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Abstract 

In formulating eficient risk sharing arrangements, it 
is desirable to minimize both transaction costs and the 
risk load required by the participating insurers. A simple 
yet realistic model that explicitly incorporates both trans- 
action costs and risk load is put forth in this paper It is 
shown that, under very general conditions, the optimal 
risk sharing arrangement which results is constructed in 
layers. Remarkably simple expressions are given for the 
optimal boundaries between layers as well as each par- 
ticipating insurers share of each layer: Several examples 
are included that illustrate the application of the model. 

1. INTRODUCTION 

This paper addresses the related subjects of optimal risk shar- 
ing and premium calculation. “Risk sharing” refers to an ar- 
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rangement among various entities (in an insurance context. usu- 
ally insureds, insurers, and reinsurers) to share in the payment 
of losses. “Premium calculation” refers to the process of figur- 
ing charges to add to expected losses to obtain premiums for a 
particular risk sharing arrangement. These charges take into ac- 
count both the transaction costs (e.g., commission, brokerage, 
and overhead) and the risk load associated with a risk shar- 
ing arrangement. Optimal risk sharing and premium calculation 
have been discussed quite frequently in the actuarial literature. 
The primary feature of this paper that distinguishes it from most 
other treatments of these subjects is the explicit inclusion of 
transaction costs as an integral part of the model used to derive 
results. 

The problem discussed in this paper is that of finding the 
risk sharing arrangement that minimizes the combined premium 
charged by all of the insurers sharing a particular risk.’ In the 
model used to address this problem, we assume that each in- 
surer charges a specified percentage of its own expected losses 
to account for transaction costs and a specified percentage of 
the variance of its own losses to account for risk load. These 
percentages may differ by insurer. In general, we expect insur- 
ers that tend to take on small amounts of expected losses for 
each risk (often reinsurers) to have transaction costs that are a 
larger percentage of their expected losses than insurers that tend 
to take on large amounts of expected losses for each risk. Like- 
wise, we expect insurers that tend to take on a very large number 
of risks (often reinsurers) to have risk loads that are a smaller 
percentage of the variance of their losses than insurers that take 
on a small number of risks. More will be said about this later. 

‘For convcnicncc, throughout this paper, the term “insurer” will bc uxd to rcfcr to any 
participant in a risk sharing arrangement. Howcvcr, all the participants in a risk sharing 
arrangement need not bc insurers. An insured may retain a portion of its own losses, a 
rcinsurcr may assume losses through a primary insurer, or the risk sharing could bc in 
a noninsurance context. In the cast of an insured retaining a portion of its own losses, 
although prcmlum would not change hands, the msurcd would incur a cost in maintaining 
the additional capital and liquidity ncccssary to ahsorb the retained Iosscs. 
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There are certainly other ways one could account for transac- 
tion costs in a risk sharing arrangement, and risk load has been 
a subject of ongoing debate for many years. The purpose of this 
paper is not to debate the merits of various methods of handling 
transaction costs and risk load. The model described in this pa- 
per is useful because it is simple enough to yield results that are 
mathematically tractable yet realistic enough to yield results that 
provide real insight. 

2. THE PROBLEM 

We begin with the usual formulation of the collective risk 
model. Let N denote the number of claims produced by a risk 
(or portfolio of risks) in a given time period. Let Xi, X2, X3,. . . 
denote the various claim sizes. We assume N, X1, X2, X3,. . . to 
be mutually independent random variables and X1, X2, X3,. . . to 
be identically distributed. If S = X1 + X2 + ... + X,, then: 

E[S] = E[N] . E[X], and 

Var[S] = E[N] . Var[X] + Var[N] . (E[X])2 

= E[N] . E[X2] - (E[X])2 + 3. 

=E[N].{E[X2]+ (s-1) .(E[X])‘}. 

Next, we assume that there are C insurers available to share 
in the payment of losses. Further, we assume that each insurer 
pays a predetermined percentage of each claim. These percent- 
ages may vary by claim size. Thus, each insurer has associated 
with it a payment function, p(x), which can vary between 0 and 
1, that indicates the percentage of each claim that the insurer will 
pay.2 If Si designates the total losses paid by the ith insurer and 

*Payment may also be based on the sum of all claims arising from each occurrence. For 
convenience, the term “claim” will be used throughout this paper. 
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pi(x) is the payment function for the ith insurer, then:

E[Si] = E[N] . E[pi(X) oX], and

Var[Si] = E[N] o{E[(pi(X) . X)2]

(Var[N] _ ~
+ E[N]

) . (E[pi(X). X])2}.

Let @ibe the percentage of its own expected losses charged by
the ith insurer to account for transaction costs, and let vi be the
percentage of the variance of its own losses charged by the ith
insurer to account for risk load.3 Then the combined premium
charged by all of the insurers sharing the risk is:

c
M = ~(E[5’i] + @ioE[Si] + vi . Var[Si])

i=l

c
= E[S] + ~(@i . E[Si] + vi . Var[Si]).

i=l

The problem is to find the payment functions for each of the C
insurers that minimize M subject to the constraints that:

c
0< pi(X) <1 and ~pi(x) = 1.

i=l

3. THE SOLUTION

The solution is given here without proof. The proof is pro-
vided in the Appendix. First, we assume that the C insurers have
been arranged so that the following relation holds:

The solution then involves the familiar concept of layering. The
optimal risk sharing arrangement is organized into C layers.

3@i is dimen~i~~~s and vi hm dimension $– 1 (if we are working with dollars). Rr

convenience, $–’ will be omitted throughout this paper.
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The first layer (from zero to the
cated entirely to the first insurer.

The second layer is allocated to
following proportions:

first layer boundary) is allo-

the first two insurers in the

Insurer 1:
l/7#~

l/1#~ + l/?/J~’
and

Insurer 2:
l/$!l~

l/~~ + l/+~”

Thus, for a claim that penetrates the second (but not the third)
layer, the first insurer pays the entire portion of the claim that
falls below the first layer boundary and a fraction of the portion
above it. The second insurer pays a fraction of the portion of the
claim above the first layer boundary.

The third layer is allocated to the first three insurers in the
following proportions:

Insurer 1:
1/+,

l/?/J~ + l/+~ + l/?/)~’

Insurer 2:
1/+2

l/~, + l/7)~ + l/+q’
and

Insurer 3:
l/q!q

1/41 + 1/42 + 1/+3”

One insurer is then added in each successive layer until the
top layer has all of the C insurers participating in the following
proportions:

Insurer i :
l/~i

1/+1 +1/7/J~ +..+ l/?#c”

Thus, for low layers, which contribute much more to expected
losses than to variance, only the insurers with the smallest #is
participate. For high layers, where variance is a much more im-
portant consideration than expected losses, many insurers partic-



28 BALANCING TRANSACTlON COSTS AND RISK LOAD 

ipate in order to better reduce the variance. Within a particular 
layer, the insurers with the smallest ?,!J~s get the largest shares.4 

We now address the issue of the location of the layer bound- 
aries. Let the layer boundaries be I1 5 12 5 < 1~~1. Then each 
lj is given by the solution of the following equation: 

I, + Var[Nl 
I ( --l ‘E[X;lj]-1 

VW 1 
’ @j+l - @i = () 

i=l 2’tii 

where E[X;f;] is the expected value of X limited at I,.’ The 
relationship between adjacent ljs can be expressed as follows: 

(lj - /j-l) + 
Var[ N] ~ - 1 E[N] . (E[X;lj] - E[X;lj-11) 

The first thing to observe about these equations is that the fjs 
depend on the claim count distribution only through the ratio 
of the variance to the mean. If this ratio is 1, as it is with the 
Poisson distribution, the ljs are independent of the claim size 
distribution. If this ratio is less than 1, the more severe the claim 
size distribution, the higher the fjs will be. If this ratio is greater 
than 1, the more severe the claim size distribution, the lower the 
fjs will be. 

The second of the above equations shows that if $j is asso- 
ciated with the insurer just added in a given layer and $j+l is 

‘This same type of layering arrangement was derived by Buhlmann and Jcwcll [l] in the 
context of a model based on exponential utility functions. 
5This equation can be easily solved for I, using Newton’s method. Note that the deriva- 
tive of the left side of the equation with respect to I, is simply: 

I + 
( 

WNI --1 -(l--F(l))) 
EINI ) 

where F(x) is the cumulative distribution function of A’. 
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associated with the insurer to be added in the layer above, then 
the greater the difference between them, the greater the width 
of the former layer will be. In other words, if the insurer to be 
added in the layer above charges a much greater percentage of 
its expected losses than the most expensive of the insurers par- 
ticipating on a given layer, a large increment will be required to 
reach a point where the reduction in variance provided by the 
addition of the next insurer is worthwhile. On the other hand, if 
$j = $j+i, then the width of the layer will be 0, and both insur- 
ers will be added at the same time. In the extreme case where 
all of the @is are equal to one another, all of the Ijs will be 
0, so there effectively will be only one layer, with all C of the 
insurers participating. This reflects the well-known result that if 
transaction costs do not depend on how a risk is shared, then a 
quota share arrangement is optimal. 

Another noteworthy aspect of the above equations is that 
a given lj is only affected by the $J~S associated with insurers 
on layers below it. Thus, the +is associated with insurers to be 
added in higher layers have no effect on the location of a partic- 
ular fj. It is also clear that smaller qis will result in higher fjs. In 
other words, if insurers do not charge large percentages of the 
variances of their losses, variance reduction is less of a priority 
than it would otherwise be, and the points at which insurers are 
added can be higher. 

The optimal risk sharing arrangement described above mini- 
mizes the combined premium charged by all of the insurers shar- 
ing a risk. In order to calculate each insurer’s premium, expres- 
sions are needed for E[pi(X) . X] and E[(pi(X). X)‘], the first 
and second moments of each insurer’s own claim payment distri- 
bution. Since the optimal risk sharing arrangement is constructed 
in layers, the needed expressions are as follows: 

E[Pi(X) * x] = f: ‘ij l” (1 - F(X))dX, 
j=i I 1 

and 
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i 

2 

+ rij . (X - ij 1) .f( .U)dX. 

where: 
, 

fo = 0 and IC = 00, 

I(X) = probability density function of A’, and 

rlj = ith insurer’s share of the jth layer as defined above 

If claims are censored by a policy limit, a term must bc added 
to the expression for the second moment to take into account 
the spike of probability at the policy limit. However, the equa- 
tion used to calculate the lIs is not affected by a policy limit. In- 
surcrs that participate only on layers that fall completely above a 
policy limit are effectively not needed in the optimal risk sharing 
arrangement. 

4. EXAMPI.liS 

The application of the results presented in the previous sec- 
tion will be illustrated with several examples. The claim size dis- 
tributions used in the examples are Mixed I’aretos.’ Each distri- 
bution is the weighted average of two Paretos. one of which has 
a relatively thick tail and one of which has a relatively thin tail. 
The density and distribution functions of the Mixed Pareto are 
as follows: 
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TABLE 1 

KEY STATISTICS FOR OPTIMAL RISK SHARING 
TYPICAL GENERAL LIABILITY RISK 

BI = 25.OM) Lavcr I: 0 - 75,677 Polq Limit = 1 ,oOO,OoO 
B-3 = 5,000 Layer 2: 75,677 - 255.814 
QI = 1.25 Layer 3: 255,814 - 562,307 
Q2 = 3.2s Layer 4: 562,307 - 1,0(X),000 
P = .x0 
Var[N]/E[A’] = 2 

lnsurcr Insurer lnsurcr lnsurcr 
1 2 3 4 Total 

Layer 1 Share 100.0% 
Layer 2 Share 45.5 
Layer 3 Share 27.0 
Layer 4 Share 17.5 

Expcctcd Loss 

Q, Charge 
I/J Chap 
Total Charge 

Pcrccntagc 

54.5% 
32.4 
21.1 

2,.5x9 

259 
107 
366 

14.1%) 

26.3 3.5.1s 

1,057 414 

1% 83 
38 x 

1% 91 

18.5%~ 22.0’%! 

100.0 

13,874 

991 
468 

1,459 

lO..5’Z 

No Risk 
Sharing 

13,874 

694 
1,401 
2.09s 

15.1% 

The charges in the examples are calculated assuming that 
E[N] = 1. Charges for other values of E[N] can be found simply 
by multiplying the charges shown by E[N]. 

In each of the examples, we will assume that there are six 
insurers available to share the risk. The @is for the six insurers 
are 45, .lO, .15, .20, .25, and .30, and the ?+!J;s for the six insurers 
are .30. 10P6, .25- 10P6, .20. lo-‘, .15. l@, .lO. lo-“, and 45. 
1V6, respectively. More will be said later about how these values 
might be estimated. 

Table 1 shows the key statistics for the optimal risk sharing ar- 
rangement for what might be considered a typical general liabil- 
ity risk with a $1,000,000 policy limit. Note that only four insurers 
are required in this case. For comparative purposes, charges are 
also shown for the case in which there is no risk sharing and In- 
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TABLE 2 

KEY STATISTICS FOR OPTIMAL RISK SHARING 
LARGE POLICY 

BZ = 25,(xX) Layer 1: 0 - 75,677 Poliq l.imit = 10,000,000 
B2 = S,oOO Layer 2: 75,677 - 255,814 
(jr = 1.25 Layer 3: 255,814 562,307 
Q-7 = 3.25 Layer 4: 562,307 1,036,0.58 
P = x0 L..aycr 5: 1,036,(158 ~ 1.760,102 
Var[NJ/EIN] = 2 Layer 6: 1,7M),102 ~~ lO,oOO,Oo() 

Insurer Insurer Insurer Insurer Insurer lnsurcr 
1 2 3 4 5 6 Tol~Il 

Laycr 1 share 100.0% 
L.aycr 2 Share 45,s 
Layer 3 Share 27.0 
Layer 4 Share 17.5 
Layer 5 Share 11.5 
Layer 6 Share 6.8 

Q, Charge 
1c, Charge 
Total Charge 

Percentage 

10,099 

SOS 
401 
906 

9.0% 

54.5% 
32.4 
21.1 
13.8 
x.2 

2,932 1,485 

293 223 
193 124 
486 347 

16.6% 23.4%’ 

40.6% 
26.3 
17.2 
10.2 

3.5.19 
23.0 
13.6 

YX6 

107 
Y4 

291 

29.5% 

100.0% 
100.0 
100.0 
loo.0 

.34..5% 100.0 
20.4 40.8% 1 MM 

No Risk 
Sharing 

822 Y84 17,308 17,308 

206 205 1,719 866 
86 109 1,007 X,722 

292 304 2,726 9,588 

35.5% 4 1.1% 15.7% 55.4% 

surer 1 takes the entire risk. Risk sharing in this example results 
in a savings of 4.6% of expected losses. 

Table 2 shows the statistics for the optimal risk sharing ar- 
rangement for a risk identical to that underlying Table 1 except 
with a policy limit of $10,000,000. In this case. all six insurers 
are required, and risk sharing results in a savings of 39.7% of 
expected losses.7 

‘This 1s an illustratmn of how the abscncc of risk sharing m a model can result in very 
large risk loads at high poliLy limits. Robbin [2] has discussed the need to consider risk 
sharmg when computing risk loads and has prcscntcd a simple model of risk sharing 
(alkwing only quota share arrangcmcnts) that incorporates transaction costs (attributed 
IO Klmkcr). 



BALANCING TRANSACTION COSTS AND RISK LOAD 33 

TABLE 3 

KEY STATISTICS FOR OPTIMAL RISK SHARING 
VARIANCEEQUALS MEAN 

Bl = 25,000 
82 = 5,000 
Ql = 1.25 
Q2 = 3.25 
P = .&I 
Var(N]/E[N] = 1 

Layer 1 Share 
Layer 2 Share 
Layer 3 Share 
Layer 4 Share 

Layer 1: 0 - 83,333 Policy Limit = 1,000,000 
Layer 2: 83,333 - 266,667 
Layer 3: 266,667 - 575,000 
Layer 4: 575,OOU - 1,000,000 

Insurer Insurer Insurer Insurer 
1 2 3 4 Total 

100.0% 1 OO.O? 
45.5 54.5% 100.0 
27.0 32.4 40.6% 100.0 
17.5 21.1 26.3 3S.lF 100.0 

No Risk 

Expected Loss 

9 Charge 
$ Charge 
Total Charge 

Percentage 

Sharing 

9,978 2,471 1,022 397 13,874 13,874 

499 248 153 80 980 694 
301 103 36 8 448 1,343 
800 351 189 88 1,428 2,037 

8.0% 14.2% 18.5% 22.2% 10.3% 14.7% 

Table 3 shows the statistics for the optimal risk sharing ar- 
rangement for a risk identical to that underlying Table 1 except 
with Var[N]/E[N] equal to 1. As noted in the previous section, 
in this case, the layer boundaries are independent of the claim 
size distribution. The results are similar to those shown in Ta- 
ble 1. 

Table 4 shows the statistics for the optimal risk sharing 
arrangement for a risk identical to that underlying Table 1 ex- 
cept with smaller QI and Q2 parameters. This adjustment 
thickens the tail of the claim size distribution, thus making 
risk sharing more important. The layer boundaries change very 
little, but risk sharing results in a savings of 9.7% of expected 
losses. 
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TABLE 4 

KEY STATISTICS FOR OPTIMAL RISK SHARING 
SMALLER Ql AND Q2 PARAMETERS 

Bl =25,000 Layer 1: 0 - 72,930 Po!iq Llml! = 1 .~,KlO.OoO 
B2=5,000 Layer 2: 72,930 - 248,026 
Ql = 0.75 Layer 3: 248,026- 548,936 
Q2 = 2.15 Layer 4: 548,936 - 1 ,OW,OOO 
P =.80 
Var[N]/E[N] = 2 

Insurer Insurer lnsurcr Insurei 
1 2 3 4 Total 

Layer 1 Share 
Layer 2 Share 
Layer 3 Share 
Layer 4 Share 

Expcctcd Loss 17.352 8,338 4X)? ?.iYY 3_7.544 is91 

4 Charge 868 8.74 ‘21 470 7,YOZ 1.645 
+ Charge 910 450 10 54 l.hl3 6,039 
Total Charge 1,778 1,284 Y20 533 .1,‘;15 7.68‘1 

Percentage 10.2’; 15.4”; 19.1’; ‘2.2c; ii.“; 3.45 

5. AGGREGATION 

To this point, we have assumed that risk sharing is done on a 
claim by claim (or occurrence by occurrence) basis. Each insurer 
participating on a risk pays a predetermined percentage of each 
claim, with the percentage depending on the size of the claim. 
However, the model can also be applied to situations where a 
number of claims are aggregated together before being allocated 
to each insurer. If the claims are independent of one another, 
algorithms are available that may be used to calculate an aggre- 
gate distribution from the underlying claim count and claim size 
distributions, or a simulation technique may be used. 

The only change to the model involves the equation for the 
layer boundaries. If claims are aggregated together over definite 
time periods, there will be only one “claim” per time period. 



Therefore, the variance-to-mean ratio of the claim count distri- 
bution must be set at zero, and the equation reduces to: 

lj - E[X; fj] - C j @j+l - $i = o 
i=l 2’$i ’ 

An advantage of aggregating independent claims together be- 
fore allocating them to insurers is that claims considered as a 
group are more predictable than claims considered individually. 
As a result, more of the expected losses can remain in the lower 
layers with insurers with lower @is, thus resulting in a lower com- 
bined premium for each risk. The larger the number of claims 
aggregated, the greater the effect will be. 

A lower bound for the combined premium may be easily com- 
puted. First, note that the combined charge for transaction costs 
cannot be lower than the total expected losses multiplied by &, 
which we have assumed to be the smallest of the @is. Second, as 
alluded to earlier, if transaction costs are disregarded, a quota 
share arrangement is optimal, with each of the insurers being al- 
located relative shares inversely proportional to their @is. There- 
fore, a lower bound for the combined premium may be obtained 
by assuming that all of the expected losses are allocated to the 
lowest layer and all of the variance is allocated to the highest 
layer. This lower bound is thus: I\ 

EIS]+O1.EIS]+& 
i=l 

. Var[S] 

1 
= E[S] + 0, . E[S] + c . Var[S]. 

C l/Qi 
/=I 

Table 5 shows how this lower bound compares to results with- 
out risk sharing and with risk sharing on a claim by claim basis 
for the risks underlying Tables 1 and 2. 
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TABLE5 

TOTAL CHARGEASA PERCENTAGE OFEXPECTED LOSSES 

Policy 
Limit 

No Risk Claim By 
Sharing Claim 

Aggregate 
Lower Bound 

1 ,ooo,m 15.1% 10.5% 5.7% 
10,000,000 55.4 15.7 8.4 

Given that it is possible to lower the combined premium 
by aggregating claims together before allocating them to each 
insurer, one might conclude this should always be done. How- 
ever, this may not always be the best approach. For example, if 
claims are aggregated together, an insurer participating on a high 
layer can be affected by a large number of small claims in ad- 
dition to one large claim, which may not be desirable. In some 
cases, the overhead associated with aggregate coverage may 
result in larger transaction costs. The mode! cannot account 
for all the practical realities that must be considered. Also, 
to reduce the combined premium by a significant amount, it 
may be necessary to aggregate together a very large number of 
claims. 

Finally, it should be noted that many risk sharing contracts 
exist that aggregate together only the portion of claims in spec- 
ified layers. For example, in many retrospective rating contracts, 
losses below a given retention are aggregated together before 
determining coverage, while the insurer pays the portion of any 
claim that falls above the retention. As another example, a rein- 
surer may provide coverage only if the sum of a!! losses that fall 
in a given layer exceeds a given aggregate retention, while the 
ceding insurer retains a!! losses in this layer below the aggre- 
gate retention as we!! as a!! claims that fall completely below the 
layer. The hybrid nature of these contracts makes them difficult 
to analyze. However, the expression giving a lower bound for the 
combined premium remains valid. 
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6. PARAMETER ESTIMATION 

This section addresses several points that must be considered 
if we wish to estimate actual values for the @is and +is. As shown 
previously, each lj is given by the solution of the following equa- 
tion: 

Note that only differences of &s appear in this equation. If a!! 
the $jS were increased by the same amount, the solution to the 
equation would not change. This reflects the fact that what mat- 
ters are differences in transaction costs among insurers. If there 
are some costs (e.g., agents’ commissions) that are incurred re- 
gardless of how a risk is ultimately shared among insurers, then 
these costs have no effect on the optima! risk sharing arrange- 
ment. 

If risk sharing is accomplished through reinsurance, the dif- 
ference between $i for a primary insurer and C#J~ for a rein- 
surer should reflect the additional transaction costs (e.g., bro- 
kerage and overhead) that are incurred as a result of the reinsur- 
ante contract. Reinsurers that take on small amounts of expected 
losses for each risk, such as those that tend to take on high lay- 
ers, can be expected to have larger @is than reinsurers that take 
on large amounts of expected losses for each risk, such as those 
that tend to take on low layers. 

The estimation of JLJ~ for an insurer should generally be some- 
how based on the variability of the insurer’s overall results. A 
simple estimation method is illustrated here. Suppose an insurer 
estimates that its aggregate loss distribution for the next year (for 
losses retained) has a mean of $50,000,000 and a standard devia- 
tion of $5,000,000 (and thus a variance of 25,000,000,000,000 $2). 
Suppose further that the insurer decides that it needs half of the 
standard deviation, or $2,500,000, as risk load. Then, in order to 
generate the required amount of risk load, its ?#j should be cal- 
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culated as follows: 

$i = 
2,500,OOO 

25,000,000,000,000 
= .lO’ 1oP. 

Since variance is additive for independent risks (or independent 
blocks of risks), if the insurer uses this $i when calculating the 
risk load for each of its independent risks (or independent blocks 
of risks), the required amount of risk load will be generated. 

It may be difficult to obtain estimates of $; and @i for each 
insurer participating in a risk sharing arrangement. However, if 
a primary insurer is simply interested in finding the retention be- 
low which it should retain 100% of every risk, and if the insurer 
is willing to assume that Var[N]/E[N] is 1, then the equation at 
the beginning of this section simplifies to: 

Thus, the insurer needs only an estimate of the additional trans- 
action costs associated with the most inexpensive acceptable 
reinsurance available and an estimate of its own ~9,. For exam- 
ple, if & - C#J~ is estimated to be 45 and +, is estimated to be 
.lO. 10P6, then: 

11 = 
.05 

2 * .lO. 10-h 
= $250,000. 

The final topic of this section is the effect of trend in claim 
sizes, When a trend factor T is applied to a claim size distri- 
bution. we expect the optimal layer boundaries to be multiplied 
by T. If we examine the equation at the beginning of this sec- 
tion we see that this will occur if a!! of the @is are divided by 
T. Since the variance of each insurer’s losses is multiplied by T‘- 
when T is applied to a claim size distribution, each insurer’s risk 
load would be multiplied by (l/T). T' = T. Since each insurer’s 
expected losses would also be multiplied by T, each insurer’s risk 
load as a percentage of expected losses would remain constant. 
If nothing else changes. this is the desired result. Thus. whenever 
a claim size distribution is trended. the d’is must be “detrended.” 
The @is are not affected. 
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7. THE REINSURAXCE hMRKET 

This section is a brief discussion of a few issues that relate to 
how the mode! and its results fit into the actual workings of the 
reinsurance market. within which most risk sharing among insur- 
ers takes place. First, to this point, no mention has been made 
of allocated loss adjustment expenses (ALAE). If ALAI? is in- 
cluded with losses before being allocated to layer, ALAE may 
be incorporated into the model by using a claim size distribu- 
tion that is based on the sum of losses and ALAE. If ALAE is 
allocated to layer in the same proportions as the losses, ALAE is 
not easily incorporated into the mode!. However, setting aside 
any practical considerations, this treatment of ALAE is less effi- 
cient from a risk sharing perspective than including ALAE with 
losses. A clear illustration of this occurs when a ceding insurer 
incurs a large amount of ALAE in defending a claim on which 
ultimately no payment is made. In this case. risk sharing does 
not occur; the ceding insurer pays the entire ALAE amount. 

In the examples presented earlier, the insurers with the 
larger @is, presumably reinsurers, were also assumed to have the 
smaller +is. An examination of the mode! shows that this rela- 
tionship does not necessarily have to hold. Although large rein- 
surers may indeed have small +is, there is also room for reinsur- 
ers with large $iS. They would simply receive smaller shares of 
the layers on which they participate. 

One apparent drawback of the mode! is that, in order to apply 
it, we must assume that a set number of insurers are available 
to participate in a risk sharing arrangement. In reality, numer- 
ous insurers and reinsurers may be competing to participate on 
a particular risk. In the examples presented earlier, we assumed 
that there was only one insurer with a $i of 45 available to par- 
ticipate in the risk sharing arrangement. In reality, there may be 
numerous insurers with @is of .05 available to participate in the 
risk sharing arrangement. If the mode! were strictly applied, a!! 
of the insurers would participate, each receiving a relatively small 
share of the expected losses. However, if this were to occur, it is 
doubtful that the @is of these insurers would remain at .05. It 
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is likely that their transaction costs as a percentage of their ex- 
pected losses would increase. 

This illustrates an implicit assumption underlying the mode!, 
namely that each insurer’s $i is reasonable given the amount of 
expected losses taken on by each insurer for a particular risk. 
Too many insurers participating in a risk sharing arrangement 
simply drives up the @is for a!! of them.* At some point, this 
offsets the reduction in variance achieved by incorporating ex- 
tra insurers on a risk. If a number of insurers with @s of .05 
were to compete for a particular risk, in reality only one of them 
would end up participating on the risk. The higher layers would 
be left to the reinsurers, with larger @is, that specialize in taking 
on small amounts of expected losses for each risk. 

Thus, for purposes of finding the optima! risk sharing arrange- 
ment and its associated premiums, we can assume that a limited 
number of insurers are available to participate. It would certainly 
be possible to construct the $i for each insurer as a function of 
the expected losses it takes on, instead of as a fixed value. How- 
ever, the danger in doing this is that the mathematical compli- 
cations introduced may obscure any additional insight that might 
be achieved. The allure of the mode! as it stands is that it cap- 
tures the essential features of the problem being addressed, yet 
is still simple enough to yield a tractable solution. 

8. CONCLUSION 

In formulating risk sharing arrangements, if transaction costs 
are minimized without accounting for risk load, then the con- 
clusion is that risk sharing should not take place. If risk load 
is minimized without accounting for transaction costs, then the 
conclusion is that every risk should be shared pro rata among as 
many insurers as possible. Clearly, neither conclusion is correct. 
The mode! described in this paper provides a workable way to 
find the risk sharing arrangement that strikes the best balance 
between the two competing goals of the minimization of transac- 
tion costs and the minimization of risk load. 

8An alternate point of view is that additional insurers bring with them additional fuced 
costs instead of larger 4,s. Either way, the effect IS the same. 
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APPENDIX 

1. PRELIMINARIES 

The problem addressed in this appendix is that of finding the 
set of payment functions {P;(X)} for the C insurers that mini- 
mizes: 

A4 = E[S] + c($, E[S,] + (itI Var[S, I) 

E[(p,(X) X,‘] + 
Var[N] , 

-~ 
1-q N ] 

(r:[p,(*Y). q2 , 

subject to the constraints that: 

There are three basic steps to the proof of the solution. cor- 
responding to the remaining three sections of this appendix. In 
the first step we show that any set of payment functions mini- 
mizing M must satisfy the condition that an insurer which pays a 
given amount on a claim of a given size pays at least as much 
on claims of all larger sizes. This implies that the number of 
insurers participating in the payment of a claim may not de- 
crease (and may very well increase) as the size of the claim in- 
creases. In the second step, we use the method of Lagrange mul- 
tipliers to find a condition that must hc satisfied by any set of 
payment functions minimizing M given that the expected losses 
allocated to each insurer are fixed at certain amounts. It can 
then be deduced that the only risk sharing arrangement satis- 
fying both these conditions is a layering arrangement with one 
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insurer added at each successively higher layer. Finally, in the 
third step we find the layering arrangement minimizing M with- 
out restricting the amount of expected losses allocated to each 
insurer. 

Similar reasoning applies regardless of whether the claim size 
distribution is discrete, continuous, or mixed. However, to make 
the proof easy to follow, we use a discrete formulation in the 
first two steps and a continuous formulation in the third step. 
In the second step, we assume that claims may take on integral 
values from 1 to 00 and that each possible value has positive 
probability. In the third step, we assume that the claim size dis- 
tribution has a probability density function that is positive every- 
where. The assumption of positivity does not restrict the general- 
ity of the solution, because any probability or probability density 
function that vanishes in some places can be approximated by a 
function that is positive everywhere. yet where the contribution 
to M from points or intervals that actually have zero probabil- 
ity is arbitrarily small. Thus, with the proviso that the payment 
functions may take on arbitrary values where the probability 
or probability density function of the claim size distribution is 
zero, the solution holds for any claim size distribution with finite 
mean and variance (which is necessary for the problem to make 
sense). 

2. A FIRST NECESSARY CONDITION 

We will now show that if M is at a minimum and XL and 
XR are any two possible claim sizes such that XL < SR, then 
pi(XL)XL < pi(xR)xR for each of the C insurers. In other words, 
any set of payment functions minimizing M must satisfy the 
condition that an insurer which pays a given amount on a claim 
of a given size pays at least as much on claims of all larger 
sizes. 

SUppOSe that for some XL and ,rR. XL < X’R and pi(X.L)XL > 
pi(xR)xR for at least one insurer. Let one of these insurers have 
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index 1 and let D1 = pl(x~)x~ - pl(xR)n~. DiS associated with 
the other insurers may then be selected such that the following 
conditions are satisfied: 

Di ~0, if PiCxL)XL 2 P~(XR)XR, 

Pi(XL)XL - pi(xR)xR 2 Di < 0, if Pi(xL)xL < pi(xR)xR, 

and D* +fjDi =O. 
i=2 

Now let an alternate set of payment functions {P:(X)} be de- 
fined as follows: 

m> = Pi(X) - f(XR) Di .- 
f@L) + f(XR) XL ’ 

if x = XL, 

PtCx) = PiCx) + 
fh) Di .- 

f(XL) + f(xR) XR’ 
if X=XR, and 

pi*(x) = Pi(X), otherwise, 

where f(x) is the probability function of the claim size distribu- 
tion. Then: 

PT(XL)XL~(XL) + PT(XR)XR~(XR) 

f&d 
f(XL) + ftXR) xL 

/(XL) 
. 9 XRJ‘(XR) 

fcXL) + ftXR) XR I 

= Pi(XL)XLf(XL) + Pi(.rR)XRf(XR). 
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Thus, E[pf(X) . X] = E[pi(X). X]. Also: 

(Pt(XL>XL>2f(XL> + (Pt(xR)xR)2f(xR) 

= 
([ Pih) - f(XR) 

f(XL) + fcXR) xL 

+ ([ pi(xR) + SW 
'- XR 'f(xR) 

Di 

f(xd + fcxd xR 1 > 

- 2Di[pi(xL)xL - PI(XR)XR~. fcXLI + fcxRj 

+ 0”. fcxd ’ fcXd 
ftXL) + f(XR)’ 

Since DI = pl(x~)x~ - pl(xR)xR: 

(p;(x~)X~>~f(x~> + (PT(~R)XR)~~(XR> 

= (PI(XL)XL>~~(XL) + (PI(XR)XR)~/(XR) 

_ 0:. f(‘L) * ftxR) 
fcxL) + fcXR) 

< (PI(XL>XL)~~(XL.> + (PI(XR)XR)~~(XR>. 

For i # 1, since pi(x~)x~ - pj(XR)XR 5 Di 5 0: 

(pf(x~>x~>~f(x~> + (PT(XR>XR)~S(XR> 

_ 0”. f(XL)-f(XR) 
f(XL) + ftxR) 

<(pi(x~)x~)~f(x~)+(pi(x~)x~)~f(x~)~ 

Thus, E[(p;(X) + X)2] < E[(pI(X) . X)2] and for i # 1, 

EKpf(W. XI21 i Wpi(X) . W21. 
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Therefore, the alternate set of payment functions {p;(x)} 
produces a smaller value of A4 than that produced by the original 
set of payment functions. Hence, if M is at a minimum, pi(.~,+~ 
may not be greater than p;(-r~)x~ for any insurer. 

3. A SECOND NECESSARY CONDITION 

We will now show that the optimal risk sharing arrangement 
must be constructed in layers. with one insurer added at each 
successively higher layer. 

To ensure that 0 5 pi(x) 5 1, let pi(x) = $(.u). We will then 
optimize each zi(x), which for notational convenience will be 
written as simply zi. Also for notational convenience, let v = 
Var[N]/E[N]. In the long expression for M. we will drop the 
leading factor E[N] and the leading term E[X] in the brackets 
since neither one will have an effect on the solution. Thus. we 
are left with the problem of minimizing: 

MI = x(4, EL 2; X] + ,I/:, { E[(z’ X)‘] + (L, - I). (L</z,2 x]y), 
r=l 

subject to the constraint that: 

Now let Zi = E[$. X]. For now. we will assume that the Zis 
are fixed. Later, we will find optimal values for the Z,s. Thus, we 
want to minimize: 

C 

M, =c 

c 

qJ,~Zjf~:,~ I &z,l.r-‘/(r))+(\v I).Z” 

i=l L: I, 

= f-(-J;. z; + vj. (L, - ] ) z;, + f; >‘: l$;z;‘sq-(x) 
i=l i=l t=l 
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subject to the constraints that: 

z,? = 1 and for each i, 
i=l r=l 

To find the z;s minimizing M1 for any given values of the Z;s. 
it is sufficient to minimize: 

subject to the above constraints. If any of the Z;s are zero, the 
corresponding z;s must be identically zero. These Z;s are disre- 
garded in what follows. Because of the constraints on the z;s, we 
must introduce Lagrange multipliers and consider: 

hfj = 9, E ?/iZPX2f(X) + 2: A($ z’ 
i=l r=l Y = 1 i 1 i=l 

+ f: p;~z'xf(x) . 
i=l i * = 1 ) 

A necessary condition for M2 to be at a constrained minimum 
is that there exist a function X(X) (i.e., a separate multiplier for 
each possible claim size) and C constants ,U; such that, for each 
z; and each possible claim size: 

L!!3 = 4?f!JjZ”X2j(X) + 2X(X)Zj + 2/LjZjXf(X) 
8Zi 

= 2Zj[2$JjZfX2f(X) + X(X) + /LjXj(X)] = 0. 

If z; # 0, then: 

x(x> = -2z;x2f(,q- L'Xf(X) 
@i lcli 
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For a given claim size, we may sum over the insurers for which 
Zj # 0 t0 get: 

c 1 X(x)X G = -2x"/(x)- &gl ~xj(x). 
k=l 

zk #() ik #O 

Solving for X(x) and substituting back yields: 

~ = 2ZjXj(X) 
az; 

If z; # 0, then: 

7 
X + c &2+k 

k=l,Zk #o 
z;x = 

I 
2” 

k=l,zk#o 

From the first necessary condition, we know that if Ml is at 
a constrained minimum, an insurer that pays a given amount on 
a claim of a given size must pay at least as much on claims of 
all larger sizes. Thus, the number of insurers participating in the 
payment of a claim may not decrease (and may very well in- 
crease) as the size of the claim increases. The difference function 
of zfx with respect to x within a range of claim sizes with the 
same participating insurers is: 

zf(x + 1) - zfx = ll+i c 

c l/ljlk 
k=l,Zk#o 
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Since this expression is not dependent on x, we may conclude 
that the optimal risk sharing arrangement must be constructed in 
layers, with one insurer added at each successively higher layer. 
Each participating insurer’s share of a particular layer is then 
given by: 

l/?cli 
r 

2 l/?Ck 
k=l,zk#O 

Recall that we have been assuming that Zi = E[zf. X] is fixed 
for each insurer. Given the Zis, we now have enough informa- 
tion to determine in which order the insurers are added and the 
boundaries between the layers without finding explicit values for 
the pis. The highest layer has all of the insurers participating 
with shares that have been determined above. The highest layer 
boundary, ICPl, is determined by moving it down from K! until 
the allocation of expected losses for one insurer, given by its 
Zi, has been satisfied. That insurer is then dropped from further 
participation and the next layer boundary down, 1~~2, is deter- 
mined by moving it down from ICeI until the allocation of 
expected losses for another insurer has been satisfied. This pro- 
cedure is continued until all the layer boundaries have been de- 
termined. 

The risk sharing arrangement described above minimizes A4 
given that the expected losses allocated to each insurer are fixed 
at certain amounts. It remains to find the risk sharing arrange- 
ment that minimizes M without any restrictions on the amount 
of expected losses allocated to each insurer. To do this we must 
find the optimal set of Zis. Each possible set of Zis is associated 
with a set of layer boundaries, and vice versa. It is more conve- 
nient to focus on finding the optimal set of layer boundaries. The 
optimal set of Zis will then directly follow. 
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4. OPTIMAL LAYER BOINDARIES 

Since we know that the optimal risk sharing arrangement is 
constructed in layers. we mav write M: as follo~vs: 

where lo = 0, fc = 00, and G(.r) = 1 - F(?s) where F(x) is the 
cumulative distribution function of X. At this point, we do not 
know in which order the insurers should be added in successively 
higher layers. The above expression, with insurers indexed ac- 
cording to the order in which they are added, could apply to any 
ordering of insurers. Differentiating with respect to a particular 
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lj yields: 

k=l k=l 
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5$;/2+,) + (v - 1). /:‘G(x)dx + I, 
r=l . 0 

- 

For Mi to be meaningful, we must have 0 5 f1 _< I1 < . < 
Ice, 5 00. This will be referred to as the admissible region. The 
first thing to note is that if any of the ljs are near infinity, MI 
will not be at a minimum, since its derivative with respect to this 
1; would be positive, thus indicating that ,441 is increasing as 1; 
approaches infinity. 

For Ml to be at a minimum. the derivative of Ml with respect 
to each f; in the interior of the admissible region must be zero. 
We will now determine what conditions must be satisfied by any 
Ijs at the boundary of the admissible region when M1 is at a 
minimum. An fj is at the boundary of the admissible region if it 
is coincident with another Ij or with zero. 

First take the case where two or more 1jS are coincident with 
one another at a nonzero point. 1,et the point of coincidence 
be called & (s will be the index of the first of the ljs which 
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coincide at Is). Suppose that y1 of the ljs coincide at I,. Then, at 
a minimum, the derivative of A41 with respect to 1, must be zero. 
If this were not so, all IZ of the ljs that coincide at 1, could be 
either increased or decreased slightly to yield a smaller value of 
Mi. The derivative of Mi with respect to I, is simply the sum of 
the derivatives with respect to the n Ijs that coincide at 1,: 

% = 2. t-q,). 
a& 

&$j,2$i) + (v - 1). J” G(x)dx + I, 
i=l 

0 

s+fl 

-7(Qi/2$4+(v-1) “G(x)dx+I, 
i=l J 0 

s+n 

i=l 

C l/$i 
= 2.G(f,). i=s+l 

i=s+l 
s +n 

c l/$,i 
i=s+l 

+(v - 1). 
s 
rlis G(x)dx + I, . 
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Note that the factor in brackets above is identical to the corre- 
sponding factor in the expression for the derivative of M, with 
respect to a single lj except that $j+l is replaced by a weighted 
average of $;+ls. If the II $j+ls corresponding to the n ljs are 
not all equal to one another, then at least one of these @j+ls 
must be smaller than the weighted average. If these insurers 
are reordered so that an insurer with a $;+I smaller than the 
weighted average is placed first, then if the derivative with re- 
spect to f, is zero (which implies that the factor in brackets must 
be zero), the derivative of M1 with respect to the corresponding 
li will be greater than zero. This implies that if this first lj of 
those coincident at I, is moved down slightly. a smaller value of 
A41 will result. Therefore, we conclude that, if M, is at a mini- 
mum, two or more 1;s may not be coincident with one another 
at a nonzero point unless their corresponding o1 + Is are all equal 
to one another. 

We now move to the case where the first II of the 1;s coincide 
at zero. If $,,. ..&,+l are not all equal to one another, then at 
least one of these Qj+rS must be greater than or equal to all the 
others, and strictly greater than at least one of the others. If these 
insurers are reordered so that this insurer is placed last, then the 
derivative with respect to the corresponding I, will be less than 
zero. This implies that if this last li of those coincident at zero is 
moved up slightly, a smaller value of MI will result. Therefore, 
we conclude that if M1 is at a minimum, the first II 1,s may not 
coincide at zero unless C$~ = dz = = d,,+ ,. 

The above arguments imply that, if Mi is at a minimum, the 
derivative of M, with respect to each I, must be zero. Therefore. 
for each of the 1;s. the following equation must be satisfied: 
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The relationship between adjacent ljs may be expressed as fol- 
lows: 

It is clear from this equation that 1; - ii-1 will be positive 
if and only if @j+, is greater than @j, and that lj will be equal 
to fj-1 if and only if Qj+ 1 is equal to $j. Thus, to ensure a so- 
lution to these equations in the admissible region, the insurers 
must be added in an order such that their @is are nondecreasing. 
Furthermore, since the order in which insurers with identical $jS 
are added does not affect the solution, there is only one solution, 
which we conclude must yield the point at which MI, and hence 
M, assumes its minimum value. 


