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FOREWORD 
Actuarial science originated in England in 1792 in the early days of life insurance. Be- 

cause of the technical nature of the business, the first actuaries were mathematicians. 
Eventually, their numerical growth resulted in the formation of the Institute of Actuaries 
in England in 1848. Eight years later, in Scotland, the Faculty of Actuaries was formed. In 
the United States, the Actuarial Society of America was formed in 1889 and the American 
Institute of Actuaries in 1909. These two American organizations merged in 1949 to be- 
come the Society of Actuaries. 

In the early years of the 20th Century in the United States, problems requiring actuar- 
ial treatment were emerging in sickness, disability, and casualty insurancs-particularly in 
workers’ compensation, which was introduced in 1911. The differences between the new 
problems and those of traditional life insurance led to the organization of the the Casualty 
Actuarial and Statistical Society of America in 1914. Dr. I. M. Rubinow, who was respon- 
sible for the Society’s formation, became its first president. At the time of its formation, 
the Casualty Actuarial and Statistical Society of America had 97 charter members of the 
grade of Fellow. The Society adopted its present name, the Casualty Actuarial Society, on 
May 14, 1921. 

The purpose of the Society is to advance the body of knowledge of actuarial science in 
applications other than life insurance, to establish and maintain standards of qualification 
for membership, to promote and maintain high standards of conduct and competence for 
the members, and to increase the awareness of actuarial science. The Society’s activities in 
support of this purpose include communication with those affected by insurance, presenta- 
tion and discussion of papers, attendance at seminars and workshops, collection of a li- 
brary, research, and other means. 

Since the problems of workers’ compensation were the most urgent at the time of the 
Society’s formation, many of the Society’s original members played a leading part in de- 
veloping the scientific basis for that line of insurance. From the beginning, however, the 
Society has grown constantly, not only in membership, but also in range of interest and in 
scientific and related contributions to all lines of insurance other than life, including auto- 
mobile, liability other than automobile, fire, homeowners, commercial multiple peril, and 
others. These contributions are found principally in original papers prepared by members 
of the Society and published annually in the Proceedings of the Catual~ Actuarial Soci- 

cry. The presidential addresses, also published in the Proceedings, have called attention to 
the most pressing actuarial problems, some of them still unsolved, that have faced the in- 
dustry over the years. 

The membership of the Society includes actuaries employed by insurance companies, 
industry advisory organizations, national brokers, accounting firms, educational institu- 
tions, state insurance departments, and the federal government. It also includes inde- 
pendent consultants. The Society has two classes of members, Fellows and Associates. 
Both classes require successful completion of examinations, held in February, May, and 
November in various cities of the United States, Canada, Bermuda, and selected overseas 
sites. In addition, Associateship requires completion of the CAS Course on Professionalism. 

The publications of the Society and their respective prices are listed in the Society’s 
Yearbook. The Syllabus of Examinations outlines the course of study recommended for the 
examinations. Both the Yearbook, at a charge of $40, and the Syllabus of Examinations, 

without charge, may be obtained from the Casualty Actuarial Society, I100 North Glebe 
Road, Suite 600, Arlington, Virginia 22201. 
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AN ACTUARIAL APPROACH TO PROPERTY 
CATASTROPHE COVER RATING 

DANIEL F. GOGOL 

Abstract 

For-@-one years of catastrophe loss data by state are 
used in this study to produce a model for rating catastro- 
phe covers for insurers in any region of the continental 
United States. Smooth sueaces are fitted to the data by 
region, and experience rating is applied in an attempt to 
give appropriate weight to regional departures from the 
smoothed results. Severity distributions and frequencies 
are estimated for each region, and a method for applying 
them in pricing catastrophe covers is discussed. A method 
for using the experience of an insurer to produce an expe- 
rience modrfication is also presented. 
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2 PROPERTY CATASTROPHE RATING 

1. INTRODUCTION 

United States catastrophe cover rating is an interesting problem 
from both practical and theoretical points of view. 

On the practical side, it is an important untreated problem. No 
systematic attempt at using insurance loss data to produce catastrophe 
cover rates can be found in insurance literature. Discussions of meth- 
ods involving weather data are in Clark [7] and Friedman [9]. Catas- 
trophe rates fluctuate greatly in the various regions of the country 
depending on the supply of capacity and whether there has been a 
large catastrophe in the area recently. Pricing practices were not 
much different two decades ago when Ingrey [ 121 stated: 

The general yardstick is the “payback period,” or, in how 
many years will a total loss be amortized in advance. Pay- 
back periods depend upon location, type of business writ- 
ten, and past experience in addition to the basic ingredients 
of amount of capacity required, subject premium, and rate. 
The adequacy of the initial retention is largely overlooked 
as are the incremental functions of exposure types; to wit, 
a company writing mobile homes has a much greater in- 
cremental exposure function than another insurer writing 
private dwellings. 

Catastrophe rating is also a challenging theoretical problem. The 
number of large catastrophes in any region is small, so it is important 
to use the experience of surrounding areas as well. It is useful to 
examine the relationship between catastrophe experience and a re- 
gion’s longitude, latitude, and distance from the coast. Also, the size 
of a region affects the probability of a catastrophe destroying more 
than a given percentage of property value. 

By fitting a smooth surface that is a function of these variables to 
catastrophe loss data, it is possible to base estimates of expected 
losses for each region on more than just its own experience. Expected 
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losses by region should generally have a smoother pattern than the 
sparse data. 

An attempt is made in this paper to estimate the appropriate credi- 
bility to be given to the actual experience of a region, as opposed to 
the weight given to the expected losses indicated by a fitted smooth 
surface. After the indications of smoothed surfaces and the actual 
experience of a region are credibility-weighted to estimate the ex- 
pected number of catastrophes for the region in various loss size 
intervals, a loss distribution is fitted to the estimates in order to 
smooth them in a reasonable way and to estimate tail probabilities. 

2. THE MODEL 

A. Data 

To compare the relative destructive power of two natural catastro- 
phes hitting different states, it is useful to consider the amount of 
property insurance premium in each state, as well as the amount of 
insured property damage in each state. The insured loss in each state 
will depend not only on the intensity and size of the catastrophe but 
also on the insured property in the area. 

“Catastrophe premium,” defined below, will be used as the expo- 
sure base to which loss data are related. The definition is based on 
Ingrey [ 121. It is intended that the catastrophe premiums derived from 
each line of business be in roughly the same proportion as expected 
catastrophe losses for each line. Ingrey does not present data to sup- 
port the percentages used in the formula but indicates that they were 
developed with the cooperation of Allen Hinkelman, Excess and 
Casualty Reinsurance Association; Daniel Holland, Inland Marine In- 
surance Bureau; Donald Kifer, New York Fire Insurance Rating Or- 
ganization; and Allen Royer, Multi-Line Insurance Rating Board. 
Data on catastrophe losses by line will be discussed in Section 3. 

The definition of catastrophe premium used in this paper is a 
formula often used by underwriters in evaluating a company’s catas- 
trophe exposure: 
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Catastrophe premium = (10% of inland marine premium) 
+ (10% of commercial multiple peril) 
+ (80% of allied lines) 
+ ( 10% of auto physical damage) 
+ (20% of farmowners) 
+ ( 100% of earthquake) 
+ (20% of homeowners) 
+ ( 15% of ocean marine). (2.1) 

An assumption, for example. that the proportion of homeowners 
losses caused by catastrophes is twice as high as the proportion for 
auto physical damage losses is implicit in the formula. since the cor- 
responding percentages of premium are 20% and 10%. 

Actually, lngrey’s formula also includes 60% of mobile home 
premium and 80% of difference in conditions premium, but these 
premiums are small and are omitted. 

Additional insight is given by expressing the loss layer to be rein- 
sured in terms of percentages of the catastrophe premium-for exam- 
ple, 200% excess of 20%. In this paper, layers expressed as 
percentages of state or regional catastrophe premium are studied. 
Methods of applying the study to individual company catastrophe 
cover rating are also discussed. 

Catastrophe covers are generally for a high enough layer so that 
an event must cause losses to several of a company’s risks in order to 
produce a loss to the cover. Windstorms are the most frequent causes 
of losses to these covers. Other frequent causes are winter freezes, 
hail, and flooding. Fire is a less frequent cause. 

The loss data used in this study were produced by Property Claim 
Services (PCS) [ 151. These data include each United States catastro- 
phe having an estimated insured loss of $1 million or more from 1949 
through 198 1, and $5 million or more from 1982 through 1989. In 
order to be included, a loss must affect many insureds. although the 
exact number of insureds that must be affected has not been defined. 
(It is generally at least 1,000.) For each catastrophe, the estimated 
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insured loss in each state is given. The PCS estimates are based on an 
extrapolation of estimates made by a set of insurers writing most of 
the property premium in the catastrophe area. 

Although PCS insured loss estimates are used in the study, a loss 
development factor is applied in Section 3, where the method of 
rating catastrophe covers is described. 

For each of 28 overlapping regions of the continental United 
States, catastrophe premium was estimated for 1949 to 1989. Gross 
written premium data by state from Best’s [4]; and for older years 
from The Spectator [6], which is no longer published, were used to 
compute catastrophe premiums by state for approximately every fifth 
year. Exponential interpolation was used for other years, based on the 
computed catastrophe premiums. 

For each of the 28 regions, the estimated insured loss from each 
catastrophe from 1949 to 1989 was divided by the region’s catastro- 
phe premium for the year of the loss. The ratios, R, of individual 
losses to corresponding catastrophe premiums were then grouped into 
the somewhat arbitrarily chosen intervals: 

8%<R516%, 

16% <R 532%. 

32% < R 564%. and 

R > 64%. 

The number of ratios falling in each interval for each region is shown 
in Exhibit 1. Exhibit 2, a map of the United States, may be helpful in 
connection with Exhibit 1, as well as later exhibits. 

No evidence of a trend in the frequency of any type of catastrophe 
was found in the data, so no trend factor was applied. The loss trend 
and the premium trend are assumed to cancel each other out. 
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B. Smoothing the Data 

The expected values of frequencies in each interval vary more 
smoothly as a function of regions than the data in Exhibit 1, since the 
data include random variation. 

Most catastrophes are windstorms, and their frequency and sever- 
ity are related to a region’s latitude, longitude, and distance from the 
coast (Clark [7] and Friedman [9]). The probability distribution of the 
ratios of catastrophe losses to catastrophe premium is also related to 
the size of a region. The above facts motivate the attempt to use 
multiple regression for each interval of R values to fit the frequencies 
in Exhibit 1 to functions of the latitude, longitude, distance from the 
coast, and area of the 28 regions. 

Multiple regression was used to relate the above variables to fre- 
quency of catastrophes in each of the intervals: 8% <R 5 16%, 
16%cRI32%, 32%<R164%, R>64%, R>32%, R>16%, and 
R > 8%. The intervals are purposely chosen in an overlapping manner 
for a reason explained in Subsection 2D. 

The details of the regressions are in Appendix A. Exhibit 3 shows 
a comparison of actual to fitted frequencies for four of the intervals. 

C. Experience Rating the Regions 

Weights will be selected for the actual and fitted frequencies in 
Exhibit 3 to produce estimates of expected frequencies by interval 
and region. The sum of the weights will be one. An explanation of the 
method of selecting them follows. 

For each interval i of R values, and each region j, let the random 
variable Xi,j be the frequency of catastrophes in a randomly selected 
41-year period. The fitted values for interval i and region j in Exhibit 
3 are estimates of the expected value of XiFi If each fitted value is 
assumed to be the mean of a probability distribution of possible ex- 
pected values of Xj+ then it can be seen that a more accurate estimate 
of the expected value can be produced by ‘giving weight (credibility) 
to the actual frequency as well as to the fitted frequency. 
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The partly judgmental basis for selecting the following experience 
rating formula is explained in Appendix B. The number of actual 
catastrophes in interval i and region j is given credibility 
Ui,j /(ai,j + ki) where ai,j is the fitted frequency for interval i and 
region j, ki = 9 for i = 1,2,5,6, or 7, and ki = 6 for i = 3 or 4; where, 
for each interval, i is as in Table 4 of Appendix A. 

D. Nested Application of Experience Rating System 

For each region, experience rating is applied to estimate expected 
values for the frequencies in each interval of R values. 

A nested process is used so that the estimates of expected frequen- 
cies for 8% c R I 16% and R > 16% are based not only on the sepa- 
rate experience for 8% c R I 16% and R > 16%, respectively, but also 
on the total experience for R > 8%. 

By applying the experience rating formula for the interval R > 8%, 
estimates Aj of the frequency in this interval are produced for each 
region j. The estimates Bj and C’ produced by applying the experience 
rating system to the intervals 8% < R I 16% and R > 16% are then 
multiplied by a constant Dj such that Aj = Dj (Bj + Cj>. The estimates 
Dj Bj and Dj Cj for the frequencies in region j for intervals 
8% <R I 16% and R > 16%, respectively, thus sum to the estimate 
for region j for the interval R > 8% and are each in proportion to the 
estimates Bj and Cj, respectively. It is intended that Dj Bj and Dj Cj 
approximate the expected values of the frequencies in region j for 
intervals 8% c R I 16% and R > 16%, respectively, given that the to- 
tal of the two expected values is Ai, and that Bj and Cj are the esti- 
mates of the two expected values based on their separate data. 

The weighted frequencies by region produced by directly applying 
the experience rating formulas for the intervals 16% c R 532% and 
R > 32% are then adjusted so that their sum equals the estimate for 
R > 16%. The method is entirely similar to the method used above to 
adjust the estimates for 8% < R I 16% and R > 16% so that their sum 
equaled the estimate for R > 8%. 
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This nested process is continued until estimates are produced for 
each of the seven intervals. The estimates for four of the intervals are 
in Exhibit 4. 

E. Lass Distributions by Region 

The estimates of expected frequency for each region produced by 
the above nested application of experience rating for 8% < R I 16%, 
16% c R I 32%, 32% c R I64%, and R > 64% were divided by the 
estimate produced for R > 8%; the resulting fractions f,, f2, f3, andf, 
were then fitted to a probability distribution. This probability distribu- 
tion was used to allocate the estimate of expected frequency for 
R > 8% to the above four intervals. The selected yearly frequencies 
are the above frequencies divided by 41, since 41 years of data were 
used. The yearly frequencies for R > 8% are in Table 1. 

The single parameter Pareto distribution was used for all 28 re- 
gions. It generally was a good fit. A comparison of the estimates 
produced by the experience rating method in the previous section and 
by the single parameter Pareto is shown in Exhibit 4. No other tested 
distribution performed as well. (A study of loss distributions is in 
Hogg and Klugman [ 1 I].) 

The single parameter Pareto was used even in regions for which 
another distribution fit better. This was because the generally good fit 
of the single parameter Pareto led to the conclusion that it was a good 
model for the data, and small amounts of data in particular regions 
were not considered credible enough to counteract this conclusion. 

(See Appendix C for a discussion of the method used to fit the 
single parameter Pareto. The parameters of the Pareto curves used are 
in Table 1.) 

A Pareto parameter of 1 or less implies infinite expected losses for 
unlimited layers. For 0 < P < 1, the expected losses in the layer be- 
tween a and b are (b’-’ -aImp )/( 1 - P), which approaches infinity 
as b approaches infinity. In reality, catastrophe losses are limited by 
the total insured value, so the frequency distribution falls below a 
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Region F’ P Region F’- P 

1 0.213 0.96 15 0.292 0.94 

2 0.335 1.21 16 0.190 1.07 

3 0.727 1.26 17 0.312 1.00 

4 0.682 0.95 18 0.212 1.08 

5 0.419 0.60 19 0.244 1.44 

6 0.43 1 0.86 20 0.590 0.92 

7 0.749 1.61 21 0.507 1.13 

8 0.184 1.24 22 0.450 1.78 

9 0.235 1.27 23 0.265 1.25 

10 0.566 1.49 24 0.196 0.93 

II 0.788 1.54 25 0.183 1.17 

12 0.453 1.59 26 0.487 1.33 

13 0.254 1.16 27 0.265 1.00 

14 0.282 0.98 28 0.393 1.54 

TABLE I 
FREQUENCIES (F’) AND PARAMETERS (P) 

Pareto at some point. Although Pareto parameters of 1 or less were 
selected for some regions, they are only intended to be used in esti- 
mating expected losses for limited layers of sizes that are actually re- 
insured. The Pareto’s overestimate of frequency far out in the tail 
does not have a great effect in estimating expected losses for these 
layers. The frequency of losses above x times the truncation point is 
x-’ times the frequency above the truncation point. Since P > 0, this 
fraction x-’ approaches zero as x approaches infinity. 

3. RATINGCATASTROPHECOVERS 

A. Using the Model 

Rates for catastrophe covers include a risk charge, but this discus- 
sion is of expected losses rather than risk. 
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A reinsurer evaluating a catastrophe cover often receives a break- 
down of the ceding company’s subject property premium by state and 
line. The commercial multiple peril, homeowners, farmowners, and 
auto physical damage premiums that are considered to be subject to a 
catastrophe treaty are sometimes only a percentage (usually approxi- 
mately 65%, 90%, 90%, and 35%, respectively) of the total premiums 
for those lines. It is necessary to adjust for this reduction to apply the 
catastrophe premium formula in this paper to the cedent. 

If the cedent does not provide this information, estimates of catas- 
trophe premium by state for a primary company can be made by 
using the company’s major direct premium writings by state and its 
net written premiums by line from Best’s fnsurance Reports [3]. 
Based on this information and on Table 2, one of the 28 regions may 
be selected judgmentally as being approximately representative of the 
region in which the company writes. 

TABLE 2 
1988 CATASTROPHE PREMIUMS BY REGION (IN 000s) 

Reg&n 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Premium Region Premium 

$1,757,793 15 $890,083 

473,889 16 973.760 

881,629 17 789,209 

521,551 18 2,23 1,681 

668,967 19 546,455 

700,932 20 1,403,180 

478,800 21 1,848,699 

365,904 22 I ,484,958 

180,551 23 1,793,682 

238,494 24 2,653.051 

273,418 25 2,778,136 

973,046 26 3,366,938 

I,1 10,098 27 5,816,632 

683,584 28 11.961.706 
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For any region selected as representative of the company, the 
selected yearly frequency for catastrophe losses greater than 8% of 
catastrophe premium and the selected Pareto distribution may be 
found in Table 1. They may be used to compute an estimate of 
expected losses for any layer of a catastrophe cover by expressing the 
layer in terms of percentages of the company’s total catastrophe pre- 
mium. An example of the rating method will be given at the end of 
this section, but several related points are discussed first. 

The method used in the example is based on historical data. How- 
ever, due to the potential for an enormously damaging earthquake in 
California and the small number of earthquakes in the historical data 
used, expected losses from catastrophes in California are widely be- 
lieved to be greater than the estimate that would be based on histori- 
cal data. The very severe 1906 earthquake is not included in the 
available data. 

An adjustment will be made in the rating method for catastrophe 
covers to reflect that the model in this paper is based on data for 
regions rather than for individual reinsurers. By the use of certain 
definitions and reasonable assumptions, the following statement 
could be made more precise and proven mathematically. On average, 
for catastrophe losses as defined by PCS, the probability distribution 
of ratios of catastrophe losses to catastrophe premiums has the same 
mean for an insurer within a region as for the region-but it has a 
greater variance. 

The rating method, which will be applied to individual insurers, 
uses 0.85 times the Pareto parameter in Table 1 for the region se- 
lected as representative of the insurer. This adjustment reflects that 
the distributions for individual insurers have greater variance, on the 
average, than the distribution for the region. 

The expected frequencies from Table 1 will be used, unadjusted, 
for individual insurers. The expected frequency of catastrophe losses, 
as defined by PCS, is less for an individual insurer than for the 
surrounding region. However, the assumption of a smaller Pareto 
parameter for individual insurers implies that for some percentage W, 
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the expected frequency for R > W% is the same for the individual 
insurer as for the region. The estimate that W = 8% is implicit in the 
use of the expected frequencies from Table 1 for individual insurers. 

The estimate that ultimate insured losses for catastrophes, on the 
average, are 1.33 times as great as the PCS estimates will be used in 
estimating expected losses for catastrophe covers. Since the PCS esti- 
mate is made within a few days of the catastrophe, it is natural to 
expect development. Also, the PCS estimate excludes allocated loss 
adjustment expense, all ocean marine and crop losses, and some in- 
land marine and business interruption losses. Lastly, the model in this 
paper used gross losses and premiums while catastrophe reinsurance 
covers losses net of excess reinsurance. Studies (e.g., Ludwig [13]) 
have shown that net catastrophe losses are a higher percentage of net 
premiums than gross catastrophe losses are of gross premiums. An 
adjustment for this is included in the 1.33 factor. 

The 0.85 factor for Pareto parameters and the 1.33 factor for 
losses have the combined effect of significantly raising estimated 
expected losses for catastrophe covers. The resulting expected losses, 
as a percentage of actual premiums charged, have been found to be a 
reasonable match to actual loss ratios for the catastrophe cover pre- 
mium of two reinsurers over a 20-year and a 12-year period, respec- 
tively. (In addition, an adjustment was made to include the 
catastrophic year 1992.) This premium totaled almost $300 million 
and consisted of shares of a much greater amount of premium. 

Example 

Suppose that a primary insurer, in the latest year for which data 
are available, had writings for which region 28 is considered the best 
match. 

Suppose that, using cp to represent the insurer’s catastrophe pre- 
mium, the layer to be reinsured can be expressed as (2.00~~) excess 
of (0.2Ocp). 

The selections in Table 1 for region 28 were 0.393 catastrophe 
losses per year greater than 8% of catastrophe premium and a Pareto 
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parameter of 1 S4. The loss development factor of 1.33 and the ad- 
justment factor to the Pareto parameter of 0.85, which were discussed 
above, are used. Therefore, 0.393 is the frequency for R > 10.64%, 
and the Pareto parameter becomes 1.3 1. The expected losses to the 
layer in one year therefore are: 

0.393 ( 0.1064cp ) 
[ 

(0.20/0.1064)~~3’ - (2.2(Yo.1064)-“.31 
0.31 1 (3.1) 

(See Philbrick [ 141.) This amount equals 5.82% of catastrophe pre- 
mium. 

If it is not clear which region is the best match for the primary 
insurer, the above method may be used for more than one region and 
a final estimate may be judgmentally selected. 

B. Underwriting Judgment 

Since the above estimate is based on data from the entire region, it 
may be useful to judgmentally modify it if the ceding company is not 
believed to be typical of the region. For example, the ceding company 
may have a very high or low percentage of its insured property near 
the coast, where exposure to hurricanes is greatest. An estimate of 
how a ceding company compares to a region could also be made by 
using Clark’s model [7], since that software can be applied to both 
regions and individual companies. 

C. The Catastrophe Premium Formula 

The estimated expected catastrophe losses for individual insurers 
were affected by the choice of percentages by line in the catastrophe 
premium formula defined in Section 2. 

If the percentages by line that were used in the formula are multi- 
plied by the corresponding premiums in Table 3, an approximation of 
the relative amounts of expected catastrophe losses by line can be 
derived. (Although fire premium is a portion of the property premium 
in Table 3, it was not included in the catastrophe premium formula; it 
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was considered to account for only a negligible portion of catastrophe 
losses.) 

Some data suggest that, for hurricanes, a much lower percentage 
of losses comes from auto physical damage than would be estimated 
based on the catastrophe premium formula. In [l], the All-Industry 
Research Advisory Council (AIRAC) estimated the following per- 
centages of losses by line for seven hurricanes from 1983 to 1985: 

Homeowners Multiple Peril 46.8% 
Commercial Multiple Peril 22.2% 
Auto Physical Damage 3.7% 
All Others 27.3%. 

TABLE 3 
INDUSTRY PREMIUMS FOR SELECTED LINES -1990 

Fire 

Allied Lines 

Farmowners Multiple Peril 

Homeowners Multiple Peril 

Commercial Multiple Peril 

Ocean Marine 

Inland Marine 

Earthquake 

Auto Physical Damage 

Premiums Earned (Millions) 

$ 4,494 

2,097 

968 

18,116 

17,626 

1,169 

4,441 

459 

35,185 

Another source of data on catastrophe losses by line was produced 
by the Insurance Services Office (ISO) for homeowners losses by 
individual catastrophe for the period 1970 to 1978 [2]. Those data 
indicate that homeowners and dwelling extended coverage losses are 
19.6% and 2.7%; respectively, of total catastrophe losses as estimated 
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by PCS for the same catastrophes. (The IS0 estimates, like the PCS 
estimates, are an extrapolation of total insured losses based on data 
from a set of insurers in the region.) The percentage of total catastro- 
phe losses covered under homeowners is much less in the IS0 data 
for all catastrophes combined than in the AIRAC hurricane data. 
Therefore, the percentage of auto physical damage losses may well be 
much greater for all catastrophes combined than for hurricanes. 

Hurricanes produced $6.35 billion in catastrophe losses from 1981 
to 1990, compared to $9.7 billion in losses from hail and tornadoes 
and $3.7 billion in losses from winter storms, according to PCS. 

If so desired, the catastrophe cover rating method used in this 
paper can be applied with a catastrophe premium formula having 
different percentages by line from those used. Any alternative per- 
centages used should be chosen so that, when multiplied by the pre- 
miums in Table 3, they produce the same catastrophe premium as the 
percentages in this paper’s formula. If this is done, then Table 1 
approximates the corresponding table that would have been created if 
the alternative catastrophe premium formula had been used in the 
study. Therefore, the rating method used in this paper still gives an 
estimate of expected losses from catastrophes if the alternative catas- 
trophe premium formula is used. 

D. Experience Rating a Catastrophe Risk 

Suppose the amount of each catastrophe loss of the ceding com- 
pany for a certain time period is known. The frequency of these 
losses in intervals expressed in terms of ratios to the company’s ca- 
tastrophe premium can be compared to the experience of the region 
selected as being representative of the company. Exhibit 5, which 
shows experience from 1949 to 1969 and from 1970 to 1989 sepa- 
rately, may be useful for this comparison. An example of a judg- 
mental experience rating is given below. 



I6 PROPERTY CATASTROPHE RATING 

Example 

Suppose that Insurance Company A had eight catastrophes greater 
than 10.64% (i.e., 8% times our selected development factor) of ca- 
tastrophe premium for the period of 1970 to 1989 and that the region 
selected as corresponding to it had five catastrophes greater than 
10.64% of catastrophe premium in the same period. 

Suppose that the formula n/(n + 9), where n is the number of 
catastrophes in the region from 1970 to 1989, is the credibility as- 
signed to the experience of Company A. (This formula is similar to 
one used in this paper to assign credibility to the actual frequency of 
catastrophes in a region.) 

The credibility weighted frequency is then 

(505 + 9)) (8) + (9/(5 + 9)) (5), 

which equals 6.07. The modifier produced by the experience rating is 
thus 6.07/5.00; that is, 1.2 1. This modifier is then applied to the ex- 
pected losses for the reinsured layer that are estimated as in Qua- 
tion 3.1. 

4. CONCLUSION 

A model that can be used to estimate expected losses to catastro- 
phe covers based on insured loss data has been presented. An exam- 
ple of the application of the model to a specific cover was given. The 
obstacles to using actuarial methods in catastrophe rating are not as 
great as has sometimes been suggested. 

The application of actuarial science gives a very useful and much 
needed perspective in this area. 
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EXHIBIT 1 

FREQUENCIESBY REGION 

pegion 

Interval of Ratio R 

8%<R<l6% 16’%<RS32% 32%<R164% R>@“/o 

1. CA 
2. AZ, NM, NV, 

UT, CO 
3. TX 
4. AL, MS, LA 
5. FL 
6. GA, SC, NC 
7. TN, AR, OK 
8. OR, WA,ID 
9. ND, SD, WY, 

MT 
10. MN,wI 
11. NE,KS 
12. IA,MO, IL 
13. MI, IN, OH 
14. KY, WV, PA 
15. VA, NJ, DE, 

MD, DC 
16. NY,VT 
17. ME, NH, MA, 

RI, CT 

18. 1,2 (above) 
19. 8,9 
20. 3.4 
21. 5, 6, 7 
22. lO,ll, 12 
23. 13, 14 
24. 15, 16, 17 
25. 1,2,8,9 
26. 3,4, 7, 10, 1 I, 

12 
27. 5,6, 13, 14, 15, 

16, 17 

28. Continental US 

3 
10 

22 
14 
4 
8 

23 
4 
4 

13 
22 
11 
6 
6 
6 

2 
7 

3 
8 
8 

18 
14 
7 
1 
3 

11 

5 

9 
252 

1 
4 

2 

-4. 
104 

1. 

54 

0 
1 

0 
2 

1 

0 
37 
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EXHIBIT 3 

COMPARISON OF ACTUAL (A) TO FIT-I-ED (F) FREQUENCIES 

Region 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 

13 
14 

15 

16 

17 
18 

19 

20 

31 
22 
23 

24 

25 

26 

27 

28 

Interval of Ratio R 

8%<RS 16% 16%<R132% 32%<RS64% 

A F A F A 

3 5.71 1 2.91 2 
10 5.61 4 2.62 1 
22 17.60 1 5.31 4 
14 17.77 3 5.61 5 
4 7.23 5 3.24 2 
8 6.15 6 2.93 4 

23 16.11 8 5.53 1 
4 4.73 1 2.79 0 
4 4.59 5 2.69 1 

13 12.72 6 5.65 5 

22 14.46 9 5.53 4 
11 14.43 6 5.46 0 

6 5.14 2 2.95 1 
6 5.54 1 3.00 4 
6 5.60 2 3.20 1 

2 4.97 2 3.20 1 
7 4.92 5 3.24 0 
3 5.59 3 2.58 1 

8 4.62 3 2.60 0 

8 17.48 7 5.12 2 

18 6.21 4 2.71 3 
14 13.73 4 5.07 0 
7 5.27 3 2.79 1 
1 5.05 2 2.88 1 

3 5.10 1 2.47 2 
11 15.70 4 4.80 3 
5 5.53 2 2.61 3 
9 14.44 4 4.49 2 

252 252.00 104 103.98* 54 

R>64% - 

F 

1.84 
1.84 
3.82 
3.82 
4.32 
2.44 
2.61 
0.90 
0.82 
1.01 

1.70 
1.70 

1.20 
1.59 

1.59 

0.99 
0.94 

1.84 

0.86 

3.82 

2.69 

1.48 
1.38 

1.14 

1.32 

2.61 

1.75 

1.97 -_ 
53.99* 

A 

0 

1 
3 
5 
5 
2 
0 
1 
1 
1 

1 

0 

1 
0 
2 

0 
2 

0 

1 

6 
1 

0 
0 
2 

0 
1 
1 

0 

37 

F 

1.71 
0.74 
1.86 
3.25 
4.45 
1.65 
1.35 
0.73 
0.44 
0.68 

0.87 
0.85 

0.70 

0.88 
1.51 

1.07 
2.75 

0.82 

0.5 1 

1.95 

2.02 
0.79 
0.71 

1.13 

0.57 
1.22 

0.91 

0.89 ~__ 
37.01* 

*Totals do not always match exactly, due to rounding. 
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Region 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 

13 
14 

15 
16 
17 

18 

19 

20 
21 
22 

23 
24 

25 

26 

27 

28 

PROPERNCATASTROPHERATING 

EXHIBIT 4 
Part 1 

COMPARISON OF EXPERIENCE RATED FREQUENCIES WITH 

FITTED PARETO FREQUENCIES 

8%<R116% 
4.28 
7.83 

20.14 
15.00 
5.73 
7.54 

20.72 
4.30 
4.72 

13.52 

20.22 

11.62 
5.61 

5.86 

5.91 
3.67 

6.28 
4.31 

6.12 

10.95 
12.58 

13.03 
6.09 

3.43 
4.04 

12.02 
5.41 

10.17 
251.10 

Experience Rated Frequencies 
16%<RI32% 32%<RR64% 

1.97 1.45 
3.07 1.92 
3.61 3.92 
4.8 1 4.29 
3.43 3.34 
4.19 3.73 
6.72 2.14 
2.03 0.63 
3.46 0.94 
7.04 1.83 
8.29 2.70 
5.15 1.15 
2.65 1.33 

2.43 2.41 

2.79 1.57 
2.48 0.86 
4.18 0.57 
2.31 1.44 

2.65 0.70 

6.32 3.56 
3.32 2.99 
4.06 0.86 
2.74 1.37 

2.50 0.98 
1.84 1.17 

4.52 2.37 

2.44 2.07 
4.02 1.39 

105.04 53.68 

R > 64% 

1.03 
0.90 
2.14 
3.87 
4.67 
2.22 
1.11 
0.61 
0.53 
0.82 
1.08 

0.64 

0.83 

0.88 

1.72 
1.79 
1.75 

0.63 

0.52 

3.36 
1.89 

0.51 
0.66 
1.12 

0.42 

1.03 
0.94 

0.54 
37.23 



Regions 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 

13 
14 

15 

16 
17 

18 

19 

20 

21 
22 

23 

24 

25 

26 
27 

28 
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EXHIBIT 4 
Part 2 

COMPARISON OF EXPERIENCE RATED FREQUENCIES WITH 

FITTED PARETO FREQUENCIES 

8%<RI 16% 16%<RI32% 32% < R 5 64% R>64% 

4.26 2.18 1.12 1.18 
7.77 3.37 1.46 1.12 

17.37 7.25 3.03 2.17 
13.53 6.99 3.61 3.85 
5.85 3.86 2.54 4.92 
7.91 4.37 2.42 2.99 

20.63 6.76 2.21 1.08 
4.36 1.85 0.78 0.57 
5.64 2.34 0.97 0.69 

14.96 5.32 1.89 1.04 
21.21 7.28 2.50 1.31 
12.38 4.13 1.38 0.69 
5.76 2.57 1.15 0.93 
5.70 2.89 1.47 1.51 
5.74 2.99 1.56 1.69 
4.09 1.94 0.92 0.84 
6.39 3.20 1.60 1.60 
4.58 2.17 1.03 0.93 
6.31 2.33 0.86 0.50 

11.39 6.03 3.19 3.58 
11.31 5.16 2.35 1.97 
13.07 3.8 I 1.11 0.46 
6.29 2.65 1.11 0.81 
3.82 2.00 1.05 1.16 
4.15 I .85 0.82 0.66 

12.02 4.77 1.90 1.25 
5.41 2.71 1.36 1.36 

10.58 ~~_. 3.64 1.2x 0.66 
252.49 106.41 46.64 41.51 

Fitted Pareto Frngyencies 
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Region 
1 
2 

3 
4 
5 

6 

7 

8 
9 

10 

I1 

12 

13 
14 

15 

16 
17 

18 

19 

20 
21 

22 

23 

24 

25 

26 
27 
28 
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EXHIBIT 5 

REGIONAL FREQUENCIES BY TIME PERIOD 

Interval pf Ratio R 

8%<R< 16% 16% < R 5 32% 32% < R 5 64% R>WZo ~- ~----~ 

1949-69 1970-89 1949-69 1970-89 1949-69 1970-89 1949-69 1970-89 
1 

2 

10 
4 

2 
4 

9 

0 
2 

3 
9 

7 

4 

2 

3 
1 
1 

0 

3 

3 
7 

7 

4 

1 

1 

7 

2 
1 

2 

8 
12 
10 
2 

4 

14 
4 

2 

10 

I3 
4 

2 
4 

3 
1 

6 

3 

5 

5 
11 
7 

3 

0 
2 

4 

3 
8 

1 

3 
0 

0 
1 

3 

4 

0 

3 
2 

3 

4 

2 

0 

2 
I 
4 

2 

2 

3 

3 
4 

3 

0 
1 

1 

1 
3 

0 
I 

1 
3 
4 

3 

4 

I 

2 
4 

6 
2 

0 
1 

0 
1 

1 

1 

1 

4 

1 
0 

0 
2 

0 

3 

1 
I 

1 

1 

3 
1 
1 

2 

1 

0 
0 

2 
1 

0 

0 
2 

1 
0 

0 
1 

0 
I 

0 

0 
1 

0 
I 

2 

1 
2 

b 
0 
1 

3 
5 

1 

0 
1 
1 

I 

1 

0 

0 
0 

2 
0 
2 

0 

1 

3 
0 
0 

0 

2 
0 

I 
I 
0 

0 
I 

2 
2 

0 

1 

0 

0 
0 

0 

0 

0 

I 

0 

0 
0 

0 

0 

0 

3 
1 

0 

0 

0 
0 

0 

0 
0 
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APPENDIX A 

DETAILS OF REGRESSIONS 

The “center” of a region is defined as the point such that half the 
area is to the north, half to the east, half to the west, and half to the 
south. For each of the 28 regions, the latitude and longitude of the 
centers of the regions were estimated and considered to be the lati- 
tude and longitude of the region. The “distance to the coast” of a 
region is defined as the length of the shortest line from the center to 
any ocean. 

The independent variables used in the regression were xl, x2, x3, 
and x4, such that, for each region, 

xi = latitude of region; 

1 

0, if 92 5 longitude of region I 99, 
I longitude- 991, if 99 c longitude < 105, 

x2= 6, if longitude 2 105, 
I longitude - 921, if 86 c longitude c 92, 
6, if longitude I 86; 

x3 = In(ln(area of region, in thousands of miles)); 

x4 = ln(ln(distance from coast of region, in miles)). 

The values of x,, x,, x3, and x4, for the 28 regions are given in 
Exhibit 6. 

For each of the seven intervals for R, the dependent variable used 
in the regression for the interval was ln(frequency of catastrophes). 
(In cases where the frequency was zero, In (t/3) was judgmentally 
used instead of the undefined In (0).) This dependent variable was 
chosen so that, for each independent variable, a given amount of 
change would produce a fixed multiplicative effect on the fitted fre- 
quencies defined below. 

This approach produced a better fit than any other dependent vari- 
able and avoided the problem of negative or unreasonably small fitted 
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values. An attempt was made to use (frequency of catdstrophes)“‘5 as 
the dependent variable, since its variance is relatively close to being 
independent of the expected frequency of catastrophes, and this is 
desirable when using regression. However, it did not produce the 
most acceptable fitted values. 

The use of In (In (x)) for x3 and x4 resulted from the observation 
that it produced values of x3 and x4 that came reasonably close to 
having the desired linear relationship with the values of the dependent 
variable. 

For each interval li of R values, there is a corresponding set of 
frequencies by region b,i}, wherej is an integer from 1 to 28. 

Fitted values $j were produced by regression. Then the function 

.,,=exP(~i,j)[~~,j]/,~exp(:r,j,l (A-1) 

was used to produce values gi (;i,j) such that 

$g;&i,j)=:f;,j' 

j=l j= I 

The values gi (Gi, j), rather than ~~i,j, were used as final fitted values for 
the frequencies=& . 

Tornadoes are more prevalent in the region between longitudes 92 
and 99, which helps explain the motivation for the definition of the 
variable x2. 

The interval R > 64% was the only one for which x4 was used. It 
appears that distance from the coast is a useful variable for large 
hurricanes, but not for smaller catastrophes such as tornadoes. The 
variable x4 didn’t work well for intervals for which R I 64%, possibly 
due to collinearity with the longitude variable. The coefficient came 
out only negligibly negative or even positive. 
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Positive coefficients for any of the variables x,, x2, x3, and x4 were 
considered counter to the overall indications of the data and not ap- 
propriate for use in the study. For all intervals, all the variables x,, x,, 
and x3 were used unless one of them had a positive coefficient. In 
these cases, a regression was done without using that variable. 

To find confidence intervals for the regression coefficients or for 
the expected values of the dependent variables, it would have to be 
true that: 

1. A linear relationship exists between the independent vari- 
ables used and the dependent variable used. 

2. The conditional distributions of the dependent variables, 
given values of the independent variables, are uncorrellated 
and have a common variance. 

Neither condition is satisfied. Nothing can be done to satisfy the 
first condition unless a way is known to transform the variables so 
that they satisfy a linear relationship. Therefore, it was considered 
better to avoid the complications involved in transforming variables 
to come closer to satisfying the second condition. The results of the 
regression are considered to be simply a useful method of smoothing 
the data. 

The functions resulting from the regressions are shown in Table 4. 

TABLE 4 
REGRESSION FUNCTIONS 

Interval ~_. Function 
8%<RS 16% -10.024x1- 0.167~2 -0.083~~ + 3.694 
16%<RI32% -0.oooOS~~ -0.108~2-0.461~3 +2.312 
32%<Rs64% -0.095~1 -0.035x2+ 4.169 
R>64% - 0.030x1- 0.069~2 - 0.241~3 - 2.7 19x4 + 6.457 
R>32% -0.102rl -0.002~2 -0.808x3+6.150 
R>16% -0.047x1-0.087.~ -0.720x3 +5.172 
R>8% -0.035x1-0.119x2-0.596x3+5.393 
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Region --x1 X? J-3 _Ic4 
1 37 6 1.6112 1.535 
2 37 6 1.838 1.824 

3 31.5 0 1.715 1.708 

4 31.5 0 I .596 1.513 
5 28 6 1.381 1.303 
6 34 6 1.596 1.582 
7 35.5 0 1.626 1.790 
8 44.5 6 1.703 1.758 
9 45.5 6 1.787 1.924 

10 45.5 0 1 S81 1.936 
11 40 0 1.626 1.903 
12 40 0 1.654 1.909 
13 41.5 6 1.581 1.818 
14 38.5 6 1.548 1.767 
15 38.5 6 1.405 1.582 
16 43.5 6 1.405 1.652 
17 44 6 1.381 1.303 
18 37 6 1.876 1.780 
19 45 6 1.862 1.868 
20 31.5 0 1.796 1.684 
21 33 6 1.767 1.504 
22 41.5 0 1.813 1.902 
23 40 6 1.703 1.817 
24 42 6 1.640 1.629 
25 40.5 6 1.970 1.868 
26 35.5 0 1.935 1.798 
27 37.5 6 1.854 1.740 
28 38.5 0 2.078 1.870 

PROPERTY CATASTROPHE RATING 

EXHIBIT 6 

VALUES OF INDEPENDENT VARIABLES 
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APPENDIXB 

DERIVATIONOF CREDIBILITY FORMULA 

To approximate an experience rating formula, we assume: 

1. Given that gi ($i,j) is the fitted value for interval i and region 
j in the smoothing method of this paper, the probability dis- 
tribution of the random variable Ei,j, which represents the 
expected value of the freqfency of catastrophes in interval i 
and regionj, has mean gi 05,j). 

2. For each i, the probability distribution of Ei,j has the same 
coefficient of variation Ci for eachj. 

It follows that, for each interval i and each region j, the Z such that 

Z (actual frequencyin inteyal i and region j) 
+(l -z) gi bi,j) (B.1) 

is the best least squares estimate of the expected value of the fre- 
quency in interval i and regionj is 

Z= gi t$i,j)/(gi 6i.j) + licf >* 03.2) 

The proof is as follows. By Biihlmann’s theorem (Btihlmann [5], 
Herzog [lo]), Z = Hi,j/(Hi,j + Vi,j) where Hi,j equals the variance of 
the probability distribution of the expected value of the frequency for 
interval i and region j, and Vi,j equals the expected value of the 
variance of the frequency, given the above probability distribution for 
the expected value of the frequency. 

For each possible value ei,j for the expected value of the fre- 
quency, the probability distribution of actual values is assumed to be 
Poisson and thus has variance ei,y Therefore, by Assumption 1 

above, Vi,j = gi t$i,j). By Assumption 2 above, Hi,j = (Ci gi &i,j))‘. 
Therefore, 
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Z= Cf gi &i, j)'/Cc Ri f$i.j12 + gi CGi. j)) 
= gi i$i. j)/(gi &i, j) + "'f)' 03.3) 

This completes the proof. 

The estimates of the numbers Cf will now be discussed. 

Consider the frequency in interval i and region j during the 41- 
year period used for the data to be the outcome of an experiment. Let 
the random variable Xi,j represent the outcome. The expected value 
of (gi ~i,j) - Xi.j)‘, given that ei,j is the expected value of the fre- 

quency, equals (gi ($i,i) - ei,j)’ @US the expected value, given that ei,j 
is. the expected value of the frequency, of (ei.j - Xi.j)‘. (This is left 

for the reader to verify.) Therefore, the mean of (gi Gi,j) -Xi,j)2 
equals the mean of (gi I$~, j) - Ei,j)2 PIUS the mean of (Ei,j - Xi..j)2. 

By Assumption 2 above, the mean of (gi ~i,j) - Ei.j)2 equals 

C ki Gi. j)J2* 

Given that ei,j is the expected value of the frequency, the mean of 

(ei,j - Xi,i)2 is ei,j. Therefore, the mean of (Ei,j - Xi,j)* equals the 
mean of Ei,j , which is gi (-~i,j) . 

Therefore, the mean of (Si Gi, j> - xi, j)’ 

c (gi (Gi,j))’ + gi 6i.j). SO c equals the expected value of 

equals 

~(gi~i,j)-Xi.j)‘-~Ki(~i,i) (B.4) 
j=l 

The estimate of the expected value of 

g (Si Gi. j) - xi, j)' 

j=l 
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will depend partly on judgment and intuition, due to problems in esti- 
mating it purely mathematically. 

Assume for the sake of approximation that the following two con- 
ditions are satisfied. 

1. The values gi (G,J are the function values produced directly 
by a regression, and a linear relationship with coefficients 
Ui,j actually exists between the independent variables used 
and the expected values of the dependent variables. 

2. The differences between the dependent variables and their 
expected values have independent probability distributions 
with a common variance c?. 

Under these conditions, 

wherefi,j is the actual frequency in interval i and region j, is “,” unbi- 
ased estimate of 02 (Draper and Smith [8]). If the values gi bi,j) are 
not the true expected values of the frequencies in interval i and region 
j, then the expected value of 

is greater than 02. 

Assuming Equation B.5 is equal to or less than the expected value 
of 

Equation B.4 gives the following lower bound for c : 
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(Equation B.5 - 2 gi &i, j))/ 2 (gi cv^i,j))2. 
j= I j= 1 

(B.6) 

We now discuss an upper bound for Cf. 

It clearly appears that the expected value of 

5 (Si Gi,j) -xi,j)2 

j=l 

is less than 

where A, j is the actual frequency in interval i and region j. The value 

is a mere average of the values gj Gi j), so the individual estimates 
gi (ii,J intuitively appear to be better estimators for the expected val- 
ues of the variables Xi j than is 

Therefore, it follows, based on the above arguments and Equation 
B.4, that the following is an upper bound for Cf : 

2 (gi ~i,j)/28 -f;.,jJ2 - 2 8; (,E;,, j) 
j=l 
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Thus we have (Equation B.6) < CT < (Equation B.7). Using the actual 
values of the expressions in Equations B.6 and B.7 for i = 1 through 
7, and averaging inequalities, gives 

0.049 < ((C; + C; + C; + C; + C$/5) < 0.146 03.8) 

and 

0.065 < ((C; + C;)/2) c 0.215. (B.9) 

The reason for considering C, and C, separately from C,, C,, Cs, 
C,, and C, is that the numbers gi (-~i,j) for i = 3 and i = 4 were based 
on less data than for i = 1,2,5,6, and 7. Thus, the expectation is that 
they are less accurate. Therefore, it can be seen from Equation B.l 
that Cf would be expected to be greater for those intervals. 

By Equation B.2, the choices of ki = 9 for i = 1,2,5,6, or 7 and 
k; = 6 for i = 3 or 4 in Subsection 2.C imply choices of ‘/9 for each of 
CT , c , C: , Cz and C$ and l/6 for CG and c . 

Thus, the selected values for ki are toward the low end of the 
range of inequalities B.8 and B.9. Still, the numbers gi &i,j) have a 
much greater effect than the numbers A,j on the tails of the loss 
distributions selected by region in Subsection 2E. 
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APPENDIX C 

METHOD OF FITTING PARETO 

Iteration was used to find the single parameter Pareto distribution 
that minimizes 

~ ((fi - Pi)2/Pi”5), 
i=l 

where fi is as defined in Subsection 2E, and Pi is the corresponding 
fraction for the Pareto distribution. 

The above method of fitting a Pareto to the numbersfi is different, 
for theoretical reasons, from methods that would be used to fit a 
Pareto to actual frequencies. An explanation of the method is as fol- 
lows. 

Let the random variable Xi equal theJ; produced by performing the 
experiment of using the method of this paper on the data for the 
41-year period. Assume that there is some Pareto distribution A such 
that each Ai, defined similarly to Pi, is the mean of Xi. 

The Pareto that minimizes 

i ((f; - Pi) /oi)2 9 
i=l 

where Oi is the standard deviation of Xi, is an estimate of A. If the 
probability distribution Of Xi is Normal, then it is the maximum likeli- 
hood estimate of A. 

If Pi = Ai, then based on the process used in computing the num- 

ber&, it is judgmentally estimated that, for some constant c, each 0” 
equals approximately cP~.~. Each J results from a weighting of actual 

data and a smoothed estimate. If only actual data were used, each (T? 
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would .be approximately in the same proportion to Pi. On the other 
hand, if only smoothed estimates were used to produce each&, and if 

the coefficient of variation were the same for each Xi, each c$ would 

be in the same proportion to PT. The value Pi,5 was selected above 

because it is approximately midway between Pi and Pf. Thus the 
Pareto that minimizes 

~ ((f;: - Pi)‘/P,!.3 
i=l 

is an estimate of the Pareto that minimizes 

i (U; - Pi) /OJ2* 
i=l 

A viable alternative method, which avoids the somewhat arbitrary 
choice of exponent on P, would be to use iteration to find the Pareto 
that maximizes the likelihood function lI P,fi. This is numerically no 
more difficult than the approach used. 



AGGREGATE RETROSPECTIVE PREMIUM RATIO 
AS A FUNCTION OF THE 

AGGREGATE INCURRED LOSS RATIO 

ROBERT K. BENDER 

Abstract 

The aggregate premium returned to a group of individual 
risks that are subject to retrospective rating depends upon 
the retrospective rating formula, the aggregate loss ratio of 
the risks, and the distribution of the individual risks’ loss ra- 
tios around the aggregate. As the aggregate incurred loss ra- 
tio for a group of risks increases, the aggregate returned 
premium decreases, but not as rapidly as the loss ratio in- 
creases. 

In this paper a simple equation is detvelopedfor the rela- 
tionship between the aggregate incurred loss ratio and the 
aggregate retrospective return premium. The equation relies 
on the tabular charges and savings of Table M, thereb) 
eliminating the need to per$orm Monte Carlo style simulu- 
tions. 

Using the relationship expressed in terms of Table M val- 
ues, the response of several retrospective rating formulas to 
changes in the aggregate incurred loss ratio is determined. 

ACKNOWLEDGMENTS 

The author wishes to thank Nancy R. Treitel and William A. Bailey 
for reviewing earlier versions of this paper and for making several help- 
ful suggestions regarding its content. 

A balanced individual risk retrospective rating plan is one in 
which the aggregate premium retained for all risks is equal to the 
aggregate premium that would have been collected if all of the risks 
had been written on a guaranteed cost basis. While charging an 

36 
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amount equal to the guaranteed cost premium in the aggregate, the 
retrospectively determined individual risk premiums are allowed to 
vary (within limits) as a function of the individual risk’s actual loss 
experience. 

An attempt is made to anticipate and reflect all of the possible 
individual risk loss outcomes of the guaranteed cost rates. However, 
only those outcomes which produce retrospective premiums that lie 
between the specified minimum and maximum premiums enter the 
formula explicitly. Those loss outcomes that produce retrospective 
premiums less than the minimum premium have the same effect on 
the aggregate retrospective premium as those which yield the mini- 
mum premium exactly. Likewise, risks that produce retrospective for- 
mula premiums greater than the specified maximum contribute no 
more premium to the aggregate than those with losses that exactly 
produce the maximum premium. 

The loss “capping” effect of the minimum and maximum retro- 
spective premium constraints makes achieving a balance with the 
corresponding guaranteed cost rates a non-trivial exercise. The rather 
well known device by which a balance can be achieved is the insur- 
ance charge. The insurance charge is used to modify the retrospective 
premium formula in such a way that the aggregate retrospective and 
guaranteed cost premiums become equal. The mechanics of how one 
determines the appropriate insurance charge can be found in John 
Stafford’s monograph [7] as well as the Retrospective Rating Plan 
Manuals for both the National Council on Compensation Insurance 
(NCCI) [4] and the Insurance Services Office, Inc. [3]. More theo- 
retical treatments can be found in several monographs and papers 
(see [2], [5], and [6], for example). Both the guaranteed cost (GC) 
rates and the individual risk retrospective rating (IRRR) formula (to- 
gether with the specified minimum and maximum premiums) are 
established prospectively. Only the individual risk premiums are de- 
termined retrospectively. In order to determine the GC rates and the 
insurance charge component in the IRRR formula, one must forecast 
the incurred loss ratio (ILR) for the aggregation of all policies to be 
written under these rates. A look at recent rate filings for workers’ 
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compensation shows that, in many jurisdictions, the IL& anticipated 
in the original filing was quite different from the ZLZ? actually experi- 
enced. 

Guaranteed cost rates offer no immunity to the insurer from the 
effects of missing the “target” loss ratio. Retrospective rating, on the 
other hand, does possess the ability to offset some of these effects by 
increasing or decreasing the aggregate retrospectively determined 
premiums in response to the error in the estimated ZLR. The maxi- 
mum and minimum premium constraints, however, place limits upon 
the degree to which a retrospective rating plan can respond to 
changes in the aggregate IL&. 

It is desirable to have a quantitative measure to prospectively de- 
termine the degree to which a particular retrospective rating plan will 
respond to differences between the underlying expected aggregate 
loss ratio and the actual aggregate loss ratio. Section 1 provides a 
theoretical treatment of the problem. It concludes with the derivation 
of a formula expressing the ratio (RP) of aggregate retrospectively 
determined return premium to standard premium as a function of the 
aggregate ZLZ? for all retro-rated policies. Rather than being explicitly 
dependent on a distribution about the mean of individual policy ZLZ?s, 
the functional relationship is expressed in terms of Table M charges 
and savings. Appendix A displays a tractable, albeit unrealistic, nu- 
merical illustration of the theory that is introduced in Section 1. 

In Section 2, the results of Section 1 together with Table M insur- 
ance charges are used to obtain sets of ordered pairs of aggregate RPs 
and ZLRs for a set of risks that will be subject to retrospective rating. 
Using this set of ordered pairs, the sensitivity of a retrospective rating 
plan’s RP to changing IL& is examined. In particular, the influence 
of four factors (the individual risk ZLR distribution, the plan loss 
conversion factor (LO’), the plan minimum premium ratio, and the 
plan maximum premium ratio) is discussed. Section 2 continues with 
some remarks about curve fitting. Appendix B provides the details of 
one of the simulations that is presented in Section 2. 
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Section 3 concludes by summarizing the results of Section 2 and 
suggesting practical applications of the theory to the evaluation of 
residual market retro plans. The establishment of a retrospective un- 
earned premium liability is also briefly discussed. 

1. THE FUNCTIONAL RELATIONSHIP BETWEEN ILR AND RP 

In this section a functional relationship is derived for the aggre- 
gate ZLR for a group of individual risks defined by a particular loss 
ratio density function, f(s), and the resulting aggregate retrospective 
premium returned ratio RP. The distribution,f, will be defined by two 
moments, the familiar charge, X(r), and savings, Y(r), of Table M or 
Table L. (See [5] and [6].) 

For simplicity, assume that the retrospective rating plan does not 
involve any per claim (or occurrence) loss limit, nor does it incorpo- 
rate retrospective development factors (either of these could be han- 
dled within the theoretical framework that follows, but neither would 
add to the exposition). A retrospective rating plan consists of a retro- 
spective rating formula 

R = [e*S + c*Z*S + c*L]*TM , 

subject to the limiting constraint that 

(1.1) 

H*S 5 R 2 G*S, (1.2) 

where : 

R 

s 

e 

C 

Z 

TM 

is the retrospectively determined premium; 

is the standard premium for the risk; 

is the ratio of non-loss-based expenses to S; 

is the loss conversion factor (LCF) which consists of 
unity plus a provision for any loss-based expenses; 

is the net insurance charge as a ratio to S; 

is the tax multiplier, TM = l/( l- taxrate); 
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L is the actual incurred loss for the policy; 

H*S is the agreed upon minimum retrospective premium; and 

G*S is the agreed upon maximum retrospective premium. 

Dividing both sides of Equation 1.1 by S gives 

R/S = [e + c*I + c*ILR]*TM, (1.3) 

where 

ILR = US (1.4) 

is the incurred loss ratio for the policy. Even if we limit our discus- 
sion to a priori identical policies that have the same individual risk 
expected loss amount -CL> and expected loss ratio <IL& (where the 
brackets, c...>, denote the expected value of the variable that they en- 
close), the individual risk loss ratios, IL&, can be expected to differ 
from the expected one. 

Following the notational conventions that are used with the Table 
M of insurance charges, we define an individual policy entry ratio, S, 
as follows 

s = L/CL> = ILRI<ILR>. (1.5) 

Assume that the probability density,f, is such that f(s)& gives the 
probability of finding an individual risk with an entry ratio be- 
tween s and s + ds. The function f can, and in Table M does, vary 
with CL>. We note thatf(s) need not correspond to any published Ta- 
ble M. “Table M” is used in a generic sense to describe a set of ILR 
distributions and the charges and savings that are implied by them. 

Givenfls), we define two functions, 

X(r) = j (s - r)f(s)ds, (1.6) 
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and 

Y(r) = j (r - 4 f (s)ds, (1.7) 
0 

which are the familiar charge and savings, respectively, of Table M 
or Table L (depending upon the particular densityfand the definition 
of ILR). 

Returning to Equations 1.2 and 1.3 we find that the minimum 
entry ratio, r,i”, is given by 

rain = [H/TM - e - c*Z ]/(c*<lLR>), (1.8) 

and the maximum entry ratio, rmaxr is given by 

r max = [G/TM - e - c*Z ]l(c*dLR>) . (1.9) 

If we define a capped incurred loss ratio, ilr, as follows: 

I 

r,i, for S<rmin 

ilr = <ILR>* s for r,i, I S Ir,,, (1.10) 

prna.x for r,,, c s 

then Equation 1.3 can be recast into a form that does not require the 
explicit constraint condition, namely: 

R/S = [e + c*I + c*iZr]*TM. (1.11) 

The average ratio of the retrospective premium to the standard 
premium, over all policies described byf, is given by 

<R/S> = [e + c*I + c*cilD]*TM, (1.12) 

where 
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‘InI” r mm 

4lr> = r,i, If (SW + j sf(sW + rmax If @Vs. (1.13) 
0 rlIU” rmdX 

Equation 1.13 can be recast into the following form: 

dir> =<tLb*[ 1 + Y(r,id - X(/--)1, (1.14) 

in which X and Y appear, implicitly representing all of the necessary 
details contained inf(s). 

The interpretation of Equation 1.14 is that the expected capped 
loss ratio, the one “seen by” the retrospective rating plan, differs from 
the uncapped expected value by the addition of some losses from 
risks with formula premiums below the minimum, <ZU?>*Y(r,i,), 
and by the removal of some losses for risks that produce formula 
premiums above the maximum premium, <ILR>*X(r,,,,,). 

If we require that 

I + <ilr> = -dLb, (1.15) 

then <R/S> will, indeed, balance to the guaranteed cost premium. 
The determination of the insurance charge, I, is not as trivial as it ap- 
pears. Solving Equation 1.15 for I gives 

I = dLb - <ilr>, (1.16) 

but db, itself, depends upon I because the rmin and r,,, depend on 
I. For the purpose of this paper, we can assume that a solution has 
been obtained, although nothing in what follows depends on a bal- 
ance being achieved. The interested reader can refer to any of refer- 
ences [2] - [7] to see how the trial and error procedure to determine I, 
given a table of X(r) and Y(r), is usually performed. Even if we do not 
impose the requirement that R be balanced to the guaranteed cost pre- 
mium, Equation 1.14 can be substituted into Equation I .I 2 to deter- 
mine the ordered pair (cILR>, RP). 
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Regardless of whether or not <R/S> balances to the guaranteed 
cost premium, it can be assumed that increasing values of <ZLR> for 
a fixed insurance charge will produce increasing values of <ilr> and 
hence <R/IS>. The question is: By how much will <ilr> increase 
when <ILR> increases? That depends, of course, on the percentage of 
risks that are either no longer subject to the minimum constraint or 
are now subject to the maximum constraint. A change in the aggre- 
gate ZLR after the retrospective plan has been established will have no 
effect on the minimum and maximum loss ratios to be seen by the 
plan. Only the corresponding entry ratios, r,,,,, and r,,,i,, will differ 
from those originally anticipated. 

If dLtb, is the actual aggregate loss ratio for a portfolio of 
risks, and 

dLlb, = g*cILR>o ) (1.17) 

where the constant, g, is defined by Equation 1.17, then, in terms of 
the actual distributionft, 

rrni, = rmino /g , and (1.18) 

(1.19) 

We have adopted the indicator 0 for the originally assumed distribu- 
tion parameters and density and 1 for the actual distribution parame- 
ters and density. The parameters indicated with zeroes may 
alternatively be thought of as being based upon a priori estimates. 

As in Equation 1.13, the actual average loss ratio seen by the 
retrospective rating plan, given the actual density ft and the actual 
mean <IL&,, will be: 

rrllmk 

<ilo = g*<ZLR>o* (r,,,i” /g)* /sf, (s)ds 
0 
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1 ‘!?)I. (1.20) 

Upon subtracting Equation 1.20 from 1.14, we find that the differ- 
ence between the actual and estimated aggregate loss ratio as seen by 
the retrospective rating plan is given by 

A<ilr> = 4L1Bo - <ILlb,*[g*X, (rn,,, / g) - X,(r,,,)] 

+ <~Lfio*k*Yl(r,i, / RI - Yo(r,i,>l- (1.21) 

The corresponding change in the retrospective premium ratio is 
found by substituting Equation 1.2 1 into 1.12 as follows: 

A&Is> = c*A<ILlbo*TM 

- c*<ILlbo*[g*X,(r,,/g) - XO(rmax)]*TM 

+ C*dLlbo*g*Yl(r,i, / g) - Y~,(r,iJ]*TM. (1.22) 

Because most retrospective rating plans are designed to return 
premium to policyholders in the aggregate, we shall refer to return 
premium ratios (RP), given by 

RP=1-R/S (1.23) 

and 

ARP = -cA<ILR>,,*TM 

+ c*<ZLbO*[g*Xl(r,,,/g) - X,(r,,A]*TM 

-C*~LR>o*[g*Y~(r,i, /g) - Yo(r,,,i,)]*TM. (1.24) 
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Appendix A provides a detailed analysis of the significance of the 
three terms that appear in Equation 1.24. 

2. SENSITIVITY TESTING BY MEANS OF SIMULATION 

By means of the simulation model, Equation 1.24, we may test the 
sensitivity of a particular retro plan to changes in any of its parame- 
ters. We shall begin by considering a set of risks with an expected 
loss ratio of 60 percent of standard premium. Furthermore, we shall 
assume that the individual risk loss ratios have the same distribution 
as expected loss group 60 of the NCCI Table M. Using the July 1, 
1991 expected loss groupings, this expected loss group corresponds 
to a set of risks with approximately $53,000 of standard premium. If 
the expense provision in the rates (excluding taxes but including 
profit) is 26 percent of standard premium (about midway between the 
NCCI Table XIV stock and non-stock expense provision for this 
policy size), and taxes are 4.4 percent of collected premium (i.e., the 
taxes which lead to a 1.046 tax multiplier), then 10 percent of the 
standard premium will be available for retrospective premium re- 
turns. Using the standard Table M algorithms, and the information 
given above, the insurance charge for any c, G, and H can be deter- 
mined. Once those items have been specified, the retrospective rating 
formula and constraints will be known. Equation 1.24 can be used to 
generate a set of simulation points for the particular plan. (See Ap- 
pendix B for the details of one such simulation,) 

To quantify the sensitivity of a retro plan to changes in any pa- 
rameter, we must have a measure of the retro plan’s response to 
changing <IL&s. As described in Appendix B, three curves were fit 
to each simulation: linear, geometric, and exponential. Even when 
the geometric or exponential model produced a better fit to the data, 
the linear model for the RP as a function of the dLR> was a close 
runner-up (as measured by the mean squared error), and the linear 
model frequently performed best. Because of its simplicity, the slope 
of the linear curve has been selected as the best measure of a retro 
plan’s response to changes in the <ILR>. A slope of -.25, for exam- 
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ple, means that an eight point increase in the aggregate ZLR over and 
above the expected ZLR results in a two point decrease in the RP. 

The remarkable feature of our simulations using Table M loss 
group 60 is how small the slopes are. In other words, large changes in 
the <I,%> do not have a large impact on the RP for any of the 
retrospective rating formulas that were tested. 

Table 1 provides us with a summary of the sensitivity of the 
generic formula, 

R/S = [ .260 + 1 .OOO*Z(G) + 1 .OOO*ZLR]* 1.046, (2.la) 

subject to 

.70 I R/S 5 G, (2.lb) 

where ZZ, the ratio of minimum premium to standard premium, has 
been set equal to .70. 

TABLE 1 

RESPONSE(SL~PE)ASAFIJNCTION~FTHE 
hfAXIMUM~MIUMbVITO,G 

[For Table M Expected Loss Group 60 and 
60 Percent Expected Loss Ratio] 

MSE (x l,OOO,OOO) 
&YYH Linear Geometric Exponential & 
1.000 1.15 0.70 6 4 1 -0.10 
1.000 1.20 0.70 6 14 2 -0.12 
l.oMJ 1.25 0.70 9 24 4 -0.13 
1.ooo 1.30 0.70 10 36 8 -0.14 
l.oMl 1.35 0.70 5 94 36 -0.16 
l.ooO I .40 0.70 8 111 43 -0.17 
1.000 1.45 0.70 9 177 80 -0.18 
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By varying the maximum premium, we are able to test the for- 
mula’s sensitivity to changes in G, the maximum premium. Here, 
Z(G) is the net insurance charge that places ZUS into balance with the 
corresponding guaranteed cost rates for an <IL& of 60 percent. In- 
tuitively, we expect that as G increases, fewer risks will “max” out, 
and Equation 2.la should reflect a greater portion of the actual losses. 
As expected, the slope does become larger (in absolute value) as the 
maximum premium increases from 1.15 to 1.45 times the standard 
premium. 

Our intuitive notion concerning the shape of the best model is also 
confirmed. While both the linear and the exponential model fit the 
first four Gs well, the exponential model with its negative first and 
second derivatives fits better. The negative second derivatives are 
indicative of the law of diminishing returns, which is consistent with 
the upper bound on R/S. For maximum premiums above 130 percent 
of standard premium, the capping effect is less noticeable, and the 
linear model produces a better fit. It is interesting to note that, while 
the slope as a function of G has the expected monotonic behavior, 
even with G equal to 145 percent of standard premium, the slope is a 
modest 18 percent of the change in <Im. In the limit as G goes to 
infinity, one would expect the slope to approach -1.00 (i.e., equal to 
the LO’). Obviously 1.45 is not anywhere near being effectively 
infinite for this group of risks with its rather widely spread outfls). 

In Table 2 we freeze G at 135 percent of standard premium and 
attempt to achieve greater response by varying the LCF. At the indi- 
vidual risk level, a greater LCF will make the formula more respon- 
sive to changes in the ZLR, unless the risk is pinned to the minimum 
or maximum premium. Even with a 1.35 maximum, the aggregate 
response for LCFs between ,700 and 1.200 is essentially flat at 16 
percent. While the choice of the LCF is a significant factor as far as 
individual rate equity is concerned, it has almost no effect in provid- 
ing a cushion for the carrier against missing the aggregate <IL& 
target! 
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TABLE 2 

RE~~N~E(SLOPE)ASAFUNCTIONOFTHE 
L~SCONVERSIONFACTOR, LCF 

[For Table M Expected Loss Group 60 and 
60 Percent Expected Loss Ratio] 

LCF .G- -rj 
0.700 1.35 0.70 
0.800 1.35 0.70 
0.900 1.35 0.70 
1.000 1.35 0.70 
1.100 1.35 0.70 
I.150 1.35 0.70 
I.200 1.35 0.70 

~~~ MSE fx IWVW, ~~ 
Linear ~~ Geometric Exponential 

6 46 12 
8 52 14 
8 56 16 
5 94 36 
7 75 25 

10 71 23 
10 79 26 

S!Oqe 
-0.15 
-0.15 
-0.15 
-0.16 
-0.16 
-0.16 
-0.16 

Table 3 is identical to Table 2 except that there is no stated mini- 
mum for the retro plan. No stated minimum implies a minimum that 
is equal to the basic premium, B = e + c*Z, times the tax multiplier, 
TM. While a B x TMplan is slightly more responsive for large LCFs 
than the corresponding H = .70 plan, the slope as a function of LCF is 
still very flat. The additional responsiveness for the B x TMplans can 
be attributed to changes in R for risks which have an R that fails 
below 70 percent of the standard premium (and would have been 
pinned to the minimum for those loss ratios under the H = .70 plan). 

Table 4 is a larger version of Table 1, but for B x TMplans. The 
response has been determined for various maximum premium factors, 
G. Plans with G < 1.15 are possible for H = B x TM but because their 
B x TM is greater than .70, they could not be considered in Table 1. A 
quick comparison of the slopes for the plans that are common to 
Tables 1 and 4 shows that there is no significant difference in re- 
sponse between a “no stated minimum” and a “.70 minimum” plan 
for NCCI loss group 60. 
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TABLE 3 

RESPONSE (SLOPE) AS A FUNCTION OF -t-w 
Loss CONVERSIONFACTOR, LCF, WITHNO 
SPECIFIEDMINIMUMFREMIUMRATIO,H 
[For Table M Expected Loss Group 60 and 

60 Percent Expected Loss Ratio] 

LCF 
0.500 

MSE (x l,OOO,OCO) 
G H Linear Geometric Exponential 

1.35 BxTM 5 24 4 

0.600 1.35 BxTM 6 32 7 

0.700 1.35 BxTM 8 38 8 

0.800 1.35 BxTM 6 58 17 

0.900 1.35 BxTM 9 67 20 

I.000 1.35 BxTM 10 79 24 

1.100 1.35 BxTM 8 125 49 

1.150 1.35 BxTM 10 119 46 

I.200 1.35 BxTM 11 I15 42 

TABLE 4 

RE~~~NSE(SLOPE)A~AFUN~TI~NOFTHE 
MAXIMIJMFREMIUMRATIO,G 

WHNOSPECIFIEDMINIMUMPREMIUMRATIO,H 
[For Table M Expected Loss Group 60 and 

60 Percent Expected Loss Ratio] 

LCF c 
I.000 0.95 

1.000 1.00 

1 .oca 1.05 

1.000 1.10 

1.000 1.15 

I.000 1.20 

I.000 1.25 
1.000 1.30 

1 .OOu I .35 

H 

BxTM 

BxTM 

BxTM 

BxTM 

BxTM 

BxTM 

BxTM 

BxTM 

BxTM 

MSE (x l.oOO,OCO) 
Linear Geometric Exponential 

2 2 2 

1 1 1 

4 1 2 
6 2 2 

4 7 I 

9 9 1 

7 22 3 

8 45 II 

10 79 24 

x!?lz 
-0.13 
-0.14 

-0.15 

-0.15 
-0.16 

-0.16 

-0.17 

-0.17 

-0.17 

Slope 
-0.02 

-0.05 
-0.06 

-0.08 

-0.11 

-0.12 

-0.13 
-0.15 
-0. I6 

The more compact the incurred loss ratio distribution is, that is, 
the smaller its variance is, the more responsive a retrospective rating 
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formula should be for a given value of G. That is because a smaller 
percentage of its risks should have loss ratios that pin R to G. As the 
Table M expected loss group numbers decrease, the underlying distri- 
butions become more compact. 

Table 5 tests the responsiveness of a H = B x TM, LCF = 1.000, 
G = 1.35 retro plan for different Table M expected loss groups (i.e., 
different premium sizes). Our intuitive notion is supported by the 
resulting slopes. Again, the striking feature of the slopes as a function 
of expected loss group is how small (in absolute value) they are. Even 
for group 40, only 37 percent of the change in ILR translates into a 
change in RP. 

TABLE 5 

REW~NSE(SLOPE)ASAFUNCTIONOFEXPECTEDLOSSGROUP, 
WITH ALLOTHERPARAMETEXSHELDCONSTANT 

[Expected Loss Ratio Equals 60 percent] 

LCF 
I.000 
1.000 
1 SKKI 

1.000 

I .ooo 
1.000 

l.OCNI 

1.000 

Loss Standard 
G H Group Pre@um 

1.35 BxTM 70 24,000 

1.35 BxTM 60 53.000 

1.35 BxTM 50 113.000 

1.35 BxTM 40 240,000 

1.35 BxThf 30 860.000 

1.35 BxTM 20 4.832.000 

1.35 BxTM 15 14,773.OOo 

1.35 BxTM 10 95,486.oOO 

Slqpe Line+ 
-0.12 4 

-0.17 IO 
-0.25 26 

-0.37 44 

-0.57 21 
-0.78 8 

-0.85 21 
-0.94 3 

MAE (x 1 ,@ywq ~~ 
Geom+@ Exponential 

9 0 
28 3 

233 80 

1,344 792 

890 552 

682 430 

3.032 2,379 

753 512 

Finally, we investigate the relationship between the shape of the 
distribution as characterized by f(s) and the RP for a fixed premium 
size and constant <IL&. Table 6 shows, for example, that if a set of 
risks were initially priced as if they had the loss ratio distribution 
corresponding to Table M’s group 60, but they turned out to actually 
have the distribution of group 73 (i.e., $53,000 accounts turn out 
behaving like $18,000 accounts), the returned premiums would be 6.8 
percent of standard premium more than originally intended. The ex- 
pected RP for group 60 is 10 percent; whereas, one should have 
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expected 16.84 percent. Table 6 makes use of Equation 2.24 whenfo 
is not equal tof,. 

TABLE 6 

RETURNEDPREMIUM (RP) ASAFUNCTIONOFTHE 
AGGREGATELOSSDISTRIBUTION 

ASIDENTIFIEDBYTHETABLE M GROUPNUMBER 
[Insurance Charge Based Upon Group 60 For All Cases] 

-1 
57 

58 

59 

60 
61 

62 

63 
64 

65 
66 

67 

68 

69 
70 

71 

72 

73 

z G H AL!!L RP 
I.000 1.35 BxTM 60.0% 8.43% 

1.000 1.35 BxTM 60.0 8.93 
1.000 1.35 BxTM 60.0 9.50 
1.000 1.35 BxTM 60.0 10.00 

1.000 1.35 BxTM 60.0 10.56 
l.OCUl 1.35 BxTM 60.0 11.13 

1.ooo 1.35 BxTM 60.0 11.63 
l.ooO 1.35 BxTM 60.0 12.13 
l.om I .35 BxTM 60.0 12.64 
1 .cm I .35 BxTM 60.0 13.20 
l.ocw 1.35 BxTM 60.0 13.64 

ISKNI 1.35 BxTM 60.0 14.08 

l.oal 1.35 BxTM 60.0 14.64 
1.000 1.35 BxTM 60.0 15.24 
1.000 1.35 BxTM 60.0 15.77 
1.000 1.35 BxTM 60.0 16.34 
1.000 1.35 BxTM 60.0 16.84 

3. CONCLUDINGREMARKS 

While individual risk retrospective rating plans can be very re- 
sponsive to individual risk experience for risks of any size, the re- 
sponsiveness of the aggregate returned premium (RP*S) to changes in 
the aggregate loss ratio (cILR>) for a portfolio of risks is rather weak 
for all but the so called “jumbo” accounts. 

Risks typically written under the NCCI retrospective rating plans 
have standard premiums less than $1 ,OOO,OOO. Even with a plan 
maximum as high as 135 percent of the standard premium, the re- 
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sponse (slope) ranged from a low of -. 12 for risks that were near the 
lower limit of retrospective rating eligibility to a high of -.57 for risks 
that have almost $1 ,OOO,OOO of standard premium. 

The NCCI plans are significantly more responsive for the larger 
risks. Many jurisdictions now permit rating these “jumbo” accounts 
using retrospective rating formulas that do not strictly adhere to the 
NCCI parameters. In particular, the NCCI tabular expense provisions 
and NCCI expected loss ratios need not be used. Obviously, if one is 
free to select an extremely high maximum and free to load all of the 
expenses via a loss conversion factor, then even greater response 
could be expected. 

This freedom is not available for the smaller accounts. Because of 
the ability to achieve very high responsiveness for “jumbo” accounts, 
and their ability to dominate any empirical study of industry-wide 
responsiveness, we developed our simulation for the evaluation of 
responsiveness for portfolios that consist of smaller policies. The dis- 
cussion that follows is, therefore, confined to portfolios consisting of 
small and medium size policies. 

For these risks, an unanticipated rate deficiency (such as one man- 
dated by a regulator), or a uniform increase in all loss ratios for some 
other reason, can be expected to change the dLR> without changing 
the distribution,f(s), of IL& around the ZLR. When this occurs, only a 
small fraction of the loss ratio increase is reflected by a lower aggre- 
gate RP. As a result of this, mandatory retros for the residual market, 
while restoring some equity between risks, cannot be expected to 
compensate for uniform deterioration in the loss experience. Even 
retros with a high maximum (e.g., 150 percent of standard premium) 
provide little in the way of a safety valve. 

If, in addition to missing the target <ILR>, the effects of inflation 
on Table M expected loss groups are not adequately reflected, addi- 
tional RP will be generated, thereby increasing the “bottom line” loss. 
This was illustrated in Table 6. 

If one could quantify the relationship between the reported 
<IL& and its fTs) as losses mature (i.e., how the ZLR distribution 
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the retro parameters). If the <ILR> could be developed to its ultimate 
value, and the resultingfls) was known, then the ultimate RP could be 
estimated. This would be an enhancement to the method presented in 
Berry’s 1980 paper [l]. The research that would be necessary to 
determine this functional relationship, fl~)~~,, matutify , is well be- 
yond the scope of this paper, but presents us with a challenge for 
further research. 

Another application of Equation 1.24 is in the establishment of 
safety margins in retrospective rating. If the distribution of possible 
dwi>s about the mean dwi> is known (this is not the same distribu- 
tion asf, which involves ZLRs about <IL&), then the expected profit 
could be calculated for a particular retro formula. For each =3X> 
there would be an RP and these RPs could be averaged using the 
<IL&> distribution. By varying the insurance charge, I, the prob- 
ability of achieving a profit of less than some number, a, could be 
reduced below some selected value, p. The details of this investiga- 
tion are the subject of a future paper that relates the expected return 
on equity for a portfolio of retrospectively rated risks to this modified 
insurance charge. 
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APPENDIX A 

Section 1 presented a theoretical relationship between changes in 
the aggregate incurred loss ratio for a group of individual risks and 
the corresponding change in the retrospectively determined return 
premium (additional premium is, simply, negative return premium). 
This appendix presents a qualitative graphical interpretation of Equa- 
tion 1.24 as well as a numerical example. 

Figure A-l presents the expected distribution of loss ratios (to 
standard premium) for a set of 400 a priori identical risks that are to 
be rated retrospectively. Without providing details concerning the 
retrospective rating formula, we assume that the plan minimum 
causes all risks with loss ratios that are less than 30 percent (all risks 
to the left of the min retro prem line on the graph) to pay the mini- 
mum retrospective premium. All risks with loss ratios that are greater 
than 100 percent (risks that lie to the right of the mux t-err-0 prem line 
on the graph) pay the maximum retrospective premium. Risks with 
loss ratios between 30 percent and 100 percent are charged a retro- 
spective premium that depends on their respective losses. The three 
terms of Equation 1.24 deal with the three regions of the graph. 

If every loss is 50 percent greater than expected (i.e., g = 1.5), 
then every risk in the first graph is shifted to the right, as shown in 
Figure A-2. For a given retrospective rating formula, the minimum 
retro premium and maximum retro premium lines remain unchanged 
by the difference between the expected and actual distribution. 

The fist term of Equation 1.24 assumes that every additional 
dollar of loss will result in a reduction in the aggregate premium that 
is returned. In particular, each additional dollar of loss is multiplied 
by the loss conversion factor, c, and the tax multiplier, TM, to deter- 
mine the reduction in returned premium. The first term reflects the 
linear responsiveness of the retrospective rating formula. If every risk 
were to lie between the minimum and maximum lines, then the first 
term would accurately describe the entire situation. 
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Those risks that lie to the right of the maximum premium line 
would produce no change in the aggregate retrospective premium. 
The second term in Equation 1.24 deals with those risks that were 
expected to lie between the two extremes but which actually lie to the 
right of the maximum line. The losses are g times as large as expected 
(which explains the factor of g). The old maximum, rmax, was ex- 
pressed in terms of the expected loss ratio. In terms of the actual 
aggregate loss ratio, it is only ‘/R as large. In other words, the new 
situation is the same as if the old distribution had been realized, but 
the maximum retrospective premium had been shifted to the left 
(which explains the argument of X,). The net effect of the additional 
risks in the right hand tail is to mitigate the decrease in the aggregate 
returned retrospective premium. 

An offsetting effect occurs at the left side of the distribution. Here, 
some of the risks that were expected to pay the minimum retrospec- 
tive premium now cross the line and become loss sensitive. The third 
term in Equation 1.24 represents the correction for the additional 
premium (reduction in the aggregate returned premium) resulting 
from those risks that cross the minimum line. 

For any particular g, the magnitude of the two correction terms 
depends on the shape of the loss ratio distribution and relative loca- 
tion of the minimum and maximum premium lines. If we assume that 
the distribution in Figures A-l and A-2 is typical of a large account, 
then the distribution shown in Figures A-3 and A-4 could represent a 
smaller account with its higher expected variance. (Smaller accounts 
can be expected to have higher probabilities for extreme loss ratios.) 
As with Figure A-l, the mean loss ratio of Figure A-3 is 60 percent. 
The same 50 percent increase in losses (Figure A-4) pins a much 
larger percentage of the individual risks to the maximum premium, so 
the retrospective rating formula is less responsive to the shift. Jumbo 
accounts, on the other hand, would be expected to have very compact 
loss ratio distributions. (Their loss ratios do not vary much from year 
to year.) With a fairly high maximum premium, one would expect 
most of the risks to remain between the two extremes, which would 
cause the fist term in Equation 1.24 to dominate. 
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To provide a numerical example of Equation 1.24, consider the 
rather flat (hypothetical) distribution of loss ratios displayed in Figure 
A-5 and Figure A-6. The distribution appears to change shape only 
because we have grouped the loss ratios into bins that are five percent 
wide, and the 30 percent increase causes some of the groupings to 
change. The essential features are identical with those of the previous 
four graphs. A significant feature is the large spike that is expected to 
lie between the two extremes, but which actually lies to the right of 
the maximum premium line. 

FIGURE A-5 

THE EXPECTED DI~TRIBUTKM 

DISTRMJTION OF RISKS BY Loss RATIO 
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FIGURE A-6 

THE CORRESPONDING DISTRIBUTION WITH g = 1.3 
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Exhibit A-l introduces the numerical data corresponding to this 
group of 50 a priori identical risks. The expected average loss is equal 
to $491.96. Individual policy loss ratios are distributed about the 
mean in the arbitrary (and perhaps a bit unrealistic) distribution that is 
displayed in Figure A-5. The individual policy standard premium was 
arbitrarily selected to be $922.63. While the standard premium was 
selected at a level that provides for the expected incurred losses, the 
incurred expenses (including taxes), a reasonable profit, and a margin 
from which to pay a net retrospective premium return, the details 
behind the calculation need not be known in order to apply the results 
of Section 1. A knowledge of the aggregate premium returned under 
the established retrospective rating plan is required. 
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The retrospective premium for each of the 50 retrospectively rated 
risks will be determined by means of Equations A. 1 and A.2: 

R = (e*S + c*l*S + c*L)*TM, (A.11 

subject to 

H*S I R I G*S, W-3 

where 

(e*S + c*I*S) = $382.60; 

c = 1.120; 

TM= 1.031; 

H*S = $738.10; 

G*S = $968.76. 

From Exhibit A-l we see that the average retrospectively rated 
premium for the 50 risks is $873.39, which may or may not be in 
balance with the guaranteed cost rates. The retro plan will be in 
balance if and only if the average premium discount is equal to 5.3 
percent of the standard premium, the average amount of returned 
premium under the retro plan specified above. Whether or not the 
original retro plan is in balance, the relations derived in Section 1 
hold. For that reason, we will not provide any support for the expense 
and insurance charge (e and I) components of the rating formula. 
Exhibit A-l provides the necessary information: For this set of risks 
with their common a priori loss ratio distribution, an aggregate in- 
curred loss ratio equal to 53.3 percent of standard premium produces 
an aggregate retrospective refurn premium equal to 5.3 percent of 
standard premium. 
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A direct substitution of the aggregate average loss, $491.96, into 
the retrospective rating formula given by Equations A. 1 and A.2 pro- 
duces a retrospective premium equal to $962.54, or an additional 
premium equal to $39.91 (i.e., a - 4.3% RP). The reason why 5.3 
percent of standard premium was returned when the aggregate aver- 
age loss produces 4.3 percent additional premium lies in the way in 
which losses for risks 30-50 are treated in the formula. While these 
losses are fully reflected in the aggregate average loss, only the first 
$497.35 of loss is reflected in the retrospective premium. This is, 
precisely, the capping effect which leads to the requirement of an 
insurance charge. To see how this capping limits the responsiveness 
of the plan, we apply the equations derived in Section 1. 

To apply the equations derived in Section 1, we must know 
-Wm,Jv PhJ, X0-,,, 8 / ), and Y(r,i,/g). The maximum premium, 
$968.76, corresponds to a loss of $497.35 which implies that 
r,, = 1 .Ol( = 497.35/491.96). The minimum premium, $738.10 
corresponds to a loss of $297.60 which implies that 
r,,,i, = 0.60( = 297.60/491.96). Exhibit A-l displays X( 1.01) and 
Y(O.60) for the 50 risks, where the discrete forms of Equations 1.6 
and 1.7 have been used: 

50 

X(l.Ol)=ZMax(O,L,-497.35)/491.96=.1944, (A.3) 

and 

Y(O.60) = ; Max (0, 297.60 - L,)/491.96= .0378. (A.4) 

If the same retrospective rating formula were to be applied to a 
different set of risks that have an expected loss of $639.55 (130 
percent of the original group’s expected loss), which are similarly 
distributed about the mean,f(s) will be unchanged. (Remember that s 
measures each loss against the mean, so shifting the mean leaves s 
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unchanged.) The original distribution can, therefore, be used to deter- 
mine 

W~lnax g / ) = X( 1.01/l .30) = X(0.78) = .3113, (A.3 

and 

Y(r,i, /g) = Y(O.60/1.30) = Y(0.46) = .0116, 64.6) 

as shown in the last two columns of Exhibit A- 1. 

Had the new j’s, been different, Equations A.5 and A.6 would 
have been calculated using the new distributions. 

The second set of risks, which are displayed in Exhibit A-Z, has an 
incurred loss ratio equal to 69.3 percent of standard premium (i.e., 30 
percent higher than that of the original group of policies). Using 
Equation 1.24 we can predict the corresponding aggregate retrospec- 
tively determined return premium, which is observed (see bottom of 
Exhibit A-2) to be 1.3 percent of standard premium. 

From Equation 1.24, 

RP, + ARP = 5.3% 

-(1.12)(69.3 -53.3)(1.031) 

+(1.12)(53.3)(1.3*.3113-.1944)(1.031) 

-(1.12)(53.3)(1.3*.0116-.0378)(1.031) 

= 5.3% - 18.5% + 13.0% - (-1.4%) 

= 1.2% 

is approximately equal to the aggregate retrospective returned pre- 
mium. The error (1.2 percent vs. 1.3 percent) is due to rounding er- 
rors introduced by the discrete nature of the distribution. 
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The rather weak response of this retrospective rating formula (a 
4 point decrease in the return premium corresponding to a 16 point 
increase in the aggregate incurred loss ratio) was due to the effects of 
capping. Not only were the increased losses in the previously capped 
20 risks not reflected, but a portion of the increased loss from risks 
19-29 has been capped away. 

We must emphasize that the distribution of risks used in this ex- 
ample was selected to accentuate the effect of capping and to illus- 
trate the method, not to produce a realistic model of thef(s) for a set 
of retrospectively rated risks. 
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EXHIBIT A- 1 
THE EXPECTED DISTRIBUTION 

Risk # Loss $ s @!+cl)S -c*L Jmp ~. RP X( 1.01) Y(O.60) X(0.78) Y(O.461 
0.00 922.63 382.60 0.00 738. IO 184.53 0.00 297.90 0.00 229.15 

200.00 922.63 382.60 224.00 738. IO 184.53 0.00 97.90 0.00 29.15 
2 IO.00 922.63 382.60 235.20 738.10 184.53 0.M) 87.90 0.00 19.15 

I 
2 
3 
4 
5 
6 
7 
x 
9 

IO 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
31 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

22l.cKl 
232.00 
244.00 
244.00 
244.00 
244.00 
256.00 
269.00 
282.00 
296.00 
3ll.Kl 
327.00 
343.00 
360.00 
378.00 
397.00 
417.00 

922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 
922.63 

247.52 
259.84 
273.28 
273.28 
273.28 
273.28 

382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 

286.72 
301.28 
3 15.84 
331.52 
348.32 
366.24 
384.16 
403.20 
423.36 
444.64 
467.04 
468.16 
468.16 
468.16 
468.16 
468.16 
468.16 
491 .a 
5 16.32 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
O.Oil 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

13.27 
33.27 
34.27 

738. IO 184.53 0.00 76.90 
738.10 18453 0.00 65.90 
738. IO 184.53 0.00 53.90 
738.10 184.53 0.00 53.90 
738. IO 184.53 0.00 53.90 
73R.10 184.53 0.00 53.90 
738. IO 184.53 0.00 41.90 
738.10 184.53 0.00 28.90 
738. IO 184.53 0.00 15.90 
738. IO 184.53 0.00 1.90 
753.58 169.05 0.00 0.00 
772.05 15~3.58 0.00 0.00 
790.53 132. IO 0.00 0.00 
810.16 112.47 0.00 0.00 
830.94 91.69 0.00 0.00 
852.88 69.75 0.00 0.00 
875.9X 46.65 0.00 0.00 
877.13 45.50 0.00 0.00 
8-n. 13 45.50 0.00 0.00 
877.13 45.50 0.00 0.00 
877.13 45.50 0.00 0.00 
877.13 45.50 0.00 fm.3 
877. I3 45.50 0.00 0.00 
901.38 21.25 0.00 0.00 
926.79 4.16 0.00 0.00 
953.35 -30.72 0.00 0.00 
968.76 -46.13 10.38 O.OU 
968.76 -46.13 35.38 0.00 
968.76 -46.13 62.38 0.00 
968.76 -46.13 90.38 0.00 
968.76 -46.13 119.38 0.00 
968.76 -46.13 150.38 0.00 
968.76 -46.13 163.38 0.00 
968.76 -46.13 176.38 0.00 
968.76 -46. I3 189.38 0.00 
968.76 -46. I3 203.38 0.00 
968.76 -46.13 217.38 OSXI 
968.76 -46.13 231.38 0.M) 
968.76 -46.13 246.38 0.00 
968.76 -46.13 302.38 0.00 
968.76 -46.13 318.38 0.00 
968.76 -46.13 334.38 0.00 
968.76 -46.13 351.38 0.00 
968.76 -46.13 368.38 0.00 

8.15 
0.00 
0.00 
0.00 
O(x) 
0.00 
0.M) 

418.cQ 
418.00 
418.00 
418.00 
418.00 
418.00 
439.00 
461 .CKl 

34.27 
34.27 

484.00 
508.00 
533.00 
s6o.Ml 
588.00 
617.M) 

382.60 542.08 
382.60 568.% 

648.00 
661.00 
674.00 
687.00 
701.00 
715.00 
729.00 
744.00 
SoO.CKI 
8 16.00 
832.00 
849.00 
866.00 
883.00 
901 SQ 
9 19.00 

382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 
382.60 

5%.% 
627.u) 
658.56 
691.04 
125.76 
740.32 
754.88 
769.44 
785.12 
8lm.80 
816.48 
833.28 
8%.00 
913.92 
931.84 
950.88 

34.27 
34.27 
34.27 
55.27 
77.27 

100.27 
124.27 
149.27 
176.27 
204.27 
233.27 
264.27 
277.27 
290.27 
303.27 
317.27 
33 1.27 
345.27 
360.27 
416.27 
432.27 
448.27 
465.27 
482.27 
499.27 
517.27 
535.27 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

969.92 
988.% 

I.Oo9.12 
968.76 
968.76 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

I,02928 

-46.13 385.38 0.00 
-46.13 403.38 0.00 
-46.13 421.38 . 0.00 968.76 

0.00 
0.00 
0.00 

Total 24.598.00 46.131.50 19,130.0027,549.76 43.669.71 2.461.794.781.03 930.70 7.657.68 285.62 
AWage 491.96 922.63 382.60 551.00 873.39 49.24 95.62 18.61 153.15 5.71 

%Std Prem 53.3% 100.0% 41.5% 59.7% 94.7% 5.3% 
%Avg Loss 19.44% 3.78% 31.13% 1.16% 
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EXHIBIT A-2 
THE CORRESPONDING DISTRIBUTION WITH g = 1.3 

Risk # Loss $ s (e + <lJS C*L R 
I 0.00 922.63 382.60 0.00 738. IO 
2 260.00 922.63 3X2.60 291.20 73R.10 
3 273.00 922.63 382.60 305.76 738.10 
4 287.30 922.63 382.60 321.78 738. IO 
5 301.60 922.63 382.60 337.79 742.72 
6 3 17.20 922.63 3X2.60 355.26 760.73 
7 3 17.20 922.63 382.60 355.26 7w.73 
8 317.20 922.63 382.60 355.26 760.73 
9 317.20 922.63 3X2.60 355.26 760.73 

IO 332.80 922.63 3X2.60 372.74 778.76 
II 349.70 922.63 382.60 391.66 798.26 
I2 366.60 922.63 3X2.60 4 IO..59 817.78 
13 384.80 922.63 382.60 430.9X M3X.W 
14 404.30 922.63 382.60 452.82 861.32 
15 425. IO 922.63 382.60 476. I I 885.33 
I6 445.90 922.63 3R2.hO 499.41 909.35 
I7 468.00 922.63 3X2.60 524.16 934.87 
I8 491.40 922.63 3X2.60 5.x.37 961.89 
I9 516.10 922.63 382.60 578.03 968.76 
20 542.10 922.63 3X2.60 607.15 968.76 
21 543.40 922.63 3X2.60 608.61 96X.76 
22 543.40 922.63 382.60 608.61 968.76 
23 543.40 922.63 382.60 608.61 968.76 
24 543.40 922.63 382.60 608.61 968.76 
25 543.40 922.63 3X2.60 608.6 I 968.76 
26 543.40 922.63 382.60 608.61 968.76 
27 570.70 922.63 382.60 639. IX 96X.76 
28 599.30 922.63 382.60 671.22 96X.76 
29 629.20 922.63 382.60 7a4.70 96X.76 
30 660.40 922.63 382.60 739.6.5 968.76 
31 692.90 922.63 382.60 776.05 968.76 
32 728.00 922.63 382.60 815.36 968.76 
33 764.40 922.63 382.60 856.13 968.76 
34 8C~2.10 922.63 3X2.60 89X.35 968.76 
35 842.40 922.63 382.60 943.49 968.76 
36 859.30 922.63 382.60 962.42 96X.76 
37 876.20 922.63 382.60 981.34 968.76 
38 893.10 922.63 382.60 1.000.27 968.76 
39 911.30 922.63 382.60 1.020.66 968.76 
40 929.50 922.63 382.60 1.041.04 968.76 
41 947.70 922.63 382.60 1.061.42 968.76 
42 967.20 922.63 382.60 1.083.26 968.76 
43 1.040.00 922.63 3X2.60 1.164.80 96X.76 
44 1.060.80 922.63 382.60 1,188.10 968.7h 
45 1.081.60 922.63 382.60 1.211.39 968.76 
46 1.103.70 922.63 382.60 1.236.14 968.76 
47 1.125.80 922.63 382.60 1.260.90 96X.76 
48 1,147.90 922.63 382.60 1.2X5.65 968 76 
49 1.171.30 922.63 382.60 1.311.86 968 7h 
SO 1.194.70 922.63 3X2.60 1.338.06 96X.76 

Total 3 1,977.40 16.131.50 I9.130.00 35.X14.69 45.524.74 
AVHCgZ 639.55 922.63 382.60 7 16.29 9 10.49 

% Std Prem 69.3% 100.0% 4 I .5% 77.6% 98 7% 

RP 
184.53 
184.53 
184.53 
184.53 
179.9 I 
161.90 
161.90 
161.90 
161.90 
143.87 
124.37 
104.85 
X3.83 
61.31 
37.30 
13.28 

-12.24 
-39.26 
-46.13 
-46.13 
-46.13 
-46.13 
-46.13 
46.13 
-4613 
-46.13 
-46.13 
-46.13 
-46.13 
-46.13 
-46.13 
46.13 
-46.13 
-46.13 
-46.13 
-46.13 
-46.13 
-46.13 
-46.13 
-46.13 
-46.13 
-46.13 
-46.13 
-46.13 
-46.13 
-46.13 
4.13 
-4613 
46.13 
-46.13 

606.76 
12.14 
1.3% 
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APPENDIXB 

Once a particular retrospective rating plan (formula and limits) 
has been specified, an aggregate incurred loss ratio and correspond- 
ing aggregate retrospective premium could be determined for a set of 
risks with a known incurred loss ratio distribution by means of simu- 
lation. Using the cumulative density function of the distribution and a 
random number generator, individual risk ZLRs would be selected and 
then subjected to the retrospective rating formula. After a sufficiently 
large number of repetitions, an aggregate (cZLR>, RP) pair could be 
generated. In Section 1, we showed that the same result could be 
found if two functions of the ZLR distribution, the charge and savings, 
are known. While not a simulation in the usual sense, we shall refer 
to points that are generated by means of Equation 1.24 as the results 
of a simulation. 

For all of the simulations, we assumed that the particular set of 
risks can be described by one of the ZLR distributions that underlie the 
NCCI’s Table M; and that their standard premiums are such that 26 
percent of the standard premium is used to meet expenses (excluding 
premium taxes, but including a provision for profit); 60 percent of the 
standard premium is needed for the expected aggregate losses; and 
that premium taxes give rise to a tax multiplier that is equal to 1.046. 
These assumptions imply that 10 percent of the standard premium is 
available for an aggregate retrospective premium return. Given these 
assumptions, the point (.60, . 10) is common to all of our simulations, 
regardless of the individual retrospective rating plan LCF, G or H. 
For each simulation, Table M was used to establish an insurance 
charge that contemplated (.60, . 10) as its target. 

A total of 17 simulation points were generated for each retrospec- 
tive rating plan. The points had IL& that began with a low of 51.84 
percent and ran to a high of 113.28 percent with each successive ZLR 
being 5 percent higher than the previous one. With (.60, .lO) being a 
“given,” Equation 1.24 was used to generate the RP component of 
each other aggregate (ZLR, RP) pair. 
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Exhibit B-l displays the results of a simulation for the following 
retrospective rating formula: 

R = [.260 + 1.000*.265 + 1 .OOO*L]* 1.046, (B.1) 

subject to 

.7O*S I R I 1.4@S, (B.2) 

with all risks assumed to have the ILR distribution that underlies Ta- 
ble M loss group 60. The net insurance charge, 0.265, is the one that 
results from imposing the requirement that the retrospective rating 
plan be in balance with the corresponding guaranteed cost rates. In 
terms of T, the minimum loss ratio reflected in the retrospective rating 
is .24 times the expected loss ratio, and the maximum loss ratio is 
1.360 times the expected ZLR. 

To this set of simulation points we fit three curves, 

1. Linear Model: RP = A + B*ILR, (B.3a) 

2. Geometric Model: RP = A*(ILp), and (B.3b) 

3. Exponential Model: RP = A*eB*ILR. (B.3c) 

For each of these, we determined the t statistics, for A and B, and 
the mean squared error (MSE) of the model using the 17 points. 
Because the MSEs for each model were so small, we have multiplied 
them by l,OOO,OOO (for example, the Geometric Model MSE of 
0.000111 is, therefore, displayed as 111). Figure B- 1 displays a graph 
of the simulation points and the three model curves. 
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As with the example that is displayed in Exhibit B-l all of the 
simulations were described by models which had coefficients that 
were significant at the 99.95 percent confidence level. Under these 
circumstances, one would usually select the model that produced a 
curve with the least MSE. 

With the exception of the simulations displayed in Table 5, all of 
the retrospective rating plans were based upon an expense and profit 
provision ratio equal to 26.0 percent of standard premium. There was 
nothing special about its selection. It lies about midway between the 
NCCI retrospective rating stock and non-stock company expense pro- 
visions for risks with standard premiums near $53,000. (See NCCI 
Tables XIV-A and XIV-B.) The 60 percent ILR was selected because 
it is typical of the NCCI expected loss ratios that are to be used for 
retrospective rating. 

Table 5 involved risks of various sizes. As a result, we felt that the 
NCCI expense graduations should be reflected. For each premium 
size, we established the (e + c*Z) term using the appropriate expense 
provision, e, from the NCCI stock company expense table and the 
insurance charge corresponding to the appropriate Table M grouping 
(using the July 1, 1991 NCCI expected loss ranges). 

While one could argue that the expected loss ratios for a group of 
risks that use identical manual rates should reflect a size of risk 
dependency, we adopted a common expected loss ratio for all of the 
risks. This is consistent with the way in which the NCCI retrospective 
rating plan is applied. 

Intuitively, one would expect to select a curve with a negative first 
derivative (i.e., an increase in the aggregate ILZ? results in a decrease 
in the aggregate RP), but with a positive second derivative (i.e., as 
more and more individual risks “max” out, additional increases in the 
aggregate ZLR have less of a decreasing effect on the aggregate RP). 
As long as B is negative, all three models possess negative first de- 
rivatives. Only the linear model fails to exhibit the intuitively re- 
quired positive second derivative. The linear model has performed 
better than the other two (using the minimum MSE criterion) more 
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often than not for the various plans considered here. Because the 
range of ILRs is expected to encompass almost any realistic situation, 
the danger associated with extrapolating too steep a curve (one that 
doesn’t “pull up” for high values of the ZU?) was considered minimal. 
The lack of an intuitively correct second derivritive for the linear 
model was not considered to be a serious defect, and is largely out- 
weighed by the simple interpretation of its slope (the B coefficient) as 
the fraction of the I127 increase that impacts the returned premium. 

Depending on the particular application, one might wish to use the 
actual simulation points, the best fitting curve, or the better fitting 
curve which satisfies the intuitive requirements. 
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IL& ~~__ ~~ 

51.84 % 

54.42 

57.12 

60.00 

63.00 

66.18 

69.48 

72.96 

76.62 

80.46 

84.48 

88.68 

93.12 

97.80 

102.72 

107.88 

113.28 

Simulation 

11.79% 

11.44 

10.67 

10.00 

9.30 

8.74 

8.16 

7.46 

6.93 

6.28 

5.58 

5.10 

4.37 

3.65 

3.07 

2.20 

1.48 

EXHIBIT B- 1 

gliq Ci~~~e~ic Exponential 

11.34% 14.68% 13.46% 

10.91 13.12 12.44 

10.46 I 1.72 I 1.46 

9.98 10.46 10.51 <==Target 

9.48 9.34 9.59 

8.95 8.33 8.7 I 

8.40 1.44 7.88 

7.81 6.65 7.09 

7.20 5.93 6.35 

6.56 5.30 5.65 

5.89 4.73 5.00 

5.19 4.23 4.40 

4.45 3.77 3.85 

3.67 3.37 3.34 

2.85 3.01 2.87 

1.99 2.68 2.46 

1.09 2.40 2.09 

Linear Model A + B*ILR 

Geometric Model A*(ILR**B) 

Exponential Model A*Exp(B*ILR) 

V& r-Statistic 
A = 0.1998386 64.726797 

B = -0.1667903 -43.773508 

MSE= 8 

A = 0.03 19978 -51.081205 

B = -2.3187566 -12.325123 

MSE = II 1 

A = 0.6484224 -3.2121784 

B = -3.0334045 - 18.224868 

MSE = 43 
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DISCUSSION BY HOWARD C. MAHLER 

Robert Bender develops an equation for the relationship between 
the aggregate incurred loss ratio and the aggregate retrospective re- 
turn premium. This discussion will illustrate this relationship using 
data for groups of actual insureds. 

The data examined in each case are workers’ compensation Unit 
Statistical Plan data at third report from one state.’ It should be noted 
that, commonly, retrospective rating involves exposure in more than 
one state and/or exposure to lines of insurance in addition to workers’ 
compensation. Also, retrospective rating plans commonly remain 
open beyond third report.* Thus the results shown here merely illus- 
trate types of expected behavior, rather than the particular behavior 
that will occur in individual situations. 

In each case, a particular retrospective rating plan was examined 
for a group of risks.3 The retrospective premium was calculated for 
each risk based on its losses. The losses used were the reported losses 
multiplied by a factor chosen to adjust the overall loss ratio to a given 
value.4 For example, if the reported loss ratio for the group of risks 
was 50 percent and the desired overall loss ratio was 60 percent, then 
each risk’s losses were multiplied by 60/5c = 1.2. Thus we retain the 
shape of the reported loss ratio distribution, but adjust the mean by 

t The data available was for 1988 at third report for all Massachusetts workers’ com- 
pensation risks. Subsets of the data are examined by size of risk and by voluntary 
versus assigned risks. 

2 For workers’ compensation incurred losses (paid losses plus case reserves), there is 
generally upward development on average beyond third report. Not only would 
this raise the mean incurred loss ratio, it would also change the distribution of loss 
ratios around the mean. The coefficient of variation usually increases; i.e., the dis- 
tribution gets more dispersed. 

3 No attempt was made to select retrospective rating plans that are in balance. (Each 
plan will be in balance for some incurred loss ratio, but that is not the focus of 
Bender’s paper.) 

4 This could have been accomplished by multiplying the reported standard premium 
rather than the reported losses by a factor. 
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adjusting the overall scale. This adjustment to the loss ratios was 
made in order to yield average loss ratios ranging from 30 percent to 
120 percent, to see how the total retrospective premium responds to 
changing loss ratios. 

Exhibit 1 shows the results for a retrospective rating plan applied 
to all assigned risks with $150,000 or more in standard premium. The 
particular plan parameters are those used in the Massachusetts As- 
signed Risk Rating Program (MARRP). It should be noted that this 
plan was specifically designed ltot to be in balance, but rather to 
generate extra revenue for the assigned risk pool (in contrast to guar- 
anteed cost policies).5 However, this issue is beyond the scope of this 
review.6 

As can be seen in Exhibit 1, the responsiveness of the MARRP 
depends on the incurred loss ratio. Bender defines the “slope” as the 
change in retrospective return premium per change in incurred loss 
ratio.7 The larger the magnitude of the slope, the more responsive the 
plan.’ The slopes for MARRP range from about - 1/3 to - 3/4 depend- 
ing on the loss ratio. 

For a given loss ratio distribution, the slope depends chiefly upon 
the “swing limits” of the plan. For those risks between the maximum 
and minimum premiums, the slope is minus the tax multiplier (TM) 
times the loss conversion factor (LCF). For risks either above the 
maximum or below the minimum premium, the slope is zero. The 

5 No consideration has been given here to potential collection problems that may re- 
sult with a mandatory assigned risk retrospective rating program such as MARRP, 
which was in effect during 1993. 

6This subject is discussed, for example, in William R. Gillam’s discussion of David 
Skurnick’s paper, “The California Table L, ” PCAS 1993. 

’ Since slope is defined in terms of return premiums. it is negative. 
‘It should be noted that not only are retrospective rating plans sensitive to individ- 

ual loss experience. So is the standard premium which forms the starting point of 
retrospective rating. The standard premium includes the impact of the (prospec- 
tive) experience rating plan. However, the standard premium is sensitive to prior 
years’ losses, while the retrospective rating plan uses the loss experience on the 
policy to which it applies. 
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average slope for the whole set of risks examined is a weighted 
average of these two quantities. As the swing of the plan becomes 
wider due to higher maximums and lower minimums, more risks 
contribute -TM x LCF to the slope rather than zero. Thus, the wider 
the swing limits, the greater the magnitude of the slope. 

The slope also increases in magnitude as either the tax multiplier 
or loss conversion factor is increased. 

Exhibit 2 displays the results of a retrospective rating plan similar 
to that examined by Bender. The risks are voluntary risks with annual 
premium between $50,000 and $75,000. For these relatively small 
risks, the selected plan is relatively unresponsive. The slopes are very 
similar to those shown in Bender’s analysis of a plan with (approxi- 
mately) these parameters. 

Part of the reason for the low responsiveness is the choice of plan 
parameters. However, part of the reason is that for these smaller risks 
(for retrospective rating), the loss ratio distribution is more dis- 
persed.’ Therefore, relatively few risks are between the maximum 
and minimum premiums.” If the loss ratio distribution were more 
compact, there would be generally more risks between the maximum 
and minimum premiums, resulting in a slope of larger magnitude. 

This can be seen in Exhibit 3, where the same plan as in Exhibit 2 
is examined, but for larger risks. This plan is more responsive for 
risks between $250,000 and $500,000 than for risks between $50,000 
and $75,000.” This is due to the larger percentage of risks between 
the minimum and maximum premiums. 

9 In Bender’s analysis, the dispersion of the loss ratio distribution is quantified via 
Table M. 

“For a 60 percent loss ratio, only IS percent of the risks are between the minimum 
and maximum premiums. 

“This is not to imply that the same maximum, minimum, and basic premium would 
be appropriate for both sizes of risk. All retrospective rating plan parameters have 
been chosen solely for illustrative purposes. 



78 AGGREGATE RETROSPECTIVE PREMIUM RATIO 

For these same voluntary risks between $250,000 and $500,000, 
Exhibit 4 shows the results for a more responsive plan. 

The retrospective premiums for the plans examined in Exhibits 1 
through 4 are graphed in Figures 1 through 4, respectively. Similarly, 
Figures 5 through 8, respectively, graph the percent of policies at the 
minimum and the maximum premiums. One can see how the percent- 
age of risks between the minimum and the maximum varies by loss 
ratio, as well as between the different examples. Generally, the larger 
this percentage, the more responsive the plan. 

Conclusion 

The general ideas in Bender’s paper have been illustrated utilizing 
a particular set of actual data. The examples provided in Bender’s 
paper were relatively unresponsive retrospective rating plans due to 
the size of the risks and particular plans he was considering. 

The methodology in Bender’s paper is particularly useful when 
there is a lack of sufficient data to allow the type of calculations 
performed in this discussion. The results of using the methodology 
should not be very sensitive to the precise details of how the table of 
insurance charges, Table M, has been constructed. Provided Table M 
is consistent with a reasonable overall estimate of the number of risks 
at the maximum and minimum premiums, the Bender methodology 
will provide good estimates of the responsiveness of the retrospective 
plans. 
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EXHIBIT 1 

MARRP PLAN PARAMETERS 

Percent of Percent of Ratio of 
Incurred Loss Risks at Risks at Retrospective 
Ratio (Third Maximum Minimum Premium to 

Report) Premium Premium Standard Premium 
120% 17% 138.7% 
110 18 135.2 
100 19 131.3 
90 21 126.8 
80 24 121.6 
70 27 115.8 
60 32 109.2 
50 38 101.8 
40 43 94.1 
30 55 86.5 

- 
46% 
42 
40 
35 
30 
24 
18 
12 
9 
5 

slope* 

-37% 
-42 
-49 
-55 
-62 
-70 
-76 
-77 

Data: 

Maximum Premium = 175% 
Minimum Premium = 75% 

Tax Multiplier = 1.15 
Loss Conversion Factor = 1 .l 
Basic Premium Factor = 35% 

All assigned risks with $150,000 or more in 
Massachusetts workers’ compensation standard 
premium (907 risks). 

*Per Bender, the slope is the change in retrospective return premium per change in 
incurred loss ratio. 
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EXHIBIT 2 

SMALL VOLUNTARY RISKS 

Percent of Percent of 
Incurred Loss Risks at Risks at 
Ratio (Third Maximum Minimum 

RepoN 
120% 
110 
100 
90 
80 
70 
60 
50 
40 
30 

Data: 

Premium __~- 
32% 
31 
30 
28 
25 
23 
20 
18 
15 
11 

Premium 
51% 
59 
61 
62 
63 
65 
65 
68 
71 
77 

Ratio of 
Retrospective 
Premium to 

Standard Premium Slope* ~_. __ ~~~ 
100.6% 
99.4 -12% 
98.3 -12 
97.0 -14 
95.5 -16 
93.8 -16 
92.3 -16 
90.6 -23 
87.8 -33 
84.0 

Maximum Premium = 135% 
Minimum Premium = 75% 

Tax Multiplier = 1.05 
Loss Conversion Factor = 1.1 
Basic Premium Factor = 30% 

All voluntary risks with between $50,000 and $75,000 in 
Massachusetts workers’ compensation standard premium 
(519 risks). 

*Per Bender, the slope is the change in retrospective return premium per change in 
incurred loss ratio. 
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EXHIBIT 3 

LARGE VOLUNTARY RISKS 

Percent of Percent of Ratio of 
Incurred Loss Risks at Risks at Retrospective 
Ratio (Third Maximum Minimum Premium to 

--Report) Premium Premium Standard Premium- 
120% 

Slope* 

110 
100 
90 
80 
70 
60 
50 
40 
30 

51% 22% 113.4% 
49 25 111.6 
46 25 109.3 
43 29 106.8 
37 32 103.9 
30 34 100.0 
24 40 95.8 
17 49 91.2 
10 56 86.0 
6 69 80.8 

Maximum Premium = 135% 
Minimum Premium = 75% 

Tax Multiplier = 1.05 
Loss Conversion Factor = 1.1 
Basic Premium Factor = 30% 

-21% 
-24 
-27 
-34 
-41 
-44 
-49 
-52 

Data: All voluntary risks with between $250,000 and $500,000 
in Massachusetts workers’ compensation standard 
premium (264 risks). 

*Per Bender, the slope is the change in retrospective return premium per change in 
incurred loss ratio. 
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120% 46% 16% 114.2% 
110 43 16 111.3 
100 39 17 108.0 
90 34 18 103.9 
80 29 18 99.0 
70 23 19 93.5 
60 17 25 87.2 
50 12 28 80.1 
40 8 33 72.0 
30 5 47 63.8 

Maximum Premium = 150% 
Minimum Premium = 50% 

Tax Multiplier = 1.05 
Loss Conversion Factor = 1.1 
Basic Premium Factor = 25% 

Data: All voluntary risks with between $250,000 and $500,000 
in Massachusetts workers’ compensation standard 
premium (264 risks). 

AGGREGA7E RETROSPECTIVE PREMIUM RATIO 

EXHIBIT 4 

MORE RESPONSIVE PLAN 

Percent of Percent of Ratio of 
Incurred Loss Risks at Risks at Retrospective 
Ratio (Third Maximum Minimum Premium to 

Report) Premium Premium $tanc&.rd Premium %Tpe* 

-31% 
-37 
-45 
-52 
-59 
-67 
-76 
-82 

*Per Bender, the slope is the change in retrospective return premium per change in 
incurred loss ratio. 
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PLAN PER EXHIBIT 4, VOLUNTARY RISKS: $250,000 TO $500,000 
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PLAN PER EXHIBIT 1, ASSIGNED RISKS: OVER $150,000 
175 MAX AND 75 MIN 

Percent of Risks 
100% 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

“IQ I I I I I I I I I I 

120 110 100 90 80 70 60 50 40 30 

Loss Ratio 



FIGURE 6 
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FIGURE 8 
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QUANTIFYING THE UNCERTAINTY IN 
CLAIM SEVERITY ESTIMATES FOR AN EXCESS LAYER 

WHEN USING THE SINGLE PARAMETER PARETO 

GLENN G. MEYERS, PH.D. 

Abstract 

This paper addresses the question: How valuable is a 
sample of excess claims in determining the expected claim se- 
verity in an excess layer of insurance? 

An established procedure to estimate this expected claim 
severity is to first fit a model distribution to claim size data 
and then, using the fitted distribution, estimate the expected 
claim severity in the given excess layer. One of the more 
popular models used is the single parameter Pareto. This pa- 
per provides a means of quanttfiing the uncertainty in these 
excess claim severity estimates when using the single pa- 
rameter Pareto. This approach requires one to incorporate 
prior opinions about the distribution of the Pareto parameter 
using Bayes’ Theorem. 

1. INTRODUCTION 

Ever since Robert Miccolis’s [2] classic paper on increased limits 
ratemaking was published, it has been an established procedure 
among members of the Casualty Actuarial Society to estimate the 
expected claim severity in an excess layer of insurance by first fitting 
a model distribution function to claim severity data and, using the 
fitted distribution, to estimate the expected claim severity in the given 
excess layer. One of the more popular models used is the single 
parameter Pareto. Its properties have been discussed on many occa- 
sions and the reader can consult the Proceedings for a very readable 
account by Stephen Philbrick [3]. 

An often stated concern in excess limits pricing is the uncertainty 
of the estimates of the excess claim severity. The purpose of this 
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paper is to describe a Bayesian method of quantifying the uncertainty 
in excess claim severity estimates. This method is very easy to apply 
in the case of the single parameter Pareto. 

2. A REVLEW OF THE SINGLE PARAMETER PARETO 

The single parameter Pareto describes claims that are above a 
given truncation point, k. The cumulative distribution function is 
given by: 

The probability density function is given by: 

Ax)=& x9+’ for x 1 k . 

(2.1) 

(2.2) 

Let x1, x2, . . . , x,, be a sample of n claims that are larger than k. 
The likelihood function, L(q), is given by: 

Solving for the $ that maximizes the likelihood function yields: 

n ;= ~-~--. .~-.. 

c ln(xi) - n In(k) 
i=l 

(2.3) 

3. THE CONDITIONAL DISTRTBUTION OF ; 

Let us temporarily assume that q isAknown. The purpose of this 
section is to describe the distribution of q in terms of q, with the final 
result being given in Equation 3.7 below. 

We first note that: 
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From Equations 2.3 and 3.1, we get: 

(3.1) 

(3.2) 

We next note that: 

E[ln(x)2] = qk”/ -!!!&f & = ln(k)2 + ?!!f!? + ; . 

k x4+1 

(3.3) 

From Equations 3.1 and 3.3, we see that: 

Var [In(x)] = E[ln(x)2] - E[ln(x)12 = 1 . 

Thus from Equations 2.3 and 3.4, we get: 

(3.4) 

(3.5) 

Now the central limit theorem states that the distribution of 

i (,> In x, 
i=l 

will have an approximately normal distribution for sufficiently 
large n. 
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Thus, for known q, 14 has an approximately normal distribution 
with mean l/q and variance llnq2. The conditional distribution of l/G 
given q is: 

Now the distribution of G given q is: 

= 
d- 

(y-$)? n 

“Be- “1 

2R 2 2q’ (3.7) 

4. BAYESIAN ESTIMATION 

The treatment above consider: q as the known quantity and $ as 
the random variable. In practice, q is known and q is unknown. How- 
ever, in many instances, we will have some prior knowledge or be- 
liefs about the distribution of q. In other instances, we may have very 
little prior knoyledge of the distribution of q. Our task is to use our 
knowledge of q to refine our knowledge about the distribution of q. 
To accomplish this, we ,use Bayes’ Theorem. 

We first consider the discrete case where q can take on values qo, 
41, q2, . . . 3 q,. Let the prior probabilities be given by F’r(q = q;) =Pi. 
By Bayes’ Theorem, the posterior probability function of qi is given 
by: 

dGlqi)Pi Nqh) = ,,, . (4.1) 

C c(&?j)Pj 
J==l 
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For the continuous case, the posterior probability density for q is 
given by: 

b(&) = m c(hl)P(q) 7 (4.2) 

where p(q) is the prior probability density of q. 

Now it is a common practice for Bayesian statisticians to express 
the conditional, the prior, and the posterior distributions in simplest 
terms by ignoring all coefficients that do not depend upon q in the 
probability or density functions. The distributions, with the ‘coeffi- 
cients removed, are referred to as weight functions. In keeping with 
this practice, we replace c with v, b with w, and p with r and write: 

c&q) 0~ v&q) = qe G 

in place of Equation 3.7, 

b(q,l$) 0~ W(qil$) E v($Iqi)ri 

in place of Equation 4.1, and 

(4.3) 

(4.4) 

(4.5) 

in place of Equation 4.2. 

It is often necessary to determine the constant of proportionality 
for Equations 4.4 and 4.5. This is usually done after the fact by 
finding the constant, T, which forces the total probability to be equal 
to 1. That is: 
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T=m ’ or T= 1 

Cv(hj)rj jV($q)r(q)& 
j=l 0 

(4.6) 

An advantage of this practice is that it is no longer necessary to 
require that r(q) be a proper distribution. The function r(q) becomes a 
weighting function that can sum to anything, including infinity. The 
only requirement is that the sums in Equation 4.6 be finite. Prior 
distributions that sum to infinity are called improper, or diffuse, pri- 
ors. They are useful when it is felt that there is little or no prior 
knowledge. 

A rather interesting example can be constructed for the single 
parameter Pareto with the diffuse prior p(q) 0~ r(q) = l/q. We have 

w(&) = dW-(cd 

(4.7) 

By comparing Equation 4.7 with the standard normal distribution 

q(x) = e 2a2 , 

we see that $e posterior distribution b(ql$) is normal with mean $ 
and variance q%. 

This result should be compared to a standard “non-Bayesian” 
treatment. The distribution of 4, for a given q, is asymptotically nor- 
mal with mean q and variance q2/n. It has become common practice, 
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using the methods demonstrated by Hogg and Klugman,’ to express a 
confidence interval for q in terms of an approximately normal distri- 
bution with mean $ and variance 2/n. This is admittedly an approxi- 
mation. For the single parameter Pareto, the above Bayesian result 
provides a set of assumptions that make this approximation more 
meaningful. 

5. THE DISTRIBUTION OF EXCESS CLAIM SEVERITY ESTIMATES 

Obtaining the posterior distribution of q is only an intermediate 
step toward obtaining the posterior distribution of excess claim sever- 
ity estimates. We now turn to the completion of this task. 

In what follows, we will use a discrete prior distribution. This 
makes the procedure for getting the posterior distribution easy to set 
up on a spreadsheet program. The steps for constructing such a 
spreadsheet program are shown in Table 1 with the results given in 
various exhibits. 

All examples in this paper assume that a maximum likelihood 
estimate of 1.75 has been obtained using data with a value of k equal 
to $100,000. The task is to estimate the expected severity for a layer 
between $1 ,OOO,OOO and $5,000,000. 

It is important to note that the expected severity estimates in this 
paper will be conditional on the claim being greater than $100,000. 
To use these results in practice, one must also consider the number of 
claims above $100,000. 

The prior means have little meaning if the prior distribution is 
improper and the means do not exist. The posterior mean and stand- 
ard deviation of the qis are given by: 

’ See, for example, Section 4 of Chapter 3 in Loss Disrtiburions, by Hogg and KIug- 
man [ 11. Examples 1 and 4 in this section are very pertinent to this discussion. 
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Column 

4i 

b(&) 

B(q&) 

E[-Qil 

TABLE 1 

SPREADSHEET DEFINITIONS 

Description 

Values of qi that have a specified start and end. These 
are divided into m equally spaced intervals. (We use 
m = 30 for the examples in this paper.) 

Prior weights for qi . 

Conditional weights for $ given qi, as given by Equa- 
tion 4.3. 

Posterior weights for qi, which equal the product of 
the prior two columns as given by Equation 4.4. 

Posterior probabilities for qi, which equal: 

m 

wtqilG)/C w (YjG). 
j=l 

Cumulative posterior probabilities for qiy which equal 
the sum of the posterior probabilities of qj for jli. 

Layer average severities given qi, i.e., the expected 
severities for a given layer. For the single parameter 
Pareto, the layer average severities between retention 
R and limit L are given by the formula: 

for qi = 1 
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m 

E[q&l = xqib(q&) and Std[q&] = 
i=l 

The posterior mean and standard deviation off the E[Xlqi]S are 
given by: 

In 

E[E[J&I = ~Wbilb(&) and 
i=l 

Std [E[Xl$]] = 

It is a rare event for a qi or an E[Xlqi] to hit exactly on a fh or a 
(l-Qrh percentile, so we adopt the following convention for this pa- 
per.* The ih percentile of qi is the last qi before the cumulative prob- 
ability exceeds t. Similarly, the (l-t)‘h percentile of qi is the last qi 
before the cumulative probability exceeds (1-r). We would proceed 
similarly for E[Xlq,] except that E[Xlqi] is a decreasing function of qi= 
So in this case we replace t with l-t for the ih percentile and (1-t) 
with t for the (l-t)fh percentile. In the examples, we use t = 2.5 
percent to calculate a 95 percent confidence interval. 

For the sake of comparison, we also provide the “classical” estimates 
based on the estimate, G, and the estimate oft put into Equation 5.1. 

‘It is likely that various textbooks will define percentiles differently than is done 
here. A possible alternative would be to interpolate between the qis. The motiva- 
tion here is that this definition is easy to implement with the typical spreadsheet 
program and the final decision made as the result of the confidence interval is un- 
likely to be affected by the choice of confidence interval definition. 
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It is often helpful to describe the posterior distributions of qi and 
E[Xlq,] graphically. This is straightforward for the posterior distribu- 
tion of qi. One simply plots qi on the horizontal axis and h(q&) on the 
vertical axis. An additional consideration for plotting E[Xlqi] is that 
the values of E[XlqJ are not evenly spaced. If we want the graph to 
have approximately the same shape as the corresponding continuous 
posterior distribution, we must plot E[Xlqi] on the horizontal axis and 

wl,+l~~) - m-Jb 
E[Mqi-tl -E[Mqi+~l = B’(E[Mqil) 

on the vertical axis. The plots corresponding to Exhibit 1 are on Fig- 
ures 1 and 2. 

FIGURE 1 

POSTERIOR DISTRIBUTION OF q 
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FIGURE 2 

POSTERIOR DISTRIBUTION OF E[xlq] 

coo, I 
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6. THE EFFECT OF SAMPLE SIZE 

What is noticeable about the example shown in Exhibit 1 is the 
large width of the confidence interval and the difference between the 
posterior mean and the classical estimate of the expected severity. 
Exhibits 2 and 3 show what happens when the sample size is in- 
creased to 1,000, and then 10,000 claims. Table 2 takes the key 
numbers from these exhibits. 

Source 
Exhibit 

I 
2 
3 

TABLE 2 

Approximate 95% 
Sample Classical Posterior Posterior Confidence Interval. 

Size ~&timate Mean Std I&v Low High 
100 16,619 19,062 IO.640 6,922 54,964 

1 ,ooo 16,619 16,847 2,769 12,755 23.7 I 1 
10,000 16,619 16,642 859 15,213 18,703 
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Here we see that one must have a sample size of 10,000 to get the 
length of the confidence band down to 21 percent of the posterior 
mean claim severity. 

Table 2 does point out a possible danger inherent in using the 
maximum likelihood estimate, q, directly in Equation 5.1. If one truly 
believes that the prior distribution of q is proportional to I/q. then the 
classical estimate can produce a significant understatement of the 
posterior mean. This is especially true for small sample sizes. 

7. ON THE CHOICE OF A PRIOR DISTRIEWTION 

The bias for small sample sizes noted above may be a function of 
the prior distribution. In this section, we explore the implications of 
using different prior distributions. 

In our fist example, shown on Exhibit 1, we chose a prior distri- 
bution for q that was proportional to l/q. This had the effect of giving 
more weight to the smaller qs. Exhibit 4 shows the effect of choosing 
a prior distribution for q that is proportional to q. This has the effect 
of giving more weight to the larger qs. The summary of results for 
each exhibit is provided in Table 3. 

TABLE 3 

SUMMARY OF RESULTS 

Approximate 95% 
Source Classical Posterior Posterior Qdkknce Interval 
Exhibit Estimate Mean Std Dev Low High 

1 1.750 1.750 0.175 1.350 2.050 
1 16,619 19,062 10,640 6,922 54,964 

4; 4 1.750 I .785 0.173 1.400 2.050 
E[Mqil 4 16,619 17,154 9,432 6,922 47,245 
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Perhaps the most notable observation is that the understatement of 
the posterior mean by the classical estimate of E[XlqJ is reduced with 
the second prior distribution. But we would caution against choosing 
a prior for this reason. The reason for choosing a prior distribution 
should be based on one’s beliefs about the distribution of q. 

Figures 3 and 4 provide graphical comparisons of the results of 
Exhibits 1 and 4. 

A common sentiment of practitioners is: “I am extremely lucky to 
get 100 claims to analyze. Yet I can’t go to my company and say: 
‘On the basis of (for example) Exhibit 1, my recommended value for 
the expected severity is $19,000, but it could reasonably be as low as 
$7,000 or as high as $55,000.’ ” 

Many practitioners are, at least intuitively, aware of the large po- 
tential variability of the results and frequently override any outlying 
estimates citing “judgment.” As the following example shows, it is 
possible to blend the maximum likelihood estimate and one’s prior 
judgment by choosing an appropriate prior distribution. 

FIGURE 3 

POSTERIOR DISTRIBUTION OF q 
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FIGURE 4 

POSTERIOR DISTRIBUTION OF E[X I q] 
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Let us assume that one is willing to accept that the expected sever- 
ity could be as low as $17,500, or as high as $25,000. Thus we allow 
q to be no lower than 1.612 or no higher than 1.732 (give or take 
some rounding error in q). Let us further assume that one feels that 
lower qs should be given more weight and selects a prior proportional 
to l/q. The resulting posterior distributions are in Exhibit 5. 

Now, since we have a priori bounds on the range of the qiS, it 
makes sense to talk about prior means. The prior means of the qiS and 
the E[Xlqi]S are 1.67 1 and $21,099, respectively. This should be com- 
pared with the posterior means of 1.675 and $20,85 I, respectively. It 
should also be noted that the approximate 95 percent confidence in- 
tervals are pretty much the same as the a priori ranges of the qp and 
the E[Xlq,]s. It would appear that, at least in this example, the infor- 
mation added by the 100 claims has a relatively minor impact on our 
estimated claim severity for the $1 ,OOO,oOO to $5,000,000 layer. 
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This example also makes the point that it is possible to observe a (; 
that isfutside the prior range of q. However, the posterior mean of q, 
given q, is within the prior range of q. 

8. OTHER DISTRIBUTIONAL MODELS 

In this section we indicate how one can proceed if a distributional 
model other than the single parameter Pareto is to be used. Let 
8 = {Cl.} be the parameter vector for the chosen model,f(xle), and let 
b={$}b th e e maximum likelihood estimate of 8. 

The procedure described in Section 5 will work with the following 
modifications. 

1. 

2. 

3. 

The parameter qi must be replaced with the vector 0,. 

Prior weights have to be assigned to each @. 

The conditional weights v@&) must be derived. De- 
pending upon the distributional form selected, it may be 
possible to derive the weights directly as was done in 
Section 3. If this fails, there is an alternative approxima- 
tion. As described by Hogg and Klugman3 the condi- 
tional distribution of 6, given 9, is asymptotically a 
multivariate normal distribution with mean 8 and covari- 
ante matrix C’, where C = (ajk}, and: 

ajk = -nE 

Then v(h3) = I& 
-&3,%&3,/2 

3Section 4 of Chapter 3 of Loss Distributions [I]. 
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4. The formula for E[Xlei] will depend upon the distribu- 
tional form OfAXlei). 

A bit of soul searching may be necessary to come up with a prior 
distribution for the parameter vector 8. One suggestion would be to 
place a prior distribution on E[Xl9] and translate the results into a 
prior distribution for 8. We came close to doing this in Exhibit 5 by 
choosing 9s that restrict the expected severity between $17,500 and 
$25,000. 

A complaint often heard is that one should be just as concerned 
about the model uncertainty as with parameter uncertainty. To ad- 
dress this complaint, one can put any number of models into this 
procedure, as long as prior probabilities for each model are assigned. 

The problems associated with other severity models may indeed 
be formidable. We are fortunate to have a simple and realistic model 
like the single parameter Pareto to provide us with a blueprint. 

9. A CONCLUDING REMARK 

As noted in the Introduction, it is currently a common practice to 
use a fitted claim severity distribution to estimate the expected claim 
severity for an excess layer of insurance. These fits are often obtained 
with sample sizes containing fewer than 100 claims. 

These estimates take a prominent role in insurance (and reinsur- 
ante) price negotiations. Insurance buyers will often readily accept 
estimates based on “their own data.” One expects a buyer with a 
relatively low estimate to cite this as evidence that they deserve a 
break in their rates, while those buyers with relatively high estimates 
are in much weaker negotiating positions. While there may be signifi- 
cant differences between insurance buyers, the examples given above 
illustrate the dangers of drawing such a conclusion based solely on a 
fitted distribution. Good prior information should also play an impor- 
tant role in these negotiations. 
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While many practitioners recognize this, they are often under 
pressure to recognize “real data” supplied by the (re)insured. This 
paper provides a way to recognize the data and integrate it with prior 
information. 
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EXHIBIT 1 

Prior Distribution Given Observed 

YO 

1.000 

Pi- 
1 .ooo 
1.050 
1.100 
1.150 
1.200 
1.250 
I.300 
1.350 
I.400 
I.450 
1.500 
1.550 
1.600 
1.650 
1.700 
1.750 
1.800 
1.850 
I.900 
1.950 
2.000 
2.050 
2.100 
2.150 
2.200 
2.250 
2.3W 
2.350 
2.400 
2.450 
2.5MI 

430 ‘i k Retention Limit 
r-- 
4 

2.500 Yq, 100,ooa 1 .ooo.ooo 5,ooo,ooo 1.75 

I .ooo 0.0001 
0.952 0.0004 
0.909 0.0011 
0.870 0.0032 
0.833 0.0086 
0.800 0.0211 
0.769 0.0477 
0.74 1 0.0990 
0.714 0.1895 
0.690 0.3336 
0.667 0.5407 
0.645 0.8067 
0.625 1.1081 
0.606 1.4015 
0.588 1.6320 
0.57 1 1.7500 
0.556 1.7280 
0.54 1 1.5713 
0.526 1.3159 
0.513 1.0149 
0.500 0.7209 
0.488 0.47 16 
0.476 0.2842 
0.465 0.1577 
0.455 0.0806 
0.444 0.0380 
0.435 0.0165 
0.426 0.0066 
0.417 0.0024 
0.408 0.0008 
0.400 0.0003 

SUMMARY OF RESULTS 

Classical Posterior Posterior 
Mean- St&Dev 
1.750 0.175 

19,062 10,640 

Jk*mate 
For qr 1.750 

For E[Xlqi ] 16,619 

W(qiG) &&) 
0.000 1 o.owo 
o.Om3 o.omo 
0.0010 0.000 1 
0.0028 0.0003 
0.0072 0.0008 
0.0169 0.0019 
0.0367 0.0042 
0.0734 0.0084 
0.1353 0.0 154 
0.2301 0.0262 
0.3604 0.041 I 
0.5205 0.0593 
0.6926 0.0789 
0.8494 0.0968 
0.9600 0.1094 
I .oooo 0.1140 
0.9600 0.1094 
0.8494 0.0968 
0.6926 0.0789 
0.5205 0.0593 
0.3604 0.0411 
0.230 I 0.0262 
0.1353 0.0154 
0.0734 0.0084 
0.0367 0.0042 
0.0169 0.0019 
0.0072 0.0008 
0.0028 0.0003 
0.0010 0.0001 
0.0003 o.owo 
0.0001 0.0000 

B(q&) __-- 
o.owo 
0.0000 
o.Oim2 
0.0005 
0.0013 
0.0032 
0.0074 
0.0158 
0.0312 
0.0574 
0.0985 
0.1578 
0.2368 
0.3336 
0.4430 
0.5570 
0.6664 
0.7632 
0.8422 
0.9015 
0.9426 
0.9688 
0.9842 
0.9926 
0.9968 
0.9987 
0.9995 
0.9998 
1 .omo 
l.OQOO 
1 .oooo 

n 

100 

WQil 
160,944 
137,822 
118,085 
101,229 
86,826 
74,512 
63,979 
54,964 
47,245 
40.63 I 
34.96 I 
30,099 
25,926 
22,343 
19,265 
16,619 
14,344 
12,387 
10,702 
9,25 1 
8,000 
6,922 
5,992 
5,189 
4,496 
3,897 
3,380 
2,932 
2,545 
2,210 
1,920 

Approximate 95% 
Confidence &g-al 

-Low Hi& 
1.350 2.050 

6,922 54,964 
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EXHIBIT 2 

Prior Distribution Given Observed _ ~~ 
40 430 ri k Retention Limit G 

1.540 1.990 ‘4, 100,ooo 1 ,OOO,OOo 5,000,OOu 1.75 

!I-- ‘1 
1.540 0.649 
1.555 0.643 
1.570 0.637 
1.585 0.631 
1.600 0.625 
1.615 0.619 
1.630 0.613 
1.645 0.608 
1.660 0.602 
1.675 0.597 
1.690 0.592 
1.705 0.587 
1.720 0.581 
1.735 0.576 
I.750 0.571 
1.765 0.567 
I.780 0.562 
1.795 0.557 
1.810 0.552 
1.825 0.548 
1.840 0.543 
1.855 0.539 
1.870 0.535 
1.885 0.531 
1.900 0.526 
1.915 0.522 
1.930 0.518 
1.945 0.514 
1.960 0.510 
1.975 0.506 
1.990 0.503 

For qi 
For E[Xlqi] 

Classical Posterior 
Estimate h&q. ~. -.- 

1.750 1.750 
16,619 16,847 

dl9i) u~(qil;) btyrl;) 
0.0011 0.0007 0.Ow1 
0.0031 0.0020 o.m2 
0.0079 0.0050 0.0005 
0.0186 0.0117 0.0013 
0.0406 0.0254 0.0027 
0.0824 0.0510 0.0055 
0.1553 0.0953 0.0103 
0.2719 0.1653 0.0179 
0.4424 0.2665 0.0288 
0.6686 0.3992 0.0432 
0.9389 0.5556 0.060 I 
1.2250 0.7185 0.0777 
1.4850 0.8633 0.0934 
1.6724 0.9639 0.1042 
1.7500 1.0000 0. 108 I 
1.7013 0.9639 0.1042 
1.5368 0.8633 0.0934 
1.2897 0.7185 0.0777 
1.0056 0.5556 0.060 I 
0.7285 0.3992 0.0432 
0.4903 0.2665 0.0288 
0.3066 0.1653 0.0179 
0.1782 0.0953 0.0103 
0.0962 0.0510 0.0055 
0.0482 0.0254 0.0027 
0.0225 0.0117 0.0013 
0.097 0.0050 o.Om5 
0.0039 0.0020 0.0002 
0.0015 o.Om7 0.0001 
0.0005 o.OcQ3 o.owo 
o.coo2 0.0001 0.0000 

SUMMARYOFRESULTS 

B(qi@ ElXlqil 

0.0001 31,012 
0.0003 29,652 
O.ooO8 28,353 
0.0021 27,111 
0.0049 25,926 
0.0104 24,793 
0.0207 23,711 
0.0386 22,677 
0.0674 21,689 
0.1105 20,745 
0.1706 19,844 
0.2483 18,982 
0.3417 18,158 
0.4459 17.371 
0.5541 16.619 
0.6583 15,901 
0.7517 15,213 
0.8293 14,557 
0.8894 13,929 
0.9326 13,329 
0.9614 12,755 
0.9793 12,207 
0.9896 11,683 
0.9951 11,181 
0.9979 10,702 
0.9991 10,244 
0.9997 9,805 
0.9999 9,386 
l.OC@O 8,985 
1.0000 8,602 
I .oooo 8,235 

n 

1 WJ 

Posterior 
s&E!? 

0.055 
2,769 

Approximate 95% 
Confidence Interva! 

Low !!I!- 
I .630 1.840 

12,755 23,711 
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EXHIBIT 3 

Prior Distribution Given Observed 

40 
1.670 

q30 ri k Retention Limit G 
I .820 l/l& 100,ooo 1,000,000 5,000,ooo 1.75 

A 
1.670 
1.675 
1.680 
1.685 
1.690 
1.695 
1.700 
1.705 
1.710 
1.715 
1.720 
1.725 
1.730 
1.735 
1.740 
1.745 
1.750 
1.755 
1.760 
1.765 
1.770 
1.775 
i ,780 
1.785 
1.790 
1.795 
I .aoo 
1.805 
1.810 
1.815 
1.820 

For qi 
For E[Xlqi] 

LL V&Ii) 4&) WA) 
0.599 0.0000 0.0000 O.OtXlO 
0.597 O.CHX? O.ooOl 0.0000 
0.595 0.0006 0.0003 o.oooo 
0.593 o.oo17 0.0010 O.ooOl 
0.592 0.0047 0.0028 o.oaI3 
0.590 0.0121 0.0072 o.oooa 
0.588 0.0287 0.0169 o.oo19 
0.587 0.0625 0.0367 0.0042 
0.585 0.1255 0.0734 0.0084 
0.583 0.2321 0.1353 0.0154 
0.581 0.3957 0.2301 0.0262 
0.580 0.6218 0.3604 0.0411 
0.578 0.9004 0.5205 0.0593 
0.576 1.2016 0.6926 0.0789 
0.575 1.4779 0.8494 0.0%8 
0.573 1.6752 0.9600 0.1094 
0.57 1 1.7500 l.ooOO 0.1140 
0.570 I .6848 0.9600 0.1094 
0.568 1.4949 0.8494 0.0968 
0.567 1.2224 0.6926 0.0789 
0.565 0.92 12 0.5205 0.0593 
0.563 0.6398 0.3604 0.0411 
0.562 0.4095 0.2301 0.0262 
0.560 0.2416 0.1353 0.0154 
0.559 0.1313 0.0734 0.0084 
0.557 0.0658 0.0367 0.0042 
0.556 0.0304 0.0169 0.0019 
0.554 0.0129 o.oo72 0.0008 
0.552 0.0051 O.OO28 0.0003 
0.55 I 0.0018 O.oolO O.Oool 
0.549 0.0006 o.om3 o.olxJo 

SUMMARY OF RESULTS 

Classical 
Estimate 

1.750 
16,619 

Posterior Posterior Confidence Interval 
Mean Std Dev LOW -High 
1.750 0.017 1.710 1.780 

16,642 859 15,213 18,703 

B(&) 
0.0000 
0.0000 
0.000 1 
o.ocQ2 
0.0005 
o.oo13 
0.0032 
0.0074 
0.0158 
0.0312 
0.0574 
0.0985 
0.1578 
0.2368 
0.3336 
0.4430 
0.5570 
0.6664 
0.7632 
0.8422 
0.9015 
0.9426 
0.9688 
0.9842 
0.9926 
0.9%8 
0.9987 
0.9995 
0.9998 
I .oooo 
1 .oooo 

Approximate 95% 

EWil 
2 1,055 
20,745 
20,440 
20,140 
19,844 
19,552 
19,265 
18,982 
I 8,703 
I 8,429 
18,158 
17,892 
17,630 
17.37 1 
17,117 
16,866 
16,619 
16,376 
16,137 
15,901 
15.668 
15,439 
15,213 
14,991 
14,772 
14,557 
14,344 
14,135 
13.929 
13,726 
13,526 

n 

10,000 
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Prior D&-@&on -Given Observed 

40 430 6 k Retention Limit t 
l.ooo 2.500 qi 100,ooo I,ooo,ooo 5.000,000 1.75 

!L 
1.000 
I.050 
I.100 
1.150 
1.200 
1.250 
1.300 
1.350 
1.400 
1.450 
I.500 
I.550 
I.600 
I.650 
I.700 
1.750 
1.800 
I ,850 
I.900 
1.950 
2.m 
2.050 
2.100 
2.150 
2.200 
2.250 
2.300 
2.350 
2.400 
2.450 
2.500 

r 
1.&o 

dh) 
O.ooOl 

1.050 0.0004 
1.100 0.0011 
1.150 0.0032 
1.200 0.0086 
1.250 0.02 11 
1.300 0.0477 
1.350 0.0990 
1.400 0. i 895 
1.450 0.3336 
1.500 0.5407 
1.550 0.8067 
1.600 i.1081 
1.650 I.4015 
I.700 1.6320 
1.750 I .7500 
I ,800 1.7280 
1.850 1.5713 
I.900 1.3159 
1.950 1.0149 
2.ooo 0.7209 
2.050 0.47 16 
2. 100 0.2842 
2.150 0.1577 
2.200 0.0806 
2.250 0.0380 
2.300 0.0165 
2.350 0.0066 
2.400 0.0024 
2.450 O.OOO8 
2.500 0.0003 

w(q&) 
o.ooo 1 
o.ow4 
0.0012 
0.0037 
0.0103 
0.0264 
0.0620 
0.1337 
0.2653 
0.4837 
0.8110 
1.2504 
1.7730 
2.3124 
2.7744 
3.0625 
3.1104 
2.9070 
2.5602 
1.9790 
1.4418 
0.9669 
0.5968 
0.3392 
0.1774 
0.0855 
0.0379 
0.0155 
O.oO58 
0.0020 
O.OM6 

h7iG) 
0.0000 
o.ocQo 
0.0000 
o.ow I 
o.ow4 
O.oolO 
o.oo23 
o.oo49 
0.0098 
0.0178 
0.0299 
0.046 1 
0.0653 
0.0852 
0.1022 
0.1 129 
0. I I46 
0. IO7 I 
0.092 I 
0.0729 
0.053 I 
0.0356 
0.0220 
0.0125 
0.0065 
0.003 I 
0.001‘l 
0.0006 
0.0002 
0.0001 
o.owo 

B(qd$) 
0.0000 
o.oooo 
0.ooo1 
0.0002 
0.0006 
0.0016 
0.0038 
0.0088 
0.0185 
0.0364 
0.0662 
0.1 123 
0.1777 
0.2629 
0.365 1 
0.4780 
0.5926 
0.6997 
0.7919 
0.8648 
0.9179 
0.9535 
0.9755 
0.9880 
0.9946 
0.9977 
0.999 1 
0.9997 
0.9999 
I .owo 
1 .oooo 

Classical 
Estimate 

For qi 1.750 
For E[Xlq;] 16,619 

SINGLE PARAMETER PARETO 

EXHIBIT 4 

n 

JW%l 
160,944 
137,822 
118,085 
101,229 
86.826 
74.5 12 
63,979 
54,964 
47,245 
40,63 I 
34,961 
30,099 
25,926 
22,343 
19,265 
16,619 
14,344 
12,387 
10,702 
9,251 
a,m 
6,922 
5,992 
5,189 
4.4% 
3,897 
3,380 
2,932 
2,545 
2.2 10 
1,920 

SUMMARY OF RESULTS 

Posterior Posterior 
Mean Std Dev 
1.785 0.173 

17,154 9,432 

Approximate 95% 
Confidence Interval 
Low High 
1.400 2.050 
6,922 47,245 



Prior Distribution ~~ 

qo q30 ri 

I.612 1.732 ‘/4, 

4, r. 

1.612 0.620 
1.616 0.619 
1.620 0.617 
1.624 0.616 
1.628 0.614 
1.632 0.613 
1.636 0.611 
1.640 0.610 
1.644 0.608 
1.648 0.607 
1.652 0.605 
1.656 0.604 
1.660 0.602 
1.664 0.60 I 
1.668 0.600 
1.672 0.598 
1.676 0.597 
1.680 0.595 
1.684 0.594 
1.688 0.592 
1.692 0.591 
1.6% 0.590 
I.700 0.588 
I.704 0.587 
1.708 0.585 
1.712 0.584 
1.716 0.583 
1.720 0.58 1 
1.724 0.580 
1.728 0.579 
1.732 0.577 

For q; 
For E[Xlq;] 

Classical Posterior Posterior Confidence Ir+rval 
Estimate Mean Std Dev -LQY High 

1.750 I .675 0.035 1.612 1.728 
16,619 20,85 I 2,198 17,734 25.015 

SINGLE PARAMETER PARETO 

EXHIBIT 5 

Given 
,i 

.Observed 
Retention Limit G n 

113 

100,000 1 ,OOO,OOo 5,000,000 1.75 

dl%) dqd$) 
1.1812 0.7328 
I .2054 0.7459 
1.2294 0.7589 
1.2532 0.7717 
1.2768 0.7843 
1.3001 0.7967 
1.3232 0.8088 
1.3460 0.8207 
1.3685 0.8324 
1.3906 0.8438 
1.4123 0.8549 
1.4335 0.8657 
I .4544 0.876 1 
1.4747 0.8863 
1.4946 0.8%0 
1.5139 0.9054 
1.5327 0.9145 
1.5508 0.923 1 
1.5684 0.9314 
I .5853 0.9392 
1.6016 0.9466 
1.6171 0.9535 
1.6320 0.9600 
1.6461 0.9660 
1.6595 0.9716 
1.6721 0.9767 
1.6839 0.9813 
1.6949 0.9854 
1.7051 0.9890 
1.7144 0.992 1 
1.7229 0.9947 

SUMMARY OF RESULTS 

b(d) 
0.0265 
0.0270 
0.0275 
0.0280 
0.0284 
0.0289 
0.0293 
0.0297 
0.0302 
0.03O6 
0.03 10 
0.03 14 
0.0317 
0.032 I 
0.0325 
0.0328 
0.033 1 
0.0334 
0.0337 
0.0340 
0.0343 
0.0345 
0.0348 
0.0350 
0.0352 
0.0354 
0.0355 
0.0357 
0.0358 
0.0359 
0.0360 

B(qil;) 
0.0265 
0.0536 
0.081 I 
0.1090 
0.1374 
0.1663 
0.1956 
0.2253 
0.2555 
0.2860 
0.3170 
0.3484 
0.3801 
0.4122 
0.4447 
0.4775 
0.5106 
0.5440 
0.5778 
0.6118 
0.6461 
0.6806 
0.7154 
0.7504 
0.7856 
0.8210 
0.8565 
0.8922 
0.9280 
0.9640 
1 .oooo 

Approximate 95% 

WW 
25,015 
24,7 19 
24,427 
24,138 
23,852 
23,570 
23,292 
23,016 
22,744 
22,476 
22,210 
2 1,948 
2 1,689 
2 1,433 
21.180 
20,931 
20,684 
20.440 
20,199 
19,961 
19,726 
19,494 
19,265 
19,038 
18,814 
18,593 
i 8,374 
18,158 
17,945 
17,734 
17,526 

100 
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DISCUSSION BY STUART A. KLUGMAN, PH.D. 

While actuaries have had a Bayesian view of the world for dec- 
ades, the adoption of methods that adhere strictly to the principles of 
modern Bayesian analysis has been slow. In his paper, Glenn Meyers 
shows that for a particular problem such an approach is not only 
feasible, but easy to complete. I am delighted that he has continued to 
take up the Bayesian cause, and with this note, I hope to provide just 
two extensions. One is to demonstrate that Meyers employed an ap- 
proximation that was not needed for the particular prior distribution. 
The other is to provide an example that will confirm that his sugges- 
tions are indeed not limited to the Pareto distribution nor to one-pa- 
rameter distributions. 

To be fair to Meyers, and to continue his promotion of Bayesian 
methods as a practical solution to estimation problems, I will employ 
his definition of “practical:” that solutions can be obtained via simple 
spreadsheet calculations. 

1. EXACT BAYESIAN CALCULATIONS 

There have been a number of reasons for the slow adoption of 
exact Bayesian methods. One excellent discussion is Efron [3]. Aside 
from philosophical issues, there is a major computational one. Begin 
by defining the customary Bayesian estimation problem: 

x = data 

8 = parameter 

p(6) = prior density 

fixlCl> = model density 

ACll.x) = posterior density 

t(e) = quantity of interest 
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fltlx) = posterior density of. the 
quantity of interest. 

In Meyers’s paper, 8 = q, and t is the layer average severity, while 
the model density is the likelihood function. 

One standard Bayesian estimate of a parameter is the posterior 
mean. For continuous models, the formula is 

E(8lx) = 
I ef(xle)p(e)de 

h xle)p(e)de ’ 
(1.1) 

The estimate of the quantity of interest is 

E[t(e)tx] = I 
t(e~xle)p(e)de 

k xle)p(e)de . 
(1.2) 

Thus any Bayesian estimation problem using the posterior mean 
reduces to evaluating a (possibly) multi-dimensional integral. The 
number and efficiency of methods to do so have greatly increased in 
the past decade. Four methods (extensions of one-dimensional nu- 
merical integration methods, Gauss-Hermite, Tierney-Kadane, Monte 
Carlo, empirical Bayes) are outlined in Klugman [4]. Recently two 
additional methods have been developed: the Gibbs sampler (Casella 
and George [2]) and sampling-resampling (Smith and Gelfand [SJ). 
All of the methods require a large number of calculations and clearly 
do not meet our present standard of being spreadsheet-friendly. 

Meyers offers the only alternative that requires a limited amount 
of calculation: Replace the customary continuous prior distribution 
with a discrete one. The integrals then become sums and are easy to 
calculate. The question that remains is whether additional approxima- 
tions are needed in order to complete the posterior calculations. 
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2. EXACT CALCULATIONS FOR THE 

SINGLE PARAMETER PARETO DISTRIBUTION 

For the specific problem addressed by Meyers we have 

p(q) cc qa-‘t+ (2.1) 

(2.2) 

The prior distribution is a Gamma distribution when a and p are 
both positive, and reduces to Meyers’s noninformative prior when 
they are both zero. The posterior distribution is 

(2.3) 

where y= -An(k) + Zln(+). This is just another Gamma distribution 
and so the posterior mean is 

(2.4) 

the usual weighted average of the maximum likelihood estimator and 
the prior mean. When a = p = 0, the posterior mean is (; as in Meyers 
(so once again the “WYSIWYG” estimator is obtained) but without 
resorting to the Normal approximation. The posterior variance is 

var (qlx) = -rz+a 
wP)* . 

(2.5) 

With a = p = 0 it is (;*/n, also in agreement with Meyers. 

The difference comes when other features are desired or when 
numerical approximations are needed. The other feature desired in 
Meyers’s paper is the layer average severity. The required integral for 
the posterior mean of the layer average severity is 
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E q”+a-le-(vP)qdq , (2.6) 

which cannot be integrated analytically. A simple discretization (the 
composite trapezoid rule) should approximate this integral. For Mey- 
ers’s example, the values are n = 100, y= 57.143, R = l,OOO,OOO, 
L = 5,000,000, k = 100,000, a = 0, and p = 0. The approximate inte- 
gral, evaluating q every 0.05 from 0 to 3, produced a posterior mean 
of 18,971 and a posterior standard deviation of 9,989. These cannot 
be compared with Meyers’s paper as he did not solve this example. 

The above calculations took advantage of the fact that the Gamma 
prior distribution turned out to be conjugate for the single parameter 
Pareto likelihood. (That is, the posterior turned out to have the same 
density type as the prior. The major advantage is that the constants 
needed to make Equation 2.3 an equality can be found without inte- 
grating.) This will seldom be the case for actuarial examples. To 
continue Meyers’s example, we can use the prior that appears in his 
Exhibit 1. Exhibit 1 of this discussion provides the equivalent results 
using Meyers’s discrete prior but retaining the exact likelihood func- 
tion. The results are similar to the exact calculation done previously 
with a posterior mean of 18,972 and standard deviation of 9,989. 
These numbers are similar to those obtained by Meyers, but were not 
expected to be exactly the same. 

3. EXTENSIONS TO MULTI-PARAMETER PROBLEMS 

Avoiding the Normal approximation for the distribution of maxi- 
mum likelihood estimators-in fact, avoiding maximum likelihood 
estimators of q altogether- may make extensions of Meyers’s analy- 
sis easier. The major difficulty is that any sums must now be taken 
over a relatively large number of values. This is because, for exam- 
ple, two-dimensional approximate integration requires the square of 
the number of function evaluations as compared with a similar one- 
dimensional approximation. Rather than produce general formulas, 
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the example used previously is extended to the case of a Lognormal 
distribution. Suppose a sample of size 100 was taken and the suffi- 
cient statistics (the only numbers other than the parameter values 
needed to compute the likelihood function) were 

Cln(xJ = 1000, and C[ln(xi)J2 = 10,300. 

Thus, the maximuml\likelihood estimates of the Lognormal parame- 
ters are i = 10, and d = 3. This leads to a maximum likelihood esti- 
mate of the layer average severity of 48,770. The noninformative 
prior distribution selected is the standard one (Berger [I], pp. 83-87) 
for the normal distribution: &a) = l/o. This implies a uniform 
(over the entire real line) prior on p that is independent of the prior on 
CJ. Possible values were restricted to the range 8 < p < 12 and 
1 .O I CY I 2.5. The other relevant functions are: 

10.30@-2,000~+100~2 

= Gene 202 , (3.1) 

and 

t(p,o) = epM2 @ 
it 

ln(5,000,000)-p 
(T - 

~ 

1 t 

_ Q ln( 1 @OO@W - p _ d 
(T 

)I 

+ 4,000,ooo - (5,ooo,000) @ 
! 
1n5ym;m -li 

1 

+ 1 ,Ooo,OOO @ 
L 

ln( 1 ,ooO,OOO)-p 
(3 

1. 
(3.2) 

For the calculations, the ranges on p and cs were split into 30 
equally spaced intervals. This led to 961 function evaluations, of 
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which 13 are displayed in Exhibit 2. The relevant posterior quantities 
appear at the end of the exhibit. 

4. CONCLUSIONS 

Through his paper, Glenn Meyers has reminded us that Bayesian 
calcuations can be relatively simple, and that they provide quantities 
of great interest to actuaries (mainly the standard deviation, and per- 
haps the complete distribution of the quantity to be estimated). This 
discussion points out that there may be simpler ways to do the calcu- 
lations and that two-dimensional calculations are indeed feasible as 
Meyers indicated. 
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/ b(post) B(postcdf) q*b jr4_“p r*h f*t*b 

160944 0.0000 o.oooo O.OMlO 0.00000 0.07 10512 
137822 0.0000 o.oQoo 0.00000 0.00000 0.40 554478 
118085 O.OGOO 0.0000 0.00002 o.ocQo2 1.98 233847 
101229 O.ooOl O.OoQl 0.00009 0.00010 7.95 8044Y6 
86826 0.0003 o.oco4 0.00037 0.00044 26.46 2297361 
74512 0.0010 0.0014 0.00125 0.00156 74.2 1 5529579 
63979 0.0028 0.0042 0.00361 0.00469 177.72 11370313 
54964 0.0067 0.0109 0.00903 0.01220 367.78 20214.671 
47245 0.0141 0.0249 0.01970 0.02758 664.74 31405343 
40631 0.0261 0.0510 0.03781 0.05482 1059.42 43045108 
34961 0.0430 0.0940 0.06443 0.09664 1501.62 52498447 
30099 0.0634 0.1573 0.09824 0.15226 1907.56 57414828 
25926 0.0844 0.2417 0.13498 0.215% 2187.06 56700811 
22343 0.1019 0.3436 0.16819 0.27752 2277.50 508855 12 
19265 0.1125 0.4561 0.19120 0.32502 2166.60 41739159 
16619 0.1139 0.5700 0.19931 0.34880 1892.83 31457522 
14344 O.lc64 0.6764 0.19149 0.34468 1525.98 21889173 
I2387 0.092 I 0.7684 0.17030 0.31506 1140.29 14124672 
lu702 0.0741 0.8425 0.14079 0.26750 793.00 8486676 
9251 0.0557 0.8982 0.10860 0.21177 515.19 4765789 
8000 0.0392 0.9374 0.07844 0.15688 313.75 251CKXKl 
6922 0.0260 0.9634 0.05322 0.10910 179.69 1243787 
5992 0.0162 0.9796 0.03402 0.07145 97.01 581624 
5189 0.0096 0.9892 0.02055 0.04419 49.60 257374 
4496 0.0053 0.9945 0.01176 0.02587 24.03 108049 
3897 0.0028 0.9973 0.00639 0.01438 11.07 43138 
3380 0.0014 0.9988 0.00331 0.00760 4.86 16415 
2932 O.ooO7 0.9995 0.00163 0.00383 2.03 5966 
2545 0.0003 0.9998 0.00077 0.00185 0.82 2075 
2210 0.ooo1 0.9999 0.00035 0.00085 0.31 692 
1920 0.0001 1 .oooo o.OGO17 0.00038 0.12 222 

mle Pof!t~m-ea?- F!E!sd-- low 95 high 95 
For q 1.750 1.7500 0.1749 1.400 2.100 

For E(x) 16,619 18,972 9,989 5,992 47,245 
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P (3 prior t model posterior 
8 1 1 0 9.93OE-153 3.173E-108 
8 1.75 .57143 320 l.l55E-74 2.1 OSE-30 
8 2.5 .4 14,390 7683E-65 9.818E-21 

9.867 1.75 .57143 12,154 1.989E-46 3.63lE-2 
10 1 1 20 7.175E-66 2.292E-2 1 
10 1.7 .58824 12,174 2.5938-46 4.874E-2 
10 1.75 .57143 15,172 2.658E-46 4.854E-2 
10 1.8 .55556 18,616 2.326E-46 4.1288-2 
10 2.5 .4 114,619 6.066E-5 1 7.753E-7 

10.133 1.75 .57143 18,845 1.989B46 3.63lE-2 
12 1 1 20,411 9.93OE-153 3.173E-108 
12 I .75 .57143 234,939 l.l55E-65 2.108E-30 
12 2.5 .4 560,653 7.683E-65 9.818E-21 

SINGLE PARAMETER PARETO 

EXHIBIT 2 

LOGNORMAL POSTERIOR ANALYSIS 

E(P) 10.000 
StdDev(p) .17586 

E(o) 1.754 1 
StdDev(o) .I2609 

E(r) 17,452 
StdDev(r) IO,8 11 

Note: The entries in the “model” column are the evaluation of 
Equation 3.1. The entries in the “posterior” column are the entries 
in the “model” column divided by d and then multiplied by a 
constant to make them sum to one. 



RESIDUALS AND INFLUENCE IN REGRESSION 

EDMUND S. SCANLON 

The purpose of this paper is to cover some techniques in sta- 
tistics that are important for testing the appropriateness of a 
fitted regression equation. These techniques, which are often 
used by statisticians, are not completely covered in the Pro- 
ceedings. Spectjkally, the areas discussed are: 

l Elimination of the Constant in the Regression Equation 

l Regression Diagnostics 

l Analysis of Residuals 

1. INTRODUCTION 

Estimating the parameters of a regression equation entails more 
than simply fitting a line to a set of data. During the estimation 
process, it is important to determine if the underlying assumptions are 
met and whether the equation accurately models the studied process. 

The purpose of this paper is to discuss some aspects of regression 
that are important in testing the appropriateness of the fitted regres- 
sion equation. These aspects, some of which are briefly covered in 
the present Syllabus are: the constant term in the multiple regression 
equation, regression diagnostics, and the analysis of residuals. It 
should be noted that the material described is contained in the refer- 
ences listed at the end of this paper. 

2. THE CONSTANT TERM 

At least two papers in the Proceedings [(l),(5)] suggest removing 
the constant term in the regression equation under some circum- 
stances. The circumstances described in the papers seem to be reason- 
able causes for removal of the constant term. For example, one reason 
outlined is that the constant does not explain any of the change in the 
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dependent variable. Thus, the constant term should be carefully scru- 
tinized and perhaps removed. Another suggested reason to remove 
the constant is to achieve a regression model which is intuitively 
sensible. Unfortunately, the removal of the constant, especially when 
it is statistically significant, tends to impair the accuracy of the model. 
Hence, something should be added to compensate for the removal of 
the constant. 

Both papers seem to imply that the constant should be eliminated 
if the corresponding t-statistic is insignificant (Le., It I < 2 ). Or, if the 
t-statistic is significant, one should try to search for another inde- 
pendent variable in an attempt to reduce the significance of the con- 
stant term. 

These procedures are unreliable for three reasons: 

1. Although it is sometimes not clearly stated in statistics 
texts, the objective in the traditional statistical test is to 
decide whether or not to reject the null hypothesis. Ac- 
ceptance of the null hypothesis is not the issue. For ex- 
ample, in analysis-of-variance (ANOVA), the null 
hypothesis (Ho) is that pI = p2 = . . . = pn. If the F-statistic 
is significant, one may reject the null hypothesis. Even in 
the absence of a high F-statistic, the null hypothesis is 
difficult to believe; all one can say is that the hypothesis 
cannot be proved false (i.e., fail to reject Z-Q. 

2. Eliminating the constant gives the origin (which can be 
considered one observation) an undue amount of lever- 
age on the fitted regression equation (the subject of lever- 
age is discussed in more detail in the next section). As a 
result of this elimination, the regression line is forced 
through a particular point, the origin. In other words, the 
origin, as an observation, is given special treatment be- 
cause it is not subject to the least squares constraint (i.e., 
minimize the sum of squares). Thus, the origin has more 
influence on the regression model than a typical observa- 
tion. 
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3. An additional independent variable may not be easily 
found. 

This is not to say that one should never eliminate the constant in 
the regression equation. The point is that this elimination should not 
be considered lightly. We will illustrate this with a numerical exam- 
ple in the next section. 

3. REGRESSION DIAGNOSTICS 

When analyzing the appropriateness of a regression equation, 
most statisticians review the data to see which observations are “in- 
fluencing” the estimation of the regression equation coefficients. 
More generally, the statistician wants to identify subsets of the data 
that have disproportional influence on the estimated regression 
model. As discussed by Belsley et al. [2], these influential subsets can 
come from a number of sources: 

1. improperly recorded data, 

2. errors that are inherent in the data, and 

3. outliers that are legitimately extreme observations, 

Belsley et al. indicate some interesting situations that might be 
subject to detection by diagnostics. Exhibit 1 summarizes these situ- 
ations. Part 1 displays the ideal situation: All the data is essentially 
grouped together. In Part 2, the point labeled z is an aberration or 
outlier; but, since it is near X there is no adverse effect on the slope. 
However, the estimate of the intercept will obviously be influenced. 
Part 3 also displays a data set with an outlier. However, the outlier in 
this example is consistent with the slope indicated by the remaining 
data. Because of this consistency, adding the outlier to the regression 
calculation reduces the variance of the parameter estimates (i.e., im- 
proves the quality of the regression). Generally, if the variance of the 
independent variable is small, slope estimates will be unreliable. Part 
4 is a problem situation, since the outlier essentially defines the slope. 
In the absence of the outlier, the slope might be anything. The outlier 
has extreme influence on the slope. Part 5 is a case where there are 
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two outliers that are both influential and whose effects are comple- 
mentary. Such a situation may call for use of one of the following 
procedures: 

1. 

2. 

deleting the observations, 

downweighting (i.e., giving less weight to the observa- 
tions), 

3. reformulating the model (e.g., adding or deleting inde- 
pendent variables); or 

4. where possible, using more observations. 

Part 6 displays a situation where deletion of either outlier has little ef- 
fect on the regression outcome because neither outlier exerts much 
influence upon the regression parameters. Parts 5 and 6 highlight the 
need to examine the effects of general subsets of data. 

To demonstrate some of these situations more clearly, we consider 
the numerical data and regression results on Exhibit 2, Part 1. This 
data set, which is plotted on Part 2, is similar to the pattern displayed 
on Exhibit 1, Part 1. The regression results, as expected from the 
uniformity of the plot, indicate a very good fit. 

In order to illustrate the Exhibit 1, Part 2 situation, the point (7, 
14.3) was added to the base data set. The regression results and the 
plot of the data are on Exhibit 2, Parts 3 and 4, respectively. It is 
interesting to note how the additional observation influenced the pa- 
rameter estimates. The constant changed from .702 to 1.171. How- 
ever, the slope estimate change was negligible (JO8 to .784). 

The Exhibit 1, Part 3 case can be demonstrated by adding the 
point (17, 14.3) in lieu of (7, 14.3). This new outlier is consistent with 
the remaining data (i.e., it lies on the path of the line indicated by the 
base data set). The regression results and the plot for this revised data 
set are displayed on Exhibit 2, Parts 5 and 6, respectively. The results 
indicate minimal change in the parameter estimates. Hence, (17, 14.3) 
does not have significant influence on the regression model. How- 
ever, adding the point (17, 14.3) decreased the variance of the pa- 
rameter estimates. It should also be noted that the standard error of 
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the residual associated with this outlier is relatively smaller than the 
standard errors associated with all the other observations. The magni- 
tude of the standard error for a residual relative to the other standard 
errors is an indication of the leverage of a point (i.e., the potential of 
the point to influence the calculation of the regression equation). 
Leverage depends on whether an observation is an outlier with re- 
spect to the x axis. 

To demonstrate another example of leverage, the point (17, 10) 
was used instead of (17, 14.3) and a new regression equation was 
calculated. The regression results and the plot can be found on Ex- 
hibit 2, Parts 7 and 8, respectively. The contrast between the two 
outliers, (7, 14.3) and (17, lo), is interesting. The outlier (7, 14.3), an 
outlier with respect to the y axis, is about 8 units away from where it 
“should be.” The other outlier, (17, lo), an outlier with respect to 
both the x and y axes, is only about 4 units away from where it 
“should be.” However, the influence of (17, 10) on the parameter 
estimates is much greater than that of (7, 14.3). As mentioned earlier, 
the (7, 14.3) outlier influenced only the estimate of the constant. 
There was a negligible change in the estimate of the slope. 

The estimates of the parameters under the varying data sets are 
summarized in the following table: 

Base Sg Sgtmyj~-lglm 1 f4,3_) j%t-vj<~ ( 17, 10) 
Intercept .702 1.171 1.394 

Slope .808 .784 .705 

As indicated by the table, the point (17, 10) influences both the inter- 
cept and slope estimates to a much greater extent than (7, 14.3). 

At this time we return to the question of eliminating the constant. 
It is interesting to note the situation of removing the constant term 
when fitting a regression line to the base data set (Exhibit 2, Part 1). 
The regression analysis of the base data set indicates that the t-statis- 
tic for the constant term is not “statistically significant.” However, 
removing the constant term from the regression equation influences 
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the slope estimate considerably. The coefficient of the independent 
variable is now .883 as compared to .808 . 

The preceding examples indicate that when there are two or fewer 
independent variables, scatter plots such as Exhibit 1 can quickly 
reveal any outliers. However, when there are more than two inde- 
pendent variables, scatter plots may not reveal multivariate outliers 
that are separated from the bulk of the data. What follows is a discus- 
sion of some diagnostic statistics that are useful in detecting such 
outliers. 

There are a number of different statistics used by statisticians to 
detect outliers in the data. One such statistic is Cook’s Di (or Cook’s 
Distance) statistic. The statistic is named after the statistician R. D. 
Cook. Cook’s Dj measures the influence of the ith observation. It is 
based on the difference between two estimators (one estimator in- 
cludes the i’ observation in the data; the other excludes the ith obser- 
vation). Using matrix notation, Cook’s Di is defined as follows: 

Di = (B - f3(i)}TXTX( fi - &i))/Ps2, 

where : 

X 

XT 

s 

hi) 

P 

is the n by p matrix that contains the values of the inde- 
pendent variables (i.e., n different values of the (p-l) 
independent variables together with a first column that is 
equal to unity, representing the constant); this is the same 
X that is used in the familiar multiple regression equation 
Y = XB + e (see, for example, Miller and Wichern [6, sup- 
plement 5B]); 

is the transpose of X, 

is the usual least squares estimator vector of p by 1 di- 
mensions; 

is the least squares estimator after the ith data point has 
been omitted from the data, also p by 1 dimensions; 

is the number of independent variables plus one; 
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s2 is the estimate of variance provided by residual mean 
square error from using the full data set; 

1 &B(i) 1 is the difference between the two p by 1 vectors, also p 
by 1. 

A large Di represents an influential observation; that is, an obser- 
vation that has more than the average influence on the estimation of 
the parameters. Presently, there is no formal definition of a “large 
II;.” However, there are some general rules that statisticians follow. 
First, if Di > 1, then the observation should probably be considered 
influential. Second, if all Dis are below I, a value considerably 
greater than the other values should be considered influential. Once a 
point with a large Di has been identified, the actuary would want to 
examine the point to be certain that such an observation is typical and 
not an aberration. With Cook’s Di, the actuary can review all outliers 
and decide whether or not to eliminate an observation. This process is 
somewhat analogous to the reserving actuary eliminating high/low 
loss development link ratios from an average. 

The preceding formula for Cook’s Di is rather cumbersome. For- 
tunately, it is standard output for most statistical software packages. 

The so-called hat statistic, h,i, is another tool that is helpful in 
determining which observations have significant leverage. Using ma- 
trix notation, the hat matrix (which contains the hat statistics) can be 
derived from the usual regression equations: 

Y=Xp+e, 

P=$; 

Since b = (XTX)-t XTY, 

P=,xT,-I XTY, 

= HY, 

where H, the II by n hat matrix, is defined as: 



130 RESIDUALS AND INFLI!ENCF. Ih’ REGRESSION 

H = X(XTxy’XT. 

H is called the hat matrix because it transforms the vector of 
observed responses, Y, into the vector of fitted responses, ?. From 
this, the vector of residuals can be defined as: 

= Y - X(X9&y XT Y 

= [I-WY. 

It is shown in Weisberg [8] that: 

E(Z;) = 0, and Va.r (ZJ = ~2( l-hii), 

where the hat statistic, h,, is the th diagonal element of H. This is in 
contrast to the errors, e;, for which the variance is constant for all i. 
Incidentally, the variance for $; is dhii. 

Hence, cases with large values of hii will have small values of 
Var (si). As hii approaches unity, the variance of the ith residual ap- 
proaches zero. In other words, as hii approaches unity, -Qj (the esti- 
mate) approaches the observed value, 4’;. This is why h;i is called the 
leverage of the ith observation. The effect of the ith observation on the 
regression is more likely to be large if hi; is large. Similar to Cook’s 
Di, the hat matrix is standard output from common statistical software 
packages. 

How large is a “large” hii ? This issue is addressed by Belsley et 
al. They show that, if the explanatory variables are independently 
distributed as the multivariate Gaussian, it is possible to compute the 
exact distribution of certain functions of the hiis. Specifically, 
(n-p)[hii-( lln)]l( l-h;i)~l) is shown to be distributed as F with p-1 
and n-p degrees of freedom. For 1~10 and n-+50, the 95% value 
for F is less than 2. Hence, 2pln is roughly a good cutoff (twice the 
balanced average h;i). 
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At this point, it is appropriate to discuss the difference between 
influence and leverage. The leverage of an observation was just de- 
fined as hii. Note that this is independent of the dependent variable. 
Hence, the definition of leverage ignores the role played by yi (the 
observation). Influence, on the other hand, is defined as follows: 

A case is said to be injuential if appreciable changes in 
the fitted regression coefficients occur when it is re- 
moved from the data [7]. 

Another way to look at the difference between influence and lev- 
erage is as follows. The hiiS are indicating how well the independent 
data is “spread out.” Exhibit 1, Part 4 displays data that contain an 
observation that has leverage. The amount of leverage would be re- 
duced if there were more observations with larger independent values 
near that point’s independent value. 

Cook’s Di actually indicates how much of the leverage is being 
exerted by the observation on the estimation of the coefficients. 
Therefore, Cook’s Di is more helpful in analyzing a regression model. 

It is interesting to examine the relationship between hii and Di to 
understand the difference between influence and leverage. Weisberg 
[8] derives the following relationship: 

This formula is helpful in a number of ways. First, it shows that 
Cook’s Di can be calculated from data output of the full regression 
without the need to recompute estimates excluding observations. Sec- 
ond, it displays the relationship of Cook’s Di, the studentized residu- 
als, and the measure of leverage. Third, it shows explicitly that the 
hat diagonal describes only the potential for influence. Di will be 
large only if both hii and the associated residual are large. 

This clarification is important ‘because the two terms (influence 
and leverage) are sometimes used synonymously. For example, Cook 
and Weisberg [3] mention authors who interpret hii as the amount of 
leverage or influence. 
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Thus far, this discussion has focused on “single row” diagnostics. 
As mentioned earlier, Exhibit 1, Part 6 indicates the need for multiple 
row diagnostics; for example, in situations where one outlier masks 
the effect of another outlier. Such techniques exist and the interested 
reader is referred to Belsley et al [2]. 

To illuminate the use of these diagnostics, a multiple regression 
model is fitted to some pure premium data in Exhibit 3. The model 
used is similar to some work performed by the Insurance Services 
Office; namely, the alternative trend models. 

In this example, pure premium (PP) is the dependent variable, 
while the Consumer Price Index (CPI) and the change in the Gross 
National Product (GNP) are the independent variables. It should be 
noted that the values of these variables are realistic, but fabricated for 
the example. Exhibit 3, Part 1 displays results from fitting a regres- 
sion model to 10 observations. The model fitted is as follows: 

Pure Premium = b,, + b, CPI + &GNP. 

Including all 10 observations in the calculation produces an excel- 
lent fit, as indicated by the adjusted R*. Nevertheless, the residuals do 
become relatively larger as the pure premium increases. The hii val- 
ues indicate that the 1” and the gth observations have a considerable 
amount of leverage. The D, value indicates that the 1” observation is 
not influencing the model’s coefficients. However, the Dg value does 
indicate that the gth observation has significant influence. In order to 
improve the model, consideration should be given to removing the gth 
observation. Exhibit 3, Part 2 displays output excluding this observa- 
tion. These results can be summarized as follows: 

1. The adjusted R* improved slightly. 

2. The residuals are now more stable than before. 

3. The values of Di are stable. 
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4. ANALYSIS OF RESIDUALS 

Analysis of residuals is touched upon in some of the present Sylla- 
bus readings. As indicated in the readings, residuals can be helpful in 
determining if two required regression assumptions have been vio- 
lated; namely, the error terms must be independent and the variance 
must be constant for all observations. Violations of these assumptions 
are associated with the terms autocorrelation and heteroscedasticity, 
respectively. 

Heteroscedasticity, or non-constant variance, is typically detected 
by using a so-called residual plot [6]. If the plot of residuals is shaped 
like a cone (see Exhibit 4), it is likely that heteroscedasticity exists. 
These residual plots are also helpful in determining whether the re- 
gression equation needs an additional independent term. 

It is important to note (as mentioned in the previous section) that 
the variance of pi is not a constant for all i. As a matter of fact, it 
would be unusual for all the e”i7s to have the same variance. That is, it 
is possible to have a pattern similar to Exhibit 4 simply because the 
hiiS are not constant. 

Improved diagnostics can be achieved by dividing the re$duals by 
an estimate of the standard error. Specifically, the residual, ei, should 
be divided by S( l-hii)1’2 for all i. These scaled residuals, also known 
as the studentized residuals, will all have a common variance, if the 
model is correct. The studentized residuals can then be used, graphi- 
cally, to test for heteroscedasticity. 

An additional point which is not em hasized in many books is the 
reason the residuals are plotted against s and not Y. The reason is that 
the residuals and the actual observations are correlated, but the re- 
siduals and the fitted values are not. 

This can be shown [4] by calculating the sample correlation coef- 
ficients between the residuals and the actual and fitted observations. 
First, the sample correlation coefficient between e and Y, re,., is calcu- 
lated as follows: 
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The numerator, 

~(ei-~( Yi-~ = Cei( Yi-y) since Z = 0, if a constant is in the model 

= ~iYi (z=O) 

= eTY in matrix notation 

= eTe because eTe = YT(z-H)T(z-H)Y 

= YT(Z-H)Y 

= eTY 

= Residual sum of squares. 

Therefore, 

rev = [ Residual sum of squares / Total sum of squares} “* = ( l-R2)“2. 

The calculation of r,; is similar to the above, 

E(e+)( P-T) = ~,P, = eT? = YT(Z-H)THY = 0. 

Hence, re; = 0. 
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5. CONCLUSIONS 

The field of statistics is a tremendous resource that, except for a 
theoretical foundation, goes untapped by casualty actuaries. I hope 
this paper adds modestly to the knowledge of some actuarial practi- 
tioners and inspires other such summaries. 
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Part 5 
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EXHIBIT 1 
Part 6 



Intercept 
Coefficient 

X 
2.50 
3.00 
3.00 
3.00 
4.00 
4.00 
5.00 
5.50 
6.00 
6.50 
7.00 
7.00 
7.50 
8.20 
9.00 
9.00 
9.00 
9.50 

10.00 
10.50 
11.00 
11.00 
12.00 
12.00 
12.50 
13.00 
13.00 
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EXHIBIT 2 
Part 1 

REGRESSION ANALYSIS 

Parameter Standard 
Estimates Error 

0.7016 0.5387 
t statistic 

1.302 
Probability >kJ 

0.2046 
0.8079 0.0628 

Adjusted R-Squared: 

12.870 0.0001 

Y 
2.10 
2.30 
3.30 
4.30 
3.30 
5.40 
4.30 
5.60 
7.30 
4.40 
6.00 
6.50 
7.50 
6.30 
6.60 
8.50 
9.00 
6.50 
9.30 
8.00 
8.50 

10.60 
10.00 
11.50 
12.00 
10.00 
12.50 

Predicted 
Value Y 

2.7214 
3.1254 
3.1254 
3.1254 
3.9333 
3.9333 
4.7413 
5.1453 
5.5492 
5.9532 
6.3572 
6.3572 
6.761 I 
7.3267 
7.973 1 
7.973 1 
7.9731 
8.3770 
8.7810 
9.1850 
9.5890 
9.5890 

IO.3969 
IO.3969 
IO.8009 
11.2048 
11.2048 

0.8636 

Std. Err. 
Pred. of 

0.3985 
0.372 1 
0.3721 
0.372 1 
0.3220 
0.3220 
0.277 I 
0.2574 
0.2403 
0.2262 
0.2158 
0.2158 
0.2097 
0.2088 
0.2189 
0.2189 
0.2189 
0.2306 
0.2458 
0.2639 
0.2843 
0.2843 
0.3302 
0.3302 
0.3552 
0.3810 
0.3810 

Residual 
-0.6214 
-0.8254 
0.1746 
1.1746 

-0.6333 
1.4667 

-0.4413 
0.4547 
I .7508 

-1.5532 
-0.3572 
0.1428 
0.7389 

- 1.0267 
-1.3731 
0.5269 
1.0269 

- 1 x770 
0.5190 

-1.1850 
- 1.0890 
1.0110 

-0.3969 
1.1031 
I.1991 

-1.2048 
I .2952 

Std. Err. of 
Residual 

1.0050 
1.0151 
1.0151 
1.0151 
1.0321 
1.0321 
1.0450 
1.0500 
1.0541 
1.0572 
1.0594 
1.0594 
1.0606 
1.0608 
1.0587 
1.0587 
I .0587 
I .0562 
1.0528 
I .0484 
1.043 I 
1.043 1 
I .0295 
1.0295 
I.021 I 
1.0117 
1.0117 



EXHIBIT 2 
Part2 

Y 
16 

14 

I2 

10 

8 

6 

4 

AA 
A^ 

A A 

A 
A ADA 

A A AA A AA 

8 A 
A A 

2 AA 

0 I I I I I I I 2.5 3.5 I I 4.5 I 
5.5 

I 
6.5 

I 
7.5 

I 
8.5 

I 
9.5 10.5 

I 
11.5 12.5 13.5 14.5 15.5 16.5 

x 



Intercept 
Coefficient 

Parameter 
Estimates 

1.1709 
0.7840 0.1078 

Adjusted R-Squared: 

X Y 
2.50 -2.10 
3.00 2.30 
3.00 3.30 
3.00 4.30 
4.00 3.30 
4.00 5.40 
5.00 4.30 
5.50 5.60 
6.00 7.30 
6.50 4.40 
7.00 6.00 
7.00 6.50 
7.50 7.50 
8.20 6.30 
9.00 6.60 
9.00 8.50 
9.00 9.00 
9.50 6.50 

10.00 9.30 
10.50 8.00 
11.00 8.50 
11.00 10.60 
12.00 10.00 
12.00 1 I .50 
12.50 12.00 
13.00 10.00 
13.00 12.50 
7.00 14.30 
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EXHIBIT 2 
Part 3 

REGRESSION ANALYSIS 

Standard Error t statistic Probability > In 
0.9196 1.273 0.2142 

7.276 

0.6579 

0.0001 

Predicted Std. Err. of 
Value Y Pred. 

3.~1319 0.6784 
3.5241 0.6329 
3.5241 0.6329 
3.5241 0.6329 
4.3085 0.5465 
4.3085 0.5465 
5.0929 0.469 I 
5.4851 0.4353 
5.8772 0.4058 
6.2694 0.3817 
6.6616 0.3640 
6.6616 0.3640 
7.0538 0.3538 
7.6029 0.353 1 
8.2304 0.3715 
8.2304 0.3715 
8.2304 0.3715 
8.6226 0.3923 
9.0148 0.4191 
9.4070 0.4507 
9.7992 0.4863 
9.7992 0.4863 

10.5836 0.5662 
10.5836 0.5662 
10.9757 0.6094 
I 1.3679 0.6542 
I I .3679 0.6542 
6.6616 0.3640 

Residual 
-1.0319 
-1.2241 
-0.2241 
0.7759 

- I .0085 
1.0915 

-0.7929 
0.1149 
1.4228 

- 1.8694 
-0.6616 
-0.1616 
0.4462 

-I .3029 
- 1.6304 
0.2696 
0.7696 

-2.1226 
0.2852 

- 1.4070 
- 1.2992 
0.8008 

-0.5836 
0.9164 
1.0243 

-I .3679 
I.1321 
7.6384 

Std. Err. of 
Residual 

I.7312 
I .7484 
1.7484 
1.7484 
1.7773 
1.7773 
1.7992 
1.8077 
1.8146 
1.8198 
1.8234 
1.8234 
1.8254 
1.8256 
1.8219 
1.8219 
1.8219 
1.8175 
1.8116 
1.8039 
1.7947 
1.7947 
1.7711 
1.7711 
1.7567 
I .7405 
I .7405 
I .8234 



EXHIBIT 2 
Part 4 

Y 
16 - 

14 - 

12 - 

10 - 

8- 

6- 

4- 

A 

A A 

$ A 
A A 

2 AH 

0 I I I I I I I I I I I I 1 I I 
2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 

X 



Intercept 
Coefficient 

X Y 
2.50 2.10 
3.00 2.30 
3.00 3.30 
3.00 4.30 
4.00 3.30 
4.00 5.40 
5.00 4.30 
5.50 5.60 
6.00 7.30 
6.50 4.40 
7.00 6.00 
7sKl 6.50 
7.50 7.50 
8.20 6.30 
9.00 6.60 
9.00 8.50 
9.00 9.00 
9.50 6.50 

10.00 9.30 
10.50 8.00 
11.00 8.50 
11 .OO 10.60 
12.00 10.00 
12.00 11.50 
12.50 12.00 
13.00 10.00 
13.00 12.50 
17.00 14.30 
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EXHIBIT 2 
Part 5 

REGRESSION ANALYSIS 

Parameter 
Estimates 
0.7229 

WardError ~_ t Statistic 
0.4930 I .466 

Prqrility > I!1 

0.8048 0.0547 14.713 

Adjusted R-Squared: 0.8887 

0.1546 
0.0001 

Predicted Std. Err. of 
Value Y Pred. 
2.7348 0.3723 
3.1372 0.3496 
3.1372 0.3496 
3.1372 0.3496 
3.9420 0.3064 
3.9420 0.3064 
4.7467 0.2674 
5.1491 0.2502 
5.5515 0.2348 
5.9539 0.2218 
6.3562 0.2115 
6.3562 0.2115 
6.7586 0.2044 
7.3220 0.2004 
7.9658 0.2047 
7.9658 0.2047 
7.9658 0.2047 
8.3681 0.2119 
8.7705 0.2223 
9.1729 0.2354 
9.5753 0.2509 
9.5753 0.2509 

10.3801 0.287 1 
10.3801 0.287 1 
10.7824 0.3073 
11.1848 0.3285 
11.1848 0.3285 
14.4039 0.5 192 

Residual 
-0.6348 
-0.8372 
0.1628 
1.1628 

-0.6420 
1.4580 

-0.4467 
0.4509 
1.7485 

-1.5539 
-0.3562 
0.1438 
0.7414 

- 1.0220 
- 1.3658 
0.5342 
1.0342 

-1.8681 
0.5295 

-1.1729 
- 1.0753 
1.0247 

-0.3801 
1.1199 
1.2176 

-1.1848 
1.3152 

-0.1039 

Std. Err. of 
Residual 

0.9929 
1.0011 
1.0011 
1.0011 
1.0152 
1.0152 
1.026 1 
1.0305 
I .0341 
1.0369 
I .039 1 
1.039 I 
1.0405 
1.0413 
I .0404 
1.0404 
1.0404 
1.0390 
1.0368 
1.0339 
I .0303 
1.0303 
1.0208 
1.0208 
1.0149 
1.0082 
1.0082 
0.9246 
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A 

AAA 

A A A 
it AAA 

A AA 

0’1 I I I 1 I I I I I 1 I I I I 
2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 

X 
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EXHIBIT 2 
Part 7 

REGRESSION ANALYSIS 

Parameter 
Estimates Standard Error t Statistic Probability > Id 

Intercept 1.3944 0.6061 2.3006 
Coefficient 0.7046 0.0672 10.485 1 

Adjusted R-Squared: 0.8013 

X Y 
2.50 2.10 
3.00 2.30 
3.00 3.30 
3.00 4.30 
4.00 3.30 
4.00 5.40 
5.00 4.30 
5.50 5.60 
6.00 7.30 
6.50 4.40 
7.00 6.00 
7.00 6.50 
7.50 7.50 
8.20 6.30 
9.00 6.60 
9.00 8.50 
9.00 9.00 
9.50 6.50 

10.00 9.30 
10.50 8.00 
11.00 8.50 
11.00 10.60 
12.00 10.00 
12.00 11.50 
12.50 12.00 
13.00 10.00 
13.00 12.50 
17.00 10.00 

Predicted Std. Err. of 
Value Y -Pred. 

3.1560 0.4577 
3.5083 0.4298 
3.5083 0.4298 
3.5083 0.4298 
4.2129 0.3767 
4.2129 0.3767 
4.9175 0.3288 
5.2698 0.3076 
5.6221 0.2887 
5.9745 0.2727 
6.3268 0.2601 
6.3268 0.2601 
6.6791 0.2513 
7.1723 0.2464 
7.7360 0.2516 
7.7360 0.2516 
7.7360 0.2516 
8.0883 0.2605 
8.4406 0.2733 
8.7930 0.2895 
9.1453 0.3084 
9.1453 0.3084 
9.8499 0.3530 
9.8499 0.3530 

10.2022 0.3778 
10.5545 0.4038 
10.5545 0.4038 
13.3730 0.6383 

Residual 
- 1.0560 
- 1.2083 
-0.2083 
1.2417 

-0.9129 
1.1871 

-0.6175 
0.3302 
1.6779 

- 1.5745 
-0.3268 
0.1732 
0.8209 

-0.8723 
-1.1360 
0.7640 
1.2640 

-1.5883 
0.8594 

-0.7930 
-0.6453 
1.4547 
0.1501 
1.6501 
1.7978 

-0.5545 
1.9455 

-3.3730 

0.0297 
0.0001 

Std. Err. of 
Residual 

1.2206 
1.2307 
1.2307 
1.2307 
1.2480 
1.2480 
1.2615 
1.2668 
1.2713 
1.2748 
1.2774 
1.2774 
1.2792 
1.2801 
1.2791 
1.2791 
1.2791 
1.2773 
1.2747 
1.2711 
1.2666 
1.2666 
1.2549 
1.2549 
I .2477 
1.2395 
1.2395 
1.1367 



Y 
16 - 

14 - 

I2 - 

10 - 

8- 

6- 

4- 

EXHIBIT 2 
Part8 

A 

$t AAA 

A A A AA 

AAA 
A A A 

i A 
A A 

2 
1 

AA 

0 ' , I I I I I I I I I I I I I I 

2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 II.5 12.5 13.5 14.5 15.5 16.5 

X 



Intercept 
GNP 
CPI 

Estimates Standard Error t Statistic 
-54.262 7.051 -7.696 

2.570 0.449 5.724 
1.024 0.037 27.676 

Adjusted R-Squared: 0.9916 

Probability > Itl 
0.0001 
0.0007 
o.ooo1 

Obs PP GNP CPI Fitted PP Residual 
1 3x 3.00 148 ‘os.o-- -0.0446 
2 111.0 3.07 153 110.3 0.6540 
3 114.0 2.97 157 114.2 -0.1863 
4 118.0 4.14 I58 118.2 -0.2171 
5 126.0 4.00 166 126.1 -0.05 18 
6 128.0 3.42 170 128.7 -0.6586 
7 134.0 2.67 177 133.9 0.0985 
8 134.0 1.78 178 132.6 1.3612 
9 131.0 1.09 180 132.9 -1.9144 
10 138.0 1.50 183 137.0 0.959 1 

Obs 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Residual Plot 
-2 -1 0 1 

* 

**** 

* 

** 

** 

2 Hat Diagonal Cook’s D 
0.4818 0.001 
0.2808 0.073 
0.1939 0.003 
0.3069 0.009 
0.3664 0.001 
0.2345 0.055 
0.2108 0.001 
0.2147 0.203 
0.3979 1.269 
0.3125 0.192 
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EXHIBIT 3 
Part 1 

ANALYSIS OF REGRESSION MODEL 

Parameter 
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Intercept 
GNP 
CPI 

Obs 
I 
2 
3 
4 
5 
6 
7 
8 
9 

Obs 
1 
2 
3 
4 
5 
6 
7 
8 
9 

EXHIBIT 3 
Part 2 

ANALYSIS OF REGRESSION MODEL 

Parameter 
Estimates Standard Error t Statistic 
-5 1.960 3.234 -16.067 

1.987 0.232 8.565 
1.022 0.017 60.118 

Adjusted R-Squared: 0.9984 

PP GNP 
105.0 
111.0 

3.00 
3.07 

114.0 2.97 
118.0 4.14 
126.0 4.00 
128.0 3.42 
134.0 2.67 
134.0 1.78 
138.0 1.50 

Residual Plot 
-2 -1 0 1 

* 

** 
* 

** 

* 
* 

** 

CPI Fitted PP 
148 !05.3-- 
153 110.5 
157 114.4 
158 117.8 
166 125.7 
170 128.6 
177 134.3 
178 133.5 
183 138.1 

2 Hat Diagonal Cook’s D 
0.4899 0.206 
0.2856 0.200 
0.2018 0.080 
0.3423 0.074 
0.3928 0.198 
0.2353 0.212 
0.2310 0.038 
0.3382 0.288 
0.483 1 0.010 

Probability > ltl 
0.0001 
0.0001 
0.0001 

Residual 
-0.2673 ~__~~ 
0.4832 

-0.4064 
0.247 1 
0.3487 

-0.5874 
-0.25 19 
0.4941 

-0.0600 
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* 
* 

* 
* 
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UNBIASED LOSS DEVELOPMENT FACTORS 

DANIEL M. MURPHY 

Abstruct 

Casualty Actuarial Societv literature is inconclusive re- 
garding whether the loss development technique is biased 
or unbiased, or which of the traditional methods of esti- 
mating link ratios is best. This paper frames the develop- 
ment process in a least squares regression model so that 
those questions can be answered for link ratio estimators 
commonly used in practice, and for two new average de- 
velopment factor formulas. As a byproduct, formulas for 
variances of point estimates of ultimate loss and loss re- 
serves are derived that reflect both parameter risk and 
process risk. An approach to measuring confidence inter- 
vals is proposed. A consolidated industry workers’ com- 
pensation triangle is analyzed to demonstrate the concepts 
and techniques. The results of a simulation study suggest 
that in some situations the alternative average loss devel- 
opment factor (LDF) formulas may outpe$orm the tradi- 
tional estimators, and that the performance of the incurred 
loss development technique can approach that of the 
Bornhuetter-Ferguson and Stanard-Biihlmann techniques. 

1. INTRODUCTION 

Three common methods of estimating link ratios are the Simple 
Average Development (SAD) method-the arithmetic average of the 
link ratios; the Weighted Average Development (WAD) method-the 
sum of losses at the end of the development period divided by the 
sum of the losses at the beginning; and the Geometric Average De- 
velopment (GAD) metho&--the nth root of the product of n link ra- 
tios. Casualty actuarial literature is inconclusive regarding which 
method is “best” or indeed whether the methods are biased or unbi- 

154 
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ased. See, for example, Stanard [9] and Robertson’s discussion [7]. 
The purpose of this paper is to present a mathematical framework for 
evaluating the accuracy of these methods; to suggest alternatives; and 
to unearth valuable information about the variance of the estimates of 
developed ultimate loss. 

It is assumed that the actuary has exhausted all adjustments for 
systematic or operational reasons why a development triangle may 
appear as it does, and the only concern left is how to deal with the 
remaining noise. Although the paper uses accident year to refer to the 
rows of the triangle, the theory also applies to policy year and report 
year triangles. 

2. POLNTESTMATES 

When we say that we expect the value of incurred losses as of, 
say, 24 months to equal the incurred value as of 12 months times a 
link ratio, it is possible that what we really mean is this: the value of 
incurred losses as of 24 months is a random variable whose expected 
value is conditional on the 12 month incurred value, and equals that 
12 month value times an unknown constant. Symbolically, 

y = bx + e, 

where x and y are the current and next evaluations, respectively; b is 
the unknown constant development factor, called the age-to-age fac- 
tor or link ratio; and e represents random noise. The first step in de- 
veloping losses is estimating the link ratios. 

Expected Value of the Link Ratio 

Let us first generalize, and suppose that the relationship between x 
and y is fully linear rather than strictly multiplicative. The more gen- 
eral model is 
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Model I y=a+bx+e. 

E (e) = 0; Var (e) is constant across accident years; 
and the e’s are uncorrelated between accident years 
and are independent of x. 

This model is clearly a regression of 24-month losses y on 12- 
month losses x. Although x is a priori a random variable, once an 
evaluation is made it is treated as a constant for the purpose of loss 
development. More precisely, the model says that the expected value 
of the random variable y conditional on the random variable x is 
linear in x: E (v I x) = a + hx. With this understanding of the relation- 
ship between x and y, all classical results of least squares regression 
may be brought to bear on the theory of loss development. See, for 
example, Scheffe [S]. For the remainder of this paper, all expectations 
are conditional on the current evaluation. 

The well known Gauss-Markoff Theorem says that the Best Lin- 
ear Unbiased Estimates (BLUE) of a and b are the least squares 
estimates, denoted G and 6: 

and 

This model will be referred to as the Least Squares Linear (LSL) 
model. 

Section 5 presents an argument that claim count development may 
follow the LSL model, supported by the simulation study of Appen- 
dix B. However, if one believes the y-intercept should truly be zero, 
perhaps the model to use is 
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Model II y=bx+e. 

E (e) = 0; Var(e) is constant across accident 
years; and the e’s are uncorrelated between 
accident years and are independent of x. 

This model would not be appropriate if there were a significant prob- 
ability that y should not equal zero when x does. 

It is well known that the BLUE estimator for b under Model II is 

(2.1) 

This model will be referred to as the Least Squares Multiplicative 
(LSM) model. 

Can the LSL or LSM assumptions be revised to say something 
about the more common development factor averages? Take the as- 
sumption of constant variance across accident years. Triangles of 
incurred or paid dollars under the force of trend may not conform to 
this assumption. On-leveling the loss triangle may try to adjust for 
such heteroskedasticity, but may introduce unwelcome side effects as 
well. A model that speaks directly to the issue of non-constant vari- 
ances is: 

Model III y=bx+xe. 

E (e) = 0; Var(e) is constant across accident years; 
and the e’s are uncorrelated between accident 
years and independent of x. 

This model differs from Model II in that it explicitly postulates a 
dependent relationship between the current evaluation, x, and the er- 
ror term, xe. Divide both sides of this equation by x. This model also 
says that the ratio of consecutive evaluations is constant across acci- 
dent years. In other words, it is the development percent, not the 
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development dollars, and the random deviation in that percent that 
behave consistently from one accident year to the next. 

This model’s BLUE for b is the simple average development 
(SAD) factor, denoted bSAD. This is easy to see. Transform Model III 

as follows: 

Model III’ y/x = b + e 

or u=bv+e. 

where v is identically equal to unity. Formula 2.1 says that 

which is b,,, . 

One may object that the proportionality of the error term to the 
full value of x overemphasizes the true relationship. It may seem 
more plausible that the variance of y, or the square of the error term, 
is proportional to x. The model’ that describes this relationship is: 

Model IV y=bx+ce. 

E (e) = 0; Vat-(e) is constant across accident years; 
and the e’s are uncorrelated between accident years 
and independent of x. 

This model’s BLUE for b is the weighted average development 
(WAD) factor, denoted bwAD This is also easy to see. Transforming 

t This model was inspired by Dr. Thomas Mack at the presentation of his 1993 The- 
ory of Risk prize paper “Measuring the Variability of Chain Ladder Reserve Esti- 
mates.” 
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Model IV by dividing both sides by &turns it into a simple regres- 
sion of u = y/&onto v = &. Formula (2.1) becomes: 

which is bWAD Thus, the weighted average is the best estimator if the 
variance of the development error is proportional to the beginning 
evaluation. 

A fifth model that can also adjust for trend is: 

Model V y = bxe. 

E (e) = 1; Var (e) is constant across accident years; 
and the e’s are uncorrelated between accident 
years and independent of x. 

This model says that random noise shocks the development process 
multiplicatively, and may be appropriate in those situations in which 
the random error in the percentage development is itself expected to 
be skewed. The BLUE for b under Model V is the geometric average 
development (GAD) factor, denoted bGAD. Indeed, transform Model 
V by taking the logarithm of both sides: 

In y = In b + In x + In e 

or 

In y - In x = In b + In e 

which is of the form 

u = b’v + e’ 

where b’ = In b, v = 1, and E (e’) = 0 . Then Formula (2.1) simplifies 
to: 
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gl = =uv -+u = $ny-lnx) = ;,I+ 
CV2 

Therefore, the least squares estimator of the “untransformed” pa- 
rameter b is: 

which is bGAD. 

For the remainder of the paper, the Linear model will refer to LSL. 
The Multiplicative models will refer to Models II to V-LSM, SAD, 
WAD, and GAD-unless otherwise noted. 

Estimate of the Next Evaluation 

The following point estimates of the expected value of incurred 
losses as of the next evaluation given the current evaluation are unbi- 
ased under the assumptions of their respective models:* 

Linear 

;=li+sx 

Multiplicative 

.G=S,. 

Estimated Ultimate Loss: A Single Accident Year 

The Chain Ladder Method states that if b, is a link ratio from 12 

to 24 months, b, is a link ratio from 24 to 36 months, etc., and if U is 

the number of links required to reach ultimate, then B, = b, b, . . . b, 
is the (to-ultimate) loss development factor (LDF). The implicit as- 
sumption is that future development is independent of prior develop- 
ment. This assumption may not hold in practice when, for example, 

2 Theorem 1 in Appendix C proves this for the linear model. The proof for the multi- 
plicative models is similar. 
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management issues orders for a one-time-only strengthening in case 
reserves. 

This all-important Chain Ladder Independence Assumption 
(CLIA) says that the relationship between consecutive evaluations 
does not depend on the relationship between any other pair of con- 
secutive evaluations. In mathematical terms, the random variable cor- 
responding to losses evaluated at one point in time conditional on the 
previous evaluation is independent of any other evaluation condi- 
tional on its previous evaluation. A direct result of this assumption is 
the fact that an unbiased estimate of a loss development factor is 
the product of the unbiased link ratio estimates; symbolically, 

i,=s, 6, . . . 8”. 
The very simplicity of the closed form LDF is one of the beauties 

of the multiplicative chain ladder method. But a closed form, to-ulti- 
mate expression is not necessary, and quite cumbersome for the more 
general LSL approach. Instead, this paper proposes the use of a recur- 
sive formula. A recursive estimate of developing ultimate loss illumi- 
nates the missing portion of the triangle (clarifying the communication 
of the analysis to management and clients), enables the actuary to 
switch models mid-chain, and is straightforward to program, even in 
a spreadsheet. Perhaps the most compelling reason, however, is that a 
recursive estimate is invaluable for calculating variances of predicted 
losses. (See Section 3.) 

The mathematical theory for developing recursive estimates of 
ultimate loss conditional on the current evaluation proceeds as fol- 
lows. Consider a single fixed accident year. Let x0 denote the 

(known) current evaluation and let x,, I x0 denote the random variable 

corresponding to the nrh subsequent (unknown) evaluation conditional 
on the current evaluation. The goal is to find an unbiased estimator 
for x, I xc. 
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By definition, an unbiased estimate of x, I x0 is one which esti- 
mates p,, = E (x, I x0 ). Let fi, denote such an estimate of pll . Theorem 

2 (Appendix C) proves that the 1, defined according to the recursive 

formulas in Table 2.1 are unbiased under the assumptions of their 
respective models. 

TABLE 2. I 

POINT ESTIMATE-cn 

FUTUREVALUEOFASINGLEACCIDENTYEAR 
n ?b4E PERIODS IN THE FUTURE 

Model n=l lZ>l 

Multiplicative 

An unbiased estimate of ultimate loss conditional on the current 
evaluation is therefore 8, . 

Estimated Total Ultimate Loss: Multiple Accident Years 

An estimate of total ultimate loss for more than one accident year 
combined could be obtained by simply adding up the separate acci- 
dent year &,‘s. However, a recursive expression is preferred primar- 

ily for the purpose of calculating variances because development 
estimates of ultimate loss for different accident years are not inde- 
pendent. 

Notation quickly obscures the derivation, but the idea of a recur- 
sive estimate of total ultimate loss for multiple accident years is this. 
Start at the bottom left comer of the triangle and develop the young- 
est accident year to the next age. Then, add that estimate to the 
current evaluation of the second youngest accident year, and develop 
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the sum to the next age. Continue recursively. An unbiased estimate 
of total losses at ultimate will be the final sum. 

The formulas are developed as follows. To keep the indices from 
becoming too convoluted, index the rows of the triangle in reverse 
order so that the youngest accident year is the zero row, the next 
youngest is row 1, and so on. Next, index the columns so that the 12 
month column is the zero column, the 24 month column is column 1, 
etc. A full triangle of N + 1 accident years appears in Figure 1. Let 

n-l 

‘n = C ‘i,n ’ ‘i,i 
i=O 

denote the sum of the accident years’ future evaluations conditional 
on the accident years’ current evaluations, and set 174, = E (S,,). We 
are looking for an unbiased estimate &, of M,. Recursive formulas 
for h, are given in Table 2.2. (See Theorem 9 in Appendix C.) 

FIGURE 1 
NOTATIONFORTI-EKNOWNANDUNKNOWN 

PORTIONSOFALOSSTRIANGLE 
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NY 0 1 2 n-1 n 

. 
t-4 I XN,P xN.? xnp . . Jh 
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TABLE 2.2 

POINT ESTIMATE - b,, 

TOTAL FUTURE VALUE OF MULTIPLE ACCIDENT YEARS 
nTn4E PERIODS IN THE FUTURE 

Model n=l n > 1 

Multiplicative 

Estimated Reserves for Outstanding Loss 

Assuming paid dollars to date are not expected to be adjusted 
significantly,3 an unbiased estimate of outstanding loss for a single 
accident year is k, - paid to date. For multiple accident years, an 

unbiased estimate is h, - total paid to date. 

3. VARIANCE 

The least squares point estimators of development factors, ulti- 
mate losses, or reserves are functions of random variables. As such, 
they are themselves random variables with their own inherent vari- 
ances. Estimates of these variances will be addressed in turn. 

Variance of the Link Ratio Estimators 

For the LSL or LSM models, the formula for the variance of the 
link ratio estimator is a straightforward result of least squares theory. 
For the other models, one must first transform the data so that the 
model takes on the usual regression form (i.e., the error term does not 
involve x).~ Once the regression theory yields up the estimate of 

“Which is not true if salvage, subrogation, or deductible recoveries could be signifi- 
cant. 

4Model III, for example. 
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var (6,, one applies that to the original, “untransformed” data in the 
formulas for estimated future losses (below). 

We will adopt the convention that a “hat” (*) over a quantity 
denotes an unbiased estimate of that quantity. Unbiased estimates of 
the variances of the link ratio estimators are given in Table 3.1. These 
formulas can be found in many statistics texts. See Miller and 
Wichem [6], for example. 

TABLE 3.1 
ESTIMATES OF THE VARIANCES OF THE LINK RATIO ESTIMATORS 

Model 

LSL 

LSM 

The average “x value” X = i xxi is the average of the known 

evaluations of prior accident years as of the age of the link ratio being 
estimated; I is the number of accident years used in the average. The 
unbiased estimate 2 of the variance o2 of the error term e, sometimes 
denoted s2, is the Mean Square Error (MSE) of the link ratio regres- 
sion. The MSE, or its square root s (sometimes referred to as the 
standard error of the y estimate), can be found in regression software 
output. Most regression software will also calculate &r(g), or its 
square root (sometimes referred to as the standard error of the coeffi- 
cient). 

Variance of Estimated Ultimate Loss: A Single Accident Year 

It is time 9 make an important distinction. The point estimate of 
ultimate loss p, from Section 2 above is an estimate of the expected 

value of the (conditional on x0) ultimate loss x”. Actual ultimate loss 



166 UNBIASED LOSS DEVELOPMENT FACTORS 

will vary from its expected value in accordance with its inherent 
variation about its developed mean pLv . As a result, the risk that 

actual ultimate loss will differ from the prediction 0, is comprised of 
two components. 

The first component, Parameter Risk, is the variance in the esti- 
mate of the expected value of xU I x0. The second component, Process 
Risk,’ is the inherent variability of ultimate loss about its conditional 
mean pc. Symbolically, if (conditional on x0) ultimate loss for a given 

accident year is expressed as the sum of its (conditional) mean plus a 
random error term E,, 

then the variance in the prediction of ultimate loss pred” is 

Var @red,) = Var (&,) + Var (EJ 
= Parameter Risk + Process Risk 
= Total Risk. 

Tables 3.2 and 3.3 give recursive formulas for estimates of Pa- 
rameter Risk and Process Risk, respectively.6 

’ This Process Risk is the conditional variance of developing losses about the condi- 
tional mean. As pertains to triangles of incurred loss dollars, it includes the uncon- 
ditional a priori process risk of the loss distribution (mitigated by the knowledge of 
losses emerged to date), the random variation of the claims occurrence and report- 
ing patterns, and the random variation within case reserves. 

6 The Parameter Risk formulas are derived in Theorem 6. The Process Risk formulas 
are derived in Theorem 7A for LSL and LSM, Theorem 7B for WAD, and Theo- 
rem 7C for SAD. See Appendix C. 
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TABLE 3.2 
PARAMETER RISK ESTIMATE - \r, (&J 

A SINGLE ACCIDENT YEAR 

Model n=l n>l 

The average “x value” 

1 N 
En-, = - I c xjn-, 

“I=0 ’ 

is the average of the known evaluations of prior accident years as of 
age n - 1; Z,, is the number of data points in the regression estimate of 

development from age n - 1 to age n. Each of the other quantities in 
Table 3.2 come from the loss triangle, from x0, from Section 2, from 

the reliression output (2, \r,($)), or from the prior recursion step 
(&r(pn-t)). The Multiplicative models refer to LSM, WAD, and 

SAD, but not GAD.7 

’ The regression calculation on the logarithm-transformed data will provide an esti- 
mate of the variance of the transformed parameter b’, but there is no easy transla- 
tion to an estimate of the variance of the original parameter b. The best way to 
work with the GAD model is in its transformed state. See Section 4 and Theorem 8 
of Appendix C. Similarly, Tables 3.3, 3.4, and 3.5 exclude mention of the GAD 
model. 
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TABLE 3.3 
F%O~ESS RISKESTIMATE-&(x~Ix~) 

AS~GLEACCIDENTYEAR 

Model n=l n>l 
~~___. 

LSL,LSM “2 
01 G; + ;; l&r (x,-, I xg) 

WAD 

SAD 

Each of the quantities in Table 3.3 come from the loss triangle, Sec- 
tion 2, the regression output, or the prior recursion step. 

Note that ultimate loss is not ultimate until the final claim is 
closed. Suppose it takes C development periods, C > U, to close out 
the accident year. Then the estimate of ultimate loss is not of xU I x0 
but of xc I x0. Although the point estimate would be the same at age C 

as at age U, the variances will not be the same. Even if b,, is not 

significantly different from unity for n > U, whereby parameter risk 
halts at age U, process risk continues to build up, so recursive esti- 
mates of Var (x, I x0) should be carried out beyond n = U. 

Variance of Estimated Ultimate Loss: Multiple Accident Years 

Actual total ultimate loss S, for multiple (open) accident years 

will vary from the estimate B, as a result of two sources of uncer- 

tainty: Parameter Risk-the variance in the estimate of MU--and 

Process Risk-the inherent variance of S, about its developed mean 
M,. Symbolically, if we express total ultimate loss for multiple acci- 

dent years (conditional on the current evaluation of all accident years) 
as the sum of its mean M, plus a random error term E,, 
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then the variance in the prediction of total ultimate loss pred” is 

Var @red,) = Var(h,) + Var(E,) 

= Parameter Risk + Process Risk 

= Total Risk. 

Tables 3.4 and 3.5 give recursive formulas for estimates of Parameter 
Risk and Process Risk, respectively.* 

TABLE 3.4 
PARAMETER RISK ESTIMATE - I&r (h,J 

Model 

Linear 

Multiplicative 

Model 

.- MULTPLE ACCIDENT YEARS 

TABLE 3.5 
PROCESS RISK-&r (S,) 

MULTIPLE ACCIDENT YEARS 

LSL, LSM 

WAD 

SAD 

‘Theorems 6 and 7 of Appendix C. 
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Variance of Estimated Outstanding Losses: 
Single or Multiple Accident Years 

Assume paid losses are constant at any given evaluation. Then the 
variance of loss reserves equals the variance of ultimate losses. 

4. CONFIDENCE INTERVALS 

Confidence intervals are phrased in terms of probabilities, so this 
discussion can no longer avoid making assumptions about the prob- 
ability distribution of the error terms, e,. The traditional assumption 

is that they are normally distributed or, under GAD, lognormally 
distributed. 

Confidence Intervals Around the Link Ratios 

Let a be the probability measurement of the width of the confi- 
dence interval. Table 4.1 gives two-sided 100 a% confidence inter- 
vals around the true LSL link ratios (a,.b,), where t,(dfi denotes 
Student’s t distribution with dfdegrees of freedom and where I, is the 

number of data points used in the estimate of the nrh link ratio. The 
degrees of freedom under the linear model are I,, -2 because two 

parameters are estimated; df= I,, -1 under the multiplicative models 

because only the single parameter b,, need be estimated. 

TABLE 4.1 
100 a% CONFIDENCE INTERVALS AROUND THE 

LINK RATIO PARAMETERS 

Multiplicative n/a 
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These formulas could be used, for example, to test the hypothesis 
that an is not significantly different from zero or that b, is not signifi- 

cantly different from unity. If the first hypothesis were true, then a 
multiplicative model may be preferred over the more general linear 
model. The second test of hypothesis would give an objective means 
of selecting U. 

Near the tail of the triangle, the degrees of freedom drop prohibi- 
tively. Inferences about the link ratios become less precise. If it can 
be assumed that beyond a certain age the variances of the residuals in 
the development model are identical (i.e., crp = c$’ for all i and j 
greater than some value), then a single estimate of that MSE can be 
obtained by solving for all link ratios simultaneously.9 

Confidence Intervals Around Estimated Ultimate Loss 

This section is motivated by the GAD model because all results 
are exact.” Under the transformed GAD model (and assuming identi- 
cally distributed e,‘s), 

In (x,) = In (b,) + In (xn-i) + In (e), 

or 

x,’ = b,,’ + YLn-, + e’. 

‘With a moderately-sized 5 x 5 triangle the two-tailed 90 percentile t-value is only 
18% greater than the smallest possible 90 percentile t-value, namely the 90 percen- 
tile point on the standard normal curve. This can be especially important for the 
small triangles that consultants or companies underwriting new products are wont 
to see. For an example of this, see the case study in Appendix A. 

“See Theorem 8 in Appendix C. The multiplicative chain ladder method makes the 
probability distribution of the error term of the compound process rather intracta- 
ble. The logarithmic transformation turns the GAD compound multiplicative proc- 
ess into a compound additive process in which case regression theory yields exact 
results. 
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The point estimate of ultimate transformed loss for a single accident 
year is: 

pred ’ = &’ = 
j=l 

An unbiased estimate of the Total Error = Parameter Error + 
Process Error of the (transformed) prediction is: 

Therefore, assuming one only wants to limit the downside risk, a one- 
sided lOOa% confidence interval for ultimate loss is: 

k’ - tc,(dfi’<ar (pred ‘) 

where df equals the number of data points in the multiple regression 
less the number of estimated link ratios, U. Finally, the corresponding 
lOOa% confidence interval around the “untransformed” prediction of 
ultimate loss is: 

With this motivation, an approximate lOOa% one-sided confidence 
interval around a recursive ultimate loss prediction using any of the 
models is: 

where df equals the total number of data points used in all link ratio 
estimates less the total number of estimated parameters. Two-sided 
confidence intervals are similarly defined, using + tq2 (dJ). If df is 
large enough, t,(dfi may be replaced by z,, the standard normal point, 
without significant loss of accuracy. This is often done in practice, 
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particularly in time series analysis, even when dfis not particularly 
large. The t distribution is preferred, however, because the thinner 
tails of the standard normal will understate the radius of the confi- 
dence interval. For another perspective on this subject, see Gard- 
ner [3]. 

Confidence Intervals Around Reserves 

Confidence intervals around reserves are obtained by subtracting 
paid dollars from the endpoints of the confidence intervals around 
ultimate loss, because if: 

a = Prob {lower bound I ultimate loss 5 upper bound}, 

then as well, 

a = Prob {lower bound - paid I outstanding loss I upper bound - paid}. 

5. AN ARGUMENT IN SUPPORT OF A NON-ZERO CONSTANT TERM 

When the current evaluation is zero but the next evaluation is not 
expected to be, the loss development method is abandoned. Three 
alternatives might be Bornhuetter-Ferguson, Stanard-Btihlmann, or a 
variation on frequency-severity. LSL might be a fourth possibility. 

Consider the development of reported claim counts. Let exposure 
be the true ultimate number of claims for a given accident year. 
Assume that the reporting pattern is the same for all claims. That is, if 
p, is the probability that a claim is reported before the end of the nrh 

year, then the p,‘s are independent and identically distributed for all 

claims. Based on these assumptions, it is not difficult to show that if 
x,, is the cumulative number of reported claims as of the nrh evalu- 

ation then 

P,-P,- 1 l-P, 
E (x, I xnel) = exposure ___ 

l-P,-, + GXn-’ (5.1) 
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which is of the form a,, + b,x, i. Clearly the constant term a,, is non- 
zero until all claims are reported. 

Equation 5.1 becomes surprisingly simple when the reporting pat- 
tern is exponential, as might be expected from a Poisson frequency 
process. In that case the LSL coefficients (an,b,,) are identical for 

every age n. This fact can be put to good use for small claim count 
triangles, as demonstrated in Appendix B. 

The constant term a, of Equation 5.1 is proportional to exposure. 

The slope factor b, does not depend on exposure but only on the 

reporting pattern (the p’s). Therefore, an increase in exposure from 
one accident year to the next will result in an upward, parallel shift in 
the development pattern. Claim count triangles, therefore, can be ex- 
pected to display development samples randomly distributed about 
not a single regression line but multiple parallel regression lines. 

Equation 5.1 may also be used as a paradigm for loss dollars, 
where trend may provide an upward force on exposure. 

6. CONCLUSION 

The traditional methods of calculating average development fac- 
tors are the least squares estimators of an appropriately framed 
mathematical model. The conclusion is that link ratio averages are 
unbiased if the development process conforms to the specified model. 
If the independence assumption of the chain ladder method holds as 
well, the loss development method is unbiased. 

A happy byproduct of the least squares perspective is that formu- 
las for the variances of estimated ultimate loss and reserves drop right 
out. The formulas are particularly easy to apply if ultimate loss by 
accident year is estimated through an iterative procedure, rather than 
through a single, closed-form expression. Confidence intervals 
around ultimate loss and reserves can be estimated easily, although 
the suggested approach yields only approximate results (with a spe- 
cial case exception). 
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The simulation study in Appendix B suggests that, in some situ- 
ations, the performance of the more general linear model may exceed 
that of the multiplicative models and may even rival that of the non- 
linear Bomhuetter-Ferguson and Stanard-Btihlmann methods. 

Some questions for further research come to mind. Can the formu- 
las for parameter error be used in conjunction with the collective risk 
model? Is there a simple way to estimate the correlation between paid 
and incurred triangles, and how can that information be used to derive 
optimal, variance-minimizing weights for making final selections 
from the paid and incurred development estimates? Can the theory be 
used to find credibility formulas for averaging link ratios from small 
triangles with link ratios from larger triangles? Finally, can the Chain 
Ladder Independence Assumption be relaxed, to allow, say, for 
higher-than-expected development in one period to be followed by 
less-than-expected development the next? 
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APPENDIX A 

A CASE STUDY OF INDUSTRYWIDE WORKERS’ COMPENSATION 

The methods of this paper are applied to the consolidated industry 
workers’ compensation incurred loss triangle as of December 3 1, 
1991 [ 11. The data and link ratios are displayed in Exhibits A-l and 
A-2. Bulk plus IBNR reserves are removed from the incurred loss 
and ALAE triangles of Schedule P-Part 2. We will use the loss devel- 
opment method based on five-year weighted average (WAD) link 
ratios to estimate total ultimate loss for accident years 1982 through 
1991. Then we will calculate the variance of that estimate, and use it 
to estimate the confidence level of industry reserves for those years. 

Per the text, to estimate variances for the WAD method we must 
first transform the data by taking the square root of all “current evalu- 
ations” x, then dividing all “future evaluations” y by &. We will 
model the data in two parts: 1) for the 12:24 month link ratios, and 2) 
for all other link ratios simultaneously. We shall see that there are 
justifiable statistical reasons for splitting the triangle this way. In 
addition it helps demonstrate the methodology. 

Exhibit A-3 runs the regression for the 12:24 month link ratios. 
The original data evaluated as of 12 and 24 months for the five most 
recent accident years-1986 through 199~are shown, as well as the 
transformed data. Using a popular spreadsheet package, the regres- 
sion was run on the transformed data. The regression output indicates 
a good fit (R* = 95%). Note that the “x coefficient” agrees with the 
average link ratio in Exhibit A-2; the variance of that estimated pa- 
rameter is 0.01487* = 0.00022. The MSE is 13.6272, which drives 
not only the variance of that estimated link ratio parameter but also 
the process error in the development of losses from age 12 to age 24. 

For setting up the multiple regression solution of the remaining 
link ratios-24:36 months through 108: 120 months-refer to Exhibit 
A-4. We fist build the y vector by stacking the “next” evaluations of 
those link ratios on top of each other. Then we create the x matrix by 
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placing the “current” evaluation in the same row as the corresponding 
y value. For each successive age of development, the x values are 
placed in successive columns. The transformed data are shown in 
Exhibit A-5, and the regression output is shown in Exhibit A-6. The 
R* value is extremely high. The MSE is much lower (0.3545) than it 
was for 12:24 development, which suggests that it was indeed pru- 
dent to split up the triangle into two regressions. Again, note that the 
x coefficients correspond to the original five-year weighted averages 
in Exhibit A-2. 

These parameters and variances are almost all that is needed to 
complete the triangle in Exhibit A-8. In fact, these factors will square 
the triangle to 120 months, but not to ultimate. Since Part 2 of Sched- 
ule P does not include a tail factor, we will estimate a tail from Part 1 
as follows. 

For the five oldest accident years, we will compare developed 
120-month losses (actuals for accident year 1982) with ultimate 
losses per industry estimates as reported in Schedule P-Part 1. Under 
the assumption that industry ultimate losses for those relatively ma- 
ture years are reasonably accurate, we will use the weighted average 
of that ratio as the 120:ultimate tail factor. This weighted average is 
subject to random variation, so we will use the techniques of the 
paper to estimate the MSE and variance of that tail factor estimate. 
This is done in Exhibit A-7. 

Exhibit A-8 shows the completed triangle, followed by the vari- 
ance calculationqusing the formulas of Tables 3.4 and 3.5. For exam- 
ple, the Table 2.2 recursive formula calculates the 48-month future 
value MS of accident year 1989 through 1991 losses in total as 

72,731 = (47,611+2 1,624) x 1.0505 1. The Table 3.4 recursive for- 
mula calculates the Parameter Risk of that estimate as: 

103,328 =(47,611 +21,624)*x0.00216* + 1.0505l'x 73,370 +0.002162 ~73,370. 

The Table 3.5 formula calculates the Process Risk of the projection as: 
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323,963 = (47,6 11+ 21,624) x 0.3545 + 1.0505 l* x 27 1,435. 

The estimates of ultimate loss using this procedure are compared with 
the consolidated industry estimates in Exhibit A-9. Total projected ul- 
timate loss and ALAE using the five year weighted averages of the 
link ratios, and the tail factor as estimated above, is (in millions) 
$191,509. The industry carried ultimate is $188,25 1, or about 1.7% 
less than indicated, a seemingly small difference. However, the stand- 
ard deviation of the projection is only $1,840. So the carried ultimate 
is about 1.77 standard deviations less than the projection. Therefore, 
using the Student t distribution with 30 degrees of freedom,’ ’ the esti- 
mated one-sided confidence level for industry reserves is about 4%. 

“Add up the dfs in Exhibits A-3, A-6, and A-7. 
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EXHIBITA- 1 

CONSOLIDATEDINDUSTRYWORKERS'COMPENSATJON 
REPORTEDINCURREDLOSSESANDALLOCATEDEXPENSESBYAGE 

(EXCLUDINGBULK+IBNR) 
($OOO,OOOOMI-~~ED) 

Accident A&F 
YCiU 12 24 36 48 60 72 84 96 108 iam 
1982 6,174 8,061 8,639 8,951 9,207 9.363 9,464 9,559 9,634 9,725 
1983 6,891 9.1 17 9,682 10,136 10,464 IO.651 10.774 10,893 11.025 
I984 8,048 10.761 11,937 12,656 13,023 13.28.5 13,449 13.615 
1985 8,796 12,050 13.287 14,060 14.572 14,835 15.109 
1986 9,450 13,086 14.552 15,334 15,797 16.144 
1987 10,953 15,074 16,699 17,485 17.961 
1988 12,776 17,600 19,519 20,299 
1989 13.600 19,677 21,624 
1990 14,890 2 1,268 
1991 15,497 

Source: Best’s Aggregates & Averages, 1992 Edition. 
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EXHIBIT A-2 
CONSOLIDATED INDUSTRY WORKERS’ COMPENSATION 

LINK RATIOS 

Accident Development Period ( Months) 
___ALL Yeal 12.24 24.36 3648 48:60 

1982 1.30566 107167 1.03614 1.02859 
1.01694 60.72 i.01os6 7284 1.00995 84.96 = 96.108 108:120 

1.00949 
1983 1.32298 1.06201 1.04683 1.03238 1.01788 1.01153 1.01108 1.01214 
1984 1.33712 1.10933 1.06023 1.02896 1.02013 1.01240 1.01234 
1985 1.36995 1.10269 1.05812 1.03641 1.01807 1.01851 
1986 1.38472 1.11204 1.05372 1.03020 1.02194 
1987 1.37619 1.10786 1.04703 I.02722 
1988 1.37757 1.10906 1.039% 
1989 1.44687 1.09892 
1990 1.42837 

Five Year Weighted Average 
1.40597 1.10576 1.05051 1.03080 1.01927 1.01379 1.01127 1.01014 1.00949 
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EXHIBIT A-3 

ESTIMATING THE 12:24 MONTH PARAMETER USINGREGRESSION 

Accident ~ “V 
Year 24 months ___~~~ 
1986 13,086 

1987 15,074 

1988 17,600 

1989 19,677 

1990 2 1,268 

Regression Oupt: 

Constant 

Std Err of y Est 

R Squared 

Number of Observations 

Degrees of Freedom 

X yfJT dim- 

12 months 24 months 12 months 

0 

3.6915 MSE = 13.6272 

95.03% 

5 

4 

x Coefficient 1.40597 

Std Err of Coef. 0.01487 
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EXHIBIT A-4 

ESTIMATINGTHE~~:~~THROUGH ~O~:~~OMONTHPARAMIZI-ERS 
USINGREGRESSION 

STEP~:ARRANGINGTHEDATABEFORETRANSFORMATION 
($000,000 OMITTED) 

Accident 
Year 
1985 
1986 
1987 
I988 
1989 
1984 
1985 
1986 
1987 
1988 
1983 
1984 
1985 
1986 
1987 
1982 
1983 
19&1 
1985 
1986 
1982 
1983 
1984 
1985 
1982 
1983 
1984 
1982 
1983 
1982 

n 
V 24mos 36 mos 48 mos 6Omos 72 mos 84 mos 96 mos 108 mos 

13,287 12,050 
14,552 13,086 
16,699 15,074 
19.519 17,600 
21,624 19,677 
12,656 11,937 
14,060 13,287 
15,334 14,552 
17,485 16,699 
20,299 19,519 
10,464 
13,023 
14,572 
15.797 
17,961 
9,363 

10,651 
13,285 
14,835 
16,144 
9,464 

10,774 
13,449 
15,109 
9,559 

10,893 
13,615 
9,634 

11.025 
9,725 

10,136 
12,656 
14,060 
15,334 
17,485 

9,207 
10,464 
13,023 
14,572 
15,797 

9,363 
IO.65 1 
13,285 
14.835 

9,464 
10,774 
I3.449 

9,559 
10,893 

9.634 
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EXHIBIT A-5 
ESTIMATING THE 24:36 TO 108:120 MONTH PARAMETERS 

USING REGRESSION 
STEP 2: TRANSFORMING THE DATA FOR THE REGRESSION 

Accident 
36 mos 24 mos 

109.77 
114.39 
122.77 
132.66 
140.27 

109.26 
115.27 
120.63 
129.23 
139.71 

year _& 
1985 121.04 
1986 127.21 
1987 136.02 
1988 147.13 
1989 154.15 
1984 115.84 
1985 121.97 
1986 127.11 
1987 135.30 
1988 145.29 
1983 103.94 
1984 115.76 
1985 122.89 
1986 127.57 
1987 135.83 
1982 97.58 
1983 104.12 
1984 116.41 
1985 122.89 
1986 128.44 
1982 97.81 
1983 104.39 
1984 116.69 
1985 124.05 
1982 98.25 
1983 104.95 
1984 117.40 
1982 98.54 
1983 105.64 
1982 99.08 

100.68 
112.50 
118.57 
123.83 
132.23 

95.95 
102.29 
114.12 
120.71 
125.69 

96.76 
103.20 
115.26 
121.80 

97.28 
103.80 
115.97 

97.77 
104.37 

98.15 
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EXHIBIT A-6 
ESTIMATING THE 24:36 TO 108: 120 MONTH PARAMETERS 

USING REGRESSION 
STEP 3: RUNNING THE REGRESSION 

Regression Output: 
constant 
Std Err of y Est 
R Squared 
Number of Observations 
Degrees of Freedom 

0 
0.5954 MSE =0.3545 
99.9% 

30 
22 

2433 -36r48 /mjo @K!z 7234 84:96 108:120 .. _ 96:108 ~~~ 
x Coefficient 1.10576 1.05051 1.03080 1.01927 1.01379 1.01127 1.01014 1.00949 
Std Err of Coef. 0.00214 0.00216 O.M)226 0.00237 0.0027 I 0.00324 0.00416 0.00607 
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EXHIBIT A-7 

ESTIMATING THE TAIL FACTOR USING REGRESSION 

Accident Year 

1982 

1983 

1984 

1985 

1986 

Wtd Avg 

Developed Losses 
to Age 120 (y) Carried Ultimate (x) Tail Factor 

9,725 9,966 I IX2482 

11,130 1 I.355 1.02019 

13,884 14,081 1.01422 

15,581 15,720 I .00889 

16,877 17,141 1.01561 

67,197 68,263 I .01586 

Regression Matrix 

Accident Year yfi G -__ 
1982 101.06 98.615 

1983 107.63 105.500 

1984 119.51 I 17.830 

1985 125.93 124.820 

1986 131.94 129.910 

Regression Output: 

Constant 0 

Std Err of y Est 0.6680 MSE = 0.4462 

R Squared 99.7%, 

Number of Observations 5 

Degrees of Freedom 4 

x Coefficient(s) 1.01586 

Std Err of Coef. 0.00258 
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EXHIBIT A-8 
CONSOLIDATEDINDUSTRYWORKERS'COMPENSATION 

COMPLETEDLOSSDEVELOPMENTTRIANGLE 
($000,0000~1~~~) 

Accident 49 

Year 12 24 36 48 60 72 84 96 108 120 Ultimate 

1982 6,174 8.061 8,639 8.9.5 1 9,207 9,363 

1983 6,891 9,117 9,682 10,136 IO.464 10,651 

1984 8,048 IO.761 Il.937 12,656 13,023 13,285 

198s 8.7% 12.O.W 13,287 14,060 14,572 14.835 

1986 9,450 13,086 14,552 15.334 15,797 lb.144 16,366 lb.551 16,719 lb.877 17,145 

1987 10,953 15,074 lb.699 17,485 17,961 18.307 18.559 18,768 18,959 19.138 19,442 

1988 12,776 17,600 19,519 20,299 20,924 21,328 21,622 21,865 22,087 22.2% 22,650 

1989 13.600 19,677 21,624 22.716 23,415 23,866 24,1% 24,468 24,716 24,951 25,346 

1990 14.890 21.268 23,518 24,706 25.467 25,957 26,315 26,612 26,881 27.136 27.567 

1991 15,497 21.789 24,093 25,310 26,089 26,592 26,959 27,263 27,539 27,800 28,241 

n I 2 3 4 5 6 7 8 9 IO 

M” 21.789 47.61 I 72,731 95,896 116,050 134,017 150.806 166,088 178,794 I9 1,509 

Parameter 
Risk 53,070 73,370 103,328 153,825 232.678 367.838 610.182 l,O91.197 2,266,302 2,574,752 

PWXSS 
Risk 21 1,184 271,435 323,963 377.671 433,552 493,096 557.499 627.671 703,340 810,52 I 

T&al 
Risk 264,254 344,805 427,291 53 1,496 666,23 I 860,934 I .167,68 I I,71 8,868 2,%9,642 3,385,272 

Standard 
Deviation 514 587 654 729 816 928 1,081 I.31 I 1.723 1,840 
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EXHIBIT A-9 
CONSOLIDATED INDUSTRY WORKERS’ COMPENSATION 

ESTIMATED REDUNDANCY/(DE!FICIENCY) IN CARRIED RESERVES 
AND ASS~CIATE~D LEVEL OF CONFIDENCE 

ACCIDENT YEARS 1982- 199 I 
($000,000 OMITTED) 

Accident Year Estimated Ultimate Carried Ultimate 

1982 9,879 9,966 
1983 1 I.307 1 1,355 
1984 14,104 14,081 
1985 15,828 15,720 
1986 17,145 17,141 

1987 19,442 19,304 

1988 22,650 22,217 
1989 25,346 24,645 
1990 27,567 26,710 
1991 28,241 27,l I2 
Total 191,509 I 88,25 I 

Redundancy/ 
(Deficiency) 

87 
48 

(23) 

(109) 
(4) 

(138) 
(433) 
(702) 
(856) 

(1,129) 
(3,258) 

Standard Deviation 1,840 

Degrees of Freedom 30 
Deficiency Ratio to Standard Deviation -1.77 
Approximate Confidence Level 4% 
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APPENDIX B 

COMPARENG THE MODELS USING SIMULATION 

In the 1985 Proceedings, Mr. James Stanard published the results 
of a simulation study of the accuracy of four simple methods of 
estimating ultimate losses using a 5x5 incurred loss triangle. For the 
exposure tested12 it was demonstrated that WAD loss development 
was clearly inferior to three additive methods, Bomhuetter-Ferguson 
(BF), Stanard-Btihlmann (SB)i3, and a little-used method called the 
Additive Model (ADD), because it had greater average bias and a 
larger variance. The three additive methods differ from the multipli- 
cative methods in that they adjust incurred losses to date by an esti- 
mated dollar increase to reach ultimate, whereas the multiplicative 
methods adjust by an estimated percentage increase. ADD’s esti- 
mated increase is a straightforward calculation of differences in col- 
umn means, Y-X. BF and SB estimated increases are more 
complicated functions of the data. 

Stanard’s simulation was replicated here to test additionally the 
accuracy of LSM, LSL, SAD, and GAD. The model does not attempt 
to predict “beyond the triangle,” which is to say that the methods 
project incurred losses to the most mature age available in the trian- 
gle, namely the age of the first accident year. In the discussion below, 
“ultimate loss” refers to case incurred loss as of the most mature 
available age. 

The LSL method was modified to use LSM in those instances 
when the development factors were “obviously wrong,” defined to be 

t2Normally distributed frequency with mean =40 and standard deviation =m 
claims per year, uniform occurrence date during the year, lognormal severity with 
mean = $10,400 and standard deviation = $34,800, exponential report lag with 
mean = I8 months, exponential payment lag with mean = 12 months, and case re- 
serve error proportional to a random factor equal to a lognormal random variable 
with mean = 1 and variance = 2, and to a systematic factor equal to the impact of 
trend between the date the reserve is set and the date the claim is paid. 

t3Mr. Stanard called this the “Adjustment to Total Known Losses” method, a.k.a. the 
“Cape Cod Method.” 



190 UNBIASED LOSS DEVELOPMENT FACTORS 

when either the slope or the constant term was negative. In real-life 
situations, this rudimentary adjustment for outliers can be expected to 
be improved upon with more discerning application of actuarial judg- 
ment. The reason this modification was necessary is due to the fact 
that a model that fits data well does not necessarily predict very well. 
As an extreme example, LSL provides an exact fit to the sample data 
for the penultimate link ratio (two equations, two unknowns), but the 
coefficients so determined reveal nothing about the random processes 
that might cause another accident year to behave differently. It is not 
possible to identify every conceivable factor that could explain the 
otherwise “unexplained” variance of a model. Such unidentified vari- 
ables are reflected through the averaging process of statistical analy- 
sis: as the number of data points minus the number of parameters (the 
definition of degrees of freedom) increases, the model captures more 
of the unexplained factors and becomes a better predictor. 

In Exhibits B-l through B-4, the average bias and standard devia- 
tion of the first accident year are zero because, as stated above, the 
simulation defines “ultimate” to be the current age of that accident 
year. 

Exhibit B-l: Claim Counts Only 

In this case, 5,000 claim count triangles were simulated; the “ac- 
tual ultimate” as of the last column was simulated; accident year 
ultimates were predicted using the separate methods; and averages 
and standard deviations of the prediction errors were calculated. 

LSL is the best performer, as measured by the standard deviation 
of the accident-year-total projection. The additive models-ADD, 
SB, and BF-are not far behind. Of the multiplicative estimators, 
LSM has the smallest bias and the smallest variance for every acci- 
dent year. WAD is almost as accurate. 

Why should these results not be surprising? Consider first the 
average bias. In Figure B-l is graphed the relationship between in- 
curred counts at 12 months, X, with incurred losses at 24 months, y, 
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which we know from Section 5 of the text must be a linear relation- 
ship with a positive constant term. The ADD and WAD estimates are 
also shown. All relationships are shown in their idealized states 
where LSL is collinear with the true relationship and where the point 
( X, 7 ) coincides with its expectation (E (x), E Cy)). Note that the 
ADD model is parallel to the line y = x because it adds the same 
amount for every value of x. The conditional (on x) bias is the signed, 
vertical distance from the estimated relationship to the true relation- 
ship. As is clear from Figure B- 1, WAD and ADD can be expected to 
overstate y for x > E (x) and understate y for x < E (x). The weighted 
average of the conditional bias across all values of x, weighted by the 
probability densityfcx), is simulated by the average bias that appears 
in Exhibit B- 1. 

Ideally, this weighted average of the bias across all values of x 
should be expected to be zero, which it is for the Additive Model. 
ADD estimates E (y) - E (x) using j -X calculated from prior acci- 

FIGURE B- 1 
IDEALIZED DEVELOPMENT ESTIMATORS 

No TREND 

Cumn~ Evaluation(x) 
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dent years. Since the environment in the first scenario-exposure, 
frequency, trend, etc.-does not change by accident year, the average 
of 5,000 simulated samples of this dollar difference across all possi- 
ble values of x should get close to the true average dollar difference 
by the law of large numbers, so the average bias should get close to 
zero. For the multiplicative estimators, the average bias will probably 
not be zero. Take the WAD method for example. Clearly there is a 
positive probability (albeit small) that I? = 0, so the expected value of 

- -. the WAD link ratio Y lx IS infinity. The average of 5,000 simulations 
of this ratio attempts to estimate that infinite expected value, so it 
should not be surprising that WAD usually overstates development- 
and the greater the probability that X= 0. the greater the overstate- 
ment.14 

The average bias of the BF and SB methods should be greater than 
zero as well because the LDFs on which they rely are themselves 
overstated more often than not. The average LSM bias is a more 
complicated function of the probability distribution of x because the 
LSM link ratio involves x terms in the numerator and squared x terms 
in the denominator. The average bias appears to shift as an accident 
year matures. The LSL method as modified herein has residual aver- 
age bias because it incorporates the biased LSM method when it 
detects outliers. It also seems to be the case that the bias of the 
estimated 4:5 year link ratio is driving the cumulative bias for the 
immature years. 

Figure B-l illustrates the difference between a model that is unbi- 
ased for each possible value of x, LSL, and a model which is “unbi- 
ased’ only in the average, ADD. To reiterate, the purely multiplicative 
and purely additive estimators will understate expected development 
when the current evaluation is less than expected and overstate ex- 
pected development when the current evaluation is greater than ex- 
pected. 

‘?his argument can be made more rigorous. The condition that the probability of the 
sample average of x be greater than zero is a sufficient but not necessary condition 
that E (hAD) = 00. For a general, heuristic argument that WAD yields biased esti- 
mates, see Stanard [8]. 
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Next, consider the variance. In simplified terms, the average bias 
statistic allows expected overstatements to cancel out expected under- 
statements. This is not the case for the variance statistic. In Figure B-l 
it is clear that, ideally, the ADD estimate of y will be closer to the true 
conditional expected value of y (the idealized LSL line) than will the 
WAD estimate for virtually all values of x. Thus, the variance of 
ADD should be less than the variance of WAD. The variance of LSL 
should be the smallest of all. However, LSL estimates twice as many 
parameters than do ADD and LSM, so it needs a larger sample size to 
do a comparable job. For the relatively small and thin triangles simu- 
lated here, a pure unmodified LSL estimate flops around like a fish 
out of water-the price it must pay to be unbiased for all values of x. 
In other words, in actual practice, the variance of an LSL method 
unmodified for outliers and applied to a triangle with few degrees of 
freedom will probably be horrendous. What is perhaps remarkable is 
the degree to which the rudimentary adjustment adopted here tames 
the LSL method. 

Finally, let’s look at what would happen if we estimated the LSL 
parameters under the assumption that all link ratio coefficients 
(a,, b,) are equal. We know from the previous section that this is true 

because the reporting pattern is exponential. The results of this model 
are: 

SIMULATIONRENJLTSWHEN 
ALLLINKRATIOPARAMETERSAREASSUMEDEQUAL 

AN 

1 

2 

3 

4 

5 

Total 

Average Std Dev Average % Std Dev % Age-Age Age-Age 
Bias Bias Bias Bias Bias % Bias 

0.000 0.000 o.ooo o.ooo 

0.025 1.275 0.001 0.034 1.035 1.001 

0.006 1.669 0.001 0.044 (0.019) o.om 

(0.034) 1.850 0.000 0.049 (0.040) (0.001) 

pW 1.815 0.001 0.049 0.028 0.001 

(0.010) 5.064 O.OCHl 0.027 
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This model is the beneficiary of more degrees of freedom (eight- 
two parameters estimated from ten data points for each iteration) and 
as a result has the smallest average bias and variance yet. These 
results lead to a somewhat counter-intuitive conclusion: Information 
about development across immature ages sheds light on future devel- 
opment across mature ages. For example, the immature development 
just experienced by the young accident year 4 from age 1 to age 2 is a 
valuable data point in the estimate of the upcoming development of 
the old accident year 2 from age 4 to age 5. This should not be 
viewed simply as a bit of mathematical prestidigitation but as an 
example of the efficiencies that can be achieved if simplifying as- 
sumptions+even as innocuous as exponential reporting-can be jus- 
tified. 

Exhibit B-2: Random Severity, No Trend 

In this case, 5,000 triangles of aggregate, trend-free incurred 
losses were simulated and the same calculations were performed. 

Rarely does the property/casualty actuary experience loss triangles 
devoid of trend, so this model is of limited interest. The introduction 
of uncertainty via the case reserves makes it more likely that negative 
development will appear, in which case LSL reverts to LSM. As a 
result, the additive models overtake LSL in accuracy. 

Exhibit B-3: Random Severity, 8% Severity Trend Per Year 

This is where it gets interesting. This could be considered the 
typical situation in which an actuary compiles a loss triangle that 
includes trend and calculates loss development factors. In this case, 
the environment is changing. The trending process follows the Uni- 
fied Inflation Model (Butsic and Balcarek, [2]) with a = %, which is 
to say that half of the impact of inflation is a function of the occur- 
rence date and half is a function of the transaction date (e.g., evaluat- 
ing the case incurred or paying the claim). 



UNBIASED LOSS DEVELOPMENT FACTORS 195 

At first, one might think that a multiplicative estimator would 
have had a better chance of catching the trend than would an additive 
estimator, but such does not appear to be the case. Consider Figure 
B-2 which graphs expected 12-24 month development for the first 
four accident years. Trend has pushed the true development line up- 
ward at an 8% clip, illustrated by four thin lines. The LSL model tries 
to estimate the average of the development lines, the WAD estimator -- 
tries to pass through the average ( x, y ) midpoint of all accident years 
combined, and the additive estimators try to find the line parallel to 
the line y=x which also passes through the average midpoint. Again, 
ADD will probably be closer than WAD to the average LSL line for 
every value of x for each accident year. The upward trend makes it 
more likely that the estimated LSL intercept will be less than zero, 

FIGURE B-2 
IDEALIZEDDEVELOPMENTESTIMATORS 

WITHTREND 

Current Evaluation (x) 
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which makes it more likely that LSL reverts to LSM, so the modified 
LSL’s variance gets closer yet to the variance of LSM. 

Exhibit B-4: Random Severity, 8% Trend, On-Level Triangle 

In this case, rows of the triangle were trended to the level of the 
most recent accident year assuming that the research department is 
perfect in its estimate of past trend. For most of the models, the total 
bias decreases from that of the not-on-level scenario while the total 
variance increases. LSM and WAD are virtually unchanged, GAD 
and SAD are exactly unchanged (of course), and the nonlinear esti- 
mates move in opposite directions. 

For the most part, working with the on-level triangle does seem to 
improve the accuracy of estimated ultimate loss, but perhaps not to 
the degree one might hope. It would be interesting to see if working 
with separate claim count and on-level severity triangles would suc- 
cessfully decompose the random effects and further improve the pre- 
dictions. 
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LSL 

2 

4 

5 

Total 

ADD 

2 

3 

4 

5 

Total 

LSM 

4 

5 

Total 

WAD 

2 

3 

4 

5 .~ 
Total 
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EXHIBIT B- 1 
Part 1 

CLAIMCOUNTSONLY 

Average Std Dev Average 
B& Bias % Bias 

Std De\ Age-Age Age-Age 
% Bias Bias Q Bias 

0.000 0.000 0.000 0.000 

0.116 2mO 0.003 0.053 

0.153 2.772 0.004 0.073 

0.101 3.166 0.003 0.083 

0.080 3.780 0.003 0.100 

0.45 1 8.251 0.002 0.043 

0.000 o.ocMl o.ooo o.oM) 

0.059 1.868 0.002 0.049 

0.075 2.847 0.002 0.075 

0.047 3.644 0.002 0.0% 

0.096 3.692 0.003 0.097 

0.277 8.407 0.001 0.044 

0.000 

0.116 

0.143 

0.004 

(0.748) 

(0.485) 

o.ooo 0.000 

2.000 0.003 

3.321 0.004 

5.246 O.ooO 

10.536 (0.020) 

14.009 (0.003) 

0.000 o.oco 

2.000 0.003 

3.336 0.005 

5.308 0.007 

11.101 0.023 

14.520 0.008 

0.000 

0.053 

0.087 

0.138 

0.277 

0.074 

0.000 

0.116 

0.203 

0.28 1 

0.888 

1.488 

o.oco 

0.053 

0.088 

0.139 

0.292 

0.076 

0.116 0.003 

0.037 0.001 

(0.052) (0.00 I) 

(0.02 I) 0.000 

0.059 0.002 

0.016 0.000 

(0.028) 0.000 

0.049 0.001 

0.116 0.003 

0.027 0.001 

(0.139) (0.004) 

(0.752) (0.020) 

0.116 0.003 

0.087 0.002 

0.078 0.002 

0.607 0.016 
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AIY 

GAD 

2 

4 

Total 

SAD 

4 

5 

Total 

SB 

Total 

BF 

2 

3 

4 

5 

Total 
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EXHIBIT B- 1 
Part 2 

CLAIM COUNTS ONLY 

Average Std Dev Average Std Dev Age-Age Age-Age 
Bias Bias 7c Bias % Bias Bias 8 Bias 

O.OQO 

0.116 

0.234 

0.424 

1.873 

2.647 

0.000 o.oca 

2.000 0.003 

3.345 0.006 

5.346 0.011 

1 I.585 0.049 

14.943 0.014 

0.000 0.000 

2.OQO 0.003 

3.354 0.007 

5.390 0.015 

12.268 0.078 

15.530 0.02 1 

o.ooo 

0.053 

0.088 

0.140 

0.305 

0.079 

0.116 0.003 

0.118 0.003 

0.190 0.005 

1.449 0.038 

0.000 

0.116 

0.265 

0.57 1 

2.958 

3.910 

0.000 

0.053 

0.088 

0.142 

0.322 

0.082 

0.116 0.003 

0.149 0.004 

0.306 0.008 

2.387 0.062 

0.000 

0.102 

0.147 

0.137 

0.185 

0.57 1 

o.oco 0.000 

1.940 0.003 

3.021 0.004 

3.997 0.004 

4.280 0.006 

9.564 0.003 

o.oco 0.000 

1.952 0.003 

3.064 0.005 

4.151 0.006 

5.164 0.010 

10.626 0.004 

0.000 

0.051 

0.079 

0.105 

0.113 

0.050 

0.102 

0.045 

(0.010) 

0.048 

0.000 

0.114 

0.184 

0.215 

0.338 

0.85 1 

0.000 

0.05 1 

0.081 

0.109 

0.136 

0.056 

0.114 

0.070 

0.03 1 

0.123 

0.003 

0.001 

0.000 

0.002 

0.003 

0.002 

0.001 

0.004 



Am 

LSL 

2 

LSM 

4 

5 

Total 

2 

3 

4 

5 

Total 

WAD 

GAD 

Total 

2 

4 

5 

Total 

UNBIASED LOSS DEVELOPMENT FAClORS 

EXHIBIT B-2 
Part 1 

RANDOM SEVERITY, No TREND 

Average Std Dev Average Std Dev Age-Age Age-Age 
Bias Bias % Bias % Bias Bias % Bias 

0 0 0.000 0.000 

9,206 193,945 0.026 0.302 

8,749 218,463 0.069 0.420 

30,028 429,112 0.138 0.650 

39,426 535,959 0.228 1.004 

87,410 888.404 0.040 0.356 

0 

9,206 

6,192 

24.33 1 

12,290 

52,019 

0 0 0.000 

9,206 193,945 0.026 

11.815 222,675 0.048 

51,641 5 15,997 0.119 

116.664 894.747 0.310 

0 

193,945 

221,114 

477,371 

825 131 A 
1.127.243 

189.327 1,208,220 0.088 

0 

9,206 

13,873 

61,706 

184,903 
269,687 

0 

193.945 

219,115 

484,892 

854 318 A 
I, 130,473 

o.oou O.OCQ 

0.026 0.302 

0.033 0.415 

0.052 0.742 

0.036 1,401 

0.020 0.453 

O.OlM 0.000 

0.026 0.302 

0.054 0.412 

0.147 0.763 

0.489 1.593 

0.130 0.469 

O.OOU 

0.302 

0.421 

0.807 

1.597 

0.487 

9,206 0.026 

(458) 0.042 

21,279 0.065 

9,398 0.079 

9,206 0.026 

(3,015) 0.007 

18,140 0.018 

( ww (0.015) 

9,206 0.026 

2,608 0.02 1 

39,826 0.068 

65,023 0.171 

9,206 0.026 

4,666 0.027 

47,833 0.088 

123,197 0.298 

199 
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SAD 

ADD 

‘NY 
Average Std Dev Average Std Dev Age-Age Age-Age 

Bias Bias % Bias 8 Bias Bias B Bias 

1 0 0 0.000 o.ooo 

2 9,206 193,945 0.026 0.302 

3 20,621 227,597 0.072 0.440 

4 97,144 598.072 0.233 0.980 

5 405,202 1,241,9&I 1.063 2.5 16 

Total 532.174 1.552.136 0.255 0.640 

0 

158 

(7.445) 

324 

(2,668) 
(9.63 1) 

0 0.000 

185,077 0.010 

196,201 0.023 

272,189 0.066 

271.443 0.140 

O.OCil 

0.329 

0.472 

0.581 

0.680 .__. 
0.255 

SB 

Total 

BF 

Total 

0 

6,126 

3,909 

15,414 

11,071 

36,520 

o.oou O.ooO 

0.026 0.304 

0.052 0.430 

0.097 0.575 

0.172 0.698 

0.017 0.271 633,658 

1 0 0 0.000 0.000 

2 9,040 200,965 0.034 0.373 

3 10,750 221,175 0.073 0.525 

4 29,330 331,648 0. I32 0.691 

5 3m 374,743 w25 05% 
Total 86,244 820,177 0.040 0.342 

UNBIASED LOSS DEVELOPMENT FACTORS 

EXHIBIT B-2 
Part 2 

RANDOM SEVERITY, No TREND 

5%.942 (0.004) 

0 

184,062 

I%,494 

291.195 

286,813 

9,206 0.026 

11,415 0.045 

76.523 0.150 

308,058 0.673 

158 0.010 

(7,fJo3) 0.013 

7.769 0.042 

(2,991) 0.069 

6,126 0.026 

(2.217) 0.025 

11,506 0.043 

(4,344) 0.068 

9,040 0.034 

1.710 0.038 

18,580 0.055 

7.794 0.082 



Ari 

LSL 

1 

2 

3 

4 

5 

Total 

LSM 

1 

2 

3 

4 

5 

Total 

WAD 

1 

2 

3 

4 

5 

Total 

GAD 

1 

2 

3 

4 

5 

Total 

UNBIASED LOSS DEVELOPMENT FACTORS 

EXHIBIT B-3 
Part 1 

RANDOM SEVERITY. 8% TREND 

Average Std Dev Average 
Bias Bias % Bias 

0 0 0.000 

12,848 190,771 0.030 

11,815 3 18,7% 0.061 

8,339 5 15,561 0.080 

(23,573) 731,012 0.075 

9,430 1.181.752 0.002 

0 0 

12,848 190,771 

16,307 328,599 

27,133 580,424 

8.411 1,111,762 

64,698 I .504.280 

0 

12,848 

23,423 

62,726 

169,257 

268,255 

0 0 0.000 

12,848 190,77 1 0.030 

26,050 331,370 0.062 

77,169 580,779 0.149 

277.757 1.295.202 0.495 

0 0.000 

190,771 0.030 

333,524 0.057 

608,272 0.122 

I ,272,791 0.310 

0.000 0.000 

0.030 0.300 

0.043 0.475 

0.057 0.728 

0.035 1.360 

0.021 0.472 

I ,659,744 0.098 

393,824 1.619.314 0.148 

Std Dev Age-Age Age-Age 
% Bias Bias 8 Bias 

O.OiM 

0.300 

0.469 

0.629 

0.944 

0.367 

12,848 0.030 

( 1,034) 0.030 

(3,475) 0.018 

(31,912) (0.005) 

12,848 0.030 

3,458 0.013 

10,826 0.013 

(18,722) (0.02 1) 

0.000 

0.300 

0.477 

0.775 

1.620 

0.527 

12,848 0.030 

10,575 0.026 

39,303 0.061 

106,531 0.168 

0.000 

0.300 

0.466 

0.755 

1.717 

0.534 

12,848 0.030 

13,201 0.03 1 

51,119 0.082 

200.588 0.301 

201 



202 

A/y 

SAD 

4 

5 

ADD 

Total 

Total 

SB 

4 

5 

Total 

0 

10,229 

7,628 

(5,009) 

(62.946) 

(50,098) 

0 

177,339 

272,101 

357,093 

420.1 17 

825,565 

0.000 

0.036 

0.055 

0.057 

0.021 

(0.018) 

0 0 O.OQO 

16,575 2 12,872 0.052 

23,046 3 10,265 0.091 

25,574 422,741 0.1 14 

5 (9,528) 534,249 0.101 

Total 55,667 1.1 13,743 0.020 

BF 

UNBIASED MSS DEVELOPMENT FACTORS 

EXHIBIT B-3 
Part 2 

RANDOMSEVERITY, 8% TREND 

Average Std Dev Average Std Dev Age-Age Age-Age 
Bias Bias % Bias pk Bias Bias Q Bias 

0 0 o.oco O.OOU 

12,848 190,771 0.030 0.300 12,848 

35,174 346,105 0.080 0.497 22,326 

124,456 685,305 0.235 0.Y24 89,282 

647,473 4,098,366 I.107 4.508 523.017 

819.95 1 43291,335 0.299 1.164 

0 0 0.000 0.000 

(2,249 177,229 0.008 0.337 (2.249) 

(15,161) 262,260 0.009 0.46 1 (12.Y121 

(35,576) 335.003 0.005 0.511 (20.414) 

(92,221) 399,076 (0.028) 0.551 (56,645) 

(145,207) 751,285 (0.053) 0.249 

0.000 

0.323 10,229 

0.456 cL601) 
0.530 (12,637) 

0.59iI (57,936) 

0.269 

0.000 

0.42 1 16.575 

0.589 6,47 1 

0.668 2,529 

0.780 (35,103) 

0.357 

0.030 

0.049 

0. 144 

0.706 

0.008 

0.00 I 

(0.004) 

(0.033) 

0.036 

0.018 

o.M)2 

(0.034) 

0.052 

0.037 

0.02 1 

(0.012) 
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EXHIBIT B-4 
Part 1 

RANDOMSEVERITY,S%TREND,ESTIMATESBASEDON 
ON-LEVEL(AT ~%)TRIANGLE 

A/Y 

LSL 

I 

2 

3 

4 

’ 5 

Total 

LSM 

1 

2 

3 

4 

5 

Total 

WAD 

1 

2 

3 

4 

-5 

Total 

GAD 

I 

2 

3 

4 

5 .~ 

Total 

Average Std Dev Average Std Dev Age-Age Age-Age 
Bk Bias 70 Bias % Bias Bias % Bias 

0 

12,848 

19,663 

38,827 

44,325 

115,663 

0 

12,848 

16.069 

26,536 

3 262 L-- 
58,715 

0 

12,848 

23,310 

62.52 1 

166 470 -.L-~ 

265,149 

0 0 0.000 0.000 

12,848 190,771 0.030 0.300 

26,050 331,370 0.062 0.466 

77,169 580,779 0.149 0.755 

277?27- 1,295,202 0.495 1.717 

393,824 1,619,314 0.148 0.534 

0 0.000 0.000 

190.771 0.030 0.300 

321,503 0.080 0.479 

508,047 0.147 0.637 

695,596 0.216 0.928 

1.148.516 0.045 0.357 

0 0.000 O.OQO 

190.77 I 0.030 0.300 

326,583 0.043 0.473 

577,658 0.055 0.725 

1,070,100 0.027 1.316 

1,459,667 0.019 0.460 

0 0.000 0.000 

190.77 1 0.030 0.300 

332,453 0.057 0.476 

607.52 I 0.121 0.774 

I .251,178 0.305 -I.. 

I.6353365 0.097 0.520 

12,848 0.030 

6.815 0.049 

19.164 0.062 

5,498 0.060 

12,848 0.030 

3,220 0.013 

10,467 0.012 

(23,274) (0.027) 

12,848 0.030 

lo,46 1 0.026 

39,211 0.061 

103,950 0.164 

12,848 0.030 

13,201 0.03 1 

51,119 0.082 

200.588 0.301 
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EXHIBIT B-4 
Part 2 

RANDOMSEVERITY,~%TREND,ESTIMATES BASEDON 
ON-LEVEL(AT~%)TRIANGLE 

A/y 
SAD 

Total 

ADD 

I 

2 

3 

4 

5 

BF 

Total 

1 0 0 0.000 o.ow 

2 8,650 175,543 0.032 0.3 16 

3 10,927 275.49 I 0.063 0.471 

4 17.818 368,370 0.106 0.570 

5 12,875 440,455 0.173 0.684 

Total 50.271 870.120 0.021 0.284 

2 

3 

4 

5 

Total 

Average Std Dev Average Std Dev Age-Age Age-Age 
Bias Bias % Bias % Bias Bias 5% Bias 

0 0 

12,848 190,77 I 

35, I74 346,105 

124,456 685,305 

647,473 4,098,366 

819.951 4291,335 

0 0 o.ooQ o.oou 

(205) 182,866 0.014 0.358 

(4.949) 272.965 0.033 0.505 

(3.37 1) 352,774 0.074 0.577 

(7,726) 422,975 0.140 0.664 

(16.251) 833.130 (0.003) 0.277 

0 0 0.000 o.owl 

12.243 199.536 0.041 0.382 

20,320 303.669 0.084 0.567 

38.157 423,818 0.142 0.679 

5 1,227 547,415 0.223 0.842 

121.946 1.110,267 0.046 0.356 

0.000 

0.030 

0.080 

0.235 

1.107 

0.299 

0.000 

0.300 

0.497 

0.924 

4.508 

1.164 

12,848 0.030 

22,326 0.049 

89,282 0.144 

523,017 0.706 

(203 0.014 

(4.744) 0.019 

1,578 0.040 

(4,335) 0.061 

8,650 0.032 

2,277 0.030 

6.891 0.040 

(4.943) 0.061 

12.243 0.041 

8,078 0.041 

17,837 0.054 

13.070 0.071 
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APPENDIXC 

THEOREMS 

Theorem 1: Under the assumptions of Model I, 

YLSL = ULSL + b,,,x is an unbiased estimator of y; i.e., 

E (yLsL) = E (y). Under the assumptions of Model II, yLsM = b,,, x is 

an unbiased estimator of y. 

Proo$ Model I assumes that E (y) = a + bx. Since all expectations 
are conditional on x and since aLSL and b,,, are unbiased, we have 

E bLsL) = E (aLsL + bLsL4 

= E (aLsL) + E (bLsLx) 

= E (aLsL I+ E (bLSLb 

=a+bx 

=E(y). 

The proof for LSM is similar. 

Lemma I: Under LSL, E (x, I x,,) = an + b,E (xWl I x,-J. Under 

LSM, E (x, I xc) = bnE (xn-r I xc). 

Proof I: The proof will be given for LSL. The proof for LSM is 
similar. 

First, 
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Next, the “Multiplication Rule” of conditional density functions 
(Hogg and Craig [4, p. 641) states that 

Therefore, 

I a, 1 (q, X&f(X,-, 1 x()>fcq)) h,-, 

f(x, I x0) 2-I 
f (X”) 

= I Rx, 1 (xn-p +J)f(Xn-~ 1 x()1 h”-, . 
x n-1 

By the CLIA, the random variable x,, I xn-, is independent of x0. 

Therefore f(x,, I (xn-,, x,)) does not depend on xc, so 

f(x, I (xn-,, x0)) =f(x, I x~-,). The rest of the proof hinges on our abil- 

ity to interchange the order of integration. We will make whatever 
assumptions are necessary about the form of the density functions to 
justify that step. Then 

E (x, 1 x0) = jx,f(X, 1 x0)&, 
X” 

= xn 

I(I 

f(x, 1 (x,-p x()>>f(x,-, 1 x()1 h,-, 

1 

hn 

X” 
x n-l 

= 
If 
n-l i 

XJ(X, 1 (-&,’ x()>> h, 

x X” I 

f&J-g h,-, (C.1) 

= 

f (I 

x,f(x, 1 q&f& 

ii 

(x,-, 1 x0> h,-, 
x x 
n-l n 
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= I (a, + b, ~~-,lf(~,&~) dx,-, 

x n-l 

= a, + b,, I x,,, f(xnpl 1 x0) dy,-] 
x n-1 

= a,, + 6, E (xn-, I x0) . 

Proof 2: Recall the well-known identity E (X) = E, [E (XIY)] 

(Hossack, et al, [5, p. 631). Consider the following variation reiterated 
in Equation C. 1 above: 

E t-q, 1 x0) = Exne, , xo [E (zc, 1 &ml, x,>)l - 

For LSL we have: 

E (x,, 1 x0) = Exnmllro [E @,,I (xn-,’ +J)l 

= Exn-, lx0 [E (x,, 1 x,-J by CLIA 

= E, lx [atI + &%-,I n-l 0 

= a,, + b, E (x,,-r I xd . 

Theorem 2: E (c, I x0) = E (x, I x0). 

Proof: By induction on n. The proof will be given for LSL; the 
proof for LSM is similar. 

For n = 1, the theorem is simply a restatement of Theorem 1. 

Assume that E (t,,-, I xc) = E (x,-~ I x0). We have that 
&, = 2, +8,&-t where 2, and 8, are functions of the random vari- 

ables x,l~,-~, and &-, is a function of the random variables 

xn-l 1x4 1 * * * , x, I x0, and x0. The CLIA implies that xJx,-, is inde- 
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pendent of xn-,Ix,-, , . . . , xlkO, and x0, so G,, and 6, are independent 

of finPI. Therefore, 

E(&J+J = E($jxo) + E(8,Lx,,)E(~,-, Ix,) where 8, and fi,+, are independent 

= Exn-,l,o [E (:,&-,v +,))I + Exnm,,, [E d$(n,-,, @I E (ci,&) 

= E.xn_,ko FE &O,~,)l + Exnm,lro [E &(x,-J E Cc;,-$0) 

= Ex”&xo[%l + Ex”&o[bfll iE Ll1yg) 

= a, + b, E ($,-, ho) 

= an + bnE t-q,-, 1x0) by the induction hypothesis 

= E (x,$,,) by Lemma 1. 

Theorem 3: 

Linear 

Fern= 1: 

Multiplicative 

Var$,)=+Var&) 

Fern> 1: 

Proofi We will prove the multiplicative case first. We saw in 
Theorem 6 that 6, and A-, are independent random variables, The 

formula (Hogg and Craig, [4, p. 178, problem 4.921) for the variance 
of the product of two independent random variables x and y is: 
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This proves the assertion because 6, is unbiased. 

For the linear case, 

Var (IQ = Var (a”,) + 2Cov (GJ&-,) + Var(8n$n,) . 

It is well known (Miller and Wichern, [6, p. 2021) that the random 
variables X, and 6, are uncorrelated when 6, is determined by least 

squares. Since all expectations are conditional, we have that 

Var(i,) = Vat-& -X,-,6,) 

= Var &J + $-, Var (S,) 

(C.2) 

Next, 

Cov (&$,,b,-,) = E(&-t)Cov (&$,) where in-, is independent of c, and 8,, 

= Y,-,cov (Qn) 

and 

cov (iQ,) = cov (zn - QJ,, 

= cov (-xn-lsn,6n) 

=- xn-, var (6,). (C.3) 

Putting these together with the formula for Var (s,&-,) from the mul- 
tiplicative derivation above we have: 
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02 
Var&) = p +$,Var($J - 2p,,-,-yn-,Var(8,) 

n 

c? 
- - $! + (p,-l - ~n-,)2Vad,,) 

n 

+ bt VX (in-,) + V= (S,,)Vard(-, >. 

Theorem 4A: Under LSL and LSM. 

Var (x,,lxJ = 0; + b;Var (x ,,-, Ix,,). 

Therefore, an estimate of the process risk can he had by plugging in 
estimates of $, bi and the estimate of process risk from the prior re- 
cursion step. 

Proof: 

var &P”) = E~,,&o war Gq(x,-, 9 -@I + var .x,,m,lr,, [E Nkl x0))] 

= E.r&(~) + wn~,l.ro(% + Q,c,,-* ) under LSL 

= 4 + bi Var(x,-,lx,,) under LSL or LSM. 

Theorem 4B: For the WAD method, an estimate of the process 
variance of the prediction of the next evaluation for a single accident 
year is: 



UNBIASED LOSS DEVELOPMENT FACTORS 211 

fern= 1, 

&r (xnlxo) = x0 G; 

andforn> 1, 

Ifir (x&x0) = ji,-,Gjf + fii &r (xn-, lxo) . 

Proo$ For n = 1, the WAD model states that 

xl = xobl + dxoel , 

where the variance of the random variable el is 4. Therefore, the 
variance of xt given x0 equals the variance of the error term Jx,e,, or 
x0 0:. An,,estimate of this process risk can be had by plugging in the 
estimate 4 of c$ and the actual value of x0. 

For-n> 1, 

V~kk,) = Ex~_,,xo[V~(Xnl(Xn-,, xoNl + Vq-,,xo[E (x,I(x~-~, xoNl 

=E x,-,ko D’~(x,&,-,)l + Vqm,,,,,[E (~,@~-,>l by CLIA 

= Exn~,ko(xn-lon2) + var,n~,ko(b&) under WAD 

= E (x,-,lxo)~ + bi Var (xn-, 1x0). 

Estimates of this quantiq can be had by plugging in estimates of the 
individual parameters: 4 for o:, the point estimate of pnel, 6,,, for 
b,,, and the parameter risk estimate from the previous recursion step 
for Var (x,- ,1x0). 

Theorem 4C: For the SAD method, an estimate of the process 
variance of the prediction of the next evaluation for a single accident 
year is: 
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fern= 1, 
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fir (xnlxo) =x; iif. 

andforn> 1, 

F&r (xnlxo) = ;I,“-, 2 + 2; fir (Xn-,IXo> . 

Proof: For n = 1, the SAD model states that: 

x, =xobI +xOel , 

where the variance of the random variable e, is 0:. Therefore, the 
variance of x1 given x0 equals the variance of the error term xoe 1, or 
x#. An,,estimate of this process risk can be had by plugging in the 
estimate 4 of 4 and the actual value of xc. 

Fern> 1, 

VNx,&) = Ex,_,,,yo WW,l(x,,, x,))l + Vqm,,.x-o[E (x,&~-,~ +J)l 

= Ex,,-, IX{, DWx,lu,-Jl + Var,,,m,IJE W-b)1 by CLIA 

= Ex”- , Ix-,, ($14) + VatrJxprl-5-1) under SAD 

= E (xf , 1x0) 4 + b;: Vat-(x,-, ho) 

= ccl;-, + VNxn-, lx(J) 0; + g var en-] I-q)). 

Estimates of this quantity can be had by plugging in estimates of the 
individual parameters: 0: for o:, the point estimate of I.$,-~, 6,,, for 
b,, and the parameter risk estimate from the previous recursion step 
for Var(x,-,1x0). 

LRmma 2: E (S,) = na,+b,(E(S,-,)+x,-,,,,). 
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Proof: 

= c E (x,,,tQ 
i=O 

= c E Xin-Ilx,,i [E (xi,nl(xi,n-lT xi,j))l 
i=o 

n-l 

= 
c E xi “-, lq, [E (%&Xi.n- ,)I by CLIA I * 
i=O 

n-1 

= c Ex,&pn + h Xi,n-1) 
i=O 

= mn +b, (E (Sn-,> +-y-,&. 

Theorem 5: Let XD, = (x0 o, x1 ,, . . ., x~-,,~-,) denote the current , , 
diagonal of the triangle for the it youngest accident years. Then 

E&IXD,) = E(S,) . 

Proojl By induction on IZ. The proof will be given for LSL; the 
proof for LSM is similar. For n = 1, we know that: 
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by Theorem 2 

= E (S,). 

Now. assume 

Under LSL, 

A?/= 4 +fi Ch,-, +x,,-,,~-,) 

where i,, and 8, are functions of the random variables xi ,J xi,*-,, i 2 n, I , 
and hn-, is a function of random variables xi ) xi ;-, and of xi, for . 7 
j < n and i > n. By the CLIA, 2, and gn are independent of A n-l. 

Therefore: 

E (kf” I XD,) = E (r& + s, &, +x,+-J 1 Jq> 

= E &, 1 X0,> + E 6, I XD,,) E Chn-, + x,+, +, 1 X0,> 

= nun + b,JE &,,-, 1 XD ,,-, I+ .q-,.n-, 1 

= nun + b,(E (Sn-,) + xn-, n-1) by the induction hypothesis 

= E (S,) by Lemma 2. 
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Theorem 6: Parameter Risk 

Linear 

Fern= 1: 

0: var(A,)=-+((xo,o-xo)*Var(G,) 
11 

Fern> I: 

We will prove the multiplicative case first. Since 
&fn3$!kn-, +x n-l,n-,), the proof is immediate by virtue of the for- 

mula for the variance of the product of two independent random 
variables, once we note that: 

because xn-, n-, can be treated as a constant with respect to this con- 
ditional variance. 

For the linear case, 

V&ICI,) = Var(n&J + &Chn-, +x~-,~~,)) 

= Var(n&) + 23~ (n~,Jfl(Icr,-, + xnel, n-r)) + 

w&&-, +xn-*, n-,)). 

In the proof of Theorem 3 we saw that (Equation C.2) 
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and that (Equation C.3) 

cov (Q,) = -s,-lvar(&J 

Since &*, is independent of $, and 6, and since all expectations 

are conditional on the current diagonal, 

Cov (n&~n&n-I +x,-l,n-,)) = nE C&-l + x~-~,~-JCOV &$,J . 

Therefore 

Vd,,) 
I 

- 2nE &,,-, +Q,~-,) X,-p&J 

+ (M,-, + xn-, ,,-, , I2 Va(g,) + 6: Var&n-I) + Var&J Va&-l) 

2 

=n n+(M,I +x,-,~-~ -nX,p,)2Var(~J 
z/ n 

+ b; var &-1) + var 6,) Va’&J. 

Theorem 7A: Process Risk for the LSL and LSM models 

Fern= 1: var (S,) = 0;; 

forn>l: Var (S,) = noi + bi Var (S,-,) . 

Proofi For n = 1, S, is just the first future value of the youngest 

accident year conditional on its current value; i.e., S, =x0 ,lxOO . 1 > 
Therefore, Var (S,) = Var (x0 ,lxO “) = o: by definition of cI. I 1 

For n > 1, let X,-, denote the vector of random variables 

(x00 3 .-* 7Xn+,) corresponding to the unknown future evaluations 
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of the n-l youngest accident years as of age n-l. It is understood that 
all expectations are conditional on the current diagonal. First, recall 

n-l 

that S,, = C,Q, I zqi. 
i=o 

Next, note that 

VMS,) = QJWS,IX,J + Vq-, FE (~,JX,J . (C.4) 

For the first term, 

n-l 

Var (SnIXn-l 1 = Var C xi,nlxi,n-, 

I 1 
i=O 

n-l 

= CVar (xi ,Jxi n-,) because accident years are independent 7 1 
i=O 

=n$ 

because 4 is constant across accident years. 

For the second term of Equation C.4, 

E (S,lX,-,) = E (a, + bn (S,,-, + x~-~,~-~)) where a,, = 0 for LSM 

= E (a, + bnxe,,n-l + b,S,-,)- 

Therefore, 

Var *,,-, P (snlX,,-, )I = V~xn-, @,&, 1 

because a,, b,, and x,-],~-, are constants 

= b; Var(S,-,). 
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Putting the two terms together, we have: 

Var (S,) = n$, + bt Var (S,-,) . 

An unbiased estimate of this quantity can be had by plugging in unbi- 
ased estimates of $ and bz, and the Process Risk estimate from the 
prior recursion step. 

Theorem 7B: Process Risk for the WAD model 

For n = 1: var (S,) =x0 “c$ 

forn>l: Var(S,)=(M,_,+x,,_l,_,)o~+b~Var(S,_,). 

Proof: The n = 1 case is just Theorem 4B. For n > 1, the proof 
follows that of Theorem 7A, with one difference; namely, 
Var (,~~,~lx~,~-,) = x~,~JI~. So the first term of Equation C.4 is: 

n-1 

El,-, [Var wn-,)I = Er ,,-, 

I I 
c “i,,r-14 
i=O 

= 4 (Mn-1 +x,,-b-l) 

by definition of M,-,. Since the second term of Equation C.4 simpli- 
fies to the same quantity as in Theorem 7A, this theorem is proved. 

Theorem 7C: Process Risk for the SAD model 

For-n= 1: Var (S,) = xi., 0:; 
n-2 

for-n> 1: Var CS,> = C+-, &-, + &(n-, + Va Cs,-, >I 0,’ + b,2 Vx Csn-l > . 
id) 
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Proof: The n = 1 case is just Theorem 4C. For n > 1, we have 
only to derive the first term of Equation C.4 in the proof of Theorem 
7A. For SAD, Var(~~,~lx~,~,) =$_I o:, so for i < IZ - I, 

= 0: [E* (Xi,“- 1) + Vx (Xi,n-1 )I 

= cJ&L:,-1 + V=(xj,,-,)l. 

Therefore 

by definition of S,, 

because accident years are independent 
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This proves the theorem. 

Theorem 8: Under the transformed GAD model: 

X’” = hl,, + XI,,-, + e’ II 

where we assume that cry = Var(e.‘J are identical for everyj, the esti- 
mate of the variance of the predictron of ultimate (transformed) loss 

where $‘2 denotes the MSE of the simultaneous solution of the link 
ratios of the transformed model. 

Proof: Since we assume equal variances by development age, we 
may solve for all parameters bj simultaneously with the equation: 
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/ 
X’n, 1 - x’n,o 

x n-l.1 - XL ,o 

x’l.l -x’1,o 

in 2 - X’” 1 

X’2,2 - X’2, I 

x’n,n-l - x’n,n-2 
x’n-l,n-l - x’“-l.n-2 

X6,n - x’n,n- 1 

= 

‘1 0 . . . 00 
10 . . . 00 

10 . . . 00 
01 . . . 00 

01 . ..oo 

oo... 10 
00 . . . 10 
00 . . . 0 1 

X 

b’, ’ 
b’* 

+ 
J-L 
b’n 

\ 

4 
4 

4 
et2 

e’2 

D I n-l , 0 n-1 

e’n 

or, in more concise format, Y = Xp + E. It is well known that the least 
squares estimator of p is B = (XX-‘X’Y and that the variance-covari- 
ante matrix of this estimator is (X’X)%‘2. In this case, it is clear by 
inspection that X’X is a diagonal matrix whose fh entry equals 5, the 

number of data points in the estimate of the jfh link ratio, and whose 

off-diagonal elements are zero. Thus, Var (6’J = $ and 

Cov (8’$J = 0 for i +j. Therefore, the Parameter Risk 
J 

is exactly equal to: 

Var 

“1 
CF-. 

j=l !i 

The Process Risk is equal to: 
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iVar (e’,) = C d2 . 
j=l 

These variances are estimated by substituting the estimate a2 for d2. 



ADDRESS TO NEW MEMBERS-MAY 16,1994 

KEVIN M. RYAN 

My task today is not to congratulate you-others have properly 
done that and will continue to do that. Rather, my task today is to 
encourage you, to encourage you to be more creative and more 
imaginative than I expect you otherwise will be. I offer this advice 
with the hope that it will add a small measure to your collective 
success. It is offered in the spirit of friendly advice. 

It is much like the story of the man who after a hard, lonesome, 
and troubled journey made his way to an inn and gratefully sat at a 
table. The waiter asked him what he wanted, and he replied, “Some- 
thing to eat and a friendly word.” With that the man ordered the 
meatloaf. When the waiter returned he told the man, “And now for 
the friendly word. Don’t eat the meatloaf.” In that spirit, I offer some 
friendly words. 

You and I share, among other things, a plague from admirers and 
detractors alike. This plague consists of the definitions of what an 
actuary is and does. Most often these are comical; sometimes they are 
not. I will bore you with none of them. What I would like to dwell on 
is the nature of the work we do-to address what may appear on the 
surface to be a trite question: Is actuarial work an art or a science? 

We know artists exist even when no one buys their paintings. 
Does actuarial work exist if we do not have a user of our services? I 
suppose so. Certainly all art and science have this in common. They 
exist even when they do not have users, buyers or appreciators. Lyn- 
don Johnson, when asked whether he was so superstitious as to be- 
lieve that the horseshoe nailed on his office wall would bring him 
luck, replied that he was not superstitious at all, but that he under- 
stood the horseshoe brought good luck whether you believed it did or 
not. 

I would contend that actuarial science is in the broadest sense both 
an art and a science. To have you accept that assumption, I must add 
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definitions as to what art and science are. I define art as the conscious 
use of skill and creative imagination in creating an aesthetic object, 
and science as the knowledge covering general truths or the opera- 
tions of general laws. Combining the two, I will define actuarial work 
as the conscious use of skill, creative imagination, and knowledge of 
the general laws regarding financial uncertainty. It is the inclusion of 
art in the definition of actuarial work that I wish to stress. 

Oscar Wilde said, “The moment an artist takes notice of what 
other people want, and tries to supply the demand, he ceases to be an 
artist.” I cannot argue that you must not be responsive to the demands 
of the marketplace, but the demands you do respond to are limited by 
the responsibility to your profession. To profess otherwise is the dis- 
aster of dishonesty, the shame of unprofessional conduct. 

But certainly it is up to you to fashion how you will approach your 
life’s work. There is the story told of a young philosopher who went 
into the mountains of Tibet to speak to the elderly seer. He asked the 
sage, “Master, what is life?’ The sage closed his eyes in thought for a 
few moments then replied, “Life is the smell of a fresh new rose.” 
“But Master,” said the young philosopher, “in the Andes an elderly 
Inca told me that life was a sharp stone.” “That’s his life,” replied the 
sage. 

In stressing art, I run the risk that you will not appreciate actuarial 
work as science. Although you will limit yourselves and your profes- 
sional life if you do not appreciate it as art, if you do not bring to the 
process creativity and imagination, you will be less than a complete 
actuary if you do not continue to broaden and enhance your scientific 
knowledge. Because you deal with uncertainty, do not be misled into 
thinking that it is not science. Quantifying uncertainty is certainly 
science, and you must continue to develop and nurture that knowl- 
edge. 

Lastly, I remind you that getting something done is an accom- 
plishment; getting something done right is an achievement. For your 
good and the good of us all, I pray you achieve much. 



MINUTES OF THE 1994 SPRING MEETING 

May 15-18, 1994 

THE MARRIOTT- COPLEY PLACE, BOSTON, MASSACHUSETTS 

Sunday, May 14, I994 

The Board of Directors held their regular quarterly meeting from 
noon to 5:OO p.m. 

Registration was held from 4:00 p.m. to 6:00 p.m. 

From 5:30 p.m. to 6:30 p.m., there was a special presentation to 
new Associates and their guests. The session included an introduction 
to the standards of professional conduct and the CAS committee 
structure. 

A welcome reception for all members and guests was held from 
6:30 p.m. to 7:30 p.m. 

Mona!ay, May 15,1994 

Registration continued from 7:00 a.m. to 8:30 a.m. 

CAS President Irene Bass recognized special invitees and guests, 
including James R. Kehoe, President of the Society of Actuaries in 
Ireland; Christopher D. Daykin, Governing Actuary of the United 
Kingdom; Bar-net N. Berin, President-Elect of the Society of Actuar- 
ies; and Dr. Thomas Mack of Munich Reinsurance in Germany, who 
is also the recipient of the first ever Charles A. Hachemeister Prize. 
Bass also recognized Past Presidents of the CAS who were in atten- 
dance at the meeting, including Phillip N. Ben-Zvi (1985>, Ronald L. 
Bornhuetter (1975), Charles A. Bryan (1990), David P. Flynn (1992) 
Michael Fusco (1989), David G. Hartman (1987) Frederick W. Kil- 
bourne (1982), W. James MacGinnite (1979), George D. Morison 
(1976) Thomas E. Murrin (1963-1964), Kevin M. Ryan (1988) 
Jerome A. Scheibl (1980), LeRoy J. Simon (1971), and Michael L. 
Toothman (1991). 

The ceremony for new Fellows and new Associates was held from 
8:lO a.m. to 8:30 a.m. John Kollar, John Purple, and Dave Hafling 
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announced the 149 new Associates and the I7 new Fellows. The 
names of these individuals follow: 

Richard R. Anderson 
Benoit Carrier 
Stephen R. DiCenso 
Shawn F. Doherty 
George Fescos 
Allan A. Kerin 

Mark A. Addiego 
Elise M. Aheam 
Timothy P. Aman 
Michael J. Andring 
William M. Atkinson 
Lewis V. Augustine 
Robert S. Ballmer, II 
Jack Bamett 
Rose D. Barrett 
Martin J. Beaulieu 
Brian P. Beckman 
Richard Belleau 
Cynthia A. Bentley 
LaVeme J. Biskner, III 
Suzanne E. Black 
Michael G. Blake 

NEW FELLOWS 

Warren A. Klawitter 
Gilbert M. Korthals 
Paul W. Lavrey 
John J. Limpert 
Paul R. Livingstone 
Cassandra M. McGill 

NEW ASSOCIATE3 

Julie S. Chadowski 
Daoguang E. Chen 
John S. Chittenden 
Kuei-Hsia R. Chu 
Rita E. Ciccariello 
Laura R. Claude 
J. Paul Cochran 
Frank S. Conde 
Pamela A. Conlin 
Francis L. Decker, IV 
Kurt S. Dickmann 
Andrew J. Doll 
John P. Doucette 
Robert G. Downs 
Bernard Dupont 
David M. Elkins 

Gina L. Blakeney-Smith Martin A. Epstein 
Erik R. Bouvin Dianne L. Estrada 
Robert E. Brancel Michael A. Falcone 
Christopher G. Brunetti Karen M. Fenrich 
Mark E. Burgess Stephen A. Finch 
Mark W. Callahan Daniel B. Finn 
Robert N. Campbell Brian C. Fischer 
Daniel G. Carr Douglas E. Franklin 
Julia C. Causbie Kirsten A. Frantom 
Maureen A. Cavanaugh Cynthia J. Friess 
Francis D. Cerasoli Nathalie Gamache 

Robert L. Miller 
Donald D. Palmer 
Karen L. Pehrson 
Tom A. Smolen 
Beth M. Wolfe 

Christine A. Gennett 
Joyce G. Hallaway 
William D. Hansen 
Steven T. Harr 
Lise A. Hasegawa 
Amy J. Himmelberger 
Thomas A. Huberty 
Sandra L. Hunt 
Fong-Yee J. Jao 
June V. Jarvis 
Charles N. Kasmer 
Mark J. Kaufman 
Louis K. Korth 
Mary D. Kroggel 
Cheung S. Kwan 
Mylene J. Labelle 
Bertrand J. LaChance 
Blair W. Laddusaw 
Elaine Lajeunesse 
Lewis Y. Lee 
Julie Lemieux-Roy 
Paul B. LeStourgeon 
Kenneth A. Levine 
Aaron S. Levine 
Frank K. Ling 
Andrew M. Lloyd 
Ronald P. Lowe, Jr. 
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Robert G. Lowery Beverly L. Phillips 
Christopher J. Luker Mark A. Piske 
Barbara S. Mahoney Gregory J. Poirier 
Robert G. Mallison, Jr. Tracey S. Powers 
Gabriel 0. Maravankin Mark Priven 
Robert F. Maton Arlie J. Proctor 
Emma Macasieb Donald A. Riggins 

McCaffrey Douglas S. Rivenburgh 
Charles L. McGuire, III Paul J. Rogness 
David W. McLaughry David A. Russell 
Kathleen A. McMonigle Sean W. Russell 
Robert F. Megens Stephen P. Russell 
Daniel J. Merk Linda M. K. Saunders 
Timothy Messier Gerson Smith 
Stephen J. Mildenhall Louis B. Spore 
Scott M. Miller Douglas W. Stang 
Gregory A. Moore Laurence H. Stauffer 
Robert J. Moser Judith L. Stolle 
Mark A. O’Brien Ilene G, Stone 
Denise R. Olson Collin J. Suttie 
John E. Pannell Jeanne E. Swanson 
Wende A. Pemrick John P. Thorrick 
Robert L. Penick Tony King Gwan Tio 

Dom M. Tobey 
Glenn A. Tobleman 
Theresa A. Tumacioglu 
Robert C. Turner, Jr. 
Ching-Horn Rick Tzeng 
Robert W. Van Epps 
Jeffrey A. Van Kley 
Mark D. van Zanden 
Trent R. Vaughn 
Robert J. Vogel 
W. Olivia Wacker 
Joseph W. Wallen 
Lisa Marie Walsh 
Alice M. Wang 
Gregory S. Wanner 
Michelle M. Wass 
Geoffrey T. Werner 
Tad E. Womack 
Robert S. Yenke 
Benny S. Yuen 
George H. Zanjani 
Joshua A. Zirin 
Rita M. Zona 

CAS President Irene K. Bass then introduced Kevin M. Ryan, who 
presented the Address to New Members. Alice Gannon, CAS Vice 
President of Programs and Communications, presented the highlights 
of the program. 

David L. Miller, the Chairperson for the CAS Committee on the 
Review of Papers, summarized the five new papers, and mentioned 
that only four papers would be presented at this meeting. He asked 
that the presenting authors stand and be recognized. 

The new Proceedings papers were: 

1. “Aggregate Retrospective Premium Ratio as a Function of the 
Aggregate Incurred Loss Ratio” 

Author: Robert K. Bender 
Assistant Actuary, Kemper Reinsurance Company 
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2. “Residuals and Influence in Regression” 

Author: Edmund S. Scanlon 
Secretary, Home Insurance Company 

3. “Quantifying the Uncertainty in Claim Severity Estimates for 
an Excess Layer When Using the Single Parameter Pareto” 

Author: Glenn Meyers 
Assistant Vice President and Actuary, 
Insurance Services Office, Inc. 

4. “Unbiased Loss Development Factors” 

Author: Daniel M. Murphy 
Vice President and Chief Actuary, 
Argonaut Insurance Company 

CAS President Irene K. Bass then began the presentation of 
awards. She gave some background information about the Charles A. 
Hachemeister Prize, which was being awarded for the first time at this 
meeting to Dr. Thomas Mack of Munich Re in Germany. Jim Hall, 
Chairperson of the International Relations Committee, later recog- 
nized Dr. Mack and his contributions to ASTIN and the prop- 
erty/casualty field. 

Bass then announced that Yong Yao was the recipient of the 
Harold W. Schloss Memorial Scholarship Fund. He will be presented 
with a $500 scholarship. 

Stephen P. Lowe spoke about the activities of the American Acad- 
emy of Actuaries’s Casualty Practice Council. 

After calling for reviews of prior Pmceedings papers, Bass intro- 
duced Linda Ruthardt, Commissioner of Insurance for the Massachu- 
setts Division of Insurance, who gave the Welcoming Address from 
9: 15 a.m. to 9:30 a.m. 

The business session was adjourned at 9:30 a.m. 

After a refreshment break, Bass introduced the keynote speaker, 
Stuart A. Varney, who is an international business correspondent for 
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Cable News Network (CNN). His topic was Global Economics, and 
he answered many questions from the audience afterward. 

The first general session was held from 1l:OO a.m. to 12:30 p.m. 

General Session-Catastrophe Insurance 
Moderator: LeRoy J. Simon 

Panelists: Donald Kramer 
Tempest Reinsurance, Ltd. 

Linda Chu Takayama 
Hawaii Insurance Commissioner 

Mark Weston 
Ernst & Young 

After a luncheon, the following concurrent sessions were held 
from I:30 p.m. to 3:00 p.m.: 

1. Catastrophe Exposures 

Moderator: John J. Kollar 
Vice President, Insurance Services Office, Inc. 

Panelists: Dr. David Busch 
Research Associate, 
Program for the Study of Developed Shorelines, 
Department of Geology, Duke University 

Stuart B. Mathewson 
Consulting Actuary, Tillinghast/Towers Pen-in 

3 I. Benchmarking Corporate Actuarial Departments 

Moderator: Lee R. Steeneck 
Vice President, General Reinsurance Corporation 

Panelists: Phillip N. Ben-Zvi 
Executive Partner, Coopers & Lybrand 

Charles A. Bryan 
Partner, Ernst & Young 
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3. Asset Risk and Returns 

Panelists: Tony Kao 
Director, Quantitative Research, 
General Motors Investment Management Corporation 

William Panning 
Vice President, ITT/Hartford Insurance Group 

4. Using Sampling Techniques to Solve Actuarial Problems 

Moderator: Richard A. Derrig 
Senior Vice President, 
Automobile Insurers Bureau of Massachusetts 

Panelists: Susan Groshong 
Statistical Consultant, CNA Insurance Companies 

Herb Weisberg 
President, Correlation Research Inc. 

5. CAS Actuarial Research Comer 

Moderator: Robert S. Miccolis 
Senior Vice President and Actuary, 
Reliance Reinsurance Corporation 

6. Questions and Answers with the CAS Board of Directors 

Moderator: Allan M. Kaufman 
CAS President-Elect, 
Principal, Milliman & Robertson, Inc. 

Panelists: Steven F. Goldberg 
Senior Vice President, 
United Services Automobile Association 

Gary S. Patrik 
Senior Vice President and Actuary, 
North American Reinsurance Corporation 

Susan T. Szkoda 
Second Vice President and Actuary, 
The Travelers Insurance Company 
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After a refreshment break from 390 p.m. to 3:30 p.m., the follow- 
ing concurrent sessions continued: 

1. Catastrophe Exposures 

Moderator: John J. Kollar 
Vice President, Insurance Services Office, Inc. 

Panelists: Dr. David Busch 
Research Associate, 
Program for the Study of Developed Shorelines, 
Department of Geology, Duke University 

Stuart B. Mathewson 
Consulting Actuary, TillinghaWTowers Perrin 

2. Shareholder Value-Its Application to Property/Casualty 
Insurance Companies 

Panelists: Lee Barnes 
Davis International Banking Consultants 

Charles A. Bryan 
Partner, Ernst & Young 

3. Lloyd’s of London 

Panelists: Heidi E. Hutter 
Consulting Actuary, 
Hutter Management Consultants, Ltd. 

Tony Jones 
Actuary, Sturge Holdings, Ltd. 

John P. Ryan 
Consulting Actuary, Tillinghast/Towers Perrin 

4. Regression Techniques for Small Samples and Rare Events 

Panelists: Richard A. Derrig 
Senior Vice President, 
Automobile Insurers Bureau of Massachusetts 

Nitin R. Pate1 
Vice President, CYTEL Software Corporation 
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5. ASTIN Paper: “Which Stochastic Model is Underlying the 
Chain Ladder Method” 

Author: Dr. Thomas Mack 
Munich Reinsurance 

6. CAS Syllabus Committee 

Moderator: Steven G. Lehmann 
Actuary, 
State Farm Mutual Automobile Insurance Company 

Panelists: Donna S. Munt 
Vice President, 
United Services Automobile Association 

Gail M. Ross 
Consulting Actuary, TillinghastKowers Perrin 

An Officers’ Reception for New Fellows and Guests was held 
from 5:30 p.m. to 630 p.m., and the General Reception for all mem- 
bers and their guests was held from 6:30 p.m. to 7:30 p.m. 

Tuesday, May 17, 1994 

Registration began at 7:30 a.m. 

Two general sessions were held from 8:30 a.m. to 1090 a.m. 

1. Alternative Automobile Rating Mechanisms 

Moderator: Phillip N. Ben-Zvi 
Executive Partner, Coopers & Lybrand 

Panelists: Andrew Tobias 
Author, 
Founder of the Coalition for 
Common Sense Auto Insurance 

Richard G. Woll 
Senior Actuary 
Allstate Research and Planning Center 
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2. Environmental Liability/Superfund 

Moderator: Amy S. Bouska 
Consulting Actuary, Tillinghast/Towers Perrin 

Panelists: Lloyd S. Dixon 
Economist, Institute for Civil Justice, RAND 

Richard D. Smith 
President, Chubb Corporation 

Dennis E. Eckart 
Partner, Arter & Hadden 

After a refreshment break, the following three Proceedings papers 
were presented, and four concurrent sessions were held from lo:30 
a.m. to noon. The Proceedings papers that were presented are as 
follows: 

1. “Quantifying the Uncertainty in Claim Severity Estimates for 
an Excess Layer When Using the Single Parameter Pareto” 

Author: Glenn Meyers 
Assistant Vice President and Actuary, 
Insurance Services Office, Inc. 

2. “Residuals and Influence in Regression” 

Author: Edmund S. Scanlon 
Secretary, Home Insurance Company 

3. “Unbiased Loss Development Factors” 

Author: Daniel M. Murphy 
Vice President and Chief Actuary, 
Argonaut Insurance Company 

The concurrent sessions that were held follow: 

1. Catastrophe Ratemaking 

Moderator: Nolan E. Asch 
Senior Vice President and Actuary, 
SCOR U.S. Corporation 
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Panelists: Daniel F. Gogol 
Senior Vice President, 
General Reinsurance Corporation 

David H. Hays 
Actuary, State Farm Fire and Casualty Company 

2. Lloyd’s of London 

Panelists: Heidi E. Hutter 
Consulting Actuary, 
Hutter Management Consultants, Ltd. 

Tony Jones 
Actuary, Sturge Holdings, Ltd. 

John P. Ryan 
Consulting Actuary, TillinghasUTowers Perrin 

3. Environmental Liability Exposure 

Moderator: Charles W. McConnell 
Senior Vice President and Chief Actuary, 
The Home Insurance Company 

Panelists: Raja R. Bhagavatula 
Consulting Actuary, Milliman & Robertson, Inc. 

John Butler 
Principal, Putnam, Hayes, Bartlett, Inc. 

Susan K. Woemer 
Corporate Actuary, Nationwide Insurance Company 

4. ASB Standard of Practice-Rate of Return/Profit Provision 

Moderator: Mark Whitman 
Assistant Vice President and Actuary, 
Insurance Services Office, Inc. 

Panelists: Task Force Members 

CAS Regional Affiliates met for lunch from noon to 290 p.m. 
Various CAS committees met from 1:OO p.m. to 590 p.m. 
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After a lunch break, four concurrent sessions were held from 1:30 
p.m. to 3:00 p.m, They were: 

1. Catastrophe Modeling Software 

Moderator: Albert J. Beer 
Senior Vice President, American Re-Insurance Company 

Panelists: Karen M. Clark 
President, Applied Insurance Research, Inc. 

G. Thompson Hutton 
President and Chief Executive Officer, 
Risk Management Solutions, Inc. 

Dr. Charles R. Scawthorn 
Vice President of Research and Development, 
EQE International 

2. Quality Assurance for the Actuarial Work Product 

Moderator: Robert F. Conger 
Consulting Actuary, Tillinghast/Towers Perrin 

Panelists: Linda L. Bell 
Senior Vice President and Chief Actuary, 
ITT/Hartford Insurance Group 

Thomas S. Carpenter 
Senior Vice President and Chief Actuary, 
Arbella Mutual Insurance Company 

Michael F. McManus 
Vice President and Actuary, 
Chubb Group of Insurance Companies 

3. The Appointed Actuary’s Report to Management 

Moderator: Susan T. Szkoda 
Second Vice President and Actuary, 
The Travelers Insurance Company 

Panelists: David J. Oakden 
Consulting Actuary, Tillinghasflowers Perrin 
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Robert W. Stein 
Partner, Ernst & Young 

4. Asset Risk and Returns 

Panelists: Tony Kao 
Director, Quantitative Research, 
General Motors Investment Management Corporation 

William Panning 
Vice President, ITT/Hartford Insurance Group 

All members and guests enjoyed an evening dinner at the Boston 
Museum of Science from 6:30 p.m. to lo:30 p.m. 

Wednesday, May 18, 1994 

One Proceedings paper was presented while concurrent sessions 
ran from 8:oO a.m. to 9:30 a.m. 

Proceedings Paper: 

“Aggregate Retrospective Premium Ratio as a Function of the 
Aggregate Incurred Loss Ratio” 

Author: Robert K. Bender 
Assistant Actuary, Kemper Reinsurance Company 

Concurrent Sessions: 

1. Catastrophe Ratemaking 

Moderator: Nolan E. Asch 
Senior Vice President and Actuary, 
SCOR U.S. Corporation 

Panelists: Daniel F. Gogol 
Senior Vice President, 
General Reinsurance Corporation 

David H. Hays 
Actuary, State Farm Fire and Casualty Company 
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2. Quality Assurance for the Actuarial Work Product 

Moderator: Robert F. Conger 
Consulting Actuary, TillinghasWTowers Pert-in 

Panelists: Linda L. Bell 
Senior Vice President and Chief Actuary, 
ITT/Hartford Insurance Group 

Thomas S. Carpenter 
Senior Vice President and Chief Actuary, 
Arbella Mutual Insurance Company 

Michael F. McManus 
Vice President and Actuary, 
Chubb Group of Insurance Companies 

3. The Appointed Actuary’s Report to Management 

Moderator: Susan T. Szkoda 
Second Vice President and Actuary, 
The Travelers Insurance Company 

Panelists: David J. Oakden 
Consulting Actuary, Tillinghast/Towers Perrin 

Robert W. Stein 
Partner, Ernst & Young 

4. The Role of the Appointed Actuary: Modeling an Insurance 
Company’s Financial Performance 

Moderator: Sholom Feldblum 
Assistant Vice President and Associate Actuary, 
Liberty Mutual Insurance Company 

Panelists: Christopher D. Daykin 
Government Actuary of the United Kingdom 

Stephen P. Lowe 
Vice President, Tillinghast/Towers Perrin 

After a refreshment break, the following general session was held. 
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The Outlook for Health Care Reform 

Moderator: Frederick W. Kilbourne 
Independent Actuary, The Kilbourne Company 

Panelists: Edmund F. Kelly 
President and Chief Operating Officer, 
Liberty Mutual Insurance Group 

Michael S. Pritula 
Partner, McKinsey & Company 

Richard Vie tor 
Director, Workers Compensation Research Institute 

Debra T. Ballen 
Senior Vice President- 
Policy Development and Research, 
American Insurance Association 

CAS President Irene K. Bass presented the closing remarks and 
announced future CAS meetings. 

May I994 Attendees 

The 1994 CAS Spring Meeting was attended by 252 Fellows, 191 
Associates, and 186 Guests. The names of the Fellows and Associates 
in attendance follow: 

Terry J. Alfuth 
Manuel Almagro, Jr. 
Karen E. Amundsen 
Richard R. Anderson 
Nolan E. Asch 
Richard V. Atkinson 
Anthony J. Balchunas 
Karen H. BaIko 
Katharine Barnes 
W. Brian Barnes 
Donald T. Bashline 
Irene K. Bass 

FELLOWS 

Bruno P. Bauer 
Edward J. Baum 
Albert J. Beer 
Linda L. Bell 
Phillip N. Ben-Zvi 
Robert K. Bender 
Norman J. Bennett 
Abbe Sohne Bensimon 
Regina M. Berens 
John R. Bevan 
Raja R. Bhagavatula 
James E. Biller 

Gavin Christophe Blair 
LeRoy A. Boison, Jr. 
Martin Bondy 
Ronald L. Bomhuetter 
Amy S. Bouska 
J. Scott Bradley 
James F. Brannigan 
Robert A. Brian 
Robert S. Briere 
Randall E. Brubaker 
Charles A. Bryan 
Jeanne H. Camp 
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Ruy A. Cardoso 
Kenneth E. Carlton, III 
Thomas S. Carpenter 
John D. Carponter 
Benoit Carrier 
James K. Christie 
Allan Chuck 
Joseph F. Cofield 
Robert F. Conger 
Eugene C. Connell 
John B . Conners 
Ann M. Conway 
Alan C. Curry 
Janice Z. Cutler 
Robert A. Daino 
Robert V. Deutsch 
Stephen R. DiCenso 
Shawn F. Doherty 
Michael C. Dolan 
John P. Donaldson 
John P. Drennan 
Howard M. Eagelfeld 
Kenneth Easlon 
Gary J. Egnasko 
Valere M. Egnasko 
Douglas D. Eland 
Thomas J. Ellefson 
James Ely 
Glenn A. Evans 
James A. Faber 
Doreen S. Faga 
Bill Faltas 
Sholom Feldblum 
George Fescos 
Wayne H. Fisher 
Beth E. Fitzgerald 
Nancy G. Flannery 
Kirk G. Fleming 
David P. Flynn 

Edward W. Ford 
David C. Forker 
E. Frederick Fossa 
Michael Fusco 
Alice H. Gannon 
Robert W. Gardner 
Thomas L. Ghezzi 
Joseph A. Gilles 
Owen M. Gleeson 
Daniel C. Goddard 
Steven F. Goldberg 
Charles T. Goldie 
James F. Golz 
Karen Pachyn Gorvett 
Timothy L. Graham 
Patrick J. Grannan 
Clyde H. Graves 
Nancy A. Graves 
Larry A. Haefner 
David N. Hafling 
James A. Hall, III 
Alan J. Hapke 
David C. Harrison 
David H. Hays 
E. LeRoy Heer 
John Herzfeld 
David R. Heyman 
Kathleen M. Holler 
Randall D. Holmberg 
Ruth A. Howald 
Heidi E. Hutter 
Andrew P. Johnson 
Eric J. Johnson 
Wendy A. Johnson 
Steven J. Johnston 
Thomas S. Johnston 
Brian A. Jones 
Adrienne B . Kane 
Allan M. Kaufman 

Anne E. Kelly 
C.K. Stan Khury 
Frederick W. Kilboume 
Richard 0. Kirste 
Frederick 0. Kist 
Warren A. Klawitter 
Charles D. Kline, Jr. 
John Joseph Kollar 
Gilbert M. Korthals 
Gary I. Koupf 
Gustave A. Krause 
Rodney E. Kreps 
Jeffrey L. Kucera 
Andrew E. Kudera 
Dean K. Lamb 
Dennis L. Lange 
Paul W. Lavrey 
Merlin R. Lehman 
Steven G. Lehmann 
Joseph W. Levin 
John J. Limper-t 
Orin M. Linden 
Barry C. Lipton 
Paul R. Livingstone 
Stephen P. Lowe 
W. James MacGinnitie 
Brett A. MacKinnon 
Christopher P. Maher 
Howard C. Mahler 
Mark J. Mahon 
Stuart B . Mathewson 
Robert W. Matthews 
Charles W. McConnell 
Cassandra M. McGill 
Michael F. McManus 
Glenn G. Meyers 
Robert S. Miccolis 
David L. Miller 
David L. Miller 
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Michael J. Miller 
Neil B. Miner 
Karl G. Moller 
Phillip S. Moore 
Roy K. Morel1 
George D. Morison 
Thomas G. Moylan 
Evelyn Toni Mulder 
Robert T. Muleski 
Donna S. Munt 
Peter J. Murdza, Jr. 
Daniel M. Murphy 
Thomas E. Murrin 
Chris E. Nelson 
Kenneth J. Nemlick 
William Anthony 

Niemczyk 
Kathleen C. Nomicos 
Terrence M. O’Brien 
Paul G. O’Connell 
David J. Oakden 
Robert G. Palm 
Donald D. Palmer 
Jacqueline Edith Pasley 
Bruce Paterson 
Gary S. Patrik 
Susan J. Patschak 
Karen L. Pehrson 
Kai-Jaung Pei 
Bernard A. Pelletier 
Jill Petker 
Stephen W. Philbrick 
Herbert J. Phillips 
Stuart Powers 

Mark A. Addiego 
Elise M. Aheam 
Timothy P. Aman 
William M. Atkinson 

John M. Purple 
Andrew J. Rapoport 
Scott E. Reddig 
Ronald C. Retterath 
Robert S. Roesch 
Steven Carl Rominske 
Gail M. Ross 
Kevin M. Ryan 
Donald D. Sandman 
Edmund S. Scanlon 
Jerome A. Scheibl 
David C. Scholl 
Joseph R. Schumi 
Susanne Sclafane 
Brian E. Scott 
Kim A. Scott 
Margaret E. Seiter 
Marie Sellitti 
Roy G. Shrum 
Mark J. Silverman 
Christy L. Simon 
LeRoy J. Simon 
David Skurnick 
Lisa A. Slotznick 
Michael B. Smith 
Richard A. Smith 
Tom A. Smolen 
G. Clinton Somberger 
Joanne S. Spalla 
Daniel L. Splitt 
Sanford R. Squires 
Lee R. Steeneck 
Charles Walter Stewart 
Stuart B. Suchoff 

ASSOCIATES 

Lewis V. Augustine 
Robert S. Ballmer, II 
Jack Barnett 
Rose D. Barrett 

Christian Svendsgaard 
Susan T. Szkoda 
Catherine Harwood 

Taylor 
John P. Tiemey 
Darlene P. Tom 
Michael L. Toothman 
Christopher J. Townsend 
Nancy R. Treitel 
Frank J. Tresco 
Mary L. Turner 
Oakley (Lee) E. 

Van Slyke 
Jennifer A. Violette 
Michael A. Visintainer 
Joseph L. Volponi 
William J. VonSeggem 
James C. Votta 
Michael C. Walsh 
Thomas V. Warthen, III 
Bernard L. Webb 
Nina H. Webb 
Thomas A. Weidman 
Mark Whitman 
Peter W. Wildman 
David A. Withers 
Susan K. Woemer 
Beth M. Wolfe 
Richard G. Woll 
Arlene Frances Woodruff 
Patrick B. Woods 
Chung-Ye Yen 
Richard P. Yocius 
Heather E. Yow 

Martin J. Beaulieu 
Brian P. Beckman 
Cynthia A. Bentley 
LaVerne J. Biskner, III 
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Suzanne E. Black Stephen A. Finch 
Gina I,. Blakeney Smith Daniel B. Finn 
Gary Blumsohn Loy W. Fitz 
Erik R. Bouvin Douglas E. Franklin 
Robert E. Brancel Kirsten A. Frantom 
Ward M. Brooks Cynthia J. Friess 
Christopher G. Brunetti Christine A. Gennett 
Mark E. Burgess Peter M. Gidos 
Mark W. Callahan Daniel F. Gogol 
Robert N. Campbell Donald E. Gould 
Daniel G. Carr Ewa Gutman 
Julia C. Causbie Holmes M. Gwynn 
Maureen A. Cavanaugh Joyce G. Hallaway 
Francis D. Cerasoli 
Daoguang E. Chen 
John S. Chittenden 
Kuei-Hsia R. Chu 
Rita E. Ciccariello 
Laura R. Claude 
Donald L. Closter 
Michael A. Coca 
J. Paul Cochran 
Frank S . Conde 
Pamela A. Conlin 
Warren P. Cooper 
Mary L. Corbett 
Brian K. Cox 
Daniel A. Crifo 
Karen L. Davies 
James R. Davis 
Francis L. Decker IV 
Gordon F. Diss 
John P. Doucette 
Robert G. Downs 
David M. Elkins 
Martin A. Epstein 
Dianne L. Estrada 
Michael A. Falcone 
Karen M. Fenrich 

Leigh Joseph Halliwell 
Sidney M. Hammer 
William D. Hansen 
Steven T. Hat-r 
Lise A. Hasegawa 
Joseph A. Herbers 
Thomas G. Hess 
Amy J. Himmelberger 
Thomas A. Huberty 
Sandra L. Hunt 
Fong-Yee J. Jao 
June V. Jarvis 
James P. Jensen 
Daniel J. Johnston 
Stephen H. Kantor 
Charles N. Kasmer 
Mark J. Kaufman 
Martin Kevin Kelly 
Ann L. Kiefer 
Louis K. Korth 
Mary D. Kroggel 
Cheung S. Kwan 
Mylene J. Labelle 
Bertrand J. LaChance 
Elaine Lajeunesse 
Lewis Y. Lee 

Julie Lemieux-Roy 
Paul B. LeStourgeon 
Kenneth A. Levine 
Andrew M. Lloyd 
Robert G. Lowery 
Christopher J. Luker 
Barbara S . Mahoney 
Laura Manley 
Gabriel 0. Maravankin 
Suzanne Martin 
Robert F. Maton 
Emma Macasieb 

McCaffrey 
Stephen J. McGee 
Eugene McGovern 
Charles L. McGuire, III 
Donald R. McKay 
David W. McLaughry 
James P. McNichols 
Robert F. Megens 
Daniel J. Merk 
Robert J. Meyer 
Stephen J. Mildenhall 
Stacy L. Mina 
Gregory A. Moore 
Francois L. Morissette 
Robert J. Moser 
Kevin J. Moynihan 
Antoine A. Neghaiwi 
Lynn Nielsen 
Victor A. Njakou 
Mark A. O’Brien 
Denise R. Olson 
John E. Pannell 
Wende A. Pen-nick 
Robert L. Penick 
Beverly L. Phillips 
Mark A. Piske 
Richard A. Plano 
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Mark Priven 
Arlie J. Proctor 
R. Stephen Pulis 
Katherine D. Radin 
James E. Rech 
Donna J. Reed 
Al J. Rhodes 
Elizabeth M. Riczko 
Tracey S. Ritter 
Douglas S. Rivenburgh 
Paul J. Rogness 
James B. Rowland 
David A. Russell 
Sean W. Russell 
Stephen P. Russell 
Beverley K. Ryan 
John F. Ryan 
John P. Ryan 
Linda M. K. Saunders 
Peter R. Schwanke 
Robert D. Share 
Patricia E. Smolen 

Louis B. Spore 
Barbara A. Stahley 
Edward J. Stance 
Douglas W. Stang 
Laurence H. Stauffer 
Judith L. Stolle 
Ilene G. Stone 
Collin J. Suttie 
Jeanne E. Swanson 
Joseph P. Theisen 
Georgia A. 

Theocharides 
Eugene G. Thompson 
Robert W. Thompson 
Tony King Gwan Tio 
Dom M. Tobey 
Glenn A. Tobleman 
Michael J. Toth 
Janet A. Trafecanty 
Theresa A. Tumacioglu 
Robert C. Turner, Jr. 
James F. Tygh 

Robert W. Van Epps 
Jeffrey A. Van Kley 
Mark D. van Zanden 
Trent R. Vaughn 
Robert J. Vogel 
W. Olivia Wacker 
David G. Walker 
Joseph W. Wallen 
Lisa Marie Walsh 
Gregory S. Wanner 
Michelle M. Wass 
Russell B. Wenitsky 
Geoffrey T. Werner 
William M. Wilt 
Tad E. Womack 
Robert S. Yenke 
Benny S. Yuen 
George H. Zanjani 
Joshua A. Zirin 
Rita M. Zona 

The 1994 CAS Spring Meeting was officially adjourned at 11:45 
a.m. after the closing remarks. 
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ROGER M. HAYNE 

Abstract 

Automobile extended service contracts (ESCs) have been 
in existence for many years. Due to the nature of the cover- 
age, an insurer may not know the actual results for a particu- 
lar book for some time afer the book has been in place. This 
paper discusses this coverage and unique characteristics of 
ESCs that should be recognized when analyzing experience 
for an ESC program. The paper also discusses some ap- 
proaches that have been used to address these problems and 
to derive reserve and rate estimates for ESC programs. 
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1. INTRODUCTION 

Automobile extended service contracts (ESCs) have been respon- 
sible for financial losses to more than one insurer. Although the im- 
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pact of ESC programs on insurance industry profitability cannot be 
determined, some multiple line insurers have left the market after 
substantial ESC losses, and some specialty carriers have become in- 
solvent. Witness, for example, the demise of Consumers Indemnity, a 
Washington based ESC writer, and the recent fortunes of both Ameri- 
can Warranty and General Warranty. both very large ESC administra- 
tors. Because of the way ESC business is treated, data from published 
financial statements usually are not useful in identifying the effect of 
ESC business on particular insurers. However, the author is aware of 
several insurers that are no longer in this market, due largely to poor 
loss experience. 

The cause of difficulties can usually be traced to inadequate pric- 
ing. Often though, misunderstanding key aspects of these contracts 
can be a major factor. In this paper, we discuss ESCs, identify areas 
that can lead to future financial problems, and describe some ap- 
proaches for analyzing ESC experience. 

2. BACKGROUND 

Most people buying a new or used car from a dealer are presented 
the opportunity to purchase additional protection against mechanical 
breakdown of that car. This protection can be in the form of a policy 
purchased directly from an insurer with the dealer acting as an agent, 
or as a response to a direct mail appeal from an insurer. In a limited 
number of states, direct insurance is the only type of transaction 
allowed for such coverage. In this case of direct insurance, state 
insurance regulation including rate regulation, anti-rebate statutes, 

and agency licensing requirements usually applies. 

A more common arrangement is a contract between the buyer and 
the dealer, often with an administrator or managing genera1 agent 
providing administration of the program. The dealer then obtains in- 
surance to cover the liability assumed under the contract or self-in- 
sures the risk. In this case, since state insurance laws often exclude 
service contracts and warranties, regulation usually applies to the 
transaction between the dealer and the insurer but not necessarily to 



EXTENDED SERVICE CONTRACTS 245 

the transaction between the car buyer and the dealer. In the latter 
transaction, the dealer knows the wholesale price for coverage re- 
ceived, and is free to set the retail price charged to the car buyer. The 
buyer can negotiate the price with the dealer, if the buyer is aware of 
the nature of this arrangement. 

In either the direct insurance or service contract arrangement, the 
basic idea of protection is the same: In exchange for a sum of money, 
a promise is given to repair or replace covered parts that fail for 
specified causes during the term of coverage. This term is usually 
expressed in both time and mileage elapsed, although there are some 
contracts without any mileage limitation. 

3. RESERVE CONSIDERATIONS FOR ESCs 

Some believe, with justification, that this type of coverage is for 
physical damage to a vehicle, and, as such, loss reserves are not a 
significant item. This is often the case. Claims are usually reported 
quickly after they occur, repairs made soon after authorization is 
given, and payments made promptly. Thus the reserves for claims 
incurred, whether or not they have been reported, are often relatively 
small. Exceptions can occur, however, in cases where, because of 
processing features and possible batching of claims in a particular 
ESC program, there is a longer time lag between loss occurrence and 
final payment. 

In this line of business, many program managers tend to rely on 
calendar year loss ratios calculated as losses incurred in the year 
divided by premiums earned in the year. The rationale is that, since 
loss reserves play a relatively minor role, calendar year experience is 
not materially affected by reserve movement. This is correct as far as 
it goes. Without consideration of the flow of premium, however, this 
reasoning can lead to disastrous results. 

It is critically important in evaluating loss ratio results for an ESC 
program to recognize that losses generally cannot be expected to 
emerge uniformly during the life of a contract which can be in effect 
for several years. For this reason, the rate at which premiums are 
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earned can have a significant impact on the loss ratios. Thus, when 
reviewing loss ratios for an ESC program it is important to know 
what “earning curve” is used to bring premiums into income. Until it 
is verified that the earning pattern accurately tracks loss emergence, 
loss ratios using premiums earned with that pattern should be suspect. 

An approach that does not depend directly on the formula used to 
earn premiums would be to estimate ultimate losses for fixed groups 
of policies. If this approach is taken, the separation of the resulting 
unpaid amounts among the various reserve categories must still be 
considered for accounting purposes. For example, the ultimate losses 
for policy year 1990 as of December 3 1, 1992, will be composed of: 

I. 

2. 

losses paid through December 3 1, 1992, on 1990 poli- 
cies, 

case reserves for open known claims as of December 31, 
1992, if such reserves are set, 

3. additional reserves for development of reserves on 
known claims including possible re-openings (develop- 
ment reserves), 

4. 

5. 

reserves for claims that occurred before December 3 1, 
1992, but are not yet reported (true IBNR reserves), and 

amounts estimated to be paid for claims expected to arise 
after December 3 1, 1992 during the unexpired terms of 
current contracts. 

Loss reserves would provide for items 2, 3 and 4. As noted above, 
claims usually are closed rather quickly (reducing case reserves), are 
usually reported quickly (reducing true IBNR), and are usually easy 
to evaluate (reducing development reserves), so true loss reserves are 
usually rather small. 

The last item, the amount expected to be paid on unexpired por- 
tions of current contracts, is generally provided for in the unearned 
premium reserves. Unless the formula used to earn premiums 
matches the expected loss emergence, a mismatch between the un- 
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earned premium reserves and the amounts included in item 5 above 
can occur, even if the premiums charged are correct. 

If premiums are earned more rapidly than losses are expected to 
emerge, and if incurred losses are compared to earned premiums, the 
resulting loss ratios will be understated at early ages. If, in addition, 
rates are inadequate and the program is growing, the “profitable” new 
business will offset the losses on the “unprofitable” old business, 
masking difficulties even further. 

3. EXAMPLEOFTIMINGMISMATCH 

The following example, though hypothetical, does parallel the ex- 
perience of more than one insurer with this type of business. For this 
example, assume that: 

1. the insurer earns premium on a pro-rata basis over time, 

2. all ESCs are on new cars for five years or 50,000 miles, 
whichever comes first, and 

3. losses emerge during the life of a contract in the follow- 
ing pattern: 

EXAMPLE Loss EMERGENCEFORONEPOLICY 

Percentageof 
Year Losses Incurred 

1 5% 
2 15 
3 25 
4 30 
5 25 

We used these assumptions, along with the simplifying one of 
uniform issuing of contracts through the year, with an assumed loss 
ratio of 150% to derive Exhibit 1. As can be seen from the resulting 
loss ratios, the mismatch between the emergence of losses and the 
premium earning is definitely misleading. The program starts out 
with a 38% loss ratio, and loss ratios do not exceed 100% until the 
end of the fourth year on a calendar year basis and not until the end of 
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the fifth year on an inception-to-date basis. By this time the insurer is 
already committed to several years of very unprofitable business. 

Though this example may seem somewhat extreme, the potential 
for mismatch exists in almost any earning formula used for this type 
of business. The actuary must be cautious in relying on loss ratios 
calculated as the ratio of incurred losses to earned premiums in ESC 
business, even if the incurred losses include proper provision for all 
claims that have already occurred. 

If loss ratios based on earned premiums are to be used to make 
financial decisions regarding an ESC book, the match between loss 
emergence and earning should be checked. A pattern of increasing 
loss ratios over time, as shown on Part 3 of Exhibit I, should give 
some warning that a mismatch may be occurring. However, the pres- 
ence of newer policy years, contributing more to the earned premi- 
ums than to losses incurred, could mask that pattern. especially if 
there is growth in the business. 

Rather, it would be better to look at a fixed group of policies and 
see how the earning formula has tracked with the historical emer- 
gence of losses. The following table shows the progression of the 
cumulative indicated loss ratios for policy year 1 from Exhibit I : 

Loss RATIO EMERGENCE-POLICY YEAR 1 

Calendar Indicated Loss 
Year Ratio 

1 38% 
2 63 
3 98 
4 129 
5 146 
6 I so 

The increase shows up more quickly than in the inception-to-date 
or even calendar year loss ratios for the entire book. Any consistent 
pattern in the loss ratios for a fixed group of policies over time, either 
up or down, provides a warning that there may be a mismatch in 
timing between premium earning and loss emergence. 
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Several aspects of ESCs can influence the emergence of losses 
during the life of a contract. The following section deals with these 
characteristics and their potential effect on loss emergence. 

4. CHARACTERISTICS OF ESCs 

Several characteristics of ESCs make the analysis of ESC experi- 
ence significantly different from that for many other types of insur- 
ance. First, the contracts themselves differ from many other insurance 
coverages. As noted above, the contract is often between an automo- 
bile dealer and an automobile purchaser, with insurance covering the 
dealer’s liability assumed under the contract. 

ESCs often run for many years and contract holders have limited 
rights to cancel coverage. Most ESCs come with mileage limitations, 
although unlimited mileage contracts have been issued. There will 
thus be contracts expiring before their time limit, as a result of ex- 
ceeding the mileage limitation. 

ESC coverages normally begin where manufacturer warranties 
end. They usually exclude anything covered under manufacturer war- 
ranties, and they sometimes provide coverage for items such as tow- 
ing, car rental, and travel interruption expenses not covered under the 
original warranty. Generally very little loss is expected to be incurred 
by the ESC policies during the original manufacturer warranties. 
These warranties are usually at least one year or 12,000 miles and can 
be three years or 36,ooO miles or even longer on many early 1990 
models. Thus we would expect much less than one-fifth of all ESC 
losses to arise during the first year of a five-year policy. 

Finally, most ESCs have a provision for the transfer of the con- 
tract in the event of the transfer of a covered car, after payment of a 
specified fee and after application to the insurer or dealer. Otherwise, 
coverage does not continue to the new owner. In most cases, con- 
tracts cannot be transferred if the car is sold to a dealer. It is therefore 
not unusual for cars to be sold without the contract being transferred 
to the new owner. 
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A second area of difference is in the nature of the hazard insured; 
that is, the cost of repair of certain covered parts that fail during the 
contract term and are not otherwise covered by ‘manufacturer war- 
ranty. Thus, different manufacturer warranties will cause ESC losses 
on different vehicles to emerge differently. This will also cause pro- 
portionately less of the covered losses to emerge in the early stages of 
the contract, while the car is new and the manufacturer warranty is in 
effect, than in later stages as parts wear out and costs increase. Fi- 
nally, we may even expect different makes, models, or even model 
years to experience different cost emergence patterns than others. 

A third area of difference lies in the nature of the contract pur- 
chasers. The purchasers often have a choice of contract length and 
mileage limitations. Thus it is possible that selection will affect the 
characteristics of the contract holders of different contract terms and 
the rate at which mileage restrictions form the real limit on coverage. 
There may be other situations where the contract holders forget the 
coverage or sell the covered vehicle without transferring coverage. In 
addition, most ESCs require that the vehicle owner comply with cer- 
tain service requirements. Different contract holders may have differ- 
ent attitudes toward such requirements. 

These characteristics could lead one to conclude that, on the aver- 
age, there is less exposure to loss at the end of the contract term 
measured by time than at the start. This is often the case for contracts 
sold on used cars; however, it is definitely not the case in most new 
car coverages. This line of reasoning ignores the fact that the more 
expensive claims tend to occur near the end of the policy term. In 
addition, the presence of manufacturer warranties tends to reduce 
costs in the early stages of new car contracts. The inescapable conclu- 
sion is that, in either new or used car coverages, losses cannot be 
expected to arise uniformly during the term of the contract. 

5. AN AGGREGATE APPROACH TO LOSS ESTIMATION 

Instead of concentrating on loss and unearned premium reserves 
separately, the actuary could take a unified approach in monitoring 
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the profitability of an ESC program. Such an approach would focus 
on the ultimate forecast position of the program, rather than using 
earned premiums. Ultimate losses would be forecasted and compared 
with premiums to assess program profitability. In this way, the eam- 
ing curve arises implicitly from the loss data and does not need to be 
specified beforehand. Separate analyses could then be performed to 
estimate the portion of the resulting estimated total unpaid amount 
attributable to claims that have already occurred. The remainder 
would provide an estimate of the amount necessary to fund for losses 
that have not yet occurred. 

Usual actuarial projection methods making use of data triangles 
can also be used for forecasts in ESC programs. If losses are grouped 
by accident period (month, quarter, year), where an accident is de- 
fined to be the occurrence of a covered repair, the resulting projec- 
tions will provide estimates for accidents that have occurred. These 
estimates can then be used to estimate the amount of loss and expense 
reserves necessary for claims that have occurred (items 2, 3 and 4 
above). As mentioned above, we generally find the tail to be fairly 
short in these cases, often with 90% or more of losses paid within 12 
months of the repair. 

Many writers of ESC coverages have different coverage terms 
available with multiple choices of both length of time and mileage 
limitations. The lag from repair to payment, however, should not 
depend materially on those options but rather should relate to the 
operation of the individual ESC program. For this reason an actuary 
may be able to gain stability in projections by accident period by 
combining the data for several policy terms. 

As with other lines of insurance, many factors can influence and 
change the lag from repair to final payment. One obvious factor is the 
structure of the particular program. Some programs require pre- 
authorization of repairs that exceed a certain amount, while others 
may require pre-approval on all repairs. Some programs may require 
frequent submission of claims from the dealer to the administrator, 
whereas the frequency may be much less in other programs. The 
administrator may also batch reportings to the insurer. Such batching 
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affects the timing of information flow. Changes in these or other 
procedures can affect projections of ultimate losses on an accident 
period basis. 

Another factor to be aware of is the presence of case reserves. In 
some cases the pre-authorized repair amounts are entered as incurred 
losses. As with other coverages, if such data are available, both in- 
curred and paid loss forecasts are possible. 

Projections using triangles organized by policy period will provide 
estimates of ultimate losses for all policies issued during a particular 
period. As noted above, this approach has the benefit of not relying 
on specific earning formulae to estimate the profitability of a book of 
ESC business. Rather, this approach uses the emergence patterns in- 
herent in the program’s own data. However, it brings with it all the 
difficulties inherent in estimating losses for longer tailed lines. 

For five-year policies, a policy year will not have expired until six 
years from its start. There is an additional lag from when the last 
policy expires until the last payment is made, making the lag in the 
neighborhood of seven to eight years until all claims are settled. The 
percentage of losses emerging in early stages of development is fur- 
ther reduced by the presence of new car manufacturer warranties. It is 
not unusual for 2% to 5%, or even less, of the losses for a single 
five-year policy to emerge in its first year. Thus the experience for 
relatively green policy periods has the potential for substantial future 
development. 

Some may prefer to analyze experience by model year. The bene- 
fit of such analysis is that it keeps the experience for similar vehicles 
together. It does extend the lag until a year is completely closed, since 
manufacturers may introduce next year’s models relatively early in a 
year and have those cars in stock well into the next model year. It is 
conceivable that a model year 19xx could last from March 19xx-1 
until March 19xx+ 1, or even longer. 

The tail can be shortened a little by separately considering the lag 
from policy issue to claim occurrence versus the lag from claim oc- 
currence to final settlement. The accident period development could 
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be used first to develop policy period data to ultimate for claims 
already incurred. The resulting adjusted data would then have a maxi- 
mum lag of one more period than the policy term. For example, 
adjusted policy year data for five-year policies would have a maxi- 
mum six year lag from the beginning of the policy year until the 
policy year is fully closed. Similarly, for policy quarters, the maxi- 
mum lag would be five and one-quarter years. 

This two-step approach has another benefit. It separates lag char- 
acteristics that are under the direct control of the insurer or adminis- 
trator (occurrence to settlement) from those that are less subject to 
their control (policy to occurrence). This latter pattern should be more 
dependent on the actual policy provisions, term, and mileage limita- 
tion and less dependent on specific characteristics of a particular ESC 
program and administrative structure. In this case, other data sources 
may also prove useful. If other sources are used, however, the actuary 
should consider the effects of potential differences in ESC provisions 
between programs. 

Exhibits 2 through 7 provide an example of these concepts. These 
data are all hypothetical but present general characteristics of ESC 
programs. We assume that these data are for five-year contracts with 
the same mileage term. 

Exhibit 2 shows accident year paid loss development, Exhibit 3 
shows policy year paid loss development, and Exhibit 4 shows the 
distribution of paid losses by policy year and accident year. All these 
data are as of September 30, 1992, and the policy and accident years 
represent fiscal years ending September 30. Fiscal year was selected 
over calendar year due to the timing of new model roll-out by manu- 
facturers, which typically takes place around October 1. As men- 
tioned above, however, there are many exceptions to this general rule. 

Exhibit 2 also shows the indicated development factors and result- 
ing projections of ultimate losses by accident year. Given the rela- 
tively short tail inherent in these losses, development factor methods 
probably provide reasonably accurate forecasts of ultimate losses by 
accident year. The difference between these forecasts and the 
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amounts paid to date can provide estimates of required total loss 
reserves by accident year. Although the tail is usually fairly short, this 
exhibit shows that true loss reserves cannot be completely ignored in 
these sample data. 

Similar development factor projections are also shown in Exhibit 
3 for losses sorted by fiscal policy year. In this case, the ultimate loss 
estimates include projections for future claims as well as for claims 
that have already occurred. Here, given the tail inherent in the devel- 
opment, development factor methods may not be sufficient to provide 
stable forecasts, especially in later policy years. Also shown in Ex- 
hibit 3 is an estimate for development after age 84 months. Though 
this represents time after all policies have expired, there is the poten- 
tial for later development on payments. This estimate is based on 
projections from Exhibit 5. 

The top portion of Exhibit 4 shows the distribution of loss pay- 
ments as of September 30, 1992, by fiscal policy year and fiscal 
accident year. For example, of the $10,696,000 in payments to date 
for the policy year ending September 30, 1988, $43,000 arose from 
accidents occurring during the year ending September 30, 1988, 
$814,000 arose from accidents occurring during the year ending Sep- 
tember 30, 1989, and so forth. 

Since all of these amounts are valued as of September 30, 1992, 
the last diagonal represents accidents occurring during the year end- 
ing September 30, 1992, currently at 12 months of maturity. Simi- 
larly, the next older diagonal represents accidents occurring during 
the year ending September 30, 199 1, currently at 24 months of matur- 
ity. We use the accident year development from Exhibit 2 to project 
these amounts to their estimated ultimate levels. These estimates are 
shown in the bottom portion of Exhibit 4. Here the 12 month factor is 
used to develop the losses along the last diagonal 

41 = 29 x 1.407, 1,373 = 976 x 1.407, etc., 

the 24 month factor is used to develop losses along the next older di- 
agonal 
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64 = 62 x 1.035, 1,755 = 1,696 x 1.035, etc., 

with similar calculations for the remaining estimates. 

The amounts shown in the top portion of Exhibit 5 are the cumula- 
tive totals from the bottom portion of Exhibit 4. These amounts are 
estimates of the emergence of losses during the life of the particular 
contracts in contrast to the payment of losses during the life of the 
contracts as shown in Exhibit 3. We then use development factor 
methods to derive another set of ultimate loss estimates as shown in 
Exhibit 5. 

As discussed in greater detail below, changes in manufacturer 
warranties can affect the development of losses for new car contracts. 
For this reason both Exhibits 3 and 5 show two sets of development 
factor selections. In this hypothetical case we assumed that changes 
in original manufacturer warranties were made for 1990 models. 
Thus, development for policy years ending September 30, 1990 and 
subsequent is expected to be different than that for earlier years. In 
these exhibits the different factors were judgmentally selected. Later 
in this paper we will describe some approaches that may assist in 
quantifying the effects of such changes. 

Exhibit 6 summarizes the results of the projections from Exhibits 
3 and 5. Also in that exhibit is a third forecast method that does not 
have the “leveraging” problem of development factor methods. This 
third method is akin to a Bomhuetter-Ferguson approach but uses 
adjusted and trended pure premiums based on development factor 
projections instead of loss ratios as its initial estimate. Column 3 
shows the initial selections by policy year which are based on devel- 
opment factor projections shown in Columns 1 and 2. Column 5 is 
the pure premium indicated by these initial selections. The pure pre- 
miums in Column 6 are based on these initial pure premiums, taking 
into account both trend and an estimated 10% decrease because of 
changes in manufacturer warranties in 1990. Part 2 of Exhibit 6 
shows the calculation of these smoothed pure premiums in more de- 
tail. We first adjust the pure premiums to a common warranty level, 
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using the assumed lo%, and then trend the resulting pure premiums. 
Then we adjust the trended pure premiums to reflect the assumed 
effect of the warranty change. 

The forecasts in Column 7 are the adjusted policy year/accident 
year losses from Exhibit 5 plus the product of expected losses [Col- 
umn 6 x Column 41 and the proportion of losses expected to emerge 
in the future. This latter amount is [ 1 - l/age-to-ultimate factor] using 
the development from Exhibit 5. These calculations are shown in 
more detail on Exhibit 6, Part 2. 

The remainder of Exhibit 6, Part 1 shows the final selections, the 
resulting pure premiums and total unpaid losses by policy year. Also 
shown is the separation of that total unpaid amount between loss 
reserves and estimated unpaid amounts on unexpired terms of current 
policies. 

Some contracts have provisions that allow car buyers to cancel for 
various reasons. It is also not unusual for new car contracts to be sold 
after the car purchase but before the expiration of the manufacturer’s 
warranty. This latter situation is especially true for some insurers who 
market directly to the new car buyer after the sale. In this case, the 
effective date of the contract is often recorded as the date the car was 
put in service. 

There can be development in premiums and contract counts over 
time. Analyses based on losses implicitly include this development. It 
should be recognized explicitly, however, in methods that consider 
average losses per contract or expected loss ratios. In this case, the 
actuary should consider the development of contracts and adjust the 
forecasts accordingly. 

If we calculate loss ratios to monitor the experience in an ESC 
program, we can use these results to estimate the appropriate earning 
curves to use. For example, if the program has contingent commis- 
sions or some form of retrospective rating, we could use our earning 
curves to estimate earned premiums for a particular agent or dealer. 
Exhibit 7 shows the loss emergence implied by the analysis in Exhib- 
its 2 through 6. However, because of the assumed changes in manu- 
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facturer warranties for 1990, we suggest using different emergence 
curves for 1989 and prior contracts versus 1990 and subsequent con- 
tracts for these specific calculations. In actual applications, the impact 
of changes in new car manufacturer warranties should be considered 
when reviewing earning curves, or equivalent development patterns. 
We include additional discussion of these adjustments in Section 8. 

6. FORECASTS WITHOUT SUFFICIENT DATA 

Often an insurer or administrator will not have sufficient experi- 
ence to assemble complete development triangles needed for the 
analysis described above. Even with substantial experience available, 
changes in manufacturer warranties or in contract provisions may 
require adjustments before that experience can be used for projec- 
tions. 

An additional complication arises in ESC programs that have a 
large variety of available terms and mileage limitations. Some pro- 
grams are designed as a cafeteria where a customer can choose 
among several mileage limitations within each of several time limita- 
tions. Though this is often cited as an advantageous sales feature, it 
further subdivides an already small data base. If there has not been a 
significant shift in the mix of mileages chosen within a particular 
time limitation, a combination of the mileages may provide a broader 
base upon which to make projections. 

In the case of changes in manufacturer warranty or ESC provi- 
sions, the insurer or administrator may have sufficient data to recast 
past experience under the new manufacturer warranty or ESC provi- 
sions. This is the preferred approach. 

In case sufficient data are not available, or if available data are too 
sparse, the actuary may need to develop estimates of future develop- 
ment from other sources. Currently, no central statistical organization 
collects and summarizes ESC data or provides other compilation 
services such as those performed by the Insurance Services Office 
(ISO) or the National Council on Compensation Insurance (NCCI). 
On the contrary, most administrators and many insurers hold their 
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data very closely. Thus, modeling from other sources may be re- 
quired. 

One approach is to use Monte Carlo simulation to model the inter- 
action of various aspects of ESCs to estimate the timing of loss emer- 
gence. The approach we discuss here concentrates on the loss 
emergence from policy issue to loss occurrence. This pattern should 
be less dependent on the activities of a particular insurer or adminis- 
trator than the development of payments from occurrence to final 
payment. The latter lag could be estimated using data specific to the 
insurer or administrator. 

The modeling approach described here considers the following 
aspects of the ESC under analysis: 

1. contract term measured by time, 

2. contract term measured by mileage, 

3. treatment of transfers (vehicle re-sales) in contract, 

4. cost of repairs by mileage, 

5. inflation in repair and parts costs, 

6. effect of manufacturer warranties on costs, and 

7. effect of contract provisions on costs. 

Exhibit 8 is a diagram that summarizes this approach. In this 
model we randomly select the mileage to be traveled by a particular 
car in each year of the contract. Based on the mileage driven in each 
year, we then estimate the total covered cost limited by various con- 
tract provisions. The modeling is then carried out for many cars, to 
determine relative loss emergence during the life of a contract. This 
relative emergence can then be used as a substitute for the factors 
derived in Exhibit 5. 

As noted above, it is not unusual to have situations where hard 
data are not available to quantify various parameters of the simula- 
tion. In such cases, we must turn to publicly available sources of 
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information, one of which is published information from the United 
States Department of Transportation (DOT). 

Exhibits 9 through 11 present some such information that can be 
used in this exercise. Exhibit 9 presents distributions of annual mile- 
age driven by year of ownership and shows that cars tend to be driven 
less as they age. Exhibit 10 presents data on vehicle retention pat- 
terns, and Exhibit 11 provides information regarding repair costs. 

It would also seem reasonable that the mileage a particular car is 
driven in one year will not be independent of the mileage driven in 
other years. Thus we could make the selection of mileage in sub- 
sequent years dependent on the miles driven in earlier years. 

There are many possible approaches to reflect this potential de- 
pendence. One is to select a Bayesian model wherein the mileage for 
an individual car follows some random distribution, with the parame- 
ters of the distribution being uncertain. Dependence from year to year 
can be reflected by similar selections of the uncertain parameters 
from year to year. 

An inverse Burr distribution provides excellent fits to the annual 
mileage distributions shown in Exhibit 9. We then assume that the 
mileage for an individual car in a particular year has an inverse 
Weibull distribution; i.e., that such mileage has the cumulative den- 
sity function: 

Here the parameter z is assumed to be fixed and known, and the pa- 
rameter 8 is assumed to be unknown but has a Gamma distribution 
with probability density function given by: 

g(e) = ha ea-’ e- 
UN * 
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In this case the posterior distribution of the annual mileage x is an in- 
verse Burr distribution with parameters a, h-“r, and z. The proof of 
this is given in the appendix to this paper. 

We model the annual mileage by first randomly selecting a prob- 
ability level, p, for a particular simulated car. For each year in the life 
of the simulated car, we select the parameter 6 as that value having p 
probability in the corresponding Gamma distribution. We select the 
mileage for that year using that value of 8 as the parameter in the 
inverse Weibull distribution. This procedure maintains some depend- 
ence from one year to the next, in that the parameter t3 is at the same 
probability level from one year to the next, but still maintains ran- 
domness in the mileage for individual cars. 

We moael tne’ annual mileage by nts1 ranaomiy sel’ecnn’g a proo- 
ability level, p, for a particular simulated car. For each year in the life 
of the simulated car, we select the parameter 8 as that value having p 
probability in the corresponding Gamma distribution. We select the 
mileage for that year using that value of 8 as the parameter in the 

As mentioned above, if a car is sola to a parry omer man a car 
dealer, most service contracts provide for the transfer of the ESC with 
the payment of a fee, usually $25, and the completion of the proper 
forms. However, many cars are sold without the necessary paperwork 
or are traded. Thus, sales can affect an ESC’s exposure to loss, espe- 
cially in the later years. 

Exhibit 10 shows some retention data published by the DOT. 
Though this source is a bit old, it does show that vehicle sales can 
affect ESC loss development. Before these data are used, however, it 
should be noted that there may be selection in the purchase of ESCs. 
Those who buy an ESC may expect to own their cars longer. Direct 
use of the statistics in Exhibit 10 may tend to understate the level of 
losses in the latter stages of new car contracts. We caution that vehi- 
cle retention patterns may have changed significantly since the com- 
pilation of the data in Exhibit 10. Given current conditions, the 
amounts shown in Exhibit 10 should probably be considered as upper 
bounds for actual retention practices. To the extent that information 
specific to a particular program is available, it should be used to 
obtain better estimates of retention rates. 

These two exhibits summarize information that can be used to 
estimate the “retention” of contracts, that is, to estimate the percent- 
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age limitations or were transferred. As mentioned above, however, 
losses generally cannot be expected to arise evenly over the life of 
ESCs. We still need to incorporate loss information in the model. 

In addition to estimates of driving and ownership patterns, the 
DOT has also published data regarding the cost of owning and oper- 
ating automobiles. Exhibit 11 presents a summary of the 1984 study. 
As can be seen in that exhibit, the cost per mile of the category 
“unscheduled repairs and maintenance” is not constant during the life 
of a car. It rises during the first 81,000 miles, then falls off to rela- 
tively low levels near the end. 

The cost portion of our model combines the randomly generated 
total miles driven with this cost model to estimate total costs. For 
example, if one of the simulated cars were to travel 13,000 miles the 
first year and 9,500 miles the second, the first year costs, using the 
average from Exhibit 11, would be $10.40 (13,000 x $0.0008) and 
the cumulative costs through the second year, with a total of 22,500 
miles, would be $40.40 (14,500 x $0.0008 + 8,000 x $0.0036). Thus 
the indicated second year costs would be $30.00. We then apply a 
selected inflation factor, derived at least in part from considering 
vehicle repair costs in the Consumer Price Index (CPI), to estimate 
losses to be paid in each year of a contract. 

The estimates presented so far all assume that the coverage of- 
fered by an ESC matches the costs in “unscheduled repairs and main- 
tenance” shown in Exhibit 11. There are several factors that can 
affect this assumption. 

One factor is the particular ESC itself. Different ESCs have differ- 
ent exclusions of covered parts. If we assume that such exclusions 
affect the same proportion of costs at all mileage levels, then the data 
from Exhibit 11 can still be useful in estimating the timing of losses 
in contrast to the emergence of absolute dollar costs. If we expect that 
contract exclusions can have a substantial impact on these amounts, 
we could make adjustments before we simulate the results. 

A more important influence on ESC costs is changes in new car 
manufacturer warranties. The data in Exhibit 11 were directed toward 
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a 1984 model car. It is safe to assume that these are based on the 
existence of a new car warranty that covered virtually all failures in 
the first year or 12,000 miles, with little or no coverage after that. 
This was the predominant form of warranty at that time. 

Currently, however, several different warranties exist. Almost 
every manufacturer offers “bumper-to-bumper” coverage for the first 
year or 12,000 miles, and most offer additional coverage on major 
components for a period after that. An example is Chrysler’s “7/70” 
that extends coverage on the power train (portions of the engine, 
transmission, and differential or trans-axle) to the first seven years or 
70,000 miles, after payment of a $100 deductible. General Motors’ 
coverage for most 1992 models is three years or 36,000 miles on a 
“bumper-to-bumper” basis. As mentioned above, ESCs can still expe- 
rience losses in this period. 

In addition to variation in extended warranties among manufactur- 
ers, there is also variation within the same manufacturer. Often “high 
end” cars come with more complete extended manufacturer warran- 
ties than other cars from the same manufacturer. Even cars of the 
same make and model may have different manufacturer warranties. 
For example, Chrysler offered buyers of 1992 models a choice be- 
tween the “7/70” option or “bumper-to-bumper” coverage for the first 
three years or 36,000 miles. 

Estimates of loss emergence for particular manufacturers or vehi- 
cles could use loss estimates similar to those in Exhibit 11, after 
adjustment for changes in underlying manufacturer warranties. For 
example, if a manufacturer has a one year or 12,000 mile basic 
bumper-to-bumper warranty and a three year or 36,000 mile extended 
warranty on power train components, and if power train losses are 
assumed to be 60% of all losses, we could multiply losses between 
12,000 and 36,000 miles in Exhibit 11 by 40% as an approximation 
of the effect of these changes. 

In the rare situations where an ESC program covers only one 
manufacturer and when that manufacturer has modified the warran- 
ties on all its vehicles uniformly, this analysis may be sufficient. 
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Unfortunately, most programs cover vehicles from several, if not all, 
manufacturers, and different manufacturers have incorporated differ- 
ent changes in their underlying warranties at different times. Hence 
adjustment of emergence patterns for a more complex book of busi- 
ness tends to be much more complicated in practice. 

Also complicating emergence patterns for ESCs is selection by the 
contract holders. The potential contract holder’s perceptions of how 
he or she will use the car over the coming years may influence the 
choice of term and mileage limitation selected. For example, if the 
buyer plans to sell the car after five years, he or she will have little 
interest in six or seven year contracts. Similarly, if the buyer typically 
drives many miles per year, he or she would opt for high mileage 
limitations or even unlimited mileage coverage, if it is available. 

Thus, different contract terms can have different underlying loss 
cost patterns, even if the underlying manufacturer warranties and 
ESC contracts are the same. This further complicates analysis for an 
immature program where such differences may not yet be apparent. 

In addition, the emergence of losses for a program can be influ- 
enced by other factors such as the presence of “good” or “bad” mod- 
els or model years as well as features unique to a particular ESC 
program. All of these factors should be considered when modeling in 
practice. 

Exhibit 12 shows the results of the simulation of 50,000 cars using 
the unadjusted data from Exhibits 9 through 11 for a 5 year/lOO,OOO 
mile contract, assuming that the Exhibit 11 data are for a basic manu- 
facturer’s warranty of one year/12,000 miles of bumper-to-bumper 
coverage with no extended manufacturer coverage. As can be seen, 
there is a relatively small portion of loss expected to emerge in the 
first year of the contract. 

The results of this basic simulation are distributions of expected 
loss emergence in each year of a single contract. These estimates can 
be combined with assumptions or estimates regarding the writing of 
policies during a period of time (year, quarter) to derive estimates of 
loss emergence for individual policy periods. These loss emergence 
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patterns can then be combined with estimates of lags from emergence 
to final payment to estimate payment lags for policy periods. An 
example of such a combination for a policy year is shown in Exhibit 
13. 

Exhibits 9 through 11 show published data that can be a source for 
estimated costs and mileage distributions for input to the simulation 
model. Of course, the closer the particular input assumptions are to 
the experience of the program, the better the model will estimate the 
emergence and cost patterns for the program. Even if the program is 
not fully mature, sufficient data may be available to refine the esti- 
mates from Exhibits 9 through 11. 

Some may express concern regarding the costs of obtaining more 
detailed data relative to the benefits those data could provide. We 
have found that, in practice, the benefits of refined data usually out- 
weigh the associated costs. As with other areas of practical actuarial 
work, this remains a valid consideration. 

We caution that these estimates are for example only. In practice, 
actual loss emergence often differs from these model estimates. Thus 
these particular estimates should not be used without full verification 
that they are appropriate for the particular program. 

7, INCORPORATION OF LIMITED PROGRAM DATA 

It is not uncommon to have substantial development experience 
for a limited number of policy years. This, in some respects, is the 
worst of both worlds. There is too much real data to ignore but not 
enough to rely on completely. 

In these cases we are able to test the appropriateness of the models 
against what is already present in the real data. Here again, it is very 
useful to separate the loss-to-payment lag from the policy-issue-to- 
loss-emergence lag. Since the first tends to be shorter and more de- 
pendent on individual insurer or administrator procedures, even 
relatively green programs have useful experience in this area. 
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Once these two lags are separated, the issue-to-emergence lags 
predicted by the model can then be compared with those actually 
present in the data, even if only for early emergence stages. If the two 
curves have similar shapes where real data are available, then we can 
make use of the emergence from the model to estimate the tail for 
immature policy periods. 

If, however, there are differences, the reasons for those differ- 
ences should be explored. It may be appropriate, after review, to 
adjust the emergence predicted by the model to reflect patterns appar- 
ent in the actual loss emergence. 

In addition to these adjustments to the model emergence patterns, 
we can consider the appropriateness of the various model assump- 
tions to the particular ESC program. As indicated in Section 6, the 
primary input data for the simulation model are: 

1. the mileage distributions for each year in the life of the 
car; 

2. the estimated costs of repair at various mileage points in 
the life of the car; 

3. the estimated inflation between contract issuance and 
time of repair; and 

4. the estimated rates of contract termination during the life 
of the contract. 

Except for the inflation assumptions, Exhibits 9 through 11 provide 
examples of some of these estimates, though the data themselves may 
be somewhat dated. 

For example, the average annual mileage for the distributions in 
Exhibit 9 roughly compares with the annual aggregates in Exhibit 11. 
However, use patterns change and average annual mileages which 
were appropriate for 1981 may not be reflective of current driving 
habits. In particular, a 1988 publication from the U.S. Department of 
Energy (DOE) titled “Household Vehicles Energy Consumption, 
1988” indicates that during 1988, 1987 models averaged 13,400 
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miles, 1986 models averaged 12,600 miles, 1985 models averaged 
12,100 miles, and so forth. This is a different annual mileage pattern 
than shown in Exhibit 11. In addition, the same 1988 DOE study 
indicated that the average number of miles driven per vehicle has 
increased from 9,399 in 1983 to 10,246 in 1988. The more recent 
information should be incorporated in forecasts of loss emergence. 

Mileage distributions may also become important in quantifying 
selection by insureds between contracts of different terms. As noted 
above, it is possible that those selecting higher mileage contracts may 
expect to have a higher annual mileage than those selecting a lower 
mileage policy. To the extent that significant selection is expected, it 
may be beneficial to modify the mileage distributions used to model 
the loss emergence for different contract terms. In this case, we 
should increase the annual mileages used to model higher mileage 
contracts relative to those used to model lower mileage contracts. 

Actual experience under an ESC program may also be useful in 
refining estimates of the cost curves used in the simulation model. 
Many ESC data bases capture mileage at time of repair. This can be 
very useful in estimating cost emergence. 

It is usually a relatively simple task to sort loss payments into 
categories by mileage at time of repair. There is a difficulty in using 
these data directly. If the data are taken from policy periods that are 
not yet fully mature, we do not know the number of contracts ex- 
pected to be exposed to potential loss in a particular mileage cate- 
gory. Thus, without some estimate of earned exposure we cannot 
estimate the true average cost for various mileage categories. 

We again turn to our Monte Carlo simulation model to derive 
estimates of these earned exposures. In this case we will not concern 
ourselves with the costs but simply worry about the proportion of cars 
that can be expected to have various total mileages at various contract 
ages. Exhibit 14 is an example of such a distribution, derived from 
the Monte Carlo model using the assumptions from Exhibits 9 
and 10. 
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The percentages shown in Exhibit 14 represent the estimated pro- 
portion of policies of a given age that will exceed the indicated mile- 
age. We can use these estimates in conjunction with written 
exposures in a particular program to estimate the number of expo- 
sures generating losses in a particular mileage range. 

An example of this calculation is shown in Exhibit 15. Part 2 
displays the contract-years exposed to losses for the ages and mileage 
entries. These are the products of total contracts by contract age with 
the corresponding proportions in Exhibit 14. Thus, there are a total 
of 5 11,000 (200,000 + 150,000 + 100,000 + 50,000 + 10,000 + 1,000) 
contracts in this hypothetical program, as shown in Part 1 of Exhibit 
15. The lower section of Part 1 shows the number of contracts ex- 
posed to losses in each year, given the simplifying assumption of 
uniform writing during a year. For example, by the end of 1992 all 
contracts issued from 1987 through 1991 generated a full year of 
exposure in their first year. With the simplifying assumption of even 
writings during the year, the 1992 contracts generated one-half of a 
year of exposure. Thus there were approximately 411,000 contracts 
contributing to losses in their first year. Similarly, 1987 through 1990 
contracts and half, on average, of the 1991 contracts experienced 
second year exposure, for a total of 236,000, and so forth. 

Given the percentages from Exhibit 14, all of these contracts 
could contribute to losses above 0 miles, but not all could contribute 
to losses above 6,000 miles. In fact, from Exhibit 14, an estimated 
37.24% of the 411,000 first year exposures would contribute in this 
range (153,056 = .3724 x 41 l,OOO), 82.17% of the second year expo- 
sures (193,921 = .8217 x 236,000), and so forth. Part 2 thus provides 
estimates of the number of contracts having exposure in the various 
mileage bands. 

Exhibit 16 provides an example of how these estimates can be 
used to obtain better estimates of costs per mile, even for an imma- 
ture new car program. This exhibit shows hypothetical costs for re- 
pairs in various mileage intervals. In this case we have assumed that 
all costs have been adjusted to a common cost level before aggrega- 
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tion. The amounts in Column 3 are adjusted to reflect the cost per 
mile for an individual contract. We are assuming that these are five- 
year contracts; thus we divide the exposure count from Column 2 by 
5 to calculate Column 3. 

Though the costs themselves are hypothetical, the resulting cost- 
per-mile estimates in Column 3 do represent patterns that arise in 
practice. Note that the costs start quite low in early years. This is due 
primarily to the existence of manufacturer warranties covering losses 
in the first year or 12,000 miles. We could now use these averages in 
place of the estimates in Exhibit 11 in the Monte Carlo model to 
obtain a better picture of the loss emergence under a particular pro- 
gram. 

8. OTHER USES FOR EMERGENCE MODEL FORECASTS 

The primary value of these emergence models is that they can 
provide insight as to relative loss differences under various situations. 
One such application is in estimating the timing of loss emergence, as 
described in the previous section. 

These models can also be useful in providing insight into the 
influence of various factors on the overall cost of ESCs. For example, 
we can use the model to estimate the relative cost difference between 
five year/50,000 and five year/lOO,OOO mile contracts. This can be 
done by simply changing the mileage limitation in the model from 
50,000 to 100,000. Better estimates of relative differences can be 
obtained by running the same random set of vehicles with both mile- 
age limitations. Note that the resulting estimates implicitly assume 
that insureds for different terms will have the same inherent loss 
pattern. This ignores potential selection by insureds and should be 
recognized when reviewing results. 

The model can also be used to estimate the impact of changes in 
manufacturer warranties on the costs covered by ESCs. In this case 
two different cost functions can be used on the same random set of 
vehicles. For example, we used the input assumptions from Exhibits 9 
through 11 and an assumed cost inflation of 7% to derive Table 1, 
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estimates for a five year/lOO,OOO mile new-car ESC. In this case we 
assumed that the first manufacturer warranty was for one yearYl2,OOO 
miles for all components, the second for three years/36,000 miles for 
all components, while the third was for one year/l2,000 for all com- 
ponents with coverage for the power train for seven years/70,000 
miles. In these calculations we assumed that power train repairs con- 
stituted 60% of total costs. 

As the table shows, changes in the manufacturer warranty can 
have a noticeable effect on both the loss emergence and costs of 
ESCs. Both of the alternative warranties tend to lengthen the emer- 

TABLE 1 
EXAMPLE EMERGENCE AND RELATIVE COSTS UNDER 

ALTERNATIVE MANLJFACTUREB WARRANTIES 

Manufacturer Warranty 
Contract Age l/12 3136 7170 - 

1 3.80% 2.60% 3.40% 
2 20.30 15.80 16.80 
3 49.40 44.50 43.70 
4 78.40 76.40 75.00 
5 100.00 100.00 100.00 

Relative Cost 1 .oo 0.91 0.63 

gence curve even though they both reduce total ESC costs. This is of 
significance in practice. Unless adjusted, development methods based 
on older contracts with more limited manufacturer warranties may 
tend to understate losses on more recent contracts where manufac- 
turer warranties cover more. Conversely, pure premium trends will be 
depressed by the introduction of longer manufacturer warranties. 

As noted above, these comparisons are based on the assumption 
that power train losses constitute a uniform 60% of all losses. It is 
likely that power train losses will experience a different emergence 
than non-power-train losses. We could use the methodology in Ex- 
hibit 16, applied separately to power train and non-power-train losses, 
to derive separate emergence curves to refine this rough assumption. 
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If the ESC program has only one make, we could use the revised 
curves to estimate the impact of changes in manufacturer warranties. 

If, however, as in many ESC programs, there are many different 
underlying manufacturer warranties, then simply calculating separate 
cost-per-mile curves may not provide sufficient data to modify emer- 
gence curves for the program. In fact, the losses that would be used in 
Exhibit 16 are themselves reduced by existing manufacturer warran- 
ties, and these warranties themselves can change from one model 
year to the next. 

Thus, the assumption that changes in warranties can be addressed 
by simple modifications of the cost-per-mile input data may not hold. 
In such a case we could develop separate cost curves for each major 
component of cost to a program. Such components could include 
those costs covered by the ESCs but not covered under the basic 
(often bumper-to-bumper) manufacturer warranty, those costs cov- 
ered by the basic warranty but not covered by an extended (often 
power train) warranty, and those costs covered by the extended 
manufacturer warranty. Once these separate curves are estimated us- 
ing the data for a particular program, we could refine estimates of the 
effects of changes in underlying warranties on the costs and emer- 
gence of losses in a program. 

With sufficient data the approaches in Exhibits 14 through 16 may 
provide a means of separately identifying these separate cost curves if 
credible data were available by loss component and mileage, and 
separately for different underlying manufacturer warranties. Unfor- 
tunately sufficient data in this detail are seldom available. We must 
sometimes use curve fitting methods that consider the underlying mix 
of manufacturer warranties to estimate these components. Because of 
the complexity of this approach and the survey nature of this paper, it 
will not be discussed further here. 

9. USED CAR COVERAGES 

Although the above discussion focuses primarily on new car cov- 
erages, the same techniques can be applied to analyze the experience 
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of used car programs. As opposed to new car coverages, used car 
contract terms are relatively short, running between one and three 
years. In addition, manufacturer warranties generally have less influ- 
ence on experience for used cars than for new cars. This leads to a 
greater proportion of losses emerging in the earlier stages of used car 
contracts than in the later stages. 

On the other hand, there may be greater moral hazard present in 
used car contracts than in those for new cars. The presence of ESCs 
on used cars can provide a dealer with incentives to recondition used 
cars at the cost of the ESC program. When analyzing experience for a 
particular program this possibility should be recognized; in addition, 
measures should be taken in the program to avoid such recondition- 
ing. 

10. LOSS RATIOS IN ESC PROGRAMS 

As with many areas of insurance, loss ratios, calculated as in- 
curred (or even paid) losses divided by earned premiums, are fre- 
quently used to monitor the profitability of an ESC program. 
Hopefully the foregoing discussion makes it clear that simple earning 
patterns probably do not provide sufficient match to expected loss 
emergence to be relied upon solely. 

As mentioned above, we cannot expect losses to emerge uni- 
formly during the life of an ESC.’ Except in the extremely rare case of 
unlimited contracts, mileage limitations, and to some extent owner- 
ship transfers, reduce the number of used car contracts able to gener- 
ate losses in their later stages. For used car contracts we often expect 
that losses will emerge more quickly than pro-rata, and pro-rata eam- 
ing in fact may provide a conservative basis on which to evaluate 
profitability. 

On the other hand, losses for new car contracts can usually be 
expected to emerge more slowly than time limitations alone, at least 
in the early stages of the contract. This usually happens even in 
unlimited mileage contracts. Though the emergence curves used 



272 EXTENDED SERVICE CONTRACTS 

above are hypothetical, they do present general patterns that appear in 
new car contracts. 

One thing is clear, however: Any formula that claims to apply to 
a broad range of contracts over a broad range of makes and model 
years is suspect. One would generally expect that more losses will 
emerge during the last year of a five year/lOO,OOO mile contract than 
in the last year of a five year/50,000 mile contract, even though the 
two contracts experience similar loss experience in their first year or 
two, with all other variables held constant. 

Similarly, one would expect different experience for similar con- 
tracts for different model years. In this case, changes in manufacturer 
warranties would influence the amount and timing of losses during 
the life of the contracts. Generally, one would expect that extending 
the manufacturer’s warranty on a vehicle will lower the losses on a 
given ESC. However, this will also push proportionately more losses 
into the tail of the loss emergence curve. Thus, an earning formula 
that was appropriate before the introduction of extended manufac- 
turer warranties may earn premiums too rapidly after such introduc- 
tion. 

If earned premiums are used to assess the profitability of an ESC 
program, we strongly recommend that they be calculated to match the 
expected flow of losses incurred and that this match be verified peri- 
odically. The methods used above can be used for the first calcula- 
tion. Once they are calculated, emergence patterns should be tested 
regularly, if loss ratios are to be relied upon. 

Probably the easiest way to periodically test the appropriateness of 
an earning curve is to test that curve against incurred losses (includ- 
ing IBNR) for a fixed policy period. If the resulting loss ratios show a 
consistent upward pattern as time progresses, we could suspect that 
the earning curve is pulling premiums into income faster than losses 
are emerging. Conversely, if the curve shows a consistent downward 
pattern as time progresses, then we could suspect conservative earn- 
ing of premium. A match could be indicated by a loss ratio progres- 
sion that seems to randomly move around a fixed level. However, it is 
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possible that the emergence and earning patterns match over one 
interval, only to deviate over another. This too should be considered 
when reviewing loss ratios for an ESC program. 

Loss ratios are often used in ratemaking applications, both for 
determining overall rate level change requirements and in estimating 
relativities among various classes. As with other lines of insurance, 
the selected pure premiums shown in Exhibit 6, or corresponding loss 
ratios, can be used to assess overall rate level adequacy. 

We may also be able to use loss ratios to assist in determining the 
relative adequacy of class rates. One could use the earning curve 
determined from the aggregate Book to estimate earned premium by 
class. We caution, however, that since classes are usually composed 
of similar vehicles, new car warranties may vary substantially by 
class. In this case the actuary could modify the earning curves to 
reflect the differences in manufacturer warranties and calculate loss 
ratios that should provide a better indication of relative loss potential 
among the various classes. 

11. STRUCTURE OF ESC PROGRAMS 

As indicated in Section 2, there are two common types of ESC 
programs. Other arrangements also exist. In some, a portion of the 
amounts collected by the dealer are put into a fund and an insurer 
provides coverage if that fund is depleted. 

A common element in many ESC programs is a middleman. This 
role can be taken on by a managing general agent or a third party 
administrator. Usually this party supplies data processing, claims, 
marketing, and other services and sometimes determines rates and 
rate plans for the program in exchange for a fee. The fee can be a flat 
charge per contract, a percentage of insurance premiums, or even 
related to the loss experience of the program. This structure becomes 
important when evaluating permissible loss ratios. The structure also 
influences the amount required for loss reserves. The longer the pipe- 
line between car buyer and insurer, the longer the expected lag can be 
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between claim occurrence and final claim payment. This in turn 
would indicate proportionately larger loss reserve requirements, 

12. HOW MUCH PREMIUM WAS CHARGED? 

Given the many hands funds may flow through, the actuary must 
know the precise definition of premium. Not only does this impact 
the premium tax that the insurer pays, but it influences the permissi- 
ble or expected loss ratio for the business. This expected loss ratio, 
along with additional loads, is then used to monitor rate level ade- 
quacy. 

Briefly, the cash flow for an administered ESC program wherein 
the insurance transaction is between the dealer and the insurer may 
look like: 

Car Buyer Payment 

;;\ 
- Dealer Costs, Profit 

Remitted to Administrator 

Y- 
---- Administrator Costs, Profit 

Remitted to Insurer 

r-+---- Insurer Costs, Profit 

Fund for Losses 

In this case it would not be unusual for the amount “Remitted to In- 
surer” to be considered premium. It is obvious that the insurer would 
then expect a relatively large portion of the premium to be available 
to fund losses. An expected or permissible loss ratio in this case could 
be in the neighborhood of 85%. 
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On the other hand, in a program where the car buyer is the in- 
sured, with the dealer acting as agent, the amount that the buyer pays 
may be considered premium. In this case, that premium should pro- 
vide for commissions to the dealer, administrator fees, insurer costs, 
and profit. The permissible or expected loss ratio could be small, 
possibly as low as 30% or lower. 

ESC programs are written in a highly competitive market. It is 
likely that auto dealers choose from more than one program. There is 
great incentive to sell the contracts with the lowest wholesale price to 
the car buyer in order to maximize dealer profit. In conjunction with 
potentially under-priced policies offered in some programs, this stiff 
competition makes it difficult to implement rate increases. On the 
other hand, dealers who have experienced the insolvency of one or 
more of their ESC carriers and now realize they are responsible for 
the repairs may be more selective in their choice of program. 

13. OTHER IMPLICATIONS 

Clearly, the rate at which premiums are earned impacts a com- 
pany’s financial position. We are not advocating any formula orposi- 
tion as to how premiums are earned for financial statements. An 
insurer should be aware, however, of the impact of an ESC program 
on its financial statements. If, after evaluation of an ESC program, an 
insurer finds that the total unpaid losses, including claims expected to 
arise from the unexpired terms of existing contracts, exceed the total 
of its loss and unearned premium reserves, it may need to post addi- 
tional reserves. 

Actuaries who prepare statutory opinions for companies with ESC 
exposure should be aware of the implications of this conclusion. All 
ESCs we have seen provide for the reimbursement of expenses for 
repair of a covered part that breaks down during the term of the 
contract, limited either by time or mileage. One may argue that the 
obligation to pay does not exist until a repair occurs and that the loss 
date is the date of the covered repair. If this position is taken, the loss 
and loss adjustment expense reserve would provide only for future 
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payments for repairs that have already occurred. As a result, loss and 
loss adjustment expense reserves would include no provision for re- 
pairs that have not yet occurred. 

We understand that additional reserves for deficiencies in the un- 
earned premium reserve are required for statements prepared under 
generally accepted accounting principles (GAAP). However, under 
current statutory accounting standards. we understand that there is no 
requirement to book such deficiencies on statutory statements, nor are 
there explicit provisions for such deficiencies in current annual state- 
ments. In this case, an insurer may elect to include a write-in item or 
segregation of surplus to provide for such deficiencies. 

If the amount of these indicated additional reserves is material in 
terms of a company’s surplus, an actuary preparing a statutory state- 
ment of actuarial opinion on loss and loss adjustment expense re- 
serves may face a dilemma. The loss and loss adjustment expense 
reserves may be adequately stated, but the actuary’s analysis may 
imply that the financial solidity of the company is impaired due to 
future obligations under existing contracts. In addition, there does not 
appear to be a way to reflect this in statutory statements. Unfortu- 
nately, we do not have a solution to offer, but refer the actuary to the 
appropriate standards of practice. 

This additional reserve may not be deductible for the purposes of 
federal income taxes until the losses are incurred. Thus, the insurer 
may be in the position of having to increase its reserves without the 
benefit of a corresponding tax deduction. Again, we do not have a 
solution to this dilemma, but raise it as a consideration in dealing with 
ESC programs. 

This is not the only area where federal income tax laws come into 
play. In situations where the insurance policy is with the dealer, it 
may be considered as contractual liability and included under Other 
Liability in the annual statement. Thus the Internal Revenue Service 
(IRS) may require the use of Other Liability discount factors when 
calculating the deduction for incurred losses, even though the ex- 
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petted pay-out for loss reserves would generally be expected to be 
very short. 

An exhaustive discussion of all aspects of an ESC program and 
their impact on an insurer is beyond the scope of this paper. The 
above discussion provides only a brief view of some of the hidden 
complexities of such a program. 

14. CONCLUSION 

An ESC program can provide a profitable book of business to an 
insurer. However, monitoring the profitability of that book presents 
unique problems. Contracts are often sold for multiple years with 
limited right to cancellation. Although the coverage generally has 
losses paid soon after the occurrence, the extended period of coverage 
heightens the role of the unearned premium reserve on the financial 
soundness of the program. Unlike most other insurance policies, 
losses cannot be expected to emerge uniformly throughout the term 
of the policy. Thus pro rata earning of premium usually does not 
provide a match between income and liabilities. This can result in 
inaccurate conclusions regarding the profitability of ESC programs. 
Insurers writing such programs should continually monitor the fit 
between premium earning and loss emergence, if loss ratios using 
earned premiums are to be used to monitor the profitability of an ESC 
program. 

Probably the best way to assess profitability, however, is to com- 
pare forecasted total losses with premiums. In this way there are no 
assumptions regarding the timing of premium earning, and the actual 
loss experience can provide insight to the future emergence of losses 
for later policy periods. 

The author is aware of only three other publications in the actuar- 
ial literature dealing with ESC programs, as presented in the attached 
bibliography. The concepts and approaches presented there, as well 
as those presented here, should be considered as starting points in the 
analysis of an ESC program. There remains much to be done in this 
area. 
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Calendar 
Year 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Premiums Earned 
Policy Year 

1 2 3 4 
$l,ooo ~ 
2,ooo $1,250 
2,ooo 2500 $1,563 
2,ooo 2,500 3,125 $1,719 
2,ooo 2,500 3,125 3,438 
1,ooo 2,500 3,125 3,438 

1,250 3,125 3,438 
1,562 3,438 

1,717 

5 Total 
$1,000 

$1,719 
3,438 
3,438 
3,438 
3,438 
1,717 

3,250 
6,063 
9,344 

12,782 
13,501 
11,251 
8,438 
5,155 
1,717 

Total $10,ooo $12,500 $15,625 $17,188 $17,188 $72,501 

EXHIBIT 1 
Part1 

EXAMPLE: Loss RATIOS UNDER MISMATCHED EARNING 

Cumulative 
Total 

$l,ooo 
4,250 

10,313 
19,657 
32,439 
45,940 
57,191 
65,629 
70,784 
72,501 

NOTE: Dollar amounts are in thousands. 



Calendar 
YElf 

I 
2 
3 
4 
5 
6 
I 
8 
9 

IO 

EXHIBIT 1 
Part 2 

EXAMPLE: Loss RATIOS UNDER ~~ISMATCHED EARNING 

Losses Incurred 

1 2 
$375 
1,500 $469 
3,ooo 1,875 
4,125 3,750 
4,125 5,156 
1,875 5,156 

2,344 

5 
TOtal 

$586 
2,344 $645 
4,688 2,578 
6,445 5,156 
6,445 7,090 
2,930 7,090 

3,223 

Total $15,ooo $18,750 $23,438 $25,782 $25,782 $108,752 

$645 
2,578 
5,156 
7,090 
7,090 
3.223 

$375 
I,%9 
5,461 

10,864 
17,192 
21,210 
21,035 
17,110 
10,313 
3,223 

Cumulative 
Total 
$375 
2,344 
7,805 

18,669 
35,861 
57,071 
78,106 
95,216 

105,529 
108,752 

NOTE: Dollar amounts are in thousands. 



Calendar 
Year 

8 
9 

10 

EXHIBIT 1 
Part 3 

EXAMPLE: Loss RATIOS UNDER MISMATCHED EARNING 

Earned Premiums Incurred Losses Indicated Loss Ratios 

Total 
$1,000 

3,250 
6,063 
9,344 

12,782 
13,501 
11,251 
8,438 
5,155 
1,717 

Cumulative 
Total 

$l,ooo 
4,250 

10,313 
19,657 
32,439 
45,940 
57,191 
65,629 
70,784 
72,501 

Total 
$375 
1,969 
5,461 

10,864 
17,192 
21,210 
21,035 
17,110 
10,313 
3,223 

Total $72,501 $108,752 150% 

Cumulative 
Total 
$375 
2,344 
7,805 

18,669 
35,861 
57,071 
78,106 
95,216 

105,529 
108,752 

Total 
38% 
61 
90 

116 
135 
157 
187 
203 
200 
188 

Cumulative 
Total 

38% 
55 
76 
95 

111 
124 
137 
145 
149 
150 

Cumulative 
Profit (Loss) _____~ - 

$625 
1,906 
2,508 

988 
(3,422) 

(11,131) 
(20,915) 
(29,587) 
(34,745) 
(36,251) 

NOTE: Dollar amounts are in thousands. 



EXHIBIT 1 
Part 4 

EXAMPLE: Loss RATIOS UNDER MISMATCHED EARNING 

Calendar 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Indicated Loss Ratios by Calendar and Policy Year 
Policy Year 

1 -1 T-- 4 5 Total 
38% 38% 
75 38% 61 

150 79 37% 90 
206 150 75 38% 116 
206 206 150 75 38% 135 
188 206 206 150 75 157 

188 206 206 150 187 
188 206 206 203 

188 206 200 
188 188 

Cumulative 
Total 
38% 
55 
76 
95 

111 
124 
137 
145 
149 
150 

Total 150% 150% 150% 150% 150% 150% 



Fiscal Accident 
Year Ending 9/30 

1986 
1987 
1988 
1989 
1990 
1991 
1992 

24112 
1.625 
1.520 
1.684 
1.945 
1.386 
1.237 

Selected 1.359 
Cumulative 1.407 

NOTE: Dollar amounts are in thousands 

Fiscal Accident 
Year Ending 9/!0 

1986 
I987 
1988 
1989 
1990 
1991 

EXHIBIT 2 
SAM~LERSCALACCIDENTYEARPAIDLOSSDEVELOPMENT 

(ASOFSEpTEMBER30,1992) 

24 
$13 
187 

1,362 
3,622 
8,616 

15,554 

Months of~Development 
A!% 48- -60 ~72 
$14 $14 $14 $14 
188 188 188 188 

1,383 I.394 1,394 
3,887 3,926 
8,687 

DEVELOPMENTFACTORS 

36l24 
1.077 

Months of Development 
48136 60/48 72ko 
1 .OOo I .ow 1.000 

1.005 1 .oOo 1.000 1.000 
1.015 1.008 l.ooO 
1.073 1.010 
I a08 

1.026 1.009 l.ow 1.ooo I .om 

I.035 I.009 1 .OOu 1.000 1.000 1 BOO 

84 
$14 

Ultimate Indicated Loss 
Forecast Reserves . 

$14 $0 
188 0 

I.394 0 
3,926 0 
8,765 78 

16,098 544 
23,677 6,849 

Total 

84/72 
1.000 

Ultimate/84 



Fiscal Policy 
Year Ending9/30 

1986 
12 
$0 

1987 IX 
1988 16 
1989 26 
1990 29 
1991 32 
1992 29 

Fiscal Policy 
Year Ending 9/30 

1986 
1987 
1988 
1989 
1990 
1991 

24112 
-- 

22.556 
23.125 
55.346 
42.655 
32.438 

Selected- I -. 
Cumulative __ -- 

Selected-2 37.295 5.328 
Cumulative 8X7.024 23.784 

EXHIBIT 3 
SAMPLEFISCALPOLICYYEARPAIDLOSSDEVELOPMENT 

24 
5114 
406 
370 

I .439 
1.237 
1,038 

36l24 
5.096 
4.320 
8.038 
5.381 
5.268 

(ASOFSEPTEMBER30,1992) 
Months of Development 
36 -48 ~60 

$581 $1.294 $2,341 
1.754 4,701 7.198 
2,974 7,156 10.6% 
7,743 16.588 
6,516 

72 
$3,102 

8,547 

DEVELOPMENTFACTORS 

48136 
2.227 
2.680 
2.406 
2.142 

Months of Development 
60148 72160 84172 
1.809 1.325 I .024 
1.531 1.187 
I .495 

.- 1.539 I.221 1.024 
_. 1.939 I.260 1.032 

2.142 1.515 1.250 1.050 
4.464 2.084 1.323 1.058 

84 
$3,176 

Ultimate/X4 

I .00X 

1.008 

Ultimate 
Forecast 
$3.201 

8,821 
13,477 
32,164 
29,087 
24.688 
25,724 

Total 

NOTES: 1. Dollar amounts are in thousands. 
2. Selected- I is used to develop policy years 1989 and prior: Selected-2 is used for policy years I990 and subsequent. 

Indicated Loss 
Reserves 

$25 
274 

2,781 
15,576 
22,571 
23,650 r: 
25.695 ;;t 

5 
$90.572 8 

K4 
2 
2 



EXHIBIT 4 
S~PLEFISCALPOLICYYEARDISTRIBUTIONOFPAIDLOSSESBYACCIDENTYEAR 

(ASOFSEPTEMBER30,1992) 
Fiscal Policy Year Accident Year 

Ending 9130 Py PY.+l- PYR py+3 PY+4 PY+5 
1986 $14 $145 $675 $868 $95 1 3522 

PYti- 
$0 

1987 43 676 2,112 2,622 2,170 925 
1988 43 814 2,941 4,142 2,756 
1989 132 2,096 6,961 7,399 
1990 77 1,696 4,743 
1991 62 976 
1992 29 

Factor 

ACCIDENTYEARDEVELOPMENTFA~TORS 
Accident Year Age 

12 24 36 48 -60 
1.407 1.035 1.009 l.OCNl 1.000 

72 
I BOO 

ESTIMATEDULTIMATEPOLICYYEAR/ACCIDENTYEARLOSSES 
Fiscal Policy 

YearEnding 9/30 
1986 

Accident Year 
Py PY+l PY+2 Py+3 PY+4 py+5- 
$14 $145 $675 $868 $960 $540 

1987 43 676 2,112 2,646 2,246 1,301 
1988 43 814 2,967 4,287 3,878 
1989 132 2,115 7,205 10,410 
1990 78 1,755 6,673 
1991 64 1,373 
1992 41 

NOTES: 1. Dollar amounts are in thousands. 
2. The Accident Year Development Factors are the cumulative factors from Exhibit 2. 



Fiscal Policy Year 
Endin- 

1986 
1987 
1988 
1989 
1990 
1991 
1992 

Fiscal Policy Year 
Ending 9/30 

1986 
I987 
1988 
1989 
1990 
1991 

EXHIBIT5 
SAMPLEFISCALPOLICYYEARBYACCTDENTYEARPAIDLOSSDEVELOPMENT 

(ASOFSEPTEMBER 30,1992) 

$14 $159 $834 $1,702 $2,662 $3,202 $3,202 $3,202 
43 119 2.83 1 5,477 7,723 9,024 9,024 
43 857 3,824 8,111 11,989 14,111 

132 2,247 9,452 19,862 34,202 
78 1,833 8,506 32,008 
64 1,437 23,798 
41 15,636 

Number of Accident Years Emewed Ultimate 

Total $85,392 

211 
11.357 
16.721 
19.930 
17.023 
23.500 
22.453 

312 
5.245 
3.931 
4.462 
4.206 
4.640 

Number of Accident Years Emerged 
4&- 5/4~ ---6/5 7/6- Ultimate/7 

2.041 1.564 1.203 1.000 
1.935 1.410 I.168 
2.121 I .47X 
2.101 

Selected- I __ _- -- 1.463 I.177 1 .OOo 
Cumulative __ __ __ I.722 1.177 1.000 1.000 

Selected-? 23.028 4.40 1 2.101 1.480 1.210 1.000 
Cumulative 38 1.367 16.56 1 3.763 1.791 1.210 1.000 I.000 

NOTES: 1, Dollar amounts are in thousands. 
2. Selected-l is used to develop policy years 1989 and prior; Selected-2 is used for policy years 1990 and subsequent. 

Indicated Total 
~ Unpaid- 

$26 
477 

3,415 
17,614 
25,492 
22,760 
15,txn 



EXHIBIT 6 
Part1 

(1) 
Fiscal Policy Policy Year 
Year Ending Development 

9130 (Exhibit 3) 

1986 $3,201 

1987 8.82 1 

1988 13,477 

1989 32,164 

1990 29,087 

1991 24,688 

1992 25,724 

Total 

(2) 
Policy-Accident 

Year Development 
(Exhibit 5) 

$3,202 

9,024 

14,111 

34,202 

32,008 

23,798 

15,636 

Indicated Loss Reserves TV of 913Ol92 

SUMMARYOFULTIMATELDSSFORECASTS 
(ASOFSEFTEMBER30,1992) 

(3) (4) (3 (6) (7) (8) 
Total Initial Smoothed Expected Pure Selected 

Initial Written Indicated Pure Premium Ultimate 
Selection Contracts Pure Premium Premium Method Losses 

$3202 22,399 $143 ~ ~~ $143 $3,2M $3,202 

9,024 60,513 149 152 9,024 9,024 

13,953 85,716 163 161 14,065 14,028 

33,693 197,116 171 171 33,995 33,894 

31,278 186,064 168 163 30,776 30,943 

24,243 143,542 169 173 24,770 24,638 

___ 149,963 --- 184 27,562 27,562 

$143,291 

Estimated Losses on Future Claims as of 9/30/92 

NOTES: 
1. Amounts in Columns (l), (2). (3). (7). (8). (10) and (11) are in thousands of dollars. 
2. The derivation of Column (6) is shown in Column (5) of Part 2. 
3. The derivation of Column (7) is shown in Column (9) of Part 2. 

(9) (10) (11) 
Indicated Losses Indicated 

Pure Paid Unpaid 
Premium 9/M/92 LOS%3 i g 

$143 $3,176 ~- !3 $26 
149 8,547 477 

164 10,696 3,332 E 
172 16,588 17,306 z 

166 6,516 24,427 i 
172 1,038 23,600 

184 29 27,533 

n 
$46,590 $96,701 ’ 

$7.47 1 

$89.230 



EXHIBIT 6 
Part 2 

E 

(1) 
Initial 

Fiscal Policy Indicated 
Year Ending Pure 

9130 Premium 

1986 $143 

1987 149 

1988 163 

1989 171 

1990 168 

1991 169 
1992 _. 

DERIVATIONOF COLUMNS(~) AND(~)• FEXHIBIT 6, PART 1 
(ASOFSEPTEMBER30.1992) 

(2) 
Estimated 
New Car 
warranty 

Change Factor 

I .oo 

I .oo 

I .oo 

1 .oo 

0.90 

0.90 

0.90 

(3) 
Warranty 

Adjusted Pure 
Premium 

(1 Y(2) 
$143 

149 

163 

171 

187 

188 

(4) (5) 
Smoothed Selected 
Warranty Smoothed 
Adjusted Pure Premium 

Pure Premium (2) x (4) 
$143 $143 

152 152 

161 161 

171 171 

182 163 

193 173 

205 184 

(6) 

Total 
Written 

Contracts 

22,399 

60,513 

85,716 

197.116 

186,064 

143,542 

149,963 

(7) (8) 
Estimated Estimated 

Ultimate Losses Percent of 
on Emerged Losses 

Claims Emerged 

$3,202 Ioo.oo% 

9,024 100.00 

I 1,989 84.% 

19,862 58.07 

8,506 26.57 

I .437 6.04 

41 0.26 

(9) 
Expected Pure 

Premium 
Method E 

(7)+[~-(W(W(6) 3 
$3,202 E 

9,024 w 
14,065 2 

33,995 9 

30,776 8 
24,770 

27,562 
3 

NOTES: 
1. Cohimn (I) is Cohimn (5) from Part 1. 
2. Column (2) is assumed. based on a separate analysis. 
3. Column (4) is the result of an exponential Iit on Column (3). 
4. Column (7) is the last diagonal from Exhibit 5. 
5. Column (8) is the reciprocal of the age-toultimate factors from Exhibit 5. The cumulative for Selected-I is used for 1986-1989 and the 

cumulative for Selected-2 is used for 1990- 1992. 
6. Amounts in Columns (7) and (9) are in thousands of dollars. 



EXHIBIT 7 

Loss EMERGENCE IMPLIED BY POLICY YE,AR/ACCIDENT YEAR DISTRIBUTION AND 
SELECTED ULTIMATE LOSSES BY POLICY YEAR 

(AS OF SEPTEMBER 30,1992) 

Fiscal Policy 
Year Ending 9130 ..I-~ 

1986 
1987 
1988 
1989 
1990 
1991 
1992 

Accident yeal,, 
PY PY+l PY+2 PY+3 PYi4 PY+S PY+6 
0.4% 5.0% 26.0% 53.2% 83.1% 100.0% 100.0% 
0.5 8.0 31.4 60.7 85.6 100.0 
0.3 6.1 27.3 57.8 85.5 
0.4 6.6 27.9 58.6 
0.3 5.9 27.5 
0.3 5.8 
0.1 

Weighted Averages: 
1986-89 
1990-92 

0.4% 6.6% 28.2% 58.4% 85.2% 100.0% 100.0% 
0.2 5.9 27.5 __ __ __ __ 
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EXHIBIT 8 

EXAMPLEFLOWOFMONTECARLOSIMULATIONMODEL 

Select Annual Mileage 
for One Car 

t- 

4 

Limit Mileage and Term 
for Coverage Option 

4 
Manufacturer Warranties --+ 

I 
Calculate Aggregate Costs 

I 
Coverage Conditions + 

Based on Mileage 

4 
Inflate Future Costs 

Record Result 

4 

Calculate Average Emergence 
Curves and Costs 

1 
End 



Annual Mileage Under 1 1 2 

O-999 22.0% 4.9% 2.5% 

l,OOO-2,999 13.1 6.1 6.5 

3,000-7.999 18.4 22.7 20.9 

8,000- 12,999 20.0 24.9 30.7 

13,00@ 17,999 9.2 18.8 IS.2 

18,00@22,999 5.0 8.8 9.8 

23,OQC-27,999 5.6 6.3 4.1 

28,000- 6.7 7.5 6.7 

Total 100.0% 100.0% 100.0% 

Average Annual 
Mileage 

11,268 13,498 13.562 12,261 Il.497 10,694 10.624 9.655 8,757 8.7 14 

EXHIBIT 9 

PERCENTAGE OF VEHICLES BY ANNUAL MILEAGE AND AGE 

Vehicle Age 

3 4 5 6 

3.6% 4.1% 4.5% 5.2% 

7.3 9.6 10.8 11.3 

23.9 26.0 26.9 29.0 

33.2 32.4 31.0 30.1 

15.3 14.6 14.0 13.2 

7.1 6.2 6.7 5.6 

4.4 2.9 2.7 2.7 

5.2 4.2 3.4 2.9 

7 8 9 

5.4% 8.0% 9.0% 

12.9 12.9 16.8 

32.2 32.8 31.2 

28.7 30.3 25.6 

9.4 9.0 9.4 

6.5 3.9 3.7 

1.8 1.3 2.0 

3.1 1.8 2.3 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

lO+ All 

19.0% 8.2% 

18.9 12.0 

31.4 27.7 

19.2 27.4 

5.6 12.2 

2.4 5.7 % 
I.1 2.9 z 
2.4 3.9 T 

i2 

100.0% 100.0% 

7,085 10,368 
3 

Source: “Household Vehicle Utilization,” U.S. Department of Transportation, Federal Highway Administration, Office of High- 
way Planning, April 198 1. % 



EXHIBIT 10 

PERCENTAGE OF AUTOMOBILES PURCHASED NEW AND USED BY AGE OF AUTO AND 
AUTO OWNERSI-W IN 1977 

Age of Autos in Vehicles Purchased New Vehicles Purchased Used Total Percentage with 
Years Percentage Number Percentage Number Vehicles 

Less than 1 2.0% 912 0.0%.- 0 912 

1 16.6 7,570 0.9 445 8,015 

2 16.9 7,706 3.4 1,683 9,389 

3 11.2 5,107 5.1 2,525 7.632 

4 11.1 5,062 8.3 4,109 9,171 

5 11 .o 5,016 10.1 5,000 10,016 

6 8.5 3,876 10.8 5,346 9,222 

7 5.4 2,462 8.8 4,356 6,818 

8 4.7 2,143 8.8 4,356 6,499 

Y 3.4 1,550 9.4 4,653 6,203 

10 or more 9.2 4.196 34.4 17,027 21,223 

Total 45,600 49,500 95,100 

Original Owner 
100.0% 
94.4 

82.1 

66.9 

55.2 

50.1 

42.0 

36.1 

33.0 

25.0 

19.8 

47.9% 

Source: 1977 values from Table 32 in “Household Vehicle Utilization” published by the U.S. Department of Transportation. 



EXHIBIT 11 

ESTIMATED AVERAGE COSTS PER MILE FOR UNSCHEDULED REPARS AND MAINTENANCE 

YCU Annual Miles 
1 14,500 
2 13,700 
3 12,500 
4 11,400 
5 IO,300 
6 9,700 
7 9,200 
8 8,700 
9 8,200 

IO 7,800 
11 7,300 
I2 6,700 

Large 
$O.OOlO 
0.0045 
0.0273 
0.0318 
0.1203 
0.0722 
0.1238 
0.075 I 
0.0296 
0.0023 
0.0019 
0.0021 

Vehicle Size 
Intermediate Compact 

$O.CKtO8 $0.0007 
0.0035 0.0033 
0.0291 0.0174 
0.0268 0.0198 
0.087 1 0.0495 
0.0756 0.0632 
0.1197 0.1588 
0.0593 0.0645 
0.0292 0.0149 
0.0019 0.0013 
0.0015 0.0009 
0.0017 0.0010 

Sub-Compact Average 
$O.o006 $0.0008 
0.0029 0.0036 
0.0255 0.0248 
0.0285 0.0267 
0.0664 0.0808 
0.1068 0.0795 
0.1401 0.1356 
0.0596 0.0646 
0.0242 0.0245 
0.0012 0.0017 
0.0008 0.0013 
0.0009 0.0014 

Source: “Cost of Owning and Operating Automobiles and Vans, 1984,” published by the U.S. Department of Trausportation. 

E 
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EXHIBIT 12 

ESTIMATEDLOSSEMERGENCEFORONE~/~OOCONTRACT 
BASEDONSIMULATION MODEL 

Policy 
Age 

1 

2 

3 

4 

5 

Estimated 
Percentage 
Emerged 

3.8% 

20.2 

49.3 

78.3 

100.0 



EXHIBIT 13 

ESTIMATED AGGREGATE POLICY YEAR PAYMENT PATTERN FOR 5/100 CONTRACT 

Development Accident Year Calendar Accident 
Year Loss Emergence Year 

1 71.1% 1 
2 96.6 2 
3 99.1 3 
4 100.0 4 

5 
6 
7 
8 
9 

Policy Year Loss Emergence 1.9% 10.1% 22.7% 29.1% 25.4% 10.8% 100.0% 

Year 1 
1.4% 
0.5 
0.0 
0.0 

Accident Accident 
Year 2 Year 3 

7.2% 
2.6 
0.3 
0.1 

Policy Year Loss Emergence 

16.1% 
5.8 
0.6 
0.2 

Accident 
Year 4 - ~~ 

20.6% 
7.4 
0.7 
0.3 

Accident 
Year 5 

18.0% 
6.5 
0.6 
0.2 

Accident 
Year 6 

7.7% 
2.8 
0.3 
0.1 

Total 
1.4% 
7.7 

18.7 
26.7 
26.1 
15.1 
3.7 
0.5 
0. I 
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EXHIBIT 14 

ESTIMATED PERCENTAGE OF CONTRACTS HAVING EXPOSURE 
GREATER THANINDICATEDMILEAGE 

Mileage 

0 

6,000 

12,000 

18,000 

24,000 

30,000 

36,000 

42,000 

48,000 

54,000 

6woo 

66,ooo 

72,000 

78,000 

84,000 

90,000 

96,000 

100,000 

Age of Policy Year 

1 2 3 4 

100.00% 100.00% 100.00% 100.00% 

37.24 82.17 90.46 92.41 

24.79 63.08 79.67 84.23 

14.26 45.54 68.09 75.35 

7.50 32.07 56.66 66.60 

3.97 22.40 45.76 57.96 

2.16 15.36 35.95 49.68 

1.26 10.49 27.70 41.85 

0.83 7.03 20.86 34.70 

0.56 4.67 15.55 28.34 

0.38 3.14 11.47 22.85 

0.26 2.14 8.36 18.14 

0.19 1.47 6.04 14.21 

0.13 1.02 4.33 11.02 

0.09 0.73 3.16 8.45 

0.08 0.54 2.29 6.45 

0.06 0.40 1.71 4.92 

0.05 0.31 1.40 4.14 

5 6 

Ioo.oo% 100.00% 

93.13 93.49 

85.94 86.7 1 

78.11 79.47 

70.56 72.39 

63.20 65.70 

56.06 59.19 

49.24 52.97 

42.83 47.14 

36.90 41.70 

31.42 36.59 

26.56 31.89 

22.23 27.66 

18.40 23.79 

14.99 20.39 

12.22 17.30 

9.75 14.50 

8.43 12.93 

NOTE: Estimates are derived from the Monte Carlo simulation model based on 
input assumptions from Exhibits 9 and 10. 



Policy Age of Policy Year 

Year 1 2 3 4 

1987 1,000 1,000 1,000 1,000 

1988 10,000 10,000 10,000 10,000 

1989 50,000 50,000 50,000 25,000 

1990 100,000 100,000 50,000 

1991 150,000 75,000 

1992 100,000 

EXTENDED SERVICE CONTRACTS 297 

EXHIBIT 15 
Part 1 

EXPECTEDEXPOSUREBYPOLICYAGEEXPECTEDTOEXCEED 
INDICATED MILEAGE 

WRITTENCONTRACTS 

Policy Year 

-1992 1991 ~~ 1990 1989 -!9W 1~987 
200,000 150,000 100,000 50,000 10,000 1,000 

POTENTIALCONTRACTSEXPOSEDBYAGE 

5 6 

1,000 500 

5mO 

Total 4 11,000 236,000 111,000 36,000 6,000 500 
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EXHIBIT 15 
Part 2 

ESTIMATED CONTRACTS EXPOSED 

Age of Policy Year 

Mileage 1 2 3 4 

0 411,000 236.000 111,000 36,000 

6,000 

12,ooo 

18SXKl 

24,000 

30,000 

36,000 

42,000 

48,000 

54.000 

60,000 

66,000 

72,000 

78.000 

84,000 

90,000 

96,000 

100,000 

153,056 

101,887 

58,609 

30,825 

16,317 

8,878 

5,179 

3,411 

2,302 

1.562 

1,069 

781 

534 

370 

329 

247 

193,921 

148,869 

107,474 

75,685 

52,864 

36,250 

24,756 

16,591 

11,021 

7,410 

5,050 

3,469 

2.407 

1,723 

1,274 

944 

732 

loo,41 1 

88,434 

75,580 

62,893 

50,794 

39,905 

30,747 

23,155 

17,261 

12,732 

9,280 

6,704 

4,806 

3.508 

2,542 

1,898 

1,554 

33,268 

30.323 

27,126 

23.976 

20.866 

17,885 

15,066 

12,492 

10,202 

8.226 

6,530 

5,116 

3,967 

3,042 

2,322 

1,771 

1,490 

I.594 159 23,682 

1,334 138 17,542 

1,104 119 12,937 

899 102 9,644 

733 87 7,287 

585 73 5,518 

506 65 4,553 

NOTE: Estimates of contracts exposed are based on the written contracts on the 
top portion of this exhibit and the percentages in Exhibit 14. 

5 

6,~ 

5,588 

5,156 

4.687 

4,234 

3,792 

3,364 

2,954 

2,570 

2,214 

1.885 

6 

500 

467 

434 

397 

362 

329 

296 

265 

236 

209 

183 

Total 

800,500 

486,7 11 

375,103 

273,873 

197,975 

144,962 

106,578 

78,967 

58,455 

43,209 

31,998 
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EXHIBIT 16 

ESTIMATED COST PER MILE 

Mileage at Time of ReDair Total Costs 

0 <XI 6,000 $10,000 

6,000 < X I 12,000 15,000 

12,000 <X5 18,000 50,000 

18,000 < X I 24,000 60,000 

24,000 < X I 30,000 75,000 

30,000 < X 2 36,000 150,000 

36,000 < X 242,000 160,000 

42,000 < X 548,000 165,000 

48.000 < XI 54,000 150,000 

54,000 < XI 60,000 125,000 

60,000 < XI 66,000 100.000 

66,000 < XI 72,000 90,000 

72,000 < XI 78,000 75,000 

78,000 < XI 84,000 50,000 

84,000 < X I 90,000 30,000 

90,000 < X I 96,000 20,000 

96,000 < X 1100.000 10,000 

NOTES: 

(1) 

(2) (3) 
Estimated Indicated Cost per 
Exposed Mile in Interval 
Contracts ~1)/Kw51 

800,500 0.00 I O$ 

486,711 0.0026 

315,103 0.0111 

273,873 0.0183 

197,975 0.03 I6 

144,962 0.0862 

106,570 0.1251 

78,967 0.1741 

58,455 0.2138 

43,209 0.2411 

31,998 0.2604 

23,682 0.3167 

17,542 0.3563 

12,937 0.322 1 

9,644 0.2592 

7,287 0.2287 

5,518 0.2265 

299 

1. Amounts in Column (2) are from Exhibit 15. 
2. The amounts in Column (1) here are hypothetical but could be determined from 

company loss experience by miles driven at time of repair. 
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APPENDIX 

This appendix contains the proof that the mixing of the inverse 
Weibull and Gamma distributions produces an inverse Burr distribu- 
tion. First suppose the variable x has an inverse Weibull distribution 
with parameters 8 and ‘I with cumulative density function given by: 

F(&) = ,& . 

This results in a probability density function given by: 

Suppose, further, that 9 is itself unknown but has a Gamma distri- 
bution with the probability density function: 

In this case the probability density function for the variable x is 
given by: 

h(x) = ~f(xle)g(e)de 
0 



301 

We now make the change of variables with z = 8 (h+x-’ ), so that 

&=-A. 
x+x- 

The equation now becomes: 

h(x) = 
zhax-(~+l) - 2 

r(a)(h+P) o X+x-’ 
I( 1 

a e-zdz 

aa x-l=+‘) - - za e-zdz 
I - r(a)(h+x-t)a+l o 

&a x-(T+ 1) 
= 

r(a)(h+xP)a+’ 
r(a+l) 

zha ye+ 1) 
= 

r(a)(h+.c7)a+1 aW 

aTha x-CT+ l) 

= (~+p)a+l 

= 

awaT-l (,y+l 

?L( h+x-T)a+' 
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aWaT-I h-7 
a+1 

=-- 
h c I h+xP 

az( l%J~aTe’ 
= 

(( ‘4 +x’) 
a+1 ’ 

This is the probability density function for an inverse Burr distribu- 
tion with parameters a, h-‘“, and t. 



UNDERWRITING BETAS-THE SHADOWS OF GHOSTS 

THOMAS J. KOZIK 

Abstract 

This paper critiques the methodologies used in prior 
studies to estimate underwriting betas for application in the 
“insurance CAPM.” It argues that reliable estimates of un- 
derwriting betas do not exist. It also demonstrates the inap- 
plicability of the CAPM to the yield to maturity of a bond or 
portfolio of bonds. Finally, it demonstrates that the assump- 
tion that the yield on a U.S. Treasury bill is risk-free for pur- 
poses of applying the CAPM implies that all U.S. Treasury 
securities, regardless of maturity, have betas of zero. 

1. INTRODUCTION 

The asset pricing models of modern finance theory are sometimes 
used in insurance rate hearings to determine the equilibrium rate of 
return to an insurer, and hence the premium level that is implied by 
that rate of return. One of those models, the Capital Asset Pricing 
Model (CAPM) (Sharpe, [21]), asserts that the equilibrium rate of 
return on any asset is given by 

r, = r-+ P,h - rf) 

where 

ra = expected rate of return on asset a, 

rr= risk-free rate of return, 

r, = expected rate of return on the 
market portfolio (the market 
portfolio is the portfolio that 
includes all risky securities, each 
in proportion to its market value; 

(1.1) 

303 
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i.e., U.S. stocks, foreign stocks, 
real estate, precious metals, etc.), 

Pppstematic risk or beta of asset a 
= cov(r,,r,,Jlvar(r,). 

It is possible, under some assumptions, to derive an expression for 
the equilibrium underwriting rate of return for an insurer’s total book 
of business as a percent of premium by applying the CAPM to an 
insurer and decomposing the total return into the sum of the under- 
writing return and the investment return. This results in the model 
that Cummins [7] has termed the “insurance CAPM.” Further, with 
additional assumptions, estimates of equilibrium underwriting returns 
for individual lines of insurance can be obtained. 

The “insurance CAPM” was first derived by Biger and Kahane 
[3]. Their version of the model not only assumed a world without 
taxes, but also that each dollar of premium is invested for exactly one 
year before being paid out in the form of loss or expense. This latter 
assumption was relaxed by Kahane in his paper, “The Theory of 
Insurance Risk Premiums-A Re-examination In The Light of Re- 
cent Developments in Capital Market Theory” [ 151. Kahane’s version 
of the model is 

r, = -kq+ P,k,,--Tf) (1.2) 

where 

ru = expected underwriting return per 
dollar of premium, 

p, = systematic risk of underwriting 
= co+-,,r,,Yv~(r,) , 

k = a measure of the length of time 
that one dollar of premium is 
invested before being paid out in 
the form of loss or expense. 
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Other authors include taxes in their versions of the model. Both 
Hill [ 121 and Fairley [9], for example, include a single average tax 
rate in their versions of the model. Urrutia [24] recognizes two tax 
rates-one for underwriting income and another for investment in- 
come. Urrutia’s model is 

r,, = -krf (l-t,) / (l-t,) + tar,/ (s( l-t,)) + f&,(rm-rf> (1.3) 

where 

t, = tax rate on investment income, 

tu = tax rate on underwriting income, 

s = premium to equity ratio. 

Although the “insurance CAPM” purports to give the equilibrium 
underwriting return, it is increasingly being used in insurance rate 
hearings to determine the “fair” underwriting return, and thereby, the 
implied premium level. The magnitude of return that is required in 
order to be a “fair” return is a constitutional question. An equilibrium 
return can be a “fair” return only if it meets the standards of “fair” 
returns that have been enunciated by the United States Supreme 
Court. It is not universally accepted that equilibrium returns meet the 
standards of “fair” returns. Whether or not they do, though a signifi- 
cant issue in its own right, is not the focus of this paper. Nor is it the 
intent of this paper to address the shortcomings of the models in their 
various forms. Rather, the intent of this paper is to focus solely on the 
problem of estimating underwriting betas. 

It is common for expert witnesses who apply the “insurance 
CAPM” for the purpose of determining premium levels in insurance 
rate hearings to assume that underwriting betas are zero or slightly 
negative. Consider the following comments of two expert witnesses 
in a recent auto insurance rate hearing: 
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Witness 1: “Empirical evidence shows that underwrit- 
ing has no systematic risk, Remember, only systematic 
risk is compensable. Some studies have demonstrated 
very small and even negative underwriting risk, there- 
fore we can assume it is not relevant.” 

Witness 2: “The underwriting beta C/3,) is assumed to be 
zero precisely because no published study has shown 
that underwriting returns are related to market returns. 
This makes intuitive sense because one does not expect 
accidents to increase or decrease because stock market 
returns are increasing or decreasing.” 

Listening to these witnesses, one might get the impression that the 
issue is settled-that it is virtually certain that underwriting betas are 
indistinguishable from zero, and that this conclusion is supported by 
all of the studies that have addressed the issue. This, however, is not 
true. Not only do estimates of underwriting betas vary widely from 
study to study, but also numerous authors note the bias and inaccu- 
racy inherent in the estimates themselves. This paper argues that reli- 
able estimates of underwriting betas do not exist. and hence, the true 
values of those underwriting betas are unknown. 

2. DISCERNINGTHEGHOST 

Underwriting betas are not observable. If the underwriting opera- 
tions of insurers were publicly traded, then historic underwriting be- 
tas might be estimable. All insurers, though, have investment 
operations as well as underwriting operations. This substantially com- 
plicates the estimation of underwriting betas. 

A number of authors have tried to estimate underwriting betas 
using indirect methods (Biger and Kahane; Fairley; Hill; Cummins 
and Harrington, [6]; Cox and Rudd, [5]). The indirect methods em- 
ployed are of two general types. One is to regress historic accounting 
underwriting returns on historic returns for some market index. In this 
paper, betas estimated using this technique are called “accounting 
betas.” The second method of estimation is based on the notion that 
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the equity beta of an insurer is a linear combination of an investment 
beta and an underwriting beta (or alternatively, an asset beta and a 
liability beta). Hence, the underwriting beta (liability beta) can be 
inferred from estimates of the investment portfolio beta (asset beta) 
and the equity beta of a publicly traded insurer. In this paper, betas 
estimated using this technique are called “inferred betas.” 

The results of these studies vary greatly across lines of insurance, 
firms, time, choice of the market portfolio, and estimation methodol- 
ogy. In spite of this variation, it is common, as stated earlier, for 
expert witnesses to assume that underwriting betas are zero or slightly 
negative. The support for this practice, if and when any is given, is to 
cite only those studies that affirm the witness’s assertion. 

Underlying the indirect methods of estimation are numerous un- 
stated assumptions. Moreover, the magnitude of the estimation errors 
are unknown and potentially enormous. Given that these models and 
these estimates are increasingly being used to determine premium 
levels, a critical analysis of the reasonableness of these assumptions 
is necessary. 

3. REVIEW OF THE LITERATURE 

Biger and Kahane estimated two sets of accounting betas for each 
of eighteen lines of insurance. They regressed annual percentage un- 
derwriting profits, aggregated for all U.S. non-life stock insurance 
companies over the period from 1956-1973 (as reported in Best’s 
Property-Casualty Aggregates and Averages), against two indices 
that served as proxies for the market portfolio. The first index is 
Moody’s stock index including dividends. Hence, the market portfo- 
lio represented by this index is an all-equity portfolio. The betas 
corresponding to this portfolio range from -.109 to .199. Further, the 
betas for fifteen of the eighteen lines of insurance have an absolute 
value that is less than .lOO. The second index was constructed from 
Moody’s stock index and the annual holding period returns on U.S. 
Treasury bonds. The Treasury bonds comprised 70% of the mixed 
portfolio and Moody’s stock index comprised the remaining 30% of 
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the portfolio. The betas that correspond to this mixed stock and bond 
market portfolio are more variable. They range from -.230 to .37 1. 
Biger and Kahane [p. 1211 conclude, “systematic risk of underwriting 
profits approaches zero in most lines. Thus an intuitive solution for 
underwriting profit rates in these lines equal to minus the riskless 
interest rate is reasonable.” 

However, they go on to say [pp. 126- 1271 that: 

Evaluation of the systematic risk of underwriting, which 
is not based on market returns but on reported profits, 
may result in biased estimates of the coefficients . . 
Several accounting procedures, unique to the insurance 
business, make the concept of profit or loss on any par- 
ticular line of insurance less meaningful than the earn- 
ings per share figures for other business firms. In 
particular, the somewhat arbitrary allocation of overhead 
to individual lines makes the profit estimates even more 
questionable, as what is required are specific betas for 
specific lines. If one adds the empirical inconsistency 
between accounting betas and market betas for securi- 
ties, reported in several studies, to these reservations, 
one must conclude that regulators should be cautious 
when accounting betas are used for the insurance lines 
in ratemaking. 

Fairley estimates inferred underwriting betas for five lines of in- 
surance. He first estimates beta for all lines combined. This estimate 
is inferred from the equity betas reported in the Value Line Invest- 
ment Survey [ 19761 for nine predominantly property-liability stock 
insurance companies and an investment beta which is estimated using 
a subsample of the nine insurers. Betas for the various lines are 
estimated assuming that they are proportional to the ratio of liabilities 
to premiums. Fairley’s estimates of the underwriting betas are as 
follows: .34 for auto bodily injury; .07 for auto property damage; .07 
for homeowners; .34 for workers compensation; and .79 for medical 
malpractice. 
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Interestingly, Fairley has little confidence in the accuracy of ac- 
counting betas. He states [p. 2051 that, “Accounting betas for liabili- 
ties or for underwriting determined by regressing annual accounting 
underwriting returns against annual market index returns are gener- 
ally near zero in absolute value, though the possible downward bias 
in these estimates makes them suspect as estimates of true market 
betas.” 

Hill presents accounting betas for 14 lines of insurance. They 
were calculated by regressing underwriting profit rates over the pe- 
riod from 1943 to 1973, as reported in Best’s Aggregates and Aver- 
ages, on the logarithm of the return on the market portfolio. Hill does 
not specify what comprises the market portfolio other than to note [p. 
1831 that, “The market return is the value weighted index computed 
by Ibbotsen and Sinquefield [1976].” The underwriting betas for the 
individual lines vary from -.212 to 1.013. Hill [p. 1831 concludes, 
“Almost all the betas are insignificant. One might draw the weak 
conclusion that underwriting betas can be positive or negative and 
that they are generally fairly near zero.” Nevertheless, he points out 
that, “There is a high probability that betas estimated from accounting 
data are biased towards zero.” 

Hill also presents inferred all-lines underwriting betas for six pub- 
licly traded insurers. They were calculated by regressing the under- 
writing return on the market return. The underwriting return is 
calculated by subtracting investment income and capital gains from 
the change in the market value of the firm plus dividends in each 
successive one-year period of time. The underwriting betas for the six 
firms range from - 1.03 to .85 and average -.20. 

Cummins and Harrington present two sets of all-lines accounting 
underwriting betas for 14 insurers for two periods of time. The two 
periods of time are from the first quarter of 1970 to the third quarter 
of 1975, and from the fourth quarter of 1975 to the second quarter of 
1981. One set of betas is based on a regression of quarterly under- 
writing profits as a percent of earned premium, as reported by the 
A.M. Best Co., on the market return. The market portfolio is the 
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value weighted index of the New York Stock Exchange and the 
American Stock Exchange common stocks. The second set of betas is 
based on a regression of quarterly underwriting profits on five lagged 
market returns, that is the return on the market portfolio for the cur- 
rent and prior four periods. The underwriting betas from this regres- 
sion consist of the sum of the coefficients of the five market return 
variables. 

The simple regression estimates are small in absolute value and 
most are negative. The 14 firm averages are -.05 and -.04 for the two 
periods of time. Twenty-one of the twenty-eight estimates are nega- 
tive, and only seven have absolute values greater than .lO. The esti- 
mates from the second regression are far more variable and average 
.49 and -1.18 for the two periods of time. Cummins and Harrington 
state [p. 161, “The results imply that underwriting betas may have 
been subject to significant instability during the 1970’s. This finding 
suggests extreme caution if underwriting betas are to be used to es- 
tablish fair profit margins in rate regulations.” 

They go on to state [p. 381, “Betas have not been stable during the 
1970’s and may shift again in the early to mid 1980’s. Thus regula- 
tors should be extremely cautious in using ex post beta estimates to 
predict ex ante results. Betas also differ across insurers.” 

Cox and Rudd present two sets of all-lines accounting underwrit- 
ing betas using the same regression models that Cummins and Har- 
rington used, and one set of inferred underwriting betas for 
twenty-one insurers for two periods of time. The first period of time 
is from the first quarter of 1973 to the third quarter of 1977. The 
second period of time is from the fourth quarter of 1977 to the second 
quarter of 1982. The accounting betas were calculated using quarterly 
combined ratios with the Center for Research on Security Prices 
(CRSP) equally weighted stock index as the proxy for the market 
portfolio. The accounting betas based on the simple regression model 
average .068 and -.093 for the two periods of time. Most of the 
estimates have absolute values less than .lOO. The accounting betas 
based on the second regression average .024 and -.027 for the two 
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periods. Most of these estimates also have absolute values less than 
.lOO. 

The inferred betas were calculated based on data reported in 
Moody’s Bank and Finance Manual. The inferred betas are far more 
variable. They average -. 129 and -1.021 for the two periods of time, 
and range from a low of -2.076 to a high of .164. Cox and Rudd [p. 
3 171 conclude: “Virtually no relationship is observed between the 
two types of estimates.” 

There is an extraordinary amount of variation in estimates of un- 
derwriting betas across lines of insurance, firms, time, choice of the 
market portfolio, and methodology. Estimates of underwriting betas 
are typically measured per dollar of premium. The investor, of 
course, pays market price when investing in the firm. Accordingly, 
the relevant risk to the investor is measured per dollar invested. Pre- 
mium volume generally exceeds the market value of insurers. Hence, 
betas measured per dollar invested exceed those measured per dollar 
of premium. For example, if the ratio of premium to market value is 
two, then beta measured per dollar invested is exactly twice the value 
measured per dollar of premium. Measuring underwriting betas per 
dollar of premium thus reduces their apparant variability and contrib- 
utes to the illusion, in at least some studies, that underwriting betas 
are near zero. 

Is it reasonable to expect true market underwriting betas to vary so 
greatly? Or is it more reasonable to expect that such variation is 
caused by faulty estimation methods? If underwriting betas cannot be 
reliably and accurately estimated, little or no confidence can be 
placed in the appropriateness of the resulting premiums. 

4. UNDERWRITING BETA-WHAT IS IT? 

It is important to distinguish future time periods from historic time 
periods and expectations of future returns from realizations of those 
expectations. The CAPM is concerned with investors’ expectations of 
future returns. The returns are expected since they are future re- 
turns-they have not yet been realized. Moreover, the returns that are 
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realized may not equal those that are expected. Sharpe [2 1, pp. 85-861 
states: 

Capital market theory concerns people’s perceptions 
concerning opportunities. Actual results may (and usu- 
ally will) diverge from predictions. The values of capital 
market theory are ex ante (before-the-fact) estimates. 
Observed values are ex post (after-the-fact) results. The 
portfolios that do, in fact, turn out to be efficient will lie 
along some line, but not necessarily the ex ante capital 
market line. In fact, the market portfolio invariably 
proves to be inefficient ex post. If the future could be 
predicted with certainty, investors would shun diversifi- 
cation-the optimal portfolio would contain only the se- 
curity with the best (actual) performance. 

But the future cannot be predicted with certainty. Ex 
ante estimates must be made. The lack of certainty pro- 
vides the motivation for both portfolio theory and capital 
market theory. 

According to the CAPM given in Equation 1.1, beta is the covari- 
ante of the expected future return on a security with the expected 
future return on the market portfolio divided by the variance of the 
expected future return on the market portfolio. The expectation is 
taken over all investors. The underwriting beta given in Equation 1.2 
is the covariance of the investors’s expected future underwriting re- 
turn with the investors’s expected future return on the market portfo- 
lio divided by the variance of the investors’ expected future return on 
the market portfolio. 

Since betas depend on expected future returns, in order to measure 
betas, those expected future returns must be known. The only way to 
learn about those expected future returns is to ask investors what they 
expect. No one has ever done such a study. Rather than measure 
betas, analysts typically estimate them using the ex post form of the 
CAPM. That is, betas are estimated using historic realized returns. 
The ex post form of the model requires additional assumptions that 
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are not required by the ex ante form. According to Copeland and 
Weston [4, p. 205 and pp. 301-3021, the ex post form of the model 
assumes that the return on any asset is a fair game.’ Further, when 
betas that are estimated by using historic realized returns are used to 
establish premium levels for future periods, it is assumed that these 
historic estimates of beta apply to future periods. 

It is not obvious that these two assumptions are reasonable. In 
fact, both of them are problematic. The fair game hypothesis, for 
example, requires that investors have unbiased estimates of expected 
future returns on each and every asset. In other words, investors must 
have perfect knowledge of the first moment of the probability distri- 
bution of future returns on every asset. This, of course, is highly 
unlikely. As some of the studies have shown, substantially different 
estimates of beta result from using different periods of time. Hence, 
even if investors possess perfect knowledge, the choice of the period 
of time that is used to estimate the historic beta is critical. Lengthen- 
ing that period might lessen the chance that returns are not fair 
games, but it also increases the likelihood that beta has changed over 
the period. 

Empirical applications of the ex post form of the CAPM are sub- 
ject to unknown and potentially large amounts of estimation error. If 
any confidence is to be placed in the results, then the model must be 
validated in some way. 

One way of validating the model might be to test how well the 
model can explain historic returns. The evidence is not reassuring. 
For example, Fama and French [lo] found that historic betas were not 
able to explain historic returns. They found that size and the book-to- 
market equity ratio have greater explanatory power than historic be- 
tas. Perhaps it is the investors’ imperfect knowledge, which prevents 
returns from being fair games, that limits the ability of historic esti- 
mates of beta to explain returns in capital markets. Alternatively, 

‘A fair game model is one where, on average, across a large number of samples, the 
predicted future rate of return on an asset, conditioned on current information, is 
equal to the subsequent realized rate of return. 
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Bernstein [2, p .l] suggests that, “Despite all the mighty efforts of 
investment theory, we still do not have a firm handle on a quantitative 
gauge of risk.” Beta may be the proper theoretical measure of risk, 
but reliable estimates of beta may not yet exist. 

Historic returns may have some role in estimating betas, but if 
historic returns are used, then their use must be validated in some 
way. Without such validation the estimation error is unknown, and no 
confidence can be placed in the resulting estimates. For example, it 
would be enlightening to divide the data into two time periods and 
test how well estimates derived from the first period explain returns 
in the second. Rather than cross-validate their results, however, Cox 
and Rudd present two sets of inferred betas for two periods of time 
with very different results. Had they cross-validated their results, they 
may have concluded that estimates from the first period were unable 
to explain returns in the second period. Either the estimates are de- 
void of value, or underwriting betas vary enormously over relatively 
short time periods, and thus historic estimates bear no relation to 
future periods. 

Cummins and Harrington also found that historic betas were not 
stable over time. If this is indeed true, then unless variation over time 
can be explained and predicted, historic betas have no relevance for 
determining premium levels. 

a There are potentially many ways to estimate betas other than 
naively using historic returns in a simple-minded way. Jorion [ 141, 
for example, uses empirical Bayes estimators. (The actuaries’ knowl- 
edge of credibility theory uniquely qualifies them to contribute to this 
line of research.) Rosenberg [18] estimates prospective betas using 
fundamental factors. He also compares the ability of the predicted 
betas to explain returns versus that of historic betas. He concludes 
that the predicted betas are superior to historic betas in explaining 
subsequent returns. See also Rosenberg and McKibben [19], Rosen- 
berg [ 171 and Rosenberg and Guy (201. Whatever methodology is 
used to estimate underwriting betas. it must be validated in some 
way. 
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5. ACCOUNTING BETAS 

The use of accounting underwriting betas to estimate true market 
underwriting betas suffers from a number of flaws. First, accounting 
underwriting betas are based on historic realized returns rather than 
on investors’ expectations of future returns. As explained earlier, the 
estimation error is unknown and no confidence can be placed in the 
resulting estimates. 

Second, the historic underwriting returns that are used are not 
discounted. The market, however, values future cash flows according 
to their discounted present value. It seems unlikely that undiscounted 
returns could accurately measure investors’ expectations of dis- 
counted returns. 

Some scholars and analysts have suggested that insurers deliber- 
ately smooth underwriting returns by manipulating loss reserves. A 
more significant source of smoothing of underwriting returns is that 
reported underwriting returns are undiscounted, and thus do not cap- 
ture the volatility of interest rates. Another source of smoothing ema- 
nates from the way that insurers price their product. When 
determining premium levels, insurers typically consider investment 
income by using the portfolio (book) yield which is calculated using 
the book value of invested assets. Since long term bonds are a large 
part of most insurers’ investment portfolios and are carried on the 
books at amortized cost rather than at market value, this treatment has 
the effect of smoothing away short term interest rate volatility and 
thereby introducing some stability to premium levels. Estimating risk 
by using a time series of returns where the variability has been 
smoothed away is obviously going to produce severely biased results. 

If accounting betas are to have any value, they must accurately 
approximate market betas. Unfortunately, this is not the case, as his- 
toric returns to the Fortune 500 reveal. In the spring of each year 
since 1973, Fortune magazine reports the median return on equity 
and the median return to shareholders for the Fortune 500 [ 1 I]. Table 
1 displays those returns as well as the returns to shareholders in the 
S&P 500 as reported in Stocks Bonds Bills and Inflation 1992 Year- 
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book [ 131. Historic accounting and market betas are calculated for the 
Fortune 500 using the S&P 500 as a market proxy. The market beta 
for the Fortune 500 as measured by the median return is 1.00, while 
the accounting beta is -.02. Could it also be true that an accounting 
underwriting beta of -.02 corresponds to a market underwriting beta 
of 1 .OO? Accounting betas obviously do not provide reliable estimates 
of market betas. 

TABLE 1 
ACCOLJNTING vs. MARKET BETAS-FORTUNE 500 

Year 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 

Accounting Returns- ~J4arket Returns 
Median Return on Median Total Return 

End of Year Equity- to Shareholders 
12.4% -25.5% 
13.6 -22.4 
11.6 51.2 
13.3 34.5 
13.5 -3.2 
14.3 7.2 
15.9 21.3 
14.4 21.1 
13.8 -0.4 
10.9 21.2 
10.6 30.2 
13.6 -0.8 
11.5 24.1 
11.6 15.5 
13.2 6.8 
16.2 14.1 
15.0 17.5 
13.0 -10.2 
10.2 29.5 

Standard 
Deviation 1.7 19.4 

Correlation 
with market -.20 .92 

Beta -.02 1.00 

Fortune 500 

Return on Market 
Portfolio S&P 500 

-14.7% 
-26.5 
37.2 
23.8 
-7.2 
6.6 

18.4 
32.4 
-4.9 
21.4 
22.5 
6.3 

32.2 
18.5 
5.2 

16.8 
31.5 
-3.2 
30.6 

17.9 

1.00 

1.00 
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If the goal is to estimate systematic risk, then accounting returns 
are the wrong variables to study. 

6. INFERRED UNDERWRITING BETAS 

Since the total return to an investor consists of an underwriting 
return and an investment return, it follows that the equity beta of an 
insurer can be decomposed into a linear combination of an underwrit- 
ing beta and an investment beta. In its simplest form the decomposi- 
tion is as follows: 

(6.1) 

where 

p, = equity beta, 

Pa = investment beta, 

Pu = underwriting beta, 

A= invested assets, 

E= equity, 

P= premium. 

There are variations to this model. Some authors include a beta for 
the non-traded assets, and taxes need to be recognized. Nevertheless, 
for purposes of this discussion, this simple form will suffice. 

Historic equity betas for publicly traded insurers can be computed 
from historic returns. Further, they are available from a number of 
investment advisory services and brokerage firms. To estimate the 
underwriting beta, then, it is necessary to estimate the investment beta 
and the two levers, (A.&) and (P/E). At first blush, this method of 
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estimating the underwriting beta seems simple and straightforward. 
However, it too is fraught with difficulties. This estimation method 
merely transfers the problems of estimation from underwriting betas 
to investment and equity betas. Moreover, any error in the estimation 
of the investment beta is leveraged by the ratio of invested assets to 
equity. This leveraging of the error can be quite substantial for some 
insurers, particularly those that write long-tail lines of insurance. 

The equity beta applies to the market value of equity. Accord- 
ingly, the levers must also be valued at market. The market value of 
equity, however, is not available for many insurers since they are not 
publicly traded. Further, the market value of invested assets is not 
available for any insurer. The market values of some investments are 
reported. Stocks, for example, are carried on the books at market 
value. Insurers that are publicly traded report the market value of the 
bond portfolio in their annual report to shareholders. Some publicly 
traded insurers also report the market value of mortgage-backed secu- 
rities in the shareholders’ report, Similar information for insurers that 
are not publicly traded is not available. 

For other assets, however, market values are simply unavailable. 
The market value of mortgage investments, for example, is generally 
not available regardless of whether the insurer is publicly traded. Real 
estate investments are carried on the books at cost less depreciation, 
rather than at market value. The market value of unconsolidated sub- 
sidiaries is generally unknown. Market values of other investments 
such as oil and gas partnerships, limited partnerships, etc. are unavail- 
able. Thus, it is not possible to determine the proper values for the 
asset lever for any insurer nor the underwriting lever for most insur- 
ers. 

The Equity Beta 

Although historic equity betas can be computed and are available 
from a number of sources7 they are of unknown quality. Many are 
based on simple regressions of historic returns. All of these estimates 
depend on the validity of the ex post form of the CAPM. As pre- 
viously noted, the assumptions that underlie that model are problem- 
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atic. Further, different analysts and firms calculate historic betas in 
different ways. For example, different proxies of the market portfolio 
and different holding periods are used. Theory provides no guidance 
as to which holding period should be used. Yet changing the holding 
period can cause significant changes in the estimates of beta. Long- 
staff [ 161, for example, states [p. 8751: 

The value of the market beta for firm i is a function of 
the length of the period over which returns are meas- 
ured. Thus, betas estimated from daily returns need not 
equal betas estimated from monthly data, all other esti- 
mation problems aside. Perhaps even more important, 
the relative ranking of firms by betas estimated from 
daily data need not be the same as the ranking based on 
betas estimated from monthly returns. 

It is well known that the composition of, and returns to, the proper 
market portfolio are unknown. Typically, a stock market index of 
some sort, usually a subsample of the entire stock market, such as the 
S&P 500 or the NYSE, is used as a proxy for the market portfolio. 
Underlying this practice is the assumption that residential and com- 
mercial real estate, farmland, foreign equities, foreign real estate, 
excluded U.S. equities (such as over the counter stocks and stocks 
traded on the American or other smaller exchanges), antiques, furs, 
paintings, precious metals, etc., have no discernable impact on esti- 
mates of beta. These excluded assets comprise a much larger part of 
the market portfolio than the stock indices used as its proxy. Is it 
reasonable to assume that the tail wags the dog? 

Arguably, equity betas estimated by investment advisory services 
may be more accurate approximations of true equity betas, since 
investors pay for these services and presumably use them. However, 
there is great variation in the betas estimated by different firms. Table 
2 displays the equity betas estimated by Value Line and Standard & 
Poors for those property-casualty insurers covered by Value Line 
which also have a beta published by Standard & Poors. The Value 
Line betas were published April 10, 1992 [I], and the Standard & 
Poors betas were current as of March 6, 1992 [23]. The average 
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absolute value of the difference in the two estimates of beta is .26. 
Both firms use returns over a five year period for calculating betas. 
Value Line, however, uses a weekly holding period while Standard 
and Poors uses a monthly holding period. 

TABLE 2 

ESTIMATES OF BETA 

Insurer 
Chubb 
Cincinnati Financial 
Continental Corp. 
Frontier Insurance 
Geico 
General Re 
Orion Capital 
Progressive Corp. 
Safeco 
St. Paul Cos. 
20th Century 
USF&G 

Betas Published By Absolute 
Value Line Standard & Poors Difference 

1.05 .67 .38 
.80 .65 .15 

1.05 1.02 .03 
.90 1.06 .16 
.80 .70 .lO 

1.00 .68 .32 
1.10 1.27 .17 
.95 .52 .43 

1.15 .90 .25 
1.05 .73 .32 
1.00 1.42 .42 
1.10 .70 .40 

Average Absolute Difference .26 

Perhaps the consensus or average estimates of equity betas from 
all of the investment advisory services would provide truer estimates 
of investors’ expected betas. This hypothesis, however, needs to be 
tested. In any case, estimating an equity beta is no simple task. The 
estimation error is unknown and potentially large. Use of the wrong 
equity beta obviously biases the estimate of the underwriting beta. 

The Investment Beta 

The investment portfolio beta is the weighted average of the betas 
of the securities in the portfolio. Bonds are a significant component of 
most insurers’ portfolios. What is the beta of a bond portfolio? How 
is it estimated? 
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Historic estimates of bond betas can be computed. However, the 
estimate of beta varies according to the historic period that is used. 
For example, the beta of the annual return on long term Treasury 
bonds from 1926 to 1991, according to data reported in Stocks Bonds 
Bills and Inflation 1992 Yearbook, is .06. However, the estimate of 
the Treasury bond beta increases almost by a factor of five to .29 if it 
is based on data from 1970 to 1991. Both of these estimates use the 
S&P 500 as a proxy for the market. If historic estimates are to be 
used, then what is the appropriate time period? What assurance is 
there that the choice of the time period is consistent with the market’s 
expectations? 

If using historic estimates of bond betas is problematic, then per- 
haps the beta can be estimated from the yield to maturity of the bond 
and the current risk-free rate. Presumably the difference between 
these two yields is the product of the bond’s beta and the market risk 
premium. One witness, in fact, in a recent auto insurance rate hearing 
estimated the bond portfolio beta of an insurer in this way. However, 
as is shown below, CAPM cannot explain the yield to maturity of a 
bond with a maturity that exceeds the holding period assumed by the 
CAPM. 

If CAPM applies to the yield to maturity of a bond, then it must be 
able to explain the term structure of interest rates. The theories ad- 
vanced to explain the term structure of interest rates (expectations 
theory, liquidity preference theory, and market segmentation theory), 
however, do not include the CAPM. Further, the implications of the 
CAPM are inconsistent with these theories. If CAPM applies to the 
yield to maturity of a bond, then that yield is the sum of a risk-free 
rate and a risk premium which is proportional to the bond’s beta. It 
follows that risk is the only reason why yields on long term bonds 
differ from yields on short term instruments. 

Consider that the yield on long term Treasury bonds in February, 
1989 was approximately 8.8% as reported in the Wall Street Journal. 
The yield on ninety day Treasury bills was also approximately 8.8% 
and the yield on two year Treasury notes was approximately 9.2% 
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during that month. If CAPM applies to the yield to maturity of a 
bond, then it implies that although two year Treasury notes were risky 
at that point in time, long term Treasury bonds were not. Conversely, 
in April, 1993, the yield on ninety day Treasury bills was approxi- 
mately 3.0%, and the yield on long term Treasury bonds was approxi- 
mately 6.8%. CAPM thus implies that long term Treasury bonds were 
risky at that time. Hence, if CAPM applies to the yield to maturity of 
a bond, then bond betas are not stable over time and historic betas 
have no relevance for determining future premiums. 

According to both the expectations theory and the liquidity prefer- 
ence theory, the yield to maturity of a long term bond depends on the 
market’s expectations of future interest rates. Since CAPM, which is 
a single variable/single period model, does not capture the market’s 
expectations of future interest rates, it cannot explain the yield to 
maturity of long term bonds with maturities that exceed the holding 
period assumed by the CAPM. 

To demonstrate this, consider a default-free zero coupon bond that 
pays D dollars at the end oft years. The expected price of the bond at 
timej is 

Pj=Dl((l+j rj+l)(l+j+ITj+2)....(1+,-I Tr)). (6.2) 

where 

Pi = expected price of bond at timej, 

D = payment from bond at time I, 

i-lrj= forward interest rate for a default-free 
commitment made at time 0 to loan 
money at beginning of year i, and to be 
repaid with interest at end of year i. 

Hence, 

PO = Dl((i+,,r,)(l+,r,)....(l+,,r,)) (6.3) 
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and 

P, =D/((l+,r,)(1+2r3)....(l+r-*T,)). (6.4) 

The CAPM is a single period model. In order to apply CAPM, it is 
necessary to specify the holding period. The holding period in turn 
determines the risk-free rate, since that rate must prevail over the 
holding period. The appropriate risk-free rate is thus the interest rate 
on a risk-free security with a maturity that matches the holding pe- 
riod. Suppose the CAPM with an annual holding period is applied to 
this bond. The expected return during the first year is 

(P, - P,)/P, = or-1 . (6.5) 

Thus the return that CAPM would try to explain is orl. The yield 
to maturity, however, is given by 

y, = (( l+ur,)( l+,r,) . . . . (I+,-,+r#“- 1. (6.6) 

In general, y, does not equal orl, Hence, the CAPM cannot explain 
the yield to maturity of long term bonds. 

Note also that orl is simply the current interest rate on a default- 
free security with a maturity equal to the holding period assumed by 
the CAPM. If yields on default-free securities are assumed to be 
risk-free, as is commonly done, then orl is the appropriate risk-free 
rate for this application of the CAPM. Hence, the beta for this bond is 
zero. Further, it follows that by choosing a suitably short holding 
period, the beta of any default-free bond of any maturity is zero, since 
the bond is the sum of a portfolio of zero coupon bonds, all of whose 
betas are zero. This implies that an insurer that invests exclusively in 
U.S. Treasury securities, regardless of maturity, has an investment 
beta of zero. Accordingly, the investment portfolio betas of two insur- 
ers, one of which invests exclusively in U.S. Treasury bills while the 
other invests exclusively in thirty-year Treasury bonds, are both equal 
to zero, even though the latter may have a greater yield to maturity 
than the former. 
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Many insurers, of course, invest in municipal bonds, corporate 
bonds, and mortgages. Estimating the investment portfolio betas in 
these cases is no simple matter. Historic estimates are problematic 
since it is unknown which period of history is relevant. Further, 
CAPM is unable to explain the yield to maturity for these bonds since 
those yields depend on the market’s expectations of future interest 
rates. Any error that is implicit in the estimate of the investment beta 
necessarily biases the estimate of the underwriting beta if it is in- 
ferred from the former. Moreover, the error in the investment beta is 
levered up by the ratio of invested assets to equity. 

Some bonds that are subject to default risk can be expected to 
default. Accordingly, the yield to maturity overstates the expected 
yield on such a bond. The yield to maturity on risky bonds thus 
includes a default premium which is required to compensate the in- 
vestor for the expected rate of default. 

One way to estimate an upper bound for the beta of a risky bond 
(or portfolio of bonds) is to compare the yield to maturity (the taxable 
equivalent yield to maturity in the case of municipal bonds) of the 
bond with the yield to maturity of a U.S. Treasury bond with the 
same duration. The yields to maturity of both bonds capture the mar- 
ket’s expectations of future interest rates. Hence, the difference in the 
yields is equal to the sum of the default premium and the risk pre- 
mium. Since the risk premium is the product of the bond’s beta and 
the market risk premium, it follows that the difference in the yields 
divided by the market risk premium is an upper bound for the bond’s 
beta. 

Contrary to this procedure, a witness in a recent auto insurance 
rate hearing estimated the beta of a long term high quality bond 
portfolio to be .24. At the time, Treasury bills and bonds were yield- 
ing 6.3% and 8.5% respectively, and long term corporate bonds were 
yielding 8.9%. Assuming the duration of the corporate bonds 
matched the duration of the government bonds and assuming a mar- 
ket risk premium of 8.6%, the implied upper bound for the corporate 
bond beta is .05. Overestimating the bond beta by inferring it from 
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the yield differential over Treasury bills causes an underestimation of 
the underwriting beta since the levered investment beta is subtracted 
from the equity beta to get the levered underwriting beta. This further 
results in the determination of premium levels that are inadequate. 

7. INTUITIVECONSIDERATIONS 

On the surface, the notion that underwriting betas for insurance 
are zero, since the occurrence or non-occurrence of accidents is unre- 
lated to the performance of financial markets, has much intuitive 
appeal. A closer inspection, however, reveals that this notion is a bit 
too simple-minded. It confuses accidents with insurance claims, and 
completely overlooks the severity of those claims. Further, intuition 
suggests other reasons why underwriting betas might be positive. 

There are a number of reasons why underwriting losses increase 
during times of economic malaise and high unemployment. To the 
extent that financial market performance is positively related to eco- 
nomic performance, this suggests that underwriting betas may be 
positive. 

The conventional wisdom in the insurance industry is that theft, 
fire, and arson losses increase during times of high unemployment. 
Underwriting losses thus increase during such times for auto, home- 
owners, and commercial theft and fiie insurance. When people are 
out of work, they are more likely to default on their debt. Thus, credit 
insurance and mortgage insurance losses increase during times of 
high unemployment. Drivers who are unemployed are more likely to 
drive without auto insurance, thus increasing the losses under unin- 
sured motorist coverage. It is expected that fraud and misrepresenta- 
tion increase during times of high unemployment. Misrepresentation 
such as not disclosing a young driver on an auto insurance policy or 
lying about the use, annual mileage, or territory of garaging of an 
insured vehicle deny the insurer the full premium that is required to 
insure the policy. This increases underwriting losses. It is also ex- 
pected that when unemployment is high, claimants are more likely to 
pursue a claim and to exaggerate the value of that claim. 



326 UNDERWRITING BETAS-THE SHADOWS OF GHOSTS 

When interest rates are increasing, stock and bond markets tend to 
perform poorly. Underwriting losses, especially on long tail lines of 
insurance, also increase as interest rates rise. This suggests that un- 
derwriting returns may have positive betas. 

Finally, catastrophes destroy business property and may depress 
economic activity from the resulting unemployment and business in- 
terruption. 

Thus, the intuitive considerations are ambiguous. Intuition is in- 
sufficient to determine the value of underwriting betas. 

8. CONCLUSIONS 

The underwriting beta is a useful theoretical concept. However, it 
is not possible to measure it directly. The indirect methods that have 
been used to estimate underwriting betas are flawed and result in 
estimates that vary greatly across lines of insurance, firms, time, 
choice of the market portfolio, and estimation technique. Thus, reli- 
able estimates of underwriting betas do not exist. Perhaps better 
methods of estimation may some day be developed. Until that time, 
however, underwriting betas will remain as visible as the shadows of 
ghosts. 
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ADDRESS TO NEW MEMBERS-NOVEMBER 13,1994 

W. JAMES MACGINNITIE 

In preparation for this occasion, I looked back thirty-one years to 
1963, when I was admitted as a new Fellow. Perhaps in 2025 one of 
you will be at this podium. We had fewer new Fellows and Associ- 
ates then, but of course the exams were tougher. The meeting drew 
about 175 attendees, versus 1,100 at this meeting. The venues in 1963 
were the Catskills and Atlantic City, two resort areas in decline, 
whereas this year the CAS meets in Boston and Orlando. In 1963, the 
premium volume for the property-casualty insurance industry was 
less than $20 billion; today that’s just a good-sized catastrophe loss. 

In the ensuing thirty-one years, the CAS has grown from fewer 
than 400 members to 2,300. Premium volume for the property-casu- 
alty insurance industry has grown at a compound rate in excess of 
10% per year, and the growth of captive, self-insured, and off-shore 
premium is substantially greater. 

That growth is a function of many forces. One of those forces is 
the litigiousness of our society. I noted in my review of 1963 that the 
Secretary of the CAS was authorized to take out the Society’s first 
public liability policy. Another force is the growth of both population 
and the economy, with a great deal of the latter being inflationary in 
nature. The breakdown of the system of making rates in concert has 
also contributed to the growth of the CAS. The largest employers of 
CAS members are no longer rating bureaus or companies but now are 
consulting firms, reflecting the rapid growth in that area of practice. 
The availability of data and computer power with which to manipu- 
late it have also helped the growth. You can get more power in a few 
pounds of a notebook today than in a roomful of tube machines thirty 
years ago. But perhaps the largest contribution to the growth and 
membership of the CAS has been the perceived value of actuarial 
training, and the ability of those so trained to provide useful solutions 
to the many problems that face the risk and insurance business. 
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Some things have not changed much in thirty-one years. In 1963, 
the President, Laurence Longley-Cook, reported that “...greatly in- 
creased competition in the industry has forced rates for certain lines 
too low...other causes include inflation and greater claims conscious- 
ness.” He went on to touch on “astronomical legal fees” and he 
observed that “ignorance and fear of loss of business sometimes lead 
to inadequate rate filings.” 

The challenges and opportunities that we faced thirty-one years 
ago were many and varied. Those that you face today are even more 
numerous and more varied. I recently had the opportunity to facilitate 
a gathering of actuaries chosen from the world-wide staff of a multi- 
national insurance and financial services company, focusing on the 
role of the actuary in the 21st Century. The actuarial needs of that 
organization, and many like it, are truly exciting. They go well be- 
yond traditional actuarial roles, into risk control, capital management, 
management of the claim process, sophisticated marketing, and many 
others. All of this will be on a multinational basis, requiring that 
many of the actuaries develop familiarity with the culture of other 
societies. Also, the growing interconnections between the insurance 
and alternative risk handling mechanisms with which we are so fa- 
miliar, on the one hand, and the banking, securities, and other finan- 
cial services industries, on the other hand, will provide challenge and 
opportunity for many of you. 

None of this will be easy. It will require continual re-education on 
your part-perhaps not at the level of intensity of the exams that you 
have just completed, but still at a very rigorous level. Because in 
order to be of value to your clients and employers in these new areas, 
you must have the same in-depth knowledge and understanding that 
you have so recently demonstrated for the traditional property-casu- 
alty risks. 

None of this growth and none of these opportunities would have 
been possible without the selfless work of generations of actuaries 
that have gone before you. You are the beneficiaries of that work, and 
so as you now receive your Fellowship or Associateship, you must 
also assume the many responsibilities that go with the designation: 
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Responsibility to continue your education through study, discus- 
sion, and participation in continuing education opportunities. 

Responsibility to extend the expertise of the profession through 
your research, both theoretical and applied, and through the shar- 
ing of your results at meetings such at this. 

Responsibility to recruit and train the next generation, which 
means for many of you work on the education and examination 
committees. 

Responsibility to contribute to the continued growth and develop- 
ment of the profession. 

Responsibility to conduct your affairs in a professional and ethical 
manner, and especially to recognize your fiduciary obligation for 
the financial soundness of the organizations you serve, with their 
promises to provide protection and payment far into the future. 

The accomplishment for which we recognize you today is a sub- 
stantial one. You and your families and colleagues can be justly 
proud. Decades from now, when you look back to today, much will 
have changed and much will remain unchanged. We trust that as you 
look back from that future perspective, your discharge of your re- 
sponsibilities will give you as much pride then as your Fellowship or 
Associateship does now. 
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THE CAS: A HOLOGRAM OF VISIONS 

IRENE K. BASS 

It’s that time of the CAS year when it’s expected that I give an 
address. A couple of years ago, when I received the news that I had 
been nominated to this office, the first thing that shot through my 
mind was the terror of knowing I would have to give such an address 
before you, my colleagues. I would have to say something that would 
be profound and memorable. It nearly caused me to turn down the 
nomination. But then I realized that this address comes at the end of 
the year, when you can no longer impeach me. 

Before I get to the address, there are two things that I would like 
to say. The first one is: Thanks! 

The end of the CAS year is always a good time to reflect on our 
collective accomplishments, and to recognize those who have made it 
happen. 

To begin the thanks: What would we be without the support of 
the CAS Office staff under the leadership of Tim Tinsley? Many of 
us in the room remember the days when the office staff of the CAS 
could have been described as one woman and a parrot. Now we have 
a staff of top-drawer professionals who reflect well on our profession. 
I know of no better executive director than Tim Tinsley. Many of you 
may not know this but, in addition to Tim’s successful military ca- 
reer, he received a college degree in operations research, and in many 
ways is just as “numerate” as we actuaries. I wonder what Tim’s 
strange karma must be that he is so skilled in quantitative matters but 
would choose to work for an organization where everyone thinks he 
or she knows more about‘numbers than the entire rest of the world. 
But Tim does it with style and grace. 

And, of course, many of you know the terrific meeting planning 
done by Kathy Spicer and Gwynne Hill. That is obvious to us every 
time we have a meeting or seminar, without exception. 
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However, a lot of support to our membership and our future mem- 
bership comes from the behind the scenes Office staff. For example, 
Michele Lombard0 stands strong and deals with all the issues sur- 
rounding the exam process, and she is now venturing into the MIS 
arena. Paula Miller produces the Actuarial Review and other CAS 
publications. As for the other CAS staff: Each contributes and we 
thank you all. 

Another group of people that I would like to thank is you, the 
leaders of the CAS! In a column that I wrote for the Actuarial Review 
this year, I quoted Mohandas Gandhi who said, “I must hurry and 
catch up with my people, for I am their leader.” That statement says 
quite a lot about leadership. There are so many members of the CAS 
who actively participate in the work that we must be the envy of 
many professional societies. I can’t read the names of everyone who 
participated in the leadership of the CAS, but it would be interesting 
for everyone in the room to see just how many people that really is. 
Let me ask you for a favor. Let me ask you to rise in place and stay 
standing until I have completed the list of those who have partici- 
pated. 

l All those who served last year on the Board of Directors or the 
Executive Council. 

l All those who chaired committees. 

l All those who served on CAS committees. 

l All those who wrote papers or reviewed papers, 

l All those who served as official liaisons for the CAS. 

l All those who served as officers of regional affiliates and special 
interest groups. 

l All those who served on programs and seminars of the CAS. 

l All those who served as facilitators at the Course on Professional- 
ism. 

l All those who wrote articles for the Actuarial Review or the Fo- 
rum. 
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My thanks to you, the leaders of this profession. 

And it wouldn’t be right if I didn’t thank those who helped me 
personally to get through the year. Thanks to my business partners for 
being understanding of the fact that there are some things more im- 
portant than the billable hour-at least temporarily. And thanks to my 
husband, Stan Khury, an actuary, a past president of this society. He 
is the wind beneath my wings. (Of course, on occasion, some have 
confused this for hot air.) 

Now the second thing that I’d like to do before I get to that 
address that I’m supposed to deliver, is to ask you to stroll down 
actuarial memory lane with me for a moment and reflect on your 
lives as actuaries. 

Think back to the first time you ever heard of an actuary. When 
was it and where were you? 

Think about the first actuarial exam that you took. 

Then think about the relief of that lust actuarial exam, or if you 
have not finished them yet, think of what it will be like to finish 
the last one. 

Think of those job interviews. 

And think of your first days on the job. 

Think of the job you had then, the job you have now, and all you 
learned in between. 

Think how relatively simple things were then; how complex they 
have become. 

Think of the first CAS meeting you attended and all the people 
you came to know by going to meetings. 

Think of grading exams after having finished taking them your- 
self. 

Think of the committees on which you served and all they accom- 
plished. 
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l Think of what the CAS looked like when you started in this pro- 
fession and think of what it looks like today. 

Now as we finish our stroll down memory lane, I’d like to ask you 
to join with me in a moment of quiet reflection. I’m going to ask you 
to close your eyes. Close them for just a minute and let the thoughts 
go from your mind. Relax. 

I ask you to envision the CAS today. Keeping your eyes closed, 
think of what the CAS looks like today. 

l What does it mean for you to be a member? 

l What is the community that it represents? 

Keeping your eyes closed for just a moment longer, I ask you to 
envision the CAS five or ten years from now. 

Just contemplate that future vision for a moment and hold it in 
your mind. 

Now you can open your eyes again, and I’ll finally get to that 
address. So, here it is: 

“Do whatever is in your power to make your vision of the CAS 
come true.” 



MINUTES OF THE 1994 ANNUAL MEETING 

November 13 - 16.1994 

THE HILTON AT WALT DISNEY WORLD VILLAGE 

ORLANDO. FLORIDA 

Sunday, November 13,1994 

The Board of Directors held their regular quarterly meeting from 
noon to 5:00 p.m. 

Registration for the Annual Meeting occurred from 4:00 p.m. to 
6:00 p.m. 

From 5:30 p.m. to 6:30 p.m., new Associates and their guests 
attended a reception that featured an introduction of the CAS Execu- 
tive Council. 

A welcome reception for all members and guests was held from 
6:30 p.m. to 7:30 p.m. 

Monday, November 14, 1994 

Registration continued from 7:30 a.m. to 8:30 a.m. 

CAS President Irene K. Bass opened the business session at 8:30 
a.m. and recognized past CAS presidents in the audience, as well as 
special guests: Charles A. Bryan, President, American Academy of 
Actuaries; Jose Luis Salas, General Coordinator, Mexican Committee 
for the International Actuarial Practice; Jack M. Turnquist, President- 
Elect, American Academy of Actuaries; Sam Gutterman, President- 
Elect, Society of Actuaries; Roberto Westenberger, Director, Institute 
of Actuaries of Brazil; U. Richard Neugebauer, Executive Director, 
Canadian Institute of Actuaries. 

Ms. Bass announced the results of the election of CAS officers. 
The members of the 1995 Executive Council will be Vice President- 
Administration, Paul Braithwaite; Vice President-Admissions, John J. 
Kollar; Vice President-Continuing Education, David N. Hafling; Vice 
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President-Programs and Communications, Alice H. Gannon; Vice 
President-Research and Development, Michael J. Miller. President- 
Elect will be Albert J. Beer, and President will be Allan M. Kaufman. 
New Board members will be Robert F. Conger, John M. Purple, Rich- 
ard H. Snader, and Kevin B. Thompson. 

Ms. Bass thanked outgoing Executive Council and Board mem- 
bers for their service to the CAS. 

Allan Kaufman, announced the 86 new Fellows. The names of 
these individuals follow: 

Todd R. Bault 
John A. Beckman 
Jennifer L. Biggs 
Betsy L. Blue 
Mark L. Brannon 
Anthony J. Burke 
Janet L. Chaffee 
Jessalyn Chang 
Scott K. Charbonneau 
Michael A. Coca 
Gregory L. Cote 
Michael T. Curtis 
Edgar W. Davenport 
Michael L. DeMattei 
Jeffrey L. Dollinger 
Maribeth Ebert 
Matthew G. Fay 
Daniel B. Finn 
Yves Francoeur 
Russell Frank 
Kim B. Garland 
Donna L. Glenn 
Linda M. Goss 
Farrokh Guiahi 
Jonathan M. Harbus 
Lisa A. Hays 
Deborah G. Horovitz 

NEW FELLOWS 

Nancy E. Kot 
John M. Kulik 
James W. Larkin 
Michael D. Larson 
Christopher Lattin 
Michel Laurin 
France LeBlanc 
Elise C. Liebers 
William G. Main 
Daniel J. Mainka 
Donald F. Mango 
Blair E. Manktelow 
Katherine A. Mann 
James B. McCreesh 
John W. 

McCutcheon, Jr. 
M. Sean McPadden 
John P. Mentz 
Paul Allen Mestelle 
Robert J. Meyer 
Stephen J. Meyer 
Stacy L. Mina 
Kelly L. Moore 
Michelle M. Morrow 
David A. Murray 
Robin N. Murray 
Stephen R. Noonan 

Laura A. Olszewski 
William L. Oostendorp 
Timothy A. Paddock 
Rudy A. Palenik 
Jennifer J. Palo 
Chandrakant C. Pate1 
Charles C. Pearl, Jr. 
Andre Perez 
Marvin Pestcoe 
Daniel C. Pickens 
Marian R. Piet 
Brian D. Poole 
Donna J. Reed 
Elizabeth M. Riczko 
James Joseph 

Romanowski 
Kevin D. Rosenstein 
Gregory R. Scruton 
Derrick D. Shannon 
David M. Shepherd 
Barbara A. Stahley 
Thomas N. Stanford 
Paul J. Struzzieri 
Richard D. Thomas 
Barbara H. Thurston 
Michael Toledano 
Charles F. Toney, II 
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Dale G. Vincent, Jr. L. Nicholas Marcia C. Williams 
Scott P. Weinstein Weltmann, Jr. William M. Wilt 

Debra L . Werland Ralph T. Zimmer 

John J. Kollar, Michael J. Miller and David N. Hafling announced 
the 76 new Associates. The names of these individuals follow. 

Shawna S. Ackerman 
Larry D. Anderson 
Barry Luke Bablin 
James M. Bartie 
Andrea C. Bautista 
Lori Michelle Bradley 
Kevin Joseph Brazee 
Russell J. Buckley 
Kristi Irene 

Carpine-Taber 
Brian A. Clancy 
Kirsten J. Costello 
Wayde Alfred 

Daigneault 
Thomas V. Daley 
Smitesh Dave 
Laura B. Deterding 
Gregg Evans 
Charles V. Faerber 
Bruce Daniel Fell 
Ginda Kaplan Fisher 
Robert F. Flannery 
Margaret Wendy 

Germani 
Julie Terese Gilbert 
Nicholas P. Giuntini 
William Alan Guffey 
Marc S. Hall 

NEW ASSOCIATES 

Elizabeth E. L. Hansen 
Jonathan B. Hayes 
David B. Hostetter 
Brian Danforth Kemp 
Rebecca A. Kennedy 
Bradley J. Kiscaden 
Paul Henry Klauke 
Joan M. Klucarich 
Eleni Kourou 
Kenneth Allen 

Kurtzman 
Edward M. Kuss 
Matthew G. Lange 
John P. Lebens 
P. Claude Lefebvre 
Gary P. Maile 
Janice L. Marks 
Anthony G. Martella, Jr. 
Peter R. Martin 
Michael Boyd Masters 
Brian James Melas 
Anne C. Meysenburg 
Camille Diane Minogue 
James Edward 

Monaghan 
Matthew C. Mosher 
Turhan E. Murguz 
Aaron West Newhoff 

Marc Freeman 
Oberholtzer 

John R. Pedrick 
Anne Marlene Petrides 
Michael David Price 
Karen L. Queen 
Kathleen Mary Quinn 
Yves Raymond 
Victor Unson Revilla 
Brad Michael Ritter 
Jay Andrew Rosen 
Christine R. Ross 
Matt J. Schmitt 
Jeffrey Pat-viz Shirazi 
Nathan Ira Shpritz 
Kerry S. Shubat 
Charles Leo Sizer 
Carl J. Sornson 
Klayton N. Southwood 
Angela Kaye Sparks 
Linda F. Ward 
James C. Whisenant 
Wyndel S. white 
William Robert Wilkins 
Jeanne Lee Ying 
Doug Alan Zearfoss 

Ms. Bass introduced W. James MacGinnitie who gave the Address 
to New Members. 
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Ms. Bass then presented the 1994 Matthew S. Rodermund Service 
Award to Robert A. Miller, III. 

Ms. Bass requested a moment of silence to mark the passing of 
five members of the CAS during the past year. 

John M. Purple read the Vice President-Administration’s Report. 

Alice Gannon presented the highlights of the program. David L. 
Miller, Chairperson of the Committee on Review of Papers, summa- 
rized the two new Proceedings papers being presented. 

David N. Hafling presented the Woodward-Fondiller Prize to 
Daniel M. Murphy for his paper, “Unbiased Loss Development Fac- 
tors,” and the Dorweiler Prize to Daniel F. Gogol for his paper, “An 
Actuarial Approach to Property-Catastrophe Cover Rating.” 

A general session panel on “The Property/Casualty Industry: 2ooO 
and Beyond” took place from lo:30 a.m. to noon. Albert J. Beer, CAS 
President-Elect and a Senior Vice President with American Re-Insur- 
ante Company, moderated the panel discussion that included Steven 
M. Gluckstern, Chairman, President and Chief Executive Officer 
with Zurich Reinsurance Centre, Inc.; Jeffrey W. Greenberg, Execu- 
tive Vice President of American International Companies; and Mi- 
chael A. Smith, Senior Vice President with Lehman Brothers. 

Following the panel, there was a luncheon from noon to 1:30 p.m., 
highlighted by the Presidential Address from Irene K. Bass. 

The afternoon’s concurrent sessions ran from 1:30 p.m. to 
5:OO p.m. and consisted of various panels and presentations of papers. 

The panel presentations covered the following topics: 

1. “Health Care Reform Assessments” 

Moderator: Paul G. O’Connell 
Vice President and Actuary 
Continental Insurance 

Panelists: William E. Burns 
Director of Actuarial Services 
Medical Inter-Insurance Exchange of New Jersey 
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2. 

Gary D. Hendricks 
Director of Government Information 

and Chief Economist 
American Academy of Actuaries 

Edward M. Wrobel, Jr. 
Consulting Actuary 
Tillinghast/Towers Perrin 

“No Fault Automobile Insurance” 

Moderator: Michael A. LaMonica 
Vice President and Actuary 
Allstate Insurance Company 

Panelists: Professor Jeffrey O’Connell 
The McCoy Professor of Law 
University of Virginia 

Richard Lynde 
Supervising Insurance Examiner 
New York State Insurance Department 

Chester Szczepanski 
Chief Actuary 
Pennsylvania Insurance Department 

3. “Environmental Liability Exposure” 

Moderator: Charles W. McConnell, II 
Senior Vice President and Chief Actuary 
The Home Insurance Company 

Panelists: Raja R. Bhagavatula 
Consulting Actuary 
Milliman & Robertson, Inc. 

John Butler 
Principal 
Putnam, Hayes, Bartlett, Inc. 
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Susan K. Woerner 
Corporate Actuary 
Nationwide Insurance Company 

4. “Derivatives” 

Panelist: Dr. Joseph B . Cole 
Managing Director 
Centre Financial Products 

5. “Disaster Recovery and You” 

Moderator: Robert B. Downer 
Vice President and Chief Actuary 
Farmers Insurance Group 

Panelists: Marcia A. Carpenter 
World Wide Practice Leader 
Business Recovery Consultation 
IBM Consulting Group 

Karen Whitlatch 
Specialist, Contingency Planning 
AT&T Financial Services Organization 

6. “The Human Genome Project” 

Moderator: David N. Hafling 
Senior Vice President and Actuary 
American States Insurance Companies 

Panelist: Ray Mosely, Ph.D. 
Director of the Medical Humanities Program 
University of Florida College of Medicine 

7. “Mini-Course on Professionalism” 

Panelists: Members of the CAS Committee 
on the Course on Professionalism 

8. “Call Papers on Environmental Issues” 

Panel: “Measurement of Asbestos Bodily 
Injury Liabilities” 



Authors: 

Panel: 

Authors: 
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Susan L. Cross 
Consulting Actuary 
Tillinghast/Towers Perrin 

John P. Doucette 
Consulting Actuary 
Tillinghasflowers Perrin 

“Measurement of Pollution Liabilities” 

Amy S. Bouska 
Consulting Actuary 
Tillinghast/Towers Pert-in 

Thomas S. McIntyre 
Consulting Actuary 
Tillinghast/Towers Perrin 

9. “The Actuary in Mexico” 

Moderator: Thomas R. Bayley 
Deputy Managing Director 
Seguros Monterrey/Aetna 

Panelists: Ignacio Gurza 
Consultant 
Tillinghast/Towers Pert-in 

Gloria Lea1 
International Regulatory Council 
Texas Department of Insurance 

10. “Insurance Fraud” 

Moderator: Ronald C. Retterath 
Senior Vice President and Actuary 
National Council on Compensation Insurance 

Panelist: Frank E. Doolittle 
Director, Division of Insurance Fraud 
Florida Department of Insurance 
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Dennis Jay 
Executive Director 
Coalition Against Insurance Fraud 

Bill Kizorek 
President 
InPhoto Surveillance 

The officers held a reception for new Fellows and their guests 
from 5:30 p.m. to 6:30 p.m. A children’s reception was held from 
6:00 p.m. to 7:30 p.m., and a general reception for all members and 
guests was held from 6:30 p.m. to 7:30 p.m. 

Tuesday, November 15,1994 

From 8:00 a.m. to 9:30 a.m., simultaneous general sessions were 
offered. 

One general session, “Economics/Finance,” was led by Jeanne M. 
Hollister, Vice President, Aetna Life & Casualty. Panelists included 
Celeste A. Gum, Vice President of Goldman Sachs; Vincent J. Dowl- 
ing, Jr., Principal with Paulsen, Dowling Securities, Inc.; Gary R. 
Ransom, Senior Vice President for Conning & Company; and John H. 
Snyder, Senior Vice President for A.M. Best Company. 

The other genera1 session, “Re-Engineering,” was moderated by 
Alan E. Kaliski, Vice President and Actuary, Royal Insurance Com- 
pany. Panelists were Gregory L. Gleason, Principal with CSC Index; 
Tom Valerio, Senior Vice President, Reengineering, CIGNA Corpora- 
tion; and Peter T. Bothwell, Vice President and Actuary with United 
States Fidelity and Guaranty Company. 

From IO:00 a.m. to 11:30 a.m., several concurrent sessions were 
conducted. The panel presentations, in addition to repeats of some of 
the subjects covered on Monday, were: 

1. “Workers’ Compensation State Reforms” 

Moderator: Barry Llewellyn 
Senior Vice President and Actuary 
National Council on Compensation Insurance 
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Panelists: Joseph Edwards 
Independent Consultant 

David Durbin 
Vice President, Claims Research 
National Council on Compensation Insurance 

Dale Peterson 
Manager of Employee Health Benefits 
General Mills Restaurants 

2. “A Case Study on Treaty Reinsurance: I & II” 

Moderator:Russell S. Fisher 
Vice President 
General Reinsurance Corporation 

Panelists: James M. Dekle 
Vice President 
North American Reinsurance 

John W. Buchanan 
Consulting Actuary 
TilIinghast/Towers Per-r-in 

3. “State and Federal Assistance for Insured Catastrophic Loss” 

Moderator: Karen F. Terry 
Principal and Consultant 
Miller, Rapp, Herbers, Brubaker & Terry, Inc. 

Panelists: David R. Chernick 
Senior Actuary 
Allstate Insurance Company 

Myron L. Dye 
Vice President, Property and Financial Actuary 
United Services Automobile Association 
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4. “Financial Risk Transfer Markets” 

Moderator: J. Scott Bradley 
Senior Vice President and Actuary 
Richmond Insurance Company 

Panelists: Michael J. Cascio 
Vice President and Chief Underwriting Officer 
CTC Ltd. 

Brian E. MacMahon 
Vice President and Actuary 
Centre Reinsurance Ltd. 

W. Allen Taft 
Director of Alternative Risk Marketing 
American International Group 

5. “Questions and Answers with the CAS Board of Directors” 

Moderator: Allan M. Kaufman 
Principal 
Milliman & Robertson, Inc. 

Panelists: Kevin B. Thompson 
Assistant Vice President and Actuary 
Insurance Services Office, Inc. 

Anne E. Kelly 
Chief Casualty Actuary 
New York Sate Insurance Department 

Robert S. Miccolis 
Senior Vice President and Actuary 
Reliance Reinsurance Corporation 

6. “Actuarial Research Corner” 

Moderator: Gary G. Venter 
President 
Workers Compensation Reinsurance Bureau 

The afternoon was reserved for committee meetings and regional 
affiliate meetings. 
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A Beach Party was held at Disney’s River Country from 6:OO p.m. 
to 10:00 p.m. 

Wednesday, November 16, 1994 

From 8:00 a.m. to 9:15 a.m., concurrent sessions were held. Ses- 
sions that were not offered on Monday or Tuesday included: 

1. “Database Administration and Development” 

Panelists: Arthur R. Cadorine 
Assistant Vice President 
Insurance Services Office, Inc. 

Patrick A. Belle 
Customer Advisory Systems Support Representative 
AT&T Global Information Solutions 

Richard W. Nichols 
Associate Actuary 
Aetna Life & Casualty 

The following Proceedings papers were presented: 

1. “Underwriting Betas-The Shadows of Ghosts” 

Author: Thomas J. Kozik 
Senior Actuary 
Allstate Insurance Company 

2. “Extended Service Contracts” 

Author: Roger M. Hayne 
Consulting Actuary 
Milliman & Robertson, Inc. 

From 9:45 a.m. to 11: 15 a.m., a general session was held on “The 
Future Evolution of Insurance Regulation.” Kevin M. Ryan, President 
of Wexford Actuarial and Consulting Services, moderated the panel. 

Panelists included William H. McCartney, Counsel for Kutack 
Rock Company; Mavis A. Walters, Executive Vice President for In- 
surance Services Office, Inc.; Craig Berrington, Senior Vice President 
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and General Counsel for American Insurance Association; and Larry 
Forrester, President of NAMIC. 

After the general session, lrene K. Bass introduced the keynote 
speaker, Giandomenico Picco. 

Ms. Bass announced future CAS meetings in 1995 and thanked 
the Program Planning Committee for coordinating the meeting. David 
I? Flynn presented Ms. Bass with a CAS plaque, and Ms. Bass offi- 
cially passed the gavel to new CAS President Allan M. Kaufman, 
who adjourned the meeting at 12:30 p.m. 

November 1994 Attendees 

In attendance, as indicated by the registration records, were 443 
Fellows, and 222 Associates. The list of members’ names follows. 

Ralph L. Abel1 
Barbara J. Addie 
Gregory N. Alff 
Terry J. Alfuth 
Rebecca C. Amoroso 
Karen E. Amundsen 
Charles M. Angel1 
Kenneth Apfel 
Nolan E. Asch 
Irene K. Bass 
Todd R. Bault 
Thomas R. Bayley 
Allan R. Becker 
John A. Beckman 
Albert J. Beer 
Linda L. Bell 
David M. Bellusci 
William H. Belvin 
Phillip N. Ben-Zvi 
Robert S. Bennett 
Regina M. Berens 
Lisa M. Besman 

FELLOWS 

Raja R. Bhagavatula 
David R. Bickerstaff 
William P. Biegaj 
Jennifer L. Biggs 
Richard A. Bill 
Holly L. Billings 
Richard S. Biondi 
Robert G. Blanc0 
Cara M. Blank 
Betsy L. Blue 
Joseph A. Boor 
Ronald L. Bomhuetter 
Peter T. Bothwell 
Charles H. Boucek 
Amy S. Bouska 
David S. Bowen 
J. Scott Bradley 
Paul Braithwaite 
Mark L. Brannon 
Malcolm E. Brathwaite 
Yaakov B. Brauner 
Paul J. Brehm 

Dale L. Brooks 
J. Eric Brosius 
Charles A. Bryan 
John W. Buchanan 
James E. Buck 
George Burger 
Anthony J. Burke 
Patrick J. Bums 
George R. Busche 
John E. Captain 
Christopher S. Carlson 
Lynn R. Carroll 
Edward J. Carter 
Andrew R. Cartmell 
Michael J. Cascio 
Sanders B . Cathcart 
Michael J. Caulfield 
Janet L. Chaffee 
Jessalyn Chang 
Scott K. Charbonneau 
Joseph S. Cheng 
David R. Chemick 



James K. Christie Brian Duffy Thomas L. Gallagher 
Walter P. Cieslak N. Paul Dyck Cecily A. Gallagher 
R. Kevin Clinton Myron L. Dye Alice H. Gannon 
Michael A. Coca Richard D. Easton Christopher P. Garand 
Jeffrey R. Cole Bradley C. Eastwood Andrea Gardner 
Robert F. Conger Maribeth Ebert Robert W. Gardner 
Francis X. Cot-r Dale R. Edlefson Kim B . Garland 
Gregory L. Cote Bob D. Effinger, Jr. James J. Gebhard 
Michael Dennis Covney Gary J. Egnasko David B. Gelinne 
Mark Crawshaw Valere M. Egnasko John A. Gibson, III 
Frederick F. Cripe Douglas D. Eland John F. Gibson 
Susan L. Cross Donald J. Eldrldge Bruce R. Gifford 
Alan M. Crowe Edward B. Eliason Bonnie S. Gill 
Richard M. Cundy John W. Ellingrod Judy A. Gillam 
Diana M. Currie Charles C. Emma William R. Gillam 
Ross A. Currie Jeffrey A. Englander Bryan C. Gillespie 
Alan C. Curry David Engles Gregory S. Girard 
Robert J. Curry Philip A. Evensen Donna L. Glenn 
Michael T. Curtis Dennis D. Fasking Steven A. Glicksman 
Daniel J. Czabaj Matthew G. Fay Spencer M. Gluck 
Robert A. Daino Frank Fedele Daniel C. Goddard 
Robert N. Darby, Jr. Richard I. Fein Steven F. Goldberg 
Edgar W. Davenport Mark E. Fiebrink Gregory S. Grace 
Curtis Gary Dean Robert J. Finger Patrick J. Grannan 
Thomas J. DeFalco Daniel B. Finn Gary Grant 
James M. Dekle Russell S. Fisher Ronald E. Greco 
Michael L. DeMattei William G. Fitzpatrick Eric L. Greenhill 
Carol Desbiens David P. Flynn Cynthia M. Grim 
Robert V. Deutsch David A. Foley Anthony J. Grippa 
Edward D. Dew John R. Fomey, Jr. Linda M. Groh 
Kevin G . Dickson Richard L. Fox Denis G. Guenthner 
George T. Dodd Yves Francoeur Farrokh Guiahi 
John L. Doellman Russell Frank Sam Gutterman 
Jeffrey L. Dollinger Barry A. Franklin David N. Hafling 
James L. Domfeld Kenneth R. Frohlich Kyleen Knilans Hale 
Robert B. Downer Patricia A. Furst James A. Hall, III 
Karl H. Driedger Michael Fusco George M. Hansen 
Michael C. Dubin Scott F. Gal&do Jonathan M . Harbus 
Diane Symnoski Duda Merle Gallagher David G. Hartman 
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Roger M. Hayne 
Lisa A. Hays 
Gregory L. Hayward 
E. LeRoy Heer 
Teresa J. Herderick 
Thomas M. Hermes 
Barbara J. Higgins 
Kathleen A. Hinds 
Jeanne M. Hollister 
Deborah G. Horovitz 
Mary T. Hosford 
Beth M. Hostager 
Paul E. Hough 
Douglas J. Hoylman 
Heidi E. Hutter 
Robert P. It-van 
Marvin A. Johnson 
Warren H. Johnson, Jr. 
Thomas S. Johnston 
Alan G. Jones 
Jeffrey Robert Jordan 
Alan E. Kaliski 
Frank J. Karlinski, III 
Allan M. Kaufman 
Anne E. Kelly 
C.K. Stan Khury 
Joe C. Kim 
Gerald S. Kirschner 
Frederick 0. Kist 
Joel M. Kleinman 
Douglas F. Kline 
Leon W. Koch 
John Joseph Kollar 
Mikhael I. Koski 
Nancy E. Kot 
Thomas J. Kozik 
Israel Krakowski 
Gustave A. Krause 
Rodney E. Kreps 

David J. Kretsch 
Jane Jasper Krumrie 
John R. Kryczka 
Andrew E. Kudera 
Ronald T. Kuehn 
John M. Kulik 
D. Scott Lamb 
Michael A. LaMonica 
Nicholas J. Lannutti 
Patricia Laracuente 
James W. Larkin 
Michael D. Larson 
Christopher Lattin 
Michel Lam-in 
Pierre Guy Laurin 
France LeB lane 
Robert H. Lee 

James B. McCreesh 
John W. 

McCutcheon, Jr. 
Sean P. McDermott 
Liam Michael 

McFarlane 
George E. McLean 
Michael A. McMurray 
Dennis T. McNeese 
M. Sean McPadden 
William T. Mech 
David L. Menning 
John P. Mentz 
Paul Allen Mestelle 
Robert J. Meyer 
Stephen J. Meyer 
Robert S. Miccolis 

Urban E. Leimkuhler. Jr. Jon Wright Michelson 
Stuart N. Lerwick 
Joseph W. Levin 
Allen Lew 
Elise C. Liebers 
Orin M. Linden 
Richard A. Lino 
Stephanie J. Lippl 
Jan A. Lommele 
William D. Lou&s, Jr. 
Stephen J. Ludwig 
Aileen C. Lyle 
W. James MacGinnitie 
Brian E. MacMahon 
Christopher P. Maher 
William G. Main 
Daniel J. Mainka 
Donald F. Mango 
Blair E. Manktelow 
Katherine A. Mann 
Isaac Mashitz 
Charles W. McConnell 

Mary Frances Miller 
Michael J. Miller 
Robert A. Miller, III 
Stacy L. Mina 
Charles B. Mitzel 
Frederic James Mohl 
Richard B. Moncher 
Brian C. Moore 
Kelly L. Moore 
William S. Morgan 
Michelle M. Morrow 
Robert V. Mucci 
Evelyn Toni Mulder 
Todd B. Munson 
John A. Murad 
Daniel M. Murphy 
David A. Murray 
Robin N. Murray 
Thomas E. Murrin 
James J. Muza 
Nancy R. Myers 
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Thomas G. Myers 
James R. Neidermyer 
Allan R. Neis 
Kenneth J. Nemlick 
Karen L. Nester 
Richard T. Newell, Jr. 
Patrick R. Newlin 
Richard W. Nichols 
James R. Nikstad 
Stephen R. Noonan 
Terrence M. O’Brien 
Paul G. O’Connell 
Laura A. Olszewski 
William L. Oostendorp 
Timothy A. Paddock 
Richard D. Pagnozzi 
Rudy A. Palenik 
Robert G. Palm 
Jennifer J. Palo 
Chandrakant C. Pate1 
Bruce Paterson 
Gary S. Patrik 
Susan J. Patschak 
Charles C. Pearl, Jr. 
Andre Perez 
Stephen L. Perreault 
Marvin Pestcoe 
Steven Petlick 
Stephen W. Philbrick 
Daniel C. Pickens 
Marian R. Piet 
Arthur C. Placek 
Jennifer A. Polson 
Brian D. Poole 
Jeffrey H. Post 
Richard W. Prescott 
Virginia R. Prevosto 
Deborah W. Price 
John M. Purple 

Alan K. Putney 
Kenneth P. Quintilian 
Albert J. Q&in 
Christine E. Radau 
Jeffrey C. Raguse 
Kay K. Rahardjo 
Donald K. Rainey 
Rajagopalan K. Raman 
Gary K. Ransom 
Andrew J. Rapoport 
Donna J. Reed 
Ronald C. Retterath 
Elizabeth M. Riczko 
Kevin B. Robbins 
John P. Robertson 
Richard D. Robinson 
Sharon K. Robinson 
James Joseph 

Romanowski 
A. Scott Romito 
Allen D. Rosenbach 
Sheldon Rosenberg 
Kevin D. Rosenstein 
Randy J. Roth 
Kevin M. Ryan 
Stuart G. Sadwm 
Neal J. Schmidt 
Peter J. Schultheiss 
Roger A. Schultz 
Joy A. Schwartzman 
Brian E. Scott 
Gordon L. Scott 
Robert F. Scott 
Gregory R. Scruton 
Margaret E. Seiter 
Vincent M. Senia 
Derrick D. Shannon 
Mark Robert Shapland 
David M. Shepherd 

Linda A. Shepherd 
Alan R. Sheppard 
Harvey A. Sherman 
Jerome J. Siewert 
David Skumick 
Christopher M. 

Smerald 
Richard A. Smith 
Richard H. Snader 
David B. Sommer 
Bruce R. Spidell 
David Spiegler 
Elisabeth Stadler 
Barbara A. Stahley 
Thomas N. Stanford 
Stephen D. Stayton 
Lee R. Steeneck 
Grant D. Steer 
Elton A. Stephenson 
Paul J. Struzzieri 
Chris M. Suchar 
Stuart B . Suchoff 
James Surrago 
Susan T. Szkoda 
Kathleen W. Terrill 
Karen F. Terry 
Patricia A. Teufel 
Richard D. Thomas 
Kevin B. Thompson 
Barbara H. Thurston 
Ernest S. Tistan 
Michael Toledano 
Michael L. Toothman 
Everett J. Truttmann 
William R. Van Ark 
Anne-Marie Vanier 
Oakley E. Van Slyke 
Gary G. Venter 
Dale G. Vincent, Jr. 
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Gerald R. Visintine 
Gregory M. Wacker 
Glenn M. Walker 
Thomas A. Wallace 
Mavis A. Walters 
Michael A. Walters 
Patrick M. Walton 
Bryan C. Ware 
Nina H. Webb 
Dominic A. Weber 
Patricia J. Webster 

Larry D. Anderson 
Scott C. Anderson 
Martha E. Ashman 
Barry Luke Bablin 
Jack Bamett 
James M. Bar-tie 
Andrea C. Bautista 
Peggy Black 
Ann M. Bok 
Lori Michelle Bradley 
Donna D. Brasley 
Kevin Joseph Brazee 
Russell J. Buckley 
William E. Bums 
Arthur R. Cadorine 
Kenrick A. Campbell 
Michael E. Carpenter 
Kristi Irene 

Car-pine-Taber 
Ralph M. Cellars 
Galina M. Center 
Debra S. Charlop 
Philip S. Chou 
Cindy C.M. Chu 
Kasing L. Chung 
Brian A. Clancy 
Kay A. Cleary 

Scott P. Weinstein 
L. Nicholas 

Weltmann, Jr. 
Debra L. Werland 
Clifford Wess 
Patrick L. Whatley 
David L. White 
Jonathan White 
Mark Whitman 
James D. Wickwire, Jr. 
Gregory S. Wilson 

ASSOCIATES 

Jo Ellen Cockley 
Vincent P. Connor 
Kirsten J. Costello 
Kenneth M . Creighton 
Thomas V. Daley 
Michael K. Daly 
Smitesh Dave 
Brian W. Davis 
James R. Davis 
Jeffrey F. Deigl 
Laura B. Deterding 
Kurt S . Dickmann 
Jeffrey E. Doffing 
John P. Doucette 
Frank H. Douglas 
Thomas P. Edwalds 
Gregg Evans 
Charles V. Faerber 
Thomas R. Fauerbach 
Denise A. Feder 
Judith M. Feldmeier 
Bruce Daniel Fell 
Carole M. Ferrer0 
David N. Fields 
Ginda Kaplan Fisher 
Robert F. Flannery 
Ross C. Fonticella 

Martha A. Winslow 
Chad C. Wischmeyer 
Michael L. Wiseman 
Susan K. Woemer 
Edward M. Wrobel, Jr. 
Paul E. Wulterkens 
Mark E. Yingling 
James W. Yow 
Ralph T. Zimmer 

Kai Y. Fung 
Mary B. Gaillard 
Felix R. Gerard 
Margaret Wendy 

Germani 
Julie Terese Gilbert 
Nicholas P. Giuntini 
Bradley J. Gleason 
Nathan Terry Godbold 
Steven B. Goldberg 
Gary Granoff 
Russell H. Greig, Jr. 
Roger E. Griffith 
William Alan Guffey 
Marc S. Hall 
Leigh Joseph Halliwell 
Aaron Halpert 
Elizabeth E. L. Hansen 
Jonathan B. Hayes 
Thomas F. Head 
Gary P. Hobart 
David L. Homer 
Robert J. Hopper 
Bernard R. Horovitz 
David B. Hostetter 
Jeffrey R. Hughes 
Jeffrey R. Ill 
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Kurt J. Johnson 
Mark R. Johnson 
Daniel J. Johnston 
Linda Johnston 
Diana Jonske 
James W. Jonske 
David L. Kaufman 
Brian Danforth Kemp 
Rebecca A. Kennedy 
Kevin A. Kesby 
Joseph P. Kilroy 
Bradley J. Kiscaden 
Paul Henry Klauke 
James J. Kleinberg 
Craig W. Kliethermes 
Joan M. Klucarich 
Elizabeth Kolber 
Timothy M. Kolojay 
Costa G. Koufacos 
Adam J. Kreuser 
Howard A. Kunst 
Chung-Kuo Kuo 

Donald E. Manis Anne Marlene Petrides 
Lawrence F. Marcus Denis Poirier 
Janice L. Marks Michael David Price 
Anthony G. Martella, Jr. Regina M. Puglisi 
Peter R. Martin 
Michael Boyd Masters 
Kelly J. Mathson 
Dee Dee Mays 
Stephen J. McGee 
Heather L. McIntosh 
Thomas S. McIntyre 
Kathleen A. 

McMonigle 
Van A. McNeal 
Brian James Melas 
Anne C. Meysenburg 
Scott M. Miller 
Douglas H. Min 
Camille Diane 

Minogue 
Madan L. Mittal 
James Edward 

Kenneth Allen Kurtzman Monaghan 
Edward M. Kuss 
David W. Lacefield 
Blair W. Laddusaw 
A. Claude LaFrenaye 
Matthew G. Lange 
John P. Lebens 
P. Claude Lefebvre 
Stephen E. Lehecka 
Giusepp-e F. Lepera 
Roland D. Letoumeau 
Sam F. Licitra 
Joseph R. Liuzzi 
Barry I. Llewellyn 
Ronald P. Lowe, Jr. 
Gary P. Maile 
Sudershan Malik 

Andrew-W. Moody 
Matthew C. Mosher 
Turhan E. Murguz 
Timothy 0. Muzzey 
John D. Napierski 
Anthony J. Nerone 
Aaron West Newhoff 
Henry E. Newman 
Kwok C. Ng 
Peter M. Nonken 
Marc Freeman 

Oberholtzer 
Richard A. Olsen 
Charles P. Orlowicz 
Marlene D. Orr 
John R. Pedrick 

Karen L. Queen 
Mark S. Quigley 
Kathleen Mary Quinn 
Eric K. Rabenold 
Sasikala Raman 
Yves Raymond 
James E. Rech 
Victor Unson Revilla 
Donald A. Riggins 
John S. Ripandelli 
Brad Michael Ritter 
Jay Andrew Rosen 
Christine R. Ross 
Scott J. Roth 
Maureen S. Ruth 
John P. Ryan 
Robert M. Sandler 
Michael Sansevero, Jr. 
Matt J. Schmitt 
Frederic F. Schnapp 
Susan C. Schoenberger 
Peter Senak 
Jeffrey Parviz Shirazi 
Nathan Ira Shpritz 
Kerry S. Shubat 
Rial R. Simons 
Charles Leo Sizer 
David C. Snow 
Carl J. Somson 
Klayton N. Southwood 
Keith R. Spalding 
Angela Kaye Sparks 
Calvin C. Spence, Jr. 
Michael J. Steward, II 
Richard A. Stock 
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Frederick M. Strauss W. Olivia Wacker Oliver T. Wilson 
Scott J. Swat-ray Lawrence M. Walder William F. Wilson 
Chester J. Szczepanski Alice M. Wang Robert F. Wolf 
Richard Glenn Taylor Linda F. Ward Windrie Wong 
Edward D. Thomas Stephen D. War-fel Michael W. Yau 
Robert W. Thompson Russell B. Wenitsky Jeanne Lee Ying 
Patrick N. Tures Michael W. Whatley Mark A. Yunque 
Charles E. Van Kampen Wyndel S. White Jeffery M. Zacek 
Phillip C. Vigliaturo William Robert Wilkins Ronald J. Zaleski 
Jerome F. Vogel Mary E. Wills Doug Alan Zearfoss 



REPORT OF THE VICE PRESIDENT-ADMINISTRATION 

The objective of this report is to provide a brief summary of 
Casualty Actuarial Society (CAS) activities since the last annual 
meeting. 

I will first comment on these activities as they relate to the pur- 
poses of the CAS which are stated in our Constitution as follows: 

1. Advance the body of knowledge of actuarial science in applica- 
tions other than life insurance; 

2. Establish and maintain standards of qualification for member- 
ship; 

3. Promote and maintain high standards of conduct and competence 
for the members; and 

4. Increase the awareness of actuarial science. 

I will then provide a summary of other activities that may not 
relate to a specific purpose but yet are critical to the ongoing vitality 
of the CAS. Finally, I will update you on the current status of our 
finances and key membership statistics. 

Undoubtedly the major activity during the past year has been the 
CAS’s efforts with regard to the Appointed Actuary concept, or more 
descriptively, Dynamic Financial Analysis (DFA). This major initia- 
tive, under the direction of the Appointed Actuary Advisory Comrnit- 
tee and President-Elect Allan M. Kaufman, impacted each of the four 
purposes listed above. Virtually all the CAS Vice Presidents had 
specific 1994 goals in support of DFA, and the CAS Board was 
apprised of progress through status reports at each of the four Board 
meetings. 

Related to purpose one, there are a number of DFA related re- 
search initiatives underway. The highest priority areas of research 
during the year included the following projects as assigned to the 
appropriate committee: 

355 
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l A survey of financial models in use (Committee on Valuation and 
Financial Analysis); 

l An outline of financial modeling needs (Committee on Valuation 
and Financial Analysis); 

l Development of a model Appointed Actuary report (Committee 
on Valuation and Financial Analysis); 

l Identification of key reinsurance issues (Committee on Reinsur- 
ante Research); and 

l Analysis of variability in loss ratios and reserves (Committee on 
Theory of Risk). 

It is expected that all of these, except the last, will be completed 
by year-end 1994. 

In addition, there are a number of other research projects under- 
way that will produce results at various points in time in the coming 
years. 

Continuing education opportunities help fulfill purpose three, and 
a significant amount of DFA material was offered in this year’s pro- 
grams. Specific seminars relating to DFA topics included the limited 
attendance seminar on “Principles of Finance in Pricing Property and 
Casualty Insurance,” which was held twice; a limited attendance 
seminar on “Financial Models with Practical Insurance and Reinsur- 
ante Application”; the AFIR Colloquium in April 1994; and the 
CWCAS Seminar for the Appointed Actuary held in September 
1994. In addition, our May and November meetings, as well as other 
CAS seminars including the Casualty Loss Reserve Seminar, the June 
Reinsurance Seminar, and the Ratemaking Seminar, all contained 
sessions on DFA subjects. 

An overall continuing education plan to support DFA was devel- 
oped, and opportunities to be offered next year have already been 
identified. The 1995 Call Paper Program topic will be “Incorporating 
Risk Factors in Dynamic Financial Analysis.” A limited attendance 
seminar on “Managing Asset and Investment Risk’ will be offered in 
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early 1995. And the “Principles of Finance” seminar will again be 
offered twice. 

The education and examination process supports both purposes 
two and three. DFA-related activities during the year included revi- 
sions to the Part 10 syllabus to add asset material and establishment 
of a task force to review the feasibility of establishing post-Fellow- 
ship education for actuaries involved in providing Appointed Actuary 
reports. Further review of syllabus material relating to DFA topics is 
ongoing. 

The role of increasing the awareness of actuarial science (purpose 
four) as it relates to DFA falls to the Appointed Actuary Advisory 
Committee and the President-Elect. A key component of the CAS’s 
activity with DFA is to help define the role that actuaries will play. 
This will involve coordination and feedback with regulators, industry 
leaders, and the American Academy of Actuaries. These activities 
have been ongoing and will continue as the scope of the actuary’s 
involvement in DFA evolves. 

In addition to the progress made on the DFA initiative, there were 
other activities supporting our four purposes during the past 12 
months. 

New papers published in the Proceedings, the Forum, and the 
other CAS publications all increase the body of knowledge available 
to our profession. The summer Forum included the Call Papers on 
Environmental Liabilities, while the spring Forum published selected 
papers from the 1994 Variability in Reserves Prize Program and the 
paper on “Accounting for Risk Margins.” The 1994 Ratemaking Call 
Papers and other non-call papers on ratemaking topics were released 
in the winter issue of the Forum. The 1993 Proceedings included 
eight new papers on a variety of topics. 

In addition to the publication of papers, other research continued 
within various committees on topics that included catastrophe model- 
ing, reinsurance risk transfer, and database development. 

The Admissions Committees provide the major support for pur- 
pose two. They make continuous improvements to the exam prepara- 
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tion and grading process while overseeing the administration of the 
testing of approximately 6,500 candidates. 

A major initiative during 1994 was the work of the Travel Time 
Working Group, which was charged with developing the necessary 
information to monitor travel time through the CAS exam process, 
The task force members, with significant staff support from the CAS 
Office, have developed the necessary historical data and a proposed 
approach for accomplishing the goal that was presented in a draft 
report to the CAS Board in September. A final report incorporating 
changes recommended by the Board will be presented and discussed 
at the February Board meeting. 

High standards of qualifications and conduct are essential compo- 
nents of our profession and are embodied in CAS purposes two and 
three. Enforcement of compliance with professional standards was 
strengthened as the Board adopted the CAS Rules of Procedure for 
Disciplinary Action. The necessary Bylaws revisions to incorporate 
these changes were subsequently approved by the membership. 

Maintaining our high standards is also accomplished through a 
quality program of continuing education. The CAS provides these 
opportunities through the publication of actuarial materials and the 
sponsorship of a number of meetings and seminars. This year’s ses- 
sions included: 

the spring and fall meetings in Boston and Orlando; 

the Ratemaking Seminar, held in Atlanta, Georgia, which had 648 
registrants; 

the Casualty Loss Reserve Seminar in Boston, Massachusetts, of 
which the CAS is a co-sponsor, attended by 815; 

the special interest seminar “AFIR Colloquium” in April, attended 
by 69 CAS members; 

the special interest seminar on “Medical Cost Containment and 
Health Issues” held last month in Minneapolis, Minnesota, at- 
tended by 75; 
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l the Reinsurance Seminar in June, which attracted 246 attendees to 
Washington, D.C.; 

l the CIAKAS Seminar for the Appointed Actuary in Toronto 
sponsored by the Canadian Institute of Actuaries and the CAS, at- 
tended by 300; and 

l the previously mentioned limited attendance seminars on DFA 
topics. 

The Continuing Education Committees continue to explore ways 
to provide additional opportunities to our membership. This year, we 
saw the use of a relatively new forum: limited attendance seminars 
with academic instructors. These have been well received and a task 
force has been established to investigate the use of limited attendance 
focus group seminars. 

The CAS regional affiliates also provide valuable opportunities 
for the members to participate in educational forums. In addition, the 
regional affiliates are a resource to help increase the awareness of the 
profession (purpose four) at the local level. Discussions are underway 
with the leadership of the regional affiliates to encourage more com- 
munication at the high school level. 

There were other initiatives during the year in support of our goal 
to enhance the actuarial profession. A career video tape and accompa- 
nying brochure were developed in conjunction with the SOA for use 
in recruiting in high schools and colleges. Also, the CAS has reached 
agreement with the American Academy’s Casualty Practice Council 
to better coordinate planning and goal setting processes to maximize 
the benefits we derive from the Academy’s public interface role. 

More related to the fourth purpose, but generally impacting all 
purposes, are the CAS’s international activities. In addition to the 
ongoing attendance at various international actuarial society meetings 
by the CAS leadership, the following items highlight a few of the 
many international activities that took place during 1994: 

l The CAS was a co-sponsor of the AFIR colloquium in April. 
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An exam waiver policy with the Institute/Faculty of Actuaries was 
completed. 

The Working Agreement Task Force was expanded to include 
Mexican actuaries. 

A new regional affiliate from Asia, “Casualty Actuaries of the Far 
East,” was formed. 

The CAS participated in discussions for a proposed International 
Federation of Actuarial Associations (IFAA). 

Liaisons were formed between the CAS and the General Insurance 
Study Group (GISG) and Joint Education Committee of the Insti- 
tute/Faculty of Actuaries. 

The CAS Office continues to provide excellent support and ex- 
pand its services and capabilities. Significant productivity gains have 
been realized with their enhanced MIS capabilities, while support for 
exam administration and the annual budget process have been greatly 
enhanced. New member services introduced this year include a year- 
book listing of members on diskette and the CAS Bulletin Board 
System (BBS), which will allow for electronic exchange of informa- 
tion and ideas among the membership. 

Another resource of the CAS is that an integral part of its fabric 
and success is its committees and many volunteers. Member partici- 
pation on our committees remains high. The annual committee chair- 
persons’ meeting in April was highlighted by breakout group 
discussions of key CAS issues. 

In closing, I will provide a brief status of our membership and 
financial condition. Our size continued its rapid increase as we added 
225 new Associates and 103 new Fellows. Our membership now 
stands at 2,299. 

New members elected to the Board of Directors for next year 
include Robert F. Conger, John M. Purple, Richard H. Snader, and 
Kevin B. Thompson. The membership elected Albert J. Beer to the 
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position of President-Elect, while Allan M. Kaufman will assume the 
presidency. 

The Executive Council, with primary responsibility for day-to-day 
operations, met either by teleconference or in person at least once a 
month during the year. The Board of Directors elected the following 
Vice Presidents for the coming year: 

Vice President-Administration, Paul Braithwaite 

Vice President-Admissions, John J. Kollar 

Vice President-Continuing Education, David N. Hafling 

Vice President-Programs and Communications, Alice H. Gannon 

Vice President-Research and Development, Michael J. Miller 

The CPA firm of Feddeman & Company has been engaged to 
examine the CAS books for fiscal year 1994. Its findings will be 
reported by the Audit Committee to the Board of Directors in Febru- 
ary 1995. The fiscal year ended with an unaudited net income of 
$118,325 which compares favorably to a budgeted amount of ap- 
proximately $35,000. Members’ equity now stands at $1,252,389, 
subdivided as follows: 

Michelbacher Fund $87,896 

Dorweiler Fund 5,823 

CAS Trust 3,305 

Scholarship Fund 7,447 

Rodermund Fund 14,222 

CLRS Fund _ 5,000 

ASTIN Fund u3)o 

Research Fund 178,165 

CAS Surplus 948,532 

TOTAL MEMBERS’ EQUITY $1,252,389 
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This represents an increase in equity of $201,739 over the amount 
reported last year. 

For 1994-95, the Board of Directors has approved a budget of 
approximately $2.6 million. Members’ dues for next year will be 
$250, an increase of $10, while fees for the lnvitational Program will 
increase by $15 to $305. 

Respectfully submitted, 

John M. Purple 
Vice President-Administration 
November 14. 1994 
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FINANCIAL REPORT 
FISCAL YEAR ENDED 9/30/94 

OPERATING RESULTS BY FUNCTION 

FUNCTION_ ~~~ /NCXQJtjg~~ EXPENSE mm~!WfE~~NCE 
Membership Services $ 579,966 $ 760.351 ($ 180,385) 
Seminars 466.88 I 307,060 159,82 1 
Meetings 533,827 422,901 I IO.926 
Exams 755,352 65 1,034 104,318 
Publications 69,255 55,332 -!3,923 
TOTAL $ 2,405,28 I $ 2,196,678 $ 208X103* 
*NOTE: Change in surplus before interfund transfers of$l02,O(X) for research and ASTIN funds. 

A.Yssm 
Checking Account 
T-Bills/Notes and Accrued Interesl 
Prepaid Expenses 
Account Receivable 
Property and Equipment 
Less: Accumulated Depreciation 
TOTAL ASSETS 

LIABILITIES 
Exam Fees Deferred 
Meeting, Seminar Fees Deferred 
Subscriber Fees Deferred 
Accounts Payable 
Deferred Rent 
Accrued Pension 
TOTAL LlABlLITlES 

MEMBERS’EQUITY 
Michelbacher Fund 
Dorweiler Fund 
CAS Trust 
Scholarship Fund 
Rodermund Fund 
CLRS Fund 
Research Fund 
ASTIN Fund 
CAS Surplus 
TOTAL EQUITY 

BALANCE SHEET 

9/3w93 9/3&94 
$ 165,981 $ 366,425 

I, 100,627 1,216,193 
22,383 63.322 
50,0(K) 45,ooo 

223,533 233,279 
(8!!,71c)) (149&w 

$ 1,477,754 $ 1,774,320 

-y/30&3 9/30/94 
$ 236,765 $ 296,989 

103,663 109,594 
624 0 

20.967 58,335 
53.145 45.074 

.1x940 ~ 23,661 
$ 427,104 $ 533,653 

Y/30/93 9/3o/p4 
$ 85,336 $ 87.8% 

6,624 5,823 
3,208 3,305 
7,7 I5 7,446 

14,895 14,222 
5.000 5,000 

97,665 178,165 
0 2.000 

830,207 936,810 
$ 1,050.650 $ I .240,667 

DIFFERENCE 
$ 200,444 

115,566 
40,939 
(5.000) 

9,746 
(65,129) 

$ 296,566 

DIFFERENCE 

$ 60,224 
5,93 I 
(624) 

37,368 
(8,071) 
11,721 

$ 106.549 

DIFFERENCE 
$ 2,560 

(80 I) 
97 

(26% 
(673) 

0 
80,500 

2,000 
106,603 

$ 190,017 

John M. Purple, Vice President-Administration 
This is to cert$v that the ussets and accounts shown in the above 

fimnciul stutement have been audited and found to be correci. 

CAS Audit Committee: Sheldon Rosenberg, Chairperson; Steven F. Goldberg, 
Anthony J. Grippa, and William M. Rowland. 



1994 EXAMINATIONS-SUCCESSFUL CANDIDATES 

Examinations for Parts 3B, 4A, 4B, 5A, 5B, 6,8,8C (Canadian), 
and 10 of the Casualty Actuarial Society were held on May 2,3,4,5, 
and 6, 1994. Examinations for Parts 3B, 4A, 4B, 5A, 5B, 7, and 9 of 
the Casualty Actuarial Society were held on November 1,2. 3, and 4, 
1994. 

Examinations for Parts 1,2, 3A and 3C (SOA courses 100, 110, 
120, and 135) are jointly sponsored by the Casualty Actuarial Society 
and the Society of Actuaries. Parts 1 and 2 were given in February, 
May, and November of 1994, and Parts 3A and 3C were given in 
May and November of 1994. Candidates who were successful on 
these examinations were listed in joint releases of the two societies. 

The Casualty Actuarial Society and the Society of Actuaries 
jointly awarded prizes to the undergraduates ranking the highest on 
the Part 1 examination. 

For the February 1994 examination, the $200 first prize was 
awarded to Marie-Eve Lachance. The $100 second prize winners 
were David W. Jelinek. Samuel Johnson, Aleksandr Khazanov, and 
Maria Zaretsky. 

For the May 1994 examination, the $200 first prize was awarded 
to Darryl H. Yong. The $100 second prize winners were Kevin P. 
Brennan, Douglas S. Freedman, Jui-Ruei Hung, Brent R. Logan, 
Bryant A. Swanson, and Kristopher A. Swayze. 

For the November 1994 examination. the $200 first prize was 
awarded to Thomas G. Draper. The $100 second prize winners were 
Hing S. Lau, Kok B. Liew, Ching Ng, and Julia Stetter. 

The following candidates were admitted as Fellows and Associ- 
ates at the CAS Spring Meeting in May 1994 as a result of their suc- 
cessful completion of the Society requirements in the November 
1993 examinations. 

364 
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Richard R. Anderson Warren A. Klawitter 
Benoit Carrier Gilbert M. Korthals 
Stephen R. DiCenso Paul W. Lavrey 
Shawn E Doherty John J. Limpert 
George Fescos Paul R. Livingstone 
Allan A. Kerin Cassandra M. McGill 

Mark A. Addiego 
Elise M. Aheam 
Timothy P. Aman 
Michael J. Andring 
William M. Atkinson 
Lewis V. Augustine 
Robert S. Ballmer, II 
Jack Barnett 
Rose D. Barrett 
Martin J. Beaulieu 
Brian P. Beckman 
Richard Belleau 
Cynthia A. Bentley 
LaVeme J. Biskner, III 
Suzanne E. Black 
Michael G. Blake 
Erik R. Bouvin 
Robert E. Brancel 
Christopher G. Brunetti 
Mark E. Burgess 
Mark W. Callahan 
Robert N. Campbell 
Daniel G. Carr 
Julia C. Causbie 
Maureen A. Cavanaugh 
Francis D. Cerasoli 
Julie S. Chadowski 
Daoguang E. Chen 

FELLOWS 

ASSOCIATES 

John S. Chittenden 
Kuei-Hsia R. Chu 
Rita E. Ciccariello 
Laura R. Claude 
J. Paul Cochran 
Frank S. Conde 
Pamela A. Conlin 
Francis L. Decker, IV 
Kurt S. Dickmann 
Andrew J. Doll 
John P. Doucette 
Robert G, Downs 
Bernard DuPont 
David M. Elkins 
Martin A. Epstein 
Dianne L. Estrada 
Michael A. Falcone 
Karen M. Fenrich 
Stephen A. Finch 
Daniel B. Finn 
Brian C. Fischer 
Douglas E. Franklin 
Kirsten A. Frantom 
Nathalie Gamache 
Christine A. Gennett 
Joyce G. Hallaway 
William D. Hansen 
Steven T. Harr 

Robert L. Miller 
Donald D. Palmer 
Karen L. Pehrson 
Tom A. Smolen 
Beth M. Wolfe 

Lise A. Hasegawa 
Amy J. Himmelberger 
Thomas A. Huberty 
Sandra L. Hunt 
Fong-Yee J. Jao 
June V. Jarvis 
Charles N. Kasmer 
Mark J. Kaufman 
Louis K. Korth 
Mary D. Kroggel 
Cheung S. Kwan 
Mylene J. Labelle 
Bertrand J. LaChance 
Blair W. Laddusaw 
Elaine Lajeunesse 
Lewis Y. Lee 
Julie Lernieux-Roy 
Paul B. LeStourgeon 
Aaron S. Levine 
Kenneth A. Levine 
Frank K. Ling 
Andrew M. Lloyd 
Ronald P Lowe, Jr. 
Robert G. Lowery 
Christopher J. Luker 
Barbara S Mahoney 
Robert G. Mallison, Jr. 
Gabriel 0. Maravankin 
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Robert E Maton Arlie J. Proctor 
Emma Macasieb Donald A. Riggins 

McCaffrey Tracey S. Ritter 
Charles L. McGuire, III Douglas S. Rivenburgh 
David W. McLaughry Paul J. Rogness 
Kathleen A. McMonigle David A. Russell 
Robert F. Megens Sean W. Russell 
Daniel J. Merk Stephen P. Russell 
Timothy Messier Linda M. K. Saunders 
Stephen J. Mildenhall Gerson Smith 
Scott M. Miller Gina B. Smith 
Gregory A. Moore Louis B. Spore 
Robert J. Moser Douglas W. Stang 
Mark A. O’Brien Laurence H. Stauffer 
Denise R. Olson Judith L. Stolle 
John E. Pannell Ilene G. Stone 
Wende A. Pemrick Collin J. Suttie 
Robert L. Penick Jeanne E. Swanson 
Beverly L. Phillips John P. Thorrick 
Mark A. Piske Tony King Gwan Tio 
Gregory J. Poirier Dom M. Tobey 
Mark Priven Glenn A. Tobleman 

Cynthia J. Traczyk 
Theresa A. Turnacioglu 
Robert C. Turner, Jr. 
Ching-Horn Rick Tzeng 
Robert W. Van Epps 
Jeffrey A. Van Kley 
Mark D. van Zanden 
Trent R. Vaughn 
Robert J. Vogel 
W. Olivia Wacker 
Joseph W. Wallen 
Lisa Marie Walsh 
Alice M. Wang 
Gregory S. Wanner 
Michelle M. Wass 
Geoffrey T. Werner 
Tad E. Womack 
Robert S. Yenke 
Benny S. Yuen 
George H. Zanjani 
Joshua A. Zirin 
Rita M. Zona 

The following is a list of successful candidates in examinations 
held in May 1994. 

Part 3B 
Sarah Albro 
Fred S . Allsbrook 
Nabila Audi 
Craig V. Avitabile 
David M. Baxter 
Robert S. Beatman 
Anna Marie Beaton 
Nathalie Belanger 
Michael J. Belfatti 
Jeffrey D. Benelli 
Terry R. Benz 

Rodney L. Blacklock Philip A. Clancey, Jr. 
Winfred N. Botchway David A. Clute 
Edmund L. Bouchie Christopher I! Coelho 
Kimberly Bowen Michele Cohen 
Thomas G. Bowyer Francis Kevin Connors 
Lisa A. Cabral David G. Cook 
Amy M. Campbell David E. Corsi 
Rutledge M. Capers Jonathan S. Curlee 
Stephen P Carlson John E. Daniel 
Milissa D. Carter Vickie L. Davis 
Daero Choi Michael T. Decker 
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Sharon D. Devamra 
Stefvan S. Drezek 
Ross Dunlop 
Cynthia Durbin 
Melissa M. 

Emmendorfer 
Kristine M. Esposito 
Jonathon E. Fassett 
Karen L. Field 
Ginda Kaplan Fisher 
Ronnie S. Fowler 
Mark A. Fretwurst 
Rosemary D. Gabriel 
Serge Gagne 
Michael A. Garcia 
Marilyn M. Giannos 
Michael R Gibson 
Olga Golod 
Jay C. Gotelaere 
Laurie L. Griffin 
Lora L. Gruesbeck 
Brian T. Ham&an 
Eric C. Hassel 
Lisa M. Hawrylak 
Jodi J. Healy 
Kevin B. Held 
Deborah L. Herman 
‘IXggy Hemandez 
Lisa K. Hiatt 
Dave R. Holmes 
Eric A. Hoppe 
Brett Horoff 
Gail Hossin 
Candace Yolande 

Howell 
Heidi L. Hower 
Rebecca R. Hunt 
Scott R. Jean 
Jeffery F. Johnson Jill M. Merchant 

William R. Johnson 
Burt D. Jones 
William Rosco Jones 
Michael S. KahIowsky 
Rebecca T. Katz 
Hsien-Ming K. Keh 
Mary C. Kellstrom 
William J. Keros 
David N. Kightlinger 
He-Jin Kim 
Patricia Kinghom 
Jill E. Kirby 
Kristie L. KIekotka 
Robert A. Kranz 
John J. Kraska, III 
Scott C . Kurban 
Kenneth Allen 

Kurtzman 
Laura S. Larson 
Douglas W. Latimer 
Rocky S. Latronica 
Michelle J. Leeper 
Todd W. Lehmann 
Bradley H. Lemons 
Steven J. Lesser 
Charles Letourneau 
Kuen-Shan Ling 
Yih-Jiuan B. Lu 
James W. Luedtke 
&k-Man Luk 
Victoria S. Lusk 
Jacob Margulis 
Julie Martineau 
Victor Mata 
Stephen J. McAnena 
Richard M. McGowan 
Shawn Allan McKenzie 
Rae F. McPhail 

Paul D. Miotke 

Bradley J. Schroer 

Matthew K. Moran 
Roosevelt C. Mosley 
Robert J. Moss 
Michael D. Neubauer 
Gary R. Nidds 
Liam E O’Connor 
Randall W. Oja 
Kevin J. Olsen 
Michael A. Onofrietti 
Grace A. Orsolino 
Kelly A. Paluzzi 
Mark Paykin 
Harry T. Pearce 
Portia E. Pelt 
Robert B . Penwick 
Priyantha L. Perera 
Christopher K. Perry 
Daniel B. Perry 
John S. Peters 
Kraig P, Peterson 
Judy L. Pool 
Edward L. Pyle 
Penelope A. Quiram 
Jill A. Raike 
Jeffrey T. Rasmussen 
Janice L. Rexroth 
Melissa K. Ripper 
Karen L. Rivara 
Anthony V. Rizzuto 
Christopher D . 

Ruckman 
Anthony S. Ruscitto 
Joseph J. Sacala 
Kashyap C. Saraiya 
Anne T. Schalda 
Ryan D. Schave 
Christy B. Schreck 
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Ernest C. Segal 
Michele Segreti 
Tina Shaw 
Kelli D. Shepard-El 
Meyer Shields 
Bret C. Shroyer 
Richard Sieger 
David C. Sky 
Ronald L. Smith 
Kendra Barnes South 
Caroline B. Spain 
Lloyd M. Spencer 
Daniel J. Spillane 
Carol A. Stevenson 

Part 4A 
Sarah Albro 
Madhu G. Amar 
Paul D. Anderson 
Carl X. Ashenbrenner 
Barry Luke Bablin 
James V. Barilaro 
Sabine C. Barksdale 
Cheryl L. Bamett 
Karen E. Bashe 
Elizabeth F. Bassett 
David W. Batten 
Michael J. Bednarick 
Saeeda Behbahany 
Julie Bennett 
Wayne F. Bemer 
Frank J. Bilotti 
Kevin M. Bingham 
Jonathan E. Blake 
Mariano R. Blanco 
Luc Boissiere 
Thomas L. Boyer, II 
Rebecca S. Bredehoeft 

Therese M. Stom 
Thomas Struppeck 
Mark Sturm 
Sherri C. Sturm 
Edward T. Sweeney 
Christopher C. 

Swetonic 
Charles A. Thayer 
Amy L. Tucker 
Jeffrey E. Tucker 
Jordan N. Uditsky 
Joel A. Vaag 
Martin Vezina 
Melodee A. Wallace 

Cary J. Breese 
Steven A. Briggs 
Karen A. Brostrom 
Lori L. Burton 
John J. Carroll 
Peter T. Chang 
Yu L. Chen 
Peggy Cheng 
Richard M. Chiarini 
Jamie Chow 
Michael J. Christian 
Charles A. Cicci 
Pamela A. Connors 
Sean 0. Cooper 
Brenda K. Cox 
Spencer L. Coyle 
Richard S. Crandall 
Michael B. Cray 
Mary Katherine T. 

Dardis 
Sheri L. Daubenmier 
Dawne L. Davenport 

Norman E. Watkins 
Joseph C. Went 
James C. Whisenant 
Patricia C. White 
Vanessa C. 

Whitlam-Jones 
Brenda K. Wilson 
Tamara M. Winton 
Wendy L. Witmer 
Karin H. Wohlgemuth 
Simon Wong 
Jun Yan 
Michael J. Yates 
David P Zanutto 

Willie L. Davis 
Harin A. De Silva 
Nancy K DeGelleke 
Emily Y. Deng 
Alain P DesChatelets 
John T. Devereux 
Nelson T. Dismukes 
Dean P. Dorman 
John C. Dougherty 
Cindy L. Dube 
Rachel Dutil 
Mark Kelly Edmunds 
Jane Eichmann 
Tanya E. Eng 
Kristine M. Esposito 
Jonathan Palmer Evans 
Jui-Chuan Fan 
Yen Fang 
Junko K. Ferguson 
Chautal N. Fitzgerald 
Mary E. Fleischli 
Hugo Fortin 
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Nathalie Fortin 
Christian Foumier 
Noelle C. Fries 
Richard A. Fuller 
Serge Gagne 
David E. Gansberg 
Michael H. Gay 
Margaret Wendy 

Germani 
Isabelle Gingras 
Theresa Giunta 
Moshe D. Goldberg 
Carol A. Goodrich 
Lori A. Gordon 
Jay C. Gotelaere 
John P. Gots 
Steven C. Gross 
William Alan Guffey 
Greg M. Haft 
Marc S. Hall 
Faisal 0. Hamid 
Gregory Hansen 
Jean-Francois Hebert 
David E. Heppen 
Timothy E. Hill 
Daniel L. Hogan 
Eric J. Homick 
Geoffrey W. Horton 
Jeff S. Howatt 
Marguerite M. Hunt 
Jamison J. Ihrke 
Cindy Jacobowitz 
Gregory 0. Jaynes 
Walter L. Jedziniak 
Neal 0. Jettpace 
Edward Jhu 
Daniel K. Johnson 
Michael S. Johnson 
Paul J. Johnson 

Derek A. Jones Michele L. McKay 
Theodore A. Jones Brian James Melas 
Jeremy M. Jump Alan E. Morris 
Jong-Ming Kan John V. Mulhall 
Philip A. Kane, IV Jarow G. Myers 
Chad C. Karls Yinay Nadkarni 
Anthony N. Katz Jennifer A. Nelson 
Kathryn E. Keehn Thomas E. Newgarden 
Mary C. Kellstrom Marc Freeman 
David N. Kightlinger Oberholtzer 
Cameron D. Kimbrough Avital Ohayon 
Debra L. Kocour Helen S. Oliveto 
James J. Konstanty Apryle L. Oswald 
Eleni Kourou Andrew J. Owen 
John J. Kraska, III Carole K. Payne 
Regina Krasnovsky Tracie L. Pencak 
Richard S. Krivo Cynthia Perrault 
Stephane Lalancette Julie Perron 
Rita Ann B. Lamb Anthony G. Phillips 
Debra K. Larcher Mitchell S. Pollack 
Gregory D. Larcher Brentley J. Radeloff 
Valerie Lavoie Kimberly E. Ragland 
Yin Lawn Sundar Ramaswami 
Henry T. Lee Ricardo A. Ramotar 
Christian Lemay John E Rathgeber 
Xiaoyin Li Dean R. Reigner 
Christina Link Teresa M. Reis 
Serge M. Lobanov Rebecca J. Richard 
Yih-Jiuan B. Lu Melissa K. Ripper 
Vahan A. Mahdasian David Roberge 
Laura S. Mat-in Linda L. Roberts 
Robert H. Marks Michelle N. Rodriguez 
Kirk E. Mamin Jay Andrew Rosen 
Richard E. Marts Richard A. Rosengarten 
Jason A. Martin Christine R. Ross 
Stanislav D. Maydan Robert R. Ross 
Claudia A. McCarthy Michael M. Rubin 
Patrice McCaulley Brian I? Rucci 
Mark Z. McGill, III Benoit St-Aubin 
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Jeffrey T. Sallee 
Anthony N. Sammur 
Glenn R. Scharf 
Christy B. Schreck 
Peter A. Scourtis 
Robin M. Seifert 
Stacy L. Shimizu-Hall 
Nathan Ira Shpritz 
Donna K. Siblik 
Steven A. Smith, II 
Carl J. Somson 

Part 4B 
Lynn A. Allen 
Michael J. Anstead 
Stephen M. Amhold 
Timothy W. Atwill 
Nathan J. Babcock 
Calvin L. Baker 
Bassam B. Barazi 
J. Bradford Barlow 
Kimberly M. Bamett 
Elizabeth F. Bassett 
Ghislaim Beanie 
Nicolas Beaupre 
Saeeda Behbahany 
David J. Belany 
Robert W. Bell 
Darryl R. Benjamin 
Suzanne Berendsen 
Bruce J. Bergeron 
Martin Bernard 
Robert C. Birmingham 
Jennifer L. Blank 
Daniel R. Boerboom 
Michele Boivin 
Jean-Pierre Bolduc 
Joseph V. Bonanno, Jr. 
Caleb M. Bonds 

Jennifer A. Sovell 
Caroline B. Spain 
T. Matthew Steve 
Elizabeth A. Sullivan 
Roman Svirsky 
Jo D. Thiel 
Tammy M. Titus 
Stephanie J. Traskos 
Beth S. Tropp 
Scott M. Tulloch 
David S. Udall 

Francois Bourdon 
Andree-Anne 

Bourgeois 
Danny Boutin 
Kimberly Bowen 
Patrice Brassard 
David L. Braun 
Tommie D. Brooks 
James D. Buntine 
Kevin D. Bums 
Donia N. Burris 
Robert Buzecan 
Donna L. Callison 
Thomas K. Calvert 
Rong Rose Cao 
Ann Marie L. Cariglia 
Thomas P Carlson 
Peter Chae 
Thierry Chamberland 
Kelly C. Chang 
Daniel G. Charbonneau 
Nathalie Charbonneau 
Todd D. Cheema 
Cho-Jieh Chen 
Yvonne W. Y. Cheng 
Theresa A. Christian 

Richard A. Van Dyke 
Matthew J. Wasta 
William Robert Wilkins 
Kendall P Williams 
L. Alicia Williams 
Laura M. Williams 
Frances E. Wilson 
Rick A. Workman 
Eric E. Zlochevsky 

Louise Chung- 
Chum-Lam 

Bernadette M. Chvoy 
Lori Anne Cieri 
Stephen D. Clapp 
Susan M. Cleaver 
Bruce Jay Collings 
Margaret E. Conroy 
Sharon R. Corrigan 
Edgar B . Cruz 
Michael J. Curcio 
Sheri L. Daubemnier 
John D. Deacon 
Brian H. Deephouse 
Romulo N. Deo- 

Camp0 Vuong 
Krikor Derderian 
Giuseppe C. Di Tullio 
Anthony M. DiLapi 
David A. Dolly 
Christopher S. Downey 
James A. Doyle 
Chris L. Draper 
Stephen C. Dugan 
Rachel Dutil 
Jennifer S. Ebert 
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Ian H. Edelist 
Jane Eichmann 
Jason L. Ellement 
Kristen E. Erickson 
Juan Espadas 
Edward H. Eun 
Brian A. Evans 
Rebecca F. Evans 
Robin S. Fader 
Charles V. Faerber 
Karl F. Farmer 
Sylvain Fauchon 
Michael N. Ferik 
Elizabeth A. Fish 
Chauncey E. Fleetwood 
Michael A. Fradkin 
Daniel Gagne 
Yam&k Gagne 
John E. Games 
Michelle R. Garnock 
John J. Garrett 
Kathy H. Garrigan 
Abbe B . Gasparro 
Margaret Wendy 

Germani 
JoAnne M. Gold 
Gary J. Goldsmith 
Mat-i L. Gray 
Craig H. Greenwald 
David T. Groff 
David J. Gronski 
Curtis A. Grosse 
Robert L. Grubka 
Xuedong Gu 
Ling-Ru Guo 
Kenneth J. Hammell 
Michelle L. Hamick 
Michel Hebert 
Lori L. Helge 

Sara L. Helgeson 
Sally Dunlap Hendrick 
Timothy J. Herman 
Richard G. Hermary 
Ronald J. Herrig 
Kent D. Hill 
Timothy E. Hill 
Karen J. Hiller 
Thomas P. Hinton 
Amy L. Hoffman 
Brett L. Hoffman 
Daniel L. Hogan 
Robert D. Hooten 
David B. Hostetter 
Mangyu Hur 
Rusty A. Husted 
Christopher Jamroz 
Christopher R. Jarvis 
Philip J. Jennings 
Mary Lianne Johnson 
Paul A. Johnson 
Derek A. Jones 
Stephane Jutras 
Alex T. Kachura 
Gabriel Kahan-Frank1 
James B. Kahn 
Paul S. Karanevich 
Eric Kassan 
Dennis J. Keegan 
Stefan L. Keene 
Brian Danforth Kemp 
Michael D. Kemp 
Rebecca A. Kennedy 
Linda I. Kierenia 
Chung H. Kim 
Jean H. Kim 
Young Y. Kim 
Diane L. Kinner 
Bennett D. Kleinberg 

Brian R. Knox 
Jeffrey J. Krygiel 
Renu A. Kumar 
Kenneth Allen 

Kurtzman 
Paula Kwiatkowska 
Kwok-Wah Kwong 
Sophie LaChance 
Rita Ann B. Lamb 
Louis G. Lana 
John P Lebens 
Kevin A. Lee 
Shang-Der Lee 
James F? Leise 
Robin E. Lemke 
Bradley H. Lemons 
Sylvain Leonard 
Steven J. Lesser 
Patrick Letoumeau 
Man Yan Leung 
Emmanuel Serge Levi 
Shuming Liaw 
Chiouray Lin 
Janet G. Lindstrom 
Kuen-Shan Ling 
Chia-Lin C. Liu 
Desmond J. Lobo 
Timothy D. Logie 
Neal J. Luitjens 
Robert T. Lumia 
Jason K. Machtinger 
Daniel Patrick Maguire 
Vahan A. Mahdasian 
Betsy E Maniloff 
Dennis A. Marinac 
Robert H. Marks 
Kelly E. Martin 
Mostafa Mashayekhi 
Timothy C. McAuliffe 
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Claudia A. McCarthy 
Patrice McCaulley 
William R. McClintock 
Shawn Allan McKenzie 
Sarah K. McNair-Grove 
Scott A. McPhee 
Giuseppina Mendolia 
William A. Mendralla 
Mitchel Merberg 
James G. Merickel 
Eric Millaire-Morin 
Megan C. P. Miller 
Isabelle Mot-in 
Michael W. Morro 
Ethan Mowry 
Charles P. Neeson 
Richard N. Nevins 
KeeHeng Ng 
Tieyan Tina Ni 
Michael D. Nielsen 
John E. Noble 
Brett M. Nunes 
Marc Freeman 

Oberholtzer 
Frank A. Odoom 
Richard D. Olsen 
David J. Otto 
Alan M. Pakula 
Kelly A. Paluzzi 
Jennifer L. Paris 
Abha B . Pate1 
Michael A. Pauletti 
Tracie L. Pencak 
Julie Perron 
Pascale Perusse 
John J. Pfeffer 
David W. Phillips 
Douglas D. Pickett 
Mary K. Plassmeyer 

David J. Pochettino 
Jean-Francois Poitras 
Mitchell S. Pollack 
Dany Provencher 
Rhonda A. Puda 
Christine S. Pumell 
William D. Rader, Jr. 
Kimberly E. Ragland 
Christopher G. Raham 
Sheikh M. Rahman 
Jacqueline M. 

Ramberger 
Trevor Reef 
Raymond J. Reimer 
Ellen K. Rein 
Brian S. Renshaw 
Rebecca J. Richard 
Jacques Rioux 
Brad Michael Ritter 
Carmilla T. Rivera 
Sophie Robichaud 
Timothy K. Robinson 
Mario Robitaille 
Eric J. Roling 
Ian Rozon 
Chet James Rublewski 
Lynn A. Ruezinsky 
Jason L. Russ 
Giuseppe Russo 
Brian C. Ryder 
Rachel Samoil 
Margaret J. Sanchez 
Anne M. Schelin 
Michael C. Schmitz 
Timothy D . Schutz 
Terry M. Seckel 
Anastasios Serafim 
David J. Shaloiko 
Kelli D. Shepard-El 

Andrea W. Sherry 
Lisa M. Smith 
Dwight N. Soethout 
Joseph N. Soga 
Seung Hae Song 
Mario St-Hilaire 
Susan D. Stieg 
Shelley A. Stone 
Thomas Struppeck 
Patricia A. Sullivan 
Roman Svirsky 
C. Steven Swalley 
Roxann P. Swenson 
Todd D. Tabor 
Nitin Talwalkar 
Elizabeth S. Tankersley 
Michael J. Tempesta 
Hugh T. Thai 
Troy N. Thompson 
Patrick Thorpe 
Cristoph Trachsel 
Huguette Tran 
Timothy J. Ungashick 
Marlene F. Van den 

Hoogen 
Richard A. Van Dyke 
Nirmala Veerappen 
Nathan K. Voorhis 
Mary E. Waak 
Claude A. Wagner 
Robert J. Wallace 
Daniel M. Walsh 
Tzu-Hsien Wang 
Angela L. WasDyke 
Courtney R. White 
William Robert Wilkins 
Jennifer N. Williams 
Denise Y. Wright 
Hsiu-Pi Yang 
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Yuhong Yang 
Yong Yao 
David P. Zanutto 

Part 5A 
Kristine M. Anderson 
Mark B. Anderson 
Amy L. Baranek 
Nancy Barry 
James M. Bartie 
David B. Bassi 
Wayne E Bemer 
Frank J. Bilotti 
Michael J. Bluzer 
Pierre Boucher 
Edmund L. Bouchie 
Kirsten R. Brumley 
John Celidonio 
Sharon L. Chapman 
Brian A. Clancy 
Kendall Albert Collins 
David G. Cook 
Jose R. Couret 
Stephen M. Couzens 
Richard S. Crandall 
Douglas L. Dee 
Steven E Delfino 
Anne M. DelMastro 
Michael E. Doyle 
Jennifer R. Ehrenfeld 
Dawn E. Elzinga 
Benedick Fidlow 
David M. Flitman 
Christian Foumier 
Keith E. Friedman 
James M. Gallagher 
Hannah Gee 
James W. Gillette 
Moshe D. Goldberg 

Jon A. Zapolski 
Yan Zhou 

Paul E. Green 
John A. Hagglund 
Barry R. Haines 
Kenneth J. Hammell 
Michael S. Harrington 
Rhonda R. Hellman 
Stephen J. Higgins, Jr. 
Christopher T. 

Hochhausler 
Glenn S. Hochler 
Geoffrey W. Horton 
David D. Hudson 
Paul Ivanovskis 
Christopher Jamroz 
Brian E. Johnson 
Philip A. Kane, IV 
Ira M. Kaplan 
Scott A. Kelly 
Glenda J. Kettelson 
Ung M. Kim 
Jennifer E. Kish 
Elina L. Koganski 
Linda Kong 
Kathryn L. Kritz 
Sarah Knltov 
Salvatore T. LaDuca 
Jocelyn Laflamme 
Richard V. LaGuarina 
Timothy J. Landick 
Normand Lavallee 
Henry T. Lee 
Xiaoying Liang 
Christina Link 
Yih-Jiuan B. Lu 

Paul W. Zotti 
Barbara Zvan 

Michelle Luneau 
Kelly A. Lysaght 
William R. Maag 
Sasi D. Mahesan 
Dina M. Maloney 
Joseph Marracello 
Anthony G. Martella, Jr. 
James P Mathews 
Bonnie C. Maxie 
William J. Mazurek 
Patrick A. McGoldrick 
James R. Merz 
Richard E. Meuret 
Stephen A. Moffett 
Quynh-Nhu T. Morse 
Janice C. Moskowitz 
Matthew S. Mrozek 
Melissa J. Neidlinger 
Tieyan Tina Ni 
Gary R. Nidds 
Michael A. Nori 
Corine Nutting 
Milary N. Olson 
Michael G. Owen 
Abha B . Pate1 
Priyantha L. Perera 
Anne Marlene Petrides 
David M. Pfahler 
Anthony G. Phillips 
Michael W. Phillips 
Troy J. Pritchett 
Harry L. Pylman 
Yves Raymond 
Timothy 0. Reed 
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Raymond J. Reimer 
Brad E. Rigotty 
Denise F. Rosen 
Jay Andrew Rosen 
Jason L. Russ 
Joanne E. Russell 
Giuseppe Russo 
Charles J. Ryherd 
Shama S. Sabade 
Stuart A. Schweidel 
Steven G. Searle 
Kelvin B. Sederburg 

Part SB 
Jeffrey R. Adcock 
Anthony L. Alfieri 
Kristine M. Anderson 
Mario G. Argue110 
Kevin J. Bakken 
David B. Bassi 
Stephen D. Blaesing 
Michael J. Bluzer 
Thomas S. Botsko 
Pierre Boucher 
Maureen A. Boyle 
Douglas J. Bradac 
Audrey W. Broderick 
Kirsten R. Brumley 
Francine Cardi 
Jeanne L. Carey 
Sonia Chatigny 
Joyce Chen 
Bernadette M. Chvoy 
Christopher P Coelho 
Sally M. Cohen 
Brian R. Coleman 
Kimberly S. Coles 
Paul T. Cucchiara 
Jill A. Davis 

Scott A. Sheldon 
Kendra Barnes South 
George Dennis Sparks 
Susan D. Stieg 
Karen M. Strand 
Christopher S. Strohl 
Joy M. Suh 
Amy Beth Treciokas 
Nathalie Tremblay 
Jeffrey S. Trichon 
Bonnie J. Trueman 
Steven J. Vercellini 

Laura B. Deterding 
Sharon D. Devanna 
Michael E. Doyle 
Mark Kelly Edmunds 
Sylvain Fauchon 
Stephen C. Fiete 
Mary E. Fleischli 
David M. Flitman 
Keith E. Friedman 
Gary J. Ganci 
James W. Gillette 
Car-y W. Ginter 
Jie Gong 
Lori A. Gordon 
Elizabeth A. Grande 
Christopher G. Gross 
Steven K. Haine 
Barbara Hallock 
Scott T. Hallworth 
Joel D. Hanson 
Elaine J. Harbus 
David S. Harris 
Esther Harrison 
Lisa M. Hawrylak 
Daniel J. Henderson 

Keith A. Walsh 
Jon S. Walters 
Patricia A. Wanington 
Lynne K. Wehmueller 
Erica L. Weida 
Amy A. Whelahan 
Matthew M. White 
Laura M. Williams 
Linda Yang 
Steven B. Zielke 

Brett Horoff 
Julie A. Hungerford 
Donna G. Jockers 
ha M. Kaplan 
Rishi Kapur 
Kimberly S. H. Kaune 
Scott A. Kelly 
James F. King 
Gary R. Kratzer 
Jocelyn Laflamme 
Jean-Sebastien Lagarde 
Timothy J. Landick 
Steven W. Larson 
Robin R. Lee 
John N. Levy 
Sally M. Levy 
Cara M. Low 
William R. Maag 
John T. Maher 
Stephen P. Marsden 
Bonnie C. Maxie 
Timothy C. McAuliffe 
Kelly S. McKeethan 
Michelle L. Merkel 
Stephen A. Moffett 
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David Molyneux 
Vinay Nadkami 
Darci L. Noonan 
Chris M. Norman 
Kevin J. Olsen 
David A. Ostrowski 
Michael G. Owen 
Dmitry Papush 
Priyantha L. Perera 
Sylvain Perrier 
Anne Marlene Petrides 
Richard B . Puchalski 
Rhonda A. Puda 
Raymond J. Reimer 
Jay Andrew Rosen 
Hal D. Rubin 
Chet James Rublewski 
Jason L. Russ 

Part 6 
John Scott Alexander 
John P Alltop 
Larry D. Anderson 
Steven D. Armstrong 
Martin S. Arnold 
Timothy W. Atwill 
Nathan J. Babcock 
Richard J. Babel 
Keith M. Barnes 
Claudia M. Barry 
Andrea C. Bautista 
Brian K. Bell 
David C. Benton 
Bruce J . Bergeron 
Corey J. Bilot 
Carol A. Blomstrom 
Raju Bohra 
John T. Bonsignore 
Douglas J. Bradac 

Julie C. Russell 
Shama S. Sabade 
Margaret J. Sanchez 
Barbara A. Satsky 
Michael C. Schmitz 
Michael R. Schummer 
Stuart A. Schweidel 
Terry M. Seckel 
Joyce E. Segall-Lopez 
David G. Shafer 
Scott A. Sheldon 
Andrea W. Sherry 
Laura E. Siegel 
Cindy W. Smith 
Jason R. Smith 
Laura Smith 
George Dennis Sparks 
C. Steven Swalley 

Lori Michelle Bradley 
David J. Braza 
Kevin Joseph Brazee 
Charles Brindamour 
Margaret A. Brinkmann 
Conni J. Brown 
Stephen J. Bruce 
Ron Brusky 
Russell J. Buckley 
Michelle L. Busch 
Tara E. Bush 
J’ne E. Byckovski 
Sandra L. Cagley 
Pamela J. Cagney 
Janet P. Cappers 
Kristi Irene 

Carpine-Taber 
Richard J. Castillo 
Jill C. Cecchini 

Beth M. Sweeney 
Christopher C. 

Swetonic 
Elizabeth S. Tankersley 
Glenda 0. Tennis 
Michel Theberge 
Abraham Thomas 
Karen E. Watson 
Erica L. Weida 
Amy A. Whelahan 
Matthew M. White 
Jennifer N. Williams 
Rick A. Workman 
Fengming Zhang 
Robin Zinger 
Eric E. Zlochevsky 

Heather L. Chalfant 
Jean-Francois 

Chalifoux 
Hong Chen 
William B. Cody 
Maryellen J. Coggins 
William E Costa 
Kirsten J. Costello 
Christopher G. Cunniff 
M. Elizabeth 

Cunningham 
Wayde Alfred 

Daigneault 
Thomas V. Daley 
Smitesh Dave 
Raymond V. DeJaco 
Sean R. Devlin 
John C. Dougherty 
Barry P. Drobes 
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Nathalie Dufresne Jason N. Hoffman 
Stephen C. Dugan Eric J. Homick 
Louis Durocher Marie-Josee Huard 
Anthony D. Edwards Mangyu Hur 
S. Anders Ericson Paul Ivanovskis 
Ellen E. Evans Joseph W. Janzen 
Gregg Evans Patrice Jean 
Farzad Farzan James B. Kahn 
Bruce D. Fell Gail E. Kappeler 
Steven J. Finkelstein Lowell J. Keith 
William P Fisanick James M. Kelly 
Robert E Flannery Thomas P Kenia 
Bethany L. Fredericks Jean-Luc E. Kiehm 
Jean-Pierre Gagnon Deborah M. King 
Eric J. Gesick Jean-Raymond 
Julie Terese Gilbert Kingsley 
Bernard H. Gilden Bradley J. Kiscaden 
Nicholas P. Giuntini Paul H. Klauke 
Michael F. Glatz Therese A. Klodnicki 
Peter S. Gordon Christopher K. 
Karl Goring Koterman 
Jeffrey S. Goy Karen L. Krainz 
John W. Gradwell Brian S. Krick 
Michael D. Green Edward M. Kuss 
Daniel E. Greer Christine L. Lacke 
Lynne M. Halliwell William J. Lakins 
Julie K. Halper Matthew G. Lange 
Alessandrea C. Handley Julia M. LaVolpe 
Brian D. Haney Thomas V. Le 
Gerald D. Hanlon Thomas C. Lee 
Elizabeth E. L. Hansen P Claude Lefebvre 
David S. Harris Daniel E. Lents 
Michelle L. Hartrich Marc E. Levine 
Scott J. Hartzler Ling-Ling Liu 
Jonathan B. Hayes Lee C. Lloyd 
Lisa M. Hewitt Richard B. Lord 
Betty-Jo Hill Cara M. Low 
John V. Hinton James M. MacPhee 
Michael B. Hirsch Gary P. Maile 

Janice L. Marks 
Meredith J. Martin 
Peter R. Martin 
Scott A. Martin 
Michael Boyd Masters 
Deborah L. McCrary 
Phillip E. McKneely 
James C. McPherson 
Anne C. Meysenburg 
Jennifer Middough 
Camille Diane Minogue 
Mark J. Moitoso 
James Edward 

Monaghan 
Anne Hoban Moore 
Matthew C. Mosher 
Michael J. Moss 
Turhan E. Murguz 
Kevin T, Murphy 
Kathleen V. Najim 
Kari S. Nelson 
Aaron West Newhoff 
Hiep T. Nguyen 
James L. Nutting 
Steven B. Oakley 
Lowell D. Olson 
Milary N. Olson 
David J. Otto 
Charles Pare 
Erica Partosoedarso 
Thomas Passante 
Nicholas H. Pastor 
John R. Pedrick 
Claude Penland 
Michael C. Petersen 
Igor Pogrebinsky 
Dale S. Porfilio 
Matthew H. Price 
Michael David Price 
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Walter D. Price Kerry S. Shubat 
Karen L. Queen Jill C. Sidney 
Kathleen Mary Quinn Charles Leo Sizer 
Patrice Raby Raleigh R. Skaggs, Jr. 
Peter S. Rauner M. Kate Smith 
Brenda L. Reddick Mark A. Smith 
Jennifer L. Reisig Halina H. Smosna 
Natalie J. Rekittke Klayton N. Southwood 
Victor Unson Revilla Angela Kaye Sparks 
Scott Reynolds Scott D. Spurgat 
Cynthia L. Rice Nathan R. Stein 
Christopher R. Ritter Scott T. Stelljes 
Dave H. Rodriguez Lori E. Stoeberl 
Jean-De& Roy Kevin D. Strous 
Thomas A. Ryan Brian K. Sullivan 
Rajesh V. Steven J. Symon 

Sahasrabuddhe Rachel R. TalIarini 
Michael K. Schepak Daniel A. Tess 
Matt J. Schmitt Mark L. Thompson 
Michael J. Scholl Diane R. Thurston 
Michael Shane Jennifer M. Tomquist 
Cheryl R. Shen Joseph D. Tritz 
Jeffrey Pat-viz Shirazi Kris D. Troyer 

Part 8 
Mark A. Addiego 
William M. Atkinson 
Todd R. Bault 
Steven L. Berman 
Jennifer L. Biggs 
Wayne E. Blackbum 
Maurice I? Bouffard 
Betsy A. Branagan 
Lisa J. Brubaker 
Mark E. Burgess 
Maureen A. Cavanaugh 
Kevin J. Cawley 
Galina M. Center 
Francis D. Cerasoli 

Bryan C. Christman 
Kay A. Cleary 
Michael A. Coca 
Jo Ellen Cockley 
Michael K. Curry 
Michael K. Daly 
Guy R. Danielson 
Edgar W. Davenport 
Karen L. Davies 
Renee Helou Davis 
Dawn M. DeSousa 
Jeffrey D. Donaldson 
David M. Elkins 
Dianne L. Estrada 

Laura M. Turner 
Eric Vaith 
Robert J. Walling, III 
Linda F. Ward 
Denise R. Webb 
Christopher B. Wei 
Mark S. Wenger 
Scott Werfel 
Jeffrey D. White 
Thomas J. White 
Wyndel S. White 
Elizabeth R. Wlesner 
Michael J. Williams 
Kirby W. Wisian 
Bonnie S. W&man 
Jeffrey E Woodcock 
Michele N. Yeagley 
Jeanne Lee Ying 
Anthony C . Yoder 
Richard L. Zamik 
Doug Alan Zearfoss 

Michael A. Falcone 
Daniel J. Flick 
Kai Y. Fung 
Mary K. Gise 
Ronald E. Glenn 
Farrokh Guiahi 
Paul James Hancock 
William D. Hansen 
Christopher L. Harris 
Lise A. Hasegawa 
Noel M. Hehr 
Deborah G. Horovitz 
Jeffrey R. Hughes 
Sandra L. Hunt 
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Mark R. Johnson Michael K. McCutchan 
James W. Jonske Heather L. McIntosh 
Charles N. Kasmer David W. McLaughry 
Janet S. Katz Kathleen A. McMonigle 
Brian Danforth Kemp Stephen V. Merkey 
Susan E. Kent Stephen J. Mildenhall 
Michael B. Kessler Kenneth B. Morgan, Jr. 
Michael F. Klein Kimberly J. Mullins 
Brandelyn C. Klenner Rade T. Musulin 
Louis K. Korth David Y. Na 
John M. Kulik Donna M. Nadeau 
Bertrand J. LaChance Peter M. Nonken 
Blair W. Laddusaw Stephen R. Noonan 
Christopher Lattin Douglas J. Onnen 
David R. Lesieur Melinda H. Oosten 
Paul B. LeStourgeon William L. Oostendorp 
Aaron S. Levine Ann E. Overturf 
Kenneth A. Levine Edward E Peck 
Elise C. Liebers Wende A. Pemrick 
Barbara S. Mahoney Marvin Pestcoe 
Daniel J. Mainka Daniel C. Pickens 
Donald F. Mango Daniel A. Powell 
Katherine A. Mann Arlie J. Proctor 
Camley A. Mazloom Regina M. Puglisi 
Robert D. McCarthy Robert E. Quane, III 
James B. McCreesh Donald A. Riggins 

Part 8C 
Jean-Luc E. Allard 
Craig A. Allen 
Martin J. Beaulieu 
LaVeme J. Biskner, 111 

Gary C. K. Cheung 
Yves Francoeur 
Marc C. Grandisson 
Blair E. Manktelow 

Part 10 
John A. Beckman 
Betsy L. Blue 
Gary B lumsohn 
Mark L. Brannon 

Donna D. Brasley 
Anthony J. Burke 
Mark W. Callahan 
Janet L. Chaffee 

Andrew T. Rippert 
David A. Rosenzweig 
James B. Rowland 
Kenneth W. Rupert, Jr. 
Christina L. Scannell 
Arthur J. Schwartz 
Gregory R. Scruton 
Peter Senak 
Robert D. Share 
Michelle G. Sheng 
Gary E. Shook 
Patricia E. Smolen 
Douglas W. Stang 
Richard A. Stock 
Ilene G. Stone 
Paul J. Struzzieri 
James F. Tygh 
Trent R. Vaughn 
Dale G. Vincent, Jr. 
W. Olivia Wacker 
Lisa Marie Walsh 
Kimberley A. Ward 
William M. Wilt 
Joshua A. Zirin 
Barry C. Zurbuchen 

On Cheong Poon 
James V. Russell 
Mark D. van Zanden 

Jessalyn Chang 
Scott K. Charbonneau 
Gregory L. Cote 
Timothy J. Cremin 
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Michael T. Curtis 
Michael L. DeMattei 
Jeffrey L. Dollinger 
John P. Doucette 
Maribeth Ebert 
Matthew G. Fay 
Daniel B. Finn 
Russell Frank 
Kim B. Garland 
Donna L. Glenn 
Linda M. Goss 
Bradley A. Granger 
Russell H. Greig, Jr. 
Leigh Joseph Halliwell 
Jonathan M. Harbus 
Lisa A. Hays 
Suzanne E. Henderson 
Wayne Hommes 
Craig W. Kliethermes 
Nancy E. Kot 
Cheung S. Kwan 
Mathieu Lamy 
James W. Larkin 
Michael D. Larson 
Michel Laurin 
France LeBlanc 
Thomas L. Lee 
Siu K. Li 
Richard S. Light 
Maria Mahon 
William G. Main 

Lawrence F. Marcus 
John W. 

McCutcheon, Jr. 
Richard T. McDonald 
M. Sean McPadden 
Christopher J. McShea 
John P. Mentz 
Paul Allen Mestelle 
Robert J. Meyer 
Stephen J. Meyer 
Scott M. Miller 
Stacy L. Mina 
Kelly L. Moore 
Michelle M. Morrow 
David A. Murray 
Robin N. Murray 
W. Randall Naylor 
John Nissenbaum 
Laura A. Olszewski 
Marlene D. Orr 
Timothy A. Paddock 
Rudy A. Palenik 
Jennifer J. Palo 
Chandrakant C . Pate1 
Charles C. Pearl, Jr. 
Andre Perez 
Marian R. Piet 
Brian D. Poole 
Mark Priven 
Eduard J. Pulkstenis 
Donna J. Reed 

Elizabeth M. Riczko 
James Joseph 

Romanowski 
Kevin D. Rosenstein 
Bradley H. Rowe 
Michael R. Rozema 
Jeffery J. Scott 
Derrick D. Shannon 
David M . Shepherd 
Barbara A. Stahley 
Thomas N. Stanford 
Yuan-Yuan Tang 
Rae M. Taylor 
Richard D. Thomas 
Barbara H. Thurston 
Thomas C. Tote 
Michael Toledano 
Charles E Toney, II 
Janet A. Trafecanty 
Scott P. Weinstein 
L. Nicholas 

Weltmann, Jr. 
Debra L. Werland 
Steven B. White 
Marcia C. Williams 
Tad E. Womack 
Floyd M. Yager 
Edward J. Yorty 
Ralph T. Zimmer 
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The following candidates were admitted as Fellows and Associ- 
ates at the CAS Annual Meeting in November 1994 as a result of 
their successful completion of the Society requirements in the May 
1994 examinations. 

Todd R. Bault 
John A. Beckman 
Jennifer L. Biggs 
Betsy L. Blue 
Mark L. Brannon 
Anthony J. Burke 
Janet L. Chaffee 
Jessalyn Chang 
Scott K. Charbonneau 
Michael A. Coca 
Gregory L. Cote 
Michael T. Curtis 
Edgar W. Davenport 
Michael L. DeMattei 
Jeffrey L. Dollinger 
Maribeth Ebert 
Matthew G. Fay 
Daniel B. Finn 
Yves Francoeur 
Russell Frank 
Kim B. Garland 
Donna L. Glenn 
Linda M. Goss 
Farrokh Guiahi 
Jonathan M. Hat-bus 
Lisa A. Hays 
Deborah G. Horovitz 
Nancy E. Kot 
John M. Kulik 
James W. Larkin 

FELLOWS 

Michael D. Larson 
Christopher Lattin 
Michel Laurin 
France LeBlanc 
Elise C. Liebers 
William G. Main 
Daniel J. Mainka 
Donald F. Mango 
Blair E. Manktelow 
Katherine A. Mann 
James B. McCreesh 
John W. 

McCutcheon, Jr. 
M. Sean McPadden 
John P Mentz 
Paul A. Mestelle 
Robert J. Meyer 
Stephen J. Meyer 
Stacy L. Mina 
Kelly L. Moore 
Michelle M. Morrow 
David A. Murray 
Robin N. Murray 
Stephen R. Noonan 
Laura A. Olszewski 
William L. Oostendorp 
Timothy A. Paddock 
Rudy A. Palenik 
Jennifer J. Palo 
Chandrakant C. Pate1 

Charles C. Pearl, Jr. 
Andre Perez 
Marvin Pestcoe 
Daniel C. Pickens 
Marian R. Piet 
Brian D. Poole 
Donna J. Reed 
Elizabeth M. Riczko 
James Joseph 

Romanowski 
Kevin D. Rosenstein 
Gregory R. Scruton 
Derrick D. Shannon 
David M. Shepherd 
Barbara A. Stahley 
Thomas N. Stanford 
Paul J. Struzzieri 
Richard D. Thomas 
Barbara H. Thurston 
Michael Toledano 
Charles E Toney, II 
Dale G. Vincent, Jr. 
Scott P Weinstein 
L. Nicholas 

Weltmann, Jr. 
Debra L. Werland 
Marcia C. Williams 
William M. Wilt 
Ralph T. Zimmer 
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Shawna S. Ackerman 
Larry D. Anderson 
Barry Luke Bablin 
James M. Bartie 
Andrea C. Bautista 
Lori Michelle Bradley 
Kevin Joseph Brazee 
Russell J. Buckley 
Kristi Irene 

Carpine-Taber 
Brian A. Clancy 
Kirsten J. Costello 
Wayde Alfred 

Daigneault 
Thomas V. Daley 
Smitesh Dave 
Laura B. Deterding 
Gregg Evans 
Charles V. Faerber 
Bruce D. Fell 
Ginda Kaplan Fisher 
Robert F. Flannery 
Margaret Wendy 

Germani 
Julie Terese Gilbert 
Nicholas P. Giuntini 
William Alan Guffey 
Marc S. Hall 

ASSOCIATES 

Elizabeth E. L. Hansen 
Jonathan B. Hayes 
David B. Hostetter 
Brian Danforth Kemp 
Rebecca A. Kennedy 
Bradley J. Kiscaden 
Paul H. Klauke 
Joan M. Klucarich 
Eleni Kourou 
Kenneth Allen 

Kurtzman 
Edward M. Kuss 
Matthew G. Lange 
John P Lebens 
P. Claude Lefebvre 
Gary P. Maile 
Janice L. Marks 
Anthony G. Martella, Jr. 
Peter R. Martin 
Michael Boyd Masters 
Brian James Melas 
Anne C. Meysenburg 
Camille Diane Minogue 
James Edward 

Monaghan 
Matthew C. Mosher 
Turhan E. Murguz 
Aaron West Newhoff 

Marc Freeman 
Oberholtzer 

John R. Pedrick 
Anne Marlene Petrides 
Michael David Price 
Karen L. Queen 
Kathleen Mary Quinn 
Yves Raymond 
Victor Unson Revilla 
Brad Michael Ritter 
Jay Andrew Rosen 
Christine R. Ross 
Matt J. Schmitt 
Jeffrey Parviz Shirazi 
Nathan Ira Shpritz 
Kerry S. Shubat 
Charles Leo Sizer 
Carl J. Sornson 
Klayton N. Southwood 
Angela Kaye Sparks 
Linda E Ward 
James C. Whisenant 
Wyndel S. White 
William Robert WiIkins 
Jeanne Lee Ying 
Doug Alan Zearfoss 

The following is the list of successful candidates in examinations 
held in November 1994. 

Part 3B 
Jeffrey R. Adcock 
Ethan D. Allen 
John P Alltop 

Silvia J. Alvarez 
Mary K. Anderson 
Amy P Angel1 

Melissa J. Appenzeller 
Anju Arora 
Carl X. Ashenbrenner 
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Afrouz Assadian 
Robert D. Bachler 
Dee A. Bailey 
Brent W. Barney 
Justin R. Barrow 
Cortney A. Bass 
Julie-Ann Basso 
James H. Bennett 
Peter A. Bennett 
Sheri L. Bieske 
Brian A. Bingham 
Tony F. Bloemer 
Christopher D. Bohn 
David R. Border 
Christopher L. Bowen 
Jennifer L. 

Bramschreiber 
Brenda A. Brazil 
Stephane Brisson 
Angela D. Burgess 
Christopher J. 

Burkhalter 
Judith E. Callahan 
Allison F. Carp 
William Brent Carr 
Alison S. Carter 
Patrick J. Causgrove 
Raji H. Chadarevian 
Chien-yu Chan 
Suhui Chen 
Brian K. Ciferri 
Jason T. Clarke 
James P Cleary 
Kevin M. Cleary 
Sean 0. Cooper 
Michelle A. Corso 
William F. Costa 
Michael J. Curcio 

Mary Katherine T. 
Dardis 

John D. Deacon 
Brian H. Deephouse 
Wesley J. DeNering 
D. Vance C. Dewitt 
Thomas R. Dlouhy 
David L. Drury 
Tammi B. Dulberger 
Marcus W. Dummer 
Rachel Dutil 
Wayne W. Edwards 
James R. Elicker 
Sylvain Fauchon 
Julia M. Ford 
Hugo Fortin 
Martine Gagnon 
David M. Galko 
David E. Gansberg 
Michael K. Gastineau 
Arthur L. Georges 
Klete D. Geren 
Matthew J. Gillette 
Andrew S. Golfin, Jr. 
Amy L. Grbcich 
Robert A. Grocock 
Greg M. Haft 
Julie K. Halper 
Marcus R. Hamacher 
Craig E. Hanford 
Scott W. Hanson 
Esther Harrison 
Jean-Francois Hebert 
James A. Heer 
James D. Heidt 
Christopher R. Heim 
William N. Herr, Jr. 
Cynthia J. Heyer 

Peter B. Hindman 
Bradford K. Hoagland 
Jody M. Hoffman 
Joseph H. Hohman 
Allen J. Hope 
Mary E. Hromco 
Catherine L. Hudson 
Diane L. Hudson 
Kristina M. Hummel 
Philip M. Imm 
Neal 0. Jettpace 
Tricia L. Johnson 
Bryon R. Jones 
Jeremy M. Jump 
Brian A. Junod 
Tamora A. Kapeller 
Richard T. Kelly 
Lauren A. Kerr 
He-Jung Kim 
Jean Y. Kim 
James F. King 
Susan L. Klein 
Bradley S. Kove 
lgnace Y. Kuchazik 
Matthew R. Kuczwaj 
James D. Kunce 
William J. Lakins 
Khanh M. Le 
David Leblanc-Simard 
Karen J. Lee 
Christian Lemay 
Daniel E. Lents 
Marc E. Levine 
Richard P. Lonardo 
Michelle Luneau 
Cynthia K. Lysne 
Craig MacIntyre 
Daniel Patrick Maguire 
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Michael C. Malone 
David K. Manski 
Joanne E. Marshall 
Jason A. Martin 
George J. McCloskey 
Martin Menard 
Ross H. Michehl 
David P. Moore 
Kenneth B. Morgan, Jr. 
Ethan Mowry 
Matthew D. Myshrall 
Kari A. Nicholson 
Gregory P Nini 
Michael P. O’Connor 
Marsi A. 

O’Malley-Riley 
Oscar J. Orban 
Matthew R. Ostiguy 
Kevin T. Peterson 
Terry C. Pfeifer 
Jeffrey J. Pfluger 
Igor Pogrebinsky 
Scott W. Pollard 
Jennifer K. Price 
Anthony E. Ptasznik 

Part 4A 
Jeffrey R. Adcock 
Sajjad Ahmad 
Josee Allard 
Gwendolyn R. 

Anderson 
Kevin L. Anderson 
Mark B. Anderson 
Sheila M. Aranyos 
Wendy L. Artecona 
Craig V. Avitabile 
Bassam B, Barazi 
Thomas C. Bates 

Beth A. Pyle 
Kara L. Raiguel 
Ricardo A. Ramotar 
Peter S. Rauner 
William J. Raymond 
Delia E. Roberts 
Efrain Rodriguez 
Nathan W. Root 
Piya Roy 
Jennifer L. Rupprecht 
Bryant E. Russell 
Frederick D. Ryan 
Matthew L. Sather 
Suzanne K. Sauers 
Gary F. Scherer 
Gena A, Shangold 
Bintao Shi 
Rebecca L. Simons 
Jason R. Smith 
Stephen M. Smith 
Thomas M. Smith 
Monika Soja 
Benoit St-Aubin 
Patrick C. Steuber 
Avivya S. Stohl 

Mary P Bayer 
Michael J. Belfatti 
Dwight D. Bell 
Jennifer L. Blackmore 
Daniel R. Boerboom 
Joseph V. Bonanno, Jr. 
James D. Buntine 
Hugh E. Burgess 
Kevin C. Burke 
Donia N. Burris 
Pamela A. Burt 
Aleksandr A. Bushel 

Roman Svirsky 
C. Steven Swalley 
Karrie L. Swanson 
Edward Sypher 
Stephen J. Talley 
Craig D. Thomas 
Craig Tien 
James H. Tran 
Michael C. Tranfaglia 
Nathalie Tremblay 
Karen J. Triebe 
Lisa E. Tripp 
Brian K. Turner 
Sharon E. Tuttle 
David S. Udall 
David Uhland 
Kevin E. Weathers 
William J. Webb 
Dana S. Weisbrot 
Bruce A. Werner 
Hau L. Ymg 
Anthony C. Yoder 
Ruth Zea 

Daniel G. Charbonneau 
Nathalie Charbonneau 
Hongyan Chen 
Christopher P Coelho 
Anna V. Colelli 
Robert B. Collins 
Margaret E. Conroy 
David E Dahl 
Kristin J. Dale 
Mark A, Davenport 
Douglas L. Dee 
Brian H. Deephouse 
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Anthony M. DiLapi 
Nancy Ding 
Francis J. Dooley 
Christopher S. Downey 
Tammy L. Dye 
Keith A. Engelbrecht 
Richard A. Fat-row 
Janine A. Finan 
Chauncey E. Fleetwood 
Sean P Forbes 
Sarah J. Fore 
Martin Fortin 
Ronnie S. Fowler 
Mark R. Frank 
Timothy J. Friers 
Amy A. Gadsden 
Gina L. Gagliardi 
John E. Gaines 
Michael A. Garcia 
Ellen M. Gavin 
Siddhartha Ghosh 
James W. Gillette 
Sanjay Godhwani 
Olga Golod 
Melanie T. Green 
Jacqueline L. Gronski 
Curtis A. Grosse 
Lora L. Gruesbeck 
David B. Hackworth 
Lisa M. Hawrylak 
Kimberly A. 

Heiligenberg 
Kevin B. Held 
Sally Dunlap Hendrick 
Tina M. Henninger 
Twiggy Hemandez 
Brook A. Hoffman 
Christopher R. Jarvis 
Stephen L. Jauss 

Michael J. Kallan 
Robert C. Kane 
Glenda J. Kettelson 
Linda I. Kierenia 
Patricia Kinghorn 
Joseph P Kirley 
Kwabena A. Koranteng 
Tanya M. Kovacevich 
Scott C. Kurban 
Timothy J. Landick 
Laura S. Larson 
Peter Latshaw 
Dennis H. Lawton 
Dzung Le 
Bradley R. Leblond 
Todd W. Lehmann 
Steven E. Levitt 
Craig A. Levitz 
Jamison W. Lindsey 
Rebecca M. Locks 
Wayne L. Lowe 
Mark S. Lu 
John Lum 
Jason K. Machtinger 
Daniel Patrick Maguire 
Stephen P. Marsden 
William J. Mazurek 
William R. McClintock 
Peter B. McCloud 
Shawn Allan McKenzie 
Sarah K. McNair-Grove 
Kirk F. Menanson 
Michelle L. Merkel 
Eric Millaire-Morin 
Kathleen C. Miller 
Paul W. Mills 
Paul D. Miotke 
Roosevelt C. Mosley 
Gwendolyn D. Moyer 

Michael D. Nielsen 
Eng Loke Ong 
Bruce J. Packer 
Jennifer L. Paris 
Michael C. Parsons 
Nilesh T. Pate1 
Harry T. Pearce 
Wendy W. Peng 
John S. Peters 
Charles V. Petrizzi 
Jeffrey J. Pfluger 
Deborah J. Pomerantz 
Dale S. PorFlio 
Edward L. Pyle 
Kiran Rasaretnam 
Nathan W. Root 
Jaime J. Rosario 
Denise F. Rosen 
Brian C. Ryder 
Julie A. Schneider 
Timothy D. Schutz 
Lisa M. Scorzetti 
Michele Segreti 
Tina Shaw 
Scott A. Sheldon 
Meyer Shields 
Bret C. Shroyer 
Allison M. Skolnick 
Robert K. Smith 
Thomas M. Smith 
William L. Smith 
George Dennis Sparks 
William A. Spoerner 
Carol A. Stevenson 
Steven J. Symon 
Ming Tang 
Varsha A. Tantri 
Daniel A. Tess 
Hugh T. Thai 
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Jennifer L. Throm 
Philippe Trahan 
Thomas A. Trocchia 
Jordan N. Uditsky 
Timothy J. Ungashick 
Linda Uriarte 

Part 48 
Michael D. Adams 
Ariff B. Alidina 
Christopher R. Allan 
Nancy S. Allen 
Petri Ann Allen 
Mark K. Altschuler 
Gilla A. Amar 
Bradley A. Anderson 
Julie A. Anderson 
Paul D. Anderson 
Todd C. Anderson 
Cheng-Hong Ang 
Frank A. Aritz 
Wendy L. Artecona 
Julie R. Augustine 
Brandon E. Auster 
Rona A. Axelrod 
Robert D. Bachler 
Lisa Buchman Barshay 
Thomas C. Bates 
Mourad Bentoumi 
Mario Binetti 
Kevin M. Bingham 
Linda J. Bjork 
Jonathan E. Blake 
Joseph Bojman 
Andrea Bolliger 
Edith Boucher 
John B. Brady 
Jennifer L. 

Bramschreiber 

Justin M. Van Opdorp 
Douglas M. Warner 
Kevin E. Weathers 
Vanessa C. 

Whitlam-Jones 
Karen N. Wolf 

Richard A. Brassington 
Cary J. Breese 
Andrew J. Bren 
Willard E. Brown 
Bruce D. Browning 
Julie Burdick 
Alan Burns 
Elise S. Burns 
Michael L. Burmss 
Pamela A. Burt 
Jason B. Bushey 
Matthew R. Carrier 
John J. Carroll 
Milissa D. Carter 
Anne-Marie Castilloux 
Harvey C. C. Ghan 
Simon Hei-Yin Chan 
Valerie C. Chan 
Sabine Chapus 
Chun-Nan Chen 
Cindy X. Chen 
Ja-Lin Chen 
Lisa C. Chen 
Peggy Cheng 
Richard M. Chiarini 
Li-Chen Chou 
Chin-mei Y. Chueh 
Jeffrey A. Clements 
Lynn D. Coleman 
Thomas P Collins 
Greg E. Conklin 

Mark L. Woods 
Milton F. Yee 
Kathryn L. Zaeht 
Grace Zakaria 

Christopher W. Cooney 
David E. Corsi 
Renee Couture 
Catherine Cresswell 
Bryan J. Curley 
Stephen T. Custis 
Vick Dannon 
Mary Katherine T. 

Dardis 
Willie L. Davis 
Nicholas J. De Palma 
Harin A. De Silva 
Nancy K. DeGelleke 
Michael B. Delvaux 
Emily Y. Deng 
Alain P DesChatelets 
Jonathan M. Deutsch 
Mary Jane B. Donnelly 
Kevin F. Downs 
Mark E. Drury 
Cindy L. Dube 
Martin Dubeau 
Patrice Duchaine 
Brian N. Dunham 
Ruchira Dutta 
Michael F. Economos 
Mark Kelly Edmunds 
Keith A. Engelbrecht 
Kristine M. Esposito 
Carolyn M. Falkenstem 
Alana C. Farrell 
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Brian M. Femandes 
Julie L. Ferrell 
James M. Filmore 
Mary E. Fleischli 
Keith E. Floman 
William J. Fogarty 
Dennis Anthony Fong 
Sean P. Forbes 
Marie-Josee Forcier 
Sarah J. Fore 
Michelle M. Forst 
Martin Fortier 
Nathalie Fortin 
Patrice Fortin 
Robert C. Fox 
Joseph K. Fung 
James M. Gabriel 
Nathalie Gagnon 
Sherri L. Galles 
Dennis Gan 
Marie-Elaine 

Gaudreault 
Ellen M. Gavin 
Glenn J. Gazdik 
Michael L. George 
John J. Gericke, III 
Wendi J. Giachino 
Dawn M. Giglio 
James B. Gilbert 
James W. Gillette 
Theresa Giunta 
Nik Godon 
Eric P Goetsch 
Moshe D. Goldberg 
Olga Golod 
Christian N. Goodman 
John P. Gots 
Leslie B. Graham 
Daniel C. Greer 

Michael L. Greer 
Catherine E. Griffin 
Jennifer T. Grimes 
Leslie E. Gross 
Josephine A. Gurreri 
Greg M. Haft 
William Woojae Hahn 
Barry R. Haines 
Constance B. Hall 
Thomas Hamm 
Alex A. Hammett 
Gregory Hansen 
Kurt D. Hanson 
Kevin A. Harris 
Jodi J. Healy 
Dale A. Helzerman 
David E. Heppen 
Linda M. Hewitt 
Cynthia J. Heyer 
Jay T. Hieb 
Luke D. Hodge 
Shawn C. Howell 
Gordon R. Hugh 
Daniel C. E Hui 
Jamison J. Ihrke 
Mario A. lmbarrato 
Susan E. Innes 
Bryan B. Jaicks 
Eric Janecek 
Gregory 0. Jaynes 
Neal 0. Jettpace 
Donna G. Jockers 
Kathleen M. Johnson 
Paul J. Johnson 
William Rosco Jones 
Eunsook Joo 
Anthony Ernest Jung 
Daniel R. Kamen 
Jong-Ming Kan 

Robert C. Kane 
Joseph M. Kaner 
Rishi Kapur 
Chad C. Karls 
Kimberly S. H. Kaune 
Kathryn E. Keehn 
Shannan R. Keet Corey 
Mary C. Kellstrom 
Linda M. Kiene 
David N. Kightlinger 
Kari L. Killing 
Linda Kong 
Kimberly A. Kracht 
John J. Kraska, 111 
Richard S. Krivo 
Sarah Krutov 
Robert W. Kuchler 
Micheline M. Lafond 
Mai B. Lam 
David Eric Lamoureux 
Robert G. Landau 
Timothy J. Landick 
Debra K. Larcher 
Isam Laroui 
Valerie Lavoie 
Yin Lawn 
Donald G. Lawrence 
Eric T. Le 
Bradley R. Leblond 
Borwen Lee 
Henry T. Lee 
Joan K. Lee 
Todd W. Lehmann 
Neal M. Leibowitz 
Gerald E. Lenis 
W. Scott Lennox 
B rendan M . Leonard 
Jing Li 
Lei Li 
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Xiaoyin Li 
Yu-Ching Lin 
Jamison W. Lindsey 
Hwa-Lin Liu 
Xisuo Liu 
Deborah Livingston 
Brian D. Loewen 
Peter R. Lopatka 
Paul R. Lorentz 
Yongchil Ly 
Jaclyn B. Maher 
Alexander P. Maizys 
James W. Malin 
Lisa K. Manderson 
William J. Mantemach 
Michelle D. Marks 
Jason A. Martin 
Luc Martin 
Annie Massicotte 
Stanislav D. Maydan 
Arkadiy B. Maydanchik 
Randall Mays 
Terry J. McFadden 
Patricia McGahan 
Mark E. McGuire 
Michele L. McKay 
Amy S. McLaughlin 
Jennifer A. Medvec 
John D. Meerschaert 
Raveendran Menon 
Etienne Mercier 
Richard E. Meuret 
Cory S. Michel 
Paul W. Mills 
Dmitriy Mindlin 
Paul D. Miotke 
Michael J. Miraglia 
Ajit D. Mistry 
David Molyneux Warren T. Printz 

Celso M. Moreira 
Alan E. Morris 
Jennifer A. Moseley 
Janice C. Moskowitz 
Roosevelt C. Mosley 
Robert J. Moss 
Brian J. Mullen 
Syed A. Murtaza 
Tawnia L. Newton 
Khanh K. Nguyen 
Tu T. Nguyen 
Wendy A. Nichols 
Serge Yanic Nana Njike 
Douglas K. Noble 
Chad W. Noehren 
Miodrag Novakovic 
Martin J. O’Connell 
Karl K. Oman 
Leo M. Orth, Jr. 
Maria T. Palandra 
James A. Partridge 
Kamlesh M. Pate1 
Prashant Pate1 
Carole K. Payne 
Harry T. Pearce 
James A. Pederson 
Sylvain Perrier 
John S. Peters 
Wesley R. Peterson 
Thomas L. Poklen, Jr. 
Deborah J. Pomerantz 
Josee Pomerleau 
Stephen L. Pontecorvo 
Kathy A. Poppe 
Dale S. Porfilio 
Scott F. Porter 
Scott M. Priebe 
Gariguin E. Prilepski 

Troy J. Pritchett 

Michele Segreti 

Lisa Procaccitto 
Anthony E. Ptasznik 
Penelope A. Quiram 
Brentley J. Radeloff 
Ricardo A. Ramotar 
Amir Rasheed 
Beth A. Rasmussen 
John E Rathgeber 
Teresa M. Reis 
Jennifer L. Reisig 
Natalie J. Rekittke 
Janice L. Rexroth 
Andrew S. Ribaudo 
Jason H. Rickard 
David C. Riek 
Jean-Yves Rioux 
Melissa K. Ripper 
Karen L. Rivara 
David Roberge 
Scott A. Robinson 
Mark J. Rodts 
Sharon G. Rothwachs 
Brian P Rucci 
Joanne E. Russell 
Anna May P Sadler 
Sharon R. Saleh 
Juliet R. Sandrowicz 
Jason R. Santos 
Frances G. Sarrel 
Barbara A. Satsky 
David M. Savage 
Daniel V. Scala 
Steven M. Schatt 
Thomas C. Schultz 
Terri L. Schwomeyer 
Glenn C. Scott 
Peter A. Scout-us 
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Ronald G. Sevold 
Amresh Mansukhlal 

Shah 
Linda R. Shahmoon 
Mohammad A. Sharif 
Jonathan A. Shelon 
Meyer Shields 
Glenn D. Shippey 
Maria Shlyankevich 
Bret C. Shmyer 
Kanhiya La1 Shukla 
Brent A. Simmons 
Gregory A. Simmons 
Brian A. Simpson 
Donna M. Sivigny 
Allison M. Skolnick 
Gregory M. Smith 
Scott G. Sobel 
Charles J. Song 
Caroline B. Spain 
Kristen L. Sparks 
Daniel J. Spillane 
Dawn L. Stamets 
Ana M. Stangl 

Part 5A 
Jeffrey R. Adcock 
Anthony L. Alfieri 
Timothy W. Atwill 
Michael W. Barlow 
Paul C. Barone 
Elizabeth F. Bassett 
Anna Marie Beaton 
Jennifer L. Blackmore 
Stephen D. Blaesing 
Daniel R. Boerboom 
Kimberly Bowen 
Kevin M. Brady 
Car-y J. Breese 

Barry P. Steinberg 
Carol A. Stevenson 
Elizabeth A. Sullivan 
Randall A. Swanson 
David J. Tenembaum 
Steve D. Tews 
Harlan H. Thacker 
Laura L. Thome 
Jennifer L. Throm 
David A. Tobin 
Michael G. Townsend 
Quynh-Le Tran 
Stephanie J. Traskos 
Jeffrey S. Trichon 
Andrea E. Trimble 
Herman T. Tse 
Brian D. Ulery 
Dennis R. Unver 
Joel A. Vaag 
Steven J. Vercellini 
Vratislav Vodrazka 
Josephine M. Waldman 
Donald M. Walker 
Jon M. Wander 

Karen A. Brostrom 
Robert Lindsay Brown 
James D. Buntine 
Kevin D. Bums 
Sandra J. Callanan 
Sharon A. Carroll 
Todd D. Cheema 
Gary C. K. Cheung 
Stephen D. Clapp 
Jeffrey J. Clinch 
Peter J. Cooper 
Kevin A. Cormier 
Hall D. Crowder 

Helen R. War-gel 
Chang-Hsien Wei 
Mary A. Weiler 
Min-Ming Wen 
Shari A. Westerfield 
Dean A. Westpfahl 
Joel D. Whitcraft 
Vanessa C. 

Whitlam-Jones 
Joseph R. WiIIe 
Kendall I? Williams 
Victor S. F. Wong 
Ruth Ann Woodley 
Haichuan Wu 
Pearson K. Wu 
Walter R. Wulliger 
Armand M. Yambao 
Hailiang Yang 
Michael Yarmish 
Michael G. Young 
In Sung Yuh 
Paula S. Ziegelbein 

Michael J. Curcio 
Charles A. Dal Corobbo 
Sheri L. Daubenmier 
Raymond Demers 
David A. DeNicola 
Thomas J. Dwyer 
Brian A. Evans 
Sylvain Fauchon 
Brian M. Femandes 
Tracy M. Fleck 
Mary E. Fleischli 
Shina N. Fritz 
Serge Gagne 
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Kathy H. Garrigan 
Christopher H. Geering 
Barry A. Gertschen 
Jie Gong 
Allen J. Gould 
Mari L. Gray 
Karen L. Greene 
David T. Groff 
Alex A. Hammett 
Joel D. Hanson 
Michelle L. Harnick 
Bryan Hartigan 
Lisa M. Hawrylak 
Daniel L. Hogan 
Susan E. Innes 
David R. James 
Christopher R. Jarvis 
Christian Jobidon 
Burt D. Jones 
Alexander Kastan 
Robert B. Katzman 
Claudine H. Kazanecki 
Timothy P. Kenefick 
Michael B. Kessler 
Ruta V. Kher 
Deborah M. King 
James F. King 
Omar A. Kitchlew 
David Kodama 
Kimberly A. Kracht 
Gary R. Kratzer 
Jean-Francois 

Larochelle 

Part 5B 
Rachelle R. Ambrose 
Timothy W. Atwill 
Bassam B. Barazi 
Emmanuil Bardis 

Yin Lawn 
Emily C. Lawrance 
Guy Lecours 
Kevin A. Lee 
Bradley H. Lemons 
Steven J. Lesser 
John N. Levy 
Sally M. Levy 
Michael Leybov 
Janet G. Lindstrom 
William F. Loyd 
Vahan A. Mahdasian 
Alexander P Maizys 
Timothy C. McAuhffe 
Claudia A. McCarthy 
Patrice McCaulley 
Douglas W. McKenzie 
Shawn AlIan McKenzie 
Scott A. McPhee 
Michelle L. Merkel 
Claus S. Metzner 
Randy J. Murray 
Vinay Nadkarni 
Ronald T. Nelson 
William F. Nicodemus 
Michael D. Nielsen 
Kathleen C. Odomirok 
Christopher E. Olson 
Charles Pare 
Bhikhabhai C. Pate1 
Julie Perron 
Andrea L. Phillips 
Genevieve Pineau 

Nancy Barry 
Elizabeth F. Bassett 
David M. Baxter 
Michael J. Bednarick 

David J. Pochettino 
Mitchell S. Pollack 
John L. Quigley 
William D. Rader, Jr. 
Kimberly E. Ragland 
James J. Rehbit 
Ellen K. Rein 
James C. Sandor 
Annmarie Schuster 
Andrea W. Sherry 
Theodore J. Shively 
Laura E. Siegel 
Jason R. Smith 
Robert K. Smith 
Daniel J. Spillane 
Beth A. Stahelin 
Christine L. 

Steele-Koffke 
C. Steven Swalley 
Michael J . Tempesta 
Glenda 0. Tennis 
Mark L. Thompson 
Philippe Trahan 
Huguette Tran 
Stephanie J. Traskos 
Janet K. Vollmert 
Benjamin A. Walden 
Christopher B. Wei 
Miroslaw Wieczorek 
Joel E Witt 
Simon Wong 
Virginia R. Young 
Fengming Zhang 

Sheila J. Bertelsen 
Frank J. Bilotti 
Kevin M. Bingham 
Kimberly Bowen 
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Rebecca S. Bredehoeft 
Jeffrey H. Brooks 
Elise S. Bums 
Aleksandr A. Bushel 
John G. Butler 
Donna L. Callison 
Tamela Canora 
Sharon L. Chapman 
Gary C. K. Cheung 
Heng Seong Cho 
Stephen D. Clapp 
Susan M. Cleaver 
Jeffrey J. Clinch 
Margaret E. Conroy 
Kenneth S. Dailey 
John E. Daniel 
John D. Deacon 
Donna K. DiBiaso 
Christopher S. Downey 
Wayne W. Edwards 
Dawn E. Elzinga 
Vicki A. Fendley 
Junko K. Ferguson 
Benedick Fidlow 
Tracy M. Fleck 
Christian Fournier 
Walter H. Fransen 
Shina N. Fritz 
James M. Gallagher 
Isabelle Gaumond 
Michael H. Gay 
Moshe D. Goldberg 
Jay C. Gotelaere 
Mari L. Gray 
Paul E. Green 
David J. Gronski 
John A. Hagglund 
Jodi J. Healy 
Rhonda R. Hellman 

Jay T. Hieb 
Christopher T. 

Hochhausler 
Daniel L. Hogan 
Todd H. Hoivik 
Dave R. Holmes 
Tina T. Huynh 
Jean-Claude J. Jacob 
Walter L. Jedziniak 
Christian Jobidon 
Brian E. Johnson 
William Rosco Jones 
Philip A. Kane, IV 
Chad C. Karls 
Mary C. Kellstrom 
Michael B. Kessler 
David N. Kightlinger 
Deborah M. King 
Brant L. Kizer 
Robert A. Kranz 
John J. Kraska, III 
Richard S. Krivo 
Dar-Jen D. Kuo 
Douglas H. Lacoss 
Salvatore T. LaDuca 
Jean-Francois 

Larochelle 
Michael L. Laufer 
Khanh M. Le 
Guy Lecours 
Bradley H. Lemons 
Steven J. Lesser 
Michael Leybov 
Janet G. Lindstrom 
Christina Link 
Yih-Jiuan B. Lu 
Barbara D. Majcherek 
Dina M. Maloney 
Victor Mata 

James P Mathews 
Patrice McCaulley 
Smith W. McKee 
Douglas W. McKenzie 
Shawn Allan McKenzie 
Raveendran Menon 
Richard E. Meuret 
Susan A. Minnich 
Janice C. Moskowitz 
John V. Mulhall 
Ronald T. Nelson 
John E. Noble 
Michael A. Nori 
Corine Nutting 
Steven B. Oakley 
Lowell D. Olson 
Milary N. Olson 
Alan M. Pakula 
Julie Perron 
Jeffrey J. Pfluger 
Frank P. Pittner 
David J. Pochettino 
Mitchell S. Pollack 
Kathy A. Poppe 
Ellen K. Rein 
Brad E. Rigotty 
Denise F. Rosen 
Janelle P Rotondi 
Joanne E. Russell 
Charles J. Ryherd 
Glenn R. Scharf 
Christine E. Schindler 
Bradley J. Schroer 
Timothy D. Schutz 
Kelli D. Shepard-El 
James S. Shoenfelt 
Bret C. Shroyer 
Jeffrey T. Snook 
Curt A. Stewart 
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Josephine L. C. Tan 
Ming Tang 
Varsha A. Tantri 
David J. Tenembaum 
Jo D. Thiel 
Mark L. Thompson 
Laura L. Thome 
W. Mont Timmins 

Part 7 
Rimma Abian 
K. Athula P Alwis 
Steven D. Armstrong 
Martin S. Arnold 
Richard J. Babel 
Karen L. Barrett 
Claudia M. Barry 
David B. Bassi 
Brian K. Bell 
Bruce J. Bergeron 
Steven L. Berman 
Corey J. Bilot 
Lisa A. Bjorkman 
Carol A. Blomstrom 
Raju Bohra 
John T. Bonsignore 
Lee M. Bowron 
Douglas J. Bradac 
Betsy A. Branagan 
Michael D. Brannon 
David J. Braza 
James L. Bresnahan 
Margaret A. Brinkmann 
Lisa J. Brubaker 
Marian M. Burkart 
Elliot R. Bum 
Michelle L. Busch 
Tara E. Bush 
J’ne E. Byckovski 

Philippe Trahan 
Jeffrey S. Trichon 
Beth S. Tropp 
Bonnie J. Trueman 
Timothy J. Ungashick 
Mary H. Vale 
Benjamin A. Walden 
Scott A. Ward 

Sandra L. Cagley 
Pamela J. Cagney 
Jeanne L. Carey 
Douglas A. Carlone 
Jill C. Cecchini 
Heather L. Chalfant 
Jean-Francois 

Chalifoux 
Hong Chen 
Christopher J. Claus 
Brian C. Cornelison 
Christopher G. Cunniff 
M. Elizabeth 

Cunningham 
Angela M. Cuonzo 
Malcolm H. Curry 
John T. Devereux 
Sean R. Devlin 
Behram M. Dinshaw 
Patricia J. Donnelly 
William A. Dowel1 
Kimberly J. Drennan 
Barry P. Drobes 
Pierre Drolet 
Stephen C. Dugan 
Kevin M. Dyke 
Jeffrey Eddinger 
Anthony D. Edwards 
S. Anders Ericson 

Lynne K. Wehmueller 
Christopher B. Wei 
Dean A. Westpfahl 
Trevar K. Withers 
Joel F. Witt 
Amy M. Wixon 
Brandon L. Wolf 

James G. Evans 
Joseph G. Evleth 
Alexander 

Femandez, Jr. 
Steven J. Finkelstein 
William P Fisanick 
Daniel J. Flick 
Andre F. Fontaine 
Kevin J. Fried 
Richard A. Fuller 
Gary J. Ganci 
Susan T. Gamier 
Abbe B. Gasparro 
Micah R. Gentile 
Eric J. Gesick 
Thomas P Gibbons 
Stewart H. Gleason 
John T. Gleba 
Annette J. Goodreau 
Chris D. Goodwin 
Mark A. Gorham 
John E. Green 
Steven A. Green 
Daniel E. Greer 
Charles R. Grilliot 
Brian D. Haney 
David S. Harris 
Adam D. Hartman 
Scott J. Hartzler 
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Fritz J. Heirich 
Daniel E Henke 
Betty-Jo Hill 
John V. Hinton 
Jason N. Hoffman 
Eric J. Homick 
Brett Horoff 
Marie-Josee Huard 
John F. Huddleston 
David D. Hudson 
Li Hwan Hwang 
Brian L. Ingle 
C. M. Ah Ishaq 
Paul Ivanovskis 
Randall A. Jacobson 
Suzanne G. James 
Brian J. Janitschke 
Joseph W. Janzen 
Patrice Jean 
Daniel K. Johnson 
Michael S. Johnson 
Philip A. Kane, IV 
Mary Jo Kannon 
Ira M. Kaplan 
Gail E. Kappeler 
Hsien-Ming K. Keh 
Lowell J. Keith 
Thomas P. Kenia 
Jean-Raymond 

Kingsley 
Therese A. Klodnicki 
Brian S. Krick 
Salvatore T. LaDuca 
Jocelyn Laflamme 
Marc LaPalme 
Gregory D. Larcher 
Ramona C. Lee 
Thomas C. Lee 
Isabelle Lemay 

Charles R. Lenz 
Brian P LePage 
Jennifer M. Levine 
Edward A. Lindsay 
Richard B. Lord 
Laura J. Lothschutz 
Robert A. MacKenzie 
James M. MacPhee 
Comwell H. Mah 
Anthony L. Manzitto 
Leslie A. Martin 
Scott A. Martin 
Tracey L. Matthew 
Camley A. Mazloom 
Deborah L. McCrary 
Michael K. McCutchan 
Kelly S. McKeethan 
Lynne S. McWithey 
Jeffrey A. Mehalic 
James R. Merz 
Stephanie J. Michalik 
Anne Hoban Moore 
Kevin T. Murphy 
Kari S. Nelson 
Hiep T. Nguyen 
Mindy Y. Nguyen 
James L. Nutting 
Mihaela L. O’Leary 
Richard D. Olsen 
Michael G. Owen 
Dmitry Papush 
James A. Partridge 
Thomas Passante 
Nicholas H. Pastor 
Abha B. Pate1 
Claude Penland 
William Peter 
Robert E. Quane, III 
Patrice Raby 

Brenda L. Reddick 
Scott Reynolds 
Meredith G. Richardson 
Dennis L. 

Rivenburgh, Jr. 
Jeremy Roberts 
John W. Rollins 
Peter A. Royek 
Jason L. Russ 
Thomas A. Ryan 
Rajesh V. 

Sahasrabuddhe 
Elizabeth A. Sander 
Manalur S. Sandilya 
Christina L. Scannell 
Marilyn E. Schafer 
Christine E. Schindler 
Michael C. Schmitz 
Michael J. Scholl 
Craig J. Scukas 
Terry M. Seckel 
Raleigh R. Skaggs, Jr. 
L. Kevin Smith 
M. Kate Smith 
Lori A. Snyder 
John B. Sopkowicz 
Jay M. South 
Linda M. Sowter 
Michael J. Sperduto 
Scott D. Spurgat 
Nathan R. Stein 
Scott T. Stelljes 
Kevin D. Sttous 
Thomas Struppeck 
Joy Y. Takahashi 
Yuan Yew Tan 
David M. Teme 
Diane R. Thurston 
Son T. Tu 
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Marie-Claire Turcotte Robert J. Walling, III 
Eric Vaith Isabelle T. Wang 
Cynthia L. Vidal Jeffrey D. White 
Jennifer S. Vincent Steven B. White 
Edward H. Wagner Thomas J. White 
Robert J. Wallace Elizabeth R. Wiesner 

Part9 
Shawna S. Ackerman 
Mark A. Addiego 
Elise M. Aheam 
Craig A. Allen 
Timothy P. Aman 
Larry D. Anderson 
Michael E. Angelina 
Mohammed Q. Ashab 
William M. Atkinson 
Lewis V. Augustine 
Nathan J. Babcock 
Philip A. Baum 
Daniel D. Blau 
Ann M. Bok 
Tobias E. Bradley 
Dominique E. Brassier 
Tracy L. Brooks-Szegda 
Peter V. Burchett 
Mark E. Burgess 
Martin Carrier 
Maureen A. Cavanaugh 
Francis D. Cerasoli 
Dennis K. Chan 
Bryan C. Christman 
Darrel W. Chvoy 
Gary T. Ciardiello 
Laura R. Claude 
Frank S. Conde 
Kirsten J. Costello 
Brian K. Cox 
Timothy J. Cremin 

Catherine Cresswell 
Joyce A. Dallessio 
David J. Darby 
Smitesh Dave 
Karen L. Davies 
Marie-Julie Demers 
Kurt S. Dickmann 
John P Doucette 
Robert G. Downs 
William E. Emmons 
Martin A. Epstein 
Dianne L. Estrada 
Michael A. Falcone 
David I. Frank 
Kirsten A. Frantom 
James E. Gant 
Julie Terese Gilbert 
Nicholas P Giuntini 
Marc C. Grandisson 
Bradley A. Granger 
Terry D. Gusler 
Paul James Hancock 
William D. Hansen 
Bradley A. Hanson 
David L. Homer 
Wayne Hommes 
Robert J. Hopper 
Sandra L. Hunt 
Paul R. Hussian 
Fong-Yee J. Jao 
Hou-wen Jeng 

Michael J. Williams 
Kirby W. Wisian 
David S. Wolfe 
Floyd M. Yager 
Richard L. Zamik 

Mark R. Johnson 
Edwin G. Jordan 
Janet S. Katz 
Mark J. Kaufman 
Brian Danforth Kemp 
Craig W. Kliethermes 
Terry A. Knull 
Louis K. Korth 
Jason A. Kundrot 
Howard A. Kunst 
Kenneth Allen 

Kurtzman 
Bertrand J. LaChance 
Blair W. Laddusaw 
Mathieu Lamy 
John P Lebens 
Lewis Y. Lee 
Thomas L. Lee 
Scott J. Lefkowitz 
Steve E. Lehecka 
Paul B. LeStourgeon 
Kenneth A. Levine 
Maria Mahon 
Barbara S . Mahoney 
Stephen N. Maratea 
Richard J. Marcks 
Peter R. Martin 
Suzanne Martin 
Michael Boyd Masters 
Robert F. Maton 
Richard T. McDonald 
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Stephen J. McGee 
Kathleen A. McMonigle 
Robert F. Megens 
Daniel J. Merk 
Stephen V. Merkey 
Stephen J. Mildenhall 
Brett E. Miller 
Camille Diane Minogue 
Madan L. Mittal 
Robert J. Moser 
Kimberly J. Mullins 
David Y. Na 
Victor A. Njakou 
Peter M. Nonken 
Melinda H. Oosten 
Todd F. Orrett 
Joseph M. Palmer 
Edward F. Peck 
Wende A. Pemrick 
Anne Marlene Petrides 
Mark W. Phillips 
Joseph W. Pitts 
Daniel A. Powell 
Mark Priven 
Arlie J. Proctor 
Eduard J. Pulkstenis 

Mark S. Quigley 
Donald A. Riggins 
Andrew T. Rippert 
Brad Michael Ritter 
Tracey S. Ritter 
Douglas S. Rivenburgh 
Jay Andrew Rosen 
James B. Rowland 
David A. Russell 
Kevin L. Russell 
Sean W. Russell 
Melodee J. Saunders 
Letitia M. Saylor 
Matt J. Schmitt 
Jeffery J. Scott 
Michelle G. Sheng 
Jeffrey Parviz Shirazi 
Douglas W. Stang 
Russell Steingiser 
John A. Stenmark 
Brian M. St011 
Ilene G. Stone 
Collin J. Suttie 
Eileen M. Sweeney 
Christopher Tait 
Yuan-Yuan Tang 

Georgia A. 
Theocharides 

Glenn A. Tobleman 
Thomas C. Tote 
Cynthia J. Traczyk 
Patrick N. Tures 
Robert C. Turner, Jr. 
John V. Van de Water 
Jeffrey A. Van Kley 
Mark D. van Zanden 
Trent R. Vaughn 
W. Olivia Wacker 
Lisa Marie Walsh 
Geoffrey T. Werner 
Wyndel S. White 
Peter G. Wick 
Gayle L. Wiener 
Tad E. Womack 
Claude D. Yoder 
Edward J. Yorty 
Benny S. Yuen 
Doug Alan Zearfoss 
Guangjian Zhu 
Joshua A. Zirin 



NEW FELLOWS ADMITTED MAY, 1994: Fifteen of the seventeen new 
Fellows admitted in Boston are shown with CAS President Irene K. Bass. 
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NEW ASSOCIATES ADMITTED MAY, 1994: Thirty-eight of the 149 new 
Associates admitted in Boston are ahown with CAS President Irene K. Bass. 
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OBITUARIES 

Clarence Ray Atwood 
Elgin R. Batho 

Harold J. Ginsburgh 
Raymond S. Lis, Jr. 

Henry F. Rood 

CLARENCE RAY ATWOOD 

1937-1994 

Clarence Ray Atwood died December 19, 1994, from injuries he 
suffered in a traffic accident which occurred two months prior. 

Mr. Atwood became an Associate of the Casualty Actuarial Soci- 
ety in 1968 and a Fellow in 197 1. He attended the University of 
Nebraska, then later obtained a degree from a university in Denver, 
Colorado. 

Though Atwood was born in Nebraska on August 12, 1937, he 
considered Los Angeles and San Diego, California to be his home- 
towns. He began an actuarial consulting firm, Atwood & Co., Con- 
sulting Actuaries, in Ranch0 Bernardo, California, during the late 
1970’s. Atwood served as Founder, Chairman of the Board, and 
President of the consulting firm until his death. 

Atwood served two years on the CAS Education and Examination 
Committee, and two years on the CAS Committee on Financial Re- 
porting. 
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ELGIN R. BATH0 

1904-1994 

Elgin R. Batho died July 24, 1994 from a heart attack at the age of 
89 in Cape Coral, Florida. 

Mr. Batho was a resident of Cape Coral since retiring from Berk- 
shire Life Insurance Company in Pittsfield, Massachusetts, where he 
served as Vice President and Actuary until October 1969. 

He became a Fellow of the Casualty Actuarial Society in 193 1, 
and served as chairman of the Boston Actuaries Club and the Actuar- 
ies Club of Hartford. 

He was born in Winnipeg, Manitoba, and earned bachelor’s and 
master’s degrees from the University of Manitoba, specializing in 
actuarial science. After graduation, he worked in the actuarial depart- 
ment of the Great West Life Assurance Company in Winnipeg. He 
moved to the Bankers Life Company in Des Moines, Iowa; then back 
to Canada as Assistant Actuary for the Equitable Life Insurance 
Company of Canada in Waterloo, Ontario. In 1946, he left Canada to 
join Berkshire Life. 

Batho joined Berkshire Life in 1946 as Assistant Actuary. He was 
promoted to Associate Actuary the next year. In 1956, Batho was 
promoted to Assistant Vice President and Actuary. In 1958, he was 
named Vice President and Actuary, serving in that position until retir- 
ing in 1969. 

He is survived by a son, Lester Batho of Richmond, Massachu- 
setts; two daughters, Mrs. Charles Thompson (Marion) of Lenox, 
Massachusetts, and Mrs. John E. Pryzby (Phyllis) of Pittsfield, Mas- 
sachusetts; six grandchildren; and four great-grandchildren. Batho 
was predeceased by his first wife, the former Olive H. Rees, and his 
second wife, the former Monna S. Asby. 
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HAROLD J. GINSBURGH 

1899-1994 

Former CAS President Harold J. Ginsburgh died February 2, 
1994, in Laguna Hills, California after a long illness. 

Mr. Ginsburgh was born September 21, 1899, in Rochester, New 
York, and graduated from Harvard University in 1920. Ginsburgh, 
who served in the United States Army, became an Associate of the 
Casualty Actuarial Society in 1922 and a Fellow in 1924. 

Ginsburgh was well-known as a pioneer in the development of the 
automobile insurance policy. In the early 1920’s, when the first auto- 
mobile policies were being developed, Ginsburgh’s work strongly 
influenced the shape of those policies. By the early 1940’s, 
Ginsburgh’s knowledge and expertise had established him as a 
highly-respected individual in actuarial circles. 

In 1922, Ginsburgh was employed with Aetna Life Insurance 
Company in Hartford, Connecticut. He was named Vice President at 
Aetna in 1943. In 1954, he became a Senior Vice President of Ameri- 
can Mutual Liability Insurance Company in Boston, Massachusetts, 
where he remained until retiring in 196 1. 

Of his many contributions to actuarial science, what Ginsburgh 
enjoyed the most about his career was developing and training young 
professional actuaries. 

Ginsburgh held many leadership roles for the Society from 1925 
to 1956. He was elected to the CAS Council three times, served as 
President of the Society from 1943 to 1944, Vice President from 
1940 to 1941, and participated in panels and workshops for many 
CAS meetings and seminars. Among his many contributions to CAS 
literature were “Rate Regulation and the Casualty Actuary,” which 
appeared in the PCAS, Volume XXXVIII (1952), and “The Retro- 
spective Rating Plan for Workmen’s Compensation Risks,” which 
appeared in the PCAS, Volume XV ( 1939). 



OBITUARIES 405 

After retiring from American Mutual Liability, Ginsburgh served 
as a consultant for the Commonwealth of Massachussetts, appearing 
as an expert witness and advisor. 

Ginsburgh is survived by wife, Betty; a son, Allen Ginsburgh, of 
Illinois; a daughter, Elgie Ginsburgh, of Massachusetts; five grand- 
children; and five great-grandchildren. 
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RAYMOND S. LIS, JR. 

194% 1994 

Raymond S. Lis, Jr. died on March 28, 1994, after a long illness. 

Mr. Lis was born November 24, 1948, in Willimantic, Connecti- 
cut, and graduated in 1970 from the University of Connecticut with a 
degree in mathematics. 

Lis became an Associate of the Society in 1973, and a Member of 
the American Academy of Actuaries in 1977. He began his career in 
1971 at The Travelers Insurance Company in Hartford, Connecticut, 
where he was promoted to Assistant Director in the casualty division. 
He remained there until retiring in 1993. Lis found the actuarial pro- 
fession rewarding and intellectually challenging; he enjoyed being in 
management at Travelers and working with people. 

At the time of his death, Lis was working toward completing Parts 
8 and 9 of the CAS examinations. 

Lis is survived by his mother, Florence Lis, of Willimantic, Con- 
necticut: a son, Randall Lis, of Boulder, Colorado; and a daughter, 
Jennifer Lis, of Brooklyn, New York. 
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HENRY F. ROOD 

1907- 1994 

Henry F. Rood, age 87, died June 11, 1994, in Fort Wayne, Indi- 
ana. 

Mr. Rood became an Associate of the Casualty Actuarial Society 
in 1962. He was a member of the Society of Actuaries and served as 
President of that society. 

Rood retired in 1971 as Chairman of the Board and President of 
Lincoln National Corporation after 40 years of service to that com- 
pany. 

He was a native of Port Chester, New York, and joined Lincoln 
National as an actuary in 193 1. He was also a director of Lincoln 
National Bank and Trust Company and Lincoln Financial Corpora- 
tion. He was an advisor for life insurance taxes to the United States 
Department of Treasury from 1957-1959, and a member of the board 
of advisers for Purdue University from 1975-1994. 

Rood is survived by his wife, Ruth; two sons, Win and Douglas; 
and one grandchild. 
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