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FOREWORD 

The Casualty Actuarial Society was organized in 1914 as the Casualty Actuarial and 
Statistical Society of America, with 97 charter members of the grade of Fellow; the Soci- 
ety adopted its present name on May 14, 192 I. 

Actuarial science originated in England in 1792, in the early days of life insurance. 
Due to the technical nature of the business, the first actuaries were mathematicians; even- 
tually their numerical growth resulted in the formation of the Institute of Actuaries in En- 
gland in 1848. The Faculty of Actuaries was founded in Scotland in 18.56, followed in the 
United States by the Actuarial Society of America in 1889 and the American Institute of 
Actuaries in 1909. In 1949 the two American organizations were merged into the Society 
of Actuaries. 

In the beginning of the 20th century in the United States, problems requiring actuarial 
treatment were emerging in sickness, disability, and casualty insurance-particularly in 
workers’ compensation, which was introduced in I91 I. The differences between the new 
problems and those of traditional life insurance led to the organization of the Society. Dr. 
1. M. Rubinow. who was responsible for the Society’s formation. became its first presi- 
dent. The object of the Society was, and is, the promotion of actuarial and statistical sci- 
ence as applied to insurance other than life insurance. Such promotion is accomplished by 
communication with those affected by insurance, presentation and discussion of papers. 
attendance at seminars and workshops, collection of a library, research, and other means. 

Since the problems of workers’ compensation were the most urgent, many of the 
Society’s original members played a leading part in developing the scientific basis for that 
line of insurance. From the beginning, however, the Society has grown constantly, not 
only in membership, but also in range of interest and in scientific and related contributions 
to all lines of insurance other than life, including automobile, liability other than automo- 
bile, fire. homeowners, commercial multiple peril. and others. These contributions are 
found principally in original papers prepared by members of the Society and published in 
the annual Ptvc~eedin~s ofthe Cusrtalty Actuarial Society. The presidential addresses, also 
published in the Procwditys. have called attention to the most pressing actuarial prob- 
lems. some of them still unsolved, that have faced the industry over the years. 

The membership of the Society includes actuaries employed by insurance companies, 
industry advisory organizations, national brokers, accounting firms, educational institu- 
tions, state insurance departments, and the federal government; it also includes indepen- 
dent consultants. The Society has two classes of members, Fellows and Associates. Both 
classes are achieved by successful completion of examinations, which are held in Febru- 
ary, May, and November in various cities of the United States, Canada, Bermuda, and se- 
lected overseas sites. 

The publications of the Society and their respective prices are listed in the Yearhook 
which is published annually. The Syllohus of‘E.raminatims outlines the course of study 
recommended for the examinations. Both the Yearhook. at a charge of $40, and the Sylla- 
bus ofE.~anrinutions. without charge, may be obtained upon request to the Casualty Actu- 
arial Society, Suite 600, I 100 North Glebe Road, Arlington, Virginia 22201. 
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TESTING FOR SHIFTS IN RESERVE ADEQUACY 

RICHARD M. DUVALL 

Abstract 

This paper develops regression models that can be used to 
test for the effects qf changes in reserving practices. The mod- 
els include terms for exposure, trend, and loss development. A 
loss triangle of reported losses at annual valuation dates is 
used to cstimute the parameters of the regression models. 
Dummy rjariahles are introduced into the loss development 
factor terms of the models to test for shifts and trends in the 
loss development factor parameters. The expanded models are 
estimated, and the parameters associated with the shift and 
trend variables are tested for signzficance. If shifts in reserve 
adequacy are indicated, the models can be used to restate re- 
ported incurred losses for the early valuation dates on a basis 
that is consistent with recent valuation dates. Similar models 
can be used to test for changes in settlement rates that create 
changes in the paid loss development pattern. If a change is 
revealed, the models can be used to estimate the effects of the 
change. 

1 



I. INTKODl~(‘7‘ION 

This paper develops regression models that can be used to test for the 
effects of changes in reserving practices. If shifts in reserve adequacy are 
indicated, the models can be used to restate reported incurred losses for 
the early valuation dates in the data sample on a basis that is consistent 
with recent valuation dates. This topic has been explored by Berquist and 
Sherman [l ] and more recently by Fleming and Mayer 121. The proce- 
dures advocated in both of those approaches rely on subjective estimates 
for some of the parameters. While actuarial methods rely on the judgment 
of professionals, the credibility of results is improved when it is possible 
to obtain objective confirmation of the sub.jective assessments. 

The Berquist and Sherman procedure for testing for shifts in reserve 
adequacy is to compare, at each valuation, the rate of growth of the per 
claim reserve for open claims with the rate of growth of the per claim cost 
for closed claims. They calculate the rate of growth for both averages 
over the years in the experience period. If reserving practices are consis- 
tent. they contend that the rate of growth in average claim reserves should 
be equal, approximately, to the rate of growth in average closed claims. 
Unequal rates indicate a change in reserve adequacy over the experience 
period. 

Given a shift in reserving practices, the Berquist-Sherman adjustment 
for the shift begins by obtaining the rate of inflation in average closed 
claims. Next. the average reserve at the most recent valuation date is 
calculated for each year. These average reserves arc trended back to ear- 
lier valuation dates at the estimated trend rate to obtain the average re- 
serve at each age for each year in the experience period. The computed 
average reserves are then multiplied by the number of open claims at each 
age to get the estimated cost of open claims. Cumulative claim payments 
are then added to get an estimate of incurred losses on a basis that is 
consistent with current reserving practice. 

Fleming and Mayer observed that if there is an increase in the claim 
closing rate and if claims close at a cost that exceeds the amount reserved, 
there will be a change in the incurred loss development pattern. They 
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present an addition to the Berquist-Sherman method that adjusts the data 
for this speed-up in claim settlement rates. 

This paper presents a model for estimating reported incurred loss 
amounts that incorporates a loss development factor (LDF) function. The 
model is generalized to account for shifts or trends in the LDFs. If the 
shift or trend parameters are significant, the function can be used to 
restate incurred losses from prior valuation dates on a basis that is consis- 
tent with current levels of reserve adequacy. 

2. A MODEL FOR REPORTED LOSS 

To develop a regression model for estimating reported incurred losses 
at each valuation date, one begins by assuming the basic relationship that 
ultimate loss for year n, c, is the product of the number of claims, F,,, 
and the average claim cost, X,, , 

Y; = F,, X,, . (2.1) 

An estimate of the ultimate cost is the reported amount as of a given 
valuation date, Y,l,x , times the to-ultimate loss development factor, DkA, 
appropriate for the age, li, of the year n. Alternatively, the reported in- 
curred loss can be expressed as the ultimate cost divided by the LDF, 

Y,,, /,. = Y/;/Dm . (2.2) 

Substituting Equation 2.1 into Equation 2.2 gives 

Y,,> k = F/l w4 . (2.3) 

A model is developed for each of these factors. 

Before proceeding with further development of the model, a system 
for numbering the observations must be explained. The numbering sys- 
tem expresses the observation number, t, as a function of n and k. Ex- 
pressing the matrix of loss data as an array is required when using most 
regression packages. In addition, the model will contain some variables 
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that are functions of the numbering system. Assume there are N years of 
loss data with annual valuations of each year’s losses. 

The loss triangle is arranged as follows: 

Age 64) 

yeiu frill L!21-- 2f!2 3 co 4 (f> 5 Ill 
19x 1 xx 1 xx 6 xx 10 xx 13 xx IS 
19x2 xx 2 xx 7 xx I 1 xx 14 
19x3 xx 3 xx 8 xx 12 
19x4 xx 4 xx 9 
19x5 xx 5 

There are N valuations of the earliest year; N - 1 valuations of the next 
earliest. The number of valuations continues to decline until there is one 
valuation for the most recent year. Assume that the data are arranged such 
that the first valuations for each of the N years are listed in the first 
column: the second valuations for each of the N - I years are listed in the 
second column: and so on. The observation number is 

I = II + (k - I ) (2N - k + 2)/2 (2.4) 

and Y,,, k will be referred to as Y,. 

Specific forms for each of the factors in Equation 2.3 arc now devel- 
oped. The specification of the model for the number of claims assumes 
that the number of claims for each year is related to a measure of the 
exposure for that year, E,,. The specific form assumed for the relationship 
is 

F,, = u , E,, “0, (2.5) 

The standard assumption is that B,, = 1. and Equation 2.5 has the form 
F, = a, E,,. Thus, this form is more general than the standard form. The 
parameters a, and B,, will be estimated from the company’s data. 

The model for average claim amount assumes that the average claim 
size increases exponentially: 
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xn=a2enB1. (2.6) 

This is the standard form assumed for the trend component of loss 
costs. Substituting Equations 2.5 and 2.6 into Equation 2.3 gives 

Y, = a, E, BO a2 en Bl/D, . (2.7) 

The specification of the model for the loss development factors con- 
sists of two parts. The first part describes the LDF function for early 
valuations where the LDFs decline fairly rapidly. The second part de- 
scribes the LDF function for relatively high ages, where the decay toward 
unity is slight from one valuation to the next. Both branches of the func- 
tion are assumed to be a trend function with the general form 

D, = ai PJ. (2.8) 

For the first m valuations, the equation is expressed as 

Dk=a3@2, k=l,...,m; (2.9) 

and, similarly, the second part of the function has the equation 

Dk=a4p3, k=m+ l,..., N. (2.10) 

In order to express the LDF function in a more compact form that can 
be estimated by regression analysis, three additional variables are intro- 
duced. First, let a, = a3 eB4, and d, = 1 if k I: m or d, = e if k > m. Also, let 
k, = k if k I m or k, = 1 and k > m. Similarly, k, = 1 if k I m or k, = k if 
k > m. Now, the LDF function can be written as 

Dk = a3 d, B4 k, B2 k2 B3. (2.11) 

A brief analysis of this model indicates that it is equivalent to Equa- 
tions 2.9 and 2.10. For the first m observations, d, and k, are one, and the 
expression reduces to Equation 2.9. For the last N-m observations 
d, = e, k, = 1, and k, = k , and Equation 2.11 reduces to Equation 2.10. 
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When estimating this function, a decision has to be made concerning 
the size of 1)1, i.e., at which age the function should be branched. This 
depends on the exposure that is heing studied, but branching the function 
at an age of three to four years usually gives a good fit for casualty 
exposures. 

The LDF function is central to the objective of this paper. Changes in 
reserving practices must be manifest in changes in the parameters of this 
function if they are to be detected. Therefore, it is important that the 
function be capable of providing an excellent fit to the observed develop- 
ment patterns. On the other hand, it is not important that the function be 
capable of extrapolation outside of the range of the data since its purpose 
is to identify and measure shifts within the data sample. The particular 
form used for the LDF function is flexible enough to fit regular loss 
development patterns, but it is not appropriate for extrapolation to ages 
outside the data range. For example, the LDF should approach one as the 
age of the loss data increases. but the LDF from the function specified 
above approaches zero if B, < 0. The assumed form of the LDF function 
has two positive features: its flexibility and it% linearity when expressed in 
logarithmic form. 

Substituting Equation 2.11 into Equation 2.7 and combining the Ui 
gives the expression 

Y, = 
N,, E,, ‘,I c” ‘1 

‘f B., k, ‘4 k, B,* (2.12) 

where tic) = (I, uZ/tij. This model will be fit to the Berquist-Sherman data 
and used to test for a shift in reserve adequacy. 

3. ESTIMATION OFTHE MODEL 

The model developed above is now applied to the Berquist-Sherman 
Medical Malpractice data. After estimating the model, it is reestimated in 
several forms that test for a shift in reserve adequacy. Each of the forms 
tests for a shift in one of the parameters. If the model indicates that a shift 
has occurred, the data is adjusted for the indicated shift. 
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The top section of Table 1 reproduces Exhibit A of Berquist-Sherman. 
The to-ultimate LDFs derived by Berquist and Sherman are labelled least 
squares estimates (L.S. Est.). Equation 2.1 I is fit to this data with the 
branching occurring after the fourth valuation (48 months) for each year 
(m = 4). Logarithms of both sides of the equation are taken: 

ln(Dx) = ln(a,) + B, ln(d,) + B, ln(k,) + B, ln(k?). (3.1) 

The bottom section of Table 1 gives the results of the least squares 
estimation of Equation 3.1. All of the coefficients have the anticipated 
signs and are significant at the 1% level. The coefficient of determination, 
R2, is .998, which indicates an excellent fit. The residuals were tested for 
departures from randomness using the Durbin-Watson test and the von 
Neumann ratio test. The results of both tests did not indicate a rejection of 
the null hypothesis of randomness at the 5% level of significance. Auto- 
correlation in the residuals would be anticipated if the observations were 
ordered in time (time series data), or if one or more explanatory variables 
were not included in the model, or if the model being fit to the data had 
the wrong functional form. The loss development factors are not time 
dependent observations. Because the error terms exhibit random behavior, 
the form used to estimate the LDF function has an appropriate shape and 
includes appropriate explanatory variables. 

The actual and estimated loss development factors are compared in 
Figure 1. The chart demonstrates that the form chosen for the LDF func- 
tion can give a good fit to the empirical function. An accurate fit is 
essential if the function is to be used to test for reserve adequacy shifts in 
the incurred loss data. 

The complete model is estimated using the natural logarithms of the 
reported incurred losses in Table I. Unfortunately, the Berquist-Sherman 
paper does not give any exposure data nor the total number of reported 
claims. To complete the model, the number of claims is estimated from 
the data and is used as the exposure base for each loss year. Berquist and 
Sherman report the number of open claims as of each valuation date, and 
the number of closed claims has been estimated from two of their exhib- 
its. Their Exhibit C gives the average cost of claims closed in the intervals 
between valuation dates. Their Exhibit E gives the cumulative paid losses 



Accident 
Year 12 24 36 48 60 
1969 2,897 
1970 4.828 
1971 5,455 
1972 X.732 
1973 11,228 
1974 X,706 
1975 12.928 
1976 15.791 

12-24 24-36 

1969 1.7812 
1970 2.2177 
1971 2.1890 
1972 2.1339 
1973 I .7783 
1974 3.8432 
1975 3.7828 

Average 
Cum. 

L.S. Est. 

’ 53’3 I.. _-. 
11.148X 
1 I .3864 

5,160 
10.707 
11,941 
18.633 
19,967 
33,459 
48,904 

2.0764 
1.5791 
1.7363 
1.725 1 
2.5113 
I .8972 

I .9x9 
4.4027 
4.1 X92 

X Coefficient(s) 
Standard Error of Coefficient 

TABLE I 
MEDICAL MALPRACTTCE 

INCURRED LOSSES (000s OMITTED) 

Months of Development 

10,714 15,228 16,661 
16,907 22,840 26,2 I 1 
20,733 30,928 42,395 
32,143 57,196 61,163 
50.143 73,733 
63.477 

Age-to-Age Development Factors 
36-48 4X-60 60-72 

I.4213 1.0941 I.2544 
I .3509 1.1476 1.2197 
I.4917 1.3708 I.1411 
I .7794 1.0694 
1.4705 

72 

20.899 
31,970 
4X.377 

72-84 

I .0954 
1.0108 

.4verage Incurred Loss Development Factors 
I .502X 1.1705 1.205 1 1.0531 
2.2920 1.5252 1.3031 1.0813 
2.3340 1.5412 1.2578 1.1369 

Regression Output: 
In (03) B2 B3 B4 

2.432 -1.443 -0.554 -1.31 I 
0.044 0.130 0.247 

X4 

22,892 
32,316 

96 

23.506 

84-96 96-Ult 

1.026X I .oooo 

1.0268 I .oooo 
I .0268 1 .oooo 
1.0438 I .oooo 

2 

0.9;8 

Projected 
Ultimate 

23,506 
33,183 
52,312 
79,700 

112,457 
145,490 
215,308 
176.05 1 
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as of each valuation date. By subtraction, the amount paid between valua- 
tion dates is determined. Dividing the average claim payment into the 
total amount paid is used to approximate the number of claims closed 
during the period. These closed claim counts are accumulated from period 
to period. The open claims at each valuation are added to the total number 
closed to date to give the reported claim counts. The reported claim 
counts are developed to an estimated ultimate number of claims for each 
year. The estimated claim counts and their development are presented in 
Table 2. 

Given the estimated claim count for each year, numbering the years 
from one to eight, and assigning d,, k,, and k, their values as defined 
above, Equation 2.12 is estimated by taking the natural logarithms of both 
sides and using least squares regression. The results of the estimation are 
reported on Table 3. The error terms are tested for autocorrelation using 
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Accident 
Year 

1969 
1970 
1971 
1972 
1973 
I974 
1975 
1976 

I2 24 

I .060 I .672 
I ,O5 I 1,877 
1.296 2.5 I I 
I .354 2.72s 
1,382 2,828 
1,365 2.765 
I.544 7.785 
I .s94 

1969 
1970 
1971 
1972 
1973 
1974 
1975 

12-24 24-36 

I.578 I .305 
1.786 1.247 
I.938 I .2so 
3.013 I.290 
2.046 1.298 
2.026 I .3 LO 
1 .x04 

Average 1 .X84 I .2x3 
cum. 3.061 I.621 

TABLE 2 
MEDKAL MALPRACTICE 

NLYBER OF REPORTED CLAIMS 

Months of Development 

36 48 60 

3.1x2 2.566 2.55s 
2.340 2.719 2.777 
3.138 3.743 3,859 
3,515 3.210 4.45’3 
3.671 4.665 
3.623 

Age-to-A2e Development Factors 
36-4X ‘u-60 60-72 

1.176 0.996 1 ,009 
1. I62 1.021 1.010 
1.193 I 43 I I.013 

72 

2.579 
3.804 
3.909 

72-W 

1.01 I 
I.009 

1.1’38 1.05’) 
I.27 I 

Average Claim Count Development Factor\ 
1.700 I .027 I .o I 1 1.010 
1.266 I.055 I.027 1.016 

84 

2.608 
2.828 

X4-96 

I .007 

1.007 
1 ,007 

96 

2.625 

96.lilf 

I .ooo 

1.000 
I.000 

Projected 
Ultimate 



Accident 
Year 12 24 36 48 

1969 2,571 6,617 
1970 3,421 8,804 
1971 5,426 13,965 
1972 7,535 19,393 
1973 9,962 25,638 
1974 11,930 30,703 
1975 14.865 38,256 
1976 19,706 

Constant 
Standard Error of Y Est. 

R2 
Number of Observations 

Degrees of Freedom 

Regression Output: 
In (U(I) = 2.149 

0.163 
0.964 
36 
30 

Bn BI 
X Coefficient(s) 0.695 0.229 

Standard Error of Coefficient 0.239 0.03 I 

Durbin- 
Watson 

Trend 

D = I.916 

Exp (BI) = 1.258 

TABLE 3 
BASE MODEL 

ESTIMATED LOSSES (000s OMITTED) 

Months of Development 

I I.503 17,029 
15,304 22.657 
24.276 35,940 
33,713 49,910 
44.569 65.982 
531375 

60 72 

19.676 2 1,606 
26,180 28,746 
41,527 45,598 
57.670 

84 

23,383 
31,112 

a~ = 8.576 

B2 B3 B4 
-1.364 -0.513 -1.210 
0.064 0.329 0.585 
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the Durbin-Watson statistic, D = 1.9 16. This is very close to the expected 
value. and the hypothesis of independent error terms is acccptcd. The data 
are not a time series in the normal sense. The data arc ordered such that 
the 12-month valuations for all years are grouped, then the 24-month 
valuations, etc. The presence of’ independent error terms indicates that the 
estimates at each age are neither too large nor too small. 

The bottom section indicates that the fit is excellent with a coefficient 
of determination. R’, of .964. All of the individual coefficients arc signifi- 
cant at the 5% level, with the exception of R,, which is about 1 .S6 stan- 
dard errors above zero. Berquixt and Sherman estimated a trend in 
average claim costs of about 30%. whereas this analysis indicates a trend 
of 25.8%~ in the average claim COSI. The estimated development of in- 
curred losses using the model is reported in the top portion of Table 3. 
These may be compared to the actual values which are reported in Table 
1. Since the year-to-year development is variable, there are some substan- 
tial differences between the individual estimates and the observed values, 
but, on the whole, the fit is good. Thus, a model that gives good estimates 
of reported loss amounts has been developed. In the next section, the 
model will be modified to test changes in loss development patterns. If 
the revised models give superior results, rcscrving practices will have 
changed during the sample period. 

4. TESTS FOR KFSER\‘IN~i (‘HANGES 

If a shift has occurred in reserving patterns, it would be reflected in a 
change in the parameters of the LDF function, Equation 2.11. There are 
several parameters that might change with a shift in reserving. The coeffi- 
cients + and uJ could be affected and/or the exponents R, and B, might 
change. These possibilities are explored beginning with testing for 
changes in the coefficients L+ and cr,. 

One procedure for testing for a shift in the parameters is to introduce a 
variable that has a value of unity for valuations that occurred prior to a 
certain date, and a value of c for valuations after that date. All of the 
reported losses on the last diagonal of the loss development triangle have 
the same valuation date. The diagonal elements of the loss development 
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triangle have values of I = k (2N - k + 1)/2. Assume that the 17 most re- 
cent valuations reflect the change in reserving practices, then define 
dz= I if rIk(2N-k+ 1)/2-p, and d,=e if r>k(2N-k+ 1)/2-p. 
Introducing d2 into Equation 2.12 gives 

(4.1) 

This equation has been estimated, and the results are given in Table 4. 

The coefficient of determination increases slightly from .964 to .972 
with the addition of the new variable. The Durbin-Watson statistic is 
2.194, indicating a small, insignificant amount of negative autocorrelation 
in the error terms. The coefficient B, is substantially less significant than 
in Model 1; however, the coefficient for the shift variable, B,, is highly 
significant, and indicates that the more recent reported incurred losses are 
27.4% larger, on average, than the estimates at the earlier valuations. 
Also, the estimated trend has decreased from 25.8% to 18.5%. The trends 
estimated by Berquist and Sherman dropped from 30% to 15%. 

The estimates obtained from this model can be used to restate the 
reported incurred losses for the earlier valuations on a basis consistent 
with the reported incurred losses for more recent valuations. The early 
valuations can be increased by 27.4%, to adjust for the indicated shift in 
the estimates that has occurred during the past two years. This adjustment 
has been made for the malpractice data, and the results are displayed in 
Table 5. The last two diagonals of Table 5 are the same as the correspond- 
ing numbers in Table 1. All of the numbers above the last two diagonals 
have been increased by the indicated 27.4%. The restatement results in 
lower loss development factors and substantially lower estimates of ulti- 
mate incurred losses for the more recent years. 

To test for a shift in the exponents B, and B,, two variables are added 
to Equation 2.12. The first variable, d3, is assigned a value of unity for 
valuations before the cutoff date, and a value of k, after the cutoff date, 
i.e., for the p most recent valuations for each year. Thus, 4 = 1 if 
rlk(2N-k+ 1)/2-p, and cl,=k, if t>k(2N-k+ 1)/2-p. The sec- 
ond variable, c&, is also assigned a value of unity for valuations before the 



TABLE 4 
MEDICALMALPRACTKE 

MODEL 2 ESIIMATED LOSSES (000s OMITTED) 

Accident 
Year 12 24 

Months of Development 

36 48 60 72 84 96 

1969 2.874 7.005 
1970 3.632 X.854 
1971 5.612 13.678 
1972 7,449 18,156 
1973 9,346 22,781 
1974 IO.475 32,526 
197s 15.649 38.143 
1976 19.698 

11.796 17.073 18,631 1 X,936 24.456 24,748 E 

14,909 ?I..%0 23.549 30,490 30.91 I 
5 
2 

23.034 33.340 46.347 47,105 c: 
30.574 56,373 61.517 2 

48.869 70.734 
i5 
;n 

54.773 = 
1: 

Constant 
Standard Error of Y Est. 

Number of’ Ohserv~tio~~ 
Degree5 of Fre’edorn 

F 
Kegresjion Outpul: 

$ 
In(cro) = 1.543 tm = 4.677 z c: 

0.147 
z 
> 

0.972 5 7 
36 F 

29 
> 
5 

Bo BI Bz 6.3 BJ BS 
X Coefficient(s) 0.794 0. I70 -1.185 -0.089 -I ,726 -0.242 

Standard Error of Coefficient 0.218 0.035 0.064 0.332 0.559 0.086 

Durbin- D = 2.194 
Watson 

Trend Exp (BI) = 1.185 
Shift Exp (Bs) = I ,273 



Accident 
Year 

1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 

1969 
1970 
1971 
1972 
1973 
1974 
1975 

Average 2.4143 
Cum. 7.4222 

12 24 36 48 60 72 

3,690 
6,150 
6,949 

11,123 
14,303 
11,090 
12,928 
15,791 

12-24 24-36 

1.7812 2.0764 
2.2177 
2.1890 
2.1339 
1.7783 
3.0169 
3.7828 

6,573 
13,639 
15.211 
23:736 
25.435 
33,459 
48.904 

1.5791 
1.7363 
1.7251 
1.9714 
1 X972 

1.8309 
3.0743 

TABLE 5 
MEDICAL MALPRACTICE 

Bs ADJUSTED INCURRED LOSSES (000s OMITTED) 

Months of Development 

13,648 19,399 21,224 26,623 
21,537 29,095 33,390 31,970 
26,411 39,398 42,395 48,377 
40,946 57,196 61,163 
50.143 73.733 
63,477 

Age-to-Age Development Factors 
36-48 48-60 60-72 72-84 

1.4213 1.0941 1.2544 0.8599 
1.3509 1.1476 0.9575 1.0108 
1.4917 1.0761 1.1411 
1.3969 1.0694 
1.4705 

Average Incurred Loss Development Factors 
1.4263 1.0968 1.1177 0.9353 
1.6791 1.1773 1.0734 0.9604 

Projected 
84 96 Ultimate 

;;i 
Y 
2 
D 

22,892 23,506 23,506 -n 
32.316 33,183 B 

46,463 2 

65,654 86,807 2 
106,587 2 
150,347 z 117,204 k 

7 m 

84-96 96-Ult 

1.0268 1 .oooo 

1.0268 1 .OOoo 
1.0268 l.OoOO 



cutoff date and a value of k, for valuations after the cutoff date. With 
these two variables included, the new equation becomes 

(4.2) 

Equation 4.2 has been fit to the Berquist-Sherman data. and the results 
are summarized in Table 6. The coefficient of determination is marginally 
higher than for Equation 4.1, and the Durbin-Watson statistic is 2.3887, 
indicating an insignificant (a = .05) amount of negative autocorrelation in 
the error terms. As before, all of the coefficients are significant with the 
exception of B,, and in this case. B, entered with the wrong sign. This 
model gives a higher estimate of the trend factor than the previous model 
by about 4.5 percentage points. 

A small table has been inserted to indicate the average ratio of losses 
valued after the critical date to losses valued before the critical date. The 
ratios for this model vary with the age of the data at the valuation date. 
The ratios range from no adjustments for 1, T-month valuations to a 50.5% 
adjustment for 4%month valuations. These adjustments have been applied 
to the loss data, and the results are displayed in Table 7. As for the 
previous model, the adjusted estimates of ultimate incurred loss are con- 
siderably lower than for the unadjusted data. 

A combined form of Equations 4. I and 4.2 that included (I?, cl,, and dd 
was estimated. The variables d, and (1, cntercd as significant. but tl, was 
not significant. This indicates that Equation 4.2 is the appropriate model 
to describe the shift in the reserving practices for these data. 

5. SUMMAKI 

A procedure that tests for changes in loss development patterns in an 
objective manner has been demonstrated. If a change is observed, the 
models developed can be used to restate the early valuations on a basis 
that is consistent with the current valuations. These models cannot replace 
the judgment of the actuary, but they do provide an additional tool with 
which to analyze this problem. 



Accident 
Year 12 24 

TABLE 6 
MEDICAL MALPRACTICE 

MODEL 3 ESTIMATED LOSSES (000s OMITTED) 

1969 2.988 6,964 
1970 3,841 8.953 
1971 5.670 13.217 
1972 7.539 17,574 
1973 9,643 22,479 
1974 11,411 32.632 
1975 13.932 39.840 
1976 17,860 

Regression Output: 
Constant ln(ao) = 3.4X9 

Standard Error of Y Est. 0.133 

Number of Observatio:: 
0.978 

36 
Degrees of Freedom 28 

BO 
X Coefficient(s) 0.5470 

Standard Error of Coefficient 0.2053 

Durbin- D = 1.3887 
Watson 

Months of Development 

36 48 60 72 X4 96 3 m 

I 1,426 
14,688 
2 1,684 
2X.X32 
50,984 
60,334 

a0 = 32.744 

Bi 
0.2070 
0.0267 

16,234 19,286 19,263 24,344 24,718 5 
c 

20.870 24.794 30,750 3 1,296 a 
30.810 44.460 45,396 % 
61.647 SO.1 16 G 
78.853 

2 
% 

Loss ADJUSTMENT MCLTIPI.IERS 
~1 73 

5 

h &.‘36’ X’ 

.I 

I 1.000 5 I.215 % 
2 1.227 6 1.242 g 
3 1.382 7 1.265 ’ -c 

L. 4 1.505 8 I .2X6 I 

82 & B4 B6 B7 
-1.2210 0.0066 -1.8756 -0.2948 -0.1208 
0.0637 0.3524 0.5695 0.0745 0.0659 

Trend Exp (BI) = 1.2300 

3 



Accident 
Year I2 

1969 2.897 
1970 4,828 
1971 5.455 
1972 8.732 
1973 I I.228 
1974 X.706 
197s 12.928 
1976 IS.791 

24 

6,330 
13,134 
14.648 
22.x57 
24.494 
33.459 
38.904 

12-21 

lY6Y 2.1850 
1970 3.7205 
1971 2.6853 
1972 2.6177 
1973 2.1815 
1974 3.8432 
1975 3.7838 

24-36 

2.3400 
I .77Y6 
I .Y567 
I ,044 I 
2.0472 
I .XY72 

Average 2.8594 I .YY4 I 
Cum. 8.8765 3.1043 

TABLE 7 
MEDICAL MALPRACTICE 

& AND B7 ADJUSTED INC~IRRED LOSSES (000s OSII-ITED) 

Months of Development 

36 48 60 72 

14,812 ‘2.916 20,238 25.95 I 
23,374 34.371 31,838 31.970 
28,663 46.542 42.39s 48.377 
44.437 57.196 61.163 
50,143 73.733 
63.477 

Age-to-Age Development Factors 
X-48 48-60 60-72 72-83 

1.5471 0.X83 I 12x23 (1.882 1 
I .4105 O.Y263 I.0041 I .010x 
I .6?38 0.9 IO9 I.141 I 
1.2871 I .Oh94 
I.4705 

Average lncurrcd Loss Development Factors 
I .479x 0.9474 1.1425 KY465 
I .5567 I .0520 1.1104 O.Y719 

x4 

‘2.892 
32.316 

I .026X 
I .0268 

96 

23,506 

Yh-L’lt 

I .oooo 

I .oooo 
1 .oooo 

Projected 
Uliimate + g 

23,506 i 
33,183 z 
47,016 2 
67,913 Fe 
77.567 g 
9X.816 I 

lSl.813 5 
140. I69 2 

z 2 
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The models that have been illustrated test for a change in reserving 
practices as of a specified date. Models that will detect a trend in the loss 
development factors, rather than an abrupt change in the factors as of the 
specified date, can also be employed. As above, one can test for a trend in 
the coefficients, a3 and ad, or in the exponents, B, and 8,. All data on the 
same diagonal of the loss development triangle have the same valuation 
date and are given the same time index of 8 = n + k - 1. This index num- 
bers the diagonals beginning with one in the northwest comer of the 
matrix and increases by one for each diagonal added to the triangle. The 
LDF model that estimates and tests for a trend in the exponents is 

(5.1) 

Finally, a model for the LDF function that includes a trend factor for 
the coefficients is 

D, = a3 as R k, B2 k2 Bj d, BJ. (5.2) 

Both Equation 5.1 and Equation 5.2 have been fit to the Berquist- 
Sherman data, but the results were not as significant as the models that 
incorporated a jump in the parameters. The results of the estimation are 
not reported. 

Similar models can be employed to test for changes in claim settle- 
ment rates that are reflected in changes in paid loss development factors. 
If paid losses are substituted for reported losses as the dependent variable 
and the loss development function is interpreted as the paid loss develop- 
ment function, the models can be used to test for parameter changes in the 
same manner. 

This paper has shown how regression models can be used to estimate 
the effects of changes in reserving practices. Once the effects have been 
estimated, the appropriate adjustments can be made to past valuations to 
restate them on a basis consistent with current reserving practices. The 
models allow one to test for abrupt changes in reserving practices versus 
changes that emerge progressively. This procedure is flexible and objec- 
tive. 
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121 Fleming. Kirk G., and Mayer, Jeffrey H.. “Adjusting Incurred Losses 
for Simultaneous Shifts in Payment Patterns and Case Reserve Ade- 
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PARAMETRIZING THE WORKERS COMPENSATION 
EXPERIENCE RATING PLAN 

WILLIAM R. GILLAM 

Ahsrtwct 

This puper describes the de\vlopment of’ the rer~iscd Work- 
cr.s Compcwsation E,xper-ience Rating Plan. The plarl is hu.sed 
on s01md stutisticul theory, ccrtuiii niodelirif: uss~rniptioiis, und 
thornlr~h empirical testing. It is heurtening thut the empiricully 
derirwl I,aiwl71etl.il’utiOli is con.sistcnt Mlith most of the u.s.sunip- 
tiotis weded to simplfy the ~II~~Chi.ui~~,foi~i~~lutioii. 

The puper- hcgirw with an heuristic deritution of u ~CJ~ICIUI 
mod(ficution fo~mulu bused on 1os.se.s split into primury und 
e.we.s.s portions. It delineates the ussumptior~s uhout the com- 
ponents of ~o.s.s rutio vuriuncv leuding to the uigebruic j~wm of 
the,fiwmulue tested. 

lteruti\~e testing is used to purumetrke those fosnurluc. A 
simple preliminur-y test procedure is described to c?ur$~ the 
basic concept.s. The oper-uti\re test procedure is then spec$ed, 
and results of iterzrtilve testing usiqq thut procedure we dix- 
played j;)fi,r- the .scIcc~ted~~~~nirrlae. 

The pal-ametrizc>d formula finally upprotvd by the Nutionul 
Council cm Compen.sution Itwrarlce (NCCI) MUS nrhjert to 
cer’tuirr udjtrstments to muintuin continuity during the trunsi- 
tkw fkm the old to Ned’ pluns. Credibi1itie.s hu\Te beeu .sculed 
to ucwunt ,ji,r d#erence.s in stute benefit levels and the eflect 
of influtiorl. 
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1 . THEORETICAL. Jl~SI‘IFI<‘/Z’I’ION 

Compensation experience rating is a large-scale. ongoing application 
of credibility theory. The large volume of data supporting that application 
provides the raw material for the tests of that theory described below. 

Researchers at the NCCI have used testing to crcatc an improved 
experience rating plan. The power of modern electronic data processing 
has enabled them to reopen older experience rating files and recalculate 
experience modifications (mods) as if a hypothetical plan had been in 
place. The plans tested and the measurement of their performance are 
described in this paper. 

The general strategy was to start with a formula based on sound the- 
ory, then use iterative testing to parametrize that formula. Least squares or 
Bayesian credibility was used to develop an algebraic form for the modi- 
fication formula. Certain assumptions about lash ratio variance simplified 
the algebra. The parameters that worked best were consistent with a priori 
judgments about the components of loss variance. 

B. Hewistic, Deri\ution of Mod Fomllrlu 

This section outlines the theoretical development of the split plan 
modification formula. Here, a split ~ILIII is one in which individual losses 
are split by formula into two components, primary and excess, and sepa- 
rate credibilities are assigned to the totals of the respective loss compo- 
nents. 

The formula is based on a Bayesian view of the process of individual 
risk rating. The reader may refer to papers by Hewitt [ I], Meyers [2], 
Mahler [3], and Venter [4] for more general theoretical background. 

The split plan modification formula can be derived with one major 
simplifying assumption: that unconditional expected primary and excess 
losses are uncorrelated. This simplification is defensible more on the 
basis of its usefulness than its veracity. The standard used to select the 
final plan is how well it works, not how well it satisfies the assumptions. 
In the course of evaluating plan parameters, NCCI researchers found that 
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a change in the primary/excess split formula improved the performance of 
the plan. They believe this change places the data used for rating in a 
form that better fits the assumptions. 

The underlying analysis is simplified by assuming that most of the 
administrative features of the current experience rating plan are fixed. 

To begin the derivation, hypothesize a linear approximation to the 
posterior mean experience, P,, + X,, (split primary + excess), given experi- 
ence P, and X,: 

P,, + x,, = Y + z/, P, + z,, x, + f, (1.1) 

where 

P = primary loss, 

X = excess loss, 

Y = constant to be determined, 

I = (past) time period, 

o = (future) time period, and 

c = error. 

Z,, and Z, will be called the respective primary and excess credibilities; 
they and Y are the coefficients to be evaluated. 

Time periods are fixed in the experience rating plan, so that time 
period t is the three most recently completed one-year policy periods 
before the prospective single policy period, labeled o. For example, the 
experience of completed policies with inception dates in 1986, 1987, and 
1988 will be used to rate a 1990 policy. 

Solving this equation for the coefficients that minimize the expected 
value of c2 (with the assumption mentioned above) yields the following 
expressions: 



z, = 
Var, [E IX, I S] ] 

Var[X,] . (1.2) 

And 

Y=(I-Z,,)E[P,]+(I-Z,)EIX,I. (1.3) 

where the condition S denotes a particular element of the parameter space 
(a particular risk) and the subscript .v denotes the prior structure (the dis- 
tribution of risk parameters). 

Equation 1.2 has also been written 

z,, = 
I 

I+ 
E, ]Var[P, I SJ ] ’ 
Var, [E (f, I S] ] 

Using these equations, the linear credibility estimate of the posterior 
mean becomes 

f,, + X,, = UP,1 + UX,l + Z,i V’, - Elf,] I+ Z, (X, - E]X,] ). (I .4) 

In practice, the loss functions are ratios to the prior expected total loss, so 
E[f,] + E]X,J = 1. In this paper, f and X are referred to as lo.s.s ufios, but 
the denominator is expected loss, not premium. 

The rate modification factor is 

M= I +Z,,(f,-E]f,])+Z,(X,-E(X,] ). (1.5) 
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C. Var-iunce Assumptions 

More assumptions are needed to derive the form of the components of 
variance in the formulae for Z,, and Z,, . 

In Equation 1.4, loss ratio functions f and X were introduced. Those 
ratios have a variance that decreases as the size of risk increases. The 
sample ratios f, and X, are the emerged primary and excess actual losses 
of the individual risk divided by the unconditional expected total losses. 
The denominator is the e.vposrrr*e. The simplest assumption is that the 
large risk is essentially a combination of a large number of independent 
homogeneous units. That assumption leads to a within-variance of the 
risk loss ratio inversely proportional to exposure. The increase in expo- 
sure from additional time periods can be thought of as adding more inde- 
pendent units of exposure. The process variance decreases 
proportionately. Also, it is usually assumed that the variance of the condi- 
tional means is independent of exposure (i.e., size of risk). With those 
assumptions, 

and 

IS]]=dE, 

IS]]=h , 

where E with no subscript represents the total expected losses, or expo- 
sure, of the individual risk: E = E[f D + X, I S]. 

Here h, the variance of ratios less than one, is small relative to a, 
which is measured in dollars of expected loss. 

Using equation 1.2, 

z,, = /$/E 

I 
= 1 +a/hE 
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E =I 
E + o/A 

This is the familiar expression 

z,, = E 
E+K,,’ (1.6) 

where K,, is constant. Similarly, 

z,= E- 
E + K., ’ 

where K-, is the excess credibility constant. This c.oml.‘ound~j.ucrior7 form, 
with E alone in the numerator and K a ratio of components of variance, 
helps to simplify the mod formula. 

Second-Le\vel l4uriunc.e Assutnptions 

Several investigators have refuted this simple variance assumption. 
Meyers [2] and Mahler [3] show that within-variance does not decrease in 
inverse proportion to exposure. Assuming there is a small, non-diversifi- 
able component of risk loss ratio variance, averaging (’ > 0, 

E,<( Var If, I S’] J = c + d/E. 

llsing h again as the between-variance, 

z,,= h 
h + (‘ + d/E 

= I + ~./h + d/Be 

E = 
CE + d 

, so 
E+m 

h 
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Kp’ = “Ecd . (1.7) 

Now K,’ is a linear function of the exposure. Here, h and c are small 
relative to d. The limiting value of primary credibility for the largest risks 
is less than unity, or b/(h + c.). 

This form for K,,’ and a similar one for K,’ are among possible formu- 
lae tested as described elsewhere in the paper. Because K, (* either p or X) 
is a linear function of the exposure rather than a constant, it performs 
better than the constant coefficient K, and considerably better than the 
formula B value of the old plan. However, it is not as good as the third- 
level formulae described below. The data show that K should not be 
constant, nor even a linear function of E, but rather should be a curve, 
increasing rapidly at first but then decreasing in slope to a more linear 
form for large values of E. 

The variance assumptions resulting in the formula for K at this level 
were suggested by Mahler [3]. Mahler, in turn, credits Hewitt [5] with 
observation of the underlying phenomenon. 

For this level, it is assumed that the between-variance is not constant 
across all risk sizes but has a component inversely proportional to expo- 
sure. This would follow if each larger risk was, at least in part, a random 
combination of non-homogeneous components. The effect is to flatten the 
variance of the conditional means as risk size increases. In this case, 

Var, [E [P, I S] ] = e + f/E . 

Retaining the second assumption about individual risk variance, 

zp = e +f/E 
e+f/E+c+d/E 

1 = 
l+c+d/E . 

e +f/E 



In compound fraction form, this is 

where 

,,,‘I = E 
. 

(1.8) 

A similar form follows for K.,“. Notice that d and .f‘ are quite large 
compared to (’ and e. Since c is a small component of within loss ratio 
variance and e is a large component of between loss ratio variance, it is 
also plausible that (’ < e. 

Dividing through by c, we define c’= C./V. I> = d/c>, and F =f;/e, SO 
that 

This form is selected for parametrization, so the superscripts have been 
dropped. 

In all the sample parameters that worked well (as described below). C 
was consistently between 0 and 1, which is reasonable if (’ is in fact 
smaller than e. D and F are large positive numbers, as expected. 

In a sense, the final parametrization selected is more general than the 
underlying variance assumptions. This is because performance testing 
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was used to derive parameters for the modification that worked best. This 
obviates the need to estimate components of variance and reduces reli- 
ance on the correctness of assumptions. Thus, the only constraint on plan 
performance was the algebraic form of Equation 1.9, not the ability to 
analyze variance. Statisticians use whrrst to refer to models such as these 
that can fit a variety of processes while not necessarily satisfying the 
assumptions underlying the model. 

With the definition of K,, and a similar one for K., underlying Z in the 
form E/(E + K,;), the modification formula becomes, 

A, - E,, A \ - E, M= 1 +E+K-+‘+K ) 
I’ \ 

(1.10) 

where A and E are the actual and expected losses from the experience pe- 
riod and p denotes primary and x excess. The algebraic form of the modi- 
fication used for most of the testing was Equation 1.10, with K,, and K.,. 
defined as in Equation 1.9. For each of K,, and K.,, there are coefficients to 
estimate. 

2. ESTIMATION OF PARAMETERS 

A. /nitia/ Testing 

The concept of evaluating workers compensation individual risk credi- 
bility by looking back at how well it worked was discussed by Dorweiler 
[6]. He did not use his method to establish credibilities, but to check them 
for reasonableness. 

Bailey and Simon [7] described a variant of the procedure for automo- 
bile merit rating wherein they were able to estimate the implicit credibili- 
ties of one, two, or three car-years. They were not trying to parametrize a 
continuous formula for credibility depending on exposure, however, but 
were trying to estimate only three values for one, two, or three car-years’ 
experience. 

Today, we are able to take their ideas a step further, largely because of 
the power of the computer. 
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In this study of experience rating, the criterion 01’ “working best” is 
first measured by the ability of a plan to satisfy Dorweiler’s necessary 
criterion for correct credibilities: that credit risks and debit risks would be 
made equally desirable insureds in the prospective period. In workers 
compensation, credibility is a function of risk size, so this property should 
exist across all size categories. WC use this criterion as a rrtri~~ trsf, which 
belies its great value to our early investigations. It also serves to simplify 
the demonstration of the basic idea behind the testing. 

An example of this test is included in Exhibit 1. Nole that the plan 
proposed earlier is still a long way from the plan that was eventually 
selected. The test begins with experience rated risks for policies effective 
in 198 I. Their modifications are computed according to the fi)rmuia to be 
tested. The 198 1 loss experience that actually emerged may be found in 
the 1983 rating year files, i.e., the data underlying mods el‘fcctive 1983. 
The risks in each size group are stratified by their I98 I modifications, so 
that risks with mods in the lower 50th percentile would be in one stratum 
and risks with mods in the upper SOth percentile would be in the other. (It 
should be noted that for the smaller siLc groups, the majority of risks have 
credit mods, so the upper pcrccntile includes a proportion 01‘ risks with 
small credits.) 

A canonical comparison would be of the subsequent loss ratios of the 
two strata: actual losses to manual premium on one side, and actual losses 
to modified premium on the other. The first ratios, actual to manual, 
should follow the predicted quality of the stratum. Risks with credit mods 
should prove to have favorable loss ratios on average. and those with 
debits should average poor ratios. showing that the plan was indeed able 
to “separate the wheat from the chaff.” In order to see if the differences in 
predicted quality were correctly offset by the mod. the ratio of losses to 
modified premiums for the two groups should equal each other. It would 
be too much to expect that premium rates be correct in aggregate and that 
the two subsequent loss-to-modified-premium ratios be equal to the per- 
missible loss ratio. 

Effective manual premiums for the three policy periods used for the 
modification are retained in the experience rating files. Unfortunately, 
since they are not used for either ratemaking or experience rating, the 
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EXHIBIT 1 

1981 

ACTUAL TO EXPEC’TELI Loss RATUS BEFORE AND AFTER 

EXPERIENCE RATING - 7 STATES TOTAL 

CURREM EXPERIENCE RATING FORMULA 

Subsequent Period 

Risk Size Quality Indication Loss Ratios 

2.500-5,000 SO%8 Best I 0.75 
50% Worst 1.12 

0.x0 
I .os 

s,ooo- 10,000 

10,000-25,000 

2s,ooo- 100,000 

50% Best 
XN Worst 

50% Best 
50% Worst 

50% Best 
50% worst 

0.7 I 0.80 
I.1 I I.01 

0.7Y 0.Y2 
I.12 0.96 

0.75 O.XY 
I.15 0.93 

Over 100,000 50% Best 
50% Worst 

Sum of Absolute Differences 

EARLY PROPOSED EXPERIENCE RATING FORMULA 

Subsequent Period 

Modified Loss 
Risk Size Quality Indication 

2,sOO-5,000 50% Best 0.76 0.9 I 
50% Worst I.10 I .oo 

s,ooo- 10.000 SOo-/cs Best 0.7 I 0.89 
50% Worst I.1 I 0.98 

10,00&25,000 SO?h Best 0.79 0.98 
50% Worst I.12 0.95 

25,000- I00,000 50% Best :::: 0.91 
50% Worst 0.94 

Over 100,000 50% Best 0.72 0.89 
50% Worst 0.99 0.x.3 

Sum of Absolute Differences -1:: I.?- ~~ Go ~~ 
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numbers are seldom checked and are considered unreliable. The expected 
loss rates, or ELRs, by class in these files, however. arc sub.ject to review 
by insure& and insurers. These are not the true loss costs underlying the 
rates, but estimates of emerged loss for three policy years as of a certain 
evaluation date. The ELRs used to estimate rating year 1981 expected 
losses are used to compute the expected ratable losses for modifications 
effective during the 1983 policy year. The ELRs are meant to be correct 
on average for the losses on three policy years, including, in this case, 
1979, 1980, and I98 I. The three policy years arc at respective third. 
second, and first reports. ELRs arc probably not correct for any single 
policy year, but should bear some reasonable relation to the rates effective 
in the latest year. A key assumption is that the ELRs will be uniformly 
redundant or inadequate over all insureds with the same rate. 

The comparison is then between the ratios of actual to manual ex- 
pected loss for each stratum and ratios of actual to expected losses MI- 
jlrstc4 hy the nwclifjccrfion, or modified expected loss. Specifically, I98 I 
actual loss to 19X I expected loss. taken from the I983 rating year files, 
should reflect the predicted quality difference. Application of the 1981 
modification to I98 I expected losses should make the ratios converge. 

Just as it was observed in the case of premiums, it is reasonable to 
hope that the subsequent ratios to modified expected loss would be close 
to each other, but it is unreasonable in this case to require values near 
unity. 

The need for credibility in a format not unlike the one finally selected 
is evidenced by application of the naive test. The xmallcst ratable risks 
have non-zero excess as well as primary crcdibilities. Starting with the 
stnallest risks, credibility increases rapidly with risk size, but then in- 
creases at a slower rate, and never reaches full credibility for even the 
largest risks. 

B. The Quintiles Test 

As the testing of the plans progresses and more sophisticated actuarial 
theory is applied to the algebraic form of the credibility constants, it 
becomes apparent that a more sophisticated test is needed to measure the 
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quality of alternative formulae. Dorweiler’s sufficient criterion for cor- 
rectness of the modification is that any subdivision of risks based on prior 
experience should produce uniform subsequent loss ratios (to modified 
premium). 

Instead of good versus bad as in the naive test, the risks are grouped 
into five equal-sized strata according to the value of their modifications. 
The lowest 20% of the values belong to risks in the first quintile; the next 
20% to the second; and so on. This is the prior subdivision. The subse- 
quent aggregate unmodified loss ratios of the strata should reflect the 
quality difference recognized by the mod. Application of the modifica- 
tions should cause the ratios to flatten across the strata. 

This leads to the ratio of two sums of squared differences: the five 
squared deviations from the mean of the modified loss ratios, divided by 
the sum of the squared deviations of the ratios before modification. 
Lower values indicate greater reduction of loss ratio variances. The statis- 
tic would pertain to the experience of each group, so for a particular 
parametrized mod formula, several values are available for comparison. 
In most of the NCCI testing, coincidentally, five groups were considered. 

The quintiles test was developed without reference to risk theory, but 
it can be characterized as the ratio of posterior structure variance to prior 
structure variance. The sum of five squared deviations does not capture 
the entire structure variance, either prior or posterior; but the ratio is 
valid. Experience rating should reduce this component of variance. Mey- 
ers 121 uses the more theoretically grounded “efficiency” standard: the 
proportion by which the total variance is reduced. Either statistic is use- 
ful; the quintiles test is computationally simpler and has an indisputable 
best value of zero. 

Section 3 outlines the variants of the basic plan for which minimal 
values of the statistics were sought and it discusses some of the rationale 
for each. The exhibits shown are the final product of a large number of 
trial-and-error evaluations. 

One sidebar test deserves mention. In this test, primary and excess 
credibilities were evaluated separately. The mod as a function of either 
primary or excess losses alone had far less predictive accuracy. Credibili- 



34 PAR.4hlfi’I’RI%IN(i fiXPl:Klt:\f‘F KAl’f\(i 

ties were lower when losses were used separately as the sole basis for the 
mod than when they were used together. 

This conclusion should be contrasted with that ol’ Meyers [21--that a 
best modification formula could be based on primary losses only. His 
conclusion may be correct in the special case of ;I uniform. well-behaved 
severity distribution for all risks, which was the model he tested. The 
NCCI tests of real-world data support the split I’ormula with a two-part 
credibility. 

The workers compensation severity distribution is composed of many 
types of losses. An essential component of workers compensation 
ratemaking and individual risk ratin g is that the distribution of‘ losses by 
type varies from class to class and risk to risk. 

Potential revised experience rating plans were tested in comparison to 
the then-current experience rating formula, herein rcfcrred to as the “for- 
mer” plan. 

The former formula was derived through practical simplifications that 
made sense at the time of its development. II was partly these simplifica- 
tions, however, that moved the plan away from whatever underlying cred- 
ibility theory it may have had. The former formula is written: 

A,,+WA,+(l -W’)E‘,+H 
/g= 

E-kB 
(3.1) 

It is one fraction, with weighting value W and credibility ballast B 
--both linear functions of total expected losses. A denotes actual and E 
represents expected loss for the experience period. Subscripts /> and .V 
denote primary and excess portions of loss, rcspcctively; and E with no 
subscript denotes total expected losses. 
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0 for E < 25,000 

-E-2s’ooo- for 25 000 5 E I SRP 
SRP-25,000 ’ 

1 for E > SRP 

B = 20,000 ( 1 - w) 

Here the SRP is the state Self-Ruring Point, 25 times the state average 
serious cost per case. This approach provides a nominal indexing to plan 
credibilities and ratable loss limits that should vary by state and by year. 

In the former multi-split formula, the primary portion of a loss L was 

I L if L I 2,000 
$1 = ‘P!oL if L > 2,000 (3.2) 

8,000 + L 

To calculate the excess portion, losses are limited on a per-claim basis 
to 10% of the SRP, and on a per-accident basis to 20% of the SRP. 
Denoting the loss so limited by L,. , the excess portion of a loss greater 
than $2,000 would be 

L, = L,.- L,, (3.3) 

where L,, is calculated as noted above. 

Many of the elements of the former plan are retained, including ELRs 
and D-ratios by class, the primary-excess split formula, and state ratable 
loss limitations. Payroll (in hundreds) by class is extended by the respec- 
tive class ELRs to produce the total expected loss. D-ratios, which also 
vary by class, measure the primary portion of expected loss. 

Putting B = K,, and W = (E + K,,)/(E + K,) into Equation 3.1 results 
in algebraic equivalence of the new modification formula, Equation 1.10, 
and the former formula, Equation 3.1. Throughout the testing used to 
evaluate parameters, the NCCI researchers used Equation 1 .lO for the 
mod, and concentrated on finding best values of K,, and K,r. The values of 
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K,, and K., that worked best in all the testing lead to values of M/. and B 
quite unlike the former plan’s values. 

It is highly desirable that differences in bcncfit levels by state be 
reflected in the credibility constants K,, and K,. The former formula used 
the SRP to effect a nominal difference in the bV and B tables by state. but 
only really affected the risks whose expected losses wcrc near the SRP. 
We want to use an adjustment that results in a true scaling by state, which 
would be valid across all risk sizes. That objective is accomplished by 
inserting a value G, measuring relative benefit levels by state, into the 
formulae for K,, and K,. Equation I .9 is modified to make the following 
expression for K,, by state: 

(3.4) 

A similar change was made to the l’ormula for K,. 

The G-value not only accounts for differences in benefit levels, but 
also indexes credibility constants for inflation in average claim costs. This 
property is seen in the following analysis. Ass~mc inflation of 1 + i 
between times t and s. For example, let primal-), credibility at time t be 
given by 

Z(t) = E lAK 
I’ 

With inflation but no real growth, both E and G increase by the factor 
I + i. This factor cancels everywhere in the formula fbr Z(x) so rhat 

Z(s) = Z(f). 

The formula for G is one of the parameters that can be varied to 
optimize the test statistic. In most of the initial NCCI resting. G was taken 
as a linear function of the existing SRP. 
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The SRP is retained, but only for use in limitation of ratable losses. 
There can be no self-rating under any analytic plan, so the SRP is re- 
named the State Rqfcrence Point. 

C. Tested Plans 

One assumption underlying Equation 1.9 for the credibility ballast 
values K,, and K, is that both primary and excess credibilities depend on 
total expected losses, E. The same assumption underlies the former for- 
mula, which is Perryman’s First Formula. We call the first alternate for- 
mula Per.r,J’ntun I because it borrows much from the original. 

Ultimately, the NCCI researchers tested four alternative plans in addi- 
tion to the former plan, herein called Current Multi-Split. For each alter- 
native plan, optimal values of the credibility parameters were chosen 
based on results of the testing. The selection of a final plan from among 
the four optimized alternatives took into consideration not only the asso- 
ciated values of the test statistic, but also the ease of understanding and 
implementation. 

The tested plans include : 

1. Current Multi-Split; 

2. Perryman I Multi-Split; 

3. Perryman II Multi-Split; 

4. Perryman I Single-Split; and 

5. Perryman II Single-Split. 

Their specifications follow. 

I. Current Multi-Split 

The basic specifications for this plan have been given. They include 
the formulae for B, W, the SRP, the primary/excess split of actual losses, 
and the modification formula itself. They also include calculation of the 
ELRs and D-ratios by class. The rating values of each insured are in- 
cluded in the experience rating files for each year. In particular, rating 
years 198 1 through 1984 were used in the testing. 
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2. Peyw~ur~ I Multi-Split 

As described in the introduction, this is the first alternative to the 
former plan. It is Equation 1.10, with Equation 3.2 used to split actual 
losses into primary and excess components. Values such as ELRs and 
D-ratios can be carried over directly from the experience rating files, 
while Kp and K, can be calculated easily from the elements of the files: 
namely, total expected losses of the risk, state identification of the risk 
(which would be used to fetch indexed SRP and G values), and three 
coefficients for each formula, selected by trial and error. 

3. PevynwtI II Multi-Split 

This formula results from a different assumption about loss variance 
than the one used in Perryman I. It is only nominally related to 
Perryman’s Second Formula, as noted below. 

In the version tested, it is hypothesized that conditional primary loss 
variance is a function of expected primary losses and that excess loss 
variance is a similar function of expected excess losses. 

The formula for credibilities takes the following form: 

(3.5) 

where K,,= CE + GH/(l + GF/E), and E,, is expected primary losses. 
Notice that i!, ought to be expressed in terms of E,,, not E. This, however, 
further complicates the formula. The selection of c’. F, and H, as deter- 
mine_d by performance, could incorporate average D-ratios, if appropriate, 
and K, could be a function of total expected losses. The resulting credibil- 
ity parameters could be put in tabular form by state according to expected 
primary or excess losses. 

Denoting the average D-ratio by risk as 6 results in the following 
formulae: 
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6E =--- 
6E + it,, 

E 

E + ji;,/i? ’ 

Similarly, 

which yields 

E z,, = _______ 
E+it,/(l -6) ’ 

(3.6) 

(3.7) 

Testing of this plan was accomplished using values available from the ex- 
perience rating files. 

For the sake of historical accuracy, the true Perryman’s Second For- 
mula actually resulted from the unusual expressions for credibilities 

Perryman does not derive these expressions and attempts (somewhat less 
than successfully) to rationalize their contradiction of credibility princi- 
ples [8]. 
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One of the key assumptions of the tested formulae is the non-correla- 
tion of primary and excess loss components. As long as the primary losses 
had a severity component, the NCCI researchers were not fully satisfied 
with a credibility-based plan that uses the former primary-excess split. 

It is classically assumed that frequency and severity are independent, 
hence uncorrelated. This is probably not a valid assumption, but it is 
reasonable. It is less reasonable to assume that primary and excess losses 
defined by the multi-split formula are uncorrelated. Thus, the NCCI re- 
searchers considered using a modification formula based strictly on fre- 
quency and severity. One problem with this idea would be the difficulty 
of obtaining a valid claim count. (For example, are small medical-only 
claims recorded on a consistent basis by all carriers for all risks‘?) Be- 
cause this change would require the cooperation of so many different 
interests, it was not pursued. 

A compromise is to use a single split (into primary and excess catego- 
ries) of losses. The portion of a loss below the single threshold value 
would be primary; and the portion of a loss in excess of that value. if any, 
would be excess. Using $2,000 as the single-split point is a relatively easy 
choice: it is the smallest size for which individual claims data is reported, 
so it is the closest to a frequency/severity dichotomy we can obtain using 
available data. 

To test a single-split plan against actual risk experience, expected 
losses can be taken directly from experience rating files. New D-ratios 
corresponding to the new split formula are needed, They arc developed 
by adjusting the multi-split D-ratios in the files to maintain the aggregate 
adequacy of the D-ratios. For example, if the aggregate emerged actual- 
primary to ratable-total losses under the former fi,rmula had been 0.40, 
and under the new split it is 0.38, the D-ratios would all be adjusted 
(downward) by the factor (0.38)/(0.40). With D-ratios so adjusted, the 
formula is tested with K,, and K,. in the established Equation I. IO, until 
optimal values for the six coefficients are obtained. 
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The last plan to test was the one that utilizes two major variations 
from Plan 2. Perryman I Multi-Split. Plan 5 uses a single primary-excess 
split of losses, with the credibility formulae from Plan 3. This is the “fully 
equipped” model as compared to the other “economy” versions. The 
question is whether there is enough improvement in performance to jus- 
tify the additional cost and more difficult handling. 

D. SJrmnJay 

The NCCI researchers tested experience ratings effective on 1980 and 
1981 policies. Best parametrizations for each of the plans tested may be 
seen in Exhibit 2. Of course, “best” is subjective in that no single set of 
coefficients in any plan produced a lowest value for all 10 evaluations 
(five size groups and two years). Still, the pattern that emerged for all 
evaluations was that the smaller sizes deserved more credibility and the 
larger sizes deserved much less credibility than under the current plan. 

Exhibit 3 shows summary statistics and a sample calculation of the 
test statistic for Size Group Two in 1980. 

Several credibilities are displayed in Figures 1, 2, and 3. The consis- 
tent pattern for the four optimized plans can be seen. The plans also bear 
a fairly logical relation to each other. In particular, credibilities seem to 
increase substantially in the passage from a multi-split to a single-split 
formula. This may be due to better satisfaction of the assumption that 
primary and excess losses are uncorrelated. 

By contrast, the use of the Perryman II equation in place of Perryman 
I does not seem to increase average credibilities much. There is, of 
course, a slight improvement in the distribution of the credibility assigned 
to the individual risk, as reflected in the test statistic. As described in 
Section 4, the evaluation of all the plans included weighing the benefit of 
increased accuracy against the cost of increased complexity in applica- 
tion. 
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EXHIBIT 2 

1. PEKK’I’MAV I M~II:~I-SPI.I~ 

K 0.067 ET 17,200G 1 K, = E 
i 

0.60 E + 563,000 G 
P E+3,lOOG j E + 5,000 G I 

G = SRP/S70.000 

K 0.068 E +7.000 G ~~~ .-__ 1 i K = E 0.67&+ 265,700 G‘ 
P E+ 1,600G ’ E + s,soo G 1 

G=l 

3. PEKKYMAN 1 SINGLE-SPLIT * 

C).lOE+2,57OG 0.75 E f 203.825 G ~__ 
E+7OOG E + 5,100 G I 

G = 0.85 + SRP/2,700,000 

4. PERRYMAIU! II SINGLE-SPLIT 

K,, = 0.04 E + X50 G 

G = SRP/S70,000 

K,=E 
i 

0.60 E + 98,500 G 
E + 2,500 G I 

* As developed in the text. this is the form of the credibility constants used in the final 
plan. except that minimum values WCIT c~tablishetl: min K,, = 7.X)0, 

min K, = 150.000. 
SAC-C 

I 

L 

Also, G was changed so that G = l~ijtb + where SACC’ ilr the average cost per case 

by state. At the same time. the SRP was dctined a\ rhc State Rcl’crcncc Point, 
SRP = 250 x SACC, so (; = SRP/25O,OofJ. 



EXHIBIT 3 
PART 1 

SAMPLE STATISTICS 

1981 

Size Size Size Size Size 
Group Group Group Group Group 
One Two Three Four Five 

0.3230 0.2361 0.1116 0.0453 0.2187 

0.2664 0.1674 0.0930 0.0380 0.0831 

1980 

Size Size Size Size Size 
Group Group Group Group Group 

Formula One Two Three Four Five 

Former Plan 0.3277 0.2236 0.0918 0.0228 0.0293 

Perryman I 
Multi-Split 0.1978 0.1248 0.0994 0.0148 0.0012 

Perryman II 
Multi-Split 0.1632 0.1058 0.0976 0.0112 0.0033 

Perryman I 
Single-Split 0.0852 0.0519 0.0459 0.0169 0.0042 

Perryman II 
Single-Split 0.0803 0.0366 0.0380 0.0091 0.0075 

Smaller statistics are more desirable. There were many different samples tested. This was one of the se- 
ries of tests used to select among the choices. 

0.1809 0.1333 0.0985 0.0414 0.0980 

0.1140 0.0838 0.0688 0.0331 0.0782 

0.0785 0.0735 0.0583 0.0312 0.0187 
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EXHIBIT 3 
P.4KI‘ 2 

15 ST-\ I’ES TOI..Q 
Risk Size: $5,000-$ IO,000 

PEKKYMAN 1 SIN(;I.I:-SIV.I-I 

Quintile Before 
I 0.63 
2 0.76 

3 0.86 
4 I .05 

5 I .32 
Mean Total: 0.93 

SCpilWl 
Deviation 

From Mean 
072 
IYS 

x-4 
14X 

I.532 
3.005 

Quintile Before 
I 0.68 
2 0.70 
3 0.87 
4 I .06 
5 I.30 

Mean Total: 0.93 

Test Statistic 
IS6 

3.00s 
:= 0.05 IO 

CURREKT MLILTI-SPLIT 

Squared 
Deviation 

From Mean 
613 
532 

37 
I73 

I.373 
2.737 

Squared 
Deviation 

After Front Mean 

0.83 I06 
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0.05 4 
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0.03 IS6 

AbeI 
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0.78 
O.Y3 
I .04 
I .03 
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214 

0 

I I:! 
Y4 
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Selection of an experience rating formula was made primarily on the 
basis of performance, of course, but also on the basis of practical consid- 
erations. Ease of acceptance and implementation wcrc among the consid- 
erations. Fortunately, this did not lead to any great compromise of 
actuarial principles. 

The Individual Risk Rating Plans (IRRP) Subcommittee of the NCCI 
Actuarial Committee approved the Perryman I Single-Split plan as pa- 
rametrized in Exhibit 2. Its performance was nearly as good as the Perry- 
man II Single-Split plan, but the slight improvement offered by the latter 
did not appear to outweigh the effort necessary to make the more com- 
plex changes. The improvement offered by a single-split over a multi- 
split plan was significant and the transition would not be difficult. 

Consider Exhibit 4. It shows the average change in modification, plan 
to plan, for small risks grouped by value of the former modification. 
These risks constituted the smallest size group used in testing the original 
formula, as well as in testing this particular plan. Small risks whose I985 
mod exceeded 1.20 could expect an average increase, or “swing.” of 62 
points in their mods! Even if this selected plan reflected correctly cati- 
brated credibility, several of the subcommittee representatives thought it 
would be unacceptable in the market. Some even doubted that it was 
correct at all, despite the evidence that credibilitics were optimal for this 
size group. Of course, the tests worked on averages and these were ex- 
treme cases. Thus, it was possible to believe the tests, yet stilt believe 
there was a problem to be fixed. 

To address this problem, two changes were made to the plan: the SRP 
was decreased, as it affected limitations on ratable losses: and minimum 
values for credibility constants K,, and K, were established. 

It was decided to make the SRP a multiple of average cost per case by 
state (SACC), rather than a multiple of the average cost per serious case. 
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EXHIBIT 4 

1985 

PEKKYMAN I SIN~;LE-SPLIT 

CHANGES IN AVERAGE MODIFICATIONS 

FOR RISKS GROUPED BY VALUE OF CURRENT MOD 

$2,500-$5,000 EXPECTED LOSSES DURING EXPERIENCE PERIOD 

Range of Number of 
Current Mods Risks 

0.80-0.84 I 

0.85-0.89 32 

0.90-0.94 9,062 

0.95-0.99 9,600 
1 .oo 484 

1.01-1.05 1,637 

1.06-1.10 1,238 
1.11-1.15 944 
1.16-1.20 742 

Over 1.20 2,578 

Totals 26,318 

0.83 

0.89 
0.93 

0.96 
1.00 

1.03 

1.08 
1.13 
1.18 

I .35 

1.01 

Average 
Pro osed 

d od 

0.66 
0.70 

0.79 

0.87 
1.02 

1.13 
1.31 
1.42 
I .48 

I .97 

1.03 

Change 
-0.17 

-0.19 

-0.14 

-0.09 
0.02 

0.10 

0.23 
0.29 
0.30 

0.62 

0.02 

4Y 
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Since the average cost per case was between $750 and $3,500 for most 
states in 1981. a multiple of 250 x SACC generally led to smaller SRPs 
than the typical $1 million SRPs effective at the time. 

In order to test this plan, it was necessary to adjust the ELRs to 
compensate for the new limits on ratable losses. This was accomplished 
just like the adjustment of the D-ratios as described in Section j(C.4). 

Several minimum values of K,, and K, were tested also, but the analy- 
sis quickly led to min K, = 150,000 and min K,, = 7,500, which worked 
well in conjunction with the new loss limitations in the range above. 

Exhibit 5 shows comparisons of the swing in mods for groups of risks 
by size with a 1986 mod greater than 1.2. (Computed for SRP = 250 or 
300 x SACC, and with min K,, = 7.500 and min K, = 150.000.) In all 
cases, the swing was less than 25 points. 

Changing the SRP formula also led to a re-examination of the calcula- 
tion of the state scale factor G. The older G formula may be seen in 
Exhibit 2 as G = 0.85 + SRP/2.700,000, where the SRP was the value 
from the former plan. The new formula, resulting from some trial and 
error, was G = SACC/l,OOO, which worked well with the modified plan. 

Independent tests of the new plan still showed the potential for large 
swings in the values of the mod for risks in the smaller size categories. 
After considerable discussion, the IRRP subcommittee recommended one 
more change to the rating plan. Rather than tamper with credibility con- 
stants, loss limitations, or split points, the subcommittee decided to put 
absolute caps on the mods of smaller size risks. In this way a debit under 
the current formula could increase only a limited amount with the change 
to the new formula. 
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EXHIBIT 5 

1986 

PERRYMAN I SINGLE-SPLIT, AS MODIFIED* 

CHANGE IN CURRENT MOD TO PROPOSED MOD 

RISK HAVING CURRENT MOD GREATER THAN 1.2 

Size Size Size Size Size 

SRP Overall 
Gcnzp G+:“,P Group 

Three z--r 
Group 
Five -~~ _~~- ~____ 

250 x SACC 0.06 0.22 0.21 0.16 0.09 -0.05 

300 x SACC 0.06 0.22 0.21 0.16 0.09 -0.05 

* SRP = 250 or 300 x SACC 
Minimum K,=7,500 and K-, = 150,000 



Range of Number of 
Current Mod Risks 

0.80-0.84 18 

0.x5-0.x9 620 

0.90-0.94 IO,95 I 

0.95-0.99 13,522 

1.00 682 

I .o I- 1 .os 2,307 

1.06-1.10 1.675 

1.11-1.15 1,278 

1.16-1.20 1,066 

Over 1.20 3,576 

Totals 35.69; 

With minimum K,, = 7,500 and mi 

SRP = 250 x SACC 

G = SACC + 1,000 

Mods Limited 

Average 
Current 

Mod 

0.83 

0.88 

0.93 

0.96 

.oo 

.03 

.0x 

.I3 

.1x 

.35 

.o I 

Average 
Pro osed 

d Od 

0.79 

0.84 

0.88 

0.93 

1.03 

1.08 

1.30 

I .‘h 

1.31 

1.49 

1.03 

Change 

-0.04 

-0.04 

-0.05 

-0.03 

0.02 

0 .os 

0. 12 

0.13 

0. I3 

0.14 

0.0 1 

nimum K, = 150,000 
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The following table lists the limits by size. 

Expected Loss Size Maximum Modification 

0 < E < 5,000 1.6 

5,000 I E < 10,000 1.8 
10.000 I E < IS,000 2.0 

Exhibit 6 is similar to Exhibit 4 and shows that the swing problem is 
greatly reduced by this action. 

No transition program was designed to phase the maximums out, ex- 
cept the impact of inflation. As experience rating eligibility increased, 
fewer risks would enjoy a potential I .60 cap. 

Although this action was largely pragmatic, it was not without some 
actuarial justification. Mods higher than the stated limits are probably not 
deserved, statistical arguments notwithstanding. The test results only 
showed that mods were correct for the worst 20% of risks O/I adage. 
Other testing (not shown), using higher percentiles than the XOlh, showed 
the new formula could result in unreasonably high mods, at least for the 
smallest risks. In addition, risks just below eligibility have a maximum 
modification of unity. There should be some continuity at the point of 
eligibility. 

Exhibit 7 shows the quintiles test statistics for the finalized plan. 
These statistics compare reasonably well with the statistics shown in Ex- 
hibit j--Part I. 

In the matter of a split point, the subcommittee also recommended that 
appropriate trending be applied to the single-split point used in the testing 
so that it would have the same relativity to the loss size distribution when 
actually applied. Trending was based on several years of change in the 
average cost per case, which led to the single-split point of $S,OOO used in 
the filing. This is a reasonable value, given that it will be well after 1990 
before the revised plan is widely accepted, and a few more years after that 
before any study can be done to revise the point. 



PARAMF.TRI7ING 1:SI’FRIENCl’ K/U’INCi 

EXHIBIT 7 

SUMMARY-Q~UNTILES TEST SI~ATISTICS 

Size Size Size Size Size 

SRP 
c;;;o,“,p 

?bY %lz E-rp 
Group 
Five 

250 x SACC 0.1800 0.1183 0.0546 0.0127 0.1588 

300 x SACC 0.1704 0. I 1 so 0.0645 0.0524 0.3138 

SRP = 250 or 300 x SACC 

Minimum K,, = 7,500 and K, = 150,000 
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Still, several researchers thought $5,000 might be too high. After all, 
the single-split worked well because of its resemblance to a frequency/se- 
verity model, and $5,000 may be too high to resemble just claim fre- 
quency. 

The rationale for such a high selected value was twofold. First, there 
would be no automatic adjustment, and the $5,000 would be retained until 
a study could be made to determine the optimal value. Second, the resul- 
tant D-ratios for the single-split point would not have to decrease dramati- 
cally from the ones in the former plan. Loss size trend would make 
primary losses increasingly resemble claim count. 

It should be noted that a conscious decision was made not to index the 
split point. As a consequence, it can be expected that average D-ratios 
will decrease over time. Primary credibilities should be monitored. An 
initiative to study indexing the split point can be expected in the future. 
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THE COMPUTATION OF AGGREGATE LOSS DISTRIBUTIONS 

JOHN P. ROBERTSON 

Paul R. Halmos recently hailed the fast Fourier transform 
as one of the 22 most sigmjicant developments in mathematics 
in the last 7.5 year-s. This paper provides an application of this 
tool to the computation of aggregate loss distributions jiiom 
arbitrary frequency and severity distributions. All necessary 
mathematics is delveloped in the paper, complete algorithms 
arc given, and examples are provided. Slrfficient details are 
given to ullo~~ implementation in any computer’ language, and 
sample APL computer language routines are gillen. The final 
section includes a discussion of excess loss distributions where 
computation is not limited to the fast Fourier transform based 
algorithm. 

I thank Walter R. Stromquist, Joseph L. (“Joth”) Tupper, Gary G. Venter, 
and the Committee on Review of Papers for their help with and suggestions 
regarding this paper. 

1. INTRODUCTION 

According to Halmos [ 11, the fast Fourier transform is one of this 
century’s most significant mathematical developments. This paper pre- 
sents an algorithm for computing aggregate loss distributions using this 
device. The algorithm assumes that one knows the claim count distribu- 
tion, T (the probability distribution of the number of claims that will 
occur), and the severity distribution of a single claim, S = S, = S2 = . . . (the 
distribution of the amount of a single claim). The algorithm computes the 
aggregate loss distribution, 

AGG = S, + S, + . . . + S, 



(the distribution of the total amount of claims). The algorithm applies to 
arbitrary frequency and severity distributions. 

As an example, claim counts might be expected to follow a Poisson 
distribution with mean 10, and severity might be expected to follow some 
distribution with mean $10,000. This implies that the mean of the aggre- 
gate distribution is $100,000 (10 times $10,000). In any given year, the 
total amount of claims might vary from $100,000 because the actual 
number of claims might differ from 10. and because individual claims 
will vary from the $10,000 mean. The aggregate distribution expresses 
the probabilities of the possible total amounts of claims in the same way 
the severity distribution expresses the probabilities of the amounts of a 
single claim. 

The algorithm given here is less of a “black box” than some other 
algorithms presented in these Procwrlin~~,s in the following way. The 
algorithm, as a matter of course, computes the distribution for the sum of 
n claims, where II is any number of claims with nonzero probability in the 
claim count distribution. While the computer routines presented herein do 
not Save these distributions, only trivial programming changes are needed 
to capture and save these distributions for later USC. Capturing these dis- 
tributions can be useful when the resulting aggregate distribution has 
unexpected properties and one wants to check that it is being correctly 
computed, or for other reasons. 

The method presented here should be considered to be approximate. 
Technically, it is an exact method, but it is generally necessary to use an 
approximation of the severity distribution as input, and this makes the 
output approximate. The running time for the algorithm is roughly pro- 
portional to the number of claims expected. For small numbers of claims, 
this method seems to be faster than other methods (e.g., Heckman and 
Meyers [Z]), but this advantage disappears as the number of claims 
grows. The algorithm presented here explicitly computes the entire aggre- 
gate distribution up to a specified limit, making it easy to derive any 
statistics of the aggregate distribution. 

A quick overview of the algorithm is as follows. Everything in this 
summary will be described fully below, as it is not possible to give brief 
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rigorous definitions of all the concepts used. The severity distribution will 
be given a discrete representation; that is, the severity distribution will be 
represented by a vector. The n-fold (discrete) cmvolutions of this vector 
with itself are computed. The result of these convolutions is very nearly 
the vector representation of the jr-fold sum of the severity distribution 
with itself. The precise representation of an n-fold sum will be obtained 
by computing the convolution of this result with another vector (de- 
scribed later) to “spread out” the result a bit more. This representation of 
the density function for the n-fold sum of claims is multiplied by the 
probability of there being exactly n claims, and these products are added 
to get the vector representation of the aggregate distribution. 

The discwte Fourier- transform is used to compute the convolutions, 
and the fbsf Foul-ier rnmsform is used for rapid computation of the dis- 
crete Fourier transform. Convolutions, discrete Fourier transforms, and 
fast Fourier transforms are defined and discussed in Section 2. The pur- 
pose of this discussion is to introduce these items and to give examples so 
the main structure of the algorithm will be clear, The technical details are 
in the appendices. Additionally, Section 2 discusses the vector used to 
“spread out” the n-fold convolutions of the vector representing the sever- 
ity distribution. Two tactics used to speed the overall computations are 
also covered. 

Section 3 of the paper walks through the full algorithm. Section 4 
gives examples and discusses use of the algorithm. Sufficient details are 
given throughout the paper that it should be possible to implement the 
algorithm in any computer language. As an example, various appendices 
show routines implementing the algorithm in the APL computer language. 

2. CONVOLUTIONS AND THE FAST FOURIER TRANSFORM 

Conwlutions 

The distribution of the sum of two random variables is given by the 
~~nr~~lur~~n of their respective distributions. Heckman and Meyers [2, p. 
321 discuss convolutions for the case of continuous random variables. In 
this case, if X, and X, are independent continuous random variables with 



density functions fand g, then the density of the sum of these two vari- 
ables, i.e., the density of the random variable X, +X,, is given by the 
convolution off’and ,q, f*g, defined as: 

fp,q) (I) = j f(f) g(.\- - 1) t/f 
0 

For the algorithm presented here, the probability distributions for the 
severity of a single claim and for the sum of II claims will be given certain 
discrete representations; that is, they will be represented by certain vec- 
tors. It will be necessary to compute the convolutions of these vectors. 
The definition of the convolution of vectors is similar to the above defini- 
tion of the convolution of continuous functions. Let U = (q,, II,. . . ., II,, _ ,) 
and V = (IS,,, I’,,. . ., I’,~ _ , ) be two vectors of the same length, 17. Their dis- 
crete convolution, W = U*V, is a vector of length II defined by: 

I, I 

M’i = c 
11, I’; -/ ? 

, -0 

where 0 <: i 5 12 - 1 and the indices of the terms I’; _ i arc taken module II. 
For example, if U = (1, 2, 3) and V = (4, 5, 6) , then 

U*V=(lx4+2x6+3x5, 1x5+2x4+3x6. 1x6+2x5+3x4) 

= (31, 31,28). 

This definition of convolution is not exactly what is needed here. The 
rro-lz~~~ cxvndrrfion of U with V is defined to have the following compo- 
nents: 

M’i = i ui I’; _ ; . 

, =o 

That is: 

I’() = 14() I’(], 

M’, = If0 I’, + Ii, 1’() , 
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M’l = U() 1’2 + 14, l’, + II? I’,, ) 

M’ ,I- I = f4,) l’,, _ , + 11, I’,, _ ? + . . . + u,, _ ] 1’(, . 

The no-wrap convolution of (1,2,3) with (4,5,6) is 
(1x4, 1x5+2x4. lx6+2x5+3x4)or(4, 13,28). 

The no-wrap convolution can be visualized, as below, by taking one 
vector, reversing it, and placing it so that its first element is directly below 
the first element of the other vector, Then successively shift the vectors 
together, multiply elements in the same column, and add the products. 
Repeat this until the vectors are completely aligned. 

No-wrap Convolution 

I 2 3 

6 s 4 

lx4 

In contrast, for regular 
around as shown below: 

1 2 3 1 2 3 
6 5 4 6 5 4 

1x5+2x4 1x6+2x5+3x4 

convolutions, the bottom vector is wrapped 

Regular Convolution 

I 2 3 1 2 3 1 2 3 

4 6 5 5 4 6 6 S 4 

1x4+2x6+3x5 1x5+2x4+3x6 1x6+2x5+3x4 

The analogy of the definition of no-wrap convolution for discrete 
vectors to the definition of convolution in the continuous case should be 
clear. 

One can obtain the no-wrap convolution of two vectors from a routine 
that computes (regular) convolutions by padding each of the two vectors 
to the right with enough zeroes to double the length of each vector, 
performing the regular convolution with these longer vectors, and then 
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taking just the left half of the result. For example. the first three compo- 
nents of the convolution ot u = (/I,,. II,. If,, 0. 0. 0) with 
V = (I-,,, r, ~ I’?, 0, 0, 0) are: 

M’(, = II,, \‘() + II, x 0 + 112 x 0 t- 0 x 0 + 0 x \‘, + 0 x I‘, 

W’, = 11() l’, + II, I’,, + II? x 0 + 0 x 0 + 0 x 0 + 0 x 1’2 

= II,, 1’, + II, \‘(, : 

M’? = II,) \‘? + II, \‘, + I& I’,, + 0 x 0 + 0 x 0 + 0 x 0 

The first definition ol‘ convolution will always hc ~~scd (unless other- 
wise noted). but generally Lcroes will be added lo the vectors being 
convolved so as to achieve a no-wrap convolution. 

Observe that the definition of convolulion i\ \,alid when the vector 
elements are complex numbers. 

A note on notation is needed. The vector U has components u,,, u,, +, 
etc., sometimes denoted U[O], UI 1 I. U13 J. etc. In parricular. the indices of 
vector elements start at zero. 

Complex numbers and complex roots of‘ unity are used extensively in 
what follows. The prin?iti\~c II r/1 _ I oot.v of’wzit~ arc 

cos(3m/r7) + i sin(kr/77). 

where (I and t7 are relatively prime and i is \‘-I The properties ot’ corn- 
plex numbers needed here are reviewed in Appendix A. and arc also 
given in Baase [3, p. 2791 and Aho. Hopcrati. and IJllman 14, p. 252). 

Given a complex (or real) vector Il. the discrete Fourier transform of 
lJ is a complex vector of the same length. As in Baase 13. p. 2691, for 
II 2 1, let 0 be a primitive lath root of unity, and let F be the II x 17 matrix 
with entriesf) . . , = w’.’ where 0 i i,,j < 17 - 1, The discrctc Fourier transform 
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(DFT) of the n-vector U = (u,,, II,, . . . . u,,- ,) is the product FU (with U 
treated as a column vector). This is a vector of length n with components: 

0 0 110 + II 0 If ] + . . . + 0 0 u,, - 1 + II 0 u,, - , , 
0 w I 44,) + 0 14, + . . . + 0 I, - ?lI ,I - 2 + 0” - ‘u,, - , * 

0 w u,, + 0’11, + . . . + w ‘(” - %,, _ 2 + d” - ’ )I,,, _ , , 

w 
0 

MO + 0 
r,-11~,+...+O(~1-l)(n-2)U,,_~+O(~1~I)(,I-I)U ,,-, . 

(Note that the DFT of U depends on the o chosen.) 

Let FU be the DFT of U. Given FL’, U is recovered (i.e., the inverse 
DFT is applied to FU) as easily as FU is computed from U. To obtain U 
from FU, compute the DFT of FU, divide each resulting term by II, and 
reverse the order of the last II - I elements of this result. 

The DFT helps compute convolutions because 

DIT(U*V) = DFT(U) x DFT(V) , or 

U:kV = INVDFT(DFT(U) x DFT(V)), 

where INVDFT is the inverse DFT. 

Thus, to compute the convolution of two vectors, one can compute the 
DFT of each vector, multiply the DFTs together pointwise, and compute 
the inverse DFT. This is known as the convolution theorem, proofs of 
which are given in Baase [3, p. 2781 and Aho, Hopcraft, and Ullman [4, p. 
2SS]. 

For example, let U be (I, 2, 3), let V be (4, 5, 6), and let 
0 = -0.5 -t 0.866i, a primitive third root of unity. Then FU is 
(6, -1.5 - 0.8661’. -1 .S + 0.8661’), FV is (15, -I .S - 0.866i. -1.5 + 0.866i), 
and the pointwise product, FU x FV, is (90, 1.5 + 2.5981, I.5 - 2.598i). 
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To compute the inverse DFT of this last vector. first apply the (forward) 
DFT to obtain (93, 84. 93). Then divide each element by 3 and reverse the 
order of the last two elements, giving (3 1. 3 I, IX). This matches the pre- 
vious computation. 

A more thorough example showin, u the convolution of two vectors 
representing severity distributions is given in Appendix B. This appendix 
also discusses the inverse DFT. 

The jksr Fourirr trun.yfhnr (FFT) is a particularly fast method for 
computing the DFl- (and the inverse DFT) for long vectors. Appendix C 
gives Baase’s 13. p. 27.31 version of the complete fast Fourier transform 
and inverse FFT. Appendix D gives an APL implementation of these 
algorithms. 

Why use such a complicated method to compute convolutions (i.e., 
using the convolution theorem and FFTs)? This method is used because, 
for long vectors, it’s much faster than more straightforward methods 
(such as computing directly from the definition of convolution). Knuth 15, 
Vol. 2, p. 65 1 ] discusses the number of calculations needed to compute 
the fast Fourier transform. Using the FFT to convolve vectors of length 
I .024 (2”‘) gives a gain in speed by a factor of about 60 compared to the 
“naive method” of convolution. The time needed by the naive method for 
computing convolutions of vectors of length II is proportional to II’. More 
precisely,’ it is O(n’). The time needed by the method using the convolu- 
tion theorem and the fast Fourier transform is proportional to 
nln(n)(O(,lln(n))), where )I is the length of the vectors convolved. For 
large II. trln(rz) increases more slowly than H’, 

In the literature there are several different definitions of the DFT and 
FFT that accomplish the same goals but differ in certain details. Be care- 
ful before trying to use the algorithms presented hcrc in conjunction with 
algorithms that appear in other sources or are available in libraries ot 

’ That the number ol’computations is OCf(u)) means that there 15 ;I constant c such that the 
number of computations is less than C’ x,f(ll) fix- all II greater than sonic’ II,.. See Knuth 
15. Vol. 1. p. 104). 
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computer routines. For example, using the forward FFT from another 
source with the inverse FFT given here could produce erroneous results. 
Other routines for the DFT and FFT can certainly be used, as long as all 
the routines used are consistent among themselves. 

In addition to Baase [3, p. 2681, the fast Fourier transform is discussed 
from several different viewpoints in Knuth [5, Vol. 21, Press, Flannery, 
Teukolsky, and Vetterling [6, p. 3901, Preparata (7, p. 2071, and Aho, 
Hopcraft, and Ullman [4, p. 2571. Each of these discusses the theory 
behind the FFT, thereby explaining what the FFT is doing and showing 
why the FFT is so efficient. Chiu [8] gives an introduction to the fast 
Fourier transform motivated by the problem of exact multiplication of 
large integers. A detailed implementation of the fast Fourier transform 
suitable for Fortran and similar languages is given in Monro 19, p. 1531. 
Convolution is discussed in Hogg and Klugman [IO, p. 421, Feller [ 11, p. 
61, and many other statistics books. 

Other methods that use the fast Fourier transform to compute aggre- 
gate loss distributions are given by I. J. Good in Borch [ 12, p. 2981 and by 
Bertram [ 13, p. 1751. The method presented in the latter is summarized in 
Biihlmann [14, p. 1161. 

3. THEALGORITHM 

The collecti\~e risk model will be used to model the claims process. 
That is, the aggregate loss distribution is the distribution: 

AGG=S, +Sz+ . ..+S., 

where T is a random variable for the number of claims and each Si is a 
random variable for severity. It is assumed that the Sj are identically dis- 
tributed and are pairwise independent and that the S, are independent of T. 
This definition of aggregate loss distribution is the same as that given by 
Algorithm 3.2 in Heckman and Meyers 12. p. 301. This model is discussed 
in Biihlmann [ 15, p. 541, Beard, Pentikiinen, and Pesonen [ 16, p. 501, 



Patrik and John [ 17, p. 4 121. and Maycrson. Jones, and Bowers [ 18, p. 
177). 

There are three inputs to the algorithm. The first. denoted M, is the 
smallest number of claims that has nonzero prohabilit!, in the claim count 
distribution. The second, P, is a \‘ector giving the probability density 
function of the claim count distribution. P(i) is the probability that there 
are exactly i + M claims for i 2 0. 

The third input, S, is a vector representing the severity distribution as a 
piecewisc uniform distribution. Due to technical considerations involving 
the fast Fourier transform. the length. II. of S will be an integral power of 
two; i.e., II = 2” for some positive integer X. Let 1. be the maximum size of 
claim considered. Then each element J, of S represents the probability 

that a given claim is at least ‘L but Icss thn 
(i+ 1) 

I1 /I 
L. The probability 

distribution is unifonn across each $uch interval. In other words, the 
probability density function.,f(.v). of the claim size distribution is: 

I 0. for .V < 0 or .Y L L. 

As an example, if L is $16,0(W) and S is (0.50, 0.30. 0.15, 0.05). then 
there is a 50% probability that any given claim is between $0 and $4,000, 
a 30% probability that the claim is between $4.000 and $8,0(K). etc. The 
density function is uniform over the intcrvai $0 to $4,000 at 
.000125 (= 0.50 + 4,000). Similarly, the density function is uniformly 
.00007S: i.e., (0.30 + 4,000) over the interval $4.000 to $X,OW, and so on. 
This is graphed in Figure I. Note that this specification of the severity 
distribution is the same as that in Heckman and Meyers 131 but rchtricted 
to uniform intervals. 

Define S’ inductively as follow%. Let S’ be the vector of length 2n 
obtained by catenating II zeroes onto S. That is. 

‘St! = 
5,. if 0 I i </I - I: 
0, ifn I i I 2rr - I. 
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FIGURE I 

DENSITY FUNCTION REPRESENTED BY S 
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Let S*’ = S’*S’ - ’ for i 2 2. 

Let S’ be the same as S*’ for the first II elements and be 0 for subse- 
quent elements. Then the first II elements of S’ are the first II elements of 
the no-wrap convolution of S with itself i times. 

Everything will be defined in greater detail below, but the algorithm is 
simply summarized as computing: 

N 

c 
P(i-M)xA'*S', 

I = M 

where 

M is the smallest number of claims with nonzero probability; N is 
the largest number, 
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P(i - M) is the probability of exactly i claims. 

A’ is a vector of “spreads” to be defined later. but. for example, 
A-’ = ( 1%. 7~. ‘hi. 0, 0, 0, . . . . 0). 

* is the discrete convolution operator. and 

S’ is the vector that is the no-wrap convolution of the severity distri- 
bution. S. with itself i times. 

Very roughly speaking, S’ is the dcnxity function of the sum of the 
original severity distribution, S, with itself i times. However, it needs to 
be “spread out” (in a way that will be made prccisc below). Certain 
vectors of coefficients, A’. to be defined shortly. will hc used to “spread 
out” the S’. The distribution of exactly i claims is given by A’ -:: S’. More 
precisely, A’ :j: S’[j] for 0 5,; I II - I is 

where F’(.Y) is the distribution function for the sum of the severity distri- 
bution with itself i times. For II 5,; :I 2r? - I the values of A’ 2: S’[,j] are not 
meaningful. 

To see why the A’ are needed, let S be a uniform distribution on the 
interval 0 to 1. Let 11 and L be 4. Then S = ( I. 0. 0.0). Doing the convolu- 
tions gives S’ = S’ = ( I, 0, 0, 0, 0, 0. 0, 0) for all i. But the distribution 
function of the sum of the uniform distribution on (0. I 1 with itself should 
have nonzero probability not only between 0 and 1. but also between I 
and 2. In fact, this distribution should be ( ‘A. ‘A. 0, 0. 0, 0, 0, 0). Simi- 
larly. the sum of this distribution with itself three times should be 
(l/b, Z/J, l/h, 0. 0. 0. 0. 0), which has three nonzero terms. A’ ~1: S’ will be 
(!h, I/“. 0, 0, 0, 0. 0, 0). and A’ ;/: S’ will be ( l/i,, 77. G,. 0. 0. 0. 0. 0). 

If S were a discrete distribution. instead of the picccwise uniform 
distribution used here, the A’ would not bc necess~y. (That S = (.s,), .Y,. . . . ) 

is discrete means that if .Y is 
i L. for some i from 0 to 11 - I. then the 
f? 
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probability that a claim equals s is si; for others, the probability is 0. An 
example is given in Appendix B.) 

Use of a piecewise uniform severity distribution roughly doubles the 
running time of the algorithm compared to the time required for a similar 
algorithm using a discrete severity distribution. The use of a piecewise 
uniform distribution is suggested because the author believes that fre- 
quently a piecewise uniform approximation with II vector elements gives 
a better approximation to the severity distribution than does a discrete 
approximation with 2n vector elements. If the severity distribution is 
more accurately approximated, then the resulting aggregate loss distribu- 
tion is more accurately approximated. Also, due to memory limitations in 
many computers, it is often possible to compute the aggregate distribution 
using the piecewise uniform approximation with II vector elements, but it 
is not possible (easily) to compute the aggregate distribution using a 
discrete approximation with 212 vector elements. 

In the next subsection the coefficients A’ are defined so they will 
provide the needed spread. Then, the following two subsections cover 
two special tactics that substantially speed the running of the algorithm. 
Then, the full algorithm is discussed. 

The Coe$%ients A’ 

Define a,; by: 

u;, = I/i! for i2 I, 

a; = 0 forj2 I, 

I a;= -; t I’ I 
(i-j)~jI~+o’+l)~;-’ 1 fori22,jZ 1. 

Table 1 gives the first few values of ui. For example, 

A’ is the vector of length 211 whose first II elements are given by the a;, 
and whose last 12 elements are zero. For example, 
A’ = (I/,4 I’/24 ‘Vi4 ‘h 0, 0, . . . , 0). -. . .i, 
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TABLE 1 

VALUES OF U; 

The probability that the sum of i unit rectangular distributions is be- 
tween ,j and ,j + 1 for i 2 1 andj 2 0 is U: This is the reason these coeffi- 
cients provide the needed spread. Appendix E shows this and gives a 
more detailed explanation of the reasons these coefficients are needed. 

The numerators of the (I;, i.e., i!uj , are known as Euleriun mnhw 
and are discussed in Graham, Knuth, and Patashnik [ 19, pp. 253-2581. 
Feller [ 11, pp. 26-291 gives formulae useful in working with Eulerian 
numbers, although he does not mention them by name. 

Two special tactics are applied to make the algorithm run faster. One 
is to “pack” the severity distribution into a vector, so that the computation 
of the discrete Fourier transform of a given real vector of length 2n is 
accomplished, instead, by the computation of the discrete Fourier trans- 
form of a related complex vector of length 12. This tactic roughly doubles 
the speed of the algorithm (with no effect on accuracy because the DFT 
of the original vector of length 2n is still what is finally computed), and is 
discussed in this sub-section. The second tactic is to compute the M-fold 
convolution of the severity distribution with itself using a method which, 
for M greater than 3, is faster than the naive method that computes M - 1 
convolutions. This tactic is discussed in the next subsection. 



AGGREGATE LOSS DlSTRlBUTlONS 71 

The fast Fourier transform operates on vectors of complex numbers, 
but here it is used only to transform vectors of real numbers. As such, half 
of the place values are not really being used, because the imaginary parts 
of the elements of the input vector are all zero. Clever use of certain 
symmetry properties of discrete Fourier transforms of purely real vectors 
and purely imaginary vectors, as discussed in Press, et al. 16, p. 3981, 
allows the following. 

To transform the length 2n vector V = (vo, v,, . . . . I’~,~- ]), where each V; 
is a real number, rewrite V as PV = (11~~ + iv,, v2 + A,,, . . . , Q,~ _ 2 + iq,, _ ,), 
where i is 6. This is now a complex vector of length II. PV is referred to 
as the ~‘crc$~d urztr-urz.sfo,med vector (it is packed because it is written in a 
more compact form; it is untransformed because the discrete Fourier 
transformation has not yet been applied). Compute the discrete Fourier 
transform of PV, and call it FPV. FPV is the packed trunsforn~ed vector. 
Some simple computations on FPV, called ~c~pucking, yield FV, the (un- 
packed) discrete Fourier transform of V. While FV is a vector of length 
212, if the first n + 1 elements of FV are known, then the remaining n - 1 
elements can be deduced using a formula from Appendix F. Similarly, one 
can pack the transformed vector in such a way that when the inverse 
discrete Fourier transform is applied, the untransformed vector appears in 
the form of PV. Note, in particular, that to apply the convolution theorem 
to real vectors of length 2n, one can instead work with complex vectors 
whose lengths never exceed II + I. 

Packing and unpacking the untransformed vectors is trivial. Depend- 
ing on how one represents real and complex vectors this might be a 
simple rearrangement, or just a redefinition of the meaning of each ele- 
ment of an array. Usually no calculations are needed. Packing and un- 
packing the transformed vectors does involve some calculation, but not a 
great amount. Details of the algorithms to pack and unpack are given in 
Appendix F, and an APL implementation is given in the functions PACK 
and UNPACK in Appendix G. 

Table 2 shows the steps involved in computing the convolution of two 
real vectors when one packs the vectors. 



72 AGGRlJ~iAl’I: I.OSS I~IS’I‘RIHI IIONS 

TABLE 2 

CONVOLUTION USING PACKED VE(‘TOKS 
Real or ‘I‘rall\~ ,)I 

S(q) Complc\ I .crlglll Cilllrarlsl 
stxt Real 7/i lintrarl~l 

Vector(s) 
v. w 

II 
PC’, PW’ 

u 

FPV, FPW 
u 

FV. FW 
8 

FU=FVxFW 
u 

FPU 
u 

PC: 
ii 

L’ 

While packing and unpacking add four steps to the above, the time 
saved by transforming vectors of length II instead of 2n is more than 
offsetting. In practice, the untransformed vectors are usually kept packed, 
thus further reducing the number of steps. 

Before discussing the second special tactic directly, consider an analo- 
gous question: how many multiplications are needed to compute 
2’““‘? One way to compute 2”“’ is to start with 2, and then repeatedly 
multiply by 2, doing 99 multiplications. Another way is to USC the foilow- 
ing formula: 

3°K’ II ((((( 2’ x 2 )‘)y x 2)‘)J . i 

Each operation of squaring is one multiplication and twice an interme- 
diate result is multiplied by 2, so this computes 3”K’ with only eight 
multiplications. 
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In general, to compute u” for II 2 1, one can apply the following algo- 
rithm. Express II as a binary number, h, and drop the left-most digit 
(which is always 1). Set r equal to m. Loop: if there are no digits left in h, 
then stop; f is u”. If there is at least one digit remaining in h, square 3. If 
the current left-most digit of h is 1, then multiply z by (I. Drop the left- 
most digit from h. Go back to the step labeled “Loop.” 

The binary representation of 100 is 1100100. Dropping the first digit 
gives 100100. Following the steps above, set z to 2, then square, multiply 
by 2, square, square, square, multiply by 2, square, and square. 

This is called a left-to-right binary nwtlml for c~,~l~oncrzriation and is 
discussed in Knuth [5, Vol. 2, p. 4411 (along with even faster methods). 

This is used as follows. For some applications of the overall algo- 
rithm, the smallest number of claims with nonzero probability, M, will be 
greater than one. In these cases, this method is used to compute 
s” =s * s 3: ... 1: S (with M factors of S, here the :/: is the no-wrap convo- 
lution). That is, M is written as a binary number, and the left-to-right 
binary method is applied, with no-wrap convolution at each step instead 
of multiplication. Since convolution is associative, SM is well defined, and 
this is a correct way to compute S”. 

Now the full algorithm can be described. Figure 2 outlines the algo- 
rithm using a flowchart. The notation used is described in the presentation 
of the complete algorithm, below. A summary of the meaning of each 
variable is given in Table 3. 

The complete algorithm is as follows. 

Al~cywithnz ji)r. Aggregate Loss Distribution: Let M be the smallest 
number of claims with nonzero probability, let N be the largest number of 
such claims (N 2 1 and N 2 M), let P be the vector of probabilities of 
M, A4 + 1) M + 2, . . . . N claims, and let S be the vector representing the 
density function of the claim severity distribution. The length of S is 
II = 2’ for some positive integer k. All vectors are indexed starting at 0, so 
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FIGURE 2 

FLOWCHARTFORCOMPUTATIONOF 
AGGREGATELOSS DISTRIBUTION 
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Set PZERO = P[O]. Set PSI = PSZ, Set AGG=O, i=M. 
Drop first AI = (.5, .5), Compute PSI 
element of P. AGG = P[O]xPSI, using binary 
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LOOP 

Compute'PY'= PSI*AI. 
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Step 9 
Add P[i-M]xPY to AGG. 
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Compute next PSI, AI. 
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TABLE 3 

VARIABLES USED IN THE MAIN ALGORITHM 

INPUT VARIABLES: 
II Length of vectors which will be subjects of the Fm or inverse FFT. 

)j = 2” for some positive integer r(. 

M Smallest number of claims with nonzero probability. 

N Largest number of claims with nonzero probability. 

P Probabilities of M through N claims @II = probability of M claims. 
pt = probability ofM + I claims, . ..). 

S Severity distribution. S is a real vector of length II. 
s = (so, Sl, . . . . s,,- I) 

MAJOR VARIABLES: 
i Index giving the current number of claims. 

PSI Packed severilydistribution, 
(so + is 1, sz + iq, . . . .s,~ - 2 + ;,s,~ - I, 0. 0, . . . . 0). (Here i is 6.) 

FSI Transformed (unpacked) severity distribution. 

PSI Packed severity distribution convolved with self i times. 

SI Severity distribution convolved with self i times. (Unpacked PSI.) 
FSI Transformed severity distribution convolved with self i times. 

AI Vector of spread coefficients, (u[). a{, . ..) = A’ 
AGG Aggregate distribution. 

MINOR VARIABLES: 
PZERO Probability of zero claims. 

B/N Initialized to the binary representation of M, and used in the binary 
exponentiation tactic. 

F.VFLAC Flag to determine whether FSI has been computed for the current i. 

X Unpacked PSI. 
.i Index used in Step 7. 

Y Becomes AI*X. 
PY Packed Y. 

FAI Transformed Al. 
FY Transformed Y = FSI x FAI. 
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the indices for S run from 0 to II - I. The result will be AGG. ;t vector 
representing the aggregate distribution. 

I. 

3 i. 

3. 

4. 

5. 

[Some initializations. J Set AGG IO be ;I complex vector 01’ length 17 
all of whose elements are zero. Pack S into the complex vector PSI 
of length II so: 

PSI = 
i 

so + is,, .S? + is,. . . . . .\‘,) > + is,, ). 0, 0. . . . . 0 
) 

. 

Here i is ~5. Set PZERO, the probability of exactly 0 claims. to 0. 

[Branch depending on the value of M.] If M is 0, go to Step 1. ifM 
is I, go to Step 4. If M is greater than I. go to Step S. 

(Initialize if M = 0. ] Let PZFRO hc P( 0 I. Drop the first clement 
from P. Let M be I. 

(Initialize if A4 = 0 or I.] Let AGG bc P(O] times PSI. IfN i\ I, go 
to Step 10. Let FSI be the unpacked DFT of PSI. Let PSI bc the in- 
verse DFT of the packed pointwise product ofFSI with itself. Set 
the last /l/2 elements of PSI to 0. Let AZ bc the two-elcmcnt vector 
(0.5,O.S). Let I’ be 3. Go to Step 6. 

[Begin procedure if M > 1.1 Let H/N be the binary representation of 
M. Drop the first (left-most) digit from BIN. Let FSf and FSI be 
the unpacked DFT of PSI. 

5.1. [Convolve PSI with itself or PSI with itself. ] Let FSZ be FSI times 
itself. Let PSI be the inverse DFT of the packed FSI. Set the last 
rr/2 elements of PSI to 0. If the first digit of BIN i\ 0. go to Step 5.3. 

5.2. [Convolve PSI with PSI. ] Let FSZ be the unpiicked DFT of PSI. 
Let FSI be FSZ times FSZ. Let PSI be the inverse DFT of the 
packed FSZ. Set the last t1/2 elements of PSI to 0. 

5.3. ICheck whether finished.] Drop the first digit from HIN. If there are 
no digits left, go to Step 5.4 Othcrwi>e. let FSZ bc the unpacked 
DFT of PSI. Go to Step 5.1. 
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5.4. [Initialize AZ in the case M > I.] Use the formula: 

cl;, = l/i! fori 1, 

a; =o forj2 I. 

ll; = 
t I[ 

1 (i-j)ujIi +(,j+ I),:-‘] forik2, ,j> 1 I 
to compute AZ = A”’ = ut, a?, . . . . dt-, . Let i equal M. 

6. [Start main loop.] (When this step is reached for the first time, FSZ 
has been computed, PSI and AZ have been computed for some i at 
least 2, and AGG has been initialized.) Let FSlFLAG be 0 (will be 
used later to determine whether FSZ has been computed). If i is 
greater than or equal to 100 go to Step 8. 

7. [Convolve AZ and SZ without using DFTs. (SZ is the severity distri- 
bution convolved with itself i times.)] Unpack PSI and let X be the 
first 17 elements of the result. Letj be 0 and Y be a (real) vector of 
length II with all elements 0. 

7. I [Loop.] Let Y be Y plus AZ[j] times X. Add 1 to,;. Ifj is greater than 
i minus I go to Step 7.2. Drop the last element of X and add a 0 as 
the first element. Return to the start of this Step (7.1). 

7.2 [Exit Step 7.1.1 Add 17 zeroes to the end of Y, pack and call the re- 
sult PY. Go to Step 9. 

8. ]Convolve AZ and SX using FFTs.] If AZ is of length less than II, add 
zeroes until a vector of length 2n is achieved; otherwise take the 
first II elements of AZ and append II zeroes. Pack this vector, com- 
pute the DFT, unpack the result and assign it to FAZ. Compute the 
DFT of PSI, unpack, and assign the result to FSZ. Set FSIFLAG to 
1. Let FY be FSZ times FAZ. Pack FY, apply the inverse DFT, and 
assign the result to PY. Set the last /r/2 (complex) elements of PY to 
0. 

9. [Add new packed AZ * SZ ( = PY) to AGG.] Let AGG be AGG plus 
P[ i - M J times PY. 
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10. 

Il. 

12. 

AGGREGATE LOSS DISTRIBLITIONS 

[Increment i.] Set i to i plus 1. If i is greater than N, go to Step 12. 

[Compute next AZ, PSI.] If FSfFLAG is 0. compute the DFT of 
PSI, unpack, and assign the result to FSZ. (If FSIFLAG is 1, it is be- 
cause FSZ was computed in Step 8.) Let FSZ be FSZ times FSZ. 
Pack FSZ, compute the inverse DFT, and assign this to PSI. Let the 
last n/2 elements of PSI be 0. Compute the next AZ using the for- 
mula in Step 5.4. Go to Step 6. 

[The end.] Let AGG be the first II elements of AGG unpacked. Add 
PZERO to AGGIOJ. 

The first two steps do some initializations and branch depending on 
the value of M. If M is 0, the algorithm essentially converts to the case 
where M is 1. If M is 1 (or 0) the first steps set AGG to be PSI, compute 
FSI, and compute PSI and AZ for i = 2. Then comes the main loop. If M 
is greater than 1, the binary exponentiation tactic is used to compute PSI 
for i = M. AZ is also computed for i = M. 

The main loop repeatedly computes the convolution of AZ with SZ, 
multiplies this by P[i - M], and adds the result to AGG (actually, the 
untransformed packed result is added to AGG). Note that the convolution 
of AZ with SZ is the distribution of exactly i claims. If i is less than or 
equal to N the next PSI and AZ are computed and one continues with the 
main loop. (Note that each PSI is computed from the PSI for the previous 
i.) If i is greater than N, one exits the main loop, reformats AGG. and 
folds in PZERO. Observe that FSZ is always recomputed from a current 
PSI which has had its “tail” (the last /r/2 elements) set to zero. This gives 
the no-wrap convolutions that are needed, instead of regular convolutions, 

Sometimes the algorithm computes the convolution of AZ with PSI 
through use of the convolution theorem and FFfs, and sometimes it per- 
forms this computation directly. For “short” AZ, implicitly defined above 
as having 100 or fewer nonzero terms. it is faster to compute the convolu- 
tion directly. Once AZ becomes “long,” it is faster to use the convolution 
theorem. In another implementation (using different hardware or soft- 
ware), it might be more efficient to set this cut-off of 100 to a higher or 
lower number. 
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Note that if there are fewer than II nonzero terms in AZ only the 
nonzero terms are kept, and one pads to the right with zeroes when a 
vector of length n is needed. This differs slightly from definitions of AZ 
given earlier. 

APL functions implementing the complete algorithm are given in Ap- 
pendix H. 

4. EXAMPLESANDADDITIONALDISCUSSION 

This section will give some examples of the use of the algorithm, 
show how parameter uncertainty can be reflected in the aggregate distri- 
bution, and discuss the computation of aggregate excess distributions. 
Comments in the first two areas are specific to this fast Fourier transform 
algorithm, but comments on the third topic apply generally. 

Escrmples 

Three examples of use of this algorithm will be given. The first is 
simple and is intended to be easy to reproduce in order to test an actual 
implementation. It is not meant to be realistic. The second example is 
more typical of actual distributions that arise in practice. The third exam- 
ple is reasonably realistic, but is really meant to illustrate the flexibility of 
the algorithm . 

The first example will compute the distribution of esactfy five claims, 
with each claim following a uniform severity distribution. Let k = 5, so 
n = 32. (That k = 5 has nothing to do with the fact that the distribution of 
five claims is being computed; this is a coincidence.) The claim count 
distribution is defined by setting M = 5, and making P be a vector with 
one element, (1). The severity distribution, S, is a vector of length 32 (= 
n), and L is set to 6.4, so each element of S covers a range of 0.2 (= 
6.4/32). Letting S be the uniform distribution on [O,l], gives: 

s= (0.2,0.2,0.2,0.2,0.2, o,o, . ..) 0). 

The output is a vector of length 32, AGG, a complete listing of which 
is given in Table 4. Since the sum of five claims, each no greater than 1, 
cannot exceed 5, only the first 25 elements of the output are nonzero. It is 
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TABLE 4 

AGGREGATE DISTRIBUTION FOR EXAMPLE I 
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straightforward to check that the result is the sum of five uniform distri- 
butions. (Recall that the A’ summarize the sums of unifoml distributions.) 
For example, the sum of the first five elements of the result is .008335, 
which (up to rounding error) is l/120, and this agrees with the theoretical 
sum. Similarly, the sums of the second through fifth sets of five elements 
are 26/120, 66/120, 26/120, and l/120. (Ambitious readers can check that 
the intermediate values are also correct. Feller ( I I, p. 271 gives the 
needed formulae.) 

The second example is more in line with distributions that arise in 
practice. In this example, k = 10, so II = 1,024. The claim count distribu- 
tion is negative binomial with mean 10 and variance 12. For input, M 
equals 0 and P is a vector of length 42, giving the probabilities of 0 
through 41 claims. Actually, for the probability of 4 1 claims the probabil- 
ity of 41 or more claims is used, so the total of the elements of P is 
exactly 1.0. The probability of there being 42 or more claims is less than 
IO-“‘, so including this in the probability of there being exactly 41 claims 
is not significant. The values of P are shown in Table 5. This distribution 
is shown in detail for the benefit of readers who want to reproduce this 
example. 

The severity distribution is a two-parameter Weibull distribution with 
mean $10,000 and coefficient of variation 8 (standard deviation divided 
by mean). The mean and coefficient of variation completely define the 
Weibull distribution. For the interested reader, note that the parameteriza- 
tion of the Weibull distribution used has distribution function 
Q) = , _ ,-WJ’ with h = 454.82609 and c = 0.2537 I. Any other severity 
distribution could be used in place of the Weibull, including lognormal, 
Pareto, or an empirical fit to data. Losses are capped at $250,000 per loss. 
An L of $ I ,000,OOO is chosen to be large enough to cover the highest 
values needed in the aggregate distribution. S is then a vector of length 
1,024 with each element covering a range of $1,000,000/1,024, or about 
$977. As losses are capped at $250,000, only the first 256 elements of S 
will be nonzero. 

To determine the values of S, a variant of a method of Venter [20, p. 
21) is used. S is to be a piecewise uniform approximation to the Weibull 
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TABLE 5 

CLAIM COUNT DISTRIBCII'ION FOK ExAhwx2 

6 

Proh;rhilttb ol(i~~cn 
Nunher of Cluirw 

I .(lOt(XSE.-4 

Y l57(17t-4 

O.(HJWJ 17s 

11.01 I7J28J 

0.f Jl4X17Y.5 

0.1 J4W~O.i I 

0.1J~~X276Xh 

o.o’~lo3Sxl 

0. I~JK10’1K~ 

0.i I61 12x1 

0. I I4 I7760 

0. IO37Y7X I 
o.cIx7’1!‘JsI 

O.(KYYIXJXX 

lJ.(,S74366 

o.oi73xo47 

0.(13511 I YX 

0.01 h?.33(lS 

(1.01(11 i2i.l 

0.00h0-&3Y7 

0.003475~x 

0.0IJ1Y~071 

o.(#Jlo3x1Y 

S.4IXZIE-3 

?.74673E--I 

I .?55OSE-4 

b.S I-WE-5 

3,lJSh1?7E-5 

I.J007YE-5 
h.?7Y4OlA 

2 75SYhE-6 

I. I XS.W-6 

5.00074E-7 

2.07101t:-7 

X.42h I7E-x 

?.370371~-x 

I .32hsIE-S 
5 I iX I E-‘J 

I .YhlKa-U 

7.37.x-10 

1.735li. IO 

I .S6OE- ItI 

(‘umulative lktrihulion 

I .OYXGL-I 

I .03WF-3 

0.004’) 17% 

0.l~lhlhfJI’~ 

0.040Yxx14 

O.OXSh7X1S 

0.15305531 

0.744YY I I? 

(1.7S309615 

0.16Y2089h 

O.SXiXhSh 

0.6X71X437 

0.775 174 IX 

O.X-tSO2SO6 

O.XY7JSO71 

O.Y347? 1 I Y 
O.OSYY71 I7 

0.0763062! 

O.OXhkw7h 

O.YY24X27.1 

o.YYsYsxo I 

O.YY7XXX7.3 

iLYW927” 

(I.YYY469O-l 

1).91)97437 I 

o.YYYx7Yzz 

0.9909443h 

O.YYY97JYl 

O.YYYYXXY.3 
o.YYoYYs2 I 

0.9YYYY7Y7 

ll.YWY9V IS 

O.YYY9YY65 

0.9YYYYYXh 

0.999YYYYJ 

O.YYY99YYX 

ll.OYYY9YYY 

I .OO~J(HJOO~1 

I .cmMKXKl 

I 00mGi’00 

I 1HJ0ooMJ0 

I .000(H)rN)o 
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distribution. To achieve this, pairs of consecutive elements (szi, s,; + ,) of S 
are chosen subject to two constraints: 

l over each interval 2i . ,b 
[ 

, (2i + 2). f 1 the integral of S and the inte- 

gral of the Weibull density are the same, and 

l over the same intervals the integral of the first moment distribution of 
S and the first moment distribution of the Weibull are the same. 

If RR and SS are the integral of the density function and the integral of 
the first moment distribution of the Weibull (or whatever distribution is 
being approximated) over the above interval then 

S?i f 1 = RR - S2i 

No properties of the Weibull are used in the formulae above; they 
apply to any distribution, including empirical distributions. 

When this method is applied in this particular case, the second element 
of S becomes negative. Thus, some additional fiddling is done on the first 
12 elements of S so that the two constraints are satisfied for these 12 
elements taken together, but not pair-wise. Selected values for S (includ- 
ing the first 12 elements) are shown in Table 6. Note in particular that the 
value of .007072 is the probability of the severity being in the interval 
$249,023 to $250,000 plus the probability of the severity being over 
$250,000. This latter probability has been spread over the interval. 

Selected values of the resulting aggregate distribution are shown in 
Table 7. Column (3) is selected elements of the vector AGG output by the 
algorithm. Each element, ti, of AGG is the (exact) integral of the density 
function for the aggregate distribution over the interval 

[ 
i. k, (i + 1) . t 1 . For the purpose of interpolating values between inte- 

gral multiples of L + n it is assumed that the density at each point in an 
L 

interval is ti + - 
i 1 

. Column (4) is the distribution function, 
n 
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TABLE 6 

Index High End of Range’” 
0 .FY77 
I I ,YS3 
7 2,Y30 
3 3.YO6 
4 4.xX3 
5 S,XSY 
6 6.X36 
7 7.813 
x X,7XY 
Y Y.766 

IO 10,712 
II 11.7lY 
I2 11,695 
I3 13,672 
14 14.648 
IS IS.625 
74 73,343 
75 73,219 
76 75.195 
77 76. I72 
78 77.148 

101 YY.609 
IO2 lOO.SX6 
IO3 IO I .S63 
123 I2 I ,OY4 
124 I-73 070 --, 
11s 13-3.047 
135 230.36’) 
‘36 33 I.445 
237 132,423 
253 238,047 
254 24Y.023 
355 250.000 
256 250,977 

I.073 I .ooo,ooo 

Probahilit, Di\trihution of’:! Single Claim 
Sjil Distribution 

0.7 I6463 0.7 I6463 
0.1 142x1 0.x3074.5 
0.0 I5000 0.x45745 
0.0 IS000 0.X6074.5 
0.0 I0000 0.x7073.5 
0.005000 0.x7574.5 
0.005000 0.880745 
0.005000 o.xxs74s 
0.003000 o.xxx74s 
0.003000 O.XY 173.5 
0.003000 O.XY474S 
0.003000 O.XY7745 
0.004750 O.YO14Y4 
0.004 I40 O.YO6634 
0.003xx3 0.Y 1 OS 1 x 
0.00344 I 0.‘) I.1955) 
0.00033 I O.Y734X5 
0.00032 I O.Y73XOh 
0.0003 I6 0.974 I22 
0.000307 O.Y7442Y 
0.000.30? O.Y74737 
0.000 IO3 O.YXO24Y 
0.000 I Y2 O.YXO440 
0.000 1 x7 0.08062X 
0.000 I.17 O.YX3X I Y 
0.000 I36 O.YX3YSS 
0.000 133 O.YX4OXX 
0.000( I-1 I O.YY22 I3 
0.00004 I O.YY7154 
0.000040 O.YY13Y4 
0.000035 O.YY2XY3 
0.000035 O.YY2Y2X 
0.007072 I .oooooo 
0.000000 I .oooooo 
0.000000 1 000000 

*Each range has width of about 977. 



Index 
(1) 

0 
I 
2 
3 
4 
s 
6 
7 

I7 

I3 

I4 

I.5 

74 

7.5 
76 

77 

7x 

123 

124 

12s 

1 so 

I.51 

I.52 

I.53 

IS4 

235 

236 

237 

253 

‘S3 

1.55 

256 

2x3 

%‘I 

2x5 

4 I Y 

420 

I .O?:! 

I.023 
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TABLE 7 

DISTRIBUTION OF AGGREGATE Loss AND FIRST MOMENT 
DISTRIBUTION FOR EXAMPLE 2 

First Moment Distribution 

High End of 
Range* 

(2) 
$Y77 

I .Ys3 

2,030 

3.YO6 

4.w 

S,XSY 

6,X36 

7.x I3 

12.6’)s 

Ii.672 

I4.643 

IS.625 

73.242 

74.2 10 

7S.lYS 

76.172 

77,14x 

I z I .OY3 

1’7.070 

123.047 

147,461 

14x.43x 

14Y.414 

I so.30 I 

IS I.367 

230.469 

23 I .us 

‘32,422 

24X.047 

24Y.0’3 

?x~,000 

2SO.Y77 

177.344 

278,320 

279,2Y7 

410.156 

411,133 
YYY.013 

I ,000,00(1 

ACG]il 
(3) 

O.OO?X I? 

0.010576 

0.02 I673 

0.03 I2 I4 

0.036 I?4 

0.0363SX 

0.033s IO 

0.02Y3 I? 

0.0135 I7 

0.0121.53 

0.0 I I327 

O.OlOY36 

0.003 I34 

0.0030x2 

0.00303 I 

0.0029x I 

0.002Y31 

0.00 IS53 

0.00 IS34 

0.00 IS IS 

0.00 I 13x 

0.00 I 17s 

0.00 I 1 Ii 

0.001 IO1 

0.00 IO00 

0.000520 

0.000s I6 

0.0005 I2 

0.000453 

O.OOO44Y 

0.000.507 

0.000x.30 

0.000836 

0.000x I3 

0.0007Y2 

0.0000Y7 

0.000096 

0.000000 

o.ooooao 

Distribution 

14) 
0.002x I? 

O.Oli3X7 

0.03506 I 

0.06617.5 

0. IO23YY 

O.I3X7SX 

0. I727hX 

0.20 I sxo 

02046.50 

0.306802 

0.3lXI2Y 

0.37YOhS 

0.69 I222 

O.hYJ304 

0.6Y7315 

0.7003 16 

0.70374x 

0.7YX766 

0.X00300 

0.X01X16 

0.x34470 

O.X3SSYS 

O.X367OY 

0.x37x IO 

0.x3x’)00 

O.XYYXXY 

0.900405 

0.900’) 16 

0.90x.5x’) 

O.YOYO3X 

O.YOYS46 

0.9 10376 

O.YJY7 I6 

0.0.50s30 

0,‘)s I317 

O.YXYYX.3 

o.YYooxo 

0,YYYYYfl 

0.Y90006 

X5 

L)en~itYF:‘: 

(5) 
I.373 

15.3Y2 

51.913 

I Oh.hXY 

151(.7.50 

lYS.1X4 

311.71’ 

214.6X7 

I6.5.00.5 

IhO. 

I60.3XX 

165.53’) 

22x.013 

2?7.2lY 

236.4 I x 

225.61 I 

x4.797 

I X7.3OY 

IXh.SlY 

185.732 

167.1X0 

166.3Y4 

165.X02 

165.114 

164.429 

I I Y .60X 

IlY.16X 

I IX.731 

I 12.035 

1 I I .63S 

126.x54 

707.Y73 

23 I .42 I 

‘35 0x0 --. 

720.846 

3’) ,907 

3Y .S46 

0.052 

0.05x 

Distribution** 

(6) 
I.372 

16.X65 

6Y.77X 

176.467 

33.5217 

.S3O.SOl 

743.213 

YS7.YOO 

I ,xX4.273 

2.044.4x’) 

‘33.X77 

2.370.4 16 

lh.lS4.Y7X 

16.3X2.197 
16.60X.6 IS 

Ih.X.34.226 

17.OSY.O7-3 

xl.306.213 

26.492.741 

26.67X.473 

3 I .076. I I3 

3 I .24?.606 

3 I .40x.40x 

3 I .s73322 

31.737.YSl 

43.0X6.466 

43.205.634 

43.374364 

45.166396 

4.5.27x.03 I 

45.404.5’)5 

45.6 I2.569 

ss.xY3.oxI 

56, I IO.061 

56.33Y.YOX 

6X.X2X.765 

6X,X6X.3 I2 

73.x04.42 I 

73.x04.479 
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f,, + t, + . . . + t,, i.e., the cumulative sum of Column (3). Column(4) readily 
gives the dollar amounts (frequently called c~c@~errce /e,~ls in the con- 
text of aggregate loss distributions) associated with given probability lev- 
els, and vice versa. For instance, the probability that aggregate losses will 
be less than or equal to $250,000 is 9 1 .O%~. By simple interpolation, it is 
seen that $75,000 corresponds to the 69.7% confidence level. Again 
through interpolation, the 80% confidence level is $ I2 1,879. 

The expected dollars of loss above and below given aggregate limits 
can be quickly determined. Suppose. lbr example. an insurer has pur- 
chased reinsurance that covers all loss amounts beyond a total of 
$250,000. That is, the insurer pays the first $250,000 of losses (which 
could be one claim or a number of claims), and the reinsurer pays any 
losses after the first $250,000. The insurer’s cxpccted loss is: 

where.f’(.\-) is the density function of the aggregate distribution. As Col- 
umns (5) and (6) in Table 7 will help calculate this integral, these col- 
umns are described next. 

Each entry in Column (5) is I .~,f’(.\-) tl\- over its interval. For instance, 
under the above assumption that the density function is a constant 
0.036358 + 976.5625 across the fifth interval, I .v,~‘(.v) r1.v over the fifth 
interval is 

(5,859.375)’ - (4,882.X 125)’ x 0.036358 
2 976..5625 

or 195.282. (This is slightly different from 195.284 shown in Column (5) 
because the Column (3) entry of 0.036358 is used in the above calcula- 
tion, while more significant digits were used in the calculation of Table 
7.) Column (6) is the cumulative sum of Column (5). Thus, Column (6) 
gives 
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where i is the index of the interval. 

Returning to the original question, if losses are capped at an aggregate 
of $250,000, Columns (6) and (4) show that expected losses are 
45,405 + 250,000 x [I - 0.9095461, or $68,019. 

The reinsurer is taking both occurrence and aggregate excess of 
$250,000, and total expected losses are $100,000 (10 expected claims 
times $10,000 expected loss per claim), so the reinsurer’s expected losses 
are $3 I ,98 1 ( 100,000 - 68,019). 

Generally, to compute expected losses for an insurer that retains a 
given amount per occurrence and retains a given aggregate, use a severity 
distribution capped at the per occurrence limit, compute the aggregate 
distribution, and compute the expected retained losses up to the aggregate 
limit as was just done above. 

The third example is a variation on the second example. The main 
purpose is to show how easy it is to use an arbitrary frequency distribu- 
tion in the algorithm. For this example, the above frequency distribution 
is modified to assume that there is a 90% probability that claims will 
follow the distribution in example 2, and an additional 10% probability 
there will be exactly 20 claims. The same S as above is used. The modi- 
fied P is shown in Table 8, and some of the output is given in Table 9. 

Note that the severity distribution, S, used in examples 2 and 3 is only 
an approximation to the Weibull distribution. Essentially, having to find a 
piecewise uniform function to approximate the true severity distribution, 
with each interval being the same size, L + n, means that S is not going to 
be precisely the same as the original continuous function. Since S is an 
approximation to the true severity distribution, the output is an approxi- 
mation to the true aggregate distribution. Comparisons of aggregate loss 
distributions computed using this algorithm to aggregate loss distributions 
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TABLE X 
CLAIM CO~JNT DISTKIIW’IWN FOR EXAMPLE 3 

Number oi 
Claims 

0 
I 
2 
3 
1 
5 
6 
7 
x 
Y 

IO 
II 
12 
Ii 
I-l 
IS 
I6 
17 

IX 

I Y 

20 

LI 

12 

23 

24 

2.5 

‘6 

27 

28 

79 

30 

31 

32 

i 3 

3-l 

3s 

36 

37 

3x 

2’) 

40 

-!I 

Probability of Given 
Number ot Claim\ 

Y.XXYOZE-s 
X.‘JlW>E-4 

0.003503x 

0.0101 IXSh 

O.O72%S I .i 

0.040’? 17x 

O.Ohl 11’J I7 

O.OXlY3~2.~ 

O.OY77Y45.3 

0.104.50 I?.? 

0. IO175Ot(4 

O.OYil I x03 

0.1)7’Jl1SXi 

O.Oh’7YlO7Y 

0.017 IX.30’~ 

0.1)33SS,42 

0.0?7 I77Y 

0.0 I Jh‘V)71 

0.00’l I IO3 
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0.l03l 2775 

0.00I 7.37hJ 
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S.65 I JOE-(1 
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13XKhE-7 

I .X630 I E-7 

7.5X35hE-8 

3.0334211-8 

l.lY37lEh 

.l.hX.?E-Y 

I .764SE-Y 

h.hihE- IO 

2.-lhlF-IO 

I .JodF.- IO 

C‘umulativc Distribution 
‘LXXYhili-5 
Y.13033-4 
I~.ow125hl 

1~.Ol4SJ417 

O.OlhXXY33 

!).077 I IOf,O 

0. IiX55’J7X 

l~.‘x~1Y~ol 

0 .I 177X654 

~l.J222XXOh 

I).5,5047’JO 

l).bl %Km3 

r)hYlhI 177 

0.7hO.S12.Sh 

o.xo77l15hS 

0.x4 I1SXO7 

o.xmY7sxh 

O.X7Xh7Xdl 

o.xx77Y)-Ixx 

~I.X~l323-M 
lr.o~Kvl2~ I 
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t l.‘FJOY7743 

(l.YYYY)4004 

O.‘J’)“)YWhY 

O.YOYYYX I7 

o.YoYYYY2~ 

~~.‘)‘)‘)0Y)‘wl4 

O.‘J’J’J’J’JOX? 

0 Y’JYYYYYS 

0 00’J’J’)‘FJx 
0 ‘J’JYYO~J~J~J 

I 0000001H~ 

I 000otHM~ 

I .00O00000 

I .0fI~HH)0~I0 

I .0I)0000ot~ 
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TABLE 9 

DISTRIBUTION OF AGGREGATE LOSSES FOR EXAMPLE 3 

89 

Probabilitv Distribution of Aggregate Losses 
Index High End of Ra& Distribution 

0 $971 0.002530 
1 1,953 0.012049 
2 2,930 0.031555 
3 3,906 0.059647 
4 4,883 0.092 I59 

82 8 1,055 0.684594 
X3 X2,03 1 0.68745 I 
84 83,008 0.690266 
85 X3.984 0.693039 
X6 84,961 0.695772 
87 85,938 0.698466 
xx 86,914 0.701121 
x9 87,X9 I 0.703738 

138 135,742 0.797823 
I39 136,719 0.799228 
140 137,695 0.8006 I 7 
141 138,672 0.801992 
142 139,648 0.803352 
256 250,971 0.898052 
257 25 1,953 0.899470 
25X 252,930 0.901529 
259 253,906 0.904046 
260 254,883 0.906734 
297 29 I ,O I6 0.948843 
298 29 I.992 0.94952 I 
299 292,969 0.9SOl87 
300 293,945 0.95084 I 
301 294,92 I 0.95 1482 
451 441,406 0.989829 
452 442,383 0.9899 I9 
453 443,359 0.990009 
454 444,336 0.990097 
455 445,313 0.990 I85 

1,021 998,047 0.99999 I 
I.022 999,023 0.99999 1 
1,023 I ,ooo,ooo 0.99999 I 

* Each range has a width of about 977. This table gives selected values of the aggregate 
distribution. 

AdG[i] 
0.002530 
0.0095 I8 
0.019506 
0.028093 
0.0325 I2 
0.002900 
0.002857 
0.0028 I5 
0.002773 
0.002733 
0.002694 
0.002655 
0.0026 I 7 
0.00 I420 
0.00 1405 
0.001390 
0.001375 
0.001360 
0.000847 
0.001418 
0.002059 
0.002517 
0.002688 
0.00069 I 
0.000679 
0.000666 
0.000654 
0.000642 
0.00009 I 
0.000090 
0.000089 
0.000088 
0.000087 
0.000000 
0.000000 
0.000000 
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computed using other methods indicate that the algorithm presented here 
gives very accurate answers. 

Apart from the need to use a severity distribution that is an approxima- 
tion to the true distribution, the algorithm here is precise in the following 
sense. Each element of the aggregate loss vector is the exact difference of 
the distribution function for the exact aggregate loss distribution over the 
interval that corresponds to the element. In particular. this algorithm is not 
subject to the convergence difficulties sometimes encountered in certain 
characteristic function methods when the probability of a maximum loss 
is high. Of course, there is some potential for rounding error, but most 
computer languages have a provision for doing calculations to at least 17 
decimal place accuracy, and as each element of the result (for n = 1,024; 
20 expected claims) is affected by about 100,000 calculations. the result 
should be accurate to at least 12 places. 

Note also, once Column (3) of Table 7 has been calculated, how 
simple and fast it is to calculate Columns (4). (S), and (6). Once AGG has 
been computed, there is very little computation time needed to determine 
confidence levels, expected losses subject to an aggregate, or expected 
losses excess of an aggregate. Also. since the entire aggregate loss distri- 
bution (up to some limit) is computed, the computation of any quantity 
that is related to the aggregate distribution (e.g.. expected sliding scale 
commission for a reinsurance contract) is straightforward and fast. 

Comprrtutional Considerutinns 

The computational time for this algorithm seems to be roughly propor- 
tional to the number of elements in the vector P that gives the probabili- 
ties of the claim counts. The minimum number of claims for which there 
is a nonzero probability also has some effect on the computing time. But, 
due to the binary exponentiation tactic, the added computing time in- 
creases only as the logarithm to the base 2 of the minimum claim count. 

Using APL 9 on a 386SX computer with 2 megabytes of RAM, this 
algorithm will run with k as high as 10. This makes the maximum length 
of certain vectors 2”) or 2,048. Using APL 9, adding memory will not 
allow higher values of k because all arrays active at any given moment 
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must fit in the workspace available in the first 640K of memory (and this 
is about 400K because the APL system occupies about 200K). 

It is likely that, compared to the computer programs presented in the 
appendices, the computations can be made more efficient in terms of the 
amount of memory used. References discuss computing the fast Fourier 
transform “in-place,” which would use less memory than the programs 
given in the appendices. APL II, or other languages, might allow higher 
values of k due to better use of memory above the first 640K. 

Increasing k by 1 roughly doubles the amount of memory needed, 
because the longest vectors double in length. Computational time is domi- 
nated by the time to compute the fast Fourier transforms, and this time 
increases by a factor of a bit more than 2 when k is increased by 1. See 
any of the references given above on the fast Fourier transform for a more 
precise discussion of the relationship between k and the time of computa- 
tion 

To capture the distribution of the sum of i claims for any i with 
nonzero probability in the claim count distribution, just capture the PY for 
that i from Step 9 of the main algorithm, given above. When using the 
same severity distribution but differing claim count distributions to com- 
pute several aggregate distributions, the following method might save 
some time. Capture all the distributions of the sum of exactly i claims that 
will IX needed (the PYs above), and then just apply the probabilities 
given by the several claim count distributions and add. This can be much 
faster than recomputing each aggregate distribution from scratch. 

Parameter Uncertainty 

Patrik and John [ 171 distinguish process risk from parameter risk in 
estimating the distribution of final actual results relative to the estimated 
results. Essentially, if the frequency and severity distributions used are the 
best estimates of these distributions, then the calculated aggregate distri- 
bution reflects the inherent process risk or process uncertainty. 

The extent to which the correct frequency and severity distributions are 
not known is termed parameter risk or parameter uncertainty. Some au- 
thors add specification error to the list of sources of potential difference 
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between actual and expected results. Spec~ijkution ctww refers to the fact 
that the model being used might not be appropriate. For instance, if it is 
known that the claim count distribution is Poisson, but the parameter of 
the Poisson distribution is not known exactly, then estimates of the aggre- 
gate distribution are subject to parameter uncertainty. If it is not known 
whether the claim count distribution is Poisson or some other distribution, 
then estimates are subject to specification error. Heckman and Meyers [2] 
discuss incorporation of parameter uncertainty into estimates of aggregate 
loss distributions. 

Parameter Uncertainty for the Cluim Count Distribution 

To reflect parameter uncertainty in the claim count distribution, one 
could proceed as follows. First, identify all claim count distributions that 
might apply, and assign to each claim count distribution the probability 
that it is the correct distribution. Then, for each claim count distribution 
(and using some severity distribution), compute the aggregate distribu- 
tion. Finally. take the weighted average of all these aggregate distribu- 
tions, according to the probabilities of the claim count distributions. The 
resulting aggregate distribution reflects the various claim count distribu- 
tions and the probabilities of those distributions. 

For example, one might estimate there is a 20% probability that the 
claim count distribution is Poisson with mean IO; there is a 50% probabil- 
ity that the claim count distribution is Poisson with mean 20; and there is 
a 30% probability that the claim count distribution is negative binomial 
with mean 15 and variance 30. (This is not necessarily a realistic exam- 
ple.) Then, for instance, the probability of total losses being less than $X 
in the combined aggregate distribution would be 20% of the probability 
of losses being less than $X in the aggregate distribution generated by the 
Poisson claim count distribution with mean 10, plus 50% of the corre- 
sponding probability resulting from the Poisson distribution with mean 
20, plus 30% of the corresponding probability from the negative binomial 
distribution with mean 15 and variance 30. 

Fortunately, there is a shortcut that makes it possible to compute the 
aggregate distribution that reflects the uncertainty regarding the claim 
count distribution without computing a great number of aggregate distri- 
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butions. Simply compute the weighted average of the claim count distri- 
butions, and then use this distribution in the computation of the aggregate 
loss distribution. For instance, using the above example, in the claim 
count distribution used as input to the main algorithm, the probability of i 
claims would be 0.2xf(i) + 0.5~ g(i) + 0.3x h(i), wheref, 8, and II are the 
probability density functions for the Poisson distribution with mean 10, 
the Poisson distribution with mean 20, and the negative binomial distribu- 
tion with mean 15 and variance 30. This combined distribution would be 
used as the claim count distribution in the algorithm to compute the 
aggregate loss distribution. 

Generally, one will select a family of claim count distributions, and 
associated probabilities, so that the mean of the combined claim count 
distribution will be the expected number of claims. The variance of the 
combined claim count distribution usually will be greater than the vari- 
ance of the best estimate claim count distribution. The effect of the com- 
bined claim count distribution on the variance of the new aggregate 
distribution can be computed by using the formula for the variance of the 
aggregate distribution: 

Here p,v and 0; are the mean and variance of the claim count distribu- 
tion and p,s and G: are the mean and variance of the severity distribution 
(Mayerson, Jones, and Bowers [ 18, p. 1791). 

A particularly simple situation results if it assumed that the possible 
claim count distributions are Poisson and that the parameters of these 
Poisson distributions are distributed according to a gamma distribution 
with mean h and variance (3’. In this case, the resulting overall claim 
count distribution will be negative binomial with mean h and variance 
h + c?. This is discussed in Beard, Pentiktiinen, and Pesonen [ 16. p. 401 
and in Heckman and Meyers [2]. 

As a practical matter, one frequently has a binomial, Poisson, or nega- 
tive binomial distribution as the best estimate of the claim count distribu- 
tion. To reflect parameter uncertainty in the claim count distribution used 
as input to the aggregate loss distribution algorithm, one might, where 
appropriate, simply use a claim count distribution with the same mean 



and a larger variance than the best estimate distribution. For instance, if 
one’s best estimate of the claim count distribution is Poisson with param- 
eter h then, to reflect parameter uncertainty. one might use a negative 
binomial distribution with mean h and variance Iargcr than h. 

The three families of claim count distributions mentioned above are 
related. For the Poisson distribution, the vuriancc and the mean are the 
same. The negative binomial has variance grcatcr than the mean. The 
binomial has variance less than the mean. The Poisson is a limiting case 
of the negative binomial in that, as the variance of the negative binomial 
approaches the mean, the negative binomial approaches the Poisson. The 
Poisson is also a limiting case of the binomial. 

In conclusion, parameter uncertainty for the claim count distribution 
can often be reflected in the computed a ggregatc loss distribution by 
choosing an appropriate claim count distribution with the same mean and 
larger variance than the best estimate distribution. This allows one to 
reflect parameter uncertainty while computin, (3 onlv one aggregate loss _ 
distribution. 

To retlect parameter uncertainty for the severity distribution. one can 

proceed in the manner first discussed for the claim count distribution. 
That is. delineate all the severity distributions that might apply: assign to 
each a probability; compute the aggregate distribution using each severity 
distribution; and combine all of these aggregate distributions according to 
the probabilities of the severity distributions. 

IJnfortunately, when estimating the effect on aggregate distributions of 
parameter uncertainty in the severity distribution there is no shortcut quite 
as efficient as the one for claim count distributions. That is. to reflect pa- 
rameter uncertainty for the severity distribution, it is not sufficient to use 
a severity distribution that is the combination of the various severity dis- 
tributions in the same way that it is possible to use a claim count distribu- 
tion that is the combination of the several claim count distributions. Later, 
it will be shown why this last statement is true, but methods of reflecting 
parameter uncertainty for the severity distribution will be covered first. 
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Some simplification in the reflection of parameter uncertainty for the 
severity distribution results if all the possible severity distributions are (or 
are assumed to be) multiples of some base distribution. More precisely. 
this assumption is that if F,] is the distribution function of the base sever- 
ity distribution, B, and if F, is the distribution function of any other 
severity distribution in the family, Y, then there is a constant, C, such that 
F, (c-t-) = F, (s). Normally, this is written B = cY; it follows that 
E(Y) = (I/C) E(B), and Var (Y) = (l/c’) Var (B). Let the constants c be 
distributed according to a probability distribution with distribution func- 
tion H and density function h. 

Let F,., be the distribution function of the aggregate distribution com- 
puted using the base severity distribution B (corresponding to F,,). Then 
the aggregate distribution reflecting parameter uncertainty. T. is given by 

T(x) = j FJc:\-) h(c) dc. 

If h has a form such that It(r) and r/z(r) are easily integrated over 
arbitrary intervals, and if F,, is piecewise linear, then T, above, is easily 
computed. For t in the interval [I,, ui] let F,,(f) = (1; + hir. Then 

ca II, /I 

; 

II, i\ 
= c I Ui I?((‘) d(’ + hi-r c’h(c’) ~(’ I . 

i = 0 I, /.I 1, /I 1 
As a practical matter, the sums above are not taken to infinity, but 

rather to a high enough value that sufficient accuracy is achieved. If h has 
been chosen so that the integrals are easy to compute, T is also easy to 
compute. 

Next is the demonstration, promised above, that to reflect the effect of 
parameter uncertainty in the severity distribution, it is not sufficient to 
simply use a severity distribution with a larger variance. To see this, 
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consider one way a simulation model could be used to estimate the aggre- 
gate distribution. Choose a claim count, II. at random from the claim 
count distribution, N. Then II times draw a random claim severity, Si, from 
the severity distribution, S. Compute s, + .x2 + . . . + x,~. This sum gives one 
“draw” from the aggregate distribution; that is. it gives one observation 
selected at random from the aggregate distribution. Repeat this process, 
i.e., make draws from the aggregate distribution, until the statistics of 
interest for the aggregate distribution are known with sufficient accuracy. 

There are two methods one might use to reflect parameter uncertainty 
for the severity distribution when performing the above simulation. The 
first method is to choose a severity distribution at random each time a 
severity is needed. Within a given draw. .Y, + , would potentially be drawn 
from a different distribution than the preceding J,. A second method is to 
fix a severity distribution each time an II is chosen from N. This one 
severity distribution is used for all .Y, in the sum s, + .P? + . . . + s,, corre- 
sponding to one draw. Then another 11 is selected from N, and another 
severity distribution, possibly different from the severity distribution used 
in the previous draw, is used, and the process continues. 

It is the second method that best reflects parameter uncertainty for the 
severity distribution. Under this method, only one severity distribution is 
used for each draw from the aggregate distribution. In contrast. under the 
first method, in many of the draws from the aggregate distribution, some 
claim amounts wili come from severity distributions with larger-than-av- 
erage means and some claim amounts will come from severity distribu- 
tions with smaller-than-average means. The effects of severity 
distributions with larger-than-average means and severity distributions 
with smaller-than-average means will tend to cancel each other to some 
degree. Thus, the first method will tend lo produce an aggregate distribu- 
tion with a smaller variance than is correct. Under the second method, 
each draw is influenced by only one severity distribution. 

The first simulation method corresponds to using a severity distribu- 
tion that is the composite of the family of severity distributions being 
used to reflect parameter uncertainty. It is the second simulation method, 
where each draw is influenced by only one severity distribution, that 
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corresponds to the methods discussed above for reflecting parameter un- 
certainty for the severity distribution, 

The first and second methods differ fundamentally in the indepen- 
dence assumptions among samples from the severity distribution. A more 
mathematical discussion of the differences between the two methods, 
including a more precise discussion of the difference in independence 
assumptions, is given in Appendix I. 

If a capped severity distribution is being used, e.g., losses are capped 
at $250,000 per claim, and if parameter uncertainty for the severity distri- 
bution is reflected using the method that assumes that all distributions are 
multiples of each other, then the loss cap becomes variable. In some 
cases, e.g., where the aggregate distribution of a self-insurance program 
with a given retention is being computed, it may not be appropriate to 
allow the loss cap to vary. There does not seem to be a simple way to 
reflect parameter uncertainty for the severity distribution in such a case. 

One approach is to increase the degree of parameter uncertainty re- 
flected in the claim count distribution to a level above that which would 
otherwise be used, and to not reflect parameter uncertainty in the severity 
distribution. This approach is not theoretically correct, but, as a practical 
matter, might be sufficiently accurate. Another approach is to let the cap 
be essentially variable, and perform tests to determine whether this signif- 
icantly distorts the results. Finally, and with the greatest accuracy, one can 
compute a number of aggregate distributions, each using a different se- 
verity distribution with the correct cap, and take the weighted average. 

The results of this subsection apply to all methods used to calculate 
aggregate loss distributions, not to just the algorithm presented herein. 
The main results of this subsection appear to be well known, but have not 
previously appeared directly in actuarial literature. Schumi (21, 221 has 
presented material similar to this result. Bear and Nemlick (231 present 
the result in terms of the negative binomial distribution. 
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Suppose a claim count distribution, a severity distribution, and the 
corresponding aggregate distribution are specified, In regard to the sever- 
ity distribution. suppose further that the probability of any given claim 
being excess of a given attachment point 11 is (x. Suppose it is desired to 
compute the aggregate distribution l’or claims excess of ,4 (this A has 
nothing to do with the vector of spreads A used previously). For example, 
the aggregate distribution might be based on a Poisson claim count distri- 
bution with parameter 1.000 (i.e., the number of expected claims is 1,000) 
and a Weibull severity distribution with mean ri; 10.000 and coefficient of 
variation 8. If A is $100,000 then o! is 0.0 197. 

One way to compute the excess aggregate distribution (the aggregate 
distribution for the amount of claims excess of A per claim) is to keep the 
same claim count distribution (e.g., Poisson with parameter 1,000 in the 
example) and adjust the severity distribution so that claims less than A 
become 0 and claims. X, greater than or equal to A become .\- - it. This 
gives a severity distribution that generally assighs 21 Iargc probability, 
namely I - CI, to claims being exactly 0. 

Another way is to work directly with the excess claim count and 
severity distributions. The excess claim count distribution is the distribu- 
tion of the number of excess claims (the distribution of the number of 
claims exceeding A). The excess severity distribution is the claim severity 
distribution for the amount of individual claims excess of A. given that a 
claim is excess. 

The main purpose of this subsection is to note that, for certain claim 
count distributions. the excess claim count distribution is easily deter- 
mined. Assume the claim count distribution is binomial, Poisson. or nega- 
tive binomial. respectively, with mean h and variance CT’. Suppose the 
probability of a given claim being excess of the attachment point A is cx. 
Then the excess claim count distribution is binomial, Poisson. or negative 
binomial, respectively, with mean cxh and variance aL t- a’(o’ - h). 

The excess severity distribution is easy to determine if the total distri- 
bution and the attachment point are known. Suppose the severity distribu- 
tion has distribution function F. and the attachment point for excess 
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claims is A. Then the excess severity distribution has distribution func- 
tion, H, defined by: 

H(sr) = &I- + A) - F(A) __-~ , f0r.r 2 0. 
I - F(A) 

That is, the portion of the severity distribution function below A is elimi- 
nated, and the remaining distribution is resealed so that H(0) is 0 and H(X) 
has limit 1 as .Y tends to infinity. 

In the example, the excess claim count distribution is Poisson with 
parameter 19.7 (= 0.0197 x 1,000). The excess severity distribution is the 
above Weibull distribution restricted to claims exceeding $100,000. In 
particular, the probability of a claim being 0 is 0 (not 0.9803). 

It should be clear that the excess severity distribution is as claimed 
above. Appendix J has a proof that the excess claim count distribution is 
as claimed. An interesting open problem is to find other claim count 
distributions for which the excess claim count distribution is of the same 
form as the original claim count distribution, or the excess claim count 
distribution is otherwise easy to compute. 

For readers familiar with the notation in Heckman and Meyers, recall 
that they parameterize claim count distributions with 3c and C. In their 
method, the parameters for the excess claim count distribution are 
ah and C. 

The above formulae for the mean and variance of the excess claim 
count distribution hold only if the parameters of the severity distribution 
are known with certainty. Venter provided the following formulas for the 
mean and variance of the excess claim count distribution N when o! is 
uncertainly known: 

E(N) = hE(cx) , 

Var (N) = hE(cx) + (0’ - ~)E(cL)~ + ((T’ + h’ - h)Var (a) 

Proofs are as follows: 

E(N I cx) = ah, so E(N) = E(E(N I a)) = hE(a). 
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Var(NIcx) = ah + c?(cc - A) . so 

Var (N) = E(Var (N I CX)) + Vitr (E(N I a)) 

= hE(a) + (CT’ -- h)E(&) + h’Var ((x) 

= hE(a) + (& - h)]Var (a) + E(a)‘] + h%ar (a) 

= hE(a) + (CT’ - h)E(c~)~ t (a-‘ + A’ - k)Var (a) . 

These formulae are useful either if (y. varies from WC claim to the next 
(for example. if the excess distribution is for a set of reinsurance contracts 
with attachment points that vary by contract). or if it is desired to retlect 
parameter uncertainty with regard to CI. 
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APPENDIX A 

COMPLEXNUMBERS 

This is a brief summary of the properties of complex numbers used 
earlier. More extensive treatments are in Baase [3, p.2791, and Aho, Hop- 
craft, and Ullman [4, p. 252J. 

In this Appendix, i is 6. Given two complex numbers, n + hi and 
c + di, their sum, difference, product, and quotient are given as: 

(a + hi) + (c + di) = (a + c) + (b + d)i 

(a + hi) - (c + di) = (a - c) + (b - d)i 

(a + hi) x (c + di) = (UC - hd) + (ad + bc)i 

(a + hi) + (c + di) = [(ac + bd) - (ad -bc)i ] 

The complex conjugate of a + hi is a - hi, sometimes denoted 
(a + hi)*. 

A number o is a primitive nrlr root of uniry if w” = 1 and 0’ # 1 for any 
positivej less than 11. If w is a primitive nth root of unity, then: 

mj*=l+wi 

0 for j not a multiple of 12 
n for j a multiple of n 

Let F be the n x n matrix with entries Fjk = oik. This matrix F plays a 
key role in the discrete Fourier transform (DFT). F’ is: 

r n 0 0 . . . 0 0 
000 On 
000 n 0 

OOn 00 
-OnO...OO 
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Appendix B shows why this makes the inverse of the DFT so simple. 
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APPENDIX B 

CONVOLUTION EXAMPLE 

This Appendix provides an example of the use of the convolution 
theorem to compute the sum of two severity distributions. Two vectors 
are used to represent severity distributions, and the convolution of these 
vectors represents the sum of the two severity distributions. 

The first severity distribution. V, has probability ‘?/Is of a claim amount 
of $0, probability ‘/IO of a claim amount of $100, probability r/2() of a 
claim amount of $200, and probability V?o of a claim amount of $300. 
The second severity distribution, V, has probability %‘s of a claim amount 
of $0, probability ‘/Is of a claim amount of $100, probability ~/IO of a claim 
amount of $200, and probability ~/IO of a claim amount of $300. These 
are represented as vectors as follows: 

v = [%, 1/10, h, %o, 0, 0, 0, 01, 

v = [-!A, ‘45, ‘/lo, l/II), 0, 0, 0, 01 . 

These representations have been padded with zeroes to the right so 
that no-wrap convolutions can be computed. (They are not what is used in 
the body of the paper for the main algorithm. These representations are 
being used only to give an example of the use of the convolution theo- 
rem.) 

As V and V are vectors of length 8, o must be a primitive eighth root 
of unity. Let o be cos(n/4) + i sin (z/4). This o can also be written 
“‘+G. 
2 2 

I or, approximately, 0.70710678 10 + 0.70710678 IOi. (Here i is 

fi.) The matrix F, with entries ojn- forj, k from 0 to 7, is: 
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r 1 I 1 1 1 1 1 1 
1 o/cl i o/n2 -1 %3 -i %4 
1 i-1 -i 1 i-l -i 
1 %2 -i %l -1 o/c4 i %3 
1 -1 1 -1 1 -1 1 -1 
1 %3 i%4-I %#I -iCG2 
1 -i-l i 1 -i-l i 
1 %4 -i %13 -I %2 i % 1 

where c/r I is 
v2 +‘\12. v2 v2, 

%2 is - 
V2 

6 fi.2 
2’ ’ 2 

+ 2’ * ‘//3is- - 
2 

v2 i 
2 

, and 

%4 is 
2-2 

I . These are o, CJ?, w’. and o’, respectively. 

The convolution theorem states that 

V*V = INVDFT(DFf(V) x DFf( V) 1 

where DFT is the discrete Fourier transform. and INVDFT is the inverse 
DFT. 

The discrete Fourier transform of V is the matrix product F,V where 
V is treated as a column vector. Thus DFT(V), or F.V . is approximately: 

[ 1 .O, .835355339 1 + ,1560660 172i. .75OOOOUOOO + .OSOOOO~X~OOOi, 
.7646446610 + .0560660 172Oi, .7000000000. .76464466 10 - .0560660 172Oi, 
.7500000000 - .05000000000i, .835355339 1 - .1560660172iJ 

Similarly, DFT( V), or F.V , is approximately: 

[ 1 .O, .6707 10678 1 f .3 I2 1320343i. .SOOOOOOOOO + . 1 OOOOOOOOOi, 
~52928932 19 + . 1 12 13203431, .4000000000, .5292X932 19 -. 1 12 I320343i, 
.5000000000- .1OOOOOOOOOi, .6707106781 - .3121320343il. 
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DFT( V) x DFT( V) is 

[ 1 .O, .5 115685425 + .3654 163056i, .3700000000 + . I OOOOOOOOOi, 
.3984314575 + .1154163056i, .2800000000, .3984314575 -.1154163056i, 
.3700000000 - .1OOOOOOOOOi, .5 115685425 - .3654163056i]. 

For example, the second element of the vector just above is .5 115685425 
+ .3654 163056i, which is 

(A35355339 1 + .1560660172i) x (.6707 10678 1 + .3 12 1320343i). 

To compute the inverse DFT of DFf(V) x DFT(V), one first computes 
the DFT of DFT(V) x DFT(V); divides each term of the result by 8; and 
inverts the order of the last seven terms. The DFT of DFT(V) x DFT(V), 
or F. (DFT(V) x DFT(V) ) , is 

[3.840000000,0.0, .0400000000, .0800000000, .2000000000, 
1.040000000, 1.040000000, 1.760000000]. 

Dividing by 8 gives 

[0.480,0.0,0.005,0.010,0.025,0.130,0.130,0.220]. 

Reversing the order of the last 7 terms gives 

[0.480,0.220,0.130,0.130,0.025,0.010,0.005,0.0]. 

Thus, for the sum of the distributions V and V there is a probability of 
0.480 of a total claim amount of $0, a probability of 0.220 of a total claim 
amount of $100, a probability of 0.130 of a total claim amount of $200, 
etc. This can be readily verified by direct computation of these probabili- 
ties. 

This subsection will justify the method used above to compute the 
inverse DFT. Suppose we have computed DFT(W), which is F.W, for 
some vector W. Then DFI’(DFT(W)) is F. (F.W). Matrix multiplication is 



associative, so this is the same as (F. F) W or F’ W. But F’ (for the 
example above) is 

8 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 x 
0 0 0 0 0 0 8 0 
0 0 0 0 0 8 0 0 
0 0 0 0 x 0 0 0 
0 0 0 x 0 0 0 0 
0 0 8 0 0 0 0 0 

-0 8 0 0 0 0 0 0 

This is just 8 times the matrix R: 

1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 I 
0 0 0 0 0 0 I 0 
0 0 0 0 0 I 0 0 
0 0 0 0 I 0 0 0 
0 0 0 I 0 0 0 0 
0 0 1 0 0 0 0 0 

-0 1 0 0 0 0 0 0 

This matrix reverses the order 01‘ the last seven clcmen~x ol‘ any vector 
to which it is applied. 

Thus F’ W is just 8 times W with the last \cven terms reversed. 
Dividing by 8 and reversing the last seven terms rcstorca W. 

Alternatively. F -’ is just (l/x) x R x F, where R is the matrix of’ 1 s and 
OS above. 



AGGREGATE LOSS DISTRIRI~TIONS 109 

APPENDIX C 

THE FAST FOURIER TRANSFORM AND INVERSE 

The fast Fourier transform is presented by Baase [3, p. 2731 as fol- 
lows’. Using a language similar to Modula-2 and Pascal: 
Input: The It-vector P = bo, p,, . . . . I?,, _ ,). where II = 2’ 

for some k > 0. 

Output: transfiwm, the discrete Fourier transform of P. 

We assume that omegu is an array containing the rlth 
roots of 1: w “, 03, . . . . Lo (” “)- ‘. z x is a permutation on 
,!(I, 1, . . . . II - 1’ (described below). 

procedure FFT (P: RealAwa)!; II: integer; 
var trunsfiwm: Complex Array); 

var 

begin 

1: integer; (the level number} 
~ZNI?I: inte,qcr;{ the number of values to be computed at 

each node at level 1 ) 
t: integer; (the index in trunsform for the first of 

these values for a particular node) 
,j: illteger; {counts off the pairs of values to be 

computed for that node ) 
m: integer; (used to pick out the correct entry from 

omcgga 1 

end 

for t : = 0 to n - 2 by 2 do 
transform [I] : = p[q(t)] + p[7Lk(t + l)]; 
transform [t + I] : = p[n,(t)] - p[7ck(t + l)] 

(fort ); 

( The main computation ) 
m := n/2; num := 2; 

( Begin triply-nested loop ) 
for/:=k-2toOby-1 do 

2 Reprinted with permission of the publisher. 
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m := m/2; nuns := 2*num: 
for t := 0 to (2’ - I)/wH by mnl do 
for ,j := 0 to (nunz/2)- I do 

.vPOdd := ornega[ rt?j]“t,.ccn.~~fi,,-Fni[ t+nun?/2+j]: 
tran.sform[t + nrrd2 +,j]:= trui7.~fiwn7(t +,j] - .vPOdd; 
tr.arujhn[ t + j] := trtrnsfiwn~[ t + ,j] + .\-POdd; 

end ( for j ) 
end ( for t ) 

(end of body of outer for loop } 
end ( for 1 ] 

end ( FFT } 

Now, what is xx? Let t be an integer between 0 and II - I, where 
II = 2&. Then t can be represented in binary by [h,, h,...h, _ ,I, where each hj 
is 0 or I. Let I‘~v~ (t) be the number represented by these bits in reverse 
order, i.e., by [h, - ,... h, h,,,. Then 7~: I (t) = t.e\sx (c). (As an example, 
IQ (3) = 6 because 01 I reversed is I IO.) 

The inverse fast Fourier transform is computed as follows. Apply the 
regular (forward) fast Fourier transform to the vector. Divide each ele- 
ment of the result by II. Reverse the order of the last II - 1 elements (i.e., 
the first element stays in place and the order of the other elements is 
reversed). 

Baase gives further discussion of the fast Fourier transform, including 
some analysis of the number of computations needed. 
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APPENDIX D 

APL PROGRAMS FOR FFI- AND INVFFT ALGORITHMS 

This Appendix contains the functions FFI and INVFFT’. Before run- 
ning these, INIT must be run to initialize certain global variables. FFI 
and INVFFI do not modify these global variables, so INIT needs to be 
run only when the global variables have to be changed. INIT calls 
INITOMEGA and INITPIK, also listed here. 

All the APL functions presented in this paper assume 17 IO has been 
set to zero. 

Complex vectors of length IZ are represented as two-by-n arrays; e.g., 
the vector ((I + hi, c + di, . ..) is represented by: 

FFT: 

101 R+FFT P;Z;INDX;INDXPl;Tl;T2;M;NUM;L; 
OMIND 

111 R REFERENCE SARA BAA%, COMPUTER 
ALGORITHMS, P 273 FF 

I21 c1 ASSUMES YOU HAVE RUN INIT 
[3] A INPUT IS P PER BAASE, N PER BAASE IS 

GLOBAL VARIABLE 
[4] FI OUTPUT IS TRANSFORM PER BAASE 
[5] R+INITR 
[6] R[;INDXE]+P[;PIK[INDXE]]+P[;PIK[INDXO]I 
[7] R[;INDXO]*P[;PIK[INDXE]]-P[;PIK[INDXO]] 
181 A NOW HAVE INITIALIZED R (= TRANSFORM) 
[9] M+LO.S+N+2 0 NUM+2 0 L+-K-2 

[lo] LLOOP:Mc10.5+M+2 0 NUM‘-10.5+2xNUM 
[ll] T~+,B(LNUM+~)~.+NUMXLN+NUM 
[12] Tl‘-T2+NUM+2 
[13] OMIND+(N+Z)pMxtN+ZxM 
(141 2+(2,N+2)p( ,-fOMEGA[;OMIND]xR[;Tl]), 

,+fOMEGA[;OMIND]xeR[;Tl] 
[15] R[;Tl]+R[;T2]-2 0 R[;T2]+R[;T2]+2 

+(LzO)pLLOOP 

INVFFT: 

[0] RtINVFFT X 
[l] RtFFT X 
[2] R[;INVINDX]+@R[;INVINDX] A REVERSE 

ORDER OF LAST N-l ELEMENTS 
[3] R+R+N 



I12 

INIT: 

LOI 
;:; 
[31 
[41 

# 
[71 
[81 
tg1 

(101 

INIT KK 
K+KK 
N+LO.!i+i?*K 
010+-o 
INITOMEGA K 
INITPIK K 
INITRt(2,N)pO 
INDXE*2xLN+2 
INDXO+-INDXE+l 
INVINDX+l+LN-1 
TAIL+(N+2)+tN+2 

INITOMEGA: 

01 INITOMEGA K 

:; 
N+L0.5+2*K 
OMEGA+-(2,N+2)pO(LN+2)X2+N 

31 OMEGA[O;]+2OOMEGA[o;] 
41 OMEGA[l;]+lOOMEGA[l;] 

:; 
OMEGA2+(2,N+l)p~(tN+l)~2+2~N 
OMEGA2[0;]'2OOMEGA2[0;] 

71 OMEGA2[l;]'lOOMEGA2[1;] 

INITPIK: 

[0] INITPIK K;N 
[l] N+lO.!i+2*K 
[21 PIK+2le((Kp2)~tN) 
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APPENDIX E 

PROOF THAT A’ * S’ IS THE DISTRIBUTION OF i CLAIMS 

This Appendix gives a proof sketch that A’ * S’ is the probability dis- 
tribution of the sum of exactly i claims. More precisely, it shows that if 
A’, S’, II. and L are defined as in the main body of this paper, and X is the 
probability distribution of exactly i claims, then the probability that X is 

between ,jn[:)and (j+ l)x[i]is(A’*S’)[j]. 

Consider first the case where L = II and S = (1, 0, 0, . . . . 0). This makes 
S a uniform distribution on the unit interval [0, Il. In this case the first H 
terms of A’ * S’ are: 

af,,al,, a;, . . . cr:,-, . 

Let F’ be the distribution function for the sum of i mutually indepen- 
dent random variables uniformly distributed over [0, I]. Let 
hj = F’ (j + 1) - F’ 0). It needs to shown that a.1 = hi . 

Combining equation 9.1 and Theorem 1 of Section I.9 of Feller [ 11, p. 
271, 

where 2+ is ? ifs 2 0 and .Y+ is zero ifs < 0. This yields: 

.i 

/7; = f, c (-1)” i + I 

( 1 

(; + 1 - ,‘)’ 
. 1’ = 0 \’ 

because if ,j < i + 1 then (j + 1 - v)+ is zero for terms with \I >.j , and if 

,j > i + 1 then is zero for 1’ > i + 1. 



113 AGGREGATE LOSS I)ISl‘KII~lJ-IONS 

It is easy to see that ~1, = hi, = I/i! for i > I, and ‘1: = h: = 0 forj 2 1. 
To complete the proof that 0; = L$ it suffices to show that the h) satisfy the 
recursion relation used to define the l/i. 

To this end, for i > 1 andj > 0 consider: 

It needs to be shown that 3 equals /$ This is done by plugging into the 
above formula the expression for hi as a sum, and rearranging terms: 

i!z=(i-j)(i-l)!k$It+(j+l)(i-l)!hj-’ 

.i- 1 
=(i-j)C(-1)’ 0 i (,j-z)‘-‘+(j+ t)i(-l)\’ 0 r, ( ,j + 1 - \v)‘- ’ 

T = 0 1’ = 0 

=c;-j)~(~I,‘~-’ 
( i 
,‘i , 0’ + I - 1’)’ - ’ t 

,’ = 0 

(j+ 1) i(- i 
0 

(j+ I - I’)‘-- 
\’ ,‘=o 

=(j+ l)(l)(l)(j+ l)‘-‘+ 

i[(-l)(i-j)( ;,;,)+(,;+,)(~,)I(-l)~~(;+,-,,);-~ 
I’= I 

=(-l)(J i:, 1 fj+ 1 -of+ 
L 1 

CL ’ ~l)t~+(i_+ l)(i+ 1-v) (i+ 1) ! 
i+ 1 i+l I( 1’ ! (i + 1 - 1%) ! I 

(-1)“ o‘+ 1 - )?>‘- ’ 

\‘=I 
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=(-‘)” ii l ( 1 
(j+l-O)‘+~(j+h.) i+l 

( ! 
(-l)“(j+ 1 - v)j-’ 1’ \‘= I 

=$-I)~( y ’ )(i+ 1 -1’)j. 

Thus , z = /$ . This establishes the main result for this case. 

For the general case, consider the positive “quadrant” of [w’, i.e, the 
points (X0, St, . . . . Si _ ,) such that each ,~~j is greater than or equal to zero. 
Divide this space into cubes with edge length L + n in the obvious way. 
Assign a density to each cube as follows. If the cube’s 

vertex closest to the origin is 
.( 

L L L 
v(),~ l’[J2> ...7 \‘j- 1,2 

-1 
* assign a density of 

( S,,(, s,, S,‘, . . . s,., _ , ) f L ’ - 
t 1 n 

where the s,,* are elements of the vector rep- 

resenting the severity distribution if \lk I II - 1, and s,.~ = 0 if \jk 2 n , As 
i 

the volume of every cube is !C 
(1 

, the integral of this density over the 
n 

cube is s,.~~ s,., s,~ . . . s,,, ,. Now consider the integral of these densities 

between the parallel (i - I)-planes: 

x0+x, + . . . +I,_,=~~, and 

x0 + x, + , . . + sj-I=(k+ l)f;. 

This integral is the probability that the sum of i claims will have a 

value between k” and (k + 1) 4. 



This is also the ,41h tern1 of A’ * S’, as will now be shown. The nr”’ 
element of S’ is the sum of all .Y/,, x .v,, x . . x s,, , such that 

,jo +,j, + .._ +,j, , = HI . For instance. if i is 3, .si is: 

.s2”crso + .Y,rs~“o + <So.S,).S~ + s, s,.s,, + .s,.so\ / + .A(,.\ ,.\ ’ = is;.s, + 3s,,s;. 

Each of the cubes associated with the I~,“’ element of S’ (under the inverse 
of the above association of cubes with densities) has its vertex closest to 

the origin on the plane .I-~, + . . . + .\; , = 171 ,f . Each cube also has its vertex 

farthest from the origin on the plant (nr + i)t. The planes *‘/II.” “I?? + I ,” 

. . . . “W + i" divide each of these cubes into the proportions given by the A’. 
Getting back to the planes “h-” and “X+1”, considering all the cubes that 
have some portion between these two plants, the integral of the density 
between these two planes is (A’ 4: S’ ) [ICI The probability that the sum of 
the i distributions will be between X and X +I is given by the same inte- 
gral. This establishes the overall result. 
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APPENDIX F 

PACKING AND UNPACKING 

This Appendix provides the formulae for packing and unpacking 
transformed vectors. This treatment essentially follows that of Press, 
Flannery, Teukolsky, and Vetterling [6, p. 3981. APL programs to imple- 
ment these routines are in Appendix G. 

Unpacking a transformed vector is discussed first. Assume that one 
starts with a real (untransformed) vector, U, of length 211 and packs it into 
a complex vector. PU, of length n, as discussed in the main body of the 
paper. Then the FFf is applied to PU to obtain a vector PH that is the 
packed transformation of PU. The next step is to unpack PH to obtain the 
FFT of ZJ. 

The result of unpacking PH will be a complex vector of length II + 1. 
One might think the result would be a complex vector of length 2n since 
the goal is to obtain the FFT of U which is of length 217. If R is the (length 
217 for the moment) FFT of U, then: 

where * denotes complex conjugation. Thus, from the first II + 1 terms (0 
to 77) it is easy to derive the remaining terms of R. 

Append to the end of PH the first element of PH, making PH a 
complex vector of length II + I. Let PH2 be the complex conjugate of the 
“reverse” of PH; i.e., PH2ljj = PH[rl - j]* for 0 <j I II . Define PH3 by: 

PH3[j] = -i(PHlj] - PH2[j]) x co.‘, 

where i is fiand w is a 2nrh root of unity (such that o? is the ,rth root of 
unity used in the FFT’). Finally, R is half the sum of PH, PH2, and PH3. 
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The steps for packing a transformed vector R (of length n+l ). to ready 
it for application of the inverse F’FT, arc almost the same steps as for 
unpacking. Let R2 be the complex conjugate of the “reverse” of R. De- 
fine R3 by: 

R3Ljl = i(Rl.il - R2[jl) x 01 '. 

where i and o are as immediately above. The final result is the first n 
terms of half the sum of R, R2, and R3. 
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APPENDIX G 

APLROUTINESFORPACKINGANDUNPACKING 

UNPACK: 

RtUNPACK H;H2;H3 
R UNPACKS TRANSFORMED DATA. ASSUMES X 

IS THE RESULT OF 
FI APPLYING THE FFT TO A LENGTH 2N REAL 

VECTOR WHICH HAD BEEN 
R PACKED INTO A 2xN COMPLEX ARRAY. 
R RESULT IS A 2 X N+l ARRAY 

H2[1;]+-H2[1;] 
H3+H-H2 
I$L;5N+1)p(,-fH3xOMEGA2),,+fH3xeOMEGA2 

H3;1.]+-H3[1.] 
R+O.;xH+H2+H: 

R+PACK X;X2;X3 
R PACKS TRANSFORMED VARIABLE 
x2ex 
X2[1;]+-X2[1; 
X3+X-X2 
;;+~;~""'"L 

+ 
X3[0;]+-X3[0; 
;+Oi5xX+X2+X3 

e -1 1R 

1 
+fX3xOMEGA2),,- 

1 

fOMEGA2xeX3 

119 

OMEGA2 (the 2nth roots of unity) is generated by INIT and 
INITOMEGA in Appendix D. 
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APPENDIX H 

APL FUNCTIONS FOR THE ('OMI'I.t3‘k< Al.GORITHM 

This Appendix gives an APL function, AGGDISTR, that implements 
the full algorithm. AGGDISTR calls a number of subroutines. The sub- 
routines FFT and INVFFT are listed in Appendis D. and the subroutines 
PACK and UNPACK arc listed in Appendix G. The only other subroutine 
needed is MULT, listed below. Before running AGGDISTR it is necessary 
to run INIT, which sets certain global variables. INIT calls INITOMEGA 
and INITPIK; these three programs are given in Appendix D. 

AGGDISTR: 

[0] AGGDISTR;M;M2;P;S;PSl;PSI;PZERO;FSl; 
FSI;AI;I;BIN;FSIFLAG;X;J;Y;PY;FAI;FY 

t:; 
OIO+O 
R ---- 

131 'Input the smallest number of claims 
with non-zero probability,' 

t2 IMr' 

E M+" 
la1 :(;M~O)A(M=~O.~+M))~SKIP~ R M must be a 

non-negative integer. 
191 ‘M, ‘,(*Ml,’ 

integer. 
is not a non-negative 
Stopped.' 

K +O SKIPl:' ' 
1121 'Input densities of claim fre uency 

distribution. These shoul s 
iI31 'be the probabilities of M, M+l, M+2, 

1141 ' (**- 
claims.' 

0 
:;;(pP)#l)v(P[O]+O))pSKIP2 0 FI IF ONLY 

ONE NUMBER IS INPUT AND IT IS ZERO, 
THEN EXIT. 

1171 'Only one number was input, and it is ' 
,(mP),'. Stopped.' 

SKIP2:' ' 
'Input vector for severity distribu- 

tion. Must be of length ',(mN),'.' 
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(231 

r241 

251 
261 
271 
281 
291 
301 
311 

t::; 
[361 
[371 

+((pS)=N)pSKIP3 0 R IF S IS NOT OF 
LENGTH N, THEN EXIT. 

'Length of S is ',(apS),'. Should be ' 
,(mN),'. Stopped.' 

-10 
SKIP3:' ' 
F\ ---- 
AGGc(2,N)pO 
PSl+Q(N,2)pS,(NpO) 0 F1 'PACK' S. 
St0 0 R FREE UP SPACE 
PZEROc0 0 R INITIALIZE - WILL BE RESET 

IF M=O. 
n ---- 
FI T;I3;>;ASES ARE CONSIDERED, M=O, M=l, 

-+(M=O)pME&l 
+(M=l)pMEQl 
+(M>l)pMGTl 
MEQO:PZEROtP[O] 0 P+,llP 0 Mel 

R CONVERT TO CASE M=l 
MEQl:M2+pP 
AGG+P[O]xPSI 
+(M2=1)pENDIT 
FSltUNPACK FFT PSl 
PSI+INVFFT PACK FSl MULT FSl 
PSI[;TAIL]+O 
AI+ 0.5 0.5 0 I+2 0 PSl+0 
-MAINLOOP 
Q ---- 
R ---- 
MGTl: A START BINARY POWER TRICK. 

BIN*,ll((l+L2@M)p2)TM A EXPRESS M AS 
BINARY VECTOR. DROP FIRST TERM 

FSIcFSlWNPACK F!?T PSl 
BINLOOP:FSI+FSI MULT FSI 0 PSIcINVFFT 

PACK FSI 0 PSI[;TAIL]+O 
'BINLOOP ',(caBIN),' ',sOTS 
+((ltBIN)=O)pSKIP 
FSI+UNPACK FFT PSI 0 FSI+FSI MULT FSl 0 

PSI+INVFFT PACK FSI 0 PSI[;TAIL]+O 
SKIP:BINc,llBIN 0 +(O=pBIN)pEXIT 
FSIcUNPACK FFT PSI 
+BINLOOP 
EXIT: R THIS IS THE EXIT FROM THE 

BINARY POWER TRICK. 
&q D-v- 
AI+,1 0 1~1 A SET AI, INDEX 
ALO;;:;+I+l 0 AI~(l+I)x(@AI)+AI+(l+~I)x 

+(I<MjpALOOP 
M2+- l+M+(pP) 0 PSl+O 
A --mm 
fq ---- 
MAINLOOP:'MAINLOOP ',(*I),' ',TUTS 
FSIFLAG+O 
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+(I'lOO)pBETA 
R IF HERE, WANT TO CONVOLUTE AI WITH 

PSI WITHOUT FFT'S 
X+Nf,BPSI 
J+O 0 Y+O 
LOOPB:Y+Y+AI[J]xX 
JtJ+l 0 +((J>I-l)v(J>N-1))pENDLOOPB 
X+0, -11X A DROP LAST ELEMENT OF X, ADD 

A ZERO TO THE FRONT. 
+LOOPB 
ENDLOOPB:PY+B(N,Z)pY,NpO 0 X+Y+O 
*GAMMA 
R s--v 
BETA:FAI+UNPACK FFTQ(N,2)p(NfAI,NpO), 

NPO 
FSIFLAG+l 
FSI+UNPACK FFT PSI 
FYcFSI MULT FAI 
PYtINVFFT PACK FY 
PY(;TAIL]+O 0 FY*0 
R --we 
GAMMA:AGG+AGG+P[I-M]xPY 0 PY+O 
I+I+l 0 +(I>M2)pENDIT 
A -v-e 
+(FSIFLAG=l)pSKIP4 
FSItUNPACK FFT PSI 
SKIP4:FSIcFSI MULT FSl 
PSI+INVFFT PACK FSI 
PSI[;TAIL]+O 
R ---- 
AI+(~~I)x(@AI)+AI+(~+LI)~AI,O 
+MAINLOOP 
ENDIT:UTS 0 AGG+Nf,@AGG 
AGG[O]+AGG[O]+PZERO 
r , 
I*** REMEMBER, RESULT IS IN AGG. ***' 
, I 

[0] Z+X MULT Y 
(11 z+(pX)g(,-SXxY),,+fXxeY 
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APPENDIX I 

PARAMETER UNCERTAINTY FOR THE SEVERITY DISTRIBUTION 

We will show mathematically that it is fundamentally impossible to 
reflect parameter uncertainty for the severity distribution by computing 
the aggregate distribution using a severity distribution with a larger vari- 
ance than the best-estimate severity distribution. This discussion is based 
on suggestions by Venter. 

Parameter uncertainty for the severity distribution is reflected by 
choosing a distribution u with mean 1 and variance greater than 0, and 
computing the aggregate distribution: 

AGG = US, + US, + . . . + a&. 

Here AGG, S;, and T are the aggregate distribution, the severity distri- 
bution, and the claim count distribution, defined earlier. The above equa- 
tion is written to indicate that one sample from T is associated with one 
sample from u and multiple samples from S. The above equation could 
also be written 

AGG = a(Sl + S2 + . . . + S,) . 

A general fact about variance (for arbitrary/independent distributions 
X and Y) that will be used is: 

Var(XY) = Var(X) Var(Y) + (E(X))2 Var(Y) + (E(Y))* Var(X). (1.1) 

Also, recall that 

Var (S, + S, + . . . + ST) = l+Gs* + lts2& (1.2) 

Here pr and ps are the means of the claim count and severity distribu- 
tions, and 0: and 0: are the variances of the respective distributions. 

Set 

X=U, Y=S,+S,+...+S,, and XY=AGG 

and substitute in equation I. 1 above. This gives 
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Var (AGG) = Var (a) Var (S, + S, + . . . + S,-) + 
(E(a))’ Var(S, + S, + . . . S,) + (E(S, + Sz + . . . + S,))-) Var(u). 

Denote Var(u) by 0: , note that E(S, + S1 + . . . + S,) is p7+t5 , recall that 
E(U) is I, and substitute using equation I.2 to obtain 

Dividing by ( p7. p,, )’ gives a formula for the square of the coefficient 
of variation for the aggregate distribution: 

Var (AGG) 

( t-b Its 1’ 
= ( , + o; ) (1.3) 

Now consider what happens as the mean of the claim count distribu- 
tion, i.e., the expected number of claims. increases towards infinity. For 
the moment, assume there is no parameter uncertainty for the claim count 

2 
distribution. The term L0$ tends to zero as p7. increases. If the claim 

I \ 
count distribution is Poisson, or is negative binomial with a fixed “proba- 

bility of success” parameter, then the term 
0;. 

l-2 
also tends to zero. (If the 

negative binomial is parameterized so the density function is 

f(.r) = 
i 1 

?’ + ::‘- 1 p’ (1 -p>“ with J > 0 and 0 < p < I, then p is the proba- 

bility of success parameter.) 

Thus, for any fixed severity distribution, the limit of the square of the 
coefficient of variation of the aggregate distribution, as p, goes to infinity, 
is equal to 0:. In a practical sense, this means that. as the expected 
number of claims becomes large, the effect of the claim count distribution 
and the severity distribution on the coefficient of variation of the aggre- 
gate distribution becomes minimal. The coefficient of variation of the 
aggregate distribution is determined by the parameter uncertainty for the 
severity distribution. 
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In particular, this shows that there is a fundamental difference between 
the effect on the aggregate distribution of parameter uncertainty in the 
severity distribution and the effect of using a severity distribution with a 
greater variance. If a severity distribution, S’, with a larger variance is 
substituted for the best-estimate severity distribution, S, and 
AGG = S’, + S’, + . . . + S’,- is computed (this is the same as setting a to a 
constant I), then as p7. goes to infinity, the coefficient of variation of the 
aggregate distribution tends to zero, and not to some positive value as 
above. 

The two approaches differ in the independence assumptions regarding 
the samples from the severity distribution. If the severity distribution is 
diffused, then each draw from the severity distribution is a combination of 
an independent draw from the best-estimate severity distribution and an 
independent draw from the distribution used to reflect parameter uncer- 
tainty for the severity distribution. Under the correct method of reflecting 
parameter uncertainty, each draw is still an independent draw from the 
severity distribution, but there is only one draw from the distribution 
reflecting parameter uncertainty for each draw from the claim count dis- 
tribution. 

Equation I.3 shows that diffusing the severity distribution is not an 
adequate method for the recognition of parameter uncertainty for the 
severity distribution. Equation I.3 can also show the effect of parameter 
uncertainty for the claim count distribution, and the remainder of this 
appendix gives a brief discussion of that effect. 

Apart from one quick comment at the end, only one method of repre- 
senting parameter uncertainty for the claim count distribution will be 
considered here. It will be assumed that the best-estimate claim count 
distribution is Poisson with parameter h. That is, the best-estimate claim 
count distribution, N. has probability density function 

p (/y = ,y ) A) = 3L’ e-A 
.r ! . 

Parameter uncertainty is incorporated by assuming that h follows a 
gamma distribution, denoted A, with probability function 
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Above, I- is the gamma function and h and (’ arc parameters. The distribu- 
tion A has mean hc and variance /?c. The parameter h is the scale param- 
eter because changing h by some factor has the eff‘cct of’ multiplying the 
distribution uniformly by that same factor. The parameter (’ is the shape 
parameter. 

Straightforward computations show that the claim count distribution, 
T, that results from compounding the Poisson distribution with the 
gamma distribution is a negative binomial distribution with probability 
function: 

Here h and c are the parameters from the gamma distribution. This nega- 
tive binomial distribution has mean /x, and variance (hc)(h+I ). Thus 

One way to reflect a constant degree of parameter uncertainty in the 
claim count distribution while increasing the mean is to allow h to in- 
crease but to hold c constant. This maintains a constant percentage of 
uncertainty regarding the mean of the claim count distribution. In the 

0,; 
Equation 1.3, the term piu;, tends to zero as u, increases (as it did above). 

But now the term Of 
cl 

tends to a positive limit. namely I/C,. Thus, Equation 

I.3 shows that the coefficient of variation of the aggregate distribution has 
a component due to the parameter uncertainty in the claim count distribu- 
tion that does not drop below a certain minimum no matter how large the 
mean of the claim count distribution becomes. 
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A little more generally, as p7. goes to infinity, the limit of the square of 
the coefficient of variation of the aggregate distribution is 

The severity distribution and the best-estimate claim count distribution 
have no effect on this limit. This limit depends only on the amount of pa- 
rameter uncertainty reflected in each of these distributions. 
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APPENDIX J 

PROOFS OF FORMULAE FOR EXCESS ~‘LAIM COUNT 
DISTRIBLITIONS 

This appendix proves that if ;I claim count dislrihution is binomial, 
Poisson, or negative binomial, with mean h and vsriancc 0’. and the 
probability of a claim being excess of some attachment point is (x, then 
the excess claim count distribution is binomial, Poisson. or negative bino- 
mial, respectively, with mean ah and variance c13L + tx’(o’ - h). For each 
of the three types of claim count distributions. it is shown that the selec- 
tion of claim counts from the given distribution with mean h and variance 
&, followed by selection of excess claims with probability a (under a 
binomial process) gives a distribution of the same type with mean ah and 
variance ct3L + c1’((3’ - A). 

The Poisson case is considered first. Here h = CT’ . so & will not 
appear. The total distribution will he T and the exct’ss distribution will be 
X. For the total distribution: 

P(T= I) = ; c,-‘. 

Given I claims in the total distribution, the distribution of excess claims 
is: 

P(X=xIT=r)= 

P(X = .Y) is the sum over all I of P(T = f) x P(X = .\- I T = f) ; i.e., 

P(X =.\-) = 2 ;’ 8’ .; 
l I 

cr’(l -(x1’-‘. 
,=\ . 

Letting i = t - .I- so f = s + i this becomes: 

p(x = -\.) = 2 h’+,’ e-?’ .t-: i 
;=(, 0 + I)! i 1 

a’ ( I - of. 
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This is a “ground up” computation of the claim count distribution for 
aggregate claims. The starting point was the distribution of total claims, 
T, and then excess claims were selected according to a binomial process 
to get the distribution of excess claims. 

It is necessary to show that this sum is m~,y! WY ,-a% . 

But: 

e -ah ,-h +h -ah = ,-A ,h( I- a) = ,-h. h’ ( I - a)’ 
c---- i! 
i = 0 

j a-rht -ah m kv ki 

.r! e 

= 
c 

,-A (.s+i)! 
_y!Ta- 

r 

;=,)(.\.+iY . 
(1 -a)' 

as was to be shown. 

Now much the same is done for the negative binomial. According to 
Hastings and Peacock [24, p. 921, the negative binomial has density func- 
tion: 

p( y = \‘) = .Y + J - I 

4 1 

fq” 
)’ 

where x and p are parameters and q = 1 -p. This distribution has mean 
.q/p and variance q/p*. If parameters .Y and p result in a mean of h and a 
variance of CT’, then parameters of s and p/O, + a - q) result in mean ah 
and variance ah + CI”(& - IL). Let T be the total claim count distribution, 
and let Y be the excess claim count distribution. Then: 
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P(Y=yIT=t)= 

where i + J was substituted for I to get from the next-to-last equation to 
the last equation. 

It is necessary to show that the right-hand side of this ccluation is equal 
to: 

which is the density function for the negative binomial with the parame- 
ters for the excess distribution. 

Now note that the Maclaurin series for I/( I - 1)” is given by: 

Substitute (I = .y + .v and 3 = ( 1 - p)( I - a) = q( I - a) to get 
1 -z=p+a-ap and: 

Multiply the left-hand side of the above equation by: 
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K= pW$(s+?‘- I)! 
(I - l)! yi 

(i + y)! 
and multiply the right-hand side by K --- 

(I +y)! ’ 
rearrange, and obtain: 

(,y+;-l)[p&L+ )‘(,-:;yl& ] 

as was to be shown. 

Finally, consider the binomial. According to Hastings and Peacock 
[24, p. 361, the binomial has density function: 

P(X = x) = 
( 1 

: p-r y” - .‘, 

where n and p are parameters and q = 1 - p. This distribution has mean ?rp 
and variance qq. If parameters iz and p result in a mean of h and a vari- 
ance of o’, then parameters of II and crl, result in mean ah and variance 
ah + a’(& - h). As above, let T be the total claim count distribution, and 
let X be the excess claim count distribution. Then: 

P(X=.\-IT=r)= f a’(1 -@-’ . 
0 .\’ 
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Let t = .v + i, so: 

It is necessary to show that the right-hand side of the above equation is 
equal to: 

” ( 1 (txp).’ (1 - Cx/?)“- ’ . 
.x 

Begin with an equality due to the binomial thcorcm: 

( 1 - ap,“I:’ = ” -.I p’ ( 1 - a)’ ( , - ,T)” -.’ 
(17 -x)! c 

I=,, i! (17 -.v- i)! (I -p)' ' 

Multiply the left side by K = “! f!‘“’ and the right side by K. (.v + i)! 

rearrange to get: (.t- + i)! and 

I, - .\ 
j=(, (.\-+i)! (::!-.r-i)! /“/“(I -I’)“- ‘--I ‘:.~ir” c cl’ ( 1 - a)’ 

or: 
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which completes the proof. 
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AN ANALYSIS OF EXCESS LOSS DEVELOPMENT 

EMANUEL PINTO AND DANIEL F. GOGOL 

DISCUSSION BY ROBERT A. BEAR 

Me.s.st~.s. Pinto und Gogol IKIIYJ mudc u ~wl~rahlt~ cwntt-ihution 
to uctlrurial 1iter.utur.e through their unu1~se.s of’ industry e-l-- 
cc.s.s loss development puttc~r-ns. Bused upon upplication of u 
thcoreticul model to industt.? dutu, the ul4thor.s hcov cwl\,it~r,- 
ins!\’ demonstruted that puid urld ir7crrrrcd loss umi ALAE de- 
velopment putterns incr-euse sigm~i:cuntlv us the retentiotl 
inc3wase.s. This is due to the phenomenon thut tlrr selwitv dis- 
tribution becomes thicker-tailed us claims mutwe. This relqitw* 
psesents a gener-ulixtiori of the Pinto-Gngol f~wmuiu thut 
shorz’s hoM1 the authors methodolo~qy cun hc uppliea’ to csti- 
mate ac’c.ount-spec’ifil. de~v~lopmerlt puttern.s,fiw reIuti\‘cIy high 
e..yi~ess lqers. 

This reviewer would like to thank Kurt A. Reichle for encouraging him to 
write this discussion. and Daniel F. GopI for his helpful \uggcstions. 

1. INTRODUCTION 

Messrs. Pinto and Gogol [ I] have made a valuable contribution to 
actuarial literature through their analyses of industry excess incurred loss 
development patterns. They have convincingly demonstrated that in- 
curred loss and allocated loss adjustment expense (ALAE) development 
increases significantly as the retention increases. The same is likely to be 
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true of paid loss and ALAE development, as the following argument 
shows. 

The authors note that estimates of paid excess loss development fac- 
tors can be computed by multiplying each incurred excess loss develop- 
ment factor by the quotient of the paid-to-reported ratios for the later and 
earlier valuations. The paid-to-reported ratios are simply ratios of excess 
paid losses and ALAE to excess incurred losses and ALAE. These ratios 
are computed at all valuations for a representative retention, since the 
authors found that they do not vary substantially as a function of the 
retention. Thus, paid excess loss development factors may be expressed 
as the product of incurred excess loss development factors (which in- 
crease with the retention) and a quantity which does not vary substantially 
with the retention. This implies that paid loss and ALAE development 
factors can be expected to increase significantly as the retention increases. 
Thus, the retention should be appropriately reflected in the estimation of 
discounted excess losses using paid development factors. 

2. COMMENTSONTHEUNDERLYINGMODEL 

The function 4’ = a~’ was used by the authors to fit excess develop- 
ment factors as a function of the retention, based on Insurance Services 
Office (ISO) data. Basic properties of the underlying Single Parameter 
Pareto (SPP) severity distribution [2] are summarized in Appendix A. As 
the retention, x, was normalized through division by $10,000, the parame- 
ter a represents the factor for development excess of $10,000. The incre- 
mental factors, a - 1, are then fitted to the inverse power function y = CX” 
as recommended by Sherman [3]. The inverse power function is used for 
interpolation and to yield tail factors for development beyond 99 months. 
The use of this same functional form to extrapolate h-parameters beyond 
99 months appears to have been based on goodness-of-fit tests rather than 
on theoretical considerations, because the parameter h represents the de- 
cline in the SPP q-parameter between the valuations underlying the age- 
to-age factor. 

Philbrick [2] and Reichle and Yonkunas [4] noted that the tails of 
fitted SPP severity distributions are thicker than the tails of empirical 
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casualty loss distributions at very large loss sizes. This implies that empir- 
ical average claim sizes in excess of high retentions will be less than 
those implied by the SPP distribution. Fits to more recent IS0 data led 
Bear and Nemlick [5] to conclude that the SPP q-parameter varies with 
the truncation point used in the fitting procedure. This increase in the 
estimated y-parameter as a function of the truncation point supports the 
earlier findings of Philbrick and Reichle-Yonkunas. Pinto and Gogol note 
that the impact of this error will be reduced by using a ratio to estimate a 
development factor if the error is of comparable magnitude in the numer- 
ator and denominator. 

Bear and Nemlick found that if the truncation point used in the fitting 
procedure is less than SO% of the attachment point for a particular analy- 
sis, the errors due to the redundant estimates of excess severities from the 
SPP distribution become unacceptably large. They used development tri- 
angles of SPP parameter estimates to derive the shape parameter q at 
various stages of development and to project ultimate estimates of this 
parameter by class of business and truncation point. For the casualty 
classes of business analyzed, their fits of more recent IS0 data confirmed 
the result noted by Philbrick and Reichle-Yonkunas; i.e., the q-parameter 
tends to decline as a function of the stage of development. This implies 
that the severity distribution becomes thicker-tailed as claims mature. 
(See Appendix A.) This is also confirmed by the t‘~\ct that the h-parame- 
ters estimated by Pinto and Gogol were positive. 

3. ESTIMATING ACCOIINT-SPECIFIC DEVELOPMENT 

The authors concentrated on the estimation of industry loss develop- 
ment patterns for unbounded layers (with losses capped by policy limits), 
and suggested a reasonable approach for estimating industry incurred loss 
development patterns for reinsurance layers. This same approach can be 
applied to industry paid loss development patterns for unbounded layers 
to estimate paid loss development patterns for reinsurance layers. 

This reviewer observes that the basic Pinto-Gogol formula for compu- 
tation of industry loss development factors for unbounded layers as a 
function of the retention can be applied in large account primary pricing 
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and in account-specific reinsurance pricing. This formula can also be 
applied to estimate account-specific development patterns for reinsurance 
layers and for large account primary excess layers. 

A generalization of the Pinto-Gogol formula is presented below and 
proven in Appendix B. This generalization permits one to estimate the 
account-specific development pattern for a relatively high layer as a func- 
tion of the development pattern for a lower layer, assuming the ratios of 
the gross limit to the retention for both layers are equal. 

Let d represent the incurred loss development factor from valuation i 
to valuation j for losses in the layer from k, to k,. Assume the SPP 
distribution is an appropriate severity model for claims in excess of k,. 
Let yi and yi represent the estimated values of the SPP parameter based on 
claims at valuations i and j, respectively, and let c = y; - yj. Then the 
incurred loss development factor from valuation i to valuationj for losses 
in the layer from IC, to x2 is given by 

dc” , 

where c = I!’ 2 1 
4 

and 
-2 _ k, - =b. 
xl - k, 

This result also holds for unbounded layers (i.e., k2 and x2 are infinite) 
if the SPP parameters exceed one. If qj represents the projected value of 4, 
the SPP parameter for fully developed claims, this result may be used to 
estimate age-to-ultimate development factors. 

The SPP parameters can be estimated from account-specific data in 
large account primary pricing and in reinsurance pricing. The parameters 
estimated from account-specific data can be credibility weighted with 
parameters estimated from industry data ([4],[6]). 



A key assumption in the above proposition is that the ratio of the gross 
limit to the retention (in reinsurance pricing). or self-insured retention (in 
primary pricing), arc equal for both layers: 

h= -=x1 .\-, 
.\-, x; 

Thus, one would want to select Ic, to be sufficiently high so that the 
SPP distribution is an appropriate severity model for claims in excess of 
k,. On the other hand. one would want to select k, to bc sufficiently low 
so that credible development patterns can be estimated for a layer in 
excess of k, . One would select X, so that 

where b = .\-,/.I-, . 

The proposition could then be applied to estimate the development 
pattern for a relatively high layer (where the account-specific data are not 
sufficiently credible) from the development pattern of a relatively low 
layer (where the account-specific data arc more credible). 

For example, suppose that the SPP parameter for a particular account 
and line of business after 24 months has been estimated to be 1.25, and 
the projected value of this parameter for fully mature claims is 1.10. 
These parameters have been estimated based on the account’s claims in 
excess of $100,000. The incurred loss development factor from 24 
months to ultimate, for the layer from $100,000 to $300,000, has been 
estimated to be 3.5 based upon the account’s historical development pat- 
tern. The development factor from 24 months to ultimate for the layer 
from $200,000 to $600,000 is given by 

3.5 (2.0).15 = 3.88. 

Note that d= 3.5, c = 200,000/100,000 = 2.0, c = I.25 - 1. IO = .lS, 
and h = 600,000/200,000 = 300,000/ 100,000 = 3. In fact, the gross limit 
for the lower layer was selected to be three times the retention of 
$100,000 because this is the ratio of the gross limit to the retention for the 
layer for which we wished to estimate the development pattern. 
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Development patterns for layers with retentions in excess of $200,000 
(more than twice the $lOO,OOO truncation point used in estimating the 
SPP parameters) could be estimated with reasonable confidence using this 
procedure, if one had reason to believe the SPP parameters remained 
relatively stable as higher truncation points were used in the fitting proce- 
dure. (Recall that errors arising from this source may be reduced by using 
a ratio to estimate a development factor.) 

Finally, it should be noted that paid loss development factors for 
bounded layers may be estimated by applying the Pinto-Gogol approach 
of multiplying each incurred loss development factor by the quotient of 
the paid-to-reported ratios for the later and earlier valuations. This re- 
viewer suggests that the paid-to-reported ratios be estimated for the par- 
ticular layer of interest (or at least for a similar layer), but possibly from a 
broader data source than was used to estimate the incurred loss develop- 
ment factors. 

4. SUMMARY 

Based upon application of a theoretical model to industry data, the 
authors have convincingly demonstrated that paid and incurred loss and 
ALAE development patterns increase significantly as the retention in- 
creases. This is due to the phenomenon (confirmed by recent IS0 casu- 
alty data) that the severity distribution becomes thicker-tailed as claims 
mature. The proposition presented above shows how the Pinto-Gogol 
methodology can be applied to estimate account-specific development 
patterns for relatively high excess layers. 
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APPENDIX A 

SINGLE PARAMETER PARETO SEVERITY DISTRIBUTION 

1. MODEL DEFINITION* 

Assume ground-up loss occurrences, W, above the truncation point, k, 
are distributed according to the following cumulative distribution func- 
tion: 

where k > 0, (I> 0, M’ 2 k . 

Note that 

Let Y = W - k represent the occurrence size excess of k. 

Then 

, wherey20. 

Thus, occurrence losses excess of the truncation point k are distributed 
according to the two-parameter shifted Pareto distribution, with scale 
parameter equal to k and shape parameter equal to y [5]. 

If we “normalize” the losses W (which are all greater than or equal to 
k) by dividing each loss by the truncation point k, we have the well- 
known Single Parameter Pareto (SPP) severity distribution [2]: 

F(:) zz ] - !; = ] - :-‘I 

where Z= W/k2 I andq>O. 

* Using standard statistical notation, capital letters in this appendix are used IO represent 
random variables. Lower case represents actual values. 
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As F(L) represents the proportion of normalized occurrence losses 
which are less than or equal to :, G(Z) = I - F(Z) = 15’ represents the 
proportion of normalized losses which exceed :. Let II, represent the 
expected number of claims in excess of k at valuation i, and let W, repre- 
sent the expected number of claims in excess of .I- at valuation i. Let c 
represent the normalized value of .v, C’ = .\-1X. Because CC’ represents the 
proportion of normalized losses which exceed c’. (.-‘I is also the proportion 
of claims in excess of k which are also larger than .Y. Then I??; = H,c.-” is the 
expected number of claims in excess of .V at valuation i, given that II, 
claims are expected to be in excess of k at valuation i. 

For example, the proportion of claims excess of $SOO.OOO that also 
exceed $l,OOO,OOO is c-” = 2-’ = 0.25 if 

y = 2 (c = 1,000.(100/500,000 = 2). 

Thus, if 12~ = 400 claims are expected to exceed $SOO,OOO at the third val- 
uation, then rn3 = or+-” = 400(0.25) = 100 claims are expected to exceed 
$l,OOO,OOO at the third valuation. Note that if y = 1 .S, then C.-Y= 0.354. 
The proportion c -y becomes 0.5 if .q = 1, and 0.707 if y = 0.5. Thus, the 
proportion of claims in excess of $X)0,000 that also exceed $l,OOO,OOO 
increases as the y-parameter declines. Thus, the tail of the SPP distribu- 
tion is thicker for lower values of the y-parameter. 

3. MEAN SEVERITIES 

The formula for the average ground-up unlimited claim which exceeds 
x, is given in [2]: 

ify> 1. 

The average unlimited claim in excess of .I-, is given by 
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where s represents the expected value of Y = W - x, and W 2 s, . 

The formula for the average ground-up claim which exceeds X, but is 
limited to s2 is given in [2]: 

and s,(l+ln(h)), if q=I, 

where h=.~~/,r, and In(h) represents the natural logarithm of h. The for- 
mula for the average claim in the layer from I, to .I-~ (total losses in the 
layer divided by the number of claims in excess of .y,) is given by 

ifq#I, and 

s = s, ((I + In(h) ) - I) =x, In(h), if q = 1, where h =.Y~/.Y, . 

Note that s represents the expected value of Y = W - x,, where Y is 
capped by the layer limit s, -x, and Y 2 0 . 

For example, the average claim in the layer from $500,000 to 
$1 ,OOO,OOO is calculated as follows, assuming q = 2: 

since h = 1,000,000/500,000 = 2. 

If q = I .5, then s is similarly calculated to be $292,893. 

If q = I, then s = (500,000)(ln(2)) = $346,574. 

If q = 0.5, then 

s = (500,000) 
21 -0.5 _ 1 

L 1 I -.5 
= $414,214. 

This example illustrates the property of the SPP distribution that 
lower values of the q-parameter are associated with higher mean severi- 
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ties. This is because the distribution becomes thicker-tailed (more proba- 
bility in excess of any large value) as the q-parameter declines. 

For casualty classes of business. the r/-parameter tends to decline as a 
function of the stage of development (121. [4I. IS]). This implies that 
casualty severity distributions tend to becomc thicker-tailed as claims 
mature, and so the average claim in any layer (where the SPP distribution 
is an appropriate model) will increase as claims mature. 
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APPENDIX B 

PROOF OF PROPOSITION 

The proof of the proposition is based upon estimating the incurred 
losses in a layer as the product of the expected number of claims above 
the retention and the average claim in the layer. The incurred loss devel- 
opment factors for both the relatively low and high layers are computed 
as ratios of layer incurred losses at the appropriate valuations. Simple 
algebra leads to the formula in the proposition when one assumes that the 
ratios of the gross limit to the retention for both layers are equal. 

Recall that the SPP distribution is assumed to be an appropriate sever- 
ity model for claims in excess of k,. If 11; represents the expected number 
of claims in excess of k, at valuation i, then ~1; = II;c.-~~ represents the 
expected number of claims in excess of s, at valuation i, where c =.r,/k,. 
The average claim in the layer from .v] to s? (total losses in the layer 
divided by the number of claims in excess of s, ) at valuation i is given by 

where h = X/X,. 

The formulas for m; and s; follow from the properties of the SPP 
distribution and are proven in Appendix A. 

Incurred losses in the layer from X, to-r, at valuation i are given by 
mj si . Similarly, incurred losses in the layer from the retention X, to the 
gross limit .r2 at va1uation.j are given by “l~~j , where nZj = /I.~c,-Y~ and 

h’ - ‘/, - 1 sj = .YI 
t-~-- 1 l-4, ’ ifqjf 1. 

(Note that 1Z.j represents the expected number of claims in excess of k, at 
valuationj, and nrj represents the expected number of claims in excess of 
.v, at valuationj.) 
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The incurred loss development factor from valuation i to valuation j 
for losses in the layer from .v, to .v? is given by 

t?j (I - C/i) (h’ - “’ - 1 ) 
f$= jF(, -q-)(hl-‘,,- 1) 

: 

f.c’t-c’,. 

,‘I I .I I 
Recall that x~/.v, =kJk, = h and ~=.~,/li,. If (‘= I then .\-, =k, and 
.t; = k, = hk,. The formula forf’then yields the incurred loss development 
factor from valuation i to valuation j for losses in the layer from k, to k2, 
which is denoted d: 

J’Z(jX 
“5 ( 1 - q,) (h’ ~- “j - 1 ) 

n; (1 - yj) (h’ -(‘I - 1 ) . 

Hence, the formula for the incurred loss development factor from valua- 
tion i to valuationj for losses in the layer from .Y, to I: simplifies to 

f’= dc $4, Cl/: - - dc”. 

ifq,#l and y,+l. 

If j represents the valuation at which claims are fully developed, then 
‘Ij = q and f‘ represents the development factor from valuation i to ulti- 
mate. 

In the case of unbounded layers (i.e., P2 and .t-? are infinite), nz, and nrj 
do not change but Si and “j are as given below (see Appendix A): 

Xl 
s, = 

y;-1’ 
if q, > I. 

.t-, 
and Sj = --~~ , if y, > 1. 

Y,- ’ 

ThenJ’is given by 



EXCESS LOSS DEVELOPMENT 147 

Ifc=l,thens,=k,andso 

f=d= njc?;- ‘1 
fl; c4j- ‘1 . 

This implies that the incurred loss development factor from valuation i 
to valuation j for losses in the unbounded layer above s, is given by 

f= &Yi - 4, = &.‘, 

where d is the incurred loss development factor from valuation i to valua- 
tion j for losses in the unbounded layer above k,, c = s,/k,, and the SPP 
parameters are assumed to exceed one. 

For bounded layers with qi = qj = 1, the averages of the claims in the 
layer from X, tos, at valuations i and j (si and Sj) are as follows (see 
Appendix A): 

.si = Sj = St In(h), where h = x2/s,. 

The expected numbers of claims in excess of s, at valuations i and ,j are 
given respectively by 

m; = n;(.-’ and mj = nj<*-‘. 

This implies that 

mj ‘i _ 9 f=--- 
tili Si tli * 

However, the averages of the claims in the layer from k, to k, at valua- 
tions i and j (t; and rj) are given by 

t; = tj = k, In(h), where h = k/k,. 
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This implies that the development factor tl for the layer from k, to k, 
is given by 

II- t 
tf= I’= 

II, 

‘1, t, Iti 

Hence, f= d, which is in agreement with the I’ormula in the proposi- 
tion due to the unchanging q-parameter. 

If qi f 1 and qj = I, then the averages of the claims in the layer from 
the retention .t-, to the gross limit .\-? L *it valuations i and ,j are proven in 
Appendix A to be 

11’ “I - 1 ,y = \’ 
I I 

! :I 1 - q, * 

and s, = .\-, In(h) 

The incurred loss development factor from valuation i to valuation ,i for 
losses in the layer from .v, to ,vl is given by 

.f’= 
m, s, 11, In(h) II 

I 
I-“,- I)/(1 -q,) 1 

(.(I, ‘I, 
VI, s; l’i (17 

If (’ = I. then .v, = k, and so .\-? = k, = hk,. The formula forf’then reduces to 
the formula for tl, 

tl = 
Eli 

i 

In(h) 

“1 (h’ - (‘1 - I )/( 1 - y;) 1. 

Substituting into the formula forf; 

An analogous proof would hold if y, = I and qj f 1. Q.E.D. 
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THOUGHTS ON MY CAREER 

RUTH E. SALZRIANN 

I am happy to be here today to add my congratulations to the new 
Associates and Fellows. It was 45 years ago that I received my Fellow- 
ship, and I remember I was very happy, very proud, and gwutly wlic\wl! 

Back then, exams were given only once a year, and therefore diplomas 
were awarded only once a year. This recognition occurred at the Annual 
Meeting in November, which was always held at the Biltmore Hotel in 
New York City (and it took me 33 hours by train to get there from 
Stevens Point, Wisconsin). 

At that meeting 45 years ago, there were a total of 21 new Associates 
and Fellows-and that made 1947 a record year! In the year before, as 
well as in the year after, there were only 7 new designations. 

The entire attendance at the meeting was certainly low by today’s 
standards. There were only 84 members present, but the 84 represented 
30 percent of the total membership. That would be comparable to an 
attendance of approximately 550 members today. 

Our Society has really grown over those 45 years, and I know that 
salaries have risen just as dramatically. My annual salary in 1947 was 
$4,520.45. However you look at it, “We’ve come a long way, Baby!” 

I really wondered about what I could say today that might have some 
“take-home” value. It then occurred to me that with the benefit of consid- 
erable hindsight, I could pass along some thoughts about what made my 
career all the more worthwhile. 

There were, of course, the normal pursuits of job satisfaction and 
promotions, but there was much more. I particularly enjoyed being in- 
volved in solving industry problems, and I encourage each of you to 
become involved in those areas that interest you most. My interests were 
primarily in the financial and Annual Statement areas. 
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Your participation broadens your outlook, but your contributions give 
you the most satisfaction. When an idea of yours is accepted by your 
peers, it is a great feeling. And even when your idea is not that successful, 
you feel good just because you entered the fray. As the saying goes, “It’s 
not whether you win, but how you played the game!” The enjoyment 
comes in knowing that your work was worthy of your best efforts. 

The frequency of acceptance and non-acceptance is low. Most often, 
the work is a team effort. If I grade my recommendations over the years, I 
get a count of four winners and four losers. And, believe it or not, 1 
haven’t given up on those four losers yet. I keep thinking that maybe 
someday. . . 

The second and last thought I would like to address has to do with 
“how ye are known,” or your professional reputation. You do not start out 
with a professional reputation, but you surely end up with one. By pass- 
ing the exams, you have demonstrated your actuarial knowledge and 
skills. From here on in, it is how you employ this expertise that affects 
your professional reputation. 

With this in mind, you will find that accountability takes on a new 
significance. 

With this in mind, you will find that it is prudent to acknowledge the 
limitations of your expertise. 

With this in mind, you will find that it is prudent to let the data dictate 
the methodology rather than to superimpose one method or program on 
all data. 

With this in mind, you will find that better interprofessional relation- 
ships are achieved with the use of language that is clear, simple, and as 
non-technical as possible. 

With this in mind, you will find that the ethical imperative is to use 
your mathematical capabilities to promote objectivity-the nemesis of 
bias, rationalization, and wishful thinking. 

And I could go on, but you get the idea. 
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Be mindful that a professional reputation is the end-product of any 
professional career. Let yours be one to be proud of. 

In closing, I wish you good luck and fortune. In this era when Con- 
gresspersons can’t even balance their checkbooks, there has to be a great 
demand for your expertise. 
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MINUTES OF THE I992 SPRING MEETING 

May 10-13. 1992 

THE PALMER HOIlSE HILTON. CHlCA(;O 

The Board of Directors held their regular quartcrl), meeting from I:00 
p.m. to 5:00 p.m. 

Registration was held from 4:(X) p.m. until 6:00 p.m. 

From 5:X) p.m. until 6:X) p.m., there was a special presentation to 
new Associates and their guests. The session included an introduction to 
the standards of professional conduct and the CAS cornmittec structure. 

A welcome reception for all members and guests was held from 6:30 
p.m. until 7:30 p.m. 

Molltiu?‘. Mu?’ I / , I992 

Registration continued from 730 a.m. until X:30 a.m. 

CAS President Michael Toothman introduced James W. Schacht, 
Chief Deputy Director, Illinois Department of Insurance, who gave the 
welcoming address from 8:30 am. until 9:(H) a.m. 

At 9:00 a.m.. Mr. Toothman opened the business session which in- 
cluded the ceremony for new members. There were XX new Associates 
and I7 new Fellows. The names of these individuals follow: 

FELLOWS 

Karin H. Beaulieu Catherine E. Eska Julia L. Perrine 
Allan R. Becker William G. Fitzpatrick Jennifer A. Polson 
Robert G. Blanc0 Nancy G. Flannery Stephen D. Stayton 
Patrick J. Bums Brian A. Hughes William Vasek 
Kenneth E. Carlton III Bruce E. Ollodart Elizabeth A. 
Daniel J. Czabaj Brian G. Pelly Wellington 
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Kristen M. Albright 
Todd R. Bault 
Herbert S. Bibbero 
Wayne E. Blackbum 
Annie Blais 
Daniel D. Blau 
Betsy L. Blue 
John P. Booher 
Christopher K. 

Bozman 
J. Eric Brosius 
David S. Cash 
Dennis K. Chan 
Bryan C. Christman 
Wei Chuang 
Kasing L. Chung 
Gary T. Ciardiello 
Peter J. Collins 
Thomas P. Conway 
Gregory L. Cote 
Brian K. Cox 
Timothy J. Cremin 
Gregory A. Cuzzi 
Michael K. Daly 
Manon Debigare 
Michael L. DeMattei 
Herbert G. Desson 
Stephen R. DiCenso 
Michel Dionne 
Jeffrey E. Doffing 

ASSOCIATES 

Michael C. Dubin 
Francois Dumas 
Denise A. Feder 
Charles C. Fung 
Kim B. Garland 
Jeffrey C. Gendron 
Odile Goyer 
Steven J. Groeschen 
Farrokh Guiabi 
Terry D. Gusler 
Leigh J. Halliwell 
David L. Homer 
Paul R. Hussian 
Hou-Wen Jeng 
Susan E. Kent 
Deborah E. Kenyon 
Kevin A. Kesby 
Gerald S. Kirschner 
Timothy F. Koester 
Gilbert M. Korthals 
Benoit Laganiere 
Alan E. Lange 
Christopher Lattin 
Marc-Andre Lefebvre 
Paul R. Livingstone 
Richard Maguire 
Katherine A. Mann 
Leslie R. Marlo 
Suzanne Martin 
Keith A. Mathre 

Maria Mattioli 
Thomas S. McIntyre 
John H. Mize 
Russell E. Moore 
Francois Morin 
Francois L. Morissette 
David A. Murray 
Victor A. Njakou 
Kathleen C. Nomicos 
Stephen R. Noonan 
Robert C. Phifer 
Mark W. Phillips 
Karin L. Reinhardt 
Lisa M. Ross 
Daniel G. Roth 
Michael R. Rozema 
David 0. Schlenke 
Peter Senak 
Robert D. Share 
David B. Sommer 
Barbara H. Thurston 
Thomas C. Tote 
Michael Toledano 
Therese M. Vaughan 
Jennifer A. Violette 
Bryan C. Ware 
John P. Welch 
Robert J. White 
Windrie Wong 
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Mr. Toothman introduced Ruth E. Salzmann, a past President of the 
Society, who addressed the new members from 9:30 a.m. until 9:45 a.m. 

Mr. Toothman then recognized special guests in the audience, includ- 
ing Terry Clarke, Vice President of the British Institute of Actuaries and 
Chairman of the General Insurance Study Group. as well as W. Paul 
McCrossan, current President of the Canadian Institute of Actuaries, Jim 
Murphy, Executive Director of the American Academy of Actuaries, and 
Tim Tinsley, CAS Executive Director. 

Highlights of the program were presented by Albert J. Beer, Vice 
President-Programs and Communications. 

Gary R. Josephson, a member of the Continuing Education Commit- 
tee, presented a summary of the Discussion Paper Program and the 23 
discussion papers to be presented at the meeting. 

A summary of the four new Prcmcdit~gs papers was given by Irene K. 
Bass, Vice President-Continuing Education. 

Vice President-Admissions Steven G. Lehmann provided an overview 
of the Course on Professionalism. 

John M. Purple, Vice President-Administration, announced the recipi- 
ent of the Harold W. Schloss Memorial Scholarship, Jennifer Bunker. 

The business session was adjourned at 1030 am. 

After a refreshment break, Mr. Toothman introduced Leo McManus, 
President of L.F. McManus Co., Inc.. who delivered an address on per- 
sonality types and the need to manage your own personality in order to 
succeed in management. Mr. McManus spoke from I I :00 a.m. until noon. 

A luncheon followed from noon until 1:30 p.m. 

The afternoon was devoted to concurrent sessions from 1:30 p.m. until 
5:00 p.m., with a break from 3:00 p.m until 3:30 p.m. 

The concurrent sessions included presentations of the discussion pa- 
pers, the PI-weedings papers, the CAS-funded research paper, and a lim- 
ited-attendance workshop. 
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The new Proceedings papers were: 
I. “The Computation of Aggregate Loss Distributions” 

Author: John P. Robertson 
CIGNA Property & Casualty Co. 

2. “Testing for Shifts in Reserve Adequacy” 

Author: Richard M. Duvall 
Sedgwick James, Inc. 

3. “Parameterizing the Workers’ Compensation Experience Rating 
PI an” 

Author: William R. Gillam 
National Council on Compensation Insurance 

The CAS-funded research paper was: 

“The Profit Provision in the Ratemaking Formula” 

Author: Stephen D’Arcy 
Department of Finance, University of Illinois 

The Discussion Papers presented were: 

1. “An Evaluation of Surplus Allocation Methods Underlying Risk- 
Based Capital Applications” 

Authors: Michael J. Miller 
TillinghasVTowers Perrin 

Jerry W. Rapp 
Tillinghastmowers Perrin 

2. “Surplus Allocation: An Oxymoron” 

Authors: Irene K. Bass 
William M. Mercer, Inc. 

C.K. Khury 
William M. Mercer, Inc. 
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3 _ . “Surplus-Concepts, Measures of Return. and Its Determination” 

Author: Russell Bingham 
ITT/Hartford Insurance Group 

4. “Analysis of Surplus and Rate of Return Without Using Lever- 
aged Ratios” 

Author: Richard J. Roth, Jr. 
State of California Department of Insurance 

5. “The Implications of Market Return Pricing Strategies Upon Profit 
and Required Surplus” 

Author: Brian E. MacMahon 
Industrial Indemnity 

6. “Simplified Confidence Boundaries Associated With Calendar 
Year Projections” 

Author: James P. McNichols 
Ernst & Young 

7. “Practical Loss Reserving Method With Stochastic Development 
Factors” 

Author: Mary V. Kelly 
The Co-operators General Insurance Co. 

8. “Modelling Asset Variability in Assessing Insurer Solvency” 

Author: Louise A. Francis 
Tillinghastflowers Perrin 

9. “Surplus in Investment Strategy Due to Mismatch With Liabili- 
ties” 

Author: John C. Burville 
ACE Limited 

10. “The Value of Junk” 

Author: Louise A. Francis 
Tillinghast/Towers Perrin 
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1 I. “European Approaches to Insurance Solvency” 

Author: Sholom Feldblum 
Liberty Mutual Insurance Co. 

12. “An Application of Risk Theory to Control Solvency and Finan- 
cial Strength” 

Author: Heikki Bonsdorff 
Ministry of Social Affairs 
and Health of Finland 

13. “Solvency Regulation in Canada” 

Authors: Canadian Institute of Actuaries 
P&C Solvency Sub-Committee 

Richard Gauthier, Chairperson 
Barbara Addie 
Jean Cote 
Alain Lessard 
Christopher J. Townsend 

14. “Capitalization of Property/Casualty Insurance Companies” 

Author: Paula R. Federman 
Standard & Poor’s Rating Group 

15. “A New Look at Evaluating the Financial Condition of Property 
and Casualty Insurance and Reinsurance Companies” 

Authors: Thomas M. Redman 
John Hancock Management Co. 

Christopher E. Scudellari 
Ernst & Young 

A limited-attendance workshop was also held: 

Personality Profile Assessment 
Presenter: Leo F. McManus 

L.F. McManus Co.. Inc. 



There was an officers’ reception for new Fellows and their guests 
from 5:30 p.m. until 6:30 p.m. 

The general reception for all members and their guests was held from 
620 p.m. until 7:30 p.m. 

Tuesday, May 12. 1992 

Concurrent sessions. which included both the presentations of papers 
and panel sessions, were held from 8:X) am. until noon. with a refresh- 
ment break from IO:(X) a.m. until 1 I’):30 a.m. 

One Ploc~wt1ing.s paper was presented: 
A Discussion of “An Analysis of Excess Loss Development” 

Author: Robert A. Bear 
North Star Reinsurance Corp. 

The panel presentations covered the following topics: 
I. Actuaries in Regulation 

Moderator: 

Panelists: 

Anne Kelly 
Chief Casualty Actuary 
New York State Insurance Department 

Richard J. Roth, Jr. 
Assistant Commissioner 
California Department of Insurance 

Robert W. GossroN, 
Casualty Actuary 
Illinois Department of Insurance 

Kevin J. Conley 
Actuarial Administrator 
Iowa Insurance Division. 
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2. Questions and Answers with the CAS Board of Directors 

Moderator: David P. Flynn (President-Elect) 
Senior Vice President and Chief Actuary 
Crum and Forster Corp. 

Panelists: Charles A. Bryan (Chairman and Immediate 
Past President) 
Partner 
Ernst & Young 

Linda L. Bell (Elected 1990) 
Senior Vice President and Chief Actuary 
Transamerica Insurance Group 

W. James MacGinnitie (Elected 1990) 
Consulting Actuary 
Tillinghast/Towers Perrin 

Heidi E. Hutter (Elected I99 I ) 
Executive Vice President 
Atrium Corp. 

The Discussion Papers presented included: 
1. “NAIC Risk-Based Capital Efforts in 1990- 199 1” 

Authors: Allan M. Kaufman 
Milliman & Robertson, Inc. 

Elise C. Liebers 
New York State Insurance Department 

2. “Solvency Measurement for Property-Liability Risk-Based Capital 
Applications” 

Author: Robert P. Butsic 
Fireman’s Fund Insurance Companies 

3. “A Method for Risk Quantification for Surplus Requirements” 

Author: Anthony Iafrate 
General Reinsurance Corp. 
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Mike Blivess 
Steven Book 
Ron Bomhuetter 
Chuck Boucek 
Roger Bovard 
Paul Braithwaite 
James Brdnnigan 
Bob Brian 
Dale Brooks 
Brian Brown 
Randall Brubaker 
Chuck Bryan 
James Buck 
Patrick Bums 
George Busche 
Jeanne Camp 
John Captain 
Kenneth Carlton 
Sandy Cathcart 
.Joel Chansky 
Jim Christie 
Mark Cis 
David Clark 
Kevin Conley 
Chap Cook 
Alan Crowe 
Patrik Crowe 
Alan Curry 
Janice Cutler 
Daniel J. Czabaj 
Stephen D’Arcy 
Ronald Dahlquist 
E3ob Daino 
Jerome Degemess 
Tony Didonato 

Robert Downer 
Paul Dyck 
Kenneth E%slon 
Richard Easton 
Douglas Eland 
Catherine Eska 
John Ewert 
Janet Fagnn 
Steven Fallon 
Bill Fanning 
Sholom Feldblum 
Ron Ferguson 
Russell Fisher 
Walt Fitzgibbon 
Bill Fitzpatrick 
Kirk Fleming 
David Flynn 
Louise E:rancis 
Kenneth Frohlich 
Mike Fusco 
Alice Cannon 
Chris Garand 
Bob Gardner 
Richard Gauthier 
Judy Gillam 
W. Robin Gillam 
Jim Gillespie 
Steve Goldberg 
James Golz 
Karen Gorvctt 
Tim Graham 
Nancy Graves 
Ronald Greco 
Ann Griffith 
Christy Gunn 

Sam Gutterman 
Larry Haefner 
David Hafling 
Malcolm Handte 
Don Hanson 
Jeff Hanson 
Dave Hartman 
Gayle Haskell 
Paul Henzler 
Barbara Higgins 
Anthony Hill 
Randy Holmberg 
Mark Homan 
Carl Honebein 
Brian Hughes 
Heidi Huttet 
Ron Jean 
Dick Johe 
Russ John 
Andy Johnson 
Jeff Jordan 
Gary Josephson 
Bob Kaplan 
Allan Kaufman 
Anne Kelly 
Stan Khury 
Joel Klcinman 
Leon Koch 
Mikhael Koshi 
Gary Koupf 
Eric Johnson 
Rodney Kreps 
Jeff Kucera 
Ken Krissinger 
Mike LaMonica 
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Gary LaRose 
Bob Daino 
Gus Krause 
Mike Larsen 
Fran Lattanzio 
Robert Lee 
Steve Lehmann 
Joseph Levin 
Peter Licht 
Aileen Lyle 
James MacGinnitie 
Jan Lommele 
Brian MacMahon 
Howard Mahler 
Isaac Mashitz 
Stuart Mathewson 
Bob Matthews 
Debra McClenahan 
William McGovern 
Mike McMurray 
Michael McSally 
Bob Miccohs 
Mike Miller 
Neil Miner 
F. James Mohl 
Karl Moller 
Phil Moore 
Bob Mucci 
Donna Munt 
John Murad 
Tom Murrin 
Chris Nelson 
Ray N&wander 
Terry O’Brien 
Bruce Ollodart 

FELLOWS 

Bruce Paterson 
Gary Patrik 
Marc Pearl 
Steve Peck 
Kai Pei 
Brian Pelly 
Julia Perrine 
Steve Philbrick 
John Pierce 
Jen Polson 
Debbie Price 
John Purple 
Christine Radau 
Andrew Rapoport 
Jerry Rapp 
David Renze 
Jim Richardson 
John Robertson 
Robert Roesch 
Deborah Rosenberg 
Gail Ross 
Richard J. Roth, Jr. 
John Rowell 
Ruth Salzmann 
Jerry Scheibl 
Tim Schilling 
Karen Schmitt 
Roger Schultz 
Joseph Schumi 
Jerry Siewert 
LeRoy Simon 
David Skurnick 
Lee Smith 
Dick Snader 
David Spiegler 

Dan Splitt 
Stephen Stayton 
Grant Steer 

Stuart Suchoff 
Ron Swanstrom 
Vernon Switzer 
Suan Boon Tan 
Catherine Taylor 
Frank Taylor 
Pat Teufel 
Mike Toothman 
Chris Townsend 
Frank Tresco 
Ben Tucker 
Anne-Marie Vanier 
Bill Vasek 
Richard Vaughan 
Andre Veilleux 
Steven Visner 
Joe Volponi 
Bill VonSeggem 
Mike Walsh 
Nina Webb 
Patsy Webster 
Al Weller 
Betsy Wellington 
Chuck White 
Peter Wildman 
Ron Wilson 
Mike Wiseman 
David Withers 
Richard Woll 
Patrick Woods 
John Zicarelh 
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Marc Adee 
Kristen Albright 
Jean-Luc Allard 
Bruce Anderson 
Tony Balchunas 
Todd Bault 
Herbert Bibbero 
Wayne Blackburn 
Annie Blais 
Daniel Blau 
Betsy Blue 
John P. Booher 
Jack Brahmer 
Chris Bozman 
Eric Brosius 
Dennis Chan 
Bryan Christman 
Wei Chuang 
K. Leonard Chung 
Gary Ciardiello 
Michael Coca 
Peter Collins 
Tom Conway 
Greg Cote 
Burt Covitz 
Brian Cox 
Tim Cremin 
Dan Crifo 
Guy Danielson 
Manon Debigare 
Lyle Degarmo 
Jeffrey Deigl 
Michael DeMattei 
Herb Desson 
Stephen DiCenso 

ASSOCIATES 

Michel Dionne 
Jeff Doffing 
Michael Dubin 
Francois Dumas 
Stan Durose 
Charles Emma 
Phil Evensen 
Denise Fedcr 
Carole Ferrer0 
Loy Fitz 
Ross Fonticella 
Charles Fung 
Jeff Gendron 
Terry Goldberg 
Richard Goldfarb 
Robert J. Gossrow 
Odile Goyer 
Steve Groeschcn 
Farrokh Guiahi 
Ewa Gutman 
Aaron Halpert 
Philip Heckman 
Wayne Holdredge 
Tony Iafrate 
Paul Hussian 
Laura Johnson 
Dan Johnston 
Marty Kelly 
Susan Kent 
Deborah Kenyon 
Joe Kim 
GerryKirschner 
Timothy Koester 
Gilbert Korthals 
John Kulik 

Benoit Laganiere 
Alan Lange 
Chris Lattin 
Andre Lefebvrc 
Bill Leincr 
Eric Lemieux 
Roland Letoumeau 
Sam Licitra 
Elise Liebers 
Paul Livingstone 
Rich Maguire 
Katie Mann 
Eduardo P. Marchena 
Leslie Marlo 
Suzanne Martin 
Keith Mathre 
Maria Mattioli 
Eugene McGovern 
Jim McNichols 
Stan Miyao 
John Mize 
Kelly Moore 
Russell Moore 
Francois Morin 
Francois Morissette 
David Murray 
Robin Murray 
John Napiersk 
Kwok Ng 
Victor Njakou 
Kathleen Nomicos 
Stephen Noonan 
Kathy Pechan 
Clifford Pence 
Bob Phifer 
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Mark Phillips 
Karin Reinhardt 
Mayer Riff 
Kevin Rosenstein 
Lisa Ross 
Dan Roth 
Mike Rozema 
Michael Sanservero 
Sandra Santomenno 
Dave Schlenke 
Joanne Schlissel 
Pete Senak 

ASSOCIATES 

Robert Share 
Donald Skrodenis 
David Sommer 
Keith Spalding 
Chet Szczepanski 
Craig Taylor 
Barbara Thurston 
Thomas Tote 
Mike Toledano 
Janet Trafecanty 
Scott Vandemyde 
Terri Vaughan 

Jennifer Violette 
Rebecca Wagner 
Brian Ware 
John Welch 
Russell Wenitsky 
Robert White 
Kevin Wick 
Windrie Wong 
Scott Yen 
Chas Yesker 
Nancy Yost 
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PROCEEDINGS 
November 15, 16, 17, 18, 1992 

CREDIBILITY BASED ON ACCURACY 

JOSEPH A. BOOK 

Ahstruct 

This pupor- .shou~.s that the optimal credibility split hctti~een 
two estimutora is related to hon’ n)ell euc.h estimutor predicts 
the underlying esperience. First, un eqwtion is dwnw n+ic~h 
espsesses the credibility assigned to rcrc,h cstimutor in terms oj’ 
the u\wug:c prediction error of the othclr cstimutor und the UI*- 
eruge squured diference betMwn the tww cstimutors. That 
eqlrntion is \>erified wing the cIu.s.sic Buyjsian credibility 
n/(n + k) ,forrnrrla and a fcwmulu ,fiw nvighting prior oh.ser\~a- 
lions of time series that MUX de\vzloped by the uuthor. An en- 
hancement to the classics Buyesiun method for c~luss 
credibilitic~.s is shown. Finally. the uuthor shoncs thut optimal 
credibility is proportionul to thug ucc~rruc~q of cur~h estimator, 
less the extent to which both estimutors muke the same errors. 

166 



CREDIBILITY BASED ON ACCURACY 167 

1. INTRODUCTION 

Much of historical credibility emanates from one of three philoso- 
phies: 

1. The square root rule and its cousins. 

2. The Bayesian n/(n+k) formula. 
3. Alternative Bayesian philosophies that assume that losses are 

distributed according to some member of a family of distribu- 
tions, and assign some judgmental probabilities to the distribu- 
tions within the family. 

Each of these approaches has its own set of problems. 

Approach 1, the square root rule, apparently is little more than an ad 
hoc formula to graduate credibility from 0 to 1 in a fashion that: 

a) tends to assign relatively high credibilities to small samples; and 

b) achieves full credibility at some point. 

Approach 2, the n/(n + k) formula, is based upon a presumption that 
the sample mean is from a distribution chosen from a set of distributions. 
The complement of the credibility is to be assigned to the grand mean of 
all possible distributions. However, many credibility situations are not 
characterized by the process of first choosing a distribution randomly and 
then sampling from that distribution. For example, consider the case 
where a rate change indicated by a state’s data is credibility-weighted 
against straight trend. While some might argue that the choice between 
the state’s data and straight trend is just such a “distribution of distribu- 
tions,” clearly straight trend applied to the last rate indication is not the 
grand mean of that family of distributions. Further, when those assump- 
tions do apply, such as in the class ratemaking problem, the grand mean 
must also be estimated. 

Approach 3, the alternative Bayesian approach, relies on a presump- 
tion that the distribution of potential losses is a member of some family of 
distributions. The major problem with this approach is that the typical 
real-world loss distribution is not a precise mathematical curve. Further, 



this approach usually imposes some second probability distribution upon 
the choice of a distribution. An ideal method should be distribution-free. 

To avoid these difficulties, it is worthwhiic to list some of the attri- 
butes of a good approach to credibility. 

1. Since the purpose of credibility is to hone an estimate of losses, 
it should do so in the best fashion possible. Specifically, it 
should produce optimum estimators of the unknown mean ex- 
pected loss. 

2. It should work in a wide variety of situations; e.g., when the 
complement of the credibility is assigned to trend, econometric 
projections, alternative methods of estimating the sample mean, 
or a sample of a larger but related distribution. 

3. It should be distribution-free. it should not work solely when 
losses approximate some specific mathematical probability dis- 
tribution. 

4. Intuitively, it seems that the credibility should, in some sense, be 
related to how effectively the observed sample losses approxi- 
mate the underlying propensity for loss. Further, whatever statis- 
tic receives the complement of credibility should receive greater 
weight as its effectiveness in estimating the underlying propen- 
sity for loss increases. 

One method that meets ail these criteria involves minimizing the ex- 
pected squared error in estimating the propensity for loss. Specifically, if 
we seek to credibility-weight two statistics .v, and .\-? to approximate Y, 
and if: 

zf = E[ (s, - Y)’ ] ; i.e., tf is the expected error of.\-, as an estimator; 

zz = E[ (,I-~ - Y)’ ] ; i.e., T: is the expected error ~f’.t-~ as an estimator; 

ii;‘? = E[ (x, - .v$ ] ; i.e., Sf2 is their expected squared difference; 

then 
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produces the estimate 

z.r, + (I - z) .Yz , 

which minimizes the error in estimating Y; i.e., 

E[ (Z.r, + (I - Z).u, - Y)’ ] = min. 

The proof is provided in Appendix A. 

A quick review of the above criteria will show that this approach does 
indeed fulfill ail four: it is optimal by design, works with a wide variety 
of estimators, is distribution-free, and assigns credibility in accordance 
with predictive accuracy. 

3 1. USING OBSERVED ACCURACY 

Before going further, it might be worthwhile to note that this method 
produces the same value of 2 when we attempt to predict an observed 
value Y’ rather than the actual propensity for losses Y. 

In particular, if Y is the propensity for loss, then let Y’= Y + A be the 
observed losses. In this case, A would be independent of Y, x,, and +x2, 
and have a mean of 0 and a variance of S’. 

Then, since the x and A are independent, 

71 12 = TT + s? 

T/ = z; + s*, 

and 



170 CRf~fXBII.ITY RASEDON *\(‘(‘I~RA(‘b 

Hence, computing Z for actual observed losses produces the same Z as 
that appropriate for predicting the underlying propensity for loss. Further. 
since 2,‘2, z2”, and hi2 may then be estimated from historical observed 
losses, Z may be estimated from actual observed losses. 

One aspect of using historic predictive accuracy must bc noted-it is 
impractical with the highly-skewed distributions typically associated with 
individual risks and small pools of losses. 

The classic example is the credibility of a medium-size commercial 
insured’s own experience relative to industry experience. Even when the 
insured has average exposure (i.e., the unmodified manual rate is right for 
the insured), the insured will typically experience loss ratios in the 40% to 
50% range year after year. However, every five to IO years it will experi- 
ence a loss ratio in excess of iOO%,. That is because the loss size distribu- 
tion, and hence the insured’s aggregate loss distribution. is highly skewed. 
Simply stated, the insured is exposed to very large, but relatively infre- 
quent, losses. Because those losses are so large, they represent a dis- 
proportionately large part of the insured’s exposure to loss. Because they 
are so infrequent, they do not show up in the insured’s loss experience 
every year. 

The naive observer might conclude after viewing several years of low 
loss ratios that the insured’s own low loss experience is a much better 
predictor of that insured’s loss experience than the manual rate. The 
previous section of this paper would seem to support that statement. 
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Actual observed accuracy is misleading, however, because of the partial 
observation of prediction error. Over the last four years or so, only a 
portion of the distribution of prediction errors (specifically the low side) 
has been observed. When a large loss occurs, the full range of prediction 
error can be glimpsed. Depending on how long it takes for that large loss 
to occur, the manual rate may then appear to be either too high or too low. 

Many of the standard actuarial treatments for skewed distributions 
correct this problem. For instance, one could compare an insured’s histor- 
ical loss experience with the following year’s basic limits losses and an 
industry provision for excess losses. One could also replace the industry 
excess loss provision with, say, 30 years of the insured’s own trended 
excess losses. Alternatively, one could compare the estimating accuracy 
of a large body of similar insureds. Although each member insured’s 
observed losses may not be fully representative of the full error distribu- 
tion, a large enough body of insureds should approximate all probable 
prediction errors. 

Before proceeding further with an analysis of how this method may be 
applied in practice, it is worthwhile to investigate whether it reproduces 
some of the credibility formulae that are already known. 

E.wnple I. Clussir Bayesiat? Credibility 

Let s be the result of a two-stage process. First, a mean 8 E o is 
selected randomly from a set of means o with (grand) mean M. Then x,, 
-u,, . . . . x,, are selected from a distribution with mean 8 and variance S*. 
Their mean .U is, of course, dependent on 8, but each si - 9 is indepen- 
dent, not only of the other Sj - 8, but also of 8. Further, let the 8 E o have 
variance 02. Then, classic credibility [I] says 

Z (.u, M, 0) = n/[n + (S2/02) 1. 

To prove this, note that independence of the si and 8 implies: 

r,; = (SVn) , 

z&= 02, and 
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Then, the formula states: 

In other words, the classic Bayesian credibility is reproduced. 

Let s(t) begin at some .v(O) and then bc changed infinitesimally often 
by infinitesimally small, but variable, perturbations. In other words, the 
change in .1-(t) from time to time is a result of a very Iargc number of very 
slight random occurrences, just like those affecting most econometric 
time series. The random nature of the perturbations assures us that .v(t) 
will be distributed normally about .v(O) + tp (where lo is the average rate 
of change), and the variance of .r(t) is to’ (where CT’ ir, the unit variance).’ 
In fact, 

and 

To simplify matters, let us consider the case where p = 0. Further, as in 
most practical problems, when x(I). x(3), . . . . .\-(,I) are estimated by .$(I). 
-G(2), . . . . .?(,I), there should bc some estimation errors A,. So, 
.?(i) =x(i) + Ai, and the Ai are independent and identically distributed with 
mean 0 and variance S’. Then, when weighting .?( I ), .?(2). .?(3), etc. to es- 
timate .Y(.(II), the weights 

’ The limited reading of this author on Poisson proccsscs suggcs15 that ~nc of the con- 
clusions on the mean and variance may be com1no11 know ledge of statisticians. 
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w; = s’ (‘I - ‘$7; , 

where the F, are defined recursively by 

F,= I; 

F2 = S’ + 0’ ; and 

F;+,=(2S’+o’)Fi-S’F;- I 

produce the optimal estimate. To test this, only the two-point estimate 
will be verified. Unfortunately, similar credibility estimators for three or 
more estimators are very unwieldy. The two-point estimate involves an 
estimate for ,?(3) given $2) and G( 1). 

According to our formula, the result should be 

A(3) = s’,S ( 1)-t CT2 + S’) .gK) . 
cJ* + 2s’ ’ 

i.e., it should be true that 

Note that, since .~i - -pi is orthogonal to -~j - .\:i and .ri - ,yi: 

zf= E] (d?(2) - $3) )’ ] 

= E[ (u;(2) -s(2) )” ] + E[ (s(2) -s(3) )’ ] + E] (x(3) - $3) )2 ] 

= s2 + (-y + s* = 29 + (3* . 

T; = E[ (a?( I ) - d?(3) )’ ] 

= E[ &I) - .I-( 1) )’ ] + E[ (s( 1) -s(3) )2 ] + E[ (s(3) -<c(3) )2 ] 

= s* + 20’ + s* = 29 + 20’ . 
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6f2 = E[ (w;( I ) - .?( 2) )’ 1 

= E[ (.:(I) --A( 1) )’ ] + E[ (.Y( I) -x(3) )’ 1 + El (x(2) - .;(2) )’ ] 

= s* + (-J* + s2 = 29 + (3’ . 

Thus, 

z (;(2), $( 1) ;(3) ) = 2sz + ~0’ - (2,P + 0’) + 2s2 + 0’ = s’ + d 
9 2 (29 + 02) 2s’ + CT’ 

So, in at least two cases, this approach does reproduce credibilities al- 
ready known from other analyses. 

To be truly useful, an approach should yield new methods. The true 
classification ratemaking problem will now be addressed. 

3. CLASS CREDIBILITIES 

The objective is to produce a rate for a subgroup cx of a large group I-. 
The means of a and I- are unknown, but have been estimated using: 

ti = ( l/n)C U; ; Cli E a for pn and 

R=(l/(m+n)) (~~~i+~ll,); h,E p=r-a. 
i i 

Further, Var (Cli) = 0; and Var (hi) = pi have been estimated from actual 
data. 

-- 
Before proceeding, note that weighting Cr with F using Z (u, 8, pa) ef- 

fectively assigns a portion of the complement of the credibility back to .5 
since 2 = (na + mTi)/(n + m). So, it may be more worthwhile to evaluate 

and then use 
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-- z (ii, 75, &J (n + m) - n z (@ R, pa> = ~ -~ ~~..~m--. _ . 

Note that 

Var (a) = (~i)/n ; Var (5) = (o$/m ; and 

z;=E[ (Z-Q2]=o;/n. 

Since the hi are independent, and the 6; - & have mean 0, 

C: = E[ (5 - /J,$ ] = c$/m + (J+ - pa)’ ; 

and 

S:, = E[ (a - fi)‘] = E[ (2 - Q2] + E[ (& - pP)‘] + E[ (h - &#] 

= (o~/n) + (p, - pp)* + (c$/m) . 

Hence 

= 
(#j/m) + (p, - pp)’ - (0:/n) + (0:/n) + (p, - VP)* f (02,/m) 

2 ( (&W + (cl, - clp)* + (+W > 

n 
= n + [oi/( (c$/m) + (p, - pp)’ ) ] ’ 

Or, if m is much larger than n 

Of course, ai and (cl, - P,-)~ are unknown, but they may be estimated 
using the sample variance of ui E a and the difference between the exist- 
ing rate for a and the overall average rate. 
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This formula illustrates several key points: 

1. Highly heterogeneous classes (high o:~.) should receive lower 
credibilities. 

3 I. Extremely high or low rates [high (pa - pr)?] should be based 
more heavily on their own expericncc than on the overall aver- 
age rate. 

3. For classes that form a statistically large proportion of the group, 
the complement of the credibility should be assigned to the mean 
of the remainder of the group. not the group mean. 

4. A NlfMEKICAI. ESAMPLLI 

Suppose that one is attempting to find the underlying mean, p,, of a 
distribution given last year’s observation X,, , _ , of the distribution. and 
last year’s observation of X,, , _ ,, a related statistic. Further. assume X, ; is 
thought to be cyclic and biased as a predictor of X,. ,, and its year-to-year 
variations are thought to be independent of those of X,. Whether X, is 
cyclic or stationary is not known. The observations are shown in Table 1. 
Of course, the values X,. , + , and X,. I + , arc unknown at time i, but the 
goal is to find the Zj such that Z, X,. , + ( I - Zj) X,, , is an optimum estima- 
tor of p, at time i + 1. 

In this case, since X, and X2 arc independent predictors of p., , 
E[ (X, - X3)’ 1 reduces to tz. , + r;, 1 , so Z becomes Z = rz, /(ri. , + K:. J. 
X, ‘s error, z:. ,, may be estimated by S’f, ,, the sample variance of the X,,; 
seen to date. *Since Xz,i *is biased, rf.? will be estimated by 
s:-. 2 + (X2. ; + , - Y,)’ , where Y; is the last estimate of p,. Th@ method 
recognizes both the cyclic nature of X1 (by using X,, , + , - Y, ) and a 
potential cyclic pattern in X, because it considers just the last observed 
values, not the history of X, and X,. Arbitrarily, the first credibility was 
chosen at 50%‘. Results are shown in Table 2. 
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TABLE I 

Year 

I 

2 

3 

4 

5 

6 

7 

8 

9 

IO 

Xl 
72.44 

79.06 

72.98 

79.74 

66.69 

86.38 

68.97 

78.61 

88.97 

74.97 

Year xl,i x2. I 

1 72.44 104.15 
2 79.06 114.66 
3 72.98 1 12.75 
4 79.74 99.01 
5 66.69 103.04 
6 86.38 102.80 
7 68.97 106.23 
8 78.61 97.79 
9 88.97 101.63 
10 74.97 102.83 

TABLE 2 

OBSERVED HISTORY 

x2 7; = s;. , . , 6 2 (X2 - PJ2 

104.15 - - - 

I 14.66 43.82 1 IO.46 694.85 

112.75 13.51 3 I .34 1018.25 

99.0 I 15.04 54.02 656.90 

103.04 28.82 44.75 527.70 

102.80 47.86 38.36 1175.98 

106.23 47.38 3 I .97 368.38 

97.79 42.08 36.02 61 1.08 

101.63 56.66 32.82 478.30 

102.83 50.8 1 29.5 I 158.61 

~- 
- 50% 

805.31 95 

1049.59 99 

710.92 98 

572.45 95 

1214.34 96 

400.35 89 

647.10 94 

511.12 90 

188.12 79 

88.30 

80.84 

73.38 

X0.07 

68.5 I 

87.04 

73.07 

79.76 

90.24 

80.82 
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In this case p, looks like a poor predictor of cl., at I’ + I 

However, when the true p., is considered, P is a very good estimator of 
l-h. The Xl., were generated using a normal distribution with mean 
p, = 80 and variance 0.: = 100 . The X,, ; were generated using a normal 
distribution with mean 100 and variance 100 for X,, ,. and successively 
generating each new X,~ ;+, using a normal distribution with mean 
100 + .X (X2. i - 100) and variance 36. One can show that the resulting 
X,,, all have a marginal distribution that has mean 100 and variance 100 
since 36 = 100 (1 - (.8)‘) . Therefore, a priori, the credibility of X, should 
be ( IO0 + 400)/( 100 + 400 + 100) = .83333. However, that credibility 
should vary with where X, happens to be in its cycle. 

It just happened that the X,, , tended to fall on the low side of the 
distribution, and that the X2,; began on the high side of the distribution 
and tended to stay there. 

In any event, the average squared prediction error of 9 is 44.86, 
roughly a 20% reduction in the prediction error of X, alone (55.46 as a 
predictor of the value p., = 80). In fact. the error of 9 is even below 45.6, 
which results from what retrospectively turns out to be the best possible 
fixed credibility (96%). That is because this method gives greater weight 
to X, when it is close to P . m t h e cycle, and less weight when it is further 
away. So, in this example, the theory works. 

5. CREDIBILITY DEMYSTIFIED 

One of the side benefits of this approach is that it offers an explanation 
of credibility that can be understood by laymen. The credibility of each 
estimator is proportional to its accuracy as an estimator, less the extent to 
which the two estimators say the same thing. Clearly this explanation is 
much more desirable than “we’ve always done it this way,” and more 
understandable to lay people than “we look at the process variance and 
the variance of the hypothetical means.” But it has yet to be shown that 
the above explanation is true. 
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Note that 

Further 

= E[ ( (x, - Y) - (s2 - y) I2 ] 

= E[ (s, - y>’ ] + E[ (s2 - y> >* ] - 2E[ (x, - y> (-x.2 - Y) ] . 

Further, assuming that -xl and s2 are unbiased estimators, p, = ~1~ = Y, so 

s;* = z; + z; - 2Cov(.u,, x2) 

And when that is included in the formula for Z, 

z (x,, x2, Y) = 
7; - T: + 7: + T$ - 2Cov(s,, x2) 

22; + 22; - 4Cov(x,, x*) ; 

22; - 2Cov(x,, x*) 

= 22; + 22; - 4COV(X,) X-J ’ 

72’ - Cov(x,, l-2) 
= 

z; + 2: - 2Cov(x,, x*) * 

Dividing top and bottom by 2:~: yields 

( 1 A:) - (z?:,/T, z,) 
z (x,, x2, Y) = -~____~~ * 

(l/z?) + (l/T:> - 2 (f?:*/Z,Q ’ 

where Rf2 is the correlation of X, and x2. Clearly, if 2: is the error of .yl, 
then l/z: must be s,‘s accuracy. Further, RF2 is the extent to which s, and 
x2 vary together, and the division by T~Z: normalizes it relative to the in- 
verse squared errors. Hence, the credibility of each estimator is propor- 
tional to its accuracy, less the extent to which the estimators say the same 
thing. 



6. PRACTICAL APPf.l~‘AT1ONS AND f~ORMI:f.~\I: 

One criticism of this approach is that, like optimum credibility, the 
appropriate credibility formula depends on the circumstances. For in- 
stance, if the two estimators are not heavily skewed, their historic accu- 
racy 12/c (x, ,., - Y’)’ and n/c (.v2,., - Y’)’ may bc used to derive the 
optimum credibility as shown in Section 2. Per Exalnple 2. the formula 
(1 + (o’/S’) )/(2 + (o’/S’) ) may be used with o’/S’ estimated using the 
historic year-to-year changes in .?. As shown in Section 3, the credibility 
of a class’s own experience should be 4(n + ($,/(K,, - I.,-)‘) ), where II is 
the number of exposure units, ,S,i is estimated by comparing each year’s 
class experience to a long-term average. and I’,, - I’[. is the difference 
between the current rate for class a and the current aver~gc rate. Altema- 
tively, Sk could be presumed to be constant across all classes and one 
could then find the SzX that minimized the average squared error (weighted 
by exposures) when such a formula uses last year’s experience to predict 
this year’s data. 

The most important results are: 
1. The credibility of a piece of data and the formula used to derive 

it vary with the specific situation. 
2. Using the formulae in this paper, one may derive credibility for- 

mulae that, up to determining a constant or two, represent the 
best credibility formulae. The constants can then be determined 
using historic data to find the constants that minimize the aver- 
age squared error. 

3. The fundamental truth of this paper, that credibility should be 
based on accuracy, makes intuitive sense and can be understood 
by laymen. 

7. SUMMARY AND~‘ONCl.I~SIONS 

In summary, this approach seems to hold promise and appears to offer 
opportunities to improve the accuracy of loss estimates. However, it will 
only truly be useful when the estimation errors zf and T; are evaluated. 
Whether one believes in this approach or not, this author believes that the 
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large ratemaking organizations should collect statistics on the effective- 
ness of the various loss estimators they use. Even if other credibility 
procedures are used, it only makes sense that their effectiveness be moni- 
tored. Futher, this author believes that greater understanding of how cred- 
ibility should work can only improve the actuarial work product. 
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APPENDIX A 

If zf = E[ (x, - Y)’ ] . z; = El (.I-~ - Y)’ 1. and S;., = E[ (I, - .,->)’ J , 

the goal is to set 

Q(Z) = E( (Z-l-, + (I - Z) .I’ - Y)’ I = min , 

But algebra gives 

E[ (Zx, + ( 1 - z) .\‘? - Y)’ I 

= E( (Z (xl - Y) + (1 -Z) (x2 - Y) )’ ] 

= Z’ E[ (x, - Y)’ ] + (1 -Z)’ E[ (x2 - Y)’ ] 

+2Z(l -Z)E[ (.v,-Y)(x-Y) ] 

=Z’z;+(l -.3%;+2Z(l -Z)E[ (.v,-Y)(.\v~-Y) 1. 

Using2(A-C)(B-C)=(A-C)‘+(B-Cl’-(A-B)’. 

2 E[ (s, - Y) (x2 - Y) 1 

= E[ (.I-, - I’)’ ] + E[ (.I-? - Y)’ 1 - E[ ( -\‘, -x1)’ I 

= Tf + T; - sfz . 

Substituting that back in the overall squared error (Q>) equation, 

a, (Z) = E[ (Zx, + (1 -Z) x2 - Y)’ 1 

= Z’rf + ( 1 - zyt; + Z( 1 - Z) [r;’ + r; - S;l,] 

=Zzf+(l -z)z;+(z2-z)6;,. 

This is minimized when 



or 

or 
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Now, this is only a minimum when 

However Sf2 is always non-negative. 

Note that Z may be negative; i.e., when 

But, fortunately, that occurs only where (x2 - Y) and (x, - x2) tend to have 
the same sign overall; i.e., x2 is generally between xl and Y. Thus, there 
may be cases where zero credibility is warranted; i.e., xl is not a useful 
predictor. Alternatively, where 

full credibility should be assigned to xl. 
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APPENDIX B 

JUST HOW DISTRIBUTION-FKEE IS I~IS7‘KIR1ITION-FREE’! 

As noted in the Section 1 of this paper. the credibility. Z. produced by 
this method produces the lowest expected squared error attainable using 
the Z\--, + ( I -Z) sJ (additive weighting) formula. That credibility does not 
depend on the particular characteristics of each estimator’s distribution, 
but only on how well each estimator predicts the unknown quantity Y, and 
on the average squared difference between the two estimators. However, 
it does assume that the best estimator of the unknown Y is the one that 
minimizes the expected squared estimating error, and that it uses a 
ZV-, + ( I -Z) .\-? formula. One should consider whether each of these im- 
plicit assumptions really produces the best estimator of the unknown Y. 

Aside from the fact that the expected squared error function is ubiqui- 
tous in mathematics and related disciplines. there is a practical reason for 
using it as a penalty function whose minimum defines the best estimator. 
Conceptually, one might begin by viewing the expected absolute error 
E [ I estimator - Y I ] as the best penalty function, since it measures the 
actual error of the estimator. That approach, however, has one consider- 
able drawback. An extremely large error receives the same weight as a 
small error, even though extremely large errors may have catastrophic 
consequences. For example, if a rate would produce precisely the re- 
quired profit 19 years out of 20 but threaten the company’s solvency one 
year out of 20, prudence would dictate that the one year out of 20 receives 
a disproportionate share of attention. One logical approach is to weight 
each absolute error with the size of that absolute error-in effect to use 
E[l estimator - Y I 1 estimator - Y I] or Ej(estimator - Y)’ 1 . 

The use of an additive weighting is less supportable. This author 
knows of no reason why an estimator of the form, say .I?. .I$’ - ” would 
not be a better estimator. It is clear that if .\-, is biased. some 
Z\-, + (1 -Z) (.\-? - C) formula is better. Superficially, it appears that a 
rigorous analysis, perhaps using calculus of variations, could produce 
different formulae for different families of distributions. 
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On a more positive note, there are two reasons for using an additive 
weighting formula. When the two estimators .Y, and x2 are known to be 
normally distributed about unknown means, but T;, z& and S:, can be 
estimated, the additive weighting formula is best.’ Also, additive weight- 
ing has a long history in ratemaking. 

’ The author doubts he truly discovered this. Witness the argument in [2]. 
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PRICING FOR CREDIT EXPOSURE 

BRIAN Z. BROWN 

A hstI.uct 

This puppet imvpnr~utes jinunc~iu/ theory M’ith inslrr-unce 
priCiFl,q, A geJleJ7il pJ’Oc’~tll!J’? to lN’iCC fi)J- CJTdit cJ.yJo.slu~t~ PUS 

heeJI deWlOped UJId CXtt’JIded t0 .W\Y~JUl iJl.WlYIJlt~t~ pJWdl”‘tS. 

For retrospcctiwly ruted inwuds M‘ith a helo~-irn~estment- 
,yJ~Jde rUtiJ# jiW171 u CWdit JXJtiJlg U~qcJlcy. the credit e.\pOSliW 
is .signI~icuJIt to the iJIsuJ-cr. lf‘tl1i.s c.vp0.sirJ.e is igJIoJ.ed, operut- 

ing results niuy be JIegutiwl~ cJ$kted, us it is likely that some 

udditionul prernirrm unmrnts M’ill not be collected. The princi- 
pies of credit evposlrrc pric,irlLq CYIH be ertended to the pricing 
of suretv bonds us outlined irl Section 6. Itz addition, the con- 
cepts ol;tlhed in this pupcr JJIU~ by Itsed to: 1. e.stublisfI u bud 

debt wserw for GAAP ~sttrtct~mts; 2. provide insrrr-unc~cJ wgw 
lutcws M’ith UJI udditionul nlcthod to deteJwIine colluter-ul r-e- 

quirements; 3. estimate .suJ?ty bond loss ratios; uJId 4. prmlide 

bunks wjith utI udditiotIul JJIctlIodology to piice letterx of’ credit 

ti+Iic,h colluter-ulize unpuid chinI liubilities. 

I. IKTKODWTION 

The term “credit exposure” is defined as the possibility that one entity 
will suffer a financial loss due to the inability of a second entity to satisfy 
its contractual obligations (as a result of the poor financial health of the 
second entity). Credit exposure, as it relates to underwriting activities of 
property-casualty insurance companies, refers to the possibility that the 
insurance company may not be able to collect premiums, deductibles, and 
other charges when due. This paper will focus on the credit risk associ- 
ated with issuing retrospectively rated policies and will outline a proce- 
dure to price this credit exposure. In addition, the credit exposure pricing 
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model will be extended to other areas of credit risk exposure, such as 
surety bond pricing. 

For retrospectively rated policies, the insurance company collects pre- 
mium from the insured based on paid or incurred losses until all claims 
are closed, or until the insured and insurance company agree on a price to 
end the retrospective accountings. Thus, if the insured files for bank- 
ruptcy, the insurance company may not be able to collect all the addi- 
tional retrospective premiums due. These additional premiums represent a 
credit exposure to the insurance company. The insurance company may 
be obligated to pay claims associated with the expired policy even though 
additional premiums are not forthcoming. 

The discussion below is divided into six sections. Sections 2 through 5 
deal with the credit exposure associated with retrospectively rated poli- 
cies. Section 6 describes a pricing model for surety bonds. Section 7 
discusses additional applications of the credit exposure pricing model, 

2. MAGNITUDE AND QUALITY OF THE CREDIT EXPOSURE 

The magnitude of the credit exposure refers to the absolute amount of 
the expected additional premium due the insurance company on expired 
policies. Credit exposure results from the nature of retrospectively rated 
plans. For incurred loss plans, an insured typically receives a return pre- 
mium at the first retrospective accounting, and thereafter the insured pays 
additional premium to the insurance company as losses develop. This 
procedure is similar to the insurance company “lending” the insured the 
difference between ultimate premium and the collected retrospective pre- 
mium. This difference between the ultimate premium and the collected 
premium defines the magnitude of the credit exposure. 

For an incurred loss retrospectively rated plan, the insurance company 
collects standard premium during the first 12 months of the policy period. 
At 18 months and annually thereafter, a retrospective accounting is per- 
formed via the following formula: 

R,=(B+(CxE)+(CxL,))xT. (2-l) 



R, is the retrospective premium at time period f and is subject to a 
maximum and minimum premium. The maximum and minimum premi- 
ums are factors of the standard premium. 

B is the “basic charge” and covers expenses, profit, and the insurance 
charge. The basic charge is determined by a factor multiplied by standard 
premium. The factor C is the loss conversion factor and covers a load for 
loss adjustment expenses. E is the charge for limiting losses for individual 
claims that enter the retrospective rating formula. T is the tax multiplier 
and covers premium tax and some premium-based assessments. The tax 
multiplier and basic charge may also include a provision for residual 
market assessments. 

L, is the aggregate case incurred loss amount at time t. limited by the 
per claim amount. Thus, there is no provision for incurred but not re- 
ported (IBNR) losses in the standard incurred loss retrospective rating 
formula.’ The magnitude of the credit exposure is proportional to the 
IBNR. 

Figure 1 displays the projected transfer of funds for a standard in- 
curred loss retrospectively rated plan. In this example, it is assumed that 
the insured is written for a one-year term and does not renew. The retro- 
spective rating parameters and incurred loss development pattern are 
shown on Exhibit 1. For simplicity, the tax multiplier and loss conversion 
factor are both set equal to one. These assumptions do not affect the 
conclusions of the paper. 

Exhibit 2 displays the amounts underlying the graph on Figure 1, The 
insurance company collects $2.0 million in standard premium during the 
first year. The first retrospective accounting is performed with incurred 
losses evaluated as of 18 months and $674.000 is returned to the insured.’ 
Over the next seven years, the insurance company will collect the differ- 
ence between the ultimate retrospective premium ($2.1 million) and the 
first retrospective accounting premium ($1.326 million), or $774,000. The 

’ IBNR is defined IO include both incurred but HOI reported IOSSL’S as well as devclopmcnt 
on existing case reserves. 

’ The example in this paper usumcs that the billing and collection process takes six 
months. Therefore. the insurance company will return funds to the insured BS of 24 
months. 
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$774,000 is the credit exposure as ot 23 months and. in essence, repre- 
sents a loan by the insurance company to the insured. If the insured filed 
for bankruptcy 25 months after the inception of’ the retrospectively rated 
policy (one month after the insurance company returned funds to the 
insured), the insurance company could suffer a future earnings toss equal 
to $774,000. 

The credit exposure decreases as losses dcvclop (assuming the insured 
pays the premium when due). The exposure cquats zero when the insured 
pays the ultimate premium. 

The magnitude of the credit exposure for it specific insured at a spe- 
cific point in time depends upon how much premium is yet to be col- 
lected. In general, the quicker the premium is cot&ted. the smatter the 
credit exposure. Thus, plans with tow loss limits wilt have a smaller credit 
exposure. 

Figure 2 displays the situation where the insurance company insures 
the above-mentioned risk for three years at a standard premium of $2.0 
million a year, and then the insured non-renews. Exhibit 3 displays the 
numerical backup for Figure 2. The collected premium at Year Two, 
$3.326 million, equals the first retrospective accounting premium of 
$1.326 million for the first year of the three-year period plus the $2.0 
million in standard premium for the second year of the three-year period. 
The credit exposure is largest at Year Four. after all politics have had a 
retrospective accounting. The credit exposure at Year Four (four years 
after the inception of the first policy) is $133 million or 76.5% of the 
annual standard premium. 

The National Association of Insurance Commissioners (NAIC) has 
recognized the significance of credit exposure and has altered the statu- 
tory Annual Statement twice in the last four years in order to provide 
rnore information on credit exposure. The 198X Statement was altered to 
display the amount of additional premium that an insurance company 
anticipates collecting on retrospectively rated plans. Line 9.3 on page 2 of 
the Statement or tine 33 on page X displays the additional premium 
amount (Accrued Retrospective Premium). Beginning in loX8. the State- 
ment also required companies to display the amount of letters of credit, 
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collateral, and other funds that secure the accrued retrospective premiums 
(General Interrogatory # 3 I ). In I99 I, the Statement required that 10% of 
the amount of unsecured accrued retrospective premium be recorded as a 
non-admitted asset. These changes show that the NAIC recognizes the 
possibility that the additional premium due may not be collectible. The 
collectibility of the additional premium is a f‘unction of the quality of the 
credit exposure. 

Francis Hope stated that “negative rcservcs; i.e., the anticipation of 
additional premium due the company, [should] be included in the Annual 
Statement, provided that one is fully confident that the money is truly 
forthcoming.” [I] Hope probably intended this statement to refer to the 
accuracy of the retrospective premium reserve: however, it is equally 
important that the monies due the insurance company be collectible. 
Amounts due the insurance company may be uncollectible due to the 
insured’s financial condition. 

The quality (collectibility) of the credit exposure is largely determined 
by the insured’s financial condition. If the insured files for bankruptcy, 
the insurance company may not be able to collect additional premium. 
Clearly, an insured in a strong financial position at policy inception is less 
likely to file for future bankruptcy than an insured in a poor financial 
position at policy inception. Section 3 outlines several rnethods to deter- 
mine the financial condition of an insured. 

Nationally, credit exposure has increased as the financial strength of 
American companies has decreased. The rniddtc 1980s saw a large in- 
crease in the number of leveraged-buyouts (LBOs). The LB0 activity 
resulted in companies replacing equity with debt. and, therefore. the fi- 
nancial strength of these companies has decreased. Bonds rated Caa by 
Moody’+-the bonds closest to default-increased from $7.2 billion at 
December 1987 to $23.7 billion by March 1990. (31 For non-financial 
corporations, net interest expense as a percentage of earnings before inter- 
est and taxes rose from 18.2% in 1979 to 32.9% by year-end 1989. These 
statistics display the decrease in the credit quality of American corpora- 
tions. Thus, insurance companies may not be able to collect as much 
retrospective premium on policies of the 1980s because relatively more 
insureds may file for bankruptcy. 
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3. ANALYZING THE QUALITY OF THE CREDIT EXPOSURE 

This section outlines two approaches that can be used to determine the 
financial strength of a commercial insured: 

I. ratio analysis; and 

2. independent rating agencies’ ratings. 

Rutio Andyis 

Ratio analysis depicts relationships between accounts on a firm’s fi- 
nancial statement. The ratios can be used to measure a firm’s financial 
health. Ratios can be classified as liquidity ratios, equity ratios, and prof- 
itability ratios.’ 

Liquidity ratios measure a firm’s short-term debt paying ability. One 
commonly used liquidity ratio is the current rutio. The current ratio is a 
firm’s current assets divided by its current liabilities. Short-term creditors 
use the current ratio to financially underwrite accounts. All other things 
being equal, the higher the current ratio, the more likely a firm will be 
able to pay its short-term debts. Even though credit exposure is similar to 
long-term debt, an insurance company will be interested in the liquidity 
ratios because if a firm cannot pay short-term debts it may not be able to 
pay long-term debts. 

A commonly used equity ratio is the debt-to-equity ratio which mea- 
sures the amount of relative debt of a firm. The higher the debt-to-equity 
ratio, the more financially leveraged the company. Since the company 
must eventually repay the debt, a company with a relatively high debt-to- 
equity ratio may not be able to pay additional insurance premium if the 
company falls on hard times. 

A commonly used profitability ratio is the li~?~~~-iF~t~l~~.~t-~U~~FZ~d ratio. 
The ratio is: 

Times Interest Earned = 
Income Before Interest and Taxes 

~ ~ ~~ ~~ ~~~ - ~~ 
Interest Expense . 

’ Another classification of ratios is market ratios: however, these ratios are more relevant 
for investment decisions than for credit quality analyGs. 
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A firm that cannot pay its interest payments when due will eventually 
have financial problems. The higher the times-interest-earned ratio. the 
more money a firm will have available for general corporate purposes. 
Therefore, a firm with a high times-interest-earned ratio is not likely to 
default on premium payments in the near t‘u1urc. 

A financial analyst can use these ratios as tools lo evaluate the credit 
exposure of a prospective or current insured. These ratios have “rule-of- 
thumb” levels at which the firm is considrrcrl to he potentially deficient. 
As a technical note, the rule-of-thumb levels vary considerably by indus- 
try, and financially underwriting accounts is a complex procedure which 
often cannot be based solely on financial ratios. Therefore, for accounts 
that possess a significant credit expoaurc. the analyst should review all of 
the firm’s published financial information (annual reports, IO-KS, etc.) 
and meet with a financial officer of the firm. A firm’s ratios may be 
acceptable: however, the firm may have 3 significant receivable from 
another firm in poor financial condition. Only the notes to the financial 
statements will highlight such a problem. 

Several independent rating agencies ralc the credit quality of compa- 
nies. Insurance companies can use the agencies’ ratings to supplement 
ratio analysis in order to determine the quality of the credit exposure. If 
the retrospective rating plan for a particular insured has a small credit 
exposure, it may be more cost effective for the insurance company to rely 
solely on the agency ratings. Three possible agency ratings are those ot 
Moody’s, Dun & Bradstreet, and Stand4 & Poor’s, 

Moody’s publishes corporate bond ratings indicating the degree of 
default risk associated with a bond. The default risk on bonds may be 
similar to the default risk for retrospective premium payments because 
both are long-term obligations. Moody.5 bond ratings vary from Aaa 
(where interest payments are protected by a large and stable margin and 
the bond principal is secure) to C (the lowed class of bonds where the 
prospect of the bonds ever attaining any real investment standing is ex- 
tremely poor). 
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Dun & Bradstreet provides credit ratings on three million domestic 
and foreign firms. Dun & Bradstreet’s Busimss /njimnafion Rqxwf con- 
tains a summary section on each firm. The summary section includes a 
review of the company’s financial condition and its sales and earnings 
trend along with the firm’s payment record, as reported by suppliers. The 
report also includes other financial and operating information. Dun & 
Bradstreet supplies a composite credit approval rating from 1 to 4, with I 
being the highest rating. 

Standard & Poor’s publishes bond credit quality ratings. Standard & 
Poor’s bond ratings vary between AAA and D. AAA is the highest rating 
and signifies that the capacity to pay interest and principal is extremely 
strong. A rating of D indicates that the firm has defaulted on interest or 
principal payments. 

4. CURRENT INDUSTRY PRACTICES FOR MINIMIZING CREDIT EXPOSURE 

The insured’s financial condition will determine the quality of the 
credit exposure. For firms in excellent financial condition, the insurance 
company may believe it is not necessary to recognize the credit exposure. 
I will show later that the risk of default for firms in excellent financial 
health is minimal, so that it may be reasonable to ignore credit exposure 
for these accounts. However, for firms in average or below-average finan- 
cial condition, the insurance company may want to take steps to reduce its 
credit exposure. 

The insurance company can reduce credit exposure by: 

I. not offering retrospectively rated plans; 

3 -. requiring collateral for anticipated additional retrospective 
premiums: and 

3. altering the cash flow parameters of retrospectively rated poli- 
cies. 

For very large accounts, the first option of not offering retrospectively 
rated plans and still writing the account is not feasible. Most large in- 
sureds believe that their loss experience should determine their premium 
payments. Even though the experience rating plan reflects loss experi- 



ence, the insureds recognize that retrospectively rated plans will reflect 
favorable loss experience earlier and more directly. 

The second option to reduce the credit exposure is for the insurance 
company to require collateral from the insured. A letter of credit (LOC) or 
surety bond may be obtained to secure additional premium amounts. This, 
in essence, transfers some or all of the credit exposure to the bank or 
surety. 

For example, the insurance company may request collateral equal to 
the ultimate premium less premium paid to date. Thus. if the insured 
defaulted at any time, the insurance company’s credit exposure would be 
fully collateralized. The insurance company could exercise the collateral 
and collect all expected future amounts due. However, if losses developed 
higher than anticipated, the insurance company may suffer an earnings 
loss. 

For firms in below-average financial condition. the insurance com- 
pany may require collateral equal to the maximum premium less premium 
payments to date. The additional collateral could bc required due to the 
greater variability of ultimate losses for firms in poor financial condition. 
For example, firms in poor financial condition may be more likely to lay 
off workers and overlook loss control in order to cut costs. These mea- 
sures may increase the variability of ultimate losses. 

Finally. insurance companies may alter the cash How of the retrospec- 
tively rated plan in order to minimize the credit exposure. Two ways to 
alter the plan are: 

1. modify the funding of the retrospectively rated plan: and 
3 -. use loss development factors to project losacs used in the retro- 

spective rating formula. 

The funding for incurred loss retrospective rating plans could be mod- 
ified in order to minimize the credit exposure. For example, a plan could 
be designed such that the insured pays full standard premium the first 
year. with no funds changing hands until 42 months. even though retro- 
spective accountings are performed at 18 and 30 months. Using the fig- 
ures on Exhibit 2, this plan would reduce the credit exposure from 
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$774,000 at Year Two to $100,000, as collected premium would equal $2 
million until Year Four. At Year Four and subsequent, the credit exposure 
under the revised program would be identical to the credit exposure in 
Exhibit 2. While this approach does not eliminate the credit exposure, it 
substantially reduces the exposure for the first three years after policy 
inception. In return for holding onto the insured’s cash for a longer period 
of time, the insurance company could increase the dividend amount. The 
dividend payment could be increased by the amount of additional invest- 
ment income earned on the incremental funds from 18 to 42 months. The 
incremental funds are the standard premium less the normally calculated 
retrospective premiums from 18 to 42 months. 

The retrospective rating plan could incorporate incurred loss develop- 
ment factors to minimize the credit exposure. The development factors 
would be applied to the incurred losses at 18, 30, and 42 months. These 
factors would be used to develop the losses that enter the retrospective 
rating calculation to an estimated ultimate level. Therefore, the expected 
credit exposure would be zero at 18, 30, and 42 months because collected 
premium will equal ultimate premium. This analysis ignores any variation 
in development factors by account. As in the preceding option, the divi- 
dend amount could be increased for the additional investment income 
earned by the insurance company. 

5. PRICING THE CREDIT EXPOSURE 

This section outlines a new method to price the credit exposure on 
retrospectively rated policies utilizing a financial risk charge (herein re- 
ferred to as Charge). The Charge is intended to provide sufficient funds to 
the insurance company to offset the expected loss of funds (on a present 
value basis) due to premium defaults. This section assumes that the 
Charge will be an addition to the basic premium. Alternatively, the 
Charge could be incorporated through a dividend reduction. The dividend 
reduction Charge calculation is similar to the additional premium calcula- 
tion. However, the present value analysis would be different because 
policyholder dividends typically are first paid I8 months after policy 
inception, as opposed to the basic premium which is usually collected at 
policy inception. 
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The Charge is largely a function of two factors: 

1. the insured’s financial condition; and 

2. the nature of the retrospectively rated plan. 

Insureds in poor financial condition at policy inception are more likely 
to default on future premium payments. In addition, the slower the loss 
development pattern, the more premium there is outstanding at any point 
in time. Hence, the relative magnitude of the credit exposure is larger in 
either case. In addition, there is a relationship between the development 
pattern and financial condition of the insured. The longer it takes to 
collect the ultimate premium, the more time there is for a good financial 
risk to turn bad. This is similar to the phenomenon in life insurance, 
where “select” risks deteriorate over time to average risks (in the aggre- 
gate). Thus, plans with low loss limits or plans that contain lines of 
insurance which develop quickly, will have a lower Charge. A paid loss 
retrospectively rated plan will have a relatively large Charge. 

A formula for the Charge is developed below based on the insured’s 
financial condition at policy inception for a three-line incurred loss retro- 
spectively rated policy. The illustrative plan includes workers compensa- 
tion, general liability, and automobile liability coverages. The parameters 
of the plan are displayed on Exhibit 1. 

Moody’s bond default probabilities were used to determine the proba- 
bility of the insured defaulting on additional retrospective premium pay- 
ments. The probabilities are published in “Corporate Bond Default and 
Default Rates.” [2] As both bonds and additional retrospective premium 
payments are long-term obligations, bond default rates are used as a 
proxy for premium payment defaults. Moody’s studied bonds by initial 
rating over a 20-year period in order to determine default probabilities by 
year and initial rating. A portion of Moody’s table is reproduced in Table 
1. 
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TABLE I 
AVERAGE CUMULATIVE DEFAULT RATES 

(YEARS) 
Bond Rating I 2 3 4 5 6 

BiGi 0.2% 0.5% 0.9% 1.3% 1.7% 2.2% 
BLi 1.7% 3.7% 5.5% 7.2% 8.9% 10.4% 
B 7.0% 11.8% 15.9% 18.9% 21.1% 23.0% 

The interpretation of the six-year value for B-rated bonds is that 
23.0% of the bonds rated B at time period t will default by time period 
t + 6. Moody’s has defined default as any missed or delayed interest or 
principal payment. Thus Moody’s default rates are a conservative esti- 
mate of retrospective premium defaults. 

Moody’s default probabilities are used for illustrative purposes. The 
Charge could be based on default probabilities from other rating agencies 
or other studies. All of the tools referenced in Section 3 can be used to 
determine the insured’s financial condition and default probability. 

The Charge can be calculated from Table 1 and an estimate of the 
incremental retrospective premium at each time period. On Exhibit 2, we 
can see an estimate of the incremental retrospective premium at specific 
points in time. For example, as of the second retrospective accounting, the 
insured will be billed $288,000 (this is the estimated retrospective pre- 
mium of $1,614,000 at 30 months less the collected premium of 
$ I ,326,OOO at 18 months). 

The financial risk Charge can be calculated as follows: 

Financial Risk Charge = 2 P, x RJ( 1 + i)‘, 
t=3 

where P, = cumulative default probability through period t, 

R, = incremental retrospective premium at time t, and 

i = an appropriate discount rate. 

(5.1) 
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This calculation assumes that the basic premium will bc increased by 
the amount of the Charge. Therefore, the calculation incorporates present 
value concepts (discounting) because the Charge is collected at policy 
inception, whereas the estimated premium defaults will occur over an 
extended period of time. 

The time index begins three years after policy inception, as the finan- 
cial exposure prior to the third year for standard incurred loss retrospec- 
tively rated plans is usually small. If the insurance company financially 
underwrites accounts, it is unlikely that the insured would file for bank- 
ruptcy in the first year-and-a-half after policy inception. In addition, at the 
first retrospective accounting, the insurance company typically returns 
funds to the insured because the first retrospective accounting premium is 
less than the standard premium. 

The Charge calculation for an account with a Baa bond rating by 
Moody’s and a premium payment vector as on Exhibit 2 is outlined on 
Exhibit 4. Column 1 on Exhibit 4 is the collected premium from Exhibit 
2. Column 2 is the incremental collected premium, the additional pre- 
mium the insurance company anticipates collecting at each accounting. 
Column 3 is the cumulative default probability based on Moody’s default 
rates. Column 4 is the expected default amount which is Column 2 multi- 
plied by Column 3. Column 5 is the present value of the expected default 
amount. For illustrative purposes, a 6% discount rate is used. 

As displayed on Exhibit 4, the Charge for an insured with a senior 
unsecured bond rating of Baa and an anticipated premium collection vec- 
tor as on Exhibit 2 is only 0.43% of standard premium (the sum of 
Column 5 divided by standard premium). Thus, the current industry prac- 
tice, of not collateralizing the additional retrospective premium of in- 
sureds in good financial condition, may not be unreasonable. Insureds 
rated above Baa will have a lower Charge. 

However, for an account with a premium vector as contained in Ex- 
hibit 2 and a bond rating of B (which is below Baa). the Charge is 5.7% 
of standard premium (Exhibit 5). Moody’s report did not calculate default 
rates for firms with ratings below B; however, these companies would 
probably have a Charge significantly above 5.7%. Exhibit 6 displays the 
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Charge calculation for a puid loss retrospectively rated plan for a firm 
whose bonds are rated B. Thus, the only difference between Exhibits 5 
and 6 is the type of plan. As discussed previously, the Charge for a paid 
loss plan will be greater than the Charge for an incurred loss plan due to 
the slower premium collection pattern for the paid loss plan. For the paid 
loss plan displayed on Exhibit 6, the Charge is 10.2% of standard pre- 
mium. The magnitude of this change indicates that ignoring the credit 
exposure on certain accounts may result in loss of earnings. This analysis 
assumes that the insurance company does not require any collateral (e.g., 
LOC) for the paid loss plan. If the insurance company receives collateral, 
the credit exposure would be reduced and, therefore. the Charge would be 
lower. 

6. PRICING SURETY BONDS 

A surety bond is an agreement by one party (the surety) to be responsi- 
ble to another party (the obligee) for the conduct of a third party (the 
principal). If the principal fails to fulfill its obligation under the bond, the 
bond indemnifies the obligee for loss sustained as a result of such default, 
up to the amount of the bond. 

Several states require employers who self-insure their workers com- 
pensation exposure to provide the state with a surety bond. If the self-in- 
sured employer files for bankruptcy, the surety is required to make loss 
payments in place of the self-insured employer. The surety’s payments are 
limited by the face value of the bond. Some bonds are written such that 
the obligee can require the surety to make payment for the full face of the 
bond. 

For self-insured workers compensation bonds, the bond price is a 
function of both the financial health of the self-insured employer and the 
payment pattern for losses. The concepts used to price credit exposure are 
directly applicable to pricing surety bonds. This section outlines a proce- 
dure to price surety bonds based on Moody’s bond default probabilities 
and the workers compensation payment pattern displayed on Exhibit 7. 

Exhibit 8 displays the pricing of a workers compensation self-insured 
bond, for a one-year period, for a company with a Moody’s senior unse- 
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cured bond rating of B. The first column of Exhibit 8 displays the number 
of years from the time the bond was written. Column 2 displays the 
liability, or expected total needed reserves, by year. The total needed 
reserves equal case reserves plus IBNR reserves. Column 3 is the incrp- 
nmtd default probability based on Moody’s bond default rates. The in- 
cremental probabilities are utilized because it is assumed that the bond 
would be utilized to the full extent of the liability. Column 4 is the 
expected default in the year (Column 2 multiplied by Column 3). Column 
5 is the present value (at a VS discount rate) of the expected default 
stream. The sum of Column 5 is the discounted loss cost for this bond. 

Based on this analysis, the loss cost for an insured with a Moody’s 
bond rating of B purchasing a $1.8 million bond is $267.600 or IS%* of 
the face of the bond. Insurance companies typically require collateral on 
surety bonds (e.g., an LOC) and the collateral will reduce the credit 
exposure and, therefore. the price of the bond. The bond price should 
include a provision for company expenses, loss adjustment expenses, and 
profit. Therefore, without collateral, the bond price would exceed 1.5% of 
the face value of the bond. This analysis ignores any recovery from the 
principal in a bankruptcy proceedin,. 0’ therefore, the loss cost is conserva- 
tive. 

7. OTHER /ZPPI.IC‘4TIONS 

The financial methodology outlined in this paper has several addi- 
tional applications including: 

1. Providing insurance companies a method to establish a bad pre- 
mium debt reserve for GAAP statements: 

2. Providing insurance regulators a method to determine collateral 
requirements for self-insured employers: 

3. Providing insurance companies a method of estimating surety 
bond loss ratios; and 

4. Providing banks an additional method to price letters of credit. 
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Estimution of Premium Bad Debt Reserve 

The procedures outlined in Section 6 can be utilized to establish a bad 
debt reserve for expected premium defaults on retrospectively rated poli- 
cies for GAAP statements. Referring to Exhibit 5, the expected default 
amount for this insured at policy inception is $149,200 (the sum of Col- 
umn 4). The bad debt reserve for this account would then be the “earned” 
(based on pro rata earnings) portion of the $149,200. The expected de- 
fault amount for the insured three years after policy inception is $59,140 
(the calculation is displayed on Exhibit 9). The expected default amount 
should be calculated based on the insured’s current bond rating and esti- 
mated premium collection pattern. The bad debt calculation should be 
performed by account and policy year and the results summed in order to 
estimate the bad debt reserve. 

The methodology outlined in this paper may help insurance regulators 
in determining collateral requirements for self-insured employers. As dis- 
played in Exhibits 4 and 5, the Charge for an insured with a Baa bond 
rating (investment grade) is 0.43%, while the charge for an insured with a 
B rating (non-investment grade) is 5.7%, of standard premium. Insurance 
departments may want to institute a procedure whereby the face value of 
the surety bond as a percentage of total liabilities varies with the self-in- 
sured employer’s bond rating. The Iowa workers compensation self-insur- 
ance statute [3] incorporates a somewhat related concept. In Iowa, an 
estimate of the self-insured employer’s unpaid claim liability is multiplied 
by a ratio which varies from 0.00 to 1.00 in order to determine the 
indicated amount of collateral for the self-insured employer. The ratio is 
computed based on three financial ratios. A ratio of 0.00 indicates that the 
firm is in strong financial condition. The ratio gradually increases to 1.00 
as the indicated financial condition of the firm deteriorates. As a technical 
note, Iowa does not rely solely on this procedure to establish collateral 
requirements. For example, there is a minimum bond requirement of 
$200,000. 

State insurance departments will need to estimate default probabilities 
for employers not rated by Moody’s or use a procedure which is similar to 
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the methodology used in Iowa. In addition, state insurance departments 
may want to require an actuarial opinion for an employer’s self-insured 
liabilities. Insurance departments cannot determine an appropriate surety 
bond amount without an accurate estimate of the amount at risk, which 
frequently requires an actuarial opinion. 

The procedures outlined in Section 6 can be utilized to determine a 
priori expected loss ratios for surety bonds. Referring to Exhibit 8, this 
insured has an expected loss of $286.000. Dividing by the premium 
charged gives the toss ratio. A similar calculation could be performed for 
alt bonds written during the year and the results aggregated. A Bomhuet- 
ter-Ferguson projection method could then be used as one method to 
establish unpaid claim liabilities. 

The procedures utilized in Section 6 to price surety bonds can he used 
by banks to price LOCs collerateralizing insurance products. Typically, 
the insurance company will only draw down on the LOC in a bankruptcy 
situation and will draw the full amount of the LOC. Referring lo Exhibit 
8, the discounted loss cost of a $ t .X million LOC (supporting, for exam- 
ple, a deductible program) for an insured with a bond rating of B would 
be $267,600, or 15% of the LOC amount. This analysis assumes that the 
bank does not request collateral backing the LOC, and this analysis ig- 
nores expenses, profit. and any funds received in a bankruptcy proceed- 
ing. 

8. C‘ON(‘l,L~SlOh 

As the number of financially related insurance products increases. it is 
important that financial theory be blended with actuarial pricing concepts. 
If the credit exposure associated with financialty oriented insurance prod- 
ucts is ignored, insurance company operating results will be negatively 
affected as insureds may default on some financial obligations (e.g., retro- 
spective premium payments). 
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EXHIBIT 1 

STANDARD INCURRED Loss RETKOSPWIIVE PLAK 

RETORTING PAIWR~ 

Assumptions: 

Expected Losses = $1,800,000 
Standard Premium = $2,000,000 
Loss Conversion Factor (C) = 1 .O 
Tax Multiplier (7’) = I .O 
Basic Charge (R) = 0. I5 
Lines of Insurance =Workers Compensation 

No Loss Limit 

General Liability 
Automobile Liability 

REPORTING PATTERN 

-Quarter 
4 
6 

10 
14 
18 
22 
26 
30 
34 
38 
42 

Incurred Losses as 
Percentage of 

Ultimate Losses 
38% 
57 
73 
85 
90 
94 
97 
99 

100 
100 
loo 
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EXHIBIT 2 

STANDARD INCURRED Loss RETROSPECTIVE RATING PLAN 

INSURED WRITTEN FOR A ONE-YEAR TERM* 

Number of 
Years from ~ 
Inception of 

Policy 
1 
2 
3 
4 
5 
6 
7 
8 
9 

.~~~~~ (Amounts in Thousands> 
Collected**~ - - Ultimate 

Premium Jremium Credit&osure 
$2,100 $2,000 $100 
2,100 1,326 774 
2,100 1,614 486 
2,100 1,830 270 
2,100 1,920 180 
2,100 1,992 108 
2,100 2,046 54 
2,100 2,082 18 
2,100 2,100 0 

* Assuming insured non-renews after the one-year period. 
**Assumes a two-quarter lag in collecting/returning funds. Standard Premium equals 

$2,000; Basic Charge equals 15%; Expected Losses equals $ I.800; Loss Conversion 
Factor and Tax Multiplier equal I .OO. 
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EXHIBIT 3 

STAKDARD INCURRED Loss RFTROSPEUIVF. RATING PIAN 
INSURED WRITI‘E~ IRK j\ T~W-SYEAK TE.KM’ 

(AMOIINIX I*\’ THOLK~NDS) 

Number of 
Years from 
Inception of 

Policy 
I 

Ultimate Collected.” 
Premium Premium 

$2,100 $2,000 
4,200 3,326 
6.300 4,940 
6,300 4,770 
6,300 5,364 
6,300 5,742 
6,300 5.95x 
6,300 6.120 
6,300 6,228 

Credit Exposure 
$ 100 

x74 
I.360 
1,530 

936 
55x 
342 
180 
72 

* Assumes insured is written for three consecutive annual policy periods and then 
non-renews. 

** Assumes a two-quarter lag in collecting/retumin:: funds. Standard Premium equals 
$2,000: Basic Charge equals IS%‘: Expected Losses cquai~ 3 I .X00: Loss Conversion 
Factor and Tax Multiplier equal I .oO. 
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EXHIBIT 4 

FINANCIAL RISK CHARGE 

FIRM’S BOND RATING Baa 
(AMOUNTS IN THOUSANDS) 

Number 
of Years (2) (3) (4) 

from (1) Incremental Cumulative Expected 
Inception Collected Collected Default Default 
of Polix Premium Premium- Probabm Amount 

I $2,000 - - 
2 1,326 $(674) z 
3 1,614 288 .009 $2.59 
4 1,830 216 .013 2.81 
5 1,920 90 .017 1 s3 
6 1,992 72 .022 1.58 
7 2,046 54 .026 1.40 
8 2,082 36 .03 1 1.12 
9 2,100 18 .035 .63 

Total $11.66 

Financial risk charge as a percentage of standard premium = 

,“g = 0.43% 
3 

(51 
Economic* 
Cost of the 

Default 
- 

$217 
2.23 
1.14 
1.11 
.93 
.70 
.37 

$8.65 

* At a 6%’ discount rate. For example, 2.17 = 2..59/( 1.06)’ 
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EXHIBIT 5 

Number 
of Years 

from 
Inception 
of Policy 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Total 

(1) 
Collected 
Premium 
$2,000 
1,326 
1,614 
1,830 
1,920 
1,992 
2,046 
2,082 
2,100 

FINANCIAL RISK CFIAKGk 
FIRMS BOND RATED B 

(AMOUNTS IN THO~:SANDS~ 

(2) (3) 
Incremental Cumulative 
Collected Default 
Premium Probability 

- 

St6741 - 
28X .159 
216 .I89 
90 .211 
72 230 
54 244 
36 .25s 

(41 (5) 
Expected Economic* 
Default Cost of the 
Amount Default 

- 

- 

$45.79 
40.82 
1 x.99 
16.56 
13.18 
9.18 

18 .260 4.68 
$149.20 

- 

$38.45 
32.33 
14.19 
I 1.67 
8.77 
5.76 
2.77 

$113.94 

Financial Risk Charge as a percentage of Standard Premium = 

* At a 6% discount rate. For example. 3X.4.5 = 45.79/(3.(X1)’ 
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EXHIBIT 6 

FINANCIAL RISK CHARGE 

PAID Loss RETROSPECTIVELY RATED PLAN* 

FIRM‘S BONDS RATED B 
(AMOUNTS IN THOUSANDS) 

Number (2) 
of Years Incre- (3) (4) (5) 

from (1) mental Cumulative** Expected Economic*** 
Inception Collected Collected Default Default Cost of the 

Premium Premium Amount Default of Policy ~~___ 
1 

2 

3 

4 

5 

6 

7 

8 

9 

Total 

$606 $606 

1,056 450 

1,398 342 

1,632 234 

1,758 126 

1,992 234 

2,046 54 

2,082 36 

2,100 18 

Probability _~ ~- ~-~~ 
- 

.118 

.159 

.189 

.211 

.230 

.244 

.255 

.260 

- 

$53.10 

54.38 

44.23 

26.59 

53.82 

13.18 

9.18 

4.68 

$259.16 

- 

$47.26 

45.66 

35.03 

19.87 

37.94 

8.77 

5.76 

2.77 

$203.06 

Financial Risk Charge as a percentage of Standard Premium = 

203.06 
___ = 10.2% 
2.000 

* Assumes that the plan converts to an incurred loss plan at 66 months and that all 
premium is collected at the end of the fiscal year. 

** Assumes that due to financial underwriting the insured will not default in the first year. 
As a related point, if the insured defaulted during the first year, the insurance company 
may not be responsible for the full year’s claim liability. 

***At a 6% discount rate. 

Note: Exhibit 7 displays the payment pattern. 



EXHIBIT 7 

Number of 
Years from 
Inception of 

Exposure 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Ultimate Payout 
Losses Pattern 
$1,800 17% 

1 .#OO 42 

1,800 61 

1,800 74 

1,800 Xl 

1,800 85 

1,800 88 

I,800 91 

1,800 94 

1.800 ‘$7 

1.800 l(X) 

Percentage Amount 
Outstanding Outstanding 

83% $1,494 
.5x 1.044 
39 702 
36 468 
19 342 
15 270 
I2 216 
9 I62 
6 IO8 
3 54 
0 0 
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EXHIBIT 8 

(1) 
Number of 
Years from 
Inception of 

Exposure 
0 
I 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
II 

Total 

PRICING A SURETY BOND 

FIRM’S BONDS RATED B 
(AMOUNTS IN THOUSANDS) 

(2) 
Liability* 

$1,800 
1,494 
1,044 

702 
468 
342 
270 
216 
162 
108 
54 
0 

(3) 
Incremental 

Default 
Probabilities 

.070 

.04X 

.041 

.030 

.022 

.Ol9 

.014 

.Ol I 

.oos 

.004 

.004 

.004 

(4) 
Expected 
Default 
Amount 

$126.0 
71.7 
42.8 
21.1 
10.3 
6.5 
3.8 
2.4 
0.8 
0.4 
0.2 
0.0 

$286.0 

(5) 
Economic** 
Cost of the 

Default 
$126.0 

67.6 
38.1 
17.7 
8.2 
4.9 
2.7 
I.6 
0.5 
0.2 
0.1 
0.0 

$267.6 

* Assuming a one-year exposure period. The liability is equal to the total needed reserve. 
Total needed reserve equals c3se reserves plus IBNR, or ultimate losses less paid losses. 
The total needed reserves cnn be derived from Exhibit 7. This pricing is conservative ;ts 
it assumes the insured goes bankrupt when the exposure is the largest. 

** At a 6%’ discount rate. For example, 3X. I = 42.X/( I .Oh)’ 
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EXHIBIT 9 

BAD DEBT RESERVE THREE YEARS AITER POLICY INCEPTION 

FIRM’S BONDS RATELI B 
(AMOLKTS IK Twr W,NDS) 

Number of 
Years from 
Inception of 

Policy 

3 

4 

5 

6 

7 

8 

9 

Total 

(2) (3) 
(1) Incremental Cumulative 

Collected Collected Default 
Premiums Premium Probability 

$1,614 

1,830 $716 0.070’~ 

1,920 90 0.1 IX 

1,992 72 0. IS9 

2,046 54 0. I x9 

2.082 36 0.2 I I 

2,100 IX 0.230 

’ This is Ihe probability that the insured will dcl’x~lt in the nexl li\cal ywr 

(4) 
Expected 
Default 
Amount 

$15.12 

10.62 

I I .45 

IO.21 

7.60 

4.14 

$59.14 

Note: Assumes that the insured has not defaulted through Year Thrw. As a technical 
note. the firm’s current bond rating. not the firm’s bond rating ;II policy inception. is used 
in the calculation. 
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WHAT EVERY ACTUARY SHOULD KNOW 

WILLIAM R. GILLAM 

Abstract 

Workers Compensation experience ruting affects the distri- 
bution of billions of dollars of insuranct~ premium. It is u 
lurge-scale upplication of actuariul science, one which bus 
elvl\,ed since the very first days of the Casualty Actuarial So- 
ciety. A fuir amount of material exists on the theory underiyinC: 
the plun, und some of that material is required reading,for uc- 
tuurial students. This paper tries to bridge the gap henzleen 
theory and practice. Most of the insureds eligible j&. e.\peri- 
ence rcrting do not think in terms of over-u/l perfcvmance of the 
plan. They may agree individual risk equity is fine--us 1onS as 
it does not affect them advessely. Actuaries cun help relate the 
theoretical underpinnings of the plan to the bottom-lint effect 
on the indil,idnal insured. 

The exposition begins with u discussion of performunce test- 
ing. It then puts experience rating into the xwte.vt of the pre- 
mium transaction ,fw u policy, then turns to a disc~ussion of 
overull finunciul impuct. The latter part of the puper dctuils 
the activity necessary to administer esperience ruting, includ- 
ing the culculution of plan parameters, the assembly of e.xperi- 
ence datu, und the promulgation of rating forms. 

The paper is intended to be expository, describing concepts, 
wcabulury, and details of the plan from an actrrurial perspec- 
tive. Itulics are used for emphasis, which may include intro- 
duction of a new Mwrd. Phrases that demonstrate usage. us 
wlell as honest-to-goodness quotutions, are shotiw in quotes. 
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The primary goal of experience rating is individual risk equity. This 
equity is not just between individual risks. but equity that pervades the 
relationship of insureds to their insurers and to society at large. Experi- 
ence rating engenders an incentive for safety and enhances market com- 
petition. Even if not the primary goal of experience rating. these desirable 
results should be touted. 

Equity is an actuarial concept: each insured should pay a rate correct 
for its inherent potential for loss. It is important to stress the word poten- 
tiul, for the experience rating modification (the ~rod) provides the means 
IO adjust manual premium prospcctivcly so that next ycar’x rate will be 
tailored to fit the particular employer. This point is developed later. 

The following passage from Dorwcilcr’s prescient presidential address 
in 1934 explains in practical terms why consideration of risk experience 
can accomplish this goal: 

“The object of experience rating is to dctcrmine a more equita- 
ble rate for the individual risk based [to] ;I degree on the evi- 
dence presented by its own experience. It is rccognilcd that 
individual risks within a classification arc not alike and that 
there exist inherent differences due, for example in compcnsa- 
tion, to variations in plants and premises. in operating pro- 
cesses, in the materials involved, in the management. in the 
morale of employees, in claim consciousness, and in the rcln- 
tion to the community. These differences arc of such a nature 
that it is difficult to label them definitely and they cannot be 
associated with conditions measurable in advance. It is known. 
however, that variations in experience do exist in ;I way that 
definitely precludes ascribing all of them to chance. Experi- 
ence rating is considered by many as the most practical 
method yet devised, or even suggested, of giving recognition 
to variations produced by such factors.“[ I ] 

In the parlance of risk theory. Dorwcilcr is talking about the \nrirrt?c,c> 
of the hvpnthctiml JHC~K~ or the hchzwrr rvrt-itrnr,c of risks within a class. 
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The greater the between variance, the greater the credibility of individual 
risk experience. 

The original idea of applying experience rating to workers compensa- 
tion was a good one. Quoting Dorweiler: 

“Compensation insurance, particularly, is subject to experience 
rating, for to a considerable degree the losses may be con- 
trolled and individuality of management reflected in the expe- 
rience through the employer’s ability to correct defective 
conditions and to enforce safe practices among employees by 
his potential power to dismiss or to withhold promotions. 
There are a few other lines, like employers’ liability, 
workmen’s collective, and automobile fleet collision, where 
the assured has similar power to affect losses.” [ 1, p, 41 

2. MEASURING HOW WELL EXPERIENCE RATING WORKS 

This question has been the subject of much study in the last 10 years, 
and the science has advanced far beyond what it was in the early years of 
the CAS. 

The first principle is that experience rating be an accurate predictor of 
an individual insured’s future experience. This is the basis of the “credi- 
bility conditions” and the empirical performance tests which are de- 
scribed below. It has some market implications, too, and these are now 
noted. 

The mod is a prospective measure only. There is no intention to re- 
coup past losses or rebate savings. The debit mod, for instance, gives an 
indication that more than manual premium will be needed to cover the 
expected losses of the particular employer next year. 

The debit mod should not be thought of as a stigma. To decide be- 
tween contractors bidding on a project, some owners erroneously elimi- 
nate those with mods higher than some threshold. The bid itself is far 
more relevant. Rating bureaus and regulators, who ought to know better, 
sometimes unfairly attach penalty programs to only those insureds with 
debits. These insureds have already paid their debt to society, so to speak. 
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The rationale for these programs is that a debit mod is an indicator of 
an unsafe operation. Although a debit mod may reflect poor safety habits, 
it just as often may be applicable to an employer wirh a good safety 
program who is a poor fit into the manual classifications. Contractors are 
especially difficult to classify. Each has a unique set of skills and an 
equally unique set of projects. Further. even though statistics show that 
poor prior experience is an indication of poor future experience, any 
single accident is probably a matter of pure chance. 

Many aspects of a rating plan may affect its performance, but in the 
early days, the quality of the plan was thought to depend largely on 
“proper” credibility. Dorweiler proposed two conditions for correct credi- 
bility: necessary and sufficient. These are his words: 

“A necessary condition for proper credibility is that the credit 
risks and debit risks equally reproduce the permissible loss 
ratio. Also, if the proper credibility has been attained, each 
[random] subgroup of the credit and debit risks, provided it has 
adequate volume, should give the permissible loss ratio. While 
these conditions are necessary for a proper credibility of the 
experience rating plan, it does not follow that they are also suf- 
ficient. For a sufficient condition it would be required to estab- 
lish that the risks within a group cannot be subdivided on any 
experience basis so as to give different loss ratios for the sub- 
divisions, assuming the latter have adequate volume.” 11, p. 
111 

By “reproduce,” Dorweiler was referring to the risk experience that 
would emerge in the prospective period; i.e., the losses during the time 
when the mod is applicable to risk premium. Given that rates today are 
rarely adequate, it is too much to ask that the two subgroups of risks 
equally reproduce the permissible loss ratio. So the necessary condition is 
that the two groups show equal loss ratios to standard premium in the 
prospective period. Since credibility is a function of risk size, the question 
must be posed for each size group: does the plan satisfy the necessary 
condition‘? The result of a plan satisfying this necessary condition is that 
insurers would find credit risks and debit risks equally desirable as in- 
sureds. 
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Even though Dorweiler calls the condition necessary, it may be too 
much to require of a plan. Early in the study leading to the 1990s revi- 
sions of the Workers Compensation Experience Rating Plan, it was seen 
that the existing plan did not perform well in simple tests (described 
below) based on the necessary condition, at least among the smallest and 
largest risks. This testing suggested the need for the changes that have 
recently been put into effect. 

The sufficient condition is that there be no way to select subgroups of 
risks based on their experience that will produce significantly different 
loss ratios in the prospective period. It should be clear that it would be 
difficult, if not impossible, to test all possible a priori subdivisions of 
risks. 

Dorweiler characterizes the sufficient condition as a goal, not a re- 
quirement. It can be used as a relative measure for judging how well a 
plan is working. He documented a simple method for testing credibility 
under this condition using the experience of 1931 experience-rated risks 
in New York [l, p. 121. 

He first grouped risks by size. Within each size group, risks were 
stratified by the value of their modification. This is a “subdivision on an 
experience basis.” Following the risks in each subdivision, or stratum, to 
the effective period of the modifications, he calculated the loss ratio of 
each stratum, first to modified (actual) premiums, then to manual premi- 
ums. The ideal result was that the loss ratios to manual premiums would 
track with the value predicted by the mod, but those to actual premiums 
would be nearly flat. A trend upward or downward in the loss ratios to 
actual premium across risks grouped by increasing value of the mod 
would show too little or too much credibility, respectively. 

This author documents a refinement to this test used in developing the 
revised Workers Compensation Experience Rating Plan [2]. This is the 
quintiles test in which risks within an expected loss size range are 
grouped into five equal strata (quintiles) by the value of their modifica- 
tion. The first stratum contains the 20% of risks with the lowest mods, 
and so on. The subsequent ratios of actual to expected loss and actual to 
modified expected loss, are evaluated for each stratum. The test statistic 
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for each size group is the variance of the modified ratios divided by the 
variance of the unmodified ratios. A low test statistic indicates a plan that 
has eliminated much of the between variance (in risk theoretic terms) or 
made risks of differing experience more equally desirable. 

The use of this test in the development of the revised plan demon- 
strated that experience rating is very effective. Test statistics for the old 
plan were far lower than unity, showing that, even without proper calibra- 
tion, experience rating is valuable. The test statistics for the smallest and 
the largest insureds indicated greater credibilities for the former and 
smaller for the latter. 

Division into quintiles represents only one “subdivision on an experi- 
ence basis,” so the test does not check all possible subdivisions. Another 
test of experience rating, which is grounded in modem risk theory (thus 
avoiding conflict with Dorweiler), is the ~#~c~ic~nc~~ test as documented by 
Meyers [3]. In this test, the sample variance in loss ratios across all risks 
in a size group is compared for modified versus unmodified loss ratios. 
The statistic is the ratio of the former to the latter sample variances: lower 
statistics indicate better reduction in risk loss ratio variance. 

All of these tests have been used to good effect in their historical 
contexts. Although they have been presented in a progression, each must 
be considered superior to pure judgment as a means of testing plan per- 
formance. Judgment is still essential, however, in the choice of data and 
interpretation of results. 

3. PAYING FOR WORKERS ~‘OMI’ENSATION INSLfRANC‘lz 

Experience rating is an essential part of the workers compensation 
pricing system. All insureds over a certain premium size are eligible for 
experience rating or are rutuhle. “Eligible” is an euphemism, as there is 
no choice: the insured must accept its mod, be it a credit or debit (i.e., 
premium reduction or increase). The manual premium, based on the clas- 
sification of the employer, is tailored by the mod so that it will better 
reflect the hazard inherent in the insured’s operation. 
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Figure 1 shows a simplified flow chart of the premium determination 
and bureau reporting process for a rated insured with a policy effective in 
July 1990. Loosely speaking, in the left columns are statistical plan data 
items generated by the transaction; in the center is the financial informa- 
tion pertaining to the insurance contract; on the right is an approximate 
time line. 

During the effective period of a compensation policy, the insured gen- 
erates loss and payroll experience. This is coded by the insurer and sub- 
mitted to the rating bureau according to its statistical plan. At the time of 
quotation for a policy beginning July 1990, experience from the policies 
incepting July 1986, July 1987, and July 1988 has been coded on unit 
report cards of the Workers Compensation Statistical Plan, commonly 
called the Unit Plun. A sample unit card for a 1988 policy is attached as 
Figure 2. More detail on the unit cards is found below. 

The employer provides his/her prospective 1990 exposure data to the 
agent/broker to obtain insurance. The agent can compute the insured’s 
nzunlrcrl premiun~ as the extension of manual rates on estimated payroll (in 
hundreds of dollars). The agent can obtain a 1990 rating form, such as the 
one in Figure 3, apply the insured’s modification to manual premium, and 
add certain other elements to compute the standurd pwmium. Note that 
the form shows the expected loss rates (ELRs) and discount ratios (D-ra- 
tios), defined below, for the 1990 mods. Their derivation and use is ex- 
plained in Sections 5 and 6. 

The standard premium is a benchmark. It gives the best indication of 
the true underlying expected loss of the insured. It is the basis of any 
premium calculation plan. From it, the agent can compute the purunteed 
cost premium. if the insured elects the simplest plan of paying for cover- 
age up front. The insured may also elect retrospective rating, if an agree- 
ment can be reached with an insurer on a specific plan. There may be 
plans other than retrospective rating wherein the risk premium is affected 
by the emerged losses during the policy period. For example, losses of the 
particular insured or of some larger group of insureds can often be the 
basis of dividend plans on participating policies. 
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FIGURE 1 

POLICY TRANSACTION FLOWCHARI 

pOL YR 1984 

IFQLYR 1985 1 
- F’OL YR 1986 ’ 

POL YR 1987 

FOL YR 1988 

I 

-I 
-.I > 

pEF---j 

AUDITED PAYROLL 

1990 UNIT REPORTS 

4189 

1190 

3/90 

4/90 

6190 

12191 
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FIGURE 2 

SAMPLEUNIT CARD 
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FIGURE 3 

SAMPLE RATlh(i FORM 

WORKERS COMPENSATION EXPERIENCE RATING 

Risk ID #: 12345 Effective Date: 711190 
Name: Hypothetical, Inc. State: N 

-__ 

07/o I /86 
06/30/89 

SW 

r-i&y 
Pi IEl 

99,505 166,327_ 76,651) logy476 1 

- SIB “*uz Eacese TOTALS EXP MOD 
El i’-*,o,.,B, r ,*,,w IPI / 

CALCULATION ACTUAL 76,651 65,246 37.222 199.321 / 
ic, ~w*lo,fisl ,*m ,*, 

EXPECTED 63.666 65.246 33.632 162.766 
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In this case, the actual 1990 premium cannot be computed until after 
the policy period has elapsed. The first adjustment usually occurs 18 
months after inception, or six months after the expiration of the policy. 
Payroll is audited so that authorized rates can be extended on payroll (in 
hundreds of dollars) by class. After the mod is applied, premium dis- 
counts are applied or the retrospective premium is calculated for the first 
(but not the last) time. The expense constant and other non-ratable ele- 
ments are added. The end result is referred to as the net earned premium. 
At this point, the insured pays (or receives) the difference between this 
total and what has already been paid on deposit. 

4. PREMIUM IMPACT OF EXPERIENCE RATING 

A phenomenon of the 1980s has been the repetitive need for substan- 
tial workers compensation premium level increases. It is unusual that the 
need never seems to be satisfied. A state may grant a large rate increase as 
indicated in one year, only to face a filing for as large an increase the 
following year. The socioeconomic forces underlying this trend are the 
subject of much discussion and lie outside the scope of this paper. 

In workers compensation, the phrase pronium le~l should be under- 
stood as something apart from rute level. The rate level in workers com- 
pensation is a function solely of the manual rates before application of 
experience rating, schedule rating, premium discounts, retrospective rat- 
ing, or dividend plans. A change in the premium discount plan, for in- 
stance, could engender a premium level change with no rate level change, 
or alternatively, could be accompanied by an offsetting rate level change 
to assure no premium level change. 

Of particular relevance to this article is the nexus of manual premium 
and standard premium in ratemaking. Overall premium level needs are 
determined by the adequacy of total standard premium in a state. Inherent 
in standard premium is the experience rating c@-halunc~, a term used to 
mean standard premium divided by manual premium or, put another way, 
manual premium weighted average modification.’ In spite of the fact that 

’ California uses the term “off-balance” to denote a factor applied to rates (usually) to cor- 
rect for the change in the average modification associated with a rate change. 



the term “off-balance” sounds like it describes a di.st,/.~~l”~~‘?‘:\’ between 
manual premium and standard premium, it refers to the relation. Even 
when there is no discrepancy, we say there is “a unity off-balance.” 

The average modification is a function of the adequacy of rating val- 
ues: ELRs and D-ratios. These values are calculated at the same time as 
new rates, but pertain to the experience period used in the associated 
ratings. Technical details on the computation of rating values may be 
found in Sections 5 and 6. In any case, the accuracy of these values 
should be judged on the aggregate totals by class (or at least by state) of 
emerged versus predicted loss. When the ratemakers are on target and 
rating values are accurate, the off-balance is usually near unity or a slight 
credit. The slight credit frequently results because insured risks large 
enough to be rated tend to have better cxpcricnce than smaller risks. 

Interestingly enough, even if the rating values are geared to be correct 
for the subpopulation of rated insurcds, the off-balance is still frequently a 
credit. Testing at the National Council on Compensation Insurance 
(NCCI) has shown this to bc the cast. Researchers have been able to 
derive pairs of adjustment factors applicahlc to ELKS and D-ratios, in 
several rating years in several states. so that expected losses (total and 
primary) match. in aggregate, the actual emerged loss experience of rated 
risks. Recomputing all modifications with these adjustments, the 
(weighted) averages for rated risks are near unity, but definitely a credit. 
This suggests that the largest rated risks, those with the most credibility, 
have relatively better experience than smaller rated risks. at least at the 
first, second, and third reports. Dorweiler observed the same phenomenon 
in the larger risks of 193 1: 

“These have more favorable experience and by virtue of their 
size under the experience rating plan rcceivc larger credibility 
and therefore obtain credits which cannot be expected to be 
offset by an equal volume of less favorable experience on the 
smaller experience rated risks whose credibility is less.” [ 1. p. 
71 
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In the NCCI committees, there is always some discussion about the 
effect of experience rating on premium, but no clear indication of what to 
do about it, if anything. 

Contrary to suspicions, there is no ongoing scheme to use experience 
rating to assure premium adequacy. The calculation of needed premium 
level change at NCCI uses a loss-to-standard-premium ratio. This pro- 
duces an indication that contemplates no change in off-balance between 
the experience period and the prospective period. 

Our investigations show that, in most states, over the years the off-bal- 
ance does not stray more than one or two points from unity. The all-too- 
common exceptions occur in states that allow rate adequacy to deteriorate 
for several successive years in times of increasing costs. The increasing 
off-balance reduces premium inadequacy. Since needed rate level changes 
are based on standard premium, indicated increases will be lower when 
the off-balance moves above unity. If adequate rates are approved, and 
the off-balance moves back toward unity, premium income may remain 
inadequate. 

The production of rates and rating values is carefully monitored in the 
hope that changes in the off-balance will be minimal. Unfortunately, esti- 
mations of needed rates and rating values have proven to be difficult even 
if rate regulation is not a factor. The tendency is for too high a rate level 
(admittedly a rare occurrence) to result in a credit off-balance and too low 
a rate level (somewhat more common) to produce a debit off-balance. 
This is because ELRs are proportional to rates, and rates are presumed 
accurate. Without specific intent, then, experience rating can partially 
correct errors in class relativities or a rate level that is too low or too high. 
In the long run, there can be no net gain or loss but more stability results 
from experience rating. 

5. CALCULATION OF EXPERIENCE RATING VALUES AND 

PLAN PARAMETERS 

This section describes some of the actuarial tasks necessary to keep 
the plan functioning properly. The description is technical in nature, 
aimed primarily at the actuarial student. 
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Besides experience rating, another essential part of pricing workers 
compensation is ratemaking. There is ample material available document- 
ing this part of the process that should be reviewed before entering the 
special realm described here. See Kallop ]S] or Harwaync 161 for more 
detail. 

We begin with a description of the data elements that underlie the 
pricing process. 

This section provides a brief background on the NCCI ratemaking 
procedures, especially those relevant to calculation of experience rating 
values. 

The most basic element of the process is the Worko~s C’o,?rl?r’lz.sutiolI 
Stutistid Plun (called Unit Plan here) of NCCI. The term “unit” refers to 
the fact that there is a separate report for experience on every policy and 
every state. evaluated annually to the fifth report. It is on this basis that 
the members of the NCCI report the data for experience rating and class 
ratemaking. NCCI summarizes the Unit Plan payroll and losses by risk 
for experience rating, and by classification within state for class ratemak- 
ing. Claims less than $2.000 may be (and usually are) summarized, but 
claims of a greater amount must be listed individually and categorized by 
injury type. Table I displays the codes fhr the types of injuries reported 
under the Unit Plan. For each injury type. medical and indemnity portions 
of a claim are reported separately. (Some states have modified this list.) 

There are two compressions of this data made by the NCCI for 
ratemaking purposes. First, contract medical amounts arc added to medi- 
cal-only losses for use in most calculations. The second adjustment is a 
bit more complex. The permanent partial (PP) category. injury type 9, 
includes claims covering a wide range of values. For cxamplc. some 
claims coded as PP turn into life annuities not unlike permanent total (PT) 
cases. Other PP claims may be of short duration. Consequently, PP claims 
are separated into two categories: ntqjor: which becomes injury type 3, 
and minor.. which becomes injury type 4. 
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TABLE I 
UNIT PLAN INJURY TYPE CODES 

In&q Type Code Injury Type Desgr@ion 
I (F) Fatal-Medical 

2 
Fatal-Indemnity 

(PT) Permanent Total-Medical 

9 
Permanent Total-Indemnity 

(PP) Permanent Partial-Medical 
Permanent Partial-Indemnity 

(TT) Temporary Total-Medical 
Temporary Total-Indemnity 

(M) Medical Only 
Contract Medical 

The split is made by reference to a dollar amount called the critical 

~luc, which varies by state and over time. PP claims whose indemnity 
amount exceeds this value are considered major. The critical value is 
normally calculated as a part of the annual ratemaking process. 

After these adjustments are made, the loss data is summarized for 
ratemaking purposes into three categories: I) the indemnity portions of 
fatal, PT, and major are summed (0 one serious indemnity loss total; 2) 
the indemnity portions of minor and temporary total (TT) claims are 
summed to a mm-serious indemnity loss total; and 3) the medical portions 
of all claims are summed to one medical loss total. Table 2 displays the 
groupings. 

This categorization is central to the calculation of both rates and rating 
values. Actuaries perform the many loss manipulations associated with 
ratemaking (loss development, trend, law changes, multi-dimensional 
credibility) and compare the results with payroll by class to calculate loss 
costs by type for the serious, non-serious, and medical categories. These 
ratios are the projected partial pure premiums by category which underlie 
rates filed for the prospective period. Each class rate, then, has serious, 
non-serious, and medical components. 
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TABLE 2 
CATEGORIZATIONOF INJIJRY DATA FOR 

CLASSIFICATION RATEMAKING 

Fatal Indemnity ( 1) 
Permanent Total Indemnity (2) 

Major Permanent Partial Indemnity (3) 

Minor Permanent Partial Indemnity (4) 
Temporary Total Indemnity (5) 

All Associated Medical (1,2,3,4,5) 
Medical Only (6) 

Contract Medical (7) 

R. Elements of E.1.petience Ruting 

Several sets of values used in the NCCI Experience Rating Plan are 
revised as part of the regular rate filing process. Plun parun~eters, which 
vary by state and by size of the insured, are the stute rrfrr-ewe point 
(SRP), w~eighting (W), and hullust (B) values used in the rating formula. 
Rating values, applicable to individual insureds, vary by state and by 
classification. These are the expected loss rates (ELRs), and the discount 
ratios (D-ratios). Figure 3 shows a replica rating form. These values fit 
into the modification formula as follows: 

where: 

M = the risk modification (mod); 

A = actual losses of the insured being rated 
( p = primary, .Y = excess): 

E = expected losses of the insured being rated 
( p = primary, .V = excess); 
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W = weighting value; and 

B = ballast value. 

E is calculated as the sum of expected losses by class: 

E= c 4 
all classes i 

= c ( Payrolli + 100) x (ELR;) 
all classes i 

where ELRj is the expected loss rate for class i . 

Then 

Ep= C Di X Ei 
all classes i 

E-, = E - E,, 

where Di is the discount ratio (D-ratio) for class i. The D-ratio is the esti- 
mated portion of ratable losses that will be primary. 

The actual ratable losses, A, is the sum of the individual losses, in- 
dexed by II, each limited as described in the next section. 

A =CA,, . 
II 

Each loss (occurrence) has a primary component: 

A 

1 

A,, if A,, IL = 
,I,, L if A,, > L 

where L is the primary loss limit. (L is $5,000 today.) 

The actual primary and excess losses of the insured being rated are as 
follows: 
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A,, = C A,!,, . 
I, 

A, =A -A,, 

Current practice is to calculate the experience rating values at the 
same time and using the same data as used in the filed rates. It is import- 
ant to point out that ELRs are usually quite different from the pure loss 
costs underlying prospective rates. This is discussed further in Subsection 
E. Some of the similarities are discussed in the rest of this section. 

The filed loss costs (rates) provide a best estimate of the amounts 
necessary by class to cover losses (and expenses) for the future period 
when the loss costs (rates) will actually be used. Experience rating values 
pertain to losses that occur a year or more before the time when loss costs 
(rates) and ratings will be effective. Of interest here are the relative time 
frames of: 1) the underlying experience used in the rate filing; 3) the 
prospective effective period of the rates: and 3) the associated experience 
period to be used in the experience ratings applicable to the prospective 
period. These three time frames are not the same; reference to Figure 1 
will help in visualizing the differences. 

A key aspect of ratemaking is the practice of limiting individual losses 
to minimize volatility in rates and rating values. In ratemaking, the over- 
all change in premium is estimated in one step (overall rate level) and, in 
a second step, is distributed among the various classes (class ratemaking). 
Capped losses are used in this second step to avoid distortions in class 
relativities due to the effect of unusually large losses. Loss dollars ex- 
cluded by these caps must be spread back to all classes. respective of 
industry group, because rates are designed to be adequate for unlimited 
losses. As of this writing, NCCI uses a multiple of the average serious 
loss for limitations to single losses in class ratemaking. 

In experience rating, losses that arc similarly limited (ratable losses) 
enter the calculation of the experience modification. The limit applied to a 
single claim is 10% of the state reference point (SRP) which is defined 
below. This limiting value is called the state accident limit (SAL). There 



WORKERS COMPENSATION EXPERIENCE RATING 233 

is a secondary cap on multiple claim occurrences of twice the SAL, or 
20% of the SRP. There are special caps for losses incurred under the U.S. 
Longshoremen’s and Harbor Workers Act and losses that are strictly 
employer’s liability. The total disease losses for a policy are also capped 
at three times the SAL, plus 120% of the risk’s total expected losses for 
the experience period. (There are specific rules in the Experience Ruting 
Platl Manml [4] defining these experience periods.) 

Another procedure lending stability to ratemaking, as well as to the 
calculation of experience rating values, is the imposition of swing or 
change limits. The rate (or rating value) for each class can change only by 
a specified percentage from one rate filing to the next. The average effect 
of the loss limits and change limits is spread to all classes in such a way 
that the selected rate level change is achieved. 

D. Calculation of Plan Parameters 

I. State Rqfer-ewe Point 

The SRP is an index of state benefits. It is used to calculate a value G 
that is a scale factor for credibilities varying by state and is updated 
annually as part of the annual rate revision, The SRP is also used to 
calculate the SAL, as mentioned above. 

The SRP is based on the state alrerage cost per claim (SACC) for all 
types of claims. There is no per-claim limit on losses in this calculation, 
except that on employer’s liability claims, which currently is $100,000. 
The SACC is calculated from the latest three years of undeveloped Unit 
Plan data. This data set is at the same maturity level as the experience 
period which will be used in the ratings. However, it is necessary to trend 
the average value from those data, since ratings will be using slightly 
more recent data. (In hypothetical State N, the length of the trending 
period is two years. Usually it would be between one year and 18 months. 
However, statutes in State N require that new rates be filed well in ad- 
vance of the proposed effective date.) The trend rate is taken from the 
most recent countrywide Retrospective Rating Expected Loss Size 
Ranges update filing. 

SRP = 250 x SACC, rounded to the nearest $5,000. 
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G = SRP/250,000. 

G is rounded to the nearest 0.05. 

Because of the potential for volatility in the data, and the normal effect 
of intlation, it is further stipulated that G and SRP not be allowed to 
decrease from one year to the next, unless there is a significant benefit 
reduction. There also is a reasonability limit on the upward change, so 
that any changes over +20% will be investigated. 

Exhibit I shows the calculation of the I990 SRP for State N. 

2. Caldution oj’the W and B C’rrllrcs hi the NCCI 

The f3 and W values arc functions of G and the expected losses, E, of a 
particular insured. First, 

R = E [ (0.1 E + 2,.57OG)/(E + 7OOG) 1, 

subject to a minimum $7,500. 

Also, we define the intermediate value 

C = E [ (0.75E + 203,82SG)/(E + 5, I OOG) I. 

subject to a minimum of $ ISO,OOO. 

B and C are the respective credibility constants K,, and K,. documented 
by Mahler 171. 

Then 

E+B 
w= -. 

E+C 

W is rounded to the nearest 0.01. with the requirement that it never 
increase for decreasing E. (This turns out to be a non-trivial programming 
challenge, although the effect on W is at most a point or two for small risk 
sizes and certain G values.) 
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EXHIBIT 1 

CALCULATION OF STATE REFERENCE POINT-STATE N 

Report 

I st 

2nd 

3rd 

Total 

(1) (2) 

Total Incurred 
Policy Period Total Cases Losses 

l/X6 - 12/X6 165,250 $195,722,X02 

11x5 - 12/X5 1 X9,629 206,X05,7 13 

I/84 - 12184 188,074 196,806,05 I 

542,953 599,334,566 

(4) Indicated State Reference Point = ( Total (3) x 250) 276,000 

(5) Average Annual Trend = (exp ((0.09833) x (I .OOO))) 1.103 

(6) Length of Trending Period in Years 2.000 

(7) Trend Factor = (exp ((0.098333) x (6))) 1.217 

(8) Trended State Reference Point = (4) x (7) 335,892 

(9) Proposed State Reference Point 335,000 
(Rounded to the nearest 5,000) 

(IO) G = (9)/250,000 (Rounded to the nearest 0.05) I .35 

(3) 
Average Cost 

Per Case 
o.Y( 1) ..~~ __ 
1,184 

I ,09 1 

1,046 

I.104 
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The above formulae are valid for all rated risks, with appropriate 
rounding for tabular presentation. 5 is rounded IO the nearest 500 x G in 
the tables that apply to values of E < 477,500 x G. For higher values of E, 
5 is rounded to the nearest dollar. 

In particular, it should be noted that in all cases, 0 < W < 1 and 5 > 0. 
Hence, no insured’s rate is completely determined by its own experience. 

The derivation of these formulae is explained elsewhere in the litera- 
ture 121. 

ELRs are used to calculate the insured’s total expected loss, E. in the 
experience rating plan. The exposure base for the ELRs is $100 of pay- 
roll, just as for rates. As is the case with manual rates. ELRs are calcu- 
lated by the bureau for each class at the time a rate filing is made. 

The class ELR should be proportional to the loss cost underlying the 
manual rate, but should be adjusted to the same level as the actual experi- 
ence to be used in the calculation of the modification. Three major adjust- 
ments that must be made to rates to obtain ELRs stem from: 1) the 
loadings (if any) for expense, profit, tax and loss assessment; 2) differ- 
ences in time frames; and 3) the fact that claims covered by the policy 
have no limit on size, but claims used in experience rating do. 

The first adjustment is simple. Rates can be stripped of taxes, ex- 
penses. and profit by a single factor, the ~~nti.ssi/~/c lo.ss WOO (PLR) in 
the filing. Even in states where loss costs arc filed, there is a PLR, 
although it is close to unity. 

The third adjustment is non-trivial. Its explanation is left to the detail 
described in the second step of the ELR calculation. below. 

To better understand the second adjustment, hypothesize rating an 
individual policy effective 7/t/90, using rates and rating values effective 
l/1/90. At the time the insured’s prospective premium is being quoted, its 
experience for the policy effective 7/l/89 is not yet available. That policy 
is still in effect. Thus the policy effective 7/t/88 is the most recent one 
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completed. In order to increase the credibility of the individual insured’s 
experience, three years of data are used in the rating calculation, from the 
policies effective 7/l/86, 7/l/87, and 7/l/88. The manual rates used for 
the insured’s 7/l/90 policy are intended to reflect ultimate costs in the 
1990 policy year. In order to calculate ELRs which can be compared to 
the actual losses from the experience period, the prospective rates must be 
adjusted to loss levels prevailing during the three expired policy years 
(1986, 1987, and 1988). The rate filing contains well-documented analy- 
ses of trend, loss development, and benefit changes. This information is 
used to derive factors to adjust the rates. 

In the example, suppose that from l/1/86 through 12/31/89 the manual 
rate for our hypothetical insured’s class was $4, and at l/1/90 it went up 
to $5 due to a benefit change. Oversimplifying, suppose that losses do not 
develop after first report and there has been no trend in loss experience. 
Assume 70% of the premium is allocated for the payment of claims, the 
remainder being for expenses (27.5%) and profit (2.5%). Thus, $2.80 in 
claims are expected for every $100 of payroll for the policy periods used 
in the calculation of the experience modification; i.e., 7/I/86 through 
6/30/89. 

It is erroneous to compare the $2.80 ELR with the $5 rate and infer 
that only 56% of the premium is allocated to payment of claims. Actually 
$3.50, or 70% of the $5 rate, is necessary to pay for claims occurring 
under the 7/l/90 policy, because the claims under this policy will be paid 
at the new higher benefit level. But, since the insured’s actual claims 
experience used in the calculation of its experience modification is at the 
old benefit level, the class expected loss rate used in the calculation must 
also be at the old level, namely $2.80, so that a fair comparison can be 
made. 

While the foregoing illustration is a benefit change, the concept ap- 
plies to anything that would make the past class average experience, 
reflected in the ELR, different from the future projected average experi- 
ence underlying the manual rate. Loss development and trend can both be 
quite significant. 
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All of the above elements can make the manual rate considerably 
higher than the ELK. An ELR of Xc/r of the manual rate, for instance, is 
not unusual. 

The three major steps of the actual ELK calculation are as follows. 
First, calculate a factor to reduce manual rates IO pure premiums (at 
second report) on the same benefit level as the experience period used in 
ratings. This is called the ELR level factor. 

Second, calculate the Hazard Group ELR factors and the ELRs by 
class. Humd Groups are classes grouped according to relative severity. 
For each Hazard Group, calculate the average cost per case (indemnity 
and medical combined) for the three serious injury types: fatal, PT, and 
major. These average costs are used to remove the expected loss above 
the SAL from the ELR, so that the expected losses correspond to the 
limited or r-amble losses used as the actual experience in the rating. 

Using the ratios of the SAL to the average cost per case by serious 
injury type and Hazard Group, find the respective (‘.WJSS rutios (ratios of 
expected excess losses to total losses) from the fomrer ELPF calculation. 
(See Harwayne [S] for details of this calculation.) There are three excess 
ratios for each Hazard Group. Using injury weights for the three serious 
types, also varying by Hazard Group, find a single weighted excess ratio 
for each Hazard Group. Multiply the ELR level factor from Step 1 by the 
Hazard Group adjustment factors, which are the complements of the 
weighted excess ratios. 

The resulting four Hazard Group ELR factors are applied to rates 
respective of Hazard Group to produce the ELRs by class. 

The third, and last, step is to check the ELKS for reasonableness. The 
technicians use checksheets to look for unreasonable changes. These 
checksheets are described in Section 6. 

D-ratios currently are calculated using the most recent single policy 
year of statistical plan data available. (Subsequent to this writing, a 
change to use of three years’ data has been made. There are some associ- 
ated changes, noted parenthetically below.) A policy year is labeled by the 
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year in which the policies were written but extends over two calendar 
years, and the reporting, verification, and processing of unit data takes 
some months to complete. Consequently, a rate filing effective l/1/90 
would generally contain D-ratios based on statistical plan data from the 
1987 policy year. Occasionally, 1986 data would be used. 

D-rutio Factors (sometimes called partial D-ratios) are calculated for 
serious, non-serious, and medical losses. These factors are then weighted 
by the corresponding pure premium components of the class rates to 
produce D-ratios by class. The results are then checked for unusual 
changes in the average D-ratio. 

6. CALCULATION OF RATING VALUES-DETAIL 

STEP l--Culdution of the ELR Le\lel Factor, 

Exhibit 2 shows the worksheets for calculation of the ELR Level 
Factor. The explanation of the columns on Exhibit 2 follows: 

Column 1: The three policy years of the experience rating period. 
The experience period ends one year before the prospective period 
of the new rates. This time period is usually later than the periods of 
statistical data actually available at the time rates are made. 

Column 2: A factor to correct for the natural off-balance produced 
by experience rating. This factor compensates for the fact that, on 
average, insureds large enough to be eligible for experience rating 
have better loss experience than the average of the total population, 
including non-rated risks. This factor is the result of a broad-based 
analysis of data, but may well be subject to a more state specific 
procedure in the future. 

Column 3: The factors necessary to take the third, second, and first 
reports that will be available for ratings to the benefit level of the 
proposed manual rates. 

Column 4: Loss development factors to take third, second, and first 
reports to their ultimate level. These factors are calculated using sta- 
tistical plan data to fifth report and financial data from fifth report to 



EXHIBIT 2 
CALCULATION OF ELR LEVEL FACTOR-STATE N 

STEP 1 
FACTORS DERIVED FROM LATEST RATE REVISION s 

c 
2 

-7 
i (2) (3) ~~ (4) (5) (6) (7) (8) E 

(1) Off-Balance Benefit ELR Loss Composite Expense Product Reciprocal 2 
Policy Year 1 ~~Acijustment Changes Development Factor Factqr~---~- (7) x .__ x (6) _ J-(7) _ 2 
01/X6-12/86 i 1.01 I.067 1.072 _~~~ 1.14s I .s73 1.082 0.480 5 
01/X7-12/87 1.01 , -1,047 ~_ I.122 ~~~~~ ’ 1‘5 -~~~_ 1.574 2.138 0.468 2 ~__ _~~~~- 
01/88-12/8X I .01 1.012 I.216 -r.l45 1.574 7 740 ().446~~- 71 

z 
+ ~~ ~__~ ~~~- -~.-z __ % 

ELF Level 

~~ l-_--~ !L_ ~~~ -~ ~~___ ~ ~~ = z 
2 

Factor 1 0.465 ZJ 
z 



WORKERS COMPENSATION EXPERIEf-iCE RATING 241 

ultimate. In using the financial data, it is assumed that all develop- 
ment beyond the fifth report is due to serious claims only. 

Column 5: The composite factor for miscellaneous changes in the 
rates. Particularly important is the ratio of the proposed financial 
data loss ratio to that of the Unit Plan. This ratio includes the impact 
of trend between the dates of the statistical plan data and the effec- 
tive period of the proposed rates. 

Column 6: The reciprocal of the PLR. 

Column 7: The product of Columns 2 through 6. 

Note that Column 7 has three factors necessary to take the third, 
second, and first report loss costs to the same level as the proposed 
manual rates. Since we wish to perform the reverse operation, we take the 
reciprocals of the three values and record them in Column 8. The arithme- 
tic average of the three reciprocals is at the foot of Column 8. This 
average is the ELR Level Factor which is carried into subsequent steps of 
the calculation. 

Columns 3,4, 5, and 6 are based on analysis of the actual data periods 
used in ratemaking. Exhibit 3 is the worksheet for these factors and shows 
how law amendment and loss development factors by injury type are 
weighted by policy period losses. The data used for weighting generally 
are not of the same policy period as the ones used for ratings. They are, 
however, put at the same stage of development. The development factors 
used in this exhibit were derived as part of the regular ratemaking proce- 
dure. 

It should be noted that the filing schedule of State N has led to a minor 
inconsistency. The use of latest second, first, and first reports as weights 
usually matches the policy year of the experience rating period for two of 
the three years. In State N, however, 1985, 1986, and 1986 are used to 
weight experience period years 1986, 1987, and 1988. Usually the 
weights would be based on 1986, 1987, and 1987. 



1, (a) Financial Data 
Loss Ratio 

(b) Unit. Stat. Plan 
Loss Ratio 

Cc) = (a)/(b) 

2. Other Adjustments+ 
0.995 x 0.9997 

3. ELR Composite 
Factor(lc)x(2) 

4. (a) Target Coat Ratio 

(h) Loss Adjustment 
Expense 

(c) Permissible Loss 
Ratio 4a/4h 

(d) Reciprocal 

EXHIBIT 3 
CALCI’LATION OF ELK LEVEL FACTOR-STATE N EFFECTIVE 01/01/90 

l/85-I?/85 Loss Weight5 A.F.’ 
0.8250 Death 6.3-81.433 x 1.056 

0.7170Ejor 

3.794.9Y7 x I.041 
54.973.297 x 1 a45 

Minor 
l.lSlTT 

23.816.20s x I.@48 
23.155.932 x I.057 

Ser. Med. 
o.OOs N. Ser. Med. 

34.533.326 x 1.08X 
bo.250.523 x I .088 

I. 14s Total 
206.XOS.7 I 3 

.7 I IS Benefit Charge = 1.067 

I /X6- I386 Loss Weights 
--T. 

A.F. 
l.l’Death 7.187.X71 x I .02X 

PT 2.Y2O.XY2 x I .02h 
0.6353 Major 38.424.036 x 1.0x 

I ,574 Minor 2h.S6l.X11 x 1.027 
TT 2S.JX2.907 x 1.030 
Ser. Med. 27.2x.941 x 1 .oh7 
V. Ser. Med. 67.‘) 17.J32 x I .067 

Total 19s.722.x02 

Benefit Chqe = I.&47 

i/X5-12/X5 Lo.\,\ Weight> A.F.* 
Death 7.1X7.X73 x 1.012 
PT 2.Y2O.XY2 x 1 .Ol? 
Major 3X.424.936 x I ,012 

’ Includes change m trend. mini- FO’ 26.561.81 I x I.012 

mum premium multiplier 25.4x2.907 x I ,012 
change. C&R decision. etc. Ser. .&led. 27.22h.Y4l x 1.013 

’ To latest Inu level efl’ective N. Ser. Med. 67.9 17.442 x I .()I 3 

l/l/90 Total 197 7” . --. X02 

For: Policy Year 0 l/86- 12/X6 
2nd/3rd 3rd to Ult. 

Dev. Fat. Drv. Fat. 
68.030.8X0 x I.131 76.Y42.925 I.130 X6.YJS.SO5 

49.43533 x I .OOs 19.6X2.379 O.YYY 19.6.33.697 
37.572.259 x 1.036 1X.924,860 I I 80 45.93 I.335 
65.552.569 x I .036 67.912.461 0.9YU 67.776.636 

220.590.9 I I ‘33.462.625 2SO.286.173 

Loss Development = 1.072 ~I_______ ~___.I_ 
For: Policy YearOl/X7-12/X7 

1 st/?nd 2nd to Ult. 
De\,. Fat. D~v. Fat. 

40.8OY.YS2 x I.247 f2.l l.i.OlU I .27x 7Y.3XO.427 

53326.371 x 0.066 5 I .706.477 I .004 s I .‘) Ii,30? 
29.OSl.I46 x I.065 30.939.470 I.732 i7.XOR.032 
72.167.9 I I i I.065 77.178375 I .ou 7Y.XO3.388 

204.8SS.3X3 27 I .Y?7.2X7 24X.YO4. I SO 

Loss Devzlopmenr = 1.172 

l-or: Polk! Year 0 l/XX- 12/8X 
I St to Ult. 
Dev. Fat. 

19.1 16.105 > I.594 

S3.MY.25.5 y O.Y70 
77.580.8’~ I x I.301 
68.X00.369 x I.101 

19x. 166.620 

Benefit Charge = I.012 Low Development = I .2 I6 
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STEP 2-Cukulution cf Hazard Group Adjmtnwnt Factors 

Exhibit 4 is the start of the calculations underlying Step 2. The most 
recent first, second, and third reports from statistical plan data are used. 
The average cost per case is calculated for fatal, PT, and major claims. 
These three serious injury types are the likely source for claims exceeding 
the SAL. Medical and indemnity losses of three policy periods are added 
for each of the three injury types. The number of cases for the policy 
periods is also added by type. The average cost per case is thus calculated 
for three years of claims (medical and indemnity) at their respective ma- 
turities. An adjustment for trend similar to that used for the SRP is made 
to the losses. 

Exhibit 5 shows the final calculations of the Hazard Group ELR Fac- 
tors. These final calculations adjust for the limitation of losses in the 
experience ratings. 

Line 1: The SAL, which is 10% of the SRP as calculated in the pro- 
posed rate filing. 

Lines 2, 5, and 8: The average cost per case for fatal, PT, and major 
claims by Hazard Group. These are from Exhibit 4 and are calcu- 
lated as part of the rate review. 

Lines 3, 6, and 9: The ratio of the SAL from Line 1 by type to the 
average cost per case by type from Lines 2,5, and 8. 

Lines 4, 7, and 10: The excess ratios. These are the fractions of the 
pure premium for the portion(s) of individual loss(es) above the 
entry ratios on Lines 3, 6, and 9. The excess ratio tables are those 
used in the former ELPF calculation as described in Harwayne [8]. 

Line 11: The weights for fatal, PT, and major claims by Hazard 
Group. 

Line 12: The fraction of the total pure premium expected to be 
above the SAL. It uses Line I 1 to calculate a weighted average of 
Lines 4,7, and 10. 

Line 13: The Hazard Group adjustment factors. 

Line 14: The ELR Level Factor from Step 1. 
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r-- ~~- ~- ~- 
EXHIBIT 4 I 

ELR FACTOR WoRI<sHE~,I-S7‘,4.1.f: N 

AVERAGE Cos I PER Cns~ 

Injury Type Statewide 

Fatal ‘5 89.073 

PT 245.992 

Major 45.537 

Based on total losses and total claims, each by type. undeveloped, 
from the three-year experience period used for rates. 

HMAKD GKOIT 

I II 111 IV 
Fatal $ 83,036 $ 98,104 $ I 17.073 $132,575 
PT 249,377 292.786 302,965 38 1,999 

Major so,2 10 5 1.983 58, I YO 63,233 

Uses countrywide Hazard Group Severity Relativities, adjusted to 
balance to state total, and appropriate severity trend from the 
ratemaking experience period to the experience rating experience 
period. 
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WORKERS COMPENSATION EXPERIENCE RA’I’ING 

EXHIBIT 5 

ELR FACTOR WORKSHEET-STATEN 

IO% of Proposed State Reference Point 

Average Fatal Cost 

Ratio to Average for Fatal ( I ) / (2) 

Excess R;ltio for F;ttal 

Average PT Cost 

Ratio to Aveqe for PT ( I ) / (5) 

Excess Ratio for PT 

Average Major PP Cost 

Ratio to Average for Major PP (I ) / (X) 

Excess Ratlo for Major PP 

(A) Fatal Weight Factor 

(B) PT Weight Factor 

(C) Mit,jor PP Weight Factor 

Weighted Average Excess Ratio 

Adjuwnent Factor = I .O - ( 12) 

ELR Level Factor 

33.500 

X3.036 

0.40 

0.693 

24Y.377 

0.13 

0.94 I 

so.2 IO 

0.67 

0.3’)‘) 

0.014 

0.022 

0.328 

0.161 

O.X3Y 

0.465 

II 

33,500 

YX. IO3 

0.34 

0.7.52 

292,7X6 

0.1 I 

O.YM 

51.983 

0.64 

0.417 

0.022 

0.030 

0.344 

0. I XY 

O.XI I 

0.46.5 

IS. Halard Group ELR Facton 0.390 0.377 

III 

33.soo 

I 17.074 

0.29 

0.x01 

302,965 

0.1 I 

0.954 

5x. 190 

0.5x 

0.4.57 

0.03x 

0.030 

0.432 

0.274 

0.726 

0.465 

033x 

245 

IV 

33,5(K) 

132.575 

0.25 

0.830 

38 I .999 

0.09 

0.966 

63.233 

0.53 

0,404 

0.096 

0.058 

0.433 

0.35 I 

0.649 

0.465 

0.302 
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Line IS: The Hazard Group ELR Factors. This line is the product of 
(3) x (14). One of the factors is applied to the rate of each class, de- 
pending on the Hazard Group assignment of the class, to produce 
the final class ELR. 

In addition to the standard calculation of the ELR as described above, 
the NCCI also has checksheets to identify cases where the ELR Factor 
(averaged over the Hazard Groups) changes significantly from the previ- 
ous year. A more detailed investigation is conducted if the change is more 
than 10%. These checksheets are included in Exhibit 6. 

Exhibit 6, Part 1 examines ELRs as a function of macroscopic changes 
in rates. Exhibit 6, Part 2 considers the microscopic changes by compo- 
nent to provide insight into the cause of ELR changes. 

The checksheet in this exhibit shows a significant decrease in ELR 
factors over the previous year, which would normally result in an investi- 
gation of changes in State N. In this case, it was dctemrined that the shift 
was due to a change to the experience rating plan formula, so that the 
change in ELR factors was justified. This can plainly be seen on Part 2, 
where the change in the excess ratio factor is 0.814, explaining most of 
the decrease. 

STEP 4-Cdcd&m of D-rutio Factors 

The worksheet for this calculation can be found in Exhibit 7. 

Line I : Total Indemnity Losses (unlimited on a per-claim basis). 

Line 2: Total Medical Losses (unlimited on a per-claim basis). Even 
though ratable losses are limited as described above, use of unlim- 
ited losses in the calculation of D-ratio factors provides a measure of 
conservatism. This is offset to some degree by the use of losses at 
first report, when severities are likely to be less skewed and D-ratios 
too high. (At the same time as the NCCI changes to a three-year ex- 
perience period, it will begin using limited losses in this part of the 
calculation.) 
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EXHIBIT 6 
PART I 

EXPECTEDLOSS RA~E~HECKSHEET-STATEN 

EFFECTIVE DATE: l/l /90 

If amount on Line 8 is greater than 1.100 or less than 0.900, the 
underlying cause of the large change should be determined and brought to 
the attention of Rates Department Supervisor. 

I. Effective Date of Last Change in ELRs 01/01/X8 

2. Rate Change Approved Effective on (1) 1.159 

3. Rate Change Proposed Effective on (I) I.168 

4. Average ELR Factor Underlying Rate Proposal on 0.447 
Line 3 
(Proposed ELR HGII + Proposed ELR HGIII) / 2 

5. Interim Rate Changes Approved 
Eff. a. 

Eff. b. 

Eff. C. 

Eff. d. 

6. CurrentAverage ELR Factor 
((4) x ((3)/(2)))/((5a) x (5b) x (SC) x (5d)) 

7. Proposed Average ELR Factor 
(Proposed ELR HGII + Proposed ELR HGIII) / 2 

8. Change in ELR Factors (7) / (6) 
9. Proposed Rate Change 

IO. Indicated Change in Expected Losses (8) x (9) 

0.45 I 

0.358 

0.794 
1.164 

0.924 



3. 
4. 
5. 
6. 
7. 
8. 

9. 

10. 

I I. 
12. 

Benefit Changes 
a. 3rd Report 
b. 2nd Report 
c. 1st Report 
d. Average 

Loss Development 
a. 3rd Report 
b. 2nd Report 
c. I st Report 
d. Average 

Off-Balance 
Composite Factor All Reports 
Financial Data Loss Ratio 
USP Loss Ratio 
Loss Ratio Factor (7) / (8) 
Profit and Exp. Factor 
All Reports 
Reciprocal of the Combined 
Effect of these Factors** 
a. 3rd Report 
b. 2nd Report 
c. 1st Report 
Comparable ELR Level Factors 
Average (9) 
Excess Ratio Factor 
Overall Change in ELR Factors 
(1Qx(ll) 

(1) 
Last 

Approved 
Filing 

(7) (3) 

Proposed Change 
Filing (2) I ( 1) 

I.084 I.067 
I .(I61 I .047 
I .03 I I .012 
I ,060 I ,043 

I .os2 
1 .0X0 
I.175 
I. 102 

I .()I 
1.134 
0.81 1s 
0.720 
I. I27 
I.570 

0.3X3 
0.4x0 
0.455 
0.173 

0.945 
xx 

I .(I72 
I.122 
I.216 
I.137 

I .Ol 
1.115 
0.x25 
0.7 I7 
I.151 
I.574 

0.4x0 
0.36X 
0.446 
0.565 

0.769 
XX 

‘~11/1((1~x(2)x(3~x(4)x(8)1 

# From Exhibit 5, Line 13. (HGII + HGIII) / 2 

xx 
xx 
xx 
XX 

xx 
xx 
xx 
XX 

xx 
xx 
xx 
xx 
xx 
xx 

xx 
xx 
xx 

O.YX3 

0.814 
0.800 
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EXHIBIT7 

CALCULATION OF DISCOUNT RATIO FACTORS-STATE N 

(A) 
Serious 

(B) 
Non-Serious 

I. 

2. 

3. 

4. 

5. 

6. 

7. 

R. 

9. 

IO. 

II. 

12. 

13. 

Total Indemnity Losses 

Total Medical Losw 

Total Losses (1) +(2) 

Total Primary Losses 

Estimated lndemnit ’ 
Primary (4) X ((1)/A)) 

Estimated Medical 
Primary (4) (5) 

Primary for D-ratios 
A & B = (S), C = (6D) 

Total Losses for D-ratios 
A&B=(l),C=(2D) 

First Report Partial D-ratios 
(7) l(8) 

First Report Loss 
Distribution 
(X) /Sum of (8) 

WCSP Experience 
Adjusted, On Level 

Adjusted Experience 
Distribution 
(Il)/Sum(ll) 

Final D-rat10 Factors 
(9 x (lW(12) 

49.35 1.958 52.329,922 

27,437,361 4.5.660.200 

76,7X9.3 I9 Y7.YYO. I22 

7,124.224 5.5,450.538 

4,5X0,876 29.610.587 

2,543,34X 25,X39,951 

4,580,X76 29,610,5X7 

49,s I ,YSX 52,32’),922 

0.093 0.566 

0.250 0.26.5 

290,9X 1,723 17X,348,670 

0.33x 0.208 

0.069 0.721 

(C) 
Medical 

xxx 

22.64X.393 

22.648.3Y3 

22.02X,546 

xxx 

22,02X,546 

so.3 I 1,845 

95.74.5.954 

OS27 

0.485 

390.464,1 S2 

0.454 

OS63 

CD) 
Total 

xxx 

YS,74S,954 

197.427334 

xxx 

xxx 

SO.4 1 I .x4.5 

xxx 

197.427.834 

xxx 

I .ooo 

xs9,794,54s 

1 .OOO 

xxx 



2 so WORKERS CUMPENSUION I:XPI:RIENC‘1: RAl‘l’4G 

Line 3: Total serious and non-serious losses. These include associ- 
ated medical amounts. 

Line 4: Primary Losses. These are the first $5,000 of each claim. 
(When other changes described above arc made. the split point used 
in this calculation will be deflated over the appropriate year or two 
by an appropriate severity trend.) 

Lines 5, 6, 7, 8: The denominators of the D-ratio factors for serious 
and non-serious losses will be indemnity losses only. Medical will 
be all medical, as can be seen in Line 8. This is appropriate because 
the pure premium weights are serious indemnity, non-serious in- 
demnity, and total medical. Lines 5 through 7 adjust the primary 
losses in Line 4, which are on a combined basis, to a more proper 
basis. 

Line 9: The first report D-ratio factors. The ratios are, from left to 
right, primary to serious indemnity, primary to non-serious indem- 
nity, and primary to total medical. 

Lines 10, 1 I. 12: An adjustment is necessary because the pure pre- 
miums used to weight the partial D-ratios contemplate a future dis- 
tribution of losses into serious. non-serious, and medical. Rather 
than compute component pure premiums by class for the earlier 
time period, it works well to put the distribution change adjustment 
in the partial D-ratios. 

Line 13: The final D-ratio t‘actors. These are the partial D-ratios 
from Line 9. adjusted by the distribution change Line IO / Line 12. 

The D-ratio for class XXXX in State N is: 

Serious Pure Premium (class XXXX) 
Total Pure Premiutn (class XXXX) 

x Serious D-ratio Factor 

+ NonISer. Pure Premium (class XXXX) 
Total Pure Premium (class XXXX) 

x Non-Serious D-ratio Factor 
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Medical Pure Premium (class XXXX) 
+ -- ~~ ---__ 

Total Pure Premium (class XXXX) 

x Medical D-ratio Factor 

STEP S-D-rutio Checksheet 

Exhibit 8 shows the D-ratio checksheet. The average D-ratio for all 
classes should not decrease from the past one by more than 10 points, or 
increase at all. The normal change expected from inflation is a decrease. 
Greater changes would be investigated. The maximum D-ratio is 0.90 and 
the minimum is 0.25 for the revised experience rating plan. 

Once calculated, these D-ratios are included with the rate filing and go 
into effect if and when the new rates are approved. 

7. ADMINISTRATION OF EXPERIENCE RATING 

The accumulation and processing of the experience data for every 
individual insured is a remarkable undertaking and, when it goes 
smoothly, it is an often-forgotten function of the NCCI and other bureaus. 
Promulgation of a mandatory rate modification for every insured of quali- 
fying size is also a monumental task, though it is seldom forgotten. The 
players in this piece-insurers, insureds, workers, bureaus, and regula- 
tors-all have self-interested points of view about the process. Actuaries 
should have a belief in the objective intent of this measurement of indi- 
vidual risk quality and its promotion of a correctly functioning market. 

In order to calculate the modification factor for an individual em- 
ployer, data from three annual policies is usually required. Data may 
come from more than one state, more than one insurer, and more than one 
medium. The move to electronic media has been slow, and many reports 
are still collected on unit cards. For each insured there is one card per 
state, per insurer, per year, and per evaluation. All these cards must be 
organized so that the data for each insured are in one place to do the 
rating. 

A sample unit card for the first evaluation of a policy is shown in 
Figure 2. The card shows payroll, rates, premium, and loss for a single 



EXHIBIT 8 
DISCOUNT RATIO (D-RATIO) CHECKSHEET-STATE N 

If the value of line (9) is 2 1 .OOO or 6 0.900, the underlying cause should be determined and brought to the attention of the supervisor. 

A. Current Values Effective 01/01/X8 B. Proposed Values Effective Ol/O1/90 
Serious Non-Serious -_ - Medical _-- 

1. D-ratio Factors 0.27 1 1.175 0.253 
,;;I 

2. Total Adjusted Losses 

2’ / Lkrio~ Now;y,ious IMc;’ 

For All Industry Groups 204.002.232 133.319.X39 345267.373 xx 2X2.506.527 173.154.04’) 401.29923 1 xx 
3. Payroll/$100 xx xx xx 6X2.220.187 xx xx xx x I I .960.370 
4. Average Pure Premium 

(a/(3)* 0299027 0. I YS42 I 0.506094 xx 0.31793 I 0.2 13154 0.494335 xx 
5. Effect by Parts Ubed in Filing 

a. Law I.025 1.030 I .Ow xx ’ 1.014 I .OlJ I .ooo xx 
b. Trend I .07 I I .07 1 0.960 xx I.016 I.016 O.Y73 \x 
c. Assrszment I .OOO I .oOo I .OOo \T I .oOO I .OOO I .ooo xx 
d. Total I .098 1.103 0.960 \x I .030 1.030 O.Y73 xx 

6. Adjusted Pure Premium 
(4) y (%I) 0.32X332 0.715549 0.4X58.5 I .07973 I 0.3sX3hv (I.?. I%52 O.-lXO8Y I I.osx9l’ 

7. Average D-ratio E 
Sum ((I ) x (6))/Total of (6) 0.086309 0.145958 0.119371 0.45 173x 0.013352 0. I JYSSX O.‘iSh7Y 0.4’8S89 5 

X. D-ratios for: 2 

a Code 2041 (HGII ,\ TX \\ 0.42 xx \\ xx 0.53 5 
b. Code 73X0 (HGIII) YX xx ,r; 0.43 xx \x Yk 0.3X 2 

c. Code 7405 (HGIVJ 0.54 0.43 
c 

xx Y 14 xx 1,. \\ _ 

d. Code X741 (HGIIIJ \x xx \x 0.43 xx Y\ \\ 0.40 
e. Code XXI0 (HGII) x\ \\ \x 0.42 xx \x \x 0.44 

4 Expected Average Change m 
D-ratioh: (78) /(7A) = 0.948756 

*Thrw pure premiums retlcct the average only if each class code m a state is 100% credible, but they can be used for comparanvr purposes. 
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state. The modification shown is the one applicable to the premium of the 
policy reported. The experience of that policy will be used to calculate a 
modification applicable to subsequent policies. 

A somewhat simplified form is used for subsequent evaluations, so 
that only those items that change, such as loss reserves, need to be up- 
dated. This form makes things easier for the insurer, but requires careful 
processing by the administrative personnel to assure that the updated 
totals are correct. In addition to annual update cards, the staff handles 
numerous off-anniversary corrections and replacements for cards already 
submitted. 

In any case, there could easily be enough activity on the account of a 
large intrastate insured so that six unit cards would be required to do a 
rating. A 1990 rating would need one card for the first report (1988 as of 
18 months); two cards for the next most recent policy year at second 
report (I 987 as of 18 months, updated at 30 months); and three cards for 
the most mature policy year. In practice, there are seldom so many cards 
used to do an intrastate rating, so that the average number of cards is less 
than four. As a rule, these insureds tend to be smaller and enjoy a large 
number of loss-free years, which do not need to be updated. In addition, 
many newly formed businesses grow so fast that their first rating is based 
on only two completed policy years. 

When rating an interstate insured, the potential number of cards is 
multiplied by the number of states with subject payroll. There also may 
be a variety of subsidiary operations, each with its own compensation 
insurer. The average number of cards for these insureds is more than 15, 
with some insureds requiring many more than average. Collecting these 
cards and determining if all states and all years are in hand is a non-trivial 
activity, occasionally causing delay in the release of modifications. This 
delay may be due in part to the size of the clerical undertaking. It is also 
caused by the slowness of some insurers, which in some cases may stem 
from the low incentive to submit unit cards for non-renewing insureds. 
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STOCHASTIC CLAIMS RESERVING WHEN 
255 

PAST CLAIM NUMBERS ARE KNOWN 

THOMAS S. WRIGHT 

This pupc~r addresses the problem of estimuring futrrrc claim 
payments when two r-un-o&f triangles ure uvuilahle: one of the 
number of claims, the other of total amolmts. Euch single 
claim can hn\le partial payments included in the total for se\?- 
era1 development periods. The method does not require addi- 
tional information, such as measures of esposure and claims 
injlutiou. The approach udopted is to model the mean claim 
amount us u fhction of operutional time, using genetalixd 
Iineur models. Techniques are described for- jitting und com- 
puring a number- of models of this type, and fbr predicting the 
total cjf fhu-e claims from the best fitting model. Formal sta- 
tistirul tesrs are used for compuring models. It is shown how 
the root-mean-squur-e (RMS) error- of prediction can be calcu- 
lated, muking due ullowance for modelling error and random 
variution in both the number and amounts of future payments. 
Models are for-m&ted to muke explicit allowance ,for- claims 
inflation and purtiul payments. Assumptions are minimal, and 
diagnostic techniques are descr-ibed,for checking their validity 
in euch application. Numerical examples are given. 
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1 _ IN’l’KOIlI’(“llON 

This paper complements a previous work bq the author 1 101. That 
paper, like many others on stochatic claims reserving in property/casu- 
alty insurance. deals with methods applicable when the past run-off of the 
number of claims is not known (a common situation for actuaries in the 
U.K.). This paper addresses the problem of’ claims reserving when at least 
two run-off triangles are available: WC 01‘ the number 01‘ claims, the other 
of claim amounts. These primary triangles may be: 

(a) the number of claims closed, and the total of all payments on all 
claims closed (partial payments assigned to the development pe- 
riod of settlement): 

(h) the total number of payments, including partial payments, and 
the usual paid claims triangle (with each partial payment as- 
signed to the development period in which it was made); or 

(c) the number of claims closed. and the usual paid claims triangle 
(with each partial payment aa4gncd to the development period 
in which it was made). 

Of these possibilities, (a) and (b) are the simplest to model. and are 
considered first. They are equivalent to each other as far as the modelling 
and prediction methods proposed in this paper are concerned. Later, it is 
shown how basically the same methods can be applied in situation (c), 
which is more common in practice. 

If M’ is used to label origin (i.e., accident, report. or policy) years, and 
d to label development periods. the two run-off triangles can be denoted 
Y,,,, and N,,,‘, , respectively, where M’ runs from 1 to W, and d runs from 0 to 
T - 1. This notation is used for the incremental. rather than the cumula- 
tive, run-off. For example, in case (a), N,tC, is the number of claims closed 
in development period d of origin year H‘. and Y,,, is the total of payments 
on these claims made in development period tl and previous development 
periods. In case (c), N,,,, is the number of claims closed as in (a), but Y,,, is 
the total amount of all partial payments made in development period tl of 
origin year ~$1. including partial payments on claims not yet closed. In both 
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cases (a) and (c), N,,,(, should exclude claims settled with no payment if 
possible. Such claims do not contribute to Y,,,(, , so their inclusion in N,,, 
introduces an undesirable element of additional random variation. 

As in [IO], the methods described here do not involve an assumption 
that the run-off pattern has been the same for all origin years; indeed, the 
shape of the run-off may be different for each origin year. Similarly, there 
is no assumption that the claim size distribution is the same for all devel- 
opment periods. It is common for larger claims to take longer to settle so 
that the mean claim size increases with n. Higher moments of the distri- 
bution may also depend on d. The methods allow projection as far into the 
future as is necessary, not limited by the extent of the data. The data 
triangles may have missing values. This does not cause any problems 
provided the total number of data points is sufficient to fit an adequate 
model. The occasional negative values which occur in real data can also 
be handled without special treatment. 

The approach used in [IO] is to derive a model for the known data Y,,,(, 
from more basic models for the unknown quantities N,,,, and the individ- 
ual claim amounts X,$?, (also unknown). The assumptions of the models 
for N,,,, and X,,(, are then checked indirectly by applying diagnostic tests to 
the resulting model for Y,,,(, , If satisfactory, the model that is fitted to the 
Y,,.(, is used to project into the future. The logical progression of this 
approach to situations where N,,,, is known would be to formulate models 
for N,,.,, and Xur, separately (as before), but then to test each of these 
models directly from the data. This should allow good models to be found 
for each of these components. These models could then be used to project 
N,,,(, and X,,,(, separately, and the projections combined into projections for 
the total payments Y,,,, . However, the calculation of standard errors for 
predictions of Y,,(, obtained in this way is complex. Hayne 131 deals with 
the case when, for each origin year, the distribution of future claim 
amounts X,,,, does not depend on the development period d. The intention 
in this paper is to remove this restriction (as, for example, when larger 
claims tend to take longer to settle than smaller claims). In this case, the 
calculation of standard errors for the predictions would be extremely 
complex using real-development time, because the precise time of settle- 
ment of each future claim (hence, the appropriate claim size distribution) 



is uncertain. The problem is simplified in this paper by making use of the 
concept of opwtiond finzc. This concept seems to have been used first in 
claims reserving by Reid [7] and later taken up by Taylor [S, 91, but a 
fresh approach. including a number of innovations. is proposed in this 
paper. 

Operational time, 2, is defined as the proportion of all claims closed to 
date. Thus, for each origin year, operational time starts at 0, and increases 
ultimately to I. If the individual claim amounts X can be modelled as a 
function of operational time z rather than development time d. then there 
is no need for a separate model of the number of claims. This is because 
the dependence of the number of claims on operational time is known 
exactly: it follows trivially from the definition of operational time. Projec- 
tions of future payments Y can therefore be obtained from the mode1 of 
claim size X,,, alone, and the problem is an order of magnitude simpler 
than when X,,,(, and N),.,, are both projected. 

The data IV,,,, is used at three points in the operational time approach: 

l to estimate the ultimate number M,, of claims for each origin year 
MS (obviously. numbers of claims reported arc also useful for this 
estimation, if available); 

l to calculate a triangle of operational times (for use as the explana- 
tory variable in the claim size mode1 ): and 

l to calculate the observed mean claim sizes Y,,,,/N,,,, (for use as the 
dependent variable in the claim size model). 

There are often substantive reasons for expecting the size of individual 
claims to depend more on operational time than on development time. 
The main reason is that changes in claim handling procedures may affect 
the actual delay to settlement but should not affect the size of claims. The 
plausibility of such arguments need not be left entirely to judgment. It is 
possible to use the figures themselves to verify this basic hypothesis of 
operational time methods. This is shown in Appendix B. 
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Summwy cf Later- Sections 

Sections 2 through 6 deal with circumstances (a) or (b); that is, when 
the claim counts triangle gives the number of individual components of 
each element of the claim amounts triangle. Section 7 describes special 
procedures and enhancements to the method of earlier sections which 
may be necessary for case (c). All sections conclude with a numerical 
example. The data for the examples have been taken from Berquist and 
Sherman 111, and are reproduced in Appendix A. The data are actually of 
type (c), so the methods of Sections 2 through 6 are not wholly appropri- 
ate. They are applied purely for illustrative purposes. Section 7 also con- 
tains an analysis of the data used by Taylor 191. They are also of type (c), 
and are given in Appendix A. 

Section 2 gives a complete account of the method applicable in cases 
(a) or (b), under several simplifying assumptions. The assumptions are 
unrealistic but are made initially in order to simplify the presentation. 
Sections 3 through 5 show how the assumptions can be relaxed. The 
assumptions used in Section 2 are that: 

I. The expected claim size at each operational time z is the same for 
all origin years, after allowing for claims inflation. In other 
words, the mean claim amount in real terms is a function of T but 
not W. It can therefore be denoted m, . (In the presence of infla- 
tion, the mean claim amount will depend on w also. See Section 
4.) 

2. The coefficient of variation of individual claim amounts is the 
same for all operational times z, that is: 

Var(X,)=cp’.m:, (1.1) 

where X, is the size of an individual claim at operational time T, 
and cp is the coefficient of variation. 

3. The data Y,,(, have been adjusted for inflation so the triangle is in 
constant money terms. 

4. The ultimate number of claims M,. is fully known (that is, there 
is no uncertainty) for each origin year W. 



Assumption I is the only condition that must hold in order to predict 
future claim payments using methods proposed in this paper. Even As- 
sumption I needs not be an assumption in the sense that its validity can be 
checked using the data themselves. (This is the subject of Appendix B.) 
Section 3 describes how Assumption 3 can be tested and relaxed if neces- 
sary. Assumption 3 cannot often be valid in practice because the rate of 
claims inflation is usually unknown. Section 4 4110~s how the rate of 
inflation can bc estimated and removed fmm the data at the same time as 
fitting the claim size model, rendering preadjustment unnecessary. As- 
sumption 4 only holds in practice if the origin years are report years. 
Often with accident or policy years. thcrc will bc considerable uncertainty 
in the estimates of ultimate numbers M,, Section 5 describes how this 
uncertainty can be taken into account. 

The main point of Sections 2 through 4 is to discover how the mean 
and the variance of an individual claim X, depend on the operational time 
z. When this has been achieved. since WC know the operational time r ot 
every future claim (from the definition of operational time I. we can find 
the expected value and the variance of every future claim. This, in turn. 
can be used to find the expected value mnd the variance of the total of all 
future claims. 

A broad outline of how predictions can bc mndc from a fitted opcra- 
tional time model was provided in the previous paragraph. (Here the term 
“model” refers to the mathematical representation of the relationship be- 
tween operational time and the mean and variance of X, .) The details of 
prediction are given in Appendices D. E, and F. These are more complex 
than would be expected from the comments above: first. because of pa- 
rameter uncertainty (that is, the fitted model will not be exactly right); 
second. because uncertainty in the ultimate numbers M,, implies uncer- 
tainty in the operational time of each future claim; and, third. because of 
uncertainty about future claims inflation. Section 6 shows how uncertain 
future claims inflation can be included in the predictions obtained from an 
operational time model. This is necessary to comply with standard reserv- 
ing practices. 

All the models proposed in this paper are ,, ~v~~wruli~d liwiu. rnr~dt~l~s. 
Such models can be fitted using an algorithm hnown as Fisher’s scoring 
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method. This is the algorithm used in the well-known statistical package 
GLIM, which was used for all the numerical examples in this paper. 
Fisher’s scoring method maximizes the so-called qltusi-likelihood, or 
equivalently, minimizes the del*iance. The deviance can be regarded as a 
generalization of the weighted sum of squared differences between ob- 
served and fitted values. The weights are determined from the assumed 
variances of the observations. The generalization is that the variance of 
each observation may be a function of its mean, which, of course, is not 
known. The purpose of fitting the model is to estimate the mean. Fisher’s 
scoring method sometimes gives conventional maximum likelihood esti- 
mates. In other cases, it gives estimates which have all the desirable 
properties of maximum likelihood estimates (asymptotically unbiased, 
efficient, and Normal) although they may not actually be maximum likeli- 
hood estimates. An approximate variance/covariance matrix for the pa- 
rameter estimates is also produced by the algorithm. Further details are 
not given here as they are well documented elsewhere: the theory in 
McCullagh and Nelder [5], briefly in Hogg and Klugman [4], and practi- 
cal aspects in the GLIM manual [6]. The application of GLIM in actuarial 
work has previously been advocated by Brown [2]. 

2. SIMPLIFIED SCENARIO 

Assumptions 

Throughout Section 2, the four assumptions listed in Section 1 are 
made. These assumptions are not thought to be realistic, but are made at 
this stage to simplify the presentation. Assumptions 2, 3, and 4 are re- 
laxed in later sections. 

Transformation of the Data 

In order to model the dependence of claim size on operational time, 
the original data triangles I’,,(, and Nnd must first be transformed into a 
triangle z,,(/ of operational times, and a triangle Sbrtl of observed mean 
claim amounts. In the subsequent modelling, T will be the explanatory 
variable, and S will be the dependent variable. 
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Operational time, t, which has previously been defined as the propor- 
tion of claims closed, is an alternative to development time, cl. This defi- 
nition gives the value of operational time hct\i’ec>u claim settlements. In 
this paper, the value of operational time uf each claim settlement is de- 
fined to be the mean of the values immediately before and after settle- 
ment. So, for example, if there are M claims for a certain origin year, the 
operational time of settlement of the Nrh claim is given by z = (N - 'h/M. 
The values of operational time for each claim settlement are 
('/5)/M, (%)/M...., (M - '/5)/M. These values are shown as crosses in 
Figure 1, which illustrates a typical relationship between operational time 
and true development time. The mean operational time of the N,,,, claims 
in development period cl of origin year M’ can be calculated as: 

LI = W,,: I + Nw. 2 + . . . + N, (,- , + 'h N,,,, J/M,, . (2.1) 

Note that only half of N,,,,, is included in the numerator in order to give the 
nwm operational time for these claims. 

The sample mean size S,,, of the N,,.,! claims from origin year w 
observed at mean operational time z can bc calculated as S,,, = Y,,.,,/N,,.,, . 
As S,,, is a sample mean, its expected value is equal to the mean of the 
underlying population: 

E(S,,.,) = 1~1, . (2.2) 

The variance of Slt4 is the population variance divided by the sample 
size. Using the population variance of Assumption 2 (Equation I. I ) gives: 

Equations 2.2 and 2.3 are actually approximations in general because the 
N,.,, claims do not have exactly the same mean and variance. Equation 2.2 
is exact if IPI, is linear in T, and equation 2.3 is exact if 1~: is linear in t. 
Both are good approximations if nrT does not vary greatly within each de- 
velopment period. 
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FIGURE 1 

TYPICAL RELATIONSHIP BETWEEN OPERATIONAL TIME AND REAL DEVELOPMENT TIME 

Development Year d Real Development Time ( t ) 



The form of Equation 2.3 for the variance of S,,., can be: 

l tested (as described below) and if‘ not true. modified (as described 
in Section 3), and 

l used to test and compare alternatives for the systematic component 
of the model: that is, the dependence of mr on t (also described 
below). 

It is not necessary to have any further knowledge about the distribution of 
the data S in order to fit models of “generalized linear” type for the M, ; 
the variance alone is sufficient. 

Equation 2.1 defines a relationship between r. M’, and tl for the ob- 
served data. Given any two, the third can be found. By virtue of this 
known relationship, N,,.,, can alternatively be expressed as N,., , and this is 
done for the remainder of the paper. 

Models jiw the Mealt Cluint Six> 

An expression is needed to describe how expected severity varies as a 
function of the length of time a claim is open. A number of possible 
relationships between m, and z are considered: 

1. m, = exp (p,, + /3, . z + p, In(r)) 

7 -. m, = exp (b,, + p, r + & r’) 

3. l?IT = (8,) + p, ty 

4. rn, = l/(& + p,/z) 

All these models are of generalized linear form; that is, the mean nt, 
of the data S,,, is some function of a known linear form of the unknown 
parameters j3: 

h(n2,) = x, p. 

where 
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h(m,) is a known function, 

X, is a known vector, and 

P = CP,,? PI? I%>. 

Table 1 gives h(m,) and x, for each of the models. 

TABLE 1 

Appendix C shows how models for the mean claim size as a function 
of operational time can be interpreted in terms of real development time. 
Such models often correspond to simple relationships between the mean 
claim size and the distribution function of the delay. A graph of m, for 
each of the models is given in Figure 2. Although Figure 2 shows typical 
shapes, each model embodies a family of curves, and different shapes can 
be obtained within each family by varying the P-parameters. Of course, 
many other generalized linear models for m, could be formulated. All 
such models can be fitted, tested, and projected using the methods de- 
scribed below. The four models considered here have been chosen arbi- 
trarily, for illustrative purposes. 

Testing the Val-iawe Assun~ption 

As all the proposed models for mt are of generalized linear form, they 
can be fitted efficiently, given a second moment assumption, using 
Fisher’s scoring method. First, it is necessary to test the proposed second 
moment assumption (Equation 2.3). This can be done by fitting a model 
(referred to as “Model 0”) which makes minimal assumptions about the 
form of nz, . 



FIGURE 2 

TYPICAL SHAPES OF VARIOUS MODELS RELATING MEAN SEVERITY TO OPERATIONAL TIME 
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A suitably minimal assumption is that the expected claim size m, is a 
piecewise exponential function of z; that is, ln(m,) is a piecewise linear 
function of z. The important point is that this form of model is very 
flexible. Any reasonable function m, can be well approximated in this 
way if the intervals are sufficiently small. It is probably sufficient to take 
a number of sub-intervals of equal width, the number being equal to the 
observed number, T, of development periods. A subscript, j, is used to 
label these sub-intervals of the observed operational time range. 

Model 0 can be expressed as: 

m, = exp CP,, + C Pj zj) , (2.4) 

where each Tj is the amount of z lying in each of the sub-intervals of the 

operational time scale such that z = c . Zj . This gives a continuous 

piecewise linear function in the expone:t of Equation 2.4. The & are the 
slopes of the line segments. See Figure 3. An example of this piecewise 
exponential form for m, is shown in Figure 4. No assumption is made 
about the relationship between the pj values asj varies from zero to T. 

In terms of h(m) and x,, Model 0 is: 

h(m) = In(m) 

x, = (1, 71, 72, f,, .-*, ‘tT). 

If all the sub-intervals of operational time have the same width U, then X, 
is of the form: 

where (k - 1)~ < T < k . u and zk is the fractional part in this sub-interval. 
Of course, k and ~~ may differ for each data point S,,, , but since T is 
known for each data point, x, can be determined and the model fitted to 
estimate the parameters pi for j = I to T. 



W,) : 

FIGURE 3 

TYPICAL MODEL ZERO (ON LOG SCALE ) 
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FIGURE 4 

FITTED MEAN SEVERITIES FOR BERQUIST AND SHERMAN DATA 
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Consider the quantities: 

(2.5) 

If the variance of S is indeed as specified by Equation 2.3 then these 
quantities have E(R,,) = 0 and Var (R,,) = (p’. After fitting Model 0 (by 
Fisher’s scoring method), the R,,, can be estimated by using the fitted val- 
ues for the m, (these estimated R,,= arc the standurdizecl wsiduuls). 

The variance assumption can be tested by plotting the R,, against 2. 
The variance should be constant: that is, it should not depend on z. In 
such a case, (p2 can be estimated as follows: 

q$ = ( c R;,,/(n - T - I)), (2.6) 
\%“I 

where 

n is the total number of points in the triangle, and 

T + 1 is the number of P-parameters. 

If the residual plot shows heteroscedasticity (that is, the variance ap- 
pears to depend on z), then the variance assumption (Assumption 2 of 
Section 1) should be modified. (See Section 3.) 

Testing Models for the Mean Claim Six 

Model 0 is so flexible that we can be fairly confident it will provide a 
good fit. The quality of fit of other models can therefore be assessed by 
comparison with the fit of Model 0. When the variance assumption has 
been validated, any other model for m, of generalized linear form can be 
formally tested as follows. After fitting by Fisher’s scoring method, the 
standardized residuals can be calculated from: 

R,,, = (S,,, - m,) . K7-/rn, (as for Model 0). 

From these, another estimate of (p2 is given by: 
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cp: = ( c ey(n - p), H7 
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(2.7) 

where 

n is the total number of points in the triangle, and 

p is the number of parameters in the model (the ps), either two 
or three for each model listed in this section. 

The following statistic can then be calculated: 

F=[(p:+-p)/(T+ 1 -+&((n-T- l)/(T+ 1 -p)]/& Gw 

where cpi is the estimate of (p2 obtained from Model 0. 

This should be compared against the theoretical F-distribution with 
(T + 1 -p) and (n - T - 1) degrees of freedom. If the F-statistic is too 
large, then the current model for m, cannot be accepted. In such a case, 
the lack of fit may well be apparent from the plot of residuals against 2. 
For some values of z, the mean may appear to be significantly different 
from zero. If the F-statistic could reasonably have come from the theoret- 
ical F-distribution, then the fitted means m, obtained using Model 0 do 
not vary significantly from the form assumed in the current model. There- 
fore, the current model can be accepted. Several of the models proposed 
in this section may give reasonably small F-statistics. If so, tables will 
indicate which F-statistic corresponds to the largest tail probability, but it 
may be safer to use a more general model, of which all acceptable models 
are special cases. 

Estimates of (p2 (hence F-tests) alternatively may be based on the 
minimized deviance rather than the sum of squares of the standardized 
residuals. This is more satisfactory in view of the likely skewness of the 
data. The deviance is less sensitive to the incidence of large claims than 
the residual sum of squares, so it will be more stable. The deviance is: 
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from which: 

hence an F-statistic from Equation 2.8. 

The choice between using the residual sum of squares or the deviance 
to construct F-statistics arises because in neither case is the distribution 
truly the F-distribution. With an infinite number of data points, and mod- 
els which were restricted cases of Model 0, both alternatives would have 
the true F-distribution. Neither of these conditions is satisfied, but the 
F-statistic based on the minimized deviance provides an effective, prag- 
matic technique for testing and comparing models. It is of no practical 
consequence that precise probability levels cannot be assigned to the 
F-statistics. Further details on the relevant theory are given by McCullagh 
and Nelder [ 51. 

If a simple model is found with an acceptably small F-statistic (not 
much greater than one), then it can be used for predicting future pay- 
ments. The expected value of each future claim is obtained by evaluating 
the fitted mean nrT at the operational time r as defined earlier. Similarly, 
the variance of each future claim is obtained by evaluating Equation 1.1, 
using the fitted mean mT, and the estimate of cp’ given by the minimized 
deviance as described in the preceding paragraphs. Assuming the amounts 
of future claims are stochastically independent. the mean and variance of 
the total can be obtained as the sum of the figures for the individual 
claims. The resulting variance must then be augmented to allow for esti- 
mation error in the fitted means m, . Details are given in Appendix D. 
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Numerical E.rample 

The data used in the examples are the medical malpractice data pub- 
lished in Berquist and Sherman [l]. They are given in Appendix A. To 
satisfy Assumption 3 of Section 1, the YYl,d values of Appendix A were 
brought up to 1976 terms using an assumed inflation rate of 15% (the rate 
used by Berquist and Sherman) before calculating the sample means 
S,,, = Y,.,/N,.,, . The triangle of operational times was calculated using 
Equation 2.1 and is given in Table A.4. A plot of the sample means S,, 
against operational time 7 is given in Figure 5. 

Model 0, which has nine parameters (one intercept parameter, and a 
slope parameter for each of eight subintervals of the observed range [O.O, 
OX?] of operational time) gave a minimum deviance of 1,803. The plot of 
standardized residuals against z is shown in Figure 6. This shows clear 
evidence of heteroscedasticity. The spread of the points decreases as z 
increases. This indicates that the variance assumption (Assumption 2, 
Equations 1.1 and 2.3) is false. Consequently, all results obtained using 
this variance assumption are invalid. The minimized deviance, the num- 
ber of residual degrees of freedom, and the F-statistic for each mean 
claim size model are given in Table 2. The number of degrees of freedom, 
dfi is the number of data points less the number of model parameters. It 
appears in the denominator of Equation 2.7. 

TABLE 2 

Model Deviance 

1 3,417 

2 2,685 

3 3,52 I 

4 4,52 1 

3 F 

33 4.0 

33 2.2 

34 3.7 

34 5.8 

It is stressed that the clear falseness of the variance assumption rend- 
ers the above figures meaningless. They are presented here merely to 
illustrate orders of magnitude, and to show how the F-statistic relates to 
the deviance. The example is continued in Section 3. 
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FIGURE 5 

OBSERVEDMEANSEVERITYAGAINSTMEANOPERATIONALTIME 
(DATAFROMBERQUISTANDSHERMAN) 

15 . 
+ 

10 - 

x 

+ 

b-t 

. 

I * 1969 

+ 1970 

0 1971 

-z 1972 

x 1973 

4 1974 

i 1975 
+I976 

~~ _ ~_~ ~ .__ _~ -~ lA ~- ! 
0.40 0.60 0.80 1.00 

Operational Time 



FIGURE 6 

RESIDUAL PLOT FOR MODEL ZERO WITH a = 2 
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3. RELAXING TtIE \‘ARf/\S(‘II ~ASSl~MPTION 

If the initial variance assumption (Assumption 2. Equations I. 1 and 
2.3) is found to be incorrect when tested as described in Section 2, then an 
alternative must be tried. The coefficient of variation of individual claims 
may depend on the mean claim size or,. Since this is usually an increasing 
function of z, the nature of the dependence should be apparent from the 
plot of standardized residuals against z for Model 0. For example. if this 
plot suggests that the variance is decreasing as t increases. then the coef- 
ficient of variation decreases as the mean r?ry increases. Such a case can 
probably be modelled adequately by replacing Assumption 2 from Sec- 
tion I with: 

Var (X,) = rp’ n$ . for some a < 2. (3.1) 

In terms of the sample mean S,, , this is: 

Var (S,,.,) = ‘p’ HrE(/N,,., . (3.2) 

Model 0 can be refitted on this basis (details are given below) and the 
standardized residuals examined to determine whether a needs to be fur- 
ther adjusted. The standardized residuals are given by: 

Similarly, if after fitting Model 0 using the initial assumption the stan- 
dardized residuals fan out, then the model should be refitted with a > 2. 

When the variance has been satisfactorily modelled in this way for 
Model 0, the other models can be fitted using the variance function de- 
fined by Equation 3.1, with a taking the value found using Model 0. 

The deviance to be minimized when a is not equal to one or two is 
given by: 
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Q = 2 . c A’,,, . [S,,., $S;, a - ITI; - *)/‘( I - a) - (St, Q - rn; - a)/(2 - CX) 1. 
wl 

(3.4) 

This is the quantity which is used to calculate F-statistics for testing and 
comparing the different models for the mean claim size 171, . (See Section 
2.1 

The example of Section 2 has been rerun using an index a = I .S in the 
variance function, instead of a = 2. The minimized deviance for Model 0 
(which has nine parameters) is now 2,404. The plot of standardized resid- 
uals against operational time z is given in Figure 7. It shows no evidence 
of heteroscedasticity, so the variance assumption (Equations 3.1 and 3.2 
with cx = 1.5) is acceptable, and the results of modelling under this as- 
sumption are valid. The minimized deviance and the F-statistic for each 
of the models of Section 2 are listed in Table 3. 

TABLE 3 

Model Deviance 

1 5,829 

2 3,567 

3 5,053 

4 6,568 

df ~~.~ __ 
33 

33 

34 

34 

F 

6.41 

2.18 

4.25 

6.68 

Table 3 shows that none of these models fit the data very well. For a 
model to be acceptable, the F-statistic must be much closer to one. 

An F-value of 1.22 is achieved by the following four-parameter 
model, which is a generalization of Models 1 and 2: 

11(m) = In(m) 

x, = (1, z, r2, In(~)) 

The estimated parameters (with their standard errors) are: 
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PI, -3.90 ( 1.08) 

PI 18.3 (2.87) 

P2 -12.8 (2.29) (coefficient of T’> 

P3 -0.87 (0.33) (coefficient of In(z)) . 

This model has five fewer parameters than model zero, so the F-statis- 
tic has five and 27 degrees of freedom. Statistical tables indicate a greater 
than one-in-three chance of an F-value as large as 1.22, if the model is 
true. In other words, the variation of the fitted values m, , obtained using 
Model 0, around the curve obtained under the present model could well 
be purely random. So, the present model gives a good representation of 
the underlying pattern in the data. This is confirmed by Figure 4, which 
shows the fitted values of m, under both models. The difference between 
the two curves is insignificant compared to the random variation in the 
data. 

Figure 4 also shows that the fitted curve for m, decreases for z greater 
than about 0.66. This decrease exists in the data (Figure 5), but there are 
no data for operational times greater than 0.82. It is reasonable to question 
whether a decreasing curve for m, should be projected beyond this value. 
It is shown in Section 7 that the decrease in the observed mean claim 
amounts is caused largely by the presence of partial payments. In the 
terms of the primary triangles in Section 1, the data is actually type (c), 
not (a) or (b). It is analyzed here as if it were type (a) or (b) purely to 
illustrate the method. In practice, one should be very wary of projecting a 
decreasing curve for m, beyond the observed range of operational times, 
in either case (a) or (b). 

The fitted model also has a minimum at z = 0.05 and m, tending to 
infinity as z tends to zero. Although unrealistic, this is not important 
because projections are required only for operational times greater than 
0.064 (the present operational time for the latest year of origin, 1976). 

Table 4 gives the following quantities for each origin year: estimates 
of expected total of future payments, approximate standard errors of these 
estimates, estimates of standard deviations of total future payments, and 
approximate root-mean-square (RMS) errors of prediction. 
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Columns I and 3 have been calculated by totalling the estimated mean 
and variance for all future claims, as described in Section 2. Column 2 is 
the standard error of Column 1 arising from uncertainty in the estimated 
P-parameters of the mean ~7~. It has been calculated using the formulae 
derived in Appendix D. Column 4 is the combination of Columns 3 and 4, 
calculated as the square root of the sum of their squares. This is appropri- 
ate because the uncertainty represented by the standard errors in Column 
2 is independent of the uncertainty rcprcsented by Column 3. Column 2 
arises from random variation in past claims, whereas Column 3 arises 
from random variation in future claims (as described in Appendix D). 

TABLE 4 

Year 

I969 

1970 

1971 

1972 

1973 

(1) 
Expected 

Total Future 
Payments 

3,350 

6,260 

14,835 

25,177 

35,842 

(3) (4) 
(2) Standard Root-Mean- 

Standard Error Deviation Square Error 

1,209 959 1,543 

1,875 1,382 2.329 

3,422 2,239 4,089 

4,497 2.999 5,405 

5,120 3,607 6,263 

1974 40,098 4,642 3,779 5.985 

1975 47,265 4.92 1 4,032 6,362 

1976 59.00 1 5.989 4,46 1 7,467 

All 23 1,828 3 I.270 X.960 32,528 

The final row (labelled “All”) is for all origin years combined. The 
predicted total of future payments for all origin years combined is $232 
million. This is simply the sum of the figures in Column I. The uncer- 
tainty represented by Column 2 is highly correlated between origin years, 
because the same set of parameter estimates (p,. given earlier in this 
section) is used for all origin years. Therefore, the standard error repre- 
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senting this source of uncertainty for all years combined (3 1,270) is only 
slightly less than the sum of the standard errors for each origin year (the 
sum of Column 2 is 3 1,675). Full details of this calculation are given in 
Appendix D. In contrast, the uncertainty represented by Column 3 is 
stochastically independent between origin years, because the future 
claims for each origin year are mutually disjoint sets. Therefore, the stan- 
dard deviation for all years combined (8,960), is simply the square-root of 
the sum of the squares of the figures in Column 3. The RMS error of 
prediction for all origin years combined can be calculated in the same 

way as for a single origin year; i.e., 32,528 = 3 1,270’ + 8,960’, because 
the first component represents uncertainty arising from random variation 
in past claims, and the second component represents uncertainty arising 
from random variation in future claims. A reasonably safe reserve (for all 
origin years combined) can be calculated by adding one RMS error 
($32.5 million) to the best estimate ($23 1.8 million) to give $264 million. 
However, since the data were adjusted to remove claims inflation, this is 
in 1976 terms. Section 6 shows how future claims inflation can be in- 
cluded in the predictions. Also, the assumed past inflation rate of 15% 
may not be correct, and no allowance has been made for the uncertainty 
in the estimates of ultimate claim numbers, M,. , used in the calculations. 
These two matters are dealt with in Sections 4 and 5, respectively. 

4. SIMULTANEOUS ESTIMATION OF INFLATION 

Basic Assumptions 

This section describes techniques that can be applied to data Y,,d that 
has not been adjusted for inflation. For some of the models specified in 
Section 2, the force of claims inflation can be estimated from the data at 
the same time as estimating the other parameters. 

The sample mean payment amounts S,, are now calculated as 
S,,, = Y,,,~,/N,,, using the unadjusted Y,., . The expected value of S,,, will 
now depend on the origin year w (as well as z ) because of inflation, so is 
denoted PI,, . However, by assumption 1 of Section I, the mean in real 
terms is the same for all origin years. Thus, rnHT is of the form: 
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n1ti-T = exp ~ (M’ + t//P) i ) nr5 (4.1) 

for some M, which are the same for all origin years. Here, i represents the 
annual force of claims inflation: P represents the number of development 
periods per year; and M’ + LI/P is, therefore, the calendar time (in years) of 
each data point. 

The initial variance assumption is that the coefficient of variation of 
individual claims is constant, which implies: 

Var (S,,.,) = ‘p’ 1l7t.JN,,.~ . 

As before. this can be generalized, if necessary. to: 

(4.2) 

Given a model for nzr, Equation 4.1 yields a model for the mean m,,, 
of the data S,,, . If i is to be treated as a parameter to be estimated, then 
the model for nz, must have hum,) lincar in the unknown parameters in 
order for ~7,,.~ to be of generalized linear form: 

/7(~7,,.~) = x,.~ b, for some known vector x,., . 

Thus, of the models for ~7~ proposed in Section 2. only Models 0, 1. and 2 
can be fitted directly using Fisher’s scoring mcthod. Thcsc all have 
/7(m) = In(m). 

Ifp=(i, p,,, p,, . ..) w h ere the Bj are the same as in Section 2, then the 
vector x, is given by: 

Model 0: x, = (IZ’ + d/P, II, . . . II. ‘I,, 0, . . . 0) 

Model 1: x,,,~ = (M’ + d/P, I, t. In(x) ) 

Model 2: x,,,~ = (W + <f/P. 1. z. z’) 

X, is known for each data point as M’, tl, and r arc known. 
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Model fitting and testing can proceed with these models exactly as 
described in Sections 2 and 3, except that the number of parameters in 
each mode1 has increased by one. If T is the number of operational time 
intervals used in Model 0, the number of parameters of the model is now 
T + 2. The number of residual degrees of freedom is therefore II - T - 2. 
This should replace n - T - 1 in Equations 2.6 and 2.8. Similarly, the 
number of parameters p of Models 1 and 2 is now one greater than 
previously. 

The question remains of how to fit models such as Models 3 and 4 
which do not have h(m) = In@), when the rate of claims inflation is not 
known. The following procedure can be employed. First, fit Models 0, 1, 
and 2 as described above (generalizing the variance assumption if neces- 
sary). If none of these models gives an acceptable fit when compared to 
Model 0 (using F-tests as in Sections 2 and 3), then use the force of 
inflation estimated using Model 0 to adjust the data Ywrl into constant 
money terms. All models can then be fitted to the inflation adjusted data 
as described in Sections 2 and 3, and the best model determined. If the 
best model is one such as Models 1 or 2, then the version fitted to the 
unadjusted data should be used. 

Although x,,,~ can be determined from the data for each cell of the 
triangle, it is not fully known for cells corresponding to the future. The 
relationship between z, d, and MI for the future depends on the rate at 
which claims will be settled, which is uncertain. Having fitted a model, 
the formulae of Appendix D apply only to the factor m, of Equation 4.1 
so the predictions are in constant prices. A further stage of estimation is 
necessary before claims inflation can be incorporated in projections. This 
approach is illustrated in Section 6. 

Note that the methods described here assume that past claims intlation 
has been at a constant rate. In cases where this is considered to be a poor 
approximation, the data Y,,.,/ should be preadjusted to remove any non- 
constant elements of claims inflation believed to be present. 
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The methods of Section 4 are illustrated by repeating the example of 
Sections 2 and 3, this time with the sample means S,,., calculated from the 
unadjusted data Y,,.,, and N,,.,, from Appendix A. As in Section 2, the 
residual plot from Model 0 with a = 2 shows that this value is incorrect, 
and as in Section 3, the value a = I .S is found to be acceptable. 

Table 5 gives the minimized deviance and the F-statistic for compar- 
ing each of Models 1 and 2 to Model 0. These F-statistics each have six 
and 26 degrees of freedom. The table also gives the estimated force of 
claims inflation (and its standard error) obtained from each of the models. 

TABLE 5 

Model Deviance 4f 
0 1,961 26 

I 4,896 32 

2 2,865 32 

E Inflation 

- 0.132 (0.035) 

6.49 0.141 (0.047) 

2.00 0.138 (0.036) 

From statistical tables, there is only about a one-in-10 chance that an 
F-variate with six and 26 degrees of freedom is as large as 2. Therefore, 
neither Model I nor 2 adequately represents the data. This implies that all 
results obtained from these models are invalid, including the estimates of 
the force of claims inflation given above. 

However, the model used in Section 3 still gives a good fit when 
applied to the unadjusted data with an additional parameter for inflation. 
The minimized deviance is 2,402, which gives an F-value of I. I7 on five 
and 26 degrees of freedom. The estimated parameters (with their standard 
errors) are: 

p:l 

0. I35 
-3.7 I 

PI 17.8 

p2 -12.5 

P7 -0.80 

(0.034) 
( 1.06) 

(2.80) 

(2.20) (coefficient of Z’) 

(0.33) (coefficient of In(z)) . 
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The figure 0.135 for the force of claims inflation corresponds to a 
14.5% annual rate. 

The final results in 1976 terms are: 

TABLE 6 

Year 

1969 

1970 

1971 

I972 

1973 

1974 

1975 

1976 

(1) 
Expected 

Total Future 
Payments 

3,450 

6,397 

15,034 

25,360 

35,962 

40,132 

47,279 

59,015 

(2) (3) 
Standard Standard 

Error Deviation 

1,169 898 

1,800 I.287 

3,261 2,07 I 

4,27 I 2,76 1 

4.873 3,3 12 

4,464 3,464 

4,796 3,696 

5.876 4,089 

(4) 
Root-Mean- 
Square Error 

1,475 

2,213 

3,863 

5,086 

5,892 

5,65 1 

6,055 

7,158 

All 232,630 29,988 8,229 3 I ,096 

Adding one standard error to the best estimate gives a reserve for all 
origin years combined of $264 million, in 1976 terms. Although these 
results hardly differ from those obtained in Section 3, more confidence 
can be placed in them now, because the inflation rate has been estimated 
from the data themselves, and not based on any prior assumptions. How- 
ever, no allowance has yet been made for the uncertainty in the ultimate 
numbers of claims M,,. 

5. ALLOWING FOR UNCERTAINTY IN 1ILTIMATE NUMBER OF CLAIMS 

In previous sections, it has been assumed that the ultimate number of 
claims, M,, , is accurately known for each origin year w (Assumption 4, 



286 S’KKHASTIC CIAIMS RliSERVIN(i 

Section 1). This assumption is realized in practice only if the origin years 
are report years. For any other definition ot’ origin year, there will be an 
unknown number (possibly zero) of IBNR claims. This number has to be 
estimated in order to arrive at an estimate of M,,. It is shown in this 
section how the uncertainty in the M,,. estimates can be taken into account 
in calculating standard errors of the final results. First, the source of the 
M,,. estimates is briefly considered. 

For reserving purposes, the origin years must usually be either acci- 
dent years or policy years. In such cases, in addition to the triangle of the 
number of settled claims, N,,.,, , it may also be possible to obtain a triangle 
of the number of reported claims. Such a triangle will often give more 
information about the ultimate number of claims M,,. than does N,,, , 
because claims are reported before being settled. However. the reported 
claims triangle will include those claims eventually settled with no pay- 
ment, whereas N,.,, and M,, should not. These matters should bc consid- 
ered carefully when estimating the ultimate number M,. of non-zero 
claims. Whether reported claims, settled claims, or both. are available for 
estimating M,,. , the stochastic method previously dcvcloped by the author 
[IO] can be used. As well as estimates of M,, , this method gives standard 
errors of the estimates, L’,,. . The following paragraphs describe how these 
standard errors can be used. 

The quantities M,,. are used at two points in the methods described in 
previous sections: in calculating the triangle of operational times 7 (Equa- 
tion 2.1) and in calculating predictions from the fitted model (Appendix 
D>. 

In the following paragraphs, the effect of variability in M,, is consid- 
ered for each of these in turn. 

If M,. is overestimated for a particular origin year LI’, then the opera- 
tional times for that origin year will all be underestimated by a certain 
factor. (M,. appears in the denominator of Equation 2.1.) The observed 
average claim amounts S,, for that origin year, therefore. will be for later 
operational times than those calculated and will tend to overestimate the 
true mean claim amount for the calculated operational times. Conversely, 
if M,. is underestimated, then the mean claim sizes will also bc underesti- 
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mated. However, estimation of the mean claim size nr5 is done by fitting a 
mode1 to the data for all origin years simultaneously. Provided the esti- 
mates M,. are unbiased and not highly correlated, the effects will tend to 
cancel out across origin years. There will be more variability in the data 
S,, across origin years M* than there would otherwise be, but this variabil- 
ity is already taken into account through the estimate of the scale parame- 
ter (p2. The additional effect on the variability of the final results is 
therefore minimal and can reasonably be ignored. 

Experience with a number of data sets has confirmed these comments. 
Ultimate counts M,. may be estimated by a variety of methods, but the 
parameter estimates of the fitted model for nr, are invariably very similar 
whichever set of estimates MW is used to calculate the operational times. 
Usually, it is only the last few origin years that have much uncertainty in 
the ultimate number M,, . and these origin years contribute only a few 
data points (2, S) for the modelling. Therefore, the results of the model- 
ling are relatively insensitive to the choice of estimates M,,, . 

Having estimated the parameters pJ of a model relating mean claim 
size m, to operational time, the method described in Appendix D has been 
used in previous sections to project the fitted mod:] and to calculate the 
mean-square-error of the projections. An estimate p of the expected total 
of future payments for a single origin year is calculated by summing the 
fitted mean mT over the operational times z of each expected future claim. 
The values of z for this summation are given in Equation D. I. 

In Appendix E it is shown that, whatever the fitted model/for nz, , each 
increment of one in the estimate h ‘11 WI cause the estimate p to increase 
by approximately [T,, . 17~~) + $/&, where ‘t, is the operational time 
reached for the origin year, and m, is the fitted mean valte corresponding 
to T(~. This implies that the additional uncertainty in f.r caused by the 
uncertainty in M is represented by a standard error II given by: 

u = [To . m, -k pi& . 1’ ) (5.1) 

where v is the standard error of the estimate A. 
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Continuing with the example of Section 4. Table 7 gives the quantities 
in Equation 5.1 for each origin year. 

TABLE 7 

Year G 
1969 3.450 

I970 6,397 

1971 15.034 

1972 25,360 

I973 35,962 

1974 40, I32 

1975 47,279 

1976 59.0 IS 

To “41 lb 
0.85 12.67 2,664 
0.79 15.94 2,896 

0.70 IX.65 4.065 

0.62 18.41 4.77 1 

0.53 IS.27 5,280 

0.4 I 8.87 4,837 

0.25 3.03 5,169 

0.06 0.66 6.257 

70 

102 

148 

21s 

314 

461 

690 

I .097 

II 

845 

1,505 

2,484 

3,580 

4.67 1 

5,4X I 

6,843 

10.393 
A 

G is the best estimate of future payments as given in Section 4. A4 and 1% 
come directly from Appendix A. r. is the row total N,, of the number-of- 
claims-settled triangle divided by M. HIP) is calculated from t,, using the 
fitted model, which is: 

with 

m, = exp (p,, + PI z + p, r’ + p; In(r)) , 

p,,= -3.71, PI = 17.8, p2 = -12.5. pj = -0.80. 

14 is given from the other quantities using Equation 5. I. 

Table 8 gives the final results. Columns I. 2. and 3 are as in Table 6 
and Column 4 holds the new component of uncertainty. 
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TABLE 8 

Year 

1969 

1970 

1971 

1972 

1973 

1974 

197s 

1976 

(1) 
Total 

Expected 
Future 

Payments 

3,450 

6,397 

15,034 

25,360 

35,962 

40, I 32 

47,279 

S9,O 1s 

(4) 
Additional 

(2) (3) Uncertainty 
Standard Standard (Number 

Error Deviation of Claims) ~~ __ 
1,169 898 845 

1,800 1,287 1,505 

3,261 2,07 I 2,484 

4,27 1 2,761 3,580 

4,873 3,312 4,67 I 

4,464 3,464 S,48 1 

4,796 3,696 6,843 

5,876 4,089 10,393 

(5) 
Root- 
Mean- 
Square 
Error 

1,700 

2,676 

4,593 

6,220 

7,5 I9 

7.872 

9, I37 

12,620 

All 232,630 29,988 8,229 15,122 34,578 

The uncertainty in Column 4 for all years combined has been calcu- 
lated on the assumption that the estimates M,, are mutually independent. 
It is the square root of the sum of the squares of the separate origin year 
figures. If non-zero covariances for the M,. were known, they could easily 
be brought into the calculation. 

The three components of error (Columns 2, 3, and 4) are always 
mutually independent (to a good approximation), so the overall RMS 
error (Column 5) is simply the square root of the sum of the squares of 
these three columns. 

Allowing for uncertainty in the number of claims outstanding has 
resulted in an increase in the overall standard error from $3 I. I million to 
$34.6 million. The reserve based on best estimate plus one standard error 
has changed from $264 to $267 million, an increase of I .Ol %. 

To demonstrate the validity of Equation 5.1, the variation of l? with h 
has been investigated empirically. In Table 9, the first column gives the 
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theoretical rate of change of fi with h for each origin year; that is, the 
quantity in square brackets in Equation 5.1. The remaining columns show 
the actual changes in 1 per unit change in M, when M is changed by the 
amount shown at the head of each column. A dash indicates that a result 
could not be calculated because the changed value for M was less than the 
number of claims paid to date, N,, . 

For example, in Table 9, the figure 16.56 in the fifth column for 1972 
was obtained as follows: The best estimate 3.77 I of the ultimate number 
of claims M was increased by 100 to 4,871. Since the number N,, of 
claims to date is 2,938, this implies 1,933 claims remaining. The fitted 
mode1 m, of Section 5 was summed over the 1,933 different values 
z = 2,93&S/4.87 I to z = 4,870.5/4.87 I. This gave the result 27,016. This 
is 1,656 greater than the best cstimatc of 25.360: and, since M was in- 
creased by IOO, the mean rate of change is 16.56. 

TABLE 9 

Change in M 

(1) 
Theoretical (2) (3) (4) (5) (6) (7) (8) (9) 

Year Value -10 IO -100 I 00 -500 so0 -1.000 1,000 

1969 12.08 12.00 12.15 Il.29 12.79 ~ 14.82 - IS.85 
1970 14.75 14.70 14.80 14.22 IS.10 Il.36 16.26 - 16.48 
1971 16.78 16.78 16.79 6.67 16.86 IS.80 16.91 13.64 16.59 

1972 16.65 16.66 16.64 6.73 16.56 16.89 16.15 16.55 15.56 

1973 14.88 14.89 14.86 5.00 14.75 15.51 14.27 16.06 13.74 

1974 II.89 I I.90 I I.88 1.98 II.81 12.38 I I.51 13.02 II.22 

1975 9.92 9.92 9.92 9.93 9.90 IO.0 I 9.85 IO.14 9.80 
1976 9.47 9.47 9.47 9.47 0.47 9.47 9.47 9.48 9.47 

These results show that, for all origin years. the rate of change is 
almost constant within the range A4 + I’, and is close to the theoretical 
value, so Equation 5. I is a good approximation. 



STOCHASTIC CLAIMS RESERVING 291 

6. FUTURE INFLATION 

Theory 

Previous sections have been concerned with finding a model m, of the 
mean claim amount in constant money terms, and using the fitted model 
to calculate predictions in constant money terms. This section is con- 
cerned with the inclusion of future claims inflation in predictions, with 
due allowance for the inevitable uncertainty. This is necessary if the pre- 
dictions are to be used as a basis for setting reserves, because reserves are 
conventionally in current money terms (not discounted). 

Uncertainty in future claims inflation arises from two sources: 

1. uncertainty in the future rate of claims inflation, and 

7 uncertainty in the timing of the run-off of future payments. I. 

Appendix F shows how both these elements of uncertainty can be 
taken into account simultaneously. Obviously, if the run-off of future 
claim payments is expected to take many years, moderate uncertainty in 
the future rate of claims inflation may lead to substantial uncertainty in 
current price predictions, because of the exponential effect of inflation. 

Numerical Example 

To illustrate the method of Appendix F, future inflation is introduced 
into the predictions obtained in Section 5. An exponential run-off of the 
remaining claim settlements over development time is used for all origin 
years. The time scale of the run-off can be estimated by examining the 
triangle of operational times (Table A.4). 

Since the origin years are accident years, the mean delay to settlement 
is approximately d years for claims closed in development year d (except 
d = 0, for which the mean delay is about 0.33 years). The triangle of 
operational times indicates a “half life” of just over three years. The 95% 
confidence range for the half life is judged to be 2.8 to 3.6 years. This 
corresponds to a best estimate of 3.2, and a coefficient of variation of 
about 0.06. In the notation of Appendix F: U, = 0.06’ = 0.0036. 



From Equation F. 13, the best estimate of the parameter p of the expo- 
nential distribution is: 

p = 3.2/ln(2) = 4.6 years. 

Using Equation F.14, the remaining real delay I corresponding to fu- 
ture operational time t is estimated (in years) to be: 

r=H(r)=-4.6.Inl (1 -r)/(I -t,,) 1. 

For this example. it is assumed that the estimate of the average force 
of future claims inflation (from mid- 1976 onwards) is 0. I with a standard 
error of 0.02. Thus, it is expected that inflation will be less in the future 
than in the past, but the 95% confidence range of 0.06 to 0. I4 contains the 
best estimate 0.135 of the average past force of inflation (Section 4). In 
the notation of Appendix F. i = 0.1 and I!, = 0.02’. Equation F.7 gives 
0.02 1’ for the variance I/, due to both uncertainty in the future force of 
intlation and uncertainty in the future time scale. This is only slightly 
greater than ti, . indicating that the second element of uncertainty is rela- 
tively minor. 

The current price predictions for each origin year are given in Table 
IO. 

TABLE IO 

Year 
I969 
1970 
1971 
1972 
1973 
I973 
197s 
1976 

(1) 
Expected 

Total 
Future 

Payments 
5.531 
Y,934 

22.7Y4 

3x.233 
54.79X 
63.436 
79.899 

109,297 

(2) 
Standard 

Error 
2.056 

3,202 
6,027 

X,374 

10.254 
10,329 
12.21 I 
16,480 

(5) 
(3) Additional 

Additional (4) Uncertainty 
Uncertainty Standard (Number of 
(Inflation) Deviation Claims) 

735 I.306 YOO 
1.230 l.XOI 1,629 
2,657 2.x19 2,767 
4,345 3.735 4.160 

6,YO 4.530 5.791 
7.752 4,Yl7 7.702 

IO,903 5,5x0 I I.197 
17.05-l 6.658 19.209 

(6) 
Root- 
Mean- 
Square 
Error 

2,699 
3.203 
7,6X0 

10.966 

34,103 
IS.821 
20,603 
3 I.236 

All 383,Y23 68.658 SO.Y76 12. I24 34.X I2 X9.86 I 
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Columns I, 2, 3, 4, and 5 are as in Table 8, except that each expected 
claim amount nz, has been inflated using the factor exp (i . H(z)) before 
finding the total for each origin year. The new Column 3 gives the addi- 
tional element of uncertainty calculated from Equation F. 11. The figure 
for all years combined (50,976) is simply the sum of the figures for the 
separate origin years (this comes from repeating the argument given in 
Appendix D using the variance-covariance matrix of Appendix F). Intu- 
itively, it is clear that this new component of uncertainty will be highly 
correlated between origin years, because the projections for all origin 
years are based on the same estimate of future inflation. If we overesti- 
mate future inflation, then we overestimate the reserve for all origin years 
simultaneously. The apparent perfect correlation (additivity of Column 3) 
is an approximation resulting from the use of first order Taylor series for 
these standard errors (Appendices D and F). The use of Taylor series 
approximations does not induce apparent perfect correlation in Column 2 
(68,658 is less than the column total of 68,933) because these standard 
errors represent uncertainty in more than one parameter estimate (the 0s) 
and the estimation errors are not perfectly mutually correlated. 

Column 6 gives the overall mean-square-error calculated as the square 
root of the sum of the squares of Columns 2,3,4, and 5. 

It is interesting to look at the delays and inflation factors of the last 
claims as given by the estimated function H(z). The expected ultimate 
number of claims is 6,257 for origin year 1976. The operational times of 
the last three claims for this origin year are therefore 0.99960, 0.99976, 
and 0.99992. The expected delays from accident to settlement of these 
claims (calculated from t = -4.6 In( I - 2)) are 36.0, 38.3, and 43.4 years, 
respectively. Using the estimated force of inflation i = 0. I, the estimated 
inflation factors are 36.6,46. I, and 76.7. These factors are obviously very 
sensitive to the estimate i, which is why the extra element of uncertainty 
can be substantial. 

In practice, the function H(T) would be estimated more carefully than 
in this example, making use of any additional information on likely de- 
lays. The estimated time scale parameter (4.6 in the example) need not be 
the same for all origin years. The method detailed in [lo] can be applied 
to the number of claims triangle to obtain an estimate and a standard error 
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(hence a value for I/,) for each origin year. A Gamma, rather than an 
exponential run-off can be used to construct H(r) if necessary, but this is 
unlikely to make much difference to the results except for the last one or 
two origin years. The use of a Gamma run-off is illustrated in the example 
of Section 7. 

7. PARTIAL l’:ZYMt~‘JTS 

Paid claims run-off triangles are usually of type (c) (see Section I) in 
practice. That is, the counts triangle N,,.,, is the number of claims closed in 
each development year cl of each origin year H’. but the paid amounts 
triangle Y,,.,, is the total of all payments made in development period d of 
origin year MS. Each Y,,.,, includes partial payments on claims settled at 
some later development period, as well as the settlement payments 
counted in N,,,(, . The following paragraphs describe special procedures 
that may be necessary when the partial-paymcnr component of Y,,.,, is 
substantial. 

Dropping the subscripts H’ and tl temporarily. each Y has two compo- 
nents: 

Y = Y, + Y? . 

where 

Y, is the total of payments made on claims closed, and 

Y1 is the total of payments made on claims not closed. 

N, will denote the number of settlement payments: thal is. the number 
of individual payments making up Y,. Similarly, N, will denote the num- 
ber of prepayments on claims not yet closed: the number of individual 
payments in Y2 These quantities are not all known: the data consists only 
of Y and N,, for each ~7. tl combination. The mean claim amount which 
can be calculated from the data is: 

s = (Y, + Y>)/N, (7.1) 
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Since the expected values of Y, and Y, may follow two different pat- 
terns as operational time 7 varies from 0 to 1, the form of the expected 
value of S (as a function of z) is likely to be more complex than when the 
component Yz is not included (situation (a) from Section 1). Furthermore, 
random variation of S around its expected value will be negatively corre- 
lated with random variation in N,. This is explained further in the follow- 
ing sections. 

Both N, and N2 are subject to random variation. Initially it is assumed 
that they are stochastically independent. This will be discussed further 
below. If N, is higher than expected (it just happens that a large number of 
claims reach the settlement stage at about the same time), Y, will be 
correspondingly high, as it is the total of the N, settlement payments. But, 
N2 (hence YJ will not be affected, so S will tend to be lower than ex- 
pected. Conversely, a low value for N, will tend to give a high value for S, 
because Y, will be proportionately low, but Yz will not. 

There is an argument which suggests that N, and N2 may be positively 
correlated. This would limit the negative association between N, and S 
described above, and would eliminate it completely if the expected value 
of Nz, given N,, were proportional to N,. The argument is that both N, and 
N, may be affected in the same direction by a common cause: namely, 
increased activity by the insurance company on claim payment proce- 
dures, regardless of whether the payments are settlements or prepay- 
ments. This is discussed further in Appendix G. There are also arguments 
which suggest that N, and N2 may be negatively correlated. This would 
substantially increase the negative association between N, and S de- 
scribed above. First, if the number of claims closed in a certain develop- 
ment period is unusually large, the number of claims left outstanding at 
the end of the period will be correspondingly small, so the number of 
partial payments on such claims will also tend to be small. Second, if 
many claims are ready for settlement at about the same time, the demand 
on resources made by these settlements may reduce the resources avail- 
able to deal with prepayments on outstanding claims. 

Previous sections have been concerned with modelling the expected 
value nzT of the sample means calculated from S = Y,/N,. (In the terms of 
Section 1, this is situation (a).) It is shown in Appendix G that, under 
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certain assumptions, the effect of including partial payments Y, in the 
numerator of S is approximately the same as increasing the mean rrrT by a 
factor of exp (C R),,J, where c is a constant, and R,,,<, is the ratio of the 
number of claims outstanding in development period rl to the number 
settled during development period d. That is. if LM.(, is the number of 
claims outstanding, then R,.,! = L,,.,,/N ,,,‘, . The coefficient C’ represents the 
expected partial payment per outstandin, ~7 claim (including those with no 
partial payments), as a proportion of the mean size of settlement pay- 
ments. For example, if the average number of partial payments in any 
development period is one for every five outstanding claims. and the 
mean size of these partial payments is half the mean size of settlement 
payments, then c = 0.2 x 0.5. 

If the model for nr5 has a linear form for In(nz,), then the factor 
exp (C R,,.,,) simply introduces a further term to the linear exponent. If 
Rw,d is known, C’ can be estimated in the same way as the other parameters 
of the model. For example, in the models of Section 4. the parameter 
vector becomes: 

and the vector X, of known explanatory variables becomes: 

Model 0: x,,, = (RI,.,), MI + d/P. II ._. 11, 2,. 0 . 0) 

Model 1: x, = (R,,[, w + d/P. I, r, In(t)) 

Model 2: x,,,~ = (R,,.,,, M’ + d/P, 1, z, 6). 

Other models (such as Models 3 and 4) can be fitted by first dividing 
each observation S by exp (C . R,,,J, using the value of (’ estimated from 
Model 0. This procedure is similar to the preadjustment for intlation 
described in Section 4. 

Appendix G also shows that if m, represents the mean with the factor 
exp (C . R,J included, then Equation 2.3 for the variance of S becomes 
approximately: 

Var (S,,) = (p2 &(exp (C R,,,(,) N,,.,,) (7.2) 
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Therefore, to fit the models above, the factor N,,., must be replaced by 
exp (C . R,,,J NH,{, in the deviance (Equation 2.9). An initial estimate of c 
is required for this purpose. If the estimate of c obtained by fitting Model 
0 differs significantly from the initial estimate, then other results should 
be disregarded and the model fitting should be repeated using the new 
estimate of c in the deviance. 

A number of assumptions are made in Appendix G, leading to the 
results quoted above. There is no need to consider too carefully how 
realistic these assumptions are in each application. The purpose of the 
mathematics in Appendix G is to find a broad model of which can be 
tested against the data. Standard statistical techniques, such as residual 
plots and F-tests can be used to determine whether or not the models 
adequately represent any particular data set. In a similar vein, although 
the mathematics of Appendix G deal only with the case a = 2 in the 
variance function, other values of a can be used in fitting the models of 
this section exactly as described in Section 3, if the data indicate that this 
is necessary. 

If the coefficient c is found to be significant, then forecasting is not as 
simple as in the pure operational time models of Sections 2 and 3. In 
order to include the partial payment effect in the forecasts, values of 
R = L/N must be projected for future operational times so that x,,~ is 
known. In some cases, R can be modelled as a function of operational 
time. Projections can then be obtained as described in earlier sections, 
with just one change. The expression at Equation D.2 for the variance of 
an origin year total (standard deviation columns in the results tables) is 
replaced by: 

CT’ = (p2 . c (mF/exp (C R,)). (7.3) 

This follows from Equation 7.2. The quantity ‘p’ . $/exp (1. RJ is 
the variance of the total of payments made over a single increment l/M 
in operational time. m, is the expected value. More generally, separate 
projections of R can be made for each origin year. The situation is much 
the same as for claims inflation. 
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If the reported number of claims triangle is not known, then L, the 
number of claims outstanding. is not known. In such a case. L can be 
defined as the number of claims not yet settled (whether reported or not). 
If the proportion not yet reported is approximately constant over develop- 
ment time, then L is increased by some constant factor under this alterna- 
tive definition, so the parameter C’ will bc decreased by the same factor. If 
the run-off of claims closed is approximately exponential from some 
point onwards, then R = L/N is approximately constant. This can simplify 
projections. If the run-off is exponential Irom operational time 0 onwards, 
then the parameter c will probably be insignificant because c R will be 
subsumed into the parameter p,, of I))~. In such a case, the models of 
Sections 2, 3, and 4 can be used even if partial payments are substantial. 

To illustrate, the methods described above are applied to the data from 
Berquist and Sherman [ I] used in previous cxamplcs. These methods are 
more appropriate for this data set than the methods of earlier sections 
because the claim amounts triangle includes partial payments. In the ter- 
minology of Section I, the data set is type (c). 

The variable R,,.,, was calculated using the numbers L,,.(, of claims 
outstanding given in Table A.5 Table I I gives the minimized deviance 
and F-statistics for the models described in this section. The F-statistic for 
Model 0 compares Model 0 to the less restrictive model of Appendix B. It 
has eight and 17 degrees of freedom. The F-statistics for Models 1 and 2 
compare each of these models to Model 0. They have six and 25 degrees 
of freedom. The models were fitted using the variance function given in 
Equation 7.2, with a prior estimate of 0.1 for (’ and an index a = 1.5, 
instead of 2. This gave satisfactory residual plots. Figure 8 shows the 
standardized residuals from Model 0 plotted against operational time. The 
same residuals are plotted against R,,,, in Figure 9 (for the reasons given 
in Appendix G). 
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TABLE 1 I 

Model Deviance 

0 2,143 

1 3,909 

2 2,773 

~~ .dJ” ~ F 

25 0.29 

31 3.43 

31 1.23 

Model 2 appears to fit reasonably well. A direct comparison of the 
deviance with that obtained in Table 5 is not valid, because the prior 
weights have been changed but, compared to Model 0, the fit is consider- 
ably better than in Table 5. The parameter estimates (and standard errors) 
for Model 2 are: 

(’ 0.127 (0.044) 

P: 

0.176 (0.036) 

-1.04 (0.2 1) 

PI 9.56 (1.16) 

P2 -6.24 (I 26) (coefficient of ?) . 

The magnitude of c is consistent with its theoretical interpretation and 
is not significantly different from the prior estimate of 0.1 used in the 
weights. 

In the examples of previous sections, the fitted models m, have always 
been decreasing for large values of 7 (see Exhibit 4, for example). In 
Section 3, this decrease was attributed to the presence of partial payments 
in the data. In the present example, the partial payments have explicitly 
been taken into account by including the factor exp (c . R) in the model. 
Figure 10 shows that R tends to decrease from about z = 0.5 onwards, so 
the partial payment factor exp (C . R) also decreases. However, the other 
factor of the fitted model, exp (p,, + p, z + p2 . T’), also decreases for 
large values of T. This is shown in Figure 11. The next paragraph de- 
scribes how to test whether this remaining decrease is genuine or is due to 
estimation error. 
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The slope of the exponent p,, + p, T + & T.’ is b, + 2 & z, so the 
function does not decrease for z in the range (0, I ) if, and only if, p, is not 
negative and & is not less than -p,/3. If pi is defined by p3 = p, + p,/2, 
the exponent can be expressed as p,, + b, (r - t’/2) + p.: ?. and the 
condition for the function to be non-decreasing is that p, and pi should 
both be non-negative. This condition can be tcstcd by refitting the model 
using the new explanatory variable (7: - I’/?) instead of T. This is essen- 
tially the same model as before so the pnramctc~~ eslimatcs arc unchanged. 
p3 is estimated lo be - 1.46, which follows from the estimates of p, and & 
given above. However, fitting the model in this new form gives a standard 
error for p3 which cannot be calculated from the previous parameter 
estimates and standard errors. The valise is 0.7?--less than half the abso- 
lute value of the estimate itself, indicating that p3 is significantly negative. 
This is confirmed by refitting with p3 set to zero. The minimized deviance 
becomes 3.154, an increase of 38 1. givin, L o ‘tn I‘-statistic of 4.3 on one and 
3 1 degrees of freedom. 

The analysis described in the earlier paragraph shows that. for this 
data set, the decrease in the mean claim amount for large values of z is 
not fully explained by the partial payment faclor exp (c. R). However, 
this does not imply that the mean settlement payment decreases with z. A 
more plausible explanation is that the factor exp (C R) only partly ac- 
counts for the effects of partial payments. Full details of how this might 
occur are given Appendix G. Briefly. the explanation is that the rate at 
which partial payments are made on an open claim tends to decrease the 
longer the claim remains open. 

As the coefficient c is significant. it is necessary to estimate a value of 
R for each future operational time in order to project the fitted model. 
Experience with other data sets suggests that R shows little variation as z 
approaches one. With this in mind, a continuous piecewise linear approxi- 
mation for R has been estimated by eye from the observed values: 

RT = 1.40 for t < 0.2 I 

= -0.96 + 1 I .2s x ‘I: for 0.2 1 < t < 0.45 

= 7.25 - 7.00 x r for 0.45 < z < 0.65 

= 3.80- 1.70 x T for 0.65 < t . 
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Figure 10 shows both the observed values of R and the piecewise 
linear approximation R,. 

In 1976 money terms, the formula for R, gives the results in Table 12. 
Column 3 has been calculated using Equation 7.3. 

TABLE 12 

Year 

1969 

1970 

1971 

1972 

1973 
1974 

I975 

1976 

(1) 
Expected 

Total 
Future 

Payments 

6,187 

10,119 

20,757 

3 1,795 
42,81 I 
46,865 

54,903 

68,59 1 

(21 (3) (4) 
Standard Standard Additional 

Error Deviation Uncertainty 

I,71 I 1,323 I.224 
2,434 1,710 1,869 

4, I38 2,467 2,705 

5,287 3,049 3,741 
6,029 3,506 5,074 
5,554 3,598 6,277 
5,913 3,828 7,930 

7,197 4,240 12,079 

(5) 
Root- 
Mean- 
Square 
Error 

2,485 

3,514 

5,525 

7,159 

8,625 
9,121 

10,607 

14,686 

All 282,027 37,839 8,828 17,327 42,544 

As no allowance has been made for uncertainty in the projected values 
of R, it is interesting to examine the sensitivity of the results to these 
projections. The piecewise linear function defined earlier implies an aver- 
age value of R over the entire range (0, I) of z of 2.47. Table I3 was 
obtained using this constant value for R. 
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TABLE L3 

Year 

(1) (5) 
EXpCCtCd Root- 

Total (2) (3, C-1) Mean- 
Future Standard Standard Additional Square 

Payments Error Deviation Uncertaint] Error 

1969 6.372 

I970 IO,345 
lY71 21.017 

1 Y72 3 I .X67 

1973 42, I x0 

1 Y7J 45,069 

1Y75 52.742 

I Y76 66.357 

All 375.X50 

I .77X 

3.5 12 

4.234 

5,373 

6.0X0 

5.541 

5.X7.3 

7.154 

3x. 15’) 

I .337 

1.723 

7,477 

3.05 I 
3.4x0 

3.555 

3.7x I 
3.lYO 

X.767 

I.344 

I .X7X 
7.67Y 

3.61 1 

1.710 

5.X64 

7.6X7 

1 I .677 

16,653 

2,544, 

3.578 
S.SXY 

7,156 

X.446 

X,X16 

1().3X6 

14.32 I 

42.547 

Between the two sets of results given in Tables 13 and I3 the estimate 
for the entire triangle differs by -just over $7 million. which is quite small 
compared to the RMS error of ahout $43 million. Thus, the uncertainty in 
future valises of R appears to be relatively unimportant. Experience with 
other data sets suggests this is true quite generally,. Figure I I shows the 
fitted model for ))I~ obtained using both the piecewise linear model for R 
(Curve 2) and the constant model (Curve 3). The difference between 
these two curves is slight, which explains the similarity in the two sets of 
results. Curve 3 is simply a scaled up version ol‘curve I which shows the 
fitted model with the partial payment factor exp ((, R) excluded. 

Table 14 gives results based on the piecewisc linear model for R in 
current money terms. Future inflation has been included using the meth- 
ods described in Section 6. The run-off of settlements over real develop- 
ment time was taken to be exponential with the same parameters as in 
Section 6, and the YSC/r confidence interval lhr the future force of infla- 
tion was taken as 0. IO to 0. I X. 
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Year 
1969 
1970 

1971 

I972 

1973 

1974 

1975 

1976 

(1) 
Expected 

Total 
Future 

Payments 

15,193 

24,570 

50.29x 

77,679 

106,385 

121.292 

155,2’)2 

220.25 I 

(2) 
Standard 

Error 
4,746 

7.202 

13,404 

1 X.976 

24,112 

25.5 IO 

3 I.440 

44,179 

TABLE 14 

(3) 
Additional 
Uncertainty 
(jnflation) 

3.317 

5,370 

I I.132 

17,3Y2 

24.200 

28,3YO 

38,697 

SY.6 I I 

(4) 
Standard 
Deviation 

3.176 

4.OY7 

5,994 

7.550 

X.932 

9,628 

11,172 

13.823 

(5) (6) 
Additional Root- 
Uncertainty Mean- 
(Number of Square 

Claims) Error 
I ,46 I 6.799 

2,378 IO.156 

3,780 1X.X 10 

S,XOY 27,447 

X,X55 36.404 

13.371 41.572 

21,330 55.369 

38,668 84.X03 

All 770,9SY i6Y,So4 188.109 24.66 I 47.574 258.82 I 

Berquist and Sherman produced several sets of projections, with to- 
tals ranging from $430 million to $750 million. The best estimate shown 
in Table 14 is comparatively high, but the RMS error is large. It would be 
interesting to see how these estimates compare to the actual experience. 

As a final example, the data set from Taylor [9] is analyzed using the 
methods developed in the present paper. This relates to a compulsory 
third party motor portfolio for the 12 accident years 1969 to 1980, broken 
down by development year. There were no claims closed in 1980 for 
origin year 1969, so the number of data points is 77. The triangles Y\,,(, and 
N,,.,, are given in Tables A.6 and A.7. The estimates of ultimate numbers 
M given by Taylor have been used. For the purposes of this example, the 
standard errors of these estimates have been taken as 5% of the number of 
claims estimated to be remaining (not yet settled). These figures are given 
in Table A.8. As the reported counts triangle is not given in 191, values for 
R = L/N have been calculated using the alternative definition of L given 
earlier in Section 7. This triangle is given in Table A. 10. 
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Figures 12 ; end 13 show the data S and K plotted against operational 
time r. Figure 14 shows the quantity S/exp (c, K) plotted against T using 
the prior estimate 0.1 for c’. This quantity is the mean payment per claim 
closed adjusted to remove the partial payment effect (see Appendix G). 
One data point has been excluded from Figures I2 and 14 for the sake of 
clarity: the value of (z, S) for r/= 1 1 of origin year 1970 is (0.995. 108.2). 
This value for S is more than double the largest value shown in Figure 12. 
However, it is based on only two settlements. and standardized residual 
plots show that it is not an outlicr. therefore, it has not been excluded 
from the analysis. 

Table IS gives the results of fitting models with both a partial pay- 
ment parameter and an inflation parameter to the unadjusted data shown 
in Figures I, 3 and 13. The variance index was taken to be CI = 2, and the 
prior estimate of the partial payment parameter for use in the weights was 
taken as c = 0.1. The plot of standardized residuals from Model 0 against 
operational time is shown in Figure IS. Thcrc is no evidence of 
heteroscedasticity. so the F-statistics are valid. The standardizcd residual 
for the point excluded from Figurca l_ ? and 13 is included in Figure 15. 

TABLE IS 

Model Deviance (?f F 
0 618.6 63 - 

I 860.4 72 3.74 
2 848.2 72 2.60 

The F-statistics indicate that ncithcr Model I nor Model 2 fit the data 
very well. However, the more general model with both ? and In(z) in the 
linear predictor (as in the numerical examples of Sections 3 and 4) fits 
well. The minimized deviance is 704.X. giving an F-statistic of I. IO on 
eight and 63 degrees of freedom. 



FIGURE 12 

OBSERVED MEAN SEVERITY vs. OPERATIONAL TIME 

(DATA FROM TAYLOR [9]) 

X 

x 
x 

3 x>x XXX 
O.-Lb- 
0.00 0.20 

X 

x x z* 
x* 

XX 
x X 

X 
X 

x3 x 
2: 

xx y; x 

xx x XX xx xX 
x 

X 
yx x 

- x 

0.40 0.60 

Operational Time 

X -- -~ 

0.80 1 .oo 



FIGURE 13 

PARTIAL PAYMENT RATIO (R) vs. OPERATIONAL TOME 
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FIGURE 14 

ADJUSTED MEAN SEVERITY vs. OPERATIONAL TIME 
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The parameter estimates are: 

c 0.111 (0.024) 

i 0.131 (0.013) 

PO 5.17 (0.8 1) 

Pi -7.1 1 (1.88) 

P2 4.54 (I. 18) (coefficient of z’) 

P3 1.25 (0.34) (coefficient of In(z)) . 

Note that the estimate of c is not significantly different from the value 
of 0.1 used in the weights. Also, the average force of inflation estimated 
from the data does not differ significantly from Taylor’s prior estimate of 
0.117 (derived from the Australian Capital Territory Average Weekly 
Earnings Index). 

The function exp (8, + p, 2 + PI. 22 + p3 In(z)) represents the pay- 
ment per claim closed in constant 1980 terms, with the partial payment 
factor excluded. This is shown in Figure 16. This should be compared to 
the adjusted data shown in Figure 14. The slight decrease from 7.0 to 6.6 
over the range z = 0.27 to r = 0.52 is attributed to a declining partial 
payment rate on open claims, as explained in Appendix G. 

Figure 13 shows the observed values of R used in fitting the model. 
The form R = o. + a,/~ fits reasonably well to these data. Least squares 
estimation gives: a,, = 1.32 and a, = 0.463. The fitted curve is shown in 
Figure 17. Figure 18 shows the fitted mean payment per claim closed 
with the factor exp (c R) included, using the estimates c’ = 0.111 and 
R = I .32 + 0.463,‘~. This should be compared to Figure 12. The fitted 
curve tends to infinity as z tends to zero, but this is unimportant because 
projection is unnecessary for z less than 0.043. Table 16 gives the fore- 
casts obtained from this model, in constant terms: the units are thousands 
of 1980 Australian dollars. 



FIGURE 16 

FITTED MODEL WITH PARTIAL PAYMENT FACTOR EXCLUDED 
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FIGURE 17 

FITTED MODEL FOR PARTIAL PAYMENT RATIO 
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FIGURE 18 

FINALFITTEDMODELFORDATA FROMTAYLOR[~] 
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TABLE 16 

Year 

1969 

1970 

1971 

1972 

1973 

1974 

1975 

1976 

(1) 
Expected 

Total 
Future 

Payments 

0 

33 

33 

97 

315 

444 

774 

1,278 

(2) (3) 
Standard Standard 

Error Deviation 

0 0 

5 66 

5 66 

16 114 

49 203 

66 238 

102 301 

147 372 

(5) 
(4) Root-Mean- 

Additional Square 
Uncertainty Error 

0 0 

0 67 

0 67 

0 115 

15 209 

14 247 

37 320 

54 404 

1977 2,550 227 491 113 553 

1978 4,650 338 627 223 747 

1979 5,041 349 645 249 775 

1980 8,494 571 814 426 1,082 

All 23,708 1,741 1,436 558 2.325 

The RMS error (Column 5) for all years combined indicates that about 
10% must be added to the best estimate (Column 1) for a reasonably safe 
reserve. This gives $26 million in 1980 terms. 

To introduce future claims inflation, the method given in [IO] has been 
applied to the triangle of the number of settlements. This indicates that the 
run-off pattern does not differ significantly across origin years, the rate of 
settlement being proportional to exp ( 1.422 x In(t) - 0.897 x r), where t is 
real development time. Operational times have been converted to ex- 
pected real development times by numerically inverting the correspond- 
ing Gamma distribution function, and future claims inflation introduced 
using the method outlined in Appendix F. The best estimate of the force 
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of inflation in the future was taken as 0.12, and the combined uncertainty 
of this estimate and the real time scale was taken to be 0.02’. The results 
are given in Table 17: 

Year 

1969 

1970 

1971 

I972 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

All 

0 

38 

38 

11s 

380 

540 

959 

1,612 

3.329 

6,275 

6,884 

12,113 

TABLE 17 

(1) (5) 
Expected (3) Additional 

Total (2) Additional (4) Uncertainty 
Future Standard Uncertainty Standard (Number of 

Payments Error (Inflation) Deviation Claims) 

0 0 0 0 

6 8 77 0 

6 8 77 0 

18 23 137 0 

59 65 250 IS 

81 8S 296 1s 

129 129 38X 3x 

193 195 494 5X 

317 343 692 12x 

486 542 934 27s 

SOS 552 976 318 

851 X66 I JO5 600 

32,283 2,539 2.8 17 2.141 74x 

(6) 
Root- 
Mean- 
Square 
Error 

0 

78 

78 

140 

265 

319 

430 

568 

844 

1.216 

1.27 1 

1 .X8 1 

4,419 

The additional uncertainty of future inflation means that the best esti- 
mate of 32,283 must be augmented by 13.7% fhr a reasonably safe re- 
serve. This gives $36.7 million. 



STCJCHASTIC CLAIMS RESERVING 319 

8. CONCLUDING REMARKS 

Origin Year Effects 

All the methods described in this paper are based on the hypothesis 
that, in real terms, the mean claim amount as a function of operational 
time is the same for all origin years. The plausibility of this hypothesis 
should be considered for each data set before proceeding to apply the 
methods. If there is a trend change in the mean claim amount over the 
origin years, for fixed operational time, the test of Appendix B should 
give a warning. However, the basic hypothesis could be violated in other 
ways. A change in the mix of claim types over origin years might cause a 
significant violation. For example, in property insurance, the proportion 
of land subsidence claims may be increased for a certain origin year 
because of hot dry weather. Since subsidence claims tend to be large, the 
mean claim amount in real terms would be higher for such an origin year. 
The approach of Appendix B can be modified to test for the presence of 
such phenomena. For example, Model 0 could be generalized by having a 
separate level parameter (PO in Appendix B) for certain origin years. Plots 
of residuals against origin year should help in deciding which origin years 
are affected. 

If the basic hypothesis is violated because of a changing mix of claim 
types across origin years, there are two possible remedies: 

1. if there are sufficient data points in each group of similar origin 
years, a separate “level parameter” for each group can be re- 
tained throughout the analysis, or 

2. if the data are available, each claim type can be analyzed sepa- 
rately. 

Frequently in practice, the only data available is of type (c) (Section 
l), so the methods of Section 7 are appropriate. These methods are partic- 
ularly valuable when the triangle does not contain data over the full range 
of operational times, so that projection is necessary. For the Berquist and 
Sherman data, the highest observed operational time is about 0.85. Figure 
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4 shows the curve for the mean payment per claim closed fitted with no 
allowance for the presence of partial payments. This should be compared 
to Curve 2 of Figure 11 which was obtained by the methods of Section 7. 
The two fitted curves are in close agreement over the mnge of the data, 
because both fit the data well. However, their projections into the range 
(0.85, I) of operational time are very different, causing a substantial ef- 
fect on the forecasts (compare the results in Table 12 to those in Table 8). 
The improvement in projections possible by considering the effect of 
partial payments does not, of course. negate the need for caution when 
projecting a fitted curve beyond the range of the data. An informal Bayes- 
ian approach is appropriate. The indications of the particular data set 
under analysis (via F-tests, etc.) should be tempered by experience of 
more fully developed triangles for similar lines of business. 

Even when the full range of operational time is covered by the data, so 
that no projection of m, is necessary, the methods of Section 7 are recom- 
mended for data of type (c). The models of Section 7 usually explain 
more of the variation in such data than the models of earlier sections. This 
is indicated by a significant estimate of the partial payment parameter c. 
Consequently, the other parameters of l?rT will bc more reliably estimated 
if allowance is made for the partial payment effect. As the observed 
values for R = L/N differ between origin years, the models of Section 7 
effectively allow a different function nr, to be fitted for each origin year. 

The similarity between projecting the partial payment ratio R and 
projecting the run-off of settlements over real development time for the 
purpose of introducing future inflation, was mentioned in Section 7. For 
future intlation, the distribution function F, of settlement delays must be 
projected. The relationship between t and f can then be approximated 
using 7 = F, . The partial payment ratio R = L/N could similarly be ap- 
proximated using R = (1 - F,)/” where ,f; is the probability density func- 
tion of the delays (fj=dFJdt). This is the reciprocal of the hazard 
function of the delay distribution. Thus, projection of R could be based on 
the same model for the run-off of settlements over real development time 
as used to introduce future inflation. This possibility has not been fully 
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explored but would probably require unusually accurate estimation of F, 
for reasonably reliable estimates of R. 

For triangles which are not well developed (such as the Berquist and 
Sherman triangle used in the examples) experience with more fully devel- 
oped triangles for similar lines of business would be very valuable in 
estimating the real time scale of the remaining run-off. The technique 
used in the example in Section 6 of estimating the “half life” by examin- 
ing the triangle of operational times is not recommended for general use. 
Although not illustrated in the examples, the projected total of payments 
remaining for each origin year could, of course, be broken down by 
development year, given a projection for the remaining run-off of settle- 
ments. 

Integrtrtion into a Conprehensi\~e Approach 

The question of how the methods proposed in this paper can be com- 
bined with results obtained by other methods and additional items of 
information can obviously not be answered definitively because every 
reserving problem is different. A few suggestions are given below. 

If reliable case estimates are available for some of the outstanding 
claims, the estimate M can be reduced by the number of claims concerned 
so that the fitted model nr, is summed over those claims for which reliable 
case estimates are not available. This involves an assumption that the 
operational times of those claims with reliable case estimates are uni- 
formly distributed over the remaining interval of operational time, and 
that the presence of a claim in this class does not depend on its size. 

Because large claims are often assessed individually, and as accurately 
as possible, the entire method could be restricted to smaller claims only. 
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APPENDIX A 

DATA USED FOR THE EXAMPLES 

The first data set consists of medical malpractice triangles taken from Berquist and Sherman [ 11. The tri- 
angle below is Y,,,/ , the total amount of all payments made in development year d for each origin year W. 
This has been calculated from Exhibit E of Berquist and Sherman. The units are thousands of dollars, not ad- 
justed for inflation. 

Year 0 

1969 125 
1970 43 
1971 295 
1972 SO 
1973 213 
1974 172 
1975 210 
1976 209 

1 

TABLE A. 1 

d 

2 3 4 5 6 7 

281 1,037 1,543 1,481 3,712 4,459 3,177 
486 1,487 1,625 3,882 6,772 4,688 
852 1,332 2,592 6,328 6,308 
736 3,024 5,961 8,747 
620 2,766 7,693 

1,415 4,680 
1,355 



The triangle below is NlcId , the number of claims closed in development year d for each origin year MI. 
2 

This has been derived from Exhibits C and E of Berquist and Sherman [I]. The final column is No, the total 
of the N,,.d for each origin year. 

TABLE A.2 
d 

Year 0 1 2 3 4 5 6 7 No 

5 
1969 311 521 349 179 161 293 261 191 2.266 

i 
x 

1970 391 52Y 271 178 303 367 240 2.279 5 
‘Z 
2 1971 418 764 236 526 487 422 2.853 ‘: 
r 

1972 311 854 523 629 621 ‘,Y38 g 
7 1973 294 1.146 691 657 2.788 Q 

1974 332 1.015 613 1.960 z 
z 197s 406 907 1.313 < 

1976 398 398 g 



Table A.3 is the number of non-zero claims reported in each development year, from Exhibits C, D, and 
E of Berquist and Sherman [I]. The final two columns are the best estimate of the ultimate number of claims, 
and its standard error. These were obtained by applying the stochastic method detailed in [lo] to the reported 
numbers triangle. 

TABLE A.3 
d - 

Year 0 1 2 3 4 5 6 7 M 1 
Y 
8 

; 
1969 1,060 612 511 383 -11 24 29 17 2,664 70 z 
1970 1,051 826 463 379 48 27 24 2,896 102 F! 
1971 1,296 1,215 627 605 116 50 4,065 148 

2 
I 

1972 1,354 1,372 790 
w 

695 249 4,771 215 a 
1973 1,382 1,446 843 994 5,280 314 K 

? 
1974 1,365 1,400 8.58 4,837 461 z 
1975 1,544 1,241 5,169 690 
1976 1,594 6,257 1,097 



The triangle below gives the mean operational times ~,,.ti calculated from the triangle I&d given in Table ; 

A.2 and the estimates M given in Table A.3 using Equation 2.1. 

TABLE A.4 

1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 

0.058 0.215 0.378 0.477 0.54 1 0.626 0.730 0.815 
0.068 0.226 0.364 0.442 0.525 0.641 0.746 
0.05 1 0.197 0.320 0.414 0.538 0.650 > 

r; 0.033 0.155 0.299 0.420 0.55 1 6 
0.027 0.164 0.338 0.466 

2 
B 

0.034 0.174 0.342 g 
0.039 0.166 E 

0.032 



Below is the triangle of average numbers of claims outstanding calculated from the triangles given in 
Tables A.2 and A.3. These figures are the L,+‘d of Section 7. 

TABLE A.5 
d 

Year 0 1 2 3 4 5 6 7 

1969 375 795 921 1,104 1,120 
1970 330 809 1,053 1,250 1,223 
1971 439 1,104 1,525 1,760 1,614 
1972 522 1,302 1,695 1,861 1,708 
1973 544 1,238 1,464 1,709 
1974 517 1,226 1,541 
1975 569 1,305 
1976 598 

900 649 446 3 
925 647 2 

is 1,242 0 =! 

!2 







Table A.8 gives the estimated ultimate number of claims, M, for each origin year, and the standard error, 
:g 

v, of this estimate. M has been taken directly from Taylor [9], and v has been calculated (for the purposes of 
the second example in Section 7) as 5% of the number not yet settled (M - No). 

TABLE A.8 
Year M 1’ 

1969 523 0 
1970 643 0 
1971 676 0 
1972 672 0 
1973 807 1 
1974 670 1 
1975 516 3 
1976 544 5 
1977 622 12 
1978 715 23 
1979 660 25 
1980 894 43 



The triangle below gives the mean operational times TMad calculated using Equation 2.1 from the data in 
Table A.8. 

TABLE A.9 
d ___. .~ ____. 

Year 0 I 2 3 4 5 6 7 8 9 10 I1 

1969 0.095 
1970 0.036 
1971 0.033 
1972 0.033 
1973 0.032 
1974 0.019 
1975 0.016 
1976 0.015 
1977 0.030 
1978 0.016 
1979 0.023 
1980 0.021 

0.337 
0.222 
0.206 
0.190 
0.136 
0.142 
0.121 
0.134 
0.141 
0.106 
0.138 

0.591 
0.517 
0.490 
0.372 
0.366 
0.407 
0.333 
0.330 
0.291 
0.264 

0.778 
0.732 
0.69 1 
0.568 
0.673 
0.665 
0.565 
0.502 
0.494 

0.894 0.949 0.976 0.988 0.994 0.997 0.999 1.000 2 
0.827 0.887 0.942 0.970 0.984 0.992 0.995 5 
0.822 0.931 0.975 0.984 0.989 0.994 5 r; 

0.807 0.935 0.965 0.973 0.984 ? 
” 

0.870 0.935 0.957 0.969 5 
0.813 0.889 

z 
0.934 E m 

0.743 0.853 2 
52 0.700 0 



The triangle in Table A. 10 gives the mean number of claims not yet settled, calculated as the difference is 

between M (from Table A.8) and the cumulative values of N,,,d (from Table A.7). These figures were used 
for LMsd in the second example of Section 7. 

---.___ .~.._. 
Year 0 1 2 3 

1969 473.5 
1970 620.0 
1971 654.0 
1972 649.5 
1973 781.0 
1974 657.5 
1975 508.0 
I976 536.0 
1977 603.5 
1978 703.5 
1979 645.0 
1980 875.0 

347.0 
500.5 
536.5 
544.0 
697.5 
575.0 
453.5 
47 1 .o 
534.0 
639.5 
569.0 

214.0 
310.5 
344.5 
422.0 
512.0 
397.0 
344.0 
364.5 
441.0 
526.5 

116.0 
172.5 
209.0 
290.5 
264.0 
224.5 
224.5 
27 1 .O 
315.0 

TABLE A. 10 
d ~- 
4 5 

55.5 26.5 
111.0 72.5 
120.5 46.5 
130.0 44.0 
105.0 52.5 
125.0 74.5 
132.5 76.0 
163.0 

6 7 8 9 10 

12.5 
37.5 
17.0 
23.5 
34.5 
44.0 

6.5 3.0 1.5 0.5 
Y 
8 

19.5 10.5 5.0 3.0 $, 
IO.5 7.5 4.0 5 ri 
18.0 10.5 ? 

25.0 
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APPENDIX B 

TESTINGMODELZERO 

This appendix is concerned with testing the hypothesis that the mean 
claim amount in real terms is a function of operational time only. This 
hypothesis underlies all the methods proposed in this paper, and should be 
checked for each data set before applying these methods. Intuitively, the 
most likely violation is that there may be a trend across the origin years in 
the mean claim amount at a certain operational time. Such a trend would 
give a different mean claim size for the earlier origin years than for the 
later origin years, for a certain operational time. This can be tested as 
follows. 

The run-off triangle is bisected into Regions A and B as shown in 
Figure 19. If P is the number of development periods per annum (for 
example, P = 4 for quarterly development) then calendar time r ’ is given 
by: 

r’=d+P.(w- 1). (B-1) 

If d runs from 0 to T - 1, then t ’ also varies from 0 to T - 1, so data for 
the last calendar period (represented by the hypotenuse of the run-off tri- 
angle) is given by T - 1 = d + P . (w - l), which is equivalent to: 

u’= 1 +(T- 1 -d)/P. 03.2) 

Note that data exists for the latest calendar period only for those d-values 
that give an integer value for W. 

The boundary between regions A and B is therefore given by: 

w=OSx( 1 +(T- 14)/P}, 

so region B is defined as those data points satisfying: 

w>OSx{ I +(T- 14)/P}. 



FIGURE 19 

Development Period d 

P 
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Model 0 of Section 2 is generalized to allow the mean claim amount 
as a function of operational time to differ between the Regions A and B. 
This less restrictive model can be expressed as: 

(B-3) 

03.4) 

where the explanatory variables Zj are the same simple functions of z used 
in Model 0. Model 0 is the special case p;’ = # for all j, and can be tested 
against the more general model using an F-test in the usual way. How- 
ever, Model 0 could appear to be unacceptable when tested in this way if 
an incorrect inflation rate has been used to preadjust the data. For this rea- 
son it is better to use unadjusted data and include an inflation parameter. 
Model 0 of Section 4 is generalized to: 

m$ = exp (i . (M* + d/P) + pf + C Pp . Zj) . (B.6) 

In the example of Section 4, Model 0 has 10 parameters (including i) 
and gives a minimized deviance of 1,961 using an index a = 1.5 in the 
variance function, The less restrictive model specified in Equations B.3 
and B.4 has 19 parameters, but only 18 can be estimated due to an 
absence of data in Region A for the last operational time band. The 
minimized deviance (using the variance function with a = 1.5) is 1,676. 
Residual plots confirm the assumption a = 1.5. As there are 36 data 
points, the model has 18 degrees of freedom, giving an estimate of 93.1 
for the scale parameter. The mean increase in the deviance per degree of 
freedom under Model 0 is (1,961-1,676)/8 = 35.6, so the F-statistic is 
35.6/93.1 = 0.38 on eight and 18 degrees of freedom. The lack of signifi- 
cance indicates that Model 0 fits the data as well as the 18-parameter 
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model, so the hypothesis that the mean m, does not vary across origin 
years for any z is verified. 
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APPENDIX C 

INTERPRETATION OF OPERATIONAL TlME MODELS FOR 

MEAN CLAIM AMOUNT 

When formulating models for the mean claim amount as a function of 
operational time, it is helpful to discover what such models imply about 
the mean claim amount as a function of real development time. This 
Appendix describes how this can be done, and illustrates the techniques 
by giving the real-time interpretation of certain special cases and general- 
izations of the models proposed in Section 2. The following notation is 
used: 

m, = mean claim amount as function of operational time z, 

ltt = mean claim amount as function of real development time t, 

M = ultimate number of claims closed, 

F, = distribution function (over individual settlements) of delay t, 

N, = cumulative number of claims closed by real development 
time t, 

C, = expected cumulative amount paid by real development time t. 

By definition of z , T and t are related by: 

T=NJM. Cl) 

Each of the M claims has probability F, of being closed by time t (by 
definition of F,), so N! is binomially distributed with parameters M and 
FI . Therefore we have: 

E(N,)=M.F, and Var(N,)=M.F,.(l-F,). (C.2) 

Hence, using Equation C. 1: 

E(2lt)=F, and Var(zIr)=F,.(l -F,)/M. (C.3) 

So, if M is reasonably large, to a good approximation we have: 
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z=F,. (C.4) 

That is, operational time is simply the distribution function of the real 
delay. 

By definition of m and p, we have: 

p, = nz, 

Using Equation C.4, this gives: 

P, = MF,) . (C.5) 

Given a functional form for m,, equation C.5 immediately gives a 
relationship between p, and F,. For example, Model I of Section 2 in the 
case p, = 0 is: 

nf, = exp $4, + Pz In(G) 

= k ,y 

Using Equation C.5, this is equivalent to: 

That is. in real time, the mean claim size is a power function of the delay 
distribution function. 

By definition, 

t 

C, = M s p, (IF, 

If M is sufficiently large, then from Equation C.4 we have, to a good ap- 
proximation, 
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CC.61 
0 

For certain functional forms IZI~, the integral on the right of Equation 
C.6 is analytically tractable and can be expressed simply in terms of m,. 
In such cases the equation can be rearranged to express the mean claim 
amount in terms of C,. 

For example, consider Model 1 or 2 of Section 2 in the case p2 = 0: 

t 

nz, = exp (PO + p, T) =$ I m, dcs = (m, - nz,,)/p, , 

0 

and, using Equation C.6, we have: 

C, = M (m, - m&P, . 

Rearranging gives: 

IA = PO + PI . C, /M. (C.7) 

As a second example, consider the generalization of Model 3 of Sec- 
tion 2: 

m, = Cl% + PI . z>” . 

It is straightforward to show that this implies: 

t 
I m, do = [n$+ ‘I” - mf + “‘“I/[$ . (6 + 1) I. 
0 

Hence, using Equation C.6 and rearranging: 

p, = [pf+ ‘) + (6 + 1) . p, . C/M]“““+ ‘). 
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Model 3 is the case 6 = 3 &, so is equivalent to the real-time relationship: 

p,= [ p:, + 3. p, C/M 1:'. 
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APPENDIX D 

PREDICTION WHEN ULTIMATE NUMBERS ARE KNOWN 

We have E(X,) = m, and Var (X,) = ‘p’ . my where: 

X, is the size of the individual claim payment (in constant money 
terms) made at operational time z, and 

nzT is a function of several parameters which can be expressed as a 
vector p. 

Sections 2 through 4 of the paper describe how the data triangles can 
be used to decide on the functional form of m,, and to estimate the 
parameters p, a, and cp. The estimation algorithm (Fisher’s scoring 
method) also gives the variance-covariance matrix V for the estimates of 
p. This Appendix describes how the fitted model can be used to predict 
totals of future claims, under the assumption that the ultimate number of 
claims M is fully known for each origin year. 

Consider a single origin year. If M is the ultimate number of claims, 
and N,, is the number to date, then there are M - N,, claims in the future. 
The operational times of these future claims are: 

z = (NC,+ 0.5)/M,(N, + 1.5)/M,..., (M-0.5)/M. (D.1) 

If R represents the total of future claims, and ~1 and o2 denote the mean 
and variance of R, respectively, then since separate claim amounts are 
mutually independent we have: 

p=xm, and 02=‘pz.~rn~, 

r r 
(D.2) 

the summation being over the values of z given at Equation D. 1. 

Hence, an estimate j? can be obtained using the fitted model: 

(D.3) 
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where A, means m, evaluated using the estimated values of p. 

This is the “best estimate” of R given in Columns 1 of the example 
result tables in Sections 3 through 7. 

Now consider the mean-square-error of the estimate for a single origin 
year given by Equation D.3: 

E(R - $)’ = E[(R - kt) + (kt - 6) I’ 

= E(R - kt)’ + E(;i - cc)’ - 2 E(R - j.t) (fi - /L) . 03.4) 

The last term of Equation D.4 is zero because R and b are stochastically 
independentAThe randomness in R comes from future claims, and the ran- 
domness in p comes from past claims. 

The first term of Equation D.4 is simply (3’ and can be estimated by 
using the estimated parameters in the expression at Equation D.2. This 
gives the quantity in the standard deviation columns of the examples. 

For the middle term of equation D.4, note that p is a known function 
of the parameters p. See Equation D.2. Using a first order Taylor series, 
we have: 

where 6 is the vector of first derivatives of p with respect to the j3s. 

Hence : 

Taking expected values, 

E(;i - p)’ zz #. V .& 

where V is the variance-covariance matrix of the estimates i. 

(D.5) 

The vector of derivatives 6 can be calculated from Equation D.2: 
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6; = dp/dp; = C dm,/dpi . 

343 

03.6) 

Each term dm,/df& can be evaluated using the estimated p-values. 

The standard error for a single origin year is given by the square root 
of the estimated right-hand side of Equation D.4: 

(b2+:T. V4) . 

This is the quantity given in the RMS columns of Tables 4 and 6. The 
standard error columns of these tables are from: 

Now consider the prediction of total future payments for all origin 
years combined. The best estimate is obtained simply by summing the 
estimates given by Equation D.3 for each origin year. The mean-square- 
error of this estimate cannot be obtained so simply. The estimate of 
CF’ (given by using the estimated parameters in Equation D.2) can be 
summed over all origin years, because all future claims are mutually 
independent. However, the “estimation error” component (given by Equa- 
tion D.5 for a single origin year) cannot be summed over all origin years, 
because the same estimates B are used in equation D.3 for each origin 
year, so the estimates are not mutually independent. 

Corresponding to the middle term of Equation D.4, we need to evalu- 
ate E[ (Cl) - (Cp) I’, where the summation is over all origin years. 

An analysis similar to that in Equation D.5 shows that: 

E[ ($)-(Z~)]‘=-DTWD, (D.7) 

where V is the variance-covariance matrix of the estimates p, and ZI is the 
vector of first derivatives of Zp with respect to the 0s. That is, 



344 STOCHASTIC CI.AlMS RESt!RL’IN(; 

where, again. summation is over all origin years. 

The figure for the total over all origin years, in the second columns of 
the examples, is the square root of the right-hand side of Equation D.7. 

If the number of outstanding claims A4 -N,, is large for some origin 
years, the amount of computation involved in evaluating Equations D.2, 
D.3, and D.6 may be substantial. However, when A4 is large the variation 
in the summands from one point in operational time to the next is usually 
so small that the sums can be well approximated by integrals. That is, 
Equation D.2 can be replaced by: 

(D.8) 

If the form of m, is such that either or both of these definite integrals 
are analytically tractable, the burden of computation can be substantially 
reduced. If the first of these is tractable, the 6; can easily be obtained from 
the first part of Equation D.6: 

6, = clCl/tl pi, 

after finding p as a function of j3 by analytic integration. 

Otherwise, the integration corresponding to the second part of Equa- 
tion D.6 may be tractable for some i : 

Note that for models m, with a log link function, the partial derivatives 
required for calculating the 6, have a particularly simple form: 

m, = exp (x, . b) => dm,/d pi = .\-Ti m, . 



STOCHASTIC CLAIMS RESERVING 345 

APPENDIX E 

PREDICTION WHEN ULTIMATE NUMBERS ARE UNCERTAIN 

Appendix D deals with the distributions of future claim totals condi- 
tional on the ultimate number of claims M. These conditional distribu- 
tions are relevant for forecasting when M is known. In practice, M is 
rarely fully known. This appendix shows how uncertainty in M can be 
allowed for in forecasting. Briefly, the problem is that uncertainty in M 
for a particular origin year implies uncertainty in the operational times of 
future claims, given at Equation D.1. The uncertainty affects both the 
number of future values of z and the values themselves. 

Replacing the summation in Equation D.2 by integration (as suggested 
in Appendix D), and making the conditioning on M explicit, we have: 

(E.1) 
T/O 

and 

Var (R IM)= (p2 .M. n$ dz, (E.2) 

to 

where the integration is from the present operational time T,, (= N,JM) to 
1. 

It is shown below that both these functions are sufficiently near linear 
in M (compared to the magnitude of the uncertainty in M) to ensure that 
good approximations of their expected values are given by replacing M 
by its expected value. That is, 

E(E(R I M)) = E(R I M = E(M)), (E.3) 

and 
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E(Var (R I M)) = Var(R I M = E(M)). 

In this appendix. p and c? arc used to dcnotc the unconditional mean 
and variance of the total R of‘ future claims for an origin year. Thus. 

p = E(R) = E(E(R I M)) = E( R I M = E(M)) (E.4) 

using Equation E.3, and 

(T’ = Var(R) = E(Var(R I M)) + Var(E(R I M)) 

=Var(RIM=E(M) )+Var(E(RIM)). (E.5) 

Equation E.4 implies that the best cstimatc of R is given by evaluating 
the right-hand side of Equation E. 1 using the estimate fi = E(M) in place 
of M. Similarly, the first term 011 the right of Equation E.5 is simply the 
right-hand side of Equation E.2 cvaluatctl using the estimate h = E(M). 
Thus, the estimates of the unconditional p and (5’ arc exactly the same as 
the estimates of the conditional p and 0’ given in Appendix D, except for 
the addition of the second term on the right of Equation E.5. Equation D.4 
remains valid, and as the estimate $ is unchanged, the middle term of 
Equation D.4 (the estimation error) can be evaluated exactlj as described 
in Appendix D. Therefore, the only change newwary to the mean-square- 
error given in Appendix D is the addition ot’ the xecond term on the right 
of Equation E.S. 

Using the usual approximation derived from a first order Taylor series: 

Var(E(R I M)) = jdE(R I Mb’rIM)’ V:\r(iZ/I). 

From Equation E. 1 

dE(R 

But. 
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I 

d/dM s m, clz = -m,, dz,,/dM = m,, q/M , 

?I 

where 

m. = m, evaluated at z = r(,, , 

and 

m, dz = E(R I M)/M. 

3) 

Hence, 

d E(R I M) E(R I M) 
dM - M + m. to . 

Using the estimate b = E(M) to evaluate the first term gives: 

d E(R I M) 
dM 

= (i/b + m,, . 2,) . (E.6) 

The accuracy of this approximation is demonstrated in the example of 
Section 5. 

The approximations quoted at Equation E.3 are derived in this section. 
For any analytic function h(M), a second order Taylor series about E(M) 
gives: 

E(h(M)) = h(E(M)) + t/2 h N (E(M)) Var (M), 

so 

EMW) = W(M)) (E.7) 

if t/z. I h ” (E(M) ) I . Var (E(M)) <:< h(E(M)). 
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In the remainder of this section, E(M) is shortened to h. because the 
best estimate of M is its prior expected value. 

It is straight-forward to show that if: 

h(M)= M g(z) A. (E.8) 

where ,q is any analytic function, then: 

h "M = -(N'/M') ,q '(N/M). 

Also, if ,e is increasing, 

h(M)>(M-N)>g(N/'M), (E.9) 

so for functions h(M) of the form in Equation E.8 with *q increasing. a suf- 
ficient condition for Equation E.7 is: 

‘/I (N’/h3) s’ (N/i) .Var(M) << (L-N) ,s(N/b). 

Writingf(z) for In(,q(z)) so thatf“ (t) = ,v’ (z)/,r(z), and assuming s(r) > 0, 
this becomes: 

f’(N/i) << 2 2 A (M-N)/(N'. Var (M)). 

Writing t for N/M and R for the coefficient of variation of 
M (Q’ = Var(M)/&) this becomes: 

f’(r) << 2 (I - r)/(Q r)? (E.lO) 

The functions in Equations E.1 and E.2 arc of the form given in 
Equation E.8 with <y(r) positive and increasing. In terms off(r) = In(,q(z)), 
the mean (Equation E.l) is the case: .f(r) = In(nl,), and the variance (Equa- 
tion E.2) is the case: ,f(t) = 2 In(cp) + a In(nr,). 

Therefore, using Equation E.10. a sufficient condition for Equation 
E.3 is: 
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a dln(m,)/dT << 2 . (1 - z)/(Q . T)’ . (E. I I) 

This is invariably satisfied by fitted models m, . This appendix 
demonstrates this for the example of Section 5. 

Although the fitted model nl, of Section 5 is not strictly increasing 
(because of partial payments), it is mostly increasing and the inequality in 
Equation E.9 remains true for most z. The fitted model has a = 1.5, and 

In(m,) = -3.7 1 + 17.8 . z - 12.5 . z2 - 0.80 . In(s) . 

Therefore, 

dln(m,)/dT = 17.8 - 25 . z - 0.8/T . 

Table E. 1 gives both sides of Equation E. I 1 evaluated for each origin 
year using figures z = TV, and R = 1IVar(M)/M from Table 7. 

TABLE E. 1 

Year ?, 

1969 0.85 

1970 0.79 

1971 0.70 

1972 0.62 

1973 0.53 

1974 0.41 

1975 0.25 

1976 0.06 

R 

0.026 

0.035 

0.036 

0.045 

0.060 

0.095 

0.134 

0.175 

LHS RHS 

-6.6 614 

-4.4 549 

-1.3 945 

1.5 976 

4.6 930 

8.4 778 

12.5 1,337 

4.5 17,052 

These figures indicate that, for this example, the exclusion of non-lin- 
ear terms at Equations E.4 and ES leads to an error of no more than about 
I% in the mean and variance of total future payments for each origin 
year. The near-linearity of E(R I M) is demonstrated more directly in Sec- 
tion 5. 
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APPENDIX F 

From Appendix D. the cxpcctcd constant-price total of future claims 
for a single origin year is given by: 

fi = c ,:I,. (F.1) 

where A, is the fitted mean claim amount in constant terms. and summa- 
tion is over the operational times t of all cxpcctcd future claims (given in 
Equation D. I ). 

If r represents the real calendar time corr-caponding to operational time 
5 (with the convention t = 0 when r = z,,), and if the force of future claims 
inflation is i. the current price total is obviously given by: 

$ = c cxp (i I) -;:I, (F.2) 

To evaluate the current price prediction fi’ from equation F.2. the 
relationship between t and r is needed. This can bc approximated using a 
continuous curve. A typical shape is shown in Figure 20. The shape can 
usually be well approximated using an exponential distribution function, 
although a Gamma distribution function is sometimes necessary for later 
origin years. There is usually uncertainty about the real time scale. 

Thus, we have z = F(cp’ t) for some known function F. The uncer- 
tainty in the real time scale is represented by the random variable cp’. 

Rearranging: 

!=q.H(r). (F.3) 

where H is the inverse of F, and cp = l/q’. A following section will de- 
scribe how the function H can be found in cases where the run-off of set- 
tlements is approximately exponential. 



FIGURE 20 

TYPICALTAILRELATIONSHIPBETWEENOPERATIONALTIMEANDREALDEVELOPMENTTIME 

0 --- 
Real Development Time (2) 
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Substituting from Equation F.3 into Equation F.2. and writing 8 for 
i. cp gives: 

fi ’ = c exp (0 H(t) ) I?!, . (F-4) 

In general, there is uncertainty in bolh the rate of future claims intla- 
tion and the real time scale. so both i and cp are random variables. The 
expected values are denoted ?and $, and the variances (representing the 
uncertainty) are denoted Uj and U, . respcctivcly. Since 8 is the product 
of these two random variables. its mean is given by 6= ?. 6 and its 
variance by: 

U, = U, U, + f2 ii, + G2 U, . (F.5) 

It is always possible to have $ = 1 by scaling the function H (Equation 
F.3). When this is done, we have 8 = ? Equations F.4 and ES become: 

fi ’ = C exp (P. II(T)) ;I,. (F.6) 

and 

Ue = U, . U, + f’ (J, + U, . 

Writing A, for the inflation factor exp (f. H(z)). we have: 

$=-&r:,;. 

(F.7) 

(F.8) 

Current price predictions can be calculated using the methods de- 
scribed in Appendices D and E with the following changes: 

I. The estimate of the total of future payments is given by Equation 
F.8 instead of Equation D.3. 

2. The “future process variance” (given in the standard deviation 
columns in the examples) is not given by Equation D.2, but by: 
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if the model was fitted using inflation adjusted data (as in Sec- 
tions 2 and 3), or: 

if the model was fitted using unadjusted data (as in Section 4). 

3. In calculating the estimation error as described in Appendix D, 
the variance-covariance matrix V of the estimated P-parameters 
is extended to: 

u, 0 . . . 0 
0 
. v 

0 

and the vector 6 is extended to have a first component S,, given 
by: 

S,, = dp ‘/cl; = c H(z) A, . m,. (F. 10) 

The effect of this is simply to augment the mean-square-error by an 
amount: 

(dp ‘/d$ . u(j . (F.11) 

Note that E(R ’ I i) and Var (R ’ I i) are not nearly linear in i, (where R’ 
is the total of future claims for an origin year in current prices). There- 
fore, using the best estimate i in these functions, as done in Equations F.8 
and F.9, will not give such good approximations to the unconditional 
mean and variance as in the case of M (Equations E.4 and ES). Also, it 
may be noted that the additional element of variance was regarded as part 



of the “future process variance” & in Equation E.5. whereas it is regarded 
here as an element of the “estimation error.” Tttih is unimportant, but it 
seems more natural to regard Var (E(R’ I i)) as chtimation error because in 
cases where We has a log link-function (such as Models I and 9 of Scc- 
tions 3 and 3). i is exactly like one of the P-parameters of‘ the model !N~ . 

The exponential model for the run-oft‘ ot’ the remaining ( I - q,) M 
claim settlements over real development tirnc is: 

F(t) - 1 - (I - To) exp (-f/(J) . (F.12) 

where 

p In(Z) = expected time for half 
the remaining claims to bc closed. (F. 13) 

Inverting this gives: 

t = -0 In[ ( 1 - t)i( I - z,,) ] 

Comparing with Equation F.3. in order to have 6 = 1. M’C must have: 

H(T) =-(I In[I - T)/( 1 - T,,) I. (F. 14) 

where 
the esti!ite fi 

IS the best estimate given by Equation F.13. The uncertainty in 
obtained from Equation F. 13 can bc used to give a value 

for the variance U, of cp. A numerical example ih given in Section 6. 
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APPENDIX G 

MODELS FOR PARTIAL PAYMENTS 

35s 

Each figure from the claim amounts triangle has two components: 

Yd = Y‘/ I + Yd 1 ’ 

where 

Y,, , = total of settlement payments, and 

Y,, 2 = total of partial payments on claims not yet closed. 

In this appendix, the second subscript is used to distinguish between 
these two components. The origin year subscript M’ is dropped to simplify 
the presentation. Thus: 

N,, , = number of claims closed, and 

N,, 2 = number of partial payments, in development period cl. 

This appendix is concerned with the distribution of Y,, , and Y,,, condi- 
tional on N,, , . This is relevant for the modelling of Y,, when N,, , is 
known. 

nr, = expected size of settlement payment at operational time z, and 

cp = coefficient of variation of settlement payments 
(assumed the same for all z), 

then: 

Wd 1) = NC/ I .m, and Var(Y,,,)=N,,, .q’.rr~f, (G.1) 

where z is the “mean” operational time of development period d. 
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It is assumed that: 

l the expected size of a non-zero partial payment = r 111, (for some 
constant I-, the same for all ~1. and 

l the coefficient of variation of non-zero partial payments = cp (the 
same as for settlement payments). 

It is assumed that each open claim gcncrates partial payments accord- 
ing to a Poisson process with parameter 1) (/-I is the expected number of 
partial payments per year of delay until the claim is closed). Therefore, if 
L,, represents the mean number of claims outstanding at the end of devel- 
opment period tl. the number of prepayments NdJ is Poisson distributed 
with parameters L,, ‘1’. Initially it is assumed that l-7 is constant for all M’ 
and ~1. that is, the partial payment Poisson process is homogeneous over 
real development time and the rate is the same for all claims. Alternatives 
are considered shortly. 

Under the above assumptions, Y,,, has a compound Poisson distribu- 
tion. Using standard results from risk theory. 

E( Y,, 2) = p I- L,, tt~, . 

and 

Var(Y,,,)=(l +cp’)./‘,r’.L,,.$. cc.21 

Cotditionul Distt-ihutim c~f‘Puytwttt PO. C’luittr C’lost~cl 

Conditional on N,, , and L,,, Y,, , and Y t/Z are mutually independent, so 
the variance (as well as the mean) is additive. Adding Equations (3.1 and 
G.2 gives: 

Et Yc/) = N,, , [ 1 + C’ K,,] tn, . 

an d 

Var (Y,,) = N, , [q? + (1 + @) I- (’ K,,I tnz , 
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where: 

The payment per claim closed, S,, = Y/N,, , therefore has: 

E(S,)=[l+(‘.R,].nz,, 

and 

(G.3) 

Var(.S,,)=$.[l +(I +l/(p2).r.~..Rd].m:/Nd,, 

If c . R,, < 1 (as is usually the case) then we have: 

E(S,) = exp (C . R,,) . m, . (G.4a) 

If (I + I/q?) ’ I- = 1 (this seems plausible; e.g., cp = 1, I- = 0.5), then we 
have: 

Var (S,,) = (p2 exp (c R,,) . &Nd, 

= (P2 . E(&)‘/[exp (C . RJ .Nd I]. (G.4b) 

Equations G.4 can be used to estimate the parameter c by Fisher’s 
scoring method in the case of a log-link model for m,. 

Equation G.4b for the variance of S is more approximate than the 
expression for the mean. This is acceptable because the variance is only 
of secondary importance. Its role is to determine the weights in fitting the 
model for the mean. The expression for the variance can be checked 
empirically via residual plots. The approximation (1 + I/$) . I- = 1 can 
be monitored by plotting standardized residuals against R,. Fanning out 
indicates that ( 1 + l/(p2). r z 1. 

If c is known, the data S can be preadjusted to remove the partial 
payment effect: 

S& = S,,/exp (C . R,) . 

We then have: 



an d 

E(S,,‘) = ttjT = mean siLe ol‘~ttlcment payments. 

Var (S,,‘) = ‘P’ n$[cxp (c’ K,,) N,, ,]. ((3.5) 

If C’ = 0 (i.e.. 1, = 0 or r = 0; no non-zero partial paymcntx). Equations 
G.3 and G.4 reduce to Equations 2.2 and 2.3. 

In previous paragraphs it was assumed that until a claim is closed, it 
yields partial payments at a constant rate 17 per development year. This 
implies that the total number of partial payments (and hence the total 
claim amount) depends on the real time scale. An obvious generalization 
is to allow the partial payment rate to be a function of d. say I)(,. Intu- 
itively, one might expect the rate to decrease with d: for example, 
/>11 = k/d (’ or p,, = L- exp(-a d). The l’ornl of‘ Equation G.4 is unchanged 
ifp,, is not constant. For example, I>,, = k/cl (’ gives the same equations but 
with c = k . r and R,, = L,J(d * N,, ,). However. for any function /I(, , the 
expected total number of partial payments. and hence the expected 
amount of each claim, will depend on the real time scale. 

Earlier portions of this appendix have all been concerned with the 
partial payment rate over real development time. An alternative is to 
consider the partial payment rate over operational time (defined in terms 
of the number of claims closed). The simplest model of this type (analo- 
gous to the constant p,, model presented earlier) is that the partial payment 
rate over operational time is constant. That is, each claim outstanding at 
operational time t has a fixed probability of yielding a partial payment in 
the next increment of operational time, the probability not depending on 
5. In terms of the partial payment rate over real devclopmcnt time this can 
be expressed as I>,, = k I N, ,/M. for some constant X (because N,, ,/M is 
the increase in operational time). This implies that the expected number 
of partial payments on a claim is proportional to the operational time of 
settlement of the claim, and does not depend on the real time scale. (This 
is invariance in Taylor’s sense; see 191). 
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Using this expression for I),, in the development leads to equations of 
the same form as Equation G.4 but with (’ = k I- and R,, = L/M instead 
of R,, = L/N,, , . 

If the ratio of the number of claims outstanding (i.e., reported but not 
closed) to the total number not yet closed is approximately constant, then 
we have L,,/M = rt (1 - t), where n is a constant. In such a case we have 

E(S,,) = exp (c x (1 - z)) m, , (G.6a) 

an d 

Var (S,) = ‘p’ E(S,,)‘/[exp (c n: . (1 - 2)) . N,, , ] , (G.6b) 

where (’ = k . r. Note that the factor exp (r. . 7~ (1 - z)) decreases mono- 
tonically as z increases from zero to one. Thus, although the mean settle- 
ment payment ~II, will usually increase, the mean payment per claim 
closed may decrease for some values of 2. As operational time pro- 
gresses, the number of claims which may contribute partial payments to 
the payment per claim closed decreases, so E(S,) may decrease. 

Throughout this appendix, E(S,,) denotes the expected value of S,, 
conditional on N,, , . The absence of any dependence on N,, , in Equation 
G.6a implies that the Cov(S,,, N,, ,) = 0, so the negative association be- 
tween S and N, described in Section 7 does not exist under the assump- 
tions presented earlier. However, this is not usually plausible for the 
reasons given in Section 7. Empirical studies have confirmed the exis- 
tence of a negative association between S and N, (for example, Taylor [8], 
Section 6). 

In previous paragraphs, the notation p(/ has been used for the rate (in 
real time) at which partial payments are made on each claim outstanding 
in development period d. Similarly, 17~ will be used to denote the rate (in 
operational time) at which partial payments are made on each claim out- 
standing in the development period corresponding to operational time z. 
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Thus. 

p/M = expected number of partial payments per l/M increase 
in operational time (per outstanding claim). 

Therefore: 

P,I = N,, I MM. 

Previous sections have considered the cases: 

p,) = constant (above, in this appendix), 

1~~ = constant, that is, p,/ = X N,, ,/‘A4 

In the real world, the truth probably lies somewhere between these 
two extremes. The arguments of Section 7 suggest that /I~, increases with 
the number of settlements N,, I but not proportionately. In other words, p,, 
increases but />r decreases as N,, , increases. 

This can be modelled using I)(~ = p,, + k N,, ,/M, for some constants p. 
and A. This implies that /J,~ decreases from some value of tl onwards, as 
suggested earlier. By varying the ratio of I?,, to k, any situation between 
the extremes of p(, constant and />r constant can be attained. Repeating the 
development and using this expression for p,, leads to: 

E(S,,) = exp (c,, L/N,, l + (‘, L/M) m, , 

and 

Var (S,,) = $ E(S,,)‘/[exp (l.,, .L,,/N,, , + c, L,JM) N,, I ] , (G.7) 

where c,, = [j. I and c, = k . I. 

If the ratio of the number of claims outstanding IO the total number not 
yet closed is approximately constant at rt. then we have 
L,,/M = x (I - r). If ln(m,) includes a constant term and a term linear in 
z (for example Models 1 and 2 of Section 2). the factor exp (c, L/M) 
can therefore be subsumed into ni, and we have: 
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E(SJ = exp ((a,, . L/N,, , ) m, , G.8) 

which is the form obtained in Equations G.4a and G.4b under the assump- 
tion, p,/, constant. The only difference is that in Equation G.4a, m, is the 
mean settlement payment, so would normally be a monotonic increasing 
function of z, whereas, here, with pd not necessarily constant, nt, includes 
the factor exp (c, . n . (1 - z)) of the partial payment effect, and is not 
necessarily monotonic increasing. 

Since I’, is not estimated (it is confounded with other parameters of 
m,), the factor exp (c, LJM) cannot easily be included in the denomina- 
tor of Var (S,). Since C, is probably small, it seems reasonable to omit this 
factor from the prior weights in fitting the model. Residual plots will 
indicate if this is unreasonable. 
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DISCUSSION OF PAPER PUBLISHED IN VOLUME LXXVII 

REINSURER RISK LOADS FROM 
MARGINAL SURPLUS REQUIREMENTS 

RODNEY KREPS 

DISCUSSION BY DANIEL F. GOGOL 

I would like to thank Jim Higgins and Tony I;d’rote t’or their suggestions on 
this discussion. 

1. INTRODL~~‘TION 

Rodney Kreps’s paper contains some useful formulae, and the central 
idea is an important one. That idea is to determine risk loads by estimat- 
ing the additional surplus that is required to write an additional contract, 
and then requiring premium such that the return on additional surplus 
equals some rate selected by management. The amount of additional sur- 
plus is such that writing the contract does not change the probability that 
the losses from the book of business will cause surplus to fall below zero 
within the year. The required additional surplus is estimated using the 
formula 

Var(L, + L,) = Var(L,) + Var(L,) + 2Cov(L,. LZ) , (1.1) 

where L, is a random variable equal to the ultimate losses from the con- 
tract, and L, is a random variable equal to the ultimate losses from the rest 
of the book of business for the next accident year. 

I believe this approach could be useful. but it would require some 
modifications. 

2. MARGINAl. SLIRPLUS 

If risk loads are estimated based on a required yield on marginal 
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expected value lower than the required yield. An example may be the best 
way to point this out. 

Suppose that a reinsurance company with surplus S has 1,000 con- 
tracts on its books, each with standard deviation of losses (3. If the losses 
from each contract are independent, then the standard deviation of the 
total losses is GO. Suppose a new contract, independent of the others 
and with standard deviation (3, is added to the books. The standard devia- 
tion of total losses becomes Go. Therefore, if I’ (in Kreps’s terminol- 
ogy) and the desired yield on marginal surplus are small, the marginal 
surplus is approximately ((G- G)/G)S, i.e., about 
( I /2,000)X 

So, if Kreps’s method is applied to each of the other 1,000 contracts as 
they are renewed, the sum of the marginal surplus amounts for each will 
equal approximately half the total surplus and the required yield on mar- 
ginal surplus will be approximately twice the yield on total surplus. 

The “marginal surplus required” as defined in Kreps’s paper is related 
to the increase in the standard deviation of the book of business caused by 
the additional contract. However, if all the contracts in the book of busi- 

ness were ordered from first to n ‘h,then~(a,,n-(s,,I-,)=o,,,~, where 
k= I 

CJ~,; is the standard deviation of the set of the first i contracts. Kreps’s 
method, however, estimates the effect on the standard deviation of each 
contract as if it were added at the end of the list, when the marginal effect 
is less. 

If Ck is the kth contract in the above type of ordering and A,o is the 
increase in the total standard deviation caused by the addition of the kth 
contract, then (3L 2 Ako 2 0; where crk is the standard deviation of the kth 
contract and 0: is the effect of the kth contract if it is added at the end of 
the list, as in Kreps’s method. Therefore, there is some W such that, if n is 
the total number of contracts, 

,1 c (Wok + (1 - W’)a~ ) = total standard deviation of the book. (2.1) 
k= I 
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If the contribution of the k”’ contract to the total standard deviation of 
the book is estimated as Wo, + (1 - W)O: , then the sum of the individual 
estimates equals the total standard deviation. as it should, and each esti- 
mate uses the same weighting. 

.7. VARIANCE OF l.OSS RESERVE 

A portion of surplus is needed to support the variance of the loss 
reserve, and, therefore, some amount may be required for many years to 
support a new contract. This affects the yield rate. but the paper’s discus- 
sion of the yield rate on surplus does not address this complication. The 
method of allocating surplus to contracts based on their effect on total 
standard deviation could be used for allocating surplus to the various 
subdivisions of the loss reserves, as well as to contracts. The effect of the 
standard deviation of the run-off of reserves one year later on the total 
standard deviation of surplus could be used together with a method for 
contracts which will be suggested below. 

4. DISCOlJNTlh’G OF LOSSI’S 

For simplicity, the expected return is defined in the paper as premium 
less losses and expenses; but in practice, some decision has to be made on 
discounting losses to correctly reflect economic values in the risk loads. 
The yield rate on surplus in the paper is based on undiscounted losses 
without reflecting the time value of money. 

5. SlIMiESTED METHOD FOR SELEC’T‘lN~i RISK LOADS 

The two problems mentioned above, i.e., the need for discounted 
losses and the need for surplus to support loss reserves. can be dealt with 
simultaneously. 

Butsic [l] explains the need to discount loss reserves at a rate lower 
than the risk-free rate. In this way. when the value of the liabilities is 
invested at the risk-free rate, there is an expected profit and thus a reward 
for risk. Myers and Cohn [2] use the Capital Asset Pricing Model 
(CAPM) to compute this discount rate. 
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The term “the value of the loss reserve” means that the value is dis- 
counted at the above rate. For contract i, let the random variable X, be the 
present value at the risk-free rate, on the effective date of the contract, of 
the losses to be paid in the next year plus the value of the loss reserve at 
the end of the year. Let (J; be the standard deviation of Xi . Surplus could 
be allocated to each contract i by using Kreps’s method with the above 
formula WO, + (1 - W’)o,! used in place of of . 

The risk load which must be added to E(XJ to provide the required 
yield on surplus may then be determined. After the end of the year, the 
required yield on the portion of surplus allocated to the loss reserves of 
the contract is provided for by the rate at which loss reserves are dis- 
counted, as mentioned above. Also, a portion of surplus should be allo- 
cated to assets as well as loss reserves in order to reflect the fact that they 
are not risk-free. In addition, when surplus is allocated to contracts, loss 
reserves, and assets, the effect of each on the total risk of the company is 
considered. Therefore, the covariance between a contract’s risk and the 
entire remainder of the insurer’s risk must be considered in formula ( I. 1). 

Kreps’s approach is only a way of relating the required return on a 
new contract to its effect on total standard deviation. There is no consider- 
ation of systematic versus unsystematic risk (in the terminology of mod- 
ern financial theory). The author states that market pricing is consistent 
with his approach, but financial theorists generally believe that the covari- 
ante of stock market returns and the rate of return on surplus must be 
considered in explaining market pricing. (See Myers and Cohn [2] and 
Cummins [3].) 

The necessary risk load for a high layer may be much different for a 
small company than for a larger company, using Kreps’s method. The 
larger company is able to diversify away much of the risk. If a company 
insures a high layer that it is going to reinsure, it would be reasonable for 
it to charge for that layer based on the actual cost of reinsurance rather 
than to apply Kreps’s method to the gross losses. 
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THE COMPETITIVE MARKET EQUILIBRIUM RISK LOAD 
FORMULA FOR INCREASED LIMITS RATEMAKING 

GLENN G. MEYERS 

DISCUSSION BY IRA ROBBIN 

1. INTRODUCTION 

Glenn Meyers has made a valuable contribution to actuarial literature 
with his well-written paper on how to load increased limits factors (ILFs) 
for risk. Given the complexity of the topic, he deserves special commen- 
dation for his coherent presentation. Meyers clearly states his fundamen- 
tal assumptions and provides sufficient background for the reader to 
understand his results in context. His skill in composing mathematical 
derivations is also noteworthy. As to substance, Meyers uses the intu- 
itively appealing market paradigm as the foundation for his risk load 
theory. This represents a conceptual step forward. Unfortunately, Meyers 
does not carry the theory far enough, and, in my opinion, ends up with an 
incorrect answer. 

2. WHAT IS RISK LOAD? 

Before explaining why his answer is wrong, it is necessary to set the 
stage by first defining risk load. What is risk load? I would define it as an 
extra component of indicated premium arising from the potential for pos- 
sible deviations between expected and actual loss results. The indicated 
premium for a coverage is the sum of the expected loss cost, expense 
provisions, and usual profit load, plus the risk load. 

Why is risk load needed? The most general answer is that the price for 
insurance coverage ought to somehow depend on the volatility of the 
actual losses covered by the insurance. In the pricing of assets, such as 
bonds, it is well accepted that the interest rate demanded by the market 
rises with the riskiness of the asset. With respect to increased limits, risk 
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load is important because increasing the limit of coverage changes the 
relative volatility of actual results versus initial expectations. 

3. OVERALL LEVEL VERSLIS RELATIVITY BY LIMIT OR LINE 

When considering risk loads for increased limits. it is useful to split 
the question into two parts by asking first, “What is the proper overall 
level of risk load?” and, second, “How should the risk load vary by limit 
and by line of coverage?” While I have some question about whether 
Meyers developed a logically consistent theory for setting an appropriate 
overall level of risk load, my major criticism is that his model produces 
risk loads that can rise too steeply by limit. 

4. PROCESS AND PARAMETER RISti 

Before detailing this criticism, I should note my agreement with much 
of what Meyers has done. In particular, I concur with Meyers that risk 
loads should reflect not only the stochastic variability of actual results 
versus expectation (process risk), but also the uncertainty about the loss 
expectation itself (parameter risk). This is generally accepted in principle 
by most actuaries knowledgeable in the subject. I also accept the collec- 
tive risk model Meyers employed to incorporate parameter risk (see Sec- 
tion 4 of his paper). While I might want to quibble with the specific 
techniques Meyers used for quantifying parameter risk, I will not do so in 
this discussion. 

5. MARKET EQUlLlBRlUM THEORY AS A FOl NDATION FOK RISK LOAD 

I agree with Meyers that market-based theory can provide a sensible 
foundation for risk load calculations. The basic idea in using a market- 
based theory is to apply the “supply-versus-demand” concept of general 
economics to the pricing of risk. A key advantage of this approach is that 
it explains the need for risk loads in ILFs using fundamental economic 
principles. I also believe it provides a basis for conceptually defining 
what risk loads should be included in ILFs filed by a rating bureau. Under 
my view, risk loads filed by a rating bureau should be those that would be 
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theoretically charged by a rational market in equilibrium. Actual risk 
loads charged in the real market could, of course, be different since the 
market may be irrational or in disequilibrium. However, by relying on a 
theoretical market, one should obtain bureau risk loads that are sound 
benchmarks unaffected by market cycles or imperfections. Individual 
companies can then deviate up or down as they deem appropriate. 

The theoretical market approach is not universally accepted as the 
logical foundation for a theory of risk load. Some, for instance, have 
insisted on determining what the risk load should really be and not what 
some hypothetical market says it should be. While this “just give me the 
real risk load” attitude sounds direct and practical, it leads nowhere. The 
problem is that there is no inherent notion of how to properly price for 
risk, either before or after the fact. In contrast, the right price for losses is 
an amount sufficient, on average, to cover the actual losses. After the fact, 
we know the actual loss costs and what we should have charged for 
losses. However, we have no actual “risk” costs to tell us what the charge 
for risk should have been. If there is a difference between expected and 
actual losses, we have evidence of volatility and thus proof that some risk 
load should have been charged. Nonetheless, this evidence alone does not 
tell us how to measure volatility, nor how to translate volatility, however 
measured, into a charge for risk. 

6. UTILITY THEORY 

Utility theory has been used as a conceptual framework for pricing 
risk. Under utility theory, the minimum premium an insurer is willing to 
accept is the lowest one for which the insurer’s expected utility will not 
suffer if it provides the coverage. This means that the utility of initial 
wealth is the same as the expectation of utility of final wealth, where final 
wealth equals initial wealth plus premium less expenses and actual losses. 
A key point is that the resulting risk load is, to first approximation, pro- 
portional to the variance of losses. 

I agree with Meyers that a “single insurer, single insured” implementa- 
tion of utility theory is too simplistic. It produces risk loads an insurer 
might want to charge if there were no other insurers competing for the 



business and if there were no reinsurance market. With only one insurer 
in the model, there is no market and therefore no room for the forces of 
supply and demand to operate. 

7. THE MEYERS RISK LOAD TtlEORY 

In the Meyers model, there are many insurers and many insureds. So 
far, so good. Each insurer sets a constraint on the variance of losses it will 
tolerate on its individual book of business, and seeks to achieve the maxi- 
mum profit subject to that constraint. The insureds are assumed to have 
an inelastic demand for insurance coverage by limit. For example, half 
the market may demand coverage at a $1 million limit and will pay the 
going rate to obtain it. The insurers then “bid” on the risks. Under the 
given assumption, and a further hypothesis about the total needed risk 
load over all lines and limits, the market in each subline and limit will be 
cleared at an optimal price. With some elegant mathematics. Meyers 
shows that the market clearing price can be viewed as the price that 
would have been charged by an average insurer acting alone. This result 
is shown in his Equation 5.6. Thus. Meyers effectively ends up with a 
variance-based risk load, and his theory co~11d be regarded as another 
argument for variance. The central question. then. is whether his argu- 
ment undercuts the serious criticisms made against variance-based risk 
loads. 

8. THE “I’NITS DON’T 21.41(‘11” ORJk(‘l IOU ‘I‘0 

VARIANCE-BASED KISK I.OAI)S 

Before presenting what I regard a\ valid criticisms of variance-based 
risk loads, I would like to switch sides for a nnomcnt and refute one set of 
common arguments made against variance. This set of arguments deals 
with the units of risk load and with currency translation. Consider that 
variance is in units of “dollars squared.” while the desired cost is in units 
of “dollars.” As any engineering or physic\ student knows, if the units 
don’t match, there is a mistake somewhcrc in the derivation. Related to 
this is the criticism that variance-based risk load formulae lead to nonsen- 
sical results if one tries to switch from one currency to another. 
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Both these criticisms are an attack on the formula: RL = h . Var (L) , 
where RL is risk load, L is loss, and h is a constant. If L is in dollars, then 
Var (L) is in units of dollars squared. It is true that if h were a unitless 
constant, then there would be a mismatch of units. However, h should 
carry units of inverse dollars, so that the resulting risk load is, as it should 
be, in units of dollars. 

This also refutes the currency translation paradox. Write $L for loss in 
dollars and &L for loss in pounds and let EL = K. $L, where K is the 
exchange rate constant. It follows that: 

Var (CL) = Kz . Var ($L). 

Ostensibly confounding results arise if h is viewed as a unitless con- 
stant and not adjusted for exchange rate. However, if &RL = hi . Var (&L), 
where X5 = hs/lc , then .CRL = K. $RL. Thus, the problem disappears if h 
carries units of inverse currency and is properly adjusted to reflect ex- 
change rates. 

9. VARIANCE-BASED RISK LOADS MAY LEAD TO INCONSISTENT 

INCREASED LIMITS FACTORS 

Having shown I do not find merit in every argument against variance- 
based risk loads, I will now turn to one I do regard as valid. In my view, 
the major flaw with variance-based risk loads is that they can lead to 
prices that may rise too rapidly by limit. For example, it might cost more 
to raise the limit from $2 million to $3 million than it does to raise the 
limit from $1 million to $2 million. With a variance-based risk load, it 
would not be impossible to have the following ILF table: 

TABLE 1 

Limit ($000) ILF 

1,000 2.50 

2,000 3.00 

3,000 3.75 
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To see what is wrong here, consider matters from the point of view of 
a prospective insured whose basic limits premium is $10,000. This in- 
sured will be asked to pay $25,000 for $ I million of coverage, an extra 
$5,000 to increase coverage from $1 million to $2 million, and an extra 
$7.500 to increase coverage from $2 million to $3 million. Breaking this 
down by layer and using an “M” suffix to denote million(s). the insured 
would see the following: 

TABLE 2 

Layer cost 

0 -$lM $25.000 

$lM excess of$lM $S,OOO 

$1 M excess of $2M $7.500 

What is exceedingly strange about this is that the loss in the lower 
excess layer ($1 M excess of $ IM) must be $1 million before there is even 
a penny of loss in the upper excess layer ($lM excess of $2M). Further. 
loss in the upper layer can never exceed the loss in the lower layer. How 
can it make sense to charge more for the upper layer when it never has 
more loss? 

This problem of inverted layer costs is referred to as “inconsistency by 
layer.” increased limits factors are consistent if they exhibit a pattern of 
declining marginal increases as the limit of coverage is raised. If the ILF 
formula is viewed as a function with respect to the coverage limit, and 
this function has a second derivative. then the ILFs are consistent if, and 
only if. the second derivative is negative. Consistency implies that excess 
layer costs decline as the attachment point is raised. assuming all layers 
carry the same limit of excess coverage. and assuming that excess layer 
costs are computed by taking differences in appropriate ILFs. 

Meyers is well aware of the inconsistency problem. He tries to get 
around it by defining a new notion of consistency. Under the Meyers 
definition (see Meyers’s Appendix E), one considers any two excess lay- 
ers with identical limits, but different attachment points. Consistency, 
according to Meyers, exists if the layer with the higher attachment point 



INCREASED LIMITS RATEMAKING 373 

always has a lower indicated price. Meyers calculates the indicated price 
for a layer as the sum of its expected loss plus risk load. His risk load is 
proportional to the variance of losses in the Iaye): In his paper, Meyers 
gave a proof that this calculation results in consistency under his defini- 
tion. Subsequently, Meyers has told this reviewer that the proof may not 
be valid. 

However, even if it were valid, it would prove much less than it may 
seem. Since Meyers does not calculate layer prices by taking the differ- 
ence between ILFs, his notion of consistency does not apply to the ILFs, 
but rather to his premium calculation principle. In fact, taking differences 
of ILFs gives a larger indicated (variance-based) risk load for a layer than 
would calculating layer risk load based on the variance of layer losses. 
This happens because the variance in layer losses is always less than the 
difference in the variance of losses capped at the upper limit minus the 
variance of losses capped at the lower limit (see Appendix A). This is the 
essence of “risk reduction through layering.” (See Miccolis [2].) 

Therefore, Meyers is, at least implicitly, asserting that ILFs are not 
appropriate for pricing layers. Also inherent in his theory is the idea that 
the price for coverage up to a limit depends on how the coverage is 
layered. For example, under Meyers, coverage for the layer from zero to 
$2 million should have a price different than the sum of prices for cover- 
age on the underlying $1 million plus coverage on the $l-million-excess- 
of-$I-million layer. Not only does this fail to produce a unique 
benchmark price for coverage, because it allows that different layerings 
of coverage could result in different prices, it also leaves open the ques- 
tion of what layering, if any, should be assumed when filing ILFs. Meyers 
believes that the bureau should file ILFs under the hypothesis that layer- 
ing is not allowed, and yet also promulgate advisory factors for various 
possible layerings. I feel the publication of different costs for different 
layerings of the same coverage is no solution, and only adds to the confu- 
sion. Try as he might, Meyers is unsuccessful at defining away the consis- 
tency problem. ILFs produced with the variance-based risk load can be 
inconsistent. 
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10. VARIANCE REDUCTION THROIIGH PRO RATA SHARING 

It is also somewhat troubling that variance-based risk loads lead not 
only to “risk reduction through layering,” but also to “risk reduction 
through sharing.” To illustrate this. suppose two insurers decide to be- 
come “50-50” partners in writing a risk. Each will take half the premium 
and pay half the loss. If cr* is the variance of the total loss, then 0’/4 is 
the variance of the loss covered by each insurer. If each uses a variance- 
proportional risk load with a common risk loading scalar. h, then the total 
risk load demanded by their syndicate will be h. r 0’/2 . If either insurer 
had written the risk on its own, then the risk load would have been h cr’. 
Due to syndication, the risk load has been cut in half. The syndicate 
operates, in effect, with a reduced risk load constant. More generally, if 
risk load is in proportion to variance and if expense considerations are 
neglected, then syndicates ought to be able to take advantage of “risk 
reduction through sharing” in order to reduce their risk loading constants. 

It appears that quota share syndicates would not be allowed in the 
Meyers’s Competitive Market Equilibrium (CME) model. I deduce this 
from Equation 5.3 in which Meyers derives the theoretical market risk 
loading constant as the (harmonic) atwuge of the hs for the individual 
insurance companies. If the companies were allowed to form a syndicate 
and quota share the business, the theoretical market h would be much 
lower than the average h . 

1 1. RESTRICTIONS ON THE “(‘OMf’FTITIVE MAKKET“ 

In the market posited by Meyers, risk load is proportional to variance 
and there is no excess layer or quota-share reinsurancc. Yet, the variance 
principle implies that such reinsurance is decidedly advantageous. Im- 
plicitly, Meyers has prohibited insurers from entering into transactions 
that his theory says are beneficial. 

Meyers must also have some hidden restrictions on the insureds to 
prevent them from taking advantage of analogous ways to reduce their 
variance-based risk loads. For example, instead of buying $2 million of 
coverage, an insured could opt to save money by buying a primary policy 
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with a limit of $1 million and an excess policy covering $1 million excess 
of $1 million. As well, the insured could save money by getting two 
policies with each covering half of the insured’s losses. 

If Meyers had a free market model, then the insurers would be allowed 
to reinsure and the insureds would be permitted to package coverage. In 
either event, the market would soon cease to operate under the original 
variance-based risk load. As Venter [3] has noted, variance-based risk 
loads create arbitrage possibilities. Yet one aspect of competitive market 
theory is that “arbitrage profit possibilities are quickly extinguished by 
market competition”[3]. Meyers started off to build a “Competitive Mar- 
ket Equilibrium” theory, but ended up with ILFs that could never exist in 
a free market. 

12. PUTTING REINSURANCE INTO THE MODEL 

In my opinion, the theory ought to be extended to arrive at the theoret- 
ical premium that would prevail in a competitive market that allowed 
reinsurance. Additional expenses associated with reinsurance must also be 
considered. Since reinsurance companies do exist, such an extended the- 
ory would be a better model of reality than the highly-restricted model 
proposed by Meyers. 

By theoretically allowing coverage to be reinsured, one is not forcing 
any individual insurer to abandon use of a utility function to price the risk 
on its net coverage. Each insurer could still use a utility function and end 
up demanding a risk load proportional to the variance of loss it covers. 
However, as previously noted, variance reduction through layering or 
sharing can lead to a market risk load that is not proportional to the 
variance of the total (unlayered and undivided) loss. 

The reduction of variance through layering will lead to a hypothetical 
market price for coverage by limit in which risk load rises less rapidly 
than the variance of limited losses. Indeed, if one neglects to consider 
expenses associated with layering, the continual subdivision into finer 
layers will drive the process risk component of theoretical market risk 
loads to zero. This is proven in Appendix A. 
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However, layering has its costs. At the very least. it leads to additional 
processing and billing as each reinsurer needs to receive its share of the 
premium and pay losses in its layer. While such costs may be small, they 
rise as the number of subdivisions is increased. Intuitively. it is clear that 
there will come a point when risk load reduction through further layering 
will be canceled out by the additional costs. At that point. one arrives at 
the best possible price the theoretical market could offer. 

I do not have a general formula for this lowest theoretical price under 
arbitrary layerings that also retlects the cxpcnses associated with layering. 
However, I can present to the reader a comparable formula derived by 
Fred Klinker for the risk-sharing case. As shown in Appendix B, if one 
allows a syndicate of insurers to take pcrccntage shares of coverage, with 
each charging a risk load proportional to the I’arI’um.c of its share of loss, 
and add in expenses which rise with the number of syndicate members, 
then the total risk load is proportional to the stu~ldurul cle\~iutio~? of the 
total loss. Since layering is more efficient than sharing in reducing pro- 
cess variance, it is likely that the lowest theoretical market price for 
coverage will increase less rapidly by limit than the standard deviation of 
limited loss. In summary, if Meyers wcrc to complete his theoretical 
foundation and allow layering and reflect associated expenses, his theory 
would produce risk loads whose process risk load components would not 
increase in proportion to process vJariancc, but to something that rises 
even less steeply by limit than does the process standard deviation. 

Venter [3] has advocated calculation of the risk-loaded premium using 
the expected value of a risk-adjusted distribution. This distribution is 
obtained by transforming the original loss distribution. In his paper, Ven- 
ter deduces some general principles from the requirement that the market 
be free of arbitrage possibilities. The transformation methodology satis- 
fies these principles. Further, according to Vcntcr, the only premium cal- 
culation principles with the desired properties are those that can be 
generated from transformed distributions. However, it is not clear if any 
transformation would be equivalent to an extended Competitive Market 
Equilibrium model which incorporated reinsurancc and associated ex- 
penses. Once such a model is developed. its equivalcncc IO some transfor- 
mation of distributions should be investigated. 
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13. SUPPLY AND DEMAND 

The supply assumption in the Meyers CME theory is that each com- 
pany sets a constraint on the loss variance it will tolerate. While this 
reviewer knows of no company that actually does this in practice, it is 
likely that most insurers implicitly operate under such a constraint. Thus, 
the assumption seems reasonable, especially in the context of modelling a 
theoretical market. 

However, the assumption about demand could be much improved. 
Recall that the Meyers CME theory effectively ignores the demand side 
of the “supply and demand” equation under the dubious assumption that 
demand is inelastic. I would assert on general grounds that demand by 
limit might well be influenced by the pattern of increase in a set of ILFs. 
While it is beyond the scope of this discussion to propose a theory incor- 
porating an explicit demand function, future research in this direction 
would seem worthwhile. Such a theory would require an explicit demand 
function by limit. Estimation of the demand function might be rather 
difficult. One problem is that the only data currently available is on the 
limits of primary policies purchased by insureds. To obtain a true picture 
of the demand by limit, one would need data on the total coverage af- 
forded by the combination of primary and excess policies purchased by 
insureds. 

The “demand side” perspective also leads to the consideration of the 
impact of risk retention groups. Under one approach to risk retention 
financing where the goal is to minimize the probability of ruin, a risk 
retention group must assess the total risk load proportional to the standard 
deviation of losses for all members of the group. Within this framework, 
principles of game theory were used by Lemaire [1] to calculate a fair 
cost allocation for each member of the group. The resulting risk load 
assessment for a group member is not proportional to the variance of the 
member’s losses. This strongly suggests that variance-based risk loads 
would not be theoretically tolerated in a market that allowed the forma- 
tion of risk retention groups. Note also that proper consideration of risk 
retention groups would entail consideration of expenses. One might end 
up with a result not too dissimilar from what one would achieve by 
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incorporating reinsurance layering and associated expenses in the CME 
theory. 

14. CONCI.USION 

Meyers has made a valuable contribution to the field of actuarial liter- 
ature with a well-written and thought-provoking paper. He has laid down 
some of the foundation for a solid theory of risk load and has artfully 
applied mathematical techniques to get a result. Meyers was courageous 
enough to go beyond the “single insurer, single insured” paradigm to 
develop a competitive market approach. Unfortunately, he posited an arti- 
ficially restricted market and ended up with variance-based risk load. This 
is the same answer produced by the “single insurer, single insured” utility 
theory model. The Meyers theory does nothing to dispel valid criticisms 
made against variance-based risk load. Most important, his variance- 
based risk load formula could lead to inconsistent ILFs, where “inconsis- 
tent” retains its original and appropriate meaning as given by Miccolis 
121. In conclusion, I believe Meyers did not succeed in obtaining a risk 
load formula appropriate to use in bureau increased limits ratemaking. 
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APPENDIX A 

IMPACT OF LAYERING ON PROCESS VARIANCE 

Suppose coverage up to limit K is achieved by stacking n layers, and 
assume the indicated risk-loaded pure premium for the coverage is the 
sum of the indicated risk-loaded pure premiums for the layers. Suppose 
the indicated risk-loaded pure premium for each layer is calculated as the 
sum of expected loss in the layer plus risk load, and assume risk load is 
proportional to variance. Consider the “process” variance component of 
the risk load. I will first show that this layering reduces the risk load 
compared to the risk load of the unlayered coverage. I will then show that 
the sum of process variance risk loads becomes smaller as the layer 
subdivisions grow ever finer. In other words, if expenses are not included 
in the analysis, infinite layering will drive process variance risk load to 
zero. 

Let 0 = k. < k, < . . . < k, = K be the layer end points. 

LetAkj=ki-ki-, fori= 1,2 ,..., n. 

Given loss severity random variable, X, define Xi = min(X, kJ and let 
pi = E(X;) and O* ; = Var (Xi). 

Let Yi denote the loss in the i lh layer SO that Yi = Xi - Xi _ , . 

Thus, E( Yi) = Acli = cli - pi _ I . 

Now, set zf = Var (YJ . 

Proposition 

Var(X,,)=~rj+2.~~(k;-~i).A~i+, 
i=l i= I 

Proof: Since X, = cYi , it follows that: 

(A.1) 

Var (min(X, K)) = i 7; + 2 . CCOV(Yiy Yj) . 
i=l icj 



Now consider that, for i < ,j. 

Cov(Y,t Yj) = (Ak;) (API) - CAP,) (Api) = ( (Ak,) - (APO 1 C&j) . 

The desired result then follows since: 

Ak, + AX-2 + . . . + Mi = X; and ApI + Ap? + . . . + A~i = cli . 

Since the latter sum in equation A. 1 has only non-negative terms, one 
can immediately conclude that layering reduces total risk load it’ risk load 
is proportional to variance. 

Var(min(X, K)) 2 i rf 
i=I 

(A.2) 

The inequality is strict if there is some non-rero probability of a non- 
zero loss strictly less than the upper limit. K. 

If the subdivision process continues indefinitely. the process risk load 
will shrink to nothing. 

Proof: Consider that 7,’ < AX-F so that c tf < c A/if 

Further observe that c A/$ < max Ak, , 2 AL, = max i AX, i K . 

The result follows since the latter expression approaches zero by assump- 
tion and by the fact that K is unchanged by the layering. 
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APPENDIX B 

RISK LOADS CHARGED BY A PRO RATA SHARING SYNDICATE 

(Simplified from the unpublished work of Fred Klinker) 

If there is a competitive insurance market with risk sharing among the 
insurers via pro rata reinsurance, and if the expenses associated with risk 
sharing are considered, then variance-based risk loads at the level of the 
individual firm become standard deviation-based at the level of the mar- 
ket. This seemingly paradoxical result stems from a trade-off between the 
increased expense and decreased “risk” associated with sharing. 

Assume each insurance firm charges a risk load proportional to the 
variance of loss for the coverage it provides. Now suppose there is a 
syndicate of I? insurers in which each takes a fixed share, pi , of the total 
loss, where the pi are non-negative and sum to one. 

The loss experienced by the syndicate as a whole, L, is a random 
variable with expectation E(L) and variance Var (L). The loss experienced 
by the ith insurer is piL with expectation p;E(L) and variance p: Var (L). 
Neglecting regular underwriting expenses and the usual profit load, the 
components of the net premium charged by this insurer are: 

Expected loss: P;E CL) 

Fixed expense (transaction costs): E 

Risk load: h, pf Var (L) 

The resulting net premium charged by this insurer is 

Pi = pi E(L) + E + h, p: Var (L). @.I) 

The resulting premium charged by the syndicate of n insurers is, recalling 
that the pi are weights summing to unity, 
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I, 

P(n, p,) = E(L) + HE + Var(L) c h, pi’ . (B.2) 

Now minimize the premium given in equation B.2. holding u fixed. 
Equation B.2 will be minimized by minimizing 

The minimization is constrained since 
constrained minimization can be solved bq 
pliers. 

I, II 

the p, must sum to unity. The 
the method of Lagrange multi- 

a 
a P, 

Ch,pf=A a c 
aP’jT, 

p, for all i 
/=I 

21, p, = A for all i _ 

In other words. the optimal pi are proportional to the reciprocals of the hi 
for all i . 

Imposing the constraint that the p, sum to one leads to 

I 
Pi= 

h c: I ( > ,~:I ’ 

It follows that 

II 

c h, p; = 
,= I 

= 
I, 

c 
1 

i-l 4 

II 

I 
1 

( > ;, 

(B.3) 

(B.4) 
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where the angled brackets denote the average value. The minimum pre- 
mium, for fixed n, from equation B.2 and the above, is 

Var (L) 
P(n)=E(L) +n&+ 1 . 

n ii ( > 
(B.5) 

Note the behavior of equation B.5 with respect to n, the number of 
insurers in the syndicate. There is a term due to fixed transaction costs per 
insurer which increases linearly with the number of insurers. Another 
term declines as the reciprocal of the number of insurers, which captures 
the declining aggregate of the variance-based risk loads of the individual 
insurers. The decline is due to the increasing spread of risk among more 
insurers. 

Because of the above behavior, there is an optimal II for which the 
premium, P(n), is minimized. This occurs where the derivative of P(n) 
with respect to II vanishes. 

Var (L) 
0 = $ P(n) = & - p-i--- . 

n2 h ( > 

Hence, 

Var(L] 

n = d- ~ I 

E h (W 
03.6) 

and the minimum value of P(n) is 

P=E(L)+2 ( 47) (B.7) 

Equation B.6 provides the optimal number of insurers and equation 
B.7 provides the minimum premium over all possible numbers of insurers 
and all possible pro rata distributions of risk among insurers. The last 
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term of equation B.7 can be identified as the market risk load. In the 
immediate context of increased limits factors. with increasing limit- 
hence increasing Var (L&the optimal number of insurers on the contract 
will increase according to equation B.6. Also, the market risk load of 
equation B.7 will increase only as the square root of Var (L); i.e., as the 
standard deviation of L, where L is the aggregate loss across the syndi- 
cate, despite the fact that individual insurer risk loads arc variance-based 
rather than standard deviation-based. 
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THE COST OF MIXING REINSURANCE 

RONALD F. WISER 

DISCUSSION BY MICHAEL WACEK 

A hstr-uct 

In his I986 puper, “The Cost of Mixiq Reinswunce,” Ron 
Wiser analyzed the consequences of mixing pro rata and ex- 
cess of loss winsurance. He cvnc~ludcd thut such mi.l-ed rein- 
surance situations MY~E alntays unfavorable to the ceding 
company, both in terms of ,financial cost und loss ratio stahil- 
ity. This paper rqfutes that conclusion and shows that Wiser 
prol-cd his argument only ,for the special case of a pasticular. 
ineflicient reinsurance structure. Some of his reported “cost oj’ 
nii.Gng” M*US uctuully a result of purchasing redundant rein- 
surance. The degree of inefficiency in a mixed reinsur-awe 
strwtuw can he quantiji’ed as the “cost of overlap” betcr,een 
the types of reinsurunce coverage. This should be measured 
separutely from the cost of mixing per se. A case of negative 
cost of mixing is presented, and a r-elutivefy simple test of 
wlhether the mixing cost M’ill be positive or negative is dcri\*ed 
and demonstrated. 

1. INTRODUCTION 

Ron Wiser’s “The Cost of Mixing Reinsurance” [I] is an excellent 
presentation of many of the major issues involved in the analysis of the 
effect of mixing proportional and excess of loss reinsurance. It is a well- 
written paper that introduces the reader to several important concepts. 
Because I see that paper as so important, I believe it is necessary to 
comment on some aspects the author has omitted. My primary concern is 
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that the Wiser paper may leave the casual reader with the impression that 
mixing excess of loss and proportional reinsurance UII~YI~.S has adverse 
cost and stability consequences for the ceding company. That is not true, 
as I will show. 

This discussion is best read with a copy of Wiser’s paper close at 
hand. since it frequently refers in detail to the examples presented in that 
paper. An effort has been made to use the terminology and notation of the 
original paper, in order to make it easier to read the two together. 

The key point of this discussion is to make it clear that Wiser proved 
his Mixing Loss Ratio Rule O~I/Y for the special case in which the ceding 
company buys excess of loss coverage all the way up to the top of the 
policy limits it has issued. In such circumstances, the purchase of propor- 
tional reinsurance is redundant and is thus inherently inefficient. That it 
has a cost should come as no surprise. This is understood by most insur- 
ers, and they do not usually structure their reinsurancc in this way. As a 
result, Wiser’s conclusion that mixed reinsurance situations are always 
costly to the ceding company is relevant only to reinsurance arrangements 
that are not often found in practice. 

An insurer normally will determine the net retention it desires for a 
particular risk and use a mix of proportional and excess of loss reinsur- 
ante to absorb the exposure between the retention and the policy limit. In 
property insurance the proportional reinsurancc is typically provided 
under “surplus share” treaties. which essentially provide the insurer with 
the capacity to write policy limits larger than it could with its excess of 
loss rcinsurance alone. These treaties act like a sponge, soaking up the 
surplus exposure above its excess reinsurancc coverage. Normally, if 
there is no “surplus” policy limit exposure. the insurer does not cede any 
exposure to the surplus share treaties. If it does. it is generally according 
to a line guide agreed to in advance with the surplus and excess reinsur- 
ers, and the price and terms of the reinsurance contracts will reflect the 
expected cessions implied by the line guide. Insurers also USC a mixture of 
excess and proportional reinsurancc to extend their capacity for casualty 
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policy limits, though here, the use of surplus share treaties is less com- 
mon than in property insurance. 

Figure 1 is a graphical illustration of this common type of property 
reinsurance program. It shows: A) a net retention of $500,000; B) a 
$500,000 excess of $500,000 treaty; and C) a five-line surplus share 
treaty. This gives the insurer total gross line capacity of $6,000,000. Poli- 
cies larger than $6,000,000 would require facultative reinsurance (either 
proportional or excess of loss). 

If P denotes the policy limit and F denotes the facultative coverage 
limit, an insurer with the treaty reinsurance program shown in Figure 1 
generally would keep a share, equal to $1 ,OOO,OOO/(P - F). of any “net 
and treaty” policy limit, P -F, greater than $l,OOO,OOO. The excess rein- 
surer remains exposed for its entire $500,000 limit, though the composi- 
tion of that exposure is different after proportional reinsurance is 
introduced. 

Figure 2 illustrates the allocation of loss exposure arising from a $5 
million policy issued by an insurer that has the reinsurance program sum- 
marized in Figure I. 

3. ORDER OF REINSURANCE RECOVERIES 

In mixed reinsurance situations, i.e., where a policy is protected by a 
number of reinsurance contracts, working out the correct loss recoveries 
can be fairly involved. In theory the interplay between the applicable 
coverages is negotiable but, in practice. the following principles are nor- 
mally applied as standard unless otherwise agreed: 

1 . Mow specific rw~erage responds hefbe less .spec(fic un~~ruge. 
For example, facultative always responds before treaty. Per risk 
covers always respond before catastrophe (i.e., per occurrence) 
covers. 

2. Pmporrionul co\*erugu r~esponds hqfim e.wess o$ loss cwveruge, 
s1rhjer.t. hmlever, to Principlr~ 1. For example, a property surplus 
treaty responds before a per risk excess cover but after a faculta- 
tive excess cover. 



3xX (‘OSTOF MIXING REINSUR.AN(‘E 

This discussion assumes the application of these recovery principles. 
The conclusions will not be applicable to those relatively rare instances 
where a proportional treaty has been negotiated to respond qfter an excess 
of loss treaty. 

FIGURE I 

5 Line 

SCXPlUS 

Treaty 

XL Treat) 

Net Retent.ion 

$6,000,000 

$l,ooo,ooo 

$500,000 



FIGURE 2 
ALLOCATION OF Loss EXPOSURE 

COMMON PROPERTY REINSURANCE STRUCTURE / $5 MILLION Po~rcy 

Excess Only $5,000,000 

$1,000,000 

$500,000 
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4. EXCESS LIMIT EXPOSURE 

At least a portion of the “cost of mixing” demonstrated by Wiser is a 
result of the inefficient reinsurance structure he assumed, for both his 
examples and his general case. Consider his examples. 

In the casualty case presented in Wiser’s paper [ 1, pp. 175- 1871, the 
excess coverage is $2 million excess of $250,000. For some reason, the 
insurer buys 50% pro rata facultative coverage on a $1 million excess of 
$100,000 policy. Without the facultative placement, the excess reinsurer 
is exposed for $750,000 excess of $250,000. But with it, the excess expo- 
sure is only $250,000 excess of $250,000. We should not find it surprising 
that the excess reinsurer has a lower expected pure premium and the 
insurer a higher expected cost of reinsurance! The allocation of loss expo- 
sure is shown graphically in Figure 3, where it is evident that the propor- 
tional coverage has crowded out the excess of loss protection. The bar on 
the left shows the allocation of exposure in the pure excess case. The bar 
on the right illustrates the mixed case. The much smaller area correspond- 
ing to excess treaty exposure in the mixed case is indicative of the re- 
duced exposure compared to the pure excess case. 

The same is true of Wiser’s property example [ 1, pp. 19 I-201 1, though 
the inefficiency of the reinsurance is less extreme than in the first case. 
The excess coverage is $2 million excess of $250,000. The insurer issues 
a $20 million policy and cedes 90% of the risk ($18 million) on a pro rata 
basis. The pro rata placement reduces the excess reinsurer’s maximum 
exposure from $2 million excess of $250.000 to $1.75 million excess of 
$250,000. Again, it should be obvious that the excess reinsurer will bene- 
fit and the insurer’s expected net cost of reinsurance will be increased. 
The allocation of exposure in the pure excess and mixed scenarios is 
shown graphically in Figure 4. 

In both of these examples the insurer has bought overlupping reinsur- 
ante coverage. While there might be valid reasons for doing this under 
certain circumstances (e.g., “protecting the excess treaty”), it will always 
be more expensive than not doing so. In the casualty case, it is not clear 
why the insurer bought any proportional cover at all, since it had adequate 
coverage under its excess of loss treaty alone. In the property case, the 



FIGURE 3 
ALLOCATION OF Loss EXPOSURE 
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FIGURE 4 
ALLOCATION OF Loss EXPOSURE 

PROPERTY EXAMPLE / $20 MILLION POLICY 

Excess Only 
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l Area not to scale 



COST OF MIXING REINSURANCE 393 

correct pro rata purchase to avoid overlap would have been $17.75 mil- 
lion, or 88.75%, instead of $18 million (90%). 

The point is that the “costs of mixing” shown on Wiser’s Exhibits 2 
and 3 and implied by his Mixing Loss Ratio Rule include not only the 
effect of mixing but also the cost of buying down the excess reinsurer’s 
limits exposure. Indeed, we cannot be certain that the effect of mixing per 
se is unfavorable without further analysis. 

5. COST OF OVERLAP AND COST OF MIXING PER SE 

In the casualty example presented by Wiser, the reinsurer’s total policy 
limit exposure in the pure excess case is $750,000 excess of $250,000, 
which implies expected losses of $85,144, or 35.48% of the policy losses 
subject to the excess coverage. See Wiser’s Exhibit 1 .l [ 1, p. 1781. This 
layer can be subdivided into two layers of $250,000 excess of $250,000 
and $500,000 excess of $500,000. The expected losses in these two layers 
are 19.7 1% and 15.77% of subject losses, respectively. These ratios are 
easily computed using values from the limited mean function of the size 
of loss distribution. (See Exhibit 6, or Wiser’s Exhibit 1.2, for a partial 
tabulation of this function.) 

In the mixed reinsurance case, the excess reinsurer’s total policy limit 
exposure is only $250,000 excess of $250,000 with respect to subject loss 
exposure of $500,000. (This is equivalent to 50% of $500,000 excess of 
$500,000 with respect to original policy exposure of $1 million.) The 
$500,000 excess of $500,000 layer now has no policy.limit exposure at 
all. The expected excess losses in these two layers are 15.77% and 0% of 
subject losses, respectively. 

The difference in $250,000 excess of $250,000 layq expected losses 
between the pure excess and mixed reinsurance cases is approximately 
3.93% (19.71% - 15.77%) of subject losses, or about $4,720. This is the 
true cost of mising excess and proportional reinsurance in this example. 

See Exhibit 1 of this discussion for a summary of the key limits, 
limited means, and relative exposure for the first layer. This exhibit mea- 
sures the cost of mising per se. 
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Since the ceding company has the same net retention of $250,000 after 
buying the pro rata coverage as in the pure excess case, all it has achieved 
is to buy down the excess reinsurer’s limit exposure. This is manifested 
by the exposure in the $500,000 excess of $500,000 layer going to zero in 
the mixed case. The cost of the limit buy-down is about $18,927, which is 
15.77% of subject losses. This is the measure of the inefficiency of this 
particular mixed reinsurance structure, the “cost of o~erlup~k~~ reinsur- 
ance.” See Exhibit 2, which is analogous to Exhibit 1, but summarizes the 
cost of ol~erfup calculations. 

Wiser reports the cost of mixing in this example to be $23,653. In fact, 
the cost of mixing per se is only $4,720, or 20%1, of this total. The 
remaining 80% is due to buying unnecessary reinsurance. 

In the property example, the excess coverage can be layered as $1.75 
million excess of $250,000 and $250,000 excess of $2 million. In the pure 
excess case the expected losses in these two layers are 32.88% and 1.41% 
of subject policy losses, respectively. (This can be verified using values 
from Exhibit 7.) 

Matching up these layers with their counterparts in the mixed case, the 
reinsurer’s exposure in the first layer is 13.88% of subject losses and the 
second layer is not exposed at all. The cost of mixing is given by the 
difference in first layer expected losses, which is approximately 19% of 
$30,000, or $5,699. The cost of overlap is the difference in second layer 
expected losses. This is equal to 1.4 I c/c of $30,000, or $422. Thus, in this 
example, 93% of the cost of mixing reported by Wiser is due to mixing 
itself and 7% is due to the purchase of redundant coverage. The cost of 
overlap is much lower than in the casualty example because. here, the 
degree of overlap between excess and proportional reinsurance is much 
less. 

Exhibits 3 and 4 summarize the cost of mixing and cost of overlap 
calculations, respectively, for this example. 
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6. NEGATIVE COST OF MIXING 

To see that mixing pro rata and excess coverage is sometimes actually 
favorable to an insurer, suppose an insured having the same loss severity 
characteristics as in Wiser’s casualty example buys total insurance cover- 
age of $10 million. 

Assume the $5 million excess of $5 million layer is written by an 
insurer that has excess of loss reinsurance of $1.75 million excess of 
$250,000. With no proportional reinsurance, the insurer has a total net 
retention of $3.25 million ($250,000 at the bottom and $3 million at the 
top). The left portion of Figure 5 illustrates this graphically. 

Exhibit 5 shows the calculation for the cost of mixing per se for this 
example. With excess reinsurance only, the expected excess reinsurance 
recovery is 49.77% of subject losses. If expected subject losses are 
$50,000, the expected recovery amount is $24,884. 

With proportional reinsurance of 60%, the insurer’s net retention is 
reduced to $250,000. This eliminates all net exposure above the excess of 
loss protection, but leaves the excess reinsurer’s maximum loss exposure 
unchanged at $1.75 million. This is illustrated by the right portion of 
Figure 5. The expected excess recovery is 40% of $37,695 (the expected 
losses in the layer $4.375 million excess of $5.625 million) or 75.35% of 
subject losses (40% of $50,000). 

The cost of mixing is (49.77% - 75.35%) of $20,000, or -$5,116. The 
cost consequences of mixing are adverse to the reinsurer. The insurer sees 
a cost benefit. It should be clear on the face of it that the insurer also 
benefits in terms of stabilization: without mixing, it has a much higher net 
retention, most of it in the form of the unreinsured layer $3 million excess 
of $2 million. 

7. DETERMINING COST OR BENEFIT OF MIXING REINSURANCE 

Apart from a minor refinement or two, the following analysis uses 
Wiser’s notation. 
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Let RateXS(a, M, L) denote the excess pure premium rate for excess 
treaty retention, M, excess treaty limit, L, and pro rata treaty retention 
percentage, u. Wiser states that the most general characterization of the 
excess pure premium rate where there is no proportional reinsurance is: 

M+L 

M+L RclteX’(, , M, L) = !!---~ -~~~~ ~_____ __.- 

Subject Premium ’ 

wheref(,v) is the p.d.f. describing the distribution of policy losses by size.’ 
(Note that the variable name on the left side of the equation has been 
modified slightly from Wiser’s notation to record the reinsurance limit.) 

The numerator of formula 7.1 can be expressed in terms of a differ- 
ence of limited means offlx): 

EM + L t-v) - EM t-v) 
RateXS( 1, M, L) = ~__ ~~~-~ ~ 

Subject Premium ’ (7.2) 

The discerning reader will have noticed that, as the definition of the 
pure premium rate, formula 7.2 is incorrect-it reflects only claim sever- 
ity. The subject claim count, E(N), has been left out of the numerator. 
Correcting for this omission, formula 7.2 becomes: 

E(N) . 
RateXS( 1, M, L) = --- 

[ EM + L C-4 - EM (4 1 
Subject Premium ’ (7.3) 

Subsequent reference to the formulae in the Wiser paper will assume this 
correction. 

In his analysis Wiser assumed that the insurer buys sufficient excess 
reinsurance to cover the largest policies issued. In such a case, policy 
limits always truncate excess exposure at or before the point where the 

’ The formula appearing in the paper shows the factor before the integral in the second 
term as (L + M). but it clearly should be L as shown here. 
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reinsurance limit does. That makes the second term of formula 7.1 unnec- 
essary, and Wiser proceeds with the following simplification, which does 
not depend on L: 

E(N) J (x - M) . f(X)dY 
M 

RateXS(l,M)=~ L ~~ J 
Subject Premium (7.4) 

E(N) [E(x) - &&)I 
= Subject Premium ’ 

However, because insurers normally do not structure their reinsurance 
in the way he assumes, the second term cannot be dropped for the analy- 
sis of a more realistic scenario, much less for the general case. Therefore, 
the following discussion rests on formula 7.3, which applies in the gen- 
eral case. 

Let us investigate the relationship between expected excess losses in 
mixed and pure excess cases. In the mixed reinsurance case, the Mixed 
Pricing Rule tells us to divide the excess retention and limit by the pro 
rata retention ratio, a, to determine the effective excess layer in terms of 
the policy loss function,&). The limited mean claim size for a net limit, 
k, reflecting a pro rata retention, u, is given by the following: 

u . E&V, a) = a . beds + (k/u) = a Ek,&) . (7.5) 

The excess pure premium rate in the mixed case is given by: 

a. E(N). [ EM + L (A-, a) - E, (A a) 
RuteXS(u, M, L) = ~ ---~-- 

1 
a (Subject Premium) 

E(N) [ _ E&, + L (x, a) - E, (s, u) -1 - 
Subject Premium ’ (7.6) 
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If R is a relativity describing the relationship between RuteXS(a, M, L) 
and RuteXS( 1, M, L), then: 

R = RafeXS(a, M, L) = EM+L (A u) - EEn (x, u) 
RuteXS( 1, M, L) E,+,(x)-E,(x) ’ 

(7.7) 

If R < 1, the ceding insurer’s expected loss recoveries from the excess 
reinsurer will be lower in the mixed reinsurance case than in the pure 
excess case-the cost of mixing is positive. On the other hand, if R > 1, 
the insurer will recover more in the mixed case and the cost of mixing is 
negative. 

Let m and m, denote the slope of the limited mean function between 1) 
E,,,, (x) and E,,,, + L (x), and 2) E, (x, a) and E,,,, + L (x, a), respectively. Then 
formula 7.7 can be restated as: 

R= 
m, . L/u m, 

=- 
m.L a.m. 

(7.8) 

From formula 7.8, we can see that whether the cost of mixing is 
positive (R < 1) or negative (R > 1) depends on the shape of the limited 
mean function between the points that define the excess reinsurance cov- 
erage. If the slope on the portion of the curve that defines mixed coverage 
is less than 100 . a% of the slope in the pure excess case, then R < 1 and 
the cost of mixing is positive. But if the mixed coverage slope exceeds 
100 . a% of the pure excess slope, then R > 1 and mixing has a negative 
cost. 

A result proved by Miccolis [2] can be used to define a simple test of 
whether mixing has a positive or negative cost to the ceding insurer. 
Though he used a different notation invented for his discussion of in- 
creased limits factors. Miccolis showed that 

d [ Ek (x)/C ]/dk = [ 1 -@(k)]/C , (7.9) 

where C is a constant and J#(k) is the c.d.f. of policy losses by size 
(Wiser’s notation). Since 1 -pf(k) = Prob (x > k), this tells us that the 
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slope of the limited mean function at k is the same as the probability, 
given a claim, that the claim exceeds X. 

So for the infinitesimal layer A\- excess of k, the following specifies a 
precise test for the cost to the ceding insurer of mixing per se: 

Prob (X > k/u) < Prob (s > k) (1 <= => Positive Cost 
Prob (.Y > k/u) = Prob (.I- > X) (I <= => No Cost (7.10) 
Prob (X > k/cc) > Prob (.\- > k) (I <= => Negative Cost 

For excess layers of practical importance, Formula 7.10 is not a pre- 
cise test, but it suggests a way of screening. There are numerous such 
screens of varying complexity that could be employed, but here is a 
simple one that is easy to apply: test the layer endpoints, denoted by k, 
and k,. 

Prob (s > X-,/U) < Prob (a > k,) t (I 
and <= => Positive Cost 

Prob (.v > k/u) < Prob (s > k,) N 

Prob (.I- > k,/u) > Prob (.v > k,) I LI (7.1 I) 
and <= => Negative Cost 

Prob (.Y > k/u) > Prob (.I- > k,) . (I 

Other Combinations <= => Test Inconclusive 

Refinements to this test would be possible, but at the cost of introduc- 
ing additional complexity. 

8. APPLYING THE TEST 

To confirm that formula 7.11 correctly identifies the mixing cost char- 
acteristics of the examples discussed earlier, let us apply the test to those 
cases. 

The first example involved a $1 million casualty policy that attached 
in excess of a $100,000 self-insured retention (SIR). Recall that despite 
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$750,000 of loss exposure to the excess reinsurer before proportional 
reinsurance, after the 50% pro rata cession, the excess limit exposure is 
only $250,000. The cost of mixing calculation was done in respect of this 
$250,000 that is present in both the pure excess and mixed cases. Exhibit 
1 shows that the excess reinsurer’s exposure is higher in the pure excess 
case, demonstrating a positive cost of mixing. 

Exhibit 6 tabulates various information about the loss distribution 
“from the ground up” (FGU), i.e., including the SIR, so in the pure excess 
case, the reinsurance retention of $250,000 equates to $350,000 on the 
FGU loss table. From Exhibit 6, Prob (x > $350,000) = 1.18%. Fifty per- 
cent of that (reflecting the pro rata retention a = 50%) is 0.59%. This 
compares to a mixed case retention in FGU terms of $600,000 
($100,000 + $250,000/.50). Since Prob (s > $600,000) = 0.52% < 0.59%, 
this is an indication that the cost of mixing may be positive. 

Now test the upper end of common excess coverage. In the pure case, 
this is $600,000 FGU ($100,000 + $250,000 + $250,000). 
Prob (x > $600,000) = 0.52%. Fifty percent of this is 0.26%. For the 
mixed case, the upper end of coverage on an FGU basis is $1 ,lOO,OOO 
($100,000 + $250,000/.50 + $250,000/.50). Prob (s > $ 1 ,I 00,000) = 
0.188% < 0.26%, which confirms the indication of a positive cost of mix- 
ing. 

The second example involved a $20 million property policy with no 
SIR. Available excess reinsurance coverage is $2 million excess of 
$250,000, but after a 90% pro rata cession, only $1.75 million is used. 
The cost of mixing calculation done on Exhibit 3 in respect of this $1.75 
million shows a positive cost of mixing. 

Exhibit 7 tabulates information about the loss distribution for this 
example. There is no SIR in this case, so it will not be necessary to make 
any special adjustments. The excess retention is $250,000 in the pure 
excess case; according to Exhibit 7, Prob (s > $250,000) = 4.613%. Ten 
percent of this (reflecting the pro rata retention, u = 10%) is 0.461%. The 
effective mixed case retention in FGU terms is $2500,000 
($250,000/.10). Prob (s > $2500,000) = 0.293%, which is less than 
0.46 I %. This indicates a possible positive cost of mixing. 
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Testing the upper end of common excess coverage, which in the pure 
excess case is $2 million ($250,000 + $1.75 million), yields 
Prob (s > $2 million) = 0.401%. Ten percent of this is 0.04%. The effec- 
tive upper bound of coverage in the mixed case is $20 million FGU. 
Prob (X > $20 million) = 0.01% < 0.04%. which confirms a positive cost 
of mixing. 

The third example involved a $5 million excess casualty policy attach- 
ing excess of $5 million. There was excess coverage of $1.75 million 
excess of $250,000 and a proportional cession of 60%. The cost of mix- 
ing calculation for this example is summarized on Exhibit 5. It shows a 
negative cost of mixing. 

Exhibit 6 is the source of loss information. Since the attachment point 
of the policy is $5 million, in the pure excess case the reinsurance reten- 
tion of $250,000 equates to $5.25 million on the FGU loss table. From 
Exhibit 6, Prob (X > $5.25 million) = 0.008%. Reflecting the pro rata re- 
tention, 40% of this is 0.003%. This compares to a mixed case retention 
in FGU terms of $5.625 million ($5 million + $250,000/0.40). Since 
Prob (s > $5.625 million) = 0.007% > 0.0030/o, this is an indication that 
the cost of mixing may be negative. 

Now examine the upper end of excess coverage. In the pure excess 
case this is $7 million FGU ($5 million + $250,000 + $1.75 million). 
Prob (x > $7 million) = 0.004%. Forty percent of this is 0.0016%. This 
compares to an upper end of $10 million FGU in the mixed case 
($5 million + $250,000/0.40 + $1.75 million/0.40). Confirming that the 
cost of mixing is negative, Prob (x > $10 million) = 0.002% > 0.0016%. 

9. CONCLUSION 

I hope this discussion will be seen as building on the foundation of 
Wiser’s original paper. Its purpose has been to aid the reader in under- 
standing more clearly the effect of mixing proportional and excess of loss 
reinsurance, and the importance of distinguishing between the cost of 
overlap and the cost of mixing per se. 
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EXHIBIT 1 
ANALYSIS OF REINSURED Loss EXPOSURE vs. INSURED Loss EXPOSURE* 

CASUALTY EXAMPLE 
REINSURED LAYER: $250,000 EXCESS OF $250,000** 

CALCULATION OF THE COST OF MIXING PER SE 

I 

Critical Lnnits of Insured and Reinsured Los Layer\ I 
and the Corresponding Limited Means 

Policies arc> Reiqurcd Layer ~T------J Relattvr Exposure 

A B c D E F CI-- H 1 J- K I 

i Reinsured Adjusted 
Effectlke Effective ~ Exposure Rein- 

Under- Polk! + Subject Rein- Reten- as % of wred 

Remsurance lying POllC) Underlymp Share Effective wrance tion + SUhJWt Suh,jrct Rein\urrd 13) er 

structure Retention Limit Retentmn u Retention I .mit Limit LO\\ LO\\ Lavrr Ia\\ Lo\\ # 

Pure XS Llmlt\ IOO.004 I .IKX1.000 I . IOO.000 I oO.oO!/r ?SO.oNl 25(I.00() 600.000 

I ~~~ Pure - Mixed 4 Y3Y .~... ~~ 3.720 
* Loss model I\ lognormal: p = X.6799043: (J = I .8050198. Calculations ust’ Imuted mean\ to precision dlsplayrd. See Exhibn 6 for corresponding 

loss dtstribution table. 
** Both pure cxccs~ and mixed reinsurancr structures fully expose the ewess reinrurcr in thlc layer. 
# Bawd on wl+xt prtxuurn~ from rmxcd case. 

B=C-A 
F=G-E 
H=F/B 
J=I*H 



EXHIBIT 2 
ANALYSIS OF REINSURED Loss EXPOSURE vs. INSURED Loss EXPOSURE* 

CASUALTY EXAMPLE 
REINSURED LAYER: $1,750,000 EXCESS OF $500,000** 

CALCULATION OF THE COST OF OVERLAP 

-I I- 

I 
Critical Limits of Insured and Reinsured Loss Layers 

and the Correspondinp Limited Means I 
T- ( 0 Subject Policies Reinsured Layer ,~ _.“. Relative Exposure 

A B c II E F G H I J K ! 
52 

Reinsured Adjusted 
;1 

Effective Exposure Rein- g 

I Under- Policy + Subject Rein- Effective j as ‘i of sured 2 

Reinsurance lying Policy Underlying Share Effective surance Retention Subject Subject Reinsured ~ Layer 0 

Structure ~ Retention Limit Retention a Retention 

~ Limits l,lOO,OOO lOG.& 600.000 500.000 ~~oO.t& ~ 1 1 

Limit +Limit ~ Los\ Loss Layer Loss Loss # 

Pure XS 

! Lim Means 18.034 9.916 27,950 26.386 1.564 27.950 15.77% 240.000 37,854 18.927’ 2 

Mixed Limits Ioo.ooa 1,ooo,000 1.100.000 50.00% 1.100.000 0 1.100.ooo 

__ Lim Means’ 18.034 9,916 27.950 27,950 0 27,950 ~ 0.00% 120,000 Oi .~ 0 

Pure - Mixed 15.77% 18,927 
* Loss model is lognormal: p = 8.6799043: cr = 1.8050198. Calculations use limited means to precision displayed. See Exhibit 6 for corresponding 

-..-” 

loss distribution table. 
** Only pure excess structure exposes the excess reinsurer in this layer. 
# Baaed on subject premiums from mixed case. 

B=C-A 
F=G-E 6 
H=F/B n 

J=I*H 



EXHIBIT 3 
ANALYSIS OF REINSURED Loss EXPOSURE vs. INSURED Loss EXPOSURE* 

PROPERTY EXAMPLE 
REINSURED LAYER: $1,750,000 EXCESS OF $250,000** 

CALCULATION OF THE COST OF MIXING PER SE 

Reinsurance 
Structure 

-’ , 
Crltical Limits of Insured and Reinsured Loss Layers 

and the CorresppondineLimited Means _.. _. 
Subject Policies _--” Reinsured Layer Relative Exposure 

A B C D E F G H I J 

Reinsured 
Under- Effective Exposure 
lying Policy + Subject 

I 

K 2 
1 Adjusted i; 

Rein 8 
Rein- Effective ac 9 of 

Reten- Polk\ Underlying Share Effective surance Retention Subject Subject 
Reinsured ~ sured 1 3 

Layer Layer x 

lion Llmlt Retention o Retention Limit + Limit Loss Loss Loss Loss # 2 
- -___ II 

Purr XS Llmlt\ 0 x.000.00 20.ooo.000 Io().owz 250.000 I ,750.000 1.ooo.ocKl 
0 

Lml Mean\ 0 65.571 65,577 33.205 21.559 54.764 32.88% 300,ooo 98.618 9.863 i 

i Mixed Llrnlth 0 20.ooo.00 ?0.om.000 10.00% ‘300.otK~ 17.500.00 20.om.00 I 

0 0 

Lull Mean\1 0 65.577 65.577 56.475 4,102 65.577 13.8X% 30 .om 1.164~. .--1. 
Pure Mixed 19.00% 5.699 - - 

* Lo\\ model is lo~normal: p = X.X 123226: CT = 2.1482X7 I. Calculation< uw limited mean\ to precirion displayed. See Exhibit 7 for corresponding 
lo\s diatributlon table. 

** Both pure excess and mixed reinsurance structure\ fully expose the excess reinsurer in this layer. 
# Based on whject premium< from mixed case. 

B=C-A 
F=G-E 
H=F/B 
J=I*H 
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EXHIBIT 4 
ANALYSISOFREINSUREDLOSSEXPOSUREVS.INSUREDLOSSEXPOSURE* 

PROPERTYEXAMPLE 
REINSUREDLAYER: $250,000 ExcEssoF$~,OOO,OOO** 

CALCULATIONOFTHECOSTOFOVERLAP 

I Critical Limits of Insured and Reinsured Loss Layers 
and the Corresponding L 

Subject Policies 

A B C D 

Under- 
lying Policy + Subject 

<einsurance 
itructure 

I Reten- Policy Underlying Share 
tion Limit Retention a 

__. + 
tire xs Limits’ 0 2o,m,ow 2O,ooo,OOO 100.00% 

LimMeans 0 65,577 65,571 

vlixed Limits 0 2O.OOCwOO 2o,ooo,ooo 10.00% 

( Lim Means 0 65,571 65,577 

Effective 
Retention 

2,OOo.OoO 

t * 

I 

Pure - Mixed 1.41% 422 1 

Loss model is lognormal: p = 8.8123226: (J = 2.1482831. Calculations use limited means to precision displayed. See Exhibit 7 for corresponding 
loss distribution table. 

nited Means ___I 
Reinsured Layer 

E 

Relative Exposure r 

Effective 

B=C-A 
F=G-E 
H=F/B 
J=I*H 



EXHIBIT5 
ANALYSIS OF REINSURED Loss EXPOSURE vs. INSURED Loss EXPOSURE* 

REVISED CASUALTY EXAMPLE 
REINSURED LAYER: $1,750,000 EXCESS OF $250,000** 

CALCULATION OF THE COST OF MIXING PER SE 

Critical Limns of insured and Reinsured Loss Layers 

I 

Rein- 
surance 
Structure 

Pure XS 

A 

1 Reinwrcd Adjusted 
LJnder- Effecti\ e Expow-c Rem- 
lymg Poliq + Subject Rem- Effectl\e a\ [ir of Remcured wred 

Keten- POIIC) Llnderl~inf Share Eftectwe ~urance Retention Subyxt Subject Layer Layer 
tmn Innit Relentton 0 (Retention Limit + Limit LO\\ LO\\ 1.0\5 Loss # 

~-i- 
LInllts 5.000.000 5.ooo.txjo 10.000.000 100.00’~; .5.‘50.00() I .75O.otNj 7.wo.000 

Lim Means 29.665 71.5 ‘Y.XXO 29.687 107 ?Y.lY1 1Y.77’; 50.000 24.xx-l 9.953 

Mixed Lnnn\ 5.000.000 5.000.000 1lj.000.000 -10.00’; s.62s.otXj 4.375.000 I0.0w.000 

I Lim Means ZY.6h.i 215 2Y.XXO ~‘Y.718 lb? Y.XXO 7S..+5Y 20.000 IS .070 15.070 ______ ~~~ ‘, 

1- Put-c Mixed -‘.i.58% (5.1 lh)i 
* Loss model is lognormal: p = 8.67YYO43: ct = I XO5OlYX. Calcula~tons UC limited means to precision displayed. See Exhibit 6 for corresponding 
loss distribution table. 
** Both pure excess and mixed reinsurunce structures fully expose the excess remsurer in this layer. 
# Baaed on subject premiums from mixed case. 

B=C-A F=G-E 
HTFIR I=l*H 
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EXHIBIT 6 

Limit r( 

I00.000 

3.50.000 
6(H),000 

1 ,000,000 
1,100,000 
I .250,000 

Loss DISTRIBUTION TABLE-CASUALTY EXAMPLE 

LOG NORMAL MODEL* 

t 

* c1 = X.6799043 0 = I .XOSOlY8 
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EXHIBIT 7 

Loss DISTRIBUTION TABLE-PROPERTY EXAMPLE 

LOG NORMALMODEL* 
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ADDRESS TO NEW MEMBERS-NOVEMBER 161992 

PAUL S. LISCORD 

The theme of this brief address comes from one of your “confreres” 
who will be writing his last exam this coming Spring. When I asked what 
he would like to hear upon receiving his Fellowship diploma, he spoke 
with some apprehension of the ever-increasing expectations of the actuar- 
ial profession in the form of discipline committees, standards boards, etc., 
and, perhaps more importantly, the apparent increased probability of mal- 
practice litigation against actuaries by the publics we serve. 

In order to discuss this subject, I think it useful to briefly review how 
we got where we are as the Casualty Actuarial Society. Then, hopefully, 
we’ll try to draw some observations from my experiences as an expert 
witness in a number of litigations involving actuaries. 

I’m sure you won’t be surprised that the CAS did not even have a code 
of professional conduct during its first 50 years of existence. Life was a 
lot simpler when you only had the Workers Compensation and Automo- 
bile lines to worry about, and the number of lawyers per capita was at a 
more reasonable level. It was my generation of actuaries who began 
composing and subsequently enacting guidelines. We established a code 
of professional conduct in the 1960s and a series of Statements of Princi- 
ples for our more important actuarial functions in the 1970s and 1980s. 
Now, our successor generation is taking the next step by writing profes- 
sional standards for a whole variety of actuarial functions, and by creating 
with our sister organizations the Actuarial Board for Counseling and Dis- 
cipline (ABCD). In some ways, I don’t blame any new member for won- 
dering what he or she has gotten into. 

As for my observations from serving as an expert witness, first and 
foremost is that allegations of actuarial malpractice usually stem from the 
plaintiff’s disappointment that actuarial forecasts were not positively ful- 
filled. While the nature of our profession cannot always guarantee suc- 
cess, all too often, plaintiffs were simply not adequately apprised of what 
actuaries do, or better still, what they cannot do. Often, they were over- 



sold on actuarial science. For actuaries in our competitive world, that’s an 
easy trap to fall into. 

Second, a lot of actuarial problems associated with malpractice cases 
involve what I call the accounting approach to actuarial science. This 
usually means that a particular methodology is either misapplied or is 
applied without adequate judgment. Often, the actuary merely applies a 
formula and accepts the answer because the formula is contained in some 
actuarial text, or even worse, because it’s been programmed into the black 
box known as a computer. Further, one of the most important tenets 
contained in the various CAS Principles is that the actuary must pcr.wr~- 

~11~ investigate any changes in the insurance operation being studied so as 
to modify the data judgmentally as required. It’s these subjective steps 
that are most often overlooked and the lack of which usually causes most 
poor forecasts. 

Third, in my opinion, such personal investigation also requires a 
hands-on knowledge of the business most of us serve, the insurance busi- 
ness. The kind of knowledge I’m talking about is not usually found in 
actuarial textbooks. For example, most underwriters arc optimists; they 
have to be or else they could not accept risk. However, this attribute is 
often exacerbated by management’s insistence on growth. which inevita- 
bly reduces underwriting selection to the point of lunacy. Actuaries then 
find themselves in a catch-up posture as to both rates and reserves. De- 
pending upon the availability of recent data to uncover changing trends, 
such circumstances can hamper their ability to “prove” their rccommen- 
dations either to management, or to underwriting, or to both. 

Another example of this kind of knowledge would be in the claims 
operation. Here, the interplay between the adjusters and management is 
crucial to the understanding of claims data, particularly claim develop- 
ment. Often management attempts to intervene. usually by strengthening 
case reserves, which unfortunately distorts, if not completely destroys, 
historical claim development patterns. At the same time. this strcngthen- 
ing usually results in the company settling for higher claim amounts. 
Incidentally, have you ever noticed how adjusters inevitably raise their 
case estimates just prior to settlement to show management that they have 
settled for a lower amount than estimated? 



ADDRESS TO NEW MEMBERS 413 

One last observation: actuarial haste makes for expensive waste in 
terms of malpractice settlements. Inevitably, most of the actuarial mis- 
takes I have observed could have been avoided by the actuary’s taking the 
time to step back to observe the reasonableness of his or her forecast 
before signing off. The old adage still rings true. 

Congratulations on achieving the actuarial successes being recognized 
today. I’m confident that as you expand your actuarial horizons you will 
more fully appreciate the guidelines that have been, and are being, estab- 
lished for the benefit of all actuaries as well as their employers. You 
certainly have nothing to fear from these constraints. In fact, by observing 
them to the fullest you will be very well protected against any allegations 
of wrongdoing that might be directed against you. 
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PRESIDENTIAL ADDRESS-NOVEMBER 16,1992 

AN INVESTMENT IN OUR FUTURE 

MICHAELL.TOOTHMAN 

One of the highlights of my year as President, on a personal basis, was 
getting Ruth Salzmann back to a CAS meeting, this last May in Chicago, 
and beyond that having Ruth back at the CAS podium again to provide 
the address to new members. In her 1979 Presidential Address, Ruth 
referred to the presidential address as the “last rite” in the term of office 
of the president. 

Then last year, in his address to new members, Dan McNamara indi- 
cated that CAS past presidents essentially serve the same function as the 
deceased at an Irish wake-where all the relatives and friends are con- 
vinced that their beloved has gone on to a better life and are in a mood to 
celebrate the event. They need a body to legitimize the party, but nobody 
expects the body to say very much. Such morbid thoughts arise on the 
occasion when our presidents attempt to provide some last pearls of wis- 
dom as they slip off into actuarial obscurity. 

Fortunately, we at the CAS no longer allow our past presidents to 
become total “has beens.” We now recycle them in several different ways. 
One way is the tradition of having a past president address the new 
Associates and Fellows during the business meeting, but we also now 
utilize our past presidents on committees. task forces, and on the Board of 
Directors. This past year, we have been fortunate to have two past presi- 
dents serve on the Board of Directors, Ron Bornhuetter and Jim 
MacGinnitie, and their counsel, wisdom. and experience has been of great 
benefit to the Board. Another past president. Phil Ben-Zvi, has just been 
elected to a three-year Board term. 

Over a year ago, I began to get inquiries from several of our past 
presidents as to whether I had begun my Presidential Address. Jerry 
Scheibl was particularly persistent in reminding me of this duty. and I had 
to continue to reply that I had not yet begun it. Actually. 1 did have an 
outline of my Presidential Address done well over a year ago, but I have 
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now decided not to use it. The title was “Winning the Rat Race,” an 
appropriate description of what goes on during a president’s term. The 
outline consisted of five points: 

1) Worship God in whatever way you know Him-or Her. 

2) Nurture and enjoy the personal relationships. 

3) Know and understand yourself as a professional and the profession 
that you are a part of, and commit some time to improving it. 

4) Understand the dynamics of the business you are in. 

5) Dream BIG dreams. 

As I said, I have decided not to use that address. Perhaps I will use it 
some time in the future. On the other hand, if any of you like the ideas in 
that outline, feel free to use it yourself. Still, I would like to spend just a 
minute on the second point: the personal relationships that one establishes 
within the CAS over the years. 

It is easy for any one of us to get wrapped up in our own individual rat 
races and not really appreciate all of the opportunities for personal rela- 
tionships and friendships that present themselves as part of our day-to- 
day activities. The CAS is filled with wonderful people. What remains, 
years after the Committee work is completed, are the personal relation- 
ships that were developed in the performance of that work. Even after 
business relationships are terminated, the bonds that we share as friends 
and as members of the actuarial profession remain. So I hope each of you 
will take advantage of the opportunities you have to serve the CAS and, 
more importantly, take advantage of the opportunities you have to de- 
velop those friendships and bonds that will prove to be of lasting value. 
But, as I said, that is another speech. 

Today, I would like to talk about an investment in our future: an 
investment in the future of the CAS and in the futures of all of us collec- 
tively as casualty actuaries. 

Investments are not always made knowing just where they will lead. 
By far, the majority of incoming college freshmen either have not yet 
decided upon their major field of study or will change that selection on at 



416 PKESIIEN’I‘IAI. 4lX)KliSS 

least one occasion before graduation. I was in the minority on that score. I 
entered a five-year dual degree program in Applied Mathematics and 
completed that program, yet my career direction changed drastically over 
the course of those five years. Many individuals, once they have com- 
pleted their degree programs, do not work in the field covered by their 
degree. yet that education is not wasted. Those years of study represent an 
investment in one’s future, the acquisition of specific knowledge and the 
development of an ability to think and analyze critically. Those invest- 
ments almost always prove to be worthwhile, even though we do not 
know precisely where they will lead at the time that WC‘ make them. 

The actuarial exams, though much more specific. can be described in 
much the same way. Our education as actuaries is not completed at the 
time that we complete our actuarial exams. Indeed. it has just begun. 
Much of the knowledge that I USC: in my professional career thehe days 
was not even known at the time that I was taking actuarial exams. Envi- 
ronmental liabilities were not an issue back in the early 1970s. Captive 
insurance companies existed, but were such a small factor in the market- 
place that they were hardly mentioned anywhere in the S~dl~h~r~s. Finan- 
cial reinsurance is a whole new area since then, and I do not believe that 
the term commutation was used anywhcrc in the readings on the S~//rh~r.s 
that I had. The list can go on and on. 

Similarly with on-the-job training. Successful carters usually are the 
accumulation of one successful task after another or the successful com- 
pletion of one set of responsibilities after another. It is the rare individual 
that can lay out his future career progression while still in his Z&-per- 
haps in very broad strokes-but the point is that it is much more common 
to really not know what the future may hold. But if you do your current 
job well and learn as much about your business as possible. good oppor- 
tunities will become available to you. 

So it is with the CAS as an organization and with our profession as a 
whole. 

Today, I would like to focus on investments that wc can make to 
expand our vision in three areas. 
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First, I have the vision of the CAS in the future becoming a resource 
for developing casualty actuaries throughout the world. 

Second, I have the vision of us as casualty actuaries moving from the 
realm of assessing risks associated with the insurance transaction to the 
broader area of risk financing. That is, quantifying the financial impact of 
future contingent events wherever they occur, not just within the insur- 
ance transaction. The most obvious area is the whole field of self-insur- 
ance, which, in its myriad forms, annually makes up a larger and larger 
percentage of the commercial insurance market. 

Third, we must move from being experts in particular liabilities to 
being experts on the total balance sheet. 

I believe it is time for us to make investments as an organization and 
as professionals that will move us in these directions, yet I cannot tell you 
what all the implications of those investments will be. I do firmly believe, 
however, that these investments will prove to be beneficial to the CAS 
and to the actuarial profession. 

In his 1976 Presidential Address, Ron Bornhuetter said that the CAS 
had been concentrating all its efforts in the continental United States and 
to this degree had been selfish. He said that there was an acute need, a 
search for knowledge in the property and casualty business worldwide, 
and that we were the owners of the biggest bank. Ron’s address, entitled 
“Challenges,” included the challenge of expanding our horizons beyond 
the United States. We have accomplished much since 1976, but our hori- 
zon as an organization has still been limited largely to North America. It 
is time for us to become active participants in the worldwide actuarial 
community. 

It made me feel very good when I was described once as a “world 
class” actuary. Whether that description was accurate or not, it is my 
belief that the CAS has many world class actuaries, but we need a global 
vision. Over the last few years, I believe we have begun to develop that 
vision, and we have made some of the initial investments that we need to 
make, but the first step is one of perspective and attitude. Individually and 
collectively, we must begin to see ourselves as part of the worldwide 
actuarial community, and we must begin to view insurance as only one 
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form of risk financing. At the same time, we must take a more holistic 
view of our role as financial experts, particularly with regard to insurance 
companies, as we expand our role from being experts on loss and loss 
adjustment expense liabilities to bein g experts on the total financial con- 
dition of insurance companies. 

What. then, are some of these investments? 

I. The Academic Base 

First. we need a broader academic base. In this regard. it could be 
argued that the profession in Europe is further advanced than it is here 
in North America. We refer to our field as actuarial science, yet we 
spend relatively little energy in pushing the frontiers of that science 
outwards. and we can hardly claim that the science is fully developed. 

I am not one to believe that the best actuaries necessarily come 
from actuarial science programs. Indeed, I believe that there is much 
more to being a good actuary than being technically competent, but 
we must, as a profession, maintain and improve upon our technical 
competence. Other skills need to be developed in addition to that but 
not at the expense of it. I am convinced that an investment in develop- 
ing a stronger academic base will strengthen our profession. 

2. The Knowledge Base 

The idea of improving and expanding upon our collective knowl- 
edge base goes hand in hand with strengthening the academic base. 
Our relatively new philosophy of managed research within the CAS is 
now beginning to pay dividends. but even thih improved flow of 
productive research does not begin to fulfill the future potential for 
our profession. A strong academic base will improve the amount of 
productive research by orders of magnitude. I don’t believe we will 
ever want to limit our research efforts to academia. But, to believe 
that we can fulfill the research needs 01‘ our profession without a 
strong contribution from academia is naive and faulty reasoning in 
my view. The global vision is important here. in many ways. We have 
implemented a literature exchange with many foreign actuarial socie- 
ties, and I hope our membership will start to take advantage of the 
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easier access to this literature. Other fields are making advances that 
are either directly or indirectly applicable to risk financing, and we 
need to expand our collective knowledge base to encompass those 
developments. No one can foretell where this investment will lead us, 
but I am convinced that investments in expanding our collective 
knowledge base can’t help but benefit our profession. 

3. Basic Education 

I believe it is now time for us to begin the process of making a 
major investment in the design of our basic education system and in 
its implementation. The implementation issue involves accelerating 
the long-term gradual trend in our exams from an emphasis on spe- 
cific, detailed knowledge to an understanding of principles and devel- 
opment of the individual’s ability to apply those principles. The 
structural investment we must make is to restructure our Syllabus so 

as to separate the actuarial principles that apply to casualty insurance 
anywhere in the world from the knowledge that is important for 
someone if they are to practice in the United States or in Canada. 
Once such a syllabus is achieved, conceptually it would be possible 
for us to qualify actuaries who wish to practice in the United States 
and who are fully qualified abroad by having them pass simply the 
exams that focus on the nation-specific material. I believe it is appro- 
priate for the CAS to make such an investment. Once we have done 
so, we will be in a better position to participate in the development of 
casualty actuaries throughout the world. 

In all of this, it is not my suggestion that the CAS try to impose 
itself upon existing actuarial organizations abroad. Rather, I believe 
that the CAS can serve as an important resource that will add value to 
a partnership involving the CAS and other existing actuarial organiza- 
tions around the world. Our members will benefit from such an ex- 
pansion of our vision, and I believe we bring enough value to the 
table that the members of the actuarial profession abroad will benefit 
as well. But, in all our endeavors, we must act as true and equal 
partners and treat all of our potential partners as we would wish to be 
treated. 



4. Continuing Education 

Our continuing education program has been successful by almost 
any standard. yet we must make a significant short-term investment 
here as we move to prepare our mcmbcrs to function as appointed 
actuaries opining on an insurer’s current and future solvency pros- 
pects. In the longer term, as we adopt a more global perspective. OUI 

continuing education program will have to expand to provide many 
tttorc opportunities than are currently being provided, in order to 
allow each individual to find those continuing education opportunities 
that will best assist that individual in the development of his or her 
career. This investment will rcquirc an expansion of our vision and 
will require us to leverage our rcsourccs much more than we do 
today. It will require us to use resources from outside the actuarial 
community, where appropriate, but it is an investment that will bcne- 
fit our profession. 

5. Standards of Practice and Discipline Procedures 

The final investment is one that we have already started to make- 
an investment in the development of standards of practice and in the 
establishment of a well-functioning, self-policing procedure. I will 
combine these two areas because they are so closely related and be- 
cause we have made the initial investments in both areas. both in the 
United States and in Canada. These issues arc also very high priority 
issues for the actuarial profession around the world. Indeed. virtually 
every actuarial organization is either actively involved or is highly 
concerned with how to become more involved in these two areas. The 
initial investments in North America have been made with the estab- 
lishment of the Actuarial Standards Board and the development of 
Standards of Practice within Canada. and with the establishment of 
the ABCD and development of stronger disciplinary procedures 
within the CIA. Yet these investments are just the beginning. Ongoing 
investments will be required as further standards of practice arc de- 
veloped and as we, as a profession. now face up to the questions of 
whether we are really prepared to police ourselves. As in all of the 
other investments, WC do not know just where these investments will 
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lead, but I am convinced that investments in these areas are necessary 
to the further development of our profession. 

What will these investments mean to us organizationally? I do not 
know. I believe that in public interface issues it is important for the 
actuarial profession within each country to be able to speak with one 
voice. It was for this reason that we established the American Academy of 
Actuaries within the United States. That organization is important to our 
collective future. However, the Casualty Actuarial Society and the Society 
of Actuaries are basically research and educational organizations. The 
research and educational functions are, for the most part, not nation-spe- 
cific, and I strongly believe that it is therefore beneficial for the research 
and educational functions to be organizationally separate from the public 
interface function. 

Some leaders of our profession decry the separation of the casualty 
branch and have suggested that actuaries ought to be qualified to practice 
in all practice areas. I believe that that philosophy is misguided. I am 
persuaded that the casualty branch of the profession is stronger in the 
United States than it is anywhere else in the world. As Ron Bornhuetter 
said, we have the biggest bank of property/casualty actuarial knowledge. I 
believe that it is highly unlikely that our bank would be anywhere near 
the size that it is if it were not for the founding of the Casualty Actuarial 
and Statistical Society of America, now the Casualty Actuarial Society, in 
November I9 14. 

I believe it is appropriate for all actuaries to have some basic under- 
standing of the underlying concepts and principles in the other branches 
of the actuarial profession-what I would call “conversational compe- 
tence”-but I believe that it is far more important for us to maintain the 
depth of knowledge that we provide to members of the Casualty Actuarial 
Society than it is to dilute that effort over several branches of the actuarial 
profession. For this reason, we will continue to resist any attempts to 
undermine a separate casualty organization. Rather our focus needs to be 
on cooperation, not consolidation, with the other North American actuar- 
ial organizations wherever that makes sense. Our focus must also be on 
creating new partnerships with actuarial organizations abroad, as we ex- 
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pand our view as casualty actuaries and assist in the development of the 
actuarial profession on a global basis. 

Investments in our future-Big dreams! 

This is a wonderful profession. 1 hope that each of you will involve 
yourselves in it deeply. Debate the vision and the investments. Work to 
shape them, and then make them happen. 

In closing, I would like to share a poem entitled, “Take Time.” It 
clearly is written with the intention that it be applied to your individual 
lives, but I would ask that you listen to it and think of how you might 
apply it in the context of the CAS- 

TAKE TIME 

Take time to WORK: 
it is the Price of Success. 
Take time to THINK: 
it is the Source of Power. 
Take time to PLAY: 
it is the Secret of Perpetual Youth. 
Take time to READ: 
it is the Fountain of Wisdom. 
Take time to WORSHIP: 
it is the Highway to Reverence. 
Take time to be FRIENDLY: 
it is the Road to Happiness. 
Take time to LAUGH: 
it is the Music of the Soul. 
Take time to DREAM: 
it is Hitching Your Wagon to a Star. 
TAKE TIME TO LIVE. 

In two days, it will be time for me to take some time. Thank you for 
the honor of serving as your President. 
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MINUTES OF THE 1992 ANNUAL MEETING 

November 15-18. 1992 

THE BOCA RATON RESORT & CLUB 
BOCA RATON, FLORIDA 

Sunday, November 15, I992 

The Board of Directors held their regular quarterly meeting from noon 
until 5:00 p.m. 

Registration was held from 4:00 p.m. until 630 p.m. 

From 5:30 p.m. until 6:30 p.m., there was a special presentation to 
new Associates and their guests. The session included an introduction to 
the standards of professional conduct and the CAS committee structure. 

A welcome reception for all members and guests was held from 6:30 
p.m. until 7:30 p.m. 

Monday, November 16.1992 

Registration continued from 7:00 a.m. until 8:00 a.m. 

CAS President Michael Toothman opened the meeting at 8:00 a.m. 
with the results from the recent election of officers. The members of the 
1993 Executive Council will be Vice President-Administration, John M. 
Purple; Vice President-Admissions, Steven G. Lehmann; Vice President- 
Continuing Education, David N. Hafling; Vice President-Programs and 
Communications, Alice H. Gannon; Vice President-Research and Devel- 
opment, Allan M. Kaufman. President-Elect will be Irene K. Bass. New 
Board members will be Albert J. Beer, Phillip N. Ben-Zvi, Michael J. 
Miller, and Susan T. Szkoda. 

Toothman thanked the outgoing Board members and welcomed es- 
teemed guests in the audience, including: Tim Tinsely, executive director 
of the CAS; Takehisa Kikuchi, vice president, Institute of Actuaries, 
Japan; James Murphy, executive vice president, American Academy of 
Actuaries; Donald Sondergeld, past president of the Society of Actuaries; 
Pablo Noriega, president of the Instituto National de Estadistica (Mex- 
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ice): and Oliva Sanchez. director ol’the Escuela dc Actuaria, Universidad 
Anahuac (Mexico). 

John Purple read the Secretaryflreasurer’s Report. 

Steven Lehmann and Allan Kaufman introduced the 52 new Associ- 
ates and David Flynn introduced the 62 new Fellows ai the meeting. The 
names of these individuals follow. 

Rebecca C. Amoroso 
Anthony J. Balchunas 
Douglass L. Beck 
Nathalie Begin 
Martin Cauchon 
Denis Cloutier 
Jeffrey R. Cole 
Charles Cossette 
Robert J. Curry 
Francois Dagneau 
Patrick K. Devlin 
John W. Ellingrod 
James Ely 
David A. Foley 
France Fortin 
John F. Gibson 
Susan M. Gozzo 
Eric L. Greenhill 
Diane K. Hausscrman 
Todd J. Hess 
James S. Higgins 

FELLOWS 

Keith D. Holler 
George A. Hroziencik 
Kathleen M. Ireland 
Peter H. James 
Brian J. Kincaid 
Richard 0. Kirste 
Ronald T. Ko/.lowski 
David J. Kretsch 
John A. Lamb 
Jean-Marc L&eillP 
Blaine C. Marles 
Burton F. Marlowe 
Steven E. Math 
Liam M. McFarlane 
William T. Mech 
Charles B. Mitzel 
Richard B. Moncher 
Todd B. Munson 
Margaret M. O’Brien 
Jacqueline E. Paslq 
Susan J. Patschak 

Robert Potvin 
Richard W. Prescott 
Kenneth P. Quintilian 
Kay K. Rahardjo 
Srinivasa Ramanujam 
Scott E. Reddig 
Sharon K. Robinson 
Diane R. Rohn 
Edmund S. Scanlon 
Margaret E. Seiter 
Marie Sellitti 
Vincent M. Senia 
Christy L. Simon 
Christopher M. 

Smerald 
Douglas N. Strommen 
Michael A. Visintainer 
Sebastian Vu 
Christopher P. Walker 
Marjorie C. Weinstein 
Gregory S. Wilson 
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Daniel N. Abellera 
Nancy L. Arico 
George P. Bradley 
Donna D. Brasley 
Ward M. Brooks 
Linda J. Burrill 
Anthony E. Cappelletti 
Mary L. Corbett 
Jeffrey L. Dollinger 
Jeffrey D. Donaldson 
Paul E. Ericksen 
Lynne W. Faucher 
Judith M. Feldmeier 
Russell Frank 
Laurence B. Goldstein 
Sandra K. Halpin 
Bradley A. Hanson 
Renee Helou 

ASSOCIATES 

Jeffrey R. Hughes 
Daniel R. Keddie 
Ann L. Kiefer 
Stephen E. Lehecka 
Stephanie J. Lippl 
James M. Maher 
Galina Margulis 
Heather L. McIntosh 
Van A. McNeal 
Raymond D. Muller 
Mary Beth O’Keefe 
Douglas W. Oliver 
Richard A. Olsen 
William Oostendorp 
Todd F. Orrett 
Joseph M. Palmer 
Jennifer J. Palo 
Daniel A. Powell 

Jean Roy 
Maureen S. Ruth 
Melodee J. Saunders 
Jeffery J. Scott 
Gregory R. Scruton 
James J. Smaga 
Scott J. Swanay 
Charles F. Toney, II 
Michael J. Toth 
James F. Tygh 
David B. 

Van Koevering 
Phillip C. Vigliaturo 
William E. Vogan 
Stephen D. Warfel 
Joyce A. Weisbecker 
Ralph T. Zimmer 

Paul S. Liscord was introduced and gave the Address to New Mem- 
bers. 

Mr. Toothman presented the 1992 Matthew Rodermund Service 
Award to Norman J. Bennett. As part of the presentation ceremony, 
Toothman read a letter from Matt Rodermund. 

A moment of silence was held to mark the passing of six members of 
the CAS during the past year. 

Mr. Beer gave the highlights of the program, and Chairman of the 
Committee on Review of Papers Richard Biondi summarized the six 
Proceedings papers being presented. The Woodward-Fondiller Prize was 
awarded to William R. Gillam and the Dorweiler Prize was awarded to 
John P. Robertson. Mr. Toothman made a call for reviews of previously 
presented Proceedings papers and received no responses. 

A General Session panel discussion was held from IO:00 a.m. until 
IO:45 a.m. on “The Role of the American Academy of Actuaries.” The 



session was led by David G. Hartman. with Ronald L. Bomhuetter and 
Michael A. Walters as panelists. 

The Featured Speakers. Fred Barnes and Morton Kondracke, senior 
editors of T/w NCM’ Rqmhlic~ and frequent panelists on “The McLaughlin 
Group.” spoke from 10:4S a.m. until noon. 

Their presentation was followed by a luncheon with the Presidential 
Address by Michael Toothman. Lunch wa\ from noon until I:30 p.m. 

The afternoon was dcvotcd to concurrent sessions which consisted ot 
various panels and papers. 

The panel presentations cover4 the following topics: 

1. Finite Risk Rcinsurancc-Three Perspectives 

Moderator: Heidi E. Hutter 
Executive Vice President 
Atrium Corporation 

Panelists: Gregory E. Leonard 
President and Chief’ Exccutivc Officer 
Pegasus Advisors, Inc. 

Richard J. Roth, Jr. 
Assistant Commissioncl 
Calit’ornia Department of Insurance 

David Holman 
Partner 
Ernst & Young 

2. The Alphabet Soup of Professionalism: 
AAA, ABCD, ASB, and CIA 

Moderator: Jerome A. Scheibl 
(Chairman CAS Discipline Committee and 
Member Actuarial Board for Counseling 
and Discipline) 
Vice President-Industry Affitirs 
Wausau Insurance Companies 
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Panelists: W. James MacGinnitic 
(Chairman American Academy of Actuaries 
Committee on Professional Responsibility) 
Consulting Actuary 
Tillinghastflowers Perrin 

Michael J. Miller 
(Chairman Actuarial Standards Board 
Casualty Committee) 
Consulting Actuary 
Tillinghast/Towers Perrin 

3 _ . Loss Distributions and the Collective Risk Model 

Speaker: Stuart A. Klugman, F.S.A., Ph.D. 
Principal Financial Group 
Professor of Actuarial Science 
College of Business and Public Administration 
Drake University 

4. What an Investment Department Needs to Know from an 
Actuary 

Moderator: Sheldon Rosenberg 
Vice President and Chief Actuary 
Continental Insurance 

Panelists: Walter Blasberg 
President 
Continental Asset Management 

Sar Kun Moy 
Vice President 
Continental Asset Management 

5. New IS0 Risk Load in ILFs-What Does it Mean‘? 

Moderator: Gary S. Patrik 
Senior Vice President and Actuary 
North American Reinsurance Corporation 
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Panelists: Glenn G. Meyers 
Assistant Vice President and Actuary 
Insurance Services Office. Inc. 

Ira Robhin, Ph.D. 
Assistant Vice President 
Director of Actuarial Research 
CIGNA Property & Casualty Companies 

Edward W. Weissnet 
Vice President, Actuarial 
Prudential Reinsurance Company 

6. The Oakland Fires-What Have We Learned? 

Moderator: Karen F. Terry 
Actuary 
State Farm Fire and Casualty Company 

Panelists: Joseph Meyer 
Senior Vice President 
United Services Automobile Association 
Western Region 

Tom Morrison 
Property Lines Director-Claims 
Allstate Insurance Companies 

7. Risk Classification Principles 

Panelists: Cecily A. Gallagher 
(Chairperson-Committee on Risk Classification) 
Consulting Actuary 
TillinghasQTowers Perrin 

Frederick F. Cripe 
Assistant Vice President 
Allstate Insurance Company 

Kevin J. Conley 
Actuarial Administrator 
Iowa Insurance Division 
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8. Questions and Answers with the CAS Board of Directors 
Moderator: David P. Flynn (President-Elect) 

Senior Vice President and Chief Actuary 
Crum & Forster Corporation 

Current Board 
Members: Janet L. Fagan (Elected 1989) 

Director of Casualty Actuarial Services 
Coopers & Lybrand 

Gary S. Patrik (Elected 1991) 
Senior Vice President and Actuary 
North American Reinsurance Corporation 

The new Proceedings papers presented were: 

1. “Workers’ Compensation Experience Rating: What Every Actuary 
Should Know” 

Author: William R. Gillam 
National Council on Compensation Insurance 

2. “Stochastic Claims Reserving When Past Claim Numbers Are 
Known” 

Author: Thomas Wright 
Consultant 

3. “Pricing for Credit Exposure” 

Author: Brian Z. Brown 
Milliman & Robertson, Inc. 

The officers held a reception for new Fellows and their guests from 
5:00 p.m. until 6:00 p.m. There was a general reception for all members 
from 6:00 p.m. until 7:OO p.m. The musical comedy, “The Sting,” was 
presented from 7:00 p.m. until 8:30 p.m. 

Tuesday, November 17, I992 

A General Session on a “Mock Trial on Actuarial Professional Stan- 
dards” was held from 8:30 a.m. to IO:00 a.m. David S. Powell, Consult- 
ing Actuary with Tillinghast/Towers Pert-in, and Ralph B. Levy, Esq., of 
King & Spalding, were the presenters. 



430 MtNLlTES OFTHE ic)c)? ANNIIAI. MI:t:t‘tXi 

From IO:00 a.m. until noon, several concurrent sessions were held. 
The panel presentations, in addition to some of the subjects covered on 
Monday, covered the topics of: 

I. Malpractice Avoidance for Actuaries 
Moderator: David S. Powell 

Consulting Actuary 
Tillinghast/Towers Perrin 

Panelists: Ralph B. Levy 
King & Spalding 

Jack M. Turnquist 
(Chairman, Actuarial Standards Board) 
Totidem Verbis 

Lauren M. Bloom 
General Counsel 
American Academy of Actuaries 

2. CAS-Sponsored Research 

Moderator: Allan M. Kaufman 
(Vice President-Research and Development) 
Principal 
Milliman & Robertson, Inc. 

Panelists: LeRoy A. Boison, Jr. 
(Liaison to SOA Research Policy Committee) 
Vice President 
insurance Services Office. Inc. 

Gregory L. Hayward 
(Chairperson, Ratemaking Commitlee) 
Actuary 
State Farm Mutual Automobile Insurance Co. 

James W. Yow 
(Chairperson 
Valuation & Financial Analysis Committee) 
Vice President and Corporate Actuary 
Aetna Life & Casualty 
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3. Catastrophe Insurance Futures 

Moderator: Joseph A. Herbers 
Consulting Actuary 
Tillinghast/Towers Perrin 

Panelists: Gregory Samorajski 
Group Manager-Financial Instruments 
Economic Analysis and Planning 
Chicago Board of Trade 

Stephen P. D’Arcy 
Department of Finance, University of Illinois 

Jonathan Lewis 
Manager, Fixed Income Portfolio 
Skandia Investment Managers 

4. Considerations Regarding Catastrophic Medical Claims and 
Automobile Insurance 

Panelists: William J. VonSeggern 
Chief Actuary 
AAA Michigan 

Roger M. Hayne 
Consulting Actuary 
Milliman & Robertson, Inc. 

5. Experience Rating Overview 

Moderator: Mark W. Mulvaney 
Consulting Actuary 
Milliman & Robertson, Inc. 

Panelists: William R. Gillam 
Assistant Vice President and Actuary 
National Council on Compensation Insurance 

David M. Bellusci 
Senior Vice President and Actuary 
Workers’ Compensation Insurance Rating 
Bureau of California 



One new Proceedings paper presented was: 
1. A Review of “The Competitive Market Equilibrium Risk Load 

Formula for Increased Limits Ratemaking” (Glenn Meyers, PCAS 
LXXVIII) 

Author: It-a Robbin, Ph.D. 
Assistant Vice President 
Director of Actuarial Research 
CIGNA Property & Casualty Companies 

The afternoon was reserved for committee meetings. 

A clambake was held from 6:30 p.m. until IO:30 pm. 

Wednesday. Nownhv- 18, 1992 

From 8:OO a.m. to 9:30 a.m. several concurrent sessions were held and 
two i’roc~eedin~~s papers were presented. They were: 

1. Credibility Based on Accuracy” 

Author: Joseph A. Boor 
Director-Actuarial 
Motors Insurance Corporation 

2. A Review of “The Cost of Mixing Reinsurance” (Ronald F. Wiser, 
PCAS LXXIII) 

Author: Michael Wacek 
General Manager 
St. Paul Fire & Marine Insurance Company 

Following a refreshment break, a General Session was held on the 
topic of “The NAIC’s Examination of the NCCI.” 

Moderator: E. Frederick Fossa 
Consulting Actuary 
Milliman & Robertson, Inc. 

Panelists: Margaret C. Spencer 
Arthur Andersen & Co. 

Patrick J. Grannan 
Consulting Actuary 
Milliman & Robertson, Inc. 
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Ronald C. Retterath 
Senior Vice President and Actuary 
National Council on Compensation Insurance 

James D. Watford 
Actuary 
Florida Insurance Department 

After the transfer of the presidency, Michael Toothman gave the clos- 
ing remarks. The meeting adjourned at 11:45 a.m. 

Nowmher I992 Attenders 

In attendance, as indicated by the registration records, were 363 Fel- 
lows, 193 Associates, and 64 guests, subscribers, and candidates. The list 
of members’ names follows. 

Abell, Ralph 
Alfuth, Terry 
Amoroso, Rebecca 
Anker, Robert 
Apfel, Kenneth 
Aquino, John 
Artes, Lawrence 
Asch, Nolan 
Atkinson, Richard 
Balchunas, Anthony 
Barnes, W. Brian 
Bass, Irene 
Bassman, Bruce 
Beck, Douglas 
Beer, Albert 
Begin, Nathalie 
Bell, Linda 
Bellusci, David 
Bennett, Norman 
Ben-Zvi, Phillip 
Berens, Regina 

FELLOWS 

Biegaj, William 
Bill, Richard 
Biller, James 
Biondi, Richard 
Blair, Gavin 
Blakinger, Jean 
Blanco, Robert 
Blodget, Hugh 
Boison, LeRoy 
Boor, Joseph 
Bomhuetter, Ronald 
Boyd, Wallis 
Bradley, Scott 
Braithwaite, Paul 
Brannigan, James 
Brehm, Paul 
Brown, Brian 
Bryan, Charles 
Buck, James 
Captain, John 
Cardoso, Ruy 

Carlson, Christopher 
Carpenter, William 
Carroll, Lynn 
Cascio, Michael 
Cauchon, Martin 
Caulfield, Michael 
Charest, Danielle 
Chernick, David 
Chiang, Jeanne 
Christie, James 
Chuck, Allan 
Cieslak, Walter 
Ciezadlo, Gregory 
Cis, Mark 
Clark, Brooks 
Cloutier, Denis 
Cole, Jeffrey 
Cook, Charles 
Corr, Francis 
Cossette, Charles 
Gripe, Frederick 



Crowe, Alan 
Cundy, Richard M. 
Cut-ran, Kathleen 
Currie, Diana 
Currie. Ross 
Curry, Alan 
Curry, Robert 
Dagneau, Francois 
Daino, Robert 
D’Arcy. Stephen 
Dean, Curtis G. 
Dekle. James 
DeLiberato. Robert 
Dembiec. Linda 
Dempster, 
HowardDevlin. Patrick 
Dodd, George 
Dolan, Michael 
Dornfeld, James 
Drennan, John 
Duffy, Timothy 
Dukatz, Judy 
Dye. Myron 
Ezarwaker, Bruce 
Edlefson, Dale 
Effinger. Jr., Bob 
Ellefson, Thomas 
Ellingrod, John 
Ely, James 
Englander, Jeffrey 
Engles. David 
E?icson, Janet 
Faga, Doreen 
Fagan, Janet 
Fein, Richard 

Finger, Robert 
Fitzgerald, Beth 
Fitzpatrick. William 
Flynn, David 
Foley, David 
Forker, David 
Fortin, France 
Fossa, E. Frederick 
Frohlich, Kenneth R. 
Furst, Patricia 
Fusco. Michael 
Gallagher, Cecily 
Gallagher, Thomas 
Gannon, Alice 
Garand. Christopher 
Gardner, Robert 
Gebhard, James 
Gelinne, David 
Gibson, Richard 
Gibson, John A. 
Gibson, John F. 
Gill, Bonnie 
Gillam, Judy 
Gillam. William R. 
Gilles, Joseph 
Gillespie. Bryan C. 
Girard. Gregory 
Gluck, Spencer 
Goddard, Daniel 
Goldfarb, Irwin 
Gottlieb, Leon 
Gozzo, Susan 
Grady, David 
Grannan, Patrick 
Grant. Gary 

Graves, Gregory 
Greco, Ronald 
Grecnhill. Eric 
Griffith, Ann 
Groh, Linda 
Hafling, David 
Hale, Kyleen 
Hall, James 
Harrison, David 
Hartman, David 
Hausserman. Diane 
Hayne. Roger 
Hayward, Gregory 
Hennessy. Mary 
Hccr. E. LeRoy 
Henry, Dennis 
Hermes, Thomas 
Hess, Todd 
Hcyman, David 
Higgins, James 
Hines, Alan 
Holler, Keith 
Hough. Paul 
Howald, Ruth 
Hroziencik, George 
Hutter. Heidi 
Ingco, Aguedo 
lrcland, Kathleen 
It-van, Robert 
James, Peter 
Jameson. Stephen 
John. Russell 
Johnson. Marvin 
Johnson, Warren 
Jones, Bruce 
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Kane, Adrienne 
Karlinski, Frank 
Kaufman, Allan 
Keen, Eric 
Keller. Wayne 
Kincaid, Bryan 
Kirste, Richard 
Kist, Fredrick 
Koupf, Gary 
Kozlowski, Ronald 
Krakowski, Israel 
Kreps, Rodney 
Lalonde, David 
Lamb, Dean 
Lamb, John 
LaMonica, Michael 
Lebens, Joseph 
Lehmann, Steven 
Leonard. Gregory 
Leong, Winsome 
Leveille, Jean-Marc 
Levin, Joseph 
Lew, Allen 
Lipton, Barry 
Liscord, Paul 
Lo, Richard 
Loisel, Andre 
Lotkowski. Edward 
Lowe, Stephen 
Ludwig, Stephen 
MacGinnitie, James 
Marks, Steven 
Marles, Blaine 
Marlowe, Burton 
Mashitz, Isaac 

FELLOWS 

Math, Steven 
Mathewson, Stuart 
McAllister, Kevin 
McClure, John 
McCoy, Mary 
McDonald, Gary 
McFarlane, Liam 
McManus, Michael 
Mealy, Dennis 
Mech, William 
Menning, David 
Meyers, Glenn 
Miccolis, Robert 
Miller, David 
Miller, David 
Miller, Mary Frances 
Miller, Michael 
Miller, Philip 
Miller, Susan 
Miller, William 
Mitchell, H. Elizabeth 
Mitzel, Charles 
Moncher, Richard 
Morrow, Jay 
Mucci, Robert 
Mueller, Nancy 
Mulder, Toni 
Muleski, Robert 
Mulvaney, Mark 
Munro, Richard 
Munson, Todd 
Murphy, Daniel 
Murrin, Thomas 
Muza, James 
Myers, Thomas 

Nelson, Chris 
Nelson, Janet 
Nemlick, Kenneth 
Nester, Karen 
Newell, Richard 
Nichols, Richard 
Nickerson, Gary 
Norton, Jonathan 
O’Brien, Margaret 
O’Connell, Paul 
Oien, R. Gus 
Onufer, Layne 
Overgaard, Wade 
Pagnozzi, Richard 
Palm, Robert 
Parker, Curtis 
Pasley, Jacqueline 
Patri k, Gary 
Patschak, Susan 
Perreault, Stephen 
Peterson, Steven 
Petit, Charles 
Philbrick, Stephen 
Pinto, Emanuel 
Post, Jeffrey 
Potvin, Robert 
Pratt, Joseph 
Prescott, Richard 
Prevosto, Virginia 
Pridgeon, Ronald 
Purple, John 
Quintano, Richard 
Quintilian, Kenneth 
Quirin, Albert 
Racine. Andre 
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Rahardjo, Kay 
Ramanujam, Srinivasa 
Reale, Pamela Sealand 
Reddig, Scott 
Retterath, Ronald 
Richardson, James 
Robinson, Richard 
Robinson, Sharon 
Rominske, Steven 
Rosenberg, Sheldon 
Ross, Gail 
Roth, Jr., Richard 
Salton, Jeffrey 
Salton. Melissa 
Sandman, Donald 
Scanlon, Edmund 
Scheibl, Jerome 
Scheuing, Jeffrey 
Schmidt, Jeffrey 
Schmidt, Neal 
Schultheiss, Peter 
Schultz, Roger 
Schwartzman, Joy 
Seiter, Margaret 
Sellitti, Marie 
Shepherd, Linda 
Sherman, Harvey 
Shoop, Edward 
Shrum, Roy 

FELLOWS 

Silver, Melvin 
Simon, Christy 
Simon, LeRoy 
Skurnick, David 
Smerald, Christopher 
Sobel, Mark 
Spidell, Bruce 
Stanard, James 
Steeneck, Lee 
Steinen, Phillip 
Steiner& Lawrence 
Stergiou, James 
Stewart. C. Walter 
Strommen, Douglas 
Suchoff, Stuart 
Sutter, Russel 
Svendsgaard, Christian 
Szkoda, Susan 
Taylor, Angela 
Taylor, Frank 
Taylor, Jane 
Terrill, Kathleen 
Terry, Karen 
Thompson, Kevin 
Tistan, Ernie 
Toothman, Michael 
Treitel. Nancy 
Trudeau, Michcl 
Venter, Gary 

Verges, Ricardo 
Visintainer, Michael 
Visintine. Gerald 
Visner, Steven 
VonSeggern, William 
Votta, James 
Vu. Sebastian 
Wacek. Michael 
Walker. Christopher 
Walker, Glenn 
Walters, Michael 
Walters, Mavis 
Walton, Patrick 
Wargo, Kelly 
Weber, Dominic 
Weinstein, Marjorie 
Weissner, Edward 
White, David 
White, Jonathan 
Whitlock, Robert 
Whitman, Mark 
Wildman, Peter 
Willsey. Robert 
Wilson, Gregory 
Winslow. Martha 
Wulterkens, Paul 
Yocius, Richard 
Yow, James W. 
Zatorski. Richard 
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Abellera, Daniel 
Allard, Jean-Luc 
Allison, Kerry 
Anderson, Bruce 
Andler, James 
Applequist, Virgil 
Arico, Nancy 
Ashman, Martha 
Bauer, Bruno 
Boardman, Thomas 
Bradley, George 
Brasley, Donna 
Brauner, Yaakov 
Brooks, Ward 
Bums, William 
Burt-ill, Linda 
Cappelletti, Anthony 
Casale, Kathleen 
Cellars, Ralph 
Chabarek, Paul 
Charbonneau, Scott 
Chen, Chyen 
Chorpita, Fred 
Closter, Donald 
Coca, Michael 
Connor, Vincent 
Conway, Thomas 
Corbett, Mary 
Covitz, Burton 
Creighton, Kenneth 
Curry, Michael 
Daly, Michael 
Davenport, Edgar 
Davis, Brian 
Davis, James 

ASSOCIATES 

DeConti, Michael 
Der, William 
Diss, Gordon 
Dollinger, Jeffrey 
Donaldson, Jeffrey 
dos Santos, Victor 
Douglas, Frank 
Dubin, Michael 
Ebert, Maribeth 
Elia, Dominick 
Emmons, William 
Ericksen, Paul 
Faucher, Lynne 
Feldmeier, Judith 
Fields, David 
Fonticella, Ross 
Frank, Russell 
Gaillard, Mary 
Gerard, Felix 
Gerlach, Scott 
Gidos, Peter 
Godbold, Nathan Terry 
Goldberg, Steven B. 
Goldberg, Terry 
Goldstein, Laurence 
Granoff, Gary 
Griffith, Roger 
Grose, Carleton 
Gusler, Terry 
Gutman, Ewa 
Haidu, James 
Halliwell, Leigh 
Hanson, Bradley 
Harbus, Jonathan 
Hav. Randoloh 

Head, Thomas 
Helou, Renee 
Henry, Thomas 
Herbers, Joseph 
Hinds, Kathleen 
Hobart, Gary 
Horovitz, Deborah 
Hofmann, Richard 
Hughes, Jeffrey 
Ikeda, Joanne 
Ill, Jeffrey 
Jeng, Hou-Wen 
Johnston, Daniel 
Jonske, James W. 
Kaufman, David 
Kavacky, Trina 
Keddie, Daniel 
Kiefer, Ann 
Kreuser, Adam 
Kuo, Chung-Kuo 
Lannutti, Nicholas 
Larkin, James 
Larson, Michael 
Lehecka, Stephen 
Leo, Carl 
Lippl, Stephanie 
Llewellyn, Barry 
Macesic, David 
Maguire, Brian 
Maher, James 
Main, William 
Malik, Sudershan 
Mango, Donald 
Manis, Donald 
Manktelow. Blair 
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Margulis, Galina 
Marks-Samuelson, 

Rosemary 
McCreesh, James 
McCutcheon, John 
McGee, Stephen 
McIntosh, Heather 
Mckay, Donald 
McNeal. Van A. 
McPadden. Sean 
Miller. Brett 
Mittal, Madan 
Muller, Raymond 
Musante, Donald 
Neghaiwi. Antoine 
Newman, Henry 
Nystrom, Keith 
O’Kccfe, Mary Beth 
Oliver. Douglas 
Olsen, Richard 
Olszewski, Laura 
Oostendorp, William 
Orrett. Todd 
Ostcrgrcn, Gregory 
Paddock, Timothy 
Paffenback, Teresa 
Palmer, Joseph 
Peacock, Willard 
Perr, Timothy 
Poole, Brian 

Powell, Daniel 
Pulis, R. Stephen 
Rabenold, Eric 
Raws. Alfred 
Rech. James 
Reed, Donna 
Rhoads, Karin 
Rosenbach, Allen 
Rosenstcin, Kevin 
Roth, Scott 
Rowe, Bradley 
Roy. Jean 
Ruth, Maureen 
Ryan. John 
Samson, Sandra 
Sandler, Robcr~ 
Saunders. Melodec 
Schadler, Thomas 
Schlenker. Sara 
Schmidt, I,isu 
Schoenbcrger, Susan 
Scott, Jeffrey 
Scruggs. Michael 
Scruton, Gregory 
Shannon. Derrick 
Shepherd, David 
Silverman. Janet 
Smaga, James 
Smith. David 
Snow, David 

Strauss. Frederick 
Swanay, Scott 
Taylor. R. Glenn 
Thompson. Eugene 
Thompson. Robert 
Toledano, Michael 
Torgrimson, Darvin 
Treskolasky. Susan 
‘I‘ygh. James 
Vulentinc, Peter 
Van De Water, John 
Vigliaturo, Philip 
Vegan. William 
Wachter, Christopher 
Walker. Patricia 
Warfel, Stephen D. 
Washburn. Monty 
Watford, James D. 
Weinstein. Scott 
Weisbechcr. Joyce 
Wenitsky. Russell 
Wcrland, Debra 
Wills. Mary 
Walter. Kathy 
Yczzi, Vincent 
Yu. Shcng 
Y unque, Mark 
Zalcski, Ronald 
Zimmer. Ralph 



REPORT OF THE VICE PRESIDENT-ADMINISTRATION 

As 1 complete my first full year as Vice President-Administration, I 
am amazed, maybe even overwhelmed, by the scope, breadth, and sheer 
volume of activities in which the CAS is involved. Fulfilling the objective 
of this report, which is to provide the membership with a brief summary 
of CAS activities since the last annual meeting, is a real challenge! My 
apologies, in advance, for any sins of omission. 

I will summarize the activities of the last 12 months into three catego- 
ries: major initiatives, ongoing significant activities. and an update on the 
“state of the CAS.” 

MAJOR INITIATIVES 

The CAS Board of Directors approved the Code of Professional Con- 
duct which became effective on January 1, 1992. This Code replaced the 
Guides to Professional Conduct and Opinions in their entirety and pro- 
vides for a greater degree of uniformity with the Codes of other actuarial 
organizations. The Code obligates CAS members to abide by applicable 
qualification and practice standards. 

In January, the membership voted to approve revisions to the CAS 
Constitution and Bylaws that recognize the new Code of Conduct and 
establish the Actuarial Board for Counseling and Discipline (ABCD) as 
the counseling and investigatory arm of the profession. The ABCD offic- 
ially became operational on July I, 1992, and has developed rules of 
procedure which have been circulated to members for comments. At the 
same time, the CAS Discipline Committee is revising its operating rules 
and administrative guidelines in order to handle ABCD referrals. These 
are expected to be reviewed by the CAS Board in March 1993. 

The Course on Professionalism was given six times in five different 
locations during 1992, with 285 students attending. A mock actuarial trial 
has been introduced in the course and other enhancements are under 
consideration. A limited attendance workshop was held at the May Meet- 
ing in Chicago to expose Fellows to case studies from the course, and, in 
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addition, a mock trial is being presented at the November 1992 Annual 
Meeting. 

The Long Range Planning Committee has identified the issue of “ac- 
tuarial integrity” as one of its highest priority issues for 1993. Further 
initiatives to increase the membership’s awareness of professionalism will 
be developed. A workshop on this topic at the November Meeting will 
focus on current activities and concerns about development and compli- 
ance. 

The Task Force on International Policy was established by CAS Presi- 
dent Toothman to develop views and alternatives on the potential future 
role for the CAS outside of North America. A draft report of the Task 
Force was presented for discussion at the September Board meeting. The 
general direction from the Board focused on the following areas: 

We should continue to move forward in establishing diplomatic rela- 
tions. We have already contacted 3 1 international actuarial organiza- 
tions and have established publication exchange agreements with 18. 
We will continue to invite the leaders of other actuarial organizations 
to CAS meetings and seminars. 

Both the Syllabus and Continuing Education Committees should ex- 
plore opportunities for including international content in their readings 
and seminars. 

We should continue high-level counterpart discussions. The Council 
of Presidents is working to establish four new seats on the Interna- 
tional Actuarial Association for the Presidents and Presidents-Elect of 
the CAS and SOA. Mike Toothman recently represented the CAS at 
the Groupe Consultatif meetings in Dublin. Ireland, as reported in the 
November Actmn’al RevicM>. Many such contacts are planned for 
1993. 

The CAS should take a more proactive posture in the international 
arena. The charge of the International Relations Committee under the 
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Vice President-Programs and Communications will be revised in 1993 
in accordance with this direction. 

The September CAS Board of Directors meeting included a lengthy 
discussion of what the actuary’s involvement should be regarding the 
asset side of the balance sheet. The discussion included reference to the 
AAA‘s Solvency Position Statement recently released by its Board of 
Directors and the implications for the CAS of this expanded role. 

At its September meeting, the CAS Board directed the Executive 
Council to formulate a plan to educate current and future members about 
the implications of interlinking the asset and liability sides of the balance 
sheet. A Task Force on the Appointed Actuary has been created by Presi- 
dent Toothman. This Task Force, chaired by Robert A. Miller III, is 
charged with developing a plan to cover those activities the CAS needs to 
undertake in order to prepare its members to function in the role of 
appointed actuary in North America opining on an insurer’s current and 
future solvency. 

ONGOINGSlGNIFICANTACTlVITIES 

The CAS Office completed its first full year of operation in its Arling- 
ton, Virginia, location. I’m pleased to report that Tim Tinsley and the 
entire office staff are focused on delivering quality service to our mem- 
bers and candidates. Numerous administrative functions have been ab- 
sorbed by the office, freeing up CAS committees to focus on substantive 
issues. A staff editor, Brenda Huber, was hired in December. Brenda’s 
addition has led to savings in printing costs, more timely release of publi- 
cations, and other enhancements to our various publications. 

On a personal note, it has been a pleasure for me to work closely this 
past year with all the office staff. 1 encourage you to avail yourselves of 
this valuable resource. I can assure you that you’ll be pleased with the 
results. 

During the year, we entered into a contract with Morant Data Com- 
pany to install and activate a database system that will provide on-line 
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capabilities for all of our office information needs. Much of the work is 
already done and the system should be operational by year-end 1992. 
When completed, we will have a robust, integrated membership and can- 
didate database at the CAS office. 

A complete legal audit of the CAS was completed on October 2. The 
Washington law firm of Jenner & Block undertook a comprehensive re- 
view of appropriate CAS documents, files, and practices. The final audit 
is currently under review by the Executive Council with a goal of present- 
ing the necessary legal and antitrust compliance policy recommendations 
to the Board in early 1993. 

The concept of managed research, where funded programs target spe- 
cific areas. has borne fruit during the year. Projects underway or com- 
pleted include: 

l A Financial Analysis survey of solvency literature presented at the 
Valuation Seminar in April 1992. 

l Fourteen completed papers on ratemaking to be published in the Feb- 
ruary 1993 Forum. The material will support four concurrent sessions 
at the March 1993 Ratemaking Seminar. 

l A Theory of Risk prize paper program is on schedule for papers to be 
completed by January 1993. 

l Work continues on the request for proposal for practical methods to 
implement risk margins. In addition, proposals are being reviewed for 
the survey of valuation literature RFP. 

l Additional research efforts are being considered for next year as well. 
In that regard. a concurrent session on CAS-sponsored research is 
being held at the November Meeting. The panel will brief members on 
current research and solicit input from members for future efforts. 

Continuing education opportunities, with additional focus due to the 
AAA requirement, were numerous and well-attended during 1992. Meet- 
ings and seminars for the year have included: 

l The Spring Meeting in Chicago. attended by 379 members and 132 
non-members. 
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The Annual Meeting in Boca Raton, with advance registration of 569 
members and 63 non-members. 

The Ratemaking Seminar in Dallas attended by 524. 

A special interest seminar on valuation issues in April; meeting atten- 
dance was 156. 

A special interest seminar on reinsurance held in June with 122 mem- 
bers and 75 non-members in attendance. This was a joint effort with 
the CAS special interest section, Casualty Actuaries in Reinsurance 
(CARe). 

The Casualty Loss Reserve Seminar, jointly sponsored with the AAA 
and Conference of Consulting Actuaries, held in September with 731 
in attendance. 

A special interest seminar on rate of return topics was held October 
I5- I6 in Seattle. Attendance was 90 members and 34 non-members. 

The P&C Insurance Liabilities Seminar, which was combined with the 
Canadian Institute of Actuaries’ Appointed Actuary Seminar, was held 
October 1-2 in Toronto. A total of 3 I5 attended. 

A number of our regional affiliates also sponsored continuing educa- 
tion sessions as part of their regular meetings. 

Efforts were also continued to increase public awareness of the actuar- 
ial profession. A student newsletter, scheduled for publication in January 
1993, was jointly developed by the CAS and SOA. An external informa- 
tional brochure has been developed, and a video presentation on the actu- 
arial career is under development. 

STATE OF THE CAS 

We continue to grow! A total of 5,627 candidates registered for exams 
in May and November. This represents a 19% increase over 199 1. During 
the year, 141 new Associates joined the CAS. With the addition of 76 new 
Fellows, our membership now stands at I,12 1 Fellows and 8 16 Associ- 
ates. 
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The Board of Directors met four times during 1992. New members 
elected to the Board for next year include Al Beer, Phil Ben-Zvi, Mike 
Miller, and Susan Szkoda. The membership elected Irene Bass to the 
position of President-Elect, while Dave Flynn assumed the Presidency. 

The Executive Council, with primary responsibility for day-to-day 
operations, met either by teleconfcrcncc or in person at least once a 
month during the year. The Board of Directors elected the following Vice 
Presidents for the coming year: 

Vice President-Administration John Purple 
Vice President-Admissions Steven Lehmann 
Vice President-Continuing Education Dave Hafling 
Vice President-Programs and Communications Alice Cannon 
Vice President-Research and Development Allan Kaufman 

In closing, here are some comments on our financial status. The Audit 
Committee examined the CAS books for fiscal year 1992 and found the 
accounts to be properly stated. The fiscal year ended with an increase in 
surplus of $48.899.76 which compares favorably to a budgeted increase 
of approximately $26,0(X). Members’ equity now stands at $648,794.07, 
subdivided as follows: 

Michelbacher Fund 

Dorweiler Fund 
CAS Trust 
Scholarship Fund 

Rodermund Fund 

CLRS Fund 

CAS Surplus 
TOTAL MEMBERS’ EQUITY 

I 
$X3.%3.16 1 

7.402.26 
3,l 14.76 1’ 
7.976.27 ‘! 

I 15,551.14 1 :) 

s,ooo.oo 

525.X54.48 
fi;648,794.07 ‘, 

For 1992-93. the Board of Directors has approved a budget of approx- 
imately $2.0 million. This is not directly comparable to last year’s ex- 
penses, due to an accounting change to no longer rellect meetings and 
seminars on a net basis. 
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Member’s dues for next year will be $230, an increase of $15, while 
fees for the invitational program will increase by $45 to $275. Examina- 
tion fees for Parts 4-10 will remain the same. 

Respectfully submitted, 

JOHN M. PURPLE 
Vice Pl.csidcnt-Administrcrtion 
November 16, 1992 
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TREASURER’S REPORT 
Fiscal Year Ended 9/30/92 

OPERATING RESULTS BY FUNCTION: 

FUNCTION 
-ixams 
Member Services (b) 
Programs 

INCOME 
$653,069.35 

413,440.05 
268.068.68 

EXPENSE 
$533.253.37(a) 

681 ,178.49 
118,267.45(c) 

DIFFERENCE ~______ 
$119.815.98 
(267.738.44) 
149.801.23 

Other(d) 47,020.9g cl.00 47,020.99 
TOTAL $1.381.599.07 $1.332.699.31 $48.899.76(e) 

Notes: (a) Does not include exam-related expenses incurred by the Research & Development Function. 
(b) Areas under the supervision of VP-Administration & VP-Research and Development. (c) Does not 
mclude rogram-related expenses incurred by the Research & Development Functron. d) Investment 
mcome ess foreign exchange and miscellaneous bank debits. (e) Change in CAS Surp us. P I 

ASSETS 
Checking Account 
U.S. Treasury Bills 
Accrued Interest 
Prepaid Meeting Exp. 
Prepaid Room Rentals 
Prepaid Semrnar Exp. 
CLRS Receivable 
CLRS Fund 
MIS 
TOTAL ASSE TS 

L/AWL/T/ES 
-Exam Fees Deterred 
Printing Expense 
Research Grant 
Office Expense 
Nov. Mtg. Fees Deferred 
Seminar Fees Deferred 
Mtg. & Sem. Expenses 
ABCD Payable 
Legal Audit Payable 
Inv. Program Deferred 
Academic Corr. Deferred 
Act. Review Deferred 
TOTAL L/AB/L/TES 

MEMBERS’EQUIT~ 
Michelbacher Fund 

BALANCE SHEET 

g/30/91 9130192 
$278,635.93 $255,199.23 

767.724.58 972.768.01 
15,157.44 12.348.41 
10.212.23 9.912.01 

0.00 2.400.00 
490.00 306.24 

40,000.00 50.000.00 
5.000.00 5.000.00 

0.00 
$1.117,220.18 

36133.37 
$1.344.256.27 

244,353.20 278507.00 34,153.80 
185.700.00 208.000.00 22.300.00 

50,000.00 58,664 70 8.664.70 
21.629.00 0.00 (21,629.OO) 

5,591 .oo 84,331 50 78.740.50 
12,600.OO 40.434 00 27.834.00 

1.402.55 0.00 (1.402.55) 
0.00 11,600.OO 11.600.00 
0.00 10.000.00 10.000.00 
0.00 3.530.00 3,530.oo 
0.00 225.00 225 00 
0.00 170.00 17&&O 

$521.275.75 $695.462.20 $174.186 45 

$80.171 51 $83,895 16 $3.723 65 

IIFFERENCE 
($23,436.70) 
205.043.43 

(2.809.03) 
(300.22) 

2.400.00 
(183.76) 

1 o,ooo.oo 
0.00 

36,322~.37 
$227.036.09 

Dorweiler Fund 6.983.26 7,402 26 419.00 
CAS Trust 2.938.45 3.114 76 176.31 
Scholarship Fund 7.996.49 7.976 27 (20.22) 
Rodermund Fund 15.900.00 15.551.14 (348.86) 
CLRS Fund 5.000.00 5.000.00 0 00 
CAS Surplus 476,954.72 525854.48 48,899.76 
TOTAL EQUITY $595.944.43 $648.794 07 $52.849.64 

John M. Purple, Vice Presrdent-Admincstrahon 
This is to cert/fy fbat the assets and accounts shown m fbe above hnanoal sfafement have been audifed 

and found to be correct. 
Audit Commrttee. Lee M. Smrth. Chairman, Anthony J Gnppa. 

Albert J. &win. William J Rowland, Charles Walter Stewart Russet L. Sutter 
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1992 EXAMINATIONS-SUCCESSFUL CANDIDATES 

Examinations for Parts 3B, 4A, 4B, 6, 8, 8C, and 10 of the Casualty 
Actuarial Society were held on May 4, 5, 6, 7, and 8. Examinations for 
Parts 3B, 5,5A, 5B, 7, and 9 were held on November 4,5, and 6. 

Examinations for Parts 1, 2 and 3 (SOA courses 100, 110, 120, 130 
and 135) are jointly sponsored by the Casualty Actuarial Society and the 
Society of Actuaries. Parts 1 and 2 were given in February, May, and 
November of 1992 and Part 3 was given in May and November of 1992. 
Candidates who were successful on these examinations were listed in the 
joint releases of the two societies. 

The Casualty Actuarial Society and the Society of Actuaries jointly 
awarded prizes to the undergraduates ranking the highest on the Part 1 
examination. 

For the February 1992 examination, the $200 first prize was awarded 
to Mark Krosky. The $100 prize winners were Louis Charbonneau, Vin- 
cent Ha, Gary C. Mei, and Ronnie Y. Tan. 

For the May 1992 examination, the $200 first prize was awarded to 
Hans K. VanDelden. The $100 prize winners were Igor Ioppe, Eve Rain- 
ville, Shing-Wei Shih, and Christopher James Wiggenhold. 

For the November 1992 examination, the $200 first prize was awarded 
to Chen Hui Su. The $100 prize winners were Levi M. Askovitz, Henry J. 
Elliott, Yue Wu, and Bo Yao. 

The following candidates were admitted as Fellows and Associates at 
the May 1992 meeting as a result of their successful completion of the 
Society requirements in the November 1991 examinations. 

FELLOWS 

Karin H. Beaulieu Catherine E. Eska Julia L. Perrine 
Allan R. Becker William G. Fitzpatrick Jennifer A. Polson 
Roberto G. Blanc0 Nancy G. Flannery Stephen D. Stayton 
Patrick J. Burns Brian A. Hughes William Vasek 
Kenneth E. Carlton III Bruce E. Ollodart Elizabeth A. 
Daniel J. Czabaj Brian G. Pelly Wellington 



Kristen M. Albright 
Todd R. Bault 
Herbert S. Bibbero 
Wayne E. Blackburn 
Annie Blais 
Daniel D. Blau 
Betsy L. Blue 
John P. Booher 
Christopher K. 

Bozman 
J. Eric Brosius 
David S. Cash 
Dennis K. Chan 
Bryan C. Christman 
Wei Chuang 
Kasing L. Chung 
Gary T. Ciardiello 
Peter J. Collins 
Thomas P. Conway 
Gregory L. Cote 
Timothy J. Cremin 
Gregory A. Cuzzi 
Michael K. Daly 
Manon Debigare 
Michael L. DeMattei 
Herbert G. Desson 
Stephen R. DiCenso 
Michel Dionne 
Jeffrey E. Doffing 
Michael C. Dubin 

ASSOCIATES 

Francois Dumas 
Denise A. Fedet 
Charles C. Fung 
Kim B. Garland 
Jeffrey C. Gendron 
Odile Goyer 
Steven J. Groeschcn 
Farrokh Guiahi 
Terry D. Gusler 
Leigh J. Halliwell 
David L. Homer 
Paul R. Hussian 
Hou-Wen Jeng 
Susan E. Kent 
Deborah E. Kenyon 
Kevin A. Kesby 
Gerald S. Kirschner 
Timothy F. Kocster 
Gilbert M. Korthals 
Benoit Laganiere 
Alan E. Lange 
Christopher Lattin 
Marc-Andre Lefebvrc 
Paul R. Livingstone 
Richard Maguire 
Katherine A. Mann 
Leslie R. Marlo 
Suzanne Martin 
Keith A. Mathre 

Maria Mattioli 
Thomas S. McIntyre 
John H. Mize 
Russell E. Moore 
Francois Morin 
Francois L. 

Morissette 
David A. Murray 
Victor A. Njakou 
Kathleen C. Nomicos 
Stephen R. Noonan 
Robert C. Phifer 
Mark W. Phillips 
Karin L. Reinhardt 
Lisa M. Ross 
Daniel G. Roth 
Michael R. Rozema 
David 0. Schlenke 
Peter Senak 
Robert D. Share 
David B. Sommer 
Barbara H. Thurston 
Thomas C. Tote 
Michael Toledano 
Therese M. Vt\ughan 
Jennifer A. Violette 
Bryan C. Ware 
John P. Welch 
Robert J. White 
Windric Wong 
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The following is a list of successful candidates in examinations held in 
May 1992. 

Purf 3 B 

Tamela Alamo 
Mark K. Altschuler 
Kristine M. Anderson 
Michael J. Anstead 
Martin S. Arnold 
Kathleen J. Atkinson 
Larina D. Baird 
Patricia A. Baiyor 
Jaclyn W. Ballin 
Kelly A. Barratt 
Rose D. Barrett 
Claudia M. Barry 
Philip A. Baum 
Mary P Bayer 
Martin Beaulieu 
Michael J. Bednarick 
Bruce J. Bergeron 
Steven L. Berman 
Abbe Binkowitz 
Darrin W. Birtciel 
Mariano R. Blanc0 
Karen A. Blaszczak 
Raju Bohra 
Carl M. Bolstad 
Hobart F. Bond 
Brian K. Bouvier 
Richard A. 

Brassington 
Jeffrey M. Brobjorg 
Bruce D. Browning 
Michael L. Bruess 
Hayden Burrus Ellen E. Evans 

Sandra L. Cagley 
Donna L. Callison 
James E. Calton 
Jacqueline M. 

Campbell 
Francine Cardi 
Mary Ellen Carino 
Sondra A. Cavanaugh 
Elina L. Chachkes 
Bina S. Cherian 
Gary C. Cheung 
Wanchin W. Chou 
Jennifer A. Cincola 
Frank S. Conde 
Greg E. Conklin 
Christopher G. 

Cunniff 
David F. Dahl 
Kenneth S. Dailey 
David B. Dalton 
Jill A. Davis 
Robert E. Davis 
Willie L. Davis 
Raymond V. DeJaco 
Emily Y. Deng 
Kenneth R. Dipierro 
Gayle L. Dittrich 
William A. Dowell, Jr. 
Annette M. Eckhardt 
Dana L. Eisenberg 
Ken B. Eliezer 

James G. Evans 

Mary K. Hays 

Michael A. Falcone 
Sharon R. Farmer 
Renee L. Feathers 
Alan E. Feldman 
Brian M. Femandes 
Daniel B. Finn 
Annette L. Fischer 
William J. Fogarty 
Lloyd A. Foster 
Brian A. Franklin 
Mauricio Freyre 
Beverly J. Frickel 
Amy A. Gadsden 
Micah R. Gentile 
Barry A. Gertschen 
Eric J. Gesick 
David E. Gill 
Nicholas P. Giuntini 
Lindsey C. Gleadall 
Stewart H. Gleason 
Michael J. Goetsch 
Matthew L. Gossell 
Jennifer Graunas 
John E. Green 
Paul E. Green 
Steven A. Green 
David T. Groff 
David J. Gronski 
David W. Haaf 
Daniel J. Hayes 
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Part 3B (cont’d) 

Martin G. Heagen 
Sara L. Helgeson 
Glenn S. Hochler 
Jason N. Hoffman 
Margaret M. Hook 
Bernard R. Horovitz 
Marguerite M. Hunt 
Chaudhry M. Ishaq 
Vincent H. Jackson 
Jean-Claude J. Jacob 
Deborah M. Jasper 
Jill C. Johnson 
Aline Kafafian 
Kristie L. Kantowski 
Deborah M. King 
Diane L. Kinner 
Wendy A. Knopf 
Anne Kochendorfer 
Kevin C. Kolakowski 
Kimberly A. Kracht 
Susan M. Krawiec 
Brian S. Krick 
Joseph J. LaBella 
Christine L. Lacke 
Steven M. Lacke 
William C. Lawson 
Betty F. Lee 
Joan K. Lee 
Frederic A. 

Leederman 
Claude Lefebvre 
Daniel Leff 
Sidney Leffler 
Paul B. LeStourgeon 

Katherine E. Lewis 
Cheng-Te Liang 
hlli Liu 
Lee C. Lloyd 
John Lum 
Kyra D. Lynn 
Sally A. MacFadden 
Rita M. Maclntyre 
Jeffrey S. Magrane 
Leodivini Q. Magtoto 
Vahan A. Mahdasian 
John T. Maher 
Elaine J. Malupa 
Richard W. Malus 
Eileen M. McGaheran 
Patricia McGeeney 
Peter B. McOrmond 
Lawrence J. 

McTaggart I II 
Hernan L. Medina 
Constance M. Mika 
David J. Miller 
Scott M. Miller 
Michael J. Miraglia 
Kimberly A. Moran 
Michael W. Mono 
Janice C. Moskowitz 
Matthew S. Mrozek 
Timothy 0. Muzzey 
Jarow G. Myers 
Jennifer A. Nelson 
Kari S. Nelson 
Robert P. Nelson 

Thomas E. 
Newgarden 

Nomran Niami 
Eric C. Nordman 
Lauren E. Norton 
Marc F. Oberholtzer 
Matthew J. Odendahl 
Richard D. Olsen 
Denise R. Olson 
Milary N. Olson 
Stanley T. Olszewski 
James A. Partridge 
Anna M. Paul 
David M. Pfahler 
David R. Picking 
Karen J. Poklikuha 
Deborah J. Pomerantz 
Kathy A. Poppe 
Elisabeth N. Power 
Stephen H. Press 
Julie Privman 
Rhonda A. Puda 
Lovely G. 

Puthenveetil 
Jacqueline M. 

Rambergcr 
Eula A. Rath 
Frank S. Rau 
Jaak M. Raudsepp 
Joanne E. Reitz 
Michael T. Reitz 
Jennifer L. Reller 
David c’. Riek 
Brad M. Ritter 
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Part 3B (cm&d) 

Christopher R. Ritter 
Linda L. Roberts 
Pamela L. Rose 
William I? Rudolph 
Douglas A. Rupp 
Anthony N. Sammur 
Rachel Samoil 
James C. Sandor 
Teresa M. Scham 
Catherine I. 

Schedlbauer 
Michael K. Schepak 
Steven M. Schienvar 
Matt J. Schmitt 
Lisa M. Schultz 
Joyce E. Segall-Lopez 
Anastasios Serafim 
Alan J. Sexter 
Lisa A. Sgaramella 
Paul E. Shangold 
Scott A. Sheldon 
Theodore J. Shively 

Part 4A 

Shawna S. Ackerman 
Jonathan D. Adkisson 
Vicki L. Agerton 
Michael W. Allard 
Fred S. Allsbrook 
John P. Alltop 
K. Athula P. Alwis 
Timothy P Aman 
Donald W. Anson 
Marc D. Archambault 

Faith E. Signorile 
Daniel D. Smalley 
Cindy W. Smith 
Gene W. Smith 
Robert K. Smith 
Halina H. Smosna 
Scott G. Sobel 
Jay M. South 
Tracey A. 

Stark-Beldere 
Christopher M. 

Steinbach 
Lori E. Stoeberl 
Judy L. Stolle 
Heather L. Strinmoen 
Christopher S. Strohl 
Mark R. Strona 
Elizabeth A. Strong 
Brian J. Sullivan 
Siu Cheung S. Szeto 
Rachel R. Tallarini 
Hung K. Tang 

Steven D. Armstrong 
Martin S. Arnold 
Kevin J. Bakken 
Daniel M. Bankson 
Kendra D. Barnes 
Dana Barre 
Robert S. Beatman 
Corey J. Bilot 
Gina S. Binder 
Abbe Binkowitz 

Michael J. Tempesta 
Diane R. Thurston 
Myles J. Tilley 
Tammy M. Titus 
Jennifer M. Tornquist 
Joseph S. Tripodi 
Nicole G. Trotman 
Turgay F. Turnacioglu 
Nicholas Turville 
Randall H. Tweedt 
Steven D. Umansky 
Jeffrey A. VanKley 
Amy R. Waldhauer 
Robert J. Walling III 
Jon S. Walters 
David W. Warren 
Karen E. Watson 
Erica L. Weida 
Robert F. Wolf 
Gretchen L. Wolfer 
Cheng-Sheng P. Wu 
George H. Zanjani 

Lisa A. Bjorkman 
Daniel E. Block 
David Bock01 
Donna M. Bono 
Lesley R. Bosniack 
Michael D. Brannon 
Donna D. Brasley 
Kevin J. Brazee 
Laura G. Brill 
Jeffrey H. Brooks 



Port 4A (umt’tli 

Ward M. Brooks 
Tracy L. 

Brooks-Szegda 
Conni J. Brown 
Robert L. Brown 
David A. Bulin 
Mark E. Burgess 
Hayden Burrus 
Sharon L. Cage 
Linda E. Callas 
Julia C. Causbie 
Maureen A. 
Cavanaugh 

Kevin J. Cawley 
Joseph G. Cerreta 
Randall A. Chaffinch 
Jean-Francois 

Chalifoux 
Andrea L. Chan 
Edward L. Chan 
Whye-Loon Chan 
Debra S. Charlop 
Soo H. Choo 
Rene Chouinard 
Normand R. Chretien 
Gregory C. 

Christensen 
Alan R. Clark 
Derek A. Clark 
Jo Ellen Cockley 
Maryellen J. Coggins 
Christopher C. 

Coleman 
David G. Cook 

Sheila C. Coolcy 
William F. Costa 
Kirsten J. Costello 
Jose R. Couret 
Paul T. Cucchiara 
Kendra S. Cupp 
Marie-Claude Cyt 
Charles A. 

Dal Corobbo 
Francis L. Decker 
Kris D. DeFrain 
Romulo Deo-Campo 
Vuong 

Sean R. Devlin 
Behram M. Dinshaw 
Patricia J. Donnelly 
Kevin G. Donovan 
John P. Doucette 
Robert G. Downs 
Martin W. Draper 
Kimberly J. Drennan 
Barry P. Drobes 
Raymond S. Duguc 
Anthony D. Edwards 
Jeffrey S. Ellis 
Dawn E. Elzinga 
Martin A. Epstein 
Dianne L. Estrada 
Michael A. Falcone 
Brian M. Fernandes 
Jeffrey M. Forden 
Sally M. Forsythe 
David I. Frank 
Kirsten A. Frantom 

Bethany L. Fredericks 
Mauricio Freyre 
Shina N. Fritz 
Brad P. Gardner 
Charles E. Gegax 
Micah R. Gentile 
Thomas P. Gibbons 
Julie T. Gilbert 
Mary K. Gise 
Nicholas P. Giuntini 
Stewart H. Gleason 
John T. Gleba 
Ronald E. Glenn 
Laurcncc B. Goldstein 
Jic Gong 
Annette J. Goodreau 
Karl Goring 
John W. Gradwell 
Michael D. Green 
Joseph P. Greenwood 
Russell H. Greig 
Christine M. Grcy 
Francis X. Gribbon 
Gary J. Griesmeycr 
Monica A. Grillo 
Richard J. Haines 
Barbara Hallock 
Sandra K. Halpin 
Elizabeth E. Hansen 
William D. Hansen 
Scott W. Hanson 
Christopher L. Harris 
Adam D. Hartman 
Michelle L. Hartrich 
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Michael B. Hawley 
Ronald J. Herrig 
Betty-Jo Hill 
Laura K. Hobart 
Wayne Hommes 
David B. Hostetter 
Melissa K. Houck 
Alex Y. Hsiao 
Marie-Josee Huard 
Gloria A. Huberman 
Sandra L. Hunt 
Caleb E. Huntington 
Randall A. Jacobson 
Brian J. Janitschke 
Fong-Yee J. Jao 
Brian E. Johnson 
Jill C. Johnson 
Steven J. Jordan 
Mark J. Kaufman 
Kimberly S. Kaune 
Lowell J. Keith 
Scott A. Kelly 
Rebecca A. Kennedy 
William J. Keros 
Michael B. Kessler 
He-Jung Kim 
John H. Kim 
Ung M. Kim 
Jill E. Kirby 
Russell G. Kirsch 
Omar A. Kitchlew 
Michael F. Klein 
Jonelle A. Kohne 
Gary R. Kratzer 

Kenneth A. Kurtzman 
Edward M. Kuss 
Blair W. Laddusaw 
Jean-Sebastien 

Lagarde 
Jin-Mei J. Lai 
Ydohsien Lai 
Mai B. Lam 
John B. Landkamer 
John P. Lebens 
Helen P. LeClair 
Robin R. Lee 
Claude Lefebvre 
Stephen E. Lehecka 
Glen A. Leibowitz 
Terry Lem 
Charles R. Lenz 
David R. Lesieur 
Kuen-Shan Ling 
Timothy D. Logie 
Nora J. Lovall 
Michelle Luneau 
Allen S. Lynch, Jr. 
John B. Mahon 
Barbara S. Mahoney 
Gary P Maile 
Donna M. Marazzo 
Lawrence F. Marcus 
Joseph Marracello 
Leslie A. Martin 
Peter R. Martin 
Michael B. Masters 
Robert F. Maton 
Lynda L. Mattes 

Marci A. Maxwell 
Deann M. Mays 
Camley A. Mazloom 
Angela T. Mazzaferro 
Timothy C. McAuliffe 
Charles L. McGuire 
Kelly S. McKeethan 
Michael B. McKnight 
David W. McLaughry 
Mary Jo Meeks 
Timothy J. Melvin 
Mitchel Merberg 
Daniel J. Merk 
Constance M. Mika 
Michael J. Miller 
Camille D. Minogue 
Kenneth B. Morgan 
Turhan E. Murguz 
Kevin T. Murphy 
Amirul Z. Musanif 
Giovanni A. 

Muzzarelli 
Jennifer A. Naehr 
Melissa J. Neidlinger 
Ronald T. Nelson 
Khanh K. Nguyen 
Anne H. Nimick 
Dianna C. Norman 
Lauren E. Norton 
Steven B. Oakley 
Kathleen C. Odomirok 
Denise R. Olson 
Joseph M. Palmer 
Genevieve Pare 
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Part 4A (cont’d) 

Nicholas H. Pastor 
Abha B. Pate1 
Rick S. Pawelski 
Wende A. Pemrick 
Luba Pesis 
Mark A. Piske 
Anthony K. Postert 
Thomas M. Potter 
Tracey S. Powers 
Arlie J. Proctor 
Regina M. Puglisi 
John K. Punzak 
Gene Z. Qian 
Karen L. Queen 
Kathleen M. Quinn 
Darin L. Rasmussen 
Peter S. Rauner 
Brenda L. Reddick 
Nathalie J. Rekittke 
Donald A. Riggins 
Christopher R. Ritter 
Mart-r Rivelle 
Jeremy Roberts 
Ronald J. Robinson 
Dave H. Rodriguez 
John W. Rollins 
Joseph F. Rosta 
Jean Roy 
Jean-Denis Roy 
David A. Russell 
Sean W. Russell 

John C. Ruth 
Mark T. Rutherford 
Cheryl Y. Sabiston 
Rajesh V. 
Sahasrabuddhe 

Michael J. Scholl 
Sharon M. Schorge 
Michael F. Schrah 
Michdel R. Schummer 
Craig J. Scukas 
William H. Scully III 
Patrick J. Seaman 
Huidong Shang 
Thomas J. Sheppard 
Andrea W. Sherry 
Laura E. Siegel 
Michael N. Singer 
Helen A. Sirois 
Charles L. Sizer 
Larry K. Smith 
Theodore S. Spitalnick 
Beth A. Stahelin 
Christina L. 

Staudhammer 
Nathan R. Stein 
Susan D. Stieg 
Richard A. Stock 
Lori E. Stoeberl 
Kevin D. Strous 
Hung K. Tang 
Robert D. Taylor 

David J. Tenembaum 
Josephine T. Teruel 
Santy S. Thalappillil 
Patricia Therrien 
Sadhana Tiwari 
Nathalie L. Tremblay 
Joseph D. Tritz 
Scatty M. Tucker 
Arthur J. Turner 
Robert C. Turner 
James F. Tygh 
Eric Vaith 
Mark D. VanZanden 
Robert J. Vogel 
Lynne K. Wehmueller 
Shu-Mei Wei 
Mark S. Wenger 
Elizabeth A. Wentzien 
Geoffrey T. Werner 
James C. Whisenant 
Wyndi S. White 
David L. Whitley 
Michael J. Williams 
David S. Wolfe 
Barbara A. Wolinski 
Denise Y. Wright 
Cheng-Sheng P. Wu 
Xuening Wu 
Edward J. Yorty 
Timothy W. Young 
Guangjian Zhu 
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Part 4B 

Jonathan D. Adkisson 
Elise M. Aheam 
John S. Alexander 
Anthony L. Alfieri 
Michael W. Allard 
Kay L. Allen 
Fred S. Allsbrook 
John P. Alltop 
K. Athula P. Alwis 
Jennifer J. 
Andrzejewski 

Martin S. Arnold 
Mark E. Austin 
Kevin J. Bakken 
Phillip W. Banet 
Daniel M. Bankson 
Michael W. Barlow 
Claudia M. Barry 
James C. Berger 
Claire Bilodeau 
Corey J. Bilot 
Lisa A. Bjorkman 
Jean-Francois Blais 
Barry E. Blodgett 
Rejean Boivin 
Elizabeth S. Borchert 
Lesley R. Bosniack 
Scott A. Bowser 
Lori M. Bradley 
Betsy A. Branagan 
Donna D. Brasley 
Kevin J. Brazee 
Odile S. Brock 
Ward M. Brooks 

Tracy L. 
Brooks-Szegda 

Conni J. Brown 
Robert L. Brown 
David A. Bulin 
Anthony R. Bustillo 
Steven M. Byam 
Sharon L. Cage 
Douglas A. Carlone 
Julia C. Causbie 
Maureen A. 
Cavanaugh 

Kevin J. Cawley 
Francis D. Cerasoli 
Joseph G. Cerreta 
Randall A. Chaffinch 
Jean-Francois 

Chalifoux 
Andrea L. Chan 
Debra S. Charlop 
Sigen Chen 
Shu-Fang Cheng 
Ching-Ping Chi 
Hsiao-Yuan Ching 
Rene Chouinard 
William Chow 
Normand R. Chretien 
Liping Chu 
Jo Ellen Cockley 
Christopher C. 

Coleman 
Craig A. Cooper 
David C. Coplan 
William F. Costa 

Kirsten J. Costello 
Jose R. Couret 
Sandra Creaney 
Kendra S. Cupp 
Andrew S. Dahl 
Charles A. 

Dal Corobbo 
Rachel Dass 
Smitesh Dave 
Robin M. Davis 
Shaila De Leede 
Francis L. Decker 
Karen D. Derstine 
Kevin G. Donovan 
John P. Doucette 
Michael J. Doviak 
Robert G. Downs 
Martin W. Draper 
Lucy Drozd 
David L. Drury 
Nathalie Dufresne 
Raymond S. Dugue 
Jeffrey S. Ellis 
Sarkis M. El-Zein 
Martin A. Epstein 
Dianne L. Estrada 
James G. Evans 
Linda S. Eveland 
Michael A. Falcone 
William P. Fisanick 
Stephanie Fontaine 
David 1. Frank 
Kirsten A. Frantom 
Mark J. Franzen 
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Part 48 (cotlt’d) 

Ramon D. Galanes 
Isabelle Gaumond 
Hannah Gee 
Charles E. Gegax 
Justin G. Gensler 
Julie T. Gilbert 
Serge Girard 
Stewart H. Gleason 
John T. Gleba 
Ronald E. Glenn 
Lynn E. Galas 
Jennifer L. Goldberg 
Laurence B. Goldstein 
Judith M. Gottesman 
John W. Gradwell 
Russell H. Greig 
Christine M. Grey 
Francis X. Gribbon 
Monica A. Grill0 
Barbara Hallock 
Sandra K. Halpin 
Elizabeth E. Hansen 
William D. Hansen 
Joel D. Hanson 
Claude Hamois 
Christopher L. Harris 
,4dam D. Hartman 
Michelle L. Hartrich 
Shohreh Heshmati 
Anne M. Hoban 
Brett D. Hodgson 
D. Kent Holbrook 
Robert J. Hopper 
Melissa K. Houck 

Pi-Chun Hsu 
Gloria A. Huberman 
Sandra L. Hunt 
Tina T. Huynh 
Sadagopan S. Iyengai 
Brian J. Janitschke 
John F. Janssen 
Vibha N. Jayasinghe 
Donald T. Jemison 
Christopher P. 
Johnson 

Daniel J. Judd 
Robert B. Katzman 
Mark J. Kaufman 
Jack S. Keck 
Lowell J. Keith 
Mark R. Kelbaugh 
Thomas P. Kenia 
Cynthia A. Keyes 
Tricia M. Keyes 
Elizabeth A. Kinney 
Joseph P. Kirley 
Michael F. Klein 
Louis K. Korth 
Suzanne D. Kuntz 
Edward M. Kuss 
Kirk L. Kutch 
Bertrand J. LaChance 
Blair W. Laddusaw 
Jean-Sebastien Lagace 
Sao-Kun “Connie” 

Lam 
John M. Lamendola 
Matthew G. Lange 

Douglas W. Latimer 
Khanh M. Le 
Manuel Alberta T. 
Lcal 

Claude Lefebvre 
Stephen E. Lehecka 
David R. Lesieur 
lsabelle Letourneau 
Aaron S. Levine 
Guey-Ru Lieu 
Chinlong Lin 
Frank K. 1,ing 
Pascal Longpre 
Laura J. Lothschutz 
Robb W. Luck 
Kyra D. Lynn 
Emma B. Macasicb 
Kenneth W. Macko 
Barbara S. Mahoney 
David K. Manski 
Yishi Mao 
Donna M. Marazzo 
Lawrence F. Marcus 
Albert Maroun 
Michael B. Masters 
Robert F. Maton 
I .ynda L. Mattes 
Tracey L. Matthew 
Bonnie C. Maxie 
l,aura A. Maxwell 
Dcann M. Mays 
Camlcy A. Mazloom 
Deborah L. McCrdry 
Charles L. McGuire 
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Kelly S. McKeethan 
Phillip E. McKneely 
David W. McLaughry 
William E. McWithey 
Frederic N. Michaud 
Stephen J. Mildenhall 
Michael J. Miller 
Catherine E. Moody 
Kenneth B. Morgan 
Kimberly J. Mullins 
Peter J. Murdza, Jr. 
Joseph L. Murdzek 
Kevin T. Murphy 
Giovanni A. 

Muzzarelli 
Karen E. Myers 
Kathleen V. Najim 
Dianna C. Norman 
Andres F. 

Ochoa-Gomez 
Kathleen C. Odomirok 
Helen S. Oliveto 
Kevin J. Olsen 
Kory J. Olsen 
Lowell D. Olson 
Stanley T. Olszewski 
Krzysztof M. 

Ostaszewski 
Michael G. Owen 
Gerard J. Palisi 
Joseph M. Palmer 
Charles Pare 
Genevieve Pare 
Thomas Passante 

Christos G. Patsalides 
Lisa M. Pawlowski 
Jeremy P. Pecora 
Wende A. Pemrick 
Claude Penland IV 
Miriam E. Perkins 
Peter P. Perrotti 
Anne M. Petrides 
Aleksey Popelyukhin 
Anthony K. Postert 
Thomas M. Potter 
Trdcey S. Powers 
Michael D. Price 
Armand Principato 
Doug L. Pryor 
Regina M. Puglisi 
Patricia A. Pyle 
Gene Z. Qian 
Mark S. Quigley 
Kathleen M. Quinn 
Kelly L. Raasch 
Robin A. Rabideau 
Patrice Raby 
Kiran Rasaretnam 
Darin L. Rasmussen 
Peter S. Rauner 
Brenda L. Reddick 
Jennifer L. Reller 
Ellen J. Respler 
Donald A. Riggins 
Dennis L. 
Rivenburgh, Jr. 

Dominique Robert 
John W. Rollins 

Joseph F. Rosta 
Jean Roy 
Jean-Denis Roy 
David A. Russell 
Sean W. Russell 
Laura A. Ryan 
Charles J. Ryherd 
Samuel E. Sackey 
Cindy R. Schauer 
Lori A. Scheirer 
Michael J. Scholl 
Annmarie Schuster 
William H. Scully III 
Kelvin B. Sederburg 
Joyce E. Segall-Lopez 
Vinaya K. Sharma 
Thomas J. Sheppard 
Craig T. Shigeno 
Jeffrey P. Shirazi 
Charles L. Sizer 
Raleigh R. Skaggs, Jr. 
Klayton N. 

Southwood 
Calvin C. Spence, Jr. 
Theodore S. Spitalnick 
Michael P. Spurbeck 
Christina L. 

Staudhammer 
Scott T. Stelljes 
Richard A. Stock 
Brian K. Sullivan 
Steven W. Sun 
Siu Cheung S. Szeto 
Due M. Ta 
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Part 4B (c~ont’cl) 

Ken Seng Tan 
Robert D. Taylor 
Judith D. Teglas 
Josephine T. Teruel 
Daniel A. Tess 
Patricia Therrien 
John L. Timmerberg 
Amy B. Treciokas 
Joseph S. Tripodi 
Chuan-Shin D. Tu 
Robert C. Turner 
James F. Tygh 
Pamela J. 
VdnLeirsburg 

Mark D. VanZanden 
Trent R. Vdughn 
Wittie 0. Wacker 

Part 6 

Daniel N. Abellera 
Mark A. Addiego 
Craig A. Allen 
Ann L. Alnes 
Michael J. Andring 
Nancy L. Arico 
I3arry L. Bablin 
Timothy J. Banick 
Jack Bamett 
John A. Beckman 
Cynthia Bentley 
Lyne Bergeron 
Eric D. Besman 
Michael G. Blake 
Gina L. Blakeney 
Gary Blumsohn 

Heather A. Waldron 
Lisa M. Walsh 
Yu-Hwa Wang 
Kimberley A. Ward 
Linda F. Ward 
Jamil Wardak 
Jennifer M. Webb 
Petra L. Wegerich 
Christopher B. Wei 
Deyue Wei 
Geoffrey T. Werner 
James C. Whisenant 
Wyndi S. White 
David L. Whitley 
Tammy L. Wimcr 
David S. Wolfe 

George P. Bradley 
James L. Bresnahan 
Louis M. Brown 
Michelle M. Bull 
Linda J. Burrill 
John F. Butcher II 
Robert N. Campbell 
Anthony E. Cappellitti 
Michael E. Carpenter 
Daniel G. Carr 
Michael W. Cash 
Hsiu-Mei Chang 
Sigen Chen 
Peggy Cheng 
Kuei-Hsia R. Chu 
Christopher J. Claus 

Terry C. Wolfe 
Milton K. Wong 
Stephen K. Woodard 
Mark L. Woods 
Cheng-Sheng P. Wu 
Fenghua H. Wu 
Hsuli Wu 
Xuening Wu 
Jacinthe Yelle 
Robert S. Yenke 
Edward J. Yorty 
Kong Hung Yu 
Jeffery M. Zacek 
George H. Zanjani 
Guangjian Zhu 
Eric E. Zlochevsky 

Mary L. Corbett 
Deanna L. Crist 
Michael T. Curtis 
Mujtaba H. Datoo 
Anne M. DelMastro 
Lisa A. Doedtman 
Andrew J. Doll 
Jeffrey L. Dollinger 
Jeffrey D. Donaldson 
Peter F. Drogan 
Pierro Drolet 
David M. Elkins 
Paul E. Ericksen 
Lynnc W. Faucher 
Matthew G. Fay 
Judith M. Feldmeier 
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Part 6 (wnt ‘d) 

Kelly F. Fogarty 
Russell Frank 
Douglas E. Franklin 
Cynthia J. Friess 
Nathalie Gamache 
Christopher H. 
Geering 

Donna L. Glenn 
Marc C. Grandisson 
William A. Guffey 
Timothy J. Hansen 
Bradley A. Hanson 
Lise A. Hasegawa 
Matthew T. Hayden 
Barton W. Hedges 
Noel M. Hehr 
Renee J. Helou 
Mary B. Hemerick 
Thomas E. Hinds 
Thomas A. Huberty 
John F. Huddleston 
Jeffrey R. Hughes 
Jason Israel 
Patrick C. Jensen 
Anita J. Johnson 
Daniel K. Johnson 
Kurt J. Johnson 
Mark R. Johnson 
Marvin F. Johnson 
Jean M. Kamick 
Charles N. Kasmer 
Anthony N. Katz 
Daniel R. Keddie 
Steven A. Kelner 

Timothy P Kenefick 
George A. Kish 
Terry A. Knull 
Elizabeth Kolber 
Debra K. Kratz 
Terri C. Kremenski 
Mary C. Kroggel 
Cheung S. Kwan 
Elaine Lajeunesse 
Rita Ann B. Lamb 
Marc LaPalme 
David L. Larson 
Doris Lee 
Scott J. Lefkowitz 
Louise L. Legros 
Elizabeth A. Lemaster 
Julie Lemieux-Roy 
Deanne C. Lenhardt 
Richard S. Light 
Edward A. Lindsay 
Stephanie J. Lippl 
Ronald P. Lowe, Jr. 
Christopher J. Luker 
James M. Maher 
Daniel J. Mainka 
Betsy F. Maniloff 
Anthony L. Manzitto 
Gabriel 0. 

Maravankin 
Galina Margulis 
Anthony G. 

Martella, Jr. 
Kelly J. Mathson 
Robert D. McCarthy 

Richard T. McDonald 
Heather L. McInstosh 
Kathleen A. 
McMonigle 

Van A. McNeal 
Lynne S. McWithey 
Brian J. Melas 
Timothy Messier 
Paul A. Mestelle 
Paul W. Mills 
Raymond D. Muller 
David Y. Na 
Donna M. Nadeau 
Douglas W. Oliver 
Richard A. Olsen 
Melinda H. Oosten 
Todd F. Orrett 
Paul S. Osbom 
Nathalie Ouellet 
Mary Beth O’Keefe 
Maureen D. O’Keefe 
Jennifer J. Palo 
Charles C. Pearl, Jr. 
Edward E Peck 
Daniel B. Perry 
William Peter 
Beverly L. Phillips 
Daniel C. Pickens 
Glen-Roberts 

Pitruzzello 
Joseph W. Pitts 
Daniel A. Powell 
Charlene M. Pratt 
Mark Priven 
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Part 6 (cont’d) 

Richard B. Puchalski 
Eduard J. Pulkstenis 
Robert E. Quane III 
John F. Radwanski 
Frank J. Rau, Jr. 
Yves Raymond 
Al J. Rhodes 
Andrew T. Rippert 
Douglas S. 

Rivenburgh 
Sallie S. Robinson 
Paul J. Rogness 
James J. Romanowski 
James B. Rowland 
Jean Roy 
David L. Ruhm 
Kenneth W. 

Rupert, Jr. 
James V. Russell 
Maureen S. Ruth 

Melodee J. Saunders 
Letitia M. Saylor 
Marilyn E. Schafer 
Michael B. Schenk 
Peter R. Schwanke 
Jeffery J. Scott 
Gregory R. Scruton 
Jonathan N. Shampo 
James J. Smaga 
Douglas W. Stang 
Katie Suljak 
Colleen M. Sullivan 
Collin J. Suttie 
Scott J. Swanay 
Jeanne E. Swanson 
Todd D. Tabor 
Joy Takahashi 
Charles F. Toney 
Michael J. Toth 
Son T. Tu 

Patrick N. Tures 
Charles E. 

Van Kampen 
David B. 
Van Kocvering 

Phillip C. Vigliaturo 
William E. Vogan 
Joseph W. Wallen 
Stephen D. Warfel 
Joyce A. Weisbecker 
Carol B. Werner 
William R. Wilkins 
Marcia C. Williams 
William M. Wilt 
John S. Wright 
Gerald T. Yeung 
Claude D. Yoder 
Benny S. Yuen 
Barry Zurbuchen 
Ralph T. Zimmer 
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Part 8 

Kristen M. Albright 
Rebecca C. Amoroso 
Richard R. Anderson 
Katherine Barnes 
Alicia E. Bowen 
Mark L. Brannon 
J. Eric Brosius 
Anthony J. Burke 
Scott K. Charbonneau 
John S. Chittenden 
Peter J. Collins 
Raymond V. Debs 
Victor G. dos Santos 
William F. Dove 
Michael C. Dubin 
Maribeth Ebert 
Charles C. Emma 
Philip A. Evensen 
Kerry L. Fitzpatrick 
Scott F. Galiardo 
Andrea Gardner 
Bruce R. Gifford 
Richard S. Goldfarb 
Charles T. Goldie 
Edward M. Grab 
Steven J. Groeschen 
Carleton R. Grose 
George M. Hansen 
Steven T. Harr 

Thomas G. Hess 
Todd J. Hess 
Keith D. Holler 
Beth M. Hostager 
Laura A. Johnson 
Gerald S. Kirschner 
Gilbert M. Korthals 
Nancy E. Kot 
David J. Kretsch 
James W. Larkin 
Eric F. Lemieux 
Giuseppe F. LePera 
William G. Main 
Donald E. Manis 
Suzanne Martin 
Steven E. Math 
Jeffrey F. McCarty 
Robert L. Miller 
John H. Mize 
Kelly L. Moore 
Michelle M. Morrow 
David A. Murray 
Antoine A. Neghaiwi 
Kwok C. Ng 
Keith R. Nystrom 
Margaret M. O’Brien 
Laura A. Olszewski 
Chandrakant C. Pate1 
Susan J. Patschak 

Sarah L. Petersen 
Mark W. Phillips 
Lisa M. Ross 
John M. Ruane, Jr. 
Stephen P Sauthoff 
Margaret E. Seiter 
Derrick D. Shannon 
Rial R. Simons 
Steven A. Skov 
David A. Smith 
Elizabeth L. Sogge 
Lisa 

Steenken-Dennison 
Leslie D. Svoboda 
Eileen M. Sweeney 
Barbara H. Thurston 
Susan M. Treskolasky 
Peter S. Valentine 
Jennifer A. Violette 
Christopher P Walker 
Monty J. Washburn 
Scott P. Weinstein 
Leigh F. Wickenden 
Teresa J. Williams 
John M. Woosley 
Chung-Ye S. Yen 
Sheng H. Yu 
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Annie Blais 
Benoit Carrier 
Jean Cloutier 
Marie-Julie Demers 
Shawn F. Doherty 

Guy A. Avagliano 
Anthony J. Balchunas 
Douglas L. Beck 
Nathatie Begin 
Xavier Benarosch 
Lloyd J. Bouchard 
Christopher K. 

Bozman 
Paul A. Bukowski 
Martin Cauchon 
Denis Ctoutier 
Michael A. Coca 
Jeffrey R. Cole 
Charles Cassette 
Martin L. Couture 
Robert J. Curry 
Francois Dagneau 
Patrick K. Devlin 
Stephen R. DiCenso 
Kevin G. Dickson 
Michet Dionnc 
Francois Dumas 
Bradley C. East wood 
John W. Ettingrod 
James Ety 
George Fescos 

Odite Goyel 
Bradley A. Grangel 
Math& Lam) 
France LeBlanc Heidi 
J. McBride 

David A. Foley 
France Fortin 
Louis Gariepy 
John F. Gibson 
Susan M. Gozzo 
Eric L. Greenhitt 
Farrokh Guiahi 
Diane K. Hausserman 
James S. Higgins 
Keith D. Hottel 
George A. Hrozicncik 
Anthony Iafrate 
Joanne K. Ikeda 
Kathleen M. Ireland 
Peter James 
Changseob J. Kim 
Bryan J. Kincaid 
Richard 0. Kirste 
Ronald T. Koztowski 
John A. Lamb 
Jean-Marc LCveitl6 
Paul R. Livingstone 
Mark J. Mahon 
Btaine C. Martes 
Burton F. Marlowe 
Liam M. McFarlane 

Andre Perez 
Denis Poirier 
Robert Potvin 

Cassandra M. McGill 
William T. Mech 
Charles B. Mitzet 
Richard B. Moncher 
Todd B. Munson 
Kathleen C. Nomicos 
Charles P. Ortowicz 
Donald D. Palmer 
Jacqueline E. Pastey 
Karen L. Pehrson 
Timothy B. Perr 
Richard W. Prescott 
Kenneth P. Quintitian 
Kay K. Rahardjo 
Srinivasa Ramanu.jam 
Scott E. Rcddig 
Sharon K. Robinson 
Diane R. Rohn 
Allen D. Rosenbach 
Stuart G. Sadwin 
Yvcs Saint-Loup 
Leigh Saunders Oates 
Edmund S. Scanton 
Gordon L. Scott 
Marie Scttitti 
Vincent M. Senia 
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Christy L. Simon 
Christopher M. 

Smeratd 
Tom A. Smolen 
David B. Sommer 

Douglas N. Strommen Marjorie C. Weinstein 
Marianne Teetset John P. Welch 
Michael A. Visintainer Kevin Wick 
Sebastian Vu Gnana K. Wignarajah 
Bryan C. Ware Gregory S. Wi tson 
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The following candidates were admitted as Fellows and Associates at 
the November 1992 meeting as a result of their successful completion of 
the Society requirements in the May 1992 examinations. 

Rebecca C. Amoroso 
Anthony Joseph 

Batchunas 
Douglass L. Beck 
Nathatie Begin 
Martin Cauchon 
Denis Ctoutier 
Jeffrey Roger Cole 
Charles Cassette 
Robert John Curry 
Francois Dagneau 
Patrick K. Devlin 
John William Etlingrod 
James Ety 
David Alan Foley 
France Fortin 
John Foster Gibson 
Susan Marie Gozzo 
Eric L. Greenhi I I 
Diane Kae 

Hausserman 
Todd J. Hess 
James S. Higgins 
Keith Douglas Hotter 
George Alan 

Hroziencik 

FELLOWS 

Kathleen Marie Ireland 
Peter H. James 
Brian Joseph Kincaid 
Richard Owen Kirste 
Ronald Thaddeus 
Kozlowski 

David Jon Kretsch 
John A. Lamb 
Jean-Marc Levei I te 
Btaine C. Martes 
Burton F. Marlowe 
Steven E. Math 
Liam Michael 

McFartane 
William Theodore 

Mech 
Charles Bradley Mitzet 
Richard B. Moncher 
Todd Burton Munson 
Margaret M. O’Brien 
Jacqueline Edith 

Pastey 
Susan Jean Patschak 
Robert Potvin 
Richard Warren 
Prescott 

Kenneth Paul 
Quintilian 

Kay Ke I I ogg Rahardjo 
Srinivasa Ramanujam 
Scott Edward Reddig 
Sharon K. Robinson 
Diane Renee Rohn 
Edmund Sean Scanton 
Margaret Elizabeth 
Seiter 

Marie Setlitti 
Vincent M. Senia 
Christy L. Simon 
Christopher Michael 

Smerdtd 
Douglas Nelson 
Strommen 

Michael A. Visintainer 
Sebastian Vu 
Christopher Patrick 

Walker 
Marjorie Cindy 
Weinstein 

Gregory S. Wilson 
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Daniel Navarro 
Abeltera 

Ann Louise Atnes 
Nancy Lee Arico 
George Peter Bradley 
Donna Dionne Brastey 
Ward M. Brooks 
Linda Jean Burrit I 
Anthony E. Cappelletti 
Mary Laurene Corbett 
Jeffrey Lawrence 

Dotlinger 
Jeffrey David 

Donaldson 
Paul Edmund Ericksen 
Lynne Woody Faucher 
Judith Michalojko 

Feldmeier 
Russell Frank 
Laurence B. Goldstein 
Sandra Kathleen 

Halpin 

ASSOCIATES 

Bradley A. Hanson 
Renee He tou 
Jeffrey Robert Hughes 
Daniel Robert Keddie 
Stephen E. Lehecka 
Stephanie Jean Lippt 
James Michael Maher 
Gatina Margutis 
Heather Lynn 

McIntosh 
Van At ten McNeal 
Raymond D. Mutter 
Mary Beth O’Keefe 
Douglas W. Oliver 
Richard Alan Olsen 
Wit tiam Oostendorp 
Todd Franklin Orrett 
Joseph Martin Palmer 
Jennifer Joan Palo 
Daniel Anthony Powell 

Jean Roy 
Maureen Schatter Ruth 
Metodee Jane 

Saunders 
Jeffery Jay Scott 
Gregory R. Scruton 
James J. Smaga 
Scott Jay Swanay 
Charles French 
Toney II 

Michael J. Toth 
James F. Tygh 
David Brad 
Van Koevering 

Phittip C. Vigtiaturo 
William E. Vogan 
Stephen Douglas 
Warfe I 

Joyce Ann Weisbecker 
Ralph T. Zimmer 
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The following is the list of successful candidates in examinations held 
in November 1902. 

Purr 38 

Bruce J. Adams 
Elise M. Ahearn 
Michael J. Alexander 
Denise M. Ambrogio 
Bijoy Anand 
Julie A. Anderson 
Mark B. Anderson 
Adetine T. Anggelico 
Steven D. Armstrong 
Aeran A. Atlas 
Evan C. Ayata 
Karen L. Babitt 
Melissa M. Bados 
Phittip W. Banet 
Amy L. Baranek 
Michael W. Barlow 
Karen L. Barrett 
Karen E. Bashe 
Linda S. Baum 
Andrew S. Becker 
David J. Betany 
Joseph M. Bernardi 
Robert C. 

Birmingham 
Nicole P. Bitros 
Linda J. Bjork 
Carol A. Blomstrom 
Douglas J. Bradac 
David J. Brazil 
Charles Brindamour 
Audrey W. Broderick 

Martha E. Bronson 
Robert F. Brown 
Stephen J. Bruce 
Kirsten R. Brumtcy 
Joanne E. Burk 
Elise S. Burns 
Sharon L. Cage 
Sandra J. Cattanan 
Michael V. Campbell 
Janet P. Cappers 
Douglas A. Cartone 
Francis D. Cerasoti 
Joseph G. Cerreta 
Whye-Loon Ghan 
Daniel G. 
Charbonneau 

Lisa C. Chen 
Stephen D. Ctapp 
Scott R. Clark 
Lisa V. Clarke 
Susan M. Cleaver 
Jeffrey A. Clements 
Robert A. Ctybornc 
Brian R. Coleman 
Pamela M. Corey 
Dino F. Costabite 
Brenda K. Cos 
Gregory E. Daggctt 
Ted W. Daniel 
Smitesh Dave 
Timothy M. DiLet lio 

B&ram M. Dinshaw 
Metodee S. Dixon 
Patricia L. Drajin 
Martin W. Draper 
Sara P. Drexter 
Stephanie S. Dubose 
Patrick W. Duncan 
Denis Durand 
Jeffrey S. Ellis 
Lisa D. El) 
Keith A. Engetbrecht 
Juan Espadas 
Todd E. Fansler 
Daniel J. Flick 
Richard Y. Fong 
Donovan M. Fraser 
Bethany L. Fredericks 
Kevin J. Fried 
Michelle R. Garnock 
Kathy H. Garrigan 
Carina F. Glasgow 
Mary T. G laude1 I 
Mark A. Gorham 
Allen J. Gould 
Jeffrey S. Go) 
Kristin J. Grimshaw 
Denise H. Guluk 
John A. Hagglund 
Francis G. Hall. Jr. 
Faisat 0. Hamid 
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Alessandrea C. 
Handley 

William D. Hansen 
Harry K. Hariharan 
David S. Harris 
Scott E. Haskell 
Michael B. Hawley 
Matthew T. Hayden 
Daniel J. Henderson 
Tina M. Henninger 
Christopher T. 

Hochhausler 
David E. Hodges 
Amy L. Hoffman 
Tracy L. Hoffman 
PO-Wo Hsieh 
Joseph M. Izzo 
Randall A. Jacobson 
David R. James 
Suzanne M. James 
Kelly A. Jensen 
Jean M. Kamick 
Claudine H. 

Kazanecki 
Dennis J. Keegan 
Lowell J. Keith 
Thomas P. Kenia 
Lisa M. Kerns 
Michael B. Kessler 
Robert W. Kirklin 
James J. Konstanty 
Dawna L. Koterman 
Robert E. Krulish 
Leonard L. Kruse 

Cheung S. Kwan 
Bertrand J. LaChance 
Douglas H. Lacoss 
Stephanie J. Ladiana 
Salvatore T. LaDuca 
Julia M. Lavolpe 
Lawrence K. Law 
Thomas V. Le 
Thomas C. Lee 
Neal M. Leibowitz 
James I? Leise 
Isabelle Lemay 
Adam M. Lesser 
Teresa L. Lett 
Michael Leybov 
Michael Lipkin 
Linda R. Lisi 
Timothy D. Logie 
Nora J. Lovall 
Cara M. Low 
Susan I. Lynch 
Kelly A. Lysaght 
James M. MacPhee 
Barbara D. Majcherek 
Robert G. Mallison, Jr. 
Betsy F. Maniloff 
Kelly J. Mathson 
Claudia A. McCarthy 
Deborah L. McCrary 
Smith W. McKee 
Kelly S. McKeethan 
Leslie A. McMahon 
Lisa R. McNeal 
James C. McPherson 

Stephanie J. Michalik 
Stephen J. Mildenhall 
Michael J. Miller 
Beth K. Millington 
Scott P. Monard 
Robert J. Moser 
Kevin T. Murphy 
Jennifer L. Nelson 
Heather L. Nemeth 
Denis P. Neumann 
Khanh K. Nguyen 
Steven A. Nichols 
Douglas K. Nishimura 
Chris M. Norman 
Sandra F. Norowitz 
Steven B. Oakley 
Marie A. Olon 
Stacey L. Otterson 
Jill E. O’Dell 
Marianne E. Papay 
Thomas Passante 
Javanika Pate1 
Tracie L. Pencak 
Jennifer L. Pepin 
David J. Persik 
Mark A. Piske 
Joseph W. Pitts 
Matthew H. Price 
Cindy Q. Qiu 
Brentley J. Radeloff 
William D. Rader, Jr. 
Kimberly E. Ragland 
Alicia M. Ransom 



468 1 ‘)‘)2 EXAMINATIONS SllCC‘ESSbI I.~‘4\I)II)ATI:S 

Par-t 3B (cont’d) 

Charles J. 
Reichardt, Jr. 

Meredith G. 
Richardson 

Janelle P. Ridder 
Brad E. Rigotty 
Gail S. Rohrbach 
Luis Romero 
Jay A. Rosen 
Jean-Denis Roy 
David L. Ruhm 
Sean W. Russell 
Shama S. Sabade 
Asif M. Sardar 
Barbara A. Satsky 
Rebecca A. Schafer 
Christine E. Schindler 
Annmarie Schuster 
Terri L. Schwomeyer 
John P. Scott 

Terry M. Seckel 
Michael Shane 
George L. Shields 
Nathan I. Shpritz 
Michael N. Singer 
Laura M. Smith 
Michele L. Spale 
Jonathan C. Stavros 
D. Gregory Stitts 
Shelley A. Stone 
Lauren M. Stump 
Elizabeth A. Sullivan 
Patricia A. Sullivan 
Roxann P. Swenson 
Ming Tang 
Judith D. Teglas 
Steve D. Tews 
Amy B. Treciokas 
Beth S. Tropp 
Mary H. Vale 

Tim A. Varso 
Leslie A. Vernon 
Edward H. Wagner 
Robert A. Walsh 
Edith A. Wendell 
Jeffrey D. White 
Steven B. White 
Wyndi S. White 
Ellen G. Wiener 
Bruce P. Williams 
Jennifer N. Williams 
William M. Wilt 
Curtis W. Withers 
Kah-Leng Wong 
John S. Wright 
Nancy E. Yamall 
Virginia R. Young 
Philip A. Zakas 
Michael R. Zarember 
Darci L. Zelenak 



1992 EXAMINATIONS-SUCCESSFUL CANDIDATES 469 

Part 4A 

Elise M. Ahearn 
Joseph J. Allard 
Kay L. Allen 
Jennifer A. 
Andrzejewski 

John A. Annino 
Robert C. 

Birmingham 
Barry E. Blodgett 
Carol A. Blomstrom 
Jodi L. Bohac 
Josee Bolduc 
Edmund L. Bouchie 
Lori M. Bradley 
Tobias E. Bradley 
Betsy A. Branagan 
Glen R. Bratty 
Robert F. Brown 
Michelle L. Busch 
Tara E. Bush 
Douglas A. Carlone 
Francis D. Cerasoli 
Elina L. Chachkes 
Joyce Chen 
Gary C. Cheung 
Sally M. Cohen 
Kevin A. Cormier 
Brian C. Comelison 
Sandra Creaney 
Michael T. Curtis 
Smitesh Dave 
Jeffrey W. Davis 
Catherine L. DePolo 
Sharon D. Devanna 

David L. Drury 
Stephanie S. Dubose 
Nathalie Dufresne 
Stephen C. Dugan 
Sarkis M. El-Zein 
Bruce D. Fell 
John R. Ferrara 
Stephen C. Fiete 
Daniel B. Finn 
William P. Fisanick 
Daniel J. Flick 
Sy Foguel 
Heather A. Ford 
Lilane L. Fox 
Keith E. Friedman 
Gary J. Ganci 
Christian Gaouette 
Robert J. Garbus 
Perriann R. Garcia 
Justin G. Gensler 
Eric J. Gesick 
Barbara B. 
Glasbrenner 

Lynn E. Galas 
Chris D. Goodwin 
Patricia A. Gorski 
John E. Green 
Steven A. Green 
Daniel E. Greer 
Scott J. Hartzler 
Curtis D. Harvey 
Douglas J. Hatlestad 
Lisa K. Hiatt 
Anne M. Hoban 

Jason N. Hoffman 
Dave R. Holmes 
Eric A. Hoppe 
Robert J. Hopper 
Chaudhry M. Ishaq 
Paul A. Johnson 
ha M. Kaplan 
Brian D. Kemp 
Martin T. King 
Craig W. Kliethermes 
Louis K. Korth 
Kimberly A. Kracht 
Karen M. Kulchyski 
Cheung S. Kwan 
Patrick P. Lacasse 
Bertrand J. LaChance 
Matthew G. Lange 
Steven W. Larson 
Khanh M. Le 
Betty F. Lee 
Paul B. LeStourgeon 
Philip Lew 
Yuan Long Liu 
Lee C. Lloyd 
William R. Maag 
Barbara D. Majcherek 
David K. Manski 
Christopher M. 

Mariani 
Albert Maroun 
Meredith J. Martin 
Tracey L. Matthew 
Archibald G. Mattis 
Bonnie C. Maxie 
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Phillip E. McKneely 
Jeffrey A. Mehalic 
Scott M. Miller 
Stephen A. Moffett 
Lisa J. Moorey 
Jonathan M. Moss 
Robert J. Moss 
Karen E. Myers 
Milary N. Olson 
Thomas Passante 
Lisa M. Pawlowski 
Chantal Pelletier 
Jeremy P Pecora 
Claude Penland IV 
Anne M. Petrides 
Michael W. Phillips 
Michael L. Pisula 
Thomas L. Poklen, Jr. 
Ni Qin Feng 
Mark S. Quigley 
Thomas 0. Rau 
Ellen J. Respler 
Dennis L. 
Rivenburgh, Jr. 

Part 4B 

Vicki L. Agerton 
Timothy K. Allen 
Jason C. Alleyne 
Timothy P. Aman 
Steven D. Armstrong 
John J. Ascencio 
Bruce E. Bach 
Kendra D. Barnes 

Sallie S. Robinson 
Rita L. Rogers 
David M. Savage 
Daniel V. Scala 
Cindy R. Schaue! 
Suzanne E. Schoo 
Annmarie Schuster 
Steven G. Searle 
Jerelyn K. Seeger 
Jill C. Sidney 
M. Kate Smith 
Gregory T. Snider 
Sandra L. Spiroff 
Scott D. Spurgat 
Kenneth W. Stam 
Trdcey A. 

Stark-Beldere 
Scott T. Stelljes 
Michael J. Steward II 
Stephen J. Streff 
Brian K. Sullivan 
Frank Tancredi 
Judith Tcglas 

Rajesh K. Barnwal 
David M. Baxter 
Martin Bilodeau 
Gina S. Binder 
Latisha L. Boothe 
Edmund L. Bouchie 
Lee M. Bowron 
Tobias E. Bradley 

Jennifer M. Tornquist 
Turgay F. Turnacioglu 
Michael 0. VanDusen 
Elayne M. 
Vargo Moxon 

Trent R. Vdughn 
Jennifer A. 

VonSchaven 
Wittic 0. Wacker 
Galen L. Wadzinski 
Michael A. Wallace 
Lisa Marie Walsh 
Caroline Ward 
Erica L. Weida 
Kirby W. Wisian 
Stephen K. Woodard 
Jeffrey F. Woodcock 
Linda Yang 
Mindy Yu 
Jeffcry M. Zacek 
Fcngming Zhang 
Steven B. Zielke 
Robin Zinger 

David J. Braza 
Laura G. Brill 
Linda M. Brockmeier 
James A. Bull 
Michelle L. Busch 
Tard E. Bush 
Linda E. Callas 
Victoria J. Carter 
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Part 4B 

Thomas E. Cerulli 
Peter T. Chang 
Wei Fun W. Chang 
Sharon L. Chapman 
Joyce Chen 
Gary C. Cheung 
Ling-Jyh Chiou 
Soo H. Choo 
Gregory C. 

Christensen 
Kathy A. Christensen 
Juite Chuang 
Clark R. Chumley 
Frank S. Conde 
David G. Cook 
Sharon A. Crosson 
Malcolm H. Curry 
Michael T. Curtis 
Kenneth S. Dailey 
Jeffrey W. Davis 
Raymond V. DeJaco 
Catherine L. DePolo 
Dina M. Deschino 
Sean R. Devlin 
Behram M. Dinshaw 
Ronald R. Dionne 
Patricia J. Donnelly 
Kimberly J. Drennan 
Barry P. Drobes 
Mary F. Drueke 
Denis Dubois 
Louis Durocher 
Anthony D. Edwards 
Ellen E. Evans 

Bruce D. Fell 
John R. Ferrara 
Daniel B. Finn 
Ginda K. Fisher 
Daniel J. Flick 
Jeffrey M. Forden 
Walter H. Fransen 
Keith E. Friedman 
Richard A. Fuller 
Scott F. Fuller 
Wang-Tat D. Fung 
Serge Gagne 
Gary J. Ganci 
Carol Ann Gamey 
Micah R. Gentile 
Thomas P. Gibbons 
Bernard H. Gilden 
Mary K. Gise 
Barbara B. 
Glasbrenner 

Yethun Goh 
Annette J. Goodreau 
Patricia A. Gorski 
George J. 

Gourdourakos 
Michael D. Green 
Steven A. Green 
John E. Green 
Joseph P. Greenwood 
Michael K. Griffin 
Robert W. Guth 
Steven K. Haine 
Richard J. Haines 
Scott W. Hanson 

David S. Harris 
Michael A. Harris 
Scott J. Hartzler 
Curtis D. Harvey 
Gary M. Harvey 
Michael B. Hawley 
Peter A. Heinrichs 
Daniel E Henke 
Betty-Jo Hill 
John D. Hill 
Jason N. Hoffman 
Todd H. Hoivik 
Keith D. Holler 
Dave R. Holmes 
Wayne Hommes 
Yu-Hui A. Huang 
Marie-Josee Huard 
Corine Huey 
Brian L. Ingle 
Randall A. Jacobson 
Fong-Yee J. Jao 
Scott L. Johnson 
Gregory K. Jones 
Steven J. Jordan 
Ira M. Kaplan 
Joseph P. Karlovich 
Michael B. Kessler 
Hyung-Shim Kim 
Deborah M. King 
Martin T. King 
Omar A. Kitchlew 
Craig W. Kliethermes 
Robert J. Knadler 
Rachna Kohli 
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Jonelle A. Kohne 
Paul W. Kollner 
Andrew M. Koren 
Eleni Kourou 
Gary R. Kratzer 
Dean F. Kruger 
Ignace Y. Kuchazik 
Patrick P. Lacasse 
Jin-Mei J. Lai 
Kunjung Lai 
Siu-Wai Lai 
John B. Landkamer 
Frank A. Laterza 
Robin R. Lee 
Paul B. LeStourgeon 
John N. Levy 
Pak-Chuen Li 
Karen A. Liholt 
Yachin Lin 
Kim D. Litwack 
William M. Londeree 
Richard B. Lord 
Sak-Man Luk 
Xinhong Luo 
Allen S. Lynch, Jr. 
James P. MacDougall 
Gary P Maile 
Keith M. Marcus 
Laura S. Marin 
Joseph Marracello 
Leslie A. Martin 
Peter R. Martin 
Michele A. Mathieu 
Angela T. Mazzaferro 

Wendy M. Mazzarella 
Robert D. McCarthy 
Cassandra M. McGill 
Sean L. McIntosh 
Christopher P. 

McMann 
Arthur J. Mees, Jr. 
James R. Merz 
Marci A. Meyer 
Scott M. Miller 
Susan A. Minnich 
Quynh-Nhu T. Morse 
Matthew S. Mrozek 
Turhan E. Murguz 
Iris A. Nance 
Melissa J. Neidlingcr 
Gary R. Nidds 
Lauren E. Norton 
Steven B. Oakley 
Denise R. Olson 
Milary N. Olson 
Ajay Pahwa 
Dmitry Papush 
Nicholas H. Pastor 
Rick S. Pawelski 
Mark Paykin 
Priyantha L. Perera 
John M. Pergrossi 
Luba Pesis 
Kevin W. Piconc 
Donna M. Pinctti 
Mark A. Piske 
Alan D. Potter 
Matthew H. Price 

Arlie J. Proctor 
John K. Punzak 
Ni Qin Feng 
Mary S. Rapp 
Thomas 0. Rau 
Patrick J. Reilly 
Mary B. Rios-Gandara 
Christopher R. Ritter 
Jeremy Roberts 
Michelle N. 
Rodriguez 

Constance D. Rogers 
Hal D. Rubin 
John C. Ruth 
Rajesh V. 

Sahasrabuddhe 
Rome] G. Salam 
Sujata S. Sanghvi 
Matt J. Schmitt 
Suzanne E. Schoo 
Michael F. Schrah 
Michael R. Schummer 
Gordon L. Scott 
Patrick J. Seaman 
Jerelyn K. Seegcr 
Michael Shane 
Jennifer M. Shantz 
Stacy L. Shimizu-Hall 
Laura E. Siegel 
Cindy W. Smith 
Jeffery J. Smith 
Katherine R. Smith 
L. Kevin Smith 
Halina H. Smosna 
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Part 4B (cont’d) 

David E. Sowers 
Scott D. Spurgat 
Beth A. Stahelin 
Robert P Stahnke 
Glenda M. Stalkfleet 
PJ. Eric Stallard 
Michael J. Steward II 
Curt A. Stewart 
Lori E. Stoeberl 
William J. Stone 
Stephen J. Streff 
Steven J. Symon 
Jinhua Tao 
Sandra L. Theile 

Part 5 

John S. Alexander 
John P. Alltop 
Larry D. Anderson 
Martin S. Arnold 
Claudia M. Barry 
Gina S. Binder 
Lisa A. Bjorkman 
Christina M. Bond 
Conni J. Brown 
Mark E. Burgess 
Sandra L. Cagley 
Pamela J. Cagney 
Mark W. Callahan 
Maureen A. 

Cavanaugh 
Jean-Francois 

Chalifoux 
Hong Chen 

Sadhana Tiwari 
Jennifer M. Tornquist 
Kai L. Tse 
Scatty M. Tucker 
Jeffrey R. Turcotte 
Arthur J. Turner 
Michael 0. VanDusen 
Charles J. Veres 
Michel F. Viau 
Benjamin A. Walden 
Isabelle T. Wang 
Shaun Wang 
Lynne K. Wehmueller 
Erica L. Weida 

Suhui Chen 
Bina S. Cherian 
Christopher J. Claus 
William B. Cody 
Frank S. Conde 
Kirsten J. Costello 
Christopher G. 

Cunniff 
Raymond V. DeJaco 
Joseph A. DiBiase 
Patricia J. Donnelly 
Kevin G. Donovan 
Robert G. Downs 
Sara P. Drexler 
David L. Drury 
Martin A. Epstein 
Dianne L. Estrada 
James G. Evans 

Elizabeth A. Wentzien 
Scott Werfel 
L. Alicia Williams 
Ronald J. Williams 
Kirby W. Wisian 
Trevar K. Withers 
Brandon L. Wolf 
Jeffrey F. Woodcock 
Rick A. Workman 
John Yannis Yatracos 
Xiang Zhang 
Robin Zinger 
Edward J. Zonenberg 

Joseph G. Evleth 
Michael A. Falcone 
Richard B. Federman 
John D. Ferraro 
Daniel B. Finn 
Jeffrey M. Forden 
Mark R. Frank 
J’ne E. Furrow 
Paul Gauthier 
Justin G. Gensler 
Margaret W. Germani 
Nicholas P. Giuntini 
Michael F. Glatz 
Stewart H. Gleason 
Karl Goring 
John W. Gradwell 
Michael K. Griffin 
Lynne M. Halliwell 
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Purr 5 

Brian D. Haney 
Elizabeth E. Hansen 
Anne M. Hoban 
Brook A. Hoffman 
Eric J. Hornick 
Linda M. Howell 
Jill C. Johnson 
Gregory K. Jones 
Steven J. Jordan 
Barbara L. 
Kanigowski 

John P. Kannon 
Anthony N. Katz 
Mark J. Kaufman 
Brandelyn C. Klenner 
Brian R. Knox 
Louis K. Korth 
Debra K. Kratz 
Thomas F. Krause 
Brian S. Krick 
Kenneth A. Kurtzman 
Edward M. Kuss 
Kirk L. Kutch 
Steven M. Lacke 
Blair W. Laddusaw 
John M. Lamendola 
Robert J. Larson 
Thomas V. Le 
John P. Lebens 
Helen P. LeClair 
Chi Hei Lee 
Daniel Leff 
Glen A. Leibowitz 
Charles R. Lenz 
IJaul Liu 

Nora J. Lovall 
Barbara S. Mahoney 
Michael B. Masters 
Robert F. Maton 
Tracey L. Matthew 
Camley A. Mazloom 
William R. 

McClintock 
David W. McLaughry 
Stephen J. Mildenhall 
Mark J. Moitoso 
Kimberly A. Moran 
Benoit Morissette 
Michael J. Moss 
Turhan E. Murguz 
Jarow G. Myers 
Karen E. Myers 
Kathleen V. Najim 
Marc F. Oberholtr.cl 
Leo M. Orth, Jr. 
Mark A. O’Brien 
James D. O’Malleq 
James A. Partridge 
Wende A. Pemrick 
Claude Penland IV 
Michael C. Petersen 
Glen-Roberts 

Pitruzzello 
Dale S. Porfilio 
Kiran Rasaretnam 
Natalie J. Rekittke 
Cynthia L. Rice 
Donald A. Riggins 
Brad M. Ritter 
Christopher R. Ritter 

John W. Rollins 
Thomas A. Ryan 
Christina L. Scanell 
Lawrence M. Schober 
Michael J. Scholl 
Jay M. Schwartz 
Craig J. Scukas 
Kevin H. Shang 
Jcffrcy P. Shirazi 
Jeffery J. Smith 
Caroline B. Spain 
Christina L. 

Staudhammer 
Nathan R. Stein 
Christopher M. 

Steinbach 
Scott T. Stelljes 
Kevin D. Strous 
Josephine T. Teruel 
Daniel A. Tess 
Marie-Claire Turcotte 
Laura M. Turner 
Robert C. Turner 
Eric Vaith 
Mark D. van Zanden 
Martin Vc/ina 
Lisa Marie Walsh 
Petra L. Wegerich 
David L. Whitley 
Michael J. Williams 
Tammy L. Winier 
Mark L. Woods 
Guang.jian Zhu 
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Part 5A 

Michael J. Anstead 
Mohammed Q. Ashab 
Nathalie J. Auger 
Andre Beaulieu 
Bruce J. Bergeron 
Lisa A. Brown 
Bruce D. Browning 
Peter V. Burchett 
Randall A. Chaffinch 
Henry H. Chen 
Richard M. Chiarini 
Thomas J. Chisholm 
Michael J. Christian 
Theresa A. Christian 
Darrel W. Chvoy 
Danielle G. Comtois 
Sheila C. Cooley 
Beverly E. Cordner 
Robert E. Davis 
Ronald M. Dennis 
Sean R. Devlin 
Annette M. Eckhardt 
Charles V. Faerber 
Alexander 
Fernandez, Jr. 

Jean-Pierre Gagnon 
Nathalie Gamache 
Michael J. Goetsch 
M. Harlan Grove 
Julie K. Halper 

Part 5B 

Cheng-Te Liang 

Shohreh Heshmati 
Anna M. Hnateyko 
David E. Hodges 
Wayne Hommes 
Alex Y. Hsiao 
PO-Wo Hsieh 
Thomas A. Huberty 
Vincent H. Jackson 
Paul J. Johnson 
Kathryn A. Karoski 
William J. Keros 
W. Keith Landry 
Matthew G. Lange 
Manuel Albert0 T. 
Lea1 

Betty F. Lee 
Thomas L. Lee 
Marc E. Levine 
Hsin-Hui G. Lin 
Steven C. Lin 
Kevin E. Litton 
John Lum 
Victoria S. Lusk 
Tai-Kuan Ly 
Lennette U. Maala 
Joseph A. Malsky 
Jay E. McClain 
Camille D. Minogue 
Thomas M. Mount 
Hiep T. Nguyen 

Russell R. Oeser 
Pierre Parenteau 
Leslie C. Pelecovich 
Armand Principato 
Jennifer L. Reisig 
Jeremy Roberts 
Paul J. Rogness 
Joseph F. Rosta 
Caroline Roy 
Peter A. Royek 
Anthony V. Rizzuto 
Asif M. Sardar 
Matt J. Schmitt 
Lisa A. Sgaramella 
Gena A. Shangold 
Linda M. Sowter 
Calvin C. Spence, Jr. 
Scott D. Spurgat 
Anthony T. Stanford 
Brian J. Sullivan 
Siu Cheung S. Szeto 
Ngoc H. Tran 
Steven D. Umansky 
Mary E. Waak 
Robert J. Walling III 
Joel D. Whitcraft 
Thomas J. White 
David S. Wolfe 
Doug A. Zearfoss 
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Part 7 

Shawna S. Ackerman 
Jonathan D. Adkisson 
Rhonda K. Aikens 
Christopher R. Allan 
Craig A. Allen 
Scott C. Anderson 
Michael E. Angelina 
William P. Ayres 
Barry L. Bablin 
Robert S. Ballmer 
Timothy J. Banick 
Philip A. Baum 
John A. Beckman 
Douglas S. Benedict 
Gary Blumsohn 
Ann M. Bok 
Elizabeth S. Borchert 
Maurice P Bouffard 
Kevin M. Brady 
Richard A. 

Brassington 
Tracy L. 

Brooks-Szegda 
Pamela A. Burt 
Richard F. Burt, Jr. 
John F. Butcher II 
Mark W. Callahan 
Michael E. Carpenter 
Kristi I. Carpine-Taber 
Benoit Carrier 
Michael W. Cash 
Tania J. Cassell 
Kevin J. Cawley 
Debra S. Charlop 

Jo Ellen Cockley 
Thomas V. Daley 
Joyce A. Dallessio 
David J. Darby 
Karen L. Davies 
Marie-Julie Demers 
Shawn F. Doherty 
Dean P. Dorman 
Ronald R. Earls 
Gregg Evans 
Matthew G. Fay 
George Fescos 
David I. Frank 
Douglas E. Franklin 
Kai Y. Fung 
James E. Cant 
Donna L. Glenn 
Ronald E. Glenn 
Marc C. Grandisson 
Bradley A. Granger 
Russell H. Greig 
William A. Guffey 
Marc S. Hall 
Paul J. Hancock 
Timothy J. Hansen 
Robert L. 

Harnatkiewicz 
Christopher L. Harris 
Lise A. Hasegawa 
Lisa A. Hays 
Barton W. Hedges 
Noel M. Heht 
Mary B. Hcmerick 
Paul D. Henning 

Thomas H. Highet 
Robert J. Hopper 
Bernard R. Horovitz 
Sandra L. Hunt 
John F. Janssen 
Patrick C. Jensen 
Kurt J. Johnson 
Mark R. Johnson 
Charles N. Kasmer 
Janet S. Katz 
Steven A. Kelner 
Timothy P. Kenefick 
Joseph P. Kilroy 
Bradley J. Kiscaden 
Michael F. Klein 
Terry A. Knull 
Elizabeth Kolber 
Howard A. Kunst 
David L. Larson 
Michel Laurin 
Lewis Y. Lee 
Thomas L. Lee 
Scott J. Lefkowitz 
Elizabeth A. Lemaster 
Deannc C. Lenhardt 
David R. Lesieur 
Aaron S. Levine 
Richard S. Light 
Shu C. Lin 
Daniel J. Mainka 
Stephen N. Maratea 
Richard J. Marcks 
Lawrence F. Marcus 
Sharon L. Markowski 
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Part 7 (cont’d) 

Kelly J. Mathson 
Deann M. Mays 
Robert D. McCarthy 
Kathleen A. 
McMonigle 

Conrad 0. Membrino 
Stephen V. Merkey 
Paul A. Mestelle 
Anne C. Meysenburg 
Douglas H. Min 
Michelle M. Morrow 
Matthew C. Mosher 
Giovanni A. 

Muzzarelli 
Timothy 0. Muzzey 
David Y. Na 
Mark Naigles 
James F. Neary 
Peter M. Nonken 
Douglas J. Onnen 
Melinda H. Oosten 
Paul S. Osbom 
Nathalie Ouellet 
Charles C. Pearl, Jr. 
Edward F. Peck 
John R. Pedrick 
Karen L. Pehrson 

Miriam E. Perkins 
Daniel C. Pickens 
Janice L. Polofsky 
Mark Priven 
Cathy A. Puleo 
Eduard J. Pulkstenis 
Steven J. Regnier 
Ellen J. Respler 
Victor U. Revilla 
Al J. Rhodes 
Andrew T. Rippert 
James J. Romanowski 
David A. Rosenzweig 
James B. Rowland 
Kenneth W. Rupert, Jr. 
David A. Russell 
James V. Russell 
Stephen I? Sauthoff 
Letitia M. Saylor 
Michael B. Schenk 
Peter R. Schwanke 
Nathan I. Shpritz 
Jeffrey S. Sirkin 
Carl J. Somson 
Victoria G. 

Stachowski 
Douglas W. Stang 

Michael J. Steward II 
Richard A. Stock 
Brian M. Stall 
Katie Suljak 
Todd D. Tabor 
Christopher Tait 
Yuan-Yuan Tang 
Dom M. Tobey 
Glenn A. Tobleman 
Thomas A. Trocchia 
Patrick N. Tures 
Robert W. VanEpps 
Charles E. 

VanKampen 
Robert J. Vogel 
David M. Vogt 
Joseph W. Wallen 
Marcia C. Williams 
Calvin Wolcott 
Tad E. Womack 
Cheng-Sheng P. Wu 
Gerald T. Yeung 
Claude D. Yoder 
Edward J. Yorty 
Jeffery M. Zacek 
George H. Zanjani 
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Part 9 

Kristen M. Albright 
Karen L. Ayres 
Bruno P. Bauer 
Todd R. Bault 
Lisa M. Besman 
Betsy L. Blue 
Lloyd J. Bouchard 
Alicia E. Bowen 
Christopher K. 

Bozman 
Mark L. Brannon 
Mark D. Brissman 
J. Eric Brosius 
David S. Cash 
Janet L. Chaffee 
Kasing L. Chung 
Jean Cloutier 
Peter J. Collins 
Martin L. Couture 
David B. Cox 
Michael K. Daly 
Guy R. Danielson 
Manon Debigare 
Kevin G. Dickson 
Michel Dionne 
Norman E. Donelson 
Michael C. Dubin 
Francois Dumas 
Bradley C. Eastwood 
Maribeth Ebert 
Charles C. Emma 
Madelyn C. Faggella 
James E. Fletcher 
Ross C. Fonticella 

Russell Frank 
Louis Gariepy 
Kim B. Garland 
Bruce R. Gifford 
Bradley J. Gleason 
Richard S. Goldfarb 
Linda M. Goss 
Odile Goyer 
Edward M. Grab 
James W. Haidu 
Leigh J. Halliwell 
Renee Helou 
Kathleen A. Hinds 
Joanne K. Ikeda 
Laura A. Johnson 
Deborah E. Kenyon 
Kevin A. Kesby 
Gerald S. Kirschner 
Timothy F. Koester 
David R. Kunze 
Frank 0. Kwon 
Benoit Laganiere 
Alan E. Lange 
Christopher Lattin 
Marc-Andre Lefebvre 
Stephanie J. Lippl 
Katherine A. Mann 
Galina Margulis 
Leslie R. Marlo 
James P. McNichols 
Linda K. Miller 
John H. Mize 
Russell E. Moore 
Francois Morin 

Antoine A. Neghaiwi 
William L. 
Oostendorp 

Ann E. Overturf 
Timothy A. Paddock 
Chandrakant C. Pate1 
Sarah L. Petersen 
Denis Poirier 
Stuart Powers 
Donna J. Reed 
Daniel G. Roth 
Jean Roy 
Leigh Saunders Oates 
Thomas E. Schadler 
Gregory R. Scruton 
Peter Senak 
David M. Shepherd 
David A. Smith 
Elizabeth L. Sogge 
David B. Sommer 
Lisa N. 
Steenken-Dennison 

John P Stefanek 
Edward D. Thomas 
Richard D. Thomas 
Michael Toledano 
Charles F. Toney II 
Susan M. Treskolasky 
Stacy L. Trowbridge 
Peter S. Valentine 
Jennifer A. Violette 
Bryan C. Ware 
Scott P. Weinstein 
Peter A. Weisenberger 
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Part 9 (Cc&d) 

John P. Welch 
L. Nicholas 

Weltmann, Jr. 

Russell B. Wenitsky 
Kevin Wick 
Vincent F. Yezzi, Jr. 

Sheng H. Yu 
Ralph T. Zimmer 
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OBITUARIES 

A. EDWARD ARCHIBALD 

GEORGE Y. CHERLIN 

JOHN W. CLARKE 

MILES R. DROBISH 

JAMES F. GILL 

WILLIAM H. MAYER, JR. 

JOSEPH M. MUIR 

STEFAN PETERS 

ALBERT Z. SKELDING 

A. EDWARD ARCHIBALD 
1903-1992 

A. Edward Archibald, an Associate of the Casualty Actuarial Society 
since 1930, a Fellow of the Society of Actuaries since 193 1, and a mem- 
ber of the American Academy of Actuaries since 1965, died on May 8, 
1992, at the age of 89. 

When he received his Associateship designation, Mr. Archibald was 
working for Woodward, Fondiller & Ryan in New York City as an Asso- 
ciate Actuary. In 1933, he became an Actuary with the Volunteer State 
Life Insurance Company in Chattanooga, Tennessee, where he was pro- 
moted to Vice President and Actuary in 1944. He joined Investors Diver- 
sified Services, Inc. (IDS) of Minneapolis as Director of Management 
Controls, and was promoted to Vice President of the firm in 1958. In 
1966, he was named President of Investors Syndicated Life Insurance and 
Annuity Corp. in Minneapolis. Beginning in 1967, he served as a director 
for several years. In 1969, Mr. Archibald returned to Lookout Mountain, 
Tennessee, and retired in 1972. 

A native of Huron, Ontario, Canada, Mr. Archibald was a graduate of 
the University of Toronto. He was a member of the Lookout Mountain 
Presbyterian Church, the Downtown Kiwanis Club, Lookout Mountain 
Golf Club, and Fairyland Club. 
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Survivors include his wife, Dorothy Burns Archibald, of Lookout 
Mountain; a daughter, Ellen R. Archibald, of Charleston, West Virginia; 
and a brother. F.R. Archibald, of Naples. Florida. 

DR. GEORGE Y. CHERLIN 
1924--- 1992 

George Yale Cherlin, an Associate of the Casualty Actuarial Society 
since 1961, a Fellow of the Society of Actuaries since 1955, and a Mem- 
ber of the American Academy of Actuaries since 1965, died on August 5, 
1992, at the age of 68. 

Dr. Cherlin was also a Fellow of the Conference of Consulting Actuar- 
ies since 1982, and an Enrolled Actuary since 1976. In addition to his 
memberships in actuarial organizations, Dr. Cherhn also was a member of 
the American Mathematical Society and the Association for Computing 
Machinery Special Interest Group. 

A former instructor in Mathematics at Rutgers University and the first 
individual to be awarded a Ph.D. in mathematics from the university 
(195 1). Dr. Cherlin also received his bachelor and master of science 
degrees from Rutgers. He was active as a fund raiser for the university, 
served as president of the Class of 1946, and was a member of Phi Beta 
Kappa, Sigma Chi, and Beta Iota Lambda. During World War II he served 
in the United States Navy. 

Dr. Cherlin joined Mutual Benefit Life in I95 1 as an actuarial student. 
He served the company during the years 195 I to 1962, attaining the 
position of Assistant Mathematician. In 1962, Dr. Cherlin joined the Na- 
tional Health and Welfare Retirement Association, in New York City, as 
an actuary. He was promoted to Vice President and Actuary in 1964. He 
returned to Mutual Benefit Life in 1972 where he assumed the position of 
Associate Mathematician until 1976 when he was named Second Vice 
President and Actuary. In 1978, Dr. Cherhn became President of APL 
Business Consultants, Inc., in Newark. New Jersey. He continued his 
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consulting career with STSC, Inc., in New York City, where he worked as 
a consulting actuary from 1982 until 1983. 

Dr. Cherlin returned Mutual Benefit Life in 1983 as an Applications 
Systems Consultant. He was promoted to Actuary in 1986, a position he 
held until 1987. He then relocated to the Chicago area and joined the 
United Insurance Company of America. In 1988, he moved to Milwau- 
kee, Wisconsin, and joined General Life Insurance as Vice President and 
Actuary. In 1992, he retired and moved to Mount Shasta, California. 

A resident of Newark, New Jersey, for 24 years, Dr. Cherlin was born 
in New Haven, Connecticut, in 1924. Active in Newark civic affairs, Dr. 
Cherlin was a former chairman of the Professional Division of the United 
Appeals and a former president of the Newark Jaycees. He served in 
numerous volunteer capacities with the Robert Treat Council of the Boy 
Scouts. He was also associated with the New Jersey Symphony Chorus. 

Dr. Cherlin is survived by his wife, Mary Elizabeth Monroe Cherlin, 
of Mt. Shasta; two sons, Gary Cherlin of Weed, California, and Gregory 
Cherlin of Princeton, New Jersey; four grandchildren; three sisters, Lil- 
lian Heimberg of Edison, New Jersey, Judith Sagotsky of Freehold, New 
Jersey, and Harriet Hunt of San Antonio, Texas. 

JOHN W. CLARKE 
1916-1992 

John W. Clarke, a Fellow of the Casualty Actuarial Society since 
1949, died on April 10, 1992, in Missouri City, Texas. He was 76. He was 
born on February 24, 1916 in Kingston, New York. 

Mr. Clarke earned an A.B. degree from Cornell University, a graduate 
degree from the Massachusetts Institute of Technology, and an LL.D. 
with high honors from the University of Connecticut. In addition, Mr. 
Clarke spent five years with the Army Air Corps. 

Mr. Clarke began his career with the Travelers Insurance Company in 
1937 and held the position of Associate Actuary when he left the firm in 
1954. That year he moved to the Pan American Life Insurance Company 
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where he rose to the position of Vice President, Actuary, and Controller. 
From 1956 until 1961, he worked for the Gulf Life Insurance Company 
and was named Senior Vice President. Mr. Clarke joined the General 
Reinsurance Life Corp. in 1962 and held the post of President. In 1966, 
he joined Hartford Life as Executive Vice President and was named Presi- 
dent of the firm in 1967. He retired in 1972. 

Mr. Clarke was a member of several professional and social organiza- 
tions including the Casualty Actuarial Society, the Connecticut Bar Asso- 
ciation, the Conference of Actuaries in Public Practice (now the 
Conference of Consulting Actuaries), and the American Academy of Ac- 
tuaries. He was also a director of the Hartford Fire Insurance Company 
and its major subsidiaries. 

MILES R. DROBISH 
1918-1991 

Miles R. Drobish, a Fellow of the Casualty Actuarial Society since 
1957 and a member of the American Academy of Actuaries since 1965, 
died on January 8, 1991, at the age of 73. 

A native of San Francisco, California, Mr. Drobish attended the Uni- 
versity of California, Los Angeles, and the University of California, 
Berkeley, where he received his bachelor’s degree. He served in the 
United States Army for three years during World War II. 

At the time he received his Fellowship designation, Mr. Drobish was 
working as a Statistician with the California Inspection Rating Bureau 
(now known as the Workers’ Compensation Insurance Rating Bureau of 
California) in San Francisco. He was promoted to Superintendent in 
1960, and Assistant Actuary in 1961, a position he held until his retire- 
ment in 1980. 

Mr. Drobish was active in the Casualty Actuarial Society, serving on 
the Society’s Public Relations Committee from 1976 through 1979, and 
on its Editorial Committee, Special Publications in 1980. 
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He is survived by a son, Denman Drobish, of San Francisco, and two 
grandchildren. 

JAMES F. GILL 
l909- 1992 

James F. Gill, an Associate of the Casualty Actuarial Society since 
1963, an Associate of the Conference of Consulting Actuaries since 1959, 
and a Member of the American Academy of Actuaries since 1966, died at 
home on September 27, 1992. He was 82 years old. 

A graduate of the University of Pittsburgh, Mr. Gill worked for the 
National Association of Independent Insurers in Chicago, Illinois, for 25 
years, beginning in 1948. He rose to the position of Vice President and 
Actuary, a position he held from 1967 until 1973. 

In 1973, Mr. Gill joined the Westfield Companies in Westfield Center, 
Ohio, as Actuary. He retired from the firm in 1980. He then moved to 
Portland, Oregon, and worked as a consultant before retiring from actuar- 
ial practice in 1982. 

Mr. Gill served on two committees in the Society, the Financial Re- 
view Committee in 1966, and the Committee on Annual Statement from 
1967-l 97 1. He authored two papers published in the Proceedings. His 
first paper, “An Approximation for the Testing of Private Passenger Lia- 
bility Territorial Rate Levels Using Statewide Distribution of Classifica- 
tion Data,” appeared in the 1964 Placeedings and his review of 
“Ratemaking Procedures for Automobile Liability Insurance” was pub- 
lished in the 1966 edition. Mr. Gill also moderated a panel discussion on 
“Loss Reserve Problems-Financial and Ratemaking” at the 1969 CAS 
Spring Meeting. 

Mr. Gill is survived by his wife, Margaret, of Portland; a daughter, 
Mary Donevan; and a sister, Kathleen Gill. 
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WILLIAM H. MAYER. JR. 
1910-1990 

William H. Mayer, Jr., an Associate of the Casualty Actuarial Society 
since 1936, died on December 27, 1990, of the complications from 
Parkinson’s disease. He was 80. 

Mr. Mayer worked his entire career at the Metropolitan Life Insurance 
Company, in New York City. When he became an Associate in 1936 he 
was working in the actuarial department. He was promoted in 1949 to 
group contract referee. He became the associate manager of Met Life’s 
Group Contract Bureau in I95 I, and was appointed manager in 1958. 

In 1979, Mr. Mayer retired and resided in Dix Hills, New York, until 
his death. He is survived by his wife, Marilyn Mayer, of Dix Hills: and 
four sons: William, Peter, Richard, and Thomas; and an aunt. 

JOSEPH M. MUIR 
1906 I 989 

Joseph M. Muir, an Associate of the Casualty Actuarial Society since 
1957, died on September 13, 1989. He was 85. 

In 1927, Mr. Muir joined the Mutual Insurance Rating Bureau and the 
Insurance Advisory Association in New York City where he worked for 
42 years until his retirement in 1969. For more than 20 years he held the 
position of general manager for both organizations. 

He earned his Bachelor of Science degree from Cooper Union in New 
York City, going to night school for seven and a half years. 

In 1973, Mr. Muir moved from Haworth, New Jersey, to Boca Raton, 
Florida, where he lived until his death. 

Mr. Muir is survived by his wife, Mabel J. Muir. of St. Augustine, 
Florida; a daughter, Grace E. Emden, also of St. Augustine; and a grand- 
daughter, Debra J. Emden, of Metairie, Louisiana. 
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DR. STEFAN PETERS 
1909-1990 

Dr. Stefan Peters, a Fellow of the Casualty Actuarial Society since 
1941 and a Fellow of the Society of Actuaries since 195 I, died on August 
16, 1990. He was 81. 

Dr. Peters was born in Erlangen, Bavaria, Germany, and received his 
degree in mathematics from the University of Berlin. After graduation, he 
worked in Berlin until the political climate provoked his emigration. He 
moved to Trieste, Italy, and spent some time with the Assicurazione 
Generali as a life actuary. It was in Italy that he met his wife, Renata. In a 
few years, he was again forced to move, this time to the United States. 

Dr. Peters became an Associate in the Society in 1940 while he was 
working for the Compensation Insurance Rating Board in New York City 
as an assistant actuary. From this position, he was inducted into the Army 
of the United States and served his adopted country in enlisted status both 
at home and overseas in the Mediterranean Theater. This service qualified 
him for citizenship. 

In 1945, Dr. Peters moved to Berkeley, California, and in 1948, he 
assumed the position of Lecturer with the Department of Statistics, then 
headed by Jerzy Neyman, at the University of California. In 1949, after 
the sudden death of Professor Albert Mowbray, FCAS, Dr. Peters took 
over the insurance classes in the School of Business Administration and 
was appointed Associate Professor. During this period, he also served as 
consulting actuary to West Coast Life Insurance Company. 

His experience under fascist governments led Dr. Peters to resist im- 
position of the loyalty oath required of its faculty by the University of 
California in the early 1950s. After losing a courageous legal battle that 
went to the California Supreme Court, he moved back to the East Coast in 
1952, and took a position with Morse and Seal in New York City as 
Actuary. He moved to Boston in 1953 and joined the firm of Connell, 
Price and Company. In 1959, he started several years’ service with Arthur 
D. Little Consultants in Cambridge, Massachusetts. In 1974, Dr. Peters 
became the Chief Actuary for the Department of Insurance for the Com- 



monwealth of Massachusetts, a position he held until his retirement in 
1986. 

Dr. Peters published three papers in the Pl.oc,cc~tlirlRs, all on workers 
compensation insurance. In 194 I, his paper, “A Method of Testing Classi- 
fication Relativities,” introduced to the Procrtdings what R.A. Fisher 
called the “analysis of variances.” The paper covered a specific applica- 
tion of the then relatively new formal testing of hypotheses and making of 
decisions under uncertainty. 

Stefan Peters was admired by his many friends for successfully and 
gracefully overcoming severe problems in his long life. He was a quiet 
person whose warmth and friendliness were sometimes apparent only to 
the close observer, but were always clear to the many students and friends 
to whom he was ever pleased to give help. We who knew him warmly 
remember a good friend. 

Dr. Peters is survived by his wife; a son, Matthew Peters, of Cam- 
bridge; and a daughter, Clara Simon, of Albany, New York. 

ALBERT 2. SKELDING 
1897-1992 

Albert Z. Skelding. a Fellow of the Casualty Actuarial Society since 
1929 and a member of the American Academy of Actuaries since 1965, 
died on March 3 1, 1992, at the age of 95. 

In 1925, Mr. Skelding became an Associate of the Society. He spent 
his entire career working for the National Council on Compensation In- 
surance (NCCI) in New York City. He started as an Associate Actuary and 
in 1934 he was promoted to Actuary. In I950 he was named Assistant 
Manager, and in 1957 he was promoted to Associate Genera1 Manager of 
NCCI, a position he held until his retirement in 196 I 

At NCCI, Mr. Skelding worked to gain approval of workers’ compen- 
sation rate filings throughout the country. AI his retirement party, he 
delighted well-wishers with his reminiscences of those attempts. Since 
the methods used to win approval from the state insurance departments 
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were not always limited to logical and statistical presentations, his ac- 
count was both historically interesting and hilarious, 

Mr. Skelding held several volunteer positions within the Casualty Ac- 
tuarial Society. He was elected to the Council of the CAS for a three-year 
term ending in 1942. He was elected Vice President of the Society from 
1942 until 1944 and served as Secretary-Treasurer for 20 years, from 
1953 until 1973. He was also active on the committee level, serving on 
the Examinations Committee, the Program Committee, and the Commit- 
tee on Publications. 

Mr. Skelding also contributed many important book reviews to the 
Proceedings. He reviewed the following publications: Reversions and 
Life Interests; An Introduction to the Mathematics of Life Insurance; 
Compowld Interest Tables; Tuhles .for Calculating by Machine; Loga- 
rithms to 13 Pluces of Decimals; and the Cost of Compensation for- the 
Year Ended June 30, 1928 (a Special Bulletin of the New York Depart- 
ment of Labor). 

A lifelong resident of New York, Mr. Skelding was born in Brooklyn, 
and graduated from City College of New York in 1917. He was named 
valedictorian of his class, but was unable to attend the ceremonies be- 
cause of his enlistment in the United States Navy three weeks before he 
graduated. It is rumored that Mr. Skelding was the youngest ensign to 
serve in World War 1. 

In 1990, he moved from Massapequa, New York, to Lynchburg, Vir- 
ginia. Until a week before his death, Mr. Skelding was doing calculus 
problems, playing contract bridge, and handling his own stock portfolio. 

He is survived by a son, Robert Skelding, of Lynchburg; two daugh- 
ters, Kathleen Wennerstrom and Lois MacFarland; and ten grandchildren. 
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