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Abstract 

Different approximation methods to find a full credi- 
bility level in limited fluctuation credibility are studied, 
and it is concluded that, in most cases, there is no signif- 
icant difference between the various results. Since Venter 
[9] presented an opposite conclusion, it is emphasized 
that his approach to the problem is different and that 
the formula he derives should be used only in his given 
context. 
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1. INTRODUCTION 

"Limited fluctuation" credibility is the oldest branch of  cred- 
ibility theory, the other branch being "greatest accuracy" credi- 
bility. Also sometimes called American credibility, limited fluc- 
tuation credibility originates from the beginning of  this century 
with Mowbray ' s  paper "How Extensive a Payroll Exposure is 
Necessary to Give a Dependable Pure Premium?" [7]. The title 
is self-explanatory: Mowbray  was interested in finding a level of  
payroll in workers compensation insurance for which the pure 
premium of  a given risk would be considered fully credible. 

The theory has not evolved much since then. The answer to 
Mowbray ' s  ques t ion- -which  is Mowbray ' s  answer, as a matter 

533 



534  ON APPROXIMATIONS IN LIMITED FLUCTUATION CREDIBILITY THEORY 

of fact--has remained basically the same (see Section 2). With 
the emergence of risk theory methods, though, the original prob- 
lem has been formulated in a more general way, and new tech- 
niques have been used to find the full credibility level. This paper 
will first investigate if more powerful and sophisticated approx- 
imation methods are more worthwhile than the straightforward 
normal approximation. Then, because our conclusion will differ 
from that of Venter [9], the paper will show that Venter's full 
credibility requirement systematically exceeds that given by the 
normal approximation. 

2 .  T H E  M O D E L  

Let 

S = random variable of the total claim amount of a risk over 
a given period of time (usually 1 year); 

Xj = random variable of the amount of the j th  claim; 

N = random variable of the claim count of  the risk over the 
given period. 

Then, 
S =Xl +X2+...+XN, 

where X I , X  2 . . . . .  X n are independent, identically distributed 
(i.i.d.) random variables mutually independent of N. l This is the 
classical collective model of risk theory. Most of the situations 
usually encountered in limited fluctuation credibility can be de- 
scribed by an application of this model. It is also well known 
(see Gerber [3]) that 

E[SI = E[NIE[Xj], 

Var[S] = E[N]Var[Xj] + Var[N]E[Xj] 2. 

I In reality, the losses may be only conditionally independent given some parameters, 
such as the inflation rate, to which the losses will all be exposed jointly. 
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The fundamental  problem of  limited fluctuation credibility, 
only slightly adapted f rom Mowbray ' s  original idea, is: What  
are the parameters of  the distribution of  S such that the Equa- 
tion 

Pr[(1 - k)E[S] _< S _< (1 + k)E[S]] _> p (2.1) 

is verified? Using distribution functions, Equation 2.1 can also 
be written 

Fs((1 + k)E[S]) - Fs((1 - k)E[S]) _> p. (2.2) 

This requires that with probability 100p%, the total claim amount  
of  a risk stays within 100k% of  its expected value (see Figure 1). 
When  a risk meets these requirements,  we say that it deserves 
a full credibility of  order (k,p). That is, the risk is charged a 
pure p remium based solely on its own experience. After m peri- 
ods of  time, that p remium would simply be the empirical mean 
S =  (S t + S  2 + ... +Sm)/m, where each S i (i = 1,2 . . . .  ,m) is dis- 
tributed as S. 

In a usual l imited fluctuation credibility situation, the param- 
eter k will be quite small, e.g., 5 -10%,  while the parameter  p 
will be large, often above 90%. Equation 2.1 thus requires the 
distribution of  S to be relatively concentrated around its expected 
value. Since S is a (random) sum of  i.i.d, r andom variables, one 
way to achieve such a kind of  distribution is to sum a "large" 
number  of  those random var iables- -provided their second mo- 
ment  is finite. The distribution of  the sum will then tend towards a 
normal  distribution more relatively concentrated around its mean 
(that is, the ratio of  the standard deviation to the expected value 
decreases) as the number  of  terms in the sum increases. Ac- 
cordingly, the natural way to verify Equation 2.1 is to base the 
criteria for full credibility on the expected number  of  claims. 
(Note that the severity still enters the calculation through the 
Xjs, as it should.) The level of  full credibility will then usually 
be expressed in terms of  the expected value of N, which could 
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FIGURE 1 

MOWBRAY'S Two-SIDED FULL CREDIBILITY CRITERION 
REQUIRES 100p% OF THE PROBABILITY OF S TO BE 

CONCENTRATED WITHIN 100k% OF ITS EXPECTED VALUE 

00(I-p)/2 % t " " " "' ~: :~:" -~"~";:/ \ - .  ' : .  ' ; " , ' :  : ] "  ~,~> ,' - ) / 2  % 

.:.::" ' ~ ,  ;.::.~ ~.:"k; ':~ 

d I I " 

( 1 -k)  E[S] E[S] ( 1 +k) E[S] 

represent, for example, the number of  claims, the number  of  
employees,  or the total payroll. Besides, it is intuitively preferable 
to base the criterion on some kind of  exposure base rather than 
on the individual amount  of  the claims. 

At this point, most of  the theory of  limited fluctuation credi- 
bility has been covered. What follows are the calculations needed 
to satisfy Equation 2.1. However, these calculations are more rel- 
evant to general risk theory than to credibility theory. 
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Before going further, we define the skewness of a random 
variable X as 

[ ( X - E [ X ] ' ~  3] 
7t(X) = E [k. ~ J  " (2.3) 

Obviously, a symmetrical random variable has 71 (X) = 0. 

3. THE COMPOUND POISSON CASE 

The compound Poisson is a distribution frequently used for 
S. It is said that the distribution of S is compound Poisson of 
parameters A and G when the random variable N follows a Pois- 
son distribution of parameter A and the random variables Xj 
(j = 1 . . . . .  n) have distribution function G. Let Pk = E[X~]. Then 
(see, 'e.g., Gerber [3]): 

E[S] = AP], (3.1) 

Var[S] = AP 2, (3.2) 

" ) ' I ( S ) -  X/ P3a/2 . P 2  J (3.3) 

Equation 3.1 says that the expected value of  the total claim 
amount is simply the product of  the expected values of the num- 
ber of claims and the amount per claim. In Equation 3.2, we see 
that the variance of the total claim amount is given by the second 
moment  (P2) of the claim amount times the expected number (A) 
of  claims. Finally, Equation 3.3 shows that the skewness of S 
decreases as the expected number of claims increases. 

Further on, we will refer to this model simply as the "com- 
pound Poisson case." 

4. THREE APPROXIMATION METHODS 

In theory, the exact solution of the limited fluctuation credibil- 
ity problem would be obtained by calculating the exact distribu- 
tion of  S with the convolution formula (see, for example, Gerber 
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[3]). However, since the expected number of claims is usually 
quite large, that calculation would represent too long and labo- 
rious a task and would, in general, first require transforming the 
continuous distribution into a discrete one (a procedure known as 
"discretization"). In fact, nobody ever really intended to calculate 
the convolutions to solve the problem under study, approxima- 
tions instead always being used. We present here three common 
approximation methods that could be used to estimate the dis- 
tribution of S and then find the parameters that satisfy Equation 
2.1. 

The first approximation method we present is the most widely 
used in limited fluctuation credibility: the classic normal ap- 
proximation. In general, the distribution of S is not symmetri- 
cal, even if that of  Xj is. However, the limited fluctuation cri- 
teria will require the number of claims to be large, thus yield- 
ing an almost symmetrical distribution for S. By the version of 
the Central Limit Theorem applicable to random sums (Feller 
[2], p. 258), it is reasonable to approximate the distribution of 
(S - E [ S ] ) / ~  by a standard normal distribution. Equation 
2.1 may then be rewritten 

Pr 
S -  E[S] kE[S] ] kE[S] < < 

~ ( ~E[S] ) _ ~ ( ~  '-~JhE'S] 

=2~ (,E[S,~) _, > p. (4.1) 

Thus, 

(4.2) 

where c = 1 - p and z,~ is the c~th percentile of a standard normal 
distribution. In the compound Poisson case, one finds (see, for 
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example, Perryman [8]) 

A__ ( ~ ) 2 (  ,2)~12 . (4.3) 

The first ratio represents the normality assumption, while the 
second accounts for the variability of the claim amounts. In- 
deed, the full credibility level increases with the square of the 
coefficient of variation of the random variable Xj.  T h e  choice 
k = 5%, p = 90%, and Xj degenerated at 1 (that is, taking value 
one with probability one) leads to the famous A value of 1,082. 

The popularity of this approximation, aside from its good pre- 
cision in the limited fluctuation context when the expected value 
of N is large, comes from the fact that F ( x )  = 1 - F ( - x ) .  This 
greatly simplifies the calculations, as it may be seen in Equa- 
tion 4.1. However, even at the price of heavier calculations, one 
might be interested to take into account the skewness of S by 
using more refined approximations. 

Two approximations that take the skewness of S into account 
and are generally considered precise and relatively simple to use 
will be studied here: the normal power II approximation (using 
the first three moments; simply called normal power hereafter) 
and the Esscher approximation. The general formula of the nor- 
mal power approximation as found in Beard et al. [1 ] is: 

Let 

then 

~(x) ~ { 

x - E[SI ~/-2-, and Y0 = - \ / / / 4 ,  Y - x/V-g/m y 

( 3 / 9 6 )  ~ 1  - - ~ +  - -  - -  
I+ % 3y y> l  

* ( Y  - "y'(S)" - 1)+ 3~2(S)'''-f~t'+y~-7y)(5(yo-y)) , y <  1, 

(4.4) 

where ~5(y) = 0 if y = 0 and 1 otherwise. Note that for y = 1, both 
formulae produce qs(1). 



5 4 0  ON APPROXIMATIONS IN LIMITED FLUCFUATION CREDIBILITY THEORY 

To use the Esscher approximation, the moment  generating 
function (m.g.f.) of S must exist (preferably in a known form, to 
simplify the calculations). If the distribution of S is compound 
Poisson with parameters A and G, then the Esscher approxima- 
tion for the distribution function of S is 

[ m'"(h)  E3(u)] 1 - Fs(x)  ~ e ~'[m(h)-l]-hv Eo(u)  - 6AJ/2(m,,(h))3/2 

(4.5) 

where m(-) is the m.g.f, o f  G,h the solution of  Am'(h) = x, and 
u = hx/Am"(h).  The functions Ek(- ) (k = 0, 1,2 . . . .  ) are the Ess- 
chef functions: 

Eo(U) = eU2/2[1 - ~(u)] 

1 - u 2 ( 4 . 6 )  

E3(u) = x/27 + u3E°(u)" 

A more complete description of the Esscher approximation 
may be found in Gerber [3]. 

Quite obviously, it is not possible to simplify Equation 2.1 in a 
form like Equation 4.1 when using the normal power or Esscher 
approximations. The search for parameters such that Equation 
2.1 is satisfied must then be made iteratively. For example, if S 
is compound Poisson, one must find the smallest value of A such 
that Fs((l + k)E[S]; A) - Fs((1 - k)E[S]; A) _> p. If the probability 
obtained with a particular value of A is smaller than p, then the 
value of A must be raised--and vice-versa--until convergence to 
a unique minimal value is achieved. Note that if the distribution 
of S remains right-skewed once the full credibility level has been 
reached, then there will be more probability mass in the right tail 
than in the left one. 

Now, the question is: Are these more complicated and time 
consuming approximations better (more precise) than the usual 
normal approximation, still in the context of limited fluctuation 
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credibility? To study this, we made some tests where the distri- 
bution of S was held compound Poisson and the distribution of  
the individual claim amount changed. The parameters of  the lat- 
ter were chosen such that its expected value remained constant at 
5,000, but its variance, and especially its skewness, varied. The 
idea was to make Xj very skewed and then check if the values of  
A given by the three approximations would be significantly dif- 
ferent, and what would be the resulting skewness of  S. Gamma 
and lognormal distributions were used for Xj, but as the m.g.f, of  
the latter does not exist, the Esscher approximation was not cal- 
culated. The inversion of  characteristic functions (ICF) method 
has also been used to cross-check the results in the gamma cases. 
This numerical method is used to calculate distribution functions, 
and its precision is as high as the user desires (see, for example, 
the Heckman-Meyers  algorithm in [4]). It then appeared that the 
normal power and Esscher approximations can be considered as 
almost exact in the present application. Table 1 summarizes the 
results. 

From the results of  Table 1, we must conclude that it is not 
necessary to complicate the estimation of  the full credibility level 
by using more sophisticated approximation methods. Indeed, the 
differences between the various methods are minor - -of ten  less 
than 0.5%. These results and the conclusion drawn from them 
should not be very surprising since, as stated in Section 2, it is a 
requirement of  the limited fluctuation problem that most o f  the 
probability mass be concentrated around the expected value of  S. 
Thus, for k and p constant, the more Xj is skewed, the more the 
number of  claims has to be large to make S a "concentrated" dis- 
tribution. Intuitively, such a distribution can not be very skewed, 
thus leading to a good normal approximation. Besides, a quick 
look at the last column of  Table 1 shows that whatever the skew- 
ness of  Xj, the value of  A will be sufficiently large to result in a 
quite symmetrical distribution for S. 

There remains a peculiar case to be discussed in Table 1 : the 
first lognormal case, where the difference between the normal 
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TABLE 1 

F U L L  C R E D I B I L I T Y  L E V E L S  O B T A I N E D  W I T H  T H R E E  D I F F E R E N T  

A P P R O X I M A T I O N  M E T H O D S  IN C O M P O U N D  P O I S S O N  C A S E S  

Value of E[N] = A 

Normal Largest 
Distribution Approxi- Normal Difference 

of Xj "q (X)) k p mation Power Esscher (%) -~l (S) 

Gamma 
~ = 0.01 20.00 0.050 0.90 109,323 
c~ = 0.05 8.94 0.050 0.95 32,269 
~ = 0.20 4.47 0.100 0.90 1,624 
~ = 1.10 1.91 0.025 0.90 8,266 

c~ = 5.00 0.89 0.100 0.95 461 

Lognormal 
a2 = In 50 364.00 0.050 0.90 54,121 
a 2 = 2.00 23.73 0.050 0.95 11,354 

c~ 2 = 1.50 12.09 0.100 0.90 1,213 
cr 2 =0 .75  4.35 0.025 0.90 9,166 

cr 2 = 0.65 3.75 0.100 0.95 736 

109,258 109,234 0.08 0.06 
32,256 32,257 0.04 0.05 

1,621 1,620 0.23 0.11 
8,264 8,264 0.03 0 0 2  

461 461 0.06 0.06 

49,232 - -  9.03 1.52 
11,301 - -  0.47 0.19 

1,203 - -  0.77 0.27 

9,163 - -  0.03 0.03 
735 - -  0.14 0.10 

and the normal power approximations reaches 9%. Clearly, the 
skewness  o f  1.52 for S is not insignificant in that case; we would 
not find that there is precisely a probability of  0.05 both above 
and below 5% of  the mean (in fact, we get 0 .089 above and 
0.011 below).  The normal power estimation of  the full credibility 
level is thus slightly more precise than the normal approximation 
in that case. The interesting point, though, is that the normal 
approximation is the higher, or more conservative, o f  the two. 
We can thus also conclude from Table 1 that taking the skewness  
of  S into account does not yield higher full credibility levels. In 
fact, the normal approximation is, in all cases studied, the most 
conservative one. This can be explained by, for the same expected 
number of  terms in the sum, the normal approximation imputing 
more probability mass in the left tail than the normal power gains 
with heavier right tail (see Figure 2). 
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FIGURE 2 

FOR THE SAME EXPECTED NUMBER OF TERMS IN THE SUM, 
THE NORMAL APPROXIMATION IMPUTES MORE PROBABILITY 
MASS IN THE LEFI" TAIL THAN THE NORMAL POWER GAINS 

WITH ITS HEAVIER RIGHT TAIL 

\ 
\ 
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~ Normal Power A p p r o x i m a t i o n ~  Normal Approximation 

The above conclusions also mean that the skewness of  Xj is 
not a big issue on the level of  full credibility. There is still another 
interesting way to see that point with the normal power approx- 
imation in the compound Poisson case. Since the normal power 
approximation is only calculated at the points (1 +k)E[S] ,  it is 
easily seen from Equation 4.4 and Equations 3.1 to 3.3 that all the 
information one needs about the distribution o f  Xj to calculate 
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the approximation are the ratios r I -P1/P21/2 and r 2 -P3/P?/2, 
Assuming that Xj > 0, it is easily shown with Jensen 's  inequality 
that r I E [0, 1] and r 2 _> 1. The left end of  the interval for r I is 
not interesting, though, since it represents a zero expected value. 
The right end represents a zero variance and is thus the frequently 
used-- r ight ly  or wrongly- -degenera ted  case. The ratio r I is also 
the only one needed to calculate the normal approximation and, 
as such, fully determines in that case the full credibility l eve l - -  
given k and p, of  course. Entering in the calculation of  "71 (S), the 
ratio r 2 thus brings the skewness of  Xj into the normal power  
approximation. 

Table 2 presents full credibility levels of  order (0.05,0.90) 
for various combinations of  the above ratios. For illustration 
purposes,  we have included the A = 1,082 level, obtained with 
the combination r I = r 2 = 1. It should be noted that the entries 
in the upper left and lower right corners of  the table are most 
unlikely. For the most common distributions (e.g., gamma, log- 
normal, Pareto), a small r 1 comes with a large r 2, and vice versa. 
Then, in the really interesting area of  the table, we clearly see that 
the effect o f  a rather small variation in the value of  the ratio r l 
is much more important than a large variation in the value of  the 
ratio r 2. This could also be interpreted as r 1 determining most 
of  the final value of  the full credibility level, while r 2 causes 
only a small, and in most cases negligible, correction to that 
value. 

5. A WORD OF CAUTION 

The book Foundations of Casualty Actuarial Science published 
by the Casualty Actuarial Society presents, as the title sug- 
gests, different subjects central to casualty insurance practice. 
The chapter on Credibility Theory - -Chap te r  7 - - w a s  written by 
Gary G. Venter [9]. In the section on limited fluctuation credi- 
bility, it is demonstrated by an example (Example 3.1) that the 
normal power  approximation gives a much different estimation 
of  the full credibility level than the one obtained with the nor- 
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TABLE 2 

FULL CREDIBILITY LEVELS OF ORDER (0.05,0.90) IN THE 
COMPOUND POISSON CASE CALCULATED WITH THE NORMAL 

POWER APPROXIMATION 

r 2 = p31p 312 

ri = Pl tP2 i12 1 10 300 

0 1 108,222 108,210 102,458 
0.2 27,055 27,044 24,377 
0.3 12,025 12,013 11,172 
0.4 6,764 6,753 6,947 
0.5 4,329 4,318 4,857 
0.6 3,006 2,995 3,652 
0.7 2,208 2,198 2,884 
0.8 1,691 1,681 2,359 
0.9 1,336 1,326 1,981 
1 . 0  1 , 0 8 2  - -  - -  

mal approximation. Naturally, the former is considered the better. 
This contradiction with the results of the previous section is due 
to the fact that Venter is not considering exactly the same lim- 
ited fluctuation problem as above; therefore both normal power 
approximations can not be directly compared. 

As said before, the normal approximation leads to simple for- 
mulae because 

kE[S] ~ kE[S] 

1 - Fs((1 - k)E[S]). (5.1) 

Those equalities are not found in the normal power approxima- 
tion. A simple look at Equation 4.4 is enough to be convinced 
that Fs((1 + k)E[S]) ¢ 1 -Fs ( (1  -k)E[S]) .  Now, Mr. Venter's ap- 
proach to the problem is slightly different, as he introduces a 
simplifying hypothesis right at the beginning. Instead of consid- 
ering Equation 2.1, he considers a one-sided requirement for full 
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FIGURE 3 

VENTER'S ONE-SIDED FULL CREDIBILITY CRITERION 
REQUIRES 100p*% OF THE PROBABILITY OF S TO BE UNDER 

100(1 + k)% OF ITS EXPECTED VALUE 

E[S] (l +k 

100(l-p*) % 

2. 
E[S] 

r 

credibility, namely: 

Pr[S _< (1 + k)E[S]] _> (1 + p)/2 =_ p*. (5.2) 

Thus, instead of requiring that there is a probability of p that S 
does not deviate from its expected value by more than 100k%, it 
is only required that there is a probability of p* that S does not 
exceed its expected value by more than 100k%. Therefore, while 
Equation 2.1 looks at both left and fight tails of S, Equation 5.2 
looks only at the fight tail (see Figure 3). 
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This different definition of the problem has no effect on 
the normal approximation since the distribution of S is in any 
case approximated by a symmetrical distribution. However, when 
considering the normal power approximation, the necessary iter- 
ative calculation can be avoided by applying the simplification 
assumed in Equation 5.2 to derive a formula of the same form 
as Equation 4.2. Indeed, Venter [9] defines 

Var[N] 
m 2 - _ _  + C V ( X )  2 

E[N] 

Var[N] 2 
m3 = " ~ I ( X ) C V ( X )  3 + 3 E - - E - ~ - C V ( X )  (5.3) 

E[(N - E[N]) 3 ] 
+ 

E[N] 

(where C V ( X )  is the coefficient of variation of the random vari- 
able X) and then the following condition is obtained: 2 

l [  ~ z 2 m 2 m 3 2  12 
E[N] >__ ~ Zl_e/2V~+ 1-~/2 2 + -~-~22k(Zl_e/2 - 1) 

(5.4) 

In Example 3.1 of [9], S is a compound Poisson distribution. 
The distribution of  the individual claim amount is lognormal 
with expected value 5,000 and coefficient of  variation equal to 
7, which amounts to parameter cr 2 equal to In 50. The full credi- 
bility level is defined by p = 0.90 (p* = 0.95) and k = 0.05. The 
normal approximation for A is then correctly given as 54,120. 
As can be seen in Table 1, the "usual" two-sided normal power 
approximation would in that case be 53,927, while the result ob- 
tained with Equation 5.4 is 80,030. Full credibility levels have 
also been calculated with Venter's formula for every other case 
of Table 1. They are compared with previous results in Table 3. 
In the last column of  Table 3 are also displayed the "true" values 

2There is a misprint in Foundations of Casualty Actuarial Science: the square root sign in 
Equation 3.6 should be longer and end just before the rightmost parenthesis, 
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TABLE 3 

C O M P A R I S O N  O F  F U L L  C R E D I B I L I T Y  R E S U L T S  O B T A I N E D  W I T H  

T H E  N O R M A L  A N D  N O R M A L  P O W E R  A P P R O X I M A T I O N S  A N D  

W I T H  V E N T E R ' S  F O R M U L A  

Value of E[N] = k 

Normal p for 
Distribution Approxi- Normal Venter's Venter's 

of Xj k p mation Power Formula Results 

Gamma 
o = 001 0.050 0.99 109,323 109,258 111,598 0.9036 
~ = 0.05 0.050 0.95 32,269 32,256 33,042 0.9527 
c~ = 0.20 0.100 0.90 1,624 1,621 1,686 0.9065 
c~ = 1.10 0.025 0.90 8,266 8.264 8,330 09013 
~ = 5.00 0.100 0.95 461 461 474 0.9532 

Lognormal 
a 2 =- In 50 0.050 0.90 54,121 49,232 80,029 0.9500 
a 2 = 2.00 0.050 0.95 11,354 11,301 12,367 0.9596 
a 2 = 1.50 0.100 0.90 1,213 1,203 1,325 0.9157 
a 2 = 0.75 0.025 0.90 9,166 9,163 9,268 0.9020 
a 2 = 0.65 0.100 0.95 736 735 770 0.9552 

of  p induced by Venter's results and calculated with the normal 
power approximation. 

Venter's one-sided full credibility levels are consistently 
higher than the two-sided ones calculated with both the normal 
and normal power approximations. Since the distributions of  S 
are usually positively skewed in the fields where limited fluctu- 
ation credibility is applied, this is indeed a direct consequence 
of  the formulation of  the problem in the form of  Equation 5.2 
coupled with the use of  the normal power approximation to take 
the third moment of  S into account. 

The rationale of  the author for adopting a one-sided criterion 
is not very clear. It is first suggested in [9] that, for most distribu- 
tions of  interest, Mowbray's two-sided criteria will be satisfied 
if the one-sided is. This can be verified in Table 3. But the main 



ON APPROXIMATIONS IN LIMITED FLUCTUATION CREDIBILITY THEORY 5 4 9  

idea was probably to use the normal power approximation to 
obtain more ref ined--more accurate--full  credibility levels. "I'he 
task is then facilitated by the one-sided criterion as it leads to 
the easy to use, closed-form credibility formula, Equation 5.4. 
The problem with this formula is that it sometimes unnecessarily 
overstates the full credibility levels, a fact it appears Venter was 
aware of, as he summarizes Dale Nelson (PCAS, 1969): 

... although the NP [normal power approximation] 
gives useful approximations of the higher percentiles, 
it may overstate the volume needed for full credibility 
relative to given standards. 

Once the desired degree of conservatism has been fixed 
through the parameters k and p, there exists a "true" full credi- 
bility level satisfying Equation 2.1. We said earlier that our nor- 
mal power approximation almost gives the true levels 3 and that 
the normal approximation is sufficiently close to these levels. 
Now, the normal approximation levels satisfying Equation 5.2 
will be the same and as such should be satisfactory. Equation 
5.4 may thus be simpler than our application of the normal 
power approximation, but as it yields higher results than the 
even simpler normal approximation, its usefulness becomes 
questionable. 

Finally, it is not clearly stated in [9] that Equation 5.4 yields 
h igher- -and sometimes much higher, as Table 3 shows--ful l  
credibility levels as a solution to a problem defined in the form 
of Equation 5.2. This could lead to the perception that using the 
third moment  in any full credibility level estimation will neces- 
sarily increase these levels. We have concluded earlier that this 
is not the case. An eventual user of Equation 5.4 should thus 
be aware of its implications and ensure it is used in conjunction 
with the one-sided definition of the limited fluctuation credibility 
problem. 

3At least in the gamma cases. 
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6. CONCLUSION 

The conclusion of the first part of this paper is drawn from 
the tests summarized in Table 1. Although giving very accurate 
results, more sophisticated approximation methods like normal 
power or Esscher are not worth the added complexity and calcu- 
lation time as compared to the normal approximation to estimate 
full credibility levels. It has been shown that when staying with 
Mowbray's  original definition of the limited fluctuation problem, 
the differences between the various approximations are hardly 
significant. In more peculiar situations, the normal approxima- 
tion yields the more conservative result, so we stay on the safe 
side. 

While not necessary in limited fluctuation credibility, we 
nonetheless emphasize that the normal power and Esscher ap- 
proximations remain very useful tools in general risk theory be- 
cause of  their good estimation of the percentiles of an aggregate 
claim distribution. 

The paper then discussed the apparently different conclusions 
put forward by Venter [9]. We mainly argue that it should be 
stated more clearly in [9] that the definition of  the limited fluc- 
tuation problem differs from Mowbray's  traditional one. More- 
over, the formula based on the normal power approximation used 
in the paper and the conclusions drawn with it pertain only to 
the problem studied and should not be carried over to general 
limited fluctuation credibility. 

The reader should note that when the limited fluctuation prob- 
lem is treated as in this paper (that is, with Mowbray's  defini- 
tion), it is not possible to derive a simple, explicit formula for 
the expected value of N (which usually gives the full credibility 
level in limited fluctuation credibility) while using the normal 
power approximation. 

Mayerson et al. [6] also obtained significantly higher (from 
3% to 10%) full credibility levels when using the third moment  
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of the distribution of S, but this is also due to their conserva- 
tive approach to the problem. When worked out with the normal 
power approximation, the compound Poisson examples of May- 
erson et al. lead to full credibility levels almost equal to the 
normal approximation. The most important idea of  that paper, 
though, was that the full credibility level should be based on the 
pure premium (namely the distribution of S) rather than on only 
the number of claims (the distribution of N). This should still be 
stressed today. 
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