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FOREWORD 
Actuarial science originated in England in 1792 in the early days of  life insurance. 

Because of  the technical nature of  the business, the first actuaries were mathematicians. 
Eventually, their numerical growth resulted in the formation of  the Institute of  Actuaries 
in England in 1848. Eight years later, in Scotland, the Faculty of Actuaries was formed. 
In the United States, the Actuarial Society of America was formed in 1889 and the 
American Institute of Actuaries in 1909. These two American organizations merged in 
1949 to become the Society of  Actuaries. 

In the early years of  the 20th Century in the United States, problems requiring actuarial 
treatment were emerging in sickness, disability, and casualty insurance--particularly in 
workers compensation, which was introduced in 1911. The differences between the new 
problems and those of traditional life insurance led to the organization of  the Casualty 
Actuarial and Statistical Society of  America in 1914. Dr. I. M. Rubinow, who was respon- 
sible for the Society's formation, became its first president. At the time of  its formation, 
the Casualty Actuarial and Statistical Society of  America had 97 charter members of  the 
grade of  Fellow. The Society adopted its present name, the Casualty Actuarial Society, 
on May 14, 1921. 

The purpose of the Society is to advance the body of  knowledge of  actuarial science in 
applications other than life insurance, to establish and maintain standards of  qualification 
for membership, to promote and maintain high standards of  conduct and competence for 
the members, and to increase the awareness of actuarial science. The Society's activities 
in support o f  this purpose include communication with those affected by insurance, 
presentation and discussion of  papers, attendance at seminars and workshops, collection 
of a library, research, and other means. 

Since the problems of  workers compensation were the most urgent at the time of  the 
Society's formation, many of  the Society's original members played a leading part in 
developing the scientific basis for that line of  insurance. From the beginning, however, 
the Society has grown constantly, not only in membership, but also in range of  interest 
and in scientific and related contributions to all lines of  insurance other than life, includ- 
ing automobile, liability other than automobile, fire, homeowners, commercial multiple 
peril, and others. These contributions are found principally in original papers prepared 
by members of  the Society and published annually in the Proceedings of the CasualtyAc- 
tuarial Society. The presidential addresses, also published in the Proceedings, have called 
attention to the most pressing actuarial problems, some of  them still unsolved, that have 
faced the industry over the years. 

The membership of  the Society includes actuaries employed by insurance companies, 
industry advisory organizations, national brokers, accounting firms, educational institu- 
tions, state insurance departments, and the federal government. It also includes inde- 
pendent consultants. The Society has two classes of  members, Fellows and Associates. 
Both classes require successful completion of examinations, held in February, and in the 
spring and fall of  each year in various cities of  the United States, Canada, Bermuda, 
and selected overseas sites. In addition, Associateship requires completion of  the CAS 
Course on Professionalism. 

The publications of  the Society and their respective prices are listed in the Society 's  
Yearbook. The Syllabus of Examinatior~ outlines the course of  study recommended for 
the examinations. Both the Yearbook, at a charge of $40 (U.S. funds), and the Syllabus 
of Examinations, without charge, may be obtained from the Casualty Actuarial Society, 
1100 North Glebe Road, Suite 600, Arlington, Virginia 22201. 
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H O M E O W N E R S  R A T E M A K I N G  REVISITED 
(USE OF C O M P U T E R  M O D E L S  TO ESTIMATE 

CATASTROPHE LOSS COSTS)  

MICHAEL A. WALTERS AND FRAN(~OIS MORIN 

Abstract 

Recent improvements in computer technology and 
easy access to large quantities of data have eliminated 
some traditional limitations on insurance ratemaking. 
The emergence of catastrophe simulation using com- 
puter modeling has helped actuaries develop new meth- 
ods of measuring catastrophe risk and providing for it in 
insurance rates. This paper addresses these new meth- 
ods and illustrates the features and benefits of com- 
puter modeling for catastrophe ratemaking. Hurricane 
loss costs as part of homeowners coverage are treated 
in the main body of the paper; modeling for other catas- 
trophic perils is reviewed in the Appendix. 
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1. WHY MODELING? 

According to the CAS Principles of  Ratemaking, a rate is "an 
estimate of  the expected value of  future costs, provides for all 
costs associated with the transfer o f  risk, and provides for the 
costs associated with an individual risk transfer." 

Traditionally, ratemaking has been regarded as the art of  
extrapolating valid conclusions about the future from scientifi- 
cally measured past experience. However,  for lines of  business 
with catastrophe potential, questions always arise as to how much 
past insurance experience is needed to represent possible future 
outcomes and how much weight should be assigned to each 
year ' s  experience. For instance, if a 1954 hurricane was the 
last severe event in a given state, may  one assume that the re- 
turn period for an event of  the same severity is 43 years? What 
if historical records show that more severe storms occurred in 
the 1930s, before the advent of  homeowners  coverage? If the 
same storm struck in 1997, would it affect the same properties? 
What level o f  damage would occur, given that the distribution 
of  insureds has shifted to coastal communities and that the in- 
sured values at risk have trended at a pace that has exceeded in- 
flation? 

For these rare calamities, reliance on actual insured experi- 
ence does not allow accurate measurement of  future expected 
loss. Therefore, one must use a much longer experience period, 
especially for event frequency. Computer  simulation of  events 
to obtain current insured losses has replaced traditional methods 
based exclusively on reported loss experience. These new meth- 
ods can now be used not only to measure expected losses, but 
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also to develop risk loadings to compensate for the variance in 
outcomes, compared to lower-risk insurance products. 

The need for catastrophe modeling to aid in reinsurance pur- 
chase decisions and in insurance ratemaking has existed for some 
time. However, computer limitations on the amount of  data that 
could be manipulated to develop a catastrophe model rendered 
the concept impractical in the past. In recent years, computer 
capacity has improved dramatically, making catastrophe simula- 
tion feasible. Increased computer capability has also enabled sci- 
entists to expand their research and produce better simulations 
through a better understanding of catastrophic events. 

2. WHAT TO M O D E L  

A state's most recent historical losses may not be indicative 
of its true catastrophe potential because what happens in a given 
year is only a sample of what could have happened. The goal is 
to build a model to simulate what could realistically occur, based 
on information relevant to that state and to all refined geographic 
areas within the state. 

Building a computer model requires that the estimation pro- 
cess be separated between frequency and severity. For the fre- 
quency of hurricanes, there is a long history (more than 100 
years) of recorded information to help gauge the relative likeli- 
hood of  landfall in a given state. Even so, there may be a need to 
supplement that history with geologic information dating back 
several thousand years to measure the relative frequency of  Cat- 
egory 5 hurricanes. Such investigations are now feasible. Scien- 
tists believe that they can determine the return periods of  very 
severe events by examining tempesti tes--ocean floor and coastal 
lagoon samples, where catastrophic events have left telltale signs 
in the sand. 

For severity of hurricanes, however, older storms over the past 
hundred years do not offer any useful insured loss information. 
Even for storms in the 1950s and 1960s, the extent of  loss if 
that same storm occurred again would depend on today's insured 
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values, deductibles and level of windstorm-resistant structures. 
However, a computer simulation model for the hurricane peril 
can take the characteristics of a storm and replicate the wind 
speeds over its course after landfall. The damage to buildings 
and contents and the resulting effect on insured values are based 
on the wind field created by the modeled storm. Validation of the 
model examines actual loss experience obtained from storms that 
have occurred over the recent past. This is an ongoing process 
as new catastrophes occur. 

Because storm simulation by computer was the initial break- 
through, we start with it as the basis for modeling the severity 
component in estimating hurricane loss costs. 

3. HOW TO MODEL FOR SEVERITY 

The severity component of catastrophe modeling generally 
comprises three distinct modules requiring three separate skills: 

• event simulation (science) 

• damageability of insured properties (engineering) 

• loss effect on exposures (insurance). 

The event simulation module is designed to reproduce natural 
phenomena. For a hurricane model, wind physics is now under- 
stood well enough to predict wind speeds at every location over 
the course of a single storm. A model would use such key in- 
puts as central pressure, radius of maximum wind, and forward 
speed of storm. For practical purposes, each risk can be viewed 
as being at the geographic centroid of the ZIP code in which it 
is located. This is generally the finest level of detail currently 
coded by insurers for their risks. However, greater availability 
of exposure information at the street level (especially for per- 
sonal lines) will eventually allow models with even finer levels 
of detail. 

The damageability module estimates the damage sustained by 
a given property exposed to the simulated event. The damage 
functions used in a catastrophe model are generally developed 
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by engineers familiar with structural vulnerabilities who test the 
resistance of various materials to high wind speeds. (The results 
of these studies are also used to develop new materials and to 
implement new building codes to limit the damage from catas- 
trophes.) 

The insured loss effect module incorporates the results of the 
first two modules and adjusts for such factors as deductibles, co- 
insurance, insurance to value, and reinsurance. The loss effect is 
generally the only company-specific module because it includes 
all the factors that describe an insurer's in-force book of business. 
It is also the one used for risk analysis (probable maximum loss) 
for an individual insurer. 

The severity component of catastrophe modeling is usually 
deterministic, calculating the impact of a predetermined event 
with known characteristics. The computer, in effect, simulates 
that event today, with the resulting losses to insured expo- 
,,ures. Of course, even for a particular set of parameters (e.g., 
v~ind speed or landfall), the actual distribution of losses will be 
st~)chastic. However, the use of a damage factor curve, with val- 
idation over a number of storms, can adequately represent the 
average loss results. This is especially true when a large num- 
ber of events are simulated. Appendix A provides a detailed de- 
scription of the process of developing and validating the severity 
component of a catastrophe model. 

4. HOW TO MODEL FOR FREQUENCY 

Deterministic catastrophe models were the first ones created, 
calibrated and validated. They helped to approximate probable 
maximum loss calculations for risk analysis, by postulating pos- 
sible storms in different locations to estimate insured losses from 
adverse events. This deterministic method, however, is not ap- 
propriate for ratemaking, which needs to incorporate relative fre- 
quency or the probabilities of each type of storm. 

To add a frequency component to the hurricane model, one 
must analyze long-term meteorological records of hurricanes by 
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landfall area, supplemented with informed judgment  obtained 
from professionals in the field of meteorology. One can obtain 
the historical data from National Oceanic and Atmospheric Ad- 
ministration (NOAA) publications. The past data are then fitted 
to derive probability distributions of the key input parameters, 
such as radius of maximum wind, forward speed and pressure 
differential at the eye of the storm. For example, an analysis 
of the radius of maximum winds of historical events in South 
Florida yields a conclusion that they are normally distributed 
(N(/~,a)), with parameters of 16.840 and 10.567 nautical miles. 

Sampling techniques (Monte Carlo, stratified, or a combina- 
tion of both) can randomly select the parameters from each distri- 
bution. Monte Carlo sampling generally assigns an equal prob- 
ability to all sampled items from the entire population, which .  
makes it easy to use and explain to a nonstatistical audience. 
One of its drawbacks, however, is a lack of precision in esti- 
mating unlikely events. This can be overcome by generating a 
very large sample size. However, in certain situations, the sample 
size may become enormous and create problems of efficiency, 
even with today's computers. An alternative is stratified random 
sampling. 

By dividing the entire population into smaller groups (or 
strata), stratified sampling allows a more accurate estimation of 
their distribution, considering homogeneity. These estimates can 
then be combined into a precise estimate of the overall popula- 
tion with a smaller sample size than with Monte Carlo sampling, l 
Another benefit of stratified random sampling is the ability to 
sample a larger number of events in each strata than their rela- 
tive probability in the overall population. This makes the estima- 
tion of extremely unlikely events possible, such as a Category 5 
hurricane in Maine. This is important because the potential dam- 
age associated with such an event, even though only remotely 

I Refer  to Cochran  [2, p. 87] for addi t ional  informat ion  on the benefi ts  o f  s trat if ied 
sampl ing .  
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conceivable, may be of significance for certain insurers for risk 
analysis or for ratemaking. When this approach is utilized, the 
relative probability of each sampled storm must be adjusted to 
reflect its overall probability in the distribution. 

In conjunction with storm intensity distributions, one must 
also develop the storm path and landfall location for each mod- 
eled storm. The selected parameters are based on actual historical 
events over the last hundred years and on other available sources 
of information. 

After selecting the storm intensity parameters and deriving 
their respective conditional probabilities, the results are com- 
bined. The probabilities are conditional because they refer to 
the likelihood of a hurricane of a certain size, once a hurricane 
makes landfall. By definition, the sum of  the probabilities will 
add up to one. The end result is the probabilistic library, which 
comprises a large enough number of events (in excess of 5,000) 
to represent all likely scenarios, each with an associated proba- 
bility. While there is no minimum set of events or sample size 
required, it is important that it be large enough to ensure that 
every ZIP code exposed to hurricane force winds will be sub- 
jected to a significant number of events. By using stratified sam- 
pling techniques, it will be typical for a given ZIP code to be 
affected by over 1,000 events, rendering the loss estimates fully 
credible. 

5. BASIC O U T P U T  OF M O D E L  

A probabilistic database is the key to calculating expected loss 
costs. Because the basic premise is that all possible events have 
been identified along with their probabilities, one can calculate 
expected loss costs directly for the base class risk in a geographic 
locale. Simply run the entire event library against a base class 
house at $100,000 of Coverage A at the centroid of each ZIP 
code. The resulting expected losses can be divided by the amount 
of insurance in thousands to produce an expected loss cost per 
$1,000 of insurance for each ZIP code. 
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The reason the ZIP code is used as the basic building block is 
that virtually all insurers are capturing this value. If insurers were 
geo-coding risks (i.e., by street address mapped to latitude and 
longitude), the model could also produce loss costs at that level 
of  detail. However, the ultimate rating territories for hurricane 
are likely to include multiple ZIP codes, so the results can be 
initially produced by ZIP code. 

To ensure that all coverages are handled appropriately in the 
simulation for a homeowners  policy (HO-3), one would assign 
an additional 10% of  the Coverage A (building) amount for Cov- 
erage B (appurtenant structures), 50% for Coverage C (contents), 
and 20% for Coverage D (additional living expense; i.e., loss of  
use). 

Annual expected loss costs for a given ZIP code are obtained 
by multiplying the sum of  the probability-weighted simulated 
results across all storms by an annual hurricane frequency. The 
average annual frequency of  hurricanes making landfall in the 
U.S. has been approximately 1.3 for storms with central pressure 
under 982 millibars. 

For a given line of business, the expected losses by ZIP code 
are then: 

ELzI P = F x ' ~  (Pstorm x EzI P x DFstorm) , 
stol 'm 

where 

ELzI P = Expected losses for ZIP code for base class 

F = Annual hurricane frequency 

P~torm = Probability of  storm 

Ezi P = Total exposure amount (Base class constant 

for all ZIP codes) 

DFstor m = Damage factor for base class by ZIP code by storm. 

These expected losses represent insured losses for a base class 
amount of  insurance, construction type and deductible. These 
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may be selected as flame building with a $250 deductible, 
$100,000 of Coverage A, $10,000 of Coverage B, $50,000 of 
Coverage C and $20,000 of Coverage D. Because loss adjust- 
ment expenses for catastrophes are generally related to the over- 
all level of losses, it is appropriate to include them in the expected 
losses as a percentage of total losses. 

To convert this to a loss cost expressed as a rate per $1,000 
of Coverage A, divide by the exposure base times 1,000. 

ELzH, 
ELCzl p - × 1,000, 

COVAzI P 
where 

ELCzl P = Expected loss cost for ZIP code 

COVAzw = Base class Coverage A amount in ZIP code. 

Independence from Company Experience 

A major feature of this calculation is its independence from an 
individual company's actual loss experience and exposure distri- 
bution. Being independent of individual company data, it is, in 
fact, appropriate for each insurer. 

What would happen if an insurer tried to use its own exposure 
distribution to estimate base class loss costs? First, it would have 
to run the model in complete class and ZIP code detail over 
its latest exposure distribution, which would produce expected 
losses in dollars for the insurer by ZIP code. However, dividing 
by the total exposures by ZIP code would only yield average loss 
costs by ZIP code. What if the insurer had a disproportionate 
number of high-risk exposures in that ZIP code? The insurer 
would have to divide by the average class relativity in each ZIP 
code to get the average base class loss cost. 

Furthermore, the class relativities to divide out should, in the- 
ory, be the indicated class relativities, not the current relativities. 
Section 6 will deal with how to calculate indicated class rela- 
tivities using a model. Doing all this using company exposures 
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would then only produce the same answer as using the base class 
exposure method described above. 

In traditional loss ratio methods of ratemaking, with actual 
loss experience determining loss costs, it is important to use the 
insurer's actual losses and exposures. However, in catastrophe 
ratemaking using computer modeling, large volumes of industry 
loss experience have been used over the last ten years to calibrate 
the average severity, and meteorologic data over a hundred years 
have been used to calibrate frequency. 

Hence, the value of an individual insurer's actual loss expe- 
rience is very limited. First, it may not be relevant to know that, 
for hurricane, a house was insured by Company A versus Com- 
pany B. Second, an individual insurer may be such a small subset 
of the total industry loss experience that it has little credibility, 
especially if the insurer has less than a 5% market share. The ex- 
ample here is for such an insurer, for whom the hurricane model 
represents the best estimate of future expected costs. 

Combining ZIP Codes Into Territories 

The next step is to use the insurer's actual exposure distri- 
bution by ZIP code to get the base class loss costs for the ter- 
ritory structure it selects after reviewing the indicated hurricane 
loss costs by ZIP code. The use of geographic mapping is es- 
pecially useful in this selection process because the ZIP codes 
can be grouped in ranges and then printed on color-coded maps 
to help visualize the boundaries of possible territories. For the 
early years of ratemaking via catastrophe models, broad groups 
of ZIP codes are likely, such as those with loss costs in ranges of 
$.25 per $1,000 of Coverage A. Once the ZIP code groupings are 
selected, the loss costs for the new territories can be calculated 
by the following formula: 

~ ( E L C z I  t, × COVAzI P) 
ZIP 

ELCterr = 
COVAzlr, 

ZIP 
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where 

ELCterr = Expected Loss Cost for territory, and 

COVAzl p = Coverage A amount for territory. 

In Exhibit 1, the ZIP code loss costs per $1,000 of  Coverage 
A for homeowners  are averaged for a given territory structure to 
derive the territorial loss costs for hurricane coverage. It is likely 
that the more appropriate territory structure for hurricane will 
differ from regular homeowners  territories. Because the latter 
evolved over time to respond to homogeneity considerations in 
setting rates for the perils of  fire and theft, there is a need to create 
new territories to reflect differences in hurricane loss potential. 

6. ATTRIBUTES OF LOSS COSTS VIA COMPUTER MODELING 

Credibility 

Through computer  simulation and stratified sampling, the in- 
dividual ZIP codes are fully credible in the traditional sense be- 
cause the inputs have theoretically accounted for all the useful in- 
formation (from industry-validated damage factors to more than 
100 years of  storm frequency experience). One would not want to 
assign the complement  of  credibility to an insurer 's actual results 
on a statewide basis over the past few years, because the recent 
insurer results add no useful new information and, in fact, could 
bias the answer because of  too much randomness. The idea of  
the model is to substitute the random variation of  low-frequency 
actual storms with the use of  a reasonable set of  possible storms, 
with their probabilities. (It is understood that even the past 100 
years of  hurricane history do not contain the set of  all possible 
storms and their inherent likelihood.) 

While theoretical full credibility can be assigned in refined 
cell detail from the computer  simulation, this only means that 
random statistical variation can be resolved to minimize the pro- 
cess risk from a ratemaking standpoint. However, there is still 
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parameter risk in the selection of the key variables because the 
event frequencies of  the past 100 years may not be representa- 
tive of  the next 100 years. (This is especially true in earthquake 
simulation, where return periods may be in the hundreds or even 
thousands of  years. Also, the understanding of the physics of 
shake intensity is still evolving among earthquake experts.) 

Overcoming parameter risk is the goal of  scientific research in 
the future. As geologic findings help measure the return periods 
of large hurricanes by region, better estimates of frequency will 
be developed. This is really no different from the basic ratemak- 
ing paradigm that the recent past history will repeat itself, and 
that the five-year experience period of loss ratio reviews is as- 
sumed to be predictive of the next few years. In the case of hurri- 
cane modeling, the pure premium method actually calculates the 
long-term frequencies separately from the more recent average 
severities, so the existence of parameter risk is highlighted, espe- 
cially in the frequency calculation. Also, the answer to parameter 
risk is not to abandon modeling as a method, but to continually 
strive for better input parameters. 

The pure premium method also allows the calculation of loss 
costs in refined detail directly, using the model 's  frequency and 
severity features. For traditional loss ratio ratemaking, the actual 
insured loss experience from the recent past is used, beginning 
with statewide totals. Each refinement of statewide data to terri- 
tory or class carries with it a reduction in credibility because of 
much smaller experience volumes. This stems from the experi- 
ence loss ratio method used to derive the result--actual insured 
experience that is a sample taken from what is expected to occur 
over time. In contrast, hurricane loss costs are derived from an 
estimated set of all possible events as constructed in the computer 
model. 

Frequency of Review 

Hurricane loss costs derived from modeling do not need fre- 
quent updates for two reasons. First, with more than 100 years of 
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event characteristics shaping the model design, another year of 
actual results is unlikely to change the model parameters much. 
However, in the early years of model usage, the potential exists 
to update some of the damage factors. Also, when new class 
variables are developed, one can refine initial estimates with the 
loss experience of subsequent actual storms. For example, one 
could test new kinds of shutters and incorporate the results in 
the model. For estimating territory loss costs in the early years 
of model implementation, ZIP code distributions could change, 
as insureds and insurers react to high loss costs in certain coastal 
areas. 

Second, once adequate rate levels are achieved, annual up- 
dates are not critical because the exposure base ($1,000 of Cov- 
erage A) is inflation sensitive. The accompanying premium trend 
can usually offset modest amounts of loss trend from partial 
losses. This makes for an easier validation of the damage factors 
using storm results over the past ten years. If there is any resid- 
ual trend in hurricane loss costs, it may ultimately be difficult 
to measure directly, because of the relatively low frequency of 
humcanes.  

Risk Variations 

Non-hurricane homeowners loss costs vary significantly by 
fire protection class, reflecting the large portion of the coverage 
represented by the fire peril. Yet, the hurricane peril is obviously 
independent of protection class. 

Policy form relativities increase as additional perils are cov- 
ered. In Forms 1 and 2, the perils are specified, while Form 3 
gives essentially all-risk coverage on the building, but not on 
contents. Form 5 provides all-risk coverage on contents. Yet, the 
wind coverage is identical in all the homeowners policy forms. 
Hence, if the hurricane loss costs are a material portion of  to- 
tal homeowners costs, the policy form relativities would have to 
vary substantially by territory, if applied to an indivisible home- 
owners premium. 
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For construction class, a frame house can be almost as hur- 
ricane resistant as one made of brick or stone. For large hurri- 
canes, the key is to protect the envelope of the building from 
penetration--i.e.,  the windows and the roof. Hence, the relative 
fire resistance of the construction is essentially irrelevant for the 
hurricane peril. 

The hurricane peril ultimately needs a separate class plan be- 
cause of different risk variation from the traditional covers. For 
example, new rating factors will likely emerge for shuttering and 
for roof type (e.g., gable versus hip roof). Local enforcement of 
building codes is another rating distinction that is implementable. 
Redoing all the traditional homeowners class relativities to meld 
with the new hurricane classes would be very cumbersome. Per- 
haps the traditional homeowners territories could be retained, 
with a separate set of  territory definitions for the hurricane rate. 

A possible class plan with sample surcharges and discounts 
is shown in Table 1. 

TABLE 1 

P O S S I B L E  H U R R I C A N E  RELATED S U R C H A R G E S  AND D I S C O U N T S  

Category Criteria Sample Factor 

Hurricane Shutters None +0.20 
Add-On -0.20 
Built-In -0.40 

Roof Type Hip -0.25 
Gable +0.30 

Location Shielded by buildings -0.20 
Subject to projectiles +0.20 
Beach front or subject to surge +0.10 

Town Building Code Not enforced +O15 
Enforced; not inspected -0.10 
House inspected; within code -0.25 

Table 1 is just an illustration of  possible risk variation. In 
reality, some of the criteria would interact. For example, a house 
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with excellent shuttering protection would not be as susceptible 
to debris and projectiles penetrating the envelope of the building. 
Hence, the relativities may not be uniformly multiplicative or 
additive. 

To calculate the indicated classification factors, one would 
run the model on a single house in each ZIP code, and vary the 
house based on different resistance characteristics. Next, using 
geographic mapping features, one would derive the relationships 
to the base class in ranges of  relativities; e.g., .8 to .9, .9 to 1.0, 
1.0 to 1.1. Because the ultimate selected relativities are usually 
expressed in a table used by the marketing force as well as by 
underwriters and regulators, one would select average relativi- 
ties that form the dominant pattern from the map illustrations. 
If, within one state, the masonry house discount averaged 5%, 
but varied from 3% to 7% by territory, one could conceivably 
have several zones statewide for construction relativities. Alter- 
natively, if the insurer printed all the rates by territory, instead of  
just the base class rates, then more flexibility could be allowed 
in the relativities. 

7. FORM OF RATING 

If the hurricane peril does not vary by class the same way non- 
hurricane perils do, should the hurricane rate be split out from 
the heretofore indivisible premium for homeowners? Should it 
have its own class plan? The answer to both questions is yes. 

Basically, one can have the best of both worlds. The indivisi- 
ble premium concept was originally introduced almost 50 years 
ago to simplify the review of loss experience and the rating of 
the homeowners policy. It also lowered the cost of the monoline 
coverages, because all the major perils were essentially compul- 
sory. 

With catastrophe modeling available today, virtually all of  the 
advantages of the indivisible premium can be retained while still 
making the hurricane coverage mandatory. Ironically, it is the 
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very difficulty of  an overall loss experience review that suggests 
the unbundling of  coverages for ratemaking--using the pure pre- 
mium method for hurricane ratemaking and allowing a loss ratio 
approach for the other perils. 

Computer  modeling could also be used for other catastrophe 
perils within homeowners (e.g., tornado and winter storm), while 
the remaining non-catastrophe perils in homeowners would use 
the more traditional methods of ratemaking. Computer modeling 
of  catastrophe perils actually makes ratemaking for the other per- 
ils much easier, because of  results that fluctuate less. With loss 
costs supplied by modeling and with a separate rate for each 
catastrophe peril, the actual catastrophe losses only need to be 
removed from the experience period, and nothing need be loaded 
back to the normal homeowners losses. This means that catas- 
trophe serial numbers ought to be retained for loss coding- - to  
subtract catastrophe losses for the regular loss ratio ratemaking, 
to supply catastrophe losses to calibrate the models in the future, 
and, of course, to report to the reinsurers for recovery. 

Thus, the overwhelming advantages of separate catastrophe 
rates are the simplification of  the normal coverage rating and 
ratemaking, as well as the better class and territory rating of the 
catastrophe coverages. 

This does mean an extra rating step for the catastrophe cover- 
ages, but there already are so many endorsements in homeowners 
that this should not be much of  a burden. Furthermore, if hurri- 
cane loss costs are left in the indivisible premium, the homeown- 
ers classes will become much more complicated to rate. The class 
relativities will have to vary greatly by hurricane zone, and the 
actuarial calculation of relativity indications will also be much 
more complex. 

Another simplification achieved through separate hurricane 
rating is the elimination of a complicated set of statewide indi- 
cations including hurricane. Instead, the indications can be pro- 
duced, and actual rates selected, separately. Ostensibly, this cre- 
ates a problem in rate filings, where tradition has called for a 
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combined statewide average indicated rate change as well as a 
filed rate level change. However, this is mere custom, and not 
strictly required by the rating laws--which usually call for rates 
to be filed, not rate changes. In other words, statutory require- 
ments are for rates to be reasonable, not excessive, inadequate 
or unfairly discriminatory. Filed measures of rate changes have 
merely been a convenient way for regulators to monitor reason- 
ableness. 

This is not to suggest that a rate filing should repress the 
estimate of statewide rate change. However, given the different 
ways of calculating the appropriate rates (via a pure premium 
approach for catastrophes and a loss ratio method for other per- 
ils), the statewide indication does not as readily come out of the 
ratemaking method as, for example, it does for auto insurance. 
Hence, other reasonable ways of estimating changes will need to 
be developed, instead of directly from the ratemaking method. A 
sample indicated rate change calculation appears in Appendix C. 

8. EXPENSE LOAD CONSIDERATIONS 

If the hurricane peril is reinsured in a reasonable fashion, then 
the primary insurer ought to be able to pass those costs through to 
the policyholder. The reinsurance premium can be expressed as 
a function of the primary layer and added to the equation. Some 
portion of catastrophe treaty reinstatement premium should also 
be considered part of the reinsurance cost. If the reinsurance 
period does not coincide with the ratemaking period, then rea- 
sonable estimates of prospective reinsurance premiums might be 
considered. 

The total expected hurricane loss costs need to be adjusted to 
exclude the reinsured portion by having the hurricane computer 
model simulate the reinsurance layer. This is done by running all 
probabilistic storms against the insurer's exposure base by ZIP 
code and line of business. Each storm's losses in the reinsur- 
ance layer are then allocated to line and ZIP code in proportion 
to total losses for that storm. Then each storm's probability is 
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multiplied by the losses in the layer and accumulated. This pro- 
duces the expected losses in the reinsurance layer. 

\ Z I P  

where 

where 

XO torm) +T0)+) 
(8.1) 

Lxs = Total losses in layer for each storm, 

RET = Reinsurance retention, and 

L1M = Reinsurance layer size. 

L x s , z i p  = LTOT, ZI P x Lxs - LTOT,  

L x s , z i p  = Excess losses by ZIP code for each storm, 

Lvo v = Total ground-up losses for each storm, and 

L.ro.r, zl p = Ground-up losses by ZIP code for each storm. 

ELxs,zlp = F × ~ Psto~m × Lxs,zIP, 
storm 

where 

(8.2) 

(8.3) 

ELxs,zlp = Expected losses in layer by Zip code, 

F = Annual hurricane frequency, and 

Pstorm -- Probability of storm. 

The reinsurance premium can then be allocated to line of busi- 
ness and ZIP code in proportion to the expected excess losses 
in the reinsurance layer. Those premiums are then ratioed to the 
primary premium by line and ZIP code to get a factor to add to 
the indicated rate by line and ZIP code. 

The remaining expected loss costs outside the reinsurance 
layer (above and below) would then be loaded for risk margin 
and expenses. The reinsurance pass-through would already have 
included the expenses and risk margin of the reinsurer. 



HOMEOWNERS RATEMAKING REVISITED 19 

9. RISK LOAD CONSIDERATIONS 

Splitting the homeowners premium into a catastrophe and 
non-catastrophe component  also allows for a separate calculation 
of a risk margin. As a result, the non-catastrophe component  be- 
comes easier to price, with less variability and a lower margin 
needed for profit. This makes it closer to a line of business like 
automobile physical damage in its target total rate of return and 
total target operating margin needed, which can be expressed as 
a percentage of premium. 

Once a target margin is selected for the non-catastrophe com- 
ponent, the margin for the catastrophe piece can be calculated as 
a multiple of the non-catastrophe component,  using some basic 
assumptions. One assumption is that profit should be propor- 
tional to the standard deviation of the losses. (Some actuarial 
theorists argue that risk load should be proportional to variance. 
It is important to note that these arguments apply to individual 
risks. The assumption that the required risk load for an entire 
portfolio is related to the standard deviation is not inconsistent 
with a variance-based risk margin for individual risks. In ad- 
dition, the high correlation of losses exposed to the risk of a 
catastrophe, as well as the large contribution of parameter risk 
to the total risk load requirement, provides additional arguments 
in favor of a standard deviation basis for risk load.) 

The calculation of the risk load should be performed on a basis 
net of reinsurance because the reinsurance premium is being built 
back into the rates separately. However, calculating the risk load 
both gross and net of reinsurance may be an important exercise 
for an insurer analyzing retention levels. By doing so, the insurer 
may be able to evaluate its reinsurance protection by considering 
the total risk load required. 

In Table 2, a homeowners non-catastrophe pretax operating 
profit margin of 3% is assumed. At a 2.5 to 1 premium to surplus 
ratio, this is equivalent to about a 9.4% aftertax return on surplus 
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(((2.5 x 3 + 7) x .65) = 9.4), assuming surplus can be invested at 
7% pretax. 

Next, assume that the total pure premium can be split into 
80%/20% proportions for the non-catastrophe and catastrophe 
components,  respectively. (This split is expected to be state- 
specific, since the hurricane loss cost in hurricane-prone states 
will represent a greater proportion of the total loss cost.) Based 
on direct homeowners industry data adjusted to eliminate catas- 
trophes, the coefficient of variation of  non-catastrophe loss ratios 
has been about 8% over the past 40 years. The corresponding 
coefficient of  variation for hurricane losses, based on computer 
models, might be 350%, for example. This implies that the stan- 
dard deviation of hurricane catastrophe losses would be 10.94 
times the standard deviation of non-catastrophe losses. 

If a 3% operating margin for non-catastrophe homeowners 
produces a $2.40 operating profit on an $80 pure premium, then 
the operating profit for the hurricane pure premium should be 
10.94 times that, or $26.25. Expressed as a percentage of the 
pure premium, this would result in a risk margin of  131% on top 
of the expected hurricane loss costs. (These operating margins 
would include investment income from policyholder-supplied 
funds, and therefore that quantity must be subtracted to derive 
an underwriting profit margin to be applied to loss costs.) 

TABLE 2 

C A L C U L A T I O N  OF T H E  H U R R I C A N E  R I S K  M A R G I N  AS A 

F U N C T I O N  OF THE N O N - C A T A S T R O P H E  R I S K  M A R G I N  

Risk 
Coefficient Margin 

% of of Standard (% of Dollar 
Loss Variation Deviation Relativity Mean) Return 

(1) (2) (3) (4) --- (2) x (3) (5) (6) (7) 

Non-Catastrophe 80% 0.08 0.064 1.00 3% 0.0240 
Hurricane 20% 3.50 0.700 10.94 131% 0.2625 
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These calculations assume that all policies are issued for one- 
year terms. If the duration of  policies changes to include multi- 
year policies, then the lower variance of  actual results should 
ultimately result in a lower risk margin to be included in the 
rates. 

One can actually convert the risk margin to be a direct function 
of  the ratio of  C V s ,  as the risk margin incorporates the ratio of  
the dollar profit to the mean: 

Risk MargincA- r = Risk MarginyoY.ca T x CVcA v -~- CVNoN_CA T. 

10. DERIVING HURRICANE BASE RATES 

Once the hurricane loss costs by ZIP code have been averaged 
to territory, expenses and profit margins must be included to 
derive base class rates. Exhibit 1 shows the derivation of  a base 
class loss cost of  $1.545 for Territory B. Using the following 
values of  expenses and profits: 

Commission (C) : 5% of  Premium, 

General Expenses ( G E )  : 10% of Premium, 

Taxes, Licenses and Fees (T) : 3% of  Premium, 

Investment Income Offset  (I) : 3% of  Premium, and 

Profit and Contingencies (P) : 131% of  Losses, 

the base class rate ( B C R )  for Territory B would be equal to: 

ELCterr  x (1 + P) 
BCRterr  = ( 1 - C - G E  - T + I )  

2.31 
= 1.545 x - -  

0.85 

= 1.545 x 2.718 

= 4.199 per $1,000 of Coverage A. 
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If the insurer decides to pass through the cost of catastrophe 
reinsurance, then both the loss cost and the profit provision must 
be adjusted accordingly. Table 3 shows the total territory loss 
costs and those outside the catastrophe reinsurance layer (refer 
to Section 8 for more details): 

TABLE 3 

TERRITORY LOSS COSTS 

Territory 

Expected Loss Cost 

Without Reinsurance Excluding Reinsurance Layer 

A .401 .309 
B 1.545 1.113 
C 2.806 1.824 
D 3.937 2.362 

Statewide 2.464 1.646 

From the allocation of the catastrophe treaty cost to ZIP code 
and line of business, one derives a cost of $2.015 per $1,000 
of Coverage A for Territory B. Also, the required risk load for 
the losses retained by the company drops from 131% to 65%. 
Hence, the following rate calculation results: 

BCRterr = ELCterr x (1 + P) + R 
(1 - C - G E - T + I )  

1.113 x 1.65 + 2.015 

0.85 

-- 4.531 per $1,000 of Coverage A, 

where R -- Catastrophe reinsurance cost per $1,000 of Cover- 
age A. 

This indicates that the cost of the reinsurance treaty has a 
slightly higher embedded risk load than the overall indicated 
company risk load. 
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Another advantage of separating the hurricane rate from the 
heretofore indivisible premium is in the treatment of expenses. 
For example, a company may wish to implement a different com- 
mission structure for its hurricane coverage than for its non- 
hurricane coverage. 

Since the hurricane coverage is intended to be part of the 
homeowners policy, fixed expenses that are part of the non- 
hurricane policy must not be double-counted. An easy way to 
achieve this is to include only variable expenses in the hurricane 
rates and to incorporate all fixed expenses in the non-hurricane 
rates. 

Once the base class hurricane rates are calculated, they can be 
filed, along with the table of relativities for hurricane described 
above. As part of the filing, non-hurricane base rates (which are 
generally expressed as a dollar amount for the base class amount 
of insurance in each territory) will also be submitted. We have 
not demonstrated the calculation of non-hurricane rates in this 
paper because the topic has been covered extensively in other 
actuarial literature. 

11. RATE FILING ISSUES 

The approval of computer models as the source of expected 
catastrophe loss and risk margin can be a lengthy process be- 
cause it changes the way regulators can verify the calculations. 
Under traditional filings, basic data are included with the filing, 
and the underlying source data are often part of statistical plan 
information that has been implicitly approved by the regulators 
in the past. 

With catastrophe modeling, the frequency of events is often 
taken from published information tracking 100 or more years 
of event history. For the key simulation of a catastrophe event 
(e.g., hurricane or earthquake), the source is usually a scientific 
paper describing the ability of various equations to simulate the 
event. For the probabilistic model generating expected losses, of- 
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ten thousands of events are used, each with a specific probability 
derived from past distributions of input parameters. 

Computer modeling presents a dimensionally different ap- 
proach to the regulatory approval process. A separate evaluation 
of each independent modeler is necessary--to clear each model 
before an actual rate filing is made utilizing that model's calcu- 
lation of expected loss costs. This pre-clearing process can take 
several months' time, depending on the level of due diligence 
needed and on the amount of rate level increase implied by the 
use of models to replace the old ratemaking system. 

Once the independent modelers have been approved, the re- 
sulting set of indicated loss costs can provide a range of rea- 
sonable answers with which to evaluate specific company filings 
if the insurer has built its own model. If that company-specific 
model has loss costs within the pre-cleared range, that is usu- 
ally prima facie evidence of the overall reasonableness of the 
company model. Even if the insurer model has some results out- 
side the range, that should not necessarily disqualify the result. 
It merely places an additional burden on the insurer to prove 
the result is reasonable, based on its own assumptions and judg- 
ments. 

The following steps can be considered in the regulatory ap- 
proval process (the details of which are included in Appendix D): 

• review general design of the model 

• examine event simulation module 

• test ability of module to simulate known past events 

• check distributions of key input variables 

• perform sensitivity checks on most important inputs 

• verify damage and insurance relationship functions 

• test output for hypothetical new events 
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• compare different modelers'  results for loss costs 

• conduct on-site due diligence and review of actual assump- 
tions. 

For independent modelers, and even for insurer-specific mod- 
els, it is important to preserve trade secret information during the 
approval process and afterwards. The knowledge that research 
and development investments can be protected will encourage 
future innovations. 

The on-site due diligence of regulators should keep the inner 
workings of the models confidential, as long as the examining 
process is documented by the regulator, much in the same way 
a financial examination of an insurance company keeps key in- 
formation confidential. 

Even after the approval of a model, the regulator can pre- 
serve the confidentiality of indicated loss costs by ZIP code by 
not publishing the ranges that it plans to use in reviewing other 
company filings. First, it is better policy not to disclose the high 
end of the range lest some insurers be tempted to file that an- 
swer rather than using a rigorous model. Second, publishing the 
rate may be tantamount to the regulator setting the rate instead 
of approving reasonable filed rates. Finally, the regulator would 
not be receiving the direct public attention on why the rates are 
so high in certain areas. 

12.  FINAL P E R S P E C T I V E  

In summary, computer models are now capable of  simulating 
catastrophic events and creating probabilistic models of reality 
that can be used to generate expected loss costs for catastrophe 
perils. These same models also provide a means of including the 
reinsurance premiums in the primary pricing process and can 
help quantify the needed risk load in relation to profit margins 
required for the non-catastrophe perils. 
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The same model can also be used for insurer or corporate 
risk analysis, including reinsurance purchase decisions, and for 
insurer marketing and underwriting strategies. These analyses are 
beyond the scope of this paper. 

Use of computer models for ratemaking involves a different 
approach from the customary one, in that it is a pure premium 
method in contrast to the usual loss ratio method involving past 
insured loss experience. That carries advantages as well as chal- 
lenges, because it attempts to deal with the true underlying prob- 
abilities of  loss, not just with what appears in the last few years 
of actual insured loss experience--which is merely a sample of 
what could have occurred. The computer models attempt to sim- 
ulate the entire spectrum of what could have occurred. 

Thus, the models rely heavily on computer simulations and 
new technical methods made possible by the vast improvement 
in personal computer potential. This also requires a heavy in- 
vestment in research and design as well as in resources to have 
the model evaluated and accepted by regulators and others. 

But it is worth the process, not only for the practical results in 
insurer ratemaking and planning, but also for the insights gained 
on these catastrophic events and the reduction in uncertainty for 
society in dealing with them. 

Furthermore, the techniques developed in producing these 
computer models might ultimately be applied to other perils as 
well. After all, the essence of actuarial work is modeling reality 
to assess the present financial impact of future contingent events. 
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EXHIBIT 1 

SAMPLE INSURANCE COMPANY 
STATE X Y Z  

Expected Hurricane Loss Cost 
Per $1,000 of Homeowners Coverage A 

Base Class: Frame 
Base Deductible." $250 

Zip Code Loss Costs 

Exposure in 
Base Territory' Zip Code Coverage A Amount  Expected Loss Cost 

( 1 ) (2) (3) 

A 02001 3,227,000 
02002 12,495,000 
02003 8, l 13,000 
02004 9,204,000 

B 02005 1,198,000 
02006 3,254,000 
02007 6,681,000 
02008 11,341,000 

C 02009 7,295,000 
02010 6,400,000 
02011 8,508,000 
02012 9,212,000 

D 02013 17,346,000 
02014 15,212,000 
02015 13,900,000 
02016 6,573,000 

Total 139,959,000 

Terr i tory Loss Costs 

Exposure in 
Base Territory' Coverage A Amount  

(4) 

0.351 
0.342 
0.421 
0.482 
1.232 
1.425 
1.647 
1.552 
2.565 
2.752 
2.832 
3.011 
3.742 
3.953 
4.032 
4.211 

2.464 

Expected Loss Cost 

( t )  (2) 

A 33,039,000 
B 22,474,000 
C 31,415,000 
D 53,031,000 

Total 139,959,000 

(3) 

0.401 
1.545 
2.806 
3.937 

2.464 

Nc, tes: 
In-force Coverage A amount~, are as of June 30, 1995. 
Expected l.oss Costs are derived from probabilistic hurricane modeling 
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EXHIBIT  2 

SAMPLE INSURANCE COMPANY 
STATE X Y Z  

Calculation o f  Statewide Rate Level Change 
Homeowners  

(1) Total premiums on current rate level 
(2) Current amount of insurance years (000"s) 
(3) Current average rate per $1,000 

(4) Catastrophe factor from last approved filing 
(5) Portion of rate from catastrophes 
(6) Portion of catastrophe from hurricane (est.) 
(7) Portion of rate from hurricane 

(8) Current average hurricane rate per $1,000 
(9) Current average non-hurricane rate per $1,000 

(10) Indicated average non-hurricane rate per $1,000 
(11) Indicated average hurricane rate per $1,000 
(12) Indicated total rate per $1,000 

(13) Indicated rate level change--non-humcane 
(14) Indicated rate level change---hurricane 
(15) Indicated total rate level change 

(16) Filed average non-hurricane rate per $1,000 
(17) Filed average humcane rate per $1,000 
(18) Filed average total rate per $1,000 

(19) Filed average non-hurricane rate level change 
(20) Filed average hurricane rate change 
(21) Filed average total rate change 

Rate Change Status for Future  On-Level Calculations 

(22) Approved average non-hurricane rate per $1,000 
(23) Approved average hurricane rate per $1,0(30 
(24) Approved average total rate per $1,000 
(25) Approved average total rate level change 
(26) Premium level change for non-hurricane coverage 

(1)/(2) 

! - [ 1 / ( 4 ) ]  

(5) x (6) 

(3) x (7) 
(3) - (8) 

(10) + (I !) 

( ! o ) / ( 9 ) -  1 
(1 ! ) / ( 8 )  - I 

( 1 2 ) / ( 3 ) -  1 

(16) + (17) 

( 1 6 ) / ( 9 ) -  i 
(17)/(8)- 1 
(18)/(3)- 1 

(22) + (23) 
( 2 4 ) / ( 3 ) -  i 

( 2 2 ) / ( 3 ) -  I 

$4,544,326 
$872,589 

$5.21 

1.327 
24.6% 
80.0% 
1 9 . 7 %  

$1.03 
$4.18 

$4.02 
$4.53 
$8.55 

- 3 . 8 %  
339.8% 

64.1% 

$4.02 
$4.25 
$8.27 

- 3 . 8 %  
312.6% 

58.7% 

$4.02 
$3.75 
$7.77 

49.1% 
- 2 2 . 8 %  
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APPENDIX A 

How TO CONSTRUCT A M O D E L  

The severity component of a catastrophe model generally con- 
tains three modules built separately and later integrated. These 
modules are: 

• event simulation (science) 

• damageability of properties (engineering) 

• loss effect on exposures (insurance). 

Before it can be used for ratemaking purposes, a catastrophe 
model must undergo a high level of research and testing. 

Science Module 

As a first step, the modeler must incorporate the physics of 
the natural phenomena in a module (also called the event gen- 
erator module) that simulates as closely as possible the actual 
event. Examples of input for a hurricane model include the ra- 
dius of maximum winds, pressure differential at the eye of the 
storm (ambient pressure minus central pressure), forward speed, 
angle of incidence, landfall location and directional path. For an 
earthquake model, such factors as magnitude, location of the epi- 
center, soil conditions, liquefaction potential and distance from 
the fault rupture are used to estimate the shaking intensity of the 
ground at a given location. 

The event generator module must be tested before its use to 
reproduce historical events and simulate hypothetical or proba- 
bilistic events. As a first step for a hurricane model, actual wind 
speed records for recent events should be compared to modeled 
results. Such organizations as the National Hurricane Center can 
provide records for the historical events. 

Next, the hurricane model should be tested for reasonable- 
ness by predicting wind speeds for hypothetical events along the 
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Atlantic and Gulf coasts. Because one of the key drivers of  a hur- 
ricane model is the roughness parameter, this testing will help 
evaluate the sensitivity of the model to this terrain factor and will 
allow necessary refinements to the initial assumptions. 

The model 's  predictive accuracy is limited by the fact that 
data are not currently captured for some site-specific factors that 
affect an individual property (e.g., topographic peculiarities that 
influence wind speeds or liquefaction propensity at a given loca- 
tion for earthquakes). Therefore, one should not expect a model 
to exactly reproduce a single past event, but rather verify that it 
can adequately simulate hypothetical events with a given set of 
parameters. Over a range of  input parameters, the model should 
generate intensity levels that are consistent and reasonable. Thus, 
actual future events with other site differences do not require 
major modifications to the model, but rather provide additional 
information to further refine it. 

Engineering Module 

Once the event generator has been developed, damageability 
functions are needed to estimate the damage to a property sub- 
ject to an event of a given intensity. Input from various fields of 
the engineering profession, such as wind engineering and struc- 
tural engineering, must be gathered to develop these functions. 
For damage by hurricane wind speeds, numerous studies have 
been performed that estimate these relationships. The functions 
should vary by line of business, region, construction, and cover- 
age (building versus contents). 

As was the case for the event generator module, accuracy 
of the damage functions is improved by analyzing actual past 
events. Actual loss experience of insurance companies should be 
compared to modeled losses in the most refined level of detail 
available. Whereas only aggregate loss amounts by catastrophe 
used to be collected by insurers, it is now generally possible to 
see loss data by line of business and county (or even ZIP code). 
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Next, on-site visits to the locations of catastrophes can help 
assess the damageability of exposed structures. While not im- 
perative, these visits provide additional insight to the modeler, 
especially in identifying future classification distinctions. 

The refinement of the damage functions is an ongoing process 
that is dependent on input generally provided by the engineer- 
ing community. Engineering studies and loss mitigation reports 
are constantly being published, and their conclusions should be 
adapted and incorporated into the damage functions being used 
in the catastrophe model. 

Insurance Module 

Once the science and engineering modules have been devel- 
oped, they must be integrated with the insurance module to de- 
termine the resulting insured loss from a given event. For risk 
analysis, Kozlowski and Mathewson [4] stress the importance 
of developing and maintaining a database of in-force exposures 
that captures the relevant factors that can be used in assessing 
the damage to a given risk. This database will not only include 
such factors as location, construction type, number of stories, 
age of building and coverage limits, but also replacement cost 
provisions, deductibles, co-insurance and reinsurance (both pro- 
portional and non-proportional). 

Integration of Modules 

Table 4 presents a sample calculation of the loss estimate 
generated by the model for a sample hurricane after integrating 
the three modules. 

The example assumes that there is one single-family dwelling 
in each ZIP code, each with a different deductible. Based on 
the parameters of the storm simulated, the event generator mod- 
ule calculates the average wind speed sustained by all structures 
within the ZIP code. In this case, the wind speeds decrease as 
the ZIP codes are further away from the coast. 
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TABLE 4 

SAMPLE CALCULATION OF HURRICANE LOSSES 

Corresponding Gross Net 
ZIP Exposure Windspeed Damage Resulting Resulting 

Code Amount Deductible (mph) Factor Loss Loss 

2001 $180,000 $250 100 .15 $27,000 $26,750 
2002 180,000 $500 90 .08 14,400 13,900 
2003 180,000 2% 80 .05 9,000 5,400 

The damageability module then predicts the damage sustained 
by each structure as a function of the windspeed. The damage 
factors generally vary based on factors such as construction type 
(e.g., frame versus wind-resistive), age of building and number 
of stories. The gross resulting loss is then calculated by multi- 
plying the exposure amount by the damage factor. The estimate 
is then adjusted for insurance features, such as deductibles and 
reinsurance. In this example, the gross loss is reduced by the 
deductible to derive the net resulting loss. 

How to Validate 

The final task in developing a catastrophe model lies in val- 
idating the simulated results. While intermediate levels of cali- 
bration are performed for each module, the modeler must verify 
how they interact by completing an overall analysis of the results. 

Because the model is designed to simulate reality, actual in- 
curred loss experience is the obvious candidate to be used in 
testing modeled losses. Of course, all comparisons are depen- 
dent on the quality of the data captured from the loss records 
of insurers. As described above, the modeler should gain access 
to various sets of insured loss data and verify that all relevant 
factors are reflected in the model. These would include line of 
business, classification, coverage (e.g., building versus contents), 
and loss adjustment expense (LAE) as a percentage of loss. 
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One issue often raised when validating a catastrophe model is 
demand surge (or "price gouging"). Because this phenomenon is 
dependent on the time, size and location of the event, it should 
not be incorporated in the damage functions, except to the ex- 
tent it is "expected." For example, most models underestimated 
the actual losses from Hurricane Andrew. If the models were 
adjusted to exactly reproduce Andrew's losses, they would ef- 
fectively include a provision for factors specific to Andrew and 
not expected in the long run, such as: 

• inflation in reconstruction costs due to the excess of demand 
over supply 

• excess claim settlements that occurred because adjuster re- 
sources were overwhelmed by the volume of claims. 

While these factors can be included separately in the repro- 
duction of a single storm, they should not be part of the base 
model because they would inappropriately increase the expected 
level of future losses. 

Another issue is storm surge from a hurricane. While a flood 
loss is not officially covered by a homeowners policy, some ad- 
justers of losses on houses affected will construe coverage from 
wind damage prior to the house being flooded. This can be han- 
dled with a small additional factor on those locales in low areas 
most susceptible to surge. However, from a ratemaking and rate 
filing standpoint, it is difficult to support much of an increase 
from a coverage that does not officially apply to homeowners. 
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APPENDIX B 

HOW OTHER PERILS ARE MODELED 

35 

Earthquake 

The library of historical earthquake events producing signif- 
icant insured losses is scant compared to that of historical hur- 
ricane events. Hence, the precision level of computerized earth- 
quake models will not reach that of hurricane models. Neverthe- 
less, numerous models have been developed and a great amount 
of research done to define the various factors and relationships. 

In the science module, the model begins with simulating the 
magnitude of an earthquake, generally expressed as a unit on 
the Richter scale. This implies a rupture length on a fault. Using 
other factors, such as distance to the rupture, soil conditions and 
the liquefaction potential of the areas affected, the model esti- 
mates the shaking intensity for each ZIP code. For the engineer- 
ing module, resulting shaking intensities are usually converted to 
the Modified Mercalli Intensity (MMI) scale, because most mod- 
els use the ATC-13 damage functions as a starting point. These 
functions were developed by a group of 13 engineers and scien- 
tists commissioned by the Applied Technology Council (ATC) 
in 1982 to estimate the damage to California properties from 
earthquake. 

The insurance module for an earthquake model is generally 
similar to a hurricane model. However, the use of percentage 
deductibles (which is not common on a standard homeowners 
policy) and separate coverage deductibles present a new twist. 
Hence, the model must have the capability of handling various 
deductible combinations. For instance, some earthquake poli- 
cies apply a building deductible different from the contents de- 
ductible and the additional living expense deductible. The de- 
ductible credit applies separately for each coverage. 
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The insured loss data available to validate an earthquake 
model are more limited than for hurricanes. Also limiting is the 
fact that earthquakes are not all similar. For instance, most ma- 
jor faults in California have been of  the strike-slip type. These 
faults generally run in a north-south direction, with energy be- 
ing released when western blocks of  crust move north past the 
eastern block. This causes ground displacements that are mostly 
horizontal. 

Yet the 1994 Northridge quake was a "blind" thrust-fault 
earthquake. In this type of event, sections of rock overriding 
others at an angle are displaced. The movements are generally 
upward and sideways, which creates strong shaking that is gen- 
erally more damaging. In the case of Northridge, the fault did 
not reach the surface. Hence the term "blind" fault. 

These two types of earthquakes are by their nature very dif- 
ferent, and the event generator module will vary to reflect the 
different types of  shaking intensities. 

Once the deterministic earthquake model has been developed, 
a probabilistic version must be generated. For earthquake mod- 
eling, a set of known faults is generally used as a starting point 
in building the library of events. Events of various strengths and 
locations are simulated for each fault. A probability is then as- 
signed to each event in the library. These probabilities are gen- 
erally expressed in a return time format such as 1 in 400 years. 
They can be obtained from geological sources, such as the United 
States Geological Survey. 

The Northridge event highlighted the fact that serious damage 
could be caused by earthquakes not located on known fault sys- 
tems. This has implications for earthquake ratemaking because 
the frequency of  these events is very much unknown at this time, 
and inclusion of  this type of event could increase the expected 
loss costs substantially. However, the modeler needs to take care 
that the long-run frequency of earthquakes remains reasonable. 
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Tornado and Hail 

The actual loss experience of tornadoes and hailstorms is more 
readily available than for any other type of natural catastrophe. 
Given that there are roughly 1,000 tornadoes in the U.S. each 
year, the traditional way of developing a tornado catastrophe 
loading in states with exposure to these perils has been to smooth 
the actual loss experience over a number of years. However, this 
methodology does not capture the essence of why catastrophe 
modeling is the preferred approach, which is to estimate the loss 
potential of a company given its current distribution of expo- 
sures. Also implicit in any modeling approach is the simulation 
of events that have not occurred much in some areas but are 
reasonably foreseeable given the historical database of events. 

Tornadoes and hailstorms are typically generated by inland 
storms when moist, warm air masses collide with cooler, drier 
air masses. Such conditions are often present in the southcentral 
United States (e.g., northern Texas and Oklahoma) and the plains 
states (e.g., Iowa and Kansas) where the Gulf of Mexico provides 
a continuous source of warm, moist air, and the Rocky Mountains 
create a source of cooler drier air as weather systems move over 
them. Tornadoes do, however, occur in all 50 states. 

An inland storm capable of generating tornadoes may create 
dozens of individual funnels over a widely dispersed area. A 
single funnel will produce damage over the portion of its track 
making contact with the earth. The length of that ground con- 
tact track can range from a few hundred feet to a hundred miles. 
The width of the track funnel can range from ten feet to a mile. 
In order to model the loss effects of a single funnel, it is there- 
fore necessary to consider the small scale (nine-digit ZIP code) 
location of exposures relative to the funnel path. 

Because tornadoes and hailstorms are more sudden and un- 
predictable than hurricanes, most historical information has been 
the result of human observation. Current tornado databases gen- 
erally consist of date and time, initial observed location, path 



38 HOMEOWNERS RATEMAK1NG REVISITED 

width, path length and storm intensity for each event. Tornado 
intensity is generally measured on the basis of the Fujfta scale, 
which translates an expected degree of damage to a range of 
windspeeds. For example, a tornado with a Fujita-scale intensity 
of F2 will be expected to tear roofs from frame houses. En- 
gineering studies indicate that damage of this intensity can be 
generated by windspeeds between 113 and 157 miles per hour. 

Tornadoes do not behave like hurricanes. The spinning funnel- 
shaped updraft of a mature tornado is the most damaging wind- 
storm produced by nature. The damage relationships at a given 
windspeed for a tornado are quite different from those of a hur- 
ricane. The results of engineering and damage studies specific to 
tornadoes must be collected to develop a representative model. 

The development of a hail model resembles that of a tornado 
model. However, difficulties lie in the definition of what is con- 
sidered a hailstorm and which hailstorms are already included 
in a tornado database. The interpretation of the data present in 
the databases therefore has a significant impact on the overall 
frequency assumptions used in both models. 

The validation of a tornado and/or a hail model against actual 
loss experience is dependent on the availability of loss data and 
on how much differentiation between the two perils is possible. 
(If this cannot be obtained, the modeler may have to calibrate 
the models on a combined basis. As a result, this would make 
the development and justification of territorial loss costs for all 
severe local storm perils easier.) 

Winter Storm 

Winter storm and freeze activity has been quite severe over the 
last few years. As a result, the need for better risk measurement 
and expected loss calculations has increased. Also, some of the 
same characteristics as hurricanes prompt the use of a catastro- 
phe model to simulate winter storm losses--changes in exposure 
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and longer return periods than in an individual insurer's data 
base. 

However, contrary to the other catastrophe perils, winter 
storms do not have a specific unit of measure that describes the 
intensity of a given event, and individual temperature is not the 
only factor that can describe these events. For example, wide 
temperature swings and absolute highs and lows over consecu- 
tive days have been identified as some of the factors that affect 
the intensity and duration of these events. 

The damage functions associated with winter storms are also 
very different from those of the other perils. Because little of the 
damage is structural, damage functions are less severe than those 
of hurricanes, for example. 

Similar to a hurricane model, the creation of a probabilistic 
database requires simulation of multiple events. While the pa- 
rameters are different, each event is defined by a location (or 
landfall), size, intensity and duration. 

Because individual winter storms have not been as surplus 
threatening as hurricanes or earthquakes, the motivation to de- 
velop computer models has not been as high for risk analysis 
and development of PMLs. However, for ratemaking, this peril 
is equally as compelling as hurricane toward the use of computer 
modeling. Not only does it yield better expected loss estimates, 
but it allows the exclusion of past catastrophes from the normal 
homeowners ratemaking database for better stability in rate level 
indications. 
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APPENDIX C 

ESTIMATING STATEWIDE RATE LEVEL CHANGES FOR 
HOMEOWNERS USING HURRICANE-MODELED LOSS COSTS 

In the initial year of implementing hurricane ratemaking us- 
ing a model, it may be necessary to split the current home- 
owners rates into the estimated portion due to hurricane and 
non-hurricane. (See Exhibit 2 for the calculations.) The next 
year's rate level review for non-hurricane can then use the non- 
hurricane rate as the basis for review using a traditional loss 
ratio method. However, until the actual written premiums can be 
coded into hurricane and non-hurricane, the on-level premium 
calculations will need to consider the separation of the rate into 
the two components. This can be done by treating the separation 
of the premium as a premium level reduction. In the example on 
Exhibit 2, the premium reduction statewide is 22.8% for non- 
hurricane coverage versus the heretofore total coverage. Thus, 
future experience reviews containing unbundled premiums must 
separate out the non-hurricane portion with this factor. When 
all the premiums are recorded separately for non-hurricane and 
hurricane, this on-level method is not necessary. 

The accuracy of the split may not be critical to the outcome 
of the rate review, especially if the credibility of the insurer's 
experience is high. If credibility is 100%, then it matters little 
what the current rate level is, because the loss experience will 
completely determine the indicated premium level. Of course, 
the amount of the quoted rate level change may vary, but the 
indicated rates are the key to any filing, unless the amount of the 
change is very large, in which case there may be some regulatory 
objections to the size of the change. 

For the hurricane coverage, the actual premium change is ir- 
relevant to the calculation of next year's indicated rates because 
the model produces those on a pure premium basis. However, 
there may be a continuing need to use the average rates charged 
to keep the regulator informed of the size of the changes for the 
current customer base. 
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APPENDIX D 

METHODS TO REVIEW CATASTROPHE MODELS IN REGULATORY 

PROCESS 

1. Review general design of model 

• Examine the credentials of  the modeler. 

• What is the scientific basis for the key event simulation? 

• What is the engineering support for the damage factors pro- 
duced by each event severity? 

• Are the insurance limitation features reasonable; e.g., de- 
ductibles, coinsurance and reinsurance calculations? 

2. Examine event simulation module 

• What  are the credentials of  the scientists who specified it? 

• Has their work been published and/or peer reviewed? 

• What special insights are they offering on the particular 
event to be simulated? 

3. Test event generator's ability to simulate known past events 

• Use published information from some critical events, such 
as Hurricanes Andrew and Hugo,  the Loma Prieta earth- 
quake (1989) or even the 1906 San Francisco earthquake. 

• Input some key parameters, such as central pressure, land- 
fall, speed and radius of  maximum wind, and examine the 
output wind field at various locations compared to pub- 
lished information on wind speeds. This can be done for 
any event, even if no current estimates of  insured losses 
are available, as a test of  the event simulation accuracy. 

4. Conduct sensitivity checks 

• Use a few sample events. 

• Promulgate a sample exposure base statewide (e.g., 25 
risks). 
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• Vary the parameters one at a time, or perhaps a few in pairs. 

• Observe changes in output (insured losses) for incremental 
changes in input. 

• The goal is a rough measurement of the effect of changing in- 
puts (e.g., central pressure, radius of maximum winds, forward 
speed). 

5. Check key input distributions 

Compare the distributions of key input values among the dif- 
ferent modelers, to see if there is any disparity in the key 
drivers of results. For hurricanes, a possible approach could 
be to look at the: 

• Distributions of central pressure at ten millibar intervals: 
900-909, 910-919, etc., 

• Distributions of radius of maximum winds in five nautical 
mile ranges, and forward speeds in five knot ranges, and 

• Probabilities of landfall for all storms affecting the state 
(direct hit and nearby landfalls). 

6. Verify damage and insurance relationship functions 

• Examine the credentials of the engineers. 

• Has the analysis been published and/or peer reviewed? 

• Analyze the damage curves (functions of increasing dam- 
age for increasing event intensity) separately for types of 
exposure, class and coverage. 

• Review the insurance module for effects by deductible and 
reinsurance or coinsurance. 

• Review the validation of the two components (damage and 
insurance effects) via multiple events over the past few 
years for multiple insurers; each event does not have to 
be replicated, but the components should average out over 
all events and all insurers. 
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7. Test output for hypothetical new events 

• Select some new events defined by key parameters. 

• Use a sample database of exposures by ZIP code. 

• Compare results for different modelers and ask outside ex- 
perts for their opinions on the reasonableness of these re- 
suits. 

8. Compare indicated loss costs for different modelers 

• Select sample ZIP codes throughout the state. 

• Have modelers run all events with probabilities for those 
ZIP codes. 

• Use several base classes and coverages: 

• homeowners, $100,000 frame house, $250 deductible, 

• tenants, $30,000 contents, masonry, $250 deductible, 

• businessowners, $200,000, masonry, $1,000 deductible. 

• Compare modelers' loss costs per $1,000 of coverage by 
ZIP code. 

• Ask outliers to explain large differences from average. 

9. Conduct on-site due diligence and review of key assump- 
tions 

• View a live running of the model, with actual input data. 

• Review input data sources--published and non-published: 

• all key input parameters, 

• frequency of events by location, 

• key damage factors and sources. 

• Review output, including color-coded maps showing ranges 
of expected loss costs. 
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DISCUSSION BY ROBERT K. BENDER 

1. INTRODUCTION 

If the purpose of  policyholder surplus is to provide a cushion 
against possible errors in the estimation of balance sheet assets 
and liabilities for an insurance company, then surplus is required 
wherever estimation errors might exist, regardless of  their source. 
In particular, the balance sheet contains estimates of liabilities 
due to the runoff of previously written policies as well as due 
to current business. For that reason, the required or benchmark 
surplus that appears on a given balance sheet should be allocated 
to the exposure period (e.g., policy year, accident year, contract 
year, etc.) that gives rise to the uncertainty. 

Russell Bingham advocates such a decomposition of balance 
sheet surplus and income statement flows into the contributing 
accident years. Because a given exposure period frequently im- 
pacts many annual statements, this decomposition results in the 
formation of historical supporting surplus triangles that are anal- 
ogous to the loss development triangles used in the analysis of 
reserve level adequacy. Once the supporting surplus and income 
flows for each exposure period are known, the overall return on 
the supporting surplus can be determined. When evaluating the 
return earned by a particular product line, it is this long term 
investment of surplus that must be considered. 

This is in sharp contrast to calendar year measures in which it 
is assumed that all of the company surplus supports the currently 
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written exposure. The long-term commitment of supporting sur- 
plus to each accident year and the corresponding reflection of 
that commitment is the major idea presented in Bingham's pa- 
per. 

To illustrate the segregation of surplus and income flows and 
the formation of insurance company balance sheet triangles on 
a present value basis, Bingham presents a simplified example. 
Some aspects of the example are more complicated than need 
be to illustrate the basic concepts (e.g., the explicit consideration 
of federal income tax), whereas other aspects are deceptively 
simple (e.g., the adoption of a constant leverage ratio). Several 
issues are left unresolved if the single example is to be used as 
the springboard to a more comprehensive return on equity (i.e., 
return on benchmark supporting surplus) model. In the course 
of this discussion, a more transparent illustrative model for the 
determination of the return on equity is described. Additional 
levels of complexity are introduced to the model as the previously 
unresolved issues are considered. 

By means of the more transparent example, the essential 
features of Bingham's methodology are summarized and the in- 
variant nature of Bingham's present value ratio of total return 
to supporting surplus is demonstrated. Two refinements to the 
model are then introduced. The first refinement involves chang- 
ing the basis for determining the benchmark surplus from nom- 
inal loss reserves to discounted loss reserves. This allows for 
a reflection of both ultimate loss amount risk and payout 
timing risk. The second refinement involves replacing the 
constant reserve-to-surplus ratio with a variable leverage ra- 
tio. Both of these refinements are compatible with the agree- 
ment inherent in Bingham's scheme for releasing operating gain 
(i.e., internal rate of return -- average annual return on support- 
ing surplus = Bingham's present value ratio). 

An examination of the behavior of Bingham's methodology in 
two extreme pricing situations (severe rate inadequacy and severe 
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rate redundancy) discloses that the simplified model does not 
produce reasonable results under these extreme conditions unless 
the leverage ratio is a function of the expected retained operating 
gain. Determining a functional relationship while maintaining the 
advantages of  Bingham's  release scheme is shown to be a non- 
trivial exercise. 

Bingham's  example assumes that, at each point in time, events 
which were expected to have occurred previously actually did 
occur. Because of that, the earned investment income and re- 
tained operating gain at any given time are exactly what they 
were expected to be when the supporting surplus requirement 
for that time was originally determined. This discussion con- 
siders whether or not supporting surplus to be carried during 
the runoff should be modified if the actual history is not what 
was expected a priori. Resolution of this issue affects both the 
prospective and retrospective determination of the return on eq- 
uity for an insurance product. 

Two appendices serve to flesh out the discussion. The first 
appendix provides a rigorous proof that Bingham's timing of 
the release of the insurance operating earnings always leads to 
agreement among the internal rate of return (IRR), average an- 
nual return on equity (ROE), and present value ratio, regardless 
of the level of sophistication introduced into the insurance model 
(e.g., the reflection of federal income tax, policyholder dividend 
payment, etc.) or the nature of the reserve-to-surplus leverage 
ratio (e.g., dependence upon the number of open claims, the ex- 
pected retained operating gain, etc.). It is this proof that allows 
simplified models to be used to illustrate the methodology. The 
second appendix provides evidence that, contrary to common 
wisdom, a decreasing leverage ratio may be appropriate even 
for a line such as workers compensation with lifetime pension 
cases. 
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2. OVERVIEW OF BINGHAM'S METHODOLOGY 

The world can be divided into three parts. These are the in- 
surance product itself, shareholder funds, and everything that is 
external to the other two parts. 

The insurance product can be narrowly defined as a single 
contract (e.g., a primary company policy or single reinsurance 
treaty, etc.), or the definition can be broadened to include a port- 
folio of similar contracts. In the extreme case, a portfolio could 
encompass all of the writings of a company. 

Bingham refers to the second division as shareholder funds. 
While this designation works well for stock companies, the more 
general name, surplus account, allows us to extend the discourse 
to encompass mutual companies. The surplus account consists of 
two types of surplus, the surplus that is required to support the 
particular insurance operation (Bingham's benchmark surplus) 
and free surplus or surplus surplus. Surplus surplus is available 
to pay stockholder dividends, back new insurance operations, or 
simply remain idle with a return equal to that of the company 's  
investment portfolio. 

The third division includes everything external to the insur- 
ance company such as the policyholders, the stock market, and 
the Internal Revenue Service. Elements of the third division are 
relevant only to the extent that their existence results in cash 
flows either into or out of the other two divisions. 

Having (implicitly) assumed this division, Bingham states that 
the purpose of supporting surplus is to act as a buffer to ensure 
an acceptably low probability of ruin. The buffer must be made 
available because of uncertainty that gives rise to both invest- 
ment risk and underwriting risk. He, therefore, concludes that 
supporting surplus must be allocated to the insurance product as 
long as any uncertainty exists. A logical corollary to this is that 
supporting surplus can be released to the surplus surplus portion 
of the surplus account only as uncertainties are resolved and the 
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corresponding probability of ruin decreases. This implies that 
supporting surplus must be a function of all of the stochastic 
asset and liability variables, not simply a function of one year's 
written premium as many surplus allocation formulae dictate. At 
any point in time, surplus is required to support not only the un- 
certainty associated with the current exposure period (accident 
year, policy year, contract year, etc.), but also the uncertainty 
associated with the runoff of  prior exposure periods as well. 

With that in mind, Bingham turns his attention to a single ac- 
cident year and its contribution to each subsequent balance sheet. 
Bingham goes on to observe that the timing of the release of the 
supporting surplus and operating gain 1 from an insurance product 
to the surplus account affects the measured return on equity for that 
accident year. This observation is the second major point raised 
in Bingham's  paper. While reserves and supporting surplus are 
clearly identified as "belonging" to the insurance product, the 
time at which other funds that arise from the insurance product 
are released to the surplus account is somewhat arbitrary. As a 
result of the sensitivity of  the ROE to the arbitrary identification 
of these funds as insurance funds vs. surplus funds, the calcu- 
lated return on supporting surplus can be manipulated by users 
of  these models to produce a wide range of  values purporting to 
be the ROE. Bingham proposes a timing scheme which, while 
still arbitrary, has a logical foundation. 

By means of  a simple example, Bingham illustrates the conse- 
quences of releasing supporting surplus and operating earnings 
as uncertainty is resolved and releasing investment income on 
supporting surplus as it is earned. A significant observation is 
that, under this release scheme, the annual return on supporting 

IOperating gain is usually thought of  as a calendar year concept. In this context, the 
operating gain associated with a particular exposure period is the amount by which the 
present value of  the premium income exceeds the present value of  the loss payments 
and other expenses (including federal income tax and policyholder dividends). It reflects 
both the underwriting result and investment income on underwriting funds. In contrast 
to a calendar year concept, operating gain in this context applies to the entire history of  
a particular exposure period. 
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surplus, the internal rate of return of the flows to and from the 
surplus account, and the present value of the flows to the surplus 
account divided by the present value of the supporting surplus 
(over the life of the product) are all equal. 

The aesthetically pleasing agreement of the three measures of 
return on equity that results from Bingham's scheme for the 
release of surplus, investment income, and operating earnings 
is a strong argument in favor of following Bingham's lead. An 
additional argument in support of this scheme is that not only 
is the required amount of supporting surplus kept available 
to act as a buffer against insolvency risk, but a portion of the 
operating gain is also retained to serve as an additional buffer 
against the possibility of ruin. Both the supporting surplus and 
the retained operating gain are released as the uncertainties 
regarding occurrences that could lead to ruin (insolvency) are 
resolved. 

Another strong argument supporting the resulting measure of 
the ROE is that Bingham's present value ratio measure is an 
im'ariant measure of the rate of return corresponding to an en- 
tire class of models, regardless of when and how the operating 
earnings are actually released to the surplus account. 

In order to illustrate the relationship between the various mea- 
sures of the return on surplus, Bingham presents a simplified 
example. As simple as the example is, more details concerning 
the workings of the insurance product were described than were 
necessary. In particular, only the operating profit associated with 
the insurance product and the time at which reserves (with the 
associated uncertainties) are present need to be known in or- 
der to determine the return on surplus. This is not to say that 
such issues as expenses and federal income tax timing are not 
important; rather, these aspects of the insurance product can be 
left inside the "black box" that determines the operating profit 
and establishes reserves. Leaving them out of the example serves 
to make the illustration more transparent. To that end, an even 



50 SURPLUS CONCEPTS 

more simplified illustrative example is presented in this discus- 
sion. 

On day one of  this example (denoted as the last day of  year 
zero in all of the exhibits), $400 of premium is collected. Pay- 
ments of $264, $96, $32, $8, and $4 are made at the ends of 
years one through five, respectively. The series of  payments may 
be thought of  as either claim payments or as the aggregation 
of claim, expense, and tax payments. Only the magnitude and 
timing of  the payments, together with the establishment of  a 
liability in recognition of future payments, are germane to 
this discussion. So as not to obscure the basic concepts with the 
unnecessary details concerning how federal tax law would apply 
to the hypothetical situation, it will be assumed that there are 
no federal income taxes or other expenses. The payments, there- 
fore, may be thought of as claim (loss) payments. Any reference 
to losses or loss ratio is equally valid for losses, expenses, and 
taxes together with the corresponding combined ratio. Investment 
income is assumed to be earned at a 5% annual effective rate. 

Ruin occurs whenever there are insufficient funds available 
with which to make payments (loss, expense, and tax) as they 
become due. Sources of  available funds include policyholder pre- 
mium, investment income on underwriting funds, and supporting 
surplus. It is usually assumed that premiums and investment in- 
come on underwriting funds provide sufficient funds to cover 
all of the expected payments as they become due. Unexpected 
events such as unexpected loss payments (both with respect to 
amount and timing) are a major source of potential ruin. Support- 
ing surplus (surplus allocated to the insurance product) provides 
additional funds to cushion against possible unexpected events. 
The more supporting surplus that is allocated to the insurance 
product, the more extreme the unexpected event would have to 
be in order to cause ruin. Assume that, for the insurance prod- 
uct under consideration, the probability of  ruin can be kept to 
an acceptable level (e.g., less than 2%) by supporting each dol- 
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TABLE 1 
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Year Paid to Nominal 2 Discounted 3 Supporting 
End Date Loss O/S Loss O/S Loss Surplus 

0 $0.00 $404.00 $375.86 $202.00 
1 264.00 140.00 130.66 70.00 
2 360.00 44.00 41.19 22.00 
3 392.00 12.00 11.25 6.00 
4 400.00 4.00 3.81 2.00 
5 404.00 0.00 0.00 0.00 

lar of outstanding loss reserve with $0.50 of  surplus (i.e., a 2 : 1 
reserve to surplus leverage ratio). This assumption presupposes 
that a rigorous determination of the appropriate leverage ratio has 
been conducted and that the result was the 2 : 1 ratio. As was 
the case in Bingham's paper, the details of this determination fall 
beyond the scope of this discussion. 

The payment and leverage ratio assumptions are almost iden- 
tical to the situation presented by the NAIC as an illustration of 
an IRR model [2]. Table 1 shows the loss and supporting surplus 
under the assumption of a constant reserve-to-surplus leverage 
ratio and payment pattern. 

Exhibit 1 displays the essential features of the situation. The 
insurance product has an operating gain equal to $24.14 (present 
value of  the premium on day one less the present value of the 
loss payments on day one). In this particular example, the en- 
tire operating gain was allowed to accrue interest as part of the 
insurance product account for a year before it was released to the 

2"Nominal O/S" is the (estimated) sum of all future claim payments whether or not 
the claims have been reported to the carrier at the time that the estimate is made. This 
outstanding amount includes carried reserves and bulk reserves such as true IBNR and 
the less restrictive IBNE (Incurred But Not Enough). 
3"Discounted O/S" is the present value of the expected flows that make up the nom- 
inal outstanding amount. As such, it may include a provision for the present value of 
claim payments that are expected to be made on claims that have not yet been reported. 
Discounted outstanding is more inclusive than the present value of the carried reserves. 
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surplus account. The accrued value of $24.14 after one year is 
$25.34. 

Because the reserves along with their associated uncertainty 
remained constant during the first year, the supporting surplus 
was held constant at $202.00 for the entire year. The total re- 
turn on this supporting surplus during the first year consisted of  
the $25.34 accrued operating gain from the insurance product 
and the $10.10 of investment income earned by the supporting 
surplus. The total, $35.44, represents a 17.55% return on the 
$202.00 surplus investment. 

During subsequent years there was no contribution to the total 
return on supporting surplus arising from the insurance product. 
Investment income that was earned on underwriting funds dur- 
ing each calendar year was exactly sufficient to establish the 
year-end discounted loss reserve after all of  the calendar year 
loss payments were made. In this respect, the insurance prod- 
uct did not participate in any further fund transfers between its 
own account and the surplus account after the end of the first 
year. Regardless of this, the fact that there was uncertainty re- 
garding the ultimate loss outcome during each subsequent year 
led to the requirement that some surplus had to be allocated to 
the insurance product. During these subsequent years there was 
a 5% annual return on the supporting surplus. This is the same 
return as would have been earned had the surplus been idle (i.e., 
not supporting an insurance product). This surplus was, however, 
committed to supporting uncertainties during the runoff and was 
n o t  available to support n e w  writings. The average annual return 
on supporting surplus [E(released operating gain plus investment 
income on the supporting surplus)/E(supporting surplus), where 
the summation is over all years] was 13.39%. 

It would not be correct to consider only the first year and 
to report a 17.55% return on equity for the product. Doing 
so would ignore the commitment  of surplus during the subse- 
quent four years. To see that this is precisely what is done 
when calendar year earnings are compared to average calendar 
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year surplus amounts, consider what the calendar year return 
would be if the carrier wrote only a single contract during its 
lifetime. The first year-end balance sheet would indicate an av- 
erage surplus amount equal to $202.00, while the statement of  
income would reflect $35.44, giving us a 17.55% return on sur- 
plus for the calendar year. 

It can be argued that a carrier 's calendar year return on equity 
would be equal to the average annual return on equity if the book 
of  business were to be repeatedly renewed until a steady state 
had been achieved. Mathematically, this is a true statement. In 
the case of the single contract described above, repeated renewal 
for four or more years would result in an annual commitment  of 
$302 of  surplus ($202 for the most recently renewed contract, 
$70 for the contract written one year before, etc.) and annual 
income equal to $40.44 ($35.44 for the most recently renewed 
contract, $3.50 for the contract written one year before, etc.), 
which would yield a 13.39% return on supporting surplus for 
the calendar year. 

Conceptually, the two measures are very different. While the 
average annual return measure relates to a single contract, the 
calendar year measure requires identical contracts to be written 
year after year. If the mix of  business changes from year to year  
or if all of  the company surplus is not being used to support 
the runoff  of  previously written contracts, then the equality no 
longer holds. 

The conceptual difference between calendar year and average 
annual return on surplus is similar to the one that exists between 
accident year (or policy year) loss ratio and calendar year loss 
ratio. Here, too, the two measures are numerically equal once 
a steady state situation has been achieved. Each age to age de- 
velopment that is observed in the accident year (or policy year) 
triangle would be contributed to the calendar year experience 
by different accident year contracts in the corresponding stages 
of development. Just as one would not rely upon this equality 
when estimating the ultimate loss ratio for a single accident year, 
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Bingham advocates determining the return on surplus associated 
with each underwriting period separately. Since the activity as- 
sociated with a single underwriting period often spans several 
calendar years, balance sheet triangles arise in a manner that is 
analogous with loss and premium development triangles. 

A second measure of the rate of return is the IRR implied 
by the flows to and from the surplus account. For this purpose, 
the flows of  invested supporting surplus to and from the surplus 
surplus (surplus that is not supporting an insurance product) ac- 
count must be reflected as well as the release of  the operating 
gain and investment income on the supporting surplus. The total 
flows (initial supporting surplus investment, return of supporting 
surplus as it is released, investment income on the supporting 
surplus as it is earned, and the accrued operating gain as it is 
released) are displayed in the IRR column in Exhibit 1. For this 
example, the IRR is 13.87%. 

A third measure of the return on equity is the ratio of  the 
present value of  the flows to surplus (the released operating 
gains and the investment income on the supporting surplus) to 
the present value of  the year-end supporting surplus, 13.58% in 
this example. This measure is similar to the average return ex- 
cept that the present values of the numerator and denominator 
have been taken prior to forming the ratio. Of the three measures 
of return, only the present value ratio appears to lack an intu- 
itively satisfying context. Taking the present value of a year-end 
surplus amount, which does not represent a discrete cash flow at 
year-end, contributes to the initial uneasiness with this measure. 

The last three columns in Exhibit 1 are for reference. They 
display the retained earnings, the investment balance, and insur- 
ance product overfund. The retained earnings represent the ac- 
crued underwriting gain or loss at each year-end. In a way, the 
retained earnings reflect the impact of statutory accounting re- 
quirements on the surplus account. The investment balance at 
any point is the amount of insurance product funds that are 
available for investment (accrued premium less paid losses and 
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released operating gain). The overfund is the amount by which 
the investment balance exceeds the discounted outstanding loss 
reserve. The overfund represents the portion of  the operating 
gain that has been retained to act as an additional buffer against 
insolvency risk. No model is acceptable that does not come to 
an end with exactly zero overfund and zero investment balance. 
Any alternative to closing out the insurance product account after 
the last claim has been paid would result in allocating a portion 
of surplus to the insurance product (or floating it a loan) long 
after all claims had closed and all uncertainties had been re- 
solved. 

Exhibit 2 represents the same situation but with a withdrawal 
of operating gain at the opposite extreme from that which was 
depicted in Exhibit 1. In Exhibit 2, the operating gain is retained 
within the insurance product until all claims have been paid. 
As long as the operating gain is retained within the insurance 
product account, all interest accrued on it will be attributed to the 
insurance product. At the end of the fifth year, when the accrued 
operating gain is finally released to the surplus account, it carries 
with it $6.67 of accrued interest, all of  which is considered as 
part of the total return on supporting surplus. 

Once funds are released to the surplus surplus account, sub- 
sequent investment income earned by them is not attributed to 
the insurance product. Because the operating gain was released 
to the surplus account later than in Exhibit 1, more of the in- 
vestment income earned on these funds was attributed to the in- 
surance product ($6.67 vs. $1.20). As a result of the difference 
between these two arbitrary segregations of funds---between the 
insurance product account and surplus account-- the average an- 
nual return on supporting surplus increases from 13.39% as dis- 
played in Exhibit 1 to 15.20% under the operating gain release 
timing of Exhibit 2. Whereas reflecting more dollars of invest- 
ment income causes the average return on surplus to increase, it 
has the opposite effect on the IRR. The IRR corresponding to 
13.87% of Exhibit 1 is 11.84% in Exhibit 2. 
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If the insurance company had set a 13.5% target for its re- 
turn on equity and used these measures of return to evaluate 
this product, it would have found the product to fall short of 
the target if it had adopted the average return measure under the 
Exhibit 1 scenario, but to be acceptable under the Exhibit 2 sce- 
nario. Just the opposite conclusions would be reached if the IRR 
measures were used. Now, simply earmarking funds as belong- 
ing to a particular company account (insurance product account 
or surplus account) does not affect the overall well-being of the 
company. 4 There must be something misleading about a model 
that produces different results for different earmarkings. While 
the present value measure of  the return on equity remained equal 
to 13.58% for both alternatives, invariance alone does not pro- 
vide sufficient support for it to be adopted as the true measure 
of the return on equity. 

Exhibit 3 provides that support. This example begins by spec- 
ifying how the operating gain is to be released to the surplus 
account. In this alternative, the operating gain is released Bing- 
ham's  way, as uncertainty is resolved (i.e., under the same crite- 
ria that the supporting surplus is released). This timing results 
in releasing the operating gain in such a way that the ratio of 
released dollars to the invested surplus remains constant. In 
symbolic form, if S(j) is the invested surplus during the j th 
year, and O(j) is the accrued operating gain that is released at 
the end of the j th  year, then the set {O(j)} must satisfy two 
conditions: 

1. PV[{O(j)}] = the operating gain, and 

2. O(j)/S(j) = constant for all years, independent of  j .  

The bottom of Exhibit 3 displays the detailed calculation of the 
set {O(j)} corresponding to this example. 

4While actions taken as a result of this earmarking, such as the declaration of stockholder 
dividends, can affect the overall well-being of the company, the a c t  of earmarking funds 
cannot affect the company's  well-being. 
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As promised by Bingham, the three measures of the return on 
equity are equal when his release of operating gain is adopted. 
This is more than a coincidence. Appendix A presents a general 
proof that Condition 2 is sufficient to force the three measure- 
ments into agreement. 

The invariant measure is equal to the average annual return 
on equity and to the internal rate of return corresponding to the 
case in which operating earnings are released in the same manner 
as supporting surplus, as uncertainty is resolved. The invariant 
measure does have a context. 

It should be emphasized that the only feature of the insurance 
product cash flow that is explicitly reflected in the determination 
of the return on surplus is the present value of the operating gain. 
Increasing the degree of sophistication of the insurance product 
model (e.g., reflecting federal income tax, other expenses, policy- 
holder dividends, etc.) almost certainly will change the numerical 
value of the operating gain but will not alter any of the concepts 
that have been discussed. Once the operating gain is determined, 
the manner in which it is released remains unchanged (i.e., ac- 
cording to the two conditions), and the agreement among the 
IRR, average annual return, and the model invariant continues to 
hold. 

3. DOES THE BINGHAM METHODOLOGY LEAD TO REASONABLE 

RESULTS? 

All of the exhibits thus far have been based upon a situation 
that generates an operating profit. Furthermore, while the Bing- 
ham invariant ratio, average annual return on equity, and internal 
rate of return produce different measures of the return on equity, 
they do not differ significantly in the absence of the Bingham re- 
lease scheme. For the purpose of a reasonableness check, a new 
example will be presented. The longer payout period accentuates 
the differences between the three measures of ROE when the 



58 SURPLUS CONCEPTS 

T A B L E  2 

E L E M E N T S  C O M M O N  TO E X H I B I T S  4-6  

Year Paid to Nominal Discounted Supporting Required 
End Date Loss O/S Loss O/S Loss Surplus Funds 

0 $0.00 $2,000.00 $961.38 $1,000.00 $1,961.38 
1 0.00 2,000.00 1,009.45 1,000.00 2,009.45 
2 0.00 2,000.00 1,059.92 1,000.00 2,059.92 
3 6.00 1,994.00 1,106.92 997.00 2,103.92 
4 34.00 1,966.00 1,134.26 983.00 2,117.26 
5 120.00 1,880.00 1,104.98 940.00 2,044.98 
6 184.00 1,816.00 1,096.23 908.00 2,004.23 
7 258.00 1,742.00 1,077.04 871.00 1,948.04 
8 332.00 1,668.00 1,056.89 834.00 1,890.89 
9 404.00 1,596.00 1,037.73 798.00 1,835.73 

10 474.00 1,526.00 1,019.02 763.00 1,782.62 
11 526.00 1,474.00 1,018.60 737.00 1,755.60 
12 574.00 1,426.00 1,021.53 713.00 1,734.53 
13 618.00 1,382.00 1,028.61 691.00 1,719.61 
14 660.00 1,340.00 1,038.04 670.00 1,708.04 
15 693.00 1,304.00 1,053.94 652.00 1,705.94 
16 730.00 1,270.00 1,072.64 635.00 1,707.64 
17 760.00 1,240.00 1,096.27 620.00 1,716.27 
18 788.00 1,212.00 1,123.08 606.00 1,729.08 
19 1,312.00 688.00 655.24 344.00 999.24 
20 2,000.00 0.00 0.00 0.00 0.00 

release of operating gain does not follow the resolution of un- 
certainty. 

The longer payout period of this example is similar to that 
of high attachment point workers compensation excess of  loss 
reinsurance. By the end of  the 18th year, less than 40% of the 
ultimate loss is expected to have been paid. Table 2 displays the 
elements that are common to Exhibits 4 through 6. 

The Required Funds column consists of the funds that must 
be allocated to the insurance product, an amount equal to the dis- 
counted outstanding loss plus the supporting surplus. Any addi- 
tional funds may be released to the surplus account at any time. 
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The reasonableness check begins with a simple observation. 
If the operating gain associated with the insurance product is 
exactly zero (i.e., the premium is just sufficient to fund the dis- 
counted loss reserves), then there can be no net flow from the 
insurance product to or from the surplus account. Supporting 
surplus must be allocated, but all that can be earned on the sup- 
porting surplus is the 5% return that could be earned on idle 
surplus. No release of the operating gain (i.e., a set of non-zero 
flows that have a present value equal to zero) that results in a 
return on equity other than 5% is reasonable. 

Exhibits 4A and 4B present just such a zero operating gain 
situation. With $961.38 of premium and $2,000 of expected loss, 
the underwriting loss would be $1,038.62 and the incurred loss 
ratio would be 208%. A premium equal to $961.38, paid on 
day one, exactly funds the discounted outstanding loss reserve. 
With no funds to spare, the operating gain is exactly zero. While 
supporting surplus is required during the 20 year runoff, its return 
will be exactly the same as if the insurance product had not been 
written, 5%. No measurement of the return on surplus other than 
5% would be reasonable for this situation. 

A quick glance at Exhibit 4A discloses that Bingham's in- 
variant ratio passes the test, whereas the average annual return, 
at 8.1%, clearly fails the test. 

The rather peculiar looking release of operating gain, {O(j)}, 
mimics the requirements of statutory accounting (SAP). Under 
SAP, the carrier must fund the nominal reserves rather than the 
discounted reserves. As a result of this requirement, the $961.38 
premium falls short by $1,038.62. Consistent with the SAP re- 
quirement, $1,038.62 must be transferred from surplus surplus to 
the product on day one. The equivalent year-end transfer is dis- 
played on Exhibit 4A. The $990.55 transfer can be thought of as 
the day one transfer of $1,038.62 plus interest (totaling $51.93) 
less the interest earned on the $2,000 nominal reserve (a total of 
$100.00). 
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While this set of operating gain flows is allowable (their 
present value is zero and they produce a zero investment balance 
by the end of the 20 year runoff), the corresponding 8.1% aver- 
age annual return on supporting surplus is, clearly, unreasonable. 
This paradoxical result is an example of the type of manipulation 
that Bingham's release scheme is designed to prevent. 

This manipulation was previously encountered in the first ex- 
ample for which the operating gain was greater than zero and 
for which all flows were positive. In that example, it was noted 
that once a flow is released to the surplus account, no further 
investment income earned on this money is credited to the insur- 
ance product. The longer the operating gain is retained as part of 
the insurance product, the more of its earned investment income 
is credited to the insurance product. Interest earned on surplus 
surplus is ignored, regardless of its source. 

Likewise, when some of the flows are negative, the interest 
that is not earned (lost) by the surplus surplus is ignored. The 
insurance product, rather than surplus surplus, receives credit 
for the earned investment income. The $485.65 of nominal gain 
(sum of the stream of O(j) flows) that appears to have been 
generated by the insurance product was at the (unrecognized) 
expense of the surplus surplus account. 

If the average annual return on surplus is viewed as being 
the calendar year return once a steady state situation has been 
achieved, then the identification of the source of the additional 
$485.65 return is somewhat different. Under a steady state inter- 
pretation, the flows from year-ends 1 through 20 represent the 
contribution of previously written policies to the current calendar 
year. Under this interpretation, the policies in runoff do provide 
sufficient funds to establish the initial reserve on newly writ- 
ten policies and provide the missing 3.1% return on the steady 
state supporting surplus. What is missing in this interpretation is 
the cost of establishing the steady state (transferring funds from 
surplus to establish the first twenty years of writings). The ad- 
ditional 3.1% return is exactly equal to the investment income 
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being lost by the surplus surplus account as a result of  funding 
the underwriting loss for the first 20 years. 

The final columns of  Exhibit 4A display the calendar year re- 
turn on equity during each year, if the SAP release scheme were 
to be followed. During the first 20 years, the runoff  from succes- 
sively more accident years is reflected in each annual statement. 
Eventually by year 20, the statement ROE reflects one year-end 
ROE for each of the 20 accident years. Growth from year to year  
affects the relative amount of each maturity that is reflected in 
the year-end ROE. Only when the exposure growth rate is 5% 
does the calendar year ROE approach the reasonable 5% figure. 

Exhibit 4B looks at the same situation from the insurance 
carrier 's perspective rather than from the perspective of  a stock- 
holder who is focused on the surplus account. In this representa- 
tion, no distinction is made between supporting surplus and dis- 
counted loss reserves. All of  the funds belong to the insurance 
carrier. Funds are released to the general surplus account as soon 
as they are not required to support the insurance product. 

There is an initial investment of $1,000 from general sur- 
plus which, together with the premium, leaves $1,961.38 to be 
invested at 5% per year. The required funds are also equal to 
$1,961.38. At the end of a year, the invested funds will have ac- 
crued to $2,059.45 (there having been no loss payments). Only 
$2,009.45 is required by the insurance carrier to fund the dis- 
counted outstanding loss amount and supporting surplus, so the 
$50.00 difference can be released to surplus. Continuing in this 
fashion results in cash flows to the surplus account that have an 
internal rate of return equal to 5%. 

With both the Bingham invariant ratio and the insurance car- 
rier perspective treatment having passed the first reasonableness 
test, a new situation (depicted in Exhibits 5A and 5B) is con- 
sidered. In these exhibits, less premium is collected. This results 
in a net operating loss for the product. Clearly, the supporting 
surplus must earn less than if it were not supporting this product. 



62 SURPLUS CONCEPTS 

As can be seen in Exhibit 5A, Bingham's invariant ratio rep- 
resents a reasonable measure of the return on surplus; it is less 
than that of  idle surplus. The statutory accounting model, again, 
fails the test because its ROE is greater than that of idle surplus. 

From the insurance carrier's perspective (Exhibit 5B), 
$1,961.38 is required to support the product, but only $600.00 
is received in the form of premium. The additional $1,361.38 
must be supplied from the surplus account. While not produc- 
ing the same ROE as Bingham's scheme does, this measure is 
reasonable. 

Both the Bingham scheme and the insurance carrier perspec- 
tive agree that surplus would increase faster if this product, with 
its 333% loss ratio, were not written. The statutory accounting 
model does not agree. 

A reasonable model should report an ROE that is greater than 
that of idle surplus if there is an operating gain produced by the 
insurance product. The purpose of supporting surplus is to cush- 
ion against uncertainty. If the premium is sufficient to fund the 
discounted loss reserve for the expected losses and to provide 
the required cushion against uncertainty, then no contribution 
of supporting surplus should be required. As the premium ap- 
proaches this "no risk to the carrier" amount, the ROE should 
increase without bound. This expectation provides another test 
of a model 's  behavior. 

Exhibit 6A displays the first portion of the reasonableness test 
when there is a net operating profit. With $1,700 of premium, 
there is a $738.62 operating gain. All three measures of ROE are 
greater than that of idle surplus (5%). 

Both Bingham and the statutory model allocate the same 
amount of supporting surplus that they did in the other two 
cases. From the insurance carrier perspective (Exhibit 6B), only 
$261.38 of surplus is needed in addition to the premium in or- 
der to fully fund the discounted outstanding loss and supply the 
required amount of  cushion against uncertainty. 
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TABLE 3 

RETURN ON EQUITY FOR EACH MEASURE 

Premium 

Bingham Insurance 
Operating Loss SAP Invariant Cartier IRR 

Gain Ratio Measure Measure Measure 

$ 500.00 $ - 461.38 400.0% 5.0% 0.6% 1.6% 
600.00 -361.38 333.3% 5.7% i.5% 2.2% 
700.00 -261.38 285.7% 6.3% 2.5% 2.9% 
800.00 -161.38 250.0% 7.0% 3.4% 3.6% 
900.00 -61.38 222.2% 7.7% 4.4% 4.4% 
961.38 0.00 208.0% 8.1% 5.0% 5.0% 

1,000.00 38.62 200.0% 8.3% 5.4% 5.4% 
1,100.00 138.62 181.8% 9.0% 6.3% 6.5% 
1,200.00 238.62 166.7% 9.7% 7.3% 7.8% 
1,300.00 338.62 153.8% 10.3% 8.3% 9.4% 
1,400.00 438.62 142.9% 11.0% 9.2% 11.4% 
1,500.00 538.62 133.3% 11.7% 10.2% 14.1% 
1,600.00 638.62 125.0% 12.3% 11.1% 18.0% 
1,700.00 738.62 117.6% 13.0% 12.1% 24.4% 
1,800.00 838.62 111.1% 13.7% 13.1% 37.5% 
1,900.00 938.62 105.3% 14.3% 14.0% 88.3% 
1,920.00 958.62 104.2% 14.5% 14.2% 126.6% 
1,940.00 978.62 103.1% 14.6% 14.4% 237.3% 
1,950.00 988.62 102.6% 14.7% 14.5% 441.1% 
1,960.00 998.62 102.0% 14.7% 14.6% 3,620.8% 

For the second part of the reasonableness test, allow the pre- 
mium to increase until it is sufficient to fund the $961.38 dis- 
counted loss reserve and to supply the required $1,000 cushion 
against adversity. At that point, zero surplus is required and the 
return on equity should become undefined. Table 3 displays the 
resulting returns on equity for each of the measures (average 
annual return under a release dictated by statutory accounting, 
Bingham's present value ratio, and the insurance carrier's IRR) 
as the zero risk extreme is approached. 

The shaded sections of the table indicate regions in which the 
model fails a reasonableness test. The Bingham invariant ratio 
appears to fail the test at the high operating profit extreme be- 
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cause the required supporting surplus does not reflect the fact that 
the retained operating funds provide an additional (unquantified) 
cushion against uncertainty. 

If the required surplus were to be reduced in recognition of 
the retained operating gain, with the sum of the supporting sur- 
plus and retained operating gain providing the required cush- 
ion (at a 2 : 1 reserve to cushion ratio), then insurance products 
with a larger expected operating gain would require less surplus. 
As the expected operating gain approached the required cushion 
amount, the required surplus would approach zero, and the re- 
suiting return on surplus would increase without bound as the 
expected operating gain approached this no risk situation. 

Were it not for the Bingham requirement that the operating 
gain be released so as to maintain a constant return on the sup- 
porting surplus, reducing the surplus in recognition of the re- 
tained operating gain would be a trivial exercise. Difficulty arises 
because the set of release flows, {O(j)}, depends upon the year- 
end surplus amounts, {S(j)), which in turn depend upon the set 
of retained operating gains, {R(j)}. These retained gains depend 
upon what has been previously released, the set {O(j)). 

Attempting to find a set of flows and surplus amounts that 
satisfy the two relations, 

O ( j ) / S ( j -  1) = k, independent of j,  and 

R(j) + S(j) = Reserves at year-end j divided by the 
reserves-to-cushion ratio 

is not a trivial matter. 

Solving this linked set of equations in closed form requires 
solving a polynomial of degree 20 for a product with a 20 year 
runoff. 5 Attempting to solve the system by an iterative technique 

5The polynomial arises as the result of an attempt to determine the operating gain to be 
released at each year-end. As demonstrated in Appendix A, in the absence of modifying 
the supporting surplus to reflect the cushioning effect of the retained operating gain, a set 
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requires the imposition of additional conditions that are not spec- 
ified by Bingham. 6 

of  linear equations in k, the constant annual return on equity resulting from the release 
of  accrued operating gain, 

O ( j )  = k ,~ S ( j  - I), 

must  be solved. Because the {S(j)} are independent of  the {O(j)}, the set of  n equations 
in k is linear. 

When the supporting surplus is a function of  the retained operating gain, as it is when 
the amount  of  supporting surplus is reduced in recognition of the operating gain that 
has been retained, S ( j  - 1 ) becomes a function of the previously released operating gain. 
Each O ( j )  is, itself, a linear function of k. As a result, 

O ( j ) = k * F ( { O ( n ) } ) ,  w h e r e n  ranges from zero to j - 1 .  

It is this functional dependence of  O ( j )  upon the O(n)  that introduces increasingly higher 
powers of  k as j increases. 

To be more concrete, let 

O P  be the expected operating gain for the product (i.e., the present value at time 
zero), 
{C(j)} be the required amount of  cushion at year-end j ,  
{R(j)} be the retained operating gain at year-end j ,  and 
i be the investment income rate. 

During the first )'ear, the required cushion, C(O), consists of  the sum of  the operating 
gain, O P ,  and a contribution from surplus, S(O). At the end of  the year, 0 (1)  will be 
released such that 

o ( 1 ) / s ( o )  = k. 

With the exception of the fact that S(0) is not equal to C(0), this equation is identical to 
the first equation in the set of  linear equations. 

During the second year, the required cushion is C( 1 ). This is supplied by the retained 
operating gain, (1 + i)* O P  - O(1) together with a contribution from surplus, S(I), where 

The condition that 

becomes 

S(I) = C ( I ) - ( I  + i ) * O P - O ( l )  

= C ( I ) - ( 1  + i ) * O P - k * S ( O )  

= C ( l ) - ( I  + i ) * O P - k * [ C ( O ) - O P ] .  

0 ( 2 ) / S ( 1 )  = k 

0 ( 2 ) / [ C ~  l) - ( l + i)* O P  - ~ * [C(0) - OP]] = k 

which is quadratic in k. Each additional year that is reflected introduces another power 
of k into the polynomial. 
6The iterative solution begins with an initial solution that sets 

S(j) 0 = C~)). 
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4. R E F I N E M E N T S  T O  T H E  B I N G H A M  M E T H O D O L O G Y  I 

( N O M I N A L  VS.  D I S C O U N T E D  R E S E R V E S )  

While several sources of  uncertainty are enumerated in Bing- 
ham's paper, his example deals with only one of  these sources, 
the uncertainty associated with the ultimate loss amount. As  a 
result, his supporting surplus is a function of  the nominal out- 
standing loss reserve. Bingham does not describe how the risk 
associated with the timing of  loss payments would influence the 
amount of  supporting surplus, nor does he discuss the effect of  
investment risk on the amount of  supporting surplus that would 
be required. 

A minor change is required to reflect not only the uncertainty 
in the ultimate amount but also timing risk and a portion of  the 
investment rate uncertainty as well. The change involves apply- 
ing the leverage ratio to the discounted reserves rather than to 
the nominal reserves. The variance of  the expected discounted 
reserves can be modeled to reflect the uncertainty in the ultimate 

For this solution, a set of  O ( j )  o are determined. Using these O(j)  0, the set o f  retained 
operating gains, {R(J)0}, can be determined at each year-end. 

The next iteration begins by setting 

S(j) 1 = C ( j )  - R ( j )  o 

and completing another cycle. 
The iteration is said to converge it', for all n greater than a fixed N, S ( j ) .  - S ( j )  N is 

not material. 
When applied to the 20 year payout example, the iterative procedure ran into problems 

(failed to converge) when the premium was sufficient to cause 

S(j),,, = C ( j )  - R( j ) , .  I < 0 for some j ,  on the ruth iteration. 

A logical additional condition to impose upon S ( j )  is that it be greater than or equal to 
zero. 

At even larger premium amounts (above $1,800), multiple S(j)s "zeroed out." Again, 
the iteration failed to converge to a single accumulation point, as S(j)s that were previ- 
ously equal to zero became positive at the next iteration. 

A determination of  the conditions that must  be imposed upon the iteration in order to 
make it converge for all premium amounts  is beyond the scope of  this discussion. It is 
very interesting to note that, when the procedure did converge, the indicated rate of  return 
on surplus was numerically equal to the IRR produced by looking at the process from 
the insurance carrier perspective. Finding a logical set of  constraints that would insure 
(proven rigorously) this equality at all premium levels would be a significant contribution 
to the literature. 
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amount, uncertainty in the cash flow timing, and uncertainty in 
the investment income rate as well. A description of how one 
would determine the leverage ratio that would cushion against 
variation of the expected discounted reserve around its mean is 
beyond the scope of this discussion. 

When the role of the cushion is restricted to covering the ul- 
t imate amount  at risk, it is still appropriate to apply a leverage 
ratio to discounted reserves. Even if the actual future loss pay- 
ments are greater than expected, only the present value of the 
unexpected payments needs to be available now. It will accrue 
to the required amount by the time it must be used. 

Returning to the original example, the nominal loss reserve is 
$44.00 at the end of year two. The 2 : 1 reserve to surplus ratio 7 
implies that if $66.00 is made available to pay losses ($44.00 of 
loss reserve and $22.00 of supporting surplus), then the probabil- 
ity of ruin can be kept below some pre-established amount (e.g., 
less than 0.02). If there is no uncertainty regarding the timing of 
the future payments (i.e., the percentages of the actual ultimate 
loss to be paid by each year end are exactly those which were 
expected), then each future loss payment will be 50% higher than 
expected in this worst case scenario. If the $41.19 discounted loss 
reserve accrues to pay the expected future losses, then an addi- 
tional $20.60 (50% of the discounted outstanding loss amount) 
should be sufficient to make the unexpected payments if they 
become due. 

Differences between the expected and actual timing of  loss 
payments have no impact upon the nominal loss reserves that 
should be carried but do affect the amount of discounted loss 
reserve that should be carried at any point in time. It is logi- 
cal to cushion against the timing uncertainty that increases the 

71t has been assumed that the original 2 : 1 leverage ratio does not reflect any implicit dis- 
counting for interest. 
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variance in the discounted loss reserve by adopting the dis- 
counted reserve as the surplus allocation base. 

5. REFINEMENTS TO THE BINGHAM METHODOLOGY II 

(A DECREASING LEVERAGE RATIO) 

Bingham assumes that a constant reserve-to-surplus leverage 
ratio results when supporting surplus is established to maintain 
a constant probability of  ruin. While this assumption is consis- 
tent with the other simplifications that he adopted for illustrative 
purposes, it must be emphasized that it is neither required to 
achieve an invariant ratio, nor is it realistic. Many models that 
allocate surplus over the life of  a product assume that a con- 
stant leverage ratio is appropriate. Some models even allow the 
leverage ratio to increase over time. For many circumstances, 
the leverage ratio must decrease over the long run if a constant 
probability of  ruin is to be maintained. This is not to say that 
a short term increase in the ratio of  reserves to surplus is impos- 
sible, but that such a short term increase will be followed by a 
long term decrease as the runoff  becomes increasingly more 
volatile. 

For illustrative purposes, consider the hypothetical case of  
excess of  loss casualty reinsurance with a very high attachment 
point. Because of  the high attachment point, assume that small 
claims will be eliminated. Assume, further, that those claims that 
remain can be modeled by one of the more common distributions 
(e.g., the lognormal or Pareto distribution). A suitably high at- 
tachment point assures us that all of  the possible claims will fall 
in the relatively flat tail o f  the severity distribution. This means 
that the likelihood of  any particular claim size is almost equal to 
that of  any other size claim. If each claim closes with a single 
payment  and this payment  does not depend upon how long the 
claim remained open before being settled, then the ultimate clos- 
ing amount on each open claim can be represented by a stochas- 
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tic variable where the same underlying distribution applies to all 
of the open claims. 

When there are exactly N independent open claims, 8 the best 
estimate of the outstanding loss is 

Nominal outstanding loss reserve = Ns, 

where s is the mean severity from the single claim severity dis- 

tribution. 9 Likewise, the variance of the possible loss outcomes 
for the group of N claims is given by 

Variance of the aggregate ultimate 
loss around the expected = No -2, 

where o- is the standard deviation of the single claim severity 
distribution. If N is sufficiently large, the aggregate loss distri- 
bution will be approximately normal. The ultimate loss outcome 
will be less than 

98th percentile ultimate loss = Ns + 2.06v/~/o- 

98% of the time. If, for every Ns of expected loss, 2.06v/No- 
of supporting surplus is allocated, then the probability of  ruin 
can be maintained at 2%. Here ruin means that more funds are 
required than are available. If only a single contract is being con- 
sidered, ruin may be less catastrophic than company insolvency. 
The corresponding leverage ratio to cushion against this single 
contract ruin is given by 

Ns " 2.{)6V~o- 

o r  

v~s/2 .06o-"  1. 

8Here, N may reflect not only the known open claim count but also an estimate of the 
IBNR claim count as well. 
9The claim severity distribution is that which describes losses in the layer of reinsurance. 
For excess of loss reinsurance, this would not be the same distribution as the ground up 
severity distribution. 
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TABLE 4 

Year Paid to Nominal Discounted Leverage Supporting 
End Date Loss O/S Loss O/S Loss Ratio Surplus 

0 $0.00 $404.00 $375.86 2.00 : 1.00 $187.93 
1 264,00 140.00 130.66 1.18 : 1.00 110.97 
2 360.00 44.00 41.19 0.66 : 1,00 62.40 
3 392.00 12.00 11.25 0.34 : 1.00 32.63 
4 400.00 4.00 3.81 0.20 : 1.00 19.14 
5 404,00 0.00 0.00 N/A 0,00 

As claims close, N, the number of open claims, decreases. As 
shown above, the leverage decreases in proportion to the square 
root of N. 

If there are insufficient open claims to warrant the normal 
approximation, then the 98th percentile would have to be deter- 
mined by means of some other aggregate loss modeling tech- 
nique. The important point is that as the number of open claims 
decreases, the relative uncertainty increases as a function of the 
expected loss amount. In other words, the absolute amount of 
surplus may decrease, but the relative amount increases. 

If claims are closed with a single payment and the same sever- 
ity distribution can represent each claim, then the percentage 
of ultimate loss that is paid at any point in time is a measure 
of the number of claims that have been paid. Assuming that a 
2 : 1 reserve-to-surplus ratio is appropriate at time zero, when 
none of the claims are closed, then the appropriate reserve-to- 
surplus ratio would become 2v@5 • 1 when 25% of the claims 
have closed. Returning to the original example with a five year 
runoff, and introducing both the modified leverage ratio and the 
discounted outstanding loss reserve as the base, the support- 
ing surplus amounts shown in Table 4 are required at each year- 
end. 

The initial supporting surplus, $187.93, is less than the 
$202.00 of supporting surplus for the unmodified case. This 
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quickly changes as the leverage ratio decreases (i.e., more surplus 
is required to support a dollar of loss reserve as the number of 
open claims decreases and the proportionate volatility increases) 
and the offsetting loss discount unwinds. 

Exhibit 7 displays the correspondingly modified Bingham 
model. Notice that the average return on surplus and internal 
rate of return remain equal to the Bingham invariant ratio after 
the modification. Because the modification involves changing the 
amount of supporting surplus, the invariant ratio is not equal to 
the corresponding invariant ratio displayed on the other exhibits. 
Such agreement would not be expected. 

Exhibits 8A and 8B apply the modifications to the second 
example. While the invariant ratio is numerically equal to the in- 
ternal rate of return from the perspective of the insurance carrier, 
this is simply a coincidence produced by rounding errors. Table 
5 provides a comparison of the three models under the modified 
surplus determination. 

6. OTHER ISSUES 

There are a number of issues that fall outside the scope of 
this discussion paper. They are briefly mentioned in the hope 
that they may encourage further discussion. 

1. How can the other sources of insurance product uncer- 
tainty be reflected? 

2. How can the appropriate leverage ratios for a selected 
probability of  ruin be determined empirically? 

. As presented, the model produces a point estimate of 
the return on equity. Expected loss amounts and pay- 
out timing are all that have been reflected in the deter- 
mination of the return on equity. If {Lt} represents the 
actual loss payments at times {t}, then the return on eq- 
uity that has been determined is ROE({ (Lt)}) rather than 
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TABLE 5 

R E S U L T S  U N D E R  M O D I F I E D  S U R P L U S  D E T E R M I N A T I O N  

Insurance 
Operating Loss Statutory Invariant Cal-rier IRR 

Premium Gain Ratio Measure Measure Measure 

$500 $ - 4 6 1 . 3 8  400.0% 5.0% -2 .1% 0.4% 
600 -361.38 333.3% 6.0% -0 .6% 1.1% 
700 -261.38 285.7% 7.0% 1.0% 1.9% 
800 -161.38 250.0% 8.0% 2.5% 2.9% 
900 -61.38 222.2% 9.1% 4.1% 4.1% 
961 0.00 208.0% 9.7% 5.0% 5.0% 

1,000 38.62 200.0% 10.1% 5.6% 5.6% 
1,I00 138.62 181.8% 11.1% 7.1% 7.6% 
1,200 238.62 166.7% 12.1% 8.7% 10.6% 
1,300 338.62 153.8% 13.1% 10.2% 15.8% 
1,400 438.62 142.9% 14.1% 11.7% 32.6% 
1,410 448.62 141.8% 14.2% 11.9% 37.7% 
1,420 458.62 140.8% 14.3% 12.0% 45.6% 
1,430 468.62 139.9% 14.4% 12.2% 60.7% 
1,440 478.62 138.9% 14.5% 12.4% 123.9% 
1,442 480.62 138.7% 14.5% 12.4% 381.8% 

(ROE({Lt})), where ( . . . )  denotes taking the expected 
value of  the quantity that is enclosed. If the model is 
not a linear function of  the {Lt} then the two averages 
need not be equal. There are many possible sets of  loss 
payments that may be made. Out of  this population, only 
one set of  payments will occur. Prior to their occurrence, 
the best estimate of  what will occur is {{Lt) }. Each of  the 
possible {Lz} will result in a different return on support- 
ing surplus. There is no guarantee that the expected re- 
turn is equal to the return corresponding to the expected 
loss payments.  Even for our simple example, whether  or 
not the two averages are equal depends upon how the 
next issue is resolved. 

4. At a particular point in time there is an expected out- 
standing loss reserve. A corresponding amount of  sur- 
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plus will be allocated in such a way that the probabil- 
ity of ruin is less than some predetermined amount. The 
estimate of future payments will, undoubtedly, change 
over time. After several years have elapsed and the first 
few years of actual payments have been made, as details 
concerning the actual open claims become known, and 
as IBNR emerges, expectations regarding payments yet 
to be made will probably not be the same as they were 
in the beginning. The question is whether or not these 
changed expectations of future loss payments should re- 
sult in a modification of the supporting surplus during 
future periods. 

In the first example, the a priori expected reserve at 
the end of year two is $44.00. Based upon this expec- 
tation, $22.00 of supporting surplus is considered to be 
an adequate cushion against ruin. Together, there will be 
enough funds available to cover $66.00 of future loss 
payments. But $44.00 is the a priori (at time zero) ex- 
pected loss to be paid after the end of year two. What 
if the best estimate of the future loss payout is $60.00 
when the end of year two actually arrives? Certainly, the 
reserve would be changed to reflect this additional in- 
formation. Should the cushion at year-end two and sub- 
sequent periods be adjusted accordingly? 

There appear to be three alternative ways in which 
to determine the required supporting surplus for future 
periods under this scenario. 

• Assume that $16.00 of the $22.00 safety margin has 
been used to establish the originally unanticipated ad- 
ditional outstanding loss reserve. The remaining $6.00 
of surplus continues to provide an adequate safety net. 
This approach assumes that the a priori outstanding 
amount defines the distribution of possible outcomes, 
and that the safety margin is always measured against 
the a priori expectation. Regardless of what the actual 
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estimate is, the supporting surplus cushions against 
the a priori estimate of the worst case scenario. Under 
this alternative, all differences between the expected 
values and the actual values are attributed to process 
variance. There is no cushion provided for parameter 
errors contained in the a priori expectations. 

In a sense, this method is analogous to a loss ra- 
tio reserving methodology in which IBNR reserves are 
established equal to the difference between the a priori 
loss ratio and the reported loss ratio. Only if the differ- 
ence becomes negative (i.e., reported amounts exceed 
expected amounts) is the a priori assumption ques- 
tioned. A negative difference means that ruin has oc- 
curred. 

Assume that the a priori outstanding loss amount de- 
fines the size of  the uncertainty, $22.00. Even when 
year two ends and the outstanding loss estimate (and 
it is still just an estimate as of  year-end two) is $60.00 
rather than the expected $44.00, $22.00 of  surplus pro- 
vides the necessary safety margin. 

This alternative is analogous to the Bornhuet- 
ter/Ferguson loss reserving methodology. Future de- 
velopment (and uncertainty) depends upon an a priori 
assumption which is not modified to reflect current 
information. 

Assume that the $60.00 estimate contains the same 
percentage of  uncertainty as did the $44.00 a priori 
estimate. In this case, the supporting surplus must be 
increased from $22.00 to $30.00. Intuitively, this ap- 
proach is less than satisfying because it appears to 
imply that the claim department 's opinion at the end 
of  year two not only does nothing to decrease the un- 
certainty over the a priori estimate that was available 
at the beginning of  year zero but actually increases the 
dollar amount of uncertainty. This alternative assumes 
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that the a priori estimate was based upon so much 
parameter error as to be worthless once additional in- 
formation becomes available. 

This alternative is analogous to the chain ladder 
reserving methodology which is 100% responsive to 
the current information. 

A resolution of how to deal with actual estimates vs. 
a priori expectations will be necessary in order to de- 
termine whether or not the point estimate, ROE({ (Lt)}), 
will be equal to the ensemble average (i.e., ROE({Lt}) 
run for each of the {Lt} and then weighted by the prob- 
ability of occurrence), (ROE({Lt})). If the two estimates 
are not equal, then even a prospective evaluation of  the 
rate of return must be performed on an ensemble of pos- 
sible insurance product outcomes rather than a single 
expected value outcome. 

For our simple example, the second alternative re- 
sults in a linear model whereas the other two do not. 
This can easily be demonstrated by running several pos- 
sible loss outcomes through the Bingham model. The ex- 
pected loss for the example is $404.00. Without chang- 
ing the payout pattern (i.e., the percentage of  ultimate 
loss paid at any particular point in time), consider Table 
6, the possible loss outcomes and their corresponding 
probabilities of occurrence. 

Note that Alternatives 1 and 3 produce deviations 
from the point estimate that are in opposite directions. 
The more volatile the loss distribution (the larger the 
variance), the more pronounced the deviation between 
the ensemble and point estimates will be for non-linear 
models. 

While tinearity makes the calculations easier, compu- 
tational difficulty should not be the only criterion that is 
used in the selection of an alternative. 
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TABLE 6 

O U T C O M E S  A N D  T H E I R  P R O B A B I L I T I E S  

5 

Probability Z Lr Alternative Alternative Alternative 
of Occurrence t=o 1 2 3 

0,35 $380.00 19.76% 21,51% 22.56% 
0.14 392.00 16.84% 17.55% 17.93% 
0.02 404.00 13.58% t3.58% 13.58% 
0.14 416.00 9.90% 9.61% 9.48% 
0.35 428.00 5.73% 5.64% 5.61% 

Ensemble Average 404.00 12.94% 13.58% 13,97% 
Point Average 404.00 13.58% 13.58% 13.58% 

, Closely related to the ensemble vs. point estimate dis- 
cussion is the appropriate allocation of surplus when a 
policy year is analyzed retrospectively to determine the 
actual return on surplus. Since the a priori expectations 
are rarely realized, how much supporting surplus should 
be reflected? When actual results deviate from expected 
results, actual outstanding loss reserves will deviate from 
those that were expected. At what point in the retrospec- 
tive determination of the return on surplus should the 
actual reserves be reflected? Should it reflect carried re- 
serves or what should have been carried at any point in 
time? 

7.  S U M M A R Y  A N D  C O N C L U S I O N S  

Russell Bingham made a significant contribution to the liter- 
ature concerning the allocation of surplus and determination of 
the rate of return on that surplus. His advocacy of keeping the 
results of each exposure period separate so that the long-term 
commitment of surplus can be appropriately reflected is fight on 
target. 



SURPLUS CONCEPTS 77 

In the process of taking the present values of the insurance 
flows and supporting surplus, Bingham has produced an invariant 
measure of  the return on surplus. 

The difference between the commonly used calendar year de- 
termination of  the return on surplus and Bingham' s accident year 
approach can be illustrated by the following two descriptions of  
the same investment: 

• Calendar Year Approach: A carrier invests $1,000 of surplus 
and receives a $400 return, so the return on surplus is 40%; 

• Accident Year Approach: A carrier invests $1,000 of surplus 
for  10 years and receives an average annual return equal to 
3.4% on its investment. 

The second approach takes into account the time over which 
the surplus funds are invested (until all of the uncertainties are 
resolved). This time horizon is well beyond the time that premi- 
ums are in force for most insurance products. 

If a given probability of ruin is to be maintained by cushion- 
ing funds, then there must be some recognition of the cushion 
afforded by the premium provision for expected operating profit. 
Otherwise, the probability of ruin will vary with premium in a 
manner that is difficult to rationalize. This would appear to im- 
ply that ruin occurs whenever the expected operating profit is 
not achieved rather than whenever there are insufficient funds to 
meet the unexpected losses and expenses. The latter definition 
seems to be a more logical way to define ruin. This is an area 
that warrants further investigation. 

Two modifications that can be made to enhance Bingham's  
model have been proposed. In actual practice, the leverage ratio 
will vary, but not in such a simple manner as suggested by the 
square root rule. A more detailed investigation of the character- 
istics of a particular line must be undertaken in order to establish 
actual leverage ratios for the runoff of a maturing policy year. 
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While not exhaustive, a list of  additional considerations pro- 
vides issues that must be addressed. In particular, the idea of  av- 
eraging the returns over an ensemble of  possible loss outcomes 
forces us to refine our ideas concerning the role of  surplus as it 
cushions against ruin. 
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EXHIBIT 1 

A NOT COMPLETELY BINGHAM MODEL 

INSURANCE PRODUCT SURPLUS ACCOUNT IRR INSURANCE PRODUCT 

Idle Idle Total 
O(n) =~ Supporting Funds Surplus Surplus Return on Total 

End of  Written Paid Operating Funds Surplus Released Investment Investment Supporting Surplus Retained Investment 
Year Premium Loss Gain Released S to Surplus Income Income Surplus Flows Earnings Balance Overfund 

7u 

C 

('3 © 

0 $400.00 $0.00 
1 264.00 $25.34 $202.00 12.55% $10.10 5.0% 17.55% 
2 96.00 0.00 70.00 0.00% 3.50 5.0% 5.00% 
3 32.00 0,00 22.00 0.00% 1.10 5.0% 5.00% 
4 8.00 0.00 6.00 0.00% 0-30 5.0% 5.00% 
5 4.00 0.00 2.00 0.00% 0.10 5.0% 5.00% 

NPV 400.00 375.86 $24.14 24.14 281.38 8.58% 14.07 5.0% 13.58% 
Average = 13.39% 

$ - 2 0 2 . 0 0  $ - 4.00 $400.00 $24.14 
167.44 - 9.34 130.66 0.00 
51.50 - 2 . 8 1  41.19 0.00 
17.10 - 0 . 7 5  11.25 0.00 
4.30 - 0 . 1 9  3.81 0.00 
2.10 0.00 0.00 0.00 

IRR = 13.87% 

Z 



EXHIBIT 2 

ANOTHER NOT COMPLETELY BINGHAM MODEL 

INSURANCE PRODUCT SURPLUS ACCOUNT IRR INSURANCE PRODUCT 

Idle Idle Total 
O(n)~ Supporting Funds Surplus Surplus Return on Total 

End of Written Paid Operating Funds Surplus Released Investment Investment Supporting Surplus Retained Investment 
Year Premium Loss Gain Released S to Surplus Income Income Surplus Flows Earnings Balance Overfund 

0 $400.00 $0.00 
1 264.00 $0.00 $202.00 0.00% $10.10 5.0% 5.00% 
2 96.00 0.00 70.00 0.00% 3.50 5.0% 5.00% 
3 32.00 0.00 22.00 0.00% 1.10 5.0% 5.00% 
4 8.00 0.00 6.00 0.00% 0.30 5.0% 5.00% 
5 4.00 30,81 2.00 1,540,35% 0.10 5.0% 1,545.35% 

NPV 400.00 375.86 $24,14 24.14 281.38 8.58% 14.07 5.0% 13.58% 
Average = 15.20% 

$ - 2 0 2 . 0 0  S - 4 . 0 0  $400.00 $24.14 
142.10 16.00 156.00 25.34 
51.50 23.80 67.80 26.61 
17.10 27.19 39.19 27.94 
4.30 29.15 33.15 29,34 

32.91 0.00 0.00 0,00 

I R R  = 1 1 . 8 4 %  



EXHIBIT 3 

THE BINGHAM MODEL 

OC 
t-O 

INSURANCE PRODUCT SURPLUS ACCOUNT IRR INSURANCE PRODUCT 

Idle Idle Total 
O(n) ~ Supporting Funds Surplus Surplus Return on Total 

End of Written Paid Operating Funds Surplus Released Investment Investment Supporting Surplus Retained Investment 
Year Premium Loss Gain Released S to Surplus Income Income Surplus Rows  Earnings Balance Ove, rfund 

0 $400.00 $0.00 $ - 2 0 2 . 0 0  $ -4 .00  $400.00 $24.14 
1 264.00 $17.33 $202.00 8.58% $10.10 5.0% 13.58% 159.43 - I . 3 3  138.67 8.02 
2 96.00 6.00 70.00 8.58% 3.50 5.0% 13.58% 57.50 - 0 . 4 0  43.60 2.41 
3 32.00 1.89 22.00 8.58% 1.10 5.0% 13.58% 18.99 -0.11 11.89 0.65 
4 8.00 0.51 6.00 8.58% 0.30 5.0% 13.58% 4.81 -0 .03  3.97 0.16 
5 4.00 0.17 2.00 8.58% 0.10 5.0% 13.58% 2.27 0.00 0.00 0.00 

NPV 400.00 375.86 $24.14 24.14 281.38 8.58% 14.07 5.0% 13.58% 
Average = 13.58% IRR = 13.58% 

7~ 

7... 

o 
z 

Determination o f  the {O(n)} 

I. Constant annual ROE ~ O(n) /S (n )  = k, or O(n)  = k *S(n) 
2. NPV({O(n)}) = k * N P V ( { S ( n ) } )  ~ k = N P V ( { O ( n ) } ) / N P V ( { S ( n ) } )  

n S(n) O(n) 
1 S( l )  = $202.00 $17.33 
2 S(2) = 70.00 6.00 
3 S(3) = 22.00 1.89 
4 S(4) = 6.00 0.51 
5 S(5) = 2.00 0.17 

NPV({S(n)}) = $281.38 
NPV({O(n)}) = $ 24.14 $24.14 

k : 0.085784 



EXHIBIT 4A 

STATUTORY ACCOUNTING MODEL--ZERO OPERATING GAIN 

INSURANCE PRODUCT SURPLUS AC-'C'OUNT ROE Und¢~ Statutory 

Accounting 
Idle Idle Total With a C_nowth Rate 

O(n) =*. Supporting Funds Smplus Sulplus Return on Insurance equal to 
End of Writlen Paid Operating Funds Surplus Released Investment lnv~tment Supporting Investment 

Year Premium Loss Gain Released S to Surplus lnotxne Income Surplus Balance Year 0.0% 5.0% 10.0% 

0 $961 38 $0.00 

I 0.00 

2 0.00 

3 6.00 

4 28.00 

5 86.00 
6 64.00 

7 74.00 
8 74.00 
9 72.00 
I0 70,00 

11 52.00 
12 48.00 
13 44.00 
14 42.00 
15 36.00 
16 34.00 
17 30.00 
18 28.00 
19 524.00 
20 688.00 

$ - 990.55 $I,000.(30 -99.1% $50.00 5.0% -94.1% 
100.00 1,000.O0 10.0% 50.00 5.0% 15.0% 
100.00 1,000.00 10.0% 50.00 5.0% 15.0% 
99.70 997.00 10.0% 49.85 5.0% 15.0% 
98.30 983.00 10.0% 49.15 5.0% 15.0% 
94.00 940.00 10.0% 47.00 5.0% 15.0% 
90.80 908.00 10.0% 45.40 5.0% 15.0% 
87.10 871.00 10.0% 43.55 5.0% 15.0% 
83.40 834,00 10.0% 41.70 5.0% 15.0% 
79.80 798.00 10.0% 39.90 5.0% 15.0% 
76.30 763.00 10.0% 38.15 5.0% 15.0% 
73.70 737.00 10.0% 36.85 5.0% 15.0% 

71.30 713.00 10.O% 35.65 5.0% 15.0% 
69.10 691.00 10.O% 3435 5.0% 15.0% 
67.00 670.00 10.0% 33.50 5.0% 15.0% 
65.20 652.00 10.0% 32.60 5.0% 15.0% 
63.50 635.00 10.0% 31.75 5.0% 15.0% 
62.00 620.00 10.0% 3 I.{X} 5.0% 15.0% 

60.60 606.00 10.0% 30.30 5.0% 15.0% 

34.40 344.00 10.0% 17.20 5.0% 15.0% 

$961 
2,000 1 -94.1% -94.1% -94.1% 
2,000 2 -39.5% -40.9% -42.1% 
1,994 3 -21.4% --23.1% --24.9% 
1,966 4 -12.3% -14.3% - 16.3% 
1,880 5 -6.0% -9.1% -11.2% 

1,816 6 -3 .4% -5 .7% -8 .0% 
1,742 7 -1 .0% -3 .3% -5 .8% 
1,668 8 0.8% - 1.6% - 4 .  1% 
1,596 9 2.2% -0 .3% -2 .9% 
1,526 10 3.3% 0.'7% -2 .0% 
1,474 I I 4.2% 1.6% - 1.2% 
1,426 12 4.9% 2.2% -0 .6% 
1.382 13 5.6% 2.8% -0 .1% 
1,340 14 6.1% 3.3% 0.3% 
1,304 15 6.5% 3.7% 0.6% 
1,270 16 7.0% 4.0% 0.9% 
1,240 17 7.3% 4.4% 1.2% 
1,212 18 7.6% 4.6% 1.4% 

688 19 7.9% 4.9% 1.6% 
0 20 8.1% 5.0% 1.6% 

21 8.1% 5.0% 1.6% 
etc. 8.1% 5.0% 1.6% 

0'3 

0 
Z 

Total 961.38 2.000.00 485.65 15,762.00 3.1% 788.10 5.0% 8.1% 
PV 961.38 961.38 $0.00 0.O0 10.386.00 0.0% 519.31 5.0% 5.0% 

O0 
L,O 
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EXHIBIT 4B 

Z E R O  O P E R A T I N G  G A I N  FROM THE I N S U R A N C E  C A R R I E R  

P E R S P E C T I V E  

End o f  
Year 

Funds Released as they Become Available 

Invested Invested Paid Required Invested Released Flows 
Surplus Premium Loss Funds Funds to Surplus tor IRR 

0 $1,000.00 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

$961.38 $0.00 $1,961.38 $1,961.38 $0.00 $ -  1,000.00 
0.00 2,009.45 2,059.45 50.00 50.00 
0.00 2,059.92 2,109.92 50.00 50.00 
6.00 2,103.92 2,156.92 53.00 53.00 

28.00 2,117.26 2,181.12 63.86 63.86 
86.00 2,044.98 2,137.12 92.14 92.14 
64.00 2,004.23 2,083.23 79.00 79.00 
74.00 1,948.04 2,030.44 82.40 82.40 
74.00 1,890.89 1,971.44 80.55 80.55 
72.00 1,835.73 1,913.43 77.70 77.70 
70.00 1,782.62 1,857.52 74.90 74~90 
52.00 1,755.60 1,819.75 64.15 64.15 
48.00 1,734.53 1,795.38 60.85 60.85 
44.00 1,719.61 1,777.26 57.65 5765 
42.00 1,708.04 1,763.59 55.55 55.55 
36.00 1,705.94 1,757.44 51.50 51.50 
34.00 1,707.64 1,757.24 49.60 49.60 
30.00 1,716.27 1,763.02 4675 46.75 
28.00 1,729.08 1,774.08 45.00 45.00 

524.00 999.24 1,291.53 292.29 292.29 
688.00 0.00 361.20 361.20 361.20 

IRR = 5.0% 



EXHIBIT 5A 

STATUTORY ACCOUNTING MODEL--NEGATIVE OPERATING GAIN (I.E., A LOSS) 

INSURANCE PRODUCT SURPLUS ACCouNT ROE Under Statutory 

Accounting 
Idle Idle Total With a Growth Rate 

O(n) ~ Supporting Funds Sm'plus Surplus Return on Insurance equal to 
End of Written Paid Operating Funds Surplus Released Investment lnvcstn~n! Supporting Investment 

Year Premium Loss Gain Released S to Surplus Income Income Smplus Balance year 0.0% 5.0% 10.0% 

0 $60O .00 ~ .00 
1 0.00 

2 0-00 
3 6.00 
4 28.00 
5 86.00 
6 ~ . 0 0  
7 74.00 
8 74.00 
9 72.00 
I0 70.00 

II 52.00 

12 48.00 

13 ~.00 

14 42.00 

15 ~ . 0 0  
16 ~ . 0 0  
17 ~ . 0 0  
18 28.00 
19 524.00 

688.00 

$ - 1,370.00 $1,000.00 -137.0% $50.00 5.0% 
lO0,O0 1,000.00 10.0% 50.CO 5.0% 
I00.00 1,000.(30 10.0% 50.00 5.0% 
99.70 997.00 10.0% 49.85 5.0% 

98.30 983.00 10.0% 49.15 5.0% 
94.00 940.00 10.0% 47.00 5.0% 

90.80 908.00 10.0% 45.40 5.0% 
87.10 871.00 10.0% 43.55 5.0% 
83.40 834.00 10.0% 41.70 5.0% 
79.80 798.00 10.0% 39.90 5.0% 
76.30 763.00 10.0% 38.15 5.0% 

73.70 737.00 10.0% 36.85 5.0% 
71.30 713.00 10.0% 35.65 5.0% 
69.10 691.00 10.0% 34.55 5.0% 
67.00 670.00 10.0% 33.50 5-0% 
65.20 652.00 10.0% 32.60 5.0% 
63.50 635.00 10.0% 31.75 5.0% 
62.00 620.00 I0.0% 31.00 5.0% 

60.60 606.00 10.0% 30.30 5.0% 

34.40 344.00 IOD% 17.20 5.0% 

Total 600.00 2,000.00 106.20 15,762.00 0.0 788.10 
PV 600.00 961.38 $ -  361.38 - 361.38 10,386.19 -3.5% 519.31 

5.0% 
5.0% 

$600 

- 132.0% 2,000 1 - 132.0% - 132.0% - 132.0% 
15.0% 2,000 2 -58.5% -60.3% -62.0% 
15.0% 1,994 3 -34.0% -36.4% -38.7% 
15.0% 1,966 4 -21.8% -24.5% -27.2% 
15.0% 1,880 5 - 1 4 . 5 %  - 1 7 . 5 %  --20.4% 
15.0% 1,816 6 
15.0% 1,742 7 
15.0% 1,668 8 
15.0% 1,596 9 
15.0% 1,526 IO 
15.0% 1,474 11 
15.0% 1,426 12 
15.0% 1,382 13 
15.0% 1,340 14 
15.0% 1,304 15 

15.0% 1,270 16 
15.O% 1,240 17 
15.0% 1,212 18 
15.0% 688 19 
15.0% 0 20 

21 
5.7% etc. 

1.5% 

- 9 . 8 %  - 12.9% - 16.0% 
-6.5% -9 .7% - 13.0% 
- 4 A %  -7 .4% - 10.8% 
-2.2% -5 .6% --9.1% 
- 0 . 8 %  - 4 . 2 %  --7.9% 

0.4% -3 .1% -6.9% 
1.4% - 2 . 2 %  - 6 . 1 %  
2.3% - 1.4% -5.4% 
3.095 -0 .8% -4 .8% 
3.6% -0 .2% -4.4% 
4,2% 0.2% -4.0% 
4.6% 0.7% -3.7% 
5.1% 1.0% -3.4% 
5.5% 1.4% -3.1% 
5.7% 1.5% -3.0% 

5.7% 1.5% -3 .0% 
5.7% 1.5% -3.0% 

~0 
F" 

o3 

0 

OO 
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EXHIBIT 5B 

N E G A T I V E  OPERATING G A I N  FROM THE I N S U R A N C E  C A R R I E R  

P E R S P E C T I V E  

Funds Released as they Become Available 

End of Invested Invested Paid Required Invested Released Flows 
Year Surplus Premium Loss Funds Funds to Surplus tbr IRR 

0 $1,361.38 $600.00 $0.00 $1,961.38 $1,961.38 $0.00 $-1,361.38 
1 0.00 2,009A5 2,059.45 50.00 50.00 
2 0.00 2,059.92 2,109.92 50.00 50.00 
3 6.00 2,103.92 2,156.92 53.00 53.00 
4 28.00 2,117.26 2,181.12 63.86 63.86 
5 86.00 2,044.98 2,137.12 92.14 92.14 
6 64.00 2,004.23 2,083.23 79.00 79.00 
7 74.00 1,948.04 2,030.44 82.40 82.40 
8 74.00 1,890.89 1,971.44 80.55 80.55 
9 72.00 1,835.73 1,913.43 77.70 77.70 

10 70.00 1,782.62 1,857.52 74.90 74.90 
I I 52.00 1,755.60 t,819.75 64.15 64.15 
12 48.00 1,734.53 1,795.38 60.85 60.85 
13 44.00 1,719.61 1,777.26 57.65 57.65 
14 42.00 1,708.04 1,763.59 55.55 55.55 
15 36.00 1,705.94 1,757.44 51.50 51.50 
16 34.00 1,707.64 1,757.24 49.60 49.60 
17 30.00 1,716.27 1,763.02 46.75 46.75 
18 28.00 1,729.08 1,774.08 45.00 45.00 
19 524.00 999.24 1,291.53 292.29 292.29 
20 688.00 0.00 361.20 361.20 361.20 

IRR = 2.2% 



EXHIBIT 6A 

STATUTORY ACCOUNTING MODEL--POSITIVE OPERATING GAIN 

INSURANCE PRODUCT SURPLUS ACCOUNT ROE Under Statutory 

Aoeoun6n 8 
Idle idle Total With a Cnowth Rate 

O(n) =~ Supporting Funds Sm'plus Surplus Return on Insurance equal to 
End of Written Paid Operating Funds Su~lus Released Investment Investment Supporting Investment 
Year  P'nmfium Loss Gain Released S to Surplus Income Income Surplus Balance Year 0.0% 5.0% 10.0% 

0 $13 00.00 $0 .o0 
I 0.o0 

2 0.o0 

3 6.00 

4 28.00 

5 86.o0 

6 64.00 

7 74.00 
8 74,O0 
9 72.00 

I 0 70.00 
I I 52.00 

12 48.0O 
13 44.00 

14 42.00 
15 36.00 
16 34.O0 
17 30.00 
18 28.O0 
19 524.00 
20 688.00 

Total 1300.00 2,000.00 
PV 1 ,700_00  961.38 $738.62 

$ - 215.00 $1,000.00 -21.5% $50.00 5.0% -16.5% 
100.00 1,O00.O0 10.0% 50.00 5.0~ 15.0% 
100.00 1,000.00 10.0% 50.00 5.0% 15.0% 
99.70 997.00 10.0% 49.85 5.0% 15.0% 
98.30 983.00 10.0% 49.15 5.0% 15.0% 
94.00 940.00 10.0% 47.00 5.0% 15.0% 
90.80 908.00 10.0% 45.40 5.0% 15.0% 
87.10 871.00 10.0% 43.55 5.0% 15.0% 
83.40 834.00 10.0% 4130 5.0% 15.0% 
79.80 798.00 10.0% 39.90 5.0% 15.0% 
76.30 763.00 10.0% 38.15 5.0% 15.0% 
73.70 737.00 10.0% 36.85 5.0% 15.0% 
71.30 713.00 10.0% 35.65 5.0% 15.0% 
69.10 691.00 10.0% 34.55 5.0% 15.0% 
67.00 670.00 10.0% 33.50 5.0% 15.0% 
65.20 652.00 10.0% 32.60 5.0% 15.0% 

63.50 635.00 10.0% 31.75 5.0% 15.0% 

62.00 620.00 10.0% 31.00 5.0% 15.0% 

60.60 606 .O0 I 0.0% 30.30 5.0% 15.0% 

34.40 344.00 10.0% 17.20 5.0% 15.0% 

1,261.20 15,762.00 8.0% 788.10 5.0% 13.0% 
738.62 10,386.19 7.1% 519.31 5.0% 12.1% 

$1,700 
2,000 I -16.5% -16.5% -16.5% 
2,000 2 -0.8% -1.1% -I .5% 
1,994 3 4.5% 4.0% 3.5% 
1,966 4 7.1% 6.5% 6.0% 
1,880 5 8.7% 8.0% 7.4% 
1,816 6 9.7% 9.0% 8.4% 
1,742 7 10.4% 9.7% 9.0% 
1,668 8 10.9% 10.2% 9.5% 
1,596 9 11.3% 10.6% 9.8% 
1,526 10 11.6% 1 0 . 9 %  10.1% 
1,474 11 I 1 .9% 1 1 . 1 %  10.3% 
1,426 12 12.1% il.3% 10.5% 
1,382 13 12.3% 1 1 - 5 %  10.6% 
1,340 14 12.4% 11.6% 10.7% 

1,304 15 12.6% II.7% 10.8% 

1,270 16 12.7% I 1.8% 10.9% 

1,240 17 12.8% 11.9% 11.0% 

1,212 18 12.9% 1 2 - 0 %  11.1% 
688 19 13.0% 1 2 . 1 %  I1.1% 

0 20 13.0% 1 2 . 1 %  11.1% 
21 13.0% 1 2 . 1 %  I1.|% 
etc. 13.0% 1 2 . 1 %  11.1% 

O¢ "-d 
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EXHIBIT 6B 

POS ITIVE OPERATING G A I N  FROM THE I N S U R A N C E  C A R R I E R  

P E R S P E C T I V E  

Funds Released as they Become Available 

End of Invested Invested Paid Required Invested Released Flows 
Year Surplus Premium Loss Funds Funds to Surplus for IRR 

0 $261.38 $1,700.00 $0.00 $1,961.38 $1,961.38 $0.00 $-261 .38  
1 0.00 2,009.45 2,059.45 50.00 50.00 
2 0.00 2,059.92 2,109.92 50.00 50.00 
3 6.00 2,103.92 2,156.92 53.00 53.00 
4 28.00 2,117.26 2,181.12 63.86 63.86 
5 86.00 2,044.98 2,137.12 92.14 92.14 
6 64.00 2,004.23 2,083.23 79.00 79.00 
7 74.00 1,948.04 2,030.44 82.40 82.40 
8 74.00 1,890.89 1,971.44 80.55 80.55 
9 72.00 1,835.73 1,913.43 77.70 77.70 

10 70.00 1,782.62 1,857.52 74.90 74.90 
11 52.00 1,755.60 1,819.75 64.15 64.15 
12 48.00 1,734.53 1,795.38 60.85 60.85 
13 44.00 1,719.61 1,777.26 57.65 57.65 
14 42.00 1,708.04 1,763.59 55.55 55.55 
15 36.00 1,705.94 1,757.44 51.50 51.50 
16 34.00 1.707.64 1,757.24 49.60 49.60 
17 30.00 1,716.27 1,763.02 46.75 46.75 
18 28.00 1,729.08 1,774.08 45.00 45.00 
19 524.00 999.24 1,291.53 292.29 292.29 
20 688.00 0.00 361.20 361.20 361.20 

IRR = 24.4% 



EXHIBIT 7 

THE MODIFIED BINGHAM MODEL 

INSURANCE PRODUCT SURPLUS ACCOUNT IRR INSURANCE PRODUCT 

Idle Idle Total 
O(n) ~ Supporting Funds Surplus Surplus Return on Total 

End of Written Paid Operating Funds Surplus Released Investment Investment Supporting Surplus Retained Investment 
Year Premium Loss Gain Released S to Surplus Income Income Surplus Flows Earnings Balance Overfund 

0 $400.00 $0.00 
1 264.00 $12.08 $187.93 6.43% $9.40 5.0% 11.43% 
2 96.00 7.14 110.97 6.43% 5.55 5.0% 11.43% 
3 32.00 4.01 62.40 6.43% 3.12 5.0% 11.43% 
4 8.00 2.10 32.63 6.43% 1.63 5.0% 11.43% 
5 4.00 1.23 19.14 6.43% 0.96 5.0% 11.43% 

NPV 400.00 375.86 $24.14 24.14 375.38 6.43% 18.77 5.0% 11.43% 
Average = 11.43% 

$ - 187.93 $ -4 .00  $400.00 $24.14 
98.44 3.92 143.92 13.26 
61.25 3.98 47.98 6.79 
36.90 2.36 14.36 3.11 
17.22 0.98 4.98 1.17 
21.33 0.00 0.00 0.00 

IRR = 11.43% 

Determination of the {O(n)} 

1. Constant annual ROE ~ O(n)/S(n) = k, or O(n) = k *S(n) 

2. NPV({O(n)}) = k *NPV({S(n)}) =~ k = NPV({O(n)})/NPV({S(n)})  

n S(n) O(n) 
1 S(I) = $187.93 $12.08 
2 S(2)= 110.97 7.14 
3 S(3)= 62.40 4.01 
4 S(4)= 32.63 2.10 
5 S(5)= 19.14 123 

NPV({S(n)}) = $375.38 
NPV({O(n)}) = $ 24.14 $24.14 

k = 0.064303 ",,D 



EXHIBIT 8A 

STATUTORY ACCOUNTING MODEL WITH VARIABLE R" S LEVERAGE RATIO 

".,D 
O 

I N S U R A N C E  PRODUCT S U R P L U S  A C C O U N T  ROE Under  Statutory 

Account ing 
Idle Idle Total 

With a Growth  Rate 
0 ( - )  =~ Support ing Funds  Surplus Surplus Return on  Insurance equal to 

End of  W r i , e n  Paid Operating Funds Surplus Released Investment Investment Support ing Investment 

Year Premium Loss Gain Released S to Surp lus  Income Income Surplus Balance Year 0 .0% 5.0% 10.0% 

0 $1,000.00 $0.00 

1 0 .00  $ - 950 00  $480.69 - 2 . 0 %  $24.03 0 0 %  - 1.9% 
2 0 .00  100.00 504.73 0 .2% 2 5 1 4  0.1% 0 1 %  

3 6.00 100.00 529.96 0 .2% 26.50 0.1% 0.2% 
4 28.00 99.70 553.46 0 .2% 27.67 0.0% 0.2% 

5 86.00 98.30 567.13 0.2% 28.36 O. 1% 0.2% 

6 64.00 94.00 552.49 0.2% 27.62 0~3% 0.2% 

7 74.00 90.80 548.12 0 .2% 27.41 0.1% 0.2% 
8 74.00 87.10 5 3 8 5 2  0 .2% 26.93 0.1% 0.2% 
9 72.00 83A0 528A5 0 .2% 26.42 0.0% 0.2% 

10 70.00 79.80 518.87 0 .2% 25.94 0.0% 0.2% 
11 52.00 76.30 509.81 0 .1% 25.49 0.0% 0.2% 
12 48 .00  73.70 509.30 0 .1% 25.47 0.1% 0 1 %  
13 44.00 71.30 510.77 0 .1% 25 54 0.1% 0.2% 
14 42.00 69.10 514.31 0 .1% 25.72 0.1% 0.2% 
15 36.00 67.00 519.02 0 .1% 25.95 0.0% 0.2% 
16 34.00 65.20 5 2 6 9 7  0 .1% 26.35 0.1% 0.2% 

17 30.00 63 50 536.32 0 .1% 26.82 0.1% 0.2% 
18 28.00 62.00 548.14 0 .1% 27.41 0.1% 0.2% 
19 524.00 6060 561.54 0.1% 28.08 0.1% 0 1 %  
20 688.00  34.40 327.62 0.1% 16.38 0.0% 0.2% 

Total 1,000.00 2,000.00 
PV 1,000.00 961.38 $38.62 

526.20 10,386.22 0 .1% 519.31 
38.62 6,509 42 0 .1% 325.47 

0.0% 0.1% 
0.0% 0.1% 

$1,000 

2,000 1 - 1 . 9 %  - 1 . 9 %  - 1 . 9 %  

2,000 2 - 0 8 %  - 0 . 8 %  - 0 . 9 %  
I , ~ 4  3 -0 .4% -0 .5% --0.5% 
1.966 4 - 0 3 %  - 0 . 3 %  - 0 3 %  

1,880 5 -0 .2% - 0 . 2 %  -0 .2% 
1,816 6 -0 .1% - 0 . 1 %  -0 .2% 
1.742 7 - 0 . 0 %  --0.1% - 0 . 1 %  
1,668 8 -0 .0% - 0 . 1 %  - 0 .1% 
1.596 9 0 .0% - 0 . 0 %  - 0 . 1 %  

1.526 10 0.0% - 0 . 0 %  - 0 . 1 %  
1,474 11 0.0% - 0 . 0 %  - 0 . 1 %  

1,426 12 0 A %  0.0% - 0 . 0 %  
1,382 13 0.1% 0.0% - 0 . 0 %  
1,340 14 0.1% 0.0% -0.0% 
1,304 15 0.1% 0.0% - 0 0 %  
1,270 16 0.1% 0.0% - 0 . 0 %  
1,240 17 0.1% 0.0% - 0 . 0 %  
1,212 18 0.1% 0.1% - 0 . 0 %  

688 19 0.1% 0.1% 0.0% 
0 20 O 1 %  0.1% 0.0% 

21 0.1% 0.1% 0.0% 
elc. 0 .1% 0.1% 0.0% 

0 
Z 



SURPLUS CONCEPTS 91 

EXHIBIT 8B 

I N S U R A N C E  C A R R I E R  P E R S P E C T I V E  WITH A V A R I A B L E  R : S 

L E V E R A G E  RATIO 

Funds Released as they Become Available 

End of Invested Invested Paid Required Invested Released Flows 
Year Surplus Premium Loss Funds Funds to Surplus for IRR 

0 $442.07 $1,000.00 $0.00 $1,442.07 $1,442.07 $0.00 $-442 .07  
1 0.00 1,514.18 1,514.17 -0.01 -0.01 
2 0.00 1,589.88 1,589.89 0.01 0.01 
3 6.00 1,660.38 1,663.37 2.99 2.99 
4 28.00 1,701.39 1,715.40 14.01 14.01 
5 86.00 1,657.47 1,700.46 42.99 42.99 
6 64.00 1,644.35 1,676.34 31.99 31.99 
7 74.00 1,615.56 1,652.57 37.01 37.01 
8 7&00 1,585.34 1,622.34 37.00 37.00 
9 72.00 1,556.60 1,592.61 36.01 36.01 

10 70.00 1,529.43 1,564.43 35.00 35.00 
I 1 52.00 1,527.90 1,553.90 26.00 26.00 
12 48.00 1,532.30 1,556.30 24.00 24.00 
13 44.00 1,542.92 1,564.92 22.00 22.00 
14 42.00 1,557.06 1,578.07 21.01 21.01 
15 36.00 1,580.91 1,598.91 18.00 18.00 
16 34.00 1,608.96 1,625.96 17.00 17.00 
17 30.00 1,644.41 1,659.41 15 ~00 15.00 
18 28.00 1,684.62 1,698.63 14.01 14.01 
19 524.00 982.86 1,244.85 261.99 261.99 
20 688.00 0.00 344.00 344.00 344.00 

IRR = 0.1% 
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APPENDIX A 

PROOF OF THE CONSISTENCY OF THE 
THREE RATE OF RETURN MEASURES 

In Bingham's  paper and in this discussion, it is demonstrated 
that releasing both surplus and operating gain as uncertainty re- 
garding the outstanding loss amounts is resolved results in agree- 
ment among the three measures of return on equity. This ap- 
pendix presents a rigorous proof that when this release scheme 
is adopted, the internal rate of  return, annual return on surplus, 
and the invariant ratio are equal. 

Begin the proof with the following variable designations. Let: 

S(j)  be the supporting surplus at year-end j,  
I ( j )  be the investment income earned on the supporting sur- 
plus during the j th  year, 
O(j)  be the operating return that is released at year-end j,  
i be the annual effective investment income rate on invested 
assets, and 
v i = 1/(1 + i), the discounting /actor at interest rate i. 

With these definitions, the investment income earned by the 
supporting surplus during the j th  year can be expressed as 

l ( j )  = i . S ( j -  1), (A.1) 

where it is assumed that the supporting surplus remains un- 
changed during the course of a year. This is consistent with 
Bingham's  assumption that losses are paid at year-end. 

Bingham's  release scheme dictates that accrued operating 
earnings be released as uncertainty is resolved (i.e., as losses 
are paid). More specifically, the ratio of  the released accrued op- 
erating gain at any year-end j to the supporting surplus during 
the j th  year must be a constant independent of the particular 
year. Symbolically, 

O ( j ) / S ( j -  1) = k, a constant V j,  1 _< j <_ ~,, (A.2) 
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where 9, denotes the end of the last year during which there are 
open (or IBNR) claims. Note that a second requirement placed 
upon the set of released operating gains is that the present value 
of the {O(j)} equals the present value of the operating gain. 
While this requirement insures releasing an amount exactly equal 
to the accrued operating gain, it is not a necessary condition for 
agreement of the three measures of ROE. 

Upon soh'ing Equation A.2 for O(j) ,  we obtain the released 
operating earnings at the end of the jth year in terms of the 
supporting surplus that was allocated at the end of the previous 
year, 

O(j)  = k , S ( j -  1). (A.3) 

During the j th year, the supporting surplus is S ( j -  1) and the 
return on that surplus is the investment income on that surplus, 
l ( j ) ,  plus the released operating gain, O(j) ,  or 

l ( j )  + O( j )  = (i + k ) , S ( j -  1). (A.4) 

Dividing by the invested surplus, S( j  - 1), gives the average re- 
ttttvt on surplus during the j th 3'ear, (i + k). This expression is 
independent of j ,  making it a constant for all years. 

Taking the present value of the total return on supporting sur- 
plus using any interest rate gives 

N P V [ I ( j ) + O ( j ) ]  = ( i + k ) , N P V [ S ( j -  1)]. (A.5) 

Divide the present value of the total return by the present value 
of the year-end supporting surplus, to obtain Bingham's present 
value ratio, 

NPV[I( j)  + O ( j ) ] / N P V [ S ( j -  l)l = (i + k). (A.6) 

Note that the present value ratio is equal to the average return 
on surplus. 

To show that the IRR of the surplus flows is also equal to 
the present value ratio and average return on surplus, begin by 
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observing that, for a set of cash flows {C~},  the internal rate of 
return is defined as the interest rate that satisfies the equation 

NPV[{CFj}] = ~ v j .CFj  = 0. (A.7) 
j=0 

In addition to the total return on the supporting surplus during 
the j th  year (j _> 1), the surplus flow also includes the return of 
supporting surplus as it is released, 

A S ( j )  = S ( j  - 1 ) -  S ( j ) .  (A.8) 

S(~), the supporting surplus at the e n d  of the last year in which 
there are any carried reserves, is zero. 

Combining Equations A.4 and A.8 and remembering that at 
the end of  year zero, S(0) is transferred out  of the surplus account, 

- S ( 0 ) ,  i f  j = 0, (A.9)  
CFj= (l+i+k),S(j-1)-S(j), i f  j ¢ 0 .  

At the internal rate o f  return, 

a. ,+ 1 

NPVIRR[{CFj}I = - S ( 0 )  + (1 + i + k) ~ V~R R 
j = l  

,~'+ 1 

*S(j-1)-~vlR R . S ( j ) = 0 .  ( a . 1 0 )  
j = l  

To test the average annual return as a possible solution, substitute 

1 
VIR R - -  . . ,  (A. 1 1 ) ( 1 i + + K) 

then 

~,+ 1 ~ , +  1 

NPV[{C~}]  = -S(0)  + ~ v j -1  , S ( j -  1 ) -  ~ v j , S ( j ) .  
j = l  j = l  

(A. 12) 
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With a change of the dummy variable in the first sum, (A.12) 
becomes 

a~ w,+l 

NPV[{CFj}] = -S(0)  + ~ v  j , S ( j ) -  ~ v j , S ( j )  = - S ( w  + 1), 
j = 0  j = l  

(A.13) 

but S(o~ + l) is zero because all uncertainties will have been re- 
solved by the end of the last year, ~. Therefore, 

NPV[{CFj}] = 0, (A.14) 

which proves that (i + k) is an internal rate of return for the 
surplus flows. 

It has been proven that, as a result of the release of operat- 
ing gain scheme, the average total return on invested supporting 
surplus, the internal rate of return of the surplus flows, and the 
ratio of the present value of  the total returns to the present value 
of the supporting surplus are all equal. 

Nothing in this proof depends upon the specific relationship 
between the supporting surplus and the insurance product. In 
fact, {S(j)} could be been selected at random (as long as all 
of the S(j)s are equal to zero after all of the uncertainty is re- 
solved). None of the details leading to a determination of the 
insurance product operating gain, in fact not even its numerical 
value, enter into the proof. The conclusion that can be drawn 
from this is that no additional level of sophistication in the de- 
termination of the operating gain (e.g., the reflection of federal 
income tax, expenses, and policyholder dividends) or refinement 
in the selection of a reserve to surplus leverage ratio will invali- 
date the conclusions that have been proven in this appendix. The 
Bingham release scheme automatically insures the equality of  
the three measures of return. 
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A P P E N D I X  B 

EVIDENCE FOR A DECREASING LEVERAGE RATIO 

Workers compensation is often cited as a line of business 
in which the uncertainty in the outstanding loss reserve de- 
creases rapidly because of  the highly predictable nature of life- 
time pension cases. The conventional wisdom is that once the 
more volatile minor cases have been resolved, all that remains 
are claimants with lifetime benefits. As soon as the open claims 
consist only of  lifetime pension cases, supporting surplus can be 
released rapidly. In particular, as a result of  a decision of  the 
hearing officer during the workers compensation rating hearing 
for rates to become effective January 1, 1988 in Massachusetts, 
the leverage ratio increases uniformly from the end of  the fifth 
quarter until all claims are closed [3]. The pension case argument 
has been used to support the accelerated release of  surplus. 

Workers compensation claims probably arise from several un- 
derlying distributions. Clearly, minor cuts and bruises cannot be 
described by the same severity distribution that would apply to 
more serious injuries of  the type that can lead to long term dis- 
ability. As groups of  claims close, the remaining open claims 
may be of  a more homogeneous nature. This, in itself, may de- 
crease the relative uncertainty in the open claim reserves. Ini- 
tially, at least, as certain classes of  claims close, an increase in 
the leverage ratio may be possible. 

Once the population of  open claims consists of  nothing but 
lifetime pension cases, the long term behavior of the leverage 
ratio manifests itself. For a reasonable example, it can be demon- 
strated that the leverage ratio must decrease over time. This is not 
a rigorous proof that the leverage ratio for workers compensation 
coverage must always decrease but, rather, it is evidence that one 
cannot assume that once pension cases dominate the open claim 
reserves, the leverage ratio will always increase. This appendix 
serves as a counter example, disproving the common contention. 
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It is an indication that even in the case of  workers compensation 
runoff, additional research is necessary. 

For the example, assume that there are exactly 100 open 
claims at a given point in time. To simplify matters, assume that 
each of  these claims involves a 40 year old claimant who is 
receiving a $5,000 annual amount paid in weekly installments. 
There are no cost of  living adjustments. Benefits terminate upon 
death of the claimant. 

Further assume that the 1979-1981 U.S. Decennial Life Mor- 
tality table for the Total Population (that adopted by the National 
Council on Compensation Insurance for Unit Statistical Plan re- 
porting) reflects the life expectancies of these claimants. The 
aggregate nominal outstanding loss reserve for these claimants 
would be $18,392,500 (100 c la imants .S5,000 per year per 
c la imant .  36.785 years per claimant on the average). Exhibit B- 1 
displays a section of  the mortality table and the life expectancy 
calculation. The $18,392,500 reserve is only a point estimate. 
The actual amount paid to these claimants could be significantly 
more or less than this amount. 

The mortality table shows a 0.014 probability that a claimant 
could die within five years rather than living the expected 36.785 
years. Likewise, there is approximately a .02 probability that the 
claimant could live 58 more years rather than the expected num- 
ber of  years. If each claim were reserved to a 98% confidence 
level, the leverage ratio would be approximately 1.73 : 1.00; for 
every $1.00 of  reserves, $0.58 of  surplus would have to be al- 
located (i.e., of  the 58 years that must be provided for, 36.785 
would be provided for in the form of  loss reserves with the re- 
maining 21.215 coming from supporting surplus). Alternatively, 
a dollar of  surplus can support $1.73 of reserves. 

Of  course, 100 times the individual claim supporting surplus 
is not necessary to maintain a 98% confidence level in the ag- 
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gregate. The single claimant loss distribution was input into an 
aggregate loss model, such as the one described by Heckman and 
Meyers [1], to determine that the appropriate reserve-to-surplus 
ratio for a 2% probability of ruin would be 14.015 : 1.000 (i.e., 
the 98th percentile occurs at 1.07135 times the expected mean, 
so $0.07135 of surplus is required to support every $1.00 of 
reserves). Exhibit B-2 displays the cumulative probability corre- 
sponding to various aggregate loss amounts where the entry ratio 
is the ratio of the selected aggregate loss to the mean aggregate 
loss. 

Ten years later, if everything has gone as was expected, there 
will be 96 open claims (consisting of lifetime pension cases for 
50 year olds). At that time, there will be approximately a 2% 
probability of living at least 48 more years (almost no difference 
between the probability of a 40 year old living to 98, 0.0230, 
and the probability of a 50 year old living to 98, 0.0239). With 
a 27.939 year life expectancy, the individual claim leverage ratio 
for the 50 year old claimants is 1.39 : 1.00, which represents 
a decrease from 1.73. The 96 claim aggregate leverage ratio is 
11.521 : 1.000, also a decrease from the 14.015 leverage ratio. 
Exhibit B-2 displays the aggregate loss distribution for 96.418 
claims (96 being the result of rounding to whole numbers for the 
sake of the narrative). 

By the time the claimants are 60 years of age, the individ- 
ual claimant leverage ratio will have fallen to 1.11 : 1.00 (with a 
20.019 year life expectancy and approximately a 2% probability 
of living to 98 years of age or longer, almost equal amounts of 
surplus and reserves are required). Of the original 100 claimants, 
88 (88.2 claims were used in the aggregate loss model) are ex- 
pected to reach age 60. The aggregate leverage ratio for these 88 
living 60 year old claimants would be 9.25 : 1.00. 

Unless there is another group of claims that both increases 
the variability of the open claim reserves in total and closes 
rapidly enough to more than offset the increasing variability of 
the pension claims, the leverage ratio for open workers corn- 
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pensation claims must decrease in the long run. The preceding 
example does not constitute a proof that the leverage ratio de- 
creases; rather, it makes the conventional wisdom less obvious. 
The appropriate leverage ratio for any line of business must be 
the result of an investigation of the underlying volatility of its 
open claims at any point in time. 



EXHIBIT B-1 

PART 1 

79•81 U.S. DECENNIAL LIFE MORTALITY TABLE 

m 

O 
C, 

x = 40 x = 50 x = 60 

Age, x l(x) n p(n) np(n) Sum[p(n)] n IXn) np(n) Sum[p(n)] n p(n) np(n) Sum[p(n)] 

38 95,317 
39 95,129 
40 94,926 0.5 0.00232 0.001 0.002 
41 94,706 1.5 0.00254 0.004 0.005 
42 94,465 2.5 0.00278 0.007 0.008 
43 94,201 3.5 0.00303 0.011 0.011 
44 93,913 4.5 0.00331 0.015 0.014 
45 93,599 5.5 0.00361 0.020 0.018 
46 93,256 6.5 0.00394 0.026 0.022 
47 92,882 7.5 0.00432 0.032 0.026 
48 92,472 8.5 0.00475 0.040 0.031 
49 92,021 9.5 0.00521 0.050 0.036 
50 91,526 10.5 0.00569 0.060 0.042 0.5 0.00590 0.003 0.006 
51 90,986 11.5 0.00615 0.071 0.048 1.5 0.00638 0.010 0.012 
52 90,402 12.5 0.00665 0.083 0.054 2.5 0.00689 0.017 0.019 
53 89,771 13.5 0.00721 0.097 0.062 3.5 0.00747 0.026 0.027 
54 89,087 14.5 0.00779 0.113 0.069 4.5 0.00807 0.036 0.035 
55 88,348 15.5 0.00840 0.130 0.078 5.5 0.00871 0.048 0.043 
56 87,551 16.5 0.00902 0.149 0.087 6.5 0.00935 0.061 0.053 
57 86,695 17.5 0.00968 0.169 0.096 7.5 0.01004 0.075 0.063 
58 85,776 18.5 0.01040 0.192 0.107 8.5 0.01078 0.092 0.074 
59 84,789 19.5 0.01120 0.218 0.118 9.5 0.01161 0.110 0.085 
60 83,726 20.5 0.01206 0.247 0.130 10.5 0.01251 0.131 0.098 0.5 0.01368 0.007 0.014 
61 82,581 21.~ 0.01299 0.279 0.143 11.5 0.01347 0.155 0.111 1.5 0.01473 0.022 0.028 

t-- 
f~ 

© 
Z 
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PART 2 

79•81 U.S. DECENNIAL LIFE MORTALITY TABLE 

X = 4 0  x = 5 0  x = 6 0  

Age, x t(x) n p(n) rip(n) Sum[p(n)] n p(n) np(n) Sum[p(n)] n p(n) np(n) Sum[p(n)] 

62 81,348 22.5 0.01395 0.314 0.157 12.5 0.01447 0.181 0.126 2.5 0.01581 0.040 0.044 
63 80,024 23.5 0.01491 0.350 0.172 13.5 0.01546 0.209 0.141 3.5 0.01690 0.059 0.061 
64 78,609 24.5 0.01582 0.388 0.188 14.5 0.01641 0.238 0.158 4.5 0.01794 0.081 0.079 
65 77,107 25.5 0.01672 0.426 0.204 15.5 0.01734 0.269 O. 175 5.5 0.01895 O. 104 0.098 
66 75,520 26.5 0.01763 0.467 0.222 16.5 0.01829 0.302 0.193 6.5 0.01999 0.130 0.118 
67 73,846 27.5 0.01858 0.511 0.241 17.5 0.01927 0.337 0.212 7.5 0.02107 0.158 0.139 
68 72,082 28.5 0.01964 0.560 0.260 18.5 0.02037 0.377 0.233 8.5 0.02226 0.189 0.161 
69 70,218 29.5 0.02075 0.612 0.281 19.5 0.02152 0.420 0.254 9.5 0.02353 0.224 0.185 
70 68,248 30.5 0.02194 0.669 0.303 20.5 0.02276 0.467 0.277 10.5 0.02488 0.261 0.210 
71 66,165 31.5 0.02310 0.728 0.326 21.5 0.02396 0.515 0.301 II.5 0.02619 0.301 0.236 
72 63,972 32.5 0.02422 0.787 0.350 22.5 0.02512 0.565 0.326 12.5 0.02746 0.343 0.263 
73 61,673 33.5 0.02522 0.845 0.376 23.5 0.02616 0.615 0.352 13.5 0.02859 0.386 0.292 
74 59,279 34.5 0.02613 0.901 0.402 24.5 0.02710 0.664 0.379 14.5 0.02962 0.429 0.322 
75 56,799 35.5 0.02697 0.957 0.429 25.5 0.02797 0.713 0.407 15.5 0.03058 0.474 0.352 
76 54,239 36.5 0.02781 i .015 0.456 26.5 0.02884 0.764 0.436 16.5 0.03153 0.520 0.384 
77 51,599 37.5 0.02866 1.075 0.485 27.5 0.02973 0.818 0.466 17.5 0.03250 0.569 0.416 
78 48,878 38.5 0.02957 1.138 0.515 28.5 0.03067 0.874 0.497 18.5 0.03353 0.620 0.450 
79 46,071 39.5 0.03046 1.203 0.545 29.5 0.03159 0.932 0.528 19.5 0.03453 0.673 0.484 
80 43,180 40.5 0.03131 1.268 0.576 30.5 0.03247 0.990 0.561 20.5 0.03550 0.728 0.520 
81 40,208 41.5 0.03198 1.327 0.608 31.5 0.03317 1.045 0.594 21.5 0.03626 0.780 0.556 
82 37,172 42.5 0.03241 1.378 0.641 32.5 0.03362 1.093 0.627 22.5 0.03675 0.827 0.593 
83 34,095 43.5 0.03248 1.413 0.673 33.5 0.03368 1.128 0.661 23.5 0.03682 0.865 0.630 
84 31,012 44.$ 0.03215 1.431 0.705 34.5 0.03335 1.150 0.695 24.5 0.03645 0.893 0.666 
85 27,960 45.5 0.03159 1.437 0.737 35.5 0.03277 1.163 0.727 25.5 0.03582 0.913 0.702 
86 24,961 46.5 0.03079 1.432 0.768 36.5 0.03194 1.166 0.759 26.5 0.03491 0.925 0.737 
87 22,038 47.5 0.02953 1.403 0.797 37.5 0.03063 1.148 0.790 27.5 0.03348 0.921 0.770 
88 19,235 48.5 0.02778 1.347 0.825 38.5 0.02881 1.109 0.819 28.5 0.03150 0.898 0.802 
89 16,598 49.5 0.02575 1.274 0.851 39.5 0.02670 1.055 0.845 29.5 0.02919 0.861 0.831 
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EXHIBIT B- 1 

PART 3 

79•81 U.S. DECENNIAL LIFE MORTALITY TABLE 

x = 4 0  x =  50 x = 6 0  

Age, x I(x) n p(n)  np(n) Sum[p(n)] n p(n) rip(n) Sum[p(n)] n p(n)  np(n) Sum[p(n)] 

90 14,154 50.5 0.02366 1.195 0.875 40.5 0.02454 0.994 0.870 30.5 0.02683 0.818 0.858 
91 11,908 51.5 0.02154 1.109 0.896 41.5 0.02234 0.927 0.892 31.5 0.02442 0.769 0.882 
92 9,863 52.5 0.01929 1.013 0.915 42.5 0.02001 0.850 0.912 32.5 0.02187 0.711 0.904 
93 8,032 53.5 0.01694 0.906 0.932 43.5 0.01757 0.764 0.930 33.5 0.01921 0.643 0.923 
94 6,424 54.5 0.01455 0.793 0.947 44.5 0.01509 0.671 0.945 34.5 0.01649 0.569 0.940 
95 5,043 55.5 0.01221 0.678 0.959 45.5 0.01266 0.576 0.958 35.5 0.01384 0.491 0.954 
96 3,884 56.5 0.00996 0.562 0.969 46.5 0.01032 0.480 0.968 36.5 0.01129 0.412 0.965 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 

2,939 57.5 0.00794 0.457 0.977 47.5 0.00824 0.391 0.976 37.5 0.00901 0.338 0.974 
2,185 58.5 0.00618 0.362 0.983 48.5 0.00641 0.311 0.983 38.5 0.00701 0.270 0.981 
1,598 59.5 0.00472 0.281 0.988 49.5 0.00489 0.242 0.987 39.5 0.00535 0.211 0.986 
i ,150 60.5 0.00353 0.214 0.991 50.5 0.00366 0.185 0.991 40.5 0.00400 0.162 0.990 

815 61.5 0.00258 0.159 0.994 51.5 0.00268 0.138 0.994 41.5 0.00293 0.121 0_993 
570 62.5 0.00186 0AI7  0.996 52.5 0.00193 0.102 0.996 42.5 0.00211 0.090 0.995 
393 63.5 0.00133 0.084 0.997 53.5 0.00138 0.074 0.997 43.5 0.00150 0.065 0.997 
267 64.5 0.00093 0.060 0.998 54.5 0.00096 0.052 0.998 44.5 0.00105 0.047 0.998 
179 65.5 0.00063 0.041 0.999 55.5 0.00066 0.036 0.999 45.5 0.00072 0.033 0.999 
119 66.5 0.00043 0.029 0.999 56.5 0.00045 0.025 0.999 46.5 0.00049 0.023 0.999 
78 67.5 0.00028 0.019 0.999 57.5 0.00029 0.017 0.999 47.5 0.00032 0.015 0.999 
51 68.5 0.00019 0.013 1.000 58.5 0.00020 0.012 1.000 48.5 0.00021 0.010 1.000 
33 69.5 0.00035 0.024 1.000 59.5 0.00036 0.021 1.000 49.5 0.00039 0.020 1.000 

0 70.5 0.0(X)00 0.000 1.000 60.5 0.00000 0.000 1.000 50.5 0.00000 0.000 1.000 
Total 1.000013 36.785 1.001X~ 27.939 1.00000 20.019 
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EXHIBIT B-2 

PART I 

AGGREGATE LOSS DISTRIBUTION 

100 Forty Year Old Claimants 

Entry Aggregate Cumulative 
Ratio Loss Probability 

96 Fifty Year Old Claimants 

Entry Aggregate Cumulative 
Ratio Loss Probability 

88 Sixty Year Old Claimants 

Entry Aggregate Cumulative 
Ratio Loss Probability 

1.0(K)~ 18,393,470 0.4967 
1.00625 18,508,429 0.5673 
1.01250 18,623,388 0.6359 
1.01875 18,738,347 0.7006 
1.02500 18,853,306 0.7597 
1.03125 18,968,266 0.8120 
1.03750 19,083,225 0.8567 
1.04375 19,198,184 0.8937 
1.05000 19,313,143 0.9234 
1.05625 19,428,102 0.9464 
1.06250 19,543,062 0.9635 
1.06860 19,655,262 0.9757 
1.06870 19,657,101 0.9759 
1.06880 19,658,940 0.9761 
1.06890 19,660,780 0.9762 
1.06900 19,662,619 0.9764 
1.06910 19,664,458 0.9765 
1.06920 19,666,298 0.9767 
1.06930 19,668,137 0.9769 
1.06940 19,669,976 0.9770 
1.06950 19,671,816 0.9772 

1.0750 14,480,151 0.9617 
1.0800 14,547,501 0.9706 
1.0860 14,628,320 0.9790 
1.0861 14,629,667 0.9791 
1.0862 14,631,014 0.9792 
1.0863 14,632,361 0.9794 
1.0864 14,633,708 0.9795 
1.0865 14,635,055 0.9796 
1.0866 14,636,402 0.9797 
1.0867 14,637,749 0.9798 
1.0868 14,639,096 0.9800 
1.0869 14,640,443 0.9801 
1.0870 14,641,790 0.9802 
1.0871 14,643,137 0.9803 
1.0872 14,644,484 0.9804 
1.0873 14,645,831 0.9805 
1.0874 14,647,178 0.9806 
1.0875 14,648,525 0.9808 
1.0876 14,649,872 0.9809 
1.0877 14,651,219 0.9810 
1.0878 14,652,566 0.9811 

1.0800 9,535,527 0.9356 
1.0900 9,623,818 0.9563 
I.I000 9,712,1 I0 0.9713 
1.1010 9,720,940 0.9725 
1.1020 9,729,769 0.9737 
I.I030 9,738,598 0.9748 
1.1040 9,747,427 0.9759 
I.I050 9,756,256 0.9770 
1.1060 9,765,086 0.9780 
1.1061 9,765,968 0.9781 
1.1062 9,766,851 0.9782 
1.1063 9,767,734 0.9783 
1.1064 9,768,617 0.9784 
1.1065 9,769,500 0.9785 
1.1066 9,770,383 0.9786 
1.1067 9,771,266 0.9787 
I. 1 0 6 8  9,772,149 0.9788 
1.1069 9,773,032 0.9789 
1.1070 9 , 7 7 3 , 9 1 5  0.9790 
1.1071 9,774,798 0.9791 
1.1072 9 , 7 7 5 , 6 8 1  0.9792 
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EXHIBIT B-2 

PART 2 

AGGREGATE LOSS DISTRIBUTION 

100 Forty Year Old Claimants 

Entry Aggregate Cumulative 
Ratio Loss Probability 

96 Fifty Year Old Claimants 

Entry Aggregate Cumulative 
Ratio Loss Probability 

88 Sixty Year Old Claimants 

Entry Aggregate Cumulative 
Ratio Loss Probability 

1.06960 19,673,655 0.9773 
1.06970 19,675,494 0.9775 
1.06980 19,677,334 0.9777 
1.06990 19,679,173 0.9778 
1.07000 19,681,013 0.9780 
1.07010 19,682,852 0.9781 
1.07020 19,684,691 0.9783 
1.07030 19,686,531 0.9784 
1.07040 19,688,370 0.9786 
1.07050 19,690,209 0.9787 
1.07060 19,692,049 0.9789 
1.07070 19,693,888 0.9790 
1.07080 19,695,727 0.9792 
1.07090 19,697,567 0.9793 
1.07100 19,699,406 0.9795 
1.07110 19,701,245 0.9796 
1.07120 19,703,085 0.9798 
1.07130 19,704,924 0.9799 
1.07135 19,705,844 0.9800 
1.07140 19,706,763 0.9801 
1.07150 19,708,603 0.9802 

1.0879 14,653,913 0.9812 
1.0880 14,655,260 0.9813 
1.0881 14,656,607 0.9814 
1.0882 14,657,954 0.9815 
1.0883 14,659,301 0.9816 
1.0884 14,660,648 0.9817 
1.0885 14,661,995 0.9819 
1.0886 14,663,342 0.9820 
1.0887 14,664,689 0.9821 
1.0888 14,666,036 0.9822 
1.0889 14,667,383 0.9823 
1.0890 14,668,730 0.9824 
1.0891 14,670,077 0.9825 
1.0892 14,671,424 0.9826 
1.0893 14,672,771 0.9827 
1.0894 14,674,118 0.9828 
1.0895 14,675,465 0.9829 
1.0896 14,676,812 0.9830 
1.0897 14,678,159 0.9831 
1.0898 14,679,506 0.9832 
1.0899 14,680,853 0.9833 

1.1073 9,776,563 0.9793 
1.1074 9,777,446 0.9794 
1.1075 9,778,329 0.9795 
1.1076 9,779,212 0.9796 
1.1077 9,780,095 0.9797 
1.1078 9,780,978 0.9798 
1.1079 9,781,861 0.9799 
1.1080 9,782,744 0.9799 
1.1081 9,783,627 0.9800 
1.1082 9,784,510 0.9801 
1.1083 9,785,393 0.9802 
1.1084 9,786,276 0.9803 
1.1085 9,787,158 0.9804 
1.1086 9,788,041 0.9805 
1.1087 9,788,924 0.9806 
1.1088 9,789,807 0.9807 
1.1089 9,790,690 0.9808 
1.1090 9.791,573 0.9809 
1.1091 9,792,456 0.9809 
1.1092 9,793,339 0.9810 
1.1093 9,7(14,222 0.9811 

7~ 

o 
z 



EXHIBIT B-2 

PART 3 

AGGREGATE LOSS DISTRIBUTION 

100 Forty Year Old Claimants 

Entry Aggregate Cumulative 
Ratio Loss Probability 

96 Fifty Year Old Claimants 

Entry Aggregate Cumulative 
Ratio Loss Probability 

88 Sixty Year Old Claimants 

Entry Aggregate Cumulative 
Ratio Loss Probability 

1.07160 19,710,442 0.9803 
1.07170 19,712,281 0.9805 
1.07180 19,714,121 0.9806 
1.07190 19,715,960 0.9808 
1.07200 19,717,799 0.9809 
1.07210 19,719,639 0.9810 
1.07220 19,721,478 0.9812 
1.07230 19,723,318 0.9813 
1.07240 19,725,157 0.9814 
1.07250 19,726,996 0.9816 
1.07260 19,728,836 0.9817 
1.07270 19,730,675 0.9818 
1.07280 19,732,514 0.9820 
1.07290 19,734,354 0.9821 
1.07300 19,736,193 0.9822 

1.0900 14,682,200 0.9834 
1.0901 14,683,547 0.9835 
1.0902 14,684,894 0.9836 
1.0903 14,686,241 0.9837 
1.0904 14,687,588 0.9838 
1.0905 14,688,935 0.9839 
1.0906 14,690,282 0.9840 
1.0907 14,691,629 0.9841 
1.0908 14,692,976 0.9842 
1.0909 14,694,323 0.9843 
1.0910 14,695,670 0.9844 
1.0911 14,697,017 0.9845 
1.0912 14,698,364 0.9846 
1.0913 14,699,711 0.9846 
1.0914 14,701,058 0.9847 

1.1094 9,795,105 0.9812 
1.1095 9,795,988 0.9813 
1.1096 9,796,871 0.9814 
1.1097 9,797,754 0.9815 
1.1098 9,798,636 0.9816 
1.1099 9,799,519 0.9816 
1.1100 9,800,402 0.9817 
1.1200 9,888,694 0.9887 
1.1300 9,976,986 0.9933 
1.1400 10,065,278 0.9961 
1.1500 10,153,570 0.9978 
1.1600 10,241,862 0.9988 
1.1700 10,330,154 0.9994 
1.1800 10,418,446 0.9997 
1.1900 10,506,738 0.9999 
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ADDRESS TO NEW M E M B E R S - - M A Y  19, 1997 

CHARLES A. BRYAN 

Good morning. Thank you, Bob, for inviting me to make a 
presentation to this class of  18 new Fellows. In 1974 I was a new 
Fellow and sitting where you are sitting, expectantly waiting to 
participate in my first CAS meeting as a full member. It is a great 
honor to address you here in San Antonio where I spent many 
happy years with USAA. I didn' t  realize then, that earning the 
Fellowship would open so many doors. 

This is a very diverse c lass-- there  are 15 different organiza- 
tions represented. This class of Fellows illustrates how strong 
our profession is. We have new members  from traditional com- 
panies like SAFECO, Allstate, and State Farm; from companies 
rapidly expanding overseas such as AIG-Europe; from reinsur- 
ance; and from brokers. All of  us are proud to welcome you to 
full membership.  

By passing your  exams and earning .your Fellowship, you 
have joined a select few within the business world. A number  of  
years ago, for some of  you more than 10 years ago, you chose 
to follow the path to becoming an actuary. At that time, you saw 
with apprehension a formidable set of  examinations and knew 
that only a small percentage of  those people who began that 
path ever arrived at their destination. 

Some people try several exams and never pass any. Others 
pass several examinations and then decide that the amounts of  
time and effort required are too great. Still others reach the Asso- 
ciateship, and after that major achievement decide not to pursue 
the remaining exams. But a few, a select few, persevere and pass 
all the required exams and become Fellows of  the Casualty Ac- 
tuarial Society. By obtaining the designation, you have linked 
yourself  to a collection of  over 1,500 people, all o f  whom are 
distinguished in their careers by being actuaries. You will find 
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life-long friends among other people who share the exam experi- 
ence. I can tell you from my own career that some of your most 
valued friends will be in the actuarial profession. 

Each and every one of  you has displayed two character- 
istics that will serve you well in the future. First, you have 
demonstrated self-discipline. It takes tremendous self-discipline 
to spend the three hundred plus hours of study time per ex- 
amination, and to plow through so many complicated scientific 
works to gather the knowledge needed to answer the questions in 
the examination. Second, you have demonstrated perseverance. 
There are very few individuals that have passed every examina- 
tion they took the first time. You have decided to persevere over 
the discouragement of  not passing an exam every time, and over 
the discouragement of thinking you knew material and having to 
restudy that material. Those two characteristics, self-discipline 
and perseverance, will distinguish you throughout your careers. 

You have credentials, very valuable credentials. The FCAS is 
the most well respected educational credential in the insurance 
world today. You clearly have knowledge, you know the risk 
transfer business better than almost anybody else in the country 
and better than anybody else in the insurance industry; and you 
have a reputation you inherit, because the reputation of the FCAS 
has been built by a series of people like you who have passed 
exams and then gone on to bring honor to this profession. 

In all honesty, however, receiving your Fellowship is merely 
the end of the beginning of your careers. Now at this end of the 
beginning, your most important decision is what your next goal 
will be. My experience has taught me that there are two general 
paths down which an FCAS can go. Both paths are satisfying, 
and both paths are worthy of your best efforts. 

The first path is the path of technical actuary. There are many 
great individuals that you can follow down this path. For ex- 
ample, today when I think of a technical actuary, I think of  
Sholom Feldblum, Gary Venter, Steve Philbrick, Bob Conger, 
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Glenn Meyers and others. These people have honored our pro- 
fession by the use of mathematics and science to make otherwise 
un-understandable issues, tractable and understandable. If you 
choose this path, then you must accumulate more mathemati- 
cal, computer, and statistical skills and integrate those skills with 
your proven actuarial skills. You must write papers and make 
presentations to add to our store of knowledge. On you, we will 
build the intellectual foundation of our profession. 

Or you may follow the second path, a general management 
actuary. Here also, you can follow some great actuaries. Some 
examples include Bob Anker, our current CAS President and 
the CEO of American States Insurance; Jay Brown, who led the 
reorganization of what was Crum & Foster and is now Talegen; 
Steve Groot, who has led the phenomenal success of Allstate 
Indemnity; Charlie Rinehart, the chairman of Home Savings of 
America; Ron Ferguson and Ron Bornhuetter, and many others. 

If you choose the path of being a general management actu- 
ary, then you also must gain more skills, but these will now be in 
the area of speaking, writing, and motivational skills. If you go 
down this path, you should join an organization such as Toast- 
masters to perfect your speaking skills. You should make sure 
that you are publishing articles in general insurance periodicals, 
and you should measure and benchmark yourself by whether 
you have published in magazines like Best's, or National Under- 
writer within the next 24 months. You should become experts 
on the business of insurance and familiar with other disciplines, 
particularly claims and underwriting. 

So there are two paths, one of which you should choose. The 
most important thing to you now is choosing that path. Both 
paths are honorable, both paths are interesting, both are open to 
you now that you have your credentials. Once you have chosen 
your path, if you apply the same self-discipline and perseverance 
you applied in becoming a Fellow, you will surely be successful. 
Some of you may be able to go down both paths, but I urge you 
to focus your energies on the one or the other. 
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Congratulations to you for what you have accomplished. Con- 
gratulations to your spouses, to your friends, to your parents, to 
your co-workers, and to your employers for the role that they 
have played in allowing you to achieve this designation, and on 
this day, the end of the beginning, and the beginning of the next 
phase of your career. Congratulations for what you will accom- 
plished in your oh so bright future. 



MINUTES OF THE 1997 SPRING MEETING 

May 18-21, 1997 

SAN ANTONIO RIVERCENTER, SAN ANTONIO, TEXAS 

Sunday, May 18, 1997 

The Board of Directors held their regular quarterly meeting 
from noon to 5:00 p.m. 

Registration was held from 4:00 p.m. to 6:00 p.m. 

From 5:30 p.m. to 6:30 p.m., there was a special presentation to 
new Associates and their guests. All 1997 CAS Executive Council 
members briefly discussed their roles in the Society to the new 
members. In addition, Michael L. Toothman, who is a past presi- 
dent of the CAS, briefly discussed his role with the American 
Academy of Actuaries' Casualty Practice Council. 

A welcome reception for all members and guests was held from 
6:30 p.m. to 7:30 p.m. 

Monda3; May 19, 1997 

Registration continued from 7:30 a.m. to 8:30 a.m. 

CAS President Robert A. Anker opened the Business Session at 
8:30 a.m. and recognized past presidents of the CAS who were in 
attendance at the meeting including: Irene K. Bass (1994), Phillip 
N. Ben-Zvi (1985), Ronald L. Bornhuetter (1975), Charles A. 
Bryan (1990), Michael Fusco (1989), Allan M. Kaufman (1995), 
C. K. Stan Khury (1984), W. James MacGinnitie (1979), Kevin M. 
Ryan (1988), Jerome A. Scheibl (1980), Michael L. Toothman 
(1991), and Michael A. Walters (1986). 

Mr. Anker also recognized special guests in the audience: 
Neville S. Henderson, President of the Canadian Institute of Actu- 
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aries, and Wilson Wyatt, Executive Director of the American 
Academy of Actuaries. 

Paul Braithwaite, Kevin B. Thompson, Susan T. Szkoda, and 
Robert S. Miccolis announced the 117 new Associates and Mavis 
A. Walters announced 16 new Fellows. The names of  these indi- 
viduals follow. 

Timothy Atwill* 
Margaret A. 

Brinkmann* 
Andrew J. Doll 
Eric J. Gesick 
Alessandrea Corinne 

Handley 

N E W  F E L L O W S  

James M. MacPhee* 
Mark Joseph Moitoso* 
Marlene D. Orr 
Kathleen M. Pechan 
Dale S. Porfilio 
Robert Emmett 

Quane III 

*Admitted as new Fellow and Associate 

Ethan David Allen 
Mark B. Anderson 
Timothy Atwill 
Wayne F. Berner 
Jonathan Everett Blake 
Edmund L. Bouchie 
David John Braza 
CarT J. Breese 
Margaret A. 

Brinkmann 
Hugh E. Burgess 
Christopher J. 

Burkhalter 
Stephanie T. Carlson 
Sharon C. Carroll 
Richard Joseph 

Castillo 
Richard M. Chiarini 

N E W  A S S O C I A T E S  

Theresa Anne Christian 
Alfred Denard 

Commodore 
Margaret Eleanor 

Conroy 
Kenneth S. Daitey 
John D. Deacon 
Sharon C. Dubin 
Denis Dubois 
Rachel Dutil 
Wayne W. Edwards 
Jennifer R. Ehrenfeld 
Kristine Marie 

Esposito 
Joseph G. Evleth 
Benedick Fidlow 
Tracy Marie Fleck 
John E. Gaines 

Jean-Denis Roy 
Mark L. Thompson 
James E Tygh 
Steven Boyce White 
Floyd M. Yager 

David Evan Gansberg 
Jay C. Gotelaere 
Allen Jay Gould 
John W. Gradwell 
David Thomas Groff 
Alexander Archibold 

Hammett 
Daniel J. Henderson 
David E. Heppen 
William N. Herr, Jr. 
Thomas Edward Hinds 
Christopher Todd 

Hochhausler 
Luke Delaney Hodge 
Amy L. Hoffman 
Dave R. Holmes 
Jane W. Hughes 
Jason Israel 
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Paul Ivanovskis 
Jeremy M. Jump 
Scott Andrew Kelly 
David Neal Kightlinger 
Deborah M. King 
George A. Kish 
Karen Lee Krainz 
Robin M. LaPrete 
Jean-Sebastien Lagarde 
Yin Lawn 
Kevin A. Lee 
Neal M. Leibowitz 
Bradley H. Lemons 
Michael Victor Leybov 
Janet G. Lindstrom 
Christina Link 
Michelle Luneau 
James M. MacPhee 
Andrea Wynne Malyon 
Jason Noah Masch 
William J. Mazurek 
Phillip E. McKneely 
Allison Michelle 

McManus 
Paul D. Miotke 
Mark Joseph Moitoso 

Benoit Morissette 
Janice C. Moskowitz 
Michael James Moss 
Vinay Nadkarni 
Darci Z. Noonan 
Michael A. Nori 
Mihaela Luminita S. 

O'Leary 
Christopher Edward 

Olson 
Rebecca Ruth Orsi 
Harry Todd Pearce 
John S. Peters 
Amy Ann Pitruzzello 
Jennifer K. Price 
Richard Bronislaus 

Puchalski 
Patricia Ann Pyle 
Kara Lee Raiguel 
Rebecca J. Richard 
John R. Robe 
Sandra L. Ross 
Joanne Emily Russell 
Lisa M. Scorzetti 
Marc Shamula 
Michael Shane 

Bret Charles Shroyer 
Katherine R. S. Smith 
G. Dennis Sparks 
Alan M. Speert 
Nathan R. Stein 
Lisa M. Sukow 
C. Steven Swalley 
Adam Marshall Swartz 
Christopher C. 

Swetonic 
Elizabeth Susan 

Tankersley 
Patricia Therrien 
Jeffrey S. Trichon 
Kirnberly S. Yroyer 
Timothy J. Ungashick 
Martin Vezina 
Karen E. Watson 
Mark Steven Wenger 
Miroslaw (Mirek) 

Wieczorek 
Jerelyn S. Williams 
Wendy Lynn Witmer 
Simon Kai-Yip Wong 
Jeffrey E Woodcock 
Edward J. Zonenberg 

Mr. Anker then introduced Charles A. Bryan, a past president of 
the Society, who presented the Address to New Members. 

Patrick J. Grannan, CAS Vice President--Programs and Com- 
munications, spoke to the meeting participants about the high- 
lights of this meeting and what was planned in the program. 

Gary R. Josephson, chairperson of the CAS Committee on Re- 
view of Papers, announced that one Proceedings paper would be 
presented at this meeting. In addition, one discussion of a Pro- 
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ceedings paper that was published in the 1993 Proceedings of the 
Casualty Actuarial Society would be presented at this meeting. 

Mark E. Fiebrink, chairperson of the Michelbacher Award 
Cotnmittee, gave a brief description of this year's Call Paper Pro- 
gram on Health Care Issues for Property/Casualty Insurers. He an- 
nounced that three of the four call papers would be presented at 
this meeting, and all four call papers were bound in the 1997 CAS 
Discussion Paper Pros, ram. 

Mr. Anker then began the presentation of awards. He explained 
that the CAS Harold W. Schloss Memorial Scholarship Fund ben- 
efits deserving and academically outstanding students in the actu- 
arial program of the Department of Statistics and Actuarial 
Science at the University of Iowa. The student recipient is selected 
by the Trustees of the CAS Trust, based on the recommendation of 
the department chair at the University of Iowa. Mr. Anker an- 
nounced that Ranee Thiagarajah is the recipient of the 1997 CAS 
Harold W. Schloss Memorial Scholarship Fund. She will be pre- 
sented with a $500 scholarship. 

Mr. Anker also announced that Theresa W. Bourdon, Keith 
Passwater, and Mark Priven are the recipients of the 1997 CAS 
Michelbacher Award for their paper, "An Introduction to Capita- 
tion and Health Care Provider Excess Insurance." Mr. Anker ex- 
plained that this award commemorates the work of Gustav F. 
Michelbacher and honors the authors of the best paper submitted 
in response to a call for discussion papers. The papers are judged 
by a specifically appointed committee on the basis of originality, 
research, readability, and completeness. 

Mr. Anker then concluded the business session of the Spring 
Meeting by calling for a review of Proceedings papers. 

After a refreshment break, Mr. Anker introduced the featured 
speaker, Lee Sherman Dreyfus, Ph.D., who is President of Lee 
Sherman Dreyfus, Inc. and a weekly columnist for the Waukesha 
Freeman, a Milwaukee area daily newspaper. Dr. Dreyfuss was 



I 14 MINUTES OF "l'lll- 1997 SPRING MIiEI ING 

formerly governor of Wisconsin, President of Sentry Insurance 
Corporation, and Chancellor of the University of Wisconsin at 
Stevens Point. 

The first General Session was held from 11:00 a.m. to 12:30 
p.m. 

"Distribution Systems in the 21st Century" 

Moderator: Cecily A. Gallagher 
Consulting Actuary 
Tiilinghast-Towers Pert'in 

Panelists: Charles A. Bryan 
Chief Operating Officer 
Director Response Corporation 

Nancy Carini 
Assistant Vice President 
Conning & Company 

Brig. Gen. Wilson C. (Bill) Cooney, USAF Ret. 
President 
USAA Property and Casualty Insurance Group 

After a luncheon, the afternoon was devoted to presentations of 
concurrent sessions and discussion papers. The call papers pre- 
sented were: 

1. "An Introduction to Capitation and Health Care Provider 
Excess Insurance" 

Authors: Theresa W. Bourdon 
Vice President and Consulting Actuary 
Aon Risk Management Services 

Keith Passwater 
Actuary 
Aon Managed Care 

Mark Priven 
Vice President 
Aon Risk Services 
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2. "Integration of Managed Care in Workers Compensation" 

Authors: Brian Z. Brown 
Consulting Actuary 
Milliman & Robertson, Inc. 

Michael C. Schmitz 
Associate Actuary 
Milliman & Robertson, Inc. 

3. "Identifying and Pricing Managed Care Errors and Omis- 
sions" 

Authors: Michael Sapnar 
Vice President 
Transatlantic Reinsurance Company 

Elizabeth A. Wellington 
Vice President and Associate Actuary 
Transatlantic Reinsurance Company 

The concurrent sessions presented from 1:30 p.m. to 3:00 p.m. 
were: 

1. Questions and Answers with the CAS Board of Directors 

Moderator: Mavis A. Walters 
CAS President-Elect 
Executive Vice President 
Insurance Services Office, Inc. 

Panelists: Alice H. Gannon 
Vice President 
United Services Automobile Association 

David N. Hailing 
Senior Vice President and Actuary 
American States Insurance Companies 

Richard J. Roth, Jr. 
Chief Property/Casualty Actuary 
California Department of Insurance 
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2. The Future of Rating Bureaus 

Moderator: Philip O. Presley 
Chief Actuary 
Texas Department of Insurance 

Panelists: Michael Camilleri 
President 
Insurance Data Resources, Inc. 

William D. Hager 
President and CEO 
National Council on Compensation Insurance, 
Inc. 

Kevin M. Ryan 
President 
U.S. Rating Bureau 

3. Actuaries in Non-Traditional Roles 

Moderator: Sanford R. Squires 
Vice President 
ISI Systems, Inc. 

Panelists: David Koegel 
Senior Vice President 
Gill & Roeser, Inc. 

Eileen M. Sweeney 
President 
ZC Healthcare 

4. Pricing Decisions for Marketing Reasons 

Presenter: Charles L. McClenahan 
Principal 
William M. Mercer, Inc. 

After a refreshment break from 3:00 p.m. to 3:30 p.m., presen- 
tations of call papers, concurrent sessions, and Proceedings papers 
continued. Certain call papers and concurrent sessions presented 
earlier were repeated. Additional concurrent sessions presented 
from 3:30 p.m. to 5:00 p.m. were: 
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1. Dynamic Financial Analysis--What Does It Look Like? 

Moderator/Joseph A. Herbers 
Panelist: Principal and Consulting Actuary 

Miller, Rapp, Herbers & Terry, Inc. 

Panelist: Susan E. Witcraft 
Consulting Actuary 
Milliman & Robertson, Inc. 

2. Introduction to the Examination Committee 

Moderator: David L. Menning 
Chairperson, CAS Examination Committee 
Senior Associate Actuary 
State Farm Mutual Automobile Insurance 
Company 

Panelists: J. Thomas Downey 
Manager, Admissions 
Casualty Actuarial Society 

Thomas G. Myers 
Vice President 
Prudential Property & Casualty 

Proceedings papers presented during this time were: 

1. "Homeowners Ratemaking Revisited (Use of Computer 
Models to Estimate Catastrophe Loss Costs)" 

Authors: Michael A. Waiters 
Consulting Actuary 
Tillinghast-Towers Perri n 

Frangoi s Morin 
Consulting Actuary 
Tillinghast-Towers Perrin 

2. Discussion of"Surplus--Concepts, Measures of Return, 
and Determination" 

(by Russell E. Bingham, PCAS LXXX, 1993, p. 110) 

Discussion by: Robert K. Bender 
Associate Actuary 
Kemper Reinsurance Company 



I 18 MINUIF,S OF Till:. 1997 SPRING IVltsI,."rlNG 

A reception for new Fellows and guests was held from 5:30 
p.m. to 6:30 p.m., and the general reception for all members and 
their guests was held from 6:30 p.m. to 7:30 p.m. 

Tuesday, May 20, 1997 

Certain discussion papers and concurrent sessions that had 
been presented earlier during the meeting were repeated this 
morning from 8:30 a.m. to 10:00 a.m. Additional concurrent ses- 
sions presented were: 

1. General Principles of Actuarial Science 

Moderator/ Michael A. Waiters 
Panelist: Consulting Actuary 

Tillinghast-Towers Perrin 

Panelist: Linda L. Bell 
Senior Vice President and Chief Actuary 
The Hartford 

Michael A. McMurry 
Consulting Actuary 
Milliman & Robertson, Inc. 

2. Texas Issues in Current Legislative Debate 

Moderator: Alice H. Gannon 
Vice President 
United Services Automobile Association 

Panelists: Philip O. Presley 
Chief Actuary 
Texas Department of Insurance 

Fred C. Bosse 
Vice President 
United Services Automobile Association 

Brian L. Mibus 
Division Underwriting Manager 
Liberty Mutual Insurance Group 
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3. Catastrophe Reserves--Alternatives and Issues 

Moderator: Phillip N. Ben-Zvi 
Principal-in-Charge 
Coopers & Lybrand, L.L.E 

Panelists: Ross J. Davidson, Jr. 
Vice President 
United Services Automobile Association 

Vincent L. Laurenzano 
Assistant Deputy Superintendent and Chief 
Examiner 
New York State Insurance Department 

Wayne Upton 
Project Manager 
Financial Accounting Standards Boards 

4. ABCD and Qualification Standards 

Moderator: Henry K. Knowlton 
Chairperson 
Actuarial Board for Counseling and 
Discipline 

Panelists: Walter J. Fitzgibbon, Jr. 
Vice Chairperson 
Actuarial Board for Counseling and 
Discipline 

Charles L. McClenahan 
Vice Chairperson 
Committee on Qualifications 

Jerome A. Scheibl 
Member 
Actuarial Board for Counseling and 
Discipline 

After a refreshment break, a General Session was held from 
10:30 a.m. to noon. The General Session presented was: 
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"Insurance Company CEOs' Perspectives on Future Industry 
Challenges" 

Moderator: Robert A. Anker 
CAS President 
Chairman and CEO 
American States Insurance Companies 

Panelists: Ramani Ayer 
Chairman and CEO 
The Hartford 

Ronaid L. Bornhuetter 
Chairman, President and CEO 
NAC Re Corporation 

Brian Duperreault 
Chairman, President and CEO 
A.C.E. Insurance Company, Ltd. 

General Robert T. Herres, USAF Ret. 
Chairman and CEO 
United Services Automobile Association 

Various CAS committees met from 1:00 p.m. to 5:00 p.m. In 
addition, three new concurrent sessions were held from 1:30 p.m. 
to 3:00 p.m.: 

1. Actuaries Online 

Panelists: J. Michael Boa 
Communications and Research Coordinator 
Casualty Actuarial Society 

Stephen E Lowe 
Consulting Actuary 
Tillinghast--Towers Perrin 

2. Neural Networks 

Moderator/Frank M. Zizzamia 
Panelist: Assistant Vice President 

Travelers Property Casualty Corporation 
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Panelists: Cheng-Scheng (Peter) Wu 
Manager 
Deloitte & Touche LLP 

Todd W. Gutschow 
Vice President 
HNC Software 

3. Casualty Practice Council 

Facilitator: Michael L. Toothman 
1997 Vice President 

All members and guests enjoyed a buffet dinner at the Institute 
of Texan Cultures from 6:30 p.m. to 9:30 p.m. 

We~hlesday, May 21, 1997 

Certain concurrent sessions that had been presented earlier dur- 
ing the meeting were repeated this morning from 8:30 a.m. to 
10:00 a.m. Additional concurrent sessions presented were: 

1. Employment Practices Liability Insurance 

Moderator: George M. Levine 
Manager 
KPMG Peat Marwick LLP 

Panelists: Bernard R. Horovitz 
Actuary 
Executive Risk, Inc. 

Brian Z. Brown 
Consulting Actuary 
Milliman & Robertson, Inc. 

Mark W. Larsen 
Consultant, D & O Survey 
Watson Wyatt Worldwide 

Safety Features and Their Impact on Insur- 2. Automobile 
ance Costs 

Moderator: Kathleen M. Pechan 
Actuary 
State Farm Mutual Automobile Insurance 
Company 
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Panelists: Adrian Lund, Ph.D. 
Senior Vice President of Research 
Insurance Institute for Highway Safety 

Steven G. Lehmann 
Consulting Actuary 
Miller, Rapp, Herbers & Terry, Inc. 

John Werner 
Assistant Director of Research 
State Farm Mutual Automobile Insurance 
Company 

The final General Session was held from 10:30 a.m. to noon af- 
ter a 30-minute refreshment break: 

"Exploring the Turnaround in the Workers Compensation 
Market" 

Moderator/ Ronald C. Retterath 
Panelist: Actuarial Consultant 

Panelists: RichardW. Palyczynski 
Senior Vice President 
Travelers Group 

Richard I. Fein 
Principal 
Coopers & Lybrand, L.L.P. 

Robert A. Anker officially adjourned the 1997 CAS Spring 
Meeting at noon after closing remarks and an announcement of 
future CAS meetings. 

Attendees of the 1997 CAS Spring Meeting 

The 1997 CAS Spring Meeting was attended by 220 Fellows, 
188 Associates, and 158 Guests. The names of the Fellows and 
Associates in attendance follow: 
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Mark A. Addiego 
Martin Adler 
Rhonda K. Aikens 
Terry J. Alfuth 
Richard B. Amundson 
Charles M. Angell 
Robert A. Anker 
Nolan E. Asch 
William M. Atkinson 
Timothy Atwill 
Karen F. Ayres 
Anthony J. Balchunas 
Timothy J. Banick 
D. Lee Barclay 
Donald T. Bashline 
Irene K. Bass 
Todd R. Bault 
Gregory S. Beaulieu 
Linda L. Bell 
Phillip N. Ben-Zvi 
Robert K. Bender, 

Ph.D. 
Regina M. Berens 
James E. Biller 
Gavin C. Blair 
Ralph S. Blanchard III 
William H. Bland 
Cara M. Blank 
Ronald L. Bornhuetter 
Charles H. Boucek 
Theresa W. Bourdon 
Christopher K. 

Bozman 
John G. Bradshaw, Jr. 

FELLOWS 

Paul Braithwaite 
Robert S. Briere 
Margaret Ann 

Brinkmann 
Ward M. Brooks 
Brian Z. Brown 
Charles A. Bryan 
James E. Buck 
Jeanne H. Camp 
Michael J. Cascio 
Galina M. Center 
Francis D. Cerasoli 
Janet L. Chaffee 
Scott K. Charbonneau 
David R. Chernick 
Kasing Leonard Chung 
Robert F. Conger 
Alan C. Curry 
Thomas J. DeFalco 
Curtis Gary Dean 
Jerome A. Degerness 
George T. Dodd 
Michael C. Dolan 
Andrew Joseph Doll 
Michael C. Dubin 
M. L. Dye 
Richard D. Easton 
Grover M. Edie 
Paul E. Ericksen 
James G. Evans 
Matthew G. Fay 
Richard I. Fein 
Judith M. Feldmeier 
Mark E. Fiebrink 

Robert J. Finger 
Walter J. 

Fitzgibbon, Jr. 
Kenneth R. Frohlich 
Michael Fusco 
Cecily A. Gallagher 
Alice H. Gannon 
Eric J. Gesick 
John F. Gibson 
Bryan C. Gillespie 
Bradley J. Gleason 
Steven E Goldberg 
James F. Golz 
Karen Pachyn Gorvett 
Leon R. Gottlieb 
Patrick J. Grannan 
Gary Grant 
Gregory T. Graves 
Anthony J. Grippa 
Carleton R. Grose 
Kyleen Knilans Hale 
Robert C. Hallstrom 
Alessandrea Corinne 

Handley 
E. LeRoy Heer 
Agnes H. Heersink 
James S. Higgins 
Kathleen A. Hinds 
Paul E. Hough 
Marvin A. Johnson 
Stephen H. Kantor 
Allan M. Kaufman 
Eric R. Keen 
Tony J. Kellner 
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C. K. Stan Khury 
Frederick O. Kist 
Douglas F. Kline 
Rodney E. Kreps 
David J. Kretsch 
Jeffrey L. Kucera 
Paul E. Lacko 
Dean K. Lamb 
John A. Lamb 
Nicholas J. Lannutti 
Robert H. Lee 
Merlin R. Lehman 
Steven G. Lehmann 
Aaron S. Levine 
George M. Levine 
Richard W. Lo 
Janet G. Lockwood 
Andre Loisel 
Stephen E Lowe 
Aileen C. Lyle 
W. James MacGinnitie 
James M. MacPhee 
Howard C, Mahler 
Mark J. Mahon 
Donald E. Manis 
Burton F. Marlowe 
Steven E. Math 
Robert W. Matthews 
Kevin C. McAllister 
Michael G. McCarter 
Charles L. 

McClenahan 
Michael A. McMurray 
Dennis T. McNeese 
David L. Menning 
Stephen V, Merkey 

Robert S. Miccolis 
David L. Miller 
Michael J. Miller 
Neil B. Miner 
Charles B. Mitzel 
Frederic James Mohl 
Mark Joseph Moitoso 
Richard B. Moncher 
Fran~:ois Morin 
Evelyn Toni Mulder 
Todd B. Munson 
Donna S. Munt 
Nancy R. Myers 
Thomas G. Myers 
Richard T. Newell, Jr. 
John Nissenbaum 
Ray E. Niswander, Jr. 
Layne M. Onufer 
Marlene D. Orr 
Richard W. Palczynski 
Kathleen M. Pechan 
Joseph W. Pitts 
Dale Steven Porfilio 
Joseph J. Pratt 
Philip O. Presley 
Mark Priven 
John M. Purple 
Robert Emmett 

Quane III 
Timothy P. Quinn 
Jeffrey C. Raguse 
Jerry W. Rapp 
Ronald C. Retterath 
James F. Richardson 
Donald A. Riggins 
Diane R. Rohn 

William E Roland 
A. Scott Romito 
Deborah M. Rosenberg 
Richard J. Roth, Jr. 
Jean-Denis Roy 
David A. Russell 
Kevin M. Ryan 
Pierre A. Samson 
Jerome A. Scheibl 
Kim A. Scott 
Mark Robert Shapland 
Bonnie C. Shek 
Edward C. Shoop 
Rial R. Simons 
Raleigh R. Skaggs, Jr. 
David Skurnick 
David A. Smith 
Richard H. Snader 
Daniel L. Splitt 
Sanford R. Squires 
Thomas N. Stanford 
Elton A. Stephenson 
James P. Streff 
Eileen M. Sweeney 
John A. Swift 
Susan T. Szkoda 
Catherine Harwood 

Taylor 
Kevin B. Thompson 
Mark L. Thompson 
Michael L. Toothman 
Michel Trudeau 
Everett J. Truttmann 
Warren B. Tucker 
James F. Tygh 
Peter S. Valentine 
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William R. Van Ark 
Trent R. Vaughn 
Joseph L. Volponi 
Gregory M. Wacker 
Robert H. Wainscott 
Mavis A. Waiters 

Rimma Abian 
Jonathan D. Adkisson 
Ethan David Allen 
Mark B. Anderson 
James A. Andler 
Martin S. Arnold 
Martha E, Ashman 
William P. Ayres 
Wayne E Berner 
Jonathan Everett Blake 
Edmund L. Bouchie 
Kimberly Bowen 
Cary J. Breese 
Linda M. Brockmeier 
Lisa A. Brown 
Kirsten R. Brumley 
Hugh Eric Burgess 
Christopher J. 

Burkhalter 
Michelle L. Busch 
John E Butcher II 
Stephanie T, Carlson 
Sharon C. Carroll 
Victoria J. Carter 
Richard Joseph 

Castillo 
Richard M. Chiarini 
Theresa Anne Christian 

Michael A. Waiters 
Dominic A. Weber 
Debra L. Werland 
Steven Boyce White 
William D. White 
Gregory S. Wilson 

ASSOCIATES 

Alfred Denard 
Commodore 

Margaret Eleanor 
Conroy 

Malcolm H. Curry 
Kenneth S. Dailey 
Todd H. Dashoff 
John D. Deacon 
Raymond V. Debs 
Jeffrey F. Deigl 
Gordon E Diss 
William A. Dowell 
Sharon Chapman 

Dubin 
Denis Dubois 
Brian Duperreault 
Rachel Dutil 
Anthony D. Edwards 
Wayne W. Edwards 
Jennifer R. Ehrenfeld 
Alan J. Erlebacher 
Kristine Marie 

Esposito 
Ellen E. Evans 
Joseph Gerard Evleth 
Karen M. Fenrich 
Benedick Fidlow 
David N. Fields 

Martha A. Winslow 
Timothy L. Wisecarver 
Susan E. Witcraft 
Cheng-Sheng R Wu 
Floyd M. Yager 
Ronald J. Zaleski 

Ross C. Fonticella 
Mauricio Freyre 
John Edward Gaines 
David Evan Gansberg 
Thomas R Gibbons 
Terry L. Goldberg 
Jay Christopher 

Gotelaere 
John W. Gradwell 
David Thomas Groff 
Richard J. Haines 
Leigh Joseph Halliwell 
Alexander Archibold 

Hammett 
Adam D. Hartman 
Thomas F. Head 
Jodi J. Healy 
Daniel J. Henderson 
David E. Heppen 
Joseph A, Herbers 
William N. Herr, Jr. 
Thomas E. Hettinger 
Thomas Edward Hinds 
Amy L. Hoffman 
Jason N. Hoffman 
Dave R. Holmes 
Bernard R. Horovitz 
Jane W. Hughes 
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Jason Israel 
Daniel J. Johnston 
William Rosco Jones 
Jeremy M. Jump 
Robert B. Katzman 
Scott Andrew Kelly 
Susan E. Kent 
David Neal Kightlinger 
Deborah M. King 
Brandelyn C. Klenner 
David Koegel 
Karen Lee Krainz 
Chung-Kuo Kuo 
Edward M. Kuss 
Robin M. LaPrete 
David W. Lacefield 
Jean-Sebastien Lagarde 
William J. Lakins 
Yin Lawn 
Kevin A. Lee 
Stephen E. Lehecka 
Neal M. Leibowitz 
Bradley H. Lemons 
Daniel E. Lents 
Steven J. Lesser 
Michael Victor Leybov 
Janet G. Lindstrom 
Christina Link 
Christopher J. Luker 
Michelle Luneau 
Sudershan Malik 
Andrea Wynne Malyon 
Jason Noah Masch 
William J. Mazurek 
Heather L. Mclntosh 
Phillip E. McKneely 

Allison Michelle 
McManus 

Linda K. Miller 
Paul David Miotke 
Stanley K. Miyao 
Benoit Morissette 
Janice C. Moskowitz 
Michael James Moss 
Ethan Mowry 
Vinay Nadkarni 
John D. Napierski 
Lynn Nielsen 
Darci Zelenak Noonan 
Michael A. Nori 
Christopher M. 

Norman 
Christopher Edward 

Olson 
Rebecca R. Orsi 
Harry Todd Pearce 
Jennifer K. Price 
Richard Bronislaus 

Puchalski 
R. Stephen Pulis 
Kathleen Mary Quinn 
Kara Lee Raiguel 
James E. Rech 
Brenda L. Reddick 
Steven J. Regnier 
Rebecca J. Richard 
John R. Rohe 
Sandra L. Ross 
Douglas A. Rupp 
Joanne Emily Russell 
John P. Ryan 
Michael C. Schmitz 

Frederic F. Schnapp 
Lisa M. Scorzetti 
Marc Shamula 
Michael Shane 
Robert D. Share 
Bret Charles Shroyer 
Janet K. Silverman 
Katherine R. S. Smith 
G. Dennis Sparks 
Alan M. Speert 
Nathan R. Stein 
Judith L. Stolle 
Lisa M. Sukow 
Brian K. Sullivan 
C. Steven Swalley 
Adam Marshall Swartz 
Christopher C. 

Swetonic 
Elizabeth S. Tankersley 
Patricia Therrien 
Eugene G. Thompson 
Tony King Gwan Tio 
Jeffrey Stuart Trichon 
Thomas A. Trocchia 
Kimberly S. Troyer 
Theresa A. Turnacioglu 
Timothy J. Ungashick 
Martin Vezina 
Cynthia L. Vidal 
Roger C. Wade 
Lawrence M. Walder 
Alice M. Wang 
Karen E. Watson 
Mark Steven Wenger 
Geoffrey T. Werner 
Miroslaw Wieczorek 
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Jerelyn S. Williams 
Mary E. Wills 
Kirby W. Wisian 

Wendy Lynn Witmer 
Calvin Wolcott 
Brandon L. Wolf 

Simon Kai-Yip Wong 
Mark L. Woods 
Michele N. Yeagley 
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FUNDING FOR RETAINED WORKERS COMPENSATION 
EXPOSURES 

BRIAN Z. BROWN AND MICHAEL D. PRICE 

Abstract 

The number of firms retaining part of their workers 
compensation exposure has grown dramatically over the 
last 5 to 10 years. It is important that firms fund and 
reserve for their retained exposure so that their balance 
sheet and income statements are accurate. This paper 
outlines several methods that can be used to establish 
funding levels for self-insured employers. Additionally, 
we outline several considerations which employers face 
in deciding whether or not to self-insure and some of 
the factors which affect the structure of a self-insured 
program. 

1. I N T R O D U C T I O N  

The self-insured workers compensation market grew dramat- 
ically between 1986 and 1991. Table 1 displays the growth in 

128 
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TABLE 1 

W O R K E R S  C O M P E N S A T I O N  

P E R C E N T A G E  O F  M A R K E T  S E L F - I N S U R E D  

Calendar Year Self-lnsured Percentage 

1986 20.1% 
1987 21.2 
1988 22.3 
1989 25.5 
1990 25.9 
1991 29.0 

the percentage of  the total market that is self-insured (based on 
premiums and premium equivalents). 1 

In this paper we will outline various methods that can be used 
to estimate the self-insured employers '  liability for their retained 
exposures. Although a more rigorous definition will be provided 
later, the "funding level" can be thought of  as the contributions 
needed to: 

• pay the expected amount of  claims and related costs in the 
"upcoming year," and 

• establish an appropriate accrual as of  the end of  the year. 

Establishing funding levels for entities that self-insure their 
workers compensation exposure is a complex process. This paper 
defines the term "funding level" and describes methods that can 
be used to estimate the funding level. 

The paper is divided into seven sections. The first section 
is the introduction. The second section discusses some of the 
benefit and cost considerations involved in deciding whether to 
commercial ly insure or retain some of  the exposure in-house. 

I See Johnson & Higgins [1]. The term self-insurance denotes any program employing 
risk retention as the primary method for funding expected losses. This definition includes 
self-insured programs deemed "qualified" under slate laws, but does not include self- 
insured retentions or deductibles in conventional insurance programs. 
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The third section describes some of  the significant requirements 
that states impose on firms that self-insure their workers com- 
pensation exposure. In the fourth section, the funding level is 
defined. 

The fifth section provides two detailed funding level calcula- 
tions. The first calculation presented is for an employer  that has 
been self-insured for a number  of  years and has substantial his- 
torical loss and exposure information. The second calculation is 
for an employer  that has been self-insured for only a short time 
period and has limited loss and exposure information. 

The sixth section of  the paper discusses several additional 
items that an entity may want to consider in structuring and fund- 
ing a workers compensation self-insurance program: 

• confidence levels, 

• discounting, and 

• excess insurance. 

The final section of  the paper is the conclusion. 

2. BENEFITS AND COSTS OF SELF-INSURANCE 

An employer  faces costs and benefits when evaluating the 
decision to retain or self-insure part of  its workers compensation 
exposure. Each organization will perceive the overall value of  
self-insuring differently. 

A. Benefits of Self-Insuring Workers Compensation Exposures 

The potential benefits of  self-insuring workers compensation 
exposures result from: 

• cost savings to employers,  

• enhanced awareness and control of  loss costs, and 

• other considerations. 
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A. 1. Cost Savings to Employers 

Lower cost is often considered to be the most important ben- 
efit of self-insurance. However, cost should not be considered 
in isolation. The cost of self-insuring must be considered in re- 
lation to the cost of purchasing insurance from the commercial 
marketplace and the increased risk assumed by the self-insured 
employer. 

Premiums charged by commercial insurers contain several 
distinct components: expected loss costs (including allocated loss 
adjustment expenses), operating expenses, expected profit (ex- 
cluding risk load), and risk load. 2 The self-insured entity can 
potentially achieve cost savings in three of these four premium 
components. The entity cannot avoid the risk load "cost." 

The expected loss costs underlying commercial premiums 
generally reflect the insurance company's estimate of the av- 
erage loss cost for a group of similar insureds. To the extent 
that the entity considering self-insurance has lower expected loss 
costs than the "average" entity in the group, the difference be- 
tween the average loss costs and the entity's loss costs is ex- 
pected to be realized as cost savings by the self-insurer. That is, 
the self-insurer reaps the full benefit of better-than-expected loss 
experience. This is not to say that commercial insurer pricing is 
inaccurate. Rather, an entity may have recently changed its risk 
management and/or loss control policies and these changes have 
not yet been reflected in data which is measurable. Therefore, 
by self-insuring, the entity is "betting" that its changes are more 
favorable than measured by the commercial insurance market. 

2We are using the term "profit" to include both underwriting results and investment 
returns. One way to measure this profit is to compute the discounted (present value) of  
the net cashflows (premium less expenses and losses) at the insurer 's  projected yield rate. 
We believe it is important to consider investment returns in the profit calculation since the 
self-insured losses will be paid over an extended period of  time whereas the commercial  
insurance premium is paid at policy inception. To focus solely on underwriting income 
(and ignore investment results) would ignore the fact that the self-insured can invest the 
funds it would have paid for commercial insurance. 
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Furthermore, the self-insurer benefits directly and immedi- 
ately from any reduction in expected loss costs that results from 
the successful implementation of loss control or loss prevention 
strategies. This incentive to self-insure has not escaped the atten- 
tion of  the commercial marketplace. There are numerous mech- 
anisms used by the commercial insurer wishing to compete for 
the business of  the better-than-average risk, including experience 
rating, retrospective rating, prospective rating (e.g., schedule rat- 
ing), and dividend plans. However, in most cases, these options 
either dilute or delay (or both) the full benefit of reduced loss 
potential. For example, under a dividend plan, a $1 reduction 
in loss experience does not usually translate into a $1 dividend; 
furthermore, the dividend payment is made many months after 
the close of the policy period. 

The operating expense component of commercial premiums 
may include a provision for such costs and services as claims 
handling, underwriting, taxes, dividends, assigned risk assess- 
ment, administrative costs, marketing, acquisition costs, and 
overhead. Self-insurance may potentially eliminate or reduce the 
need for several components of operating expense, thus result- 
ing in cost savings to the self-insured entity. Self-insured entities 
will not incur expenses for underwriting, marketing, dividends, 
or acquisition of business (commissions). Also, subject to vari- 
ous state regulations, self-insured entities may be exempt from 
assigned risk assessments and premium taxes. Self-insurers can 
further achieve cost savings by retaining the provision for ex- 
pected profit in the rates. 

We believe that the self-insurer cannot avoid the uncertainty of 
outcomes associated with retaining its exposure to loss. This cost 
will be borne by the self-insurer either through the opportunity 
cost of funds, in excess of the expected value, set aside for pos- 
sible adverse claim results, or the need to "borrow" from other 
parts of the organization (or an outside source) during those years 
with poor loss experience. Commercial insurers often include a 
provision in their rates, known as a risk load, to compensate for 
this uncertainty. More discussion on this component  will follow 
in a later section. 
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A.2. Enhanced Awareness and Control of  Loss Costs 

As a consequence of the decision to self-insure workers 
compensation exposures, the employer becomes responsible for 
many aspects of the risk management and financing processes 
that may otherwise be addressed by the commercial insurer. 
Claims handling, database management, loss prevention, and loss 
control functions are often moved in-house or purchased from a 
third-party provider. 

Oftentimes this may provide the self-insurer with a firsthand 
opportunity to witness the magnitude of the financial and human 
costs associated with workplace accidents. Self-insuring may 
provide a more direct link between employer actions, such as 
loss control or loss prevention, and the company's bottom line. 
This greater awareness may often lead to measures enacted with 
the intention of reducing costs and providing a safer workplace. 

A.3. Other Considerations 

Through the mechanism of self-insurance, the employer is 
able to provide workers compensation benefits to its employees 
(subject to regulatory approval). While all employers are able to 
obtain workers compensation coverage from the residual mar- 
ket, if not from the voluntary market, many employers wish to 
avoid the stigma of being considered a substandard risk when 
they are forced to obtain coverage from an assigned risk mech- 
anism. Furthermore, while coverage availability is guaranteed, 
there is no guarantee that an insured can place its business with 
the company of its choice. 

By means of potential cost savings and enhancement of em- 
ployee morale, the employer is given a direct incentive to ag- 
gressively rehabilitate injured workers. This may result not only 
in cost savings for the employer, but also in a societal bene- 
fit associated with restoring an individual to a state of health 
and productivity. Furthermore, overall employee loyalty may be 
enhanced. The self-insurer retains more control over the claims 
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handling process, and thus has more authority over decisions to 
deny claims or investigate fraud. 

Finally, the self-insurer retains authority over its investment 
portfolio; that is, it controls the assets that back the liabilities in- 
curred by self-funding. This f reedom allows the company to seek 
potentially higher rates of return than are reflected in commercial  
premiums. 

B. Costs of Self-Insuring for Workers Compensation Exposures 

The costs of  self-insuring for workers compensation expo- 
sures result from: 

• increased cost to employers,  

• increased variability of  insurance related costs, 

• additional staffing costs, and 

• other considerations. 

B. 1. bwreased Cost to Employers 

To the extent that the entity considering self-insurance has 
higher-than-expected loss costs, this difference is realized as an 
additional cost when self-insuring. Additionally, many states will 
require a letter of  credit (LOC) or other collateral to be posted 
by self-insured entities. The fee for obtaining this collateral is an 
additional cost. 

B.2. Increased Variability of Insurance-Related Costs 

While the expected value of  costs under a self-funding ar- 
rangement may be equal to or lower than the cost of  purchasing 
commercial  insurance, the variability of  these costs is potentially 
much greater. This result follows from consideration of  the Law 
of  Large Numbers. That is, the variance associated with the sam- 
ple mean is less than or equal to the variance associated with a 
single observation [2]. 

Premiums charged by commercial  insurers and funding levels 
established by self-insurers may contain a provision for contin- 
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gencies referred to as a risk load. The relative magnitude of the 
risk load is usually dependent on the variance of  possible losses 
relative to the expected amount of losses associated with insured 
exposures. Additionally, there may be greater uncertainty when 
the self-insurer estimates its ultimate future costs than when an 
insurance company develops average rates. The uncertainty in- 
volved in estimating cost or rate parameters is referred to as 
"parameter risk." Estimates of  claim frequency and severity that 
are derived from large credible databases, such as those available 
to most large commercial insurers, are more statistically reliable 
than estimates developed from smaller, less credible databases, 
such as those maintained by self-insurers. 

An insurance company can provide coverage for a large num- 
ber of  employers, who are diverse both economically and geo- 
graphically, while a self-insurer is limited to providing coverage 
for its own exposures. Thus, the self-insurer requires a propor- 
tionately larger loading than the insurance company does for 
the risk that losses will, in the aggregate, exceed their expected 
value by some percentage. This differential represents a cost of 
self-insurance. 

Furthermore, the amount of funding required to pay insur- 
ance claims is less certain and more variable for a self-insured 
employer. Although estimates are made and funding levels may 
include a risk load, the actual cost of  self-insuring may not be 
known for many years. This increased uncertainty can complicate 
the financial planning process of the employer. This complication 
can be viewed as a cost of self-insurance. 

B.3. Additional Staffing Costs 

The employer that decides to self-insure must provide or pur- 
chase many services otherwise provided by the commercial in- 
surer, including claims handling, database management, and loss 
control/prevention services. Other services required by a self- 
insurer include audit, actuarial, and investment management ser- 
vices. 
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These services are essential to the successful management 
and financing of workers compensation exposures. Therefore, 
the self-insurer must either purchase these services from an out- 
side party, or move the functions in-house. Often, especially at 
first, the self-insurer cannot undertake these operations as cost- 
effectively as the commercial insurer. 

Generally, additions to staff will be required to perform or 
monitor these functions, as well as handle other administrative 
tasks associated with managing a self-insurance program. Skilled 
risk management personnel will be required to supervise these 
functions as well as address the technical needs of the program 
(e.g., what excess limits of coverage to purchase). Often, a com- 
pany must purchase computer hardware and software to establish 
a risk management database required for monitoring and analyz- 
ing exposure to loss. Actuarial, audit, and investment manage- 
ment services can be purchased from professional firms special- 
izing in these areas. 

It should also be noted that the commercial insurer, due to 
economies of scale, may provide better service and/or provide 
the service at a lower overall cost than the self-insured entity. 

B.4. Other Considerations 

One additional cost associated with the decision to self-insure 
is the potential adverse impact on the employer's relationship 
with its employees. If the employer chooses to move the claims 
adjusting process in-house, the employer and the employee can 
be thrust into an adversariai relationship under certain circum- 
stances. Consider the decision to deny claims. If the employer 
denies an employee's claim, the employer may be viewed as un- 
sympathetic by the injured person's friends and co-workers. This 
can have a damaging effect on the firm's relationships and repu- 
tation. Similar difficulties arise if the employer takes a hard line 
on investigating and eliminating fraudulent claims. For these rea- 
sons many firms that self-insure their exposure choose to contract 
for claims management services with a third party administrator 
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(TPA). The TPA is often viewed as an objective decision maker, 
balancing the goals of the employer against the needs and rights 
of injured workers. 

Another potential cost pertains to excess insurance. Many self- 
insured entities will want (or be required) to purchase excess 
insurance, and this subjects these companies to: 

• the uncertainty regarding market conditions, and the effect 
upon the availability and affordability of the coverage; and 

• the payment risk due to insolvency associated with future ex- 
cess insurance recoveries. 

It should be noted that, although federal income tax consid- 
erations are outside the scope of this paper, they may be signif- 
icant. Typically a self-insured employer can deduct losses only 
as they are paid, whereas commercial insurance premiums are 
fully deductible. Also, many states require self-insured entities 
to meet various administrative requirements. These requirements 
may involve substantial time and cost. 

3. S E L F - I N S U R A N C E  R E G U L A T O R Y  R E Q U I R E M E N T S  

Most states have established requirements to provide funds for 
injured workers in the case of a self-insured entity's bankruptcy. 
In addition, states have attempted to limit the "availability" of 
self-insurance to financially strong firms. This section discusses 
several common self-insurance requirements imposed by the var- 
ious states. The requirements are divided into initial filing re- 
quirements and additional requirements. 

Self-insurance initial filing requirements often include: 3 

1. a parental guarantee (if applicable), 

3"The Self-lnsurance Manual" [31 summarizes each state's statute related to workers 
compensation self-insurer requirements. 
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2. the most recent audited financial statement of the entity 
considering self-insurance, and 

3. loss experience and payroll information. 

The parental guarantee is a promise by the parent corporation 
to "guarantee" the workers compensation payments of a sub- 
sidiary. This requirement will decrease the credit risk associated 
with the self-insured entity's exposure by committing not only 
the subsidiary's assets but also the parent's assets to guarantee 
the self-insurer's workers compensation payments. 4 

The second requirement, a recent audited financial statement, 
allows the state to evaluate the potential (or current) self-insured 
employer in order to determine if the employer is financially 
strong enough to self-insure. This procedure should reduce the 
number of financially weak self-insured employers. 

The last requirement, loss and payroll information, allows the 
Insurance Department to determine the reasonableness of the col- 
lateral (which is discussed later). 

As a note, some states have established additional and more 
specific requirements. For example, the Vermont regulations re- 
quire that the applicant must meet target ratios in six categories. 5 

If a self-insured employer meets the initial filing requirements 
and the state is satisfied with the entity's financial condition, then 
two additional requirements may be imposed [3]: 

• excess insurance, and 

• security or bonding. 

4Credit risk is the possibility that one entity will suffer a financial loss due to the inability 
of a second entity to satisfy its obligations. For example, if a self-insured employer went 
bankrupt, other employers in the state may be required to pay claimants' bills. Credit 
risk is discussed in more detail in Brown [4]. 
5There are minimum target ratios for: cash flow, liquidity, working capital, net worth, 
profitability, and turnover [3]. 
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One reason to require excess insurance is to increase the pre- 
dictability of  the self-insured employer ' s  retained loss experi- 
ence. The purchase of  excess insurance may make the loss ex- 
perience more predictable from year to year and may reduce the 
probability of  an insolvency (of the self-insured entity) due to 
poor loss experience in one particular year. States will usually 
require excess insurance if the self-insured employer  has some 
financial shortcomings. The importance of  excess insurance and 
its relationship to the funding level will be discussed in Section 6. 

The security or collateral requirement is the mechanism that 
states have established to compensate claimants in the event of  a 
self-insured employer ' s  bankruptcy. Most states do not have pre- 
funded guarantee funds covering the obligations of  self-insured 
employers.  Therefore many states require self-insured employ- 
ers to provide the state with a letter of  credit (LOC) or surety 
bond. These funds would then be available in the case of  a self- 
insured employer ' s  bankruptcy. States use various methods to 
establish the security requirement. In reviewing the various state 
regulations, it appears that many states use one (or more) of  the 
following three methods to determine the amount of  security: 

• a min imum flat dollar amount, 

• a factor times case reserves, or 

• a formula approach based on the recent loss experience of  the 
insured. 

A few states require an actuarial analysis to assist in determin- 
ing the amount of  collateral. It should be noted that, in general, 
states do not require security for municipalities and political sub- 
divisions that self-insure. This may be due to the fact that these 
entities typically have taxing authority and therefore are unlikely 
to be unable to meet claim obligations. 

This section has discussed some of  the more common self- 
insurance requirements. However, the reader is cautioned that 
specific requirements vary significantly from state to state. 
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4. F U N D I N G  L E V E L  

For illustrative purposes, the discussion of the funding level 
in this section assumes that the self-insured entity is utilizing a 
risk financing technique for its retained exposure that involves 
earmarking assets. 6 A partial list of the most commonly used 
risk financing techniques for retained exposures includes: 

• current expensing of losses, 

• an unfunded reserve, 

• a funded reserve (i.e., earmarking assets), 

• use of borrowed funds, and 

• retention through an affiliated ("captive") insurer. 

There are advantages and disadvantages associated with each 
of the above mentioned techniques. Some of the advantages of 
using a funded reserve as a risk financing technique include the 
following. 

1. It may be more likely that liquid assets will be available 
to pay for retained losses. If an entity earmarks assets for 
retained exposures, oftentimes a cash flow (or duration) 
analysis will be performed on the retained exposure. 

2. Accounting considerations may require the entity to ac- 
crue a liability for its retained exposure. The applica- 
ble standard board statements are Financial Accounting 
Standards Board (FASB)-5 for private companies and 
Governmental Accounting Standards Board (GASB)-10 
for public entities. 7 An appropriate (i.e., reasonable) 

6A risk financing option involving earmarking assets has several advantages from a 
financial planning standpoint, as the text discusses. The gross liability to the employer 
is similar regardless of  the risk financing option. The risk financing options affect only 
the distribution of  assets. 
71t should be noted that these accounting obligations could be met through an unfunded 
reserve, 
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funded reserve would probably satisfy these require- 
ments. 

3. Regulators may prefer that firms formally establish a 
funded reserve. In fact, some states have allowed, in 
essence, a formally structured funded reserve (escrow 
account) to meet the collateral requirements established 
by the state. 8 

Two potential disadvantages of a funded reserve as a risk fi- 
nancing technique are: 

1. The entity may have better use of  its funds than merely to 
invest in financial instruments in anticipation of  paying 
future losses. The firm may be able to generate a better 
return by devoting funds to regular productive activities. 

2. The funded reserve may appear as idle funds and be 
redeployed for other corporate purposes. 

We define the required "fund" as the amount of assets needed 
to satisfy all past years' retained insurance obligations plus in- 
surance obligations for the upcoming self-insurance year. This is 
analogous to (but not identical to) an insurance company ' s  

• liabilities as of  year-end, plus 

• next year 's  premium. 

The required fund for a self-insured employer  consists of  the 
following elements: 

• Liabilities as of y e a r - e n d -  

. Claim liabilities (including a provision for allocated loss ad- 
justment expenses [ALAE]) 

8An escrow account is a written agreement entered into among three parties. Funds are 
deposited for safekeeping with the third party as custodian. The custodian or depository 
is obliged to follow strictly the terms of the agreement agreed upon by the other parties. 
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• Other loss adjustment expense liabilities 

• Any potential loss sensitive premium related obligations 
prior to self-insuring (e.g., additional retrospective rating 
plan premium) 

• Expected additional excess insurance premium payments  for 
prior years '  exposure (due to a positive payroll audit) 

• Second injury fund assessments, taxes payable, etc. 

• Other (general) expense liabilities 

• A provision for uncollectible excess insurance 

• Funding obligations for the upcoming self-insurance y e a r -  

. Claim costs including A L A E  

• Unallocated loss adjustment expense (ULAE) costs 

• Marketing/sales costs (for a group self-insurer) 

• Excess insurance costs 

• Second injury fund assessment, taxes etc. 

• Risk charge (this is discussed under loss probability levels 
in Section 6) 

• Other expense (expected to be incurred in the upcoming self- 
insurance year) 

As a note, the above mentioned claim costs refer to the re- 
tained (after the application of  excess insurance) exposure. We 
are assuming that a self-insurance year will provide coverage for 
all claims occurring during the year. 

The "funding level" for the upcoming calendar year is then 
equal to: 

• the prior years '  liabilities, plus 

• the funding obligations for the future accident year, minus 
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• the amount of  assets earmarked to pay for the obligations. 

If investment income is intended to remain in the fund, then 
the assets should include the investment income earned on the 
earmarked assets. 

We have not defined claim costs with regard to whether the 
amount is discounted or undiscounted or whether the amount 
is an expected value or established at some confidence level 
amount. Section 6 will cover these concepts. 

There are probably other ways to define funding levels. How-  
ever, it appears that many self-insured entities use the definitions 
discussed in this section. 

5. FUNDING LEVEL EXAMPLES 

In this part of  the paper, we will outline approaches that can 
be used to estimate the funding level of  a self-insured employer, 
the claim related liabilities as of  year-end, and the expected claim 
costs for the upcoming year. We will assume that the self-insured 
employer  is able to estimate the amount of  non-claim related 
items (e.g., excess insurance costs). In addition, we will provide 
funding level calculations for two scenarios: 

• Scenario O n e - - T h e  self-insured employer  has adequate data to 
utilize several commonly  accepted actuarial projection meth- 
ods. 

• Scenario T w o - - T h e  self-insured employer  does not have suf- 
ficient data to utilize commonly  used actuarial projection tech- 
niques and therefore some creative but necessary techniques 
are required. 

A. Adequate Data Example 

For scenario one, the employer  has been self-insured for ten 
years. The employer  purchases specific excess coverage above 
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$500,000 per claim. The employees are in two classes (based 
on National Council on Compensation Insurance [NCCI] class 
codes). 

We will first discuss a procedure to project gross losses, al- 
though it may not be necessary to project gross losses to esti- 
mate net losses. However, we will discuss the projection of gross 
losses for the following two reasons: 

• a projection of net losses could involve subtracting projected 
excess losses from gross losses, and 

• if any excess carriers are insolvent or financially troubled, a 
projection of gross losses is needed to estimate an uncollectible 
excess insurance provision. 

We will use the term "loss" to include both losses and ALAE. 

The following data is available by self-insured year and de- 
velopment year: 

• Exhibit 1 displays the employer's paid loss experience, 

• Exhibit 2 displays the employer's incurred loss experience, 

• Exhibit 3 displays the corresponding claim count data (for lost 
time claims), and 

• Exhibit 4 displays the employer's average incurred severity. 

Additionally, Exhibit 5 displays the self-insured employer's 
workers compensation payroll by self-insured year and class. 

A. 1. Projection of Gross Losses 

Based on the above-mentioned data items, we can use several 
methods to estimate ultimate losses by self-insured year. The 
unpaid claim liability can be computed as the ultimate losses 
less the losses paid to date. The following generally accepted 
projection methods are used to project ultimate losses by self- 
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insured year: 

• paid loss development (Exhibit 6), 

• incurred loss development (Exhibit 7), 

• a count times average method (Exhibit 8), 

• an expected loss method (Exhibit 9), 

• a trended pure premium approach (Exhibit 10), and 

• a Bornhuetter-Ferguson method (Exhibit 11). 

We will not provide the details on these methods in the text as 
they are well documented in the actuarial literature. The exhibits 
should be self-explanatory. 

Note that if more refined data are available, several enhance- 
ments could be made to the projection methods outlined on Ex- 
hibits 6 through 11. For example, the projection methods outlined 
on Exhibits 6 through 11 could be performed separately: 

1. by class, 

2. by type of loss (medical, indemnity, and expense), or 

3. a combination of 1 and 2 above (e.g., by class for medical 
costs versus by class for indemnity costs). 

Further breakdown of the data may reveal trends not apparent 
by viewing the data more globally. However, this will involve 
less data and hence introduce credibility concerns. 

It should also be noted that while we have not explicitly intro- 
duced credibility into the loss projection methods, we have used 
various projection methods. Presumably the analyst will be in a 
position to assign credibility to the various projection methods 
in selecting ultimate losses. 
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The above mentioned data items and hence the above esti- 
mates are gross (i.e., before the application of the entity's ex- 
cess insurance program). In the gross loss projections we have 
assumed that there were no unusually large losses that would 
distort the projections. If there are unusually large losses, they 
should be treated separately. 9 

A.2. Projection of Net Losses 

Several methods can be used to estimate the retained losses for 
the entity. We will discuss two. The first set derives the retained 
losses by repeating the projection techniques performed for gross 
losses. However, retained losses are used in lieu of gross losses 
in constructing the triangles. Therefore, individual losses will 
be limited at the per claim retentions. With regard to aggregate 
recoveries, it may be more reasonable to construct "triangles" 
gross of aggregate retentions and limit the projected losses at the 
aggregate retention. As a note, both the Bornhuetter-Ferguson 
method and the expected loss method will require an independent 
estimate of the ultimate retained losses. These retained losses can 
be calculated based on: 

• an estimate of unlimited losses, and 

• excess ratios published by the NCCI. 

The second technique is a Bornhuetter-Ferguson method for 
the excess layer and involves subtracting estimated excess losses 
from gross losses. The a priori estimate of ultimate excess losses 
is based on the selected gross losses and an estimate of the per- 
centage of losses which will exceed a specific amount. For dis- 
cussion purposes, we relied on excess ratios from Gillam [5]. 

These excess ratios will vary by state and hazard group. A 
discussion of the procedures necessary to calculate excess ratios 
is beyond the scope of this paper. 

9For example, the large losses can be removed from the projection methodology and 
evaluated independently. 
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Several sources can be used to estimate the required excess 
reporting patterns. A partial list includes: 

• data published by the Reinsurance Association of America 
(RAA), 

• data from A. M. Best for reinsurance companies, and 

• data from the individual entity (if the entity is large enough). 

It should be noted that both the RAA and A. M. Best data have 
several limitations, including: 

• a mixture of attachment points and retention levels, 

• a mixture of different types of  risks, and 

• varying company reporting requirements and reserving philos- 
ophies. 

Exhibit 12 displays the calculation of the apriori excess 
losses. Exhibit 13 displays the Bornhuetter-Ferguson calculation 
for excess losses. 

The retained losses are then calculated by subtracting the es- 
timated excess losses from the estimated gross losses. Exhibit 14 
displays our selected gross losses, excess losses, retained losses, 
and retained unpaid claim liability. 

The expected value of  losses for the upcoming year (1994) can 
be determined based on an expected loss method and a trended 
pure premium approach. The required fund (on an expected value 
basis) is then equal to the sum of: 

• the net unpaid claim liabilities, plus 

• the expected retained claim costs for the upcoming year. 

Exhibit 15 summarizes the estimates and displays the calculation. 
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B. Limited Data Example 

The XYZ Manufacturing Company has self-insured its work- 
ers compensation exposures for the past six years. While the 
firm has paid over $7,000,000 in claims during that time period, 
it has only recently begun to establish case reserves for individ- 
ual claims. Aggregate loss payments are available by calendar 
year, but individual claim detail is not available. The paid loss 
data is available for medical versus indemnity payments. 

The company has recently established a database capturing 
information on all open and newly reported claims as of Jan- 
uary 1, 1993. The accident date and the current reserve amount 
are captured; however, prior payments and prior reserve levels 
on claims are not known. Reserves are available separately for 
medical versus indemnity losses. The company' has not captured 
exposure information by class code. 

The absence of a complete set of cumulative data triangles 
for paid and incurred losses poses a problem for estimating 
the unpaid claim liabilities of the company. Traditional actuarial 
methodologies cannot be employed without modification. The 
first step is to estimate the reserve accrual for the company from 
inception of the self-insured period as of year-end 1993 (i.e., 
self-insured years 1988-1993 valued as of 12/31/93). 

Three nonstandard actuarial techniques will be employed to 
estimate the reserve accrual of the XYZ Manufacturing Com- 
pany: 

• case reserve development method, 

• calendar year incremental payment method, and 

• a de-trended Bornhuetter-Ferguson projection method. 

For reference, Exhibit 16 displays the available loss experience 
of the company. 
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B.I. Case Reserve Development Method 

The case reserve development method is similar to the paid 
and incurred loss development methods and is predicated on the 
assumption that case reserves have been established in a man- 
ner consistent with industry standards. Unusually large losses 
may distort the development projection and therefore should be 
treated separately. 

A set of  multiplicative factors, which vary according to the 
maturity of  a given accident year, are applied to the known case 
reserves for each accident year as of  a common evaluation date. 
The factors are referred to as case development factors. For a 
given year, the product of  the case development factor and the 
case reserve amount yields an estimate of  the total unpaid losses 
(including incurred but not reported losses [IBNR]) for that ac- 
cident year. 

This method may be well suited for application to workers 
compensation losses since most of  the development beyond 24 
months is attributable to supplemental development on known 
case reserves. Case development factors can be derived from 
cumulative paid and incurred loss development factors. Define 
the following notation: 

P~ = Paid loss development factor from t months to ultimate, 

I t = Incurred loss development factor from t months 

to ultimate, 

P = Paid losses at t months of  development,  

I = Incurred losses at t months of  development,  and 

U = Ultimate losses. 

Then, on an expected value basis: 

(P) × (Pt) = U implies P = (U)/(Pt), and 

(1) x (It) = U implies I = (U) /@) .  
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We desire a factor, k, such that (on an expected value basis): 

( I -  P)  × (k) = ( U - P ) ;  

that is, case reserves at t months, (I - P), multiplied by the factor 
k yields total unpaid losses, ( U -  P). Therefore,  on an expected 
value basis: 

( U / I ,  - U /Pt) × (k ) = U - U /Pt; 

( U )  × ( 1 / I  t -  1/P t) × (k) = (U) × (1 - 1/Pt); and 

(1 l i t  - 1/Pt) × (k) = (1 - l/Pt). 

Thus, k = (1 - 1 / P t ) / ( 1 / l  t - 1/Pt). 

In the example, no credible development history exists from 
which to select paid and incurred development factors. Therefore,  
external data sources will be used to derive development patterns. 
Exhibit 17 displays paid and incurred development factors based 
on our interpretation of  data published by the N C C I  in a specific 
state, for medical and indemnity losses, as well as the calculation 
of  case development factors according to the formula derived 
above. 

Exhibits 18 and 19 depict the application of  the case develop- 
ment factors to the case reserves of the company and the resulting 
estimates of  unpaid losses. 

B.2. C a l e n d a r  Year Inc re me n t a l  P a y m e n t  M e t h o d  

The calendar year incremental payment  method is based on 
an assumed loss payout pattern, a loss trend, and a constant ex- 
posure (payroll) trend to derive a factor that can be applied to 
calendar year  paid losses to produce an estimate of unpaid losses 
for all accident years. This method is based on the following as- 
sumptions: 

• there is no change in the payment  pattern by accident year 
(e.g., no speed up in claim settlements), 
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• the loss trend is constant and does not vary by accident year 
or calendar year, and 

• there have been no usually large claim payments. 

The payout pattern employed is derived from the development 
pattern we used in the case development method. Exhibit 20 dis- 
plays the selected payment patterns. For this example, we assume 
that medical losses (pure premiums) will increase at a rate of 10% 
annually and indemnity losses will increase by 3% annually, l0 As 
a note, these trends are in excess of  payroll growth. We assume 
that the company's  exposures have increased by approximately 
4% per year (including payroll growth). 

Let A Y  o denote accident year 0, and let P~ represent the incre- 
mental percentage of ultimate losses paid in year t for A Y  o. 

Then, given the amount paid in calendar year t on A Y  o losses, 
unpaid losses at time t on A Y  o exposures can be estimated by 
multiplying calendar year payments by the following factor: 

t 

p• 

which is the ratio of  the percentage of ultimate losses yet to be 
paid at time t, to the percentage paid in year t. 

Allowing for the effect of  trend in accident year loss costs and 
exposures, the factor to estimate unpaid losses on AYk exposures 
is given by: 

(t-k) 
(1 + r) k - ~ Pki(1 + r) k 

i=0 

Pk'-k ( 1 + r) k 

t°A good starting place in seeking trend factors would be a bureau filing. For example, 
NCCI provides separate medical and indemnity loss ratio trends in most states. 
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As a note, the trend factor is the product of the loss and expo- 
sure trend. Notice that the trend factor (1 + r) could be factored 
out of this expression, yielding the result that trend is irrelevant 
to the calculation of the reserve factor for a single accident year. 
However, as will be seen below, trend is important when multiple 
accident years are combined. 

Now suppose that the calendar year losses resulting from z 
accident years are known, but their breakdown by accident 5,ear is 
unknown. An expression can be developed which, when applied 
to the calendar year payments at time t, yields an estimate of 
unpaid losses for all accident years at time t. 

Conceptually, this expression should reflect the sum of all 
future payments for each of the z accident years (z is the number 
of years self-insured), divided by the sum of the calendar year t 
payments for the z accident years (based on an assumed payment 
pattern). The expression is: 

(1 + r )  k -  ~ P k i ( l + r )  k 

k = 0  i = 0  

,7. 

Z P;-k( l + r) k 
k = 0  

This expression can be seen to be the ratio of the sum of the 
numerators for each of the z accident year factors to the sum of 
the denominators for each of the z accident year factors. Notice 
that the trend factor cannot be factored out of this expression. The 
trend factor affects the relative weights given to each accident 
year factor. 

Exhibits 21 and 22 display the mechanics of the methodology 
as well as the resulting estimate of unpaid indemnity and medical 
losses for the XYZ Manufacturing Company. 

As a note, this model can also be used to vary the future 
trend from historical averages. For example if XYZ entered into 
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a long-term contract with a particular hospital that would reduce 
expected future medical costs by 1% per year (and almost all o f  
the injured workers were treated at this hospital), then this 1% 
reduction could be factored into the model. 

The future projected medical payments would be reduced by 
1% annually or multiplied by a factor of  (.99) x (where x is the 
number of  years from the date the long-term contract began to 
the date the projected payment is made). 

B.3. De-Trended Bornhuetter-Ferguson Method 

The last method discussed is a De-Trended Bornhuet ter-  
Ferguson [6] projection method. This method can be used to 
estimate the unpaid claim liability as well as provide an esti- 
mate of the upcoming year 's  expected losses. For this method 
the following elements are required: 

• an estimate of ultimate losses for the most recent year, 

• an assumed reporting pattern for losses, 

• an assumed loss trend, and 

• an assumed exposure trend. 

For XYZ, the ultimate losses for 1993 are estimated based on 
incurred and paid loss projection methods. The ultimate losses 
for prior accident years are then estimated based on the combined 
loss and exposure trend. For example, the ultimate losses for 
self-insured year 1990 are equal to 1993 ultimate losses divided 
by (1 + r) 3. A Bornhuetter-Ferguson method can then be used 
to estimate the total reserves by year. Exhibit 23 displays the 
calculation. 

The upcoming year 's  expected losses are estimated by mul- 
tiplying the results of  the incurred projection method by the se- 
lected trend factor of (1 + r). Exhibit 24 displays this calculation. 
Exhibit 25 displays the selected unpaid claim liability at 12/31/93 
along with expected 1994 claim costs. The funding for 1994 is 
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equal to the required fund less the amount of assets set aside to 
pay claim liabilities. 

6. ADDITIONAL CONSIDERATIONS 

This section will discuss factors other than cost estimates that 
an entity may want to consider in structuring a self-insured pro- 
gram (and determining a funding level): 

• the variability associated with cost estimates, 

• the time value of money, and 

• issues related to excess insurance. 

Loss Probability Levels 

The estimates described in Section 5 are expected values. 
Therefore, a significant percentage of the time the actual losses 
will exceed the estimates derived in Section 5. The attached Ex- 
hibit 26 displays a hypothetical example of a distribution of pro- 
jected losses for the upcoming self-insurance year for a risk with 
$500,000 of expected losses. 

As this graph displays, for a risk with expected losses of 
$500,000, there is a 9.6% probability that actual losses will ex- 
ceed $1,000,000 in the upcoming self-insurance year. The self- 
insured entity will want to consider this information in determin- 
ing funding levels. Exhibit 27 displays some of the key figures 
underlying the graph. 

In determining the probability level at which to fund, the em- 
ployer may also want to consider: 

• How easy would it be to obtain additional funds if loss expe- 
rience is worse than expected? 

• Would bonds have to be liquidated at a loss to fund for adverse 
insurance results? 
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• What are the insurance costs relative to the net worth, sales, 
and net income of the entity? 

• What is the entity's philosophy with regard to assuming risk? 

These factors, along with the variability of losses, should be 
used by the entity to determine the funding level. 

In deriving losses associated with probability levels, we are 
interested in the distribution of the funding level. The assets as 
of year-end are fixed (ignoring credit risk); therefore; the prob- 
ability level is a function of the combined distribution of: 

• next year's claim costs, and 

• the future loss payments associated with the unpaid claim lia- 
bilities for prior years as of year-end. 

While a discussion of the combined aggregate loss distribution 
is outside the scope of this paper, we would point the interested 
reader to "Hospital Self-Insurance Funding: A Monte Carlo Ap- 
proach" by David Bickerstaff [7]. This is one of the few papers 
that attempts to estimate the aggregate loss distribution of  the 
combination of: 

• the run-off of  the fund's prior years' losses, plus 

• the prospective year's losses. 

Discounting 

Another item that the self-insured entity may wish to con- 
sider is the time value of money. Exhibit 28 displays how $100 
of workers compensation losses are projected to be paid out over 
time. If the entity invested funds and received interest payments 
equal to 6% of the invested funds annually, then less than $100 
could be invested at the beginning of the period to cover the 
expected loss payments. This is due to the fact that the inter- 
est earnings will be available to satisfy future loss payments. In 
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this example, approximately $90 invested at the beginning of 
the period, along with projected interest earnings (at 6%) are 
anticipated to be sufficient to cover the expected loss payments 
shown on Exhibit 28. 

In determining discounted unpaid claim liabilities, the Actu- 
arial Standards Board has outlined several issues and considera- 
tions that an actuary should take into account [8]. A partial list 
of issues and considerations includes: 

• the timing of future payments and potentially a range of pay- 
ment timing estimates, 

• the interest rate selected for discounting, and 

• risk margins associated with the discounted loss reserves (as 
the discounting process introduces additional uncertainties). 

The entity may also want to consider the interaction of the 
loss payment stream and the probability level of the undiscounted 
losses. For example, if the entity suffers an unusual number of 
large claims (resulting in a relatively high probability level) it 
may be more likely that the payment pattern will be extended. 
Large lifetime workers compensation claims are typically paid 
out over an extended period. This consideration has resulted 
in some analysts assuming that the discounted losses associated 
with various probability levels (the present value of the losses as- 
sociated with the probability level) are simply equal to the undis- 
counted amounts multiplied by the best estimate of the present 
value factor (based on the premise that this assumption is conser- 
vative). Given this assumption, the discounted probability level 
amounts could be computed by multiplying the undiscounted 
amounts by a uniform factor of .90 (see Exhibit 28). 

Excess b~surance Issues 

It appears that the most common types of excess insurance 
for workers compensation are per occurrence coverage and ag- 
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gregate coverage. Per occurrence coverage provides coverage in 
excess of a dollar threshold per occurrence. Aggregate coverage 
limits the entity's exposure in total for a self-insured year. It 
provides coverage in excess of a dollar threshold for all claims 
occurring in a self-insured year. 

Excess insurance reduces the variability associated with the 
retained claim liabilities. The per occurrence coverage limits in- 
dividual claim amounts that are retained; therefore, for a large 
claim only the first $x will be retained. The aggregate coverage 
limits the retained losses for any one self-insured year and there- 
fore provides an upper limit to the retained exposure (ignoring 
credit risk and policy limits being exhausted). 

Exhibit 29 displays the effect of the per occurrence excess 
insurance on the distribution of costs for the upcoming self- 
insurance year. The exhibit displays the probability level amounts 
for a risk with $500,000 of expected unlimited losses, both with 
and without a $50,000 per occurrence loss limit. For the latter, 
we have added a provision for the cost of excess insurance. For 
illustrative purposes, we have assumed that the excess insurer 
would include a 25% loading of the undiscounted expected value 
to determine premium. II 

If the employer does not purchase per occurrence excess 
insurance, the actual claim payments are projected to exceed 
$980,000 one year in every ten or 10% of the time. However 
if the employer purchases excess insurance, the corresponding 
probability for approximately $980,000 of insurance costs is 5%, 
or one year in every twenty. Exhibit 30 graphically displays the 
distribution of loss outcomes assuming the employer purchased 
per occurrence excess insurance. In comparing Exhibit 30 and 
Exhibit 26 it should be noted that: 

JlWhile the 25% on its face appears low (for expenses, profit, and a risk margin), it 
should be noted that excess workers compensation payments are made over an extended 
period. Therefore, if the excess insurer reflects the time value of money, the discounted 
expected losses will be significantly less than the undiscounted amounts. 
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• the distribution of  insurance costs is less dispersed for the 
employer  that purchases excess insurance, and 

• the employer  is forgoing the possibility of  very favorable in- 
surance costs (with the purchase of  excess insurance) for re- 
ducing the possibility of  adverse loss experience. 

7. CONCLUSION 

This paper has outlined several methods that can be used to 
establish funding levels for an entity that retains its workers com- 
pensation exposure. In addition we have discussed: 

• benefit and cost considerations involved in self-insuring, 

• regulatory requirements associated with self-insuring, and 

• funding level considerations. 

We believe that the concepts outlined in this paper can assist an 
entity in: 

• structuring a self-insurance program (or deciding whether  to 
self-insure), and 

• funding for a self-insurance program. 
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EXHIBIT 1 

ABC COMPANY PAID LOSSES*--MEDICAL AND INDEMNITY COMBINED ($000'S) 
© 
7~ 

Self Insured 
Year 

Months of Development 

12 24 36 48 60 72 84 96 108 120 
7. 

1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 

*Including A L A E .  

145 711 900 1,001 
201 845 1,011 1,101 
290 1,011 1,294 1,412 
359 1,210 1,421 1,513 
450 1,445 1,551 1,701 
680 1,599 1,819 2,001 
750 2,150 2,445 2,550 
980 2,050 2,500 

1,325 2,700 
1,522 

1,100 1,113 1,124 1,130 
1,151 1,170 1,170 1,170 
1,480 1,500 1,513 1,519 
1,570 1,590 1,600 
1,851 1,940 
2,100 

1,130 1,130 
1,170 

© 
7z 

7~ 
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Z 

>, 

z 

x 
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Development Factors 

Self Insured Months  o f  Development 

Year 12-24 24-36  36-48 48-60  60-72  72-84  84-96  96--108 108-120 

1984 4.903 1.266 1.112 1.099 1.012 1.010 1.005 1.000 1.000 
1985 4.204 1.196 1.089 1.045 1.017 1.000 1.000 1.000 
1986 3.486 1.280 1.091 1.048 1.014 1.009 1.004 
1987 3.370 1.174 1.065 1.038 1.013 1.006 
1988 3.211 1.073 1.097 1.088 1.048 
1989 2.351 1.138 1.100 1.049 
1990 2.867 i .137 1.043 
1991 2.092 1.220 
1992 2.038 

Average 3.169 1.186 1.085 1.061 1.021 1.006 1.003 1.000 1.000 
Column Sum 2.649 1.174 1.080 1.060 1.023 1.006 1.003 1.000 1.000 

Selected Age to Age  Factor 2.200 1.174 1.080 1.060 1.023 1.011 1.005 1.002 1.001 
Selected Cumulative Factor 3.113 1.415 1.205 1.116 1.053 1.029 1.018 1.013 1.011 1.010 Tail 

o 

o 

z 

z 

x 

Note: In selecting factors, we would suggest reviewing ABC Company data as well as development factors published by the NCCI for State X. 
Note: The most recent diagonal has been brought to year end based on data through September 30. 7~ 



EXHIBIT 2 

ABC COMPANY INCURRED LOSSES*--MEDICAL AND INDEMNITY COMBINED ($000'S) 

Self Insured Months of Development 

Year 12 24 36 48 60 72 84 96 108 120 

1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 

Jlncluding ALAE. 

400 800 990 1,111 1,115 1,125 1,130 1,130 1,130 1,130 
510 902 1,096 1,151 1,160 1,170 1,170 1,190 1,190 
790 !, 180 1,396 1,500 1,540 1,560 1,500 1,519 
901 1,391 1,501 1,559 1,570 1,590 1,690 

1,120 1,460 1,661 1,842 1,950 2,000 
1,401 1,701 1,900 2,011 2,110 
1,761 2,340 2,465 2,550 
1,700 2,316 2,675 
2,400 2,995 
2,600 
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D e v e l o p m e n t  Factors 

Self Insured Months of Development 

Year 12-24 24-36 36--48 48-60 60--72 72-84 84--96 96--108 108-120 

_.E 
Z 
CI 

© 
7~ 

1984 2.000 1.238 1.122 1.004 1.009 1.004 1.000 1.000 1.000 
1985 1.769 1.215 1.050 1.008 1.009 1.000 1.017 1.000 
1986 1.494 1.183 1.074 1.027 1.013 0.962 1.013 
1987 1.544 1.079 1.039 1.007 1.013 1.063 
1988 1.304 1.138 1.109 1.059 1.026 
1989 1.214 1.117 1.058 1.049 
1990 1.329 1.053 1.034 
1991 1.362 1.155 
1992 1.248 

Average 1.474 1.147 1.070 1.026 1.014 1.007 1.010 1.000 1.000 
Column Sum 1.373 !.132 1.065 1.030 1.015 1.008 1.010 1.000 1.000 

Selected Age to Age Factor 1.373 1.132 1.065 1.030 1.015 1.008 1.005 1.000 1.000 
Selected Cumulative Factor 1.753 1.277 1.128 1.059 1.028 1.013 1.005 1.000 1.000 1.000 Tail 

Note: In selecting factors, we would suggest reviewing ABC Company data as well as development factors published by the NCCI for State X. 
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© 

© 

Z ~3 

Z 

X 

Note: The most recent diagonal has been brought to ycat end based on data through September 30. 7~ 
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EXHIBIT 3 

ABC COMPANY INDEMNITY INCURRED CLAIM COUNTS* 

Self Insured Months of Development 

Year 12 24 36 48 60 72 84 96 108 

Ultimate 
Claim 

120 Counts 

Ultimate 
Frequency 

Per 
$Million 

of Payroll** 
© 

1984 382 400 409 409 409 
1985 400 412 418 418 418 
1986 444 462 480 480 480 
1987 469 487 500 501 502 
1988 523 548 566 580 584 
1989 559 580 590 591 591 
1990 600 613 620 622 
1991 657 680 688 
1992 700 725 
1993 761 

409 409 409 
418 418 418 
480 480 480 
502 502 
584 

*Claims that either have closed with an indemnity payment  or  have an indemnity reserve. 
**These  frequencies imply an exponential  trend of  3.7% per year. 

409 409 
418 

409 
418 
480 
502 
584 
591 
623 
693 
745 
811 

2.525 
2.416 
2.619 
2.619 
2.925 
2.947 
2.937 
3.124 
3.200 
3.303 

7~ 

>, 

X 



Self Insured 
Year 

Development Factors 

Months of Development 

12-24 24---36 36---48 48-60 60-72 72-84 84-96 96-108 108-120 

1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 

Average 
Column Sum 

1.047 1.023 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1.030 1.015 1.000 1.000 1.000 1.000 1.000 1.000 
1.041 1.039 1.000 1.000 1.000 1.000 1.000 
1.038 1.027 1.002 1.002 1.000 1.000 
1.048 1.033 1.025 1.007 1.000 
1.038 1.017 1.002 1.000 
1.022 1.011 1.003 
1.035 1.012 
1.036 

1.037 1.022 1.005 1.001 1.000 1.000 1.000 1.000 1.000 
1.037 1.021 1.005 1.002 1.000 1.000 1.000 1.000 1.000 

Selected Age to Age Factor 1.037 1.021 1.005 1.002 1.000 1.000 1.000 1.000 1.000 
Selected Cumulative Factor 1.066 1.028 1.007 1.002 1.000 1.000 1.000 1.000 1.000 1.000 Tail 

© 
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EXHIBIT 4 

ABC COMPANY INCURRED LOSS SEVERITY TRIANGLE 

:z 

c~ 

Self Insured 
Year 

Months of Development 

12 24 36 48 60 72 84 96 108 120 
Ultimate 
Severity* 

1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 

1,047 2,000 2,421 2,716 2,726 2,751 2 ,763 2,763 2 ,763 2,763 
1,275 2,189 2,622 2,754 2,775 2,799 2,799 2,847 2,847 
1,779 2,554 2,908 3,125 3,208 3,250 3 ,125 3,165 
1,921 2,856 3,002 3,112 3 ,127 3 ,167 3,367 
2,141 2,664 2,935 3,176 3,339 3,425 
2,506 2,933 3 ,220 3,403 3,570 
2,935 3,817 3,976 4,100 
2,588 3,406 3,888 
3,429 4,131 
3,417 

*Based on an exponential trend, we selected an annual trend factor for severity of 8.3%. 

2,763 
2,847 
3,165 
3,400 
3,483 
3,681 
4,333 
4,366 
5,168 
5,784 



Self Insured 
Year 

Development Factors 

Months of Development 

12-24 24--36 36--48 48-60 60-72 72-84 84-96 96-108 108-120 

7~ 

© 
7~ 

1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 

Average 
Column Sum 

1.910 1.210 1.122 1.004 1.009 1.004 1.000 1.000 1.000 
1.717 1.198 1.050 1.008 1.009 1.000 1.017 1.000 
1.435 1.139 1.074 1.027 1.013 0.962 1.013 
i .487 1 .051  1 . 0 3 7  1.005 1.013 1.063 
1.244 1 .101  1.082 1 .051  1.026 
1.170 1.098 1.057 1.049 
1.301 1.042 1.031 
1.316 1.142 
1.205 

1.421 1.123 1.065 1.024 1.014 1 .007  1.010 1.000 1.000 
1.353 1.114 1 .062  1.025 1.014 1 .007  1.010 1.000 1.000 

Selected Age to Age Factor 1 .353 1.114 1.062 1.025 1.014 1 .007  1.010 1.000 1.000 
Selected Cumulative Factor 1.693 1 .251  1.123 1.057 1 .031  1.017 1.010 1.000 1.000 1.000 Tail 
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EXHIBIT 5 

ABC COMPANY PAYROLL BY CLASS CODE ($000'S)  

Class 
Self Insured Code 

Year A B Total 

1984 131,004 31,004 162,008 
1985 140,001 33,00I 173,002 
1986 147,762 35,492 183,254 
1987 154,672 37,001 191.673 
1988 159,843 39,836 199.679 
1989 160,510 40,001 200,511 
1990 169,452 42,671 212,123 
1991 177,001 44,806 22[.807 
1992 185,811 47,001 232,812 
1993 196,152 49,398 245,550 
1994" 203,998 51,374 255,372 

*Based ,.m 1993 payroll trended 4%. 

EXHIBIT 6 

ABC COMPANY PROJECTION OF ULTIMATE LOSSES 
PAID LOSS PROJECTION ($000'S) 

Cumulative Projected 
Self Insured Paid De'.elopment Ultimate 

Year Loss Factor Losses 

1984 1.130 1.010 1.141 
1985 1,170 1.011 1,183 
1986 1,519 1.013 1,539 
1987 1,600 1.018 1,629 
1988 1,940 1.029 1,996 
1989 2,100 1.053 2,211 
t990 2,550 1.116 2,846 
1991 2,500 1.205 3,013 
1992 2,700 1.415 3,82 I 
1993 1,522 3 113 4,738 

Total 18,731 24,117 
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EXHIBIT 7 

ABC C O M P A N Y  PROJECTION OF ULTIMATE LOSSES 
I N C U R R E D  L O S S  PROJECTION ( $ 0 0 0 ' S )  

169 

Cumulative Projected 
Self Insured Incurred Development Ultimate 

Year Loss Factor Losses 

1984 1,130 1.000 1,130 
1985 1.190 1.000 1,190 
1986 1.519 1.000 1,519 
1987 1,690 1.005 1,698 
1988 2,000 1.013 2,026 
1989 2,110 1.028 2,169 
1990 2,550 1.059 2,700 
1991 2,675 1.128 3,017 
1992 2,995 1.277 3,825 
1993 2,600 1.753 4,558 

Total 20,459 23,833 

EXHIBIT 8 

A B C  C O M P A N Y  PROJECTION OF U L T I M A T E  L O S S E S  

A V E R A G E  S E V E R I T Y  PROJECTION 

Projected Projected 
Projected Ultimate Ultimate 

Self Insured Ultimate Incurred Loss 
Year Severity Claims ($000"s) 

1984 2,763 409 1,130 
1985 2,847 418 1,190 
1986 3,165 480 1,519 
1987 3,400 502 1,707 
1988 3,483 584 2,034 
1989 3,681 591 2,175 
1990 4,333 623 2,699 
1991 4,366 693 3,026 
1992 5,168 745 3,850 
1993 5,784 811 4,691 

Total 24,021 
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EXHIBIT 9 

ABC COMPANY PROJECTION OF ULTIMATE LOSSES BASED ON NCCI LOSTS COSTS 

z 

© 

D'~ 

Class Code = A Class Code = B 
Total 

Class Expected Class Expected Expected 
Self Insured Payroll Loss Losses Payroll Loss  Losses Losses 

Year ($000's)  Cost* ($000's)** ($000 's)  Cost* ($000's)** ($000's)  

1990 169,452 1.23 2,081 42,671 2.08 889 2,970 
1991 177,001 1.31 2,326 44,806 2.23 998 3,324 
1992 185,811 1.41 2,613 47,001 2.38 1,121 3,734 
1993 196,152 1.50 2,951 49,398 2.55 1,260 4,211 
1994"** 203,998 1.61 3,284 51,374 2.73 1,403 4,687 

*The expense componenes of the rates have been stripped out. 
**Subject to rounding error. 
***Based on 1993 payroll trended at 4%. 
Note: The loss costs for the prior years have been de-trended based on the NCCI trend factor. 

Z 
D~ 
X 



EXHIBIT 10 

ABC COMPANY PROJECTION OF ULTIMATE LOSSES 
TRENDED PURE PREMIUM APPROACH 

SELF-INSURED YEAR 1992-1994 

Selected Pure Pure 
Total Ultimate Premium Premium 

Self Insured Payroll Loss* Per $100 Trended 

Year (000's) ($000's) Payroll to 1992"* 

Selected 
Pure 

Premium 

Selected 
Ultimate 

Loss 
($000's) 

z 

© 
7o 
D~ 

1988 199,679 
1989 200,511 
1990 212,123 
1991 221,807 
1992 232,812 
1993 245,550 
1994 255,372 

2,011 1.007 1.370 
2,190 1.092 1.376 
2,773 1.307 1.524 
3,015 1.359 1.468 

1 . 4 3 5 " * *  

1.550 
1.673"*** 

3,341 
3,806 
4,272 

C3 © 
~r 

Z 

X 
*Based on an average of  thc paid and incurred projections. 
**Selected Trend Factor of  8.00% based on analyzing industry data. 
**'1.435 = {(1.37 + 1.376 + 1.524 + 1,468)/4}.  
***'1 .673 = (1.435)*(1.08)^2. 
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EXHIBIT 11 

ABC COMPANY SELECTION OF ULTIMATE LOSSES 
BORNHUETTER-FERGUSON PROJECTION METHOD ($000'S) 

Preliminary 

Selected Expected** 

Self Insured Ultimate Percentage Expected Incurred Indicated 

Year Loss* Unreported 1BNR Loss Ultimate 

1992 3,734 21.69% 810 2,995 3,805 

1993 4,211 42.96% 1,809 2,600 4,409 

*Based on the expected loss method from Exhibit 9. 
**Selected from Exhibit 2. The expected percentage unrepo~ed = (1 (1/LDF)), 

EXHIBIT 12 

ABC COMPANY PROJECTION OF ULTIMATE LOSSES 
EXCESS OF 500,000 PER CLAIM ($000's) 

Expected* Projected 

Self Insured Unlimited Excess** Excess 
Year Losses Ratio Losses 

1990 2,970 0.030 89 
1991 3,324 0.032 106 

1992 3,734 0.034 127 
1993 4,211 0.037 156 
1994 4,687 0.039 183 

*From Exhibit 9. 
**From Exhibit 2 of Gillam 151. As a note, we have assumed that the factors are appropriate for 
the 1990 year and adjusted the excess ratio by adjusting the loss limit for inflationary factors for the 
retire recent 3,'ears. For example, a S5(R),/IO0 loss limit in 1990 is equivalent to a $450,(X)0 loss limit 
in 1992. 
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EXHIBIT 13 

ABC COMPANY PROJECTION OF EXCESS LOSSES 
BORNHUETTER-FERGUSON METHOD ($000'S) 

At September 30, 1993 

173 

Expected Projected 
Projected Percentage of Estimated Reported Ultimate 

Self Insured Excess Excess Losses IBNR Case Excess 
Year Losses* Unreported Reserves Incurred Losses 

1990 89 55% 49 0 49 
1991 106 70% 74 300 374 
1992 127 80% 102 0 102 
1993 156 95% 148 0 148 
1994 183 100% 183 0 183 

*From Exhibit 12. 
Note: For purposes of this paper, it is assumed that the entity will not have any excess claims for 
self-insured years 1989 and prior. 
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EXHIBIT 14 

ABC COMPANY SELECTION OF ULTIMATE LOSSES ($000' S) 

7. 

z 

Self Insured 
Year 

Indicated Ultimate Gross Loss Based on: 
(A) (B) (C) 

Selected 
Trended Bornhuetter- Ultimate Projected Retained 

Pure Prem Ferguson Gross Excess Paid 
Approach Projection Loss Recoveries Losses 

Paid Incurred Average Expected 
Loss Loss Severity Loss 

Projection Projection Projection Method 

(A)--(B)-(C) 

Total 
Retained 
Reserves © 

1984 1,141 1,130 1,130 xxxx xxxx xxxx 1,136 0 1,130 6 
1985 1,183 1,190 1,190 xxxx xxxx xxxx 1,187 0 1,170 17 
1986 1,539 1,519 1,519 xxxx xxxx xxxx 1,529 0 1,519 10 
1987 1,629 1,698 1,707 xxxx xxxx xxxx 1,664 0 1,600 64 
1988 1,996 2,026 2,034 xxxx xxxx xxxx 2,011 0 1,940 71 
1989 2,211 2,169 2,175 xxxx xxxx xxxx 2,190 0 2,100 90 
1990 2,846 2,700 2,699 2,970 xxxx xxxx 2,804 49 2,550 205 
1991 3,013 3,017 3,026 3,324 xxxx xxxx 3,451 374 2,500 577 
1992 3,821 3,825 3,850 3,734 3,341 3,805 3,807 102 2,700 1,005 
1993 4,738 4,558 4,691 4,211 3,806 4,409 4,521 14...~8 1,522 2,851 

Toml 24,117 23,833 24,021 24,300 673 18,731 4,896 
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EXHIBIT 15 

ABC COMPANY PROJECTED ULTIMATE LOSSES FOR 
SELF INSURED YEAR 1994 ($000's) 

( 1 ) (2) (3) (4) (5) (6) 
Self Expected Trended Selected Projected Projected 

Insured Loss Pure Premium Gross Excess Retained 
Year Method Method Losses Losses Losses 

1994 4,687 4,272 4,480 183 4,297 

Unpaid Claim Liability @ 12/31/93" 4,896 

Required Fund 9,193 

Col. 2: From Exhibit 9. 
Col. 3: From Exhibit 10. 
Col. 5: From Exhibit 12. 
*From Exhibit 14. 



EXHIBIT 16 

XYZ MANUFACTURING COMPANY RETAINED WORKERS COMPENSATION LOSS EXPERIENCE 

Medical Indemnity Total 
Accident Medical Reserves Indemnity Reserves Total Reserves 

Year Paid as of 12/31/93 Paid as of 12/31/93 Paid as of 12/31/93 

1988 N/A $ 311,429 N/A $ 467,143 N/A $ 778,572 
1989 N/A 80,355 N/A 120,533 N/A 200,888 
1990 N/A 128,002 N/A 192,003 N/A 320,005 
1991 N/A 180,331 N/A 270,497 N/A 450,828 
1992 N/A 460,633 N/A 690,949 N/A 1,151,582 
1993 593,137 470,377 400,991 875,066 994,128 1..,345,443 

Toml $593,137 $1,631,127 $400,991 $2,616,191 $994,128 $4,247,318 

7; 
70 

Z 

(3 
7~ 
7~ 

Note: Values have been projected through year-end based on data through September 30. © 
K 

Paid Paid Total 
Calendar Medical Indemnity Paid 

Year Losses Losses Losses 

z 
>, 

1988 $ 200,663 $ 209,649 $ 410,312 
1989 500,794 359,415 860,209 
1990 670,651 490,477 1,161,128 
1991 700,133 600,702 1,300,835 
1992 790,143 800,853 1,590,996 
1993 950,949 1,100,759 2,051,708 

To~l $3,813,333 $3,561,855 $7,375,188 

"Z 

X 

7~ 
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EXHIBIT  17 

DERIVATION OF CASE DEVELOPMENT FACTORS BASED ON 
NCCI DATA FOR A SPECIFIC STATE 

Cumulative Medical Development 
Factors 

Cumulative Indemnity Development 
Factors 

Age Paid Incurred Case Paid Incurred Case 

72 1.177 1.069 1.752 1.218 1.043 1.304 
60 1.203 1.070 1.633 1.288 1.058 1.325 
48 1.237 1.076 1.584 1.416 1.069 1.282 
36 1.299 1.074 1.427 1.659 1.092 1.269 
24 1.463 1.103 1.419 2.197 1.170 1.364 
12 2.611 1.346 1.714 4.297 1.517 1.799 

EXHIBIT 18 

XYZ MANUFACTURING COMPANY CASE DEVELOPMENT 
METHOD 

Indicated 
Medical Medical Case Total Unpaid 

Accident Reserves Development Medical Loss 
Year as of 12/31/93 Factor as of 12/31/93 

1988 $ 311,429 1.752 $ 545,615 
1989 80,355 1.633 131,232 
1990 128,002 1.584 202,746 
1991 180,331 1.427 257,373 
1992 460,633 1.419 653,445 
1993 470,377 1.714 806,299 

Total $1,631, 127 $2,596,710 
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EXHIBIT 19 

X Y Z  M A N U F A C T U R I N G  C O M P A N Y  C A S E  D E V E L O P M E N T  

M E T H O D  

Indemnity Indicated 
Indemnity Case Total Unpaid 

Accident Reserves Development Indemnity Loss 
Year as of 12/31/93 Factor as of 12/31/93 

1988 $ 467,143 1.304 $ 609,038 
1989 120,533 1.325 159,682 
1990 192,003 1.282 246,065 
1991 270,497 1.269 343,311 
1992 690,949 1.364 942,227 
1993 875,066 1.799 1,574,347 

Total $2,616,191 $3,874,670 

EXHIBIT 20 

S E L E C T E D  P A Y M E N T  P A T T E R N S  B A S E D  ON NCCI D A T A  FOR A 

SPECIFIC  STATE 

Paid Losses as a Percent of Ultimate Losses 
Medical Indemnity 

Age Cumulative Incremental Cumulative Incremental 

72 0.850 0.018 = pS 0.823 0.047 = p5 
60 0.831 0.023 = p4 0.776 0.070 = p4 
48 0.808 0.039 = P3 0.706 0.103 = p3 
36 0.770 0.086 = p2 0.603 0.148 = p2 
24 0.684 0.301 -- pi 0.455 0.222 = PJ 
12 0.383 0.383 = pO 0.233 0.233 = pO 



EXHIBIT 21 

XYZ MANUFACTURING COMPANY CALENDAR YEAR INCREMENTAL PAYMENT METHOD 
MEDICAL LOSSES 

Calendar Year Incremental Payments  
Accident Trend 

Year (in Years) 1991 1992 1993 1994 & Subsequent  

1988 AY0 0 0.039 0.023 0.018 0.150 
1989 AYI 1 0.099 0.044 0.026 0.193 
1990 AY2 2 0.393 0.113 0.050 0.251 
1991 AY3 3 0.573 0.450 0.129 0.345 
1992 AY4 4 0.656 0.515 0.542 
1993 AY5 5 0.750 1.209 

Total 1.104 1.286 1.489 2.690 

Calendar Year Unpaid Loss Factor: 

Calendar Year Paid Losses: 

Indicated Unpaid Medical Losses @ 12/31/93: 

Loss Trend: 10.0% 
Exposure Trend: 4.0% 

r = 14.4% 

Indication 1 Indication 2 Indication 3 Selected 

2.436* 2.092 1.806 

700,133 790,143 950,949 

1,705,762 1,652,842 1,717,392 1,691,999 

"2.436 = 2.690/1.104 or the sum of all future payments (1994 and subsequent) for accident years 1988-1993 divided by calendar year 1991 payments 
on accident years 1988---1991. ..~ 

~D 



EXHIBIT 22 

XYZ MANUFACTURING COMPANY CALENDAR YEAR INCREMENTAL PAYMENT METHOD 
INDEMNITY LOSSES 

Calendar Year Incremental Payments  
Accident Trend 

Year (in Years) 1991 1992 1993 1994 & Subsequent  

Z 

© 
7~ 

1988 AY0 0 0.103 0.070 0.047 0.177 
1989 AYI 1 0.158 0.111 0.075 0.240 
1990 AY2 2 0.255 0.169 0.119 0.337 
1991 AY3 3 0.286 0.273 0.181 0.488 
1992 AY4 4 0.306 0.293 0.717 
1993 AY5 5 0.328 1.082 

Total 0.803 0.930 1.043 3.041 

:m 

Fr~ 
~7 

© 
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Calendar Year Unpaid Loss Factor: 

Calendar  Year Paid Losses: 

Indicated Unpaid Indemnity Losses @ 12/31/93: 

Indicated Unpaid Medical Losses @ 12/31/93: 

Indicated Total Unpaid Losses @ 12/31/93: 

Loss  Trend: 3.0% 
Exposure Trend: 4.0% 

r =  7.1% 

Indication 1 Indication 2 Indication 3 Selected 

3.788* 3.270 2.916 

600,702 800,853 1,100,759 

2 ,275,596 2,618,481 3 ,209,583 2 ,701,220 

1,705,762 1,652,842 1,717,392 

3,981,358 4,271,323 4,926,975 

"3.788 = 3.041/.803 or the sum of all future payments (1994 and subsequent) for accident years 1988-1993 divided by calendar year 1991 payments on 
accident years 1988-1991. 



EXHIBIT 23 

X Y Z  MANUFACTURING COMPANY DE-TRENDED B O R N H U E T F E R - F E R G U S O N  M E T H O D  

Accident 
Year 

Indemnity Medical 
Unpaid 

Selected % Estimated Selected % Estimated Estimated Case Claim 
Ultimates* Unreported IBNR Ultimates** Unreported IBNR IBNR Reserves Liability 

© 

1993 
1992 
1991 
1990 
1989 
1988 

1,800,000 34 .08% 613,448 
1,680,672 14 .53% 244,200 
1,569,255 8 . 4 2 %  132,208 
1,465,224 6 . 4 5 %  94,575 
1,368,090 5 . 4 8 %  74,999 
1,277,395 4.12% 52,663 

Total 1,212,094 

* Indemnity Trend Factor: 7.1% 

Indemnity Amount LDF 

1,500,000 25.71% 385,587 
1,311,189 9.34% 122,441 
1,146,144 6.89% 78,971 
1,001,874 7.06% 70,764 

857,764 6.54% 57,293 
765,528 6.45% 49,412 

764,468 

** Medical Trend Factor: 14.4% 

Ultimate Loss Projection 
Accident Year 1993 

Ultimate Medical Amount 

999,035 1,345,443 2,344,478 
366,641 1,151,582 1,518,223 
211,179 450,828 662,007 
165,339 320 ,005  485,344 
132,292 200,888 333,180 
102,075 778,572 880,647 

6,223,880 

LDF Ultimate 

Z 
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© 

Z 

© 
z 

$ 
cL'_ 

Paid 400,991 4.297 
Incurred 1,276,057 1.517 

Selected 

1,723,058 Paid 593,137 
1,935,778 Incurred 1,063,514 

1,800,000 Selected 

2.611 1,548,681 
1.346 1,431,490 

1,500,000 
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EXHIBIT 24 

XYZ MANUFACTURING COMPANY PROJECTED ULTIMATE 
LOSSES FOR SELF-INSURED YEAR 1994 

Indemnity Medical Total 

1,800,000 1,500,000 3,300,000 
1.03 1.10 
1.04 1.04 

1,928,160 1,716,000 3,644,160 

Selected 1993 Ultimate Loss 
Selected Annual Trend Factor 
Anticipated Exposure Growth 
Ultimate Losses Self Insured Year 
1994 

EXHIBIT 25 

XYZ MANUFACTURING COMPANY SELECTED FUND AT 
12/31/93 ($000' S) 

1) Estimated Unpaid Claim Liability-- 6,471 
Case Development Method 

2) Estimated Unpaid Claim Liability-- 4,393 
Incremental Payment Method 

3) Estimated Unpaid Claim Liability-- 6,224 
De-Trended Bornhuetter-Ferguson Method 

4) Selected Unpaid Claim Liability 5,696 
as of December 31, 1993 
{Average[(l) + (2) + (3)] } 

5) Selected Claim Costs for 1994 3,644 

6) Required Fund at 12/31/93 9,340 
(4) + (5) 
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EXHIBIT 26 

PROBABILITY DISTRIBUTION OF LOSSES 
EXPECTED UNLIMITED LOSSES = $500,000 

No Per Occurrence Loss Limitation 

Probability 
Z C~ 

@ 

30% 
25% 
20% 
15% 
10% 

5% 
0% 

0-200 1200-4001400-6001600-800 1800-10001 1000+ 
I series 111 25.8% 29.5% I 19.1% I 10.5% I 5.4% I 9.6% 

Cost  A m o u n t s  ($000)  
For Mustfatlve Purposes Only 
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EXHIBIT 27 

PROBABILITY DISTRIBUTION OF LOSSES 
EXPECTED UNLIMITED LOSSES = $500,000 

No Per Occurrence Loss Limitation 

Relativity 
Probability Loss to Expected 

Level Amount  Values 

Exp value $ 500,000 1.00 
75% 605,000 1.21 
90% 980,000 1.96 
95% 1,425,000 2.85 

EXHIBIT 28 

ABC C O M P A N Y  W O R K E R S  C O M P E N S A T I O N  P R O J E C T E D  

P A Y O U T  P A T T E R N  

Number  of  Discounted 
Years From Cumulative Incremental Incremental 
Inception of Loss Loss Loss 
the Exposure Payments  Payments  Payments 

I 32 32 31 
2 71 39 35 
3 83 12 11 
4 90 7 5 
5 95 5 4 
6 97 2 2 
7 98 1 l 
8 99 0 0 
9 99 0 0 

10 99 0 0 
11 99 0 0 
12 100 0 0 
13 100 0 0 

Total 100 90 

Discount @ 6.0% 

Discount Factor 0.90 
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EXHIBIT 29 

CONFIDENCE LEVEL ANALYSIS 

Expected Losses = 500,000 
No Per Occurrence Loss Limitation 

Relativity 

to 
Probability Loss Expected 

Level Amount Value 

Expected 
Value $ 500,000 1.00 
75% 605,000 1.21 
90% 980,000 1.96 
95% 1,425,000 2.85 

Expected Ultimate Losses = 500,000 
Per Occurrence Loss Limitation = 50,000 

Relativity 

Total To 
Probability Loss* Expected Insurance Expected 

Level Amount Excess Costs Value 

Expected 
Value $321,000 223,750 544,750 1.00 
75% 398,040 223,750 621,790 1.14 
90% 587,430 223,750 811,180 1.49 
95% 747,930 223,750 971,680 1.78 

*F.xcludes 179,(X)0 of expected excess losses which based on a 25% Ic, ading results in an excess 
premium amount of 223,750. 

For Illustrative Purposes Only 
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EXHIBIT 30 

PROBABILITY DISTRIBUTION OF LOSSES 
EXPECTED UNLIMITED LOSSES = $500,000 

Per Occurrence Retention of $50,000 

Probability 

0 - 200 
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MEASUREMENT OF ASBESTOS BODILY INJURY 
LIABILITIES 

SUSAN L. CROSS AND JOHN E DOUCETTE 

Abstract 

This paper presents a model for projecting an in- 
surer's or reinsurer's potential asbestos bodily injury 
(BI) liabilities through an analysis of exposed policy lim- 
its. The model projects the ground-up aggregate liabili- 
ties of individual insureds, allocates those liabilities to 
policy years, and carves out the portion of the liabilities 
falling in the layers of coverage written by the insurer or 
reinsurer That is, the underlying process of claim filings 
against the insureds is modeled and then compared to 
the insurer's or reinsurer's identified policy exposures. 

1. INTRODUCTION 

This paper presents a methodology for estimating an insurer's 
or reinsurer's potential liabilities from asbestos-related bodily 
injury (BI) claims associated with notified exposures. Property 
damage (PD) claims resulting from asbestos are not considered in 
this model. The approach is a policy limits analysis on a sample 
group of insureds. 

The first step in developing the methodology is obtaining an 
understanding of the nature of the potential liabilities. Thus, our 
paper begins with a brief discussion of the significant historical 
developments relating to the emergence of asbestos-related BI 
claims. Section 2 presents historical uses of asbestos, problems 
arising from asbestos use, legal issues related to the asbestos 
problem, and insurance issues emerging from asbestos litigation. 
This information is important in understanding how these claims 
differ from traditional products and general liability BI claims 
and, therefore, why traditional actuarial projection techniques are 

187 
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not directly applicable. Section 3 describes the asbestos diseases: 
mesothelioma, lung and other cancers, asbestosis, and pleural 
plaques. 

Knowledge of the unique characteristics of these diseases is 
necessary to understand the legal issues surrounding asbestos BI 
insurance coverage litigation. Although this paper provides an 
overview of  relevant legal issues, it is by no means a compre- 
hensive review of  such issues. Individuals involved in handling 
asbestos claims and analyzing asbestos liabilities should seek le- 
gal advice as necessary. 

Section 4 explains the motivation for the model presented in 
this paper as well as the requirements of any methodology that 
projects asbestos BI liabilities. Section 5 presents details on the 
steps in the asbestos BI model. The steps may be grouped into 
the following categories: 1) determine the sample group and col- 
lect data; 2) adjust the sample group data; 3) use the model to 
estimate the insurance or reinsurance company's  liabilities for 
the sample group; 4) conduct sensitivity testing of  model as- 
sumptions; and 5) extrapolate the model results to all insureds. 
To facilitate the discussion, we run a fictitious reinsurer, ABC 
Re, through each of the steps of the model. Finally, Section 6 
discusses strengths and weaknesses of the model and identifies 
areas related to asbestos liability projections requiring further 
research. 

2. BACKGROUND 

Asbestos and Its Uses 

What is asbestos? It is a generic term referring to a variety 
of naturally occurring minerals which share similar properties. 
There are six major recognized species of asbestos: chrysotile 
(white asbestos), amosite (brown asbestos), crocidolite (blue as- 
bestos), anthophyllite, tremolite, and actinolite. These six species 
of asbestos come in two general forms: chrysotile comes in 
the serpentine form, and the other five come in the amphibole 
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form [5, p. I-1-1]. Chrysotile represents over 95% of all as- 
bestos used in buildings [13]. Though each variety of asbestos 
has unique characteristics, in general the asbestos minerals form 
fibers which are incombustible, flexible, durable, strong, and re- 
sistant to heat, corrosion, and wear. Because of these properties, 
asbestos was targeted for use in an estimated 3,000 commercial, 
public, and industrial applications [5, p. I-1-2]. Examples include 
building insulation, pipe coverings, wire coatings, brake linings, 
roofing products, and flooring products. By the year 1900, as- 
bestos was in use in the building construction industry. Asbestos 
was also used extensively in World War II ship building. Follow- 
ing the war, there was significant expansion of the use of asbestos 
products in construction and manufacturing. Exhibit 1 provides 
details on the uses and composition of asbestos-containing build- 
ing products as of the mid-1980s. "Friable" means that the mate- 
rial can be reduced to powder by hand pressure. Other commonly 
cited products in asbestos litigation include industrial ceramic 
furnace products, ceiling tiles, and heat protection equipment 
(e.g., gloves, blankets, jackets). 

Problems Arising from Asbestos Use 

The virtually indestructible nature of asbestos fibers, which 
makes it so attractive in commercial applications, causes asbestos 
to be a health risk to humans. When airborne asbestos fibers are 
inhaled into the lungs, they tend to persist indefinitely. Thus, ex- 
posure to asbestos dust has been the cause of such diseases as 
mesothelioma, lung cancer, asbestosis, and pleural plaques. His- 
torically, the population with the greatest exposure to asbestos 
dust was workers involved in the production or installation of as- 
bestos [12, pp. 21-52]. However, significant numbers of claims 
relate to other workers and bystanders in proximity to the as- 
bestos products or operations. 

The United States government did not take action to limit 
workers' exposure to asbestos until the early 1970s. Today, the 



190 MEASUREMENT OF ASBESTOS BODILY INJURY LIABILITIES 

permissible exposure limit for workers exposed to asbestos set 
forth in the Occupational Safety and Health Administration's 
(OSHA) Asbestos Regulations is less than one one-hundredth of 
the average exposure level of an insulation worker prior to 1970 
[11; 12, pp. 99-120]. Table 1 shows the exposure standards over 
the past 20 years. In 1989, the Environmental Protection Agency 
(EPA) issued a ban on the manufacture, importation, processing, 
and distribution in commerce of  asbestos in almost all products 
[4]. The legality of the ban is currently being addressed in court. 

Legal Issues Related to the Asbestos Problem 

Prior to the asbestos litigation onslaught during the 1970s and 
1980s, asbestos-related occupational diseases were traditionally 
compensated through workers compensation insurance. Claims 
have been filed under workers compensation since the 1950s 
for asbestos-related disease; the first significant liability lawsuit 
against asbestos manufacturers was not filed until 1970. 

The first significant asbestos-related lawsuit, Borel v. Fibre- 
board, filed in 1970 [1] and decided in 1973, was a landmark case 
in asbestos litigation. The decision held that a defendant man- 
ufacturer of insulation materials containing asbestos could be 
found strictly liable when: 1) an individual's disease was caused 

TABLE 1 

OSHA EXPOSURE STANDARDS 

Year Enacted 

Permissible Fibers/ 
Cubic Centimeter 
8 Hour Average 

1972 5 ffcc 
1976 2 f/cc 
1983 .5 ffcc 
1988 .2 ffcc 
1994 .1 ffcc 

Source: OSHA 
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by exposure to the defendant 's product, and 2) despite the de- 
fendant's knowledge of  the risk, the defendant failed to provide 
adequate warning to the individual. In reaching its decision, the 
court found that asbestos was defective and "unreasonably dan- 
gerous" under the law. The court also stated that all asbestos 
manufacturers found liable would be "jointly and severally" li- 
able for the entire injury if they are unable to demonstrate di- 
visible harm. The burden of demonstrating divisible harm was 
placed on the manufacturer. The Borel decision opened the door 
for further actions against manufacturers. Since Borel, there has 
been an expansion of the theories of liability applied in asbestos 
litigation. 

As additional claims were filed in the late 1970s, defendants 
pursued coverage for these claims under their products liability 
insurance policies. The long latency period of asbestos-related 
diseases (i.e., an asbestos-related disease may not manifest it- 
self for 40 or more years after first exposure [12, pp. 104- 
106]) required legal decisions regarding the date of  occurrence of  
asbestos-related BI in order to determine which insurance poli- 
cies were triggered. Consequently, beginning in 1980, insurance 
coverage decisions were handed down by the courts. The de- 
cisions have generally followed either a continuous trigger (or 
injury-in-fact trigger interpreted similarly to a continuous trig- 
ger) or, in some cases, an exposure trigger. There has been one 
case decided on a manifestation trigger basis [3] and one case 
based on a combination of exposure and manifestation triggers 
[16]. Under the continuous trigger theory, injury is deemed to oc- 
cur continuously from the first inhalation of the asbestos fibers 
through the manifestation of the disease. Thus, any and all poli- 
cies in effect during this time period can be triggered and called 
upon to pay the claim. Under the exposure trigger theory, injury is 
assumed to occur only during the period of exposure to asbestos. 
Thus, the exposure theory triggers a subset of the policies trig- 
gered by the continuous theory. Under the manifestation trigger 
theory, no bodily injury occurs, and thus no insurance coverage 
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is triggered, until the asbestos-related disease becomes reason- 
ably capable of  medical diagnosis. Thus, manifestation theory 
triggers policies in a single year [2, pp. 25-38].  

Since the early 1980s, asbestos litigation has grown at a stag- 
gering rate. As of June 1991, there had been over 71,000 cases 
filed nationwide in federal courts. As of June 1992, there were 
over 120,000 additional lawsuits pending in state courts. Despite 
defendants '  attempts to settle lawsuits, many still face tens of  
thousands of pending suits. Note that these are numbers of  law- 
suits, not numbers of  plaintiffs. The number of  plaintiffs is even 
higher, because some lawsuits are consolidations of  hundreds or 
thousands of  plaintiffs. 

A plaintiff typically names several defendants in a suit, even 
dozens, so adding the reported number of  claims for all defen- 
dants would overstate the total number of  claims. Many defen- 
dants are being named in thousands of  new cases each month. 
The asbestos litigation problem is not going away and cannot be 
ignored by potential defendants or their insurers [7, 15]. 

Insurance Coverage Issues 

In practice, the method of handling claims and allocating loss 
and expense dollars to policies or self-insured periods is nego- 
tiated between the insured and its group of insurers. These ne- 
gotiations are consistent with the applicable trigger theory. With 
the total filed claim count exceeding 200,000 for some defen- 
dants, such agreements are necessary for the efficient processing 
of claims. For purposes of  this paper, we define the defendant 's  
insurance coverage block as the years of agreed-upon coverage. 
That is, through negotiations and/or litigation, insureds generally 
reach agreement with some or all of  their carriers as to which 
policy years will be triggered by asbestos claims. This block of  
policy years is referred to as the insured's coverage block. Some 
of the policy years may relate to periods of self-insurance for 
which an insured may be responsible. The coverage block forms 
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a starting point for allocation of  claim dollars to insurance cov- 
erage by defining the end points, i.e., the earliest and latest dates 
to be used in the allocation. Once the coverage block is agreed 
upon, a simplified procedure for sharing the costs (referred to as 
cost sharing agreements) may be negotiated by the responsible 
parties, or each individual claim may be allocated based on the 
particulars of the claim. 

Given the predominant trigger theories, coverage blocks gen- 
erally begin with commencement  of  asbestos product manufac- 
ture or distribution and end with either: 1) the end of the prod- 
uct's commercial use (often early to mid-1970s), or 2) the last 
year of products liability coverage without an asbestos exclu- 
sion (generally late 1970s or early to mid-1980s). However, it 
should be noted that negotiating an ending date for the cover- 
age block is likely to be problematic as insurers seek to include 
years where policies contain asbestos exclusions or other pro- 
tective underwriting measures such as per claim deductibles or 
SIRs. Such inclusion would result in a greater allocation to the 
insured, which the insured would no doubt resist. In most cases, 
the coverage block will span 15 or more years. 

It is interesting to note that unlike the absolute pollution ex- 
clusion introduced into the Insurance Services Office's (ISO) 
Comprehensive General Liability (CGL) policy in 1986, an as- 
bestos exclusion was not consistently incorporated into policies 
during a certain year. Rather, various forms of asbestos exclu- 
sions were phased in during the 1970s (generally late 1970s) 
and early 1980s, first for primary manufacturers and later for 
secondary manufacturers and distributors. Even today, many in- 
surers do not routinely incorporate an asbestos exclusion in all 
CGL policies. This complicates the determination of the end of 
the coverage block for each insured. 

Today there continues to be considerable unresolved insur- 
ance coverage litigation. This litigation tends to revolve around 
three issues: 1) existence and terms of lost policies, 2) interpre- 
tation of asbestos exclusion wordings, and 3) applicability of the 
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known loss exclusion [2, pp. 25-110]. In addition to these cited 
issues, a significant amount of litigation and negotiation centers 
upon issues of  number of occurrences as relates to policy limits 
and SIR/deductible application, duty to defend, horizontal ver- 
sus vertical exhaustion of limits, and contributions for uninsured 
periods. Although unresolved issues may hinder analysis of an 
insurer's potential liabilities for a particular insured related to 
specific years of coverage, case law is sufficiently established to 
permit the estimation of a range of total potential liabilities for 
the known asbestos defendant group. 

The trend in asbestos litigation of an increasing universe of 
defendants must be understood before quantifying liabilities for 
a particular group of  insureds. Early in the asbestos litigation 
process, only major manufacturers and distributors of asbestos 
were named as defendants in the suits. However, the asbestos 
defendant group has expanded considerably over time. This is 
due in large part to the bankruptcy of major asbestos defen- 
dants such as Johns-Manville and UNR Industries as well as 
the search by plaintiff attorneys for other sources of compen- 
sation. In addition, significant expansion occurred around 1989 
when defendant Owens Corning Fiberglas drew a large number 
of companies into the asbestos litigation via third-party actions 
[9]. Companies first identified as defendants subsequent to 1989 
are generally companies with more limited asbestos exposures 
due to the encapsulation of asbestos in their products or their in- 
volvement only as a local or regional distributor. However, these 
companies and their insurers are still facing potentially substan- 
tial indemnification and defense costs. A further expansion of 
the defendant group may yet occur. In this paper we do not ad- 
dress quantification of  an IBNR provision associated with as yet 
unidentified defendants. Such a provision could be estimated by 
extrapolating from historical emergence activity. 

Another insurance issue requiring discussion is the type of 
coverage under which asbestos BI defendants are filing and the 
implications of limits under that coverage. Since the asbestos lit- 
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igation explosion, insurers' asbestos-related costs under workers 
compensation have been limited because employees have sued 
the manufacturers and distributors of asbestos products rather 
than file workers compensation claims against employers. As- 
bestos BI claims have historically been filed by defendants as 
products and completed operations claims under general liability 
(GL) policies. The majority of such policies include an aggre- 
gate limit applicable to products claims. As thousands of claims 
are allocated across an insured's coverage block, the portion of 
the claims allocated to each policy accumulates to exhaust that 
policy's aggregate limit. 

In situations where no aggregate limit is included in the pol- 
icy, the asbestos claims are applied against the occurrence lim- 
its and a determination of the number of occurrences must be 
made. Court decisions have been mixed on whether the deci- 
sion to manufacture asbestos products constitutes a single occur- 
rence, whether each claim is a separate occurrence, or whether 
some other definition of occurrence should apply. Thus, poli- 
cies without aggregate limits may end up paying multiples of 
the occurrence limits. 

In the mid-1980s, several defendants and insurers formed the 
Asbestos Claims Facility (ACF) to deal with the enormous num- 
ber of asbestos claims. Participants in the ACF addressed the 
treatment of policies without aggregate limits, as well as other 
coverage issues, in the Wellington Agreement signed by insureds 
and insurers [2, pp. 100-109]. The Wellington Agreement spec- 
ified an aggregate limit as a multiple of the per occurrence limit, 
with the multiple varying with the magnitude of the per occur- 
rence limit. Although the ACF was dissolved in 1988, the pro- 
visions of the Wellington Agreement remain. Thus, most prod- 
ucts liability coverage is subject to aggregate limits for indem- 
nity. 

A number of asbestos defendants owned subsidiaries that in- 
stalled asbestos products as well as manufactured and/or dis- 
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tributed the products. As these defendants are exhausting their 
products liability coverage, they are seeking premises and oper- 
ations coverage for claims related to the installation subsidiary. 
Since general liability policies did not generally contain aggre- 
gate limits for premises and operations claims, significant addi- 
tional coverage could be available to defendants if they are suc- 
cessful in obtaining coverage on this basis. Also, the expansion 
of the defendant group to include premises owners and opera- 
tors, as discussed in a later section, has resulted in additional 
premises and operations claim filings. 

3. ASBESTOS DISEASES 

Life-threatening or disabling diseases can be caused by expo- 
sure to airborne asbestos, particularly at the high exposure levels 
in occupational settings during the first 70 years of this century. 
Diseases associated with asbestos exposure include mesothe- 
lioma, lung and other cancers such as gastrointestinal, asbesto- 
sis, and pleural plaques. Mesothelioma has been strongly asso- 
ciated with asbestos exposure. Lung cancer and other cancers 
have been associated with asbestos exposure at occupational lev- 
els. Asbestosis has been observed mainly after high occupational 
exposure to asbestos [6]. 

According to the Journal of the National Cancer Institute, "as- 
bestos is the only known risk factor for mesothelioma, a tumor 
of the membranes lining the chest or abdominal cavities" [8]. 
It should be noted that cases of mesothelioma have been diag- 
nosed in individuals without known asbestos exposure. However, 
if individuals can demonstrate exposure to asbestos, the courts 
appear to universally accept that mesothelioma was caused by 
such exposure. 

Mesothelioma generally manifests itself 15 to 50 years from 
first exposure to asbestos and is almost always fatal within one 
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to two years of diagnosis. Figure 1 shows three functions derived 
from epidemiological studies and used to project future mesothe- 
lioma incidence rates for an insulation worker with cumulative 
asbestos exposure of 250 fiber-years/ml [12, pp. 101-106]. Cu- 
mulative exposure is calculated as the sum over all years of the 
annual averages of the average exposure levels of an individ- 
ual measured in fibers per milliliter (i.e., measured on a basis 
consistent with the OSHA standards presented in Table 1). For 
example, an individual exposed to an average of 10 fibers/ml 
for 25 years would have a cumulative exposure of 250 fiber- 
years/ml. This would be the same as an exposure of 25 fibers/ml 
for 10 years. 

The graph demonstrates the relationship between mesothe- 
lioma incidence rates and time since first exposure (i.e., the la- 
tency period). This helps explain why workers exposed in the 
1950s and 1960s are just now filing claims and why, when in- 
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corporating exposures from the 1970s, claim reportings are ex- 
pected to continue well into the next century. 

Epidemiological studies have demonstrated an increased risk 
of lung and other cancers among workers exposed to asbestos. 
For insulation workers with cumulative exposure of 250 fiber- 
years/ml, the risk of lung cancer is two to seven times the nor- 
mal risk. Following a minimum latency period of 8 to 10 years 
from date of first exposure, the relative risk (i.e., the risk for an 
asbestos-exposed population versus an unexposed population) 
of developing lung cancer increases linearly until 35 to 40 years 
past first exposure and then begins to decrease [14]. 

Another asbestos-related disease is asbestosis. Asbestosis is 
a fibrotic or scarring process within the lung tissue, potentially 
causing an inflammatory response and fluid collection resulting 
in various levels of  disability from respiratory problems. Severe 
cases of asbestosis are generally associated with heavy occupa- 
tional exposure such as that of insulators or shipyard workers. 
While it is generally acknowledged that the relative incidence 
of asbestosis has declined in recent years, we are not aware of  
any evidence showing a similar decrease in asbestosis claim 
filings. 

The mildest of the asbestos related diseases is pleural plaques. 
Pleural plaques is a benign condition of the lungs which is gen- 
erally not debilitating. However, pleural plaques is associated 
with asbestos exposure and claims are being filed by individuals 
with this condition. Some jurisdictions do not recognize pleural 
plaques alone as a compensable injury. 

Plaintiffs with mesothelioma generally receive the highest in- 
demnity payments, averaging well over five hundred thousand 
dollars (though some individual awards total several million dol- 
lars). 

While certain lung cancer plaintiffs without contributing fac- 
tors such as smoking receive average indemnity payments com- 
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parable to mesothelioma, the overall average indemnity for lung 
cancer plaintiffs is approximately 50% of the average mesothe- 
lioma payment. Non-fatal asbestosis plaintiffs receive payments 
averaging approximately 10% to 15% of  mesothelioma pay- 
ments [10]. 

4. P R O J E C T I O N  C O N S I D E R A T I O N S  

One thing is clear with regard to projecting ultimate asbestos 
liabilities: traditional loss development techniques which rely on 
historical accident year loss development to derive development 
factors cannot be used. Traditional methodology is inappropri- 
ate for asbestos loss development because: 1) historical asbestos 
loss development is not representative of  expected future devel- 
opment; 2) asbestos loss development is not a function of  the 
age of the accident or policy year; 3) diseases caused by as- 
bestos are latent for long periods of  time; and 4) asbestos claims 
are allocated over many years based on the courts' decisions on 
occurrence of  injury. 

Any loss development patterns used .in projecting asbestos 
liabilities should reflect what is happening at the underlying in- 
sured level as well as the insurance or reinsurance company 's  
exposure. It will be shown in Section 5 that asbestos loss devel- 
opment for insurers and reinsurers does not relate to the age of  
the policy, but to factors such as the underlying claim allocation 
procedure and the attachment points and limits of the exposed 
policies. 

Any methodology for projecting an insurer's or reinsurer's 
potential liabilities for asbestos BI claims must reflect the fol- 
lowing elements of  the company's  exposure: 

• years and volume of  general liability business underwritten, 

• use and wording of asbestos exclusions, 

• type of  insureds underwritten, 
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TABLE 2 

ASBESTOS BI RISK ASSESSMENT 

GL Book 
of Business 

Characteristic Low Risk Medium Risk High Risk 

Policy Years 1986 and 1976-1985 
subsequent 

Premium Volume 
(GL Market Share) < 0.5% 0.5%-1.5% 

Asbestos Exclusion Consistent use of Consistent use of 
comprehensive comprehensive 
exclusion by exclusion by late 
early- 1970s 1970s 

Type of Insureds Small/Local Regional 
Businesses Companies 

Layers Written Very High Excess High Excess 
(> $20 million) (> $5 million) 

Aggregate Limits No Exceptions Few Exceptions 

Expense Treatment Indenmity Only Expense included 
in limit 

1975 and prior 

1.5%+ 

Asbestosis exclusion 
and inconsistent use 
until mid 1980s 

Fortune 1000 
Manufacturing/ 
Construction 

Primary/Umbrella/ 
Low Excess 

Many Exceptions 

Expense in addition 
to limit 

• layers of  liability underwritten and retained, 

• use of  aggregate limits, and 

• expense treatment in policies. 

Table 2 is useful in doing a preliminary assessment of  the level 
of  an insurance or reinsurance company's potential asbestos BI 
liabilities. It gives several characteristics relating to the general 
liability book of  business. For each characteristic there is a typ- 
ical answer for low risk, medium risk, and high risk. Low risk 
means the insurer or reinsurer is not likely to have significant 
potential asbestos liability. High risk means the insurer or rein- 
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surer is likely to have significant potential asbestos liability. This 
is not a comprehensive list of factors to consider. Obviously, the 
number of asbestos claims for insureds, average indemnity for 
insureds, and similar information are required before the poten- 
tial liability for an insurer or reinsurer can be quantified. 

Of course, these factors need to be considered in total, but 
insurers or reinsurers falling in the low risk category for all fac- 
tors (unlikely, as small businesses purchasing coverage above 
$20 million are rare) and limited claim activity to date are most 
likely not facing significant liabilities. Likewise, insurance or 
reinsurance companies consistently rated high risk should care- 
fully review their potentially significant liabilities. 

To do a more detailed and rigorous analysis of an insurance or 
reinsurance company's  liability, a projection methodology must 
be selected based on its appropriateness for the line of  busi- 
ness being reviewed. Given the unique characteristics of  asbestos 
losses, such as development being unrelated to age of policy or 
accident year, a policy limits analysis is a strong candidate for 
a methodology that can incorporate all of the necessary factors 
in an ultimate loss estimate. A policy limits analysis will be pre- 
sented in the next section. 

5. POLICY LIMITS ANALYSIS 

Our model differs from most traditional actuarial loss devel- 
opment methods by explicitly quantifying the impact of each pol- 
icy's limits when estimating the insurance or reinsurance com- 
pany's  liability. In our model, ground-up losses for each insured 
are calculated using a frequency and severity approach. For each 
policy for each insured, the losses in the insurance layer are cal- 
culated based on the policy's limits and the ground-up losses. 
Other actuarial projection methods, such as the incurred loss de- 
velopment method, are assumed to implicitly take into account 
the insured's policy limits in the selection of loss development 
factors. 
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Our approach is more appropriate for asbestos losses because 
of the extremely long latency of asbestos diseases and the allo- 
cation of an asbestos claim across several policy years. If a court 
ruled that an asbestos-related injury had been caused by expo- 
sure spanning 30 years, all 30 years of insurance policies could 
be triggered. Typically over such a long period the defendant's 
policy limits have grown. A primary policy written in 1948 may 
have been at $50,000 limits, while a primary policy written in 
1977 may have been at $1 million limits. This change in limits 
needs to be reflected, at least in the aggregate. 

A policy limits analysis of a sample group of defendant com- 
panies can be supplemented with individual case estimates for 
defendants with unusual exposures to provide an assessment for 
all known asbestos defendants. Unusual exposures could include 
policies without aggregate limits or those with significant out- 
standing coverage issues. 

In the remainder of this section, we discuss our asbestos BI 
model, from the initial stages involving the sample group deter- 
mination to extrapolation of the model results. The steps of the 
policy limit analysis are as follows: 

I. Determine the sample group and collect data. 

1. Determine the desired group of insured defendants to 
be included in the detailed analysis; 

. Collect information on each defendant's claim experi- 
ence and the company's exposure to the defendant's 
asbestos claims; and 

3. Re-evaluate which insureds to include in the sample 
group based on the compiled information. 

II. Adjust the policy exposure data. 

4. Adjust the sample group's policy information to restate 
it on a ground-up basis. 
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III. Use the model to estimate the insurance or reinsurance com- 
pany's liability for the sample group. 

5. Project future aggregate ground-up costs for each sam- 
ple group defendant; 

6. Allocate the aggregate ground-up costs to years within 
the defendant 's coverage block; 

7. Determine the amount of the ground-up loss and ex- 
pense in each year falling in the layers of coverage 
provided by the insurer or reinsurer; and 

8. Sum the losses in the insurance layer across all sample 
group defendants. 

IV. Conduct sensitivity testing of the model's parameters and 
make adjustments. 

9. Test alternative scenarios regarding future claim activity 
and alternative claim allocation procedures; and 

10. Develop a range of outcomes for the sample group 
based on the sensitivity analysis. 

V. Extrapolate model results from the sample group to all in- 
sureds. 

11. Use the model results to develop assumptions applica- 
ble to the remaining group of insured defendants; and 

12. Incorporate individual case estimates for unusual expo- 
sures. 

In the following sections, we discuss each of these steps. 

Determine the Sample Group and Collect Data 

The use of a sample group in estimating liabilities for a large 
group of insureds is sometimes desirable. For large insurers or 
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reinsurers, it may not be feasible to model the future claim ac- 
tivity for all insured asbestos defendants. For these companies, 
the number of insureds who may have filed precautionary no- 
tices related to potential asbestos claim activity could easily total 
five hundred or even one thousand. Information may be limited 
on certain defendants, including a large number of defendants 
whose exposure to asbestos claims is small, due to a small mar- 
ket share or the use of encapsulated asbestos only. The sample 
group must be representative of the total exposures of the com- 
pany so that an extrapolation of the model results to the remain- 
ing exposures can be done. 

To facilitate selection of a sample group and extrapolation of 
model results for insurance and reinsurance companies, catego- 
rize all potential defendants in the asbestos universe into five 
tiers. Each tier rating is based upon the nature and extent of po- 
tential asbestos liabilities of the defendant. Thus, the first step 
in determining the appropriate sample group for an insurer or 
reinsurer is to apply a tier rating to each of the insureds. 

The first tier includes defendants who have been involved in 
asbestos litigation since its inception and who were the primary 
manufacturers, suppliers, or miners of raw asbestos or producers 
of asbestos products throughout North America. Each defendant 
in this category is estimated to face ground-up ultimate aggre- 
gate liabilities of $1 billion or more. Considering that across 
the industry fewer than 20 companies fall into this category and 
the required information on these defendants is generally avail- 
able through the claim department and/or public sources, all of 
these defendants should be reviewed for inclusion in the sample 
group for detailed model or individual analysis. Since most 
Tier 1 insureds are expected to exhaust available products lia- 
bility coverage, individual review may be substituted for detail- 
ed modeling. In such cases, individual analysis may involve 
simply verifying that reserves have been established to policy 
limits. 
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Our second tier includes defendants who have also been in- 
volved in asbestos litigation almost since inception, but due to 
lower market shares or more limited-use products, their estimated 
ground-up ultimate liabilities are in the $100 million to $1 billion 
range. Tier 2 would include manufacturers of asbestos-containing 
products such as those used in the construction, petrochemical, 
and shipbuilding industries as well as smaller mining concerns. 
The distinction between Tiers 1 and 2 is subject to some judg- 
ment. Based on our current estimates, there are approximately 
50 Tier 2 defendants, with any one insurer having exposure to a 
subset of this group of defendants. A majority of  a company 's  
exposure to Tier 2 defendants should be included in the sample 
group. 

The third and fourth tiers include the remaining hundreds of  
non-railroad defendants that have been enjoined as third party 
defendants brought into the asbestos litigation as Tier 1 and Tier 
2 defendants have filed for bankruptcy protection. Tier 3 in- 
cludes those defendants whose exposure relates to encapsulated 
and similar low exposure asbestos products (e.g., friction and 
protective products) and local or regional suppliers and distribu- 
tors of asbestos products. It should be noted that some manufac- 
turers of  encapsulated asbestos products with extensive national 
distribution were targeted early by the plaintiffs' bar and should 
be categorized as Tier 2. Many Tier 3 defendants face substan- 
tial numbers of claims, high defense costs, and relatively low in- 
demnity payments (in comparison to Tiers 1 and 2). In total, 
their potential liabilities are significant, though well below 
the Tier 2 level. There are also numerous Tier 3 defendants 
facing very small liabilities, e.g., in situations where exposure 
to a company 's  products will be difficult to establish by plain- 
tiffs. 

Tier 4 defendants are those who never manufactured or dis- 
tributed asbestos products, but rather owned or operated property 
where asbestos products were used. A Tier 4 defendant 's liability 
is thus related to contractors or third parties, other than employ- 
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ees, who were exposed to asbestos on the defendant 's  premises. 
Claims are filed as premises/operations liability rather than prod- 
ucts liability generally with per occurrence rather than products 
aggregate limits applicable. An example of a Tier 4 defendant is 
a utility or oil company. 

The sample group should contain Tier 3 and 4 defendants for 
which the necessary claim statistics are available. In selecting the 
sample defendants from these tiers, policies providing coverage 
in various layers representing the type of  coverage provided to 
insureds in Tiers 3 and 4 should be included. 

Tier 5 has been reserved for railroads facing liabilities from 
exposed workers under the Federal Employers Liability Act. The 
claim reporting pattern of railroads is expected to be faster than 
that of most other types of  defendants. This results from the 
fact that heavy asbestos exposure of railroad workers is tied to 
steam engines which were replaced by diesel engines in the early 
1960s. Also, attorneys and unions have been active in identifying 
exposed workers and facilitating claim filings. Many railroads 
have reached settlement agreements with their insurers related 
to asbestos claims. To the extent that an insurance company has 
exposure to railroads not subject to a settlement agreement, a 
sampling of the railroad insureds should be included in the model 
analysis. 

The intent is for the sample group to be representative of the 
insurer's or reinsurer's total exposure to asbestos liability from 
its insureds known to have asbestos exposure. If a defendant has 
an unusual exposure, or a coverage dispute, which is not repre- 
sentative of the other insureds in the tier, a separate analysis or 
adjustments to the defendant 's policy information may be nec- 
essary. 

Once the sample group has been selected, data for each de- 
fendant in the sample group must be collected for input into 
the asbestos BI model. The following data elements should be 
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compiled for each defendant: 

I. number of claims filed, disposed, and pending; 

2. cumulative paid and reported indemnity; 

3. expense-to-indemnity ratio; 

4. dates of coverage block; 

5. details of all products liability coverage (or premises/ 
operations liability coverage, if applicable) provided 
by the insurer or reinsurer within the coverage block 
including-- 

a) policy term; 

b) attachment point relative to the first dollar of loss; 

c) aggregate (or per occurrence) limit of liability; 

d) participation percentage or percentage share in the 
layer of liability; 

e) expense treatment under the policy; 

f) asbestos exclusions; 

g) erosion of limits by non-asbestos products claims; 
and 

h) (for reinsurers only) ceding company's policy infor- 
mation, i.e., (5a) through (5g) for the ceding com- 
pany's policy. 

6. details of negotiated settlement agreements; and 

7. details of pending coverage disputes. 

Note that these data do not completely describe every aspect 
of all insurance policies in the sample group. This is particularly 
true for reinsurance policies. However, the data collected does 
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allow for a good estimate of the insurance or reinsurance com- 
pany's asbestos exposure from each policy in the sample group. 

The claim counts, indemnity payments, and expense ratio in- 
formation are required at the defendant level in order to project 
the defendant's ground-up aggregate liabilities. Details regarding 
negotiated settlement agreements and pending coverage disputes 
are useful in determining whether an insured defendant should 
be included in the sample group (with or without adjustments to 
reflect the uncertainty presented by pending coverage disputes) 
or if case reserves established by the claim department reflecting 
agreements/disputes should be relied upon instead. Of course, 
case reserve estimates should be relied upon only if the reserve 
contemplates future claim reporting to an ultimate basis, which 
could happen if the insurer's policy limits are exhausted. 

Several potential sources for the required data exist, includ- 
ing the claims department of the insurance company, annual re- 
ports of the various defendants, insurance company attorneys, 
and court documents. While some of the required data is rel- 
atively easy to obtain, certain information is difficult to get di- 
rectly. Data for some potential candidates may not be available at 
all. It may be necessary to estimate missing information and test 
the sensitivity of the model results to alternative assumptions, or 
leave some insureds out of the sample group entirely. Ultimately, 
the decision to include an insured should be based on whether 
inclusion of that insured will help make the sample group rep- 
resentative and whether there is enough data on that insured for 
use in the model. 

The policy information (attachment point, company's percent- 
age share in the layer, and limit of liability) on a first dollar 
of loss (ground-up) basis may be difficult to collect. This data 
should be readily available from the policy files for primary com- 
panies. For excess writers and reinsurers, however, this informa- 
tion can be particularly difficult to obtain. For assumed reinsur- 
ance business, additional information is required on the ceding 
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company's  policies in order to identify the ground-up loss re- 
quired to penetrate the reinsurer's layer. In other words, we need 
to restate the reinsurer's limit, percentage share, and attachment 
point relative to the first dollar of  loss in order to determine when 
the policy is expected to be hit by the aggregate asbestos claims 
generated by the model. 

Adjust the Policy Exposure Data 

The calculations shown in this paper assume that all limits 
apply on an aggregate basis. Policies without aggregate limits can 
be handled in a number of ways. First, if the policy is governed 
by the Agreement Concerning Asbestos-Related Claims entered 
into by various insurers and asbestos producers, referred to as the 
Wellington Agreement, the occurrence limits could be restated 
on an aggregate basis reflecting the multipliers in the agreement. 
Simplifying assumptions could also be made as to the number 
of occurrences applicable and the relative magnitude of each 
occurrence. This would facilitate either a restatement of the limits 
to apply to aggregate claims or a breaking down of  the aggregate 
claims into the separate occurrences and a comparison of the per 
occurrence amounts to the per occurrence limits. 

To effectively reflect the insurer's or reinsurer's exposure to 
asbestos loss on a policy, the policy information must be stated 
on a first dollar of loss, or ground-up, basis. This is necessary for 
the stated attachment point, percentage share, and policy limit. 
A first dollar policy does not require adjustment. For a direct 
excess policy, it may only be necessary to adjust the attachment 
point by adding the underlying primary limit to the stated at- 
tachment point. For an assumed reinsurance policy, especially 
treaty reinsurance, all three parameters might require a restate- 
ment to a first dollar of loss basis. Facultative reinsurance policy 
information may already be stated on a first dollar of loss basis 
for stated policy limit and participation share, thereby requiring 
only an attachment point adjustment similar to that mentioned 
for direct excess policies. 
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If the ceding company information is known, the reinsurance 
policy parameters can be restated to a first dollar basis using 
the formulas described below. If the ceding company 's  policy 
information is incomplete, estimates can be made of the appro- 
priate adjustments based on an analysis of a sample of  policies. 
To illustrate the adjustments necessary for reinsurance policies, 
we examine some policies of a reinsurer, ABC Re, with ceding 
insurer XYZ which wrote policies for two insureds. 

Exhibit 2 shows sample adjustment calculations. The exhibit 
shows three sets of policy information: cedent XYZ's  direct pol- 
icy information in Columns 3 through 5, ABC Re's stated rein- 
surance policy information in Columns 6 through 8, and the cal- 
culated ground-up reinsurance policy information for ABC Re in 
Columns 9 through 1 1. Columns 3, 6, and 9 are the percentage 
shares. Columns 4, 7, and 10 are the attachment points. Columns 
5, 8, and 1 I are the policy limits. Expenses are ignored in Exhibit 
2 for simplicity. 

Definitions of  the three restated policy parameters in the con- 
text of  this paper are in order. All three are adjusted reinsurance 
policy parameters which express the ground-up exposure to loss 
for the reinsurer. The restated reinsurance percentage share is the 
amount that, when multiplied by the restated reinsurance policy 
limit, equals the reinsurer's maximum dollar share of the ground- 
up losses. The restated reinsurance attachment point equals the 
amount of  ground-up losses which must be incurred before the 
reinsurance layer is penetrated. The restated reinsurance limit is 
the amount that, when added to the restated reinsurance attach- 
ment point, equals the amount of ground-up losses necessary to 
exhaust the reinsurance policy. 

Figures 2, 3, and 4 graphically illustrate the need to make the 
adjustment to ABC Re's policies shown in Exhibit 2. Note that 
for some policies, the reinsurer has no exposure to loss, even 
though the ceding company does. Again, expenses have been 
ignored in this example for simplicity. 
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ABC RE'S RESTATED POLICY TERMS FOR POLICY 5 
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The calculation of the restated reinsurance percentage share 
in Column 9 is straightforward. Ignoring expenses and extra- 
contractual situations, the ceding company is limited to the per- 
centage share stated in the policy. ABC Re's percentage share is 
a portion of  the cedent 's  share of the insurance layer. Hence 
the restated percentage share relative to first dollar of loss 
must be the product of  the two percentages, or Column 3 x Col- 
umn 6. 

The restated reinsurance attachment point in Column 10 fol- 
lows similar logic. The ceding company 's  layer of liability begins 
at the attachment point in the primary policy. In order for the ce- 
dent to incur any losses, the ground-up losses must be greater 
than the attachment point in the ceding company 's  policy. Like- 
wise, ABC Re's layer of liability begins at the attachment point 
on the reinsurance policy. Only when the cedent 's losses have 
reached the reinsurance attachment point will ABC Re's layer 
be penetrated. If the cedent 's  percentage share was 100%, ABC 
Re's layer could be penetrated only if the ground-up losses ex- 
ceeded the sum of the two attachment points. However, in cases 
where the cedent 's  percentage share is less than 100%, the rein- 
surance attachment point must be divided by the primary pol- 
icy percentage share and then added to the primary attachment 
point to calculate the restated ground-up attachment point, or 
([(7)/(3)] + (4)). The division by the primary percentage share 
is required because for every dollar of loss incurred by the ce- 
dent, the insured must have incurred the reciprocal of the primary 
percentage share. 

The logic for the restated ground-up attachment point and per- 
centage share must be kept in mind to determine the appropriate 
calculation for the restated reinsurance limit in Column 11. We 
look at the interaction of  the direct policy with the reinsurance 
policy to understand the calculation. The formula for Column 11 
reflects two upper constraints, a lower constraint, and an adjust- 
ment for the direct policy's percentage share. 
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First, we examine the intuitive upper constraint of the Col- 
umn 11 formula. Ignoring expenses and again assuming the ce- 
dent's percentage share is 100%, the maximum restated reinsur- 
ance limit relative to the first dollar of loss equals the reinsur- 
ance limit, or Column 8. Note that this is just the limit of the 
reinsurance policy; the maximum dollar share of the reinsurance 
layer would be the reinsurance limit times the reinsurance per- 
centage share. Here we are concerned only with the calculation 
of the limit. If the ceding company participation share is less 
than 100%, then this maximum for the restated limit needs to 
be divided by the cedent's participation share, or (8)/(3), for the 
same reason this adjustment was made in calculating the restated 
attachment point. 

The second upper constraint for the restated reinsurance limit 
is the maximum imposed by the ceding company's dollar share 
of the layer (i.e., cedent's percentage share times cedent's limit, 
or (3) x (5)) less the cedent's retention (i.e., the reinsurer's unad- 
justed attachment point, or Column 7), all divided by the cedent's 
percentage share, or Column 3. Once the reinsurance attachment 
point is exhausted and the reinsurance layer has been penetrated, 
every dollar that consumes the reinsurance limit is due to ground- 
up losses equal to the reciprocal of the cedent's percentage share, 
or $1/(3). Stated another way, the restated reinsurance limit can- 
not exceed the cedent's limit minus the quantity of the reinsur- 
ance attachment point divided by the cedent's percentage share, 
((5) - [(7)/(3)]), equal to the second upper constraint. Remem- 
ber, in calculating the restated reinsurance limit, we are trying to 
determine the amount of ground-up dollars that, when added to 
the restated reinsurance attachment point, will exhaust the rein- 
surance policy limits. 

By including a lower constraint, we complete the formula 
for the restated reinsurance limit in Column 11. The lower con- 
straint of the formula is zero; the restated reinsurance limit can- 
not be negative. Combining all the pieces of the restated reinsur- 
ance limit, we now have the formula used to derive Column 11, 
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MAX[0,MIN{(8) / (3) ,  (5) - ((7)/(3))}]. Thus, if we know the ce- 
dent 's  policy information, we can adjust the reinsurance policy 
information to restate it on a first dollar of  loss basis. 

The two upper constraints discussed above contribute to what 
we refer to as "underlap." That is, the interaction of the cedent 's  
policy terms with the reinsurer 's policy terms may reduce the 
reinsurer 's  stated exposure. Exhibit 2 shows the calculation of  
the underlap for each of  the policies presented and the under- 
lap factor of  54.5% calculated in total for all policies related to 
Insureds 1 and 2. 

Once the ground-up policy information for each of  the sample 
defendants '  products liability policies has been determined and 
other required information is obtained, the data preparation for 
the sample group is complete and the model can be used. 

Use the Model to Estimate ttle Insurance or Reinsurance 
Company's Liability for the Sample Group 

The asbestos BI model presented in this paper uses a fre- 
quency and severity approach to calculate ground-up losses and 
applies a policy limits analysis to the ground-up losses. It cal- 
culates an estimate of  an insurance or reinsurance company ' s  
asbestos liability for a sample group of representative underly- 
ing insureds. This sample can later be used to estimate the total 
asbestos liability for the insurer or reinsurer. Whether  we are 
analyzing liabilities for an insurer or a reinsurer, the underlying 
insureds are the manufacturers, installers, and distributors of  as- 
bestos products, and not the reinsured insurance companies. For 
simplicity of  presentation, reinsurer ABC Re will be used in this 
section of  the paper to demonstrate the model for both insurance 
and reinsurance companies. 

For each underlying insured in ABC Re's  selected sample 
group, the model projects by calendar year ground-up reported 
claim counts, ground-up average severity, and thus ground-up 
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aggregate indemnity costs. Expenses are loaded based on the his- 
torical expense-to-indemnity ratios of the particular insured. The 
projected costs are spread over the policy years in the insured's 
coverage block. Having projected ground-up indemnity and ex- 
pense costs for each calendar year by policy year, the model can 
then carve out ABC Re's liability from the ground-up costs for 
each policy of each insured in the sample group. Summing ABC 
Re's liability for all insureds gives ABC Re's estimated liability 
for the entire sample group. 

Exhibit 3 presents a partial list of ABC Re's insureds with 
a known potential for asbestos loss. Insureds 1 through 15 are 
included in the sample group; the remaining insureds are not. Ex- 
hibits 4 through 9 demonstrate the use of the asbestos BI model 
to calculate ABC Re's estimated asbestos liability for one insured 
company in the sample group, Insured 3. Exhibit 4 presents the 
required model policy input assumptions for Insured 3; Exhibit 
5 presents the required model claim input assumptions for In- 
sured 3. Exhibits 5.1 through 9.1 show the baseline scenario 
with selected severity trend of 5% and 15 year coverage block. 
Exhibits 5.2 through 9.2 have 0% trend and 15 years selected. 
Exhibits 6.3 through 9.3 have 5% trend and 25 years selected. 
Exhibits 6.4 through 9.4 have 0% trend and 25 years selected. 
Exhibit 10 shows the aggregate results of all insured defendants 
in ABC Re's sample group. ABC Re's percentage shares, limits, 
and attachment points for Insured 3, presented in Exhibit 4, have 
already been restated on a first dollar of loss basis. 

The first step of the asbestos model is to calculate the fu- 
ture aggregate ground-up indemnity and expense costs for each 
sample insured. For ABC Re's Insured 3, this is done in Ex- 
hibit 5. Several inputs are necessary to estimate the future ag- 
gregate indemnity and expense costs: a claim count reporting 
pattern, an average severity, a severity trend, and future expense- 
to-indemnity ratios. 

First, a claim count reporting pattern must be calculated for 
the insured companies in ABC Re's sample group to be used as 
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input in Exhibit 5. This pattern is not ABC Re's claim reporting 
pattern but rather that of the underlying insureds. The selected 
pattern for Insured 3 is shown in Exhibits 5.1 and 5.2. Actual 
calculation of the reporting pattern is beyond the scope of this 
paper. 

Ideally, the necessary claim count reporting pattern is derived 
from claim count projections developed by researchers expert 
in both the asbestos-exposed population and the mathematical 
models which tie claim incidences to such factors as exposure 
levels and latency period. Such studies are available through 
bankruptcy courts, which have overseen the formation of lia- 
bility trust funds for companies undergoing restructuring, and 
in academic literature. For example, the Manville and National 
Gypsum bankruptcies and related hearings addressed projections 
of future claim filings by disease. Judgmental extrapolation of 
historical claim reporting patterns can alternatively be made, par- 
ticularly if a shorter time horizon, such as ten years, rather than 
an ultimate run-off, is selected for the review. If sufficient in- 
formation is available, claim count patterns by tier should be 
calculated. However, this may be difficult, particularly due to 
the limited available research on Tier 3 and Tier 4 companies. 

The second required input on Exhibit 5 is the selected average 
severity. Dividing total indemnity paid by total closed claims 
gives a historical paid severity. Dividing indemnity paid in each 
recent year by its related number of closed claims gives a starting 
point for the selection of an average reported indemnity to be 
used for the projection of future costs. The most recent year's 
average reported severity should also be examined before making 
the selection. 

The third input for Exhibit 5 is the selected severity trend. A 
5% severity trend is chosen for Insured 3. Exhibits 5.1 through 
10.1, and Exhibits 6.3 through 10.3 use this assumption. To show 
the impact of different severity trend selections, Exhibits 5.2 
through 10.2 and Exhibits 6.4 through 10.4 use a 0% inflation 
rate. 
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The severity trend can be based on a review of historical av- 
erage claim amounts, but should also consider expected future 
changes. For example, Tier 3 insureds may be expected to experi- 
ence greater severity trends and consequently a larger share of the 
total cost, due to the bankruptcy of Tier 1 and 2 insureds and the 
impact of courts imposing joint-and-several liability. Changes in 
the mix of claims by disease type could also affect future trends. 
A decrease in severe asbestosis cases coupled with an increase 
in claims filed for pleural plaques would be expected to reduce 
future claim trends as plaintiffs with pleural plaques may receive 
little or no compensation. Given these potential impacts on future 
average severities, alternative claim trend assumptions should be 
tested to derive a range of estimated liabilities. 

The fourth input required for Exhibit 5 is the selected expense- 
to-indemnity ratio for each calendar year. A 50% expense-to- 
indemnity ratio is selected for Insured 3 as shown on Exhibits 
5.1 and 5.2 for all future calendar years. 

The expense-to-indemnity ratio for each insured in the sam- 
ple should be based on several factors. The historical expense- 
to-indemnity ratio for the particular insured is a good starting 
point. However, other factors must also be considered. The ex- 
istence of  legal precedents for many once hotly debated legal 
issues relating to asbestos personal injury liability suggests a de- 
clining trend in defense costs. The likelihood of out of court 
settlements must also be considered. A systematic approach by 
the underlying insured defendant to settlement of asbestos cases, 
such as a matrix of specific dollar ranges for each disease, would 
suggest that more cases would settle than go to court, lowering 
defense costs. The Manville Personal Injury Settlement Trust uti- 
lizes such a matrix-type approach to settlement with specified 
dollar amounts by disease. However, a Tier 3 or Tier 4 company 
increasingly being named in suits might start aggressively de- 
fending suits, thus raising defense costs. Each underlying insured 
must be examined carefully to determine reasonable expense-to- 
indemnity ratios for each projected calendar year. 
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The second step of the model is to allocate the projected ag- 
gregate ground-up indemnity and expense costs to policy years 
within the insured's coverage block. If an insured's actual cover- 
age block is known, it should be used. Exhibit 6 presents the pro- 
jected calendar year ground-up indemnity costs from Exhibit 5 
spread across Insured 3's coverage block. Exhibit 7 differs from 
Exhibit 6 by including both indemnity and expense costs, calcu- 
lated by applying the selected expense-to-indemnity ratios from 
Exhibit 5. Insured 3's coverage block includes 1960 through 
1974. There is a chance that Insured 3 will pursue a coverage 
block of 1960-1984 to get more insurance coverage. Exhibits 
6.1 through 10.1 and Exhibits 6.2 through 10.2 use the 15 year 
coverage block. To demonstrate the impact of a different cover- 
age block selection, Exhibits 6.3 through 10.3 and Exhibits 6.4 
through 10.4 use a coverage block selection of 25 years, 1960 
through 1984. 

As mentioned previously, allocation of claims within a cov- 
erage block will depend on the applicable trigger theory and the 
outcome of negotiations on this issue. If known, an insured's 
actual procedure for allocating costs to years within its coverage 
block should be used; otherwise the allocation should be based 
on a logical procedure. Possible default allocation methods in- 
clude: 

• an even allocation to each year in the coverage block, 

• an allocation to year which reflects the proportion of total 
coverage written in the year, and 

• an allocation which reflects the expected aggregate distribution 
of claims based on dates of exposure and manifestation. 

An even allocation to year is a reasonable approximation 
when the coverage block is relatively short in length. An alloca- 
tion in proportion to coverage is a reasonable approximation pri- 
marily because the typical increase in limits purchased over time 
tends to follow a typical allocation pattern based on a continuous 
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trigger. An allocation pattern based on the expected distribution 
of claims is likely to be the closest to actual, but requires more 
data and analysis to develop. For simplicity in our example, each 
year in Insured 3's coverage block receives an equal allocation 
(or weighting) in Exhibits 6 and 7. 

The third step in the model is to calculate for each policy year 
the ground-up indemnity and expense dollars which fall into the 
insurance or reinsurance company's  layers of coverage. ABC 
Re's liability for Insured 3 is calculated by carving out Insured 
3's projected ground-up indemnity and expense dollars that hit 
ABC Re's layers of insurance as shown in Exhibit 8. ABC Re's 
1958 policy for Insured 3 is not included because policy year 
1958 is outside Insured 3's coverage block, 1960 through 1974 
for Exhibits 8.1 and 8.2, and 1960 through 1984 for Exhibits 8.3 
and 8.4. As long as 1958 is outside Insured 3's coverage block, 
ABC Re's 1958 policy with Insured 3 is not exposed to potential 
asbestos losses. Seven ABC Re policies are within Insured 3's 
coverage block (both the 15 and 25 year scenarios). For sim- 
plicity of  presentation, each of  the policies in the example is in 
a distinct policy year. If ABC Re had multiple layers of insur- 
ance coverage for Insured 3 in the same policy year, a simple 
adjustment to Exhibit 8 could be made: each policy's appropri- 
ate layer would be carved out of  the total indemnity and expense 
costs allocated to that particular policy year. 

To demonstrate the effects of different expense treatments on 
policies, Exhibit 8 shows examples of each of the three most 
common expense treatments: indemnity only, expenses included 
in the limit, and expenses in addition to limits. The attachment 
point, percentage share in the layer, and total limit of liability also 
vary in these seven policies to show the effects of each. Typi- 
cally, for a given layer of insurance for a particular company, the 
expense treatment would be more consistent; expense treatment 
is varied here for illustrative purposes only. The determination 
of whether loss and expense hit a layer can be calculated in two 
ways for policies with expenses included in the limit: either add 
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expenses before applying the attachment point or add expenses 
once indemnity is in the layer. Both methods should be tested 
in the real world because the lower layer policies' expense treat- 
ment determines the appropriate method. 

The projected loss and expense in ABC Re's layers shown 
on Exhibits 8.1 through 8.4 is calculated by carving out the ap- 
propriate ground-up loss and expense from Exhibits 5, 6, and 7. 
The method of carving out the loss and expense varies based on 
whether the policy for which the liability is being calculated has 
expense treatment of indemnity only, expenses included in the 
limit, or expenses in addition to the limit. For all three types of 
policies, the general methodology to calculate Exhibit 8's cumu- 
lative reported liability in the layer is: the prior calendar year's 
liability in the layer for the policy year (the number to its left 
on Exhibit 8) added to the incremental increase in indemnity 
and expense (where appropriate), taking into account attachment 
point, limit, and percentage share. To illustrate this, the calcula- 
tion of the calendar year 2003 numbers for policy years 1971, 
1969, and 1968 from Exhibit 8.1 will be shown. 

The 1971 policy is an indemnity only policy with a pro- 
jected reported liability of $1,629 ($ in 000's). The $1,629 
equals $1,455 from the prior calendar year added to $174. 
The $174 is 100% (the policy percentage share in 1971) times 
($3,629 - $3,455), the incremental increase in indemnity shown 
on Exhibit 6.1. Development on this policy year continues until 
calendar year 2006 when the policy is projected to exhaust its 
100% share of the $2 million limit. 

The 1969 policy is an ultimate net loss, or expenses included 
in the limit, policy. As the footnote on Exhibit 8.1 indicates, the 
process of calculating when losses and expenses hit this layer 
varies depending on underlying policies. For all policies of this 
type in Exhibit 8.1, expenses are added to indemnity before ap- 
plying the attachment point and limits. The $1,944 for policy 
year 1969 as of calendar year 2003 equals $1,683 from the prior 
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calendar year plus $261. $261 is calculated as 100% (1969 pol- 
icy's percentage share) times ($5,444 -$5 ,183) ,  the incremental 
indemnity and expense during calendar year 2003 from Exhibit 
7.1. Note that the 1969 policy is penetrated much earlier than the 
1968 policy, one that is identical to the 1969 policy except for 
its expense treatment. Also note that the 1969 policy's ultimate 
liability is $4,000,000, equaling 100% of $4 million. 

The 1968 policy is an expense in addition to limit pol- 
icy. In calendar year 2003, its reported liability is $194. Be- 
cause this is the first calendar year in which the policy is 
penetrated, the calculation needs to take into account the at- 
tachment point of the policy. Therefore the calculation is $0 
added to 100% times ($5,444-$5,183), incremental indemnity 
and expense during calendar year 2003 from Exhibit 7.1, times 
($3,629 - $3,500)/($3,629 - $3,455), the portion of indemnity 
that penetrated the 1968 policy layer of $4 million excess $3.5 
million. These indemnity amounts come from Exhibit 6.1. Note 
that ultimately its liability is $5,163, greater than the 1969 lia- 
bility of $4,000, because expenses are in addition to the limit 
on this 1968 policy. Furthermore, the 1970 policy is identical to 
the 1968 policy except that its percentage share is 25 percent. 
At every calendar year, the 1970 policy's reported liability is 25 
percent of the 1968 policy's liability. 

Contrasting the development of ground-up costs in Exhibits 
6.1 and 7.1 with the development of costs in the insurance lay- 
ers in Exhibit 8.1 provides much insight. As expected, Insured 
3 has projected reported ground-up losses (in Exhibits 6.1 and 
7.1) several years before ABC Re has reported losses in its layer. 
However ABC Re's loss reporting pattern is not necessarily faster 
or slower than Insured 3's. In Exhibit 9.1, ABC Re's pattern is 
ultimately faster because Insured 3 will exhaust some or all of 
ABC Re's retained layers and yet will continue to incur losses 
for several years. This is due primarily to ABC Re's attachment 
points (its ground-up attachment points are low relative to the 
total amount of ground-up losses) and the size of ABC Re's 
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limits (its ground-up limits are small relative to total ground-up 
losses). Exhibit 9.2 demonstrates the reverse. If ABC Re's lay- 
ers attached at a very high point relative to the total amount of 
ground-up losses, as is the case for some underlying sample in- 
sureds in Exhibit 3, ABC Re's pattern might be slower than the 
underlying insureds and policies might incur little or no loss, as 
seen in Exhibit 10. This relationship between attachment point, 
limit, and asbestos loss development is a point to be considered 
by both the underlying insureds and insurers in evaluating as- 
bestos insurance coverage issues. 

The comparison of  the development of costs across policies 
in Exhibit 8.1 provides further insight. As would be expected, 
reported development is a function of the magnitude of the at- 
tachment point and total limits, while total liability is a function 
of the percentage share and total limits of the layer. Each of the 
policy years for Insured 3 were allocated the same ground-up 
cost. However, the different expense treatment in the 1965 and 
1967 reinsurance policies (see Exhibit 8.1) causes the 1967 pol- 
icy year to report over 200% more liability than the 1965 policy 
year in calendar year 2000. Furthermore, the 1965 policy year 
has $0.6 million more reported liability in calendar year 2000 
than does the 1968 policy year, even though the 1968 policy 
has a larger total limit and the policies have the same expense 
treatment; this is because the higher attachment point on the 1968 
policy causes less of the total ground-up indemnity and expenses 
to hit the layer in that year. 

A comparison of  the 1968 and 1970 policies in Exhibit 8.1 
illustrates the effect of  the percentage share. Each has the same 
attachment point and the same total limit, but the insurer's par- 
ticipation in 1968 was 100% while in 1970 it was 25%. Thus, for 
every dollar that penetrates these layers of $4.0 million excess 
$3.5 million, $1 hits the 1968 policy and only $.25 hits the 1970 
policy. 

The most important point illustrated on Exhibit 8.1 is that 
development for asbestos losses is not a function of the age of 
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the accident or policy year. The least mature policy for ABC Re 
for Insured 3 is 1971. The 1971 policy year develops to ulti- 
mate faster than all but one other policy year, 1967. This pattern 
of development is not unusual because of the long latency of 
asbestos-related diseases and the allocation to policy year. There- 
fore, historical asbestos accident or policy year loss development 
is not representative of future development. 

Exhibit 9 gives a comparison of Insured 3's allocation of  costs 
on a ground-up basis versus ABC Re's liability in the layer. This 
exhibit demonstrates the differences in development for policy 
year 1968 versus all policy years in the coverage block, both in 
dollars and as a percentage of ultimate. 

The fourth step of the asbestos BI model is to sum the losses 
in the insurance layers across all sample group defendants. The 
steps performed in Exhibits 5 through 8 for Insured 3 under the 
four scenarios are repeated for all other insureds in ABC Re's 
sample group. The sum of these calculations for all insureds in 
the sample group is shown on Exhibit 10. The totals from Exhibit 
10 represent the estimate of ABC Re's liability under the various 
scenarios for the sample group. 

ABC Re's loss reporting pattern for each insured and for the 
entire sample group can be derived from Exhibit 10. The sum 
of the asbestos liabilities for all companies in the sample group 
gives an overall loss reporting pattern for ABC Re. If enough 
companies from each tier are included in the sample group to 
give credible results by tier, ABC Re's reporting pattern by tier 
can also be calculated from Exhibit 10. Using ABC Re's  esti- 
mated reported losses in the insurance layers for each calendar 
year, overall loss development factors for ABC Re can be calcu- 
lated. 

Conduct Sensitivity Testing of Model 

Due to the inherent uncertainty in asbestos litigation, different 
scenarios should be examined to: 1) test the model 's  sensitivity 
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to certain parameters or estimates, and 2) compute a range of  es- 
timates of  liability for the sample group. The two parameters in 
the model with the most uncertainty are the future severity trend 
and the insureds' coverage blocks. Therefore, variations in the 
assumptions for each of these should be examined, as was done 
with the four scenarios included in Exhibits 5-10. Other param- 
eters, such as the projected expense-to-indemnity ratio, should 
be considered to determine if sensitivity testing is necessary. 

Exhibit 10 also shows ABC Re's aggregate exposure to each 
underlying insured in the sample group. Given an aggregate ex- 
posure for each insured and ABC Re's estimated ultimate loss 
for each insured, a projected percentage of exposure eroded by 
claims for each insured can be calculated as well as subtotaled 
by tier. This can be helpful in extrapolating the model results to 
all of ABC Re's underlying insureds. 

Using the results of the different scenarios, a range of esti- 
mates can be derived for the sample group's  liability. Weights 
applied to each scenario should be based on the expected likeli- 
hood of the scenario. Exhibit 11 calculates the average ABC Re 
asbestos liability for its sample group insureds using the results 
from Exhibits 10.1-10.4. The size of the indicated range in Ex- 
hibit 11, about $50 million, is large on both a percentage and 
a dollar basis. However, note that approximately $20 million of  
the range comes solely from the selection of the severity trend. 
This emphasizes the need to do sensitivity testing when working 
with projections so far into the future. We have shown a selected 
range based on averages of the two 25-year coverage block pro- 
jections and the two 15-year coverage block projections. Thus, 
we are averaging the 0% and 5% severity trend indications. Note 
that this gives a different indication than simply selecting a 2.5% 
severity trend assumption, due to the interaction of the ground-up 
losses and the policy layers. 

Our overall selected estimate is based on a 75%/25% weight- 
ing of the 15-year and 25-year coverage block indications. These 
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weights have been selected for illustrative purposes only. Actual 
weights could vary by insured and should reflect such factors 
as court decisions on trigger issues in the applicable state and 
the nature of  the insured's involvement with asbestos. Given the 
objective of the insured to maximize total coverage and the ten- 
dency of  courts to further this objective, the nature and extent 
of insurance coverage available to the insured under alternative 
trigger scenarios should also be considered in selecting appropri- 
ate coverage block scenarios and their weights. It is important to 
note that maximizing total coverage to the insured may or may 
not be consistent with a worst case scenario for a given insurer 
or reinsurer. The impact of changing the length of an insured's 
coverage block on a given insurer depends on the attachment 
points, limits, and placement within the coverage block of  all 
policies issued by the insurer to the insured. 

Before extrapolating the model results of the sample group 
to all insureds, the model results should be reviewed for rea- 
sonableness. Alternative assumptions should be tested as neces- 
sary to gain a better understanding of the factors affecting the 
indications and the sensitivity of the results to changes in those 
factors. 

In reviewing the reasonableness of the results, it should be 
noted that the loss reporting pattern produced by the model will 
likely be faster than that experienced by the insurance or reinsur- 
ance company, because of  the inherent lag in reporting between 
the insured, the insurer, and the reinsurer. That is, the reporting 
pattern produced by the model is developed from each under- 
lying insured's expected claim reporting pattern and does not 
reflect delays in the insurance reporting and reserving process. 
Likewise, if the insurance or reinsurance company establishes 
case reserves that incorporate a provision for IBNR claims (as 
may be the case when it is apparent that, with continued claim re- 
porting, policy limits will be exhausted) then the model-produced 
pattern may be too slow. Both of these possibilities need to be 
considered. 
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Extrapolation of Model Results 

With the model results for the sample group quantified, the 
estimated ultimate asbestos liabilities for all of ABC Re's un- 
derlying insureds can now be calculated. There are several ways 
to extrapolate the sample group model results to reflect ABC 
Re's  total expected liabilities. The appropriateness of  a particu- 
lar method depends on the nature of  the company 's  exposures as 
well as its claims handling and reserving procedures. Potential 
methods are: 1) percentage of  layer exhausted by tier, 2) devel- 
opment factor by tier, 3) percentage of exposed limits exhausted 
by tier, 4) average ultimate loss by tier times number of  insureds, 
and 5) extrapolation from Tiers 1 and 2. 

Method One 

The first extrapolation method is a percentage of  layer ex- 
hausted method. By tier, one can develop estimates of the per- 
centage of layers expected to be exhausted by asbestos BI claims. 
That is, the sample group Tier 2 insureds could be run through 
the model with the company's  policy limits and attachment 
points overwritten by the following layers: 

- -  primary $500,000; 

- -  $500,000 xs $500,000; 

- -  $4 million xs $1 million; 

- -  $5 million xs $5 million; 

- -  $15 million xs $10 million; 

- -  $25 million xs $25 million; and 

- -  $50 million xs $50 million. 

The model output would provide an estimate of the percentage of 
these layers expected to be exhausted (or burned) by BI claims. 
We refer to these percentages as burn factors. Thus, exposures 
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for non-sample Tier 2 insureds could be arrayed by layer and the 
selected percentages applied to derive estimates of the company' s 
ultimate liabilities associated with all Tier 2 insureds. This could 
then be repeated for other tier categories. Burn factors could be 
calculated in total for each tier or with further refinement by 
policy year. 

Exhibit 12 provides an example of one part of this analysis, 
the calculation of ABC Re's liability for Insured 3 in the $5 
million excess $5 million layer. To do this, the model is used for 
Insured 3 policies, with the policies' width, attachment points, 
and percentage shares overridden by $5 million, $5 million, and 
100%, respectively. This is done for all Insured 3 policies. 

Exhibit 13 shows a grid which would ultimately be completed 
for use in this extrapolation method. In calculating the burn fac- 
tors or percentage eroded by layer by tier, all insureds in the 
sample group would be run through the model using the de- 
sired policy layers in place of the actual policy exposures. The 
exposures from the insureds not in the sample group would be 
arrayed in a similar matrix as they are in Exhibit 13, by layer 
by tier. The matrix of exposures would be multiplied by each 
corresponding cell in the percentage eroded matrix to determine 
the ultimate liability of the non-sample group. For example, as- 
sume ABC Re's exposure in the $5 million excess $5 million 
layer was $100 million for Tier 2 non-sample group companies. 
$100 million times 42% from Exhibit 13 gives projected ultimate 
liability of $42 million for the Tier 2, $5 million excess $5 mil- 
lion layer. This calculation would be repeated for each tier and 
layer combination and the results would be summed. It would 
then be necessary to combine this estimate for the non-sample 
group with the selected estimate of $153 million (Exhibit 11) 
for the sample group to produce an estimate of ABC Re's total 
liabilities. 

This approach is likely better than the other approaches out- 
lined below, particularly when differences by policy year are 
recognized. However, it is also the most cumbersome as it re- 
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quires attachment point and limits information on all exposures. 
The likelihood of asbestos exclusions applying in certain years 
or policies falling outside the insureds' coverage blocks should 
be considered. 

Method Two 

The second method is performed by determining the devel- 
opment factor to ultimate by tier implied by the model output 
relative to the reported case incurred loss and expense held by 
the company for the sample group. The development factors are 
then applied to the total incurred loss and expense for each tier 
category. This approach assumes consistent case reserving for 
sample group insureds versus other insureds. Grouping the in- 
sureds by tier is expected to result in more homogeneous group- 
ings with respect to case reserving and layers exposed, but dif- 
ferences between the sample and non-sample group should be 
explored in the extrapolation procedure. For example, if the in- 
formation available for insureds in the sample group were more 
complete than the non-sample group, then an extrapolation might 
result in an understatement of total liability because too small a 
development factor would be applied to the less developed losses. 
Likewise, if the company wrote policies with a wide range of at- 
tachment points and the sample group represented insureds with 
lower layer policies, case reserving might not be as adequate on 
the non-sample group with higher layer policies. Thus, the de- 
velopment factors may be expected to differ for the two groups 
due to the different layers exposed. 

The reported case incurred loss and expense development fac- 
tors by tier by scenario are found on Exhibit 10. The selection 
of development factors based on all four scenarios is shown on 
Exhibit 14. These factors by tier would be multiplied by the non- 
sample group reported loss and expense by tier to calculate an 
ultimate loss and expense for non-sample group insureds. For 
example, assuming ABC Re's non-sample group Tier 1 insureds 
have reported loss and expense of $20 million dollars, the cal- 
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culated non-sample group Tier 1 ultimate liability would be $20 
million times 1.935 from Exhibit 14, or $39 million. This cal- 
culation would be repeated for each tier and summed. Adding 
to this sum the ultimate liability of the sample group, $153 mil- 
lion from Exhibit 11, would yield ABC Re's total asbestos BI 
liability based on this extrapolation method. 

It should be noted that, as in this example, the development 
factors are generally relatively large (close to 2 in our example 
and potentially much greater). Thus, the presence or absence of 
a large reported loss could significantly impact the projection. 

Method Three 

The third extrapolation method is to calculate by tier the per- 
centage of exposed policy limits ultimately exhausted by the as- 
bestos BI claims, as projected in the model, and apply these per- 
centages to the total exposed policy limits by tier. Differences in 
exposed limits by attachment point for the sample versus non- 
sample group should be considered in applying this procedure. 

The ultimate loss and expense as a percentage of exposure can 
be found on Exhibit 10. The selection of percentage of exposure 
factors based on all four scenarios is shown on Exhibit 15. These 
factors by tier would be multiplied by the non-sample group 
exposure by tier to calculate the estimated liability for the non- 
sample group. For example, assuming ABC Re's non-sample 
group Tier 2 insureds have exposure of $50 million for all layers, 
the estimated Tier 2 liability would be $50 million times 30.7%, 
or $15 million. This calculation would be repeated for each tier 
and summed. Note that the non-sample group exposure by tier 
is the sum of each tier's non-sample group exposure by layer 
which was used in the first extrapolation method. Adding the 
sample group's ultimate liability of $153 million from Exhibit 
11 to the summed estimated ultimate liability for the non-sample 
group yields ABC Re's total asbestos BI liability based on this 
extrapolation method. 
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Method Four 

The fourth method is a frequency times ultimate severity 
method. By tier, one could calculate an average ultimate loss and 
expense amount per insured in the sample group and multiply 
by the total number of  insureds. This approach assumes that the 
sample group represents a typical distribution of limits written 
per insured and that the sample group and non-sample group are 
composed of insureds with similar exposure distributions. For 
example, the sample group should not be selected from the set 
of claims and the average results applied to the set of  precaution- 
ary notices. However, extrapolation of the precautionary notice 
group could be accomplished by estimating the percentage of 
notices expected to become claims in the future. This could be 
done by reviewing the magnitude of movement  from the notice 
to the claim category over the past several years. 

Exhibit 16 shows the average ultimate loss and expense by 
tier for each of the four scenarios. From these an average ulti- 
mate loss and expense by tier is selected, based on a 75% weight 
to the 15-year coverage block scenarios and a 25% weight to the 
25-year coverage block scenarios. This selected average amount 
by tier would be multiplied by the number of non-sample group 
insureds by tier. For example, if ABC Re had 50 Tier 3 insureds, 
then ABC Re's projected liability for non-sample group Tier 3 
companies would be 50 times $794,000, or $40 million. The 
$794,000 is from Exhibit 16. This calculation would be repeated 
for each tier and summed. The sum, equal to the estimated liabil- 
ity for all non-sample group insureds, would be added to $153 
million, ABC Re's  estimated sample group liability, to derive the 
estimate of  ABC Re's overall liability based on this extrapolation 
method. 

Method Five 

The fifth method is an extrapolation of Tiers 1 and 2. It is 
accomplished by using one of the above methods for the Tier 1 
and 2 exposures and then extrapolating from the Tier 1 and 2 
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TABLE 3 

Average Ground-Up Percentage of Exposed 
Liabilities (in Millions) Limits Exhausted 

Tier 1 3,000 100%-I 10% 
Tier 2 700 25%-35% 
Tier 3 50 6%-10% 

results to the remaining tiers. For example, given the following 
information for Tiers 1 and 2 versus Tier 3, an extrapolation of 
the percentage of exposed limits exhausted may indicate a range 
of 6% to 10% for Tier 3 insureds. The selected percentage could 
then be applied to the aggregate of exposed policy limits for Tier 
3 insureds. The assumptions used in this method are presented 
in Table 3. 

A subjective extrapolation could also be carried out using the 
expected percentage reported by tier. For example, if Tier 1 in- 
sureds are 55% reported and Tier 2 30% reported, we might 
estimate that Tier 3 insureds are 15% to 20% reported. 

In extrapolating the model results to reflect the company 's  
total liabilities, insureds presenting an unusual type or degree of  
exposure to the company should be considered separately. For 
example, an unusual degree of  exposure would exist when a vast 
majority of the company's  products liability policies were writ- 
ten with aggregate limits but one old policy without an aggregate 
has surfaced with a Tier 1 named insured. Similarly, if the com- 
pany generally insured risks categorized as "main street," but a 
Tier 1 or Tier 2 company was insured for a number of years 
on a first or second excess of  loss layer, the magnitude of  the 
potential asbestos BI liabilities could be substantial relative to 
other insureds. In addition, a pending dispute regarding signifi- 
cant amounts of potential coverage for a Tier 1 or Tier 2 insured 
or an applicable settlement agreement would warrant separate 
consideration. Such cases require discussions with claims de- 
partment personnel and a review of  assumptions underlying case 
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reserves. Estimates for these unusual exposures should be de- 
rived on a case-by-case basis and included in the total ultimate 
loss estimates for the company. 

6. SUMMARY AND CONCLUSIONS 

This paper demonstrates a methodology for modeling as- 
bestos BI liabilities. While this policy limits methodology was 
designed specifically for modeling asbestos BI liability, there 
may be potential for application to other insurance situations 
where traditional actuarial techniques do not apply well. There 
are two clear strengths of this model: 1) its flexibility, and 2) en- 
hanced documentation. 

With the model 's  flexibility, any parameter can be changed for 
sensitivity analysis. As noted earlier, the average severity trend 
can be adjusted to test the impact of various inflation assump- 
tions. The claim count reporting pattern for the sample group can 
be sped up or lagged. If evidence suggests that certain insureds' 
expenses are declining relative to indemnity (particularly now 
that the courts have resolved many legal issues), the expense-to- 
indemnity ratio can be adjusted on a year-by-year basis. Finally, 
if the coverage block of the insured is unknown or changed in a 
court ruling, the number of years and the weighting of  each year 
in the coverage block can be varied. 

Enhanced documentation for modeling asbestos BI liability is 
another strength of the model and a benefit for claims profession- 
als handling asbestos BI claims. These professionals are often 
requested to provide input into the process of estimating IBNR 
claim liabilities on known insureds or are specifically assigned 
the responsibility of establishing case reserves incorporating un- 
reported claim activity for the foreseeable future. They are likely 
to follow an approach similar to that used in our model with in- 
sureds for which sufficient policy information is known. Benefits 
of a more formalized model analysis include: 1) an automated 



MEASUREMENT OF ASBESTOS BODILY INJURY LIABILITIES 235 

process which permits the testing of  alternative scenarios and fa- 
cilitates future updates as additional information emerges; 2) an 
aggregate view of the company 's  estimated liabilities to help 
analyze cash flow requirements or produce benchmarks when 
historical claims data is not available; and 3) enhanced docu- 
mentation to support aggregate reserve levels to outside auditors 
and regulators. 

Possible weaknesses of the model as presented include: 1) it is 
a deterministic rather than a stochastic approach to the estimation 
of asbestos BI liabilities; and 2) it is dependent on reasonably 
accurate selection of model parameters. Both of these disadvan- 
tages can be minimized through sensitivity analysis. Several sce- 
narios should be run through the model to estimate the range 
of potential liabilities and to minimize errors due to parame- 
ter mis-estimation. Also, with additional programming or use of  
appropriate computer software, model parameters can be varied 
stochastically. 

Possible enhancements to the model or additional areas re- 
quiring research in projecting asbestos liabilities include: 1) the 
inclusion of extra parameters to more comprehensively describe 
the insurance or reinsurance policy and the potential asbestos 
exposure associated with the policy; 2) a provision for IBNR 
associated with insureds who have not yet notified their insur- 
ance carriers and are not yet identified by the company; 3) a 
methodology for estimating liabilities associated with premises 
and operations claims not subject to policy aggregates; and 4) a 
methodology for estimating property damage claims related to 
asbestos. 
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E X H I B I T  1 

P A R T  1 

L O C A T I O N ,  C O M P O S I T I O N ,  A N D  D A T E S  O F  U S E  O F  A S B E S T O S - C O N T A I N I N G  B U I L D I N G  P R O D U C T S  

bo 
L.o 
(3,0 

How Fibers 
Percent Dates Friable/ Can Be 

Product Location Asbestos of Use Binder Nonfriable Released 

Roofing and Siding 

Roofing felts Flat, built-up roofs 10-15 1910-present Asphalt Nonfriable Replacing, repairing, 
demolishing 

Roof felt shingles Roofs l 1971-1974 Asphalt Friable Replacing, demolishing 

Roofing Shingles Roofs 20-32 1930-present Portland cement Nonfriable Replacing, repairing, 
demolishing 

Siding Shingles Siding 12-14 7-present Portland cement Nonfriable Replacing, repairing, 
demolishing 

Clapboards Siding 12-15 1944-1945 Portland cement Nonfriable Replacing, repairing, 
demolishing 

Walls and Ceilings 

Sprayed coating Ceilings, walls, and 1-95 1935-1978 Portland cement, Friable Water damage, 
steelwork sodium silicate, deterioration, impact 

organic binders 

Troweled coating Ceilings, walls 1-95 1935-1978 Portland cement, Friable Water damage, 
sodium silicate deterioration, impact 

Asbestos-cement sheet Near heat sources 20-50 1930-present Portland cement Nonfriable Cutting, sanding. 
such as fireplaces, scraping 
boilers 

Walls. ceilings Spackle 3-5 1930-1978 Starch, casein, Fdable Cutting, sanding, 
synthetic resins scraping 

z -]  
o 

o 

F_ 



EXHIBIT I 

PART 2 

LOCATION, COMPOSITION, AND DATES OF USE OF ASBESTOS-CONTAINING BUILDING PRODUCTS 

How Fibers 
Percent Dates Friable/ Can Be 

Product Location Asbestos of Use Binder Nonfriable Released 

Z 
Joint compound Walls, ceilings 3-5 1945-1977 Asphalt Friable Cutting, sanding, O 

scraping "z 

Textured paints Walls, ceilings 4-15 ?-1978 Friable Cutting, sanding, 
scraping 

Millboard, rollboard Walls, commercial 80°85 1925-? Starch, lime, clay Friable Cutting. demolition 
buildings 

O 
Vinyl wallpaper Walls 6-8 ? Nonfriable Removal, sanding, ~7 

dryscraping, cutting .~ 

Insulation board Walls 30 ? Silicates Friable Removal. sanding, 
dryscraping 

Floors r- 
Vinyl-asbestos tile Floors 21 1950-1980? Poly(vinyl) Nonfriable Removal, sanding, >m 

chloride dryscraping, cutting F 
q 

Asphalt-asbestos tile Floors 26-33 1920-19807 Asphalt Nonfriable Removal, sanding 
dryscraping, cutting 

Resilient sheet flooring Floors 30 195001980? Dry oils Nonfriable Removal, sanding, 
dryscraping, cutting 

Mastic adhesive Sheet and tile 5-25 1945-1980? Asphalt Friable Removal, sanding, t-~ 
backing dryscraping, cutting ~,O 



EXHIBIT 1 

PART 3 

LOCATION, COMPOSITION, AND DATES OF USE OF ASBESTOS-CONTAINING BUILDING PRODUCTS 

bo 

O 

~r 
rll > 

How Fibers 
Percent Dates Friable./ Can Be 

Product Location Asbestos of Use Binder Nonfriable Released 

r~ 

r~ 
Z ,-q 

Pipes and  boilers 

Cement and pipe and fittings Water and sewer 20-? 1935-present Portland cement Nonfriable Demolition, cutting, 
removing 

Block insulation Boilers 6-15 1890-1978 Magnesium Friable Damage, cutting, 
carbonate, calcium deterioration 

silicate 

Preformed pipe wrap Pipes 50 1926-1975 Magnesium Friable Damage, cutting, 
carbonate, calcium deterioration 

silicate 

Corrugated asbestos paper Pipes high temp. 90 1935-19807 Sodium silicate, Friable Damage, cutting, 
rood. temp. 35-70 1910-1980? starch deterioration 

Paper tape Furnaces, steam 80 1901-1980? Polymers, starches, Friable Tearing, deterioration 
valves, flanges, silicates 
electrical wiring 

Plumbing joints Putty (Mudding) 20-100 190(O1973 Clay Friable Water damege, 
deterioration 

© 

© 

F 
q 

Source: U.S. Environmental Protection Agency 



EXHIBIT 2 

ADJUSTMENT TO ABC REINSURANCE COMPANY'S POLICY LIMITS FOR POLICIES ASSUMED FROM 
XYZ INSURANCE COMPANY--INDEMNITY ONLY* 

($ in Millions) 
K 
m 

XYZ Direct Policy ABC Re's Stated Policy ABC Re's  Restated Policy 
Information Information Information 

A B e  Re 's  ABC Re's  
ABC Re Per- Attach- Per- Attach- Per- Attach- Stated Restated 

Policy Insured centage merit centage ment centage ment Dollar Dollar Underlap 
Number  Company Share Point Limit Share Point Limit Share Point Limit Share Share Amount  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

70 

K 
7 
...] 

0 

1 Insured 1 100.00% 60.00 10.00 7.25% 5.00 5.00 7.25% 65.00 5.00 0.36 0.36 0,00 
2 Insured 1 100.00% 5.00 20.00 30.00% 5.00 10.00 30.00% 10.00 I0.00 3.00 3.00 0.00 
3 Insured 2 40.00% 10.00 20.00 50.00% 1.00 5.00 20.00% 12.50 12.50 2.50 2.50 0.00 
4 Insured 2 10.00% 10.00 20.00 50.00% 1.00 5.00 5.00% 20.00 10.00 2.50 0.50 2.00 
5 Insured 2 10.00% 10.00 20.00 50.00% 2.25 5.00 5.00% 32.50 0.00 2.50 0.00 2.50 
6 Insured 2 50.00% 7.00 25.00 100.00% 5.00 15.00 50.00% 17.00 15.00 15.00 7.50 7,50 
7 Insured 2 32.00% 7.00 10.00 100.00% 2.00 2.00 32.00% 13.25 3.75 2.00 1.20 0.80 
8 Insured 2 100.00% 7.00 5.00 20.00% 5.00 5.00 20.00% 12.00 0.00 1.00 0.00 1.00 
9 Insured 2 100.00% 7.00 5,00 20.00% 2.00 3.00 20.00% 9.00 3.00 0.60 0.60 0.00 

10 Insured 2 65.00% 6.00 20,00 20.00% 10.00 5.00 13.00% 21.38 4.62 1.00 0.60 0.40 
11 Insured 2 65.00% 11.00 20,00 20.00% 5.00 10.00 13.00% 18.69 12.31 2.00 1.60 0.40 
12 Insured 2 10.00% 11.00 50,00 40.00% 4.00 5.00 4.00% 51.00 10.00 2.00 0.40 1.60 
13 Insured 2 10.00% i 1.00 50.00 40.00% 1.00 5.00 4.00% 21.00 40.00 2.00 1.60 0.40 

36.46 19.86 

(15) Underlap Factor 54.5% 

ct~ 

O 

r- 
> 
t~ 
F 
m Gt) 

Note3". 
(3)-(5) Direct policy information. Given. 
(6)-(8) Stated reinsurance policy information. Given. 
(9) = (3) x (6). 
(10)  = [ (7 ) / (3 ) ]  + (4).  

* Expenses are ignored for simplicity of  presentation. 

(11) = Max[0, Min {(8)/(3), {(5) - ((7)1(3))) } 1. 
(12) = (6) x (8). 
(13) = (9) x (11). 
(14) = ( 1 2 ) - ( 1 3 ) .  
(15) = Total of  (13)/Total of (12). 

i,J 
4~ 



242  MEASUREMENT OF ASBESTOS BODILY INJURY LIABILITIES 

EXHIBIT 3 

PARTIAL LIST OF ABC RE'S KNOWN ASBESTOS DEFENDANTS 

($ in Millions) 

Ceding 
Name Company ABC Re ' s  Included 

of  Policy Policy in Sample 
Company Tier Information Information Group 

Insured 1 4 Known Known Yes 
Insured 2 4 Known Known Yes 
Insured 3 2 Known Known Yes 
Insured 4 1 Known Known Yes 
Insured 5 1 Known Known Yes 
Insured 6 1 Known Known Yes 
Insured 7 2 Known Known Yes 
Insured 8 2 Known Known Yes 
Insured 9 2 Known Known Yes 
Insured 10 3 Known Known Yes 
Insured 11 2 Known Known Yes 
Insured 12 3 Known Known Yes 
Insured 13 3 Unknown Known Yes 
Insured 14 3 Unknown Known Yes 
Insured 15 3 Unknown Known Yes 
Insured 16 3 Unknown Unknown No 
Insured 17 3 Unknown Unknown No 
Insured 18 3 Unknown Unknown No 
Insured 19 3 Unknown Unknown No 
Insured 20 3 Unknown Unknown No 
Insured 21 3 Unknown Unknown No 
Insured 22 3 Unknown Unknown No 
Insured 23 2 Unknown Unknown No 



EXHIBIT 4 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
POLICY INFORMATION FOR UNDERLYING INSURED 3, A TIER 2 COMPANY 

Coverage Block under Baseline Scenario: 1960-1974 
Coverage Block under Alternative Scenario: 1960--1984 

25 Year 15 Year ABC Re Restated Restated rn 
Coy. Coy. Policy Policy Percentage Attachment Restated ~" 

Block Block Year w/Insured 3 Share Point Limits Expense Treatment 
.q 

1958 Yes 100.00% 3,500,000 4,000,000 Pro Rata in Addition to Limit O 
1959 None -~'n 

I 1 1960 None 
2 2 1961 None t'rJ 
3 3 1962 None ,.-2 
4 4 1963 None 
5 5 1964 None 
6 6 1965 Yes 100.00% 2,700,000 2,000,000 Pro Rata in Addition to Limit O 
7 7 1966 Yes 100.00% 2,700,000 2,000,000 Pro Rata in Addition to Limit 
8 8 1967 Yes 100.00% 2,700,000 2,000,000 Expenses included within Limit ,.< 
9 9 1968 Yes 100.00% 3,500,000 4,000,000 Pro Rata in Addition to Limit 

10 10 1969 Yes 100.00% 3,500,000 4,000,000 Expenses included within Limit '~ 
11 11 1970 Yes 25.130% 3,500,000 4,000,000 Pro Rata in Addition to Limit 
12 12 1971 Yes 100.00% 2,000,000 2,000,000 Indemnity Only 
13 13 1972 None r" > 
14 14 1973 None 
15 15 1974 None 
! 6 1975 None 
17 1976 None 
18 1977 None 
19 1978 None 
20 1979 None 
21 1980 None 
22 1981 None to 
23 1982 None 
24 1983 None 
25 1984 None 



EXHIBIT 5.1 

PART 1 

ASBESTOS BI MODEL FOR A B C  RE'S INSURED 3 
PROJECTION OF FUTURE AGGREGATE GROUND-UP INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 5.0% 

bo 
4~. 
4~ 

Inputs into Model 1991 1992 1993 

1) Cumulative Repotted Claims to Date 35,000 37,500 40,000 
2) Cumulative Repo~d  Indemnity 23,349,294 25,730,246 28,230,246 
3) Historical Exp-to-lndem Ratio 0.5 0.5 0.5 
4) Cumulative Reported Indent & Expense 35,023,941 38,595,369 42,345,369 
5) Claims Closed in Year 1,600 1,800 2,000 
6) Indemnity and Expense Paid in Year 1,312,000 1,530,000 1,800,0~1 
7) Average Pd Indemnity & Expense in Year 820 850 900 
8) Selected Average Reported Claim Severity 1,000 

1994 1995 

9) Projected Incremental Reported Claims 2,500 2,200 2,200 
10) Selected Annual Severity Trend 5.0% 5.0% 5.0% 
I 1) Trended Severity 1,050 1,103 1,158 
12) Projected Incremental Indemnity Costs 2,625,000 2,425,500 2,546,775 
! 3) Selected Expense-to-Indemnity Ratio 50.0% 50.0% 50.0% 
14) Projected Incremental Indemnity & Expense Costs 3,937,500 3,638,250 3,820,163 
15) Projected Cumulative Indemnity Costs 30,855,246 33,280,746 35,827,521 
16) Projected Cumulative Indenmity & Expense Costs 46,282.869 49,921,119 53,741,282 

Calendar Year 
1996 1997 1998 1999 2000 

2,200 2,100 2,000 1,900 
5.0% 5.0% 5.0% 5.0% 
1,216 1,276 1,340 1,407 

2,674,114 2,680,191 2,680,191 2,673,491 
50.0% 50.0% 50.0% 50.0% 

4,011,171 4.020,287 4,020,287 4,010,236 
38,501,635 41,181,826 43,862,018 46,535,508 
57,752,453 61,772,739 65.793,026 69,803,263 

-] 
© 

> 

© 

7o ,< 
c-" 

7. 
t~ 



EXHIBIT 5.1 

PART 2 

2001 2002 

9) Projected Incremental Reported Claims 1,800 1.700 
10) Selected Annual Severity Trend 5.0% 5.0% 
11) Treaded Severity 1,477 1,551 
12) Projected Incremental Indemnity Costs 2,659,420 2,637,258 
13) Selected Expense-to-lndemnity Ratio 50.0% 50.0% 
14) Projected Incremental Indemnity & Expense Costs 3,989,130 3,955,887 
15) Projected Cumulative Indemnity Costs 49,194,928 51,832,186 
16) Projected Cumulative Indemnity & Expense Costs 73,792,392 77,748,279 

20O8 2OO9 

9) Projected Incremental Reported Claims 1,100 1,000 
I0) Selected Annual Severity Trend 5.0% 5.0% 
I 1) Trended Sevexity 2,079 2,183 
12) Projected Incremental Indemnity Costs 2,286,821 2,182,875 
13) Selected Expense-to-lndenmity Ratio 50.0% 50.0% 
14) Projected l ~ n t a l  Indemnity & Expense Costs 3,430,231 3,274.312 
15) Projected Cumulative Indemnity Costs 66,632,208 68,815,083 
16) Projected Cumulative Indemnity & Expense Costs 99,948,312 103.222,624 

Notes: 

Calendar Year 
2003 2004 2005 2006 2007 

1,600 1,500 1,400 1,300 1,200 

5.0% 5.0% 5.0% 5.0% 5.0% 

1,629 1,710 1,796 1,886 1.980 
2,606.231 2,565,509 2,514.199 2,451,344 2,375,918 

50.0% 50.0% 50.0% 50.0% 50.0% 
3,909,347 3,848,264 3,771,298 3,677,016 3,563,877 

54.438,418 57,003,927 59,518,125 61,969,469 64,345.387 
81,657,626 85,505,890 89,277,188 92,954,204 96,518,081 

Calendar Year Projected 
2010 2011 2012 2013 Ultimate* 

90O 8OO 700 6OO 
5.0% 5.0% 5.0% 5.0% 
2,292 2,407 2.527 2,653 

2,062,816 1.925,295 1,768,865 1.591.979 
50.0% 50.0% 50.0% 50.0% 

3,094,225 2,887,943 2,653,298 2,387,968 
70.877,899 72,803,195 74,572.060 76,164,038 104.131,118 

106,316,849 109,204,792 111,858,090 114.246,058 156.196,678 

(12) = (9) x (11). 

K 
Z 

0 

© 

.7 

,< 

> 
w 
F 
q 

(I)--(6) From Insured 3's claim experience. 
(7) = (6)/(5). 
(8). (10) Selected based on historical and anticipated claim severity trends. 
(9) See paper for discussion of calculation of reporting pattern. 
(I 1) = Prior (11) x (1.0 + Current (10)). 

*Ultimate value is calculated by continuation of patterns beyond years shown. 

(13) Selected based on historical and anticipated claim expense 
to indemnity ratios. 
(14) = (12) × (I.0 + (13)). 
(15) = Cumulative (12). 
(16) = Cumulative (14). 

to 
L~ 



EXHIBIT 5.2 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
PROJECTION OF FUTURE AGGREGATE GROUND-UP INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 0.0% 

b~ 

7v 

Inputs into Model 1991 

1) Cumulative Reported Claims to Date 35,000 
2) Cumulative Reported Indemnity 23,349,294 
3) Historical Exp-to-Indem Ratio 0.5 
4) Cumulative Reported lndem & Expense 35.023,941 
5) Claims Closed in Year 1.600 
6) lndemmty and Expense Paid in Year 1.312,000 
7) Avexage Pd Indemnity & Expense in Year 820 
8) Selected Average Reported Claim Severity 

9) Projected Incremental Reported Claims 
10) Selected Annual Severity Trend 
I 1) Trended Severity 
12) projected Incremental Indemnity Costs 
13) Selected F_,xl~nse-to-Indemnity Ratio 
14) Projected Incremental Indemnity & Expense Costs 
15) Projected Cumulative Indemnity Costs 
16) Projected Cumulative Indemnity & Expense Costs 

1992 1993 

37,500 40,000 
25,730,246 28,230,246 

0.5 0.5 
38,595,369 42,345,369 

1,800 2,000 
1,530,000 1,800,000 

850 900 
1,000 

1994 1995 

2,500 2,200 
0.0% 0.0% 
1,0OO 1 ,O00 

2,500,000 2,200,000 
50.0% 50.0% 

3,750,000 3,300,000 
30,730,246 32,930,246 
46,095,369 49,395,369 

Calendar Year 
1996 1997 1998 1999 2000 

2,200 2,200 2,100 2,000 1,900 
0.0% 0.0% 0.0% 0.0% 0.0% 
1,0(30 1,000 1,000 1.000 1,000 

2.200,000 2.2130,0(30 2.100,000 2,000,000 1,900.000 
50.13% 50.0% 50.0% 50.0% 50.0% 

3,300,000 3,300,000 3,150,0(20 3,000,000 2,850,000 
35,130,246 37,330,246 39,430,246 41,430,246 43,330,246 
52,695,369 55,995,369 59,145,369 62,145,369 64,995,369 

Z 

0 

> 

© 

,< 

Z 
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> 
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EXHIBIT 5.2 

PART 2 

2001 2002 

9) Projected Incremental Reported Claims 1,800 1,700 
10) Selected Annual Severity Trend 0.0% 0.0% 
11) Trended Severity I,OOO 1,000 
12) Projected Incremental Indemnity Costs 1,800,000 1,700,000 
13) Selected Expense-to-Indemnity Ratio 50.0% 50.0% 
14) Projected Incremental Indemnity & Expense Costs 2,700,0(30 2,550,000 
15) Projected Cumulative Indemnity Costs 45,130,246 46,830,246 
16) Projected Cumulative Indemnity & Expense Costs 67.695,369 70,245,369 

2OO8 2OO9 

9) Projected Incremental Reported Claims 1,1(30 1,000 
10) Selected Annual Severity Trend 0.0% 0.0% 
11) Trended Severity 1,000 1,000 
12) projected Incremental Indemnity Costs 1,100,000 1,000,000 
13) Selected Expense-to-lndemmty Ratio 50.0% 50.0% 
14) Projected Incremental Indemnity & Expense Costs 1,650,000 1,500,000 
15) Projected Cumulative Indemnity Costs 54,930,246 55,930,246 
16) Projected Cumulative Indemnity & Expense Costs 82,395,369 83,895,369 

Notes: 

Calendar Year ~, 

2003 2004 2005 2006 2007 rn 

1,600 1,500 1,400 1,300 1,200 
0.0% 0.0% 0.0% 0.0% 0.0% m 

K 
1,000 1,0OO 1,0OO 1,000 1,003 

3" 
1,600,000 1,500,000 1,400,000 i ,300,000 1,200,000 

50.0% 50.0% 50.0% 50.0% 50.0% © 

2,400,000 2,250,OO0 2,100,000 1,950,000 1,800,000 > 
~3 

48,430,246 49,930,246 51,330,246 52,630,246 53,830,246 
72,645,369 74,895,369 76,995,369 78,945,369 80,745,369 

-4 
Calendar Year Projected 

2010 2011 2012 2013 Ultimate* © 

9o) 8(30 7oo 6oo F 
0.0% 0.0% 0.0% 0.0% "< 
1,00(3 1,000 1,000 1,000 

900,000 800,000 700,000 6(30,000 
,.< 

50.0% 50.0% 50.0% 50.0% (- 
1,350,000 !,200,000 1,050,000 900,000 ~. 

56,830,246 57,630,246 58,330,246 58,930,246 65,755,246 
85,245,369 86,445,369 87,495,369 88,395,369 98,632,869 t" 

(12) = (9) x (11). 
(1)-(6) From Insured 3 ' s  claim experience. 
(7) -- (6)/(5). 
(8), (10) Selected based on historical and anticipated claim severity trands. 
(9) See paper for discussion of  calculation of  rel~rfing pattern. 
(11) = Prior (11) x (1.0 + Current (10)). 

*Ultimate value is calculated by continuation of  patterns beyond years shown. 

(13) Selected based on historical and anticipated claim expense 
to indemnity ratios. 
(14) = (12) × (1.0 + 03)) .  
0 5 )  = Cumulative (12). 
(16) = Cumulative (14). t,O 

4~ 
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EXHIBIT 6.1 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
INSURER 3'S CUMULATIVE GROUND-UP LOSSES, INDEMNITY ONLY, 

ANNUAL INFLATION = 5.0%/COVERAGE BLOCK = 15 YEARS 
($O00's) 

1",,2 
4~  
O0 

7~ 

3: 
U~ 

Policy Selected Calendar Year 
Year Weights 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

.q 
© 

1960 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1961 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1962 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1963 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1964 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1965 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1966 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1967 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1968 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1969 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1970 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1971 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1972 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1973 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 
1974 6.67% 2,057 2,219 2 , 3 8 9  2 , 5 6 7  2 , 7 4 5  2,924 3 , 1 0 2  3,280 3 , 4 5 5  3,629 

1975-84 0.00% 0 0 0 0 0 0 0 0 0 0 

Total 100.00% 30,855 33,281 35,828 38,502 41,182 43,862 46,536 49,195 51,832 54,438 

- ]  
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EXHIBIT 6.1 

PART 2 
~r 

Policy Selected Calendar Year 
Year Weights 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate 

t"l'3 

1960 6.67% 3,800 3 , 9 6 8  4 , 1 3 1  4,290 4,442 4,588 4 , 7 2 5  4,854 4 , 9 7 1  5 , 0 7 8  6,942 
1961 6.67% 3,800 3 , 9 6 8  4 , 1 3 1  4,290 4,442 4,588 4 , 7 2 5  4,854 4 , 9 7 1  5,078 6,942 
1962 6.67% 3,800 3 , 9 6 8  4 , 1 3 1  4,290 4,442 4,588 4 , 7 2 5  4,854 4 , 9 7 1  5,078 6,942 
1963 6.67% 3,800 3 , 9 6 8  4 , 1 3 1  4,290 4,442 4,588 4,725 4,854 4 , 9 7 1  5 , 0 7 8  6,942 
1964 6.67% 3,800 3 , 9 6 8  4 , 1 3 1  4,290 4 , 4 4 2  4,588 4,725 4,854 4 , 9 7 1  5,078 6,942 
1965 6.67% 3,800 3,968 4 , 1 3 1  4,290 4,442 4,588 4 , 7 2 5  4,854 4 , 9 7 1  5,078 6,942 
1966 6.67% 3,800 3 , 9 6 8  4 , 1 3 1  4,290 4,442 4,588 4 , 7 2 5  4,854 4 , 9 7 1  5,078 6,942 
1967 6.67% 3,800 3 , 9 6 8  4 , 1 3 1  4,290 4,442 4,588 4,725 4,854 4 , 9 7 1  5 , 0 7 8  6,942 
1968 6.67% 3,800 3 , 9 6 8  4 , 1 3 1  4,290 4,442 4,588 4,725 4,854 4 , 9 7 1  5 , 0 7 8  6,942 
1969 6.67% 3,800 3,968 4 , 1 3 1  4,290 4,442 4,588 4,725 4,854 4 , 9 7 1  5,078 6,942 
1970 6.67% 3,800 3,968 4 , 1 3 1  4,290 4,442 4,588 4,725 4,854 4 , 9 7 1  5 , 0 7 8  6,942 
1971 6.67% 3,800 3,968 4 , 1 3 1  4,290 4,442 4,588 4 , 7 2 5  4,854 4 , 9 7 1  5,078 6,942 
1972 6.67% 3,800 3 , 9 6 8  4 , 1 3 1  4,290 4,442 4,588 4 , 7 2 5  4,854 4 , 9 7 1  5,078 6,942 
1973 6.67% 3,800 3 , 9 6 8  4 , 1 3 1  4,290 4 , 4 4 2  4,588 4 , 7 2 5  4,854 4 , 9 7 1  5,078 6,942 
1974 6.67% 3,800 3,968 4 , 1 3 1  4,290 4,442 4,588 4 , 7 2 5  4,854 4 , 9 7 1  5 , 0 7 8  6,942 

1975-84 0.00% 0 0 0 0 0 0 0 0 0 0 0 

Total 100.00% 57,004 59,518 61,969 64,345 66,632 68,815 70,878 72,803 74,572 76,164 104,131 

Z 

© 

© 

F" 

Not~$~ 

- -  Cumulative projected calendar year ground-up indemnity costs from Exhibit 5.1, Item 15. 
- -  Allocation method of calendar year losses to policy year is by equal weighting to each year. 
- -  Ultimate value is calculated by continuation of patterns beyond months shown. bO 

',D 



EXHIBIT 6.2 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
INSURER 3'S CUMULATIVE GROUND-UP LOSSES, INDEMNITY ONLY, 

ANNUAL INFLATION = 0.0%/COVERAGE BLOCK = 15 YEARS 
($O00's) 

o 

> 

.< 
14 

Policy Selected Calendar Year 
Year Weights 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

© 

1960 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2 , 8 8 9  3 , 0 0 9  3 , 1 2 2  3,229 
1961 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2 , 8 8 9  3 , 0 0 9  3 , 1 2 2  3,229 
1962 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2 , 8 8 9  3 , 0 0 9  3 , 1 2 2  3,229 
1963 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2 , 8 8 9  3 , 0 0 9  3,122 3,229 
1964 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2 , 8 8 9  3 , 0 0 9  3 , 1 2 2  3,229 
1965 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2,889 3 , 0 0 9  3 , 1 2 2  3,229 
1966 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2 , 8 8 9  3 , 0 0 9  3 , 1 2 2  3,229 
1967 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2 , 8 8 9  3 , 0 0 9  3 , 1 2 2  3,229 
1968 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2 , 8 8 9  3 , 0 0 9  3 , 1 2 2  3,229 
1969 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2 , 8 8 9  3 , 0 0 9  3 , 1 2 2  3,229 
1970 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2 , 8 8 9  3 , 0 0 9  3 , 1 2 2  3,229 
1971 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2 , 8 8 9  3 , 0 0 9  3 , 1 2 2  3,229 
1972 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2 , 8 8 9  3 , 0 0 9  3 , 1 2 2  3,229 
1973 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2,629 2,762 2 , 8 8 9  3 , 0 0 9  3 , 1 2 2  3,229 
1974 6.67% 2,049 2 , 1 9 5  2,342 2 , 4 8 9  2 , 6 2 9  2,762 2 , 8 8 9  3 , 0 0 9  3 , 1 2 2  3,229 

1975--84 0.00% 0 0 0 0 0 0 0 0 0 0 

Total 100.00% 30,730 32,930 35,130 37,330 39,430 41,430 43,330 45,130 46,830 48,430 
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EXHIBIT 6.2 

PART 2 
~r 
7r~ 

Policy Selected Calendar Year 
Year Weights 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate 7~ 

1960 6.67% 3,329 3 , 4 2 2  3 , 5 0 9  3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1961 6.67% 3,329 3 , 4 2 2  3,509 3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1962 6.67% 3,329 3 , 4 2 2  3,509 3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1963 6.67% 3,329 3 , 4 2 2  3,509 3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1964 6.67% 3,329 3 , 4 2 2  3,509 3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1965 6.67% 3,329 3 , 4 2 2  3 , 5 0 9  3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1966 6.67% 3,329 3 , 4 2 2  3 , 5 0 9  3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1967 6.67% 3,329 3,422 3,509 3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1968 6.67% 3,329 3 , 4 2 2  3,509 3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1969 6.67% 3,329 3 , 4 2 2  3,509 3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1970 6.67% 3,329 3 , 4 2 2  3,509 3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1971 6.67% 3,329 3 , 4 2 2  3,509 3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1972 6.67% 3,329 3 , 4 2 2  3 , 5 0 9  3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3 , 7 8 9  3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1973 6.67% 3,329 3 , 4 2 2  3 , 5 0 9  3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 
1974 6.67% 3,329 3,422 3,509 3 , 5 8 9  3 , 6 6 2  3 , 7 2 9  3,789 3 , 8 4 2  3 , 8 8 9  3,929 4,384 

1975-84 0.00% 0 0 0 0 0 0 0 0 0 0 

Total 100.00% 49,930 51,330 52,630 53,830 54,930 55,930 56,830 57,630 58,330 58,930 65,755 
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Notes: 
- -  Cumulative projected calendar year ground-up indemnity costs from Exhibit 5.2, Item 15. 
- -  Allocation method of calendar year losses to policy year is by equal weighting to each year. 
- -  Ultimate value is calculated by continuation of patterns beyond months shown. b~ 



EXHIBIT 6.3 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
INSURER 3'S CUMULATIVE GROUND-UP LOSSES, INDEMNITY ONLY, 

ANNUAL INFLATION = 5.0%/COVERAGE BLOCK = 25 YEARS 
($O0O's) 

t.d t.~ 
I,J 

Policy Selected Calendar Year 
Year Weights 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

1960 4.00% 1,234 1 , 3 3 1  1 , 4 3 3  1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1 , 8 6 1  1 , 9 6 8  2 , 0 7 3  2,178 
1961 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1 , 8 6 1  1 , 9 6 8  2 , 0 7 3  2,178 
1962 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1,861 1,968 2 , 0 7 3  2,178 
1963 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1,861 1,968 2 , 0 7 3  2,178 
1964 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1 , 8 6 1  1 , 9 6 8  2 , 0 7 3  2,178 
1965 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1,861 1,968 2 , 0 7 3  2,178 
1966 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1,861 1,968 2 , 0 7 3  2,178 
1967 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1,861 1,968 2 , 0 7 3  2,178 
1968 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1 , 8 6 1  1 , 9 6 8  2 , 0 7 3  2,178 
1969 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1,861 1,968 2 , 0 7 3  2,178 
1970 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1,861 1,968 2 , 0 7 3  2,178 
1971 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1,861 1,968 2 , 0 7 3  2,178 
1972 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1 , 8 6 1  1 , 9 6 8  2 , 0 7 3  2,178 
1973 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1 , 8 6 1  1 , 9 6 8  2 , 0 7 3  2,178 
1974 4.00% 1,234 1,331 1,433 1 , 5 4 0  1 , 6 4 7  1 , 7 5 4  1,861 1,968 2 , 0 7 3  2,178 

1975--84 40.00% 12,342 13,312 14,331 15,401 16,473 17,545 18,614 19,678 20,733 21,775 

Total 100.00% 30,855 33,280 35,828 38,502 41,182 43,862 46,535 49,195 51,832 54,438 

,-q 
8 
© 

,.< 

Z 
7~ .-< 
r" 
2> 

,.q 



EXHIBIT 6.3 

PART 2 
~r 

Po l i cy  Se l ec ted  Calendar  Year 

Year  Weights 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ult imate  7¢ 

1960 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3,047 4,165 
1961 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2,983 3,047 4,165 
1962 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3,047 4,165 
1963 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3,047 4,165 
1964 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3,047 4,165 
1965 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3,047 4,165 
1966 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3,047 4,165 
1967 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3,047 4,165 
1968 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3,047 4,165 
1969 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3,047 4,165 
1970 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3,047 4,165 
1971 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3,047 4,165 
1972 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3,047 4,165 
1973 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3 , 0 4 7  4,165 
1974 4.00% 2,280 2 , 3 8 1  2,479 2,574 2 , 6 6 5  2,753 2,835 2,912 2 , 9 8 3  3,047 4,165 

1975-84 40.00% 22,802 23,807 24,788 25,738 26,653 27,526 28,351 29,121 29,829 30,466 41,652 

Total  100.00% 57,004 59,518 61,970 64,345 66,632 68,815 70,878 72,803 74,572 76,164 104,131 

© 

O 

.< 

Not~$~ 
Cumulative projocted calendar year ground-up indemnity costs from Exhibit 5.1, Item 15. 

- -  Allocation method of  calendar year losses to policy year is by equal weighting to each year. 
Ultimate wlue  is calculated by continuation of  patterns beyond months shown. t o  
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EXHIBIT 6.4 

PART 1 
4-- 

ASBESTOS BI  MODEL FOR A B C  RE'S  INSURED 3 

INSURER 3 'S  CUMULATIVE GROUND-UP LOSSES, INDEMNITY ONLY, 

ANNUAL INFLATION = 0 .0%/COVERAGE BLOCK = 25 YEARS 

($000's) 

Policy Selected Calendar Year 
Year Weights 1994 1995 1996 1997 1998 ! 999 2000 2001 2002 2003 

© 

1960 4.00% 1,229 1 , 3 1 7  1,405 1,493 1 , 5 7 7  1,657 1,733 1,805 1,873 1,937 
1961 4.00% 1,229 1,317 1,405 1,493 1,577 1,657 1,733 1,805 1,873 1,937 
1962 4.00% 1,229 1 , 3 1 7  1,405 1,493 1 , 5 7 7  1,657 1,733 1,805 1,873 1,937 
1963 4.00% 1,229 1,317 1,405 1 , 4 9 3  1 , 5 7 7  1,657 1,733 1,805 1,873 1,937 
1964 4.00% 1,229 1 , 3 1 7  1,405 1,493 1 , 5 7 7  1,657 1,733 1,805 1,873 1,937 
1965 4.00% 1,229 1 , 3 1 7  1,405 1,493 1,577 1,657 1,733 1,805 1,873 1,937 
1966 4.00% 1,229 1 , 3 1 7  1,405 1,493 1 , 5 7 7  1 , 6 5 7  1 , 7 3 3  1,805 1,873 1,937 
1967 4.00% 1,229 1 , 3 1 7  1,405 1,493 1,577 1,657 1,733 1,805 1,873 1,937 
1968 4.00% 1,229 1 , 3 1 7  1,405 1,493 1 , 5 7 7  1,657 1,733 1 , 8 0 5  1 , 8 7 3  1,937 
1969 4.00% 1,229 1 , 3 1 7  1,405 1,493 1,577 1,657 1,733 1,805 1,873 1,937 
1970 4.00% 1,229 1 , 3 1 7  1,405 1,493 1,577 1,657 1,733 1,805 1,873 1,937 
1971 4.00% 1,229 1 , 3 1 7  1,405 1,493 1,577 1,657 1,733 1,805 1,873 1,937 
1972 4.00% 1,229 1 , 3 1 7  1,405 1,493 1,577 1,657 1,733 1,805 1 , 8 7 3  1,937 
1973 4.00% 1,229 1 , 3 1 7  1,405 1,493 1,577 1,657 1,733 1,805 1,873 1,937 
1974 4.00% 1,229 1 , 3 1 7  1,405 1,493 1,577 1,657 1,733 1,805 1 , 8 7 3  1,937 

1975-84 40.00% 12,292 13,172 14,052 14,932 15,772 16,572 17,332 18,052 18,732 19,372 

Total 100.00% 30,730 32,930 35,130 37,330 39,430 41,430 43,330 45,130 46,830 48,430 
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EXHIBIT 6.4 

PART 2 

Policy Selected Calendar Year 
Year Weights 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate 

1960 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1961 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1962 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1963 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1964 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1965 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1966 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1967 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1968 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1969 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1970 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1971 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1972 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1973 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 
1974 4.00% 1,997 2,053 2,105 2,153 2,197 2,237 2,273 2,305 2,333 2,357 2,630 

1975-84 40.00% 19 ,972  20,532 21,052 21,532 21,972 22,372 22,732 23,052 23,332 23,572 26,302 

Total 100.00% 49,930 51,330 52,630 53,830 54,930 55,930 56,830 57,630 58,330 58,930 65,755 
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Notes" 
- -  Cumulative pmjcctcx/calendar year ground-up indemnity costs from Exhibit 5.2, Item 15. 
- -  Allocation method of  calendar year losses to policy year is by equal weighting to each year. 
- -  Ultimate value is calculated by continuation o f  patterns beyond months shown. t.o 



EXHIBIT 7.1 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
INSURER 3'S CUMULATIVE GROUND-UP LOSSES, INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 5.0%/COVERAGE BLOCK = 15 YEARS 
($ooo's) 

t O  
q / l  

Policy Selected Calendar Year 
Year Weights 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

1960 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4,118 4,386 4,654 4,919 5 , 1 8 3  5,444 
1961 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4,118 4,386 4,654 4,919 5 , 1 8 3  5,444 
1962 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4,118 4,386 4,654 4,919 5 , 1 8 3  5,444 
1963 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4 , 1 1 8  4,386 4,654 4,919 5 , 1 8 3  5,444 
1964 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4 , 1 1 8  4,386 4,654 4,919 5 , 1 8 3  5,444 
1965 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4,118 4,386 4,654 4,919 5 , 1 8 3  5,444 
1966 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4,118 4,386 4,654 4,919 5 , 1 8 3  5,444 
1967 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4,118 4,386 4,654 4,919 5 , 1 8 3  5,444 
1968 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4,118 4,386 4,654 4,919 5 , 1 8 3  5,444 
1969 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4,118 4,386 4,654 4,919 5 , 1 8 3  5,444 
1970 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4,118 4,386 4,654 4,919 5 , 1 8 3  5,444 
1971 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4 , 1 1 8  4,386 4,654 4,919 5 , 1 8 3  5,444 
1972 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4 , 1 1 8  4,386 4,654 4,919 5 , 1 8 3  5,444 
1973 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4 , 1 1 8  4,386 4,654 4,919 5 , 1 8 3  5,444 
1974 6.67% 3,086 3 , 3 2 8  3 , 5 8 3  3,850 4,118 4,386 4,654 4,919 5 , 1 8 3  5,444 

1975--84 0.00% 0 0 0 0 0 0 0 0 0 0 

Total 100.00% 46,283 49,921 53,741 57,752 61,773 65,793 69,803 73,792 77,748 81,658 
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EXHIBIT 7.1 

PART 2 
~r 

Policy Selected Calendar Year 
Year Weights 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate 7~ 

1960 6.67% 5,700 5 , 9 5 2  6 , 1 9 7  6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7 , 0 8 8  7,280 7 , 4 5 7  7,616 10,413 
1961 6.67% 5,700 5 , 9 5 2  6 , 1 9 7  6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7 , 0 8 8  7,280 7 , 4 5 7  7,616 10,413 
1962 6.67% 5,700 5 , 9 5 2  6 , 1 9 7  6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7,088 7,280 7 , 4 5 7  7,616 10,413 
1963 6.67% 5,700 5 , 9 5 2  6 , 1 9 7  6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7,088 7,280 7 , 4 5 7  7,616 10,413 
1964 6.67% 5,700 5 , 9 5 2  6 , 1 9 7  6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7,088 7,280 7 , 4 5 7  7,616 10,413 
1965 6.67% 5,700 5 , 9 5 2  6 , 1 9 7  6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7,088 7,280 7 , 4 5 7  7,616 10,413 
1966 6.67% 5,700 5 , 9 5 2  6 , 1 9 7  6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7,088 7,280 7,457 7,616 10,413 
1967 6.67% 5,700 5 , 9 5 2  6 , 1 9 7  6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7 , 0 8 8  7,280 7 , 4 5 7  7,616 10,413 
1968 6.67% 5,700 5 , 9 5 2  6 , 1 9 7  6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7 , 0 8 8  7,280 7 , 4 5 7  7,616 10,413 
1969 6.67% 5,700 5 , 9 5 2  6,197 6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7 , 0 8 8  7,280 7 , 4 5 7  7,616 10,413 
1970 6.67% 5,700 5 , 9 5 2  6 , 1 9 7  6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7 , 0 8 8  7,280 7 , 4 5 7  7,616 10,413 
1971 6.67% 5,700 5 , 9 5 2  6 , 1 9 7  6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7 , 0 8 8  7,280 7 , 4 5 7  7,616 10,413 
1972 6.67% 5,700 5 , 9 5 2  6 , 1 9 7  6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7 , 0 8 8  7,280 7 , 4 5 7  7 , 6 1 6  10,413 
1973 6.67% 5,700 5 , 9 5 2  6 , 1 9 7  6 , 4 3 5  6 , 6 6 3  6,882 7 , 0 8 8  7,280 7 , 4 5 7  7,616 10,413 
1974 6.67% 5,700 5 , 9 5 2  6,197 6 , 4 3 5  6 , 6 6 3  6 , 8 8 2  7 , 0 8 8  7,280 7 , 4 5 7  7,616 10,413 

1975--84 0.00% 0 0 0 0 0 0 0 0 0 0 0 

Total 100.00% 85,506 89,277 92,954 96,518 99,948 103,223 106,317 109,205 111,858 114,246 156,197 

Z 

© 

© 

Z 

NOI¢$~ 

- -  Cumulative projected calendar year ground-up indemnity and expense costs from Exhibit 5.1, Item 16. 
- -  Allocation method of calendar year losses to poficy year is by equal weighting to each year. 
- -  Ul6mate value is calculated by continuation of patterns beyond months shown. t ,d  
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EXHIBIT 7.2 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
INSURER 3'S CUMULATIVE GROUND-UP LOSSES, INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 0.0%/COVERAGE BLOCK = 15 YEARS 
($ooo's) 

I '0 

O0 

Policy Selected Calendar Year 
Year Weights 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

1960 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1961 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1962 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1963 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1964 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1965 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1966 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1967 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1968 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1969 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1970 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1971 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1972 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1973 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 
1974 6.67% 3,073 3,293 3,513 3,733 3,943 4,143 4,333 4,513 4,683 4,843 

1975-84 0.00% 0 0 0 0 0 0 0 0 0 0 

Total I00.00% 46,095 49,395 52,695 55,995 59,145 62,145 64,995 67,695 70,245 72,645 

© 



EXHIBIT 7.2 

PART 2 

Policy Selected Calendar Year 
Year Weights 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate 

1960 6.67% 4,993 5 , 1 3 3  5 , 2 6 3  5 , 3 8 3  5 , 4 9 3  5 , 5 9 3  5 , 6 8 3  5 , 7 6 3  5 , 8 3 3  5 , 8 9 3  6,576 
1961 6.67% 4,993 5 , 1 3 3  5 , 2 6 3  5 , 3 8 3  5 , 4 9 3  5 , 5 9 3  5 , 6 8 3  5 , 7 6 3  5 , 8 3 3  5,893 6,576 
1962 6.67% 4,993 5 , 1 3 3  5,263 5 , 3 8 3  5 , 4 9 3  5 , 5 9 3  5 , 6 8 3  5 , 7 6 3  5 , 8 3 3  5,893 6,576 
1963 6.67% 4,993 5 , 1 3 3  5 , 2 6 3  5 , 3 8 3  5 , 4 9 3  5 , 5 9 3  5 , 6 8 3  5 , 7 6 3  5,833 5 , 8 9 3  6,576 
1964 6.67% 4,993 5 , 1 3 3  5 , 2 6 3  5 , 3 8 3  5 , 4 9 3  5 , 5 9 3  5 , 6 8 3  5 , 7 6 3  5 , 8 3 3  5 , 8 9 3  6,576 
1965 6.67% 4,993 5 , 1 3 3  5 , 2 6 3  5 , 3 8 3  5 , 4 9 3  5 , 5 9 3  5 , 6 8 3  5 , 7 6 3  5 , 8 3 3  5 , 8 9 3  6,576 
1966 6.67% 4,993 5 , 1 3 3  5 , 2 6 3  5 , 3 8 3  5 , 4 9 3  5,593 5 , 6 8 3  5 , 7 6 3  5 , 8 3 3  5 , 8 9 3  6,576 
1967 6.67% 4,993 5 , 1 3 3  5 , 2 6 3  5 , 3 8 3  5 , 4 9 3  5 , 5 9 3  5 , 6 8 3  5 , 7 6 3  5 , 8 3 3  5 , 8 9 3  6,576 
1968 6.67% 4,993 5 , 1 3 3  5,263 5 , 3 8 3  5 , 4 9 3  5 , 5 9 3  5 , 6 8 3  5 , 7 6 3  5 , 8 3 3  5,893 6,576 
1969 6.67% 4,993 5 , 1 3 3  5 , 2 6 3  5 , 3 8 3  5 , 4 9 3  5 , 5 9 3  5 , 6 8 3  5 , 7 6 3  5 , 8 3 3  5 , 8 9 3  6,576 
1970 6.67% 4,993 5 , 1 3 3  5 , 2 6 3  5 , 3 8 3  5 , 4 9 3  5 , 5 9 3  5 , 6 8 3  5 , 7 6 3  5,833 5,893 6,576 
1971 6.67% 4,993 5 , 1 3 3  5 , 2 6 3  5 , 3 8 3  5 , 4 9 3  5,593 5 , 6 8 3  5 , 7 6 3  5 , 8 3 3  5 , 8 9 3  6,576 
1972 6.67% 4,993 5 , 1 3 3  5 , 2 6 3  5 , 3 8 3  5 , 4 9 3  5 , 5 9 3  5 , 6 8 3  5 , 7 6 3  5 , 8 3 3  5 , 8 9 3  6,576 
1973 6.67% 4,993 5 , 1 3 3  5,263 5 , 3 8 3  5 , 4 9 3  5,593 5 , 6 8 3  5 , 7 6 3  5 , 8 3 3  5 , 8 9 3  6,576 
1974 6.67% 4,993 5 , 1 3 3  5,263 5 , 3 8 3  5 , 4 9 3  5 , 5 9 3  5 , 6 8 3  5 , 7 6 3  5 , 8 3 3  5 , 8 9 3  6,576 

1975-84 0.00% 0 0 0 0 0 0 0 0 0 0 0 

Total 100.00% 74,895 76,995 78,945 80,745 82,395 83,895 85,245 86,445 87,495 88,395 98,633 

Z 

© 

© 

,< 

NotGs: 
-- Cumulative projected calendar year ground-up indemnity and cxpcns~ costs from Exhibit 5.2, Item 
-- Allocation method of calendar year losses to policy year is by ~lual weighting to each year. 
-- Ultimate valuc is calculat~l by continuation of patterns beyond months shown. 
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EXHIBIT 7.3 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
INSURER 3'S CUMULATIVE GROUND-UP LOSSES, INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 5.0%/COVERAGE BLOCK = 25 YEARS 
($ooo's) 

tO 
(Tx 
O 

Policy Selected Calendar Year 
Year Weights 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

1960 4.00% 1,851 1 , 9 9 7  2,150 2,310 2 , 4 7 1  2,632 2 , 7 9 2  2,952 3,110 3,266 
1961 4.00% 1,851 1,997 2,150 2,310 2 , 4 7 1  2,632 2,792 2,952 3,110 3,266 
1962 4.00% 1,851 i,997 2,150 2,310 2 , 4 7 1  2,632 2,792 2 , 9 5 2  3,110 3,266 
1963 4.00% 1,851 1,997 2,150 2,310 2 , 4 7 1  2,632 2 , 7 9 2  2 , 9 5 2  3,110 3,266 
1964 4.00% 1,851 1,997 2,150 2,310 2 , 4 7 1  2,632 2,792 2,952 3,110 3,266 
1965 4.00% 1,851 1,997 2,150 2,310 2 , 4 7 1  2,632 2 , 7 9 2  2,952 3,110 3,266 
1966 4.00% 1,851 1,997 2,150 2,310 2 , 4 7 1  2,632 2 , 7 9 2  2 , 9 5 2  3,110 3,266 
1967 4.00% 1,851 1,997 2,150 2,310 2 , 4 7 1  2,632 2 , 7 9 2  2 , 9 5 2  3,110 3,266 
1968 4.00% 1,851 1,997 2,150 2,310 2 , 4 7 1  2,632 2 , 7 9 2  2,952 3,110 3,266 
1969 4.00% 1,851 1,997 2,150 2,310 2 , 4 7 1  2,632 2 , 7 9 2  2 , 9 5 2  3,110 3,266 
1970 4.00% 1,851 1,997 2,150 2 , 3 1 0  2 , 4 7 1  2,632 2,792 2 , 9 5 2  3,110 3,266 
1971 4.00% 1,851 1,997 2,150 2 , 3 1 0  2 , 4 7 1  2,632 2 , 7 9 2  2 , 9 5 2  3,110 3,266 
1972 4.00% 1,851 1,997 2,150 2,310 2 , 4 7 1  2,632 2 , 7 9 2  2,952 3,110 3,266 
1973 4.00% 1,851 1,997 2,150 2,310 2 , 4 7 1  2,632 2 , 7 9 2  2,952 3,110 3,266 
1974 4.00% 1,851 1,997 2,150 2,310 2 , 4 7 1  2,632 2,792 2 , 9 5 2  3,110 3,266 

1975-84 40.00% 18,513 19,968 21,497 23,101 24,709 26,317 27,921 29,517 31,099 32,663 

Total 100.00% 46,283 49,921 53,742 57,752 61,773 65,793 69,803 73,792 77,748 81,658 
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EXHIBIT 7.3 

PART 2 

Policy Selected Calendar Year 
Year Weights 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate 

1960 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1961 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1962 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1963 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1964 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1965 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1966 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1967 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1968 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1969 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1970 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1971 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1972 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1973 4.00% 3,420 3,571 3,718 3,861 3,998 4,129 4,253 4,368 4,474 4,570 6,248 
1974 4.00% 3,420 3 , 5 7 1  3,718 3 , 8 6 1  3 , 9 9 8  4,129 4,253 4 , 3 6 8  4,474 4,570 6,248 

1975-84 40.00% 34 ,202  35,711 37,182 38,607 39,979 41,289 42,527 43,682 44,743 45,698 62,479 

Total 100.00% 85,506 89,277 92,955 96,518 99,948 103,223 106,317 109,205 111,858 114,246 156,197 

Z 

0 

> 

© 

t'" 

Notes: 
- -  Cumulative projected calendar year ground-up indcmni~ and expense costs from Exh3bit 5.1, Item 16. 

AUocafion method of calendar ycaz losses to policy year is by equal weighting to each year. 
m Ult~rnatc wlue is calculated by continuation of par'terns beyond months shown. to 
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EXHIBIT 7.4 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
INSURER 3'S CUMULATIVE GROUND-UP LOSSES, INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 0.0%/COVERAGE BLOCK = 25 YEARS 
($O00's) 

t-2 

~r 
53 
) .  

U~ 
7. 

Policy Selected Calendar Year 
Year Weights 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

1960 4.00% 1,844 1 , 9 7 6  2,108 2 , 2 4 0  2 , 3 6 6  2,486 2,600 2 , 7 0 8  2,810 2,906 
1961 4.00% 1,844 1 , 9 7 6  2,108 2,240 2 , 3 6 6  2 , 4 8 6  2,600 2 , 7 0 8  2,810 2,906 
1962 4.00% 1,844 1 , 9 7 6  2,108 2,240 2 , 3 6 6  2 , 4 8 6  2,600 2 , 7 0 8  2,810 2,906 
1963 4.00% 1,844 1 , 9 7 6  2,108 2,240 2 , 3 6 6  2 , 4 8 6  2,600 2 , 7 0 8  2,810 2,906 
1964 4.00% 1,844 1 , 9 7 6  2,108 2,240 2,366 2 , 4 8 6  2,600 2 , 7 0 8  2,810 2,906 
1965 4.00% 1,844 1 , 9 7 6  2,108 2,240 2,366 2 , 4 8 6  2,600 2 , 7 0 8  2,810 2,906 
1966 4.00% 1,844 1 , 9 7 6  2,108 2,240 2 , 3 6 6  2,486 2,600 2 , 7 0 8  2,810 2,906 
1967 4.00% 1,844 1 , 9 7 6  2,108 2,240 2 , 3 6 6  2 , 4 8 6  2,600 2 , 7 0 8  2,810 2,906 
1968 4.00% 1,844 1 , 9 7 6  2,108 2,240 2,366 2 , 4 8 6  2,600 2 , 7 0 8  2,810 2,906 
1969 4.00% 1,844 1 , 9 7 6  2,108 2,240 2 , 3 6 6  2 , 4 8 6  2,600 2 , 7 0 8  2,810 2,906 
1970 4.00% 1,844 1 , 9 7 6  2,108 2,240 2 , 3 6 6  2 , 4 8 6  2,600 2 , 7 0 8  2,810 2,906 
1971 4.00% 1,844 1 , 9 7 6  2,108 2,240 2 , 3 6 6  2 , 4 8 6  2,600 2 , 7 0 8  2,810 2,906 
1972 4.00% 1,844 1 , 9 7 6  2,108 2,240 2 , 3 6 6  2 , 4 8 6  2,600 2 , 7 0 8  2,810 2,906 
1973 4.00% 1,844 1 , 9 7 6  2 , 1 0 8  2,240 2 , 3 6 6  2 , 4 8 6  2,600 2 , 7 0 8  2 , 8 1 0  2,906 
1974 4.00% 1,844 1 , 9 7 6  2,108 2,240 2 , 3 6 6  2 , 4 8 6  2,600 2 , 7 0 8  2,810 2,906 

1975-84 40.00% 18,438 19,758 21,078 22,398 23,658 24,858 25,998 27,078 28,098 29,058 

Total 100.00% 46,095 49,395 52,695 55,995 59,145 62,145 64,995 67,695 70,245 72,645 
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EXHIBIT 7.4 

PART 2 

Policy Selected Calendar Year 

Year Weights 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate 

1960 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 
1961 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 
1962 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 
1963 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 
1964 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 
1965 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 
1966 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3`410 3,458 3,500 3,536 3,945 
1967 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 
1968 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 
1969 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 
1970 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 
1971 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 
1972 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 
1973 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 
1974 4.00% 2,996 3,080 3,158 3,230 3,296 3,356 3,410 3,458 3,500 3,536 3,945 

1975-84 40.00% 29,958 30,798 31,578 32,298 32,958 33,558 34,098 34,578 34,998 35,358 39,453 

Total 100.00% 74,895 76,995 78,945 80,745 82,395 83,895 85,245 86,445 87,495 88,395 98,633 

Z 

© 

© 

> 

No1£$: 
- -  Cumulative projected calendar year ground-up indemnity and expense costs from Exhibit 5.2, Item 
- -  Allocation method of calendar year losses to policy year is by equal weighting to each year. 
- -  Ultimate value is calculated by continuation of pettems beyond months shown. 
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EXHIBIT 8.1 

PART 1 

¢-o 
o", 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
INSURER 3'S LOSSES IN ABC RE'S REINSURANCE LAYER, INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 5.0%/COVERAGE BLOCK = 15 YEARS 
($ooo's)  

K 

t"n 
Z ,..q 

WidtldAttch Pt/ © 
Policy % Share/Expenses Calendar Year 
Year ($ in millions) 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 ~> 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1965 2.0/2.7/100.0%/Pro Rata 0 0 0 0 68 336 604 869 1,133 1,394 
1966 2.0/2.7/100.0%/Pro Rata 0 0 0 0 68 336 604 869 1,133 1,394 
1967 2.0/'2.7/100.0%/Included in Limit 386 628 883 1,150 1,418 1,686 1,954 2,000 2,000 2,000 
1968 4.0/3.5/100.0%/Pro Rata 0 0 0 0 0 0 0 0 0 194 
1969 4.0/3.5/100.0%/Included in Limit 0 0 83 350 618 886 1,154 1,419 1,683 1,944 
1970 4.0/3.5/25.0%/Pro Rata 0 0 0 0 0 0 0 0 0 48 
1971 2.0/2.0/100.0%/Indem Only 57 219 389 567 745 924 1,102 1,280 1,455 1,629 ,-d 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 

Total 443 847 1,354 2,067 2,918 4,169 5,417 6,438 7,405 8,603 



EXHIBIT 8.1 

PART 2 

Width/ARch Pt/ 
Policy % Share/Expenses Calendar Year 
Year ($ in millions) 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate 

70 
1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1965 2.0/2.7/I 00.0%/Pro Rata 1,650 1,902 2,147 2,385 2,613 2,832 3,000 3,000 3,000 3,000 3,000 
1966 2.0/2.71100.0%/Pro Rata 1,650 1,902 2,147 2,385 2,613 2,832 3,000 3,000 3,000 3,000 3,000 
1967 2.0/2.7/100.0%/Included in Limit 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 
1968 4.0/3.5/I 00.0%/Pro Rata 450 702 947 1,185 1,413 1,632 1,838 2,030 2,207 2,366 5,163 
1969 4.0/3.5/100.0%/Included in Limit 2,200 2,452 2,697 2,935 3,163 3,382 3,588 3,780 3,957 4,000 4,000 
1970 4.0/3.5/25.0%/Pro Rata 113 175 237 296 353 408 459 508 552 592 1,291 
1971 2.0/2.0/I 00.0%/Indem Only 1,800 1,968 2,000 2,000 2,000 2,000 2,000 2,000 2,1300 2,000 2,000 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Poficy 0 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

Total 9,864 II,I01 12,175 13,184 14,156 15,084 15,885 16,318 16,716 16,958 20,454 

Z 

© 

O 

Notes; 
- -  Policy information from Exhibit 4. Only policies in Insured 3 's  coverage block for this scenario, 1960 through 1974, are included. 
- -  Losses in layer are calculated by using the policy information to carve out losses and expenses from Exhibits 5.1, 6.1, and 7.1. 
- -  Exlx~SCS are added to indemnity before applying attachment point and limits for expenses included in limits policies (Policy Years 1967 and 1969). 

When all lower layer policies are indemnity only or pro rata, this would not be true. In this cas~, indemnity only should be used to determine if the 
attachment point is reached. In the real world the true answer is somewhere between adding expenses to indemnity or just indemnity in determining 
satisfaction of the atta-'hment poinL Both scenarios should be examined. 

- -  URima~: value is calculated by continuation of patterns beyond months shown. 
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EXHIBIT 8.2 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
INSURER 3'S LOSSES IN ABC RE'S REINSURANCE LAYER, INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 0.0%/COVERAGE BLOCK = 15 YEARS 
($000's) 

t-J 

Width/Attch Pt/ © 
Policy % Share/Expenses C.alcndar Year > 
Year ($ in millions) 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 OZ7 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 .~ 
1965 2.0/2.71100.0%/Pro Rata 0 0 0 0 0 93 283 463 633 793 
1966 2.0/2.71100.0%/Pro Rata 0 0 0 0 0 93 283 463 633 793 
1967 2.0/2.7/100.0%/Include.d in Limit 373 593 813 1,033 1,243 1,443 1,633 1,813 1,983 2,000 :~ 
1968 4.0/3.5/100.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 "< [--. 
1969 4.0/3.5/100.0%/Included in Limit 0 0 13 233 443 643 833 1,013 1,183 1,343 
1970 4.0/3.5/25.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 ~_ 
1971 2.0/2.0/I 00.0%/Indem Only 49 195 342 489 629 762 889 1,009 1,122 1,229 - 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 

Total 422 788 1,168 1,755 2,315 3,034 3,921 4,761 5,554 6,158 



EXHIBIT 8.2 

PART 2 

Width/Attch Pt/ 
Policy % Share/Expenses Calendar Year > 
Year ($ in millions) 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate c~ 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1965 2.0/2.7/I 00.0%/Pro Rata 943 1,083 1,213 1,333 1,443 1,543 1,633 1,713 1,783 1,843 2,526 
1966 2.0/2.7/I 00.0%/Pro Rata 943 1,083 1,213 1,333 1,443 1,543 1,633 1,713 1,783 1,843 2,526 
1967 2.0/2.7/100.0%/Included in Limit 2,000 2,000 2,000 2,0(30 2,000 2,000 2,000 2,000 2,000 2,000 2,000 
1968 4.0/3.5/I 00.0%/Pro Rata 0 0 13 133 243 343 433 513 583 643 1,326 
1969 4.0/3.5/100.0%/Included in Limit 1,493 1,633 1,763 1,883 1,993 2,093 2,183 2,263 2,333 2,393 3,076 
1970 4.0/3.5/'25.0%/Pro Rata 0 0 3 33 61 86 I08 128 146 161 331 
1971 2.0/2.0/I 00.0%/Indem Only 1,329 1,422 1,509 1,589 1,662 1,729 1,789 1,842 1,889 1,929 2,000 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

Total 6,708 7,221 7,714 8,304 8,845 9,337 9,779 10,172 I0,517 10,812 13,783 

Z 

0 

© 

7 

Z 
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Notes: 
Poficy information from Exhibit 4. Only policies in Insured 3's coverage block for Otis scenario, 1960 through 1974, are included. 

- -  Losses in layer are calculated by using the policy information to carve out losses and expenses from Exhibits 5.2, 6.2, and 7.2. 
- -  Expenses are added to indemnity before applying attachment point and limits for expenses included in limits policies (Policy Years 1967 and 1969). 

When all lower layer policies are indemnity only or pro rata, this would not be true. In this case, indemnity only should be used to determine if the 
attachment point is reached. In the real world the true answer is somewhere between adding expenses to indemnity or just indemnity in determining 
satisfaction of the attachment point. Both scenarios should be examined. 

- -  Ultimate value is calculated by continuation of patterns beyond months shown. 
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EXHIBIT 8.3 

PART 1 

ASBESTOS BI MODEL FOR A B C  RE'S INSURED 3 
INSURER 3'S LOSSES IN A B C  RE'S REINSURANCE LAYER, INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 5.0%/COVERAGE BLOCK = 25 YEARS 
($ooo's) 

bo 

oo 

> 

K 
Z 

Width/Attch Pt/ 
Policy % Share/Expenses Calendar Year 
Year ($ in millions) 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
196! No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Rc Policy 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1965 2.0/2.71100.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1966 2.0/2.7/100.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1967 2.0/2.7/100.0%/Included in Limit 0 0 0 0 0 0 92 252 410 566 
1968 4.0f3.51100.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1969 4.0f3.5/100.0%/Includcd in Limit 0 0 0 0 0 0 0 0 0 0 
1970 4.0f3.5f25.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1971 2.0f2.0/100.0%/Indcm Only 0 0 0 0 0 0 0 0 73 178 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 92 252 483 744 
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EXHIBIT 8.3 

PART 2 

Width/Attch It/ K 
m 

Policy % ShareJExpenses Calendar Year > 
Year ($ in millions) 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1965 2.0/2.71100.0%/Pro Rata 0 0 0 0 0 79 203 318 424 520 2,198 
1966 2.0/2.7/I00.0%/Pro Rata 0 0 0 0 0 79 203 318 424 520 2,198 
1967 2.0t2.71100.0%/Included in Limit 720 871 1,018 1,161 1,298 1,429 1,553 1,668 1,774 1,870 2,000 
1968 4.0/3.51100.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 998 
1969 4.0/3.5/100.0%/Included in Limit 0 71 218 361 498 629 753 868 974 1,070 2,748 
1970 4.0/3.5r25.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 249 
1971 2.0t2.0/100.0%/Indem Only 280 381 479 574 665 753 835 912 983 1,047 2,000 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

Total 1,000 1,323 1,715 2,095 2,461 2,968 3,546 4,085 4,580 5,026 12,391 

K 
Z 
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> 

Notes: 
Policy information from Exhibit 4. Only policies in Insured 3's coverage block for this scenario, 1960 through 1984, are included. 

- -  Losses in layer are calculated by using the policy information to carve out losses and expenses from Exhibits 5.1, 6.3, and 7.3. 
- -  Expenses are added to indemnity before applying attachment point and limits for expenses included in limits policies (Policy Years 1967 and 1969). 

When all lower layer policies are indemnity only or pro rata, this would not be true. In this case, indemnity only should be used to determine if the 
attachment point is reached. In the real world the true answer is somewhere between adding expenses to indemnity or just indemnity in determining 
satisfaction of the attachment point. Both scenarios should be examined. 

m Ultimate value is calculated by continuation of  patterns beyond months shown. 
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EXHIBIT 8.4 

PART 1 

ASBESTOS BI  MODEL FOR A B C  RE'S INSURED 3 
INSURER 3'S LOSSES IN ABC RE'S REINSURANCE LAYER, INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 0.0%/COVERAGE BLOCK = 25 YEARS 
($ooo's) 

bo 
--o 
O 

K 
;> 
oq 

K [-q 
'7 
.-4 

Widtb]Attch Pt] 0 
Policy % Share/Expenses Calendar Year > 
Year ($ in millions) 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 -~ 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1964 No ABC R¢ Policy 0 0 0 0 0 0 0 0 0 0 
1965 2.0/2.7/t00.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1966 2.0/2.7/100.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1967 2.0/2.71100.0%/Included in Limit 0 0 0 0 0 0 0 8 I I0 206 
1968 4.0/3.5/I00.0%~ Rata 0 0 0 0 0 0 0 0 0 0 

E 
1969 4.0/3.51100.0%/Included in Limit 0 0 0 0 0 0 0 0 0 0 > 
1970 4.0/3.5/25.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1971 2.0t'2.0/ 100.0%/Indem Only 0 0 0 0 0 0 0 0 0 0 ,q 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Rc Policy 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 0 8 I l0  206 



EXHIBIT 8.4 

PART 2 

Width/ARch Pt/ 
Policy % Share/Expenses Calendar Year 
Year ($ in millions) 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1965 2.0/2.71100.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1966 2.0/2.7/100.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1967 2.0/2.7/100.0%/Included in Limit 296 380 458 530 596 656 710 758 800 836 1,245 
1968 4.0/3.5/100.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1969 4.0/3.5/100.0%/Included in Limit 0 0 0 0 0 0 0 0 0 36 445 
1970 4.0/3.5t25.0%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1971 2.0/2.0/100.0%/lndem Only 0 53 105 153 197 237 273 305 333 357 630 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

Total 296 433 563 683 793 893 983 1,063 1,133 1,229 2,321 
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Notes: 
- -  Policy infommtion from Exhibit 4. Only policies in In su r~  3 's  coverage block for this scenario, 1960 through 1984, are included. 
- -  Losses in layer are calculated by using the policy information to carve out losses and expenses from Exhibits 5.2, 6.4, and 7,4. 
- -  Expenses arc added to indemnity before applying attachment point and fimits for expenses included in finuts poficies (Policy Years 1967 and 1969). 

When all lower layer policies are indemnity only or pro rata, Otis would not be true, In this case, i nden~ ty  only should be used to determine if the 
attachment point is reached. In the real world the true answer is somewhere between adding expenses to indemnity or just indemnity in determining 
satisfaction of the attachment poinL Both scenarios should be examined. 

- -  Ultimate value is calculated by continuation of patterns beyond months shown. 
--d 



EXHIBIT 9.1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
COMPARISON OF GROUND-UP INDEMNITY & EXPENSE VS. INDEMNITY & EXPENSE IN LAYER 

ANNUAL INFLATION = 5.0%/COVERAGE BLOCK = 15 YEARS 
($ooo's) 

I-.3 

bo 

~r 

f.t3 
Insured 3's 1968 Policy Year All Policy Years for Insured 3 in its Coverage Block 

Cumulative Indemnity and Expense Cumulative Indenmity and Expense 

Implied ABC Re's Implied ABC Re's 
On a Ground-Up In ABC Re's Implied On a Ground-Up In ABC Re's Implied 

Calendar Ground-Up Reporting Reinsurance Reporting Ground-Up Reporting Reinsurance Reporting 
Year $ Basis Pattern Layer Pattexn $ Basis Pattern Layer Pattern 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1994 3,086 29.63% 0 0.00% 46,283 29.63% 443 2.16% 
! 995 3,328 31.96% 0 0.00% 49,921 31.96 % 847 4.14 % 
1996 3,583 34.41% 0 0.00% 53,741 34.41% 1,354 6.62% 
1997 3,850 36.97% 0 0.00% 57,752 36.97% 2,067 10.11% 
1998 4,118 39.55% 0 0.00% 61,773 39.55% 2,918 14.27% 
1999 4,3 86 42.12% 0 0.00% 65,793 42.12% 4,169 20.38 % 
2000 4,654 44.69% 0 0.00% 69,803 44.69% 5,417 26.48% 
2001 4,919 47.24% 0 0.00% 73,792 47.24% 6,438 31.48% 
2002 5,183 49.78% 0 0.00% 77,748 49.78% 7,405 36.20% 
2003 5,444 52.28% 194 3.75% 81,658 52.28% 8,603 42.06% 
2004 5,700 54.74% 450 8.72% 85,506 54.74% 9,864 48.23% 
2005 5,952 57.16% 702 13.59% 89,277 57.16% 11,101 54.27% 
2006 6,197 59.51% 947 18.34% 92,954 59.51% 12,175 59.52% 
2007 6,435 61.79% 1,185 22.94% 96,518 61.79% 13,184 64.46% 
2008 6,663 63.99% 1,413 27.37% 99,948 63.99% 14,156 69.21% 
2009 6,882 66.09% 1,632 31.60% 103,223 66.09% 15,084 73.75% 
2010 7,088 68.07% 1,838 35.59% 106,317 68.07% 15,885 77.66% 
2011 7,280 69.91% 2,030 39.32% 109,205 69.91% i 6,318 79.78% 
2012 7,457 71.61% 2,207 42.75 % 111,858 71.61% 16,716 81.73 % 
2013 7,616 73.14% 2,366 45.83 % 114,246 73.14% 16,958 82.91% 

Ultimate 10,413 100.00% 5,163 100.00% 156,197 100.00% 20,454 100.00% 

m 

ffJ 
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Notes: (2), (6) From Exhibit 7.1. (4), (8) From Exhibit 8.1. (7) = (6)/(6) at Ultimate. 
(3) = (2)/(2) at Ultimate. (5) = (4)/(4) at Ultimate. (9) = (8)/(8) at Ultimate. 



EXHIBIT 9.2 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
COMPARISON OF GROUND-UP INDEMNITY & EXPENSE VS. INDEMNITY & EXPENSE IN LAYER 

ANNUAL INFLATION = 0.0%/COVERAGE BLOCK = 15 YEARS 
($ooo's) 

Insured 3's 1968 Policy Year All Policy Years for Insured 3 in its Coverage Block 
Cumulative Indemnity and Expense Cumulative Indemnity and Expense 

Implied ABC Re's Implied ABC Re's 
On a Ground-Up In ABC Re's Implied On a Ground-Up In ABC Re's Implied 

Calendar Ground-Up Reporting Reinsurance Reporting Ground-Up Reporting Reinsurance Reporting 
Year $ Basis Pattern Layer Pattern $ Basis Pattern Layer Pattern 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

© 

1994 3,073 46.73% 0 0.00% 46,095 46.73% 422 3.06% 
1995 3,293 50.08% 0 0.00% 49,395 50.08% 788 5.72% 
1996 3,513 53.43% 0 0.00% 52,695 53.43% 1,168 8.47% 
1997 3,733 56.77% 0 0.00% 55,995 56.77% 1,755 12.73% 
1998 3,943 59.97% 0 0.00% 59,145 59.97% 2,315 16.79% 
1999 4,143 63.01% 0 0.00% 62,145 63.01% 3,034 22.01% 
2000 4,333 65.90% 0 0.00% 64,995 65.90% 3,921 28.45% 
2001 4,513 68.63% 0 0.00% 67,695 68.63% 4,761 34.54% 
2002 4,683 71.22% 0 0.00% 70,245 71.22% 5,554 40.30% 
2003 4,843 73.65% 0 0.00% 72,645 73.65% 6,158 44.67% 
2004 4,993 75.93% 0 0.00% 74,895 75.93% 6,708 48.67% 
2005 5,133 78.06% 0 0.00% 76,995 78.06% 7,221 52.39% 
2006 5,263 80.04% 13 0.98% 78,945 80.04% 7,714 55.97% 
2007 5,383 81.86% 133 10.04% 80,745 81.86% 8,304 60.25% 
2008 5,493 83.54% 243 18.33% 82,395 83.54% 8,845 64.17% 
2009 5,593 85.06% 343 25.88% 83,895 85.06% 9,337 67.74% 
2010 5,683 86.43% 433 32.67% 85,245 86.43% 9,779 70.95% 
2011 5,763 87.64% 513 38.70% 86,445 87.64% I0,172 73.80% 
2012 5,833 88.71% 583 43.98% 87,495 88.71% I0,517 76.30% 
2013 5,893 89.62% 643 48.51% 88,395 89.62% 10,812 78.44% 

Ultimate 6,576 100.00% 1,326 100.00% 98,633 100.00% 13,783 100.00% 
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No~s: (2), (6) From Exhibit 7.2. (4), (8) From Exhibit 8.2. (7) = (6)/(6) at Ultimate. 
(3) -- (2)/(2) at Ultimate. (5) = (4)/(4) at Ultimate. (9) = (8)/(8) at Ultimate. 



EXHIBIT 9.3 

ASBESTOS BI MODEL FOR A B C  RE'S INSURED 3 
COMPARISON OF GROUND-UP INDEMNITY & EXPENSE VS. INDEMNITY & EXPENSE IN LAYER 

ANNUAL INFLATION = 5.0%/COVERAGE BLOCK = 25 YEARS 
($O00's) 

r~ 
2- 

Insured 3's 1968 Policy Year All Policy Years for Insured 3 in its Coverage Block 
Cumulative Indemnity and Expense Cumulative Indemnity and Expense 

Implied ABC Re's Implied ABC Re's 
On a Ground-Up In ABC Re's Implied On a Ground-Up In ABC Re's Implied 

Calendar Ground-Up Reporting Reinsurance Reporting Ground-Up Reporting Reinsurance Reporting 
Year $ Basis Pattern Layer Pattern $ Basis Pattern Layer Pattern 
(I) (2) (3) (4) (5) (6) (7) (8) (9) 

Z 

0 "11 
> 

1994 1,851 29.63% 0 0.00% 46,283 29.63% 0 0.00% 
1995 1,997 31.96% 0 0.00% 49,921 31.96% 0 0.00% 
1996 2,150 34.41% 0 0.00% 53,742 34.41% 0 0.00% 
1997 2,310 36.97% 0 0.00% 57,752 36.97% 0 0.00% 
1998 2,471 39.55% 0 0.00% 61,773 39.55% 0 0.00% 
1999 2,632 42.12% 0 0.00% 65,793 42.12% 0 0.00% 
2000 2,792 44.69% 0 0.00% 69,803 44.69% 92 0.74% 
2001 2,952 47.24% 0 0.00% 73,792 47.24% 252 2.03% 
2002 3,110 49.78% 0 0.00% 77,748 49.78% 483 3.90% 
2003 3,266 52.28% 0 0.00% 81,658 52.28% 744 6.00% 
2004 3,420 54.74% 0 0.00% 85,506 54.74% 1,000 8.07% 
2005 3,571 57.16% 0 0.00% 89,277 57.16% 1,323 10.68% 
2006 3,718 59.51% 0 0.00% 92,955 59.51% 1,715 13.84% 
2007 3,861 61,79% 0 0.00% 96,518 61.79% 2,095 16.9 i % 
2008 3,998 63.99% 0 0.00% 99,948 63.99% 2,461 19.86% 
2009 4,129 66.09% 0 0.00% I03,223 66.08% 2,968 23.95% 
2010 4,253 68.07% 0 0.00% 106,317 68.07% 3,546 28.62% 
2011 4,368 69.91% 0 0.00% 109,205 69.91% 4,085 32.97% 
2012 4,474 71.61% 0 0.00% 111,858 71.61 % 4,580 36.96% 
2013 4,570 73.14% 0 0.00% 114,246 73.14% 5,026 40.56% 

Ultimate 6,248 100.00% 998 100.00% 156,197 100.00% 12,391 100.00% 
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Notes: (2), (6) From Exhibit 7.3. (4), (8) From Exhibit 8.3. (7) = (6)/(6) at Ultimate. 
(3) = (2 ) / ( 2 )  at Ul t imate.  (5) = (4 ) / (4 )  at Ul t imate.  (9) = (8 ) / (8 )  at Ult imate. 



EXHIBIT 9.4 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
COMPARISON OF GROUND-UP INDEMNITY & EXPENSE VS. INDEMNITY & EXPENSE IN LAYER 

ANNUAL INFLATION = 0.0%/COVERAGE BLOCK = 25 YEARS 
($ooo's) 

m > 

Insured Ys 1968 Policy Year All Policy Years for Insured 3 in its Coverage Block 
Cumulative Indemnity and Expense Cumulative Indemnity and Expense 

Implied ABC Re's Implied ABC Re's 
On a Ground-Up In ABC Re's Implied On a Ground-Up In ABC Re's Implied 

Calendar Ground-Up Reporting Reinsurance Reporting Ground-Up Reporting Reinsurance Reporting 
Year $ Basis Pattern Layer Pattern $ Basis Pattern Layer Pattern 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1994 1,844 46.73% 0 NA 46,095 46.73% 0 0.00% 

7~ 
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1995 1,976 50.08% 0 NA 49,395 50.08% 0 0.00% 
1996 2,108 53.43% 0 NA 52,695 53.43% 0 0.00% 
1997 2,240 56.77% 0 NA 55,995 56.77% 0 0.00% 
1998 2,366 59.97% 0 NA 59,145 59.97% 0 0.00% 
1999 2,486 63.01% 0 NA 62,145 63.01% 0 0.00% 
2000 2,600 65.90% 0 NA 64,995 65.90% 0 0.00% 
2001 2,708 68.63% 0 NA 67,695 68.63% 8 0.34% 
2002 2,810 71.22% 0 NA 70,245 71.22% I 10 4.73 % 
2003 2,906 73.65% 0 NA 72,645 73.65% 206 8.87% 
2004 2,996 75.93% 0 NA 74,895 75.93% 296 12.75% 
2005 3,080 78.06% 0 NA 76,995 78.06% 433 i 8.66% 
2006 3,158 80.04% 0 NA 78,945 80.04% 563 24.26% 
2007 3,230 81.86% 0 NA 80,745 81.86% 683 29.43% 
2008 3,296 83.54% 0 NA 82,395 83.54% 793 34.17% 
2009 3,356 85.06% 0 NA 83,895 85.06% 893 38.48% 
2010 3,410 86.43% 0 NA 85,245 86.43% 983 42.36% 
2011 3,458 87.64% 0 NA 86,445 87.64% 1,063 45.80% 
2012 3,500 88.71% 0 NA 87,495 88.71% 1,133 48.82% 
2013 3,536 89.62% 0 NA 88,395 89.62% 1,229 52.95% 

Ultimate 3,945 100.00% 0 NA 98,633 100.00% 2,321 100.00% 
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Notes: (2), (6) From Exhibit 7.4. (4), (8) From Exhibit 8.4. (7) = (6)/(6) at Ultimate. 
(3) = (2)/(2) at Ultimate. (5) = (4)/(4) at Ultimate. (9) -- (8)/(8) at Ultimate. 



EXHIBIT 10.1 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S SAMPLE GROUP 
INDEMNITY AND EXPENSES WITH ABC RE'S LAYER OF COVERAGE FOR ALL SAMPLE INSUREDS, 

ANNUAL INFLATION = 5.0%/COVERAGE BLOCK = 15 YEARS 
($OOO's) 

to 
-...1 
(:Ix 

Average ABC Re's Projected Losses and Expenses from All Policies with 
Sample Ground-Up Total Reported Insured in Calendar Year 
Insureds Tier Attachment Pt Exposure Loss & Exp 1994 1995 1996 1997 1998 1999 

Insured l 4 37,500 3,363 0 0 0 0 0 0 0 
Insured 2 4 1.994 13,960 20 143 158 173 188 203 218 
Insured 3 2 2,943 17,000 2,300 443 847 1,354 2,067 2,918 4,169 
Insured 4 I 48,750 38,480 21.500 44,301 46,334 46,334 46,334 46,334 46,334 
Insured 5 1 50,357 30,280 19,300 30,212 30,344 30,344 30,344 30,344 30,344 
Insured 6 I 48,333 40,680 22,450 44,059 45,224 46,371 47,233 47,233 47,233 
Insured 7 2 37,813 13,581 1,500 1,500 1,500 1,500 1,556 1,668 1.777 
Insured 8 2 40,000 14,290 300 300 300 300 300 300 529 
Insured 9 2 40,313 10,233 300 300 300 300 300 457 673 
Insured I0 3 17,143 6,000 150 186 190 193 197 279 391 
Insured I I 2 37,813 31,940 200 281 300 300 300 300 300 
Insured 12 3 26,429 16,300 0 0 0 0 0 0 0 
Insured 13 3 25,938 24,800 15 0 0 0 0 0 0 
Insured 14 3 21,111 9,500 15 0 0 0 0 0 42 
Insured 15 3 25,313 6,400 200 236 253 270 312 415 533 

Subtotal Tier 1 109,440 63,250 
Subtotal Tier 2 87,045 4,600 
Subtotal Tier 3 63,000 380 
Subtotal "fief 4 17,323 20 

Total 276,807 68,250 121,961 125,750 127,439 129,132 130,452 132,544 
% of Ultimate 70.48% 72.67% 73.65% 74.62% 75.39% 76.60% 
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EXHIBIT 10.1 

PART 2 K 

Sample Projected Losses and Expenses from All Policies with Insured in Calendar Year 
Insured Tier 2000 2001 2002 2003 2004 2005 2006 2007 2008 

K 
Insured 1 4 0 0 0 0 0 0 0 0 0 
Insured 2 4 233 248 263 278 292 306 320 334 346 
Insured 3 2 5,417 6,438 7,405 8,603 9,864 11,101 12,175 13,184 14,156 
Insured 4 1 46,334 46,334 46,334 46,334 46,334 46,334 46,334 46,334 46,334 
Insured 5 1 30,344 30,344 30,344 30,344 30,344 30,344 30,344 30,344 30,344 
Insured 6 1 47,233 47,233 47,233 47,233 47,233 47,233 47,233 47,233 47,233 
Insured 7 2 2,394 3,473 4,462 5,008 5,258 5,503 5,741 5,972 6,195 
Insured 8 2 869 1,198 1,317 1,423 1,527 1,629 1,729 1,825 1.918 
Insured 9 2 858 937 1,016 1,093 1,169 1,243 1,3 i 6 1,387 1,454 
Insured 10 3 488 531 574 616 658 698 738 777 831 
Insured 11 2 300 300 300 300 300 300 300 300 300 
Insured 12 3 0 0 0 0 0 0 0 0 0 
Insured 13 3 7 47 87 127 166 200 200 200 200 
Insured 14 3 86 129 172 200 200 200 200 200 200 
Insured 15 3 644 714 750 786 821 856 889 922 962 

Subtotal Tier 1 
Subtotal Tier 2 
Subtotal Tier 3 
Subtotal Tier 4 

Total 135 ,207 137,927 140,257 142,344 144,166 145,947 147,519 1 4 9 , 0 1 1  150,474 
% of Ultimate 78.13% 79.71% 81.05% 82.26% 83.31% 84.34% 85.25% 86.1 i% 86.96% 
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EXHIBIT 10.1 

PART 3 

bo --O 
O0 

Projected Losses and Expenses from All Policies with Ultimate Case lnc 'd  
Sample Insured in Calendar Year as % of Loss Devel. 
Insured Tier 2009 2010 2011 2012 2013 Ultimate Exposure Factor > 

Insured I 4 0 0 0 0 0 0 0.0% 0.000 
Insured 2 4 359 371 383 395 403 411 2.9% 20.529 
Insured 3 2 15,084 15,885 16,318 16,716 16,958 20,454 120.3% 8.893 
Insured 4 I 46,334 46,334 46,334 46,334 46,334 46,334 120.4% 2.155 
Insured 5 I 30,344 30,344 30,344 30,344 30,344 30,344 I00.2% 1.572 
Insured 6 I 47,233 47,233 47,233 47,233 47,233 47,233 I16.1% 2.100 
Insured 7 2 6,407 6,619 6,830 7,039 7,246 7,449 54.8% 4.966 
Insured 8 2 2,007 2,095 2,183 2,270 2,357 5,475 38.3% 18.250 
Insured 9 2 1,519 1,584 1,648 1,691 1309 3,314 32.4 % I 1.045 
Insured I0 3 892 953 1,013 1,063 1,099 1,928 32.1% 12.853 
Insured I I 2 300 313 1,027 1,735 2,435 4,290 13.4% 21.450 
Insured 12 3 0 0 0 0 0 586 3.6% 0.000 
Insured 13 3 200 200 200 200 200 2,057 8.3% 137.164 
Insured 14 3 200 200 200 200 200 1,595 16.8% I06.351 
Insured 15 3 1,005 1,007 1,090 1,126 1,152 1,575 24.6% 7.873 

Subtotal Tier 1 123,911 113.2% 1.959 
Subtotal Tier 2 40,981 47.1% 8.909 
Subtotal Tier 3 7,741 12.3% 20.372 
S ubtotai Tier 4 411 2.4% 20.127 

Total 151,883 153,179 154,800 156,348 157,670 173,044 62.5% 2.535 
% of  Ultimate 87.77% 88.52% 89.46% 90.35% 91.12% 100.00% 
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-- This exhibit is a compilation of Exhibit 8.1 for each insured in the sample group. 
- -  Average ground-up attachment point and total exposure from insured policy information are given. 
- -  ABC Re's reported loss & expense from ABC Re's claim files are given. The amount could be lower than implied by model because of reporting 

lags to ABC Re or higher because of additional reserves. 



EXHIBIT 10.2 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S SAMPLE GROUP 
INDEMNITY AND EXPENSES WITH ABC RE'S LAYER OF COVERAGE FOR ALL SAMPLE INSUREDS, 

ANNUAL INFLATION = 0.0%/COVERAGE BLOCK = 15 YEARS 
($O00's) 

K 
Average ABC Re's Projected Losses and Expenses from All Policies with 

Sample Ground-Up Total Reported Insured in Calendar Year 
Insureds Tier Attachment Pt Exposure Loss & Exp 1994 1995 1996 1997 1998 1999 

© 

>~ 
Insured 1 4 37,500 3,363 0 0 0 0 0 0 0 
Insured 2 4 1,994 13,960 20 141 154 166 178 190 200 
Insured 3 2 2,943 17,000 2,300 422 788 1,168 1,755 2,315 3,034 
Insured 4 I 48,750 38,480 21,500 43,967 45,878 46,318 46,318 46.318 46.318 
Insured 5 I 50.357 30,280 19,300 30,115 30,344 30.344 30,344 30,344 30,344 
Insured 6 I 48.333 40,680 22,450 43.890 44.901 45,845 46,728 47,200 47,200 
Insured 7 2 37,813 13,581 1,500 1,500 1,500 1,500 1,500 1,564 1,642 
Insured 8 2 40,000 14,290 300 300 300 300 300 300 300 
Insured 9 2 40,313 10,233 300 300 300 300 300 300 401 
Insured 10 3 17,143 6,000 150 185 189 192 195 197 250 
Insured 11 2 37,813 31,940 200 269 300 300 300 300 300 
Insured 12 3 26,429 16.300 0 0 0 0 0 0 0 
Insured 13 3 25.938 24.800 15 0 0 0 0 0 0 
Insured 14 3 21,111 9,500 15 0 0 0 0 0 0 
Insured 15 3 25,313 6,400 200 234 248 262 276 318 388 

Subtotal Tier 1 109,440 63,250 
Subtotal Tier 2 87,045 4,600 
Subtotal Tier 3 63,000 380 
Subtotal Tier 4 17,323 20 

Total 276,807 68,250 121,323 124,903 126,695 128,193 129,346 130,378 
% of Ultimate 81.33% 83.73% 84.93% 85.94% 86.71% 87.40% 
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EXHIBIT 10.2 

PART 2 

O0 
0 

Sample Projected Losses and Expenses from All Policies with Insured in Calendar Year 
Insured "13er 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Insured I 4 0 0 0 0 0 0 0 0 0 
Insured 2 4 210 220 229 238 246 253 260 267 273 
Insured 3 2 3,921 4,761 5,554 6,158 6,708 7,221 7,714 8,304 8,845 
Insured 4 1 46,318 46,318 46,318 46,318 46,318 46,318 46,318 46,318 46,318 
Insured 5 1 30,344 30,344 30,344 30,344 30,344 30,344 30,344 30,344 30,344 
Insured 6 1 47.200 47,200 47,200 47,200 47,200 47,200 47,200 47,200 47,200 
Insured 7 2 1,714 1,781 1,943 2,574 3.161 3,661 4,126 4,555 4,873 
Insured 8 2 320 532 733 922 1,099 1,231 1,281 1,328 1,370 
Insured 9 2 543 674 799 871 914 953 990 1,024 1,055 
Insured I0 3 324 392 457 495 518 540 560 578 595 
Insured I I 2 300 300 300 300 300 300 300 300 300 
Insured 12 3 0 0 0 0 0 0 0 0 0 
Insured 13 3 0 0 0 18 40 60 79 96 112 
Insured 14 3 19 47 73 98 122 143 164 182 200 
Insured 15 3 467 541 611 665 705 723 740 756 770 

Subtotal Tier i 
Subtotal Tier 2 
Subtotal Tier 3 
Subtotal Tier 4 

Total 
% of Ultimate 

131,680 133,111 134,560 136,202 137,674 138,949 140,077 141,253 142,255 
88.27% 89.23% 90.20% 91.30% 92.29% 93.15% 93.90% 94.69% 95.36% 
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EXHIBIT 10.2 

PART 3 

Projected Losses and Expenses from All Policies with Ultimate Case Inc'd 
Sample Insured in Calendar Year as % of Loss Devel. 
Insured Tier 2009 2010 2011 2012 2013 Ultimate Exposure Factor 

Insured 1 4 0 0 0 0 0 0 0.0% 0.000 
Insured 2 4 278 283 288 292 297 301 2.2% 15.034 
Insured 3 2 9,337 9,779 10,172 10,517 10,812 13,783 81.1% 5.993 
Insured 4 1 46,318 46,318 46,318 46,318 46,318 46,318 120.4% 2.154 
Insured 5 1 30,344 30,344 30,344 30,344 30,344 30,344 100.2% 1.572 
Insured 6 1 47,200 47,200 47,200 47,200 47,200 47,200 116.0% 2.102 
Insured 7 2 4,966 5,054 5,137 5,216 5,290 5,359 39.5 % 3.573 
Insured 8 2 1,409 1,446 1,481 1,514 1,544 1,958 13.7% 6.528 
Insured 9 2 1,083 1,110 1,135 1,159 1,182 1,484 14.5 % 4.946 
Insured 10 3 611 626 640 653 665 817 13.6% 5.447 
Insured 11 2 300 300 300 300 300 300 0.9% 1.500 
Insured 12 3 0 0 0 0 0 0 0.0% 0.000 
Insured 13 3 127 141 154 166 177 200 0.8% 13.333 
Insured 14 3 200 200 200 200 200 200 2.1% 13.333 
Insured 15 3 783 796 808 819 829 909 14.2% 4.546 

Subtotal Tier 1 123,862 113.2% 1.958 
Subtotal Tier 2 22,885 26.3% 4.975 
Subtotal Tier 3 2,126 3.4% 5.595 
Subtotal Tier 4 301 1.7% 14.739 

Total 142,956 143,596 144,176 144,697 145,158 149,174 53.9% 2.186 
% of Ultimate 95.83% 96.26% 96.65% 97.00% 97.31% 100.00% 
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Nole$: 
- -  This exhibit is a compilation of Exhibit 8.2 for each insured in the sample group. 
- -  Average ground-up attachment point and total exposure from insured policy information are given. 
- -  ABC Re's reported loss & expense fi~m ABC Re's claim files are given. The amount could be lower than impfied by model because of reporting 

lags to ABC Re or higher because of addition21 reserves, 
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EXHIBIT 10.3 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S SAMPLE GROUP 
INDEMNITY AND EXPENSES WITH ABC RE'S LAYER OF COVERAGE FOR ALL SAMPLE INSUREDS, 

ANNUAL INFLATION = 5.0%/COVERAGE BLOCK = 25 YEARS 
($O00's) 

t,~ 
oo 
I,o 

Average ABC Re's Projected Losses and Expenses from All Policies with 
Sample Ground-Up Total Reported Insured in Calendar Year 
Insureds "13er Attachment Pt Exposure Loss & Exp 1994 1995 1996 1997 1998 1999 

Insured 1 4 37.500 3.363 0 0 0 0 0 0 0 
Insured 2 4 1,994 13,960 20 40 46 53 60 67 74 
Insured 3 2 2.943 17,000 2.300 0 0 0 0 0 0 
Insured 4 1 48.750 38.480 21.500 21.011 22.026 23.025 24.586 26.127 27,780 
Insured 5 I 50.357 30.280 19,300 19.628 20.344 20.344 20.778 21.365 22.253 
Insured 6 I 48.333 40,680 22.450 22,484 24.860 26,048 27.015 28,367 29,988 
Insured 7 2 37,813 13.581 1,500 0 0 333 675 1.011 1.339 
Insured 8 2 40,000 14.290 300 0 62 135 207 277 300 
Insured 9 2 40.313 10,233 300 52 129 205 279 300 300 
Insured 10 3 17.143 6,000 150 36 76 116 155 167 168 
Insured I l 2 37,813 31,940 200 0 0 0 0 0 0 
Insured 12 3 26,429 16,300 0 0 0 0 0 0 0 
Insured 13 3 25,938 24,800 15 0 0 0 0 0 0 
Insured 14 3 21,111 9,500 15 0 0 0 0 0 0 
Insured 15 3 25.313 6.400 200 58 84 111 137 150 158 

Subtotal Tier 1 109,440 63,250 
Subtotal "net 2 87,045 4,600 
Subtotal Tier 3 63,000 380 
Subtotal Tier 4 17,323 20 

Total 276,807 68,250 63,309 67,627 70,370 73,892 77,830 82,360 
% of Ultimate 45.36% 48.45% 50.41% 52.94% 55.76% 59.00% 
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EXHIBIT 10.3 

PART 2 K 

Sample Projected Losses and Expenses from All Policies with Insured in Calendar Year 
Insured Tier 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Insured 1 4 0 0 0 0 0 0 0 0 0 
Insured 2 4 83 92 101 110 119 128 136 144 152 
Insured 3 2 92 252 483 744 l,O00 1,323 1,715 2,095 2,461 
Insured 4 l 29,616 31,398 33,166 34,913 36,633 38,318 39,961 41,554 42,774 
Insured 5 1 23,185 24,091 24,990 25,878 26,752 27,608 28,443 29,252 29,769 
Insured 6 1 31,567 33,101 34,623 36,127 37,607 39,058 40,472 41,843 42,948 
Insured 7 2 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 
Insured 8 2 300 300 300 300 300 300 300 300 300 
Insured 9 2 300 300 300 300 300 300 300 300 300 
Insured I0 3 171 173 175 178 180 182 184 186 188 
Insured I I 2 0 0 0 I I 56 1130 143 184 224 
Insured 12 3 0 0 0 0 0 0 0 0 0 
Insured 13 3 0 0 0 0 0 0 0 0 0 
Insured 14 3 0 0 0 0 0 0 0 0 0 
Insured 15 3 168 178 189 199 209 219 228 237 246 

Subtotal Tier 1 
Subtotal Tier 2 
Subtotal Tier 3 
Subtotal Tier 4 

Total 
% of Ultimate 

86,982 91,386 95,827 100,259 1 0 4 , 6 5 5  109,035 113,383 117,596 120,862 
62.32% 65.47% 68.65% 71.83% 74.98% 78.12% 81.23% 84.25% 86.59% 
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EXHIBIT 10.3 

PART 3 

to  

Projected Losses and Expenses from All Policies with Ultimate Case Inc 'd 
Sample Insured in Calendar Year as % of Loss Devel. 
Insured Tier 2009 2010 2011 2012 2013 Ultimate Exposure Factor > 

Insured 1 4 0 0 0 0 0 0 0.0% 0.000 
Insured 2 4 159 167 174 181 188 195 1.4% 9.770 
Insured 3 2 2,968 3,546 4,085 4,580 5,026 12,391 72.9% 5.387 
Insured 4 1 43,683 43,975 44,182 44,182 44,182 44,182 114.8% 2.055 
Insured 5 1 30,066 30,344 30,344 30,344 30,344 30,344 100.2% 1.572 
Insured 6 1 43,754 44,312 44,812 45,307 45,548 45,548 112.0% 2.029 
Insured 7 2 1,500 1,500 1,500 1,502 1,552 1,601 11.8% 1.067 
Insured 8 2 300 300 300 300 300 1,848 12.9% 6.161 
Insured 9 2 300 300 300 300 300 1,403 13.7% 4.678 
Insured 10 3 190 192 193 195 197 751 12.5 % 5.004 
Insured 11 2 263 300 300 300 300 300 0.9% 1.500 
Insured 12 3 0 0 0 0 0 0 0.0% 0.000 
Insured 13 3 0 0 0 0 0 200 0.8% 13.333 
Insured 14 3 0 0 0 0 0 200 2.1% 13.333 
Insured 15 3 254 262 271 282 313 618 9.7% 3.092 

Subtotal Tier 1 120,074 109.7% 1.898 
Subtotal Tier 2 17,543 20.2% 3.814 
Subtotal Tier 3 1,769 2.8% 4.655 
Subtotal Tier 4 195 1. 1% 9.578 

Total 123,438 125,197 126,460 127,474 128,250 139,581 50.4% 2.045 
% of  Ultimate 88.43% 89.69% 90.60% 91,33% 91.88% 100.00% 

N o t e s :  

- -  This exhibit is a compilation of Exhibit 8.3 for each insured in the sample group. 
- -  Average ground-up attachment ,point and total exposure from insured policy information are given. 
- -  ABC Re's  r epor t~  loss & expense from ABC Re's  claim files arc given. The amount could be lower than i m p l i ~  by model bec.ause of reporting 

lags to ABC Re or higher because of  additional reserves. 



EXHIBIT 10.4 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S SAMPLE GROUP 
INDEMNITY AND EXPENSES WITH ABC RE'S LAYER OF COVERAGE FOR ALL SAMPLE INSUREDS, 

ANNUAL INFLATION = 0.O%/COVERAGE BLOCK = 25 YEARS 
($O00's) 

K 
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Average ABC Re's Projected Losses and Expenses from All Policies with 
Sample Ground-Up Total Reported Insured in Calendar Year 
Insureds Tier Attachment Pt Exposure Loss & Exp 1994 1995 1996 1997 1998 1999 

,H 

0 

Insured 1 4 37,500 3.363 0 0 0 0 0 0 0 
Insured 2 4 1,994 13,960 20 39 45 50 55 61 65 
Insured 3 2 2.943 17,000 2,300 0 0 0 0 0 0 
Insured 4 I 48,750 38,480 21,500 20,868 21.744 22,567 23,512 24.662 25,732 
Insured 5 I 50,357 30,280 19,300 19,395 20,344 20,344 20,369 20,807 21,215 
Insured 6 I 48,333 40,680 22,450 22,149 24,201 25,732 26,262 27,077 27,953 
Insured 7 2 37,813 13,581 1,500 0 0 173 442 692 925 
Insured 8 2 40,000 14,290 300 0 42 102 158 210 259 
Insured 9 2 40,313 10,233 300 41 107 170 228 283 300 
Insured 10 3 17,143 6,000 150 30 65 97 128 156 166 
Insured I I 2 37,813 31,940 200 0 0 0 0 0 0 
Insured 12 3 26,429 16,300 0 0 0 0 0 0 0 
Insured 13 3 25,938 24,800 15 0 0 0 0 0 0 
Insured 14 3 21,111 9,500 15 0 0 0 0 0 0 
Insured 15 3 25,313 6,400 200 54 77 99 119 139 149 

Subtotal Tier 1 109,440 63,250 
Subtotal Tier 2 87,045 4,600 
Subtotal Tier 3 63,000 380 
Subtotal Tier 4 17,323 20 

Total 276,807 68,250 62,577 66,625 69,334 71.273 74,086 76,764 
% of Ultimate 51.44% 54.77% 57.00% 58.59% 60.91% 63.11% 
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EXHIBIT 10.4 

PART 2 

I-o 
oo 

K 
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Sample Projected Losses and Expenses from All Policies with Insured in Calendar Year 
Insured Tier 2000 2001 2002 2003 2004 2005 2006 2007 2008 

K 
Insured 1 4 0 0 0 0 0 0 0 0 0 
Insured 2 4 70 75 80 85 90 95 99 103 107 
Insured 3 2 0 8 110 206 296 433 563 683 793 
Insured 4 1 26,726 27,796 28,881 29,903 30,860 31,754 32,584 33,350 34,052 
Insured 5 1 21,677 22,261 22.812 23,331 23,818 24,272 24,694 25,083 25,440 
Insured 6 1 29,012 30,001 30,935 31,814 32,638 33,408 34,122 34,781 35,386 
Insured 7 2 1,142 1,342 1,500 1,500 1,500 1,500 1,500 1,500 1,500 
Insured 8 2 300 300 300 300 300 300 300 300 300 
Insured 9 2 300 300 300 300 300 300 300 300 300 
Insured 10 3 168 169 170 171 173 174 175 176 177 
Insured 11 2 0 0 0 0 0 0 0 0 0 
Insured 12 3 0 0 0 O 0 0 0 0 0 
Insured 13 3 0 0 0 0 0 0 0 0 0 
Insured 14 3 0 0 0 0 0 0 0 0 0 
Insured 15 3 154 159 165 171 177 182 187 191 195 

Subtotal Tier 1 
Subtotal Tier 2 
Subtotal Tier 3 
Subtotal Tier 4 

Total 79,547 82,409 85,253 87,782 90,152 92,417 94,523 96,468 98,250 
% of Ultimate 65.39% 67.75% 70.09% 72.16% 74.11% 75.97% 77.71% 79.30% 80.77% 
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EXHIBIT 10.4 

PART 3 

Projected Losses and Expenses from All Policies with Ultimate Case Inc'd 
Sample Insured in Calendar Year as % of Loss Devel. 
Insured "13er 2009 2010 2011 2012 2013 Ultimate Exposure Factor 

Insured 1 4 0 0 0 0 0 0 0.0% 0.000 
Insured 2 4 110 113 116 119 122 124 0.9% 6.206 
Insured 3 2 893 983 1,063 1,133 1,229 2,321 13.7% 1.009 
Insured 4 1 34,691 35,297 35,872 36,414 36,925 43,240 ! 12.4% 2.011 
Insured 5 1 25,764 26,073 26,365 26,640 26,900 29,904 98.8% 1.549 
Insured 6 I 35,935 36,457 36,952 37,419 37,858 43,315 106.5% 1.929 
Insured 7 2 1,500 1,500 1,500 1,500 1,500 1,500 11.0% 1.000 
Insured 8 2 300 300 300 300 300 300 2. ! % ! .000 
Insured 9 2 300 300 300 300 300 300 2.9% 1.000 
Insured 10 3 178 178 179 180 180 181 3.0% 1.207 
Insured 11 2 5 21 36 50 64 242 0.8% 1.209 
Insured 12 3 0 0 0 0 0 0 0.0% 0.000 
Insured 13 3 0 0 0 0 0 0 0.0% 0.0(~ 
Insured 14 3 0 0 0 0 0 0 0.0% 0.000 
Insured 15 3 199 202 206 209 212 215 3.4% 1.073 

Subtotal Tier 1 116,459 106.4% 1.841 
Subtotal Tier 2 4,663 5.4% 1.014 
Subtotal Tier 3 396 0.6% 1.041 
Subtotal Tier 4 124 0.7% 6.085 

Total 99,875 101,425 102,888 104,264 105,590 121,642 43.9% 1.782 
% of Ultimate 82.11% 83.38% 84.58% 85.71% 86.80% 100.00% 
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Note s :  
- -  This exhibit is a compilation of Exl~bit 8.4 for each insured in the sample group. 
- -  Average ground-up attachment point and total exposure from insured poficy information are given. 
- -  ABC Re's reported loss & expense from ABC Re's  claim files are given. The amount could be lower than implied by model because of reporting 

lags to ABC Re or higher because of additional reserves. 
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288 MEASUREMENT OF ASBESTOS BODILY INJURY LIABILITIES 

EXHIBIT 11 

ASBESTOS BI MODEL FOR ABC RE'S SAMPLE GROUP 
CALCULATION OF RANGE OF ESTIMATES OF ABC RE'S 

LIABILITIES FOR THE SAMPLE GROUP 

Estimated Ultimate Loss & Expense for Sample Group of ABC Re's Policies 

Inflation = 5.0% Inflation = 0.0% Inflation = 5.0% Inflation = 0.0% 
15 Yr Cov Blck 15 Yr Cov Blck 25 Yr Cov Blck 25 Yr Cov Blck 

Baseline Scenario Scenario Scenario Scenario 
( 1 ) (2) (3) (4) 

$173,044 $149,174 $139,581 

(5) Selected Low End of Range 

(6) Selected High End of Range 

(7) Selected Best Estimate 

$121,642 

$130,612 

$161,109 

$153,485 

Notes: 
(1) From Exhibit 10.1. 
(2) From Exhibit 10.2. 
(3) From Exhibit 10.3. 
(4) From Exhibit 10.4. 
(5) Average of Columns (3) and (4). 
(6) Average of Columns (1) and (2). 
(7) Weighted average of Items (5) and (6). The weights are 25% and 75% respectively. The weights 
were selected based on likelihood of each scenario. 



EXHIBIT 12.1 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
INSURED 3'S LOSSES IN $5M XS $5M LAYER, INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 5.0%/COVERAGE BLOCK = 15 YEARS 
($ooo's) 

> 

~r 
Vtl 
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Width/Atlch Pt/ 
Policy % Share/Expenses Calendar Year 
Year ($ in millions) 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

© 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1965 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1966 5/5/100~/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1967 5/5/100%/Included in Limit 0 0 0 0 0 0 0 0 183 444 
1968 5/51100~/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1969 5/5/100%/Included in Limit 0 0 0 0 0 0 0 0 183 444 
1970 5/5/100~/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1971 5/5/100%/Indem Only 0 0 0 0 0 0 0 0 0 0 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 0 0 366 888 
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EXHIBIT 12.1 

PART 2 
O 

Width/Attch Pt/ 
Policy % Share/Expenses Calendar Year 
Year ($ in millions) 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1965 5151100%/Pro Rata 0 0 0 0 0 0 0 0 0 116 2,913 

1966 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 116 2,913 
1967 5/5/100%/Incleded in Limit 700 952 1,197 1,435 1,663 1,882 2,088 2,280 2,457 2,616 5,000 
1968 5/5/10(O/Pro Rata 0 0 0 0 0 0 0 0 0 116 2,913 
1969 5/5/100%/Included in Limit 700 952 1,197 1,435 1,663 1,882 2,088 2,280 2,457 2,616 5,000 
1970 5/51100%/Pro Rata 0 0 0 0 0 0 0 0 0 116 2,913 
1971 5/5/100%/Indem Only 0 0 0 0 0 0 0 0 0 78 1,942 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

Total 1,401 1,904 2,394 2,869 3,326 3,763 4,176 4,561 4,914 5,776 23,595 

Note$: 
- -  $5M XS $5M layer for all policies. Only policies in Insured 3 's  coverage block for this scenario, 1960 through 1974, are included. 
- -  Losses in layer are calculated by using $5M XS $5M to carve out losses and expenses from Exhibits 5.1, 6.1, and 7.1. 
- -  Expenses are added to indemnity before applying attachment point and limits for expenses included in limits policies (Policy Years 1967 and 1969). 

When all lower layer policies are indemnity only or pro rata, this would not be true. In this case, indemnity only should be used to determine if the 
attachment point is reached. In the real world the true answer is somewhere between adding expenses to indemnity or just indemnity in determining 
satisfaction of the attachment point. Both scenarios should be examined. 

- -  Ultimate value is calculated by continuation of patterns beyond months shown. 
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EXHIBIT 12.2 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
INSURED 3'S LOSSES IN $5M XS $5M LAYER, INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 0.0%/COVERAGE BLOCK = 15 YEARS 
($000's) 

Width/ARch Pt/ 
Policy % Share/Expenses Calendar Year 
Year ($ in millions) 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1965 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1966 5/5/100~/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1967 515/lO0%/Included in Limit 0 0 0 0 0 0 0 0 0 0 
1968 5/51100~/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1969 5/51100~/Included in Limit 0 0 0 0 0 0 0 0 0 0 
1970 515/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1971 5151100%/Indcm Only 0 0 0 0 0 0 0 0 0 0 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 0 0 0 0 bo ~D 



EXHIBIT 12.2 

PART 2 

Width/Attch Pt/ 
Policy % Share/Expenses Calendar Year 

Year ($ in millions) 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate 
Fr~ 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Poficy 0 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Poficy 0 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1965 5/51100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1966 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1967 5/5/100%/Included in Limit 0 133 263 383 493 593 683 763 833 893 1,576 
1968 5151100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1969 5151100%/Inchided in Limit 0 133 263 383 493 593 683 763 833 893 1,576 
1970 5151100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1971 5/5/100%/lndem Only 0 0 0 0 0 0 0 0 0 0 0 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

Total 0 266 526 766 986 1,186 1,366 1,526 1,666 1,786 3,151 

Z 
,-4 
0 

© 

[--, 

-- $5M XS $5M layer for all policies. Only policies in Insured 3"s coverage block for this scenario, 1960 through 1974, are included. 
- -  Losses in layer are calculated by using $5M XS $5M to carve out losses and expenses from Exhibits 5.2, 6.2, and 7.2. 
- -  Expenses are added to indemnity before applying attachment point and limits for expenses included in limits poficies (Policy Years 1967 and 1969). 

When all lower layer poficics are indemnity only or pro rata, this would not be true. In this case, indemnity only should be used ~ determine if the 
attachment point is reached. In the real world the true answer is somewhere between adding expenses to indemnity or just indemnity in determining 
satisfaction of the attachment point. Both scenarios should be examined. 

- -  Ultimate value is calculated by continuation of patterns beyond months shown. 



EXHIBIT 12.3 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
INSURED 3'S LOSSES IN $5M XS $5M LAYER, INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 5.0%/COVERAGE BLOCK = 25 YEARS 
($ooo's) 

~r 
m 

7~ 

Z 

Width/ARch Pt/ 
Policy % Share/Expenses Calendar Year 
Year ($ in millions) 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1962 No ABC R© Policy 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1965 515/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1966 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1967 5/51100%/Included in Limit 0 0 0 0 0 0 0 0 0 0 
1968 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1969 5/5/100%/Included in Limit 0 0 0 0 0 0 0 0 0 0 
1970 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1971 5/5/100qb/lndem Only 0 0 0 0 0 0 0 0 0 0 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Poficy 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Poficy 0 0 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 0 0 0 0 

© 

7~ ..< 
t" 
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EXHIBIT 12.3 t~ 
4~ 

PART 2 

Width/Attch Pt/ 
Policy % Share/Expenses Calendar Year ~ K 
Year ($ in millions) 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate > 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 © 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 "~ 
1965 5/5/100~/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 >~ 
1966 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1967 5/51100%/Included in Limit 0 0 0 0 0 0 0 0 0 0 1,248 
1968 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1969 5/51100%/Included in Limit 0 0 0 0 0 0 0 0 0 0 1,248 © 
1970 5/51100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1971 5151100%llndem Only 0 0 0 0 0 0 0 0 0 0 0 .~ 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 ~. 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 t -  

Total 0 0 0 0 0 0 0 0 0 0 2,496 
7.- 

NOteS: 
- -  $5M XS $5M layer for all policies. Only policies in Insured 3 ' s  coverage block for this scenario, 1960 through 1984, are included. 
- -  Losses in layer are calculated by using $5M XS $5M to carve out losses and expenses from Exhibits 5.1, 6.3, and 7.3. 
- -  Expenses are ~4ded to indemnity before applying attachment point and limits for expenses included in limits policies (Policy Years 1967 and 1969). 

When all lower layer policies are indemnity only or pro rata, this would not be true. In this case, indemnity only should be used to determine if the 
attachment point is reached. In the real world tl~ true answer is somewhere between adding expenses to indemnity or just indemnity in determining 
satisfaction of the attachment point. Both scenarios should be exmv, ined. 

- -  Ulfmate  value is calculated by continuation of  patterns beyond months shown. 



EXHIBIT 12.4 

PART 1 

ASBESTOS BI MODEL FOR ABC RE'S INSURED 3 
INSURED 3'S LOSSES IN $5M XS $5M LAYER, INDEMNITY AND EXPENSES, 

ANNUAL INFLATION = 0.0%/COVERAGE BLOCK = 25 YEARS 
($000's) 

K 

K 
7~ -q 

Width/ARch Pt/ 
Policy % Share/Expenses Calendar Year 
Year ($ in millions) 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

© 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1965 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1966 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1967 5/5/100%/Included in Limit 0 0 0 0 0 0 0 0 0 0 
1968 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1969 5/5/100%/lnchded in Limit 0 0 0 0 0 0 0 0 0 0 
1970 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 
1971 515/100%/lndem Only 0 0 0 0 0 0 0 0 0 0 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 0 0 0 0 

~q 

© 

,< 

7~ 

7" 
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EXHIBIT 12.4 

PART 2 

b.2 
~D O'x 

Width/ARch Pt/ 
g 

Policy % Share/Expenses Calendar Year u~ 
Year ($ in millions) 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Ultimate 

1960 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1961 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1962 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1963 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1964 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1965 5/5/100%/l:h'o Rata 0 0 0 0 0 0 0 0 0 0 0 
1966 5/5/! 00%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1967 515/100%/Included in Limit 0 0 0 0 0 0 0 0 0 0 0 

1968 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1969 5/5/100%/Included in Limit 0 0 0 0 0 0 0 0 0 0 0 
1970 5/5/100%/Pro Rata 0 0 0 0 0 0 0 0 0 0 0 
1971 5/5/100%/lndem Only 0 0 0 0 0 0 0 0 0 0 0 
1972 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1973 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 
1974 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

1975-84 No ABC Re Policy 0 0 0 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 0 0 0 0 0 

F~ 

2: .,-] 

0 

© 

< 

E 

NOI~$: 
- -  $5M XS $5M layer for all policies. Only policies in Insured 3 ' s  coverage block for this scenario, 1960 through 1984, are included. 
- -  Losses in layer are calculated by using $5M XS $5M to carve out losses and expenses from Exhibits 5.2, 6.4, and 7.4. 
- -  Expenses are added to indemnity before applying attachment point and limits for expenses included in limits policies (Policy Years 1967 and 1969). 

When all lower layer policies are indemnity only or pro rata, this would not be true. In tiffs case, indemnity only should be used to determine if  the 
attachment point is reached. In the real world the true answer is somewhere between adding expenses to indenmity or just indemnity in determining 
satisfaction of the attachment point. Both scenarios should be examined. 

- -  Ultimate value is calculated by continuation of  patterns beyond months shown. 



EXHIBIT 13 

EXTRAPOLATION METHOD 1 USING ABC RE'S SAMPLE GROUP 
CALCULATION OF PERCENTAGE OF EXPOSURE ERODED BY LAYER BY TIER 

Example Calculation of Matrix Box for Tier 2, $5M XS $5M 

Name 

Projected Ultimate Loss and Expense from BI Model 
in the Layer Assuming Each ABC Re Policy is $5M XS $5M 

Exposure 5% 0% Average 5% 0% Average Wtd 75% Percentage 
Assuming lnfltn lnfltn of Infltn lnfltn of 15 Yr of $5M 

each Policy 15 Yr 15 Yr 15 Yr 25 Yr 25 Yr 25 Yr Wtd 25% XS $5M 
$5M XS Spread Spread Spread Spread Spread Spread 25 Yr Layer 

Tier $5M Scenario Scenario Scenarios Scenario Scenario Scenarios Average Eroded 

~r 

Z .q 

0 
'11 

Insured Co 3 2 35.0 23.6 3.2 13.4 2.5 0.0 1.3 10.4 30% 
Insured Co 7 2 40.0 33.6 7.8 20.7 6.0 0.0 3.0 16.3 41% 
Insured Co 8 2 40.0 37.9 10.9 24.4 8.5 0.0 4.3 19.4 48% 
Insured Co 9 2 40.0 35.7 9.4 22.6 7.2 0.0 3.6 17.8 45% 
Insured Co 11 2 40.0 35.7 9.4 22.6 7.2 0.0 3.6 17.8 45% 

195.0 166.5 40.7 103.6 31.4 0.0 15.7 81.6 42% 

Selected Percentage of Layer Eroded 

Layer 
"Her .5M XS 0 .SM XS .SM 4M XS IM 5M XS 5M 15M XS 10M 25M XS 25M 50M XS 50M 

42% 

-q 

N o l c s :  

- -  The exposure for an insured here is the number of policies with the insured times the $5M layer. 
- -  Ultimate loss and expense from Exhibit 12 for each "Her 2 insured in the sample group. 

Average ultimate loss and expense judgmentally selected based upon weighted average of four scenarios. 

t ,o 

..,,.i 



EXHIBIT 14 

EXTRAPOLATION METHOD 2 USING ABC RE'S SAMPLE GROUP 
CALCULATION OF CASE INCURRED LOSS DEVELOPMENT FACTORS 

' ,D 

Tier 

Tier I 
Tier 2 
Tier 3 
Tier 4 

Tier 

Case Incurred Loss and Expense Development Factor by Tier for 

5% Infltn 0% Infltn 5% Infltn 0% lnfltn 
15 Yr 15 Yr 25 Yr 25 Yr 

Spread Spread Spread Spread 
Scenario Scenario Scenario Scenario 

1 . 9 5 9  1.958 1.898 1.841 
8.909 4.975 3.814 1.014 

20.372 5.595 4.655 1.041 
20.127 14.739 9.578 6.085 

Case Incurred Loss and Expense Percentage Reported by Tier for 

5% Infltn 0% Infltn Average of 5% Infltn 0% Infltn Average of 
15 Yr 15 Yr 15 Yr 25 Yr 25 Yr 25 Yr 

Spread Spread Spread Spread Spread Spread 
Scenario Scenario Scenarios Scenario Scenario Scenarios 

Wtd 75% 
15 Yr 

Wtd 25% 
25 Yr 

Average 
% Reported 

by Tier 

Selected 
Development 

Factor 
by Tier 

~r 

~r 

Z ...] 

© 

..q 

© 

7. 
7~ 
,.< 

Tier 1 51.05% 51.07% 51.06% 52.69% 54.32% 53.50% 51.67% 1.935 
Tier 2 11.22% 20.10% 15.66% 26.22% 98.62% 62.42% 27.35% 3.656 
Tier 3 4.91% 17.87% 11.39% 21.48% 96.06% 58.77% 23.24% 4.304 
Tier 4 4.97% 6.78% 5.88% 10.44% 16.43% 13.44% 7.77% 12.875 

NOfe$: 
- -  Development factors from Exhibit 10. 
- -  Percentage reported equals reciprocal of appropriate development factor. 
- -  Weighted average of percentage reported for the four scenarios judgmentally selected. 
- -  Selected development factor equals reciprocal of weighted average percentage reported. 



EXHIBIT 15 

EXTRAPOLATION METHOD 3 USING ABC RE'S SAMPLE GROUP 
CALCULATION OF PERCENTAGE OF EXPOSURE EXHAUSTED BY TIER 

Wtd 75% 

Tier 

Ultimate Loss & Expense as a Percentage of Exposure for 

5% Infltn 0% Infltn Average of 5% lnfltn 0% Infltn Average of 
15 Yr 15 Yr 15 Yr 25 Yr 25 Yr 25 Yr 

Spread Spread Spread Spread Spread Spread 
Scenario Scenario Scenarios Scenario Scenario Scenarios 

15 Yr 
Wtd 25% 

25 Yr 
Average 

Percentage 
of Exposure 
Exhausted 

by Tier 

© 

~> 

© 

Z 
Tier 1 113.2% 113.2% 113.2% 109.7% 106.4% 108.1% I 11.9% 
Tier 2 47.1% 26.3% 36.7% 20.2% 5.4% 12.8% 30.7% -~ 
Tier 3 12.3% 3.4% 7.9% 2.8% 0.6% 1.7% 6.3% 
Tier 4 1.8% 1.3% 1.6% 0.8% 0.5% 0.7% 1.3% " 

NOteS: 
-- Percentage of exposure factors from Exhibit I0. 
-- Weighted average of four scenarios judgmentally selected. 
-- Some percentage of exposure factors bigger than 100% because of policies with pro rata expense treatment. 

bJ  
',D 
~D 



EXHIBIT 16 

EXTRAPOLATION METHOD 4 USING ABC RE'S SAMPLE GROUP 
CALCULATION OF AVERAGE ULTIMATE LOSS AND EXPENSE BY TIER 

o 
o 

Tier 

Ultimate Loss & Expense by Scenario by Tier 

5% Infltn 0% Infltn 5% Infltn 0% lnfltn 
15 Yr 15 Yr 25 Yr 25 Yr 

Spread Spread Spread Spread 
Scenario Scenario Scenario Scenario 

Number of 
Sample 
Group 

Insureds 
by Tier 

~r 

,.q 

Tier 1 
Tier 2 
Tier 3 
Tier 4 

123,911 123,862 120,074 116,459 
40,981 22,885 17,543 4,663 

7,741 2,126 1,769 396 
411 301 195 124 

© 

8 

Tier 

Average Ultimate Loss & Expense by Scenario by Tier 

5% Infltn 0% Infltn Average of 5% Infltn 0% Infltn Average of 
15 Yr 15 Yr 15 Yr 25 Yr 25 Yr 25 Yr 

Spread Spread Spread Spread Spread Spread 
Scenario Scenario Scenarios Scenario Scenario Scenarios 

Wtd 75% 
15 Yr 

Wtd 25% 
25 Yr 

Average 
Ultimate 
Loss & 
Expense 

Tier 1 41,304 41,287 41,296 40,025 38,820 39,422 40,827 
Tier 2 8,196 4,577 6,387 3,509 933 2,221 5,345 
Tier 3 1,548 425 987 354 79 217 794 
Tier 4 206 151 178 98 62 80 153 

Nol~$: 
- -  Ultimate loss and expense from Exhibit 10. 
- -  Number of sample group insureds by Tier from Exhibit 10. 
- -  Weighted average of four scenarios jedgmentally selected. 



RATEMAKING: A FINANCIAL ECONOMICS APPROACH 

STEPHEN E D'ARCY AND MICHAEL A. DYER 

Abstract 

Financial pricing models are replacing traditional 
ratemaking techniques for property-liability insurers. 
This paper provides an introduction to the target total 
rate of return approach, the capital asset pricing model, 
the discounted cash flow technique, and the option pric- 
ing model, all in an insurance context. Examples of each 
method, along with discussions of their advantages and 
weaknesses, are provided. 

ACKNOWLDGEMENTS 

The authors are grateful for the financial support of the Actuarial 
Education and Research Foundation and the Casualty Actuarial 
Society and for the guidance of reviewers of early drafts of this 
material. 

1. INTRODUCTION TO FINANCIAL ECONOMICS 

Financial economics deals with the acquisition, issuance, val- 
uation, and investment of securities in capital markets. Much of 
the early work in financial economics dealt with determining the 
appropriate value of stocks. Models were developed to predict 
the value of a stock, which was compared with its actual price. 
The strategy of buying underpriced stocks and selling overpriced 
stocks was expected to produce returns above the general mar- 
ket performance. Benjamin Graham and David Dodd were major 
proponents of this approach [ 18]. However, valuation of individ- 
ual stocks proved to be difficult, and to this day no consensus 
exists among financial economists about what the price of a given 
stock should be. 

301 
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In 1952, Harry Markowitz directed the focus away from indi- 
vidual stock picking with his work entitled "Portfolio Selection" 
[24]. Markowitz calculated the variance, which was used as a 
measure of risk of returns, and demonstrated the effect on port- 
folio risk of the addition and subtraction of stocks to and from 
a group of stocks. He showed that a portfolio of stocks could 
generate a higher return at a lower level of risk than individual 
stocks held alone. This concept, known as portfolio diversifica- 
tion, reduced the emphasis on individual stock picking. 

However, investors were still interested in the returns of indi- 
vidual stocks. Building upon Markowitz's work, William Sharpe 
[29] published an article in 1964 that explained the expected re- 
turn of individual securities in a well-diversified portfolio. In this 
model, termed the Capital Asset Pricing Model (CAPM), the in- 
vestor is compensated only for bearing systematic risk, which 
cannot be diversified away by adding more stocks to a portfolio. 
Unsystematic risk, which can be diversified away, is the second 
component of total risk of a portfolio. Markowitz-like portfolio- 
diversified investors do not need to be compensated for unsys- 
tematic risk. The expected return of a security, thus, is the rate 
of return on a risk-free asset, plus the security's beta multiplied 
by the market risk premium: 

E(Ri) =/?.i- + ¢3i[E(R m) - Rf], (1.1) 

where 

E(Ri) = expected return for security i, 

Rf = risk-free rate, 

E(R m) - R f  = market risk premium, and 

~i = beta of security i 

= Cov(Ri, Rm)/Var(Rm). 

The market risk premium is the amount by which a portfolio 
of stocks diversified against all unsystematic risk is expected to 
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exceed the risk-flee rate. This value is frequently determined 
based on historical experience. 

Initially, empirical tests of the CAPM tended to support the 
model. However, some studies, notably Roll [28], have stated 
that the tests were essentially joint tests of the model and the 
market proxy. The market portfolio should include such assets as 
bonds, real estate, collectibles, and even human capital, but valid 
measures of the total value of these assets on a regular basis are 
not available. Since empirical tests of the mode] tend to use a 
stock market portfolio, which is readily available, as the market 
portfolio, the model has not been, and actually cannot be, fully 
tested. More recently, Fama and French [16] report the results of 
an extensive test of the CAPM on stock market data from 1941 to 
1990 and conclude that size and the ratio of book-to-market value 
are more important than beta in explaining returns. Over the 
entire period, the relationship between beta and average returns is 
insignificant. Despite this damaging evidence, the Capital Asset 
Pricing Model 's risk and return relationship is still considered 
important today and is the foundation of several financial models 
that have been applied to insurance ratemaking. 

Merton Miller, in his 1958 work with Franco Modigliani en- 
titled "The Cost of Capital, Corporation Finance, and the Theory 
of Investment," laid the groundwork for corporate financial the- 
ory [25]. This work examined the impact that the use of debt 
and dividends had upon the value of the firm. Miller found that 
the value of the firm is independent of the level of debt and 
the dividend payout level chosen by the firm. This conclusion, 
derived from strict assumptions including no taxes, was contro- 
versial, but led to the understanding of optimal capital structure 
and dividend policy used by corporations today. 

One other important development in financial economics is 
the option pricing theory developed by Black and Scholes [4] in 
the early 1970s. Options are derivative securities, meaning that 
they derive their value from their relationship with another secu- 
rity. Options give the holder the fight to buy, in the case of a call 
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option, or to sell, in the case of a put option, an asset at a speci- 
fied price. Options exist on stocks, bonds, futures, commodities,  
stock indices, and even insurance catastrophe losses. For exam- 
ple, an investor may own a call option on IBM stock to buy IBM 
for $100 a share. If the price of IBM is greater than $100, the 
investor can exercise the option to buy IBM at $100 and then 
sell the stock at the higher price, thereby earning a profit. Many 
assets and claims exist that can be thought of as options, or con- 
tingent claims. For example, stockholders of a corporation can 
be thought of  as holding an option on the company's  assets being 
greater than its liabilities. If the assets are less than the liabilities, 
stockholders receive nothing; if greater, stockholders receive the 
entire difference. 

Option pricing models such as the Black-Scholes model have 
been fairly successful at valuing options. The Black-Scholes 
model was so successful that its model prices were used by 
option traders as actual market prices in the early 1970s when 
organized option exchanges were opened. 

The option concept along with the use of option pricing mod- 
els can also be applied to the claims of insurers. The claims of 
policyholders, stockholders, and tax authorities against the in- 
surer can be thought of as options. These applications will be 
discussed in detail later. 

The contributions of Markowitz, Sharpe, Miller, Modigliani, 
Black, and Scholes have led to the development of financial mod- 
els that have been applied to investment and corporate finance. 
These models have also been applied to ratemaking in the in- 
surance industry. The formulation of these financial models and 
their application to insurance will be explained in this paper. 

Even a cursory review of insurance profitability demonstrates 
that, at least since the 1970s, the industry has not achieved the 
target underwriting profit margin of five percent based on the 
1921 National Convention of Insurance Commissioners profit 
formula. This result could be due to an inability to achieve the 
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appropriate rate of  return because of unexpected inflation, dis- 
asters and other insured catastrophes, social changes that raised 
costs in an unpredictable manner, or other unforeseen develop- 
ments. However, the persistency of the shortfall, the fact that 
insurance markets have remained attractive enough to continue 
to draw new entrants and investment capital, and the fact that 
bankruptcies and failures among insurers have not risen to espe- 
cially unusual levels suggest that a more appropriate explanation 
is that the model for determining the profit margin is at fault, and 
insurers have not been trying to obtain a 5 percent underwriting 
profit margin. The search for an alternative pricing model has 
yet to be concluded. For a description of the early regulatory 
decisions repudiating the 5 percent underwriting profit margin 
and a summary of  alternative models, see Derrig [ 11 ]. 

2. T A R G E T  TOTAL RATE OF R E T U R N  M O D E L  

Early alternative pricing models were proposed by Bailey [2], 
Ferrari [17], and Cooper [6]. In these models, the total return of  
an insurer, the sum of underwriting and investment results, was 
recognized as the key measure of profitability. When investment 
income increases, as it did in the 1960s due to longer-tailed claim 
payments and higher interest rates, the underwriting income can 
be expected to decline, depending on the required total rate of  
return. An example of  this approach is the Target Total Rate of  
Return Model. 

The target total rate of return combines the two sources of  
income for an insurer: investment income and underwriting in- 
come. In this approach, a target total rate of  return is set equal 
to the total return from investments plus the total rate of  return 
from underwriting. Once the investment income is projected, the 
required underwriting profit margin can be calculated. The for- 
mula for the target total rate of return for insurers can be written 
a s :  

TRR = (IA/S)( IR)  + (P /S ) (UPM) ,  (2.1) 
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where 

TRR = target total rate of  return, 

IA = investable assets, 

S = owners '  equity in the insurer, 

1R = investment return, 

P = premium, and 

UPM = underwriting profit margin. 

In Equation 2.1, investment income and underwriting income are 
expressed as a percentage of  equity. 

In order to use this technique, the appropriate target total rate 
of  return must be determined. Various procedures could be used 
to determine the total rate of  return, such as an industry aver- 
age return on equity, an arbitrary target such as 15 percent, a 
variable value tied to an alternative investment such as 5 per- 
cent over long-term Treasury bonds, or some appropriate rate of  
return for the investor based on the riskiness of  the firm. The 
latter procedure of  providing investors with an appropriate rate 
of  return to compensate for the risk that they undertake is used in 
public utility rate regulation. The Capital Asset Pricing Model,  
discussed in detail in the next section, is often used in utility rate 
regulation to determine the appropriate risk-adjusted return that 
stockholders should expect to receive. 

To apply the target total rate of  return model, E(Re) from the 
C A P M  in Equation 1.1 is set equal to the target total rate of  
return TRR in Equation 2.1. Solving for the underwriting profit 
margin UPM leads to the following equation: 

U P M  = (S IP)JR:  + ~e(E(Rm)-  Rf  ) - (IA/S)(1R)]. (2.2) 

To use Equation 2.2 for a stock insurer, current company data 
for the ratios of  investable assets to equity and premium are used 
along with a forecast o f  the insurer 's investment rate of  return. 
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The insurer's beta and the market risk premium can be gathered 
through historical estimates, and the current one year Treasury 
bill rate can be used as the risk-free rate in this single period 
model. 

For example, assume the risk-free rate is 7 percent, the in- 
surer's beta is 1.0, the market risk premium is 8 percent, the 
insurer's ratio of investable assets to equity is 3 to 1, the in- 
surer's investment return is 7 percent, and the ratio of premiums 
to equity is 2 to 1. The target total rate of return is given by the 
CAPM in Equation 1.1 as follows: 

T R R  = 7% + 1.0(8%) = 15%. 

The underwriting profit margin is given by Equation 2.2: 

U P M  = (1/2)[15% - 2(7%)] = 0.5%. 

The investment return on equity of 14 percent is subtracted from 
the total rate of return of 15 percent yielding an underwriting re- 
turn on equity of I percent, which translates into an underwriting 
profit margin of 0.5 percent. 

The target underwriting profit margin for an insurer with eq- 
uity of $500,000, premiums of $1,250,000, investable assets of 
$2,000,000, investment return of 7.5 percent, and beta of 1.15, 
when the risk-free rate is 7 percent, and the market risk premium 
is 9 percent is determined as follows: 

U P M  = ( S / P ) [ R f  + ~e(E(Rm) - R f  ) - ( I A / S ) ( I R R ) ]  

= (500,000/1,250,000) 

x [7% + 1.15(9%)- (2,000,000/500,000) x (7.5%)] 

= -5.06%. 

In addition to the difficulty in determining the target total rate 
of return for this model, measuring the owners' equity in the 
insurer is another complex issue. This value should represent 
the current investment in the company, the amount that could be 
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deployed elsewhere if the owners decided not to continue to write 
insurance. For a stockholder-owned insurer, this can be estimated 
in total by the market value of the company. However, insurers 
do not set rates in aggregate, but on a by-line by-state basis. 
Estimating the owners' equity in, for example, Kansas private 
passenger automobile, is far more difficult. 

Equity is not statutory surplus. If statutory surplus, instead of 
the insurer's actual equity, is used in the target total rate of return 
method, the required underwriting profit margin derived from the 
model will be distorted. The statutory surplus figure is lower than 
most insurers' actual equity levels, since statutory surplus ignores 
the time value of money in loss reserves, excludes the value of  
tangible assets and non-admitted reinsurance, and values bonds 
and real estate at other than market values. Thus, the target total 
rate of  return calculation based on statutory surplus will generate 
a lower underwriting profit margin than if the true equity figure 
were used. If this lower underwriting profit margin were forced 
upon insurers, they might react by investing in more risky assets 
to boost their investment rate of  return in order to compensate for 
the lower underwriting profit margin. The reaction of  increased 
risk taking by insurers could lead to an increase in insolvency 
among insurance companies. 

A statutory surplus figure higher than actual equity levels, 
which could occur in times of increasing interest rates, would 
indicate a higher than necessary underwriting profit margin. This 
would cause excessive premiums to be charged to customers. 

By itself, the target total rate of return approach lacks any 
theoretical justification for a proper rate of return. A model well 
supported by theory will be discussed next. 

3. CAPITAL ASSET PRICING MODEL 

The CAPM, developed in the 1960s, is one of the most pow- 
erful tools of finance and one of the foundations of  most current 
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financial theories. The CAPM has been applied to many financial 
issues: estimating stock returns and prices, determining appro- 
priate corporate capital budgeting rates of  return, establishing al- 
lowable rates of return for utilities, and pricing insurance. Insur- 
ance applications of  the CAPM include estimating underwriting 
profit margins for insurance pricing purposes and determining 
the appropriate rate for discounting loss reserves. 

The CAPM is based on several straightforward investment 
principles--asset  allocation, portfolio return and risk, efficient 
portfolios, and portfolio diversification--that  will be described 
and explained in this section. 

Asset allocation involves dividing capital among broad asset 
categories. These asset categories include stocks, bonds, real es- 
tate, bank deposits, certificates of  deposit (CDs), and Treasury 
bills. Most of  the former asset categories can be described as 
risky assets, meaning they have an uncertain return. Some of  
the latter categories, such as Treasury bills and, to a lesser ex- 
tent, bank deposits and CDs, are considered to be risk-free 
assets, meaning they have a virtually guaranteed return. The fol- 
lowing simplified example will describe and illustrate asset al- 
location. 

Two Asset Allocation Case 

Assume that there are only two assets available to investors, 
one risk-free asset and one risky asset. The risk-free asset has 
a rate of  return of  8 percent and has no risk. The risky asset has 
an expected rate of  return of  20 percent and a standard deviation 
of  25 percent. The standard deviation measures the total variabil- 
ity of  returns over time and is frequently used as a risk measure. 
This standard deviation of  return will be our risk measure ini- 
tially. 

The two assets' expected return and risk are known, and an 
investor wants to allocate money between these two assets. Fig- 
ure 1 illustrates this asset allocation choice. The y-axis intercept 
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represents one possible asset allocation choice: investing all of  
the money in the risk-free asset, giving the investor a guaranteed 
return of 8 percent. Another possibility is the endpoint of  the 
line plotted in Figure 1, which represents investing all of the 
money in the risky asset. This choice has an expected return 
of 20 percent and a standard deviation of  25 percent. The line 
between these two points, termed the Capital Allocation Line 
(CAL), represents the expected return and standard deviation of  
different combinations of the two assets. The expected return 
of each portfolio is simply a weighted average of each asset's 
expected return and is given by the following general formula: 

E(Rp) = (1 - W)R I + WE(Rk), (3.1) 

where 

E(Rp) = the expected return of  the combination portfolio, 

Rf = the risk-free rate, 

W = the proportion of money invested in the risky asset, 
and 

E(Rk) = the expected return of  the risky asset. 

In this example, with Rf = 8 percent, and E(Rk) = 20 percent, 
the formula for the expected combination portfolio return is: 

E(Rp) = (1 - W)(8%) + W(20%). (3.2) 

The riskiness of  the portfolio is given by the portfolio's stan- 
dard deviation, which depends on the standard deviation of  each 
asset, the proportion invested in each asset, and the covariance 
between the two assets' returns. The general formula for a two 
asset portfolio's standard deviation is: 

O-p = [(1 - W)2o-~ + 2(1 - W)(W)Cov(R 1,R2) + W2cr2] (1/2), 

(3.3) 
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where 

ai = the standard deviation of returns for asset i, 

W = the proportion invested in asset 2, and 

C o v ( R ! , R 2 )  = the covariance of returns between asset 1 
and asset 2. 

The covariance of returns equals the product of the standard 
deviation of each of the two assets and the correlation coefficient 
between the two assets. In this example, the first asset is a risk- 
free asset, meaning it has a standard deviation of zero; therefore, 
the covariance between the risk-free asset and the risky asset 
is also zero, which yields the following simple formula for the 
standard deviation of our example's portfolio: 

O'p = [W20"k2] 1/2 = W o  k. (3.4) 

Thus, in this example, the portfolio's standard deviation is the 
proportion of money invested in the risky asset multiplied by the 
standard deviation of the risky portfolio, which is 25 percent. 

For illustrative purposes, consider a sample portfolio to verify 
a point on the Capital Allocation Line in Figure 1. Assume 20 
percent of an investor's money is invested in the risk-free asset 
and the remaining 80 percent in the risky asset. The expected 
return for this portfolio would be: 

E(Rp) = (0.2)(8%) + (0.8)(20%) = 17.6%. 

The standard deviation of the portfolio would be: 

SD(E(Rp)) -- (0.8)(25%) = 20%. 

This point is shown on the Capital Allocation Line in Figure 1. 

To apply this technique, an individual investor would choose 
the desired level of risk and/or return and would solve for the ap- 
propriate proportion to invest in the risky asset from the risk and 
return Equations 3.2 and 3.4 above. The investor selects the point 
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along the Capital Allocation Line that indicates the expected re- 
turn and risk level of the investor's choice. For example, if an 
investor wanted an expected rate of return of 12 percent, he or 
she could use the expected return formula given in Equation 3.1 
to solve for the risky asset proportion that would yield the 12 
percent expected return. Solving Equation 3.1, the appropriate 
risky asset proportion would be: 

W = [E(Rp) - R f ] / [ E ( R k )  - R f ] .  (3.5) 

In this example Equation 3.5 would be written as the following: 

W = [ 1 2 % -  8 % ] / [ 2 0 % -  8%] = 0.33 or 33%. 

If the investor wanted an expected return of 12 percent, based on 
Equation 3.5, the investor would have to invest 33 percent of  the 
portfolio in the risky asset and the remaining 67 percent in the 
risk-free asset. According to Equation 3.4, this portfolio would 
have a standard deviation of (0.33)(25%) or 8.25 percent. 

An investor could also establish the portfolio according to 
the amount of risk desired. For example, if an investor could 
tolerate a risk level of only a 10 percent standard deviation in 
the expected return, he or she could use the portfolio standard 
deviation equation given in Equation 3.4 to solve for the risky 
portfolio proportion that would yield the 10 percent combination 
portfolio standard deviation. Solving Equation 3.4, the appropri- 
ate risky proportion would be: 

W = Crp/O k. (3.6) 

From the above example, the appropriate risky asset propor- 
tion would be: 

W = 10%/25% = .40 or 40%. 

Therefore, to achieve the desired risk level of 10 percent, an 
investor would have to invest 40 percent of the portfolio in the 
risky asset and 60 percent in the risk-free asset. From Equation 
3.2, this would give the investor an expected portfolio return of 
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(.6)(8%) + (.4)(20%), or 12.8 percent for the desired 10 percent 
risk level. 

What if an investor wanted an expected return greater than 
the expected return of the risky asset of 20 percent? In this case, 
the investor would have to invest more than 100 percent in the 
risky asset by borrowing. For simplicity, financial models often 
assume that investors can borrow and lend at the same interest 
rate. Figure 2 illustrates borrowing at the risk-free rate. The ex- 
tension of the Capital Allocation Line beyond the horizontal line 
at an expected return of 20 percent represents a negative invest- 
ment at the risk-free rate (borrowing), giving the investor the 
necessary funds to invest more than 100 percent in the risky as- 
set. For example, if an investor wanted an expected return of 26 
percent, the investor would solve for W, the proportion invested 
in the risky asset, from Equation 3.5. In this example, Equation 
3.5 is written as the following: 

W = [ 2 6 % - 8 % ] / [ 2 0 % - 8 % ]  = 1.5 or 150%. 

To achieve an expected return of 26 percent, the investor 
would have to invest 150 percent of the value of the portfolio 
in the risky portfolio and borrow an amount equal to 50 percent 
of the portfolio at the risk-free rate. This portfolio would have a 
standard deviation of (1.5)(25%), or 37.5 percent. 

This concludes the discussion of the simple two asset allo- 
cation case. Next, the case that is more realistic, with a myriad 
of assets available for investment, is introduced. It will then be 
shown that this "entire universe" case can be simplified to a two 
asset allocation choice, leading to the concept of the Capital As- 
set Pricing Model. 

Multiple Asset Allocation Case 

Assume that any or all risky assets in the world are avail- 
able for investment, all investors know the expected return and 
standard deviation of each asset and the covariance of returns 
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among different assets, and everyone has the same expectations 
regarding these returns and standard deviations. All the risk and 
return information could be used to form millions of different 
portfolios of these assets, and the expected return and standard 
deviation of each portfolio could be calculated. The risk and 
return calculation would be performed using a more general form 
of Equations 3.1 and 3.3 as given by Equations 3.7 and 3.8: 

where 

E(Rp) = Zi(WiE(Ri)), and 

2 = + Op 

j does not equal i, and 

O'ij = covariance between stocks i and j. 

(3.7) 

(3.8) 

A sample of these portfolios is plotted on Figure 3. The next 
step is to decide which portfolios investors might select. Assume 
investors are rational risk averse investors. This means these in- 
vestors prefer to maximize return for the same level of risk and 
to minimize risk for the same level of return. First, look at port- 
folios A and B in Figure 3. Notice that both portfolios have the 
same standard deviation, but portfolio A has a higher expected 
return. Rational risk averse investors would prefer portfolio A to 
portfolio B because it has a higher level of expected return for 
the same level of risk. Portfolio A is said to dominate portfolio 
B and any other portfolio below portfolio A on the graph with 
the same level of risk but a lower expected return. 

Now, examine portfolios C and D in Figure 3. Both portfo- 
lios have the same expected return, but portfolio C has a lower 
standard deviation than portfolio D. Again, rational risk averse 
investors would rather invest in portfolio C because it has a lower 
level of risk for the same level of return when compared to port- 
folio D. Portfolio C is said to dominate portfolio D and any other 
portfolio to the right of portfolio C in the graph with the same 
expected return but a higher standard deviation. 
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Portfolios A and C are called efficient portfolios because they 
have the highest level o f  return for a given level of  risk and the 
lowest level of  risk for a given level of  return. All the portfolios 
on the curve in Figure 3 are efficient portfolios and investors 
would want to invest only in this set of  efficient portfolios be- 
cause their risk and return characteristics dominate all portfolios 
under the curve. The curve representing the efficient portfolio 
set is called the efficient frontier. 

An investor could select a portfolio on this efficient frontier 
according to the investor's desired risk and return level. However,  
there is a better way to choose a portfolio which coincides with 
our earlier two asset allocation example. 

Assume the risk-free asset still exists and a line can be drawn 
from the risk-free asset to the efficient frontier. The line could 
intersect the efficient frontier at any point on the curve, but the 
line from the risk-free rate that is tangent to the curve is the 
most desirable line from the standpoint of  the investor. This line, 
included in Figure 4, is exactly the same as the capital allocation 
line discussed earlier in the two asset example. In this case, the 
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risky asset is the one portfolio, M, that is common to both the 
line and the efficient frontier. Since every investor has the same 
(homogenous) expectations about asset risk and return, portfo- 
lio M in Figure 4 would be the risky portfolio that all investors 
would want to own. In this case, the investor's portfolio choice is 
the same as the earlier two asset case of a combination between 
the risk-free asset and the efficient risky asset portfolio M. The 
investor's portfolio would be divided between the two assets ac- 
cording to the level of risk and/or return desired. If the investor 
wanted the level of risk and return that portfolio M offered, then 
100 percent of the money would be placed in portfolio M. An 
investor wanting a level of risk lower than portfolio M would 
prefer to invest a portion of the total portfolio in the risk-free 
asset and the rest in portfolio M according to Equation 3.6 in- 
stead of investing in a portfolio on the efficient frontier like Q in 
Figure 4. A portfolio on the CAL has either a higher return for 
the same level of risk, such as point 1, or a lower level of risk 
for the same level of return, such as point 2, when compared to 
portfolio Q. In other words, the CAL is more efficient than the 
efficient frontier at every point except M; that is why this ex- 
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panded asset world example collapses to the two asset allocation 
choice. 

Measurement of Expected Returns on Individual Securities 

At this point, the investor holds a well-diversified portfolio 
that consists of  the risk-free asset and the optimal risky portfolio 
M which contains many assets (theoretically all assets available 
in the world). To define a well-diversified portfolio, we must 
first discuss the two types of risk of  a portfolio. As in insurance, 
where an insurer can reduce risk by writing more policies, an 
investor can reduce risk by adding more assets to a portfolio. 
Figure 5 illustrates this point where the standard deviation, or 
total risk, of  a portfolio is denoted on the y-axis and the number 
of assets on the x-axis. Generally, by choosing assets at ran- 
dom and adding them to the portfolio, the investor can reduce 
the overall risk of a portfolio. However, eventually the investor 
reaches a saturation point where more assets added to the port- 
folio do not significantly reduce the total risk of the portfolio. 
At this saturation point, the investor still has risk remaining in 
the portfolio. This remaining risk has three different names in fi- 
nance, but all mean the same thing: nondiversifiable, systematic, 
or market risk. This market risk is risk that cannot be diversified 
away by adding more assets to a portfolio and is the inherent risk 
associated with the market portfolio of  all risky assets. However, 
if asset returns were uncorrelated, then this residual risk would 
disappear in the same way that the law of  large numbers ap- 
plies to insurance. Risk associated with individual assets that 
can be diversified away is called diversifiable, unsystematic, or 
company-specific risk. Therefore, total risk is equal to company- 
specific risk plus market risk. This means that the investor should 
be concerned with both risks, the total risk, if a portfolio contains 
only a few different assets, and with just market risk if the port- 
folio is well-diversified. Returning to the case discussed earlier 
where the investor holds a portfolio that consists of a combina- 
tion of  the risk-free asset and the "market" portfolio M in Figure 
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4, this investor holds a well-diversified portfolio and should be 
concerned only with market risk rather than total risk. 

How can this market risk be measured? Consider an investor 
who holds a well-diversified portfolio and is thinking about  
adding a new asset to the portfolio. The investor should be con- 
cerned with how the new asset 's returns vary with the market 
portfolio 's  returns. The following simple linear regression can 
be calculated to measure the new asset 's  market risk: 

Rit = a i + b i R m t  + eit ,  (3.9) 

where 

a i and b i = the regression intercept and slope coefficient, 

R i = the return of  asset i, 

R m = the return of  the market portfolio, 

eit = the residual error at time t, and 

t = time. 

The regression line slope coefficient, b i = C o v ( R i , R m ) / V a r ( R m )  , 

measures the time series variation between the asset 's return and 
the market portfol io 's  return and can be used as a measure of  
the asset 's market risk. Let 's  now call bi ,  beta or I3. The market 
portfolio has a !3 of  one. If an asset 's ¢3 is greater than one, it 
means the asset 's return tends to go up more than the market 
when the market rises and decline more when the market return 
drops. 

Returning to the asset allocation choice between the risk-free 
asset and the market portfolio M, the formula for the expected 
return of  this portfolio is given by rewriting Equation 3.1 as: 

E(Rp) = (1 - W ) R f  + (W)E(Rm). (3.10) 

Equation 3.10 can be rewritten as 

E(Rp) = R I + W ( E ( R , , ) -  Rf).  (3.1 1) 
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The second half of  Equation 3.11 can be called a market risk 
premium, which is the return an investor expects to receive above 
the risk-free rate for investing in the market portfolio. If W is 1 in 
Equation 3.1 1, the expected portfolio return equals the expected 
market return, and the portfolio risk equals the standard deviation 
of  the market portfolio. Figure 4 shows this relationship but still 
uses total risk as a risk measure although the investor should only 
be interested in market risk, as measured by/3,  when looking at 
adding a new asset to a well-diversified portfolio. 

/3 measures an individual asset's sensitivity to movements  in 
the market portfolio, and E (Rm)-  Rf  is the excess return de- 
manded on the market portfolio, or market risk premium. The 
excess return demanded on an individual asset added to a well- 
diversified portfolio should be/3[E(Rm) - Rf] which is the asset 
risk premium. From this relationship, the following formula for 
the expected or required return for an individual asset in a well- 
diversified portfolio can be developed: 

E(Ri) - R f =/3i[E(Rm) - R f ], (3.12) 

which is the formula for the asset risk premium just explained 
above. Rewriting Equation 3.12 gives a formula for the expected 
return on asset i, 

E(Ri) = Rf +/3i[E(Rm)- RT]. (3.13) 

Equation 3.13, shown previously as Equation 1.1, is known as 
the Capital Asset Pricing Model, and it is a single period linear 
relationship between market risk as denoted by /3  and expected 
return. The CAPM was developed by Sharpe [29], Lintner [21], 
and Mossin [26] independently in the 1960s. The assumptions 
of  the model  are: 

1. Investors are risk averse diversifiers who try to maximize 
expected return and minimize risk. 

2. Investors are price takers, in that they act as if their trades 
have no effect on asset prices. 
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3. Investors have homogeneous or identical expectations 
about asset expected returns and standard deviations. 

4. Investors have no transaction costs or taxes. 

5. Investors can borrow or invest at the risk-free rate with- 
out any limit. 

6. Assets are infinitely divisible. 

Equation 3.13 forms a line in Figure 6 known as the Security 
Market Line (SML). The y-axis in Figure 6 is the expected return 
and the x-axis is beta. The slope of the SML is the market risk 
premium, E(Rm) - Rf, and the market portfolio has a beta of 1. 

In the example in Figure 6, the risk-free rate is 8 percent, and 
the market risk premium return is 9 percent. This leads to an 
expected market return, where beta equals 1, of 17 percent, as 
depicted by the horizontal line at 17 percent. From this graphical 
relationship, we can find the expected return of any asset as long 
as we know its beta. For example, assume stock A has a beta of 
1.2. From Equation 3.13, stock A's expected return would be: 

E(RA) = 8% + 1.219%] = 18.8%. 

This point is shown on the SML in Figure 6. A stock with a beta 
of 0.6 would have an expected return of (8% + 0.619%]), or 13.4 
percent. 

An asset with a negative beta is assumed to have returns that 
move in the opposite direction of the return of the market port- 
folio. Examples of assets that may have negative betas are gold 
and gold mining stocks, which tend to have increased returns 
when the market falls. Continuing with the previous examples, 
a stock with a beta of -0 .4  would have an expected return of 
(8% + (-0.4)[9%]), or 4.4 percent. 

The implication of the CAPM for asset prices is that when 
an asset price is in equilibrium, its actual expected return equals 
its expected return as given by the CAPM. If an asset, such as 
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stock A with a beta of 1.2, has an expected return of 20 percent, 
higher than its equilibrium expected return of 18.8 percent, then 
its return should decline to 18.8 percent. In order for stock A's 
return to go down, its price must go up. Investors, noticing that 
stock A's return lies above the SML, will put buying pressure on 
the stock until the price rises to the equilibrium point where its 
expected return equals 18.8 percent. The opposite would happen 
if the actual expected return were below the expected return given 
on the SML. 

Some cautions about using the CAPM must be mentioned. 
The model requires the use of the market risk premium and past 
market portfolio returns and individual asset returns to arrive at 
beta estimates for individual assets. This assumes that such rela- 
tionships are stable, when in fact they are likely to change over 
time. There has also been much debate in finance literature about 
what the market portfolio actually is. Most of the debate centers 
around the fact that the market portfolio in theory consists of all 
the assets in the world, and its return has never been measured. 
To use the CAPM in practice, a proxy for the market portfolio 
is used. Typical market proxies are stock market indices such as 
the Standard & Poor's 500 stock index, the New York Stock Ex- 
change Composite stock index, the Wilshire 5000 stock index, 
the Value Line Investment Survey 1700 stock index, the Amer- 
ican Stock Exchange Index, or combinations of some of these 
indices along with bond and real estate indices. Despite the prob- 
lems with choosing an appropriate market proxy, the CAPM is 
a model that can easily be applied to many applications and has 
been applied to insurance. 

4. APPLICATION OF THE CAPITAL ASSET PRICING MODEL TO 
INSURANCE 

The Capital Asset Pricing Model as defined in Equation 3.13 
has been used to determine insurance underwriting profit margins 
by Fairley [15], Hill [19], and Hill and Modigliani [20] among 
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others. The basic form of  Fairley's CAPM model is given by the 
following equation: 

where 
UPM = - k R f  + ~3u[E(Rm) - Rf], (4.1) 

k = the funds generating coefficient, and 

/3, = the underwriting beta. 

In this form of the model, the appropriate underwriting profit 
margin is equal to the insurer's systematic underwriting risk pre- 
mium,/3,[E(R,,)  - Rf], which is offset by the investment inflow 
rate of return, - k R f .  The underwriting beta is determined by the 
historical movements of underwriting returns in relation to the 
market portfolio returns, and can be applied to individual lines 
of business. The investment inflow rate of return arises because 
of the time lag between the receipt of premiums by the insurer 
and the payment of losses and expenses. The funds generating 
coefficient, k, represents the average time the insurer holds pre- 
miums. This model ignores actual insurance company investment 
performance but assumes insurers will earn the risk-free rate of 
return. The insurer bears the risk and incurs the gain or loss on 
any risky investment. 

Use of  the Fairley CAPM requires an estimate of the under- 
writing beta and the funds generating coefficient for the company 
as a whole or for the line of  business under consideration. The 
underwriting beta is frequently estimated by running a simple 
linear regression of historical underwriting returns against the 
returns of  the market portfolio as described in Equation 3.9. The 
beta coefficient, the estimate for/3 u, from this regression is equal 
to Cov(R,~, R,,)/Var(Rm). 

Cummins and Harrington [9] used quarterly underwriting re- 
sults for insurers to arrive at an empirical /3, estimate that was 
insignificantly different from zero. Other empirical studies have 
estimated the beta of  insurer liabilities, which is then converted to 
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an underwriting beta. Hill found a liability beta of -0 .23  through 
a regression approach. Fairley used an indirect estimation ap- 
proach depending on the insurer's financial leverage, the system- 
atic risk of  investable assets (the asset beta), and the funds gener- 
ating coefficient, from which an estimate o f - 0 . 2 1  was found for 
the liability beta. Fairley then used the relationship of/3,, = - k / 3  L 

which yielded a positive underwriting beta of  approximately 0.2. 

The funds generating coefficient estimate, k, can be given by 
the insurer's projection of the loss and expense payment pattern 
expected from the insurer's current exposures. The estimate k 
would be the weighted average of the length of  time expected 
between the receipt of  premium and the payment of losses and 
expenses among these different exposures. A value of 1 for k 
would mean an expected time lag of  one period between the 
receipt of premium and payment of losses and expenses, and a 
value of  0 would mean that losses and expenses are paid as soon 
as the premiums are received. Fairley found empirical estimates 
of k for various lines of insurance that ranged from 0.31 and 
0.35 for auto property damage and homeowners to 1.60 for both 
auto bodily injury and workers compensation to a high of 3.74 
for medical malpractice. 

To illustrate the use of the model, consider the following 
example. Assume an insurer wants to determine the minimum 
annual underwriting profit margin to factor into the upcoming 
year's premiums for homeowners insurance. The company has 
determined that homeowners coverages consist of three distinct 
payment pattern groups. Group 1, which represents 30 percent 
of the homeowners premium, has an expected loss payment pat- 
tern of three months or 0.25 years after receipt of premiums. 
Group 2, which represents 40 percent of  the line's premium, has 
an expected loss payment pattern of 0.5 years after receipt of  
premiums. Group 3, which represents 30 percent of the line's 
premium, has an expected payment pattern of  0.75 years after 
receipt of  premiums. The estimate of the funds generating coef- 
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ficient, k, for the line of business would be: 

k = .3(0.25) + .4(0.5) + .3(0.75) = 0.5. 

The insurer has determined the homeowners underwriting beta 
to be 0.2 based on historical information. The risk-free rate is 6 
percent and the market risk premium is 8 percent. The appropri- 
ate homeowners insurance underwriting profit margin according 
to the model in Equation 4.1 would be: 

UPM = -0.5(6%) + 0.2[8%] = -1.4%. 

In this example, the underwriting risk premium, 0.2[8%] = 1.6%, 
is offset by the interest received from the investment of premiums 
at 6 percent for one-half year to yield a negative underwriting 
profit margin of 1.4 percent. 

Now, assume a lower risk-free rate of 4 percent and a higher 
underwriting beta of .50. The underwriting profit margin in the 
above example would be: 

UPM = -0.5(4%) + 0.5[8%] = 2.0%. 

In this second example, the lower risk-free rate results in a lower 
investment rate of return and the higher beta produces a larger 
underwriting risk premium, yielding a higher indicated under- 
writing profit margin. 

The insurance CAPM described in Equation 4.1 does not in- 
clude the effects of taxation. The Hill and Modigliani tax version 
of the insurance CAPM takes into account the corporate taxation 
of underwriting income and differential tax rates for the assets 
in an insurer's investment portfolio of tax-exempt bonds, capi- 
tal gains on stocks and bonds, and corporate dividend income 
from other non-controlled corporations. The tax version insur- 
ance CAPM can be written as the following equation: 

UPM = - k R f ( !  - TA)/(1 -- T )  + ,/3,,[EfRm) - R f] 

+ (S/P)RT[TA/(1 - T)], (4.2) 
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where 

T a = the tax rate on investment income, 

T = the tax rate on underwriting income, and 

S I P  = the insurer 's equity to premium ratio. 

In the above equation, T A is the weighted average of  the different 
tax rates on the insurer 's investment portfolio. 

The first term in Equation 4.2 is the after-tax adjusted risk- 
free return on the insurer 's investment portfolio during the time 
lag between receipt of  premiums and payment of  losses. The 
second term is the underwriting risk premium. 

To illustrate the use of  the tax version insurance CAPM, con- 
sider the following example: the risk-free rate = 6%; the market 
risk premium = 8%; the underwriting beta = 0.2; the funds gen- 
erating coefficient = 0.5; the corporate tax rate = 35%; the equity 
to premium ratio = 1.0; and the insurer invests 30 percent of  its 
investment portfolio in tax exempt bonds, 20 percent in corpo- 
rate dividend income stocks which are taxed at 30 percent o f  the 
corporate tax rate, and 50 percent in investments that are taxed 
as ordinary taxable income. The investment income tax rate is 
the weighted average of  the tax rates of  each investment category 
and is given by the following: 

T a = .3(0%) + .2(.3)(35%) + .5(35%) = 19.6% or .196. 

The first term above is for the tax exempt bonds, the second 
term for the corporate dividend income which has an effective tax 
rate of  .3(35%) = 10.5%, and the third term for ordinary income. 
Given the investment income tax rate, the tax version insurance 
C A P M  yields the following underwriting profit margin: 

U P M  -- -0 .5 (6%)(1  - .  196)/(1 - .35) + 0.2[8%] 

+ 1.0(6%)(. 196/(1 - .35)] = - 0 . 3 0 % .  
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Notice this is the same as the first insurance CAPM example but 
with the addition of taxes; the effect of taxes is to generate a 
higher underwriting profit margin. 

The models that apply the CAPM to insurance have been crit- 
icized for ignoring risk unique to insurance that is not systematic 
with investment risk. Ang and Lai [1] determine that insurance 
premiums should be based on both systematic insurance risk and 
systematic investment risk. Turner [30] indicates that the insur- 
ance market cannot simply be appended to the stock market. Both 
studies conclude that CAPM insurance pricing models would un- 
derprice insurance. These conclusions are supported in D'Arcy 
and Garven [10] by the finding that actual underwriting profit 
margins significantly exceeded the CAPM indications over most 
of the period from 1926 to 1985. Thus, while it is important to 
understand the mechanics of both the CAPM and its applica- 
tions to insurance, this method is not necessarily the appropriate 
pricing technique. 

For example, consider the following situation in which the 
CAPM is not likely to produce the correct indication. An insurer 
is pricing earthquake insurance and assumes that the underwrit- 
ing beta for this coverage is zero, the funds generating coefficient 
is .4, the risk-free rate is 5 percent, and the market risk premium 
is 7 percent. The insurer operates at a 2 to 1 premium to equity 
ratio, has a 35 percent tax rate on underwriting income, and a 
15 percent tax rate on investment income. The indicated under- 
writing profit margin based on the tax version insurance CAPM 
is: 

UPM = -.4(5%)(1 - .  15)/(1 - .35) + 0(7%) 

+ (1/2)(5%)(.15/(1 - .35)) 

= -2 .0%.  

What factors are not reflected in this calculation that would 
affect the appropriate underwriting profit margin? The CAPM 
provides a risk premium only for risk that is systematic with mar- 
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ket returns, ignoring catastrophe risk. Also, the CAPM ignores 
bankruptcy costs. Insurers must be concerned with insurance- 
specific risk and with bankruptcy. Thus, the CAPM indicated 
underwriting pricing margin is likely to be too low. 

5. DISCOUNTED CASH FLOW ANALYSIS 

Discounted cash flow analysis is another foundation of most 
financial theories and models. Discounted cash flow (DCF) anal- 
ysis converts cash flows from different times to a common point 
based on the time value of money so that cash inflows and out- 
flows can be more easily compared. Discounted cash flow anal- 
ysis is used to value bonds, stocks, and corporate investments 
in capital projects. DCF can also be useful in insurance where 
differences in timing between receipt of premiums and payment 
of losses are common. 

The typical DCF analysis is a straightforward calculation that 
finds the present value of expected future cash flows by dis- 
counting these cash flows at the appropriate discount rate. The 
present values are then summed to determine the value of the 
investment. The basic concept behind the time value of money 
is that a dollar in the future is worth less than a dollar today. A 
dollar today can be invested and earn interest so that more than 
a dollar will be available in the future, or can be used for current 
consumption, which is assumed to be worth more than a similar 
amount of consumption in the future. 

To illustrate this approach, consider the following example: 
an insurer sells a one-year policy for a premium of $1,200 that 
has $200 of expenses paid concurrently with the receipt of  pre- 
mium and an expected loss of $1,050 that is paid at the end of 
the year, and the insurer can invest the premium less expenses 
at 7 percent. The insurer would like to know the gross profit 
from both underwriting and investment on this policy in today's 
dollars. This problem can be approached in two ways. 
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First, the end of period gross profit could be determined by 
finding the future value of the net premium investment and then 
subtracting the end of period expected loss. The $1,000 net pre- 
mium is invested at 7 percent and the future, or end of period, 
value is given by the following: 

F V  = PV(1 + r) 

-- $1,000(1 + .07) = $1,070, (5.1) 

where 

F V  = the future value, 

P V  = the present value (which is the premium in this case), 
and 

r = the interest rate. 

The end of period gross profit would be $1,070 - $1,050 = $20, 
but the insurer wants to know what this is worth in today's dol- 
lars. This means the present value of the $20 end of period gross 
profit must be found. Assuming the discount rate is equal to the 
insurer's investment rate of 7 percent, the present value can be 
found by solving for P V  in Equation 5.1: 

P V  = FV/ (1  + r). (5.2) 

The present value of the future profit of $20 is: 

P V =  $20/(1 + .07) = $18.69. 

A second and more direct approach to find the present value 
of the policy's gross profit is to subtract the present value of the 
expected loss from the premium: 

P V  (gross profit) = $1,000 - $1,050/(1 + .07) 

= $1,000 - $981.31 = $18.69. 

Again, the present value of the policy's gross profit is found to 
be $18.69. 
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More general versions for the future value and present value 
equations with a time span of more than one year are given in 
Equations 5.3 and 5.4: 

where 

F V  t = PV(1  + r)  t, (5.3) 

P V  = F V t / ( 1  + r)  t, (5.4) 

F V  t = the future value at time t, 

P V  = the present value at time 0, and 

r = the interest (discount) rate. 

To illustrate the use of the above formulae, consider the following 
examples. 

EXAMPLE 1 An investor places $500 today in an account paying 
8 percent annually for three years. How much would the investor 
have in the account at the end of three years? 

F V  3 = $500(1.08) 3 = $629.86. 

The investor will have $629.86 in the account at the end of three 
years. 

EXAMPLE 2 An insurer expects to make a loss payment of 
$5,000 five years from now and has a discount rate of 9 per- 
cent; the insurer wants to know the present value of this future 
payment: 

P V  = $5,000/(1.09) 5 = $3,249.66. 

The present value of the expected $5,000 payment in five years 
is $3,249.66. 

DCF analysis can also be used to find the present value of 
multiple cash flows, as illustrated by examples valuing bonds, 
corporate investment projects, and stocks. 
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For example, assume a bond matures in two years and pays 
annual interest of $100 per year, with the next payment occur- 
ring in one year and the last payment occurring in two years. In 
addition to the interest payments, the bond has a maturity value 
of $1,000 also payable in two years. If the appropriate rate of 
return on this bond is 8 percent, the value of the bond can be 
determined according to the following formula: 

V = E , { C F t / ( 1  + r) t} ,  (5.5) 

where 

V = the value of the investment, 

C F  t = the cash flow at time t, and 

r = the discount rate. 

For the above bond example, Equation 5.5 is as follows: 

V = $100/(1.08) + $100/(1.08) 2 + $1000/(1.08) 2 

= $92.59 + $85.73 + $857.34 = $1,035.66. 

The present value of the cash flows discounted at 8 percent from 
the bond is $1,035.66. A use for this technique is to determine 
the appropriate price to pay for an investment. If the investor 
requires an 8 percent return to make the above investment de- 
sirable, then the maximum purchase price that would be paid to 
obtain these cash flows is $1,035.66. Any higher price would 
generate a return less than 8 percent. 

A variation of the formula in Equation 5.5, which includes a 
cash flow at time zero, can be used to help corporate managers 
determine whether to invest in a given project 

N P V  = C F  o + E t { C F t / ( 1  + r)t}.  (5.6) 

Equation 5.6 used in this corporate capital budgeting envi- 
ronment is called the net present value ( N P V )  of the project. To 
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calculate the NPV of an investment, the manager simply needs 
the estimates of the future cash flows from the investment, the 
estimated cost of the investment, and the required return or dis- 
count rate demanded by the firm on this type of investment. If the 
NPV is positive, the present value of  the expected cash inflows is 
greater than the expected cost of  the investment, and the project 
would be profitable to invest in, assuming the projected cash in- 
flows turned out to be correct. A negative NPV means that the 
estimated costs of  the investment exceed the present value of  the 
expected cash inflows, and such a project would be considered 
unacceptable for investment purposes. 

Consider the following example for net present value analysis. 

NPV ANALYSIS : 

Period 

r = 15% 

Cash Flow 

0 -$10 ,000  
1 $4,000 
2 $5,000 
3 $4,000 
4 $2,000 
5 $1,000 

The NPV from Equation 5.6 for this sample would be written as: 

NP V = - $ 1 0 , 0 0 0  + $4,000/(1.15) + $5,000/( 1.15 )2 

+ $4,000/(1.15) 3 + $2,000/(1.15) 4 + $1,000/(1.15) 5 

= -$10 ,000  + $3,478 + $3,781 + $2,630 + $1,144 + $497 

= $1,530. 

The project in this example has a positive NPV of $1,530, which 
means it is an acceptable project for investment purposes. 
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Another  application of  the discounted cash flow analysis on 
the same project evaluation is the internal rate of  return (IRR) 
method. The IRR is simply the discount rate that gives the project 
a net present value of  zero. Equation 5.7 is the formula for the 
internal rate of  return: 

NPV = CF o + Et{CFt/(1 + mR) ' }  = 0. (5.7) 

The IRR is found by trial and error or by computer  programs 
that iterate to find the appropriate rate. The decision rule for the 
IRR approach is as follows: if the IRR is greater than the required 
rate of  return for the project, then accept the project; if the IRR 
is less than the required rate of  return, the project is rejected. 
The IRR for the previous example is 22.63 percent. The NPV 
approach with a discount rate of  22.63 percent is used below to 
prove the IRR result 

NPV = - 10,000 + 4,000/(1.2263) + 5,000/(1.2263) 2 

+ 4,000/(1.2263) 3 + 2,000/(1.2263) 4 + 1,000/(1.2263) 5 

= - 10,000 + 3,262 + 3,324 + 2,169 + 884 + 361 

= 0 .  

For typical projects, the NPV and IRR will always provide the 
same decision. 

However, problems exist with the IRR method. If the cash 
flows change sign (positive to negative or vice-versa) more than 
once, then multiple IRRs can occur. For example, a project may 
require an initial investment (negative cash flow), then generate 
a positive cash flow, and then negative cash flows. In this case, 
one IRR may be negative and another one very high, but usually 
only one IRR appears reasonable. For example, consider a project 
with the following cash flows: 
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Period Cash Flow 

0 -$5,000 
1 $5,000 
2 $4,000 
3 -$3,000 
4 $2,000 
5 -$1,000 

This project has a N P V  at 15 percent of $1,046; however, the 
project has two I R R  values: -46.9 percent and 36.4 percent. 
Since the project has a positive N P V  at 15 percent, the latter 
I R R  of 36.4 percent must be the reasonable value for the internal 
rate of return. 

S tock  Valuation 

Another application of discounted cash flow analysis is stock 
valuation. The value of a stock can be thought of as the present 
value of its future cash flows, similar to the earlier bond valuation 
example. The relevant cash flows for a stock are its expected 
future cash dividends. The valuation is a little more difficult for 
stocks because they have no maturity value. One stock valuation 
model is the Gordon growth model. It assumes the following 
present value of expected dividends model: 

V = Z , { D t / ( 1  + r~)t}, (5.8) 

where 

D t = the dividend expected at time t, and 

r~ = the required return on stock. 

The Gordon model is a specialized version of the model in 
Equation 5.5 that assumes a constant annual growth rate in div- 
idends, which causes Equation 5.5 to reduce to the following: 

V = D0(1 + g ) / ( r  s - g) ,  (5.9) 
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where 

D o = the current dividend paid, 

g = the constant dividend growth rate, and 

r,. = the required return on stock. 

The model in Equation 5.9 cannot be used if the growth rate is 
greater than or equal to the required stock return rate. 

To illustrate the use of Gordon's stock valuation model, con- 
sider the following example. Stock A currently pays a dividend 
of $3 per share and has a required rate of return of 17 percent. 
Stock A's dividend is expected to grow at a constant rate of 9 
percent annually. Equation 5.9 can be used in this case and would 
be written as follows: 

V = $3(1.09)/( .17-  .09) = $40.875. 

The value of $40.875 given by the model for Stock A is called 
the stock's intrinsic value. An investor could compare the model 
price to the actual market price for Stock A and decide whether 
to buy or sell the stock. 

A word of caution about using stock valuation models. The 
model is only as good as the estimates used in it. It is quite 
difficult to arrive at accurate estimates of future growth rates in 
dividends. 

6. DISCOUNTED CASH FLOW MODELS APPLIED TO INSURANCE 

Two basic methods of applying discounted cash flow analy- 
sis to insurance have developed. One, termed the Risk Adjusted 
Discount Technique, analyzes the cash flows from the point of 
view of the policyholder, and was first applied at the 1982 Mas- 
sachusetts automobile rate hearings [27]. The other approach, 
used by the NCCI, is an internal rate of return calculation. Cum- 
mins [7] explains and compares these two approaches. Derrig 
[13] explains how the Risk Adjusted Discount Technique has 



RATEMAKING: A FINANCIAL ECONOMICS APPROACH 339 

been used in Massachusetts to set automobile and workers com- 
pensation rates and discusses the key issues in selecting param- 
eter values. In retrospect, as cited by Derrig, the factor most 
responsible for underpricing these coverages has been the un- 
derestimation of  losses and expenses, rather than the choice of  
financial model or value. The material presented here does not 
attempt to duplicate the specific approach in Massachusetts, but 
does apply the same general technique. Although the calcula- 
tions seek to determine an appropriate premium rather than an 
underwriting profit margin, the underwriting profit margin can 
be calculated in the conventional manner after the premium is 
determined. 

The basic premise of the Risk Adjusted Discount Technique 
is that, on a risk adjusted basis, the present value of the premium 
equals the present value of all the cash flows resulting from writ- 
ing an insurance policy. Specifically, the present value of  the 
premium equals the sum of the present values of the losses, ex- 
penses, and taxes on both underwriting and investment income, 
generated by the contract. For an explanation of the importance 
of  considering taxes post-Tax Reform Act of 1986, see Derrig 
[12]. The term "risk adjusted" means that the interest rate se- 
lected to discount cash flows varies to account for the degree 
of risk inherent in the cash flow: a risky cash flow will be dis- 
counted at a different rate than a certain cash flow. 

To illustrate this concept, assume that an insurer is trying to 
set a premium level for a one year policy. The premiums will be 
collected when the policy is effective. Expenses on the policy are 
$20 and will be paid when the policy is written. Losses on the 
policy are expected to be $80, and will be paid at the end of  the 
year. (Assume, for example, that the average loss will occur half- 
way through the coverage period and there will be a six month 
lag in paying the claim.) The insurer will incur taxes on the 
underwriting profit (or a tax reduction on an underwriting loss) 
at the 35 percent level. The insurer will earn investment income 
on the premium less the expenses paid, and on the surplus, or 
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equity, devoted to this policy. The insurer will assign $50 of  
equity to support writing this policy. In this case, the insurer 
pays the same 35 percent tax rate on investment income as on 
underwriting income. All taxes will be paid at the end of  the year. 
In this first example, risk will be ignored and all cash flows will 
be discounted at the same interest rate of  7 percent. 

The general format of  the discounting approach is quantified 
as follows: 

PV(P) = PV(L) + PV(E) + PV(TUW) + PV(TII), (6.1) 

where 

PV 

P 

L 

E 

TUW 

TII 

UPM 

= present value operator, 

= premiums, 

-- losses and loss adjustment expenses, 

= underwriting expenses, 

-- taxes on underwriting profit or loss, 

= taxes on investment income, and 

-- underwriting profit margin. 

For the first example, the calculation becomes: 

80 (P - 20 - 80)(.35) 
P - + 2 0 +  

1.07 1.07 
(50 + e - 20)(.07)(.35) 

+ 
1.07 

P = 74.766 + 20 + .327P - 6.542 - 26.168 + .687 + .023P 

.65P = 62.743 

P = $96.53 

80 20 
UPM= 1 - 3.59%. 

96.53 96.53 

In the first case, the premium is $96.53 for an underwrit- 
ing profit margin of  negative 3.59 percent. This represents the 
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TABLE 1 

S U M M A R Y  O F  N O M I N A L  A N D  D I S C O U N T E D  V A L U E S  

E X A M P L E  1 

Nominal Values Discounted Values 

Losses $ 80.00 $74.77 
Expenses 20.00 20.00 

Taxes on Underwriting - 1.21 - 1.14 

Taxes on Investments 3. I 0 2.90 

Total $101.89 $96.53* 

*Premium = Sum of the Discounted Value of Losses, Expenses, and Taxes 

present value of  the losses ($80/1.07), the expenses ($20), the tax 
reduction on the underwriting loss ([P - 100][.35]/1.07), and the 
tax on the equity and premiums, less expenses, invested at inter- 
est for one year ([50 + P - 20][.07][.35]/1.07). The nominal and 
discounted values from Example 1 are shown on Table 1. Note 
that an underwriting loss occurs and the tax on this underwrit ing 
loss is negative, representing a cash inflow or an offset to other 
taxes. Since investment income is positive, the tax on investment 
income is also positive, raising the required premium. This cal- 
culation demonstrates discounting, and the various cash flows 
generated by writing an insurance policy. It does not represent 
risk adjusted discounting, though, which will be introduced in 
the next example. 

Example 2 will recognize that some of  the cash flows from the 
insurance contract are risky. Specifically, losses will vary around 
the expected value. Since risk is involved, it is not reasonable to 
discount them at what was, in Example 1, a risk-free rate. How- 
ever, the premium income is certain once the policy is written and 
the underwriting expenses can be assumed to be known. Taxes 
emanating from these certain cash flows can also be assumed to 
be risk-free. However, a critical problem rests with how to deter- 
mine an appropriate risk adjusted discount rate. One approach is 
outlined below. 
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The insurance company is assuming the risk of  guaranteeing 
to pay losses for the insured. The insurer should not be  expected 
to place its capital at risk without compensation. In Example 
1, where all cash flows were discounted at the risk-free rate, 
the insurer would be better off  investing the equity directly in 
financial markets and not assuming the risk involved in paying 
claims. Thus, discounting the risky cash flows at an interest rate 
below the risk-free rate represents a form of  compensation to the 
insurer for placing its capital at risk in the insurance contract. 

Conversely, the policyholder in an insurance contract is re- 
ceiving a guarantee from the insurer to pay claims. The guar- 
antee represents a value to the policyholder. Thus, much in the 
manner that a life insurance policyholder is willing to accept a 
guaranteed interest rate below the market interest rate, a prop- 
erty/liability insurance policyholder is willing to accept a lower 
interest rate on the risky cash flows relating to that insurance 
policy. Another  way to view this issue is on a C A P M  basis. The 
insurance policy represents an asset with a negative beta because 
it has value when the pol icyholder 's  tangible assets are reduced 
in value. The required return on a negative beta asset is below the 
risk-free rate. The problem becomes,  though, the determination 
of  an appropriate risk adjusted discount rate. 

For Example 2 we will sidestep that thorny issue and select a 
discount rate of  4 percent for the risky loss payment  cash flow, 
but maintain the 7 percent discount rate for the risk-free cash 
flows. The calculation for Example 2 becomes:  

80 (P - 20)(.35) 80(.35) 
P - + 2 0 +  

1.04 1.07 1.04 
(50 + P - 20)(.07)(.35) 

+ 
1.07 

P = 76.923 + 20 + .327P - 6.542 - 26.923 + .687 + .023P 

P = 64.145/ .65 = $98.68 

80 20 
UPM = 1 - -  - - 1.34%. 

98.68 98.68 
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The effect of  discounting loss payments at a risk adjusted rate 
is to increase the appropriate premium level and reduce the un- 
derwriting loss. The increase in the value of discounted losses 
(76.923 versus 74.767) is partially offset by the increased re- 
duction in taxes generated by the losses (26.923 versus 26.168). 
The higher the tax rate, the less the overall effect of  a lower risk 
adjusted discount rate would be. 

Reflecting a more realistic loss payment pattern makes the 
determination a bit more complex. For Example 3, assume that 
the losses will still total $80, but half will be paid after one year 
and the other half after two years. Now we have to address the 
issue of  how long equity should be allocated to a given policy. 
Conventional insurance accounting deals with premium to sur- 
plus ratios as if surplus were necessary only to support writing 
policies. However, it is not the writing of  policies that requires 
a surplus, but the assumption of the obligation to pay claims. 
Surplus, or equity, is required in the event that claims exceed the 
expected values so that the insurer can absorb the excess without 
defaulting on the commitment  to pay claims. Thus, equity should 
not be released as soon as the premium is written, or even earned, 
but more realistically should continue to be allocated to a given 
policy until the obligation to pay claims is extinguished, that is, 
when all losses are settled. In Example 3, the equity devoted to 
this policy will be released in proportion to the payment of  losses. 
Thus, the full $50 of equity will be invested for the first year of  
the policy, but only $25 will be invested during the second year 
because one-half of  the losses have already been settled. Simi- 
larly, the full premium, less expenses, is available for investment 
the first year, but for the second year the premium less expenses 
and losses paid in the first year is available to invest. 

Another complication is the calculation of the taxes on un- 
derwriting income. The Tax Reform Act of 1986 requires dis- 
counting of loss reserves based on a five year moving average 
of mid-maturity U.S. government obligations. Insurers use either 
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industry or company loss payment  patterns to discount outstand- 
ing reserves. For this example, the company pattern will be used. 
The interest rate required for discounting bears no relationship 
to rates actually earned by the insurer and, since the required rate 
is based on a five year moving average, the required rate may 
not even be available to the insurer. When interest rates have 
bcen rising, the required discount rate may be below the current 
risk-free rate. At other times the required rate will exceed the 
risk-free rate. Since the mid-maturity rate is based on three to 
nine year  maturities for U.S. government obligations, in normal 
times this rate will be slightly above the rate for short term U.S. 
bonds on which the risk-free rate is frequently based. Thus, in 
this example, the outstanding reserve will be discounted at a rate 
of  1 percent above the risk-free rate, or at 8 percent. In deter- 
mining the tax on underwriting income, the incurred losses in the 
first year  are reduced to reflect the discount at the mid-maturity 
interest rate. In the second year, the incurred losses equal the dif- 
ference between the paid losses and the initial, discounted, loss 
reserve. The Tax Reform Act of  1986 also reduces the unearned 
premium reserve deduction by 20 percent to reflect the timing 
difference between earning premiums and paying expenses. This 
adjustment does not affect these examples, as the premium is 
considered fully earned at the end of  the year. 

The calculation for Example 3 is: 

p _ 40 40 
- - + - - + 2 0  
1.04 ( 1.04) 2 

+ 
(P - 20)(.35) (40 + 40/1.08)(.35) 

1.07 1.04 

(40 - 40/1.08)(.35) 

( 1.04) 2 1.07 

(50 + P - 20)(.07)(.35) 
+ 

(50(.5) + P - 20 - 40)(.07)(.35) 
+ 

(1.07) 2 
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P = 38.462 + 36.982 + 20 + . 3 2 7 P -  6 . 5 4 2 - 2 5 . 9 2 6 - . 9 5 9  

+.687 + . 0 2 3 P - . 7 4 9  +.021P 

P = 61.955/.629 = $98.50 

80 20 
UPM= 1 - 1.52%. 

98.50 98.5O 

In this case, the delay in claim payments decreases the premium 
level and increases the underwriting loss. The present value of 
the loss payments declines, but this decline is partly offset by an 
increase in taxes on investment income. 

The prior examples assumed that the expenses were paid when 
the premium was received, which is a common assumption in 
insurance ratemaking. Realistically, however, many expenses are 
incurred well before the premium is collected. The work involved 
in setting premium levels is done years before the premium is 
actually collected. Computer systems, underwriting guidelines, 
contract language, advertising, and many other aspects of an in- 
surance transaction are developed well before a given policy is 
written. The expenses associated with training staff are incurred 
before the work for which they are trained is actually performed. 
Although some expenses are contemporaneous with the receipt 
of premium, primarily commissions, premium taxes, underwrit- 
ing inspection reports, and clerical policy insurance expenses, 
other expenses are paid before the policy is written. To reflect 
the prepayment of some expenses, Example 4 is calculated on 
the basis that $10 of expenses was paid two years before the 
premium was collected and $10 was paid when the policy was 
written. For simplicity it will be assumed that the insurer is con- 
tent to earn the risk-free rate on the prepaid expenses, although 
a higher rate may be more reasonably expected, as some prepaid 
expenses may not be recovered by future policy writings. This 
calculation is: 
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p _ 40 40 
- - -  + - -  + 10(1.07) 2 + 10 

1.04 (1.04) 2 

4- 
( P -  10(1.072) - 10)(.35) (40 + 40/1.08)( .35)  

1.07  1 .04  

(40 - 40/1.08)( .35)  
( 1.04) 2 

(50 + P - 2 0 ) ( . 0 7 ) ( . 3 5 )  
+ 

1.07  

+ 
(50(.5) + P - 20 - 40)(.07)(.35) 

( 1.07) 2 

P = 38.462 + 36.982 + 11.449 + 10+  . 3 2 7 P -  7.016 

- 25.926 - . 9 5 9  + .687  + . 0 2 3 P  - . 7 4 9  + . 0 2 1 P  

P = 62 .930/ .629  = $100.05 

80 20 
UPM = 1 - 0.05%. 

100.05 100.05 

The prepayment  of  expenses increases the indicated premium 
level. Failure to reflect the fact that many expenses are actually 
expended before the premium is received leads to an understating 
of  the premiums determined by the risk adjusted discounted cash 
flow models. 

The risk adjusted discounted cash flow models are often ad- 
justed to reflect the fact that premiums are not received at the 
inception of  the policy term. The method developed by the In- 
surance Services Office, termed the ISO State X calculation, in- 
cludes this adjustment. These delays may be several months, es- 
pecially if an agent is given a certain amount of  time before  being 
expected to submit the premiums. However,  if a representative 
of  the company, such as an agent, has collected the premiums 
but not remitted them to the insurer, it is incorrect to reflect 
this delay by discounting the premiums for this lag. This delay 
reflects a form of  agent compensation and should be reflect- 
ed as an expense rather than as a discounted premium. If the 



RATEMAKING: A FINANCIAL ECONOMICS APPROACH 347 

policyholder has paid the premiums, then the insurance rates 
should not be increased because the insurer has not invested the 
funds. 

As most insurance policies include grace periods, though, it is 
not unusual for premiums to be submitted after the coverage is in 
effect. Thus, reflecting the lag in collecting premiums is proper in 
these circumstances. To illustrate this effect, Example 5 assumes 
that premiums are paid, either to an agent or the company, one 
month after policy inception. The calculation becomes: 

P 40 40 
- - -  + - -  + 10(1.07) 2 + 10 

(1.07)1/1~ 1.04 (1.04) 2 

(P - 10(1.072) - 10)(.35) (40 + 40/1.08)(.35) 
+ 

1.07 1.04 

( 4 0 -  40/1.08)(.35) (50 + e - 20)(.07)(.35) 
- -  + 

( 1.04) 2 1.07 

(50(.5) + e - 20 - 40)(.07)(.35) 
+ 

(1.07) 2 

.994P = 38.462 + 36.982 + 11.449 + 10 + .327P - 7.016 

- 2 5 . 9 2 6 -  .959 + .687 + .023P - . 7 4 9  + .021P 

P = 62.930/.623 = $101.01 

80 20 
U P M  = 1 - -  - 1 . 0 0 % .  

101.01 101.01 

The effect of  assuming a one month delay in the policyhold- 
ers' payment  of  premiums is to increase the indicated premium 
level by one percentage point. In this example, the delay of  pre- 
mium payment  generates a positive underwriting profit margin 
for the insurer. This is not, in itself, a more favorable finan- 
cial position for the insurer than the prior underwriting loss or 
breakeven indications. In all cases, premiums simply equal the 
risk adjusted cash flows emanating from writing the policy. The 
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underwriting profit margin is irrelevant to this method and is 
shown here only as a frame of  reference with traditional insur- 
ance accounting conventions. 

The general formula for the Risk Adjusted Discount Tech- 
nique, as illustrated by the above examples, can be written as: 

N N N 
- b, 

i=0(1 +Rf) i i---0(1 +RL) i +Ei=_M ~ (1 +Rf) i 

+ 
P-E,.=_ (1 -;ks)i t 

1 + R f  

- Lt 

+ R f t  

N RTbi 
i=l ( l + R r )  i-1 N . . ( l + R r ) i - J  +1 

1 + Rg (1 + Rg)J j=2 

[ N j-I 

j=l 

/ 
/ 
(6.2) 

where 

a i = fraction of  premium received in time period i, 

b i = fraction of  losses paid in time period i, 

c i = fraction of  expenses paid in time period i, 

S = owners '  equity in insurer, 

P = premiums, 
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L 

E =  

t =  

R T = 

R f  = 

R L = 

M =  

N = 

losses and loss adjustment expenses, 

underwriting expenses, 

tax rate, 

discount rate required for tax purposes, 

risk-free rate, 

risk adjusted rate for losses, 

number of time periods before policy effective date that 
the first prepaid expenses are paid, and 

number of time periods after policy effective date that 
the last loss payment is made. 

Equation 6.2 applies the same methodology as Equation 6.1. 
The present value of premiums is set equal to the sum of the 
present values of losses, expenses, and taxes. In this formula- 
tion, expenses are allowed to be paid before the policy is written. 
Taxes on underwriting income are based on the provisions of the 
Tax Reform Act of 1986, in which outstanding reserves each year 
are discounted at a mandated rate and losses are incurred for tax 
purposes each year reflecting the loss payments compared to the 
discounted reserves and the fact that as time elapses, outstand- 
ing reserves are discounted for shorter periods of time. The tax 
on investment income reflects an equity allocation based on the 
percent of losses that are still unpaid. 

In this example, expenses are listed as known values that do 
not depend on premiums. Some, but not all, expenses could more 
properly be stated as a percentage of premiums. Commissions 
and premium taxes tend to be percentages of premiums, and 
could be shown accordingly in Equation 6.2. Other expenses, 
such as administration, systems development, employee training, 
underwriting, and overhead may not depend on the premium 
level and should be treated as given values in the same way 
that losses and equity are independent of the premium level. 
For example, if an increase in taxes results in a higher premium 
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loading, it is not appropriate to increase the full expense loading 
proportionally, as many expenses will not change. 

This formula has other shortcomings as well. The present 
value of premiums is determined based on the risk-free rate. 
However, the lag in premium collection is not equivalent to an 
investment in a risk-free security. Some premiums are never paid, 
and the insurer is forced to cancel coverage. Other premiums are 
paid within the grace period, but only after losses have occurred; 
those that do not have losses simply do not pay the premiums, in 
essence obtaining free insurance protection for which the insurer 
must pass along the cost to other insureds. 

The shortcomings described above relating to expenses pro- 
portional to premiums and a risk adjustment for premium delays 
could be accounted for by revising the formula to reflect these 
items. However, more serious drawbacks to the Risk Adjusted 
Discount Technique exist that cannot be so easily corrected. One 
major problem is the proper determination of the risk adjusted 
discount rate. In the examples, this rate was set at 4 percent. 
However, no widely accepted approach for setting this rate has 
yet been determined. In the original development of  this tech- 
nique, Myers and Cohn use the Capital Asset Pricing Model to 
determine the appropriate rate. Recent research suggests that the 
CAPM does not provide a large enough risk margin for insurance 
transactions. Also, research in finance has raised serious ques- 
tions about the validity of the CAPM to investment returns in 
general. Not knowing how to select the appropriate risk adjusted 
rate is a serious flaw in this technique. 

Another major problem relates to the allocation of equity to 
policies. Since the taxes incurred on investment income allocated 
to equity supporting a given line are included in the premium de- 
termination, knowing how much and how long equity is allocated 
are of critical importance. The traditional consideration of pre- 
mium to surplus measures is inappropriate because, as described 
earlier, surplus is needed to protect against losses exceeding ex- 
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pected values. Thus, at least some equity must continue to be 
committed to a policy until all the losses are paid. In the ap- 
proach outlined above, equity is released proportionately with 
loss payments. As expense payments have very little risk of ex- 
ceeding expected values, only loss payments are considered in 
releasing equity. 

A key decision in the Risk Adjusted Discount Technique is 
how much equity should be allocated to a given policy. The al- 
location may consider such items as the degree of variability in 
losses, the length of time loss payments will be made, covariabil- 
ity among different lines of insurance, or other factors. Perhaps 
an insurer should be required to maintain a higher level of eq- 
uity for property coverages during tornado and hurricane seasons 
than at other times. A stop loss reinsurance contract would reduce 
the need for equity for a covered line. Liability lines may need 
additional equity in times of judicial instability, more than 
when the doctrine of stare decisis is likely to be applied. A 
consensus on the proper equity determination has not yet been 
reached. The approach applied in the examples, in which equity 
is predetermined, perhaps in proportion to expected losses 
but not as a function of premiums, is reasonable, but is not the 
only approach. 

Another serious drawback to the Risk Adjusted Discount 
Technique is the fact that it considers only one policy term. 
The profitability of insurance policies depends on how many 
renewal cycles the policy has been through. New business tends 
to be unprofitable, but long term business becomes increasingly 
profitable. This tendency is termed the aging phenomenon and 
appears to occur for all insurers and for all lines of business. 
Thus, in determining a proper premium level, the aging phe- 
nomenon should be recognized. The cash flows emanating not 
only from the current policy but also from future renewals of 
the policy should be considered. This would be a multidimen- 
sional risk adjusted discounting approach that has not yet been 
developed. 
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In summary, the Risk Adjusted Discount Technique estab- 
lishes the premium level for a policy by equating the present 
value of  premiums to the present value of losses, expenses, and 
taxes on both underwriting and investment income. If appropri- 
ate values for the cash flows and the discount rates could be 
determined, this approach should generate valid premium levels. 
The technique is illustrated by simplistic examples. More realis- 
tic examples become increasingly complex, but still follow the 
same logic. The major difficulties in applying the Risk Adjusted 
Discount Technique revolve around selecting the appropriate dis- 
count rate and the equity allocation. Unless these values are cor- 
rect, the premium levels resulting from this approach will not be 
valid. 

7. OPTION PRICING 

Option Mechanics 

An option is termed a derivative security, one that derives its 
value based on the price of another asset. Typical options are 
traded on stocks, bonds, commodities, and stock indices. The 
owner of an option has the right to trade the underlying asset 
at a specified price by or on a given date. However, the owner 
does not have to exercise this right. Two types of options exist. 
A call option gives the owner the right to buy the asset at the 
specified price, which is called the strike or exercise price. A 
put option gives the owner the right to sell the asset. The seller 
of  the option, called the writer of the option, has the obligation 
to sell (in the case of a call option) or to buy (in the case of  a 
put option) the underlying asset at the exercise price if the buyer 
elects to exercise the option. 

Options are also classified according to when they can be 
exercised. A European option can only be exercised on the ex- 
piration date. An American option can be exercised at any time 
up until expiration. 
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To illustrate how options work, let us examine the decision of 
the owners of European options on the expiration date. Assume 
an investor owns a call option on ABC stock with an exercise 
price of $50, and on the expiration date ABC stock sells for 
$60. The owner has to decide whether the call option should 
be exercised. If the option is exercised, the investor would pay 
$50 per share for ABC stock which currently sells for $60 per 
share. Once the investor exercises the call option for $50 per 
share, he or she can sell the stock for $60 a share, thereby mak- 
ing a profit of $10 per share. Alternatively, the investor can 
simply keep the stock that was purchased for a bargain price. If 
the investor did not exercise the call option, the option would 
expire worthless, and the investor would receive nothing. Obvi- 
ously, the call option owner should exercise the option in this 
case. 

Now, using the same $50 exercise price call option example, 
assume that the price of ABC stock is $40 per share on the 
expiration date. If the call option owner exercised the option 
in this case, the owner would pay $50 per share for a stock 
that could be purchased for only $40 per share. If the call 
holder wanted to own ABC stock, the holder should let the option 
expire worthless and buy the stock for $40 per share. The 
value at expiration of the call option in this situation would be 
zero. 

From these two simple call option examples, a pattern 
emerges. The owner of a European call option should exercise 
the option if the underlying stock or asset price is greater than 
the exercise price at expiration. The value at expiration of the 
call option is the higher of the stock price minus the exercise 
price or zero. This payoff can be seen in Figure 7 for our ABC 
stock example and expressed generally in the following for- 
mula: 

C = m a x [ S -  X,0], (7.1) 
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where 

C = the value of  the call option at expiration, 

S = the price of the underlying asset, and 

X = the exercise price of  the option. 

For the first example where the stock price was $60 and the 
exercise price was $50, Equation 7.1 would be: 

C = m a x [ 6 0 -  50,0] = $10. 

Equation 7.1 for the second example where the stock price was 
$40 and the exercise price was $50 would be: 

C = max[40 - 50,0] = 0. 

Now consider the owner of a put option on ABC stock with 
an exercise price of $50. At expiration, the price of ABC stock 
is $35, for example. If the owner of the put option exercises the 
option, the put owner must first acquire the stock in order to sell 
the stock to the writer of the put option. So, the put owner buys 
ABC stock for $35 per share in the market and completes the 
transaction by exercising the option to sell the stock for $50 per 
share, which nets the option holder $15 per share. Alternatively, 
if the put holder already owned ABC stock, the stock could be 
sold to the put writer for the higher price of $50 per share, rather 
than the market price of  $35. However, if the price of  the stock 
were $55 per share at expiration, the put option owner would not 
exercise the option to sell the stock for $50 per share even if the 
holder already owned the stock. Therefore, the decision rule for 
an owner of a put option is to exercise the option at expiration 
only if the stock price is less than the exercise price. The payoff  
at expiration for a put option is the larger of  the exercise price 
minus the price of  the underlying asset or zero. The payoff for 
our put option example is represented graph!~cally in Figure 8 
and given by the following general formula: 

P = max[X - S,0], (7.2) 
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where 

P = the value of a put option at expiration, 

X -- the exercise price of the option, and 

S -- the price of the underlying asset. 

Verifying the first put option example where the stock price was 
$35 and the exercise price was $50, Equation 7.2 would be: 

P = max[50 -35 ,0 ]  = $15. 

The second example where the stock price was $55 and the ex- 
ercise price was $50 yields the following for Equation 7.2: 

P = m a x [ 5 0 -  55,0] = 0. 

One may wonder what happens to the writer of these op- 
tions while all this action occurs at expiration. Going back to 
the first call option example, where the stock price was $60 and 
the exercise price was $50, the writer of this call option has to 
sell the stock to the owner of the call option who is exercising 
the option to buy ABC stock for $50 per share. This means the 
writer of the call has to buy the stock if he or she does not own 
the stock already. In this situation the call writer has to buy the 
stock for $60 and then sell it to the owner of the call for $50 
per share, incurring a loss of $10 per share. In the second call 
option example, where the price of the stock was $40 and the 
exercise price was $50, the holder of the call would not exer- 
cise the option, which means the writer of the call would have a 
payoff of zero at expiration. In option terminology, even though 
the writer's expiration value is zero or negative, this expiration 
value is still called a payoff. The payoff to the writer of a call 
option at expiration can be expressed by the following equations 
and graphically in Figure 9: 

W~ = min[- (S  - X),0] (7.3) 
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o r  

where 

W c = min[X - S,0], (7.4) 

W~. = payoff at expiration to call option writer, 

S = the underlying stock or asset price, and 

X = the exercise price of  the option. 

Using Equation 7.4 to verify the previous call option examples 
yields the following in the first case where the stock price was 
$60 and the exercise price was $50: 

W c = m i n [ 5 0 - 6 0 , 0 ]  = -$10 .  

For the second call example where the stock price was $40 and 
the exercise price was $50, Equation 7.4 yields the following: 

W~ = m i n [ 5 0 -  40,0] = 0. 

The writer of  a put option has to buy the stock at the exercise 
price if the option is exercised at expiration. Returning to the first 
put option example, where the stock price is $35 and the exercise 
price is $50, the owner of the put would exercise the option to 
sell the stock to the put writer for $50 per share. The put option 
writer would have to raise $50 per share to buy the stock that 
sells for $35 per share in the market. If the put writer then sells 
the stock in the market for $35 per share, a loss of $15 per share 
is realized immediately. In the second put option example, where 
the stock price is $55 and the exercise price is $50, the owner 
of the put would not exercise the option, and the writer of  the 
put will have a payoff of zero at expiration. In the put option 
case, as in the call option case, the put option writer's payoff at 
expiration is a loss equal to the put option owner's gain if the 
option is exercised and zero if the option is not exercised. The 
put option writer's payoff at expiration is given in the following 
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equations: 

Wp = min [ - (X  - S),0], or (7.5) 

Wp = miniS - X,0]. (7.6) 

For put option Example 1, S = $35 and X = $50, so Equation 
7.6 yields: 

Wp = m i n i 3 5 -  50,0] = -$15 ,  

and for Example 2, S = $55 and X = $50, so: 

Wp = mini55 - 50,0] = 0. 

The above examples can also be seen graphically in Figure 10. 

Given the maximum payoff  of zero for writers of  options in 
the previous examples, why would anyone want to write an op- 
tion? The answer lies in the one important variable omitted from 
the discussion thus far: the original selling price of  the option. 
This selling price will now be integrated into the discussion. 

Let C 0 be the original selling price of a call option and P0 
be the original selling price of  a put option. The writer of  the 
option initially receives either C o or Po from the buyer of  the 
option depending on the type of option sold. Given this fact, 
Equations 7.1 through 7.6 can be rewritten for the total payoff  at 
expiration for the owners and writers of  options as the following 
equations: 

C = max[S - X - C 0, -C01, 

P = max[X - S - P0,-P0], 

W,. = minlC 0 - (S - X),C o] 

= min[C 0 +X-S ,Co] ,  

Wp = min[P 0 - (X - S) ,P 0] 

= min[P 0 + S - X,Po]. 

(7.7) 

(7.8) 

or (7.9) 

(7.10) 

or (7.11) 

(7.12) 
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For ease of terminology, the time value of money concept of 
the price for the option being paid at the beginning of the period 
and the expiration payoff coming at the end of the period will be 
ignored for now. Equations 7.7 and 7.8 are the payoffs at expi- 
ration for the owner of a call option and put option, respectively, 
and Equations 7.9 and 7.11 are the payoffs at expiration for the 
writers of call and put options, respectively. With the integration 
of the option selling price and Equations 7.7 through 7.12 in the 
discussion, the motives of both the writers and buyers of options 
become more apparent. The buyer of a call option buys the op- 
tion with the hope or belief that the price of the underlying asset 
will go up, and the writer sells the call option with the belief that 
the price of the underlying asset will go down. If the writer of 
the call option is correct and the stock or asset price is lower than 
the exercise price at expiration, the option wilt not be exercised, 
and the call option writer will pocket the original selling price 
of the call option. 

To illustrate this point consider the case where a person de- 
cides to write a call option on INS stock that expires in three 
months with a current stock price of $30 and an exercise price 
of $30 and sells this call option to a buyer for $3 per option. 
Assume three months later INS's stock price is $25. The owner 
of the call option will not exercise the option; therefore, the call 
option owner's net payoff is negative $3, the cost of the option. 
This value can be verified by Equation 7.7 and seen graphically 
in Figure 11: 

C = max[S - X - C 0, - C  0] 

= max[25 - 30 - 3 , -3 ]  = -$3 .  

The call option writer's net profit (or loss) is given by Equation 
7.9 and graphically in Figure 12: 

W c = min[C 0 - (S - X),C 0] 

= mini3 - (25 - 30), 31 = $3, 
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or by Equation 7.10, 

W,. = min[C 0 + X - S , C  o] 

= mini3 + 30 - 25, 3] = $3. 

Now suppose the stock price at the end of three months is $32. 
Will the owner of this call option exercise the option? Consider 
the previous example, where the stock price was $25, and the 
call option owner did not exercise the option and had a net loss 
of $3 per option. As Equation 7.7 shows, the most the owner of 
a call option can lose is the amount paid for the option, which 
is the case when the owner does not exercise the option. Using 
this equation for the new example where the stock price is now 
$32 and the exercise price is $30, gives the following payoff to 
the owner of the call option: 

C = m a x [ 3 2 -  3 0 -  3 , -3 ]  = -$1.  

This example shows that the owner of the call option should 
exercise the option, even though the payoff is negative, because 
exercising the option results in a smaller net loss than letting the 
option expire worthless. The example also verifies the decision 
rule stated earlier of always exercising a call option if the stock 
price is greater than the exercise price. The writer of the call 
option in this case would have a payoff of $1, as verified by 
Equation 7.10: 

W c = mini3 + 3 0 -  32,3] = $1. 

A writer of a put option sells the put in the belief that the 
stock price will go up, and the buyer of a put option buys the 
option in the belief the stock price will go down. Consider the 
following example: a person writes a put option that expires in 
three months with an exercise price of $40 and a current stock 
price of $40 and sells this option for $5. Three months later at 
expiration the stock price is $48. Since the stock price is greater 
than the exercise price, the owner of this put option will not 
exercise the option to sell the stock for the exercise price of $40. 
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The put owner 's  payoff, or net profit (or loss), is equal to the 
amount paid for the option as given by Equation 7.8 below: 

P = max[X - S - P0,-P0] 

= max[40 - 48 - 5 , - 5 ]  = - $ 5 .  

The writer of  the put option will keep the amount paid for the 
option in this case because the put option is not exercised. This 
put writer 's payoff  is expressed by Equation 7.12 below: 

Wp = min[P 0 + S - X , P  o] 

-- mini5 + 4 8 - 4 0 , 5 ]  = $5. 

Now assume the stock price is $37 instead of  $48 on the 
expiration date. The owner of  the put would exercise the option 
because the exercise price is greater than the stock price. This 
would give the owner  of  the put option a net loss of  $2 as given 
below by Equation 7.8, but this $2 loss is better than the $5 loss 
derived in the previous example where the put option was not 
exercised: 

P = max[40 - 37 - 5 , - 5 ]  = - $ 2 .  

The writer of  the put in this case would buy the stock for $40 
per share and then sell the stock for $37 in the market resulting 
in a net gain of  $2 per option, as shown in Equation 7.12 below: 

Wp = mini5 + 37 - 40,5] = $2. 

See Figures 13 and 14 for a graphical representation of  the pay- 
offs to the owner  and writer of  the put option in the above ex- 
ample. 

The owner  of  a call option has the potential for an unlimited 
gain as there is no theoretical upper limit to the price of  a stock. 
The most an owner  of  a call option can lose is the price paid for 
the option. Therefore,  a call option owner has unlimited upside 
potential and limited downside potential. The writer of  a call 
option has no limit on the amount of  the potential loss, but the 
gain is limited to the selling price of  the option.. 
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The best possible outcome for the owner of a put option is that 
the underlying asset becomes worthless at expiration. This means 
the put option owner's maximum possible gain is the exercise 
price less the price paid for the option. The most a put option 
owner can lose is the price paid for the option. The writer of 
a put option has a maximum possible loss equal to the original 
selling price minus the exercise price of the option, and the gain 
of the put writer is limited to the selling price of the option. 

This concludes the discussion of option mechanics at expira- 
tion. This discussion is important because the payoff at expiration 
for calls and puts given by Equations 7.1 and 7.2 represents the 
absolute lowest price of an option at any time and shows that the 
price for an option is directly related to the option's underlying 
asset price and exercise price. 

Uses of Options 

Investors trade options primarily for two reasons. One reason 
is a speculative motive in that an investor can profit (or lose) 
from the price movements of the underlying asset for a fraction 
of the cost of buying the asset itself. An investor who thinks the 
price of a $50 stock will increase could buy the stock at $50 per 
share or could buy a call option on that stock with an exercise 
price of $50 for a much lower price. Buying call options allows 
the investor to control the price appreciation potential of  more 
shares of  stock and still receive at least the same dollar gain in 
the option price that occurs in the stock price. For example, if 
the options were valued at $5, for $500 an investor could buy 
call options on 100 shares with an exercise price of $50 for the 
stock described above or 10 shares of the actual stock. If the 
stock price rose to $60 before option expiration, the price of the 
call option should rise from $5 to at least $10. If the investor 
bought options on 100 shares of stock at $5 per option, he or 
she could sell the options now for $10 each and receive a gain 
of $500 on the original $500 option investment. The owner of 
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10 shares of stock could sell the stock for $60 per share for a 
gain of  $10 per share which results in a total gain of $100 on the 
10 shares. The investor in options in this example was able to 
receive a much higher return in comparison to the investor in the 
underlying stock, highlighting the speculative motive for buying 
options. 

However, a down side to this strategy exists. Assume in the 
above example that the stock price remains stable. At expiration, 
the call options will be worthless, resulting in a loss of $500 to 
the call option holder. At the same time, the owner of  the stock 
will still have 10 shares of stock worth $50 per share, resulting 
in no loss of  value to this investor. 

The second reason for buying options is to hedge a position 
taken in the underlying asset. For example, an investor buys a 
stock in the hope that the price of  the stock will rise above the 
original price paid for the stock. However, the investor may be 
concerned about the price of  the stock falling below the original 
purchase price and want to minimize this possible loss, while 
still receiving a gain if the stock price rises. To hedge the stock 
position, the investor could buy a put option on the underlying 
stock. The put option increases in value when the price of the 
underlying stock decreases. For example, assume the investor 
bought 100 shares of  XYZ stock for $50 per share and bought 
put options with an exercise price of  $50 on 100 shares of XYZ 
stock for $3 per option. If the price of XYZ stock is $40 when 
the options expire, the investor will exercise the put options to 
sell the stock for $50 per share. Alternatively, if XYZ stock sells 
for $60, the investor would let the put options expire worthless 
and either sell XYZ for $60 or hold the stock. The expiration 
value of this hedged stock position is equal to: 

S - X + max[X - S - P0,-P0], (7.13) 

which is 

S - X  + X - S - P o  : -Po, (7.14) 
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if S is less than X, and 

s -  X - Po, (7.15) 

if S is greater than X, where 

S = the stock price at expiration, 

X = the exercise price of  the option and the original purchase 
price of  the stock, and 

P0 = the cost of  the put option. 

In the first example with XYZ stock selling for $40 on the 
option expiration date, Equation 7.13 becomes: 

40 - 50 + max[50 - 40 - 3 = 7, - 3 ]  = 40 - 50 + 7 = - $ 3 ,  

or 40 - 50 + 50 - 40 - 3 = - $ 3 .  

In the second example with XYZ stock selling for $60 on the 
option expiration date, Equation 7.13 becomes: 

6 0 -  50 + m a x [ 5 0 - 6 0 -  3 = - 1 3 , - 3 ]  = 6 0 -  5 0 -  3 = $7. 

This hedging strategy limits the investor's loss to the cost o f  the 
put option in the first case and reduces the gain by the cost of  
the put option in the latter case. 

The net value of  the hedged stock-put position is illustrated 
in Figure 15. The diagram of  the hedged stock position looks 
exactly like the payoff  of  owning a call option in Figure 11 in 
shape and direction. The net value of  the hedged position of  
owning a stock and a put option has the same characteristics 
as owning a call option, and in essence a call option has been 
created as a result of  this hedged position. This can be seen by 
combining Equations 7.14 and 7.15 into one equation: 

Hedge payoff  = max[S - X - P0,-P0]. (7.16) 

A put option can be created in a similar fashion. The creation 
of  a put involves buying a call option to hedge a short stock 
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position. A short stock position is when an investor borrows 
shares of stock from someone else and sells them at the current 
price and then agrees to buy back the stock later in order to 
return the stock to the lender. A person in a short stock position 
profits if the stock price falls below the short sale price and loses 
if the stock price rises after the sale. Therefore, the short stock 
investor can hedge the downside potential of a rising stock price 
by buying a call option with an exercise price equal to the sale 
price of  the stock, which increases in value when the price of the 
underlying stock rises. This position can be called a short hedge. 
A short hedge has a loss limited to the cost of the call option if 
the stock price rises above the original selling price of the stock, 
because the investor would exercise the call option of buying 
the underlying stock at the same price at which the stock was 
originally sold. If the stock price is below the original sale price 
of the stock at expiration, the call option will be allowed to expire 
worthless and the investor's payoff is the original stock sale price 
or exercise price minus the expiration stock price minus the cost 
of the call option. This short hedge net position can be expressed 
in the following formula: 

which is 

S H  = X - S  + maxiS - X - C0,-C0],  (7.17) 

S H = X - S + S - X - C  0 = - C  O , (7.18) 

if the stock price is greater than the exercise price and 

S H  = X - S - C o, (7.19) 

if the stock price is less than the exercise price. Rewriting Equa- 
tion 7.17 by combining 7.18 and 7.19 leads to a payoff structure 
identical to owning a put option 

S H  = max[X - S - C o, -Co]. 

This hedging idea was used in the development of  one of  the 
most popular option pricing models, the Black-Scholes option 
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pricing model developed in 1973. To highlight the importance 
and popularity of  the Black-Scholes model, secondary option 
markets were organized after the development of the Black- 
Scholes model, and traders used the model to set market option 
prices in the early stages of the secondar3/stock option markets. 

The Black-Scholes option pricing model takes into account 
five variables that affect option prices: 

1. the underlying stock price, 

2. the exercise price, 

3. the time to expiration of the option, 

4. the volatility of  price movements in the underlying stock, 
and 

5. the risk-free rate of  interest. 

The derivation of  the model is based on the idea that, if an in- 
vestor is able to continuously maintain a perfect hedge using an 
option on the underlying stock or asset, and borrow or lend at the 
risk-free rate (borrowing at the risk-free rate to raise the money 
to buy the underlying asset or lending the funds generated from 
the short sale of an asset at the risk-free rate), then this hedging 
portfolio must yield the risk-free rate of return to the investor. 
The Black-Scholes model uses continuous time compounding 
of  interest and a lognormal distribution of asset or stock prices. 
The lognormal distribution of asset prices is used because an 
asset cannot sell for a price less than zero, and a lognormal dis- 
tribution model of  asset price satisfies the reality of non-negative 
asset prices. 

The formula for the Black-Scholes option pricing model is as 
follows: 

C = S × N ( d  I) - X e - R I  t × N(d2), (7.20) 
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where 

C = the model price for a European call option, 

S = the price of  the underlying stock or asset, 

X = the exercise price of  the option, 

N ( , )  = the normal distribution function evaluated at , ,  

R f  = the risk-free rate o f  return, 

t = the time to expiration, 

l n ( S / X )  + ( R f  + .5cr2)t 
d I = c r t l / 2  ' 

d 2 = d I - trt 1/2, and 

cr = the standard deviation of  the continuously compounded 
returns of  the underlying asset. 

The Black-Scholes  model  in Equation 7.20, although appearing 
quite complex, is fairly easy to use. All variables except the stan- 
dard deviation are readily observable. The standard deviation can 
be estimated from historical asset return data, or derived by set- 
ting the current market call option price equal to Equation 7.20 
and solving for the standard deviation. 

Consider this example. Find the Black-Scholes call value for 
a call option with an exercise price of  $70, stock price of  $90, 
risk-free rate of  .08 per year, time to expiration of  0.5 years, and 
standard deviation of  the stock price returns o f  .25. The first step 
is to find d I and d2: 

d I = [ln(90/70) + (.08 + .5(.25)2).5]/[.25(.5) 1/2] = 1.7363 

d 2 = 1 . 7 3 6 3 -  .25(.5) 1/2 = 1.5595. 
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The values of d I and d 2 are substituted into Equation 7.20 which 
yields the following: 

C = 90 x N(1.7363) - 70e-°8(5)N(1.5595) 

= 90( .9588) -  70(.9608)(.9405) = 23.04. 

The values of the normal distribution functions at  d I and d 2 are 
interpolated from the normal z table reproduced in the appendix. 

From observation of the model, relationships between the 
variables and call option prices can be described. A positive 
relationship exists between the stock price and the call price. 
A negative relationship exists between the exercise price and the 
call price. Also, positive relationships exist between the call price 
and the remaining variables: time to expiration, the risk-free rate, 
and standard deviation. 

Other Applications of Options 

Besides options on stocks, bonds, and other financial assets, 
other financial instruments and insurance have characteristics of 
options and can be priced by option pricing models. For example, 
the value of  a corporation has the characteristics of a European 
call option. 

The value of  a corporation's equity, E, is equal to the value of  
its assets, A, less the value of its debts or liabilities, D. Assume 
at the end of the period the corporation will liquidate, and the 
equityholders will receive the difference between the corpora- 
tion's assets and liabilities if assets are greater than the liabilities 
or nothing if assets are less than liabilities. This relationship can 
be expressed by the following equation: 

E = max[A - D,0]. (7.21) 

This end of  period value of equity relationship in Equation 7.21 
is the same as the payoff of a European call option at expiration 
where the value of the assets is the stock or asset price and the 
value of liabilities is the exercise price. The debtholders receive 
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the full face value of  their claims, D, or the value of  the assets, A, 
if the corporation's assets are less than its liabilities at the end of  
the period. The end of  period value of  the debtholders'  claims, 
V o, can be written as the following: 

V o = min[D,a] .  (7.22) 

The debtholders have, in effect, written a put option whose max- 
imum value is the face value of  their claims, D, if the value of  the 
corporation's assets, A, is greater than or equal to D, and whose 
minimum value is 0 if the corporation's assets are worthless at 
the end of  the period. 

An insurance contract is another example of  a financial asset 
that has option characteristics. Assume an insurance company 
writes a single period policy with a premium, P, a deductible 
amount, B, and an unknown loss amount, L. Ignoring the time 
value of  money for simplicity, the insurer's end of  period policy 
value (Vp) would be written as the following: 

Vp = min[P ,P  - (L - B)] or min[P ,P  - L + B]. 

(7.23) 

The insurer would net the premium if no loss occurred or if the 
loss did not exceed the deductible. If the loss were greater than 
the deductible, the insurer 's income would be reduced by the 
difference between the loss and the deductible. This expression 
in Equation 7.23 is very similar to the payoff  at expiration to 
the writer of  a European call option. The insurer has in effect 
written a European call option with an exercise price of  the de- 
ductible amount. In this case, the policyholder can be thought of  
as owning a European call option with an exercise price of  the 
deductible amount. The value of  the policyholder 's  claim (Vh) 
can be written as the following: 

V h = max[L - B - P , - P ] .  (7.24) 

These straightforward examples of options have been used 
to determine the fair rate of  return in pricing insurance with an 
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option pricing framework. This application of option pricing to 
insurance will be discussed in the following section. 

8. APPLICATION OF OFI 'ION PRICING MODELS TO PRICING 

INSURANCE 

The application of option pricing to insurance pricing was de- 
veloped by Doherty and Garven [ 14]. Their formulation assumes 
a single-period insurer with initial equity of S O and premiums 
collected (net of expenses) of P0- The aim of the model is to 
find the premium that gives the insurer an adequate or "fair" rate 
of return on equity. This is done by setting the present value of 
the expected end of period market value of equity equal to the 
beginning of period amount of equity. 

The sum of initial equity and premiums represents the in- 
surer's initial cash flow or asset portfolio of Y0: 

ro = So + Po. (8.1) 

The insurer has this initial asset portfolio available to invest at 
rate R. All of the equity can be invested for the entire period and 
the premiums can be invested for a portion of the period because 
of the time lag between receipt of premiums and payment of 
losses. The time lag between receipt of premiums and payment 
of losses is called the funds generating coefficient and will be 
denoted by k. The end of period asset portfolio available to the 
insurer is the initial asset portfolio Y0 plus the income generated 
from the investment of the initial asset portfolio at rate R which 
is written as the following: 

Y1 = So + Po + (So + kPo)R. (8.2) 

The insurer has this end of period asset portfolio available to 
pay claimholders. The claimholders include policyholders who 
expect to have their losses paid and the government that expects 
taxes to be paid. 
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The policyholders hope  the insurer has an adequate end of  pe- 
riod asset value to pay their losses of  amount  L. If  the insurer 's  
end of  period asset value is greater than or equal to L, the poli- 
cyholders receive L. If  the insurer does not have adequate asset 
value to cover the losses, the pol icyholders  receive the amount  
of  the insurer 's  end of  period asset value Y1. The  pol icyholders '  
end of  period claim, H z , is represented by the following: 

n I = max{min[L,  Yl ],0}. (8.3) 

This is equivalent to the expiration payoff  to the owner  of  a 
European call option with an exercise price of  L. 

The government  holds a similar type o f  call option based on 
whether  the insurer makes a payoff.  I f  the insurer has positive 
taxable income, the government  receives taxes f rom the insurer 
based on the amount  of  the insurer 's  profits. I f  the insurer does 
not make  a profit, the government  receives no tax revenue. The  
value of  the government ' s  end of  period tax claim, T 1, can be 
written as the following: 

T1 = max{t[i(Y1 - Y0) + P0 - L],0}, (8.4) 

where  

t = the insurer 's  corporate tax rate, and 

i = the port ion of  investment income that is taxable. 

The term Y l -  Y0 represents the insurer 's  investment  income 
which may come  from investments such as tax exempt  bonds,  
corporate dividend income, and capital gains which may have 
differential tax rates f rom ordinary income. 

Any port ion of  the asset portfolio reraaining after the policy- 
holders and taxes are paid reverts to the equityholders.  Therefore,  
the end of  period value of  equity, V e, is: 

Ve = Yl - HI - Tl" (8.5) 

However,  the end of  period values in the previous equation are 
not known with certainty at the beginning of  the period. The  
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present value of the expected equity value must be found to begin 
the process of deriving a premium value that yields a "fair" rate 
of return on equity. 

The present value of the policyholders' claim and the govern- 
ment's claim can be written as the following: 

H o = V ( Y I )  - C [ Y o ; E ( L ) ] ,  (8.6) 

To = tC[ i (Y l  - Yo) + P0;E(L)], (8.7) 

where 

V ( Y  1) = the market value of the insurer's asset portfolio, 

C [ A ; B ]  = the current value of a European call option with 
exercise price B written on an asset with a 
value of A, and 

E(L) = the expected losses and loss adjustment expenses 
during the period. 

The market value of equity can now be written as: 

V~ = V ( Y~ ) - I-Io - T o 

= C [ Y o ; E ( L ) ]  - t C [ i ( Y ~  - Yo) + P0;E(L)] 

= C 1 - t C  2 .  ( 8 . 8 )  

For example, assume that an insurer is in the following situation 
(figures are in millions): 

Initial Equity $100 

Premiums Written 200 

Expenses 40 

Expected Losses 150 

Standard Deviation of Investment Returns 0.5 

Standard Deviation of Losses 0.0 

Risk-Free Interest Rate 4.0% 

Funds Generating Coefficient 1.0 
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In the context of the Doherty-Garven option pricing notation, 
S o is $100, P0 is $160 ($200 in premium less $40 in expenses), 
E(L) is $150 and there is no uncertainty about the value of these 
losses, and k is 1 year, at which time the insurer will pay the 
losses out of available assets. 

Assuming no taxes initially, the value of the stockholders' 
interest in this insurer is, based on Equation 8.8 and the Black- 
Scholes option pricing model: 

C[Yo;E(L)] = C[100 + 200 - 40; 1501 = C[260; 150] 

d I = 

d 2 = 

C =  

In ( 150} 

1.43 

+ (.04 + .5(.5)2)1 

.5(1)I/2 

1.43 - . 5 (1 )  U2 = .93 

260N(1.43)-  150e-°4(l)N(.93) 

260(.9236)-  150(.9608)(.8238) 

121.41. 

Thus, the value of this insurer, based on the option pricing 
methodology, is $121.41 million if taxes are ignored. This is 
higher than would be anticipated if the only consideration were 
given to the initial equity of $100 million and the underwriting 
profit of $10 million (premiums of $200 less expenses of $40 
and losses of $150). Adding the initial equity to the underwrit- 
ing profit totals $110 million. The reason for the much higher 
value based on the option pricing methodology is that the model 
considers the default option. If the end of period assets are less 
than $150 million, the policyholders bear the loss, but the stock- 
holders incur all the gains over that level. 

Now taxes will be added to the calculation. Assume that all 
investment income is fully taxable, so the i in Equations 8.7 and 
8.8 is 1.0. The insurer's tax rate, t, is 35 percent. The end of 
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period asset portfolio is calculated based on Equation 8.2: 

111 = 100 + 160 + (100 + 1.0(160))(.04) = 270.4. 

The value of  the government ' s  tax claim on the insurer is: 

T o = .35C[(270.4 - 260) + 160; 150] 

= .35C[170.4; 150] 

(17o.4,  
In k, 1--]-~J + (.04 + .5(.5)2)1 

d I = . 5 ( 1 ) 1 / 2  

= .5850 

d 2 = . 5 8 5 0 - . 5 ( 1 )  1/2 = .0850 

C = 170 .4N( .5850) -  150e-°4(l)N(.0850) 

= 170.4( .7207)-  150(.9608)(.5339) 

= 45.86 

T O = .35C = 16.05. 

This value of  the government ' s  tax claim of  $16.05 million 
also may seem high, given that the insurer has investment in- 
come, based on the risk-free rate, of  $10.4 million and an un- 
derwriting profit of  $10 million. However, taxes are asymmetric,  
with the government  collecting 35 percent of  any gains, but not 
sharing in any losses. (In this model, tax loss carryforwards and 
carrybacks are ignored. In reality, taxes are much  more compli- 
cated than the model provides.) 

Considering taxes in determining the stockholders '  value of  
the insurer described in this example yields the following, based 
on Equation 8.8: 

V e = 121.41 - 16.05 -- 105.36. 

Since V e exceeds the initial equity value of  $100, the insurer 
gains value by writing insurance at this premium level. In this 
example, the expected losses are assumed to have no uncertainty. 
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When losses are allowed to vary, then, in essence, the exercise 
prices of the options for the stockholders and government are 
random variables. This variation can be accounted for, but com- 
plicates the calculation. 

Doherty and Garven next use this methodology, including al- 
lowing losses to vary, to find the appropriate premium the insurer 
should charge. The premium should be set so that the market 
value of  equity is equal to the initial equity amount of  S O and 
yields a "fair" rate of return to shareholders. The values of  Y0 
and Yt are functions of the "fair" premium of  P* as are the call 
options in Equation 8.8, rewritten as: 

V e = C [ Y I ( P * ) ; E ( L ) ]  - t C [ i ( Y I ( P *  ) - Yo(P*)  + P*;E(L)] 

= C~ - tC~ 

= S 0. (8.9) 

The insurer's fair underwriting profit margin is given by: 

U P M  = [e* - E ( L ) ] / P * .  (8.10) 

The call option values are found by an option pricing model 
based on the Black-Scholes model. Doherty and Garven use two 
different option pricing models to price the options in Equation 
8.9. These two models are arrived at by different assumptions 
about investor risk preferences and asset price distributions. One 
model is based on constant absolute risk aversion (CARA) and 
a normal distribution of  asset prices, and the other assumes con- 
stant relative risk aversion (CRRA) and a lognormal distribution 
of  asset prices similar to the Black-Scholes model. Since the 
models do not have closed form solutions, P* is found by trial 
and error from properly parameterized versions of  the models. 
Parameter estimates needed for the models are the initial equity 
level, standard deviation of  claim costs and investment returns, 
and the correlation between claim costs and investment returns. 
The general results of that research indicate that the appropriate 
underwriting profit margins are higher under the option pricing 
model than under the CAPM. 
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This option pricing approach to pricing insurance is more 
complex than the CAPM or Discounted Cash Flow approaches, 
but it avoids many of the problems, such as estimating betas and 
market risk premiums, of the CAPM-based models. Also, the 
option model is different in that it uses the total risk of the in- 
surer's investment portfolio and underwriting operations, rather 
than systematic risk. 

The option pricing model has also been applied to insurance 
solvency considerations. Cummins [8] calculates the appropri- 
ate guaranty fund charge by using a diffusion process for assets 
and liabilities similar to the Black-Scholes option pricing model. 
Through the use of realistic parameters, Cummins is able to ob- 
tain a guaranty fund premium in line with past experience. Boyle 
and Kemna [5] use the option pricing model to examine incen- 
tives for cooperating behavior and for assuming excessive risk 
under the risk sharing arrangement inherent in guaranty funds. 

One problem in applying the Black-Scholes option pricing 
model to insurance cases is the documented tendency of this 
model to underprice options in which the stock price is well 
above the exercise price (see [22], [23]). These options, termed 
in-the-money options, are exactly the type of option that is used 
in applications of the option pricing model to insurance, since 
the expected terminal value of the insurer's assets is generally 
much higher than expected losses. Thus, although the option 
pricing model has significant advantages over other valuation 
models, the bias inherent in the model needs to be taken into 
consideration. 

9. CONCLUSION 

The insurance industry, including regulators, insurers, and re- 
searchers, has grappled with the issue of a profit provision for 
over 70 years. The issue is as yet unresolved. The easy rules of 
thumb are based on invalid techniques. The valid techniques re- 
quire input values that may not be possible to measure accurately. 
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Efforts to refine the techniques and advance the use of  appro- 
priate methods are continuing. Some results are quite promising, 
but additional work is necessary. 

An analogy to loss reserving is appropriate. No actuary uses 
one method to set loss reserves, as no single method is applicable 
in all cases. The paid loss development method is very accurate, 
but takes a long time to reflect changes. Incurred loss methods 
reflect changes more quickly, but are sensitive to changes in case 
reserve adequacy. Data availability problems sometimes require 
reliance on less robust techniques. As discussed in Berquist and 
Sherman [3], the proper approach to establishing loss reserves is 
to use a variety of techniques, analyze the distribution of indica- 
tions, try to determine if outliers are caused by errors or reflect 
early warnings of  shifts in development patterns, and then use 
actuarial judgment  to arrive at the best figure. 

Ratemaking should be no different. Actuaries should apply 
a variety of  ratemaking techniques to see what the various in- 
dications turn out to be. Some methods rely on parameters that 
are difficult to measure. Other methods are not responsive to 
changes in risk, interest rates, or other economic conditions. The 
techniques described in this paper can provide useful information 
about rate levels, but they should not be expected to determine, 
under all circumstances, the correct rate level. Within a portfolio 
of ratemaking techniques, each can contribute some value. 

Actuaries have played, and will continue to play, a key role 
in the effort to determine appropriate profit provisions. However, 
since the mid-1970s, the playing field for investigation of these 
issues has shifted into relatively unfamiliar terrain for actuaries, 
the field of financial economics. Actuaries need to master this 
area in order to continue to play an influential role. The addition 
of finance to the Casualty Actuarial Society Syllabus is a useful 
step in developing this expertise. Hopefully, this paper will also 
be useful as an educational, or reference, tool. 
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A P P E N D I X  

N O R M A L  D I S T R I B U T I O N  F U N C T I O N  

(FOR N E G A T I V E  X ,  N(X) = 1 - V A L U E  L I S T E D )  

X .130 .01 .02 .03 .04 .05 .06 07 .08 ,09 

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 
0.1 .5398 .5438 .5478 .5517 .5557 .5596 ,5636 ,5675 .5714 .5753 
0.2 .5793 .5832 .5871 .5910 ,5948 .5987 .6026 .6064 .6103 .6141 
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 
0.4 ,6554 .6591 .6628 .6664 .6700 .6736 ,6772 .6808 .6844 .6879 

0.5 .6915 .6950 ,6985 .7019 .7054 .7088 ,7123 .7157 ,7190 .7224 
0.6 .7257 .7291 .7324 .7357 ,7389 .7422 .7454 .7486 .7517 ,7549 
0.7 .7580 .7611 ,7642 .7673 .7704 ,7734 ,7764 .7794 .7823 .7852 
0.8 .7881 .7910 .7939 .7967 .7995 .8023 ,8051 .8079 .8106 ,8133 
0.9 ,8159 .8186 .8212 .8238 .8264 .8289 ,8315 .8340 .8365 .8389 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 ,8621 
1.1 .8643 ,8665 .8686 .8708 ,8729 .8749 .8770 .8790 .8810 .8830 
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 ,8997 .9015 
1.3 .9032 .9049 .9066 .9082 .9099 ,9115 .9131 .9147 .9162 .9177 
1,4 .9192 .9207 .9222 .9236 ,9251 .9265 .9279 .9292 .9306 .9319 

1.5 .9332 .9345 ,9357 .9370 .9382 .9394 ,9406 .9418 .9429 .9441 
1.6 .9452 .9463 .9474 .9484 ,9495 .9505 .9515 .9525 .9535 .9545 
1,7 .9554 .9564 .9573 ,9582 .9591 .9599 .9608 .9616 .9625 ,9633 
1.8 .9641 .9649 .9656 ,9664 .9671 .9678 .9686 .9693 .9699 .9706 
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9772 .9778 .9783 ,9788 .9793 .9798 ,9803 .9808 .9812 .9817 
2.1 .9821 .9826 .9830 .9834 .9838 .9842 ,9846 .9850 .9854 .9857 
2.2 .9861 .9864 .9868 ,9871 .9875 .9878 .9881 .9884 .9887 .9890 
2.3 ,9893 .9896 .9898 .9901 .9904 .9906 .9909 ,9911 .9913 .9916 
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 ,9932 .9934 ,9936 

2.5 .9938 .9940 .9941 .9943 .9945 .9946 ,9948 .9949 .995t .9952 
2.6 .9953 .9955 ,9956 .9957 .9959 ,9960 .9961 ,9962 .9963 .9964 
2.7 .9965 .9966 ,9967 .9968 .9969 ,9970 .9971 .9972 .9973 .9974 
2.8 .9974 .9975 ,9976 .9977 .9977 .9978 .9979 .9979 ,9980 .9981 
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 ,9986 
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A L L O C A T I O N  O F  I N V E S T M E N T  I N C O M E  

SHOLOM FELDBLUM 

Abstract 

The Insurance Expense Exhibit (lEE) provides a statu- 
tory allocation of investment income to lines of business, 
thereby measuring the underlying profitability of the in- 
surance operations. Casualty actuaries must understand 
the allocation procedure, both for completing the Insur- 
ance Expense Exhibit of their own companies and for 
interpreting the results of their peer companies. 

Although the allocation procedure is strictly pre- 
scribed by the NAIC, the method is not shown on the lEE 
itself and the formulas are difficult to decipher from the 
lEE Instructions. This paper explains the philosophy un- 
derlying the allocation procedure, the adjustments made 
to various components, and the formulas that are used 
to determine the amount of investment income assigned 
to each line of business. In addition, the paper provides 
an illustration, enabling the reader to trace the steps of 
the allocation procedure, from the initial data elements 
to the final allocated amounts. 

The allocation of investment income to lines of busi- 
ness is a contentious issue, for which various methods 
are currently being used. The paper concludes with a 
comprehensive analysis of the pros and cons of the statu- 
tory allocation procedure prescribed in the lEE. 
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1. INTRODUCTION 

The statutory Annual Statement enables state regulators to 
monitor the profitability and financial strength of insurance en- 
terprises. Most revenues and expenditures that relate to particu- 
lar policies, such as premiums and losses, are shown by line of 
business. Revenues and expenditures that cannot be directly as- 
sociated with particular policies, such as investment income and 
general expenses, are shown only in the aggregate. 

The primary focus of state regulation is on the ability of  the 
insurance company to meet its obligations to policyholders and 
claimants. Profitability is an important consideration, since a con- 
sistently unprofitable insurer may soon find itself in financial 
distress. But the focus is on overall profitability, not on the prof- 
itability of  each business segment. 

Aggregate information does not suffice for all users. Rate reg- 
ulators, for instance, must determine if premium rates by line of 
business are inadequate or excessive. Investors must determine 
if the capital used to support a given block of business is earning 
a satisfactory return. The insurer's management must determine 
which segments of the company are meeting desired profit levels. 

The Insurance Expense Exhibit (lEE), filed by April 1 as 
a supplement to the statutory Annual Statement, provides the 
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needed additional information. All revenues and expenditures, 
whether or not they are associated with particular policies, are 
allocated to lines of business. Various sets of operating returns 
are calculated, so that profitability by line of business may be 
measured. 

Expense allocation may be complicated, but it is not concep- 
tually difficult. Investment income allocation, however, particu- 
larly when used to measure the total return by line of business, re- 
quires subjective assumptions: "How should surplus be allocated 
to lines of business? .... Should the investment returns on policy- 
holder supplied funds differ from those on capital and surplus 
funds? .... How should policyholder supplied funds be defined?" 

These are not idle questions. They have been debated for years 
by actuaries and regulators, and their answers form the frame- 
work of the new investment income allocation procedure in the 
IEE. This paper reviews this allocation procedure and the resul- 
tant measures of profitability by line of business in the NAIC 
financial statements. 

Casualty actuaries are often asked to complete the invest- 
merit income columns in their companies' Insurance Expense 
Exhibits. 1 In addition, they are often asked to evaluate the lEE 
profitability measures: to tell their managements whether the op- 
erating returns shown in the lEE accurately reflect the perfor- 
mance of each line of business. Careful study of the investment 
income allocation procedures in the IEE is needed to respond to 
such questions. 

The Structure of the h~surance Expense Exhibit 

The structure of the lEE is as follows: 

• Part I--Allocation to Expense Groups 

IThe statutory procedures for completing the lEE are documented in the NAIC Proceed- 
ings, 1992, Volume IA, pages 338-341,  "Summary of Changes to the Proposal of  the 
Insurance Expense Exhibit Working Group to the Blanks (EX4) Task Force," as well as 
in the NAIC instructions to the lEE. 
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• Part II--Allocation to Lines of Business Net of Reinsurance 

• Part III--Allocation to Lines of Direct Business Written 

Part I of the lEE, like Part 4 of the "Underwriting and Invest- 
ment Exhibit," divides expenses along two dimensions: 

a. Expense classification, such as advertising, rent, salaries, or 
equipment, and 

b. Expense groups, which are loss adjustment expenses, other 
underwriting expenses, and investment expenses. 

The lEE has a more refined division of "other underwriting 
expenses" into 

• Acquisition, field supervision and collection expenses, 

• General expenses, and 

• Taxes, licenses and fees. 

Part II of the lEE shows the allocation of all revenues and 
expenditures to lines of business, where the figures are net of 
reinsurance. Part III shows a similar allocation for direct busi- 
ness, except that investment income is not included in Part III. 

In Parts II and III, lines of business are shown along the 
vertical axis (i.e., they are rows), and revenue and expenditure 
categories are shown along the horizontal axis (i.e., they are 
columns). A decimal point in an lEE line of business indicates 
that a finer breakdown is being used than is shown in the Un- 
derwriting and Investment Exhibit. Automobile liability provides 
a good illustration. The pre-1995 Underwriting and Investment 
Exhibit in the Annual Statement showed a single Line 19: Auto 
liability. 2 The IEE shows 

2In 1995, automobile liability was split in the Underwriting and Expense Exhibit as well 
as into personal and commercial auto liability, following the lEE split. In the Underwrit- 
ing and Investment Exhibit, 19.1 is now private passenger auto liability and 19.2 is now 
commercial auto liability. 
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Lines 19.1, 19.2: Private passenger auto liability and 
Lines 19.3, 19.4: Commercial auto liability. 

The exhibits of premiums and losses by state (Page 15 of the 
Annual Statement) show all four components separately: 

Line 19.1: Private passenger auto no-fault (personal injury 
protection) 

Line 19.2: Other private passenger auto liability 
Line 19.3: Commercial auto no-fault (personal injury protec- 

tion) 
Line 19.4: Other commercial auto liability 

Personal and commercial auto often have different expense 
characteristics (e.g., agents' contracts may provide a higher com- 
mission rate on personal auto), so this subdivision is appropriate 
for the IEE. 

This paper concentrates on the investment income allocation 
procedures used for completing Part II of  the lEE, Columns 18 
and 20. There are only passing references to Parts I and III of  
the IEE; in particular, there is no discussion of the expense clas- 
sifications in Part I of the IEE. Moreover, the first 16 columns of  
Part II of  the IEE, which contain the data needed for the invest- 
ment income allocation procedure, are described in Appendix 
A, not in the body of the paper. The text of the paper deals with 
the computations needed to determine the entries for Columns 
18 and 20, and it provides an arithmetic example of the proce- 
dure. 

. IEE PART II: ALLOCATION TO LINES OF BUSINESS NET OF 
REINSURANCE 

The purpose of  Part II is to allocate elements of  total 
profit (or loss) net of reinsurance to lines of business. 

NAIC Proceedings, 1992, Volume IA, page 339 
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The completion procedures for the first 16 columns of Part 
II of  the Insurance Expense Exhibit are documented in detail in 
Appendix A. Readers who are preparing to complete an actual 
lEE will find the information in Appendix A to be essential. The 
focus of this paper is on the allocation of investment income in 
the IEE, so we begin with Column 17 of  Part II. 

Allocation of  Investment Income by Line of  Business 

The allocation of investment income by line of business in the 
1992 and subsequent Insurance Expense Exhibits differs from 
the corresponding allocation in previous years. However, the al- 
location in the lEE is now the same as the allocation in the NAIC 
"Profitability by Line by State" reports. 

Before 1992, the allocation procedure was documented in the 
footnotes to the lEE. Now the allocation procedure appears in the 
instructions to the lEE. The allocation procedure is also described 
in the Proceedings of  the NAIC, 1992, Volume 1A, pages 339-  
341.3 

This paper examines the allocation procedure on three levels: 

• Conceptual: the philosophy underlying the allocation proce- 
dure, 

• Components: the insurance elements comprising the allocation 
formula, as well as the adjustments made to several of these 
elements, and 

• Data: the data sources for the elements of the allocation for- 
mula (primarily the previous columns of Part II of the IEE). 

3The allocation procedure is strictly prescribed by the NAIC: "Although various method- 
ologies might result in reasonable allocations of  investment income to lines o f  business,  
the following formulae for allocating investment gain must  be used in completing the 
allocation for Column 18, Investment Gain on Funds Attributable to Insurance Trans- 
actions and the allocation for Column 20, Investment Gain Attributable to Capital and 
Surplus" (Proceedings, page 339). 
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The NAIC instructions to the IEE show the arithmetic formula, 
with little or no explanation of the allocation philosophy or the 
rationale for the adjustments. This paper describes the concepts 
and formulas of the allocation procedure, and it provides a de- 
tailed example to assist the reader in understanding the method. 

Conceptual Level 

The allocation of investment income to line of business in the 
IEE rests upon three principles: 

1. Investment income is allocated to each line of business in 
proportion to the investable funds associated with each 
line of business. Investable funds consist of (i) funds 
attributable to insurance transactions and (ii) funds at- 
tributable to capital and surplus. 

2. Funds attributable to insurance transactions are loss re- 
serves plus unearned premium reserves minus prepaid 
expenses and minus uncollected premiums. (The adjust- 
ments to the unearned premium reserves for prepaid ex- 
penses and uncollected premiums occur in some parts of 
the allocation procedure, not in all parts. See The Allo- 
cation, below.) 

3. Capital and surplus are allocated to lines of business in 
proportion to total reserves plus earned premium for the 
year. 

Component Level 

The allocation procedure uses the following principles to de- 
rive the items in the "conceptual level": 

1. For balance sheet items, the averages of the current year- 
end values and the prior year-end values are used. These 
balance sheet items are 

• Net loss and loss adjustment expense reserves, 
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• Net unearned premium reserves, 

• Net agents' balances, and 

• Policyholders'  surplus. 

The allocation procedure refers to these as "mean sur- 
plus," "mean net agents' balances," and so forth. (For 
example, mean surplus is the average of policyholders'  
surplus at December 31 of the current year and policy- 
holders'  surplus at December 31 of the prior year.) 

2. Prepaid expenses, or "acquisition expenses," are 

Commission and brokerage expenses incurred 

+ Taxes, licenses, and fees incurred 

+ Other acquisition, field supervision, 

and collection expenses incurred 

+ One half (½) of  general expenses incurred. 

3. Net investment gain or loss is composed of  net invest- 
ment income earned and net realized capital gains or 
losses. It does not include unrealized capital gains or 
losses. 

The Allocation 

The allocation procedure works as follows: 

A. Allocate the company 's  mean surplus to line of business in 
proportion to 

Mean net loss and loss adjustment expense reserves 

+ Mean net unearned premium reserves 

+ Earned premium for the year. 

Unearned premium reserves are not adjusted for agents' 
balances or for prepaid expenses, in this part of the alloca- 
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tion procedure. The unearned premium reserves represent 
the amount the insurer is required to hold, not the amount 
of  investable funds derived from premiums. 

B. Determine the company's  overall "investment gain ratio" 
as 

Net investment gain 

- ( M e a n  net loss and loss adjustment 

expense reserves 

+ Mean net unearned premium reserves 

- Mean net agents' balances 

+ Mean policyholders'  surplus). 

"Net investment gain (or loss)" is composed of  net in- 
vestment income earned and net realized capital gains or 
losses. It does not  include unrealized capital gains or losses. 

Agents '  balances are a component  of  written premium 
and therefore of the unearned premium reserve. But agents' 
balances are not an investable asset, so they are subtracted 
from the unearned premium reserve in determining the in- 
vestment gain ratio. 

In statutory accounting, prepaid expenses are an expen- 
diture, not an asset. Prepaid expenses reduce policyhold- 
ers' surplus, so they are already "subtracted" from the in- 
vestable assets in the denominator of  the "investment gain 
ratio." (In contrast, the agents' balances considered here 
are admitted assets, so they do not reduce policyholders'  
s u r p l u s ,  a ) 

In this part of  the formula, the reserves, agents' bal- 
ances, and surplus are for all lines combined. 

4Non-admitted agents '  balances do not appear on the balance sheet, since they are already 
deducted from policyholders'  surplus. 
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C. 

D. 

For each line of business, the "investment gain on funds 
attributable to insurance transactions" (Column 18) is 
the company's investment gain ratio times the funds at- 
tributable to insurance transactions for that line of business. 
This latter item is determined as 

Funds attributable to insurance transactions 

= Mean net loss and loss adjustment 

expense reserves 

+ {Mean net unearned premium reserves 

x [ 1 - (prepaid expenses + written premiums)]} 

- M e a n  net agents' balances. 

Prepaid expense are funded from surplus, not from in- 
surance transactions, since the full (gross) unearned pre- 
mium reserve must be held as a liability. The ratio of pre- 
paid expenses to written premiums shows the percentage of 
each premium dollar that must be funded from surplus. The 
mean net unearned premium reserves are therefore multi- 
plied by the complement of this ratio. 

For each line of business, the "investment attributable to 
capital and surplus" (Column 20) is the total investment 
gain for that line of business minus the "investment gain 
on funds attributable to insurance transactions." The total 
investment gain for that line of business is the company's 
investment gain ratio times the investable funds associated 
with that line of business. The investable funds associated 
with that line of business equal that line's 

Mean net loss and loss adjustment expense reserves 

+ Mean net unearned premium reserves 

- M e a n  net agents' balances 

+ Allocated policyholders' surplus. 
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Since policyholders' surplus is already reduced by prepaid 
expenses in statutory accounting, there is no need to reduce 
the unearned premium reserves by these expenses. 

This completes the allocation procedure for investment in- 
come. The section below shows the data sources for each element 
of the procedure. 

Data Level 

All the data elements for the allocation of investment income 
to line of business are taken from the Annual Statement or from 
prior columns of  the lEE. The following abbreviations clarify 
the formulas: 5 

LRlob 

LRtot 

UEPRIo b 

UEPRtot 

PPEIob 

ABlob 
ABtot 
W P l o b  

EPlob 

EPtot 

Mean net loss and loss adjustment expense 
reserves by line of business 
Mean net loss and loss adjustment expense 
reserves for all lines combined 
Mean net unearned premium reserves by lines of  
business 
Mean net unearned premium reserves for all lines 
combined 
Net prepaid expenses, or net acquisition expenses, 
by line of business 
Mean net agents' balances by line of business 
Mean net agents' balances for all lines combined 
Net written premium by line of business for the 
current year 
Net earned premium by line of business for the 
current year 
Net earned premium for all lines combined for the 
current year 

5The NAIC instructions use different abbreviations: AI for LRIo b, A2 for LRtot, BI 
for UEPRIo b, and so forth, through L for IGit and M for IG . Actuaries familiar with 
ancient BASIC variable naming conventions should have no difficulty with the NAIC 
abbreviations. 
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PHStot 
PHSlob 

PHSrat 
IG 
IGR 
IGit 

IGcs 

. 

Mean policyholders' surplus for all lines combined 
Policyholders' surplus allocated to the line of 
business 
Policyholder surplus ratio 
Net investment gain 
Investment gain ratio 
Investment gain by line of business on funds 
attributable to insurance transactions 
Investment gain by line of business attributable to 
capital and surplus 

. 

Net loss and loss adjustment expense reserves are taken 
from page 11 of the Annual Statement, "Underwrit- 
ing and Investment Exhibit," Part 3A, Column 5, "net 
losses unpaid excluding loss adjustment expenses," 
plus Column 6, "unpaid loss adjustment expenses." The 
"mean" value is determined by averaging the amounts 
in the current and prior Annual Statements. 

Net unearned premium reserves are taken from Page 9 
of the Annual Statement, "Underwriting and Invest- 
ment Exhibit," Part 2A, Column 5, "total reserve for 
unearned premium." The "mean" value is determined 
by averaging the amounts in the current and prior An- 
nual Statements. 

3. Net prepaid expenses are determined from the prior 
columns in Part II of the IEE, as 

Net prepaid expenses 

= (Column 12 + Column 13 

+ Column 14 + ½ Column 15). 

4. Net agents' balances for all lines combined is taken from 
Page 2 of the Annual Statement, Line 10.1 plus Line 
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10.2. Agents '  balances by line of  business are taken 
from Column 11 of  Part II of  the lEE. The "mean"  
values are determined by averaging the amounts in the 
current and prior Annual Statements and Insurance Ex- 
pense Exhibits. 

. Written and earned premium: Net written premium is 
taken from Column 1 of  Part II o f  the lEE, and net 
earned premium is taken from Column 2. 

. Mean policyholders' surplus for all lines combined is 
the average of  Columns 1 and 2 on Line 26 of  Page 3 
of  the Annual Statement. 

. The policyholders' surplus ratio is defined as the ratio of  
policyholders '  surplus to the sum of  loss reserves, un- 
earned premium reserves, and annual earned premium, 
o r  

PHSra t = PHSto t - (LRto t + UEPRto t + EPtot). 

8. The policyholders' surplus allocated to each line of  busi- 
ness is determined as the product of  the policyholders '  
surplus ratio and the sum of  loss reserves, unearned 
premium reserves, and annual earned premium for that 
line of  business, or 

PHSIo b = PHSra t x (LRIo b + UEPRIo b + EPlob). 

. The net investment gain is taken from the Annual State- 
ment, Page 4, "Statement of  Income," Line 9A, "net 
investment gain or loss." Line 9A of  Page 4 is the sum 
of  Line 8 ("net investment income earned," or inter- 
est, dividends, and rent) and Line 9 ("realized capital 
gains or losses"). Unrealized capital gains and losses, 
which appear on Line 19 of  Page 4, are not included in 
Line 9A. 
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10. The  investment gain ratio is def ined as the inves tment  
gain divided by investable assets, or 

IGR = IG + (LRto t + UEPRto t 

+ P H S t o  t - A B t o t ) .  6 

11. The investment gain by line of business on funds at- 
tributable to insurance transactions is de termined as 

IGit = IGR x {LRIo b + UEPRIo b 

x [1 - (PPElo b + WPlob) ] -- ABlob}. 

This  is the entry for  Co lumn  18. 

12. The  investment gain by line of business attributable to 
capital and surplus is determined as 

IGcs = [IGR x (LRio  h + UEPRIo b 

+ PHSIo b - ABIob) ] - IGit. 

This  is the entry for  Co lumn  20. 

The 1992 Revisions 

The major  di f ferences  in t roduced in the 1992 lEE regarding 
the al locat ion o f  investment  income  are as follows: 

61n theory, one might make other adjustments to investable assets, such as for "bills 
receivable, taken for premiums"  (Line 11 of  Page 2 o f  the Annual Statement). Most 
o f  these other adjustments are minor, and would not materially affect the allocation 
procedures. 

David Eley has pointed out to me that the "investment gain ratio" is applied to the 
investable assets by line of  business. It would be extremely difficult, if at all practical, 
to make these adjustments by line of  business. To properly allocate investment income, 
the investable assets by line of business should sum to the total investable assets used 
in the allocation procedure. Moreover, although the investment gain ratio without these 
adjustments may be slightly inaccurate in any one year, over a period of  several years 
the ratio works well. 

Mr. Eley is correct. These practical considerations overwhelm any theoretical advan- 
tages f rom additional adjustments.  
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• Before 1992, there was a separate "capital and surplus" ac- 
count, similar to a line o f  business. The investment income 
attributable to capital and surplus was not allocated to lines of  
business. In 1992, the separate "capital and surplus" account 
was removed, and the investment income attributable to capital 
and surplus is allocated to lines of  business. 

• Before 1992, the investment income allocated to lines of  busi- 
ness reflected primarily bond returns, not common stock div- 
idends or capital gains. 7 Thus, the investment yield on funds 
attributable to capital and surplus differed from the investment 
yield on funds attributable to insurance transactions. In 1992, 
stock dividends and realized capital gains are treated as other 
investment income, so the difference in investment yields has 
been eliminated. 8 

71n the 1991 IEE, the "adjusted investment income" that is allocated to lines of  business is 
defined as "Annual  Statement, Page 6, Part 1, Column 8, Lines I 0 - 1 1 - 1 2 - 2 . 1 - 2 . 1 1 - 2 . 2 -  
2.21" (see step "B" of  footnote "D" in the 1991 IEE). Part 1 of  Page 6 shows "interest, 
dividends, and real estate income," not capital gains. Column 8 shows the amount  earned 
during the year. Line 10 shows the total (gross) investment income. Column t l  shows 
the investment expenses incurred, and Column 12 shows the real estate depreciation. 
Lines 2.1, 2.11, 2.2, and 2.21 show dividends on (i) unaffiliated preferred stock, (ii) 
affiliated preferred stock, (iii) unaffiliated common stock, and (iv) affiliated common  
stock, respectively. 

The investable assets to which the "adjusted investment income" was compared also 
excluded common  stocks. The "investment income ratio" used for the allocation of  in- 
vestment income to line of  business therefore reflected primarily bond returns, not stock 
returns. 

Step "J" of  tbotnote D to the 1991 IEE defines "investment income attributable to the 
capital and surplus accounts" as Annual Statement Page 4, Line 8, less the investment 
income allocated to lines of  business. Page 4, Line 8, equals Page 6, Column 8, Lines 
10--11-12-13. Line 13 is "aggregate write-ins tbr deductions from investment income," 
and it is usually a small amount.  

A major portion of net investment income attributed to the capital and surplus account 
reflected the difference between stock and bond returns. Step "K" of footnote D to the 
1991 IEE says "Realized capital gains attributable to capital and surplus accounts = 
Annual  Statement, Page 4, Line 9. Page 4, Line 9, comprises all realized capital gains, 
as shown on Page 6, Part IA, Line 1 I. 

This separation of  stock dividends and realized capital gains from other investment 
income was no longer considered appropriate. In 1992, the division between investment 
income attributable to insurance transactions and that attributable to capital and surplus 
relates to the earnings base (i.e., the amount of  funds in each section), not to the type of  
investments "associated" with each section. 
SCompare the NAIC Proceedings, 1991 Volume IIA, "Insurance Expense Exhibit Working 
Group of the Blanks (EX4) Task Force," March 22, 1991, Attachment Four-B, page 



406 INSURANCE EXPENSE EXHIBIT & ALLOCATION OF INVESTMENT INCOME 

• More funds are attributable to insurance transactions in the 
1992 and subsequent Insurance Expense Exhibits than were 
attributed to policyholders in the pre-1992 lEE. 

Profit or Loss 

Part II of  the IEE shows three columns of  profit or loss: 

• Column 17: Pre-tax profit or loss excluding all investment 
gain, 

• Column 19: Profit or loss excluding investment gain at- 
tributable to capital and surplus, and 

• Column 21: Total profit or loss. 

All three columns are pre-federal income tax, though the "pre- 
tax" caption appears only in Column 17. 

The profit or loss equals revenues minus expenditures, on an 
accrual (not paid) basis. Thus 

• Column 1, "premium written," is on a paid basis. Column 2, 
"premium earned," is on an accrual basis. Earned premium 
(Column 2) is used in the profit and loss calculation, not writ- 
ten premium (Column 1). 

• Columns 7 through 10, the loss reserves, loss adjustment ex- 
pense reserves, and unearned premium reserves, are liabilities, 
not expenditures. Column 11, "agents'  balances," is an asset, 
not a revenue item. Columns 7 through 11 do not enter the 
profit or loss calculation. 

450: "The separate treatment of realized capital gains was eliminated with the effect 
of relating the same rate of return to capital and surplus that is related to insurance 
transaction funds." Compare also the letter from David E Eley to Dan Atkinson of 
February 22, 1991, "Formula for Allocating Investment Income to Lines of Business" 
in the NAIC Proceedings, 1991 Volume IIA, page 454: "A second change is that all 
investment gain, including realized capital gain or loss, is allocated equally. There is 
no longer any disparity between the rate of return earned on funds derived from the 
insurance transaction and the rate of return earned on capital and surplus." 
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• Column 16, "other income" is a revenue item. Columns 3 
through 6 (policy benefits, or losses incurred, loss adjustment 
expenses incurred, and policyholder dividends) and Columns 
12 through 15 (expenses) are expenditure items, so they enter 
the profit or loss calculation. 

The formula for Column 17 is therefore 

Column 17 

= Columns 2 + 1 6 -  3 - 4 - 5 - 6 -  1 2 -  1 3 -  1 4 -  15. 

Investment income is a revenue item. Thus Column 19 equals 
Column 17 + Column 18, and Column 21 equals Column 19 + 
Column 20. This completes Part II of the IEE. 

3. ALLOCATION PROCEDURES: AN ILLUSTRATION 

The discussion above is abstract; an illustration should clarify 
the procedures. The example below reviews the various steps in 
the allocation of investment income: 

• Allocating surplus to lines of business, 

• Calculating the investment gain ratio, 

• Calculating the prepaid ("acquisition") expense ratio, 

• Determining the investment gain on funds attributable to in- 
surance transactions, and 

• Determining the investment gain attributable to capital and sur- 
plus. 

In the illustration, we are completing the investment gain 
columns in Part II of the 1996 Insurance Expense Exhibit, using 
data from the 1995 and 1996 statutory financial statements. The 
IEE is for a commercial lines insurer that writes only two lines of 
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business: workers compensation and other liability. All amounts 
in the illustration are in millions of dollars. 

Allocation of Surplus to Lines of Business 

We must first allocate policyholders'  surplus to lines of busi- 
ness. Line 26 of  Page 3 of the 1996 Annual Statement shows 
statutory surplus of $500 million at December 31, 1995, and 
of $700 million at December 31, 1996. The earned premiums, 
unpaid losses, unpaid allocated loss adjustment expenses, unpaid 
unallocated loss adjustment expenses, and unearned premium re- 
serves for workers compensation and other liability shown in the 
table below are taken from the 1995 and 1996 Insurance Ex- 
pense Exhibits, Columns 2, 7, 8, 9, and 10, for Rows 16 and 
17. Alternatively, these figures may be taken from the Under- 
writing and Investment Exhibits in the 1995 and 1996 Annual 
Statements: earned premiums from Part 2 (Page 7), Column 4; 
unearned premium reserves from Part 2A (Page 8), Column 5; 
unpaid losses from Part 3A (Page 10), Column 5; and unpaid 
loss adjustment expenses from Part 3A (Page 11), Column 6. 

Workers Other 
(Figures in millions of dollars) Compensation Liability 

1995 1996 1995 1996 

Earned premium, year ending 12/31/9_ 350 450 200 200 
Loss and LAE reserves, 1 2 / 3 1 / 9  1,400 1,700 600 600 
Unearned premium reserves, 12/31/9_ 75 125 100 100 

The lEE investment income allocation procedure requires that 
we allocate the company's  mean surplus to line of business in 
proportion to 

Mean net loss and loss adjustment expense reserves 

+ Mean net unearned premium reserves 

+ Earned premium for the year. 
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In this allocation, there is no adjustment of  the unearned premium 
reserves for agents' balances or for prepaid expenses. Mean sur- 
plus is the average of  the December  31, 1995, surplus and the 
December  31, 1996, surplus, or ($500 million + $700 million) + 
2 = $600 million. Mean surplus is used because investment in- 
come is earned over the course of  the year. 

Mean reserves are used, both for loss and loss adjustment 
expenses and for unearned premium. The 1996 earned premium 
is used, not the average 1995 and 1996 earned premiums. 

• For workers compensation, the sum of  mean reserves and an- 
nual earned premium is 

[(1,400 + 1,700) + 2] + [(75 + 125) + 2] + 450 

= $2,100 million. 

• For other liability, the sum of  mean reserves and annual earned 
premium is 

[(600 + 600) + 2] + [(100 + 100) + 2] + 200 

= $900 million. 

• The mean surplus allocated to workers compensation is 

(600) × [2,100 + (2,100 + 900)] 

= $420 million. 

• The mean surplus allocated to other liability is 

(600) x [ 9 0 0 +  (2,100 + 900)] 

= $180 million. 
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Investment Gain Ratio 

We proceed to determine the "investment gain ratio." The 
workers compensation and other liability figures are reproduced 
below. 

Workers Other 
(Figures in millions of dollars) Compensation Liability 

1995 1996 1995 1996 

Agents' balances, 1 2 / 3 1 / 9  35 45 10 10 
Earned premium, year ending 1 2 / 3 1 / 9  350 450 200 200 
Loss and LAE reserves, 12/31/9_ 1,400 1,700 600 600 
Unearned premium reserves, 12/31/9_ 75 125 100 100 

In addition, we take the following investment income and capital 
gains figures from the 1995 and 1996 Annual Statements, from 
the following exhibits: 

• Net investment income: Page 4, Line 8 = Underwriting and 
Investment Exhibit, Page 6, Part 1, Item 15. 

• Realized capital gains: Page 4, Line 9 = Underwriting and In- 
vestment Exhibit, Page 6, Part 1A, Item 11. 

• Unrealized capital gains: Page 4, Line 19 = Underwriting and 
Investment Exhibit, Page 6, Part 1A, Item 12. 

Policyholders' surplus was $500 million at December 31, 1995, 
and $700 million at December 31, 1996, as shown on Page 3, 
Line 26. 

Investment Income and Policyholders' Surplus ($000,000) 

1995 1996 

Net investment income, year ending 1 2 / 3 1 / 9  250 250 
Realized capital gains, year ending 1 2 / 3 1 / 9  100 50 
Unrealized capital gains, year ending 12/31/9_ 100 150 
Policyholders' surplus, year ending 1 2 / 3 1 / 9  500 700 
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The company's overall "investment gain ratio" is defined as 

Net investment gain 

+ (Mean net loss and loss adjustment expense reserves 

+ Mean net unearned premium reserves 

- M e a n  net agents' balances 

+ Mean policyholders' surplus). 

"Net investment gain" for 1996 is used, not the average of the 
1995 and 1996 values. It consists of net investment income 
earned (Line 8 of Page 4) and net realized capital gains or losses 
(Line 9 of Page 4). It does n o t  include unrealized capital gains 
or losses (Line 19 of Page 4). 

In this example, "net investment gain," or Line 9A of Page 4 
of the Annual Statement, equals 

$250 million + $50 million = $300 million. 

The reserves, agents' balances, and surplus figures are needed 
for the company as a whole, not for each line of business. In this 
example, the figures are: 

• Mean net loss and loss adjustment expense reserves are 

($1,400 M + $1,700 M + $600 M + $600 M) + 2 

--- $2,150 million; 

• Mean net unearned premium reserves are 

($75 M + $125 M + $100 M + $100 M ) + 2  

= $200 million; 

• Mean net agents' balances are 

($35 M + $ 4 5  M + $ 1 0  M + $ 1 0  M ) + 2  

= $50 million; 
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• Mean policyholders '  surplus is 

($500 M + $700 M) + 2 = $600 million; 

• The "investment gain ratio" is 

[$300 M - ($2,150 M + $200 M - $50 M + $600 M)] 

-- 10.34%. 

Prepaid ("Acquisition") Expenses 

We now proceed to determine the prepaid expenses by line 
of  business. We take the following data from the 1995 and 1996 
Insurance Expense Exhibits: 

Workers Other 
(Figures in millions of dollars) Compensation Liability 

1995 1996 1995 1996 

Written premium, year ending 12/31/9_ 400 500 200 200 
Commission & brokerage, year ending 40 50 25 30 
12/31/9_ 
Taxes, licenses & fees, year ending 1 2 / 3 1 / 9  8 10 5 5 
Other acquisition expenses, year ending 8 10 5 5 
12/31/9_ 
General expenses, year ending 12/31/9_ 40 60 20 20 

Prepaid expenses, or "acquisition expenses," are defined as 

Commission and brokerage expenses incurred 

+ Taxes, licenses, and fees incurred 

+ Other acquisition, field supervision, 

and collection expenses incurred 

+ One half (½) of  general expenses incurred. 

For prepaid expenses, we use the 1996 figures, not the average 
of  the 1995 and 1996 figures. 
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• For workers compensation, prepaid expenses are 

[$50 M + $10 M + $10 M + (0.5)($60 M)] 

= $100 million. 

• For other liability, prepaid expenses are 

[$30 M + $5 M + $5 M -- (0.5)($20)] = $50 million. 

The prepaid expense ratio is prepaid expenses divided by written 
premium, not earned premium (see the calculations below). Ac- 
quisition expenses, underwriting expenses, and premium taxes all 
relate to written premiums (or written exposures), not to earned 
premiums. 

Investment Gain on Funds Attributable to Insurance Transactions 

Column 18 of the Insurance Expense Exhibit asks for the "in- 
vestment gain on funds attributable to insurance transactions." 
We now determine the appropriate Column 18 entries for work- 
ers compensation and other liability, using the accounting infor- 
mation from the company's 1995 and 1996 financial statements, 
as shown above. 

For each line of business, the "investment gain on funds at- 
tributable to insurance transactions" is the company's investment 
gain ratio times the funds attributable to insurance transactions 
for that line of business. 

In this example, the investment gain ratio is 10.34%. The 
funds attributable to insurance transactions are defined as 

Funds attributable to insurance transactions 

= Mean net loss and loss adjustment expense reserves 

+ {Mean net unearned premium reserves 

× [1 - (prepaid expenses + written premiums)]} 

- M e a n  net agents' balances. 
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Prepaid expenses were determined as $100 million for workers 
compensation and $50 million for other liability. The 1996 writ- 
ten premium is $500 million for workers compensation and $200 
million for other liability, so the factor of 

1 - (prepaid expenses + written premiums) 

is 80% for workers compensation and 75% for other liability. 

The mean values for reserves and agents' balances were de- 
termined above. Using these values, the funds attributable to in- 
surance transactions are as follows: 

• For workers compensation: 

[(1,400+ 1,700) + 2] + {[(75 + 125)+2] x 80%} 

- [(35 + 45) + 2] = $1,590 million. 

• For other liability: 

[(600 + 600) + 2] + {[(100 + 100) + 2] x 75%} 

- [(10 + 10) + 2] = $665 million. 

The "investment gain on funds attributable to insurance trans- 
actions" is therefore 10.34% x $1,590 million = $165 million for 
workers compensation and 10.34% x $665 million = $69 million 
for other liability. 

Investment Gain Attributable to Capital and Surplus 

Column 20 of the Insurance Expense Exhibit asks for the 
"investment gain attributable to capital and surplus." We now 
determine the appropriate Column 20 entries for workers com- 
pensation and other liability, using the accounting information 
from the company's 1995 and 1996 financial statements. 

For each line of business, the "investment gain attributable 
to capital and surplus" (Column 20) is the total investment gain 
for that line of business minus the "investment gain on funds 
attributable to insurance transactions." 
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• The "investment gain on funds attributable to insurance trans- 
actions" for workers compensation and other liability were 
determined above. 

• The total investment gain for the line of business is the com- 
pany's investment gain ratio times the investable funds associ- 
ated with the line of business. The investable funds associated 
with the line of business equal the line's 

Mean net loss and loss adjustment expense reserves 

+ Mean net unearned premium reserves 

- M e a n  net agents' balances 

+ Allocated policyholders' surplus. 

Note carefully the distinction between "investable funds at- 
tributable to insurance operations" and "investable funds asso- 
ciated with the line of business." The former has an adjustment 
for prepaid ("acquisition") expenses. The latter includes policy- 
holders' surplus allocated to lines of business. As noted above, 
prepaid expenses are already deducted from surplus. So if sur- 
plus enters the formula, there is no deduction of prepaid expenses 
from the unearned premium reserves. 

The mean values for reserves and agents' balances were de- 
termined above, as was the allocation of policyholders' surplus 
to lines of business. Using these values, the investable funds as- 
sociated with the lines of business are as follows: 

• For workers compensation: 

[(1,400 + 1,700) + 2] + [(75 + 125) + 2] 

- [(35 + 45) + 2] + 420 = $2,030 million. 

The total investment gain = 10.34% of $2,030 million = $210 
million. The investment gain attributable to funds from insur- 
ance operations is $165 million, so the investment gain at- 
tributable to capital and surplus is $45 million. 
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• For other liability: 

[(600 + 600) + 2] + [(100 + 100) + 2] 

- [(10 + 1 0 ) + 2 ]  + 180 = $870 million. 

The total investment gain = 10.34% of  $890 million = $90 
million. The investment gain attributable to funds from in- 
surance operations is $69 million, so the investment gain at- 
tributable to capital and surplus is $21 million. 

4. PART III--ALLOCATION TO LINES OF DIRECT BUSINESS 

WRITTEN 

The purpose of  Part III is to allocate elements of  profit 
(or loss) on a direct basis to lines of  business. Part III 
simulates what the results were without reflecting the 
effect of  reinsurance. 

- - N A I C  Proceedings, 1992, Volume IA, page 340 

Part III, "Allocation to Lines of  Direct Business Written," is 
similar to Part II, except that Part III shows direct experience 
whereas Part II shows net experience. Two other differences re- 
sult from this: 

• Because  most Annual Statement exhibits show net experience, 
not direct experience, there are few direct cross-checks from 
Part III of  the IEE to the Annual Statement. 

• Because investment income relates to net experience, not to 
direct experience, there are no investment income columns in 
Part III of  the IEE. 

Profit or Loss 

Part III o f  the IEE shows only underwriting gain or loss, 
in Column 17: "Pre-tax profit or loss excluding all investment 
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gain." Column 17 of Part III is calculated in the same fashion 
as Column 17 of Part II: revenues minus expenditures, on an 
accrual basis. 

Part III has no allocation of investment income. Investment 
income is earned on assets actually held by the company: that is, 
on assets net of reinsurance. Investment income on direct busi- 
ness is a theoretical amount. In 1991, the IEE Working Group 
of the NAIC debated whether to show a theoretical investment 
income figure for direct business. In April 1991, the Insurance 
Expense Exhibit Working Group of the Blanks (EX4) Task Force 
voted to show such a figure in Part III: 

The working group then discussed the proposal to cal- 
culate investment income on a direct basis. Members 
of the advisory committee expressed concerns that the 
proposal creates assumptions on what would exist on a 
direct basis; that the numbers go beyond the financial 
accounting data historically included in annual state- 
ment data; that companies would be projecting income 
that they do not have. Members of the working group 
indicated that it would assist a state in seeing the im- 
pact of the state's premium dollar without excluding 
the reinsured portion of the premium dollar. Further, 
the information would be qualified using italics and 
footnotes in order to caution users of the nature of 
the data. It was moved and second that investment 
income on funds attributable to insurance transac- 
tions be calculated on a direct basis using italics to 
qualify the data. Voted to adopt with California op- 
posed. 

--NAIC Proceedings, 1991 Volume IIA, "Insurance 
Expense Exhibit Working Group of the Blanks (EX4) 
Task Force," April 13, 1991, Attachment Four-A, page 
448. 
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The Working Group subsequently decided not to include such 
figures in Part III: 

Columns 18 and 19 on Part III, Allocation to Lines 
of  Direct Business Written will be deleted. Column 
18 developed an implicit investment gain on funds at- 
tributable to insurance transactions. Column 19 devel- 
oped an implicit profit or loss excluding investment 
gain attributable to capital and surplus. 

--NA1C Proceedings, 1992, Volume IA, page 338. 

5. THE MEASUREMENT OF PROFITABILITY 

The previous sections of this paper have dealt with the statu- 
tory procedures for the allocation of policyholders' surplus and 
of investment income to lines of business in the Insurance Ex- 
pense Exhibit. These statutory procedures, when combined with 
premium, loss, and expense data, enable regulators and compa- 
nies to quantify the total return earned on each line of business. 

The procedures embodied in the Insurance Expense Exhibit 
are one of many potential techniques for measuring total returns. 
The profitability of  insurance operations is a widely debated pub- 
lic concern, and casualty actuaries have repeatedly been called 
upon to testify on behalf of various positions. It is important that 
actuaries understand the pros and cons of the major procedures, 
so that they may be better able to judge the appropriateness of 
each of  them. 

The issues in the measurement of insurance profitability may 
be grouped into the following categories: 

• Prospective versus retrospective measurement of profitability, 

• The allocation of  policyholders' surplus, 

• Run-off of past business versus writing of new business, and 

• Insurance returns versus investment returns. 
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This section deals only with methods of measuring insurance 
profitability. It does not touch upon how much profit, or what 
rate of return, is appropriate. Other actuarial papers have dealt 
with this last issue, and the interested reader is referred to them. 9 

Prospective versus Retrospective 

Much of the actuarial literature on profitability measurement 
deals with the pricing of insurance products, Pricing is funda- 
mentally a prospective task. The Insurance Expense Exhibit, in 
contrast, is a retrospective measure of insurance profitability. 

This difference pervades each of the other issues dealt with 
below. Actuarial procedures for prospective pricing are not nec- 
essarily appropriate for retrospective profitability measurement. 
The prospective versus retrospective dichotomy runs through 
many of  the comments below. 

Allocation of Surplus 

The allocation of  policyholders'  surplus is the first step in the 
IEE allocation of investment income. The allocation of surplus 
is also an essential component  of financial pricing models for 
insurance products, such as discounted cash flow models and 
internal rate of return models, l° But the meaning of this phrase, 
the "allocation of  surplus," differs radically in these two contexts. 

The Insurance Expense Exhibit is allocating the company 's  
actual policyholders'  surplus to lines of business. If a company 
has more surplus than its peers, more surplus is allocated to 
each line. Conversely, a "capital-poor" company would have less 
surplus allocated to each line. 

9See, for instance, Feldblum [8], which discusses five commonly  used methods o f  set- 
ting profit targets by line o f  business,  and the discussion by Bault, which compares the 
methods in Feldblum's  paper to those used by other actuaries. 
I°For a full discussion of the allocation of surplus in insurance pricing models, see Derrig 
[3] and Feldblum [6], and the references cited therein. 
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The pricing actuary using an internal rate of return model or 
a discounted cash flow model does not allocate the company 's  
actual surplus to line of business. In fact, the pricing actuary may 
never even ask how much surplus the company has. Rather, the 
pricing actuary uses various "surplus assumptions." For instance, 
the pricing actuary may assume that each $1,000 of  business that 
is written is "supported" by $500 of surplus. 

The surplus assumptions used in pricing models may be com- 
pared with the allocation procedures in profitability measures. 
For instance, the most common surplus assumptions in pricing 
models are leverage ratios to premiums or to reserves. Similarly, 
the most common surplus allocation procedures in profitabil- 
ity measures are based on the premiums or reserves associated 
with each line of  business. Let us examine more closely the re- 
lationship between the surplus assumptions and the allocation 
procedures. 

The retrospective surplus allocation procedure begins with the 
company 's  actual surplus and proceeds to subdivide it by line of 
business. One of  two methods is used for this allocation: 

A. Allocation by leverage ratios, such as "premium to surplus 
ratios" or "reserves to surplus ratios," or 

B. Allocation by the relative risk of each line of business, 
where risk may be quantified by the volatility of each line's 
loss ratio, l I 

The IEE uses leverage ratios, both premium to surplus and re- 
serves to surplus. Some analysts have opined that reserve lever- 
age ratios might serve as a proxy for risk. That is, the slow- 
paying lines, such as Products Liability and Medical Malprac- 
tice, are also the more risky lines. These more risky lines of 
business therefore have higher reserves to surplus ratios. Thus, 

I I Compare  Feldblum [8], and the reviews by Philbrick and Todd, as well as Meyers [ 13]. 
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an allocation of capital by reserves to surplus ratios is a method 
of allocating capital according to relative risk. 

This reasoning is specious. Products Liability and Medical 
Malpractice are high risk lines and are also slow paying lines. 
But there are high risk lines which are fast paying lines, and there 
are slow paying lines that are low risk lines. Property insurance 
in regions prone to natural catastrophes, such as Homeowners 
insurance in the Gulf Coast states or earthquake insurance in 
California, are high risk lines, but their loss payout is rapid. Con- 
versely, annuity payments, such as long-term disability coverage 
or workers' compensation pension claims, have slow payouts, 
but their risk is relatively small. 12 

The prospective surplus assumptions used for pricing purposes 
generally proceeds in one of two manners: 

A. The needed surplus is determined for each line of busi- 
ness independently of the surplus required for other lines 
of business or of the overall surplus needs of the insurance 
enterprise. This needed surplus is calculated by consider- 
ation of the line's volatility in conjunction with selected 
calibration yardsticks, such as a "probability of ruin" yard- 
stick or an "expected policyholder deficit" yardstick.13 

B. The insurance industry as a whole is assumed to be nei- 
ther over-capitalized nor under-capitalized. This assump- 

12For a more complete discussion of  reserve duration, pricing risk, and reserving risk by 
line of  business, see Feldblum [reply to Philbrick, 8]. Hodes, Feldblum, and Blumsohn 
[10] provide a detailed analysis of  workers' compensation reserve volatility. Although 
compensation reserves have a long average duration, the steady payment pattern, which 
results from the mandated (statutory) benefits, causes the volatility of the reserves to be 
extremely low (on a discounted basis). 
13On the "probability of  ruin" yardstick, see Pentik~iinen, Bonsdorff, Pesonen Rantala, 
and Ruohonen [15] or Daykin, Pentik~iinen, and Pesonen [2]. On the "expected pol- 
icyholder deficit" yardstick, see Butsic [1] or Hodes, Feldblum, and Blumsohn [10], 
Appendix B. Compare also the NAIC's risk-based capital formula, which determines 
capital requirements to guard against the underwriting risks in each line of business (see 
Feldblum [7]). Although the NAIC explicitly counsels against use of  the risk-based capi- 
tal results for pricing purposes, there is no theoretical reason why they could not be used 
for this purpose. 
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tion is justified by the efficiency of capital markets and the 
competitiveness of the insurance product markets. If the 
insurance industry were overcapitalized, returns on capital 
would be insufficient, and capital would leave the indus- 
try. Conversely, if the insurance industry were undercapital- 
ized, returns on capital would be excessive, and additional 
capital would enter the industry. 14 

The overall industry capital would be allocated to lines 
of business, by means of leverage ratios or relative risk 
measures. This procedure differs from the former one in 
that the leverage ratios or the relative risk measures would 
be calibrated to achieve the existing industry surplus for all 
lines of business combined. 

Once the appropriate leverage ratio is determined for 
any given line of business, any particular company's 
needed capital is determined from this leverage ratio. These 
are surplus assumptions. For any particular company, of 
course, the assumed surplus requirements for all lines of 
business combined will not equal its actual (held) surplus. 
(As mentioned earlier, this differentiates the prospective 
surplus assumptions from the retrospective surplus alloca- 
tion procedure.) 

In sum, the prospective surplus assumptions and the retrospective 
surplus allocation procedures often look similar. However, they 
serve different functions, and a procedure that is appropriate for 
one function may not applicable to the other function. 

Reserve Run-Off versus New Business 

Actuarial pricing is concerned with setting premium rates for 
new business. To accurately set rates, the pricing actuary must 

14See, however, Joskow [11], who objects to this reasoning, arguing that cartelization of  
the property-casualty insurance industry by means of rating bureaus has led to excessive 
prices along with overcapitalization, resulting in "normal" returns on capital and therefore 
equilibrium in the capital and product markets. 
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estimate the amount of  investment income to be earned for each 
dollar of new business. 

Investment income is earned on assets supporting reserves 
(both unearned premium reserves and loss reserves), as well as 
on the capital and surplus funds supporting the policy. But the 
"reserves" considered by the pricing actuary are not the reserves 
held by the company. Rather, they are the anticipated reserves 
that will be held in the future for each dollar of  new business. 
This is the essence of prospective ratemaking. 

The Insurance Expense Exhibit, in contrast, has a retrospec- 
tive measurement of  profitability. The investment income that is 
allocated is the investment income that is actually earned on the 
assets supporting the held reserves in each line of  business. 

The difference between the two approaches is clearest when 
the company grows or declines in a line of  business. 15 Suppose 
a company is setting rates for workers compensation insurance, 
and the pricing actuary expects that losses will be paid out on 
average about four years after the accident date. If the actuary 
assumes an expected loss ratio of 75%, then (in a steady state) 
there will be about three dollars of reserves for each dollar of  
annual premium. 

Similarly, for a steady state company, the Insurance Expense 
Exhibit will show about three dollars of  reserves for each dollar 
of workers compensation premium. For the steady state com- 
pany, the IEE information can be used in rate setting. 

Suppose, however, that the company first began writing work- 
ers compensation in the current calendar year. To the pricing ac- 
tuary, the past history of  the company is irrelevant. The pricing 
actuary still assumes that there will be three "dollar-years" of  

JSFor a complete discussion of the effects of  business expansion on statutory measures 
of total return, see Feldblum [6]. 
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reserves for each dollar of  premium earned during the year, and 
the future rates are determined accordingly. 16 

The actual held reserves of  the company at the end of the 
year for each dollar of  annual premium earned is probably only 
about 65¢. (There are 75¢ of  incurred loss for each dollar of  
earned premium, and some of  the losses have already been paid 
out by the end of the year.) 

In other words, the IEE shows very little investment income 
earned on the workers compensation line of business. One is 
tempted to say that the IEE and the pricing actuary are address- 
ing different questions and therefore they come up with differ- 
ent answers. The pricing actuary wants to ascertain the expected 
profitability of a new policy, so he or she considers the expected 
investment income on the assets supporting the future reserves 
of this policy. The IEE seeks to measure the retrospective prof- 
itability of a given line of business, so it considers the investment 
income earned during the past year on the held reserves. 

This explanation is incorrect. The IEE aims to compute the 
"total profit or loss" in each line of  business. In theory, one 
should compute this figure by using discounted reserves. For 
prospective ratemaking, one would use anticipated losses dis- 
counted at an expected interest rate or investment yield. For ret- 
rospective profitability measurement, one would use actual losses 
discounted at market interest rates or current investment yields. 

The Insurance Expense Exhibit is wedded to statutory ac- 
counting. Accordingly, it uses undiscounted loss reserves, not 
discounted reserves, for computing the underwriting profit mar- 
gin. This figure, shown in Column 17 of Part II, "Pre-tax profit 

16Note carefully the units of  each insurance element. Reserves are a "stock," or a balance 
sheet item existing at a given valuation date. Earned premium is a "flow," or an income 
statement items, whose magni tude depends on the length of  time in the valuation period. 
When  pricing actuaries compare these two elements, they generally assume a one-year 
time period. In other words, they are comparing reserve-years and annual earned premium. 
Because this convention is so common,  it is rarely stated explicitly, and one generally 
reads of  a comparison o f  reserves with earned premium. 
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or loss excluding all investment gain," uses the current calendar 
year earned premiums, incurred losses, and incurred expenses. 

In theory, Column 19 of Part II, "Profit or loss excluding in- 
vestment gain attributable to capital and surplus," should be com- 
puted by using discounted loss costs. In practice, the IEE uses 
"investment income on funds attributable to insurance transac- 
tions" as a proxy for the amount of the discount. This procedure 
is reasonable for companies in a steady state. It is misleading 
when a company grows or declines significantly in a particular 
line of  business. 

Insurance Returns and Investment Returns 

A traditional insurance industry trade practice is to divide a 
company's  operational results into "underwriting income" and 
"investment income." Underwriting income is defined as earned 
premiums minus incurred losses minus incurred expenses. In- 
vestment income consists of  interest, dividends, and rents earned 
on the company 's  invested assets. Capital gains, either realized 
capital gains or all capital gains, are generally included in invest- 
ment income as well. 

The insurance trade press often says that "underwriting op- 
erations" were not profitable, because underwriting income was 
negative, and that the insurance industry was "saved" only by 
its investment income. Such a view, of course, is primarily for 
public consumption. Underwriting income that takes no account 
of the time value of money does not properly measure the prof- 
itability of insurance operations. 

The Insurance Expense Exhibit rectifies this problem by allo- 
cating the investment income earned by the company to lines of 
business. In doing so, it must consider what investment income 
to allocate. 

There are three interlocking components of this issue. 
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. 

. 

"What portion of the company's investment income 
should be considered when measuring the return on in- 
surance operations?" The IEE procedure addresses this 
question by considering separately (a) the investment in- 
come on funds attributable to insurance transactions and 
(b) the investment income attributable to capital and sur- 
plus. One may take either of the two common views--  
all investment income or only investment income at- 
tributable to insurance transactions--and find the appro- 
priate figures in the IEE. 17 

"Which investable assets should be associated with 
funds attributable to insurance transactions and which 
investable assets should be associated with capital and 
surplus?" There is a common view that loss reserves 
and unearned premium reserves should be supported by 
fixed income securities, such as bonds and mortgages, 
because of the relative safety of these instruments. Capi- 
tal and surplus, however, may be supported by common 
stock and other equities (such as real estate), because of 
the higher yields afforded by these financial instruments 
(compare Noris [14]). 

The pre-1992 Insurance Expense Exhibit differenti- 
ated between the returns on funds attributable to insur- 
ance transactions and the returns on capital and surplus. 
Bond coupon payments, for instance, were more likely 
to be associated with the former, whereas common stock 
dividends were more likely to be associated with the lat- 
ter. 

The current IEE did away with this differentiation. 
The "common view" mentioned above is but one invest- 
ment strategy among many, and it is not necessarily the 
optimal one. It is not the place of the IEE to implicitly 

17"Investment income attributable to insurance transactions" is also called "investment 
income on the insurance cash flow" or "investment income on policyholder funds." 
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prescribe or even to presume the investment strategies of 
individual companies. 

3. "What investment returns should be allocated to the in- 
surance operations?" That is, "What investment income 
should be considered a part of insurance operations, and 
what investment income should be considered separately, 
either as unanticipated gains or losses or as attributable 
to the superior or inferior skills of  the investment depart- 
ment?" 

To clarify this question, suppose that the insurance 
company's  investment portfolio consists of Treasury 
bonds yielding 8% per annum, investment grade cor- 
porate bonds yielding 10% per annum, lower grade cor- 
porate bonds, some of which are yielding between 12% 
and 15% per annum and some of which have defaulted, 
common stocks with various dividend yields, some re- 
alized capital gains, and some unrealized capital losses. 
What parts of this investment income should be allocated 
to lines of  business? 

One may answer this question in several ways. 

A. Allocate all investment income: One view says that 
the regulator should not decide what investment re- 
turns are normal and what returns are extraordinary. 
Roth [17] champions this view, arguing that all in- 
vestment income should be taken into account. 

B. Differentiate by type of investment income: The IEE 
allocates net investment income earned (i.e., interest, 
dividends, and rents) and realized capital gains and 
losses to the lines of  business (i.e., to the insurance 
operations). Unrealized capital gains and losses are 
not included in the lEE allocation of  investment in- 
come. 
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The theoretical justification for the distinction be- 
tween realized and unrealized capital gains is that 
unrealized capital gains represent unanticipated and 
random market movements that do not reflect the 
company's investment strategy. Moreover, unrealized 
capital gains are often reversed as the market turns, 
unlike the steady receipt of interest, dividends, and 
rents. For these reasons, unrealized capital gains and 
losses should not be included in the company's in- 
vestment income. 

Accounting conventions, unless theoretically jus- 
tified, are a hindrance to proper measurement of 
profitability. The justification above is particularly 
dubious. The realization of capital gains is often 
driven by federal income tax considerations or by 
short-term needs for cash. In fact, the inclusion of 
only realized capital gains in investment income of- 
ten distorts profitability measurement. Two examples 
should clarify this: 

a .  Federal Income Taxes: Suppose that companies 
ABC and XYZ have the same investment port- 
folios, each having a large common stock com- 
ponent with substantial unrealized capital gains. 
Company ABC has an underwriting gain during 
the year. To avoid incurring additional income tax 
liabilities, it leaves the capital gains unrealized. 
Company XYZ has a large underwriting loss dur- 
ing the year. To compensate for the operating loss, 
it sells stocks and realizes the capital gains. 

In truth, the investment returns of the two com- 
panies are identical, and they should be treated 
in identical fashions for the purpose of profitabil- 
ity measurement. Tax considerations determined 
whether the capital gains would be realized. This 
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b. 

should not be allowed to distort the measurement 
of  profitability. 

Cash Needs: Suppose that companies ABC and 
XYZ differ mainly in their need for cash. Com- 
pany ABC is "cash poor," so it invests primar- 
ily in short- and medium-term Treasury securities 
and mortgage backed securities with consistent 
coupon payments. Company XYZ has no imme- 
diate need for cash, so it invests heavily in a diver- 
sified portfolio of aggressive, growth stocks, with 
low dividend payments but high expected capital 
gains. Its investment strategy calls for keeping the 
stocks for the long-term. 

In this example, company ABC is trading ex- 
pected long-term return for immediate cash. Yet 
the IEE sees the opposite: it shows higher invest- 
ment returns for company ABC than for company 
XYZ. 

The reason for the exclusion of unrealized cap- 
ital gains from the allocation of  investment in- 
come in the IEE is that unrealized capital gains 
and losses are a direct credit or charge to surplus 
(see Feldblum [5]). They do not flow through the 
statutory income statement, just as they do not 
flow through the GAAP income statement and 
they are not included in taxable income. Unfor- 
tunately, this accounting attribute of  unrealized 
capital gains distorts the actuarial measurement of  
profitability. 

C. Allocate "risk-free" investment income: An approach 
that is gaining significant acceptance in the actuarial 
community is that only a "risk-free" investment re- 
turn should be ascribed to underwriting operations. 
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The remaining investment income-- tha t  is, the dif- 
ference between the risk-free return and the actual 
return-- is  the reward either for the assumption of 
investment risk by the company or for the superior 
(or inferior) expertise of  the investment department 
(see, for example Woll [19] or Lowe [12]). In this ap- 
proach, the investment income allocated to lines of 
business does not depend on the type of assets owned 
by the company or on the investment performance of 
the company 's  securities. Rather, all investable as- 
sets would be assigned a risk-free rate of return for 
the purpose of allocating investment income to lines 
of business. The remaining investment income stems 
from the performance of  the investment department; 
it has nothing to do with the total return associated 
with the insurance operations. 

6. PERSPECTIVES ON THE IEE PROCEDURES 

The previous section discussed the theoretical underpinnings 
of the IEE procedure for the measurement of  profitability, though 
with few normative comments  on the general appropriateness of 
this procedure. The primary purpose of this paper is to describe 
the IEE procedure and to place it within the broader context of 
profitability measurement procedures. It is not the purpose of 
this paper to defend or to criticize the statutory procedures. 

The method used in the Insurance Expense Exhibit and dis- 
cussed in this paper may be viewed as an "official" NAIC 
method. Casualty actuaries must understand this method well, 
both for completing the statutory financial statements and for 
evaluating the reasonableness of the statutory figures. 

However, the IEE allocation procedures must be treated with 
caution: they are useful for some purposes but not for others. The 
following comments by two actuaries who have worked exten- 
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sively in state regulation (and particularly with the measurement  
of  insurance profitability) should make this clear. 

Mr. Martin Rosenberg,  formerly with the New Jersey Insur- 
ance Department,  writes [ 16]: 

The allocation of  surplus to the various lines of  busi- 
ness [in the Insurance Expense Exhibit] can (and will) 
cause much confusion because the allocation is arbi- 
trary. 

... both from the regulator 's point o f  view as well 
as the insurance company ' s  point of  view, the finan- 
cial results shown in the IEE for the various lines of  
business can not and should not be used to measure 
whether the premium rates are adequate or excessive. 
Nor  should the IEE figures be used to determine if the 
capital used to support a line of  business is earning a 
satisfactory return ... 

... a regulated enterprise has a right to the opportunity 
to earn an adequate rate of  return. However,  the right 
to an adequate rate of  return does not extend to all 
individual services provided by the regulated entity but 
rather applies to the enterprise as a whole ... 

... This principle was applied to a 1992 case in which 
an insurer wanted to increase personal auto rates to re- 
coup assessments to support  the personal auto residual 
market. An Administrative Law Judge in New Jersey 
decided in that case that a multi line insurer 's right to a 
fair rate of  return pertains to the enterprise as a whole  
and does not extend to each line of  insurance. Thus, 
the relevant measure of  the insurer 's rate of  return was 
the rate of  return of  all lines of  business combined and 
not just  personal auto insurance. 

Insurance companies often price lines of  business such 
as homeowners  and personal auto in tandem. For ex- 
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ample, typically one consideration in deciding whether 
to sell personal auto at a discount is whether the poli- 
cyholder also has a homeowners policy with the same 
company ... 

The point is that from the company 's  point of  view, 
surplus is not allocated on a line by line basis. An 
independent measure of  the return of  personal auto 
and homeowners  is not useful to the company because 
the financial results of  personal auto and homeowners 
are dependent on each other. 

The rate of  return for the entire enterprise is the ap- 
propriate consideration from both the regulator's and 
company 's  point of view in many important applica- 
tions. Therefore, it must be recognized that an alloca- 
tion of surplus to the various lines of business may be 
arbitrary. 

Mr. Richard Roth, Assistant Commissioner in the California De- 
partment of Insurance, made a tongue-in-cheek observation re- 
garding the IEE allocation procedures during a recent panel pre- 
sentation [18]: 

... according to the new IEE, since the underwriting 
and investment income is allocated based on national 
surplus, the loss of surplus caused by Hurricane An- 
drew will cause the profitability of  automobile insur- 
ance in Massachusetts to improve. 

These comments  underscore the need for casualty actuaries to 
carefully analyze the profitability results that may be inferred 
from the Insurance Expense Exhibit. 
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A P P E N D I X  A 

THE PART II ENTRIES 

435 

Appendix A describes, column by column, the entries in Part 
II of the Insurance Expense Exhibit. The phrase in italics at the 
start of each subsection gives the column number and the column 
caption. The description notes the cross-checks to other statutory 
exhibits, the type of allocation to line of business, and sundry dif- 
ferences between the entries in the IEE and those in the Annual 
Statement. 

Readers interested only in the theoretical aspects of the allo- 
cation of investment income to line of business do not need the 
information in this appendix, though they may find it a useful 
reference. Readers who must complete an actual lEE will find 
this information essential. 

Premiums 

1. Premiums written: The  written premium entries correspond 
by line of business to the "Underwriting and Investment Exhibit," 
Part 2B (Page 9), "Premiums Written," Column 4, "Net premi- 
ums written. ''18 

2. Premiums earned: These entries correspond by line of 
business to Page 7, "Underwriting and Investment Exhibit," Part 
2, "Premiums Earned," Column 4, "Premiums earned during 
y e a r .  ' '19  

J8These Annual Statement entries are carried to Part 2 of  the "Underwriting and Invest- 
ment Exhibit" (Page 7), "Premiums Earned," Column 1, "Net premiums written." The 
total for all lines combined is also carried to Page 14, "Exhibit 2--Reconciliation of  
Ledger Assets," Line 1, "Net premiums written." This figure should agree with Line 32 
of  the IEE. 
]91n addition, the aggregate amount for all lines combined on Line 32 of the IEE ("Total") 
should correspond to the entry on Page 4, "Statement of Income," Line 1, "Premiums 
earned." 
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Accrued retrospective premiums are reported in two ways in the 
Annual Statement: 

• They may be reported as a separate asset and not as an offset 
to the unearned premium reserve. This is the treatment on the 
statutory balance sheet, where an asset for accrued retrospec- 
tive premiums is shown on Line 10.3. The unearned premium 
reserve on Line 9 of Page 3 does n o t  have an offset for accrued 
retrospective premiums, since it is taken from Part 2A of the 
"Underwriting and Investment Exhibit," Page 8, Column 5, 
Line 34, not Line 32. (The line of business offsets in Column 
4, Lines 1 through 31, are removed in Column 5, Line 33.) 

• They may be reported as an offset to the unearned premium 
reserve and thereby included in earned premiums. This is the 
treatment in Part 2 of the Underwriting and Investment Exhibit 
(Page 7) and in the earnings statement (Page 4). 

An illustration should help clarify this. Suppose an insurer has 
the following accounting entries for written premium, unearned 
premium reserves, and accrued retrospective premium reserves: 

• Written premium during the year = $20,000,000. 

• Unearned premium reserve (liability): 

• Beginning of year = $6,000,000. 

• End of year = $8,000,000. 

• Accrued retrospective premium reserve (asset): 

• Beginning of year = $1,000,000. 

• End of year = $2,000,000. 

To determine earned premiums, the Underwriting and Invest- 
ment Exhibit, on Pages 7 and 8 of the Annual Statement, treats 
accrued retrospective premiums as an offset to unearned premi- 
ums. In this example, the net unearned premium reserve at the 
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beginning of the year is $5 million and at the end of the year 
it is $6 million. Earned premium for the year is $19 million 
(= written premium minus the change in reserve). 

For the balance sheet, the full unearned premium reserve of  $8 
million is shown on Page 3, Line 9, Column 1. The $2 million 
of accrued retrospective premiums are carried to Page 2, Line 
10.3, Column 2, a non-admitted portion is deducted in Column 
3, and the net admitted portion,is shown in Column 4. 

The IEE uses the accounting procedure in the Underwriting 
and Investment Exhibit. Accrued retrospective premiums are re- 
flected in the unearned premium reserves and in premium earned 
(Columns 2 and I0), not in agents' balances (Column 11). See 
also the discussion below of  Column 11. 

The earned premium entries should also equal the figures in 
Schedule P, Part 1, Column 4, Line 11: "net earned premiums 
in the current year," according to the Schedule P subdivision of  
lines of insurance. In most instances, Schedule P does not have as 
fine a breakdown by line of business as the IEE has. For example, 
Schedule P combines "Fire," "Allied lines," "Inland Marine," 
"Earthquake," "Glass," and "Burglary and Theft" into a single 
"Special Property" category, though these are separate lines of 
business in the IEE. In a few instances, however, both Schedule 
P and the IEE have a finer breakdown by line of  business than 
other Annual Statement exhibits have. 

10. Unearned Premium Reserves: The unearned premium re- 
serves correspond by line of business to Page 7, "Underwriting 
and Investment Exhibit," Part 2, "Premiums Earned," Column 
4, "Unearned Premiums." These unearned premium reserves re- 
flect accrued retrospective premiums; see also the discussions of  
Column 2 and of Column 11. 

Dividends 

3. Dividends to policyholders: Dividends to policyholders on 
net business is reported in aggregate (all lines combined) on Page 
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4, "Statement of Income," Line 14a, "Dividends to policyhold- 
ers." The "allocation" to lines of business in the IEE is a direct 
allocation, not a formula allocation. That is, the insurer knows 
which policies received the dividends and therefore to which 
lines of business they should be allocated. 2° 

Dividends to policyholders on direct business are reported 

• by line of business in the IEE, Part III; 

• by state in the Annual Statement, Schedule T, "Exhibit of Pre- 
miums Written," Column 4, "Dividends paid or credited to 
policyholders on direct business;" and 

• by line and by state on Page 15, Column 4, of the Annual 
Statement, "Dividends paid or credited to policyholders on 
direct business. ''21 

Paid dividends to policyholders are shown on Page 14 of 
the Annual Statement, "Exhibit 2--Reconciliation of Ledger As- 
sets," Line 16, "Dividends to policyholder on direct business less 
$ dividends on reinsurance assumed or ceded (net)." Paid 
dividends may be reconciled to incurred dividends by adding 
the change in reserves: 

Paid dividends - beginning of year reserve + end of year reserve 

= incurred dividends. 

The required reserve figures are shown on Page 3 of the Annual 
Statement, "Liabilities, Surplus and Other Funds," Line 10(b): 
"Dividends to policyholders declared and unpaid," Column 1 

2°in some cases, the policy form does not correspond to Annual Statement lines of busi- 
ness. For instance, a policy may cover both "Other Liability" and "'Products Liability," 
and the dividend may not differentiate between them. In such instances, the insurer must 
make a formula allocation of the dividend. 
21 Dividends to policyholders is more closely related to direct business than to net busi- 
ness. Most reinsurance arrangements reimburse the primary insurer for losses paid to 
policyholders, not for dividends paid to policyholders. 
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(current year) and Column 2 (previous year). In other words 

Page 4, Line 14a (incurred dividends) 

= Page 14, Line 16 (paid dividends) 

-Page 3, Line lO(b), Column 2 

(beginning of year reserve) 

+ Page 3, Line 10(b), Column 1 (end of year reserve). 

Note that statutory accounting requires reserves only for declared 
dividends to policyholders, not for projected (but undeclared) 
dividends to policyholders. GAAP requires dividend reserves for 
projected dividends as well. For instance, suppose that on each 
March 1 the insurer's board of directors declares dividends to 
policyholders based on the previous calendar year's experience. 
For GAAP financial statements, the company must project ex- 
pected dividends relating to the experience of the current ac- 
counting period and book these as a liability, even though the 
company will have no legal obligation to policyholders until the 
declaration by the board of directors on March 1. For statutory 
financial statements, no estimate need be made and no reserve 
need be booked for undeclared dividends. 22 

Losses and Loss Adjustment Expenses 

4. Incurred Loss: The incurred losses correspond by line of 
business to Page 10 of the Annual Statement, "Underwriting and 
Investment Exhibit," Part 3--Losses paid and incurred," Column 
7, "Losses incurred, current year." 

22Compare AICPA's  Audits of Property and Liability Insurance Companies (New York: 
American Institute of  Certified Public Accountants,  1993): "GAAP  requires policyholder 
dividends that are undeclared as o f  the balance sheet date to be estimated and accrued. Un- 
der SAP, however, policyholder dividends are not recorded as liabilities until declared." 
See also David L. Holman and Chris C. Stroup, "Generally Accepted Accounting Prin- 
ciples," in Insurance Accounting and Systems Association, Inc., Property-Liability Insur- 
ance Accounting, Sixth Edition (Durham, NC: 1994), page 14-7: "Under  SAP, dividends 
to policyholders generally are not recorded as liabilities until they are declared by the 
company ' s  board of  directors. GAAP  requires that all undeclared policyholder dividends 
be accrued at the balance sheet date, using an estimate of  the amount  to be paid." 
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These are calendar year incurred losses. The incurred losses 
in Schedule P are accident year incurred losses. The supporting 
exhibits in Schedule P (Parts 2, 3, and 5) show losses combined 
with allocated loss adjustment expenses. Losses are shown sep- 
arately from allocated loss adjustment expenses only in Part 1 
of Schedule P. To determine calendar year incurred losses from 
Schedule P, one must use Annual Statements of successive years 
and subtract the incurred losses (for all accident years combined) 
in the previous statement from the corresponding incurred losses 
in the current statement, z3 

Paid losses by line of business are shown on Page 10 of the 
Annual Statement, "Underwriting and Investment Exhibit," Part 
3, Column 4, "net losses paid." Net loss reserves by line of busi- 
ness are shown in Column 5 for the current year and Column 
6 for the previous year. Incurred losses are therefore Columns 
4 + 5 - 6 ,  or 

Paid losses - beginning of year reserve 

+ end of year reserve = incurred losses. 

5, 6, 8, and 9: Loss adjustment expenses: Unpaid loss adjust- 
ment expenses are shown by line of business separately for al- 
located and unallocated expenses in Columns 8 and 9 in the 
IEE. Total (i.e., allocated plus unallocated) unpaid loss adjust- 
ment expenses by line of business are shown on Page 11 of the 
Annual Statement, "Underwriting and Investment Exhibit," Part 
3A, Column 6, "Unpaid loss adjustment expenses." Thus, the 
sum of Columns 8 and 9 in the IEE should equal Column 6 of 
Page 11 of the Annual Statement. 

Incurred loss adjustment expenses are shown by line of 
business separately for allocated and unallocated expenses in 
Columns 5 and 6 of the IEE. Calendar year incurred loss adjust- 

23Care must be taken in the treatment of the "prior years" lines in Schedule E See the 
discussion below regarding loss adjustment expenses. 
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ment expenses are not shown by line of business in the Annual 
Statement. The aggregate loss adjustment expenses incurred for 
all lines combined is shown on Page 4, "Statement of Income," 
Line 3, "Loss expenses incurred," and on Page 12, "Underwriting 
and Investment Exhibit," Part 4, "Expenses," Line 22, Column 
1, "Total loss adjustment expenses incurred." 

Schedule P shows cumulative paid loss adjustment expenses 
by line of business and by accident year in Part 1, Columns 7 
and 8 for allocated expenses and in Column I0 for unallocated 
expenses. The loss adjustment expenses paid in the current cal- 
endar year can be derived from successive Annual Statements. 
For instance, the unallocated loss adjustment expenses paid in 
the current calendar year equals 

• Part 1, Column 10, Line 12 ("total") of  the current year's 
Schedule P 

• Part 1, Column 10, Line 1 2 - L i n e  2 - L i n e  1 ( = " t o t a l " -  
"oldest accident y e a r " - " p r i o r  years") of  the previous year's 
Schedule p.24 

The previous year's unpaid loss adjustment expense is found 
on Page 11, "Underwriting and Investment Exhibit," Part 3A, 
Column 6, of the previous year's Annual Statement. As is true 
for losses (see above), the current calendar year's incurred loss 
adjustment expenses, as reported in the lEE, equals the current 
calendar year's payments plus the change in reserve. 

7. Unpaid losses: Unpaid losses by line of  business should 
agree with the entries on Page 1 1 of the Annual Statement, "Un- 
derwriting and Investment Exhibit," Part 3A, Column 5, "Net 

24The "oldest accident year" in the previous year's Schedule P is no longer separately 
recorded in the current year's Schedule P, so it is removed from the calculation. The 
"prior years" line in Part 1 of Schedule P shows the paid amount in the current calendar 
year, not a cumulative paid amount. Since one wants the amount paid in the current 
calendar year for this cross-check, one wants the current statement's figure for the "prior 
years" line, not the change from last year's figure to this year's figure. 
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losses unpaid excluding loss adjustment expenses." The aggre- 
gate figure for all lines combined is also shown on Page 3, "Li- 
abilities, Surplus and Other Funds," Line 1, "Losses," Column 1 
(current year). 

Agents' Balances 

1 1. Agents' balances: The aggregate total for all lines com- 
bined should equal the sum of 

• Line 10.1, "Premiums and agents' balances in the course of 
collection," and 

• Line 10.2, "Premium, agents' balances and installments booked 
but deferred and not yet due." 

Line 10.3, "Accrued retrospective premiums," is not included 
in the IEE definition of agents' balances, since they are already 
deducted from unearned premium reserves. On Page 8 of the 
Annual Statement, "Underwriting and Investment Exhibit," Part 
2A, "Recapitulation of all Premiums," accrued retrospective pre- 
miums are entered as negative amounts in Column 4, "Reserve 
for rate credits and retrospective adjustments based on experi- 
ence." The "total reserve for unearned premiums" in Column 5 
is the sum of Columns 1 through 4, where Columns 1 through 
3 are 

• Column 1: Amount  unearned, running one year or less from 
date of policy, 

• Column 2: Amount  unearned, running more than one year 
from date of policy, and 

• Column 3: Advance premiums. 

Earned premium is defined as written premium minus the change 
in the unearned premium reserve, or 
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Earned premium 

= Written premium 

+ Beginning of  year unearned premium reserve 

- End of  year unearned premium reserve. 

A decrease in the end of year unearned premium reserve 
causes a corresponding increase in the year's earned premium. 
The accrued retrospective premium asset decreases the end of  
year unearned premium reserve on Page 8, so it increases the 
earned premium on Page 7, Column 4, of the Annual Statement. 
The "profit or loss" in Column 17 of the IEE begins with the 
earned premium in Column 2. Thus, accrued retrospective pre- 
miums are already included in the "profit or loss" figure, and 
they need not be entered again in "agents' balances" (Column 
10). 25 

In most cases, the allocation of  agents' balances to line of  
business is a direct allocation, not a formula allocation. The al- 
location shown in Column 10, as well as the allocation for the 
previous year end, is used in the allocation of  investment income 
by line of business (see below). 

Underwriting Expenses 

12, 13, 14, and 15. Expenses: The expense items for all lines 
of business combined should equal the corresponding amounts 
in Part I of the IEE, as follows: 

• I E E ,  Part II, Column 12, "Commission and brokerage expenses 
incurred," Line 32 (total) should equal lEE, Part I, Column 2, 
"Acquisition, field supervision and collection expenses," Line 

2'iCompare the NAIC Proceedings, 1991 Volume IIA, "Insurance Expense Exhibit Work- 
ing Group of the Blanks (EX4) Task Force," March 22, 1991, Attachment Four-B, Page 
450: "Unearned premium reserves will be net of  retrospective premiums,  therefore line 
9.3 will no longer be subtracted from reserves." (The 1991 Line 9.3 is the current Line 
10.3.) 
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2h, "Net commission and brokerage." The allocation to line of 
business is generally a direct allocation. 

• lEE, Part II, Column 13, "Taxes, licenses and fees incurred," 
Line 32 (total) should equal lEE, Part I, Column 4, "Taxes, 
licenses and fees," Line 22, "Total." The allocation to line 
of business is a combination of direct allocation and formula 
allocation. 

• I E E ,  Part II, Column 14, "Other acquisition, field supervision 
and collection expenses incurred," Line 32 (total) should equal 
lEE, Part I, Column 2, "Acquisition, field supervision and 
collection expenses," Line 22, "Total," minus Line 2h, "Net 
commission and brokerage." The allocation to line of busi- 
ness is generally a formula allocation (see New York Regula- 
tion 30). 

• I E E ,  Part II, Column 15, "General expenses incurred" Line 32 
(total) should equal lEE, Part I, Column 3, "General expenses," 
Line 22, "Total." The allocation to line of business is generally 
a formula allocation (see New York Regulation 30). 

16. Other Income less Other Expenses: The aggregate amount 
for all lines of business combined in this column should equal 
Page 4 of the Annual Statement, Line 13 minus Line 5. Page 
4, Line 13 is "total other income," and it may be a positive 
or negative amount. Page 4, Line 5 is "aggregate write-ins for 
underwriting deductions," and it is generally a positive amount. 

Do not confuse the "other expenses" in Column 16 of the 
IEE, Part II, with "other underwriting expenses" on Page 4, Line 
4, of the Annual Statement. The "other underwriting expenses" 
on Page 4, Line 4, equals the sum of Columns 12, 13, 14, and 
15 in Part II of the lEE. 

Also, note that the "net gain or loss from agents' or premium 
balances charged off," which appears on Line 10 of Page 4 of the 
Annual Statement, shows up on Part II of the lEE in Column 16, 
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"other income less other expenses," not in Column 11, "agents' 
balances." Column 11 shows the currently admitted portion of 
agents' balances. Recoveries of amounts previously not admitted, 
as well as charge-offs of amounts previously admitted, show up 
in Column 16. 
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APPENDIX B 

THE PART III ENTRIES 

Appendix B describes, column by column, the entries in Part 
III of the Insurance Expense Exhibit. The phrase in italics at 
the start of  each subsection gives the column number and the 
column caption. The description notes the cross-checks to other 
statutory exhibits, the type of  allocation to line of  business, and 
sundry differences between the entries in the lEE and those in 
the Annual Statement. 

Most readers will not need the information in Appendix B, 
since there is no allocation of investment income in Part III of 
the IEE. Readers who must complete an actual IEE, however, 
will find this information essential. 

1. Premiums written: Direct premiums written by line of busi- 
ness are shown in the Underwriting and Investment Exhibit, Page 
9, Part 2B, "Premiums written," Column 1, "direct business." 

2. Premiums earned and 3. Dividends to policyholders: Direct 
premiums earned and dividends to policyholders on direct busi- 
ness are shown in the Annual Statement in Schedule T by state 
(Columns 3 and 4) and on Page 15 by line of business and by 
state (Columns 3 and 4). The column headings in the IEE note 
the cross-check to Schedule T, not to Page 15. The cross-check 
to Schedule T applies to the all lines combined row, not to the 
individual line of business amounts. 

4. Incurred loss and 7. Unpaid losses: Direct unpaid losses 
are shown in the Annual Statement by line of business in the 
Underwriting and Investment Exhibit, Page 1 1, Part 3A, "Unpaid 
losses and loss adjustment expenses," Column la, "Adjusted or 
in process of adjustment: direct," plus Column 4a, "Incurred but 
not reported: direct;" in Schedule T by state (Column 7); and 
on Page 15 by line of business and by state (Column 8). The 
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column headings in the IEE note the cross-check to Schedule T, 
not to the Underwriting and Investment Exhibit or to Page 15. 
The cross-check to Schedule T applies to the all lines combined 
row, not to the individual line of business amounts. 

Direct losses incurred are shown in Schedule T and on Page 
15, but not in the Underwriting and Investment Exhibit. Direct 
paid losses are shown in all three places. Direct incurred losses 
by line of business can be derived from the Underwriting and 
Investment Exhibits of successive Annual Statements, since in- 
curred losses equal paid losses plus the change in reserves. In 
any case, the column headings in the lEE note the cross-check 
to Schedule T, not to Page 15 or to the Underwriting and Invest- 
ment Exhibits of successive Annual Statements. The cross-check 
to Schedule T applies to the all lines combined row, not to the 
individual line of business amounts. 

5, 6, 8, and 9. Loss adjustment expenses: Loss adjustment ex- 
penses are not reported in Schedule T, and direct loss adjustment 
expenses are not shown in the Underwriting and Investment Ex- 
hibit. The only cross-check listed in the IEE instructions or the 
NAIC Proceedings says: 

IEE Part III, Columns 5, 6, 8 and 9 must agree with 
lEE Part II, Columns 5, 6, 8 and 9, respectively, ex- 
cluding expense relating to reinsurance assumed and 
ceded. 

However, direct allocated loss adjustment expenses incurred and 
unpaid are shown on Page 15 by line of business and by state 
(Columns 10 and 11), so a cross-check is available to Columns 
5 and 8 of Part III of the lEE. 

10. Unearned premium reserves: Unearned premium reserves 
are not shown in Schedule T, and direct unearned premium re- 
serves are not shown in the Underwriting and Investment Exhibit. 
For this column, however, the IEE instructions do reference the 
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cross-check to Page 15: 

Column 10 must agree with the sum of Page 15, Col- 
umn 5 totals for all states plus any alien business. 

1 1. Agents' balances, 14. Other acquisition, field supervision, 
and collection expenses incurred, 15. General expenses incurred, 
and 16. Other income less other expenses: There are no direct 
cross checks to any of these columns. The IEE instructions say 
that these figures should agree with the Part II entries after ex- 
clusion of balances or expenses related to reinsurance assumed 
or ceded. 26 

12. Commissions and brokerage expenses incurred: In Part I of 
the IEE, as well as on Part 4 of the Underwriting and Investment 
Exhibit in the Annual Statement, commissions and brokerage 
expenses are divided into seven categories: 

2a. Direct excluding contingent, 

2b. Reinsurance assumed excluding contingent, 

2c. Reinsurance ceded excluding contingent, 

2d. Con t ingen t~ i rec t ,  

2e. Contingent--reinsurance assumed, 

2f. Contingent--reinsurance ceded, and 

2g. Policy and membership fees. 

Commission and brokerage expenses should appear in Col- 
umn 2 of Part I: "Acquisition, field supervision and collection 
expenses." 

The column heading in Part III of the lEE notes that the total 
for Column 12 for all lines of business combined should equal 

26Agents" balances related to reinsurance ceded are disclosed on Page 2, Lines 10.1 and 
10.2 (in the parenthetical phrase in the line label), though there is no corresponding 
disclosure for amounts related to reinsurance assumed. 
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the sum of  Rows 2a and 2d, Column 2, from Part I. Commissions  
and brokerage expenses were added to the Page 15 exhibits in 
1992 (Column 12), so a cross-check by line of  business is now 
available as well. 

13. Taxes, licenses and fees incurred: The IEE instructions list 
no explicit cross-check. Taxes, licenses, and fees were also added 
to the Page 15 exhibits in 1992, so a cross-check by line of  
business is available. 
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"Fly me to the moon, and let me swing among the stars ... " 

- -Ba r t  Howard 

Abstract 

The NCCI methodology for deriving Excess Loss Fac- 
tors (ELFs), based largely on research performed in 
1986, is documented in "Retrospective Rating: Excess 
Loss Factors" by William R. Gillam [2]. This paper up- 
dates that 1991 paper. The changes in the way ELFs 
are produced have been significant, if not extensive. The 
work done to support those changes was extensive. 

In the Fall of 1992, after an intense but focused study, 
NCCI updated the parametric size-of-loss distributions 
described in Gillam's paper. The associated changes 
were in production for most 1993 filings. 

A much more in-depth review of the ELF model was 
completed in 1995. In this report, we detail some of the 
investigations made in that review and the features of 
the resulting model. 

The researchers checked to see that the existing group- 
ings of claim types were optimal, or at least superior to 
any other obvious groupings. They also determined that 
the groupings of states by benefit type (escalating, non- 
escalating, and limited) was not justified. 

Loss distributions by claim group have again been 
updated, this time using a new method to model fifth-to- 
ultimate loss development, overcoming the lack of indi- 
vidual loss information after that report. (The Workers 
Compensation Statistical Plan ends at fifth report.) 

The risk loadings for parameter risk and contagion 
were also updated to be more appropriate in an open 
competition rating environment. 

450 
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1. MODELING OF LOSSES BY INJURY TYPE 

Under the Workers Compensation Statistical Plan (WCSP), 
an injury type code is reported for each claim--corresponding to 
the carrier's belief at the valuation date as to the ultimate injury 
type of  the claim. The injury types are: Fatal, Permanent Total 
(PT), Permanent Partial (PP), Temporary Total (TT), Medical- 
Only, and Contract Medical. For ratemaking, NCCI makes the 
distinction between a Major and Minor Permanent Partial claim 
according to whether its indemnity component  is above or below 
a state-specific critical value. This results in seven injury types 
being coded into NCCI's  databases. 

As described in the 1991 paper by Gillam, Excess Loss Fac- 
tors (ELFs) were based on weighted excess ratios for each of  
three injury groups. In the 1995 study, we tried to determine the 
ideal grouping of  injury types. 

Description of NCCI Approach 

In the 1986 study, curves were fit to data from each of  a sam- 
ple of states. Combining data for various states prior to curve 
fitting was not done, apparently due to concern over differences 
in scale between the states. Consequently, one problem the re- 
searchers encountered was the scarcity of  data within each state 
for PT claims. Their solution was to combine PT claims with 
Major PP claims, yielding the composite injury type PT/Major. 

Similarly, IT~Minor is a combination of  TI" and Minor PP 
claims. 

In the 1992 study, NCCI developed a procedure for combining 
multiple states' data. At each report, losses for each state were 
grouped into three categories: Fatal, PT/Major, and T-f/Minor. 
Next, differences in scale by state were removed through nor- 
malization; for each claim group, this was done by dividing each 
claim by the average cost per case for the appropriate state- 
injury-type combination. Then claim sizes would be calibrated 
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by "entry ratio" to the average cost per case. For example, a 
Florida claim in the PT/Major category would be divided by the 
average cost per case for Florida PT/Major claims. For Fatal and 
PT/Major, claims were combined respective of  benefit type (es- 
calating, limited, and non-escalating). This normalization is con- 
sistent with the methodology for production of  ELFs, wherein 
excess ratios are calibrated for entry ratios. 

Statistical distributions were then fit to the normalized empir- 
ical distributions using maximum likelihood. 

Since by definition, no Major PP claim can be less than the 
critical value and it is unlikely that a permanent total claim would 
be, it made sense to fit a shifted distribution to the normalized 
fifth report PT/Major claims; that is, all normalized PT/Major 
claims were reduced by some flat amount prior to curve fitting. 

The average state critical value for the claims in the database 
was roughly a fourth of  the average cost per case for PT/Major 
claims. Consequently, a shift parameter of .25 or 25% of  the 
average cost per case was reasonable. The actual dollar value 
would of  course vary by state and year. 

Performance Testing Injury Groups 

Exhibit 1 summarizes the testing used to gauge the effec- 
tiveness of these three ways of grouping claims: 1) PT and PP 
modeled separately, 2) PT and Major PP combined, TT and Mi- 
nor PP combined, 3) a single distribution combining PT and all 
PP, leaving TT by itself, and 4) a control, the simple use of 
last year's raw data. The testing attempted to determine which 
approach best predicted the relative magnitude of the empirical 
fifth report excess ratio at given loss limits. We tested using the 
following loss limits: 12,500, 50,000, 250,000, and 500,000. 

We first considered the option of separating out PT and con- 
solidating Major and Minor PP claims, then modeling claims 
according to the normally reported injury type. This would be 
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the common-sense approach. In recent studies, we observed con- 
siderable variation in the proportion of PT/Major corresponding 
to PT. In some states, PT is nearly 40% of the PT/Major loss 
dollars; whereas, in others it is only 5%. This variation seemed 
to argue against a model which combined PT and Major PE 

To review the rationale behind the current option, labeled Op- 
tion 2 in Exhibit 1, it is apparent that the practical distinction 
between PT and Major PP varies from state to state and year 
to year. A claim classified as PT in one state might well be con- 
sidered a PP claim in another. This blurring of  PT and Major 
PP would not be a factor if PT and Major PP were combined 
prior to curve fitting. The combination of  Minor PP with T r  is 
made for ease of computation and has little impact on the final 
factors. 

As a third option for grouping claims, we considered the use 
of a single ground-up distribution combining PT and all of  PP, 
calling this the "Permanent Claims." 

Excess ratio tables were calculated at fifth report for each of 
the groupings of claims. Each of the three models above were 
used to calculate ELFs. For fixed loss limits, the relative magni- 
tude of the modeled excess ratios by state should roughly track 
the empirical ratios. If a model predicts a higher excess ratio 
in, say, Georgia than in Florida, the empirical fifth report excess 
ratio for Georgia should be higher than that for Florida. The ac- 
curacy of the tracking can be quantified using R 2. The models 
used as inputs the average cost per case and injury weight values 
corresponding to the target data. 

The model using the current grouping of claims produced the 
best estimates, as measured by R 2. That is, the current injury 
groupings did the best job of  predicting which states would have 
high or low empirical excess ratios. It may be that PT average 
costs per case and injury weights, which are based on relatively 
small samples, are too volatile, leading to unstable partial excess 
ratios when PT is modeled separately. 
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The selected model is based on the injury groupings: Fatal, 
PT/Major, and TT/Minor. 

2. T H E  G R O U P I N G  OF  STATES BY BEN EFIT  T Y P E  

Description of NCCI Approach 

In the 1992 study described above, differences in scale by 
state were removed by dividing each claim by the average cost 
per case for the appropriate state/claim group combination. Once 
the differences in scale were removed for claims of  each injury 
group, the states were combined according to state benefit type. 
There were five groupings: 1) Escalating Fatal, 2) Non-escalating 
or Limited Fatal, 3) Escalating or Limited PT, 4) Non-escalating 
PT, and 5) TT/Minor. States would be in either 1) or 2), 3) or 
4), and all states would be in 5). 

Performance Testing State Groupings 

We have tried to determine whether there exists a systemic 
relationship between the shape of the distribution (after removing 
the effects of scale) and the state benefit type. Three injury types 
were tested: Fatal, PT, and PE These have by far the most weight 
in the calculation of excess ratios. Fatal and PT are the ones 
that could be logically impacted by escalation, non-escalation, 
or limitation, but we also tested PP for completeness. 

We first examined the variance and skewness statistics of the 
normalized fifth report losses for each of  the three injury types - -  
Fatal, PT, and PP. 

For Fatal claims, neither the variance (Exhibit 2-A) nor the 
skewness (Exhibit 2-B) of  the normalized loss seem to have any 
significant relationship to state benefit type. Similarly, no useful 
relationship could be deduced for PT claims (Exhibits 3-A and 
3-B) or PP claims (Exhibit 4-A and 4-B). 

Treating benefit type as a categorical variable, we performed 
ANOVA testing and calculated coefficients of determination (R 2) 



RETROSPECTIVE RATING: 1997 EXCESS LOSS FACTORS 455 

for each of  the comparisons. The categorical variable state benefit 
type appears to be of little use in predicting fifth report normal- 
ized loss skewness or variance for Fatal or PT losses. 

Analysis based on the likelihood ratio test further supports 
this argument. For both Fatal and PT claims, we compared nor- 
malized loss distributions for claims in states grouped by benefit 
type with those for all other states combined. Differences for 
these groupings were statistically insignificant. 

We have decided that states should not be grouped by bene- 
fit classification, based on the large variation by state in higher 
moments of  the distribution and on the fact that these are not 
correlated with benefit type. 

As another possible change from the prior procedure, we con- 
sidered eliminating the countrywide distributions and using dis- 
tributions for each state. For most states we found the statisti- 
cal significance of the difference between the state and coun- 
trywide normalized size-of-loss distributions for Fatal and PT is 
questionable--as indicated by the likelihood ratio test (Exhibits 
5-A and 5-B). The enhanced credibility and utility of  using coun- 
trywide distributions, on the other hand, are of clear value. 

3. MODELING LOSS DEVELOPMENT 

The impact of loss development on individual claims is not 
uniform since claims obviously have unique development pat- 
terns. Some settle for less than originally estimated, some for 
more. Accordingly, as losses mature, the dispersion among losses 
increases and so we expect the shape of  the size-of-loss distribu- 
tion at an ultimate report to be very different from that at a fifth 
report. We would expect the former to be more heavy-tailed than 
the latter. 

For our purposes, it is the shape of  the ultimate-report nor- 
malized loss distribution that we wish to model for each injury 
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type. Unfortunately, Workers Compensation Statistical Plan data 
is available only through a fifth report. We are able to account 
for average claim size development on open serious claims using 
financial data. What is needed is a procedure which can account 
for the distortion of the shape of the size-of-loss distribution due 
to post-fifth-report loss development. In this section, we describe 
just such a procedure--the Random Development Divisor algo- 
rithm. 

In the Appendix, we discuss the Black-Scholes model used 
by stock traders to price securities options, noting the similarity 
between the mathematics of pricing an option in the financial 
arena and that of excess of loss pricing in insurance. The Random 
Development Divisor algorithm described below bears more than 
coincidental resemblance to the Black-Scholes model. 

The Random Development Divisor algorithm was designed to 
account for the post-fifth-report development in the shape of the 
severity distribution. The process is to 1) organize the partially 
developed fifth report loss distribution into a series of uniform 
distributions derived from empirical grouped data, 2) model loss 
development using a gamma distributed divisor, whose param- 
eters are determined by matching the moments of the loss de- 
velopment factors for individual claims, and 3) compound the 
uniform and gamma distributions to derive an ultimate report 
distribution. The use of the piecewise linear approximation to a 
continuous distribution is a standard technique. 

The basic building blocks of the model are a prior uniform 
distribution representing open or closed claims in each layer of 
fifth report loss range, and a corresponding gamma distribution 
quantifying development for such losses in the layer. 

Empirical Fifth Report Severity Distribution 

We construct n intervals of the grouped empirical claim 
distribution ~ for the fifth report size-of-loss random variable 
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Y. Each interval may contain several claims. These n + 1 points, 

(a I = O,Fy(al) = O),(az,Fy(a2) ) . . . . .  (an,Fy(an)), 

(an+l,Fy(an+l) = 1), 

divide the probability space of  Y into n intervals. Let Pk represent 
the probability associated with the kth interval: 

Pk = ~,(a~:+l) - Fy(ak), k = 1,2 . . . . .  n. 

Pk is the number of  empirical claims in the kth interval divided 
by the total number of  claims. 

The following discussion is in terms of  a basic building block. 
However, it should be kept in mind that the complete model 
would involve an application of  the method to each subinterval of  
fifth report size-of-loss. Compounding the posterior distributions 
for all layers is a task made easy by the computer. 

Gamma Distributed Fifth-to-Ultimate Development Divisors 

Let Z denote the random variable representing the reciprocal 
of  the fifth-to-ultimate loss development factor. Our a priori as- 
sumption is that such loss development is dependent on the size 
of  the fifth report losses and whether they are open or not. Of  
course, the proportion of  open claims varies by layer, so we were 
able to model loss development using two gamma distributions, 
one for open, one for closed. 

Modeling development using a divisor rather than a multi- 
plier facilitates the derivation of  closed form formulas for the 
cumulative distribution function and excess ratio functions. 

Constructive Model of  Ultimate Losses 

A heuristic description of  the process for generating ultimate 
losses (X = Y/Z)  is as follows: 
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STEP 1 Select one of  the n fifth report loss intervals. The prob- 
ability o f  selecting a given interval equals the amount of  proba- 
bility in the interval (Pk)- 

STEP 2 Assume that losses are uniformly distributed within each 
selected interval. Randomly select a fifth report loss (Y), which 
may be open or closed, from the uniform distribution chosen in 
Step 1. 

STEP 3 The result of  Step 1 determines which gamma distribu- 
tion will be used to select a loss development divisor (Z). Ran- 
domly choose Z from the respective gamma distribution with 
parameters (c~o,/3,,) or (c%,¢3c), where o is open and c is closed. 

STEP 4 Divide Y by Z. The result is X (the ultimate report loss). 

The Relationship Between the Conditional Distribution Functions 
of X and Y 

E~(x[z) = Pr(X < x[z) 

= Pr(Y/Z < x l z )  
(1) 

= Pr(Y < zx) 

Fx(x l z) = F~(zx). 

Derivation of Distribution Function of X 

We treat each y-interval as a separate random variable. Let 
uk(z) denote the probability density function (p.d.f.) for Z. Note 
that there are n such conditional dis tr ibut ions--one for each y- 
loss interval. 

Then, using Equation 1 in 

// Fx(x) = F~(x l z)uk(z)dz, 
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we have 

// fx(X ) = Fy(zX)ulc(z)dz. (2) 

For each interval (a k, a~+l], we assume that fifth report losses are 
uniformly distributed. Then, 

0 for y <_ a k 

Fy(y) = Y - ak for ak < y <_ ak+ 1 . 
ak+ 1 --  Ok 

1 for y > ak+ l 

For (fixed) x > 0, k = 1,2 . . . . .  n 

ak < Y < ak+l 

¢:~ a k < x Z  <_ a k + l 

.¢e~ ak  < Z <_ ak  + l 
X X 

Thus, 

0 for z < a k / x  

Fy(zX) = y - a ~  for a k / x < z < a k + l / X .  
ak+ 1 --  a k  

1 for z > ak+l /x  

Using the above in Equation 2, we can calculate F~(x): 

f Z_.~x _--_ ak  
Fx(x ) = __ ak+t/x uk(z)dz  + uk(z)dz.  (3) 

da k /x  ak  + 1 - -  ak  ak + 1/x 

The above applies to the kth interval (k = 1,2 . . . . .  n) treated 
in isolation. To calculate E,~(x) over all intervals, we take a 
probability-weighted average. Fx(X ) is the fully developed sam- 
ple to which we fit the final parametrized distributions leading 
to the excess ratio table used in production of  ELFs. 
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4. DERIVATION OF EXPECTED EXCESS LOSS FUNCTION FOR 

EACH INTERVAL 

Let x denote the loss limit. Then for a random loss Y/Z,  the 
excess of  Y/Z  over x is: (Y/Z - x) for Y/Z  > x, and 0 otherwise. 

Thus to calculate the expected excess loss, we need to inte- 
grate over the set of  (y,z) for which y /z  is greater than x. 

Let f (y , z )  denote the joint  probability density function for Y 
and Z. Since Y and Z are independent, 

f (y , z )  = f (y ) f ( z ) .  

Now, recall that Y is uniformly distributed in (ak,ak+l] which 
means that f (y , z )  is zero whenever  y < a k or y > ak+ I. This re- 
duces the area over which we must integrate to a trapezoidal 
region. 

This trapezoidal region consists of  the rectangular "AREA A" 
and the triangular "AREA B" in Figure 1. The expected excess 
loss can then be calculated as 

Zxcessx:i'°'txi°*+'(Y_x)i(y,z)dydz 
J 0 a a k 

+ fa ak+'/x I ak+l ( Y - - X )  f(y,z)dydz. (4) 
a k Ix .; xz 

DEFINITION If Z is gamma distributed with parameters (a,/3), 
then the cumulative distribution function (c.d.f ) of Z is 

fo~Z U a-  I e-U du  
Fz(z) = = V ( c 0  (5) 

For this distribution, non-central moments can be  calculated as 
follows: 

P (a  + n) 
E[Z"] - (6) 



RETROSPECTIVE RATING: 1997 EXCESS LOSS FACTORS 4 6 1  

FIGURE 1 
AREA OVER WHICH EXCESS LOSS INTEGRAL IS EVALUATED 

k+l 

y=x2 

AREA A 

THEOREM 1 Let the fifth report size-of-loss random variable Y 
(Y > O) be uniformly distributed on the interval (ak,ak+l], and let 
the loss development divisor random variable Z (z > O) be gamma 
distributed with parameters (a, t3). Let Y and Z be independent. 
Then the ultimate report size-of-loss random variable X, equal to 
the ratio o f  Y to Z (X = Y/Z) ,  has cumulative distribution function 

a__x_ IF (a+l"  ak+'/3)-F (a+ 1; akx/3)] E~(x) - 3(ak+ 1 -ak) ' x 

ak IF (o~; a k + l f l ) - F  (o~; a_~_)] 
ak + 1 -- ak x 

+ I - F  (°z;ak+lJ3) " x  

THEOREM 2 Let the random variable X be as defined in The- 
orem 1. Then for  any x (x > O) the expected portion o f  loss in 
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excess of x for a randomly selected claim is equal to 

Excessr-f l(ak+ak+l)[ '(c~-l;akxfl)-xF(ct;f f-~-)" 2(c~- 1) 

+ a2+lfl {F (c~-  1 ; - -  
2(c~ - l)(ak+ t - ak) ak +xl/3 ) _ 

,af)) 
+ c~x2 (F  (C~ + 1. ak ; , /3 )  _ F (c~ + 1; ak/3) } 

2/3(ak+ l - ak) ' x 

akX~k+lak {[" (o~; ak;1/3) -- [" (Ct; ~-~-)} .  

Excess x 
is 

is the numerator of the excess ratio, whose denominator 

E[X] =/3 (c~k+l + O~ k ) 

1) 

Illustration #1: Estimation of Z-parameters 

For fifth report lo~es  in the interval (20,000, 30,000) suppose 
we have observed that the first moment (mean) of the fifth-to- 
ultimate loss development factor distribution is m 1 = 1.00 and 
the second moment  is m 2 = 1.81. 

Estimate the c~ and fl parameters of  random development di- 
vision that correspond to the observed moments. 

Solution: 

Using Equation 6, set m I equal to E[1/Z] and m 2 equal to 
E[1/Z2] 

E[1/Z]  = / 3 / ( a -  1) = m I = 1.00, 

and 
E[1/Z 2] = fl2/{(oz- 1)(o~-- 2)} : m 2 = 1.81. 
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Solving the two equations simultaneously gives c~ = 3.2346 and 
/3 = 2.2346. 

I l lustrat ion #2: Calculat ion of  Fx(x) 

Given the scenario in Illustration 1, estimate the probabili ty 
that a fully developed claim will not exceed $35,000. 

Solution: 

We apply Theorem 1 with the following parameter values: ak 
= 20,000, ak+ l = 30,000, c~ = 3.2346,/3 = 2.2346, and x = 35,000 

Fx(35,000) = .825178. 

Illustration #3: Calculation of Excess Ratio 

Given the assumptions in Illustration 1, estimate the expected 
proportion of  loss dollars in excess of  35,000. 

Solution: 

We apply Theorem 2 with the following parameter values: a k 
= 20,000, ak+ 1 = 30,000, c~ = 3.2346,/3 = 2.2346, and x = 35,000 

Excessx(35,000) = 4092.57 

E[X] = 25,000 x 1.00 = 25,000. 

The ratio is 4097 .57 /25000  = 0.1639. 

5. THE ISSUE OF RISK LOAD 

The Flat Loading 

The flat loading, which accounts for parameter risk and anti- 
selection, was added to the ELF which is a ratio to premium that 
includes expenses; it was .005, subject to a maximum of  half  
the ELE  In the selected procedure, we have chosen to remove 
ourselves from the expense arena by instead applying the .005 
flat loading to the pure excess ratio and limiting it to half o f  that. 
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Prior Load for Contagion 

The loss distributions underlying the prior ELF procedure cor- 
respond to individual claims by injury type; however, ELFs ap- 
ply on a per occurrence basis (a single occurrence may contain 
multiple claims). The adjustment used to account for the per oc- 
currence basis of the coverage was to inflate the average cost 
per case for each injury type by a factor of 1.1. So, for exam- 
ple, if the average Fatal claim for a given state and hazard group 
was projected to be $100,000, an average value of $110,000 
was assumed in the ELF calculations. In other words, the Fatal 
occurrence size distribution was scaled to an average value of 
$110,000--from which the Fatal contribution to the ELF (the 
partial excess ratio) is calculated. This was done for all claim 
types. 

Selected Contagion Load 

As stated in Section 1, removing the differences in scale by 
state made it possible to combine experience from more than one 
state. For each injury type, normalized claims had an average 
size of unity. Parametrized statistical distributions were then fit 
to the sample distributions by maximum likelihood. The scale 
parameters of the fitted distributions did not necessarily result in 
a mean of unity but had to be adjusted once again to normalize 
the result. 

We are sampling from highly skewed distributions for PT/ 
Major and Fatal. Consider the distributions of the sample means. 
In theory, these distributions approach normality as the sample 
sizes approach infinity; but is this the case in practice? These 
sampling distributions of the means at an ultimate report, based 
on finite state sample sizes, are likely still skewed. This means 
that in more cases than not, the sample means will be less than 
the true means. 

The empirical cumulative distribution function (c.d.f.) is based 
on a sample, and a sample contains a largest observed claim. 
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A theoretical distribution such as a transformed beta would not 
have a maximum possible claim; some probability (albeit small) 
would be assigned to claims greater than the largest claim ob- 
served in the sample. For this reason, the mean of the fitted 
distribution (the maximum likelihood estimator) may be great- 
er than that observed in the data (the method of moments esti- 
mator). 

The choice of an adequate statistical model produces a fitted 
statistical distribution whose cdf very closely matches that ob- 
served for the data, except at very high entry ratios. For example, 
if 25% of the observed normalized claims are below entry ratio 
1.00, we expect the theoretical model's cdf to be very close to 
.25 at input value 1.00. As stated above, the prior approach was 
to re-scale the distribution fitted to combined data to a mean of 
unity. A consequence of this re-scaling is that the cumulative dis- 
tribution values do not match the empirical. In 1995, we chose 
not to re-scale the fitted distributions, thereby providing, in ef- 
fect, a natural contagion load. We are using distributions that 
closely match the observed empirical distribution values, but as- 
sign small probabilities to large unobserved claim values. As in 
the prior procedure, the small probabilities assigned to the tail 
of each distribution are determined by the fitting procedure. The 
difference is that the means of the models are greater than unity. 
By allowing the means to float, our models more closely match 
the observed claim distributions and at the same time provide 
some risk load. 

The way the Fatal and PT/Major claim data is fit enhances the 
impact of the above strategy. The model accounts for these occur- 
rences by fitting a distribution to the claim data censored from 
above; heuristically, the observed values correspond to single- 
claim occurrences and the censored portion of the distribution 
corresponds to multiple claim occurrences. The result is an oc- 
currence size-of-loss distribution, with entry ratios to the average 
cost per claim. This is described in more detail below. 
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6. DEVELOPMENT OF PRODUCTION MODEL 

The above sections cover the major issues addressed by our 
research and decisions made on these issues. Following is the 
application of these decisions in creating a new model. 

Construction of Normalized Database 

The countrywide claims database comes from Workers Com- 
pensation Statistical Plan data. This database contains fifth report 
claims for NCCI states along with an open/closed claim indica- 
tor. Each claim is identified by injury type. 

Fifth-to-ultimate development factors (from a separate data- 
base used for class ratemaking) by state and injury type were 
used to develop these open claims. The development factor for 
open claims was such that the overall development (on open and 
closed claims) averaged to the loss development factors in our 
class ratemaking database. 

Claims were then normalized (scaled to unity) by state and 
injury group, retaining the open/closed indicator. At this point, 
states can be combined, and the distributions can be grouped into 
n uniform claim size intervals. 

In the procedure described thus far, no adjustment has been 
made for dispersion in the development by claim, other than the 
application of a flat factor by state to open claims only. 

Application of Random Development Divisor (RDD) Algorithm 

As in the 1992 study, we assume that only the distributions for 
Fatal and PT/Major claims change shape beyond a fifth report. 

We introduced development uncertainty via the Random De- 
velopment Divisor (RDD) algorithm. Based officially on judg- 
ment, but unofficially on an analysis of confidential data, we used 
a coefficient of  variation (cv) of .9 for open claims and .1 for 
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closed claims. Section 4 explains how we developed the open 
claim sub-intervals using a cv of  .9. A similar procedure was 
used for the intervals of closed claims. We weighted together all 
2n resulting distributions to form the sample for the next step. 

Curve Fitting 

Using maximum likelihood, we fit parametric distributions to 
the developed sample claim distributions. Actual fifth report data 
was used without further adjustment to fit the TT/Minor model. 

Fit to Fatal Claims 

The fatal loss size distribution encompasses two distinct types 
of c la im-- those with and those without survivor. Survivor bene- 
fits range over a lot of  possible values, generally large to larger. 
Without a survivor, there is still a range of values depending on 
medical care, but a cluster of smallish values for claims in which 
medical care is minimal. Looking at the actual data, we con- 
cluded this could not be easily modeled by a single parametrized 
distribution. 

A linear mixture of  three distributions is used to model Fatal 
losses. Let R represent the "entry ratio" random variable. F(r) is 
the cumulative distribution function of R: 

F(r) = WlF I (r) + w2F2(r ) + w3F3(r), 

where the w's represent the weights given to each of  the three 
pieces. 

For R < 1, the distribution of R is modeled using a censored 
Weibull distribution. The censoring parameter, c, is 1. This dis- 
tribution, F l (r), received the largest weight (wj) of 0.608. 

For R > 1, we model, R - 1, the excess above entry ratio 1, 
with a transformed beta distribution. Each normalized occurrence 
in this interval can be thought of  as unity plus a transformed beta 
deviate. This distribution received the next largest weight (w2). 
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To eliminate clustering and improve the fit of the model, a 
small portion of  the claims in the interval (.75, 1) were modeled 
separately using a conditional (truncated and censored) Weibull. 
This distribution received a weight (w3). The parameters are the 
same as those for the Weibull used in the (0, 1 ) interval, except for 
the truncation point. Following is a comparison of the composite 
fitted distribution, F(r), and the sample distribution generated by 
the RDD model, Fn(r ). 

C O M P A R I S O N  OF FATAL DISTRIBUTIONS 

r F~(r) F(r) 

0.10 0.176340 0.176835 
0.50 0.413960 0.419246 
1.00 0.626340 0.626340 
5.00 0.987300 0.986424 

10.00 0.997330 0.996420 
50.00 0.999980 0.999779 

The severity distribution for Fatal has a mean of 1.039. 

Fit to PT/Major 

Following is a comparison of  PT/Major cdfs. 

The empirical ultimate report cdf for normalized claims prior 
to application of  the RDD algorithm (but after development of  
open claims) is Fn(r); after RDD it is F~(r). To account for the 
per occurrence basis of  the coverage, a conditional distribution 
F(r I r <_ 90) was fit via maximum likelihood to F~*(r), also cen- 
sored at 90. The corresponding uncensored distribution F(r) is 
used to model occurrences. 

The RDD algorithm causes most claims to develop downward 
but at the same time makes the tail of the distribution thicker, as 
can be noted from a comparison of Fn(r) and F~(r). 
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The fitted conditional distribution (F(r )<  90) fits the post- 
RDD cdf (F/,(r)) well. 

r F( r )  F*(r) F(r I r < 90) F(r) 

0.10 0.00030 0.00101 0.00123 0.00123 
0.50 0.37237 0.41468 0.41221 0.41214 
1.00 0.71205 0.74970 0.74759 0.74745 
5.00 0.98692 0.98053 0.97958 0.97940 

10.00 0.99741 0.99472 0.99350 0.99332 
50.00 0.99986 0.99967 0.99970 0.99951 

The severity distribution for PT/Major has a mean of  1.066. 

Fit to TT/Minor Claims 

A Transformed Beta was fit to TT/Minor claims. 

r F(r) Fn(r) 

1.O0 0.69826 0.68660 
5.00 0.97017 0.96897 

10.00 0.99635 0.99731 

In other words, finis. 
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EXHIBIT 1 

COMPARISON OF INJURY GROUPING SCHEMES 

PERFORMANCE TESTING SUMMARY 
THEORETICAL STATE EXCESS RATIOS REGRESSED ON 

EMPIRICAL 5TH REPORT EXCESS RATIOS 

35 States 

Loss Option 1 Option 2 Option 3 Option 4 
Limit R-squared R-squared R-squared R-squared 

$12,500 
$50,000 

$250,000 
$500,000 

0.969 0.960 0.970 0.903 
0.853 0.953 0.843 0.791 
0.406 0.408 0.281 0.404 
0.290 0.213 0.157 0.147 

NCCI States At Least 5,000 Serious Claims 
(17 States) 

Loss Option 1 Option 2 Option 3 Option 4 
Limit R-squared R-squared R-squared R-squared 

$12,500 0.958 0.952 0.960 0.936 
$50,000 0.843 0.965 0.837 0.921 

$250,000 0.618 0.696 0.534 0.553 
$500,000 0.361 0.371 0.296 0.215 

Option 1: FF and PP modeled separately. 
Option 2: PT and Major PP together, TT and Minor PP together. 
Option 3: FrF and all PP modeled together, TT by itself. 
(Control) Option 4: Excess Ratio predicted using previous year's observed values. 
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PERMANENT PARTIAL VARIANCE 
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EXHIBIT 5-A 

S U M M A R Y  

S T A T E  F A T A L  C L A I M S  D I S T R I B U T I O N  C O M P A R E D  T O  

C O U N T R Y W I D E  

Likelihood 
Degrees Ratio Test 

State Claims of Freedom Statistic p- v',due 

A 77 3 0.780 0.854 
B 36 3 0.435 0.933 
C 40 2 1.279 0.528 
D 69 2 1.587 0.452 
E 187 3 10,567 0.014 
F 14 2 0.680 0.712 
G 22 2 0.182 0.913 
H 168 2 (I.767 11.681 
I 103 2 4.518 0.104 
J 56 2 4.193 0.123 
K 51 2 2.188 0.335 
L 134 3 5.542 0.136 
M 511 3 19.877 0,000 
N 15 2 5.653 0.059 
O 118 3 0.882 0.830 
P 75 3 0.049 0,997 
Q 27 1 0.56(I 0.454 
R 28 2 0.382 0.826 
S 27 1 0.560 0.454 
T 78 2 2.434 0.296 
U 79 1 2.968 0,085 
V 7 2 2.622 0.270 
W 14 2 0.680 0.712 
X 84 2 3.253 0.197 
Y 4 1 0.451 0.502 
Z 10 2 1.825 I).402 

A A  66 3 0.208 0.976 
BB 61 2 6.313 11.043 
CC 59 3 9.003 11.029 
DD 13 1 1.860 0.173 
EE 132 3 2.5111 0,473 
FF 47 3 5.757 0.124 
GG 131 3 9.280 0.026 
HH 10 2 1.825 11.4112 
11 99 1 4.429 0.035 
JJ 91 3 0.389 0.943 

KK 78 3 1.392 0.707 

All States 2,3611 I 18 117.88 0,486 
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EXHIBIT 5-B 

S U M M A R Y  

S T A T E  P T  C L A I M S  D I S T R I B U T I O N  C O M P A R E D  T O  

C O U N T R Y W I D E  

Likelihood 
Degrees Ratio Test 

State Claims of Freedom Statistic p-value 

A 86 3 1.016 0.797 
B 29 2 2.076 0.354 
C 21 1 1.040 0.308 
D 358 2 55.105 0.000 
E 738 3 8.843 0.031 
F 64 2 0.195 0.907 
G 5 1 0.134 0.714 
H 144 3 0.133 0.988 
I 20 2 2.148 0.342 
J 47 2 0.264 0.876 
K 98 2 1.887 0.389 
L 156 3 7.160 0.067 
M 36 1 2.342 0.126 
N 29 2 3.464 0.177 
O 33 1 3.753 0.053 
P 32 3 10.665 0.014 
Q 82 2 0.635 0.728 
R 13 2 0.619 0.734 
S 45 2 3.346 0.188 
T 78 1 4.402 0.036 
U 109 3 0.511 0.916 
V 80 2 2.031 0.362 
W 11 2 2.961 0.228 
X 56 2 2.422 0.298 
Y 14 I 0.693 0.405 
Z 5 I 0.134 0.714 

AA 75 3 26.425 0.000 
BB 61 3 0.246 0.970 
CC 48 3 3.016 0.389 
DD 7 I 0.043 0.836 
EE 130 3 2.049 0.562 
FF 32 2 3.041 0.219 
GG 102 3 2.864 0.413 
HH 28 2 0.765 0.682 
11 52 3 1.726 0.631 
JJ 5l 2 2.197 0.333 

KK 52 3 2.117 0.548 

All States 3,027 115 162.468 0.002 

Excl. D 2,669 113 107.363 0.632 
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APPENDIX 

B l a c k - S c h o l e s  M o d e l  

Let us think of the future price of a share of  stock, S, as the 
current share price, S 0, times a random "development factor." 
The development factor random variable is customarily modeled 
by a lognormal distribution. Then the future price--equal  to a 
Iognormally distributed random factor times a constant (the cur- 
rent price) is also lognormally distributed. 

Let the indexed random variable S t represent the unknown 
future price of a share of  stock at time t (t > 0). Suppose S t is 
lognormally distributed with parameters (/tt,O2t). 

At time zero, we wish to price a call option exercisable at 
time t, at exercise price d. A call gives the holder the option of 
buying a share of stock at the exercise price at some future date. 
Let r f  represent the force of interest at the risk free rate. Then: 

P V ( C A L L )  = e - r f  * fd°~(s -- d ) f ( s ) d s  

= e r f ' {E (S )  - E(S;d)} 

( l n ( d ) - # i  ~ ) 

=er, } 
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 er Ee ln d  t+ 2t 

- d ¢  ~ v q  " 

The Black-Scholes form for the above is arrived at by equating 
the mean of the distribution to the current (t = O) share price 
times the discount factor: 

el~,+axt/2 = ~0 e '~ rft. 

The above is highly suggestive. First, the idea of creating Black- 
Scholes analogs based on distributions other than the lognor- 
mal may come to mind. We could, for example, assume that the 
stock "development factors" follow the gamma distribution in- 
stead of the lognormal; the share price itself would also then 
be gamma distributed. Not surprisingly, the use of such Black- 
Scholes analogs is not unknown in the world of finance. 

The second item which may come to mind is the resemblance 
between the mathematics of pricing an option and the reserving 
of excess of loss coverage. Of major significance is the follow- 
ing: if a fifth report open claim is currently valued below a given 
retention, it does not follow that the expected contribution of the 
claim to the excess layer is zero, just as the value of a call for a 
stock currently priced below the exercise price is not zero. 



BALANCING DEVELOPMENT AND TREND IN LOSS 
RESERVE ANALYSIS 

SPENCER M. GLUCK 

Abstract 

The most common loss reserving procedures empha- 
size development-based projections, with implied trends 
examined for reasonableness and considered on an ad- 
hoc basis. This paper presents relatively simple meth- 
ods for reflecting development and trend simultaneously, 
with weights that reasonably reflect the relative accuracy 
of the two types of projections. The Stanard-Biihlmann 
or "Cape Cod" method is a special case of these meth- 
ods, which are denoted "Generalized Cape Cod" meth- 
ods. The Appendices present underlying variance struc- 
tures under which the weights used in the Generalized 
Cape Cod methods are optimal. 

1. INTRODUCTION AND OVERVIEW 

Commonly  applied actuarial procedures involve projec- 
tions in two "directions" of the traditional loss development tri- 
angle: 

1. The development direction 

We use the term "development" to refer to the emergence of 
information for a single year of origin. Development projections 
involve the measurement, selection, and application of develop- 
ment patterns. While the measurement and selection of develop- 
ment patterns often involve data from multiple years of origin, 
the application of the development pattern is made to each year 
of origin independently. 

482 
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2. The trend direction 

We use the term "trend" to refer to projections made using re- 
lationships among amounts for different years of origin. Trends, 
as used herein, refer to expected changes in the ratio of a pro- 
jected amount to an exposure base. For simplicity, we will gen- 
erally refer to the projected amount as "losses," the exposure 
base as "exposures" and the ratio of losses to exposures as "pure 
premiums." 

In fact, the methods presented are more general, and have 
much wider potential application. For example, if the projected 
amount is losses, potential exposure bases include ultimate claim 
counts and premiums, in which case the quantity denoted "pure 
premium" herein would really be severity or loss ratio, respec- 
tively. Other examples of  potential combinations of projected 
amounts and exposure bases are listed in Section 9. 

In reserving methodology, primary emphasis is often given to 
development projections, with implied trends perhaps examined 
for reasonableness and ad hoc modifications sometimes made 
to development projections, particularly for recent years of  ori- 
gin. 

The Bornhuetter-Ferguson method is commonly used to 
blend a development projection with an "a priori" result. While 
that a priori result may well be based on a trend projection of 
some kind, the basis for the a priori result is, in general, un- 
specified [1]. The Stanard-Bfihlmann or "Cape Cod" method is 
an application of the Bornhuetter-Ferguson method in which the 
a priori result comes from a specified, trend-based calculation. 1 
Regression-based or dynamic stochastic models can be used to 
reflect the development and trend directions simultaneously, but 
these models are not in widespread use. 2 

ISee Stanard [2], Biihlmann [3] and Patrik [4]. 
2See, for example, DeJong and Zehnwirth [5], Taylor [6] and Wright [7]. 
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The goal of this paper is to present methods that simulta- 
neously reflect development and trend in a unified approach, 
reasonably reflecting the relative accuracy of the two types of 
projections. Additional goals are that the methods be practical, 
accessible to most practicing actuaries, and easily integrated with 
the most common actuarial procedures and the types of  data that 
are readily available. 

The methods discussed all estimate ultimate losses in a two 
step process; first, the expected losses for each year of origin are 
estimated based on a weighted average of the results from all 
years, developed and trended as appropriate; then the expected 
losses and actual losses for each year of origin are weighted 
together using the Bornhuetter-Ferguson (or similar) method. 
The Stanard-Bi.ihlmann or Cape Cod method is a special case 
of this general approach, and we refer to the broader family of 
methods as Generalized Cape Cod Methods. 

After introducing preliminary notation in Section 2, the paper 
proceeds as follows: 

Section 3: The Bornhuetter-Ferguson method is presented 
along with a statistical justification for the Born- 
huetter-Ferguson weights. 

Section 4: The general framework for calculating expected 
losses as a weighted average of all years' results is 
presented, along with a discussion of variance re- 
lationships that should be reflected in the weights. 

Section 5: The Stanard-B/ihlmann or Cape Cod Method is 
presented and is shown to fit the general framework 
of Section 4. Two potentially significant shortcom- 
ings of  the method are identified. 

Sections 
6 and 7: 

Two generalizations of the Cape Cod method are 
presented, designed to overcome the shortcomings 
identified in Section 5. 
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Section 8: The Bornhuetter-Ferguson calculation is revisited 
in conjunction with the expected loss estimates pre- 
sented in Section 5 through 7. 

Section 9: A number of potential applications of the method- 
ology are listed. 

Section 10: Conclusion 

A glossary of notation is provided at the end of the paper 
including preliminary notation from Section 2, plus additional 
notation introduced in other Sections and Appendices. 

The Appendices provide additional details of simple variance 
models consistent with the methods presented. Using these mod- 
els, calculations are presented that use the data triangle to assist 
in the selection of parameters for Section 6 and Section 7 models. 

The paper is organized with mathematics of any length or 
complexity consigned to the Appendices, and it is intended that 
the body of the paper can be read without the Appendices. Fur- 
thermore, while the Appendices provide calculations for estimat- 
ing certain model parameters, the procedures of the paper will 
provide reasonable and useful results with judgmentally selected 
values for these parameters. 

2. AVAILABLE DATA AND NOTATION 

The following are presumed to be available (with i = 1. . .N):  

Notation 
• The current evaluation of losses for each L T D  i 

year of origin i 

• Cumulative development factors D F  i 

appropriate to project losses to their 
ultimate value (note that the subscript 
refers to year of origin rather than 
maturity) 
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• A measurement of  the relative 
exposure per year of origin 

• Trend factors to adjust for the change 
in expected losses per exposure from 
year of  origin i to year of  origin j 

Additional Notation: 
• Ultimate losses for year of origin i 
• Thus, L T D  i × D F  i is an estimate of U L T  i 

• U L T  i + E  i (i.e. pure premium) 
• Expected Value 
• Variance 

U L T  i 

PP~ 

E( ) 
Var( ) 

The carat (^) is used to denote estimation; i.e., a quantity with a 
hat over it is an estimate of the quantity beneath the hat. 

The derivation of the factors D F  i a n d  TFi j  is not addressed in 
this paper. It is presumed that the actuary has applied appropriate 
calculations, adjustments, and judgments  in selecting the factors 
so that L T D  i × D F  i is the best available development estimate of 
U L T  i, and TFi j  is the best available estimate of E ( P P j )  - E ( P P i ) .  3 

For the most part, the above information is presumed to con- 
stitute all of the available information. In addition, calculations 
are presented in the Appendices that use the underlying data tri- 
angle to estimate certain model parameters. 

Additional notation is introduced at later points in the paper. 
For convenience, a glossary containing all notation is included 
at the end of  the paper. 

3. T H E  B O R N H U E T T E R - F E R G U S O N  M E T H O D  

The Bornhuetter-Ferguson method is the most commonly 
used approach to blending development and trend projections if 

3Some of  the types o f  adjustments that may be necessary are discussed in Berquist and 
Sherman [8]. 
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trended values from other years of origin are the basis for the es- 
timate of  expected ultimate losses. In the Bornhuetter-Ferguson 
method, ultimate losses are estimated as follows: 

U[,Ti=LTDi  + (1-D-D~i)  xE(ULTi )  (3.1) 

where the source of the estimate E(ULTi) is unspecified. Expand- 
ing the first term, we have: 

x LTD i x D F  i + 1 - x f~(ULTi) 

(3.2) 

and the Bornhuetter-Ferguson estimate is seen to be a weighted 
average of  the development based estimate of ULT i and E(ULTi). 
The weights are optimal 4 under the following constraints: 

1. Expected losses are known (i.e. fE(ULTi) = E(ULTi)); 

2. Unemerged losses are independent from the emerged 
losses; 

3. The DFis are known; and 

4. For a given year of origin i, the variance of  the 
development-based estimate of ultimate losses (i.e. LTD i 
x DFi) is proportional to the development factor D F  i. 

Proof of  the above statement is provided in Appendix A. 

In practice, Constraint 1 is obviously not met; the majority of  
this paper concentrates on producing the best possible estimate 
of  E(ULT i) using all of the available information per Section 2. 
Section 8 and Appendix E deal with the implications of  eliminat- 
ing this constraint, and it is demonstrated that the same weights 

4Optimal weights are defined as those that produce the best (i.e. the min imum variance) 
linear unbiased estimate, given that the individual estimates being weighted together are 
themselves considered to be unbiased. 
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remain optimal if the estimate E(ULTi) is determined using the 
techniques of  this paper. 

Constraint 2 is assumed to hold in both the Bornhuetter-  
Ferguson method and in underlying variance models developed 
in Appendix B. The independence assumption is modified for 
the model in Section 7 and Appendix C. 

Constraint 3 is assumed to hold throughout. 5 Given the imper- 
fection of this assumption, results described as optimal should 
be considered only approximately optimal. 

Constraint 4 will subsequently be denoted as the "Cape Cod 
variance assumption." This assumption, along with several other 
assumptions, and the "Cape Cod variance model" is presented in 
Appendix B. Relaxation of this constraint and the use of  an alter- 
native variance model is addressed in Section 7 and Appendix C. 

4. A F R A M E W O R K  F O R  E S T I M A T I N G  E X P E C T E D  L O S S E S  

F O R  A G I V E N  Y E A R  

Using the available information and notation per Section 2, 
the expected pure premium for year i can be estimated based on 
the data from year j as follows: 

jE(PPi) LTDj × DFj - x TFji (4.1) Ej 
where the subscript on the left denotes that the estimate is based 
on data from year of  origin j.  Although we usually think of  trend 
factors moving forward in time, note that j can also equal i or 
be greater than i. 

Thus, the data from each year of  origin j provide a differ- 
^ 

ent estimate jE(PPi). If these estimates were independent, then 

5Constraint 3 may be violated in practice. The DFis are usually themselves random 
variables, which makes the mathematical properties of development estimates less than 
ideal. Stanard concluded that development estimates are not generally unbiased. See 
Appendix A of  [2]. On the other hand, in Mack's  model, development estimates can be 
unbiased [ 10]. 
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the optimal estimate of E(PPi) would be a weighted average of 
the estimates jf~(PPi) with the weights inversely proportional to 
the variances of the estimation errors. 6'7 If the DFis were known, 
such an independence assumption would be plausible. Given the 
methods normally used to estimate the DFis, independence is un- 
likely. Nevertheless, we will attempt to develop weights roughly 
in inverse proportion to the relative variances of  the estimation 
errors associated with the individual projections. 

Differences among the variances of  the estimation errors as- 
sociated with the estimates jf~(PPi) are generally related to the 
volume of the data and to the development and trending calcu- 
lations as follows: 

1. Volume 

All other things being equal, we normally expect that 
a larger volume of data produces a lower variance esti- 
mate of pure premium than a smaller volume of  data. If 
we consider the loss data itself as the result of a random 
sample of size Ej, then the variance of the pure premium 
projection would be inversely proportional to Ej, and the 
indicated weight directly proportional to Ej. All models 
discussed herein assume that variance is inversely pro- 
portional to Ej and all weighting systems include Ej as 
an element of  the weights. 

2. Development 

All other things being equal, we normally expect that 
less mature data will produce higher variance estimates 

6A common statistics result. See Rohatgi [9, p. 352]. 
7When the amount being estimated is an expected value, the variance of the estimation 
errors equals the variance of the estimate, and the two terms may be used interchangeably. 
When the amount being estimated is an actual value (i.e., the realization of a random vari- 
able), then the distinction between the variance of the estimation error and the variance 
of the estimate is important. 
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than more mature data. Thus, in a reasonable weighting 
system, the relative weight will increase with the matu- 
rity of the data. 

3. Trending 

Given the imperfections in exposure measurement 
and trend estimation, the use of one year's data to esti- 
mate pure premium for another year would be expected 
to increase the variance of the estimation error as com- 
pared to using the data from the year itself. The rela- 
tive variance would be expected to increase as the length 
of  time between the years increases. This effect, which 
could be described as the deterioration in the value of 
information with time, is dealt with in many areas of 
actuarial practice. 

While the general variance relationships discussed above will 
usually hold, they should not be considered absolute nor is the 
list necessarily exhaustive. There may be specific cases when one 
or more of the above relationships do not hold. Furthermore, the 
variances associated with the estimates jE(PPi) may come from 
sources that are not reflected in the above relationships, with 
some complex interactions among them. Limited to the practical 
goal of a reasonable and useful weighting system, this paper 
presents simple, practical models of the variance structure that 
reasonably account for the variance relationships listed above. 

5. THE S TANARD-B~IHLMANN OR CAPE COD METHOD 

The Stanard-Bfihlmann or Cape Cod method compared favor- 
ably with other loss reserving techniques in a study by Stanard 
[2]. Stanard also cites unpublished work by Biihlmann [3], who 
coined the name "Cape Cod." Patrik presents the method as a 
reinsurance reserving technique in the Foundations of  Casualty 
Actuarial Science textbook, using the name Stanard-Biihlmann 
[4, pp. 352-354]. 
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Stanard's presentation of the method assumed that exposures 
were equal for all years. The presentation below allows for vary- 
ing levels of exposure, using the notation from Section 2. For 
clarity of presentation, we will omit the trend factor from the 
formulas in the remainder of the paper; it is assumed that losses 
and/or exposures have been adjusted for trend so that the pure 
premiums are expected to be equal for all years. 

The expected pure premium is estimated as follows: 

2 LTDi 
~(pp) _ i (5.1) 

~[Eg/DFi]" 
i 

Note that F.(PP) is written without subscript, since the value is 
presumed to be equal for all years of origin. The expected pure 
premium thus calculated using the data from all available years is 
then used to calculate a priori expected losses in the Bornhuetter- 
Ferguson procedure. 

Table i includes the trend adjustment and displays the calcu- 
lation of the expected pure premium. 

In Table 2, the expected pure premium is used in the 
Bornhuetter-Ferguson calculation. 

It is instructive to expand Equation 5.1. Rewriting the numer- 
ator, we have: 

~-~[(LTD i x DFi/Ei) x (Ei/DFi) ] 
~(pp) = i (5.2) 

~-~.[EjDF i] 
i 

In this form, the value of E(PP) can be seen to be the weighted 
average of the developed projected pure premiums for each year 
(LTD i × DF i + Ei) with the weights equal to the values Ei/DF i. 
Thus, the method falls into the general framework discussed in 
Section 4. 
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TABLE 1 

COMPANY XYZ 
WORKERS COMPENSATION STUDY 

DATA AS OF 12/31/92 

CAPE COD METHOD 
CALCULATION OF EXPECTED PURE PREMIUM 

(1) 

Accident 
Year 

(2) (3) (4) (5) (6) (7) 
E i L T D  i TFi,1992 D F  i wLi/DF i 

Trended 
Paid Trend Paid Losses Cumulative 

Losses Factor to @ 12/31/92 Paid Loss 
@ 12/31/92 1992 (3) × (4) Development 

Exposures (000's) @ 11% (000's) Factor (2)/(6) 

1979 914 491 3.8833 1,907 1.1200 816 
1980 1,203 385 3.4985 1,347 1.1312 1,063 
1981 1,264 949 3.1518 2,991 1.1538 1,096 
1982 1,372 769 2.8394 2384 1.1769 1,166 
1983 1,422 944 2.5580 2,415 1.2122 1,173 
1984 1,502 909 2.3045 2,095 1.2624 1,190 
1985 2,090 1,345 2.0762 2,792 1.3239 1,579 
1986 2,338 1,298 1.8704 2,428 1.4175 1,649 
1987 2,456 1,375 1.6851 2,317 1.5531 1,581 
1988 2,617 2,086 1.5181 3,167 1.7053 1,535 
1989 2,774 2,153 1.3676 2,945 1.9171 1,447 
1990 3,021 2,265 1.2321 2,791 2.4865 1,215 
1991 3,067 2,345 1.1100 2,603 3.4906 879 
1992 3,428 1,186 1.0000 1,186 6.6569 515 

Total 29,468 18,500 33,166 16,903 

(8) Expected Pure Premium (at accident year 1992 level): 1.9621 
(8) = (total Col. 5)/(total Col. 7) 

The Cape Cod weights reflect two of  the three variance rela- 
tionships identified in Section 4. Volume is reflected by having 
the weights proportional to E i. Development is reflected by hav- 
ing the weights inversely proportional to D F  i. Variance related 
to trending is not reflected. 
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TABLE 2 

COMPANY XYZ 
WORKERS COMPENSATION STUDY 

DATA AS OF 12/31/92 

CAPE COD METHOD 
ESTIMATION OF ULTIMATE LOSSES 

(BORNHUETTER-FERGUSON METHOD) 

(1) (9) (10) (11) (12) 
Expected 

Expected Unpaid Estimated 
Expected Ultimate Losses Ultimate 

Pure Losses/1,000 [ 1 - 1/(6)] Losses 
Accident Premium (2) x (9) x (10) (3) + ( I I ) 

Year (8)/(4) (000's) (000's) (000's) 

1979 0.5053 462 49 540 
1980 0.5608 675 78 463 
1981 0.6225 787 105 1,054 
1982 0.6910 948 143 912 
1983 0.7670 1,091 191 1,135 
1984 0.8514 1,279 266 1,175 
1985 0.9451 1,975 483 1,828 
1986 1.0490 2,453 722 2,020 
1987 1.1644 2,860 1,018 2,393 
1988 1.2925 3,382 1,399 3,485 
1989 1.4347 3,980 1,904 4,057 
1990 1.5925 4,811 2,876 5,141 
1991 1.7677 5,421 3,868 6,213 
1992 1.9621 6,726 5,716 6,902 

Total 36,849 18,819 37,319 

Using weights inversely proportional to the DFis makes the 
implicit assumption that the relative variance of  the development- 
based pure premium estimates are proportional to the DFi s8 (the 
Cape Cod variance assumption). This same assumption was pre- 
viously listed as underlying the Bornhuetter-Ferguson method. 

SThis result is developed in Appendix B of [2]. 
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This very simple variance model is often adequate to account for 
the decreasing reliability of projections as development factors 
increase--but  not always. For example, incurred loss develop- 
ment factors will often approach unity well before all the losses 
are settled and all variance is eliminated. Incurred loss devel- 
opment  factors less than unity provide an example where the 
Cape Cod variance assumption is clearly unreasonable. 9 Note 
that the Bornhuetter-Ferguson method also produces  unreason- 
able results in this case. I° This potential problem is addressed in 
Section 7. 

The failure to reflect variance related to trending can be a 
serious shortcoming in practice. Practitioners have sometimes 
found that the Cape Cod method gives excessive weight to out 
of date results. The problem can be severe when a very long data 
base is used, as is often the case in reinsurance applications. The 
problem can be addressed to some degree by limiting the num- 
ber of years entering the Cape Cod calculation. A less arbitrary 
approach is to specifically account for the relationship between 
variance and trending in the weighting scheme, as is presented 
in the following section. 

6. ACCOUNTING FOR Y E A R - T O - Y E A R  VARIANCE 

We present two approaches for accounting for variance related 
to trending. The first uses an exponential decay factor, which is 
simple to apply and has proven practical in applications, although 
it is not based directly on a mathematical model. The decay factor 
approach is the one cited in most other sections of  this paper. The 
second approach, using an additive "adaptive variance" term, is 
based on a specific mathematical model and is directly analogous 
to techniques used in dynamic stochastic modeling. With suitably 

9The implication would be that the immature projected pure premium is more reliable 
(i.e., has lower variance) than the actual ultimate pure premium. 
lOUsed with a development factor less than unity, the Bornhuetter-Ferguson method 
produces a projection outside of the range of the development result and the expected 
result, 
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chosen parameters, the two approaches produce similar results. 
The adaptive variance section can be skipped without substan- 
tial loss of continuity. The mathematical model underlying the 
adaptive variance approach is used in Appendix D to develop in- 
dicated values of the adaptive variance and of the approximately 
equivalent decay factor. 

The Decay Factor Approach II 

We account for the variance related to trending by introducing 
an exponential decay factor to the original Cape Cod weighting 
scheme. Equation 5.2 becomes: 

L L [ ( LrDj_eT ×OF1) 
E(PPi) = 

where 0_<D_<I. (6.1) 

The weights (Ej/DFj) × Dli-jl now reflect volume (via Ej), de- 
velopment using the Cape Cod variance assumption (via 1/DFj), 
and trending via the exponentially decaying weight D li-jl. The 
exponentially decaying weight has the required property that the 
relative weight decreases as the length of the trending period, 

^ 

I i - J l ,  increases. Note that the value E(PPi) now contains a sub- 
script denoting the year of origin, since the weights will now 
shift for each year of origin, causing the values of f~(PPi) to 
"drift." 12 

In Table 3, the example from Table 1 is re-worked with 
an annual exponential decay factor of 0.75. The calculation of 

I I Used for many years in various consulting reports [1 1]. 

12The drifting value o f  E(PPi) is roughly analogous to the techniques of  dynamic stochas- 
tic modeling, where the various model parameters may be allowed to drift over time. See, 
for example DeJong and Zehnwirth [5] and Wright  [7]. 
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TABLE 3 

COMPANY XYZ 
WORKERS COMPENSATION STUDY 

DATA AS OF 12/31/92 

GENERALIZED CAPE COD METHOD WITH DECAY 
CALCULATION OF EXPECTED PURE PREMIUM FOR ACCIDENT 

YEAR 1990 
(USING A DECAY RATE OF 75%) 

(1) (2) (3) (4) (5) (6) (7) (8) 
E i LTD i TFi,1992 D F  D bi-t99°l 

Indicated 
Ultimate 

Cumu- Trended 
Paid lative Pure 

Losses Trend Paid Loss Premium 
@ Factor Devel (3) × 

Accident Expo- 12/31/92 to 1992 -opment (4) × Decay 
Year sures (000's) @ 11% Factor (5)/(2) @ 75% 

Total 
Weight 

Assigned 
to 

Indicated 
Ult. Pure 
Premium 

(2) x 

(7)/(5) 

1979 914 491 3.8833 1.1200 2.3364 0.0422 34.467 
1980 1,203 385 3.4985 1.1312 1 . 2 6 6 5  0.0563 59.888 
1981 1,264 949 3.1518 1.1538 2.7303 0.0751 82.256 
1982 1,372 769 2.8394 1.1769 1.8730 0.1001 116.709 
1983 1,422 944 2.5580 1.2122 2.0585 0.1335 156.586 
1984 1,502 909 2.3045 1.2624 1 . 7 6 0 7  0.1780 211.758 
1985 2,090 1,345 2.0762 1.3239 1.7689 0.2373 374.626 
1986 2,338 1,298 1.8704 1 .4175  1.4719 0.3164 521.875 
1987 2,456 1,375 1 .6851  1 .5531  1 . 4 6 5 2  0.4219 667.133 
1988 2,617 2,086 1 .5181  1.7053 2.0635 0.5625 863.228 
1989 2,774 2,153 1.3676 1 .9171 2.0349 0.7500 1,085.233 
1990 3,021 2,265 1 .2321  2.4865 2.2970 1.0000 1,214.961 
1991 3,067 2,345 1.1100 3.4906 2.9625 0.7500 658.984 
1992 3,428 1,186 1.0000 6.6569 2.3031 0.5625 289.662 

Total 29,468 18,500 6,337.366 

(10) Expected Pure Premium for Accident Year 1990 (at 1992 AY level): 2.0675 
(10) = Average of Col. 6 weighted by Col. 8 
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TABLE 4 

COMPANY XYZ 
WORKERS COMPENSATION COMPANY 

DATA AS OF 12/31/92 

GENERALIZED CAPE COD METHOD WITH DECAY 
ESTIMATION OF ULTIMATE LOSSES 

(B ORN HUETI'ER-FERGUS ON METHOD) 

(1) (11) (12) (13) (14) (15) 
Expected 

Expected Expected Unpaid Estimated 
Pure Expected Ultimate Losses Ultimate 

Premium Pure Losses [ 1 - 1/(5)] Losses 
Accident @ AY 1992 Premium (2) x (12) x (13) (3) + (14) 

Year Level (11)/(4) (000's) (000's) (000's) 

1979 1.9586 0.5044 461 49 540 
1980 1.9246 0.5501 662 77 462 
1981 1.9676 0.6243 789 105 1,054 
1982 1.9290 0.6794 932 140 909 
1983 1.9019 0.7435 1,057 185 1,129 
1984 1.8644 0.8090 1,215 253 1,162 
1985 1.8397 0.8861 1,852 453 1,798 
1986 1.8246 0.9755 2,281 672 1,970 
1987 1.8511 1.0985 2,698 961 2,336 
1988 1.9250 1.2680 3,318 1,372 3,458 
1989 1.9915 1.4562 4,039 1,932 4,085 
1990 2.0675 1.6781 5,069 3,031 5,296 
1991 2.1399 1.9278 5,913 4,219 6,564 
1992 2.1486 2.1486 7,365 6,259 7,445 

Total 37,652 19,708 38,208 

the expected pure premium for accident year 1990 is shown in 
Table 3. 

The analogous calculation is then performed for other acci- 
dent years, and the results are recorded in Column 11 of Table 4. 
Note the drifting values of  the expected pure premium in Col- 
umn 11. (The single value 1.9617 was used for all years in the 
Table 1 and Table 2 calculation). 
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This structure, using a decay factor between zero and unity, 
conveniently collapses to the original Cape Cod method when 
D = 1 and to the development method when D = 0. Thus, adding 
the decay factor produces a compromise between the Cape Cod 
method and the development method, with the degree of com- 
promise controlled by the decay factor. The value of the decay 
factor should be a function of the variance associated with devel- 
opment projections compared with the variance associated with 
trend projections. In general, lower decay factors are appropriate 
for large data bases exhibiting stable development with higher 
decay factors for smaller data bases with more erratic develop- 
ment. 

Given that using the decay factor produces a compromise be- 
tween the Cape Cod and development methods, and that both 
the Cape Cod and development methods represent documented 
methodology, use of the decay factor will fall within the frame- 
work of documented methodology with any value of the decay 
factor between zero and unity, and it is reasonable that the decay 
factor may be judgmentally selected. Alternatively, the relative 
variances in the development and trend directions can be mea- 
sured from the data triangle and used to aid in the selection of 
the decay factor. 

Appendix B presents a variance model for data in a devel- 
opment triangle array, consistent with the Cape Cod variance 
assumption. Using that model, a method for using the data tri- 
angle to determine the indicated decay factor is developed in 
Appendix D. 

In judgmentally selecting decay factors over many years in 
practice, we have generally used values ranging from 50% to 
100%, with 75% as a "default" value. Estimates using the Ap- 
pendix D methodology appear to confirm that this range is rea- 
sonable. 
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The Adaptive Variance Approach 

This approach is justified by assuming that the unknown val- 
ues E(PPi) observe a simple random walk, i.e., 

E(PPi) = E(PPi_I) + d (6.2) 

where d is a random "disturbance" with mean zero and variance 
acr 2. We refer to the value of acr 2 as the adaptive variance. 

Denote the variance of the development-based estimate of  PPj 
as er 2, i.e. 

Var(LTDj x DFj - Ej) = ~r 2. 

Then, it can be shown that the variance of the estimation error 
associated with using the development-based estimate of PPj as 
an estimate of exp(PPi) is as follows: 

Var(E(PPi)-LTDj x DFj +Ej) = cr y -I- dcr  2 X [ i - j [ .  (6.3) 

The Cape Cod weights in Equation 5.2 assume that cry is directly 
proportional to DFj and inversely proportional to E j, i.e. 

o 2 = k x D F j / E j  (6.4) 

for some proportionality constant k. Substituting in Equation 6.3, 
we have: 

k x OFj + dcr2li _ Jl Var(E(PPi) - LTDj x DFj - Ej) - Ej 

(6.5) 

and the indicated weights would be in inverse proportion to the 
variances in Equation 6.5. To calculate these weights requires es- 
timates of both the adaptive variance do -2 and the proportionality 
constant k. 

The adaptive variance approach collapses to the original Cape 
Cod method when aa2= 0 and approaches the development 
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method as dCr 2 approaches infinity. Methods for estimating k and 
d ~2 are provided in Appendices B and D. 

Selecting an Approach 

Although the adaptive variance approach is more directly tied 
to a mathematical model, we generally prefer the decay factor 
approach since: 

• the two approaches produce similar results; 

• it is simpler to apply; 

• it directly reflects the degree of compromise between the Cape 
Cod and development methods; and 

• it is unitless, and thus is more amenable to judgmental  se- 
lection, evaluation of reasonableness, and comparisons among 
different data bases. 

7. GENERALIZING THE DEVELOPMENT VARIANCE ASSUMPTION 

In each method presented thus far, the relative variances aris- 
ing from development have been modeled using the Cape Cod 
variance assumption. While this simple assumption is often ade- 
quate, it is rather crude and is sometimes sufficiently inaccurate 
that the methods (including the Bornhuetter-Ferguson method in 
general) are unusable or of limited effectiveness. 

Rather than specify a relationship between the development- 
related variance and the development factors, we address the is- 
sue more generally by introducing an additional "variance fac- 
tor," VF i, defined as follows: 

Var[LTD i × DFi] 
VF i = (7.1) 

Var( ULTi) 

The Cape Cod variance assumption is the special case when 
VF i = D F  i. 
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In each previously presented formula for estimating expected 
pure premiums, the VFis replace the DFis as an element of the 
weights. Thus, the original Cape Cod weighting scheme (Equa- 
tion 5.2) becomes: 

[ ( LTDi x DFi 

E ( p p )  = ' (7.2) 

l 

Using the decay factor, Equation 6.1 becomes: 

r(LTDj ×Orj Ol _jl 1 

) 

After the expected pure premium is estimated, the final step 
of the reserving procedure has been the application of the 
Bornhuetter-Ferguson method; however, with the alternative as- 
sumption, an "alternative Bornhuetter-Ferguson" calculation is 
indicated. We modify Equation 3.2, replacing the weights based 
on D F  i with weights based on VF i, as follows: 

ULT i = (1 /VFi )  × LTD i × D F  i + (1 - 1/VFi)  × E(ULTi).  

(7.4) 

In Table 5 the expected pure premium for accident year 1990 
is calculated using a decay factor of 0.75 and variance factors 
in Column 8 different from the development factors in Col- 
umn 5. 

After performing the analogous calculation for other acci- 
dent years, the remainder of the methodology is shown in Ta- 
ble 6. 

Appendix C presents an alternative variance model consis- 
tent with using variance factors different from the development 
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TABLE 5 

COMPANY XYZ 
WORKERS COMPENSATION STUDY 

DATA AS OF 12/31/92 

GENERALIZED CAPE COD METHOD WITH 
DECAY AND ALTERNATIVE VARIANCE FACTORS 

CALCULATION OF EXPECTED PURE PREMIUM 
FOR ACCIDENT YEAR 1990 

(USING A DECAY RATE OF 75%) 

( l)  (2) 
Ei 

Accident Expo- 
Year sures 

(3) (4) (5) (6) (7) (8) (9) 
L T D  i TFi,1992 D F  i D li 19901 VF i 

Total 
Indicated Weight 

Cumu° Ultimate Assigned 
lative Trended to 

Incurred Incurred Pure Indicated 
Losses Trend Loss Premium Ult. Pure 

@ Factor to Devel- (3) × Decay Premium 
12/31/92 1992 @ opment (4)x Rate Variance (2)× 
(000's) 11% Factor (5)/(2) @ 75% Factors (7)/(8) 

1979 914 684 
1980 1,203 490 
1981 1,264 1,068 
1982 1,372 817 
1983 1 , 4 2 2  1,022 
1984 1,502 913 
1985 2,090 1,597 
1986 2,338 1,485 
1987 2,456 1,554 
1988 2,617 2,538 
1989 2,774 2,705 
1990 3 , 0 2 1  3,181 
1991 3,067 3,345 
1992 3,428 2,109 

3.8833 
3.4985 
3.1518 
2.8394 
2.5580 
2.3045 
2.0762 
1.8704 
.6851 
.5181 
.3676 
.2321 
.1100 
.0000 

1.0000 2.9061 0.0422 1.t200 34.467 
1.0050 1 .4321 0.0563 1.1312 59.888 
1.0100 2.6897 0.0751 1.1538 82.256 
1.0151 1.7164 0.1001 1.1769 116.709 
1.0252 1.8848 0.1335 1.2122 156.586 
1.0406 1.4577 0.1780 1.2624 2tl.758 
1.0614 1 .6838  0.2373 1.3239 374.626 
1.0880 1.2926 0.3164 1.4175 521.875 
1.1206 1.1948 0.4219 1 .5531 667.133 
1.1830 1.7417 0.5625 1.7053 863.228 
1.2715 1.6957 0.7500 1.9171 1,085.233 
1.4253 1 .8491 1.0000 2.4865 1,214.961 
1.7462 2.1140 0.7500 3.4906 658.984 
2.2026 1 .3551 0.5625 6.6569 289.662 

Total 29,468 23,508 6,337.366 

(11) Expected Pure Premium for Accident Year 1990 (at AY 1992 level): 1.6868 
(11 ) = Average of Col. 6 weighted by Col. 9 
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TABLE 6 

COMPANY XYZ 
WORKERS COMPENSATION STUDY 

DATA AS OF 12/31/92 

GENERALIZED CAPE COD METHOD 
WITH DECAY AND ALTERNATIVE VARIANCE FACTORS 

ESTIMATION OF ULTIMATE LOSSES 

(1) (I I) (12) (13) (14) (15) 
Estimated 

Development Ultimate 
Expected Expected Basis Losses 

Pure Expected Ultimate Ultimate (13) × 
Premium Pure Losses Losses [ 1 - 1/(8)] + 

Accident @ AY 1992 Premium (2) × (12) (3) × (5) (14)/(8) 
Year Level (11)/(4) (000's) (000's) (000's) 

1979 1.9586 0.5044 461 684 660 
1980 1.9025 0.5438 654 492 511 
1981 1.8916 0.6002 759 1,079 1,036 
1982 1.8072 0.6365 873 829 836 
1983 1.7450 0.6822 970 1,048 1,034 
1984 1.6784 0.7283 1,094 950 980 
1985 1.6377 0.7888 1,649 1,695 1,684 
1986 1.5946 0.8525 1,993 1,616 1,727 
1987 1.5873 0.9420 2,314 1,741 1,945 
1988 1.6261 1.0712 2,803 3,002 2,920 
1989 1.6557 1.2106 3,358 3,439 3,401 
1990 1.6868 1.3690 4,136 4,534 4,296 
1991 1.7071 1.5380 4,717 5,841 5,039 
1992 1.6883 1.6883 5,787 4,645 5,616 

Total 31,568 31,597 31,685 

factors. Using that model, Equation 7.4 is demonstrated to 
be the indicated alternative to the Bornhuetter-Ferguson meth- 
od. 

It is beyond the scope of this paper to develop specific mod- 
els of the relationship between variance and development. In 
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practice, any reasonable variance factors will produce reasonable 
weights. 

Measurement of  the variance factors based on the actual data 
triangle is possible, but the available data may frequently be too 
limited to parameterize a model of any complexity. As a prac- 
tical alternative, a "reference pattern" can be used, or a simple 
modification to a reference pattern can be made. 

For the reference pattern to be useful, the values should be 
greater than unity as long as there is any significant remaining 
uncertainty in the development projection of ultimate losses. For 
example, if the Cape Cod variance assumption has been rejected 
for incurred development because the development factors de- 
crease to unity (or less) faster than the uncertainty is eliminated, 
the paid development factors for the same business may provide 
a logical reference pattern (in the example of  Table 5, the alter- 
native variance factors are the paid development factors for the 
same business). A compromise between the paid and incurred 
development factors is another possible choice. 

8. USING EXPECTED VALUE ESTIMATES IN THE 

BORN H U E T F E R - F E R G U S O N  CALCULATIONS 

The methodologies described in this paper estimate ulti- 
mate losses with a two step process: first, estimating expected 
ultimate losses by optimally combining information from all 
years; then using the estimated expected ultimate losses in 
the Bornhuetter-Ferguson or alternative Bornhuetter-Ferguson 
calculation. Proofs are provided in Appendices A and C that 
the Bornhuetter-Ferguson and alternative Bornhuetter-Ferguson 
weights are optimal, but the proofs are dependent on the con- 
straint that the expected ultimate losses are assumed known. 

In fact, the expected ultimate losses are not known. Rather, 
we are using an estimate of  the expected ultimate losses. Fur- 
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thermore, that estimate is not independent from the development 
result, since the development result from each year is part of  the 
expected ultimate loss estimate. 

In each of  the estimates of expected ultimate losses presented 
in this paper, the expected ultimate loss estimate can be expressed 
as a weighted average of the development estimate from the year 
itself and other estimates independent of the data from the year 
itself (i.e., data from other years). 

Thus: 

fE(ULT) = W' × LTD x DF + (1 - W') x (Other) 

where Other is an estimate of E(ULT), independent of LTD and 
ULT. 

Additionally, the weights W' and (1 - W ' )  are inversely pro- 
portional to the variances of the estimates LTD x DF and Other, 
under the assumed variance models. 

Appendix E addresses the issue of  optimal Bornhuetter-  
Ferguson or alternative Bornhuetter-Ferguson weights, replac- 
ing the original assumption that E(ULT) is known with an as- 
sumption that the estimate (2(ULT) has the properties listed 
above. The result is that the exact same weights continue to be 
optimal. 

9. APPLICATION 

For convenience, we have referred to the quantity being pro- 
jected by development methods as "losses," the exposure base as 
"exposures" and the ratio of the two as "pure premiums." How- 
ever, there are many other potential applications. The methods 
described herein are useful any time we make a development- 
based projection and compare the result to some other predictive 
quantity. The following chart gives some examples: 
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QUANTITY 
BEING "EXPOSURE" TREND 

PROJECTED BASE ADJUSTMENT 

Losses Ratemaking Exposures Pure Premium Trend 

Losses Ultimate Claim Severity Trend 
Counts 

Losses Earned Premiums Loss Ratio Index, or equivalently, 
Rate Adequacy Index 

Claim Counts Ratemaking Frequency Trend 
Exposures 

ALAE Ultimate Losses Expected Trend in ALAE/Loss 
Ratio (if any) 

Salvage Ultimate Losses Expected Trend in Salvage/Loss 
(if any) 

Excess Loss Ultimate Limited Expected Trend in Excess/ 
Losses Limited Losses (if any) 

10. CONCLUSION 

The techniques of  this paper are useful in a wide variety of 
applications, and provide an alternative to the somewhat arbitrary 
judgments that are required when trend projections are incorpo- 
rated only through reasonableness tests and ad hoc modifications 
to development projections. 

The weighting methods presented herein are based on simpli- 
fied variance structures designed to reasonably reflect the vari- 
ance relationships that we typically expect to see. There is un- 
doubtedly a good deal of room for improvement in this area, and 
the development of more rigorous variance models is an interest- 
ing and useful area for further research. However, the difference 
between reasonably good weights and optimal weights is often 
not significant, and the use of  these techniques need not wait for 
improved variance models. 
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G L O S S A R Y  O F  N O T A T I O N  

Section 2 

Notation 

N 

LTD i 

Ei 

TF U 

~Lr 

PPi 

E( ) 

'Car( 

Section 4 jE(PPi) 

Section 5 PP 

Definition 

Number  of years of  origin 

Cumulative losses for year 
of  origin i at current 
evaluation 

Cumulative development 
factor to ultimate 
applicable to losses for 
year of  origin i at current 
evaluation 

Measurement  of  relative 
exposure for year of  
origin i 

Pure premium trend factor 
from year of  origin i to 
year of  origin j 

Ultimate losses for year of  
origin i 

ULT i + E i 

Expectation 

Variance 

Denotes estimation; i.e. the 
value is an estimate of  the 
value under the "hat" 

Estimate of  E(PPi) based 
only on data from year of  
origin j .  Defined in 
Equation 4.1 

Single value of  PP 
assumed to apply to all 
years of  origin in the Cape 
Cod model 

Statistical Conceptiont 3 

Random variable 

Treated as a known 
constant 

Known constant 

Treated as a known 
constant 

Random variable 

Random variable 

Operator 

Operator 

Estimated parameter, 
therefore, random variable 

Random variable 

13A number  of random variables result from summarized data, and may be conceived of  
as sample sums or sample means  (which are still random variables). 
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Section 6 

Section 7 

Section 8 

Appendix A 

Appendix B 

Notation Definition 

D Usually used in the form 
D li-jl. First introduced in 
Equation 6.1. An 
exponential decay factor 
between zero and one, 
used to decrease relative 
weight as the length of the 
trend period increases 

d Random disturbance term, 
used to define a random 
walk in the values E(PPi).  
First introduced in 
Equation 6.2 

act" Variance of  d, called the 
"adaptive variance" 

k A proportionality constant. 
First introduced in 
Equation 6.4. Also refer to 
Equation B. 1. 

VF i "Variance factor" to reflect 
relative variances of  
development-based 
ultimate losses for different 
years of  origin. Defined in 
Equation 7. I. 

W ~ Weight assigned to 
LTD × D F  in an estimate of  
E(ULT) 

Other Estimate of  E(ULT) that is 
independent of  the values 
LTD and ULT (normally 
from other years of  origin) 

V 2 Var(ULT) 

W Weight assigned to 
LTD x D F  in 
Bornhuetter-Ferguson 
estimate of  ULT 

o¢ "Is proportional to" 

Xij Cumulative losses for year 
of  origin i through 
development period j 
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Statistical Conception 

Unknown parameter, 
mostly treated as a known 
constant. If estimated, it is 
then an estimated 
parameter, therefore a 
random variable 

Random variable 

Unknown parameter 

Unknown parameter 

Treated as a known 
constant 

Unknown parameter 

Random variable 
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Appendix C 

Notation Definition Statistical Conception 

xi) Non-cumulative losses for Random variable 
year of  origin i in 
development period j 

Cumulative development Treated as a known 
pattern through period j constant 

pj Non-cumulative Treated as a known 
development pattern in constant 
period j 

n Number of  points of  data 

PPi Development based Estimated parameter, 
estimate of  PPi" Also therefore, random variable 
serves as development 
based estimate of  E(PP i) 

PP Cape Cod estimate of  PP. Estimated parameter 
Also serves as Cape Cod therefore, random variable 
estimate of  E(PP). Defined 
in Equation B.5. 

wij Weight given to the value 
xij/EiP j in calculating PP. 
Defined in Equation B.6. 

I)PPi Estimate of E(PPi) using Estimated parameter 
the Cape Cod with decay therefore, random variable 
model, using decay factor 
D. 

Note a small inconsistency 
in the use of  the ..... in that 
the value is an estimate of  
E(PPi) rather than PPi 

DWij The weight applied to the 
value xjJEip ) in 

calculating DPPi. Defined 
in Equation B.8. 

/~t) Estimate of  k using decay Estimated parameter, 
factor D therefore, random variable 

LTD t LTD x DF/VF. Random variable 
Transformed value of LTD 
for use in the alternative 
variance model 
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Appendix D 

Notation Definition 

V Cumulative "variance J 
pattern" through 
development period j 

v j  Non-cumulative variance 
pattern in development 
period j (=  I,~ - Vj_ l) 

X~j X,j × Vj/Pj. Transformed 
value of  X i j  

x !  Non-cumulative t j  

transformed value 
(= X~. - ' ,~ X i j - l )  

e i Random error related to 
estimate o P P  i . Introduced 
in Equation D.I. 

A i  o P P i  - o P P I  - 1 

E Variance-covariance matrix 
of  the vector A 

~/2 Variance of 0P~i for year 
of  origin with average 
variance. Defined in 
Equation D.5. 

Statistical Conception 

Treated as known constant 

Treated as known constant 

Random variable 

Random variable 

Random variable 

Random variable 

Unknown parameter 
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APPENDIX A 

OPTIMALITY OF THE BORNHUE'Iq'ER-FERGUSON CALCULATION 

This Appendix provides a proof that the Bornhuet ter-Fergu- 
son weights are optimal (i.e., they produce the minimum variance 
estimate) under the constraints listed in Section 3. We will use 
the notation from Section 2, dropping the subscript denoting year 
of  origin. 

In addition, let V z = Var(ULT). 

By Constraint 2, LTD is independent from U L T - L T D .  

Therefore,  Cov(ULT, LTD) = Var(LTD). 

By Constraint 4, Var(LTD x DF) cx DF. 

Noting that DF = 1 when LTD = ULT, the proportionality 
constant is Var(ULT), or V2: 

Var(LTD x DF) = V 2 x DF 

Var(LTD) = V 2 / DF  

V a r ( U L T -  LTD) -- Var(ULT) + Var(ULT) - 2Cov(ULT,  LTD) 

= Var(ULT) - Var(LTD) 

= V2(1 - 1/DF). 

The Bornhuet ter-Ferguson method estimates ultimate losses as 
a weighted average of  a development-based estimate of  ultimate 
losses and expected ultimate losses, i.e.: 

A 

ULT = W x LTD x DF + (1 - W) × E(ULT); 0 < W < 1 

Since the two estimates, LTD x DF  and E(ULT), are clearly inde- 
pendent, optimal weights are inversely proportional to the vari- 
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ances of the estimation errors [9, p. 352]. Starting with the esti- 
mate L T D  × DF:  

V a r ( U L T -  L T D  × DF) = Var(ULT) + V a r ( L T D  × D F )  

- 2 C o v ( U L T ,  L T D  × D F )  

= V 2 + V 2 × D F -  2 x D F  x V a r ( L T D )  

= V 2 + V 2 x D F -  2V 2 

= V Z [ D F  - 1]. 

The variance of the estimation error associated with using 
E ( U L T )  as an estimate of  ULT: 

V a r [ U L T - E ( U L T ) ]  = Var(ULT) = V 2. 

Calculating W in inverse proportion to the variances: 

V 2 1 

V 2 [ D F - 1 ] + V  2 D F - I + I  

= 1 / D F  

which is the weight used in the Bornhuetter-Ferguson method. 
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APPENDIX B 

THE CAPE COD VARIANCE MODEL 

This Appendix provides a simple model for the variance struc- 
ture of the development triangle consistent with the Cape Cod 
variance assumption. 

We introduce additional notation to deal with the full data 
triangle. Also, note that whereas the DFss in the prior notation 
carry a subscript denoting year of origin, the development pat- 
terns included in this Appendix carry subscripts denoting de- 
velopment period. Capital letters are used to denote cumulative 
values with lower case letters denoting the corresponding non- 
cumulative values. 

All losses are presumed to have been trended to a common 
level. 

Notation: 

Cumulative Triangle Values: Xij, 1 < i < N, 1 < j <_ N 
Non-Cumulative Triangle Values: Xij (= Xij for j = 1; = Xij-  

Xi,j- 1 for j > 1 ) 

Cumulative Development Pattern: Pj, (= 1/DFN_j+ l) 
Non-Cumulative Development Pattern: pj (= Pj for j = 1; = Pj 

- P j - l  for j > 1) 

For year i, the number of points i n  Xij is N - i + 1. Denote 
the total number of points in Xij a s  n -- N(N + 1)/2. 

Additional Assumptions 

• The values Xij a r e  assumed to be mutually independent. Within 
a given year of origin, this is somewhat more restrictive than 
(although clearly consistent with) the previous assumption of 
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independence between the emerged and unemerged losses. In- 
dependence among values from different years of origin is an 
additional assumption briefly touched on in Section 4. 

The variance of PPi  is inversely proportional to E i, i.e. 

k 
Var (PPi )  = ~ .  (B. 1) 

This assumption was previously discussed in Section 4. 

These additional assumptions are sufficient to determine that: 

Var(x i j )  = k x E i × p j .  (B.2) 

P r o o f  
this Appendix): 

, Var\ ~ / o~ g .  

Noting that Pj = 1 when U L T  i = Xi j ,  we have: 

( x .  _ var\ pj / PJ 
Var(Xij) = Pj x Var (ULTi )  

V a r ( X i , j _  1 + x i j )  = Var(X i , j_ t )  + Var(x i j )  
(B.3) 

Var(x i j )  = Var(Xi j )  - Var(Xi , j_  1 ) 

Var (x i j )  = Pj x Var(ULTi)  - Pj-I  x Var(ULTi)  

Var(xi j )  = (Pj - Pj-1) x Var(ULTi)  

= p j  x Var (ULTi ) .  

Noting that U L T  i = E i × PPi  and using Equation B. 1, we have: 

Var (ULTi )  = EZi x Var (PPi )  = k x E i. (B.4) 

Substituting (B.4) in (B.3) produces Equation B.2. 

The Cape Cod variance assumption (using notation of 
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The value k may be interpreted as the variance associated with 
one unit of exposure, when losses are fully developed. Each 
p o i n t ,  xij provides an independent estimate of E(PPi), a s  xij/EiPj, 
with variance k/Eip j. 

Optimality of the Development Estimates 

Weighting all estimates of  E(PP i) from a given year of  origin 
in inverse proportion to variances: 

N-i+l 

E (xij/EiPj) X EiP j 

~(ppi) = j=l N-i+l 

Z EiPj 
j = l  

= Xi,u_i+ 1/EiPN-i+l 

which is the development estimate; call it PPi. 

Optimality of the Cape Code Estimate 

We next assume that E(PPi) is the same for all years i (we will 
write it as E(PP)). Weighting all estimates of E(PP) in inverse 
proportion to variances: 

N N-i+l 
(xi j /eipj)  x Eipj 

N N-i+l 

Z Eipj 
i=1 j = l  

N 

~-~Xi,N-i+ 1 
i=1 

= ( B . 5 )  
N 

E Ei × PN-i+ l 
i=1 
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which is the estimate of the original Cape Cod method; call it 
PP. 

Estimating the Proportionality Constant k 

Estimates of the proportionality constant k are used in quan- 
tifying the decay factor (in Appendix D). The remainder of  this 
Append ixdea l s  with making these estimates. Noting that the 
estimate PP is a weighted average of the individual estimates 
(xij /E i × pj), the value k can be estimated by averaging the sam- 
ple variance estimates at each point: 

ETPj E i P j  

~: = (pAp × EiPj _ Xij) 2 

EiPj 

The sample variance estimates are biased low due to degrees of 
freedom of the estimate p~.15 In a weighted average, the bias is 
different at each point. If a given point has weight wij such that 
~ w i j  = 1, then the bias correction at that point is 1/(1 - W i j  ). 

Define: 

EiPj - EiPj (B.6) 
Wij  = N N - l + l  N 

E, pj Z E, eN-,+I 
/=1 j = l  l=1 

Then the individual estimates of k, corrected for bias are: 

= (pAp × EiPj _ Xij) 2 

E i p  j × (1 - Wij  ) 

15In keeping with our previously stated simplifying assumptions,  we are treating the 
development pattern pj and any trend factors used as known values. Since in practice 
these values are likely to be estimated from the xij, the measurement  of  variances is 
improved if the number of  parameters in the development pattern is kept to the min imum 
necessary; thus, using a fitted curve for the development pattern is recommended.  
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Averaging all available estimates of k: 

= i=1 j=l EiPj (1 - wij ) 

N 
(B.7) 

Estimating k Under the Cape Cod with Decay Model 

The Cape Cod with Decay model allows that the value E(PPi) 
may vary among the years. Let DPPi represent the estimate of 
E(PPi) using decay factor D. Using the notation of this section: 

N N-l+ 1 
Z (Xlj/ElPj) × EIPj × oli-ll 

Dp---~pi = 1=1 j=l 
N N-l+ 1 

Z Z EIXPJ  × D  li-ll 
l=1 j=l 

N 
Z Xl, N-I+ 1 × Dli-II 
1=1 

N 
~'~ E l x PN-I+I × Dti-ll 
l = l  

Note that I PPi = PP for all i, and that oPPi represents the devel- 
opment estimate for year i (PPi). 

Two modifications to Equation B.7 are indicated. First, the 
value PP is replaced with the individual year values DPPi . Sec- 
ond, the degree of freedom correction is changed due to the 
change in weighting system. Denote the weight given to the point 
Xij in calculating the value DPPi a s  oWij. Then, 

EiPj EiPj 
DWij =- = N N J-l+ 1 N 

E, × × Oli-,I E, × PN-,+, × Ol'-'t 
1=1 j=l l=1 

(B.8) 
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Note that if D < 1, the values DWij are strictly greater than the 
values Wij. T h u s ,  the full set of  values owij does not make a single 
set of  weights, This is because when you change the subscript i, 
owij now refers to a weight in a different weighted average. 

The formula for k reflecting decay factors less than one is as 
follows: 

N N-i+l (Dfi"pi × EiPj _xij)2 
Z Z UipTi-- © 

~:o = i=1 j=l N (B.9) 

Note that in the special case when D = 0,/~o is based on observed 
within-year variance only. Also note that there will be no vari- 
ance estimate available at the point xN,l (there will be no degrees 
of  freedom). Thus, in the case of  D = 0, Equation B.9 is modi- 
fied by ending the first summation at i = N - 1 and changing the 
denominator  to N - 1. 
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APPENDIX C 

THE ALTERNATIVE VARIANCE MODEL 

This Appendix provides an alternative variance model corre- 
sponding to the use of variance factors different from the devel- 
opment factors. 

Justification for the Alternative Model 

Given that our method is to weight together individual year 
development estimates that are assumed to be mutually inde- 
pendent, and that relative variances of those estimates are those 
assumed in Section 7, the weights in Section 7 follow directly. 

However, in developing a consistent underlying model, we 
encounter the following difficulty: for the overall estimate to be 
optimal, each year's development estimate must be the optimal 
estimate based on the data from that year alone. In fact, it can be 
proven that the following three assumptions are irreconcilable: 

1. optimality of the individual development estimates; 

2. independence of the emerged and unemerged losses; and 

3. variance factors different from the development factors. 

We address the difficulty by changing the independence as- 
sumption. We will demonstrate that with the alternative assump- 
tion, the "alternative Bornhuetter-Ferguson" calculation (Equa- 
tion 7.4) is indicated, that the development estimate is opti- 
mal for each individual year, and that the Cape Cod method 
with alternate variance factors is optimal using data from all 
years. 

Note, however, that the alternative model was selected for 
mathematical convenience only. We will conclude this section 
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with a brief discussion of whether the alternative model is intu- 
itively reasonable. 

Changing the Independence Assumption 

We accomplish the alternative independence assumption by 
defining a transformation of the data. Independence assumptions 
are then assumed to hold for the transformed data, rather than 
the original data. 

First, we use the cumulative notation of Appendix A. 

Define LTD I = LTD x DF/VF.  

Thus LTD ~ × VF = LTD × DF. 

We assume that LTD ~ is independent from U L T -  LTD ~. 

Next, we present the alternative model in full triangle detail, 
using the notation of Appendix B. 

In addition, we introduce the following notation: 

Cumulative Variance Pattern: Vj (= 1/VFN_j+I) 

Non-Cumulative Variance Pattern: vj (= I~ for j = 1; 
= Vj - Vj_ l f o r j  > I) 

Let 

, 
x i j = X  for j =  1; 

= X i ) -  ' for j >  1 X i , j -  I 

The values ~ j  are now assumed to be mutually independent. 
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Revisiting the Bornhuetter-Ferguson Calculation 

We perform calculations analogous to those of  Appendix A, 
with some changes to the underlying constraints. As in Ap- 
pendix A, we drop the subscript denoting year of  origin. Re- 
viewing the underlying constraints: 

o 

2. 

. 

Expected losses are known (i.e. fE(ULT) = E(ULT)). 

Originally, unemerged losses ( U L T - L T D )  were as- 
sumed to be independent from emerged losses (LTD). As 
defined previously, we now assume that ( U L T -  LTD ~) is 
independent from (LTD'). 

Both development factors (DF) and variance factors (VF) 
are now assumed to be known. 

4. The variance of  LTD x DF is now assumed to be propor- 
tional to VF. 

Let V 2 = Var(ULT). Then Var(LTD x DF) = Var(LTD' x VF) 
= V  2 x VF 

Var(LTD') = V2 / V F  

V a r ( U L T -  LTD') = V2(1 - 1/VF). 

Expressing the estimate of ULT as a weighted average of the 
development result and the expected ultimate losses: 

ULT = W x LTD x DF + (1 - W)E(ULT) 

= W x LTD' x VF+ (1 - W)E(ULT). 

The remaining calculations, which are not shown here, exactly 
parallel those of  Appendix A, except that LTD is replaced with 
LTD' and DF is replaced with VF. The indicated value of  W is 
1/VF, which is the weight used in the alternative Bornhuet ter-  
Ferguson calculation. 
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Optimality of the Development Estimates 

We have previously defined mutually independent values ~j.  
An exactly analogous proof to that performed in Appendix B 
establishes that the variance of ~j  is k x E i x vj. 

Each v a l u e  X~/j now produces an independent estimate of 
E(PPi), as xlj/Eiv j with variance k/Eivj. 16 Weighting all esti- 
mates for a given year of origin in inverse proportion to vari- 
ances: 

N - i + l  

(~Ij/E,~j) x e vj 

I~(PP,) = j=' = Xf., + /EV.  = XiN i+,/EiPN i+, 
N - i + I  ¢ , - i  " N - i + l  , - -  

j = l  

or the development estimate. 

Optimality of the Cape Cod Estimates with Alternate Variance 
Factors 

If E(PPi) is assumed to be equal for all years i, then the 
weighted average of all estimates of E(PP) from all years of 
origin is as follows: 

N N - i + l  

~ (~iij/Eivj) X Eiv j 
~(pp)= i=l j=l 

N N- i+ l  

GZEivj 
i=I  j=l  

N N 

~--~X;.N_i+ 1 ~ - ~ ( X i . N _ i + l / P N _ i + l )  x VN_i+ 1 
i=1 i=1 
N N 

EiVN- i+I  ~ E iVN- i+ I 
i=1 i=1 

16A proof that x i,/v. is an estimate of  ULT i is provided later in this Appendix. 
J ) 
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which is the Cape Cod estimate with the alternate variance fac- 
tors. 

Estimating the Proportionality Constant k 

The estimate of the proportionality constant k exactly parallels 
the calculations presented in Appendix B, except that X:j and ~ j  
replace Xij and xij, and Vj and vj replace Pj and pj. 

Thus Equations B.6 through B.9 become: 

Eivj (C. 1) 
W i j -  N 

EYN-t+, 
l=l 

~ N~_~fl (p- 'p  x Eiv j -x~ij) 2 

= (C.2) 
n 

Eivj (C.3) 
D Wij = N 

Z EIVN-t+ 1Dli- 1F 
I=1 

(oFP_ i E vjj - 2 

~:/9 = i=1 j : l  Eivj (1 -- DWij ) 
N (C.4) 

Note the discussion in Appendix B regarding modifying Equa- 
tion C.4 for the special case when D = 0. 

We now provide a proof that ~ j / v j  is an unbiased estimate of 
ULT i, assuming that each development result is an unbiased esti- 
mate of ULT i, and that the values Vj are known (i.e. not random 
variables). 

Assume, for all Xij" 

ULT i = E(Xij/Pj) = E(X[j/Vj). 
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Then, 

\ v i / vj vj 

_ Vj(ULTi) - Vj_I(ULTi) 

vj 

_ (Vj - Vj_ )(ULT ) 
m = ULT~. 

Plausibility o f  the Alternative Model  

Having replaced the assumption of independence between the 
emerged and unemerged losses, the alternative model implies 
dependence. It can be proven that when the variance factor is 
larger than the development factor, the alternative model implies 
negative correlation between emerged and unemerged losses. In 
this section, we discuss the plausibility of that result under two 
scenarios. 

The first scenario is an incurred development projection, 
which is the most common situation in which variance factors 
different from the development factors will be needed. In this 
situation, the inclusion of  the case reserves in the data may lead 
to variance factors higher than the development factors and a 
presumed negative correlation between emerged and unemerged 
losses. In this case, the sign of the dependence is logical: relative 
over-reserving of cases for a particular year of origin will lead to 
a high error on the emerged losses and a low error on the une- 
merged losses, and vice versa. Of course, we have not addressed 
whether the amount of dependence predicted by the alternative 
model is reasonable. 

A paid loss development scenario provides a counter-example. 
Assume that there are no partial payments, that average claim 
size tends to grow with the lag to settlement, and that the co- 
efficient of variation of the claim size distribution is constant. 
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These assumptions imply that the independence model is appro- 
priate, and yet the variance factors will be different from the 
development factors. In this case the alternative model appears 
inappropriate. If the variance factors are correct, the generalized 
Cape Cod weights still produce the optimal combination of the 
individual year development projections; however, the individ- 
ual year development projections do not represent the optimal 
combination of data from a particular year of origin. 
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APPENDIX D 

ADAPTIVE VARIANCES AND DECAY FACTORS 

This Appendix provides a method for calculating the indicated 
decay factor D. The approach first calculates the indicated adap- 
tive variance under the random walk model, and then calculates 
the approximately equivalent decay factor. 

Calculating the Adaptive Variance 

This approach for calculating the adaptive variance was used 
by Wright [7]. 

Recalling that the development-based pure premium estimate 
for year i is denoted oPPi, 

oPPi = E(PPi)  + c i. (D. 1) 

The random walk model connecting the values E(PP  i) is: 

E(PPi)  = E(PPi_I )  + d for i = 2,3 . . . .  (D.2) 

The error term ~i and the random disturbance term d are pre- 
sumed to have variances or/z and act 2, respectively. For the pur- 
poses of  this calculation, we will also assume that ei and d are 
normally distributed. 

The adaptive variance aa  2 is the variance of  the differences 
between the true (unknown) parameters E(PPi) ,  not the estimates 
oPPi. We measure the adaptive variance by observing the differ- 

ences in the estimates oPPi, and correcting for the estimation 
errors c i . 

Let 
A A 

Ai = oPPi - oPPi-I  for i = 2, 3 . . . .  

Then, 

Ai = (E(PPi)  + el) - (E(PPi -1)  + ei - l )  = d + ei - ci-1. 
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The variance-covariance matrix, E, of  the vector A is given by: 

i 
.(72 + d + d - d  0 ] 

z = - d  .(72 + d + d - d  / 0 - d  ~2 + d + d - d  
0 0 -(742 etc. J 

A is normally distributed, and the value AT x ~ ] - 1  X A is chi- 
squared distributed with N - 1 degrees of  f reedom (N - 1 is the 
length of  the vector A). 

The expected value of  the chi-squared distribution is N - 1, 
so an estimate of  (72 is given by solving the equation: 

m r x Z - 1  x A - N - 1 for d(72, (D.3) 

which can be solved numerically, given that estimates of  (7/2 are 
available. It is possible that the variances (7~ may be large enough 
compared to the differences A i that A T x E - l  x ,5 < N - 1 for 
all a(72 > 0. In this case, there is no demonstrable random walk 
and we set d(72 tO zero (and the decay factor D to unity). 

Under  the alternative variance model of  Appendix C (which 
includes the Cape Cod variance model as a special case), 

k 
(7} - EiVN_i+ l . (D.4) 

Given an estimate of  k, Equation D.4 can be applied and then 
Equation D.3 solved for get 2. 

To convert an estimate o f  d O'2 to the approximately equivalent 
decay factor, we have used the following formula: 17 

- N k  (D.5) e~ where ~/2_ N 
D - ~2 + dO-2' 

~ - ~ E i V u _ i +  1 
i=1 

17The above formula equates the decay factor and adaptive variance approaches at a lag 
of  one year, for a year of  origin with average variance. 
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To estimate k, we use the formulas of  Appendix B or C; however, 
the derivation of/~ is dependent on an estimate of  D. For the 
first i teratio~ we assume D = 0 and use Equation B.9 or C.4 
to calculate k0 .18 We then apply Equations D.4, D.3, and D.5 
above to estimate D. Equation B.9 or C.4 can then be used to 
estimate /¢o, and D can be re-estimated. This process can be 
applied repeatedly. 

ISD = 0 is a logical starting point since i 0 is based entirely on within-year variance and 
provides an unbiased estimate of  k regardless of  the appropriate value of  D. Given that 

D > 0, kt9 is a superior (i.e. lower variance) estimate of  k. 
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APPENDIX E 

OPTIMALITY OF BORNHOETTER-FERGUSON CALCULATION 
WITH RELAXED CONSTRAINTS 

Appendices A and C provide proofs that the Bornhuetter- 
Ferguson weights are optimal based on the Cape Cod variance 
model and alternative variance model, respectively, with the ad- 
ditional constraint that the expected ultimate losses are known 
(i.e., E(ULT) = E(ULT)). 

The Bornhuetter-Ferguson and alternative Bornhuetter-Fer- 
guson weights remain optimal using an estimate, E(ULT), if: 

(2(ULT) = W' × LTD × DF + (1 - W')(Other) (E. 1) 

where Other is an estimate of E(ULT), independent of LTD and 
ULT, and 

Var( Other) W' 
- ( E . 2 )  

Var(LTD x DF) (1 - W') 

i.e., LTD x DF and Other are weighted in inverse proportion to 
the variances of the estimates. All of the estimates of E(ULT) 
described in this paper meet these conditions under the assumed 
variance models. 

We provide the proof using the alternative variance model of 
Appendix C, which includes as a special case the original Cape 
Cod variance model. 

Let V 2 = Var(ULT). 

Var(LTD × DF) = V 2 × VF (E.3) 

UL---T : W x LTD x DF + (1 - W)E(ULT) (E.4) 
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Substi tut ing Equat ion E.1 in Equat ion E.4: 

UL~T = W × L T D  x D F  + (1 - W ) ( W '  x L T D  × D F  + (1 - W ' ) ( O t h e r ) )  

= (W + (1 - W ) W ' )  × L T D  × D F  + (1 - W)(1 - W ' ) ( O t h e r )  

= W* × L T D  × D F +  (1 - W * ) ( O t h e r ) ,  

where  W* = W + (1 - W ) W ' .  (E.5) 

This is a weighted  average o f  two independent  est imates o f  ULT.  

The variance o f  the est imation error associated with the first 
estimate,  

V a r ( U L T -  L T D  × D F )  = V 2 ( V F  - 1), 

is a result developed in Appendices  A and C. 

For  the second estimate,  

Var(ULT - Other )  

= V a r ( U L T )  + Var (Other )  

= V 2 + V a r ( L T D  × D F ) ( W ' / 1  - W ' ) ,  using E.2 

= V 2 + V 2 × V F ( W ' / 1  - W ' ) ,  using E.3 

= V2[1 + V F ( W ' / 1  - W')]. 

Calcula t ing 1 - W* in inverse proport ion to variances: 

1 - W* = V 2 ( V F -  1) 
V 2 ( V F  - 1) + V2(1 + V F ( W ' / 1  - W ' ) )  

V F -  1 V F -  1 

V F -  1 + 1 + V F ( W ' / 1  - W ' )  VF(1  + W ' ( 1  - W ' )  

V F -  1 ( V F -  1)(1 - W ' )  
= = (E.6) 

VF(  1 / 1 - W ' )  V F  
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Subst i tu t ing  1 - W* = (1 - W)(1 - W') (see E.5) 

( 1  - W ) ( 1  - W ' )  = (VF- 1 ) ( 1  - W ' )  

VF 

V F - 1  1 
- -  | 

VF VF 

which  is the we igh t  used  in the al ternat ive B o r n h u e t t e r - F e r g u s o n  
calculat ion.  



ON APPROXIMATIONS IN LIMITED F L U C T U A T I O N  
CREDIBILITY T H E O R Y  

VINCENT GOULET 

Abstract 

Different approximation methods to find a full credi- 
bility level in limited fluctuation credibility are studied, 
and it is concluded that, in most cases, there is no signif- 
icant difference between the various results. Since Venter 
[9] presented an opposite conclusion, it is emphasized 
that his approach to the problem is different and that 
the formula he derives should be used only in his given 
context. 
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1. INTRODUCTION 

"Limited fluctuation" credibility is the oldest branch of  cred- 
ibility theory, the other branch being "greatest accuracy" credi- 
bility. Also sometimes called American credibility, limited fluc- 
tuation credibility originates from the beginning of  this century 
with Mowbray ' s  paper "How Extensive a Payroll Exposure is 
Necessary to Give a Dependable Pure Premium?" [7]. The title 
is self-explanatory: Mowbray  was interested in finding a level of  
payroll in workers compensation insurance for which the pure 
premium of  a given risk would be considered fully credible. 

The theory has not evolved much since then. The answer to 
Mowbray ' s  ques t ion- -which  is Mowbray ' s  answer, as a matter 

533 
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of fact--has remained basically the same (see Section 2). With 
the emergence of risk theory methods, though, the original prob- 
lem has been formulated in a more general way, and new tech- 
niques have been used to find the full credibility level. This paper 
will first investigate if more powerful and sophisticated approx- 
imation methods are more worthwhile than the straightforward 
normal approximation. Then, because our conclusion will differ 
from that of Venter [9], the paper will show that Venter's full 
credibility requirement systematically exceeds that given by the 
normal approximation. 

2 .  T H E  M O D E L  

Let 

S = random variable of the total claim amount of a risk over 
a given period of time (usually 1 year); 

Xj = random variable of the amount of the j th  claim; 

N = random variable of the claim count of  the risk over the 
given period. 

Then, 
S =Xl +X2+...+XN, 

where X I , X  2 . . . . .  X n are independent, identically distributed 
(i.i.d.) random variables mutually independent of N. l This is the 
classical collective model of risk theory. Most of the situations 
usually encountered in limited fluctuation credibility can be de- 
scribed by an application of this model. It is also well known 
(see Gerber [3]) that 

E[SI = E[NIE[Xj], 

Var[S] = E[N]Var[Xj] + Var[N]E[Xj] 2. 

I In reality, the losses may be only conditionally independent given some parameters, 
such as the inflation rate, to which the losses will all be exposed jointly. 
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The fundamental  problem of  limited fluctuation credibility, 
only slightly adapted f rom Mowbray ' s  original idea, is: What  
are the parameters of  the distribution of  S such that the Equa- 
tion 

Pr[(1 - k)E[S] _< S _< (1 + k)E[S]] _> p (2.1) 

is verified? Using distribution functions, Equation 2.1 can also 
be written 

Fs((1 + k)E[S]) - Fs((1 - k)E[S]) _> p. (2.2) 

This requires that with probability 100p%, the total claim amount  
of  a risk stays within 100k% of  its expected value (see Figure 1). 
When  a risk meets these requirements,  we say that it deserves 
a full credibility of  order (k,p). That is, the risk is charged a 
pure p remium based solely on its own experience. After m peri- 
ods of  time, that p remium would simply be the empirical mean 
S =  (S t + S  2 + ... +Sm)/m, where each S i (i = 1,2 . . . .  ,m) is dis- 
tributed as S. 

In a usual l imited fluctuation credibility situation, the param- 
eter k will be quite small, e.g., 5 -10%,  while the parameter  p 
will be large, often above 90%. Equation 2.1 thus requires the 
distribution of  S to be relatively concentrated around its expected 
value. Since S is a (random) sum of  i.i.d, r andom variables, one 
way to achieve such a kind of  distribution is to sum a "large" 
number  of  those random var iables- -provided their second mo- 
ment  is finite. The distribution of  the sum will then tend towards a 
normal  distribution more relatively concentrated around its mean 
(that is, the ratio of  the standard deviation to the expected value 
decreases) as the number  of  terms in the sum increases. Ac- 
cordingly, the natural way to verify Equation 2.1 is to base the 
criteria for full credibility on the expected number  of  claims. 
(Note that the severity still enters the calculation through the 
Xjs, as it should.) The level of  full credibility will then usually 
be expressed in terms of  the expected value of N, which could 
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FIGURE 1 

MOWBRAY'S Two-SIDED FULL CREDIBILITY CRITERION 
REQUIRES 100p% OF THE PROBABILITY OF S TO BE 

CONCENTRATED WITHIN 100k% OF ITS EXPECTED VALUE 

00(I-p)/2 % t " " " "' ~: :~:" -~"~";:/ \ - .  ' : .  ' ; " , ' :  : ] "  ~,~> ,' - ) / 2  % 

.:.::" ' ~ ,  ;.::.~ ~.:"k; ':~ 

d I I " 

( 1 -k)  E[S] E[S] ( 1 +k) E[S] 

represent, for example, the number of  claims, the number  of  
employees,  or the total payroll. Besides, it is intuitively preferable 
to base the criterion on some kind of  exposure base rather than 
on the individual amount  of  the claims. 

At this point, most of  the theory of  limited fluctuation credi- 
bility has been covered. What follows are the calculations needed 
to satisfy Equation 2.1. However, these calculations are more rel- 
evant to general risk theory than to credibility theory. 
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Before going further, we define the skewness of a random 
variable X as 

[ ( X - E [ X ] ' ~  3] 
7t(X) = E [k. ~ J  " (2.3) 

Obviously, a symmetrical random variable has 71 (X) = 0. 

3. THE COMPOUND POISSON CASE 

The compound Poisson is a distribution frequently used for 
S. It is said that the distribution of S is compound Poisson of 
parameters A and G when the random variable N follows a Pois- 
son distribution of parameter A and the random variables Xj 
(j = 1 . . . . .  n) have distribution function G. Let Pk = E[X~]. Then 
(see, 'e.g., Gerber [3]): 

E[S] = AP], (3.1) 

Var[S] = AP 2, (3.2) 

" ) ' I ( S ) -  X/ P3a/2 . P 2  J (3.3) 

Equation 3.1 says that the expected value of  the total claim 
amount is simply the product of  the expected values of the num- 
ber of claims and the amount per claim. In Equation 3.2, we see 
that the variance of the total claim amount is given by the second 
moment  (P2) of the claim amount times the expected number (A) 
of  claims. Finally, Equation 3.3 shows that the skewness of S 
decreases as the expected number of claims increases. 

Further on, we will refer to this model simply as the "com- 
pound Poisson case." 

4. THREE APPROXIMATION METHODS 

In theory, the exact solution of the limited fluctuation credibil- 
ity problem would be obtained by calculating the exact distribu- 
tion of  S with the convolution formula (see, for example, Gerber 
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[3]). However, since the expected number of claims is usually 
quite large, that calculation would represent too long and labo- 
rious a task and would, in general, first require transforming the 
continuous distribution into a discrete one (a procedure known as 
"discretization"). In fact, nobody ever really intended to calculate 
the convolutions to solve the problem under study, approxima- 
tions instead always being used. We present here three common 
approximation methods that could be used to estimate the dis- 
tribution of S and then find the parameters that satisfy Equation 
2.1. 

The first approximation method we present is the most widely 
used in limited fluctuation credibility: the classic normal ap- 
proximation. In general, the distribution of S is not symmetri- 
cal, even if that of  Xj is. However, the limited fluctuation cri- 
teria will require the number of claims to be large, thus yield- 
ing an almost symmetrical distribution for S. By the version of 
the Central Limit Theorem applicable to random sums (Feller 
[2], p. 258), it is reasonable to approximate the distribution of 
(S - E [ S ] ) / ~  by a standard normal distribution. Equation 
2.1 may then be rewritten 

Pr 
S -  E[S] kE[S] ] kE[S] < < 

~ ( ~E[S] ) _ ~ ( ~  '-~JhE'S] 

=2~ (,E[S,~) _, > p. (4.1) 

Thus, 

(4.2) 

where c = 1 - p and z,~ is the c~th percentile of a standard normal 
distribution. In the compound Poisson case, one finds (see, for 
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example, Perryman [8]) 

A__ ( ~ ) 2 (  ,2)~12 . (4.3) 

The first ratio represents the normality assumption, while the 
second accounts for the variability of the claim amounts. In- 
deed, the full credibility level increases with the square of the 
coefficient of variation of the random variable Xj.  T h e  choice 
k = 5%, p = 90%, and Xj degenerated at 1 (that is, taking value 
one with probability one) leads to the famous A value of 1,082. 

The popularity of this approximation, aside from its good pre- 
cision in the limited fluctuation context when the expected value 
of N is large, comes from the fact that F ( x )  = 1 - F ( - x ) .  This 
greatly simplifies the calculations, as it may be seen in Equa- 
tion 4.1. However, even at the price of heavier calculations, one 
might be interested to take into account the skewness of S by 
using more refined approximations. 

Two approximations that take the skewness of S into account 
and are generally considered precise and relatively simple to use 
will be studied here: the normal power II approximation (using 
the first three moments; simply called normal power hereafter) 
and the Esscher approximation. The general formula of the nor- 
mal power approximation as found in Beard et al. [1 ] is: 

Let 

then 

~(x) ~ { 

x - E[SI ~/-2-, and Y0 = - \ / / / 4 ,  Y - x/V-g/m y 

( 3 / 9 6 )  ~ 1  - - ~ +  - -  - -  
I+ % 3y y> l  

* ( Y  - "y'(S)" - 1)+ 3~2(S)'''-f~t'+y~-7y)(5(yo-y)) , y <  1, 

(4.4) 

where ~5(y) = 0 if y = 0 and 1 otherwise. Note that for y = 1, both 
formulae produce qs(1). 
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To use the Esscher approximation, the moment  generating 
function (m.g.f.) of S must exist (preferably in a known form, to 
simplify the calculations). If the distribution of S is compound 
Poisson with parameters A and G, then the Esscher approxima- 
tion for the distribution function of S is 

[ m'"(h)  E3(u)] 1 - Fs(x)  ~ e ~'[m(h)-l]-hv Eo(u)  - 6AJ/2(m,,(h))3/2 

(4.5) 

where m(-) is the m.g.f, o f  G,h the solution of  Am'(h) = x, and 
u = hx/Am"(h).  The functions Ek(- ) (k = 0, 1,2 . . . .  ) are the Ess- 
chef functions: 

Eo(U) = eU2/2[1 - ~(u)] 

1 - u 2 ( 4 . 6 )  

E3(u) = x/27 + u3E°(u)" 

A more complete description of the Esscher approximation 
may be found in Gerber [3]. 

Quite obviously, it is not possible to simplify Equation 2.1 in a 
form like Equation 4.1 when using the normal power or Esscher 
approximations. The search for parameters such that Equation 
2.1 is satisfied must then be made iteratively. For example, if S 
is compound Poisson, one must find the smallest value of A such 
that Fs((l + k)E[S]; A) - Fs((1 - k)E[S]; A) _> p. If the probability 
obtained with a particular value of A is smaller than p, then the 
value of A must be raised--and vice-versa--until convergence to 
a unique minimal value is achieved. Note that if the distribution 
of S remains right-skewed once the full credibility level has been 
reached, then there will be more probability mass in the right tail 
than in the left one. 

Now, the question is: Are these more complicated and time 
consuming approximations better (more precise) than the usual 
normal approximation, still in the context of limited fluctuation 
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credibility? To study this, we made some tests where the distri- 
bution of S was held compound Poisson and the distribution of  
the individual claim amount changed. The parameters of  the lat- 
ter were chosen such that its expected value remained constant at 
5,000, but its variance, and especially its skewness, varied. The 
idea was to make Xj very skewed and then check if the values of  
A given by the three approximations would be significantly dif- 
ferent, and what would be the resulting skewness of  S. Gamma 
and lognormal distributions were used for Xj, but as the m.g.f, of  
the latter does not exist, the Esscher approximation was not cal- 
culated. The inversion of  characteristic functions (ICF) method 
has also been used to cross-check the results in the gamma cases. 
This numerical method is used to calculate distribution functions, 
and its precision is as high as the user desires (see, for example, 
the Heckman-Meyers  algorithm in [4]). It then appeared that the 
normal power and Esscher approximations can be considered as 
almost exact in the present application. Table 1 summarizes the 
results. 

From the results of  Table 1, we must conclude that it is not 
necessary to complicate the estimation of  the full credibility level 
by using more sophisticated approximation methods. Indeed, the 
differences between the various methods are minor - -of ten  less 
than 0.5%. These results and the conclusion drawn from them 
should not be very surprising since, as stated in Section 2, it is a 
requirement of  the limited fluctuation problem that most o f  the 
probability mass be concentrated around the expected value of  S. 
Thus, for k and p constant, the more Xj is skewed, the more the 
number of  claims has to be large to make S a "concentrated" dis- 
tribution. Intuitively, such a distribution can not be very skewed, 
thus leading to a good normal approximation. Besides, a quick 
look at the last column of  Table 1 shows that whatever the skew- 
ness of  Xj, the value of  A will be sufficiently large to result in a 
quite symmetrical distribution for S. 

There remains a peculiar case to be discussed in Table 1 : the 
first lognormal case, where the difference between the normal 
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TABLE 1 

F U L L  C R E D I B I L I T Y  L E V E L S  O B T A I N E D  W I T H  T H R E E  D I F F E R E N T  

A P P R O X I M A T I O N  M E T H O D S  IN C O M P O U N D  P O I S S O N  C A S E S  

Value of E[N] = A 

Normal Largest 
Distribution Approxi- Normal Difference 

of Xj "q (X)) k p mation Power Esscher (%) -~l (S) 

Gamma 
~ = 0.01 20.00 0.050 0.90 109,323 
c~ = 0.05 8.94 0.050 0.95 32,269 
~ = 0.20 4.47 0.100 0.90 1,624 
~ = 1.10 1.91 0.025 0.90 8,266 

c~ = 5.00 0.89 0.100 0.95 461 

Lognormal 
a2 = In 50 364.00 0.050 0.90 54,121 
a 2 = 2.00 23.73 0.050 0.95 11,354 

c~ 2 = 1.50 12.09 0.100 0.90 1,213 
cr 2 =0 .75  4.35 0.025 0.90 9,166 

cr 2 = 0.65 3.75 0.100 0.95 736 

109,258 109,234 0.08 0.06 
32,256 32,257 0.04 0.05 

1,621 1,620 0.23 0.11 
8,264 8,264 0.03 0 0 2  

461 461 0.06 0.06 

49,232 - -  9.03 1.52 
11,301 - -  0.47 0.19 

1,203 - -  0.77 0.27 

9,163 - -  0.03 0.03 
735 - -  0.14 0.10 

and the normal power approximations reaches 9%. Clearly, the 
skewness  o f  1.52 for S is not insignificant in that case; we would 
not find that there is precisely a probability of  0.05 both above 
and below 5% of  the mean (in fact, we get 0 .089 above and 
0.011 below).  The normal power estimation of  the full credibility 
level is thus slightly more precise than the normal approximation 
in that case. The interesting point, though, is that the normal 
approximation is the higher, or more conservative, o f  the two. 
We can thus also conclude from Table 1 that taking the skewness  
of  S into account does not yield higher full credibility levels. In 
fact, the normal approximation is, in all cases studied, the most 
conservative one. This can be explained by, for the same expected 
number of  terms in the sum, the normal approximation imputing 
more probability mass in the left tail than the normal power gains 
with heavier right tail (see Figure 2). 
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FIGURE 2 

FOR THE SAME EXPECTED NUMBER OF TERMS IN THE SUM, 
THE NORMAL APPROXIMATION IMPUTES MORE PROBABILITY 
MASS IN THE LEFI" TAIL THAN THE NORMAL POWER GAINS 

WITH ITS HEAVIER RIGHT TAIL 
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~ Normal Power A p p r o x i m a t i o n ~  Normal Approximation 

The above conclusions also mean that the skewness of  Xj is 
not a big issue on the level of  full credibility. There is still another 
interesting way to see that point with the normal power approx- 
imation in the compound Poisson case. Since the normal power 
approximation is only calculated at the points (1 +k)E[S] ,  it is 
easily seen from Equation 4.4 and Equations 3.1 to 3.3 that all the 
information one needs about the distribution o f  Xj to calculate 
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the approximation are the ratios r I -P1/P21/2 and r 2 -P3/P?/2, 
Assuming that Xj > 0, it is easily shown with Jensen 's  inequality 
that r I E [0, 1] and r 2 _> 1. The left end of  the interval for r I is 
not interesting, though, since it represents a zero expected value. 
The right end represents a zero variance and is thus the frequently 
used-- r ight ly  or wrongly- -degenera ted  case. The ratio r I is also 
the only one needed to calculate the normal approximation and, 
as such, fully determines in that case the full credibility l eve l - -  
given k and p, of  course. Entering in the calculation of  "71 (S), the 
ratio r 2 thus brings the skewness of  Xj into the normal power  
approximation. 

Table 2 presents full credibility levels of  order (0.05,0.90) 
for various combinations of  the above ratios. For illustration 
purposes,  we have included the A = 1,082 level, obtained with 
the combination r I = r 2 = 1. It should be noted that the entries 
in the upper left and lower right corners of  the table are most 
unlikely. For the most common distributions (e.g., gamma, log- 
normal, Pareto), a small r 1 comes with a large r 2, and vice versa. 
Then, in the really interesting area of  the table, we clearly see that 
the effect o f  a rather small variation in the value of  the ratio r l 
is much more important than a large variation in the value of  the 
ratio r 2. This could also be interpreted as r 1 determining most 
of  the final value of  the full credibility level, while r 2 causes 
only a small, and in most cases negligible, correction to that 
value. 

5. A WORD OF CAUTION 

The book Foundations of Casualty Actuarial Science published 
by the Casualty Actuarial Society presents, as the title sug- 
gests, different subjects central to casualty insurance practice. 
The chapter on Credibility Theory - -Chap te r  7 - - w a s  written by 
Gary G. Venter [9]. In the section on limited fluctuation credi- 
bility, it is demonstrated by an example (Example 3.1) that the 
normal power  approximation gives a much different estimation 
of  the full credibility level than the one obtained with the nor- 



ON APPROXIMATIONS IN LIMITED FLUCTUATION CREDIBILITY THEORY 545 

TABLE 2 

FULL CREDIBILITY LEVELS OF ORDER (0.05,0.90) IN THE 
COMPOUND POISSON CASE CALCULATED WITH THE NORMAL 

POWER APPROXIMATION 

r 2 = p31p 312 

ri = Pl tP2 i12 1 10 300 

0 1 108,222 108,210 102,458 
0.2 27,055 27,044 24,377 
0.3 12,025 12,013 11,172 
0.4 6,764 6,753 6,947 
0.5 4,329 4,318 4,857 
0.6 3,006 2,995 3,652 
0.7 2,208 2,198 2,884 
0.8 1,691 1,681 2,359 
0.9 1,336 1,326 1,981 
1 . 0  1 , 0 8 2  - -  - -  

mal approximation. Naturally, the former is considered the better. 
This contradiction with the results of the previous section is due 
to the fact that Venter is not considering exactly the same lim- 
ited fluctuation problem as above; therefore both normal power 
approximations can not be directly compared. 

As said before, the normal approximation leads to simple for- 
mulae because 

kE[S] ~ kE[S] 

1 - Fs((1 - k)E[S]). (5.1) 

Those equalities are not found in the normal power approxima- 
tion. A simple look at Equation 4.4 is enough to be convinced 
that Fs((1 + k)E[S]) ¢ 1 -Fs ( (1  -k)E[S]) .  Now, Mr. Venter's ap- 
proach to the problem is slightly different, as he introduces a 
simplifying hypothesis right at the beginning. Instead of consid- 
ering Equation 2.1, he considers a one-sided requirement for full 
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FIGURE 3 

VENTER'S ONE-SIDED FULL CREDIBILITY CRITERION 
REQUIRES 100p*% OF THE PROBABILITY OF S TO BE UNDER 

100(1 + k)% OF ITS EXPECTED VALUE 

E[S] (l +k 

100(l-p*) % 

2. 
E[S] 

r 

credibility, namely: 

Pr[S _< (1 + k)E[S]] _> (1 + p)/2 =_ p*. (5.2) 

Thus, instead of requiring that there is a probability of p that S 
does not deviate from its expected value by more than 100k%, it 
is only required that there is a probability of p* that S does not 
exceed its expected value by more than 100k%. Therefore, while 
Equation 2.1 looks at both left and fight tails of S, Equation 5.2 
looks only at the fight tail (see Figure 3). 
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This different definition of the problem has no effect on 
the normal approximation since the distribution of S is in any 
case approximated by a symmetrical distribution. However, when 
considering the normal power approximation, the necessary iter- 
ative calculation can be avoided by applying the simplification 
assumed in Equation 5.2 to derive a formula of the same form 
as Equation 4.2. Indeed, Venter [9] defines 

Var[N] 
m 2 - _ _  + C V ( X )  2 

E[N] 

Var[N] 2 
m3 = " ~ I ( X ) C V ( X )  3 + 3 E - - E - ~ - C V ( X )  (5.3) 

E[(N - E[N]) 3 ] 
+ 

E[N] 

(where C V ( X )  is the coefficient of variation of the random vari- 
able X) and then the following condition is obtained: 2 

l [  ~ z 2 m 2 m 3 2  12 
E[N] >__ ~ Zl_e/2V~+ 1-~/2 2 + -~-~22k(Zl_e/2 - 1) 

(5.4) 

In Example 3.1 of [9], S is a compound Poisson distribution. 
The distribution of  the individual claim amount is lognormal 
with expected value 5,000 and coefficient of  variation equal to 
7, which amounts to parameter cr 2 equal to In 50. The full credi- 
bility level is defined by p = 0.90 (p* = 0.95) and k = 0.05. The 
normal approximation for A is then correctly given as 54,120. 
As can be seen in Table 1, the "usual" two-sided normal power 
approximation would in that case be 53,927, while the result ob- 
tained with Equation 5.4 is 80,030. Full credibility levels have 
also been calculated with Venter's formula for every other case 
of Table 1. They are compared with previous results in Table 3. 
In the last column of  Table 3 are also displayed the "true" values 

2There is a misprint in Foundations of Casualty Actuarial Science: the square root sign in 
Equation 3.6 should be longer and end just before the rightmost parenthesis, 
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TABLE 3 

C O M P A R I S O N  O F  F U L L  C R E D I B I L I T Y  R E S U L T S  O B T A I N E D  W I T H  

T H E  N O R M A L  A N D  N O R M A L  P O W E R  A P P R O X I M A T I O N S  A N D  

W I T H  V E N T E R ' S  F O R M U L A  

Value of E[N] = k 

Normal p for 
Distribution Approxi- Normal Venter's Venter's 

of Xj k p mation Power Formula Results 

Gamma 
o = 001 0.050 0.99 109,323 109,258 111,598 0.9036 
~ = 0.05 0.050 0.95 32,269 32,256 33,042 0.9527 
c~ = 0.20 0.100 0.90 1,624 1,621 1,686 0.9065 
c~ = 1.10 0.025 0.90 8,266 8.264 8,330 09013 
~ = 5.00 0.100 0.95 461 461 474 0.9532 

Lognormal 
a 2 =- In 50 0.050 0.90 54,121 49,232 80,029 0.9500 
a 2 = 2.00 0.050 0.95 11,354 11,301 12,367 0.9596 
a 2 = 1.50 0.100 0.90 1,213 1,203 1,325 0.9157 
a 2 = 0.75 0.025 0.90 9,166 9,163 9,268 0.9020 
a 2 = 0.65 0.100 0.95 736 735 770 0.9552 

of  p induced by Venter's results and calculated with the normal 
power approximation. 

Venter's one-sided full credibility levels are consistently 
higher than the two-sided ones calculated with both the normal 
and normal power approximations. Since the distributions of  S 
are usually positively skewed in the fields where limited fluctu- 
ation credibility is applied, this is indeed a direct consequence 
of  the formulation of  the problem in the form of  Equation 5.2 
coupled with the use of  the normal power approximation to take 
the third moment of  S into account. 

The rationale of  the author for adopting a one-sided criterion 
is not very clear. It is first suggested in [9] that, for most distribu- 
tions of  interest, Mowbray's two-sided criteria will be satisfied 
if the one-sided is. This can be verified in Table 3. But the main 
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idea was probably to use the normal power approximation to 
obtain more ref ined--more accurate--full  credibility levels. "I'he 
task is then facilitated by the one-sided criterion as it leads to 
the easy to use, closed-form credibility formula, Equation 5.4. 
The problem with this formula is that it sometimes unnecessarily 
overstates the full credibility levels, a fact it appears Venter was 
aware of, as he summarizes Dale Nelson (PCAS, 1969): 

... although the NP [normal power approximation] 
gives useful approximations of the higher percentiles, 
it may overstate the volume needed for full credibility 
relative to given standards. 

Once the desired degree of conservatism has been fixed 
through the parameters k and p, there exists a "true" full credi- 
bility level satisfying Equation 2.1. We said earlier that our nor- 
mal power approximation almost gives the true levels 3 and that 
the normal approximation is sufficiently close to these levels. 
Now, the normal approximation levels satisfying Equation 5.2 
will be the same and as such should be satisfactory. Equation 
5.4 may thus be simpler than our application of the normal 
power approximation, but as it yields higher results than the 
even simpler normal approximation, its usefulness becomes 
questionable. 

Finally, it is not clearly stated in [9] that Equation 5.4 yields 
h igher- -and sometimes much higher, as Table 3 shows--ful l  
credibility levels as a solution to a problem defined in the form 
of Equation 5.2. This could lead to the perception that using the 
third moment  in any full credibility level estimation will neces- 
sarily increase these levels. We have concluded earlier that this 
is not the case. An eventual user of Equation 5.4 should thus 
be aware of its implications and ensure it is used in conjunction 
with the one-sided definition of the limited fluctuation credibility 
problem. 

3At least in the gamma cases. 
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6. CONCLUSION 

The conclusion of the first part of this paper is drawn from 
the tests summarized in Table 1. Although giving very accurate 
results, more sophisticated approximation methods like normal 
power or Esscher are not worth the added complexity and calcu- 
lation time as compared to the normal approximation to estimate 
full credibility levels. It has been shown that when staying with 
Mowbray's  original definition of the limited fluctuation problem, 
the differences between the various approximations are hardly 
significant. In more peculiar situations, the normal approxima- 
tion yields the more conservative result, so we stay on the safe 
side. 

While not necessary in limited fluctuation credibility, we 
nonetheless emphasize that the normal power and Esscher ap- 
proximations remain very useful tools in general risk theory be- 
cause of  their good estimation of the percentiles of an aggregate 
claim distribution. 

The paper then discussed the apparently different conclusions 
put forward by Venter [9]. We mainly argue that it should be 
stated more clearly in [9] that the definition of  the limited fluc- 
tuation problem differs from Mowbray's  traditional one. More- 
over, the formula based on the normal power approximation used 
in the paper and the conclusions drawn with it pertain only to 
the problem studied and should not be carried over to general 
limited fluctuation credibility. 

The reader should note that when the limited fluctuation prob- 
lem is treated as in this paper (that is, with Mowbray's  defini- 
tion), it is not possible to derive a simple, explicit formula for 
the expected value of N (which usually gives the full credibility 
level in limited fluctuation credibility) while using the normal 
power approximation. 

Mayerson et al. [6] also obtained significantly higher (from 
3% to 10%) full credibility levels when using the third moment  
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of the distribution of S, but this is also due to their conserva- 
tive approach to the problem. When worked out with the normal 
power approximation, the compound Poisson examples of May- 
erson et al. lead to full credibility levels almost equal to the 
normal approximation. The most important idea of  that paper, 
though, was that the full credibility level should be based on the 
pure premium (namely the distribution of S) rather than on only 
the number of claims (the distribution of N). This should still be 
stressed today. 
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PARAMETER UNCERTAINTY IN (LOG)NORMAL 
DISTRIBUTIONS 

RODNEY E. KREPS 

Abstract 

The modeling of parameter uncertainty due to sample 
size in normal and lognormal distributions with diffuse 
Bayesian priors is solved exactly and compared to the 
large-sample approximation. Large-scale simulation re- 
sults are presented. The results suggest that (1) the large- 
sample approximation is not very good in this case; and 
(2) estimates of reserve uncertainty may be considerably 
understated. A consequence is that intrinsic risk loads 
and reinsurance premiums may also be considerably un- 
derstated. An example is given from Best's Homeown- 
ers paid data, where the mean estimate of IBNR hardly 
changes: it is $9.96B without parameter uncertainty and 
$10.01B with it, but the corresponding distribution stan- 
dard deviations are 6.9% and 24.9% of the respective 
means. 

1. INTRODUCTION 

One of  the most ubiquitous sources of parameter uncertainty 
is the fact that samples in real life are never infinite. Thus, when 
using a sample to estimate parameters of a presumed underlying 
distribution, the size of the sample must play a role in the un- 
certainty in the derived values of the parameters. In general, this 
uncertainty goes to zero as the sample size gets large. The con- 
verse, that the uncertainty can be large and even infinite when 
the sample size is small, is generally unappreciated. 

For large samples the parameter distributions can be approxi- 
mated by normal distributions, using the inverse of  the matrix of 

553 
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second derivatives of  the negative log-likelihood as the covari- 
ance matrix 1. This is what is usually done for all sample sizes. 
What is not often understood is how wrong this approximation 
can be for small samples, say less than 10 data points. 

The present paper is an attempt to give both an exact the- 
oretical underpinning 2 and the practical cumulative distribution 
functions for use with these distributions. Section 2 is the the- 
ory; Section 3 is a numerical description of the actual distri- 
butions; and Section 4 is a reserving application to stable paid 
data. Of course, these results apply to any use of normal or log- 
normal distributions on empirical data. Claim severity distribu- 
tions would be one example, and especially for reinsurance data 
the claim volume can be very small. 

The general approach here will be to assume that we know the 
form of the distribution, thus ignoring what is in practice a very 
real source of parameter uncertainty. What is treated here is only 
the effect of  finite sample size. What is desired is the probability 
of the parameters, given the observed sample. Given that, the 
predictive distribution of the variable itself may be obtained by 
summing over different parameter probabilities. In the present 
case, this is done using simulation. 

The method of  treatment is to use a Bayesian approach. The 
likelihood function gives the probability of the sample actually 
seen, given the parameters of the underlying distribution. Bayes' 
theorem says that the desired parameter probability distribution 
is, up to a normalization, the product of the likelihood func- 
tion and an assumed prior distribution of the parameters. The 
assumed prior is here taken to be "diffuse," meaning that it con- 
tains as little information as possible in some sense. 

I This results essentially from taking just  a second-order Taylor expansion of  the negative 
log-likelihood in the neighborhood of  the minimum, as will be done in the special case 
below. See [1, Section 18.26, page 675]. 
2This particular case is simple enough that it must  have been solved many times. How- 
ever, I am not aware o f  an actuarial application, and the derivation is instructive. 
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2. THEORY 

We will do the lognormal case, as the normal case is essen- 
tially the same with the substitution of x for In(x). We are given 
a sample of  data x i with i = 1,2 . . . . .  n. The probability density 
function is 

1 { ( I n ( x ) - # )  2} 
f ( x )  - v ' ~ x a  exp ~-a~- . (2.1) 

The corresponding negative log-likelihood ( N L L )  is, up to con- 
stant terms, 

1 ~L, ( ln(xi)-  #)2 n 
N L L  = ~ ~_~ ~-~ + ~ In(x/) + n ln(0.) + cst. (2.2) 

i=1 i=1 

The analysis begins by constructing the partial derivatives 

O N L L  

Olz 
0.2 Z ( # -  In(x/)) = ~-~ n # -  In(x/) 

i=l  i= l  ) 

(2.3) 

and 

O N L L  

00. 

1 n n 
0 .3 Z ( # -  ln(xi) )2  + --'a ( 2 . 4 )  

i=1 

The maximum likelihood estimators are obtained by finding #0 
and 0.o such that these partial derivatives are both zero: 

1 ~ ln(xi), and 
/'tO = t l i =  1 

0.o = - [In(x/) --/.Z0] 2. 

(2.5) 

(2.6) 
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The usual large sample approximation continues by creating the 
second partial derivatives: 

02NLL 
0# 2 

02NLL 

0#00. 

n 

0-2' 

2{ 1 0.3 nl_t - ln(xi) 
i=l ) 

- - 2 n  
- 0-3 (# - #0), and 

n 
OZNLL _ 3 ~ ( # _  ln(xi))2 n 

00.2  0" 4 0- 2 (2.10) 
i=1 

3n n 
= ~-~ {(/.t, - - / ~ 0 )  2 + 0 .2 } 0" 2 . (2.1 1) 

at the m a x i m u m  likelihood (min imum of  the Evaluating them 
NLL), 

(2.7) 

(2.8) 

(2.9) 

02NLL n 
01~2 (t-t0' 0-0) 0.2 

02NLL 
0#00- (#0,%) = 0, 

OZNLL 2n 
( m , 0 . o )  : 

(2.12) 

and (2.13) 

(2.14) 

We note in passing that the mixed partial derivative is zero only 
on the line # = #0. This means (as will shortly be made  explicit) 
that in general the variables # and 0. are correlated. 

The  matrix of  second-order  partial derivatives evaluated at the 
m i n i m u m  is 

0#  2 0#00- = n 1 (2.15) 
OZ N LL 02 N LL 0-2 0 " 

0~00. 00- 2 
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The inverse of  this matrix is the covariance matrix for /.z and 
cr around the minimum when they are expressed as a bivariate 
normal distribution: 

cov(#,o-) var(cr) n 1 • 

A simulation consists of  drawing three deviates z, Zl, and z2 from 
a standard normal distribution and setting 

with 

and 

Equivalently, 

ln(x) = t.~ + a Z  (2.17) 

% (2.18) /z = #0 + Zl v/- ~ 

or° (2.19) 
O = O" 0 + Z2 V / ~ .  

In(x) = #0 + cr0Zapp (2.20) 

where the effective z in the large sample approximation, Zapp, is 
given by 

z, 
Zap p = V/~ + Z 1 + . (2.21) 

We note that the distribution for Zap p is symmetric about the 
origin, which implies a mean of  zero, and that the variance is 
given by 

3 
var (Zapp)  = 1 + - - .  (2.22) 

2n 

It has been pointed out to the author 3 that another approach 
to a large sample approximation is to use ln(a) as a variable in 
place of  cr in the N L L .  Following the same procedure through, 4 

3By the reviewer, to whom thanks are given for this remark. 
4Although the derivation is straightforward, it is somewhat tedious and not relevant for 
the rest of  the paper. Interested readers are invited to contact the author. 
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Equation 2.20 remains the same but Equations 2.21 and 2.22 
become 

Zap p =- V ~  + z e x p  (2.23) 

and 
 ar,za.   = - + exp . (2.24) 

?/ 

The variable Zapp has zero mean, but is no longer symmetric. The 
lack of symmetry is disturbing to the author. However, the vari- 
ance is larger than before [Equation 2.22] at any n. The increased 
dispersion of this large sample approximation will be closer to 
reality. 

The underlying technique for the large sample approximation 
is to approximate the N L L  by its Taylor series to second order 
around the min imum and to take the Bayesian prior to be one 
(i.e., not dependent on the parameters). However, the resulting 
simple quadratic form for the N L L  is exactly what one gets from 
a normal (Gaussian) distribution. Hence the remark that, for large 
samples, the parameter distribution is taken to be normal. The 
hope is that by the time the N L L  deviates significantly from the 
approximation, its value is sufficiently large that it represents a 
very small probability. 5 

However, in the present instance this hope is not fulfilled. 
Returning to the exact problem, the N L L  may be rewritten as 

~g + (# - #o) 2 
N L L  = n 2cr2 +/~o + ln(~) . (2.25) 

Rescale the problem by defining normalized variables v and y 
such that 

# =/~o + Wro (2.26) 

and 
o- = ya  0. (2.27) 

5The justification for this technique is essentially the same as for the central limit theorem. 
For a heuristic approach, see the discussion after Equation 2.28. 
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Then the N L L  becomes 

N L L  = n - -  + ln(y) + #0 + ln(~0) (2.28) 2y2 • 

The range of  v and y is the same as that for # and o: - o e  < v < ec 
and 0 _< y < oe. It is perhaps not quite obvious, but easy to prove, 
that the minimum N L L  is at v = 0 and y = 1. 

Although the N L L  is exactly quadratic in v, it is not so in 
y. In fact, it is the rather extreme asymmetry in y around the 
minimum which results in the inadequacies of  the large sam- 
ple approximation. The large sample approximation results f rom 
noticing that, as n gets large, only values of  v and y which get 
nearer to the minimum will give N L L  values near its minimum. 
Specifically, one could take N L L  of, say, 20 plus the minimum 
to be the largest value of  interest. This corresponds to assuming 
a probability for the parameters involved of  e x p ( - 2 0 )  to be ef- 
fectively zero. Then as n gets larger the values of  v and y which 
give N L L  = minimum + 20 get closer and closer to their mini- 
mum values, approximately inversely with the square root of  n. 
This approximation gets better as n increases. In this approxima- 
tion, terms in the Taylor series expansion of  order higher than 
the second all have contributions to the N L L  which decrease as 
n increases, and the N L L  is better and better represented by just 
the second order term. 

We take a Bayesian approach and use diffuse prior distribu- 
tions for v and y. Since v runs along the full axis from minus 
infinity to infinity, the prior used is just 1. Since y runs along 
the semi-axis, the suggested prior is proportional to 1 / y  ° where 
0 is either 0 or 1, depending on one 's  preference 6. The choice 
0 = 1 emphasizes small values of  y and corresponds to the as- 
sumption that the prior distribution of  ln(y) is flat; the choice 
0 = 0 assumes that the prior distribution of  y is flat. Venter 7 has 

611, Section 8.28 p. 304]. A reference is made to an article by Jeffries, advocating 0 = 1. 
7Gary Venter, private communication. He points out that on a semi-axis a flat prior 
corresponds to assuming that it is as likely for the variable to lie between a million and 
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emphasized that any choice of prior has strong implications. Ide- 
ally, the nature of  the data being fitted would give some clues as 
to proper  priors. 

The joint  distribution of  v and y is, up to normalization factors 
(we use the symbol  ,-~), given by the product  of  the Bayesian 
priors and the likelihood: 

f ( v , y )  ~ yn+O (2.29) 

We now change variables f rom y to w by 

~/n(1 + v 2) 
Y =  W 

(2.30) 

so that 
Oy _ 1 / n ( l  + v2), 
Ow 2 V w -g (2.31) 

and for the variables v and w, the joint distribution behaves as 

(2.32) 

This transformation does several nice things. First, since the joint  
distribution is a product,  the variables are independent  (and there- 
fore uncorrelated) and may be simulated separately. A corollary 
of  this is that v and y, and hence ~ and a, are correlated. Second,  
we can recognize the variable distributions as well known.  

The  variable w is chi-squared distributed s with parameter  
(n + 0 - 1). Equivalently, w/2 is gamma distributed [2, p. 104] 
with parameter  (n + 0 - 1)/2. Both of  the inverse functions exist 

a mi l l ion  and one as it is for the var iable  to l ie be tween zero and one,  and that it is 
inf ini te ly  more  l ikely  to be excess  of  any finite amoun t  than to be less than that amount .  

8Almos t  any text  on s tat is t ics  has  the chi -squared  and t -d is t r ibut ions ,  e.g., [2, p. 107]. 
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in Excel, 9 and can be used in simulations. The mean value of  w is 
(n + 0 - 1), and its variance is 2(n + 0 - 1). Thus w/n has a mean 
of  (1 + (0 - 1)/n) and a standard deviation of  ~/2(n + 0 -  1)/n. 
As n, the sample size, becomes large these go respectively to 1 
and 0. 

The variable vx/n + 0 - 2 is t-distributed [2, p. 145] with pa- 
rameter (n + 0 - 2). Therefore the mean value of  v is zero, and 
its standard deviation l° is 1/x/n + 0 -  4. The standard deviation 
does not exist if n + 0 _< 4, but goes to zero as the sample size 
increases. 

In simulation situations if the underlying distribution does not 
have a finite variance then the mean of  the simulation will not 
converge, because the mean of  the simulation itself will have an 
infinite standard deviation. In practice, this shows up as occa- 
sional large jumps in the mean, even with millions of  simula- 
tions (in fact, no matter how many simulations are done). If  the 
simulation is being done in a situation where the upper end is 
l imi ted-- for  example in a ceded layer of reinsurance-- then the 
variance will always be finite. However, "finite" does not mean 
the same as "of  reasonable size." In some numerical modeling 
the author has come across cases where a distribution with finite 
variance and a theoretical mean of  a million dollars was produc- 
ing an occasional value of  a trillion dollars. Clearly, very many 
millions of  simulations would be necessary to get a reasonable 
amount of  convergence. It is recommended that actuaries should 
try to avoid small sample sizes and/or at least work with lognor- 
mal distributions which are truncated at the upper end. 

Equation 2.32 shows that as far as v and w are concerned 
taking 0 = 1 is the same as assuming that there is one more data 
point than actually exists and taking 0 = 0. The results in Sections 
3 and 4 and Appendix A are all done with 0 = 0. If  one can 
convince oneself that an appropriate value of  0 is 4, then all 

9Microsoft Excel 5.0. These functions may also be found elsewhere. 
l°The variance of the Student's t distribution with parameter n is n/(n -2). 
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worries of  convergence are over and as little as one data value 
can be used. Trying to justify this may take some do ing - -no t  to 
mention getting both a mean and standard deviation from one 
value! 

Another representation for v can be obtained by changing to 

~,2 

u - 1 + v 2" (2.33) 

Clearly, the support of  this variable runs from 0 to 1, rather than 
from - c o  to ~ ,  but 

~f u (2.34) v = +  1 - u  

can be obtained from a u deviate by another random choice to 
get the sign. Since 

dv 1 
- (2.35) 

du 2v/u(1 - u)3 

then 
f (u) ~ u-t/2(1 - u) ~'+°-2)/2 (2.36) 

which is recognizable as the beta distribution with parameters 
1/2 and (n + 0 - 2)/2. Random deviates for the beta distribution 
can be obtained either from the inverse function in Excel or as 
a ratio of  gamma deviates. Specifically, a beta(c~,fl) deviate can 
be obtained [2, p. 139] as x / ( x  + y) where x is gamma distrib- 
uted with parameter c~ and y is gamma distributed with param- 
eter/3. 

Returning to the simulation methodology, if we let z be a de- 
viate from the standard normal distribution, then in parallel with 
Equations 2.17, 2.18, and 2.19 for the large sample approxima- 
tion we have the exact results 

In(x) = # + ~rz (2.37) 

with 
/z = #o + wr0, (2.38) 
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and 

~/n(1 + v z) 
(2.39) O" = O" 0 W 

Combin ing  Equations 2.37, 2.38, and 2.39 

In(x) = #o + crozeff (2.40) 

where the effective deviate zaf, is given by 

~/n(1 + v 2) 
zeff = v + z (2.41 ) 

w 

Equation 2.41 for z~ff is the exact result for which Zapp of  Equa- 
tion 2.21 is an approximation.  Like Zapp, Zeff is symmetr ic  about 
the origin and has mean zero. This effective deviate generally 
has a much  broader tail than the large sample approximation.  
However,  in the limit of  large n (as ment ioned earlier) v goes to 
zero and w goes to n, so that zeff goes to z. In fact, zeff goes to 
Zap p t o  order 1/n  and they both go to z. 

In order to get the variance of  zeff, the expectation of  1/w is 
needed. To obtain this, use the fact that for any variable x which 
is gamm a  distributed with parameter  a ,  the expectation of  any 
power  p of  x is 

E(xP ) _ 1" (a  + p) (2.42) 
r(c0 

SO (1) , 
E - F ( ~ )  a -  1" (2.43) 

Since w/2 is gamma  distributed with parameter  (n + 0 - 1)/2,  

n+O-3" 

Since the mean of  zeff is zero, its variance is just  the expectation 
of  its square 

var(zeff) = E([zeff]2). (2.45) 
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Because of  the independence of  the variables, this implies 

var(zefO=var(v)+var(z)nE ( 1 ) [ 1  + var(v)] (2.46) 

1 , )  
- + 1 + (2.47) 

n + O - 4  n + O - 3  n + O - 4  

n + l  
- (2.48) 

n + O - 4 "  

In the end, this is a remarkably simple result. Although this vari- 
ance clearly goes to 1 as n becomes  large, for n = 5 and 0 = 0 
its value is 6! Of  course, for n + 0 _< 4 it is infinite. This formula 
also tempts one to choose 0 = 5 so that var(zeff) = 1 for all n. 

3. PRACTICE 

All o f  the results for Zeff were done using Equation 2.41 with 
0 = 0 and different values of  n. The tables and graphs are useful 
for getting a feel for how the distributions change with n. If one 
is uncomfortable  with the diffuse prior used, then it is recom- 
mended to generate one ' s  own values. It may in the course of  
simulations be faster to look up values in tables rather than gen- 
erate them on the fly, but as a matter of  general preference the 
author would rather generate than look up, especially in someone 
else 's  tables. 

For various values of  n, the density function of  Zeff was simu- 
lated in two stages. In the first, 10,000,000 simulations were run 
to get the range from 50% to 90% on the cumulative distribution 
function (CDF). Then for values of  n < 10, 50,000,000 simu- 
lations were run to get 5,000,000 simulations of  values greater 
than the 90% level 11 in order to get the tails of  the distributions. 

Let us look first at the general shape of  the density functions. 
As usual, the effect of  parameter uncertainty is to push probabil- 
ity away from the mean out into the tail, and the effect is more 

l I T h i s  was  not  d o n e  in a sp readshee t ,  but  in a C + +  p r o g r a m .  
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FIGURE 1 

PROBABILITY DENSITY FUNCTIONS FOR DIFFERENT SAMPLE 
SIZES 
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pronounced with increasing parameter uncertainty (i.e., decreas- 
ing sample size). See Figure 1. 

The differences begin to show up dramatically when we look 
at the Cumulative Distribution Function (CDF) for various sam- 
ple sizes. Because of the symmetry, only the portion from 50% 
to 100% is shown in Figure 2. 

The extension to even larger zeff is shown in Figure 3. The 
conclusion from these graphs is at least that the effect of sample 
size can be substantial even for what might be thought to be 
relatively large samples. 

It is also of interest to compare for a fixed sample size the 
normal distribution (infinite sample size, no parameter variation), 
the large sample approximation, and the exact result. Figure 4 
displays this comparison for sample size N = 3. 

Clearly, the large sample approximation is not very good. On 
the other hand, we didn' t  expect it to be. However, sample size 
N = 8 shows a similar pattern. See Figure 5. 
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FIGURE 2 

CUMULATIVE DISTRIBUTION FUNCTION FOR VARIOUS SAMPLE 
SIZES 
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TABLE 1 

E F F E C T I V E  Z BY S A M P L E  S I Z E  FOR S O M E  K E Y  C D F  V A L U E S  

Sample 
Size 3 4 5 6 8 12 20 Infinite 

CDF 
50% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0000 
60% 0.650 0.456 0.391 0.358 0.325 0.297 0.278 0.253 
70% 1.454 0.976 0.826 0.752 0.677 0.618 0.576 0.524 
80% 2.752 1.677 1.384 1.245 1.109 1.002 0.931 0.842 
90% 6.159 2.981 2.315 2.028 1.762 1.564 1.436 1.282 

95.0% 12.62 4.617 3.327 2.819 2.380 2.067 1.873 1.645 
97.5% 25.41 6.802 4.501 3.672 2.998 2.541 2.269 1.960 
98.0% 31.81 7.666 4.923 3.965 3.200 2.691 2.391 2.054 
99.0% 63.71 11.02 6.422 4.956 3.850 3.151 2.757 2.326 
99.5% 127.5 15.71 8.260 6.089 4.542 3.614 3.108 2.576 
99.9% 639.3 35.35 14.47 9.526 6.392 4.726 3.897 3.090 
99.95% 1,308 50.13 18.46 11.49 7.328 5.247 4.232 3.290 
99.99% 6,476 130.4 32.58 17.53 9.822 6.513 5.023 3719 

99.995% 12,470 164.1 42.64 20.75 11.18 7.108 5.371 3.891 
99.999% 57,550 345.4 67.41 31.11 14.73 9.353 6.158 4265 

Even here, the large sample approximation is much closer to 
the pure normal than it is to the exact result, especially in the 
region of  high cumulative probability. The approximation has es- 
sentially the same tail behavior as a normal, while the exact result 
has a much fatter tail. This suggests that the approximation does 
not hold well for these sample sizes, which are, unfortunately, 
typical of  those usable in chain-ladder reserving. 

A complete set of  appropriate effective deviates for various 
CDF values and various sample sizes all at 0 = 0 is given in Ap- 
pendix A. That set is intended for use in simulations if the reader 
does not want to generate directly the underlying distributions. 
A subset for some key values of  the CDF is given in Table 1. 

If we look, for example, at the 99.9% level (in bold type), 
then for n infinite we recognize Zeft" = 3.090 as a familiar friend 
from the normal distribution. As the sample size decreases, the 
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location of  the 99.9% level increases from 3.09. For n = 8 it has 
more than doubled to 6.4; for n = 5 it has almost quintupled to 
14.5; and for n = 3 it is up to 639! In general, in order to reach 
any CDF level one must go to increasingly higher multiples of  
the sigma estimator as the sample size decreases, and the effect 
is more pronounced as the CDF level increases. 

All of the above indicates that the tails are much fatter than 
one might have thought when using either the large sample ap- 
proximation to the parameter uncertainty or no parameter uncer- 
tainty at all. 

4. RESERVING 

Typically in chain-ladder reserving, the age-to-age factors are 
implicitly or explicitly taken to be normal or lognormal. For ex- 
ample, the not atypical procedure which we will use here starts 
by taking the most recent five calendar years of  data and aver- 
ages the logs of  the appropriate age-to-age factors in the data to 
get the log of  the projected age-to-age factor. This gives point 
estimates of the age-to-age factors, which generate the age-to- 
ultimate factors, which give the IBNR. 

Five years is chosen as an intuitive compromise between want- 
ing to stabilize the results by having lots of data and wanting to 
use only data which is close enough to the current business to 
be relevant. Clearly there will always be judgment  calls of  some 
sort. 

In order to go beyond a point estimate of IBNR, the next 
step is to explicitly assume that the age-to-age factors are log- 
normally distributed independently at each age. Then we have a 
sample of  five for each age-to-age factor and can calculate the 
maximum likelihood estimators for both # and o. Since the prod- 
uct of lognormal variables is also lognormal, the age-to-ultimate 
factors are lognormal and their parameters can be easily calcu- 
lated. This allows the representation of IBNR as a distribution, 
rather than just a single value. 
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FIGURE 6 
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However, this procedure corresponds to using the infinite 
sample size approximation for the parameter variation--i.e., as- 
suming that there isn't  any. Given the above discussion, it will be 
no surprise that we recommend that the zeff for n = 5 be used. It 
does mean that the distributions for the age-to-age factors must 
be numerically rather than analytically generated, but this is a 
relatively minor difficulty. 

For a concrete example, we use industry data from Best 's 
1995 Aggregates and Averages. The original data is Home- 
owners-Farmowners Schedule P paid data from accident years 
1985 to 1994 inclusive, which is displayed in Appendix B. 
The CDFs are shown in Figure 6, and the labels "infinite," 
"approximation," and "exact" refer as before to the situations 
with no parameter variation (infinite sample), the large sample 
approximation, and the exact result. 

An expansion of the dangerous half of the distribution is 
shown in Figure 7. A line has been put in at $11.5 billion to 
guide the eye. The probability of exceeding that value is 1.39% 
for the "infinite" calculation, which would seem a conservative 
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reserving level. However,  for the approximation the probabili ty 
is 2.81%, and for the exact result it is 12.78%. To get to the 
exact 1.39% level, it is necessary to reserve $14.1 billion! These 
differences are clearly important for a reinsurer. Even for an 
insurer who reserves at the mean value, the unexpectedly large 
variability will show up either as an increased risk load c o s t - -  
probably as cost of  l iquid i ty- -or  as a nasty surprise. 

The main simulation results 12 are summarized in Table 2. 

It should be noted that even these results are somewhat  opti- 
mistic (in the sense of  providing a small coefficient of  variation) 
in that all factors were taken to have n = 5 and in reality the tail 
of  the triangle did not have that much data. 

Since this is industry data on a relatively stable line, the 24.9% 
coefficient o f  variation for the exact result may be indicative of  
the minimum reserve variation to be expected. 

12For 1,000,000 simulations in each case. Run times were 10 minutes, 20 minutes, and 
40 minutes. 
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TABLE 2 

SIMULATION RESULTS 

CDF Infinite Approximation Exact 

20% $9,377,999 $9 ,323 ,378  $8,889,821 
40% $9,775,408 $9 ,762 ,350  $9,638,914 
60% $10,121,909 $10,137,497 $10,267,019 
80% $10,530,213 $10,586,319 $11,050,725 
90% $10,839,277 $10,944,285 $11,743,068 
95% $11,097,636 $11,257,818 $12,453,300 
98% $11,393,344 $11,637,681 $13,550,822 

99.0% $11,590,893 $11,912,637 $14,599,413 
99.5% $11,769,344 $12,172,122 $16,014,574 
99.9% $12,144,913 $12,745,661 $21,581,916 
mean $9,956,034 $9,959,629 $10,007,938 

standard deviation $685,580 $782,023 $2,489,269 
coefficient of variation 6.9% 7.9% 24.9% 
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APPENDIX A 

T A B L E  OF E F F E C T I V E  Z FOR 0 = 0 

BY C D F  V A L U E  BY S A M P L E  SIZE 

573 

Size 3 4 5 6 7 8 10 12 20 Infinite 

CDF 
50% 0.0000 0.0000 0.0000 0.0000 0.0000 
51% 0.0628 0.0448 0.0384 0.0354 0.0335 
52% 0.1259 0.0895 0.0769 0.0706 0.0668 
53% 0.1892 0.1344 0.1155 0.1060 0.1002 
54% 0.2531 0.1795 0.1542 0.1414 0.1336 
55% 0.3173 0.2247 0.1931 0.1770 0.1673 
56% 0.3821 0.2702 0.2322 0.2129 0.2010 
57% 0.4476 0.3161 0.2715 0.2488 0.2349 
58% 0.5143 0.3624 0.3109 0.2848 0.2689 
59% 0.5816 0.4089 0.3507 0.3212 0.3032 
60% 0.6503 0.4560 0.3909 0.3579 0.3378 
61% 0.7207 0.5038 0.4315 0.3950 0.3727 
62% 0,7925 0.5525 0.4728 0.4324 0.4079 
63% 0.8665 0.6018 0.5143 0.4703 0.4435 
64% 0.9422 0.6519 0.5566 0.5087 0.4794 
65% 1.0198 0.7030 0.5996 0.5477 0.5161 
66% 1.1003 0.7549 0.6433 0.5873 0.5532 
67% 1.1835 0.8079 0.6876 0.6274 0.5908 
68% 1.2703 0.8623 0.7328 0.6683 0.6290 
69% 1.3598 0.9182 0.7791 0.7100 0.6678 
70% 1.4535 0.9755 0.8262 0.7524 0.7074 
71% 1.5518 1.0345 0.8747 0.7959 0.7476 
72% 1.6547 1.0953 0.9244 0.8402 0.7889 
73% 1.7634 1.1579 0.9754 0.8855 0.8310 
74% 1.8784 1.2229 1.0280 0.9321 0.8743 
75% 2.0002 t.2902 1.0821 0.9800 0.9186 
76% 2.1291 1.3607 1.1379 1.0292 0.9642 
77% 2.2681 1.4341 1.1957 1.0804 1.0112 
78% 2.4171 1.5110 1.2557 1.1331 1.0598 
79% 2.5778 1.5918 1.3184 t.1878 1.1101 
80% 2.7521 1.6767 1.3838 1.2448 1.1623 
81% 2.9420 1.7666 1.4524 1.3042 1.2165 
82% 3.1509 1.8623 1.5245 1.3667 1.2734 
83% 3.3808 1.9642 1.6004 1.4318 1.3329 
84% 3.6372 2.0735 1.6809 1.5008 1.3954 
85% 3.9250 2.1914 1.7669 1.5736 1.4611 
86% 4.2498 2.3191 1.8592 1.6515 1.5313 
87% 4.6222 2.4593 1.9582 1.7343 1.6056 
88% 5.0524 2.6146 2.0665 1.8240 1.6853 

0.0000 0.0000 0.0000 0.0000 0.0000 
0.0320 0.0304 0.0292 0.0274 0.0251 
0.0641 0.0608 0.0585 0.0550 0.0502 
0.0962 0.0911 0.0879 0.0825 0.0753 
0.1283 0.1216 0.1175 0. I I00 0.1004 
0.1606 0.1523 0.1470 0.1376 0.1257 
0.1929 0.1830 0.1766 0.1652 0.1510 
0.2255 0.2138 0.2062 0.1931 0.1764 
0.2583 0.2448 0.2361 0.2210 0.2019 
0.2913 0.2760 0.2662 0.2492 0.2275 
0.3245 0.3074 0.2966 0.2776 0.2533 
0.3580 0.3391 0.3271 0.3061 0.2793 
0.3918 0.3711 0.3579 0.3348 0.3055 
0.4259 0.4034 0.3891 0.3637 0.3319 
0.4603 0.4360 0.4203 0.3929 0.3585 
0.4952 0.4691 0.4522 0.4226 0.3853 
0.5307 0.5023 0.4844 0.4525 0.4125 
0.5664 0.5360 0.5170 0.4829 0.4399 
0.6028 0.5703 0.5501 0.5136 0.4677 
0.6399 0.6053 0.5837 0.5446 0.4958 
0.6775 0.6407 0.6176 0.5762 0.5244 
0.7159 0.6768 0.6522 0.6082 0.5534 
0.7553 0.7135 0.6875 0.6409 0.5828 
0.7953 0.7510 0.7235 0.6742 0.6128 
0.8365 0.7893 0.7602 0.7082 0.6433 
0.8787 0.8285 0.7980 0.7431 0.6745 
0.9221 0.8689 0.8365 0.7788 0.7063 
0.9666 0.9103 0.8762 0.8152 0.7388 
1.0125 0.9530 0.9169 0.8526 0.7722 
1.060t 0.9971 0.9588 0.8911 0.8064 
1.1092 1.0429 1.0021 0.9306 0.8416 
1.1603 1.0901 1.0470 0.9716 0.8779 
1.2136 1.1390 1.0937 1.0140 0.9154 
1.2691 1.1900 1.1422 1.0580 0.9542 
1.3275 1.2433 1.1929 1.1039 0.9945 
1.3888 1.2993 1.2461 1.1519 1.0364 
1.4537 1.3586 1.3021 1.2023 1.0803 
1.5228 1.4210 1.3613 1.2556 1,1264 
1.5967 1.4881 1.4243 1.3121 1,1750 

89% 5.5561 2.7866 2.1844 1.9217 1.7717 1.6764 1.5597 1.4915 1.3721 1,2265 
90% 6.1588 2.9813 2.3153 2.0283 1.8658 1.7624 1.6376 1.5640 1.4362 1.2816 
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TABLE OF EFFECTIVE Z FOR 0 = 0 

BY C D F  VALUE BY SAMPLE SIZE 
(Continued) 

Size 3 4 5 6 7 8 10 12 20 Infinite 

CDF 
90.1% 6.2199 3.(×124 2,3297 2.0389 1.8757 1.7727 1.6456 1.5720 1.4435 1.2873 

90,2% 6.2876 3.0234 2.3437 2.0503 1.8858 1,7819 1.6538 1.5797 1.4503 1.2930 

90.3% 6.3568 3.0448 2.3579 2.0618 1.8959 [.7911 1.6621 1.5875 1.4571 1.2988 
90.4% 6.4270 3.(1665 2.3722 2.0734 1.9t161 1.8005 1.6704 1.5953 1.4639 1.3047 
90.5% 6.4988 3.(1885 2.3867 2.0852 1.9164 1.8099 1.6788 1.6032 1.4709 1.3106 

9(1.6% 6.5723 3.1108 2.4(114 2.0970 1.9269 1.8194 1.6873 1.6111 1.4779 1.3165 
90.7% 6.6473 3.1336 2.4163 2.1090 1.9374 1.8291 1.6959 1.6191 1.4849 1.3225 
90.8% 6.7235 3.1567 2.4313 2.1212 1.9481 1.8388 1,7046 1.6272 1.4920 1.3285 

90.9~ 6.8017 3.18(X1 2.4466 2.1335 1.9588 1.8486 1.7134 1.6354 1.4992 1.3346 
91.0% 6.8814 3.2037 2.4621 2,1458 1.9696 1.8585 1.7222 1.6436 1.5065 1.3408 
91.1% 6.9627 3.2277 2.4777 2.1583 1.9806 1.8686 1.7311 1.6520 1.5138 1.3469 
91.2% 7.(1456 3.2520 2.4935 2.1710 1.9918 1.8787 1.7401 1,6604 1.5212 1.3532 

91.3% 7.1312 3.2768 2.5096 2.1838 2.0031 1.8889 1.7492 1.6688 1.5286 1.3595 

91.4% 7.2189 3,3018 2.5258 2.1969 2.0144 1.8994 1.7584 1.6774 1.5361 1.3658 

91.5% 7.3084 3,3272 2.5423 2.2101 2.0259 1.9098 1.7678 1,6861 1.5436 1.3722 
91.6% 7.3998 3.3531 2.5590 2.2235 2.0375 1.9204 1.7772 1.6948 1.5513 1.3787 

91.7% 7.4930 3.3795 2.5759 2.2369 2.0493 1.9311 1,7867 1.7037 1.5590 1.3852 
91.8% 7.5892 3.4063 2.5931 2.2506 2.0613 1.9419 1.7964 1.7126 1,5669 1.3917 
91.9% 7.6873 3.4335 2.6106 2.2644 2.0734 1.9528 1.8061 1.7217 1.5749 1.3984 
92.0% 7.7878 3.4612 2.6284 2.2785 2.(1856 1.9639 1.8159 1.7307 1.5828 1.4I)51 
92.1% 7.8913 3.4895 2.6464 2.2926 2.0980 1.9752 1.8258 1.7399 1.5908 1.4118 
92.2% 7.9968 3.5182 2.6646 2.3071 2.1106 1.9865 1.8359 1.7492 1,5990 1.4187 
92.3% 8.1049 3.5476 2,6831 2.3216 2.1233 1.9980 1.846(I 1.7587 1.6072 1,4255 

92.4% 8.2158 3.5772 2.70211 2,3364 2.1360 2.0096 1.8563 1.7682 1.6155 1.4325 
92.5% 8.3294 3.6076 2.7211 2.3514 2.1490 2.0213 1.8667 [.7778 1.6240 1.4395 
92.6% 8.4467 3.6385 2.7404 2.3666 2.1621 2.0331 1.8773 1.7876 1.6325 1.4466 
92.7% 8,5661 3.67(1(/ 2.76(X) 2.3821 2.1754 2.(1452 1.8879 1.7975 1.6411 1.4538 
92.8% 8.6892 3.7020 2,7799 2.3978 2.1888 2.0575 1.8987 1,81175 1.6498 1.4611 

92.9% 8.8153 3.7347 2.80113 2.4137 2.2026 2.0699 1.9096 1,8176 1.6586 1.4684 

93.(1% 8.9453 3.7680 2.8210 2.4299 2.2164 2.0825 1.9207 1,8279 1.6675 1.4758 
93.1% 9.¢)797 3.8019 2.8420 2.4463 2.23{14 2.0952 1.932(I 1,8384 1.6764 1,4833 

93.2% 9.2163 3.8365 2.8634 2,4630 2.2447 2.1082 1.9434 1.8489 1.6855 1.4909 
93.3% 9.3579 3.8720 2.8852 2.48(X) 2,2593 2.1214 1.9549 1,8596 1.6948 1.4985 
93.4% 9.5033 3.9(181 2.9072 2.4972 2.2740 2.1347 1.9666 1,8704 1.7041 1.5063 
93.5% 9.6537 3,9449 2.9295 2.5148 2.2890 2.1482 1.9784 1.8813 1.7136 1.5141 

93.6% 9.8088 3,9825 2.9524 2.5326 2.3043 2.1619 1.9904 1.8925 1.7232 1.5220 

93.7% 9.9690 4.(/211 2.9759 2.55{)6 2.3198 2.1759 2.(1026 1.9037 1,7329 1.5301 
93.8% 10.134 4.0605 2.9997 2.569(I 2.3356 2.190[ 2.0150 1.9152 1.7427 .5382 
93.9% 10.305 4.1007 3.024(1 2,5877 2.3516 2.2045 2.(t275 [.9267 1.7527 .5464 
94.0% 10.481 4.1420 3.0488 2,6068 2.3678 2.2191 2.0402 1.9386 1.7628 .5548 
94.1% 10.663 4.1843 3.0741 2.6262 2.3842 2.2340 2.0532 1.95(14 1.7731 .5632 

94.2% 1{).852 4.2276 3,0999 2.6460 2.4(X19 2.249(1 2.0664 1,9624 1.7835 .5718 
94.3% 11.{147 4.2721 3.1262 2.6661 2,4179 2.2643 2.0797 1,9748 1.79411 .5805 
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TABLE OF EFFECTIVE Z FOR 0 = 0 
BY C D F  VALUE BY SAMPLE SIZE 

(Continued) 

Size 3 4 5 6 7 8 l0 12 20 Infinite 

CDF 
94.4% 11.247 4.3174 3.1530 2.6867 2.4354 2.2800 2.0933 1.9872 1.8048 1.5893 
94.5ck 11.455 4.3643 3.1803 2,7076 2.4533 2.2960 2.1071 2.0000 1.8158 1.5982 
94.6% 11.670 4.4121 3.2085 2,7289 2.4713 2.3123 2.1212 2.0129 1.8269 1.6072 
94.7% 11.895 4.4614 3.2372 2,7507 2.4898 2.3288 2.1355 2.0260 1.8381 1,6164 
94.8% 12.127 4.5119 3.2667 2,7729 2.5087 2.3456 2.1501 2.0394 1.8495 1.6258 
94.9% 12.369 4.5636 3.2966 2,7957 2.5279 2.3627 2.1650 2.0530 1.8610 1.6352 
95.0% 12.621 4.6168 3.3275 2,8189 2.5477 2.3802 2.1800 2.0668 1.8728 1.6449 
95.1% 12.883 4.6718 3.3593 2.8428 2.5684 2.3981 2.1955 2.0809 1.8849 1.6546 
95.2% 13.155 4.7282 3.3915 2.8671 2.5889 2.4163 2.2112 2.0953 1.8972 1.6646 
95.3% 13.439 4.7863 3.4247 2.8920 2.6098 2.4348 2.2272 2.1100 1.9096 1.6747 
95.4% 13.736 4.8458 3.4587 2.9176 2.6313 2.4539 2.2436 2.1250 1.9224 1.6849 
95.5% 14.045 4.9072 3.4938 2.9437 2.6532 2.4734 2.2603 2.1402 1.9354 1.6954 
95.6% 14.371 4.9711 3.5297 2.9706 2.6758 2.4933 2.2774 2.1558 1.9486 1.7060 
95.7% 14.708 5.0372 3.5669 2.9980 2.6988 2.5136 2.2949 2.1717 1.9619 1.7169 
95.8% 15.064 5.1054 3.6047 3.0263 2.7224 2.5343 2.3128 2.1880 1.9756 1.7279 
95.9% 15.438 5.1759 3.6438 3.0554 2.7464 2.5556 2.3310 2.2046 1.9897 1.7392 
96.0% 16.830 5.2490 3.6843 3.0851 2.7710 2.5775 2.3497 2.2217 2.0040 1.7507 
96.1% 16.241 5.3246 3.7260 3.1158 2.7964 2.60(,ud 2.3689 2.2390 2.0188 1.7624 
96.2% 16.673 5.4032 3.7688 3.1474 2.8226 2.6229 2.3886 2.2570 2.0337 1.7744 
96.3% 17.131 5.4848 3.8130 3.1800 2.8494 2.6465 2.4088 2.2752 2.0489 1.7866 
96.4% 17.611 5.5698 3.8589 3.2134 2.8771 2.6709 2.4295 2.2940 2.0647 1.7991 
96.5% 18.117 5.6577 3.9065 3.2480 2.9055 2.6960 2.4507 2.3133 2.0807 1.8119 
96.6% 18.652 5.7498 3.9556 3.2836 2.9348 2.7219 2.4726 2.3332 2.0971 1.8250 
96.7% 19.219 5.8455 4.(X)63 3.3205 2.9652 2.7484 2.4951 2.3536 2.1140 1.8384 
96.8% 19.824 5.9463 4.0595 3.3588 2.9967 2.7760 2.5183 2.3744 2.1315 1.8522 
96.9% 20.472 6.0513 4.1146 3.3983 3.0290 2.8044 2.5422 2.3958 2.1495 1.8663 
97.0% 21.160 6.1607 4.1723 3.4394 3.0626 2.8338 2.5669 2.4180 2.1679 1.8808 
97.1% 21.892 6.2756 4.2322 3.4822 3.0974 2.8645 2.5924 2.4409 2.1868 1.8957 
97.2% 22.674 6.3965 4.2945 3.5268 3.1336 2.8960 2.6187 2.4647 2.2064 1.9110 
97.3% 23.518 6.5244 4.3603 3.5732 3.1711 2.9286 2.6461 2.4892 2.2263 1.9268 
97.4% 24.431 6.6590 4.4286 3.6216 3.2101 2.9624 2.6743 2.5147 2.2474 1.9431 
97.5% 25.414 6.8024 4.5006 3.6721 3.2507 2.9977 2.7037 2.5410 2.2691 1.9600 
97.6% 26.481 6.9538 4.5760 3.7251 3.2934 3.0345 2.7343 2.5686 2.2916 1.9774 
97.7% 27.640 7.1139 4.6558 3.7805 3.3379 3.0730 2.7661 2.5972 2.3149 1.9954 
97.8% 28.902 7.2850 4.7399 3.8388 3.3848 3.1136 2.7997 2.6272 2.3394 2.0141 
97.9% 30.284 7.4690 4.8287 3.9003 3.4342 3.1560 2.8347 2.6583 2.3648 2.0335 
98.0ch 31.809 7.6656 4.9230 3.9655 3.4863 3.2(X)4 2.8714 2.6908 2.3912 2.0537 
98.1% 33.482 7.8775 5.0239 4.0344 3.5411 3.2472 2.9102 2.7251 2.4191 2.0748 
98.2% 35.355 8.1065 5.1315 4.1081 3.5996 3.2969 2.9507 2.7612 2.4482 2.0969 
98.3% 37.446 8.3553 5.2479 4.1868 3.6613 3.3497 2.9936 2.7993 2.4788 2.1201 
98.4% 39.785 8.6267 5.3734 4.2710 3.7274 3,4059 3.0392 2.8396 2.5113 2.1444 
98.5% 42.451 8.9249 5.5087 4.3615 3.7983 3,4660 3.0881 2.8826 2.5454 2.1701 
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TABLE OF EFFECTIVE Z FOR 0 = 0 
BY C D F  VALUE BY SAMPLE SIZE 

(Continued) 

Size 3 4 5 6 7 8 10 12 20 Infinite 

CDF 

98.6% 45,492 9.2531 5.6560 4.4599 3.8742 3.5306 3,1400 2.9282 2.5816 2.1973 
98.7% 48.998 9.6177 5,8178 4.5669 3.9573 3.6007 3.1960 2.9771 2.6209 2.2262 
98.8% 53,097 10.027 5.9985 4.6837 4.0473 3.6765 3.2571 3.0302 2.6626 2.2571 
98.9% 57.907 10.489 6.1984 4,8125 4.1458 3.7592 3.3235 3,(/877 2.7077 2.2904 
99.0% 63.707 11.019 6.4222 4.9558 4.2560 3.8501 3.3963 3,1507 2.7573 2.3263 
99.1% 70.795 11.635 6.6779 5.1181 4.3794 3.9518 3.4770 3.2210 2.8114 2.3656 
99.2% 79.707 12.356 6.9732 5.3036 4.5194 4.(/677 3.5679 3.2993 2.8716 2.4089 
99.3% 91.036 13.230 7.3215 5.5182 4.6799 4.2011 3.6714 3.3882 2.9391 2.4573 
99.4% 106,30 14.315 7.7411 5.7747 4.8698 4.3566 3.7915 3A911 3.0164 2.5121 
99.5% 127,54 15.709 8.26(X1 6.0891 5.1006 4.5425 3.9348 3.6137 3.1(/85 2.5758 
99.6% 159,43 17.595 8.9434 6.4912 5.3913 4.7766 4.1131 3.7633 3.2206 2.6521 
99.7% 21Z56 20,367 9.8927 7.0398 5.7817 5.0854 4,346(/ 3.9576 3,3629 2.7478 
99.8% 318,87 25,001 11,384 7.8785 6.3601 5.5437 4.6817 4.2374 3,5614 2.8782 
99.9% 639,32 35.346 14.466 9.5264 7.4639 6.3924 5.2836 4.7261 3,8973 3.0902 

99.91% 710,10 37.358 15.013 9,7723 7.6388 6.5205 5.3910 4.8041 3,9464 3.1214 
99.92% 802,48 39,704 15.607 10.091 7.8452 6.6830 5.5026 4.8898 4.0060 3.1560 
99.93% 924,73 42.935 16.388 10.453 8.0855 6.8630 5.6142 4.9882 4,0662 3.1947 
99.94% 1071.4 46.165 17.200 10.871 8.3560 7.0571 5.7557 5.(1962 4.1476 3.2390 
99.95% 1308.2 50.132 18.463 11.487 8.6942 7.3285 5.9347 5.2472 4,2324 3.2905 
99.96% 1603.7 55.886 19.756 12,104 9.2022 7.6146 6.1392 5.4053 4~3366 3.3528 
99.97% 2129.8 64.578 21.719 13.037 9.7135 8.0344 6.4159 5.6194 4A780 3.4319 
99.98% 3195.1 79.327 24.905 14.473 10.582 8.6579 6.8130 5.9433 4~6819 3.54(/2 
99.99% 6476.5 130.35 32.577 17.533 12.262 9.8218 7.5466 6.5133 5,0235 3.7195 

99.991% 7155.0 137.10 34.590 17.863 12.547 10.020 7.6674 6.6017 5,11765 3.7462 
99.992% 8105.2 143.86 36,603 18.424 13.066 10.219 7.7953 6.7262 5.1366 3.7742 
99.993% 9463.0 15(/.6t 38.617 19.038 13.677 10,539 7.9589 6.8534 5.1956 3,8091 
99.994% 10820. 157.36 40.630 19.774 14.288 1(/.861 8,1225 6.9806 5.2681 3.8464 
99.995% 12470. 164.12 42.644 20.754 14.899 11.182 8.3533 7.1077 5.3707 3.8906 
99.996% 15513. 177.26 44.657 22.133 15,510 11.558 8.6325 7.3289 5.4865 3.9442 
99.997% 20567. 204.65 47.133 23.752 16.122 12.166 8.9968 7.5696 5.6387 4.0140 
99.998% 30128. 249.52 53.817 26.086 17.333 13.066 9.5083 8.02411 5.8325 4.1071 
99.999% 57549. 345.39 67.4(/5 31.115 20,156 14.730 11.495 9.3525 6.1575 4.2655 

99.9991% 123124 528.79 89.391 38.011 23.330 16.773 13.385 11.975 6.5736 4.2841 
99,9992% 139934 558.35 93.151 39.277 23.970 17.150 13.557 12.113 6.6238 4.3213 
99.9993% 152587 606.4l 99.113 40.437 24,688 17.528 13.729 12330 6.6901 4.3400 
99.9994% 174499 652.78 104.17 42.1(/5 25,339 17.931 13.901 12.396 6.8068 4.3772 
99.9995% 2(10226 703.32 109.14 43.939 26,214 18.529 14.072 12.651 69205  4.4145 
99.9996% 237470 771.56 118.18 46.238 27.656 19.410 14.244 12.824 7.(t653 4.4703 
99.9997% 281976 856.72 128.12 49.570 28,945 2(I.215 14.416 13.351 7.2843 4.5449 
99.9998% 3549(16 1079.4 145.55 56462  31.573 21.9(17 14.588 13.818 7.5316 4.6194 
99.9999% 566663 1407.4 176.46 67,100 36.220 24.042 15,525 14.616 8.0696 4.7684 

l(X)% 487(1750 82606  958(X) 15691 121,20 57.244 27.447 19,958 10~705 #NUM! 



PARAMETER UNCERTAINTY IN (LOG)NORMAL DISTRIBUTIONS 577 

The last line of the table may seem surprising, as the values 
should all be infinite, as indicated in the last column. However, 
in doing simulations it is necessary to have some way of creating 
very large values. The best way is simply to generate deviates 
as one needs them. If one is going to use a table such as the 
above, then a theoretically correct possibility is to create a tail 
distribution, and simulate off that. A possibility which also works 
is to have explored the high end in enough detail and to include 
a value for 100%, in order to interpolate. The values shown here 
are the largest obtained during the 50,000,000 simulations. Here, 
the table is reasonably accurate to the one chance in a million 
level at the high end. If this is not good enough for the problem 
at hand, then other procedures must be used. This could happen, 
for example, if many million simulations are to be used, or if 
results are sensitive to the very high end of the distribution. 
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APPENDIX B 

SCHEDULE P PART 3 HOMEOWNERS-FARMOWNERS PAID DATA 
FROM BEST'S 1995 AGGREGATES AND AVERAGES 

Years in 
Which 

Losses Were 1 2 3 4 5 
Incurred 12 Months 24 Months 36 Months 48 Months 60 Months 

I. Prior 0 961,195 
2. t985 7,122,424 9,387,076 
3. 1986 6,540,125 8,549,792 
4. 1 9 8 7  6,549,833 9,431,522 
5. 1 9 8 8  7,387,876 9,934,924 
6. 1 9 8 9  9,159,289 12,691,762 
7. 1 9 9 0  9,204,653 12,321,906 
8. 1 9 9 1  10,631,838 13,987,066 
9. 1992 17,421,697 22,112,982 

10. 1 9 9 3  11,304,871 14,537,267 
11. 1 9 9 4  13,181,700 

Years in 
Which 

Losses Were 6 7 
Incu~ed 72 Months 84 Months 

1,539,215 1.853,854 2,162,283 
9,733,306 9,975,586 10,142,891 
8,959,180 9,210,201 9,363,385 
9,348,973 9,606,804 9,757,094 

10,367,041 10,614,036 10,736,491 
13,200,544 13,558,787 13,670,011 
12,859,522 13,155,938 13,337,299 
14,667,645 15,022,004 
22,871,006 

8 9 10 
96 Months 108 Months 120 Months 

1. Prior 
2. 1985 
3. 1986 
4. 1987 
5. 1988 
6. 1989 
7. 1990 
8. 1991 
9. 1992 

10. 1993 
11. 1994 

2,275,182 2,340,769 2,390,115 2,415,395 2,432,657 
10,226,434 10,270,069 10,301,410 10,327,519 10,339,393 
9,456,400 9,505,716 9,530,693 9,546,517 
9,858,142 9,914,405 9,943,700 

10,832,847 10,889,518 
13,778,348 

job no. 1908 [ ]  casualty actuarial society E] CAS journal [ ]  1908d03 I2] [ ]  09-17-98 O 12:19 am 
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SCHEDULE P PART3 HOMEOWNERS-FARMOWNERS PAID DATA 
F R O M  B E S T ' S  1 9 9 5  A G G R E G A T E S  A N D  A V E R A G E S  

(Continued) 

Years in 
Which 

Losses Were LN (Age-to-Age Factors) 
Incurred 1-2 2-3 3-4 4-5- 5-6  

2. 1985 

3 .  1986 

4. 1987 

5. 1988 

6. 1989 

7. 1990 

8. 1991 

9. 1992 

i0. 1993 

Years in 
Which 

Losses Were 
Incurred 

LN (Age-to-Age Factors) 
6-7 7-8 8-9 9-10 

2. 1985 

3. 1986 

4. 1987 

5. 1988 

6. 1989 

7. 1990 

8. 1991 

9. 1992 

10. 1993 
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Taking the last five calendar years, which are shaded in the pre- 
vious table, the results for the maximum likelihood estimators 
are: 

Period PO Cro 

1 to 2 0.27641 0.03091 
2 to 3 0.04116 0.00456 
3 to 4 0.02484 0.00180 
4 to 5 0.01307 0.00299 
5 to 6 0.00904 0.00093 
6 to 7 0.00509 0.00052 
7 to 8 0.00287 0.00018 
8 to 9 0.00210 0.00044 
9 to ultimate 0.00115 0.00100 

The sigma estimator for 9 to ultimate is, of course, a guess. In the 
actual calculation, all estimators were taken to have come from 
a sample of size five calendar years, whereas the last four really 
have less than that. In reserving practice, since there is always 
judgment involved in the tail factor and its standard deviation, it 
seems a good idea to use only estimators which are from at least 
five calendar years. At least this way the assumptions are made 
explicit, rather than hidden in factors whose standard deviation 
is actually infinite due to parameter variation. 



A MARKOV CHAIN MODEL OF SHIFTING RISK 
PARAMETERS 

HOWARD C. MAHLER 

Abstract 

In this paper, a practical and flexible model involving 
simple Markov chains is developed that incorporates the 
phenomenon of  shifting risk parameters. One can view 
this model as a generalization o f  the gamma-Poisson, 
beta-binomial, and similar models. 

The model is applied to a variety of  examples in order 
to illustrate its possible uses: 

• dice, 
• a mixture of  four Poissons, 
• California driving data (modeled by a gamma-Pois- 

son), and 
• baseball data (modeled by a mixture of  binomials). 

The model is sufficiently flexible to be applied to other 
situations. 

In each case, the Markov chain model is used to ex- 
plore the effects o f  shifting risk parameters over time. 
A formula is developed and used to calculate covari- 
ances. Based on the Markov chain model, when shift- 
ing risk parameters over time are significant, the logs 
o f  the covariances between years of  data are expected 
to decline linearly as the separation between years in- 
creases. 

A formula is developed and used to calculate credi- 
bilities from the variances and covariances. When shift- 
ing risk parameters are significant, older years receive 
less credibility and as more and more years o f  data are 
added, the sum of  the credibilities goes to a limit less 
than one. 

581 
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1. INTRODUCTION 

The phenomenon of shifting risk parameters over time has 
been explored in past Proceedings papers by Venezian [14, 15] 
and Mahler [7, 9, 10]. It has been shown that this phenome- 
non can significantly impact the relative value of  data for use 
in predicting the future. Specifically, it can significantly affect 
the credibility assigned to data to be used for experience 
rating. 

In this paper, a practical model involving simple Markov 
chains is developed that incorporates the phenomenon of  shift- 
ing risk parameters. One can view this model as a generaliza- 
tion of the gamma-Poisson, beta-binomial, and similar models. 
The model is applied to a variety of examples in order to illustrate 
its possible uses. 

Biihlmann credibility 1 is discussed, for example, in Mayerson 
[11], Hewitt [4, 5], Philbrick [12], and Herzog [3]. Biihlmann 
derived, under certain assumptions, the linear least squares esti- 
mator; a similar derivation is performed for the more general 
situation in this paper in Appendix C. In order to apply Biihl- 
mann credibility, the Bi.ihlmann credibility parameter is calcu- 
lated as 

K = expected value of process variance 
variance of hypothetical means 

where the expected value of process variance and the variance 
of hypothetical means are each calculated for a single observa- 
tion of the risk process. Then for N observations, the Bi.ihlmann 
credibility is Z = N/(N + K). 

IBfihlmann credibility is also referred to as Bayesian credibility or least squares 
credibility. 
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2. S I M P L E  E X A M P L E  I N V O L V I N G  D I C E  

2.1. Biihlmann Credibility 

Assume Joe selects N dice of  the same type and rolls them. 
Assume Joe selected either four-sided, six-sided, or eight-sided 
dice, with a priori probabilities o f  25%, 50%, and 25%, respec- 
tively. Joe tells you how many dice he rolled and the resulting 
sum, but you do not know the type of  dice Joe selected. Joe will 
roll the same dice again. 

You can use Biihlmann credibility to predict the sum of  that 
next roll. The expected value of  the process variance 2 (for one 
die) is 3.08. The variance of  the hypothetical means 3 is .500. 
Therefore K = expected value of  process variance/variance of  
hypothetical means = 6.16. The credibility assigned to the ob- 
servation is Z = N / ( N  + K) = N / ( N  + 6.16). Thus for example, 
if Joe rolls 3 dice which sum to 14, then Z = 33% and the 
credibility estimate of  the sum of  the next roll o f  three dice 4 
is (14)(33%) + (10.5)(67%) = 11.7. 

The credibility can also be written as: 

Z = 

Z = 

.5N 2 

.5N 2 + 3.08N (2.1) 

variance of  hypothetical means for the sum of  N dice 
(variance of  hypothetical means for the sum of  N dice 

+ expected value of  the process variance for 
the sum of  N dice) 

variance of  hypothetical means for the sum of  N dice 

total variance for the sum of  N dice 

2The process variances for 4, 6, and 8-sided dice are, respectively, 1.25, 2.92, and 5.25. 
3The means for 4, 6, and 8-sided dice are, respectively, 2.5, 3.5, and 4.5. 
4The complement  of  credibility o f  1 - .33 = .67 is assigned to the overall a priori mean 
of  3.5 per die times 3 dice. 
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where we have used the fact that the total variance is the sum of 
the expected value of process variance and variance of hypothet- 
ical means. Also note that the variance of the hypothetical means 
for the sum of N identical dice is simply N 2 times the variance 
of hypothetical means for one die since each of the means is 
multiplied by N. This is a special case of the general result for 
any random variable Y, Var[NY] = N2Var[Y]. In this case, Y is 
the hypothetical mean for a single roll of each type of die. In 
contrast, the expected value of the process variance for the sum 
of N identical dice is just N times the expected value of process 
variance for a single die. This is a special case of the general re- 
suit, Var[X l + X 2 + ' "  + XN] = NVar[X] for X i independent and 
identically distributed. 

This simple example has so far been a review of basic 5 
Bi.ihlmann credibility. Next we will complicate the risk process 
by adding shifting risk parameters over time. 

2.2. Dice Example, Shifting Parameters Over Time 

Let's introduce a somewhat different risk process. Joe selects a 
die and rolls it. Then prior to the next trial, Beth may at random 
replace that die with another die. Assume Beth's replacement 

works such that: process 

1. 

. 

. 

A four-sided die will be replaced 20% of the time by a 
six-sided die. 6 

A six-sided die will be replaced 10% of the time by a 
four-sided die and 15% of the time by an eight-sided die. 

An eight-sided die will be replaced 30% of the time by 
a six-sided die. 

Then the process repeats: Joe rolls a die and Beth (possi- 
bly) replaces the die. Beth's actions will eventually scramble the 

SThis material is currently included on the Part 4B Exam syllabus. 

6The remaining 80% of the time the die is left alone. 
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information one could obtain in her absence by summing the 
results of  many trials. However,  if one uses the most recent trial's 
result, it is unlikely that Beth will have affected the situation. 
Thus more recent trials provide more valuable information for 
predicting the future. Therefore, more recent trials of  data should 
be given more credibility than less recent trials of  data. 

This is generally the case when one has shifting risk param- 
eters over time. We will determine how to calculate the cred- 
ibilities for this example as well as in more general situations 
applicable to insurance. 

2.3. Markov Chains 

Beth 's  risk process is a simple example of  a Markov chain. 7 
See Appendix A for a discussion of  Markov chains. There are 
three "states": 4-sided die, 6-sided die, and 8-sided die. For each 
trial there is a new, possibly different, state. The probabili ty of  
being in a state depends only on the state for the previous trial. 
Beth 's  Markov chain was completely described by the "transition 
probabilities" between the states. 

Label the states 1, 2, and 3 corresponding to 4-sided, 6-sided, 
and 8-sided die. Then let P21 = the probability of  being in state 1 
given that the previous trial was in state 2. This is the probabili ty 
of  Beth replacing a 6-sided die with a 4-sided die, or 10%. Thus 
/}21 = 10%. Similarly, P23 = the chance of  Beth replacing a 6- 
sided die with an 8-sided die = 15%. P22 = the chance of  Beth 
leaving a 6-sided die alone = 75%. Note that P21 + P22 + P23 = 
10% + 75% + 15% = 100%. The probabilities o f  all the things 
Beth can do to a 6-sided die add up to 100%. 

Generally, the transition probabilities for a Markov chain are 
arranged in a matrix P. For Beth 's  "risk process," the matrix of  

7Feller [2], Resnick [13]. 
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transition probabilities is: 

.80 .20 0 ) 

.10 .75 .15 

0 .30 .70 

where we have previously discussed the second row. Note we 
have assumed no chance of  Beth's  "risk process" replacing an 
eight-sided die with a four-sided die so that P31 = 0. 

We note that each of  the rows of  the matrix sums to unity. 
As discussed previously, this is a general property of  transition 
matrices. In addition, this matrix was chosen to have a special 
property. 

We have assumed Joe 's  probability of initially picking each of  
three types of  dice is 25%, 50%, and 25%. Thus the initial prob- 
ability vector is I I 1 The Markov chains we will be dealing 4 '  2 '  4" 
with will, in the limit, go to a so-called stationary distribution. 
For the chosen transition probabilities, 1 l I is that stationary 

4 '  2 '  4 

distribution. 8 We expect this initial distribution to, on average, 
continue over time. 

We can see this by thinking of  the expected number  of  each 
type of  die Beth adds or subtracts. 

1. There is a ~ chance that Joe picks a 4-sided die. There 

is a ¼ × 20% = 5% chance that Beth adds a 6-sided die 
and subtracts a 4-sided die. 

2. There is a ½ chance that Joe picks a 6-sided die. There is 
a 10%/2 = 5% chance that Beth adds a 4-sided die and 
subtracts a 6-sided die and a 15%/2 = 7½% chance Beth 
adds an 8-sided die and subtracts a 6-sided die. 

SThe transition probabilities were chosen so that the initial state would be a stationary 
distribution. See Appendix D for a discussion of how such a transition matrix can be 
constructed from a given stationary distribution. 
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3. There is a ¼ chance that Joe picks an 8-sided die. There 

is a 30%/4 = 71% chance that Beth adds a 6-sided die 
and subtracts an 8-sided die. 

In summary, the change in the probability of  a 4-sided die 
is expected to be 5 % -  5% = 0. The change in the probability 
of  a 6-sided die is expected to be 5% - 5% + 71% - 71% = 0. 
The change in the probability of  an 8-sided die is expected to be 
7 ½ % -  7½% = 0. Thus we indeed have a stable situation on an 
expected basis. 

Let c~ be the vector of  a priori probabilities. All we have done 
is verify the matrix equation that c~P = c~. This is the definition 
of  a stationary distribution. 

In general, if /3 is a vector of  the initial probabilities of  being 
in each state, then the matrix product o f / 3  and the transition 
matrix P , /3P,  is the vector of  probabilities after one trial. 

One last important point is how we would calculate, for ex- 
ample, the probability, if Joe initially picked a 4-sided die, of  
Beth after 2 trials replacing this 4-sided die with an 8-sided die. 
This would be the product of  the probabilities of  replacing a 4- 
sided die with a 6-sided die after the first trial and then replacing 
the 6-sided die with an 8-sided die after the second trial. In this 
case, that probability is Pl2P23 = (.20)(.15) = 3%. 

If Joe initially picked a 4-sided die, what is the probability of  
having a 4-sided die after two trials? Either Beth did not replace 
the die at both trials or she replaced the 4-sided die at trial one 
with a 6-sided die and then at trial two replaced the 6-sided 
die with a 4-sided die. These probabilities a r e  el le l l  + PI2P21 = 

(.80)(.80) + (.20)(. 10) = .66. 

Similarly, if Joe initially picked a 4-sided die, the chance 
of having a 6-sided die after two trials is PllPI2 +PI2P22 = 
(.80)(.20) + ( .20)( .75)-- .31.  Note that given that Joe picked a 
4-sided die, the probabilities of  the three possible situations after 
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two trials add up to unity: .66 + .31 + .03 = 1.00. One can also 
verify that these are the entries of the first row of  p2. 

In general, one could easily compute such probabilities by 
taking matrix products of P. p2 = p × p contains the transition 
probabilities for two trials, p3 = p × p × p contains the transition 
probabilities for three trials, etc. Thus i f /3  is a vector of  the 
initial probabilities of  being in each state, then/3pN is the vector 
of probabilities after N trials. 

2.4.  E i g e n v e c t o r s  a n d  E i g e n v a l u e s  

In order to more easily compute credibilities as well as gain a 
better understanding of  the behavior in specific examples, eigen- 
vectors and eigenvalues are useful. An eigenvector v i and related 
e i g e n v a l u e / ~ i  of a matrix M are such that 

M v  i = /~il)i• 

Appendix B contains a brief discussion of eigenvectors and 
eigenvalues. If the transpose of P has an eigenvector vi, then 

p T v  i = Ail~ i o r  v i P  = Ail~ i. 

Recall Beth's transition matrix: o) 
• . 7 5  . 1 5  . 

.30 .70 

Its transpose has eigenvalues 9 of 1, .769, and .481. It has 
corresponding eigenvectors I° of (1,2, 1), ( 1 , - . 314 , - . 686 ) ,  and 
(1 , -3 .186,2•  186)• The eigenvalue 1 corresponds to the station- 
ary distribution; its corresponding eigenvector (1,2, 1) is propor- 
tional to the stationary distribution. II By the definition of an 
eigenvector with an eigenvalue of 1: v l P  = l v  I = v I. 

9We have chosen to list the eigenvalues starting with unity for the sake of  convenience. 
l°Note, the eigenvectors may each be multiplied by any constant and remain eigenvectors. 
l lRecall that in this example, the stationary distribution was (¼, l l ~,~)- 
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Let ,X be the vector of  eigenvalues o f P  r .  Let V be the matrix of  
corresponding eigenvectors, with each row being an eigenvector. 
In this case ,X = (1,.769,.481), while 

(i 2 1 / 
V = - . 3 1 4  - . 686  and 

-3 .186  2.186 / 

V - 1  = 

.250 .658 .092)  

• 250 - . 103  - . 147  . 

• 250 - .451 .201 

The elements of  the first column of  V-1 are all equal, and are 
the proportionality constant to convert the first eigenvector (the 
elements of  the first row of  V) into the stationary distribution or. 
In our example, the first column of  V -1 is (.25,.25,.25) where 
each element is the inverse of  the sum of  the first eigenvector 12 
(1,2, 1). The sum of  any eigenvector but the first is zero. 

We have the following result of  multiplying matrices13: 

li 0 0 / VPV -1 = .769 0 . 

0 .481 

So the matrix of  eigenvectors of  pT can be used to convert P 
to a diagonal matrix whose elements are the eigenvalues o f  pT. 
Let this diagonal matrix be A. 

2.5. Limits 

VPV-I = A. (2.2) 

|2We could have just  as easily chosen the first eigenvector as (~, I I ~, ~), in which case 
since it sums  to unity, it is the stationary distribution. 
13This follows f rom the matrix equation V P  = AV, which taking each row in turn says 
v i P  = .~iVi . 
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In general, for any matrix P and any invertible matrix V, 

p2 = V - I ( V P V - I ) ( V P V - I ) v  = V - I ( V P V - I ) Z V .  

This result extends similarly to higher powers: 

pg = V - 1 ( V P V - I ) g V .  

Substituting the particular expression for A from Equation 2.2, 
one obtains 

Pg = V-  I Ag V. (2.3) 

So taking powers of  the transition matrix corresponds to tak- 
ing powers of  the diagonal matrix A. We use the matrix of  eigen- 
vectors V to translate back and forth. Ag is diagonal with ele- 
ments A g. As g ---, cx~, A~ ~ 0 for ]Ail < 1. Since I)ki] < 1 for i > 1, 
A g approaches a matrix, all but one of whose elements is zero, 
and element (Ag)ll  = 1 g = 1. 

As discussed in Appendix A, Pg ~ A,  as g ---, c~, where A is a 
matrix each of  whose rows is proportional to the first eigenvector; 
each row of  A is the stationary distribution. 

For any initial distribution /3, l i m u ~ / 3 P U  = 3.4 = c~ since 
the sum of  the elements of /3 is unity and since the rows of  A are 
each the stationary distribution c~. Thus for any initial distri- 
bution, after enough time passes, we approach the stationary dis- 
tribution: 

/3P g ---, c~, Pg ---, A, and A 8 (i°i) 0 

0 
(2.4) 

The speed with which this convergence takes place is depen- 
dent on [Ai[ for i ¢ 1. The smaller IAi[ for i ¢ 1, the larger the 
effect of  shifting parameters over time. In the current example, 
A 2 = .769 and A 3 = .481, so convergence takes a while. 
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F o r N  =5 ,  

A 5 = 

(i ° .269 

0 

p5 = V- I  A s V  = 

0i6) 
.429 .437 

.219 .521 

.134 .521 

and 

.134)  

.261 . 

.344 

For N = 20, 

(i ° A 20 = . 0 0 5  

0 

p2O = V- l A2o V = 

0) 
0 

4 ×  10 -7 

.253 .499 

.249 .500 

.248 .501 

and 

.248 ) 

.250 . 

.252 

Thus after five trials we expect to have retained a small 
amount of information about Joe's initial pick. For example, if 
Joe initially picked a 4-sided die, after five trials there is .429 
chance of  a 4-sided die, a .437 chance of  a 6-sided die, and a 
.134 chance of an 8-sided die. After 20 trials, for all practical 
purposes the probabilities are independent of Joe's initial pick. 
Beth's process has scrambled things sufficiently in order to re- 
move any trace of  the initial pick. 

We conclude that the outcome of the first trial would pro- 
vide no useful information for the prediction of  the 21st trial. 
On the other hand, the outcome of  the 16th trial would provide 
some small amount of  useful information for the prediction of  the 
21st trial, being only five trials apart. Thus, we would expect 
to give the 16th trial some small credibility and the first trial 
virtually zero credibility when predicting the outcome of  the 
21 st trial. 
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2.6. Covar iances  

In insurance applications, a year of  data takes the place of  a 
trial in the example involving dice. In order to calculate credibili- 
ties, we need to calculate the variances as well as the covariances 
between different years of  data. As developed in Appendix E, 

let ~" be the vector such that 

(i = ((l~ x oO'rV-1) i (Vlz) i .  (2.5) 

Then, for g > 0, the covariance of two years of  data separated 
by g years is given by 

Cov[X, U] = ~ (i Ag. (2.6) 
i>1 

Note that )~i and ~'i which determine the behavior of  the co- 
variances are each directly and easily calculable 14 from the as- 
sumed transition matrix and the means of  the states. The steps 
developed in Appendix E are: 

1. Assume 15 a transition matrix P corresponding to the as- 
sumed states with means given by the vector #. 

2. Calculate the eigenvalues and eigenvectors of  the trans- 
pose of  the transition matrix p r .  

3. Arrange the eigenvalues in descending order with the 
first one unity; this is the vector A. 

4. V is the matrix whose rows are the eigenvectors corre- 
sponding (in the same order) to the eigenvalues A i. 

5. The stationary distribution c~ is proportional to the eigen- 
vector corresponding to the eigenvalue of  unity; the ele- 
ments of  c~ should sum to unity since it is a probability 
distribution. 

14Assuming the calculations will be performed on a computer. 

15In many of the examples, we will assume a stationary distribution a and then construct 
a transition matrix P such that otP = a ,  using the method in Appendix D. 
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6. (/~ × e~) is the vector whose ith element is ].~iog i. 

7. V - l  is the matrix inverse of  V. 

8. ff is the vector whose ith element is the product of  the ith 
element of  the vector (/~ × o o T v  - l  and the ith element 
of  the vector V/~. 

9. For X and U separated by g years, g > 0: 

C o v [ X , U ]  = 

i > 1  

The vector ff is defined in Equation 2.5 in terms of/~,  or, and 
V. ~, the vector of  means for each state, and o~, the distribution 
of  probabilities for the states, are not dependent on the rate of  
shifting parameters. 

V is a matrix whose rows are the eigenvectors of  pT. The 
eigenvectors of  (pe,)r = (pr)g are the same as those of  pT. By 
raising P to a power, one can alter the rate at which parameters 
shift over time without changing the eigenvectors. Therefore,  
since V does not depend on the power to which P is raised, it 
does not reflect the speed of  shifting risk parameters. 

Therefore, if, which is calculated from /~, o~, and V, reflects 
the "structure" of  the Markov chain rather than the rate of  shifting 
risk parameters. In contrast, the eigenvalues )k i d o  reflect the rate 
at which risk parameters shift. If P is raised to the power g, so 
are the eigenvalues. 

Thus writing the covariance between two years of  data in 
terms of  ff and A as in Equation 2.6 isolates the effect of  the rate 
of  shifting parameters into A g. 

2.7. The Variance-Covariance Matrix 

For a single year, the variance of  X (the covariance of  X 
with itself) is not affected directly by shifting risk parameters 
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over time. 16 With stationary probabilities of  being in the different 
states, the variance of  X can be calculated ignoring shifting risk 
parameters. 

The variance of  X is computed in the usual way as the sum 
of the variance of hypothetical means and the expected value of 
process variance. As discussed previously in Section 2.1, for Joe 
rolling a single die, the variance of hypothetical means is .50 
and the expected value of process variance is 3.08. Therefore, 
the total variance of  X is 3.58. 

For this example, as calculated in Appendix E, the covariances 
for trials separated by given amounts are: 

Separa t ion  Covar iance  17 

Covar iance  - 

Variance of  
Hypothe t ica l  

Means  

0 3.583318 

1 .3750 .750 

2 .2837 .568 
3 ,2159 .432 

4 .1649 .330 
5 .1263 .253 
6 .0968 .194 

7 .0743 .149 
8 .0570 .114 

9 .0438 .088 
10 .0337 .067 

20 .0024 .0048 

30 .0002 .0004 

In this case for g > t), the covariances are (.468)(.769 g) + (.(132)(.418 x). Therefore, the variance of hy- 
pothetical means is .5, we expect the covariance + variance ~t" hypothetical means to be approximately 
.77& 

t6To the extent  the probabi l i t i es  o f  be ing  in different  states is not stat ionary,  the expec ted  
value of  the p rocess  var iance  may  move  over  time. That  is not the s i tuat ion here. 
17Based on exact  ca lcu la t ion  wi th  no in termedia te  rounding. 
laTotal var iance  = sum of  the var iance  of  hypothe t ica l  means  of  .50 and the process 
var iance  of  3.08. 
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Note that setting g = 0 in the formula for Cov[X,U] gives 
.468 + .032 = .500, the variance of  hypothetical means. In gen- 
eral, one can calculate the variance of X by getting the variance of 
hypothetical means in this manner and adding the expected value 
of process variance. The process variance will depend, among 
other things, on the particular type of process, e.g., binomial, 
Poisson, negative binomial, rolling a die, spinning a spinner, etc. 

In summary, as shown in Appendix E, the variance-covariance 
matrix between years of data is given by 

Cov[X,U] = (.468)(.769 g) + (.032)(.481 g) + 3.08 (if g = 0). 

In general, for years of  data X i and Xj: 

Cov[Xi,Xj] = ~ CkA~ -jl + 6ij 
k>l  

where 

(EPV) (2.7) 

EPV = expected value of the process variance 

0 i C j  
¢5ij = 

1 i = j  

2.8. Credibilities 

Assume we have data from years 1,2 . . . . .  Y and we wish to 
predict the outcome in year Y + A. Then, as shown in Appendix 
C, the least squares credibilities are given by solving the Y linear 
equations in Y unknowns: 19 

Z C°v[Xi,Xj]Zj = C°v[Xi'Xy+A] 
j=l 

i = 1,2 . . . . .  Y. (2.8) 

t9The equations are those in Mahler [10]. 
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Given values for the variances and covariances, one can solve 
for the credibilities to assign to each year by s imple matrix tech- 
niques. 

In our example,  assume we use the ou tcome of  one trial to 
predict  the ou tcome of  the next trial. Then we get one equation: 

Cov[XI,XI]Z 1 = C o v [ X  1 ,X2]  , and 

C°v[Xl 'X2]  - . 3 7 5 0 / 3 . 5 8 3 3  = 10.5%. 
Zl - Var[X] 

Note that this is lower than the credibility for a single trial in the 
absence of  shifting parameters,  which is .50/3.58 = 14.0%. 2o 

If  we use two years of  data to predict the subsequent  year, 
then we get two equations in two unknowns:  

Z 1 C o v [ X 1 , X l ]  + Z2Cov[XI,X2] -- C o v [ X I , X 3 ] ,  and 

Z 1 C o v [ X  1 , X  2] + Z2Cov[X2,X2] = C o v [ X 2 , X 3 ] .  

For this example,  

3 .5833Z 1 + .3750Z 2 = .2837, and 

.3750Z I + 3.5833Z 2 = .3750. 

The  solution is 

3.5833 . 3 7 5 0 ) - '  ( . 2 8 3 7 )  = ( . 0 6 9 ) .  

.3750 3.5833 .3750J  \ . 0 9 7 /  

We would  give 9.7% credibility to the most  recent year of  data, 
6.9% to the second most  recent year, and the complement  of  
credibility, 83.4%, to the overall a priori mean of  3.5. 

2°The ratio of credibilities is .75, the ratio of the covariance (with shifting parameters) 
to the variance of hypothetical means. 
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Similarly for three years of  data, the equations are: 

3.5833Z 1 + .3750Z 2 + .2837Z 3 = .2159, 

.3750Z l + 3.5833Z 2 + .3750Z 3 = .2837, and 

.2837Z l + .3750Z 2 + 3.5833Z 3 = .3750, 

which has the solution Z 1 = 4.6%, Z 2 = 6.4%, Z 3 = 9.4%. 

If, instead of  using years 1 through 3 to predict year 4, we 
were using them to predict year 5, the right hand sides of  the 
equations would be instead.  1649, .2159, and .2837. This would 
instead result in a solution Z 1 = 3.5%, Z 2 = 4.9%, Z 3 = 7.1%. 
The additional year of  delay in the availability of  data has re- 
sulted in lower credibilities. 21 

2.9. Varying the Rate at which Parameters Shift 

One can easily modify this example to either slow down or 
speed up the rate at which parameters shift over time. For exam- 
ple, the transition probabilities could be revised so it is one-fifth 
as likely for Beth to switch the type of  die after each trial. Such 
a revised transition matrix (.96.040) 

.02 .95 .03 

0 .06 .94 

has the same stationary distribution .25, .5, .25, but the parame- 
ters shift about one-fifth as fast. 

One can speed up the rate at which parameters shift by rais- 
ing the transition matrix to a power. For example, squaring the 
given transition matrix yields a new transition matrix in which 
the parameters shift exactly twice as  fas t .  22 

2t Note  the Equa t ions  2.8 are suff ic ient ly  genera l  to a c c o m m o d a t e  gaps  be tween  the years  
of  data as wel l  as a gap  be tween  the las t  year  of  data  and the year  be ing  predicted.  
22If t~P = t~, we  have  otP 2 = (c~P)P = a P  = oc Therefore ,  i f  a is a s ta t ionary d is t r ibut ion 

for P, it is a s ta t ionary d is t r ibut ion for p2 (or p 3  or p4,  etc.). 
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FIGURE 1 

COVARIANCES BETWEEN DATA SEPARATED BY GIVEN NUMBER 
OF TRIALS, EXAMPLES WITH DICE, SHIFTING PARAMETERS 

OVER TIME 
. . . . . . . . . . . . . . .  . . . . - -  
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Separation of Trials of Data 
Y-Axis on a Log Scale. One die rotled per tdal. 

The Markov chain that corresponds to the transition matrix 
p2 results in covariances of data X[ that follow from those for 
data X i from the Markov chain corresponding to P: 

Cov[X'I  ,Xtl+g ] -- C ° v [ X l  ,XI +2g]" 

The covariance for a separation of ten years with transition 
matrix p2 is the same as that for a separation of 20 years with 
transition matrix P. 

Figure 1 compares the covariance structure for the basic ex- 
ample to one with no shifting, one-fifth the amount of shifting, 
and twice the shifting. The vertical axis is on a logarithmic scale. 
As expected on this logarithmic scale, the covariances decline ap- 
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FIGURE 2 

SUM OF CREDIBILITIES, EXAMPLES WITH DICE, 
SHIFTING PARAMETERS OVER TIME, VARYING RATES 
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proximately linearly, with the slope of  the decline approximately 
proportional to the amount of shifting. In the absence of shift- 
ing risk parameters over time, the covariances do not decline, 
rather they are the same regardless of the number of  years of 
separation. 23 

Figure 2 compares the sum of the credibilities one would as- 
sign to individual years of data for different amounts of shifting. 
In the case of no shifting, the sum of  the credibilities approaches 
unity as the number of years approaches infinity. 24 The greater 

Z3In many practical applications, the decline will be so small over the time periods o f  
interest that it makes sense to ignore the decline. Thus while the case of  no decline forever 
is not realistic, it is a very good approximation for many practical applications. 
24For this example with no shifting and Y years of  data, each year is assigned 
I / ( Y  + 6.1666) credibility. The sum is Y / ( Y  + 6.1666). 
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FIGURE 3 

C R E D I B I L I T I E S  A S S I G N E D  T O  E A C H  O F  T E N  T R I A L S  O F  D A T A  

E X A M P L E S  W I T H  D I C E ,  V A R I O U S  R A T E S  O F  S H I F T I N G  

P A R A M E T E R S  O V E R  T I M E  
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the shifting, the smaller the sums of the credibilities. The sum 
of  credibilities approaches a value less than unity as the number 
of years of  data increases. The greater the shifting, the lower the 
limit and the faster it is reached. 

Figure 3 compares the credibilities that would be assigned 
to individual years of  data when using ten years of data. In the 
absence of  shifting, each year is assigned equal credibility. 25 The 
greater the shifting, the greater the difference in credibilities as- 

ZSFor Y = 10, e a c h  y e a r  is a s s i g n e d  c red ib i l i ty  o f  1 / ( 1 0  + 6 .1666 )  = 6 .2%.  
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signed to the different years of  data. When risk parameters shift 
rapidly over time, the value of recent information is greater rel- 
ative to older information. 

We note that the most recent year of  data is assigned more 
credibility for the basic example than it is in the absence of  shift- 
ing. This reflects the fact that in the former situation the relative 
value of  the most recent year' s data is large compared to the data 
available from other years. When using ten years of  data in the 
absence of  shifting, the total value of the available information 
is higher, as is the value of  the most recent year. However, the 
value Of the most recent year's data relative to all the information 
available is lower without shifting than with shifting. In contrast, 
as was shown previously, when using only one year of data, the 
credibility is lower in the presence of  shifting. 

Finally, Figure 4 compares the effects of delays in gathering 
the data. For the basic example, we see how the credibilities de- 
crease as the delay increases. When risk parameters are changing 
quickly over time, the effect of any delay in collecting data can 
be very substantial. 

2.10. Size of Risk and Shifting Risk Parameters 

Assume that Joe selects N dice (of the same kind) and rolls 
them. The resulting sum is the result of one trial or year. After 
each trial, Beth (possibly) changes the type of  dice with transition 
matrix P. (We assume Beth either changes the type of all N dice 
or leaves them all alone.) 

Since we are just adding the results of rolling N identical dice 
in each year, the covariance between two separate years is given 
by N 2 times what it was for the case with a single die: 

N C o v [ X 1 , X l + g  ] = 2 g 

i>1 
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FIGURE 4 

CREDIBILITIES ASSIGNED TO EACH OF TEN TRIALS OF DATA, 

EXAMPLES WITH DICE, EFFECTS OF VARIOUS DELAYS, 

SHIFTING PARAMETERS OVER TIME 
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The variance for a year is given by N (expected value of 
process variance for a single die) + N 2 (variance of hypothetical 
means for a single die). 

As before, given Y years of  data, we can solve Y equations 
in Y unknowns 26 for the credibilities assigned to each year. As 
in the case of  standard BiJhlmann credibility, since the expected 
value of  process variance increases with N rather than N 2, as N 
increases, so does the credibility. 

26The same Equations 2.8 apply, but the actual values of the variance and covariances 
depend on N, the number of dice. 



A MARKOV CHAIN MODEL OF SHIFTING RISK PARAMETERS 603 

FIGURE 5 

SUM OF CREDIBILITIES, SHIFTING PARAMETERS OVER TIME, 
VARIOUS NUMBERS OF DICE PER TRIAL 

One Thousand Dice 
o - - - -  0 o c C : ~. ¢ o ..- o c c = o .753 

0 , 7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
~ .  I I I t I I I I I I I .679  

Twenty Five Dice 

0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Five Dice 

: ; : : : : : : , i  .528 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  r * ? ° i ~  . . . . . . . . . . . . .  
0.4 --. ~ o - - e -  o o o o o o .38g 

0 .3  " : J ~ '  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -:: . . . . .  ~-: . . . . .  ; . . . . . .  ;, . . . .  -..; . . . . . .  + ' -  .280 

o I  I . . . .  I . . . . . . .  I .  - I  . . . . .  I . . . .  I I I t . . . . .  t . . . . .  I . . . . .  I 
1 2 3 4 5 6 7 8 9 10 11 12 13 

Numbs '  of Trials of Data 

No gap between data ind trial to be estimated, Various numbers of identical dice toiled per trial. 

I I 
14 15 

Figure 5 compares the sum of  credibilities assigned to Y years 
for different numbers of  dice, N, for the transition matrix dis- 
cussed previously: /8° °) 

.10 .75 .15 . 

0 .30 .70 

As expected, the more dice used per roll, the higher the cred- 
ibility. Also, the more dice, the quicker the limit is approached 
as the number of  years of  data increases. For a fixed amount of  
shifting, for larger risks, the more recent years are relatively more 
valuable compared to older years than is the case for smaller 
risks. For larger risks, the random noise in the observation of  a 
single year is less, so one can rely on fewer years of  information. 
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As the number of  dice approaches infinity, one relies almost 
solely on the most recent year of  data. In this case, the sum of 
credibilities approaches 75.6%, with about 74% credibility being 
assigned to the most recent year. 

In general, as the number of dice approaches infinity, the sum 
of the credibility approaches a number less than unity in the 
presence of shifting risk parameters. Having Joe roll more dice 
per trial does not get rid of the effect of Beth (possibly) shifting 
all the dice between trials. Increasing the size of  the risk will not 
eliminate the uncertainty caused by shifting risk parameters over 
time. 27 

3. S I M P L E  P O I S S O N  E X A M P L E  

3. I. Biihlmann Credibility 

To take a simplified insurance example, assume that for in- 
dividual insureds the claim frequency in each year is given by 
a Poisson distribution. 28 Assume that there are four types of in- 
sureds with different frequencies: 

Type of  A Priori Mean 
Insured Probability Frequency 

Excellent 40% .25 
Good 30% .50 
Bad 20% .75 
Ugly 10% 1.00 

Then the overall mean is .50. The variance of hypothetical 
means is 1/16. The expected value of process variance is the 

27Note in the model used here, the rate of  shifting was assumed to be independent of  the 
size of  risk. This was a simplifying assumption which may or may not be a reasonable 
approximation to a particular real world application. 
2SFor parameter 0, f ( n )  = e-°O n In! .  The mean and variance of  the Poisson are each equal 
to O. 
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expected value o f  hypothetical means 29 which is the overall mean 
of  .50. 

The Bfihlmann credibility parameter is K = . 5 0 / ( l )  = 8. 
Therefore, the credibility of  Y years of  data from an individual 
insured is: 3° 

Y 
Z - (3.1) 

Y + 8 "  

For example, one year of  data would be assigned a credibility 
of  about i 1%. Note that the total variance is .5 + ~ = .5625. The 
credibility of  a single year is the variance of  hypothetical means 
divided by the total variance = .0625/.5625 = ~-. 

3.2. Shifting Risk Parameters, Simple Poisson Example 

Assume that in the previous example, the individual insured 
has a chance of  shifting states each year. For example, an excel- 
lent insured might have an 18% chance of  switching to a good 
insured the following year, 31 and an 82% chance of  remaining 
an excellent insured. Assume the following transition matrix for 
illustrative purposes: 

.820 .180 0 0 

.240 .592 .168 0 

0 .252 .608 .140 

0 0 .280 .720 

This transition matrix has the selected initial distribution 
(.4, .3, .2,. 1) as a stationary distribution. 32 

29Since for the Poisson, the mean is equal to the variance. 
3°We assume that we do not know what type of risk the individual is and that the 
complement of credibility is to be assigned to the overall mean. 
3JNote that we are referring to presumed changes in the unobservable expected claim 
frequency rather than observed changes in the actual number of claims from year to year. 
32It can be easily verified that (.4,.3,.2,.I)P = (.4,.3,.2,.1). See Appendix D for how this 
transition matrix was constructed. 
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As with the dice example, one can compute the variance- 
covariance matrix and thus the credibilities. 

The expected value of  process variance for a single year in 
this example is .50. Note that this depends on the fact that for 
each insured for each year we have assumed a Poisson process. 

The transpose of  the transition matrix has eigenvalues of  

X = (1,.855,.580,.305). 

The eigenvectors are the rows of: 

V = 

1 .75 .5 .25 

1 .1456 - .5623 - .5833  

1 - 1  - .6667 .6667 

1 -2 .1456  1.729 - .5833  

v - l =  

3 09 

• •0643 - .2667  -.1976| 
.4 - .3722  - . 2666  .2388]  

4  333 

and 

(/~ x a )  

(/~ x c O V  - I  = 

V/~ = 

(.25, .50, .75, 1.00) = the assumed means 
(.40, .30, .20, .10) = the stationary distribution 
(.10, .15, .15, .10) 
(.2, - .0903 ,  - .0067,  - .0030)  

(1.25, - .6822,  - .0833,  - .  1094) 

has as its ith element the product of  the ith element of  the 
above two vectors, as shown in Equation 2.5; therefore, 

¢ = (.25, .0616, .0006, .0003). 

Therefore,  for g > 0, the covariance of two different years is 
given by Equation 2.6: 
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C o v [ X 1 , X l + g ]  = ~ ¢ i ~  
i>1 

C o v [ X l ,  X I +g]  = (.0616)(.855 g) + (.0006)(.580 g) 

+ (.0003)(.305 g) for g > O. (3.2) 

For a single year, we set g = 0 and add the expected value of  
process variance: 33 

Var(X) = .0625 + .5  = .5625. (3.3) 

One can use this variance-covariance structure in the Equa- 
tions 2.8 for the credibilities. For example, if  using three years 
of  data X l , X 2, X 3 to estimate the next year, X 4, then the three 
equations in three unknowns are: 34 

.5625Z l + .0531Z2+ .0453Z 3 = .0386, 

.0531Z 1 + . 5 6 2 5 Z  2 + . 0 5 3 1 Z  3 = .0453, and 

.0453Z 1 + . 0 5 3 1 Z  2 + . 5 6 2 5 Z  3 = .0531. 

The solution is Z 1 = 5.6%, Z 2 = 6.7%, and Z 3 = 8.4%. Table 1 
displays the solutions for various numbers of  years of  data. 

Figure 6 shows the sum of  the credibilities both in the pres- 
ence of  shifting risk parameters and in the absence of  shifting 
risk parameters. 35 Also shown are credibilities corresponding to 
twice the original rate of  shifting 36 and to five times the original 
rate of  shifting. 37 As was seen before, the presence of  shifting 
risk parameters lowers the credibilities. The more rapid the shift- 
ing, the greater the effect on the credibilities. 

33This matches the result prior to considering shifting parameters over time, as it should. 
34Cov[Xi ,X 2] = .0531. Cov[XI,X3] = .0453. Cov[X I ,X4] = .0386. Var[X] = .5625. 
35As was seen in the previous section, in the absence of shifting risk parameters, I/(Y + 8) 
credibility is assigned to each of Y years for a total of  Y/(Y + 8). 
36Based on using the square of  the original transition matrix. 
37Based on using the fifth power of  the original transition matrix. 
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TABLE 1 

CREDIBILITY 

S I M P L E  P O I S S O N  E X A M P L E  WITH SHIFTING R I S K  P A R A M E T E R S  

(No Delay in Receiving Data) 

Years Between 
Data and 
Estimate 

Number of Years of Data Used 

1 2 3 4 5 10 

1 (Most Recent) 9.4% 8.8% 8.4% 8.1% 8.0% 7.8% 
2 7.2% 6.7% 6.4% 6.3% 60% 
3 5.6% 5.2% 5.0% 4.7% 
4 4.3% 4.0% 3.7% 
5 3.3% 2.9% 
6 2.2% 
7 1.8% 
8 1.4% 
8 1.1% 
10 0,9% 

Total Credibility 9,4% 16.0% 20.7% 24.0% 26.6% 32.5% 

With shifting risk parameters, as the number of  years of  data 
approaches infinity, the sum of  the credibilities approaches a limit 
less than unity. For faster shifting, this limit is lower and it is 
approached more rapidly. 

Since the first term in the covariance in Equation 3.2 domi- 
nates, the variance-covariance structure in Equations 3.2 and 3.3 
can be approximated by: 

Cov[Xi,Xj]  = (.0625)(.85Ei-jl) + .56ij (3.4) 

where ~Sij = 0 for i ¢ j and 1 for i = j .  

In general, 

Cov[Xi,Xj]  = T2.X li-jl + ~Sijrl 2 (3.5) 

where 7j 2 is the expected value of process variance, r 2 is the 
variance of  hypothetical means and ~ is the dominant  eigen- 
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FIGURE 6 

S U M  OF C R E D I B I L I T I E S ,  S I M P L E  P O I S S O N  E X A M P L E ,  

V A R I O U S  RATES OF S H I F I ' I N G  P A R A M E T E R S  O V E R  T I M E  
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value (other than unity) of  the transpose of the transition matrix 
of the Markov chain. 

For one year of  data, predicting year 1 + A, the credibility is 
obtained by solving Equation 2.8: 

Z(r  2 + 77 2)  = r2)~ a Z = )~eX/(l + K) (3.6) 

where K = 7/2/?-  2 = Bfihlmann credibility parameter. 

As shown in Mahler [9], when one has years 1 to Y predicting 
year Y + A, the sum of the credibilities is approximately: 38 

3SAs discussed on pages 162-164 of Mahler [9], this approximation underestimates the  
credibilities. However, here we have also approximated the covariances, therefore the 
approximation can go in either direction. 
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Y 

E Z i 
i= l  

A A Ai-1 

Y 

~ ' A  i-l + K 
i=1 

(3.7) 

In the absence of  shifting risk parameters, A = 1 and the sum 
of  the credibilities given by Equation 3.7 becomes the familiar 
Y/(Y + K). 

In the current example, A = .855, 712 = .5, "r 2 = .0625, and K = 
r/2/r 2 = 8. Thus Equation 3.7 becomes for & = 1 

v (.855) (.855) i-I 
\ i = 1  I (3.8) 

For Y = 3, Equation 3.8 gives ~ Z  i ~20 .9%.  As seen above, 
the exact solution gives Z 1 + Z 2 + Z3 = 5.6% + 6.7% + 8.4% = 
20.7%, which happens to be somewhat  lower in this case. 

As the number of  years of data increases in Equation 3.7, the 
approximate sum of  the credibilities approaches: 

In this example, for A = 1, A = .855 and K = 8, the sum of the 
credibilities approaches approximately 39.6%. As seen in Figure 
6, the sum of  the credibilities actually approaches 34.7%. Thus 
while this approximation is conceptually useful, one should be 
cautious in using it for precise numerical results. 

Figure 7 displays the credibilities that would be assigned to 
each of  ten years of  data. In the absence of  shifting risk parame- 
ters, each year  of  data is assigned equal credibility. With shifting 
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FIGURE 7 

CREDIBILITIES ASSIGNED TO EACH OF TEN YEARS OF DATA, 

SIMPLE POISSON EXAMPLE, VARIOUS RATES OF SHIFTING 

PARAMETERS OVER TIME 
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risk parameters, more recent years of data are given more weight 
than older years of data. The faster the shifting, the less weight 
is given to the older years of data. 

4. CALIFORNIA DRIVING DATA 

Mahler [7] examined California driving data. Two sets of data 
were examined: male and female drivers. The latter set showed 
more significant evidence of shifting parameters over time. The 
Markov chain model will be used to model the data for female 
drivers. 39 

39The techniques could be applied in a similar manner to the male drivers. 
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FIGURE 8 

GAMMA-POISSON FREQUENCY PROCESS 

Gamma is Conjugate Prior, Poisson is Member of • Linear Exponential Family 
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Biilhrnann Credibility Parameter = (Inverse) Scale Parameter of Pnor Gamma = lambda 
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For 23,872 female drivers over a period of  nine years, there 
were 7,988 accidents, for an annual accident frequency of  .0372. 
The average variance of  a year of  data was .0386. 

4.1. Gamma-Poisson 

Such data can be commonly fit with a "gamma-Poisson" in 
which each insured's frequency is a Poisson process and the 
Poisson parameters vary over the portfolio via a gamma distri- 
bution, a° Key features of  the gamma-Poisson are displayed in 
Figure 8. The frequency distribution for the portfolio is negative 

4°See for example, Mayerson [11], Dropkin [1], Herzog [3], and Hossack, Pollard, and 
Zehnwirth [6]. 
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TABLE 2 

NUMBER OF DRIVERS WITH VARYING NUMBERS OF CLAIMS 
OVER NINE YEARS 

Maximum 
California Likelihood Markov 

Number of  Female Negative Chain 
Claims Drivers Binomial* Simulation 

0 17,649 17,654 17,695 
1 4,829 4,822 4,852 
2 1,106 1,101 1,029 
3 229 235 239 
4 44 48 49 
5 9 10 6 
6 4 2 2 
7 1 0 0 
8 1 0 0 
9+ 0 0 0 

23,872 23,872 23,872 

*Negative binomial distribution with parameters p = .8164, k = 1.4876, The California data has a 
total of 7,988 accidents while the simulated data has a total of 7,865. 

binomial. As shown in Table 2, a negative binomial is a reason- 
able fit to this data. 41 The overall mean is the mean of  the gamma 
distribution. The total variance minus the mean is the variance 
of  the gamma distribution. Thus one can use the method of  mo- 
ments to determine the parameters o f  the gamma distribution; 
for this data, the mean of  the gamma would be .0372 and the 
variance of  the gamma would be .0386 - .0372 = .0014. 

For a gamma distribution with shape parameter c~ and (in- 
verse) scale parameter A, this would lead to two equations: 

c~/)~ = 0.372, and 

c~/.~ 2 = .0014. 

41As discussed in reviews of  Dropkin [1], this does not imply that the gamma-Poisson 
model  is appropriate. 
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FIGURE 9 

COVARIANCES VERSUS YEARS OF SEPARATION 
CALIFORNIA FEMALE DRIVER DATA 
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This would give values of  A = 26.6 and c~ = .988. If  the 
shape parameter c~ = 1, one would get an exponential distri- 
bution. As a first approximation, assume the frequencies are 
given by an exponential density function with parameter 26.9: 
f(O) = 26.9e -269° with mean 1/26.9 = .03717. 

4.2. Shifting Parameters 

As stated above, the data for California female drivers shows 
evidence of  shifting risk parameters over time. The covariances 
between years of  data with given separations is shown in Fig- 
ure 9. The covariances appear to decrease for larger separations. 
The observed covariances were fit to an exponential regres- 
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sion: C o v [ X i ,  Xi+g ] -- .00120e -066g, where g is the years of  sep- 
aration. 

This is the same general type of  behavior one would expect 
from a Markov chain model of  shifting parameters over time. In 
order for a Markov chain model to fit the observed covariances, 
the variance of  hypothetical means should be about .0012, since 
setting g = 0 in the Markov model gives the variance of  hypo- 
thetical means. 42 The factor in the exponent, - .066 ,  should ap- 
proximate the log of  the dominant eigenvalue (other than unity) 
of  the transition matrix, since this is the approximate rate of  de- 
cline of  the log of  the covariances in the model. Thus, in order 
to match the observed decline, the dominant eigenvalue(s) (other 
than unity) must be about e - ' 066  -~ .94. 

4.3. Markov Chain Model 

In order to apply the Markov chain model, one has to convert 
the assumed continuous distribution of  frequency parameters into 
a discrete approximation. For example, take mean frequencies 
of: 

0 i = .0025,.0075,.0125 . . . . . .  3975 i = 1,2 . . . . .  80. 

Take the (initial) probabilities of  being in each of  these 80 states 
as c~ i proportional t o  e -26 '90i ,  such that the sum of  the ai is 
unity. 43 Then, as shown in Appendix D, one can construct an 
(80 x 80) transition matrix that has these c~ as a stationary dis- 
tribution. For illustrative purposes, assume about ~- chance of  
shifting up or down a state per year. 44 For this transition matrix, 

42Given the random fluctuation in the data, this estimate o f  .0012 is not inconsistent with 
the previous estimate of  .0014. 
43This is a discrete approximation to the selected exponential distribution, The technique 
will work exactly the same for a gamma distribution with a shape parameter other than 
unity (which is an exponential). 
44In order to match the observed covariance structure, this transition matrix will be taken 
to an appropriate power. 
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the first ten elements of  ff and X are: 45 

i (i Ai 

1 .00139 1 
2 .00059 .9980 
3 .00042 .9964 
4 .00019 .9939 
5 .00008 .9903 
6 .00OO4 .9857 
7 .00002 .9801 
8 .00001 .9735 
9 .00001 .9659 

10 .00000 .9574 

with all the remaining elements of ~ < .0001. Since only the first 
few terms contribute significantly to the sum that calculates the 
model covariances, 

Cov[X1,Xl+g ] = ~ ( i A ~  ~ .0013(.997 g) g > 0. 
i>1 

As discussed previously, in order to approximate the observed 
covariance structure for California female drivers, one would 
want a decline in the log covariances of about - .066g .  The above 
transition matrix has a decline of  the log covariances of  about 
-.O03g. Raising the above transition matrix to the 20th power 46 
will multiply the decline in log covariances by about a factor of  
20, producing a decline of  about - .060g ,  and so should roughly 
approximate the observed decline. 

The model covariances for such a transition matrix are shown 
in Figure 10. The model covariances are a reasonable fit to the 

45See the previous discussion and Equation 2.5 for the definition of  ~. ,X is the set of 
eigenvalues of the transpose of the transition matrix. 
46Taking the transition matrix to the 20th power gives a matrix whose eigenvalues are 
all taken to the 20th power. Thus the logs of all the eigenvalues are multiplied by 20. 
Since the log covariances decline approximately proportionally to the log of the dominant 
eigenvalue (other than one), they will decline about 20 times as fast for the new transition 
matrix as for the original. 
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FIGURE 10 

COVARIANCES VERSUS Y E A R S  OF SEPARATION, F E M A L E  

D R I V E R  DATA VS. S IMULATED DATA, SHIFTING P A R A M E T E R S  
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observed data. 47 While the observations extend out to a 13 year 
separation, one can calculate the model covariances for any num- 
ber of  years of  separation. 48 

4.4. Simulation 

A simulation of  this Markov chain model was performed. The 
first step is to simulate the movement o f  the Poisson parameters 

47The limited amount of data would allow other models to fit reasonably well. The 
observed fit indicates that the form of the proposed model might be useful. It falls well 
short of demonstrating that it is superior to some other form of model. However, it is 
clearly superior to a static model without shifting risk parameters. 
4SBeyond 13 years, the model covariances follow a power curve, declining slowly towards 
z e r o .  



618 A MARKOV CHAIN MODEL OF SHIFI'ING RISK PARAMETERS 

FIGURE 11 

M A R K O V  C H A I N  

I L L U S T R A T I V E  E X A M P L E S  OF M O V E M E N T  FOR F I V E  R I S K S  
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from year to year, using the probabilities in the transition ma- 
trix. 49 Figure 1 1 shows the result for five risks, each of which 
started out in State 30, in Year 0. Over the course of 14 years, 
these risks randomly moved up and down from state to state, 
with corresponding changes in their assumed expected claim fre- 
quency. 5° 

The initial configuration of 23,872 drivers by state in Year 0 
was chosen to match the selected probability distribution. Then 

49The selected 80 × 80 transition matrix was the constructed transition matrix to the 20th 
power. The constructed transition matrix had an average chance of shifting of about 
per year and had the selected discrete exponential distribution as a stationary distribution. 
5°State 30 corresponds to a Poisson frequency of.1475. 
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each of the risks moved randomly each year from state to state 
via the Markov chain. The five risks shown in Figure 11 for 
illustrative purposes ended up in vastly different states at the end 
of the 14 year period. They each started with the same assumed 
annual Poisson frequency of  14.75% in Year 0. Over the course 
of the 14 year period, they had Poisson parameters ranging from 
.25% to 22.25%. 

There were 61 risks initially in State 30. Over the course of  
time, their expected claim frequency declined towards the aver- 
age of  3.7% for the portfolio: 

Risks in State 30 in Year 0 

Average Poisson 
Year Parameter 

0 14.75 
1 13.87 
2 13.29 
3 13.27 
4 12.89 
5 12.84 
6 12.24 
7 11.98 
8 11.66 
9 11.33 

10 11.76 
11 10.39 
12 9.84 
13 9.25 
14 9.15 

After 14 years, the average frequency for these risks moved 
reasonably towards the overall average. 51 Given enough time, the 

51The speed at which this occurred was dependent on the particular speed of the shifting 
parameters over time selected for this example. 
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FIGURE 12 

HAVING STARTED IN STATE 60, CHANCE OF 
BEING IN A CERTAIN STATE 

MARKOV CHAIN MODEL OF CALIFORNIA FEMALE DRIVERS 
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average frequency would have become virtually indistinguish- 
able from the overall average. Figure 12 shows how the distri- 
bution evolves over time for risks that start in State 60, (with 
an initial expected claim frequency of  29.75%). Over time, the 
distribution approaches the assumed stationary exponential dis- 
tribution. 

This illustrates a general feature of Markov chains: initial in- 
formation fades over time. For each risk, we have n o t  modeled 
a very long term expected risk propensity that is different than 



A MARKOV CHAIN MODEL OF SHIFTING RISK PARAMETERS 621 

FIGURE 13 

AVERAGE CLAIM FREQUENCY OVER TIME OF DRIVERS 
STARTING IN VARIOUS STATES 
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average. Rather, the very long term expected risk propensity is 
the same for each risk. This is again illustrated in Figure 13, 
which shows how the expected claim frequency approaches the 
overall average of 3.7% regardless of which Markov chain state 
the insured started in. In some applications, this may prevent the 
model from being useful. 

Looking at all 23,782 risks, the simulation resulted in a gen- 
erally similar mix of Poisson parameters each year. So while 
individual risks' Poisson parameters changed, the portfolio as 
a whole was approximately "stationary" over time. For exam- 
ple, the mean frequencies and variances of the portfolio for this 



6 2 2  A MARKOV CHAIN MODEL OF SHIFrlNG RISK PARAMETERS 

s i m u l a t i o n  w e r e :  

Variance of  Number of  
Mean Poisson Poisson Risks in State 

Year Parameter Parameters 30 

I .03724 .001384 72 
2 .03715 .001390 72 
3 .03697 .001393 63 
4 .03701 .001388 69 
5 .03707 .001386 62 
6 .03706 .001386 64 
7 .03691 .001376 58 
8 .03712 .001391 60 
9 .03703 .001371 65 

10 .03707 .001366 51 
11 .03684 .001361 47 
12 .03687 .001356 51 
13 .03684 .001360 53 
14 .03689 .001364 47 

Also shown for illustrative purposes is the number of  risks 
in State 30 in each (simulated) year. It fluctuates considerably 
around its expected value of  61. When looked at in this level 
of  detail, the simulation of  Poisson parameters results in some 
differences in the portfolio composition from year to year. In 
this case, the states are only .5% apart in annual claim frequen- 
cy, so exactly how many risks are in any single state is of  no 
practical importance, as well as being unobservable in the real 
world. 

The covariances between the Poisson parameters for the sim- 
ulation decrease approximately in the manner expected by the 
model (see Table 3). Thus the simulation of  the Poisson parame- 
ters in this example does not introduce much random fluctuation 
into the covariances between years. 52 

52With a different number of  drivers or different transition matrix, the result could differ. 
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TABLE 3 

COVARIANCES (.00001) 

Years of  
Separation Model Simulated Poisson Parameters 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 

125 126,126,127,126,126,125,126,125,124,123,123,123,123,124 
115 116, 116,116, 116, 115, 116,115,115,114,113,113,113 
106 107,107,107,107,106,106,106,105,105,105 
99 I00, 100,99, t00,99,99,98,98,98,98 
92 93,92,93,92,92,92,92,92,91 
86 86,87,86,87,86,86,86,86 
81 81,81,81,81,81,81,81 
76 75,76,76,76,76 
71 71,71,71,71,72 
67 67,67,67,67 
63 63,63,63 
59 60,60 
56 56 

Unfortunately, the second step of  the simulation does intro- 
duce considerable fluctuation into this example. Once one has a 
set of  Poisson parameters (one for each driver), one can simu- 
late the number of  accidents that each driver had in a year. In 
the particular example, since the annual accident frequencies are 
so low, there is a lot of  noise relative to the information. Any 
one simulation of  a year of  accident data does not provide much 
information. In particular, the covariances between simulated 
years of  accident data are subject to considerable random fluc- 
tuation. 

For example, for two years of  Poisson parameters 53 with a 
covariance of  .00086 between the two years, the covariances be- 
tween years for seven simulated sets of  accident data were: 

. 0 0 1 1 5 , . 0 0 0 9 1 , . 0 0 1 1 3 , . 0 0 0 4 0 , . 0 0 1 2 1 , . 0 0 1 1 8 ,  and .00050. 

53Of 23,872 drivers distributed as per the model of  female drivers in California. 



624 A MARKOV CHAIN MODEL OF SHIFTING RISK PARAMETERS 

This large amount of random fluctuation implies that one should 
not draw very precise conclusions from the limited available data. 

Figure 10 compares the observed covariances for the Cali- 
fornia female driving data and those for a set of data simulated 
using the Markov chain model. Within the context of the large 
amount of random fluctuation, the actual and simulated data sets 
look generally similar. 

Table 2 compares the numbers of insureds with various num- 
bers of accidents over nine years. The simulated data seems to 
have a somewhat lighter tail than the observed data, although the 
overall fit is not unreasonable. 54 One could revise the particular 
inputs used here to attempt to get a somewhat heavier tail. One 
could increase the variance of hypothetical means 55 and/or have 
relatively less shifting over time for high frequency drivers. 56 
However, these details are beyond the scope of this paper. 

One should note that adding shifting risk parameters in the 
manner done here reduces the probability of an extremely large 
number of accidents for an insured over an extended period, since 
the Poisson parameter for an insured tends towards the overall 
average over time. The most likely insureds to have extremely 
large numbers of accidents are those whose Poisson parameters 
are high for all the observed years. 

Overall, the Markov chain model presented here does a rea- 
sonable job of fitting the female driver data from California. On 
the other hand, due to the limited amount of data, one should 
be cautious in drawing any definitive conclusions. There are un- 

54The negative binomial fit to the data also seems to have a slightly light tail compared 
to the data, indicating that perhaps a gamma-Poisson model might be improved upon. 
55For the gamma  distribution, the variance of  hypothetical means  is the overall mean 
divided by the shape parameter of  the gamma. Thus  for a fixed overall mean, the smaller 
the shape parameter, the larger the variance of  hypothetical means. 
56The particular transition matrix (which was raised to the 20th power) assumed approx- 
imately 2 chance of  shifting per year regardless of  the state. One could have had the 
amount  of  shifting depend on the accident frequency. 
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TABLE 4 

CREDIBILITY 

F E M A L E  C A L I F O R N I A  A C C I D E N T  DATA 

M A R K O V  C H A I N  M O D E L  

(No Delay in Receiving Data) 

Years Between 
Data and 
Estimate 

Number of Years of Data Used 

1 2 3 4 5 10 

1 (Most Recent) 3.2% 3.1% 3.1% 3.0% 3.0% 2.8% 
2 2.9% 2.8% 2.7% 2.7% 2.5% 
3 2.6% 2.5% 2.4% 2.3% 
4 2.3% 2.2% 2.1% 
5 2.1% 1.9% 
6 1.7% 
7 1.6% 
8 1.5% 
8 1.4% 
10 1.3% 

Total Credibility 3.2% 6.0% 8.5% 10.5 % 12.4% 19.1% 

doubtedly refinements that would allow a somewhat better fit to 
the observed data. 

4.5. Credibilities 

The covariance-variance structure for the Markov chain model 
fit to the data for the female drivers from California can be used 
together with Equations 2.8 to solve for the credibilities of differ- 
ent numbers of years of data. These credibilities have the same 
pattern as in Mahler [7] although the magnitudes are different. 
The latter appears to be due to a mistake in Mahler [7] in comput- 
ing the credibilities. 57 In any case, note that the current method 
has the advantage that it does not require the dividing of the 

57Unfortunately, it appears that a mistake was made in Mahler [7] in adopting the work 
in Mahler [10]. The step in Mahler [10] of dividing the variance into three pieces: within 
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F I G U R E  14  
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covariances (or variances) into separate pieces, some of  which 
must be inferred rather than observed. The current method relies 
on the observable total variances and covariances. 58 

Table 4 displays the credibilities assigned to individual years 
as well as the sum of  the credibilities. Figure 14 compares the 
sum of  the credibilities for the Markov chain model  to those 

variance, between variance, and the variance due to shifting parameters over time, was 
not performed in Mahler [7]. This led to an inappropriate total covariance between years 
being used in the equations for credibility; these covariances were too big by an amount 
equal to the between variance. 
58This difference from Mahler [10] is, to a large extent, a matter of  presentation and 
emphasis. (See for example, PCAS LXXV[I 1990, p. 297.) 
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FIGURE 15 
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that would result from ignoring shifting risk parameters. 59 With 
shifting risk parameters, the credibilities are lower. 6° As the num- 
ber of years approaches infinity, the sum of the credibilities ap- 
proaches 31.7% rather than 100%. 61 Also shown are credibil- 

591n the absence of shifting risk parameters over time, one has the gamma-Poisson  situ- 
ation summarized in Exhibit 9. The credibility assigned to each of Y years is I /(Y + A) 
where A is the scale parameter of  the gamma  distribution. In the present example A was 
taken equal to 26.9. However, the discrete approximation in Section 4.1 produces an 
expected value of  process variance of  .037222, and variance of  hypothetical mean fre- 
quencies of  .0013765. Their ratio is a credibility parameter of  27.04. Therefore, in the 
absence of  shifting risk parameters, each of  Y years of  data would be given a credibility 
of  1/(Y + 27.04) for a sum of  credibilities of  Y / ( Y  + 27.04). 
6°The effect of  shifting risk parameters in this case starts to have a significant impact 
after 10 or 15 years. 
61 While the model can be run for more than 50 years of  data, it is unclear what the 
connection to reality is in this case. 
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FIGURE 16 

CREDIBILITIES ASSIGNED TO EACH OF TWENTY YEARS OF DATA 
MARKOV CHAIN MODEL OF CALIFORNIA FEMALE DRIVER DATA 
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ities for half this rate of shifting as well as twice this rate of 
shifting. 

Figure 15 displays the individual credibilities for ten years of 
data. Figure 16 is similar, but for 20 years of data. In each case, 
the credibilities assigned to older years of data are significantly 
lower than those for more recent years of data. While the total 
credibility is less than in the absence of shifting risk parameters, 
the most recent year actually receives more credibility. 62 

Figure 17 displays the effect of delays in receiving data. Even 
in this situation with a relatively slow shifting of risk parameters, 
the effects of delays are noticeable. 

62This is the same pattern as was displayed in the simple Poisson example. 
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FIGURE 17 

EFFECTS OF DELAYS IN COLLECTING DATA ON SUM OF 
CREDIBILITIES, MARKOV CHAIN MODEL OF CALIFORNIA 

FEMALE DRIVER DATA 
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5.  B A S E B A L L  DATA 

Mahler [ 10] examines the won-lost records of baseball teams. 
The Markov chain model developed here can be fit to this data. 

There are two data sets, American League (AL) and National 
League (NL), each covering a 60 year period. As in Mahler [ 10], 
we will assume for simplicity 150 games per team per year, and 
convert the losing percentages to numbers of games lost. Table 
5 displays the covariances between years of data separated by 
different amounts. 63 It is evident that the covariances decline as 

63The separate observations of  covariances were averaged. For example, there are 59 pairs 
of years separated by one year. There is considerable random fluctuation. For example, 
the covariances for the 59 pairs of years separated by one year for the AL data average 
to 1387 with a standard deviation of 78.7. 



T A B L E  5 

C O V A R I A N C E S  V E R S U S  Y E A R S  O F  S E P A R A T I O N ,  B A S E B A L L  D A T A *  

kJo 

Number of Years 
Separation American League National League 

0 213.6 205.2 
1 1387 139.3 
2 109.8 106.2 
3 928 99.4 

4 77.7 86.2 
5 55.0 70.5 
6 45.3 65.2 
7 33.5 53.1 

8 23.5 40.7 
9 12.1 30.7 

10 15.4 23.8 
I 1 12 1 20.9 

12 9.9 25.2 
13 18.4 34.7 
14 17.6 37.1 
15 26.0 42.9 

16 36.1 52.2 36 32.6 -8 .6  
17 34.5 57.4 37 40.8 - 16.6 
18 42.9 47.2 38 53.4 -16.4  
19 43.5 40.6 39 33.2 -7 .9  

40 21.4 -33.2 

"Cuwtnance,~ between number of game~ lust per team, ba~,ed on observed h~sing percentage and a,~suming 150 game'~ per team per year. 

Number of Years 
Separation American League National League :> 

K 
20 45.8 33.2 > 
21 33.4 26.9 

O 
22 27.4 19.1 < 
23 14.1 19.9 

> 

24 3.2 15.7 
25 -2 .7  4.7 K 

O 
26 4.0 1.2 
27 3.6 -12.9  r'- 

© 
28 0.4 - 18.4 
29 -5 .4  - 11.4 =: 
30 3.4 -3.7 -q 
31 5.5 -6 .8  

32 9.4 -3.1 
33 9.7 -8 .9  
34 28.3 -12.4 > 
35 37.7 -2.3 > K 



TABLE 6 

CORRELATIONS VERSUS Y E A R S  OF SEPARATION, B A S E B A L L  DATA 

Number of Years Number of Years 
Separation American League National League Separation American League National League 

0 1.000 1.000 20 0.225 0.136 
1 0.633 0.651 21 0.159 0.090 < 
2 0.513 0.498 22 0.125 0.065 
3 0.438 0.448 23 0.093 0.055 > 

4 0.360 0.386 24 0.048 0.004 
5 0.265 0.312 25 0.006 -0.024 
6 0.228 0.269 26 0.010 -0.028 © 
7 0.157 0.221 27 -0.002 -0.095 

8 0.124 0.190 28 -0.013 -0.128 
9 0.078 0.135 29 -0.032 -0.107 q 

10 0.090 0.100 30 0.006 -0.062 
11 0.058 0.083 31 -0.019 -0.061 

12 0.063 0.103 32 0.027 -0.028 
13 0.101 0.154 33 0.002 -0.015 
14 0.104 0.176 34 0.088 0.017 
15 0.141 0.180 35 0.143 0.038 

16 0.178 0.246 36 0.156 -0.014 
17 0.166 0.278 37 0.214 -0.024 
18 0.198 0.219 38 0.238 -0.012 
19 0.219 0.176 39 0.138 -0.017 

40 0.093 -0.095 
ta.a 
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the years get further apart. As discussed in Mahler  [10], these 
data display a relatively large impact of  shifting risk parameters 
over time. Table 6 shows the similar pattern for the correlations. 

Fitting an exponential regression to the covariances for sepa- 
rations of  one to ten years, one obtains: 

N L :  Cov[Xi,Xl÷g] = exp (5 .156 - .185g) ,  

A L :  Cov[X1,Xl+g ] = exp (5 .317 - .272g) .  

5.1. Markov Chain Model 

To fit a Markov chain model to this data, one would want the 
log of  the covariances to decline at a slope of  about .23. 

The first step in modeling the baseball data is to assume for 
simplicity that each team's  number of  games lost in a year  is 
approximately binomial with parameters p and 150. The mean 
number  of  games lost, p150, will be assumed to have the fol- 
lowing discrete distribution: 64 

Expected Number of Games Lost (#) 

50 55 60 65 70 75 80 85 90 95 100 

Probability (c~) 

4% 6% 10% 11% 12% 14% 12% 11% 10% 6% 4% 

Then using the technique of  Appendix D, one can construct 
an 11 × 11 transition matrix that has the above o~ as a stationary 
distribution: 65 

64This simple distribution was chosen for illustrative purposes and is intended to approx- 
imate the observed spread of results. The chosen distribution has the desired mean of 75 
and together with a binomial risk process would produce a total variance of about 207 
compared to the observed total variance of about 209 
65The particular matrix was constructed in order to have about a ½ chance of shifting 
either up or down one state per year. 
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t.7000 .3000 0 

.2000 .4875 .3125 

0 .1875 .5506 

0 0 .2381 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

,0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

.2619 0 0 0 0 0 0 0 

.5010 .2609 0 0 0 0 0 0 

.2391 .4916 .2692 0 0 0 0 0 

0 .2308 .5385 .2308 0 0 0 0 

0 0 .2692 .4916 .2391 0 0 0 

0 0 0 .2609 .5010 .2381 0 0 

0 0 0 0 .2619 .5506 .1875 0 

0 0 0 0 0 .3125 .4875 .2000 

0 0 0 0 0 0 .3000 .7000~ 

The eigenvalues and ~" vector are: 

i (i Ai i (i Ai 

1 5625 1 7 0 .4292 
2 169.6 .9670 8 .004 .2846 
3 0 .9034 9 0 .1881 
4 1.36 .8119 10 .007 .0966 
5 0 .7154 11 0 .0330 
6 .069 .5708 

Cov[XI,XI+u] = ~-'~ ~'iA/g ~, 170(.967g). 
i>1 

Therefore, the log of  the covariances would decline at a slope 
of  about .033. To match the baseball data, we desire a decline at a 
slope of  about .23 or about 6 or 7 times as much. Therefore, this 
transition matrix raised to the 6th power should roughly match 
the baseball data. 66 

66This will correspond to about a 1 in 2,000 chance of a team moving up or down 6 
states (+.2 in expected losing percentage) in a single year. 
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FIGURE 18 

C O V A R I A N C E S  V E R S U S  Y E A R S  O F  S E P A R A T I O N ,  B A S E B A L L  

D A T A  VS.  M A R K O V  S H I F T I N G  P A R A M E T E R S  O V E R  T I M E  

100 

50 

0 . . . . . . . . .  
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Numloer of Ye~ns of Sel~rat~on 

Figure 18 compares the covariances observed for the baseball 
data and those for the Markov chain model. There is an overall 
reasonable fit. There are higher covariances than would be pre- 
dicted by the model for separations of about 15 to 23 years. This 
may be due to some long term cycle in the data, but in any case 
is beyond the scope of this paper. 67 

67Some factors which remained relatively stable over this 60 year period of  time might 
lead to a tendency for an individual t eam's  expected losing percentage to revert to a 
long term average different than the overall average of .5. The Markov chain model 
does not capture any such behavior. Rather, it assumes that given sufficiently long time 
periods, the average for each risk will be the same. Yet in Section 4.1 of  Mahler [10], it is 
demonstrated that over the 60 year data period, the teams are significantly different. Thus  
while, as will be shown below, the estimated credibilities are reasonable, the Markov 
chain model is far from a complete description of the risk process that produced this 
baseball data. 
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TABLE 7 

CREDIBILITY 

B A S E B A L L  DATA M A R K O V  C H A I N  M O D E L  

(No Delay in Receiving Data) 

Years Between 
Data and 
Estimate 

Number of Years of Data Used 

1 2 3 4 5 10 

1 (Most Recent) 67.0% 55.1% 54.3% 54.2% 54.2% 54,2% 
2 17.7% 15.0% 14.8% 14.8% 14.8% 
3 4.9% :4.2% 4.1% 4.1% 
4 1.4% 1,2% 1.2% 
5 .4% .3% 
6 .1% 
7 0 
8 0 
8 0 
10 0 

Total Credibility 67.0% 72,8% 74.2% 74.6% 74.7% 74.7% 

5.2. Credibilities 

The covariances calculated in the Markov chain model can 
be used to calculate the credibilities to be assigned to individual 
years of data. Table 7 displays these credibilities, assuming no 
delay in receiving the information. 

The sum of the credibilities 68 quickly reaches a limit of 74.7% 
as the number of years of data is increased. Due to the quickly 
shifting risk parameters over time, the amount of credibility as- 
signed to more distant years of data is small. The credibilities 
in Table 6 are generally similar to those in Table 16 of Mahler 
[ 10]. However, due to the structure imposed by the Markov chain 
model, the credibilities in Table 6 have a more reasonable pattern 
when looked at in detail. The credibilities are all between 0 and 

68The complement of credibility is given to the grand mean. 
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FIGURE 19 

CREDIBILITIES ASSIGNED TO EACH OF FIVE YEARS OF DATA 
MARKOV CHAIN MODEL OF BASEBALL DATA 

Ymu Most 
1 Distant 

Year 

z I ÷  Years of Delay in Obtaining Data ) 
0 ÷ 1  -*-2 -~-3 -)<-4 + 5  ~ 6  -e-7 
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4 

Most 
Recent 
Year 

5-1--~ ' =~ I I 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55'/= 

Credibi~ 

1. They decrease for years more distant in time. The credibility 
assigned to any individual year of data declines as more years are 
added. The sum of the credibilities increases smoothly as years 
of data are added. 

Figure 19 displays the credibilities assigned to five separate 
years of data for various delays in obtaining information. Due to 
the quickly changing risk parameters, the effect of any delay in 
obtaining data is significant. As the delay increases, the credibil- 
ity assigned to any individual year decreases. The smooth pattern 
shown in Figure 19 demonstrates the effect of the structure im- 
posed by the Markov chain model. 
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FIGURE 20 

CREDIBILITIES ASSIGNED TO EACH OF TEN YEARS OF DATA 
VARYING THE RATE OF SHIFTING PARAMETERS IN THE 

MARKOV CHAIN MODEL OF BASEBALL DATA 
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Varying the Rate of Shifting Parameters in the Markov Chain Model of Baseball Data 
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As=umu no d~ay in obtainir',fl info~matlon Ctedia,~ 

Figure 20 compares the credibilities one would assign to ten 
individual years of data with either more or less quickly shifting 
risk parameters than in the baseball data. If a major change in 
circumstances leads one to believe there has been a significant 
change in the rate at which parameters shift, 69 then the Markov 
chain model can be easily adjusted to incorporate one's estimate 
of the rate at which parameters will shift in the future. 

69In the baseball example, many changes have occurred since 1960, the last year used to 
calibrate the model. For example, free agency might allow a more frequent movement  o f  
players between teams leading to a somewhat quicker rate of  shifting of risk parameters. 
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FIGURE 21 

SUM OF CREDIBILITIES, VARYING THE RATE OF SHIFTING 
PARAMETERS IN THE MARKOV CHAIN MODEL OF BASEBALL 

DATA 
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In the absence of  shifting risk parameters, the same credibility 
is assigned to each of  the ten years of  data. As more and more 
shifting is introduced, the credibilities for the older years decline. 
(The curve on Figure 20 gets further and further from a vertical 
line.) This illustrates the effect of  fine tuning the rate of  shifting 
in the Markov chain model. 

Figure 21 compares the sums of  the credibilities for various 
numbers of  years of  data for various amounts of  shifting. In 
the absence of  shifting risk parameters, the sum of  the credibil- 
ities approaches unity as the number of  years increases. As the 
amount of  shifting increases, the limit of  the sum of  the credi- 
bilities decreases. 
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If parameters are shifted at one-hundredth of the rate at which 
parameters shifted in the baseball example, the maximum sum of  
the credibilities is 98.4%. For the baseball example, it is 74.7%. 
For twice the shifting, it is 59.8%. The greater the rate of shifting 
of risk parameters, the lower the limit and the faster the conver- 
gence. 

6. A R E A S  F O R  P O S S I B L E  F U T U R E  R E H N E M E N T S  

The model presented here was applied to claim frequency sit- 
uations. It would probably be valuable to extend this to situations 
involving claim severity or pure premiums. 

The model presented here did not fully explore the impact of 
size of risk. In order to properly explore the impact of size of  risk 
on insurance situations, one would probably have to incorporate 
the effects of  parameter uncertainty and risk heterogeneity as 
well as shifting risk parameters over time. 7° 

The model presented here does not allow for an expected long 
term difference between risks. Averaged over a sufficiently long 
period of  time, every risk's average frequency is the same. This 
is undoubtedly a poor model of certain situations. 

There is no specific treatment of the entry of new insureds 
or the exit of current insureds from the database. Venezian [15] 
specifically models the change in accident propensity of  new 
drivers entering the system as they gain experience and get older. 
The model as presented here would not accommodate this phe- 
nomenon. 

Thus while the model presented here is practical and flexible, 
it would require further work to adapt it to many situations of  
potential interest. 

7°See for example, Mahler [8]. 
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7. SUMMARY 

The effects of shifts over time in the risk process of an insured 
can be quantified in the covariances between years of data. For 
this Markov chain model, in most cases the covariances can be 
approximated by 71 : 

C o v [ X i , X j ]  = 7-2)~1i-j[ + 6ij17 2 

where 6ij=[ 0 i~ j  (7.1) 
t l  i~ j  

~7 2 is the expected value of the process variance, 

7-2 is the variance of the hypothetical means, 

and A is the dominant eigenvalue (other than unity) of the trans- 
pose of the transition matrix of the Markov chain. 

One has Var[X] = Cov[X,X] = 7 -2 + ~2. This is the usual re- 
lationship that the total variance can be split into the expected 
value of the process variance and the variance of the hypothetical 
means. 

As the separation between years of data increases, the (ex- 
pected) covariance and correlation between years decline. 

It is not vital to understand the precise derivation of A; rather 
it is important to understand that A quantifies the rate at which 
the parameters shift. The smaller A is, the faster the parameters 
shift. The closer A is to unity, the slower the parameters shift. In 
the limit for A = 1, there is no shifting of parameters. 

Four examples have been considered, involving dice, a 
mixture of four Poisson distributions, California driving data 
(modeled by a gamma-Poisson), and baseball data (modeled 
by a mixture of binomials). The Markov chain model was 
applied to each of these situations. The resulting values of 

71This is Equation 3.5. 
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w e r e :  

Example A "Half-Life" 

Dice 72 .769 2.6 trials 
Mixture of  4 Poissons 73 .855 4.4 years 
Female California Drivers TM .961 17.3 years 
Baseball Team Results 75 .818 3.4 years 

where the "half-life" is the length of  time for the correlations 
between years to decline by a factor of  one-half: 

~half-life = .5  

In .5 - . 693  (7.2) 
half-life - - - -  

In A In A " 

The longer the half-life, the slower the rate of  shifting param- 
eters over time. Thus, the impact of  shifting parameters was most 
significant in the dice example, followed by the baseball data and 
the mixture o f  four Poissons example. 76 The female California 
drivers data with a half-life of  about 17 years has much less 
impact from shifting risk parameters. 77 

If the Markov chain model holds, the correlations between 
different years of  data should decline approximately exponen- 
tially. For i # j, Equation 7.1 gives C o v [ X i , X j ]  = T2)~ li-jl. 

72See Section 2.7. 
73See Section 3.2. 
74The dominant  eigenvalue shown in Section 4.3 is .998. This transition matrix is then 
taken to the 20th power, therefore so are the eigenvalues. (.998) 20 = .961. 
75The dominant  eigenvalue shown in Section 5.1 is .967. However, this transition matrix 
is taken to the 6th power, therefore so are all the eigenvalues. (.967) 6 = .818. 
76The dice example and mixture of  four Poissons example were specifically designed 
to have a significant effect o f  shifting risk parameters for illustrative purposes. One of  
the reasons the baseball data was selected for presentation was because it showed a 
significant impact. 
77The male driving data displayed even less impact from shifting risk parameters than 
female driving data. See Mahler [7]. 
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Also, Var[Xi] = Var[Xj] = 112 + 7-2. Therefore,  

J 

(7.3) 

lnCorr[Xi,Xj] = In 7-2+112 + l i - j l l n ~  i # j .  

Therefore,  if the Markov chain model  holds, the log-correla- 
tions for years separated by a given amount  should decline ap- 
proximately linearly. The slope of  this line is (approximately)  
ln~. The  intercept is approximately 1n(7-2/7- 2 +112). Note that 
7-2/(7-2 + 112) = VHM/total  variance = credibility in the absence 
of  shifting risk parameters.  

Thus  given a data set, one can determine whether  this (sim- 
ple) Markov chain model  might  be appropriate. One determines 
whether  the log correlations as a function of  the separation be- 
tween years (not including zero separation) can be approximated 
by a straight line. 78 Then one can estimate the parameter  ~ and 
the r a t i o  7-2/(7-2+ 112) f rom the slope and intercept of  the fitted 
straight line. 

These estimates can be used in turn to estimate credibilities. If  
one has data f rom years 1,2 . . . . .  Y and is estimating year Y + A, 
then the least squares credibilities are given by solving the Y 
linear equations in Y unknowns:  79 

Y 

ZCov[X ,XjlZ  = Cov[X ,Xv,a], 
j=l (7.4) 

i = 1,2 . . . . .  Y. 

7Sln many cases there is a large amount  of  random fluctuation so even if the expected 
log correlations are precisely along a straight line, the log correlations estimated from 
the data will vary widely around a straight line. See Figure 10. 
79See Equations 2.8. 
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8. CONCLUSIONS 

A Markov chain model has been developed and applied to 
a number of  different examples in which risk parameters shift 
over time. The model is sufficiently flexible to be applied to 
other situations. 

In each case, the Markov chain model was used to explore 
the effects of  shifting risk parameters over time. Covariances are 
calculated. Based on the Markov chain model, when shifting risk 
parameters over time are significant, the logs of the covariances 
between years of data are expected to decline linearly as the 
separation between years increases. 

Credibilities are calculated from the variances and covari- 
ances. When shifting risk parameters are significant, older years 
receive less credibility and as more years of data are added, the 
sum of the credibilities goes to a limit less than one. The longer 
the delay in collecting data, the lower the credibilities. 

The Markov chain model can be used to simulate the claims 
process when there are shifting risk parameters over time in the 
same manner as the gamma-Poisson and similar models can be 
used in the absence of  shifting parameters. The Markov chain 
model should aid the actuary's understanding of  situations in 
which shifting risk parameters are significant. It is both practi- 
cal and sufficiently flexible to be applied in a wide variety of  
circumstances. 
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A P P E N D I X  A 

M A R K O V  C H A I N S  80 

Assume each year 81 an individual is in a "state." In this paper, 
each state corresponds to a different average claim frequency. In 
this paper, there are a finite number of different states. 

Assume with each new year  that an individual in state i has 
a chance P/j of  going tO state j .  This chance is independent of  
which individual we have picked, what his past history was, or 
what year  it is. The transition probability from state i to state j ,  
P/j, is dependent  on only the two states, i and j .  

Arrange these transition probabilities P/j into a matrix P. This 
transition matrix P, together with the definition of  the states, 
defines a (finite dimensional) Markov chain. 

If an individual is in state i, P/i is the probability that he re- 
mains in state i. 1 -  Pii is the probability that he changes his 
state. 

E~= 1 P/j is the sum of  the probability of  this individual chang- 
ing to each of  the possible states (including remaining in state 
i). Since all the possibilities are exhausted, Z~=I P/j = 1. Each of  
the rows of  the transition matrix P for a Markov chain must sum 
to unity. 

A vector containing the probability of  finding an individual 
in each of  the possible states is called a "distribution." If the dis- 
tribution in year 1 is/3, then the expected distribution in year 2 
is/3P, where /~P  is the matrix product of  the (row vector) distri- 
bution 13 and the transition matrix P. The expected distribution 
in year  3 is (tSP)P = O(PP) = 0p2. The expected distribution in 
year 1 + g is Opu. 

A stationary distribution is a vector c~ such that c~P = c~. On 
an expected basis, the portfolio of  risks stays in the stationary 

S°See Feller [2] and Resnick [13]. 
SlAlthough in this paper the time interval is a year, in general, it can be anything. 
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distribution over time. Note that, from its definition, a stationary 
distribution (if it exists) is an eigenvector corresponding to an 
eigenvalue of  unity. When it exists, the quickest way to compute  
a ,  the stationary distribution of  P, is via: 

= (1, 1 . . . . .  1)(I - P + ONE) -1 

where I is the identity matrix and ONE is the n by n matrix, all 
of  whose entries are one. 82 

All of  the Markov chains in this paper have been specifically 
constructed to have a stationary distribution using the techniques 
in Appendix D. 

For a finite dimensional Markov chain such that each state 
can be reached from every other state and such that no states 
are periodic, 83 a unique stationary distribution c~ exists and for 
any initial dis t r ibut ion/3, /3ps ___, oz as g ~ oo. Thus eventually 
the distribution of  risks in the portfolio is a (for all practical 
purposes) regardless of  the initial distribution/3. 

Taking /3 = (1 ,0 ,0 . . . ) ,  /3 = (0 ,1 ,0 . - . ) ,  etc., implies that the 
rows of  Pg ---, o~ as g ~ oo. If  A is a matrix all of  whose rows 
are the stationary distribution c,, Pg ~ A as g ~ oo. 

Let pT be the matrix transpose of  P. Let A be the diagonal 
matrix with entries equal to the eigenvalues of  pT. Let V T be the 
matrix, each of  whose columns are the eigenvectors o f P  T. (V has 
as its rows the eigenvectors of  pT.) Then, as stated in Appendix 
B, ( V r ) - I p T v r  = A. Taking the transpose of  both sides o f  this 
equation and noting that A r = A, since A is symmetric: V P V  -1 

= A. So the matrix V can be used to diagonalize the transition 
matrix P: 

V - 1 A  2V = V-I (VPV-1)2V = V-I VPV-I VPV-I v = p2. 

82See Section 2.14 of  Resnick [13]. 
83See Section 2.13 of Resnick [13]. 
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In general, Pg = V - I ( V P V - 1 ) s V  = V - 1 A u V .  So powers of  P 
can be computed by taking powers of  the diagonal matrix A and 
using the eigenvector matrix V to transform back. The elements 
of  the diagonal matrix A g are A~. 

If A is matrix whose rows are the stationary distribution ~ ,  
then: 

Pg ---~ A.  

• . A g = V P g V  - I ~ V A V  - j .  

But Ag has diagonal element A~. These only converge to a limit 
as g --~ oo if A i = 1 or [A~I < 1. Let A 1 = 1, since the order of  
eigenvalues is arbitrary. Then [A1] < 1 for i > 1 (ignoring the very 
unusual situation where A = 1 is a multiple root of  the charac- 
teristic equation). 

Let the limit of  Ag as g ~  be denoted by A ~ .  Then 
(A°°)/j = 0 for i ~ 1 or j ~ I, and (A~)l , l  = 1. 

Therefore V - 1 A ~ ° V  = limu_,~P~ = A. 

ThUS (V-1)il V l j  : Aij = o~(j), since the rows of  A are the sta- 
tionary distribution, and ( A ~ ) i j  = 0 for i # 1 or j ¢ 1. 

Thus ( V - l ) i l  = o ~ ( j ) /V  U. 

Note that the left hand side is independent of  j ,  while the 
right hand is independent  of  i. Since the equation holds for all i 
and j ,  both sides must be independent of  i and j .  Therefore,  the 
elements of  the first column of  V- l are all equal. The elements of  
the first row of  V are proportional to the stationary distribution ~.  

Since V V  -1 = I, where I is the identity matrix, the product of  
the first column of  V-1 with any row of  V other than the first is 
zero. But the product of  the first column of  V -1 with any row 
is proportional to the sum of  that row since all the elements of  
the first column of  V -1 are equal. Therefore, the sum of  any 
row of  V other than the first is zero. Therefore,  the sum of  any 
eigenvector other than the first is zero, since the rows of  V are 
the eigenvectors of  P~. 
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A P P E N D I X  B 

EIGEN V A L U E S A N D  E I G E N V E C T O R S  

Given a square matrix P, if for a vector, v, Pv = Av, then v 
is called an eigenvector of  P with eigenvalue A. Note that if 
v is an eigenvector of  P, so is v times any non-zero constant. 
So eigenvectors can be determined only up to a proportionality 
constant. 

One can find the eigenvalues and thus the corresponding 
eigenvectors by solving the characteristic equation: 84 

Determinant ( P -  ,Mr) = 0, where I is the identity matrix. 

If  V is a matrix whose columns are the eigenvectors o f  P, 
then V - 1 P V  is a diagonal matrix A whose elements are the 
eigenvalues of  P. ( V - I P V  = A follows from the matrix equa- 
tion P V  = VA, which when we take each column reduces to the 
eigenvalue equation: Pv i = I~i~i. ) 

If v is an eigenvector of  P with eigenvalue A, then Pv = Av. 
Therefore, 

e2v = P(Pv) = P(Av) = APv = A2v. 

Thus v is also an eigenvector o f P  2 with eigenvalue A 2. In general, 
v is an eigenvector of  Pg with eigenvalue A g. Raising a matrix to 
a power  does not alter the eigenvectors and raises the eigenvalues 
to the same power. 

S4Eigenvalues and eigenvectors are calculated by many computer software packages. The 
author used the APL program EIG provided by Manugistics (formerly STSC). 
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APPENDIX C 

MATRIX EQUATIONS FOR LEAST SQUARES CREDIBILITY 85 

In this Appendix,  Equations 2.8 in the main text are derived 
by minimizing the squared error. The result is N linear equations 
for the credibilities to be assigned to each of  N years of  data. 
Thus, the credibilities can be solved for in terms of  the covariance 
structure. 

Let 

Cij = Cov[Xi ,X j]  

= Covariance of  year X i and year Xj ,  

Cii  = Variance of  year X i. 

and 

Let Z i be the credibility assigned to year X i. We wish to predict 
year XN+A using N years of  data X 1 , X  2 . . . . .  X u and the grand 
mean M. Let Z 0 = 1 - E~=j Zi = complement  of  credibility. 

Then the estimate is: 

Let 

N 

F = Z Z i X i  + ZoM.  
i=1 

N 

X 0 = M, then F : ~ Z i X  i 
i=0 

F - XN+ ~ = Z iX  i --  X N +  A = Z i ( X  i - X N + A ) ,  

N Z =  since ~ i = 0  i 1. 

SSThe derivation is adopted from that in Mahler [10]. 
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Therefore,  

N N 

= F_, ~ z , z / x ,  - x ~ + A ) c x j  - x,,,+A). 
i = 0 j = 0  

Then the expected value of  the squared difference between 
the estimate F and XN+6 is, as a function of  the credibilities Z: 

Now 

VCZ) = E[(F - XN+A) 2] 

N N 

= ~ ~_ ,Z iZ jE[ (X i -  XN+A)(Xj - XN+A) ]. 
i = 0 j = 0  

E[(Xi - XN+A)(X j -- XN+A)] = E[XiXj] - E[XiXN+A] 

-- E[XjXN +A] - E[X2+A] 

E[XiX j] = Cov[Xi, X j] + E[Xi]E[X j] 

= Ci j  + M 2, 

Coj = Cov[M,Xj]  = O. 

where 

Thus 

E[(Xi - -  X N + A ) ( X  j - X N + A )  ] 

= c~ s - c~v+~  - CS,N+~ + CN+Z~,N+A, and 
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N N 
v(z)  = Z Z Z ,  ZAC, j-C,.~+A-Cj,N+A + CN+A~+A}. 

i=oj=o 

v ( z ) =  ~ } 2 z ~ z j c i  i - c , :+Az ,  
i = 0 j = 0  

-- C j, N +AZj Zi 

q- CN +A,N+ A Z i Zj  . 

The last three terms all simplify, since 

N N 

Z z ,  = Zo + Z z ,  
i=0 i= l  

N N 

= l - ~ - ~ Z i + ~ - ~ Z i =  l. 
i=1 i=1 

Therefore, 

N N N 

V(Z)  = ~ ~ Z i Z j f i j  - ~ Ci, N +AZi 
i = 0 j = 0  i=o 

N 
-- F_,Cj~.,,Zj + CN+A:.A. 

j--o 

Also,  since Coj = 0 = C i o  , the elements involving i = 0 or j = 
0 drop out, leaving 

N N N 

V(Z)  -- Z Z ZiZjCij -- 2 ~ Ci,N +AZ i -t- CN+A,N+ A. 
i=1 j = l  i=1 
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Taking the partial derivative o f  V(Z) with respect to Z k and 
setting it equal to zero: 

N 

2 ~ ZiCik - 2Ck, N + A = 0 
i=1 

N 

Zi Cik -- Ck,N + A.  
i=1 

This results in N equations in N unknowns for k = 1,2 . . . . .  N.  
These are Equations 2.8 in the main text. 
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A P P E N D I X  D 

C O N S T R U C T I N G  A T R A N S I T I O N  MATRIX 

Assume we are given a set of  probabilities corresponding to 
a set of  n states: 

&i, i = 1,2 . . . . .  n ~-"~&i = 1. 

There are many transition matrixes, P, such that c~ is a sta- 
tionary state, aP = a .  A method of  constructing one such matrix 
from a will be shown. 

The constructed transition matrix will be such that most of  
its elements are zero. The only non-zero elements will be on 
the main diagonal, just above the main diagonal or just below 
the main diagonal. Such a matrix is sometimes referred to as 
"tri-diagonal." 

Such a transition matrix corresponds to each year, an insured 
either staying in the same state or possibly moving up or down 
by a single state in a single year. 86 

As a concrete example, take the simple Poisson example in 
the main text, with four states and a = (.4,.3,.2,. 1). 

The equation a P  = a becomes 

(.4 .3 .2 

( o 
.1 ) ] e21 P22 P23 

~ P32 P33 

0 P43 

0 

0 
= ( .4 

P34 

P44 

.3 .2 .1). 

861f this transition matrix were raised to a power, then one could move more than a single 
state per year. Also, the overall speed of parameter shifting would be increased. 
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, S o ,  

.4Pll + .3P21 = .4 

.4P12 + .3P22 + .2,°32 = .3 

.3P23 + .2P33 + .1P43 = .2 

.2P34 + .1P44 = .1. 

In addition, each row o f  any transit ion matr ix  sums to unity. 
(Every  risk ends  up in some  state.) 

Pll +PI2 = 1 

P21 + P 2 2  -t-P23 ---- 1 

P32 + P33 + P34 = 1 

P43 + P44 = 1. 

Thus  

Similarly 

P21 - .4(1 - e l l )  4 
.3 -  el2. 

.3( 1 - 11922) --  -4P12 
P32 = .2 

= 3(P21 - P23) - 2P12 

= 23--e23 + 2P12-  2P,2 = 3P23. 

Similarly,  one  gets 

In general ,  we  need: 

P43 = ( 12- )P34- 

o<iPii,i+l = o~i+IP/+I, i. 

The left hand side o f  this equat ion is the probabil i ty o f  being 
in state i t imes the probabil i ty o f  going f rom state i to state 
i + 1. Thus,  this is the expected  number  o f  transitions f rom state 
i to state i + 1. Similarly, the right hand side is the expec ted  
n u m b e r  o f  transitions f rom state i + 1 to state i. In this case, 
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these expected numbers of  transitions will cancel and on average 
will result in no net change. 

There are still arbitrary scale factors. (Within large bounds one 
can pick P12 and then P21 follows.) For purposes of  illustration, 87 
let Pi,i+l + P/+l,i = v < 1 for all i, where v is a parameter that 
controls the amount  of  shifting. It represents the approximate 
probability of  shifting either up or down one state; 1 - v is the 
approximate probability of  remaining in the same state. 

Then once 0 < v < 1 is chosen, one constructs the transition 
matrix: 

P/,i + 1 - 0~i+1 v ,  
O~ i + OQ+ 1 

e / +  1,i °~i - -  1 ) ,  

O~ i -t- OQ+ 1 

P/i = 1 - ~,i- t - -  e/,i+ 1, and 

P/j  = 0 for l i -  j[ > 1. 

This results in a transition matrix with the given c~ as a sta- 
tionary distribution and with about a (1 - v) chance of  remaining 
in the same state per year. 

This construction algorithm is relatively simple and easily 
programmable.  

In the particular example with a = (.4,.3,.2,.1), taking v = 
.42, the algorithm produces a transition matrix of: 

.820 .180 0 0 

.240 .592 .168 o 

J 0 .252 .608 .140 

0 0 .280 •720,/ 

This is the transition matrix shown in the main text, which has 
a stationary distribution of  (.4, .3, .2,. 1). 

S7For certain applications, one may  choose to vary the probability of  remaining in a state 
among  the different states. 
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A P P E N D I X  E 

C O V A R I A N C E S  

Let ~i be the mean for state i. Let X and U be two different 
years of  data separated by g years, g > 0. Let X have probability 
vector/3 for the probability of  being in a given state• Then/3Pg 
is the probability vector for year U. Then 

E[XU] = ~ Pr(X in state i and U in state j )  
i,j 

× E[XU IX in state i and U in state j] .  

If  X is in state i and U is in state j ,  then 

E[XU] = E[X IX in state i]E[U ]U in state j]  = #i#j, 

since the die rolls in year X and U are independent• 

Pr(X in state i and U in state j )  

= Pr(X in state i)Pr(U in state j IX in state i) 

= t~i (Pg)i j '  

since the transition matrix from X to U which are g years apart 
is Pg. Thus 

E[XU] = ~# i# j /3 i (Pg) i  j 
ij 

= (# x/3)Tpg#, 

where # x /3  is the vector whose ith element is ~it~i and we have 
taken the matrix product of  the transpose of  this vector with the 
matrix Pg and then with the (column) vector #, so, 

Pg -- V - l  A g V ,  a n d  

• . E[XU] = (# x/3)TV-IAgVI.t. 
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Now assume that we are in the stationary distribution a ;  i.e., 
either the process has been going on long enough that the ini- 
tial state no longer has any practical importance or the initial 
distribution was chosen to be equal to c,. I f /3  = c,, then 

E[XU] = (/.t x a)TV-IAgV#. 

Let C b e  the vector given by (tz x c , ) rV -I and le tD be the vec- 
tor given by V/z, then since g is diagonal with A g = Aig; E[XU] = 
E CkOk f . 

Thus we have written E[XU] as a sum of coefficients (inde- 
pendent of  g) times the eigenvalues raised to the power g. 

In the dice example in Section 2: 

/z = (2.5,3.5,4.5) = means 

c~ = (.25,.50,.25) = stationary distribution 

V = 

V - l =  

1 2 1 / 

1 - . 3 1 4  - . 6 8 6  = 

1 -3 .186  2 .186 /  

.250 .658 .092)  

.250 - . 103  - . 147  

.250 - .451 .201 

C = (2.5 x .25,3.5 x .5,4.5 x .25) 

= ( .875, - .277, .027)  

D = 

1 2 

1 - . 3 1 4  

1 -3 .186  

matrix whose rows are 
eigenvectors of  the 
transpose of  the transition 
matrix 

.250 .658 .092)  

.250 - . 103  - . 1 4 7 J  

.250 - .451 .201 /  

1  (25)/140o0  
- . 6 8 6  3.5 = - 1 . 6 8 6 ]  

2 .186 /  4.5 1 .186/  

C × D -- (12.25, .468,.032). 
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Thus 

E[XU] = 

E[X] = 

. .  E[X]E[U] = 

Cov[X,U] = 

12.25(1 g) + .468(.769 g) + (.032)(.481 g) 

12.25 + (.468)(.769 g) + (.032)(.481 g) 

E[U] = Sum(c~ ×/z)  = 3.5 

3.52 = 12.25 

E[XU] - E[X]E[U] 

(.468)(.769 g) + (.032)(~48 lg). 

Note how the first term of  E[XU].cancels  with E[X]E[U];  
this will happen if the eigenvalue of  umty is placed first. In 
general, the covariance of  X and U is a sum of  coefficients times 
eigenvalues (other than unity) raised to the power g. 

Since IAil < 1 for i > 1, the covariance will converge to zero 
as g --, ~ ,  because it is limited by a constant times the largest '~i 

in magnitude (other than unity) raised to the power g. 

Let ~ be the vector such that: 

~i = C i D i  = ( ( I  -L × ° t ) T v - l ) i ( V ~ ) i  • 

This is Equation 2.5 in the main text. 

Then we have, for g > 0, Equation 2.6 in the main text: 

C o v [ X , U ]  = Z (i '~g" 
i>1 

Note that "~i and ~i which determine the behavior of  the covari- 
ance are each directly and easily calculable 88 f rom the assumed 
transition matrix and the means of  the states. 

SSAssuming the calculations will be performed on a computer. 
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Abstract 

This paper uses cross-sectional time series techniques 
in an econometric framework to model workers com- 
pensation frequency, severity, and loss ratios over the 
course of the business cycle. Empirical evidence from 
37 states over the 1979-1993 period strongly suggests 
that frequency is strongly pro-cyclicaL tending to in- 
crease during periods of economic expansion and fall 
during periods of economic decline or sluggishness. Sim- 
ilarly, the analyses reported in this study indicate that 
the economic determinants of indemnity and medical 
severity and loss ratios can be characterized by large 
pro-cyclical and small counter-cyclical components. The 
latter finding is contrary to conventionally held beliefs 
concerning this topic. 
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1. INTRODUCTION 

The explosion in workers compensation costs during the 
1980s and early 1990s continues to be the subject of much debate 
among actuaries, economists, and regulators even though the cri- 
sis began to show signs of abating in 1993 and has continued to 
improve since then. This ongoing dialogue has been constructive 
inasmuch as it has identified many of the cost drivers responsible 
for the tumult in the industry over the past fifteen years. 

Much has been written about some important cost drivers--  
such as medical inflation, medical cost shifting, attorney involve- 
ment, and fraud--from many angles, including premium avoid- 
ance, employee malingering, and medical/legal workers compen- 
sation mills. The popular media have even sensationalized some 
fraud-related activities in print and television. 

In contrast, important relationships between workers compen- 
sation costs and changes in the economic environment generally 
have been ignored or discussed only anecdotally in the litera- 
ture. The objective of this longitudinal study is to demonstrate 
empirically that workers compensation costs across states are 
fundamentally dependent on the economic environment. Specif- 
ically, empirical evidence suggests that frequency is strongly pro- 
cyclical, tending to increase during periods of economic expan- 
sion and fall during periods of economic decline or sluggish- 
ness. Similarly, the analyses reported in this study indicate that 
the economic determinants of indemnity and medical severity 
and loss ratios can be characterized by large pro-cyclical and 
small counter-cyclical components. The latter finding is contrary 
to conventionally held beliefs concerning this topic. 

The remainder of this paper is structured as follows. Sec- 
tion 1 concludes with some background information and a brief 
literature review on the economic factors affecting workers com- 
pensation results. Section 2 contains definitions of the economic 
variables used in the study and their hypothesized impact on the 
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workers compensation market. Section 3 describes the modeling 
methodology and defines the dependent variables. In Section 4, 
empirical results from analyses of the impact of business cycle 
effects on workers compensation frequency, severity, and loss 
ratios are presented. Section 5 concludes the paper with a sum- 
mary of results presented in this study and directions for future 
research. 

The term "business cycle," as it is typically used by business 
analysts, describes the periodic, but irregular, ups and downs of 
the real economy over time. l The cumulative processes at work 
during business cycles ensure that at some point every indus- 
try and virtually every firm will be either directly or indirectly 
affected. The workers compensation insurance industry is no ex- 
ception. In almost all states, workers compensation insurance 
(or its equivalent) is compulsory, and policies are purchased by 
businesses in all industries. The fact that workers compensation 
premiums change with companies' payrolls ensures that fluctua- 
tions in economic activity will have direct impacts on the work- 
ers compensation industry. Losses, of course, will be affected 
by shifting levels of exposure during the different phases of the 
cycle, and also by the changing claim filing incentives facing 
workers in a dynamic economic environment. 

Much of the economic literature in workers compensation in- 
surance has focused on the factors that motivate individual work- 
ers to use the workers compensation system, and contrasted em- 
ployee incentives with the incentives employers have to maintain 
a safer workplace to hold down workers compensation costs. The 
preponderance of evidence indicates that higher benefits, partic- 
ularly indemnity benefits, precipitate increased claim filing by 
workers. Other research suggests that during an expansion, em- 

l It is important to distinguish between the meaning of the term "cycle," as it is frequently 
applied in insurance, versus the economic meaning intended here. The insurance usage 
of the term "cycle" generally refers to the so-called "underwriting cycle," where "hard 
markets," characterized by high prices and profits and limited availability of  coverage, 
are followed by "soft markets," when prices and profits are low and the availability o f  
coverage increases. 
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ployers' incentives to increase revenue may outweigh incentives 
to contain increases in workers compensation costs through in- 
vestments in safety. The influence of economic incentives on 
workers and employers is explored in Moore and Viscusi [20], 
Butler and Appel [6], and Worrall and Butler [30, 31]. 2 

Research into the costs and determinants of workers com- 
pensation medical expenditures has burgeoned in recent years 
in response to deteriorating market conditions through much of 
the 1980s and early 1990s. The Clinton administration's effort in 
1993 and 1994 to enact national health care reform also provided 
a forum and impetus for such research. Some research findings 
suggested that price discrimination by medical care providers 
was at the root of workers compensation medical cost inflation 
[2]. Others have argued that higher costs for workers compen- 
sation cases (relative to non-occupational injuries) are due to 
the different mix and intensity of treatments necessary to hasten 
return to work [ 11 ]. The range and effectiveness of various med- 
ical cost containment strategies such as fee schedules, provider 
choice, bill/utilization review, and anti-fraud initiatives have also 
been analyzed. 

The potential influence of the macroeconomy on workers 
compensation frequency and severity was recognized in a 1991 
study performed by the Insurance Services Office (ISO). Using 
policy year data for thirty states, the ISO study found that higher 
interest rates and real growth in gross national product (GNP) are 
associated with higher claim frequency and that medical claim 
severity increased faster than an ISO-modified consumer price 
index [17]. 3 Similarly, a 1996 National Council on Compensa- 
tion Insurance (NCCI) study found a strong, positive association 

2A more detailed literature survey of the relationship between workers compensation 
frequency, severity, and benefit structures is found in Butler [5]. One early effort to 
model workers compensation losses and premiums econometrically is given in Lommele 
and Sturgis [19]. 
3The results of  the ISO study were derived using data for just seven policy years (1980-  
1986). In contrast, the sample period used in this study runs from 1979 to 1993. The 
ISO study therefore fails to include observations over the full course of a business cycle. 
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between workers compensation claim frequency, total claim costs 
per worker, and real growth in gross domestic product (GDP) 
over the 1980 to 1995 period [14]. 

Apart from the ISO and NCCI analyses, the implications of 
studies dealing with economic factors generally are confined to 
the microeconomic influences on claim frequency and sever- 
ity. In other words, they focus on the incentives facing indi- 
vidual workers, employers, medical service providers, and in- 
surers. Current research, reported here, complements these ef- 
forts through empirical analysis of the important macroeconomic 
factors that can affect frequency, severity, and loss ratios in the 
workers compensation line. For this reason, the economic explan- 
atory variables used in the present analysis are confined to over- 
all state- and national-level measures of economic performance. 

Workers Compensation and the Economic Environment 

The complex relationship between the workers compensation 
industry (measured in this study by frequency, severity, and loss 
ratios) and the economic environment can be crudely decom- 
posed into the several broad categories listed below. Each of the 
first three categories is based on our prior expectations of rising 
frequency, severity, and loss ratios during the expansionary phase 
of the business cycle. Other forces, as suggested in the final cat- 
egory, may work in the opposite direction. Empirical evidence, 
however, suggests that these countervailing effects are relatively 
small. The various effects are discussed briefly here, and then 
again in more detail in subsequent sections of this study as they 
specifically apply to the empirical results. 

• Workers compensation is influenced by both the level and rate 
of growth of production. Higher levels and/or growth rates of 
production tend to be associated with an increase in losses that 
is in excess of wage increases. 

• Periods of rising capacity utilization are associated with ad- 
verse impacts on workers compensation. This is in part due 
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to pressure to increase the speed and volume of  production, 
which may lead to a decreased emphasis on workplace safety. 
Moreover, worker fatigue due to increased overtime also con- 
tributes to a general worsening in the line, as does the reuse 
of  older, less efficient, machinery. 

• Changes in the composition of  employment also play an im- 
portant role in workers compensation insurance. During the 
initial phases of  economic expansions, for example, employ- 
ment in many hazardous industries, such as construction, man- 
ufacturing, and trucking, expands rapidly. 

• The incentives facing workers and employers shift over the 
course of  the business cycle. Workers, for example, are less 
likely to file workers compensation claims during an economic 
expansion when the opportunity cost of  being out of work is 
relatively high. 4 

It is important to recognize that the four broad relationships dis- 
cussed in this section are themselves influenced by innumerable 
other socio-economic, demographic, and regulatory factors. The 
result is that there can be a great deal of  variability between the 
strength and speed with which economic influences are trans- 
mitted to the workers compensation insurance line over time 
and across states. Nevertheless, certain important fundamental 
relationships that are the subject of  this study are useful when 
discussing the impact of economic conditions on workers com- 
pensation frequency, severity, and loss ratios. 

2. B U S I N E S S  C Y C L E  E F F E C T S  O N  W O R K E R S  C O M P E N S A T I O N  

The econometric models used to determine business cycle ef- 
fects on the workers compensation market typically include a 
measure of overall economic activity (employment), a measure 

4The concept of opportuni ty  cost  is used by economists to denote the foregone value of  
the next best alternative which is not chosen. Hence, it is more costly for a worker to file 
a workers compensation claim during an economic expansion when overtime work is 
more available and wage increases are greater due to tightening labor market conditions. 
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of the health of  the labor market (the unemployment  rate), and 
possibly a measure of  crisis labor market conditions (business 
failures). The waiting period and a measure of cost containment 
are also included in some cases to control for non-business cycle 
effects specifically related to workers compensation. The medical 
severity and medical loss ratio models include hospital cost per 
stay as a measure of  medical costs. Sources and definitions of  
the explanatory variables are listed in Table 1. 

The hypothesized effects of the explanatory variables on the 
workers compensation market are discussed below. In some 
cases, such as with the unemployment  rate, there are countervail- 
ing effects, and the dominant impact is determined empirically. 
The expected sign of some explanatory variables may change 
depending on the model 's  dependent variable: either frequency, 
severity, or the loss ratio. 

The employment  variable is included in the models as a broad- 
based measure of  economic activity within the state. Gross state 
product (GSP) is the broadest measure of economic activity at the 
state level. However, federal statistics on GSP from the Bureau 
of Economic Analysis are available only with a significant lag 
(through 1991 at the time of  this analysis). Thus, employment  is 
used as a proxy for GSP or the measure of production. 5 The ex- 
pected sign on the estimated coefficient of  the employment  vari- 
able is positive. In other words, economic activity (as proxied by 
employment  growth) and frequency, severity, and the loss ratio 
are expected to move in the same direction. Such an expectation 
is consistent with both previous research and economic theory. 
For example, during an expansion when employment  rises, over- 
time increases, less-experienced workers are hired, and employ- 
ment in hazardous industries increases. All these factors could 
be expected to lead to increased frequency, severity, and loss 
ratios. 

SHistorically, the correlation between GSP and employment has been extremely high--  
roughly 98 percent. 



TABLE 1 

E X P L A N A T O R Y  VARIABLE DEFINITIONS AND SOURCES 

Variable 

Name Definition Source 

NAGEMP Annual average nonagricultural employment measured by persons on establishment U.S. Department o f  Labor, 
payrolls. It excludes proprietors, the self-employed, unpaid volunteer or family Bureau of  Labor Statistics, 
workers, farm workers, and domestic workers. Persons who worked in more than one Current Employment 
establishment during the reporting period are counted each time their names appear Statistics, Survey of  
on payrolls [24]. Establishments 

UNRATE Annual  average unemployment rate measured by the number of  unemployed persons 
as a percent of  the labor force. Unemployed persons are those who had no 
employment  during the reference week of the household survey, were available for 
work, and had made specific efforts to find employment some time during the 4-week 
period ending with the reference week. 

The labor force includes all unemployed persons and employed persons. In the 
household survey, a person is considered employed if they did any work at all (at 
least 1 hour) as a paid employee, worked in their own business, profession, or on 
their own farm, or worked 15 hours or more as unpaid workers in an enterprise 
operated by a member  of the family. Each person employed is counted only once, 
even if he or she holds more than one job [24]. 

U.S. Department o f  Labor, 
Bureau of Labor Statistics, 
Current Population Survey 
of  households 

O~ 
-...I 



o~ 
o~ 

BUSFAIL Total business failures measured as businesses that ceased operations and were 
involved in court proceedings or voluntary actions involving losses to creditors. This 
does not include business discontinuances which are defined as businesses that cease 
operations for reasons such as loss of  capital, inadequate profits, ill health, retirement, 
etc., if creditors are paid in full. Although business failures represent only a 
percentage of total closings, they have the most severe impact upon the economy [10]. 

The Dun & Bradstreet 
Corporation, Business 
Failure Record 

o 

© 

m 
z 

WAITPER State-mandated waiting period defined as the time that must  elapse during which 
income benefits are not payable [23]. 

U.S. Chamber o f  Commerce,  
Workers Compensation Laws © 

z 

COSTCON Dummy variable proxy for cost containment initiatives, equal to unity for years 1991 
through 1993 in all states and zero otherwise. See Appendix A for a discussion o f  
dummy variables. 

NCCI 
;> 
Z 

© 

PERSTAY The product of  the average daily hospital charge and the average duration o f  a 
hospital stay. The average daily charge is expenses incurred for inpatient care divided 
by inpatient days. Average length of  stay is the average stay of  inpatients derived by 
dividing the number of  inpatient days by the number of  admissions [1]. 

American Hospital 
Association, Hospital 
Statistics 

z © 
K 
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The unemployment  rate is included in the models as a gauge 
of the health or tightness of  the state's labor market. While there 
is some small degree of  correlation between employment  and 
the unemployment  rate, the latter is a better indicator of  gen- 
eral labor market conditions. 6 Employment,  on the other hand, 
is an indicator or proxy of  the health of  the overall economy. 
For example, during the early stages of an economic recovery, 
the unemployment  rate often increases despite strong gains in 
employment.  This is because the number of  new entrants to the 
labor force exceeds the number of jobs created. 

It is difficult to determine the impact of the unemployment  
rate on the workers compensation market a priori. Various effects 
are present, and the models will determine the dominant impact. 
For instance, an increase in the unemployment  rate could have 
an inverse impact on the workers compensation market because 
inexperienced workers, who often have higher accident rates, 
are laid off first and workers may defer filing claims during a 
recession for fear of losing their jobs. Conversely, a decrease 
in the unemployment  rate could increase frequency or severity 
since those inexperienced workers are rehired and workers who 
deferred filing a claim may file at the first sign of  economic 
recovery. 

On the other hand, the unemployment  rate could have a di- 
rect impact on the workers compensation market. There are sev- 
eral hypotheses suggesting that frequency, severity, and the loss 
ratio should rise as the unemployment  rate increases during a 
recession. These include increased duration and frequency due 
to diminished job opportunities, increased claim-filing incentives 
due to layoffs (i.e., workers substitute relatively generous work- 
ers compensation benefits for unemployment  insurance benefits), 
jumps in the number of  claims filed following business layoffs 
and failures, and increased incentives for workers to take time 
off to heal nagging injuries. Conversely, as the unemployment  

6The correlation coefficient between employment and the unemployment rate over the 
entire 37-jurisdiction, 15-year sample is 0.035. 
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rate decreases in an economic expansion, the opportunity cost 
of filing a claim rises, reducing frequency, severity, and the loss 
ratio. The dominant impact of the unemployment rate on workers 
compensation loss ratios will be determined empirically. 

The business failure variable is sometimes included in the 
models to measure crisis labor market conditions. The a priori 
expectation is that the sign on this variable will be positive. The 
preponderance of anecdotal evidence from industry executives, 
business owners, risk managers, and others suggests that business 
failures and plant closings provide a direct and special motiva- 
tion for employees to file workers compensation claims because 
the benefits generally are larger and paid over a longer period 
than unemployment benefits. Moreover, workers compensation 
benefits are non-taxable. By one estimate, approximately forty to 
fifty percent of laid-off workers will file workers compensation 
claims against their employers within six months of termination 
[3, 4]. An increase in business failures is also expected to lead 
to an increase in severity because the employee's objective is 
to obtain a total workers compensation benefit that exceeds the 
expected unemployment benefit. Severity may also be higher for 
these claims as a result of the type of injury. Some chronic in- 
juries may be concealed for extended periods of time, only to be 
revealed upon layoff. 

Two variables that are independent of the business cycle, but 
are included in the models, are waiting period and cost con- 
tainment. The underlying rationale for including the waiting pe- 
riod variable in the frequency model is straightforward. Longer 
waiting periods are a barrier and disincentive for workers to file 
claims, especially for minor injuries. Hence, an inverse relation- 
ship between frequency and the waiting period is expected. How- 
ever, the expected sign on the waiting period coefficient in the 
indemnity severity regression is positive. Because longer waiting 
periods are a disincentive to file minor claims, the average sever- 
ity of the remaining claims will be higher in states with longer 
waiting periods (holding all other factors constant), particularly 
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if after a retroactive period the employee collects back to the date 
of injury. 

An increase in the waiting period should have no statistically 
significant impact on the loss ratio. This is because the effects on 
losses and premiums associated with the waiting period increase 
should cancel out after on-leveling. However, on-level adjust- 
ments do not take into consideration the fact that law changes 
alter the incentives for workers to use the system. The sign on 
this variable in the loss ratio equation will depend on whether 
workers respond to the altered incentives and is discussed in 
more detail in Section 4. 

The cost containment dummy variable is included as a proxy 
for the vigorous efforts adopted by many states and insurers in 
the early 1990s to attack rapidly rising workers compensation 
costs. The logical expectation is that such efforts reduce system 
costs. Thus, a negative sign on the cost containment coefficient 
is anticipated. Commonly employed reform initiatives, such as 
medical fee schedules, anti-fraud campaigns, managed care, and 
utilization review, have met with widely varying degrees of  suc- 
cess across the states. Moreover, because the savings generated 
through legislative reform or insurer cost containment initiatives 
are not always readily observable, the dummy variable approach 
is a practical alternative way to quantifying these initiatives in 
dollar terms. 7 

Hospital cost per stay is included in the medical severity and 
medical loss ratio models as a measure of medical costs. The 
relationship between this variable and medical severity and the 
medical loss ratio is expected to be direct or positive. Ideally, the 
medical models would include a physician cost variable. Unfor- 
tunately, these data are not available at the state level. 

Indemnity severity is included in the medical severity equation 
and the indemnity loss ratio is in the medical loss ratio equation 

7A detailed discussion of dummy variables is contained in Appendix A. 



672 WORKERS COMPENSATION AND ECONOMIC CYCLES 

to account for some of the variables that indirectly affect medical 
losses. NCCI believes that medical costs are driven, in part, by 
workers' demands to file indemnity claims. Beyond the obvious 
observation that an increase in overall claim severity drives up 
both indemnity and medical severity, explanations for this expec- 
tation include the possible longer observed durations of claims 
for higher wage earners, greater expectations from medical care 
by the high earners, and the tendency of these high earners to 
be in more urban areas where access to medical specialists and 
state-of-the-art technologies are more prevalent [22]. 

3. M O D E L I N G  M E T H O D O L O G Y  A N D  D E S C R I P T I O N  O F  T H E  D A T A  

Modeling Methodology 

The specifications of the frequency, severity, and loss ratio 
econometric models used in this study were determined after 
evaluating and testing families of models containing alternative 
specifications. These families of models used alternative vari- 
ables and lag structures to measure the production and labor 
market effects discussed in the previous section. During this test- 
ing phase of  the analysis, candidate explanatory variables were 
selected and evaluated. 8 Variables were rejected when they ei- 
ther failed to achieve statistical significance, behaved erratically 
over time, or were inconsistent with economic theory. The mod- 
els themselves were rejected when they did not meet specific 
goodness-of-fit criteria based on the adjusted-R 2 statistic. 

In the cross-sectional time series study reported here, param- 
eters of  the model were estimated using ordinary least squares 
(OLS) multiple regression analysis. All variables were in natural 
logarithmic form. Where appropriate, estimates were corrected 

SThe testing of  many models  may overstate at times the statistical significance of  the 
chosen models  since, for example,  out of  every 100 invalid modeds tested, one would 
likely pass significance tests at the one percent level. However, in the case of this study, 
the various families of  models were similar and measured the same effects, but with 
different variables. 
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for autocorrelation and heteroscedasticity. 9 State dummy vari- 
ables were included to control for omitted state-specific effects 
such as fraud, administrative variations, or other differences such 
as the propensity to litigate claims, t° 

NCCI maintains an extensive data base containing insurance 
industry, economic, demographic, and regulatory data in order 
to support its modeling efforts. Initial choices of explanatory 
variables were determined by researching the historic and cur- 
rent economic conditions nationally and in individual states. The 
data base information on economic conditions was obtained from 
four sources: federal and state government agencies, state univer- 
sities, and private forecast and database concerns, such as Dun 
& Bradstreet. This information has enabled NCCI to account for 
certain state-specific cost drivers as well as more regional and 
national developments that have affected workers compensation 
frequency, severity, and loss ratios. 

There is no compelling practical or theoretical reason to ex- 
pect that the final specification of  any of  the models will be 
identical. For example, the model that best estimates indemnity 
severity generally will not result in the best estimates of indem- 
nity loss ratios, even though both dependent variables are statis- 
tically correlated. 

Structural stability of the estimated models is often an issue in 
econometric analyses. In this study, Chow tests were performed 
to measure the stability of the models across states and over 
time [12]. When performing Chow tests, the regression is rerun 

9Durbin-Watson statistical tests were performed to check for the presence of  autocorrela- 
tion. Autocorrelation arises when regression error terms are correlated through time. The 
consequences of  failing to account for the presence o f  autocorrelation include inefficient 
ordinary least squares estimates o f  the regression model parameters (i.e., standard errors 
are inflated) and misleading hypothesis tests. 

Heteroscedasticity is the situation where the model error terms do not have the same 
variance. When heteroscedasticity is present and the problem is not corrected, hypothesis  
tests will also be misleading. See Appendix B for a discussion o f  the method used to 
correct for autocorrelation and heteroscedasticity. 
I°See Appendix A for a detailed discussion o f  the role and interpretation o f  d u m m y  
variables. 
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on subsamples of the overall sample, and the estimated models 
are compared to determine if they are significantly different. In 
this analysis the sample was split by state randomly and based 
on population. The sample was also divided in half by year. The 
results from these various tests were mixed. In order to control 
for the differences among states and years, state dummy variables 
and the cost containment dummy variable discussed above were 
added to the initial models. 

Dependent Variable Definitions 

The dependent variables used in the analyses were com- 
puted using statewide (voluntary and residual market) premium, 
loss, and claim count data collected from workers compensation 
carriers through financial data calls. The loss and claim count 
data used are on an accident year basis, while accident year pre- 
mium data are derived from a weighted average of two policy 
years. In the models, the accident year insurance data are paired 
with the economic data for the corresponding calendar year. 
Data are for 37 jurisdictions over the 15-year period 1979- 
1993. it 

All data used in this study were thoroughly validated. Sever- 
ities and frequencies by state were compared to Unit Statistical 
Plan data, and the analysis excluded all companies with suspect 
claim counts. This is the same data used in NCCI's rate level 
analyses. 

The claim count data and indemnity and medical losses were 
developed to ultimate. Development factors varied by state based 
on a by-state analysis to determine which method would produce 
the most accurate estimate of ultimate losses. In general, the de- 

liThe jurisdictions included in the study are: Alabama, Alaska, Arizona, Arkansas, Col- 
orado, Connecticut, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, 
Kentucky, Louisiana, Maine, Maryland, Michigan, Mississippi, Missouri, Montana, Ne- 
braska, New Hampshire, New Mexico, North Carolina, Oklahoma, Oregon, Rhode Island, 
South Carolina, South Dakota, Tennessee, Utah, Vermont, Virginia, Wisconsin, and the 
District of Columbia. 
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velopment methodology is comparable to that selected in each 
state's rate filing. The data were also brought on-level. Indemnity 
and medical losses were brought to current benefit levels, and 
the measure of premium used in this study, designated statistical 
reporting (DSR) level standard premium, was brought to current 
bureau loss cost level. 12 All loss data used in the calculation of 
the dependent variables exclude all loss adjustment expenses. 

The following describes how the frequency variable used in 
this analysis was calculated from the data elements of the finan- 
cial call: 

indemnity claims developed to ultimate 
Frequency = workers (in hundred thousands) 

The number of workers (in hundred thousands) is estimated by 
year by state from premium as follows: 

on-level DSR premium ) 
average rate x 100 

+ (average weekly wage x 52 x 100,000). 

The DSR average rate is the weighted average of the DSR rate 
by class multiplied by the Unit Statistical Plan (USP) payroll by 
class for the state. The average weekly wage is from the Current 
Population Survey performed by the Bureau of Labor Statistics, 
adjusted to exclude businesses not generally covered by workers 
compensation. 

The severity dependent variables are defined as follows: 

Indemnity severity 

real indemnity losses on-level and developed to ultimate 
indemnity claims developed to ultimate 

12DSR standard premium essentially represents the premium that would have been 
charged before adjustments such as company deviations, loss cost multipliers, premium 
discounts, retrospective rating, or schedule rating. 
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and 

Medical severity 

real medical losses (excluding medical-only) 
on-level and developed to ultimate 
indemnity claims developed to ultimate 

In this study, the nominal or current (unadjusted) indemnity 
severity was converted to real terms using an average weekly 
wage index constructed for each state. Medical severity was de- 
flated using the medical component  of  the Consumer Price Index 
(CPI) produced by the United States Bureau of Labor Statis- 
tics. For the medical severity dependent variable, a factor de- 
rived from USP data was applied to total medical losses to re- 
move all medical-only dollars. Since claim counts in the financial 
calls exclude medical-only claims, this was necessary to achieve 
consistency between the numerator and denominator of  medical 
severity. 

The loss ratio dependent variables are defined as follows: 

Indemnity loss ratio 

indemnity losses on-level and developed to ultimate 

loss cost portion of on-level DSR premium 

and 

Medical loss ratio 

medical losses on-level and developed to ultimate 
loss cost portion of  on-level DSR premium 

In some states DSR premium is loss costs, while in others it 
is rates. In this analysis, however, it was adjusted to loss costs 
for all states. While the loss ratio typically uses full premium in 
the denominator, in this analysis the term "loss ratio" is used to 
describe the ratios defined above. 
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To summarize, the data base constructed for this study per- 
mits the analysis of a significant number of potential cost drivers 
affecting frequency, medical and indemnity severity, and medical 
and indemnity loss ratios. The ultimate goal has been to ensure 
that the final model is statistically sound, logically consistent in 
terms of economic theory, and that it is the best among alternative 
specifications. 

4. R E S U L T S  A N D  I N T E R P R E T A T I O N  

Claim Frequency and the Business Cycle 

Numerous hypotheses suggest a relationship between workers 
compensation claim frequency and the economic environment, as 
discussed in Section 2. The a priori expectation in this study is 
that claim frequency will tend to rise during periods of economic 
expansion and fall during contractions. 

Figure 1 shows the average annual percentage change in 
work-related claim frequency for the 37 jurisdictions in our sam- 
ple. 13 The frequency decreases shown for 1980, 1982, 1990, and 
1991 are coincident with national economic recessions (shaded 
regions) during those years. Frequency increased sharply dur- 
ing the economic recovery that began in 1983 before reach- 
ing a plateau in 1985. Modest further increases in frequency 
were recorded as the economic recovery matured during the late 
1980s. The period beginning in 1983 was the longest sustained 
recovery in the post-World War II era, but eventually gave way 
to recession during the second half of 1990 and into 1991. The 
modest decrease in claim frequency in 1992 and 1993 is consis- 
tent with the most recent recovery's unusually slow rate of job 
creation during the first two years of expansion. Job creation and 

t3A simple average of  the claim frequency data for the 37 jurisdictions was calculated 
for each year, 1979 to 1993. The annual percentage changes included in Figure 1 were 
calculated based on these simple averages. A simple average was used instead of  a 
weighted average to more closely match the data in the study since it is cross-sectional 
time series rather than total national. 
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FIGURE 1 
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an expected upswing in frequency were limited because 18 of  the 
37 jurisdictions in the sample remained mired in recession even 
after the national recession ended in March 1991. Frequency 
increases were also limited because of the workers compensation 
system reforms that were initiated in these years in several states. 

Table 2 summarizes the results from two econometric esti- 
mates of  claim frequency. The absolute t-statistic is shown in 
italics below the estimated coefficient. 14 

The dependent variable in both regressions, IFREQPW, is the 
natural logarithm of frequency. The "/" preceding NAGEMP, 
UNRATE, and WAITPER indicates that these variables have also 
been converted to natural logarithms. 

The empirical results for both models shown in Table 2 are 
consistent with prior expectations. The coefficient on the employ- 
ment variable is positive, while the coefficients on the waiting 

14The t-statistics are used to test the null hypothesis that the respective coefficient is 
equal to zero. 
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TABLE 2 

W O R K E R S  C O M P E N S A T I O N  F R E Q U E N C Y  M O D E L S  

C O E F F I C I E N T S  A N D  t -STATISTICS 

Dependent Variable = / F R E Q P W  

Independent Models 

Variable/Constant ( l ) (2) 

Constant 3.64 3.78 
5.59 5.81 

/NAGEMP 0.58 0.59 
Z16* Z31" 

/UNRATE -0.09 -0 .09  
3.18" 3.19" 

COSTCON -0.06 -0.05 
3.48* 3.25* 

/WAITPER - -  -0 .16 
2.54" 

State 
Dummies Yes Yes 

Adjusted-R2: 0.907 0.909 
N: 555 555 

*Significant at the 1% level. 

period and cost containment variable are negative. As discussed 
in Section 2, it is difficult to determine a priori the expected 
sign on the unemployment rate variable. The sign on the un- 
employment rate coefficient in the frequency regression is nega- 
tive. That is, a decrease in the unemployment rate is associated 
with an increase in frequency. The interpretation is that the 
marginal hires are more likely to be injured [28]. This effect 
dominates any possible countervailing effects as discussed in 
Section 2. 

It is worth noting that the nonagricOltural employment and 
unemployment rate variables tend to move in opposite directions. 
For this reason, the opposite signs on the two coefficients re- 
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inforce each other, resulting in an amplification effect. Hence, 
claim frequency is expected to increase during economic ex- 
pansions and decline during contractions or periods of sluggish 
growth. Changes in the cost containment and waiting period vari- 
ables are independent of the business cycle. 

Because the models were estimated in logarithms rather than 
in levels, the variable coefficients can be interpreted as elasticities 
or sensitivities. For example, the coefficient on the /NAGEMP 
variable in model (1) indicates that a 10 percent increase in nona- 
gricultural employment leads (approximately) to a 5.8 percent 
increase in claim frequency. Likewise, a 10 percent decrease in 
the unemployment rate is associated with a 0.9 percent increase 
in frequency. 

This example can be made more realistic by using actual 
1995 national forecast values from Regional Financial Associates 
(RFA), an econometric forecasting organization. 15 Using Model 
1, RFA's forecast for 2.5 percent employment growth nationally 
is expected to lead to a 1.45 percent increase in frequency. Simi- 
larly, the projected 8.2 percent decline in the unemployment rate 
(from 6.1 percent to 5.6 percent) is associated with a frequency 
increase of 0.74 percent. 

Based on the results from the above models, Table 3 presents 
specific examples of how cyclical economic factors can influence 
the workers compensation line. Because the arguments presented 
here generally are symmetric with respect to the phase of the 
business cycle, discussion is limited to the case of economic 
expansion. While the cited factors should not be construed as 
an exhaustive list, they are representative of some of the more 
important developments that affect frequency when employment 
and the unemployment rate change. 

An increase in employment and decrease in the unemploy- 
ment rate during an economic expansion is expected to increase 

15precis, Vol. 3, No. 6, Regional Financial Associates, West Chester, PA, June 1995. 
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TABLE 3 

E C O N O M I C  R A T I O N A L E  F O R  C H A N G E S  IN F R E Q U E N C Y  D U R I N G  

E C O N O M I C  E X P A N S I O N S  

Employment  Increases 
(increases frequency) 

Unemployment  Rate 
Decreases 

(increases frequency) 

• Employment  increases in hazardous 
industries 

• Overtime increases, leading to increased 
worker fatigue 

• Less machine maintenance diminishes 
job safety 

• Older, less safe and less efficient 
equipment  may  be reused 

• Inexperienced workers, more prone to 
injuries, are hired or rehired 

• Workers who deferred claims in recession 
for fear o f  losing job may file now 

• Overtime increases, leading to 
increased worker fatique 

• Inexperienced workers, more 
prone to injuries, are hired or 
rehired 

Workers who deferred claims in 
a recession for fear of  losing 
job may file now 

claim frequency for several reasons, some of which are listed in 
Table 3 and discussed here. 

First, employers must hire new workers to meet increased de- 
mand during an economic expansion. In general, these workers 
tend to be younger and less experienced, resulting in more fre- 
quent injuries. In this case, it is the level of  economic activity 
that compels employers to expand employment.  

Increased demand for goods and services also leads to higher 
workers compensation costs indirectly. For example, during an 
economic expansion, producer shipments will rise and business- 
related vehicle traffic increases. Increasing vehicle travel will 
lead to an increase in claim frequency. Moreover, motor vehicle 
accidents are the leading cause of  on-the-job fatalities [4]. 
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Another reason why an economic expansion may lead to 
higher claim frequency is linked to employment growth in haz- 
ardous or risky industries, such as in the highly cyclical construc- 
tion, heavy manufacturing, and mining industries. In this case, 
it is the shifting mix of  employment  that is the key transmit- 
tal mechanism from the economy to the workers compensation 
system. 

Increased utilization of  the system by workers also contributes 
to an increase in frequency during an economic expansion. Em- 
ployees who feared they would lose their jobs if they filed a 
claim during the recession may file once the economy recovers. 
A 1993 NCCI survey of twenty of  the largest workers compen- 
sation carriers found that workers' concerns over job security 
can override the incentive to file a workers compensation claim. 
The same observation has been made by some in the risk man- 
agement community [26]. 

Finally, as employment  rises and the pace of economic activ- 
ity quickens, machine usage increases, and less maintenance and 
overall safety may accompany the higher capacity [25]. Also, 
workers' overtime hours increase, leading to fatigue and an in- 
crease in accidents. During a 1994 strike, workers at General 
Motors Corporation cited excessive overtime as the primary rea- 
son for their walkout. GM ended the dispute by agreeing to hire 
hundreds of  new workers [27]. 

The association between higher claim frequency in general 
and economic expansion has been documented most recently 
in California. The California Workers Compensation Institute 
(CWCI) recently reported a 21 percent increase in indemnity 
claims frequency and an 11 percent increase in medical-only 
claims frequency; it attributes these increases to the state's re- 
covering economy [8]. 

The converse of the above arguments is also generally true. In 
other words, the economic factors that contribute to increasing 
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claim frequency during an economic expansion work to reduce 
frequency during a contraction. 

Claim Severity and the Business Cycle 

Both indemnity and medical severities increased rapidly dur- 
ing the early 1980s. Over the 1980-1982 period, the average 
annual increase in indemnity severity was 10.2 percent and 15.0 
percent in medical severity. It is important, however, to recog- 
nize that the early 1980s was an inflationary period and that the 
behavioral and economic decisions made by workers, employ- 
ers, insurers, and others are responses to real (inflation adjusted) 
changes in benefits and costs. Moreover, the true impacts of the 
explanatory variables on severity cannot be observed without 
first controlling for inflation. For these reasons, it is more in- 
formative to use inflation adjusted or real severity data in this 
analy sis. 16 

Figure 2A and Figure 2B compare annual changes in nominal 
and real indemnity and medical severity, respectively. Indemnity 
severity increases recorded in 1981, 1983, 1984, 1992, and 1993 
were actually declines when measured in real terms. The inter- 
pretation is that the average cost of an indemnity claim fell rela- 
tive to the mean increase in average weekly wages during those 
years. These years approximately correspond to the recession 
induced frequency declines discussed above. 17 The decreases in 
severity are consistent with the decline in hazardous industry 
employment and the previously discussed incentive for workers 
to defer filing claims during recessionary periods out of fear of 
losing their jobs. 

16As discussed in Section 3, nominal or current (unadjusted) indemnity severity was 
converted to real terms using an average weekly wage index constructed for each state, 
while medical severity was deflated using the medical component  o f  the Consumer  Price 
Index (CPI). 
17Recession induced severity declines, as shown in Figure 2A and Figure 2B, are not 
precisely coincident with national economic recessions because the experience o f  our 
37-jurisdiction sample differs from the nation's  experience. For example, 27 states in 
the sample were in recession for some part o f  1983, even though the national recession 
ended in November  1982. 
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Changes in real medical severity, on the other hand, have re- 
mained positive for all years over the sample period except 1984 
and 1992. Increases have occurred despite adjusting for inflation 
using the medical component of the CPI, which is significantly 
higher than the overall CPI. Thus, workers compensation medi- 
cal severity not only grew faster than the general rate of inflation 
(as measured by the CPI), but also faster than medical inflation 
nationwide. 

The hypothesis that real indemnity and medical severity vary 
over the business cycle can be tested econometrically. Table 4 
summarizes the results from the econometric estimate of indem- 
nity and medical claim severity. The absolute t-statistic is shown 
in italics below the estimated coefficient. 

All variables have been converted to natural logarithms. As 
in the frequency regressions, estimation of the severity models 
in logarithmic form implies that the variable coefficients can be 
interpreted as elasticities. For example, the coefficient on the 
/NAGEMP variable in the indemnity model implies that a 10 
percent increase in nonagricultural employment leads to a 6.8 
percent increase in claim severity. Similarly, a 10 percent increase 
in hospital cost per stay is associated with a 2.5 percent increase 
in medical claim severity. 

Unlike the frequency regressions, the unemployment rate vari- 
able in the severity regressions has a positive sign, indicating 
that a direct effect is the dominant impact. The signs on employ- 
ment, business failures, waiting period, and hospital cost per stay 
variables are consistent with prior expectations discussed in Sec- 
tion 2. 

As discussed previously, employment and the unemployment 
rate generally move in opposite directions. The positive sign on 
the coefficients of both variables means that a decrease in the 
unemployment rate during an economic expansion, for example, 
tends to dampen the severity increasing influence of expanding 
employment. Empirical evidence indicates that the employment 
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TABLE 4 

WORKERS COMPENSATION REAL SEVERITY MODELS 
COEFFICIENTS AND t-STATISTICS 

Dependent Variable = / I N D S E V , / M E D S E V  

Independent Models  

Variable/Constant  Indemni ty  Medical  

Constant 2.11 2.07 

1,54 4.77 

/ N A G E M P  0.68 - -  

3.86 ° 

I U N R A T E  O. 13 - -  

2.25"* 

I B U S F A I L  0.04 - -  

2.59" 

/ W A I T P E R  0.35 - -  

4.16" 

IPERSTAY - -  0.25 
5.74" 

IINDSEV - -  0 .44 

8.51" 

State 
D u m m i e s  Yes Yes 

Adjusted-R~: 0 .908 0.906 

N: t 370 555 

*Significant at the 1% level. 
**Significant at the 5% level. 
*Because business failures data were available beginning only in 1984, the number of observations 
in the indemnity model is less than for the medical model, which spans the entire 1979-1993 sample 
period. 

effect is dominant. To illustrate this point, RFA's 1995 forecast 
for 2.5 percent employment growth would be expected to lead to 
a 1.7 percent increase in indemnity severity, while the projected 
8.2 percent decrease in unemployment would be associated with 
a 1.1 percent decrease in severity. In combination, there is an ex- 
pected 0.6 percent increase in severity, holding all else constant. 
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TABLE 5 

ECONOMIC RATIONALE FOR CHANGES IN INDEMNITY CLAIM 
SEVERITY DURING ECONOMIC EXPANSIONS 

Employment  Increases 
(increases severity) 

Unemployment  Rate 
Decreases 

(decreases severity) 

• Employment  increases in hazardous 
industries 

• Truck shipments increase 

• Overtime increases, leading to increased 
worker fatigue 

• Less maintenance; older machinery reused 

• Unfamiliarity of  new employees with 
machinery 

• Opportunity cost of  claim rises, 
reducing duration 

Some of the important economic factors that contribute to 
increasing indemnity claim severity during an economic expan- 
sion are shown in Table 5. The converse is generally true during 
economic contractions. 

Indemnity and Medical Loss Ratios and the Business Cycle 

The statistical evidence presented thus far in this paper has 
documented that econometric techniques are an important tool 
that can be used to quantify the relationship between the eco- 
nomic environment and workers compensation frequency and 
severity. In this section, the econometric methodologies devel- 
oped in the previous two sections are extended and modified to 
model indemnity and medical loss ratios over the course of  the 
business cycle. 

Loss ratios provide a more complete picture of the economy's  
impacts on the workers compensation industry because they in- 
corporate information on both losses and premiums. Unlike other 
lines of insurance, workers compensation premiums are assessed 
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as a proportion of total payroll. Payroll at the firm level often 
is subject to considerable variability over the course of the busi- 
ness cycle, thereby affecting premium collections. Variability in 
losses is due to changes in both the corresponding exposure base 
and the complex interactions between economic variables as they 
impact frequency and severity. 

In general, the factors that best explain changes in medical 
and indemnity loss ratios will be different from those that best 
explain frequency and medical and indemnity severity. This is be- 
cause modeling loss ratios incorporates the interactions between 
frequency and severity, while modeling frequency and severity 
separately does not incorporate these effects. 

Table 6 summarizes the results of the estimated indemnity and 
medical loss ratio models. 

The positive sign on the employment variable, /NAGEME 
in the indemnity model is consistent with a priori expectations 
and with the frequency and severity findings presented above. As 
employment rises and the pace of economic activity quickens, the 
indemnity loss ratio tends to deteriorate. This is partly because 
the accelerated rate and higher level of production cause machine 
usage to increase and older, less safe machinery to be brought 
back on line as capacity constraints are approached. Increased 
worker fatigue due to a faster pace of production and abundant 
overtime opportunities is likely to contribute to higher injury 
severities as well as increased claim frequency. 

As in the severity model, the sign on the unemployment rate 
variable in the loss ratio regression is positive. A decline in the 
unemployment rate during an expansion is associated with a 
probable slight decline in the loss ratio. The decline is princi- 
pally the result of the increasing opportunity cost to the employee 
(and employer) of a workers compensation claim. Rising wages 
and overtime opportunities diminish the incentive of the worker 
to file or stay out on a claim. Concomitantly, the cost to the 
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TABLE 6 

WORKERS COMPENSATION LOSS RATIO MODELS 
C O E F F I C I E N T S  A N D  t - S T A T I S T I C S  

Dependent Variable = IlNDLRAT, IMEDLRAT 

Independent  Mode l s  

Variable /Constant  Indemni ty  Medica l  

Constant  - 12 .32  - 8 . 0 2  

6.42 29.90 

I N A G E M P  1 .44  - -  

5.98* 

I U N R A T E  0 . 0 8  - -  

1.34 . . . .  

I W A I T P E R  0 . 2 2  - -  

2.26* 

C O S T C O N  - 0 . 0 6  - -  

1.56 ",° 

I P E R S T A Y  - -  0 .91 

29.41" 

/ I N D L R A T  - -  0 . 5 3  

16.05" 

State 
D u m m i e s  Yes Yes 

Adjusted-R2:  0 . 7 5 7  0 . 8 9 8  

N :  5 5 5  555  

*Significant at the 1% level. 
**Significant at the 5% level. 
***Significant at the 10% level. 
****Significant at the 20% level. 

employer of losing a worker increases during periods of  strong 
demand. Hence, the increasing opportunity cost of labor income 
and the rising value of  the worker to the employer contribute to 
a decline in the loss ratio during an economic expansion. 

As discussed in Section 2, an increase in the waiting period 
should have no statistically significant impact on the loss ratio 



690 WORKERS COMPENSATION AND ECONOMIC CYCLES 

since the effects on losses and premiums associated with the wait- 
ing period increase should cancel out after on-leveling. However, 
the coefficient on this variable in the above equation is positive 
and significant. 

One reason for this result is that on-level adjustments do not 
take into consideration the fact that law changes alter the incen- 
tives for workers to use the system. Specifically, some proportion 
of workers will be sufficiently motivated to stretch the duration 
of their claim to meet the new waiting period, thereby increasing 
average claim severity. Importantly, the new (longer) waiting pe- 
riod will be several days closer to the retroactive date (assuming 
the retroactive period is not also increased), at which point ben- 
efits are paid retroactively to the injury date. Because the time 
interval between the waiting period and retroactive period has 
been reduced, the cost to the worker of  extending the claim to 
the retroactive period is also reduced. Ironically, the net result 
of an increase in the waiting period may be to increase average 
severity and total system costs. 18 

Finally, the negative sign on the cost containment coefficient 
indicates that cost containment initiatives are successful in re- 
ducing system costs. 

Overall, however, the employment effect is dominant, lead- 
ing to the conclusion that the indemnity loss ratio will increase 
during an economic expansion and decrease during an economic 
contraction. ~ 9 

The numerical interpretation of the results is analogous to 
the frequency and severity models discussed previously. Estima- 

laSome industry observers believe that the on-level (law amendment)  factors were gener- 
ally overestimated. Systematic overestimation of  these factors would lead to a perceived 
increase in severity, We thank an anonymous  referee for bringing this possibility to our 
attention. 
19previous research examining the incentive effects contributing to workers compensation 
loss ratios includes Butler and Worrall [7]. Butler [5] also contains a comprehensive 
review of incentive effect studies, including several using NCCI data. 
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tion of the models in logarithmic form permits interpretation of 
the estimated coefficients as elasticities. The 1995 employment 
growth forecast of 2.5 percent implies a 3.6 percent increase in 
the indemnity loss ratio. Similarly, the projected 8.2 percent de- 
crease in the unemployment rate would be expected to lead to 
a 0.7 percent decline in the indemnity loss ratio. In combina- 
tion, they would lead to an expected 2.9 percent increase in the 
indemnity loss ratio, holding all else constant. 

The medical loss ratio model is analogous to the medical 
severity model. The 2.9 percent increase in the indemnity loss ra- 
tio discussed above implies a 1.5 percent increase in the medical 
loss ratio. 

The coefficients on the economic variables displayed in Ta- 
ble 6 indicate how loss ratios are expected to change over 
the course of the business cycle--rising during expansions and 
falling during contractions. Failure to consider these factors may 
result in systematic and cyclical bias when actuarial trend indi- 
cations are used. 

5. SUMMARY AND CONCLUSIONS 

The empirical results presented in this study provide signifi- 
cant statistical evidence that econometric modeling is a power- 
ful explanatory and diagnostic tool for explaining variability in 
the workers compensation line over the course of the business 
cycle. Specifically, this study demonstrates that cross-sectional 
time series techniques can be used to estimate the relation- 
ship between the economic environment and workers compen- 
sation claim frequency, indemnity and medical severity, and 
indemnity and medical loss ratios over the 15-year, 37-state, 
sample period. The estimated frequency, severity, and medical 
loss ratio models explain ninety percent or more of the variabil- 
ity in the respective dependent variable. More than seventy- 
five percent of the variability in the indemnity loss ratio is ex- 
plained. 
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This study's major empirical finding is that there is a strong 
association between economic growth and rising frequency, 
severity, and loss ratios. 2° The converse is also true. This find- 
ing displaces the conventional wisdom on this subject, which 
has held that the workers compensation line generally improves 
during economic expansions and worsens in recessions. A possi- 
ble consequence of not accounting for the impacts of economic 
factors on loss ratios is rate inadequacy. During a prolonged 
economic expansion, the inadequacy problem is compounded. 
Conversely, during recessionary periods, rates may become re- 
dundant. 

Extensions and Directions for  Future Research 

One logical application of this study's findings is to employ 
econometric time series techniques at the individual state level 
to generate econometric estimates of trend. Actuarial method- 
ologies traditionally have relied on curve fitting techniques that 
depend on historical values of the loss ratios and time to esti- 
mate trend. Econometric trend models, in contrast, draw upon a 
rich base of economic, demographic, and insurance variables. 21 
Along with their intuitive appeal, econometric models can in- 
corporate predicted future changes in the economy that may af- 
fect the direction and growth of losses and premiums. Moreover, 
econometric forecasts use all available data points to capture the 
impacts of the economy on loss ratios over the full course of the 
business cycle. 

Econometric trend estimates have been filed by NCCI in sev- 
eral states, using models similar to those explored in this study. 
The models typically include a measure of overall economic ac- 
tivity, a measure of the health of the labor market, and possibly 

2°The conclusion is demonstrated for the business cycles during the data period used in 
this analysis, but may not follow over different periods of  time. 
21For a more complete discussion of  econometric trending methodologies, see Hat-twig, 
Kahley, and Restrepo [15]. 



WORKERS COMPENSATION AND ECONOMIC CYCLES 693 

variables relating to crisis labor market conditions or the share 
of employment in risky industries in the state. As in this study, 
logarithmic regression models are estimated separately for in- 
demnity and medical loss ratios. Forecast values of the inde- 
pendent variables are then used to forecast expected loss ratios 
(the dependent variable). Applying these techniques to workers 
compensation claim frequency and severity at the state level is 
another logical extension that NCCI plans to explore. 

NCCI plans to continue its study of the relationship between 
the business cycle and the workers compensation industry. To 
date, the results of these analyses are promising. Research and 
methodological refinements are ongoing, and the knowledge 
gained from modeling a larger number of states across a broad 
spectrum of economic and workers compensation experience 
should prove to be invaluable. 
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APPENDIX A 

D U M M Y  VARIABLES IN ECONOMETRIC ANALYSIS 

Variables used in regression analysis are usually, but not al- 
ways, continuous over some range. There are situations, how- 
ever, where explanatory or independent variables are qualitative 
in nature, taking on two or more distinct values. For example, 
individuals are male or female, and gender may explain certain 
behaviors or outcomes. Similarly, investment and consumption 
decisions may be influenced by whether a country is at war 
or peace. In such instances, a proxy variable, referred to as a 
"dummy variable" in econometrics, must be constructed. The 
dummy variable takes on the value unity whenever the quali- 
tative phenomenon it represents occurs, and zero otherwise. For 
estimation purposes, the dummy variable is treated no differently 
than any other explanatory variable, and no modifications to the 
chosen estimation technique are necessary. 22 

Fixed Effects Models 

Qualitative variables are frequently not dichotomous and may 
assume more than two distinct values (female/male). In the con- 
text of  the present study, the possibility that the intercept varies 
across the N = 37 cross-sectional units (states) is recognized and 
incorporated in the frequency, severity, and loss ratio models by 
constructing dummy variables for (N - 1) states in the sample. 23 
One state is omitted to avoid perfect multicollinearity. With per- 
fect multicollinearity, the regression matrix is singular and, there- 
fore, coefficients for the explanatory variables cannot be esti- 
mated. The individual contribution of  the omitted state is given 
by the value of the constant term in the regression equation. 
Such observation specific dummy variables are equal to unity 

22A more detailed discussion on dummy variables is given in Kennedy [18] and most 
other econometric textbooks. 
23State dummy variables in this study are generally statistically significant at the one 
percent level. 
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for a specific observation (e.g., Alabama) and zero for all other 
observations (i.e., every state except Alabama). 

The fact that the 37-state sample is observed over a 15-year 
period suggests another possible application of dummy variables. 
Dummy variables could be constructed for ( T - 1 )  years, un- 
der the hypothesis that the intercept varies over time, as well 
as across states (for a total of (N - 1) + (T - 1) dummies). Time 
dummies would assume the value of one for a specific year and 
zero for all other years. This hypothesis was tested and rejected 
using the data in this study. 

The use of  cross-sectional and/or time dummy variables in a 
longitudinal (or panel) data context is commonplace in econo- 
metrics. This method of  analyzing longitudinal data is known as 
fixed effects modeling. 24 Essentially, the dummy variable coef- 
ficients reflect ignorance. In other words, dummy variables are 
introduced for the purpose of  measuring shifts in the regression 
line arising from unknown variables. Of course, other explana- 
tory variables, with hypothesized functional relationships to the 
dependent variable, generally are included in such models as 
well. 

Non-Observable and Difficult-to-Quantify Variables 

Many variables believed to influence the level and growth 
rate of workers compensation frequency, severity, and loss ra- 
tios are difficult to quantify and/or cannot be observed directly 
or in a practical fashion. For example, governments, insurance 
companies, and employers embarked upon a myriad of legisla- 
tive reforms, cost containment initiatives, and loss control pro- 
grams across the country during the early 1990s. From a practi- 
cal standpoint, it is impossible to survey and quantify all of  these 
changes in state workers compensation systems. Indeed, insurers 
are applying their acquired knowledge and experience to states 

24A detailed and rigorous discussion of  fixed effects modeling is found in Hsiao [16]. 
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where no major legislative reforms have been approved. More- 
over, from an econometric perspective, modeling such a large 
variety of reforms and initiatives would require far more degrees 
of freedom than are available in this study sample of  37 states 
over 15 years. 

A practical solution to modeling the many and diverse cost 
containment initiatives across states individually is to model them 
collectively using a dummy variable as a proxy. In this study, a 
single dummy variable is constructed, COSTCON; it is equal to 
one for the years 1991-1993 in every state and zero otherwise. 25 
The coefficient on the dummy variable can be interpreted as an 
average estimate of  the net impact of legislative reform and other 
initiatives on workers compensation frequency and the indem- 
nity loss ratio (the variable was not statistically significant in the 
severity regressions). 

25Anecdotal evidence suggested that the "turning point" for workers compensation came 
in the early 1990s. The choice of  1991 as the beginning point is based on the statistical 
strength of  COSTCON in that year relative to other years. The ending point is 1993 
because that is the last year of data in the sample used in this study. 
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A P P E N D I X  B 

A U T O C O R R E L A T I O N  A N D  H E T E R O S C E D A S T I C I T Y  C O R R E C T I O N  

When correcting for autocorrelation and heteroscedasticity, 
Regression Analysis of Time Series (RATS), the programming 
software used in this study, computes the regression using least 
squares, but then computes a consistent estimate of the covari- 
ance matrix allowing for heteroscedasticity and serial correlation 
up to a first-order moving average. 

Ordinary least squares provides a consistent estimate for/3 in 
the regression model Y = X~ + u in a large number of  settings 
where the standard assumption that the residuals satisfy the equa- 
tion V = E ( u u ' ) =  cr2I is violated. Although least squares may 
provide consistent estimates of the coefficients, s2X'X - l  is not 
a consistent estimate of  the variance of  the coefficient estimates. 
Therefore, tests based on the regression output will be incorrect. 

To correct the problem, RATS computes consistent estimators 
for the covariance matrix of  estimators using a procedure that 
imposes little structure on the matrix V. The estimators for least 
squares are (X'X)-l mcov(X,u)(X'X)-I  where mcov(X, u) refers 
to the following matrix 

L 

Z ~~utX;Xt-kRt-k' 
k=-L t 

and u t is the residual at time t. Serial correlation is handled by 
making L non-zero. This corrects the covariance matrix for serial 
correlation in the form of  a moving average of order L [9]. 26 

26Additional detail regarding the correction can be found in Hansen [13], Newey and 
West [21], and White [29]. 



APPLICATION OF THE OPTION MARKET PARADIGM TO 
THE SOLUTION OF INSURANCE PROBLEMS 

MICHAEL G. WACEK 

Abstract 

The Black-Scholes option pricing formula from fi- 
nance theory is consistent with the assumption that the 
market price of the underlying asset at any future date 
is lognormally distributed with time-dependent param- 
eters and can be shown to be a special case of both 
a more general option model and a familiar actuarial 
function used in excess of loss applications. This in- 
sight leads to an understanding of the similarity be- 
tween options and certain insurance concepts. Because 
insurance and finance have developed separately, dif- 
ferent paradigms are used by the practitioners in each 
field. When these paradigms are shared, a new per- 
spective on risk management, product development, 
and pricing, especially of insurance and reinsurance, 
emerges. 

1. RELATIONSHIP OF THE BLACK-SCHOLES FORMULA AND THE 

ACTUARIAL EXCESS OF LOSS FUNCTION 

In 1973, Fischer Black and Myron Scholes published their 
now classic paper entitled "The Pricing of Options and Corporate 
Liabilities," [ 1 ] in which they derived the option pricing formula 
that bears their name. Gerber and Shiu [2] described that paper 
as "perhaps the most important development in the theory of fi- 
nancial economics in the past two decades." The advent of the 
modern derivatives market is generally traced back to the intro- 
duction of exchange-traded equity options in the U.S. (1973) and 
the development of the Black-Scholes model [3]. 

701 
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Black and Scholes showed that under certain conditions the 
current pure premium, l c t (S ) ,  for a "call option" to buy a partic- 
ular asset for price S, at, and only at, time t (where t is the time 
to expiry) is 

c , ( S )  = Po" N ( d l  ) - S e - r t  " N ( d 2 ) ,  where 

ln(P0/S ) + (r + 0.5cr2)t 
d~ = ~rvq ' (1 .1 )  

d2 = l n ( P o / S )  + (r  - 0.5a2)t 

av'7 

and where P0 is the current market price, r is the risk-free force 
of interest, a is a measure of annualized price volatility, and N 
is the cumulative distribution function of the standard normal 
distribution. 

This is a daunting formula, and in this form it provides little 
insight into the underlying options pricing problem. One of  the 
key points of this paper is that Formula 1.1, the Black-Scholes 
formula, is actually a special case of a familiar actuarial function 
written in an unfamiliar form. This will lead us to some important 
insights about both options and insurance. 

Consider that the pure premium of a call option exercisable 
only on the .expiry date (a "European" option) depends on the 
market 's current opinion about the probability distribution of the 
market price of the underlying asset on the expiry date. If the 
option exercise price is S, the option will only be exercised in 
the event the market price at expiry exceeds S. Its value in these 
circumstances will be the amount by which the market price 
exceeds S. In other circumstances, the optionholder will let the 

IFinancial economists use the term "price" or "premium." However, to make clear to 
actuarial readers that there is no embedded charge for risk or expenses in the Black-  
Scholes valuation, we shall use the actuarial term "pure premium." 
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option expire unexercised and, if he wants to own the asset, buy 
the asset at the market price. The option to buy the asset at a 
higher than market price will be worthless. The value of the op- 
tion at expiry is the probability-weighted average of all possible 
expiry scenarios. 

Suppose the probability distribution of market prices at expiry 
is represented by the random variate x. Then the expected value 
of the option at expiry is 

fs ~(X - S) Future Value [ct(S)] = • f ( x ) d x .  (1.2) 

The expression on the right hand side of Formula 1.2 is the fu ture  
value of the option pure premium, since x is defined for the 
expiry date, which is in the future. Its present value, discounted 
at the risk-free interest rate, 2 is 

fs °~(x S) (1.3) c t ( S  ) = e - r t  _ f ( x )  dx.  

Now compare Formulas 1.1 and 1.3. Formula 1.1, the Black- 
Scholes formula, depends on the assumption that market prices 
are lognormally distributed. Formula 1.3 is more general and has 
no embedded distributional assumption. However, if the variate 
x in Formula 1.3 is assumed to be lognormal and the correct 

2This is justified on the basis that using any other rate would open the door to risk-free 
arbitrage profits. It is possible to create a riskless portfolio by hedging a long position 
in the underlying asset by selling short an appropriate number  of  call options on the 
underlying asset. Because it is riskless, this hedged portfolio must  earn the risk-free rate 
of  return. However, for this to be true (and it must  be true to avoid risk-free arbitrage 
profit opportunities), it turns out that the interest rate for discounting the expected value 
of  the call option at expiry must  also be the risk-free rate. The finance literature refers 
to this phenomenon as "risk-neutral valuation" and it applies to valuation o f  all financial 
derivatives of  assets where suitable conditions for hedging exist. For further discussion 
of risk-neutral valuation and risk-free discounting, see Hull [7]. 

In actuarial applications involving insurance claims (where hedging is not possible), it 
is sometimes implicitly recognized that the risk-free rate is not alapropriate by discounting 
at the risk-free rate, and then adding a risk charge to the discounted result. This is 
equivalent to discounting at a rate less than the risk-free rate. We have deliberately 
chosen to characterize c~(S) as a "pure premium" to leave the door open to an additional 
risk charge where appropriate. 
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distribution parameters are chosen, 3 Formula 1.1 can be derived 
from Formula 1.3. In other words, the Black-Scholes formula is 
a special case of Formula 1.3. The proof of this is in Appendix A. 

Formula 1.2, which differs from Formula 1.3 only by a present 
value factor, also defines a familiar actuarial function seen fre- 
quently in excess of loss insurance applications. For example, if 
x is a random variate representing the aggregate value of losses 
occurring during an annual period, then Formula 1.2 defines the 
expected value of losses in excess of an aggregate loss amount of 
S. This function is an important tool in pricing aggregate excess 
or stop-loss reinsurance covers. 

A second example relates to the more common type of excess 
of loss coverage, where the excess attachment point S is defined 
in terms of individual losses, rather than in the aggregate over a 
period. In this context, if x is a random variate representing the 
loss severity distribution with mean M, then Formula 1.2 defines 
the expected portion of M attributable to losses in excess of S. If 
the result of Formula 1.2 equals C, then C/M is the excess pure 
premium factor. If N is the expected number of losses, then NC 
is the expected value of excess losses. 

Let us summarize what we have established. Formula 1.2 
defines an important element of excess of loss pricing. It dif- 
fers only by a present value factor from Formula 1.3, which de- 
fines a general formula for European call option pricing. Form- 
ula 1.1, the Black-Scholes formula, is a special case of Formula 
1.3. 

The implication of this is that excess of loss insurance and 
call options are essentially the same concepts. The one deals 
with insurance claims and the other deals with asset prices, but 
the pricing mathematics is basically the same. 

3Formulas 1.1 and 1.3 produce the same result i fx  is a Iognormal variate with parameters 
( lnP 0 +rt-O.5a2t, ax/7), where this characterization follows Hogg and Klugman [4], 
who define a lognormal distribution by reference to the /~ and tr o f  the related normal 
distribution. See Appendix A for the proof o f  this. 
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This insight is potentially tremendously powerful. If excess of  
loss insurance and call options are essentially the same concept 
in different contexts, then it must be possible to translate ideas 
from one context into the other context. In the remainder of  this 
paper, we will explore some of the potential applications of  the 
options market paradigm to insurance problems. 

2. IMPLICATIONS OF THE EQUIVALENCE OF OPTION AND 
ACTUARIAL EXCESS OF LOSS MODELS 

The mathematical equivalence of finance theory's Black-  
Scholes formula and an important actuarial function used in ex- 
cess of  loss insurance applications has a number of  important 
implications for the convergence of insurance and finance. In 
this paper we will explore a few of them. 

Option market paradigms can be used to think about insurance 
problems; and this may well lead to new insurance or, perhaps 
more likely, reinsurance products. 

• The more general actuarial excess of loss paradigm, which 
encompasses and frequently uses distributions other than the 
lognormal, can be used to think about the pricing of  options on 
assets for which market prices are not lognormally distributed. 

• Taking the two previous points together, it is possible to move 
beyond existing options and actuarial paradigms to spawn a 
new one that encompasses both. This, in turn, may lead to 
new product opportunities for insurers, investors, or both. 

3. THE OPTION MARKET PARADIGM 

The financial markets have been tremendously creative in de- 
vising products and techniques for managing financial risk. Most 
of this activity has occurred in what is loosely called the "deriva- 
tives market." Options are at the core of  this market, and it is on 
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FIGURE 1 

EXPIRY V A L U E  PROFILE: CALL OPTION, ct(S ) 

Expiry 
Value y 

I 

s 
Underlying Asset Price at Expiry, X, 

this part of the derivatives market that we will focus our attention. 
Many derivative products are built around option features. 

Basic Options 

A "European" call option, ct(S), represents the fight but not 
the obligation to buy the underlying asset at, and only at, time 
t at a price of S. Formula 1.3 describes the price of such a call 
option. Figure 1 shows its expiry value profile. 

An "American" call option incorporates the right to exercise at 
any time up to and including time t. The Black-Scholes formula 
applies to the pricing of European calls. In this discussion our 
references will be to European-style options unless otherwise 
specified. 

A "European" put option, pt(S), represents the fight but not 
the obligation to sell the underlying asset at, and only at, time t 
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FIGURE 2 

EXPIRY VALUE PROFILE: PUT OPTION, Pt(S) 
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at a price of  S. Figure 2 shows the expiry value profile of a put 
option. 

The general formula for the price of a put, pt(S) is 

£s 
Pt(S) = e -r' (S - x) .  f ( x ) d x .  (3.1) 

Spreads 

The combination of  two call options, one bought and one sold; 
e.g., 

ct(S,T) = c t ( S ) -  ct(T), with T > S (3.2) 

is known as a call option spread. 
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In insurance parlance, ct(S, T) refers to an excess layer, c t ( S  , T) 
is the pure premium for the layer of T - S excess of S. 

Put option spreads can be defined in a similar way to call 
option spreads. 4 

Implications for Insurance Applications 

Once we recognize that a call spread is the same thing as 
an excess layer, a new world opens up. In theory, every option 
and related derivative product must have an insurance analogue! 
Since the derivative markets have been enormously creative in 
developing new product ideas, it should be possible to mine that 
trove of  ideas for potentially innovative insurance and reinsur- 
ance product concepts. 

As an example of  how this can be done, we will analyze the 
derivatives concept of  a cylinder. Then we will reconstruct it as 
a reinsurance product. 

In its extreme form, a zero cost cylinder is created by the si- 
multaneous purchase of  a call and sale of  a put (or vice versa) of  
equal value, usually at different out-of-the-money exercise prices 
but having the same expiration date. 5 If the cylinder involves a 
long call (i.e., the purchase of  a call) and a short put (i.e., the 
sale of a put), its value increases when the value of  the underly- 
ing asset increases and decreases when the asset value decreases. 
This is a "bullish" position. If the cylinder involves a short call 
and a long put, its value increases when the value of the underly- 
ing asset decreases and declines when the underlying asset value 
increases. This is a "bearish" position. 

4For a detailed discussion of  the mathematics of  call, put, and cylinder spreads, see 
Appendix B. There are also a number  of  good reference books on financial derivatives, 
including Redhead [5] and Hull [7], that provide more comprehensive treatment of  the 
subject. There is also a British paper, Kemp [8], which examines the subject from a more 
actuarial perspective, although it is not particularly oriented toward non-life issues. 
5This is the extreme form. Note that a cylinder need not be "zero cost." For further 
discussion of  cylinders and other option combinations, see [5]. 
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FIGURE 3A 

EXPIRY VALUE PROFILE: BULL CYLINDER OPTION cylt(S, T) 

Expiry 
Value 

O-- 

Underlying Asset Price at Expiry, X~ 

Bull and bear cylinders are defined as follows: 

cy l t (S ,T)  = c t ( T ) -  pt(S),  T > Po > S (bull) 

- c y l t ( S , T )  = pt(S)  - ct(T), T > Po > S (bear) 

and their expiry value profiles are shown in Figures 3A and 3B. 

For an owner of the underlying asset, establishing a bear 
cylinder position partially hedges his asset position and reduces 
its volatility. Since in the case of a zero cost cylinder the values 
of the short call and long put are exactly offsetting, no money 
changes hands at inception of this position. At expiration, if the 
value of the underlying asset is X t, the value of the cylinder 
position is 

- ( X  t --T), X t > T; 

O, T>Xt>S;  
s - x , ,  s >_ x,. 
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FIGURE 3B 

EXPIRY V A L U E  PROFILE: BEAR CYLINDER OPTION c y l t ( S , T  ) 
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O--  

Underlying Asset Price at Expiry, X t 

TABLE 1 

Expiry Value Expiry Value 
Asset Price of Cylinder Asset + Cylinder 

X t >_ T - (X ,  - T) T 
T > X, > S o x, 

S > X, S - X ,  S 

The holder of  this position gains S - X  t for small values of  X t 

and loses X t - T  for large values of  X r For middle values of  X t 

he gains or loses nothing. His hedged position at expiry of  the 
cylinder is summarized  in Table 1. 

In words, this implies that the hedged position yields the re- 
turns of  the under lying asset (i.e., X t - Po),  but subject to a max- 
imum loss of  P0 - S and a max imum gain of  T - P0. 
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If, rather than owning the underlying asset, an investor has a 
short position in it (i.e., it is a liability), he can partially hedge 
that position with a bull cylinder. 

Suppose the underlying asset is the right to recover insurance 
claims. To an insured, this is an asset (a "long" position). To an 
insurer, it is a liability (a "short" position). Therefore, an insurer 
could use a bull cylinder to partially hedge his exposure. 

If there were an established derivatives market trading options 
on insurance claims, as there is for a number of other financial 
assets, an insurer would be able to hedge its exposure by buying 
any of a variety of  products; e.g., call options, call spreads, bull 
cylinders, or bull cylinder spreads. At present, there is only a lim- 
ited derivatives market for options on insurance claims (namely, 
the excess of  loss reinsurance market) and, broadly speaking, it 
offers only one product: the call spread. 6 One of the key themes 
of this paper is that conceptually there is no reason why the rein- 
surance market could not offer similar products to those found 
in the broader derivatives market. 

Now let us consider how the cylinder concept, which has the 
advantage of lower initial cost to the buyer compared to a simple 
call option, might be translated into a reinsurance product. To 
illustrate one way this might work, first imagine a high level 
excess of loss layer with a retention of T i and a limit of  T 2 - T 1. 
The market premium, ignoring all expenses, for conventional 
coverage is ct(T 1 , 7"2). 

To create the cylinder type structure, we need to introduce a 
feature equivalent to the sale of a put. Consider a second, un- 
reinsured, layer of S 1 - S  2 excess of S 2 within the company 's  
reinsurance retention, which will form the basis of the required 
put spread. Let pt(S1,S2) denote the value of  this put spread. 

6At the time this paper was written, the Chicago Board o f  Trade 's  efforts to create a 
market for options on U.S. catastrophe losses had not yet produced significant capacity. 
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A reinsurance cylinder spread can be created by the purchase 
by a ceding company of  the high level excess of  loss layer at a 
cost of  ct (T l , T  2) and the equivalent of the sale of a put spread 
on the lower layer at a price of pt(Si,S2). (Th is  is not neces- 
sarily a zero cost cylinder.) The premium outlay of the ced- 
ing company at the beginning of the contract would then be 
ct(T 1 ,T2) - Pt(S1 ,$2).  Since the reinsurer may require a minimum 
initial premium of M > 0, it may be necessary to allow the ratio 
of  puts to calls to be different from one. If this ratio is represented 
by Q, the initial premium is given by 

M = ct(T 1 ,T2) - Qpt(S1 ,$2). 

Under this structure, the premium of ct(Ti,T2) buys exactly the 
same excess protection against large claims as the conventional 
reinsurance provides. The premium credit of Qpt(S1,S2)  embed- 
ded in the initial premium represents the sale of a put spread 
on the lower layer by the ceding company to the reinsurer, the 
final value of  which will be settled as an additional premium of  
min(Q(Sl -Xt ) ,Q(SI  - $ 2 ) )  when claim experience is known. 

Let us now put some numbers to it. Let 

c,(T~,T2) = $ 2 , 5 0 0 , 0 0 0 ,  

p t (S i ,S2)  = $3,889,000, 

Q = 45%, 

S l = $15,000,000, and 

S 1 - S z = $5,000,000. 

Then the initial premium is calculated as follows: 

M = ct(T l , T  2) - Q .  p , (S  1 ,$2) 

= $2,500,000 - (.45)($3,889,000) 

= $750,000. 
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TABLE 2 

713 

Initial Additional Total 
Claims X t Premium Premium Premium 

Xt < S 2 $750 $2,250 $3,000 

S 2 < X t < S 1 $750 (45%)($15,000 - X:) Slides $750 to $3,000 

S 1 < X, $750 0 $750 

Note: Premium figures in thousands. 

At expiry of  the contract (or at such time as agreed), an addition- 
al premium, A, equal to the expiry value of  the "put spread" is 
due: 

A = min[Q(S l - Xt ) ,  Q ( S  l - $2)] 

= lesser of :  ( .45)($15,000,000-  x t) and (.45)($5,000,000). 

The total premium under a "cylinder" reinsurance structure de- 
pends on the final cost of  claims, X t, as shown in Table 2. 

This compares to the fixed premium of  $2,500,000 under  the 
conventional contract and is shown graphically on Figure 4. In 
the cylinder structure, the ceding company pays a higher pre- 
mium for its coverage of  T 2 - T i excess of  T 1 when the claim ex- 
perience in the retained sublayer of  S 1 - S 2 excess of  S 2 is good 
(up to $3,000,000 versus $2,500,000). It pays a lower premium 
when claim experience in that layer is bad ($750,000 versus 
$2,500,000). In other words, the company pays more when its 
net claims experience is relatively good and it can afford higher 
reinsurance premiums, and less when its net is poor and it can 
least afford the burden of  even normal reinsurance premiums. 
This is illustrated graphically in Figure 5 in terms of  the effect 
on underwriting profit. This premium structure is more effective 
in reducing the volatility of  a ceding company'  s net underwriting 
result than the conventional structure. Because of  this stability, 
it might appeal to reinsurance buyers who use excess of  loss 
coverage to reduce underwriting volatility. 
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FIGURE 4 

ILLUSTRATION OF "CYLINDER" REINSURANCE PREMIUM 
STRUCTURE 
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FIGURE 5 

ILLUSTRATION OF "CYLINDER" REINSURANCE EFFECT ON 
UNDERWRITING PROFIT 
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The flip side of  this is that the reinsurer's volatility is in- 
creased. Why would a reinsurer be willing to offer such a struc- 
ture, which reduces premiums when claims are higher? The an- 
swer is that, in the context of a reinsurer's diversified portfolio, 
the incremental volatility will be small, while the extra bene- 
fit to the reinsurer's customer may well strengthen the overall 
reinsurance relationship. The reinsurance market has sometimes 
been criticized for selling "off the shelf" products that it wants 
to sell, rather than what ceding companies actually want to buy. 
In classes of  reinsurance where reinsurers can sell as much off- 
the-shelf product as they want, there exists little or no pressure 
for them to introduce innovative structures like the foregoing 
example. However, to the extent some reinsurers want to pur- 
sue a more customer-focused strategy or simply feel competitive 
pressure, product innovation will increasingly begin to emerge. 
Indeed, the author is aware of at least one major reinsurer that 
has developed a product that has features similar to this example. 

The cylinder is only one example. There are undoubtedly 
many other practical insurance and reinsurance products wait- 
ing to be discovered by exploring the derivatives product para- 
digm. 

4.  P R I C I N G  OPTIONS W H E N  F U T U R E  PRICES ARE NOT 

L O G N O R M A L  

The Black-Scholes model relies on the assumption that mar- 
ket price changes over any finite time interval (expressed by the 
ratio Pn/P~_I) are lognormally distributed. Since the product of  
lognormal variates is also lognormal, this assumption leads to the 
convenient conclusion that future market prices are also so dis- 
tributed with predictable time-dependent parameters. The beauty 
of this is that the same framework can be used to determine the 
pure premium price for a one month, six month, or one year 
option, or one for any other time period. 
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Other stochastic price movement  models have been described 
by others [2]. Like Black-Scholes, they support the pricing of  
options of  any maturity. However, for assets subject to sudden or 
extreme price movements,  or which are highly illiquid, a realistic 
stochastic price movement  model may not exist. (Indeed, some 
analysts (e.g., Peters [6]) argue that all such models are flawed 
since they rely on too many assumptions that market experience 
has shown to be unrealistic.) This does not mean that options 
cannot be priced for such assets, but we need a different model. 7 

To price a call option exercisable at time t, we need an esti- 
mate of  the probability distribution of the underlying asset price 
at time t as viewed from the vantage point of today. If it is pos- 
sible to estimate this price distribution, it is possible to price 
an option. Pricing options of different maturities consistently is 
more difficult without a price movement  model, because it re- 
quires separate estimates of the price distribution for each exer- 
cise date; but it can be done. 

Formula 1.3, without the requirement that x be lognormal, can 
be used to price any option in this way. Of course, if the asset 
price at time t is not lognormal, the call option pure premium 
derived using Formula 1.3 is not equivalent to Black-Scholes. 
As with the estimation of loss distributions, determination of the 
price distribution of an asset may be made difficult by sparseness 
of data. 

5. COMBINING THE OPTION AND ACTUARIAL PARADIGMS 

Section 1 established that option pricing is analogous to ex- 
cess of  loss insurance pricing. Section 3 showed how new in- 
surance innovations can be developed using the option market 
product paradigm. Section 4 discussed how to price options out- 

7Even for the pricing of options on equities, for which Black-Scholes is widely used, 
traders recognize its imperfections. Fischer Black even wrote a paper entitled "How to 
Use the Holes in Black-Scholes," reprinted in [3]! 
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side the Black-Scholes framework. This section will illustrate 
how the synthesis of  these ideas can lead to new product concepts 
outside the current scope of  anything widely offered in either the 
financial or insurance market today. 

Options on Reinsurance Premiums  

Consider the following. A reinsurance contract can be thought 
of as an asset, namely the right to recover the monetary value of 
qualifying insurance claims from a reinsurer. 

The price of  a reinsurance contract is normally negotiated in 
the two or three months prior to the inception or anniversary of  
the contract. Sometimes there is significant uncertainty about the 
final price until the completion of  the negotiations between the 
ceding company and reinsurers. Under certain circumstances, it 
might be valuable to a ceding company to fix the cost of  its 
reinsurance coverage at an earlier date, or at least establish an 
upper bound. Using the option pricing paradigm, it is possible 
to establish a way to price such a cap. 

Since the reinsurance premium, prem t, for coverage incepting 
at time t > 0 (where time 0 would be today) is not known with 
certainty today, it is a random variable. The pure premium of  a 
call option on prem t can therefore be calculated using Formula 
1.3! Let us use an example to illustrate this. 

Suppose the rate on line (i.e., the premium divided by the 
limit) of a catastrophe reinsurance contract currently in force is 
20%. It is six months into the year and there has been a total 
loss to the layer. There was also a total loss three years ago. 

In light of this experience, the premium for renewal will prob- 
ably be increased, reflecting an upward reassessment by rein- 
surers of  the exposure to loss. The ceding company will also 
probably be willing to pay a somewhat increased rate to begin to 
"pay back" reinsurers. However, the new rate will not be estab- 
lished until closer to the renewal date. In the meantime, for the 
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next several months the premium the cedant faces for renewal is 
unknown and uncertain. 

Suppose the market rate on line for renewal, viewed from 
the point six months prior to renewal, has a mean of 30% and 
is lognormally distributed with parameters (-1.20,.125). This 
implies that a rate increase of some size is nearly certain. It also 
implies about a 10% chance of a price of 35% or greater and 
about a 1% chance of a renewal price over 40%. 

Formula 1.3 can be used to determine the pure premium of a 
call option to buy the reinsurance at renewal at a 30% rate on line 
(or any other price). If r = 5% and t = .5 (= 6 months), Formula 
1.3 implies an option pure premium of (.975)(1.5%)= 1.46% 
rate on line, or 4.9% of the strike price of 30% rate on line. 

If the ceding company were to buy this call option, it would 
be certain that the total cost of renewal would be no more than 
31.46% rate on line (30% + 1.46%), and it might be less, since if 
the reinsurance market quotes less than 30%, the cedant would 
let the option expire unexercised. 

Is this reinsurance premium call option a financial derivative 
or a reinsurance premium? The answer is, it could be either. In 
the way it was described above, it has the form of a derivatives 
market instrument. But the concept can also easily be incorpo- 
rated into a reinsurance contract. Let us assume the renewal date 
is January 1. The option to buy the 12 months coverage incept- 
ing next January 1 can be embedded in a reinsurance contract 
with a premium payment warranty. If a certain required premium 
payment is not received before inception, the contract does not 
come into force. 

In periods of significant reinsurance pricing uncertainty, pur- 
chasing a premium option will reduce that uncertainty and fa- 
cilitate a ceding company's reinsurance planning and budgeting 
process. The specialist reinsurance market for this type of cov- 
erage historically has been largely found in London. 
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Rate Guarantees 

The option paradigm can also be used to think properly about 
multi-year rate guarantees in the primary insurance market. In- 
sureds sometimes seek to negotiate a fixed rate for several years 
or a limit on future rate increases. In these cases the insured is 
seeking, in effect, to secure a call option, or series of options, on 
future rate levels. 

Suppose the insured wants a three-year rate guarantee for cov- 
erage that would normally be subject to an annual rate review. 
The current rate (which is guaranteed) is denoted by R o. The 
market rates for coverage renewing one year and two years from 
now, respectively, are random variables R l and R 2. If the dis- 
tributions of R 1 and R 2 can be estimated, it is possible to price 
the call options the insured is seeking. Then the insured can be 
charged for the options. Alternatively, the insurer may decide 
not to charge for the options, and merely use the options pricing 
exercise to determine the effective rate decrease the three-year 
guarantee represents. 

If the options cannot be priced because the distributions of R 1 
and R 2 cannot be estimated with sufficient confidence, perhaps 
it would be unwise for the insurer to agree to the rate guarantee! 

At the time this paper was being prepared, multi-year con- 
tracts were beginning to appear in the reinsurance market as 
well. Obviously the same thought process applies to both in- 
surance and reinsurance. 

6. CONCLUSION 

This paper has sought to demonstrate the value of the options 
market paradigm in thinking about and developing new insur- 
ance solutions. As the relationship between Formulas 1.1 and 
1.3 makes clear, the underlying mathematics of insurance and 
the broader financial markets is the same. Apart from potential 
regulatory constraints, there is no logical reason why we should 
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not see a convergence of  insurance and other financial services in 
the coming years. This is especially likely at the wholesale level 
(e.g., reinsurance), where the relative importance of distribution 
systems and customer interface recedes and the importance of  
pure risk characteristics increases. 
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APPENDIX A 

DERIVATION OF THE BLACK-SCHOLES OPTION PRICING 

FORMULA FROM A LOGNORMAL ASSET PRICE ASSUMPTION 

Let 

eo= 

l =  

F =  

the current market  price of  the security under lying 
the option, 
t ime (in years) to option expiry, 
the risk-free interest rate used for cont inuous 
compound ing  (i.e., the force of  interest), 

x -- a random variable for the future market  price of  the 
security under lying the option, at t ime t (expiry). 

Assume  x is lognormal ly  distributed with parameters l nP  0 + r t  - 
0.5~2t and ave ,  and mean E ( x ) =  Pt = exp(lnP0 + r t ) .  This im- 
plies Pt = P0' eft. 

X t = the actual future market  price of the security 
under lying the option, at expiry. 

c t (S)  = the current pure p remium (i.e., ignoring transaction 
costs and risk) for an option to buy the underlying 
security at a price of  S at t ime t. This is known as a 
"call option with a strike price of  S." Because of  its 
feature of  exercise at only one date, it is known as a 
European option. 

The  call option c t (S)  will have no intrinsic value at expiry if 
the market  price, X t, of  the security is below the strike price, S. In 
that case, it is cheaper to buy the security directly at price X t than 
to exercise to option to buy at expiry price S. No rational investor 
would pay a non-zero p remium for such an option; hence its nil 
value. 

c t (S)  will have intrinsic value of  X t - S at expiry if the market  
price X~ exceeds the strike price S. An investor would be indif- 
ferent to buying the security directly at price X t and buying the 
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call option c t (S)  at a price of  X t - S  for immediate exercise at 
price S. 

The pure premium of ct (S)  is the probability weighted mean 
of all possible intrinsic values at expiry, discounted to reflect 
present value. 8 

If the correct interest rate for discounting is the risk-free rate, 
the pure premium is expressed as: 

= e -r t .  ~S°°(x -- S ) .  f ( x ) d x  (A. 1) ¢t(S) 

(is ) = e -rt" x" f ( x ) d x  - S ( x ) d x  (A.2) 

( / :  s 
= e - f t .  x .  f ( x ) d x  - x .  f ( x ) d x  

In general, the first moment  distribution 

~ A X" f ( x )  d x  

E(x) 

of a lognormal variate x with parameters (#, a) is also lognormal 
with parameters (# + 0 -2, o'). 

In the present case, x is lognormal (lnP 0 + r t - O . 5 0 . E t , 0 . x / t )  

and its first moment  distribution has parameters (ln P 0 + rt  + 

0.50.2t,0.x/t). Accordingly, the second term within the main 

SThe justification for use of  the risk-free rate is described in footnote 2 in the body of 
the paper. 
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brackets o f  Formula A.3 can be restated as follows: 

foSx" f (x)dx = E(x)'N ( lnS-(InP° + rt + O'5cr2t) ) c r y / ~  

= pt.N (lnS-(lnPo + rt + O.5~2t)) 
avq 

where N is the cumulative distribution function of  the standard 
normal distribution. 

Evaluation of  the other terms of  Formula A.3 is straightfor- 
ward, and this formula can now be rewritten as: 

-Se-r t ' (1-N(  lns-(lnP°+rt-O'5a2t))~rv~ ) 

=P°(1-N(lnS-lnP°-(r+O'5cr2)t))~--v~ 

-Se-rt'(1-N(lnS-lnP°-(r-O'5cr2)t))~v/7 

=Po(1-N(ln(S/P°)--(r+O'5cr2)t))\ cry/~ 

7,~ J / ;  
(A.4) 

and, since 1 - N ( z )  = N ( - z ) ,  

ct(S) = P° " N ( ln(P°/S) + (r + O'5cr2)t ) C r y ' 7  

_ Se-rt . N ( ln(eo/S) + (r - O.5cr2) t) 
7~$7- . (A.5) 
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Let 

and 

d i  = l n ( P o / S )  + (r  + 0.5cr2)t 

~vq ' 

d2 = l n ( P o / S )  + (r  - 0.5a2)t 

Then Formula A.5 can be restated as 

c t ( S )  = Po " N (d l  ) - S e - r t  " N(d2)" 

This is the Black-Scholes option pricing formula. 

(A.6) 
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A P P E N D I X  B 

VALUATION OF CALL, PUT, AND CYLINDER SPREADS 

Cal l  Spreads  

The value of  a cal l  spread  c t (T  j ,T2) with T 2 > T l and t ime t to 
expiry is given by 

ct(Tl ,T2) = c t (T  ~ ) - ct(T2 ) 

= e - r t  

= e - r t  

(x - T I ) .  f ( x ) d x  - .  (x  - T2). f ( x ) d x  

[ f ~ ; Z ( x - T , ) ' f ( x ) d x + f T T ( X - T l ) ' f ( x ) d x  

- £7(x-  T2)- f(x)dx I 

Note the similarity to the formulas used to work with excess 
layers in insurance applications. 

I f  the actual price of  the underlying asset at expiry of  the 
option is X t, the value of  the long call spread position at expiry 
is given by 

T2- T1, X, _> T2; 

X,-TI, T2>X,>5 ;  

O, ~ >_x,. 
This is shown graphically in Figure B-1. 

= e -rt (x  - T 1 )- f ( x )  d x  + (T  2 - T 1). f ( x )  d x  . 

(B.1) 
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FIGURE B- 1 

EXPIRY VALUE PROFILE: CALL OPTION SPREAD ct(T1,T2) 

Expiry 
Value 

T,.-T~ 

I I 

T, T 2 
Underlying Asset Price at Expiry, X t 

P u t  Spreads  

The value of  a p u t  s p r e a d  P t ( S 1 , S 2 )  w i t h  S 1 > S 2 and time t to 
expiry is given by 

Pt(SI,  $ 2 )  = Pt(S1 ) - Pt(S2) 

[/o s /o" = e -rt (S 1 - x ) .  f ( x ) d x  - (S 2 - x ) .  f ( x ) d x  

[/o" Z?~s, = e - r t  (S 1 - x )"  f ( x )  d x  + - x ) .  f ( x )  d x  

- fo s~(S2 • - x )  f ( x ) d x ]  

e /o" ] = - x ) .  f ( x ) d x  + (S 1 - $2). f ( x ) d x  . 

(B.2) 
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FIGURE B-2 

EXPIRY V A L U E  PROFILE: PUT OPTION SPREAD Pt(Si,S2) 

Expiry 
Value 

S,-S= 

I I 

$2 ST 
Underlying Asset Price at Expiry, X, 

The value o f  the long put spread posit ion at expiry is given by 

O, x ,> s1; 

S 1 - x t ,  S 1 > x  t 2>32; 

S 1 - 82, S 2 ~_~ X t. 

This is shown graphically in Figure B-2. 

Put -Cal l  Parity 

There is an important  relationship between the value o f  calls 
and puts known as "put-call parity." Consider  two portfolios. The  
first consists of  an asset with a value of  P0 and a related put option 
worth pt(Tl ). The second consists of  a T-bill valued at T 1 • e -rt and 
a call option on the asset in the first portfolio, valued at ct(T 1). 
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These two portfolios have identical expiry value profiles (namely, 
max(T1,Pt)), so unless there are obstacles to arbitrage trading, 
they must have equal market values for any T 1 _> 0: 

Po + pt(TI) = T1 e-rt + ct(T1). (B.3) 

We can use put-call parity to derive the analogous relationship 
between put and call spreads: 

Since 

T1 e -n  = Po + Pt(TI) - G(TI) 

and 

T2 e-rt = eo + pt(T2) -- ct(T2), 

then 

( T  2 - T l ) e  - r t  = p t (T2)  - c t (T2)  - p t ( T l )  + ct(T1)  

= c t ( ~ , T : )  + p t (Tz ,T~) .  (B.3a) 

A brief analysis of  Formula B.3a shows that it is consistent with 
using the risk-free rate for discounting European option pure 
premiums. If we restate Formula B.3a in terms of integrals and 
treat the interest rate to be used for discounting the right side of  
the equation as an unknown, i, we obtain: 

(T 2 - T l )e -r' 

= e - i t ( f T T 2 ( x - - T 1 ) ' f ( x ) d x  

/ (  /o r' + (T 2 - T 1 ). f ( x ) d x  + (T 2 - x)" f ( x ) d x  
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TABLE 3 

Expiry Long Call Short Put Cash Short Put+ 
Price Value Value Value Cash Valim 

X, >_ T 2 T2 - T t 0 T2 - T , T2 - T , 
T2 > X, > T , X, - T, -(T2 - X ,) T2 - T , Xt - T, 

T, > X, o -(r2 - T ,) T2- T , o 

= e - i t ( f o T 2 ( x - T l ) f ( x ) d x .  

J? ) + ( T  2 - T 1)-  f ( x )  d x  + ( T  2 - x ) "  f ( x )  d x  

= e - i t ( f o T 2 ( T 2 - T l ) ' f ( x ) d x + / : 7 ( T 2 - T l ) f ( x ) d x  ) ,  

= e-i '  (T 2 - T 11- f ( x )  d x  
, 0  

= e - i t ( T 2  _ T 1 ), 

which implies i = r. 

Formula B.3a also implies a definition for a call spread in 
terms of  a put spread and T-bills: 9 

Ct(TI,T2) = ( T 2 -  TI)e  -rz - p t (Tz ,T l ) .  (B.3b) 

This means that it is possible to achieve a synthetic call spread 
position using put spreads and vice versa. In particular, Formula 
B.3b says that selling a put spread, p t (Tz ,T i ) ,  and holding the 
present value of  T 2 - T t in T-bills is equivalent to buying a call 
spread, q ( T  l ,T2).  To see this, Table 3 compares the expiry values 
of  these two positions. 

9Note that formulas B.3a and B.3b imply a put-call parity relationship for spreads that, 
unlike the ordinary put-call parity formula, has no reference to P0 
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TABLE 4 

Expiry Long Put Short Call Cash Short Call+ 
Price Value Value Value Cash Value 

x,>r~ o -(r~-r,) T~-r, 0 
r2 > x, > r, r2 - x , -<x , - r  0 r 2 - r  , T2 - X, 

TI > X ` Tt - T ~ 0 T 2 -  T I r2 - r , 

Alternatively, since 

Pt(T2,T1) = (T  2 - Tl )e -r` _ c,(TI,T2) , 

buying a put spread pt(T2, T l)  is equivalent to selling a call spread 
ct(T1,T2) and holding the present value of  T 2 - T  l in T-bills, as 
shown in Table 4. 

Cyl inder  Spreads  

The bull cy l inder  spread, cy l t (SI ,Sz;TI ,T2) ,  created from the 
call and put spreads defined above, where T 2 > T l > Sl > $2, has 
the following value: 

cyl(S1 ,S2;TI ,T2) = ct (T 1 ,T2) - p t (Sl  ,$2) 

= e -rt (x -- T 1). f ( x )  dx  + (T  2 - T 1). f ( x )  d x  

_ t'jS, (SI _ x ) .  f ( x )  dx  
J S  2 

- - f 0 S 2 ( s 1 - S 2 ) . f ( x ) d x  ] . (B.4) 

The value of  cylt(S1,Sa;T1,T2) depends on the choices o f  S l, S 2, 
T 1 and T 2. These parameters can be chosen to create a cylinder 
structure that produces the desired cylinder value at time t to 
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FIGURE B-3 

EXPIRY VALUE PROFILE: BULL CYLINDER OPTION SPREAD 
cylt ($1 ,$2, TI ,T2) 

Expiry 
Value 

Tz-T 1 

-(S,-S2) 
/ 

/ 

I I I I 

$2 $1 TI T2 
Underlying Asset Price at Expiry, X, 

expiry. Additional flexibility can be introduced in the cylinder 
structure by relaxing the requirement that the same number of 
call and put spreads are used. If Q is defined as the ratio of 
the number of puts to the number of calls, then the value of 
cylt(S1,S2;T 1 ,T 2) is given by 

cyl(S l , $2; T], T2) 

= e-rt [ /T (2 (x -  T1)" f ( x ) d x  + [°°(T2 - Tl)" z 

- Q .  - x ) .  f ( x )  d x  

/:2 
+ (S 1 - $2). f ( x ) d x  . 
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At expiry the value of the bull cylinder spread position is given 
by 

~ - ~ ,  xt  ___ ~ ;  

x t - ~ ,  vz > x ,  ___ T~; 

O, I"1 > x ,  > s~ ; 

- Q .  (S 1 - x t ) ,  S 1 ~ St ~" S 2 ;  

- Q .  (S 1 - S 2 )  , $2 ~> X t. 

This is illustrated for Q = 1 in Figure B-3. 



ADJUSTING INDICATED INSURANCE RATES: 
FUZZY RULES THAT CONSIDER BOTH EXPERIENCE 

AND AUXILIARY DATA 

VIRGINIA R. YOUNG 

Abstract 

This paper describes how an actuary can use fuzzy 
logic to adjust insurance rates by considering both claim 
experience data and supplementary information. This 
supplementary data may be financial or marketing data 
or statements that reflect the philosophy of  the actuary's 
company or client. The paper shows how to build and 
fine-tune a rate-making model by using workers com- 
pensation insurance data from an insurance company. 
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1. INTRODUCTION 

Through the education programs of the Society of Actuar- 
ies and the Casualty Actuarial Society, actuaries are equipped 
with statistical tools to analyze experience data and to determine 
necessary rate changes for their insurance products. Students are 
often surprised to learn that those rate changes are frequently not 
accepted "as is" by company management. Actuaries work with 
sales, marketing, and underwriting personnel to develop rates 
that will be competitive and adequate. 

734 
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Actuaries frequently consider statistical data specific to rates, 
such as the results of experience studies. In setting premiums, 
actuaries also consider constraints that supplement experience 
data. These constraints may reflect company philosophy, such as 
"We wish to increase our market share moderately from year to 
year." They may also include financial data, such as "Raise the 
rates if we experience high loss ratios or low profit margins." 

The theory of fuzzy sets provides a natural setting in which to 
handle such statements. Through fuzzy sets, one can account for 
vague notions whose boundaries are not clearly defined, such as 
"large amount of business." Fuzzy logic provides a uniform way 
to handle such factors that influence the indicated rate change 
(Zadeh [20]). A fuzzy logic system is a type of expert system. 
An advantage of using a fuzzy logic system is that it provides 
a systematic way to develop mathematical rules from linguistic 
ones. This paper describes step-by-step how an actuary can ad- 
just rates by beginning with linguistic rules that consider both 
experience data and supplementary information. 

Fuzzy sets have only recently been applied to problems in ac- 
tuarial science. DeWit [5] and Lemaire [13] show how to apply 
fuzzy sets in individual underwriting, and Young [16] indicates 
how to use fuzzy sets in group health underwriting. Ostaszewski 
[15] suggests several areas in actuarial science in which fuzzy 
sets may prove useful. Cummins and Derrig [2] apply a form 
of fuzzy logic to calculate fuzzy trends in property-liability in- 
surance. Derrig and Ostaszewski [4] employ fuzzy clustering in 
risk classification and provide an example in automobile insur- 
ance. Cummins and Derrig [3] use fuzzy arithmetic in pricing 
property-liability insurance. In an earlier paper [18], I show how 
to develop a fuzzy logic model with which actuaries can adjust 
insurance rates by considering only constraints or information 
that are ancillary to experience data. 

Section 2 introduces fuzzy sets and defines operators corre- 
sponding to the linguistic connectors and and or and the modifier 
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not. It also describes a simple fuzzy inference system. Refer- 
ences for fuzzy sets include Dubois and Prade [7], Kosko [12], 
and Zadeh [19]. Some references for fuzzy logic and fuzzy in- 
ference are Bellman and Zadeh [1], Driankov et al. [6], Kandel 
and Langholz [9], Klir and Folger [11], Mamdani [14], Zadeh 
[20], and Zimmermann [21]. 

Section 3 describes how to construct and fine-tune a pricing 
model using fuzzy inference. Section 4 shows how to build a 
pricing model using workers compensation insurance data from 
an insurance company. Finally, Section 5 summarizes the paper 's  
key points. 

2. FUZZY INFERENCE 

Fuzzy sets describe concepts that are vague (Zadeh [19]). The 
fuzziness of  a set arises from the lack of well-defined bound- 
aries. This lack is due to the imprecise nature of language; that 
is, objects can possess an attribute to various degrees. A fuzzy 
set corresponding to a given characteristic assigns a value to an 
object, the degree to which the object possesses the attribute. 

Examples of fuzzy sets encountered in insurance pricing are 
stable rates, large profits, and small amounts of business renewed 
or written. Indeed, rates can be stable to different degrees de- 
pending on the relative or absolute changes in the premium rate. 
Also, profits can be large to different degrees depending on the 
relative or absolute amount of  profits. 

Fuzzy sets generalize nonfuzzy, or crisp, sets. A crisp set, C, 
is given by a characteristic function: 

nc  : X ~ {0,1}, 

in which Xc(X)= 1 if x is in C; otherwise, Xc(X)= 0. Fuzzy 
sets recognize that objects can belong to a given set to different 
degrees. They essentially expand the notion of  set to allow partial 
membership in a set. 
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DEFINITION 2.1 A fuZZy set, A, in a universe of discourse, X, is a 
function m a on X that takes values in the unit interval [0, 1]: 

m A : X ~ [0, 1]. 

The function m a is called the membership function of A, and for 
any x in X, mA(x ) in [0, 1] represents the grade of membership of 
x i n A .  

EXAMPLE 2.1 One may define stable rates by the following hy- 
pothetical fuzzy set: 

0, if r < - 0 . 1 0 ,  

r + 0 . 1 0  if - 0 . 1 0 < r < - 0 . 0 5 ,  
0.05 ' 

mstable(r ) = 1, if - 0.05 < r < 0.05, 

0.10-r__ if 0 . 0 5 < r < 0 . 1 0 ,  
0.05 ' 

0, if r_> 0.10, 

in which r is the relative rate change. For example, the degree to 
which a rate increase of  8% is stable is 0.40. It does not mean, 
however, that one will view an 8% rate increase as stable 40% 
of  the time and unstable the rest of  the time. See Figure 1 for the 
graph of  this fuzzy set. The points + 0.05 and 4-0.10 depend on 
the line of  business. Also, one may want to use a fuzzy set that 
is not necessarily piecewise linear. 

We now define three basic operations on fuzzy sets. 

DEFINITION 2 . 2  

given by 

mauB(X) - max[ma(x),ms(x)], x E X, 

and the intersection, A M B, is given by 

manB(x ) =-- min[ma(x) ,mB(x)] ,  x E X .  

The union, A U B, of two fuzzy sets, A and B, is 
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FIGURE 1 

GRAPH OF FUZZY SET OF STABLE RATES, EXAMPLE 2.1 

m(r) 

1 - 

I I I 

I I I 
-9.1 0 0.1 

The complement, -A ,  of fuzzy set A is given by 

m_A(X ) ~ 1 - -mA(X ), X E X.  

The union operation acts as an or operator, the intersection 
operation acts as and, and the complement operation acts as not. 
Thus, for example, mAnB(X) represents the degree to which x is 
a member of both A and B. The given definitions are not the 
only acceptable ones for these operations. Klir and Folger [11] 
specify axioms that union, intersection, and complement satisfy. 
Also, Dubois and Prade [7] and Young [16] discuss alternative 
operators. One in particular is the intersection operator called the 
algebraic product. The algebraic product of two fuzzy sets A and 
B is given by 

mAB(X ) = mA(X ) • roB(X). 

The algebraic product allows the fuzzy sets to interact in the in- 
tersection. That is, both fuzzy sets contribute to the value of the 
intersection, as opposed to the min operator in which the mini- 
mum of the two values determines the value of the intersection. 
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We will consider this intersection operator in some of  the ex- 
amples below. Unless otherwise stated, however, the intersection 
operator is the min operator. 

EXAMPLE 2.2 Suppose we want to intersect the fuzzy set of  
stable rates from Example 2.1 with the fuzzy set of low actual- 
to-expected ratios given by 

1, if x < 0 . 9 0 ,  
1.10 - x  

mt°w(x) = ] ---~-~-0---' if 0.90 < r < 1.10, 

1.0, if 1.10 <x ,  

in which x is the ratio of actual claims to expected claims (A/E 
ratio).l We first imbed these fuzzy sets in the product space of  
pairs {(r,x) : r >_ -1 .00 ,  x > 0}, as follows 

mstable(r, X) = mstable (r) 

mtow(r,x ) = mlow(X ). 

See Figure 2 for the graph of the intersection of these two fuzzy 
sets using the min operator and Figure 3 for the graph of  the 
intersection of these two fuzzy sets using the algebraic product. 

Note that the algebraic product operator allows the two fuzzy 
sets to interact more than does the min operator. For exam- 
ple, suppose the rate decrease is 6% and the A/E ratio is 0.95. 
Then, the degree to which the rate change is stable is 0.80, and 
the degree to which the A/E ratio is low is 0.75. The degree 
to which the rate change is stable and the A/E ratio is low is 
min(0.80,0.75) = 0.75 if we use the min operator to intersect the 

lOne type of  experience study is called an actual-to-expected study. In this study, one 
compares the actual (incurred) claims relative to the expected claims built into the pre- 
mium. If this study is performed before the claims have run out, then one develops the 
actual claims to an ultimate basis to estimate actual incurred claims. One result of  this 
study is the ratio o f  actual claims to expected claims, called the actual-to-expected ra- 
tio, or briefly A/E ratio. A high A/E ratio indicates that the allowance for claims in the 
premium is too low. 
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FIGURE 2 

INTERSECTION OF STABLE RATES AND LOW 
ACTUAL-TO-EXPECTED RATIO (USING THE MIN OPERATOR) 
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two fuzzy sets, and is (0.80)(0.75) = 0.60 if we use the algebraic 
product to intersect them. 

A few years after fuzzy sets were introduced, Bellman and 
Zadeh [1] developed the first fuzzy logic model in which goals 
and constraints were defined as fuzzy sets and their intersection 
was the fuzzy set of the decision. Cummins and Derrig [2] use 
the method of Bellman and Zadeh to calculate a trend factor 
in property-liability insurance. They calculate several possible 
trends using accepted statistical procedures. For each trend, they 
determine the degree to which the estimate is good by intersecting 
several fuzzy goals. They suggest that one may choose the trend 
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FIGURE 3 

INTERSECTION OF STABLE RATES AND LOW 
ACTUAL-TO-EXPECTED RATIO (USING THE ALGEBRAIC 

PRODUCT) 
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that has the highest degree of goodness. Cummins and Derrig 
also propose that one may calculate a trend that accounts for all 
the trends by forming a weighted average of these trends using 
the membership degrees as weights. It is this latter method that 
more closely relates to the technique proposed below. 

This paper shows how actuaries may incorporate supplemen- 
tary information in their pricing models, for example, amount of 
business written or profit earned. Instead of using the method 
designed by Bellman and Zadeh [1], we follow Zadeh [20] by 
applying fuzzy inference. In particular, we use a simple form of 
fuzzy inference proposed by Mamdani [14], who has been a pi- 
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oneer in applying fuzzy logic in industry. We describe this fuzzy 
inference after the following example. 2 

E X A M P L E  2 . 3  

(a) If the A/E ratio is high and the amount of  business is large, 
then raise the rates. 

(b) If the A/E ratio is moderate and the amount of  business is 
moderate, then do not change the rates. 

(c) If the A/E ratio is low and the amount of  business is small, 
then lower the rates. 

An actuary can only apply a crisp rate change, not a fuzzy 
expression such as "raise the rates." We therefore set the phrase 
"raise the rates" equal to the largest rate increase we are willing to 
administer; similarly, "lower the rates" is replaced by the largest 
rate decrease we are willing to administer. The reason for doing 
so will become evident as we proceed below. 

In general, our fuzzy system is a collection of n fuzzy rules: 

If x is A l, then y is Yl. 

If x is A2, then y is Y2. 

If x is An, then y is Yn" 

If we are given specific input, or explanatory, data J (possibly 
multi-dimensional if the A i are compound hypotheses, as in Ex- 
ample 2.3), then measure the degree to which J satisfies the 
hypothesis A i in rule i, i = 1 . . . . .  n, namely, mA,(Yc). To calculate 

2Throughout this paper, by default, assume that if none of the hypotheses is satisfied 
to a positive degree, then do nothing. In the following example, this would mean "do 
not change the rates." This convention is consistent with the weighting scheme defined 
below in Equation 2.1 if one sets 0/0 equal to 0. 
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the output ~, form the weighted average 

n 

~-'~yimA, (~C) 
_ i = 1  (2.1) 

n 

i=1  

A fuzzy hypothesis A may be a compound statement, such 
as "our company has been writing a great deal of business and 
earning a small amount of profit." In this case, we intersect the 
fuzzy sets corresponding to a great deal of business and a small 
amount of profit with the min operator, as in Definition 2.2. 
Alternatively, one may use the algebraic product operator to in- 
tersect the fuzzy sets, as in Example 2.2. Also, if a compound 
hypothesis involves the connector or and modifier not, then use 
the max and negative operators, respectively, to combine the in- 
dividual fuzzy sets. In Section 3, we describe how to obtain a 
specific output Yi, i = 1 . . . . .  n, if the conclusion is expressed as a 
fuzzy statement, such as "raise the rates a great deal." 

EXAMPLE 2.4 To continue with Example 2.3, suppose that we 
have determined the following values of Yi that correspond to the 
conclusions in the fuzzy rules that we state in that example: 

(a) If the A/E ratio is high and the amount of business is large, 
then raise the rates 15%. 

(b) If the A/E ratio is moderate and the amount of business is 
moderate, then do not change the rates. 

(c) If the A/E ratio is low and the amount of business is small, 
then lower the rates 10%. 

Again, if none of the hypotheses is satisfied, then do not 
change the rates. We are given that the actual-to-expected (A/E) 
ratio is 1.05, and the amount of business is 3.0 (on some appro- 
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priate scale). Given fuzzy sets for the components of the hypothe- 
ses, the next step is to calculate the degree to which the input 
satisfies each hypothesis. Evaluate the degree of membership of 
the A/E ratio, 1.05, in the fuzzy sets for high, moderate, and low. 
Hypothetically, suppose that the A/E ratio is high to degree 0.75, 
moderate to degree 0.25, and low to degree 0.0. Similarly, eval- 
uate the degree of membership of the amount of business, 3.0, 
in the fuzzy sets for large, moderate, and small. Suppose that the 
amount of business is large to degree 0.50, moderate to degree 
0.50, and small to degree 0.0. The hypothesis of the first rule is, 
thus, satisfied to degree rnin(0.75,0.50) = 0.50; the second rule, 
min(0.25,0.50) = 0.25; and the third rule, min(0.0,0.0)= 0.0. 
Our rate change is, therefore, 

= 0.50(0.15) + 0.25(0.00) + 0.0(-0.10) = 0.10, 
0.50 + 0.25 + 0.0 

or increase the rates 10%. Compare the expression for ~ with 
Equation 2.1. If, instead of the min operator, we were to use 
the algebraic product operator for intersection, the rate change 
would be 

= 0.375(0.15) + 0.125(0.00) + 0.0(-0.10) = 0.1125. 
0.375 + 0.125 + 0.0 

In Examples 2.3 and 2.4, we incorporate experience data, the 
actual-to-expected ratio, in the hypotheses of our fuzzy rules. 
One may also include experience data in the conclusion, as in 
the following example. 

EXAMPLE 2.5 The following fuzzy rules may more accurately 
reflect the philosophy of the company: 

(a) If the amount of business is increasing greatly and the 
profit margin is decreasing greatly, then raise the rates more 
than indicated by the A/E ratio. 
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(b) If the amount of business is stable and the profit margin is 
stable, then change the rates as indicated by the A/E ratio. 

(c) If the amount of business is decreasing greatly and the 
profit margin is increasing greatly, then lower the rates 
more than indicated by the A/E ratio. 

3. B U I L D I N G  A F U Z Z Y  I N F E R E N C E  M O D E L  

The previous section describes how to obtain a crisp output 
given a fuzzy inference model and crisp input ~. This section ex- 
plains how to construct and fine-tune a fuzzy logic model. Young 
[18] presents steps that may be followed to build a fuzzy logic 
model. They are repeated here so that this work is self-contained. 
Section 4 shows how to follow these steps in creating and fine- 
tuning a fuzzy logic model. Because the following procedure 
formalizes the discussion in Section 2, the casual or first-time 
reader may wish to skip to Section 4. 

. Verbally state linguistic rules. These rules may reflect 
current or desired company philosophy. They may arise 
from the business sense of actuaries. They may result from 
the combined input of  several functions in the insurance 
company. 

. Create the fuzzy sets corresponding to the hypotheses. As- 
sume that the linguistic variables used are naturally or- 
dered. For example, the linguistic variable of  amount of  
business is naturally ordered because large amounts of 
business correspond with large numbers that measure the 
amount of business, and similarly for small amounts of 
business. 

(a) To create the fuzzy sets for the j th dimension of  the 
input, partition the input space Xj = [Xj, I,Xj.n(j) ] into 
n(j) -- 1 disjoint subintervals, one fewer than the num- 



746 ADJUSTING INDICATED INSURANCE RATES 

ber, n(j), of  fuzzy sets defined on Xj. Write the bound- 
ary points of the subintervals: 

xj, 1 < xj, z < . . .  < xj,,~/). 

Even though the input space Xj may be infinitely long, 
the example below describes how to determine xj. l and 
xj,,,(j) so that we can effectively limit Xj to the finite 
interval [Xj,l,Xj,n(j) ]. 

(b) The graph of the leftmost fuzzy set  ALl is defined 
to be the line segment joining the points (xj, 1, 1) and 
(x j2,0) and 0 elsewhere. The graph of  each of  the 
middle n ( j ) -  2 sets  Ajj¢O. ) is the triangular fuzzy set 
that connects the points (xj,k(j)_ 1,0), (xj,k(j~, 1), and 
(xj,k(j)+l,O) and 0 elsewhere, k(j) = 2 . . . . .  n ( j ) -  1. Fi- 
nally, the n(j)-th fuzzy set Aj,n(j) is the line segment 
joining the points (xj,n(j)_ l, 0) and (xj,n(j), 1) and 0 else- 
where. Note that for any input value of x j, the sum 
(over k(j)) of its membership values in the sets Aj,k(j) 
is 1; thus, we say that the Aj.k(j) form a fuzzy partition 
of xj. 

See Figure 4 for an illustration of a partition of  the 
variable of  amount of business into four fuzzy sets. 
Other forms of  fuzzy sets may be used to partition a 
variable, but triangular fuzzy sets are easy to compute 
and are completely determined by the points in the 
partition of Xj. 

(c) Combine the fuzzy sets that comprise each hypothe- 
sis into one fuzzy set using the operators min, max, 
and negative, corresponding to the linguistic connec- 
tors and and or and modifier not, respectively. 

3. Determine the output values {Yi} for the conclusions. Set 
the output value Yi to the desired output if the hypothesis 
of rule i is met to degree 1.0. 



ADJUSTING INDICATED INSURANCE RATES 747 

FIGURE 4 

A FUZZY PARTITION OF AMOUNT OF BUSINESS 
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4. Fine-tune the fuzzy rules, if applicable. If learning data is 
available, either historical data that is still relevant or hy- 
pothetical data from experts, then use that data to modify 
the values Xj,k(j) and the values Yi. This is done to opti- 
mize any one of a number of objectives. In this work, we 
minimize a squared-error loss function. 

Given data of the form {(x~,y;) • l = 1 . . . . .  L}, pairs of 
input and output values, either from prior rating periods 
or from experts' opinions, the model may be fine-tuned 
using the following simple method: Perturb the parameters 
{Xj,k(j) } and {Yi} to minimize the squared error 

~-~(y; - ~(x;)) 2, 

I = l  
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in which ~(xT) is the output of the fuzzy logic model, 
given the input x~. These errors may also be weighted to 
reflect the relative importance of each ordered pair. In the 
next section, we minimize such a weighted sum of squared 
errors: 

L 

wt(y 7 - ~(xT)) z, (3.1) 
/=1 

in which wt, l = 1 . . . . .  L, is the weight for the pair (xT,yT). 
The data, {(x~,y~) • 1 = 1 . . . . .  L}, is called learning data 
because one "trains" the fuzzy logic system to follow the 
data to the degree measured by Equation 3.1. 

The interested reader may wish to explore other meth- 
ods for fine-tuning a fuzzy logic model. Glorennec [8], 
Katayama et al. [10], and Driankov et al. [6] describe sev- 
eral methods for adjusting the parameters to fit learning 
data. Also, Young [17] proposes using a measure of impli- 
cation derived from fuzzy subsethood to fine-tune fuzzy 
logic models. This measure of implication measures the 
degree to which the input implies the output. To fine-tune 
a given model, therefore, perturb the parameters of the 
model to maximize this measure of implication. 

4. W O R K E R S  C O M P E N S A T I O N  E X A M P L E  

Here is an example of building and fine-tuning fuzzy logic 
models, using workers compensation insurance data from an in- 
surance company for four consecutive rating periods. Call the 
insurance company Workers Compensation Insurer (WCI). To 
protect the interests of this insurance company, the data has been 
masked by linearly transforming it and by relabeling the geo- 
graphic regions and the dates involved. 

There is a distinction between prescriptive and descriptive 
modeling. The first part of this section briefly explains the de- 
cision process that WCI works through every six months, and 
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proposes and builds fuzzy logic systems that model that process. 
That is, fuzzy models are built based on the expert opinions of 
the actuaries and other managers at WCI. This is prescriptive 
modeling, and it corresponds to Steps 1 through 3 in Section 
3. The second part of this section fits three fuzzy logic models 
based on the data that WCI provides, using Step 4 in Section 3. 
That is, we seek to find fuzzy models that describe what WCI 
has actually done in the past. 

WCI files rates for its workers compensation insurance line in 
various states. Every six months, WCI determines the adequacy 
of those filed rates. WCI represents that adequacy by an indicated 
target. For example, an indicated target of +5% in a state means 
that WCI requires premiums equal to 105% of its filed rates to 
reach a specified return on surplus. Similarly, an indicated target 
of - 7 %  means that WCI requires premium equal to 93% of its 
filed rates. 

In the fuzzy models, the indicated target is based on the ex- 
perience data. WCI calculates it by comparing the filed rates in 
a state with the sum of the experience loss ratio and expense 
ratio in that state, among other items. Based on the indicated 
target and supplementary (financial and marketing) data, WCI 
then chooses a selected target for each state. (See Section 4.1.1 
for more about how WCI selects a target.) Financial data include 
competitively-driven rate departures with respect to previous se- 
lected targets. For example, a rate departure of - 1 %  means that 
actual premium was 99% of (filed rates),(1 + selected target). 
Marketing data include retention ratios and actual versus planned 
initial premium. 

4.1. Prescriptive Modeling 

4.1.1 Verbally state linguistic rules. To develop linguistic 
rules for a prescriptive model, the pricing actuaries and prod- 
uct developers at WCI provide information about how an ideal 
"target selector" would use the data for choosing a target. As a 
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rule of  thumb, if the indicated target increases over the previous 
six months, then the selected target increases, and vice versa. 
However, this rate change is tempered by how well the region 
met its previous targets and by how much business is written in 
the region. For example, if the region had a positive rate depar- 
ture recently, then WCI might consider increasing the selected 
target. Also, if the amount of  business is low relative to planned, 
then WCI might consider decreasing the selected target in or- 
der to stimulate growth. On the other hand, a large amount of  
initial business (relative to planned initial business) may not be 
desirable because of  the legal or competitive climate in a given 
state. 

In view of  the opinions of  the experts at WCI, the following 
linguistic rules are developed on which to base a prescriptive 
fuzzy logic model: 

(a) 

(b) 

(c) 

If the change in indicated target from time t - 1 to time t is 
positive, and if the recent rate departure is positive, and if 
the amount of  business is good, then the change in selected 
target from time t - 1 to time t is positive. 

If the change in indicated target from time t -  1 to time t 
is zero, and if the recent rate departure is zero, and if the 
amount of  business is moderate, then the change in selected 
target f rom time t -  1 to time t is zero. 

If the change in indicated target from time t - 1 to time t is 
negative, and if the recent rate departure is negative, and if 
the amount of  business is bad, then the change in selected 
target from time t -  1 to time t is negative. 

Methods for measuring the amount of  business include pre- 
mium, number  of  accounts, retention ratio, close ratio (percent- 
age of  new business written to new business quoted), and pre- 
mium for new business. This paper measures amount of  business 
by the sum of  the retention ratio and the minimum of  the ratio 
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of actual initial premium to planned initial premium and the in- 
verse of that ratio, that is, min(actual/planned, planned/actual). 
This minimum lies between 0.0 and 1.0, and it takes into account 
that writing a great deal of  business (relative to the planned ini- 
tial premium) is not necessarily a profitable goal. The closer 
the minimum is to 1.0, the better the region has met its tar- 
get. If the ratio actual/planned is very small or very large, then 
min(actual/planned, planned/actual) is close to 0.0. Therefore, a 
good amount of  business is measured relative to a maximum of 
2.0, after expressing the retention ratio as a decimal. 

4.1.2 Create the fuzzy sets corresponding to the hypotheses and 
determine the output values for the conclusions. In the above 
linguistic rules, each hypothesis is a compound statement that 
combines three fuzzy sets with the connector and. Denote the 
space of  change in indicated target by X l , the space of rate depar- 
tures (RD) by X 2, and the space of  amount of  business by X 3. On 
each of these spaces, define three fuzzy sets---one for each fuzzy 
rule. 

To get the endpoints of  each of these spaces and the interme- 
diate boundary points, work backwards as follows: Determine 
the maximum and minimum changes in the selected target from 
time t -  1 to time t. For example, suppose that the maximum 
allowable change in selected target is + 10%, and the min imum 
is - 10 %.  Then, determine the changes in indicated target, the 
rate departures, and the sum of retention ratio and rain(A/P, P/A) 
that would lead to those maximum and minimum changes. Sup- 
pose that the selected target would be increased 10% if the in- 
dicated target increased by at least 15%, if the rate departure were 
at least +3%, and if the measure of  the amount of business were 
greater than or equal to 1.8. Also, suppose that the selected tar- 
get would be decreased by 10% if the indicated target decreased 
by at least 10%, if the rate departure were at least - 5 % ,  and if 
the measure of  the amount of business were less than or equal 
to 1.0. 
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Then, the space of change in indicated target is effec- 
tively X l = [ -10%,  15%], the space of rate departures is X 2 = 
[ -5%,3%],  and the space of amount of business is X 3 = 
[ 1.0, 1.8]. In this representation, all rate departures less than - 5 %  
are identified with - 5 %  because the change in selected target 
resulting from any rate departure less than - 5 %  is the same as 
the change in selected target if the rate departure were identically 
-5%.  Observed values outside the ranges selected for other vari- 
ables are treated similarly. 

To get the intermediate points at which no change in select- 
ed target occurs, decide what values of change in indicated tar- 
get, rate departure, and amount of business would lead to no 
change. Suppose that these values are 0%, 0%, and 1.6, respec- 
tively. The defining equations of the fuzzy sets for positive, 
zero, and negative changes in indicated target (chind) are, re- 
spectively, 

mp°sitive(chind)=max[ O'min(chind~O\ 1 5 - 0  ' 1)] 

[ (15-chind chind+!O~] 
mze~o(chind) = max 0,min -1-5-O ' 0 + 10 JJ 

mnesative(chind) = max [O'mJn ( l' O - +-l'O J ] " 

Similarly, the defining equations of the fuzzy sets for positive, 
zero, and negative rate departures are, respectively, 

[0, mJn f rd - 0 mposiave(rd) max 

[ ( 3 - r d  rd+5)l  
mze~o(rd) = max O,min 3 - 0 '  0 + 5 

= max l. (1 '  ( ) + 5 ) 1  ' 
[0, rain 0 - rd mnegaave(rd) 
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and the defining equations of the fuzzy sets for good, moderate, 
and bad amounts of business are, respectively, 

[0, min { bus--1.6 
\ 1 .8-  i ~ ' l ) ]  mgood(bUs) max 

mm°derate(bUS) =max[O'min( l'8-busl.8 1.6'bus-1.6 1-~1"0)] 

mb~(bus)=max[O, min(1 ,1"6-bus~ ] 
1.6-  1.0Jj " 

Finally, the change in selected target is given by 

[mal (chind, rd, bus). 10 + maz (chind, rd, bus). 0 

+ ma3 (chind, rd, bus). ( -  10)] 

- [mal (chind, rd, bus) + maz(chind, rd, bus) 

+ ma3 (chind, rd, bus)], 

(see Equation 2.1) in which 

mal (chind, rd, bus) 

= mJn[mpositive(chind), mpositive(rd), mgooa(bus)] 

m t2 ( chind, rd, bus) 

= min[mzero(chind), mzero(rd), mmoderate(bus)] 
ma3 (chind, rd, bus) 

= min [mnegative(chind), mnegative(rd), mbad(bus)]. 

(4.1) 

Figure 5 plots contours of the change in selected target against 
rate departure and amount of business while fixing the change 
in indicated target at +10%. Amount of business is along the 
vertical and rate departure lies along the horizontal. Note that 
the region for "no change" is relatively large. 

If the three variables--change in indicated target, rate depar- 
ture, and amount of business--may interact when connected by 
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FIGURE 5 
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and, then consider replacing the min operator with the algebraic 
product. Also other intersection operators may be used, including 
those that form weighted averages of  the values of  the member- 
ship functions. There are many ways to formulate the fuzzy rules, 
but an actuary should, at a minimum, check contour plots to see 
which formulation coincides with the philosophy or practices 
of  the company. For example, in Figure 5, it should be verified 
that such a large area of no change is consistent with the com- 
pany's  pricing philosophy when the change in the indicated tar- 
get is + 10%. 
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TABLE 1 

Variable 1 Variable 2 Weighted Correlations 

Current Indicated Current Selected 0.952 
Change in Indicated Change in Selected 0.812 
Previous Selected Current Selected 0.909 
Previous RD Change in Selected 0.281 
Current RD Change in Selected 0.151 
Previous Retention Current Selected -0.412 
Previous Retention Change in Selected 0.236 
Current Retention Current Selected -0.429 
Current Retention Change in Selected -0.035 
Actual/Planned Initial Current Selected -0.115 
Actual/Planned Initial Change in Selected -0.149 
min(Act/Plan,Plan/Act) Current Selected -0 .270 
min(Act/Plan,PlardAct) Change in Selected 0.005 

4.2. Descriptive Modeling 

Turning to the descriptive portion of  fuzzy modeling, fuzzy 
models are fit to the data that WCI provided. In selecting a tar- 
get, the actuaries consider the relative amount of  business in each 
state. For this reason, the fuzzy models were fine-tuned by min- 
imizing a weighted sum of  squared errors, as in Equation 3.1. 
The data for each period were weighted according to the pre- 
mium in each state, after normalizing the weights so that they 
add to 1.00. Then, each six-month period was weighted equally. 
That is, a weighted sum of squared errors was calculated for each 
six months, then those four numbers were added together to get 
a total sum of squared errors. As a benchmark for the fuzzy 
models, linear functions were fitted via weighted least squares 
regression. 

Weighted correlations were calculated between variables of  
interest. See Table 1 for those correlations. The weights used 
were the same as those used in fine-tuning the fuzzy logic models 
and in calculating the linear regressions. Note that the correla- 
tions between the current indicated and current selected, between 
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TABLE 2 

WEIGHTED CORRELATIONS BETWEEN ERRORS AND 
REMAINING VARIABLES 

Model (1), Model (1), Model (2), 
Exhibit 1 Exhibit 3 Exhibit 3 

Previous RD 0.025 -0 .075 -0 .074  
Current RD 0.085 0.027 -0 .058 
Previous Retention -0 .124 -0 .059  -0 .079  
Current Retention 0.160 -0.063 -0 .132  
Actual/Planned Initial 0.064 -0 .007 0.006 
min(Actual/Plan,Plan/Actual) -0 .066 0.081 0.027 

the change in indicated and change in selected, and between the 
previous and current selected targets are fairly high. 

An actuary may begin by considering simple fuzzy logic mod- 
els involving one or two explanatory variables that correlate 
highly with the change in the selected target or the target it- 
self. Starting from the simple models that fit most closely to the 
data, an actuary may then expand them to include more com- 
plicated models with two or more explanatory variables. Those 
more complicated models may not be substantially more accu- 
rate than the simple ones. In this case, the correlations between 
the errors from the simple models and remaining variables of 
interest (see Table 2) are fairly small, thus confirming that more 
complicated models may not add accuracy to the description of  
WCI 's  target selecting practices. 

In general, models with two rules are nearly as accurate as 
those with three or more rules. For this reason, only the results 
of fine-tuning models with two rules (plus the default rule of 
no action if none of the hypotheses is satisfied) are presented 
here. Exhibits 1 through 3 display the results obtained using 
three simple models. To fine-tune these fuzzy logic models, Ex- 
cel 's Solver was used to minimize the weighted sum of squared 
errors from the four six-month periods, given the starting values, 
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as listed in Exhibits 1 through 3. Solver uses a gradient-descent 
method (beginning with the starting values) to optimize an ob- 
jective function subject to constraints. The starting values are the 
endpoints of the input spaces and the changes in the selected (or 
the selected target itself) that correspond to the conclusions. Each 
model described in the exhibits involves only two fuzzy rules, 
plus the default rule of no action, so only the boundary points 
of the input spaces and the two output values (either the selected 
target or changes in the selected) were specified. In the optimiza- 
tion, the left-hand endpoint was constrained to be less than or 
equal to the right-hand endpoints. In general, the solution ob- 
tained by Excel's Solver yields a local minimum. Although the 
global minimum may not have been reached, the solution may be 
desirable because, in some sense, it is close to the initial system. 

Exhibit 1 considers rules that depend on the value of the 
change in the indicated target from the previous selection period. 
To compare with a standard model, the weighted least squares 
regression line that uses the same explanatory variable, namely, 
the change in indicated target, is included. The fuzzy model fits 
only slightly better, as measured by the sum of squared errors, 
than does the linear regression. In the fuzzy model in Exhibit 1, 
the starting values of -10.00 and 10.00 for the change in the 
indicated target from the previous period imply that the space of 
indicated targets is partitioned into the two fuzzy sets graphed 
in Figure 6. The set {-10.00, 10.00} associated with the change 
in the selected target means that if the change in the indicated 
target were - 10.00 or less, then the change in the selected would 
be -10.00.  Similarly, if the change in the indicated target were 
10.00 or more, then the change in the selected would be 10.00. 
Figure 7 graphs the change in the selected target as a function 
of the change in the indicated, before fine-tuning using Excel's 
Solver. 

To minimize the squared-error loss in Equation 3.1, both the 
endpoints of the interval for the change in the indicated tar- 
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FIGURE 8 

CHANGE IN SELECTED TARGET AS A FUNCTION OF CHANGE IN 
INDICATED TARGET AFTER SOLVER SOLUTION 
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get, -10 .00  and 10.00, and the changes in the selected target, 
-10 .00  and 10.00, are varied. The interval for change in the 
indicated target becomes the interval [-15.73,  12.34], and the 
interval for changes in selected target becomes [-10.52,6.92].  
Thus, the maximum decrease in selected target is -10 .52  and 
the maximum increase is 6.92. See Figure 8 for a graph of the 
change in the selected target as a function of the change in the 
indicated target, after fine-tuning using Excel 's Solver. 

The form of the presentation and the results are similar in 
the following two exhibits. Exhibit 2 expands on the model in 
Exhibit 1 by considering the most recent and the previous rate 
departures. Exhibit 3 calculates the selected target itself as a func- 
tion of the current indicated target and the previous selected tar- 
get. Two fuzzy models were fitted---one that joins the phrases in 
the hypotheses with or  (the max operator), and another that uses 
and  (the min operator). The former model provides the better fit 
of the two models, and it has an average error 0.35% smaller 
than that of linear regression. 
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5. SUMMARY AND CONCLUSIONS 

This paper demonstrates how to build and fine-tune a fuzzy 
logic system from linguistic rules to finished model, while dis- 
tinguishing between the prescriptive phase and the descriptive 
phase. It emphasizes models that combine experience data with 
supplementary data. It compares those fuzzy models with linear 
regressions to judge their performance. 

Even though a given fuzzy logic model may fit only slightly 
better than a standard linear regression model, the main advan- 
tage of fuzzy logic is that an actuary can begin with verbal rules 
and create a mathematical model that follows those rules. Fuzzy 
logic allows linguistic rules to be handled in a consistent man- 
ner; it allows possibly conflicting goals and constraints to be 
combined. By fine-tuning a model using historical data, an ac- 
tuary can judge whether his or her company has followed those 
rules. A model can also be fine-tuned based on information from 
several (possibly conflicting) experts. 
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E X H I B I T  1 

CHANGE IN SELECTED TARGET AS A FUNCTION OF THE 
CHANGE IN INDICATED TARGET 

(1) Fuzzy model: 
(a) If the indicated target decreases from time t - 1 to time t, then decrease the 
selected target from time t - 1 to time t. 
(b) If the indicated target increases from time t - 1 to time t, then increase the 
selected target from time t - 1 to time t. 

Starting Values 

Indicated Change [ - 10.00, 10.00] 
Selected Change { -  10.00, 10.00} 

Sum of squared errors 

Average error 

Solver Solution 

[-15.73,12.34] 

t-10.52,6.92} 

34.98 

3 ~ " ~ - 8 / 4  = 2.96 

(2) Linear regression: 
Change in selected = -0 .84  + 0.48 * (change in indicated) 

Sum of squared errors 39.62 

Average error ~ / 4  = 3. 15 
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E X H I B I T  2 

C H A N G E  IN S E L E C T E D  T A R G E T  AS A F U N C T I O N  O F  T H E  

C H A N G E  IN I N D I C A T E D  T A R G E T  A N D  O F  T H E  R A T E  D E P A R T U R E  

(1) Fuzzy model using the most recent rate departure: 
(a) If the indicated target decreases from time t -  1 to time t and if the recent 
rate departure (RD~) is negative, then decrease the selected target from t -  1 to 
time t. 
(b) If the indicated target increases from time t -  1 to time t and if the recent 
rate departure (RD~) is positive, then increase the selected target from time t - 1 
to time t. 
Note: By default, if both hypotheses have zero weight, then do not change the 
selected target. 

Starting Values Solver Solution 

Indicated Change [ -  10.00,10.00] [ -  15.73, 12.34] 
RD t [ -  10.00,10.00] [-37.87,  23.20] 
Selected Change {-10.00,  10.00} { -  11.09,7.32} 

Sum of  squared errors 32.88 

Average error V/32.88/4 = 2.87 

(2) Fuzzy model using the previous rate departure: 
(a) If the indicated target decreases from time t - 1 to time t and if the previous 
rate departure (RDt_l) is negative, then decrease the selected target from time 
t - 1 to time t. 
(b) If the indicated target increases from time t - 1 to time t and if the previous 
rate departure (RDt_j) is positive, then increase the selected target from time 
t - I  to t imet.  

Starting Values Solver Solution 

Indicated Change [ -  10.00, 10.00] [ -  13.31,11.85] 
RD,_ ~ [ -  10.00,10.00] [-23.06,  12.67] 

Selected Change { -  10.00, 10.00} { - 11.25, 7.09} 

Sum of  squared errors 32.74 

Average error ~ 4  = 2.86 

(3) Linear regression using the most recent rate departure: 
Change in selected = -0 .75  + 0.48.  (change in indicated) + 0.22 * RD t 

Sum of squared errors 38.28 

Average error ~ 4  = 3.09 

(4) Linear regression using the previous rate departure: 
Change in selected = -0 .34  + 0.47 * (change in indicated) + 0.42 * RDt_ 1 

Sum of  squared errors 37.26 

Average error ~ = 3.05 
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EXHIBIT  3 

S E L E C T E D  T A R G E T  AS A F U N C T I O N  O F  T H E  I N D I C A T E D  

T A R G E T  A N D  O F  T H E  P R E V I O U S  S E L E C T E D  T A R G E T  

765 

(1) Fuzzy model using or:  

(a) If the current indicated target or the previous selected target is low, then the 
current selected target is low. 
(b) If the current indicated target or the previous selected target is high, then 
the current selected target is high. 

Starting Values Solver Solution 

Indicated t [-20.00,20.00] [ -  131.38, 62.67] 

Selected t - j [ -20.00,  20.00] [ - 143.55, 48.75] 

Selected t { - 20.00, 20.00 } { - 124.99, 48.03 } 

Sum of  squared errors 27.09 

Average error ~ = 2.60 

(2) Fuzzy model using a n d :  

(a) If the current indicated target and the previous selected target are low, then 
the current selected target is low. 
(b) If the current indicated target and the previous selected target are high, then 
the current selected target is high. 

Starting Values Solver Solution 

Indicated t [-20.00,  20.00] [-20.27,  48.18] 

Selected~_ l [-20.00,  20.00] [-31.18,  36.64] 

Selected: { -  20.00, 20.00} { -21.55,28.53 } 

Sum of  squared errors 34.99 
Average error ~ / 4  = 2.96 

(3) Linear regression: 
Selected t = -3 .84  + 0.45 * Indicated/+ 0.38 * Selectedt_ 1 

Sum of  squared errors 34.90 

Average error ~ / 4  = 2.95 
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V O L U M E  L X X I X  

W O R K E R S  C O M P E N S A T I O N  E X P E R I E N C E  R A T I N G :  

W H A T  E V E R Y  A C T U A R Y  S H O U L D  K N O W  

W I L L I A M  R. G I L L A M  

D I S C U S S I O N  BY T H E  A U T H O R  

"Welcome to the working week. 

I know it don' t  thrill ya' ,  I hope it won' t  kill ya' ." 

- -Elv is  Costello 

Abstract 

The calculation of plan parameters and rating values, 
which is described in Sections 5 and 6 of the original 
paper, has been significantly improved. 1 The calcula- 
tion of expected loss rates (ELRs) has been improved by 
breaking down published rates into (partial) pure pre- 
mium 2 components before adjusting for trend, develop- 
ment, and amendment factors that vary by component. 
Coupled with other refinements, this better reflects the 
distribution of injuries by class, and improves on the 
accuracy of the ELRs. The calculation of D-ratios has 
been improved, using data more closely matching that of 
the experience period. Finally, changes have been made 
in the plan parameters to reduce swing in the experience 
modifications of small risks; in the course of implemen- 
tation, this was referred to as graduating the plan. 

1The National Council on Compensation Insurance (NCCI) is always working to improve 
its products, and this discussion documents several improvements made to the Experience 
Rating Plan since the time of the original article. To the credit of the regulatory actuaries 
involved in the NAIC Examination of NCCI conducted in 1992, many of the changes 
stemmed from the useful recommendations made at that time. 
2In this paper we refer to the partial pure premiums that underlie workers compensation 
rates simply as pure premiums, consistent with internal production staff usage. 

766 
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The following discussion essentially replaces the part 
of the original paper beginning with Section 5D. 

1. CALCULATION OF PLAN PARAMETERS AND EXPERIENCE 
RATING VALUES 

A. Calculation of Plan Parameters 

A. 1. State Reference Point (SRP) 

This calculation is unchanged. 

SRP = 250 × SACC, rounded to the nearest 5,000, and 

G = SRP/250,O00, rounded to the nearest 0.05, 

where SACC is the state average cost per claim, at a maturity 
consistent with that of  the experience rating period. 

For the State C example in the new exhibits, SRP = 1,400,000, 
and G = 5.6. Individual losses in experience rating are limited to 
10% of  the SRP, a value called the state accident limit (SAL) on 
ratable losses. 

A.2. B and W Values 

The primary credibility ballast B is calculated using the same 
formula as in the original paper, but subject to a new indexed 
minimum, rather than the previously used $7,500. 

B = E(0.1E + 2,570G)/(E + 700G), 

subject to a min imum of  2,500G. 

Similarly, the excess credibility ballast C has a new indexed min- 
imum, rather than the previously used $150,000. 

C = E(0.75E + 203,825G)/(E + 5,100~),  

subject to a minimum of  60,000G. 
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Because typical G values in the 1990s average about 4, the 
new minimum B and C values already tend to be larger than 
$7,500, reducing swing (i.e., responsiveness) in the modifica- 
tions of  small risks. Larger ballast values mean lower credibili- 
ties. 

A.3. Caps On Modifications 

To prevent large swings in the modification of small risks, an 
indexed maximum limits the calculated value as a function of 
risk size and G: 

Max = 1 + 0.00005(E + 2E/G). 

Thus a risk with $5,000 of expected loss in a state where G = 4 
could have a modification no larger than 1.38. This replaces a 
table of  maximum modifications by size range, whose disconti- 
nuity occasionally led to surprise changes in the modifications 
of small insureds when data in preliminary modifications were 
updated. 

B. Calculation of Rating Values 

B. 1. Expected Loss Rates (ELRs) 

In the experience rating plan, payroll (in $100s) by class is 
extended by the respective ELRs to obtain expected losses. 

The purpose of Exhibit 1 is to calculate Expected Loss Rate 
Factors, as shown on Line 8 of Exhibit 1, Part 2. The product 
of these factors and the corresponding partial pure premiums for 
each class are summed in order to get a provisional Expected 
Loss Rate for that class. 

The principles of  the calculation have not changed, but a treat- 
ment more focused on the impacts of loss development, loss 
based expenses, law amendments, and trend has been imple- 
mented. Starting with the partial pure premiums underlying the 
rates (i.e., serious, non-serious and medical), we must back up 
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in time and maturity to the experience period used for modi- 
fications. Loss development, law amendment factors, and trend 
are all calculated by pure premium for each of  the policy periods 
used in ratemaking. So, in Column 3 of Exhibit 1, Part 1, we cal- 
culate average serious development factors to ultimate for each 
of three periods to be used in experience rating--third, second, 
and first reports. These are weighted to get one average serious 
development factor. This is also done for non-serious and medi- 
cal losses. Notice that medical development factors exist for both 
serious and non-serious medical; these are weighted to be appro- 
priate for the entire medical pure premium. 

To account for law changes between the experience period and 
the effective period, law amendment factors by injury type and 
year are weighted to calculate average benefit on-level factors for 
each pure premium. These are in Column 5 of the exhibit. Note 
that the Unit Statistical Plan (USP) period is not the same as the 
experience period for prospective modification. (The reader may 
note the magnitude of the amendment factor for serious claims 
in State C. This is an example of  the reforms implemented in the 
crisis period of the late 1980s and early 1990s.) 

In Column 7, indemnity on-level loss ratio trend is used for 
the serious and non-serious pure premiums, and medical on-level 
loss ratio trend is used for the medical pure premium. These 
trends are taken from the rate level calculations. Trend factors 
of two years for first report, three years for second report, and 
four years for third report are weighted by on-level losses from 
Column 6 to produce an average trend used to unwind each pure 
premium. 

ELRs are calculated for open competition states as well as 
administered pricing states. Expenses in manual rates are well- 
documented in the rate filing. An expense left in the component  
pure premiums that may still need to be unwound is loss adjust- 
ment expense, which in the State C example is 12.5% of loss. 
There may also be a factor for loss-based assessments, which are 
occasionally a part of component  pure premiums. 
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Part 2 of Exhibit 1 displays important adjustments needed 
to calculate final ELR factors. In Lines 1 and 2, we adjust for 
expenses. In Line 3, we calculate the so-called loss ratio adjust- 
ment factor, which accounts for the difference between the latest 
on-level financial data loss ratio used for the rate level and the 
trended value of  the USP loss ratio. This difference stems in part 
from the large number of adjustments between manual rates and 
final prices in the workers compensation rating plan. Another 
part is that the USP compiles data on each policy at 18 months 
and annually thereafter, while the financial data is compiled from 
a calendar year of  policies once a year, starting with a 24 month 
evaluation date. Testing as described in Section 2 confirms the 
value of this adjustment. 

On Line 3a of  the exhibit, we see the USP indicated change of 
0.927 adjusted by a trend factor of 1.092 to be comparable to the 
proposed rate level change. In State C, the financial data would 
indicate a lower change in loss costs than the trended USP loss 
ratio. The final ELR factors must be higher than those that would 
be obtained by unwinding trend from the prospective rates; as 
such, the loss ratio adjustment factor is 1.066. 

Line 4 is needed because ELR factors apply to the voluntary 
level pure premiums, which have been offset downward to ac- 
count for a new assigned risk pricing program. (This huge offset 
is another sign of the times.) The final ELRs will be at a total 
market level, higher than the voluntary level. 

The adjustment on Line 6 on Part 2 accounts for losses in ex- 
cess of  the SAL. The Excess Loss Adjustment Factors (ELAFs) 
are calculated using a weighting of excess ratios in the same 
way as described in Exhibits 5 and 6 in the original paper. Sep- 
arate ELAFs are calculated to be applied to the serious pure 
premium, which is indemnity only, and the medical pure pre- 
mium, which includes a portion for medical associated with all 
indemnity claims. Since the excess ratios are for ground-up se- 
rious claims including medical, there must be an ELAF applied 
to the medical pure premium, adjusted by the proportion of  the 
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medical pure premium that is for serious claims. It is assumed 
that no adjustment for loss limitation is necessary for non-serious 
claims. 

For State C, the Hazard Group II serious ELAF is 0.855 = 
1 -  0.145, based on an excess ratio of 0.145. Using data from 
ratemaking, the serious medical portion of the medical pure pre- 
mium is 0.379. Thus, the Hazard Group II Medical ELAF is 
1- (0 .145)(0 .379)  = 0.945. The eight resulting ELAFs appear 
on Line 6 of Exhibit 1, Part 2. 

Notice that there is no adjustment to account for the higher 
average quality of  rated risks. Previously, ELRs were divided by 
1.01 to account for this phenomenon.  It has been decided that it is 
more appropriate to let the modification seek its own level. Rate 
adequacy is based on standard premium and will automatically 
adjust for the impact of  this change on the average modification. 

The provisional ELR factors to be applied to the partial pure 
premiums are shown on Line 8 of  Exhibit 1, Part 2. 

A further step is necessary after summing these components 
by class. The partial pure premiums include trend, development, 
and amendment  factors, as well as the impact of  credibility, lim- 
its on change by class, and the test correction factor to rec- 
oncile to the proposed rate level change. In the final manual 
rate or loss cost, a factor for manual/earned premium, which 
varies by industry group, is applied to the sum of the pure pre- 
miums. This rate factor should be maintained in the ELR, so 
it is applied in the calculation of  the final ELR. For example, 
consider class 4021 in Hazard Group II and the manufacturing 
industry group in State C. Suppose it has a serious pure pre- 
mium of  $3, a non-serious pure premium of  $1, and a medical 
pure premium of  $2. Then its provisional Expected Loss Rate is 
(3)(.554) + (1)(1.085) + (2)(.520) = $3.79 per $100 of  payroll. If 
the manual to earned ratio for manufacturing is 0.98, the final 
ELR would be ($3.79)(.98)= $3.71. Thus $100,000 in payroll 
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in this class in State C would contribute (1,000)(3.71) = $3,710 
of expected losses for experience rating. 

B.2. D-Ratios 

In the calculation of the experience modification, expected 
losses by class are extended by the respective D-ratios in order 
to compute expected primary losses for use in experience rating. 

The calculation of D-ratio factors is shown in Exhibit 2. These 
are weighted by the partial pure premiums by class to produce 
final D-ratios. 

The calculation of D-ratios has changed in ways alluded to 
in the original paper. Specifically, partial D-ratios are based on 
losses in the latest three statistical plan reports, rather than the 
most recent single policy year. Actual losses are limited by the 
state accident limit ("ratable" losses), but adjusted for severity 
trend from the date of available statistical plan reports to the 
period that will actually be used for experience rating. 3 Consid- 
eration of Table 1 in the original paper should lead to the conclu- 
sion that this is normally about two years, although sometimes 
a bit less. Partial D-ratios are computed for each pure premium 
component of the rate. The serious partial D-ratio represents the 
ratio of serious indemnity primary losses to total serious indem- 
nity losses. There is a similar non-serious partial D-ratio. The 
medical partial D-ratio is primary medical losses divided by the 
medical total. 

Since the primary/excess split in experience rating applies to 
total losses of indemnity plus medical, and partial D-ratios apply 
to pure premiums that are (serious) indemnity only, (non-serious) 
indemnity only, and all medical, some care must be taken in the 
calculation of the partial D-ratios. This entails the separation of 
indemnity primary and medical primary (Columns 5 and 6 in 

3Originally, the author wanted to leave the data untrended and deflate the split point, 
as this would lead to the adjustment of  only one number. The concept of  deflation was 
considered too avant-garde for a highly regulated line of  business. 



WORKERS COMPENSATION EXPERIENCE RATING 773 

Exhibit 2, Part 1) in the serious and non-serious losses, and the 
addition of medical primary to the medical partial D-ratio (see 
Column 6 in the medical row of Exhibit 2, Part 1). 

The calculation of final D-ratio factors must reflect the change 
in pure premium weights between the statistical plan period and 
the prospective rates. This adjustment (in production parlance, 
a transition from partial D-ratios to D-ratio factors) is calcu- 
lated in Exhibit 2, Part 2. The partial D-ratios would be ap- 
plied to the pure premiums from the calculation of classifica- 
tion rates. Unfortunately, these pure premiums are not in the 
proper proportions to represent the losses expected for experi- 
ence rating. Specifically, at ultimate, there is a relatively larger 
proportion of serious and medical loss and a smaller portion 
of non-serious loss than will be found in statistical plan data 
at first, second, and third reports. Therefore, an adjustment is 
necessary or the estimate of the proportion of primary losses 
will be too low. The partial D-ratios are multiplied by adjust- 
ment factors, Exhibit 2, Part 2, Line 2 divided by Line 6. This 
is the arithmetic equivalent of adjusting the classification par- 
tial pure premiums. The results are the final D-ratio factors as 
shown on Line 7 of Exhibit 2, Part 2. If a particular class rate 
in State C was based on pure premiums of $3 for serious, $1 
for non-serious, and $2 for medical, then the D-ratio would be 
{($3)(.056) + ($1)(.688) + ($2)(.266)}/($3 + $1 + $2) = .23. 

2. EX-ANTE TESTING OF NEW ELR CALCULATION 

Exhibit 3 shows some of the testing done at NCCI to support 
the new ELR calculation. The idea is to calculate sample ELRs 
for a historical period, using a new method, and then apply them 
in their respective time period. We looked at what would have 
happened to average modifications by class group and ELR ac- 
curacy by class. We desired as uniform a result as possible; that 
is, that ELR accuracy and average modification be as close as 
possible for the different classes or class groups. The new cal- 
culation achieves this better than the prior methodology. 
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Testing this requires considerable investigation of old rate- 
making files and a good bit of  care in programming modification 
calculations using hypothetical ELRs. 

Consider Exhibit 3, Part 1. It shows average modifications by 
hazard group, industry group, and overall for four states. The 
prior calculation produces modifications that tend to be low for 
the higher severity class groups; i.e. Hazard Groups III and IV or 
the Contracting industry group. The revised calculation does not 
completely correct the problem, but decidedly reduces it. This 
is expected, since the highest severity classes tend to have the 
most weight in the serious and medical pure premiums. These 
two pure premiums should have the lowest ELR factors, and the 
ELRs for high severity classes should bear a correspondingly 
low relationship to the rate. 

Exhibit 3, Part 2 shows statistics pertaining to ELR accuracy 
by class for the prior and revised ELR calculations. 

One problem is that losses less than $2,000 may be (and 
often are) summarized in statistical plan reporting, and are al- 
ways summarized in the data used for normal experience rating. 
We are not able to attribute these losses to class, since carriers 
are not required to report the class on medical only claims. As 
such, we leave them out of the accuracy calculation. Hence, the 
actual/expected (A/E) ratios tend to be 10-20% low for both cal- 
culations. We need to normalize to an overall unity AlE ratio for 
each hypothetical calculation of ELRs; this puts each on a level 
playing field when sample variance from expected is calculated 
as described below. 

Overall sample weighted squared variation from unity in AlE 
by class is calculated on a statewide basis by individual class by 
hazard group and industry group. Performance of the proposed 
ELR calculation is measured by squared variation. With occa- 
sional exception, performance of the revised method is better 
than the prior method. In particular, the variation between haz- 
ard groups and the variation between industry groups are both 
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reduced. Notice that the within variation from the class group 
mean A/E ratio plus the variation between class groups equals 
the total variation. (This is a hip-pocket fact the manager can use 
to check the unwary student's work.) 

3. CONCLUSION 

It is a pleasure to report these improvements in the adminis- 
tration of experience rating. It is clear that such improvements 
will continue to be needed and will continue to be made. 



EXHIBIT 1 

PART 1 

EXPECTED LOSS RATE C A L C U L A T I O N  

D E V E L O P M E N T ,  A M E N D M E N T ,  A N D  T R E N D  B Y  P U R E  P R E M I U M  

t~ 

STATE: C 

EFF DATE: 7/1/1994 

USP PERIOD 1/89-12/89 Experience Rating Policy Period: 7/90-7/91 

(1) (2) (3) (4) (5) (6) (7) (8) 
Dev. Fact. Ultimate Amend. On-Level Trend Trended K 

Losses 3rd to Ult Losses Factor Losses Factor Losses 

Death 11,685,084 x 
ET. 4,702,449 x 

M ~ o r  236,250,583 x 

S e r i o u s :  252,638,116 x 

Minor  48,728,103 × 
T.T. 49,596,614 x 

Non-Serious: 98,324,717 x 

Se~ Med. 96,609,465 x 
Non-Ser. Med. 87,721,420 x 

Medical  184,330,885 x 

1.690 = 19,747,792 × 0.411 
1.690 = 7,947,139 x 0.174 
1.690 = 399,263,485 × 0.711 

1.690 = 426,958,416 x 0.687 

1.018 = 49,605,209 x 0.710 
1.018 = 50,489,353 x 0.885 

1.018 = 100,094,562 x 0.798 

1.765 = 170,515,706 x 0.943 
1.047 = 91,844,327 x 0.943 

1.423 = 262,360,033 x 0.943 

USP PERIOD 1/90-12/90 SUMMARIZED 
2rid ~ Ult 

Serious: 184,901,837 x 1.929 = 356,675,644 x 

Non-Serious: 91,859,386 x 1.029 = 94,523,308 x 

Medical  158,584,459 x 1.456 = 230,904,175 x 

= 8,116,343 x 

= 1,382,802 × 
= 283,876,338 × 

= 293,375,483 x 

= 35,219,698 x 
= 44,683,077 x 

= 79,902775 x 

= 160,796,311 x 
= 86,609,200 x 

= 247,405,511 x 

1.134 = 9,203,933 

1.134 = 1,568,097 
1.134 = 321,915,767 

1.134 = 332,687,797 

1.134 = 39,939,138 
1.134 = 50,670,609 

1.134 = 90,609,747 

1.432 = 230,260,317 
1.432 = 124,024,374 

1.432 = 354,284,691 

Experience Rating Policy Period: 7/91-7/92 

0.705 = 251,425,573 X 

0.821 = 77,627,553 × 
0.943 = 217,742,637 X 

1.099 = 276,316,705 

1.099 = 85,312,681 

1.309 = 285,025,112 

t'rl tZ 
O 
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EXHIBIT 1 

PART 1--PAGE 2 
© 
7o 

( l )  (2) (3) (4) (5) (6) (7) (8) o 
Dev. Fact. Ultimate Amend. On-Level Trend Trended 

Losses 3rd to Ult Losses Factor Losses Factor Losses 

USP PERIOD 1/91-12/91 SUMMARIZED 

Serious: 102,700,971 x 2.617 

Non-Serious: 96,880,811 x 0.996 
Medical  152,050,518 x 1.524 

THREE YEAR WEIGHTED VALUE 

Serious: 1.948 

Non-Serious: 1.014 
Medical 1.465 

Experience Rating Policy Period: 7/92-7/93 

I st to Ult 
= 268,768,441 × 0.816 = 219,337,131 × 

= 96,493,288 × 0.894 = 86,290,577 × 
-- 231,692,605 × 0.968 = 224,278,442 × 

x 0.726 

x 0.837 
x 0.951 

1.065 = 233,594,044 

1.065 = 91,899,465 
1.197 = 268,461,295 

PRODUCT 

1.103 = 1.560 
1.098 --- 0.932 

1.317 = 1.835 

o 

x 
D1 
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E X H I B I T  1 

PART 2 

C A L C U L A T I O N  O F  ELR F A C T O R S  B Y  

P R E M I U M  A N D  H A Z A R D  G R O U P  

I) Combined report, development, 
amendment ,  and trend factor from Part 1 

Factor 
Non- 

Serious Serious Medical 

From Part 1 - -  1.560 .932 1.835 
LAE Factor 1.125 - -  - -  - -  
Product - -  1.755 1.048 2.064 

2) Reciprocal of  Factor above - -  0.570 0.954 0.484 

3) (a) Adjusted USP Experience Change 
0 . 9 2 7 x  1.092 = 1.012 

(b) Financial Data Experience Change 0.9500 
(c) Loss Ratio Adj. Factor (a)/(b) 1.066 

4) Offset for New Assigned Risk Programs 0.937 

5) Average ELR Factor (2) x (3c)/(4) 0.648 1.085 0.550 

6) Excess Loss Adjustment  Factors 
HG I 0.873 1.0 0.949 
HG II 0.855 1.0 0.945 
HG III 0.803 1.0 0.898 
HG IV 0.729 1.0 0.850 

7) Adjustments:  None 

8) ELR Factors (5) x (6) x (7) 
HG I 0.566 1.085 0.522 
HG II 0.554 1.085 0.520 
HG III 0.520 1.085 0.494 
HG IV 0.472 1.085 0.468 



EXHIBIT 2 

PART 1 

STATE C 

CALCULATION OF D-RATIO FACTORS 
SPLIT VALUE = $5 ,000  

O 

(1) (2) 

Trended 
Ratable Primary 

First, Second and Third Reports Combined 
(3) (4) (5) (6) (7) 

Estimated Estimated 3-Yr Total 
Indemnity Medical Partial 

Ratable Ratable Primary Primary D-Ratio 
Indemnity Medical (2) x ((3)/(1)) (2)-(5) (5)/(3) 

(8) 

3-Yr Total 
Loss Dist. 
(3FTot (1) 

© 

t'q 
z 

© 
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Serious 739,637,237 44,498,824 

Non-Serious 579,960,300 224,227,305 

Medical Only 63,838,341 60,718,083 

522,295,420 217,341,817 31,422,880 13,075,944 0.060 

331,478,713 248,481,587 128,158,045 96,069,260 0.387 

0 63,838,341 0 60,718,083 

0.377 

0.240 

Total 1,383,435,878 329,444,212 

NOTE 
THIS REPORT IS FOR STATEWIDE DATA 
Proposed Effective Date: 07-01-94 
10% of State Refereace Point = 140,000 
Severity Trend = 1.147 
*Me~lic~ D-Ratio Factor (6)/(4) 
**Loss Distribution (4)/(1) 

853,774,133 529,661,745 
Medical 169,863,287 0.321" 0.383** 

xD 



,--.I 
O~ 

EXHIBIT 2 

PART 2 

CALCULATION OF D-RATIO FACTORS 

Adjustment For Use With Ultimate Pure Premiums 

(A) (B) (C) (D) -~ 
Serious Non-Serious Medical Total 

1. Three Year Partial D-ratios, Part 1, Col. 7 
2. Three Year Loss Distribution, Part 1, Col. 8 
3. Ultimate USP Experience On-Level 
4. Rate Factors Applied by Parts 
5. Experience Underlying Final Rates (3) x (4) 
6. Experience Distribution (5)/sum(5) 
7. Final D-ratio Factors (1) x (2)/(6) 

m 
0.060 0.387 0.321 XXX 
0.377 0.240 0.383 1.000 

950,281,470 319,380,590 1,009,590,996 XXX m z 
0.980 0.979 1.060 

m 
931,275,841 312,673,598 1,070,166,456 2,314,115,894 

0.402 0.135 0.463 1.000 -~ 
0.056 0.688 0.266 XXX 



EXHIBIT 3 

PART 1 

REVISION TO ELR CALCULATION 

Ex-Ante Test of  Effect on Average Mod 
Rating Year 1992 

HAZARD GROUP I HAZARD GROUP 1I HAZARD GROUP III HAZARD GROUP IV 
State Prior Revised % Diff Prior Revised % Diff Prior Revised % Diff Prior Revised % Diff 

A 1.011 1.008 -0 .3% 1.010 1.024 - 1.4% 1.032 1.049 1.6% 0.967 1.001 3.5% 
B 1.035 1.016 -1 .8% 1.012 1.008 -0 .4% 0.980 0.984 0.4% 0.922 0.936 1.5% 
C 1.062 1.060 -0 .2% 1.102 1.106 0.4% 1.003 1.001 -0 .2% 0.945 0.960 1.6% 
D 1.025 0.992 -3 .2% 1.001 0.997 -0 .4% 0.979 0.984 0.5% 0.950 0.970 2.1% 

Total 1.035 1.022 -1 .3% 1.023 1.024 0.1% 0.996 1.002 0.6% 0.934 0.952 1.9% 

MANUFACTURING CONTRACTING ALL OTHER ALL RISKS 
State Prior Revised % Diff Prior Revised % Diff Prior Revised % Diff Prior Revised % Diff 

A 1.003 1.012 0.9% 0.974 1.003 3.0% 1.032 1.046 1.4% 1.006 1.025 1.9% 
B 1.013 1.008 -0 .5% 0.927 0.941 1.5% 1.001 0.998 -0 .3% 0.974 0.978 0.4% 
C 1.166 1.167 0.1% 0.949 0.954 0.5% 1.000 1.008 0.8% 1.030 1.036 0.6% 
D 1.008 1.006 -0 .2% 0.952 0.970 1.9% 0.993 0.989 -0 .4% 0.980 0.985 0.5% 

Total 1.033 1.032 -0.1 0.940 0.956 1.7% 1.007 1.009 0.2% 0.988 0.996 0.7% 
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EXHIBIT 3 

PART 2 

NEW ELR CALCULATION 

Ex-Ante Test of Class Accuracy 
State B, Rating Year 1992 

© 

Observed Weighted Average Squared Weighted Average Squared 
Actual/Expected Ratio: Deviation By Class from State Avg. Deviation By Class from HG Avg. 

Hazard Actual 
Group Ratable Loss Prior Revised Prior Revised Prior Revised 

All 1,171,432,952 0.8401 0.8522 0.1999 0.1976 0.1965 0.1958 

1 84,552,535 0.8084 0.7704 0.0602 0.0684 0.0588 0.0592 
2 404,926,751 0.9024 0.8933 0.5062 0.4865 0.5007 0.4842 
3 294,811,475 0.8472 0.8571 0.0807 0.0788 0.0806 0.0788 
4 387,142,191 0.7852 0.8279 0.0349 0.0353 0.0306 0.0344 

Between Variation 0.0034 0.0018 

Observed Weighted Average Squared Weighted Average Squared 
Actual/Expected Ratio: Deviation By Class from State Avg. Deviation By Class from HG Avg. 

Hazard Actual 
Group Ratable Loss Prior Revised Prior Revised Prior Revised 

All 1,171,432,952 0.8401 0.8522 0.1999 0.1976 0.1963 0.1966 

Mfg. 284,558,957 0.9109 0.8975 0.2869 0.2744 0.2798 0.2716 
Ctg. 443,594,453 0.7845 0.8248 0.0327 0.0324 0.0283 0.0314 
AO 443,279,542 0.8582 0.8528 0.3302 0.3217 0.3298 0.3217 

Between Variation 0.0035 0.0011 
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ADDRESS TO NEW M E M B E R S - - N O V E M B E R  10, 1997 

RONALD L. BORNHUETTER 

When Mike Fusco addressed the new members last year, he 
said that we would run out of  past presidents quite soon. I guess 
he was right, as this is my second time around. 

Although my brief remarks this morning are directed to the 
new Fellows and Associates we honor today, I do hope the rest 
of  the audience will glean some insights from them. 

Because your  time has been consumed by CAS actuarial stud- 
ies during the past several years, your focus has, of  necessity, 
been inward. Therefore, I would like to briefly turn your  atten- 
tion outward to the insurance world in which we live and the one 
that you are entering. 

Each one of  you in this room knows how hard you have 
worked to attain Associateship or Fellowship. It is a difficult 
road---one we have all traveled and one that will eventually lead 
to rewards in the years ahead. I cite, as an example, the recent 
emergence of  casualty actuaries serving in a variety of  senior 
management  positions in many property and casualty companies. 

To be more specific, at one point in 1996, seven major 
reinsurers-- total ing over sixty-five percent of  the United States 
reinsurance marke t - -employed  casualty actuaries as chief  execu- 
tive officers. Perhaps that is why we have such a terrible market! 

As an aside, I once asked the chairman of  a former employer  
of  mine why the title Actuary was never used within the com- 
pany. Interestingly, the response was that the .title was too lim- 
iting. In retrospect, I can now say that I fully understand the 
intended meaning. 

On occasion in the past, I have asked actuarial audiences how 
many of  them spend at least ten percent of  their time on the 
asset side of  the balance sheet. Very few responded positively. 
Even today, I would wager that there are probably fewer than 
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twenty-five in this room who do. I would also wager that very 
few of you are familiar with AFIR. If you are at all interested 
in broadening your horizons, I would suggest that you look into 
the activities of this organization. 

An interesting piece of trivia concerns one of the sister organi- 
zations, the Institute of Actuaries in the United Kingdom, which 
is very similar to the two North American organizations giving 
examinations. Do you realize that over 25% of their members 
do not work in the insurance industry? Most of that 25% are 
employed in the securities industry--an interesting commentary, 
and one that does makes some sense. 

I realize that the last thing you want to think about is more 
examinations; however, I would ask that you look around at your 
world. Some actuaries are taking CPCU exams, and there is also 
an achievable designation known as CFA--Chartered Financial 
Analyst--which is an entry into the securities industry. I guess 
what I am trying to say is that, for many of you, your actuar- 
ial training is a platform that prepares you for entry into many 
different and enriching areas of our business. Surprising results 
can occur if you are willing to take some risks. 

Let me turn to today's catchword--"global." The comments 
in my 1987 address are just as valid today as they were ten years 
ago--perhaps even more so. Some ten years ago, the Interna- 
tional Actuarial Association had about 4,600 members, 1,200 of 
whom came from Canada and the United States---even though 
there were over 10,000 eligible to join from the two countries. 
In ten years, the ratio is not much different. Out of a total 
IAA membership approaching 6,700, fewer than 2,500 members 
come from the United States and Canada, while some 20,000 
are eligible to join. What is different today is that many U.S. 
domestic insurers and reinsurers--your employers--are branch- 
ing outward--globally--with or without actuarial help. I might 
also mention that Europe is becoming much more litigious as 
we speak. Trial lawyers are very good at exporting their prod- 
uct. I am convinced that European actuaries do not have the 
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background or the knowledge to cope with pricing the insurance 
product as it emerges in the casualty area. Each of  you brings 
a wealth of talent and information to the expansion; your task 
is to make it known and used by your overseas managers. To 
those of you with global interests, I would also recommend that 
you look into ASTIN- -a  ready-made global forum for casualty 
actuaries. More than half of ASTIN's  membership is composed 
of actuaries residing outside of  North America. 

I would be remiss if I did not comment  on the American 
Academy of  Actuaries. This is the outwardqooking organization 
for all actuaries in the United States. Many of  the CAS members 
in this room are involved in the various activities provided by 
the Academy. The Academy is your spokesperson in the public 
a rena--don ' t  hesitate to become involved. 

Somewhat related is the Actuarial Standards Board, which has 
been in existence for ten years. This organization establishes the 
actuarial Statements of Principles and Standards of Practice. I 
would ask that you take heed of these policies, as "Principles" 
are the "thou shall" and "thou shall not," while "Standards" are 
the "how to" of  our profession. 

Ladies and gentlemen, I welcome you to the world of 
actuaries--it  is an exciting, ever-changing, challenging, and very 
rewarding world, and you should feel very proud today to be a 
part of it. The CAS is only an organization of individuals and it is 
those individuals--its members - -who  make it great. May your 
careers blossom and prosper in the years ahead-- the opportunity 
is there. 

Thank you for your kind attention. 
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WE NEED TO SERVE THEM BETTER 

ROBERT A. ANKER 

I have never really been sure whether the curse was Chinese, 
Turkish, Italian or Irish. This year it must have been actuarial, 
for these have indeed been interesting times. It has felt like a 
lifetime in the CAS leadership chair. 

The past twelve months were filled with events, planned and 
unplanned, which have deepened the underpinnings of our pro- 
fession and organization and remarkably broadened the dialogue 
among us over who we are. The publication of the first CAS 
Strategic Plan late last year became a catalyst for decisions taken 
by the Board of Directors and a guidepost for the Executive 
Council. Together we wrestled with a cascade of actions and 
reactions, definitions and interpretations, perceptions and mis- 
understandings that ensued. Independence of the CAS and our 
relationships with other actuarial bodies, key elements of the 
strategic plan, became hot issues. The passion lurking behind the 
cerebral facade of every actuary became manifest as the Actuar- 
ial Review suddenly became the most widely read and written-to 
actuarial publication on the planet. 

Yes, these have been interesting t imes--and they will continue 
to be so. However, my purpose today is not to revisit a tumul- 
tuous year. Instead I want to remove the cloak of diplomacy that 
has necessarily guarded my words and actions this past year and 
share my thoughts with you- - for  whatever use they may or may 
not serve. 

Before doing so, however, there is a part of these last twelve 
months I want to acknowledge in some detail--the tremendous 
personal support I have received. Tim Tinsley, our glittering gem 
of an Executive Director, was invaluable. I simply would not have 
made it through the year without him. Thanks, Tim--thanks, 
thanks, thanks. Thanks also to the entire office staff, without 
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whom Tim might not have made it through the year. It takes an 
enormous effort to support the large and dynamic organization 
we are today. 

This was a time of particular challenge for our Board. On 
more than one occasion they were asked to deal with unusually 
difficult circumstances. They did so with courage and aplomb. 
Without the knowledge that they were solidly behind me, I may 
well have turned tail and run both early and often, as they say. 
But they were there. Thanks. 

I am enormously proud of the Executive Council with whom 
I served. Paul, Kevin, Sue, Pat and Bob all fulfilled their respon- 
sibilities effectively and admirably, each along the way helping 
to propel the CAS to a better future. I owe quintuple thanks to 
them. 

I offer very special thanks to both my predecessor and my 
successor. This was a time during which I needed to draw on 
large portions of help and counsel. A1 Beer and Mavis Waiters 
were always there, responding with speed and wisdom, making 
the challenges manageable. Last November I assumed the reins 
from strong, firm and competent hands. This November I pass 
them on to strong, firm and competent hands. 

Penultimately, I offer thanks to the virtual army of members 
of this body who have contributed part of their time and effort 
to making me better. Clearly, the job is incomplete, but that is a 
failure of neither quality nor quantity of effort. Thanks to all of 
you. 

Ultimately, (I promise no jokes about actuaries developing to 
ultimate--it has already been done) my deepest thanks go to 
the only person who has lived my entire actuarial career with 
me, my wife Pat. She has provided thirty years of support--  
and distraction--in equal measure and with impeccable timing. 
I have learned from experience the full meaning of the word 
soulmate. Thank you, my love. 
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So ... what are the thoughts I would like to share? They 
are simply a collection of  beliefs about what and who we are, 
actuaries in general, and what we need to do. By the way, the 
phrase "actuaries in general" applies in both meanings, generic 
and European. It is a strange quirk--perhaps a casualty---of the 
language that we must separate general discussion of actuaries 
from discussion of  general actuaries. And, although for actuaries 
there is no life in general, that certainly does not mean general 
actuaries, while often casual, are without life. 

All of  this is prefatory to the point that we are part of a larger, 
worldwide actuarial profession. We need always to know and 
understand that. The very word "actuary" is owned collectively 
by those of  us who share it in use. We must work globally with 
all with whom we share the title to assure that it ceaselessly 
retains the respect and professional character we cherish. There 
is important work here, work in which we, as the world's largest 
specialty educator of  actuaries, need to take a more active role. 
The CAS is a unique organization on the world's actuarial stage, 
one whose "distinct identity" gives us great opportunity to teach 
others as well as to learn new ways to drive our profession and 
science forward. 

Actuarial science, unlike law, medicine, ministry or accoun- 
tancy, is a very young profession. It is yet to be seen whether, 
as practitioners of  the discipline, we may someday rise to the 
level of  recognition or pervasive application such professions 
have achieved. The prospects are positive, I believe. Nearly ev- 
erything happening in the world as it approaches the new mil- 
lennium plays to our strengths. 

Economies are exploding, gathering the prerequisite size and 
velocity to create the need for actuarial tools to measure and re- 
duce uncertainty, establish and refine classifications and provide 
a rational basis for that most abstract of actuarial skills, deter- 
mining what is not unfairly discriminatory. 
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Information is also exploding, providing grist for our ana- 
lytic mills and making competition and competitiveness ubiqui- 
tous. Every increase in competitive need is an opportunity for 
us to add value. Every quantum of  acceleration in the rate of 
change increases uncertainty in the future. We should prosper. 
As change itself changes everything, we are well positioned to 
grow in non-traditional fields, even as our traditional fields ex- 
pand. The "actuarial control cycle," as defined by the Australians, 
is a problem-solving algorithm equally at home in any area need- 
ing financial valuation of contingent events. If you do not know 
about the actuarial control cycle, please learn about i t - -cont inue 
your education. Similarly, the catch phrase being used by the 
Institute of Actuaries in celebrating their 150th anniversary in 
1998, "Actuaries make financial sense of the future," does not 
restrict itself to any particular field. 

What is the message? 

• We need to be aware of and involved with all developments in 
the profession and relevant to the profession no matter where 
they occur. 

• We need to continue to adopt the new as rapidly as we adapt 
the old. 

• We need to be prepared to apply our science wherever and 
whenever it is needed. 

• Change happens--and it is our friend. 

Many of you know that part of  my academic background 
lies in philosophy. Because of this, before I had ever heard of 
actuarial science, I encountered a school of philosophy based on 
probability theory. I determined to be a probabilist in my applied 
approach to life. Probabilism is the only school of philosophy 
containing a finite possibility it could be wrong. 

This appeals to both my basic indecisiveness and my need to 
protect my self esteem. Yes, in this school, even if you are wrong, 
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you not only are right, you predicted it. Given my refined apti- 
tude for being wrong, the philosophy has served me well. But it 
also served me well in making the mathematical adaptation from 
pencil and wide-ruled paper to pencil and graph paper to the use 
of  the Chemical Rubber Publishing Company ' s  Standard Math- 
ematical Tables to electrical calculators to electronic calculators 
to mainframe computers to generations of  personal computers to 
the worldwide web to whatever follows...(With my luck it will be 
a variation of  the abacus, with which I have no skill whatsoever.) 

In my view, this philosophy serves any science well. After  
all, applied science is always based on the latest theory, even 
as researchers try to disprove the theory and theoreticians try 
to supplant it. In our case it is yet more fundamental.  In every 
case, our best answer, developed with the unlimited measure of  
science and professionalism our clients deserve, is merely an 
estimate of  the "right" answer. We define being close as being 
fight in order to avoid being always wrong- -bu t  also because, 
if the right answer is currently knowable, then the world needs 
neither actuarial science nor actuaries. 

These are all general thoughts, meaning those of  a generic na- 
ture. What about thoughts that are specifically general, meaning 
about general contingencies? What about the CAS? What do we 
need? 

First, as our record of  growth and success indicates, we are in 
very good shape. We have been operating under a good estimate 
of  the right answer. We do an enormous number of  things well. 
It would be foolish to try to list them. Conversely, I am not able 
to identify anything we clearly do wrong. There are, however, 
areas in which we can do better. 

We often continue to view ourselves as a United States orga- 
nization. It is true that the vast majority of  our 3,000 members  
live and practice in the "States," as those outside its borders re- 
fer to this country. On the other hand, many have heard me cite 
the convoluted statistic that there are today more members  of  the 
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CAS practicing outside the US than there were Fellows of  the 
CAS when I became a Fellow. We do not serve them nearly as 
well as they deserve, and I believe they deserve at least as well 
as we served our total membership "way back when" when the 
Society inducted me. True, these members  are widely dispersed, 
giving the task different dimensions. Equally true, the commu-  
nication and service tools of  today are incredibly advanced by 
comparison to even a decade ago, much less to "way back when."  
We can serve our non-US members  better. We need to serve them 
better. 

Some will note that our friends from Canada are included 
in my "outsiders" classification. Does that mean I believe we 
underserve them? Absolutely! We need to serve them better. 

Our strategic plan notes that we have no geographic bound- 
aries. We need to behave organizationally in ways that demon- 
strate that truth. We have members,  including Fellows, at this 
meeting, who have never lived or practiced in North America.  
We need to serve them better. Even today, twenty-five percent 
of  our regional affiliates are located outside the US. With our 
members in the British Isles and on the Continent organizing a 
new affiliate, the percentage will increase. We need to serve them 
better. 

We also, in my opinion, need to beef  up our support in re- 
search and further development of  our science and its applica- 
tions. There should be no significant research effort related to our 
field of  endeavor in which we are not a participant. The support 
may be monetary through The Actuarial Foundation, the AERF, 
the CAS Trust or the CAS directly. It may be cooperative with 
any other actuarial, academic or related-discipline institution. It 
may be through the diligent personal efforts of  each of  us as in- 
dividuals. But I believe it must happen, because we have clients 
and we need to serve them better. 

There is another area we must improve concurrently. It is 
an area in which we have seen great improvement already, as 
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demonstrated by the "hernia maker" issue of  the Proceedings that 
most of  us have just received. We need to do everything actuar- 
ially and humanly possible to be certain that the Proceedings is 
the preferred publication in the world for the best work in our 
field. I would not claim that any other publication occupies the 
pedestal today, but neither would anything in my experiences this 
past year with actuaries and others from all over the globe make 
me believe that the Proceedings sits on that pedestal. I believe it 
must. Why? In part, because we have competition. In part be- 
cause all practitioners of  our discipline need it, and we need to 
serve them better. But there is a more important and overriding 
reason-- i t  has to do with vision. 

This tumultuous year began with the publication of  our strate- 
gic plan. I believe in that plan. I believe in the guiding principles 
it articulates. I believe in the functions it lays out for the CAS. 
I believe in the strategies it identifies. I believe in the defini- 
tions it uses and the direction in which it points. Most of  all, 
I believe in its vision for the CAS: to be the pre-eminent re- 
source for education, knowledge, experience and applied re- 
search for those actuaries who specialize in property, casualty 
and similar risk exposures, including the field known as general 
insurance. 

We can achieve the vision, but in order to do so, in my view, 
we have work to do. Work including improving service to our 
worldwide membership, expanding research and refining and 
promoting the Proceedings. This work alone will not be suffi- 
cient. We will need constant attention to optimizing our relation- 
ships with other actuarial organizations of all types. We need to 
serve them better. We will need to continuously evolve and de- 
velop our education processes, keeping focus on adding value to 
students, members and our clients alike. We need to serve them 
better. We will need to strive eternally for higher quality as an 
organization and as professionals--all  the more to serve them 
better. We have a great start, but we are young and it is only a 
start. We need to keep moving in the right direction, keep the 
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strategic plan alive and adaptive, apply good common sense and, 
oh, by the way, keep it fun. It will help us serve them better. 

Well, that's it. You know and I know there is nothing partic- 
ularly deep or original here, but such are my thoughts, such is 
my philosophy. I share it in hope to serve you better. 
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November 9-12, 1997 

MARRIOTT'S DESERT SPRINGS 

RESORT & SPA, PALM DESERT, CALIFORNIA 

Sunday, November 9, 1997 

The Board of Directors held their regular quarterly meeting 
from noon to 5:00 p.m. 

Registration was held from 4:00 p.m. to 6:00 p.m. 

From 5:30 p.m. to 6:30 p.m., there was a special presentation to 
new Associates and their guests. All 1997 CAS Executive Council 
members briefly discussed their roles in the Society with the new 
members. In addition, Michael L. Toothman, who is a past presi- 
dent of the CAS, briefly discussed his role with the American 
Academy of Actuaries' (AAA) Casualty Practice Council. 

A welcome reception for all members and guests was held from 
6:30 p.m. to 7:30 p.m. 

Monday, November 10, 1997 

Registration continued from 7:00 a.m. to 8:00 a.m. 

CAS President Robert A. Anker opened the business session at 
8:00 a.m. and recognized past presidents of the CAS who were in 
attendance at the meeting, including: Albert J. Beer (1995), Phillip 
N. Ben-Zvi (1985), Ronald L. Bornhuetter (1975), Michael Fusco 
(1989), David G. Hartman (1987), Allan M. Kaufman (1994), 
Thomas E. Murrin (1963-1964), LeRoy J. Simon (1971), Michael 
L. Toothman (1991), and Michael A. Waiters (1986). 

Mr. Anker also recognized special guests in the audience: 
Bruce Palmer, President of the American Risk and Insurance As- 
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sociation; Yoshiro Koike of the Institute of Actuaries of Japan; Al- 
lan M. Kaufman, President of the American Academy of Actuar- 
ies; Wilson W. Wyatt Jr., Executive Director of the American 
Academy of Actuaries; Peter E Moser, President-Elect of the 
Canadian Institute of Actuaries; Anna M. Rappaport, President of 
the Society of Actuaries. 

Mr. Anker then announced the results of the CAS elections. 
The next President will be Mavis A. Waiters, and the President- 
Elect will be Steven G. Lehmann. Members of the Executive 
Council for 1997-1998 will be: Curtis Gary Dean, Vice Presi- 
dent-Administration; Kevin B. Thompson, Vice President--Ad- 
missions; Susan T. Szkoda, Vice President--Continuing 
Education; Patrick J. Grannan, Vice President--Programs and 
Communication; and Robert S. Miccolis, Vice President--Re- 
search and Development. New members of the CAS Board of Di- 
rectors will be: Paul Braithwaite, Jerome A. Degerness, Michael 
Fusco, and Stephen P. Lowe. 

Patrick J. Grannan, Robert S. Miccolis, and Kevin B. Thomp- 
son announced the new Associates and Mavis A. Waiters an- 
nounced the new Fellows. The names of these individuals follow. 

Jonathan David 
Adkisson 

Timothy Paul Aman 
Larry D. Anderson 
Robert Sidney 

Ballmer II 
Andrea C. Bautista 
Steven L. Berman 
Daniel David Blau 
Carol Ann Blomstrom 
Pierre Bourassa 
George Peter Bradley 
Mary Hernerick 

Bready 

NEW FELLOWS 

Kirsten Rose Brumley 
Peter Vincent Burchett 
John Frederick 

Butcher II 
J' ne Elizabeth 

Byckovski 
Dennis K. Chan 
Rita E. Ciccariello 
Jean Cloutier 
William Brian Cody 
Charles Anthony Dal 

Corobbo 
Guy Rollin Danielson 
Jeffrey E Deigl 

Robert G. Downs 
Bernard Dupont 
Jeffrey Eddinger 
Carole M. Ferrero 
Ginda Kaplan Fisher 
Mary Elizabeth 

Fleischli 
Christian Fournier 
Julie Therese Gilbert 
Michael Ambrose 

Ginnelly 
Annette J. Goodreau 
Mari Louise Gray 
Leigh Joseph Halliweli 
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Paul James Hancock 
Bradley Alan Hanson 
David S. Harris 
Amy Jean 

Himmelberger 
Robert J. Hopper 
David Dennis Hudson 
Paul Robert Hussian 
Hou-wen Jeng 
Daniel Keith Johnson 
Kurt Jeffrey Johnson 
Mark Robert Johnson 
Ira Mitchell Kaplan 
Lowell J. Keith 
Rebecca Anne 

Kennedy 
Joan M. Klucarich 
Jason Anthony 

Kundrot 
Edward M. Kuss 
Salvatore T. LaDuca 
Gregory D. Larcher 
Elizabeth Ann 

Lemaster 
Jennifer McCullough 

Levine 
Keith A. Mathre 
Robert E Maton 
Richard Timmins 

McDonald 

Daniel Julian Merk 
Timothy Messier 
Claus S. Metzner 
Andrew Wakefield 

Moody 
Robert Joseph Moser 
Kimberly Joyce Muilins 
Turhan E. Murguz 
Aaron West Newhoff 
Kevin Jon Olsen 
Milary Nadean Olson 
Regina Marie Puglisi 
Patrice Raby 
Raymond J. Reimer 
Andrew Scott Ribaudo 
Meredith Gay 

Richardson 
Gregory Riemer 
Stephen Paul Sauthoff 
Christine E. Schindler 
Terry Michael Seckel 
Huidong Kevin Shang 
Robert Daniel Share 
Jeffrey Parviz Shirazi 
Gary E. Shook 
Jill C. Sidney 
Lori Ann Snyder 
Carl J. Sornson 
Victoria Grossack 

Stachowski 

Julia Causbie Stenberg 
John A. Stenmark 
Deborah L. Stone 
Kevin Douglas Strous 
Thomas Struppeck 
Collin John Suttie 
Steven John Symon 
Daniel A. Tess 
Glenn Allen Tobleman 
Linda Kay Torkelson 
Philippe Trahan 
Theresa Ann 

Turnacioglu 
Robert Ward Van Epps 
Erica Lynn Weida 
Geoffrey Todd Werner 
Jeffrey D. White 
Gayle Lynne Wiener 
Elizabeth Ruth 

Wiesner 
Tad E. Womack 
Roger Allan Yard 
Gerald Thomas Yeung 
Jeffery Michael Zacek 
Doug A. Zearfoss 
Alexander Guangjian 

Zhu 
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John Scott Alexander 
Paul C. Barone 
Anna Marie Beaton 
Andrew S. Becker 
Frank J. Bilotti 
Linda Jean Bjork 
Michael J. Bluzer 
Sherri Lynn Border 
Richard Albert 

Brassington 
Rebecca Schafer 

Bredehoeft 
Kevin D. Burns 
Joyce Chen 
Michael Joseph 

Christian 
Stephen Daniel Clapp 
Christopher Paul 

Coelho 
Kathleen T. 

Cunningham 
Michael J. Curcio 
Kevin Francis Downs 
Michael Edward Doyle 
Sophie Dulude 
Kristine Marie 

Firminhac 
Chauncey Fleetwood 
David Michael Flitman 
Sy Foguel 
Hugo Fortin 
Kevin Jon Fried 
Noelle Christine Fries 
Micah R. Gentile 

NEW ASSOCIATES 

Susan I. Gildea 
Christopher David 

Goodwin 
Philippe Gosselin 
Jacqueline Lewis 

Gronski 
Christopher Gerald 

Gross 
Nasser Hadidi 
Kenneth Jay Hammell 
Gregory Hansen 
Michelle Lynne 

Harnick 
Ia F. Hauck 
Cynthia Jane Heyer 
Ali Ishaq 
Christopher Donald 

Jacks 
Jean-Claude Joseph 

Jacob 
Walter L. Jedziniak 
William Rosco Jones 
Robert B. Katzman 
Brandon Daniel Keller 
Linda Kong 
Richard Scott Krivo 
Sarah Krutov 
Alexander Krutov 
Kirk L. Kutch 
Todd William 

Lehmann 
Charles Letourneau 
Marc E. Levine 
Daniel Patrick Maguire 

David E. Marra 
William A. Mendralla 
Richard Ernest Meuret 
Stephanie J. Michalik 
Michael J. Miller 
Christopher James 

Monsour 
Robert John Moss 
Charles P. Neeson 
Helen Patricia Neglia 
Tieyan Tina Ni 
Christopher Maurice 

Norman 
Steven Brian Oakley 
David Anthony 

Ostrowski 
James Alan Partridge 
Lisa Michelle 

Pawlowski 
Mark Paykin 
Julie Perron 
Anthony George 

Phillips 
David John Pochettino 
Matthew H. Price 
Denise Farnan Rosen 
Tracy A. Ryan 
Shama S. Sabade 
Christy Beth Schreck 
Michael Robert 

Schummer 
William Harold 

Scully III 
Halina H. Smosna 
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Avivya Simon Stohl 
Brian Tohru Suzuki 
Nitin Talwalkar 
Jonathan Garrett 

Taylor 

Alice M Underwood 
David M. Vogt 
Nathan Karl Voorhis 
Claude A. Wagner 
Patricia Cheryl White 

Laura Markham 
Williams 

Bruce Philip Williams 
Joel F. Witt 
Yuhong Yang 

Mr. Anker then introduced Ronald L. Bornhuetter, a past presi- 
dent of the Society, who presented the Address to new members. 

Mr. Anker then announced Paul M. Otteson as the recipient of 
the 1997 CAS Matthew S. Rodermund Service Award. David G. 
Hartman presented the 1997 CAS Charles A. Hachemeister Prize 
to Stephen P. Lowe and James N. Stanard for their paper, "An Inte- 
grated Dynamic Financial Analysis and Decision Support System 
for a Property Catastrophe Reinsurer." 

Gary R. Josephson, chairperson of the CAS Committee on Re- 
view of Papers, announced that seven Proceedings papers and one 
discussion of a Proceedings paper would be presented at this 
meeting. Mr. Josephson also announced that five papers would be 
published in the 1997 Proceedings but would not be presented at 
this meeting. The papers and the authors are: "A Markov Chain 
Model of Shifting Risk Parameters" by Howard C. Mahler; "The 
Insurance Expense Exhibit and the Allocation of Investment In- 
come" by Sholom Feldblum; "On Approximations in Limited 
Fluctuation Credibility Theory" by Vincent Goulet; "Adjusting In- 
dicated Insurance Rates: Fuzzy Rules that Consider both Experi- 
ence and Auxiliary Data" by Virginia R. Young; and 
"Measurement of Asbestos Bodily Injury Liabilities" by Susan L. 
Cross and John P. Doucette. 

Mr. Josephson presented the 1997 Woodward-Fondiller Prize to 
Leigh J. Halliwell for his paper "Loss Prediction by Generalized 
Least Squares." Mr. Josephson then presented the 1997 CAS 
Dorweiler Prize to co-winners Sholom Feldblum for his paper, 
"Personal Automobile Premiums: An Asset Share Pricing Ap- 
proach for Property-Casualty Insurance," and Glenn G. Meyers for 
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his paper, "The Competitive Market Equilibrium Risk Load For- 
mula for Catastrophe Ratemaking" 

Mr. Josephson introduced Stephen P. D'Arcy who presented 
the American Risk and Insurance Association (ARIA) Prize to 
Daniel Zajdenweber for his paper, "Extreme Values in Business 
Interruption Insurance." Mr. D'Arcy then introduced Bruce 
Palmer, President of ARIA, who spoke briefly about ARIA. 

Mr. Anker then requested a moment of silence in honor of those 
CAS members who passed away since November 1996. They 
were: Robert D. Bart, Sr.; Douglas Critchley; Harold E. Curry; 
Richard C. Ernst; Alfred V. Fairbanks; Daniel J. Lyons; John S. 
McGuinness; Earl Nicholson; Max J. Schwartz; Byron Wright; 
and Hubert W. Yount. 

Mr. Anker acknowledged a donation of $15,000 from D. W. 
Simpson & Company to the CAS Trust (CAST) on May 9, 1997. 

Mr. Anker then concluded the business session of the Annual 
Meeting by announcing that the minutes of the Spring Meeting, 
this meeting, and the report of the Vice-President--Administra- 
tion would be included in the next Proceedings. 

After a refreshment break, Mr. Anker introduced the featured 
speaker, Oren Harari, an author and columnist on business and 
management issues. 

The first general session was held from 10:45 a.m. to 12:15 
p.m. 

Consolidation in the Insurance Industry--A Forward 
Perspective 

Moderator: Frederick O. Kist 
Senior Vice President 
CNA 

Panelists: Heidi E. Hutter 
Chairman, President, and 
Chief Executive Officer 
Swiss Reinsurance America Corporation 
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Stephan L. Christiansen 
Senior Vice President 
Conning & Company 

George N. Cochran 
Managing Director 
Cochran, Caronia & Co. 

Following the general session, CAS President Robert A. Anker 
gave his Presidential Address at the luncheon after which he offi- 
cially passed the CAS presidential gavel on to new CAS President 
Mavis A. Waiters. 

After the luncheon, the afternoon was devoted to concur- 
rent sessions, which included presentations of the Hachemeister 
and ARIA Prize papers, and Proceedings papers. The panel 
presentations from 1:30 p.m. to 3:00 p.m. covered the following 
topics: 

1. Quality Assurance for the Actuarial Work Product 

Moderator: Patrick B. Woods 

Panelists: 

2. Current Claims 

Moderator: 

Assistant Vice President 
Insurance Services Office, Inc. 

David B. Cox 
Consulting Actuary 

Gregory L. Hayward 
Actuary 
State Farm Mutual Automobile Insurance 
Company 

Russel L. Sutter 
Consulting Actuary 
Tillinghast-Towers Perrin 

Issues 

James Surrago 
Vice President 
Insurance Services Office, Inc. 
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Panelists: Richard Boehning 
Senior Vice President 
American Insurance Services Group, Inc. 

Joseph Jensen 
Vice President 
Computer Sciences Corporation 

Barry C. Lipton 
Vice President 
Fireman's Fund Insurance Companies 

3. Building a Dynamic Financial Analysis Model 

Speaker: Gerald Kirschner 
Senior Consulting Actuary 
Ernst & Young LLP 

4. Insurance Risk With the Year 2000 

Moderator: George Burger 
Assistant Vice President 
Insurance Services Office, Inc. 

Panelists: Hilary N. Rowen 
Partner 
Thelen, Marrin, Johnson & Bridges, LLP 

Elizabeth Sterne 
Counsel and Director of Reference 
Maintenance 
Property Loss Research Bureau 

David Wampold 
Product Development Director 
The Hartford 

5. Casualty Practice Council 

Moderator: Michael L. Toothman 
AAA Vice President, Casualty Practice 
Council 
Partner 
Arthur Andersen LLP 



802 MINUTES OF TIlE 1997 CAS ANNUAL MEETING 

Panelists: Ralph S. Blanchard III 
Chairperson, Task Force on Property and 
Casualty Risk-Based Capital 
Assistant Vice President & Actuary 
Travelers Group 

Frederick O. Kist 
Chairperson, Committee on Property and 
Liability Issues 
Senior Vice President 
CNA 

Jan A. Lommele 
Chairperson, Committee on Property and 
Liability Financial Reporting 
Principal 
Deloitte & Touche LLP 

The following 1997 CAS Hachemeister Prize Paper was pre- 
sented: 

"An Integrated-Dynamic Financial Analysis and Decision 
Support System for a Property Catastrophe Reinsurer" 

Authors: Stephen P. Lowe 
Consulting Actuary 
Tillinghast-Towers Perrin 

James N. Stanard 
Chairman, President and Chief Executive 
Officer 
Renaissance Reinsurance, Ltd. 

The following 1997 ARIA Prize Paper was presented: 

"Extreme Values in Business Interruption Insurance" 

Author: Daniel Zajdenweber, U.ER. SEGMI 
Universit6 Paris X-Nanterre 
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The following 1997 Proceedings paper was presented: 

"Ratemaking: A Financial Economics Approach" 

Authors: Stephen P. D'Arcy 
Professor, Department of Finance 
University of Illinois 

Michael Dyer 
Visiting Assistant Professor 
University of Illinois 

After a refreshment break from 3:00 p.m. to 3:30 p.m., concur- 
rent sessions continued, and two Proceedings authors gave pre- 
sentations of their papers. Certain concurrent sessions presented 
earlier were repeated. Additional concurrent sessions presented 
from 3:30 p.m. to 5:00 p.m. were: 

1. Catastrophe Models and Some Applications 

Moderator/ John L. Tedeschi 
Panelist: Senior Vice President 

Guy Carpenter & Company 

Panelists: John P. Drennan 
Consulting Actuary 
JPD & Associates 

Eric F. Lemieux 
Chief Actuary 
CAT, Ltd. 

2. What Your Mother Never Told You About Part 10 

Moderator: Roger M. Hayne 
Chairperson, Committee on Theory of Risk 

Panelists: 

Consulting Actuary 
Milliman & Robertson, Inc. 

John G. Aquino 
Senior Vice President 
Aon Re Services 

Philip E. Heckman 
Vice President and Actuary 
Aon Risk Consultants, Inc. 
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Glenn G. Meyers 
Assistant Vice President 
Insurance Services Office, Inc. 

3. Developing Scenarios as Input Into a DFA Model 

Speakers: Stephen P. Lowe 
Consulting Actuary 
Tillinghast-Towers Perrin 

Franqois Morin 
Consulting Actuary 
Tillinghast-Towers Perrin 

4. Introduction to the CAS Examination Committee 

Moderator: William E Murphy 
Vice Chairperson, CAS Examination 
Committee 
Consulting Actuary 
Milliman & Robertson, Inc. 

Panelists: J. Thomas Downey 
Manager, Admissions 
Casualty Actuarial Society 

Donald D. Sandman 
Actuary 
Sentry Insurance 

Richard E Yocius 
Actuary 
Allstate Insurance Company 

5. ASB Standard of Actuarial Practice on Loss Reserve 
Opinions 

Moderator: Robert S. Miccolis 
Chairperson, ASB Task Force on 
Reserving 
Senior Vice President and Actuary 
Reliance Reinsurance Corporation 
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Panelists: Members of the Subcommittee on 
Reserving of the ASB Casualty 
Committee 

The following Proceedings papers were presented: 

1. "1997 Retrospective Rating: Excess Loss Factors" 

Authors: William R. Gillam 
Vice President/Actuary 
National Council on Compensation 
Insurance, Inc. 

Jose Couret 
Senior Actuarial Associate 
Swiss Re America 

2. Discussion by the original author of "Workers Compensa- 
tion Experience Rating: What Every Actuary Should 
Know" 

Author: William R. Gillam 
Vice President/Actuary 
National Council on Compensation 
Insurance, Inc. 

A reception for new Fellows and guests was held from 5:30 
p.m. to 6:30 p.m., and the general reception for all members and 
their guests was held from 6:30 p.m. to 7:30 p.m. 

Tuesday, November 11, 1997 

Registration and a continental breakfast took place from 7:00 
a.m. to 8:00 a.m. 

Two general sessions were held simultaneously from 8:00 a.m. 
to 9:30 a.m. One was: 

Actuarial Work Around the World 

Moderator: David G. Hartman 
Senior Vice President and Chief Actuary 
Chubb Group of Insurance Companies 



80 6  MINUTES OF THE 1997 CAS ANNUAL MEETING 

Panelists: Thomas R. Bayley 
Vice President 
Aetna International, Inc. 

Gail M. Ross 
Vice President 
AM-RE Consultants, Inc. 

Thomas Struppeck 
Actuary 
Centre Re 

The other session, presented simultaneously, was 

Putting the Catastrophe Challenge in Perspective 

Moderator: Jeffrey C. Warren 
Vice President 
General Reinsurance Corporation 

Panelists: Anthony Michaels 
Director-Wrigley Institute for 
Environmental Studies 
University of Southern California 

Michael G. McCarter 
Vice President, Industry and Regulatory 
Affairs 
American International Group, Inc. 

After a refreshment break, concurrent sessions were held from 
10:00 a.m. to 11:30 a.m. In addition to concurrent sessions that 
were presented the previous day, the following three additional 
concurrent sessions and two additional Proceedings papers were 
presented: 

1. Should a Merger or Acquisition be Part of Your Company 
Strategy? 

Moderator: Elizabeth M. Riczko 
Vice President 
Ohio Casualty Group 
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Panelists: George E. Councill 
Director 
Coopers & Lybrand, L.L.P. 

2. Catastrophe Securitization 

Moderator: Lowell J. Keith 
Actuary 
Zurich Centre ReSource, Ltd. 

Panelists: Bryon G. Ehrhart 
Executive Vice President 
Alternative Financial Products 
AON Worldwide Resources 

Andrew J. Kaiser 
Head of Insurance Products Group 
Goldman, Sachs & Company 

3. An Evolving Career Path--Financial Actuary 

Moderator/ James M. Bartie 
Panelist: Vice President 

Chase Securities Inc. 

Panelists: Steven J. Johnston 
Chief Financial Officer and Treasurer 
State Auto Insurance Companies 

Robert E Scott, Jr. 
Senior Vice President 
Willis Faber North America 

The following Proceedings papers were presented: 

1. "Balancing Development and Trend in Loss Reserve 
Analyses" 

Author: Spencer M. Gluck 
Executive Vice President 
Swiss Re Services Corporation 

2. "Funding for Retained Workers Compensation Exposure" 

Authors: Brian Z. Brown 
Consulting Actuary 
Milliman & Robertson, Inc. 
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Michael D. Price 
President 
London Life and Casualty Reinsurance 

Various CAS committees met from 1:00 p.m. to 5:00 p.m. In 
addition, tennis and golf tournaments were held during that time. 

All meeting participants and their guests enjoyed a California 
Beach Barbecue from 6:30 p.m. to 10:00 p.m. 

Wednesday, November 12, 1997 

A continental breakfast was held from 7:00 a.m. to 8:00 a.m. 

In addition to concurrent sessions that had been given previ- 
ously and which were repeated, three additional concurrent ses- 
sions and three additional Proceedings papers were presented 
from 8:00 a.m. to 9:30 a.m. The concurrent session was: 

1. Emerging Markets in the Pacific Rim 

Moderator/ Herbert G. Desson 
Panelist: Chief Actuary 

Aon Risk Consultants (Europe) Ltd. 

Panelist: Rejean S. Besner 
Deloitte & Touche LLP 
ABC Consulting 

2. Questions and Answers with the CAS Board of Directors 

Moderator: 

Panelists: 

Mavis A. Waiters 
CAS President-Elect 
Executive Vice President 
Insurance Services Office, Inc. 

Regina M. Berens 
Consulting Actuary 
MBA, Inc. 

David N. Hailing 
Senior Vice President and Actuary 
American States Insurance Companies 
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Steven G. Lehmann 
Consulting Actuary 
Miller, Rapp, Herbers & Terry, Inc. 

3. New Fellows' Perspectives 

Moderator: Steven G. Lehmann 
Consulting Actuary 
Miller, Rapp, Herbers & Terry, Inc. 

Panelists: Mari L. Gray 
Property and Casualty Actuary 
State of Montana 

Leigh J. Halliwell 
Consulting Actuary 
Milliman & Robertson, Inc. 

Linda K. Torkelson 
Associate Actuary, International 
Allstate Insurance Company 
Geoffrey T. Werner 
Executive Director 
United Services Automobile Association 

The following Proceedings papers were presented: 
1. "Parameter Uncertainty in (Log) Normal Distributions" 

Author: Rodney E. Kreps 
Executive Vice President and Chief 
Actuary 
Sedgwick Re Insurance Strategy, Inc. 

2. "Application of the Options Market Paradigm to the Solu- 
tion of Insurance Problems" 

Author: Michael G. Wacek 
Managing Director 
St. Paul Reinsurance Company, Ltd. 
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3. "Workers Compensation and Economic Cycles: A Longi- 
tudinal Approach" 

Authors: Robert P. Hartwig 
Swiss Re 

William J. Kahley 
California Workers Compensation 
Institute 

Tanya E. Restrepo 
National Council on Compensation 
Insurance, Inc. 

Ronald C. Retterath 
Retired 
Boca Raton, Florida 

The final general session was held from 10:00 a.m. to 11:30 
a.m. after a 30-minute refreshment break: 

Banks in the Insurance Business 

Moderator: Linda L. Bell 
Senior Vice President and Chief Actuary 
The Hartford 

Panelists: David M. Klein 
Executive Vice President 
The Hartford International 

Chip Sharkey 
Senior Vice President and Chief 
Marketing Officer 
CNA 

After the general session, Robert A. Anker announced future 
CAS meetings and seminars and officially adjourned the 1997 
CAS Annual Meeting at 11:40 a.m. 
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Attendees of the 1997 CAS Annual Meeting 

The 1997 CAS Annual Meeting was attended by 434 Fellows, 
226 Associates, and 259 guests. The names of the Fellows and 
Associates in attendance follow. 

Shawna Ackerman 
Jonathan David 

Adkisson 
Jean-Luc E. Allard 
Timothy Paul Aman 
Larry D. Anderson 
Richard R. Anderson 
Scott C. Anderson 
Robert A. Anker 
John G. Aquino 
Robert Sidney 

Ballmer II 
William N. Bartlett 
Edward J. Baum 
Andrea C. Bautista 
Thomas R. Bayley 
Linda L. Bell 
Gary E Bellinghausen 
Phillip N. Ben-Zvi 
Regina M. Berens 
Steven Louis Berman 
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REPORT OF THE VICE PRESIDENT-ADMINISTRATION 

This report provides a summary of CAS activities since the 
last CAS Annual Meeting. I will first comment  on these activities 
as they relate to the following purposes of  the Casualty Actuarial 
Society as stated in our Constitution: 

1. Advance the body of knowledge of  actuarial science in appli- 
cations other than life insurance; 

2. Establish and maintain standards of qualification for member- 
ship; 

3. Promote and maintain high standards of  conduct and compe- 
tence for the members; and 

4. Increase the awareness of  actuarial science. 

I will then provide a summary of other activities that may not 
relate to a specific purpose, but yet are critical to the ongoing 
vitality of  the CAS. And lastly, I will summarize the current 
status of  our finances and key membership statistics. 

In support of  Purpose I, the CAS has devoted significant re- 
sources during the past year to a variety of research initiatives, 
including the following projects as assigned to the appropriate 
committee: 

• Creation of  a World Wide Web site containing component  vari- 
ables for use in dynamic financial analysis models (DFA Task 
Force on Variables). 

• Completion of  a joint call paper program with the Insurance 
Data Management Association (Committee on Management 
Data and Information). 

• Completion of 1997 call paper programs on ratemaking (Com- 
mittee on Ratemaking), reserving (Committee on Reserves), 
reinsurance (Committee on Reinsurance Research), and dy- 
namic financial analysis (Dynamic Financial Analysis Task 
Force on Variables). 

818 
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• Collaboration with the SOA to identify areas where joint state- 
ments of principles can be developed (Committee on Princi- 
ples). 

• Progress on commissioned research on advanced collective 
risk models (Committee on Risk Theory). 

New papers published in the Proceedings, four volumes of  
the Forum, and the Discussion Paper Program, all increase the 
body of knowledge available to our profession. Publications re- 
leased in 1997 included papers on ratemaking, DFA, reserving, 
data management, and health care issues. The 1996 Proceedings 
included eleven new papers on a variety of  topics-- the most new 
papers published in a Proceedings in recent years. 

The Admissions Committees provide the major support for 
Purpose 2. They make continuous improvements to the Syllabus 
and exam preparation and grading process, while overseeing the 
administration of the testing of approximately 6,400 registered 
candidates. Major initiatives in this area this year included: 

• Design of a new CAS educational system beginning in 2000, 
along with the transition rules for gaining credit for the new 
exams. 

• Inclusion of material on dynamic financial analysis in the 1998 
Syllabus for Part 7. 

Purpose 3 is partially achieved through a quality program 
of  continuing education. The CAS provides these opportunities 
through the publication of  actuarial materials and the sponsor- 
ship of  a number of meetings and seminars. This year's sessions 
included: 

• The Spring and Annual Meetings, held in San Antonio, Texas 
and Palm Desert, California; 

• The 1995 CAS Seminar on Ratemaking, held in Boston, Mas- 
sachusetts, which had 781 registrants; 
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• The Casualty Loss Reserve Seminar in Atlanta, Georgia, of 
which the CAS is a cosponsor with the American Academy 
of  Actuaries, attended by 641; 

• The special interest seminar on "Mergers and Acquisitions" in 
April, attended by 122; 

• The special interest seminar on "Dynamic Financial Analysis" 
in July, attended by 257; 

• The special interest seminar on "International Issues" held in 
October, attended by 90; 

• The Reinsurance Seminar in June, attended by 277; 

• The CIA/CAS Seminar for the Appointed Actuary, cospon- 
sored by the Canadian Institute of Actuaries and the CAS, 
attended by 293; and 

• Limited attendance seminars on "Reinsurance," "Principles 
of  Finance," "Loss Distributions," and "Managing Asset Risk 
and Return." 

The CAS Regional Affiliates also provide valuable opportu- 
nities for the members to participate in educational forums. In 
addition, the Regional Affiliates are a resource to help increase 
the awareness of  the profession at the local level. 

In support of  Purpose 3, the External Communications Com- 
mittee developed a CAS Communication Plan that includes pro- 
moting dynamic financial analysis; fostering awareness of casu- 
alty actuaries in corporate America, government and the P&C 
industry; encouraging students to consider a casualty actuary ca- 
reer; supporting AAA activities; and improving communications 
both internally and worldwide. 

The CAS also promoted awareness of the profession through 
continued financial support of the Forecast 2000 Program. This 
program seeks to align the actuarial profession with crucial pub- 
lic policy issues and increase visibility of actuaries with the gen- 
eral public. 
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Also related to the fourth purpose, but generally affecting all 
purposes, are the CAS's international activities. In addition to 
the ongoing attendance at various international actuarial society 
meetings by the CAS leadership, the CAS continued to be an 
active participant in shaping the role of the International Forum 
of Actuarial Associations. 

The CAS Office continues to provide excellent support and to 
expand its service and capabilities. Significant service additions 
have been realized with the establishment of the CAS World 
Wide Web Site and the offering of credit card services for pay- 
ment of dues and fees. The web site proved to be a popular 
service very quickly with 1,000 members registered for the CAS 
"Members' Only" section during the first year of operations. The 
office also planned and budgeted for reimbursement of exam 
graders' travel expenses in fiscal year 1998. 

The office coordinated a review of CAS operations by an out- 
side law firm, which served as an update to the 1992 legal review. 
The 1997 update concluded that the CAS "appears to continue 
to be well-organized and operated from a legal perspective, with 
relatively low risk of legal liability." 

Another resource of the CAS, and an integral part of its fab- 
ric and success, is its committees and many volunteers. Member 
participation on our committees remains high. The annual Lead- 
ership Meeting in March was highlighted by discussion of key 
strategic planning issues including CAS independence and rela- 
tionship with the SOA, the CAS international role, and managing 
the consequences of growth. 

In addition to approving the new educational system, the 
Board of Directors addressed several other aspects of the fu- 
ture of the CAS. With assistance from the Long Range Planning 
Committee, the Board amplified the 1996 Strategic Plan as it 
relates to CAS independence, CAS growth, and international is- 
sues. A vigorous and constructive dialogue with the Society of 
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Actuaries concerning CAS/SOA relationships and joint activities 
took place throughout the year. 

New members elected to the Board of Directors for next 
year include Paul Braithwaite, Jerome A. Degerness, Michael 
Fusco, and Stephen P. Lowe. The membership elected Steven 
G. Lehmann to the position of president-elect, while Mavis A. 
Walters will assume the presidency. 

The Executive Council, with primary responsibility for day- 
to-day operations, met either by teleconference or in person at 
least once a month during the year. The Board of Directors 
elected the following Vice Presidents for the coming year. 

Vice President-Administration, Curtis Gary Dean 

Vice President-Admissions, Kevin B. Thompson 

Vice President-Continuing Education, Susan T. Szkoda 

Vice President-Programs and Communications, Patrick J. 
Grannan 

Vice President-Research and Development, Robert S. Miccolis 

In closing, I will provide a brief status of our membership 
and financial condition. Our size continued its rapid increase 
as we added 208 new Associates and 125 new Fellows. Our 
membership now stands at 2,899. 

The CPA firm of Feddeman & Company has been engaged to 
examine the CAS books for fiscal year 1997 and its findings will 
be reported by the Audit Committee to the Board of Directors in 
February 1998. The fiscal year ended with unaudited net income 
of $369,070, which compares favorably to a budgeted amount 
of $133,508. Members' equity now stands at $2,476,681. This 
represents an increase in equity of $394,943 over the amount 
reported last year. 

For 1997-1998, the Board of Directors has approved a bud- 
get of approximately $3.7 million. Members' dues for next year 
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will be $270, an increase of $10, while fees for the Subscriber 
Program will increase by $15 to $335. 

In my final year as Vice President-Administration, it has been 
very gratifying to see the CAS continue to grow and strengthen. 

Respectfully submitted, 
Paul Braithwaite 
Vice President-Administration 
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FUNCTION 
Membership Services 
Seminars 
Meetings 
Exams 
Publications 
TOTAL 

F I N A N C I A L  R E P O R T  

F I S C A L  Y E A R  E N D E D  9 /30 /97  

OPERATING RESULTS BY FUNCTION 

INCOME EXPENSE DIFFERENCE 
$ 905,695 (a) $ 959,541 $ (53,846) 

1,084,652 838,519 246,133 
542,727 529,566 13,161 

2,395,668 (b) 2,246,261 (b) 149,407 
68,378 39,051 29,327 

$ 4,997,120 $ 4,612,938 $ 384,182 (c) 
NOTES: (a) Includes income of $15,112 to adjust marketable securities to market value (SFAS 124) 

(b) Includes $1,475,850 of Volunteer Services for income and expense (SFAS 116). 
(c) Change in CAS Surplus net of $52,000 of interfund transfers ($50,000 to Research Fund and 

BALANCE SHEET 

ASSETS 9/30/96 9/30/97 DIFFERENCE 
Checking Account $ 149,550 $ 237,098 $ 87,548 
T-Bills/Notes 2,595,152 2,922,852 327,700 
Accrued Interest 45,728 49,875 4,147 
Prepaid Expenses 28,405 31,798 3,393 
Prepaid Insurance 8,256 11,467 3,21 I 
Accounts Receivable 8,555 13,782 5,227 
Textbook Inventory 0 14,435 14,435 
Computers, Furniture 253,266 270,717 17,45 I 
Less: Accumulated Depreciation (199,649) (223,531) (23,882) 
TOTAL ASSETS $ 2,889,263 $ 3,328,493 $ 439.230 

LIABILITIES 9/30/96 9/30/97 DIFFERENCE 
Exam Fees Deferred $ 328,948 $ 338,649 $ 9,701 
Annual Meeting Fees Deferred 62,675 52,860 (9,815) 
Seminar Fees Deferred 67,376 21,106 (46.270) 
Accounts Payable and Accrued Expenses 269,427 372,617 103,1 O0 
Deferred Rent 33,407 21,74-1 ( 11,663) 
Accrued Pension 45,692 44,835 (857) 
TOTAL LIABILITIES $ 807,525 $ 851,811 $ 44,286 

MEMBERS' EQUITY 
Unresmcted 9/30/96 9/30/97 DIFFERENCE 
CAS Surplus $ 1,766,753 $ 2.t50,935 $ 384 182 
Michelbacher Fund 94,856 98,425 3,56 t~ 
Dorweiler Fund 4,371 3,591 17801 
CAS Trust 3,641 18.825 15.18,1 
Research Fund 185,404 154.207 [ 3 I, I q7, 
ASTIN Fund 6,000 31,550 25.55i~ 

Sublotal Unrestricted 2,061,025 2,457,533 396.508 

Temporarily Restricted 
Scholarship Fund 7.182 7.042 (140) 
Rodermund Fund 13,531 12,106 ( 1 425) 

Subtotal Resmcted 20.713 19,148 ( 1.565).)_ 
TOTAL EQUITY $ 2,081.7~8 $ 2 476.681 $ 3~4 t~43 

C Gary Dean, Vice President-Administration 

This is to certify, that the assets and accounts shown in the above 

f inancial statement have been audited andJbund to be correc't 

CAS Audit Commiltee: Regina M Berens, Chairpers~m 

Anthony J Grippa. Dnvid N Hafling and William J Ro*land 

$2,000 to ASTIN Fund). 



1997 EXAMINATIONS--SUCCESSFUL CANDIDATES 

Examinations for Parts 3B, 4A, 4B, 5A, 5B, 6, 8, 8C (Cana- 
dian), and 10 of the Casualty Actuarial Society were held on May 
5, 6, 7, 8, and 9, 1997. Examinations for Parts 3B, 4A, 4B, 5A, 
5B, 7, 7C (Canadian) and 9 of the Casualty Actuarial Society were 
held on October 27, 28, 29, and 30, 1997. 

Examinations for Parts 1, 2, 3A, and 3C (SOA courses 100, 
110, 129, and 135, respectively) are jointly sponsored by the Ca- 
sualty Actuarial Society and the Society of Actuaries. Parts 1 and 
2 were given in February, May, and November 1997, and Parts 3A 
and 3C were given in May and November of 1997. Candidates 
who were successful on these examinations were listed in joint re- 
leases of the two Societies. 

The Casualty Actuarial Society and the Society of Actuaries 
jointly awarded prizes to the undergraduates ranking the highest 
on the Part 1 CAS Examination. 

For the February 1997 Part 1 CAS Examination, the $200 first 
prize winners were Damon C. Capehart, University of Texas, and 
Yuri Zaderman, Rutgers University. The $100 second prize win- 
ners were: Michel D. Allain, University of Laval; Tom W. Baehr- 
Jones, Stuyvesant High School; Alice Y.H. Chan, University of 
Toronto; Pierre Girard, University of Laval; Michael B. Lewis, 
Yeshiva University; Hon-Bun E. Li, University of California; 
Elliot S. Moskowitz, Yeshiva University; and Rachel Yudovich, 
Massachusetts Institute of Technology. 

For the May 1997 Part 1 CAS Examination, the $200 first prize 
winners were: Wang Han Sheng, Peking University; Tao Shi, 
Peking University; Junni Zhang, University of Science and Tech- 
nology of China; Regina G. Dolgoarshinnykh, Central Connecti- 
cut State University; and Jie Gao, University of Science and 
Technology of China. 

For the November 1997 Part 1 CAS Examination. The $200 
first prize winners were: Wen Zhi Chen and Huilang Xie, both of 

825 
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the University of Science and Technology of China. The $100 sec- 
ond prize winners were: Jiehui Li, Zhongshan University; Zhi Li, 
Peking University; Jing Ning, University of Science and Technol- 
ogy of China; David Isaac Rudel, Harvey Mudd College; Ma 
Shuangge, University of Science and Technology of China; and 
Yu Zhou, Renmin University. 

The following candidates were admitted as Fellows and Associ- 
ates at the 1997 CAS Spring Meeting in May. By passing Novem- 
ber 1996 CAS examinations, these candidates successfully 
fulfilled the Society requirements for Fellowship or Associateship 
designations. 

Timothy Atwill 
Margaret A. 

Brinkmann 
Andrew J. Doll 
Eric J. Gesick 
Alessandrea Corinne 

Handley 

Ethan David Allen 
Mark B. Anderson 
Timothy Atwiil 
Wayne F. Berner 
Jonathan Everett Blake 
Edmund L. Bouchie 
David John Braza 
Cary J. Breese 
Margaret A. 

Brinkmann 
Hugh E. Burgess 
Christopher J. 

Burkhalter 

NEW FELLOWS 

James M. MacPhee 
Mark Joseph Moitoso 
Marlene D. Orr 
Kathleen M. Pechan 
Dale S. Porfilio 
Robert Emmett 

Quane III 

NEW ASSOCIATES 

Stephanie T. Carlson 
Sharon C. Carroll 
Richard Joseph 

Castillo 
Richard M. Chiarini 
Theresa Anne Christian 
Alfred Denard 

Commodore 
Margaret Eleanor 

Conroy 
Kenneth S. Dailey 
John D. Deacon 
Sharon C. Dubin 

Jean-Denis Roy 
Mark L. Thompson 
James F. Tygh 
Steven Boyce White 
Floyd M. Yager 

Denis Dubois 
Rachel Dutil 
Wayne W. Edwards 
Jennifer R. Ehrenfeld 
Kristine Marie 

Esposito 
Joseph G. Evleth 
Benedick Fidlow 
Tracy Marie Fleck 
John E. Gaines 
David Evan Gansberg 
Jay C. Gotelaere 
Allen Jay Gould 
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John W. Gradwell 
David Thomas Groff 
Alexander Archibold 

Hammett 
Daniel J. Henderson 
David E. Heppen 
William N. Herr, Jr. 
Thomas Edward Hinds 
Christopher Todd 

Hochhausler 
Luke Delaney Hodge 
Amy L. Hoffman 
Dave R. Holmes 
Jane W. Hughes 
Jason Israel 
Paul Ivanovskis 
Jeremy M. Jump 
Scott Andrew Kelly 
David Neal 

Kightlinger 
Deborah M. King 
George A. Kish 
Karen Lee Krainz 
Jean-Sebastien 

Lagarde 
Robin M. LaPrete 
Yin Lawn 
Kevin A. Lee 
Neal M. Leibowitz 
Bradley H. Lemons 
Michael Victor Leybov 
Janet G. Lindstrom 

Christina Link 
Michelle Luneau 
James M. MacPhee 
Andrea Wynne Malyon 
Jason Noah Masch 
William J. Mazurek 
Phillip E. McKneely 
Allison Michelle 

McManus 
Paul D. Miotke 
Mark Joseph Moitoso 
Benoit Morissette 
Janice C. Moskowitz 
Michael James Moss 
Vinay Nadkarni 
Darci Z. Noonan 
Michael A. Nori 
Mihaela Luminita S. 

O'Leary 
Christopher Edward 

Olson 
Rebecca Ruth Orsi 
Harry Todd Pearce 
John S. Peters 
Amy Ann Pitruzzello 
Jennifer K. Price 
Richard Bronislaus 

Puchalski 
Patricia Ann Pyle 
Kara Lee Raiguel 
Rebecca J. Richard 
John R. Rohe 

Sandra L. Ross 
Joanne Emily Russell 
Lisa M. Scorzetti 
Marc Shamula 
Michael Shane 
Bret Charles Shroyer 
Katherine R. S. Smith 
G. Dennis Sparks 
Alan M. Speert 
Nathan R. Stein 
Lisa M. Sukow 
C. Steven Swalley 
Adam Marshall Swartz 
Christopher C. 

Swetonic 
Elizabeth Susan 

Tankersley 
Patricia Therrien 
Jeffrey S. Trichon 
Kimberly S. Troyer 
Timothy J. Ungashick 
Martin Vezina 
Karen E. Watson 
Mark Steven Wenger 
Miroslaw (Mirek) 

Wieczorek 
Jerelyn S. Williams 
Wendy Lynn Witmer 
Simon Kai-Yip Wong 
Jeffrey E Woodcock 
Edward J. Zonenberg 
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The following candidates successfully completed the Parts of 
the Spring 1997 CAS Examinations that were held in April and 
May. 

Part 3B 

Mustafa Bin Ahmad 
Yassir T. Albaharna 
Gwendolyn Lilly 

Anderson 
Brandie J. Andrews 
Jonathan L. Ankney 
James D. Asahl 
Nancy A. Ashmore 
Grazyna A. Bajorska 
Kevin J. Bakken 
John L. Baldan 
Mark Belasco 
Johanne Belleau 
Jody J. Bembenek 
Brad D. Birtz 
Joan M. Blenker 
Michael J. Bluzer 
Elaine K. Brunner 
Donna L. Burchfield 
Sarah Burns 
Brian J. Cefola 
Christian J. Coleianne 
Angela L. Cooley 
Christopher William 

Cooney 
Deanna L. Crist 
Keith R. Cummings 
Dustin W. Curtit 
Walter C. Dabrowski 
Scott C. Davidson 

Patricia A. Dillon 
Brian S. Donovan 
Lise Duhaime 
Jeffrey S. Ernst 
Lawrence K. Fink 
David Michael Flitman 
Sharon L. Fochi 
Dustin W. Gary 
William J. Gerhardt 
Todd B. Glassman 
Stacey C. Gotham 
Jennifer T. Grimes 
Michael B. Gunn 
David L. Hanzlik 
Jeffery T. Hay 
Michael J. Hebenstreit 
William S. Hedges 
Kristina S. Heer 
Terri-Beth Heffernan 
Monica L. Herenstein 
Marcy R. Hirner 
Albert E. Holler III 
Sean M. Housley 
Long Fong Hsu 
Alice H. Hung 
Victoria K. Imperato 
Jesse T. Jacobs 
Philippe Jodin 
David B. Johnson 
Shantelle A. Johnson 

Nancy E. Joyce 
Kyewook Kang 
Sarah M. Kemp 
Stacey M. Kidd 
Anne Marie Klein 
Thomas E Klein 
Susanlisa Koppelman 
Thomas E Krause 
Chingyee Teresa Lam 
Sean R. Lawley 
Wendy R. Leferson 
Dengxing Lin 
Andrea A. Lombardi 
Eric A. Madia 
Kevin B. Mahoney 
Joshua N. Mandell 
Paul T. Marino 
Peter K. Markiewicz 
Charles C. Martin 
Joseph W. Mawhinney 
Stephane McGee 
William A. Mendralla 
Richard Ernest Meuret 
Christopher James 

Monsour 
Kenneth D. Moore 
Lori A. Moore 
Catherine A. Morse 
Craig S. Mosher 
Maureen A. Motter 
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Anita D. Mountain 
Bilai Musharraf 
Brian C. Neitzel 
Kelly T. Nguyen 
Tieyan Tina Ni 
Loren J. Nickel 
Sylvain Nolet 
Joshua M. Nyros 
James P. O'Donovan 
William S. Ober 
Livia Oh 
Rodrick R. Osborn 
Apryle L. Oswald 
Richard Matthew 

Pilotte 
Bradley A. Price 
Donald S. Priest 
Eileen A. Prunty 
Rebecca A. Putman 
Timothy J. Regan 

Part 4A 

Michael B. Adams 
William J. Albertson 
Brian C. Aivers 
Frank Daniel K. Amfo 
Ashwin Arora 
Michael William 

Barlow 
Paul C. Barone 
Jason E. Berkey 
Alex V. Bondarev 
Michael J. Bradley 
Jennifer L. 

Bramschreiber 
John R. Broadrick 

Arnie W. Rippener 
Edward C. Roberts 
Denise Farnan Rosen 
John W. Rosengren 
Marc R. Rothschild 
Michael M. Rubin 
Mark T. Rutherford 
Samuel E. Sackey 
Elizabeth A. Sexauer 
Larry J. Seymour 
Cheryl R. Shen 
Lori A. Sheppard 
Vadim S. Shulman 
Annemarie Sinclair 
John J. Skowronski 
Douglas E. Smith 
Molly A. Stark 
Nita J. Stone 
Ken P. Streng 
Thomas E. Thun 

Derek D. Burkhalter 
David R. Cabana 
Jason A. Campbell 
Samuel C. Cargnel 
Caryn C. Carmean 
Patrick J. Charles 
Ching-Zen Cheng 
Laurel A. Cleary 
Paul L. Cohen 
Crystal Dawn Danner 
Timothy M. Devine 
Mary Jane B. Donnelly 
Brian S. Donovan 
Scott H. Drab 

Nelson C. E. Townsend 
William D. Van Dyke 
Justin M. Van Opdorp 
Tara J. Van Wagenen 
Lawrence A. Vann 
Mark A. Verheyen 
John T. Volanski 
Claude A. Wagner 
Lori A. Welch 
Erica H. Wheeler 
Arthur S. Whitson 
William M. Winnis 
Yoke Wai Wong 
Walter R. Wulliger 
Grace Zakaria 
Gene Q. Zhang 
Yin Zhang 
Yingjie Zhang 

Greg J. Engl 
Laura A. Esboldt 
Brian A. Fannin 
Patrick V. Fasciano 
Gina C. Ferst 
Shelly A. Fowler 
Geoffrey A. Fradkin 
Matthew P. Gatsch 
Cary W. Ginter 
Todd B. Glassman 
Jennifer Graunas 
Karen L. Greene 
James C. Guszcza 
Kandace A. Heiser 
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Scott E. Henck 
Glenn R. Hiltpold 
Michael F. Hobart 
Keepyung B. Hong 
Derek R. Hoyme 
Theodore L. Husveth 
Jennifer L. Ims 
Gregory K. Jones 
Jody L. Jordahl 
Minas K. Kalachian 
Michael A. Kaplan 
Sean M. Kennedy 
Joseph E. Kirsits 
Vasilis Koutsaftis 
Francis A. Laterza 
Wei Li 
Stephen L. Lienhard 
Joseph B. Logsdon 
Kathleen T. Logue 
Richard P. Lonardo 
John T. Maher 
Steven Manilov 
Jeffrey Margasak 
Sarah P. Mathes 
Jeffrey B. McDonald 
Patrick A. McGoldrick 
Jennifer A. McGrath 
Rasa Varanka McKean 
Vadim Y. Mezhebovsky 

Part 4B 

Madeeha Abdullah 
Leah C. Adams 
Mustafa Bin Ahmad 
Thomas M. Ahmann 
Genevieve L. Allen 

Rebecca E. Miller 
Suzanne A. Mills 
Ain H. Milner 
Lori A. Moore 
Rodney S. Morris 
Saumya P. Nandi 
Norman Niami 
Rodrick R. Osborn 
Wade H. Oshiro 
Carolyn Pasquino 
Michael A. Pauletti 
Matthew J. Perkins 
Christopher A. Pett 
Jennifer A. Porter 
Sherri L. Potter 
Gregory T. Preble 
Bill Premdas 
Beth A. Pyle 
Darryl L. Raines 
Mary E. Reading 
Mary Joseniae O. 

Reynolds 
Danielle L. Richards 
Arlene M. Richardson 
Rhamonda J. Riggins 
Keith A. Rogers 
John D, Rosilier 
Nancy Ross 
Catherine Roy 

Keith P. Allen 
Brian C. Alvers 
Madhu G. Amar 
Frederick J. Andersen 
Jonathan L. Ankney 

Frederick D. Ryan 
Margaret J. Sanchez 
Jonathan A. Schriber 
Richard H. Seward 
Bintao Shi 
Halina H. Smosna 
Scott G. Sobel 
Lisa V. Sockett 
Michael D. Sowka 
Sandra E. Starnes 
Thomas L. Strainer 
Lisa D. Strobel 
Gil O. Student 
Robert M. Thomas 
Patrick Thorpe 
Anil Varma 
Gaetan R. Veilleux 
Kevin K. Vesel 
Natalie Vishnevsky 
Ya-Feng Wang 
Victoria K. Ward 
William B. Westrate 
William B. Wilder 
Bruce Philip Williams 
Giak Diang Tan Wong 
Jonathan S. Woodruff 
Stephen C. Young 
Gene Q. Zhang 

Ka Ho Au Yeung 
Patricia Azevedo 
Monica S. Badlani 
Paul C. Barone 
Alison M. Bartlett 
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Martin J. Battle 
Michael A. Bean 
John R. Bedwell 
Marie-Eve J. Belanger 
Mariana Beyteiman 
Jennifer L. Blackmore 
Brian E. Blatnik 
Sebastien Blondeau 
Alex Blundell 
Luc Boissiere 
David R. Border 
Veronique Bouchard 
Maureen A. Boyle 
Christopher S. 

Bramstedt 
Lisa K. Buege 
Derek D. Burkhalter 
Darryl D. Button 
David R. Cabana 
Daniel Cantin 
Daniel A. Cantin 
Scott W. Carpinteri 
Alison S. Carter 
Simon Castonguay 
Hoi Leung Chan 
Kin Sun Chan 
Junie L. Chang 
Yueh-Chi Chang 
Sylvain Charbonneau 
Julie Charron 
Siu Kei Chau 
Hung-Sheng Chen 
Shang-Ting Chen 
Lillian Cho 
Jammy Chow 
Oscar Chow 

Scott A. Christensen 
Michael Joseph 

Christian 
Brenlee Claman 
Isabelle Clement 
Andrea D. Combs 
John T. Condo 
Kiera E. Cope 
Gary C. Cosby 
Christian Cote 
Sandra Cote 
Nicholas J. Craig 
Judy Cui 
M. Elizabeth 

Cunningham 
Joseph W. Curran 
William A. Da Silva 
James C. Dahl 
Matthew F. Daitch 
Elise Dallain 
Concetta A. DePaolo 
Jeremy J. Derucki 
Julien Descombes 
Katherine Devlin 
Lisa A. Dietrich 
Stacey A. Dillabough 
Jennifer A. Dolphin 
Zelong Dong 
Annie Doucet 
Francois C. Doucet 
Michael S. Downing 
Scott H. Drab 
Charles Dussauit 
Steven C. Ekblad 
Glenn T. Elsey 
Greg J. Engl 

Stephanie Fadous 
Kyle A. Falconbury 
Weishu Fan 
Kathleen M. Farrell 
Michael W. Ferris 
Kenneth D. Fikes 
Eric Filion 
Kristine M. Fitzgerald 
Brian C. Flieder 
Jean J. Forrest 
Marc-Andre Fournier 
Lyne Francoeur 
Mark R. Frank 
Christopher P. Freese 
Claudia Gagne 
David Gagnon 
Julien Gagnon 
Joseph B. Galbraith 
Steve Galipeau 
Marcia L. Gallos 
Bradley G. Gipson 
Pierre Girard 
Todd B. Glassman 
Jeffrey S. Goldin 
Eric D. Golus 
Melissa J. Goodson 
Stacey C. Gotham 
Lijia Guo 
Rui Guo 
Vivek Gupta 
John T. Hanson 
Valie R. Harley 
Qing He 
Kimberly A. 

Heiligenberg 
Bradley R. Heinrichs 
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Hans Heldner 
Kathryn E. Herzog 
Milton G. Hickman 
Kurt D. Hines 
Kun Chi Bennet Ho 
Michael E Hobart 
David E. Hodges 
Gerald L. Hoeppner 
Richard M. Holtz 
Zhenjie Hou 
Gerald K. Howard 
Jui-Chun Hsu 
Cheng-Jui Huang 
Chris M Hutzler 
Ali Ishaq 
Ian A. Jack 
Christopher P. Jansen 
Walter L. Jedziniak 
Woan-Ling Jiang 
William B. Johnson 
Julie Joyai 
Lawrence S. Katz 
Carl L. Kennes 
Rachel W. Killian 
Phiilip M. Kivarkis 
Jason W. Kolysher 
Laura L. Kozlevcar 
Mark B. Kropf 
Alexander Krutov 
Claude Lachapelle 
Eric Lacroix 
Michael A. Lardis 
Remi Laroche 
Michelle A. Larson 
Scot M. Larson 
Bradley J. Lawson 

Hangsuck Lee 
Alfred Lerman 
Antoine Letourneau 
Han T. Liem 
Kok Bin Liew 
Joshua Y. Ligosky 
Khang-Yee Lim 
Han-Wei Lin 
Hui-Ru Lin 
Jennifer H. Lin 
Erik E Livingston 
Diane M. Lloyd 
Allen Chi Tat Lowe 
Donald A. Luciak 
Eric J. Lynn 
Jesus A. Macaraeg 
David D. Magee 
Kerry A. Magnuson 
Atul Malhotra 
Joshua N. Mandell 
Michel Rene Marcon 
Christopher C. 

Mathewson 
Timothy T. McKee 
Heath W. Merlak 
Stephanie Miller 
Andrew A. Minten 
Surenna Binte Mustafa 
Jean-Philippe Nadeau 
Christopher A. Najim 
Saumya P. Nandi 
Helen Patricia Neglia 
Thomas E. Newgarden 
Xiaoying Ni 
Loren J. Nickel 
Kenneth D. Nilsen 

Joshua M. Nyros 
Lawerence J. O'Brien 
Matthew R. Ostiguy 
Jeffrey A. Padavic 
Rebekah L. Pagano 
Dr. Jeffrey S. Pai 
Michael T. Patterson 
Manolis O. Paximadas 
Nathalie Perreault 
Kraig P. Peterson 
Lynn A. Petros 
Jorge E. Pizarro 
Judy L. Pool 
Amin Nizarali Punjani 
Lovely G. Puthenveetil 
Terry W. Quakenbush 
Surendran Ramanathan 
Srinivasa Ramanujam 
Marco Ramsay 
Frank S. Rau 
Nigel K. Riley 
Francis Carl Rivard 
Choya A. Robinson 
Cynthia V. Root 
Brett A. Roush 
Christian Rousseau 
Catherine Roy 
Gaetan P. Ruest 
Pasquale Daniel Rulli 
Salimah H. Samji 
Jeremy N. Schamick 
Parr T. Schoolman 
Barbara A. Scott 
John R. Scudella 
Amardip Sekhon 
Nikolai D. Serykh 
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Steven R. Shallcross 
Ishmael Sharara 
Jee Shen 
Jimmy Shkolyar 
Deborah A. Shure 
Paul Silberbush 
Christian Simard 
Lee O. Smith 
Thomas M. Smith 
Yun Song 
Michael D. Sowka 
Charly St. Martin 
Michelle J. Steinborn 
Peter H. Sun 
Helaina I. Surabian 
Michelle M. 

Syrotynski 

Part 5A 

Jason R. Abrams 
Michael D. Adams 
Cheryl R. Agina 
Julie A. Anderson 
Kevin L. Anderson 
Amy J. Antenen 
Melissa J. Appenzeiler 
Wendy Lauren 

Artecona 
Michael A. Bean 
Patrick Beaudoin 
Christopher D. Bohn 
Mark E. Bohrer 
Sherri Lynn Border 
John R. Bower 
Maureen A. Boyle 
Jeremy James Brigham 

Varsha A. Tantri 
Sherman B, Tenorio 
Sarah J, Thompson 
Craig Tien 
Stephen H. Tom 
Tamara L. Trawick 
Jonathan E. Trend 
Sheng P. Tseng 
Steve Turmel 
Gaurav Upadhya 
Martin Vachon 
Martin Vezina 
Timothy R, 

Wagenmaker 
Jim Wagner 
Muzammil Waheed 
Lixin Wen 

Peter J, Brown 
David C. Brueckman 
Alan Burns 
Anthony R. Bustillo 
Joyce Chen 
Wai Yip Chow 
Marlene M. Collins 
Jeffrey A. Courchene 
William P. Cross 
Michael J. Cummiskey 
Mari A. Davidson 
Michael Brad Delvau× 
Jean-Francois 

Desrochers 
Brian M, Donlan 
Louis Christian Dupuis 
Sophie Dural 

William B. Westrate 
William B. Wilder 
Bruce Philip Williams 
Laura Markham 

Williams 
Michael D. Williams 
Paul D. Wirth 
Jasper Wong 
Vince Wong 
Matthew L. 

Worthington 
Peter R. Zeillmann 
Yuanhan Zhang 
Lianmin Zhou 
Tong Zhou 
Michael R. Ziegert 

Robert E. Farnam 
Kathleen M. Farrell 
Donovan M. Fraser 
Kevin Jon Fried 
Noelle Christine Fries 
Donald M. 

Gambardella 
Theresa Giunta 
Christopher J. Graham 
Robert A. Grocock 
Curtis A. Grosse 
Serhat Guven 
Marcus R. Hamacher 
Kimberly Baker Hand 
David L. Handschke 
Kendra S. Heidt 
Deborah L. Herman 
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Amy L. Hicks 
Kurt D. Hines 
Mohammad A. 

Hussain 
Christopher Donald 

Jacks 
Michael S. Jarmusik 
Susan K. Johnston 
Bryon R. Jones 
Mark C. Jones 
William Rosco Jones 
Brandon Daniel Keller 
Jeffrey D. Kimble 
Steven T. Knight 
Robert A. Kranz 
Scott C. Kurban 
Elizabeth A. Kurina 
Julie-Linda LaForce 
Stephane Lalancette 
Isabelle LaPalme 
Aaron M. Larson 
Dennis H. Lawton 
Damon T. Lay 
Eric F. Liland 

Part 5B 

Michael B. Adams 
Mustafa Bin Ahmad 
Ariff B. Alidina 
Robert E. Allen 
Silvia J. Alvarez 
Mary P. Bayer 
Rick D. Beam 
Michael A. Bean 
Patrick Beaudoin 
Patrick Beaulieu 

Laura S. Marin 
David E. Marra 
Sarah E Mathes 
Laura A. Maxwell 
Isaac Merchant 
Todd A. Michalik 
Ain H. Milner 
Jonathan M. Moss 
Charles A. Norton 
Steven Brian Oakley 
Nancy Eugenia 

O'Dell-Warren 
Rick S. Pawelski 
Mark Paykin 
Christopher K. Perry 
Michael R. Petrarca 
Kristin S. Piltzecker 
Beth A. Rasmussen 
William J. Raymond 
Ronaid S. Rees 
Sara Gay Reinmann 
Nancy Ross 
Jason R. Santos 
Robert T. Schlotzhauer 

Chad M. Beehler 
Ellen A. Berning 
Mary Denise Boarman 
Thomas L. Boyer 
Bernardo Bracero 
Jeremy James Brigham 
Stephane Brisson 
Claude B. Bunick 
Angela D. Burgess 
Kevin D. Burns 

Jeffery W. Scholl 
Jonathan A. Schriber 
Michael Robert 

Schummer 
William Harold Scully 
Tina Shaw 
Lee O. Smith 
John H. Soutar 
Laura T. Sprouse 
Laura B. Stein 
Avivya Simon Stohl 
Harlan H. Thacker 
Charles A. Thayer 
Michael S. Uchiyama 
David M. Vogt 
Karl C. Von Brockdorff 
Josephine M. Waldman 
Shannon A. Whalen 
Arthur S. Whitson 
Scott M. Woomer 
Mihoko Yamazoe 
Yuhong Yang 
Mark K. Yasuda 
Hau Leung Ying 

Matthew E. Butler 
Heather M. Byrne 
Mary L. Cahill 
Mary Ellen Cardascia 
Samuel C. Cargnel 
Todd D. Cheema 
Yvonne Wai Ying 

Cheng 
Emily Y. Chien 
Alan M. Chow 
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Andrew K. Chu 
Julia F. Chu 
Charles A. Cicci 
Edward W. Clark 
Steven A. Cohen 
Peter J. Cooper 
Leanne M. Cornell 
Patrick J. Dubois 
Nathalie Dufresne 
Sophie Duval 
Linda I. Eck 
Matthew B. Feldman 
Kenneth D. Fikes 
Richard G. Fisher 
Julia M. Ford 
Mauricio Freyre 
Cynthia Galvin 
Donald M. 

Gambardella 
Carol Ann Gamey 
Anne M. Garside 
Matthew P. Gatsch 
Kareen Gaudreault 
Amy L. Gebauer 
Micah R. Gentile 
Laszlo Gere 
Rainer Germann 
Isabelle Gingras 
Bradley G. Gipson 
Alia Golonesky 
Isabelle Groleau 
Chantal Guillemette 
James C. Guszcza 
Marcus R. Hamacher 
Gregory Hansen 
Scott E. Haskell 

Qing He 
Glenn R. Hiltpold 
Hsienwu Hsu 
Charles B. Jin 
Karen L. Jiron 
Susan K. Johnston 
Theodore A. Jones 
Michael D. Kemp 
Jeffrey D. Kimble 
Anne Marie Klein 
Sarah Krutov 
Brandon E. Kubitz 
Ignace Y. Kuchazik 
Matthew R. Kuczwaj 
Todd J. Kuhl 
Margaret J. Kuperman 
Richard A. Kutz 
Chingyee Teresa Lam 
Borwen Lee 
Karen J. Lee 
Monika Lietz 
Dengxing Lin 
David E. Marra 
Julie Martineau 
James J. Matusiak 
David M. Maurer 
Timothy J. McCarthy 
Wayne H. McClary 
Ian J. McCracken 
Mea Theodore Mea 
Suzanne A. Mills 
Michael J. Miraglia 
Jason E. Mitich 
Alan E. Morris 
Gwendolyn D. Moyer 
Malongo Mukenge 

Jennifer Y. Nei 
James L. Norris 
Miodrag Novakovic 
James P. O'Donovan 
Cosimo Pantaleo 
Carolyn Pasquino 
Rick S. Pawelski 
Isabelle Perron 
Michael R. Petrarca 
Kristin S. Piitzecker 
Jayne L. Plunkett 
Peter V. Polanskyj 
Sherman D. Power 
Amy M. Quinn 
Jamie Ramos 
Neil W. Reiss 
Brian E. Rhoads 
Hany Rifai 
Sophie Robichaud 
Kathleen E Robinson 
Keith A. Rogers 
Scott E. Root 
Jaime J. Rosario 
Beth K. Rossio 
Brian Craig Ryder 
Laura B. Sachs 
Salimah H. Samji 
James Charles Sandor 
Jean Kim Scheible 
Terri L. Schwomeyer 
Peter A. Scourtis 
William Harold Scully 
Tina Shaw 
Marina Sieh 
Steven A. Smith 
John H. Soutar 
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Harold L. Spangler 
Daniel J. Spillane 
Laura T. Sprouse 
Benoit St-Aubin 
Gienda M. Stalkfleet 
Christine L. Steele- 

Koffke 
David K. Steinhilber 
Jonathan L. Summers 
Karrie Lynn Swanson 
Hung K. Tang 

Part 6 

Mustafa Bin Ahmad 
Sajjad Ahmad 
Anthony L. Alfieri 
Jennifer A. 

Andrzejewski 
John A. Annino 
Anju Arora 
Satya M. Arya 
David Steen Atkinson 
Nathalie J. Auger 
Amy L. Baranek 
Emmanuil Theodore 

Bardis 
Anna Marie Beaton 
Nicolas Beaupre 
Andrew S. Becker 
Jeremy T. Benson 
Kristen M. Bessette 
John Y. Binder 
Mario Binetti 
Linda Jean Bjork 
Kofi Boaitey 
Mark E. Bohrer 

Eric D. Telhiard 
Gary S. Traicoff 
Andy K. Tran 
James H. Yran 
Michael C. Tranfaglia 
Nathalie Tremblay 
Richard A. Van Dyke 
Tim A. Vargo 
Gaetan R. Veilleux 
Colleen Ohle Walker 
Michael A. Wallace 

Thomas S. Botsko 
Lee M. Bowron 
Thomas L. Boyer 
Richard Albert 

Brassington 
Rebecca Schafer 

Bredehoeft 
Robert Lindsay Brown 
James Douglas Buntine 
Elise S. Burns 
Hayden Heschel 

Burrus 
Jennifer P. Capute 
Allison E Carp 
Patrick J. Causgrove 
Julia E Chu 
Louise Chung-Chum- 

Lam 
Stephen Daniel Clapp 
Jeffrey A. Ciements 
Jeffrey J. Clinch 
Christopher Paul 

Coelho 

Jamil Wardak 
Chris J. Westerrneyer 
Patricia Cheryl White 
Dana L. Winkler 
Dean M. Winters 
Yoke Wai Wong 
Jonathan S. Woodruff 
Yuhong Yang 
Shawn M. Young 
Yan Zhou 

Steven A. Cohen 
Larry Kevin Conlee 
Scan O. Cooper 
David E. Corsi 
Kathleen T. 

Cunningham 
Jonathan Scott Curlee 
Loren Rainard 

Danielson 
Mary Katherine T. 

Dardis 
Timothy Andrew Davis 
Nancy K. DeGelleke 
Patricia A. Deo-Campo 

Vuong 
Lisa M. Diminich 
Kevin G. Donovan 
Kevin Francis Downs 
Michael Edward Doyle 
Tammi Beth Dulberger 
Sophie Dulude 
Ruchira Dutta 
Mark Kelly Edmunds 
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Julie A. Ekdom 
Brandon L. Emlen 
Richard J. Engelhuber 
Brian A. Evans 
Stephen Charles Fiete 
Kristine Marie 

Firminhac 
Chauncey Fteetwood 
Sy Foguel 
Sean P. Forbes 
Sarah Jane Fore 
Hugo Fortin 
Ronnie S. Fowler 
Robert C. Fox 
Timothy J. Friers 
Neil P. Gibbons 
Emily C. Gilde 
Susan I. Gildea 
Sanjay Godhwani 
Olga Golod 
Natasha C. Gonzalez 
Christopher David 

Goodwin 
Philippe Gosselin 
Paul E. Green 
David John Gronski 
Jacqueline Lewis 

Gronski 
Christopher Gerald 

Gross 
Nasser Hadidi 
Kenneth Jay Hammell 
Michelle Lynne 

Harnick 
Eric Christian Hassel 
Christopher Ross Heim 

Chad Alan Henemyer 
Cynthia Jane Heyer 
Allen J. Hope 
Henry J. Itri 
Jean-Claude Joseph 

Jacob 
William R. Johnson 
Burt D. Jones 
Derek A. Jones 
Robert C. Kane 
Kimberly S. H. Kaune 
Catherine L. Keenan 
Ung Min Kim 
Paul W. Kollner 
Linda Kong 
Bradley S. Kove 
Richard Scott Krivo 
Sarah Krutov 
James Douglas Kunce 
Bobb J. Lackey 
Carl Lambert 
Hugues Laquerre 
Peter Latshaw 
Bradley R. LeBlond 
David Leblanc-Simard 
Todd William 

Lehmann 
Glen Alan Leibowitz 
Charles Letourneau 
Karen N. Levine 
Craig Adam Levitz 
Shiu-Shiung Lin 
Diana M.S. Linehan 
Rebecca M. Locks 
Kenneth T. Lui 
Allen S. Lynch 

James E Lynch 
Kelly A. Lysaght 
Kevin M. Madigan 
Daniel Patrick Maguire 
Jason A. Martin 
Stephen Joseph 

McAnena 
Timothy C. McAuliffe 
William R. McClintock 
Kirk E Menanson 
Stephanie J. Michalik 
Eric Millaire-Morin 
Michael J. Miller 
Christopher James 

Monsour 
Michael W. Morro 
Lambert Morvan 
Robert John Moss 
Thomas M. Mount 
Ethan Charles Mowry 
Seth Wayne Myers 
Charles P. Neeson 
John-Giang L. Nguyen 
Kari A. Nicholson 
Michael D. Nielsen 
Gregory P. Nini 
John E. Noble 
Christopher Maurice 

Norman 
Corine Nutting 
Laura E. Olis 
David Anthony 

Ostrowski 
Pierre Parenteau 
M. Charles Parsons 
James Alan Partridge 
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Lisa Micheile 
Pawlowski 

Rosemary C. Peck 
Jill E. Peppers 
Julie Perron 
David M. Pfahler 
Jeffrey J. Pfluger 
Anthony George 

Phillips 
Jordan J. Pitz 
David John Pochettino 
Thomas L. Poklen 
Kathy A. Poppe 
Donald S. Priest 
Warren T. Printz 
William D. Rader 
Ricardo A. Ramotar 
Christopher David 

Randall 
Sylvain Renaud 
Mario Richard 
Hany Rifai 
Brad E. Rigotty 
Karen Lynn Rivara 

Part 8 

Rimma Abian 
Timothy Paul Aman 
Mark B. Anderson 
Martin S. Arnold 
Richard J. Babel 
Robert Sidney Ballmer 
Jonathan Everett Blake 
Barry E. Biodgett 
Kimberly Bowen 
Kirsten Rose Brumley 

Kim R. Rosen 
Richard A. 

Rosengarten 
Robert R. Ross 
Seth Andrew Ruff 
Jennifer L. Rupprecht 
Tracy A. Ryan 
Shama S. Sabade 
Joseph J. Sacala 
Jason T. Sash 
Raymond G. 

Scannapieco 
Gary Frederick Scherer 
Christy Beth Schreck 
Annmarie Schuster 
Nathan Alexander 

Schwartz 
Steven George Searle 
Ernest C. Segal 
David G. Shafer 
Seth Shenghit 
Matthew Robert 

Sondag 
Mark R. Strona 

Ron Brusky 
Peter Vincent B urchett 
Julie Burdick 
Christopher J. 

Burkhalter 
John Frederick Butcher 
Michael E. Carpenter 
Julie S. Chadowski 
David A. Christhilf 
Danel W. Chvoy 

Brian Tohru Suzuki 
Karrie Lynn Swanson 
Nitin Talwalkar 
Jonathan Garrett 

Taylor 
Jennifer L. Throm 
Andrea E. Trimble 
Beth Susan Tropp 
Brian K. Turner 
Alice M. Underwood 
Dennis R. Unver 
Leslie Alan Vernon 
Nathan Karl Voorhis 
Kyle Jay Vrieze 
Jon S. Waiters 
Douglas M. Warner 
Matthew Joseph Wasta 
Kevin E. Weathers 
Kendall P. Williams 
Joel E Witt 
Yoke Wai Wong 
Linda Yang 
Nora J. Young 

Brian A. Clancy 
William Brian Cody 
Margaret Eleanor 

Conroy 
Sheri L. Daubenmier 
Jeffrey W. Davis 
John D. Deacon 
Robert G. Downs 
Kimberly J. Drennan 
Jeffrey Eddinger 
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Dawn E. Elzinga 
Kristine Marie 

Esposito 
Bruce D. Fell 
Ginda Kaplan Fisher 
John E. Gaines 
David Evan Gansberg 
Lynn A. Gehant 
Thomas P. Gibbons 
Julie Therese Gilbert 
John T. Gleba 
Daniel Cyrus Greer 
Charles R. Grilliot 
David Thomas Groff 
Leigh Joseph Halliwell 
Jodi J. Healy 
William N. Herr 
Jay T. Hieb 
Christopher Todd 

Hochhausler 
Jason N. Hoffman 
Daniel L. Hogan 
Eric J. Hornick 
Man-Gyu Hur 
Susan Elizabeth Innes 
Brian J. Janitschke 
Michael S. Johnson 
Jeremy M. Jump 
Ira Mitchell Kaplan 
Hsien-Ming K. Keh 
Lowell J. Keith 
Brandon Daniel Keller 
Claudia A. Krucher 
Alexander Krutov 
Jason Anthony Kundrot 

Edward M. Kuss 
Jean-Sebastien 

Lagarde 
Stephen E. Lehecka 
Todd William 

Lehmann 
Steven J. Lesser 
Janet G. Lindstrom 
William R. Maag 
Joseph A. Malsky 
Patrice McCaulley 
Richard Timmins 

McDonald 
Allison Michelle 

McManus 
Scott A. McPhee 
Andrew Wakefield 

Moody 
Jennifer Ann Moseley 
Kevin T. Murphy 
Jarow G. Myers 
Mihaela Luminita S. 

O'Leary 
Denise R. Olson 
David J. Otto 
Gerard J. Palisi 
Joseph M. Palmer 
Harry Todd Pearce 
Glen-Roberts 

Pitruzzello 
Richard A. Piano 
Jennifer K. Price 
Yves Provencher 
Kara Lee Raiguel 
Jennifer L. Reisig 

Andrew Scott Ribaudo 
Cynthia L. Rice 
Paul J. Rogness 
Nathan William Root 
Christine R. Ross 
Sandra L. Ross 
Chet James Rublewski 
Rajesh V. 

Sahasrabuddhe 
Michael Shane 
Huidong Kevin Shang 
Meyer Shields 
Kerry S. Shubat 
Jay Matthew South 
Caroline B. Spain 
Alan M. Speert 
Michael J. Sperduto 
Carol A. Stevenson 
Thomas Struppeck 
Collin John Suttie 
C. Steven Swalley 
Christopher C. 

Swetonic 
Chester J. Szczepanski 
David M. Terne 
Daniel A. Tess 
Glenn Allen Tobleman 
Joseph D. Tritz 
Edward H. Wagner 
Benjamin A. Walden 
Robert J. Wallace 
Jeffrey D. White 
Trevar K. Withers 
Tad E. Womack 
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Part 8C 

Pierre Bourassa 
Anthony E. Cappelletti 
Heather L. Chalfant 
Alana C. Farrell 
Sylvain Fauchon 

Part 10 

Jonathan David 
Adkisson 

Larry D. Anderson 
David B. Bassi 
Andrea C. Bautista 
Michael J. Bednarick 
Michael J. Belfatti 
Steven L. Berman 
Suzanne E. Black 
Daniel David Blau 
Carol Ann Blomstrom 
George Peter Bradley 
Mary Hemerick 

Bready 
Cary J. Breese 
Charles Brindamour 
Elliot R. Burn 
J' ne Elizabeth 

Byckovski 
Tania J. Cassell 
Dennis K. Chan 
Rita E. Ciccariello 
Brian K. Ciferri 
Jean Cloutier 
Thomas P. Conway 
Charles Anthony Dal 

Corobbo 

Walter H. Fransen 
Jacqueline Frank 

Friedland 
Lewis Y. Lee 
Andrea Wynne Malyon 

Guy Rollin Danielson 
Smitesh Dave 
Elizabeth Bassett 

DePaoio 
Brian Harris 

Deephouse 
Jeffrey F. Deigl 
Christopher S. Downey 
Bernard Dupont 
Carole M. Ferrero 
Mary Elizabeth 

Fleischli 
Christian Fournier 
Kay L. Frerk 
Kathy H. Garrigan 
James B. Gilbert 
Michael Ambrose 

Ginnelly 
Moshe D. Goldberg 
Annette J. Goodreau 
Mari Louise Gray 
Michael D. Green 
Greg M. Haft 
Paul James Hancock 
Bradley Alan Hanson 
David S. Harris 
Michael B. Hawley 

Benoit Morissette 
Todd E Orrett 
Yves Raymond 
Philippe Trahan 
Christopher Brian Wei 

Daniel F. Henke 
Thomas Gerald Hess 
Amy Jean 

Himmelberger 
Robert J. Hopper 
Marie-Josee Huard 
David Dennis Hudson 
Paul Robert Hussian 
Paul Ivanovskis 
Christopher Donald 

Jacks 
Randall A. Jacobson 
Hou-Wen Jeng 
Daniel Keith Johnson 
Kurt Jeffrey Johnson 
Mark Robert Johnson 
Claudine Helene 

Kazanecki 
Rebecca Anne 

Kennedy 
Joan M. Klucarich 
Eleni Kourou 
Kenneth Allen 

Kurtzman 
Salvatore T. LaDuca 
Timothy J. Landick 
Gregory D. Larcher 
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Steven Wayne Larson 
Thomas C. Lee 
P. Claude Lefebvre 
Elizabeth Ann 

Lemaster 
Jennifer McCullough 

Levine 
Christina Link 
Anthony L. Manzitto 
Peter R. Martin 
Michael Boyd Masters 
Keith A. Mathre 
Robert E Maton 
Douglas W. McKenzie 
Jeffrey A. Mehalic 
Daniel Julian Merk 
Timothy Messier 
Claus S. Metzner 
David Molyneux 
David Patrick Moore 
Robert Joseph Moser 
Matthew C. Mosher 
Kimberly Joyce 

Mullins 
Turhan E. Murguz 
Timothy O. Muzzey 
Vinay Nadkarni 
Aaron West Newhoff 
Mindy Y. Nguyen 

Kevin Jon Oisen 
Milary Nadean Olson 
Dmitry E. Papush 
Luba O. Pesis 
William Peter 
John S. Peters 
Michael D. Price 
Regina Marie Puglisi 
Patrice Raby 
Raymond J. Reimer 
Andrew Scott Ribaudo 
Meredith Gay 

Richardson 
Gregory Riemer 
David L. Ruhm 
Joanne Emily Russell 
Kevin L. Russell 
Romel G. Salam 
Elizabeth A. Sander 
Stephen Paul Sauthoff 
Christine E. Schindler 
Terry Michael Seckel 
Huidong Kevin Shang 
Robert Daniel Share 
Jeffrey Parviz Shirazi 
Gary E. Shook 
Jill C. Sidney 
Lori Ann Snyder 
Carl J. Sornson 

Catherine E. Staats 
Victoria Grossack 

Stachowski 
Christopher M. 

Steinbach 
Julia Causbie Stenberg 
John A. Stenmark 
Michael J. Steward 
Deborah L. Stone 
Kevin Douglas Strous 
Thomas Struppeck 
Steven John Symon 
Laura Little Thorne 
Linda Kay Torkelson 
Theresa Ann 

Turnacioglu 
Alice M. Underwood 
Timothy J. Ungashick 
Robert Ward Van Epps 
Erica Lynn Weida 
Geoffrey Todd Werner 
Gayle Lynne Wiener 
Elizabeth Ruth Wiesner 
Roger Allan Yard 
Gerald Thomas Yeung 
Jeffery Michael Zacek 
Doug A. Zearfoss 
Alexander Guangjian 

Zhu 
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The following candidates were admitted as Fellows and Asso- 
ciates at the 1997 CAS Annual Meeting in November. By passing 
May 1997 examinations, these candidates successfully fulfilled 
the Society requirements for Fellowship or Associateship desig- 
nations. 

Jonathan David 
Adkisson 

Timothy Paul Aman 
Larry D. Anderson 
Robert Sidney 

Ballmer II 
Andrea C. Bautista 
Steven L. Berman 
Daniel David Blau 
Carol Ann Blomstrom 
Pierre Bourassa 
George Peter Bradley 
Mary Hemerick 

Bready 
Kirsten Rose Brumley 
Peter Vincent Burchett 
John Frederick 

Butcher II 
J' ne Elizabeth 

Byckovski 
Dennis K. Chan 
Rita E. Ciccariello 
Jean Cloutier 
William Brian Cody 
Charles Anthony Dal 

Corobbo 
Guy Rollin Danieison 
Jeffrey E Deigl 
Robert G. Downs 

NEW FELLOWS 

Bernard Dupont 
Jeffrey Eddinger 
Carole M. Ferrero 
Ginda Kaplan Fisher 
Mary Elizabeth 

Fieischli 
Christian Fournier 
Julie Therese Gilbert 
Michael Ambrose 

Ginnelly 
Annette J. Goodreau 
Mari Louise Gray 
Leigh Joseph Halliwell 
Paul James Hancock 
Bradley Alan Hanson 
David S. Harris 
Amy Jean 

Himmelberger 
Robert J. Hopper 
David Dennis Hudson 
Paul Robert Hussian 
Hou-Wen Jeng 
Daniel Keith Johnson 
Kurt Jeffrey Johnson 
Mark Robert Johnson 
Ira Mitchell Kaplan 
Lowell J. Keith 
Rebecca Anne Kennedy 
Joan M. Klucarich 

Jason Anthony 
Kundrot 

Edward M. Kuss 
Salvatore T. LaDuca 
Gregory D. Larcher 
Elizabeth Ann 

Lemaster 
Jennifer McCullough 

Levine 
Keith A. Mathre 
Robert E Maton 
Richard Timmins 

McDonald 
Daniel Julian Merk 
Timothy Messier 
Claus S. Metzner 
Andrew Wakefield 

Moody 
Robert Joseph Moser 
Kimberly Joyce 

Mullins 
Turhan E. Murguz 
Aaron West Newhoff 
Kevin Jon Oisen 
Milary Nadean Olson 
Regina Marie Puglisi 
Patrice Raby 
Raymond J. Reimer 
Andrew Scott Ribaudo 
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Meredith Gay 
Richardson 

Gregory Riemer 
Stephen Paul Sauthoff 
Christine E. Schindler 
Terry Michael Seckel 
Huidong Kevin Shang 
Robert Daniel Share 
Jeffrey Parviz Shirazi 
Gary E. Shook 
Jill C. Sidney 
Lori Ann Snyder 
Carl J. Somson 
Victoria Grossack 

John Scott Alexander 
Paul C. Barone 
Anna Marie Beaton 
Andrew S. Becker 
Frank J. Bilotti 
Linda Jean Bjork 
Michael J. Bluzer 
Sherri Lynn Border 
Richard Albert 

Brassington 
Rebecca Schafer 

Bredehoeft 
Kevin D. Burns 
Joyce Chen 
Michael Joseph 

Christian 
Stephen Daniel Clapp 
Christopher Paul 

Coelho 

Stachowski 
Julia Causbie Stenberg 
John A. Stenmark 
Deborah L. Stone 
Kevin Douglas Strous 
Thomas Struppeck 
Collin John Suttie 
Steven John Symon 
Daniel A. Tess 
Glenn Allen Tobleman 
Linda Kay Torkelson 
Philippe Trahan 
Theresa Ann 

Turnacioglu 

NEW ASSOCIATES 

Kathleen T. 
Cunningham 

Michael J. Curcio 
Kevin Francis Downs 
Michael Edward Doyle 
Sophie Dulude 
Kristine Marie 

Firminhac 
Chauncey Fleetwood 
David Michael Flitman 
Sy Foguel 
Hugo Fortin 
Kevin Jon Fried 
Noelle Christine Fries 
Micah R. Gentile 
Susan I. Gildea 
Christopher David 

Goodwin 
Philippe Gosselin 

Robert Ward Van Epps 
Erica Lynn Weida 
Geoffrey Todd Wemer 
Jeffrey D. White 
Gayle Lynne Wiener 
Elizabeth Ruth Wiesner 
Tad E. Womack 
Roger Allan Yard 
Gerald Thomas Yeung 
Jeffery Michael Zacek 
Doug A. Zearfoss 
Alexander Guangjian 

Zhu 

Jacqueline Lewis 
Gronski 

Christopher Gerald 
Gross 

Nasser Hadidi 
Kenneth Jay Hammell 
Gregory Hansen 
Michelle Lynne 

Harnick 
Ia E Hauck 
Cynthia Jane Heyer 
Ali Ishaq 
Christopher Donald 

Jacks 
Jean-Claude Joseph 

Jacob 
Walter L. Jedziniak 
William Rosco Jones 
Robert B. Katzman 
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Brandon Daniel Keller 
Linda Kong 
Richard Scott Krivo 
Alexander Krutov 
Sarah Krutov 
Kirk L. Kutch 
Todd William 

Lehmann 
Charles Letourneau 
Marc E. Levine 
Daniel Patrick Maguire 
David E. Marra 
William A. Mendralla 
Richard Ernest Meuret 
Stephanie J. Michalik 
Michael J. Miller 
Christopher James 

Monsour 
Robert John Moss 
Charles P. Neeson 

Helen Patricia Neglia 
Tieyan Tina Ni 
Christopher Maurice 

Norman 
Steven Brian Oakley 
David Anthony 

Ostrowski 
James Alan Partridge 
Lisa Michelle 

Pawlowski 
Mark Paykin 
Julie Perron 
Anthony George 

Phillips 
David John Pochettino 
Matthew H. Price 
Denise Farnan Rosen 
Tracy A. Ryan 
Shama S. Sabade 
Christy Beth Schreck 

Michael Robert 
Schummer 

William Harold 
Scully III 

Halina H. Smosna 
Avivya Simon Stohl 
Brian Tohru Suzuki 
Nitin Talwalkar 
Jonathan Garrett 

Taylor 
Alice M. Underwood 
David M. Vogt 
Nathan Karl Voorhis 
Claude A. Wagner 
Patricia Cheryl White 
Bruce Philip Williams 
Laura Markham 

Williams 
Joel F. Witt 
Yuhong Yang 

The following candidates successfully completed the Parts of 
the Fall 1997 CAS Examinations that were held in October. 

Part 3B 

Patrick B. Achey 
Cheryl R. Agina 
Greg A. Aikey 
Richard T. Alden 
Ashwin Arora 
David M. Biewer 
Nell M. Bodoff 
Daniel J. Borzynkski 
Steve E. Brasier 
Maureen B. Brennan 

John R, Broadrick 
Robert E. Calkins 
Jason A. Campbell 
Gabriel F. Carrillo 
John Celidonio 
Patrick J. Charles 
Peter S. Clarke 
Gerald D. Cooper 
Hugo Corbeil 
Nicholas J. De Palma 

David E. Dela Cruz 
Jean-Francois 

Desrochers 
William E. Doran 
Derek D. Dunnagan 
Louis Christian Dupuis 
Sophie Duval 
Ashifa Esmail 
Nixon Etienne 
Shelly A. Fowler 
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Rebecca E. Freitag 
David Gagnon 
Justin G. Gensler 
Timothy S. Ghan 
Emily C, Gilde 
Isabelle Gingras 
Isabelle Groleau 
Travis Grulkowski 
Chantal Guillemette 
James C. Guszcza 
Barry R. Haines 
John G. Henares 
Patricia A. Hladun 
Melissa S. Holt 
Douglas Bruce Homer 
David W. Hurter 
Patrice Jean 
Luen Khaw 
Christopher Kremer 
Heather D. Lake 
Carl Lambert 

Maxime Lanctot 
Michael A. Lardis 
Geraldine Marie Z. 

Lejano 
W. Scott Lennox 
Joseph B. Logsdon 
Kathleen T. Logue 
Keyang Luo 
Atul Malhotra 
Steven Manilov 
James J. Matusiak 
Carolyn J. McElroy 
Stephanie Miller 
Christian Morency 
Josee Morin 
Surenna Binte Mustafa 
Robert B. Newmarker 
Charles A. Norton 
Carolin G. Paidoussis 
Stephen R. Prevatt 
Leonid Rasin 

Ronald S. Rees 
Brian E. Rhoads 
Hany Rifai 
Wayne L. Rosen 
Laura B. Sachs 
Daniel David 

Schlemmer 
Mike B. Schofield 
Jonathan A. Schriber 
Tammy L. Schwartz 
Michelle Sheppard 
Ju-Young Suh 
Sara A. Trussoni 
Peggy J. Urness 
Seema M. Wadhwa 
Tom C. Wang 
Carolyn D. Wettstein 
Joel D. Whitcraft 
Gary A. Wick 

Part 4A 

Michael L. Alfred 
Brian M. Ancharski 
Nicki C. Austin 
Vicki J. Bagley 
Anna Bakman 
John L. Baldan 
Wendy A. Barone 
Suzanne Barry 
Michael A. Bean 
Nathalie Belanger 
Gregory A. Berman 
Ellen A. Berning 
Jay E. Blumenreich 

Olivier Bouchard 
Thomas G. Bowyer 
Christopher S. 

Bramstedt 
Erick A. Brandt 
Peter J. Brown 
Robert J. Brunson 
Claude B, Bunick 
Michael W. Buttke 
Fatima E. Cadle 
Mary Ellen Cardascia 
Jennifer M. Carnahan 
Scott W. Carpinteri 

Simon Castonguay 
Esther K.N. Chan 
Jennifer A. Charlonne 
Shu-Chuan Chen 
Marcus K. Cheung 
Alan M. Chow 
Christian J. Coleianne 
Kiera E, Cope 
Leanne M. Cornell 
Edgar Corredor 
Michael J. Covert 
Richard R. Crabb 
Russell A. Creed 
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Arthur D. Cummings 
Kelly K. Cusick 
David B. Dalton 
Stephen Darrow 
Nicholas J. De Palma 
Stephanie A. DeLuca 
Peter R. DeMailie 
D. Vance C. DeWitt 
Paul B. Deemer 
David E. Dela Cruz 
Robert E. Dennison 
Devin Derstine 
Randi S. Deutsch 
Christopher A. 

Donahue 
William E. Doran 
Elaine V. Eagle 
John W. Eibl 
Tricia G. English 
William H. Erdman 
Jeffrey S. Ernst 
Kyle A. Falconbury 
Solomon C. Feinberg 
Elizabeth J. Fethkenher 
Kristine M. Fitzgerald 
Jeffrey R. Fleischer 
Robin A. Fleming 
Dennis Anthony Fong 
Teresa M. Fox 
Jeffrey A. Gabay 
Patrick P. Gallagher 
Cynthia Galvin 
Michelle R. Garnock 
Dustin W. Gary 
Kareen Gaudreault 
Amy L. Gebauer 

Laszlo Gere 
Shannon E. Gilbert 
Matthew R. Gorrell 
Elizabeth A. Grande 
Donald B. Grimm 
Stephanie A. 

Groharing 
Marcus R. Hamacher 
Valie R. Harley 
Guo Harrison 
Sonja M. Heiberg 
Hans Heldner 
Daniel D. Heyer 
Amy L. Hicks 
Joseph S. Highbarger 
Carole K. L. Ho 
Jeremy Hoch 
Shaohe T. Huang 
Bryan B. Jaicks 
Charles B. Jin 
Caroline F. Jo 
Shantelle A. Johnson 
Brian A. Junod 
Kelly E Kahling 
Lawrence S. Katz 
Lisa M. Kerns 
Shenaz Keshwani 
William E Killian 
Sang W. Kim 
Jason A. Lauterbach 
Daniel A. Levin 
Joshua Y. Ligosky 
Matthew A. Lillegard 
Kenneth Liner 
Jing Liu 
Wing Lowe 

Atul Malhotra 
Joshua N. Mandell 
Jeffrey L. Martin 
Leroy H. Mattic 
James J. Matusiak 
Patricia McGahan 
Shaun P. McGovern 
Isaac Merchant 
Ryan A. Michel 
Scott P. Monard 
Matthew E. Morin 
John A. Nauss 
Jennifer Y. Nei 
Richard U. Newell 
Linda C. Nichols 
Loren J. Nickel 
Sean R. Nimm 
Kathy M. Nordness 
Barbara B. O'Connor 
Michael A. Onofrietti 
Matthew R. Ostiguy 
Patrick M. Padalik 
Robin V. Padwa 
Susan M. Pahi 
Robert A. Painter 
Joy-Ann C. Payne 
Robert B. Penwick 
Kraig P. Peterson 
Jayne L. Plunkett 
Sean E. Porreca 
Lind R. Pratt 
Leonid Rasin 
Brian E. Rhoads 
Benjamin L. Richards 
Ezra J. Robison 
Kelly J. Rosseland 
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Jason R. Santos 
Jeremy N. Scharnick 
Michelle Sheppard 
Janel M. Sinacori 
Vijayalakshimi 

Sridharan 
Laura B. Stein 
Kimberly A. Strauss 
Thomas J. Stypla 
Louis P. Sugarman 
Piya R. Talwar 
Neeza Thandi 

Pan 4B 

Peter Abramovich 
Molly Bush Acker 
Syed W. Ahmed 
George G. Alaishuski 
Anthony R. Alvarez- 

Pedroso 
Tomomi Arikawa 
Colette F. Atkinson 
Peter Attanasio 
Alberto A. 

Autmezguine 
Eynshteyn Averbukh 
Brian J. Barth 
Thierry Bedard 
Byron N. Beebe 
Minh P. Bennett 
Jeremy T. Benson 
Jason E. Berkey 
David M. Biewer 
Francois Blanchard 
Wei Ming Bo 
Christopher D. Bohn 

Thomas E. Thun 
Karen J. Triebe 
Raymond D. Trogdon 
Tammy Truong 
Bruce C. H. Tse 
Peggy J. Urness 
John T. Volanski 
Colleen Ohle Walker 
Matthew J. Walter 
Gregory A. Watson 
Youcheng Wei 
Brian D. White 

Emilie Bouchard 
Olivier Bouchard 
Isabel Boyer 
Lillian I. S. Brathwaite 
Jason M. Bravo 
Kevin P. Brennan 
Jeremy James Brigham 
John R. Broadrick 
Robert J. Brunson 
Yiwen Bu 
Angela D. Burgess 
Brian P. Bush 
James E. Calton 
Katherine S. Campbell 
Samuel C. Cargnel 
Lawrence S. Carson 
Brian J. Cefola 
Ching Chuen Chan 
Juliza Chan 
Wing Fai Chan 
Shaoping T. Chang 
Patrick J. Charles 

Thomas J. White 
Mark W. Whitford 
Timothy P. Wiebe 
Kaylie Wilson 
Ann Min-Sze Wong 
Mark K. Yasuda 
Jacinthe Yelle 
Joshua A. Youdovin 
Raymond R. Y. Yung 
Michael R. Zarember 
Lianmin Zhou 

Chu-Ka Chen 
Rong Sen Chen 
Wan Cheng 
Chi Kau Cheung 
Richard Chevalier 
Ling-Yung Chiu 
Tenny S. P. Chong 
Hung-Yi Chou 
MunLing Chung 
Wesley G. Clifton 
Bradley D. Crafton 
Danielle R. Dallas 
Rosy Danese 
Scott H. Davis 
Andrew J. Dierdorf 
Patrick Dontigny 
John L. Dowell 
Yong Yao Du 
Julie Duchesne 
Derek D. Dunnagan 
Jeffrey A. Dvinoff 
Jean Robert Elie 
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Aleksandr Falikson 
Brian A. Fannin 
Jennifer L. Fitzpatrick 
Daniel E. Flynn 
John Fong 
Michael Fong 
Baruch M. Frankel 
Mark J. Friedman 
Freda W. Fu 
Christophe Gaboriaud 
Chris D. Garrett 
Kareen Gaudreault 
Martin Gelinas 
Frederic Gendron 
Saul Gercowsky 
Shannon E. Gilbert 
Patrick J. Gilhool 
Meghan A. Gillin 
Nathalie Giroux 
Siti Jessimiah Goh 
Stacey B. Goldstein 
Lisa N. Guglietti 
Steven M. Gutstein 
Pavol Gvozdjak 
Kimberly Baker Hand 
Thomas N. Hanson 
Delaine B. Hare 
Michael N. Hartfield 
Jeffery T. Hay 
Arie Haziza 
Scott E. Henck 
Daniel D. Heyer 
Martin W. Hill 
Ka Lai Ho 
Wen-Jung Ho 
Lorin K. Hoeppner 

Keepyung B. Hong 
Kim W. Hoversten 
Nai-Wen Hsu 
Ching-Lu Huang 
Chuang-Chi Huang 
Christopher W. Hurst 
Theodore L. Husveth 
Ingab Hwang 
Victoria K. Imperato 
Craig D. Isaacs 
Ray-Min Jao 
Philippe Jodin 
Naheed Kheraj 
David R. Klauke 
Christopher T. Knorr 
Hon Keung Ko 
Henry J. Konstanty 
Tomasz J. Kozubowski 
Emil B. Kraft 
Seon-In Kwon 
Stacy L. LaiFook 
Chingyee Teresa Lam 
Man Ching Lain 
Ng Fei Lam 
Chi Kin Lau 
Suzanne R. Lavin 
Wanna Law-Kam-Cio 
Arthur H. Lee 
Emil H. Lee 
Johnny Lee 
Patrick Lefebvre 
Francois Lemieux 
Francois G. Lemire 
Shangjing Li 
Stephen L. Lienhard 
Kenneth Lin 

Steven R. Lindley 
Vadim Lipovetsky 
Jing Liu 
Ying Liu 
June Lu 
Yue Ma 
Stacy R. Magliolo 
Robert Mallette 
Luis S. Marques 
Sylvia S. Martin 
Sarah P. Mathes 
James J. Matusiak 
Kevin P. McClanahan 
Jeffrey B. McDonald 
Brock T. McEwen 
Jeffery E. McGill 
Jennifer A. McGrath 
Gary L. McWeeny 
Vadim Y. Mezhebovsky 
Rebecca E. Miller 
Ain H. Milner 
Jason E. Mitich 
Camilo Mohipp 
Michel Luc Montour 
Jean-Gregoire G. 

Morand 
Matthew E. Morin 
David E. Moser 
Timothy C. Mosler 
David B. Mukerjee 
William Na 
Brian C. Neitzel 
Chung Ping Ng 
Richard Kwai-Fu Ng 
Peter Nicolopoulos 
Rodrick R. Osborn 
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Stacey G. Oshanek 
Chad M. Ott 
Michael A.L. Palmer 
Maruthy K. Pannala 
Josee Patry 
Bradley D. 

Peckinpaugh 
Randall P. Petersen 
Michael R. Petrarca 
John M. Pickering 
Richard B. 

Pitbladdo, Jr. 
Mearl Platt 
Ann E. Popovic 
Jacques Potvin 
Bill Premdas 
Amanda L. Priesmeyer 
John T. Raeihle 
Chada S. Reddy 
Qing Ren 
Mary Joseniae O, 

Reynolds 
Stephen M. Richard 
Warren L. Rodericks 
Kevin J. Ross 
Stephan D. Sabourin 
Prachi Sachdeva 

Part 5A 

Jodie Marie Agan 
Mustafa Bin Ahmad 
Faisal Ahmed 
Ariff B. Alidina 
Brian C. Alvers 
Jonathan L. Ankney 
Craig Victor Avitabile 

Anthony N. Sammur 
William R. Sarniak 
Gily Savitch 
Eric C. Sherman 
Chung Fai Andrew Siu 
Robert K. Smith 
Man Chung So 
Min-Wah Peter So 
Laura T. Sprouse 
Clay T. Stallard 
Jeffrey M. Stelnik 
Kelly L. Sterr 
Adam D. Swope 
Edward Sypher 
Chun W. Sze 
Marie-Claude Taillefer 
Darrin M. Thomas 
Boning Tong 
Roger Tong 
Gary S. Traicoff 
Isabel Trepanier 
Sara A. Trussoni 
Hui-Ling Tsai 
Man-Man Tsui 
Kevin J. Vantil 
Mark A. Verheyen 
Peter R. Vita 

Daniel M. Bankson 
Alex G. Bedoway 
Chad M. Beehler 
Jody J. Bembenek 
John T. Binder 
Brad D. Birtz 
Mary Denise Boarman 

Wade T. Warriner 
Kevin Bruce Waterman 
Chad D. Wilcox 
Cindy Chen Wu 
Li-Lin Wu 
Shen-Chyun Wu 
Lina Xu 
Scott Ming Yan 
Chih-Cheng Yang 
Sheau-wen Yang 
Li Chao Yao 
Kelvin K. Yau 
Tin Fu Yip 
Yuen Ling Linda Yip 
Jeng-Wei Yu 
Wei Yu 
Yuenian Yu 
Suk Ping Yuen 
Paolo Zadra 
Laura M. Zalewski 
Gene Q. Zhang 
Qing Zhang 
Yingjie Zhang 
Fengkun Zhao 
Basha H. Zharnest 

Thomas L. Boyer 
Bernardo Bracero 
Stephane Brisson 
Derek D. Burkhalter 
Matthew E. Butler 
William Brent Carr 
Scott A. Chaussee 
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Kin Lun Choi 
Philip A. Clancey 
Scott R. Clark 
Spencer L. Coyle 
Brian S. Donovan 
Scott H. Drab 
Kenneth D. Fikes 
Jennifer L. Fitzpatrick 
William J. Fogarty 
Mauricio Freyre 
Anne M. Garside 
Ellen M. Gavin 
Rainer Germann 
Donald L. Glick 
Joseph P. Greenwood 
Daniel E. Greer 
Caroline Gregoire 
James C. Guszcza 
Qing He 
Jason C. Head 
Jason B. Heissler 
Kathryn E. Herzog 
Milton G. Hickman 
Melissa Kay Higgins 
Glenn R. Hiltpold 
Jesse T. Jacobs 

Part 5B 

Jodie Marie Agan 
Sajjad Ahmad 
Genevieve L. Allen 
Brian C. Alvers 
Amy J. Antenen 
Wendy Lauren 

Artecona 
David Steen Atkinson 

Vibha N. Jayasinghe 
Philip J. Jennings 
Philippe Jodin 
Steven M. Jokerst 
Theodore A. Jones 
Joseph E. Kirsits 
James Douglas Kunce 
Chingyee Teresa Lain 
Travis J. Lappe 
Borwen Lee 
Craig Adam Levitz 
James P. Lynch 
Richard J. Manship 
Kevin P. McClanahan 
Paul B. Miles 
Lambert Morvan 
Norman Niami 
Liam E O'Connor 
Wade H. Oshiro 
Cosimo Pantaleo 
Michael T. Patterson 
Jeremy Parker Pecora 
John M. Pergrossi 
Lynellen M. Ramirez 
Hany Rifai 
Arnie W. Rippener 

Daniel Bar-Yaacov 
Rajesh K. Barnwal 
Karen E. Bashe 
Jonathan P. Berenbom 
Jason E. Berkey 
Daniel J. Berry 
Kristen M. Bessette 
Brad D. Birtz 

Salimah H. Samji 
Ronaid J. Schuler 
Vladimir Shander 
Meyer Shields 
Steven A. Smith 
Lora L. Smith-Sarfo 
Matthew Robert 

Sondag 
Michele L. Spale 
Benoit St-Aubin 
David K. Steinhilber 
Jason D. Stubbs 
Jonathan L. Summers 
Duc M. Ta 
Robert M. Thomas 
Turgay E Turnacioglu 
Melodie A. Wakefield 
Victoria K. Ward 
Kelly M. Weber 
Chris J. Westermeyer 
Milton K. Wong 
Jonathan S. Woodruff 
Stephanie C. Young 
Grace Zakaria 

David C. Brueckman 
James Douglas Buntine 
John C. Burkett 
Derek D. Burkhalter 
Alan Burns 
Sarah Burns 
Hayden Heschel 

Burrus 
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Wai Yip Chow 
Benjamin W. Clark 
Jeffrey R. Coker 
Charles L. Costantini 
Richard R. Crabb 
Sandra Creaney 
Marc-Andre Dallaire 
Robert P. Daniel 
Mari A. Davidson 
Michael Brad Delvaux 
Jeremy J. Derucki 
Brian M. Donlan 
Peter M. Doucette 
Laura A. Esboldt 
Dana M. Feldman 
Gina C. Ferst 
Karen L. Field 
Sharon L. Fochi 
William J. Fogarty 
Graham S. Gersdorff 
Patrick J. Gilhool 
Christopher J. Graham 
Christopher J. Grasso 
Daniel Cyrus Greer 
Edward Kofi Gyampo 
Aaron G. Haning 
Patricia W. Hardin 
Jeffery T. Hay 
Jason C. Head 
James A. Heer 
Kristina S. Heer 
Kathryn E. Herzog 
Michael F. Hobart 
Joseph H. Hohman 
Francis J. Houghton 
Derek R. Hoyme 

Todd D. Hubal 
Carol I. Humphrey 
Christopher W. Hurst 
Scott R. Hurt 
Michael S. Jarmusik 
Scott R. Jean 
John J. Karwath 
Stacey M. Kidd 
Chung H. Kim 
Patricia Kinghorn 
Joseph E. Kirsits 
Henry J. Konstanty 
James J. Konstanty 
James Douglas Kunce 
Francois Lacroix 
Ravikumar 

Lakshminarayan 
Travis J. Lappe 
Sean R. Lawley 
Wendy R. Leferson 
Shangjing Li 
Joshua Y. Ligosky 
Joshua N. Mandell 
Robert H. Marks 
Emmanuel Matte 
Randy D. Mattia 
Stephen Joseph 

McAnena 
Lawrence J. McTaggart 
Alix M. Meyer 
Kathleen C. Miller 
Rebecca E. Miller 
Ain H. Milner 
David Patrick Moore 
Amy J. Morehouse 
Lambert Morvan 

Seth Wayne Myers 
Lester M. Y. Ng 
Loren J. Nickel 
Liam F. O'Connor 
Nancy Eugenia 

O'Dell-Warren 
Jason M. Olson 
Gilbert Ouellet 
Charles V. Petrizzi 
Kathleen M. Rahilly- 

Van Buren 
Lynellen M. Ramirez 
Ricardo A. Ramotar 
Christopher David 

Randall 
Leonid Rasin 
Mary E. Reading 
Dean R. Reigner 
Peggy-Anne K. 

Repella 
Stephen D. Riihimaki 
Michelle L. Sands 
Jeremy N. Scharnick 
Daniel David 

Schlemmer 
Anand D. Shah 
Junning Shi 
Erica M. Sifen 
Annemarie Sinclair 
Jared M. Skowron 
John J. Skowronski 
Douglas E. Smith 
Lee O. Smith 
Michele L. Spale 
Lisa C. Stanley 
Gil O. Student 
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Helaina I. Surabian 
Feifei Tan 
Robert M. Van Brackle 
Todd D. Vander Veen 
Victoria K. Ward 
Kelly M. Weber 

Part 7 

Michael B. Adams 
Michael D. Adams 
Mustafa Bin Ahmad 
Stephen A. Alexander 
Nancy Susan Allen 
Anju Arora 
Carl Xavier 

Ashenbrenner 
Robert D. Bachler 
Phillip Wesley Banet 
Emmanuil Theodore 

Bardis 
Michael William Barlow 
Penelope A. Bierbaum 
Gina Stroud Binder 
Kevin Michael 

Bingham 
Tony E Bloemer 
Maureen A. Boyle 
Hayden Heschel 

Burrus 
Matthew R. Carrier 
Thomas Joseph 

Chisholm 
Wanchin W. Chou 
Jonathan Scott Curlee 
Loren Rainard 

Danielson 

Shannon A. Whalen 
Paul D. Wilbert 
William B. Wilder 
Scott M. Woomer 
Walter R. Wulliger 
Christopher H. Yaure 

Mary Katherine T. 
Dardis 

Robert E. Davis 
Timothy Andrew Davis 
Nancy K. DeGelleke 
Brian Harris 

Deephouse 
Karen Denise Derstine 
Donna K. DiBiaso 
Sara Penina Drexler 
Tammi Beth Dulberger 
Francois Richard 

Dumontet 
Mark Kelly Edmunds 
James R. Elicker 
Brandon L. Emlen 
Juan Espadas 
Brian A. Evans 
Carolyn M. 

Falkenstern 
Kathleen M. Farrell 
Stephen Charles Fiete 
Sarah Jane Fore 
Timothy J. Friers 
Donald M. 

Gambardella 
Charles E. Gegax 
James B. Gilbert 

Joshua A. Youdovin 
Stephen C. Young 
Christine Seung H. Yu 
Gene Q. Zhang 
Paul W. Zotti 

Bernard Harry Gilden 
Bradley G. Gipson 
Todd B. Glassman 
Sanjay Godhwani 
Natasha C. Gonzalez 
Peter S. Gordon 
Robert A. Grocock 
David John Gronski 
Brian T. Hanrahan 
Michael S. Harrington 
Gary M. Harvey 
Eric Christian Hassel 
William S. Hedges 
Christopher Ross Heim 
Kevin B. Held 
Ronald L. Heimeci 
Chad Alan Henemyer 
Richard M. Holtz 
Tina Tuyet Huynh 
Susan Elizabeth Innes 
Weidong Wayne Jiang 
Anita J. Johnson 
Susan K. Johnston 
Daniel R. Kamen 
Claudine Helene 

Kazanecki 
Jeffrey D. Kimble 
Kelly Martin Kingston 



1997 EXAMINATIONS--SUCCESSFUL CANDIDATES 853 

Andrew M. Koren 
Scott C. Kurban 
Bobb J. Lackey 
Douglas H. Lacoss 
Michael L. Laufer 
Dennis H. Lawton 
Manuel Alberto T. 

Leal 
Daniel Left 
Glen Alan Leibowitz 
John Norman Levy 
Xiaoying Liang 
Shiu-Shiung Lin 
Diana M. S. Linehan 
Victoria Suzanne Lusk 
Allen S. Lynch 
Kelly A. Lysaght 
Kevin M. Madigan 
James W. Mann 
Albert Maroun 
Stephen P. Marsden 
Jennifer Ann McCurry 
Mark Z. McGiil 
David Patrick Moore 
Jennifer Ann Moseley 
Ethan Charles Mowry 
John V. Mulhall 
Surenna Binte Mustafa 
Jarow G. Myers 
Seth Wayne Myers 
Kari A. Nicholson 
John E. Noble 
Jason M. Nonis 

Corine Nutting 
Kathryn Ann Owsiany 
M. Charles Parsons 
David M. Pfahler 
Richard Matthew 

Pilotte 
Glen-Roberts 

Pitruzzello 
Dylan P. Place 
Sara Gay Reinmann 
Brad E. Rigotty 
Karen Lynn Rivara 
Rebecca Lea Roever 
Nathan William Root 
Kim R. Rosen 
Richard A. 

Rosengarten 
Christina B. 

Rosenzweig 
Brian P. Rucci 
Seth Andrew Ruff 
Brian Craig Ryder 
James Charles Sandor 
James C. Santo 
Gary Frederick 

Scherer 
Parr T. Schoolman 
Nathan Alexander 

Schwartz 
Stuart A. Schweidel 
Peter A. Scourtis 
Steven George Searle 
Kelvin B. Sederburg 

David G. Shafer 
Alastair Charles Shore 
John H. Soutar 
Joy Magalit Suh 
Karrie Lynn Swanson 
Rachel Rene Tallarini 
Varsha A. Tantri 
Glenda Oliver Tennis 
Laura Little Thorne 
Andy K. Tran 
Michael C. Tranfaglia 
Beth Susan Tropp 
Kris D. Troyer 
Joel A. Vaag 
Leslie Alan Vernon 
Kyle Jay Vrieze 
Tice R. Walker 
Matthew Joseph Wasta 
Lynne Karyl 

Wehmueller 
Scott Werfel 
Jo Dee Westbrook 
Dean Allen Westpfahl 
William B. Westrate 
Matthew M. White 
Vanessa Clare 

Whitlam-Jones 
Kendall P. Williams 
Dean M. Winters 
Yoke Wai Wong 
Jeffrey S. Wood 
Linda Yang 
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Part 7C 

Nicolas Beaupre 
Louise Chung-Chum- 

Lain 
Alana C. Farrell 

Part 9 

John Scott Alexander 
Ethan David Allen 
Mark B. Anderson 
Michele S. Arndt 
William P. Ayres 
Keith M. Barnes 
David B. Bassi 
Michael J. Bednarick 
Wayne E Berner 
Frank J. Bilotti 
Jonathan Everett Blake 
Sherri L. Border 
Michael D. Brannon 
Richard Albert 

Brassington 
Rebecca Schafer 

Bredehoeft 
Cary J. Breese 
Charles Brindamour 
Lisa A. Brown 
Robert F. Brown 
Ron Brusky 
Christopher J. 

Burkhalter 
Michelle L. Busch 
Tara E. Bush 
Sharon C. Carroll 
Bethany L. Cass 

Hugues Laquerre 
David Leblanc-Simard 
Jean-Francois Ouellet 
Pierre Parenteau 

John S. Chittenden 
Andrew K. Chu 
J. Paul Cochran 
Margaret Eleanor 

Conroy 
David G. Cook 
Christopher G. Cunniff 
Michael Kevin Curry 
Kenneth S. Dailey 
Elizabeth Bassett 

DePaolo 
John D. Deacon 
Francis L. Decker 
Christopher S. Downey 
Michael Edward Doyle 
Denis Dubois 
Louis Durocher 
Rachel Dutil 
Kristine Marie 

Esposito 
Ellen E. Evans 
Tracy Marie Fleck 
Chauncey Fleetwood 
David Michael Flitman 
Hugo Fortin 
John E. Gaines 
David Evan Gansberg 
Susan I. Gildea 

Asif M. Sardar 
Benoit St-Aubin 
Christopher Brian Wei 

James W. Gillette 
Mark A. Gorham 
Karl Goring 
Philippe Gosselin 
Jay C. Gotelaere 
David Thomas Groff 
Christopher Gerald 

Gross 
Julie K. Halper 
Alexander Archibold 

Hammett 
Gregory Hansen 
Michelle Lynne Harnick 
Steven Thomas Harr 
Michael B. Hawley 
Daniel E Henke 
William N. Herr 
Ronald J. Herrig 
Thomas Gerald Hess 
Thomas E. Hettinger 
Brett Horoff 
Linda M. Howell 
Marie-JosEe Huard 
Man-Gyu Hur 
Brian L. Ingle 
Paul Ivanovskis 
Christopher Donald 

Jacks 
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Jeremy M. Jump 
James B. Kahn 
Anthony N. Katz 
Brandon Daniel Keller 
Mary D. Kroggel 
Alexander Krutov 
Robin M. LaPrete 
Jean-Sebastien 

Lagarde 
Steven Wayne Larson 
Dawn M. Lawson 
David Leblanc-Simard 
P. Claude Lefebvre 
Charles R. Lenz 
Andre L'Esperance 
Christina Link 
Andrew M. Lloyd 
Lee C. Lloyd 
Jason K. Machtinger 
Joseph A. Malsky 
Andrea Wynne 

Malyon 
Anthony L. Manzitto 
David E. Marra 
Anthony G. Martella 
Bonnie C. Maxie 
Ian J. McCracken 
Mike K. McCutchan 
Thomas S. Mclntyre 
Douglas W. McKenzie 
Allison Michelle 

McManus 
Scott A. McPhee 
Paul D. Miotke 

David Molyneux 
Christopher James 

Monsour 
Benoit Morissette 
Roosevelt C. Mosley 
Timothy O. Muzzey 
Donna M. Nadeau 
Vinay Nadkarni 
Michael A. Nori 
Mark A. O'Brien 
Steven Brian Oakley 
Kathleen C. Odomirok 
Christopher Edward 

Olson 
Denise R. Olson 
David J. Otto 
Michael G. Owen 
Moshe C. Pascher 
Lisa Michelle 

Pawlowski 
Mark Paykin 
Harry Todd Pearce 
Tracie L. Pencak 
Julie Perron 
Daniel B. Perry 
William Peter 
John S. Peters 
David John Pochettino 
Jennifer K. Price 
Michael D. Price 
David S. Pugel 
Kara Lee Raiguel 
Tracy A. Ryan 
Romel G. Salam 

Bret Charles Shroyer 
Caroline B. Spain 
Alan M. Speert 
Michael J. Sperduto 
Christopher M. 

Steinbach 
Carol A. Stevenson 
Michael J. Steward 
Curt A. Stewart 
Lisa M. Sukow 
Brian Tohru Suzuki 
Roman Svirsky 
Chester J. Szczepanski 
Joy Y. Takahashi 
Elizabeth Susan 

Tankersley 
Michael J. Tempesta 
David M. Terne 
Jeffrey S. Trichon 
Ching-Hom Rick 

Tzeng 
Alice M. Underwood 
Timothy J. Ungashick 
Nathan Karl Voorhis 
Robert J. Wallace 
Patricia Cheryl White 
Wendy Lynn Witmer 
Joel F. Witt 
Brandon L. Wolf 
Simon Kai-Yip Wong 
Yoke Wai Wong 
Jeanne Lee Ying 
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w ,  

Hrst Row, from left: Eric J. Gesick, Andrew J. Doll, Marline D. On', Raleigh Skaggs, Kathleea M. Pechan, Jem-Dmis Roy, James M. MacPhee, Mark $oseph 
Moitoeo. Second row, If'ore left: 'nmothy Atwill. Stevm Boyce White, Rob~ Emmett Quane HI, Margaret Ann Brinknmnn, Dale Stevea Porfilio, CAS 
Rob,s't A. Anker. Mark L. Thompson. Alessenckea Corinne Handley, Floyd M. Yager, James E Tygh. 

L 



NEW ASSOCIATES ADMITTED IN MAY 1997 

row, fi-em left: Alex*nd~" ~ l d  l~*mmett0 Miroslaw W l e ~ e k ,  Michael Vietef LeySov, William J. M~rek .  J**m ~ Kera Lee P~iguel, Joume 

McA4snus, Sharon C. Cm-mU, Banedick lqdlow. Hush Eric ~ ,  ,,,any ~ rmffmm, R a d ~  Dutil, m'tsune mane rapostto, i<oom M. t.aerete. ~mr ro , 
left: Ym Lawn. Mstgsret ~ee~nof Comoy, Jay C. Ootelaere, Jeffrey S. Trichon, David Ev~m Cnmslx~g, CAS Pres/dent Robert A. Anker, Patricia Thc~ien, Michell¢ 
Luneau, Denis Dubois, Sane W. Hugh, ,  TImt'elm Anne Christim. F . o ~ .  row, tram.l~_.: Andre. Wynne Mab/.oo7. V'm~. lq . a ~ ,  ", _Rid~rd Jolmph C~'rlloo~o/m 
Edward Gains, David E. Heppen. Paul David Miotkc, Richm'd Brcnisla~ Pud, al~k,, Simon Kai-Y'q~ Wont,, mtc/m~ e.. r~on, ~ M. ~peert, C.ary J. 13 

i 



N E W  A S S O C I A T E S  A D M I T T E D  IN M A Y  1 9 9 7  o~ 
oo 

Firsl row, ~-om left: Alfred Denard Commodore, John D. Deacon, Rebecca J. Richard, Jean-Sebastien Lagarda, Kevin A. Lee. Second row, from left: Lisa M. 
Sukow. Kenneth S. Dailey, Janet G. Lindstron~ Martin Vezina, Jertnifer K. Price, Deborah M. King, Janice C. Moskowit z, Dave R. Holmes. Third row, from left: 
Je~mife~ R. Ehreafeld, Mid~ael Shnne, Benoit Morissette, CAS President Robert A. Anker, Mark Stevan Wanger, Bradley H. Lemons, Marc Shanmla, Fourth row, 
fram left: David Thomas Groff. Adam Marshall Swartz, John IV. Cn'adwell. Nathan R. Stein, Wayne E Bqmler, Daniel J. Henderson, Mark B. Anderson. 



NEW ASSOCIATES ADMI'VrED IN MAY 1997 

Pirst row, ~'om left: Neal M. Leibowitz, Jerelyn S. Williams. G. Dermis Sparks, Ethan David Allen. Jonathan Everetl Blake, Elizabeth Susan Tankersley, "l~mothy 
J. Ungashick. See~d  row, f~'om left: Christina Link, Kimberly S. Troycr, Karen Le~ Krainz, San&a L. Ross, Bret Charles Shroycr, Rebecca Ruth Orsi, John R. 
Rohe, Sharon C. Dubin, Darci Z. Noonan, Joseph Gerard Evleth. Third row, from left: Katherine R.S. Smith, Karen E. Watson. Christopher Edward Olson, CAS 
President Robert A. Anker. Christopher J. Burkhalter, Wayne W. Edwards, Stophanie T. Carlson, Thomas Edward Hinds. Fourth row, from left: Michael James 
Moss, David Neal Kightlinger, Harry Todd Pearc¢, Jason Noah Masch. Phillip E. McKneely, William N. Hear Jr., Richard M. Chiarini, Christopher C. Swettmic. 
New Associates adlmitted in May 1997 who are not pictured: T'maothy William At will, David John Braza, Margaret Ann Brinkmann. Tracy Marie Fleck, Allem Jay 
Gould, Luke D d a n ~  Hodge, Paul Ivanovskis, George A~ Kish, James M. MacPhee, Mark Joseph Moitoso, Mihae, la Lm'ninita S. O'Le.ary, John Sheldon Peters, Amy 
Ann Pitruzello, Patricia Ann Pyle, Lisa M. Scorzetti. Jeffrey E Woodcock, Edward John Zonenberg. 

t~ 

O 
Z 

t'3 

¢3 

oo 
',D 



NEW FELLOWS ADMITfED NOVEMBER 1997 
O 

First row, from left: Elizabeth Ann ~ t c x ,  Julia C. Stenberg, Ira M. Kaplan, Meredith G. Richardson, Leigh J. Halliwe]l, CAS President Robert A. Anker, 
Linda Kay Torkc|son, Gary E. Shook, Milaty N. Olson, Carol Ann Blomstrom. Second row, from left: Jeffrey Eddinger, Glenn A. Toblcman, Robe~ W. Van Epps, 
Kurt J. Johnson, Carolc M. Ferrero. Robe~ G. Downs, Andxcw W. Moody, Raymond J. R¢imer, Larry D. Anderson, Third row, from left: Robert D. Share, Richard 
T. McDonald, William B. Cody, Mark R. Johnson, George P. Bradley, Roger A. Yaxd, Robert S. Ballmer If, Keith A. Mathrc, Kevin J. Olsen, Gregory D. Larches. 
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NEW FELLOWS ADMITTED NOVEMBER 1997 

First row, g r i n  left: Anch-ew S. Ribaudo. Gayle L. W~ener, Steven L. Berman, Mary tL Bready, Annette J. Goodreau, CAS President Robert A. Anker0 Theresa A. 
Tumaciogiu. Bradley A. Hanson, Deborah L. Stone, Ginda Kaplan Fisher. Second row, ~-om left: Claus S. Metzner, Hon-Wen Jong, Jeffery IV[. Zacek, Daniel K. 
Johnson, Rebecca A. Kennedy. Daniel J. Merk, Daniel D. Blau. Turban E. Murguz. Third row, ~'om left: David S. Harris, Robert E. Maton, Robert J. Moeer, David 
D. Hudson, "nmothy P. An'am. Bernard Dupont, Joan M. Klucarich, Doug A. Zeerfoss. Fourth row, ~'om left: Jeffrey E Deigl, Carl J. Sornson, Aaron W. Newhoff, 
Robert J. Hopper. Peter V. Burchett, Jason A. Kundrot. Jeffrey D. White, Lori A. Snyder. Fifth row, from left: Stevm J. Symon, Timothy Messier. 
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First row, from left: Victoria G. Stachowski, Jill C. Sidney, Erica L. Weida, Mary E. Fleischli, CAS President Robert  A, Anker,  Amy J. Hirnmelberger, Alexander 
G. Zhu, Paul J. Hancock, Regina M. Pugiisi. Second row, fronl left: Kimberly J. Mullins, Kevin D. Strous, J 'ne E. Byckovski, Jonathan D. Adkisson, Stephen P. 
Sauthoff. Charles A. Dal Corobbo, Elizabeth R. Wiesnar. Third row, f rom left: Geoffrey T. Werner, Terry M. Seckel, Jeffrey P. Shirazi, Gregory Riemer. Tad E. 
Womack, Jean Cloutier, Collin J. Suttie, Edward M. Kuss. 
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First row, from left: Andrea C. Bautista, Christine E. Schindler, Rita E. Ciccariello, CAS President Robert A. Anker, Mari Louise Gray, Gerald T. Yeung. 
Second row, from left: Kevin l-L Shang, Patricc Raby. Philippe Trahan, Christian Fournier, Salvator T. LaDuca, Julie T. Gilberl. Third row, from left: Lowell J. 
Keith, Guy R. Danielson, John A. Stenmark, Thom~ Struppeck, Michael A. Ginnelly, Jennifer M. Levine. New Fellows admitted in November 1997 who are 
not pictured: Pierre Bourassa, Kirsten Rosa Brumley, John Frederick Butcher 1I, Dermis K. Chart, Paul Robert Hussian, and Daniel A. Tess. 
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First row, from left: Shama S. Sabade. Kathleen T. Cunningham, BmceE W~lliams, Lisa M. Pawlowski, Linda Kong, CAS President Robert A. Anker, Stephanie 
J. Michalik, Sherri L Border. Rid't&d E. Menret, William A. Mettdralla. Second row, from left: Joyce Chen, Kevin D. Burns. Philippe Goss¢lin, William H. Scully, 
Noelle C. Fries, Todd W. Leh m~n. Brian T. Suzuki. Third row, from left: Jonathan G. Taylor. Frank J. Bilotti, Kevin J. Fried, Robert L Moss. Nasser Hadidi. 
Denise E Rosen, Ou'istopher J. Mensour, Joel E Witt. Fourth row, from left: Micah R. G~tile, Michael R. S chummor, Paul C. Baroue, Stevea B. Oakley, David M. 
Vogt, Anna M. Beaton, Yuhong Yang, Nitin Talwalkar. 
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NEW ASSOCIATES ADMITTED IN NOVEMBER 1997 

First row, ~rom left: Tracy A. Ryan, Laura M. Williarm, Matthew H. Price, Halina H. Smosna, Michelle L. Hernick, CAS President Robert A. Anker, Julie Perron, 
Rebecca S. Bredehoeft, Christy B. Schreck, P. Cheryl White. Second row, from left: Susan I. Gildes, Richard A. Brassingten, Christopher D. Jacks, Christopher P. 
~ ,  Richard S. Krivo, Alice M. Unde~zood, Andrew S. Becker, Jean-Clande J. Jacob, William R. Jones. Third row, from left: Michael J. Bluzet, Channcey E. 
Fleetwond, Mark Paykin, Michael I. Christian, Brandon D. Keller, Gregory Hansen, Fourth row, from left: Steph¢~ D. Clapp, Charles Letoumeau, Christopher D. 
Goodwin, David J. Pochetlino, Walter L. J ~ i a k ,  Helen P. Neglie, Alexander Krutov. James A. Partridge, Charles P. Neeson. 
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N E W  ASSOCIATES A D M I T r E D  IN N O V E M B E R  1997 o'x 
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First row, from left: Sophie Dulude, Aviv,ya S. Stobl, Linda J. Bjork, CAS President Robert A. Anker, Cynthia J. Heyer, Jacqueline L. Crronski. Second row, from 
left: Christopher G. Cnoss, J. Scott Alexander, David E. Marra, Marc E. Levine, Sarah Krutov, Kevin E Downs. Third row, from left: Michael J. Miller, David M. 
Flitman, Christopher M. Norrcren, Hugo Fortin, Nathan K. ~a 'his .  
New Associates admitted in November 1997 who are not pictured: Michael l'. Curcio, Michael Edward Doyle, Kristine Marie Firminhac, Sy Foguel, Kenneth Jay 
Hammell, la E Hauck, All Islmq, Robea't B. Katzman, Kirk L. Kut ch. Daniel Patrick Maguire, Tieyan Tma Ni, David Anthony Ostrowski, Anthony George Phillips, 
and Claude A. Wagner. 
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ROBERT DRAYER BART, SR. 
1913-1997 

Robert Drayer Bart, Sr. died August 6, 1997 in West Bend, 
Indiana at the age of 83. 

Born December 6, 1913 in Fort Wayne, Indiana, Bart entered 
Northwestern University in Evanston, Illinois in 1931. While 
a student majoring in economics and statistics, he met Ruth 
Sauhering. They were married on January 10, 1935. 

His first position after college was with Kemper Insurance in 
Chicago where he stayed for nine years. During this time he suc- 
cessfully completed the Casualty Actuarial Society examinations 
and was admitted as a Fellow in 1942. During World War II, Bart 
did his part during the war doing actuarial work as a registered 
member for the National Roster of Scientific and Specialized 
Personnel. 

Bart moved his family to West Bend, Indiana in 1944 to work 
for The West Bend Aluminum Company, initially as the office 
manager. He later served the company as comptroller, assistant 
treasurer, vice president, and finally as senior vice president. Bart 
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retired from West Bend Aluminum in 1975 after 31 years of 
service. 

Upon his retirement, he returned to actuarial work for a few 
years as an enrolled actuary under the Employee Retirement In- 
come Security Act of 1974. 

Bart was also very active in his community serving as secre- 
tary, treasurer, and president of the West Bend Country Club. His 
other community work included serving as president of the West 
Bend Noon Rotary Club, treasurer of the board of St. Joseph's 
Community Hospital, member of the board of West Bend Mutual 
Insurance Company, vice chairman of the Milwaukee School of 
Engineering Board of Regents, president of the Budget Execu- 
tive Institute, and member of the board of directors of Milwaukee 
Blue Shield. 

His wife, Ruth, died January 26, 1992. On December 18, 1993 
he was married to Shelagh Brown Hazelrigg in West Bend. 

Bart's grandfather, who was originally from Baden Baden, 
Germany, immigrated to the United States. He changed his fam- 
ily name from Von Barth to Bart. "It's a shame really but I 
suppose it made it easier in some way to be just Bart," said Mr. 
Bart's widow, Shelagh Hazelrigg Bart. 

Robert D. Bart is survived by his wife, Shelagh, and three 
children: Robert D. Bart, Jr., MD, of Honolulu, Hawaii; Linda 
Karwath of Davenport, Iowa; and Patti Herman of West Bend, In- 
diana. Other family members include a stepson, Stephen Hazel- 
rigg of McHenry, Illinois; seven grandchildren; three great- 
grandchildren; a brother Wayne L. Bart of San Angelo, Texas 
and other relatives and friends. 
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CLARENCE S. COATES 
1901-1997 

Clarence S. Coates died on November 4, 1997 in Arlington 
Heights, Illinois at the age of  96. 

Born October 13, 1901 in Henley-on-Thafnes, England, 
Coates attended the University of California-Berkeley. On Au- 
gust 5, 1927, he married his wife Robina (Ina). Together they 
had two sons, William D. and Robert S. 

In 1921, Coates became an Associate of  the Society. The fol- 
lowing year he passed Parts 1 and 2 of the Fellowship exam and 
was named a Fellow of the Casualty Actuarial Socie ty- -one  of  
three new Fellows in 1922. When he became a FCAS, Coates 
was employed as an actuary by Western States Life Insurance 
Company, in San Francisco, California. His brother, Barrett N. 
Coates (FCAS 1918), was also employed by Western States at 
the same time as assistant secretary and actuary. 

Coates' early career was centered in San Francisco where he 
worked for several companies including Federal Mutual Liabil- 
ity Insurance Company, Federal California Underwriters, and 
Lumbermen 's  Mutual Casualty Company (now Kemper Insur- 
ance Companies). In 1939 Coates moved to the Chicago, Illinois 
office of Lumbermen 's  Mutual and was promoted from statis- 
tician to assistant secretary. He was promoted in 1948 to third 
vice president then second vice president in 1958, and again to 
actuary in 1960. Coates retired in 1966. 

A fellow Lumbermen 's  Mutual employee, Earl E Petz (FCAS 
1952), remembers an incident that illustrated Coates' attitude 
toward work. "When it was time for him to retire, I believe his 
last day was a Friday, and the normal routine was if you made 
it to lunch, then you went home. Not Clarence. He worked until 
it was quitting time and came in on Saturday to clean out his 
office. He was that conscientious," said Petz. 
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"His approach to being the boss was more the case of  setting 
a great example and inspiring people to work instead of being a 
hard driver that cracked the whip," Petz continued. "You wanted 
to do the job for him and do it right because he was like that." 
Coates was also reported to have been a regular player in the 
daily bridge game at lunch time at Lumbermen 's  Mutual. 

Another co-worker, M. Stanley Hughey (FCAS 1947) worked 
with Coates at Lumbermen 's  Mutual. He had been there a num- 
ber of years at that point, Hughey reported. "Coates was always 
a very easy-to-deal-with type of  guy but he was a stickler for 
details. When you took reports in to him and he cleared them, 
they were right, or else!" 

Coates encouraged his son William to become an actuary, 
and in 1955, the Coates family produced a third actuary when 
William became an ACAS. Father and son worked together 
briefly. "We decided early on that we didn' t  want to work to- 
gether," said William. "I felt I would be unable to reach my po- 
tential working under my dad and he felt he would have to treat 
me more fairly than otherwise because I was his son," Coates 
explained. 

Coates' contributions to the Society included a discussion of  
Thomas Tarbell's paper, "Casualty Insurance Accounting and the 
Annual Statement Blank," in the 1941-1942 Proceedings. Coates 
enjoyed tennis and contributed to many community activities in- 
cluding serving on the board of a local hospice. 

Coates is survived by his wife; two sons, Robert of Port An- 
geles, Washington, and William of  Hinsdale, Illinois; and five 
grandchildren. 
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DOUGLAS CRITCHLEY 
1920-1997 

Douglas Critchley was born May 5, 1920 in Cheshire, Eng- 
land. He died January 10, 1997. He was 76. 

Critchley attended Shrewsbury School in Shropshire, after 
which he served six years in the British Royal Navy during World 
War II. During the war, Critchley was fortunate to survive in a 
life raft after his ship was torpedoed. After the war, he turned 
down a chance to attend school at Oxford and instead opted to 
work for Royal Insurance Company in Liverpool, England. It 
was during this time that he began taking actuarial courses by 
correspondence. 

In 1948, he transferred to his company's New York City of- 
rice where he worked for seven years. During this time, Critch- 
ley completed his Casualty Actuarial Society exams, becoming a 
Fellow in 1952. On returning to England in the early 50s, Critch- 
ley took the final part of the Institute of Actuaries exams and be- 
came a member. Not long after returning to England, Critchley 
left Royal Insurance to become a partner in E.B. Savory & Co., 
a firm of stock brokers specializing in insurance investments. He 
later became senior partner in the company. He retired in 1977. 

An active member of the Institute of Actuaries, Critchley par- 
ticipated in numerous discussions on economics and was a mem- 
ber of several dining clubs. He was also very fond of opera, 
which was a main source of relaxation for him. During his re- 
tirement, Critchley took an active interest in financing and en- 
couraging small start-up businesses. 

"He was very much loved by family and friends," said Sibyl 
Solomon, Critchley's sister. "He was a lovely person--very gen- 
tle." Throughout his life, Critchley was a generous giver to many 
charities. "He helped many people and is continuing to help 
many, many more through his will," said Solomon. Critchley 
is survived by his sister Sibyl and many other family members 
and friends. 
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RICHARD C. ERNST 
1944-1997 

Richard Ernst was born June 24, 1944, in Pittsburgh, Penn- 
sylvania. He died September 17, 1997, from heart problems. He 
was 53. 

A graduate of Duquesne University in Pittsburgh, Ernst 
earned a bachelor's degree in mathematics in 1967. After gradua- 
tion, he taught math at Pittsburgh's North Catholic High School. 
At the school, he also chaired the math department and coached 
the football team. In 1972, he earned a master's degree in math- 
ematics from the University of Notre Dame. That same year, 
he got his first actuarial job, working as an actuarial analyst for 
Aetna Insurance in Hartford, Connecticut. Ernst lived many years 
in Hartford also working for Connecticut General Life Insurance 
and finally as assistant vice president for CIGNA. 

In 1987, he joined Reliance Insurance Company in Philadel- 
phia to serve as vice president in charge of ratemaking and pric- 
ing. Ken Frohlich, FCAS, a former employer and colleague, 
made a special effort to recruit Ernst to join Reliance because 
of his exceptional communication skills and business acumen. 
"In addition to being a good actuary, he was a good business 
analyst. He was a class act all the way," said Frohlich. In 1991, 
Ernst joined Arthur Andersen in Philadelphia as an actuarial con- 
sultant. 

Ernst, who became a Fellow of the CAS in May 1978, was 
very active with CAS committees. Most notably, Ernst served 
as chair of the CAS External Communications Committee from 
1992 to 1994. He was also a member of the Editorial Committee 
of the Actuarial Review from 1984 to 1994 and the Examinations 
Committee from 1983 to 1984. He was also a member of the 
American Academy of Actuaries. 

Having a talent and passion for photography, particularly, 
sports photography, Ernst became active in the Chester County 
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Camera Club. He later served as club president from 1996 to 
1997. During his year as president, he was instrumental in de- 
veloping the "Focus on Longwood," an international photo com- 
petition sponsored by the club. Ernst developed a way to level 
scores among the many judging panels for the competition. Fel- 
low club member Marc Horton said that Ernst drew on his ac- 
tuarial prowess to create a "laureate award-worthy mathematical 
scheme to achieve fairness for all entries." In addition to his 
work on the competition, Ernst wrote the curriculum and taught 
the Camera Club's first basic photography course. 

The Chester County Camera Club held a memorial service 
for Ernst on September 24, 1997. Horton recalled that Ernst was 
one of the Club's first members. "It was clear that he was a 
man of integrity; someone you could rely on to do more than 
promised," said Horton. "During the Club's growth years that 
followed, Rich became the man of the hour." 

To honor Ernst's memory, the Camera Club inaugurated the 
"Richard Ernst Memorial Photographer of the Year" award. Each 
year, the club will present the award to the photographer who has 
received the greatest score from competitions during the year. 
Award recipients will have their names added to the award so 
that it will be a constantly growing memorial. 

Ernst is survived by his spouse of 27 years, Charlotte Joan 
Krym Ernst; two sons, Andrew and Kenneth; and a brother. 
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ALFRED VAN WORMER FAIRBANKS 
1918-1997 

Alfred V. Fairbanks died June 30, 1997 in Springfield, Mas- 
sachusetts. He was 79. 

Fairbanks was a lifelong resident of  Springfield, Massachu- 
setts, where he was born on May 8, 1918. In 1936, he joined 
Monarch Life Insurance Company in Springfield. Fairbanks 
worked for Monarch for 47 years before retiring in 1983. 

He attended Foster Memorial Church and was a graduate of  
Classical High School. During World War II, he served in the 
Army Air Forces. Among his community service activities, he 
was involved in the Hampden Masonic Lodge, the Scottish Rite 
Bodies, and the Melha Temple. 

Fairbanks earned his Fellowship in the Casualty Actuarial So- 
ciety in 1951 and was a member of  the American Academy of 
Actuaries. In addition, he was a contributor to the Proceedings, 
Volume XLII, presenting his paper "Notes on Noncancellable 
Health and Accident Ratemaking" at the CAS Annual Meeting 
on November 17, 1955. 

His survivors include his wife Rita Ethier McKenna Fair- 
banks; a son, Gregg of Norway, Maine; and two stepdaugh- 
ters, Suzanne Robitaille of East Longmeadow, Massachusetts, 
and Jeanne Broderick of  Wilbraham, Massachusetts. 



OBITUARIES 875 

GILBERT W. FITZHUGH 
1909-1997 

Gilbert Fitzhugh died December 29, 1997, after a long battle 
with Alzheimer's disease. He was 88. 

Fitzhugh was born July 8, 1909 in Brooklyn, New York. He 
graduated from Princeton in 1930 with a bachelor of science in 
mathematics. He met and married his wife L~a when she was 
transferred from the London office of Metropolitan Life to Man- 
hattan. They had two children. 

At age 23, Fitzhugh passed his examinations for Fellowship in 
the Society of  Actuaries (SOA), becoming the youngest  person 
to do so. Because of an SOA rule barring admission to those 
under the age of 25, Fitzhugh had to wait before becoming an 
official member. He later was elected SOA president in 1965. 
Fitzhugh became a Fellow of the CAS in November 1935. He 
was also a Fellow of  the Canadian Institute of Actuaries and a 
member of the American Academy of Actuaries. 

Fitzhugh began a long career with Metropolitan Life Insur- 
ance Company, joining the company in 1930 as a clerk in its 
social insurance division. He served Met Life for 33 years be- 
fore being appointed the company's  chairman of  the board and 
chief executive in 1963. While he headed Met Life, the company 
added automobile and home insurance. Fitzhugh retired in 1973 
after 43 years. 

Fitzhugh was involved in creating political change during the 
1960s and early 1970s. In 1967, Fitzhugh announced the for- 
mation of a $1 billion urban renewal fund in which insurance 
companies would invest to restore run-down housing. President 
Lyndon B. Johnson, whose own urban renewal programs met 
with fierce opposition from Congress, called the fund "a historic 
contribution to our country." Today, the fund has grown to $2 
billion. 
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From 1971 to 1972, Fitzhugh led a government-appointed 
panel assessing the procurement practices of the Pentagon. Some 
believed that the panel exposed some of the worst faults in the 
Pentagon's procurement system. 

An adventure lover, Fitzhugh scaled both Mount Marcy in 
New York's Adirondack Mountains and Mount Whitney in Cal- 
ifornia. Fitzhugh's son, Gilbert, recounted a story illustrating 
his father's adventurous streak: "In 1931, Washington's birth- 
day was a Monday. To see if they could do it, Dad and a friend 
left work Friday afternoon, took the ferry to New Jersey, drove 
to Miami, had dates (short ones!) with a couple of friends, and 
drove back in time for work Tuesday morning. With no Inter- 
state. In a Model A Ford. On plank road through the Georgia 
swamps in the middle of the night. Never over 50 miles an hour, 
and often much slower. Boiling out the alcohol anti-freeze going 
down, and replacing it coming back. And stopping every 500 
miles to change the oil. Now. . .how many of today's FCASs 
would want to insure these two idiots?" 

Fitzhugh made a point to encourage others to take up actuarial 
work. Charles C. Hewitt, Jr., FCAS, whose first job was with Met 
Life working for Fitzhugh, credits Fitzhugh with helping him 
pursue an actuarial career. "I think it was Bacon who said, 'I hold 
every man to be a debtor to his profession.'. . .Gilbert Fitzhugh 
paid his dues many times over when he took the time.., to visit 
a college campus and then to give a seventeen-year-old boy a 
summer job in actuarial work," said Hewitt. 

In addition to his son, Gilbert of Morristown, New Jersey, 
Fitzhugh is survived by his wife, the former L~a Van Ingh of 
Hightstown; a daughter, L~a Fitzhugh Welch of Yakima, Wash- 
ington; a sister, Sarah Fitzhugh Dawson; two grandchildren; 
three step-grandchildren; two great-grandchildren; and one step- 
grandchild. 
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DAVE R. HOLMES 
1950-1997 

Dave R. Holmes died accidentally on October 10, 1997 at his 
home in Bristol, Connecticut. He was 47. Holmes had recently 
become a member of the Casualty Actuarial Society, obtaining 
his Associateship in May 1997. 

He was born April 27, 1950, in Burley, Idaho to Ralph Nor- 
man and Maxine Maughan Holmes. He attended schools in Bur- 
ley and graduated from Burley High School in 1968. 

After high school, he attended the California Institute of Tech- 
nology and then transferred to the University of Idaho where 
he received his degree in mathematics in 1973. He received his 
Ph.D. in mathematics from the University of California at River- 
side in 1981. The title of his doctoral thesis is "An Extension to N 
dimensions of the Von Karman Equations." In 1986 he received 
a masters degree in physics from the University of California- 
Riverside. 

Holmes came into the actuarial profession as a career change 
from engineering and statistical work. He worked for TRW for 
seven years doing systems engineering and statistical analysis of 
ICBM flight and ground test data. After leaving TRW, he began 
studying to pass the actuarial exams. Holmes started in 1990 and 
became an Associate in 1997. During this time he worked for 
Zenith Insurance Company for five years as an actuarial assis- 
tant writing data retrieval computer programs and doing other 
projects for the company's special situations division. In August 
1997, he moved to Connecticut to work for the research division 
of The Hartford as a computer and math specialist. 

Holmes was enthusiastic about his change in career. "I know 
that Dave enjoyed his dealings with [the CAS] and was looking 
forward to being a part of the group and making contributions," 
wrote Holmes' sister Yvonne Hallock. 
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A black belt in karate, Holmes enjoyed the exercise and ca- 
maraderie of the sport and participated in many tournaments 
and championships over the years. He had advanced to teach- 
ing karate classes occasionally. 

He enjoyed the outdoors and took many trips to mountains 
and deserts in California, Idaho, Alaska, and Utah. Holmes espe- 
cially enjoyed backpacking trips to Idaho's Sawtooth Mountains 
and Alaska's wilderness area. Through his many photographs, 
Holmes tried to capture the scale and grandeur of the spectacu- 
lar scenery he visited. 

His survivors include his father; two sisters, Yvonne of Coeur 
d'Alene, Idaho, and Valerie Callow of Pocatello, Idaho; three 
brothers, Richard Pullman of Boise, Idaho, Scott Sherrod of 
Layton, Utah, and Paul Holmes of Burley; seven nieces and six 
nephews. He was preceded in death by his mother, Maxine, and 
stepmother, Jean Wolf Holmes. 
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JOHN SEWARD McGUINNESS 
1922-1997 

Dr. John S. McGuinness died April 29, 1997 at the age of 79 
in Scotch Plains, New Jersey. 

A World War II veteran, McGuinness was born March 12, 
1922 in Kingston, Pennsylvania. He married and became a 
father, pursued advanced degrees, conducted management re- 
search, formed his own business, and served as a leader and 
member of several organizations. 

On November 23, 1957, he married Shirley Paige Campbell. 
They had three children, Brian B. McGuinness, Ann M. Werner, 
and Lauren K. McGuinness. 

After graduating from Broadway High School in Seattle, 
Washington in 1941, McGuinness attended the University of 
Washington in Seattle (1941-43), the University of Pittsburgh 
(1943-44), and the University of California at Berkeley where he 
earned his bachelor of science degree (1948) and MBA (1949). 
He did some post-graduate work at the University of Zurich 
in Switzerland (1949-50) before attending Stanford University 
(1950-1951) where he received his doctorate degree (1955). In 
addition, Dr. McGuinness graduated from the U.S. Army War 
College in 1971. 

During World War II, Dr. McGuinness served in the U.S. 
Army from 1943-1946 in Europe. He continued his military ser- 
vice in the U.S. Army Reserves and was awarded the Meritorious 
Service Medal. He retired as a colonel. 

A 30-year member of Fanwood Presbyterian Church, he 
served as an elder, usher, and foundation trustee. Other church 
activities included the men's Bible study group, men's chorus, 
food bank, and the annual Thanksgiving dinner. 
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McGuinness was a Fellow of the Casualty Actuarial Soci- 
ety (FCAS 1960), an emeritus member of  the Canadian Insti- 
tute of  Actuaries, and a member of  the American Academy of 
Actuaries. He was very active in the Society for the Advance 
of Management,  serving as the organization's international vice 
president (1972-74), international president (1979-80), and as 
international chairman of the board (1980-81). He also served 
as president of the Society of Insurance Research (1972) and 
as treasurer for the Research Officers Association (1984-86). 
McGuiness '  other affiliations included the International Actuar- 
ial Association, Actuarial Studies in Non-Life Insurance, Asso- 
ciation of  Actuarial Approach to Financial Risks, American Sta- 
tistical Association, Confederation Internationale des Officiers 
de Research, Swiss Association of Actuaries, Order of  Kentucky 
Colonels, International Insurance Society, Beta Gamma Sigma, 
Alpha Kappa Psi, and Delta Tau Delta. 

An author of many articles and professional papers on man- 
agerial and actuarial subjects, McGuinness wrote Top Manage- 
ment Organization and Control of Insurance Companies, which 
was translated into Japanese. 

McGuinness held numerous positions in the U.S. and also 
worked in Europe before forming his own actuarial and man- 
agement company, John S. McGuinness Associates-Consultants, 
in 1964. He served as company president until the time of his 
death. 

He is survived by his wife and children as well as a brother, 
James B. McGuinness; a sister Grace M. Torgan; and a grandson. 
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EARL H. NICHOLSON 
1900-1997 

Earl H. Nicholson died October 27, 1997 in Reno, Nevada. 
He was 97. 

A native of Lowell, Michigan, Nicholson was born March 9, 
1900 to Judd B. and Ella Hemingway Nicholson. 

Nicholson worked as an actuary and assistant insurance com- 
missioner for the state of Nevada from 1960 until his retirement 
in 1971. Before moving to Nevada, Nicholson worked for Joseph 
Froggett Company in New York City for 35 years. 

Nicholson served in World War I and was a member of the 
Unitarian Universalist Fellowship. He received bachelor's and 
master 's degrees from the University of  Michigan in Ann Arbor. 

His wife, Esther A., a son James B., and a sister Lucretia 
N. Straatsma, preceded him in death. His survivors include two 
daughters, Nancy N. Carlton of Pikeville, Kentucky, and Linda 
N. Roe of Eugene, Oregon; seven grandchildren; and seven great- 
grandchildren. 
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