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"Fly me to the moon, and let me swing among the stars ... " 

- -Ba r t  Howard 

Abstract 

The NCCI methodology for deriving Excess Loss Fac- 
tors (ELFs), based largely on research performed in 
1986, is documented in "Retrospective Rating: Excess 
Loss Factors" by William R. Gillam [2]. This paper up- 
dates that 1991 paper. The changes in the way ELFs 
are produced have been significant, if not extensive. The 
work done to support those changes was extensive. 

In the Fall of 1992, after an intense but focused study, 
NCCI updated the parametric size-of-loss distributions 
described in Gillam's paper. The associated changes 
were in production for most 1993 filings. 

A much more in-depth review of the ELF model was 
completed in 1995. In this report, we detail some of the 
investigations made in that review and the features of 
the resulting model. 

The researchers checked to see that the existing group- 
ings of claim types were optimal, or at least superior to 
any other obvious groupings. They also determined that 
the groupings of states by benefit type (escalating, non- 
escalating, and limited) was not justified. 

Loss distributions by claim group have again been 
updated, this time using a new method to model fifth-to- 
ultimate loss development, overcoming the lack of indi- 
vidual loss information after that report. (The Workers 
Compensation Statistical Plan ends at fifth report.) 

The risk loadings for parameter risk and contagion 
were also updated to be more appropriate in an open 
competition rating environment. 

450 



RETROSPECTIVE RATING: 1997 EXCESS LOSS FACTORS 451 

1. MODELING OF LOSSES BY INJURY TYPE 

Under the Workers Compensation Statistical Plan (WCSP), 
an injury type code is reported for each claim--corresponding to 
the carrier's belief at the valuation date as to the ultimate injury 
type of  the claim. The injury types are: Fatal, Permanent Total 
(PT), Permanent Partial (PP), Temporary Total (TT), Medical- 
Only, and Contract Medical. For ratemaking, NCCI makes the 
distinction between a Major and Minor Permanent Partial claim 
according to whether its indemnity component  is above or below 
a state-specific critical value. This results in seven injury types 
being coded into NCCI's  databases. 

As described in the 1991 paper by Gillam, Excess Loss Fac- 
tors (ELFs) were based on weighted excess ratios for each of  
three injury groups. In the 1995 study, we tried to determine the 
ideal grouping of  injury types. 

Description of NCCI Approach 

In the 1986 study, curves were fit to data from each of  a sam- 
ple of states. Combining data for various states prior to curve 
fitting was not done, apparently due to concern over differences 
in scale between the states. Consequently, one problem the re- 
searchers encountered was the scarcity of  data within each state 
for PT claims. Their solution was to combine PT claims with 
Major PP claims, yielding the composite injury type PT/Major. 

Similarly, IT~Minor is a combination of  TI" and Minor PP 
claims. 

In the 1992 study, NCCI developed a procedure for combining 
multiple states' data. At each report, losses for each state were 
grouped into three categories: Fatal, PT/Major, and T-f/Minor. 
Next, differences in scale by state were removed through nor- 
malization; for each claim group, this was done by dividing each 
claim by the average cost per case for the appropriate state- 
injury-type combination. Then claim sizes would be calibrated 
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by "entry ratio" to the average cost per case. For example, a 
Florida claim in the PT/Major category would be divided by the 
average cost per case for Florida PT/Major claims. For Fatal and 
PT/Major, claims were combined respective of  benefit type (es- 
calating, limited, and non-escalating). This normalization is con- 
sistent with the methodology for production of  ELFs, wherein 
excess ratios are calibrated for entry ratios. 

Statistical distributions were then fit to the normalized empir- 
ical distributions using maximum likelihood. 

Since by definition, no Major PP claim can be less than the 
critical value and it is unlikely that a permanent total claim would 
be, it made sense to fit a shifted distribution to the normalized 
fifth report PT/Major claims; that is, all normalized PT/Major 
claims were reduced by some flat amount prior to curve fitting. 

The average state critical value for the claims in the database 
was roughly a fourth of  the average cost per case for PT/Major 
claims. Consequently, a shift parameter of .25 or 25% of  the 
average cost per case was reasonable. The actual dollar value 
would of  course vary by state and year. 

Performance Testing Injury Groups 

Exhibit 1 summarizes the testing used to gauge the effec- 
tiveness of these three ways of grouping claims: 1) PT and PP 
modeled separately, 2) PT and Major PP combined, TT and Mi- 
nor PP combined, 3) a single distribution combining PT and all 
PP, leaving TT by itself, and 4) a control, the simple use of 
last year's raw data. The testing attempted to determine which 
approach best predicted the relative magnitude of the empirical 
fifth report excess ratio at given loss limits. We tested using the 
following loss limits: 12,500, 50,000, 250,000, and 500,000. 

We first considered the option of separating out PT and con- 
solidating Major and Minor PP claims, then modeling claims 
according to the normally reported injury type. This would be 
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the common-sense approach. In recent studies, we observed con- 
siderable variation in the proportion of PT/Major corresponding 
to PT. In some states, PT is nearly 40% of the PT/Major loss 
dollars; whereas, in others it is only 5%. This variation seemed 
to argue against a model which combined PT and Major PE 

To review the rationale behind the current option, labeled Op- 
tion 2 in Exhibit 1, it is apparent that the practical distinction 
between PT and Major PP varies from state to state and year 
to year. A claim classified as PT in one state might well be con- 
sidered a PP claim in another. This blurring of  PT and Major 
PP would not be a factor if PT and Major PP were combined 
prior to curve fitting. The combination of  Minor PP with T r  is 
made for ease of computation and has little impact on the final 
factors. 

As a third option for grouping claims, we considered the use 
of a single ground-up distribution combining PT and all of  PP, 
calling this the "Permanent Claims." 

Excess ratio tables were calculated at fifth report for each of 
the groupings of claims. Each of the three models above were 
used to calculate ELFs. For fixed loss limits, the relative magni- 
tude of the modeled excess ratios by state should roughly track 
the empirical ratios. If a model predicts a higher excess ratio 
in, say, Georgia than in Florida, the empirical fifth report excess 
ratio for Georgia should be higher than that for Florida. The ac- 
curacy of the tracking can be quantified using R 2. The models 
used as inputs the average cost per case and injury weight values 
corresponding to the target data. 

The model using the current grouping of claims produced the 
best estimates, as measured by R 2. That is, the current injury 
groupings did the best job of  predicting which states would have 
high or low empirical excess ratios. It may be that PT average 
costs per case and injury weights, which are based on relatively 
small samples, are too volatile, leading to unstable partial excess 
ratios when PT is modeled separately. 
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The selected model is based on the injury groupings: Fatal, 
PT/Major, and TT/Minor. 

2. T H E  G R O U P I N G  OF  STATES BY BEN EFIT  T Y P E  

Description of NCCI Approach 

In the 1992 study described above, differences in scale by 
state were removed by dividing each claim by the average cost 
per case for the appropriate state/claim group combination. Once 
the differences in scale were removed for claims of  each injury 
group, the states were combined according to state benefit type. 
There were five groupings: 1) Escalating Fatal, 2) Non-escalating 
or Limited Fatal, 3) Escalating or Limited PT, 4) Non-escalating 
PT, and 5) TT/Minor. States would be in either 1) or 2), 3) or 
4), and all states would be in 5). 

Performance Testing State Groupings 

We have tried to determine whether there exists a systemic 
relationship between the shape of the distribution (after removing 
the effects of scale) and the state benefit type. Three injury types 
were tested: Fatal, PT, and PE These have by far the most weight 
in the calculation of excess ratios. Fatal and PT are the ones 
that could be logically impacted by escalation, non-escalation, 
or limitation, but we also tested PP for completeness. 

We first examined the variance and skewness statistics of the 
normalized fifth report losses for each of  the three injury types - -  
Fatal, PT, and PP. 

For Fatal claims, neither the variance (Exhibit 2-A) nor the 
skewness (Exhibit 2-B) of  the normalized loss seem to have any 
significant relationship to state benefit type. Similarly, no useful 
relationship could be deduced for PT claims (Exhibits 3-A and 
3-B) or PP claims (Exhibit 4-A and 4-B). 

Treating benefit type as a categorical variable, we performed 
ANOVA testing and calculated coefficients of determination (R 2) 
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for each of  the comparisons. The categorical variable state benefit 
type appears to be of little use in predicting fifth report normal- 
ized loss skewness or variance for Fatal or PT losses. 

Analysis based on the likelihood ratio test further supports 
this argument. For both Fatal and PT claims, we compared nor- 
malized loss distributions for claims in states grouped by benefit 
type with those for all other states combined. Differences for 
these groupings were statistically insignificant. 

We have decided that states should not be grouped by bene- 
fit classification, based on the large variation by state in higher 
moments of  the distribution and on the fact that these are not 
correlated with benefit type. 

As another possible change from the prior procedure, we con- 
sidered eliminating the countrywide distributions and using dis- 
tributions for each state. For most states we found the statisti- 
cal significance of the difference between the state and coun- 
trywide normalized size-of-loss distributions for Fatal and PT is 
questionable--as indicated by the likelihood ratio test (Exhibits 
5-A and 5-B). The enhanced credibility and utility of  using coun- 
trywide distributions, on the other hand, are of clear value. 

3. MODELING LOSS DEVELOPMENT 

The impact of loss development on individual claims is not 
uniform since claims obviously have unique development pat- 
terns. Some settle for less than originally estimated, some for 
more. Accordingly, as losses mature, the dispersion among losses 
increases and so we expect the shape of  the size-of-loss distribu- 
tion at an ultimate report to be very different from that at a fifth 
report. We would expect the former to be more heavy-tailed than 
the latter. 

For our purposes, it is the shape of  the ultimate-report nor- 
malized loss distribution that we wish to model for each injury 
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type. Unfortunately, Workers Compensation Statistical Plan data 
is available only through a fifth report. We are able to account 
for average claim size development on open serious claims using 
financial data. What is needed is a procedure which can account 
for the distortion of the shape of the size-of-loss distribution due 
to post-fifth-report loss development. In this section, we describe 
just such a procedure--the Random Development Divisor algo- 
rithm. 

In the Appendix, we discuss the Black-Scholes model used 
by stock traders to price securities options, noting the similarity 
between the mathematics of pricing an option in the financial 
arena and that of excess of loss pricing in insurance. The Random 
Development Divisor algorithm described below bears more than 
coincidental resemblance to the Black-Scholes model. 

The Random Development Divisor algorithm was designed to 
account for the post-fifth-report development in the shape of the 
severity distribution. The process is to 1) organize the partially 
developed fifth report loss distribution into a series of uniform 
distributions derived from empirical grouped data, 2) model loss 
development using a gamma distributed divisor, whose param- 
eters are determined by matching the moments of the loss de- 
velopment factors for individual claims, and 3) compound the 
uniform and gamma distributions to derive an ultimate report 
distribution. The use of the piecewise linear approximation to a 
continuous distribution is a standard technique. 

The basic building blocks of the model are a prior uniform 
distribution representing open or closed claims in each layer of 
fifth report loss range, and a corresponding gamma distribution 
quantifying development for such losses in the layer. 

Empirical Fifth Report Severity Distribution 

We construct n intervals of the grouped empirical claim 
distribution ~ for the fifth report size-of-loss random variable 
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Y. Each interval may contain several claims. These n + 1 points, 

(a I = O,Fy(al) = O),(az,Fy(a2) ) . . . . .  (an,Fy(an)), 

(an+l,Fy(an+l) = 1), 

divide the probability space of  Y into n intervals. Let Pk represent 
the probability associated with the kth interval: 

Pk = ~,(a~:+l) - Fy(ak), k = 1,2 . . . . .  n. 

Pk is the number of  empirical claims in the kth interval divided 
by the total number of  claims. 

The following discussion is in terms of  a basic building block. 
However, it should be kept in mind that the complete model 
would involve an application of  the method to each subinterval of  
fifth report size-of-loss. Compounding the posterior distributions 
for all layers is a task made easy by the computer. 

Gamma Distributed Fifth-to-Ultimate Development Divisors 

Let Z denote the random variable representing the reciprocal 
of  the fifth-to-ultimate loss development factor. Our a priori as- 
sumption is that such loss development is dependent on the size 
of  the fifth report losses and whether they are open or not. Of  
course, the proportion of  open claims varies by layer, so we were 
able to model loss development using two gamma distributions, 
one for open, one for closed. 

Modeling development using a divisor rather than a multi- 
plier facilitates the derivation of  closed form formulas for the 
cumulative distribution function and excess ratio functions. 

Constructive Model of  Ultimate Losses 

A heuristic description of  the process for generating ultimate 
losses (X = Y/Z)  is as follows: 
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STEP 1 Select one of  the n fifth report loss intervals. The prob- 
ability o f  selecting a given interval equals the amount of  proba- 
bility in the interval (Pk)- 

STEP 2 Assume that losses are uniformly distributed within each 
selected interval. Randomly select a fifth report loss (Y), which 
may be open or closed, from the uniform distribution chosen in 
Step 1. 

STEP 3 The result of  Step 1 determines which gamma distribu- 
tion will be used to select a loss development divisor (Z). Ran- 
domly choose Z from the respective gamma distribution with 
parameters (c~o,/3,,) or (c%,¢3c), where o is open and c is closed. 

STEP 4 Divide Y by Z. The result is X (the ultimate report loss). 

The Relationship Between the Conditional Distribution Functions 
of X and Y 

E~(x[z) = Pr(X < x[z) 

= Pr(Y/Z < x l z )  
(1) 

= Pr(Y < zx) 

Fx(x l z) = F~(zx). 

Derivation of Distribution Function of X 

We treat each y-interval as a separate random variable. Let 
uk(z) denote the probability density function (p.d.f.) for Z. Note 
that there are n such conditional dis tr ibut ions--one for each y- 
loss interval. 

Then, using Equation 1 in 

// Fx(x) = F~(x l z)uk(z)dz, 
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we have 

// fx(X ) = Fy(zX)ulc(z)dz. (2) 

For each interval (a k, a~+l], we assume that fifth report losses are 
uniformly distributed. Then, 

0 for y <_ a k 

Fy(y) = Y - ak for ak < y <_ ak+ 1 . 
ak+ 1 --  Ok 

1 for y > ak+ l 

For (fixed) x > 0, k = 1,2 . . . . .  n 

ak < Y < ak+l 

¢:~ a k < x Z  <_ a k + l 

.¢e~ ak  < Z <_ ak  + l 
X X 

Thus, 

0 for z < a k / x  

Fy(zX) = y - a ~  for a k / x < z < a k + l / X .  
ak+ 1 --  a k  

1 for z > ak+l /x  

Using the above in Equation 2, we can calculate F~(x): 

f Z_.~x _--_ ak  
Fx(x ) = __ ak+t/x uk(z)dz  + uk(z)dz.  (3) 

da k /x  ak  + 1 - -  ak  ak + 1/x 

The above applies to the kth interval (k = 1,2 . . . . .  n) treated 
in isolation. To calculate E,~(x) over all intervals, we take a 
probability-weighted average. Fx(X ) is the fully developed sam- 
ple to which we fit the final parametrized distributions leading 
to the excess ratio table used in production of  ELFs. 
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4. DERIVATION OF EXPECTED EXCESS LOSS FUNCTION FOR 

EACH INTERVAL 

Let x denote the loss limit. Then for a random loss Y/Z,  the 
excess of  Y/Z  over x is: (Y/Z - x) for Y/Z  > x, and 0 otherwise. 

Thus to calculate the expected excess loss, we need to inte- 
grate over the set of  (y,z) for which y /z  is greater than x. 

Let f (y , z )  denote the joint  probability density function for Y 
and Z. Since Y and Z are independent, 

f (y , z )  = f (y ) f ( z ) .  

Now, recall that Y is uniformly distributed in (ak,ak+l] which 
means that f (y , z )  is zero whenever  y < a k or y > ak+ I. This re- 
duces the area over which we must integrate to a trapezoidal 
region. 

This trapezoidal region consists of  the rectangular "AREA A" 
and the triangular "AREA B" in Figure 1. The expected excess 
loss can then be calculated as 

Zxcessx:i'°'txi°*+'(Y_x)i(y,z)dydz 
J 0 a a k 

+ fa ak+'/x I ak+l ( Y - - X )  f(y,z)dydz. (4) 
a k Ix .; xz 

DEFINITION If Z is gamma distributed with parameters (a,/3), 
then the cumulative distribution function (c.d.f ) of Z is 

fo~Z U a-  I e-U du  
Fz(z) = = V ( c 0  (5) 

For this distribution, non-central moments can be  calculated as 
follows: 

P (a  + n) 
E[Z"] - (6) 
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FIGURE 1 
AREA OVER WHICH EXCESS LOSS INTEGRAL IS EVALUATED 

k+l 

y=x2 

AREA A 

THEOREM 1 Let the fifth report size-of-loss random variable Y 
(Y > O) be uniformly distributed on the interval (ak,ak+l], and let 
the loss development divisor random variable Z (z > O) be gamma 
distributed with parameters (a, t3). Let Y and Z be independent. 
Then the ultimate report size-of-loss random variable X, equal to 
the ratio o f  Y to Z (X = Y/Z) ,  has cumulative distribution function 

a__x_ IF (a+l"  ak+'/3)-F (a+ 1; akx/3)] E~(x) - 3(ak+ 1 -ak) ' x 

ak IF (o~; a k + l f l ) - F  (o~; a_~_)] 
ak + 1 -- ak x 

+ I - F  (°z;ak+lJ3) " x  

THEOREM 2 Let the random variable X be as defined in The- 
orem 1. Then for  any x (x > O) the expected portion o f  loss in 
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excess of x for a randomly selected claim is equal to 

Excessr-f l(ak+ak+l)[ '(c~-l;akxfl)-xF(ct;f f-~-)" 2(c~- 1) 

+ a2+lfl {F (c~-  1 ; - -  
2(c~ - l)(ak+ t - ak) ak +xl/3 ) _ 

,af)) 
+ c~x2 (F  (C~ + 1. ak ; , /3 )  _ F (c~ + 1; ak/3) } 

2/3(ak+ l - ak) ' x 

akX~k+lak {[" (o~; ak;1/3) -- [" (Ct; ~-~-)} .  

Excess x 
is 

is the numerator of the excess ratio, whose denominator 

E[X] =/3 (c~k+l + O~ k ) 

1) 

Illustration #1: Estimation of Z-parameters 

For fifth report lo~es  in the interval (20,000, 30,000) suppose 
we have observed that the first moment (mean) of the fifth-to- 
ultimate loss development factor distribution is m 1 = 1.00 and 
the second moment  is m 2 = 1.81. 

Estimate the c~ and fl parameters of  random development di- 
vision that correspond to the observed moments. 

Solution: 

Using Equation 6, set m I equal to E[1/Z] and m 2 equal to 
E[1/Z2] 

E[1/Z]  = / 3 / ( a -  1) = m I = 1.00, 

and 
E[1/Z 2] = fl2/{(oz- 1)(o~-- 2)} : m 2 = 1.81. 
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Solving the two equations simultaneously gives c~ = 3.2346 and 
/3 = 2.2346. 

I l lustrat ion #2: Calculat ion of  Fx(x) 

Given the scenario in Illustration 1, estimate the probabili ty 
that a fully developed claim will not exceed $35,000. 

Solution: 

We apply Theorem 1 with the following parameter values: ak 
= 20,000, ak+ l = 30,000, c~ = 3.2346,/3 = 2.2346, and x = 35,000 

Fx(35,000) = .825178. 

Illustration #3: Calculation of Excess Ratio 

Given the assumptions in Illustration 1, estimate the expected 
proportion of  loss dollars in excess of  35,000. 

Solution: 

We apply Theorem 2 with the following parameter values: a k 
= 20,000, ak+ 1 = 30,000, c~ = 3.2346,/3 = 2.2346, and x = 35,000 

Excessx(35,000) = 4092.57 

E[X] = 25,000 x 1.00 = 25,000. 

The ratio is 4097 .57 /25000  = 0.1639. 

5. THE ISSUE OF RISK LOAD 

The Flat Loading 

The flat loading, which accounts for parameter risk and anti- 
selection, was added to the ELF which is a ratio to premium that 
includes expenses; it was .005, subject to a maximum of  half  
the ELE  In the selected procedure, we have chosen to remove 
ourselves from the expense arena by instead applying the .005 
flat loading to the pure excess ratio and limiting it to half o f  that. 
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Prior Load for Contagion 

The loss distributions underlying the prior ELF procedure cor- 
respond to individual claims by injury type; however, ELFs ap- 
ply on a per occurrence basis (a single occurrence may contain 
multiple claims). The adjustment used to account for the per oc- 
currence basis of the coverage was to inflate the average cost 
per case for each injury type by a factor of 1.1. So, for exam- 
ple, if the average Fatal claim for a given state and hazard group 
was projected to be $100,000, an average value of $110,000 
was assumed in the ELF calculations. In other words, the Fatal 
occurrence size distribution was scaled to an average value of 
$110,000--from which the Fatal contribution to the ELF (the 
partial excess ratio) is calculated. This was done for all claim 
types. 

Selected Contagion Load 

As stated in Section 1, removing the differences in scale by 
state made it possible to combine experience from more than one 
state. For each injury type, normalized claims had an average 
size of unity. Parametrized statistical distributions were then fit 
to the sample distributions by maximum likelihood. The scale 
parameters of the fitted distributions did not necessarily result in 
a mean of unity but had to be adjusted once again to normalize 
the result. 

We are sampling from highly skewed distributions for PT/ 
Major and Fatal. Consider the distributions of the sample means. 
In theory, these distributions approach normality as the sample 
sizes approach infinity; but is this the case in practice? These 
sampling distributions of the means at an ultimate report, based 
on finite state sample sizes, are likely still skewed. This means 
that in more cases than not, the sample means will be less than 
the true means. 

The empirical cumulative distribution function (c.d.f.) is based 
on a sample, and a sample contains a largest observed claim. 
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A theoretical distribution such as a transformed beta would not 
have a maximum possible claim; some probability (albeit small) 
would be assigned to claims greater than the largest claim ob- 
served in the sample. For this reason, the mean of the fitted 
distribution (the maximum likelihood estimator) may be great- 
er than that observed in the data (the method of moments esti- 
mator). 

The choice of an adequate statistical model produces a fitted 
statistical distribution whose cdf very closely matches that ob- 
served for the data, except at very high entry ratios. For example, 
if 25% of the observed normalized claims are below entry ratio 
1.00, we expect the theoretical model's cdf to be very close to 
.25 at input value 1.00. As stated above, the prior approach was 
to re-scale the distribution fitted to combined data to a mean of 
unity. A consequence of this re-scaling is that the cumulative dis- 
tribution values do not match the empirical. In 1995, we chose 
not to re-scale the fitted distributions, thereby providing, in ef- 
fect, a natural contagion load. We are using distributions that 
closely match the observed empirical distribution values, but as- 
sign small probabilities to large unobserved claim values. As in 
the prior procedure, the small probabilities assigned to the tail 
of each distribution are determined by the fitting procedure. The 
difference is that the means of the models are greater than unity. 
By allowing the means to float, our models more closely match 
the observed claim distributions and at the same time provide 
some risk load. 

The way the Fatal and PT/Major claim data is fit enhances the 
impact of the above strategy. The model accounts for these occur- 
rences by fitting a distribution to the claim data censored from 
above; heuristically, the observed values correspond to single- 
claim occurrences and the censored portion of the distribution 
corresponds to multiple claim occurrences. The result is an oc- 
currence size-of-loss distribution, with entry ratios to the average 
cost per claim. This is described in more detail below. 
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6. DEVELOPMENT OF PRODUCTION MODEL 

The above sections cover the major issues addressed by our 
research and decisions made on these issues. Following is the 
application of these decisions in creating a new model. 

Construction of Normalized Database 

The countrywide claims database comes from Workers Com- 
pensation Statistical Plan data. This database contains fifth report 
claims for NCCI states along with an open/closed claim indica- 
tor. Each claim is identified by injury type. 

Fifth-to-ultimate development factors (from a separate data- 
base used for class ratemaking) by state and injury type were 
used to develop these open claims. The development factor for 
open claims was such that the overall development (on open and 
closed claims) averaged to the loss development factors in our 
class ratemaking database. 

Claims were then normalized (scaled to unity) by state and 
injury group, retaining the open/closed indicator. At this point, 
states can be combined, and the distributions can be grouped into 
n uniform claim size intervals. 

In the procedure described thus far, no adjustment has been 
made for dispersion in the development by claim, other than the 
application of a flat factor by state to open claims only. 

Application of Random Development Divisor (RDD) Algorithm 

As in the 1992 study, we assume that only the distributions for 
Fatal and PT/Major claims change shape beyond a fifth report. 

We introduced development uncertainty via the Random De- 
velopment Divisor (RDD) algorithm. Based officially on judg- 
ment, but unofficially on an analysis of confidential data, we used 
a coefficient of  variation (cv) of .9 for open claims and .1 for 
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closed claims. Section 4 explains how we developed the open 
claim sub-intervals using a cv of  .9. A similar procedure was 
used for the intervals of closed claims. We weighted together all 
2n resulting distributions to form the sample for the next step. 

Curve Fitting 

Using maximum likelihood, we fit parametric distributions to 
the developed sample claim distributions. Actual fifth report data 
was used without further adjustment to fit the TT/Minor model. 

Fit to Fatal Claims 

The fatal loss size distribution encompasses two distinct types 
of c la im-- those with and those without survivor. Survivor bene- 
fits range over a lot of  possible values, generally large to larger. 
Without a survivor, there is still a range of values depending on 
medical care, but a cluster of smallish values for claims in which 
medical care is minimal. Looking at the actual data, we con- 
cluded this could not be easily modeled by a single parametrized 
distribution. 

A linear mixture of  three distributions is used to model Fatal 
losses. Let R represent the "entry ratio" random variable. F(r) is 
the cumulative distribution function of R: 

F(r) = WlF I (r) + w2F2(r ) + w3F3(r), 

where the w's represent the weights given to each of  the three 
pieces. 

For R < 1, the distribution of R is modeled using a censored 
Weibull distribution. The censoring parameter, c, is 1. This dis- 
tribution, F l (r), received the largest weight (wj) of 0.608. 

For R > 1, we model, R - 1, the excess above entry ratio 1, 
with a transformed beta distribution. Each normalized occurrence 
in this interval can be thought of  as unity plus a transformed beta 
deviate. This distribution received the next largest weight (w2). 
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To eliminate clustering and improve the fit of the model, a 
small portion of  the claims in the interval (.75, 1) were modeled 
separately using a conditional (truncated and censored) Weibull. 
This distribution received a weight (w3). The parameters are the 
same as those for the Weibull used in the (0, 1 ) interval, except for 
the truncation point. Following is a comparison of the composite 
fitted distribution, F(r), and the sample distribution generated by 
the RDD model, Fn(r ). 

C O M P A R I S O N  OF FATAL DISTRIBUTIONS 

r F~(r) F(r) 

0.10 0.176340 0.176835 
0.50 0.413960 0.419246 
1.00 0.626340 0.626340 
5.00 0.987300 0.986424 

10.00 0.997330 0.996420 
50.00 0.999980 0.999779 

The severity distribution for Fatal has a mean of 1.039. 

Fit to PT/Major 

Following is a comparison of  PT/Major cdfs. 

The empirical ultimate report cdf for normalized claims prior 
to application of  the RDD algorithm (but after development of  
open claims) is Fn(r); after RDD it is F~(r). To account for the 
per occurrence basis of  the coverage, a conditional distribution 
F(r I r <_ 90) was fit via maximum likelihood to F~*(r), also cen- 
sored at 90. The corresponding uncensored distribution F(r) is 
used to model occurrences. 

The RDD algorithm causes most claims to develop downward 
but at the same time makes the tail of the distribution thicker, as 
can be noted from a comparison of Fn(r) and F~(r). 
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The fitted conditional distribution (F(r )<  90) fits the post- 
RDD cdf (F/,(r)) well. 

r F( r )  F*(r) F(r I r < 90) F(r) 

0.10 0.00030 0.00101 0.00123 0.00123 
0.50 0.37237 0.41468 0.41221 0.41214 
1.00 0.71205 0.74970 0.74759 0.74745 
5.00 0.98692 0.98053 0.97958 0.97940 

10.00 0.99741 0.99472 0.99350 0.99332 
50.00 0.99986 0.99967 0.99970 0.99951 

The severity distribution for PT/Major has a mean of  1.066. 

Fit to TT/Minor Claims 

A Transformed Beta was fit to TT/Minor claims. 

r F(r) Fn(r) 

1.O0 0.69826 0.68660 
5.00 0.97017 0.96897 

10.00 0.99635 0.99731 

In other words, finis. 
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EXHIBIT 1 

COMPARISON OF INJURY GROUPING SCHEMES 

PERFORMANCE TESTING SUMMARY 
THEORETICAL STATE EXCESS RATIOS REGRESSED ON 

EMPIRICAL 5TH REPORT EXCESS RATIOS 

35 States 

Loss Option 1 Option 2 Option 3 Option 4 
Limit R-squared R-squared R-squared R-squared 

$12,500 
$50,000 

$250,000 
$500,000 

0.969 0.960 0.970 0.903 
0.853 0.953 0.843 0.791 
0.406 0.408 0.281 0.404 
0.290 0.213 0.157 0.147 

NCCI States At Least 5,000 Serious Claims 
(17 States) 

Loss Option 1 Option 2 Option 3 Option 4 
Limit R-squared R-squared R-squared R-squared 

$12,500 0.958 0.952 0.960 0.936 
$50,000 0.843 0.965 0.837 0.921 

$250,000 0.618 0.696 0.534 0.553 
$500,000 0.361 0.371 0.296 0.215 

Option 1: FF and PP modeled separately. 
Option 2: PT and Major PP together, TT and Minor PP together. 
Option 3: FrF and all PP modeled together, TT by itself. 
(Control) Option 4: Excess Ratio predicted using previous year's observed values. 
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EXHIBIT 2-B 

FATAL SKEWNESS 
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PERMANENT TOTAL VAR/ANCE 
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PERMANENT PARTIAL VARIANCE 
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EXHIBIT 5-A 

S U M M A R Y  

S T A T E  F A T A L  C L A I M S  D I S T R I B U T I O N  C O M P A R E D  T O  

C O U N T R Y W I D E  

Likelihood 
Degrees Ratio Test 

State Claims of Freedom Statistic p- v',due 

A 77 3 0.780 0.854 
B 36 3 0.435 0.933 
C 40 2 1.279 0.528 
D 69 2 1.587 0.452 
E 187 3 10,567 0.014 
F 14 2 0.680 0.712 
G 22 2 0.182 0.913 
H 168 2 (I.767 11.681 
I 103 2 4.518 0.104 
J 56 2 4.193 0.123 
K 51 2 2.188 0.335 
L 134 3 5.542 0.136 
M 511 3 19.877 0,000 
N 15 2 5.653 0.059 
O 118 3 0.882 0.830 
P 75 3 0.049 0,997 
Q 27 1 0.56(I 0.454 
R 28 2 0.382 0.826 
S 27 1 0.560 0.454 
T 78 2 2.434 0.296 
U 79 1 2.968 0,085 
V 7 2 2.622 0.270 
W 14 2 0.680 0.712 
X 84 2 3.253 0.197 
Y 4 1 0.451 0.502 
Z 10 2 1.825 I).402 

A A  66 3 0.208 0.976 
BB 61 2 6.313 11.043 
CC 59 3 9.003 11.029 
DD 13 1 1.860 0.173 
EE 132 3 2.5111 0,473 
FF 47 3 5.757 0.124 
GG 131 3 9.280 0.026 
HH 10 2 1.825 11.4112 
11 99 1 4.429 0.035 
JJ 91 3 0.389 0.943 

KK 78 3 1.392 0.707 

All States 2,3611 I 18 117.88 0,486 
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EXHIBIT 5-B 

S U M M A R Y  

S T A T E  P T  C L A I M S  D I S T R I B U T I O N  C O M P A R E D  T O  

C O U N T R Y W I D E  

Likelihood 
Degrees Ratio Test 

State Claims of Freedom Statistic p-value 

A 86 3 1.016 0.797 
B 29 2 2.076 0.354 
C 21 1 1.040 0.308 
D 358 2 55.105 0.000 
E 738 3 8.843 0.031 
F 64 2 0.195 0.907 
G 5 1 0.134 0.714 
H 144 3 0.133 0.988 
I 20 2 2.148 0.342 
J 47 2 0.264 0.876 
K 98 2 1.887 0.389 
L 156 3 7.160 0.067 
M 36 1 2.342 0.126 
N 29 2 3.464 0.177 
O 33 1 3.753 0.053 
P 32 3 10.665 0.014 
Q 82 2 0.635 0.728 
R 13 2 0.619 0.734 
S 45 2 3.346 0.188 
T 78 1 4.402 0.036 
U 109 3 0.511 0.916 
V 80 2 2.031 0.362 
W 11 2 2.961 0.228 
X 56 2 2.422 0.298 
Y 14 I 0.693 0.405 
Z 5 I 0.134 0.714 

AA 75 3 26.425 0.000 
BB 61 3 0.246 0.970 
CC 48 3 3.016 0.389 
DD 7 I 0.043 0.836 
EE 130 3 2.049 0.562 
FF 32 2 3.041 0.219 
GG 102 3 2.864 0.413 
HH 28 2 0.765 0.682 
11 52 3 1.726 0.631 
JJ 5l 2 2.197 0.333 

KK 52 3 2.117 0.548 

All States 3,027 115 162.468 0.002 

Excl. D 2,669 113 107.363 0.632 
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APPENDIX 

B l a c k - S c h o l e s  M o d e l  

Let us think of the future price of a share of  stock, S, as the 
current share price, S 0, times a random "development factor." 
The development factor random variable is customarily modeled 
by a lognormal distribution. Then the future price--equal  to a 
Iognormally distributed random factor times a constant (the cur- 
rent price) is also lognormally distributed. 

Let the indexed random variable S t represent the unknown 
future price of a share of  stock at time t (t > 0). Suppose S t is 
lognormally distributed with parameters (/tt,O2t). 

At time zero, we wish to price a call option exercisable at 
time t, at exercise price d. A call gives the holder the option of 
buying a share of stock at the exercise price at some future date. 
Let r f  represent the force of interest at the risk free rate. Then: 

P V ( C A L L )  = e - r f  * fd°~(s -- d ) f ( s ) d s  

= e r f ' {E (S )  - E(S;d)} 

( l n ( d ) - # i  ~ ) 

=er, } 
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 er Ee ln d  t+ 2t 

- d ¢  ~ v q  " 

The Black-Scholes form for the above is arrived at by equating 
the mean of the distribution to the current (t = O) share price 
times the discount factor: 

el~,+axt/2 = ~0 e '~ rft. 

The above is highly suggestive. First, the idea of creating Black- 
Scholes analogs based on distributions other than the lognor- 
mal may come to mind. We could, for example, assume that the 
stock "development factors" follow the gamma distribution in- 
stead of the lognormal; the share price itself would also then 
be gamma distributed. Not surprisingly, the use of such Black- 
Scholes analogs is not unknown in the world of finance. 

The second item which may come to mind is the resemblance 
between the mathematics of pricing an option and the reserving 
of excess of loss coverage. Of major significance is the follow- 
ing: if a fifth report open claim is currently valued below a given 
retention, it does not follow that the expected contribution of the 
claim to the excess layer is zero, just as the value of a call for a 
stock currently priced below the exercise price is not zero. 


