modest at the time, so the commissioner’s
strategy of holding down ARP rates appeared to be success-
ful.

A change of commissioners in 1989 brought a new philos-
ophy, one that permitted ARP rates to rise. Between 1989 and
1994, ARP took increases of 12.0%, 20.4%, 19.5%, and 13.8%;
and there was still an indication of 33.7% at the end of that pe-
riod. That implies an average annual needed increase of 17.3%
during those five years. ARP was smaller at the end of the pe-
riod, but the goal that it be self-supporting was as far away as
ever. Loss ratios stayed high as rates went up, and the drivers
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that remained insured with ARP had little to celebrate. External
economic indices did nothing to explain the sudden shift from
annual cost increases of 3.4% to increases of 17.3%. The only
obvious change was the Department’s change in attitude toward
change itself: the culprit appeared to be the strategy of letting
ARP follow its own indicated rate increases.

1.2. An Actuarial Explanation

None of this was hard to explain. In the beginning, insurers
rejected only the very most unwanted drivers—the worst of the
worst. They were happy to write a borderline driver for $1,000.
But when inflation pushed the voluntary market price for that
driver’s policy up to $1,100, ARP, whose rates had not budged,
might write the driver at $1,050. These borderline drivers mov-
ing into ARP were the best of the worst, and they improved the
quality of ARP’s book of business as it grew. Exactly the op-
posite occurred when ARP shrank. When ARP’s prices began
increasing faster than those of the voluntary market, ARP’s in-
sureds began moving to the voluntary market to get better prices.
The voluntary market was interested only in the best of ARP’s
business, of course; and, when ARP lost its best customers, its
loss ratio began to climb.

After years of increases, when things were back to the
original balance between voluntary and assigned risk, the in-
dications for ARP were as high as ever. The actuary at
the Department wrote a memo explaining why this was and
what one might have to do in the future to keep every-
thing in balance. To continue following indications blindly
seemed sure to lead to the disappearance of ARP—not a
bad idea in the eyes of some, but not politically viable in
this case. The presence of a contingency factor in the anal-
ysis posed a problem; it added to the price of each policy,
not unlike a profit margin, even though this was non-profit
business. ARP rates tended to rise mercilessly; and the con-
tingency factor only exacerbated the tendency, pushing rates
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for the dwindling number of policyholders to truly unafford-
able levels. It seemed a good idea to get rid of the contingency
factor.

1.3. A Second Paradox

The Department also regulates the workers compensation as-
signed risk plan. In 1995, something surprising began to occur:
this ARP, whose rates were already low, needed rate decreases.
Whether this was just random noise or a true reflection of the
risks in ARP, it seemed unwise for the rates to get too close
to the voluntary market rates. The voluntary market charges for
the same coverages as ARP but, in addition, charges for profit
because of the risk of writing business. The ARP analysis had
no charge for risk even though, of course, the ARP business
is just as risky as the voluntary business. This gave ARP a rate
advantage—it could pick up market share and constantly improve
its book, and the voluntary market could eventually disappear.
The Department actuary reasoned that one might prevent that
disaster by including a contingency factor in the analysis to keep
rates from falling too low.

All this was strangely familiar. The same actuary (who hap-
pens to be the author of this paper) had argued, not so long
before, against a contingency factor in the case of auto assigned
risk. What was wrong? What was the truth?

1.4. The Scales Fall From Our Eyes

The truth is all of the above. Both of these scenarios can hap-
pen, even though they are complete opposites. A residual market
that bases its prices on its own experience has no certainty of
reaching an acceptable equilibrium, as this paper will demon-
strate. To achieve the goals normally desired for an assigned risk
plan, the state should base the plan’s rates on voluntary market
rates and not on the plan’s own experience.
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2. A MODEL OF RESIDUAL MARKET PRICING

2.1. Some Assumptions

We will look at residual market plans that set prices to break
even based on their own experience. Of course, with break-even
pricing, a plan may still realize profits or losses. The plan design
may or may not give the profit to insurers, but it will virtually
always give insurers the loss. The examples in this paper assume
that insurers get the profit as well as the loss. The conclusions
of the paper are still valid if insurers do not get the profit, but
the examples are a bit more complex.

We will ignore self-insurance. Assume that all employers,
drivers, etc., must buy insurance and that they have two options:
an insurance company in the voluntary market or ARP, our sur-
rogate for all residual markets. Assume further that within each
classification there is a continuum of expected losses per expo-
sure: there are insureds with very few losses expected for each
exposure unit, there are others with very high expected losses,
and there is everything in between.

Let us look at a simplified financial model that illustrates some
important relationships between the residual and voluntary mar-
kets. First suppose there is no ARP. Now imagine an insurer that
needs a $100 investment in surplus to take on $200 of expected
loss at the end of the coming year and that there are no expenses.
Further suppose that one can earn 5% risk-free on invested assets
and that, given the uncertainty in the expected losses, the insurer
needs a 15% return on the venture. Thus, if it collects $200 in
premium up front and invests it along with the $100 of surplus,
it will earn $15 during the year. Then if losses materialize as ex-
pected, the insurer will pay out $200 at year-end and will keep
the original $100 plus $15 of investment income—the expected
return is exactly what the insurer needs.

From the extreme where a for-profit, voluntary market collects
all the premium, let us go to the opposite extreme where the non-
profit ARP collects all the premium and pays the entire $200
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of loss. The voluntary insurer now has no premium, but it has
continued responsibility for potential bottom line losses of ARP.
Even with no premium, the insurer still needs the entire $100 in
surplus that it needed when it was the one collecting premium
and paying claims. That $100 was to protect against insolvency,
and all the risks that it protected against still exist. Not only do
they still exist, but they are all on the back of the insurer. ARP
carries no surplus and assesses the insurer for any losses at the
end of the day, whether they arise from excessive claims or from
investments or from anything else.

Remember, moreover, that one can get a return of $5 with no
risk. An insurer might want to add some risk in exchange for an
increased return. In the extreme case where the insurer has no
premium, though, if the insurer did not share in ARP’s profit,
it would be taking on risk in exchange for a decreased return.
The insurer will be interested in assuming ARP’s risk only if it
gets the full profit that it would have gotten in the absence of
ARP. In order to realize the full profit, ARP must charge the full
$200 of premium. Thus, no matter what market share ARP has,
the system still needs the full $100 of surplus and the full $200
of premium.

The preceding argument assumed that private insurers are at
risk for residual market losses, so one might be tempted to as-
sume that the result does not hold in the absence of private in-
surance. By eliminating private insurance, might premiums be
reduced? No. The argument did not rely on the private status of
the insurers; the risk remains whether or not private investors
are bearing it. The risk takers, whether taxpayers or policyhold-
ers, will put up the surplus and reap the rewards explicitly or
implicitly.

Let us turn our attention away from the extremes and consider
the more usual case. Typically, ARP will have part of the mar-
ket and insurers will have the rest. Consider a single premium
group: all insureds of like size in a single class. Suppose ARP
charges a premium of R for a member of this group. ARP may
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vary its rate somewhat due to merit rating; but, unlike the volun-
tary market, it does not do any underwriting, so it will not charge
the variety of rates typical of the voluntary market. Assume that
ARP charges the same rate to all insureds in the group. The vol-
untary market by contrast, through the forces of underwriting
and competition, charges a rate proportional to expected losses.
This will result from a combination of schedule rating, experi-
ence rating, retrospective rating, and underwriting by companies
with differing rates and differing niches. Remember that there is
a whole spectrum of expected losses. For the moment, assume
that the underwriting cost is negligible; it will not change the
result to assume it is significant, but it clutters the argument. Let
the market price be ax, where x is the expected loss. In order to
attract any business the market must charge less than ARP.

2.2. A Natural Limit: Assigned Risk Must Charge Strictly More
Than Market Average

The graph in Figure 1 illustrates the market in equilibrium.
The x-axis represents expected losses; the y-axis, premium. We
continue to ignore expenses and to assume that investment in-
come alone will generate appropriate profit for insurers. In an
unfettered market, the line y = x represents the appropriate rela-
tionship between premium and loss. With ARP charging a pre-
mium of R and the voluntary market charging ax, the bold curve
represents actual prices charged. If the expected loss is greater
than R", where R" = R=a, ARP will write the risk. If the expected
loss is less than R", the voluntary market will write the risk.

Insureds whose expected losses are less than R pay more than
they would in a completely free market, while insureds whose
expected losses are greater than R pay less.

We will show that if R # L, where L is the average expected
loss, there is no solution to the pricing problem of insurers. That
is, there is no premium they can charge that would attract cus-
tomers and would give them enough to pay claims and ade-
quately reward them for the risks they would be taking.
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FIGURE 1

THE MARKET IN EQUILIBRIUM

If R > L, there is a solution but it is not necessarily stable. If
R increases or decreases depending on ARP’s own experience,
ARP will most likely not be in equilibrium: it will grow or shrink
depending on the distribution of expected losses.

For the case R # L, it is almost self-evident that insurers can
not compete. If there are n insureds, the total premium needed
is nL. If ARP has m insureds, its premium will be mR. The
voluntary market must then collect a total of nL$mR from the
remaining n$m policyholders. If R # L, then (nL$mR)=
(n$m)% (nR$mR)=(n$m) = R; that is, the voluntary market
would have to charge on average at least as much as ARP.

Given that there is a continuum of expected losses, one can
prove the stronger result that the insurers’ pricing problem is
solvable if and only if R is strictly greater than L. Furthermore
the solution, when it exists, is unique.
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This is easy to visualize with the help of Figure 1. The bold
curve on the graph represents the prices of the combined vol-
untary and residual markets. The line y = x represents prices in
the absence of a residual market. The voluntary market seeks a
value of a for which the overall average price of the bold curve
is exactly the same as for the line y = x. For small values of a,
the entire bold curve will be below the line y = x. As a increases,
the bold curve approaches the horizontal line y = R. The average
price will increase from 0 to R as a increases from 0 to &, but
the average will never quite reach R for any finite value of a.
Thus if R # L, the average price generated by the bold curve can
never be as great as L, the average generated by the line y = x.
If R > L, there must be some point at which, as a approaches
&, the average price represented by the bold curve equals L.
(Appendix A provides a more complete proof of this result.)

What this has demonstrated so far is that, however ARP sets
its rates, it should not simply gear them to the average risk. They
must be higher; otherwise the voluntary market will deconstruct.
The danger that ARP will gear its rates to the average risk in-
creases as ARP’s market share increases. Because the argument
above applies to a single class, the danger is not limited to the
case where average ARP rates are higher than the overall market
rates—ARP can take over the market segment by segment. If
ARP sets its rates for the average risk and, in addition, includes
no allowance for profit, the voluntary market has no choice but
to abandon the segment in question.

3. THE ELUSIVE SEARCH FOR EQUILIBRIUM

3.1. The Rate Review

Let us suppose that R > L and that the market has spent some
time in equilibrium in the sense that the relative prices and market
shares of ARP and the voluntary market have remained stable.
Now the time has arrived for ARP to review its rates. What
happens? Look back to the graph in Figure 1. ARP has been
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overcharging insureds with expected losses between R" and R
and undercharging those with expected losses greater than R.
The net effect is an undercharge, which the voluntary market
makes up by overcharging all its insureds.

Because ARP has been undercharging, shouldn’t its experi-
ence indicate that it needs an increase? Not necessarily. ARP has
been undercharging when one considers the need for profit, but
ARP does not include a profit margin in its rate analysis. It is
possible that ARP has charged enough to pay claims and that
its analysis on a non-profit basis will show a need for a rate
decrease. This is not the normal course of events with residual
market plans, but it is possible, especially for individual segments
of the market. Whether ARP’s analysis will show the need for
an increase or for a decrease is a function of the distribution
of expected losses. One can construct distributions that go both
ways, as the examples in Tables 1 through 4 (discussed later in
this paper) will illustrate.

If ARP uses a market-level profit margin in its analysis, it will
generally see the need for an increase. Residual market plans of-
ten do include a “contingency” allowance, which serves some-
what the same purpose and does increase the probability that the
analysis will indicate the need for a rate increase. For just the
right distribution, just the right value of R, and just the right con-
tingency factor, equilibrium may occur; but it will be precarious.

The tendency is rather for continual indications for rate in-
creases, or continual indications for decreases. In the first case,
if ARP follows the indications, it will eventually price itself out
of existence; in the second case, it is the voluntary market that
will disappear if ARP follows the indications. The more com-
mon scenario is the first; and equilibrium usually occurs only
because ARP ignores the indications: ARP takes lesser increases
at the insistence of the regulator. Because this is an inherently
unpredictable road to equilibrium, it opens the door to many
problems.
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The more serious scenario, and fortunately the more rare so
far, is the one in which ARP sees a need for a decrease. It is
more serious because if ARP follows its indications under this
scenario, the voluntary market may well disappear. As in the
case where increases are indicated, the only sure way to remain
in equilibrium is to ignore the indications; but that is not easy in
the face of political pressures to lower rates. Let us look at some
simple, finite examples that show the two possibilities.

3.2. Assigned Risk Plans That Follow Their Own Experience
May Grow

First, continuing with our earlier assumptions, imagine a dis-
tribution of expected losses with ten equally likely possible out-
comes: the integers ranging from 20 to 29. The voluntary market
with its diversity of players and underwriting capabilities distin-
guishes among policies with different expectations and charges
accordingly, while ARP takes all comers at the same price. The
voluntary market sets its prices for a break-even underwriting
return, getting its profit from investment income. ARP prices at
a 5% discount in order to break even after investment income
(i.e., ARP is non-profit). Table 1 summarizes this situation.

X is the random variable representing a policy’s expected
losses, with its ten possible outcomes (in column 1) each hav-
ing a probability of 0.10 (column 2). The data in columns 3, 4,
5 and 6 assume that ARP writes all risks with expected losses
greater than the value of x in column 1. If ARP writes all the risks
with expected losses greater than 20, for example, it will have
to charge 23.81 per risk in order to break even (column 4, first
row). With investment income, it will have 25:00 = 23:81!1:05
to pay claims (25.00 is the average value of expected losses for
policies whose expected losses are greater than 20).

The first entry in the third column, 30.71, is what the vol-
untary market would have to charge for a risk with expected
losses of 20, given that ARP writes everything with greater ex-
pected losses. The voluntary market must collect not only the
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TABLE 1
AN EXPANDING ARP WITH LIMITED EQUILIBRIUM

(1) (2) (3) (4) (5) (6)

If ARP writes all risks with expected losses greater than x

voluntary voluntary 1: ARP gains
market rate ARP rate market rate $1: ARP loses

x P[X = x] for x (for all) for x+1 0: equilibrium

20 0.10 30.71 23.81 32.25 1
21 0.10 25.98 24.29 27.21 1
22 0.10 25.03 24.76 26.16 1
23 0.10 25.02 25.24 26.11 0
24 0.10 25.40 25.71 26.46 0
25 0.10 25.97 26.19 27.01 0
26 0.10 26.65 26.67 27.67 0
27 0.10 27.39 27.14 28.40 1
28 0.10 28.18 27.62 29.19 1
29 0.10 29.00

24:5 = average expected loss = E[X]

Column (4): ARP rate = A(x) = E[X ' X > x]=1:05
Column (3): vol mkt rate for x= V(x) = ax,

where a= (E[X]$A(x) (P[X > x])=(E[X ' X # x] (P[X # x])
Column (5): vol mkt rate for x+1 = V(x) ( (x+1)=x = a ( (x+1)

20 needed to pay the claims and provide for the profit for the
risks that it writes, but it must also collect enough to provide
for the profit on all the risks that ARP writes, since it (and
not ARP) is taking on the risk. The combined premium that
the voluntary market and ARP collect would then be, on aver-
age, 24.5 (0:1! 30:71+0:9!23:81). The overall expected loss
is 24.5 and exactly what is needed to keep the voluntary market
in the game. That forces the voluntary market to charge more
than ARP (30:71> 23:81), so the voluntary market would lose
the risks with expected losses of 20 to ARP in this situation. The
1 in the sixth column of the first row is a flag to indicate that
ARP would capture this risk, too, once it had all the larger risks.

We assume that the voluntary market uniformly loads its ex-
pected ARP assessment by applying the multiplier, a to the rate
that it would otherwise charge. The voluntary market would
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then charge 32.25 (column 5) for a risk with expected losses
of 21, again given that ARP writes everything with expected
losses greater than 20. If the voluntary market rate in column 5
were less than the ARP rate in column 4, then ARP would lose
the risks with expected losses of 21 to the voluntary market; in
that case, the flag in column 6 would be set to $1. A zero in
column 6 indicates equilibrium, and occurs when the voluntary
market rate for x is less than the ARP rate, which is in turn less
than the voluntary market rate for x+1 (i.e., column 3< column
4< column 5).

Each row represents a distinct rating scenario: the columns
of voluntary market rates for x and x+1 are not lists of rates
all of which would be available at the same time. For example,
the table contains two voluntary market rates for risks with ex-
pected losses of 21: 32.25 in row 1, column 5, and 25.98 in row
2, column 3. 32.25 is the voluntary market rate if ARP writes
everything greater than 20, while 25.98 is the voluntary market
rate if ARP writes everything greater than 21. The full sched-
ule of voluntary market rates is not displayed for every ARP
rate; the table displays only the two rates (in columns 3 and 5),
which lie at the boundary of ARP’s book of business for the row
in question. To know if ARP will grow or shrink or remain in
equilibrium, we need only look at the boundary.

For each row of Table 1, one could construct a graph sim-
ilar to that in Figure 1. Figure 2, for example, corresponds to
the row x= 28 of Table 1. As in Figure 1, the bold line segment
through the origin represents the premium that the voluntary mar-
ket charges, while the bold horizontal segment represents ARP’s
premium. The premiums represented by the bold line segments
generate an average premium of L= E[X], just as in the case of
Figure 1. The obvious difference is that the graph in Figure 2 is
discontinuous.

For Figure 1, we required the two segments to join at (R",R);
and we varied R" (by varying a) to obtain an adequate total pre-
mium, without regard for the adequacy of ARP by itself. We
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FIGURE 2

THE MARKET IN DISEQUILIBRIUM

showed that, for R > L, there is always an R" that solves this
problem.

For Figure 2, we fix the left end point of the horizontal ARP
segment at 29 on the x-axis and allow the segment to move
up or down until ARP’s premium balances its own discounted
expected losses. The voluntary market segment then pivots at the
origin to attain the desired total premium. The discontinuity in
the graph represents a state of disequilibrium between ARP and
the voluntary market. ARP is momentarily in balance but the
system is not: ARP sets its rates for one group of insureds, but
the rates themselves will cause that group to change.

If ARP starts out writing only risks with expected losses
greater than 28, it will charge 27.62 (29:00=1:05). Because the
voluntary market must then charge 28.18 for a risk with expected
losses = 28, ARP, with its lower price, will take over this level
as well. ARP’s price (based on its own new experience for the
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TABLE 2
A VANISHING VOLUNTARY MARKET

(1) (2) (3) (4) (5) (6)

If ARP writes all risks with expected losses greater than x

voluntary voluntary 1: ARP gains
market rate ARP rate market rate $1: ARP loses

x P[X = x] for x (for all) for x+1 0: equilibrium

20 0.0028 429.57 23.35 451.05 1
21 0.0095 115.79 23.38 121.30 1
22 0.0316 47.96 23.46 50.14 1
23 0.1053 29.86 23.65 31.16 1
24 0.3508 25.23 24.21 26.28 1
25 0.3508 25.23 25.14 26.24 1
26 0.1053 26.06 26.04 27.07 1
27 0.0316 27.02 26.89 28.02 1
28 0.0095 28.01 27.62 29.00 1
29 0.0028 29.00

24:5 = average expected loss

risks with expected losses of 28 and 29) will drop to 27.14 (row
x= 27 of Table 1). The voluntary market then needs to charge
27.39 for a risk with expected losses of 27, but that still exceeds
ARP’s rate, so ARP will capture the risks with expected losses
of 27 too. Now, based on the experience of risks with expected
losses of 27, 28 and 29, ARP will again lower its rate, this time
to 26.67 (row x= 26 of Table 1). This time however, because the
voluntary market will need only 26.65 for risks with expected
losses of 26, it will keep risks with that level of expectation or
better; and the market will be in equilibrium.

There is nothing robust or inevitable about this equilibrium.
Table 2 presents the same scenario as Table 1, except that the
probabilities have changed. The overall expected loss is still 24.5,
but the distribution is more concentrated. In this case, if ARP
starts with risks whose expected losses are greater than 28 and
bases its future rates on its own experience, it will capture the
entire market before reaching equilibrium. ARP will undercut the
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voluntary market at the high-priced end of the voluntary market’s
book, causing the high-priced business to move to ARP. This will
improve ARP’s experience, and ARP will lower its price. The
voluntary market will have a higher risk load, which will increase
the voluntary market’s price. After the price adjustments, ARP
will undercut the voluntary market at the next level. With the
distribution shown in Table 2, the cycle will continue until ARP
has all the business.

One needs to take care with the conclusions that one draws
from these examples. It is true that as a distribution becomes
more dispersed ARP is less likely to take over, but not all uniform
distributions result in a balanced equilibrium between ARP and
the voluntary market. Since one can construct examples where
nearly anything happens, the only firm conclusion that one can
draw is that the evolution of ARP is sensitive to the distribution
of expected losses among insureds. There is no mathematical
certainty of equilibrium or even of the direction that the evolution
will take.

3.3. Assigned Risk Plans That Follow Their Own Experience
May Shrink

Let us look at some examples where ARP’s experience will
lead to a rate increase. The distribution of the random variable X
in Table 3 is essentially a shifted, truncated Poisson. (Think of
X as defined by X =min(1+Y,10), where Y has a Poisson dis-
tribution with ¸= 2:74. We concentrate the probabilities of the
tail at 10 simply to make a readable table.) Now we see negative
flags in column 6, meaning that ARP will be increasing rates
and losing business to the voluntary market if it follows its own
indications—even with non-profit pricing. If it starts out writing
everything with expected losses greater than 2, it will have a be-
ginning rate of 4.17. The voluntary market will undercut it with
a rate of 4.13 for risks with expected losses of 3. ARP’s market
share will drop, ARP’s rate will increase, and the voluntary mar-
ket will then beat ARP’s price for risks with expected losses of
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TABLE 3
A SHRINKING ARP WITH EQUILIBRIUM ONLY AT TWO

EXTREMES

(1) (2) (3) (4) (5) (6)

If ARP writes all risks with expected losses greater than x

voluntary voluntary 1: ARP gains
market rate ARP rate market rate $1: ARP loses

x P[X = x] for x (for all) for x+1 0: equilibrium

1 0.0646 3.71 3.74 7.42 0
2 0.1769 2.76 4.17 4.13 $1
3 0.2424 3.32 4.79 4.43 $1
4 0.2214 4.16 5.52 5.20 $1
5 0.1516 5.08 6.32 6.10 $1
6 0.0831 6.04 7.16 7.05 $1
7 0.0379 7.02 8.02 8.02 $1
8 0.0149 8.01 8.85 9.01 0
9 0.0051 9.00 9.52 10.00 0
10 0.0021 10.00

3:74 = average expected loss

4. The cycle will continue until the market reaches equilibrium,
with ARP writing only risks with expected losses of 9 and 10 at
a rate of 8.85.

This is an interesting example not just because it illustrates
that ARP’s experience can cause it to lose, as well as gain, market
share; it also illustrates that equilibrium, even within a single
distribution, can occur at extremely different points. ARP and
the voluntary market can be in equilibrium if ARP writes all
risks with expected losses larger than 1 at a rate of 3.74, or if
ARP writes all risks with expected losses larger than 8 with a rate
of 8.85. In the first case ARP will have a market share of 93.6%;
in the second, 1.7% (see Table 3A of Appendix B for calculation
of market shares). ARP and the voluntary market will not be in
equilibrium anywhere in-between these two extremes.

A market share of 1.7% for ARP is certainly not extreme, but
there is no guarantee that ARP will stop at 1.7%. Look at one
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TABLE 4
A VANISHING ARP

(1) (2) (3) (4) (5) (6)

If ARP writes all risks with expected losses greater than x

voluntary voluntary 1: ARP gains
market rate ARP rate market rate $1: ARP loses

x P[X = x] for x (for all) for x+1 0: equilibrium

1 0.5400 1.12 2.71 2.23 $1
2 0.2484 2.07 3.66 3.11 $1
3 0.1143 3.05 4.61 4.07 $1
4 0.0526 4.03 5.56 5.04 $1
5 0.0242 5.02 6.49 6.02 $1
6 0.0111 6.01 7.40 7.01 $1
7 0.0051 7.01 8.26 8.01 $1
8 0.0024 8.00 9.01 9.00 $1
9 0.0011 9.00 9.52 10.00 0
10 0.0009 10.00

1:85 = average expected loss

last example: Table 4 shows a truncated geometric distribution.
For x less than 10, P[X = x] = 0:54!0:46x$1; the balance of
the distribution is concentrated at x= 10. In this case, there is
no equilibrium for the voluntary market at the small end of the
market; ARP has either all of the market or nearly none of it.
Equilibrium can occur with ARP writing risks with expected
losses of 10, at a rate of 9.52, and a market share of 0.5% (Table
4A, Appendix B). Even this equilibrium occurs only because
the distribution is truncated; if it were not truncated, equilibrium
would not occur until ARP’s market share was less than 0.01%
and its rate nearly 17, more than 9 times the average market rate
(Table 4B, Appendix B). By tweaking the parameters a little, one
can push this equilibrium market share to any extreme.

The above examples assume that the voluntary market oper-
ates freely. If regulatory constraint becomes too severe, none of
these examples will bear much resemblance to the real behavior
of the market. They are still relevant though—just as the force of
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gravity is relevant to an engineer—because they show the natural
forces at work against the barriers of regulation.

4. HOW TO SET THE RATES

4.1. An Alternative to Break-Even Pricing

One might be tempted to argue that because the above exam-
ples are filled with instances of equilibrium, it is reasonable for
assigned risk plans to base their prices on their own experience.
Unfortunately, the equilibrium is capricious—one never knows
where or whether it will occur. Equilibrium, moreover, desirable
as it is, is not an end in itself. Society will probably not accept
an equilibrium that leaves insurers a tiny fraction of the market,
or that charges assigned risk plan members ten times the volun-
tary market rates. In any case, ARP’s pricing strategy should be
consistent with public goals. The public may accept letting some
residual markets price themselves out of existence and may be
well served by so doing. In those cases break-even pricing with
a contingency factor may work well, provided ARP really fol-
lows the indications. Where the consensus is in favor of keeping
and controlling the residual market, however, the break-even ap-
proach is not a good one.

So how should ARP set its rates? If one starts with the as-
sumptions that there should (or in any case will) be an assigned
risk plan, that it should not be overly burdensome on the in-
sureds in the voluntary market and that it should not have wild
swings in market share, there is a reasonable solution to the rate
problem. The solution is to base ARP’s rates on total industry
experience, but set at a level consistently higher than that which
a typical insurer would need to charge in the voluntary market.
One can start with industrywide pure premiums, for example,
and load them with an expense and profit factor which is 25%
above that of the industry average (or whatever percentage seems
reasonable in line with studies of the market and the philosophy
of a given state). The market will seek its own equilibrium; in
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the typical case ARP will lose money, but the burden on volun-
tary insureds will not be excessive. At the same time ARP’s rates
will be high, but not intolerably high. Thus a start-up employer
who truly has a contribution to make to society, for example,
will have a chance.

4.2. Setting Specific Goals

Words such as reasonable and excessive are rather vague; one
must define them in order to use them in actually setting rates.
Their definitions may vary from state to state and from line to
line, and probably with the passage of time as well. They will
come through compromise and consensus—there is no optimal
solution that everyone will accept. The key is to have specific
goals and to structure the pricing to accomplish those goals.

The voluntary market attempts to identify true costs underly-
ing whatever it is insuring; and, by varying its prices according
to those costs, it steers production of goods and services toward
those that are most efficient. This feature of insurance is very
beneficial to society. A state should choose a goal for residual
market share that guarantees the continuation of a large voluntary
market so as to give society the benefit of an efficient economy,
with the ideal being a totally voluntary market.

On the other hand, rightly or wrongly, the government has
constrained the operation of the insurance market for many
decades. Workers compensation statutes are a prime example:
despite the benefits of the statutes, they raise a high hurdle for
many small employers. Residual market plans often enable such
employers to enter and compete in the marketplace, something
that could occur naturally in the absence of the workers com-
pensation statutes. One could view residual markets as interven-
tion needed because states interfered with the natural flow of the
marketplace when they first created laws such as the workers
compensation statutes. Residual markets will almost surely con-
tinue to have their adherents and, if their prices are unaffordable
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for virtually everyone, consumers will revolt and probably revolt
successfully.

So in determining the parameters of the pricing problem, one
has two somewhat conflicting goals: the bigger the voluntary
market the better, and residual market rates should not be unaf-
fordable for all. A third guiding factor is consideration for the
voluntary market insureds—the expected assessment of resid-
ual market losses on these innocent bystanders should not be
punitive. A fourth guiding factor is the status quo. Too abrupt
a change can be harmful—partly because it might unleash un-
expected and uncontrollable consequences, and partly because it
would be in some sense a change of the rules under which many
people have been operating in good faith.

Reasonable goals for a residual market plan might be a market
share of under 1%, a rate of under 150% of the voluntary market,
an expected assessment on the voluntary market of under 0.5%,
and (during the catch-up period if one is needed) annual price
adjustments of under 10% relative to the voluntary market. This
paper is not trying to suggest the exact parameters to use; it is
merely suggesting a way to approach them.

Of course, the voluntary market does not charge a single rate
that one can use as a basis for the ARP rates. In the above exam-
ple where ARP rates are under 150% of the voluntary market,
what is “voluntary market?” A reasonable starting place is to use
statewide pure premiums loaded with average industry expenses
and profits. In place of statewide pure premiums one might also
use the pure premiums or rates generated by a large ratemaking
bureau operating in the state, provided that the bureau’s members
represent a significant enough market share.

It will be helpful to look not only at the average voluntary
market rates, but also at the spread of rates. In particular, some
companies specialize in non-standard business and provide a
valuable service to the marketplace. Before arbitrarily selecting
an upper bound of say 150% of average, it will be helpful to



550 RESIDUAL MARKET PRICING

know where the rates of the non-standard writers fall relative to
the overall average. A state could do its citizens a disservice if
it sets a limit that cuts out the non-standard carriers.

Finally, although this paper suggests abandoning break-even
pricing, ARP’s own experience still has an important role in
ARP pricing. In order to measure the expected assessment on the
voluntary market, ARP still must analyze its own experience. If
ARP’s experience indicates excessive future assessments, ARP
will need to adjust its rates within the constraints of the other
goals. The state may even need to change the goals if all the
goals are already at the limit of their constraints. In addition,
an analysis of ARP’s experience can be helpful to the voluntary
market in identifying opportunities to depopulate ARP.

4.3. Using the Goals to Set Prices

With a set of specific residual market goals in hand, a state
does not need to fight the unpredictability of break-even pricing.
It can take the more stable path of setting residual market prices
as a direct multiple of voluntary market prices, and it can measure
its success directly from its goals.

Suppose that a state sets ARP rates by looking at ARP’s own
experience, judgmentally modifying the indication (essentially
ignoring it), and finally ending up with rates that currently aver-
age 105% of voluntary rates. Now consider the following alter-
native. Having first set specific goals for ARP, the state gathers
all the data it needs to monitor the goals. What are the mar-
ket shares of the residual and voluntary markets? What are the
average rates of voluntary writers (paying separate attention to
companies specializing in non-standard business)? What are the
average expense ratios? What are the underlying loss costs? Then
the state measures its goals against the data. Are all the goals
met? If so, the state leaves the prices at 105% of voluntary (as
measured by loss costs and average expense ratios) and the job
is done.
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Probably, though, 105% of voluntary will not achieve the
goals. So the state increases the rates to 110% or 115% of volun-
tary, depending on the “catch-up” parameter. Next year it looks
again at the experience and market data. Gradually the state ad-
justs the ARP-to-voluntary ratio until it meets its goals—not
break-even goals with all their unpredictability, but goals based
directly on society’s specific expectations of ARP.

Once the state finds the multiplier that meets its goals, it sets
future rates using the same multiplier. As long as the goals are
met, ARP’s own experience will have no effect on ARP’s rates.
For example, if the goals call for a market share of under 1%
and a burden on the voluntary market of under 0.5%, ARP could
consistently lose 50 cents or more on each dollar of premium
provided its market share remains sufficiently small. Its market
share will remain sufficiently small as long as the multiplier is
sufficiently large. By the same token, a fortuitous ARP profit
will have no effect on the rates either; ARP’s insureds will be
rewarded for good experience not by ARP rate decreases but
rather by movement into the voluntary market.

The advantage of this market-based pricing approach is not
necessarily to reduce the overall losses of the residual market, but
rather to enable more conscious control over the residual market.
Rather than having an official ratemaking procedure (break-even
pricing) that is not actually followed and that could lead to totally
unacceptable results if it were followed, states would articulate
their true goals and consciously manage them. Some residual
markets might very well shrink as a result and would probably
produce fewer losses, but that is not a necessary consequence of
moving to market-based pricing. What will happen will depend
on the goals of the individual states. In any case, one can not
measure the true cost of a residual market by its bottom-line
losses alone. Voluntary market insureds bear the risk charge for
the residual market even when the residual market is profitable,
and all of society pays for the loss of diversity when a residual
market gets too big.
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5. FINAL THOUGHTS

The original impetus for this paper sprang from real-life ob-
servation of the outcomes that this simple model predicts; the
predictions are not merely theoretical. Of course, the worst ex-
amples of residual market problems arise not from using break-
even pricing, but rather from suppressing rates and ignoring the
effects. What appears to be an easy solution to that problem—
namely basing residual market rates directly on residual market
experience—is in general not a solution at all.

This paper demonstrates that under break-even residual mar-
ket pricing, regardless of the goal that one sets for residual mar-
ket share, one can find a loss distribution that leads to a market
share very different from the goal. The paper does not look at
empirical loss distributions to predict how specific residual mar-
kets would behave under them. That is an interesting area for
additional research, but the paper’s thesis is that such research
is not essential if there is an approach to residual market pricing
whose success is independent of loss distribution. It turns out
that there is such an approach; namely, to base residual market
prices on total market experience, at a level consistently above
that of voluntary market prices. That approach not only solves
the market-share problem, but it also enables focusing on and
achieving all of the other goals of the residual market to the
extent that the goals are achievable.
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APPENDIX A

PROOF OF EXISTENCE AND UNIQUENESS OF SOLUTION TO
PRICING PROBLEM

The insurers’ pricing problem—to solve for a in Equation
(A.1) below—has a solution if and only if L < R, where L is the
average expected loss and R is the average ARP premium. The
solution, when it exists, is unique.

Proof Let F be the distribution function of the expected
losses. As a distribution function, F is right-continuous. Assume
furthermore that F(0) = 0. To allow F(0)> 0 would be to assume
that for some insureds not even the possibility of a loss exists;
F, remember, is the distribution of expected losses, not of actual
losses. We have:

L=
! &

0
x dF =

! R=a

0
axdF+

! &

R=a
R dF: (A.1)

Equation (A.1) merely says that the expected losses are equal to
the premium of the voluntary market plus the premium of ARP.
The insurers’ pricing problem is to solve for a. Set

g(a) = L$
! R=a

0
ax dF$

! &

R=a
R dF: (A.2)

Solving equation (A.1) for a is equivalent to finding a zero of the
function g defined by equation (A.2). g is a continuous, mono-
tonically decreasing function on the interval (0,&), so it has at
most one zero. If it ever changes sign, it has exactly one zero

g(1) =
! &

0
x dF$

! R

0
x dF$

! &

R
RdF =

! &

R
(x$R)dF > 0:

Thus g(a) is positive for a# 1. Now look at g(a) as a increases.
For 0# x# R=a, ax# R, so! R=a

0
ax dF #

! R=a

0
RdF = R(F(R=a)$F(0)):
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Since F is right-continuous, lima)&R(F(R=a)$F(0)) = 0, so
also

lim
a)&

! R=a

0
ax dF = 0: (A.3)

Because F(0) = 0 and again because F is right-continuous,

lim
a)&

! &

R=a
RdF = R: (A.4)

Finally, combining equations (A.2), (A.3), and (A.4) we have

lim
a)&g(a) = L$R,

which is negative if and only if L < R. Thus if L% R, there is
no a for which g(a) = 0, and equation (A.1) has no solution. If
L < R, there is a unique solution.

If we removed the requirement that there exist insureds
with arbitrarily large expected losses, our conclusion would not
change. For values of R greater than the largest expected loss,
the solution would be a= 1 and all the business would be in the
voluntary market. If we removed the requirement that there exist
insureds with arbitrarily small expected losses, there might be
some degenerate solutions. In that case, g would no longer be
monotonically decreasing on the entire interval (0,&), but only
on (0,R=b), where b is the smallest possible expected loss—
more precisely, b = inf*x : F(x)> 0+. For all a > R=b, we’d have
g(a) = L$R, so that for R = L there would be infinitely many
solutions of the equation g(a) = 0. These solutions are rather triv-
ial; they are simply all multipliers, a, large enough to charge the
tiniest risk more than R, so that ARP writes all of the business.
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APPENDIX B

ARP MARKET SHARE CALCULATIONS

This appendix contains Tables 3A, 4A and 4B; these tables
extend Tables 3 and 4 to show calculations of ARP market shares.
In addition, Table 4B extends the truncation point of the geomet-
ric distribution from 10 to 20 to show a more extreme example of
diminishing ARP market share. The data in the first six columns
of Tables 3A and 4A come directly from the corresponding Ta-
bles 3 and 4 of the paper. The reader will find explanations of the
additional columns (columns 7 through 11) in the tables them-
selves.
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DIRTY WORDS: INTERPRETING AND USING EPA DATA
IN AN ACTUARIAL ANALYSIS OF AN INSURER’S

SUPERFUND-RELATED CLAIM COSTS

STEVEN J. FINKELSTEIN

Abstract

A significant amount of liability exposure for many
insurers stems from pollution-related claims. Many of
these pollution-related claims, in turn, stem from the im-
plementation of the Comprehensive Environmental Re-
sponse, Compensation and Liability Act (CERCLA) of
1980, also known as Superfund. This paper discusses ad-
justments necessary to properly use the EPA’s records
of decision (RoDs) and Comprehensive Environmental
Response, Compensation and Liability Information Sys-
tem (CERCLIS) data in actuarial analyses of Superfund
costs. Background on the Superfund process and an ap-
proach to using the data in an exposure-type analysis
suitable to insurers with significant potential exposure
to environmental losses are also presented. The paper
also discusses the difficulties typically facing an actu-
ary in non-Superfund site cleanup cost evaluations, and
concludes with some comments on environmental liabil-
ity discounting considerations.
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1. FROM THE GROUND UP: AN INTRODUCTION

A significant amount of liability exposure for many insurers
stems from pollution-related claims. Many of these pollution-
related claims, in turn, stem from the implementation of the
Comprehensive Environmental Response, Compensation and Li-
ability Act (CERCLA) of 1980, also known as Superfund.

Currently, there are two primary sources of Superfund cost-
related information available for use in an environmental analy-
sis: Records of Decision (RoDs) published by the Environmental
Protection Agency (EPA), and the Comprehensive Environmen-
tal Response, Compensation and Liability Information System
(CERCLIS). While data from these sources is readily available
from the EPA,1 information on the appropriate use of that data
is not as easily found. Given the importance of reasonably esti-
mating these liabilities in connection with acquisitions, commu-
tations and financial reporting, a thorough understanding of the
data underlying many of these analyses is vital. This paper is an
attempt to fill the gap in CAS literature relating to environmental
cost data and its use in environmental analyses.

2. DIGGING IN: AN OVERVIEW OF THE SUPERFUND PROCESS

The Superfund process begins with the discovery of a loca-
tion which represents either a current or potential future health

1Most readily through WWW.EPA.GOV/Superfund/, which is the EPA’s Superfund web
site. In addition to the EPA, the Agency of Toxic Substances and Disease Reg-
istry (ATSDR) also maintains a database accessible through the Internet at http://
atsdr1.atsdr.cdc.gov:8080/hazdat.html with information on public health hazard levels
(discussed in Appendix C).
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hazard. The potential for future hazard is generally based on
(1) the potential for current contamination levels to spread at
a particular site, (2) plausible future uses of that site, and (3)
plausible estimates of the future size of the population at and
adjacent to that site. If this discovery is reported to the EPA,
information on that “site” is put into the CERCLIS database.

An off-site preliminary assessment is then performed to char-
acterize the site as a potentially imminent, serious, or non-serious
threat. Imminent threats are addressed through emergency re-
moval actions, designed to reduce the threat to a serious or non-
serious level. Serious (but not imminent) threats are addressed
through site inspections, which include on-site evaluations to bet-
ter characterize whether or not the site requires further EPA at-
tention (including an emergency removal action not already ini-
tiated, due to insufficient information at the preliminary assess-
ment phase). A site determined to pose no serious threat receives
no further attention by the EPA.

The EPA then uses a hazard ranking system (HRS) to prior-
itize those sites that still pose a potentially serious threat. The
HRS is a quantitative assessment, on a scale of 1 to 100, of
the level of hazard to human health via several “exposure path-
ways.” These pathways represent different ways that a hazard
can expose human beings to a health risk—for example, through
ground and surface water, the soil and the air. If the HRS is
high enough (currently, 28.52 or greater), the EPA “proposes”
that the site be included in the National Priorities List (NPL),
representing those sites which, in the EPA’s estimation, repre-
sent the greatest potential hazard to human health, past, present

2The 28.5 threshold score was derived “because it would yield an initial NPL of at least
400 sites as suggested by CERCLA, not because of any determination that it represented
a threshold in the significance of risks presented by sites.” [1] This apparent need to
initially list at least 400 sites on the NPL may somewhat mitigate the argument that the
hazard level of the average site listed early in the program exceeds the hazard level of
the average site listed more recently. This is discussed further later in this paper, as well
as in Appendix B.
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or future.3 Community discussions are then held, and after some
additional work, these sites may be listed on the “final” NPL.4 It
is worth noting some of the events that have impacted past, and
may impact future, site listings:

! As noted earlier, CERCLA appeared to suggest that at least
four hundred sites should be listed on the initial NPL in 1983.

! Federal facilities started showing up with some regularity in
1987, after the Superfund Amendments and Reauthorization
Act of 1986 (SARA) gave the EPA a level of control over
remedy selection at Federal facilities.

! Between the mid-1980s and early to mid-1990s, the capabili-
ties of the states’ individual Superfund programs grew, perhaps
leading to a shift in emphasis from Federal to State enforce-
ment.

! In December of 1990, the HRS was revised, leading to fewer
annual NPL site listings per year.

! “Governor’s Concurrence” legislation enacted in July of 1995
required the EPA to seek approval from a state before listing
a site located there on the NPL. Since then, more than 30 sites
were not listed, at the request of the relevant states’ governors.

It is also worth noting two additional means by which a site
may be listed on the NPL. First, each state is entitled to select
a single site and include it on the NPL, regardless of that site’s
HRS score, if the state feels that the site represents a significant

3The preliminary nature of the data used to derive the HRS is believed to be useful for
determining whether or not a site represents a potentially significant hazard, but it is
not necessarily useful for ranking the relative hazard levels of those sites which exceed
the HRS threshold. In addition, if the HRS reaches this threshold before all pathways
are scored, the remaining pathways might not be scored. For these reasons, the author
recommends not using the HRS to estimate the relative hazard levels of Superfund sites.
4There are actually two NPLs—one for Federal sites (i.e., federally owned), and one for
non-Federal sites. Only the non-Federal sites are usually considered relevant to estimating
an insurer’s potential environmental liabilities. Information on whether a particular site
is a Federal facility is available in CERCLIS.
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danger to public health. Second, a site may be listed if all of the
following conditions (taken from [2]) are met:

! The Agency for Toxic Substances and Disease Registry
(ATSDR) of the U.S. Public Health Service has issued a health
advisory that recommends dissociation of individuals from the
site.

! EPA determines that the site poses a significant threat to public
health.

! EPA anticipates that it will be more cost-effective to use its
remedial authority (available only at NPL sites) than to use its
removal authority to respond to the site.5

Sites that were reviewed and subsequently not listed on the
NPL remained in the CERCLIS database for many years, leaving
them with a stigma stemming from the belief that there was a
strong possibility they might still become NPL sites at some later
date. To alleviate this concern, the EPA created a new database
in March of 1995 which would store these “archived” sites. The
database was called NFRAP, which stands for “No Further Re-
medial Action Planned,” and, by September 30, 1996, it con-
tained 25,000–30,000 sites no longer being considered for NPL
status. However, these sites remain within the purview of the
state and local governments, who may require further action.

How to Remedy a Bad Situation: An Introduction to Records of
Decision

For sites listed on the NPL, the next step is to determine what
actions would constitute an appropriate remedy. The EPA pub-
lishes the details relating to these “remedial actions” (RAs), ad-
dressing the potential contamination at a particular location in
a “record of decision” (RoD). These RoDs typically include a

5A removal action is a mechanism whereby the EPA can take immediate action to
“remove” hazardous substances posing an immediate threat to public health and the
environment, rather than allowing the threat to linger until that site is listed on the
NPL, making it eligible for a more extensive (but likely less timely) cleanup effort.
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description of the problem that is being addressed, the remedy
selected to address the problem, and the expected cost associated
with the selected remedy.

There are two types of costs usually addressed in the RoDs—
those related to the construction of the selected remedy (capital
costs) and those related to the implementation, operation and on-
going maintenance of the selected remedy over time (operation
and maintenance, or O&M costs). Once issued, RoD cost esti-
mates are not typically updated to reflect new information, except
in the event of a fundamental change in the approach required
or technology to be used.

There are three types of RoDs issued: interim RoDs, which
address either a partial remedy or a “quick fix” to prevent the
further spread of contamination that will be addressed in a later
RoD; final RoDs, which represent either the complete remedy
at a particular location or the completion of a remedy begun
earlier in an interim RoD; and amendment RoDs, which supplant
previous RoDs due to a change in scope, cost or both. These
amendment RoDs can be either interim amendment RoDs or final
amendment RoDs, though interim amendment RoDs are rare.

A single RoD need not address the remedy required for an
entire site. Sometimes, multiple RoDs are issued. This is done
because an NPL site may have several problems needing to be
addressed, such as groundwater and soil contamination. These
problems may be addressed as two separate “operable units”
(OUs) of that site, in different RoDs. It is worth noting that these
RoDs are not necessarily issued at the same time—the EPA (or
any other party responsible for site cleanup) may address the
groundwater issue at a site (which might soon contaminate an
adjacent town’s drinking water if unchecked), but forego cleanup
efforts relating to the soil contamination. This might happen if
the contaminated soil is felt to be a less immediate risk to human
health than exists currently at another site. In this case, the EPA
might divert its resources toward that other site, and return to
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the first site later. It is also worth noting that multiple OUs at a
site typically relate to different contaminated media at that site
(e.g., groundwater and soil), which may or may not be present at
different locations of the site. In other words, two OUs at a site
should not automatically imply two geographic areas requiring
attention at that site. Similarly—and adding to the confusion—a
RoD may also address a single OU comprised of multiple con-
taminated media (e.g., groundwater and soil together). Also, re-
member that a single OU may be addressed through multiple
RoDs (i.e., an interim, a final and/or an amendment RoD).

Digging Deeper: Remedial Design Costs

As technical as they might appear to be, RoDs only address
the general approach to be used in implementing the selected
remedy. After the RoD is issued, the “remedial design” (RD)
phase provides the specific approach to be used in implementing
the general remedy outlined in the RoD. The RD cost estimate
and the costs included in the RoD are intended to represent the
same items (i.e., capital and O&M costs); since the approach is
more detailed in the RD phase, however, the RD cost estimates
are expected to be more refined. EPA guidance indicates that the
actual costs incurred for cleanup activities should be between
70% and 150% of the RoD cost estimate, but only between 95%
and 115% of the RD cost estimate.6

It is possible that the cost or approach of the RA selected
in the RD phase may be significantly different from the cost or
approach of the RA as outlined in the RoD, perhaps as a result
of unforeseen conditions encountered at a given site. If these
significant differences do not result in a fundamental change to
the general remedy selected in the RoD, the EPA would typically
issue an “Explanation of Significant Differences” memorandum
(ESD), outlining the nature and cause of the differences. This

6The RD documentation relating to each RA is generally made available for public
viewing near the area to be remediated. To the best of this author’s knowledge, the RD
documents are not consolidated in a single, publicly-available database.
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differs from an amendment RoD, which results from significant
differences in the approach of the RA that do result in funda-
mental changes to the general remedy selected in the RoD.

Once remedial construction activities have been completed, a
site or OU can be labeled “construction complete.” This does
not mean that the selected remedy has been put into operation
yet; only that the necessary construction required to do so has
been completed. Additionally, significant O&M activities may
be required after the remedy is enacted.

After all necessary construction is completed, the selected
remedy is instituted and O&M activities (if any) are concluded,
that site, OU or particular formerly contaminated media may
be “deleted” from the NPL, indicating that no further action
is deemed necessary. Not all deleted sites represent completed
cleanups, however. Resource Conservation and Recovery Act
(RCRA) sites may be deleted from the NPL before cleanup ac-
tivities have been completed “if the site is being, or will be, ad-
equately addressed under the RCRA corrective action program
under an existing permit or order.” [3] A short introduction to
RCRA, for those not familiar with it, is included in Appendix D.

It’s a Dirty Job, but Someone’s Gotta Do It: Cleanup Cost
Liability Allocation

At any point along the way in the Superfund process, the EPA
may uncover leads on people and companies they believe to be
potentially responsible for a given site’s polluted status. A list
of these potentially responsible parties (PRPs), which has pre-
viously been available through the EPA’s SETS database (Site
Enforcement Tracking System), is now included in CERCLIS.
Allocation of liability among PRPs at any given site is consid-
ered by many as the single most difficult aspect of estimating
Superfund liability. The count of PRPs at a given site changes
over time. In addition, a PRP’s share of liability might not corre-
late well with the number of PRPs potentially sharing the cleanup
cost at that site (in part because the group of PRPs connected by
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the EPA to many sites can be characterized as a small number
of large polluters and a large number of smaller ones, skewing
the proportions).

To help distinguish the possibly responsible from the probably
responsible, the actuary should consider looking at other types of
communications between the EPA and parties that may be liable
at NPL sites. The following is a list that, in the author’s opinion,
might be used to form a “Superfund Liability Pyramid,” in the
sense that the items in the list are ordered from least to most
likely responsible for activities at a Superfund site:

! general notice letter recipients—the EPA sends this letter to
parties to inform them of their potential responsibility for site
cleanup-related activities.

! special notice letter recipients—the EPA sends this letter to
parties to inform them of their right to offer to conduct the
cleanup efforts at a site.

! unilateral administrative order (UAO) recipients—the EPA uses
UAOs to “unilaterally order” parties to undertake activities at
a site.

! parties to an administrative order on consent (AoCs) or consent
decree—these documents formalize agreements reached be-
tween the EPA and other parties relating to Superfund-related
actions those parties have agreed to undertake.

Once in communication with the EPA, an entity involved in
a cleanup effort may seek out additional parties to share the re-
sponsibility for cleanup-related costs, in addition to those other
parties already in communication with the EPA. These additional
parties—sued for cooperation not by the EPA, but by those al-
ready responsible for cleanup-related costs—are called “collat-
eral suit defendants.” Since the EPA is unconnected to the search
for these additional PRPs, they would not be included in the
EPA’s data when and if they are found. To this author’s knowl-
edge, there are no good publicly-available data sources for in-
formation on collateral suit defendants.



568 DIRTY WORDS: INTERPRETING AND USING EPA DATA

Superfund Action Figures: EPA Expenditure Data

While RoDs contain estimated prospective remedial action
costs, EPA’s actual costs incurred to date relating to remedial
and pre-remedial activities can be found in the CERCLIS and
NFRAP databases. The information contained in them is identi-
cal, except that NFRAP contains information on sites where no
further EPA activity is planned, and CERCLIS contains infor-
mation on all other sites reported to the EPA. Throughout this
paper, reference to CERCLIS should be understood to include
NFRAP.

Users of CERCLIS information must be cautious since only
those costs incurred to date directly by the EPA (referred to
as “fund-financed” costs) are included in CERCLIS.7 As a
result, the cost information in CERCLIS is only potentially
complete and up to date for activities with a fund-financed
cleanup effort.8 In other situations (i.e., a PRP-financed activity),
CERCLIS only includes costs relating to the EPA’s oversight of
that activity—the cost of performing that activity must still be
quantified, perhaps based on the average cost of similar, fund-
financed activities.

In evaluating how the costs of PRP-financed activities may
relate to corresponding, historical fund-financed activities, the
reader should note that the General Accounting Office (GAO)
had the following to say about the EPA’s cost controls [5]:

“: : :our recent review found that in spite of the [EPA’s]
actions, several problems persist: (1) EPA’s regions are

7Note that no O&M costs are to be incurred by the EPA under Superfund. These costs are
intended to be the responsibility of either the states or PRPs. However, since the definition
of O&M activities differs between CERCLIS and the RoDs (as will be discussed later),
some O&M costs arguably are fund-financed.
8Even these fund-financed efforts require that some of the capital costs be borne by the
states, implying that CERCLIS might not have complete cost information on even these
sites. For example, “The President shall not provide any remedial actions pursuant to this
section unless: : :the state will pay or assure payment of (i) 10 per centum of the costs of
the remedial action, including all future maintenance: : :” [3]
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still too dependent upon the contractors’ own cost pro-
posals to establish the price of cost-reimbursable work,
(2) EPA continues to pay its contractors a high percent-
age of total contract costs to cover administrative ex-
penses rather than ensuring the maximum amount of
available moneys is going toward the actual cleanup
work, and (3) little progress has been made in improv-
ing the timeliness of audits to verify the accuracy of
billions of dollars in Superfund contract charges.”

Working with the cost information in CERCLIS is not
straightforward. Even for fund-financed activities, the costs can-
not always simply be added up to derive a given activity’s total
incurred cost. For example, some activities are funded by the
Superfund program but overseen by a state instead of the EPA.
For some of these “state-led” activities, the state is responsible
for its own share of the cost from the outset, which would not
be included in CERCLIS. A detailed schematic of the cost data
included in CERCLIS is shown in Exhibit 1. Exhibit 2 compares
and contrasts the data contained in CERCLIS and RoDs.

3. GETTING DOWN AND DIRTY: WHAT ARE SUPERFUND’S
COSTS?

Litigation and other transaction costs aside, what are the costs
incurred under the Superfund program? Exhibit 3 displays a list
of the activities that have typically been included in the EPA’s
review of an NPL site, with estimates of the average duration
and cost for each type of action.

Intent on improving the process, the EPA introduced the
Superfund Accelerated Cleanup Model (SACM), designed to
streamline the process by (1) combining the preliminary assess-
ment and site inspection steps into a single step (Site Screening
and Assessment), eliminating much duplication of assessment-
related effort, (2) instituting consistent remedy selections for sim-
ilar sites rather than assuming site-specific remedies were always
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required, yielding more efficient and cost-effective cleanups, and
(3) creating regional decision teams to more effectively priori-
tize the cleanup efforts of Superfund sites in each region. The
EPA’s consistent remedy selection strategy, as well as another
recent initiative—increased remedy selection updating through
RoD amendments—will be revisited later.

4. MUDDYING THE WATERS: “BROAD” VS. “NARROW” REMEDIAL
ACTIONS

Before beginning a discussion on cleanup costs, a note about
terminology is in order. The term “remedial action” as used so
far has referred to the costs associated with all aspects of the
cleanup process (capital costs plus all O&M costs), as is typi-
cally done when discussing cleanup (remedial) vs. other-than-
cleanup (non- or pre-remedial) actions. Within the context of
discussing cleanup costs only, however, the phrase “remedial ac-
tion” has two different meanings. When used in a RoD or other
engineering costing study, it typically relates to those costs in-
curred only to construct the remedy (i.e., the capital costs)—the
actual implementation of the remedy and any other O&M-related
activities would be considered when estimating O&M costs. Al-
ternatively, to determine which costs are eligible for Superfund
funding, the EPA considers RA costs as those which must be
incurred to safeguard the environment from the contamination at
an environmentally-impaired site—clearly, a broader definition,
incorporating both the construction and (at least partial) imple-
mentation of the remedy. Therefore, the capital costs displayed in
the RoDs (usually representing construction costs only) typically
should not be compared to the RA costs in the EPA’s CERCLIS
database without first adjusting for the percentage of total RA
costs included in CERCLIS (see Exhibit 1) and the addition of
a portion of the RoD’s O&M costs. The appropriate portion of
the RoD’s O&M costs to include in this comparison is up to ten
years when groundwater or surface water restoration is included,
and up to one year in other cases.
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5. SPARE THE ROD: WHAT IS (AND IS NOT) INCLUDED IN A
RECORD OF DECISION

RoD costs typically represent the sum of undiscounted cap-
ital costs (relating to remedial actions) and discounted O&M
costs, yielding a total which is neither fully discounted nor undis-
counted. Unwinding the discount in the O&M estimate requires
three items: an estimate of O&M expenditures by year, the dis-
count rate used and the expected duration of O&M activities in
years. There are three issues relating to these items:

! Annual O&M costs do not represent estimates of O&M ex-
penditures by year since they do not include a provision for
inflation. As an example of the magnitude of this issue, an an-
nual inflation rate of only 3% over an eighteen year period (an
estimate of the average duration of O&M activities where no
groundwater issues are present [6]) increases the total O&M
cost estimate by approximately one-third. Over a thirty-year
period (the maximum duration included in RoD O&M cost
estimates), the estimated total O&M cost would increase by
approximately 60%.9

! The discount rate used to calculate the present value of to-
tal O&M costs is not always included in the RoDs. Exhibit 4
provides a list of the discount rates likely applicable to this
calculation, according to RoD-related guidance and other doc-
umentation in effect during each period. Note that the infla-
tionary impact excluded from the annual O&M costs above
is included here as a reduction to the nominal discount rate
selected—hence the term “pre-tax, after inflation” discount
rate, as shown in Exhibit 4. The reader should be aware, how-
ever, that this discount rate is reduced by the overall inflation
level of the economy. It may be possible that these O&M-

9The increase of 32% can be calculated as the summation of j = 1 to 18 over the expres-
sion (1:03)(j"0:5)=18. The increase of 61% can be calculated similarly, using a summation
of j = 1 to 30, and dividing by 30.
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related costs, which are largely construction and labor-related,
are subject to a different degree of inflation than the average
inflationary level of the economy as a whole.

An example should help to clarify the issues above and
simultaneously explain how the O&M cost information in
RoDs has frequently been misinterpreted. Assume, for ex-
ample, an inflation rate of 3%, a nominal discount rate
of 10%, and an expected first O&M payment (as indi-
cated in the RoD) of $1,000, with O&M activities expected
to continue for 30 years. The present value of the first
O&M payment—assuming it is expected to occur during
the second year of cleanup activities—might be calculated
either as $1,000# (1:03)=(1:10), or as $1,000/1.07 (where
1.07 is the rounded result of 1:10=1:03 = 1:067). Similarly,
the present value of the second payment would be either
$1,000# (1:03)2=(1:10)2, or simply $1,000=(1:07)2. It should
be clear from these examples that it is easier and faster to
simply work with the 7% “after inflation” discount rate and
the constant $1,000 starting value than to use both the in-
flation rate of 3% and the nominal, pre-inflation discount
rate of 10%. Unfortunately, the fact that the first year’s pay-
ment is frequently referred to as the “annual” O&M cost,
has led to the traditional approach of estimating undiscounted
O&M costs as this allegedly “annual” O&M cost, multi-
plied by the number of years of O&M activities—in this
case, yielding $30,000 (= 30 years#$1,000 per year). How-
ever, applying the 3% inflation and 30 year duration assump-
tions to the $1,000 first year O&M cost yields an undis-
counted cost estimate of $49,003—more than 60% greater
than the $30,000 estimate. In addition, if it is believed that
O&M cost inflation is 5% per year, rather than the 3%
general inflation rate, the undiscounted O&M cost estimate
becomes $69,761—more than double the $30,000 estimate
typically derived. This is especially important in evaluating
the extent to which RoD cost estimates have historically
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over- or understated actual costs incurred. If the actual O&M
costs incurred for this RoD’s O&M activities were between
$50,000 and $70,000, the traditional approach would indi-
cate that the actual O&M costs are in the neighborhood of
67%–133% greater than the expected costs. In reality, how-
ever, we can see that correct estimation of the undiscounted
O&M cost would imply that our estimate was right on target,
assuming a 3%–5% inflation rate over the thirty-year period
applied.

! 1EPA guidance documents [7] note that for the purpose of esti-
mating the total O&M discounted cost, the maximum duration
of O&M activities permitted is thirty years. This is because the
EPA is only concerned with providing a discounted estimate
of O&M costs, and the EPA believes that there is little gained
on that basis by continuing beyond thirty years.10 As a prac-
tical matter, many of the cleanup efforts requiring thirty-year
O&M costs are actually expected to continue forever.11

In addition to the above, two additional considerations regard-
ing RoD cost adjustments are noteworthy:

! Although the focus of the above was primarily on O&M costs,
for construction efforts expected to require more than a year
to complete, there may be some level of capital cost inflation
as well.

10Readers of [8] may recall the comment that “there was a clear pattern of 30 years as
the standard duration (of O&M costs),” (p. A-10) consistent with the EPA’s maximum
allowable O&M duration for RoD costing purposes.
11From [9], the following is offered with regard to O&M activity durations: “The federal
government, states, and responsible parties must perform some long-term operations
and maintenance at almost two-thirds, or 173, of the 275 sites we reviewed that were
formerly or are currently on the National Priorities List and where the cleanup remedy
has been constructed. These activities—which include controlling the erosion of landfill
covers, treating contaminated groundwater, or implementing and enforcing restrictions
on the use of land or water on or adjacent to the sites—will continue for decades, and,
in some cases, indefinitely.” Also, from the EPA’s own documentation [7], “Remedial
action alternatives requiring perpetual care should not be costed beyond thirty years, for
the purpose of feasibility analysis. The present worth of costs beyond this period become
negligible and have little impact on the total present worth alternative.”
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! When included in the RoDs, both capital and annual O&M
costs are typically stated in “current dollars,” where “current”
refers to the year in which the RoD was written—not necessar-
ily the year either construction or O&M activities are expected
to begin.

Appendix A includes a sample RoD Summary taken from the
EPA’s web site, and an approach which can be used to calcu-
late the undiscounted cleanup cost estimate implied by informa-
tion included in that sample RoD, adjusting for the above issues.
(Note the assumption that the duration of O&M activities will
not extend beyond thirty years, which may not be reasonable.)
Row 16 of Appendix A, Exhibit 1 displays the undiscounted
total cost estimate for this RoD ($81,178,343). This amount is
between two and three times greater than the estimate of present
worth total costs actually displayed in the RoD ($30,720,300,
from Row 1). The magnitude of this difference emphasizes the
importance of properly interpreting the RoD data prior to its use
in actuarial analyses.

6. SUM IN-SITE: ESTIMATING INDIVIDUAL SITE COSTS BY
ADDING ROD COST ESTIMATES

There are several issues which hamper the use of RoD data for
estimating individual undiscounted Superfund site cost estimates,
including the following:

! There are many sites for which no RoDs have been issued.
! The most recently issued RoDs may not yet be readily avail-
able.

! A site may have two or more OUs, but currently only one RoD
addressing only one of them.

! A RoD need not address the final remediation for an OU (or
combination of OUs). As noted above, interim RoDs may be
stop-gap measures designed merely to contain the spread of
contamination, rather than reduce or eliminate it. A subsequent
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RoD would address the completion of the clean-up effort at
that OU.

! RoDs represent up-front estimates of long-term costs. As a
result, it may be necessary to include an average Superfund
RoD cost redundancy/deficiency factor in the actuary’s anal-
ysis.12

! Some RoDs relate to remedies which may continue indefi-
nitely, yielding an infinite ultimate cost on an undiscounted ba-
sis. However, information provided in the RoD usually shows
activities limited to a specified duration (typically, up to thirty
years for O&M). In the remainder of this paper, the phrase “ad-
justed RoD cost” will be used to represent the undiscounted
RoD cost derived using the information provided in the RoD.
We avoid using the phrase “undiscounted RoD cost,” since it
may be infinite, as noted above.

The model described in the following sections is an attempt
to address at least some of the above issues by modeling RoD
costs directly, rather than site costs. It is not proposed as “the”
environmental model, but one of several different frameworks
which are available to the actuary for modeling Superfund li-
abilities. Additionally, the reader should note that, as much as
possible, the author has assumed that little if any data from the
insurer is available to assist in performing this analysis. Clearly,
the actuary should consider all data that may be available from
an insurer in performing this type of study. However, to the ex-
tent that different insurers may have different levels of Superfund
data available for this type of study, the author felt that this as-
sumption would hopefully provide a model useful to the widest
possible audience.

12From a practical perspective, this may be impossible. First, capital costs in the RoDs
and CERCLIS may have differing definitions, as noted earlier. Second, the EPA cannot
collect O&M expenditure information from the PRPs, so actual O&M costs incurred are
not available publicly. Therefore, no true “actual to expected” total RoD cost comparisons
may be made for RoDs calling for O&M activities, short of independently gathering large
quantities of proprietary data from numerous sources.
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7. SACM (A SUPERFUND ACTUARIAL CLEANUP MODEL):
INCORPORATING RODS IN AN ANALYSIS OF THE TOTAL,

SUPERFUND-RELATED COSTS OF AN INSURER

First, we define a claim in this model as an insured’s cost re-
lating to a single site13, subject to the applicable coverage terms,
policy periods, and insurer defenses against incurring environ-
mental liability. The model described here estimates an insurer’s
total Superfund liability as the sum of the liability stemming
from claims at current NPL sites and the liability stemming from
claims at future NPL sites. Each of these aspects is addressed
separately below, followed by an introduction to the concept of
policy buybacks and known site settlements.

The general approach used in this model to estimate the lia-
bility at current NPL sites is as follows:

1. Estimate the cleanup cost on each current NPL site. For
each site, this includes three components: actual, histor-
ical costs from (or perhaps based on data in) CERCLIS;
previously-estimated future costs, from current RoDs;
and not-yet-estimated future costs, if any, from future
RoDs. The first two items have already been discussed;
we address the third item in the next section of this paper.

2. Estimate each insured’s share of liability at each relevant
NPL site. An introduction to this topic was discussed
earlier in Section 2 (It’s a Dirty Job, but Someone’s Gotta
Do It: Cleanup Cost Liability Allocation).

3. Multiply items (1) and (2) together for each insured with
a current NPL-based claim to estimate that insured’s
share of the relevant NPL site cost.

4. Apply any relevant cost add-on factors, such as for allo-
cated loss adjustment expenses (ALAE), to the insured’s
share of the relevant NPL site cost.

13Adjustments to this assumption may be made by the actuary as appropriate. For ex-
ample, some insureds may attempt to aggregate all Superfund sites into a single claim to
mitigate the impact of multiple, large retentions.
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5. Apply the relevant coverage factors (e.g., attachment
point, limit, share of layer), coverage triggers, cost al-
location scheme (e.g., pro-rated over several years using
total limits by year), and other claim-specific factor ad-
justments (such as the probability of successfully deny-
ing coverage for the claim) to derive the estimated cost
to the insurer of that particular claim.14

6. Sum the estimated costs to the insurer of the current
claims on current NPL sites (based on the application of
steps 1–5 above).

7. Adjust this total to include a provision for future claims
on current NPL sites.

The primary focus of this paper is on those items which relate
to the use of EPA data in an exposure analysis. Therefore, items
(4) and (5) above—though unquestionably important concepts—
will not be addressed in this paper.

The Hole is Greater than the Sum of its Parts: Estimating Record
of Decision and Relevant Operable Unit Counts by Site

So how can RoDs be used to estimate the total cost of a Su-
perfund site? This model divides that task into three components:

1. estimating the number of RoDs per OU at the site,

2. estimating the number of OUs per site, and

3. estimating the cost indicated in each current and future
RoD at that site.

An analysis of the estimated number of RoDs per OU at a
site is included in Exhibit 5. Many OUs do not and will not have
RoDs associated with them, and therefore will not be considered
in this remedial action cost analysis. These OUs represent among

14Note that, depending on the terms of the insurance agreement, Steps 4 and 5 may need
to be reversed. For example, if ALAE is covered in proportion to the amount of loss
covered, Step 5 would need to be performed prior to Step 4.
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other things, site-wide preliminary assessments (typically, OU
00) and emergency removal actions. There are costs associated
with these removal action OUs, which are discussed later. How-
ever, at this point, we only want to consider those OUs which
do (or will) have RoDs. To accomplish this, we can develop the
ratio of the number of RoDs issued to date to the number of OUs
with at least one RoD issued to date, by NPL site listing year, as
displayed in Exhibit 5.15

An analysis of the estimated number of OUs per site is in-
cluded in Exhibit 6. Once again, we circumvent the issue of OUs
which will not have RoDs by developing the ratio of operable
units with at least one RoD to NPL sites with at least one RoD.
While there is variation in the results, note that the ultimate ex-
pected number of OUs per site for the 1987–1994 years is 1.47,
almost identical to the estimate of 1.48 OUs per site from [8, p.
48]. Although potentially reasonable based on this comparison,
however, research into approaches to estimate the tail factor for
this type of analysis is left open as a topic for future study.

The specific approach used by the actuary to incorporate fu-
ture RoDs at current NPL sites is at his or her discretion; the
important point is that some form of development is necessary.
Even on known sites, there may be future OUs planned. And,
even on known OUs, there may be future RoDs planned (or not
planned, but which will later be required). At the very least, an
OU with an interim remedy RoD issued will likely require a
follow-up RoD, describing any subsequently required cleanup
efforts.

Note that this approach estimates RoDs per OU and OUs per
site separately, rather than estimating RoDs per site directly. This
is because a RoD cost typically relates to a given OU, rather
than to the total site. Once we estimate the number of additional

15Note that an amendment RoD should not automatically be counted as an additional
RoD for a given OU, since it can supplant, rather than just supplement the original. “No
action remedy” RoDs with no (or minimal) associated costs should also be removed,
unless the analysis’ average RoD cost(s) reflect them.
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RoDs required at a current OU (using the ultimate RoD/OU ratio
determined above), we can estimate the cost of these future RoDs
by looking at the costs of RoDs relating to OUs with similar
characteristics (i.e., similar types of contaminated media) at other
sites. Similarly, when we estimate the number of future OUs at
a given site (using the ratio of OUs with RoDs to sites with
RoDs, also discussed above), we can estimate the characteristics
of these additional OUs by looking at the characteristics of other
OUs at similar sites (e.g., chemical plants, manufacturing plants,
etc.). Then, once the characteristics of these future OUs have
been determined, estimating the future RoD counts and costs on
those future OUs is similar to estimating the future RoD counts
and costs on current OUs.

The estimations referred to above are achieved in this model
through simulation, based on the expected values derived previ-
ously. Simulation is also used to estimate the cost of future RoDs,
which is addressed in the next section of this paper. The idea of
simulating costs is especially important when estimating the cost
for excess policy limits. As an example, suppose a particular site
cleanup will cost either $500,000 or $1.5 million, depending
on which of two equally-likely cleanup alternatives outlined in
the relevant RoD is selected. The expected cost of this cleanup
would be $1 million (= 50%#$500,000+50%#$1:5 million).
If you are a reinsurer covering losses in excess of $1 million,
you might not establish a reserve for this claim, since its ex-
pected cost only reaches, but does not pierce, the attachment
point. However, there is a 50% chance that the reinsurer may be
asked for $500,000 (since there is a 50% chance that the cost will
be $1.5 million), and a 50% chance that the reinsurer may not be
asked for any reinsurance recovery (if the cost is only $500,000).
Under this scenario, then, a reasonable reserve for the reinsurer
might be $250,000 (= 50%#$500,000+50%#$0), rather than
the $0 reserve that might be established using the expected value
method. From the primary insurance company viewpoint, an in-
surer protected by this reinsurance coverage would have booked
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$1 million using the expected cost approach, but only $750,000
(= $1 million total expected cost, less the $250,000 ceded to the
reinsurer) by incorporating variability into the site cost estimates.

No Clean Break from the Past: Estimating Future RoD Costs
Using Environmental Characteristics

At this point, we have simulated the number and characteris-
tics of future OUs at current sites, and simulated the number of
future RoDs on those OUs. We now turn our attention to esti-
mating the costs to be included in these future RoDs. First, we
must differentiate between interim and final RoDs. This is infre-
quently discussed, but can be vitally important. An “average RoD
cost” multiplied by the current average number of RoDs per site
yields a biased-low estimate of the average cleanup cost per site,
if any of the sites contain interim RoDs for which the final RoDs
have not yet been issued. As a simple example, suppose only one
Superfund site exists, with one operable unit and one (interim)
RoD issued to address it. The average cost to clean that site using
this approach would be the cost of that interim RoD, despite the
fact that a final RoD will follow at some point in the future.

But even this level of detail—where interim and final RoDs
are separately reviewed—can be further refined by selecting a
set of environmental characteristics that best subdivides both the
interim and final remedial action costs into even more homoge-
neous categories. The author believes that the more important,
readily quantifiable characteristics are the remedy selected (for
example, treatment vs. containment of the contamination), pres-
ence or absence of groundwater issues, and the process lead (i.e.,
whether the EPA or PRP was responsible to create the RoD). Ad-
ditional characteristics based on the EPA’s decision to promote
consistency in remedy selections (discussed shortly) may also be
considered. Other characteristics, such as the size and accessibil-
ity of the contaminated area, as well as current “policy” regarding
preferred remedies are also highly relevant—but can be difficult
to ascertain consistently and objectively via the RoDs.
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Once the groundwater status and selected remedy values for
a RoD are determined, they are fixed from that point forward
for the remedial action relating to that RoD. The process lead,
however, may change over time, as the EPA may turn over the
responsibility for a site’s cleanup to other parties during the re-
mediation efforts. To the extent that the actuary believes that an
EPA-led effort and non-EPA-led effort may differ in cost, some
analyses of the past and future likelihood and timing of these
(potential) changeovers is appropriate. Alternatively, one might
try modeling based on an assumed frequency of changeovers for
EPA-led activities at Superfund sites.

Another possibly relevant and measurable characteristic is the
year the RoD was issued. These might be segregated into four
groups:

1. 1986 and prior. These RoDs were written in the pro-
gram’s infancy and addressed some of the most haz-
ardous sites addressed through the Superfund program.
The worst of these sites represents the most volatile and
variable costs in recorded, historical RoDs.

2. 1987–1989. The Superfund Amendments and Reautho-
rization Act of 1986 (SARA) directed the EPA to ensure
that cleanups would be adequately protective of human
health and the environment through the selection of more
permanent remedies (i.e., emphasizing treatment, rather
than containment).

3. 1990–1994. An “enforcement first” policy, issued in
1989, led to a strong shift from EPA-led to PRP-led
cleanup efforts.

4. 1995–Present. The EPA begins phasing in new admin-
istrative reforms, intended to speed up cleanup efforts,
improve cost-effectiveness and cut down on litigation.
Costs included in RoDs issued since 1995 will likely
be based on these initiatives, and should therefore be
grouped accordingly.
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The above should be considered in addition to the previously
mentioned characteristics (plus any others the actuary feels are
appropriate) with respect to the ever-present credibility trade-off:
increasing the homogeneity of the data by breaking it up into
additional pieces may simultaneously decrease the credibility of
the data, since each piece would have less data included in it.16

We have now established the level of detail to be incorporated
in this model to estimate the cost of a claim at a current Super-
fund site. The current RoD costs can be taken directly from the
data in the Adjusted RoD Cost Database established earlier. The
number of future RoDs required has also been determined. The
characteristics of the additional RoDs required for a given OU
can be simulated, based on the characteristics of RoDs relating
to other OUs with similar OU characteristics. Once each future
RoD’s characteristics are simulated, the future RoD costs can be
simulated based on the average and variance of costs in similar,
current RoDs.

Several considerations relating to the simulation of these fu-
ture RoD costs are noteworthy. First, which RoDs should be
used, and why? The actuary may be able to allow for future
legal, social and technological changes in future RoD cost esti-
mates by only using the mean and variance of costs from similar
RoDs issued during the most recent years. Two specific EPA ini-
tiatives prompt this suggestion. First, the EPA expects to reduce
future costs by approximately $500 million based on its review
and updates to more than 90 previously issued RoDs from the
early years of the program.17 In other words, the past will be

16In addition to helping quantify the cost of Superfund sites, environmental characteristics
are also useful in helping an insurer’s claim department evaluate the reasonableness of the
insured’s requested amount. For example, suppose a claim submitted by a policyholder
relates to a site with contaminated soil being addressed by a containment remedy. The
cleanup cost underlying the insured’s claim can be benchmarked using the cost from
RoDs that address contaminated soil through containment remedies at other sites.
17The reform guidance relating to these cost reductions was issued September 27, 1996.
A significant portion of this savings is a result of three RoD cost adjustments: the Western
Processing Site in Washington, the Norwood PCB Site in Massachusetts, and Metamora
Site in Michigan have seen RoD cost reductions of $82 million, $47 million, and $28
million, respectively.
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adjusted to look more like the present. Second, the EPA has
set in place “presumptive remedies” for certain types of sites.
According to Carol M. Browner, Administrator of the EPA:

“Presumptive remedies are based on scientific and
engineering analyses performed at similar Superfund
sites and are used to eliminate duplication of effort,
facilitate site characterization, and simplify analysis
of cleanup options. EPA issued presumptive remedy
guidances for the following: municipal landfill sites;
sites with volatile organic compounds in the soil; wood
treater sites; and a groundwater presumptive response
strategy.” [10]

In other words, the future will also be adjusted to look more
like the present and the (adjusted) past. Therefore, limiting the
data used to only the most recent data (which is not currently
being adjusted) may reasonably address this issue. Then, after the
average and variance of each combination of RoD characteristics
is calculated using the most recent data, future RoD costs may
be simulated.

Why use only recent RoDs to predict future RoDs on current
sites? Exhibit 7 displays a graph of the history of RoD rem-
edy selections from 1982 to the present. Note that from 1982
to 1986, containment-only remedies were the most prevalent.
From 1987 to 1991, consistent with SARA’s expressed prefer-
ence for permanent remedies, treatment-oriented remedies pre-
dominated. From 1992 to the present, however, there is a slow
but steady increase in “other” remedies. This grouping includes
no-action remedies, site monitoring, site access restriction, and
other such non-containment or treatment-based approaches. On
average, these remedies cost less than containment or treatment
remedies, and have yielded a decreasing average RoD cost in re-
cent years. However, the majority of RoDs issued in recent years
actually relate to sites listed on the NPL in the earlier years of
the program, which have already had their more serious threats
addressed in previous RoDs. It may be reasonable, therefore,
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to estimate the cost of future RoDs relating to these “mature”
current sites using recent RoDs (which also likely relate to other
“mature” sites).

However, many recently-listed (and some not-so-recently-
listed) Superfund sites have not yet had their most serious threats
addressed by any RoD. For these sites, using this overall current
average RoD cost (relating primarily to mature sites) may not
be appropriate. The author recommends instead simulating ini-
tial RoDs at these sites using the average cost of similar, initial
RoDs recently issued at other sites. If it is necessary to simulate
additional RoDs on these sites, the approach described in the
previous paragraph may be appropriate.

A second consideration relating to the simulation of future
RoD costs is that not all current sites should have the need for
future RoDs randomly determined. It may be reasonable to ex-
pect that no additional RoDs will be required on sites which
have either been deleted from the NPL or labeled construction-
complete.

Third, an additional adjustment might be made to the data re-
flecting those few sites whose total costs are a multiple of the
overall average. These sites are frequently referred to by actuar-
ies as “megasites.”18 Insurers should be aware of their insureds
with claims relating to these sites (which include, for example,
Love Canal and Stringfellow), and should separate their poten-
tial liability at these sites from any analysis of their potential
liability at the more “standard” Superfund sites, the same way
that an actuary would typically segregate large losses from de-
velopment triangles.19 The actuary should remain alert to the
possibility of new megasites, however, like the General Electric

18Interestingly enough, according to the RCRA/Superfund Hotline (1-800-424-9346),
the EPA’s original use of the term “megasite” did not refer to sites with high cleanup
costs, but to sites with high remedial investigation and feasibility study (RI/FS) costs (in
excess of $3 million).
19The presence of these megasites may invalidate the use of unadjusted average Super-
fund site cost estimates in an actuarial analysis. Since megasites would be included in an
estimate of the average Superfund site cleanup cost, an insurer (or insured) not potentially
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Pittsfield, Massachusetts Plant/Housatonic River site, currently
estimated to cost more than $200 million and require more than
ten years to clean—and only proposed for inclusion on the NPL
in September of 1997!

Finally, we must account for the variability between a given
effort’s expected and actual cost, in addition to the variability of a
given effort’s expected cost alone. As noted earlier, according to
the EPA, the actual cost of remediation should be between 70%
and 150% of the RoD’s expected cost. If the actuary considers
the RoD cost as a “best estimate” with, say, a 95% probability
that the actual cost will be between 70% and 150% of that best
estimate, then the actual cost associated with each RoD could be
simulated based on the expected cost and other relevant param-
eters.20

Now that we can estimate the cost of current claims on cur-
rent NPL sites, we turn our attention to estimating the number
of future claims on current NPL sites. The number of current
claims on current NPL sites is readily available to the insurer;
the estimate of future claims on current NPL sites requires some
additional work, as described in the following section.

The Fly in the Ointment: Estimating Future Claims on Current
Sites

One way to estimate the number of future claims on current
NPL sites is to estimate the ultimate number of claims relating

liable at these megasites should likely use a lower estimate. Conversely, for an insurer
(or insured) with liability at one or more megasites, the overall average is likely too low
to apply. In those cases where the insurer doesn’t know if an insured is or will become
linked to a megasite, the actuary might decide in those cases that the overall average
may be appropriate. Conversely, given the time that has elapsed since these megasites
have been listed, the actuary may decide that, if the insured hasn’t notified the insurer
by now, there is likely no link present, and the average excluding the megasites may be
used. This is, of course, at the discretion of each individual actuary’s judgment.
20There is a question as to whether it is the nominal or discounted actual cost that should
be between 70% and 150% of the expected RoD cost. In the case of a site requiring
perpetual care, however, a range of 70%–150% of the expected undiscounted cost is
almost meaningless. As a result, the actuary may want to adjust the model to reflect the
likelihood that the costs fall within 70%–150% of the discounted RoD cost.
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to current NPL sites, and subtract out the number of claims re-
ported to date on those sites. Estimating the ultimate claim count
for current sites can be done using a variation on the standard,
actuarial triangle format and (ideally) internal company data. In
the approach outlined in this paper, each row represents a differ-
ent NPL listing year (i.e., sites listed on the NPL in 1983, sites
listed on the NPL in 1984, etc.) and each column represents the
amount of time (in years) between when a site was listed on
the NPL and when a claim relating to that site was reported to
the insurer (or reinsurer). This approach allows us to develop
to ultimate the number of claims which will be presented to an
insurer/reinsurer relating to sites listed on the NPL in each site
listing year. Unlike typical development approaches, however,
many PRPs will have reported claims to their insurers prior to
the year a given site achieved NPL status. This is not a problem,
since the triangle need not and should not have a “0” or “1”
as its first column heading. Under this approach, the left-most
column should be a negative number representing the greatest
time lag between when an insured first notified its insurer of its
PRP status at a site and when that site was subsequently listed
on the NPL. The goal here is to develop to ultimate the number
of claims relating to current Superfund sites.

If company data at this level of detail is not available (and
usually it is not), an alternative is to use the EPA’s data on PRP
counts and notification dates (formerly in SETS, currently in
CERCLIS) and NPL site listing dates (in CERCLIS) to estimate
the ultimate number of PRPs linked to current NPL sites. As an
example of how this approach would work, the reader is referred
to Appendix B.

The resulting PRP notification pattern can then be lagged to
reflect the expected average additional time between the EPA
notifying a PRP of its potential liability at a site, and the PRP
notifying its insurer.21 To estimate this additional time lag, the

21This lag should also consider an adjustment for notification to reinsurers (and excess
carriers) if appropriate, as well as collateral suit defendants, who by definition cannot
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actuary should consider differences in the manner in which data
has historically been reported to the insurance company. In the
early days of pollution coverage disputes, many insureds re-
ported multiple claims all at once, as part of declaratory judg-
ment (“DJ”) actions. These simultaneous, multiple reportings
stemmed from the sudden recognition of possible insurance cov-
erage availability. If the policyholder subsequently received no-
tice of its potential liability at other sites, however, these addi-
tional claims would usually be reported to the insurer even in
the midst of DJ proceedings to avoid possible late notice issues
on those new claims. As a result, an insurer reviewing its data
may notice an initial “flood” of claims from its insureds (dur-
ing which there was likely no relationship between PRP and
insurer notification dates), followed by a more stable relation-
ship between PRP and insurer notifications. Since a new “flood”
of initial claim reportings from an insurer’s policyholders is un-
likely to occur in the future, the author suggests that the time lag
between PRP and insurer notifications relevant to future claim
reportings may be estimated using PRP notification and corre-
sponding claim report dates, excluding the policyholders’ initial,
multiple-claim reportings from the late 1980s to the early 1990s.
Multiple claim reportings by insureds after this time period may
either be included or excluded, depending on the actuary’s judg-
ment as to whether they should be considered part of future
expectations or aberrational.

The actuary may also want to separately review policyholders
according to their relative likelihood of liability for Superfund-
related costs. (See the “Superfund Liability Pyramid” discussion
in It’s a Dirty Job, but Someone’s Gotta Do It: Cleanup Cost
Liability Allocation in Section 2.) These splits were not included
in this paper, as it would complicate the description of the
approach. Also, it is possible that a single policyholder linked to a

notify their insurers until after another PRP seeks them out. Estimating these time lags—
which will no doubt differ for insurers and reinsurers—may be a very worthwhile area
for future research.
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single site may yield claims in multiple policy years. Adjustments
to reflect this issue, if any are desired, may be made based on a
review of insurance company claims data and discussions with
legal counsel.

Other factors possibly impacting the time lag between NPL
site listing date and insurer notification include CERCLA-related
legislative or administrative changes, major coverage-related
court decisions and insurer settlement procedures. While these
are significant issues, the author believes that they may only have
a modest impact with regard to this particular time lag issue.
First, the author is not aware of any recent CERCLA legislation
that might have significantly impacted this time lag. In addition,
litigation over the question of whether or not insurance coverage
is applicable to Superfund-related cleanup costs has slowed, with
recent decisions in the environmental area focusing more on the
allocation of costs among the insured and insurers (where appli-
cable) than the determination of coverage. As a result, focusing
on the more recent development factors in the parallelogram (and
possibly any trends in those factors) may diminish any potential
concern regarding these issues. Finally, though insurer reserving
and settlement practices may significantly impact the data used
to estimate an insurer’s expected cost, the author does not expect
that they will significantly impact the time lag between NPL site
listing and insurer notification.

We have now completed the discussion on estimating an in-
surer’s potential Superfund-related liability at current NPL sites.
The following section addresses how an actuary might esti-
mate an insurer’s potential liability stemming from future NPL
sites.

Incurred but not Remediated: Estimating the Cost of Future Sites

To estimate an insurer’s liability stemming from future Su-
perfund sites, the model assumes that an estimate of the total,
ultimate number of NPL sites is available to the actuary. For
reference, some estimates of the total number of NPL sites from
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different sources have been compiled in [11]. Then, the number
of future sites can be calculated directly as the estimated, total
Superfund site count, less the number of current NPL sites.

While there are several approaches to estimating true IBNR,
one approach the author has seen is to multiply the total estimated
cost to the insurer of current sites by the ratio of IBNR sites to
current sites. This approach assumes that the percentage of cur-
rent Superfund sites with no currently identified PRPs (referred
to as “orphan sites”) is similar to the percentage of future Super-
fund sites with no PRPs. It also assumes—among other things—a
relatively stable average NPL site cost over time. On a present
value basis, the shift over time from relatively expensive, shorter-
term remedies (i.e., treatment) to relatively less expensive, longer
term remedies (like containment and the more recent, “other”
remedies) yields an overall downward cost trend. But does the
duration of a typical, thirty-year (or longer) containment remedy
applied against relatively low—but inflating—annual costs out-
weigh the high, up-front cost of treatment on an undiscounted
basis? This would be a good area for future research.

The author’s preferred approach is to estimate the total claim
cost on future sites using a four step procedure:

1. estimate the percentage distribution of future sites by site
type (e.g., chemical plants, landfills, etc.) based on re-
cently listed sites and sites currently proposed for listing
on the NPL,

2. estimate the future number of sites for each site type
by applying the percentage distribution above to the up-
front estimate of the total number of future Superfund
sites,

3. multiply the future site counts for each site type cal-
culated above by its respective future average site cost
(which might be based on the cost of recently-listed,
similar types of NPL sites), and
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4. assume the insurer’s percentage of future site costs for
each site type is proportional to the insurer’s percentage
of current site costs for that site type.

Clearly, actuarial judgment may be applied at any step along the
way, as desired.

Finally, some comments on the theory of “barrel scraping” are
in order. According to [12], barrel scraping is “the theory that a
disproportionate number of the worst problems were discovered
and listed in the early years because of their obviousness, and
that the (Superfund) program will increasingly be ‘scraping the
bottom of the barrel’ as additional sites are listed.” However,
when evaluating how the average cleanup cost for NPL sites has
changed (and will change) over time, the actuary should consider
four additional items:

1. In addition to the few, ultra-costly “megasites,” many
more sites listed in the early to mid-1980s were subse-
quently de-listed with minimal if any remedial activities
necessary. (The smaller costs associated with these non-
remediated sites may have stemmed from short-term re-
moval actions, RI/FS activities, monitoring costs, etc.)
Like the megasites, these “microsites” were predomi-
nantly listed on the NPL between 1983 and 1986, and
contributed to the average cleanup cost for sites listed
during those years. As a result, the average cleanup cost
of sites listed on the NPL from 1983 to 1986 is lower
than it would otherwise be, were it not for the presence
of these microsites.

2. Improved site-screening technology over time, as well
as a revised hazard ranking scoring approach (discussed
earlier in this paper), has led to a significant reduction in
(and possible elimination of) the number of microsites
listed on the NPL during the late 1980s to mid-1990s.
The removal of low-cost sites from the list of potential
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NPL sites yields an average site cost for this time period
that is higher than it would otherwise be, were it not for
the changes in site-screening technology and the HRS
scoring approach.

3. During the mid-1990s, the EPA initiated an effort to take
advantage of more cost-effective technology by issuing
RoD amendments that superceded the more costly reme-
dies selected in earlier RoDs (in those instances where
the remedies had not yet been implemented). As a result,
the improvements in the cost-effectiveness of cleanup
efforts that are expected to benefit currently listed sites
are also benefiting previously listed sites (in the form
of these RoD amendments). The impact of these RoD
amendments, therefore, is to bring the average cost of
currently and previously listed sites closer together than
they would otherwise be, were it not for these RoD
amendments promoting currently available technology
on older Superfund sites.

4. Governors’ Concurrence legislation enacted in 1995 (as
noted earlier in this paper) required the EPA to receive
approval from a state before listing a site located there on
the NPL. As of this writing, it remains the EPA’s policy
to determine a state’s position on the listing of a partic-
ular site before proposing it for inclusion on the NPL.
This is important because, according to a GAO study
[13], “Officials of 26 (60 percent) of the 44 states (sur-
veyed) told us that they are more likely to support listing
sites with cleanup costs that are very high compared to
those for other types of sites.” This implies that the cost
reduction benefits discussed in the previous item may
actually result in fewer future site listings, since the ma-
jority of states would be looking to list sites with higher
cleanup costs. It would also likely result in an increase
in the average cost of future Superfund sites, relative to
the average future site cost that would otherwise have
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been expected (since the sites not listed would be those
that are less costly).

Another consideration that might imply a possible downward
shift in historical site costs over time is the shift from EPA-led
efforts to PRP-led efforts. The theory is that a PRP spending
its own money may have greater incentive for cost control than
the EPA, which may be spending money it hopes to collect later
from PRPs. In conjunction with item 4 above, however, the au-
thor believes that the expected impact of this issue is more of a
decrease in the number of future Superfund sites than a change
in the average cost of future Superfund sites, since these future
sites where the costs could be lowered might no longer be listed.

In summary, based on all of the above, it is the author’s opin-
ion that the average undiscounted Superfund site cleanup cost
may not have changed very much over time, and that the av-
erage cleanup cost of future Superfund sites might, in fact, be
larger than the average cost of currently listed sites (depending
on the extent of the impact of item 4 above)—or at the very least,
not necessarily be lower than the average cost of currently listed
sites, as is implied by the barrel scraping theory.22

Does the barrel scraping theory apply to non-NPL sites? The
author’s opinion about this is similar to his opinion about barrel
scraping at NPL sites, though for different reasons:

! The GAO survey noted above implies that the majority of
states favor supporting the most costly sites for NPL listing

22It would be interesting to test the impact of the barrel scraping theory on sites listed
to date using actual cost data (or at least estimated costs from RoDs). However, as of
this writing, less than half the sites listed since January of 1991 (after the change in the
HRS approach) appear to have had even a single RoD issued for them, per CERCLIS.
For sites listed since January of 1995 (the year Governors’ Concurrence legislation and
some of the SACM initiatives were introduced), less than one-third of the sites listed
appear to have had any RoDs issued so far. Further complicating this study is the fact
that estimating the number and cost of future RoDs needed on these sites (both where
some RoDs have been issued as well as where none have yet been issued) requires
assumptions about what the number and costs of those RoDs will likely be—which in a
sense puts the cart before the horse, requiring one to answer the barrel scraping question
by first assuming it to be true or false.
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on a going-forward basis. Shifting the other potential NPL
sites into state Superfund programs (which, as will be dis-
cussed further later in this paper, are generally considered to
have a lower average cleanup cost) will tend to raise the aver-
age cleanup cost of non-NPL sites in recent years and into the
future. And, while there may be some administrative cost re-
ductions stemming from the “transplanting” of NPL sites from
the EPA to the states’ jurisdictions, the author believes it un-
likely that this jurisdictional shift alone would bring the cost
of an otherwise Superfund-worthy site down from the average
NPL site level to the average non-NPL site level.

! With the EPA’s introduction of the Brownfields initiative in the
mid-1990s (which promotes cleanup efforts through financial
rewards, rather than enforcement-related penalties), many po-
tential hazardous waste sites that might have otherwise been
addressed through state or federal enforcement are now be-
ing addressed with the voluntary cooperation of the respon-
sible parties. Many states have since instituted similar pro-
grams.

A potentially responsible party’s decision whether or not to
voluntarily clean a site under these programs is likely based
on that site’s expected cleanup cost, relative to the benefits
derived from performing the cleanup (e.g., tax benefits, im-
proved public perception). The author believes that the non-
NPL sites cleaned under these initiatives are likely the less
costly ones, since the other sites’ cleanup costs may be more
likely to outweigh the benefits of performing those cleanups
(which may partially explain why few if any expensive Su-
perfund site cleanup efforts are voluntary). As a result, if it
is believed that voluntary cleanup efforts are not likely sub-
ject to insurance recoveries, then the removal of these smaller,
less costly sites from the potentially insurable universe of non-
NPL sites also yields an increase in the average non-NPL site
cleanup cost relevant to insurers.
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Based on the above, the author believes that increased state
Superfund capacity for larger cleanup and enforcement-related
efforts over time, in conjunction with more recent federal and
state initiatives centered on achieving voluntary cooperation from
responsible parties for the smaller cleanup efforts, may have re-
sulted in an increase in the average non-NPL site cleanup cost
over time for those sites potentially relevant to insurers—or at the
very least, not necessarily a decrease, as would be implied by
the barrel scraping theory.

In summary, then, the author believes that the future average
cost for both NPL and non-NPL sites may be larger than his-
torical levels. In the case of Superfund, this is due largely to a
reduction in the number of expected future sites with smaller
associated costs. In the case of non-NPL sites, this is due to an
increase in the number of higher cost sites (e.g., the “dropping
down” of some otherwise Superfund-worthy sites) in addition to
the removal of some of the less costly sites (e.g., the voluntary
cleanups).

It is important to stress that many of the reasons the author
questions the barrel scraping theory stem from political changes
(e.g., the Brownfields initiative, Governors’ Concurrence legis-
lation) and technological changes (e.g., improvements in site-
screening technology) that—in the author’s opinion—mitigate
(if not eliminate) the likely impact of the barrel scraping theory.
Were it not for these issues, the author would probably support
the barrel scraping theory as well.

8. RUMMAGE SALE: KNOWN SITE SETTLEMENTS AND POLICY
BUYBACKS

A policy buyback represents an agreement between an insurer
and an insured whereby the insurer pays money to the insured in
exchange for which the insured provides a full or partial release
from any future liability relating to a policy or set of policies.
In the event of a full policy buyback, the insurer is relieved
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of all responsibility for both case reserves and IBNR. In the
event of a partial policy buyback, the insurer is typically relieved
of responsibility for both case reserves and IBNR relating to
specific causes of loss only.

A known site settlement represents an agreement between an
insurer and an insured whereby the insurer pays money to the in-
sured in exchange for which the insured provides a release from
any future liability relating to known sites only. This relieves the
insurer of responsibility for case reserves on the claims relating
to those sites. However, the insurer may remain potentially li-
able for claims relating to other current sites, if claims relating
to them were not included in the settlement. Also, since the in-
surer remains potentially liable for that insured’s claims relating
to future sites, a known site settlement does not eliminate IBNR.

While these are significant issues, a detailed discussion of
them is outside the scope of this paper. In general, however, the
reader should note the following:

1. Adjustments for historical policy buybacks can be made
by running the model excluding them, and then adding to
the model results the costs paid by the insurer to achieve
them.

2. Adjustments for historical known site settlements can be
made in the same way as described for policy buybacks.
Alternatively, adjustments for these site settlements may
be made by subtracting from the model’s results the dif-
ference between the estimated and actual amount relat-
ing to settled claims. For example, if a ten claim site
settlement was estimated to cost a total of $5 million in
the model but actually settled for $3 million, then $2
million should be subtracted from the model’s results.23

23The reader should note that a likely reason for the $2 million difference is the timing
of the insurer’s payments. The $5 million output from the model assumes that the insurer
may be liable for costs as the policyholder incurs them over a long period of time. If
the insurer settles the claim when the insured still has future payments to make (as is
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Determining which of these two approaches to use may
depend on whether or not the actuary finds it easier to
search for and remove linkages between insureds and
sites up-front (i.e., before running the model), or to re-
view the model’s results and adjust for any relevant link-
ages it identified (i.e., after running the model).

3. Adjustments to reflect future site settlements and policy
buybacks may be made by reviewing trends in historical
site settlement and buyback activity. Relevant issues in-
clude trends in the number, timing and average cost of
buybacks and known site settlements.

4. When estimating known site settlement and policy buy-
back adjustments, the actuary should be mindful of the
possibility that they could yield increases in the results,
rather than reductions. This typically occurs in connec-
tion with policy buybacks where the policyholders—
each linked to a large number of sites—have policies
with high attachment points. In these cases, insurers are
sometimes willing to buy their way out of possible fu-
ture coverage, even though the expectation is that none
of those insureds’ claims would penetrate the covered
layers. While this is a legitimate thing for an insurer to
do, the result is still a situation where the actual cost may
be greater than the expected.

9. GARBAGE IN, GARBAGE OUT: REMOVAL ACTION COSTS

As Exhibit 3 shows, removal actions are typically restricted
to a one-year duration and a $2 million cost limit. There have
been many instances where removal costs have exceeded this
figure significantly, however, like the Summitville Mine site in

frequently the case), the insurer will presumably only pay the costs incurred by the
insured to date plus the present value of the insured’s expected future costs at the time
of that settlement (though the discount rate used would likely also reflect the transfer of
uncertainty from the insurer back to the insured).
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Colorado, where more than $70 million has been obligated for
removal actions alone. These costs are not included in the RoDs,
and may produce enough variability in severity to have a material
impact on the total cost at a particular site. To the extent that an
insured (or insurer) may become liable for these removal costs,
it may be worthwhile to consider modeling both remedial and
removal costs. In addition, the actuary should try to stay abreast
of the continuing stream of environmental liability-related rul-
ings over time, to determine if any other environmental activities
(beyond removal and remedial actions) may need to be included
in this type of analysis.

10. CONSTRUCTION COMPLETE? (A FEW THOUGHTS ON
NON-NPL SITE CLEANUP COSTS)

There are several important differences between Superfund
and non-Superfund sites that should be considered when adapt-
ing this Superfund-based approach to non-Superfund sites, in-
cluding the following:

! RoDs are only issued for Superfund sites. RoD-like cost in-
formation is not readily available for non-Superfund sites,
though it has been generally accepted that cleaning an av-
erage (less hazardous) non-NPL site will be significantly less
costly than cleaning the average (more hazardous) NPL site.
However, within the context of comparing particular types of
NPL and non-NPL sites (e.g., landfills listed on the NPL vs.
landfills being addressed through state enforcement activities),
this is a debatable point. Many actuaries have postulated that
the level of hazard and cost at a particular site are directly
related,24 but it is more likely that the EPA’s selected rem-
edy for a site based on its relative hazard level (i.e., treat the
worst sites and contain the rest) drives the cost. This is impor-
tant, because for non-NPL sites—where the EPA may not be

24The author’s negative view of this argument—and the rationale for it—are detailed in
Appendix C.
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involved—if a particular state does not share the EPA’s philos-
ophy, the possible relationship between hazard and cost might
not hold. Three more arguments in favor of higher than ex-
pected non-NPL site enforcement-based cleanup costs include:
(1) some states may not have reported to the EPA all of their
hazardous waste sites—many of which may be Superfund-
worthy—simply to avoid the perceived delays in cleanups, (2)
many states in the past have not considered as many alternative
remedies as the EPA prior to determining the selected remedy,
which may have caused more cost-effective and equally vi-
able remedies to be excluded from the non-NPL site cleanup
alternatives, (3) non-NPL sites requiring no cleanup actions
will not produce claims, and sites requiring small-scale efforts
will likely be dealt with through voluntary cleanup programs,
which might not be considered insurable. Clearly, the removal
of these smaller claims from the insurable non-NPL universe
will tend to raise the relevant average non-NPL enforcement-
based cleanup cost.

! While an estimate of the ultimate number of Superfund sites
may be based on the current number of sites already on the
NPL and those still in CERCLIS awaiting their NPL-status
determination, there is no single, generally accepted estimate
of either the current or total number of non-NPL sites that will
require cleanup through enforcement (non-voluntary program)
actions.

! Estimating an insured’s potential liability at a Superfund site
frequently includes an estimate based on the number and
names of other PRPs at that site. Neither the number nor the
names of potentially responsible parties is readily available at
most non-NPL sites, however, though it is generally accepted
that non-NPL sites have far fewer PRPs than NPL sites (fre-
quently as few as one!). And, similar to NPL sites, even if the
number and names of all PRPs for a given non-NPL site were
available, a PRP’s share of liability might not correlate well
with the number of PRPs potentially sharing the cleanup cost
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at that site. An additional problem is that not all states apply
“retroactive, strict, and joint and several” liability standards.
As noted earlier, estimating a given PRP’s expected liability
share is one of the most difficult aspects of estimating an in-
surer’s environmental liabilities.

! Relevant characteristics applicable to non-Superfund sites may
differ from those of Superfund sites, even if RoD-like cost
data were available, due to (among other things) differences
in state-by-state cleanup requirements and the types of site
in each category. For example, Superfund will rarely include
leaking underground storage tank (LUST) sites, since these
are almost always filled with petroleum—not a substance to
which Superfund moneys are intended to respond. (These are
addressed under RCRA; see Appendix D.) As a result, when
LUST cleanup efforts are required, they will almost always be
addressed as non-NPL sites. Small fuel leaks and drycleaner
sites will also typically be addressed as non-NPL sites, usually
too small and not hazardous enough to warrant NPL listing. It
is worth noting that the types of non-NPL sites discussed here
(i.e., small fuel leaks, drycleaner sites and LUSTs) tend to be
less costly on average than the types of sites typically found on
the NPL (e.g., manufacturing and chemical plants) resulting in
a lower overall average cost for non-NPL sites than for NPL
sites. However, for sites that appear both on and off the NPL
(such as landfills), comparisons between NPL and non-NPL
site costs may be reasonable.

11. DISCOUNTING THE PROBLEM: WHAT’S IT WORTH TO YOU?

While this topic is clearly deserving of a paper in its own right,
a brief introduction to some relevant concepts is included here.
In most discounting analyses, three items are required: an esti-
mate of undiscounted total cost, a payout pattern and a discount
rate. To discount Superfund liabilities, three additional values are
useful: a Superfund cost incurral pattern (indicating the timing
of costs incurred by those actually cleaning up the Superfund
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site, regardless of any cost-sharing agreements or future reim-
bursements which may apply), a probability of payment (based
on the idea that the insurer may or may not be successful in
denying liability for the claim altogether), and an estimate of the
insured’s share of liability for site cleanup costs.

The Superfund cost incurral pattern is necessary because the
insurer’s potential cost burden relates to future costs associated
with Superfund cleanup in addition to those previously incurred.
In a car collision claim, an insurer’s payment is typically made
after the car is repaired and the cost to fix the car is known. In
Superfund liability claims, however, cleanup costs are incurred
before, during and after an insurer may be found liable for site
cleanup costs. Once found liable, an insurer may reimburse the
insured for past costs incurred to date in connection with that
site’s cleanup efforts, but may be reluctant to pre-pay future an-
nual cleanup costs which the insured will incur over the next
several years at that site. As a result, the payout pattern for an
insurer found liable for site cleanup costs at a given site would
be comprised of (1) a first payment, based on cleanup costs in-
curred to date by its insureds at that site, and (2) annual payments
beginning the following year, equal to the cleanup costs to be in-
curred by the insureds in each subsequent year in which cleanup
efforts are required.25 If the insurer is attempting to deny liabil-
ity for this claim, however, an additional lag may be necessary
to reflect the time between when the insured first notified the
insurer of the cleanup claim and when the determination is later

25In practice, once liability has been determined, the insurer may instead offer to simply
reimburse the insured’s past costs and offer the insured the net present value of the
future costs to be incurred in connection with the site’s cleanup efforts. This present
value concept should not be confused with the idea of discounting reserves for statutory
reporting purposes. As an example, suppose that in three years, an insurer will extinguish
its liabilities to an insured for a particular site by paying the present value (at that time)
of costs to be incurred after that date. For simplicity’s sake, also assume that the insured
will have spent nothing on site cleanup up to that point, and that the payment amount
will be $133,100. This $133,100 represents the insurer’s current, undiscounted liability
to that insured at that site. Assuming, for example, a discount rate of 10% applies, the
discounted value of that claim would be calculated as $133,100=(1:10)3, or $100,000.
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made regarding whether or not coverage applies. If it is felt that
a determination of liability would take three more years, for ex-
ample, item (1) above would be the sum of the incurred to date
costs, plus the next three years of annual payments, and would
be presumed payable (pending determination of liability) three
years from today. Item (2) would, therefore, begin with the fourth
year of annual payments, and would be assumed to begin one
year thereafter. This translation of the Superfund incurral pattern
to the insurer’s payout pattern is referred to in this paper as the
“litigation lag.” The litigation lag may be estimated from numer-
ous sources, including the information underlying the selection
of the probability of payment at a particular site, and allocated
loss adjustment expense (ALAE) development (if there is suffi-
cient history to produce a reasonable and reliable pattern).

The probability of payment represents the fact that, unlike
more traditional claims, there is a chance that the insurer will
not become obligated to pay for site cleanup costs. This value
should differ at least by state, based on relevant court decisions in
each state. Similarly, the estimated share of liability reflects the
fact that an insured might be held responsible only for a portion
of the total cleanup costs at a site, limiting the insurer’s liability
at that site to its insured’s share of liability at that site. This is
an important consideration, which, as noted above, is beyond the
scope of this paper.

With these issues in mind, one approach that might be used
to estimate the discounted Superfund liabilities of an insurer is
to (1) estimate the amount and timing of the Superfund cleanup
costs incurred at each site (regardless of who will ultimately bear
liability for them) using site costs and site cost incurral patterns
based on the adjusted RoD costs described earlier in this paper,
(2) multiply each of the annual cleanup costs by the estimated
share of responsibility borne by the insured, (3) reallocate the
insured’s Superfund site costs at each point in time based on
each site’s estimated litigation lag, (4) remove from the litigation
lag-adjusted cost incurral pattern the costs incurred before the
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attachment point is reached and the costs incurred after the policy
limit is exhausted, (5) multiply each of the remaining annual
cleanup costs by the probability that coverage applies, (6) add
together the reallocated costs for all Superfund sites within each
calendar year to estimate the costs to be paid by the insurer
relating to all Superfund claims in that year, and then (7) discount
the Superfund claim payment stream using the selected discount
rate.

An additional issue, of course, is the discount rate that should
be applied. One approach might be to tie the discount rate in
some way to the U. S. Treasury Bond rate in effect at the appro-
priate point in time (e.g., year-end for statutory reporting pur-
poses), with a duration closest to the estimated RoD cleanup
duration for the OU(s) in question. Alternatively (and depending
upon the reason for discounting the costs), an insurer could con-
sider the discount rate underlying previous coverage buybacks.
The author suggests consulting [14] prior to selecting a discount
rate.

12. A PRELIMINARY ASSESSMENT: SOME CONCLUDING
THOUGHTS

The author hopes that this paper will serve as a stepping stone
for future research into several areas noted throughout this paper,
as well as other areas of environmental liability analyses. There
is certainly enough that still needs to be done, including:

! research into non-NPL site counts and costs (including what
drives them, and how they differ from NPL site cost and count
drivers),

! research into other current and future environmental liability
issues that should have an impact on our environmental anal-
yses,

! development of alternate environmental liability models, and
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! development of environmental (Superfund and non-Superfund)
reserve discounting models (with an eye toward acceptability
to regulators).

What might be said of the Superfund program in recent years
could also apply to actuaries estimating its costs—much has been
done, but plenty of work still remains.
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EXHIBIT 1

Interpreting CERCLIS Cost Data

26Excluding those O&M costs not considered eligible for Superfund funding.
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EXHIBIT 2

CERCLIS Data vs. RoD Data

CERCLIS RoDs Comments

Timeframe Contains actual,
historical incurred
to date costs

Contain estimated,
prospective costs

CERCLIS also
includes information
on planned activities

Whose Expenditures
are Included?

EPA only Anyone who will be
required to perform
the relevant
activities

If EPA partially
funds an activity,
adjustments must be
made to derive the
total cost from
CERCLIS. (See
Exhibit 1.)

Cost of Remedy
Construction

Included in
Remedial Action

Included in Capital
Cost

Cost of Remedy
Implementation

At Least Partially
Included in
Remedial Action

Included in O&M
Cost

Percentage of cost
included in
CERCLIS varies by
site ownership,
activity lead (i.e.,
EPA, state, or PRP)
and type of activity

Cost of Performing
O&M Activities

Not Included in
CERCLIS

Included in O&M
Cost

Oversight of
Remedial Action,
Where Necessary

Included in
Remedial Action
Cost

Not Included in
RoDs

Oversight of O&M
Activities, Where
Necessary

Included in O&M
Cost

Not Included in
RoDs

Cost Level of Dollar
Values

Nominal
(Undiscounted)

Discounted
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EXHIBIT 4

Discount Rate Guidance

Publication Publication Discount
Date Title Rate30

Jun-93 Revisions to OMB Circular A-94 on Guidelines and
Discount Rates for Benefit-Cost Analysis (OSWER
Directive 9355.3-20)31

7%

Oct-88 Guidance for Conducting Remedial Investigations
and Feasibility Studies Under CERCLA

5%

Mar-84 Remedial Action Costing Procedures Manual 10%

30Since the annual O&M costs included in RoDs are not increased for inflation over time, the discount
rate used to calculate their present value also excludes a provision for inflation. For this reason, the
discount rates shown here reflect pre-tax, after inflation discount rates.
31The referenced OMB circular is available through the internet, at http://www.whitehouse.gov/WH/
EOP/OMB/html/circulars/a094/a094.html#7



DIRTY WORDS: INTERPRETING AND USING EPA DATA 611



612 DIRTY WORDS: INTERPRETING AND USING EPA DATA



DIRTY WORDS: INTERPRETING AND USING EPA DATA 613



614 DIRTY WORDS: INTERPRETING AND USING EPA DATA



DIRTY WORDS: INTERPRETING AND USING EPA DATA 615



616 DIRTY WORDS: INTERPRETING AND USING EPA DATA

APPENDIX A

SAMPLE RECORD OF DECISION (RoD) ABSTRACT

General Site Information

Site Name: MOTOR WHEEL
EPA ID: MID980702989 EPA Region: 05

Metro Statistical Area: 4040
Street: 2401 N HIGH ST (REAR)
City: LANSING TWP State: MI Zip: 48909
Congressional District: 08
County Code: 065 County Name: INGHAM
National Priority List (NPL) Status: F
Proposed NPL Update Number: Final NPL Update Number:
Ownership Indicator: OH
Federal Facility Flag: N Federal Facility Docket: F
Latitude: 4245390 Longitude: 08432060
LL Source: E LL Accuracy:
Incident Type: Incident Category: P
Resource and Recovery Act Facility: FMS SS ID: 05S5
Dioxin Tier: USGS Hydro Unit: 04050004
Site Description:

Remediation Information (Records of Decision)

Site Name: MOTOR WHEEL
EPA ID: MID980702989
Operable Unit:
ROD ID: EPA/ROD/R05-91/172 ROD Date: 09/30/91
Contaminant: VOCS
BENZENE
PCE
TCE
TOLUENE
XYLENES
ORGANICS
PAHS
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PCBS
PESTICIDES
METALS
ARSENIC
CHROMIUM
LEAD
O&M Costs: Estimated Costs:
Keys: NONE

Abstract:

THE 24-ACRE MOTOR WHEEL SITE IS AN INACTIVE
INDUSTRIAL WASTE DISPOSAL SITE IN LANSING, IN-
GHAM COUNTY, MICHIGAN. LAND USE IN THE AREA
IS PREDOMINANTLY INDUSTRIAL. THE SITE OVERLIES
A GLACIAL TILL AND A GLACIAL AQUIFER. FROM 1938
TO 1978, THE MOTOR WHEEL CORPORATION USED THE
SITE FOR THE DISPOSAL OF SOLID AND LIQUID INDUS-
TRIALWASTES INCLUDING PAINTS, SOLVENTS, LIQUID
ACIDS AND CAUSTICS, AND SLUDGE. WASTES WERE
DISPOSED OF IN TANKS, BARRELS, SEEPAGE PONDS,
AND OPEN FILL OPERATIONS. AN ESTIMATED 210,000
CUBIC YARDS OF WASTE FILL IS IN PLACE ONSITE. AS
A RESULT OF DISPOSAL PRACTICES, CONTAMINANTS
HAVE LEACHED THROUGH THE SOIL AND INTO THE
UNDERLYING GLACIAL AQUIFER AND PERCHED ZONE.
BETWEEN 1970 AND 1982, AT LEAST THREE ONSITE
CLEAN-UP ACTIONS WERE INITIATED. IN 1970, THE
STATE REQUIRED THE REMOVAL AND OFFSITE DIS-
POSAL OF SOLID WASTES, PAINT SLUDGE, AND OILS
FROM SEEPAGE PONDS AND BACKFILLING OF EXCA-
VATED POND AREAS. IN 1978, INDUSTRIAL WASTES
AND DEGRADED SOIL WERE EXCAVATED AND STOCK-
PILED ONSITE UNDER A CLAY COVER.

IN 1982, THE SITE OWNERS REMOVED THREE 10,000-
GALLON TANKS, THEIR CONTENTS, AND SURROUND-
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ING CONTAMINATED SOIL, ALONG WITH CONTAMI-
NATED FILL MATERIAL CONTAINING AN UNKNOWN
QUANTITY OF DRUMS. THIS RECORD OF DECISION
(ROD) ADDRESSES THE WASTE MASS AND GROUND
WATER CONTAMINATION IN THE PERCHED ZONE AND
THE GLACIAL AQUIFER. THE PRIMARY CONTAMI-
NANTS OF CONCERN AFFECTING THE SOIL, DEBRIS,
AND GROUND WATER ARE VOCS INCLUDING BEN-
ZENE, PCE, TCE, TOLUENE, AND XYLENES; ORGANICS
INCLUDING PAHS, PCBS, AND PESTICIDES; AND MET-
ALS INCLUDING ARSENIC, CHROMIUM, AND LEAD.

THE SELECTED REMEDIAL ACTION FOR THIS SITE
INCLUDES BACKFILLING THE NORTHERN PORTION OF
THE FILL AREA WITH 125,000 CUBIC YARDS OF FILL;
CAPPING THE DISPOSAL AREA WITH A 14.9-ACRE
MULTI-MEDIA CAP; INSTALLING A SLURRY WALL AT
THE WESTERN AND SOUTHERN BOUNDARY OF THE
DISPOSAL AREA; INSTALLING GROUNDWATER RECOV-
ERY WELLS OR TRENCHES DOWNGRADIENT, AND A
COLLECTION TRANSFER SYSTEM TO DELIVER WATER
TO AN ONSITE TREATMENT FACILITY; PRETREATING
GROUND WATER ONSITE TO REMOVE IRON AND MAN-
GANESE USING AERATION, CLARIFICATION, AND FIL-
TRATION IF NEEDED, FOLLOWED BY ONSITE TREAT-
MENT USING AIR STRIPPING AND CARBON ADSORP-
TION; USING ACTIVATED ALUMINA TO REMOVE FLU-
ORIDE FROM GROUND WATER, FOLLOWED BY OFF-
SITE DISCHARGE OF THE TREATED WATER TO A PUB-
LICLY OWNED TREATMENTWORKS (POTW); MONITOR-
ING GROUND WATER; AND IMPLEMENTING INSTITU-
TIONAL CONTROLS INCLUDING DEED AND GROUND
WATER USE RESTRICTIONS, AND SITE ACCESS RE-
STRICTIONS SUCH AS FENCING. THE ESTIMATED PRES-
ENT WORTH COST FOR THIS REMEDIAL ACTION IS
$30,720,300, WHICH INCLUDES A CAPITAL COST OF
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$11,083,300 AND AN ANNUAL O&M COST OF $1,277,400
FOR 30 YEARS. PERFORMANCE STANDARDS ORGOALS;
GROUND WATER CLEAN-UP GOALS ARE BASED ON
STATE HEALTH-BASED STANDARDS OR METHOD DE-
TECTION LIMITS (MDL), WHICHEVER IS HIGHER.
CHEMICAL-SPECIFIC GOALS INCLUDE BENZENE 1 UG/L
(STATE), PCE 1 UG/L (MDL), TCE 3 UG/L (STATE), TOLU-
ENE 800 UG/L (STATE), XYLENES 300 UG/L (STATE), AND
LEAD 5 UG/L (STATE).

Remedy:

THIS OPERABLE UNIT ADDRESSES REMEDIATION
OF GROUNDWATER AND SOURCE CONTROL BY RE-
DUCING THE POTENTIAL FOR CONTINUING GROUND-
WATER CONTAMINATION FROM THE ON-SITE WASTE
MASS AND REDUCING THE THREAT FROM CONTAM-
INATED GROUNDWATER THROUGH TREATMENT. THE
MAJOR ELEMENTS OF THE SELECTED REMEDY IN-
CLUDE;

* INSTALLATIONOF ANAPPROXIMATELY 11.3 ACRE
MICHIGAN ACT 64 CAP OVER THE DISPOSAL AREA;

* BACK-FILLING TO COVER EXPOSED FILL AREAS
AND TO ESTABLISH ANACCEPTABLE SLOPE IN THE EX-
CAVATED AREA OF THE SITE FOR EXTENSION OF THE
CAP;

* EXTRACTION OF CONTAMINATED GROUNDWA-
TER FROM THE PERCHED ZONE AND THE GLACIAL
AQUIFER AND TREATMENT OF THE GROUNDWATER
BY AIR STRIPPING, GRANULAR ACTIVATED CARBON,
AND ALUMINA REACTION ON-SITE AND TREATMENT
OF THE OFF GASES;
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* SITE DEED RESTRICTIONS TO LIMIT DEVELOP-
MENT AND LAND USE AND TO PREVENT INSTALLA-
TION OF DRINKING WATER WELLS OR OTHER INTRU-
SIVE ACTIVITY AT THE SITE; AND

* GROUNDWATER MONITORING TO ASSESS THE
STATE OF THE REMEDIATION.

* A SLURRY WALL WILL BE INSTALLED TO FA-
CILITATE THE DEWATERING OF THE PERCHED ZONE
AQUIFER.
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APPENDIX B

DIGGING UP MORE DIRT: AN APPROACH TO ESTIMATING
FUTURE PRP COUNTS ON CURRENT SUPERFUND SITES

This appendix documents the approach outlined in the ac-
companying exhibits. Note that although this data has received
a limited “scrubbing,” due to various data quality issues outside
the scope of this paper, the reader should not rely on its qual-
ity or accuracy for use in analyses. One adjustment made to the
data is the removal of those PRPs that may relate to sites that
are either still under review (i.e., they may eventually, but have
not yet become Superfund sites) or sites that have been removed
from CERCLIS and placed on NFRAP (i.e., they are expected
to receive no further attention from the EPA). In addition, exact
duplicate PRP entries at a given site were also removed, though
in some cases, due to differences in the name for that PRP (e.g.,
General Electric Co. vs. GE), they may remain in the data.

Exhibit 1 of Appendix B displays PRP counts by year of NPL
site listing and PRP notification, based on CERCLIS and PRP
data at year-end 1995. The reader can see that, for sites listed
on the NPL in 1983, 1,632 PRPs received notification of their
potential liability at that site in 1982. In addition, 2,096 more
PRPs received notification of their potential liability in 1983 on
these sites.

Exhibit 2 restates the information on Exhibit 1 in “parallelo-
gram” format. The column headings now reflect the difference
in time between a PRP’s notification of potential liability at a
site and that site’s placement on the NPL. On Page 2 of Exhibit
2, we can see that, for sites listed on the NPL in 1983, there were
1,632 PRPs notified of their potential liability at those sites one
year earlier (in 1982). Another 2,096 PRPs were notified of their
potential liability at sites listed in 1983 during 1983, and yet an-
other 1,097 PRPs were notified of their potential links to sites
listed in 1983 one year after those sites were listed (in 1984).
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Exhibit 3 restates the incremental information in Exhibit 2 on
a cumulative basis. Continuing our example, Page 2 of Exhibit
3 shows us that 1,742 PRPs received notice of potential liability
at NPL sites listed in 1983 by the end of the year before those
sites were listed (1982), and 3,838 PRPs were notified of their
potential liability at those sites by the end of the year those sites
were listed (1983). At the end of the year after these sites were
listed (1984), 4,935 PRPs had been notified of potential links to
those sites.

Exhibit 4 is simply “parallelogram” age-to-age factors, based
on Exhibit 3. Page 2 shows us a development factor indicat-
ing that, for NPL sites listed in 1983, the growth in the num-
ber of PRPs notified of their potential liability at those sites be-
tween one and two years after those sites were listed is 33.6%
(6,592=4,935 = 1:336). Pages 2 and 3 also include the selection
of age-to-age factors, as shown below the diagonal line. (It is
worth repeating here that the development factors selections in-
cluded here are for explanatory purposes only, and should not
be relied on as “industry PRP development factors.” Many ad-
ditional adjustments to the PRP data should be made prior to
evaluating the factors for that purpose.)

Exhibit 5 displays the age-to-ultimate factors corresponding
to the age-to-age factors in Exhibit 4. Using our example, the
selected factors imply a belief that, for sites listed on the NPL in
1983, no additional PRP notifications will be sent out (i.e., the
age-to-ultimate development factor is 1.000). For sites listed in
1995, however, the expected number of PRPs yet to be notified
of their links to these sites is expected to be 63.2% of the number
of PRPs already linked to those sites (since the age-to-ultimate
factor selected is 1.632). The author stresses again that the tail
factor of 1.000 is displayed here for explanatory purposes only. It
may be too early to truly expect no additional PRP development.
Considerations and approaches which may be used to estimate
PRP development tail factors may be a worthwhile area of future
research.
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Exhibit 6 summarizes our results and completes this explana-
tion. The exhibit implies that, under the assumptions used here,
91.1% of PRPs have already been notified of their potential lia-
bility at current Superfund sites by year-end 1995. As a result,
an estimate of the total number of claims relating to Superfund
sites listed on the NPL as of year-end 1995 might be estimated
by multiplying the current claim count on current Superfund sites
by 1.10 (= 1=91:1%), further adjusted as necessary for any ap-
plicable collateral suit defendant and claim report lags. Then,
subtracting the number of claims reported to date from the total
number of expected claims yields an estimate of the number of
future claims on current sites.
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APPENDIX B

Exhibit 6

Data at Year-End 1995 (Quasi-Scrubbed)
Development Analysis Summary

(1) (2) (3) (4) (5)
1/(1) 1–(2) (1)#(4)

Selected Probability: Probability: Count of Estimate of
PRP Current PRP Future PRP Current PRPs Ultimate PRPs

Year Listed Dvlpmnt on Current on Current on Current on Current
on NPL Factor NPL Site NPL Site NPL Sites NPL Sites

1983 1.000 100.0% 0.0% 13,978 13,978
1984 1.000 100.0% 0.0% 2,716 2,717
1985 1.003 99.7% 0.3% 0 0
1986 1.077 92.9% 7.1% 4,047 4,357
1987 1.159 86.3% 13.7% 1,044 1,210
1988 1.165 85.8% 14.2% 0 0
1989 1.252 79.9% 20.1% 3,659 4,581
1990 1.376 72.7% 27.3% 1,544 2,125
1991 1.445 69.2% 30.8% 44 64
1992 1.465 68.3% 31.7% 584 856
1993 1.475 67.8% 32.2% 0 0
1994 1.550 64.5% 35.5% 897 1,390
1995 1.632 61.3% 38.7% 34 55

28,547 31,332

Estimated Probability of Current PRP on Current Site:
Total(4)/Total(5) = 91.1%

Estimated Probability of Future PRP on Current Site:
[Total(5) " Total(4)]/Total(5) = 8.9%

Estimated PRP Development, All Years Combined:
Total(5)/Total(4) = 1.10
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APPENDIX C

COMING CLEAN: THE RELATIONSHIP BETWEEN HAZARD,
TIME AND COST

Similar to the note preceding the main text, the author would
like to emphasize that the opinions expressed in this Appendix
represent the views of the author, and do not necessarily represent
the views of the Casualty Actuarial Society, Ernst & Young LLP,
or anyone else.

Many have stipulated a relationship among these three quan-
tities, based on the following argument:

! The Superfund was created to address the country’s super-
hazardous inactive waste sites; as a result, the most hazardous
of Superfund sites would have been those first put on the na-
tional priorities list (NPL).

! These super-hazardous sites will also tend to be the largest,
most complex sites, making them also the most costly.

! If the earliest, most hazardous sites tend to be the most costly,
it follows that the later sites, which should be less hazardous,
would be less costly.

A test of this hypothesis is displayed in Exhibits 1 and 2
of Appendix C, which test the specific relationship between the
year a site was listed on the NPL and the site’s Public Health
Hazard Category (PHH) by the Agency of Toxic Substances and
Disease Registry (ATSDR). These exhibits imply that the average
site posted to the NPL in the most recent years is, if anything,
more hazardous than the average site posted to the NPL in the
program’s earliest years.

Before discussing the possible reasons behind this, a few notes
about the exhibits are in order. The ATSDR ranking was used in
lieu of the Environmental Protection Agency’s (EPA’s) hazard
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ranking system (HRS) score for at least five reasons:

1. The EPA only uses the HRS score to separate potential
NPL sites from non-NPL sites; it is not the primary tool
used to subsequently prioritize which NPL sites are the
most hazardous and require the earliest attention. Thus,
the EPA itself does not consider the HRS sufficient for
differentiating the degree of differences in hazard among
NPL sites. The PHH, however, is designed to differenti-
ate hazard levels at any location (NPL or otherwise).

2. As noted in the main text, since the HRS score only
needs to reach a value of 28.5 for possible proposal to
the NPL, once sufficient exposure pathways have been
scored to achieve this, the remainder might not be scored
at all, further diminishing the usefulness of the HRS
score as a measure of each NPL site’s relative hazard
level. Again, this shortcut would not present a problem
for the EPA’s prioritizing of Superfund sites, since the
HRS score is not the primary tool used for that purpose.

3. Part of the HRS scoring approach considers the size of
the population near the site being scored. As a result,
two sites with identical problems and required remedies
may have different HRS scores. This does not imply
that such differentiation is improper; only that the EPA’s
HRS score is really a measure of both hazard and the
extent of population exposure to that hazard. The PHH,
by contrast, does not consider the extent of population
exposure, only whether or not there is any potential pop-
ulation exposure.

4. While the potential for future spreading of current con-
tamination at a site is clearly considered by both the
HRS and the PHH, the HRS score may be more con-
servative in that the PHH tries to consider the “likely”
future spread of contamination, while the EPA’s HRS
score has historically considered a broader definition.
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This is analogous to estimating “likely” vs. “conserva-
tive” IBNR amounts.

5. The HRS was updated in December of 1990, which
might limit its usefulness as a consistent estimator of
hazard over time. In contrast, the PHHs have been rela-
tively consistent since inception.

Despite the above, however, there are some drawbacks to us-
ing the ATSDR data as well, including the following:

1. There are seven PHH categories in the ATSDR scoring
system: 1 (urgent public health hazard), 2 (public health
hazard), 3 (indeterminate public health hazard), 4 (no ap-
parent public health hazard), 5 (no public health hazard),
6 (no hazard conclusion required) and 12 (posed public
health hazard only in the past). Since the rankings of the
ATSDR are not actually relative (e.g., a ranking of a 5 is
not one-fifth as hazardous as a ranking of 1), the average
PHH category for a given site listing year is not mean-
ingful. As a result, the median value was used here, as
displayed in Exhibit 1 of Appendix C. The percentage of
sites posted to the NPL in each year that represent public
hazards as evaluated by the ATSDR is also displayed, in
Exhibit 2 of Appendix C.

2. There has been a preponderance of sites with a PHH of 3
(indeterminate hazard), largely because the ATSDR felt
that the necessary data to reasonably evaluate the “likely”
hazard level at many sites was not available. This anal-
ysis focused on differentiating the higher hazard levels
(PHH categories 1 and 2) from the lower hazard levels
(PHH categories 4 and 5) by excluding sites with a PHH
of 3 from the review (Scenario 1 of Appendix C, Exhibits
1 and 2). For sensitivity testing purposes, Scenario 2 in
these exhibits includes sites with a PHH of 3, and scenar-
ios 3–8 display the impact that these PHH Level 3 sites
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would have had on Scenario 1 if they could all have been
allocated among the higher and lower hazard levels (1, 2,
4 and 5). For example, Scenario 3 assumes that 25% of
the sites with a PHH of 3 are really higher hazard level
sites (i.e., would have been a 1 or 2 if sufficient data
were available), and 75% are really lower hazard level
sites (i.e., would have been a 4 or 5). Scenario 8 assumes
all of these sites would have been categorized as higher
hazard level sites, and scenarios 4–7 run other scenar-
ios between those two extremes. The author believes that
Scenario 4, displaying a 60%/40% split between low and
high hazard levels, respectively, is the most likely. This
is because, consistent with a conservative tendency stem-
ming from the EPA’s need to protect human health, the
last thing an EPA site evaluator would want to do is to
remove a site from consideration for the NPL, only to
later find out that the site was, in fact, Superfund-worthy.
As a result, sites with an indeterminate hazard, though
plausibly hazardous, are likely not.36

3. Some sites have been categorized and recategorized,
though only one category should be used per site for this
type of analysis. The selected category used here for a
given site was determined by first removing all PHHs
of 6 and 12 from the data. Then, the site’s ranking was
selected as either (1) the most recent PHH determined,
if no remedial actions (RAs) have begun at that site yet,
or (2) the most recent PHH determined prior to the onset

36As possible support for (though far from proof of) this, the author reviewed the 109
non-Federal, non-RCRA sites deleted from the NPL which have received PHHs as out-
lined earlier in this section. Of the 35 sites with a 4 or 5 PHH categorization (likely not
hazardous), 80% were deleted with no need for remedial actions (RAs). In contrast, only
three of the seven sites with a PHH of 1 or 2 (i.e., 43% of the likely hazardous sites) were
deleted with no RAs required. Of the 67 deleted sites with a PHH of 3 (indeterminate
hazard), 50 of them (75%) were deleted with no RAs required—which is much closer
to 80% (PHHs 4 and 5) than 43% (PHHs 1 and 2). If we can assume that in general, the
more hazardous NPL sites tended to require RAs, then the hazard level of sites with a
PHH of 3 is more similar on average to the hazard level of sites with a PHH of 4 or 5
than to sites with a PHH of 1 or 2.
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of RA activities which have begun at that site (since any
cleanup efforts underway hopefully reduce the hazard
level at a site by the time the ATSDR begins its review
there). Sites with a PHH of 3 were then pulled out of the
data for Scenario 1, included in the data for Scenario 2,
and redistributed to the other four categories for Scenar-
ios 3–8, as described in the previous item. Sites with no
PHHs at all (there were 21 of these), or PHHs completed
only after the onset of RA activities (there were 90 of
these) were excluded altogether.

Despite these adjustments, however, Exhibit 1 of Appendix
C implies that the recent years’ median site hazard levels may
be greater than those in the earliest years—or, at the very least,
not any less hazardous than those in the earliest years. Exhibit
2 of Appendix C also shows a generally greater percentage of
higher hazard level sites in the more recent years than in the
early years of the program. The data underlying these exhibits is
also included, in Exhibit 3 of Appendix C.

The Fallacy of (De)composition: Possible Explanations for the
Apparent Non-decreasing Average Hazard over Time

One possible explanation for this somewhat unlikely result is
that, although some ultra-hazardous sites were posted to the NPL
early in the Superfund program, that doesn’t necessarily mean
that all sites posted to the NPL early in the Superfund program
were ultra-hazardous. There is some intuitive appeal to this idea
as well—it is generally accepted that there were approximately
10–20 “megasites” (i.e., sites which are extremely hazardous and
costly) posted to the Superfund in the earliest years of the pro-
gram. However, this is possibly 20 sites out of more than 400
posted to the Superfund in 1983 alone.

It is also possible that in the early years of the program,
political pressure might have been exerted to include on the
NPL some sites which would have been addressed through state
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Superfund programs, if they existed at the time. With almost all
states currently having some form of state Superfund program,
these potentially less-hazardous sites might now be addressed as
non-NPL sites, leaving only the more hazardous ones to be listed
on the NPL currently and into the future. Ironically, political
pressure is currently being applied in this, the opposite direction,
with the states pressing for a more active role in the Superfund
cleanup process.

A third possible explanation stems from the fact that, during
the program’s infancy, there must have been almost by defini-
tion a lack of experience in dealing with Superfund site cleanups.
Guidance documents useful to assist in determining what is and
is not Superfund-worthy take time and experience to develop—
neither of which was likely present by 1983, the year the first 400
Superfund sites were listed. This lack of experience stemming
from the newness of the program, in conjunction with a possible
conservative desire of the EPA to address plausible (rather than
just likely) future public health hazards may have led to some
sites with undeterminable or even minimal hazard levels being
placed on the NPL as a precautionary measure. However, fifteen
or more years of experience with the Superfund program, cou-
pled with the issuance and revisions of guidance documents, a
revised HRS score and improved technology no doubt helped
to decrease the percentage of sites listed on Superfund with an
indeterminate hazard level (as shown in the last column in Ex-
hibit 3 of Appendix C). These same factors may help explain the
percentage decrease in sites listed with a PHH of 4 or 5 in the
more recent years.

In summary then, the author believes that the average hazard
level of Superfund sites has actually increased over time, rather
than decreased, due to the fact that the sites presenting lower
level hazards—which may have been included on the NPL in
the past—are perhaps being more effectively screened out during
the site review process now, leaving only the most hazardous of
sites to be included on the NPL.
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“Four Score” and Seven Years Ago: Why the Sudden Drop in
NPL Site Listings and Lower Hazard Level Scores between 1990
and 1991?

It is noteworthy that in the most recent seven years, there has
been a decrease in the average number of sites posted to the
NPL per year, as well as a marked decrease in the percentage
of those sites with a 4 or 5 PHH value. This is likely due to
the revamping of the HRS score in December of 1990. It is also
possible (though purely speculative) that this dramatic decrease
in additional NPL postings is partially due to the EPA’s desire
to complete the cleanup process for those sites already in the
Superfund pipeline before starting on new sites, rather than to
take every site through the Superfund process simultaneously,
one step at a time.37 Adding more sites to the NPL might only
increase the number of Superfund sites which will need to wait
for attention, possibly reducing the desire to add sites currently to
the NPL. As a result, as current cleanup efforts near completion
(and many have been completed in the most recent 2–3 years),
a significant increase in the number of sites being posted to the
NPL annually may be possible in the near future, depending upon
(among other things) the probability that a cap is placed on the
number of sites permitted on the NPL (explicitly or implicitly).

Breaking New Ground: A New Theory on the (Non-) Relationship
of Hazard and Cost

So what does this imply about the hazard/cost relationship? If
it exists, it may imply that current Superfund sites could end up
on average more costly than those listed in the earlier years.
However, this potential cost increase would be offset by the
EPA’s recent initiatives discussed in the paper, improved tech-

37This actually presents a catch-22 situation. Under the first approach, some sites are
cleaned, but many others are forced to wait until any actions can be taken. Under the
second approach, all sites are addressed immediately (eliminating the problem using the
first approach), but no cleanups would be completed (or perhaps even begun) for many
years.
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nology, and the experience gained with this type of remediation
work over the past fifteen years, which may result in a current
average site cost not very different from the average cost of pre-
viously listed sites.

The author believes that cost is more likely a function of the
selected remedy than the indicated hazard. This is an important
distinction, because although the remedy is somewhat dependent
on the hazard, it is also dependent on the stringency of cleanup
requirements in effect at the onset of remediation activities (i.e.,
the degree of the preference for treatment over containment) and
technology available to implement the selected remedy at the
time. This is one reason why it is important to consider records
of decision (RoDs) for cost analysis purposes. Over the past
couple of years, the EPA has been issuing many new RoDs which
supplant remedies selected in the original RoDs for many of the
sites posted to the NPL early in the Superfund program, based
on new technologies and changes in cleanup requirements. Using
this recent RoD information allows these aspects of cleanup costs
to be effectively captured in actuarial analyses.

The hazard is an important consideration—especially for
those sites involving groundwater issues—but it is far from the
only consideration. And, as indicated in the main text of the pa-
per, the author also believes the party leading the effort (i.e., the
PRP, EPA, or other governmental agency) may also be a signif-
icant factor.
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APPENDIX C

EXHIBIT 3

An Analysis of the Relationship Between NPL Listing
Date and Site Hazard Using the Agency of Toxic
Substances and Disease Registry’s Public Health

Hazard (PHH) Rankings
Underlying Data

NPL
Listing Public Health Hazard (PHH) Category PHH 3, as
Year 1 2 3 4 5 Total Pct of Total

1983 6 53 223 38 15 335 66.6%
1984 0 23 80 11 4 118 67.8%
1985 2 1 0 0 0 3 0.0%
1986 1 37 100 11 11 160 62.5%
1987 0 14 45 4 4 67 67.2%
1988 0 0 0 0 0 0
1989 3 24 119 23 4 173 68.8%
1990 0 35 79 14 3 131 60.3%
1991 1 2 3 0 0 6 50.0%
1992 2 14 8 2 0 26 30.8%
1993 0 0 0 0 0 0
1994 1 10 14 4 2 31 45.2%
1995 1 3 4 1 0 9 44.4%
1996 0 6 2 1 0 9 22.2%

17 222 677 109 43 1,068 63.4%

21 w/no PHHs 1–5 at site
90 w/PHH completed after

onset of RA activities
1 Delisted, then relisted

1,180 Total on NPL
Public Health Hazard Category Code—

1=Urgent Public Health Hazard
2=Public Health Hazard
3= Indeterminate Public Health Hazard
4=No Apparent Public Health Hazard
5=No Public Health Hazard
6=No hazard conclusion (often applies to brief addenda)
12=Posed Public Health Hazard Only in the Past

Each site may have multiple PHHs. The following approach was used to select one:

PHH values 6 and 12 were excluded from this analysis altogether (2 sites).
If no RAs have begun at that site by 12/31/96, the most recent PHH available was selected.
Otherwise, the most recent PHH prior to onset of RA activities at that site was selected.
21 sites were excluded due to lack of a PHH.
90 sites were excluded because the first PHH review was completed after the onset of RA

activities there.
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APPENDIX D

WASTE NOT, WANT NOT: REDUCING AND ELIMINATING
HAZARDOUS WASTE THROUGH RCRA

Federal solid waste regulation began in 1965 with the Solid
Waste Disposal Act, with an emphasis on research and devel-
opment (R&D) of solid waste disposal practices. This act was
amended in 1970 by the Resource Recovery Act, which changed
the emphasis from R&D to recycling and waste reduction. The
Resource Conservation and Recovery Act (RCRA) was enacted
in 1976, and contained regulations on waste management and the
prohibition of open dumps. It also required that anyone seeking
to operate a hazardous waste Treatment, Storage and Disposal
Facility (TSDF) must first receive a permit from the Environ-
mental Protection Agency (EPA) to do so. The Hazardous and
Solid Waste Amendments of 1984 significantly expanded the
scope of RCRA, adding land disposal restrictions and correc-
tive action requirements addressing the need to clean previous
releases of hazardous waste prior to receiving a RCRA permit
(under RCRA Subtitle C).

While the Comprehensive Environmental Response, Compen-
sation and Liability Act (CERCLA) is overseen by the EPA,
RCRA is predominantly state-run (though there are certain min-
imum Federal requirements). In addition, there is no RCRA-
equivalent to CERCLA’s Superfund, which the EPA can use to
pay for site cleanups if there are no potentially responsible par-
ties (PRPs). RCRA doesn’t focus on the concept of PRPs (i.e.,
on a broad spectrum of possible sources for any necessary cor-
rective action funding), but instead focuses its authority on the
current owner/operator of the TSDF. As a result, the cost shar-
ing typically found at National Priorities List (NPL) sites among
their many PRPs might not be as prevalent under RCRA. There-
fore, even though the average RCRA site cleanup cost is ex-
pected to be approximately $15 million [15]—which is less than
the frequently-quoted estimates of the average NPL site cleanup
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cost—there may be a greater financial burden to the entity re-
sponsible for corrective action at a RCRA site than to the entity
paying only a fraction of the cleanup cost at an NPL site.

Underground storage tanks (USTs) are typically addressed
under RCRA, rather than Superfund. This is because most USTs
are filled with petroleum, which is not one of the contaminants
identified for response actions under the Superfund program.

Despite their differences, RCRA and CERCLA both share
the common goal of protecting human health and the environ-
ment from adverse contact with hazardous waste. In general,
CERCLA approaches this goal retroactively, by requiring clean
up of inactive hazardous waste sites, while RCRA attempts to ad-
dress the issue prospectively, through establishment of standards
for active hazardous waste sites. RCRA standards require track-
ing hazardous waste from its creation to its ultimate disposition
(“cradle-to-grave” monitoring).

CERCLA and RCRA also interact. For example, RCRA
cleanup standards may be applied to Superfund cleanups, since
CERCLA doesn’t actually dictate specific cleanup standards.
RCRA sites may become listed on the NPL if a facility requir-
ing cleanup is owned by a bankrupt entity, or an entity who has
shown an unwillingness to clean up a particular RCRA site. In
this case, the site is eligible for Superfund moneys—and the pos-
sibility of response actions by other PRPs, if they can be found.
Conversely, Superfund sites may be deferred to the RCRA pro-
gram under certain circumstances as well, allowing the EPA to
focus its efforts (and funding) on other, Superfund-worthy sites.

A recent General Accounting Office (GAO) Study [16] indi-
cated that the cost of cleaning RCRA sites may be higher than
it needs to be in several cases, because of three key RCRA re-
quirements:

1. Land Disposal Restrictions. According to the GAO Study,
the same stringent standards are frequently applied to
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both high-risk and relatively low-risk waste targeted for
land disposal.

2. Minimum Technological Requirements. The GAO study
also notes that the same stringent technological require-
ments may apply to facilities that manage both high-risk
waste and facilities managing low-risk waste.

3. Permit Requirements. From [16, pp. 8–9], “the adminis-
trative cost of obtaining a RCRA permit can range from
$80,000 for an on-site treatment unit, such as a tank, to
$400,000 for an on-site incinerator, and up to $1 mil-
lion for a landfill, according to EPA’s estimates. In ad-
dition to these costs, a party may incur other costs for
tasks needed to obtain a permit, such as assessing a site’s
conditions in order to design a groundwater monitoring
system or conducting emissions testing and trial burns
from an incinerator. The time required to obtain a per-
mit can also be extensive: : :getting a permit can take 7
to 9 months for a simple treatment unit, such as a tank,
and an additional 5 to 6 years for a more complicated
unit, such as a landfill.”

The study also discusses how the EPA has attempted to ad-
dress these issues, and the policy and regulatory alternatives
available to entities responsible for RCRA cleanups. However,
the report also notes that, both the EPA and GAO believe that
“(comprehensive) reform, while necessary, may take some time
to implement.” [16, p. 18]

Finally, it is worth noting that, due to the significant differ-
ences between CERCLA and RCRA noted here, equally signifi-
cant insurance coverage-related issued may apply. A discussion
of these and other coverage-related issues represents yet another
potentially fruitful area for additional research.



MODELING LOSSES WITH THE MIXED EXPONENTIAL
DISTRIBUTION

CLIVE L. KEATINGE

Abstract

Finding a parametric model that fits loss data well
is often difficult. This paper offers an alternative—the
semiparametric mixed exponential distribution. The pa-
per gives the reason why this is a good model and ex-
plains maximum likelihood estimation for the mixed ex-
ponential distribution. The paper also presents an al-
gorithm to find parameter estimates and gives an illus-
trative example. The paper compares variances of esti-
mates obtained with the mixed exponential distribution
with variances obtained with a traditional parametric
distribution. Finally, the paper discusses adjustments to
the model and other uses of the model.

1. INTRODUCTION

Loss distributions have been a staple of actuarial work for
many years. The Casualty Actuarial Society syllabus has in-
cluded a separate section on the subject since 1985, the year
after Hogg and Klugman [5] published Loss Distributions. This
was the standard actuarial text on the subject until the recent
book by Klugman, Panjer, and Willmot [8], Loss Models: From
Data to Decisions, replaced it. Over the years, numerous authors
have published papers dealing with loss distributions. The two
books and most papers on the subject emphasize the use of para-
metric distributions as models for losses. I have found that the
set of distributions generally suggested for use is not adequate.
Too often, one cannot find a model that fits a data set well. Non-
parametric procedures are available, but although they usually
produce a good fit to the data, they often do not smooth the data

654
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enough.1 In this paper, I offer an alternative—the semiparametric
mixed exponential distribution.

Statisticians have done quite a bit of work with semiparamet-
ric mixture models. Lindsay and Lesperance [12] wrote in their
1995 review of semiparametric mixture models, “There has been
a surge of interest in semiparametric mixture models in recent
years, as statisticians strive to maintain the efficiencies of para-
metric methods while incorporating minimal assumptions in their
models.”2 I will first explain why the mixed exponential distri-
bution is a good model for losses. I will then discuss the theory
underlying maximum likelihood estimation with the mixed expo-
nential distribution. Much of this material has been developed in
the statistics literature, but I will highlight the relevant parts of it.
Next, I will present an algorithm based on Newton’s method to
find the maximum likelihood parameter estimates. I will follow
with an example of the application of this algorithm to a data set
from Klugman, Panjer, and Willmot [8] and with a comparison
of the variances of estimates obtained from a mixed exponential
distribution and a Pareto distribution, which serves as an exam-
ple of a traditional parametric distribution. I will then address
adjustments that may be necessary when using the mixed expo-
nential distribution, with particular emphasis on how to handle
the tail. Finally, I will briefly mention that the mixed exponential
distribution is useful for more than just modeling losses.

I will not discuss how to account for loss development before
fitting a distribution to a set of data. The actuarial literature has
not adequately addressed this very important issue, but it is be-
yond the scope of this paper. Also, I will assume that all data
analyzed has received appropriate trending.

1Although Klugman, Panjer, and Willmot [8] focus primarily on parametric procedures,
they do briefly cover nonparametric procedures in Section 2.11.1.
2Lindsay [11] has also written a monograph summarizing much of the recent work in
mixture models.
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2. MOTIVATION

When working with a set of loss data, we usually want to
estimate the underlying probability distribution that describes
the process that generated the data. It is generally a plausible
assumption that this distribution is reasonably smooth. Thus,
smoothing out the data should give a better estimate than sim-
ply using the empirical distribution itself. To accomplish such
smoothing, we may turn to either parametric or nonparametric
procedures. However, a parametric procedure often produces a
distribution that does not fit the data well, whereas a nonpara-
metric procedure often produces a distribution that is not smooth
enough. What we need is something in between a parametric and
a nonparametric procedure—a procedure that will provide a dis-
tribution that fits the data well, yet still provides an appropriate
amount of smoothing.

We can articulate the amount of smoothing we would like by
specifying conditions that the derivatives of the survival func-
tion, S(x), should satisfy (where x is the loss size).3 First, note
that S!(x) ="f(x), where f(x) is the probability density func-
tion. Clearly, f(x) must not be negative, so we should require
that S!(x)# 0. Next, we would like f(x) to be decreasing, so
we require that S!!(x)$ 0. Beyond that, we would like f(x) to
decrease at a decreasing rate, so we require that S!!!(x)# 0. In
general, we would like the derivatives of the survival function to
change at a slower and slower rate as the loss size x gets larger
and larger and to approach zero asymptotically as x approaches
infinity.4 The mathematical formulation of this requirement is
that the survival function should possess derivatives of all orders

3The survival function equals one minus the cumulative distribution function. Working
with the survival function is more convenient than working with the cumulative distri-
bution function.
4These conditions are appropriate for most loss distributions encountered in practice,
except perhaps where the loss size x is small. In particular, these conditions are not
compatible with a probability density function with a nonzero mode. However, we are
assuming that we are not particularly interested in the behavior of the survival function
where x is small.
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such that
("1)nS(n)(x)$ 0, x > 0:

Functions with this alternating derivative property are known
as completely monotone functions. There is a beautiful theorem
due to Bernstein (1928) which states that a function S on [0,%]
is completely monotone if and only if it is of the form

S(x) =
! %

0
e"¸xw(¸)d¸,

where w is nonnegative. Since we are interested in cases where
S is a survival function, we will restrict attention to cases where
S(0) = 1. This requirement forces w to be a probability function
(that may be discrete, continuous, or a combination of the two).5

In other words, any distribution with the alternating derivative
property must be a mixture of exponential distributions, and vice
versa.6

From now on, I will use a discrete formulation of the mixing
distribution w, because as will become clear, we usually deal
with mixing distributions that are nonzero at a small number of
points. Thus, we have

S(x) =
n"
i=1

wie
"¸ix, wi > 0,

n"
i=1

wi = 1,

where wi is the mixing weight corresponding to ¸i. Note that the
mean of the ith component distribution of the mixture is 1=¸i.

One of the distinguishing characteristics of the mixed expo-
nential distribution is that it always has a decreasing failure rate.
The failure rate is the probability density function divided by the

5Another way of stating this is that S is completely monotone with S(0) = 1 if and only
if it is the Laplace transform of a probability distribution w. See Feller [3, p. 439] for a
proof.
6I would like to thank Glenn Meyers for pointing out this equivalence relation, with which
he had become familiar through the work of Brockett and Golden [2]. They applied this
relation to utility functions just as this paper applies it to loss distributions.
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survival function.7 For the mixed exponential distribution, the
failure rate is

n"
i=1

#$$$$$%
wie

"¸ix
n"
j=1

wje
"¸jx

&'''''(¸i:

This is a weighted average of the ¸i’s. As x becomes larger,
weight moves away from the larger ¸i’s and toward the smaller
¸i’s, thus decreasing the failure rate.

Most of the parametric distributions traditionally used to
model losses have decreasing failure rates, either throughout the
entire distribution or at all but small loss sizes. Some are spe-
cial cases of the mixed exponential distribution. For example,
the Pareto distribution is a mixture of exponential distributions
with a gamma mixing distribution. See Appendix A for further
discussion of this topic. The advantage that the mixed exponen-
tial distribution enjoys over parametric distributions is that the
mixed exponential distribution is more general and thus likely
to provide a better fit to the data while still providing an ap-
propriate amount of smoothing. It is considered semiparametric
because no parametric assumption is made about the form of the
mixing distribution. We now turn to the problem of estimating
the mixing distribution from a given set of data.

3. MAXIMUM LIKELIHOOD THEORY

Maximum likelihood estimation is the only estimation tech-
nique I will cover in this paper. Although other techniques are
available, the well-known desirable statistical properties of maxi-
mum likelihood estimation usually make it the method of choice.

7See Section 2.7.2 of Klugman, Panjer, and Willmot [8] for a discussion of failure rates.
The failure rate is also known as the hazard rate or the force of mortality. In the context
of a loss distribution, “failure” means “loss stoppage.” A distribution with a decreasing
failure rate has an increasing mean residual lifetime (if it exists).
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In this section, I will describe the properties underlying maxi-
mum likelihood estimation with the mixed exponential distribu-
tion. The proofs are in Appendix B.

I will begin by addressing the situation where no grouping,
censoring, or truncation is present in the data. The loglikelihood
function is

lnL(w1,w2, : : :) =
m"
k=1

lnf(xk) =
m"
k=1

ln

) %"
i=1

wi¸ie
"¸ixk

*
,

where m is the number of observations. We must find the set
of wi’s that maximizes the loglikelihood function, subject to the
constraints that each of the wi’s must be greater than or equal to
zero and the sum of the wi’s must be one. We consider the ¸i’s
fixed and arbitrarily close together.

This constrained maximum occurs at the unique point at
which the following conditions, known as the Karush–Kuhn–
Tucker (KKT) conditions, are satisfied:
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=m, if wi > 0:

The inequality conditions ensure that we cannot increase the log-
likelihood by moving a small amount of weight to a ¸i that has
zero weight attached to it. The equality conditions ensure that
we cannot increase the loglikelihood by moving weight around
among the ¸i’s that have positive weight attached to them. The
number of positive wi’s at this maximum is at most m. None of
the corresponding ¸i’s can be less than 1=xm, where xm is the
largest observation, and none can be greater than 1=x1, where x1
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is the smallest observation. The number of positive wi’s tends to
increase with the number of observations, but remains below ten
in most practical situations.

For grouped data, the loglikelihood function is

lnL(w1,w2, : : :) = a1ln (1" S(b1))+
g"1"
k=2

akln (S(bk"1)" S(bk))
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*
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i=1
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*
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where g is the number of groups, a1, : : : ,ag are the number of
observations in each group, and b1, : : : ,bg"1 are the group bound-
aries. We will assume that any adjacent groups that all have zero
observations have been combined into one group.

In this case, the KKT conditions are
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and
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=m, if wi > 0:

The constrained maximum will occur at a unique point, unless
the mixed exponential probabilities for each group are exactly
proportional to the number of observations in each group or, in
other words, when the data perfectly fits the model. For this situ-
ation, we can easily come up with examples where an arbitrarily
large number of different mixed exponential distributions, each
with an arbitrarily large number of positive wi’s, will maximize
the loglikelihood function. However, a perfect fit is highly un-
likely unless the number of groups is very small.

When the fit is not perfect, the number of positive wi’s with
corresponding ¸i’s on (0,%) at the maximum is at most g=2"1
if g is even and g=2"1=2 if g is odd. In addition to the ¸i’s
on (0,%), there may also be ¸i’s at zero or infinity (or both)
that have positive wi’s. For an exponential distribution with a ¸i
of zero (and thus a mean of infinity), the survival function is a
constant function of 1. In actuarial terms, the wi corresponding
to a ¸i of zero would indicate the probability that a loss will
completely exhaust all layers of coverage, no matter how high.
For an exponential distribution with a ¸i of infinity (and thus
a mean of zero), the survival function is a constant function of
0. The wi corresponding to a ¸i of infinity would indicate the
probability that a loss will be zero. The number of positive wi’s
tends to increase with the number of groups, but remains below
ten in most practical situations.
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The development for grouped data applies also to censored
grouped data, since the censored data is simply in the last group
with an upper bound of infinity. For other situations, such as
censored ungrouped data (thus partially grouped and partially
ungrouped) or data censored at various points or grouped with
various boundaries, the logic is similar to that used above, since
we can simply sum the appropriate loglikelihood functions.

With ungrouped data truncated (but not shifted) by a de-
ductible d, the loglikelihood function is

lnL(w1,w2, : : :) =
m"
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ln
+
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=
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w&i =
wie

"¸id
%"
j=1

wje
"¸jd

:

We can thus convert the problem to a problem without a de-
ductible by subtracting d from each observation. We can then
recover the wi’s using the formula

wi =
w&i e

¸id

%"
j=1

w&j e
¸jd

:

The same process applies for grouped data with d subtracted
from each of the group boundaries instead of the observations.
However, the formula to recover the wi’s breaks down if one of
the ¸i’s with a positive w

&
i is infinity, as quite often occurs with
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grouped data. Using the fitted mixed exponential distribution to
extrapolate below a deductible is not a good idea.

If a set of data contains several different deductibles, we can
subtract the smallest deductible for which a credible amount of
data exists from each observation and the higher deductibles. We
would have to subtract additional terms from the loglikelihood
function to account for these higher deductibles.8

4. A MAXIMUM LIKELIHOOD ALGORITHM

I will now present an algorithm that we can use to find the
maximum likelihood estimates of the parameters of a mixed ex-
ponential distribution. I have based the algorithm on Newton’s
method, the details of which are in any textbook on numerical
analysis. After I present the algorithm, I will comment on alter-
natives to it. The steps of the algorithm are:

1. Begin with an initial set of positive wi’s and the ¸i’s as-
sociated with them. The closer these are to the final es-
timated values, the faster the convergence will be. How-
ever, the algorithm will converge regardless of what the
initial values are.

2. Assume that the number of parameters is fixed and use
Newton’s method to find the indicated change in the
parameters. I will call this the Newton step. Each ¸i is a
parameter, and all but one of the wi’s are parameters. We
must set the remaining wi equal to one minus the sum
of the others. Appendix C shows the derivatives needed
to find the Newton step.

3. Adjust the parameters by the amount of the Newton step.
If all the ¸i’s remain positive, if all the wi’s remain be-
tween zero and one, and if the loglikelihood function

8See Section 2.10 of Klugman, Panjer, and Willmot [8] for a discussion of estimation
with incomplete data.
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increases, then go to step 4. If the result does not satisfy
all these conditions, then try a backward Newton step,
then half a forward step, then half a backward step, then
a quarter of a forward step, and so on until the result
satisfies all the conditions.

4. If one of the ¸i’s is approaching zero or infinity (which
can happen only with grouped or censored data), go to
step 5. If one of the wi’s is approaching zero, go to step
6. If the Newton step is very small, thus indicating con-
vergence, go to step 7. Otherwise, go back to step 2.

5. If one of the ¸i’s is approaching zero, then fix that ¸i
at a very small value, so it is effectively zero. If one of
the ¸i’s is approaching infinity, then fix that ¸i at a very
large value, so it is effectively infinity. Remove the fixed
¸i, but not its associated wi, from the Newton iterative
process. Go back to step 2.

6. If one of the wi’s is approaching zero, then adjust the
parameters by the proportion of the Newton step that
makes this wi exactly zero. Remove it and its associated
¸i as parameters. Often, this ¸i will be approaching one
of the other ¸i’s. If the eliminated wi was close enough
to zero, its removal should result in an increase in the
loglikelihood function. Go back to step 2.

7. If convergence has occurred, then check to see if the
result satisfies the KKT conditions. To do this, check
the conditions for ¸i’s close enough together so that it
is clear that if the result satisfies the conditions at the
checked ¸i’s, the result will also satisfy the conditions
at all others in between. If the result satisfies the KKT
conditions, then the loglikelihood function has reached
its maximum. If the result does not satisfy the conditions,
go to step 8.

8. If the result does not satisfy the KKT conditions, then
add an additional ¸i and associated wi as parameters.
The new ¸i should be in the vicinity of where the KKT
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function is the largest (and thus where a new ¸i is most
needed). Give the new wi a small positive value and pro-
portionately decrease the other wi’s so the sum of the
wi’s remains at 1. The value assigned to the new wi
should be small enough so that the loglikelihood func-
tion increases from its previous value. (The algorithm
will work regardless of the values of the new ¸i and wi
as long as the loglikelihood function increases from its
previous value. If it does not increase, the algorithm may
lead right back to the point where it was before the new
¸i and wi were added.) Go back to step 2.

This algorithm will always converge to the maximum likelihood
estimates of the parameters, because the loglikelihood function
is concave and its value is increasing with each step of the al-
gorithm. The points where Newton’s method converges but the
result does not satisfy the KKT conditions correspond to local
maxima with the number of ¸i’s fixed at a specified number.
When the result satisfies the KKT conditions, we have reached
the global maximum, with no restriction on the number of ¸i’s.

With ungrouped data, the fitted mixed exponential mean will
always equal the sample mean. This applies at both the global
maximum and local maxima with a fixed number of ¸i’s. Also,
with ungrouped data, the fitted mixed exponential variance will
not be less than the sample variance. This applies only at the
global maximum. Appendix C gives the proofs of these state-
ments. With grouped data, these relationships cannot hold, be-
cause the values of the individual observations are not available.

The variance relationship for ungrouped data results from the
smoothing effect of the mixed exponential distribution. Probabil-
ity from the sample values is effectively spread to surrounding
values where no data was observed, thus increasing the variance.
Though this produces an upward bias in the variance of the fit-
ted distribution, it reduces the variance of the estimates of the
survival probabilities produced by the fitted distribution, as we
will see in Section 6.
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This variance relationship also holds for nonparametric
smoothing procedures. For parametric distributions, the fitted
variance can be either larger or smaller than the sample vari-
ance, depending on the particular sample. For both the mixed
exponential distribution and parametric distributions, as long as
the variance of the actual distribution is finite, the ratio of the
fitted variance to the sample variance will approach 1 as the sam-
ple size goes to infinity, since both will converge to the actual
variance of the distribution. If the variance of the actual distri-
bution is infinite, this will be true for the distribution censored
at any point.

The given algorithm is certainly not the only one that can be
used to maximize the loglikelihood function. I presented it be-
cause Newton’s method is well-known and it converges very fast
once the parameters are in the vicinity of the solution. Step 3 of
the algorithm, trying successively smaller forward and backward
Newton steps until the loglikelihood increases, is not elegant, but
it does work. One could certainly improve the efficiency of the
algorithm, but with the ample computing power now available,
any improvements would probably be of marginal benefit in most
cases.9

One could use a “canned” optimization program (which may
use Newton’s method with approximations of the derivatives) to
maximize the loglikelihood function. Such programs can work
well, but one must take care to ensure that the program does
not stop before reaching the solution. Also, since the ¸i’s are
generally of very different magnitudes, a scaling adjustment may
be helpful.

5. AN EXAMPLE

I will now illustrate how the algorithm works. I will use some
grouped general liability data taken from Table 2.27 of Klugman,

9Bohning [1] reviewed several maximum likelihood algorithms that have been proposed
for use with semiparametric mixture models.
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Panjer, and Willmot [8]. The first three columns of Table 1 show
the data. The loss amounts shown are the group boundaries.

We begin by fixing the number of means at one (though we
need not begin with one). Instead of referring to the ¸i’s as-
sociated with a mixed exponential distribution, throughout this
example I will refer to the means (the reciprocals of the ¸i’s).
Regardless of the initial value we select, we will obtain rapid
convergence to a mean of 51,190. The second column of Table
2 shows this result. The third column shows the value of the
KKT function

h(¸) = a1
1" e"¸b1

%"
j=1

wj(1" e"¸jb1)
+
g"1"
k=2

ak
e"¸bk"1 " e"¸bk

%"
j=1

wj(e
"¸jbk"1 " e"¸jbk )

+ ag
e"¸bg"1

%"
j=1

wj(e
"¸jbg"1 )

for a number of means. As it must, h(¸) has a value of 336 (the
number of observations) at 51,190, but the function is larger than
this everywhere else. Thus, we have not reached the maximum.

Since h(¸) is largest at large means, we move a small amount
of weight to a large mean. The actual value of this mean or the
amount of weight we place on it is not important as long as
the loglikelihood increases. With two means, the algorithm con-
verges to means of 13,570 and 176,638 with weights of 0.7566
and 0.2434, respectively. From Table 2, we see that we still have
not reached the maximum.

Since h(¸) is again largest at large means, we move a small
amount of weight to a large mean and proportionately scale back
the weights on the existing two means (checking to be sure that
the loglikelihood increases). With three means, the algorithm
converges to means of 10,598, 73,440, and 686,632 with weights
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TABLE 2

KARUSH–KUHN–TUCKER FUNCTION

One Mean Two Means Three Means Four Means

Mean=
1
¸

1
¸

h(¸) 1
¸

h(¸) 1
¸

h(¸) 1
¸

h(¸)

0 336.000
1,000 1173.337 432.190 396.167 335.881
2,000 1060.099 402.882 373.030 334.870
3,000 968.445 381.032 356.735 333.555
4,000 898.142 366.497 347.053 333.025
5,000 842.334 356.811 341.618 333.218
6,000 796.360 350.199 338.684 333.773
7,000 757.342 345.567 337.168 334.415
8,000 723.472 342.262 336.435 334.993
9,000 693.574 339.891 336.118 335.442
10,000 666.848 338.213 336.012 335.748

10,598 336.000
12,336 336.000

13,570 336.000
20,000 496.647 340.263 336.150 335.188
30,000 410.371 353.183 336.079 334.770
40,000 360.872 363.845 336.007 335.056
50,000 336.444 369.889 335.970 335.455

51,190 336.000
60,000 389.835 371.973 335.979 335.775
70,000 971.560 371.194 335.998 335.958

73,440 336.000
77,922 336.000

80,000 3,995 368.495 335.992 335.997
90,000 14,647,843 364.604 335.944 335.915
100,000 43,187,502 360.067 335.856 335.745

176,638 336.000
200,000 6,191,258 338.944 334.801 333.922
300,000 32,692,464 414.348 334.964 334.227
400,000 75,160,236 558.705 335.441 335.019
500,000 123,867,653 729.785 335.788 335.598
600,000 172,830,341 903.455 335.960 335.903

686,632 336.000
700,000 219,258,668 1068.732 335.999 335.999

712,302 336.000
800,000 262,097,414 1221.452 335.950 335.956
900,000 301,125,152 1360.665 335.845 335.827

1,000,000 336,492,659 1486.842 335.708 335.645
2,000,000 554,645,524 2264.678 334.206 333.527
3,000,000 655,188,015 2622.692 333.230 332.125
4,000,000 712,101,357 2825.202 332.618 331.242
5,000,000 748,596,059 2955.002 332.205 330.645
6,000,000 773,959,261 3045.185 331.909 330.217
7,000,000 792,600,348 3111.454 331.688 329.896
8,000,000 806,875,259 3162.194 331.516 329.646
9,000,000 818,155,499 3202.285 331.378 329.447
10,000,000 827,293,145 3234.758 331.266 329.284
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of 0.6270, 0.3340, and 0.0390, respectively. Again, we have not
reached the maximum.

The KKT function is now largest below the first mean of
10,598. We move a small amount of weight to a small mean
and proportionately scale back the weights on the existing three
means. When we resume iterating, this smallest mean heads to-
ward zero. We then fix it at a small value (for example, 25, 1%
of the first group boundary). Effectively, we assign all the prob-
ability associated with this mean to the first group. We resume
iterating, and the algorithm converges to the values shown at the
top of Table 1. The table shows the first mean as zero, because
that is its true value. As the last column of Table 2 shows, the
KKT function now never exceeds 336. We have thus reached the
maximum likelihood estimates of the mixed exponential param-
eters.

Table 1 shows the fitted survival probabilities. The fitted and
empirical probabilities match exactly at the first group boundary.
This will always occur when a mean of zero has a positive weight
in the final parameter set, since this is the only way the KKT
function can be equal to the number of observations when ¸i
is infinity. Likewise, anytime a mean of infinity has a positive
weight in the final parameter set, the survival probabilities will
match exactly at the last group boundary.

If the data includes various deductibles, attachment points,
or policy limits, we can obtain the empirical distribution using
the Kaplan–Meier Product-Limit estimator. This estimator pro-
vides empirical survival probabilities that take into account the
effect of unobserved losses below deductibles and attachment
points as well as losses capped by policy limits. Klugman, Pan-
jer, and Willmot [8] cover this estimator briefly. It has histori-
cally been used extensively in survival analysis, and Klein and
Moeschberger [7] and London [14] cover the subject in more
detail.

For comparison, Table 1 also shows the fits for three distri-
butions other than the mixed exponential. The parameterizations
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of the transformed beta and the Pareto are the same as those that
Klugman, Panjer, and Willmot [8] use. See Appendix A for de-
tails. The lognormal parameterization is the standard one. The
transformed beta provides the best fit, as measured by the log-
likelihood, of the distributions used by Klugman, Panjer, and
Willmot [8]. The Pareto is a special case of both the mixed
exponential and the transformed beta. As expected, the mixed
exponential provides the best fit.

We would prefer the mixed exponential distribution if our hy-
pothesis is that the actual distribution has the alternating deriva-
tive property, which is a much weaker hypothesis than one that
states that the actual distribution follows a particular parametric
form. In most situations, I have found little or no justification
for a stronger parametric hypothesis.

The usual way to evaluate a hypothesis is to perform a test
such as the chi-square goodness-of-fit test. When the parameters
are estimated from the data, this test is not appropriate with the
mixed exponential distribution, since the mixed exponential does
not have a fixed number of parameters. However, with most loss
data I have encountered in practice, the appropriateness of the
mixed exponential will be evident from a comparison of the fitted
and empirical distributions.

For the other three distributions in Table 1, we can perform
chi-square goodness-of-fit tests. We will combine the last three
groups, and the two groups before the last three, so there are at
least five losses in each of the resulting 14 groups. The results
are as follows:

Chi-square Degrees of
Distribution Statistic Freedom p-value

Transformed Beta 9.24 9 0.41
Pareto 10.55 11 0.48

Lognormal 11.12 11 0.43
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Another way to evaluate the Pareto hypothesis would be to use
a likelihood ratio test. Since the Pareto distribution is a spe-
cial case of the transformed beta distribution, under the Pareto
hypothesis, twice the difference of the maximum values of
the loglikelihoods of the Pareto and transformed beta has ap-
proximately a chi-square distribution with two degrees of free-
dom (the difference in the number of parameters). In this case,
2' (("820:16)" ("820:78)) = 1:24, which yields a p-value of
0.54. Thus, the Pareto distribution would not be rejected in fa-
vor of the transformed beta distribution.10

In this example, none of the distributions shown in Table 1
would be rejected as possible models for the actual distribution.
However, as I mentioned above, hypothesizing a particular para-
metric distribution is dubious in most cases I have encountered.
In general, the larger the data set, the more evident this becomes.

6. VARIANCE

With parametric distributions, we can obtain the asymptotic
variances and covariances of the maximum likelihood estimators
of the parameters by calculating the covariance matrix. We can
then use the covariance matrix to find the asymptotic variances
of the maximum likelihood estimators of functions of the pa-
rameters that are of interest, such as survival probabilities and
limited expected values.11

This approach does not work with the semiparametric mixed
exponential distribution. Tierney and Lambert [16] obtained a
result that implies that the asymptotic variance of the maximum
likelihood estimator of a function of mixed exponential param-
eters is equal to the variance of the empirical estimator for un-
grouped data. For a survival probability, the empirical estimator
is the sample proportion of observations that exceeds the loss

10See Section 2.9 of Klugman, Panjer, and Willmot [8] for a more thorough discussion
of these tests.
11See Section 2.5 of Klugman, Panjer, and Willmot [8] for a discussion.
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amount under consideration. This has a binomial distribution that
approaches a normal distribution as the number of observations
approaches infinity. This result means that, asymptotically, we do
not reduce the variance of our survival probability estimates, or
any other estimates based on the mixed exponential parameters,
by using the fitted distribution instead of the empirical distribu-
tion.

In practice, we do not have infinite samples. To see what hap-
pens with finite samples, we must resort to simulation. Tables
3A, 3B, and 3C show the results of simulations using sample
sizes of 10, 50, and 250, respectively. In each case, the simu-
lated distribution is the Pareto distribution from Table 1. I used
a Pareto distribution to facilitate comparison of the variances of
estimates obtained using the mixed exponential distribution with
the variances of estimates obtained using the Pareto distribution.
The Pareto distribution serves as an example of a parametric dis-
tribution with a fixed number of parameters. These tables show
estimates of the bias and variance of survival probability esti-
mates based on 10,000 simulations, for a mixed exponential fit
without grouping the data, and both a mixed exponential and
a Pareto fit with data grouped using the boundaries from Table
1. The tables display bias as a percentage of the actual survival
probability, and variance as a ratio to the variance of the em-
pirical estimator. Table 3C also shows the asymptotic variance
for the Pareto distribution. I focus on the survival function be-
cause any other function of interest can be expressed in terms of
the survival function. For example, the limited expected value is
simply the integral of the survival function from zero to the limit
being considered.

The grouped mixed exponential results are close to the un-
grouped results in the middle of the distribution, but are dramat-
ically worse at small loss amounts and in the tail. The reason
for this is that the grouped data provides virtually no informa-
tion about the distribution either below the first group boundary
of 2,500 or above the last group boundary of 1,000,000. There-
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TABLE 3A

SIMULATION RESULTS—10 OBSERVATIONS

Ungrouped Grouped Grouped
Mixed Exponential Mixed Exponential Pareto

10 Times Ratio to Ratio to Ratio to
Survival Empirical Empirical Empirical Empirical

Loss Amt Probability Variance Bias Variance Bias Variance Bias Variance

10 0.9993 0.00073 "0:25% 1.09 "3:79% 85.35 "0:02% 0.05
100 0.9927 0.00722 "1:20% 0.79 "3:89% 8.34 "0:13% 0.12

1,000 0.9316 0.06376 "3:61% 0.56 "4:58% 0.94 "0:66% 0.37
2,500 0.8443 0.13142 "4:45% 0.56 "4:96% 0.64 "0:72% 0.54
7,500 0.6415 0.22999 "3:99% 0.64 "4:28% 0.65 0.36% 0.72
12,500 0.5155 0.24976 "3:15% 0.69 "3:37% 0.69 1.06% 0.79
17,500 0.4298 0.24508 "2:63% 0.72 "2:79% 0.72 1.14% 0.82
22,500 0.3680 0.23257 "2:40% 0.74 "2:49% 0.74 0.76% 0.83
32,500 0.2848 0.20368 "2:47% 0.75 "2:47% 0.76 "0:70% 0.82
47,500 0.2116 0.16683 "3:13% 0.75 "3:04% 0.75 "3:32% 0.79
67,500 0.1568 0.13219 "4:16% 0.73 "4:03% 0.74 "6:17% 0.74
87,500 0.1240 0.10863 "5:05% 0.71 "4:89% 0.72 "7:94% 0.70
125,000 0.0886 0.08075 "6:23% 0.68 "6:02% 0.68 "8:98% 0.64
175,000 0.0637 0.05968 "7:13% 0.65 "6:72% 0.65 "7:68% 0.61
225,000 0.0496 0.04710 "7:60% 0.63 "6:79% 0.64 "4:98% 0.59
325,000 0.0341 0.03290 "7:90% 0.61 "5:65% 0.63 1.75% 0.58
475,000 0.0230 0.02245 "7:66% 0.58 "1:60% 0.67 12.25% 0.58
675,000 0.0159 0.01564 "7:00% 0.56 6.94% 0.78 25.39% 0.59

1,000,000 0.0105 0.01038 "6:00% 0.54 26.22% 1.02 44.47% 0.61
2,000,000 0.0050 0.00499 "4:31% 0.51 108.32% 1.93 92.25% 0.68
3,000,000 0.0033 0.00324 "3:39% 0.51 205.80% 2.94 131.11% 0.75
5,000,000 0.0019 0.00188 "1:82% 0.51 417.16% 5.05 195.67% 0.85
10,000,000 0.0009 0.00089 2.63% 0.54 982.05% 10.63 321.95% 1.04
20,000,000 0.0004 0.00042 11.91% 0.60 2178.28% 22.38 514.73% 1.31
30,000,000 0.0003 0.00027 19.65% 0.65 3423.15% 34.60 672.44% 1.52
50,000,000 0.0002 0.00016 31.42% 0.69 6002.45% 59.92 937.99% 1.86
100,000,000 0.0001 0.00008 46.04% 0.72 12761.24% 126.28 1469.57% 2.47

10 (Sample Size) Times Empirical Variance

= 10 ( Surv Prob ( (1"Surv Prob)
10

= Surv Prob ( (1"Surv Prob)

Bias =
Average Simulated Fitted Survival Probability"Survival Probability

Survival Probability

Ratio to Empirical Variance

=
Variance of Simulated Fitted Survival Probabilities

Empirical Variance
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TABLE 3B

SIMULATION RESULTS—50 OBSERVATIONS

Ungrouped Grouped Grouped
Mixed Exponential Mixed Exponential Pareto

50 Times Ratio to Ratio to Ratio to
Survival Empirical Empirical Empirical Empirical

Loss Amt Probability Variance Bias Variance Bias Variance Bias Variance

10 0.9993 0.00073 "0:15% 0.87 "1:94% 98.53 0.00% 0.00
100 0.9927 0.00722 "0:59% 0.55 "1:95% 9.50 "0:02% 0.03

1,000 0.9316 0.06376 "1:45% 0.51 "1:98% 0.97 "0:10% 0.27
2,500 0.8443 0.13142 "1:50% 0.59 "1:75% 0.68 "0:09% 0.50
7,500 0.6415 0.22999 "0:63% 0.72 "0:73% 0.74 0.29% 0.75
12,500 0.5155 0.24976 "0:11% 0.77 "0:15% 0.78 0.57% 0.77
17,500 0.4298 0.24508 0.02% 0.79 0.04% 0.80 0.66% 0.75
22,500 0.3680 0.23257 "0:04% 0.80 0.01% 0.80 0.61% 0.73
32,500 0.2848 0.20368 "0:36% 0.80 "0:29% 0.81 0.27% 0.69
47,500 0.2116 0.16683 "0:83% 0.81 "0:75% 0.81 "0:42% 0.68
67,500 0.1568 0.13219 "1:22% 0.81 "1:15% 0.82 "1:22% 0.68
87,500 0.1240 0.10863 "1:46% 0.81 "1:40% 0.82 "1:76% 0.69
125,000 0.0886 0.08075 "1:85% 0.81 "1:85% 0.81 "2:21% 0.69
175,000 0.0637 0.05968 "2:40% 0.80 "2:56% 0.80 "2:09% 0.68
225,000 0.0496 0.04710 "2:97% 0.78 "3:29% 0.78 "1:57% 0.66
325,000 0.0341 0.03290 "3:99% 0.76 "4:27% 0.75 "0:03% 0.62
475,000 0.0230 0.02245 "5:12% 0.72 "3:80% 0.74 2.58% 0.57
675,000 0.0159 0.01564 "6:08% 0.69 0.28% 0.78 5.98% 0.52

1,000,000 0.0105 0.01038 "6:92% 0.65 12.80% 0.93 10.95% 0.47
2,000,000 0.0050 0.00499 "7:59% 0.60 71.75% 1.64 22.91% 0.40
3,000,000 0.0033 0.00324 "7:36% 0.57 143.09% 2.50 32.00% 0.36
5,000,000 0.0019 0.00188 "6:20% 0.56 301.35% 4.36 45.95% 0.31
10,000,000 0.0009 0.00089 "2:70% 0.55 733.42% 9.21 70.11% 0.27
20,000,000 0.0004 0.00042 2.41% 0.55 1653.60% 19.39 101.68% 0.23
30,000,000 0.0003 0.00027 5.82% 0.56 2611.72% 29.98 124.40% 0.21
50,000,000 0.0002 0.00016 10.34% 0.56 4596.97% 51.92 158.47% 0.19
100,000,000 0.0001 0.00008 15.23% 0.57 9799.13% 109.42 216.68% 0.17

50 (Sample Size) Times Empirical Variance

= 50 ( Surv Prob ( (1"Surv Prob)
50

= Surv Prob ( (1"Surv Prob)

Bias =
Average Simulated Fitted Survival Probability"Survival Probability

Survival Probability

Ratio to Empirical Variance

=
Variance of Simulated Fitted Survival Probabilities

Empirical Variance
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TABLE 3C

SIMULATION RESULTS—250 OBSERVATIONS

Grouped
Pareto

Ungrouped Grouped Grouped Asymptotic
Mixed Exponential Mixed Exponential Pareto Variance

250 Times Ratio to Ratio to Ratio to Ratio to
Survival Empirical Empirical Empirical Empirical Empirical

Loss Amt Probability Variance Bias Variance Bias Variance Bias Variance Variance

10 0.9993 0.00073 "0:08% 0.59 "1:06% 134.65 0.00% 0.00 0.00
100 0.9927 0.00722 "0:27% 0.40 "1:05% 12.75 0.00% 0.03 0.03

1,000 0.9316 0.06376 "0:58% 0.49 "0:92% 1.10 "0:04% 0.25 0.25
2,500 0.8443 0.13142 "0:48% 0.62 "0:64% 0.73 "0:06% 0.48 0.49
7,500 0.6415 0.22999 "0:03% 0.78 "0:06% 0.80 "0:05% 0.75 0.77
12,500 0.5155 0.24976 0.02% 0.82 0.02% 0.84 "0:03% 0.77 0.78
17,500 0.4298 0.24508 "0:12% 0.84 "0:11% 0.85 "0:05% 0.75 0.75
22,500 0.3680 0.23257 "0:29% 0.86 "0:28% 0.86 "0:08% 0.72 0.72
32,500 0.2848 0.20368 "0:52% 0.89 "0:52% 0.89 "0:18% 0.69 0.68
47,500 0.2116 0.16683 "0:60% 0.90 "0:61% 0.91 "0:34% 0.68 0.66
67,500 0.1568 0.13219 "0:55% 0.90 "0:55% 0.91 "0:51% 0.69 0.67
87,500 0.1240 0.10863 "0:54% 0.90 "0:50% 0.91 "0:63% 0.71 0.68
125,000 0.0886 0.08075 "0:66% 0.89 "0:57% 0.90 "0:74% 0.72 0.70
175,000 0.0637 0.05968 "0:91% 0.88 "0:83% 0.89 "0:75% 0.72 0.70
225,000 0.0496 0.04710 "1:14% 0.87 "1:13% 0.88 "0:67% 0.71 0.69
325,000 0.0341 0.03290 "1:52% 0.87 "1:61% 0.89 "0:39% 0.68 0.66
475,000 0.0230 0.02245 "1:94% 0.86 "1:73% 0.89 0.14% 0.62 0.60
675,000 0.0159 0.01564 "2:39% 0.85 "0:68% 0.88 0.86% 0.56 0.54

1,000,000 0.0105 0.01038 "3:04% 0.83 3.36% 0.96 1.94% 0.48 0.47
2,000,000 0.0050 0.00499 "4:61% 0.75 27.42% 1.78 4.60% 0.36 0.33
3,000,000 0.0033 0.00324 "5:63% 0.71 61.92% 2.85 6.62% 0.30 0.27
5,000,000 0.0019 0.00188 "6:62% 0.66 145.14% 5.12 9.66% 0.23 0.20
10,000,000 0.0009 0.00089 "6:62% 0.60 383.10% 11.02 14.73% 0.16 0.12
20,000,000 0.0004 0.00042 "5:55% 0.55 900.71% 23.32 20.95% 0.11 0.08
30,000,000 0.0003 0.00027 "4:78% 0.53 1442.30% 36.06 25.17% 0.09 0.06
50,000,000 0.0002 0.00016 "3:64% 0.51 2565.35% 62.44 31.15% 0.06 0.04
100,000,000 0.0001 0.00008 "2:43% 0.49 5508.39% 131.56 40.53% 0.04 0.02

250 (Sample Size) Times Empirical Variance

= 250 ( Surv Prob ( (1"Surv Prob)
250

= Surv Prob ( (1"Surv Prob)

Bias =
Average Simulated Fitted Survival Probability"Survival Probability

Survival Probability

Ratio to Empirical Variance

=
Variance of Simulated Fitted Survival Probabilities

Empirical Variance
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fore, the fitted distribution often contains means of either zero
or infinity or both.

Because the Pareto is less flexible than the mixed exponen-
tial, the Pareto usually provides survival probability estimates
with a smaller variance. This effect is most notable at small loss
amounts and in the tail. However, this fact illustrates the prob-
lem with using the Pareto or other parametric distributions with
a fixed number of parameters. If we knew that the actual distri-
bution were a Pareto, we would of course prefer to fit a Pareto
instead of a mixed exponential. However, the assumption that
the distribution is a Pareto is virtually never valid. If our data set
is small, the fit may appear to be good, but the tail is simply a
function of the assumption that the distribution is a Pareto. The
fitted tail may or may not be anywhere close to the actual tail.
If our data set is large, then unless we really do have a Pareto,
we will probably observe a poor fit in the tail because the Pareto
is not flexible enough. Thus, though the Pareto provides esti-
mates with smaller variance than the mixed exponential, these
estimates may be significantly biased if the actual distribution is
not a Pareto.

For the ungrouped mixed exponential, as the number of ob-
servations increases, the bias gradually disappears, and the ratio
of the variance to the empirical variance eventually approaches
1. This process takes longer at small loss amounts and in the
tail. For the grouped mixed exponential, the results are similar
except that outside the layer boundaries, the estimator remains
poor. Note that an empirical estimate of the survival probability
is not an option outside the layer boundaries, since an empiri-
cal estimator is only available at the layer boundaries. For the
Pareto, with 250 observations, the variance is very close to the
asymptotic variance, but there is still some significant bias in the
tail.

I have displayed results for only one distribution. The most
notable feature that differs by distribution is that, generally
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speaking, for a given number of observations and a given sur-
vival probability, the thinner the tail of a distribution, the smaller
the variance. Roughly, this is because there is less spread in the
mixing distribution of mixed exponential distributions with thin-
ner tails than in those with thicker tails.

7. ADJUSTMENTS AND OTHER USES

In this section, I will first address the issue of estimating the
tail of a distribution. Table 1 showed only survival probabili-
ties up to 1,000,000. Table 4 shows survival probabilities up to
100,000,000. The first distribution in the table is the mixed ex-
ponential that we fit previously. The second distribution is the
mixed exponential that results when we move one claim from the
675,000–1,000,000 group to the 475,000–675,000 group. The
survival probabilities are very close to one another except in the
tail. When we move one claim, we acquire a mean of infinity with
a small positive weight. The survival function now approaches
the value of this weight, instead of zero, as the loss amount ap-
proaches infinity. For comparison, Table 4 also shows the Pareto
and lognormal distributions from Table 1. If we were to move
this same claim and then fit a Pareto or lognormal distribution,
the tails would be very close to those from Table 1. However, we
have no way to tell from the available data whether either of them
is anywhere close to the actual tail. The tails of the Pareto and
lognormal distributions are between the two mixed exponential
tails, and are also very different from one another.

Thus we see that we cannot reliably use the mixed exponential
distribution or any parametric distribution to extrapolate beyond
the available data. However, an advantage of the mixed exponen-
tial is that if other data is available to assist in estimating the tail,
or if we simply use judgment, we can find a mixed exponential
distribution that both fits the available data and produces the de-
sired tail. For example, suppose we believe that the tail is likely
to have a shape like the Pareto tail. We may base this belief on
data we have from a similar source or simply judgment. We can



MODELING LOSSES WITH THE MIXED EXPONENTIAL DISTRIBUTION 679



680 MODELING LOSSES WITH THE MIXED EXPONENTIAL DISTRIBUTION

add eight more group boundaries as shown in Table 4 to increase
the number of groups to 25. We can then allocate the three claims
above 1,000,000 to the nine groups above 1,000,000 so that the
empirical survival probabilities above 1,000,000 match those of
the Pareto distribution. We can then find a maximum likelihood
estimate based on these 25 groups. The last two columns of Table
4 show the resulting distribution. The mixed exponential distri-
bution is flexible enough so that we can append whatever tail we
think appropriate while affecting the fit in the lower portion of
the distribution very little.

In the example above, we adjusted the data before fitting to
produce an appropriate tail. We may need to adjust the data for
other reasons. For example, we may have to adjust for loss devel-
opment. I will not discuss this issue further in this paper. How-
ever, such adjustments would change the empirical distribution
to which we fit.

Just as we may adjust the data, we may also need to adjust
the fitted distribution. The best fitting distribution, which sat-
isfies the KKT conditions, will not, in all cases, be the most
appropriate estimate to use. When conditions warrant, we may
set any of the means and weights at fixed values before fitting.
For example, despite any data adjustments we have made, if the
best fitting distribution contains a mean of infinity, we may fix
the largest mean and possibly its weight at a value that yields a
tail that we feel is more appropriate. As another example, if we
are fitting a number of distributions as part of the same project,
we may find it convenient to use the same fixed means for each
distribution. If the means are not too far apart, the resulting dis-
tributions are likely to fit almost as well as if we had not fixed
the means. We could also impose constraints on the relationships
among the means and weights through the use of Lagrange mul-
tipliers. Also, we could, through trial and error, simply select a
distribution that visually fits the data well.

We can use the mixed exponential distribution for more than
modeling losses. We can use the mixed exponential to model
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anything where we expect a function with alternating deriva-
tives. For example, I have found it useful in modeling the prob-
ability that a claim does not have any allocated loss adjustment
expense attached to it as a function of the claim size. This is not
a probability function, so we cannot use maximum likelihood
estimation. However, we can use a least squares procedure to fit
the distribution to the data.

8. CONCLUSION

In this paper, I have tried to provide the background needed
for an actuary to begin using the mixed exponential distribution
in his or her work. I believe that the combination of flexibility
and smoothness that the mixed exponential provides makes it an
extremely useful actuarial modeling tool.
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APPENDIX A

In this appendix, I will address the issue of which of the para-
metric distributions generally used to model losses have com-
pletely monotone density functions and are thus special cases
of the mixed exponential distribution. I will use the same pa-
rameterizations that are used in Klugman, Panjer, and Willmot
[8].

The transformed beta distribution has probability density
function

f(x) =
¡ (®+ ¿)
¡ (®)¡ (¿)

°(x=µ)°¿

x[1+ (x=µ)°]®+¿
:

If °¿ > 1, then f(x) is not completely monotone because it
has a nonzero mode.

If °¿ # 1 and ° # 1, then f(x) is completely monotone. To
see this, note that, ignoring factors not involving x, we can write
f(x) as the product of x°¿"1 and [1+ (x=µ)°]"®"¿ . The first factor
is clearly completely monotone. We can use induction with the
product rule for differentiation to show that the second factor is
completely monotone. Similarly, we can use induction to show
that the product of the two factors is also completely monotone.
Feller [3, p. 441] gives a short proof of the fact that the product
of completely monotone functions is also completely monotone.

Notable special cases of the transformed beta distribution that
are also special cases of the mixed exponential distribution are
the Pareto (which has ° and ¿ fixed at 1) and the Burr (which
has ¿ fixed at 1) with ° # 1.
The set of parameters for which f(x) is completely monotone

when °¿ # 1 and ° > 1 is an open question. If ° is too large,
then f(x) will not be completely monotone, but I could not find
a proof that would definitively determine the status of all distri-
butions with parameters in this region.
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The transformed gamma distribution has probability density
function

g(x) =
¿(x=µ)®¿e"(x=µ)¿

x¡ (®)
:

If ®¿ > 1, then g(x) is not completely monotone because it
has a nonzero mode.

If ¿ > 1, then g(x) is not completely monotone because it has
an increasing failure rate in the tail.

If ®¿ # 1 and ¿ # 1, then g(x) is completely monotone. To see
this, note that, ignoring factors not involving x, we can write g(x)
as the product of x®¿"1 and e"(x=µ)¿ . These are both completely
monotone, so their product is completely monotone.

Notable special cases of the transformed gamma distribution
that are also special cases of the mixed exponential distribu-
tion are the gamma (which has ¿ fixed at 1) with ®# 1 and
the Weibull (which has ® fixed at 1) with ¿ # 1.
The inverse transformed gamma, lognormal, and inverse

Gaussian distributions are never completely monotone, since
they always have nonzero modes.

All of the distributions mentioned, except for the transformed
gamma with certain parameters (¿ > 1 or ¿ = 1, ®$ 1), have
decreasing failure rates in the tail.
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APPENDIX B

In this appendix, I will provide proofs of the key properties
underlying maximum likelihood estimation with the mixed expo-
nential distribution—first for ungrouped data, then for grouped
data.

Ungrouped Data

The loglikelihood function is

lnL(w1,w2, : : :) =
m"
k=1

lnf(xk) =
m"
k=1

ln

) %"
i=1

wi¸ie
"¸ixk

*
,

where m is the number of observations. We must find the set
of wi’s that maximizes the loglikelihood function, subject to the
constraints that each of the wi’s must be greater than or equal to
zero and the sum of the wi’s must be one. From now on, when
I refer to maximizing the loglikelihood function, I mean max-
imizing the loglikelihood function subject to these constraints.
We consider the ¸i’s fixed and arbitrarily close together. Thus,
the only parameters are the wi’s.

The ln function is strictly concave and the sum of strictly
concave functions is also strictly concave.12 This fact allows us
to conclude that if more than one set of wi’s maximizes the
loglikelihood function, each set must yield identical values of-%
i=1wi¸ie

"¸ixk for each xk. If two sets of wi’s yielding different
values of

-%
i=1wi¸ie

"¸ixk maximized the loglikelihood function,
each set of wi’s on the line segment between them (which would
satisfy the constraints) would yield a value of the loglikelihood
function greater than the maximum (since

-%
i=1wi¸ie

"¸ixk is a
linear function of the wi’s). Clearly, this cannot be.

12See Appendix 2 of Hillier and Lieberman [4] for a discussion of concavity and
convexity.
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We can view maximizing the loglikelihood function as a con-
vex programming problem, since the loglikelihood function is
concave and the constraints are linear (and thus convex). The
theory of convex programming gives us a set of necessary and
sufficient conditions, the Karush–Kuhn–Tucker (KKT) condi-
tions, for the loglikelihood function to be at a maximum. For
ungrouped data, these conditions are

@ lnL
@wi

=
m"
k=1

¸ie
"¸ixk

%"
j=1

wj¸je
"¸jxk

# u, if wi = 0

and

@ lnL
@wi

=
m"
k=1

¸ie
"¸ixk

%"
j=1

wj¸je
"¸jxk

= u, if wi > 0

for some number u. If we sum the KKT conditions, giving weight
wi to each element of the sum, we have

u=
%"
i=1

wiu=
%"
i=1

wi
@ lnL
@wi

=
%"
i=1

m"
k=1

wi¸ie
"¸ixk

%"
j=1

wj¸je
"¸jxk

=
m"
k=1

%"
i=1

wi¸ie
"¸ixk

%"
j=1

wj¸je
"¸jxk

=m:

Thus, we see that u must be equal to m, the number of observa-
tions.13

13See Chapter 13 of Hillier and Lieberman [4] for an introductory treatment of convex
programming. Jewell [6] gave a direct derivation of the Karush–Kuhn–Tucker conditions
for the mixed exponential case.
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We now examine the function

h(¸) =
m"
k=1

¸e"¸xk
%"
j=1

wj¸je
"¸jxk

, 0# ¸#%:

To satisfy the KKT conditions, this function must have a maxi-
mum of m that occurs at the points corresponding to where wi is
greater than zero. We first note that h(0) = h(%) = 0, so the wi’s
corresponding to ¸i’s of zero and infinity must be zero. Taking
the derivative of h(¸) gives

dh

d¸
=

m"
k=1

("¸xk +1)e"¸xk
%"
j=1

wj¸je
"¸jxk

:

Polyá and Szegö [15] showed that an exponential polynomial
of the form

-m
k=1pk(¸)e

"¸xk that is not zero everywhere, where
pk is a real ordinary polynomial of degree dk, has at most-m
k=1 (dk +1)"1 zeros.14 Thus dh=d¸ has at most 2m"1 ze-

ros. When the KKT conditions are satisfied, dh=d¸ must be zero
where h(¸) assumes the value m on (0,%). Since maxima must
alternate with minima (where dh=d¸ must also be zero), h(¸) can
assume the value m at no more than m points on (0,%). Since the
wi’s corresponding to ¸i’s of zero and infinity are zero, the num-
ber of positive wi’s at the point that the loglikelihood function is
at its maximum is at most m, the number of observations.15 We
can also see that none of the corresponding ¸i’s can be less than
1=xm, where xm is the largest observation, since every term of the
expression for dh=d¸ is positive for ¸ less than 1=xm. Likewise,
none of the ¸i’s can be greater than 1=x1, where x1 is the small-
est observation, since every term of the expression for dh=d¸ is
negative for ¸ greater than 1=x1.

14See Part Five, Problem 75 of Polyá and Szegö [15].
15Using a more general technique, Lindsay [10] showed that this is true for mixtures of
any type of distribution.



MODELING LOSSES WITH THE MIXED EXPONENTIAL DISTRIBUTION 689

We will now determine whether the loglikelihood can attain
its maximum at more than one set of wi’s. We do know that if
more than one set yielded the maximum, each set would have to
give the same value of

-n
i=1wi¸ie

"¸ixk for each xk. Let ¸1, : : : ,¸n
be the points at which the wi’s are positive where the loglike-
lihood is at its maximum. If more than one set of wi’s gave
the same value of

-n
i=1wi¸ie

"¸ixk for each xk, then the function-n
i=1 (wi"w&i )¸ie"¸ix would have at least m zeros, one for each

xk. From Polyá and Szegö’s result, this function can have no
more than n"1 zeros. Since we have already determined that
n#m, we have a contradiction. We thus conclude that the log-
likelihood attains its maximum at a unique set of wi’s.

16

Grouped Data

The loglikelihood function is

lnL(w1,w2, : : :) = a1ln (1" S(b1))+
g"1"
k=2

akln (S(bk"1)" S(bk))

+ agln(S(bg"1))

= a1ln

) %"
i=1

wi(1" e"¸ib1)
*

+
g"1"
k=2

akln

) %"
i=1

wi(e
"¸ibk"1 " e"¸ibk )

*

+ agln

) %"
i=1

wi(e
"¸ibg"1)

*
,

where g is the number of groups, a1, : : : ,ag are the number of
observations in each group, and b1, : : : ,bg"1 are the group bound-
aries. We will assume that any adjacent groups that all have zero
observations have been combined into one group. The develop-
ment is analogous to that for ungrouped data down to where we

16The reasoning in this and the previous paragraph is taken from Jewell [6].
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examine the function

h(¸) = a1
1" e"¸b1

%"
j=1

wj(1" e"¸jb1)
+
g"1"
k=2

ak
e"¸bk"1 " e"¸bk

%"
j=1

wj(e
"¸jbk"1 " e"¸jbk )

+ ag
e"¸bg"1

%"
j=1

wj(e
"¸jbg"1 )

, 0# ¸#%:

We note that h(0) and h(%) are not necessarily equal to zero,
so the wi’s corresponding to ¸i’s of zero and infinity are not
necessarily equal to zero. Taking the derivative of h(¸) gives

dh

d¸
= a1

b1e
"¸b1

%"
j=1

wj(1" e"¸jb1)
+
g"1"
k=2

ak
"bk"1e"¸bk"1 +bke"¸bk
%"
j=1

wj(e
"¸jbk"1 " e"¸jbk )

+ ag
"bg"1e"¸bg"1
%"
j=1

wj(e
"¸jbg"1)

=
g"1"
k=1

./////0
ak

%"
j=1

wj(e
"¸jbk"1 " e"¸jbk )

" ak+1
%"
j=1

wj(e
"¸jbk " e"¸jbk+1)

1222223
'bke"¸bk ,

where b0 = 0 and bg =%.

We may now apply Polyá and Szegö’s result, except if all of
the g"1 coefficients in the above equation are zero. This will
occur only when the mixed exponential probabilities for each
group are exactly proportional to the number of observations in
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each group or, in other words, when the data perfectly fits the
model. For this situation, we can easily come up with examples
where an arbitrarily large number of different mixed exponential
distributions, each with an arbitrarily large number of positive
wi’s, will maximize the loglikelihood function. However, a per-
fect fit is highly unlikely unless the number of groups is very
small.

When the fit is not perfect, Polyá and Szegö’s result ensures
that dh=d¸ has at most g"2 zeros. Thus, when the KKT condi-
tions are satisfied, h(¸) can assume the value m on (0,%) at no
more than g=2"1 points if g is even and no more than g=2" 1=2
points if g is odd. This places a bound on the number of positive
wi’s with corresponding ¸i’s on (0,%) at the point that the log-
likelihood function is at its maximum. In addition, it is possible
that the wi’s corresponding to ¸i’s of zero and infinity may be
positive.

We now move to the proof of uniqueness. Let ¸1, : : : ,¸n
be the points at which the wi’s are positive where the log-
likelihood is at its maximum. If more than one set of wi’s
maximized the loglikelihood, each would have to give the
same value of

-n
i=1wi(e

"¸ibk"1 " e"¸ibk ) for each group with a
nonzero number of observations (where bk"1 and bk are the
group boundaries). Since adjacent groups with zero observa-
tions have been combined, the minimum number of such groups
will be g=2 if g is even and g=2"1=2 if g is odd. There-
fore,

-n
i=1 (wi"w&i )(e"¸ibk"1 " e"¸ibk ) has to be zero for each of

these groups. This implies that, for each group, the function-n
i=1 (wi"w&i )e"¸ix has the same value at both bk"1 and bk. Thus

the derivative of this function must be zero somewhere between
bk"1 and bk. Therefore, the function

-n
i=1 (wi"w&i )¸ie"¸ix must

have at least g=2 zeros if g is even and at least g=2"1=2 ze-
ros if g is odd. From Polyá and Szegö’s result, this function
can have no more than n& "1 zeros, where n& is the number
of ¸i’s at which the wi’s are positive, excluding ¸i’s of zero
and infinity (since these terms drop out of the function). Since
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we have already determined that n& # g=2"1 if g is even and
n& # g=2"1=2 if g is odd, we have a contradiction. We thus
conclude that the loglikelihood attains its maximum at a unique
set of wi’s.

17

17Using a more general technique, Lindsay and Roeder [13] derived similar results to
those for grouped data shown here. Those results apply to mixtures of a broader class of
distributions.
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APPENDIX C

Use of Newton’s method requires calculation of the gradient
vector of first partial derivatives and the Hessian matrix of second
partial derivatives of the loglikelihood function.

In the derivatives that follow, w1 is not a real parameter, but
we set w1 equal to one minus the sum of the other wi’s.

18+
@ lnL
@¸i

,
k

and
+
@ lnL
@wi

,
k

refer to the terms of the first partial derivatives corresponding
to the kth observation (for ungrouped data) or kth group (for
grouped data).

For ungrouped data, the required derivatives are

@ lnL
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=
m"
k=1

+
@ lnL
@¸i

,
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=
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k
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@2lnL
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./////0
wixk(¸ixk "2)e"¸ixk
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j=1

wj¸je
"¸jxk

"
)+
@ lnL
@¸i

,
k

*2
1222223,

i= 1, : : : ,n,

18An alternative way to formulate the problem would be to keep w1 as a parameter and
use a Lagrange multiplier to ensure that the sum of the wi’s is one.
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For grouped data, the required derivatives are

@ lnL
@¸i

=
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k=1

ak

+
@ lnL
@¸i

,
k

=
g"
k=1

ak
wi("bk"1e"¸ibk"1 +bke"¸ibk )
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,
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The Newton step is the inverse of the Hessian matrix multi-
plied by the negative of the gradient vector. To remove one of the
parameters from the iterative process without reconstructing the
entire gradient and Hessian, set that parameter’s component of
the gradient to zero, its diagonal element of the Hessian matrix
to one, and the off-diagonal elements of its row and column of
the Hessian matrix to zero.

With ungrouped data, the fitted mixed exponential mean will
always equal the sample mean at both the global maximum and
at local maxima. To see this, first note that each of the @ lnL=@wi
values must be zero, so the KKT equalities are satisfied. We have
seen that this implies that

m"
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Since each of the @ lnL=@¸i values must be zero, we may sum
over them to obtain
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Since 1=¸i is the mean of the ith exponential distribution in the
mixture, we can see that the mixed exponential mean must indeed
be equal to the sample mean.

Also, with ungrouped data, the fitted mixed exponential vari-
ance will not be less than the sample variance at the global max-
imum. To see this, first note that at each of the ¸i’s with positive
weight attached, d2h=d¸2 must be less than or equal to zero. We
may sum over these second derivatives, giving weight wi to each
element of the sum, to obtain
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To get from the term in the second line above to the second
term in the third line, we use the fact that each of the @ lnL=@¸i
values must be zero. Since 2=¸2i is the second moment of the ith
exponential distribution in the mixture, and since we know that
the mixed exponential mean must be equal to the sample mean,
we can see that the mixed exponential variance cannot be less
than the sample variance.19

19Lindsay [9] showed that these moment relationships hold for mixtures of a broader
class of distributions.



DOWNWARD BIAS OF USING HIGH-LOW AVERAGES
FOR LOSS DEVELOPMENT FACTORS

CHENG-SHENG PETER WU

Abstract

This paper extends previous research that studied
the downward bias associated with high-low averages,
which occurs when high-low averages are applied to
data that exhibits a long-tailed property. The current
study conducted a comprehensive review of insurance
industry data when three-of-five averages are used to
determine the age-to-age development factors in setting
reserves. The downward bias was analyzed by line of
business, premium size, development age, paid and in-
curred loss development methods, for one hundred and
forty paid and incurred loss triangles from seventy in-
surance companies/groups compiled from the A.M. Best
database. The study assumes that the age-to-age devel-
opment factors are lognormally distributed. The three-
of-five average was selected as the representative high-
low average because it is commonly used by prop-
erty/casualty actuaries. The results for this average can
be generalized to other types of high-low averages. The
results given in the paper are based on a bias formula
for a large volume of data. Since the real-world loss de-
velopment data is limited in volume, the study used large
scale simulations to review the effect of limited volume
data on the bias.

1. INTRODUCTION

1.A. Downward Bias of Using High-Low Averages for
Age-to-Age Factors

Property/casualty actuaries often employ an averaging tech-
nique that excludes the same number of observations, split

699
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equally between the lowest and highest ranking observations.
These averages will be called the high-low averages in this paper.
One common application of the averages is the selection of loss
development factors.

There are many types of high-low averages, for example, the
middle three of the latest five years (three-of-five averages) and
the middle six of the latest eight quarters (six-of-eight averages).

The purpose of using high-low averages is to exclude outliers
and their disproportional influence on the results. Exclusion of
observations requires a great deal of caution, however. According
to Neter, Wasserman, and Kutner [8]:

“: : : an outlying influential case should not be auto-
matically discarded, because it may be entirely correct
and simply represents an unlikely event. Discarding of
such an outlying case could lead to the undesirable
consequences of increased variances of some of the
estimated regression coefficients.”

In other words, systematic exclusion of high and low data points
would lead to less statistically significant and, hence, less credi-
ble estimators.

Moreover, the distribution of insurance loss data exhibits un-
symmetrical behavior of skewing toward the right (higher val-
ues). This is called the long-tailed property. Most typical in-
surance claims are small amount claims, probably less than a
few thousand dollars. However, the remaining small number of
claims can have very large losses. For example, automobile large
loss claims will reach a few hundred thousand dollars, while
medical malpractice or environmental claims can even be multi-
million-dollar claims in today’s legal climate. Therefore, long-
tailed distributions such as lognormal, Pareto, and gamma distri-
butions are better in describing the loss data than the symmetric
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normal distribution because they reflect the large loss probabil-
ity. Exhibit 1 shows graphically a lognormal distribution and its
long-tailed property of skewing to the right.

Applying high-low averages to loss development factors will
result in a systematic downward bias when the loss develop-
ment data exhibits a long-tailed property. This can be illustrated
through the following example based on a lognormal assump-
tion.

First, assume that:

! At development age i, the aggregate reported loss or paid loss
is equal to Li.

! From age i to i+1, a total loss of li+1 is reported or paid.

! Since insurance losses have a long-tailed property, both Li and
li+1 can be represented by lognormal distributions. If this is the
case, then both ln(Li) and ln(li+1) are normally distributed. For
the use of lognormal distributions to approximate insurance
losses, please see Bowers, et al. [2], Finger [3], and Hogg and
Klugman [5].

Based on these assumptions, the age-to-age development factor
from age i to i+1 can be expressed as follows:

Di,i+1 = (Li+ li+1)=Li = 1+ li+1=Li:

Since the multiplication or division result of two lognormally
distributed variables also has a lognormal distribution, 1+ li+1=Li
and Di,i+1 are lognormally distributed and should have a long-
tailed property:

ln(Di,i+1)"N(¹i,¾2i ),
where ¹i is the mean and ¾

2
i is the variance of the normal distri-

bution for ln(Di,i+1).
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One advantage of assuming lognormal distributions for the
age-to-age development factors is that the age-to-ultimate fac-
tors and, consequently, the ultimate loss estimates are also log-
normally distributed:

UDi =Di,i+1#Di+1,i+2#Di+2,i+3#$$ $ ,
where

ln(UDi) = ln(Di,i+1)+ ln(Di+1,i+2)+ ln(Di,i+1)+ $ $ $
and

ln(UDi)"N(¹i+¹i+1 +¹i+2 + $ $ $ ,¾2i +¾2i+1 +¾2i+2 + $ $ $):
The fact that age-to-age development factors may have a long tail
has been noted previously. Hayne’s study [4], in quantifying the
variability of loss reserves, assumes that age-to-age development
factors are lognormally distributed. Kelly [6] and McNichols [7]
also conclude that a lognormal assumption is better in describing
age-to-age development factors than a normal assumption, based
on the fact that lognormal distributions can take only positive val-
ues and their long-tailed property reflects the distinct possibility
of large development factors.

However, if Di,i+1 is lognormally distributed, using high-low
averages to estimate Di,i+1 will result in a downward bias. Bias
is defined as the percentage difference between the mean and
the conditional mean, given that the data lie between a specified
lower and upper pair of percentile points. The bias is expressed
in the following formula whose detailed derivations can be found
in the Appendix:

Bias =
E(Di,i+1)

%

E(Di,i+1)
&1

=
1

(1&2p) [©(©
&1(1&p)&¾i)&©(©&1(p)&¾i)]& 1,

(1.1)
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where:

E(Di,i+1) is the expected value of Di,i+1,

E(Di,i+1)
% is the expected value of Di,i+1, given that Di,i+1 lies

between its upper and lower p percentile points!
i.e.,

1
1&2p

" d2

d1
t#f(t)dt

#
,

f(d) is the probability distribution function for Di,i+1,

F(d) is the cumulative distribution function for Di,i+1,

p represents percentile,

d1 is the value of Di,i+1 when F(d) = p,

d2 is the value of Di,i+1 when F(d) = 1&p,
and

©(X) is the standard normal distribution function," X

&'
exp(12 t

2)(
2¼

dt:

Equation (1.1) indicates that the degree of bias depends only
on p and ¾i, the percentage of data being excluded and the shape
parameter, but not on ¹i, the location parameter. This suggests
that the more data excluded or the more skewed and volatile the
distribution, the higher the downward bias is. Exhibit 1 illustrates
the downward bias graphically.

Note that we are not limited to only the lognormal assumption.
For example, one other commonly used long-tailed distribution
is the Pareto distribution. The bias formula similar to Equation
(1.1) for the Pareto distribution is also derived in the Appendix.
Further analysis indicates that for the age-to-age development
factors reviewed in this study, there is no significant difference
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in the bias result between the lognormal distribution and the
Pareto distribution.

1.B. Modified High-Low Averages for the Correction of
Downward Bias

Results from Equation (1.1) can be extended to the high-low
averages used by property/casualty actuaries. For example, a
three-of-five average also excludes the upper and lower 20%
of the data. The only difference is that the high-low average
is based on a limited volume of data (five data points) and a
sample distribution function, while Equation (1.1) is based on a
very large volume of data and a cumulative distribution function.

Equation (1.1) provides a basis to correct the bias for the
sample high-low average:

Modified High-Low Average

= Sample High-Low Average=(1+Bias), (1.2)

where the bias is given in Equation (1.1).

Exhibits 2 to 5 display how to correct the downward bias for
the three-of-five averages based on Equations (1.1) and (1.2).
This example uses product liability paid loss data for a sample
company from the A. M. Best database [1].

Exhibit 2 shows two types of averages: five-year straight av-
erages and three-of-five averages. These are factor averages, not
volume-weighted averages. Because the data has 10 years of ex-
perience, the three-of-five averages can be applied to only the
first five development ages. After the fifth development age, all-
years averages are used.

The tail factor of 1.0261 selected in Exhibit 2 should be noted.
This factor is the ratio of incurred loss to paid loss for the earliest
year in the triangle. No further tail development is assumed. The
choice of the tail factor will not affect the relative bias level
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because it is a constant that will be multiplied by the age-to-age
development factors.

Results from Exhibit 2 clearly indicate that the five-year av-
erages result in higher estimates than the three-of-five averages.
This is consistent with the assumption that age-to-age loss de-
velopment factors have a long-tailed property.

Fitting lognormal distributions to the age-to-age development
factors in Exhibit 2 produces the parameter estimates in Exhibit
3. First, ¹i and ¾

2
i are estimated for each development period. All

of the data in each development period are used to estimate these
sample parameters, although only the latest five data points are
used to select the age-to-age development factors. This approach
is used to increase the credibility of the sample parameters. Then,
the parameters for the age-to-ultimate development factors for a
development age are the sum of all the parameters of the age-to-
age factors from that age to ultimate.

Given these lognormal parameter estimates, the three-of-five
averages in Exhibit 2 can be modified to correct the downward
bias for the averages. The modified three-of-five factors are given
in Exhibit 4. For example, the lognormal parameters for the 12-
to-24 development factors are: ¹1 = 1:9221, and ¾

2
1 = 0:3057.

With p= 20%, a bias of &11:33% is indicated for the three-of-
five average based on Equation (1.1).

Exhibit 4 shows the indicated bias for each development pe-
riod and the modified three-of-five averages. Exhibit 5 compares
the estimated ultimate losses and reserves between the five-year
averages, the three-of-five averages, and the modified three-of-
five averages. For example, the total reserve for the three-of-five
averages is approximately 12.0% lower than the reserve for the
five-year averages, and is 8.9% lower than the reserve for the
modified three-of-five averages. Exhibit 5 does not show the re-
sults for the oldest five accident years since there is no difference
among methods for these five accident years.
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This specific example is for product liability paid loss data.
The results of the comprehensive review, testing the biases with
differing data volumes, differing lines of business, and paid and
incurred loss data will be shown in later sections.

1.C. Limited Volume Data

As mentioned previously, the bias formula given in Equation
(1.1) is based on a very large volume of data and a cumula-
tive distribution function, while the real-world data is limited in
volume.

Two issues in dealing with a limited volume of data should
be noted. First, additional parameter variation is introduced be-
cause sample parameters are assumed in place of true param-
eters. Therefore, when Equation (1.1) is used to estimate the
level of bias of real-world data, sample parameters, not the true
parameters, are generally used. For example, in Exhibits 3 and
4, the lognormal parameters, ¹1 = 1:9221 and ¾

2
1 = 0:3057, for

the 12-to-24 development factors, distribution are based on the
nine sample data points in the 12-to-24 development period. We
assumed these parameters were the true parameters when the
&11:33% of downward bias was indicated by Equation (1.1).

Second, even if the true parameters are known, the indicated
bias when sample size is small will not be the same as the in-
dicated bias when sample size is large. For example, Equation
(1.1) provides an accurate estimate of bias if 20% of high and
low data are excluded from a data set of, for example, a million
data points. However, when a three-of-five average is used to
estimate the loss development factors, 20% of the high and low
data are excluded from a data set of only five data points.

Resolving these limited volume data issues through statistical
methods is very difficult, if not impossible, and is beyond the
scope of this study. Instead, large scale simulations have been
conducted and the simulation results will be presented in the
later sections.
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2. CURRENT STUDY

2.A. Purposes

The previous section illustrates the potential bias of using
high-low averages for loss development factors, and more de-
tails can be found in Wu [9]. In light of these results, however,
many outstanding questions remain to be answered:

! Do the real-world loss development factors really exhibit a
long-tailed property?

! What is the level of the downward bias when the high-low
averages are used in setting reserves?

! How does the downward bias vary by line of business, data
volume, development age, and between paid and incurred loss
development methods?

! What is the effect of limited volume data on the bias?
This study attempts to answer these questions through a com-
prehensive review of industry data and large scale simulations.

2.B. Data

Data from the A.M. Best database [1] were gathered for the
following seven major liability lines:

! workers compensation;
! private passenger automobile liability;
! commercial automobile liability;
! medical malpractice, occurrence;
! medical malpractice, claims-made;
! product liability; and
! other liability.
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For each line of business, paid loss and incurred loss triangles
on an annual basis were compiled from ten randomly selected
insurance companies/groups. In general, the same ten companies
were not used for each line of business, but a few companies were
repeatedly selected. A total of one hundred and forty triangles
were collected. The loss triangles have ten years of experience
and cover the period from 1986 to 1995.

The collected data were further broken down into two groups
based on the volume of the data. One group, Group A, contains
large multi-line and multi-state companies, while the other group,
Group B, contains small local and regional companies. Exhibit 6
shows the range of the annual earned premium for the companies
within each groups.

2.C. Review Approach

The loss development procedures used to review the A. M.
Best data are the same as the procedures given in Exhibits 2 to
5. The following list summarizes the important assumptions in
the approach:

! The three-of-five average was selected as the representative
high-low average. The results for that average can be extended
to other types of high-low averages.

! Due to the fact that the collected loss triangle data have only
ten years of history, the three-of-five averages can be applied
to only the first five development ages. For the development
ages after 72 months, all-years averages were used.

! There is no tail development assumed for the incurred loss
method. For the paid tail, the ratio of incurred to paid loss for
the oldest accident year in the triangle was used.

! All data points in each development period were used to calcu-
late the lognormal parameters. This was done to increase the
credibility of the sample parameters. However, only the lat-
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est five points were used to select the age-to-age development
factors.

! Large scale simulations were conducted to study the effect of a
limited of volume data on the bias when sample parameters are
assumed as the true parameters. The simulations also measure
the differences between the simulated bias and the bias based
on Equation [1].

3. RESULTS AND DISCUSSION

3.A. Long-Tailed Property for Age-to-Age Development Factors

First, the reserve indications for the five-year averages and the
three-of-five are compared. Exhibit 6 gives the comparison re-
sults by line of business, company size, and paid versus incurred
methods.

Exhibit 6 indicates that approximately 70% of the data re-
viewed show lower reserve indications for the three-of-five av-
erages. This is consistent with the assumption that the age-to-age
development factors may have a long tail and the use of high-low
averages will result in a downward bias.

Exhibit 6 further indicates that the long tail assumption is
more valid for the more volatile lines such as medical malprac-
tice and product liability. On the other hand, the assumption is
equally valid for both large and small groups, and for both in-
curred and paid methods.

3.B. Results by Line of Business

Exhibits 7 to 13 give two types of downward bias by line
of business: the bias for the age-to-age development factors and
the bias for the reserve indications. The tests were conducted
on both the total reserve and the incurred but not reported re-
serve (IBNR). In each exhibit, the downward bias is indicated
by company size and paid versus incurred methods.
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The indicated bias given in these exhibits is based on Equa-
tion (1.1). For example, Exhibit 11 shows that for the malpractice
claims-made data of the large companies in Group A, the indi-
cated minimum, maximum, and average downward biases asso-
ciated with the three-of-five averages for the 12–24 paid factors
are 0.86%, 2.88%, and 2.06%, respectively.

The bias for the reserve indications is the difference between
indications based on the three-of-five averages and the modified
three-of-five averages. For example, Exhibit 11 shows that for the
malpractice claims-made data of the large companies in Group
A, the indicated minimum, maximum, and average downward
bias for the total reserves for the paid method are 0.61%, 2.86%,
and 1.87%, respectively.

From Exhibits 7 to 13, the following observations can be
made:

! The indicated bias for the age-to-age factors decreases as the
loss data become mature. For workers compensation, private
passenger automobile liability, and commercial automobile li-
ability, the bias appears to be insignificant after 72 months of
development. On the other hand, the bias is still noticeable af-
ter 72 months for medical malpractice, product liability, and
other liability.

! The indicated bias for the reserve indications can be substan-
tial, especially for the highly volatile lines such as medical
malpractice, product liability, and other liability. The use of
high-low averages can easily lead to a downward bias of over
10% for these lines of business.

! In general, the data of small companies shows higher down-
ward bias than the data of large companies. This is because
the age-to-age factors become more volatile as the volume of
the data decreases.

! There is no systematic difference in the bias level between the
paid and incurred factors. At a first glance, this result is some-
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what surprising and counterintuitive, because paid loss devel-
opment factors are larger and more leveraged than incurred
loss development factors. However, most internal and external
factors, such as claim processing, late reported claims, infla-
tion, underwriting cycles, and economic cycles, affect both
paid and incurred loss development factors. As indicated in
Equation (1.1), the bias depends on the skewness and volatil-
ity of the data, as represented by ¾i, but not on the level or the
magnitude of the data, as represented by ¹i. Further research
indicates that the sample paid loss factors and incurred loss
factors used in the study have similar degrees of skewness.
For example, the averages of the sample ¾ for 12–24 paid and
incurred factors for product liability data are not very different,
0.518 and 0.563, respectively.

3.C. Large Scale Simulations for the Limited Volume Data

As mentioned before, in theory, we need to have an infinitely
large amount of loss development data in order to apply Equation
(1.1) in calculating the downward bias of high-low averages. The
real-world data is limited and, therefore, will deviate somewhat
from the asymptotic assumptions underlying Equation (1.1). As
a result, there are two issues when Equation (1.1) is used with
a limited volume of data. First, true means and variances are
usually unknown, and sample means and variances from the data
need to be used. Second, Equation (1.1) calculates the bias when
one assumes that the data volume is very large, while the three-
of-five average, for example, uses only five data points.

In order to study the limited volume data effect, we designed a
large scale simulation test. The simulation procedures and results
are as follows:

1. A set of ¹i and ¾i are selected. The range for ¹i is be-
tween 0.1 and 2.0 and the range for ¾i is between 0.002
to 1.2. These ranges are based on the A. M. Best data
reviewed in the study. See Exhibits 14 and 15 for the
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selected combinations of ¹i and ¾i. These selected com-
binations of ¹i and ¾i represent the true parameters of
the underlying distribution for the simulations.

2. 4,000 lognormal observations based on the selected ¹i
and ¾i are generated. Each observation contains five ran-
dom data points.

3. For each observation, the sample parameters from the
five random data points are calculated. The bias using
Equation (1.1) with the sample parameters is calculated.
The bias result is compared to the bias based on the true
parameters of ¹i and ¾i. Since the sample parameters are
different from the true parameters of ¹i and ¾i, the bias
based on the sample parameters may be higher or lower
than the bias based on the true parameters. This is the
effect of the use of the sample parameters. Exhibit 14
shows the comparison based on the overall 4,000 gener-
ated observations. The result indicates that the bias based
on the sample parameters on average will be lower than
the bias based on the true parameters. For example, when
¾i = 1:2 and ¹i = 1:0, the bias on average will be under-
stated by 8.5% for the sample parameters.

4. Finally, for each observation, the three-of-five average
is calculated by excluding the lowest and highest data
points. The three-of-five average is compared to the ex-
pected average of the lognormal distribution with the se-
lected ¾i and ¹i to obtain the downward bias. The down-
ward bias for the observation is compared to the expected
downward bias based on Equation (1.1) with the selected
¾i, ¹i, and p= 20%. This is the effect of the limited vol-
ume of data since the bias for each of the observations
is based on only five data points, while the bias based
on Equation (1.1) is based on a large volume of data.
Exhibit 15 shows that the bias is tempered somewhat for
the limited volume data. For example, when ¾i = 1:2 and
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¹i = 1:0, the simulated bias for the three-of-five on av-
erage is approximately 67.5% of the bias calculated by
Equation (1.1) for a large volume of data.

Exhibits 14 and 15 also show that the effects of the limited vol-
ume of data on the bias depend primarily on ¾i, not on ¹i. The
effects diminish quickly as ¾i decreases.

Please note that the two effects in Exhibits 14 and 15 are sepa-
rately studied because, in theory, the effect of sample parameters
may not exist. This occurs when there is prior knowledge of the
true values for ¹ and ¾. With known ¹ and ¾, there still exists the
effect for limited sample size as given in Exhibit 15 when only
five data points are used to calculate the three-of-five averages.

3.D. Summary of the Results

The current study presents strong evidence, through a compre-
hensive review of property and casualty insurance industry data,
that downward bias will occur when high-low averages are used
to determine age-to-age development factors. The review results
show the level of the bias by line of business, development age,
premium size, and paid versus incurred methods. The results in-
dicate that the downward bias can be substantial, especially for
small companies and highly volatile lines.

Equations (1.1) and (1.2) provide a basis to quantify and cor-
rect the bias. Equation (1.1) is based on a large volume of data,
while only a limited volume of data is available for most real-
world applications. The simulation results show that the bias for
the limited volume of data, on average, is somewhat lower than
what is indicated by Equation (1.1).

4. CONCLUSIONS

Many property and casualty actuaries are undoubtedly aware
of the downward bias associated with the high-low averages.
While this study focuses on the loss development application,
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the results and implications should go beyond that application,
and can be extended to many other actuarial applications if the
underlying data shows a long-tail property.

Also, the real-world data that actuaries deal with daily may
have even higher levels of bias than indicated in this study for
the following reasons:

! The bias will increase if less mature data or quarterly and
semi-annual data are used.

! Due to the data limitation, the results given in this study only
include the bias for the first five development periods and real-
world data would allow a more thorough bias analysis beyond
the fifth development age.

! The bias is demonstrated and quantified through the lognormal
assumption in this study. The assumption may understate the
thickness of the tail for insurance data (see Hogg and Klug-
man [5]). If the tail of the loss development factors distribution
is more skewed than what is suggested by the lognormal dis-
tribution, the bias will be higher than indicated by Equation
(1.1).

As usual, many assumptions used in the current study are
ideal. Attempts to study the bias under more complicated as-
sumptions are beyond the scope of the current study because they
require advanced statistical knowledge. They can be topics for
future research, however. For example, nonparametric methods
may be used to explain the effects of limited volume. Another in-
teresting topic would be to study the bias when loss development
factors are highly correlated between development periods.

Finally, it should be noted that this paper does not attempt to
suggest the high-low averaging approach be completely excluded
from consideration by actuaries. The paper does attempt to in-
dicate the potential bias if the approach is applied to insurance
data on a comprehensive basis without an in-depth understand-
ing of the data. The principle that no one arithmetic approach is
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superior to or inferior to all others will not and should not be al-
tered by the results given in the paper. Perhaps, the key message
delivered by the paper is the need for even more substantial pro-
fessional judgment by actuaries in promulgating reserving and
pricing estimates.
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EXHIBIT 14

EFFECT OF SAMPLE PARAMETERS
RATIO OF AVERAGE BIAS

BASED ON SIMULATED SAMPLE PARAMETERS VS. TRUE
PARAMETERS

¹

¾ 2.000 1.000 0.500 0.100

1.200 90.6% 91.5% 91.2% 91.8%
0.900 93.2% 93.2% 94.9% 94.1%
0.500 97.5% 97.7% 97.3% 97.9%
0.100 99.5% 99.9% 99.5% 99.6%
0.050 100.2% 98.8% 100.4% 100.9%
0.002 99.4% 100.6% 100.9% 97.9%

EXHIBIT 15

EFFECT OF LIMITED SAMPLE SIZE
RATIO OF SIMULATED BIAS TO BIAS BASED ON EQUATION (1.1)

FOR THREE-OF-FIVE AVERAGES

¹

¾ 2.000 1.000 0.500 0.100

1.200 68.3% 67.5% 67.4% 67.1%
0.900 80.7% 80.2% 80.6% 80.6%
0.500 93.1% 92.8% 93.6% 93.8%
0.100 99.8% 99.8% 99.9% 99.7%
0.050 99.9% 99.9% 99.9% 99.9%
0.002 100.0% 100.0% 100.0% 100.0%
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APPENDIX

DOWNWARD BIAS FOR TWO LONG-TAILED DISTRIBUTIONS

This Appendix shows the derivations of the downward bias
based on the cumulative distribution functions for two long-tailed
distributions, lognormal and Pareto. Many of the details of these
two distributions can be found in Hogg and Klugman [5] or other
statistical texts.

First, the following list specifies the global notations for the
two distributions:

E(X): expected value for random variable X;

E(X)%: expected value of X when excluding the upper p% and
lower p% of data;

F(x): cumulative probability function;

f(x): probability density function;

p: percentile;

x1: value of X when F(x) = p;

x2: value of X when F(x) = 1&p;

©: standard normal distribution function =
$ x
&'

exp(12x
2)(

2¼
dx;

Á: standard normal density function = exp(12x
2)=
(
2¼.

A.1. Lognormal Distribution

a. Probability Density Function:

f(x) =

exp

!
1
2

%
lnx&¹
¾

&2#
x¾
(
2¼

:
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b. Cumulative Probability Function:

F(x) =
" '

0

exp

!
1
2

%
lnx&¹
¾

&2#
x¾
(
2¼

dx:

Let

x= e¾y+¹, then y =
lnx&¹
¾

, and dx= e¾y+¹¾dy:

F(x) =
" lnx&¹=¾

&'
e&y2=2e¾y+¹¾
e¾y+¹¾

(
2¼

dy =©
%
lnx&¹
¾

&
:

F(x1) = ©
%
lnx1&¹
¾

&
= p, x1 = e

(©&1(p)¾+¹):

F(x2) = ©
%
lnx2&¹
¾

&
= 1&p, x2 = e

(©&1(1&p)¾+¹):

c. Expected Value of X:

E(X) =
" '

0
x
e&1=2(lnx&¹=¾)2

x¾
(
2¼

dx=
" '

0

e&1=2(lnx&¹=¾)2

¾
(
2¼

dx:

Let

y =
lnx&¹&¾2

¾
, then x= e¾y+¹+¾

2
, and

dx= e¾y+¹+¾
2
¾dy:

E(X) =
" '

0

e&1=2(y+¾)2e¾y+¹+¾2¾
¾
(
2¼

dx

= e(¹+(1=2)¾
2)
" '

0

e&(1=2)y2(
2¼

dx= e(¹+(1=2)¾
2):

d. Expected Value of X when Excluding Upper p% and
Lower p% of Data:

E(X)% =
" x2

x1

x
e&1=2(lnx&¹=¾)2

(1&2p)x¾(2¼dx=
" x2

x1

e&1=2(lnx&¹=¾)2

(1&2p)¾(2¼dx:
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Let

y =
lnx&¹&¾2

¾
, then x= e¾y+¹+¾

2
, and

dx= e¾y+¹+¾
2
¾dy:

E(X)% =
e(¹+(1=2)¾

2)

(1&2p)
" (lnx2¹&¾2=¾

(lnx1&¹&¾2)=¾
e&1=2y

2

(
2¼

dx

=
e(¹+(1=2)¾

2)

(1&2p)

!
©

!
lnx2&¹&¾2)

¾

#
&©

!
lnx1&¹&¾2

¾

##
:

x1 = e
(©&1(p)¾+¹) and x2 = e

(©&1(1&p)¾+¹), then

E(X)% =
e(¹+(1=2)¾

2)

(1&2p) [©(©
&1(1&p)&¾))&©(©&1(p)&¾)]:

e. Downward Bias for Excluding Upper p% and Lower p% of
Data:

Bias =
E(x)%

E(x)
&1

=
1

(1& 2p) [©(©
&1(1&p)&¾))&©(©&1(p)&¾)]&1:

The above result indicates that the degree of bias depends on p,
the percentage of data being excluded, and ¾, the shape factor,
only. The bias does not depend on ¹, the location parameter.

A.2. Pareto Distribution

a. Probability Density Function:

f(x) = ®¸®(¸+ x)&®&1, x > 0:
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b. Cumulative Probability Function:

F(x) =
" x

0
®¸®(¸+ x)&®&1dx=&

%
¸

¸+ x

&®''''x
0
= 1&

%
¸

¸+ x

&®
:

F(x1) = p, then x1 = ¸#
%

1
(1&p)1=® &1

&
:

F(x2) = 1&p, then x2 = ¸#
%
1
p1=®

&1
&
:

c. Expected Value of X:

E(X) =
" '

0
x®¸®(¸+ x)&®&1 dx=&

%
¸

¸+ x

&®
x

'''''
0

+
" '

0
¸®(¸+ x)&® dx

=
" '

0
¸®(¸+ x)&® dx=& ¸

®&1
%

¸

¸+ x

&&(®&1)'''''
'

0

=
¸

®& 1 :

d. Expected Value of X when Excluding Upper p% and
Lower p% of Data:

E(X)% =
" x2

x1

x
®¸®(¸+ x)&®&1

1&2p dx=&x

%
¸

¸+ x

&®
1&2p

''''''''
x2

x1

+
" x2

x1

¸®(¸+ x)&®

1&2p dx

=&x

%
¸

¸+ x

&®
1&2p

''''''''
x2

x1

&
¸

%
¸

¸+ x

&(®&1)
(®&1)(1&2p)

'''''''''
x2

x1

:
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Since
¸

¸+ x1
=

¸

¸+¸
%

1
(1&p)1=® &1

& = (1&p)1=®, and

¸

¸+ x2
=

¸

¸+¸
%
1
p1=®

&1
& = p1=®,

then,

E(X)% =
¸

1&2p

(
&p®&1=®(1&p1=®)+ (1&p)®&1=®(1& (1&p)1=®)

& p
®&1=®

®& 1 +
(1&p)®&1=®
®& 1

)
=

¸

(®& 1)(1& 2p) [®(&p
®&1=®+(1&p)®&1=®)& (®&1)(1&2p)]:

e. Downward Bias for Excluding Upper p% and Lower p%
of Data:

Bias =
E(X)%

E(X)
&1

=
®

(1&2p) [&p
®&1=®+(1&p)®&1=®& (1&2p)]:

Again, the degree of bias for Pareto distribution depends on p
and ® only, the percentage of excluded data and the shape factor,
but not on ¸, the location parameter.
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LOSS PREDICTION BY GENERALIZED LEAST SQUARES

LEIGH J. HALLIWELL

DISCUSSION BY KLAUS D. SCHMIDT

Abstract

In a recent paper on loss reserving, Halliwell suggests
predicting outstanding claims by the method of general-
ized least squares applied to a linear model. An example
is the linear model given by

E[Zi,k] = ¹+®i+ °k,

where Zi,k is the total claim amount of all claims which
occur in year i and are settled in year i+ k. The predic-
tor proposed by Halliwell is known in econometrics but
it is perhaps not well-known to actuaries. The present
discussion completes and simplifies the argument used
by Halliwell to justify the predictor; in particular, it is
shown that there is no need to consider conditional dis-
tributions.

1. LOSS RESERVING

For i,k ! "0,1, : : : ,n#, let Zi,k denote the total claim amount of
all claims which occur in year i and are settled in year i+ k. We
assume that the incremental claims Zi,k are observable for i+ k $
n and that they are non-observable for i+ k > n. The observable
incremental claims are represented by the run-off triangle (Table
1).

The non-observable incremental claims are to be predicted
from the observable ones. Whether or not certain predictors are

736
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TABLE 1

Occurrence Development Year
Year 0 1 : : : k : : : n% i : : : n% 1 n

0 Z0,0 Z0,1 : : : Z0,k : : : Z0,n%i : : : Z0,n%1 Z0,n
1 Z1,0 Z1,1 : : : Z1,k : : : Z1,n%i : : : Z1,n%1
...

...
...

...
...

i Zi,0 Zi,1 : : : Zi,k : : : Zi,n%i
...

...
...

...

n% k Zn%k,0 Zn%k,1 : : : Zn%k,k
...

...
...

n% 1 Zn%1,0 Zn%1,1
n Zn,0

preferable to others depends on the stochastic mechanism gener-
ating the data. It is thus necessary to first formulate a stochastic
model and to fix the properties the predictors should have.

For example, we may assume that the incremental claims sat-
isfy the linear model given by

E[Zi,k] = ¹+®i+ °k,

with real parameters ¹,®0,®1, : : : ,®n,°0,°1, : : : ,°n such that!n
i=0®i = 0 =

!n
k=0 °k. This means that the expected incremental

claims are determined by an overall mean ¹ and corrections ®i
and °k depending on the occurrence year i and the development
year k, respectively.

2. THE LINEAR MODEL WITH MISSING OBSERVATIONS

The model considered in the previous section is a special case
of the linear model considered by Halliwell [2]:

Let Y be an (m&1) random vector satisfying

E[Y] =X¯
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and
Var[Y] = S

for some known (m& k) design matrix X, some unknown (k&1)
parameter vector ¯, and some known (m&m) matrix S which is
assumed to be positive definite.

We assume that some but not all coordinates of Y are observ-
able. Without loss of generality, we may and do assume that the
first p coordinates of Y are observable while the last q :=m%p
coordinates of Y are non-observable. We may thus write

Y=

"
Y1
Y2

#
,

where Y1 consists of the observable coordinates of Y, and Y2
consists of the non-observable coordinates of Y. Accordingly,
we partition the design matrix X into

X=

"
X1
X2

#
:

We assume that
Rank(X1) = k $ p:

Then X has full rank and X'X is invertible.

Following Halliwell, we partition S into

S=

"
S11 S12
S21 S22

#
,

where

S11 := Cov[Y1,Y1] = Var[Y1]

S12 := Cov[Y1,Y2]

S21 := Cov[Y2,Y1]

S22 := Cov[Y2,Y2] = Var[Y2]:
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Then S11 and S22 are positive definite, and we also have S
'
21 =

S12. Moreover, S22%S21S%111 S12 is positive definite. Then S11 and
S22%S21S%111 S12 are invertible, and there exist invertible matrices
A and D satisfying

A'A= S%111
and

D'D= (S22%S21S%111 S12)%1:
Define

C :=%DS21S%111
and let

W :=

"
A 0

C D

#
:

Then we have
W'W= S%1:

In the following sections, we study the problem of estimating
¯ and of predicting Y2 by estimators or predictors based on Y1.

3. ESTIMATION

Let us first consider the problem of estimating ¯.

A random vector ˆ̄ with values in Rk is

– a linear estimator (of ¯) if it satisfies ˆ̄ = BY1 for some ma-
trix B,

– an unbiased estimator (of ¯) if it satisfies E[ ˆ̄ ] = ¯, and

– an admissible estimator (of ¯) if it is linear and unbiased.

A linear estimator ˆ̄ = BY1 of ¯ is unbiased if and only if
BX1 = Ik.

A particular admissible estimator of ¯ is the Gauss–Markov
estimator ¯(, which is defined as

¯( := (X'1S
%1
11X1)

%1X'1S
%1
11Y1:
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Among all admissible estimators of ¯, the Gauss–Markov esti-
mator is distinguished due to the Gauss–Markov Theorem:

THEOREM 3:1 The Gauss–Markov estimator ¯( satisfies

Var[¯(] = (X'1S
%1
11X1)

%1:

Moreover, for each admissible estimator ˆ̄ , the matrix

Var[ ˆ̄ ]%Var[¯(]
is positive semidefinite.

In a sense, the Gauss–Markov Theorem asserts that the
Gauss–Markov estimator has minimal variance among all ad-
missible estimators of ¯. Since

E[(¯% ˆ̄ )'(¯% ˆ̄ )] = E[tr((¯% ˆ̄ )'(¯% ˆ̄ ))]
= E[tr((¯% ˆ̄ )(¯% ˆ̄ )')]
= tr(E[(¯% ˆ̄ )(¯% ˆ̄ )'])
= tr(Var[ ˆ̄ ]):

we see that the Gauss–Markov estimator also minimizes the ex-
pected quadratic estimation error over all admissible estimators
of ¯.

4. PREDICTION

Let us now turn to the problem of predicting Y2.

A random vector Ŷ2 with values in R
q is

– a linear predictor (of Y2) if it satisfies Ŷ2 =QY1 for some
matrix Q,

– an unbiased predictor (of Y2) if it satisfies E[Ŷ2] = E[Y2], and

– an admissible predictor (of Y2) if it is linear and unbiased.



LOSS PREDICTION BY GENERALIZED LEAST SQUARES 741

A linear predictor Ŷ2 =QY1 of Y2 is unbiased if and only if
QX1 =X2.

For an admissible estimator ˆ̄ , define

Y2( ˆ̄ ) :=X2 ˆ̄ %D%1C(Y1%X1 ˆ̄ )
and

h( ˆ̄ ) :=%(CX1 +DX2)( ˆ̄ %¯)+ (Ce1 +De2),
where e1 :=Y1%X1¯ and e2 :=Y2%X2¯. Then Y2( ˆ̄ ) is an ad-
missible predictor of Y2.

Following Halliwell, we have the following

LEMMA 4:1 The identities

Y2 =Y2( ˆ̄ ) +D
%1h( ˆ̄ )

as well as
E[h( ˆ̄ )] = 0

and

Var[h( ˆ̄ )] = (CX1 +DX2)Var[ ˆ̄ ](CX1 +DX2)
'+ Iq

hold for each admissible estimator ˆ̄ ; in particular, the matrix

Var[h( ˆ̄ )]%Var[h(¯()]
is positive semidefinite.

From the last assertion of Lemma 4.1, which is a conse-
quence of the Gauss–Markov theorem, Halliwell concludes that
the Gauss–Markov predictor Y2(¯

() is the best unbiased linear
predictor of Y2. This conclusion, however, is not justified in his
paper. A partial justification is given by the following

LEMMA 4:2 For each admissible estimator ˆ̄ , the matrix

Var[Y2%Y2( ˆ̄ )]%Var[Y2%Y2(¯()]
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is positive semidefinite.

The proof of this lemma is that since Y2( ˆ̄ ) is an unbiased
predictor of Y2, we have

Var[Y2%Y2( ˆ̄ )] = E[(Y2%Y2( ˆ̄ ))(Y2%Y2( ˆ̄ ))']
= E[(D%1h( ˆ̄ ))(D%1h( ˆ̄ ))']

=D%1E[h( ˆ̄ )(h( ˆ̄ ))'](D%1)'

=D%1Var[h( ˆ̄ )](D%1)':

Now the assertion follows from Lemma 4.1.

We may even push the discussion a bit further: Why should
we confine ourselves to predictors which can be written as Y2( ˆ̄ )
for some admissible estimator ˆ̄ ? There may be other unbiased
linear predictors Ŷ2 for which

Var[Y2%Y2(¯()]%Var[Y2% Ŷ2]
and hence

Var[Y2%Y2( ˆ̄ )]%Var[Y2% Ŷ2]
is positive semidefinite. The following result improves Lemma
4.2:

THEOREM 4:3 For each admissible predictor Ŷ2, the matrix

Var[Y2% Ŷ2]%Var[Y2%Y2(¯()]
is positive semidefinite.

A proof of this theorem can also be presented. Consider a
matrix Q satisfying

Ŷ2 =QY1

and hence QX1 =X2. Letting

Q( := S21S
%1
11 + (X2%S21S%111X1)(X'1S%111X1)%1X'1S%111 ,
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we obtain

Y2(¯
() =X2¯

( %D%1C(Y1%X1¯()
=X2¯

(+S21S
%1
11 (Y1%X1¯()

= S21S
%1
11Y1 + (X2%S21S%111X1)¯(

= S21S
%1
11Y1 + (X2%S21S%111X1)(X'1S%111X1)%1X'1S%111Y1

=Q(Y1:

Since Q(X1 =X2 =QX1, we have

Cov[Y2%Y2(¯(),Y2(¯()% Ŷ2]
= Cov[Y2%Q(Y1,Q(Y1%QY1]
= (S21%Q(S11)(Q( %Q)'
=%(X2%S21S%111X1)(X'1S%111X1)%1X'1(Q( %Q)'

=%(X2%S21S%111X1)(X'1S%111X1)%1(Q(X1%QX1)'
= 0,

and hence

Var[Y2% Ŷ2] = Var[(Y2%Y2(¯())+ (Y2(¯()% Ŷ2)]
= Var[Y2%Y2(¯()]+Var[Y2(¯()% Ŷ2]:

The assertion follows.

Theorem 4.3 asserts that the Gauss–Markov predictor min-
imizes the variance of the prediction error over all admissible
predictors of Y2. Since

E[(Y2% Ŷ2)'(Y2% Ŷ2)] = tr(Var[Y2% Ŷ2]),
we see that the Gauss–Markov predictor also minimizes the ex-
pected quadratic prediction error over all admissible predictors
of Y2.
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5. A RELATED OPTIMIZATION PROBLEM

To complete the discussion of the predictor proposed by Hal-
liwell, we consider the following optimization problem:

Minimize E[(Y%X ˆ̄ )'S%1(Y%X ˆ̄ )]
over all admissible estimators ˆ̄ of ¯:

We thus aim at minimizing an objective function in which
there is no discrimination between the observable and the non-
observable part of Y; this distinction, however, is present in the
definition of an admissible estimator.

Because of S%1 =W'W and the structure of W, it is easy to
see that the objective function of the optimization problem can
be decomposed into an approximation part and a prediction part:

LEMMA 5:1 The identity

E[(Y%X ˆ̄ )'S%1(Y%X ˆ̄ )]
= E[(Y1%X1 ˆ̄ )'S%111 (Y1%X1 ˆ̄ )]
+E[(Y2%Y2( ˆ̄ ))'D'D(Y2%Y2( ˆ̄ ))]

holds for each admissible estimator ˆ̄ .

Moreover, using similar arguments as before, the three expec-
tations occurring in Lemma 5.1 can be represented as follows:

THEOREM 5:2 The identities

E[(Y%X ˆ̄ )'S%1(Y%X ˆ̄ )]
= (p+ q)% 2k+tr((WX)Var[ ˆ̄ ](WX)')

as well as

E[(Y1%X1 ˆ̄ )'S%111 (Y1%X1 ˆ̄ )]
= p% 2k+tr((AX1)Var[ ˆ̄ ](AX1)')
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and

E[(Y2%Y2( ˆ̄ ))'D'D(Y2%Y2( ˆ̄ ))]
= q+tr((CX1 +DX2)Var[ ˆ̄ ](CX1 +DX2)

')

hold for each admissible estimator ˆ̄ .

Because of Theorem 5.2, each of the three expectations occur-
ring in Lemma 5.1 is minimized by the Gauss–Markov estimator
¯(. We have thus again justified the restriction to predictors of
Y2, which can be written as Y2( ˆ̄ ) for some admissible estima-
tor ˆ̄ .

The technical details concerning the proofs of the results of
this section can be found in Schmidt [4].

6. CONDITIONING

Following the example of Y having a multivariate normal dis-
tribution, Halliwell uses arguments related to the conditional dis-
tribution of Y2 with respect to Y1; in particular, he claims that
Y2(¯

() is the conditional expectation E(Y2 )Y1) of Y2 with re-
spect to Y1. This is not true in general; without particular as-
sumptions on the distribution of Y, the conditional expectation
E(Y2 )Y1) may fail to be linear in Y1, and the unbiased linear
predictor of Y2 based on Y1 minimizing the expected quadratic
loss may fail to be the conditional expectation E(Y2 )Y1).
Moreover, since the identities of Lemma 4.1 hold for each

admissible estimator ˆ̄ (and not only for the Gauss–Markov es-
timator ¯(), Halliwell’s arguments [2, p. 482] suggest that each
admissible estimator ˆ̄ satisfies

E(Y2 )Y1) =X2 ˆ̄ %D%1C(Y1%X1 ˆ̄ )
and

Var(Y2 )Y1) =D%1Var[h( ˆ̄ )](D%1)':
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Again, this cannot be true since in both cases the left hand side
depends only on Y1, whereas the right hand side also varies with
the matrix B defining the admissible estimator ˆ̄ = BY1.

More generally, when only unconditional moments of the dis-
tribution of the random vector Y are specified, it is impossible
to obtain any conclusions concerning the conditional distribution
of its non-observable part Y2 with respect to its observable part
Y1.

REMARKS

Traditional least squares theory aims at minimizing the
quadratic loss

(Y%X ˆ̄ )'S%1(Y%X ˆ̄ ),
where all coordinates of Y are observable. It also involves con-
siderations concerning the variance of ˆ̄ , and it usually handles
prediction as a separate problem which has to be solved after
estimating ¯.

In Section 5 of the present paper, we proposed instead to
minimize the expected quadratic loss

E[(Y%X ˆ̄ )'S%1(Y%X ˆ̄ )],
where some but not all of the coordinates of Y are observable
and the admissible estimators of ¯ are unbiased and linear in the
observable part Y1 of Y. This approach has several advantages:

– The expected quadratic loss can be expressed in terms of var[ ˆ̄ ]
such that minimization of the expected quadratic loss and min-
imization of var[ ˆ̄ ] turns out to be the same problem (see The-
orem 5.2).

– The expected quadratic loss can be decomposed in a canonical
way into an approximation part and a prediction part such that
the expected quadratic loss and its two components are si-
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multaneously minimized by the Gauss–Markov estimator (see
Lemma 5.1).

– Inserting the Gauss–Markov estimator in the prediction part of
the expected quadratic loss provides an unbiased linear pre-
dictor for the non-observable part Y2 of Y.

We thus obtain the predictor proposed by Halliwell [2] by a
direct approach which avoids conditioning. This predictor was
first proposed by Goldberger [1] (see also Rao and Toutenburg
[3; Theorem 6.2]).
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LEIGH J. HALLIWELL

DISCUSSION BY MICHAEL D. HAMER

Abstract

The paper by Halliwell [1] and the Discussion of Hal-
liwell’s paper by Dr. Schmidt both consider the form of
“best” linear unbiased estimators for unknown quanti-
ties based on observable values. This paper proposes a
general definition of “best” called Uniformly Best (UB)
to distinguish it from previous definitions and provides
various equivalent forms for the definition. It shows the
existence and uniqueness of such UB linear unbiased
estimators under fairly general conditions, provides an
alternative formulation of the definition of UB for unbi-
ased estimators, and discusses how Dr. Schmidt’s pro-
posed optimization problem relates to the proposed UB
definition.
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for suggesting a shorter version of the proof to Theorem 6.1. Need-
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1. THE STRUCTURE OF THE VARIABLES

We follow the notation used by Halliwell and Schmidt. An
n-dimensional random vector Y is vertically partitioned into a
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p-dimensioned vector Y1 of observable outcomes and an n!p
dimensioned vector Y2 of unobservable outcomes. It is assumed
that Y takes the form

Y = X¯0 + e,

where e is an n-dimensional random vector of “error” terms
with zero mean and (n" n) dimensional non-singular variance-
covariance matrix S (thus E[eeT] = S where eT represents the
transpose of e, and S is positive definite), X is a given (n" r)
“design” matrix, and ¯0 is an unknown parameter vector of di-
mension r.

The matrix X and vector e can also be partitioned so that we
may write

Y1 = X1¯0 + e1 and Y2 = X2¯0 + e2,

where X1 is a (p" r) matrix and X2 is a (n!p" r) matrix, and
we assume that X1 is of full rank r.

2. A PROPOSED DEFINITION OF “BEST”—THE OBJECTIVE
FUNCTION

Halliwell provides a definition of “best” in Appendix A of [1],
where he considers linear unbiased estimators ¯ for the unknown
vector ¯0. We use this as a basis for proposing a more general
definition of a “best” estimator P of a “target” quantity T. We
call this definition Uniformly Best to distinguish it from other
definitions of “best” used in [1–3].

Firstly, we provide a definition of a non-negative definite ma-
trix:

DEFINITION 2:1 Non-Negative Definite. An (n"n) matrix M is
non-negative definite if ®TM®# 0 for any n-dimensional vector ®.

Halliwell provides an extensive review of non-negative def-
inite matrices in Appendix A of [2]. Perhaps the most relevant



750 LOSS PREDICTION BY GENERALIZED LEAST SQUARES

characteristic for our purposes is that any non-negative definite
matrix M can be written in the form WTW for some matrix W,
and conversely that any matrix of the formWTW is non-negative
definite.

We use the concept of non-negative definite in our proposed
definition of “best” as follows:

DEFINITION 2:2 Uniformly “Best” (UB) Estimator. A estimator
P$ of a target quantity T is uniformly “best” (UB) if, for any other
admissible estimator P, the matrix %Var(T!P)!Var(T!P$)& is
non-negative definite.

For an n-dimensional random vector z, the upper-case Var(z)
is the (n"n) dimensional variance-covariance matrix of z where

Var(z) = E[(z!E[z])(z!E[z])T]:
Elsewhere, we will use the lower-case var(x) to denote the vari-
ance of a scalar random variable x.

To assist in understanding the nature of a UB estimator, we
provide the following “equivalence” result:

LEMMA 2:1 Suppose we consider estimators P that belong to
some given admissible set J . The following statements are equiv-
alent:

(a) There exists an estimator P$ in J that is the UB estimator
of T.

(b) For any admissible P belonging to J , the matrix %Var(T!P)
!Var(T!P$)& is non-negative definite.

(c) P$ minimizes ®TVar(T!P)® over all admissible P for any
® of appropriate dimension.

(d) P$ minimizes var(®T(T!P)) over all admissible P for any
® of appropriate dimension.

Proof (a) and (b) are equivalent from Definition 2.2.
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From Definition 2.1 and (b), we have

®T[Var(T!P)!Var(T!P$)]®# 0
for any suitable ® and for any P belonging to J . Then

®TVar(T!P)®# ®TVar(T!P$)®
for any P belonging to J , and so (c) follows. To show (d), we
have

®TVar(T!P)®= ®TE[(T!P!E[T!P])(T!P!E[T!P])T]®
=E[®T(T!P!E[T!P])(T!P!E[T!P])T®]
= var(®T(T!P)):

The definition of UB given in (d) provides us with an objective
function that we show below is easy to work with, and is perhaps
the easiest to conceptualize. ®T(T!P) can be interpreted as the
“length” of the projection of the stochastic vector representing
the difference between the target T and the estimator P onto any
fixed vector ®. The UB estimator P$ minimizes the variance of
this projection and does so for any given ®.

The UB criterion is potentially quite difficult to meet. Ex-
panding out var(®T(T!P)) we have:

var(®T(T!P)) =
!!

®i®j cov(Ti!Pi,Tj !Pj):
The UB estimator P$ must minimize this double sum of products
for any possible choice of ®i. However, UB estimators do exist
for suitable admissible sets and targets, as shown below.

3. CONSTRAINTS ON ADMISSIBLE ESTIMATORS AND TARGETS

The definition of UB does not put any particular constraints
on the admissible sets of estimators or on the form of the “target”
quantities. However, it may be necessary to do so to ensure the
existence of UB estimators.

(a) Constraints on Admissible Sets Of Estimators. Following
Halliwell and Schmidt, we wish to consider estimators P that are
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linear in Y1 and unbiased estimators of their “targets” T, so we
define the set J of linear unbiased estimators as follows:

DEFINITION 3:1 The Admissible Set J = J(Y1,T). An estimator
P belongs to J if it is

' linear in Y1 and hence of the form P =QY1 where Q is a (n"p)
matrix;

' unbiased, so that E[P] = E[T].

(b) Constraints on “Targets”. We also need to define the
“target” quantity T that is being estimated. For the Gauss–
Markov theorem it is ¯0, but elsewhere in [1] and in Schmidt’s
paper Y2 and Y are also considered. To encompass all these pos-
sibilities, we consider a general form

T = F1Y1 +F2Y2 +A¯0,

where F1, F2 and A are variables. Since T is a vector of dimension
n, F1 is an (n"p) matrix, F2 is an (n"n!p) matrix, and A is
an (n" r) matrix.

4. EXISTENCE OF A UB LINEAR UNBIASED ESTIMATOR FOR T

The following theorem shows that there are many situations
in which a UB solution not only exists but is unique.

THEOREM 4:1 If T = F1Y1 +F2Y2 +A¯0 and P belongs to the ad-
missible set J , a unique UB linear unbiased estimator P$ =Q$Y1
exists, and

P$ = F1Y1 +F2y2(¯
$) +A¯$,

where

y2(¯
$) = X2¯

$+ S21S
!1
11 (Y1!X1¯$) and

¯$ = (XT1 S
!1
11 X1)

!1XT1 S
!1
11 Y1:
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Proof A proof of this theorem is presented in the Appendix.

Note the appearance of the Gauss–Markov estimator ¯$ and
the predictor y2(¯

$) discussed by Halliwell and Schmidt.

Theorem 4.1 has several interesting special cases.

CASE 1 The UB estimator for ¯0

We set

F1 = F2 = 0 and A=

"
I(r)

0

#
where I(r) is an (r" r) identity matrix. Then

Q$ =
"
¯$

0

#
as required by the Gauss–Markov Theorem, and the definition
of UB is consistent with the Gauss–Markov notion of “best”.

CASE 2 The UB estimator for Y2

We set

F1 = A= 0 and F2 =

"
0

I(n!p)

#
,

where I(n!p) is an (n!p"n!p) identity matrix. Then

Q$ =
"

0

y2(¯
$)

#
,

the form of the “best” predictor suggested by Halliwell.

CASE 3 The UB estimator for Y1

We set

F2 = A= 0 and F1 =

"
I(p)

0

#
:
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Then

Q$ =
"
Y1

0

#
:

Case 3 seems trivial, for of course the difference between an
estimator Y1 and target Y1 will have zero variance. However, this
result still “fits” our process, because the estimator Y1 is certainly
linear in Y1 and unbiased.

CASE 4 The UB estimator for Y

We set

A= 0, F1 =

"
I(p)

0

#
and F2 =

"
0

I(n!p)

#
:

Then

Q$ =
"

Y1

y2(¯
$)

#
:

The UB estimator for Y is thus a linear combination of the UB
estimators for Y1 and Y2. This last result will be used in Section 6.

5. A FURTHER CHARACTERIZATION OF UB

In his Discussion, Schmidt proposes a related optimization
problem in which the objective function to be minimized is
E[(Y!X¯)TS!1(Y!X¯)].
We generalize Schmidt’s objective function by replacing S!1

with any non-negative definite matrix H, and use this to de-
fine another type of estimator, which we will call Generalized
Schmidt Best.

DEFINITION 5:1 Generalized Schmidt Best (GSB) Estimator. An
estimator P$ of a target quantity T is GSB if it minimizes

E[(T!P)TH(T!P)]
over all admissible estimators P for any (n" n) non-negative def-
inite matrix H.
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How does a GSB estimator relate to a UB estimator? Rather
surprisingly, the answer is that when the admissible set consists
of unbiased estimators, if one exists, then they both exist and are
the same.

THEOREM 5:1 If the admissible estimators P of a general target
T are all unbiased, an estimator P$ is UB if and only if it is GSB.

Proof From our discussion of non-negative matrices, we
know we can write H =WWT for some (n"n) matrix W. Now
let zi be a vector whose ith component is 1 and whose other
components are all zero.

(i) Suppose a UB estimator P$ exists. For any other unbiased
estimator P and any H =WWT,

E[(T!P)TWWT(T!P)]
= trace%E[WT(T!P)(T!P)TW]&
= trace%WTVar(T!P)W&, since E[T!P] = 0
=§zTi W

TVar(T!P)Wzi, where the sum is over i

=§®Ti Var(T!P)®i for ®i =Wzi

#§®Ti Var(T!P$)®I, since P$ is UB

= E[(T!P$)TWWT(T!P$)]:
Thus P$ is also GSB.

(ii) Suppose a GSB estimator P$ exists but P$ is not UB. This
means, for some ®# and for some admissible P, we must
have

®#TVar(T!P$)®# > ®#TVar(T!P)®#:
We can construct the matrix W# = %®#,®# : : : ,®#) so that
®# =W#zi for any i. Then

zTi W
#TVar(T!P$)W#zi > z

T
i W

#TVar(T!P)W#zi

for any zi:
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Thus

E[(T!P$)TW#W#T(T!P$)]
> E[(T!P)TW#W#T(T!P)],

which contradicts the assumption that P$ is GSB. Thus P$
is also UB.

This proof does not require that the admissible estimators be
linear in Y1, nor does it impose any constraint on the form of
the “target” T. But it is likely that a “best” solution will not
always exist unless there are further restrictions on the admissible
estimator set and the target because the UB and GSB conditions
are so strong. When T is linear in Y1, Y2 and ¯0 and the set J
consists of linear unbiased estimators, Theorem 4.1 tells us that
a UB estimator does exist, and then, from Theorem 5.1, the GSB
estimator will be the same as a UB estimator.

More generally, we can use Theorem 5.1 to state an extended
“equivalence” result.

LEMMA 5:1 If the admissible set only contains unbiased estima-
tors of a general “target” T, the following statements are equiva-
lent (but not necessarily true):

(a) There exists a P$ that is the UB estimator of T for all ad-
missible estimators P.

(b) For any unbiased P, the matrix %Var(T!P)!Var(T!P$)&
is non-negative definite.

(c) P$ minimizes ®TVar(T!P)® over all admissible P for any
® of appropriate dimension.

(d) P$ minimizes var(®T(T!P)) over all admissible P for any
® of appropriate dimension.

(e) P$ minimizes E[(T!P)TH(T!P)] over all admissible P
for any non-negative definite matrix H of appropriate di-
mension.
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If we expand the objective function in (e), we get

E[(T!P)TH(T!P)] =
!!

hij cov(Ti!Pi,Tj !Pj),
and the UB estimator P$ minimizes this double sum over all
possible choices of hij provided the hij belong to a non-negative
definite matrix. This is more general than (d), which corresponds
to the case where hij = ®i®j. (Note: we can think of any non-
negative definite matrix as a possible variance-covariance matrix
if we allow the possibility that some of the variances may be zero.
In this context, (d) corresponds to the case where all correlations
are either +1 or !1, and (e) generalizes this to correlations in
between.)

6. RELATIONSHIP BETWEEN “BEST” AND SCHMIDT’S
OPTIMIZATION PROBLEM

In his Discussion and in [3], Schmidt suggests an optimization
problem as a way of justifying the form of the “best” estimators
for Y1 and Y2. Schmidt shows that his optimization problem can
be decomposed into two parts, one involving only Y1 and the
other involving only Y2. Further, he shows that the solution to the
initial optimization problem is achieved by ¯ = ¯$, the Gauss–
Markov estimator for ¯0, and ¯

$ minimizes each of the parts
separately. In view of this optimization, Schmidt proposes that
the solutions to the separate optimization problems of the parts
are “best” estimators for Y1 and Y2, respectively.

The objective function for his optimization problem is a spe-
cial case of the GSB objective function when H = S!1 and the
target T = Y. In addition, however, Schmidt’s optimization prob-
lem requires that the admissible estimators belong to a set K,
where

K = %P : P = X¯ where ¯ = BY1 and BX1 = I(r)&:
This constraint means that the estimators in K are linear unbiased
estimators of Y, but also the estimators BY1 are also unbiased
estimators of ¯0.
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Although Schmidt’s optimization looks like the GSB objec-
tive function and K is a subset of J , the solution to Schmidt’s
optimization is not in general a UB estimator for Y. This is be-
cause K does not include all linear unbiased estimators of Y, and
in general (except in the special circumstance detailed below) the
UB linear unbiased estimator of Y is not in K.

THEOREM 6:1 Unless X1 is square, the UB linear unbiased esti-
mator for Y will not belong to K.

Proof From Theorem 4.1, the UB estimator of Y among all
unbiased linear estimators is

P$ =
"

Y1

y2(¯
$)

#
and it is unique. If P$ belonged to K, we would require X1B$ =
I(p) as well as B$X1 = I(r), where I(p) and I(r) are (p"p) and
(n"n) identity matrices, respectively. However,

r = trace(I(r)) = trace(B$X1)

= trace(X1B
$),

= trace(I(p)) = p:

since trace(AB) = trace(BA) for any matrices A and B,

This is a contradiction unless r = p, in which case X1 and B are
square.

The solution to Schmidt’s optimization for a “target” Y is the
vector "

X1¯
$

X2¯
$

#
which in general is quite different to the UB estimator

P$ =
"

Y1

y2(¯
$)

#
:
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Nevertheless, Schmidt’s analysis does produce the UB estima-
tor for Y2. To get the “best” estimator for Y2, Schmidt minimizes
E[(Y2! y2(¯))TDTD(Y2! y2(¯))] for a particular matrix D related
to S!1, over possible ¯ belonging to the set L$ = %¯ : ¯ = BY1
and BX1 = I(r)&. In this case, L$ contains ¯$, and the correspond-
ing estimator y2(¯

$) belongs to J and is UB. Because of this, we
know that y2(¯

$) will be a solution to Schmidt’s optimization for
any matrix D.

The “best” estimator for Y1 derived by Schmidt’s analysis is
X1¯

$, which compares to the UB estimator Y1. Using the argu-
ments of Theorem 6.1, it can be shown that L$ does not contain
a ¯ such that Y1 = X1¯ unless X1 is square.

If the above restrictions on the admissible estimators in
Schmidt’s optimization are removed, we know from Lemma 5.1
that the resulting solution(s) will be UB. In these circumstances,
Schmidt’s optimization problem may then be generalized by re-
placing S!1 in the objective function with any non-negative def-
inite matrix of appropriate dimension.

7. SUMMARY

We have proposed a general definition of “best” that we have
termed Uniform Best (UB) and that is consistent with the Gauss–
Markov Theorem. We have also provided a number of equivalent
forms of the UB definition. We have then shown that for a “tar-
get” T linear in Y1 and Y2 there is always a unique UB linear
unbiased estimator of the form QY1. We have also shown that a
generalization of the optimization problem proposed by Schmidt
provides yet another characterization of UB. Finally, we have
shown that the admissibility conditions imposed by Schmidt on
the set of estimators in his optimization problem generally pre-
vent the solution to his problem from being UB, although his
“best” and the UB linear unbiased estimators for Y2 are the same.



760 LOSS PREDICTION BY GENERALIZED LEAST SQUARES

REFERENCES

[1] Halliwell, Leigh J., “Loss Prediction By Generalized Least
Squares,” PCAS LXXXIII, 1996, pp. 436–489.

[2] Halliwell, Leigh J., “Conjoint Prediction Of Paid And In-
curred Losses,” Casualty Actuarial Society Forum 1, Sum-
mer 1997, pp. 241–380.

[3] Schmidt, Klaus D., “Prediction In The Linear Model: A Di-
rect Approach,” Metrika 48, 1998, pp. 141–147.



LOSS PREDICTION BY GENERALIZED LEAST SQUARES 761

APPENDIX

PROOF OF THEOREM 4.1

Consider two linear unbiased estimators P and P$ for T. Then

E[P] = E[QY1] =QX1¯0 = E[T] = E[P
$] =Q$X1¯0:

Since this must hold for any ¯0, we have (Q
$ !Q)X1 = 0.

Then, for any ®,

var(®T(T!P)) = var(®T(T!P$)+®T(P$ !P))
= var(®T(T!P$))+ var(®T(P$ !P))
+2cov(®T(T!P$),®T(P$ !P)):

Now

cov(®T(T!P$),®T(P$ !P))
= E[®T(T!P$)®T(P$ !P)]
= E[®T(T!P$)(P$ !P)T®]
= E[®T((F1!Q$)Y1 +F2Y2)YT1 (Q$ !Q)T®]
= ®T%(F1!Q$)E[Y1YT1 ]+F2E[Y2YT1 ]&(Q$ !Q)T®
= ®T%(F1!Q$)S11 +F2S21&(Q$ !Q)T®:

Suppose (F1!Q$)S11 +F2S21 is of the form GXT1 , so that

Q$ = F1 +F2S21S
!1
11 !GXT1 S!111 :

Then

cov(®T(T!P$),®T(P$ !P)) = ®TGXT1 (Q$ !Q)T®
= 0, since (Q$ !Q)X1 = 0:
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So, for any admissible P,

var(®T(T!P)) = var(®T(T!P$))+ var(®T(P$ !P))
# var(®T(T!P$)):

Since P$ =Q$Y1 minimizes var(®T(T!P)), by Lemma 2.1, it is
UB.

We now solve for the form of G. The unbiased property of
estimators P =QY1 for T requires that

E[T] = F1X1¯0 +F2X2¯0 +A¯0 = E[P] =QX1¯0

and, since this holds for any ¯0, we have

F1X1 +F2X2 +A=QX1:

Then we have

Q$ = F1X1 +F2S21S
!1
11 X1!GXT1 S!111 X1 = F1X1 +F2X2 +A,

and so

G = %F2(S21S!111 X1!X2)!A&(XT1 S!111 X1)!1:
Substituting this back into the expression for Q$ gives

Q$ = F1 +F2S21S
!1
11 !%F2(S21S!111 X1!X2)!A&B$,

where
B$ = (XT1 S

!1
11 X1)

!1XT1 S
!1
11 :

Rearranging, we get

Q$ = F1 +F2%X2B$+ S21S!111 (I!X1B$)&+AB$:
Finally, multiplying through by Y1 gives

P$ = F1Y1 +F2y2(¯
$) +A¯$,

where

y2(¯
$) = X2¯

$+ S21S
!1
11 (Y1!X1¯$) and

¯$ = B$Y1 = (X
T
1 S

!1
11 X1)

!1XT1 S
!1
11 Y1:
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So far we have shown the existence of a “best” estimator. Con-
sider another admissible estimator P$$ =Q$$Y1. Because P$ min-
imizes var(®T(T!P)), we have from above that

var(®T(T!P$$)) = var(®T(T!P$))+ var(®T(P$ !P$$)):
If P$$ also minimizes var(®T(T!P)), then

var(®T(T!P$$)) = var(®T(T!P$)),
and so

var(®T(P$ !P$$)) = 0 for any ®:

Substituting (P$ !P$$) = (Q$ !Q$$)Y1 into this equation gives
var(®T(P$ !P$$)) = var(®T(Q$ !Q$$)Y1)

= ®T(Q$ !Q$$)S11(Q$ !Q$$)T®= 0:
S11, the variance-covariance matrix of Y1, is positive definite, so
this implies

®T(Q$ !Q$$) = 0 for any ®:

Since Q$ and Q$$ are independent of ®, we must have Q$ =Q$$,
and so the “best” estimator P$ =Q$Y1 is also unique.
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LEIGH J. HALLIWELL

1. INTRODUCTION

Having had the pleasure of seeing my paper in the Pro-
ceedings, I am even more pleased now that Klaus Schmidt and
Michael Hamer have deigned to discuss it. But even with their
discussions, most of the subject of statistically modeling loss
triangles remains terra incognita; and I hope that actuaries and
academics will continue to explore it.

2. BACKGROUND

Since I wrote the paper late in 1994, I have learned more
about statistical modeling. I recommend for interested readers to
examine my 1997 Forum paper, “Conjoint Prediction of Paid and
Incurred Losses,” especially its Appendices A and C. Neverthe-
less, I stand by the conclusions of the earlier paper:

This paper will argue that the linear modeling and the
least squares estimation found in the literature to date
have overlooked an important condition of the linear
model. In particular, the models for development fac-
tors regress random variables against other random
variables. Stochastic regressors violate the standard
linear model. Moreover, the model assumes that er-
rors are uncorrelated, but stochastic regressors violate
this assumption as well. This paper will show that what
actuaries are really seeking is found in a general lin-
ear model; i.e., a model with nonstochastic regressors
but with an error matrix that allows for correlation. [2,
p. 436]

764



LOSS PREDICTION BY GENERALIZED LEAST SQUARES 765

[The use of stochastic regressors] is the fundamental
problem with the CL [Chain Ladder] method. Rather
than try to rehabilitate it, this paper introduces a differ-
ent model that honors all the conditions of the Gauss–
Markov theorem. [2, p. 441]

A theory becomes very attractive when it unifies partial
explanations. Such is the case with loss covariance.
CL, prior hypothesis, or BF [Bornhuetter–Ferguson]—
which to choose? The answer will lie on a continuum
dependent on the variance matrix of the incremental
losses. [2, p. 447]

Generalized least squares is a better method of loss
prediction than the chain ladder and the other loss de-
velopment methods. Even when linear models are im-
posed on loss development methods, they incorporate
stochastic regressors, and the estimates are not guaran-
teed to be either best or unbiased. The confidence in-
tervals derived therefrom are not trustworthy. The fault
lies in trying to make the level on one variable affect
the level of the next, whereas the statistical idea is that
the departure of one variable from its mean affects the
departure of the next from its mean. This is the idea
of covariance, and it is accommodated in the general
linear model and generalized least squares estimation.
[2, p. 456]

The problem of stochastic regressors quells my enthusiasm
for empirically testing chain-ladder statistical models (as, for ex-
ample, Gary Venter [6] recommends). The technique of instru-
mental variables [4, p. 577 and 5, p. 198] solves this problem;
but the obvious instrument for a lagged loss is its exposure.
And when exposure becomes a regressor, the lagged loss often
lacks significance, as Glen Barnett and Ben Zehnwirth have
discovered [1, p. 10]. So I am hopeful that actuaries will
find their way back to the no-frills “additive model” [2, pp. 442,
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449] and thence begin to consider non-trivial covariance struc-
tures.1

3. AUTHOR’S COMMENTS ON ORIGINAL PAPER

Before responding to the discussions I will point out two flaws
of the paper. The first flaw concerns pages 450f. and Exhibit
3. I derived an estimate of ¯, reweighted the observations, and
derived a second estimate of ¯. I remarked, “The estimate for
¯ changes negligibly (no change within the first ten decimal
places).” [2, p. 451] Such a negligible change should have clued
me that the estimates of ¯ were identical, the difference owing to
computational precision. If one regresses Y against X with error
variances ¾, the estimate is:!

i

xiyi
¾ii!

i

xixi
¾ii

:

Therefore, the estimate is invariant to a scale change of the vari-
ances. Now the second model applied scale factors according to
age. But each element of ˆ̄ depends on observations of the same
age, which have been affected by the same scale factor. Thus the
estimate is unchanged.2

The second flaw concerns the degrees of freedom in the esti-
mate of ¾2. There were thirty-six observations, eight parameters
in ¯, and two parameters in the variance matrix. I claimed there
to be 36!8!2 = 26 degrees of freedom [2, p. 453]. But the
two parameters that had been estimated in the variance matrix
are not like those of ¯. There is no theoretically right way of ac-
counting for the variance parameters, and twenty-eight degrees
of freedom is just as acceptable as twenty-six.

1My session “Regression Models and Loss Reserving” at the 1999 Casualty Loss Reserve
Seminar presents this broad subject with theory and examples.
2I am grateful to William A. Niemczyk for pointing this out to me.
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4. AUTHOR’S COMMENTS ON DISCUSSIONS

Drs. Schmidt and Hamer have confined their discussions to
the Gauss–Markov theorem and to the best linear unbiased pre-
dictor. This is natural, since the Gauss–Markov theorem is the
most mathematical topic of the paper and is new material to most
actuaries (at least in its matrix form). In several of my papers I
have complained that we actuaries know too little about statis-
tical modeling and the matrix algebra that it utilizes. I myself
learned what little I know by a time-consuming study of materi-
als outside the actuarial syllabus, particularly [4]. And I believe
that even the new actuarial syllabus does not adequately cover
this topic. However, I wish that these discussions had gotten be-
yond the Gauss–Markov theorem and treated the undesirability
of stochastic regressors and the distinction between loss covari-
ance and loss development.

Dr. Schmidt’s finish, “We thus obtain the predictor proposed
by Halliwell by a direct approach which avoids conditioning,”
provides the basis for my two-fold response. First, as to con-
ditioning, my treatment of the predictor in Appendix C does
not depend on Bayes’ theorem and a loss distribution. In fact,
I wrote that e is “not necessarily normal” [2, pp. 480, 473].
However, perhaps I invited Dr. Schmidt’s criticism when I used
conditional-expectation notation [2, pp. 445, 482f] and said that
the unknown elements “are affected by the known elements
in a Bayesian sense, through the variance matrix.” [2, p. 444]
My Appendix B demonstrated that if e is multivariate normal,
the predictor can be derived by Bayes’ theorem; but I did not
say that conditional probability was the rationale of the predic-
tor.

And second, Drs. Schmidt and Hamer have made my argu-
ment rigorous, and shown that one can bypass the estimation of
¯ on the way to estimating Y2 (the “direct approach”). I con-
cur with their assertions that the proof in my Appendix C was
not strict, and that it confined itself “to predictors which can be
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written as y2(
ˆ̄ ) for some admissible estimator ˆ̄ .” I had realized

these things when I wrote my paper on conjoint prediction [3].
There I formulated the partitioned model (p observations and q
predictions):"#Y1(p"1): : : : : : :

Y2(q"1)

$%=
"#X1(p"k): : : : : : :

X2(q"k)

$%¯(k"1) +
"#e1: :
e2

$% , where

Var

"#e1: :
e2

$%=
"#S11(p"p) S12(p"q)
: : : : : : : : : : : : : : : : :

S21(q"p) S22(q"q)

$%.........

And I showed [3, p. 328] that the best linear unbiased predictor
of Y2 is:

Ŷ2 = (S21S
!1
11 + (X2!S21S!111 X1)(X#1S!111 X1)!1X#1S!111 )Y1

This agrees with Dr. Schmidt’s Theorem 4.3, whose proof Dr.
Hamer has provided. This formulation is direct because the esti-
mator Ŷ2 does not involve ˆ̄ . However, if X2 = Ik and e2 is a zero
matrix (and hence S21 and S22 are zero matrices), then Y2 = ¯,
and:

ˆ̄ = Ŷ2 = (S21S
!1
11 + (X2!S21S!111 X1)(X#1S!111 X1)!1X#1S!111 )Y1

= (0S!111 + (Ik !0S!111 X1)(X#1S!111 X1)!1X#1S!111 )Y1
= (X#1S

!1
11 X1)

!1X#1S
!1
11Y1

So the estimation of ¯ is a special case of the estimation of Y2
[3, p. 331], which Dr. Hamer calls Case 1 of his Theorem 4.1.3

That really is all that I need to say about the Gauss–Markov
theorem and best linear unbiased prediction. The task now, as

3Dr. Hamer devotes his Appendix to deriving the best linear unbiased estimator (BLUE)
of F1Y1 +F2Y2 +A¯. Though correct, the form of this derivation is overly complex. I
have shown [3, p. 335f] that the estimator is a linear operator; hence, the BLUE of this
expression is F1Ŷ1 +F2Ŷ2 +A

ˆ̄ = F1Y1 +F2Ŷ2 +A
ˆ̄ .
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I see it, is to get actuaries to understand that this theory is not
just a mathematical nicety. Though perhaps not a Copernican
revolution, it is revolutionary nonetheless. As it makes inroads,
we will see less of development factors and loss adjustments and
more of modeling and exposure adjustments.
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APPENDIX A

As an appendix, I wish to comment on the optimization prob-
lem of Dr. Schmidt’s fifth section, and on Dr. Hamer’s general-
ization of it. Though this problem has occasioned some interest-
ing mathematics, I see the problem as a sidelight, as only loosely
related to the Gauss–Markov theorem.

Dr. Schmidt wishes to find the admissible estimator ˆ̄ that
minimizes:

E[(Y!Xˆ̄ )#S!1(Y!Xˆ̄ )]:
Estimator ˆ̄ is admissible if and only if it is a linear function of Y1
and it is unbiased. In his third section he shows that admissible
estimators are of the form B(k"p)Y1 for BX1 = Ik, and Var[ ˆ̄ ] =
Var[BY1] = BVar[Y1]B

# =BS11B
#.

As I had done [2, p. 480f], he factors S!1 as W#W, where:

W=

&
A(p"p) 0(p"q)
C(q"p) D(q"q)

'
,

such that

A#A= S!111 ,

D#D= (S22!S21S!111 S12)!1, and

C =!DS21S!111 :
Now:

W(Y!Xˆ̄ ) =
&
A(p"p) 0(p"q)
C(q"p) D(q"q)

'&
Y1!X1 ˆ̄
Y2!X2 ˆ̄

'

=

&
A(Y1!X1 ˆ̄ )

C(Y1!X1 ˆ̄ )+D(Y2!X2 ˆ̄ )

'
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=

&
A(Y1!X1 ˆ̄ )

DY2!DX2 ˆ̄ +DD!1C(Y1!X1 ˆ̄ )

'

=

&
A(Y1!X1 ˆ̄ )

D(Y2!X2 ˆ̄ +D!1C(Y1!X1 ˆ̄ ))

'

=

&
A(Y1!X1 ˆ̄ )
D(Y2!y2( ˆ̄ ))

'

Therefore:

(Y!Xˆ̄ )#S!1(Y!Xˆ̄ )

= (Y!Xˆ̄ )#W#W(Y!Xˆ̄ )

= (W(Y!Xˆ̄))#(W(Y!Xˆ̄ ))

= [(Y1!X1 ˆ̄ )#A# (Y2!y2( ˆ̄ ))#D#]
&
A(Y1!X1 ˆ̄ )
D(Y2!y2( ˆ̄ ))

'

= (Y1!X1 ˆ̄ )#A#A(Y1!X1 ˆ̄ )

+ (Y2!y2( ˆ̄ ))#D#D(Y2! y2( ˆ̄ ))

= (Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ )

+ (Y2!y2( ˆ̄ ))#D#D(Y2! y2( ˆ̄ ))

And we have Dr. Schmidt’s Lemma 5.1:

E[(Y!Xˆ̄ )#S!1(Y!Xˆ̄ )] = E[(Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ )]
+E[(Y2! y2( ˆ̄ ))#D#D(Y2!y2( ˆ̄ ))]

To prove his Theorem 5.2 we have to review the trace func-
tion. The trace of a square matrix Q is defined as the sum of
its diagonal elements: tr(Q(n"n)) =

!n
i=1qii. Some theorems that
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should be obvious are:

tr(®Q) = ® tr(Q)

tr(Q#) = tr(Q)

tr(Q1 +Q2) = tr(Q1)+ tr(Q2)

tr(In) = n

If Q is (1"1), then tr(Q) = q11 = Q. (For our purposes we may
ignore the distinction between a scalar and a one-element ma-
trix.) And if Q is a random matrix:

tr(E[Q]) =
n(
i=1

E[qii]

= E

&
n(
i=1

qii

'
= E[tr(Q)]

But a theorem that is not obvious is that if A is (m"n) and B is
(n"m), then the traces of AB and BA are equal. The proof is:

tr(AB) =
m(
i=1

[AB]ii

=
m(
i=1

)* n(
j=1

aijbji

+,
=

n(
j=1

-
m(
i=1

bjiaij

.

=
n(
j=1

[BA]jj = tr(BA)

With this knowledge of the trace we can prove Theorem 5.2.
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We reduce the first term on the right side of Lemma 5.1,
mindful of the fact that the expressions within the expectation
operators are (1"1) matrices:

E[(Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ )]

= E[tr((Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ ))]

= E[tr(S!111 (Y1!X1 ˆ̄ )(Y1!X1 ˆ̄ )#)]

= tr(E[S!111 (Y1!X1 ˆ̄ )(Y1!X1 ˆ̄ )#])

= tr(S!111 E[(Y1!X1 ˆ̄ )(Y1!X1 ˆ̄ )#])
= tr(S!111 E[(Y1!X1BY1)(Y1!X1BY1)#])
= tr(S!111 E[((Ip!X1B)Y1)((Ip!X1B)Y1)#])

But because ˆ̄ is admissible, BX1 = Ik and:

E[(Ip!X1B)Y1] = (Ip!X1B)E[Y1]
= (Ip!X1B)X1¯
=X1¯!X1BX1¯
=X1¯!X1Ik¯
= 0

So:

E[((Ip!X1B)Y1)((Ip!X1B)Y1)#]
= Var[(Ip!X1B)Y1]
= (Ip!X1B)Var[Y1](Ip!X1B)#

= (Ip!X1B)S11(Ip!X1B)#
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Therefore:

E[(Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ )]

= tr(S!111 E[((Ip!X1B)Y1)((Ip!X1B)Y1)#])

= tr(S!111 (Ip!X1B)S11(Ip!X1B)#)

= tr(S!111 (S11!S11B#X#1!X1BS11 +X1BS11B#X#1))

= tr(Ip!B#X#1!S!111 X1BS11 +S!111 X1Var[ ˆ̄ ]X#)

= tr(Ip)! tr(B#X#1)! tr(S!111 X1BS11)+ tr(S!111 X1Var[ ˆ̄ ]X#)

But

tr(Ip) = p,

tr(B#X#1) = tr(X1B),

tr(S!111 X1BS11) = tr(X1BS11S
!1
11 )

= tr(X1B) = tr(BX1) = tr(Ik) = k, and

tr(S!111 X1Var[ ˆ̄ ]X
#
1) = tr(A

#AX1Var[ ˆ̄ ]X
#
1)

= tr(AX1Var[ ˆ̄ ]X
#
1A

#)

= tr((AX1)Var[
ˆ̄ ](AX1)

#):

So we arrive at the second equation of Theorem 5.2:

E[(Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ )]

= tr(Ip)! tr(X1B)! tr(S!111 X1BS11) + tr(S!111 X1Var[ ˆ̄ ]X#)

= p!2k+ tr((AX1)Var[ ˆ̄ ](AX1)#)
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Then we reduce the second term:

E[(Y2!y2( ˆ̄ ))#D#D(Y2!y2( ˆ̄ ))]
= E[tr((Y2! y2( ˆ̄ ))#D#D(Y2!y2( ˆ̄ )))]
= E[tr(D#D(Y2!y2( ˆ̄ ))(Y2! y2( ˆ̄ ))#)]
= tr(E[D#D(Y2!y2( ˆ̄ ))(Y2! y2( ˆ̄ ))#])
= tr(D#DE[(Y2!y2( ˆ̄ ))(Y2! y2( ˆ̄ ))#])
= tr(D#DVar[Y2! y2( ˆ̄ )])
= tr(DVar[Y2!y2( ˆ̄ )]D#)

The next-to-last step follows from the fact that y2(
ˆ̄ ) is an ad-

missible predictor of Y2 (as Dr. Schmidt states in his fourth sec-
tion); hence, E[Y2! y2( ˆ̄ )] = 0. But according to Lemma 4.1,
Y2!y2( ˆ̄ ) = D!1h( ˆ̄ ) and:

Var[h( ˆ̄ )] = (CX1 +DX2)Var[
ˆ̄ ](CX1 +DX2)

#+Iq

So by substitution we arrive at the third equation of Theorem
5.2:

E[(Y2!y2( ˆ̄ ))#D#D(Y2!y2( ˆ̄ ))]
= tr(DVar[Y2!y2( ˆ̄ )]D#)
= tr(DVar[D!1h( ˆ̄ )]D#)

= tr(Var[DD!1h( ˆ̄ )])

= tr(Var[h( ˆ̄ )])

= q+tr((CX1 +DX2)Var[
ˆ̄ ](CX1 +DX2)

#)

Dr. Schmidt denotes the Gauss–Markov estimator

(X#1S
!1
11 X1)

!1X#1S
!1
11Y1
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as ¯$. Adapting my notation to his, I can restate the last formula
of my Appendix A [2, p. 474] as:

Var[ ˆ̄ ]!Var[¯$] = %BA!1! (X#1S!111 X1)!1X#1A#&
"%BA!1! (X#1S!111 X1)!1X#1A#&# ' 0,

where, as above, A#A= S!111 and BX1 = Ik. And equality obtains
if and only if:

BA!1! (X#1S!111 X1)!1X#1A# = 0
BA!1 = (X#1S

!1
11 X1)

!1X#1A
#

B= (X#1S
!1
11 X1)

!1X#1A
#A

= (X#1S
!1
11 X1)

!1X#1S
!1
11

Therefore, Var[ ˆ̄ ]!Var[¯$] is non-negative definite (or, as Dr.
Schmidt calls it, positive semidefinite).4

Winding up the optimization problem, we have:

E[(Y!Xˆ̄)#S!1(Y!Xˆ̄ )]!E[(Y!X¯$)#S!1(Y!X¯$)]
= E[(Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ )]
!E[(Y1!X1¯$)#S!111 (Y1!X1¯$)]
+E[(Y2!y2( ˆ̄ ))#D#D(Y2! y2( ˆ̄ ))]
!E[(Y2!y2(¯$))#D#D(Y2!y2(¯$))]

= tr((AX1)(Var[ ˆ̄ ]!Var[¯$])(AX1)#)
+ tr((CX1!DX2)(Var[ ˆ̄ ]!Var[¯$])(CX1!DX2)#)

4See [3, pp. 306–309] for an overview of non-negative definite matrices.
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The arguments of the trace functions are non-negative definite
matrices, whose diagonal elements must be non-negative. There-
fore, the traces are non-negative, and:

E[(Y!Xˆ̄ )#S!1(Y!Xˆ̄ )]!E[(Y!X¯$)#S!1(Y!X¯$)]' 0

E[(Y!X¯$)#S!1(Y!X¯$)]( E[(Y!Xˆ̄ )#S!1(Y!Xˆ̄)]
¯$ minimizes the expected quadratic loss, though it may not be
unique among all admissible estimators of ¯.

This problem has led Dr. Hamer to define the “generalized
Schmidt best (GSB)” estimator as the admissible (i.e., linear-
in-Y1 and unbiased) estimator P

$ that minimizes E[(Y2!P)#W#
)W(Y2!P)] over all admissible P, regardless of W.5 He proves
in his Theorem 5.1 that P$ is GSB if and only if it is the best
linear unbiased predictor Ŷ2. Therefore, GSB and “uniformly best
(UB)” are equivalent. Now the set of admissible estimators in
Dr. Schmidt’s problem is a subset of the set of those in Dr.
Hamer’s definition; hence, Ŷ will dominate X¯$ in the optimiza-
tion of E[(Y!P)#W#W(Y!P)].

In his Section 6 Dr. Hamer proves that X¯$ is best if and only
if X1 is square. I wish to present here another proof. The relevant
formulas are:

Ŷ =

&
Ŷ1
Ŷ2

'

=

&
Y1

(S21S
!1
11 + (X2!S21S!111 X1)(X#1S!111 X1)!1X#1S!111 )Y1

'

=

&
Ip

S21S
!1
11 + (X2!S21S!111 X1)(X#1S!111 X1)!1X#1S!111

'
Y1

5I’ve changed his notation, but not his meaning.
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X¯$ =
&
X1
X2

'
(X#1S

!1
11 X1)

!1X#1S
!1
11Y1

=

&
X1(X

#
1S
!1
11 X1)

!1X#1S
!1
11

X2(X
#
1S
!1
11 X1)

!1X#1S
!1
11

'
Y1

The two estimators are identical (i.e., equal, regardless of the
value of Y1) if and only if X1(X

#
1S
!1
11 X1)

!1X#1S
!1
11 = Ip and

X2(X
#
1S
!1
11 X1)

!1X#1S
!1
11

= S21S
!1
11 + (X2!S21S!111 X1)(X#1S!111 X1)!1X#1S!111 :

However, if X1(X
#
1S
!1
11 X1)

!1X#1S
!1
11 = Ip:

X2(X
#
1S
!1
11 X1)

!1X#1S
!1
11

= S21S
!1
11 +X2(X

#
1S
!1
11 X1)

!1X#1S
!1
11 !S21S!111 Ip

= S21S
!1
11 +X2(X

#
1S
!1
11 X1)

!1X#1S
!1
11

!S21S!111 X1(X#1S!111 X1)!1X#1S!111
= S21S

!1
11 + (X2!S21S!111 X1)(X#1S!111 X1)!1X#1S!111

Therefore, the two estimators are identical if and only if
X1(X

#
1S
!1
11 X1)

!1X#1S
!1
11 = Ip.

Now if X1(X
#
1S
!1
11 X1)

!1X#1S
!1
11 = Ip:

p= tr(Ip)

= tr(X1(X
#
1S
!1
11 X1)

!1X#1S
!1
11 )

= tr((X#1S
!1
11 X1)

!1X#1S
!1
11 X1)

= tr(Ik)

= k



780 LOSS PREDICTION BY GENERALIZED LEAST SQUARES

And if p= k, then since the rank of X1 is k (guaranteeing that
X#1S

!1
11 X1 has an inverse), X1 has an inverse. And:

X1(X
#
1S
!1
11 X1)

!1X#1S
!1
11 = X1(X1)

!1(S!111 )
!1(X#1)

!1X#1S
!1
11

= Ip(S
!1
11 )

!1IpS
!1
11

= (S!111 )
!1S!111

= Ip

So X¯$ is best if and only if X1 is square, in which case the
observations constitute a system of simultaneous equations that
has the unique solution ¯$ =X!11 Y1.
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AGGREGATION OF CORRELATED RISK PORTFOLIOS:
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SHAUN S. WANG, PH.D.

DISCUSSION BY GLENN MEYERS

Abstract

In response to a request for proposal from the Com-
mittee on the Theory of Risk, Shaun Wang has written a
paper that significantly advances, to quote the proposal,
“the development of tools and models that improve the
accuracy of the estimation of aggregate loss distributions
for blocks of insurance risks.”
Dr. Wang’s charge was to “assume a book of business

is the union of disjoint classes of business each of which
has an aggregate distribution. : : :The classes of business
are NOT independent. : : :The problem is how do you
calculate the aggregate distribution for the whole book.”
Dr. Wang’s paper covers a variety of dependency models
and computational methods.
This discussion of his paper delves more deeply into

a particular dependency model—correlation caused by
parameter uncertainty—and then shows how his work
applies to calculating the aggregate loss distribution for
this case with one particular computational method—
Fourier Inversion.

1. BACKGROUND

The collective risk model has long been one of the primary
tools of actuarial science. One can view that model as a computer

781
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simulation where one first picks a random number of claims and
then sums the random loss amounts for each claim. Simulating
the distribution of losses for the collective risk model can (even
today) be time consuming so, over the years, a number of math-
ematical methods have been developed to shorten the computing
time. Klugman, Panjer, and Willmot [6, Ch. 4], provide an ex-
cellent description of the current computational methods.

The early uses of the collective risk model were mostly theo-
retical illustrations of the role of insurer surplus and profit mar-
gins. Such illustrations are still common today in insurance ed-
ucational readings such as Bowers, Gerber, Jones, Hickman and
Nesbitt [3, Ch. 13].

By the late 1970s, members of the Casualty Actuarial So-
ciety were beginning to use the collective risk model as input
for real world insurance decisions. The early applications of the
collective risk model included retrospective rating, e.g., Meyers
[7], and aggregate stop loss reinsurance, which is described by
Patrik [10]. Bear and Nemlick [2] provide further examples of
the use of the collective risk model in the pricing of reinsurance
contracts.

Some of these early efforts recognized the fact that the param-
eters of the collective risk model were unknown. Patrik and John
[5] introduced parameter uncertainty by treating the parameters
of the claim severity and claim count distributions as random
variables. Heckman and Meyers [4] followed with an efficient
computational algorithm that allows for some particular forms
of parameter uncertainty in the collective risk model.

It is easy and instructive to consider the effect of parameter
uncertainty on the variance of a distribution. Let X be a random
variable that depends on a parameter µ. Then:

Var[X] = Eµ[Var[X ! µ]]! "# $
Process Variance

+Varµ[E[X ! µ]]! "# $
Parameter Variance

: (1.1)
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If there is no parameter uncertainty, the parameter variance will
be zero. Introducing parameter uncertainty will increase the un-
conditional variance.

Suppose X1, : : : ,Xn are identically distributed random vari-
ables that depend on a parameter µ. Let E[X ! µ] and Var[X ! µ]
be their common mean and variance given µ. Assume further that
the Xi’s are conditionally independent given µ. Then:

E

%
n&
i=1

Xi ! µ
'
= n "E[X ! µ] and

Var

%
n&
i=1

Xi ! µ
'
= n "Var[X ! µ]:

Unconditionally:

Var

%
n&
i=1

Xi

'
= Eµ

%
Var

%
n&
i=1

Xi ! µ
''
+Varµ

%
E

%
n&
i=1

Xi ! µ
''

= n "Eµ[Var[X ! µ]]! "# $
Process Variance

+n2 "Varµ[E[X ! µ]]! "# $
Parameter Variance

: (1.2)

In most insurance situations, Eµ[Var[X ! µ]]#Varµ[E[X ! µ]],
and we should expect the process variance to be dominant for
small n. But as n increases, the parameter variance becomes in-
creasingly important. This becomes apparent by looking at the
coefficient of variation:

CV

%
n&
i=1

Xi

'
=

(
n "Eµ[Var[X ! µ]]+n2 "Varµ[E[X ! µ]]

n "E[X]

$%
n%&

)
Varµ[E[X ! µ]]
E[X]

> 0: (1.3)

More generally, we expect parameter uncertainty to play a minor
role for small insureds and to play a major role for large insureds
or for a reasonably sized insurance company.
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In situations where parameter uncertainty affects several lines
of insurance simultaneously, we expect high losses in one line
to be associated with high losses in another line. Thus parame-
ter uncertainty generates correlation. There are, of course, other
generators of correlation. One example is in property insurance,
where natural disasters cause damage to properties in close prox-
imity.

Meyers and Schenker [9] provided some statistical methods of
quantifying parameter uncertainty using observations spanning
a period of years. However, any statistical method for quanti-
fying parameter uncertainty requires considerable judgment be-
cause:

1. Data is scarce. You get one observation per insured per
year.

2. The source of the historical variability in the parame-
ters is often identifiable (at least after the fact). The user
might not expect that source of variability to be present in
future years. However, other sources of variability may
arise.

2. DYNAMIC FINANCIAL ANALYSIS

The Casualty Actuarial Society coined the term “Dynamic
Financial Analysis” (DFA) in the wake of the efforts to create
a risk-based capital formula for insurers. To do DFA, one must
often create an aggregate loss distribution for an entire insurance
company. Now, for an insurance company, the primary source
of parameter uncertainty is change over time. Thus parameter
uncertainty will be a very important component in any collective
risk model when it is applied to an entire insurance company.

As mentioned above, quantifying parameter uncertainty in-
volves a fair amount of judgment. For example:

' Uncertain inflation will affect all claims simultaneously.
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' Changes in the general economy can affect various lines of
insurance in special ways. For example, directors and officers
liability claims are more likely in a recession.

' Insurance companies write liability insurance at several differ-
ent policy limits. We expect uncertainty in the claim frequency
to affect policy limits in the same way.

The ultimate goal of DFA is to make financial decisions based
on controlling the risk of an entire insurance company. DFA nec-
essarily involves the more general concept of covariance, which
can be driven by mechanisms other than parameter uncertainty.
Practitioners familiar with the collective risk model should make
the effort to express their knowledge in financial language. On
the other hand, as we shall show, the collective risk model—with
parameter uncertainty—can enrich the financial models.

3. PARAMETER UNCERTAINTY AND CORRELATION

For the hth line of insurance let:

¹h =Expected claim severity;

¾2h =Variance of the claim severity distribution;

¸h =Expected claim count; and

¸h+ ch "¸2h =Variance of the claim count distribution.

Following Heckman and Meyers [4], we call ch the contagion
parameter. If the claim count distribution is:

Poisson, then ch = 0;

negative binomial, then ch > 0; and

binomial with n trials, then ch =$1=n.
A good way to view the collective risk model is by a Monte
Carlo simulation.
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Simulation Algorithm #1
The Collective Risk Model Without Parameter Uncertainty

1. For lines of insurance 1 to n, select a random number of
claims, Kh, for each line of insurance h.

2. For each line of insurance h, select random claim
amounts Zhk, for k = 1, : : : ,Kh. Each Zhk has a common
distribution (Zh):

3. Set Xh =
*Kh
k=1Zhk:

4. Set X =
*n
h=1Xh:

The collective risk model describes the distribution of X. In
this section we restrict ourselves to calculating the covariance
structure of X. In the next section we will show how to calculate
the entire distribution of X.

If we assume that Kh is independent of Kg for g *= h, and that
Zh is independent of Kh, we have:

Var[Xh] = EKh[Var[Xh ! Kh]] +VarKh[E[Xh !Kh]]
= ¸h "¾2h +¹2h " (¸h+ ch "¸2h): (3.1)

Also
Cov[Xg,Xh] = 0 for g *= h: (3.2)

We now introduce parameter uncertainty that affects the claim
count distribution for several lines of insurance simultaneously.
We partition the lines of insurance into covariance groups (Gi).
Our next version of the collective risk model is defined as fol-
lows.
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Simulation Algorithm #2
The Collective Risk Model with Parameter Uncertainty in the

Claim Count Distributions

1. For each covariance group i, select ®i > 0 from a distri-
bution with:

E[®i] = 1 and Var[®i] = gi:

gi is called the covariance generator for the covariance
group i.

2. For line of insurance h in covariance group i, select a
random number of claims Khi from a distribution with
mean ®i "¸hi.

3. For each line of insurance h in covariance group i, select
random claim amounts Zhik for k = 1, : : : ,Kh. Each Zhik
has a common distribution (Zhi).

4. Set Xhi =
*Khi
k=1Zhik:

5. Set X'i =
*
h+Gi Xhi:

6. Set X =
*n
i=1X'i:

We have:

Cov[Xdi,Xhi] = E®i[Cov[Xdi,Xhi ! ®i]]
+Cov®i[E[Xdi ! ®i],E[Xhi ! ®i]]:

For d *= h, Xdi and Xhi are conditionally independent. Thus
Cov[Xdi,Xhi ! ®i] = 0 and

Cov[Xdi,Xhi] = Cov®i[®i "¸di "¹di,®i "¸hi "¹hi]
= gi "¸di "¹di "¸hi "¹hi: (3.3)
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Also,

Cov[Xhi,Xhi] = Var[Xhi]

= E®i[Var[Xhi ! ®i]]+Var®i[E[Xhi ! ®i]]
= E®i[®i "¸hi "¾2hi+¹2hi " (®i "¸hi+®2i " chi "¸2hi)]
+Var®i[®i "¸hi "¹hi]

= ¸hi "¾2hi+¹2hi " (¸hi+(1+ gi) " chi "¸2hi)+gi "¸2hi "¹2hi:
(3.4)

And:
Cov[Xdi,Xhj] = 0 for i *= j: (3.5)

We now introduce parameter uncertainty in the severity dis-
tributions. Let ¯ be a positive random variable with E[1=¯] = 1
and Var[1=¯] = b. Following Heckman and Meyers [4], we call
b the mixing parameter. Let X¯hi = Xhi=¯ for all h and i. Then:

Cov[X¯di,X
¯
hj] = E¯[Cov[Xdi=¯,Xhj=¯]]

+Cov¯[E[Xdi=¯],E[Xhj=¯]]

= Cov[Xdi,Xhj] " (1+b) +b "E[Xdi] "E[Xhj]:
(3.6)

From Equations 3.3 to 3.6, we see that the first term of Equation
3.6 will be zero whenever i *= j, and the second term will be
positive whenever b > 0.

To calculate the coefficient of correlation, ½XY, between two
separate lines of insurance with random losses X and Y, we use
Equations 3.3 to 3.6 and the relationship:

½XY =
Cov[X,Y],
Var[X] "Var[Y] : (3.7)

We illustrate the effect of parameter uncertainty on correlation
with an example. We use the illustrative claim severity distribu-
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TABLE 3.1

Claim Count Distribution Parameters

Covariance
Group

Covariance
Generator

Line of
Insurance ¸ c

#1 .01 GL-$1M Varies 0.00
GL-$5M Varies 0.00

#2 .02 AL-$1M Varies 0.01
AL-$5M Varies 0.01

tions for general liability and automobile liability given in Ap-
pendix A. Table 3.1 gives the covariance group and claim count
distribution parameters. The examples use b = 0:01.

Table 3.2 gives the correlation matrices for the claim count
distributions1 and the aggregate loss distributions for each line of
insurance with ¸= 10, 100, and 100,000. Note that as ¸ increases
the coefficients of correlation approach a limiting value. We can
calculate that limiting value by dropping the terms with ¸hi (small
compared with terms with ¸2hi) in Equation 3.4. If c= 0, the
limiting coefficients of correlation are 1.0.2

If we modify the claim severity distribution by a deductible,
with p being the probability of exceeding the deductible, we must
then change the ¸ parameter of a negative binomial claim count
distribution by replacing ¸ with p "¸. The contagion parameter c
remains unchanged.3 We can then apply Equations 3.3 to 3.7 to
the modified claim count and claim severity distributions. Table
3.2 gives the resulting correlation matrices.

These examples show the practical utility of having correla-
tion coefficients that are generated by a model. One should not

1We calculated claim count covariances from Equations 3.3 to 3.6 using ¹hi = 1 and
¾hi = 0.
2Holding c as a constant while varying ¸ uses the interpretation of c as quantifying
parameter uncertainty within a single line of insurance. See Heckman and Meyers [4]
for details.
3This is proven on pp. 266–7 of Klugman et al. [6]. Note that, in our parameterization,
¸= r " ¯ and c= 1=r.
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TABLE 3.2

Illustrated Correlation Matrices

Expected Claim Count = 10
Claim Count Correlations Total Loss Correlations

GL-$1M GL-$5M AL-$1M AL-$5M GL-$1M GL-$5M AL-$1M AL-$5M

GL-$1M 1.00000 0.09091 0.00000 0.00000 1.00000 0.01361 0.00412 0.00354
GL-$5M 0.09091 1.00000 0.00000 0.00000 0.01361 1.00000 0.00355 0.00305
AL-$1M 0.00000 0.00000 1.00000 0.15361 0.00412 0.00355 1.00000 0.00560
AL-$5M 0.00000 0.00000 0.15361 1.00000 0.00354 0.00305 0.00560 1.00000

Expected Claim Count = 1,000
Claim Count Correlations Total Loss Correlations

GL-$1M GL-$5M AL-$1M AL-$5M GL-$1M GL-$5M AL-$1M AL-$5M

GL-$1M 1.00000 0.90909 0.00000 0.00000 1.00000 0.57819 0.18826 0.17271
GL-$5M 0.90909 1.00000 0.00000 0.00000 0.57819 1.00000 0.17671 0.16212
AL-$1M 0.00000 0.00000 1.00000 0.64103 0.18826 0.17671 1.00000 0.32042
AL-$5M 0.00000 0.00000 0.64103 1.00000 0.17271 0.16212 0.32042 1.00000

Expected Claim Count = 100,000
Claim Count Correlations Total Loss Correlations

GL-$1M GL-$5M AL-$1M AL-$5M GL-$1M GL-$5M AL-$1M AL-$5M

GL-$1M 1.00000 0.99900 0.00000 0.00000 1.00000 0.99272 0.34743 0.34674
GL-$5M 0.99900 1.00000 0.00000 0.00000 0.99272 1.00000 0.34705 0.34636
AL-$1M 0.00000 0.00000 1.00000 0.66203 0.34743 0.34705 1.00000 0.73582
AL-$5M 0.00000 0.00000 0.66203 1.00000 0.34674 0.34636 0.73582 1.00000

Limiting Correlations as the Expected Claim Count Approaches Infinity
Claim Count Correlations Total Loss Correlations

GL-$1M GL-$5M AL-$1M AL-$5M GL-$1M GL-$5M AL-$1M AL-$5M

GL-$1M 1.00000 1.00000 0.00000 0.00000 1.00000 1.00000 0.35048 0.35048
GL-$5M 1.00000 1.00000 0.00000 0.00000 1.00000 1.00000 0.35048 0.35048
AL-$1M 0.00000 0.00000 1.00000 0.66225 0.35048 0.35048 1.00000 0.74564
AL-$5M 0.00000 0.00000 0.66225 1.00000 0.35048 0.35048 0.74564 1.00000

Ground Up Expected Count = 1,000 with a $100,000 Deductible
Claim Count Correlations Total Loss Correlations

GL-$1M GL-$5M AL-$1M AL-$5M GL-$1M GL-$5M AL-$1M AL-$5M

GL-$1M 1.00000 0.43740 0.00000 0.00000 1.00000 0.38533 0.12445 0.11282
GL-$5M 0.43740 1.00000 0.00000 0.00000 0.38533 1.00000 0.11355 0.10294
AL-$1M 0.00000 0.00000 1.00000 0.21918 0.12445 0.11355 1.00000 0.20181
AL-$5M 0.00000 0.00000 0.21918 1.00000 0.11282 0.10294 0.20181 1.00000
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use empirical correlation coefficients if they were applied to an
insured with a different exposure, or if a deductible were im-
posed.

4. CALCULATING THE AGGREGATE LOSS DISTRIBUTION BY
FOURIER INVERSION

In this section, we show how to use direct Fourier inversion
to calculate the aggregate loss distribution described by Simu-
lation Algorithm #2. We begin by summarizing the method of
Heckman and Meyers [4] using the more compact notation of
Klugman et al. [6, p. 316].4

Let Z be a random variable representing claim severity. Define
the Fourier transform of Z as:

ÁZ(t)- E[eitZ]:
A fundamental property of Fourier transforms is that:

ÁZ+"""+Z! "# $
K Times

(t) = ÁZ(t)
K ,

where the Z’s are independent.

Let K be a random variable representing claim count. De-
fine the probability generating function (pgf) of a claim count
distribution as:

PK(t)- E[tK]:

Define the aggregate loss

X = Z + " " "+Z! "# $
K Times

:

We then have:

ÁX(t) = E[(ÁZ(t))
K] = PK(ÁZ(t)): (4.1)

4Wang describes a similar process using the Fast Fourier Transform.
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Let X1, : : : ,Xn be independent random variables of aggregate
losses. Then:

ÁX1+"""+Xn(t) =
n+
i=1

ÁXi
(t): (4.2)

Heckman and Meyers [4] provide a way to obtain the distri-
bution of X1 + " " "+Xn and the distribution5 of (X1 + " " "+Xn)=¯
given the Fourier transform ÁX1+"""+Xn(t) and that ¯ has a gamma
distribution.

To summarize, Fourier inversion turns the time-consuming
process of simulating the sum of random variables into the
mathematically complex, but doable, process of multiplying the
Fourier transforms of the random variables and then inverting
this product. Until now, we have been assuming that the claim
count distributions are independent and that the claim severity
distribution is independent of the claim count.

To remove the assumption that the claim count distributions
are independent, Wang uses the multivariate Fourier transform
which is defined by:

ÁX1,:::,Xn
(t1, : : : , tn) = E[e

i(t1X1+"""+tnXn)]

and has the property that:

ÁX1+"""+Xn(t) = ÁX1,:::,Xn(t, : : : , t): (4.3)

When the lines of insurance are correlated, we can then apply
the Heckman/Meyers Fourier inversion formula to Equation 4.3
to obtain the aggregate loss distribution.

We now use Equation 4.3 to calculate the Fourier transform
for the aggregate loss distribution described by Simulation Algo-
rithm #2—the collective risk model with parameter uncertainty

5See Equation 3.6 and the preceding paragraph.
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in the claim count distributions.

ÁX'i
(t) = ÁX1i,:::,Xnii

(t, : : : , t)

(from Equation 4.3)

= E®i[ÁX1i,:::,Xnii
(t, : : : , t) ! ®i]

= E®i

% ni+
h=1

ÁXhi
(t) ! ®i

'
(Equation 4.2 applies since the Xhi’s
are conditionally independent.)

= E®i

% ni+
h=1

PKhi
(ÁZhi(t)) ! ®i

'
: (4.4)

(from Equation 4.1)

Since the covariance groups are independent:

ÁX(t) =
n+
i=1

ÁX'i
(t): (4.5)

To complete the model description, we need to specify:

' the distribution of the ai’s;
' the pgf’s PKhi(t); and
' the Fourier transforms of the severity distributions ÁZhi(t).
We will use a three-point discrete distribution for ai. Let:

®i1 = 1$
(
3gi Pr(®i = ®i1)= 1=6

®i2 = 1 Pr(®i = ®i2)= 2=3 (4.6)

®i3 = 1+
(
3gi Pr(®i = ®i3)= 1=6

This discrete distribution was motivated by an approximation
to Equation 4.4 when ai has a normal distribution. Equation 4.4
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then becomes:

E®i

% ni+
h=1

PKhi
(ÁZhi(t)) ! ®i

'
=

1)
2¼gi

&,
$&

% ni+
h=1

PKhi
(ÁZhi(t)) ! ®i

'

" e$(®i$1)2=2gid®i; (4.7)

by using the Gauss–Hermite three-point quadrature formula:

&,
$&

f(x) " e$x2dx.
,
¼

6
f

-.$
/
3
2

01+ 2,¼
3
f(0)+

,
¼

6
f

-./3
2

01 ;
(4.8)

with the change of variables:

x=
®i$1)
2gi

:

One can use a higher-order formula, obtainable from many
texts on numerical analysis. See, for example, Ralston [11].

Appendix B of Klugman et al. [6] provides the pgf’s for a
wide variety of claim count distributions. We provide two exam-
ples here, translated into this paper’s notation.

For the negative binomial claim count distribution:

PKhi(t) ! ®i = (1$ chi "¸hi "®i " (t$1))
$1=chi :

For the Poisson claim count distribution:

PKhi
(t) ! ®i = e$¸hi"®i"(t$1):

The Fourier transform of a claim severity distribution with
probability density function f(z):

ÁZ(t) =
, &

0
eitxf(x)dx:

This integral does not have a closed form for most of the com-
monly used claim severity distributions. Heckman and Meyers
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[4] get around that difficulty by approximating the cumulative
distribution function (cdf), F(z), with a piecewise linear cdf, for
which the integral does have a closed form.

To summarize this section, we have shown how to calculate
the multivariate Fourier transform of the collective risk model
with correlations generated by parameter uncertainty. We then
used the direct Fourier inversion formulas of Heckman and Mey-
ers to calculate the corresponding aggregate loss distribution.

Note that one could use the Fast Fourier Transform methods
discussed by Wang.

5. AN ILLUSTRATIVE EXAMPLE

We now illustrate the effect of covariance on the aggregate
loss distribution of the hypothetical XYZ Insurance Company.
XYZ writes commercial lines exclusively—workers compensa-
tion, general liability, commercial auto and commercial property.
Table 5.1 provides summary statistics for XYZ’s book of busi-
ness.

Following are some additional remarks about XYZ’s loss dis-
tribution.

' We set the mixing parameter b = 0:01.
' The claim severity distributions are piecewise linear approxi-
mations to mixed exponential distributions. See Appendix A
for details. Also, the standard deviations for the claim sever-
ity distributions reflect the mixing generated by the mixing
parameter, b.

' The claim count distributions are all negative binomial.

' The correlations between the claim count distributions of the
coverages in a given line are driven by the covariance generator
listed with the first coverage of the line.
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TABLE 5.1

XYZ Summary Loss Statistics
Line/Coverage Summary Statistics
Aggregate Summary Statistics

Aggregate Mean 1,004,422,886
Aggregate Standard Deviation 156,034,063
Mixing Parameter 0.010000

Line Name/ Covariance
Liability Limit E[Count] Std[Count] E[Severity] Std[Severity] E[Tot.Loss] Generator

WC-$5M Limit 80,000.00 8,005.00 5,339.89 52,927.43 427,191,200
GL-$5M Limit 200.00 42.61 40,348.87 160,218.51 8,069,774 0.020000
GL-$2M Limit 800.00 163.27 39,892.11 152,516.66 31,913,688
GL-$1M Limit 2,200.00 444.68 36,966.16 124,853.59 81,325,552
GL-$.5M Limit 1,250.00 253.72 31,085.63 87,532.67 38,857,038
AL-$5M Limit 350.00 53.03 12,809.55 99,730.27 4,483,342 0.010000
AL-$2M Limit 1,350.00 194.89 12,626.84 94,724.36 17,046,234
AL-$1M Limit 3,700.00 528.08 11,456.65 76,434.03 42,389,605
AL-$.5M Limit 2,300.00 329.59 9,131.21 50,896.52 21,001,783
APhD 1,100.00 159.44 4,360.00 6,331.53 4,796,000
CP-$50M Limit 2,000.00 667.83 10,999.77 224,488.75 21,999,540 0.100000
CP-$10M Limit 8,000.00 2,666.83 6,999.95 45,887.29 55,999,600
CP-$5M Limit 18,500.00 6,165.08 6,499.98 24,515.84 120,249,630
CP-$2M Limit 10,000.00 3,333.17 6,199.99 13,467.32 61,999,900
CP-$1M Limit 11,000.00 3,666.33 6,100.00 11,066.55 67,100,000

FIGURE 5.1

XYZ Aggregate Loss Distribution
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TABLE 5.2

Comparison of Aggregate Loss Distributions†

With and Without the Covariance Generators
and the Mixing Parameter

WO/Covariance W/Covariance
Aggregate Mean 1,004,422,886 1,004,422,886

Aggregate Std. Dev. 52,698,873 156,034,063

Aggregate Cumulative Probability Limited Pure Premium Ratio

Loss WO/Covariance W/Covariance WO/Covariance W/Covariance

500,000,000 0.00000 0.00000 0.49780 0.49780
600,000,000 0.00000 0.00070 0.59736 0.59734
700,000,000 0.00000 0.01617 0.69692 0.69634
800,000,000 0.00001 0.08782 0.79648 0.79136
900,000,000 0.01954 0.25528 0.89570 0.87477

1,000,000,000 0.47643 0.51146 0.97685 0.93653
1,100,000,000 0.96097 0.74683 0.99909 0.97282
1,200,000,000 0.99970 0.89181 1.00000 0.99004
1,300,000,000 1.00000 0.96115 1.00000 0.99688
1,400,000,000 1.00000 0.98831 1.00000 0.99916
1,500,000,000 1.00000 0.99703 1.00000 0.99981
1,600,000,000 1.00000 0.99935 1.00000 0.99996
1,700,000,000 1.00000 0.99987 1.00000 0.99999
1,800,000,000 1.00000 0.99998 1.00000 1.00000
1,900,000,000 1.00000 1.00000 1.00000 1.00000
2,000,000,000 1.00000 1.00000 1.00000 1.00000

†The cumulative probability is the probability that the aggregate loss amount is less than the stated
loss amount. The limited pure premium is the expected aggregate loss when limited to the stated
loss amount. The limited pure premium ratio is the limited pure premium divided by the expected
aggregate loss.

Appendix B gives the correlation matrices generated by mix-
ing the claim count and claim severity distributions.

Table 5.2 and Figure 5.1 illustrate the significant effect that
correlations have on the aggregate loss distribution of XYZ In-
surance Company.
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6. CONCLUSION

We congratulate Dr. Wang for his fine work in introducing
dependency into the collective risk model. This discussion has
attempted to expand the applicability of his work and illustrate
its importance in Dynamic Financial Analysis.
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APPENDIX A

THE CLAIM SEVERITY DISTRIBUTIONS

The Heckman/Meyers algorithm requires that the cumula-
tive distribution functions for the claim severity distributions be
piecewise linear. Users of the algorithm usually have an analytic
model for claim severity, so some approximation is necessary.
This appendix gives the analytic models used in this paper and
their piecewise linear approximations. The claim severity distri-
butions are merely illustrative and the reader should note that we
did not derive the claim severity distributions from any propri-
etary data available to us.

This paper uses the mixed exponential claim severity model
for all lines of insurance. The cumulative distribution function
(cdf) is given by:

F(x) = 1$
4&
i=1

wi " e$x=bi : (A.1)

The limited average severity (LAS) is given by:

L(x) =
4&
i=1

wi "bi " (1$ e$x=bi): (A.2)

A piecewise linear cdf approximates each mixed exponential
cdf. For the specified values x0,x2, : : : ,x2n, the piecewise linear
cdf has the same value as its corresponding mixed exponential
cdf, and the piecewise linear LAS has the same value as its corre-
sponding mixed exponential LAS. We accomplish this matching
of the LAS values by setting:

x2n$1 =
L(x2n)$L(x2n$2)$ x2n " (1$F(x2n))+ x2n$2 " (1$F(x2n$2))

F(x2n)$F(x2n$2)
(A.3)



AGGREGATION OF CORRELATED RISK PORTFOLIOS 801

TABLE A.1

Mixed Exponential Parameters

Line Names b1 b2 b3 b4 w1 w2 w3 w4

WC 1,000 10,000 100,000 500,000 0.940 0.040 0.015 0.005
GL 1,000 10,000 100,000 500,000 0.350 0.500 0.100 0.050
AL 1,000 2,500 10,000 500,000 0.360 0.500 0.120 0.020
APhD 1,000 5,000 10,000 15,000 0.360 0.500 0.120 0.020
CP-$50M Limit 2,000 5,000 20,000 5,000,000 0.360 0.500 0.139 0.001
CP-$10M Limit 2,000 5,000 20,000 1,000,000 0.360 0.500 0.139 0.001
CP-$5M Limit 2,000 5,000 20,000 500,000 0.360 0.500 0.139 0.001
CP-$2M Limit 2,000 5,000 20,000 200,000 0.360 0.500 0.139 0.001
CP-$1M Limit 2,000 5,000 20,000 100,000 0.360 0.500 0.139 0.001

and

F(x2n$1) = F(x2n)$ (F(x2n)$F(x2n$2))
x2n$1$ x2n$2
x2n$ x2n$2

:

(A.4)

Table A.1 gives the parameters of the mixed exponential dis-
tributions used in this paper. Table A.2 gives the piecewise lin-
ear approximations for two of these distributions. The values
x0,x2, : : : are the same for all of the piecewise linear distributions
used in this paper.
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TABLE A.2

Piecewise Linear Approximations To Mixed Exponential
Distributions

WC-$5M Limit w’s Means GL-$5M Limit w’s Means
Exp #1 0.940 1,000 Exp #1 0.350 1,000
Exp #2 0.040 10,000 Exp #2 0.500 10,000
Exp #3 0.015 100,000 Exp #3 0.100 100,000
Exp #4 0.005 500,000 Exp #4 0.050 500,000

Loss Amount cdf LAS Loss Amount cdf LAS

0.00 0.000000 0.00 0.00 0.000000 0.00
49.15 0.045700 48.02 49.21 0.019500 48.73
100.00 0.089867 95.43 100.00 0.038392 98.05
149.19 0.131200 139.18 149.37 0.056200 145.08
200.00 0.171217 182.31 200.00 0.073565 192.43
342.56 0.276533 292.95 343.62 0.120000 322.15
500.00 0.371892 399.35 500.00 0.162648 456.43
729.42 0.494340 529.40 733.42 0.219840 645.21

1,000.00 0.598159 652.18 1,000.00 0.269918 846.51
1,419.20 0.727210 793.58 1,443.94 0.339720 1,155.13
2,000.00 0.820353 924.97 2,000.00 0.395447 1,506.79
2,883.28 0.911960 1,043.19 3,256.69 0.485113 2,210.19
5,000.00 0.950186 1,189.09 5,000.00 0.549751 3,051.45
6,797.29 0.960808 1,269.07 7,275.66 0.618840 3,997.45
10,000.00 0.966769 1,385.05 10,000.00 0.676551 4,957.25
14,264.10 0.972925 1,513.63 14,236.37 0.749097 6,173.83
20,000.00 0.977502 1,655.80 20,000.00 0.802420 7,466.28
30,790.44 0.983013 1,868.83 30,030.69 0.861207 9,153.31
50,000.00 0.986108 2,165.42 50,000.00 0.890736 11,630.07
72,261.57 0.988482 2,448.25 71,743.39 0.908547 13,812.20
100,000.00 0.990386 2,741.34 100,000.00 0.922253 16,202.71
142,933.77 0.992801 3,102.25 143,357.97 0.939641 19,196.72
200,000.00 0.994618 3,461.20 200,000.00 0.952951 22,238.65
306,605.45 0.996837 3,916.67 311,738.74 0.970510 26,514.86
500,000.00 0.998060 4,410.19 500,000.00 0.980932 31,085.63
700,063.34 0.998817 4,722.62 702,893.51 0.988239 34,213.12

1,000,000.00 0.999323 5,001.59 1,000,000.00 0.993229 36,966.16
1,343,154.66 0.999707 5,168.02 1,343,292.63 0.997074 38,630.66
2,000,000.00 0.999908 5,294.21 2,000,000.00 0.999084 39,892.11
2,493,216.63 0.999985 5,320.55 2,492,457.58 0.999848 40,155.10
5,000,000.00 1.000000 5,339.89 5,000,000.00 0.999998 40,348.87
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ADDRESS TO NEW MEMBERS—NOVEMBER 15, 1999

IT IS EASIER TO BECOME AN ACTUARY

LEROY J. SIMON

Heartiest congratulations—first to those accompanying per-
sons who sacrificed and put up with so much while this morn-
ing’s new Fellows and Associates struggled to reach this great
day. All those who have been through it before you know and
understand how difficult it is and of the appreciation you deserve.
And, of course, a very warm welcome to you new Fellows and
Associates on this milestone day. I hate to be the one that has to
tell you this but—it is easier to become an actuary than to be one.
More on that in a moment, but, as a corollary, learn to be good
at accepting criticism, you’ll get a lot of practice. The basic na-
ture of our work is such that we must at times deliver messages
that others do not want to hear; one of their defensive reactions
is to blast the messenger. That does not change the quality of
the message, however, so just be right in the first place, learn to
accept criticism, and have faith in yourself.

When you entered the room this morning you stepped into an
environment that was created for you. I am speaking in a broad
sense of the environment of traditions, spirit, morals, ethics, and
the knowledge base: : :all that has been built to create this Cas-
ualty Actuarial Society. You now stand on the shoulders of those
who preceded you. What will you do with this opportunity?
Thirty or forty years from now when you retire from active busi-
ness pursuits, whether you like it or not, you will leave a legacy
to those who follow—make it the best legacy you possibly can.
You owe that to the CAS, you owe it to those who supported
you on this path, but even more so, you owe it to yourself. Yes,
it is easier to become an actuary than to be one.

You will have many successes over your actuarial career,
so you must remind yourself that the greatest enemy of future
progress is past success. We are all comfortable with things that

806
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we know and understand. It’s easy to apply a familiar tool to
a new problem—much easier than analyzing the problem to see
what tools would best apply and then designing a workable tech-
nique and carrying out the solution. Experience in a field makes
you comfortable—you know the tool to use even before the prob-
lem is completely formulated. On the contrary, you must be will-
ing to turn things on their head and look at them in a new light.
You must strive to make change a partner, not an enemy; new
input an accomplice, not a rival. And above all, you must force
yourself to completely, carefully, thoroughly define the problem
without jumping to the method of solution before you have a
full grasp of the situation. The tools you have learned through
the education process have brought you to today and will guide
you through your early years as professionals. Be ready to dis-
card them when improvements come along. Yes, it is far easier
to become an actuary than to be one.

Forty-five years ago today I became a Fellow and the papers
presented to the Annual Meeting of the CAS included two on
Workmen’s Compensation, two on health insurance, one on the
Boiler and Machinery experience rating plan, and an elementary
one on fire insurance ratemaking. Now look at the program for
this meeting: securitization of catastrophe exposures, computer
technology, complex models, financial services, discounted cash
flow.

There is no secret about how we got from the papers of 45
years ago to the presentations of today—CHANGE. And the
only way to cope with such dramatic change over the course
of your actuarial career is continuing education and continuous
adjustment to the new environment. You have to go to a museum
today to see a punched card, which was the standard for data
processing in 1954. When you get back to the office, look around
and you’ll see the museum pieces of the future and they’ll be in
those museums before you retire. Just make sure your actuarial
expertise is not at a 1999 level, because it is far easier to become
an actuary than to be one.
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Once upon a time: : :we knew that when the insurance policy
said that, to be covered, a loss had to be “sudden and accidental”
meant that the event had to be sudden and it had to be accidental.
Of course that is no longer true today. Once upon a time: : :your
product had to have caused the loss in order for you to be liable
for damages. No longer; now you only need to be a member of a
class that manufactured products something like the one deemed
guilty and you are liable. And now: : :we have a challenge in
the courts alleging that the normal operating costs of running an
enterprise are covered under the property insurance policy when
they involve the Y2K bug. Stay tuned for the outcome of that
one.

You must be prepared for equally bizarre attempts to twist
and distort the intent of insurance policies to provide funds for
some worthwhile social purpose—“worthwhile” that is for oth-
ers but life-threatening for our industry. Over the course of your
careers don’t be surprised to encounter something as strange as
this: a tornado has struck a devastating blow to a major city and
heavily damaged a large residential area: : :70% of the homes in
this area have been flattened but 30% have escaped damage. The
insurance industry is ordered to pay up the face amount of all
fire and homeowners policies within an area described by the au-
thorities and approved by the court. No, it makes no difference
whether your insured’s property was only partially damaged or
not damaged at all; that was an act of God. The act of the courts
is to mobilize the resources available and one of the handiest re-
sources is the insurance companies’ funds. Impossible? Too far
out? Maybe so, but then there was a time when we thought we
knew what sudden and accidental meant, and a time when we
thought we were covering the liability of a manufacturer for dam-
age done by his product, and a time: : :and a time: : :and a: : :well,
maybe it’s not so impossible after all.

Yes, it is far, far easier to become an actuary than to be one.
But then, that’s why we have actuaries like you in the CAS. Your
median age is 31. You will be in the forefront at the 2014 cele-
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bration of the 100th anniversary of the founding of the Casualty
Actuarial Society. You’re young, bright, responsible individuals,
ready to challenge the world and proud to be members of the
Casualty Actuarial Society. Keep your pride of today throughout
your entire career. Always remember, there are two broad groups
of actuaries—casualty and non-casualty.

You are the last CAS graduating class of the 20th century—but
let’s keep it in perspective—50 years and 50 days from today,
you will still be actuaries but you will be closer to the start of
the 22nd century than you will be to the year 2000. Good luck.
Now that you’ve done the easier part and become an actuary, get
out there and do the rest of the job—be one. I’ll be watching you
because, in some small way, you’re my class of ’99.
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THE CAS IN THE NEW MILLENNIUM

STEVEN G. LEHMANN

In the field of observation, chance favors the prepared
mind.

—Louis Pasteur

This will be the last CAS meeting of the old millennium, at
least by the way most people count it. It seems an appropriate
time to look back at our roots as well as forward to the new
millennium.

Eighty-five years ago last Sunday a new actuarial society was
born. Led by a Russian immigrant, Dr. Isaac M. Rubinow, the
new society was named the Casualty Actuarial and Statistical
Society of America. The name was shortened to the Casualty
Actuarial Society in 1921.

The founders of the new society, our forefathers, were innova-
tors and pioneers of a new form of insurance called workmen’s
compensation insurance, certainly a nontraditional area of prac-
tice at that time.

It is interesting to note that the initial examination syllabus
set in 1915 had six exams, four Associateship exams and two
Fellowship exams. Another early priority of our Society was the
appointment of a committee to address new methods of reserving
for liability and compensation losses (in other words, research).
Thus innovation, research, and education have been hallmarks of
our Society from its earliest days.

Eighty-five years ago, our roots were formed.

Eighty-five years ago: : : .

Where will the new millennium take us? Let me offer my
predictions of what we’ll see in the next ten years and beyond.

810
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Globalization

Globalization—an overused word. But it’s a fact that we
are seeing actuaries from North America relocating to London,
Zurich, Hong Kong, and the Far East. U.S. and Canadian com-
panies are becoming global. European and Asian companies are
marketing in the U.S. and Canada. My prediction is that in the
next ten–twenty years we will see a globalization of business far
beyond anything we’ve seen to date. A truly global world and
world economy, where a flight from New York to London or
Paris will be as common as a flight from New York to Chicago
is today. A world where actuaries move freely from country to
country as part of a typical job progression in getting to know
their company.

Convergence of Insurance and Financial Services

Secondly, I see a continuation of the blurring of lines be-
tween insurance companies and other financial services. Many
insurance products are already a mixture of traditional insurance
and financial products. Banks and thrift institutions want addi-
tional sales opportunities related to their savings and lending
activities. Consumers, borrowing money for a car or house, are
likely to be in the market for car and house insurance. Banks and
thrifts can use their existing facilities to offer these new products
with minimal additional capital expenditures for office space and
to an existing client base. Insurance companies want additional
marketing outlets and access to the established client bases of
financial institutions.

It remains to be seen who will come out on top in these merg-
ers. If it’s the banks it is critical to our future that the bankers
and investment people become familiar with actuaries and what
we can do for them.

Mergers and Acquisitions

Not only are we seeing banks and insurance companies merge,
we are seeing an ever-increasing number of mergers within the
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insurance industry and elsewhere. As the number of insurance
companies become fewer with these mergers and acquisitions,
we will see actuarial jobs eliminated and consolidated. This has
not been a big problem for casualty actuaries in the past. It is
becoming one today for casualty actuaries and will continue in
the future.

Competition from MBAs and Financial Engineers

A major activity of the CAS this year was a series of inter-
views with CEOs of insurance companies, reinsurers, brokers,
and consulting firms to identify the needs of potential employ-
ers of actuarial services and to explore how actuaries could meet
those needs. You will be reading about the results of these inter-
views in the coming months, but I want to focus on one aspect of
the findings. The general consensus of the CEOs was that actu-
aries need to develop better general business skills and a broader
business perspective.

We are also hearing about a new profession called finan-
cial engineers who are finding employment on Wall Street and
Bay Street doing things like pricing options, derivatives, and fu-
tures.

If actuaries are to become broader-based problem solvers in
the field of risk, we will face competition from MBAs and finan-
cial engineers. We will also face competition to recruit the best
and brightest actuarial students from MBA schools and financial
engineer programs. If you were a bright, talented math or busi-
ness student with the opportunity to work on Wall Street now for
a large salary versus taking a series of nine very difficult exams,
which way would you go? All I can say is, “Thank God for the
Jobs Rated Almanac.” Compare a two-year MBA program to the
five–ten years it takes to achieve Fellowship. Again, thank God
for the Jobs Rated Almanac. But we can only ride that horse so
long.
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Technology

Technology today is truly amazing. I could spend this entire
address talking about the Internet, hand-held computers and other
communication devices, and where technology is going. We are
able to optimize class factors using generalized linear modeling
and computer techniques that were impossible ten years ago. We
can now run out multiple reserve projections at the touch of a
button. Who can predict what new technologies will be able to
do ten years from now? What I can predict is that technology
will continue to advance at a head-splitting rate, and actuaries
must be at the forefront of these advances or we face the danger
of irrelevance.

The scientist Louis Pasteur once said, “In the field of ob-
servation, chance favors the prepared mind.” Chance favors the
prepared mind. I think the truth of this pearl of wisdom goes
far beyond the observational sciences. I believe this quotation is
relevant to the actuarial field generally and to our position at this
moment in time, particularly. Far be it from me to suggest that
our exam process might be subject to chance. Some of you might
say that, but I would never say it. However, I think that most of
you would agree with me that chance does favor those whose
mind is well-prepared for the actuarial exams. From my expe-
rience with actuarial work after the exam process, again chance
favors those who prepare well and prepare hard.

Speaking of pearls of wisdom, one of the job requirements for
CAS presidents is that they must read all of the past presidential
addresses going back to Isaac Rubinow. I dutifully read through
them. In fact I read one a day each night, just before bedtime.

Now, how are Pasteur’s words relevant to our actuarial society
at this particular juncture in our history? We have just received a
very important report from a CAS Task Force on Non-Traditional
Areas of Practice. This Task Force report identifies several po-
tential new areas of practice for casualty actuaries and skill sets
needed by future actuaries. The opportunity is there but, only if
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we prepare our actuaries through a determined effort of educa-
tion and research to move into these areas. We must seize the
initiative and begin immediately on both fronts, or the opportu-
nities will surely be lost, perhaps forever.

We must embrace change. As LeRoy Simon said in his ad-
dress to the new members: “Make change a partner, not an en-
emy.” Change is hard. It is much easier to sit back and say we’re
doing okay; why should we change what’s worked well for ca-
sualty actuaries over the years? There are certainly some things
we don’t want to change. We don’t want to lower our standards
for admission to the Society. We don’t want to change our fun-
damental principles, standards of practice, and discipline proce-
dures. However, the changes I’m talking about are in the areas of
education, research, technology, and development of new areas
of practice.

Early in my presidency, I was asked by an actuary, “Why
should I care about growth of the CAS and actuaries generally?
After all, that will just mean more competition for existing jobs
and consulting work.” It seems to me that this is shortsighted.
While growth may bring some increased competition, I think that
growth of the CAS is in all of our interests.

! It gives the profession a louder voice with policy makers and
others.

! It brings in new ideas and approaches.
! It opens up opportunities in nontraditional areas of practice,
because if the supply of actuaries is not growing, employers
will look to others to meet their needs.

! It keeps our organization alive and vital. I say that the day that
we quit growing is the day we begin contracting. The day we
quit expanding our markets is the day our markets and demand
begin to shrink.
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So I propose several CAS initiatives to prepare our minds and
ourselves for the new millennium:

1. A mobilization of our research and education efforts in
the identified priority areas of nontraditional practice as
we did so successfully with our DFA effort a few years
ago. It will require our CAS committees to make some
major changes in our education and research priorities.
It will require a major effort of time, commitment, and
funds for the CAS.

2. A broadening of our educational process to make our
actuaries broader-based business problem solvers. We
should make our education more like an MBA program
with emphasis on team building, negotiation, and com-
munication skills. And we must find a way to shorten
our examination system, particularly in the basic educa-
tion area. We should rely more on universities, without
lowering our standards or giving up examination on key
areas of actuarial practice.

3. A major effort by the CAS, perhaps in combination with
the SOA, to develop additional strategic planning tools
for actuaries that can be applied to the financial services
industry.

If we can do these things, I firmly believe the future will be
bright indeed for casualty actuaries. It will expand our actuar-
ial horizons and allow actuaries to move into roles of strategic
planning and other leadership positions in the insurance and fi-
nancial services businesses, and it will make our profession more
attractive to the best math and business students.

Earlier I poked a little fun at our presidential addresses. But
there are indeed some shrewd insights and words of wisdom in
those prior addresses, and some common themes. Perhaps the
one overriding theme was best expressed by Al Beer. I think
he speaks for all of us when he said that he hopes he made
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a difference. I hope that each of you here today will endeavor
to make a contribution to the CAS and make a difference. The
profession will be better for it, and you will be better for it. For
the many, many of you who are already making a contribution,
I thank you for it.

I previously spoke about the increasing globalization of the
actuarial profession. The CAS now has 112 members outside
the U.S. and Canada. We are committed to playing a more ac-
tive role internationally. The CAS recently appointed a new Vice
President–International, and we are becoming more active and
visible in the IAA, the International Congress of Actuaries, and
meetings of the international presidents of actuarial societies in
English-speaking countries. We were recently asked for assis-
tance by the Actuarial Society of India to help them set up a
general insurance course there. I believe that these and other ac-
tivities are vital to our long-term success. It provides better ser-
vice to our members who are overseas and will lead to expanded
opportunities for our North American members who would like
to work overseas.

Perhaps the most controversial issue I have had to deal with
in my year as President was Mutual Recognition. This was a pro-
posal which arose out of the international presidents’ meetings.
Under the proposal, Fellows of other actuarial societies outside
the U.S. and Canada (such as in Australia and the U.K.) who
had achieved their Fellowship by examination, who established
residency in the U.S. or Canada, and who met certain other re-
quirements would be granted FCAS status. By the same token
CAS Fellows who, for example, went to Australia would be au-
tomatically granted Fellowship in the Institute of Actuaries of
Australia.

During the year, we have had a CAS task force studying this
issue, and I have spoken about it to many of you at CAS Re-
gional Affiliate meetings. Many of you expressed sincere con-
cerns about this proposal. After carefully studying and giving
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full consideration to member concerns, the task force has recom-
mended that automatic Fellowship not be granted due to the high
degree of specialization in the CAS in general insurance com-
pared to the other actuarial societies. A factor in the task force’s
recommendation was that actuaries from other companies can get
practice rights in the U.S. via the American Academy of Actu-
aries. The task force is recommending an increase in our waiver
policy, from the current five exams to seven or eight for Fellows
of the Institute of Actuaries who have achieved their Fellowship
in general insurance under the current syllabus. A similar policy
is likely for the Institute of Actuaries of Australia.

Yesterday the CAS Board agreed with this recommendation,
subject to additional information by the CAS Education Policy
Committee on specific exam waivers.

This has been a difficult issue. With your help, I think we
have reached the right conclusion. More than anything, I think
it demonstrates the sensitivity of the CAS Board and leadership
to membership concerns.

It has been my good fortune to inherit the reins of the CAS
from the capable hands of Mavis Walters. Mavis, I’d like to thank
you for your efforts on behalf of the CAS and say it was and is a
pleasure working with you. I will also be leaving the CAS in the
capable hands of Alice Gannon, and Pat Grannan after Alice. I
would also like to thank the Executive Council of the CAS—Bob
Miccolis, Kevin Thompson, Gary Dean, Dave Chernick, Abbe
Bensimon, and Alice Gannon—who have worked very hard this
last year and often don’t get the recognition they deserve. And
to Howard Bolnick, immediate past president of the SOA, for
his friendship over the last two years. Also, Tim Tinsley. Tim, I
don’t know how I could have done it without you. Thank you,
and I’ll miss working with you. And my wife Judy, who has put
up with the travel and long hours that go with the presidency.
Thanks for your patience and your support. And to the members
of the CAS, thanks for the memories. I’ve gotten to meet many
of you at Regional Affiliate meetings and other meetings of the
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CAS. It’s truly been the highlight of my professional career as
an actuary.

And finally, to my son Todd and the new members of the CAS.
I’d like to close with the inspirational words of Stan Hughey,
CAS President, 1974:

Keep your roots deep in the CAS fundamentals. Soar with the
wings of new developments which provide better solutions.
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SAN FRANCISCO MARRIOTT

SAN FRANCISCO, CALIFORNIA

Sunday, November 14, 1999

The Board of Directors held their regular quarterly meeting
from 9:00 a.m. to 5:00 p.m.

Registration was held from 4:00 p.m. to 6:00 p.m.

From 5:30 p.m. to 6:30 p.m., there was a special presentation to
new Associates and their guests. All 1999 CAS Executive Council
members briefly discussed their roles in the Society with the new
members. In addition, Robert A. Anker, who is a past president of
the CAS, gave a short talk on the American Academy of Actuar-
ies’ (AAA) Casualty Practice Council.

A welcome reception for all members and guests was held from
6:30 p.m. to 7:30 p.m.

Monday, November 15, 1999

Registration continued from 7:00 a.m. to 8:00 a.m.

CAS President Steven G. Lehmann opened the business session
at 8:00 a.m. and introduced members of the Executive Council
and the CAS Board of Directors. Mr. Lehmann also recognized
past presidents of the CAS who were in attendance at the meeting,
including: Robert A. Anker (1996), Irene K. Bass (1993), Albert 
J. Beer (1995), Phillip N. Ben-Zvi (1985), Ronald L. Bornhuetter
(1975), Charles A. Bryan (1990), Michael Fusco (1989), David 
G. Hartman (1987), Charles C. Hewitt Jr. (1972), Carlton W.
Honebein (1983), Allan M. Kaufman (1994), C.K. “Stan” Khury
(1984), W. James MacGinnitie (1979), George D. Morison (1976),
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Kevin M. Ryan (1988), Jerome A. Scheibl (1980), LeRoy J. Si-
mon (1971), Michael L. Toothman (1991), Mavis A. Walters
(1997), and Michael A. Walters (1986).

Mr. Lehmann also recognized special guests in the audience:
Howard J. Bolnick, past president of the Society of Actuaries; 
A. Norman Crowder, president of the Society of Actuaries; Muneo
Kawasaki, representative of the president of the Institute of Actu-
aries of Japan; Lonnie Liu, representative of the chairman of the
Actuarial Institute of the Republic of China; David J. Oakden,
president-elect of the Canadian Institute of Actuaries; and John P.
Ryan, board member of the Institute of Actuaries.

Mr. Lehmann then announced the results of the CAS elections.
The next president will be Alice H. Gannon, and the president-
elect will be Patrick J. Grannan. Members of the CAS Executive
Council for 1999–2000 will be: Curtis Gary Dean, vice presi-
dent–administration; Mary Frances Miller, vice president–admis-
sions; Abbe Sohne Bensimon, vice president–continuing
education; LeRoy A. Boison, vice president–international; David
R. Chernick, vice president–programs and communication; and
Gary R. Josephson, vice president–research and development. The
vice president–international is a new position approved by the
Board of Directors in the fall of 1999. New members of the CAS
Board of Directors are Amy S. Bouska, Stephen P. D’Arcy, Fred-
erick O. Kist, and Susan E. Witcraft.

Abbe S. Bensimon and Kevin B. Thompson announced the new
Associates and Alice H. Gannon announced the new Fellows. The
names of these individuals follow.

NEW FELLOWS

Rimma Abian
Ethan David Allen
Mark B. Anderson
Martin S. Arnold
William P. Ayres
Richard J. Babel
Cynthia A. Bentley

Lisa A. Bjorkman
Suzanne E. Black
Jonathan Everett Blake
Ann M. Bok
Michael D. Brannon
Anthony E. Cappelletti
Martin Carrier

Bethany L. Cass
Jean-François Chalifoux
Bryan C. Christman
Darrel W. Chvoy
Gary T. Ciardiello
Christopher William

Cooney
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Brian K. Cox
Claudia Barry Cunniff
Karen Barrett Daley
Timothy Andrew Davis
Jean A. DeSantis
Kurt S. Dickmann
Christopher S. Downey
Michael Edward Doyle
Peter F. Drogan
Denis Dubois
Mary Ann Duchna-

Savrin
Rachel Dutil
Dawn E. Elzinga
Jean-Pierre Gagnon
Donald M.

Gambardella
Gary J. Ganci
Thomas P. Gibbons
John T. Gleba
Matthew E. Golec
Philippe Gosselin
Jay C. Gotelaere
David Thomas Groff
Scott T. Hallworth
Gregory Hansen
Michael B. Hawley
Jodi J. Healy
Noel M. Hehr
Christopher Ross Heim
David E. Heppen
Ronald J. Herrig
Thomas A. Huberty
Brian L. Ingle
James B. Kahn
Chad C. Karls

Mark J. Kaufman
James M. Kelly
Sarah Krutov
James D. Kunce
Jean-Sebastien Lagarde
Yin Lawn
David Leblanc-Simard
Kevin A. Lee
P. Claude Lefebvre
Siu K. Li
Janet G. Lindstrom
Lee C. Lloyd
William R. Maag
David E. Marra
Michael Boyd Masters
Bonnie C. Maxie
Jeffrey F. McCarty
Douglas W. McKenzie
Allison Michelle

McManus
James R. Merz
Paul W. Mills
Christopher J.

Monsour
David Patrick Moore
François L. Morissette
Matthew C. Mosher
Roosevelt C. Mosley
Donna M. Nadeau
Catherine A. Neufeld
Hiep T. Nguyen
Randall S. Nordquist
Michael A. Nori
James L. Nutting
Christopher Edward

Olson

Denise R. Olson
David Anthony

Ostrowski
Teresa K. Paffenback
Charles Pare
M. Charles Parsons
Luba O. Pesis
Karen L. Queen
Kathleen Mary Quinn
Yves Raymond
Hany Rifai
John W. Rollins
Seth Andrew Ruff
David L. Ruhm
Tracy A. Ryan
Rajesh V.

Sahasrabuddhe
Michael C. Schmitz
Nathan Alexander

Schwartz
Bret Charles Shroyer
Matthew Robert

Sondag
Jay Matthew South
Angela Kaye Sparks
Brian Tohru Suzuki
Adam M. Swartz
Nitin Talwalkar
Dom M. Tobey
Jeffrey S. Trichon
Kai Lee Tse
Leslie Alan Vernon
Kyle Jay Vrieze
Edward H. Wagner
Benjamin A. Walden
Robert J. Wallace
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Michael D. Adams
Genevieve L. Allen
Saeeda Behbahany
Penelope A. Bierbaum
Tony Francis Bloemer
Caleb M. Bonds
Maureen Ann Boyle
Jeremy James Brigham
Kin Lun (Victor) Choi
Alan R. Clark
Brian Roscoe Coleman
Douglas Lawrence Dee
Jonathan Mark

Deutsch
Richard James

Engelhuber
Weishu Fan
Kathleen Marie Farrell
Richard A. Fuller
Rainer Germann

Isabelle Gingras
Peter Scott Gordon
Stephanie Ann Gould
Robert Andrew

Grocock
David Lee Handschke
Karen Lerner Jiron
Robert C. Kane
Linda S. Klenk
Ravi Kumar
Julie-Linda Laforce
John B. Landkamer
Aaron Michael Larson
Shangjing Li
Joshua Nathan Mandell
Kevin Paul

McClanahan
Ian John McCracken
Shawn Allan

McKenzie

Christian Menard
Peter Victor Polanskyj
Josephine Teruel

Richardson
Marn Rivelle
Tina Shaw
Joseph Allen Smalley
Michael William

Starke
David K. Steinhilber
Stephen James Streff
Josephine L. C. Tan
Javanika Patel Weltig
Rosemary Gabriel

Wickham
Apryle Oswald

Williams
Dean Michael Winters
Jeffrey S. Wood

NEW ASSOCIATES

Mr. Lehmann then introduced LeRoy J. Simon, a past president
of the Society, who presented the Address to New Members.

Following the address, David R. Chernick, vice president–pro-
grams and communications, briefly highlighted the meeting’s pro-
grams and thanked the CAS Program Planning Committee. Mr.
Chernick then introduced Gary R. Josephson, chairperson of the
CAS Committee on Review of Papers. Mr. Josephson announced
that the following would be presented: four Proceedings papers,
two discussions of previous Proceedings papers, and one author’s

Patricia Cheryl White
Wendy L. Witmer

Simon Kai-Yip Wong
Vincent F. Yezzi

Sheng H. Yu



MINUTES OF THE 1999 CAS ANNUAL MEETING 823

response to a discussion of his paper. In addition, one paper by Dr.
Klaus D. Schmidt would be published in the 1999 Proceedings but
would not be presented at this meeting. (Note: The paper, “The
1999 Table of Insurance Charges,” by William R. Gillam, was pre-
sented at the 1999 CAS Annual Meeting but is not published in
the 1999 Proceedings.)

Mr. Josephson began the awards program by announcing that
the 1999 Woodward-Fondiller Prize was given to Stephen J.
Mildenhall for his paper, “A Systematic Relationship Between
Minimum Bias Methods and Generalized Linear Models.” Mr.
Josephson then presented the 1999 CAS Dorweiler Prize to Gary
G. Venter for his paper, “Testing the Assumptions of Age-to-Age
Factors.” Mr. Mildenhall’s paper is published in this edition of the
Proceedings. Mr. Venter’s was published in last year’s Proceed-
ings, Volume LXXXV.

Mr. Lehmann presented the 1999 CAS Matthew S. Rodermund
Service Award to John H. Muetterties, who was chosen for his
outstanding contributions to the actuarial profession.

Mr. Lehmann then requested a moment of silence in honor of
those CAS members who passed away since November 1998.
They are: John R. Bevan, Martin Bondy, Robert L. Hurley, Daniel
J. Lyons, and Philipp K. Stern.

In a final item of business, Mr. Lehmann acknowledged a dona-
tion of $15,000 from D.W. Simpson & Company to the CAS Trust
(CAST). The donation was made October 4, 1999.

Mr. Lehmann then concluded the business session of the An-
nual Meeting and introduced the featured speaker, Gloria Borger.
Borger is a political reporter/columnist and contributing editor 
for U.S. News and World Report, and a regular panelist on PBS’
Washington Week in Review.

After a refreshment break, the first General Session was held
from 10:45 a.m. to 12:15 p.m.
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“Past Presidents’ Perspectives: An Actuarial Career”
Moderators: Albert J. Beer

President
Munich–American RiskPartners
Michael Fusco
Senior Executive Vice President
Insurance Services Office, Inc.

Panelists: Irene K. Bass
Consulting Actuary
Bass & Khury
Ronald L. Bornhuetter
Chairman, Retired
NAC Re Corporation
Carlton W. Honebein
Consultant
C. K. “Stan” Khury
Consulting Actuary
Bass & Khury
W. James MacGinnitie
Consultant

Following the general session, CAS President Steven G.
Lehmann gave his Presidential Address at the luncheon. At the
luncheon’s end, Mr. Lehmann officially passed on the CAS presi-
dential gavel to the new CAS president, Alice H. Gannon.

After the luncheon, the afternoon was devoted to presentations
of concurrent sessions, which included presentations of the Pro-
ceedings papers. The panel presentations from 1:30 p.m. to 3:00
p.m. covered the following topics:

1. Weather Hedge Products
Moderator: Kenneth J. Bock

Managing Director
American Re Financial Products
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Panelists: David Molyneux
Assistant Vice President
Zurich Re North America, Inc.
Paul Murray
Director of Marketing and 
Business Development
Castlebridge Partners, LLC

2. Report of the CAS Y2K Work Group
Moderator/ Raja R. Bhagavatula
Panelist: Consulting Actuary

Milliman & Robertson, Inc.
Panelists: Philip D. Miller

Consulting Actuary
Tillinghast-Towers Perrin
Paul G. O’Connell
Principal
PricewaterhouseCoopers LLP

3. The Debate on Competitive Auto Replacement Parts
Moderator: John W. Rollins

Actuary
Florida Farm Bureau Insurance 
Companies

Panelists: Robert J. Hurns
Associate Counsel
National Association of Independent 
Insurers
Pete A. Tagliapietra
Senior Vice President of Strategic 
Planning and Business Development
Mitchell International

4. Securitization: An Update
Moderator: Frederick O. Kist

Senior Vice President & Corporate 
Actuary
CNA Insurance Companies
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Panelists: David A. Lalonde
Vice President–Risk Transfer Services
Applied Insurance Research
Glenn G. Meyers
Assistant Vice President
Insurance Services Office, Inc.
Susan E. Witcraft
Consulting Actuary
Milliman & Robertson, Inc.

5. Commercial Lines Deregulation—Opportunities and Risks
Moderator: William M. Wilt

Vice President/Senior Analyst
Moody’s Investor Service

Panelists: Raul R. Allegue
Second Vice President–Government 
Affairs
Travelers Property and Casualty
Joseph A. DiGiovianni
Senior Vice President–State Affairs
American Insurance Association
Gregory S. Martino
Deputy Insurance Commissioner
Pennsylvania Insurance Department

The following 1999 Proceedings Papers were presented:
1. “The 1999 Table of Insurance Charges”*

Author: William R. Gillam
Quality Casualty Consulting

2. “Downward Bias of Using High-Low Averages for Loss 
Development Factors”

Author: Cheng-Sheng Peter Wu
Deloite & Touche LLP

* This paper is not included in the 1999 edition of the Proceedings.
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After a refreshment break from 3:00 p.m. to 3:30 p.m., presen-
tations of concurrent sessions and Proceedings papers continued.
Certain call papers and concurrent sessions presented earlier were
repeated. Additional concurrent sessions presented from 3:30 p.m.
to 5:00 p.m. were:

1. Task Force on Complex Models
Moderator: Karen F. Terry

Actuary II
State Farm Fire & Casualty Company

Panelists: Paul E. Kinson
Consulting Actuary
Liscord, Ward & Roy, Inc.
Ronald T. Kozlowski
Consulting Actuary
Tillinghast-Towers Perrin

2. Questions and Answers with the CAS Board of Directors
Moderator: Alice H. Gannon

President-Elect
Casualty Actuarial Society

Panelists: Paul Braithwaite
Senior Vice President
Zurich Re
Charles A. Bryan
Senior Vice President-Chief Actuary
Nationwide Insurance Company
Jerome A. Degerness
President
Degerness Consulting Services, Inc.
Richard J. Roth Jr.
Chief Property/Casualty Actuary
California Department of Insurance
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3. Auto-Choice Reform Act
Moderator: Michael J. Miller

Principal and Consulting Actuary
Miller, Herbers, Lehmann & Associates,
Inc.

Panelists: Stephen J. Carroll
Senior Economist
RAND, The Institute for Civil Justice
David F. Snyder
Assistant General Counsel
American Insurance Association
Elizabeth A. Sprinkel
Senior Vice President & Chief Research
Officer
Insurance Research Council

Proceedings papers presented during this time were:
1. Discussion of “Loss Prediction by Generalized Least

Squares”
(by Leigh J. Halliwell, PCAS LXXXIII, 1996, p. 436)
Discussion by: Michael D. Hamer

The Zurich Center
2. Author’s Response to Discussion of “Loss Prediction by

Generalized Least Squares”
(by Leigh J. Halliwell, PCAS LXXXIII, 1996, p. 436)
Author: Leigh J. Halliwell

American Re-Insurance Company

An Officers’ Reception for New Fellows and Accompanying
Persons was held from 5:30 p.m. to 6:30 p.m.

A general reception for all attendees followed from 6:30 p.m.
to 7:30 p.m.
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Tuesday, November 16, 1999

Registration continued from 7:00 a.m. to 8:00 a.m.

The following General Sessions were held from 8:00 a.m. to
9:30 a.m.:

“Reassessing Seismic Hazards”
Moderator: Ronald T. Kozlowski

Consulting Actuary
Tillinghast-Towers Perrin

Panelists: Michael L. Blanpied
Associate Chief Scientist for Scientific
Programs, Earthquake Hazards Team
United States Geological Survey
Seth Stein
Department of Geological Sciences
Northwestern University

“Financial Services Reform”
Moderator: Mavis A. Walters

Executive Vice President
Insurance Services Office, Inc.

Panelists: Martin Carus
State Insurance Officer
American International Group
Robert Dibblee
Senior Vice President, Government 
Relations
National Association of Independent 
Insurers
Woody Girion
Chief of Financial Analysis Division
California Department of Insurance
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Robert W. Stein
Partner
Ernst & Young LLP

Following a break from 9:30 a.m. to 10:00 a.m., certain concur-
rent sessions that had been presented earlier during the meeting
were repeated from 10:00 a.m. to 11:30 a.m. Additional concur-
rent sessions presented were:

1. Privatization of Workers Compensation Funds
Moderator: Michael C. Dubin

Consulting Actuary
Milliman & Robertson, Inc.

Panelists: Spencer M. Gluck
Senior Managing Director
Gerling Global Financial Products
G. Kevin Saba
President
Capstone Technologies

2. Volunteering Within the CAS—Working to Advance the
Profession
Moderator: Roger A. Schultz

Member of the CAS Committee on
Volunteer Resources

Panelists: Nancy A. Braithwaite
Chairperson, Syllabus Committee
Kristine E. Plickys
Member, CAS Examination Committee
Gary E. Shook
President, Casualty Actuaries of the
Mid-Atlantic Region
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The following Proceedings papers were presented:
1. “Modeling Losses With the Mixed Exponential Distribu-

tion”
Author: Clive L. Keatinge

Insurance Servies Office, Inc.
2. Discussion of “Aggregation of Correlated Risk Portfolios:

Models & Algorithms”
(by Shaun S. Wang, PCAS LXXXV, 1998, Book 2, p. 848)
Discussion by: Glenn G. Meyers

Insurance Services Office, Inc.

Various committee meetings were held from 12:00 p.m. to 5:00
p.m. Certain concurrent sessions that had been presented earlier
during the meeting were also repeated from 12:30 p.m. to 2:00
p.m. Additional concurrent sessions presented at this time were:

1. Internet and e-Commerce Exposure
Moderator: Hilary Rowen

Partner
Thelen, Reid & Priest

Panelists: Julie K. Davis
Executive Vice President
Aon Risk Services, Inc.
Kathryn I. Lovaas
Vice President, Technology
St. Paul Companies, Inc.

2. The California Workers Compensation Marketplace
Moderator: David M. Bellusci

Senior Vice President and Chief Actuary
Workers Compensation Insurance Rating
Bureau of California
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Panelists: Robert T. Reville
Economist
RAND, The Institute for Civil Justice
Alex Swedlow
Principal
Applied Outcomes Research

Following the concurrent sessions, a special Actuarial Stan-
dards Board Hearing was held from 2:00 p.m. to 5:30 p.m.

Entertainment and a buffet dinner were held from 7:00 p.m. to
10:00 p.m.

Wednesday, November 17, 1999

Certain concurrent sessions were repeated from 8:00 a.m. to
9:30 a.m. Additional concurrent sessions presented at this time
were:

1. The Deregulation of Pacific Rim Insurance Markets
Moderator: Nancy A. Braithwaite

Assistant Vice President
Insurance Services Office

Panelists: Frank J. Karlinski
Vice President
American International Underwriters
Lee R. Steeneck
Vice President and Actuary
General Reinsurance Corporation

2. Introduction to the CAS Examination Committee
Moderator: Thomas G. Myers

Vice President
Prudential Property & Casualty Insurance

Panelists: J. Thomas Downey
Manager, Admissions
Casualty Actuarial Society
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Larry A. Haefner
Vice President, Strategic Planning
CGU Insurance Companies
Donald D. Palmer
Manager, Actuarial Services
Manitoba Public Insurance Corporation

3. Discounted Cash Flow Models
Moderator: Robert F. Wolf

Consulting Actuary
William M. Mercer, Inc.

Panelists: Russell E. Bingham
Vice President Corporate Research
The Hartford
Philip S. Borba
Economic Consultant
Milliman & Robertson, Inc.
Richard A. Derrig
Senior Vice President
Automobile Insurers Bureau of 
Massachusetts

The following Proceedings paper was presented:
“Residual Market Pricing”

Author: Richard B. Amundson
Minnesota Department of Commerce

After a break from 9:30 a.m. to 10:00 a.m., the final General
Session was held from 10:00 a.m. to 11:30 a.m.

“Technology”
Moderator: Stephen P. Lowe

Chief Actuary
Tillinghast-Towers Perrin
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Panelists: Gayle E. Haskell
Risk Manager, Senior Vice President
Coregis Insurance Group
Jeffrey O’Dell
Executive Director
United Services Automobile Association
Jaimie Pickles
Vice President, Consulting and Actuarial
Services
InsWeb Corporation

Steven G. Lehmann officially adjourned the 1999 CAS Annual
Meeting at 11:45 a.m. after closing remarks and an announcement
of future CAS meetings.

Attendees of the 1999 CAS Annual Meeting

The 1999 CAS Annual Meeting was attended by 484 Fellows,
185 Associates, and 61 Guests. The names of the Fellows and 
Associates in attendance follow:

FELLOWS

Rimma Abian
Barbara J. Addie
Martin Adler
Rhonda K. Aikens
Ethan D. Allen
Timothy Paul Aman
Richard B. Amundson
Dean R. Anderson
Mark B. Anderson
Scott C. Anderson
Charles M. Angell
Robert A. Anker
Steven D. Armstrong
Martin S. Arnold

Nolan E. Asch
Richard V. Atkinson
Roger A. Atkinson
William M. Atkinson
Karen F. Ayres
William P. Ayres
Richard J. Babel
Anthony J. Balchunas
D. Lee Barclay
W. Brian Barnes
Irene K. Bass
Todd R. Bault
Philip A. Baum
Andrea C. Bautista

Linda L. Bell
Gary F. Bellinghausen
David M. Bellusci
Phillip N. Ben-Zvi
Abbe Sohne Bensimon
Cynthia A. Bentley
Regina M. Berens
Steven L. Berman
Lisa M. Besman
Neil A. Bethel
Raja R. Bhagavatula
David R. Bickerstaff
Lisa A. Bjorkman
Suzanne E. Black



MINUTES OF THE 1999 CAS ANNUAL MEETING 835

Jonathan Everett Blake
Cara M. Blank
Barry E. Blodgett
LeRoy A. Boison
Ann M. Bok
Ronald L. Bornhuetter
Charles H. Boucek
Pierre Bourassa
Amy S. Bouska
Roger W. Bovard
Christopher K.

Bozman
Nancy A. Braithwaite
Paul Braithwaite
Michael D. Brannon
Malcolm E. Brathwaite
Margaret A.

Brinkmann
J. Eric Brosius
Lisa J. Brubaker
Kirsten R. Brumley
Ron Brusky
Charles A. Bryan
Christopher J.

Burkhalter
Jeanne H. Camp
Anthony E. Cappelletti
Kenneth E. Carlton
Martin Carrier
Bethany L. Cass
Jean-François

Chalifoux
David R. Chernick
Kasing Leonard Chung
Darrel W. Chvoy

Gary T. Ciardiello
Mark M. Cis
Jo Ellen Cockley
Howard L. Cohen
Jeffrey R. Cole
Robert F. Conger
Eugene C. Connell
Christopher William

Cooney
Brian C. Cornelison
Francis X. Corr
Gregory L. Cote
Michael D. Covney
Brian K. Cox
Kathleen F. Curran
Ross A. Currie
Daniel J. Czabaj
Ronald A. Dahlquist
Kenneth S. Dailey
Charles Anthony Dal

Corobbo
Karen Barrett Daley
Guy Rollin Danielson
Robert N. Darby
Jeffrey W. Davis
Timothy Andrew Davis
Michael L. DeMattei
Jean A. DeSantis
Curtis Gary Dean
Jerome A. Degerness
Marie-Julie Demers
Kurt S. Dickmann
Behram M. Dinshaw
Scott H. Dodge
John P. Donaldson

Christopher S. Downey
Michael Edward Doyle
Peter F. Drogan
Michael C. Dubin
Denis Dubois
Diane Symnoski Duda
Janet E. Duncan
Rachel Dutil
Tammy L. Dye
Richard D. Easton
Bob D. Effinger
Gary J. Egnasko
Valere M. Egnasko
Donald J. Eldridge
John W. Ellingrod
Paula L. Elliott
Dawn E. Elzinga
Charles C. Emma
Martin A. Epstein
Paul E. Ericksen
Dianne L. Estrada
Glenn A. Evans
Doreen S. Faga
Richard J. Fallquist
Randall A. Farwell
Dennis D. Fasking
Richard I. Fein
Russell S. Fisher
William G. Fitzpatrick
James E. Fletcher
Daniel J. Flick
John R. Forney
Russell Frank
Jacqueline Frank

Friedland
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Michael Fusco
Jean-Pierre Gagnon
Luc Gagnon
John E. Gaines
Cecily A. Gallagher
Donald M.

Gambardella
Gary J. Ganci
Alice H. Gannon
Steven A. Gapp
Robert W. Gardner
Roberta J. Garland
Kathy H. Garrigan
James J. Gebhard
Richard J. Gergasko
Margaret Wendy

Germani
Thomas P. Gibbons
John F. Gibson
Richard N. Gibson
Bruce R. Gifford
Judy A. Gillam
William R. Gillam
Michael Ambrose

Ginnelly
Nicholas P. Giuntini
Olivia Wacker Giuntini
John T. Gleba
Spencer M. Gluck
Steven F. Goldberg
Philippe Gosselin
Jay C. Gotelaere
Patrick J. Grannan
Gary Grant
Anne G. Greenwalt
Daniel Cyrus Greer

Daniel E. Greer
Cynthia M. Grim
Charles Gruber
Denis G. Guenthner
Larry A. Haefner
David N. Hafling
Kyleen Knilans Hale
Allen A. Hall
Leigh Joseph Halliwell
Scott T. Hallworth
George M. Hansen
Gregory Hansen
Robert L.

Harnatkiewicz
Steven Thomas Harr
David C. Harrison
David G. Hartman
Gayle E. Haskell
Marcia C. Hayden
David H. Hays
Jodi J. Healy
Noel M. Hehr
Christopher Ross Heim
Suzanne E. Henderson
David E. Heppen
Kirsten Costello

Hernan
Ronald J. Herrig
Richard J. Hertling
Charles C. Hewitt
Kathleen A. Hinds
Alan M. Hines
Robert J. Hopper
Ruth A. Howald
George A. Hroziencik
Thomas A. Huberty

David Dennis Hudson
Jeffrey R. Hughes
Stephen Jameson
Christian Jobidon
Eric J. Johnson
Jennifer Polson

Johnson
Kurt J. Johnson
Larry D. Johnson
Marvin A. Johnson
Jeffrey R. Jordan
Gary R. Josephson
John J. Joyce
Jeremy M. Jump
James B. Kahn
Frank J. Karlinski
Chad C. Karls
Allan M. Kaufman
Mark J. Kaufman
Clive L. Keatinge
Glenn H. Keatts
James M. Kelly
Rebecca Anne

Kennedy
Allan A. Kerin
C.K. “Stan” Khury
Ann L. Kiefer
Gerald S. Kirschner
Frederick O. Kist
Warren A. Klawitter
Michael F. Klein
Joel M. Kleinman
Craig W. Kliethermes
Leon W. Koch
Timothy F. Koester
John J. Kollar
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Ronald T. Kozlowski
Israel Krakowski
Gustave A. Krause
Rodney E. Kreps
Jane Jasper Krumrie
Sarah Krutov
Jeffrey L. Kucera
James D. Kunce
Jason Anthony

Kundrot
Howard A. Kunst
Edward M. Kuss
Salvatore T. LaDuca
David A. Lalonde
Timothy J. Landick
Dennis L. Lange
Matthew G. Lange
James W. Larkin
Yin Lawn
David Leblanc-Simard
Kevin A. Lee
Thomas C. Lee
Marc-Andre Lefebvre
P. Claude Lefebvre
Merlin R. Lehman
Steven G. Lehmann
Elizabeth Ann

Lemaster
Winsome Leong
Andre L’Esperance
Joseph W. Levin
Jennifer McCullough

Levine
Siu K. Li
Peter M. Licht
Orin M. Linden

Janet G. Lindstrom
Barry Lipton
Richard Borge Lord
Stephen P. Lowe
William R. Maag
W. James MacGinnitie
Christopher P. Maher
Lawrence F. Marcus
Blaine C. Marles
Leslie R. Marlo
David E. Marra
Michael Boyd Masters
Bonnie C. Maxie
Kevin C. McAllister
Jeffrey F. McCarty
James B. McCreesh
Douglas W. McKenzie
David W. McLaughry
Allison Michelle

McManus
Dennis C. Mealy
William T. Mech
Brian James Melas
Stephen V. Merkey
James R. Merz
Glenn G. Meyers
Robert S. Miccolis
David L. Miller
Mary Frances Miller
Michael J. Miller
Philip D. Miller
Ronald R. Miller
William J. Miller
Paul W. Mills
Neil B. Miner
Camille Diane Minogue

John H. Mize
Frederic James Mohl
David Molyneux
Richard B. Moncher
Christopher J.

Monsour
Andrew Wakefield

Moody
Rebecca A. Moody
Brian C. Moore
Bruce D. Moore
David Patrick Moore
George D. Morison
François L. Morissette
Robert Joseph Moser
Matthew C. Mosher
Roosevelt C. Mosley
John H. Muetterties
Todd B. Munson
Daniel M. Murphy
Giovanni A.

Muzzarelli
Nancy R. Myers
Thomas G. Myers
Donna M. Nadeau
Vinay Nadkarni
Allan R. Neis
Hiep T. Nguyen
Mindy Y. Nguyen
Gary V. Nickerson
William A. Niemczyk
Ray E. Niswander
Randall S. Nordquist
Michael A. Nori
James L. Nutting
Paul G. O’Connell
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David J. Oakden
Christopher Edward

Olson
Denise R. Olson
William L. Oostendorp
David Anthony

Ostrowski
Teresa K. Paffenback
Donald D. Palmer
Charles Pare
Curtis M. Parker
M. Charles Parsons
Kathleen M. Pechan
Wende A. Pemrick
Melanie T. Pennington
Luba O. Pesis
Charles I. Petit
Mark W. Phillips
Daniel C. Pickens
Kristine E. Plickys
Brian D. Poole
Dale S. Porfilio
Stuart Powers
Joseph J. Pratt
Ronald D. Pridgeon
Mark Priven
Arlie J. Proctor
Mark R. Proska
Karen L. Queen
Mark S. Quigley
Kathleen Mary Quinn
Richard A. Quintano
Jeffrey C. Raguse
Kara Lee Raiguel
Donald K. Rainey
Scott E. Reddig

Daniel A. Reppert
Hany Rifai
Tracey S. Ritter
Dennis L. Rivenburgh
Douglas S. Rivenburgh
Sharon K. Robinson
John W. Rollins
Deborah M. Rosenberg
Kevin D. Rosenstein
Gail M. Ross
Richard J. Roth
Jean-Denis Roy
Seth Andrew Ruff
Jason L. Russ
James V. Russell
Kevin M. Ryan
Tracy A. Ryan
Rajesh V.

Sahasrabuddhe
Manalur S. Sandilya
Donald D. Sandman
Jerome A. Scheibl
Timothy L. Schilling
Michael C. Schmitz
Roger A. Schultz
Mark E. Schultze
Nathan Alexander

Schwartz
Susanne Sclafane
Jeffery J. Scott
Kim A. Scott
Mark R. Shapland
Michelle G. Sheng
Margaret Tiller

Sherwood
Jeffrey Parviz Shirazi

Gary E. Shook
Edward C. Shoop
LeRoy J. Simon
David Skurnick
Lee M. Smith
M. Kate Smith
Richard A. Smith
Linda D. Snook
Matthew Robert

Sondag
Jay Matthew South
Angela Kaye Sparks
Daniel L. Splitt
Barbara A. Stahley
Thomas N. Stanford
Lee R. Steeneck
John A. Stenmark
Michael J. Steward
Richard A. Stock
Brian Tohru Suzuki
Christian Svendsgaard
Scott J. Swanay
Adam M. Swartz
Andrea M. Sweeny
Susan T. Szkoda
Nitin Talwalkar
Catherine Harwood

Taylor
Karen F. Terry
Patricia A. Teufel
Kevin B. Thompson
Barbara H. Thurston
Dom M. Tobey
Darlene P. Tom
Michael L. Toothman
Cynthia Traczyk
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Anthony L. Alfieri
Genevieve L. Allen
Nancy S. Allen
Robert C. Anderson
James A. Andler
Anju Arora
Robert D. Bachler
Paul C. Barone
Andrew S. Becker
Saeeda Behbahany
Eric D. Besman
Penelope A. Bierbaum
Tony Francis Bloemer
Thomas S. Boardman
Caleb M. Bonds
John T. Bonsignore
Lesley R. Bosniack

Maureen Ann Boyle
Richard Albert

Brassington
Jeremy James Brigham
Hayden Heschel

Burrus
Michelle L. Busch
Stephanie T. Carlson
Kin Lun (Victor) Choi
Wei Chuang
Michelle Codere
Brian Roscoe Coleman
Thomas V. Daley
Douglas Lawrence Dee
William Der
Sean R. Devlin
David K. Dineen

Gordon F. Diss
Sharon C. Dubin
François Richard

Dumontet
James Robert Elicker
Richard James

Engelhuber
Gregory James Engl
Brian A. Evans
Joseph G. Evleth
Charles V. Faerber
Weishu Fan
Kathleen Marie Farrell
William P. Fisanick
Chauncey E.

Fleetwood
David Michael Flitman

ASSOCIATES

Jeffrey S. Trichon
Everett J. Truttmann
Kai Lee Tse
Theresa Ann

Turnacioglu
Jean Vaillancourt
Peter S. Valentine
John V. Van de Water
Richard L. Vaughan
Gary G. Venter
Leslie Alan Vernon
Kyle Jay Vrieze
Edward (Ted) H.

Wagner
Robert H. Wainscott

Benjamin A. Walden
Glenn M. Walker
Robert J. Wallace
Lisa Marie Walsh
Mavis A. Walters
Michael A. Walters
Jeffrey D. White
Jonathan White
Patricia Cheryl White
Gnana K. Wignarajah
William Robert

Wilkins
William M. Wilt
John J. Winkleman
Martha A. Winslow

Michael L. Wiseman
Susan E. Witcraft
David A. Withers
Wendy L. Witmer
Richard G. Woll
Simon Kai-Yip Wong
Patrick B. Woods
Walter C. Wright
Cheng-Sheng P. Wu
Vincent F. Yezzi
Jeffery Michael Zacek
Alexander Guangjian

Zhu
John D. Zicarelli
Ralph T. Zimmer
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Charles D. Foley
Kai Y. Fung
Charles E. Gegax
Isabelle Gingras
Theresa Giunta
Todd Bennett

Glassman
Terry L. Goldberg
Peter Scott Gordon
Stephanie Ann Gould
Robert Andrew

Grocock
Christopher Gerald

Gross
Nasser Hadidi
Rebecca N. Hai
David Lee Handschke
Adam D. Hartman
Gary M. Harvey
Philip E. Heckman
Kevin B. Held
Joseph A. Herbers
Thomas Edward Hinds
David D. Hu
Jane W. Hughes
Jeffrey R. Ill
Philip M. Imm
Susan Elizabeth Innes
David H. Isaac
Jean-Claude Joseph

Jacob
Karen Lerner Jiron
William Rosco Jones
James W. Jonske
Edwin G. Jordan
Robert C. Kane

Pamela A. Kaplan
David L. Kaufman
Scott A. Kelly
Paul E. Kinson
Linda S. Klenk
Brandelyn C. Klenner
Elina L. Koganski
Andrew M. Koren
Karen Lee Krainz
Richard Scott Krivo
Frank O. Kwon
Robin M. LaPrete
David W. Lacefield
Julie-Linda Laforce
Elaine Lajeunesse
Aaron Michael Larson
Dennis H. Lawton
Bradley R. LeBlond
Stephen E. Lehecka
Todd William

Lehmann
Glen Alan Leibowitz
Brendan Michael

Leonard
Giuseppe F. Lepera
Shangjing Li
Sharon Xiaoyin Li
James P. Lynch
Joshua Nathan Mandell
Gabriel O. Maravankin
Jason N. Masch
Emma Macasieb

McCaffrey
Patrice McCaulley
Kevin Paul

McClanahan

Ian John McCracken
Jennifer Ann McCurry
Heather L. McIntosh
Shawn Allan

McKenzie
Christian Menard
Richard Ernest Meuret
Karen M. Moritz
John V. Mulhall
Mark Naigles
Henry E. Newman
Lynn Nielsen
Christopher Maurice

Norman
Corine Nutting
Mihaela Luminita S.

O’Leary
Steven Brian Oakley
Dale F. Ogden
Christy Beth Olson
Rebecca Ruth Orsi
Kerry S. Patsalides
Claude Penland
Amy Ann Pitruzzello
Glen-Roberts

Pitruzzello
Peter Victor Polanskyj
Anthony E. Ptasznik
Richard B. Puchalski
Eric K. Rabenold
William Dwayne

Rader
Brenda L. Reddick
John Dale Reynolds
Delia E. Roberts
Kim R. Rosen
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Richard A.
Rosengarten

Brian P. Rucci
George A. Rudduck
John P. Ryan
Michael Sansevero
James C. Santo
Gary Frederick Scherer
Michael L. Scruggs
Tina Shaw
Charles Leo Sizer
Donald P. Skrodenis
David C. Snow
Calvin C. Spence
Benoit St-Aubin
Michael William Starke

Scott T. Stelljes
Carol A. Stevenson
Stephen J. Streff
Chester J. Szczepanski
Josephine L.C. Tan
Richard Glenn Taylor
Laura Little Thorne
Laura M. Turner
Frederick A. Urschel
Scott D. Vandermyde
Claude A. Wagner
Lawrence M. Walder
Gregory S. Wanner
Linda F. Ward
Denise R. Webb
Javanika Patel Weltig

Mark Steven Wenger
David L. Whitley
Rosemary Gabriel

Wickham
Apryle Oswald

Williams
Jennifer N. Williams
Jerelyn S. Williams
Kendall P. Williams
Robin Davis Williams
Oliver T. Wilson
Dean M. Winters
Brandon L. Wolf
Robert F. Wolf
Jeffrey S. Wood



REPORT OF THE VICE PRESIDENT–ADMINISTRATION

This report provides a summary of CAS activities since the
1998 CAS Annual Meeting. I will first comment on these ac-
tivities as they relate to the following purposes of the Casualty
Actuarial Society as stated in our Constitution:

1. Advance the body of knowledge of actuarial science applied
to property, casualty, and similar risk exposures;

2. Establish and maintain standards of qualifications for mem-
bership;

3. Promote and maintain high standards of conduct and compe-
tence for the members; and

4. Increase the awareness of actuarial science.

I will then provide a summary of other activities that may not
relate to a specific purpose, but yet are critical to the ongoing
vitality of the CAS. Finally, I will summarize the current status
of our finances and key membership statistics.

The CAS call paper programs and the publication of the Pro-
ceedings and the Forum contribute to the attainment of the first
purpose. In addition to the Proceedings, three volumes of the
Forum and the Spring Meeting discussion paper program were
published and distributed to members in 1999.

The 1998 Proceedings was published in two books for the first
time with a total of 1138 pages, the greatest number of pages yet
for any Proceedings. Included in this volume were sixteen papers
and five discussions.

The spring 1999 edition of the Forum included six reinsurance
call papers plus four additional papers.

The summer 1999 edition of the Forum included eight dy-
namic financial analysis discussion papers as well as an addi-
tional paper.

842
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The fall 1999 edition of the Forum included thirteen reserving
call papers plus two additional papers.

A volume titled Securitization of Risk included nine papers
from the Spring Meeting discussion paper program.

Note that two of the above volumes focussed on topics that
are relatively new to the insurance industry: dynamic financial
analysis and risk securitization. The CAS has taken a proactive
role in stimulating research and educating its members in devel-
oping areas.

In regards to the second purpose, the new syllabus for the
revised CAS examination process was released. There will con-
tinue to be seven exams required for Associateship, but Fellow-
ship will require nine exams rather than the current ten. The first
four exams will be jointly administered with the Society of Ac-
tuaries (SOA). The new structure will be effective in the year
2000.

A new class of CAS membership was created in 1998: Affil-
iate. Affiliate members can participate as active CAS members
without becoming Associates or Fellows, but they will not have
voting rights nor be able to use the designations ACAS or FCAS.
In 1999, nine Affiliate members were admitted.

CAS membership continues to grow with 217 new Associates
and 137 new Fellows in the last year. The total membership now
stands at 3,283. A total of 6,511 candidates registered for 1999
CAS exams.

The CAS Task Force on Mutual Recognition examined
whether the CAS should enter into bilateral agreements with
other actuarial organizations to grant reciprocal Fellowship sta-
tus. The task force’s report pointed out that the American
Academy of Actuaries has a process to allow qualified actu-
aries to practice in the U.S., that the CAS now offers Affiliate
membership, and that some CAS examination waivers are avail-
able to actuaries of other exam-giving organizations. The Board
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resolved not to enter into agreements granting reciprocal Fellow-
ship status.

The third purpose is partially achieved through a quality pro-
gram of continuing education. The CAS provides these oppor-
tunities through the publication of actuarial materials and the
sponsorship of meetings and seminars. This year’s sessions in-
cluded:

Meetings:
Location Registrants

Spring Orlando, FL 787
Annual San Francisco, CA 727

Seminars:

Topic Location Month Registrants
Ratemaking Nashville March 508
Financial Risk Management Denver April 157
Reinsurance Baltimore June 244
Dynamic Financial Analysis Chicago July 209
Casualty Loss Reserves Scottsdale September 524
CIA/CAS Appointed Actuary Montréal September 300
Health and Managed Care Hilton Head October 82
Course on Professionalism Six locations 217

Limited Attendance Seminars:

Topic Location Month Registrants
Advanced Dynamic Financial
Analysis

Boston, MA July 41

Dynamic Financial Analysis (2) New York, NY; May; October 32, 35
San Francisco, CA

Managing Asset and Investment
Risk

Chicago, IL April 21

Principles of Finance Boston, MA June 23
Practical Applications of Loss Washington DC; January; July 40, 27
Distributions (2) Los Angeles, CA
Reinsurance New York, NY August 63

A new CAS Regional Affiliate, Casualty Actuaries of the
Desert States, was recognized. The CAS Regional Affiliates pro-
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vide valuable opportunities for members to participate in educa-
tional forums at less expense and travel than national meetings
and seminars.

The CAS publication Foundations of Casualty Actuarial Sci-
ence is being updated. Authors submitted their first drafts for
revised chapters, which are being reviewed by the Textbook
Rewriting Committee.

To increase the awareness of actuarial science, the fourth pur-
pose, the CAS, jointly with the SOA, sponsors Actuarial Career
Information Fairs and other activities. In order to attract more
minority students to actuarial science, the Joint CAS/SOA Com-
mittee on Minority Recruiting awarded 35 $1,000 scholarships
to minority students.

The CAS Web Site, now in its fourth year of existence, sup-
ports all four purposes. Following are some highlights from the
past year:

1. The home page was redesigned. It loads more quickly, in-
cludes more menu items and is scroll free.

2. The Web site search engine was upgraded.

3. Thirty past volumes of the Proceedings now can be down-
loaded from the site.

4. Members are now able to respond to the Participation Sur-
vey, Research Survey, and Survey on Nontraditional Practice
Areas online.

5. A new section for academics was created.

6. A total of 151 job openings were posted for a fee over the
last year in our advertising section, helping to defray the cost
of maintaining the Web site.

Also, electronic distribution via e-mail of CAS announcements
was initiated in 1999 with 70% of the members participating.
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Constitution changes pertaining to the officers of the Society
and the composition and duties of the Executive Council were
approved by the Fellows on July 31, 1999. Subsequently, the
Board of Directors approved the addition of a sixth vice president
and elected LeRoy A. Boison to serve in the new position of Vice
President–International. The Executive Council then approved
three new committees under the Vice President–International:
International Oversight, IAA Liaison, and International Issues.
These structural changes recognize the need for additional CAS
efforts in international activities.

The Research Policy and Management Committee reviewed
and evaluated the CAS’s research process and its effectiveness.
Their Review of CAS Research report was presented to the Board
in September. This report concluded that the CAS currently has a
significant amount of casualty actuarial research. The challenge
is to find ways to make that research more accessible to the mem-
bers and to expand the research efforts beyond those conducted
on a voluntary basis. The report included the results of a 1999
membership survey on CAS research, and made recommenda-
tions to increase the value of research to practicing actuaries.
These recommendations will be incorporated into the 1999–2000
goals of the Vice President–Research and Development.

The report on the results of the 1998 CASMembership Survey
(conducted every five years) also was presented to the Board in
September. A copy of the report was posted on the CAS Web
Site. The Executive Council will use the feedback in planning
goals for 1999–2000 and after.

The Task Force on Nontraditional Practice Areas presented
its report to the Board in November. The task force made rec-
ommendations on how the CAS can better serve its members
practicing in nontraditional areas, and provide additional oppor-
tunities for members interested in working in these areas. Non-
traditional areas identified as priorities were asset/liability man-
agement and investment policy, valuation of property/casualty
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insurance companies, enterprise risk management, and securiti-
zation/risk financing. It was also recommended that instruction
on general business skills be included in the CAS continuing
education program. The Board approved recommendations for
new CAS initiatives in research and education in nontraditional
areas.

The CEO Advisory Task Force also reported its findings to
the Board in November. Fourteen property and casualty insur-
ance industry leaders were interviewed to determine how well
actuaries are meeting the needs of their organizations. The lead-
ers discussed the skills and talents needed to meet current and
future business challenges. The Long Range Planning Commit-
tee is reviewing the report and will recommend actions to the
Board.

Joint activities with the SOA continue. The CAS is participat-
ing on the Joint CAS/CIA/SOA Task Force on Academic Ties,
and their report will be distributed to the membership for re-
view and comment. A joint CAS/SOA Board meeting was held
on September 16, 1999 for getting to know each other, sharing
ideas and discussing topics of common interest.

New members elected to the Board of Directors for next
year include Amy S. Bouska, Stephen P. D’Arcy, Frederick O.
Kist, and Susan E. Witcraft. The membership elected Patrick J.
Grannan to the position of President–Elect, while Alice H. Gan-
non will assume the presidency.

The Executive Council, with primary responsibility for day-
to-day operations, met either by teleconference or in person at
least once a month during the year. The Board of Directors
elected the following Vice Presidents for the coming year:

Vice President–Administration, Curtis Gary Dean

Vice President–Admissions, Mary Frances Miller

Vice President–Continuing Education, Abbe S. Bensimon
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Vice President–International, LeRoy A. Boison

Vice President–Programs and Communications, David R.
Chernick

Vice President–Research and Development, Gary R. Joseph-
son

The CPA firm of Langan Associates was engaged to exam-
ine the CAS books for fiscal year 1999 and its findings will be
reported by the Audit Committee to the Board of Directors in
February 2000. The fiscal year ended with unaudited net income
from operations of $338,255 compared to a budgeted loss of
$7,035. This higher than expected net income was primarily the
result of exam income from higher than expected exam enroll-
ments in anticipation of the syllabus changes taking effect in the
year 2000.

Members’ equity now stands at $3,074,859. This represents
an increase in equity of $161,898 over the amount reported last
year. With rising interest rates in 1999, there was an unrealized
loss of $157,000 to adjust the CAS’s marketable fixed income
investments to market value, which dampened the increase in
members’ equity.

For 1999–2000, the Board of Directors has approved a budget
of approximately $4.3 million, an increase of $400,000 over the
prior fiscal year. Members’ dues for next year will be $290,
an increase of $10, while fees for the Subscriber Program will
increase by $10 to $360. A $20 discount is available to members
and subscribers who elect to receive the Forums and Discussion
Paper Program in electronic format from the Web site.

Respectfully submitted,
Curtis Gary Dean
Vice President–Administration



FINANCIAL REPORT
FISCAL YEAR ENDED 9/30/99

OPERATING RESULTS BY FUNCTION
FUNCTION  INCOME EXPENSE  DIFFERENCE
Membership Services  $01,148,017 $01,349,928 (a) $0.(201,911)
Seminars  1,029,307  897,107 132,200
Meetings  581,529  543,300  38,229
Exams  2,615,075 (b) 2,433,229 (b) 181,846
Publications 42,762  25,844 16,918
TOTAL $ 5,416,689  $ 5,249,408  $00,167,282 (c)
NOTES: (a) Includes loss of $170,973 to adjust marketable securities to market value (SFAS 124).

(b) Includes $1,475,850 of Volunteer Services for income and expense (SFAS 116).

BALANCE SHEET
ASSETS  9/30/98  9/30/99  DIFFERENCE
Checking Accounts $00149,088 $00,134,490 $00(14,598)
T-Bills/Notes  3,436,980 3,537,154  100,174
Accrued Interest  49,902 51,708  1,806
Prepaid Expenses  74,072 72,451  (1,621)
Prepaid Insurance  11,184 16,871  5,687
Accounts Receivable  39,461 11,255  (28,206)
Textbook Inventory  12,247 8,174  (4,073)
Computers, Furniture  313,752 386,873  73,121
Less: Accumulated Depreciation  (254,800)  (256,384)  (1,584)
TOTAL ASSETS $ 3,831,886 $ 3,962,594  $000130,709

LIABILITIES  9/30/98  9/30/99 DIFFERENCE
Exam Fees Deferred  $00,388,425 $00,500,444  $00 112,019
Annual Meeting Fees Deferred  42,246 29,355 (12,891)
Seminar Fees Deferred  61,440 27,441 (33,999)
Accounts Payable and Accrued Expenses  372,716 263,779 (108,937)
Deferred Rent 15,384 9,018  (6,366)
Unredeemed Vouchers 0 19,800  19,800
Accrued Pension  38,714 37,896  (818)
TOTAL LIABILITIES $00,918,925  $00, 887,735  $00 (31,190)

MEMBERS' EQUITY
Unrestricted  9/30/98  9/30/99  DIFFERENCE
CAS Surplus  $02,560,111 $ 2,727,393  $00 167,282
Michelbacher Fund  102,249 105,861  3,612
Dorweiler Fund  2,771 1,911  (860)
CAS Trust  19,765 36,616  16,851
Research Fund  166,207 133,207 (33,000)
ASTIN Fund  43,353 52,046  8,693

Subtotal Unrestricted $02,894,456 $ 3,057,034  $00 162,578

Temporarily Restricted
Scholarship Fund  $00,006,895 $00,006,738  $00,00(157)
Rodermund Fund  11,611 11,087  (524)

Subtotal Restricted 18,506 17,825 (681)
TOTAL EQUITY $ 2,912,962 $ 3,074,859  $00,161,898

C. Gary Dean, Vice President–Administration
This is to certify that the assets and accounts shown in the above
financial statement have been audited and found to be correct.

CAS Audit Committee: Paul Braithwaite, Chairperson;
Charles A. Bryan, Anthony J. Grippa, and Richard W. Lo
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1999 EXAMINATIONS—SUCCESSFUL CANDIDATES

Examinations for Parts 3B, 4A, 4B, 5A, 5B, 6, 8-United States,
8-Canada, and 10 of the Casualty Actuarial Society were held on
May 3, 4, 5, 6, and 7, 1999. Examinations for Parts 3B, 4A, 4B,
5A, 5B, 7-United States, 7-Canada, and 9 of the Casualty Actuar-
ial Society were held on November 1, 2, 3, and 4, 1999.

Examinations for Parts 1, 2, 3A, and 3C (SOA courses 100,
110, 120, and 135, respectively) are jointly sponsored by the Ca-
sualty Actuarial Society and the Society of Actuaries. Parts 1 and
2 were given in February, May, and November 1999, and Parts 3A
and 3C were given in May and November of 1999. Candidates
who were successful on these examinations were listed in joint re-
leases of the two Societies.

The Casualty Actuarial Society and the Society of Actuaries
jointly awarded prizes to the undergraduates ranking the highest
on the Part 1 CAS Examination.

For the February 1999 Part 1 CAS Examination, the $200 first
prize winner was Jin Li, Wesleyan University. The $100 second
prize winners were Karyn Beth Baker, Indiana University; Kevin
Neal Bills, Texas A&M; Choongtze Chua, University of Pennsyl-
vania; and Genevieve Couture, University of Laval.

For the Spring 1999 Part 1 CAS Examination, the $200 first
prize winner was Eugene Chislenko, Stuyvesant High School. The
$100 second prize winners were Tianyang Wang, Nankai Univer-
sity; Qiyu Luo, Peking University; Wei Dong Wang, Peking Uni-
versity; Jianhua Gan, University of Science and Technology of
China; and Yasong Yang, Fudan University.

For the Fall 1999 Part 1 CAS Examination, the $200 first prize
winners were Zheng Wang, Peking University; and Dan Yue, Ren-
min University. The $100 second prize winners were Hui Zeng,
Peking University; Meng Du, University of Science and Technol-
ogy of China; and Jiayu Mei, Renmin University.

850
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The following candidates were admitted as Fellows and Associ-
ates at the 1999 CAS Spring Meeting in May. By passing Fall
1998 CAS examinations, these candidates successfully fulfilled
the Society requirements for Fellowship or Associateship designa-
tions.

NEW FELLOWS

Mustafa Bin Ahmad
Betsy A. Branagan
Elliot Ross Burn
Brian Harris

Deephouse
Alana C. Farrell

Bruce Daniel Fell
Claudine Helene

Kazanecki
Deborah M. King
Eleni Kourou
Dawn M. Lawson

Richard Borge Lord
Michael Shane
Christopher C.

Swetonic

NEW ASSOCIATES

Jason R. Abrams
Michael Bryan Adams
Anthony L. Alfieri
Silvia J. Alvarez
Gwendolyn Anderson
Paul D. Anderson
Amy Petea Angell
Anju Arora
Nathalie J. Auger
Amy Lynn Baranek
Patrick Beaudoin
David James Belany
Kristen Maria Bessette
John T. Binder
Mario Binetti
Christopher David

Bohn
Mark E. Bohrer
David R. Border
Thomas S. Botsko

Stephane Brisson
Karen Ann Brostrom
Conni Jean Brown
Paul Edward Budde
Julie Burdick
Derek D. Burkhalter
Anthony Robert

Bustillo
Allison F. Carp
Daniel George

Charbonneau
Nathalie Charbonneau
Todd Douglas Cheema
Yvonne W. Y. Cheng
Julia Feng-Ming Chu
Jeffrey Alan Clements
Jeffrey J. Clinch
Eric John Clymer
Carolyn J. Coe
Steven A. Cohen

Larry Kevin Conlee
Peter J. Cooper
Sean Oswald C.

Cooper
Sharon R. Corrigan
David Ernest Corsi
Jose R. Couret
John Edward Daniel
Mujtaba H. Datoo
Catherine L. DePolo
Jean A. DeSantis
Timothy Michael

DiLellio
Sophie Duval
James Robert Elicker
Gregory James Engl
Brian Michael

Fernandes
Kenneth D. Fikes
Janine Anne Finan
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Sean Paul Forbes
Ronnie Samuel Fowler
Mark R. Frank
Serge Gagné
James M. Gallagher
Anne M. Garside
Justin Gordon Gensler
Emily C. Gilde
Theresa Giunta
Todd Bennett

Glassman
Paul E. Green Jr.
Joseph Paul

Greenwood
Michael S. Harrington
Bryan Hartigan
Jeffery Tim Hay
Qing He
Amy Louise Hicks
Jay T. Hieb
Glenn R. Hiltpold
Glenn Steven Hochler
Brook A. Hoffman
Todd Harrison Hoivik
Terrie Lynn Howard
Paul Jerome Johnson
Bryon Robert Jones
Burt D. Jones
Derek A. Jones
Ung Min Kim
Thomas F. Krause
Isabelle La Palme
Travis J. Lappe
Borwen Lee
Christian Lemay

Brendan Michael
Leonard

Karen N. Levine
Sally Margaret Levy
Sharon Xiaoyin Li
Dengxing Lin
James P. Lynch
Kelly A. Lysaght
Kevin M. Madigan
Vahan A. Mahdasian
Atul Malhotra
Albert Maroun
Jason Aaron Martin
Laura Smith McAnena
Timothy L. McCarthy
Rasa Varanka McKean
Sarah Kathryn

McNair-Grove
Kirk Francis Menanson
Ain Milner
Michael W. Morro
John-Giang L. Nguyen
Michael Douglas

Nielsen
Randall William Oja
Sheri L. Oleshko
Leo Martin Orth Jr.
Gerard J. Palisi
Prabha Pattabiraman
Michael A. Pauletti
Fanny C. Paz-Prizant
Rosemary Catherine

Peck
John Michael Pergrossi
Sylvain Perrier

Christopher Kent Perry
Anthony J. Pipia
Jordan J. Pitz
Thomas LeRoy 

Poklen Jr.
William Dwayne 

Rader Jr.
Sara Reinmann
Sylvain Renaud
Mario Richard
David C. Riek
Kathleen Frances

Robinson
Joseph Francis 

Rosta Jr.
Janelle Pamela Rotondi
Robert Allan Rowe
Joseph John Sacala
James C. Santo
Frances Ginette Sarrel
Jason Thomas Sash
Jeremy Nelson

Scharnick
Jeffery Wayne Scholl
Annmarie Schuster
Peter Abraham Scourtis
David Garrett Shafer
Vladimir Shander
Seth Shenghit
Mark Richard Strona
Jayme P. Stubitz
Stephen James Talley
Jo Dee Thiel-

Westbrook
Robert M. Thomas II
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Patrick Barbeau
Roger N. Batdorff
Marie-Eve J. Belanger
Jeremy James Brigham
Michael C. Carini
Peggy Chan
Wil Chong
Wai Yip Chow
Benjamin W. Clark
Michael Fong

Richard A. Fuller
Rainer Germann
Guo Harrison
Hans Heldner
Mark D. Heyne
Richard S. Holland
George Joseph
Kathleen L. Koshy
Ravi Kumar
Ting Kwok

Pak-Chuen Li
Ian John McCracken
Edward M. Moore
Michael R. Petrarca
Sean E. Porreca
Stephen D. Riihimaki
Brett A. Roush
Joseph Allen Smalley
Jeffrey S. Wood

The following candidates successfully completed the following
Parts of the Spring 1999 CAS Examinations that were held in
May.

Part 3B

Part 4A

Jennifer L. Throm
Gary Steven Traicoff
Andrea Elisabeth

Trimble
Brian K. Turner
Jon S. Walters

Douglas M. Warner
David W. Warren
Kevin Earl Weathers
Trevar K. Withers
Meredith Martin

Woodcock

Jonathan Stanger
Woodruff

Perry Keith Wooley
Yin Zhang
Steven Bradley Zielke

Vera E. Afanassieva
Genevieve L. Allen
Stevan S. Baloski
Dan S. Barnett
Alex G. Bedoway
Toby Layne

Bennington
Sheila J. Bertelsen
William J. Blatcher
Eli B. Bowman
Jeffrey A. Brueggeman
Randall T. Buda

Douglas J. Busta
Cemal Alp Can
Brian J. Cefola
Sanjeev Chaudhuri
Scott A. Chaussee
Julia Chou
Martin P. Chouinard
Christopher J.

Cleveland
Matthew P. Collins
Andrea D. Combs
Costas A. Constantinou

Cameron A. Cook
Sean T. Corbett
John E. Costango
Tighe C. Crovetti
Laura M. Dembiec
Mark R. Desrochers
Christopher P.

DiMartino
Pamela G. Doonan
Charles W. Dorman
Dale A. Fethke
William M. Finn
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Jill A. Frackenpohl
Louise Frankland
Andre Gagnon
Carol Ann Garney
Alexander R. George
William J. Gerhardt
Christie L. Gilbert
Isabelle Girard
Simon Girard
Jason L. Grove
Eric A. Hatch
Kimberly A. Haza
Arie Haziza
Michael J. Hebenstreit
Brandon L. Heutmaker
Marcy R. Hirner
Kathleen Hobbs
Allen J. Hope
Wendy L.

Hopfensperger
Sheng-Fei Huang
Kuo Ming Hung
Christopher W. Hurst
Nathan L. Jones
Julie A. Jordan
Jesse A. Karls
Susan M. Keaveny
Elissa Y. Kim
Jason M. Kingston
Brandon E. Kubitz
Kristine Kuzora
Nathaniel Kwawukume
Jeff A. Lamy
Aaron Michael Larson
Stefan A. Lecher
Michaela Ledlova

Wendy R. Leferson
Ho Shan A. Leung
Julia Leung
Amanda M. Levinson
Carrie L. Lewis
Hayden Anthony

Lewis
Jennifer L. Ligon
Lucia A. Lloyd-Kolkin
Winnie Lo
Siew-Won Loh
Daniel A. Lowen
Xiaofeng Lu
Abbe M. Macdonald
Teresa Madariaga
Chaim Markowitz
Susan E. Marra
Michelle C. Martin
Raul G. Martin
Carolyn J. McElroy
Sylwia S. McMichael
Sylvie Menard
Kathleen M. Miller
Richard J. Mills
Kazuko Minagawa
Erica F. Morrone
Joseph J. Muccio
James C. Murphy
Daniel G. Myers
Scott L. Negus
Winnie Ning
Mary A. Noga
Billy J. Onion
Russel W. Oslund
John F. Pagano
Felix Patry

Kristin S. Piltzecker
Etienne Plante-Dube
Stephen R. Prevatt
Elisabeth Prince
Lester Pun
Suzanne M. Reddy
John J. Reid
Erica L. Riggs
Sandra E. Rita
Benoit Robert
Robert C. Roddy
Kevin D. Roll
Charles A. Romberger
Adam J. Rosowicz
Jeffrey N. Roth
Ryan P. Royce
Josef W. Rutkowski
Doris Y. Schirmacher
Bradley J. Schroer
Monica S. Schroeter
Frank W. Shermoen
Walter J. Slobojun
Douglas E. Smith
Jodi L. Smith
Christopher Y. So
Kuixi Karl Song
Brooke S. Spencer
Kyrke O. Stephen
Erik J. Steuernagel
Christina H. Sung
Erica W. Szeto
Josephine L. C. Tan
Robert Bradley Tiger
Phoebe A. Tinney
Michael C. Torre
Jean-Francois Tremblay
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Matthew D. Trone
Lawrence A. Vann
Nilesh M. Vasani
Melinda K. Vasecka
Chinatsu H. Vergara
Maxim Viel
Matthew W. Walljasper

Jamie M. Weber
Robert S. Weishaar
Carolyn D. Wettstein
Erica H. Wheeler
Stephen C. Williams
Ian G. Winograd
Jimmy L. Wright

Chung-Shiang Wu
Nien-Chien I. Wu
Run Yan
Chih-Cheng Yang
Lisa Shuk-Han Yeung
Jonathan K. Yu

Part 4B

Jeanene M. del Valle
Christopher B. Abreu
Vera E. Afanassieva
Andrea Ondine Ahern
Sayyed Babar Ali
Afrouz Assadian
Kenneth W. Au
Damian T. Bailey
Stephen M. Balden
Igor Balevich
Stevan S. Baloski
Brent A. Banister
Dana Barlow
Stephanie A. Beach
Van R. Beach
Richard D. Behnke
Jerome C. Bellavance
Jesse A. Beohm
Jean-François Bernard
Timothy P. Bert
Stephen Bertolini
Assia Billig
Timothy S. Bischof
Michael D. Blakeney
Luc Blanchet
Roman G. Blichar
Annabelle Blondeau

Randy D. Blum
Nebojsa Bojer
Lisa Bolduc
Mary A. Borrelli-

Margraf
Marie-Andrée C.

Boucher
Glenn D. Bowen
Russell H. Brands
Erick A. Brandt
Kevin E. Branson
Ward A. Brigham
Gregor L. Brown
Jason C. Buckholt
Andrew E. Buckley
Suejeudi Buehler
Vanessa N. Butala
Heather M. Byrne
Jun Cai
Caryn C. Carmean
Scott A. Carter
Thomas L. Cawley
Ronald S. Cederburg
Rafael Ignacio

Cespedes
Ka Lun Chan
Jung-Chiang Chang

Shao-Chien Chang
Yuan-Yuan Chang
Yves Charbonneau
Kin Shuen Iris Chau
Scott A. Chaussee
Ching-Yi Chen
Hung F. Cheung
Janice Cheung
Sharlean Chiu
Jean S. Choi
Kin Lun (Victor) Choi
Hei Mei Chu
On Lee K. Chu
Yuen Wah (Helen) Chu
Delphina S. M. Chue
Anthony F. Colella
Linda Brant Collins
Christopher L.

Cooksey
Gerald D. Cooper
Jean-Pierre Cormier
Thomas Cosenza
Huiying Cui
Aaron T. Cushing
Jacek Czajkowski
Robin S. N. Damm
Smita G. Dave
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Rich A. Davey
Christopher P. Davies
David A. DeNicola
Erik L. Donahue
Craig A. Doughty
Shane S. Drew
Alexandre Drouin
Olga Dunaveskaya
Sarah M. Duyos
Cecilia A. Earls
Tomer Eilam
John W. Elbl
Tricia G. English
William H. Erdman
Ross C. Eriksson
Brian C. Evanko
Lauren B. Feldman
Matthew B. Feldman
Matthew D. Fienman
Tim P. Finnegan
Theodore M.

Fitzpatrick
Jeffrey R. Fleischer
Robin A. Fleming
Ben Flores
Marc A. Fournier
Teresa M. Fox
Geoffrey A. Fradkin
Dana R. Frantz
Jeffrey J. Fratantaro
Rebecca E. Freitag
Mark Kevin Friedman
Craig D. Fyfe
Patrick P. Gallagher
Brett D. Gardner

Tracey Ann Gardner-
Lacy

Roland P. Gatti II
Alexander R. George
Alain C. Georget
Alexis Gerbeau
Karen E. Gibbs
Jean-Philippe Giguere
Christie L. Gilbert
Valerie Gingras
Cary W. Ginter
Robert A. Giulietti
Peter Scott Gordon
Michael J. Gossmann
Stephane Goyer
Aleksey V. Granovsky
Jeffrey S. Grant
Timothy S. Grant
Jean-Pierre Gravel
Daniel Groleau
Jason L. Grove
Xu Gu
Patrik R. Guindon
Richard C. Gunning
Elena Hagi
Kevin J. Halfpenny
John I. Hall
Lynette D. Hamberger
Bradley O. Harris
Eric A. Hatch
Stuart J. Hayes
Sean M. Hayward
Joseph Hebert
James D. Heidt
Gregory L. Helser

David A. Henderson
Deborah L. Herman
Nigel P. Hernandez
Joseph S. Highbarger
Ki Wai Ho
Tuong H. Ho
Guillaume Hodouin
David J. Horn Jr.
Patricia L. Horn
Kaylie Horning
Peter R. Horstman
Steven P. Hoxmeier
Alex B. Huang
Wenjun Huang
Carissa A. Hughes
Edward H. L. Hui
Edward M. Huizinga
David C. Hung
Scott R. Hurt
Windy J. Hutchings
Amy R. Jackson
Karen A. Jackson
Frederic Jacques
Hanna K. Jankowski
Jason T. Jarzynka
Chi-Chung Jen
Bret A. Jensen
Lin Jiang
Charles B. Jin
William P. Jirak
Michael S. Johnson
Shantelle A. Johnson
Jason A. Jones
George Joseph
Sarah Kadlecik
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Ronald J. Kalvoda
Hye-Sook Kang
John J. Karwath
Inga Kasatkina
Deborah G. Kasper
Stephen F. Katz
Stacey M. Kidd
Eugene T. Kim
Hyuntae Kim
Sung-Hoon Kim
Beth M. Kirk Malecki
Roman Kizner
Ann E. Klaessy
Linda S. Klenk
Laurie A. Knoke
Joseph G. Korabik
Karen A. Kosiba
Randall M. Koss
Tatiana Kozak
Regina Krasnovsky
Rosanne L. Kropp
Jack D. Krull
Adrian Kryszak
Terry T. Kuruvilla
Faye Kurz
Daniel Y. Kutliroff
Hilary S. N. Kwok
Lucie LaChance
Ying Han Lai
Aaron D. Lambright
Eric S. Lanham
Stephane Lapierre
Jacqueline Win Yu Lau
Kan Yuk A. Lau
Sok Hoon Lau
Yue-Che Lau

Michael L. Laufer
Ross A. Laursen
David L.

Lautenschlager
Damon T. Lay
Valerie Lebrun
John H. Lee
Sheung Yuen Lee
Stuart Saiwah Lee
Yee Nin Lee
Christopher J.

Lemming
James J. Leonard
Brian P. Levine
Jun Li
Monica Yanhong Li
Monika Lietz
Ching-Yi Lin
Sheng-Lun Lin
Yu-Chu Lin
Wai Tat Ling
Jia Liu
Xin Liu
Ying Liu
Lucia A. Lloyd-Kolkin
Nataliya A. Loboda
Michael J. Lockerman
Robert M. Long Jr.
Wan Li Lu
Todd W. Lueders
PeiQing Luo
JoDee L. Lymburner
Mark W. Malnati
Sarah E. Marr
Danny Martin
Matthew J. Martin

Peter G. Matheos
Susan J. McMains
John D. McMichael
Stephen J. McNamara
Sharad Mehra
Michael E. Mielzynski
Wu Chi Ming
Charles W. Mitchell
Ghada M. Samir

Mohamed
Jacqueline M. Mohan
David A. Moore
Jeffrey A. Moore
James C. Murphy
Leonard D. Myers
Neil Narale
James P. Naughton
Jacqueline L. Neal
Scott L. Negus
Hon Fai Ng
Eleasar Ngassa
Jacqueline Nam

Phuong Nguyen
Karla J. Nieforth
Stoyko N. Nikolov
Christopher F. Noble
John J. Noel
Mary A. Noga
Janet M. Nowatzki
William S. Ober
Michael A. Onofrietti
Bo Ouyang
Masakazu Ozeki
Kristen J. Pack
Jeremy D. Palmer
Staci P. Palmer
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Brenda Papillon
James L. Paprocki
Sandra K. Parsons
David James Pauls
Michel W. Pelletier
Chan H. Phan
Jayne L. Plunkett
Vincent Polis
Annie Pui Ying Poon
Marie-Claude Poulin
Corrie L. Proksa
Jingsu Pu
Jianjun Qian
Guillaume Raymond-

Turcotte
Mary E. Reading
Thomas V. Reedy
Erin R. Reid
Kevin J. Reimer
Joe Reschini
Jason C. Richards
Craig A. Roberts
Jeremy C. Roberts
Rebecca D. Robertston
Graham E. Rogers
Randall D. Ross
Paul J. Rostand
Kirk A. Roy
Timothy L. Rozar
Michael M. Rubin
Andrei P. Salomatov
Doris Y. Schirmacher
April Sonia Gale

Seixeiro
Mandy M. Y. Seto
Gopi B. Shah

Pui Kei Shek
Wei Sheng
Michelle L. Sheppard
Tai-Ming Shiun
Rene R. Simon
Satbir Singh
Raymond D.

Sinnappan
Martine Slight
Stuart N. Slutzky
Todd G. Smith
Ka Ying So
Michael I. Sonin
Alexandra R. St-Onge
Tania E. Staffen
Molly A. Stark
Dominic M.

Stephenson
Aaron M. Stoeger
Robert P. Stone
Mark S. Struck
Natalia Borisovna

Sullivan
Guohong Sun
Douglas B. Swift
Michael E. Symonds
Sergei A. Syskin
Yuk Lun Szeto
Karl Tanguay
Doyle Adrian Tanner
Alex V. Tartakovski
Lucia Tedesco
Alex M. Terry
Helene Thibault
Michael J. Thomas
Noel J. Thomas

Sterling R. Tiessen
Albert Y. Tiw
Randi H. Topp
Frederic Tremblay
Hubert Tremblay
Maryse Tremblay-

Lavoie
Chi-Liang Tsai
Yu-Fang Tseng
Kosei Tsukada
Choi Nai Charlies Tu
Christopher R. Tucek
Stephen H. Underhill
William O. Van Arsdale
Samuel S. Van Blarcom
Shannon C.

Vecchiarello
Eric T. Veletzos
Paul A. Vendetti
Kevin K. Vesel
Brian A. Viscusi
Natalie Vishnevsky
Hanny C. Wai
Andrew E. Walinsky
Kate L. Walsh
Qingxian Wang
Simon Lijen Wang
Tianshu Wang
Xiuwen Wang
Yi Wang
David W. Watkins
Bethany R. Webb
Robert S. Weishaar
Thomas E. Weist
Ann Welch
Jean P. West
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Amanda M. Westphal
Daniel J. White
Andrew T. Wiest
Dennis D. Wiggill
John W. Wiklund
Shawn A. Wilkin
Duane A. Willis
Andrew J. Witte
Molly B. Witzenburg
Ai-Hua Angela Wong
Chi Kit Wong
Po-Shing Wong

Brian T. Woolfolk
Joshua C. Worsham
Eddie J. Wright
Chi-wai Edwin Wu
Susan A. Wudi
Yu Xiang
Feipeng Xie
Qi Xie
Suixiang Xie
Run Yan
Zhi Kang Yan
Su Yang

Christopher H. Yaure
Kim Fung Yeung
Mark R. Yoest
Stephanie C. Young
Ming-Yeh Yu
Pak Kin Yu
Xiaodong Yu
Peng Zeng
Dong Zhang
Song Zhang
Ji Fang Zhou
Yuhan Zhu

Part 5A

Genevieve L. Allen
Penelope A. Bierbaum
Jonathan E. Bransom
Anthony P. Brown
Jonathan Mark

Deutsch
Richard James

Engelhuber
Yehoshua Y. Engelsohn
Jieqiu Fan
Weishu Fan
Christine M. Fleming
Stuart G. Gelbwasser
Joseph E. Goldman
Stephanie Ann Gould

Ann E. Green
Stacie R. W. Grindstaff
Kristina S. Heer
Carol I. Humphrey
Shantelle A. Johnson
Linda M. Kane
Brant L. Kizer
Susan L. Klein
John E. Kollar
Aleksandr I. Korb
Ruth M. LeStourgeon
Joshua Nathan Mandell
Paul J. Molinari
Joann C. Ribar
Stephen D. Riihimaki

Jennifer L. Rupprecht
Steven M. Schienvar
Robert E. Schmid
Deniz Selman
Brett M. Shereck
Barry Dov Siegman
Pantelis Tomopoulos
Jennifer L. Vadney
Lisa M. VanDermark
Colleen Ohle Walker
Apryle Oswald

Williams
Lianmin Zhou

Part 5B

William J. Albertson
Lara L. Anthony
Paul W. Bauer
Marie-Eve J. Belanger
Melissa L. Borell

Maureen B. Brennan
Melissa L. Brewer
Kevin C. Burke
Michael W. Buttke
David R. Cabana

Hao Chai
Gregory R. Chrin
Millie Chu
Christian J. Coleianne
Matthew P. Collins
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Avery F. M. Cook
Christopher L.

Cooksey
Jonathan M. Corbett
Sean T. Corbett
Lynn E. Cross
Walter C. Dabrowski
Genine Darrough
Krikor Derderian
Tricia G. English
Weishu Fan
Solomon Carlos

Feinberg
Kevin M. Finn
Sean W. Fisher
Beth A. Foremsky
Sylvain Fortier
Chad J. Gambone
Sophie M. L. Georget
Brett A. Gissel
Joseph E. Goldman
John P. Gots
Ruth M. Gregory
Stacie R. W. Grindstaff
Margarita Hambrock
Andrew J. Hazel
Esther Y. Hui
Mark C. Jones
Kelly F. Kahling
David G. Keeton
Robin A. Keeven
Eric J. Kendig
Shenaz Keshwani
Perry A. Klingman

Aleksandr I. Korb
Leland S. Kraemer
Terry T. Kuruvilla
David J. Kuzma
Mai B. Lam
Kan Yuk A. Lau
Stuart Saiwah Lee
Sean M. Leonard
Eric M. Lin
Jing Liu
Erik F. Livingston
Nataliya A. Loboda
Daniel A. Lowen
Hazel J. Luckey
Lynn C. Malloney
Jennifer A. McGrath
Michael P. McKenney
Quynh-Nhu T. Morse
Joseph J. Muccio
David B. Mukerjee
Treva A. Myers
Saeid Nazari
Shannon P. Newman
Matthew P. Nimchek
Lauree J. Nuccio
Ginette Pacansky
Lorie A. Pate
Joy-Ann C. Payne
Shing Chi Poon
Sebastien Portmann
David N. Prario
Michael J. Quigley
Conni A. Rader
David P. Rafferty

Monica L. Ransom
Mary S. Rapp
Michelle L. Reckard
Joann C. Ribar
Renata Ringo
Joseph L. Rizzo
John D. Rosilier
Richard H. Seward
Elizabeth A. Sexauer
Sonja M. Shea
Michelle L. Sheppard
Brett M. Shereck
Keith M. Slonski
Lora L. Smith-Sarfo
Benjamin R. Specht
Matthew D. Trone
Melissa K. Trost
Lien K. Tu
Shannon C.

Vecchiarello
Kimberly A. Vogel
Monica S. White
Rosemary Gabriel

Wickham
Apryle Oswald

Williams
Todd M. Wing
Shing-Ming Wong
Regina E. Wood
Shawn A. Wright
Anthony C. Yoder
Janice M. Young
Megan L. Zack
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Michael D. Adams
Ariff B. Alidina
Robert E. Allen
Brian M. Ancharski
Kris Bagchi
Brian J. Barth
Saeeda Behbahany .
Nathalie Belanger
Jody J. Bembenek
Darryl R. Benjamin
Jonathan P. Berenbom
Brad D. Birtz
Tony Francis Bloemer
Neil M. Bodoff
Joseph V. Bonanno Jr.
Caleb M. Bonds
Donna Bono-Dowd
Olivier Bouchard
John R. Bower
Maureen Ann Boyle
Maureen B. Brennan
John R. Broadrick
Sara T. Broadrick
Kristin J. Brown
Bruce D. Browning
Elaine K. Brunner
Lisa K. Buege
Angela D. Burgess
Lori L. Burton
Matthew E. Butler
Sandra J. Callanan
James E. Calton
Mary Ellen Cardascia
Samuel C. Cargnel

William Brent Carr
Tracy L. Child
Andrew H. S. Cho
Alan M. Chow
Philip A. Clancey Jr.
Alan R. Clark
Jason T. Clarke
Kevin M. Cleary
Brian Roscoe Coleman
Richard Jason Cook
Hugo Corbeil
Stephen M. Couzens
Brenda K. Cox
Richard R. Crabb
Keith R. Cummings
Kelly K. Cusick
Robert P. Daniel
Mark A. Davenport
Lori Anne Davey
Willie L. Davis
Nicholas J. De Palma
Peter R. DeMallie
Douglas Lawrence Dee
Paul B. Deemer
Krikor Derderian
Timothy M. Devine
Brian S. Donovan
Scott H. Drab
Jeffrey A. Dvinoff
Donna L. Emmerling
Kyle A. Falconbury
Brian A. Fannin
Kathleen Marie Farrell
Junko K. Ferguson

Kristine M. Fitzgerald
Jennifer L. Fitzpatrick
Sharon L. Fochi
Feifei Ford
David Gagnon
Michelle R. Garnock
Genevieve Garon
Dustin W. Gary
Matthew P. Gatsch
Robert W. Geist
Laszlo J. Gere
Gregory Evan Gilbert
Isabelle Gingras
Andrew S. Golfin Jr.
Melanie T. Goodman
Lori A. Gordon
Matthew R. Gorrell
Christopher J. Grasso
Diane E. Grieshop
Donald B. Grimm
Robert Andrew

Grocock
Isabelle Groleau
Lisa N. Guglietti
Chantal Guillemette
James C. Guszcza
Serhat Guven
Edward Kofi Gyampo
David B. Hackworth
Barbara Hallock
Marcus R. Hamacher
Faisal O. Hamid
David Lee Handschke
Jason C. Head

Part 6
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Hans Heldner
Mark D. Heyne
David E. Hodges
Suzanne B. Holohan
Margaret M. Hook
Francis J. Houghton Jr.
Derek R. Hoyme
Long-Fong Hsu
Jamison J. Ihrke
Joseph M. Izzo
Jesse T. Jacobs
David R. James
William T. Jarman
Scott R. Jean
Philip J. Jennings
Karen Lerner Jiron
Brian B. Johnson
Erik A. Johnson
Tricia L. Johnson
William B. Johnson
Gregory K. Jones
Theodore A. Jones
Kyewook (Gary) Kang
Barbara L.

Kanigowski
Alexander Kastan
Kathryn E. Keehn
Sean M. Kennedy
David R. Kennerud
Susanlisa Kessler
Joseph E. Kirsits
Henry J. Konstanty
James J. Konstanty
Brandon E. Kubitz
Todd J. Kuhl
Darjen D. Kuo

Julie-Linda Laforce
Stephane Lalancette
John B. Landkamer
Frank A. Laterza
Rocky S. Latronica
Anh Tu Le
Jeffrey Leeds
Geraldine Marie Z.

Lejano
Twiggy Lemercier
Hayden Anthony

Lewis
Shangjing Li
Matthew A. Lillegard
Kenneth Lin
Kathleen T. Logue
William F. Loyd
Yih-Jiuan B. Lu
Eric A. Madia
Alexander P. Maizys
David K. Manski
Timothy J. McCarthy
Kevin Paul

McClanahan
John R. McCollough
Jeffrey B. McDonald
Richard J. McElligott
Patrick A. McGoldrick
Shawn Allan

McKenzie
Jeffrey S McSweeney
Lawrence J.

McTaggart III
Christian Menard
Martin Menard
Ellen E. Mercer

Vadim Y. Mezhebovsky
Paul B. Miles
Kathleen C. Miller
Stephanie A. Miller
Suzanne A. Mills
Jason E. Mitich
Josée Morin
Matthew E. Morin
Rodney S. Morris
Timothy C. Mosler
Gwendolyn D. Moyer
Carole Nader
Jennifer Y. Nei
Brian C. Neitzel
Ronald T. Nelson
Susan K. Nichols
Jill A. Nielsen
James L. Norris
Miodrag Novakovic
Nancy Eugenia 

O’Dell-Warren
Wade H. Oshiro
Robin V. Padwa
Kelly A. Paluzzi
Phillip J. Panther
Jean-Pierre Paquet
Carolyn Pasquino
Bruce G. Pendergast
Priyantha L. Perera
Matthew J. Perkins
Isabelle Perron
Christopher A. Pett
Faith M. Pipitone
Peter Victor Polanskyj
Gregory T. Preble
Bill D. Premdas
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Marie-Josee Racine
John T. Raeihle
Kathleen M. Rahilly-

VanBuren
Josephine Teruel

Richardson
Marn Rivelle
Ezra J. Robison
Keith A. Rogers
Benjamin G.

Rosenblum
Christina B.

Rosenzweig
David A. Royce
John C. Ruth
Charles J. Ryherd
Laura B. Sachs
Parr T. Schoolman
Michael F. Schrah
Larry J. Seymour
Tina Shaw
James S. Shoenfelt
Marina Sieh

Annemarie Sinclair
Helen A. Sirois
Lee O. Smith
Steven A. Smith II
Thomas M. Smith
Lisa C. Stanley
Michael William

Starke
Amy L. Steburg
David K. Steinhilber
Stephen J. Streff
Mark Sturm
Beth M. Sweeney
Neeza Thandi
Christopher S.

Throckmorton
Tamara L. Trawick
Joseph S. Tripodi
Bonnie J. Trueman
Peggy J. Urness
Michael O. Van Dusen
William D. Van Dyke
Susan B. Van Horn

Karen L. VanCleave
Gaetan R. Veilleux
Jennifer A. Vezza
Josephine M. Waldman
Ya-Feng Wang
Chang-Hsien Wei
Javanika Patel Weltig
Joseph C. Wenc
Gary A. Wick
William B. Wilder
Dean M. Winters
Jennifer X. Wu
Mihoko Yamazoe
Mark K. Yasuda
Jacinthe Yelle
Michael G. Young
Stephanie C. Young
Christine Seung Yu
Michael R. Zarember
Xiangfei Zeng
Gene Q. Zhang
Yingjie Zhang
Eric E. Zlochevsky

Part 8-Canada

Suzanne E. Black
Veronique Bouchard
Robert N. Campbell
Jean-François Chalifoux
Louise Chung-Chum-

Lam

Steven A. Cohen
Louis Durocher
Hugo Fortin
Philip W. Jeffery
David Leblanc-Simard
P. Claude Lefebvre

Eric Millaire-Morin
François L. Morissette
Charles Pare
Ernest C. Segal

Part 8-United States

Ethan D. Allen
Katherine H. Antonello
Michele S. Arndt

Carl Xavier
Ashenbrenner

William P. Ayres

Michael William
Barlow

Andrew S. Becker
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Ellen A. Berning
Daniel R. Boerboom
Raju Bohra
Sherri Lynn Border
Thomas L. Boyer II
David C. Brueckman
Michelle L. Busch
Victoria J. Carter
Patrick J. Charles
Richard M. Chiarini
Thomas Joseph

Chisholm
Wanchin W. Chou
Gary T. Ciardiello
Larry Kevin Conlee
Karen Barrett Daley
Timothy Andrew

Davis
Kurt S. Dickmann
Christopher S.

Downey
Sara P. Drexler
Stephen C. Dugan
Mark Kelly Edmunds
Laura A. Esboldt
Kristine Marie

Firminhac
Tracy Marie Fleck
Michelle L. Freitag
Kevin Jon Fried
Gary J. Ganci
Amy L. Gebauer
Christopher H.

Geering
Bernard H. Gilden

Todd Bennett Glassman
Sanjay Godhwani
Francis X. Gribbon
Jacqueline Lewis

Gronski
John A. Hagglund
Marc S. Hall
Dawn Marie S. Happ
Michelle Lynne

Harnick
Bryan Hartigan
Michael B. Hawley
Jeffery Tim Hay
Qing He
Chad Alan Henemyer
Amy Louise Hicks
Richard M. Holtz
Brian L. Ingle
Craig D. Isaacs
Randall A. Jacobson
Charles B. Jin
Mark J. Kaufman
Scott A. Kelly
Ung Min Kim
Elina L. Koganski
Richard Scott Krivo
Sarah Krutov
Robin M. LaPrete
Travis J. Lappe
Dennis H. Lawton
Ramona C. Lee
James P. Leise
Bradley H. Lemons
Brendan Michael

Leonard

Charles Letourneau
John Norman Levy
Sally Margaret Levy
Siu K. Li
Richard P. Lonardo
Jason Aaron Martin
Michael Boyd Masters
David M. Maurer
Douglas W. McKenzie
Sarah K. McNair-Grove
Ain Milner
David Patrick Moore
Lisa J. Moorey
Matthew C. Mosher
Ethan Charles Mowry
Seth Wayne Myers
Michael D. Neubauer
Corine Nutting
James L. Nutting
Steven Brian Oakley
Randall William Oja
Richard D. Olsen
Christopher Edward

Olson
David Anthony

Ostrowski
Moshe C. Pascher
Lisa Michelle

Pawlowski
John R. Pedrick
John M. Pergrossi
Christopher Kent Perry
Daniel B. Perry
Luba O. Pesis
Sean E. Porreca
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Christopher David
Randall

Sara Reinmann
Scott Reynolds
John W. Rollins
Richard A.

Rosengarten
Robert Allan Rowe
David L. Ruhm
Douglas A. Rupp
Joanne E. Russell
James C. Santo
Nathan Alexander

Schwartz
William Harold 

Scully III

Bret Charles Shroyer
Matthew Robert

Sondag
Laurence H. Stauffer
Curt A. Stewart
Lisa M. Sukow
Elizabeth Susan

Tankersley
Varsha A. Tantri
Michael J. Tempesta
Robert M. Thomas II
Beth S. Thompson
Gary S. Traicoff
Jeffrey S. Trichon
Kai Lee Tse
Therese M. Vaughan

Leslie Alan Vernon
Cameron J. Vogt
Kyle Jay Vrieze
Wade T. Warriner
Dean Allen Westpfahl
William B. Westrate
Kendall P. Williams
Laura Markham

Williams
Kah-Leng Wong
Simon Kai-Yip Wong
Jonathan Stanger

Woodruff
Vincent F. Yezzi

Part 10

Rimma Abian
Stephen A. Alexander
Mark B. Anderson
Amy Petea Angell
Martin S. Arnold
Peter Attanasio
Richard J. Babel Sr.
Emmanuil Theodore

Bardis
Patrick Beaudoin
Nicolas Beaupre
Cynthia A. Bentley
David M. Biewer
Frank J. Bilotti
Lisa A. Bjorkman
Jonathan Everett Blake
Michael J. Bluzer
Mark E. Bohrer

Ann M. Bok
Tobe E. Bradley
Michael D. Brannon
Stephane Brisson
Hayden Heschel Burrus
Anthony E. Cappelletti
Martin Carrier
Sharon C. Carroll
Bethany L. Cass
Joseph G. Cerreta
Michael Joseph

Christian
Bryan C. Christman
Andrew K. Chu
Kuei-Hsia Ruth Chu
Darrel W. Chvoy
Christopher William

Cooney

Jeffrey Alan
Courchene

Brian K. Cox
Claudia Barry Cunniff
Robert E. Davis
Kris D. DeFrain
Jean A. DeSantis
Michael Edward Doyle
Peter F. Drogan
Denis Dubois
Mary Ann Duchna-

Savrin
Rachel Dutil
Sophie Duval
Jane Eichmann
Dawn E. Elzinga
Brandon L. Emlen
Gregory James Engl
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Kenneth D. Fikes
Jean-Pierre Gagnon
Donald M.

Gambardella
Thomas P. Gibbons
John T. Gleba
Matthew E. Golec
Karl Goring
Philippe Gosselin
Jay C. Gotelaere
David Thomas Groff
Rebecca N. Hai
Scott T. Hallworth
Kenneth Jay Hammell
Gregory Hansen
Jonathan B. Hayes
Jodi J. Healy
Noel M. Hehr
Christopher Ross

Heim
David E. Heppen
Ronald J. Herrig
Kurt D. Hines
Amy L. Hoffman
Thomas A. Huberty
Ali Ishaq
Philippe Jodin
Burt D. Jones
James B. Kahn
Chad C. Karls
Mark J. Kaufman
James M. Kelly
James D. Kunce
Jean-Sebastien

Lagarde
Elaine Lajeunesse

Chingyee Teresa Lam
Yin Lawn
Kevin A. Lee
Dengxing Lin
Shu C. Lin
Janet G. Lindstrom
Diana M. S. Linehan
Lee C. Lloyd
Michelle Luneau
William R. Maag
Atul Malhotra
David E. Marra
Julie Martineau
Bonnie C. Maxie
Jeffrey F. McCarty
Ian John McCracken
Allison Michelle

McManus
James R. Merz
Scott A. Miller
Paul W. Mills
Christopher J.

Monsour
Roosevelt C. Mosley
Kari S. Mrazek
Donna M. Nadeau
Catherine A. Neufeld
Hiep T. Nguyen
Kari A. Nicholson
Lynn Nielsen
Randall S. Nordquist
Michael A. Nori
Richard A. Olsen
Denise R. Olson
Teresa K. Paffenback
Ajay Pahwa

M. Charles Parsons
Mark Paykin
Julie Perron
Jeffrey J. Pfluger
Anthony George

Phillips
Igor Pogrebinsky
Karen L. Queen
Kathleen Mary Quinn
Leonid Rasin
Yves Raymond
Hany Rifai
Seth Andrew Ruff
Tracy A. Ryan
Rajesh V.

Sahasrabuddhe
Asif M. Sardar
Gary Frederick Scherer
Michael C. Schmitz
Annmarie Schuster
Stuart A. Schweidel
Meyer Shields
Jay Matthew South
Angela Kaye Sparks
Avivya Simon Stohl
Brian Tohru Suzuki
Adam M. Swartz
Nitin Talwalkar
Jonathan Garrett Taylor
Dom M. Tobey
Jennifer M. Tornquist
Michael J. Toth
Michael C. Tranfaglia
Turgay F. Turnacioglu
Kieh Treavor Ty
Mark A. Verheyen
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Martin Vezina
Nathan K. Voorhis
Claude A. Wagner
Edward (Ted) H.

Wagner
Benjamin A. Walden

Robert J. Wallace
Shaun S. Wang Ph.D.
Patricia Cheryl White
Jerelyn S. Williams
Wendy L. Witmer
Brandon L. Wolf

Mark L. Woods
Mary C. Woodson
Jeanne Lee Ying
Sheng H. Yu

Rimma Abian
Ethan David Allen
Mark B. Anderson
Martin S. Arnold
William P. Ayres
Richard J. Babel
Cynthia A. Bentley
Lisa A. Bjorkman
Suzanne E. Black
Jonathan Everett Blake
Ann M. Bok
Michael D. Brannon
Anthony E. Cappelletti
Martin Carrier
Bethany L. Cass
Jean-François

Chalifoux
Bryan C. Christman
Darrel W. Chvoy
Gary T. Ciardiello
Christopher William

Cooney

Brian K. Cox
Claudia Barry Cunniff
Karen Barrett Daley
Timothy Andrew Davis
Jean A. DeSantis
Kurt S. Dickmann
Christopher S. Downey
Michael Edward Doyle
Peter F. Drogan
Denis Dubois
Mary Ann Duchna-

Savrin
Rachel Dutil
Dawn E. Elzinga
Jean-Pierre Gagnon
Donald M.

Gambardella
Gary J. Ganci
Thomas P. Gibbons
John T. Gleba
Matthew E. Golec
Philippe Gosselin

Jay C. Gotelaere
David Thomas Groff
Scott T. Hallworth
Gregory Hansen
Michael B. Hawley
Jodi J. Healy
Noel M. Hehr
Christopher Ross Heim
David E. Heppen
Ronald J. Herrig
Thomas A. Huberty
Brian L. Ingle
James B. Kahn
Chad C. Karls
Mark J. Kaufman
James M. Kelly
Sarah Krutov
James D. Kunce
Jean-Sebastien

Lagarde
Yin Lawn
David Leblanc-Simard

The following candidates were admitted as Fellows and Associ-
ates at the 1999 CAS Annual Meeting in November. By passing
Spring 1999 CAS examinations, these candidates successfully 
fulfilled the Society requirements for Fellowship or  Associateship
designations.

NEW FELLOWS
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Kevin A. Lee
P. Claude Lefebvre
Siu K. Li
Janet G. Lindstrom
Lee C. Lloyd
William R. Maag
David E. Marra
Michael Boyd Masters
Bonnie C. Maxie
Jeffrey F. McCarty
Douglas W. McKenzie
Allison Michelle

McManus
James R. Merz
Paul W. Mills
Christopher J. Monsour
David Patrick Moore
François L. Morissette
Matthew C. Mosher
Roosevelt C. Mosley
Donna M. Nadeau
Catherine A. Neufeld
Hiep T. Nguyen

Randall S. Nordquist
Michael A. Nori
James L. Nutting
Christopher Edward

Olson
Denise R. Olson
David Anthony

Ostrowski
Teresa K. Paffenback
Charles Pare
M. Charles Parsons
Luba O. Pesis
Karen L. Queen
Kathleen Mary Quinn
Yves Raymond
Hany Rifai
John W. Rollins
Seth Andrew Ruff
David L. Ruhm
Tracy A. Ryan
Rajesh V.

Sahasrabuddhe
Michael C. Schmitz

Nathan Alexander
Schwartz

Bret Charles Shroyer
Matthew Robert

Sondag
Jay Matthew South
Angela Kaye Sparks
Brian Tohru Suzuki
Adam M. Swartz
Nitin Talwalkar
Dom M. Tobey
Jeffrey S. Trichon
Kai Lee Tse
Leslie Alan Vernon
Kyle Jay Vrieze
Edward H. Wagner
Benjamin A. Walden
Robert J. Wallace
Patricia Cheryl White
Wendy L. Witmer
Simon Kai-Yip Wong
Vincent F. Yezzi
Sheng H. Yu

NEW ASSOCIATES

Michael D. Adams
Genevieve L. Allen
Saeeda Behbahany
Penelope A. Bierbaum
Tony Francis Bloemer
Caleb M. Bonds
Maureen Ann Boyle
Jeremy James Brigham
Kin Lun (Victor) Choi
Alan R. Clark

Brian Roscoe Coleman
Douglas Lawrence Dee
Jonathan Mark

Deutsch
Richard James

Engelhuber
Weishu Fan
Kathleen Marie Farrell
Richard A. Fuller
Rainer Germann

Isabelle Gingras
Peter Scott Gordon
Stephanie Ann Gould
Robert Andrew

Grocock
Rebecca N. Hai
David Lee Handschke
Philip M. Imm
Karen Lerner Jiron
Robert C. Kane
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Linda S. Klenk
Ravi Kumar
Julie-Linda Laforce
Chingyee Teresa Lam
John B. Landkamer
Aaron Michael Larson
Shangjing Li
Joshua Nathan Mandell
Kevin Paul

McClanahan
Ian John McCracken

Shawn Allan
McKenzie

Christian Menard
Peter Victor Polanskyj
Darin L. Rasmussen
Josephine Teruel

Richardson
Marn Rivelle
Delia E. Roberts
Tina Shaw
Joseph Allen Smalley

Michael William Starke
David K. Steinhilber
Stephen James Streff
Josephine L. C. Tan
Javanika Patel Weltig
Rosemary Gabriel

Wickham
Apryle Oswald

Williams
Dean Michael Winters
Jeffrey S. Wood

The following candidates successfully completed the following
Parts of the Fall 1999 CAS Examinations that were held in No-
vember.

Part 3B

Part 4A

Alan M. Chow
Kelly K. Cusick
Christopher A.

Donahue
Kyle A. Falconbury
John S. Flattum
Feifei Ford
Matthew R. Gorrell

Erik A. Johnson
Brian J. Kasper
Kenneth Lin
Timothy C. Mosler
Carole Nader
Bhikhabhai C. Patel
Isabelle Perron
Christopher A. Pett

Robert E. Royer
Benjamin C. Strasser
David B. Thaller
Kieh Treavor Ty
Karen L. VanCleave
Jennifer A. Vezza
William B. Wilder
Xiaodong Yu

Andrea Ondine Ahern
Faisal Ahmed
Jennifer A. Ahner
Muhammad Munawar

Ali
Fernando Alberto

Alvarado
Brandie J. Andrews

Talal I. Arimah
Jennifer M. K. Arthur
Kevin J. Atinsky
Linda S. Baum
Nicolas Marc

Beaudoin
Benjamin Beckman
Nathan L. Bluhm

Alla Bottoni
Jean-Philippe Boucher
John R. Bower
Maureen B. Brennan
John J. Brown
Suejeudi Buehler
Don J. Burbacher
Robert L. Bush
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Thomas L. Cawley
Thomas C. Cecil
Rafael Ignacio

Cespedes
James Chang
Dionne K. Chisolm
Kevin J. Christy
Stephan Cliche
Aimee B. Cmar
Robert J. Collingwood
Greg E. Conklin
Tina M. Costantino
Stephen M. Couzens
Lynn E. Cross
Karen O’Brien Curtin
Jeannine M. Danner
Rich A. Davey
Chantal Delisle
Brent P. Donaldson
Kevin P. Donnelly
Yvonne M. Duncan
Lisa S. Eichenbaum
Todd A. Ekey
Melissa D. Elliott
Yehoshua Y.

Engelsohn
John M. English
Michael D. Ersevim
Michael A. Faria
Kevin M. Finn
March M. Fisher
Jennifer L. Fitzpatrick
Chad J. Gambone
Angela L. Garrett
Sophie M. L. Georget
Lillian Y. Giraldo

Mary T. Glaudell
Jennifer L. Glodowski
Jon H. Gottesfeld
Travis J. Grulkowski
Simon Guenette
Jonathan M. Guy
Benjamin D. Haas
John J. Hageman
Margarita Hambrock
Sunny M. Harrington
Sarah B. Hartung
Dedie C. Holley
Frank E. Horn
Esther Y. Hui
Mohammad A.

Hussain
Hsu Hwang-Ming
Elena Ilina
Victoria K. Imperato
Yehuda S. Isenberg
William A. Jaeger
Jennifer L. Janisch
Dana F. Joseph
Eric J. Kendig
Sayeh Khavary
Thomas F. Klem
Aleksandr I. Korb
Bradley S. Kove
Leland S. Kraemer
Vladimir A.

Kremerman
Frank K. Kumah
Terry T. Kuruvilla
Bobb J. Lackey
Heather D. Lake
Kan Yuk A. Lau

Eric T. Le
Shannon Rebecca

Leckey
Kimi K. Lee
Jeffrey Leeds
Kenneth L. Leonard
Sean M. Leonard
Lorinda A. M. Leshock
Mark A. Lesperance
Frederic Levesque
Nannan Liu
Rachael A. LoBosco
Gwenette K. Lorino
Suzanne S. Luebbe
Keyang Luo
PeiQing Luo
Sally Ann MacFadden
Thomas J. Macintyre
Hilton Mak
Alison L. Matsen
Zinoviy Mazo
Laurence R. McClure

II
John D. McMichael
Anne A. McNair
Hernan L. Medina
Paul B. Miles
Yuchun Mu
Loralea A. Mullins
Sureena Binte Mustafa
Natalia Navarova
Jacqueline L. Neal
Tho D. Ngo
Steven A. Nichols
Matthew P. Nimchek
John N. Norman
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William S. Ober
Melissa A. Ogden
Brent J. Otto
Ajay Pahwa
Lucia Papa
Neelam P. Patel
Robert Anthony

Peterson
Dianne M. Phelps
Genevieve Pigeon
Daniel J. Plasterer
Timothy K. Pollis
Michael J. Quigley
David P. Rafferty
Sheikh M. Rahman
Vijay R. Ramanujan
Lynellen M. Ramirez
Monica L. Ransom
Dong-Jye Rau
Timothy J. Regan

Terri-Beth Reynolds
Michele S. Rosenberg
Marc R. Rothschild
Ray M. Saathoff
Andrei P. Salomatov
Dionne M. Schaaffe
Thomas Schneider
Parr T. Schoolman
Pinchas R. Schreiber
Matthew L. Schutz
Tammy L. Schwartz
Elizabeth A. Sexauer
Clista E. Sheker
Lori A. Sheppard
Brett M. Shereck
Glenn D. Shippey
James M. Smieszkal
Jennifer L. Smith
Todd G. Smith
Molly A. Stark

Jason D. Stubbs
Wei Hua Su
Linda Sun
Adam D. Swope
Sandrine K. Tagni
Dominic A. Tocci
Joseph S. Tripodi
Michael S. Uchiyama
Paul A. Vendetti
Steven R. Waldman
Gary C. Wang
Qingxian Wang
Bethany R. Webb
Jean P. West
Josianne M. Wickham
Joshua C. Worsham
Andrew F. Yashar
Jong H. Yoo
Megan L. Zack
Anna Zieba

Part 4B

Anthony W. Ackley
Karen H. Adams
Jon R. Aerni
Armine Aharonyan
John C. Albrecht
Michael D. Altier
Catherine

Ambrozewicz
Dorothy L. Andrews
David H. Anenberg
Ashwin Arora
Yuliya V. Artemov
Richard Audet
John L. Baldan

Cornel Balteanu
Dan S. Barnett
Warren C. Barney
Kim M Basco
Isabelle Belanger
Richard J. Bell III
Sylvain Belley
Andrew W. Bernstein
Maulik Bhansali
William J. Blatcher
Craig J. Blumenfeld
Stephane A. Boileau
Gilbert R. Booher
Nigel B. Branker

Craig R. Bridge
Alma R. Broadbent
Jeffrey A. Brueggeman
Monica M. Buck
Randall T. Buda
Don J. Burbacher
Wei Cai
Francisco Camba
Glenalan C. Cameron
Jonathan H. Camire
Jason A. Campbell
Christina A. Candusso
Stanley R. Caravaggio
Thomas C. Cecil
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Raji H. Chadarevian
Man Ho Chan
Phyllis B. Chan
Wai Kit Chan
Yanli Hwang Chan
Margaret A. Chance
Naxine Chang
Jennifer A. Charlonne
Kuo-mei Chen
Qian Chen
Yi Chuan Chen
Yutian Chen
Henry K. Cheng
Marianne Cherkez
Ka-Chun Cheung
Lai Hing Cheung
Xiaolei Chi
Wai Choi
Julia Chou
Ka Ming (Danny)

Chow
George E. Christopher
Daisy L. Chu
Wai Yee Salina Chung
Wesley G. Clarke
Sebastien Clement
Aimee B. Cmar
Christian J. Coleianne
John C. Collingwood
Peter D. Collins
Cameron A. Cook
Leanne M. Cornell
John E. Costango
Michael J. Covert
Michael B.

Cunningham

Bridget A. Cupp
Richard A. Cuzzone
Walter C. Dabrowski
Ka-Ming Dai
David B. Dalton
James T. Daniels
Ryan E. Daniels
Amy L. DeHart
Sheri Lee de La

Boursodiere
Timothy A. DeMars
Craig L. DeSanto
Michael J. Dekker
Laura M. Dembiec
Diana M. Dodu
Brent P. Donaldson
Margaret H. Donavan
Brian S. Donovan
Charles W. Dorman
Kristen S. Dossett
Etienne Dube
Matthew D.

Dunscombe
Aaron D. Ekstrom
Malika El Kacemi
Brian Elliott
Troy R. Elliott
Jessica L. Elsinger
Seong-min Eom
Amy R. Eversole
Carlos M. Fajardo
Derek L. Farmer
Mark S. Feldman
Donna K. Ferguson
Anusha M. Fernando
Dale A. Fethke

Lawrence K. Fink
Marten W. Finlator
William M. Finn
Steven M. Fix
Eric P. Fortier
Pierre Fortier
Sebastien Fortin
Robert J. Foskey
Jason L. Franken
Louise Frankland
Gregory A. 

Frankowiak
Laurence Frappier
Yan Fridman
Eric S. Friedman
Michael C. Fruchter
Paul M. Y. Fung
Joseph Gabriel
Karl Gagnon
Samih S. Geha
Mark X. Geske
Michael P. Gibson
Daniel James

Giovannone
Dominique Godin
Noah P. Goldstein
Samantha A. Graber
David S. Graham
Elizabeth A. Grande
Gaelle Gravot
Heather L. Grebe
Christa Green
Veronique Grenon
Stacie R.W. Grindstaff
Stephanie A. Groharing
Isabelle Groleau
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Waleed H. Grunden
Serhat Guven
Theodore A. Haard
Marilou I. Halim
Jon E. Hamberg
Sunny M. Harrington
Jason S. Hart
Gary A. Hatfield
Yong Hao He
Joshua E. Hedgecorth
Mindy E. Herzog
Brandon L. Heutmaker
Lauren E. Heyl
Scott P. Higginbotham
Carole K. L. Ho
Tony Yiu Tung Ho
Jeremy A. Hoch
Mitchell H. Hofing
Eric B. Hofman
Michael A. Holderman
James E. Holland Jr.
Jeffrey I. Holm
Melissa S. Holt
Hyunpyo Hong
Wen Cai Hou
Chih-Che Hsiao
Tsu-Yueh Hsueh
Sheng-Fei Huang
Chad A. Hueffmeier
David P. Hughes
Wan Yee Connie Hui
Scott A. Humpert
Jawyih J. Hung
Li-Jiuan Hung
Pui Yuen Hung
Suzette L. Huovinen

Kenneth L. Israelsen
Jesse T. Jacobs
Suzanne Jacques
William A. Jaeger
Steven N. Jankovich
Michael S. Jarmusik
Kurugamega C.

Jayawardena
Han Jiang
Lori K. Johnson
Brigitte Joncas
Nathan L. Jones
Julie A. Jordan
Dana F. Joseph
James A. Juillerat
Minas K. Kalachian
Kuei-Hua Kan
Linda M. Kane
Tami J. Karnatz
Jennifer L. Kearon
Susan M. Keaveny
Stephen G. Kelloway
Amy Jieseon Kim
Chung-Hun Kim
Sang W. Kim
Roman Kimelfeld
Melissa J.

Kirshenbaum
Linda M. Klaips
Steven T. Knight
Hiu-Wan Ko
John E. Kollar
Karen E. Koop
Aleksandr I. Korb
Alexey P. Kozmin
Julia R. Kraemer

Brandon E. Kubitz
Rohan P. Kumar
Eric M. Kurzrok
Nadya Kuzkina
Kristine Kuzora
Claudel Laguerre
Hooi Lee Lai
Robert Lamarche
Neil A. F. Lamb
Stacey B. Lampkin
James A. Landgrebe
Julie L. Landreville
Andre Landry Jr.
Yuk Yee Lau
Jason A. Lauterbach
Michaela Ledlova
Chengwei Lee
Victor C. Lee
York Hon John Lee
Geraldine Marie Z.

Lejano
Twiggy Lemercier
David Sean Leonard
Michael A. Leonberger
Wesley Leong
Charles L. Levine
Jonathan D. Levy
Michael B. Lewis
Bin Li
Hing Keung Li
Jiehui Li
Kin Hing Li
Oi K. Li
Rongmin Li
Jenn Y. Lian
Yong Hua Liang
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Jennifer L. Ligon
Ruey Shyan Lin
Yi-Ling Lin
Andy M. Liu
Dong Liu
Guan-Bo Liu
Jianxun Liu
Mei-Chu Liu
Ruixue Liu
Xiaoquing Iris Liu
Zhanzhong Liu
Todd L. Livergood
John Cy Lo
Winnie Lo
Phillip J. Loftus
Michael H. Loretta
Harold E. Luber
Chun-Shuo Ma
Dick Ka Ma
Huixiu Ma
Anna B. Maciejewska
Teresa Madariaga
Lynn C. Malloney
Ratsamy Manoroth
Dan Mao
Roy M. Markham
Rene Martel
Thomas D. Martin
Lora K. Massino
Joseph W. Mawhinney
Michael B. McCarty
James P. McCoy
Joseph N. McDonald
David A. McMahon
Melissa A. McMains
Sylwia S. McMichael

Alexander Medvetsky
Mehul D. Mehta
Andre-Claude Menard
Duane G. Middendorf
Xiaohong Mo
Yi Man Mok
Christopher K. Moore
Anne Morency
Vincent Morin
Donald F. Morrison
Fritzner Mozoul
Yuchun Mu
Sumera Muhammad
Laura M. Murphy
Donald P. Myers
Natalia Navarova
Muhammad H. Nazir
Georgia A. Nelson
Jason G. Neville
Daniel T. Newton
Ka Yee Ng
Kit Wan Ng
May-Yee Ng
Mona Y. Ng
Julie K. Nielsen
Robert Niyazov
Jabran Noor
Russel W. Oslund
Shunli Pan
Hua Ying Pang
Michel Pare
Alexa Patterson
Agnes Paul
Christopher A. Paulus
Brian T. Pedersen
Guanghui Peng

Shu Y. Peng
Robert B. Penwick
Julien Perreault
Michael C. Petersen
Christopher A. Pett
Dianne M. Phelps
David A. Pitts
Ka Lok Po
Sue L. Poduska
Christopher R. Poirier
Flavia H. F. Poon
Daniel P. Post
Stephane Poulin
Stephen R. Prevatt
Marvin R. Puymon
Yubo Qiu
Darryl L. Raines
Heather N. Ramsay-

Acosta
Lei Rao-Knight
William C. Reddington
Zia Ur Rehman
John J. Reid
Brent F. Reis
Adam J. Rennison
Danis Rheault
Richard G. Rhode
Wendi L. Richmond
Joseph L. Rizzo
Stanley T. Roberts
Keith A. Rogers
Jeff D. Rohlinger
An Qi Rong
John J. Rosati Jr.
Rebecca B. Rosenbaum
John D. Rosilier
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Kelly J. Rosseland
Ryan P. Royce
Katherine I. Russell
Frank A. Santasiero
Janice Pauline D.

Santos
Steven J. Savard
Reid M. Schaefer
Andrew F. Schallhorn
Vickie J. Scherr
Ernesto Schirmacher
Thomas W. Schroeder
Ronald J. Schuler
Paul A. Schultz
Brent W. Seiler
Tomasz Serbinowski
Richard H. Seward
Fahad R. Shah
Mayur M. Shah
Heather Shemek
Ye Shen
Brett M. Shereck
Jeremy D. Shoemaker
Andrew P. Shull
Sing Chai Siau
Summer L. Sipes
Robert P. Siwicki
Cory J. Skinner
Amado C. Sleiman
Stephen G. Slocum
Audrey L.

Smerchansky
Daren M. Smith
Douglas E. Smith
Wallace G. Smith
Joao M. Soares

Joshua A. Sobol
Eric P. Sock
Marc St-Jacques
Andreas J. Stabno
Amy L. Steburg
Donna B. Steepe
Laura B. Stein
Kyrke O. Stephen
Richard M. Stiens
Kevin H. Strobel
Elizabeth D. Strong
Moshe Stulman
Nicki A. Styka
Louis P. Sugarman
Ju-Young Suh
Bin Sun
Qi Sun
Konrad P.

Szatzschneider
Su-Chuan Tai
Takashi Tanemura
Connie W. Tang
Hai Peng Tang
Li Qin Tang
Sebastien Tanguay
Veronique Tanguay
Julie Tanguy
Jeffrey D. Thacher
Deepak Thakor
Sarah E. Theis
Christian A. Thielman
Jonas F. Thisner
Clinton Jay Thompson
Henry K. To
Siu Yin To
Michael C. Torre

Raymond D. Trogdon
Matthew D. Trone
Feng-Hui Tsai
Wen-Tzu Tsai
Jeffery G. Turnbull
Michael S. Uchiyama
Eric R. Ulm
Chris M. Vanden Haak
Jason A. Vary
Nilesh M. Vasani
Sylvain Veilleux
Frederic Venne
Tomas Vezauskas
Maxim Viel
Sebastien Y. Vignola
Remi Villeneuve
John T. Volanski
Benny Wan
Gary C. Wang
Jianbing Wang
Darren M. Welch
Kenneth P. Westman
John J. Whitaker
Gregory A. Whittaker
Timothy P. Wiebe
Andrew P. Wieduwilt
Stephen C. Williams
Rebecca Yang Wilson
Ian G. Winograd
Chun Shan Wong
Kim W. Wong
Laiping Wong
Philip Wong
Shing-Ming Wong
Tak Chi Wong
Yuk Lun Wong
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Agnieszka E.
Wygladala

Andreas Wyler
Jun Feng Xie
Huan Yao Xu
Xue Mei Xu
Dimitris Xynogalas

Benjamin J. Yang
Yan Yang
Andrew F. Yashar
Manha Yau
Heather M. Yonosh
Janice M. Young
Jiyoung Yue

Raymond R. Y. Yung
Alexandru Zaharia
Ali A. Zaker-Shahrak
Liang Zhang
Xiaoyu Zhang
Wei Dong Zhou

Part 5A

Part 5B

Brian M. Ancharski
Ashaley N. Attoh-

Okine
Chris D. Barela
Marie-Eve J. Belanger
Angela D. Burgess
Rachel A. Cills
Brenda K. Cox
Kevin P. Donnelly
Peter M. Doucette
Juan Espadas
Brandon L. Heutmaker

David G. Keeton
Stephen J. Langlois
Sean R. Lawley
Amy E. LeCount
Wendy R. Leferson
Erik F. Livingston
Laurence R. McClure

II
Jennifer A. McGrath
Rebecca E. Miller
James C. Murphy
Sureena Binte Mustafa

Loren J. Nickel
Sebastien Portmann
Laura B. Sachs
Anthony D. Salido
Michelle L. Sheppard
Nicki A. Styka
Phoebe A. Tinney
John D. Trauffer
Gaetan R. Veilleux
Kimberly A. Vogel
Tice R. Walker

Shawn C. Adams
Felix F. Aguilar
Aaron D. Albert
Fernando Alberto

Alvarado
Daryl S. Atkinson
Nicki C. Austin
Joseph M. Beesack
Richard J. Bell III
Mattthew C. Berasi
Chris M. Bilski
Robin V. Blasberg
Timothy D. Boles

Stephen A. Bowen
Elaine K. Brunner
Lisa K. Buege
Brian P. Bush
Douglas J. Busta
Cemal Alp Can
Rachel A. Cills
Robert J. Collingwood
Kelly K. Cusick
Francis J. Dooley
William E. Doran
Elaine V. Eagle
Jeffrey S. Ernst

Jieqiu Fan
Jennifer L. Fitzpatrick
Tricia D. Floyd
Katherine M. Funk
Timothy S. Grant
Ann E. Green
Diane E. Grieshop
Jeffrey A. Gruel
Deborah J. Gurnon
Jonathan M. Guy
Koichi Hamasaki
Jason C. Harland
Kandace A. Heiser
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Keri P. Helgeson
Robert E. Heyen
Carole K. L. Ho
Michael C. Hogan
Elena Ilina
Ronald J. Jankoski
Megan S. Johnson
Madeleine R. Kaestli
Brian M. Karl
Scott M. Klabacha
John E. Kollar
Eric T. Krause
Charles B. Kullmann
Thomas P. Langer
Nancy E. Lanier
Eric N. Laszlo
Xun-Yuan Liang
Steven R. Lindley
Andriy P. Loboda
Michael L. Loritsch
Wing Lowe
PeiQing Luo
Gavin Raj Maistry

Laura S. Marin
Susan E. Marra
Craig L. Merrill
Pantelis N.

Messolonghitis
Chad M. Miller
Paul J. Molinari
George C. Moulton
Sureena Binte Mustafa
John J. Myers
Lisa M. Nield
Brent J. Otto
Bruce G. Pendergast
Karen M. Peterka
Robert Anthony

Peterson
Terry C. Pfeifer
Timothy K. Pollis
Miriam Polyakov
Terry W. Quakenbush
Benjamin L. Richards
Kevin D. Roll
Randall D. Ross

Farid Sandoghdar
Michael J. Scarborough
Mark W. Schluesche
Robert E. Schmid
Elizabeth M. Scott
Yipei Shen
Ranjit B. Shiralkar
Lance H. Shull
Vijayalakshimi

Sridharan
Alexandra R. St-Onge
Christopher J. St.

George
Kevin L. Stephenson
Lisa Liqin Sun
Hugh T. Thai
Malgorzata Timberg
Peter R. Vita
Matthew J. Walter
Tom C. Wang
Jennifer X. Wu
Keith Young
Wei Zhang

Part 7-Canada

Patrick Barbeau
Brad D. Birtz
Richard Jason Cook
Jean-François

Desrochers
Louis-Christian C. H.

Dupuis
John S. Giles

Chantal Guillemette
Patricia A. Hladun
Omar A. Kitchlew
Jean-François

Larochelle
W. Scott Lennox
Stephane McGee
Martin Menard

Eric Millaire-Morin
Lambert Morvan
Cosimo Pantaleo
Bill D. Premdas
Nathalie Tremblay
Richard A. Van Dyke
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Jodie Marie Agan
Brian C. Alvers
Denise M. Ambrogio
Kevin L. Anderson
Peter Attanasio
Maura Curran Baker
Mary P. Bayer
Jody J. Bembenek
Jeremy T. Benson
Jason E. Berkey
Ellen A. Berning
Kofi Boaitey
Mary Denise Boarman
Thomas L. Boyer II
David C. Brueckman
Claude B. Bunick
Fatima E. Cadle
Ronald S. Cederburg
John Celidonio
Hao Chai
Sigen Harry Chen
Brian K. Ciferri
Susan M. Cleaver
Kiera E. Cope
Kevin A. Cormier
Thomas Cosenza
Paul T. Cucchiara
David F. Dahl
Peter R. DeMallie
Patricia A. Deo-

Campo Vuong
Mike Devine
Mary Jane B.

Donnelly

Kevin G. Donovan
Scott H. Drab
Donna L. Emmerling
Keith A. Engelbrecht
Laura A. Esboldt
Farzad Farzan
Christine M. Fleming
Donia N. Freese
Shina Noel Fritz
Cynthia Galvin
Michael A. Garcia
Dustin W. Gary
Hannah Gee
Laszlo J. Gere
Christie L. Gilbert
Patrick J. Gilhool
Joseph E. Goldman
Andrew S. Golfin Jr.
Olga Golod
Stacey C. Gotham
James C. Guszcza
David B. Hackworth
Dawn Marie S. Happ
Jason C. Head
Pamela B. Heard
Kristina S. Heer
Hans Heldner
Scott E. Henck
Deborah L. Herman
Mark D. Heyne
Robert C. Hill
David E. Hodges
Allen J. Hope
Derek R. Hoyme

Carol I. Humphrey
Rusty A. Husted
Thomas D. Isensee
Michael S. Jarmusik
Gregory O. Jaynes
Philippe Jodin
Steven M. Jokerst
Gregory K. Jones
Lawrence S. Katz
Cheryl R. Kellogg
David R. Kennerud
Susanlisa Kessler
Young Y. Kim
James F. King
Jill E. Kirby
Henry J. Konstanty
Darjen D. Kuo
Christine L. Lacke
Peter H. Latshaw
Doris Lee
Jeffrey Leeds
Joshua Y. Ligosky
Jia Liu
Jing Liu
Rebecca M. Locks
Kathleen T. Logue
Richard P. Lonardo
William F. Loyd
Alexander P. Maizys
Victor Mata
David M. Maurer
Timothy C. McAuliffe
John R. McCollough
Richard J. McElligott

Part 7-United States
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Mitchel Merberg
Vadim Y. Mezhebovsky
Suzanne A. Mills
Matthew K. Moran
Celso M. Moreira
Thomas M. Mount
Joseph J. Muccio
Scott L. Negus
Ronald T. Nelson
Michael D. Neubauer
Stoyko N. Nikolov
Mary A. Noga
Joshua M. Nyros
Rodrick R. Osborn
Carolyn Pasquino
Michael T. Patterson
Wendy W. Peng
Jill E. Peppers
Kevin T. Peterson
Kraig P. Peterson
Kristin S. Piltzecker
Warren T. Printz
Stephen D. Riihimaki
Ezra J. Robison

Scott I. Rosenthal
Bryant E. Russell
Frederick D. Ryan
Laura B. Sachs
Salimah H. Samji
Rachel Samoil
Jennifer A. Scher
Daniel David

Schlemmer
Darrel W. Senior
Larry J. Seymour
Paul O. Shupe
Lee O. Smith
Lora L. Smith-Sarfo
Scott G. Sobel
Anthony A. Solak
Christine L. Steele-

Koffke
Gary A. Sudbeck
Jonathan L. Summers
Edward Sypher
Neeza Thandi
Tanya K. Thielman
Lien K. Tu

Kieh Treavor Ty
Matthew L. Uhoda
Dennis R. Unver
Justin M. Van Opdorp
Cameron J. Vogt
Josephine M. Waldman
Colleen Ohle Walker
Kristie L. Walker
Janet L. Wang
Shaun S. Wang Ph.D.
Ya-Feng Wang
Petra L. Wegerich
Joseph C. Wenc
Chris J. Westermeyer
Paul D. Wilbert
Amy M. Wixon
Karin H. Wohlgemuth
Terry C. Wolfe
Mihoko Yamazoe
Run Yan
Nora J. Young
Gene Q. Zhang
Lianmin Zhou
Eric E. Zlochevsky

Part 9

Jason R. Abrams
Michael Bryan Adams
Genevieve L. Allen
Amy Petea Angell
Katherine H. Antonello
Wendy Lauren

Artecona
Martha E. Ashman
Joel E. Atkins
David Steen Atkinson

Patrick Beaudoin
Kristen Maria Bessette
David M. Biewer
John T. Binder
Linda Jean Bjork
Neil M. Bodoff
Mark E. Bohrer
Veronique Bouchard
Erick A. Brandt
James L. Bresnahan

John R. Broadrick
Sara T. Broadrick
Paul E. Budde
Julie Burdick
John C. Burkett
Robert N. Campbell
Allison F. Carp
Joseph G. Cerreta
Nathalie Charbonneau
Patrick J. Charles
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Yvonne W. Y. Cheng
Thomas Joseph

Chisholm
Kin Lun (Victor) Choi
Michael Joseph

Christian
Julia Feng-Ming Chu
Louise Chung-Chum-

Lam
Jason T. Clarke
Jeffrey J. Clinch
Eric John Clymer
Christopher Paul

Coelho
Steven A. Cohen
Larry Kevin Conlee
Christopher L.

Cooksey
Kathleen T.

Cunningham
M. Elizabeth

Cunningham
Jonathan Scott Curlee
Kris D. DeFrain
Nancy K. deGelleke
Michael Brad Delvaux
Pamela G. Doonan
Sharon C. Dubin
Tammi B. Dulberger
George T. Dunlap IV
Sophie Duval
Kevin M. Dyke
Mark Kelly Edmunds
Jane Eichmann
Gregory James Engl
Kathleen Marie Farrell

Benedick Fidlow
Kenneth D. Fikes
Ronnie Samuel Fowler
Michelle L. Freitag
Anne M. Garside
Abbe B. Gasparro
Charles E. Gegax
Gregory Evan Gilbert
Isabelle Gingras
Todd Bennett

Glassman
Christopher David

Goodwin
Francis X. Gribbon
Marvin Harlan Grove
Lisa N. Guglietti
Nasser Hadidi
Rebecca N. Hai
Eric Christian Hassel
Jeffery Tim Hay
Qing He
Amy Louise Hicks
Jay T. Hieb
Glenn R. Hiltpold
Christopher Todd

Hochhausler
Todd Harrison Hoivik
Long-Fong Hsu
John F. Huddleston
Craig D. Isaacs
Philip J. Jennings
Weidong Wayne Jiang
Charles B. Jin
Michael S. Johnson
Bryon Robert Jones
William Rosco Jones

Kyewook (Gary) Kang
Sean M. Kennedy
Stacey M. Kidd
Jennifer E. Kish
Brandelyn C. Klenner
Richard Scott Krivo
Scott C. Kurban
Kirk L. Kutch
Isabelle La Palme
Elaine Lajeunesse
William J. Lakins
Chingyee Teresa Lam
Carl Lambert
Travis J. Lappe
Ramona C. Lee
James P. Leise
Christian Lemay
John Norman Levy
Sally Margaret Levy
Shangjing Li
Xiaoying Liang
Matthew A. Lillegard
Dengxing Lin
Diana M. S. Linehan
Daniel A. Lowen
Joshua Nathan Mandell
Jason Aaron Martin
Stephen Joseph

McAnena
Kevin Paul

McClanahan
Kirk Francis Menanson
Mark F. Mercier
Richard Ernest Meuret
Jennifer Middough
Scott A. Miller



1999 EXAMINATIONS—SUCCESSFUL CANDIDATES 881

Ain Milner
Christian Morency
Jarow G. Myers
Brian C. Neitzel
Sean R. Nimm
John E. Noble
Sylvain Nolet
Corine Nutting
Randall William Oja
Christopher Kent Perry
Kathy Popejoy
Ni Qin-Feng
Ricardo A. Ramotar
Leonid Rasin
Sara Reinmann
Sylvain Renaud
Paul J. Rogness
John R. Rohe
Kim R. Rosen
Richard A.

Rosengarten
Sandra L. Ross

Brian P. Rucci
James C. Santo
Asif M. Sardar
Jason Thomas Sash
Jeremy N. Scharnick
Parr T. Schoolman
Stuart A. Schweidel
William Harold 

Scully III
Steven George Searle
Ernest C. Segal
Vladimir Shander
Tina Shaw
Meyer Shields
Theodore S. Spitalnick
Benoit St-Aubin
Scott T. Stelljes
Karrie Lynn Swanson
Varsha A. Tantri
Jonathan Garrett

Taylor
Robert M. Thomas II

Laura Little Thorne
Christopher S.

Throckmorton
Gary S. Traicoff
Michael C. Tranfaglia
Thomas A. Trocchia
Brian K. Turner
Eric Vaith
Amy R. Waldhauer
Lynne Karyl

Wehmueller
Scott Werfel
Dean Allen Westpfahl
Matthew M. White
Apryle Oswald

Williams
Dean M. Winters
Jonathan Stanger

Woodruff
Yin Zhang
Edward J. Zonenberg



NEW FELLOWS ADMITTED IN MAY 1999

First row, from left: Betsy A. Branagan, Alana C. Farrell, CAS President Steven G. Lehmann, Deborah M. King, Michael Shane. Second row, from left: Eleni
Kourou, Elliot Ross Bum, Dawn M. Lawson, Claudine Helene Kazanecki, Christopher C. Swetonic. Third row, from left: Brian Harris Deephouse, Richard Borge
Lord, Bruce Daniel Fell. Not pictured: Mustafa Bin Ahmad.



NEW ASSOCIATES ADMITTED IN MAY 1999

First row, from left: Larry Kevin Conlee, Jennifer L. Throm, Nathalie Chatbonneau, CAS President Steven G. Lehmann, Karen N. Levine, Silvia J. Alvarez,
Joseph Paul Greenwood. Second row, from left: Vladimir Shander, Yvonne W.Y. Cheng, Nathalie J. Auger, Andrea Elisabeth Trimble, Sally Margaret Levy, Sara
Reinmann, Amy Louise Hicks, Joseph John Sacala. Third row, from left: Steven A. Cohen, Stephane Brisson, Jason R. Abrams, Paul Jerome Johnson, Terrie Lynn
Howard, Anne M. Garside, Emily C. Gilde, Vahan A. Mahdasian. Fourth row, from left: Douglas M. Warner, Sean Oswald Curtis Cooper, Paul Edward Budde,
Thomas LeRoy Poklen Jr., Jay T. Hieb, Jonathan Stanger Woodruff, Glenn R. Hiltpold, Kirk Francis Menanson.



NEW ASSOCIATES ADMITTED IN MAY 1999

First row, from left: Gary Steven Traicoff, Stephen James Talley, Catherine L. DePolo, CAS President Steven G. Lehmann, Conni Jean Brown, Sean Paul Forbes,
Annmarie Schuster, Julia Feng-Ming Chu. Second row, from left: Burt D. Jones, Thomas S. Botsko, Jo Dee Thiel-Westbrook, Joseph Francis Rosta Jr., Brian
Michael Fernandes, Frances Ginette Sarrel, Gwendolyn Anderson. Third row, from left: Brian K. Turner, Jeffery Wayne Scholl, Michael A. Pauletti, Daniel George
Charbonneau, Jeffrey J. Clinch, Derek A. Jones. Fourth row, from left: Paul E. Green Jr., Anthony L. Alfieri, Todd Harrison Hoivik, Todd Douglas Cheema, James
M. Gallagher, Jason Thomas Sash.



NEW ASSOCIATES ADMITTED IN MAY 1999

First row, from left: David C. Riek, Dengxing Lin, Sophie Duval, Prabha Pattabiraman, CAS President Steven G. Lehmann, Allison F. Carp, Yin Zhang, Seth
Shenghit. Second row, from left: Derek D. Burkhalter, Michael S. Harrington, Isabelle La Palme, Bryan Hartigan, Sharon Xiaoyin Li, Anthony J. Pipia, Eric John
Clymer. Third row, from left: Christian Lemay, Mario Richard, Patrick Beaudoin, Jose R. Couret, David W. Warren, Kristen Maria Bessette, Laura Smith McAnena,
Christopher Kent Perry. Fourth row, from left: Sylvain Perrier, Justin Gordon Gensler, Sylvain Renaud, Robert Allan Rowe, Peter Abraham Scourtis, Jordan J. Pitz,
Ronnie Samuel Fowler, Mark R. Frank.



NEW ASSOCIATES ADMITTED IN MAY 1999

First row, from left: Jon S. Walters, Rosemary Catherine Peck, Randall William Oja, CAS President Steven G. Lehmann, Janelle Pamela Rotondi, Meredith
Martin Woodcock, Borwen Lee. Second row, from left: Mark E. Bohrer, Julie Burdick, Amy Lynn Baranek, Karen Ann Brostrom, David Ernest Corsi, Albert
Maroun, Mujtaba H. Datoo. Third row, from left: Michael Bryan Adams, Jayme P. Stubitz, Leo Martin Orth Jr., David R. Border, John Michael Pergrossi, Jeffery
Tim Hay, Fanny C. Paz-Prizant. Fourth row, from left: Thomas F. Krause, Christopher David Bohn, John T. Binder, Paul D. Anderson, Robert M. Thomas II, Glenn
Steven Hochler, Jeffrey Alan Clements, Steven Bradley Zielke.



NEW ASSOCIATES ADMITTED IN MAY 1999

First row, from left: Kelly A. Lysaght, Sharon R. Corrigan, Carolyn J. Coe, CAS President Steven G. Lehmann, Sheri L. Oleshko, Kathleen Frances Robinson,
Jason Aaron Martin. Second row, from left: Timothy L. McCarthy, Ain Milner, Timothy Michael DiLellio, Genard J. Palisi, Perry Keith Wooley, Sean O. Cooper,
David Garrett Shafer. Third row, from left: Serge Gagné, Mark Richard Strona, Michael Douglas Nielsen, Anthony Robert Bustillo, David James Belany, John
Edward Daniel, Michael W. Morro. Fourth row, from left: Ung Min Kim, Travis J. Lappe, Brook A. Hoffman, Kevin Earl Weathers, Bryon Robert Jones, Qing He,
Kenneth D. Fikes. New Associates admitted in May 1999 who are not pictured: Amy Petea Angell, Anju Arora, Mario Binetti, Jean A. DeSantis, James Robert
Elicker, Gregory James Engl, Janine Anne Finao, Theresa Giunta, Todd Bennett Glassman, Brendan Michael Leonard, Kevin M. Madigan, Atul Malhotra, Rasa
Varanka McKean, Sarah Kathryn McNair-Grove, John-Giang L. Nguyen, William Dwayne Rader Jr., James C. Santo, Jeremy Nelson Scharnick, Trevar K. Withers.



NEW FELLOWS ADMITTED IN NOVEMBER 1999

First row, from left: James B. Kahn, Robert J. Wallace, David Patrick Moore, CAS President Steven G. Lehmann, Patricia Cheryl White, Brian Tohru Suzuki,
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JOHN BEVAN
MARTIN BONDY
JOHN H. BOYAJIAN
J. EDWARD FAUST JR.
ROBERT L. HURLEY
PAUL S. LISCORD JR.
DANIEL J. LYONS
PHILIPP K. STERN

JOHN BEVAN
1917–1999

John Bevan died June 22, 1999, at the age of 82.

Bevan was a resident of Carleton–Willard Village in Bedford,
Massachusetts for four years, but had lived for many years in
neighboring Lexington. In Lexington, Bevan was active in com-
munity affairs, serving as an Appropriations Committee member
and Town Meeting member.

After attending Newton High School and Mount Hermon
School, Bevan graduated from Wesleyan University in 1938. He
attended Harvard Business School for one year and began his
career at Liberty Mutual Insurance Company.

In 1942, Bevan volunteered for service in World War II and
served as a navigator in the U.S. Army Air Corps. He flew nu-
merous missions in the Pacific theater over New Guinea for
which he was awarded the Distinguished Flying Cross. After
completing his service, Bevan continued in the Reserves until
1955.

Bevan returned to Liberty Mutual after his military service,
and became vice president/lead actuary until his retirement in

895
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1980. Bevan also served on the board of directors of the Lex-
ington Savings Bank and continued his volunteer work at First
Parish and FISH.

Bevan became an Associate of the Casualty Actuarial Society
in 1951 and a Fellow in 1953. He was a member of numerous
CAS committees including the Committee on Social Insurance
from 1965 to 1967, the Editorial Committee from 1967 to 1969,
and the Committee to Review Election Procedures in 1969.

Ruth (Glynn) Bevan said of her husband, “John always looked
forward with enthusiasm to the Society’s writings [and to] re-
newing old friendships from distant parts of the U.S.”

In addition to his wife, he is survived by a son, Roger of
Ohio; a brother, David of Ohio; and three grandchildren. A son,
Geoffrey, predeceased Bevan in 1997.
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MARTIN BONDY
1998

Martin Bondy died November 27, 1998.

Bondy, whose contributions to the Society spanned four
decades, earned his Associateship in 1953 and attained Fellow-
ship in 1956. Throughout the 1950s and 1960s, Bondy was the
author of numerous papers and reviews appearing in the Pro-
ceedings of the Casualty Actuarial Society. Some of these pa-
pers included “The Rate Level Adjustment Factor in Workmen’s
Compensation Ratemaking” (1956) and the review of “Burglary
Insurance Ratemaking” (1967).

Among his many CAS activities, Bondy was a member of the
Council (1964), chairperson of the Publicity Committee (1965),
member of the CAS Board of Directors (1974–77), and an ex
officio member of the Planning Committee (1974). In addi-
tion, Bondy was chairperson of the Committee on Loss Re-
serves (1975–76), consultant for the Education and Examina-
tion Committee–Examination (1978–83) and Examination Com-
mittee (1984–85), and a member of the Discipline Committee
(1993–95).

Bondy was working as an actuary with Royal Liverpool In-
surance Group in New York City in 1953, the year he became an
Associate. In 1954, Bondy went to work for the New York State
Insurance Department in New York City as an associate actuary.
He was promoted to principal actuary in 1957. In 1959, Bondy
made the move to Mutual Insurance Company (later known as
Consolidated Mutual Insurance) in Brooklyn, New York. In the
more than six years he was employed with Consolidated Mu-
tual, Bondy served as actuary and was promoted to the posts of
assistant treasurer (1961) and assistant vice president and actu-
ary (1962–65). Bondy’s next career move to Crum & Forster
(first in New York and later Morristown, New Jersey) was the
beginning of his longest company affiliation. During his more
than 20-year tenure with the company, Bondy served as assistant
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vice president and actuary (1965–67), vice president and actu-
ary (1968–73), vice president of corporate analysis and planning
(1974–78), and senior vice president (1979–87).

In the years following his work at Crum & Forster, Bondy
served as senior vice president of corporate planning for Home
Insurance Company in New York City (1988–93). His last post
before retiring was as senior vice president and chief actuary for
Skandia America Group (1994–96), also in New York.

Karl Moller (FCAS 1990), a colleague of Bondy’s at Home
Insurance Company, remarked that Bondy was a man of many
interests. He characterized Bondy as “a gentleman: : :very good
at cards” who had a fondness for the English language. Other
former colleagues in the actuarial department of Home Insurance
memorialized Bondy, calling him a wise, compassionate, gentle
man who inspired others with his humanity, humor, and delight
in non-obvious truth.
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JOHN H. BOYAJIAN
1917–1999

John H. Boyajian died August 29, 1999, in New Canaan, Con-
necticut. He was 81.

Born in Melrose, Massachusetts on December 8, 1917, Boy-
ajian attended Northeastern University in Boston. He graduated
from Northeastern in 1941 with a degree in mathematics and
later did some graduate work in physics.

During World War II, Boyajian joined the Navy and taught
midshipmen at Columbia University. He left the Navy in 1946
with the rank of Lieutenant.

In October 1944 he married his wife Jessie. Together they had
two children.

Boyajian worked for the National Bureau of Compensation
Insurance in New York City from 1946 to 1954. In 1954 he
moved his family to San Francisco, where he worked for the
California Inspection Rating Bureau until 1961. From 1961 to
1966 he was an actuary for the National Board of Fire Under-
writers in New York City. In 1966 he became head actuary for
New Jersey Manufacturers Insurance Company (now NJM In-
surance Group) in Trenton, where he worked until his retirement
in 1982.

In the years following his retirement, Boyajian kept busy with
volunteer work at Helene Fuld Hospital in Trenton, New Jersey.
Boyajian logged over 5,000 hours of volunteer work there, pri-
marily in patient admittance.

Boyajian became an Associate of the Society in 1950 and a
Fellow in 1956. His CAS committee work included service on
the Auditing (1965–1966) and Finance (1968–1970) Commit-
tees, and as Sites Liaison (1971–1972).

Boyajian and his wife attended many CAS meetings together,
often traveling with friends. “[Those were] some of the happiest
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times of his life,” said Candace DeSantes, Boyajian’s daughter.
“He really loved being an actuary,” DeSantes said.

A bowling and golf enthusiast, Boyajian was known for his
sense of humor. “Everybody who knew him thought he was re-
ally funny,” said DeSantes.

Boyajian is survived by his daughters, Lorna Goodrich of
Brooklyn, New York, and Candace DeSantes of Westport, Con-
necticut; four grandchildren; and three sisters, Martha, Flora, and
Betty. His wife Jessie predeceased him in 1979.
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J. EDWARD FAUST JR.
1925–1996

J. Edward Faust was born on March 1, 1925. He attended the
University of Notre Dame and graduated Cum Laude in 1945.
After graduating, Faust became a Lieutenant in the Navy, serving
from 1945 to 1948. The war ended just before Faust was to be
shipped overseas.

In 1948, Faust graduated from the University of Michigan in
Actuarial Studies and married his wife, Kathleen.

Faust began his career at the Indiana Department of Insurance
in Indianapolis. He then began working at Nelson & Warren Ac-
tuaries Consulting Firm in St. Louis, Missouri. He was a member
of the Casualty Actuarial Society for 40 years, becoming an As-
sociate in 1956, and a Fellow in 1960.

In 1982, Faust organized his own consulting firm, J. Edward
Faust, Jr., in Indianapolis where he continued his work until re-
tirement in 1995. He died December 6, 1996.

When commenting on their busy family life, Mrs. Faust said
of her husband that being skilled in math and being father to
his children were his greatest accomplishments. Faust is sur-
vived by his wife; eight children, Joseph F., Debra, Daniel E.,
Mary Faith, Carol Anastasia, Eric Anthony, Frederick Martin,
and J. Christopher; two brothers; 20 grandchildren; and two
great-grandchildren.
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ROBERT L. HURLEY
1911–1998

Robert L. Hurley died on October 26, 1998 in Soldiers and
Sailors Memorial Hospital in Wellsborro, New York. He was 87.

Hurley was born in Boston, Massachusetts on July 5, 1911,
the son of Michael and Anna Lambert Hurley. He was a member
of Knights of Columbus and the Lions Club.

Hurley received his Associateship to the Casualty Actuarial
Society in 1952 and his Fellowship in 1955. He served as a mem-
ber of the Education and Examination Committee from 1967 to
1971 and on the Editorial Committee from 1970 to 1972. He also
wrote eight papers published in the Proceedings of the Casualty
Actuarial Society.

Hurley is survived by his two sons, Garrett of Pittsburgh,
Pennsylvania and Ian of Riverdale, New York, and four grand-
children. His wife, Gabrielle Hurley, predeceased him in 1981.
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PAUL S. LISCORD JR.
1925–2000

Paul S. Liscord Jr. of Peterborough, New Hampshire died
February 23, 2000, after a long battle with prostate cancer. He
was 74.

Liscord was born on October 29, 1925, in Hartford, Con-
necticut. He was a graduate of the Loomis School in Windsor,
Connecticut and Dartmouth College in 1948. From March 1945
to May 1946, Liscord served in Europe with the Third Infantry
Regiment, U.S. Army as a radio technician, achieving the rank
of technical sergeant, 4th class.

After World War II, Liscord worked for the Travelers In-
surance Company in Hartford, Connecticut from 1948 to 1970,
where he became vice president in charge of all casualty actuar-
ial operations within the company. He later joined the Insurance
Company of North America in Philadelphia, managing their ca-
sualty actuarial department from 1971 to 1975. He also worked
for the New Hampshire Department of Insurance in Concord
and as chief actuary with the Massachusetts Insurance Rating
Bureau in Boston. In 1977, Liscord founded his own consulting
firm, Liscord, Ward and Roy Inc. in Concord, New Hampshire.

Liscord was a member of the Casualty Actuarial Society for
over 40 years, serving as president in 1973, vice president in
1971, and as a member of the CAS Council from 1968 to 1970.
He also served as chairperson on many committees including
the Committee on Automobile Insurance Research from 1966 to
1968, the Committee on Sites from 1968 to 1970, and the Long
Range Planning Committee from 1974 to 1975.

Liscord enjoyed singing and followed this passion throughout
his life. He sang in school glee clubs and at the community Con-
gregational churches to which he belonged. After his retirement
in 1990, he sang with the New Hampshire Friendship Chorus,
the Concord Vocal Octet, and the Concord Chorale, serving also
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as its president. His singing talents brought him to Western Eu-
rope, Eastern Europe and Russia, New Zealand, and Australia.
On two occasions he performed at Carnegie Hall in New York.

Liscord is survived by his wife, and “love of his life,” He-
len MacDonald Liscord; two daughters, Jean Kelly and Nadine
Bothwell; two sons, Paul S. Liscord III and Thomas Liscord; and
eight grandchildren.
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DANIEL J. LYONS
1905–1997

Daniel J. Lyons died on July 3, 1997. He was 92.

Lyons began his impressive actuarial career after graduating
with a mathematics degree from Harvard University in 1926. He
worked for three years as an assistant actuary at the Columbian
National Life Insurance Company from 1932 to 1934. Lyons
then moved to Trenton, New Jersey in 1935 and worked as a
chief assistant actuary at the New Jersey Department of Banking
and Insurance.

In 1943, Lyons began what was to be a successful 30-year
stint with The Guardian Life Insurance Company of American
in New York City as an assistant actuary. He was promoted to
second vice president in 1949, administrative vice president in
1954, vice president in 1957, and senior vice president in 1960.
Lyons served as president from 1964 to 1968, and worked for
three more years with Guardian Life as the chairman of the board
and chief executive before he retired from the company in 1971.

Lyons remained active in the insurance industry, serving one
year as the president of Associated Actuaries Incorporated in
Trenton and one year as president at Bankers National Life In-
surance Company in Parsippany, New Jersey. Lyons was also
a 66-year member of the Casualty Actuarial Society, receiving
his Associateship in 1931 and his Fellowship in 1936. He was a
member of the CAS Examination Committee in 1989.

Lyons is survived by his wife of 64 years, Irene M. Lyons;
two daughters, Jean L. Entwistle of New York City and Irene
L. Madden of McLean, Virginia; two sons, Daniel J. Lyons Jr.
of Princeton, New Jersey and Paul O. Lyons of Doylestown,
Pennsylvania, and his sister, Sister Marion Lyons.
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PHILIPP K. STERN
1911–1999

Philipp K. Stern died on April 19, 1999 at his home in Lake-
hurst, New Jersey.

Born in Paris, France in 1911, Stern moved with his family to
Vienna, Austria. Stern attended the University of Vienna, earning
a Ph.D. in law before emigrating to the United States in 1939.
In 1942 he married his wife Sylvia and together they had three
daughters.

An entrepreneur and rating bureau specialist, Philipp Stern
became a member of the Casualty Actuarial Society in 1956
when he gained his Associateship. He was a member of the CAS
Committee on Automobile Insurance Research (1964) and the
author of three papers published in the Proceedings of the Ca-
sualty Actuarial Society: “Current Rate Making Procedures for
Automobile Liability Insurance” (1956); Review of “An Approx-
imation for the Testing of Private Passenger Liability Territorial
Rate Levels Using Statewide Distribution of Classification Data”
(1964); and “Ratemaking Procedures for Automobile Liability
Insurance” (1965).

Throughout the 1950s and 1960s, Stern’s professional life was
centered in New York City. Stern was an actuary with Mutual
Insurance Rating Bureau in New York from 1957 to 1965, and
briefly served as actuary-manager for the National Bureau of
Casualty Underwriters in 1966. From 1967 to 1969, Stern served
as an actuary for the Insurance Rating Board. For most of the
1970s, Stern worked for the New Jersey Department of Insurance
in Trenton, where he was an actuary from 1971 to 1976. He later
became chief actuary there from 1977 to 1979. With the coming
of the new decade, Stern began his own actuarial consulting firm,
Philipp K. Stern, Inc., in Newark, Delaware. He retired from his
business in 1989.
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Stern is survived by his wife Sylvia; daughters Erica Stern of
Lakewood, Leda Walker of Morris, New York, and Sheera Stern
of Metuchen, New Jersey; and four grandchildren.
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