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Abstract 

Excess-oj7o.s.s reinsurance contracts ofien contain loss 
sharing pro\i.sion.s, such us aggregate deductibles, loss rutio 
caps or limited rein.statement.5, and loss corridor proIi.si0n.s. 
They also Ji-equently contain adjustable premiw~l or commis- 
sion features, such as retrospecti\?e rating plans, projit com- 
mission plans, and sliding scale commis.sion plans. Pro ratu 
treaties frequently contain adjustable commission frutures. 

This paper presents an o\*ervierr, of tww approaches to 
pricing aggregate loss di.stribution problems: the lognormal 
model and the Heckman-Meyers Collectit’e Risk Model. Ap- 
plicutions to reinsurance pricing are then presented. Finally, 
the paper c,ompures results oj clpplying thest approaches to 
repre.sentutil*e working exc~ess-of-loss treaties. 

These comparison.s suggest that the lognormal model can 
provide satisjactoq apprauimations to the theoretically more 
appropriate Collective Risk Model krlhen use of the latter more 
sophisticated procedure is not necessary due either to data 
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limitations or to the i@uence of market conditions and ne- 
gotiations. The increased efJiciency of the lognormal model 
can lead to greater accuracy by making judgmental estimates 
unnecessary in many situations. 

The basic kognormai model is generally applicable to pro 
rata treaties and working excess-of-loss treaties. A mi,vture of 
lognormul and discrete distributions is presented that may be 
applicable in many low mean frequency situations. Cash pow 
modelling is also discussed. 

1. INTRODUCTION 

Working excess-of-loss reinsurance contracts, where significant loss 
frequency is expected, often contain nonproportional coinsurance 
clauses. These involve provisions where the ceding company is to pay 
a nonproportional share of losses without receiving a commensurate share 
of the reinsurance premium. Such clauses include aggregate deductibles, 
aggregate limits such as loss ratio caps or limited reinstatements, and 
loss corridor provisions. Quite frequently in the broker market, and less 
frequently in the direct market, working excess-of-loss treaties contain 
adjustable premium or commission features. These adjustable features 
include retrospective rating plans, profit commission or profit sharing 
plans, and sliding scale commission plans. A relatively small number of 
excess-of-loss treaties contain both adjustable premium or commission 
features and nonproportional coinsurance clauses. Pro rata treaties also 
frequently contain adjustable commission features. 

This paper will first present an overview of two approaches to pricing 
aggregate loss distribution problems: the lognormal model and the Heck- 
man-Meyers Collective Risk Model. Six examples are then presented of 
how aggregate loss distributions are used in reinsurance pricing. Results 
of applying these two aggregate loss distribution approaches are com- 
pared. Finally, several enhancements of the basic model are discussed. 
The focus in the paper is on concepts, with technical details and proofs 
presented in the appendices. Appendices summarize important excess- 
of-loss pricing methodologies and provide an expanded lognormal table. 
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The list of references presented at the end of the paper contains several 
sources for those wishing to delve into reinsurance and excess pricing 
concepts in greater depth. 

The authors’ overall purpose is to determine if the lognormal model 
provides a suitable approximation for reinsurance price monitoring pur- 
poses and for pricing situations where limited information is available 
or a highly precise answer is not required. If the lognormal model 
provides a satisfactory approximation to the Collective Risk Model re- 
sults, significant efficiency gains are achievable. A more sophisticated 
three-parameter alternative to the lognormal is not tested. The reason for 
this is that the Collective Risk Model or an equivalent approach would 
be employed if the data and other resources would permit a more so- 
phisticated approach. 

2. AGGREGATE LOSS DISTRIBUTIONS 

In order to price the impact of adjustable features and nonproportional 
coinsurance clauses, it is necessary to estimate the aggregate loss distri- 
bution. Two methods of estimating this distribution are employed: 

(a) The Lognormal Model 
If the aggregate loss random variable is viewed as the product of 
a large number of independent, identically distributed random 
variables, then the logarithm is approximately normally distrib- 
uted by the Central Limit Theorem. (The stringent condition that 
the factors be identically distributed may be relaxed [I].) By 
definition, the aggregate loss random variable is lognormally 
distributed. In Appendix A, standard formulas based on the 
Patrik-John Collective Risk Model are employed to estimate the 
aggregate mean and coefficient of variation from the assumed 
frequency and severity distributions 123. An expanded lognormal 
table with excess pure premium ratios for coefficients of variation 
between 0.1 and 5 was programmed based on the formulas in 
Mr. Finger’s paper “Estimating Pure Premiums by Layer” [3]. 
Mr. Finger developed the lognormal model for severity applica- 
tions, although it is being tested here as an aggregate loss model. 
Appendix B summarizes the lognormal model and presents the 
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expanded lognormal table. Parameter uncertainty can be mod- 
elled by subjectively weighting indications based on alternative 
parameter values. (The subjective weights reflect degrees of be- 
lief in alternative scenarios, each of which yields a mean and a 
coefficient of variation of a particular lognormal model.) 

(b) The Collective Risk Model 
This model involves the estimation of parameters for the fre- 
quency and severity distributions, along with the judgmental 
selection of parameters to reflect the degree of uncertainty in the 
estimated frequency and severity means. If the shape of these 
distributions is also uncertain, one could assign subjective prob- 
abilities reflecting degrees of belief to several scenarios and com- 
pute a weighted average of the resulting cumulative probabilities 
and excess pure premium ratios. These quantities are computed 
using the Heckman-Meyers algorithm [4], which uses piecewise 
linear approximations of the cumulative severity distributions 
together with the assumed frequency distributions to generate the 
characteristic functions of the severity and aggregate loss distri- 
butions. As the characteristic function uniquely determines a 
probability distribution, numerical methods are employed to eval- 
uate the rather complicated formulas that accomplish this inverse 
transformation, yielding the aggregate loss cumulative probability 
distribution function and excess pure premium ratios needed to 
price the reinsurance conditions that are the focus of this paper. 
Technical details are summarized in Appendix C. 

Appendix D shows that if the ground-up occurrence count distribution 
for an insured selected at random is negative binomial, then the excess 
occurrence count distribution for a randomly selected insured is also 
negative binomial. Based on this result, the formula is derived for 
calculating the excess occurrence count variance-to-mean ratio for an 
individual insured selected at random, and it is shown that this formula 
also applies to the class as a whole. This latter result is then used to 
demonstrate that, if the proportion of occurrences exceeding the retention 
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is small and the excess frequency mean is known, then the excess 
occurrence count distribution for the class as a whole is approximately 
Poisson. ’ 

In particular. it is established that 

VMRI- = (1 - p) + p(VMRc;), 

where VMR(; and VMRk are the variance-to-mean ratios for the ground- 
up and excess occurrence count distributions, respectively, and where p 
is the probability that a claim will exceed the retention. If VMR(; is two 
or three (as in the IS0 increased limits reviews), and 17 (a value that may 
also be calculated via IS0 increased limits parameters) is less than .02, 
then VMRr, is close to unity. This implies that the excess occurrence 
count distribution for an insured selected at random and for the class as 
a whole will be approximately Poisson under conditions of parameter 
certainty. In the Collective Risk Model, uncertainty in the mean fre- 
quencies for the various classes of business is reflected through selection 
of the contagion parameters. This results in negative binomial frequency 
distributions for the classes under consideration. 

The Single Parameter Pareto (SPP) distribution is used to model 
occurrence severity. Mr. Philbrick’s paper “A Practical Guide to the 
Single Parameter Pareto Distribution” and the discussion by Messrs. 
Reichle and Yonkunas [6] provide an excellent discussion of this distri- 
bution, which is widely used in excess pricing. Ms. Rytgaard recently 
presented a paper [7] that compares alternative estimates of the SPP 
parameter and applies credibility theory to obtain more stable estimators 
of this parameter for portfolios of excess-of-loss treaties with similar 
characteristics. Appendix E summarizes some of the key properties of 
the SPP distribution. In particular, it is shown that if ground-up loss 
occurrences in excess of a particular truncation point are distributed 
according to the SPP distribution with parameter q, then the excess 
portions of these occurrences are distributed according to the shifted 
Pareto distribution (used by Insurance Services Office in increased limits 

’ The proof given in Appendix 0 is a direct apphcatmn ot the (&mma-Poisson model frequently 
encountered in the actuarial literature. The authors auknowlcdpc that these resulls have prevtously 
been established elsewphere. and note that Joseph Schumi ha\ e\tahlixhed thrw re$ulth using recursive 
relationships 151. 
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pricing), where the scale parameter is equal to the truncation point and 
the shape parameter is equal to q. In the Collective Risk Model, uncer- 
tainty in the mean severities is reflected through the selection of the 
mixing parameter. 

Theoretically, if the SPP is appropriate for loss occurrences in excess 
of a particular attachment, it should be appropriate above all higher 
attachments, and the parameter should remain constant. Fits to industry 
data have led the authors to conclude that the SPP parameter varies with 
the truncation point used in the fitting procedure. Moreover, if the 
truncation point used in the fitting procedure is less than 50% of the 
attachment for a particular pricing analysis, the errors become unac- 
ceptably large. In order to calculate these parameters, development tri- 
angles of SPP parameter estimates for various truncation points were 
constructed, from which projections were made of the ultimate values 
of this parameter by class of business and truncation point. In the 
examples discussed in this paper, the class of business is not identified, 
because the intent is only to discuss actuarial methodology. Although 
alternative two- and three-parameter distributions should be tested when 
data permits, the SPP distribution with these qualifications can be a 
satisfactory severity model for reinsurance price monitoring work and in 
pricing situations where limited information is available. 

3. EXAMPI,ES OF TREATIES WITH ADJUSTABLE FEATURES AND LOSS 

SHARING PROVISIONS 

This section discusses the pricing of excess-of-loss treaties containing 
common types of nonproportional coinsurance clauses and adjustable 
premium or commission plans. This is accomplished through the ex- 
amination of six hypothetical treaties, the key provisions of which are 
summarized at the start of Appendices F through K, respectively. The 
analysis of each example involves two major steps. First, various param- 
eters (such as the expected claim count, mean severity, and aggregate 
coefficient of variation) which underlie the distribution of losses in the 
reinsured layer are calculated. This allows one to obtain an appropriate 
set of excess pure premium ratios, either by reference to an appropriate 
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lognormal table (via coefficient of variation matching) or by direct gen- 
eration via the Heckman-Meyers Collective Risk Model. The second 
step involves the use of the set of excess pure premium ratios derived 
in the first step in order to determine the expected impact of the particular 
nonproportional coinsurance clause or ad.justablc feature being evaluated. 
For the sake of clarity, excess pure premium ratios (which are called 
insurance charges in the examples) based on the lognormal assumption 
are initially used to analyze the six treaty examples. In Section 4, a 
comparison is made to the results obtained when excess pure premium 
ratios generated by direct applications of the C’ollcctive Risk Model are 
employed. 

Aggregute Deductible E.rumple 

Treaty 1 is an example of a contract containing an annual aggregate 
deductible provision. The calculation of the treaty’s aggregate loss coef- 
ficient of variation (CV), which is displayed on Appendix F Exhibit 1, 
is based on the theory and formulas presented in the second section of 
this paper as well as in Appendices A through E. The computation of 
the impact of the aggregate deductible is shown in Appendix F Exhibit 
2. The deductible amount is compared to the expected losses in the 
reinsured layer in order to obtain a corresponding entry ratio, which 
allows one to look up the appropriate insurance charge from the lognor- 
ma1 tables in Appendix B. (Linear interpolation is used lo calculate 
excess pure premium ratios for CV and entry ratio combinations not 
explicitly listed in these tables.) Since the insurance charge (29.33% in 
this case) represents the expected proportion of aggregate losses above 
the deductible amount, it is easy to see that the complement of this value 
(70.67%) is the expected percentage of treaty losses eliminated by the 
aggregate deductible. Thus, if a burning cost or similar study shows that 
the expected loss cost for the entire layer is 3.75% of subject premium, 
then the introduction of an aggregate deductible provision reduces this 
loss cost to 3.75% X [loo% - 70.67%], or about I. 10% of subject 
premium. As shown in Appendix F, this loss cost can easily be converted 
to an indicated treaty rate through the application of an appropriate 
expense, profit, and risk loading factor. It should be noted that the factor 
selected for this purpose should include a provision for risk commen- 
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surate with the degree of variability in layer losses after application of 
the deductible. The degree of variability in this case, and hence the risk 
load, is higher than that for losses prior to the reflection of this provision. 

Aggregate Limit Example 

Treaty II contains a limited reinstatement clause. The contract allows 
three free reinstatements of coverage during the treaty year, which means 
that the ceding company is covered for losses in the specified layer until 
those losses exceed four times the width of that layer. After that point, 
no coverage is provided. (This type of reinstatement clause should be 
contrasted with the kind that reinstates coverage after a certain number 
of losses have occurred only if an additional premium is paid. This latter 
type is really a separate cover, rather than a form of coinsurance on the 
original treaty.) 

The pricing of this treaty is summarized in Appendix G. As was 
done in the previous example, an entry ratio is calculated by dividing 
the dollar value of the limited reinstatement provision ($2,800,000 in 
this case) by the expected losses in the layer prior to all forms of 
coinsurance. The insurance charge corresponding to this entry ratio 
(2.37% in this example) is equivalent to the expected percentage of 
losses eliminated by the limited reinstatement clause. Combining this 
quantity with the treaty’s 20% proportional coinsurance provision yields 
a 2 1.89% overall coinsurance percentage. This latter coinsurance per- 
centage is then applied to the expected layer loss cost prior to all 
coinsurance in order to obtain an expected loss cost and an indicated 
rate for the treaty. As in the previous example, the loading to convert 
the expected loss cost to a rate includes a provision for risk that reflects 
the potential volatility in treaty losses after the Limited reinstatement is 
taken into account. Note that this risk provision should be somewhat 
lower than that for a similar treaty with no limited reinstatement clause. 
This is due to the fact that limited reinstatements, along with most other 
kinds of mechanisms that place a cap on losses, tend to reduce loss 
variability. 
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Loss Corridor E.wnplr 

Treaty 111 is an example containing a loss corridor provision. Under 
a loss corridor provision, the reinsurer pays all losses falling in the 
reinsured layer up to a certain aggregate amount (called the lower bound 
of the loss corridor interval). Once this amount is reached, the reinsurer 
stops paying all losses until the total losses in the layer exceed a second 
threshold amount (the upper bound of the loss corridor interval). After 
this, the reinsurer resumes payment for all losses in the reinsured layer. 
The bounds of the loss corridor interval may he expressed in terms of 
dollar amounts, percentages of expected layer losses. or ratios to treaty 
premium. 

In the example presented in Appendix H, the loss corridor bounds 
are stated as percentages of expected losses in the layer. This makes the 
analysis extremely straightforward, since these percentages are directly 
equivalent to the corresponding entry ratios. The difference between the 
insurance charges at the lower and upper bounds, respectively, results 
in the expected percentage of layer losses eliminated by the loss corridor 
provision. The computation of the expected layer loss cost after coin- 
surance and the indicated treaty rate is analogous to the calculations 
presented in the tirst two examples. Unlike the previous examples, 
however. there is no definite rule concerning the proper risk load to be 
included in the factor used to convert the loss cost into a rate. This is 
due to the fact that the loss corridor provision may either reduce or 
increase the variability of layer losses, depending on both the location 
and the size of the eliminated loss interval. 

While the simplicity of the loss corridor analysis is not altered very 
much when the interval bounds are expressed in terms of dollars, the 
analysis does get complicated when the bounds are stated as ratios to 
treaty premium. This is due to the fact that the treaty premium is 
dependent on the treaty rate, which should already reflect the effect of 
the loss corridor. It is clear that the solution to this problem requires an 
iterative procedure in which the algorithm presented in Appendix H is 
repeated until the rate used to compute the loss corridor bounds (ex- 
pressed as percentages of expected losses) cyuals the rate indication for 
the treaty with the loss corridor provision. 
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Having covered three common types of nonproportional loss sharing 
plans, the remainder of this section will discuss the analysis of accounts 
containing adjustable premium or commission plans. 

Retrospective Rating Plan Example 

Treaty IV is an example of an account with a one-year retrospective 
rating plan. Similar to the plans encountered in primary insurance, the 
adjusted treaty rate (and hence the adjusted premium) is based on the 
account’s actual loss experience during the period subject to the plan. 
This rate is determined by loading the ratio of the treaty’s actual losses 
to subject premium by a multiplicative loss conversion factor and/or an 
additive flat margin. The computed rate is further subject to a maximum 
and a minimum as specified in the treaty. (The loss conversion factor or 
flat margin accounts for the reinsurer’s expenses, risk, and profit, and 
may also contain some provision, subjective or otherwise, to reflect the 
effect of the plan’s maximum and minimum rates.) The main goal of 
this analysis is to determine the expected rate to be received on this 
treaty after all retrospective adjustments have been completed. This will 
enable one to assess the adequacy of the retro plan. 

The calculation of the expected treaty rate for this example is outlined 
in Appendix I. As in the analysis of primary plans, the major step in 
this calculation is the determination of the true effect of the retro plan’s 
maximum and minimum rates on the expected layer loss cost to be 
charged to the reinsured (which may differ from any subjective estimates 
of this effect included in the plan’s loss loading factors). This is accom- 
plished by dividing the loss costs that are consistent with the maximum 
and minimum rates, respectively, by the expected layer loss cost, in 
order to obtain entry ratios at these two points. These entry ratios enable 
one to look up the associated excess pure premium ratios, so that the 
insurance charge at the maximum and the insurance savings at the 
minimum may be computed. The difference between these latter two 
quantities is the net insurance charge. Applying the complement of the 
net insurance charge to the expected layer cost yields the adjusted ex- 
pected layer cost, which is the loss expected to be charged to the 
reinsured. This latter quantity is loaded with the retro plan’s loss con- 
version factor and any flat margin in order to obtain the expected treaty 
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rate after retro adjustments. Note that the net insurance charge in this 
example is negative, indicating that the premium the reinsurer expects 
to lose because of the maximum rate provision is more than offset by 
the additional premium expected to be received due to the minimum 
provision. 

The degree of adequacy of the retro plan can be measured by cal- 
culating the ratio of the guaranteed cost rate (which is the equivalent 
treaty rate if the contract were flat rated) to the expected treaty rate after 
retro adjustments. (To be comparable, the guaranteed cost rate contains 
the same amount of risk load as that contained in the retro plan parameters 
but with any insurance charge removed.) As shown on the bottom of the 
Appendix I Exhibit, the resulting ratio of 0.996 indicates a very slight 
redundancy in the retro plan. 

Profit Sharing Exuinpk 

Treaty V contains a three-year prom commission plan, in which the 
profit commission ratio (to treaty premium) is computed via the following 
formula: 

Profit Commission Ratio = 
25% X 1 100% -- (Actual 3-Year Treaty Loss Ratio) 

- (20% Reinsurer’s Overhead Provision)]. 

Note that the same formula could be used to compute a profit sharing 
adjustment that is treated as return premium. 

On the surface, the calculation of the expected profit commission 
ratio for the three-year period ( I/l/90- I213 I192 in this case) may seem 
trivial (i.e., simply plug the three-year expected loss ratio into the 
formula). It is really not, however, since a three-year loss ratio above 
80% (the breakeven point) is implicitly capped at 80% to yield a 0% 
profit commission for the period. Hence, one rnust determine the effect 
of this capping on the expected loss ratio used in the profit sharing 
formula in order to estimate the expected commission. As in the previous 
examples, this involves the use of excess pure premium ratios for a 
lognormal distribution with an appropriate CV. 
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Appendix J Exhibit 1 displays the calculation of the CV for the 
distribution of one year’s worth of aggregate losses in the reinsured 
layer. Since this is a three-year profit commission plan, the CV appro- 
priate for aggregate treaty losses for three years combined needs to be 
determined. This is accomplished on Appendix J Exhibit 2, using the 
formulas discussed in the second section of the paper and in the related 
appendices. In reviewing this exhibit, it should be assumed that the 
subject premium and expected layer cost given for 1990 are values based 
on ceding company projections and rating analyses, respectively. The 
numbers shown for 1991 and 1992 are simply copied from 1990, since 
the information needed to make independent projections for these years 
is not presently available. 

The calculation of the expected profit commission is shown on Ap- 
pendix J Exhibits 3A and 3B. The expected treaty loss ratio of 48% is 
computed by reducing the expected loss cost for the entire layer by the 
20% proportional coinsurance provision and then dividing the result by 
the treaty rate. By relating the 80% breakeven loss ratio to the expected 
loss ratio, an entry ratio is obtained from which the corresponding net 
insurance charge (ML’) is determined. Since the net insurance charge 
represents the percentage of expected losses eliminated from the profit 
commission formula by the implicit cap at the breakeven loss ratio, the 
expected profit commission ratio can be calculated via the following 
formula: 

Expected Profit Commission Ratio = 

P X [lOO% - ELR X (100% - MC) - EXP], 

where P = The proportion of profits to be paid to the reinsured; 
ELR = Expected treaty loss ratio; 
MC = Net insurance charge; 
EXP = Reinsurer’s overhead provision. 

In the Appendix J exhibits, the expected profit commission based on 
the formula above is called the “actuarial view,” while that obtained by 
simply plugging the expected loss ratio into the profit commission for- 
mula is labelled the “simplistic view.” Based on these definitions, it is 
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clear that the expected profit commission based on the actuarial view 
should generally exceed that based on the simplistic view, as it does in 
this example. 

Sliding Scale Commission Ex-cunple 

Treaty VI contains another kind of adjustable commission provision 
known as a sliding scale plan. Like the profit commission in the previous 
example, the commission that is ultimately paid by this plan depends 
directly on the reinsured’s actual experience as measured by the treaty 
loss ratio. The major difference between these two plans lies in the 
structure of the formula used to compute the adjustable commission. 
Whereas the profit commission formula is essentially a straight linear 
function of the treaty loss ratio (at least up to the brcakeven point), the 
typical sliding scale plan is best described as a piecewise linear function 
of the loss ratio. 

Under a typical sliding scale plan, a minimum commission ratio Cfi>in 
is paid if the treaty loss ratio exceeds a certain fixed valut: (call it L,). 
If the actual loss ratio is less than L, but greater than a second fixed 
value L2, h2 points of commission are added to C,,, for each point by 
which the actual loss ratio falls short of L,. Similarly. if the actual loss 
ratio is below Lz but greater than some third value L3. the commission 
ratio corresponding to L1 is increased by hr points for each point of 
difference between LZ and the actual treaty loss ratio. The commissions 
corresponding to actual loss ratios falling into successively lower inter- 
vals (i.e.. [L,, L,- ,I, where i = 4,. ,n) arc calculated in a manner 
similar to those for loss ratios falling in the previous two intervals. A 
maximum commission C,,,,, is paid when the loss ratio is zero. It should 
be noted that the b,‘s, which represent the commission slides on the 
various intervals, are generally less than unity, and some may be equal 
to zero. The sliding scale plan for Treaty VI (see the bottom of Appendix 
Ii Exhibit 1) is expressed in the format described above. 

Since the typical sliding scale plan involves both a minimum and 
maximum commission as well as different commission slide percentages 
for the various loss ratio intervals, it is clear that the calculation of the 
expected commission ratio under such a plan requires more than simply 
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looking up the commission that corresponds to the expected loss ratio. 
Appendix L outlines the derivation of a concise formula for computing 
this expected commission, which can be expressed as follows: 

Expected Sliding Scale Commission Ratio = 

ClllilX - i$i hi {Expected loss ratio points in the interval Li to L;- I}, 

where: C,,, is the maximum commission ratio; 
b; is the commission slide on the ith loss ratio interval 
(h, is defined to be 0 and Lo is infinity); 

and Expected loss ratio points in the interval [L;, Li-11 
= (Expected loss ratio) X [Pz(Li) - P&-l)]. 
(P2(L) is the excess pure premium ratio at loss ratio L.) 

Appendix L also shows that the above formula is equivalent to saying 
that the expected commission ratio equals the maximum commission 
ratio minus the expected points of commission lost over the entire range 
of possible loss ratios. This interpretation provides a good intuitive 
justification for the formula stated above. 

The above formula is used to calculate the expected commission ratio 
for the one-year plan given in Treaty VI, the details of which are provided 
in the Appendix K exhibit. As this exhibit shows, in order to determine 
the expected number of loss ratio points falling in each interval specified 
in the plan, it is necessary to multiply the treaty expected loss ratio by 
the difference between the insurance charges corresponding to both end 
points of the interval. 

On the bottom of the Appendix K exhibit the expected sliding scale 
commission based on the above formula (the “actuarial view”) is com- 
pared to the commission that corresponds to the expected loss ratio (the 
“simplistic view”). Although the actuarial estimate of the expected com- 
mission exceeds the simplistic estimate in this example, this is not a 
general rule. Both the magnitude and the direction of the difference 
between these two quantities depend on the minimum and maximum 
commission ratios as well as on the commission slides on the various 
loss ratio intervals. 
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4. MODEL COMPARISONS 

For the examples presented above. Table 1 compares the key item of 
interest (either the adjusted rate or expected commissions) under the 
alternative models. The unadjusted rate is the loaded loss cost before all 
forms of coinsurance using the same expense and profit loading factor 
as that used to compute the adjusted rate. (In practice, the loadings for 
a treaty without coinsurance provisions or premium adjustments would 
generally not be considered appropriate for a treaty with such provisions.) 

The alternative indications for the Heckman-Meyers version of the 
Collective Risk Model reflect varying levels of parameter uncertainty. 
The contagion parameter is represented by c and represents the level of 
parameter uncertainty in the estimated frequency mean. The mixing 
parameter is represented by b and represents the level of parameter 
uncertainty in the estimated severity mean. 

Values of zero represent no parameter uncertainty, values of .05 
represent a moderate level of parameter uncertainty, while values of . 10 
represent a higher level of parameter uncertainty. Please refer to Appen- 
dix C for further technical details. The lognormal model was run under 
the same assumptions that were used to generate the Collective Risk 
Model results without parameter uncertainty. Parameter uncertainty was 
not reflected here for the lognormal model (as it should be in practice 
using the methods presented in Appendices A and B) in an effort to 
simplify the presentation. 

The comparisons above suggest that the lognormal model provides a 
satisfactory approximation to the theoretically more appropriate Collec- 
tive Risk Model results, when use of the latter more sophisticated pro- 
cedure is not necessary due either to data limitations or to the influence 
of market conditions and negotiations on final pricing. Application of 
the lognormal model can lead to significant efficiency gains in reinsur- 
ante price monitoring work and in many pricing situations. because it 
can easily be programmed in spreadsheets and applied efficiently by 
those with good quantitative skills. The increased efficiency achieved by 



Example 
Unadjusted Item Lognormal 

Rate Compared Model 

I) Aggregate 
Deductible 

Adjusted Rate 

II) Limited 
Reinstatement 

Adjusted Rate 

III) Loss 
Corridor 

Adjusted Rate 

IV) Retro 
Rating 
Plan 

5.00% 

25.00 

5.00 

5.00 Expected Rate 
After Retro 
Adjustments 

V) Profit 
Commission 

Expected Profit 
Commission 

VI) Sliding Scale Expected Sliding 
Commission Scale Commission 

TABLE I 

COMPARISON OF KEY ITEMS 

Collective Risk Model 

1.47% 

19.53 

4.02 

5.02 

8.37 

31.04 

c=o 
h=O 

1.58% 

19.89 

3.67 

5.20 

8.24 

30.31 

c = .05 c = .05 c = .lO 
b = .05 h = .lO b= .lO 

1.68% 

19.72 

3.71 

5.18 

8.50 

30.90 

1.73% 

19.55 

3.74 

5.14 

8.69 

31.22 

1.77% 

19.52 

3.73 

5.14 

8.75 

31.33 
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this model permits one to apply it much more frequently than more 
theoretically appropriate methods. Use of a satisfactory quantitative 
method is usually superior to judgment. 

5. MODEL ENHANCEMENTS 

The six treaty examples discussed in this paper illustrate methods for 
pricing common types of nonproportional coinsurance and adjustable 
features provisions in reinsurance contracts. Although the examples 
themselves were kept reasonably simple to allow the reader to focus on 
the basic pricing techniques, the authors recognize that a number of 
enhancements can be made to the models in order to make them more 
applicable to specific situations. Unless otherwise stated. the following 
potential enhancements apply to both the lognormal and Collective Risk 
Model approaches. 

I . LaFer Retention cud Limits 

All the multiline contracts presented in the paper assume that the 
same layer retention and limit apply to all the classes of business covered 
by the treaty. In practice, however, some excess-of-loss contracts have 
retentions and/or limits that vary by line of business (e.g., auto liability 
losses may be subject to a $200,000 per occurrence retention, while 
workers compensation losses have a $300,000 retention). In these situ- 
ations, the excess claim severity mean and standard deviation would be 
calculated for each class of business based on the retention and limit 
applicable to that class. (The formulas given in Appendix E would be 
used if a Single Parameter Pareto severity distribution is assumed). 
Similarly, the expected number of claims in the layer and the excess 
frequency variance-to-mean ratio would be calculated for each class 
based on the applicable retention. Once these quantities are computed, 
the calculation of the aggregate loss distribution for all classes combined 
would follow the same sequence of steps as if the contract had a single 
retention and limit applicable to all lines. 

A similar procedure could be employed to derive the aggregate loss 
distribution for a multi-year rating block on an adjustable features con- 
tract, if the covered layer of reinsurance varies between the years com- 
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prising the block. The method can even be used to reflect underlying 
primary policy limits. In this case, one would treat each group of insureds 
purchasing the same policy limit above the layer retention as a separate 
class of business. The layer limit applicable to each class would be the 
lesser of the primary policy limit and the reinsurance gross limit (i.e., 
the retention amount plus the width of the layer). This layer limit, 
together with the layer retention, would then be used to calculate the 
expected layer loss cost, as well as the severity mean and standard 
deviation, for the particular class of policyholders. 

2. Severity Distribution Assumprions 

The examples in Section 3 use the Single Parameter Pareto severity 
(SPP) distribution to model occurrence severities. As mentioned in Sec- 
tion 2, the SPP parameter applicable to a particular line of insurance and 
truncation point can be derived by fitting this curve to empirical claims 
data. When performing this procedure directly or when utilizing pub- 
lished parameters, it is important to note whether the underlying claims 
data include allocated loss adjustment expenses (ALAE). If the empirical 
data used to compute the SPP parameter include ALAE, and if the 
reinsurance contract handles ALAE as a part of loss, then the formulas 
presented in the paper for calculating the aggregate loss (and ALAE) 
distribution can be applied without any modifications. The same is true 
if the SPP distribution is based on pure losses only and if the reinsurance 
contract does not cover ALAE. 

In most cases, however, the reinsurance contract covers, to some 
extent, the ALAE associated with layer losses, but the assumed severity 
distribution describes pure losses only. These situations require one to 
make minor modifications to the methods presented earlier in the paper. 

For the lognormal model, one should use expected layer loss costs 
excluding ALAE in order to determine the aggregate coefficient of var- 
iation (CV). If the ALAE covered by the contract is a constant multiple 
of layer losses (or nearly so), then the same CV describes the distribution 
of aggregate losses and ALAE in the layer. One instance when this 
would be true is where ALAE is a fixed percentage of ground-up losses 
and where ALAE is shared pro rata between the reinsurer and the ceding 
company. The particular loss sharing or adjustable feature provision 
would then be priced, using the expected layer loss cost including ALAE 
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to compute the entry ratios needed to determine the appropriate excess 
pure premium ratios from the lognormal table. The adjustments to the 
Collective Risk Model approach for determining the aggregate loss dis- 
tribution entail adjusting the parameters of the underlying frequency and 
severity distributions appropriately to reflect the relationship of ALAE 
to loss and the particular contractual provision concerning the manner 
by which ALAE will be shared. 

Although the SPP distribution was chosen to model claim severities 
in the treaty examples, it is important to note that other severity distri- 
butions could have been used to derive the aggregate loss distribution 
under either the lognormal or Collective Risk Model approaches. The 
relaxation of this restriction allows one to use these models to determine 
the aggregate loss distributions for pro rata reinsurance contracts. (Recall 
that the SPP distribution is appropriate only above a sufficiently large 
truncation point, and hence it cannot be used to price pro rata treaties.) 
Once the aggregate loss distribution has been determined, the particular 
coinsurance clause or adjustable feature can be priced using the methods 
presented in the treaty examples. 

3. Treuties with Both Coinsurcrncr Provisions and Adjustublr Feutures 

The first three treaty examples presented in Section 3 illustrate meth- 
ods for pricing common types of nonproportional coinsurance provisions, 
while the latter three examples involve the analysis of treaties with 
adjustable premium or commission plans. The case in which a treaty 
contains both a nonproportional coinsurance clause and an adjustable 
feature has not been considered. In such a situation, one needs to deter- 
mine not only the effect that the nonproportional coinsurance clause has 
on expected treaty losses (which can be accomplished using the tech- 
niques discussed above) but also the distribution of aggregate losses after 
the effect of the nonproportional coinsurance has been taken into account. 
The latter item is necessary in order to compute the expected impact of 
the adjustable premium or commission plan, since these plans generally 
operate on actual treaty experience after all coinsurance. 

The calculation of the aggregate distribution after nonproportional 
coinsurance can be accomplished by making direct modifications to the 
aggregate loss distribution prior to coinsurance (e.g., truncate it at the 
aggregate deductible amount or censor it at the aggregate limit). The 
Collective Risk Model would be run again to compute the needed insur- 
ance charges, assuming that there will be one claim with a severity 
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distribution equal to the aggregate loss distribution after all forms of 
nonproportional coinsurance. Another approach is to determine the ef- 
fects that the nonproportional coinsurance feature has on both the oc- 
currence count and the occurrence severity distributions that underlie the 
aggregate distribution. The adjusted count and severity distributions can 
then be combined (using either method discussed in this paper or the 
alternative recursive or simulation techniques) in order to obtain an 
aggregate loss distribution that reflects the effects of the nonproportional 
coinsurance provision. 

4. Aggregate Losses of Zero 

When working with the models presented in the paper, one must 
consider the probability that no treaty losses will occur during a particular 
year. Although the chance of this occurring on pro rata or working layer 
excess-of-loss treaties may be sufficiently small that it can be ignored, 
treaties reinsuring rare events or high layers could have many loss-free 
years. One needs to estimate the probability of a loss-free year occurring 
on the treaty, either subjectively or by examining past treaty experience 
(if credible), in order to properly estimate the aggregate loss distribution. 

If the Collective Risk Model is used to generate the aggregate dis- 
tribution, the probability of a loss-free year could be reflected directly 
through the choice of the claim count distribution. A problem arises, 
however, when one attempts to use the lognormal aggregate loss distri- 
bution assumption to price a treaty with a positive probability of having 
no losses during a particular year. This is due to the fact that the 
lognormal distribution is not defined at the value zero. One solution to 
this problem involves the use of a mixture of a lognormal and a discrete 
distribution to model aggregate losses. This enhanced model may be 
applicable in many low mean frequency situations. Technical details are 
summarized in Appendix M. 

5. Investment Income 

The time value of money also has not been considered in the examples 
presented above, even though it is a legitimate underwriting consideration 
in evaluating alternative proposals. One way of handling this item would 
be to develop aggregate loss distributions for the lines of business subject 
to the treaty prior to all forms of nonproportional coinsurance. (Either 
the lognormal or Collective Risk Model may be used for this purpose.) 
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The analysis then becomes a simulation problem. One would simulate 
annual losses before coinsurance for each line, apply payout patterns to 
estimate future loss payments by line, apply the nonproportional co- 
insurance provisions, and finally discount the future treaty losses. (To 
accomplish this, one might develop and apply stochastic loss reporting, 
loss payout and interest rate models. Alternatively, one could develop a 
range of scenarios concerning these parameters and subjectively weight 
the final results derived from these alternative scenarios.) One would 
also need to estimate when future premium or commission adjustments 
would be made and when brokerage and other reinsurance expenses 
(including taxes (81) would be paid. The economic value of the proposed 
treaty would be the difference between discounted reinsurance premium 
and the sum of the discounted values of all expense items. This economic 
value should be adjusted for risk considerations, possibly through the 
selection of the interest rates used in the discounting procedure 191. 

A second approach is to estimate the ultimate loss ratio after all 
coinsurance as a percentage of provisional treaty premium using the 
methods of Section 3. Payout and loss reporting scenarios that approxi- 
mately reflect the impact of the coinsurance provisions could then be 
selected. The loss reporting pattern would be used to estimate both IBNR 
reserves and the emergence of reported losses. Contractual formulas 
would be applied to estimate the magnitude of premium or commission 
adjustments to occur at specitied points in time. The remainder of the 
analysis would proceed as in the first approach. 

In this second approach, one item that needs to be considered in 
calculating premium or commission adjustments at various points in time 
is the impact of the insurance charges. For a retrospective rating or profit 
sharing formula, expected reported losses at various stages of develop- 
ment should be multiplied by the complement of the net insurance charge 
to approximate expected losses subject to the adjustment formula. In 
sliding scale commission plans, the commission ratio computed by plug- 
ging the expected loss ratio into the formula should be adjusted by the 
difference between the expected commission ratio (the actuarial view) 
and this formula estimate (the simplistic view), using the methods pre- 
sented in Section 3. Sliding scale commission adjustments at various 
points in time would be computed by applying the contractual formula 
to the expected reported loss ratio and reflecting this commission ad- 
justment gradually. 
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APPENDIX A 
COMPUTATION OF AGGREGATE MEAN ANDCOEFFICIENT OFVARIATION 

(PATRIK-JOHN 121 vmsloN OF COLLECTIVE RISK MODEL) 

Let L represent the random variable of aggregate loss to be paid on 
a given contract for a particular coverage period. 

L = L, + Lz + . . . + Lk, 

where L, represents the aggregate loss random variable for group i, i = 
I,2 ,... ,k. 

The groupings may represent distinct groups of classes of insureds 
or coverages, similar insureds grouped by distinct policy limits, or the 
overall coverage time period split into sub-periods. 

Lj = Xjl + Xi2 + . . . + XjN,, 

where Ni is the random variable of the number of loss occurrences for 
group i and X,,i is the random variable of loss size of the jfh loss for 
group i. 

Let v represent the parameter vector containing all parameters nec- 
essary to specify the particular cumulative probability distribution func- 
tions (c.d.f.‘s) for the Li’s, N;‘s, and X0?. 

The following three assumptions guarantee that the total coverage 
has been split into independent, homogeneous coverage groups: 

Assumption I: Given v, the Li’s are stochastically independent. 

Assumption 2: Given V, the Xjj’s are stochastically independent of 
the N;‘s. 

Assumption 3: Given v and fixed i (i.e., a particular group), the Xij’s 
are stochastically independent and identically distrib- 
uted. 

Let &C(V) represent the c.d.f. of L and let Fi(x(v) represent the c.d.f. 
of Li, i = I,2 ,..., k. 
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Properties of Model with Known Parameters 

(1) The c.d.f. of the aggregate loss L is the convolution of the aggregate 
loss c.d.f.‘s for the individual groups: 

F(xlv) = P(L 5 XIV) = F,(xJv) * &(XIV) * * l%(xJv), 

where F;(xlv) = P(L; 5 xjv) and * denotes the convolution operation. 

(2’) The cumulants of L given v are sums of the corresponding cumulants 
of the Li’s given v. This implies that 

(a) E(L/v) = 2 E(L,lv) (the means are additive). 

(b) Var(LIv) = c Var(L+lv) (the variances are additive). 
I 

(3) The aggregate loss c.d.f. of the i’h group, F,(xjv), can be expressed 
in the form 

F,(x~v) = 2 P(Ni = n(v) * G,*“(.r/v), 
” 

where Gi(x(\)) = P(Xi 5 x(v) is the loss amount c.d.f. for the ith 
*” group, and G, is the convolution of the n Gi’s and represents the 

c.d.f. of the total amount of exactly n loss occurrences. 

(4) The above properties imply that 

(a) E(LiJv) = E(N;Jv) * E(X;J\j). 

The mean aggregate loss for the ith group is the product of the 
mean frequency and mean severity. 

(b) Var(L;jv) = E(NiI\j) . Var(Xi(v) + Var(Nilv) . E(X,)V)~. 

The variance of the ith group’s aggregate loss is the sum of the 
mean frequency times the variance of severity and the variance 
of frequency times the square of the mean severity. Substitution 
into the formulas in (2) above yields the mean and variance of 
the aggregate loss distribution. 
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Collective Risk Model 

Now delete the restriction that the parameter vector v is known. 
Assume that the set V of possible parameters is finite and known and 
that one can specify the subjective likelihood of each element v of V. 
The structure function U(v) is a discrete probability function that specifies 
the observer’s uncertainty regarding the “best” parameter. 

The unconditional c.d.f. F(x) of the aggregate loss L has the follow- 
ing properties: 

(1) F(x) = z F(xlv) * U(v). 
\’ 

The c.d.f. F;(x) of Li is computed similarly. 

(2) E(L’“) = c E(L”‘(v) . U(v). 

The rnth moment of L; about the origin is computed similarly. 

(3) With v unknown, assumptions (l)-(3) above may no longer hold, 
for the uncertainty regarding v may simultaneously affect the 
model at all levels. With v unknown, only the first cumulant is 
additive: 

E(L) = z E(L), 

but Var(L) Z 2 Var(Li). 

However, Var(L) = E(L’) - E(L)*, 

and E(L’) = x E(L’lv) * U(v) = c {Var(Llv) + E(LIv)‘} * U(v). 
I’ 1’ 

Var(Llv) and E(LIv) are evaluated using the formulas above for 
the model with known parameters. 



84 PRICING REINSlIRAh(‘F IRt~A’t’1F.S 

APPENDIX B 

‘THE LOGNORMAl. MODEI. 131 

If the aggregate loss random variable is viewed as the product of a 
large number of independent. identically distributed random variables, 
the logarithm is then approximately normally distributed by the Central 
Limit Theorem. (The stringent condition that the factors be identically 
distributed may be relaxed [ I].) This implies that the aggregate loss 
random variable is lognormally distributed. 

The formulas in Appendix A for the model with known parameters 
are used to estimate the mean and variance of the aggregate loss distri- 
bution. It is assumed that the mean aggregate loss for each coverage of 
the excess-of-loss reinsurance contract has been estimated accurately 
using standard burning cost and/or exposure rating methods. A Single 
Parameter Pareto severity distribution is assumed for each coverage and 
is used to compute the mean and variance of the severity distribution 
(see Appendix E). The ratio of the mean aggregate loss to the mean 
severity is the mean number of loss occurrences for a given coverage. 
The variance of the excess frequency distribution is computed based on 
the assumptions and the formula developed in Appendix D. Thus, the 
mean and variance of the frequency and severity distributions for each 
coverage are specified and used to compute the variance of the aggregate 
loss distribution for each coverage. The sum of these variances for all 
of the coverages is the variance of the aggregate loss distribution for all 
coverages combined, since independence of aggregate losses for the 
individual coverages is assumed. 

The Coefficient of Variation (CV) of the aggregate loss distribution 
is the ratio of the standard deviation to the mean of L, based on the 
frequency and severity distributions specified by the vector of parameters 
v or based on empirical methods applied to burning cost analyses: 

For simplicity, let A4 = E(LIv). 
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The Entry Ratio Y is the ratio of the attachment A to the mean 
aggregate loss: 

r = AIM. 

The Excess Pure Premium (XSP) for a particular attachment A is the 
expected aggregate losses excess of A: 

XSP(A(v) = J= (L - A)dP(Llv), 
A 

where P is the c.d.f. of L, given the vector of parameters v. The Excess 
Pure Premium Ratio P2 at entry ratio r is the ratio of the corresponding 
Excess Pure Premium to the mean aggregate loss: 

P&-Iv) = XSP(Ajv)lM. 

Assume that the distribution of L is lognormal, given frequency and 
severity distributions specified by the vector of parameters \‘. If the 
parameters of this lognormal distribution are f.~ and 02, then 

(1) M = E(L\v) = exp{k + g], and 

(2) CV = CV(LJ/J) = {exp(o’) - I}“‘. 

The first moment distribution PI is also lognormally distributed, but 
with parameters p + o2 and o*. PI is defined by 

Pt(rlv) = jj L . dP(L\v). 

The first moment distribution represents the percentage of total ag- 
gregate losses from coverage periods where the aggregate loss is less 
than the attachment. The Excess Pure Premium Ratio can be computed 
using 

P2(rIv) = { 1 - Pt(r(v)} - r{l - P(rjv)}. 
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Given that M and CV have been established as described above, the 
parameters of the assumed lognormal aggregate loss distribution can be 
estimated from formulas (1) and (2) above: 

u* = ln( 1 + CV’), and 

p = In(M) - 5 

As noted above, PI is also lognormally distributed with parameters 
P’ = p + o7 and oz. The vector of parameters v determines .iM and CV 
through the formulas previously presented. While the Excess Pure Pre- 
mium is a function of both M and CV, the Excess Pure Premium Ratio 
is solely a function of the CV. Thus, the Excess Pure Premium Ratios 
are computed using 

Pl(rlCV) = (1 - Pt(r(CV)} ~ r{l -- P(rICV)}. 

This formula was used to compute values for the expanded version 
of Mr. Finger’s famous table which is displayed in Tables 1-3 of this 
Appendix. 

The Excess Pure Premium for attachment A is given by 

XSP(A(M.CV) = M . Pz(r)CV), where r = AIM. 

Parameter uncertainty may be reflected using the method described 
under the Collective Risk Model section of Appendix A. For each 
element 1’ of V, compute M and CV. Since U(v) = U(M,CV), the 
unconditional Excess Pure Premium for attachment A may be computed 
using 

XSP(A) = c c XSP(AI/I4,CV) U(M,CV). 
M C-V 

For the sake of simplicity, a probability of one is assigned to our 
most likely scenario for the examples in this paper. 
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TABLE B 1 

Entry 
Ratio 

0 
.I 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

1.0 
1.1 
1.2 
1.3 
1.4 
I.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 

EXCESS PURE PREMIUM RATIOS 

LOGNORMAL MODEL 

Coefficient of Variation 

I.000 
,900 
,800 
,700 
,600 
,500 
,400 
,300 
,200 
.I07 
.040 
,009 
,001 
,000 

.2 

1.000 
,900 
,800 
,700 
,600 
,500 
,400 
.302 
.2l I 
.I35 
,079 
,042 
,021 
,010 
,004 
,002 
,001 
,000 

.3 

l.cQo 
,900 
,800 
,700 
,600 
,501 
.404 
,313 
,234 
.I68 
,117 
,079 
,052 
,034 
,022 
,014 
.009 
.005 
,003 
.002 
.OOl 
.OOO 

.4 
- 

.5 
- 

1.000 1.000 
,900 .900 
,800 ,800 
,700 .700 
,601 ,603 
,504 ,510 
,413 .426 
,331 ,351 
,260 ,286 
,200 ,232 
.I53 ,187 
.I15 ,150 
,086 ,120 
.064 ,096 
,048 ,077 
,035 ,062 
,026 ,049 
,019 ,040 
,014 .032 
,010 ,026 
,008 .02l 
,004 ,014 
,002 ,009 
,001 ,006 
,001 ,004 
,000 .003 

The Coefficient of Variation is the ratio of the standard deviation to the mean of the assumed 
lognormal distribution. The Entry Ratio is the ratio of the attachment to the mean. The Excess 
Pure Premium Ratios are ratios of excess pure premiums to the mean (i.e., ratios of expected 
excess losses to the total expected loss). 
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Entry 
Ratio 

0 
.I 
.2 
-3 ._ 

.4 
5 ._ 

.6 

.7 

.8 

.Y 
I.0 
I.1 
1.2 
I.3 
I.4 
I.5 
1.6 
I.7 
1.x 
I.9 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.x 
4.0 
5.0 

10.0 
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TABLE 82 

EXCESS PURI: PRI:MIC~M RATIOS 
LOGNORMAI. MOIXI 

Coefficient of Variation 

.6 
- 

1.000 
,900 
.x00 
,702 
,607 
,519 
,441 
,371 
,312 
,261 
,218 
.I83 
.I53 
I ‘8 - 
I07 

,090 
,076 
,064 
,053 
,036 
,039 
.02x 
,020 
,015 
.Ol I 
,008 
.006 
.005 
.004 
,003 
,002 
.OOl 
.OoO 

.7 

I .OOO 
.YOO 
,800 
,704 
,613 
,530 
,456 
,392 
,336 
.2X9 
,248 
.‘I3 
.I83 
I58 

.I37 
,118 
,103 
,089 
,078 
.068 
.060 
,046 
,036 
.028 
.022 
.Ol7 
.OIJ 
.Ol I 
,009 
,007 
,006 
.oo I 
.ooo 

.x 

I 000 
YOO 

.x01 
,707 
,619 
,541 
,377 
.412 
,359 
,315 
,275 
,241 
.?I’ 
.1x7 
.IhS 
,146 
.I30 
.I I5 
,103 
.OY2 
.0X’ 
.Ohh 
.os3 
.043 
.03h 
.030 
,025 
.02 I 
,017 
,015 
,012 
,006 
.ooo 

.Y I.0 
- 

I 000 1.000 
.YOO ,900 
.X02 ,804 
,710 .714 
.h27 ,634 
,552 .563 
.4x7 .502 
,430 ,447 
,381 ,400 
,337 ,359 
.300 ,323 
,267 .?‘)I 
,239 ,263 
,213 ,238 
IO2 .?I6 

.I72 ,197 
IS5 .I80 
I40 ,164 
I27 I50 

.I IS ,138 

.I05 ,127 

.0x7 .IOX 
,073 .092 
.Ohl .07Y 
.os2 ,068 
.044 ,059 
,037 ,052 
,032 ,045 
,028 ,040 
,024 ,035 
,021 .03 I 
.Ol I ,018 
00 I ,002 

The Coefficient of Variation is the ratio of the standard deviation to the mean of the assumed 
lognormal distribution. The Entry Ratio is the ratio of the attachment to the medn. The Excess 
Pure Premium Ratios are ratios of excess pure premiums to the mean (i.c.. ratios of expected 
excess losses to the total expected loss). 



Entry 
Ratio 

0 
.I 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

I .o 
I.2 
I.4 
I.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 

10.0 
20.0 
30.0 
50.0 

loo.0 
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TABLE B3 
EXCESS PURE PREMIUM RATIOS 

LOGNORMAL MODEL 

Coefficient of Variation 

XY 

I.5 2.0 2.5 3.0 - - - - 
I.000 I.000 I.000 I.000 
.YO2 ,905 .908 .9l I 
,813 ,824 ,834 ,842 
,736 ,756 ,772 ,786 
,670 ,699 ,721 .738 
,612 ,649 ,676 ,697 
,562 ,605 ,637 ,661 
.518 ,567 ,602 ,630 
.479 ,532 .57l ,601 
,444 ,502 ,544 ,575 
.413 .474 ,518 .552 
,360 ,426 .474 ,511 
,316 ,386 ,437 ,476 
.2x0 ,352 ,405 .445 
,250 .323 .377 .418 
.224 ,297 ,352 ,394 
,202 ,275 ,330 .373 
.I83 ,255 .3l I ,354 
.I67 ,238 ,293 ,337 
I52 ,222 ,277 .32l 

.I39 ,208 ,263 ,307 

.I14 ,179 .232 ,275 
,094 .I55 ,207 .250 
,079 ,136 ,186 ,228 
,067 ,120 .I68 .209 
,057 ,107 I53 .I93 
,049 ,096 .I40 ,179 
,043 .087 .I29 ,167 
,037 ,079 ,119 .I56 
,033 ,072 ,111 .I46 
,029 ,066 ,103 ,137 
.Ol9 ,047 ,079 .I 10 
,004 ,015 ,031 ,049 
,001 .007 .Ol6 ,029 
,000 ,002 .007 ,013 
.ooo .ooo .ooo ,004 

4.0 5.0 
- - 

I.000 1.000 
,916 ,921 
,855 .864 
,805 ,820 
,764 ,782 
,728 ,750 
,697 ,721 
,669 ,696 
,644 ,673 
,621 ,652 
,600 ,633 
,563 ,599 
,531 ,570 
,503 ,544 
.478 ,521 
,456 ,500 
,436 .48 I 
,418 ,464 
,402 .448 
.386 ,433 
,372 .419 
.34l ,389 
,315 ,364 
,293 ,342 
,274 ,322 
,257 ,305 
,242 ,290 
.229 .276 
,216 ,264 
.206 .252 
,196 ,242 
,164 ,208 
,087 .I20 
,056 ,083 
.030 .049 
,012 .022 

The Coefficient of Variation is the ratio of the standard deviation to the mean of the assumed lognormal 
distribution. The Entry Ratio is the ratio of the attachment to the mean. The Excess Pure Premium Ratios are 
ratios of excess pure premiums to the mean (i.e., ratios of expected excess losses to the total expected loss). 
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APPENDIX C 
HECKMAN-MEYERS VERSION OF COLLE(“~IVE RISK MODEL 141 

This appendix uses the same notation as presented in Appendix A. 
Let N, represent the number of loss occurrences for group i and let m; 
represent the unconditional mean number of occurrences, 

mi = E(N;). 

Let C represent a random variable with E(C) = 1 and Var (C) = c. 
In this paper, C is assumed to be Gamma distributed. The parameter (’ 
is used to model parameter uncertainty in the frequency mean and is 
called the contagion parameter. Let X, represent the loss siz,e of the j’” 
loss for group i. L; is the aggregate loss of the j”’ group: 

L, = xi1 + xi2 + . * . + x,,v,. 

Parameter uncertainty in the severity mean is modelled through a 
random variable B with E( l/B) = 1 and Var( l/B) = b. B is assumed to 
be Gamma distributed so l/B is lnversc Gamma distributed. The param- 
eter b is called the mixing parameter. 

The Algorithm 

(1)Select C at random from the assumed distribution. 

(2) Select the number of loss occurrences IV; at random from a Poisson 
distribution with mean C.m,. 

(3)Select B at random from the assumed distribution. 

(4) Select the loss occurrence amounts X, I, XZ, . X,,Y, at random 
from the assumed occurrence severity distribution. 

(5)Compute the aggregate loss L, as the sum of all loss occurrence 
amounts divided by the scaling parameter B. 
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Since C is assumed to be Gamma distributed, the frequency distri- 
bution generated by the above algorithm will be negative binomial. If 
the conditions in Appendix D are satisfied, the excess frequency distri- 
bution for each group will be approximately Poisson under conditions of 
parameter certainty, and the excess frequency distribution for all groups 
combined will also be approximately Poisson due to the independence 
assumptions. The negative binomial frequency distribution is used to 
model uncertainty in the mean frequencies. 

It is assumed that the shape of the severity distribution is known, 
and so the mixing parameter b models uncertainty in the severity means 
for the various groups. If uncertainty exists concerning the shape of the 
severity distribution, the approach to parameter uncertainty discussed in 
Appendix A may be applied through assignment of subjective probabil- 
ities to alternative scenarios concerning the shape parameter. In this 
paper, a Single Parameter Pareto severity distribution, as discussed in 
Appendix E, is assumed. The examples in this paper are evaluated for 
the following combinations of b and c: b = c’ = 0, b = c = .05, b = 
.10 and c = .05, and b = c = .lO. These combinations represent no 
parameter uncertainty, moderate parameter uncertainty, higher uncer- 
tainty concerning the mean severity but moderate uncertainty concerning 
the mean frequency, and higher parameter uncertainty. Although many 
other combinations may be appropriate for particular circumstances, 
these values are used in this paper to illustrate the impact of modelling 
parameter uncertainty. 

The reader may presume that a simulation is performed by running 
the above algorithm a sufficiently large number of times for each group 
to generate an accurate estimate of its aggregate loss distribution. Once 
aggregate loss distributions for each group are obtained in this manner, 
the aggregate loss distribution for all groups combined can be estimated 
by conducting a second simulation as follows: 

(1) For group i, select Li at random from the aggregate loss distribution 
already estimated. 

(2) Compute the aggregate loss L for all groups combined by summing 
the Li’s, i = 1, 2, . , k. 
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This second simulation is performed a sufficiently large number of 
times to generate an accurate estimate of the aggregate loss distribution 
for all groups combined. (Note that aggregate limits or deductibles may 
be applied to individual groups before the second simulation is per- 
formed.) 

Instead of performing the above simulations, the Heckman-Meyers 
algorithm computes the aggregate loss distribution directly through ap- 
plication of the characteristic function method briefly summarized in 

TREATY IV 
COLLECTIVE RISK MODEL 

Line 
Expected Claim Severity Contagion Claim Count Claim Count 

Loss Distribution Parameter Mean Std. Dev. 
- 

1 359,995 class I .sev 0.0500 = (‘I 5.154 2.546 
2 90,033 class2.sev 0.0.500 “2 I.343 I.197 

Mixing Parameter 0. loo0 = h 
Aggregate Mean JSO.02X 
Aggregate Std. LIev. 297.472 

Aggregate 
Loss Amount 

0.00 
90.005.64 

180.011.28 
270.016.93 

3603022.57 
450,028.21 
540,033.85 
630.039.49 
720,045. I4 
810,050.78 
900,056.42 

Entry Cumulative 
Ratio Probability 

O.OOOG 0.0015 
0.2000 0.0572 
0.4000 0.1577 
0.6000 0.2988 

0.8000 0.4477 
I .oOOo 0.5832 
1.2ooo 0.6949 
I .4000 0.781 I 
I .6000 0.8450 
1.8000 0.891 I 
2.0000 0.9237 

Excess Pure Excess Pure 
Premium Premium Ratio 

450,028.21 I 0000 
362.454.04 0.8054 
2X1.663.70 0.6259 
212.038.71 0.4712 

155,661.12 0.3459 
I 12.206.06 0.2493 
7Y.912. I4 0.1776 
56.513.45 0.1256 
39.840.27 0.0885 
28.07Y.72 0.0624 
19,82X.73 0.0441 
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Section 2. The reader is referred to the paper and to the excellent review 
by Gary Venter for technical details [4]. The alternative recursive 
method, which is discussed in Mr. Venter’s review and in his recent 
CAS Forum contribution [lo], is simpler and in some circumstances 
more accurate [5], but in other circumstances it is less efficient than the 
characteristic function method and requires the structure function method 
discussed in Appendix A to model parameter uncertainty. A sample run 
of the model is presented in the charts below. 

TREATY IV 
COLLECTIVE RISK MODEL 

Expected 
Loss 

Claim Severity 
Distribution 

Contagion 
Parameter 

Claim Count Claim Count 
Mean Std. Dev. Line 

I 
2 

359,995 
90.033 

class I sev 
class2.sev 

0.1000 = c, 5.154 2.795 
O.loOO = c2 I .343 I.234 

Mixing Parameter 0.1000 = b 
Aggregate Mean 450,028 
Aggregate Std. Dev. 309,940 

Aggregate 
Loss Amount 

0.00 
90,005.64 

180,Ol I .28 
270,016.93 

360,022.57 
450,028.21 
540,033.85 
630,039.49 
720,045.14 
810,050.78 
900.056.42 

Entry Cumulative 
Ratio Probability 

o.oooo 0.0023 
0.2000 0.0667 
0.4000 0.1716 
0.6000 0.3120 

0.8000 0.4562 
I .oooo 0.5861 
I.2000 0.6933 
I .4000 0.7767 
I .6000 0.8392 
I .8000 0.8850 
2.0000 0.9180 

Excess Pure Excess Pure 
Premium Premium Ratio 

450,028.21 1.0000 
363,013.42 0.8066 
283,301.Sl 0.6295 
214,944.81 0.4776 

159,564.03 0.3546 
116,620.91 0.2591 
84.374.46 0.1875 
60,690.76 0.1349 
43,547.09 0.0968 
3 I ,246.92 0.0694 
22.462.93 0.0499 
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APPENDIX D 
DERIVATION OF EXCESS OCCURRENCE COUNT VARIANCE-TO-MEAN RATIO 

This appendix shows that if the ground-up occurrence count distri- 
bution for an insured selected at random is negative binomial, then the 
excess occurrence count distribution for a randomly selected insured is 
also negative binomial. Based on this result, the formula for calculating 
the excess occurrence count variance-to-mean ratio for an individual 
insured selected at random is derived. and it is shown that this formula 
also applies to the class as a whole. This latter result is then used to 
demonstrate that, if the proportion of occurrences exceeding the retention 
is small and the excess frequency mean is known. then the excess 
occurrence count distribution for the class as a whole is approximately 
Poisson. 

Assume (1) An individual policy’s distribution of ground-up oc- 
currence counts over a given period of time is Poisson 
with parameter A,. 

(2) The policies in the given class are independent and of 
identical size. 

(3) The distribution of the individual policy expected 
occurrence counts (i.e., the hi’s) over the class is 
Gamma with parameters CI,P. 

(4) The probability of a given occurrence being an excess 
occurrence (i.e., the probability that it exceeds a fixed 
retention R) is I?. This probability is applicable to all 
policies and may be calculated from the parameters 
given in the IS0 increased limits reviews. 

Given (1) and (3) above, it follows [I 11 that the distribution of the 
observed ground-up occurrence counts for an individual policy selected 
at random is negative binomial with a mean pC; = r/u and variance 
a$ = (r/u)((ct + 1)/u). This implies a variance-to-mean ratio VMRG = 
U&/IQ; = (a + 1)/u = I + (I/U). Assuming that VMRr; is known (from 
the IS0 increased limits reviews or elsewhere), one can easily solve 
for u. 
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It follows [I ,2] from the assumptions of a Poisson process that if an 
individual policy’s distribution of ground-up occurrence counts is Poisson 
with parameter hi, then the distribution of excess occurrence counts 
(claims above R) for the individual policy is also Poisson but with 
parameter I&;. 

The Gamma Distribution has the property [ 121 that if A has the 
distribution r (N,Y), then pX has a r (u/p,r) distribution. Hence, the 
distribution of the individual policy expected excess occurrence counts 
over the class is r (u/p.u). 

Thus, the distribution of observed excess occurrence counts for an 
individual policy selected at random from the class of policies is negative 
binomial with a mean kE = r/[a/p] = priu and variance 

a; = {r/[u/p]} {[u/p + I]l[u/p]} = @h7][ I + p/a] 

This implies a variance-to-mean ratio Vh4Rti = og/pt: = 1 + p/a. Note 
that since p < I, VMR, < VMR,. 

One can think of the group of policies covered by a particular excess 
reinsurance treaty as a statistical sample taken from the theoretically 
infinite population of all insureds belonging to the particular class [ 131. 
Assuming that the sample is taken at random, the policies selected are 
independent of each other. From the above. each policy’s excess occur- 
rence count distribution has mean f.r,~: and variance c&. Given that n 
policies from the particular class are covered by the reinsurance treaty, 
the expected number of occurrences subject to the excess treaty is np+ 
and the variance of the number of occurrences subject to the treaty is 
no;. This implies a variance-to-mean ratio of (nui)l(np,~) = U;/~LE = 
VMRE for the total number of occurrences subject to the treaty. Thus, 
the excess occurrence count variance-to-mean ratio for the entire group 
of policies covered by the reinsurance treaty equals the excess occurrence 
count variance-to-mean ratio for an individual policy selected at random 
from the class. 
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If VMR(; is known, a simple formula for calculating VMRk can be 
easily derived using the following two relationships (which were proven 
above): 

(l)VMR(;= I +i,and 

(2) VMRh = I + E . 

Solving equation ( 1) for 0, we get 

(3) u = 
I 

VMRc; - I 

Substituting expression (3) into (2), we get 

VMRE = I + P 
I 

VMR<; - I 

= I + p(VMR, - I) 

= (1 - p) + p(VMRc;). 

Based on the above formula, if VMRC; is two or three, as in the IS0 
increased limits reviews, and IJ is small (say less than .02), VMRE will 
be close to unity. This implies that the excess occurrence count distri- 
bution for an insured selected at random and for the class as a whole 
will be approximately Poisson, provided that the excess frequency mean 
is known. (Recall that the sum of independent Poisson random variables 
is also Poisson.) 
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APPENDIX E 
SINGLE PARAMETER PARETO SEVERITY DISTRIBUTION [6] 

General Properties of Model 

Assume ground-up loss occurrences above the truncation point k are 
distributed according to the following cumulative distribution function 
(c.d.f ): 

where k > 0, q > 0, MI 2 k. 

Note that 

F(w) = I - 

Let 4’ = w - k represent the occurrence size excess of k. Then 

, where 4’ 3 0. 

Thus, occurrence losses excess of the truncation point k are distributed 
according to the two-parameter shifted Pareto distribution with scale 
parameter equal to k and shape parameter equal to q. 

Assume ground-up occurrences are censored at limit k . 6. Then 
4 

ifOSy<k((b- I), 
i 

and F(v) = I ifv>k(h- I). 

The mean censored excess occurrence is given by 

EC\,) = k @-’ - 1) 
1-q 

ifq# I, 

and E(V) = k * In(b) if q = I. 
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The variance of the censored excess occurrences is given by 

Var(y) = k’ 
q - 2pt 

- q - hl-“, 2 
c 
--.__ 

11 
ifqf l.qZ2, 

Varb) = k* 
[ 
2!7”-1 2- ( I + Ii,) ’ 2 1 if q = 1, and 

Var(y) = k’ [ 1 + 2 * In(h) - [vj’j ifq = 2 

Maximum Likelihood Estimution of’ y 

Assume one wishes to compute the Maximum Likelihood Estimator 
(MLE) of q by fitting n loss occurrences (WI, WI, . . . W,J above the 
truncation point k. Let X, (for i = 1, 2, . , n) represent the normalized 
losses, X, = WJk. The c.d.f. of the normalized losses is F(x) = 
1 - Fq, which is the customary representation of the Single Parameter 
Pareto (SPP) distribution. Assume m, occurrences have been censored at 
limit C, and let b, = C/k, j = I, 2, s. 

Let 14 = n - cm, represent the number of uncensored 
,=I 

occurrences. Then the MLE of y is given by 

Q= L‘ 
14 

s 

;z, In(X) + C mj . In (h,) ' 
j=l 

where the X,‘s are the uncensored normalized occurrences. If no occur- 
rences have been censored, the MLE of q is 
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If cases are developing, q should be estimated for each accident year 
or policy year at each evaluation, and a triangulation approach should 
be used to project the ultimate estimate of q for losses in excess of the 
particular truncation point. If cases are not developing and q is to be 
estimated by pooling the losses from several years, they first need to be 
adjusted for trend if some of the losses have been censored. 

Leveraged Impact of inflation 

Let n represent the number of loss occurrences above truncation k at 
time 0, and assume the annual loss inflation factor between time 0 and 
time t is I + i. Based on the SPP distribution with parameter q, the 
projected number of loss occurrences excess of truncation k at time t is 
n( I + i)‘“. 

As long as inflation does not erode the real value of a retention to 
the point that the SPP distribution is no longer a satisfactory model above 
the retention, the parameter q and the average occurrence size in the 
layer of interest will theoretically remain constant over time. The lev- 
eraged impact of inflation over a fixed retention is quantified through the 
application of the adjustment factor (1 + i)” to excess occurrence fre- 
quency. 

Change in Layer 

Assume that one has credibly estimated losses in the layer from u to 
b and wishes to estimate expected losses in the layer from c to d, where 
the SPP distribution with parameter 4 is appropriate above the lower of 
the two retentions. The change in expected losses due to the change in 
reinsurance layer is theoretically given by 

I--Y _ dl-4 
Change in Layer = :I, -y - b’-Y if q f 1, and 

In (d/c) 
Change in Layer = ___ 

In (b/a) 
ifq= 1. 

(The layer limits need not be normalized in the above formulas.) The 
Change in Layer factor is applied to expected losses in the layer from a 
to b to estimate expected losses in the layer from c to d. 
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APPENDIX F 
TREATY I 

SUMMARY OF KEY CONTRACT PROVISIONS 

Treaty Period: I/ l/90- 12/3 l/90 

Layer Reinsured: $160,000 in excess of $40,000 per occurrence 

Estimated Treaty Subject Premium: $12,000,000 for 1990, 
distributed as follows: 
Class l-$9,000,000 
Class 2-$3 ,OOO,OOO 

Expected Layer Loss Costs for the Entire Layer, Prior to All Forms of 
Coinsurance (Expressed as a Percentage of Subject Premium): 

Class 14.00% 
Class 2-3 .OO% 

Both Classes Combined-3.75% 

Loading to Convert Expected Layer Loss Cost After All Forms of Coin- 
surance into a Rate: 100/75 

Proportional Coinsurance: None 

Nonproportional Coinsurance: Aggregate Deductible equal to 3% of 
Subject Premium 
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EXHIBIT 1 

DETERMINATION OF AGGREGATE Loss DISTRIBUTION SPECIFICATION PARAMETERS FOR 

NONPROPORTIONAL Loss SHARING PLANS 

Class ot Busmess 

Class I Class 2 
All Classes 
Combmed 

(I J AcNd or esumated SubJect premmm for mealy penod 9.wo.wo 3.m.m 12,ooo,ooo 
I?) Expxred layer loss cost for entne layer pno: 10 Ihe appkruon of all forma of comburance (layer bumrng cost) Iexpressed as a 

~KC!%l~C Of $UbJW ~M~um] 4 oooo’5 3.mEh 3.75@3% ; 

(31 Expected losses for the emre remured layer for the weary penod ,(, , x (2)] 36o.oa ‘M.m 450,cnm ij 

(41 Smgle Paramerer Pareto q values for seventy dlstnbm~ons 0.900 0.950 5 
(5) Mean excess chm SILC m layer ,ps, 69,84X 67,039 69.267 

(6) Standard dewatron of excess clam SLLCS m layer ,“,, 60,9x 60,084 60.749 6 

(7) Expected number of clams m layer pnor to tie appbcar~on of nonpropomonal loss shanng pronsmnr (p,) [(3)/(51] 5.154 t 343 6 497 5 

(8) Excess clam1 CD”“, vanance-lo-mean ml,” (VMR,) I 032 I 067 I 039 2 

(9) Standard dew&on of d,stnbutmn of aggregate lo>se\ I” layer F 
I& pc + (14 VhfR,) ,A:]“* 212.298 lMl.228 237.391 

(IO) Coefticxnt of variation of distribution of aggregate losses m layer I(9)/(3)] 0590 I 180 0 52R 2 

I I II Selected ccefticlent of variation of aggregate toss distnbution for all classes combined 0 52R ;;i 

NOTES E 

Lmes (5) and (6): The mean excess clam size and the standard deviation of the excess clam sues are based on a Smgk Parameter Parem dlsrnbwon aasumpuon wth the parameter (q value) grven i 

m mm (41. (See Appendn E for formulas ) The all classes combined mean excess clam SW IS an average of the mdwdual class mean clatm wer. weIghred on the expected excess ckum counts on 
lrne (71 The all cla\vs combined claim size standard dewatlon 1s compurrd a follows: 

(A) For each class of busmess, calculate the sum of the squares of ~tcms (51 and (61. respectively. 
(B) Take a weighted average of the sums m (A). using the expected excess claim counts on lme (7) as wevgho. 
(C) Subuact the square of the all classes combined mean excess clam we from the resulr m (8) 
(Dl Take the square root of the result i,, (C) to “bran ,he all classes combmed excess &urn sue standard devlaaon. 

Line (8) The mdlwdual class ace\\ &urn count vanance-to-mean ratios are calculated usmg the IS0 increased Iunits parameters and the formulas m Appendix D The all classes combmed exce*\ 
claim coont vanance-w-mean ratio IS im average of the individual class variance-to-mean ratios. weighted on the expected clam counts on hne 171. 

Lme 19): The srandard devmtlon of the aggregate loss dmnbutton for all claws combmed 15 “blamed by summmg the yuarck of the aggregate 10% dntnbubon andad dcwatlon, for the mdwldual 
classes and lhen rakmg the square root “t the result 

z 
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EXHIBIT 2 K 

AGGREGATE DEDUCTIBLES 

(I ) Actual or estimated subject premmm for treaty period 
(2) Expected layer loss cost for entire layer prior to the application of all coinsurance (layer burning cost) 

[expressed as a percentage of subject premium] 
(3) Coinsurance percentage (cedant’s participation in layer losses not corresponding to an explicit share of 

the reinsurance premium, excluding the presumed effect of the aggregate deductible). 
(4) Expected dollars of loss for the entire layer prior to the application of all coinsurance [(I) X (2)] 
(5) Loading to convert expected layer loss cost after all forms of coinsurance into a loaded rate (expressed 

as a multiplicative factor to be applied to the expected layer loss cost) 
(6) Aggregate deductible amount in dollars applicable to the entire layer [3% x %12,000.000] 
(7) Entry ratio corresponding to the aggregate deductible amount l(h)i(4)] 
(8) Insurance charge at entry ratio corresponding to the aggregate deductible amount* 
(9) Expected percentage of treaty losses eliminated by the aggregate deductible [ 1004 - (X)] 

(10) Composite coinsurance percentage lOOa-{ [ 100% ~ (3)] X [ 100% - (9)]} 
(I I ) Expected layer loss cost for the entire reinsured portion of layer, after the application of the aggregate 

deductible (expressed as a percentage ot subject premium) (2) ,X ~100% - ! I(O)] 
(I 2) Indicated treaty rate after the application of the aggregate deductible and any proportional coinsurance 

(expressed as a percentage of subject premium) [(S) k ( 1 I )] 

12.000.000 

3.7500% 

0.00% 
450.000 

1.333 = 100175 
36O.ooO 

0.800 
29.33& 
70.67% 
70.67% 

I .4664% 
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APPENDIX G 
TREATY II 

SUMMARY OF KEY CONTRACT PROVISIONS 

Treaty Period: l/1/90 - 12/3 l/90 

Layer Reinsured: $700,000 in excess of $300,000 per occurrence 

Estimated Treaty Subject Premium: $6,000,000 for 1990, 
distributed as follows: 
Class 1 - $2,000,000 
Class 2 - $2,000,000 
Class 3 - $2,000,000 

Expected Layer Loss Costs for the Entire Layer, Prior to All Forms of 
Coinsurance (Expressed as a Percentage of Subject Premium): 

Class 1 - 10.0% 
Class 2 - 14.0% 
Class 3 - 21 .O% 

All Classes Combined - 15.0% 

Loading to Convert Expected Layer Loss Cost After All Forms of Coin- 
surance into a Rate: 100/60 

Proportional Coinsurance: 20% 

Nonproportional Coinsurance: Three (3) full free reinstatements permit- 
ted under treaty. 



APPENDIX G 
EXHIBIT 1 

AGGREGATE LIMITS 

(I) Actual or Esttmated Subject Premium for Treaty Per& 

12) Expected Layer Loss Cost for Enttrc Layer Prior to the Application of All Coinsurance (Layer Bummp Cost) [Expressed as a 

Percentage of SubJect Premiuml 

(3) Comsurance Percentage (Cedant‘s Pamctpation in Layer laser Not Corresponding to an Explrtt Share of the Retnsurance Premium, 

Excludmp the Presumed Effect of the Aggregate Ltmtt Prowlon) 

(4) Expected Dollars of Loss for the Entlre Layer Prior to the Apphcation of All Comsurance [(I) X (2)) 

(5) Loadmg to Conven Expected Layer Los5 Cart After All Form\ of Coinsurance mto a Loaded Rate (Expressed as a Multipltcattve 

Factor to be Applied to the Expected Layer Loss Cost) 

6.ooo.cKKJ 

15.ooo% 

?O.cKm 

mx).om 

1.667 = 100160 

Complete Item (6) if the aggregate hmit 1s cnpre\sed as a percentage of treaty losse\. or Item (7) 

if the aggregate lomt is expressed in terms of hmlted remstatements 

(6) Aggregate Limit Amount (Expressed a\ a Percentage of the Expected Lorse& for the Treaty Prior to the Apphcat~on of thta Provision) 

(7) (A) Number of kc Remrtatement\ Allowed Under Treat) 

(HI I.ayer Retcntmn 

(Cl Layer Gross Ltmlt 

(1)) Layer Width [(7C) - 17811 

(E) Effecwc Aggregate Ltmlt for the Entire Layer Pnor to All Comsurance (Expwsed tn Dollar\) [I + t7A)] x 171)) 

tF) Effectwe Treaty Aggregate Lmxt tExprcsscd aa a Percentage ot Treaty Expected Lease\) 1(7E)/iSI] 

(8~ Entn Ratto Corrcapundmg to the ,4pgrepate Lmtt [(6l or t7F). Expressed a\ a Dectmal] 

tYl hurancc Charge at the Entry Ratio Conespondmg to the Aggregate Ltmlt* (This Percentage Is Equwalcnt to the Expcctcd Percentage 

of Treaty Lo>sea Ehmmated b) the Afpregetc Llmlt Pro\~l\ls~onl 

t IO) Composite Coinsurance Percentage 100% {[CIOOS - t.711 x [loo4 l9,1] 

t I I1 Expected Layer Cost for the Entire Reinwred Portion ol I.ayer. AIicr the Apphcatlon ot the Agrepate Limit F’rowwn \Expresaed a\ a 

Percentage of SubJect Premluml 

(2) x [IO04 (IO)] 

(I 21 Indlcatcd Treaty Rate After the Apphcatton of Aggregate Limits and Any Propomona Cotnsurance (Expressed as a Percentage of 

Subject Premtum) [CS) * t I I )] 

NtA c 

3 F 

300.000 F 

I .Ot~.ooo 
? 

700,uOO 
:: 

2.800.000 > 

?I1 11’1; z 

3 111 i: 

2 37v< 

?I X9’i; 

:: 7:6:1x 

19 5268% 

*The tnsurance charge appeanng m Item (9) above is based on a lognormal dtstribution wth a 0.770 coefficient of variation The mwrance charge tb obtained wa lmear 

mtrrpolatton of the table of insurance charges gwen on Tables Bl-B3 of Appendix B. A procedure similar to that employed m the Treaty I example (see Appendix F 

Exhihit I I 1s used to denve the 0.770 coefficient of vwatlon for aggregate losses in the reinsured layer on this treaty. 
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APPENDIX H 
TREATY III 

SUMMARY OF KEY CONTRACT PROVISIONS 

Treaty Period: l/1/90 - 12/31/90 

Layer Reinsured: $400,000 in excess of $100,000 per occurrence 

Estimated Treaty Subject Premium: $10,000,000 for 1990, 
distributed as follows: 
Class 1 - $4500,000 
Class 2 - $4,500,000 
Class 3 - $l,OOO,OOO 

Expected Layer Loss Costs for the Entire Layer, Prior to All Forms of 
Coinsurance (Expressed as a Percentage of Subject Premium): 

Class 1 - 3.20% 
Class 2 - 3.80% 
Class 3 - 3.50% 

All Classes Combined - 3.50% 

Loading to Convert Expected Layer Loss Cost After All Forms of Coin- 
surance into a Rate: 100/70 

Proportional Coinsurance: None 

Nonproportional Coinsurance: Loss Corridor - Reinsurer stops paying 
losses that fall in the reinsured layer when the ratio of actual losses in 
the layer to expected losses in the layer reaches lOO%, but he resumes 
full payment of losses in the layer if this ratio goes above 200%. 



APPENDIX H 

EXHIBIT 1 

Loss CORRIDORS 
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APPENDIX 1 
TREATY IV 

Summary of Key Contract Provisions 

Treaty Period: l/ l/90- 12/3 l/90 

Layer Reinsured: $160,000 in excess of $40,000 per occurrence 

Estimated Treaty Subject Premium: $12,000,000 for 1990, 
distributed as follows: 
Class 1-$9,000,000 
Class 2-$3,000,000 

Expected Layer Loss Costs for the Entire Layer, Prior to All Forms of 
Coinsurance (Expressed as a Percentage of Subject Premium): 

Class 14.00% 
Class 2-3.00% 

Both Classes Combined-3.75% 

Indicated Flat Treaty Rate After the Application of All Forms of Coin- 
surance (Expressed as a Percentage of Subject Premium): 5.00% 

Proportional Coinsurance: None 

Nonproportional Coinsurance: None 

Retrospective Rating Plan: 
Adjustment Period- l/ l/90 through 12/3 l/90 ( 1 year) 
Adjustment Formula- 

Adjusted Treaty Premium = 100175 X (Incurred Losses and ALAE 
in Layer), subject to a maximum of 10.00% of subject premium 
and a minimum of 3.00% of subject premium. 



APPENDIX I 

EXHIBIT 1 

II) Actual or estimated subJect premium fur the retrospective rating period 

(2) Expected layer loss cost for entire layer prior to the effects of the retm plan (expressed as a percentage of SubJect premium) 

(3) Comrurancc ~rcerttage (tedant‘\ pantcipatmn in layer lo%aes not corrc~pondmg to an exphc~t ahare of the rcinsurance premium. 

excludmg the effects of nonpmportlonal loss sharing plans1 

(4) Percentage reductmn m layer losses due to nonproportional loss sharing provwm~ only 

(5) Expected IOS cost for enme remsured pnrtmn of layer prior to the effects of the retm plan (expreaaed as a percentage of SubJect 

premium) (2) x [lOO% - (3)] x IlOO% (4)I 

16) Maximum rate (expressed as a percentage of SubJeCt premium) 

(7) Minimum rate (expressed as a percentage of subJect premium) 

(X) Multiplicatwz losb load (10s~ conversion factor) 

(91 Additive loss load (flat margmJ 

(10) LOIS cost correspondmg to the maximum rate ((6) - (9)J/(Sl 

(I I) Entry ratlo corresponding to the mawnum rate I(lU1~CS)l 

( 12) Insurance charge at maxmwm (excc’15 loss pcrcentagr correspmdlng tii maumum entq ra110)’ 

(13) Loss cost correspondmg to the mm,mum rate l(7) - (Y)]ilX, 

(141 Entry r&o corresponding to the minimum rate [(13),(S)] 

( 15) Insurance charge at mimmum (cxce\s loss percentage currtxpondmg tc mmimum entry ratlo)’ 

(16) Inrurancc wings at rmmmum [I@)? k tlJ)] + (15) - l(K)% 

(17) Net tnsurance charge ((12) - (16)] 

( 18) Adjusted expected layer loss cost (expected value of losers hmttrd by the retro plan mawnun, and mmlmum) (5) X 1 I(x)“+ - ( 1711 

(19) (A) Guaranteed co,t wary rilte (equvalent treat) rate 11 contract wrrc Hat rated1 (exprczscd as rl percentage of WhJcct prcmluml 

(B) Expected treat) rate after rctm ad]u\tmrnt~ (expressed as a percentage ot tublect premium) 

l(8) ,+ (18)l + (Y) 

(C) Retm plan off-bake factor [:!Y.A! !!QW! 

,a factor greater than 1 Ooo indlcatr\ a plan Inadequacy, uhde a tactor le\!, than I WO mdlcatc\ a pian rcdundaniyi 

5 0208% 

O.YY6 

*The msurance charge< appearmg m Items t 121 and (Ifi) above arc based on a lognormal dlstnbution with a 0.528 cvrfficlcnt of varlatwn The insuranrr char&a UC 

obtained via hneat interpolatwn of the table of m~urance charges gwen on Tables El-B3 of Appcndlx B A pnxedute simdar to that employed in the Treaty I example 

(see Appendix F Exhibit 1) 15 used to derwe the 0 52X cwflictent of variation for aggregate losses in the reinsured layer on ttur treaty. 
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APPENDIX J 
TREATY V 

Summary of Key Contract Provisions 

Treaty Period: l! l/90-1 2/3 l/90 

Layer Reinsured: $700,000 in excess of $300,000 per occurrence 

Estimated Treaty Subject Premium: $6,000,000 for 1990, 
distributed as follows: 
Class l-$2,000,000 
Class 2-$2,000,000 
Class 3-$2,000,000 

Expected Layer Loss Costs for the Entire Layer, Prior to All Forms of 
Coinsurance (Expressed as a Percentage of Subject Premium): 

Class l-10.0% 
Class 2-14.0% 
Class 3-2 1 .O% 

All Classes Combined-15.0% 

Treaty Rate (Expressed as a Percentage of Subject Premium): 25.0% 

Proportional Coinsurance: 20% 

Nonproportional Coinsurance: None 

Profit Commission Plan: Adjustment Period--I/l/90 through 12/31/92 
(3 years). Reinsurer to pay cedant 25% of the 
amount by which treaty premiums during the 
Adjustment Period exceed incurred losses, 
ALAE, and a 20% provision for the reinsurer’s 
overhead expense. 



APPENDIX 1 

EXHIBIT 1 
DETERMINATION OF AGGREGATE Loss DISTRIBUTION 

SPECIFICATION PARAMETERS FOR A SINGLE TREATY YEAR 



APPENDIX J 
EXHIBIT 2 

DETERMINATION OF AGGREGATE Loss DISTRIBUTION SPECIFICATION 
PARAMETERS PREADJUSTABLE PREMIUMOR COMMISSION PLANS 

Adjustment Period 

Dates of lndwidual Contract Years in AdJustment Period + 

(I) Actual or estimated subject premiums for all classes combined 

(2) (A) Expected layer loss cost for entire layer prior to the application of all forms of 

coinsurance (layer burning cost) [expressed as a percentage of subject premium] 

(B) Percentage reduction in layer losses due to nonproportional loss sharing 

prowsmns. (Ignore all proportional forms of coinsurance.) 

(C) Expected layer loss cost for entire layer after the application of nonproportional 

loss sharing provisions only (expressed as a percentage of subject premium) 

(2A) X [IOOR - (2B)] 

(3) Expected losses for entire reinsured layer after the effect of all nonproportional 

coinsurance provisions (1) X (2C) 

(4) Mean excess claim size in layer (p,) [copied from Appendix J Exhibit I] 

(5) Standard deviation of excess claim sizes in layer (u.) [copied from Appendix 1 

Exhibit 1) 

(6) Expected number of claims in layer l(3)/(4)] (~~1 

17) Excess claim count variance-to-mean ratio (I&W?,) [copied from Appendix J Exhibit 

II 
(81 Standard deviation of distribution of aggregate losses in layer [u: k, + (kc 

VMR,) j.Lg 2 

(9) Coefficient of variation of distribution of aggregate losses 

lW(3~1 

(IO) Selected coefficient of variatmn of aggregate loss distributmn for all years in the 

adjustment block combmed 

Year 1 

1/90-12/w 

Year 2 

l/91-12/91 

Year 3 

I/92- 12192 

Total 

Adjustment 

Period 

6.OCO,ooO 

15.oaM6 

6,ooo.ooo 

15.wOo* 

6,‘X’3BOO 

lS.oOOO% 

0.00% 0.0% 0.00% 

15.oooo4 15.OCCQ% 15.00% 

90%~ 900,~ 9co.wo 
310,897 310,897 310,897 

6 
2,700,Mx) 

310,897 
J 
iz 

260,265 260.265 260.265 

2.895 2.895 2.895 

260.265 
5 
E 

8.685 

1.012 1.012 1.012 I.012 

692,606 692,606 692,606 I ,199.629 

0.770 0.770 0.770 0.444 

0444 

NOTE: The valuea of the various items in the total adjusunent period column above are calculated using formulas Identical to those used to compute the values of similar 

items shown in the all classes combined column on Appendix J Exhibit 1. (Simply substmxe the word “year” for “class.“) See the footnotes on the bottom of 

= 

- 

Appendix J Exhibit 1 for a description of these formulas. 
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EXHIBIT 3A 

PROFIT COMMISSIONS 

(1) Actual or estimated subject premium for commission adjustment period 

(2) Expected layer loss cost for entire layer prior to the application of all coinsurance (layer burning cost) 
[expressed as a percentage of subject premium] 

(3) Coinsurance percentage (cedant’s participation in layer losses not corresponding to an explicit share of 
the reinsurance premium, excluding the effects of nonproportional loss sharing plans.) 

(4) Percentage reduction in layer losses due to nonproportional loss sharing provisions only 
(5) Treaty rate [expressed as a percentage of subject premium] 
(6) Expected treaty loss & ALAE ratio (ELR) ((2) X [lOO% - (3)] X [lOO% - (4)]}/(5) 

Profit commission formula is in the form: 
Profit commission ratio = (P) * [100%--treaty loss & ALAE ratio-EXF’], 

subject to a maximum commission ratio 

Where: (P) = proportion of profits to be paid to cedant: 
EXP = reinsurer’s overhead expense provision 

(7) Proportion of profits to be paid to the cedant (P) 
(8) Reinsurer‘s overhead provision (EXP) [expressed as a percentage of treaty premium] 
(9) Maximum profit commission ratio (if different from that obtained when a zero loss & ALAE ratio IS 

plugged into the formula above) [expressed as a percentage of treaty premium] 
( 10) Simplistic estimate of the expected profit commission ratio [expressed as a percentage of treaty 

premium] (7) X [ 100% - (6) - (8)]. subject to a maximum of (9) 

18,ooo,ooo 

15.0000% 

N/A 

8.00% 



APPENDIX J 
EXHIBIT 3B 

PROFIT COMMISSIONS (CONTINUED) 

(11) Breakeven loss & ALAE ratio for profit commission purposes [ 100% - (8)] 
(12) Entry ratio corresponding to breakeven point [( 1 I)/(6)] 
(13) Insurance charge at breakeven point* (excess loss percentage corresponding to breakeven entry ratio) 
(14) Loss & ALAE ratio corresponding to the maximum profit commission ratio 100% - (8) - [(9)/(7)] 
(15) Entry ratio corresponding to the maximum profit loss & ALAJZ ratio [(14)/(6)] 
(16) Insurance charge at the maximum profit loss & ALAE ratio* (excess loss percentage corresponding to 

the maximum profit loss & ALAE ratio) 
(17) Insurance savings at the maximum profit loss & ALAE ratio [lOO% X (15)] + (16) - 100% 
(18) Net insurance charge (MC) [(13) - (17)] 
(19) Actuarial estimate of the expected profit commission ratio (expressed as a percentage of treaty premium) 

(7) X (100% - (6) X [lOO% - (18)] - (8)}, subject to a maximum of (9); or 
P X (100% - EL& X [lOO% - MC] - EXP}, subject to the maximum. 

(20) Amount by which the actuarial estimate of the expected profit commission ratio exceeds the simplistic 
estimate [( 19) - (lo)] 

80.00% 
1.667 
3.09% 
0.00% 
0.000 
N/A 

0.00% 
3.09% 

8.37% 

0.37% 

*The insurance charges appearing in items (13) and (16) above are based on a lognormal distribution with a 0.444 coefficient of variation. The 
insurance charge is obtained via linear interpolation of the table of insurance charges given in Tables BI-B3 of Appendix B. See Exhibits 1 and 
2 of Appendix .I for the derivation of the 0.444 coefficient of variation. 

w 
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APPENDIX K 
TREATY VI 

Summary of Key Contract Provisions 

Treaty Period: 1 / l/90- 1213 1190 

Layer Reinsured: $900,000 in excess of $100,000 per occurrence 

Estimated Treaty Subject Premium: $25,000,000 

Expected Layer Loss Cost for the Entire Layer, Prior to All Forms of 
Coinsurance (Expressed as a Percentage of Subject Premium): 10.0% 

Treaty Rate (Expressed as a Percentage of Subject Premium): 20.0% 

Proportional Coinsurance: None 

Nonproportional Coinsurance: None 

Sliding Scale Commission Plan: 
Adjustment Period-l/1190 through 12131190 (1 year) 
Plan-Minimum Commission of 20% at a 65% loss ratio. 

Commission increases by 0.5% for each 1% decline in loss 
ratio for loss ratios between 55% and 65%. 
Commission increases by 0.75% for each 1% decline in loss 
ratio for loss ratios between 35% and 55%. 
Maximum Commission of 40% at a 35% loss ratio. 



APPENDIX K 

EXHIBIT 1 

(1) Actual or ertlmarrd *ubJcct premium for commlssl”n adJusrment pcrwd 
(21 Expected layer I”,> cost f”r the rnfue layer (exprerred as a percenrrge of \“bJeCl premuun, 
01 Comwrance pxcentage (cedanr‘\ partlcipatmn m layer Io\xs nor correspmdmg to an expbcn share of the rrmsurancr prcrmum, rxcludmg the effects of 

nonpropon~onal l”s\ sharing plans 1 
14) Percenragr reducwn I” layer lossa due 1” nonproprrnonal 1”~ shame prowrmns only 
(5) Treaty rate [expvased as a perccnlage of wblect premium] 
(6) Expected meaty loss bi ALAt ram (ELRI [(2, ‘( [IWI - (311 x [IoOCn - (4)1)/(5) 
171 Mimmum ~“mnuss~“n rdn” 20 W’7,: 

comqondmg loss & ALAE rat,” 65 00% 
t8I The deta& uf the *bdmg scak c”mm~ss!“n plan arc wmnwrrd in c”lumnr IA) through (El Values used m the calculation of the crwcred rhdme \cale 

commmm are gnen m wlumm fF) through (1). 

L”ss & ALAE Rat,” 
Interval 

(F) 
Entry Ram 

Cnrrcsponding 
‘0 Lower 

B”und 

(0) 
lllS”“l”C~ 

Charge 
Correrpondmg 

I” lawer 

(A) tn1 
L”WU Upp-‘ 
Bound Bound 

Decrease m 
L”$s & ALAE 

Rat!” 

(D) 
Lower 
Bound 

(El 

Upper 
Bound 
- 

Lms Ran” 
m Column 

(A) 

Bound 
Entry Ratio 

I” C”l”mn (F) 

IH) 
Expected 

Lo\s 
Ratio 
Points 

I” lnrerval 

(I) 
Exprcted Ei 

Reducnons ? 

from Manunum z 

Commwkon z 
Rate 

(CJ x tH) ti 
3 

65.00% and ahwe 000% 2O.OOF ?O.M% I 300 9 I?% 
55.00% 65 00% 0 SO% 25.007c 20.00% 1 IW 14 47% 
35.lM7 55 00% O.?S% 4c.Mm 2s 00% 07w 34 80% 

O.co% 35 00% 0.00% 4oW% 4oM7c OOfKl 1Wou% 

T”L‘dI 

tY) Eqxcted crdmg c”rnrm~~ion ran” fr”m a slmplrrtrc pomt of wew [commlwon ratio corrqmndmg 1” the weary EM (mm 6). gwen the plan abeve. 1 

(IO) Expcctcd comnn~s~“n rats” from an ac!uanal pomt of ww [matmum comrmssion ratu~total 8111 
(I I) Amount hy which the ac~uanal esnmate of the expected commkon ratlo exceeds the hlmplrstlc rrtimarr [( 10) - (9)j 

NOTES 

4 56% 000% 
2 68% 1.34% 

10 ,b% 7 62% 
32 60% 0.00% 

50.00% 8 Y6% 

28 75% 
31 04% 

2 29% 

On lhla cxhlbn. .,I1 cr~r,,n,,r~~“n and loss & ALAE ra,,os arc apressed as pcrcen,age~ of trea,y pra,,,,,,,, 

Column (XC1 The ~“\urancr charger appearmg m d,t\ column are based “n a logrwmal d,\,ribut~“n with a 0.485 coefficxnt of vanat,“,, These ,nsurance charges arc obtamed via bncar 

m~crpolatmn of the table “f mwrancr chargx given m Table* BI&B3 of Appendw B A procedure *Imrlar to that employed m the Treaty I example (xc Appendix F Exhkbn I) 
IS used r” drnvc the 0 JR5 corfficwnt “f vanation f”r aggrcgare Iobses I” the remsured layer on thrs treaty 

Column (8H): The values m this ci~lumn are “htamcd b) mulnplym$ the dlfferencr, between the msurancr charges c”rrespondmg t” conwcut~ve loss & ALAE ratio mterval end panta m column 
(8G) by rhr expected rreaty 10,s & ALAE ratio (nem 6) 

000% 
OW% 

20 WOR 
so 00% 

u, 
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APPENDIX L. 
DERIVATION OF A FORMULA FOR CALCULATING THE EXPECTED 

CEDING COMMISSION UNDER A PIECEWISE LINEAR SLIDING SCALE 
COMMISSION PI.AN 

This appendix outlines the derivation of a concise formula for com- 
puting the expected ceding commission under a typical sliding scale 
commission plan. The derivation involves three major steps, as sum- 
marized below. 

Step 1: Let LI , Lz, Lj, . . , L, be a series of loss ratios such that LI > 
L2 > . . . > L,, = 0. This sequence divides the range of possible loss 
ratios into n consecutive intervals, starting with the first interval [L, ,m), 
followed by the intervals [L;, Li-11, where i = 2,3,...,n. DefinefiL;) to 
be the ceding commission ratio corresponding to an L; loss ratio, i = 
1,2,. . ,n. Using this notation, f(L,) represents the minimum commission 
ratio C,,,, while f(L,,) equals the maximum commission ratio C,,,. 
Furthermore, let b, represent the commission slide (i.e., the percentage 
point increase in commission ratio per 1% decline in loss ratio) on the 
interval [Li, LiPI], i = 2,3 ,..., n. Also define bl to be zero, since the 
commission ratio is constant (at C,,,,) on the interval [L,,-;o). 

Using the notation defined above, the typical sliding scale commis- 
sion plan may be expressed as a piecewise linear function of the loss 
ratio L in the following form: 

(1) jvl) = cm ifL rLI 
I + bz(Li - L) if Lz T= L C LI 
j-652) + ML:! - L) if L? 5 L c: L2 

c = f(L) = 

I AL,,-r) + b,,(Lw I -L) ifO=L,,:SL<L,-1 
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Step 2: Let p(L) be the probability density function of L. Then the 
expected ceding commission ratio E(C) is the following: r 

(2) E(C) = 
J f(L)P(LW 
L 

= 
i ‘;O ALI)PWWL 
4 

+i: HLi- 1) + bi(Li-1 - L)]p(L)dL. 
i=2 

Let A4 = E(L) = Expected treaty loss ratio, 
P(L) be the cumulative distribution function of L, and 
P,(L) be the first moment distribution function of L. 

By definition, 
4 

P(Li) = I 0 
p(L)dL and P,(LJ = h 

I 

4 
Q-GW 

0 

for any value L;. 

The above definitions allow one to simplify equation (2), since the 
integral expressions appearing in this equation can easily be stated in 
terms of P(LJ and P,(L;). Now define P;?(L) to be the excess pure 
premium ratio at loss ratio L. The reader may recall that the excess pure 
premium ratio is expressible in terms of P(L) and P,(L) as follows: 

(3) P*(L) = [l - P,(L)] - -$ [l - P(L)]. 

The relationship given in (3) is used to eliminate all the P,(LJ terms 
in the simplified version of equation (2) discussed above. The result is 
an expression for E(C) stated in terms of cumulative distribution function 
values and excess pure premium ratios. 
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Step 3: The remainder of the proof involves further algebraic simplifi- 
cation of the expression for E(C). In particular, the facts that 

AL;) = f(Li- 1) + b;(L+ 1 - L;) and that 

C”,,, = ALI) + i biGI - L) 
i=2 

are employed. The final result is the following expression for the ex- 
pected sliding scale commission. Note that all the cumulative distribution 
function terms have cancelled out. (We define LO to be infinity, so that 
P2(Lo) = 0.) 

(4) E(C) = C,,,,, - M c b;[PdL,) - PAL,- / )I. 
1-l 

Equation (4) provides a convenient formula for calculating the ex- 
pected ceding commission ratio under a piecewise linear sliding scale 
plan, since one needs only a description of the plan, the expected treaty 
loss ratio M, and the appropriate table of excess pure premium ratios in 
order to use it. 

Based on the definitions given above for M and P?, it follows that 
the expression M[P2(L,) - P2(L,- ,)I represents the expected number of 
loss ratio points falling in the interval from L, to L, , . Hence equation 
(4) may be expressed verbally as follows: 

(5) E(C) = Cm,, - ,$, b, { 
Expected loss ratio points in the 

interval from L, to Li-l 

where: E(C) is the expected commission ratio, 
C,,,, is the maximum commission ratio, and 
bi is the commission slide on the j”’ loss ratio interval. 

Since the product of b; and the expected number of loss ratio points 
in the ith interval represents the expected number of commission points 
lost in that interval, it follows from (5) that the expected ceding com- 
mission equals the maximum commission ratio minus the expected points 
of commission lost over the entire range of possible loss ratios. This 
provides an intuitive justification of the formula given in (4) above. 
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APPENDIX M 
USE OF A MIXTURE OF A LOGNORMAL AND A DISCRETE DISTRIBUTION 

TO MODEL AGGREGATE LOSSES 

If there is a positive probability that a particular reinsurance treaty 
will have a loss-free year, then the lognormal model cannot be used to 
specify the aggregate loss distribution for the treaty. This is due to the 
fact that the lognormal distribution is not defined at the value zero. 

One solution to this problem involves the use of a mixture of a 
lognormal and a discrete distribution (hereafter referred to as the mixed 
lognormal distribution) to model aggregate losses. This distribution is 
defined as follows: 

(1) fir) = { 71 - p) * h(r) 

ifr=O 
if r > 0 

where r is the entry ratio; 
fir) is the mixed lognormal probability density function (p.d.f.); 
p is the probability of a loss-free year; 
h(r) is the p.d.f. for a lognormal distribution with parameters p. 

and a2 (the values for these are given below). 

Intuitively, the reader may think of the mixed lognormal distribution 
f as a weighted average of a discrete distribution of unity (which is 
defined only at the zero entry ratio) and a lognormal distribution h (which 
is defined at positive entry ratios), using the loss-free probability p and 
its complement, respectively, as weights. The value for p is determined 
either subjectively or by analyzing past treaty experience, if the latter is 
credible. Notice thatf(r) becomes a lognormal p.d.f. when p is zero. 

It can be shown that for a mixed lognormal distribution, the excess 
pure premium ratio at a particular entry ratio r is given by 

(2) P2(r) = [I - Hl(r)l - 41 - pItI - W-)1, 
where H and Hi are the cumulative density function (c.d.f.) and first 
moment distribution function, respectively, corresponding to the lognor- 
mal p.d.f. h. (If p = 0, this formula reduces to that given for the 
lognormal distribution in Appendix B.) 
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To evaluate the above expression, one needs to determine the values 
of H and HI at the particular entry ratio r. This is accomplished by 
noting that the lognormal distribution h has parameters 

(3) P = - i ln(l - p) - f It-4 1 + CV’) and 

(4) a2 = ln( I - p) + ln( 1 + CV2), 

where CV is the coefficient of variation of the treaty’s aggregate loss 
distribution. 

It is important to note that the quantity CV measures the variability 
inherent among all possible loss amounts on the treaty, including loss 
amounts of zero, even though the lognormal p.d.f. h is defined only at 
positive loss amounts. 

A value for the CV can be calculated from expected aggregate loss 
cost estimates, together with assumptions on the treaty’s frequency and 
severity distributions, using the same algorithm as used in the lognormal 
model. Note again that the expressions for )-L and o2 reduce to the 
lognormal model formulas in Appendix B when p = 0. (The fact that 
the quantity CV used in the development of the lognormal model mea- 
sures the variability inherent only among positive treaty loss amounts, 
as opposed to that among all possible loss amounts, is the reason the F 
and o2 expressions given above differ from those in Appendix B when 
p > 0.) 
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The calculation of H(r) and H,(r) can be achieved via a transfor- 
nation from a lognormal to a standard normal distribution. Recall that 
if a distribution is lognormal with parameters p, and o*, then its first 
moment distribution is also lognormal but with parameters lo + o* and 
u*. Hence, 

(5) H(r) = Q(z) and 

(6) Hi(r) = @(zI>, 

where @ is the cumulative standard normal distribution; 

Z= 
In(r) - p- . 

u ’ 

z, = w-) - P _ u 
u 

(p. and a are defined in (3) and (4) above.) 

The reader should be aware that the mixed lognormal distribution 
model is valid only when 

(7) 
cv2 

p < 1 + cv2 

If the above condition does not hold, then the expression for the log- 
normal parameter cr2 in (4) becomes negative, which is impossible. In 
this case, the aggregate loss distribution must be determined by another 
approach, such as the Collective Risk Model. 
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