PARAMETER UNCERTAINTY IN (LOG)NORMAL
DISTRIBUTIONS

RODNEY E. KREPS
Abstract

The modeling of parameter uncertainty due to sample
size in normal and lognormal distributions with diffuse
Bayesian priors is solved exactly and compared to the
large-sample approximation. Large-scale simulation re-
sults are presented. The results suggest that (1) the large-
sample approximation is not very good in this case; and
(2) estimates of reserve uncertainty may be considerably
understated. A consequence is that intrinsic risk loads
and reinsurance premiums may also be considerably un-
derstated. An example is given from Best's Homeown-
ers paid data, where the mean estimate of IBNR hardly
changes: it is $9.96B without parameter uncertainty and
$10.01B with it, but the corresponding distribution stan-
dard deviations are 6.9% and 24.9% of the respective
means.

1. INTRODUCTION

One of the most ubiquitous sources of parameter uncertainty

is the fact that samples in real life are never infinite. Thus, when
using a sample to estimate parameters of a presumed underlying
distribution, the size of the sample must play a role in the un-
certainty in the derived values of the parameters. In general, this
uncertainty goes to zero as the sample size gets large. The con-
verse, that the uncertainty can be large and even infinite when

the sample size is small, is generally unappreciated.

For large samples the parameter distributions can be approxi-

mated by normal distributions, using the inverse of the matrix of
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second derivatives of the negative log-likelihood as the covari-
ance matrix!. This is what is usually done for all sample sizes.
What is not often understood is how wrong this approximation,
can be for small samples, say less than 10 data points.

The present paper is an attempt to give both an exact the-
oretical underpinning? and the practical cumulative distribution
functions for use with these distributions. Section 2 is the the-
ory; Section 3 is a numerical description of the actual distri-
butions; and Section 4 is a reserving application to stable paid
data. Of course, these results apply to any use of normal or log-
normal distributions on empirical data. Claim severity distribu-
tions would be one example, and especially for reinsurance data
the claim volume can be very small.

The general approach here will be to assume that we know the
form of the distribution, thus ignoring what is in practice a very
real source of parameter uncertainty. What is treated here is only
the effect of finite sample size. What is desired is the probability
of the parameters, given the observed sample. Given that, the
predictive distribution of the variable itself may be obtained by
summing over different parameter probabilities. In the present
case, this is done using simulation.

The method of treatment is to use a Bayesian approach. The
likelihood function gives the probability of the sample actually
seen, given the parameters of the underlying distribution. Bayes’
theorem says that the desired parameter probability distribution
is, up to a normalization, the product of the likelihood func-
tion and an assumed prior distribution of the parameters. The
assumed prior is here taken to be “diffuse,” meaning that it con-
tains as little information as possible in some sense.

This results essentially from taking just a second-order Taylor expansion of the negative
log-likelihood in the neighborhood of the minimum, as will be done in the special case
below. See [1, Section 18.26, page 675].

2This particular case is simple enough that it must have been solved many times. How-
ever, | am not aware of an actuarial application, and the derivation is instructive.
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2. THEORY

We will do the lognormal case, as the normal case is essen-
tially the same with the substitution of x for In(x). We are given
a sample of data x; with i = 1,2,...,n. The probability density
function is

[ =

202

1
V2rxo

The corresponding negative log-likelihood (NLL) is, up to con-
stant terms,

2
exp{—w}. 2.1

n _ N2 n
NLL = %Z (—IP—(%——“—L + Zln(xi) + nln(o) + cst. (2.2)

[:1 l=1

The analysis begins by constructing the partial derivatives

ONLL 1 & 1 4
W = ;;(N —In(x;)) = P {nﬂ - gln(xi)} (2.3)
and
ONLL _
do

1 & -
——5 > (=) + g 2.4)
i=1

The maximum likelihood estimators are obtained by finding
and o such that these partial derivatives are both zero:

1 n
= - In(x: 2.
1o "Zl n(x;),  and (2.5)

1 n
i=1
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The usual large sample approximation continues by creating the
second partial derivatives:

azalulgé _ ;nE 2.7)
INLL. _f{ - ;m(x )} @.8)
= -_U?'Tn(u —up),  and (2.9
32_8](V7_2L_L = %Z]m ~Inx))’ - 75 (2.10)
=3—Z{(u—uo)2+aé}—;n§- .10

Evaluating them at the maximum likelihood (minimum of the
NLL),

O*NLL n

———(1g,09) = =, (2.12)

au?_ Ho»%0 U(%

9*NLL

.00 ——=—(lg»,0p) = and (2.13)

ONLL 2

o7 (H0:00) = ;E (2.14)
0

We note in passing that the mixed partial derivative is zero only
on the line u = . This means (as will shortly be made explicit)
that in general the variables i and o are correlated.

The matrix of second-order partial derivatives evaluated at the
Imnimum 18
O*NLL O°NLL
ou? udo _ 1{1 0}. (2.15)
O’NLL O*NLL o3 |0 2
Oudo do?
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The inverse of this matrix is the covariance matrix for u and
o around the minimum when they are expressed as a bivariate
normal distribution:

{ var(u) COV(M,U)} _ U_(% { 1 ?} (2.16)

cov(u,0)  var(o) n |0 3

A simulation consists of drawing three deviates z, z;, and z, from
a standard normal distribution and setting

In(x) =p+o0z 2.17)

with o
u=u0+z1\/—% (2.18)

and o

0
O=0g+ 22— 2.19
0 2 \/2-,1 ( )

Equivalently,

In(x) = pg + GoZapp (2.20)

where the effective z in the large sample approximation, z,,,, is

given by
4 2
=——=+z|1+—==1. 2.21

Zapp T z ( \/,7) (2.21)

We note that the distribution for z,,, is symmetric about the

origin, which implies a mean of zero, and that the variance is
given by

3

var(z,,p) = 1 + o (2.22)

It has been pointed out to the author® that another approach

to a large sample approximation is to use In(c) as a variable in

place of ¢ in the NLL. Following the same procedure through,*

3By the reviewer, to whom thanks are given for this remark.
4Allhough the derivation is straightforward, it is somewhat tedious and not relevant for
the rest of the paper. Interested readers are invited to contact the author.
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Equation 2.20 remains the same but Equations 2.21 and 2.22
become

_ 4 2
Zapp =~ ﬁ + Zexp <_\/T—n> (2.23)

and : :
Var(Zapp) = " + exp (;) . 2.24)

The variable z,,, has zero mean, but is no longer symmetric. The
lack of symmetry is disturbing to the author. However, the vari-
ance is larger than before [Equation 2.22] at any n. The increased
dispersion of this large sample approximation will be closer to
reality.

The underlying technique for the large sample approximation
is to approximate the NLL by its Taylor series to second order
around the minimum and to take the Bayesian prior to be one
(i.e., not dependent on the parameters). However, the resulting
simple quadratic form for the NLL is exactly what one gets from
a normal (Gaussian) distribution. Hence the remark that, for large
samples, the parameter distribution is taken to be normal. The
hope is that by the time the NLL deviates significantly from the
approximation, its value is sufficiently large that it represents a
very small probability.’

However, in the present instance this hope is not fulfilled.
Returning to the exact problem, the NLL may be rewritten as

05 + (1 — po)?

NLLG{ 253

+ o + ln(o)} . (2.25)
Rescale the problem by defining normalized variables v and y
such that

W= g+ vog (2.26)

d
an o = yoy. (2.27)

3The justification for this technique is essentially the same as for the central limit theorem.
For a heuristic approach, see the discussion after Equation 2.28.
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Then the NLL becomes

2

1
NLL = n{ 24;: +1In(y) + pg + ln(ao)} . (2.28)
The range of v and y is the same as that for z and 0: —co < v < 00
and 0 <y < oo. It is perhaps not quite obvious, but easy to prove,

that the minimum NLL isatv=0and y = 1.

Although the NLL is exactly quadratic in v, it is not so in
y. In fact, it is the rather extreme asymmetry in y around the
minimum which results in the inadequacies of the large sam-
ple approximation. The large sample approximation results from
noticing that, as n gets large, only values of v and y which get
nearer to the minimum will give NLL values near its minimum.
Specifically, one could take NLL of, say, 20 plus the minimum
to be the largest value of interest. This corresponds to assuming
a probability for the parameters involved of exp(—20) to be ef-
fectively zero. Then as n gets larger the values of v and y which
give NLL = minimum + 20 get closer and closer to their mini-
mum values, approximately inversely with the square root of n.
This approximation gets better as n increases. In this approxima-
tion, terms in the Taylor series expansion of order higher than
the second all have contributions to the NLL which decrease as
n increases, and the NLL is better and better represented by just
the second order term.

We take a Bayesian approach and use diffuse prior distribu-
tions for v and y. Since v runs along the full axis from minus
infinity to infinity, the prior used is just 1. Since y runs along
the semi-axis, the suggested prior is proportional to 1/y? where
6 is either 0 or 1, depending on one’s preference®. The choice
f = 1 emphasizes small values of y and corresponds to the as-
sumption that the prior distribution of In(y) is flat; the choice
g = 0 assumes that the prior distribution of y is flat. Venter’ has

S[1, Section 8.28 p. 304]. A reference is made to an article by Jeffries, advocating 8 = 1.
7Gary Venter, private communication. He points out that on a semi-axis a flat prior
corresponds to assuming that it is as likely for the variable to lie between a million and
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emphasized that any choice of prior has strong implications. Ide-
ally, the nature of the data being fitted would give some clues as
to proper priors.

The joint distribution of v and y is, up to normalization factors
(we use the symbol ~), given by the product of the Bayesian

priors and the likelihood:
exod —n 142
. (2.29)

f(v’y)N yn+9

We now change variables from y to w by

2
y:”)}_(l__-k_v_) (2.30)
w
dy 1 [n(1+v?)
w2\ W (23D

and for the variables v and w, the joint distribution behaves as

Fr,w) ~ {W(n+6—3)/2 exp (_%) } {(1 N v2)—(n+9~l)/2} .
(2.32)

so that

This transformation does several nice things. First, since the joint
distribution is a product, the variables are independent (and there-
fore uncorrelated) and may be simulated separately. A corollary
of this is that v and y, and hence ¢ and o, are correlated. Second,
we can recognize the variable distributions as well known.

The variable w is chi-squared distributed® with parameter
(n + 69 —1). Equivalently, w/2 is gamma distributed [2, p. 104]
with parameter (n + § — 1)/2. Both of the inverse functions exist

a million and one as it is for the variable to lie between zero and one, and that it is
infinitely more likely to be excess of any finite amount than to be less than that amount.
8 Almost any text on statistics has the chi-squared and ¢-distributions, e.g., (2, p. 107].
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in Excel,’ and can be used in simulations. The mean value of w is
(n+6—1), and its variance is 2(n + 6 — 1). Thus w/n has a mean
of (1+(6—1)/n) and a standard deviation of /2(n+ 8 — 1)/n.
As n, the sample size, becomes large these go respectively to 1
and 0.

The variable vv/n + 6 — 2 is t-distributed [2, p. 145] with pa-
rameter (n + @ — 2). Therefore the mean value of v is zero, and
its standard deviation!® is 1/v/n + 6§ — 4. The standard deviation
does not exist if n + 8§ <4, but goes to zero as the sample size
increases.

In simulation situations if the underlying distribution does not
have a finite variance then the mean of the simulation will not
converge, because the mean of the simulation itself will have an
infinite standard deviation. In practice, this shows up as occa-
sional large jumps in the mean, even with millions of simula-
tions (in fact, no matter how many simulations are done). If the
simulation is being done in a situation where the upper end is
limited—for example in a ceded layer of reinsurance—then the
variance will always be finite. However, “finite” does not mean
the same as “of reasonable size.” In some numerical modeling
the author has come across cases where a distribution with finite
variance and a theoretical mean of a million dollars was produc-
ing an occasional value of a trillion dollars. Clearly, very many
millions of simulations would be necessary to get a reasonable
amount of convergence. It is recommended that actuaries should
try to avoid small sample sizes and/or at least work with lognor-
mal distributions which are truncated at the upper end.

Equation 2.32 shows that as far as v and w are concerned
taking # = 1 is the same as assuming that there is one more data
point than actually exists and taking € = 0. The results in Sections
3 and 4 and Appendix A are all done with 4 = 0. If one can
convince oneself that an appropriate value of 6 is 4, then all

Microsoft Excel 5.0. These functions may also be found elsewhere.
19The variance of the Student’s ¢ distribution with parameter 2 is n/(n —2).
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worries of convergence are over and as little as one data value
can be used. Trying to justify this may take some doing—not to
mention getting both a mean and standard deviation from one
value!

Another representation for v can be obtained by changing to

V2

Clearly, the support of this variable runs from 0 to 1, rather than

from —oo to oo, but

u

v==+ (2.34)

I —u

can be obtained from a u deviate by another random choice to
get the sign. Since

dv 1
B 2.3
du  2/u(l —u)? (2.35)
then
f(u) ~ u—l/2(l _ u)(n+9—2)/2 (2.36)

which is recognizable as the beta distribution with parameters
1/2 and (n + 6 —2)/2. Random deviates for the beta distribution
can be obtained either from the inverse function in Excel or as
a ratio of gamma deviates. Specifically, a beta(a, 3) deviate can
be obtained (2, p. 139] as x/(x + y) where x is gamma distrib-
uted with parameter o and y is gamma distributed with param-
eter 3.

Returning to the simulation methodology, if we let z be a de-
viate from the standard normal distribution, then in parallel with
Equations 2.17, 2.18, and 2.19 for the large sample approxima-
tion we have the exact results

In(x) = p+ o0z (2.37)

with
W= pg + voy, (2.38)
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2
o= 00\/£¥—2. (2.39)

Combining Equations 2.37, 2.38, and 2.39

and

In(x) = pg + 0oZess (2.40)

where the effective deviate z.g, is given by

2
zeﬁ=v+z\/w. (2.41)

Equation 2.41 for z.4 is the exact result for which z,,, of Equa-
tion 2.21 is an approximation. Like z,,, Z.¢ is symmetric about
the origin and has mean zero. This effective deviate generally
has a much broader tail than the large sample approximation.
However, in the limit of large n (as mentioned earlier) v goes to
zero and w goes to n, so that z.& goes to z. In fact, z.5 goes to

Zupp 0 Order 1/n and they both go to z.

In order to get the variance of z., the expectation of 1/w is
needed. To obtain this, use the fact that for any variable x which
is gamma distributed with parameter «, the expectation of any

power p of x is
I'la+ p)

Py= ———= 242
EG) = s (242)
w0 1 Fa-1) 1
a p—
E(;) = T@ a1 (2.43)
Since w/2 is gamma distributed with parameter (n + 6 — 1)/2,
2 2

Since the mean of z. is zero, its variance is just the expectation
of its square
var(zes) = E([ze¢1%). (2.45)



564 PARAMETER UNCERTAINTY IN (LOG)NORMAL DISTRIBUTIONS

Because of the independence of the variables, this implies

var(z.g) = var(v) + var(z)nE <&> [1+ var(v)] (2.46)

1 n 1
_n+9——4+n+9—3<1+n+0—4) (247)
n+1
=t 2.48
n+6—4 ( )

In the end, this is a remarkably simple result. Although this vari-
ance clearly goes to 1 as n becomes large, for n =5 and 6 =0
its value is 6! Of course, for n + 8 <4 it is infinite. This formula
also tempts one to choose 6 = 5 so that var(z.;) = 1 for all n.

3. PRACTICE

All of the results for z.¢ were done using Equation 2.41 with
# = 0 and different values of n. The tables and graphs are useful
for getting a feel for how the distributions change with n. If one
is uncomfortable with the diffuse prior used, then it is recom-
mended to generate one’s own values. It may in the course of
simulations be faster to look up values in tables rather than gen-
erate them on the fly, but as a matter of general preference the
author would rather generate than look up, especially in someone
else’s tables.

For various values of n, the density function of z.; was simu-
lated in two stages. In the first, 10,000,000 simulations were run
to get the range from 50% to 90% on the cumulative distribution
function (CDF). Then for values of n < 10, 50,000,000 simu-
lations were run to get 5,000,000 simulations of values greater
than the 90% level'! in order to get the tails of the distributions.

Let us look first at the general shape of the density functions.
As usual, the effect of parameter uncertainty is to push probabil-
ity away from the mean out into the tail, and the effect is more

"'This was not done in a spreadsheet, but in a C++ program.
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FIGURE 1
PROBABILITY DENSITY FUNCTIONS FOR DIFFERENT SAMPLE
SI1ZES

infinite

n=20

n=12

n=8

n=6

n=5

pronounced with increasing parameter uncertainty (i.e., decreas-
ing sample size). See Figure 1.

The differences begin to show up dramatically when we look
at the Cumulative Distribution Function (CDF) for various sam-
ple sizes. Because of the symmetry, only the portion from 50%
to 100% is shown in Figure 2.

The extension to even larger z.4 is shown in Figure 3. The
conclusion from these graphs is at least that the effect of sample
size can be substantial even for what might be thought to be
relatively large samples.

It is also of interest to compare for a fixed sample size the
normal distribution (infinite sample size, no parameter variation),
the large sample approximation, and the exact result. Figure 4
displays this comparison for sample size N = 3.

Clearly, the large sample approximation is not very good. On
the other hand, we didn’t expect it to be. However, sample size
N = 8 shows a similar pattern. See Figure 5.
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FIGURE 2
CUMULATIVE DISTRIBUTION FUNCTION FOR VARIOUS SAMPLE
SIZES
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FIGURE 3
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FIGURE 4

n = 3 CUMULATIVE DISTRIBUTION FUNCTION FOR VARIOUS
TECHNIQUES
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FIGURE 5
n = 8 CUMULATIVE DISTRIBUTION FUNCTION FOR VARIOUS
TECHNIQUES
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TABLE 1
EFFECTIVE z BY SAMPLE SIZE FOR SOME KEY CDF VALUES

Sample
Size 3 4 5 6 8 12 20  Infinite

CDF
50% 0.000 0000 0000 0000 0.000 0.000 0.000 0.000
60% 0650 0456 0391 0358 0325 0297 0278 0253

70% 1.454 0976 0826 0752 0677 0618 0576 0.524
80% 2752 1.677 1384 1245 1.109 1.002 0931 0842
90% 6.159 2981 2315 2028 1.762 1564 1436 1.282

95.0% 1262 4617 3327 2819 2380 2067 1873 1645
97.5% 2541 6.802 4501 3672 2998 2541 2269 1.960
98.0% 3181 7.666 4923 3965 3200 2.691 2391 2.054
99.0% 63.71 11.02 6422 4956 3850 3.151 2757 2326
99.5% 1275 1571 8260 6.089 4.542 3614 3.108 2.576
99.9% 6393 3535 1447 9526 6392 4726 3897 3.09

99.95% 1,308 50.13 1846 1149 7.328 5247 4232 3290
99.99% 6,476 1304 3258 1753 9822 6513 5023 3719
99.995% 12,470 1641 4264 2075 11.18 7.108 5371 3.891]
99.999% 57,550 3454 6741 31.11 1473 9353 6.158 4265

Even here, the large sample approximation is much closer to
the pure normal than it is to the exact result, especially in the
region of high cumulative probability. The approximation has es-
sentially the same tail behavior as a normal, while the exact result
has a much fatter tail. This suggests that the approximation does
not hold well for these sample sizes, which are, unfortunately,
typical of those usable in chain-ladder reserving.

A complete set of appropriate effective deviates for various
CDF values and various sample sizes all at § = 0 is given in Ap-
pendix A. That set is intended for use in simulations if the reader
does not want to generate directly the underlying distributions.
A subset for some key values of the CDF is given in Table 1.

If we look, for example, at the 99.9% level (in bold type),
then for n infinite we recognize z.4 = 3.090 as a familiar friend
from the normal distribution. As the sample size decreases, the
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location of the 99.9% level increases from 3.09. For n = 8 it has
more than doubled to 6.4; for n = 5 it has almost quintupled to
14.5; and for n = 3 it is up to 639! In general, in order to reach
any CDF level one must go to increasingly higher multiples of
the sigma estimator as the sample size decreases, and the effect
is more pronounced as the CDF level increases.

All of the above indicates that the tails are much fatter than
one might have thought when using either the large sample ap-
proximation to the parameter uncertainty or no parameter uncer-
tainty at all.

4. RESERVING

Typically in chain-ladder reserving, the age-to-age factors are
implicitly or explicitly taken to be normal or lognormal. For ex-
ample, the not atypical procedure which we will use here starts
by taking the most recent five calendar years of data and aver-
ages the logs of the appropriate age-to-age factors in the data to
get the log of the projected age-to-age factor. This gives point
estimates of the age-to-age factors, which generate the age-to-
ultimate factors, which give the IBNR.

Five years is chosen as an intuitive compromise between want-
ing to stabilize the results by having lots of data and wanting to
use only data which is close enough to the current business to
be relevant. Clearly there will always be judgment calls of some
sort.

In order to go beyond a point estimate of IBNR, the next
step is to explicitly assume that the age-to-age factors are log-
normally distributed independently at each age. Then we have a
sample of five for each age-to-age factor and can calculate the
maximum likelihood estimators for both x and ¢. Since the prod-
uct of lognormal variables is also lognormal, the age-to-ultimate
factors are lognormal and their parameters can be easily calcu-
lated. This allows the representation of IBNR as a distribution,
rather than just a single value.



570 PARAMETER UNCERTAINTY IN (LOG)NORMAL DISTRIBUTIONS

FIGURE 6
CDF FOR HOMEOWNERS PAID IBNR
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However, this procedure corresponds to using the infinite
sample size approximation for the parameter variation—i.e., as-
suming that there isn’t any. Given the above discussion, it will be
no surprise that we recommend that the z.4 for n = 5 be used. It
does mean that the distributions for the age-to-age factors must
be numerically rather than analytically generated, but this is a
relatively minor difficulty.

For a concrete example, we use industry data from Best’s
1995 Aggregates and Averages. The original data is Home-
owners-Farmowners Schedule P paid data from accident years
1985 to 1994 inclusive, which is displayed in Appendix B.
The CDFs are shown in Figure 6, and the labels “infinite,”
“approximation,” and “exact” refer as before to the situations
with no parameter variation (infinite sample), the large sample
approximation, and the exact result.

An expansion of the dangerous half of the distribution is
shown in Figure 7. A line has been put in at $11.5 billion to
guide the eye. The probability of exceeding that value is 1.39%
for the “infinite” calculation, which would seem a conservative
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FIGURE 7
CDF FOR HOMEOWNERS PAID IBNR
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reserving level. However, for the approximation the probability
is 2.81%, and for the exact result it is 12.78%. To get to the
exact 1.39% level, it is necessary to reserve $14.1 billion! These
differences are clearly important for a reinsurer. Even for an
insurer who reserves at the mean value, the unexpectedly large
variability will show up either as an increased risk load cost—
probably as cost of liquidity—or as a nasty surprise.

The main simulation results!? are summarized in Table 2.

It should be noted that even these results are somewhat opti-
mistic (in the sense of providing a small coefficient of variation)
in that all factors were taken to have n = 5 and in reality the tail
of the triangle did not have that much data.

Since this is industry data on a relatively stable line, the 24.9%
coefficient of variation for the exact result may be indicative of
the minimum reserve variation to be expected.

12For 1,000,000 simulations in each case. Run times were 10 minutes, 20 minutes, and
40 minutes.
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TABLE 2
SIMULATION RESULTS

CDF Infinite Approximation Exact
20% $9,377,999 $9,323,378 $8,889,821
40% $9,775,408 $9,762,350 $9,638,914

60% $10,121,909 $10,137,497 $10,267,019
80% $10,530,213 510,586,319 $11,050,725
90% $10,839,277 $10,944,285 $11,743,068
95% $11,097,636 $11,257,818 $12,453,300
98% $11,393,344 $11,637,681 $13,550,822
99.0% $11,590,893 $11,912,637 $14,599.413
99.5% $11,769,344 $12,172,122 $16,014,574

99.9% $12,144913 $12,745,661 $21,581,916
mean $9,956,034 $9,959,629 $10,007,938
standard deviation $685,580 $782,023 $2,489,269
coefficient of variation 6.9% 7.9% 24.9%
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York.
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APPENDIX A

TABLE OF EFFECTIVE z FOR 6 =0
BY CDF VALUE BY SAMPLE SIZE

Size

3 4 5 6 7 8 10 12 20 Infinite

CDF
50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%
61%
62%
63%
64%
65%
66%
67%
68%
69%
70%
1%
12%
73%
74%
75%
76%
77%
78%
79%
80%
81%
82%
83%
84%
85%
86%
87%
88%
89%
90%

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0628 0.0448 0.0384 0.0354 0.0335 0.0320 0.0304 0.0292 0.0274 0.0251
0.1259 0.0895 0.0769 0.0706 0.0668 0.0641 0.0608 0.0585 0.0550 0.0502
0.1892 0.1344 0.1155 0.1060 0.1002 0.0962 0.0911 0.0879 0.0825 0.0753
0.2531 0.1795 0.1542 0.1414 0.1336 0.1283 0.1216 0.1175 0.1100 0.1004
0.3173 0.2247 0.1931 0.1770 0.1673 0.1606 0.1523 0.1470 0.1376 0.1257
0.3821 0.2702 0.2322 0.2129 0.2010 0.1929 0.1830 0.1766 0.1652 0.1510
0.4476 0.3161 0.2715 0.2488 0.2349 0.2255 0.2138 0.2062 0.1931 0.1764
0.5143 0.3624 0.3109 0.2848 0.2689 0.2583 0.2448 0.2361 0.2210 0.2019
0.5816 0.4089 0.3507 0.3212 0.3032 0.2913 0.2760 0.2662 0.2492 0.2275
0.6503 0.4560 0.3909 0.3579 0.3378 0.3245 0.3074 0.2966 0.2776 0.2533
0.7207 0.5038 0.4315 0.3950 0.3727 0.3580 0.3391 0.3271 0.3061 0.2793
0.7925 0.5525 0.4728 0.4324 0.4079 0.3918 0.3711 0.3579 0.3348 0.3055
0.8665 0.6018 0.5143 0.4703 0.4435 0.4259 0.4034 0.3891 0.3637 0.3319
0.9422 0.6519 0.5566 0.5087 0.4794 0.4603 0.4360 0.4203 0.3929 0.3585
1.0198 0.7030 0.5996 0.5477 0.5161 0.4952 0.4691 0.4522 0.4226 0.3853
1.1003 0.7549 0.6433 0.5873 0.5532 0.5307 0.5023 0.4844 0.4525 04125
1.1835 0.8079 0.6876 0.6274 0.5908 0.5664 0.5360 0.5170 0.4829 0.4399
1.2703 0.8623 0.7328 0.6683 0.6290 0.6028 0.5703 0.5501 0.5136 0.4677
1.3598 0.9182 0.7791 0.7100 0.6678 0.6399 0.6053 0.5837 0.5446 0.4958
1.4535 0.9755 0.8262 0.7524 0.7074 0.6775 0.6407 0.6176 0.5762 0.5244
1.5518 1.0345 0.8747 0.7959 0.7476 0.7159 0.6768 0.6522 0.6082 0.5534
1.6547 1.0953 0.9244 0.8402 0.7889 0.7553 0.7135 0.6875 0.6409 0.5828
1.7634 1.1579 0.9754 0.8855 0.8310 0.7953 0.7510 0.7235 0.6742 0.6128
1.8784 1.2229 1.0280 0.9321 0.8743 0.8365 0.7893 0.7602 0.7082 0.6433
2.0002 1.2902 1.0821 0.9800 0.9186 0.8787 0.8285 0.7980 0.7431 0.6745
2.1291 1.3607 1.1379 1.0292 0.9642 0.9221 0.8689 0.8365 0.7788 0.7063
22681 1.4341 1.1957 1.0804 1.0112 0.9666 0.9103 0.8762 0.8152 0.7388
2.4171 1.5110 1.2557 1.1331 1.0598 1.0125 0.9530 0.9169 0.8526 0.7722
2.5778 1.5918 1.3184 1.1878 1.1101 1.0601 0.9971 0.9588 0.8911 0.8064
2.7521 1.6767 1.3838 1.2448 1.1623 1.1092 1.0429 1.0021 0.9306 0.8416
2.9420 1.7666 1.4524 1.3042 1.2165 1.1603 1.0901 1.0470 0.9716 0.8779
3.1509 1.8623 1.5245 1.3667 1.2734 1.2136 1.1390 1.0937 1.0140 0.9154
3.3808 1.9642 1.6004 1.4318 1.3329 1.2691 1.1900 1.1422 1.0580 0.9542
3.6372 2.0735 1.6809 1.5008 1.3954 1.3275 1.2433 1.1929 1.1039 0.9945
3.9250 2.1914 1.7669 1.5736 1.4611 1.3888 1.2993 1.2461 1.1519 1.0364
4.2498 23191 1.8592 1.6515 1.5313 1.4537 1.3586 1.3021 1.2023 1.0803
4.6222 2.4593 1.9582 1.7343 1.6056 1.5228 1.4210 1.3613 1.2556 1.1264
5.0524 2.6146 2.0665 1.8240 1.6853 1.5967 1.4881 1.4243 1.3121 1.1750
5.5561 2.7866 2.1844 1.9217 1.7717 1.6764 1.5597 1.4915 1.3721 1.2265
6.1588 29813 2.3153 2.0283 1.8658 1.7624 1.6376 1.5640 1.4362 1.2816
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PARAMETER UNCERTAINTY IN (LOG)NORMAL DISTRIBUTIONS

TABLE OF EFFECTIVE z FOR 6 = 0
BY CDF VALUE BY SAMPLE SIZE
(Continued)

Size

10

12

2

feny

Infinite

CDF
90.1%
90.2%
90.3%
90.4%
90.5%
90.6%
90.7%
90.8%
90.9%
91.0%
91.1%
91.2%
91.3%
91.4%
91.5%
91.6%
91.7%
91.8%
91.9%
92.0%
92.1%
92.2%
92.3%
92.4%
92.5%
92.6%
92.7%
92.8%
92.9%
93.0%
93.1%
93.2%
93.3%
93.4%
93.5%
93.6%
93.7%
93.8%
93.9%
94.0%
94.1%
94.2%
94.3%

6.2199
6.2876
6.3568
6.4270
6.4988
6.5723
6.6473
6.7235
6.8017
6.8814
6.9627
7.0456
7.1312
7.2189
7.3084
7.3998
7.4930
7.5892
7.6873
7.7878
7.8913
7.9968
8.1049
B.2158
8.3294
R.4467
8.5661
8.6892
8.8153
8.9453
9.0797
9.2163
9.3579
9.5033
9.6537
9.8088
9.9690
10.134
10.305
10.481
10.663
10.852
11.047

3.0024
3.0234
3.0448
3.0665
3.0885
3.1108
3.1336
3.1567
3.1800
3.2037
3.22717
3.2520
3.2768
3.3018
3.3272
3.3531
3.3795
3.4063
3.4335
3.4612
3.4895
35182
3.5476
3.5772
3.6076
3.6385
3.6700
3.7020
3.7347
3.7680
3.8019
38365
3.8720
3.9081
3.9449
3.9825
4.0211
4.0605
4.1007
4.1420
4.1843
4.2276
4.2721

2.3297
2.3437
2.3579
23722
2.3867
2.4014
2.4163
2.4313
2.4466
2.4621
24777
2.4935
2.5096
2.5258
2.5423
2.5590
2.5759
2.5931
2.61006
2.6284
2.6464
2.6646
2.6831
27020
27211
2.7404
2.7600
27799
2.8003
2.8210
2.8420
2.8634
2.8852
29072
2.9295
29524
2.9759
2.9997
3.0240
3.0488
3.0741
3.0999
3.1262

2.0389
2.0503
2.0618
2.0734
2.0852
2.0970
2.1090
21212
2.1335
2.1458
2.1583
2.1710
2.1838
2.1969
2.2101
22235
2.2369
2.2506
2.2644
2.2785
2.2926
2,307
2.3216
2.3364
2.3514
2.3666
2.3821
2.3978
2.4137
2.4299
2.4463
2.4630
2.4800
2.4972
2.5148
2.5326
2.5506
2.5690
2.5877
2.6068
2.6262
2.6460
2.6661

1.8757
1.8858
1.8959
1.9061
1.9164
1.9269
1.9374
1.9481
1.9588
1.9696
1.9806
1.9918
2.0031
2.0144
2.0259
2.0375
2.0493
2.0613
2.0734
2.0856
2.0980
2.1106
2.1233
2.1360
2.1490
2.1621
2.1754
2.1888
22026
2.2164
22304
2.2447
2.2593
2.2740
2.2890
2.3043
2.3198
2.3356
2.3516
2.3678
2.3842
2.4009
24179

1.7727
17819
1.7911
1.8005
1.8099
1.8194
1.8291
1.8388
1.8486
1.8585
1.8686
1.8787
1.8889
1.8994
1.9098
1.9204
1.9311
1.9419
1.9528
1.9639
1.9752
1.9865
1.9980
2.0096
2.0213
2.0331
2.0452
2.0575
2.0699
2.0825
2.0952
2.1082
2.1214
2.1347
2.1482
2.1619
2.1759
2.1901
2.2045
22191
22340
2.2490
2.2643

1.6456
1.6538
1.6621
1.6704
1.6788
1.6873
1.6959
1.7046
1.7134
1.7222
1.7311
1.7401
1.7492
1.7584
1.7678
1.7772
1.7867
1.7964
1.8061
1.8159
1.8258
1.8359
1.8460
1.8563
1.8667
1.8773
1.8879
1.8987
1.9096
1.9207
1.9320
1.9434
1.9549
1.9666
1.9784
1.9904
2.0026
20150
2.0275
2.0402
2.0532
2.0664
2.0797

1.5720
1.5797
1.5875
1.5953
1.6032
1.6111
1.6191
1.6272
1.6354
1.6436
1.6520
1.6604
1.6688
1.6774
1.6861
1.6948
1.7037
1.7126
1.7217
1.7307
1.7399
1.7492
1.7587
1.7682
1.7778
L7876
1.7975
1.8075
1.8176
1.8279
1.8384
1.84%9
1.8596
1.8704
1.8813
1.8925
1.9037
1.9152
1.9267
1.9386
1.9504
1.9624
1.9748

1.4435
1.4503
1.4571
1.4639
1.4709
1.4779
1.4849
1.4920
1.4992
1.5065
1.5138
1.5212
1.5286
1.5361
1.5436
1.5513
1.5590
1.5669
1.5749
1.5828
1.5908
1.5990
1.6072
1.6155
1.6240
1.6325
1.6411
1.6498
1.6586
1.6675
1.6764
1.6855
1.6948
1.7041
17136
1.7232
1.7329
1.7427
1.7527
1.7628
1.7731
1.7835
1.7940

1.2873
1.2930
1.2988
1.3047
1.3106
1.3165
1.3225
1.3285
1.3346
1.3408
1.3469
1.3532
1.3595
1.3658
1.3722
1.3787
1.3852
1.3917
1.3984
1.4051
1.4118
1.4187
1.4255
1.4325
1.4395
1.4466
1.4538
1.4611
1.4684
1.4758
1.4833
1.4909
1.4985
1.5063
1.5141
1.5220
1.5301
1.5382
1.5464
1.5548
1.5632
1.5718
1.5805
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TABLE OF EFFECTIVE z FOR § =0
BY CDF VALUE BY SAMPLE SIZE
(Continued)

575

Size

10

12

20

Infinite

CDF
94.4%
94.5%
94.6%
94.7%
94.8%
94.9%
95.0%
95.1%
95.2%
95.3%
95.4%
95.5%
95.6%
95.7%
95.8%
95.9%
96.0%
96.1%
96.2%
96.3%
96.4%
96.5%
96.6%
96.7%
96.8%
96.9%
97.0%
97.1%
97.2%
97.3%
97.4%
97.5%
97.6%
97.7%
97.8%
97.9%
98.0%
98.1%
98.2%
98.3%
98.4%
98.5%

11.247
11.455
11.670
11.895
12.127
12.369
12.621
12.883
13.155
13.439
13.736
14.045
14.371
14.708
15.064
15.438
16.830
16.241
16.673
17.131
17.611
18.117
18.652
19.219
19.824
20.472
21.160
21.892
22.674
23.518
24431
25.414
26.481
27.640
28.902
30.284
31.809
33.482
35.355
37.446
39.785
42.451

4.3174
4.3643
4.4121
4.4614
45119
4.5636
4.6168
4.6718
4.7282
4.7863
4.8458
4.9072
4.9711
5.0372
5.1054
5.1759
5.2490
5.3246
5.4032
5.4848
5.5698
5.6577
5.7498
5.8455
5.9463
6.0513
6.1607
6.2756
6.3965
6.5244
6.6390
6.8024
6.9538
7.1139
7.2850
7.4690
7.6656
7.8775
8.1065
8.3553
8.6267
8.9249

3.1530
3.1803
3.2085
3.2372
3.2667
3.2966
3.3275
3.3593
3.3915
3.4247
3.4587
3.4938
3.5297
3.5669
3.6047
3.6438
3.6843
3.7260
3.7688
3.8130
3.8589
3.9065
3.9556
4.0063
4.0595
4.1146
4.1723
4.2322
4.2945
4.3603
4.4286
4.5006
4.5760
4.6558
4.7399
4.8287
4.9230
5.0239
5.1315
5.2479
5.3734
5.5087

2.6867
2.7076
2.7289
2.71507
2.7729
2.7957
2.8189
2.8428
2.8671
2.8920
2.9176
2.9437
2.9706
2.9980
3.0263
3.0554
3.0851
3.1158
3.1474
3.1800
3.2134
3.2480
3.2836
3.3205
3.3588
3.3983
3.4394
3.4822
3.5268
3.5732
3.6216
3.6721
3.7251
3.7805
3.8388
3.9003
3.9655
4.0344
4.1081
4.1868
4.2710
4.3615

2.4354
2.4533
2.4713
2.4898
2.5087
2.5279
2.5477
2.5684
2.5889
2.6098
2.6313
2.6532
2.6758
2.6988
2.7224
2.7464
27710
2.7964
2.8226
2.8494
2.8771
2.9055
2.9348
2.9652
2.9967
3.0290
3.0626
3.0974
3.1336
3.1711
3.2101
3.2507
3.2934
3.3379
3.3848
3.4342
3.4863
3.5411
3.5996
3.6613
3.7274
3.7983

2.2800
2.2960
2.3123
2.3288
2.3456
2.3627
2.3802
2.3981
2.4163
2.4348
2.4539
24734
2.4933
2.5136
2.5343
2.5556
2.5775
2.6000
2.6229
2.6465
2.6709
2.6960
2.7219
2.7484
2.7760
2.8044
2.8338
2.8645
2.8960
2.9286
2.9624
2.9977
3.0345
3.0730
3.1136
3.1560
3.2004
3.2472
3.2969
3.3497
3.4059
3.4660

2.0933
2.1071
2.1212
2.1355
2.150t
2.1650
2.1800
2.1955
22112
22272
22436
2.2603
22774
2.2949
2.3128
2.3310
2.3497
2.3689
2.3886
2.4088
2.4295
2.4507
2.4726
2.4951
2.5183
2.5422
2.5669
2.5924
2.6187
2.6461
2.6743
2.7037
2.7343
2.7661
2.7997
2.8347
2.8714
29102
2.9507
2.9936
3.0392
3.0881

1.9872
2.0000
2.0129
2.0260
2.0394
2.0530
2.0668
2.0809
2.0953
2.1100
2.1250
2.1402
2.1558
2.1717
2.1880
22046
2.2217
2.2390
2.2570
22752
2.2940
2.3133
2.3332
2.3536
2.3744
2.3958
2.4180
2.4409
2.4647
2.4892
2.5147
2.5410
2.5686
2.5972
2.6272
2.6583
2.6908
2.7251
2.7612
2.7993
2.8396
2.8826

1.8048
1.8158
1.8269
1.8381
1.8495
1.8610
1.8728
1.8849
1.8972
1.9096
1.9224
1.9354
1.9486
1.9619
1.9756
1.9897
2.0040
2.0188
2.0337
2.0489
2.0647
2.0807
2.0971
2.1140
2.1315
2.1495
2.1679
2.1868
2.2064
2.2263
2.2474
2.2691
2.2916
2.3149
2.3394
2.3648
2.3912
2.4191
2.4482
2.4788
25113
2.5454

1.5893
1.5982
1.6072
1.6164
1.6258
1.6352
1.6449
1.6546
1.6646
1.6747
1.6849
1.6954
1.7060
1.7169
1.7279
1.7392
1.7507
1.7624
1.7744
1.7866
1.7991
1.8119
1.8250
1.8384
1.8522
1.8663
1.8808
1.8957
1.9110
1.9268
1.9431
1.9600
1.9774
1.9954
2.0141
2.0335
2.0537
2.0748
2.0969
2.1201
2.1444
2.1701
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PARAMETER UNCERTAINTY IN (LOG)NORMAL DISTRIBUTIONS

TABLE OF EFFECTIVE z FOR 8 =0
BY CDF VALUE BY SAMPLE SIZE
(Continued)

Size

10

12

20

Infinite

CDF
98.6%
98.7%
98.8%
98.9%
99.0%
99.1%
99.2%
99.3%
99.4%
99.5%
99.6%
99.7%
99.8%
99.9%

99.91%
99.92%
99.93%
99.94%
99.95%
99.96%
99.97%
99.98%
99.99%
99.991%
99.992%
99.993%
99.994%
99.995%
99.996%
99.997%
99.998%
99.999%
99.9991%
99.9992%
99.9993%
99.9994%
99.9995%
99.9996%
99.9997%
99.9998%
99.9999%
100%

45.492
48.998
53.097
57.907
63.707
70.795
79.707
91.036
106.30
127.54
159.43
212,56
318.87
639.32
710.10
802.48
924.73
1071.4
1308.2
1603.7
21298
3195.1
6476.5
7155.0
8105.2
9463.0
10820.
12470.
15513.
20567.
30128.
57549.
123124
139934
152587
174499
200226
237470
281976
354906
566663
4870750

9.2531
9.6177
10.027
10.489
11.019
11.635
12.356
13.230
14.315
15.709
17.595
20.367
25.001
35.346
37.358
39.704
42.935
46.165
50.132
55.886
64.578
79.327
130.35
137.10
143.86
150.61
157.36
164.12
177.26
204.65
249.52
345.39
528.79
558.35
606.41
652.78
703.32
771.56
856.72
1079.4
1407 .4
8260.6

5.6560
5.8178
5.9985
6.1984
6.4222
6.6779
6.9732
7.3215
7.7411
8.2600
8.9434
9.8927
11.384
14.466
15.013
15.607
16.388
17.200
18.463
19.756
21.719
24.905
32.577
34.590
36.603
38.617
40.630
42.644
44.657
47.133
53.817
67.405
89.391
93.151
99.113
104.17
109.14
118.18
128.12
145.55
176.46
958.00

4.4599
4.5669
4.6837
4.8125
4.9558
5.1181
5.3036
5.5182
5.7747
6.0891
6.4912
7.0398
7.8785
9.5264
9.7723
10.091
10.453
10.871
11.487
12.104
13.037
14.473
17.533
17.863
18.424
19.038
19774
20.754
22.133
23.752
26.086
31.115
38.011
39.277
40.437
42.105
43.939
46.238
49.570
56.462
67.100
15691

3.8742
3.9573
4.0473
4.1458
4.2560
43794
4.5194
4.6799
4.8698
5.1006
5.3913
5.7817
6.3601
7.4639
7.6388
7.8452
8.0855
8.3560
8.6942
9.2022
9.7135
10.582
12.262
12.547
13.066
13.677
14.288
14.899
15.510
16.122
17.333
20.156
23.330
23.970
24,688
25.339
26214
27.656
28.945
31.573
36.220
121.20

3.5306
3.6007
3.6765
3.7592
3.8501
39518
4.0677
42011
4.3566
4.5425
4.7766
5.0854
5.5437
6.3924
6.5205
6.6830
6.8630
7.0571
7.3285
7.6146
8.0344
8.6579
9.8218
10.020
10.219
10.539
10.861
11.182
11.558
12.166
13.066
14.730
16.773
17.150
17.528
17.931
18.529
19.410
20.215
21.907
24.042
57.244

3.1400
3.1960
3.2571
3.3235
3.3963
3.4770
3.5679
3.6714
3.7915
3.9348
4.1131
4.3460
4.6817
5.2836
53910
5.5026
5.6142
5.7557
5.9347
6.1392
6.4159
6.8130
7.5466
7.6674
7.7953
7.9589
8.1225
8.3533
8.6325
8.9968
9.5083
11.495
13.385
13.557
13.729
13.901
14.072
14.244
14.416
14.588
15.525
27.447

2.9282
29771
3.0302
3.0877
3.1507
3.2210
3.2993
3.3882
3.4911
3.6137
3.7633
39576
42374
47261
4.8041
4.8898
49882
5.0962
5.2472
5.4053
5.6194
5.9433
6.5133
6.6017
6.7262
6.8534
6.9806
7.1077
7.3289
7.5696
8.0240
9.3525
11.975
12.113
12.330
12.396
12.651
12.824
13.351
13818
14.616
19.958

2.5816
2.6209
2.6626
2.7077
27573
2.8114
2.8716
2.939
3.0164
3.1085
3.2206
3.3629
3.5614
3.8973
3.9464
4.0060
4.0662
4.1476
42324
4.3366
4.4780
4.6819
5.0235
5.0765
5.1366
5.1956
5.2681
5.3707
5.4865
5.6387
5.8325
6.1575
6.5736
6.6238
6.6901
6.8068
6.9205
7.0653
7.2843
7.5316
8.0696
10.705

2.1973
2.2262
22571
2.2904
2.3263
2.3656
2.4089
2.4573
2.5121
2.5758
2.6521
2.7478
2.8782
3.0902
3.1214
3.1560
3.1947
3.239%0
3.2905
3.3528
3.4319
3.5402
3.7195
3.7462
3.7742
3.8091
3.8464
3.8906
3.9442
4.0140
4.1071
4.2655
4.2841
4.3213
4.3400
4.3772
4.4145
4.4703
4.5449
46194
4.7684
#NUM!




PARAMETER UNCERTAINTY IN (LOG)NORMAL DISTRIBUTIONS 577

The last line of the table may seem surprising, as the values
should all be infinite, as indicated in the last column. However,
in doing simulations it is necessary to have some way of creating
very large values. The best way is simply to generate deviates
as one needs them. If one is going to use a table such as the
above, then a theoretically correct possibility is to create a tail
distribution, and simulate off that. A possibility which also works
is to have explored the high end in enough detail and to include
a value for 100%, in order to interpolate. The values shown here
are the largest obtained during the 50,000,000 simulations. Here,
the table is reasonably accurate to the one chance in a million
level at the high end. If this is not good enough for the problem
at hand, then other procedures must be used. This could happen,
for example, if many million simulations are to be used, or if
results are sensitive to the very high end of the distribution.
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APPENDIX B

SCHEDULE P PART 3 HOMEOWNERS-FARMOWNERS PAID DATA
FROM BEST'S 1995 AGGREGATES AND AVERAGES

Years in
Which

Losses Were 1 2 3 4 5
Incurred 12 Months 24 Months 36 Months 48 Months 60 Months
1. Prior 0 961,195 1,539,215 1.853,854 2,162,283
2. 1985 7,122,424 9,387,076 9,733,306 9,975,586 10,142,891
3. 1986 6,540,125 8,549,792 8,959,180 9,210,201 9,363,385
4. 1987 6,549,833 9,431,522 9,348,973 9,606,804 9,757,094
5. 1988 7,387,876 9,934,924 10,367,041 10,614,036 10,736,491
6. 1989 9,159,289 12,691,762 13,200,544 13,558,787 13,670,011
7. 1990 9,204,653 12,321,906 12,859,522 13,155,938 13,337,299
8. 1991 10,631,838 13,987,066 14,667,645 15,022,004

9. 1992 17,421,697 22,112,982 22,871,006

10. 1993 11,304,871 14,537,267

11. 1994 13,181,700

Years in
Which

Losses Were 6 7 8 9 10
Incurred 72 Months 84 Months 96 Months 108 Months 120 Months
1. Prior 2,275,182 2,340,769 2,390,115 2,415,395 2,432,657
2. 1985 10,226,434 10,270,069 10,301,410 10,327,519 10,339,393
3. 1986 9,456,400 9,505,716 9,530,693 9,546,517

4. 1987 9,858,142  9914,405 9,943,700

5. 1988 10,832,847 10,889,518

6. 1989 13,778,348

7. 1990

8. 1991

9. 1992

10. 1993

11. 1994
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SCHEDULE P PART 3 HOMEOWNERS-FARMOWNERS PAID DATA
FROM BEST’S 1995 AGGREGATES AND AVERAGES
(Continued)

Years. in
Which
Losses Were LN (Age-to-Age Factors)
Incurred 1-2 2-3 34 4-5- 5-6

1985  0.27608573 0.03621976 0.02458710 0.01
1986  0.26795068 0.04677175 0.02763297 0
1987 0.36461793 —0.008
1988 0.29621595 0.0425
1989

1990
1991
1992
1993

029!

I I N S

__‘
e

Years in
Which

Losses Were LN (Age-to-Age Factors)
Incurred 6-7 7-8 8-9 9-10

. 1985
1986
1987
1988
1989
1990
1991
1992
. 1993
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—
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Taking the last five calendar years, which are shaded in the pre-
vious table, the results for the maximum likelihood estimators
are:

Period Ho ay

1t02 0.27641 0.03091
2t03 0.04116 0.00456
3to4 0.02484 0.00180
d4t05 0.01307 0.00299
5t06 0.00904 0.00093
6to7 0.00509 0.00052
7to8 0.00287 0.00018
8to9 0.00210 0.00044
9 to ultimate 0.00115 0.00100

The sigma estimator for 9 to ultimate is, of course, a guess. In the
actual calculation, all estimators were taken to have come from
a sample of size five calendar years, whereas the last four really
have less than that. In reserving practice, since there is always
judgment involved in the tail factor and its standard deviation, it
seems a good idea to use only estimators which are from at least
five calendar years. At least this way the assumptions are made
explicit, rather than hidden in factors whose standard deviation
is actually infinite due to parameter variation.



