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FOREWORD 

The Casualty Actuarial Society was organized in 1914 as the Casualty Actuarial and Statistical 
Society of America, with 97 charter members of the grade of Fellow; the Society adopted its 
present name on May 14, 1921. 

Actuarial science originated in England in 1792, in the early days of life insurance. Due to 
the technical nature of the business, the first actuaries were mathematicians; eventually their 
numerical growth resulted in the formation of the Institute of Actuaries in England in 1848. The 
Faculty of Actuaries was founded in Scotland in 1856, followed in the United States by the 
Actuarial Society of America in 1889 and the American Institute of Actuaries in 1909. In 1949 
the two American organizations were merged into the Society of Actuaries. 

In the beginning of the twentieth century in the United States, problems requiring actuarial 
treatment were emerging in sickness, disability, and casualty insurance-particularly in workers’ 
compensation-which was introduced in 191 I. The differences between the new problems and 
those of traditional life insurance led to the organization of the Society. Dr. I. M. Rubinow, who 
was responsible for the Society’s formation, became its first president. The object of the Society 
was, and is, the promotion of actuarial and statistical science as applied to insurance other than 
life insurance. Such promotion is accomplished by communication with those affected by insur- 
ance, presentation and discussion of papers, attendance at seminars and workshops, collection of 
a library, research, and other means. 

Since the problems of workers’ compensation were the most urgent, many of the Society’s 
original members played a leading part in developing the scientific basis for that line of insurance. 
From the beginning, however, the Society has grown constantly, not only in membership, but 
also in range of interest and in scientific and related contributions to all lines of insurance other 
than life, including automobile, liability other than automobile, fire, homeowners and commercial 
multiple peril. and others. These contributions are found principally in original papers prepared 
by members of the Society and published in the annual Proceedings. The presidential addresses, 
also published in the Proceedings. have called attention to the most pressing actuarial problems, 
some of them still unsolved, that have faced the insurance industry over the years. 

The membership of the Society includes actuaries employed by insurance companies, rate- 
making organizations, national brokers, accounting firms, educational institutions, state insurance 
departments. and the federal government; it also includes independent consultants. The Society 
has two classes of members, Fellows and Associates. Both classes are achieved by successful 
completion of examinations, which are held in May and November in various cities of the United 
States and Canada. 

The publications of the Society and their respective prices are listed in the Yearbook which is 
published annually. The Syllabus of Examinations outlines the course of study recommended for 
the examinations. Both the Yearbook, at a $20 charge, and the Syllabus ofExaminations, without 
charge, may be obtained upon request to the Casualty Actuarial Society, I I00 North Glebe Road, 
Suite 600, Arlington, Virginia 22201. 
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EVALUATING THE EFFECT OF 
REINSURANCE CONTRACT TERMS 

JAMES N. STANARD 

RUSSELL T. JOHN 

Abstract 

In many reinsurance pricing situations it is not possible 
to determine a “correct” absolute price without making a 
large number of tenuous assumptions. Even so, in order to 
maximize a company’s profitability, it is important for the 
reinsurance actuary and underwriter to be able to choose the 
best contract terms among the achievable alternatives. Fur- 
thermore, being able to offer different but equivalent terms 
that better serve the needs of the cedant may help close an 
important de&. 

This paper measures the eficiency of contract terms by 
estimating the distribution of the present value of cash jaws. 
To do this, the paper examines paid and incurred aggregate 
distributions as a function of time over the life of a contract. 
Sensitivity of the results to changes in the parameters of the 
underlying loss model is investigated. 

The authors wish IO thank Todd J. Hess for his patience in reading many drafts 
of this paper and suggesting numerous improvements. He also programmed the 
analytical model. verified the many cash flow formulas. and produced the accom- 
panying exhibits and graphs. 
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1. INTRODUCTION 

In many reinsurance pricing situations it is not possible to determine 
a “correct” absolute price without making a large number of tenuous 
assumptions. However, it is often advantageous to make some general 
statements about relative price adequacy. By relative price adequacy we 
mean statements (about a particular layer of subject business), such as: 

1. Deal #I is better than deal #2. 
2. Deal # I is equivalent to deal #2. 
3. A deal is better than it was last year. 
4. The reinsurer’s side of a deal is better than the company’s side. 

Even if the underwriter cannot accurately estimate an adequate ab- 
solute price, consistently choosing the best contract terms among achiev- 
able alternatives is important to a company’s profitability. Also, being 
able to offer different but equivalent terms that may better serve the 
needs of the cedant can help close a deal. 

This paper will explore a method to compare wlatiw prices for many 
types of reinsurance contracts, and look at how sensitive the results are 
to the parameters of the underlying model of losses. 

Commonly used methods that utilize ultimate aggregate loss distri- 
butions can give some view of the relative price. However, this alone 
can sometimes lead to incorrect conclusions with regard to maximizing 
profitability. Additional insight into the relative prices can be seen by 
examining the distribution of cash flows and the accompanying invest- 
ment income. To do this, the paper examines paid and incurred aggregate 
distributions as a function of time over the life of a contract. 

Few papers in the casualty actuarial literature have dealt with the 
cash flow of a contract. For example, Meyers [6] includes investment 
income to determine the parameters of a primary retrospective rating 
plan which yields a desired operating profit. Lee [4] uses graphical 
techniques to lend insight into excess of loss coverages and retrospective 
rating. Biihlman and Jewel1 [I], Gerber [2], and Lemaire and Quairiere 
[S] consider optimal reinsurance and risk exchanges. However, these 
papers do not consider investment income and only deal with simplified 
reinsurance contract types (e.g.. quota share contracts). 
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The procedure described herein uses a stochastic model to estimate 
the distribution of the present value of cash flows. The paper’s emphasis 
will be to derive results that are applicable to real-life pricing decisions. 
The approach will be to summarize key information rather than to find 
the single “optimal” solution. 

2. AN EXAMPLE 

Imagine that it is December 28 and you are a Lloyds underwriter 
with a long queue of brokers waiting at your box. You are discussing a 
treaty reinsurance proposal for losses $250,000 excess of $250,000 per 
loss on a portfolio of long haul trucking liability business that generates 
a total premium of $5,000,000 (net of commissions). You are very 
familiar with this account; you have estimated the expected losses to the 
reinsurance layer as being $1,.500,000 (30% of the total subject pre- 
mium). You are the lead underwriter, so it is up to you to quote terms. 
After several days of back and forth discussions among you, the broker, 
and the company, the broker has summarized three types of proposals 
that he thinks will be acceptable to the company. He wants to know on 
which one(s) you will give a firm quotation. The alternatives are’: 

1. Reinsurance premium = 10% of subject premium (sp). 
Aggregate deductible = 20% of sp. 
Aggregate limit = 400% of reinsurance premium. 

2. Retrospectively rated contract. 
Provisional premium = 8% of sp. 
Maximum premium = 30% of sp. 
Premium adjusted monthly to 110% of paid losses plus 8% of sp. 
Aggregate limit = 200% of reinsurance premium. 

3. Reinsurance premium = 27% of sp. 
Profit sharing after four years of 60% of reinsurer’s profit after 
10% deduction of reinsurance premium (i.e., 2.7% of sp), on a 
paid loss basis. 
Aggregate limit = 150% of reinsurance premium. 

I The alternative contracts will be explained more fully in section 5. Further discussion of reinsurance 
contracts and terminology may be found in Lee [4], Patrik and John [7], and Reinarz [lo]. 
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3. NOTATION 

The following notation will be used with respect to the reinsurance 
layer’: 

1. N, random number of excess losses. 
2. P,, random variable denoting aggregate paid losses at time t, 
3. K,, random variable denoting aggregate known loss reserves at 

time t. Note that P, and K, can be viewed as the sum of a random 
number of individual paid or known reserved losses. 

4. R,, random variable denoting reinsurance premium at time t. This 
may be a function of paid or incurred losses. 

5. C,, random variable denoting the cumulative cash flow (positive 
and negative) for the reinsurance contract at time 1. This is a 
function of the contract terms, R,, P,, and K,. 

6. V, random variable denoting the present value of the net cash flow 
to the reinsurer defined as: 

1 
v = 2 [C, - c,- ,]P; L’ = __ 

, 1 +i 

In addition, it is assumed that losses occur mid-year: premium and 
loss transactions are made at mid-year; and, production and overhead 
expenses are ignored. 

With this information, one can investigate properties of V in order 
to judge what set of contract terms is most efficient over a broad range 
of reasonable assumptions. 

4. CRITERIA FOR JUDGING THE EFFECT OF CONTRACT TERMS 

There are three ways that a reinsurance contract affects a reinsurer: 

Economic Impact: Present value of cash flows, V, from the transac- 
tion (pre-tax). The interest rate is assumed to be non-random and known 
in advance. 

2 Random variables are denoted by capital letters and non-random quantlttcs are denoted with small 
letters. 
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Accounting Impact: An income statement and balance sheet are de- 
termined by the contract terms and R,, P,, and K,. Two different rein- 
surance contracts can produce the same C,‘s and therefore have the same 
economic value, but have very different accounting effects.3 

Tax Impact: The tax impact is determined from the accounting impact 
and affects the after-tax economic impact. 

This paper considers only the economic impact. 

5. DESCRIPTION OF COMMON CONTRACT TYPES 

For the purposes of measuring their economic impact, many different 
types of reinsurance contracts (such as sliding scale commissions, ret- 
rospective rating plans, funded programs, aggregate caps, etc.) reduce 
to a few basic features. 

The simplest types of contracts are those where C, is a function of 
only P,, and the function does not vary over different ranges of t. For 
these, a useful first step in analyzing the economic effect is to graph C 
as a function of P. 

In other words, we are graphing the cumulative cash flow (prior to 
interest) to the reinsurer (through t) as a function of the underlying paid 
losses to the contract. The reinsurer prefers larger C’s and prefers C’s 
which are less than zero at P’s that have a low probability. We would 
normally expect C to be a declining function of P (as losses increase, 
the reinsurer’s result deteriorates), but this is not always the case. 

The following graphs illustrate the functioning of various contract 
terms; first for simple, then for more complicated types. 

3 As an example, assume that you are choosing among the following three plans described in section 
5, to cover the same underlying risks: 1.h. paid loss retro, no minimum; l.c. funded plan, with 
interest credit; and I .d. aggregate deductible. Parameters can easily be chosen such that C, is the 
identical function of P, for all three plans. For those parameters, all three plans have the same 
economic impact. However. the definition of premium is different in each case. The profit or loss 
effect of each plan is the same, hut the accounting entries producing that result differ. 
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I. Contracts of the form C, = min (UP, + h. r - P,) 

a. Flat rated: The premium charged by the reinsurer IS known in 
advance of the effective date and is tixed for the life of the 
contract. The premium is usually expressed as a percentage of the 
premiums charged by the ceding company on the business subject 
to the treaty (called subject premium). 

C‘, = t‘ ~ P,, 

where r = premium. 

For example, let Y = $1,500.000 

FLAT RATED 
Cash Flow as a Function of Paid Loss 

-2 5 
0 500.000 1.ooo.om 1.5ca.ooo 1.000.oao 2.500.000 3.000.000 3.5oo.ax 4.000.0 

Pt, Paid Loss through time t 
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b. Paid loss retro, no minimum (sometimes called cash flow plans): 
The premium charged by the reinsurer is a function of the actual 
aggregate paid loss experience. In this case, the developed pre- 
mium can increase to a maximum of M. 

C, = min (UP, + 6, M - P,). 

For example, let a = .333, b = 0 and A4 = $2,000,000. 

PAID LOSS RETRO, NO MINIMUM 
Cash Flow as a Function of Paid Loss 

e -0 l 

ja 1,“: 

d 5 

-I 

-1.2 

d 
-I.+ 

-1.0 

-1.0 

-2 NJ 
0 500.000 1.000.eao 1.5w.ooo 2.ow.wo 2.sca.ooo 5.ooo.wo 3.soo.wo l .ow.ooo 

Pt, Paid Loss through time t 
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c. Funded plan, with interest credit: The premium less the reinsurer’s 
margin is placed in a fund which accumulates interest at the 
credited amount and from which losses are paid. When the contract 
is commuted, the fund balance, if any, is returned to the cedant. 
The fund would normally be set at an amount sufficiently higher 
than expected losses to pay for actual losses in most years. 

C, = min (r - .fk r ~ P,), 

where r = Jf;, + margin, 
fo = fund at time. 

For example, let fo = $1,250,000 and margin = $250,000. 

FUNDED PLAN, WITH INTEREST CREDIT 
Cash Flow as a Function of Paid Loss 

T 
0 500.000 1.000.000 1.500.000 2.ooo.ooo 2.5m.ooo ,.ocQ.cmo J.5cm.ooo 4.000.001 

Pt, Paid Loss through time t 
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d. Aggregate deductible: For an aggregate deductible, the reinsurer 
pays no losses until the total losses to the excess layer exceed the 
deductible. Typically, the aggregate deductible is set lower than 
the total losses expected for the layer. The graph shows that the 
economic effect of an aggregate deductible is the same as a funded 
plan with interest (but the accounting effects are quite different). 

C, = min (p - d, p - P,), 

where p = r + d, 
d = deductible, 
r = premium. 

For example, let r = $500,000 and d = $1,000,000. 

AGGREGATE DEDUCTIBLE 
Cash Flow as a Function of Paid Loss 

.j 
0 

-0.2 

h 
$i 

-0.4 -0.0 -0.1 
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-2 2 
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-2 0 

0 SW.000 1.000.000 1.500.ow 2,ooo.coo 2.5oo.wo 3.000.000 3.500.000 4.000.000 

Pt, Paid Loss through time t 
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e. Profit Commission: In this plan the reinsurer returns a share of his 
profits to the cedant. Profit is defined to be premiums less losses 
and reinsurer’s margin. Because actual profit will not be known 
for many years, profit commission could increase or decrease 
thereby requiring additional payments by the reinsurer or a return 
of profit commission by the cedant. However, the profit commis- 
sion is never less than zero. 

C, = min (- (1 - h) P, + r ( 1 - h) (1 - e), r - P,), 

where h = profit sharing percent, 
e = reinsurer’s percent margin, 
r = premium. 

For example, let k = .50, e = .I5 and r = $1,500,000. 

PROFIT COMMISSION 
Cash Flow as a Function of Paid Loss 

1 
0 500.000 1.000.000 1.5w.000 2.ooo.ooo 2.sw.ooo 3.ow.oal 3.sw.ow 4.000.00~ 

Pt, Paid Loss through time t 
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a. Paid loss retro, no maximum: This is a pure cash flow plan which 
allows the cedant to spread his incurred loss experience and 
thereby smooth underwriting results. The cedant usually pays the 
reinsurer a provisional premium greater than or equal to the min- 
imum, with the final premium based on actual paid losses plus 
loadings. 

C, = max (UP, + b, m - P,), 

where a = multiplicative loading, 
b = additive loading, 
m = minimum premium. 

For example, let a = .lO, b = $200,000 and m = $400,000. 

PAID LOSS RETRO, NO MAXIMUM 
Cash Flow as a Function of Paid Loss 

i 
0 500,000 1.000.000 1.5w.ow 2.ow.ooo 2.5w.ooo 3.0wo.ooo J.SW.aa l .ow.wo 

Pt, Paid Loss through time t 
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b. Loss ratio aggregate limit or “cap”: The reinsurer’s aggregate 
liability for losses is capped at a specific dollar amount expressed 
as a loss ratio or dollar limit. The loss ratio is usually against the 
reinsurer’s net premiums. 

C, = max (Y - P,, r - f ), 

where I- = premium, 
f = cap (in dollars). 

For example, let r = $1,500,000 andf = $2,250,000. 

LOSS RATIO CAP 
Cash Flow as a Function of Paid Loss 

I .* 
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3. Plans with both minimums and maximums 

a. Paid loss retro: This plan is a combination of plans lb and 2a. 

C, = min (max (UP, + b, m - P,), A4 - P,), 

where m = minimum premium, 
a = multiplicative loading, 
b = additive loading, 

M = maximum premium. 

For example, let a = .lO, m = $500,000, b = $400,000, and 
M = $2,050,000. 

PAID LOSS RETRO 
Cash Flow as a Function of Paid Loss 
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b. Loss corridor: In most loss corridor plans, the reinsurer pays 100% 
of the losses up to the beginning of the corridor, some share or 
fraction of the losses in the corridor, and 100% of the losses above 
the corridor. The corridor is usually expressed in terms of loss 
ratio points. 

C, = min (max (r - P,, r - P, + h (P, ~ 1.411, r - P, - h (v - u)), 

where h = fraction of corridor retained by reinsured, 
r = premium, 
14 = beginning of corridor, 
1’ = end of corridor. 

For example, let h = .50, r = $ I ,250,OOO. II = $2,000,000, and 
v = $2,500,000. 

LOSS CORRIDOR 
Cash Flow as a Function of Paid Loss 

Pt, Paid through time t 
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d 

4. C, depends on t. 

a. Funded plan with no interest credit to cedant: Under such plans, 
the fund balance does not accumulate with interest; that is, the 
reinsurer keeps all interest earned for his own account. At time 
to, the fund, less paid losses and reinsurer’s margin, is returned 
to the cedant provided this balance is positive. The cumulative 
cash flow at time co is never greater than the margin, though the 
reinsurer does receive the benefit of full cash flow until the fund 
is returned. 

r - P, t -=c to, 
c, = 

i min (r - f, r - P,) t 2 t0, 

where Y = fund + margin, 
f = fund, 
to = date on which the fund is returned. 

For example, let f = $2,500,000 and margin = $100,000. 

FUNDED PLAN WITH NO INTEREST CREDIT 
Cash Flow as a. Function of Paid Loss 
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5. C, is a function of K, in addition to P, 

a. Incurred loss retro: This is similar to a paid loss retro except that 
the reinsurer’s premium, R,, is a function of known incurred losses 
(P, + K,), multiplied by a loading. The additive load. b,, may 
include an IBNR provision that is a function of t. 

C, = min (max (aP, + (u + 1) K, + b,, m -- P,). M - P,), 

where a = multiplicative loading. 
b = additive loading, 

M = maximum premium, 
m = minimum premium. 

For example, let a = . IO, b = $400,000, M = $2,250,000, and 
m = $400,000. Note that this graph is three-dimensional because 
C, is a function of two variables. P, and K,. In the prior examples 
C, was dependent upon one variable, P,. 

hcurred Loss Reiro 
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Actual contract terms are often a variation or mixture of the above 
types, such as the alternatives or the example presented in Section 2. 

6. COMPARING GRAPHS FOR THE EXAMPLE 

A first step in evaluating relative price adequacy is to examine the 
graphs of the various alternatives and to examine the graph of a hypo- 
thetical contract constructed as the difference between two deals. For 
the example in section 2, the graph below shows option # 1, option #2, 
and option #l minus option #2 (the “difference deal” is represented by 
the triangular region). The obvious conclusions are that the two options 
are very similar, but that #l is better than or equal to #2 at all points. 
Therefore, reject option #2. 

EXAMPLES 1 AND 2 
Cash Flow as a Function of Paid Loss 

” -0 d - 
d -, - 

-I 2 - 
-1 4 - 
-t* , r 

0 500.000 1.000.000 1.5oo.wm 2.ow.clm 2.sbo.oca 3.ow.ow J.5W.000 4.0( 

Pt, Paid Loss through time t 
0 Ex.1 + Ex. 2 

I 
.ooo 

Comparing #l and #3 is more complex because neither one domi- 
nated the other in all cases, and #3 varies with t. The graph of #3 and 
of #3 minus #l (referred to as the “difference deal”) are shown on the 
following pages. 
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7. DISTRIBUTION OF V 

As a next step, it is helpful to compare the contracts over reasonable 
ranges of parameters of an underlying loss generation model. This will 
help to focus on the underlying conditions that must be true for one 
option to be superior to the other. The value V of the difference deal is 
a random variable. How does the distribution of that variable change as 
the underlying loss model changes? One clear way to present this infor- 
mation is to look at a matrix (or 3-D graph) of the expected value of V 
as two important parameters are varied.” 

To do this one needs to estimate the aggregate distribution of incurred 
or paid losses. This can be accomplished using simulation or by calcu- 
lating them directly from the frequency and severity distributions. Using 
a transformation discussed below, aggregate distributions for excess con- 
tracts that reflect the age of the contract can be determined. From this 
series of distributions, one can calculate the distribution 01’ cash flows 
to the contract. The specific model of the loss process is based on 
distributions that are commonly used in casualty actuarial literature. 

Consider the aggregate distribution for excess claims: 

G(x) = 2 Prob[N = n] Fan. 
,I=,> 

where F(x) is the individual loss amount distribution, This represents the 
distribution of P, at ultimate. The Single Parameter Pareto (see Philbrick 
[9]) is used to model severity for its ease in estimating excess losses. 

The model assumes a negative binomial frequency distribution de- 
fined as: 

Prob[M = m] = 
m+cw-1 

a- 1 
p- ( 1 - p)“‘, 

where M denotes the number of ground-up claims (i.e.. claims from first 
dollar of loss). 

4 Although E[ V] is probably the most important thing to lwk 111. other mformation about the 
distribution of V, such as the Variance IV] and Prohabdity [\’ ‘. 01, can he examined in this format. 
Also. if you wish IO postulate a utility functmn C’ (on 1’1. WC c‘w lo~~k at E[ c’(V)] a\ the parameters 
are varied. 
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It is interesting to see that if ground-up claims are negative binomial, 
NB(o, p), then the number of excess claims, N, excess of any retention 
r, is also negative binomial NB (cx’, p’) 

where CX’ = (x and p’ = P 
1 - F (r) + pF (r) ’ 

In addition, if one assumes that individual claim reporting (or pay- 
ment) is independent of size 5, then the number of reported (or paid) 
claims is negative binomial NB (a,!, p:) 

where ar: = cx’, p: = P’ 
w (6 + P' (1 - w 0)) 

and w(t) is the percent of claims reported (or paid) as of t months from 
the average accident date. See Appendix D for a general proof of these 
relationships. Similar relationships hold for other common frequency 
distributions. 

Some of the parameters in this model are “unimportant.” That is, the 
conclusions drawn are insensitive to changes in these parameters. This 
is because alternative deals covering the same occurrence layer are being 
compared. (If one tried to compare a $500,000 excess $500,000 contract 
with a $250,000 excess $250,000 contract, the result would be much 
more sensitive to the choice of those “unimportant” parameters.) 

The “important” parameters that significantly affect the distribution 
of V are: 

1. Average payment lag. The payment lag is the random delay be- 
tween loss occurrence and loss payment. 

2. Expected total losses to the occurrence layer. 

5 The authors do not believe that the independence assumption of claim reporting (or payment) 
from size is too restrictive because the claims being considered are already large on a ground up 
basis and their individual size is h~rund bq the layer limit. 
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Two different applications of the method, producing equivalent re- 
sults, were used to calculate E[V]. One was a Monte Carlo simulation 
described in Appendix B: the other was a calculation of the distribution 
of cash flows at each r by Panjer’s method described in Appendix C.h 

The E[V] and difference matrices for each application are shown in 
Exhibits I and 2. As can be seen, the results are quite similar and would 
lead to the same conclusions. Displayed on Exhibits 3-7 are expected 
cash flow and underlying distributions for the case where E[total loss] 
equals $1 SOO,OOO and E[lag] equals 36 months. 

The E[V] of the difference deal is shown on the graph on the next 
page for each pair of parameters E[total losses] and E[lag]. Examining 
this graph shows that #1 is slightly superior if we are quite confident in 
our estimate of expected losses at $1 ,500,OOO and if the average payment 
lag is short (less than 24 months). However, for a longer payout or for 
a misestimate of expected losses (either over or under), #3 is superior. 
The decision maker can use his subjective assessment of his own risk 
preferences in choosing between the deals. (The authors prefer deal #3.) 

8. CONCLUSION 

The methods outlined have the advantage of summarizing the many 
factors affecting the economic value of a reinsurance contract, first by 
graphing the contract terms, then by graphing E[ V], to allow consistent 
choices among the alternatives. One can also construct contracts with 
equivalent terms in the sense that their E(V]‘s are approxirnately equal. 
The model is general enough to handle most realistic contract types. 
Applying subjective probabilities to the range of the V distributions 
corresponding to various lags and expected total losses could further 
summarize the results. Finally, the model can be made more general by 
using a random interest rate and applying utility functions to the cash 
flows. However. such extensions probably do not add much practical 
value. 

I, The simulation has the advantage of producing the entire distnhutmn ol I’; the PanJer method 
only gives E[V] easily. However, when E[N] I\ large. the I’:mjsr method can tre run much more 
quickly than the simulation. 
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EXHIBIT 3 

EXPECTED CASH FLOW EXHIRI’I’: PANJER’S METHOD 

EXAMPII NUMBER I 

THF. 100% EXPECTED LAYER LOSSES = $1,500,000 

THE AVERAGE PAYMENT LAG IS 36 MONTHS 
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EXHIBIT 4 

EXPECTED CASH FLOW EXHIBIT: PANJER’S METHOD 

EXAMPLE NUMBER 3 

THE 100% EXPECTED LAYER LOSSES = $1,500,000 
THE AVERAGE PAYMENT LAG IS 36 MONTHS 
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EXHIBIT 5 

DISTRIBUTION OF C, USING PANJER’S METHOD 
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EXHIBIT 6 

DISTRIBUTION OF C, USING PANJER’S METHOD 
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Note: PC denotes Profit Commission 



EXHIBIT 7 

DISTRIHCIION OF AGGRWAI t. PAID LOSSES TO TOTAI. LAYER: PANJER‘S METHOD 

Limit: 250.000 The Mean of the Exponential Payment Lap: 36 
Retentlon: 250.000 Var[NIJEIN] for the Exces Layer at Ultimate: I.032 
Layer Expected Losses: 1 .SOO.OOO Alpha = 320.083 
Single Parameter Pareto q: I .S Layer Severity = 146.447 

I-1 
- 



EXHIBIT 7 (continued) 

Pad 

D0ll‘TS 

7hl.bS7 
870.465 

97’).?73 

I .oxx.ox I 
l.lV6.889 

1.305.698 
,.414,SOh 

1.5?l,il4 
1.63?.12? 

1.74o.Y30 

I .849.73X 
I .95X.546 

2.Uh7.W 

7.17h.163 
?.?84.1)7, 

?.3U3.77V 
7.502.5x7 

?.hl I.395 

?.7?0.203 

?.8?Y.O1 I 

l.VV ,820 

3.lMb.hZX 

7.l55.436 

3.2fA.LW 

3.373.05? 

3.4x1 .XhO 

?.?W.MX 

I 3 4 5 6 8 IO I? 14 I6 18 20 
- - - - - - 

0 SW 0 319 

0 701 II 484 

0 787 0 587 

0 x52 0 670 

0 903 0 7M) 

0 938 0 x3 

0 %5? I) 877 

0 Y77 0 916 

0 YX7 0 Y44 

u W? 0 YW 

0 ?% 0 Y77 

0 YYX 0 i)Xh 

0 VYV 0 Y9? 

0 999 0 VY? 

Ioixl 0 v91 

I 0(x1 0 998 

I Mi) 0 YW 

loo0 I arm 

I Uw loo0 

InKI I MM) 

loo0 I ooo 

I MN1 loo0 

I wa I or”, 

loo0 I mlo 

I IXXJ I 0%) 

I MXI I cnx, 

I MU I IJNI 

0 35 
0 346 
0 443 

0 so 

0 631 

u 712 
0 7x2 

0 x40 

0 xxs 

u 920 
0 VW 

0 WA 
0 077 

0 9x5 

0 991 
0 w4 

0 997 

,I 99x 
0 YW 

0 999 

I ow 

I ow 

loo0 

I ,XXI 
I olx) 

I WJ 

I cxn, 

0 1x1 

0 x-4 
0 351 

Ull3 

0 Zli 

0 h2? 

0 702 

0 770 
0 X18 

0 x74 

0.910 
u Y3X 

0 9x 
0 972 

0 Y8? 

0 YXX 
0 993 

u YV6 

0 941 

0 998 

0 99Y 

0 YYY 

I CNXI 
I OIXI 

I uuo 

I UN1 
I OMI 

0 I41 

0 21-l 

0 293 

0 379 
0 4h’) 

0 557 

0 640 
0715 

0 7X0 
0 x3.4 

0 x7x 

OYI? 
0 Y3Y 

0 958 

0 972 

OYXI 

0 9xX 
” W? 

0 YY5 

0 997 

0 998 
0 99’) 

0 YW 

I Ml0 
I ow 

I (XX, 

I ml 

0 108 

u Ihl 

0 231 
0 10x 

0 391 
0 37x 

0 5h2 

0 642 
0 713 

u 77x 
0 x31 

0 874 

0 90X 
0 Y35 

0 954 

O.Y6Y 
0 Y7Y 

0 986 

0.991 
u YYJ 

0 YV7 
0 9% 

0 w9 

0 9’)‘) 

I IXWI 

I IX”, 

I (““1 

0092 
0 I41 
u 203 

0 275 

0 355 

0 43’) 

0 5-23 

0 ho4 
0 619 

0 746 

0 mu3 

0 x51 

0890 

0 YX 
0 Y43 

0 961 

0 v77 
0 4x2 

0 988 

0 W? 

0 VYS 

0 997 

0 998 

0 YVY 

0 YVY 

I OMl 

I UMI 

0 085 

0 131 
0 189 

0 259 

0 33 

0 419 

0 so3 
u 5x4 

u hMI 
I, 729 

0 788 

0 x3’) 
0 x79 

I, ‘(12 

0 VI7 
0 9% 

0 YhY 

0 YlV 

0 986 
0 991 

u VVJ 
0 Y9h 

0 9YX 

0999 
0 YW 

I cc0 

I ,““I 

0 0x1 

n I26 

0 183 

0 251 
0 327 

0 4w 
0 493 

0 574 

OhSl 
0 720 

0.7x1 
0 x32 

0 a74 

I, vu7 
0 Y33 

0 953 

0 907 
0 ‘)7x 

0 VRS 

09yO 
0 9YJ 

0 9% 
0 9% 

n9w 

0 ‘)w 
0 WI 

I ,xX, 

0 079 

0 127 
0 180 

u 147 

0 32.3 

0 WA 
n 48X 

0 56’) 

0 6% 
0 7Ih 
0 77, 

0 x2x 

0 871 

0 YO5 
0 ‘)1? 

0 951 

0 Vhh 
0 411 

0 vxs 

0 vvo 
0 VW 

0 996 

0 YV7 
0 wx 
u 9w 

0 VW 

I om) 

0 018 

0 122 
0 17x 
0 ?4S 

0 310 
0 402 

0 485 

0 566 
0 M1 

,i 711 
0 775 

0 x17 

0 X6’) 

I, %W 
UYil 

UVZI 

0 Vhh 
0 ‘177 

u ‘)x-l 
0 Y’HI 

0 YY3 
0 9% 

0 4% 

0 998 
I, WY 

0 YYV 

I ulx, 



32 RtlNSURAN(‘I~ (‘ON I RACl I I:RMS 

REFERENCES 

[ I] H. Biihlman and W. S. Jewell. “Optimal Risk Exchanges,” ASTIN 
Bulletin, Vol. 10, Part 3, 1979. 

[2] H. V. Gerber, An Introduction to Mmthemcticd Risk Theory, Hueb- 
ner Foundation Monograph 8, Richard D. Irwin, 1979. 

[3] R. T. John, “Report Lag Distributions and IBNR.” Casualty Loss 
Reserve Seminar Transcript, 1982, p. 124. 

[4] Y. S. Lee, “The Mathematics of Excess of Loss Coverages and 
Retrospective Rating-A Graphical Approach,” PCAS LXXV, 1988, 
p. 49. 

[5] J. Lemaire and J. P. Quairiere, “Chains of Reinsurance Revisited,” 
ASTIN Bulletin. Vol. 16, Part 2, 1986. 

[6] G. Meyers, “The Cash Flow of a Retrospective Rating Plan,” PCAS 
LXXIII, 1986, p. 113. 

(71 G. S. Patrik and R. T. John, “Pricing Excess-of-Loss Casualty 
Working Cover Reinsurance Treaties,” 1980 CAS Discussion Paper 
Program, p. 399. 

[8] H. H. Panjer, “Recursive Evaluation of a Family of Compound 
Distributions,” ASTlN Bulletin, Vol. 12. Part I. 1981. 

[9] S. W. Philbrick, “A Practical Guide to the Single Parameter Pareto 
Distribution,” PCAS LXXII. 1985. p. 44. 

[lo] R. C. Reinarz, Property und Litrhility Reimurance, Mission Pub- 
lishing Company, 1969. 

[ 1 l] B. Sundt and W. S. Jewell, “Further Results on Recursive Evalu- 
ation of Compound Distributions.” ASTIN Bulletin. Vol. 12, Part 
1, 1981. 

[ 121 E. W. Weissner, “Estimation of the Distribution of Report Lags by 
the Method of Maximum Likelihood.” PCAS LXV, 1978. p. 1. 



REINSURANCE CONTRACT TERMS 33 

APPENDIX A 
PARAMETERIZING THE MODEL 

The two applications of the model described in Section 7 and Ap- 
pendices B and C (simulation and Panjer’s method) were parameterized 
using the following steps: 

1. Select expected losses, E[L], where L = P, at t equal to ultimate, 
to the occurrence layer. Several estimates using experience and 
exposure rating techniques should be applied. The consistency of 
the results will affect how extensive a range of E[L] estimates 
should be tested in the model. 

2. Estimate the negative binomial (NB) parameter p’. The authors 
used the fact that the variance/mean, Var/E = l/p for NB. Starting 
with an IS0 ground up Var/E in the 2.0 to 3.0 range, and IS0 
increased limits severity distributions, one can translate p (Y2 to 
‘15) into p’ using the transformation p’ = pl[ 1 - F(r) + pF(r)], 
r = retention. The examples herein use p’ = .969 for excess of 
$250,000 long haul trucking. As mentioned in Appendix D, E[V] 
is not sensitive to changes in p’. 

3. Estimate a severity distribution F(x). The authors used a Single 
Parameter Pareto (SPP) with 9 = 1.5. This was suggested by 
Philbrick [9] as being appropriate for casualty lines. With an SPP 
severity, changes in the q parameter do not cause significant 
changes in E[V]. The average severity for the layer ($250,000 
excess of $250,000) is then calculated. 

4. Dividing E[L] by the average severity produces an estimated num- 
ber of excess claims, E[w. One can then back into the NB (Y 
parameter as: 
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5. Select payment and/or report lag distributions. While this paper 
utilizes exponential lags, the results are equally valid for other 
distributions, although the parameter selection process would 
change.’ The cash flows are fundamentally dependent on the pay- 
ment lag distribution, so care should be taken in the selection of 
the distribution and its parameters. The extent of sensitivity testing 
is a function of one’s confidence in the payment lag distribution. 
For a detailed discussion on estimating lag distributions, see Weis- 
sner [ 121. John [3] discusses report lag distributions by reinsurance 
line of business. 

6. Choose an interest rate to discount the cash flows. The examples 
used 8%. 

- 
’ For example, if one were testing the sensitivity of results using a two parameter payment lag 
d,stribution, the coefficient of variation (CC’) would be fixed. and scale parameter selected corre- 
sponding to several expected payment lags. This process would then be repeated for several different 
CV values. 
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APPENDIX B 

MONTE CARLO SIMULATION 

The simulation was programmed as follows: Single Parameter Pareto 
(SPP) q, expected layer losses, and exponential payment lag with lambda 
equal to l/mean lag are selected and used to calculate Negative Binomial 
p’ and 01 parameters as shown in Appendix A. Then, for one iteration: 

1. N is drawn from a negative binomial NB (CY, p’). 

2. For each of the N claims, a paid loss amount is drawn from SPP 
and a payment lag is drawn from the exponential. It was assumed 
that claims occur mid-year and premium and loss transactions are 
made at mid-year. 

3. The P, values are calculated by summing total payments in the 
appropriate time periods using the simulated lags. 

4. The reinsurance contract terms were applied to the P,‘s to obtain 
the C,‘s. 

5. V is calculated = 5 (C, - C,-,) v’-i, then V is stored. 
,= 1 

The above was repeated for 20,000 iterations, then E[V], Variance 
[V] and Probability [V > 0] are calculated. 

The program was written in HSFORTH and run on an IBM PS/2 
with a 25 MH 80386 and 80387. For E[Nj = 10, 20,000 iterations take 
80 seconds, so a 10 x 10 matrix of parameters can be run in 2.3 hours. 
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APPENDIX C 

PANJER’S METHOD 

Recall that the aggregate loss distribution is a compound process 
formed by the infinite sum of n-fold convolutions of the frequency and 
severity distributions. Panjer [g] showed that this distribution can be 
estimated recursively provided that the frequency distribution satisfies 
the recursive relationship 

p(n) = p(n - l)(LZ + b/n) n = 1,2,3, . 

where p(n) denotes the probability of exactly II claims occurring in a 
fixed time interval. 

Sundt and Jewel1 [I l] showed that the only distributions satisfying 
this condition arc: Poisson, Negative Binomial, Binomial, and Geomet- 
ric. In the case of the Negative Binomial, 

p(n) = i 
n + a - I 

a- 1 J p”(1 - p)“, II = 0,l ,2, . . : 

and 

cl = I - p, b = (I - a)( 1 - ,I?). p(0) = y”. 

Furthermore, if the severity distribution can be represented discretely 
then the recursive formula for the aggregate distribution G(o) is quite 
simple: 

g, = i (u + bjli)f,g;-, i = 1,2.3, ; 
J=l 

go = p(O). 

Section 7 and Appendix D show that if the number of ground-up 
claims is negative binomial NB (a, p), then the number of claims excess 
of a retention r, reported or paid at any time t. is also Negative Binomial 
with the appropriate transformations of the ground-up parameters. 

This means that we can estimate the aggregate distribution of losses 
paid, P,, or reported incurred, L, = P, + K,. using Panjer’s recursive 
formula. 
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For the layer being considered, the Single Parameter Pareto (SPP) 
severity distribution was discretized into equal intervals, with the number 
of intervals determined by the following formula subject to a maximum 
of 20: 

4 
# intervals = ~[~rl + 10. 

Increasing the number of intervals beyond these levels adds signifi- 
cantly to the run time without appreciable improvement in the results. 

The above procedure can easily be used to estimate the expected 
value of V, the present value of net cash flows C,. The variance of V, 
Var[V], on the other hand, is difficult to estimate. Obviously, the se- 
quence of random variables {C,} is not independent. Not so obvious is 
the fact that, for even simple contract forms, the C,‘s do not have 
independent increments; that is, the sequence {C, - C,-r} is not inde- 
pendent. This means that the Var[V] contains non-zero covariance terms. 
This fact is demonstrated by the example in this appendix. 

If the decision maker would like to consider other properties besides 
E[V] (e.g., Var[V]), then a covariance matrix can be produced, though 
simulation may be simpler. Aside from that, the Panjer analytical solution 
is relatively easy to implement. 

Example: C,‘s Do Not Have Independent Increments 

Consider the paid loss retro with no maximum, 
C, = C(P,) = max(aP, + b, m - P,), where a = multiplicative loading, 
b = additive loading and m = minimum premium. 

For convenience write C(P,) as: 

C(P,) = 
1 
zp-+P; 

t 
$ ; “h ; “, 

I 

Recall that the P,‘s are non-decreasing and consider the case 
aP, + b < aPz + b < m < aP3 + b. 
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COV[C(Pd - C(P,), C(P,) - C(Pd] 

= COV[-(P2 - PI),uP3 + b - (m - Pz)] 

= -a COV[P2 - PI,P3] + COVIPz -- PI, fn -. P2) 

= -a (COV[P2,Pj] - COV[Pf,Pi]) - (COV[P2,P2] 
-COVIP,, P21) 

= (I + a) (Var[P1] - Var[P2]). 

Note: COV[P,-, , PI] = COV[P, , , (P, -- P, 1) + P, -,I 

= COV(P, r,P,-P, tl+Var[P, II 

= Var[P, I], 

because P,‘s have independent increments 
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APPENDIX D 

The following proof derives the transformations shown in Section 7. 

Theorem: If Y is negative binomial (a,~) and Xly is binomial 
(y,w), then X is negative binomial (a’,~‘) where CY’ = 01, 

and p’ = P 
wSp(1 -w) 

Proof 

Pr[X = x] = E Pr[X = xJY = y] Pr[Y = y] 
\ 

= 
zo 

Y w.c (l _ w)“-” 
( 

y+a-1 
7 x a- 1 1 

pa (1 -p)’ 

= x! (Ey * )! (I - p)” x (I - W)V-r o, ; “_ ;)!I)! (1 - P).“-” > 
Multiplying numerator and denominator by (x + (x - I)! gives: 

( x+a-I 
a- 1 ) [WC 1 - P)l-‘P” c (; 1 z I ;) [(l - p) (1 - w)].?‘-” 

? 
Substituting z=y-xandl -h=(l -p)(l -w)= 1 -(~+p-~~): 

x+a-1 
> 

z+x+a-1 
a- I x+(x--l 

h x+a (1 - h).’ 

Notice that the summation over z equals 1. 

( x+cy--I 
a- 1 I( 

P a 
w +p(l - w) I( 

w(l-P) * 
w +p(l - w) 1 

= x+a-1 
( a-l i 

p’” (1 - p’)” 

= NB(cx’,p’). 
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Comments: 

(i) For claims excess of a retention, r, w = 1 - F(r), where F(x) 
is the ground-up severity distribution. 

(ii) For reported or paid claims w = w(t), where w(t) is the percent 
of claims reported or paid as of f months from the average 
accident date. 

Var[X] 1 
(iii) E[XI = 7 

=w+PU -M') 
P 

Note that as w approaches zero (which is the case for excess 
claims as the retention, r, gets large), the variance/mean ap- 
proaches 1 .O. In fact, the variance/mean approaches I .O quite 
quickly as the following table shows: 

VARIANCWMEAN FOR Exe-F.SS CLAIMS 

Ground-Up 
VariE .25 

Excess Claim Probability 

IO .05 -- .Ol 

2.0 1.25 1.10 1 .os 1 .a1 
3.0 1.50 1.20 1.10 1.02 
4.0 1.75 I .30 1.15 1.03 

This result is consistent with sensitivity tests of 
P' = (Var[X]/E[X])- ’ which showed that E]Vj, the expected 
present value cash flow, did not change significantly for large 
changes in pt. 

Also, as w approaches 1 .O, p: approaches p’, as expected. 
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(iv) The coefficient of variation, CV[Xj, is given as follows: 

CV[xj2 = l 41 - P’) 
= (3qyj2 w + P (1 - w) 

W 

While the variance/mean approaches I .O as w approaches zero, 
the coefficient of variation gets increasingly large as the retention 
increases. 

41 
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DISCUSSION OF PAPER PUBLISHED IN VOLUME LXXIV 

A NOTE ON THE GAP BETWEEN TARGET AND EXPECTED 
UNDERWRITING PROFIT MARGINS 

EMIL10 C. VENEZIAN 

DISCUSSION BY SHOLOM FELDBLUM 

This paper argues that if forecast and actual insurance costs are 
random variables, then the traditional actuarial ratemaking procedure 
produces an average underwriting profit margin lower than the target 
underwriting profit margin. The argument is correct in that the average 
profit margin, per policy or per book of business, will indeed be lower 
than the target profit margin. However, the expected total profit margin, 
for the insurer or for the industry as a whole, will not differ from the 
target profit margin. Observed differences between target and actual 
profit margins are due to marketplace competition, random forecasting 
errors, or unsustainable target margins, not to biases in the ratemaking 
procedures. The total profit margin for the insurer is the important figure, 
not the average margin per policy. 

An illustration should clarify these comments. Suppose that: 

1. The forecast insurance costs average $95 per policy, but they vary 
with equal probability among $80, $95, and $110 per policy. 

2. The actual insurance costs have the same probability distribution. 
3. The insurer uses a target underwriting profit margin of 5%. 

With these probability distributions. the profit margins are as shown 
below. 
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TABLE 1 

TARGET AND EXPECTED PROFIT MARGINS 

Forecast 
cost Premium 

$ 80 $ 84.21 
80 84.21 
80 84.21 

95 
95 
95 

110 
110 
110 

Average: $ 95 

100.00 
100.00 
100.00 

115.79 
115.79 
115.79 

$100.00 

Actual Profit Profit 
cost Margin Dollars 

$ 

1 

80 +5.000/o $ f4.21 
95 - 12.81 - 10.79 
10 -30.63 -25.79 

80 
95 
10 

+20.00 
+5.00 

- 10.00 

+30.91 
+ 17.95 
+5.00 

+3.3two 

+20.00 
+5.00 

- 10.00 

80 $35.79 
+20.79 

+5.79 
95 

110 

$ 95 $ +5.00 

The “average profit margin per policy,” at 3.38%, is lower than the 
target profit margin. The total profit margin for the book of business, at 
5.00%, is exactly equal to the target profit margin. Moreover, the 
weighted average of the profit margins per policy, where the weights are 
the premiums per policy, also equals 5.00%. 

These observations are not restricted to the particular illustration used 
here. Equation (2.8) of the paper shows that the profit margin per policy 
is 

A = E(m) = 1 - (1 - 7) * E ((1 + y)l(l + x)), 

where 

A is the achieved underwriting profit margin; 
T is the target underwriting profit margin; 
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y and x are independent random variables with means of zero, 
measuring prediction errors and random cost fluctuations (see 
Equations (2.7) and (2.4)); 

E is an expected value operator; and, 
rn is the underwriting prom margin. 
C is the cost per policy (see the following equations). 

In other words, the profit margin for an individual policy i is 

Ai = 1 - (1 - 7) . ((1 + ~;)/(l + x,)). 

The dollar profit for this policy is 

Dollars, = C, * (( 1 + x,) - ( 1 - 7) . ( I + v,)). 

The total underwriting profit margin is the ratio of total dollars of profit 
to total dollars of premium. Since the x and v random variables appear 
as numerators of separate terms. they both average to zero and the ratio 
simplifies to 

(Total Cost . [I - (1 - 711) / Total Cost = T. 

The weighted average of the profit margins is also equal to T. The 
weighted average is 

C (premium, * profit margin,) / C (premium,). 

This is the total dollars of profit divided by the total premium, and so 
equals T, as shown above. 

When he read his paper before the CAS convention in San Antonio, 
Professor Venezian indicated that a weighted average by premium is 
inappropriate, since we are concerned with returns on equity, not returns 
on premium. This does not alter the situation. Suppose first that the 
surplus (equity) supporting each policy is a fixed amount that does not 
vary with the premium, or that it is related to the average cost, not the 
“forecast” cost. The relevant profit margin is the dollars of profit divided 
by the surplus amount. The x random variable never enters this ratio, 
and no “gap” is ever produced. Alternatively, suppose that the surplus 
supporting each policy varies with the premium charged-say, required 
surplus equals 50% of the premium. The x random variable does enter 
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the denominator of the profit margin per policy. However, the weighted 
average profit margin uses surplus as the weights, so the x random 
variable once more cancels out of the ratio. 

The paper’s thesis is that the average of ratios is not the ratio of the 
average. This is unrelated to actuarial pricing procedures. Consider any 
firm: suppose the costs of two products are $50 and $150, and the 
corresponding revenues for each are $100. The profit margins are + 100% 
and -33%, for an average of +33%. Yet the firm’s total revenues are 
$200 and total costs are $200, for a profit margin of 0%. The latter 
figure is the important one, since it shows the true profitability of the 
firm. The former figure varies with the allocation of costs and revenues 
to products or product lines. Similarly, in the insurance example, if total 
profit margins are considered, then expected underwriting profits should 
equal target underwriting profits. 

TABLE 2 

AVERAGE PROFIT MARGINS 

Product Quantity cost Revenues Profit 

A 1 50 100 +loo% 
B 1 150 100 -33 

Total 2 200 200 0% 

Since the paper focuses on average profit margins per policy, instead 
of the total profit margin, it does not address the original problem: 

“Over extended periods of time the average underwriting profit 
margins achieved by the industry as a whole, or by individual 
jirms, in most jurisdictions differ substantially from the targets 
ostensibly built into the rates.” 

This “gap” is the total profit margin achieved by the insurer or by the 
industry minus the target profit margin. The argument advanced in the 
paper has no relation to this gap. 
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ADDRESS TO NEW MEMBERS-MAY 14, 1990 

STRAIGHT TALK 

STEVEN H. NEWMAN 

First of all, I’d like to add my personal congratulations to those 
already so enthusiastically expressed. Few professions require as much 
commitment and dedication as a requisite to entry. My remarks today 
are mainly from the perspective of a shameless and unrepentant realist, 
and a member of senior corporate management. As such, the thoughts 
expressed are my own, and may not conform to those held by the CAS. 

You’ve entered a very different professional practice than I did in 
the 1960s. The job function then was principally advisory. We worked 
mostly on automobile and workers compensation insurance pricing, and 
liability loss reserve analysis. Most actuarial departments consisted of 
just a few people, and many had only one CAS member. The top 
position, i.e., the top rung of the career ladder, and one achieved at that 
time by just a handful of actuaries, was “Vice President and Actuary.” 

Today’s mature actuary is far more likely to be “accountable,” not 
advisory; accountable as the decision maker, the policy setter, the strat- 
egist. Today there are numerous CAS members heading underwriting 
departments for their companies. They are also the senior claims, infor- 
mation systems, and even field management officers. Many of the most 
prominent insurance and reinsurance companies are also led by actuaries. 

What does it mean when I say that actuaries are now “accountable”? 
It means that your decisions will be measured against results. In the 
1960s our opinion was sought, and it was generally advisory and aca- 
demic. In the 199Os, however, your judgements are required, and they 
will be critical to the success of your business or client. Do your forecasts 
hold up? Does your pricing yield the intended result? And did you impact 
overall performance favorably ? Accountability is unforgiving! Only 
achievements matter; explanations and excuses are largely irrelevant, 
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Is the present domination of many company functions by actuaries, 
particularly in senior management, a trend; or is it just a snapshot of a 
fleeting moment in the industry’s history? While you ponder that ques- 
tion, here are a few related ones. 

Have companies headed by actuaries outperformed the others? Would 
some of the most admired companies in the business like AIG, Chubb, 
Safeco, Cincinnati Financial, USAA, and State Farm be more successful 
if they were led by actuaries. 7 Was AIG’s remarkable success in the 
1970s largely the result of my having established an actuarial department 
there; and is their even greater success in the 1980s because Bob Sandler 
is a better chief actuary than I was‘? 

Until now, the thrust of your formal studies and your office work 
have been directed mostly toward developing fundamental tools for use 
in analyzing insurance experience. Although there is more to be gained 
by following that pattern and sharpening further these tools, I urge you 
to emphasize a different dimension in your continuing studies. That 
applies particularly to the new Fellows who are now in a position to 
change course from exam completion to professional and career devel- 
opment . 

Believe it or not, it is often overlooked that the object of analysis is 
to reach a conclusion and to make a decision. Admittedly, more com- 
prehensive and sophisticated analysis ought to ultimately yield a better 
decision, but does all the input needed for such a decision come in the 
form of data? Doesn’t the quality, the training, the continuity, and even 
the often-changing mission of the people manning the underwriting and 
claims functions have a tremendous impact on results? What about 
understanding the product or exposure? Don’t we at times need to un- 
derstand the ultimate insured and his motives as well? My experience is 
that evaluating these issues correctly has a critical impact on the quality 
of the conclusions drawn from analyzing information, and on the overall 
success of the enterprise as well. 

That is why I urge you to begin to broaden your business vision. 
Try to get as close as you can to the business of the business: the sale, 
the risk assessment and acceptance, and policyholder service, particularly 
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claims. Take every opportunity to improve your understanding of how 
what you’re doing fits into the whole. In the words of that modern 
philosopher, Yogi Berra . . . “You can see a lot by just looking!” 

Lastly, as general guidance for you at this stage in your career, I 
suggest that you try to develop a sense of humility as you go about your 
work. The Bible says, “He that shall humble himself shall be exalted.” 
Recognize the limitations of your art. Can your data be taken seriously, 
even though it is the best you can compile? What can alter future expected 
patterns? Management action ? Economic conditions and interest rates? 
Society’s values and court decisions ? A better appreciation of the sig- 
nificance of these factors, together with a better understanding of your 
company or client, will inevitably lead to more mature and informed 
judgements. Whether or not your aspirations push beyond classical ac- 
tuarial work, you do have a great deal more to learn about the business! 

Through your efforts on CAS committees, your views will soon 
begin to impact the profession and in time you will inherit the leadership 
of the CAS. My personal hope is that through your enlightened profes- 
sionalism and broader involvement in the business, you will also inherit 
the leadership of the industry. 

Good luck, and Godspeed! 



49 

MINUTES OF THE 1990 SPRING MEETING 

MAY 13-16, 1990 

THE BROADMOOR, COLORADO SPRINGS, COLORADO 

Sunday, May 13, 1990 

The Board of Directors held their regular quarterly meeting from 
1:00 p.m. to 4:00 p.m. 

Registration was held from 4:00 p.m. to 6:30 p.m. 

A presentation to new Associates and guests was held from 5:30 
p.m. to 6:30 p.m. 

A welcome reception for all members and guests was held from 6:30 
p.m. to 7:30 p.m. 

Monday, May 14, 1990 

Registration continued from 7:00 a.m. to 8:00 a.m. 

A Business Session was held from 8:00 a.m. to 9:30 a.m. 

Welcoming comments were made by President Michael Fusco. 

A ceremony for new members was held. There were 86 new Asso- 
ciates and 16 new Fellows. The names of these individuals are as follows: 

FELLOWS 

J. Scott Bradley Kirk G. Fleming 
Malcolm E. Brathwaite Teresa J. Herderick 
Scott H. Dodge Richard J. Hertling 
Vincent T. Donnelly Jane E. Jasper 
Thomas J. Ellefson John J. Joyce 
William G. Fanning 

Christine E. Radau 
David C. Scholl 
Debbie Schwab 
G. Clinton Somberger 
Elisabeth Stadler 
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Gregory S. Beaulieu 
Douglas L. Beck 
Allan R. Becker 
Gavin C. Blair 
Jean-Francois Blais 
Roberto G. Blanc0 
Scott K. Charbonneau 
Donald L. Closter 
Jean Cloutier 
Michael A. Coca 
Charles Cossette 
Jean Cote 
Robert J. Curry 
Daniel J. Czabaj 
Jeffrey F. Deigl 
Edward D. Dew 
David A. Doe 
Bob D. Effinger, Jr. 
John W. Ellingrod 
Catherine E. Eska 
Deborah C. Finnerty 
Kerry L. Fitzpatrick 
Ross C. Fonticella 
France Fortin 
Scott F. Galiardo 
James M. Gevlin 
Linda M. Goss 
Edward M. Grab 
Marian R. Gross 

ASSOCIATES 

Michele P. Gust 
Thomas L. Hayes 
Kathleen A. Hinds 
Joanne K. Jkeda 
Terre11 A. Jones 
James W. Jonske 
Edward M. Jovinelly 
Kevin J. Kelley 
Allan A. Kerin 
Daniel F. Kligman 
Ronald T. Kozlowski 
Jean-Marc Leveille 
Siu K. Li 
Andre Loisel 
Brian E. MacMahon 
Laura Manley 
Burton F. Marlowe 
Liam M. McFarlane 
Richard B. Moncher 
Kelly L. Moore 
Kevin J. Moynihan 
Daniel M. Murphy 
Anthony J. Nerone 
William A. Niemczyk 
Keith R. Nystrom 
Jacqueline E. Pasley 
Andre Perez 
Marvin Pestcoe 
Jill Petker 

Michael Petrocik 
Jennifer A. Poison 
Timothy P. Quinn 
Jeffrey C. Raguse 
Karin M. Rhoads 
A. Scott Romito 
Kevin D. Rosenstein 
Scott J. Roth 
Stuart G. Sadwin 
Melissa A. Salton 
Pierre A. Samson 
Edmund S. Scanlon 
Lisa Pouloit Schmidt 
Theodore R. Shalack 
Rial R. Simons 
Christopher lvl. Smerald 
Karen F. Steinberg 
Ting-Shih Teng 
Richard D. Thomas 
Mary L. Turner 
Melanie A. Turvill 
Christopher P. Walker 
Patrick M. Walton 
Monty J. Washburn 
Scott P. Weinstein 
L. Nicholas Weltmann, 

Jr. 
Leigh F. Wickenden 
Roger A. Wilk 

An address to new members was given by Steven Newman from 
835 a.m. to 8:45 a.m. 

Highlights of the program were presented by Richard Fein. 

A summary of call papers was given by David Oakden. 

A summary of new Proceedings papers was given by Martin Lewis. 
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Presentation was made of the Harold W. Schloss Memorial Schol- 
arship Fund to Robert J. Moser. 

The featured speaker, Dr. Leon Lederman, spoke from 9:30 a.m. to 
lo:30 a.m. 

A general session panel was held from 11:OO a.m. to 12:15 p.m. 
Introductions were made by Stephen Philbrick, Consulting Actuary, Til- 
linghast/Towers Perrin. The subject was “Understanding the New Sci- 
ence of Chaos.” Mr. Philbrick was the moderator and the panel consisted 
of David J. Grady, Vice President and Actuary, Prudential Reinsurance 
Company, and Dr. Leon Lederman. 

This was followed by a luncheon from 12: 15 to 1:45 p.m. 

The afternoon was devoted to concurrent sessions from I:45 p.m. to 
5:00 p.m. with a break from 3:1.5 to 3:30 p.m. 

The concurrent sessions consisted of the following topics: 

Long Range Planning Committee. 

“Evaluating the Effect of Reinsurance Contract Terms,” by James 
N. Stanard and Russell T. John. 

“An Exposure Rating Approach to Pricing Property Excess of Loss 
Reinsurance ,” by Stephen J. Ludwig. 

“Pricing the Catastrophe Exposure in Homeowners Ratemaking,” by 
David H. Hays. 

“An Actuarial Analysis of Servicing Carrier Profit Margins,” by Mark 
W. Littmann. 

“Implications of the Mandatory Elimination of a Rating Variable,” 
by Frank J. Karlinski, III. 

“Commutation Pricing in the Post Tax Reform Era,” by Vincent P. 
Connor and Richard A. Olsen. 

“Individual Risk Loss Development,” by Joseph P. Theisen. 

“Credibility for Treaty Reinsurance Excess Pricing,” by Isaac Mash- 
itz and Gary Patrik. 
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“The Challenge of Pricing Extended Warranties,” by Timothy L. 
Schilling. 

“On the Representation of Loss and Indemnity Distributions,” by 
Yoong-Sin Lee. 

“Sources of Distortion in Classification Ratemaking Data and Their 
Treatment,” by John A. Stenmark. 

“An Iterative Approach to Classification Analysis,” by Joyce Fish 
and Gary Patrik. 

“Property-Liability Insurance Pricing Models: An Empirical Evalu- 
ation ,” by Stephen P. D’ Arty and James R. Garven. 

“The Econometric Method of Mixed Estimation-An Application to 
the Credibility of Trend,” by Paul J. Brehm and Denis G. Guenthner. 

“Evaluating Workers Compensation Trends Using Data by Type of 
Disability,” by Allan Kaufman. 

“Commercial General Liability Ratemaking for Premises and Oper- 
ations,” by Nancy C. Graves and Richard Castillo. 

“Pricing the Impact of Adjustable Features and Loss Sharing Provi- 
sion of Excess-of-Loss Treaties,” by Robert Bear and Kenneth Nemlick. 

“Basic and Increased Limits Ratemaking: An Integrated Approach,” 
by D. Lee Barclay and Dick Marquardt. 

“On Pricing Multiple-Claimant Occurrences for Workers Compen- 
sation Per-Occurrence Excess of Loss Reinsurance Contracts,” by Gre- 
gory T. Graves. 

“Overlap Revisited-The Insurance Charge Reflecting Loss Limita- 
tion Procedure,” by Dr. I. Robbin. 

There was an officers’ reception from 5:00 p.m. to 6:00 p.m. for 
new Fellows and guests. 

There was a general reception from 690 p.m. to 7:00 p.m., which 
was followed by a special musical presentation, “Cut My Rate,” from 
790 p.m. to 8:30 p.m. 
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Tuesdaql, May 15, 1990 

Concurrent sessions were held from 8:30 a.m. to 10:00 a.m., cov- 
ering the following topics: 

“Parametrizing the Workers Compensation Experience Rating Plan,” 
by William R. Gillam. 

“Evaluating Workers Compensation Trends Using Data by Type of 
Disability,” by Allan Kaufman. 

“Commercial General Liability Ratemaking for Premises and Oper- 
ations,” by Nancy C. Graves and Richard Castillo. 

“An Exposure Rating Approach to Pricing Property Excess of Loss 
Reinsurance ,” by Stephen J. Ludwig. 

“Pricing the Catastrophe Exposure in Homeowners Ratemaking,” by 
David H. Hays. 

“An Actuarial Analysis of Servicing Carrier Profit Margins,” by Mark 
W. Littman. 

“Implications of the Mandatory Elimination of a Rating Variable,” 
by Frank J. Karlinski III. 

“Commutation Pricing in the Post Tax Reform Era,” by Vincent P. 
Connor and Richard A. Olsen. 

“Individual Risk Loss Development,” by Joseph P. Theisen. 

“Credibility for Treaty Reinsurance Excess Pricing,” by Isaac Mash- 
itz and Gary Patrik. 

“The Challenge of Pricing Extended Warranties,” by Timothy L. 
Schilling. 

A General Session, “Monitoring for Solvency” was held from lo:30 
a.m. to 12:OO noon, with Kevin M. Ryan, Consulting Actuary for 
Milliman & Robertson, Inc., as Moderator; and John B. Chesson. Ma- 
jority Counsel. Oversight and Investigations Subcommittee of the House 
Energy and Commerce Committee: William McCartney, Commissioner, 
Nebraska Insurance Department, Chairman, NAlC Financial Conditions 
(Ex4) Committee; and Walter J. Fitzgibbon, Jr., Vice President and 
Corporate Actuary, Aetna Life & Casualty, as panelists. 



5-I MINUTES 01: 1111: iYY() SPKINCv Ml.I~TING 

The afternoon was free. 

There was a Western Barbecue from 6:30 p.m. to 9:30 p.m. 

Wednesday, May 16, 1990 

Concurrent sessions were held from 8:30 a.m. to 1O:OO a.m., on the 
following topics: 

Discussion of “A Note on the Gap Between Target and Expected 
Underwriting Profit Margins,” by Sholom Feldblum. 

“Expense Allocation and Policyholder Persistency, Persistency and 
Profits,” by Sholom Feldblum. 

“Homeowners Insurance Pricing,” by Mark J. Homan. 

“Homeowners Ratemaking,” by Stacy J. Weinman. 

“Property-Liability Insurance Pricing Models: An Empirical Evalu- 
ation ,” by Stephen P. D’Arcy and James R. Garven. 

“The Econometric Method of Mixed Estimation-An Application to 
the Credibility of Trend,” by Paul J. Brehm and Denis G. Guenthner. 

“Sources of Distortion in Classification Ratemaking Data and Their 
Treatment,” by John A. Stenmark. 

“An Iterative Approach to Classification Analysis,” by Joyce Fish 
and Gary Patrik. 

“Pricing the Impact of Adjustable Features and Loss Sharing Provi- 
sions of Excess-of-Loss Treaties,” by Robert Bear and Kenneth Nemlick. 

“Basic and Increased Limits Ratemaking: An Integrated Approach,” 
by D. Lee Barclay and Dick Marquardt. 

“On Pricing Multiple-Claimant Occurrcnccs for Workers Compen- 
sation Per-Occurrence Excess of Loss Reinsurance Contracts,” by Greg- 
ory T. Graves. 

“Overlap Revisited-The Insurance Charge Reflecting Loss Limita- 
tion Procedure,” by Dr. I. Robbin. 
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The general session resumed at lo:30 a.m., with presentation of the 
Michelbacher Award to Joyce Fish for the call paper, “An Iterative 
Approach to Classification Analysis” by Cecily Gallagher, Joyce Fish, 
and Howard Monroe. A general session on the new “Course on Profes- 
sionalism” was given. Janet L. Fagan, Vice President and Senior Actu- 
ary, CIGNA Property and Casualty Group was the moderator. Gustave 
A. Krause, Consulting Actuary, Tillinghast/Towers Pet-tin and W. James 
MacGinnitie, Consulting Actuary, Tillinghast/Towers Perrin, were panel- 
ists. 

Closing remarks were given from 1 I:45 a.m. to 12:00 noon. 

May, 1990 Attendees 

In attendance, as indicated by the registration records, were 287 
Fellows. and 165 Associates. The list of their names follows: 

Terry Alfuth 
Mark Allaben 
Charlie Angel1 
Lee Barclay 
Bill Bartlett 
Irene Bass 
Edward Baum 
Bob Bear 
Al Beer 
Linda Bell 
Lenny Bellafiore 
Janice Berry 
Richard Beverage 
William Biegaj 
Richard Bill 
Terry Biscoglia 
Bonnie Boccitto 
Leroy Boison 
Parker Boone 
Joseph Boor 
Ronald Bornhuetter 

FELLOWS 

Francois Boulanger 
Wallis Boyd 
Scott Bradley 
John Bradshaw 
Jim Brannigan 
Malcolm Brathwaite 
Paul Brehm 
Dale Brooks 
Brian Brown 
Charles Bryan 
John Buchanan 
George Burger 
Claudette Cantin 
John Captain 
Ruy Cardoso 
Jeff Carlson 
Bill Carpenter 
Andrew Cartmell 
Sandy Cathcart 
David Chernick 
Diana Childs 

Greg Ciezadlo 
John Coffin 
Robert Conger 
Charles Cook 
Frank Corr 
Michael Covney 
Richard Cundy 
Jim Curley 
Kathleen Curt-an 
Ross Currie 
Bob Daino 
Steve D’Arcy 
Gary Dean 
Gary Demarlie 
Howard Dempster 
Bob Deutsch 
Scott Dodge 
Mark Doepke 
Michael Dolan 
Vin Donnelly 
Jim Dornfeld 
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Lester Dropkin 
Brian Duffy 
Paul Dyck 
Myron Dye 
Bruce Eat-waker 
Richard Easton 
Tom Ellefson 
Jeffery Englander 
David Engles 
Janet Ericson 
Glenn Evans 
Bob Eyers 
Doreen Faga 
Janet Fagan 
Bill Fanning 
Richard Fein 
Sholom Feldblum 
Mark Fiebrink 
Russell Fisher 
Wayne Fisher 
Walter Fitzgibbon 
Kirk Fleming 
Jim Foote 
Louise Francis 
Glenn Fresch 
Michael Fusco 
Cecily Gallagher 
Tom Gallagher 
Steven Gapp 
Chris Garand 
Bob Gardner 
Boob Giambo 
Robin Gillam 
Bryan Gillespie 
Greg Girard 
Spencer Cluck 
Daniel Goddard 

FELLOWS 

David Grady 
Tim Graham 
Patrick Grannan 
Gregory Graves 
Nancy Graves 
Ron Greco 
Ann Griffith 
Denis Guenthner 
Charlie Hachemeister 
Larry Haefner 
Dave Hafling 
Jim Hall 
Malcolm Handte 
Walter Haner 
Jeff Hanson 
All Hapke 
Dave Hartman 
David Hays 
Leroy Heer 
Agnes Heersink 
Paul Henzler 
John Herder 
Teresa Herderick 
Richard Hertling 
William Hibberd 
Jerry Hillhouse 
Mark Homan 
Ruth Howald 
Doug Hoylman 
Heidi Hutter 
Jim Inkrott 
Richard Jaeger 
Steve Jameson 
Jane Jasper 
Gerry Jerabek 
Dick Johc 
Russ John 

Marvin Johnson 
Wendy Johnson 
Thomas Johnston 
Alan Jones 
Bruce Jones 
John Joyce 
Roy Kallop 
Frank Karlinski 
Allan Kaufman 
Glenn Keatts 
Eric Keen 
Stan Khury 
Fred Kilboume 
Fred Kist 
Kyleen Knilans 
Lee Koch 
John Kollar 
Mikhael Koski 
Gary Koupf 
Israel Krakowski 
Gus Krause 
Rodney Kreps 
Andy Kudera 
Gaetane Lafontaine 
Michael Lamb 
Mike Lamonica 
Gary Larose 
Michael Larsen 
Steve Lehmann 
Winsome Leong 
Joseph Levin 
Martin Lewis 
Orin Linden 
Rich Lino 
Mark Littmann 
Roy Livingston 
Kevin Lonergan 
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Dennis Loper 
Robert Lowe 
Stephen Ludwig 
Aileen Lyle 
Jim MacGinnitie 
Howard Mahler 
Steve Makgill 
Joe Marker 
Paul Martin 
Isaac Mashitz 
Bob Matthews 
Chuck McClenahan 
Betsy McCoy 
Gary McDonald 
Dennis Mealy 
Glenn Meyers 
Dave Miller 
Mary Frances Miller 
Philip Miller 
Susan Miller 
William Miller 
Neil Miner 
William Morgan 
Jay Morrow 
John Muetterties 
Donna Munt 
John Murad 
Thomas Murrin 
Jim Muza 
Thomas Myers 
Kenneth Nemlick 
Rick Newell 
Patrick Newlin 
Steve Newman 
Gary Nickerson 
Jim Nikstad 
Charlie Niles, Jr. 
Dave Oakden 

FELLOWS 

Dick Pagnozzi 
Robert Palm 
Gary Patrik 
Marc Pearl 
Bruce Petersen 
Chuck Petit 
Steven Petlick 
Roberta Pflum 
Steve Philbrick 
Emanuel Pinto 
Jeff Post 
Phil Presley 
Virginia Prevosto 
Richard Quintano 
Andre Racine 
Christine Radau 
Kurt Reichle 
Dan Reppert 
Deborah Rosenberg 
Gail Ross 
Richard Roth, Jr. 
Kevin Ryan 
Robert Sanders 
Donald Sandman 
Jerry Scheibl 
Jeffrey Scheuing 
Tim Schilling 
Neal Schmidt 
David Scholl 
Roger Schultz 
Joseph Schumi 
Debbie Schwab 
Joy Schwartzman 
Kim Scott 
Rick Sherman 
Roy Shrum 
Peter Siczewicz 
Jerry Siewert 

Mel Silver 
Leroy Simon 
David Skumick 
John Slusarski 
Clinton Sornberger 
Joanne Spaila 
Dan Splitt 
Elisabeth Stadler 
Jim Stanard 
Lee Steeneck 
Walt Stewart 
Emil Strug 
Stuart Suchoff 
Bob Tatge 
Jane Taylor 
Kathleen Terrill 
Mike Toothman 
Frank Tresco 
Michel Trudeau 
Lee Van Slyke 
Jerry Visintine 
Bill Von Seggem 
Glenn Walker 
Mike Walsh 
Mavis Walters 
Mike Walters 
Stacy Weinman 
David Westerholm 
Jonathan White 
Robin Williams 
Richard Woll 
Roy Woomer 
Paul Wulterkens 
Jim Young 
James Yow 
Richard Zatorski 
John Zicarelli 
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Jean-Luc Allard 
Jim Andler 
Bernie Battaglin 
Greg Beaulieu 
Karin Beaulieu 
Douglas Beck 
Allan Becker 
Gavin Blair 
Jean-Francois Blais 
Robert Blanc0 
Jack Brahmer 
Patrick Bums 
Rick Campbell 
Christopher Carlson 
Martin Cauchon 
Mike Caulfield 
Scott Charbonneau 
David Clark 
Don Closter 
Jean Cloutier 
Michael Coca 
Vin Connor 
Charles Cossette 
Jean Cote 
Dan Crifo 
Robert Curry 
Daniel Czabaj 
Rod Davis 
Jeffrey Deigl 
Davis Doe 
Frank Douglas 
Bob Effinger, Jr. 
John Ellingrod 
Catherine Eska 
Phil Evensen 
Debbie Finnerty 
Bill Fitzpatrick 

ASSOCIATES 

Kerry Fitzpatrick 
Ross Fonticella 
France Fortin 
Barry Franklin 
Mary Gaillard 
Scott Galiardo 
Felix Gerard 
Scott Gerlach 
Terry Goldberg 
Linda Goss 
Sue Gozzo 
Edward Grab 
Gray Granoff 
Carleton Grose 
Marian Gross 
Michele Gust 
Ewa Gutman 
Aaron Halpert 
Tom Hayes 
Philip Heckman 
Joe Herbers 
Kathleen Hinds 
Alan Hines 
Brian Hughes 
Joanne Ikeda 
Bob Jaso 
James Jensen 
Dan Johnston 
Terry Jones 
Jim Jonske 
Ed Jovinelly 
Kevin Kelley 
Marty Kelly 
Allan Kerin 
James Kleinbcrg 
George Klingman 
Tim Kolojay 

Ronald Kozlowski 
Ken Krissinger 
David Lacefield 
Claude Lafrenaye 
David Lalonde 
William Leiner 
Jean-Marc Leveille 
George Levine 
Andre Loisel 
Dave Macesic 
Brett MacKinnon 
Brian MacMahon 
Laura Manley 
R Marks-Samuelson 
Liam McFarlane 
Robert Meyer 
Madan Mittal 
Rich Moncher 
Andrew Moody 
Kelly Moore 
Kevin Moynihan 
Daniel Murphy 
Rade Musulin 
John Nelson 
Bill Niemczyk 
Chris Nyce 
Keith Nystrom 
Dale Ogden 
Bruce Ollodart 
Tim Paddock 
Jaci Pasley 
Andre Perez 
Jill Petker 
Michael Petrocik 
Jen Polson 
Debbie Price 
Ron Pridgeon 
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Jeff Raguse 
Karin Rhoads 
James Rice 
Rich Robinson 
Scott Romito 
Kevin Rosenstein 
Scott Roth 
George Rudduck 
Stu Sadwin 
Melissa Salton 
Pierre Samson 
Michael Sansevero 
Sandra Santomenno 
Edmund Scanlon 
V Schmid-Sadwin 
Jeffrey Schmidt 
Lisa Schmidt 
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ASSOCIATES 

Michael Scruggs 
Margaret Seiter 
Theodore Shalack 
Arlyn Shapiro 
Rial Simons 
Chris Smerald 
Barbara Stahley 
Edward Stance 
Karen Steinberg 
John Stenmark 
Craig Taylor 
Glenn Taylor 
Karen Terry 
Joe Theisen 
Richard Thomas 
Ben Tucker 
Marcie Turner 
Melanie Turvill 

Rob Waldman 
Christopher Walker 
David Walker 
Patrick Walton 
Monty Washburn 
Nancy Watkins 
Scott Weinstein 
Nick Weltmann 
Russell Wenitsky 
Debra Werland 
Leigh Wickenden 
Peter Wildman 
Roger Wilk 
Brad Williams 
William Wilson 
Rich Yocius 
Heather Yow 
Ron Zaleski 
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PRICING THE IMPACT OF ADJUSTABLE FEATURES AND LOSS 
SHARING PROVISIONS OF REINSURANCE TREATIES 

ROBERT A. BEAR 

KENNETH J. NEMLICK 

Abstract 

Excess-oj7o.s.s reinsurance contracts ofien contain loss 
sharing pro\i.sion.s, such us aggregate deductibles, loss rutio 
caps or limited rein.statement.5, and loss corridor proIi.si0n.s. 
They also Ji-equently contain adjustable premiw~l or commis- 
sion features, such as retrospecti\?e rating plans, projit com- 
mission plans, and sliding scale commis.sion plans. Pro ratu 
treaties frequently contain adjustable commission frutures. 

This paper presents an o\*ervierr, of tww approaches to 
pricing aggregate loss di.stribution problems: the lognormal 
model and the Heckman-Meyers Collectit’e Risk Model. Ap- 
plicutions to reinsurance pricing are then presented. Finally, 
the paper c,ompures results oj clpplying thest approaches to 
repre.sentutil*e working exc~ess-of-loss treaties. 

These comparison.s suggest that the lognormal model can 
provide satisjactoq apprauimations to the theoretically more 
appropriate Collective Risk Model krlhen use of the latter more 
sophisticated procedure is not necessary due either to data 
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limitations or to the i@uence of market conditions and ne- 
gotiations. The increased efJiciency of the lognormal model 
can lead to greater accuracy by making judgmental estimates 
unnecessary in many situations. 

The basic kognormai model is generally applicable to pro 
rata treaties and working excess-of-loss treaties. A mi,vture of 
lognormul and discrete distributions is presented that may be 
applicable in many low mean frequency situations. Cash pow 
modelling is also discussed. 

1. INTRODUCTION 

Working excess-of-loss reinsurance contracts, where significant loss 
frequency is expected, often contain nonproportional coinsurance 
clauses. These involve provisions where the ceding company is to pay 
a nonproportional share of losses without receiving a commensurate share 
of the reinsurance premium. Such clauses include aggregate deductibles, 
aggregate limits such as loss ratio caps or limited reinstatements, and 
loss corridor provisions. Quite frequently in the broker market, and less 
frequently in the direct market, working excess-of-loss treaties contain 
adjustable premium or commission features. These adjustable features 
include retrospective rating plans, profit commission or profit sharing 
plans, and sliding scale commission plans. A relatively small number of 
excess-of-loss treaties contain both adjustable premium or commission 
features and nonproportional coinsurance clauses. Pro rata treaties also 
frequently contain adjustable commission features. 

This paper will first present an overview of two approaches to pricing 
aggregate loss distribution problems: the lognormal model and the Heck- 
man-Meyers Collective Risk Model. Six examples are then presented of 
how aggregate loss distributions are used in reinsurance pricing. Results 
of applying these two aggregate loss distribution approaches are com- 
pared. Finally, several enhancements of the basic model are discussed. 
The focus in the paper is on concepts, with technical details and proofs 
presented in the appendices. Appendices summarize important excess- 
of-loss pricing methodologies and provide an expanded lognormal table. 
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The list of references presented at the end of the paper contains several 
sources for those wishing to delve into reinsurance and excess pricing 
concepts in greater depth. 

The authors’ overall purpose is to determine if the lognormal model 
provides a suitable approximation for reinsurance price monitoring pur- 
poses and for pricing situations where limited information is available 
or a highly precise answer is not required. If the lognormal model 
provides a satisfactory approximation to the Collective Risk Model re- 
sults, significant efficiency gains are achievable. A more sophisticated 
three-parameter alternative to the lognormal is not tested. The reason for 
this is that the Collective Risk Model or an equivalent approach would 
be employed if the data and other resources would permit a more so- 
phisticated approach. 

2. AGGREGATE LOSS DISTRIBUTIONS 

In order to price the impact of adjustable features and nonproportional 
coinsurance clauses, it is necessary to estimate the aggregate loss distri- 
bution. Two methods of estimating this distribution are employed: 

(a) The Lognormal Model 
If the aggregate loss random variable is viewed as the product of 
a large number of independent, identically distributed random 
variables, then the logarithm is approximately normally distrib- 
uted by the Central Limit Theorem. (The stringent condition that 
the factors be identically distributed may be relaxed [I].) By 
definition, the aggregate loss random variable is lognormally 
distributed. In Appendix A, standard formulas based on the 
Patrik-John Collective Risk Model are employed to estimate the 
aggregate mean and coefficient of variation from the assumed 
frequency and severity distributions 123. An expanded lognormal 
table with excess pure premium ratios for coefficients of variation 
between 0.1 and 5 was programmed based on the formulas in 
Mr. Finger’s paper “Estimating Pure Premiums by Layer” [3]. 
Mr. Finger developed the lognormal model for severity applica- 
tions, although it is being tested here as an aggregate loss model. 
Appendix B summarizes the lognormal model and presents the 
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expanded lognormal table. Parameter uncertainty can be mod- 
elled by subjectively weighting indications based on alternative 
parameter values. (The subjective weights reflect degrees of be- 
lief in alternative scenarios, each of which yields a mean and a 
coefficient of variation of a particular lognormal model.) 

(b) The Collective Risk Model 
This model involves the estimation of parameters for the fre- 
quency and severity distributions, along with the judgmental 
selection of parameters to reflect the degree of uncertainty in the 
estimated frequency and severity means. If the shape of these 
distributions is also uncertain, one could assign subjective prob- 
abilities reflecting degrees of belief to several scenarios and com- 
pute a weighted average of the resulting cumulative probabilities 
and excess pure premium ratios. These quantities are computed 
using the Heckman-Meyers algorithm [4], which uses piecewise 
linear approximations of the cumulative severity distributions 
together with the assumed frequency distributions to generate the 
characteristic functions of the severity and aggregate loss distri- 
butions. As the characteristic function uniquely determines a 
probability distribution, numerical methods are employed to eval- 
uate the rather complicated formulas that accomplish this inverse 
transformation, yielding the aggregate loss cumulative probability 
distribution function and excess pure premium ratios needed to 
price the reinsurance conditions that are the focus of this paper. 
Technical details are summarized in Appendix C. 

Appendix D shows that if the ground-up occurrence count distribution 
for an insured selected at random is negative binomial, then the excess 
occurrence count distribution for a randomly selected insured is also 
negative binomial. Based on this result, the formula is derived for 
calculating the excess occurrence count variance-to-mean ratio for an 
individual insured selected at random, and it is shown that this formula 
also applies to the class as a whole. This latter result is then used to 
demonstrate that, if the proportion of occurrences exceeding the retention 
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is small and the excess frequency mean is known, then the excess 
occurrence count distribution for the class as a whole is approximately 
Poisson. ’ 

In particular. it is established that 

VMRI- = (1 - p) + p(VMRc;), 

where VMR(; and VMRk are the variance-to-mean ratios for the ground- 
up and excess occurrence count distributions, respectively, and where p 
is the probability that a claim will exceed the retention. If VMR(; is two 
or three (as in the IS0 increased limits reviews), and 17 (a value that may 
also be calculated via IS0 increased limits parameters) is less than .02, 
then VMRr, is close to unity. This implies that the excess occurrence 
count distribution for an insured selected at random and for the class as 
a whole will be approximately Poisson under conditions of parameter 
certainty. In the Collective Risk Model, uncertainty in the mean fre- 
quencies for the various classes of business is reflected through selection 
of the contagion parameters. This results in negative binomial frequency 
distributions for the classes under consideration. 

The Single Parameter Pareto (SPP) distribution is used to model 
occurrence severity. Mr. Philbrick’s paper “A Practical Guide to the 
Single Parameter Pareto Distribution” and the discussion by Messrs. 
Reichle and Yonkunas [6] provide an excellent discussion of this distri- 
bution, which is widely used in excess pricing. Ms. Rytgaard recently 
presented a paper [7] that compares alternative estimates of the SPP 
parameter and applies credibility theory to obtain more stable estimators 
of this parameter for portfolios of excess-of-loss treaties with similar 
characteristics. Appendix E summarizes some of the key properties of 
the SPP distribution. In particular, it is shown that if ground-up loss 
occurrences in excess of a particular truncation point are distributed 
according to the SPP distribution with parameter q, then the excess 
portions of these occurrences are distributed according to the shifted 
Pareto distribution (used by Insurance Services Office in increased limits 

’ The proof given in Appendix 0 is a direct apphcatmn ot the (&mma-Poisson model frequently 
encountered in the actuarial literature. The authors auknowlcdpc that these resulls have prevtously 
been established elsewphere. and note that Joseph Schumi ha\ e\tahlixhed thrw re$ulth using recursive 
relationships 151. 
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pricing), where the scale parameter is equal to the truncation point and 
the shape parameter is equal to q. In the Collective Risk Model, uncer- 
tainty in the mean severities is reflected through the selection of the 
mixing parameter. 

Theoretically, if the SPP is appropriate for loss occurrences in excess 
of a particular attachment, it should be appropriate above all higher 
attachments, and the parameter should remain constant. Fits to industry 
data have led the authors to conclude that the SPP parameter varies with 
the truncation point used in the fitting procedure. Moreover, if the 
truncation point used in the fitting procedure is less than 50% of the 
attachment for a particular pricing analysis, the errors become unac- 
ceptably large. In order to calculate these parameters, development tri- 
angles of SPP parameter estimates for various truncation points were 
constructed, from which projections were made of the ultimate values 
of this parameter by class of business and truncation point. In the 
examples discussed in this paper, the class of business is not identified, 
because the intent is only to discuss actuarial methodology. Although 
alternative two- and three-parameter distributions should be tested when 
data permits, the SPP distribution with these qualifications can be a 
satisfactory severity model for reinsurance price monitoring work and in 
pricing situations where limited information is available. 

3. EXAMPI,ES OF TREATIES WITH ADJUSTABLE FEATURES AND LOSS 

SHARING PROVISIONS 

This section discusses the pricing of excess-of-loss treaties containing 
common types of nonproportional coinsurance clauses and adjustable 
premium or commission plans. This is accomplished through the ex- 
amination of six hypothetical treaties, the key provisions of which are 
summarized at the start of Appendices F through K, respectively. The 
analysis of each example involves two major steps. First, various param- 
eters (such as the expected claim count, mean severity, and aggregate 
coefficient of variation) which underlie the distribution of losses in the 
reinsured layer are calculated. This allows one to obtain an appropriate 
set of excess pure premium ratios, either by reference to an appropriate 
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lognormal table (via coefficient of variation matching) or by direct gen- 
eration via the Heckman-Meyers Collective Risk Model. The second 
step involves the use of the set of excess pure premium ratios derived 
in the first step in order to determine the expected impact of the particular 
nonproportional coinsurance clause or ad.justablc feature being evaluated. 
For the sake of clarity, excess pure premium ratios (which are called 
insurance charges in the examples) based on the lognormal assumption 
are initially used to analyze the six treaty examples. In Section 4, a 
comparison is made to the results obtained when excess pure premium 
ratios generated by direct applications of the C’ollcctive Risk Model are 
employed. 

Aggregute Deductible E.rumple 

Treaty 1 is an example of a contract containing an annual aggregate 
deductible provision. The calculation of the treaty’s aggregate loss coef- 
ficient of variation (CV), which is displayed on Appendix F Exhibit 1, 
is based on the theory and formulas presented in the second section of 
this paper as well as in Appendices A through E. The computation of 
the impact of the aggregate deductible is shown in Appendix F Exhibit 
2. The deductible amount is compared to the expected losses in the 
reinsured layer in order to obtain a corresponding entry ratio, which 
allows one to look up the appropriate insurance charge from the lognor- 
ma1 tables in Appendix B. (Linear interpolation is used lo calculate 
excess pure premium ratios for CV and entry ratio combinations not 
explicitly listed in these tables.) Since the insurance charge (29.33% in 
this case) represents the expected proportion of aggregate losses above 
the deductible amount, it is easy to see that the complement of this value 
(70.67%) is the expected percentage of treaty losses eliminated by the 
aggregate deductible. Thus, if a burning cost or similar study shows that 
the expected loss cost for the entire layer is 3.75% of subject premium, 
then the introduction of an aggregate deductible provision reduces this 
loss cost to 3.75% X [loo% - 70.67%], or about I. 10% of subject 
premium. As shown in Appendix F, this loss cost can easily be converted 
to an indicated treaty rate through the application of an appropriate 
expense, profit, and risk loading factor. It should be noted that the factor 
selected for this purpose should include a provision for risk commen- 
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surate with the degree of variability in layer losses after application of 
the deductible. The degree of variability in this case, and hence the risk 
load, is higher than that for losses prior to the reflection of this provision. 

Aggregate Limit Example 

Treaty II contains a limited reinstatement clause. The contract allows 
three free reinstatements of coverage during the treaty year, which means 
that the ceding company is covered for losses in the specified layer until 
those losses exceed four times the width of that layer. After that point, 
no coverage is provided. (This type of reinstatement clause should be 
contrasted with the kind that reinstates coverage after a certain number 
of losses have occurred only if an additional premium is paid. This latter 
type is really a separate cover, rather than a form of coinsurance on the 
original treaty.) 

The pricing of this treaty is summarized in Appendix G. As was 
done in the previous example, an entry ratio is calculated by dividing 
the dollar value of the limited reinstatement provision ($2,800,000 in 
this case) by the expected losses in the layer prior to all forms of 
coinsurance. The insurance charge corresponding to this entry ratio 
(2.37% in this example) is equivalent to the expected percentage of 
losses eliminated by the limited reinstatement clause. Combining this 
quantity with the treaty’s 20% proportional coinsurance provision yields 
a 2 1.89% overall coinsurance percentage. This latter coinsurance per- 
centage is then applied to the expected layer loss cost prior to all 
coinsurance in order to obtain an expected loss cost and an indicated 
rate for the treaty. As in the previous example, the loading to convert 
the expected loss cost to a rate includes a provision for risk that reflects 
the potential volatility in treaty losses after the Limited reinstatement is 
taken into account. Note that this risk provision should be somewhat 
lower than that for a similar treaty with no limited reinstatement clause. 
This is due to the fact that limited reinstatements, along with most other 
kinds of mechanisms that place a cap on losses, tend to reduce loss 
variability. 
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Loss Corridor E.wnplr 

Treaty 111 is an example containing a loss corridor provision. Under 
a loss corridor provision, the reinsurer pays all losses falling in the 
reinsured layer up to a certain aggregate amount (called the lower bound 
of the loss corridor interval). Once this amount is reached, the reinsurer 
stops paying all losses until the total losses in the layer exceed a second 
threshold amount (the upper bound of the loss corridor interval). After 
this, the reinsurer resumes payment for all losses in the reinsured layer. 
The bounds of the loss corridor interval may he expressed in terms of 
dollar amounts, percentages of expected layer losses. or ratios to treaty 
premium. 

In the example presented in Appendix H, the loss corridor bounds 
are stated as percentages of expected losses in the layer. This makes the 
analysis extremely straightforward, since these percentages are directly 
equivalent to the corresponding entry ratios. The difference between the 
insurance charges at the lower and upper bounds, respectively, results 
in the expected percentage of layer losses eliminated by the loss corridor 
provision. The computation of the expected layer loss cost after coin- 
surance and the indicated treaty rate is analogous to the calculations 
presented in the tirst two examples. Unlike the previous examples, 
however. there is no definite rule concerning the proper risk load to be 
included in the factor used to convert the loss cost into a rate. This is 
due to the fact that the loss corridor provision may either reduce or 
increase the variability of layer losses, depending on both the location 
and the size of the eliminated loss interval. 

While the simplicity of the loss corridor analysis is not altered very 
much when the interval bounds are expressed in terms of dollars, the 
analysis does get complicated when the bounds are stated as ratios to 
treaty premium. This is due to the fact that the treaty premium is 
dependent on the treaty rate, which should already reflect the effect of 
the loss corridor. It is clear that the solution to this problem requires an 
iterative procedure in which the algorithm presented in Appendix H is 
repeated until the rate used to compute the loss corridor bounds (ex- 
pressed as percentages of expected losses) cyuals the rate indication for 
the treaty with the loss corridor provision. 
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Having covered three common types of nonproportional loss sharing 
plans, the remainder of this section will discuss the analysis of accounts 
containing adjustable premium or commission plans. 

Retrospective Rating Plan Example 

Treaty IV is an example of an account with a one-year retrospective 
rating plan. Similar to the plans encountered in primary insurance, the 
adjusted treaty rate (and hence the adjusted premium) is based on the 
account’s actual loss experience during the period subject to the plan. 
This rate is determined by loading the ratio of the treaty’s actual losses 
to subject premium by a multiplicative loss conversion factor and/or an 
additive flat margin. The computed rate is further subject to a maximum 
and a minimum as specified in the treaty. (The loss conversion factor or 
flat margin accounts for the reinsurer’s expenses, risk, and profit, and 
may also contain some provision, subjective or otherwise, to reflect the 
effect of the plan’s maximum and minimum rates.) The main goal of 
this analysis is to determine the expected rate to be received on this 
treaty after all retrospective adjustments have been completed. This will 
enable one to assess the adequacy of the retro plan. 

The calculation of the expected treaty rate for this example is outlined 
in Appendix I. As in the analysis of primary plans, the major step in 
this calculation is the determination of the true effect of the retro plan’s 
maximum and minimum rates on the expected layer loss cost to be 
charged to the reinsured (which may differ from any subjective estimates 
of this effect included in the plan’s loss loading factors). This is accom- 
plished by dividing the loss costs that are consistent with the maximum 
and minimum rates, respectively, by the expected layer loss cost, in 
order to obtain entry ratios at these two points. These entry ratios enable 
one to look up the associated excess pure premium ratios, so that the 
insurance charge at the maximum and the insurance savings at the 
minimum may be computed. The difference between these latter two 
quantities is the net insurance charge. Applying the complement of the 
net insurance charge to the expected layer cost yields the adjusted ex- 
pected layer cost, which is the loss expected to be charged to the 
reinsured. This latter quantity is loaded with the retro plan’s loss con- 
version factor and any flat margin in order to obtain the expected treaty 
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rate after retro adjustments. Note that the net insurance charge in this 
example is negative, indicating that the premium the reinsurer expects 
to lose because of the maximum rate provision is more than offset by 
the additional premium expected to be received due to the minimum 
provision. 

The degree of adequacy of the retro plan can be measured by cal- 
culating the ratio of the guaranteed cost rate (which is the equivalent 
treaty rate if the contract were flat rated) to the expected treaty rate after 
retro adjustments. (To be comparable, the guaranteed cost rate contains 
the same amount of risk load as that contained in the retro plan parameters 
but with any insurance charge removed.) As shown on the bottom of the 
Appendix I Exhibit, the resulting ratio of 0.996 indicates a very slight 
redundancy in the retro plan. 

Profit Sharing Exuinpk 

Treaty V contains a three-year prom commission plan, in which the 
profit commission ratio (to treaty premium) is computed via the following 
formula: 

Profit Commission Ratio = 
25% X 1 100% -- (Actual 3-Year Treaty Loss Ratio) 

- (20% Reinsurer’s Overhead Provision)]. 

Note that the same formula could be used to compute a profit sharing 
adjustment that is treated as return premium. 

On the surface, the calculation of the expected profit commission 
ratio for the three-year period ( I/l/90- I213 I192 in this case) may seem 
trivial (i.e., simply plug the three-year expected loss ratio into the 
formula). It is really not, however, since a three-year loss ratio above 
80% (the breakeven point) is implicitly capped at 80% to yield a 0% 
profit commission for the period. Hence, one rnust determine the effect 
of this capping on the expected loss ratio used in the profit sharing 
formula in order to estimate the expected commission. As in the previous 
examples, this involves the use of excess pure premium ratios for a 
lognormal distribution with an appropriate CV. 
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Appendix J Exhibit 1 displays the calculation of the CV for the 
distribution of one year’s worth of aggregate losses in the reinsured 
layer. Since this is a three-year profit commission plan, the CV appro- 
priate for aggregate treaty losses for three years combined needs to be 
determined. This is accomplished on Appendix J Exhibit 2, using the 
formulas discussed in the second section of the paper and in the related 
appendices. In reviewing this exhibit, it should be assumed that the 
subject premium and expected layer cost given for 1990 are values based 
on ceding company projections and rating analyses, respectively. The 
numbers shown for 1991 and 1992 are simply copied from 1990, since 
the information needed to make independent projections for these years 
is not presently available. 

The calculation of the expected profit commission is shown on Ap- 
pendix J Exhibits 3A and 3B. The expected treaty loss ratio of 48% is 
computed by reducing the expected loss cost for the entire layer by the 
20% proportional coinsurance provision and then dividing the result by 
the treaty rate. By relating the 80% breakeven loss ratio to the expected 
loss ratio, an entry ratio is obtained from which the corresponding net 
insurance charge (ML’) is determined. Since the net insurance charge 
represents the percentage of expected losses eliminated from the profit 
commission formula by the implicit cap at the breakeven loss ratio, the 
expected profit commission ratio can be calculated via the following 
formula: 

Expected Profit Commission Ratio = 

P X [lOO% - ELR X (100% - MC) - EXP], 

where P = The proportion of profits to be paid to the reinsured; 
ELR = Expected treaty loss ratio; 
MC = Net insurance charge; 
EXP = Reinsurer’s overhead provision. 

In the Appendix J exhibits, the expected profit commission based on 
the formula above is called the “actuarial view,” while that obtained by 
simply plugging the expected loss ratio into the profit commission for- 
mula is labelled the “simplistic view.” Based on these definitions, it is 
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clear that the expected profit commission based on the actuarial view 
should generally exceed that based on the simplistic view, as it does in 
this example. 

Sliding Scale Commission Ex-cunple 

Treaty VI contains another kind of adjustable commission provision 
known as a sliding scale plan. Like the profit commission in the previous 
example, the commission that is ultimately paid by this plan depends 
directly on the reinsured’s actual experience as measured by the treaty 
loss ratio. The major difference between these two plans lies in the 
structure of the formula used to compute the adjustable commission. 
Whereas the profit commission formula is essentially a straight linear 
function of the treaty loss ratio (at least up to the brcakeven point), the 
typical sliding scale plan is best described as a piecewise linear function 
of the loss ratio. 

Under a typical sliding scale plan, a minimum commission ratio Cfi>in 
is paid if the treaty loss ratio exceeds a certain fixed valut: (call it L,). 
If the actual loss ratio is less than L, but greater than a second fixed 
value L2, h2 points of commission are added to C,,, for each point by 
which the actual loss ratio falls short of L,. Similarly. if the actual loss 
ratio is below Lz but greater than some third value L3. the commission 
ratio corresponding to L1 is increased by hr points for each point of 
difference between LZ and the actual treaty loss ratio. The commissions 
corresponding to actual loss ratios falling into successively lower inter- 
vals (i.e.. [L,, L,- ,I, where i = 4,. ,n) arc calculated in a manner 
similar to those for loss ratios falling in the previous two intervals. A 
maximum commission C,,,,, is paid when the loss ratio is zero. It should 
be noted that the b,‘s, which represent the commission slides on the 
various intervals, are generally less than unity, and some may be equal 
to zero. The sliding scale plan for Treaty VI (see the bottom of Appendix 
Ii Exhibit 1) is expressed in the format described above. 

Since the typical sliding scale plan involves both a minimum and 
maximum commission as well as different commission slide percentages 
for the various loss ratio intervals, it is clear that the calculation of the 
expected commission ratio under such a plan requires more than simply 
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looking up the commission that corresponds to the expected loss ratio. 
Appendix L outlines the derivation of a concise formula for computing 
this expected commission, which can be expressed as follows: 

Expected Sliding Scale Commission Ratio = 

ClllilX - i$i hi {Expected loss ratio points in the interval Li to L;- I}, 

where: C,,, is the maximum commission ratio; 
b; is the commission slide on the ith loss ratio interval 
(h, is defined to be 0 and Lo is infinity); 

and Expected loss ratio points in the interval [L;, Li-11 
= (Expected loss ratio) X [Pz(Li) - P&-l)]. 
(P2(L) is the excess pure premium ratio at loss ratio L.) 

Appendix L also shows that the above formula is equivalent to saying 
that the expected commission ratio equals the maximum commission 
ratio minus the expected points of commission lost over the entire range 
of possible loss ratios. This interpretation provides a good intuitive 
justification for the formula stated above. 

The above formula is used to calculate the expected commission ratio 
for the one-year plan given in Treaty VI, the details of which are provided 
in the Appendix K exhibit. As this exhibit shows, in order to determine 
the expected number of loss ratio points falling in each interval specified 
in the plan, it is necessary to multiply the treaty expected loss ratio by 
the difference between the insurance charges corresponding to both end 
points of the interval. 

On the bottom of the Appendix K exhibit the expected sliding scale 
commission based on the above formula (the “actuarial view”) is com- 
pared to the commission that corresponds to the expected loss ratio (the 
“simplistic view”). Although the actuarial estimate of the expected com- 
mission exceeds the simplistic estimate in this example, this is not a 
general rule. Both the magnitude and the direction of the difference 
between these two quantities depend on the minimum and maximum 
commission ratios as well as on the commission slides on the various 
loss ratio intervals. 



74 PRICING REINSURANCt I RtATIES 

4. MODEL COMPARISONS 

For the examples presented above. Table 1 compares the key item of 
interest (either the adjusted rate or expected commissions) under the 
alternative models. The unadjusted rate is the loaded loss cost before all 
forms of coinsurance using the same expense and profit loading factor 
as that used to compute the adjusted rate. (In practice, the loadings for 
a treaty without coinsurance provisions or premium adjustments would 
generally not be considered appropriate for a treaty with such provisions.) 

The alternative indications for the Heckman-Meyers version of the 
Collective Risk Model reflect varying levels of parameter uncertainty. 
The contagion parameter is represented by c and represents the level of 
parameter uncertainty in the estimated frequency mean. The mixing 
parameter is represented by b and represents the level of parameter 
uncertainty in the estimated severity mean. 

Values of zero represent no parameter uncertainty, values of .05 
represent a moderate level of parameter uncertainty, while values of . 10 
represent a higher level of parameter uncertainty. Please refer to Appen- 
dix C for further technical details. The lognormal model was run under 
the same assumptions that were used to generate the Collective Risk 
Model results without parameter uncertainty. Parameter uncertainty was 
not reflected here for the lognormal model (as it should be in practice 
using the methods presented in Appendices A and B) in an effort to 
simplify the presentation. 

The comparisons above suggest that the lognormal model provides a 
satisfactory approximation to the theoretically more appropriate Collec- 
tive Risk Model results, when use of the latter more sophisticated pro- 
cedure is not necessary due either to data limitations or to the influence 
of market conditions and negotiations on final pricing. Application of 
the lognormal model can lead to significant efficiency gains in reinsur- 
ante price monitoring work and in many pricing situations. because it 
can easily be programmed in spreadsheets and applied efficiently by 
those with good quantitative skills. The increased efficiency achieved by 



Example 
Unadjusted Item Lognormal 

Rate Compared Model 

I) Aggregate 
Deductible 

Adjusted Rate 

II) Limited 
Reinstatement 

Adjusted Rate 

III) Loss 
Corridor 

Adjusted Rate 

IV) Retro 
Rating 
Plan 

5.00% 

25.00 

5.00 

5.00 Expected Rate 
After Retro 
Adjustments 

V) Profit 
Commission 

Expected Profit 
Commission 

VI) Sliding Scale Expected Sliding 
Commission Scale Commission 

TABLE I 

COMPARISON OF KEY ITEMS 

Collective Risk Model 

1.47% 

19.53 

4.02 

5.02 

8.37 

31.04 

c=o 
h=O 

1.58% 

19.89 

3.67 

5.20 

8.24 

30.31 

c = .05 c = .05 c = .lO 
b = .05 h = .lO b= .lO 

1.68% 

19.72 

3.71 

5.18 

8.50 

30.90 

1.73% 

19.55 

3.74 

5.14 

8.69 

31.22 

1.77% 

19.52 

3.73 

5.14 

8.75 

31.33 
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this model permits one to apply it much more frequently than more 
theoretically appropriate methods. Use of a satisfactory quantitative 
method is usually superior to judgment. 

5. MODEL ENHANCEMENTS 

The six treaty examples discussed in this paper illustrate methods for 
pricing common types of nonproportional coinsurance and adjustable 
features provisions in reinsurance contracts. Although the examples 
themselves were kept reasonably simple to allow the reader to focus on 
the basic pricing techniques, the authors recognize that a number of 
enhancements can be made to the models in order to make them more 
applicable to specific situations. Unless otherwise stated. the following 
potential enhancements apply to both the lognormal and Collective Risk 
Model approaches. 

I . LaFer Retention cud Limits 

All the multiline contracts presented in the paper assume that the 
same layer retention and limit apply to all the classes of business covered 
by the treaty. In practice, however, some excess-of-loss contracts have 
retentions and/or limits that vary by line of business (e.g., auto liability 
losses may be subject to a $200,000 per occurrence retention, while 
workers compensation losses have a $300,000 retention). In these situ- 
ations, the excess claim severity mean and standard deviation would be 
calculated for each class of business based on the retention and limit 
applicable to that class. (The formulas given in Appendix E would be 
used if a Single Parameter Pareto severity distribution is assumed). 
Similarly, the expected number of claims in the layer and the excess 
frequency variance-to-mean ratio would be calculated for each class 
based on the applicable retention. Once these quantities are computed, 
the calculation of the aggregate loss distribution for all classes combined 
would follow the same sequence of steps as if the contract had a single 
retention and limit applicable to all lines. 

A similar procedure could be employed to derive the aggregate loss 
distribution for a multi-year rating block on an adjustable features con- 
tract, if the covered layer of reinsurance varies between the years com- 
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prising the block. The method can even be used to reflect underlying 
primary policy limits. In this case, one would treat each group of insureds 
purchasing the same policy limit above the layer retention as a separate 
class of business. The layer limit applicable to each class would be the 
lesser of the primary policy limit and the reinsurance gross limit (i.e., 
the retention amount plus the width of the layer). This layer limit, 
together with the layer retention, would then be used to calculate the 
expected layer loss cost, as well as the severity mean and standard 
deviation, for the particular class of policyholders. 

2. Severity Distribution Assumprions 

The examples in Section 3 use the Single Parameter Pareto severity 
(SPP) distribution to model occurrence severities. As mentioned in Sec- 
tion 2, the SPP parameter applicable to a particular line of insurance and 
truncation point can be derived by fitting this curve to empirical claims 
data. When performing this procedure directly or when utilizing pub- 
lished parameters, it is important to note whether the underlying claims 
data include allocated loss adjustment expenses (ALAE). If the empirical 
data used to compute the SPP parameter include ALAE, and if the 
reinsurance contract handles ALAE as a part of loss, then the formulas 
presented in the paper for calculating the aggregate loss (and ALAE) 
distribution can be applied without any modifications. The same is true 
if the SPP distribution is based on pure losses only and if the reinsurance 
contract does not cover ALAE. 

In most cases, however, the reinsurance contract covers, to some 
extent, the ALAE associated with layer losses, but the assumed severity 
distribution describes pure losses only. These situations require one to 
make minor modifications to the methods presented earlier in the paper. 

For the lognormal model, one should use expected layer loss costs 
excluding ALAE in order to determine the aggregate coefficient of var- 
iation (CV). If the ALAE covered by the contract is a constant multiple 
of layer losses (or nearly so), then the same CV describes the distribution 
of aggregate losses and ALAE in the layer. One instance when this 
would be true is where ALAE is a fixed percentage of ground-up losses 
and where ALAE is shared pro rata between the reinsurer and the ceding 
company. The particular loss sharing or adjustable feature provision 
would then be priced, using the expected layer loss cost including ALAE 
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to compute the entry ratios needed to determine the appropriate excess 
pure premium ratios from the lognormal table. The adjustments to the 
Collective Risk Model approach for determining the aggregate loss dis- 
tribution entail adjusting the parameters of the underlying frequency and 
severity distributions appropriately to reflect the relationship of ALAE 
to loss and the particular contractual provision concerning the manner 
by which ALAE will be shared. 

Although the SPP distribution was chosen to model claim severities 
in the treaty examples, it is important to note that other severity distri- 
butions could have been used to derive the aggregate loss distribution 
under either the lognormal or Collective Risk Model approaches. The 
relaxation of this restriction allows one to use these models to determine 
the aggregate loss distributions for pro rata reinsurance contracts. (Recall 
that the SPP distribution is appropriate only above a sufficiently large 
truncation point, and hence it cannot be used to price pro rata treaties.) 
Once the aggregate loss distribution has been determined, the particular 
coinsurance clause or adjustable feature can be priced using the methods 
presented in the treaty examples. 

3. Treuties with Both Coinsurcrncr Provisions and Adjustublr Feutures 

The first three treaty examples presented in Section 3 illustrate meth- 
ods for pricing common types of nonproportional coinsurance provisions, 
while the latter three examples involve the analysis of treaties with 
adjustable premium or commission plans. The case in which a treaty 
contains both a nonproportional coinsurance clause and an adjustable 
feature has not been considered. In such a situation, one needs to deter- 
mine not only the effect that the nonproportional coinsurance clause has 
on expected treaty losses (which can be accomplished using the tech- 
niques discussed above) but also the distribution of aggregate losses after 
the effect of the nonproportional coinsurance has been taken into account. 
The latter item is necessary in order to compute the expected impact of 
the adjustable premium or commission plan, since these plans generally 
operate on actual treaty experience after all coinsurance. 

The calculation of the aggregate distribution after nonproportional 
coinsurance can be accomplished by making direct modifications to the 
aggregate loss distribution prior to coinsurance (e.g., truncate it at the 
aggregate deductible amount or censor it at the aggregate limit). The 
Collective Risk Model would be run again to compute the needed insur- 
ance charges, assuming that there will be one claim with a severity 
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distribution equal to the aggregate loss distribution after all forms of 
nonproportional coinsurance. Another approach is to determine the ef- 
fects that the nonproportional coinsurance feature has on both the oc- 
currence count and the occurrence severity distributions that underlie the 
aggregate distribution. The adjusted count and severity distributions can 
then be combined (using either method discussed in this paper or the 
alternative recursive or simulation techniques) in order to obtain an 
aggregate loss distribution that reflects the effects of the nonproportional 
coinsurance provision. 

4. Aggregate Losses of Zero 

When working with the models presented in the paper, one must 
consider the probability that no treaty losses will occur during a particular 
year. Although the chance of this occurring on pro rata or working layer 
excess-of-loss treaties may be sufficiently small that it can be ignored, 
treaties reinsuring rare events or high layers could have many loss-free 
years. One needs to estimate the probability of a loss-free year occurring 
on the treaty, either subjectively or by examining past treaty experience 
(if credible), in order to properly estimate the aggregate loss distribution. 

If the Collective Risk Model is used to generate the aggregate dis- 
tribution, the probability of a loss-free year could be reflected directly 
through the choice of the claim count distribution. A problem arises, 
however, when one attempts to use the lognormal aggregate loss distri- 
bution assumption to price a treaty with a positive probability of having 
no losses during a particular year. This is due to the fact that the 
lognormal distribution is not defined at the value zero. One solution to 
this problem involves the use of a mixture of a lognormal and a discrete 
distribution to model aggregate losses. This enhanced model may be 
applicable in many low mean frequency situations. Technical details are 
summarized in Appendix M. 

5. Investment Income 

The time value of money also has not been considered in the examples 
presented above, even though it is a legitimate underwriting consideration 
in evaluating alternative proposals. One way of handling this item would 
be to develop aggregate loss distributions for the lines of business subject 
to the treaty prior to all forms of nonproportional coinsurance. (Either 
the lognormal or Collective Risk Model may be used for this purpose.) 



80 PRICING REINSI:RANCE I.REA I II3 

The analysis then becomes a simulation problem. One would simulate 
annual losses before coinsurance for each line, apply payout patterns to 
estimate future loss payments by line, apply the nonproportional co- 
insurance provisions, and finally discount the future treaty losses. (To 
accomplish this, one might develop and apply stochastic loss reporting, 
loss payout and interest rate models. Alternatively, one could develop a 
range of scenarios concerning these parameters and subjectively weight 
the final results derived from these alternative scenarios.) One would 
also need to estimate when future premium or commission adjustments 
would be made and when brokerage and other reinsurance expenses 
(including taxes (81) would be paid. The economic value of the proposed 
treaty would be the difference between discounted reinsurance premium 
and the sum of the discounted values of all expense items. This economic 
value should be adjusted for risk considerations, possibly through the 
selection of the interest rates used in the discounting procedure 191. 

A second approach is to estimate the ultimate loss ratio after all 
coinsurance as a percentage of provisional treaty premium using the 
methods of Section 3. Payout and loss reporting scenarios that approxi- 
mately reflect the impact of the coinsurance provisions could then be 
selected. The loss reporting pattern would be used to estimate both IBNR 
reserves and the emergence of reported losses. Contractual formulas 
would be applied to estimate the magnitude of premium or commission 
adjustments to occur at specitied points in time. The remainder of the 
analysis would proceed as in the first approach. 

In this second approach, one item that needs to be considered in 
calculating premium or commission adjustments at various points in time 
is the impact of the insurance charges. For a retrospective rating or profit 
sharing formula, expected reported losses at various stages of develop- 
ment should be multiplied by the complement of the net insurance charge 
to approximate expected losses subject to the adjustment formula. In 
sliding scale commission plans, the commission ratio computed by plug- 
ging the expected loss ratio into the formula should be adjusted by the 
difference between the expected commission ratio (the actuarial view) 
and this formula estimate (the simplistic view), using the methods pre- 
sented in Section 3. Sliding scale commission adjustments at various 
points in time would be computed by applying the contractual formula 
to the expected reported loss ratio and reflecting this commission ad- 
justment gradually. 
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APPENDIX A 
COMPUTATION OF AGGREGATE MEAN ANDCOEFFICIENT OFVARIATION 

(PATRIK-JOHN 121 vmsloN OF COLLECTIVE RISK MODEL) 

Let L represent the random variable of aggregate loss to be paid on 
a given contract for a particular coverage period. 

L = L, + Lz + . . . + Lk, 

where L, represents the aggregate loss random variable for group i, i = 
I,2 ,... ,k. 

The groupings may represent distinct groups of classes of insureds 
or coverages, similar insureds grouped by distinct policy limits, or the 
overall coverage time period split into sub-periods. 

Lj = Xjl + Xi2 + . . . + XjN,, 

where Ni is the random variable of the number of loss occurrences for 
group i and X,,i is the random variable of loss size of the jfh loss for 
group i. 

Let v represent the parameter vector containing all parameters nec- 
essary to specify the particular cumulative probability distribution func- 
tions (c.d.f.‘s) for the Li’s, N;‘s, and X0?. 

The following three assumptions guarantee that the total coverage 
has been split into independent, homogeneous coverage groups: 

Assumption I: Given v, the Li’s are stochastically independent. 

Assumption 2: Given V, the Xjj’s are stochastically independent of 
the N;‘s. 

Assumption 3: Given v and fixed i (i.e., a particular group), the Xij’s 
are stochastically independent and identically distrib- 
uted. 

Let &C(V) represent the c.d.f. of L and let Fi(x(v) represent the c.d.f. 
of Li, i = I,2 ,..., k. 
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Properties of Model with Known Parameters 

(1) The c.d.f. of the aggregate loss L is the convolution of the aggregate 
loss c.d.f.‘s for the individual groups: 

F(xlv) = P(L 5 XIV) = F,(xJv) * &(XIV) * * l%(xJv), 

where F;(xlv) = P(L; 5 xjv) and * denotes the convolution operation. 

(2’) The cumulants of L given v are sums of the corresponding cumulants 
of the Li’s given v. This implies that 

(a) E(L/v) = 2 E(L,lv) (the means are additive). 

(b) Var(LIv) = c Var(L+lv) (the variances are additive). 
I 

(3) The aggregate loss c.d.f. of the i’h group, F,(xjv), can be expressed 
in the form 

F,(x~v) = 2 P(Ni = n(v) * G,*“(.r/v), 
” 

where Gi(x(\)) = P(Xi 5 x(v) is the loss amount c.d.f. for the ith 
*” group, and G, is the convolution of the n Gi’s and represents the 

c.d.f. of the total amount of exactly n loss occurrences. 

(4) The above properties imply that 

(a) E(LiJv) = E(N;Jv) * E(X;J\j). 

The mean aggregate loss for the ith group is the product of the 
mean frequency and mean severity. 

(b) Var(L;jv) = E(NiI\j) . Var(Xi(v) + Var(Nilv) . E(X,)V)~. 

The variance of the ith group’s aggregate loss is the sum of the 
mean frequency times the variance of severity and the variance 
of frequency times the square of the mean severity. Substitution 
into the formulas in (2) above yields the mean and variance of 
the aggregate loss distribution. 
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Collective Risk Model 

Now delete the restriction that the parameter vector v is known. 
Assume that the set V of possible parameters is finite and known and 
that one can specify the subjective likelihood of each element v of V. 
The structure function U(v) is a discrete probability function that specifies 
the observer’s uncertainty regarding the “best” parameter. 

The unconditional c.d.f. F(x) of the aggregate loss L has the follow- 
ing properties: 

(1) F(x) = z F(xlv) * U(v). 
\’ 

The c.d.f. F;(x) of Li is computed similarly. 

(2) E(L’“) = c E(L”‘(v) . U(v). 

The rnth moment of L; about the origin is computed similarly. 

(3) With v unknown, assumptions (l)-(3) above may no longer hold, 
for the uncertainty regarding v may simultaneously affect the 
model at all levels. With v unknown, only the first cumulant is 
additive: 

E(L) = z E(L), 

but Var(L) Z 2 Var(Li). 

However, Var(L) = E(L’) - E(L)*, 

and E(L’) = x E(L’lv) * U(v) = c {Var(Llv) + E(LIv)‘} * U(v). 
I’ 1’ 

Var(Llv) and E(LIv) are evaluated using the formulas above for 
the model with known parameters. 
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APPENDIX B 

‘THE LOGNORMAl. MODEI. 131 

If the aggregate loss random variable is viewed as the product of a 
large number of independent. identically distributed random variables, 
the logarithm is then approximately normally distributed by the Central 
Limit Theorem. (The stringent condition that the factors be identically 
distributed may be relaxed [ I].) This implies that the aggregate loss 
random variable is lognormally distributed. 

The formulas in Appendix A for the model with known parameters 
are used to estimate the mean and variance of the aggregate loss distri- 
bution. It is assumed that the mean aggregate loss for each coverage of 
the excess-of-loss reinsurance contract has been estimated accurately 
using standard burning cost and/or exposure rating methods. A Single 
Parameter Pareto severity distribution is assumed for each coverage and 
is used to compute the mean and variance of the severity distribution 
(see Appendix E). The ratio of the mean aggregate loss to the mean 
severity is the mean number of loss occurrences for a given coverage. 
The variance of the excess frequency distribution is computed based on 
the assumptions and the formula developed in Appendix D. Thus, the 
mean and variance of the frequency and severity distributions for each 
coverage are specified and used to compute the variance of the aggregate 
loss distribution for each coverage. The sum of these variances for all 
of the coverages is the variance of the aggregate loss distribution for all 
coverages combined, since independence of aggregate losses for the 
individual coverages is assumed. 

The Coefficient of Variation (CV) of the aggregate loss distribution 
is the ratio of the standard deviation to the mean of L, based on the 
frequency and severity distributions specified by the vector of parameters 
v or based on empirical methods applied to burning cost analyses: 

For simplicity, let A4 = E(LIv). 
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The Entry Ratio Y is the ratio of the attachment A to the mean 
aggregate loss: 

r = AIM. 

The Excess Pure Premium (XSP) for a particular attachment A is the 
expected aggregate losses excess of A: 

XSP(A(v) = J= (L - A)dP(Llv), 
A 

where P is the c.d.f. of L, given the vector of parameters v. The Excess 
Pure Premium Ratio P2 at entry ratio r is the ratio of the corresponding 
Excess Pure Premium to the mean aggregate loss: 

P&-Iv) = XSP(Ajv)lM. 

Assume that the distribution of L is lognormal, given frequency and 
severity distributions specified by the vector of parameters \‘. If the 
parameters of this lognormal distribution are f.~ and 02, then 

(1) M = E(L\v) = exp{k + g], and 

(2) CV = CV(LJ/J) = {exp(o’) - I}“‘. 

The first moment distribution PI is also lognormally distributed, but 
with parameters p + o2 and o*. PI is defined by 

Pt(rlv) = jj L . dP(L\v). 

The first moment distribution represents the percentage of total ag- 
gregate losses from coverage periods where the aggregate loss is less 
than the attachment. The Excess Pure Premium Ratio can be computed 
using 

P2(rIv) = { 1 - Pt(r(v)} - r{l - P(rjv)}. 
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Given that M and CV have been established as described above, the 
parameters of the assumed lognormal aggregate loss distribution can be 
estimated from formulas (1) and (2) above: 

u* = ln( 1 + CV’), and 

p = In(M) - 5 

As noted above, PI is also lognormally distributed with parameters 
P’ = p + o7 and oz. The vector of parameters v determines .iM and CV 
through the formulas previously presented. While the Excess Pure Pre- 
mium is a function of both M and CV, the Excess Pure Premium Ratio 
is solely a function of the CV. Thus, the Excess Pure Premium Ratios 
are computed using 

Pl(rlCV) = (1 - Pt(r(CV)} ~ r{l -- P(rICV)}. 

This formula was used to compute values for the expanded version 
of Mr. Finger’s famous table which is displayed in Tables 1-3 of this 
Appendix. 

The Excess Pure Premium for attachment A is given by 

XSP(A(M.CV) = M . Pz(r)CV), where r = AIM. 

Parameter uncertainty may be reflected using the method described 
under the Collective Risk Model section of Appendix A. For each 
element 1’ of V, compute M and CV. Since U(v) = U(M,CV), the 
unconditional Excess Pure Premium for attachment A may be computed 
using 

XSP(A) = c c XSP(AI/I4,CV) U(M,CV). 
M C-V 

For the sake of simplicity, a probability of one is assigned to our 
most likely scenario for the examples in this paper. 
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TABLE B 1 

Entry 
Ratio 

0 
.I 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

1.0 
1.1 
1.2 
1.3 
1.4 
I.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 

EXCESS PURE PREMIUM RATIOS 

LOGNORMAL MODEL 

Coefficient of Variation 

I.000 
,900 
,800 
,700 
,600 
,500 
,400 
,300 
,200 
.I07 
.040 
,009 
,001 
,000 

.2 

1.000 
,900 
,800 
,700 
,600 
,500 
,400 
.302 
.2l I 
.I35 
,079 
,042 
,021 
,010 
,004 
,002 
,001 
,000 

.3 

l.cQo 
,900 
,800 
,700 
,600 
,501 
.404 
,313 
,234 
.I68 
,117 
,079 
,052 
,034 
,022 
,014 
.009 
.005 
,003 
.002 
.OOl 
.OOO 

.4 
- 

.5 
- 

1.000 1.000 
,900 .900 
,800 ,800 
,700 .700 
,601 ,603 
,504 ,510 
,413 .426 
,331 ,351 
,260 ,286 
,200 ,232 
.I53 ,187 
.I15 ,150 
,086 ,120 
.064 ,096 
,048 ,077 
,035 ,062 
,026 ,049 
,019 ,040 
,014 .032 
,010 ,026 
,008 .02l 
,004 ,014 
,002 ,009 
,001 ,006 
,001 ,004 
,000 .003 

The Coefficient of Variation is the ratio of the standard deviation to the mean of the assumed 
lognormal distribution. The Entry Ratio is the ratio of the attachment to the mean. The Excess 
Pure Premium Ratios are ratios of excess pure premiums to the mean (i.e., ratios of expected 
excess losses to the total expected loss). 
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Entry 
Ratio 

0 
.I 
.2 
-3 ._ 

.4 
5 ._ 

.6 

.7 

.8 

.Y 
I.0 
I.1 
1.2 
I.3 
I.4 
I.5 
1.6 
I.7 
1.x 
I.9 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.x 
4.0 
5.0 

10.0 
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TABLE 82 

EXCESS PURI: PRI:MIC~M RATIOS 
LOGNORMAI. MOIXI 

Coefficient of Variation 

.6 
- 

1.000 
,900 
.x00 
,702 
,607 
,519 
,441 
,371 
,312 
,261 
,218 
.I83 
.I53 
I ‘8 - 
I07 

,090 
,076 
,064 
,053 
,036 
,039 
.02x 
,020 
,015 
.Ol I 
,008 
.006 
.005 
.004 
,003 
,002 
.OOl 
.OoO 

.7 

I .OOO 
.YOO 
,800 
,704 
,613 
,530 
,456 
,392 
,336 
.2X9 
,248 
.‘I3 
.I83 
I58 

.I37 
,118 
,103 
,089 
,078 
.068 
.060 
,046 
,036 
.028 
.022 
.Ol7 
.OIJ 
.Ol I 
,009 
,007 
,006 
.oo I 
.ooo 

.x 

I 000 
YOO 

.x01 
,707 
,619 
,541 
,377 
.412 
,359 
,315 
,275 
,241 
.?I’ 
.1x7 
.IhS 
,146 
.I30 
.I I5 
,103 
.OY2 
.0X’ 
.Ohh 
.os3 
.043 
.03h 
.030 
,025 
.02 I 
,017 
,015 
,012 
,006 
.ooo 

.Y I.0 
- 

I 000 1.000 
.YOO ,900 
.X02 ,804 
,710 .714 
.h27 ,634 
,552 .563 
.4x7 .502 
,430 ,447 
,381 ,400 
,337 ,359 
.300 ,323 
,267 .?‘)I 
,239 ,263 
,213 ,238 
IO2 .?I6 

.I72 ,197 
IS5 .I80 
I40 ,164 
I27 I50 

.I IS ,138 

.I05 ,127 

.0x7 .IOX 
,073 .092 
.Ohl .07Y 
.os2 ,068 
.044 ,059 
,037 ,052 
,032 ,045 
,028 ,040 
,024 ,035 
,021 .03 I 
.Ol I ,018 
00 I ,002 

The Coefficient of Variation is the ratio of the standard deviation to the mean of the assumed 
lognormal distribution. The Entry Ratio is the ratio of the attachment to the medn. The Excess 
Pure Premium Ratios are ratios of excess pure premiums to the mean (i.c.. ratios of expected 
excess losses to the total expected loss). 



Entry 
Ratio 

0 
.I 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

I .o 
I.2 
I.4 
I.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 

10.0 
20.0 
30.0 
50.0 

loo.0 

PKI(‘INC; HI~INSI’RAN(‘I. ‘I’HI:A 1II.S 

TABLE B3 
EXCESS PURE PREMIUM RATIOS 

LOGNORMAL MODEL 

Coefficient of Variation 

XY 

I.5 2.0 2.5 3.0 - - - - 
I.000 I.000 I.000 I.000 
.YO2 ,905 .908 .9l I 
,813 ,824 ,834 ,842 
,736 ,756 ,772 ,786 
,670 ,699 ,721 .738 
,612 ,649 ,676 ,697 
,562 ,605 ,637 ,661 
.518 ,567 ,602 ,630 
.479 ,532 .57l ,601 
,444 ,502 ,544 ,575 
.413 .474 ,518 .552 
,360 ,426 .474 ,511 
,316 ,386 ,437 ,476 
.2x0 ,352 ,405 .445 
,250 .323 .377 .418 
.224 ,297 ,352 ,394 
,202 ,275 ,330 .373 
.I83 ,255 .3l I ,354 
.I67 ,238 ,293 ,337 
I52 ,222 ,277 .32l 

.I39 ,208 ,263 ,307 

.I14 ,179 .232 ,275 
,094 .I55 ,207 .250 
,079 ,136 ,186 ,228 
,067 ,120 .I68 .209 
,057 ,107 I53 .I93 
,049 ,096 .I40 ,179 
,043 .087 .I29 ,167 
,037 ,079 ,119 .I56 
,033 ,072 ,111 .I46 
,029 ,066 ,103 ,137 
.Ol9 ,047 ,079 .I 10 
,004 ,015 ,031 ,049 
,001 .007 .Ol6 ,029 
,000 ,002 .007 ,013 
.ooo .ooo .ooo ,004 

4.0 5.0 
- - 

I.000 1.000 
,916 ,921 
,855 .864 
,805 ,820 
,764 ,782 
,728 ,750 
,697 ,721 
,669 ,696 
,644 ,673 
,621 ,652 
,600 ,633 
,563 ,599 
,531 ,570 
,503 ,544 
.478 ,521 
,456 ,500 
,436 .48 I 
,418 ,464 
,402 .448 
.386 ,433 
,372 .419 
.34l ,389 
,315 ,364 
,293 ,342 
,274 ,322 
,257 ,305 
,242 ,290 
.229 .276 
,216 ,264 
.206 .252 
,196 ,242 
,164 ,208 
,087 .I20 
,056 ,083 
.030 .049 
,012 .022 

The Coefficient of Variation is the ratio of the standard deviation to the mean of the assumed lognormal 
distribution. The Entry Ratio is the ratio of the attachment to the mean. The Excess Pure Premium Ratios are 
ratios of excess pure premiums to the mean (i.e., ratios of expected excess losses to the total expected loss). 
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APPENDIX C 
HECKMAN-MEYERS VERSION OF COLLE(“~IVE RISK MODEL 141 

This appendix uses the same notation as presented in Appendix A. 
Let N, represent the number of loss occurrences for group i and let m; 
represent the unconditional mean number of occurrences, 

mi = E(N;). 

Let C represent a random variable with E(C) = 1 and Var (C) = c. 
In this paper, C is assumed to be Gamma distributed. The parameter (’ 
is used to model parameter uncertainty in the frequency mean and is 
called the contagion parameter. Let X, represent the loss siz,e of the j’” 
loss for group i. L; is the aggregate loss of the j”’ group: 

L, = xi1 + xi2 + . * . + x,,v,. 

Parameter uncertainty in the severity mean is modelled through a 
random variable B with E( l/B) = 1 and Var( l/B) = b. B is assumed to 
be Gamma distributed so l/B is lnversc Gamma distributed. The param- 
eter b is called the mixing parameter. 

The Algorithm 

(1)Select C at random from the assumed distribution. 

(2) Select the number of loss occurrences IV; at random from a Poisson 
distribution with mean C.m,. 

(3)Select B at random from the assumed distribution. 

(4) Select the loss occurrence amounts X, I, XZ, . X,,Y, at random 
from the assumed occurrence severity distribution. 

(5)Compute the aggregate loss L, as the sum of all loss occurrence 
amounts divided by the scaling parameter B. 
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Since C is assumed to be Gamma distributed, the frequency distri- 
bution generated by the above algorithm will be negative binomial. If 
the conditions in Appendix D are satisfied, the excess frequency distri- 
bution for each group will be approximately Poisson under conditions of 
parameter certainty, and the excess frequency distribution for all groups 
combined will also be approximately Poisson due to the independence 
assumptions. The negative binomial frequency distribution is used to 
model uncertainty in the mean frequencies. 

It is assumed that the shape of the severity distribution is known, 
and so the mixing parameter b models uncertainty in the severity means 
for the various groups. If uncertainty exists concerning the shape of the 
severity distribution, the approach to parameter uncertainty discussed in 
Appendix A may be applied through assignment of subjective probabil- 
ities to alternative scenarios concerning the shape parameter. In this 
paper, a Single Parameter Pareto severity distribution, as discussed in 
Appendix E, is assumed. The examples in this paper are evaluated for 
the following combinations of b and c: b = c’ = 0, b = c = .05, b = 
.10 and c = .05, and b = c = .lO. These combinations represent no 
parameter uncertainty, moderate parameter uncertainty, higher uncer- 
tainty concerning the mean severity but moderate uncertainty concerning 
the mean frequency, and higher parameter uncertainty. Although many 
other combinations may be appropriate for particular circumstances, 
these values are used in this paper to illustrate the impact of modelling 
parameter uncertainty. 

The reader may presume that a simulation is performed by running 
the above algorithm a sufficiently large number of times for each group 
to generate an accurate estimate of its aggregate loss distribution. Once 
aggregate loss distributions for each group are obtained in this manner, 
the aggregate loss distribution for all groups combined can be estimated 
by conducting a second simulation as follows: 

(1) For group i, select Li at random from the aggregate loss distribution 
already estimated. 

(2) Compute the aggregate loss L for all groups combined by summing 
the Li’s, i = 1, 2, . , k. 
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This second simulation is performed a sufficiently large number of 
times to generate an accurate estimate of the aggregate loss distribution 
for all groups combined. (Note that aggregate limits or deductibles may 
be applied to individual groups before the second simulation is per- 
formed.) 

Instead of performing the above simulations, the Heckman-Meyers 
algorithm computes the aggregate loss distribution directly through ap- 
plication of the characteristic function method briefly summarized in 

TREATY IV 
COLLECTIVE RISK MODEL 

Line 
Expected Claim Severity Contagion Claim Count Claim Count 

Loss Distribution Parameter Mean Std. Dev. 
- 

1 359,995 class I .sev 0.0500 = (‘I 5.154 2.546 
2 90,033 class2.sev 0.0.500 “2 I.343 I.197 

Mixing Parameter 0. loo0 = h 
Aggregate Mean JSO.02X 
Aggregate Std. LIev. 297.472 

Aggregate 
Loss Amount 

0.00 
90.005.64 

180.011.28 
270.016.93 

3603022.57 
450,028.21 
540,033.85 
630.039.49 
720,045. I4 
810,050.78 
900,056.42 

Entry Cumulative 
Ratio Probability 

O.OOOG 0.0015 
0.2000 0.0572 
0.4000 0.1577 
0.6000 0.2988 

0.8000 0.4477 
I .oOOo 0.5832 
1.2ooo 0.6949 
I .4000 0.781 I 
I .6000 0.8450 
1.8000 0.891 I 
2.0000 0.9237 

Excess Pure Excess Pure 
Premium Premium Ratio 

450,028.21 I 0000 
362.454.04 0.8054 
2X1.663.70 0.6259 
212.038.71 0.4712 

155,661.12 0.3459 
I 12.206.06 0.2493 
7Y.912. I4 0.1776 
56.513.45 0.1256 
39.840.27 0.0885 
28.07Y.72 0.0624 
19,82X.73 0.0441 



PRICING REINSURANCE TREATIES 93 

Section 2. The reader is referred to the paper and to the excellent review 
by Gary Venter for technical details [4]. The alternative recursive 
method, which is discussed in Mr. Venter’s review and in his recent 
CAS Forum contribution [lo], is simpler and in some circumstances 
more accurate [5], but in other circumstances it is less efficient than the 
characteristic function method and requires the structure function method 
discussed in Appendix A to model parameter uncertainty. A sample run 
of the model is presented in the charts below. 

TREATY IV 
COLLECTIVE RISK MODEL 

Expected 
Loss 

Claim Severity 
Distribution 

Contagion 
Parameter 

Claim Count Claim Count 
Mean Std. Dev. Line 

I 
2 

359,995 
90.033 

class I sev 
class2.sev 

0.1000 = c, 5.154 2.795 
O.loOO = c2 I .343 I.234 

Mixing Parameter 0.1000 = b 
Aggregate Mean 450,028 
Aggregate Std. Dev. 309,940 

Aggregate 
Loss Amount 

0.00 
90,005.64 

180,Ol I .28 
270,016.93 

360,022.57 
450,028.21 
540,033.85 
630,039.49 
720,045.14 
810,050.78 
900.056.42 

Entry Cumulative 
Ratio Probability 

o.oooo 0.0023 
0.2000 0.0667 
0.4000 0.1716 
0.6000 0.3120 

0.8000 0.4562 
I .oooo 0.5861 
I.2000 0.6933 
I .4000 0.7767 
I .6000 0.8392 
I .8000 0.8850 
2.0000 0.9180 

Excess Pure Excess Pure 
Premium Premium Ratio 

450,028.21 1.0000 
363,013.42 0.8066 
283,301.Sl 0.6295 
214,944.81 0.4776 

159,564.03 0.3546 
116,620.91 0.2591 
84.374.46 0.1875 
60,690.76 0.1349 
43,547.09 0.0968 
3 I ,246.92 0.0694 
22.462.93 0.0499 
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APPENDIX D 
DERIVATION OF EXCESS OCCURRENCE COUNT VARIANCE-TO-MEAN RATIO 

This appendix shows that if the ground-up occurrence count distri- 
bution for an insured selected at random is negative binomial, then the 
excess occurrence count distribution for a randomly selected insured is 
also negative binomial. Based on this result, the formula for calculating 
the excess occurrence count variance-to-mean ratio for an individual 
insured selected at random is derived. and it is shown that this formula 
also applies to the class as a whole. This latter result is then used to 
demonstrate that, if the proportion of occurrences exceeding the retention 
is small and the excess frequency mean is known. then the excess 
occurrence count distribution for the class as a whole is approximately 
Poisson. 

Assume (1) An individual policy’s distribution of ground-up oc- 
currence counts over a given period of time is Poisson 
with parameter A,. 

(2) The policies in the given class are independent and of 
identical size. 

(3) The distribution of the individual policy expected 
occurrence counts (i.e., the hi’s) over the class is 
Gamma with parameters CI,P. 

(4) The probability of a given occurrence being an excess 
occurrence (i.e., the probability that it exceeds a fixed 
retention R) is I?. This probability is applicable to all 
policies and may be calculated from the parameters 
given in the IS0 increased limits reviews. 

Given (1) and (3) above, it follows [I 11 that the distribution of the 
observed ground-up occurrence counts for an individual policy selected 
at random is negative binomial with a mean pC; = r/u and variance 
a$ = (r/u)((ct + 1)/u). This implies a variance-to-mean ratio VMRG = 
U&/IQ; = (a + 1)/u = I + (I/U). Assuming that VMRr; is known (from 
the IS0 increased limits reviews or elsewhere), one can easily solve 
for u. 
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It follows [I ,2] from the assumptions of a Poisson process that if an 
individual policy’s distribution of ground-up occurrence counts is Poisson 
with parameter hi, then the distribution of excess occurrence counts 
(claims above R) for the individual policy is also Poisson but with 
parameter I&;. 

The Gamma Distribution has the property [ 121 that if A has the 
distribution r (N,Y), then pX has a r (u/p,r) distribution. Hence, the 
distribution of the individual policy expected excess occurrence counts 
over the class is r (u/p.u). 

Thus, the distribution of observed excess occurrence counts for an 
individual policy selected at random from the class of policies is negative 
binomial with a mean kE = r/[a/p] = priu and variance 

a; = {r/[u/p]} {[u/p + I]l[u/p]} = @h7][ I + p/a] 

This implies a variance-to-mean ratio Vh4Rti = og/pt: = 1 + p/a. Note 
that since p < I, VMR, < VMR,. 

One can think of the group of policies covered by a particular excess 
reinsurance treaty as a statistical sample taken from the theoretically 
infinite population of all insureds belonging to the particular class [ 131. 
Assuming that the sample is taken at random, the policies selected are 
independent of each other. From the above. each policy’s excess occur- 
rence count distribution has mean f.r,~: and variance c&. Given that n 
policies from the particular class are covered by the reinsurance treaty, 
the expected number of occurrences subject to the excess treaty is np+ 
and the variance of the number of occurrences subject to the treaty is 
no;. This implies a variance-to-mean ratio of (nui)l(np,~) = U;/~LE = 
VMRE for the total number of occurrences subject to the treaty. Thus, 
the excess occurrence count variance-to-mean ratio for the entire group 
of policies covered by the reinsurance treaty equals the excess occurrence 
count variance-to-mean ratio for an individual policy selected at random 
from the class. 
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If VMR(; is known, a simple formula for calculating VMRk can be 
easily derived using the following two relationships (which were proven 
above): 

(l)VMR(;= I +i,and 

(2) VMRh = I + E . 

Solving equation ( 1) for 0, we get 

(3) u = 
I 

VMRc; - I 

Substituting expression (3) into (2), we get 

VMRE = I + P 
I 

VMR<; - I 

= I + p(VMR, - I) 

= (1 - p) + p(VMRc;). 

Based on the above formula, if VMRC; is two or three, as in the IS0 
increased limits reviews, and IJ is small (say less than .02), VMRE will 
be close to unity. This implies that the excess occurrence count distri- 
bution for an insured selected at random and for the class as a whole 
will be approximately Poisson, provided that the excess frequency mean 
is known. (Recall that the sum of independent Poisson random variables 
is also Poisson.) 
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APPENDIX E 
SINGLE PARAMETER PARETO SEVERITY DISTRIBUTION [6] 

General Properties of Model 

Assume ground-up loss occurrences above the truncation point k are 
distributed according to the following cumulative distribution function 
(c.d.f ): 

where k > 0, q > 0, MI 2 k. 

Note that 

F(w) = I - 

Let 4’ = w - k represent the occurrence size excess of k. Then 

, where 4’ 3 0. 

Thus, occurrence losses excess of the truncation point k are distributed 
according to the two-parameter shifted Pareto distribution with scale 
parameter equal to k and shape parameter equal to q. 

Assume ground-up occurrences are censored at limit k . 6. Then 
4 

ifOSy<k((b- I), 
i 

and F(v) = I ifv>k(h- I). 

The mean censored excess occurrence is given by 

EC\,) = k @-’ - 1) 
1-q 

ifq# I, 

and E(V) = k * In(b) if q = I. 
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The variance of the censored excess occurrences is given by 

Var(y) = k’ 
q - 2pt 

- q - hl-“, 2 
c 
--.__ 

11 
ifqf l.qZ2, 

Varb) = k* 
[ 
2!7”-1 2- ( I + Ii,) ’ 2 1 if q = 1, and 

Var(y) = k’ [ 1 + 2 * In(h) - [vj’j ifq = 2 

Maximum Likelihood Estimution of’ y 

Assume one wishes to compute the Maximum Likelihood Estimator 
(MLE) of q by fitting n loss occurrences (WI, WI, . . . W,J above the 
truncation point k. Let X, (for i = 1, 2, . , n) represent the normalized 
losses, X, = WJk. The c.d.f. of the normalized losses is F(x) = 
1 - Fq, which is the customary representation of the Single Parameter 
Pareto (SPP) distribution. Assume m, occurrences have been censored at 
limit C, and let b, = C/k, j = I, 2, s. 

Let 14 = n - cm, represent the number of uncensored 
,=I 

occurrences. Then the MLE of y is given by 

Q= L‘ 
14 

s 

;z, In(X) + C mj . In (h,) ' 
j=l 

where the X,‘s are the uncensored normalized occurrences. If no occur- 
rences have been censored, the MLE of q is 
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If cases are developing, q should be estimated for each accident year 
or policy year at each evaluation, and a triangulation approach should 
be used to project the ultimate estimate of q for losses in excess of the 
particular truncation point. If cases are not developing and q is to be 
estimated by pooling the losses from several years, they first need to be 
adjusted for trend if some of the losses have been censored. 

Leveraged Impact of inflation 

Let n represent the number of loss occurrences above truncation k at 
time 0, and assume the annual loss inflation factor between time 0 and 
time t is I + i. Based on the SPP distribution with parameter q, the 
projected number of loss occurrences excess of truncation k at time t is 
n( I + i)‘“. 

As long as inflation does not erode the real value of a retention to 
the point that the SPP distribution is no longer a satisfactory model above 
the retention, the parameter q and the average occurrence size in the 
layer of interest will theoretically remain constant over time. The lev- 
eraged impact of inflation over a fixed retention is quantified through the 
application of the adjustment factor (1 + i)” to excess occurrence fre- 
quency. 

Change in Layer 

Assume that one has credibly estimated losses in the layer from u to 
b and wishes to estimate expected losses in the layer from c to d, where 
the SPP distribution with parameter 4 is appropriate above the lower of 
the two retentions. The change in expected losses due to the change in 
reinsurance layer is theoretically given by 

I--Y _ dl-4 
Change in Layer = :I, -y - b’-Y if q f 1, and 

In (d/c) 
Change in Layer = ___ 

In (b/a) 
ifq= 1. 

(The layer limits need not be normalized in the above formulas.) The 
Change in Layer factor is applied to expected losses in the layer from a 
to b to estimate expected losses in the layer from c to d. 
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APPENDIX F 
TREATY I 

SUMMARY OF KEY CONTRACT PROVISIONS 

Treaty Period: I/ l/90- 12/3 l/90 

Layer Reinsured: $160,000 in excess of $40,000 per occurrence 

Estimated Treaty Subject Premium: $12,000,000 for 1990, 
distributed as follows: 
Class l-$9,000,000 
Class 2-$3 ,OOO,OOO 

Expected Layer Loss Costs for the Entire Layer, Prior to All Forms of 
Coinsurance (Expressed as a Percentage of Subject Premium): 

Class 14.00% 
Class 2-3 .OO% 

Both Classes Combined-3.75% 

Loading to Convert Expected Layer Loss Cost After All Forms of Coin- 
surance into a Rate: 100/75 

Proportional Coinsurance: None 

Nonproportional Coinsurance: Aggregate Deductible equal to 3% of 
Subject Premium 



APPENDIX F 
EXHIBIT 1 

DETERMINATION OF AGGREGATE Loss DISTRIBUTION SPECIFICATION PARAMETERS FOR 

NONPROPORTIONAL Loss SHARING PLANS 

Class ot Busmess 

Class I Class 2 
All Classes 
Combmed 

(I J AcNd or esumated SubJect premmm for mealy penod 9.wo.wo 3.m.m 12,ooo,ooo 
I?) Expxred layer loss cost for entne layer pno: 10 Ihe appkruon of all forma of comburance (layer bumrng cost) Iexpressed as a 

~KC!%l~C Of $UbJW ~M~um] 4 oooo’5 3.mEh 3.75@3% ; 

(31 Expected losses for the emre remured layer for the weary penod ,(, , x (2)] 36o.oa ‘M.m 450,cnm ij 

(41 Smgle Paramerer Pareto q values for seventy dlstnbm~ons 0.900 0.950 5 
(5) Mean excess chm SILC m layer ,ps, 69,84X 67,039 69.267 

(6) Standard dewatron of excess clam SLLCS m layer ,“,, 60,9x 60,084 60.749 6 

(7) Expected number of clams m layer pnor to tie appbcar~on of nonpropomonal loss shanng pronsmnr (p,) [(3)/(51] 5.154 t 343 6 497 5 

(8) Excess clam1 CD”“, vanance-lo-mean ml,” (VMR,) I 032 I 067 I 039 2 

(9) Standard dew&on of d,stnbutmn of aggregate lo>se\ I” layer F 
I& pc + (14 VhfR,) ,A:]“* 212.298 lMl.228 237.391 

(IO) Coefticxnt of variation of distribution of aggregate losses m layer I(9)/(3)] 0590 I 180 0 52R 2 

I I II Selected ccefticlent of variation of aggregate toss distnbution for all classes combined 0 52R ;;i 

NOTES E 

Lmes (5) and (6): The mean excess clam size and the standard deviation of the excess clam sues are based on a Smgk Parameter Parem dlsrnbwon aasumpuon wth the parameter (q value) grven i 

m mm (41. (See Appendn E for formulas ) The all classes combined mean excess clam SW IS an average of the mdwdual class mean clatm wer. weIghred on the expected excess ckum counts on 
lrne (71 The all cla\vs combined claim size standard dewatlon 1s compurrd a follows: 

(A) For each class of busmess, calculate the sum of the squares of ~tcms (51 and (61. respectively. 
(B) Take a weighted average of the sums m (A). using the expected excess claim counts on lme (7) as wevgho. 
(C) Subuact the square of the all classes combined mean excess clam we from the resulr m (8) 
(Dl Take the square root of the result i,, (C) to “bran ,he all classes combmed excess &urn sue standard devlaaon. 

Line (8) The mdlwdual class ace\\ &urn count vanance-to-mean ratios are calculated usmg the IS0 increased Iunits parameters and the formulas m Appendix D The all classes combmed exce*\ 
claim coont vanance-w-mean ratio IS im average of the individual class variance-to-mean ratios. weighted on the expected clam counts on hne 171. 

Lme 19): The srandard devmtlon of the aggregate loss dmnbutton for all claws combmed 15 “blamed by summmg the yuarck of the aggregate 10% dntnbubon andad dcwatlon, for the mdwldual 
classes and lhen rakmg the square root “t the result 

z 



APPhNDlX I- 
EXHIBIT 2 K 

AGGREGATE DEDUCTIBLES 

(I ) Actual or estimated subject premmm for treaty period 
(2) Expected layer loss cost for entire layer prior to the application of all coinsurance (layer burning cost) 

[expressed as a percentage of subject premium] 
(3) Coinsurance percentage (cedant’s participation in layer losses not corresponding to an explicit share of 

the reinsurance premium, excluding the presumed effect of the aggregate deductible). 
(4) Expected dollars of loss for the entire layer prior to the application of all coinsurance [(I) X (2)] 
(5) Loading to convert expected layer loss cost after all forms of coinsurance into a loaded rate (expressed 

as a multiplicative factor to be applied to the expected layer loss cost) 
(6) Aggregate deductible amount in dollars applicable to the entire layer [3% x %12,000.000] 
(7) Entry ratio corresponding to the aggregate deductible amount l(h)i(4)] 
(8) Insurance charge at entry ratio corresponding to the aggregate deductible amount* 
(9) Expected percentage of treaty losses eliminated by the aggregate deductible [ 1004 - (X)] 

(10) Composite coinsurance percentage lOOa-{ [ 100% ~ (3)] X [ 100% - (9)]} 
(I I ) Expected layer loss cost for the entire reinsured portion of layer, after the application of the aggregate 

deductible (expressed as a percentage ot subject premium) (2) ,X ~100% - ! I(O)] 
(I 2) Indicated treaty rate after the application of the aggregate deductible and any proportional coinsurance 

(expressed as a percentage of subject premium) [(S) k ( 1 I )] 

12.000.000 

3.7500% 

0.00% 
450.000 

1.333 = 100175 
36O.ooO 

0.800 
29.33& 
70.67% 
70.67% 

I .4664% 
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APPENDIX G 
TREATY II 

SUMMARY OF KEY CONTRACT PROVISIONS 

Treaty Period: l/1/90 - 12/3 l/90 

Layer Reinsured: $700,000 in excess of $300,000 per occurrence 

Estimated Treaty Subject Premium: $6,000,000 for 1990, 
distributed as follows: 
Class 1 - $2,000,000 
Class 2 - $2,000,000 
Class 3 - $2,000,000 

Expected Layer Loss Costs for the Entire Layer, Prior to All Forms of 
Coinsurance (Expressed as a Percentage of Subject Premium): 

Class 1 - 10.0% 
Class 2 - 14.0% 
Class 3 - 21 .O% 

All Classes Combined - 15.0% 

Loading to Convert Expected Layer Loss Cost After All Forms of Coin- 
surance into a Rate: 100/60 

Proportional Coinsurance: 20% 

Nonproportional Coinsurance: Three (3) full free reinstatements permit- 
ted under treaty. 



APPENDIX G 
EXHIBIT 1 

AGGREGATE LIMITS 

(I) Actual or Esttmated Subject Premium for Treaty Per& 

12) Expected Layer Loss Cost for Enttrc Layer Prior to the Application of All Coinsurance (Layer Bummp Cost) [Expressed as a 

Percentage of SubJect Premiuml 

(3) Comsurance Percentage (Cedant‘s Pamctpation in Layer laser Not Corresponding to an Explrtt Share of the Retnsurance Premium, 

Excludmp the Presumed Effect of the Aggregate Ltmtt Prowlon) 

(4) Expected Dollars of Loss for the Entlre Layer Prior to the Apphcation of All Comsurance [(I) X (2)) 

(5) Loadmg to Conven Expected Layer Los5 Cart After All Form\ of Coinsurance mto a Loaded Rate (Expressed as a Multipltcattve 

Factor to be Applied to the Expected Layer Loss Cost) 

6.ooo.cKKJ 

15.ooo% 

?O.cKm 

mx).om 

1.667 = 100160 

Complete Item (6) if the aggregate hmit 1s cnpre\sed as a percentage of treaty losse\. or Item (7) 

if the aggregate lomt is expressed in terms of hmlted remstatements 

(6) Aggregate Limit Amount (Expressed a\ a Percentage of the Expected Lorse& for the Treaty Prior to the Apphcat~on of thta Provision) 

(7) (A) Number of kc Remrtatement\ Allowed Under Treat) 

(HI I.ayer Retcntmn 

(Cl Layer Gross Ltmlt 

(1)) Layer Width [(7C) - 17811 

(E) Effecwc Aggregate Ltmlt for the Entire Layer Pnor to All Comsurance (Expwsed tn Dollar\) [I + t7A)] x 171)) 

tF) Effectwe Treaty Aggregate Lmxt tExprcsscd aa a Percentage ot Treaty Expected Lease\) 1(7E)/iSI] 

(8~ Entn Ratto Corrcapundmg to the ,4pgrepate Lmtt [(6l or t7F). Expressed a\ a Dectmal] 

tYl hurancc Charge at the Entry Ratio Conespondmg to the Aggregate Ltmlt* (This Percentage Is Equwalcnt to the Expcctcd Percentage 

of Treaty Lo>sea Ehmmated b) the Afpregetc Llmlt Pro\~l\ls~onl 

t IO) Composite Coinsurance Percentage 100% {[CIOOS - t.711 x [loo4 l9,1] 

t I I1 Expected Layer Cost for the Entire Reinwred Portion ol I.ayer. AIicr the Apphcatlon ot the Agrepate Limit F’rowwn \Expresaed a\ a 

Percentage of SubJect Premluml 

(2) x [IO04 (IO)] 

(I 21 Indlcatcd Treaty Rate After the Apphcatton of Aggregate Limits and Any Propomona Cotnsurance (Expressed as a Percentage of 

Subject Premtum) [CS) * t I I )] 

NtA c 

3 F 

300.000 F 

I .Ot~.ooo 
? 

700,uOO 
:: 

2.800.000 > 

?I1 11’1; z 

3 111 i: 

2 37v< 

?I X9’i; 

:: 7:6:1x 

19 5268% 

*The tnsurance charge appeanng m Item (9) above is based on a lognormal dtstribution wth a 0.770 coefficient of variation The mwrance charge tb obtained wa lmear 

mtrrpolatton of the table of insurance charges gwen on Tables Bl-B3 of Appendix B. A procedure similar to that employed m the Treaty I example (see Appendix F 

Exhihit I I 1s used to denve the 0.770 coefficient of vwatlon for aggregate losses in the reinsured layer on this treaty. 
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APPENDIX H 
TREATY III 

SUMMARY OF KEY CONTRACT PROVISIONS 

Treaty Period: l/1/90 - 12/31/90 

Layer Reinsured: $400,000 in excess of $100,000 per occurrence 

Estimated Treaty Subject Premium: $10,000,000 for 1990, 
distributed as follows: 
Class 1 - $4500,000 
Class 2 - $4,500,000 
Class 3 - $l,OOO,OOO 

Expected Layer Loss Costs for the Entire Layer, Prior to All Forms of 
Coinsurance (Expressed as a Percentage of Subject Premium): 

Class 1 - 3.20% 
Class 2 - 3.80% 
Class 3 - 3.50% 

All Classes Combined - 3.50% 

Loading to Convert Expected Layer Loss Cost After All Forms of Coin- 
surance into a Rate: 100/70 

Proportional Coinsurance: None 

Nonproportional Coinsurance: Loss Corridor - Reinsurer stops paying 
losses that fall in the reinsured layer when the ratio of actual losses in 
the layer to expected losses in the layer reaches lOO%, but he resumes 
full payment of losses in the layer if this ratio goes above 200%. 



APPENDIX H 

EXHIBIT 1 

Loss CORRIDORS 
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APPENDIX 1 
TREATY IV 

Summary of Key Contract Provisions 

Treaty Period: l/ l/90- 12/3 l/90 

Layer Reinsured: $160,000 in excess of $40,000 per occurrence 

Estimated Treaty Subject Premium: $12,000,000 for 1990, 
distributed as follows: 
Class 1-$9,000,000 
Class 2-$3,000,000 

Expected Layer Loss Costs for the Entire Layer, Prior to All Forms of 
Coinsurance (Expressed as a Percentage of Subject Premium): 

Class 14.00% 
Class 2-3.00% 

Both Classes Combined-3.75% 

Indicated Flat Treaty Rate After the Application of All Forms of Coin- 
surance (Expressed as a Percentage of Subject Premium): 5.00% 

Proportional Coinsurance: None 

Nonproportional Coinsurance: None 

Retrospective Rating Plan: 
Adjustment Period- l/ l/90 through 12/3 l/90 ( 1 year) 
Adjustment Formula- 

Adjusted Treaty Premium = 100175 X (Incurred Losses and ALAE 
in Layer), subject to a maximum of 10.00% of subject premium 
and a minimum of 3.00% of subject premium. 



APPENDIX I 

EXHIBIT 1 

II) Actual or estimated subJect premium fur the retrospective rating period 

(2) Expected layer loss cost for entire layer prior to the effects of the retm plan (expressed as a percentage of SubJect premium) 

(3) Comrurancc ~rcerttage (tedant‘\ pantcipatmn in layer lo%aes not corrc~pondmg to an exphc~t ahare of the rcinsurance premium. 

excludmg the effects of nonpmportlonal loss sharing plans1 

(4) Percentage reductmn m layer losses due to nonproportional loss sharing provwm~ only 

(5) Expected IOS cost for enme remsured pnrtmn of layer prior to the effects of the retm plan (expreaaed as a percentage of SubJect 

premium) (2) x [lOO% - (3)] x IlOO% (4)I 

16) Maximum rate (expressed as a percentage of SubJeCt premium) 

(7) Minimum rate (expressed as a percentage of subJect premium) 

(X) Multiplicatwz losb load (10s~ conversion factor) 

(91 Additive loss load (flat margmJ 

(10) LOIS cost correspondmg to the maximum rate ((6) - (9)J/(Sl 

(I I) Entry ratlo corresponding to the mawnum rate I(lU1~CS)l 

( 12) Insurance charge at maxmwm (excc’15 loss pcrcentagr correspmdlng tii maumum entq ra110)’ 

(13) Loss cost correspondmg to the mm,mum rate l(7) - (Y)]ilX, 

(141 Entry r&o corresponding to the minimum rate [(13),(S)] 

( 15) Insurance charge at mimmum (cxce\s loss percentage currtxpondmg tc mmimum entry ratlo)’ 

(16) Inrurancc wings at rmmmum [I@)? k tlJ)] + (15) - l(K)% 

(17) Net tnsurance charge ((12) - (16)] 

( 18) Adjusted expected layer loss cost (expected value of losers hmttrd by the retro plan mawnun, and mmlmum) (5) X 1 I(x)“+ - ( 1711 

(19) (A) Guaranteed co,t wary rilte (equvalent treat) rate 11 contract wrrc Hat rated1 (exprczscd as rl percentage of WhJcct prcmluml 

(B) Expected treat) rate after rctm ad]u\tmrnt~ (expressed as a percentage ot tublect premium) 

l(8) ,+ (18)l + (Y) 

(C) Retm plan off-bake factor [:!Y.A! !!QW! 

,a factor greater than 1 Ooo indlcatr\ a plan Inadequacy, uhde a tactor le\!, than I WO mdlcatc\ a pian rcdundaniyi 

5 0208% 

O.YY6 

*The msurance charge< appearmg m Items t 121 and (Ifi) above arc based on a lognormal dlstnbution with a 0.528 cvrfficlcnt of varlatwn The insuranrr char&a UC 

obtained via hneat interpolatwn of the table of m~urance charges gwen on Tables El-B3 of Appcndlx B A pnxedute simdar to that employed in the Treaty I example 

(see Appendix F Exhibit 1) 15 used to derwe the 0 52X cwflictent of variation for aggregate losses in the reinsured layer on ttur treaty. 
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APPENDIX J 
TREATY V 

Summary of Key Contract Provisions 

Treaty Period: l! l/90-1 2/3 l/90 

Layer Reinsured: $700,000 in excess of $300,000 per occurrence 

Estimated Treaty Subject Premium: $6,000,000 for 1990, 
distributed as follows: 
Class l-$2,000,000 
Class 2-$2,000,000 
Class 3-$2,000,000 

Expected Layer Loss Costs for the Entire Layer, Prior to All Forms of 
Coinsurance (Expressed as a Percentage of Subject Premium): 

Class l-10.0% 
Class 2-14.0% 
Class 3-2 1 .O% 

All Classes Combined-15.0% 

Treaty Rate (Expressed as a Percentage of Subject Premium): 25.0% 

Proportional Coinsurance: 20% 

Nonproportional Coinsurance: None 

Profit Commission Plan: Adjustment Period--I/l/90 through 12/31/92 
(3 years). Reinsurer to pay cedant 25% of the 
amount by which treaty premiums during the 
Adjustment Period exceed incurred losses, 
ALAE, and a 20% provision for the reinsurer’s 
overhead expense. 



APPENDIX 1 

EXHIBIT 1 
DETERMINATION OF AGGREGATE Loss DISTRIBUTION 

SPECIFICATION PARAMETERS FOR A SINGLE TREATY YEAR 



APPENDIX J 
EXHIBIT 2 

DETERMINATION OF AGGREGATE Loss DISTRIBUTION SPECIFICATION 
PARAMETERS PREADJUSTABLE PREMIUMOR COMMISSION PLANS 

Adjustment Period 

Dates of lndwidual Contract Years in AdJustment Period + 

(I) Actual or estimated subject premiums for all classes combined 

(2) (A) Expected layer loss cost for entire layer prior to the application of all forms of 

coinsurance (layer burning cost) [expressed as a percentage of subject premium] 

(B) Percentage reduction in layer losses due to nonproportional loss sharing 

prowsmns. (Ignore all proportional forms of coinsurance.) 

(C) Expected layer loss cost for entire layer after the application of nonproportional 

loss sharing provisions only (expressed as a percentage of subject premium) 

(2A) X [IOOR - (2B)] 

(3) Expected losses for entire reinsured layer after the effect of all nonproportional 

coinsurance provisions (1) X (2C) 

(4) Mean excess claim size in layer (p,) [copied from Appendix J Exhibit I] 

(5) Standard deviation of excess claim sizes in layer (u.) [copied from Appendix 1 

Exhibit 1) 

(6) Expected number of claims in layer l(3)/(4)] (~~1 

17) Excess claim count variance-to-mean ratio (I&W?,) [copied from Appendix J Exhibit 

II 
(81 Standard deviation of distribution of aggregate losses in layer [u: k, + (kc 

VMR,) j.Lg 2 

(9) Coefficient of variation of distribution of aggregate losses 

lW(3~1 

(IO) Selected coefficient of variatmn of aggregate loss distributmn for all years in the 

adjustment block combmed 

Year 1 

1/90-12/w 

Year 2 

l/91-12/91 

Year 3 

I/92- 12192 

Total 

Adjustment 

Period 

6.OCO,ooO 

15.oaM6 

6,ooo.ooo 

15.wOo* 

6,‘X’3BOO 

lS.oOOO% 

0.00% 0.0% 0.00% 

15.oooo4 15.OCCQ% 15.00% 

90%~ 900,~ 9co.wo 
310,897 310,897 310,897 

6 
2,700,Mx) 

310,897 
J 
iz 

260,265 260.265 260.265 

2.895 2.895 2.895 

260.265 
5 
E 

8.685 

1.012 1.012 1.012 I.012 

692,606 692,606 692,606 I ,199.629 

0.770 0.770 0.770 0.444 

0444 

NOTE: The valuea of the various items in the total adjusunent period column above are calculated using formulas Identical to those used to compute the values of similar 

items shown in the all classes combined column on Appendix J Exhibit 1. (Simply substmxe the word “year” for “class.“) See the footnotes on the bottom of 

= 

- 

Appendix J Exhibit 1 for a description of these formulas. 



APPENDIX J 

EXHIBIT 3A 

PROFIT COMMISSIONS 

(1) Actual or estimated subject premium for commission adjustment period 

(2) Expected layer loss cost for entire layer prior to the application of all coinsurance (layer burning cost) 
[expressed as a percentage of subject premium] 

(3) Coinsurance percentage (cedant’s participation in layer losses not corresponding to an explicit share of 
the reinsurance premium, excluding the effects of nonproportional loss sharing plans.) 

(4) Percentage reduction in layer losses due to nonproportional loss sharing provisions only 
(5) Treaty rate [expressed as a percentage of subject premium] 
(6) Expected treaty loss & ALAE ratio (ELR) ((2) X [lOO% - (3)] X [lOO% - (4)]}/(5) 

Profit commission formula is in the form: 
Profit commission ratio = (P) * [100%--treaty loss & ALAE ratio-EXF’], 

subject to a maximum commission ratio 

Where: (P) = proportion of profits to be paid to cedant: 
EXP = reinsurer’s overhead expense provision 

(7) Proportion of profits to be paid to the cedant (P) 
(8) Reinsurer‘s overhead provision (EXP) [expressed as a percentage of treaty premium] 
(9) Maximum profit commission ratio (if different from that obtained when a zero loss & ALAE ratio IS 

plugged into the formula above) [expressed as a percentage of treaty premium] 
( 10) Simplistic estimate of the expected profit commission ratio [expressed as a percentage of treaty 

premium] (7) X [ 100% - (6) - (8)]. subject to a maximum of (9) 

18,ooo,ooo 

15.0000% 

N/A 

8.00% 



APPENDIX J 
EXHIBIT 3B 

PROFIT COMMISSIONS (CONTINUED) 

(11) Breakeven loss & ALAE ratio for profit commission purposes [ 100% - (8)] 
(12) Entry ratio corresponding to breakeven point [( 1 I)/(6)] 
(13) Insurance charge at breakeven point* (excess loss percentage corresponding to breakeven entry ratio) 
(14) Loss & ALAE ratio corresponding to the maximum profit commission ratio 100% - (8) - [(9)/(7)] 
(15) Entry ratio corresponding to the maximum profit loss & ALAJZ ratio [(14)/(6)] 
(16) Insurance charge at the maximum profit loss & ALAE ratio* (excess loss percentage corresponding to 

the maximum profit loss & ALAE ratio) 
(17) Insurance savings at the maximum profit loss & ALAE ratio [lOO% X (15)] + (16) - 100% 
(18) Net insurance charge (MC) [(13) - (17)] 
(19) Actuarial estimate of the expected profit commission ratio (expressed as a percentage of treaty premium) 

(7) X (100% - (6) X [lOO% - (18)] - (8)}, subject to a maximum of (9); or 
P X (100% - EL& X [lOO% - MC] - EXP}, subject to the maximum. 

(20) Amount by which the actuarial estimate of the expected profit commission ratio exceeds the simplistic 
estimate [( 19) - (lo)] 

80.00% 
1.667 
3.09% 
0.00% 
0.000 
N/A 

0.00% 
3.09% 

8.37% 

0.37% 

*The insurance charges appearing in items (13) and (16) above are based on a lognormal distribution with a 0.444 coefficient of variation. The 
insurance charge is obtained via linear interpolation of the table of insurance charges given in Tables BI-B3 of Appendix B. See Exhibits 1 and 
2 of Appendix .I for the derivation of the 0.444 coefficient of variation. 

w 
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APPENDIX K 
TREATY VI 

Summary of Key Contract Provisions 

Treaty Period: 1 / l/90- 1213 1190 

Layer Reinsured: $900,000 in excess of $100,000 per occurrence 

Estimated Treaty Subject Premium: $25,000,000 

Expected Layer Loss Cost for the Entire Layer, Prior to All Forms of 
Coinsurance (Expressed as a Percentage of Subject Premium): 10.0% 

Treaty Rate (Expressed as a Percentage of Subject Premium): 20.0% 

Proportional Coinsurance: None 

Nonproportional Coinsurance: None 

Sliding Scale Commission Plan: 
Adjustment Period-l/1190 through 12131190 (1 year) 
Plan-Minimum Commission of 20% at a 65% loss ratio. 

Commission increases by 0.5% for each 1% decline in loss 
ratio for loss ratios between 55% and 65%. 
Commission increases by 0.75% for each 1% decline in loss 
ratio for loss ratios between 35% and 55%. 
Maximum Commission of 40% at a 35% loss ratio. 



APPENDIX K 

EXHIBIT 1 

(1) Actual or ertlmarrd *ubJcct premium for commlssl”n adJusrment pcrwd 
(21 Expected layer I”,> cost f”r the rnfue layer (exprerred as a percenrrge of \“bJeCl premuun, 
01 Comwrance pxcentage (cedanr‘\ partlcipatmn m layer Io\xs nor correspmdmg to an expbcn share of the rrmsurancr prcrmum, rxcludmg the effects of 

nonpropon~onal l”s\ sharing plans 1 
14) Percenragr reducwn I” layer lossa due 1” nonproprrnonal 1”~ shame prowrmns only 
(5) Treaty rate [expvased as a perccnlage of wblect premium] 
(6) Expected meaty loss bi ALAt ram (ELRI [(2, ‘( [IWI - (311 x [IoOCn - (4)1)/(5) 
171 Mimmum ~“mnuss~“n rdn” 20 W’7,: 

comqondmg loss & ALAE rat,” 65 00% 
t8I The deta& uf the *bdmg scak c”mm~ss!“n plan arc wmnwrrd in c”lumnr IA) through (El Values used m the calculation of the crwcred rhdme \cale 

commmm are gnen m wlumm fF) through (1). 

L”ss & ALAE Rat,” 
Interval 

(F) 
Entry Ram 

Cnrrcsponding 
‘0 Lower 

B”und 

(0) 
lllS”“l”C~ 

Charge 
Correrpondmg 

I” lawer 

(A) tn1 
L”WU Upp-‘ 
Bound Bound 

Decrease m 
L”$s & ALAE 

Rat!” 

(D) 
Lower 
Bound 

(El 

Upper 
Bound 
- 

Lms Ran” 
m Column 

(A) 

Bound 
Entry Ratio 

I” C”l”mn (F) 

IH) 
Expected 

Lo\s 
Ratio 
Points 

I” lnrerval 

(I) 
Exprcted Ei 

Reducnons ? 

from Manunum z 

Commwkon z 
Rate 

(CJ x tH) ti 
3 

65.00% and ahwe 000% 2O.OOF ?O.M% I 300 9 I?% 
55.00% 65 00% 0 SO% 25.007c 20.00% 1 IW 14 47% 
35.lM7 55 00% O.?S% 4c.Mm 2s 00% 07w 34 80% 

O.co% 35 00% 0.00% 4oW% 4oM7c OOfKl 1Wou% 

T”L‘dI 

tY) Eqxcted crdmg c”rnrm~~ion ran” fr”m a slmplrrtrc pomt of wew [commlwon ratio corrqmndmg 1” the weary EM (mm 6). gwen the plan abeve. 1 

(IO) Expcctcd comnn~s~“n rats” from an ac!uanal pomt of ww [matmum comrmssion ratu~total 8111 
(I I) Amount hy which the ac~uanal esnmate of the expected commkon ratlo exceeds the hlmplrstlc rrtimarr [( 10) - (9)j 

NOTES 

4 56% 000% 
2 68% 1.34% 

10 ,b% 7 62% 
32 60% 0.00% 

50.00% 8 Y6% 

28 75% 
31 04% 

2 29% 

On lhla cxhlbn. .,I1 cr~r,,n,,r~~“n and loss & ALAE ra,,os arc apressed as pcrcen,age~ of trea,y pra,,,,,,,, 

Column (XC1 The ~“\urancr charger appearmg m d,t\ column are based “n a logrwmal d,\,ribut~“n with a 0.485 coefficxnt of vanat,“,, These ,nsurance charges arc obtamed via bncar 
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APPENDIX L. 
DERIVATION OF A FORMULA FOR CALCULATING THE EXPECTED 

CEDING COMMISSION UNDER A PIECEWISE LINEAR SLIDING SCALE 
COMMISSION PI.AN 

This appendix outlines the derivation of a concise formula for com- 
puting the expected ceding commission under a typical sliding scale 
commission plan. The derivation involves three major steps, as sum- 
marized below. 

Step 1: Let LI , Lz, Lj, . . , L, be a series of loss ratios such that LI > 
L2 > . . . > L,, = 0. This sequence divides the range of possible loss 
ratios into n consecutive intervals, starting with the first interval [L, ,m), 
followed by the intervals [L;, Li-11, where i = 2,3,...,n. DefinefiL;) to 
be the ceding commission ratio corresponding to an L; loss ratio, i = 
1,2,. . ,n. Using this notation, f(L,) represents the minimum commission 
ratio C,,,, while f(L,,) equals the maximum commission ratio C,,,. 
Furthermore, let b, represent the commission slide (i.e., the percentage 
point increase in commission ratio per 1% decline in loss ratio) on the 
interval [Li, LiPI], i = 2,3 ,..., n. Also define bl to be zero, since the 
commission ratio is constant (at C,,,,) on the interval [L,,-;o). 

Using the notation defined above, the typical sliding scale commis- 
sion plan may be expressed as a piecewise linear function of the loss 
ratio L in the following form: 

(1) jvl) = cm ifL rLI 
I + bz(Li - L) if Lz T= L C LI 
j-652) + ML:! - L) if L? 5 L c: L2 

c = f(L) = 

I AL,,-r) + b,,(Lw I -L) ifO=L,,:SL<L,-1 
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Step 2: Let p(L) be the probability density function of L. Then the 
expected ceding commission ratio E(C) is the following: r 

(2) E(C) = 
J f(L)P(LW 
L 

= 
i ‘;O ALI)PWWL 
4 

+i: HLi- 1) + bi(Li-1 - L)]p(L)dL. 
i=2 

Let A4 = E(L) = Expected treaty loss ratio, 
P(L) be the cumulative distribution function of L, and 
P,(L) be the first moment distribution function of L. 

By definition, 
4 

P(Li) = I 0 
p(L)dL and P,(LJ = h 

I 

4 
Q-GW 

0 

for any value L;. 

The above definitions allow one to simplify equation (2), since the 
integral expressions appearing in this equation can easily be stated in 
terms of P(LJ and P,(L;). Now define P;?(L) to be the excess pure 
premium ratio at loss ratio L. The reader may recall that the excess pure 
premium ratio is expressible in terms of P(L) and P,(L) as follows: 

(3) P*(L) = [l - P,(L)] - -$ [l - P(L)]. 

The relationship given in (3) is used to eliminate all the P,(LJ terms 
in the simplified version of equation (2) discussed above. The result is 
an expression for E(C) stated in terms of cumulative distribution function 
values and excess pure premium ratios. 
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Step 3: The remainder of the proof involves further algebraic simplifi- 
cation of the expression for E(C). In particular, the facts that 

AL;) = f(Li- 1) + b;(L+ 1 - L;) and that 

C”,,, = ALI) + i biGI - L) 
i=2 

are employed. The final result is the following expression for the ex- 
pected sliding scale commission. Note that all the cumulative distribution 
function terms have cancelled out. (We define LO to be infinity, so that 
P2(Lo) = 0.) 

(4) E(C) = C,,,,, - M c b;[PdL,) - PAL,- / )I. 
1-l 

Equation (4) provides a convenient formula for calculating the ex- 
pected ceding commission ratio under a piecewise linear sliding scale 
plan, since one needs only a description of the plan, the expected treaty 
loss ratio M, and the appropriate table of excess pure premium ratios in 
order to use it. 

Based on the definitions given above for M and P?, it follows that 
the expression M[P2(L,) - P2(L,- ,)I represents the expected number of 
loss ratio points falling in the interval from L, to L, , . Hence equation 
(4) may be expressed verbally as follows: 

(5) E(C) = Cm,, - ,$, b, { 
Expected loss ratio points in the 

interval from L, to Li-l 

where: E(C) is the expected commission ratio, 
C,,,, is the maximum commission ratio, and 
bi is the commission slide on the j”’ loss ratio interval. 

Since the product of b; and the expected number of loss ratio points 
in the ith interval represents the expected number of commission points 
lost in that interval, it follows from (5) that the expected ceding com- 
mission equals the maximum commission ratio minus the expected points 
of commission lost over the entire range of possible loss ratios. This 
provides an intuitive justification of the formula given in (4) above. 
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APPENDIX M 
USE OF A MIXTURE OF A LOGNORMAL AND A DISCRETE DISTRIBUTION 

TO MODEL AGGREGATE LOSSES 

If there is a positive probability that a particular reinsurance treaty 
will have a loss-free year, then the lognormal model cannot be used to 
specify the aggregate loss distribution for the treaty. This is due to the 
fact that the lognormal distribution is not defined at the value zero. 

One solution to this problem involves the use of a mixture of a 
lognormal and a discrete distribution (hereafter referred to as the mixed 
lognormal distribution) to model aggregate losses. This distribution is 
defined as follows: 

(1) fir) = { 71 - p) * h(r) 

ifr=O 
if r > 0 

where r is the entry ratio; 
fir) is the mixed lognormal probability density function (p.d.f.); 
p is the probability of a loss-free year; 
h(r) is the p.d.f. for a lognormal distribution with parameters p. 

and a2 (the values for these are given below). 

Intuitively, the reader may think of the mixed lognormal distribution 
f as a weighted average of a discrete distribution of unity (which is 
defined only at the zero entry ratio) and a lognormal distribution h (which 
is defined at positive entry ratios), using the loss-free probability p and 
its complement, respectively, as weights. The value for p is determined 
either subjectively or by analyzing past treaty experience, if the latter is 
credible. Notice thatf(r) becomes a lognormal p.d.f. when p is zero. 

It can be shown that for a mixed lognormal distribution, the excess 
pure premium ratio at a particular entry ratio r is given by 

(2) P2(r) = [I - Hl(r)l - 41 - pItI - W-)1, 
where H and Hi are the cumulative density function (c.d.f.) and first 
moment distribution function, respectively, corresponding to the lognor- 
mal p.d.f. h. (If p = 0, this formula reduces to that given for the 
lognormal distribution in Appendix B.) 
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To evaluate the above expression, one needs to determine the values 
of H and HI at the particular entry ratio r. This is accomplished by 
noting that the lognormal distribution h has parameters 

(3) P = - i ln(l - p) - f It-4 1 + CV’) and 

(4) a2 = ln( I - p) + ln( 1 + CV2), 

where CV is the coefficient of variation of the treaty’s aggregate loss 
distribution. 

It is important to note that the quantity CV measures the variability 
inherent among all possible loss amounts on the treaty, including loss 
amounts of zero, even though the lognormal p.d.f. h is defined only at 
positive loss amounts. 

A value for the CV can be calculated from expected aggregate loss 
cost estimates, together with assumptions on the treaty’s frequency and 
severity distributions, using the same algorithm as used in the lognormal 
model. Note again that the expressions for )-L and o2 reduce to the 
lognormal model formulas in Appendix B when p = 0. (The fact that 
the quantity CV used in the development of the lognormal model mea- 
sures the variability inherent only among positive treaty loss amounts, 
as opposed to that among all possible loss amounts, is the reason the F 
and o2 expressions given above differ from those in Appendix B when 
p > 0.) 
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The calculation of H(r) and H,(r) can be achieved via a transfor- 
nation from a lognormal to a standard normal distribution. Recall that 
if a distribution is lognormal with parameters p, and o*, then its first 
moment distribution is also lognormal but with parameters lo + o* and 
u*. Hence, 

(5) H(r) = Q(z) and 

(6) Hi(r) = @(zI>, 

where @ is the cumulative standard normal distribution; 

Z= 
In(r) - p- . 

u ’ 

z, = w-) - P _ u 
u 

(p. and a are defined in (3) and (4) above.) 

The reader should be aware that the mixed lognormal distribution 
model is valid only when 

(7) 
cv2 

p < 1 + cv2 

If the above condition does not hold, then the expression for the log- 
normal parameter cr2 in (4) becomes negative, which is impossible. In 
this case, the aggregate loss distribution must be determined by another 
approach, such as the Collective Risk Model. 
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DISCOUNTED RETURN-MEASURING PROFITABILITY AND 
SETTING TARGETS 

RUSS BINGHAM 

Abstract 

The Hargord Insurance Group employs a total return 
approach in ratemaking and performunce measurement. This 
article describes the discounted return methodology used by 
the Hartford in measuring profit and setting prices based on 
a target return. 

Determination of total income involves the consideration 
of the time value of money in conjunction with the investment 
period related to key cash flows. The paramount importance 
of meeting policyholder liabilities precipitates certain invest- 
ment principles aimed at reducing risk. Liabilities are fully 
funded with fixed income assets invested at a “risk-free” 
treasury murket rate where maturities match the uverage du- 
ration of liabilities. 

Benchmark surplus, dictated by the consideration of fund- 
ing and solvency, is introduced as a base for measuring 
return. The benchmark surplus will differ from the actual 
surplus of a company depending on past results, dividend 
pay>out policy, and debtiequity capital management policy. 

A methodology is suggested for determining benchmark 
rates of return for state regulatory purposes, consistent with 
the management of solvency risk. The benchmark return will 
difSer from actual total return, which is based on reported 
income and surplus. In this context, the risks and rewards of 
investment and capital management policies are borne entirely 
by the owners of the company and reflected in the total com- 
pany return. 
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The benchmark return is suggested for use in ratemaking 
and regulation since i) it includes income from all sources, 
2) it incorporates investment principles which enhance the 
protection of policyholder funds, and 3) it measures return 
against a surplus “standurd” not inj!uenced by noninsurance 
driven capital management practices. 

1. SUMMARY 

This article presents a practical explanation of the discounted return 
methodology and its use in measuring profit and setting targets. The 
approach, applied by line of business, essentially looks at the time value 
of money in conjunction with the investment period related to key cash 
flows. The key cash flow aspects are premiums receivable, losses and 
expenses payable, and the new tax law timing impacts due to the 
unearned premium reserve offset and loss discounting. 

The concept of insurance/benchmark surplus is introduced. Reported 
surplus is viewed as the sum of benchmark and residual surplus. Bench- 
mark surplus is that which is dictated by the consideration of funding 
and solvency. The remaining residual surplus depends on past results, 
dividend payout policy, and debt/equity capital management policy. 

An important feature incorporated into this approach is the determi- 
nation of separate investment yields for operating cash flows, benchmark 
surplus, and residual surplus. The paramount importance of meeting 
policyholder liabilities precipitates certain investment principles aimed 
at reducing risk. Liabilities are fully funded with fixed income assets 
invested at a “risk-free” treasury market rate where maturities match the 
average duration of liabilities. This rate applies to all operating cash 
flows. Liability funding requirements are determined on a discounted 
basis, based on actual business levels and mix. 

The following table summarizes the relationship between industry 
estimated liability funding requirements and invested assets from 1983 
to 1988. Pretax investment yields applicable to operating cash flows and 
benchmark surplus are also shown. 
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TABLE 1 

HISTORICAL INDUSTRY ASSETS, FUNDING REQUIREMENTS, AND YIELDS 

Investment 
Return 

$Billion Investment Yields 
(Before 

Average Estimated (Before Tax) 
Tax) 
On 

Cash & Liability % of Operating Bench- Average 
Invested Funding Invested Cash mark lnvested 

Year Assets Required Assets Flow Surplus Assets -~ 

1988 381.3 269.5 70.7 8.0 7.2 9.0 
1987 337.5 251.1 74.4 7.5 6.8 10.3 
1986 286.5 253.3 88.4 7.0 6.3 14.0 
1985 239.8 239.4 99.8 9.5 8.6 14.6 
1984 216.6 199.4 92.1 11.5 10.4 13.8 
1983 205.4 178.1 86.7 10.0 9.0 13.0 

It is estimated that $269.5 billion in funding (on a discounted basis) 
in 1988 was required to meet the expected ultimate liabilities of accident 
year 1988. This represents 7 1% of average invested assets in 1988. It is 
noted that industry invested assets in 1985 were barely sufficient to meet 
current estimates of ultimate liabilities for that year. 

The magnitude of assumed reserve weakening from 1983 to 1985 
and reserve strengthening from 1986 to 1988 is substantial and greater 
than previous cycles due primarily to reinsurance recoverables. Actual 
investment return on average assets exceeds the investment yields on 
cash flow due to favorable stock market performance and capital gains 
realized during this period. 

Benchmark surplus is assigned a yield that is tied to the risk-free rate 
with a reduction to reflect normal overhead (e.g., plant and equipment). 
The residual surplus yield is that which remains from all other sources 
of investment and other income and will be affected by items such as 
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investment in common stocks, lower quality bonds, and tax-free invest- 
ments. Total investment income from cash flow, benchmark surplus, and 
residual surplus will equal total portfolio yield. 

A methodology is suggested for determining benchmark rates of 
return for state regulatory purposes, consistent with the management of 
solvency risk. Risk-free investments and controlled benchmark leverage 
standards are utilized in order to safeguard policyholder funds. The 
resultant benchmark return differs from actual total return, which is based 
on reported income and surplus. In this context, the risks and rewards 
of investment and capital management policies are borne entirely by the 
owners of the company and reflected in the total company return. 

Section 2 introduces the concepts beginning with a simplified ex- 
ample which considers the timing effect of paid losses only. That is, 
premium and expense are assumed to be settled at the beginning without 
delay. Discounted return is defined and this example is used to demon- 
strate the calculations of return on premium and return on surplus. The 
concept of an underwriting target is also introduced. The example is then 
expanded to include a discussion of other time related sources of in- 
vestment income. The establishment of benchmark surplus and the de- 
termination of investment yield on operating cash flow versus benchmark 
and actual surplus is discussed. Finally, the application of this method- 
ology to the prospective rating process is reviewed. 

Section 3 applies these concepts and the detailed methodology to 
historical industry statutory data from 1983 to 1988. Funding require- 
ments are established and the development of investment yields for cash 
flow and surplus are presented. Actual line of business rates of return 
and implied target combined ratios are discussed. 

The following brief summary, extracted from Table 5, displays the 
historical pattern of returns and combined industry all lines statutory 
results. 
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Accident Combined Benchmark Total 
Year Ratio Return Return 

Calendar 
Year 

Return 

1988 104.2% 13.4% 15.3% 13.1% 
1987 101.7 13.2 18.4 15.1 
1986 104.2 8.6 19.3 15.1 
1985 119.2 -0.2 5.0 8.0 
1984 122.8 1.5 2.2 6.7 
1983 118.5 2.2 5.2 Il.1 

1983 to 1988 119.9% 7.7% 12.1% 12.1% 

TABLE 2 

HISTORICAL. STATUTORY INLXISTRY EXPERIENCE 

This analysis, while based on approximations, demonstrates the large 
swing in returns over the period from 1983 to 1988. The accident year 
returns are more extreme than those of the calendar years. The benchmark 
return methodology, due to the “risk free” investment policies, provides 
some added stability in the measurement of accident year returns. Over 
the composite six-year period, it is estimated that the accident year return 
on benchmark statutory surplus was 7.7%. 4.4 points lower than the 
estimated 12.1% return on total statutory surplus with actual investment 
results. Returns by any measure over the past six years have been below 
other industry standards. 

Target combined ratios based on 1988 investment yields and expense 
levels, extracted from Table 6, are shown below. Personal Automobile 
and Workers Compensation, for example, are more than 7 and 9 points, 
respectively, above the levels which would produce a 15% benchmark 
return. 
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TABLE 3 

Personal Automobile 
Total Personal Lines 

Commercial Automobile 
Workers Compensation 
Total Commercial Lines 

Total All Lines 

Industry Combined Ratios 

Target 
for 15% Accident Composite 

Benchmark Year 1983 to 
Return 1988 1988 

99.9% 107.1% 108.4% 
99.9 105.7 106.8 

100.8 100.3 110.0 
106.5 115.9 119.9 
105.8 103.1 112.4 

103.2 104.2 109.9 

Appendix A presents additional discussion and formulae. The treat- 
ment of cash flows, specifically the tax law timing items, and the issue 
of “surplus” surplus (i.e., surplus greater than might be deemed necessary 
to support premium writings) is discussed. Two specific technical issues 
are discussed as well: the discounting of reserves and other balance sheet 
items, and the relationship of the presented methodology to internal rate 
of return (IRR). 

An overview of the Hartford’s discounted return methodology and 
its key features is presented in outline form below. 
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OUTLINE OF HARTFORD INSURANCE GROUP’S APPROACH TO 
TOTAL RETURN 

Accident Year Basis 

Components of Total Return 
Underwriting 
Investment income on underwriting cash flow (float) 
Investment income on insurance/benchmark surplus 
Investment income on shareholder/residual surplus 

Discounted Operating Return (excluding surplus) 
Underwriting income 
Present value of investment income from five components 

Premium collection 
Loss payment 
Expense payment 
Tax prepayment due to unearned premium reserve offset 
Tax prepayment due to loss reserve discounting 

Fixed assumptions for given accident year 

Management of Solvency Risk and Protecting Policyholder Funds 
Asset/Liability duration matching 
Discounting at risk-free treasury rate; independent of’ asset yields, 

and at tax rate of 34% 
Investment yields variable by line of business 

Insurance/Benchmark Surplus Versus Shareholder/Residual Surplus 
(Equity) 

Setting benchmark surplus 
Funding basis 
Volatility adjustment 
Benchmark surplus investment yield 
Residual surplus and investment yield 

Return on Benchmark Surplus Versus Return on Total Surplus 
Rate of return regulation on benchmark basis 
Shareholder risk, investment and capital management policies, and 

total return 

Alternative Minimum Tax and Changing Tax Rates 
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2. DISCOUNTED RETURN 

What is Discounted Return? 

The term statutory underwriting results generally means the current 
estimate of the ultimate cash values of premiums, losses, and expenses 
for a given year. Because the magnitude and timing of these cash flows 
are quantifiable, the investment income to be achieved can be estimated. 
This investment income, together with underwriting income, produces 
total operating income. 

The concept of discounting involves the recognition of the time value 
of money. For example, if we had to pay someone $105 next year, we 
would invest only $100 at a 5% interest rate today to satisfy that obli- 
gation. There is $5 worth of value (from investment income) in the one 
year delay of payment. 

This principle of time value applied to insurance says that premiums 
are worth less to us, due to delay in collection, while expenses and 
losses cost us less, since payments are paid at some future time. We 
lose investment income on premiums while we gain investment income 
on expenses and losses. 

Discounted return joins the two concepts by attempting to determine 
the ultimate financial performance of a year, resulting from both under- 
writing and investment, valued at the time of the year’s exposure. For 
instance, if the discounted profitability of a book of business is deter- 
mined to be $1,000, then this means the value of this business is $1,000 
at the time it was written. 

How It Works: Nominal (Ultimate Cash Amounts) vs. Discounted 
Return 

It is important to understand the relationship between nominal and 
discounted results. To illustrate this relationship and demonstrate the 
concepts, the following simplified example will be used: 
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* Premium of $1,000, 
* Expense of $300, 
* Loss of $800, to be paid at the end of 2 years. 
. Interest rate of 10% before tax, 6.6% after tax for both years. 

To simplify the example, it is assumed that no delay in collecting 
premium or paying expenses exists. The premium offset and loss dis- 
counting provisions of the tax law are also ignored. 

In this example, underwriting losses are $100 before tax. The after- 
tax underwriting losses of $66.00 and investment income of $48.44 
produce a first-year nominal loss of $17.56. Investment income in the 
second year is $51.64, resulting in a cumulative nominal income of 
$34.08 after two years. The present value of the $34.08 is $30.00 on a 
basis discounted to the beginning of the first year. This is determined by 
dividing $34.08 by 1.066 squared, that is, discounting for two years. 

The discounted profitability of $30.00 is equivalent to the $34.08 
that is expected in retained earnings at the end of two years. For example, 
if $30.00 were in the bank, it would grow to $34.08 in two years, 
compounded at 6.6%. 

Important smoothing of income is achieved by using the discounted 
calendar year as compared to the nominal calendar year. The nominal 
calendar income, which begins with a loss of ($66.00) reaches ($17.56) 
at the end of year 1 and achieves a gain of $34.08 at the end of year 2. 
The discounted calendar income begins at $30.00 and reaches $3 1.98 
and $34.08 at the end of years 1 and 2, respectively. While the ending 
retained earnings value is identical, the yearly calendar flows do not 
provide as clear a picture of profitability. 

The $30 discounted calendar year profit from below is the operating 
income for this business. The underwriting income and investment in- 
come is limited to only cash flow sources related to the business; in- 
vestment income from surplus is treated separately. This discounted 
operating income then, by convention, consists of nominal underwriting 
income plus the investment income credit, both after-tax: 

Discounted Operating Income = Underwriting Income + 
Investment Credit. (2.1) 
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ILLUSTRATION 1 

NOMINAL AND DISCOUNTED INCOME EXAMPLE 

At 
Beginning 
of 1st Year 

Nominal Income Before Tax 
Underwriting 
Investment from Loss Reserves 

from Retained Earnings 

Nominal Income After Tax 
Underwriting 
Investment from Loss Reserves 

from Retained Earnings 

Nominal Balance Sheet 
Loss Reserves 
Retained Earnings 

Net Income 
Nominal 
Discounted 

($100.00) 
- 
- 

(66.00) 
- 
- 

800.00 
(66.00) 

(66.00) 
30.00 

At End 
of 

1st Year 

At End 
of 

2nd Year 

$ - 
80.00 
(6.60) 

$ - 
80.00 
(1.76) 

52.80 
(4.36) 

52.80 
(1.16) 

800.00 0 
(17.56) 34.08 

(17.56) 34.08 
31.98 34.08 

The investment income credit is the present value of the investment 
income derived from the investment of loss reserves. This is normally 
determined directly by formula to avoid the need of calculating yearly 
cash flows as we did above. Since the average payment (in this example, 
the only payment) is delayed two years, the following formula is used: 

Investment Credit = (1 - l/(1 + r”)) X Loss (2.2) 
= (1 - l/(1.066’)) x $800 
= $96 
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The present value of the investment income from loss reserves is 
$96. The discounted operating income is Underwriting Income + In- 
vestment Credit = ($66) + $96 = $30. This answer is identical to the 
figure produced from the more detailed calculations in Illustration 1. 

Calculating ROP and ROS 

Once the dollars of income have been determined, it is desirable to 
express them as a measure of return. The first of these is Discounted 
Operating Return, defined as discounted operating income as a percent- 
age of premium. In our example, ROP is $30 t $1,000, or 3%. 

Discounted Operating Return (ROP) = Discounted Operating 
Income/Premium. (2.3) 

Total income includes investment income on surplus-related assets 
in addition to operating income. Surplus-related assets are the residual 
invested assets that remain after all operating liabilities arc funded. That 
is. invested assets must first be “put aside” to pay out loss reserves and 
other liabilities. Only the remaining, uncommitted invested assets pro- 
duce investment income for surplus purposes. 

Surplus is considered in total at this time, with benchmark surplus 
to be discussed later. Also, the determination of funding requirements 
plays a key role in the actual process of performance measurement and 
target setting (also to be discussed later). 

Although total income can be related to premium in order to produce 
a return on premium figure, normally total income is e.rcpressed as a 
percentage of surplus (equity). If investment income on uncommitted 
assets equates to 6.0% of surplus, when operating at a 2 to 1 premium 
to surplus ratio, the ROS is calculated as follows: 

Return on Surplus (ROS) = 
Operating Return X Premium/Surplus Ratio + Yield on Surplus 

= 3% x 2 + 6.0%‘~ = 12.0% (2.4) 
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Setting Targets 

Selection of an appropriate RUS target requires an assessment of the 
risk/return relationship for a line of business. After this has been eval- 
uated, the process of setting targets involves determining what combined 
ratio will produce the desired ROS. In the simplest terms, the loss figure 
that will result in the target ROS, when fed through the calculations 
described above, is “backed into.” 

Suppose the goal is to achieve an ROS of 15%. Then it is necessary 
to determine what level of loss will result in this return. Continuing with 
the earlier example, it is known that the $800 loss figure (loss ratio of 
80% and combined ratio of 110%) is too high since the ROS is 12.0%. 
With a little bit of math, it is determined that a loss of $772.22 (loss 
ratio of 77.2% and combined ratio of 107.2%) will produce an ROS of 
15%. 

Current Applications at the Hartford 

The discounted return methodology is being used today to both 
measure returns and set targets. Historical returns are measured by line 
of business throughout the year and over each planning time horizon 
using the formula approach described. Targets are being determined by 
this approach as well. In addition, the more detailed approach using 
specific multi-year cash flows is being applied to specific business pro- 
grams and large accounts. 

The methodology is also being used in the development of prospec- 
tive rates. Most of the required components are developed as part of the 
traditional rating process. The prospective underwriting view, which 
includes a contingency margin, together with the additional assumptions 
on interest rates and benchmark leverage, lead directly to the determi- 
nation of an expected rate of return. 

Several other factors are considered in this process beyond the simple 
case illustrated and will be discussed. They do not change the basics 
discussed so far. 
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In Practice 

The illustration presented above is a simplification. Several other 
factors are considered when this methodology is applied to actual ex- 
perience or in prospective rating. 

Other Cash Flow Sources of investment Credit 

Five basic cash flow components are considered to impact total 
investment income. In addition to payment of loss revenues, they are: 
premium collection, expense payment, and prepayment of tax due to 
both loss discounting and the 20% unearned premium offset. These latter 
two are products of the new tax law and result in a loss of investment 
income. Premium collection delays also result in a loss of investment 
income while expense payment delays result in a gain of investment 
income. 

Benchmark Leverage 

Three sources of insurance company risk are: insurance, investment 
and solvency. Insurance risk, derived from both the activities of under- 
writing and the investing of underwriting cash flows, will principally be 
a function of underwriting if the investment of underwriting cash flows 
is at a “risk-free” rate where maturities match liabilities (i.e., loss pay- 
outs). This investment approach essentially isolates the total operating 
income from the effects of investment policy and market volatility. 

Investment risk is a function of company investment policy concem- 
ing types of investments and maturities, which gives rise to yield and 
default risks and related volatility. 

Solvency risk is the exposure of surplus to both insurance (under- 
writing) and investment risk. The magnitude and volatility of under- 
writing losses, along with fluctuating investment results with their as- 
sociated probabilities, are key determinants of this risk. 

An important aspect of total return and management of solvency risk 
lies in determining the proper level of surplus. Surplus should be a 
function of two factors: 
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I. The degree and magnitude of financial exposure. This is essentially 
the amount and length of time over which funds are committed to 
the insurance operation of a respective line of business, and 

2. The degree of volatility in the loss/combined ratio which will 
establish the prudent amount of surplus required to guard against 
the probability of ruin. 

The approach developed determines funding requirements by line of 
business to address the first aspect of financial exposure. Surplus is set 
initially in direct proportion to funding requirements (i.e., money at 
risk). Judgemental evaluation of the relative volatility of a line of busi- 
ness, to reflect characteristics such as catastrophes, is then incorporated 
to arrive at a final benchmark leverage. 

Statutory policyholder surplus should be the reference basis upon 
which the benchmark standards are established, since this is the most 
readily available and is consistent across all companies. 

Yields on Operating Cash Flow vs. Surplus 

It is important to distinguish among investment yields on operating 
cash flow, benchmark surplus, and residual surplus. In order to protect 
policyholder funds and permit market pricing, operating cash flows are 
assumed to be invested in current fixed income-producing treasury assets, 
with yields varying by line of business and maturities related to length 
of payout. Benchmark surplus is assumed to be invested at approximately 
90% of the average operating cash flow rate, a reduction for normal 
noninvested overhead. Other aspects which affect overall yield are re- 
flected in the residual surplus yield so that the total income from both 
cash flow and all surplus assets when combined will equal the total 
portfolio yield. 

Items which are part of the residual surplus yield determination 
include realized capital gains, other income, investment in lower-yielding 
common stock and real estate, adjustments for nonearning assets, and 
allowance for tax-oriented investment policies aimed at maximizing after- 
tax income. 
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GAAP equity versus statutory surplus issues would not affect the 
benchmark return previously calculated. Total return is calculated after 
combining both benchmark and residual surplus investment income and 
is stated as a percentage of total surplus. This total would be the equity 
as defined by a given company. 

Application to Rating 

The discounted return methodology is integral to the rating process 
since it estimates the expected ultimate total return from both under- 
writing and investment income to be realized from the business under 
review, measured in today’s dollars. The approach presented provides 
for the calculation of a rate of return coincident with any prospective 
rate, consistent with the objective of managing solvency risk, and pro- 
tecting policyholder funds. 

Tax Law 

The approach utilizes the corporate tax rate effective at the time the 
business was written (now at 34%). This applies to underwriting and 
investment income on cash flow and benchmark surplus, since these are 
assumed to be invested in risk-free Treasurys, which are taxable. Non- 
taxable investments will affect only the residual surplus yield and the 
total return, but not benchmark return. 

Although we don’t know what future revisions may be made in the 
tax law, existing law should be reflected in the measurement of historical 
returns. Accident year 1986, for example, would now have a discounted 
return that is different than originally planned even if all underwriting 
and investment assumptions held true. The after-tax return would differ 
due to the tax rate change and its effect on subsequent calendar year 
investment income derived from the 1986 accident year loss reserves. 

The alternative minimum tax (AMT) must also be considered with 
allowances made for different tax rates and a redefinition of taxable 
income when this occurs. In the methodology presented, 20%, rather 
than the 34%, would be used to determine the benchmark return if the 
AMT were applicable. 
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3. APPLICATION TO HISTORICAL INDUSTRY DATA 

The objective of this section is to demonstrate the application of this 
methodology by utilizing 1988 industry annual statement data. Only 
approximate estimates of reserve strengthening and average delay in 
collection of premium and payment of loss and expense have been made 
since the focus here is on the presentation of the methodology. The 
magnitude of reserve weakening from 1983 to 1985, and strengthening 
from 1986 to 1988, is fairly substantial and greater than previous cycles 
due primarily to reinsurance recoverables. 

Full realization of the investment income credit (i.e., present value 
of investment income on all cash flows) requires a specific level of 
funding based on the volume and mix of business written. Funding is 
the present value equivalent that is invested to produce the investment 
income credit. This is determined first using the formulas shown in 
Appendix D. 

In order to determine benchmark and total return, investment income 
in excess of that produced by operating cash flows must also be consid- 
ered. It is therefore necessary to look at total investment income and 
reported total surplus to determine this residual after funding is estab- 
lished. This is also shown in Appendix D. 

The results of this approach are summarized for personal and com- 
mercial lines in the following Table 4. The industry’s 1988 statutory 
data and the Insurance Expense Exhibit as published by A. M. Best are 
the basis for this analysis. 

It should be noted that the application is required by line of business. 
Funding and discounting, for example, are affected by loss payout. 
Surplus allocation is based on relativities derived from a simultaneous 
evaluation of all lines of business using the volatility-adjusted funding 
approach, with the total benchmark leverage set at 2 to I. These bench- 
mark leverage standards are not discussed in detail here since their 
development involves some subjective judgement. They are sufficiently 
reasonable to serve in the demonstration of the methodology. 
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TABLE 4 

1988 ACCIDENT YEAR ALI. LINES FCINDINC; AND INVWTMENT CKEDVI 
(ASSUMED AVERAGE 8% PRETAX INTEREST RATE) 

($Bur ION) 

Committed Assets for 
Liability Funding 

Personal Lines 
Premium 
Expense 
Loss 
Tax Law: 

Unearned Prem. Res. Offset 
Loss Discounting 

Commercial Lines 
Premium 
Expense 
Loss 
Tax Law: 

Unearned Prem. Res. Offset 
Loss Discounting 

Total All Lines 
Premium 
Expense 
Loss 
Tax Law: 

Unearned Prem. Res. Offset 
Loss Discounting 

Net Funded Liabilities and 
Investment Credit 

Yield (after tax) 
Funding Equity 
Benchmark Surplus 

Yield (after tax) 
Residual Surplus 
Net Other Assets/Liabilities 
Total Statutory Surplus 

Yield (after tax) 

Cash & Invested Assets 
Yield (after tax) 

Nominal 
Value 

85.7 
22.1 
68.6 

113.9 
32.6 
84.8 

199.6 
54.7 

153.4 

Years Nominal 

A”e Balance 
Lag Sheet 

.I7 

.I7 
1.38 

.2s 
25 

3.11 

21 
.22 

2 34 

Discounted 
Balance 

Sheet ____ 

Investment 
Credit 

~ 14.3 - 13.9 -3 
3.1 3.6 .2 

94.5 89.0 4.3 

--2.9 
2.x 

-2.8 
-2.7 

-.I 
-.I 

-2X.5 27.h -1.5 
X.1 1.9 .4 

2h3. I 232.5 12.6 

-3.9 
~ 14.4 

-3.7 
- 12.8 

-.2 
-.J 

-42.8 -41.5 -2. I 
Il.8 1 I.5 .6 

358.6 321.5 16.9 

6.8 
17.2 

-6.5 
-1.5.5 -- 

303.h 

99.8 

Il.3 
-33.4 
111.1 

381.3 

269 S 

34.1 
99.8 

II 3 
-33 4 
III 1 

__- 
3x1 3 

-.3 
-.u 

14.2 
5.3% 
I.9 
4.7 
4.8% 
I.8 

0 
8.4 
7.5% 

22.6 
5.9% 
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It is assumed that all insurance liabilities are fully funded and that 
only the remaining balance of invested assets is available for surplus- 
related investment income. In this case, the total (average) statutory cash 
and invested assets is $38 1.3 billion, which produced investment income 
of $22.6 billion. Assets are committed for insurance liability funding for 
premium (agents’ balances viewed as a negative liability), expense pay- 
able, loss reserves, and tax law prepayment due to the unearned premium 
offset and loss reserve discounting. These latter two are also viewed as 
negative liabilities. 

Fixed income treasury market yields have been used to discount the 
accident year and to determine investment income on funding. These 
yields average 4.9% and 5.4% after tax, respectively, for personal and 
commercial lines. Yield curves are used to produce various yields by 
line assuming an approximate match of investment period with liability 
payout. 

The investment of funds committed to support policyholder liabilities 
in risk-free Treasurys with maturities matching liability payout essentially 
eliminates investment and interest rate risk as a factor affecting operating 
return. 

Balance sheet loss reserves (in billions of dollars) are estimated at 
$358.6 nominal, and $32 1.5 discounted. Total insurance liabilities to be 
funded are $303.6 nominal and $269.5 discounted. Invested assets of 
$269.5 produce an investment income credit of $14.2, for an overall 
5.3% average yield. This is based on an average 2-year treasury bill 
yield of 8% pretax for 1988. 

Restated, we need to set aside $269.5 to fund ultimate liabilities of 
$303.6, which will produce $14.2 of investment income credit on a 
present value basis. This calculation recognizes the timing of premium, 
loss, expense, and tax flows and related investment income, on an after- 
tax basis. 

All remaining assets are viewed as uncommitted. Benchmark surplus 
is established first at an overall 2 to 1 basis, with its yield set at 90% of 
the cash flow yield, or 4.8%, to adjust for normal noninvested overhead. 
All investment income on residual assets (after deduction of the bench- 
mark surplus), as well as other income, is related to the residual surplus. 
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Since surplus is considered to be invested uniformly for all lines, in- 
vestment income produced on these uncommitted assets is assumed to 
be at a fixed rate and not variable by line of business. 

For convenience, the combined benchmark and residual surplus and 
related investment income are used in the calculation of total return. The 
equity due to discounted funding of $34.1 ($303.6 less $269.5) is also 
considered to be shareholder equity on a discounted basis and income 
on this is credited to residual surplus. The resultant discount-based total 
surplus yield is 7.5%. 

This yield will fluctuate in comparison to the yield applicable to 
funding and reserve discounting since it is affected by investment policy. 
Stock investment is particularly influential in this regard since it brings 
lower dividend yields, but potentially significant, although erratic, capital 
gains, The level of invested assets in relation to required funding, es- 
pecially impacted during periods of substantial business growth, is also 
a key factor in determining this yield. increased business writings require 
the commitment of more funds, leaving relatively fewer residual invested 
assets to produce investment income for surplus. 

It is important to note that all investment income is included in this 
approach. This methodology has simply determined the allocation of 
investment income among operating cash flows, benchmark surplus, and 
residual surplus. 

The industry’s estimated 1988 statutory discounted operating income 
is: 

Discounted Operating Income = Underwriting Income -t 
Investment Credit 

= ($5.6) + $14.2 = $8.6 (3.1) 

Estimated discounted operating return is: 

Discounted Operating Return = Discounted Operating Income / 
Premium 

ROP = $8.6 I $199.6 = 4.3% (3.2) 
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Estimated return on benchmark surplus is: 

Return on Benchmark Surplus = ROP X Premium / 
Benchmark Surplus + Benchmark Surplus Yield 

BROS = 4.3% x 2.0 + 4.8% = 13.4% (3.3) 
Estimated return on total surplus is: 

Return on Total Surplus = ROP X Premium / Surplus + 
Surplus Yield 

TROS = 4.3% x 1.8 + 7.5% = 15.3% (3.4) 

Table 5 summarizes six years of historical industry returns. Approx- 
imate assumptions were made as to the degree of reserve strengthening 
in each year to estimate accident year results. The changing tax law and 
effective tax rate differences in 1986 and 1987 have been considered. 

The accident year returns exhibit more extreme swings over the 
period as compared to published calendar year returns. The benchmark 
returns provide some stability, since they are not influenced by capital 
gains, as are the total returns. 

It is worth noting that the returns by any of the measures have been 
poor over the six-year period. The composite benchmark return has been 
7.7% over this period, compared to the total return of 12.1%. The 
calendar year reported composite is also 12.1%. 

Line of Business Targets 

Target combined ratios, based on the achievement of a 15% return 
on benchmark surplus, are shown in Table 6 by line of business. These 
targets have been developed utilizing the investment yields and expense 
levels from 1988. Personal lines accident year combined ratios would 
have to improve (from the 1988 105.7 ratio) by nearly 6 points to 99.9 
in order to achieve a return of 15% on benchmark surplus. Commercial 
lines returns in total, on the other hand, have improved dramatically 
from the unprofitable experience of earlier years and are at reasonable 
levels, although cumulatively still below a long run 15% average. Some 
specific lines still lag substantially behind. 
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Year 

J9XX 

I987 

19X6 

J9XS 

19x4 

19x3 

19x3 10 IYXX 

Compo\ltc 

Line of 

BUWllZ\\ 

Prrronal 

Commercial 

Combined 

Perwnal 

Commercial 

Combmed 

Perwnal 

Commercial 

Combmed 

Pcrwnal 

Commercial 

Combmed 

Perwnal 

Commercial 

Combmed 

Cash 

Flow 

Yield 

(Before Tax I 

74 

X2 

x.n 

7 0 

77 

75 

65 

72 

7 0 

x7 
Y7 

YS 

JO 5 

II x 

II s 

9.2 

JO.2 

JO 0 

AW. 

YtZU 

Comb. 

Ratlo ROP 

105 7 I) 4 

IO.71 73 

1042 4 1 

103 Y 0 6 

100.1 7.5 

101 7 4 6 

107 0 -I 0 

IWO i 7 

104.2 26 

III x -25 

12s 7 24 
II’) 2 -24 

108 2 1) 4 

136 x -I 4 

I22 x 2 0 

IO.5 6 0 9 

I30 Y ? .T 

rrx 5 I 3 

106x 02 

II24 II 

IOYY I6 

Benchmark 

Prem 

SUrplW 

2x 

I 7 
2 0 

2.x 

I.7 

2.0 

2.x 

I.7 

7.0 

2.7 

I6 

? 0 

26 

I .h 

2.0 

2.6 

I.6 
2 0 

27 

I 1 

2.0 

BROS 

Premf 

sulplus 

5x 75 

16.8 I.5 

I3 4 IX 

5.7 

I6 5 

I3 2 

27 

I6 

I9 

OS 

I? 2 

x 0 

2.0 

0.7 
-0 2 

66 

-I6 

I S 

73 

-0 Y 

22 

4 I) 
Y s 

77 

27 

I6 

19 

25 

1.6 

I9 

27 

I3 

IX 

22 

I .4 

I 7 

2 5 

I 5 

IX 

TOIUI 
Cal 

TROS TROS 

84 

IX 4 

IS 3 13.1 

II 3 

?I 5 

IX 4 IS.1 

II 4 

22 x 

IY 3 IS.1 

33 

5x 

5 0 x.0 

6.7 

-06 

22 6.7 

95 

27 

52 II.1 

X.6 

I3 Y 

I2 I 12.1 



TABLE 6 

Line of Business 

Homeowners 
Per Auto Liab. 
Per Auto PhyD. 

Total Per Auto 

Corn Auto Liab. 
Corn Auto PhyD. 

Total Corn Auto 

Workers Comp. 8.0 .25 
Other Liab. 8.8 .2s 
Medical Liab. 9.0 .25 

Corn F & Allied 7.3 .25 .25 1.25 36.5 
Corn Multi Peril 7.6 .25 .25 2.00 36.1 
Other 7.6 .25 .25 2.00 31.7 

Personal 7.4 .17 .17 1.32 25.8 
Commercial 8.2 .25 .2S 2.94 28.6 
All Combined 8.0 .21 .21 2.24 27.4 

TARGET COMBINED RATIOS FOR 15% BENCHMARK RETURN 
(BASED ON 1988 INVESTMENT AND EXPENSE LEVELS) 

Cash 
Flow 
Yield 

BT 

7.3 
7.5 
7.3 

7.8 
7.3 

Payment Lag 

Prem 

.17 

.17 

.I7 

.17 

.25 

.25 

.25 

Exp Loss -- 

.17 1.25 

.17 1.75 

.I7 .75 

.17 1.34 

.25 2.50 

.2s .75 

.2s 1.97 

.25 3.00 

.25 5.50 

.25 6.50 

Expense 
Ratio 

32.0 
24.1 
24.2 
24.2 

28.3 
30.0 
28.8 

24.5 
23.6 
13.9 

Target 
Comb. 
Ratio ROP - - 

99.7 3.2 
101.0 4.5 
98.4 2.8 
99.9 3.8 

102.5 5.7 
97.0 3.2 

100.8 4.9 

106.5 5.7 
119.4 9.5 
136.7 9.5 

99.6 2.8 
98.5 5.7 
99.1 5.7 

99.9 3.7 
105.8 6.2 
103.2 5.1 

Benchmark 

Preml 
SW 

3.2 
2.3 
3.6 
2.7 

1.8 
3.2 
2.1 

1.8 
1.1 
1.1 

3.6 
1.8 
1.8 

2.8 
1.7 
2.0 

BROS 

15.0 
15.0 
15.0 
15.0 

15.0 
IS.0 
15.0 

15.0 
15.0 
15.0 

15.0 
15.0 
15.0 

15.0 
15.0 
15.0 
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It is important to note that many of the assumptions used in deter- 
mining these targets are rough approximations for the purpose of dem- 
onstrating the methodology. In particular, personal lines and commercial 
lines premium collections and expense payments are assumed to lag two 
months and three months, respectively. 

Individual company application of this methodology would require 
determination of the applicable cash flow patterns and modification of 
the benchmark leverage to reflect unique characteristics of that com- 
pany’s business. 

In summary, determination of this target combined ratio requires 
simply the following input assumptions: 

* Expense ratio 
* Investment yield (Treasurys) 
. Average premium, expense, and loss payment dates 
* Benchmark leverage 
* Target benchmark return 

These should, of course, reflect unique company and state charac- 
teristics. 
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APPENDIX A 

SUPPORTING DETAIL AND FORMULAS 

Analysis of financial performance is best accomplished on a dis- 
counted accident period basis. This presents the truest picture of business 
being written since the present values of all cash flows are considered, 
regardless of which calendar period they are reported in. The results may 
appear quite different than calendar year results viewed on a nominal 
basis, which are affected by reserve adjustments, underwriting, and 
investment results attributable to prior accident years. 

A detailed model can be used to portray the exact cash flows for a 
given accident year, and would include items such as the loss payout in 
subsequent calendar years. Formulas are shown in Appendices B, C, 
and D which closely approximate such exact model results but provide 
a much simpler means of application in practice. In these formulas, it is 
assumed that premium, loss and expense are paid on a single payment 
date. 

In practice, not much accuracy is sacrificed by using average payment 
date; for that reason, the formulas are presented using average dates. 
Furthermore, it is assumed that taxes are incurred and paid on under- 
writing at the beginning of the year without delay. Tax on investment 
income is paid without delay also. All discounting is as of the beginning 
of the year. 

The same approach used for losses is applied to premium and ex- 
pense. It should be noted, however, that premiums received late (positive 
payment lag) or expenses paid early (negative payment lag) will result 
in a reduction of funding. The tax law timing items-loss discounting 
and unearned premium offset-are considered to be reductions to funding 
since credits are to be received at a date in the future. 

Industry or company specific cash flow patterns, if credible, can be 
utilized. This is similar, for example, to the loss discounting approach 
under the present tax law with regard to loss payout. 
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Tax Law Timing Items Viewed us a Reserve 

The two tax law timing items, the loss discounting and 20% unearned 
premium offset, are viewed as analogous to losses in terms of their time 
value effect. When considered as a “loss discount tax reserve” and an 
“unearned premium tax reserve ,” parallels to loss reserves are drawn. 

Loss reserves are the reserve liabilities which are invested until 
payments are made. The loss discount tax reserve is the prepaid tax 
which is paid due to loss discounting and is reduced as recoveries are 
achieved through successive period discounting. Loss discounting is 
viewed in this manner as a negative loss reserve with recovery payments 
resulting in an ending reserve of zero. This negative reserve is invested 
and produces negative investment income. The unearned premium tax 
reserve is similar except that the recovery occurs in the following year 
and the negative investment income is for one year only. All taxes are 
assumed paid when incurred. 

Reconciliation of Nominal and Discounted Income for a Single Year 

When following the flows for a single accident year until settlement 
of all losses, it is possible to provide an exact reconciliation of nominal 
and discounted results. The nominal ending retained earnings after the 
settlement of all cash flows for a given year is the total return from 
underwriting and all investment income. This value, discounted back to 
the present, will equal the accident year discounted operating return. 
This is calculated by adding underwriting income and the investment 
credits from premium, expense, loss, loss discount tax reserve, and 
unearned premium tax reserve. 

Funding 

Funding plays a key role in the methodology. Funding is the amount 
of assets/liabilities that are needed to support a particular level of busi- 
ness. Specifically, it is defined as the present value equivalent in assets 
that are required to produce the present value of investment income from 
all future cash flows. Funding is based on the magnitude of the cash 
flows and the length of time that it takes to settle them, summed across 
all flows after discounting to present value. 
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Funding is a beginning point in the establishment of leverage as it 
provides a measure of the amount of funds committed when writing a 
line of business-a basis for assigning surplus (before adjusting for 
volatility). Total funding across all lines of business determines the total 
invested assets that must be committed by a company to support all 
writings. The remaining investment assets determine the residual surplus 
yield. 

Surplus Runoff 

The need for benchmark surplus remains beyond the initial year that 
the business is written. It is suggested that surplus committed to support 
the business be allowed to run off in proportion to the reduction in 
funding over time. Since loss reserves are the primary long-term user of 
funds, then consequently surplus should run off as loss reserves decline 
to zero. 

Surplus Surplus and Related Investment Income 

In practice, a company operates each year with a beginning reported 
surplus that results from several factors including past results, dividend 
payout policy, and debt/equity capital management policies. Also, some 
of the assets are not income-producing investments. The approach rec- 
ognizes actual invested assets and accepts the surplus as given. 

By introducing benchmark leverage and the associated policyholder 
risk minimization investment principles, however, the state rate of return 
calculations can be divorced from reported actual returns. Both the 
investment income and surplus (or equity) bases differ between the 
benchmark and reported returns. In this sense, the concept of surplus 
surplus is irrelevant to the determination of rate of return for state 
regulatory purposes. 

The relationship of invested assets, required funding, and actual 
surplus is an important one. During periods of rapid growth, funding 
demands can “use up” invested assets. The result is a reduced yield on 
residual surplus since relatively fewer invested assets remain to produce 
residual income. 



MEASURING PROFI I AI3II.I I-Y AND SETTING TARGETS 151 

Technical Issues 

Discounting 

Discounting (primarily of loss reserves) has gained prominence due 
to the increasing recognition that much of insurance profitability involves 
investment income derived from the delay in paying losses subsequent 
to the collection of premium. Certainly investment income has become 
increasingly important to insurance industry total returns. 

Discounting is viewed as a means of determining the value inherent 
in balance sheet assets. A discounted loss reserve, for example, is felt 
to represent the true ultimate liability of losses in present dollars, that 
is, the amount of money that needs to be set aside to pay ultimate losses. 
The difference between this discounted reserve and the nominal (i.e., 
reported) reserve is thus considered company, or shareholder, equity. 

Unfortunately, several other items having significant cash flow (and 
investment income) impact are usually ignored. Agents’ balances and 
reinsurance recoverables, for example, are two important ones. A com- 
plete valuation solution requires that a discounted balance sheet be de- 
termined in parallel to the present nominal balance sheet in which all 
items are considered. Focusing on loss reserves only and attempting to 
introduce this discount into the nominal balance sheet is not sufficient, 
and perhaps misleading. Also, market valuation of assets is equally 
important. 

The treatment of taxes with respect to loss discounting is a particular 
problem. The difficulty of handling taxes is often glossed over, if dis- 
cussed at all. A pretax discount factor is often used and a vague statement 
made as to the need to “tax effect” the result. Unfortunately, a pretax 
discount factor will produce an overstated discount equity. 

Consider a loss payable in one year of $1,000. If the pretax discount 
rate is lo%, then the $1,000 reserve discounted for one year will be 
$909.09, with an apparent discount equity of $90.91. If $909.09 is 
invested for one year at lo%, however, the $90.91 in investment income 
must be taxed, leaving an insurance company short of the $1,000 required 
to pay the claim. 
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The correct amount is determined by discounting the reserve at the 
after-tax rate of 6.6%, assuming a 34% tax rate, and also applying the 
loss discount provision of the tax law. The discounted reserve then will 
be $938.09, which invested at 10% for one year and taxed at 34% will 
produce exactly the $1,000 needed to pay the claim, excluding the effect 
of the discount provision. The reserve discount equity is $1,000 minus 
$938.09, or $61.91-the investment credit defined earlier. With recog- 
nition of the tax law discounting provision, this is reduced to $60, the 
net investment credit attributable to loss reserves. This is the true equity 
in the reserve. 

RESERVE DISCOUKT Ey~~rr~ 
$1,000 Loss PAYABLE IN GIVEN NUMBER OF YEARS 

WITH 10% PRETAX DISCOUNI., 34% T4x RATE 

Number of’ Years 

1 2 3 - 

After-Tax Based Discounted Reserve 
Discount Equity 

-Before Tax Loss Discounting 
--Including Tax Loss Discounting 

938 xx0 825 

62 120 175 
60 114 164 

Pre-Tax Based Discounted Reserve 909 826 751 
Discount Equity 91 174 249 
After Tax at 34% 60 114 164 

It should be noted that use of a pretax discount with subsequent 
taxing of the discount will produce the identical discount equity, as long 
as the tax law discount rate and payout pattern equals the actual invest- 
ment rate and payout. This was not true prior to introduction of the loss 
discount provision of the tax law. 
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internal Rate of Return (IRR) 

Internal rate of return is sometimes used to determine the “value” of 
insurance from the shareholder perspective. It essentially provides a 
single measurement, via the IRR, which indicates the rate of return on 
shareholder capita1 over a period of time produced from the net capital 
flows. 

The IRR has inherent limitations, due to its simplicity, that reduce 
its value in comparison to the discounted return, or net present value, 
approach. The IRR approach is unable to distinguish between different 
accident years and/or different types of cash flows and yields. Each 
accident year should be viewed as a unique entity (much as an individual 
project in manufacturing), in which each year’s characteristics dictate 
initial benchmark surplus needs and subsequent runoff as this need 
diminishes. The release of benchmark capital is thus related to the 
respective accident year operating flows. In addition, operating cash flow 
and surplus should be viewed as fundamentally different, in terms of 
cash flow pattern, related invested assets, and yields produced from these 
invested assets. 

By its very definition, the IRR is a single number which represents 
an overall return from net calendar period capital flows, without recog- 
nition of different accident year or cash flow components. The IRR, 
furthermore, can be altered by arbitrary capita1 withdrawal (i.e., dividend 
payment) policies. The discounted return, a specific measurement of 
profit, is not subject to such alteration. 

If the IRR methodology is applied by accident year and capital is 
withdrawn as liabilities are settled, then the results will be essentially 
the same as the discounted return methodology. If a single accident year 
is analyzed and capita1 is released only after all operating cash flows are 
settled, the following formula demonstrates the relationship between the 
IRR and yields applicable to operating cash flow and surplus as used in 
the discounted return methodology. 
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Ending Capital = S( I + IRR)“’ = S( 1 + RJ)‘V + OR( 1 + R)N, 

where 

S = Beginning Surplus, 
RS = Surplus Yield, 

OR = Discounted Operating Return, 
R = Cash flow yield, 
N = Year in which last flows are settled 

Risk Adjustments and Differing Cash Flop, Yields 

The yield applicable to operating cash flows discussed in this paper 
has not differentiated between the components of this flow nor have risk 
adjustments been made. In certain situations the yields applicable to the 
flows should be different and adjusted for added risk. Yields applicable 
to retrospective loss rated premiums, for example. should reflect the 
added credit risk associated with the substantial collection delays. An- 
other example is in the treatment of reinsurance where credit risk ad- 
justments are appropriate both in the premium and loss areas. 

Appendices B, C, and D 

Appendix B presents further detail on general definitions and for- 
mulas, and Appendix C presents the formulas for the loss discount 
investment income credit when actual payouts and yields differ from the 
tax law. 

It should be noted that the difference between actual yield and that 
assumed under the tax law has a greater effect than do payout differences. 
Even though a loss may be modeled on a single payment date, the loss 
discount is not recovered on a single date but rather as dictated by 
successive year discounting. 

Appendix D summarizes all formulas in tabular form, on both a 
nominal and a discounted basis. Although this paper has focused on a 
discounted basis for valuation, a further understanding of the method- 
ology is achieved by considering the parallel nominal balance sheet and 
income statements. 
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APPENDIX B 

GENERAL DEFINITIONS AND FORMULAS 

Underwriting Income = (P - E - L)( I - 7’), 

where P = Premium, E = Expense, L = Loss, T = Tax Rate 

Nominal Basis 

Operating Return = Underwriting Income 
+ Investment Income on Insurance Liabilities 

Total Return = Operating Return 
+ Investment Income on Surplus 

Discounted Basis 

Operating Return = Underwriting Income 
+ Investment Income Credit on Insurance Float 

Investment Income Credit (ICC) = Present Value of Investment In- 
come on All Cash Flows Related 
to the Accident Period 

Premium ICC = -(I - D,,)P 
Expense ICC = (I - D,)E 
Loss ICC = (I - D,)L 
UPR Tax ICC = (I - D,)(.2T)PU 
Disc Tax KC: See Appendix C for formula 

where D = l/(1 + R)N, i.e., Discount Factor 
R = rate for calculating discount, after tax 
R,, = tax law discount rate before tax 
N = average payment date for Premium, Expense, 

or Loss, respectively 
for D,,, N = I, UPR tax recovery payment date 

Cl = Annual Premium Year End Unearned factor 
(i.e., Unearned Premium/Premium) 
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NominallDiscounted Reconciliation 

Discounted Operating Return = Nominal Ending Total Return / 
( I + R)“, 

where N is the ending period when all insurance cash flows have 
been settled. 

All dollar figures and discount factors are after-tax except discount factor 
for loss discounting using R,,, the tax law discount rate. 
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APPENDIX C 

LOSS DISCOUNTING INVESTMENT INCOME CREDIT FACTOR 
(FACTOR TIMES loss FOR $ IMPACT) 

1) Actual and Law Rates and Payouts Same 

-{(Lb - 0,) + T( I - D/J}, 
where D = l/( I + R)N, i.e., Discount Factor 

R = rate for calculating discount 
N = payment date 
6 = before tax 
a = after tax 
T = tax rate 
D,, = l/( 1 + R,JN 
Ru = (I - TJRI, 

2) Actual and Law Rates Different, Payouts Same 

- {(DrL - D,) + T( 1 - Dr’h)} 
+ (Dr’h - D,)(R,, - R’,NR,, - R’d, (rate adjustment). 

where ’ signifies using law rate 

3) Actual and Law Rates and Payouts Different 

- {(Dn’r’,, - Dn’,) + T(l - Dn’r’h)} 
+ (Dn’r’h - Dn’,,)(R, - R’,)I(R, - R’t,) (rate adjustment) 
+ TD, {(I -Dn”rlh) - (Dn”r’h - Dn”,)R’d(R, - R’b)} (date 

adjustment), 

where ’ signifies using law rate or payment date 
n ” = rl’ - n, i.e., difference in payment date 

Effect of different rates is greater than payout differences and formula 2 
is sufficiently accurate for most applications. 

An approximate formula to the above is 

- T{(l - Dmr,) X (I - Dn’r’b)}, where m = (n + I)/2 
= - T{( 1 - I/( I + R,)‘“) X (I - l/(1 + R’b)“‘)} 



Committed Assets 
for Liability 

Funding 
(By Line) 

Premium 
Expense 
Loss 
Tax Law: 

UPR Offset 
Loss Discounting 

Total Funding for all 
Lines of Business 

Funding Equity 
Benchmark Surplus 
Residual Surplus 

Net Other Assets/Liabilities 

Total Invested Assets and 
Investment Income 

Years Nominal 
Nominal Pay Balance Investment 

Value Lag Sheet Income 
~___~ 

P NP -N,P - RN,s 
E NC N,E RN,.E 
L Nl NL RNtL 

- .‘TPlJ - .2RTPU - 

ZLIR ZL 
- 

Sum of Sum of 
Above Above 

f fi-r, I (RF,,) 

0 0 
MB RMB 
S-B I-RF,-RMB 

(I,.) 
A-S-F, 
+(I -M)B 0 

- 

APPENDIX D 

BALANC’k SHEET AND 1NVESTMENT INCOME FORMULAS 

Discounted 
Balance 

Sheet 

- PD(N,)IR 
ED(N,)IR 
LD(N,)IR 

.‘TPUD( I )iR 
KLIR 

Sum of 
Above 

f F<I) 

F,, - F</ 
MB 
s-n 

A I 

A -S - I;,, 
+(I -M)B 

A 

Investment 
Credit 

-PLXN,) 
EDfN,) 
LD(Nd 

- .‘TPUD( 1) 
KL 

Sum of 
Above 

(RF-</) 

RF,, -Fd 
RMB 

I-RF,-RMB 
(1,) 

0 

I 
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BALANCE SHEET AND INVESTMENT INCOME FORMULAS 

(CONTINUED) 

Discount amount factor, D(N) = {I - I/( 1 +R)“} 5 I 
R = Risk free treasury interest rate. applicable to cash flows, after tax s 
T = Corporate tax rate, presently 34% (20% if AMT applies) c 

Loss discount investment income factor approximately equal to Z = -RT{(N,+ 1)/2} (I -I/( I +R,)“}, where R, = tax law discount 
f 
; 

fate : 

K = Loss discount investment credit factor from Appendix C z z 
M = Benchmark surplus yield overhead adjustment factor > 
S = Total Surplus J; 

A = Total Invested Assets 
II 
3 

I = Total Investment Income P 
z 

The discounted yield on combined total surplus (benchmark & residual) including reserve discount equity, R, = (I-F,,)IS 
Alternatively, R, = R,(AIS) - R(FJS), where R, = l/A, the total invested asset yield 
Return on Benchmark BROS = U/B + R(F/B) + RMB, where U = Underwriting income after tax 
Total Return on Surplus TROS = U/S + R(F&) + R, 
The nominal yield on residual surplus, R,, = I,/(S-B) 
The discounted yield on residual surplus including reserve discount equity. R, = {I,+R(F,,-F,,)}I(S-B) 
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RISK LOADS FOR INSURERS 

SHOLOM FELDBLL’M 

Abstract 

Insurance companies are risk ab’erse, even as individuals 
are. Casualty actuaries hate suggested several methods of 
calculating risk loads to compensate the insurer .for the risk 
it accepts. Methods currently in use, and reviewed in this 
paper, consider (a) the standard deviation und variance of 
the loss distribution, (h) utilic functions, (c) the probability 
of ruin, and (d) reinsurance costs. 

These methods ure theoretically unsound. Thev consider 
the rr<rong type of risk; they arbitrarily equate risk with a 
mathematically more tractable variable: and, the! require 
equally arbitrary assumptions about an insurer’s u\Tersion to 
risk. More importantly, they concentrate on the size of loss 
distribution, though the true risk to the insurunce cornpan? 
resides in profit fhatuation.s. 

Modern portfolio theory measures the risk assumed bq 
irn~estors in securities. Systematic risk, the overall risk faced 
by a di\)ersi’ed stock portfolio, requires an additionul pre- 
mium. Firm-spectfic risk, or the fluctuations in an individual 
stock’s price, can be eliminated by dirversification und is not 
compensated for in security returns. Insurunce equivalents to 
modern portfolio theory can be applied to insurance portfolios 
to determine risk premiums by line of business. Such analysis 
re\-teals the Commerciul Liability lines to be high!\) risky and 
the Personal Property lines to be less risky. In .sum, this 
method ullow~s insurers to measure the true risk they fuce in 
each line of business. 

I am indebted to Richard Wall and Benjamin Lckowitz. who made numerous 
corrections to an earlier version of this ppc‘r The remaining errors, of course, are 
my own. 
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I. INTRODUCTION 

Most persons are risk averse: they prefer a stable income to a fluc- 
tuating one, even if the two have equal expected values. Risk aversion 
is one of the foundations of insurance, for the insured trades the chance 
of a fortuitous but large loss for the payment of a fixed annual premium. 

Insurers also are risk averse, although their large size masks their 
preference for a stable income. When faced with a large risk, an insurer 
may decline the application, seek reinsurance, or charge an additional 
premium, a “risk load.” The third option is the most desirable, since 
declining the application reduces business volume, and buying reinsur- 
ante gives up potential profit on the ceded business. 

Yet calculating risk loads is a complex task. On the one hand, insurers 
often incorporate “contingency” provisions in premium rates, whether 
for conflagration hazards in turn of the century fire rates or unanticipated 
liabilities in current General Liability rates. On the other hand, there is 
no established procedure for determining the size of the risk load. 

So actuaries have devised numerous methods, which are grouped 
below into four categories: 

(1) The risk load may vary with the random loss fluctuations of the 
individual risk; e.g., “standard deviation” and “variance” methods. 

(2) The risk load may vary with the characteristics of the overall 
portfolio of risks; e.g., “utility function” and “probability of ruin” 
methods. 

(3) The risk load may vary with the empirical costs of reducing risk; 
e.g., “reinsurance” method. 

(4) The risk load may vary with fluctuations in profitability; e.g., 
“modern portfolio theory” methods. 

Some methods are simple to implement but lack theoretical justifi- 
cation; others are mathematically elegant but difticult to apply. The 
advantages and deficiencies of each method are examined below. Only 
the last method, however, measures the true risk faced by insurers. 



The simplest approach is to conceive of the insurer’s risk in the same 
fashion as the insured’s risk. Suppose an insurer sells a General Liability 
policy to a contractor. who has a 1% chamx of being liable for a 
$100,000 loss. and a 99% chance of no loss. The cxpccted value of the 
loss is $1,000, but the contractor may be willing to pay $2.000 to entirely 
avoid the risk of loss. Similarly, the insurer may require a pure premium 
of ttro~ than $1,000, to compensate it for the risk it assume>. 

Suppose a second contractor also purchases an insurance policy. This 
insured has a 0.1% chance of a $1 ,OOO.OOO loss. and ;I 99.9% chance 
of no loss. The expected value of the loss is again $I ,000. but both the 
standard deviation and the variance of the loss arc higher, as shown 
below. ’ 

TABLE 1 

S I’ANDARD DEVIAI-ION AND VAKIANCI: OF Loss 

4rnount Probability Expected Standard Dcviatioti Variance 
of Loss of Loss Value of Loss 01 LOS\ of Loss 
.____ -__ .___ 

$ 100.000 1 .O% $1 ,000 h 0.950 $ YY .ooo,ooo 
I ,000.000 0. I 1 ,000 3 1 .hO7 YYY .ooo.ooo 

The loss distribution on the second policy has a standard deviation 
about three times as large and a variance about ten times as large as that 
for the first policy, though their expected losses are the same. If the risk 
load is proportional to the standard deviation or the variance of the 
losses, then the risk load for the second policy should be either three 
times or ten times as large as that for the first policy. The standard 

1 Consider the first contractor, with a 1% chance of a $ltKJ,OOU lms. The variance of loss is 
(O.OI)( 100,ooO’) + (0.99)(0’) -- (1 .OOO’) = 99.OOO.OoG “dollars squared.” The standard deviation 
is the square root of this. or $9.950. 
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deviation method, as currently applied by the Insurance Services Office,’ 
would determine the pure premium as 

Pure premium = expected loss + (constant ’ standard deviation). 

If the constant is 0.5%. the pure premiums are $1,050 for the first 
policy and $1,158 for the second policy.’ This method is now in vogue, 
as it requires information only about the loss distribution, not about other 
insurer characteristics. Therefore, it can be applied to all carriers 
~qually.~ The Insurance Services Office (ISO), the major U.S. rate 
making bureau for the non-Compensation lines of business, presently 
uses the standard deviation of the loss distribution to calculate risk loads 
for General Liability, Products Liability, and Commercial Automobile 
increased limits factors.’ Until the mid-1980’s, IS0 used the variance of 
the loss distribution for this purpose, a method proposed by Robert S. 
Miccolis [38] in 1977. 

Loss frequencies and severities vary by policy, and no insurer could 
estimate all the needed figures. As an approximation, one can determine 
the standard deviation or variance of the loss distribution for policies 
with a specified limit of liability. A General Liability policy with a limit 
of $25,000 truncates all loss indemnification at that amount. The ex- 
pected value, standard deviation, and variance of the loss distribution 
are all lower than those for a similar policy with a $l,OOO,OOO limit. 
Using the standard deviation method and a loss distribution modeled by 
a Pareto curve, IS0 calculated the following risk loads and increased 
limits factors for one group of Premises/Operations risks: 

L The probability of loss for any particular policy is indeterminate. Rather, IS0 estimates the loss 
distribution for policies of a given limit of liabihty. and applies the resultant risk loads to the 
increased limits factors. 
’ For the first policy, $1,000 + (0.005)($9,950) = $1,050. For the second policy, $1,000 + 
(0.005)($31,607) = $1,158. 
4 This is particularly important for rating bureaus, which have information only about the size of 
loss distribution for the block of business. 
’ For details, see the memoranda of ISO’s Actuarial Research Committee, 
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TABLE 2 

RISK LOADS AND INCREASED LIrWrs FACTORS 
FOR PREMISES~~PFXAIIONS RISKS (MEDIUM TABLE) 

Policy 
Limit 

Average ALAE per ULAE per ILF Risk ILF 
Severity Claim Claim without RL Load with RL 

-___ 

$ 25,000 $ 4,039 $2,325 $ 471 I .OO $ 521 1.00 
50,000 5.314 2,325 573 1.20 797 1.22 

100,000 6.698 2,325 617 I .42 I.179 I .4x 
200,000 8.135 7 -.. -i75 -_ 784 1.64 1,706 I.86 

40.000,60 14,828 3 *._ 175 : A_ I .2x1 2.70 8,503 3.dh 
100.000.000 36,227 2,325 I.391 2.92 I 1.943 4.33 

ALAE: Allocated loss adjustment expense (IS0 uses a constant dollar 
amount for each policy limit; although unrealistic, this simplifies 
the calculations). 

ULAE: Unallocated loss adjustment expense (IS0 determines the ULAE 
as 7.5% of expected loss plus ALAE for this line of business). 

ILF: Increased limits factor. 
RL: Risk load. 

Unfortunately, this method has no theoretical justification, for several 
reasons. First, the insurer’s risk is different from the insured’s risk. The 
insured is more concerned about random loss fluctuations--which could 
ruin him financially-than about the accuracy of the expected loss esti- 
mate. But the insurer may have thousands of policies in each line of 
business. It is less concerned about random loss fluctuations, which even 
out over a large volume of risks. than about the accuracy of its expected 
loss estimate. 

To illustrate this, suppose 10,000 insureds buy General Liability 
policies. Each insured has the same probability of a $100,000 loss. This 
probability is not known exactly, but is estimated to be between 0.5% 
and 1.5%. The expected value of the loss on each policy may be as low 
as $500 or as high as $1,500, but these figures are not the major concern 
of the insured. He seeks relief from worry, from the risk of possible 
bankruptcy. For him, the range of probable losses-for which actuaries 
use standard deviation and variance statistics-is the primary concern. 
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Suppose the insurer charges a $2,000 premium for each policy. Its 
expected loss ratio lies between 25% and 75%, depending upon the true 
probability of loss. For example, if the probability of loss is actually 
1%, then the expected loss for each policy is $1,000 and the expected 
loss ratio is 50%. Random loss fluctuations will not cause the actual loss 
ratio to deviate much from the expected, since many homogeneous risks 
are covered. But the actual loss ratio will differ greatly from the fore- 
casted loss ratio if the probability of loss is incorrectly estimated. A 
0.5% chance of loss will bring large profits, while a 1.5% chance of 
loss will have the opposite effect. This is the “risk” that the insurer must 
guard against. 

Actuaries use the terms “process risk” and “parameter risk” to denote 
these two causes of fluctuation in insurance losses. Process risk refers 
to random loss fluctuations about a stable mean; this is the major risk 
for the insured. Parameter risk refers to uncertainty in estimating the 
expected loss; this is the major risk for the insurer.6 

If the standard deviation and variance methods capture process risk, 
not parameter risk, why are they used to calculate insurer risk loads for 
liability policies? After all, process risk and parameter risk are indepen- 
dent, so estimating one is of no help for the other. The usual explanation 
is that: “There is no easy method of estimating parameter risk. To satisfy 
their member companies, rating bureaus must somehow calculate risk 
loads. Basing the factors on Pareto curves and process risk is sophisti- 
cated enough that no further questions will be asked.” Sophisticated it 
may be, but a satisfying explanation it is not.’ 

h The actuarial use of the terms “process risk” and “parameter risk” is due to Robert L. Freifelder 
[25). Freifelder speaks of the probability distribution function of the loss process (whence process 
risk) and of an a priori distribution of the unknown parameters of the loss distribution function 
(whence parameter risk). 
’ There are two problems in estimating parameter risk. One is to quantify the magnitude of this 
risk-eg., the expected fluctuation in forecasted average pure premiums due to estimation errors. 
The second is to use these estimates of parameter risk to evaluate needed actuarial figures, such as 
Workers Compensation excess loss factors. This second part is a mathematical exercise, albeit a 
complex one. Philip Heckman and Glenn Meyers 1301 outline a sophisticated method of solving 
this problem. Moreover. actuaries often assume an o priori distribution for the parameters of the 
loss function, and thereby “quantify” the parameter risk. However, they have yet to address the 
crucial first question noted above: Han does one estimure the true parameter risk? 



I66 KISK I ().‘,I)\ I OK IN\l’Kt K\ 

Even if one seeks to calculate process risk, one must measure the 
standard deviation of the insurance portfolio as a whole. not that of 
individual risks. The ratio of the standard deviation to the expcctcd value 
decreases as additional homogeneous risks arc added to the portfolio. 
Consider the first policy in Table I. If the insurer issues a single policy, 
the ratio of standard deviation to expected loss is 9.9%) (standard dcvia- 
tion of $9,950 divided by expcctcd loss of’ $1 .OOO). It‘ the insurer issues 
two such policies, the expected loss is $2,000 and the standard deviation 
is $14.07 1, for a ratio of 7.O36.x If the insurer issuch one hundred such 
policies, the ratio is less than enc. In other words. the standard deviation 
of the individual policy’s loss distribution is no guide even to the process 
risk faced by the insurer.” 

On first reflection, it might seem that using the variance of the loss 
distribution avoids this problem. After all, the ratio of the variance to 
the expected value does not change when similar risks are added to the 
portfolio. In truth, using the variance simply aggravates the problem. 
The process risk faced by the insurer does in fact dccrcase as additional 

x The probabiln), 01 lo\s (5 1’4 for each polJq Thu\. the prokahilit> oi a IO\\ on both policies, for 
a total loss of $200.000. is 0 01’. or (J.OO(11 The probahllity oi one IOD\ <lt $lOO.(JW is 
(71(O.YY)(0.01 J. or O.OlYX. The probabilit) (>f no lr>si I\ (0 Y)I)J’. or 0.0801. The expected loss i\ 
(Z?J(O.(Jl )($IOO.tHHJJ. or %2.000 These ligure\. as vvcll B\ the cdlculation 01 the varJance .md standard 
deviation. are shown helow. 

Number Total Loss 
of LOS\C\ (11 
-- ____ 

Two Ioss25 200.000 
One loss I lx).000 
No losses 0 

Prohutnlny 
(21 

o.ooo I 
0.019x 
0 YXO I 

Variance Calculation: 
(3) (2)? 

__- 

4.wo.ooo 
1’)x.000,000 

0 

Total 1 .000l) 2 ,ooo 202.ooo.000 

The ratio of standard deviation to expected loss is $11,071 L $2.(HJO. or 7.036. 
V David B. Houston (331 makes a similar distinction between an mdividual’a and an msurer’s risk. 
The individual is concerned with variations in outcomes of a particular action. The insurer is 
concerned vvith sampling error that affects the e\timatcd mean pure premium. This distinction is 
similar to that m the text. except that Houston aszrihr all pammeter risk to \ampling error. 
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policies are issued, but the ratio of the variance to the expected loss does 
not show this. The variance method ignores the problem; it does not 
solve it. I0 

The second theoretical failure of the standard deviation and variance 
methods is that they determine only relative risk, not absolute risk. The 
IS0 exhibit for Premises/Operations risk loads (see Table 2 above) says 
that the risk load for a policy with a $50,000 limit should be about one 
and one half times that for a policy with a $25,000 limit. But how are 
the dollar amounts of the risk loads determined&-or the ratio of risk load 
to expected loss’? 

The mathematics provide no answer. IS0 simply chooses an overall 
risk load for the line of business, and then spreads this risk load by size 
of policy limit using the standard deviation or variance method. But 
determining the overall risk load is our primary concern, and an arbitrary 
choice is no solution. 

The third theoretical failure is that these methods determine relative 
standard deviation, or relative variance, not relative risk. The simplified 
illustration of two General Liability risks in Table 1 provides different 
“risk loads” depending upon whether the standard deviation or variance 
method is used. The risk load for the second policy is either three times 
or ten times that for the first policy. There is no a priori reason to equate 
risk with either the standard deviation or the variance. These statistics 
are used because they are mathematically tractable. But the goal is to 
measure actual risk, not to equate risk with an appealing mathematical 
concept and then to measure the latter. 

To sum up the standard deviation and variance methods: Parameter 
risk, the real concern, is too hard to measure, so process risk is substi- 
tuted for it. The standard deviation is a tractable mathematical construct, 
so it replaces “risk.” Then an overall portfolio risk load is chosen 
arbitrarily, and the standard deviation method spreads it over policies 
according to the size of the policy limit. Somehow, this hardly sounds 
like proper actuarial practice. 

I” Advocates of exponential utility functions often cite the invariance of exponential utility to the 
wealth of the insurer as an advantage; see the quotation from Freifelder in footnote 16 below. 
Again. just the opposite is true. The risk doe5 vary with the wealth of the insurer. A method which 
ignores thi\ is defective. 
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3. UTILITY FUNCTIONS 

Microeconomists have long used utility functions in consumer de- 
mand theory, and casualty actuaries have recently suggested using them 
to calculate risk loads. Utility functions allow the rate maker to vary the 
risk load on a policy with the composition of the entire insurance portfolio 
and with the insurer’s attitude toward risk. Unfortunately, the mathe- 
matics required are complex and needed assumptions can only be guessed 
at, so this method is not popular.” 

A utility function expresses the value of a given basket of assets to 
its owner. Utility functions provide an ordinal, not a cardinal, sequence 
of values. In other words, it is meaningless to speak of the absolute 
utility of a loaf of bread or a quart of milk to an individual. We can say 
only that the individual prefers a loaf of bread to a quart of milk, or vice 
versa.” Similarly, we cannot determine the absolute utility of a $2,000 
premium for the insured, but we can say that he or she prefers paying 
this premium to suffering a 1% chance of a $100,000 loss. 

The discussion below seems to imply cardinal values for utility. For 
instance, an exponential utility function assigns a cardinal value to a 
given basket of goods. This is not the intention, however. The implication 
is only that the utility is proportional to the value of the exponential 
function, not that it is equal to it. The same comment applies to all the 
utility functions discussed below. 

Utility functions are an ideal tool for calculating risk loads, since 
they are the mathematical equivalent of the “attitude toward risk.” Utility 
functions depend upon the insurer’s degree of risk aversion, the com- 
position of its insurance portfolio, and its corporate wealth. 

1’ On the use of utility functions in demand theory, WC James M Henderson and Richard E. Quandt 
1311 or Angus Deaton and John Muellbauer [?O]. pages 25-X. 
IL See, for example. Paul A. Samuelson 1441. page 91: ” a cardmal measure of utility is in 
any case unnecessary; only an ordinal preference, mvolvmg ‘more’ or ‘less’ but not ‘how 
much,’ is required for the analysis of consumer’s behavior”; or Armen A. Alchian [I]. page 39: 
“Any numbering sequence which gives the most preferred sure prospect the highest number, the 
second preferred sure prospect the second highest number, etc.. will predict his choices according 
IO ‘utility maximization.’ But any other sequence of numbers could be used so long as it is a 
monoronr rrcmformarion of the first sequence And this I\ exactly the meaning of the statement 
that utility is onfinrrl and not cardinal.” 
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As a simple illustration, suppose the utility of an asset is proportional 
to the square root of its price: U, = Co.“.‘3 If an insured has $10,000 
of assets, with a 1% chance of losing it all, and a 99% chance of no 
loss, his present utility is (O.Ol)(O)K + (0.99)(10,000°.5)K = 99K. This 
equals the utility of $9,801 of assets. In other words, the insured would 
be willing to pay $199 to avoid the risk of loss. 

Suppose the insurer begins with $l,OOO,OOO of assets. If it accepts 
the risk of loss from the insured, its total utility is 

(0.01)(990,000”3Y + (0.99)( I ,000,000°.5)K = 999.95K, 

which is equal to the utility provided by assets of $999,899.74. That is, 
it needs a pure premium of $100.26, or a risk load of 0.26%. The larger 
the insurance portfolio, and the greater the surplus of the insurer, the 
smaller is the risk load needed. 

But what is an appropriate utility function? Theoretical economists 
do not have this problem, since they use utility functions to prove 
mathematical theorems, not to solve practical problems. But actuaries 
desirous of using utility functions to calculate risk loads must first de- 
termine what utility functions are most realistic. 

There are two considerations in determining an appropriate utility 
function. 

First, the function should satisfy the mathematical properties needed 
for utility theory. Gary Venter [48] lists several such properties:14 

1. Utility is an increasing function of wealth; that is, as wealth 
increases, the utility of that wealth increases. 

2. Actors are risk averse; that is, each incremental increase in wealth 
yields progressively less incremental utility for the actor. 

3. Risk aversion decreases as wealth increases; that is, the poor 
individual has greater absolute risk aversion than the wealthy individual 
has (on average). 

I3 The constant “K’ is a proportionality factor that transforms the utility function from a cardinal 
to an ordinal measure. This is not as general as Alchian’s monotone transformdon (see preceding 
footnote). A monotone transformation is appropriate for the theory, but it cannot generate the 
absolute risk loads needed in practice. 
I4 Only the first three of Gary Venter’s criteria are listed in the text. His last two, that the utility 
function be bounded from above and that the utility be equal to zero for negative amounts of wealth, 
are less commonly accepted by economists. 



Gary Venter’s criteria mirror reality. and many persons would agree 
with them. I5 But casualty actuaries have found that one of the simplest 
and most tractable utility functions, the exponential function, has a risk 
aversion level that is invariant with the wealth of the actor. With an 
exponential utility function, the utility of a portfolio of insurance con- 
tracts equals the sum of the utilities of each individual contract. 

This attribute of exponential utility functions simplifies the mathe- 
matics of calculating risk loads, and it has made the exponential function 
the utility function of choice for calculating risk loads. But it does not 
accord with reality. The essence of insurance is that the insurance 
company, due to its large size, is less risk averse than each individual 
insured. I6 

IS0 has noted that even if one posits a given family of curves for 
the utility function, such as the exponential family, varying the param- 
eters of the family provides different risk loads for each size of risk. 
One can determine whatever risk load one wants, as well as various 
relationships among risk loads for different policies, simply by varying 
the parameters of the utility function.” To avoid this problem, John 
Cozzolino and Naomi Kleinman [ IS] have suggested using the reciprocal 
of the insurer’s surplus as the parameter of the exponential utility func- 
tion. This does indeed provide a simple formula for the parameter of the 
utility function. But what evidence is there that it accurately reflects 
differences in risk aversion among insurers of different sizes’? Presum- 

1’ Venter’\ first criterion simply uvs that pwpic prefer mart weslth 10 le\s uealth His second , . 
criterion seems reali&c. It i\ not universally tn~c. but II wcm\ to hold lor most persons in mo\t 
situations. His third criterwn has been formulated rlgorou\ly hy Ken Arrn~v (21. though it is hardlq 
dmenahle to ;L Gmple proof. 
ih See. for example. Robert Freifelder 175J. “,,I. (II.. a\ sell as hi\ \hnrter article 1261. Note his 
theorem I on page 7.5 of this article: “If premium ratcx we hased on an exponcntlal utihty function. 
the totnl premium requued for a class of indrpcndenr contracts I\ equal to thu sum 01 the premiums 
required for each of the contracts individually.” Hi\ ,justtlicatwn tar the exponential utility function 
strikes the practical huGwsman a wangc. hut it fit\ well with a desire for elegant and tractable 
procedures: “There are no ‘porlfolio‘ or ‘ucalth’ effect\ with an exponential utility function. What 
(hi> means 1s that with an exponential utdlt) theor) ratemaklng model. the deciwn maker doe\ nc,t 
have to know the aact characteristics of the cornpan) ‘5 porttnllo Or 11\ uealth. In practical situations 
the above information is not generally available” tp. 71~. 
Ii Note the comment hq’ J. David Cummm\ and Bawd J Nye 117). page 479: “Rl\k loadings and 
hence solvency are vtq aensitivc tr, the choic< of the rr\L atcer\ion parameter when the expected 
utility approach I\ used.” 
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ably, large insurers are less risk averse than small insurers are. But what 
evidence is there that the risk aversion varies directly with the reciprocal 
of the insurer’s surplus? 

The second problem in determining an appropriate utility function is 
equally serious. The utility function must model reality, or the risk load 
procedure becomes a sterile mathematical exercise. Is the risk aversion 
demonstrated by insurers indeed similar to that implied by an exponential 
utility function, or a square root utility function, or some other function? 
This question is difficult to answer, and no one has yet proposed a 
method of doing so. ix 

Utility function analysis translates the vague “attitude toward risk” 
into concrete mathematical expressions. But it provides no practical 
guidance towards measuring either risk aversion or utility. In other 
words, it restates the problem of determining risk loads; it does not 
solve it. 

The earlier comments regarding process risk and parameter risk apply 
to utility function analysis as well. In the example above, parameter risk 
refers to the uncertainty regarding the probability of loss. It might be 
1%; it might be 2%; it might be some other probability. If we knew the 
distribution of the probability of loss, we could incorporate this into 
utility function analysis. But utility function analysis provides no aid for 
measuring this distribution, so we are no better off than when we began.i9 

Ix The Society of Actuaries life contingencies textbook, Acruarial Muthematics, models insurance 
transactions between a risk averse insured and a risk neutral insurer. This is a standard economic 
model. Since insureds are more risk averse than insurers are, it also reflects reality (though 
imperfectly). Nevertheless, it leaves unanswered our question: “What is the appropriate risk load 
for insurers?” See Newton L. Bowers, Jr.. et al., [8], pages 7-16. 
IV Freifelder, following Biihlmann, proposes one means of empirically measuring parameter risk. 
Using automobile accident data, he assumes a Poisson loss distribution for each driver, and an 
underlying Gamma distribution of the Poisson means in the population of drivers. Thus, one driver 
may have a 10% chance of an accident, so his loss distribution is Poisson with a mean of 10%. A 
second driver may have a 20% chance of an accident, so his loss distribution is Poisson with a 
mean of 20%. The Gamma distribution may be estimated by examining the moments of the empirical 
loss distribution. See Robert L. Freifelder [2S]. pages 83-84. Hans Biihlmann [I 11, and Lester B. 
Dropkin 12 I 1. 

This procedure masks the true parameter risk; namely, that rhe underlying disrriburion of means 
changes over rinre. Richard Woll has pointed out that if the underlying distribution of means 
remained constant, then average loss frequencies for a large insurer would not vary from year to 
year. Yet they do vary. That is, the parameter risk is not just that the Poisson means are unknown, 
but that they change over time. For further discussion, see Richard Wall’s review [SO] of Cozzolino 
and Kleinman’s paper [15], especially pages 21-22. 
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In sum, utility theory is no more promising than the “standard de- 
viation” and “variance” methods discussed previously. For the theoretical 
economist, utility theory produces mathematical theorems. But no one 
has yet even suggested how to model an insurer’s risk aversion. Instead, 
the theoreticians say: “Let us choose a simple and tractable utility func- 
tion, regardless of its accuracy or applicability, and determine risk loads 
accordingly.” This is hardly a suitable actuarial procedure. 

4. PROBABILITY OF RUIN 

European actuaries developed probability of ruin analysis to deter- 
mine surplus requirements for insurers of different sizes and with differ- 
ent insurance portfolios. “The probability of ruin” is the probability that 
the insurer will become technically insolvent during a specified time 
period, such as the coming year. In other words, it is the probability 
that required reserves will exceed available assets sometime during the 
period. *() 

The analysis may concentrate on any of three variables: the proba- 
bility, the assets, or the liabilities (required reserves). That is, one may 
formulate the problem in three ways: (I) What is the probability that an 
insurer with given assets and a given portfolio of risks will become 
technically insolvent? (2) For an insurer with a given portfolio of risks, 
how much assets (or surplus) are needed such that the probability of ruin 
is less than a given amount ?*I (3) For an insurer with given assets (or 
surplus) and a given insurance portfolio, what risk loading must be added 
to the premium such that the probability of ruin is less than a given 
value? 

2” See, for example, R. E. Beard, T. Pentikainen. and E. Pesonen IS]. especially pages 132-159. 
For an American exposition, see Alfred E. Hoftlander (321. A \tochactic cash flow probability of 
rum model, which considers the availability of a\seta to pay claims instead of insurance regulatory 
requirements. is presented in C. D. Daykin. et al.. 1 lo]. as well as in earlrer papers by these 
authors. 
.‘I For example, Robert Cooper (141. pages 22-43, uses probability of ruin analysis to determine 
the necesscrry invested capital for an insurance company. though his “htgh degree of confidence” 
seems low. 
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At first glance, probability of ruin analysis seems to solve some of 
the problems associated with utility function analysis. Absolute risk loads 
are still not provided, since they require an assumption about an appro- 
priate probability of ruin-one in a thousand? one in ten thousand? But 
one may calculate the relative risk load for any risk in a given insurance 
portfolio: it is the extra premium such that the addition of that risk does 
not change the overall probability of ruin. 

An illustration should clarify this-and show the problems with this 
procedure as well. Suppose an insurer sells General Liability policies, 
and all its insureds have a 1% chance of a loss equal to the policy limit. 
The insurer has $50,000 of assets, and it may issue either two $100,000 
policies to two independent insureds or one $200,000 policy to a single 
insured. Finally, the insurer demands that the probability of ruin be no 
more than one in one thousand. 

The expected loss of either portfolio is $2,000. A pure premium of 
$2,000 brings total assets to $52,000. This leaves a chance of ruin of 
l%, as any loss would exceed available assets. For the portfolio of two 
risks, the insurer needs $100,000, or $50,000 in addition to its original 
assets, to lower the probability of ruin to one in a thousand. Note that 
the chance of total loss on both policies is one in ten thousand, less than 
the probability of ruin set by the insurer. A pure premium of $25,000 is 
therefore needed for each policy, of which $1,000 is the expected loss 
and $24,000 is the risk load. 

For the portfolio of one $200,000 risk, the insurer needs $200,000 
to lower the probability of ruin to one in a thousand. Since it has original 
assets of $50,000, it requires a pure premium of $150,000. Of this 
amount, $2,000 is the expected loss, and $148,000 is the risk load. The 
single large risk needs a greater risk load than do the two small risks if 
the probability of ruin is to be equal.*’ 

Unfortunately, probability of ruin analysis concentrates on the chance 
of technical insolvency. It does not balance this against the income from 
the additional premium. In practice, one must choose an extremely low 
probability of ruin (say, one in ten thousand) so that risk loads are needed 
to prevent insolvency. Suppose one determines that, to ensure a proba- 

*> This illustration is extreme; no insurer writes only one or two policies. The oversimplification is 
for heuristic purposes only. The same analysis may be applied to an insurer writing a thousand 
policies. 
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bility of ruin less than one in ten million. the needed risk loads are 10% 
of premium on a $100,000 premium policy and 50% of premium on a 
$1 ,OOO,OOO premium policy. 

Even if the marketplace allowed only a 20% risk load on the latter 
policy, almost all insurers would prefer the second policy to ten of the 
first. After all, the probability of ruin is low, and the additional risk load 
is extra income. In truth, the needed risk load for the second policy is 
between 1 time and 5 times that for the first policy. Somewhere between 
these two numbers, the additional profit makes up for the additional risk. 

Probability of ruin analysis helps define the boundaries, or endpoints, 
for the needed risk load. It does not determine where within that interval 
the appropriate risk load lies. It is useful for solvency regulation, since 
only the endpoint is desired. It is useless for risk loads, since the actual 
load is needed.” 

5. REINSURANCE METHOD 

The risk for insurers is the possibility of unexpected losses either on 
an individual policy or on a book of business. To stabilize loss fluctua- 
tions, a primary insurer may enter into an excess of loss reinsurance 
treaty. Such protection is not costless. The reinsurance premium must 
cover not only costs but also the reinsurer’s administrative expenses and 
profit margin. The primary insurer must balance the additional cost of 
reinsurance protection against the reduction in risk afforded by the 
treaty.‘l 

I’ Stephen P. D’Arcy and Neil A. Doherty [IX/, page 3. present a Gmtlar argument in another 
context: “The ruin probability, no doubt, forms an important constraint on managerial decisions if 
only because insurers operate in a regulatory environment that focuses attention on solvency. 
However, constraints are not objectives. Additionally, as an objective, the probability of ruin is 
quite incomplete since no account is taken of the value of the equityholders’. policyholders’, and 
other parties’ claims in the respective states of solvency and ruin. There is indeed a world of 
difference between surviving and prospering that is ignored by the probabihty of ruin objective.” 
In other words. two policies may both pass the probability of ruin test set by the Insurer. Never- 
theless, the insurer may judge one of the polictes to be more “risky” and require a higher risk load. 
1J Reinsurdnce involves various costs, such as underwriting protits and investment income received 
by the reinsurer and administrative and processing costs ot the primary carrier. The firmer costs 
would be used IO estimate the risk load. For a clear description o! these costs. see Daniel A. 
Bailey (31. 
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The reinsurance treaty is the real-world counterpart of the theoretical 
risk load. Suppose the expected losses and expenses (i.e., not including 
a risk load) for a General Liability policy are $10,000 for a $500,000 
limit and $12,000 for a $1 ,OOO,OOO limit (that is, $2,000 for the second 
$500,000 layer). Suppose also that the charge for facultative per risk 
excess of loss reinsurance protection of $500,000 over $500,000 is 
$3,000, as shown below. 

Expected Reinsurance Reinsurance 
Losses Layer cost 

The “empirical” risk load for the second $500,000 of coverage is 
$ I ,000: the reinsurer’s charge minus the expected losses. The “empirical” 
risk load for the lower layer would be determined in the same manner 
(e.g., by examining the cost of facultative reinsurance of $250,000 over 
$250,000, then $150,000 over $lOO,OOO, and so forth). Since reinsurance 
underwriters vary their premium rates by the characteristics of the pri- 
mary insurer, such as its financial stability, insurance portfolio, and 
underwriting stringency, the complete risk faced by the insurer is con- 
sidered, not just the process risk on individual policies.25 

Unfortunately, this method places the cart before the horse. Reinsur- 
ers need actuarial guidance as much as other insurers do. Risk theory is 
as much for their benefit as it is for that of primary insurers. Reinsurance 
underwriters evaluate risk as best they can: some succeed and some go 
bankrupt. Actuaries can help both primary insurers and reinsurers by 
recommending appropriate risk loads. 

2 Robert Butsic [ 121. analyzing the economic value of a loss reserve portfolio, compares the risk 
adjusted discount rate to a hypothetical loss reserve transfer to a reinsurer. The profit margin required 
by the reinsurer should equal the difference between present values of the loss reserves using a risk 
free versus a risk adjusted discount rate. 
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Moreover, reinsurance premiums are based on more than just eval- 
uations of risk. If there is strong competition for a certain type of 
business, reinsurers cut rates. If some reinsurers leave a line of business, 
others raise rates. Marketplace pressures influence prices as much as risk 
characteristics do, and their independent influences cannot be easily 
distinguished. 

The risk load may be subsumed under “profit and contingencies.” In 
practice, the profit margin depends more on competitive pressures and 
marketplace constraints than it does on actuarial cost considerations. But 
insurers need the cost analysis as much as they need the marketing 
analysis, for they must continually decide whether to match competitors’ 
prices. The question here is, “What is the appropriate cost of the addi- 
tional risk to the insurer?” 

6. LOSSES AND PROFITS 

The risk load methods discussed above concentrate on insurance 
losses. But insurers do not just pay losses. They collect premiums as 
well, and they try to match premium rates to anticipated expenditures. 
Risk is a function of profitability, or net income, not just of loss pay- 
ments. 

Three examples should clarify this. Each illustration is idealized, but 
their combination provides a realistic portrayal of insurance operations. 

(I) Suppose an insurer issues a retrospective rating plan, with no 
maximum or minimum premium, and no loss limit. In other words, the 
final premium is equal to the actual losses, with a loading for expenses 
and profit. 

The variability of loss payments has no effect on the insurer’s profit. 
The profit is set by the retrospective rating plan. It is not dependent upon 
random loss fluctuations or even “parameter risk.“2h 

.Ih The major risk for the insurer stems from the potential uncollectability of additional premiums. 
See Roy P. Livingston 1361. 
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(2) Suppose two lines of business have the same size of loss distri- 
butions but different loss payout patterns. In one line, the average loss 
is paid out six months after the accident date; and, in the other line, the 
average loss is paid out four years after the accident date. Inflation and 
investment returns affect the second line much more than they do the 
first, so insurance profitability, or net after-tax operating income, will 
vary more for the second line. The size of loss distributions, however, 
do not show this. 

Similarly, competitive pressures affect insurance profitability. Again, 
suppose two lines of business have the same size of loss distributions. 
One line earns a constant 10% return on equity. In the second line, 
however, fluctuating market conditions cause profitability to vary sub- 
stantially from year to year. Clearly, there is more risk for the insurer in 
the second line of business. 

(3) Size of loss distributions are only meaningful for determining 
risk loads when the risks insured are homogeneous and the premiums 
are the same for each of them. When the risks insured are heterogeneous, 
and the insurer, by its underwriting and pricing expertise, charges dif- 
ferent premiums based upon the anticipated hazards, then size of loss 
distributions give no clue to the insurer’s risk. 

Gary Koupf illustrated this with a simple Commercial Liability ex- 
ample. 27 Suppose an i nsurer sells Commercial Automobile Bodily Injury 
and Property Damage coverages to a group of homogeneous insureds. 
Each insured incurs one Bodily Injury claim for $10,000 and one Prop- 
erty Damage claim for $1,000. The insurer charges $15,000 for the BI 
coverage and $1,500 for the PD coverage. Clearly, there is no risk for 
the insurer. Profitability is stable, and the size of loss distributions are 
degenerate for each coverage. 

If one combines the Bodily Injury and Property Damage coverages, 
however, the size of loss distribution becomes highly variable. For a 
single insured, the average expected loss is $5,500, but the variance of 
the loss distribution is $20,250,000. The variance of the loss distribution 
depends upon the degree of heterogeneity of the coverages or of the risks 
insured. Yet the insurer’s profitability remains stable, as long as appro- 
priate premiums are charged for each coverage. 

2’ Gary Koupf, comments at the IS0 Actuarial Research Commmittee meeting, June 15, 1988. 
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The combination of these three examples portrays reality well: 

(I) Underwriters vary premium rates with the anticipated hazards, 
Most policies are not retrospectively rated, but they are not purely 
random contracts either. Much of the variance in the size of loss distri- 
bution is reflected in premium rate differences. 

(2) Many factors besides size of loss distributions affect insurer 
profitability: investment income, competitive pressures, and regulatory 
decisions. Insurers in many lines of business are comfortable with the 
statistical loss distributions. They are concerned, however, whether reg- 
ulators will allow needed rate revisions. whether investment returns will 
match loss cost inflation, and whether competitive pressures will force 
them to cut rates in order to retain market share. 

(3) Most Commercial Liability insureds are heterogeneous. Each has 
different loss characteristics. and each has its own hazards. Insurance 
underwriters adjust policy conditions, vary premiums, and select insureds 
to obtain a profitable book of business. If one ignores the insurance 
operations, and one examines only the size of loss distributions, one 
finds great variability. But much of this variability is neither “process 
risk” nor “parameter risk.” It is the anticipated variability reflected by 
the different coverages and risks. 

In sum, the size of loss distribution is but one influence on the 
insurer’s protitability and risk-and not even the most important one. 
To appropriately determine the risk faced by insurers, one must examine 
overall profitability, not individual losses. 

7. MODERN PORTFOI.10 THEORY METHODS 

Investors face risks similar to those of insurers. Procrss risk in 
insurance refers to the random fluctuations of actual losses about their 
expected values;jfirm-speci$c risk in financial theory refers to the random 
fluctuations of a specific stock’s price that are unrelated to market move- 
ments. Puramerer risk in insurance refers to the uncertainty of expected 
losses; systematic risk in financial theory refers to the unexpected move- 
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ments of the stock market as a whole.2X Diversifying an insurance port- 
folio smooths process risk but does not affect parameter risk. Diversify- 
ing a financial portfolio eliminates specific risk but has little effect on 
systematic risk. 

Modern portfolio theory rests on two assumptions. First, the risk 
premium varies with systematic risk, not specific risk. Portfolio diver- 
sification eliminates specific risk, so the investor should receive no 
additional return for voluntarily assuming such risk. Second, the original 
formulation of modem portfolio theory (Markowitz) assumed that sys- 
tematic risk varies as the standard deviation of returns on a diversified 
portfolio. Historical returns, on a weekly or monthly basis, can be used 
to measure the standard deviation. More recent approaches (Capital Asset 
Pricing Model) assume that systematic risk varies as the regression 
coefficient (termed “beta”) of the diversified portfolio’s return on the 
total market return. 29~30 

One can apply this method to determine insurance risk loads as well. 

The risk load should depend upon fluctuations in overall insurance 
portfolio returns. It should not vary with the loss fluctuations of individ- 
ual risks, since these can be reduced and often eliminated by proper 
diversification. 

Fluctuations in insurance portfolio returns can be measured by the 
standard deviation of historical operating returns by line of business. 
Alternatively, they can be measured by the regression coefficient of the 
return from a particular line of business on the return of all lines com- 
bined. 

lx Systematic risk is often termed diversificrhle or murkrr risk. Specific risk is also termed unsq’s- 
remclric. residual, rmiyur. or undiwrsific~hlr risk. See Richard A. Brealey and Stewart C. Myers 
19). page 132. 
Ly A good introduction to modem portfolio theory is J. Fred Weston and Thomas E. Copeland 1491, 
chapters 16 and 17. The development of the theory is due to William F. Sharpe [45] and John V. 
Lintner 1351. 
w Several technical assumptions used in the Capital Asset Pricing Model am more relevant to 
securities than to insurance products, such as costless financial transactions and the availability of 
various quantities of securities at a given market price. See below in the text for further discussion 
of these issues. 
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Of course, insurance policies do differ from financial investments, 
and modern portfolio theory is more applicable to the latier than to the 
former. 

Financial investments can be broken down into small pieces. Even a 
small investor can diversify his portfolio by purchasing shares in a mutual 
fund. A portfolio of thirty or more unrelated stocks is well diversified, 
and most investors can afford such purchases. In contrast, insurance 
policies are discrete units. Distinct policies, if written by the same agency 
or branch office, may not be unrelated-just as one does not diversify a 
financial portfolio by purchasing a dozen oil stocks. 

The price of a stock reflects not only current earnings but also 
investors’ expectations for future earnings. A well-established but cycl- 
ical industry may show severe fluctuations in year to year profitability, 
but milder changes in stock prices. The insurance industry shows con- 
sistent “underwriting” or “profitability” cycles. The standard deviation 
of insurance returns may not accurately reflect investors’ expectations of 
long term profitability.“’ 

Neither of these problems is insurmountable. A small General Lia- 
bility insurer faces not only systematic risk borne by the industry as a 
whole, but also some specific risk due to its particular book of business. 
This implies that the insurer must examine the standard deviation of 
historical returns on a book of the same size and quality, not on a fully 
diversified book, such as the industry book. The small- or moderate-size 
insurer needs a slightly larger risk load than that indicated by industry- 
wide experience. 

The second difference mentioned above has the opposite effect. Since 
insurance profitability is cyclical, yearly operating ratios show greater 
fluctuation than investors’ expectations do. In other words, the insurer 

‘I Nahum Biger and Yehuda Kahane 171 state this as follows: ” undetwritmg profits reported 
by insurers are not necessarily equal to the way market participants assess those profits, their 
variability, and the systematic portion of the risk. It follow that evaluation of the systematic risk 
of underwriting. which is not based on market returns but on reported profits. rnay result in biased 
estimates of the coefficients.” 
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needs a slightly smaller risk load than that indicated by the standard 
deviation of insurance operating ratios.32 

Best’s Aggregares and Averages shows industry-wide operating re- 
turns by line of business. There are two problems with these figures: 
(1) there is no adjustment for reserve deficiencies and redundancies and 
(2) operating income is determined by spreading net investment income 
to line of business, not by discounting all cash flows to a common date. 
Nevertheless, Best’s figures are carefully compiled and widely available, 
and they are sufficient for the illustrative purposes of this paper.“” 

Best’s determines operating ratios by line of business as: 

(Losses + loss adjustment expenses incurred) / net premiums earned 
+ 

(commissions, brokerage, and other underwriting expenses) / 
net premiums written 

(policyholder dividends - net inv:stment income) / 
net premiums earned. 

I2 The mathematical derivation of the Capital Asset Pricing Model relies on the opportunity of 
borrowing or lending at the risk-free interest rate. This is not true for insurers, but it is not true for 
investors either. Both investors and insurers must pay a premium to borrow money. 

The major difference between the financial and insurance markets is that investors can quickly 
modify their portfolios, whereas insurers are constrained by competitive pressures, high new business 
production costs, and higher pure premiums among new policyholders. (See Conning & Co. I1 31 
and Sholom Feldblum 1231 for further discussion of these costs.) Modem portfolio theory presumes 
that optimal portfolios are determined by risk and return. In truth. numerous other factors are also 
relevant. 

Risk and return considerations are important, but they cannot-in isolation-argue for restruc- 
turing an insurance portfolio. J. D. Hammond and N. Shilling 1291 note that the “efficient” insurance 
portfolios determined by their analysis consist mostly of minor lines of business. J. R. Ferrari [24] 
tinds that an “efficient” insurance portfolio would require separation of automobile bodily injury 
from property damage, and separation of fire from extended coverage. As Ferrari notes, these other 
factors must be considered when structuring an insurance portfolio. See also the discussion of 
Ferrari’s paper by Matthew Rodermund 142). 

Thus, we do not determine “efficient” insurance portfolios, or recommend restructuring an 
insurer’s writings to “optimize” risk-return relationships. Rather, we simply analyze the variance in 
insurance profitability by line of business to suggest the risk loading appropriate to each. 
” A comprehensive model for determining discounted insurance profits by line of business is 
provided by Richard G. Wall [5 I 1. For methods of examining insurance reserve adequacy, see Ruth 
E. Salzmann [43]. 
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For instance, the 1988 operating ratios for the Fire (profitable) and 
Private Passenger Automobile Liability (unprofitable) lines of business 
are as follows:‘j 

TABLE 3 

INSURANCE OPERAI IN<; RA fws 

LOSS Expense Divi- Investment Operating 
Ratio Ratio den& Income Ratio __ ___ -__ -___ 

Fire 53.9% 37.8% O.YR 4.9% 87.7% 
Pers Auto Liab 93.2 22.7 0.8 Y.7 107.1 

Instead of operating ratios, we use profit margins. That is, an 87.7% 
operating ratio is a profit margin of 12.3%, and a 107.1% operating ratio 
is a profit margin of -7.1%. Profit margins, and the standard deviations 
of profit margins by line of business over the past 10 years, are shown 
in Table 4. 

The Commercial Liability lines of business-Commercial Multiple 
Peril, Other Liability, Medical Malpractice, and Commercial Auto Lia- 
bility-are highly risky: the standard deviations of their profit margins 
average 12.5. The Personal Property 1 ines of business--Homeowners 
and Private Passenger Auto Physical Damage-are less risky: the stan- 
dard deviations of their profit margins average 3.8.35 

Ii Data tiom Best’s A~grvgure.\ und Awrtr,qe.\. Pn,perty-Cawalty, IYXY Edition (Oldwck, NJ. 
A. M. Best Company, 1989). pages 96 and YX. 
” Natural catastrophes, such as hurricanes and earthquake\. prebent the greatest risks in Home- 
owner, insurance. During most years, Homeowners experience i\ favorable. but a major hut-wane 
may cause enormous industry losse\. U.S. cata\trnphe experirnuc wa\ mild in the late 1970s and 
in the 1980s. w operating ratios have been relatively stable. Hurricane Hugo ;md the Cali(bmia 
earthquake of 1989. which are not yet included in the data presented in the text, demonstrate the 
catastrophe potential in this line of business. Many climatologist, believe that the experience of the 
early and mid- lY8Os has been exceptional. and \tc may expect more severe catastrophes in the 
Gture. If so, Ihe Homeowners stability i\ deceptive. The risk may be hidden. but it is still there. 
See also footnote 37. 
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TABLE 4 

PROFIT MARCXNS AND THEIR STANDARD DEVIATIONS 
HY LINE OF BUSINESS (197Y-1988) 
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These standard deviations reflect fluctuations in returns, not disper- 
sion of the loss distribution. For instance, Ocean Marine has great 
random loss fluctuations on individual policies. But most Ocean Marine 
claims are small partial losses: the standard deviation of the profit margin 
is low (5. l), since there is not much uncertainty in the expected loss 
values.3h Workers Compensation also has high variation in the size of 
loss distribution, since there is no limit on medical payments in the 

x See Klaus Gerathewohl, et al. 1281 
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policy. But the statutory benefits and bureau rate making reduce the 
fluctuation in overall portfolio returns to a manageable level.” 

Commercial Liability insurers must continually adjust their expected 
loss values as social conditions change. The proliferation of new causes 
of action hampers General Liability expected loss forecasts. while the 
increasing claims consciousness of the public frustrates Medical Mal- 
practice loss forecasts. This is the risk which insurers face, and for which 
they need additional “risk loads.“‘x 

How stable are these results over time? Are the high standard devia- 
tions noted for the Commercial Liability lines characteristic of these 
types of risks or are they peculiar to the time period used‘? 

” David Appel, a research economist formerly with the National Council on Compensation Insur- 
ance. has pointed out to me an important difference m pricing strategies between Workers’ Com- 
pensation and other Commercial lines of business. Dr. Appel’\ insights are correct. and they modify 
the conclusion in the text. Many carriers write “account\.” providing Commercial Automobile, 
General Liability, Commercial Property, and Workers Compensation coverages for the insured. 
During downturns of the underwriting cycle, insurers reduce their Commercial Auto and GL rates, 
or they provide large schedule modifications, to retain the businrb\ Convcrscly. during upturns of 
the cycle, Commercial Auto and CL rate3 incrra\e rapidly and schedule modifications diminish. 

Workers Compensation rates, however, show less variatmn from year 1o year. Thus, the high 
variability in Commercial Automobile and General Liability profits may reflect on all the coverages 
marketed together, and does not necessarily indicale that thebe line\ arc more risky than Worker\ 
Compensation. 

Similar business and competitive considerations apply to all the figures in this paper. Financial 
theory is abstract: it provides directions, but it does not offer decisions for concrete cases. The 
pricing actuary must temper the abstract theory with practtcal judgment 10 arrcve at an equitable 
risk load for any line of business. 
‘” Fluctuations in reported operating returns by line of business depend prima& on insurance risk. 
not on investment risk. The more stable investment returns, vuch as interest. dividends, rents, and 
realized capital gains are carried to the income statement. Unrealized capital gains and losses, which 
vary widely from year to year, are a direct charge to surplus. Thus. CMP. with a short average 
settlement lag but great insurance risk, has a high standard deviation and a high p in Table 5, as 
well aa in the studies by Hammond and Shilling and by Cumminb and Nye thee following footnote) 
Workers Compensation, with a long settlement lag but less insurance risk. has lower standard 
deviations and /3s in this paper and in the previous studies. 

An alternative possibihty for fluctuating insurance returns. that they are caused more by stoch 
value variations than by insurance ri\k. i\ considered by Yehuda Kahane (331. 
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Hammond and Shilling [29] analyzed the standard deviations of 
underwriting projifs by line of business for 1956-1970.39 Among the 
major lines of business, they found high standard deviations for Com- 
mercial Multiple Peril and General Liability BI, and low standard devia- 
tions for Workers Compensation, similar to the results of the present 
analysis. However, they found a somewhat higher standard deviation for 
the Personal Property lines than for automobile liability.40 

Modern portfolio theory considers the historical variance of returns 
of a single segment of a portfolio an incomplete approximation for risk. 
Equally important is the covariance of returns among securities.41 Un- 
fortunately, estimating covariances among securities or lines of insurance 
is an arduous task.42 

The Capital Asset Pricing Model provides an elegant means of de- 
termining the risk on an individual security, composed of both the 
variance of its own returns and the covariances with the returns on other 
securities.43 Returns from each security are regressed against the returns 
of the total market portfolio, thereby quantifying price fluctuations that 
cannot be reduced by diversification. 

A prudent investor diversifies his financial holdings. Variances of 
return that can be eliminated by diversification should receive no reward 
for the additional risk undertaken. Variances of return that are correlated 
with total market fluctuations, however, cannot be eliminated by diver- 
sification. The CAPM posits that this “risk” is rewarded by a higher 
expected return. 

1v Investment income by line was not readily available in the 1970s. so Hammond and Shilling [29] 
used the complement of the combined ratio. Interest rates were relatively stable from 1956 through 
1970, so the standard deviations of underwriting income and operating profits should be similar. 

Cummins and Nye [ 171 examined the variability of returns by line of business for one insurance 
company from 1958 to 1975 and found the same results for the major lines of business as in this 
paper: high variability for CMP and General Liability, low variability for Auto Physical Damage 
and Fire (which in the 1960s accounted for most of Personal Property insurance), low variability 
for Workers Compensation, and low to moderate variability for Automobile Liability. 
4o This accords with the more rigorous estimation method discussed below; see Table 5. 
iII See Harry Markowitz 1371. 
42 Ferrari [24], Btubaker ] lo], and Cooper [ 141 emphasize the importance of covariance among 
lines of business. The development of the Capital Asset Pricing Model has obviated the need for 
quantifying covariances, so there has been little subsequent work on Ferrari’s or Brubaker’s methods. 
41 See William F. Sharpe [46]. 
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Formally, the following regression model quantifies the undiversiti- 
able or systematic risk (p): 

security’s return = u + p (market return). 

The p is determined from historical returns. The current expected 
return. R, is 

R = R/ + P(Rm, - Rs), 

where 4, is the risk free rate, such as the rate on Treasury bills, and R,,, 
is the overall market return.‘” 

Several writers have applied modern portfolio theory to the invest- 
ment of stockholders in insurance firms.JS The “risk” associated with 
insuring a given block of business is related to the covariance of return 
from that business with the diversified financial portfolios held by the 
investors in the insurance firm. These covariances. or the underwriting 
hetus associated with writing a line of insurance, have generally been 
low and unstable.4h 

A stockholder chooses between investing his money in an insurance 
firm and investing it in other securities. The insurance firm itself does 
not have this option. Were it to invest part of its equity in securities, 
instead of using it to “support” insurance writings, it would subject its 
stockholders to double income taxation: the insurer pays taxes on its 
investment earnings and its stockholders pay taxes on dividends and 

U Ttns equation relies on the assumed availability of borrowing and lending a~ the risk free rate: 
ree J. Fred Weston and Thomas E. Copeland [JYl for a good summary. This assumption is 
unrealistic, but the agreement of the CAPM with empirical returns i, the maJor justification of its 
use. Sharpe and Alexander 1471 use a quotation from Milton Friedman 1271 to clarify this issue: 
“The relevant question to ask about the ‘assumptions’ of a theory is not whether they are descriptively 
‘realistic.’ for they never are, but whether they are sufficiently good approximations for the purpose 
dt hand. And this question can be answered only hy seeing whether the theory wI1rks. which means 
whether it yields sufficiently accurate prediction\.” On empirical te\tinp of the CAPM, see D. W. 
Mullins. Jr. 1391 and the references cited therein. 
‘5 See particularly William Fairley [?21. 
1o Fairley [22]. op. cit.. estimates an underwriting B of --0.21. Biper and Kahane 171. op. cit., 
conclude that “preliminary empirical evidence presented shows that the ‘systematic risk’ of under- 
writing profits approaches zero in mo\t lines.” J David Cummins and Scott Han-ington [ 161, using 
quarterly accounting data, find a highly unstable underwriting p through the 1070s. averaging to 
-0.03 for 1970-1981 (or -0.01 for an annual dala value). 
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capital gains. The insurer’s stockholders would prefer to invest their 
monies directly in securities and pay income taxes only once.47 

Thus, the traditional use of the Capital Asset Pricing Model for 
estimating underwriting p’s quantifies the risk faced by the investor in 
insurance stocks, not the risk of the insurer. Commenting on CAPM 
based pricing models, D’Arcy and Doherty say, “Notice that nowhere is 
there a direct relationship between the competitive underwriting profit 
and risk. The riskiness of the insurance operations per se is not at issue. 
Much of the risk can be diversified by the insurance company’s own 
equityholders in the management of their personal portfolios. Only that 
component of risk that is not so diversifiable, the systematic risk, is 
reflected in the competitive underwriting profit. Thus the competitive 
price is related only to the beta, which picks up this systematic risk.“4X 

An insurer chooses lines of insurance (or blocks of business) to 
maximize its expected return while minimizing its “risk.” The market 
return R, in the CAPM model should be replaced by the return on a 
fully diversified insurance portfolio. The appropriate equation is 

R = 9f + P(R, - &I, 

where R,, is the return on the all lines combined insurance portfolio.49 

Operating returns from Best’s Aggregates and Averages (see Table 
3) are used to determine the p’s by line shown below. Note carefully: 
these do not reflect the risk to the investor in insurance stocks. Rather, 
they reflect the risk to the insurer of writing different lines of business. 

The highest p’s occur in the Commercial Liability lines of business: 
Commercial Multiple Peril, General Liability, Medical Malpractice, and 
Commercial Auto Liability. 50 In other words, when the insurance indus- 
try as a whole does well, these lines show excellent returns; when the 

4’ Myers and Cohn [40] therefore argue that policyholders should compensate the insurer for federal 
income taxes on the investment income from surplus. 
*8 Stephen P. D’Arcy and Neil A. Doherty [ 181, page 37. 
4y p may be calculated either by a least squares regression or as COV(R,R,,) + VAR(R,); see Simon 
Benninga 161. I am indebted to Gabriel Baracat for aid in estimating the risk loads by line of 
business. 
5” The high p for fidelity is due to the strong profits in this line during the most recent years. This 
is presumably a random event, due to the low premiums in this line and the U.S. economic 
prosperity, which reduces fidelity losses. 
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industry is less profitable, these lines fare even worse. The Personal 
Property lines of business-Homeowners and Private Passenger Auto 
Physical Damage-have low B’s. These lines have smoother underwrit- 
ing cycles than does the experience of all lines combined. 

TABLE 5 

p’s BY LINE or; IN~UKANCY 

(BASED ON 1979-1988 EXPERIENCE) 

Line of Ins. Beta 

Fire 0.92 
Allied Lines 1.04 
Farmowners 1.35 
Homeowners 0.65 
CMP 2.78 
Ocean Marine 0.04 
Inland Marine 0.88 
Group A&H -0.46 
Other A&H -0.51 

Line of Ins Beta 

Work Comp 0.46 
General Liab 2.98 
Med Ma1 2.65 
Aircraft 0.07 
Pers Auto Liab 0.45 
Comm Auto Liab 2.21 
PPA Phy Dam 0.37 
CA Phy Dam I .57 

Line of Ins. 
- 

Beta 

Fidelity 2.32 
Surety 0.04 
Burglary 0.33 
Boiler & Mach 0.87 
Reinsurance 1.74 
Other Lines - I .62 

Total I .oo 

Most accident and health insurance is sold by life companies. The 
profitability of these lines is unrelated to the Property/Casualty under- 
writing cycle; the historical correlation is negative. Much reinsurance is 
bought for Commercial Property and General Liability risks, and its 
profitability follows the returns of these primary lines. 

Workers Compensation and Private Passenger Auto L,iability have 
not been profitable lines in recent years, but their returns have been 
relatively stable. In Auto Liability, the large number of small risks 
smooths the fluctuations in insurance returns, though consumer com- 
plaints about high premium rates keep profits low. Administered rating 
and account pricing smooth the fluctuations in Workers Compensation 
returns. The divergence between state legislators, who mandate WC 
benefits (often in response to labor desires) and state regulators, who 
oversee rates (sometimes in response to employer needs), depresses 
profitss’ 

5I See William Bailey (41. 
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To determine risk loads by line of business, one needs the risk free 
rate and the expected return for all lines combined. Actuaries and finan- 
cial analysts regularly forecast returns for the Property/Liability insurance 
industry. 52 The risk free rate may be derived from returns on Treasury 
bills and bonds. Thus, if the risk free rate is 7% per annum, and the 
expected return for the industry as a whole is 14% per annum, the risk 
premium for Reinsurance is 12.2% per annum [ = 1.74 . (14 - 7) 1. 

This is a return on equity; it must be converted into a return on 
premium for the rate making calculation. In other words, one needs 
appropriate premium-surplus ratios by line of business. 

Inasmuch as surplus is needed to support insurance risk, represented 
by fluctuations in reported operating ratios, the loadings discussed here 
compensate the insurer for the risk it undertakes. The return on equity 
can be directly converted to a return on premiums, and a relationship 
such as the Kenney rule is appropriate.53 

If surplus is also needed to support asset value fluctuations, such as 
unrealized capital gains and losses, which do not flow through to the 
income statement, then additional surplus is needed for long-tailed lines 
of business. The ratemaking loadings would be slightly different from 
those shown here. In particular, CMP would have a somewhat lower 
load and Workers Compensation would have a higher load.54 

But is modern portfolio theory correct even for financial investments? 
Financial analysts note two problems with the theory: First, different p’s 
result when different experience periods or different statistical methods 
are used. Second, the “security market line,“-the empirical relationship 
of returns afforded by stocks and their historical @‘s-is less steeply 
sloped than the theoretical Capital Asset Pricing Model line predicts 

52 Stock analysts estimate the average CAPM p for property/casualty insurers to be approximately 
unity. 
5J The p’s determined here are based on operating ratios, which relate profits to premiums. The 
magnitude of the profit fluctuations is viewed relative to annual premium, not 10 loss reserves. 
Surplus allocation should vary with premium if these /3s are used. If one allocates surplus relative 
to loss reserves, one should relate profit fluctuations to reserves. If so, the @s for the Commercial 
Liability lines of business would be lower, since their reserves are larger. 
54 On the functions of supporting surplus, see Alfred E. Hofflander [32]. See also the National 
Association of Insurance Commissioners (411, page 8: “In addition to providing protection against 
unusually large losses. surplus also provides a cushion against declines in the value of equity 
investments, such as common and preferred stocks.” 
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(though the difference is not great). That is, the actual returns demanded 
by investors increase somewhat less rapidly with the increase in p than 
is predicted by modem portfolio theory. 

The actuary must be aware of these problems. Refinements of modern 
portfolio theory may lead to improvements in estimating risk loads by 
line of business. But this method at least quantifies the true risk faced 
by insurers, not some substitute that has no relationship to the insurer’s 
risk. 

How might this analysis be improved’? First, cash flow discounting 
should be used instead of spreading investment income to line of busi- 
ness. Different growth rates by line of business cause the Insurance 
Expense Exhibit allocation of investment income by line to distort the 
true expected present values of insurance operations. Divergences be- 
tween embedded yields and expected new money rates are also a prob- 
lem. Second, if an insurer’s writings are large enough, the historical 
returns on its own book of business should be used instead of industry 
totals, since one insurer’s book may have different characteristics from 
that of another insurer. Third, quarterly returns by line of business should 
be examined over different time periods. Reinsurance had stable and 
favorable returns for 1979-198 I, but highly variable proms in subsequent 
years. Quarterly returns for the most recent seven years may better reflect 
the risks in this line of business. Fourth, the expected return for the 
industry as a whole should be estimated by various methods and by type 
of insurer. For instance, the expected returns in Persona1 Automobile 
Liability insurance differ between agency companies and direct writers. 

These are refinements, additional bells and whistles. Even without 
these enhancements, this method is superior to current “risk load” esti- 
mation procedures. It quantifies the true risk faced by insurers, not the 
“process risk” faced by insureds. It rests on the relationship found in 
financial investments of greater expected returns for portfolios with 
greater variance. It relies on the empirical risk aversion demonstrated by 
institutional investors, which is presumably similar to the risk aversion 
characteristic of insurers. In sum, it provides insurers with a measure of 
the true cost of insuring “risky” lines of business. 
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REINSURER RISK LOADS FROM MARGINAL SURPLUS 
REQUIREMENTS 

RODNEY KREPS 

The return on the marginal surplus committed to support 
the variability of a proposed reinsurance contract is used to 
derive an appropriate risk load for reinsurers. The risk load 
is a linear combination of the standard der+ation and variance 
of the return on the contract, and depends upon the rovariance 
of the contract MGth the existing book, the standard del+ation 
of the contract, the standard deviation of the existing book, 
the acceptable probability of “ruin” of the company, and the 
yield required on marginal surplus (the additional surplus 
required for this contract). A ne\rl term is dejned, the reluct- 
ance to write risk, and relati~~eiy simple formulas result for it 
and the premium, ,r,hich satisfy intuitive reasonableness cri- 
teria. Elctensions to include expenses and UF~ existing “bank” 
are discussed, and application is made to the interesting case 
of excess layer pricing. Empirical comparison suggests that 
the market pricing is consistent vi?th this approach. 

1. MICROECONOMICS 

The underlying economic point of view taken is that of a reinsurer 
considering a new contract. The reinsurer has committed surplus to 
support the variability of his existing book; the new contract will require 
additional surplus to support its variability.’ The return on this marginal 
surplus required must be at least as much as is available in the capital 
markets; otherwise the reinsurer might just as well invest directly. It is 
assumed, with Brubaker [ 11, that the company expresses the part of its 
surplus required to support the variability of a book of business with 

I The remarks here apply equally well to insurzncr contract\, hut the ratemaking procedures for 
primary insurers typically do not allow explicit risk load\. An impiiclt load is present from whatever 
provisions are present for protit, which is economically the reward for hcarinp risk. 
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expected return R and standard deviation S as2 

V = ZS - R, (1.1) 

where z is a distribution percentage point corresponding to the acceptable 
probability that the actual result will require even more surplus than 
allocated.” For example, if the distribution is Normal, then a z of 3.1 is 
a l/1000 probability, and an amount of surplus given as above will cover 
the actual losses 999 years out of 1000 years, on average. The choice 
of the appropriate value of z is an upper management decision, reflecting 
the overall conservatism of the company and explicit and implicit regu- 
latory requirements. 

Consider a potential new contract with an expected return (premium 
less losses and expenses) r and standard deviation o, and indicate the 
resulting new book values with a prime (‘). The new values are given 
bY 

R’ = R + I-, (1.2) 

and 

V’ = zS’ - R’. (1.3) 

It is assumed that the nature of the total book distribution has not changed 
significantly, so that the same value of z is appropriate. The marginal 
surplus required by the contract is then given as 

V’ - v = z(S’ - S) - Y. (1.4) 

Now, the return from the contract and the amount of the marginal surplus 
required to support the contract imply a yield rate y on this surplus. The 
value of y must be (at least) equal to the rate in the capital markets, 
otherwise management might as well simply invest this surpIus.4 Setting 

2 We take all values as present values. A desirable property possessed by this form of surplus 
allocation is that it is invariant with respect to change in currency value. 
’ This is very similar in spirit and calculation to the “stability constraint [2].” The total surplus 
need of a company will consist of this contribution, plus that needed to support expenses and equity 
in any unearned premium reserve for new writings, plus any other contributions required by 
regulators and/or management. 
3 There are reasons, such as a desire to maintain market presence, which could allow y to fall below 
the capital market rate temporarily. 
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the yield rate equal to the management target gives the required return 
on the contracts 

r = y(V’ - V), (1.5) 

which leads to 

r = Lyzl( 1 + J)](S’ - S). (1.6) 

Denoting by C the correlation of the contract with the existing book, 

(S’)’ = sz + CT2 + 2osc. (1.7) 

The value of C will be between - 1 and + 1. and 

S’ - s = a(2SC + a)/(S’ + S). (1.8) 

Finally, combining the above and taking cr as the measure of risk, say 
that r, the risk load, is equal to reluctance times risk: 

r = Q&J, (1.9) 

where $2, the reinsurer’s reluctance to take on risk, is defined by 

92 = [E/(1 + ?)](2SC + tr)/(S’ + S). (1.10) 

2. INSUKANCE 

If the expected mean losses on the contract are p and the expenses 
are E, then the appropriate premium P is given by 

P=p+%+E. (2.1) 

In the overwhelmingly typical case, u m 2:. the reluctance has an ex- 
cellent approximation as 

% = Lvz/(l + jp)](C + a12S). (2.2) 

T This approach is actually an extension of the discussion on page 453 of Patrik and John [3]. We 
adopt this for its simplicity, while acknowledging that there are interesting questions with respect 
to the surplus flow needed to support the expected return of the book and of the contract, and the 
consequent internal rate of return. 
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These two equations form the heart of the paper, and both should 
and do make sense intuitively. In a competitive market, the yield rate y 
required will decrease, and so will the reluctance. A more conservative 
company will have a higher value of z, and hence a higher reluctance. 
A reinsurer whose book is regional will have a larger reluctance to take 
on a contract from a national carrier than from a carrier from a different 
region, and a still higher reluctance for a carrier in his region, because 
of the increasing values of the covariance. 

In the very pessimistic case where C = 1, the exact form for 9 
becomes 

% = Lvz/( 1 + y)], (2.3) 

which depends only on factors external to the contract. The premium 
still depends, of course, on p and (T. Back in the general case, if there 
is a “bank” B built ~p,~ then the marginal surplus required is reduced by 
B, and the premium becomes 

P=p,++cr+E-yB/(l +y). (2.4) 

3. EXCESS LAYERING APPLICATION 

In the case of high excess layers, generally speaking the mean loss 
p will be a small part of the premium, and the contribution from the 
risk load will be the most significant. This is intuitive and also mathe- 
matically demonstrable. 

The layer payout function P(x;A,L) for loss in the layer with attach- 
ment point A and limit L from an unlayered loss of x is defined by, as 
usual, 

0, x I A 
(s - A), u I x 5 (A + L) (3.1) 
L, (A + L) I x. 

h That is, on a long-term treaty the premiums have exceeded the losses enough for some years that 
the reinsurer feels that the reassured has some metsure of moral, if not legal, equity. Conversely, 
the losses may have exceeded the premiums enough that the reinsurer wants to add to the premium 
“to be made whole,” which corresponds here to a negative B. 
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Denote by E{any function of X) the expected value of that function over 
the distribution. That is, iff(.r) is the probability density function defined 
on the interval (0,x) and h(x) is any function of-i--, then 

E(h) = 1% h(x)f(x)dx. (3.2) 
0 

Of particular interest are E(P) and E{P’}. For convenience define G(x) 
as the probability that a loss is greater than .r. That is. 

I 

1 
G(x) = 

I f(x)dx~ 
(3.3) 

Then, a direct substitution of P in the expectation formula and an 
integration by parts yields the mean p = E(P) as 

I 

1. 
P= G(A + .r)dx; (3.4) 

0 
and, similarly, 

I 

L 
E{P’} = 2xG(A + .u)tk. (3.5) 

0 

By definition, 

CT2 = E(P) - p2. (3.6) 

Now keep L fixed and increase A; that is, examine higher and higher 
layers. Since G goes to zero as its argument becomes iarge, both TV and 
cr do also. In the cases of much practical interest (e.g., varieties of 
Pareto and Burr) where G(x) has a power law behavior for large X, 

G(x) - gi.ra. (3.7) 

The integrals to lowest order in L/A may be approximated as 

IJ- - gLJA” and E{P’} - gL’IA”. (3.8) 

Since G is essentially constant across the layer, it should come as no 
surprise that the result is that of a binomial distribution (with “success” 
probability p/L) and that 

(J2 = ML - k). (3.9) 
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Thus, p goes to zero faster than (T (which goes as 6); and the risk 
load dominates the expected loss, as intuition would suggest. 

4. A USEFUL LEMMA 

Further, one often has many layers stacked to create a program of 
protection; and a reinsurer may want to be on, for example, the first, 
fourth, and seventh layers. Clearly, there are correlations between layers, 
since to reach the fourth layer the loss must have exceeded the limit of 
the first. Fortunately, it is not necessary to do simulations or calculations 
for all possible combinations of layers. If one knows L, p, and u for 
each layer, then the appropriate mean and standard deviation can be 
calculated easily for any contract. 

Suppose there is a set of layers P,, where i runs over the set of values 
1 to N; these layers do not overlap; and they are in increasing sequence 
(Ai + Li I Al for i < j). This is the usual case. The layers need not 
actually be contiguous, although they generally are. Now, using Xi to 
mean summation over values of the layer index appropriate to the con- 
templated contract (one, four, and seven in the example above), 

p = E 
1, I i 

z Pi = C E{P;} = xpi. (4.1) 
I 

This is the obvious, but useful, result; and 

E{ (C pi)2} = E{ E (f’,12) + 2;C, E{pPjI, (4.2) 
I I 

where the Ei<j means summation is restricted to values of i and j such 
that i < j. The essential point is that when i < j, for values of x where 
Pj is non-zero, Pi is constant at Li. Thus, 

E{PiPj} = L,E{Pj} = Li/Jdj (4.3) 

and 

E{ (7 Pi)2} = 7 I(ai)’ + (Fi121 + 25 LiPj* (4.4) 
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Hence 

CT2 = x (Ui)’ + 2x (L, - /A,)& 
i iC:j 

(4.5) 

The second term represents the covariance between the layers. This 
formula is a great convenience in actual simulation modeling, since it 
means one only has to do the layers separately, and then any combination 
of layers may be easily derived. 

5. PRACTICAL CONSIDERATIONS 

Where does one obtain p and u for the layers? Typically, from doing 
simulation modeling OII the underlying data. There, one has to make 
explicit the assumptions on trend, development, exposure, curve family, 
and so on. However, once done, the statistics are obtained fairly easily 
in these days of powerful personal computers. In principle, u should 
contain the uncertainty from the underlying assumptions (parameter var- 
iability) as well as the process variance from the distributions. 

Expenses of the reinsurer can be modeled as a flat piece. for handling 
the contract per se, plus a piece proportional to the number of losses, 
representing the loss handling cost. The expected number of losses is 
also available from the simulation runs. 

One would surmise that the market pricing would be relatively effi- 
cient, in the sense of producing rates appropriate to the risk. Reinsurers 
have, after all, been in the business a long time. Of course, in the golden 
years of the past, the expectation was that relationships would be long- 
term, and that rates each year would be adjusted for past results so that 
in the not too long run reinsurers would make a profit.’ In such circum- 
stances, precise pricing was not as necessary, nor was competition per- 
haps as fierce as in today’s environment. 

Where does “rate on line” pricing tit in? For those not in the rein- 
surance field, this is the inverse of “payback period:” the number of 
years that premium would have to be collected to equal one total loss. 
For example, for a limit of one million dollars. a 10% rate on line gives 

’ Hence the notion of a “bank.” See the preceding footnote. 
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a premium of $100,000, or equivalently a payback period of ten years. 
Underwriters seem to have definite notions of what a maximum payback 
period should be, more or less independent of the nature of the cover. 
Assuming a continuing relationship, what seems to underlie this kind of 
thinking is the notion that every individual program should make a profit 
in a time frame during which the reassured is likely to remain solvent. 
In the present context, this translates into an additional contribution to 
u coming from credit risk. This contribution would not go to zero as the 
layer gets higher. 

Returning to the reluctance, it is expected to be relatively constant 
across layers as long as u/I: x C, for example when a reinsurer is 
considering a piece of a layer of a large multi-line primary. Further, as 
remarked earlier, to the extent that the covariance is large, we would 
expect the reluctance to be a product of only the reinsurance market 
conditions and the reinsurer’s conservatism measure. 

In actual practical use of this work, for any given reinsurance program 
reluctance has been taken as constant across layers, and u reflects only 
the process variability. On a relatively small sample, the reluctance has 
values varying typically from 30% to 70% or more. Note that with a z 
of 3.1 and a pessimistic C = 1, a 12% return is a reluctance of 33%, 
and a 20% return is a reluctance of 52%, so this type of range might 
have been expected. 
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ON THE REPRESENTATION OF LOSS AND INDEMNITY 
DISTRIBUTIONS 

YOONG-SIN LEE 

Abstract 

In this paper many relations und equutions relating pure 
premium or expected value quantities are presented in terms 
of random variables. This is made possible by the use oj’ the 
indicator function so that awkr~w-d representations qf func- 
tions of loss are simplified. Rclutions and formulas on such 
topics as basic limits losses, excess of loss coverages and 
retrospective rating are presented in stronger, more primitive 
f arms. The related mathemutic~s is @ten simplijed and, in 
purticukar, an effective technique ,fin- handling trend is pre- 
sented. 

1. INTRODlJCTlON 

The loss distribution is an essential component in actuarial work but 
because of the various limitations of payment of loss in an insurance 
contract, the indemnity is not always identical to the loss. Hence the 
indemnity often has a rather complicated representation in terms of the 
original loss. Actuarial formulas and expressions become less tractable 
and more difficult to understand. For this reason the treatment of basic 
limits losses, excess of loss coverages and retrospective rating, for ex- 
ample, are replete with complicated mathematical relations, and the 
formulas and equations presented in the literature provide little insight 
into their meanings. This paper uses the indicator function to give the 
indemnity a single representation as a random variable. Many of the 
mathematical relations connecting expected value pure premiums are 
now turned into more primitive, stronger relations between random var- 
iables. The algebra in manipulating the mathematical relations is often 
reduced, and the relations themselves become more transparent when 
viewed this way. Mathematical notations are known to have revolution- 
ized mathematics and science in the long history of these disciplines; 
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witness the invention of zero, the use of Arabic numerals in place of the 
Roman numerals, and the introduction of vectors and matrices in modem 
mathematics. While it is not pretended that the use of the indicator 
function will have such portentous effects in actuarial science, it does 
simplify actuarial mathematics, add new insight in many areas, and lead 
more easily to some new results. 

2. DEFINITIONS 

It will clarify matters if we distinguish between the original loss 
incurred by the insured and the indemnity paid by the insurer. Let us 
represent the original loss by the random variable X, which foilows the 
loss distribution. We also assume that the indemnity depends solely on 
the loss so that, being a function of the random variable X, it is itself a 
random variable with distribution called the indemnity distribution. The 
indemnity relates to the loss X in many ways, depending on the nature 
of the insurance contract. Typically, the indemnity as a function of the 
loss assumes different functional forms over different ranges of the size 
of loss. This contributes to the unwieldiness in the mathematics of the 
indemnity distribution. For example, if the original loss is X and the 
indemnity is the basic limits loss with limit k, then the indemnity g(X;k) 
may be described as 

X O<XSk 

Note that g(X;k) is a random variable, but is represented above and 
elsewhere in the Proceedings by two separate expressions. This repre- 
sentation has obstructed the view of the users of this random variable, 
making it awkward to work with. It can be represented in a single 
expression using the indicator function: 

g(X;k) = Xh.nl (X) + kh, =-) (X), 

where IS(X) is an indicator function defined as follows: 

k(x) = 
1 ifxES 
0 otherwise 

with S representing a set of possible values of x. The inclusion of X = k 
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in the lower line segment instead of in the upper agrees with the con- 
vention in defining the distribution function F(x) = Prob (X I x). 
Although in the above definition of I(.) the argument is a numerical 
variable, the definition extends easily to the case of a random variable 
argument in the usual way. When expressed in this form many expres- 
sions involving the random variable g(X;k) can be manipulated more 
easily. The following simple properties of the indicator function contrib- 
ute much to its power: 

Is, (xl Is, (x) = ZS,flS, (x>. 

Is, (x> + Is2 (x) = Zs,u.sz (x) if SInS2 = 0. 
It can be easily deduced that 

IS, (xl - IS? (xl = ZS,“.T~ (4 if SCSI 

and 

Is, (x) Is2 (x) = 0 if S,n& = 0. 

The prescribed statistical text, Mood, Graybill and Boes [4], uses the 
indicator function quite freely. However, examples in casualty actuarial 
science where the indicator function is applicable are much more inter- 
esting and richer, and its use could also be more sophisticated. LaRose 
[2] presents the following notations for expected values of certain func- 
tions of the loss. In his notation 

Xl(k) = ; OktdF(t). 
I 

where cl= tdF(t) is the mean loss, 

and 

X3(k) = i l=(t - k)dF(t). 
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He shows that many actuarial functions expressed in a variety of forms 
can be represented in terms of these three quantities. It is clear that 
Xl(k), X2(k) and X3(k) are respectively the expected values of the fol- 
lowing functions of loss, measured in units of the mean loss: 

and 

(X - W(k. “) m. 

As functions of X, they are shown graphically in Figure 1. These 
quantities are more closely related to the loss and are more easily under- 
stood in their random variable forms. Most of the relations treated by 
LaRose [2] can be generalized to random variable versions; some of 
them are presented in the rest of this paper. A glance through Figures 
l-4 shows visually the underlying similarity of many quantities derived 
from the loss function. Some quantities known by different names are 
the same function of the loss, and some bear simple relationships to 
others. 

FIGURE 1 
SOMEFUNCTIONSOFTHE Loss 
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3. EXCESS OF LOSS COVERAGE 

An excess of loss coverage pays the amount of loss in excess of r 
for losses exceeding r but not greater than s, and the amount j = s - r 
for losses exceeding s: 

h(X;rj) = 1 
X-r ifr<XIs, 
j ifs < X. 

In terms of the indicator function 

4X7-j) = (X - ~)l~r,sl (X) + j!,,, 1, (xl 

Miccolis [3] shows that 

h(X;r,j) = g(X;s) -- g(X;r), 

where r + j = s. As an example of algebraic manipulation with the 
indicator function representation, we derive this result as follows: 

,@;s)-g(X;r) = X~,o, .x1 (X) + Jl(.I. q (x) - {X/(o,r] (X) + rzcr. x, (x>} 

= We”. .\)I WI - Ice, I-] co,) + sl,,, X) (X) 
- rl(,. .\I (Xl - rl,.,. xj (X) 

Hence 

= XIV, so (Xl - rl,,. .,I (X) + sl,,. =, (X) ~ rib x1 (X) 

= (X - r)lcr,,l (X) + (s - r)l,,. -,, (X). 

g(X;s> - g (X;r) = h (X;rj). 

(See equations 10-l 1 of Miccolis [3]). Miccolis derives a result on the 
expectation of h2(X;rj) (see his equation 13), which can also be con- 
veniently derived as follows: 

$(X;s) = {g(X;r) + h(X;rj)}’ 

= &X;r) + h’(X;r,j) + 2g(X;r)h(X;rj). 
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But 

gW;rMX;r,j) 

= {X~..I (W + rl(,, 9 <X,> RX - r)b-, 4 (x) + (s - f-k, El (ml 

= r{(X - rY(,, .d (X) + Cs - Ok m) (WI 

= rh(X;rj). 

(This result, in terms of random variables, is also given by Miccolis [3] 
in his equation 39.) We have the random variable version of his equation 
13: 

h*(X;rj) = g*(X;s) - g*(X;r) - 2rh(X;rj). 

In statistics the calculus of expectations is made easier by manipu- 
lating the random variables or their functions, rather than dealing with 
integrals directly. For example, 

Var WNI. 4 WI + kl~k, ==I (-91 

= Var [XZ~O. k~ (X)1 + Var LWk, =) GOI 

+ 2cov [XZW, &I (Xl, kkk, “1 WI 

= Var IXZCO, kj (X)1 + Var I&k. ffi) (x)1 

- 2~ {WUI. kl CO> E {k a) (x)1), 
since in the covariance the cross-product is zero. It is easier to perform 
manipulations such as this than to work with integrals. Figure 2 shows 
some relations between these quantities, which are treated as functions 
of the loss X. 

FIGURE 2 
BASIC LIMITS AND EXCESS OF Loss COVERAGES 



210 LOSS AND IND~MNI I I’ DIS IRIBUTIONS 

.4n Exumple on Moments 

As an example using the expectation operator, consider first the hth 
moment of g(X;k). We have 

E {g?X;k)} = E {[Xh,~;] (X) + kick. x) WI”}. 

Expanding the power on the left hand side we see easily that all the 
cross terms are zero and so the hlh moment of g(X;k) is 

E {gh(X;k)} = E {X”r,t,. /;, (X)} + k”[ 1 - F(k)]. 

Now consider the hth central moment of g(X;k). We have the general 
result 

MdX;k)l = 131 (s, (- I)‘&;$ - (- l,“(h - I)$‘, 

where pi is the hth moment of g(X;k) and k = p’, is its mean. We ma 
then make use of our result for the moments of g(X;k) to obtain the x h’ 
central moment of g(X;k) 

CY, = E {[Xilco.k] (X)]}, pj = I?[ 1 - F(k)] and 

p = E G%. k, (JO) + k [l - F(k)]. 

4. TREND 

First we derive a result which will considerably simplify and clarify 
the treatment of trend effect. Let J be a monotone function of .r. To fix 
the idea, we assume the function to be increasing in .K 

y = a(x), 

so that the transformation is invertible: 

x = c-u?(y). 
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Then 

because the following statements are equivalent: 

k&b1 cy) = 1, 

Y E WI, 
a-’ (y) E (a-’ (a), C’(b)], 
x E (cc’(a), a-‘(b)], 
Zw’(a), a-‘(/&.4 = 1; 

and similarly whenever one of the indicator functions assumes the value 
0, the other does also. The result is also true for a decreasing function, 
in which case the terminal points of the intervals are reversed. 

Consider a loss X being subject to inflation. Suppose that at a future 
time point the loss becomes 

Y = a(X) 

with a(.) increasing. Then the basic limits loss becomes 

g(~w;k) = wa~~o,kl (eo> + uw,=, (4X)). 

Using (1) we have 

g(a(X>;k) = wxo, a-‘(k)1 (x) + &a-‘(k), -) 07 

This can be rewritten in the form of a resealed g function: 

(2) 

Zco. a-ml (x) + a-‘(k)Zww, a) 

= {k/u- ‘(k)} g {a- ‘(k)a(X)lk;a- l(k)}. 

In this representation we have a resealed g function of the form 
g(w(X);b) which takes the value w(X) = a-‘(k)a(X)lk over the interval 
(o,b] and the value b = a-‘(k) over the interval (b+), with w(b) = 6. 
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It is easily verified that when X takes the value 01 ‘(k), the first argument 
of the g function above also takes the value (Y ‘(k). The manipulation 
of random variables in this manner is a more general method of treating 
the trend effect and could be of practical use if the assumption of uniform 
inflation rate over the range of the size of loss is too serious a deviation 
from reality. Similarly, the effect of inflation on an excess of loss 
coverage can be represented as 

h(a(X);rj) = [(a(X) - rl I, b,,a-‘,.\)l(X) + (s - Y)Z(Cl ‘(5). x,(X); 

or alternatively described in the form of a resealed 11 function: 

h(a(X);rj) = c’h(X’;r’,j’) 
s-r 

i 

a-‘(s) - C’(r) = 
C’(s) - C’(r) [(a(X) - Nca-vrj,, bI(X) s - r 

+ [cC’(s)-u-l(r)lZ~a~ k, =j w ) 

= c’{(X’-r’)Ztrf..,. 1(X’) + (s’-r’)Zt.,‘.1#3), 

where 

(-’ zz s-r 

a-‘(,s-K’(r) ’ 

X’ = a(X)lc’ ( 

r ’ = rid, s’ = s/c’, 

j’ = s’ - r’ = (s - r)/c’ 

In the resealed form the function h(X’;r’,j’), where X’ is a function 
of X, takes the value X’ - r’ in the interval (X’ = r’. X’ = s’] and the 
value j’ in the interval (X’ = s’, %), with X’ - r’ = 0 when X’ = r’ 
and X’ - r’ = j’ when X’ = s’. When a(.) is the identity function, the 
original definition of h is recovered. The quantity of interest is the 
expectation of the h function. In general the functional form would not 
be easy to obtain, but the numerical computation should not be much 
more difficult than the computation of the untransformed h function. 
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If the trend function a(.) is not monotone, then it can be broken up 
into pieces each of which forms a monotone function. The above analysis 
can then be carried out piecemeal. It is more usual to assume that the 
inflation rate is uniform over the loss size: 

a(X) = ax. 

Venter [S] gives an extensive treatment for this case. It can be shown 
by straightforward substitution in the resealed versions of the formulas 
above that 

g(uX;k) = ug(X;k/u), 

and 

h(uX;r,j) = uh(X;rlu,j/u). 

Formulas involving trend could cause difficulties because of the lack 
of suitable tools for handling the transformed loss payment resulting 
from inflation. Bickerstaff [l] describes a model for automobile physical 
damage loss in which there is a deductible D representable by the random 
variable 

and an upper limitation of loss payment L, such that the reduction in loss 
payment can be represented by the random variable 

(X - L)Z(L. &Q = XI& P,(X) - LZ(L. a,(X). 

The total reduction due to deductible and limitation in year 1 is then 

X~(O,Dl(X) + Dh. &,J + xzw. &Q - LZa. ~,W), 

with D < L. The loss payment limitation L is subject to a discount at 
an annual rate of 1 - d and the loss incurred is sub’ect to inflation at 
an annual rate of r, simultaneously, so that in the n ti 

X(1 + r)n-l 
year X becomes 

and L becomes LC’. Consequently the total reduction 
becomes 

(1 + r)n- ‘XZco, ol(( 1 + r)“- ‘X) + DZco, =,(( 1 + r)“-‘X) 

+ (1 + r)“-‘XZcOmf. =,((l + r)“-‘X) - Ld”-‘Zc~dn-~.,)((l + r)“-*IQ 
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which is obtained by simply applying the appropriate factors to X and 
D. Using equation (l), we can reduce this to 

(1 + r)n-‘XZ~t~,D( I++#) + DZCLA I+,-)’ n, -*04 

f (1 + r)n~‘XZCL~~-ICI +r)~ 0~ =)(X) - Lcfr’~‘Z,Lll”~~(,+,-)i~rl, .<,(X) 

Thus with the results developed earlier in this section the effect of trend 
can be handled in a fairly formal way. Taking expectations leads to the 
pure premium version of Bickerstaff’s [ 1 j formula. The original formula 
given by Bickerstaff is incorrect: Philbrick [5] corrects the error. 

A Numericd Esumple 

We now give an example in the calculation of trend when the inflation 
rate varies with the amount of loss. There does not seem to be any 
theory on the specific functional form for rates of inflation which vary 
over the range of the amount of loss. In any case such rates cannot be 
precisely determined in practice. One way is to break up the range of 
loss value into sub-intervals and for each of the sub-intervals to approx- 
imate the rate of inflation by a linear function. This would often lead to 
mathematically tractable solutions and is quite satisfactory for handling 
practical problems. 

We assume that the inflation rate i of the loss X increases with the 
value of X. Specifically, we assume that i starts at IO%, increases linearly 
until it reaches 20% at X = 20,000, and thereafter remains at 20%. Thus 
i = i (X) can be described by the formula 

i(X) = (0. 10 + 0. Iox/2oOOO)z~,,. L(“HK,,(X) + 0.20f,2,KKW,. z,(X). 

The loss after inflation is then described by the formula 

a(X) = [ 1 + i(X)]X 

= (1. 10x + 0. lox2/20000)/,~,. ~()OO~j, (X) 

+ 1 .20Xf~21utx,, Xl (Xl. (3) 
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The overall effect of inflation over the full range of loss can be described 
by the average rate of inflation E{ar(X)}/E{X} - 1, where 

E{a(X)} = E{( 1.10X + 0. 10X2/20000)I~o, z(xxxjr (X)} 

+ 1.2OE{Wm~x~, -) (X)}. (4) 

In this example we have for the purpose of illustration divided the 
range of loss into only two sub-intervals; there is actually no difficulty 
in dividing the range into any finite number of sub-intervals. In this 
approach the main task in the calculation of the effect of inflation is the 
evaluation of the incomplete first and second moments of the distribution 
of loss, as is clear from the preceding formula. In fact, formula (4) can 
be rewritten as follows: 

E{o(X)} = 1. lOE,,, {X} + (0. 10/s)EC,, {X2} + 1.2O[E{X} - EC,, {X)] 

where we have written s for 20,000 and where 

Ew{Xk) = ~+fW 

is the incomplete kth moment of X up to s. For most distributions 
commonly used to model loss data, explicit formulas for such moments 
are available. 

Suppose we are interested in the effect of inflation on the basic limits 
loss g(X;k) with k = 10,000. From (2) the indemnity after inflation 
would be 

g(WO;k) = ~W~o,cr-w GO + ~wv6.=, (X) 

= [ 1.10x + (0. 10/20,000)x2]z(o, C’(k)] (X) 

+ 1o,ooozW~(&,, “) 0. 

The value of a-‘(k) is determined by the quadratic equation 

1.10x + (0. 10/20,000)x2 = k = 10,000, 

and the solution is easily found to be x = C’(lO,OOO) = 8,743. 
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Thus the expected value of the basic limits indemnity would be 

E{g(a(X);k)} = E{ 1.10X + (0.10/20,000)X’]I,0. x,43, (X,} 

+ lO,OOO[l - F(8,743)]. (5) 

Suppose the limit is k = 25,000; the solution would be somewhat 
different. A close look at equation (3) reveals that the inverse .x = a-‘(k) 
is given by k/l .20 = 20,833. The expected value of the indemnity under 
this contract would then be 

E{g(a(X;k)} = E( I. 10X + (O.l0/2O,OOO)X’]Z,~,, l(KHHb, (X)} 

+ 1 ~E{XIWW~. ~ox.13 I (X)} 

+ 25,000[1 - F(20,833)], (6) 

remembering the change in functional form at X = 20,000. The actual 
calculation can then be carried through by evaluation of the distribution 
function and the appropriate incomplete moments. 

Now let us take the specific functional form for the loss distribution 
to be lognormal with parameters 

p = 7.6 and o = 1.8 

so that the mean loss is 

E(X) = 10,097 with CV = 4.953, 

where CV stands for the coefficient of variation (standard deviation / 
mean). For the lognormal the k’h moment is 

E{X”} = exp[kk + (1/2)k’o’] 

and the incomplete kth moment is 

E,,, {X”} = E{X”}@[(ln x - k)/rr - ka] 

where @(.) denotes the distribution function of the standard normal 
variable. Table 1 shows the incomplete moments with orders shown in 
column (1) up to the various values shown in the first row. Order zero 
means the value of the distribution function. 
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TABLE 1 

INCOMPLETE MOMENTS 

(1) (2) (3) (4) (5) (6) 
k 20,000 8743 10,000 20,833 25,000 - 

0 0.8997 0.7939 0.8145 0.9036 0.9198 
I 3,044 1,651 1,844 3,124 3,493 
2 26,455,454 7,075,407 8,880,632 28,093,176 36,534,773 

First we will calculate the overall inflation; formula (4) and the 
numbers in column (2) of Table 1 give 

1.10 X 3044 + .10 x 26,455,454 /20,000 

+ 1.20 x 20,000 x (10,097 - 3,044) = 11,945, 

corresponding to an overall rate of 11,945/10,097 - 1 = 18.3%. Next 
consider the basic limits indemnity with a limit at 10,000. Noting that 
c-w-‘(k) in formula (5) has the value 8743 and using the numbers in 
column (3), we have the expected basic limits indemnity 

1.10 x 1651 + .I0 x 7,075,407/20,000 

+ 10,000 x (1 - .7939) = 3,912. 

From column (4) we can easily obtain the limited indemnity without 
inflation: 

1,844 + lO,OOO(l - .8145) = 3,699 

so that the effective inflation rate is 3,912/3,699 - 1 = 5.76%. 

Similarly, we can calculate the inflation rate for the basic limits 
indemnity with a limit of 25,000. From formula (6) and the numbers in 
columns (2) and (5) we find this to be 

1 .lO X 3044 + .lO X 26,455,454/20,000 

+ 1.2 x (3,124 - 3,044) + 25,000 X (1 - .9036) = 5,987. 
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.4gain, we can calculate the expected indemnity without inflation for this 
case with the numbers in column (6): 

3,493 + 2,500 X (1 - .9198) = 5,498 

so that the effect of inflation is to increase the expected indemnity by 
5,9X7/5,498 - 1 = 8.89%. 

5. DEDUCTIBLES 

The common type of deductible, called straight deductible. has the 
simple representation 

A franchise deductible is represented as XI (o,~,I (X). These are depicted 
as functions of the loss X in Figure 3. A more complicated form of 
deductible is the vanishing deductible, which equals the loss up to the 
amount d, but thereafter reducing linearly to 0 when the loss becomes 
D > d (Snader 171); see Figure 3 for a pictorial description. 

FIGURE 3 
DEDUCTIBLES 
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It is easier to describe the indemnity after the deductible. The geometry 
in Figure 3 shows easily that the equation for the indemnity is 

over the range (d, D]. Thus the indemnity can be written as 

Y=D-d A- (X - dY(d, 01 (X) + ma “1 a>. 

The deductible itself can be found by taking the difference: 

x - Y = XZ(,. <fj (X) + $-q CD - JWw. DI GQ. 

The expectation of the deductible can then be obtained as 

E{X - Y} = E{XZWI(X)} + #--+ ND - XYw. DI GO) 

d 
I 

D 

= 

I 
(D - x)dF(x). 

0 d 

6. RETROSPECTIVE RATING 

In retrospective rating, the charge over rE, where E stands for the 
expected loss, can be represented as a random variable: 

@WE = (X - rE)Zm a) (x). 

Q(r) may be interpreted as the excess of the loss X over rE, measured 
in units of E, and 

E-i@(r)) = 444 

where E{ } means expectation and $(r) has the usual meaning of charge 
over rE as an average. Similarly, we represent the random variable 
savings as 

'WE = (rE - XYw,r~j (Xl 

with 
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The graphs of (P(r) and q(r) as functions of X/E are shown in Figures 
4a and 4b. The loss portion of the limited pure premium paid by the 
insured, L, is a random variable under the insurance contract: 

L = r&lw, r,.c~ (X) + Xz~r,E,r+l (X) + rZEz(qE,rt w. (7) 
The insured pays the minimum premium rlE if the actual loss incurred 
is not more than r,E, the actual loss if it is greater than r,E but not 
greater than r?E, and the maximum premium r2E if the actual loss 
exceeds r&, as far as the loss portion of the premium is concerned. The 
graph of L as a function of X is shown in Figure 4d. 

FIGURE 4 
RETROSPECTIVE RATING 
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By adding and subtracting XZ(O. r,E1 (X) and XZCrzE, p~ (X) in the formula 
(7) for L we have 

= (r& - x)Z(O, r,E) (Xl + X - W - r2E)Icrz~, 03) (JO 

Thus 

L = X - {@(r2)E - q(r,)E} 

=X-J 

where 

J = @(rz)E - W(rl)E 

is the random variable version of the net charge Z as defined, for example, 
in Skurnick [6] and, of course, E(J) = I. Note that .Z is equal to 
- (rlE - X) if the loss X is less than r,E, zero if the loss X is between 
r,E and rzE, and X - r2E if the loss X exceeds rzE. Its graph as a 
function of X is shown in Figure 4c. 

The following identity is interesting: 

W-)E - T(r)E = (X - rE)Zo, =) GO - (rE - X>Z(O, rE1 (Xl 

= X - rE, 

being the random variable version of the well-known identity 4(r) - 
$(r) = 1 - r. The graph of @(r)E - W(r)E as a function of X is simply 
a 45degree line through the point (rE,O). 

The following equality is easily derived from equation (7): 

L - r& = rlEZ(o, +FI (Xl + XZV,E, r2~~ (Xl + r2EZcr2E, -) (Xl - PIE 

= (X - nE)Z(r,E.rzE~ (-%I + (r& - rdW(r2E,m) (-9. (8) 
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This equality is illustrated in Figure 4e, and its relationship to I, is clearly 
visualized by comparison to Figure 4d. Whereas 

@(r,)E - @ (r*)E = (X - r,E)/,,-,/.. L, (X) - (X -.- r&)z(r?t.,x) (X) 

= (X - rIEY~r,f..,~l;l 09 + (X - rlE)I(,,k,~, (xl 

- (X - r&Vc,,t. 1) (X) 

= (X - rlEY(r,L, ,-?I-1 (X) 

+ (r& - riE)I,,-,A, xb (X). (9) 

See Figure 4f for an illustration. Equations (8) and (9) show that 

@(rl)E - c$(r2)E = L - r,E, (10) 

and both are the excess of loss function h(X;rtE.rdZ - r,E‘) as described 
in Section 2. Let BP be the basic premium of the retrospective plan. 
Adding and subtracting this on the right-hand side of (10) yields 

Q(r)) - @(r2) = [{BP + CL} - {BP + Cr,E}]ICE, (11) 

where C is the loss conversion factor to be applied to the loss to obtain 
the premium. Equation (11) is useful in determining the exact entry 
ratios as well as the minimum and maximum premiums in a retrospective 
rating plan. Noting that 

E{BP + CL} = P( 1 - D), 

which is the premium after adjustment for expense gradation D, and 

E{BP + r,CE} = H, 

where H is the minimum premium, we have by taking expectations on 
both sides of (1 1) the familiar identity (Skumick (61) 

c$(rl)E - $(rz)E = (P - PD - H)ICE. 
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7. CONCLUSION 

An alternative method of representing a function assuming different 
functional forms over the range of its argument is by the Heaviside or 
delta function, which is defined as 

H(x) = 
1 ifO5X 
0 otherwise. 

Thus the function 

g(X;k) = 
x O<XIK 
k X>k. 

can be represented in terms of the Heaviside function as 

g(X;k) = XH(X) - XH(X - k) + kH(X - k) 

= XH(X) - (X - k)H(X - k). (12) 

The Heaviside function obviates the explicit use of the set and so is 
more parsimonious in notation. Most people, however, would take a 
relatively long time to picture the shape of the function represented by 
(12). While the indicator function representation visually shows the sets 
of points where the g function assumes different forms, it is not so with 
the Heaviside function. Thus, although at times clumsy in form, the 
indicator function representation is preferred here. 

In mathematics and, more generally, scientific work, given relations 
are to be made as general as possible. Relations between random vari- 
ables are certainly more general than those derivable from these relations 
but pertaining to their expectations only. In actuarial work, the most 
important quantity related to a loss is the expected value. It is natural 
that much of the work on the topics described in this paper has focused 
on expected values. This paper has shown that it is often possible to 
express the relations in terms of the random variables, thus strengthening 
the existing mathematical results. The results are stronger in the sense 
that when a relation holds for random variables, it is true for each 
realization, whereas a relation for expected values holds only on the 
average. 
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Such an approach allows us to look at the results in another way. 
The stronger results give not only the expectation relationship, but also 
relationships pertaining to other characteristics of the indemnity distri- 
bution, such as higher order moments. Also, quite often the mathematics 
become simpler and easier to understand. In particular, the treatment of 
trend in this fashion is more effective than techniques hitherto available. 
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AN EXAMPLE OF CREDIBILITY AND SHIFTING RISK 
PARAMETERS 

HOWARD C. MAHLER 

Abstract 

In this paper. the won-lost record of baseball teams will 
be used to examine and illustrate credibility concepts. This 
illustrative example is analogous to the use of experience 
rating in insurance. It provides supplementary reading ma- 
terial for students who are studying credibility theory. 

This example illustrates a situation where the phenomenon 
of shifring parameters over time has a very significant impact. 
The effects of this phenomenon are examined. 

Three different criteria that can be used to select the 
#primal credibility are examined: least squares, limited jluc- 
tuation and MeyersJDorweiler. In applications, one or more 
of these three criteria should be useful. 

it is shown that the mean squared error can be written as 
a second order polynomial in the credibilities with the coef- 
jicients of this polynomial written in terms of the covariance 
structure of the data. It is then shown that linear equation(s) 
can be solved for the least squares credibiliries in terms of 
the covariance structure. 

The author wishes to thank Julie Jannuzzi and Gina Brewer for typing this paper 

1. INTRODUCTION 

In this paper, the won-lost record of baseball teams will be used to 
examine and illustrate credibility concepts. This illustrative example is 
analogous to the use of experience rating in insurance. The mathematical 
details are contained in the appendices. 
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One purpose of this paper is to provide supplementary reading ma- 
terial for students who are studying credibility theory. However, this 
paper also contains a number of points which should prove of interest 
to those who are already familiar with credibility theory. 

Of particular interest is the effect of shifting risk parameters over 
time on credibilities and experience rating. This example illustrates a 
situation where the phenomenon of shifting parameters over time has a 
very significant impact. 

The general structure of the paper is to go from the simplest case to 
the more general. The mathematical derivations are confined to the 
appendices. 

Section 2 briefly reviews the use of credibility in experience rating. 

Section 3 describes the data sets from baseball that are used in this 
paper in order to illustrate the concepts of the use of credibility in 
experience rating. 

Section 4 is an analysis of the general structure of the data. It is 
demonstrated that the different insureds (baseball teams) have signifi- 
cantly different underlying loss potentials. It is also shown that for this 
example a given insured’s relative loss potential does shift significantly 
over time. 

Section 5 states the problem whose solution will be illustrated. One 
wishes to estimate the future loss potential using a linear combination 
of different estimates. 

Section 6 discusses simple solutions to the problem presented in 
Section 5. 

Section 7 discusses three criteria that can be used to distinguish 
between solutions to the problem in Section 5. 

Section 8 applies the three criteria of Section 7 to the forms of 
solution presented in Section 6. The results of applying the three different 
criteria are compared. The reduction in squared error and the impact of 
the delay in receiving data are both discussed. 
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Section 9 discusses more general solutions to the problem than those 
presented in Section 6. 

Section 10 applies the three criteria of Section 7 to the forms of the 
solution presented in Section 9. 

Section I1 shows equations for Least Squares Credibility that result 
from the covariance structure assumed. 

Section 12 discusses miscellaneous subjects. 

Section 13 states the author’s conclusions. 

2. CREDIBILITY AND EXPERIENCE RATlNG 

Experience rating and merit rating modify an individual insured’s 
rate above or below average. From an actuarial standpoint, the experience 
rating plan is using the observed loss experience of an individual insured 
in order to help predict the future loss experience of that insured. Usually 
this can be written in the form: 

New Estimate = (Data) X (Credibility) 
+ (Prior Estimate) X (Complement of Credibility) 

For most experience rating plans, the prior estimate is the class 
average. However, in theory the prior estimate could be a previous 
estimate of the loss potential of this insured relative to the class average. 
This paper will treat both possibilities. 

2.1 Shifting Parameters Over Time 

There are many features of experience rating plans that are worthy 
of study by actuaries. Meyers [I], Venter [2], Gillam [3], and Mahler 
[4] present examples of recent work. The example in this paper will deal 
with only one aspect, that is, how to best combine the different years of 
past data. 

The author, in a previous paper [5], came to the following conclusion 
concerning this point: 
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“When there are shifting parameters over time, older year\ of datil should be 
given substantially less credibility than more recent year\ of data. There may be 
only a minimal gain in efficiency from using additional year\ of data.” 

3. THE DATA SET-S 

This paper will examine two very similar sets of data in order to 
illustrate certain features of credibility. Each set of data is the won-lost 
record for a league of baseball teams.’ One set is for the so-called 
National League while the other is for the American League? Each set 
of data covers the sixty years from 1901 to 1960. During this period of 
time each league had eight teams. 

For each year, called a season in baseball. for each team, we have 
the losing percentage, i.e., the percentage of its games that the individual 
team lost. 

3.1 Ad\untqes oj’ this Datu 

This example has a number of advantages not to be found using 
actual insurance data. First, over a very extended period of time there 
is a constant set of risks (teams). In insurance there are generally insureds 
who leave the data base and new ones that enter. 

Second, the loss data over this extended period of time are readily 
available, accurate and final. In insurance the loss data are sometimes 
hard to compile or obtain and are subject to possible reporting errors and 
loss development. 

Third, each of the teams in each year plays roughly the same number 
of games.J Thus the loss experience is generated by risks of roughly 
equal “size.” Thus, in this example. one need not consider the depen- 
dence of credibility on size of risk. 

’ Meyers ( I ( defines the efficiency of an espcriencc rafing plan as the reduction in expected squared 
error accomplished by the use of the plan. The higher the efhciency the vnaller the expected 
squared error. 
2 Appendix A gives some relevant features of the sport of baseball. 
’ These two leagues are referred to as the major league\ They generalI) contain the best player\ 
in North America. The data for the two leagues xc independent of each other. since no inter-league 
game\ are included in the data. 
’ Over the 60 years in question, teams usually played ahout I St1 games per year. 



CREDIBILITY AND SHIFTING PARAMETERS 229 

4. ANALYSIS OF THE GENERAL STRUCTURE OF DATA 

The loss experience” by risk (team) by year are given in Table 1 for 
the National League and Table 2 for the American League.” 

4.1 Is There an inherent Difference Between Teams? 

The first question to be answered is whether there is any real differ- 
ence between the experience of the different teams, or is the apparent 
difference just due to random fluctuations. This is the fundamental ques- 
tion when considering the application of experience rating. 

It requires only an elementary analysis in order to show that there is 
a non-random difference between the teams. The average experience for 
each team over the whole period of time differs significantly from that 
of the other teams. If the experience for each team were drawn from the 
same probability distribution, the results for each team would be much 
more similar. The standard deviation in losing percentage over a sample 
of about 9000 games’ would be .5%.x Thus if all the teams’ results were 
drawn from the same distribution, approximately 95% of the teams would 
have an average losing percentage between 49% and 5 l%.” 

The actual results are shown on Table 3. In fact, only 3 of 16 teams 
have losing percentages in that range. The largest deviation from the 
grand mean is 15 times the expected standard deviation if the teams all 
had the same underlying probability distribution. 

5 For each of 60 years. the percentage of games lost is given for each team. The data are from The 
Sports Encyclopediu [6]. 
h For the National League the teams are in order: Brooklyn, Boston, Chicago, Cincinnati, New 
York, Philadelphia, Pittsburgh and St. Louis. For the American League the teams are in order: 
Boston, Chicago, Cleveland, Detroit, New York, Philadelphia, St. Louis and Washington. In both 
cases, the city given is that in which the team spent the majority of the data period. 
’ About 150 games for a team each year times 60 years. 
8 A binomial distribution with a 50% chance of losing, for 9000 games, has a variance of 
9000(1/2)(1 - 112) = 2250. This is a standard deviation of 47 games lost, or 47 + 9OOQ = .5% 
in losing percentage. 
9 Using the standard normal approximation, 95% of the probability is within two standard deviatioins 
of the mean which in this case is 50%. 
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IYOI ,500 .419 .6lY .626 
1902 ,467 .457 ,504 SO0 
1903 ,580 ,485 .406 ,468 
1904 ,641 ,634 ,392 ,425 
1905 .669 ,684 ,399 .3x4 
1906 ,675 ,566 ,237 .S7h 
1907 ,608 ,561 ,296 ,569 
1908 ,591 ,656 ,357 ,526 
1909 ,706 ,641 .320 .4Y7 
1910 ,654 .584 ,325 ,513 
1911 ,709 ,573 .403 ,542 
1912 ,660 ,621 ,393 .SlU 
1913 ,543 ,564 ,425 .sx2 
1914 ,386 ,513 .4Y4 .6lO 
1915 ,354 ,474 ,523 ,539 
1916 ,414 ,390 ,562 ,608 
1917 ,529 ,536 ,510 ,494 
1918 ,573 .54X ,349 .469 
1919 ,590 ,507 ,464 ,313 
1920 ,592 ,396 ,513 .464 
1921 ,484 .493 ,582 .542 
1922 ,654 ,506 .481 ,442 
1923 ,649 ,506 .461 .3OY 
1924 ,654 ,403 .47 I .45x 
1925 ,542 ,556 ,558 .477 
1926 .566 ,536 ,468 .435 
1927 ,610 ,575 .444 ,510 
1928 .673 ,497 ,409 ,487 
I929 .636 .542 ,355 .57l 
I930 ,545 ,442 ,416 ,617 

NLI 

CREDIBILITY AND SHIFTING PARAMEIERS 

TABLE 1 

NATIONAL LEAGUE LOSING PERCENTAGES 

NL2 NL3 NL4 NLS NL6 NL7 NL8 

.620 ,407 ,353 .457 

.647 ,591 .25Y ,582 
,396 ,637 ,350 ,686 
,307 -658 ,431 ,513 
,314 ,454 ,373 ,623 
.36X ,536 .392 ,653 
.4hl .43s ,400 ,660 
,364 ,461 ,364 ,682 
.3YY .Sl6 ,276 ,645 
.4OY ,490 .438 .588 
,353 .4x0 ,448 ,497 
.3 I8 520 ,384 ,588 
.336 ,417 ,477 .660 
.455 ,519 .552 ,471 
,546 .40X ,526 ,529 
,434 .3os .57x ,608 
.3b4 .42x ,669 .461 
,427 ,553 ,480 ,605 
,379 .hS7 ,489 ,606 
,442 ,595 ,487 ,513 
,386 ,669 ,412 .43 I 
.3Y6 .627 .448 ,448 
,379 ,675 ,435 ,484 
.3’32 .636 ,412 ,578 
,434 .SSh .379 ,497 
,510 .hlh .45 1 ,422 
,303 ,669 ,390 ,399 
,396 ,717 ,441 ,383 
.444 ,536 ,425 .487 
,435 .662 .4x1 .403 
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1931 ,584 ,480 ,455 ,623 ,428 ,571 .513 ,344 
1932 ,500 .474 .416 ,610 ,532 ,494 .442 .532 
1933 ,461 ,575 ,442 ,618 ,401 ,605 ,435 .464 
1934 ,483 ,533 .430 ,656 ,392 ,624 ,507 .379 
1935 ,752 .542 .35l ,556 ,405 ,582 ,438 ,377 
1936 .539 .565 .435 .519 ,403 .649 ,455 ,435 
1937 ,480 ,595 ,396 ,636 ,375 ,601 ,442 ,474 
1938 ,493 ,537 ,414 ,453 ,447 ,700 ,427 ,530 
1939 ,583 .45 1 ,455 .370 ,490 ,702 ,556 ,399 
1940 ,572 ,425 ,513 ,346 ,526 ,673 .494 .45 1 
1941 ,597 ,351 ,545 ,429 ,516 ,721 ,474 ,366 
1942 .601 ,325 .558 ,500 .441 ,722 .551 ,312 
1943 ,556 ,471 ,516 ,435 ,641 ,584 ,481 .318 
1944 ,578 ,591 .513 ,422 ,565 ,601 ,412 ,318 
1945 ,559 ,435 ,364 ,604 ,487 ,701 ,468 ,383 
1946 ,385 ,471 ,464 ,565 ,604 ,552 .591 .372 
1947 ,390 .442 ,552 ,526 ,474 .597 ,597 ,422 
1948 ,455 ,405 ,584 ,582 ,494 ,571 ,461 ,448 
1949 ,370 ,513 ,604 .597 ,526 ,474 ,539 ,377 
1950 ,422 ,461 ,582 .569 ,442 .409 .627 ,490 
1951 .382 ,506 ,597 ,558 ,376 ,526 ,584 ,474 
1952 ,373 ,582 ,500 ,552 ,403 ,435 ,727 ,429 
1953 .318 ,403 .578 ,558 .545 .46 I ,675 ,461 
1954 .403 ,422 ,584 ,519 ,370 ,513 ,656 .532 
1955 ,359 ,448 ,529 .513 ,481 .500 ,610 .558 
1956 ,396 ,403 ,610 .409 ,565 .539 ,571 ,506 
1957 ,455 ,383 ,597 ,481 ,552 .500 .597 .435 
1958 ,539 ,403 ,532 .506 ,481 ,552 .455 ,532 
1959 ,436 ,449 ,519 ,519 ,461 ,584 ,494 ,539 
1960 .468 ,429 ,610 ,565 .487 ,617 ,383 ,442 

NLI NL2 NL3 

TABLE I 

(CONTINUED) 

NL4 NL5 NL6 NL7 NL8 
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1901 ,419 ,390 ,599 ,452 
1902 ,438 .44X .493 ,615 
1903 .34l .562 ,450 ,522 
1904 ,383 ,422 ,430 ,592 
1905 ,487 ,395 ,506 ,484 
1906 ,682 ,384 .41X ,523 
1907 .604 ,424 ,441 ,387 
1908 .513 ,421 ,416 ,412 
I909 .417 ,487 ,536 ,355 
1910 .47 I ,556 ,533 .442 
1911 ,490 ,490 ,477 .422 
1912 ,309 ,494 ,510 ,549 
1913 ,473 ,487 ,434 ,569 
1914 ,405 ,545 .667 ,477 
1915 ,331 ,396 ,625 .351 
1916 ,409 ,422 .500 .435 
1917 ,408 ,351 ,429 ,490 
1918 ,405 ,540 ,425 ,563 
1919 .51X ,371 ,396 .42Y 
1920 ,529 ,377 ,364 .604 
1921 .513 ,597 ,390 .536 
1922 ,604 ,500 ,494 ,487 
1923 .599 552 .464 ,461 
1924 ,565 .569 .562 ,442 
1925 ,691 .4X7 ,545 ,474 
1926 ,699 .47 I .429 .4X7 
1927 ,669 .542 ,569 .464 
1928 .627 .532 .597 ,558 
1929 ,623 ,612 ,467 ,545 
1930 ,662 ,597 ,474 ,513 

AL1 

TABLE 2 

AMERICAN LEAGUE LOSING PERCENTAGES 

AL2 AL3 AL4 AL5 AL6 AL7 AL8 

.4x9 ,456 .650 ,545 

.63X ,390 ,426 ,551 
,463 ,444 ,532 ,686 
,391 .464 ,572 .74X 
,523 .37X ,647 ,576 
,404 ,462 ,490 ,633 
,527 ,393 ,546 .675 
,669 .556 ,454 ,559 
.510 ,379 ,593 ,724 
.417 .320 ,695 ,563 
,500 ,331 ,704 ,584 
.67 I ,408 ,656 .401 
,623 .373 ,627 .416 
,545 ,349 ,536 .474 
,546 ,717 .59l ,444 
.4X 1 ,765 .4X7 ,503 
,536 ,641 ,630 .516 
,512 594 ,525 .437 
,424 ,743 ,518 ,600 
.3X3 .68X ,503 ,553 
,359 .654 ,474 ,477 
,390 ,578 ,396 ,552 
,355 ,546 ,513 .5lO 
,414 .533 ,513 .403 
.552 ,421 ,464 ,364 
,409 .447 ,597 .460 
,286 .4OY .614 .44X 
,344 .3.59 .46X ,513 
,429 ,307 ,480 ,533 
,442 .33X .5x4 ,390 
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1931 ,592 
1932 ,721 
1933 ,577 
1934 .500 
1935 ,490 
1936 .519 
1937 ,474 
1938 .409 
1939 .41 I 
1940 .46X 
1941 ,455 
1942 ,388 
1943 ,553 
1944 ,500 
1945 ,539 
1946 ,325 
1947 .46l 
1948 .3X1 
1949 ,377 
1950 ,390 
1951 .435 
1952 .506 
1953 .45 I 
1954 ,552 
1955 ,455 
1956 ,455 
1957 ,468 
1958 ,487 
1959 ,513 
1960 .57x 

ALI AL2 AL3 

,634 .494 
,675 .42X 
,553 .503 
,651 ,448 
,513 ,464 
,464 .4x1 
.442 .461 
,561 ,434 
.44x ,435 
.46X ,422 
,500 ,513 
,554 ,513 
.46X ,464 
.539 ,532 
,523 ,497 
,519 ,558 
,545 ,481 
.664 .374 
,591 .422 
,610 ,403 
,474 ,396 
,474 ,396 
,422 ,403 
,390 ,279 
,409 ,396 
.44X .429 
,416 .503 
,468 .497 
.390 ,422 
,435 ,506 

TABLE 2 

(CONTINUED) 

AL4 AL5 

,604 ,386 
,497 .305 
,513 .393 
,344 ,390 
.3x4 .403 
,461 ,333 
,422 ,338 
,455 ,349 
.474 .29X 
.416 ,429 
.513 ,344 
,526 ,331 
,494 ,364 
,429 ,461 
.425 ,467 
,403 ,435 
.44X ,370 
.494 ,390 
.435 ,370 
.3x3 .364 
.526 ,364 
,675 .3x3 
.6lO .344 
,558 ,331 
.4x7 ,377 
,468 ,370 
,494 .364 
,500 .403 
,506 .4x7 
,539 ,370 

AL6 AL7 AL8 

,296 ,591 .403 
,390 ,591 ,396 
.477 ,636 ,349 
,547 ,559 ,566 
.61 I ,572 ,562 
,654 ,625 ,464 
,642 ,701 .523 
,651 ,638 .503 
,638 ,721 ,572 
,649 ,565 .5x4 
,584 ,545 .545 
.643 .457 .5x9 
.6X2 ,526 .45 I 
.532 ,422 .5x4 
.653 ,464 ,435 
,682 ,571 ,506 
.494 .617 ,584 
,455 .614 .634 
,474 .656 ,675 
,662 .623 ,565 
,545 .662 ,597 
.4x7 .5x4 ,494 
,617 .649 ,500 
,669 ,649 ,571 
.59l .630 ,656 
,662 ,552 .617 
.614 .500 ,643 
,526 ,516 ,604 
,571 ,519 ,591 
.623 .422 ,526 
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TABLE 3 

AVERAGE LOSING PERCENTAGES (1901-1960) 

Risk (Team) NLI NL2 NL3 NL4 NLS NL6 NL7 NL8 

National League 53.4 49.9 47.3 51.x 44.7 56.5 47.8 48.8 

Risk (Team) ALI AL2 AL3 AL4 AL5 AL6 AL7 AL8 - ~ - __ ~ ~ ~ ~ 

American League 49.5 49.4 47.0 4X.5 42.6 52.9 56.4 53.5 

Thus there can be no doubt that the teams actually differ.“’ It is 
therefore a meaningful question to ask whether a given team is better or 
worse than average. 

A team that has been worse than average over one period of time is 
more likely to be worse than average over another period of time. If this 
were not true, we would not have found the statistically significant 
difference in the means of the teams. 

Thus if we wish to predict the f’uture experience of a team, there is 
useful information contained in the past experience of that team. In other 
words, there is an advantage to experience rating. 

4.2 Shifting Parumeters Over Time 

A similar, but somewhat different question of interest is whether for 
a given team the results for the different years arc from the same 
distribution (or nearly the same distribution). In other words, are the 
observed different results over time due to more than random fluctuation? 
The answer is yes. This is a situation where the underlying parameters 
of the risk process shift over time. 

I” The situation here is somewhat complicated by the fact that one team’s loss is another team’s 
win. Thus the won-loss records of seven teams determine that of the remaining team. However, 
the author contirmed with a stratghtforward simulation that in this case this phenomenon would not 
affect the conclusion. For 8 teams each with the 50% loss rate playing 9OM) games each, in 32 out 
of 600 cases (5%) a team had a winning percentage lower than 49% or more than 51%. In none of 
the 600 cases did a team have a winning percentage as low as 48% or as high as 52%. 
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As discussed in Section 2.1, the extent to which risk parameters shift 
over time has an important impact on the use of past insurance data to 
predict the future. 

Whether the risk parameters shift over time can be tested in many 
ways. Two methods will be demonstrated here. These methods can be 
applied to insurance data as well as the data presented here. 

The first method of testing whether parameters shift over time uses 
the standard chi-squared test. For each risk, one averages the results 
over separate 5 year periods. ” Then one compares the number of games 
lost during the various 5 year periods. One can then determine by 
applying the chi-squared test that the risk process could not have the 
same mean over this entire period of time. The results shown in Table 
4 are conclusive for every single risk. Even the most consistent risk had 
significant shifts over time. 

In the second method of testing whether parameters shift over time, 
one computes the correlation between the results for all of the risks for 
pairs of years. Then one computes the average correlation for those pairs 
of years with a given difference in time. Finally, one examines how the 
average correlation depends on this difference. The results in our case 
are displayed in Table 5. 

Observed values of the correlation different from zero are not nec- 
essarily statistically significant. For this example, a 95% confidence 
interval around zero for the correlation is approximately plus or minus 
.10. I? Thus, for this example, the correlation decreases as the difference 
in time increases until about ten years when there is no longer a signif- 
icant correlation between results.r3 

‘I The data were grouped in five year intervals for convenience. Other intervals could also have 
been used. 
I2 For larger distances between the years, we have fewer observations to average, so the confidence 
interval expands to approximately plus or minus .12. The confidence intervals were- determined via 
repeated simulation in which the actual data for each year were separately assigned to the individual 
risks at random; thus for the simulated data any observed correlation is illusory. 
I’ For a difference of between I5 and 20 years there is again a small but significant positive 
correlation. The author has no explanation for this long term cycle. 
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TABLE 4 

KESULTS OF CHI-SQUARED TEST OF SHIFTING PARAMETERS OVER TIME 

For each risk (team) its experience over the 60 year period was 
averaged into 12 five-year segments. (The simplifying assumption was 
made of 150 games each year; this did not affect the results.) Then for 
each risk separately, the chi-square statistic was computed in order to 
test the hypothesis that each of the five year segments was drawn from 
a distribution with the same mean. The resulting chi-square values are: 

NLl NL2 NL3 NL4 NLS NL6 NL7 NL8 ___ - __ __ __ - 
107 45 98 35 39 73 114 119 

ALI AL2 AL3 AL4 AL5 AL6 AL7 AL8 .- - _I ___ ___ ~ 
114 69 34 30 97 162 53 65 

For example, for the risk (team) NL2 the data by tive-year segments 
are as follows: 

The sum of row (3) is 45, which is the chi-square value for this risk. 

For each risk there is less than a .2% chance that the different tive- 
year segments were drawn from distributions with the same mean.*** 
Thus we reject the hypothesis that the means are the same over time; 
we accept the hypothesis of shifting risk parameters over time. 

*Assuming 150 games per year. and the ohserved losing percentage for the five year 
segment. 
**Assuming 150 games per year, and the observed losing percentage for the whole 60 
years. 
***For I1 degrees of freedom. there is a .Ih% chance of having a ch-square value of 
30 or more. There is a .004% chance of having a chi-square value of 40 or more. 
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TABLE 5 

AVERAGE CORRELATIONSOF RISKS EXPERIENCE 

OVER TIME ( I901 - 1960) 

Difference Between 
Pairs of 

Years of Experience 

Correlation 

NL AL 

I .651 .633 
2 ,498 .513 
3 .448 .438 
4 .386 .360 
5 .312 .265 
6 .269 .228 
7 ,221 .157 
8 .I90 .124 
9 .135 .078 

10 .lOO .090 
11 .083 .058 
12 .I03 .063 
13 .154 ,101 
14 ,176 .I04 
15 .I80 .141 
16 .246 .178 
17 .278 .166 
18 .219 .198 
19 .176 .219 
20 .136 ,225 
21 .090 .159 
22 .065 .125 
23 .055 .093 
24 .004 ,048 
2.5 - ,024 ,006 

237 
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TABLE 5 

(CONTINUED) 

Difference Between 
Pairs of 

Years of Experience 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Correlation 

NL AL - 

- ,028 ,010 
- ,095 ~ ,002 
-~.I28 -.Ol3 
-.I07 - ,032 
~ ,062 ,006 
-.06l -.019 
- ,028 ,027 
-.OlS .002 

,017 .088 
,038 .I43 

-.014 .I56 
~- ,024 .314 
-- 0 I 2 ,238 
-.017 .138 
~ ,095 ,093 
-.I74 ,055 
-- .?I6 ,028 
~~ ,332 - ,043 
-~ ,423 p.018 
-~ ,363 - ,035 
- ,332 ,066 
~- ,324 ,069 
- ,373 ,136 
-- ,423 ,075 
- ,475 ,145 
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The correlation between years that are close together is significantly 
greater than those further apart. This implies that the parameters of the 
risk process are shifting significantly over time. If the parameters were 
reasonably constant over time, the correlations would not depend on the 
length of time between the pair of years. 

On the other hand, there is a significant correlation between the 
results of years close in time. Thus recent years can be usefully employed 
to predict the future. 

5. STATEMENT OF THE PROBLEM 

Let X be the quantity we wish to estimate. In this case, X is the 
expected losing percentage for a risk. 

Let YI , Y2, Y3, etc., be various estimates for X. Then one might 
estimate X by taking a weighted average of the different estimates Y;. 

?I 

i= I 

where X = quantity to be estimated, 
Y, = one of the estimates of X, 
Z, = weight assigned to estimate Y; of X. 

Here only linear combinations of estimators are being considered. In 
addition, the estimators themselves will be restricted to a single year of 
past data for the given risk or to the grand mean (which is 50% in this 
case). I4 No subjective information or additional data beyond the past 
annual losing percentages will be used. I5 In other words, this is a 
situation analogous to (prospective) experience rating. This is not a 
situation analogous to schedule rating. 

I3 In other words. in this case, Y either equals the observed losing percentage for the risk in one 
year or equals the grand mean of 50%. Credibility methods can be applied to more general 
estimators. 
I5 The use of information on the retiremenl of players or acquisition of new players might enable 
a significant increase in the accuracy of the estimate. The breakdown of the data into smaller units 
than an entire year might enable a significant increase in the accuracy of the estimate. 
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The problem to be considered here is what weights 2, produce the 
“best” estimate of future losing percentage. In order to answer that 
question, criteria will have to be developed that allow one to compare 
the performance of the different methods to determine which is better. 
In the example being dealt with in this paper, it is easy to get unbiased 
estimators. Since all of the estimators being compared will be unbiased, 
the question of which method is better will focus on other features of 
the estimators. 

Usually the weights Z, are restricted to the closed interval between 0 
and 1. In the most common situation we have two estimates. i.e., i = 
2. In that case we usually write: 

X=Z.Y, +(I -Z).Yz 

where Z is called the credibility and (1 - Z) is called the complement 
of credibility. However, it is important to note that the usual terminology 
tempts us into making the mistake of thinking of the two weights and 
two estimates differently. The actual mathematical situation is symmet- 
ric. 

6. SIMPLE SOLUTIONS TO THE PROBLEM 

In this section, various relatively simple solutions to the problem will 
be presented. 

6. I Every Risk is Average 

The first method is to predict that the future losing percentage for 
each risk will be equal to the overall mean of 50%. This method ignores 
all the past data; i.e., the past data are given zero credibility. While this 
is not a serious candidate for an estimation method in the particular 
example examined in this paper, it is a useful base case in general. 

6.2 The Most Recent Year Repeats 

The second method is to predict that the most recent past year’s 
losing percentage for each risk will repeat. This is what is meant by 
giving the most recent year of data 100% credibility. 
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6.3 Credibility Weight the Most Recent Year and the Grand Mean 

In the third method, one gives the most recent year of data for each 
risk weight Z, and gives the grand mean, which in this case is 50%, 
weight I - Z. 

When Z = 0, one gets the first method; when Z = 1, one gets the 
second method. Since each of these is a special case of this more general 
method, by the proper choice of Z one can do better than or equal to 
either of the two previous methods. This is an important and completely 
general result. It does not depend on either the criterion that is used to 
compare methods or the means of deciding which value of Z to use. 

6.4 Determining the Credibility 

When employing the third method, the obvious question is how does 
one determine the value of credibility to use. Ideally one would desire 
a theory or method that would be generally applicable, rather than one 
that only worked for a single example. There have been many fine papers 
on this subject in the actuarial literature. 

Generally, the credibility considered “best” is determined by some 
objective criterion. This will be discussed later. 

Using either Biihlmann/Bayesian credibility methods or classical/ 
limited fluctuation credibility methods, one determines which credibility 
will be expected to optimize the selected criterion in the future. One can 
also empirically investigate which credibility would have optimized the 
selected criterion if it had been used in the past; i.e., one can perform 
retrospective tests. This will be discussed in more detail later. 

6.5 Equal Weight to the N Most Recent Years of Data 

In the fourth method, one gives equal weight to the N most recent 
years of data for each risk, and gives the grand mean, which in this case 
is 50%, weight 1 - Z. This method gives each of the N most recent 
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years weight of Z/N. I6 When N = 1 this reduces to the previous method. 
Thus this method will perform at least as well as the previous method. 
with the proper choices of N and Z. 

7. CRITERIA TO DECIDE BETWEEN SOLUTIONS 

In this section, we will discuss three criteria that can be used to 
distinguish between solutions. These criteria can be applied in general 
and not just to this example. 

7.1 Least Squared Error 

The first criterion involves calculating the mean squared error of the 
prediction produced by a given solution compared to the actual observed 
result. The smaller the mean squared error, the better the solution. 

The BiihlmannlBayesian credibility methods attempt to minimize the 
squared error; i.e., they are least squares methods. Minimizing the 
squared error is the same as minimizing the mean squared error. 

7.2 Small Chtrnce of‘ Large Errors 

The second criterion deals with the probability that the observed 
result will be more than a certain percent different than the predicted 
result. The less this probability. the better the solution. 

This is related to the basic concept behind “classical” credibility 
which has also been called “limited fluctuation” credibility [7]. In clas- 
sical credibility. the full credibility criterion is chosen so that there is a 
probability, P, of meeting the test that the maximum departure from 
expected is no more than k percent. 

The reason the criterion is stated in this way rather than the way it 
is in classical credibility is that, unlike the actual observations, one 
cannot observe directly the inherent loss potential.” However, the two 
concepts are closely related, as discussed in Appendix G. 

Ih In later methods. the weights glccn to the different vear\ ot data ~111 be allowed to differ from 
each other. 
I7 It has been shown that the loss potential vary for ;L rlsh O\CI lime. Thu\ it cannot be e\tlmated 
as the average of many uhservations over time. 



CREDIBILITY AND SHIFTING PARAMETERS 243 

7.3 Me~~erslDonveiler 

The third criterion has been taken from Glenn Meyers’ paper [ 11. 
Meyers in turn based his criterion upon the ideas of Paul Dorweiler [8]. 

This criterion involves calculating the correlation between two quan- 
tities. The first quantity is the ratio of actual losing percentage to the 
predicted losing percentage. The second quantity is the ratio of the 
predicted losing percentage to the overall average losing percentage. The 
smaller the correlation between these two quantities, i.e., the closer the 
correlation is to zero, the better the solution. 

To compute the correlation, the Kendall T statistic is used.lx This is 
explained in detail in Appendix B. The relation of this criterion as used 
here and as it is used by Meyers to examine experience rating is also 
discussed in that appendix. 

8. THE CRITERIA APPLIED TO THE SIMPLE SOLUTIONS 

In this section the three criteria in Section 7 will be applied to the 
simple solutions given in Section 6. More knowledgeable readers may 
wish to skip to Section 8.4 which compares the results of applying the 
three different criteria. Section 8.5 discusses the reduction in squared 
error. Section 8.6 examines the impact of a delay in receiving data. 

8. I The Two Buse Cases 

The two simplest solutions either always use as the estimate the 
overall mean (2 = 0), or always use as the estimate the most recent 
observation (Z = 1). While neither of these solutions is expected to be 
chosen, they serve as the base cases for testing the other solutions. 

lx Meyers in 1 I] used the Kendall 7 statistic. In the example here, any other reasonable measure of 
the correlation could be substituted. 
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The first criterion is the smallest mean squared error. For the two 
data sets the results are: 

Mean Squared Error 

NL AL 

z=o .OOY 1 00% 
z= 1 .005Y .006X 

The second criterion is to produce a small probability of being wrong 
by more than k percent. For the two data sets the results are as follows: 

Percent 
Percent Percent of time that 

of time that of time that the estimate 
the estimate the estimate is in error 
is in error is in error by more than 

by more than 5% by more than 10%~ 20% 

NL AL NL AL NL AL 

z=o 82.2% 80.3% 64.8% 63.8% 29.0% 31.4% 
z= 1 75.8% 72.9% 52.3% 55.7% 19.1% 22.0% 

The third criterion is to have a correlation as close to zero as possible 
between the ratio of the actual to estimated and the ratio of estimated to 
the overall mean. For the two data sets the results are as follows: 

Correlation (Kendall 7) 

NL AL .____. 

z = o* .4x .46 
z= 1 -.24 -.27 

* Limit as Z approaches Nero. 
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8.2 Applying Credibility to the Latest Year of Data 

The third prediction method, explained in Section 6.3, uses credi- 
bility to combine the latest year of data and the grand mean. The mean 
squared error depends on the credibility. As shown in Table 6, the mean 
squared error is a minimum for Z between 60% and 70%.i9 The proba- 
bility of having errors of 20% or more is displayed in Table 7. Based 
on this second criterion, the optimal Z is between 50% and 80%.20 This 
criterion does not distinguish very sharply between the different values 
of credibility. 

The correlations used in the third criterion are displayed in Table 8. 
Based on the third criterion the optimal Z is approximately 70%.21 

8.3 Applying Credibility to the Latest N Years of Data 

The fourth method, explained in Section 6.4, uses credibility to 
combine the grand mean with the latest N years of data (giving each 
year of data the same weight.) 

The results of applying the first criterion are shown in Table 6. Based 
on most actuarial uses of credibility, an actuary would expect the optimal 
credibilities to increase as more years of data are used. In this example 
they do not. In fact, using more than one or two years of data does an 
inferior job according to this criterion. 

This result is to be expected, since the parameters shift substantially 
over time. Thus the use of older data (with equal weight) eventually 
leads to a worse estimate.22 

I’) For the NL data set, the minimum occurs when Z = 68’S, For the AL data set, the minimum 
occurs when 2 = 66%. Also, it should be noted that the squared errors for Z = 0 vary somewhat 
with the number of years of data used, solely due to the differing periods of time over which the 
test can be performed. 
X’ For the NL data set, the optimal Z is 75%. For the AL data set. the optimal Z is 55%. It should 
be noted that, given the limited number of observations, two values of Z can produce identical 
results for this criterion. 
21 For the NL data set, the correlation is closest to zero for Z = 71%. For the AL data set, the 
correlation is closest to zero for Z = 66%. 
I2 The number of years of data to use to get the best estimate will depend on the particular example. 
This general subject was explored in Mahler 151. 



z - 

0 
IO 

.20 

.?O 

.40 

.50 
ho 
70 
80 
90 

I .oo 

0 
IO 
20 
31 
40 

.50 

.60 

.70 

.80 

.YO 
I.00 

V-3 v = 4 N = 10 N = IS N = 20 N = 2.5 Y=S N = 7 
~ - 

Xl x4 
79 77 
71 71 
65 66 
60 62 
57 54, 
5.5 57 
53 56 
54 57 
5 5X 
57 61 

x0 80 80 80 
74 7s 76 17 
70 12 72 74 
67 69 69 71 
64 67 67 69 
63 hb 65 6X 
b2 OS 64 6X 
63 65 63 bX 
b-i 66 6-t 69 
bb hX 65 70 
70 70 bb 72 

II. - 

96 Vi ‘) Y5 95 92 9 I 95 
Sh Xb XX X4 YO xx x7 ‘)I 
7,s 7') Xl x3 86 x5 x3 Xl 
71 73 7s 79 82 x2 x0 x3 
66 ox 71 7s x0 XI 1x x0 
h? M 68 73 78 79 76 7x 
60 62 hb 71 78 19 74 lb 
59 61 66 71 78 79 73 74 
59 02 66 72 79 79 73 73 
61 64 68 74 81 81 73 73 
64 67 71 77 84 83 74 73 

TABLE 6 
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The results of applying the second criterion are displayed in Table 
7. This criterion does not sharply distinguish between the different values 
of credibility. There is a broad range of credibilities all of which do 
reasonably we11.2J This is particularly true for larger values of N. Again 
the use of more years of data eventually leads to an inferior estimate. 

The results of applying the third criterion are displayed in Table 8. 
Again the optimal credibility does not increase as N increases. Unlike 
the other criteria, the third criterion cannot be used to distinguish between 
values of N. For each N, there is a Z, such that the correlation is zero. 
Thus each value of N performs as well as all the others. 

Meyers points out that the distribution of Kendall’s T can be used to 
obtain a confidence interval for the credibility. As explained in Appendix 
B, for this example a 95% confidence interval for 7 around zero has a 
radius of about .07. 

For example, using 10 years of data, the optimal credibility using 
the Meyers/Dorweiler criterion for the NL set of data is 63%. However, 
this point estimate for the credibility is actually an estimate of an interval 
of credibilities that correspond to ‘I between plus and minus .O’?. The 
optimal credibility is 63% 2 13%.2J 

8.4 Comparison of the Results of the Three Criteria 

In Table 9 the optimal credibilities are displayed as determined by 
the three criteria for various values of N. Note that the listed values of 
credibility are those that happened to work best over the period of time 
observed. Values close to these values would also work well over this 
period of time. 

One should think of the point estimates listed in Table 9 as the 
centers of interval estimates. This is illustrated when one compares the 
different estimates obtained by analyzing the NL and AL data sets. There 
is no inherent difference in the two data sets. Thus one would expect 
the credibilities from the two analyses to be the same. They are similar, 

*3 This is true to a lesser extent for the first criterion. This subject is explored in Mahler 191 
M ForZ = 63.3%. 7 = 0. ForZ = 50.1%, 7 = .07. For Z = 76.4%, ,r = -.07. 
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but far from identical. This indicates that the peculiarities of the specific 
observed values are sufficient to affect the answers somewhat. There is 
some lack of precision in the estimates in Table 9. 

TABLE 9 

OPTIMAL CKI-INHILJT Y 

Number of 
Years of 

Data Used 

2 
3 
4 
5 
7 

10 
IS 
20 
25 

NL AL, 

Criterion Criterion Criterion 
#I #2 #3 

68% 75% 
71 X0 
14 87 
76 57 
74 61 
71 64 
60 49 
63 43 
71 40 
64 30 

71% 65(/r sssi 66% 
72 70 56 70 
76 72 77 73 
77 72 69 72 
77 7(1 7u 71 
73 67 51 68 
63 62 70 64 
64 65 69 62 
73 XI x2 77 
64 97 61 94 

Criterion Criterion Criterion 
#I #2 #3 __- -- - 

Criterion #I : Least Squares (Section 7. I 1 
Criterion #?: Small Chance of Large Errors (SectIon 7.2) 
Criterion #i: Meyers:l>orweiler (Section 7.31 

This can be illustrated further by reversing the time arrow and ana- 
lyzing the data sets going backwards in time rather than forwards. For 
example, one could use data from years 1902 to 19 1 1 to “predict” 190 1. 
This analysis is equally valid for determining optimal credjbilities jn this 
example as was the original anlysis. 

For N = 10, one gets the following optimal credibilities for the 
different data sets, where NLR and ALR represent respectively the NL 
and AL data sets reversed in time. 
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Criterion # 1 
Criterion #2 
Criterion #3 

NLR 

72% 
58 
77 

Optimal Credibilities (N = 10) 

NL ALR AL - - 

60% 57% 62% 
49 42 70 
63 58 64 

Average 

63% 
55 
65 

The optimal credibilities differ between the four data sets. The 
amount of variation provides some idea of the imprecision of the different 
estimates. While the optimal credibilities differ between the three criteria, 
the differences do not appear to be sufficiently large to allow one to 
draw any definitive conclusions. 

In this case, the use of any value of credibility between 50% and 
70% would perform reasonably well according to all three criteria for 
all four data sets. As a practical matter, the difference in the predictions 
will not vary that much depending on which value of credibility is chosen 
in that range. 25 

In most applications of credibility, values for the credibility that 
differ somewhat from optimal perform reasonably well and the choice 
between these values has a relatively small practical impact. 

8.5 Putting the Reduction in Squared Error in Context 

The first criterion used to determine the optimal credibility is to 
minimize the squared error. Using the optimal credibility based on this 
criterion will reduce the squared error between the observed and predicted 
result. What should be considered a significant reduction in squared 
error? 

lJ The maximum difference in any prediction for N = 10 between using 50% and 70% credibility 
is 3.3% in the losing percentage. In most cases it is much smaller. On average it would make about 
a 1% difference. 



Let us examine an example. For the NL data, using one year of data, 
the optimal credibility is 68% as shown in Table 9. As shown in Table 
6 the mean squared errors are: 

Z - 

0 
68% 

100% 

Mean 
Squared Error 

OOY I 
.004Y 
.005Y 

In this case, by the use of credibility, the squared error has been 
reduced from .0059 if the data were relied upon totally, or .0091 if the 
data were totally ignored, to .0049. In this case, the squared error has 
been reduced to 83% (.0049/.0059) of its previous value.‘h 

As discussed in Appendix E, in the current case. the best that can 
be done using credibility to combine two estimates is to reduce the mean 
squared error between the estimated and observed values to 75% of the 
minimum of the squared errors from either relying solely on the data or 
ignoring the data. ?’ 

The reduction of the squared error to 837~ of its previous value 
appears significant in light of the maximum possible reduction to 75%.“x 

8.6 Effect of Deiay in Receiving Data 

It has been shown previously for the data set examined in this paper 
that the further apart in time two years are, the lower the correlation 
between them. Thus if there is a delay before the data are available for 
use in experience rating, the resulting estimate of the future will be less 
accurate. 

>o The “previous” value of the squared error is considered to be the minimum of the squared errors 
that result from either ignoring the data entirely or relying on the data entirely. 
s When using more than two or more years of data, the reduction in squared error depends on the 
impact of shifting parameters over time. However, in the absence of shifting parameters over time, 
for N years with the same weight applied 10 each year. the maximum possible reduction is 1 + 
(2(N + I)). 
2” The maximum reduction is possible when the squared error\ for 2 = 0 and Z = I are equal. 
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As is shown in Table 10, as the delay increases, the squared error 
increases significantly. The increase in squared error is particularly sig- 
nificant as one goes from a situation of having the data from the most 
recent year available to predict the coming year to a situation of having 

TABLE 10 

MINIMUM SQUARED ERROR(.OOOI) 

Time Between Latest 
Data Point and 

Future Prediction N= 1 N=2 N=3 N=4 N=5 

2 
3 
4 
5 
6 
7 
8 
9 

IO 

Time Between Latest 
Data Point and 

Future Prediction 

49 52 51 51 53 
66 62 60 60 60 
69 66 65 64 65 
73 71 69 69 70 
77 73 73 72 72 
76 75 75 73 74 
78 77 75 75 75 
79 77 77 76 75 
78 78 77 76 75 
78 78 76 75 75 

AL 

N=l N=2 N=3 Iv=4 Iv=5 

NL 

8 
9 

10 

56 56 59 61 66 
71 70 71 74 76 
78 77 80 81 83 
83 85 85 87 88 
89 89 90 91 91 
91 91 92 93 93 
93 93 94 93 94 
95 94 94 94 93 
95 94 94 93 93 
94 94 93 93 94 



254 CREDIBII.II’Y AND SIiIFI IN<; P4RAblI;IERS 

only the next most recent year available. Unfortunately. the latter situ- 
ation is more common in insurance than is the former. 

As is shown in Table 11, the optimal credibility (as determined using 
the least squares criterion) decreases as the delay increases. Less current 
information is less valuable for estimating the future 

TABLE I1 

OPTIMAL CREDIBILITY (CRITERION #I. LF.AS.I SUUAKES) 

Time Between Latest 
Data Point and 

Future Prediction 

8 
9 

IO 

Time Between Latest 
Data Point and 

Future Prediction 

N= I N=2 N=3 N :zr 4 
-- N=5 

68 71 74 76 74 
51 s9 64 64 63 
47 53 55 56 55 
40 45 47 47 45 
33 38 40 39 36 
30 33 34 32 30 
24 26 26 25 24 
19 20 31 2 1 20 
14 I6 I7 18 20 
II I3 I5 IX 21 

AL - 

N= 1 N=2 N=3 N=4 N=5 

8 
9 

IO 

65 70 72 72 70 
51 57 58 57 56 
42 47 46 46 45 
35 36 37 36 36 
25 2x 28 28 25 
21 22 22 19 18 
15 16 14 14 13 
II 9 IO IO 9 
6 7 8 7 9 
7 7 7 9 IO 

NL - 
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9. MORE GENERAL SOLUTIONS 

In Section 6, four relatively simple forms of a solution were given. 
In this section, more general forms of a solution will be given. 

9.1 Combine Previous Estimate and Most Recent Data 

In the fifth method, one gives the latest year of data weight 2, and 
gives the previous estimate weight 1 - Z. Of course, one has to choose 
an initial estimate.” In this case, for each risk the initial estimate will 
be taken as the grand mean of 50%.“’ Once this estimation method has 
been used for several years, the initial estimate has very little weight. 

For example, let us assume Z = 60%. Then the weights assigned to 
the given years of data used in estimating the result for the year 191 1 
would be as follows: 

Year of Data Weight in Estimate of 1911 

1910 
1909 
1908 
1907 
1906 
1905 
1904 and Prior 

Z = 60% 
Z(1 -z)=4O%x60%=24% 
Z (1 - Z)’ = 40% x 40% x 60% = 9.6% 
Z (I - Z)” = 9.6% x 40% = 3.84% 
Z (1 - Z)” = 3.84% x 40% = 1.54% 
Z (I - Z)’ = 1.54% x 40% = .61% 
(1 - Z)h = .41% 

The above assumes that the latest year of data is always given 60% 
weight, while the current estimate is given 40% weight. 

Thus in this case, one gets a geometrically decreasing weight. This 
procedure is called (single) exponential smoothing [lo]. It is an example 
of what mathematicians call a “filter.““’ Once the process of exponential 

x This is precisely analogous to choosing a “seed” value in exponential smoothing. 
w One could use subjective judgement to choose the initial estimate for each risk. Also one could 
use data from the period prior to that displayed in this paper; this has been avoided for the sake of 
simplicity. 
I’ Morrison [ 1 I] gives this as an example of a “fading-memory polynomial filter.” 
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smoothing gets “up to speed, ” it is equivalent to a weighted least squares 
regression, where the fitted line is horizontal,” and where the weights 
are geometrically decreasing as the data get less recent. 

9.2 More Genrral Varying Weights 

In Section 9. I, one gave geometrically decreasing weight to years of 
data further in the past. More generally one can make the estimate: 

F = CZiX, + (1 _ EZ,)M 

where the weights Zi depend on how far in the past are the data X,. For 
years for which data are not available (presumably because they are too 
far in the past) one uses the grand mean M instead of the data. This 
method is a generalization of the methods in Sections 6 and 9.1. 

Unfortunately, calculating or empirically determining the optimal 
values of the weights Z, becomes difticult as more years of data are used. 
241so, there are many vectors of Z, that are very close to optimal; i.e., 
the n-dimensional volume of values ZI, .Z,, that produce close to 
optimal results is relatively large. 

10. THE CRITERIA APPLIED TO THE MORE: GENEtRAI. SOLUTIONS 

In this section the three criteria in Section 7 will be applied to the 
more general solutions to the problem given in Section 9. For simplicity, 
the results will be shown for the situation where there is no delay in 
obtaining the data for use in making the next estimate. In Section 8.6, 
an example was given of the results of such a delay in receiving data. 
The same general pattern would apply here. 

10.1 Geometrically Decreasing Weights 

In Section 9. I, weight Z is applied to the latest available year of 
data, while weight I -- Z is applied to the previous estimate. 

l2 Double exponential \moothiny. SometImes called linear exponential bmoothmg. would be equiv- 
alent to a weighted linear least squares regressIon, with geometrically decreasing weights as the 
data got less recent. 
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Table 12 gives the mean squared errors for various values of Z. The 
optimal values of Z, using criterion #1 (least squares), are all close to 
55%.” This results in weights to the various years of data very similar 
to those in the example in Section 9.1. 

TABLE 12 

MEAN SQUARED ERRORS* (.OOOl) THAT RESULT FROM 

APPLYING Z TO LATEST YEAR OF DATA 

AND 1 - Z TO PREVIOUS ESTIMATE 

Z - 

0 
.I 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

1.0 

NL NLR** AL ALR** 

79 97 95 96 
61 70 72 78 
56 63 65 71 
52 60 60 67 
50 57 57 64 
49 56 55 63 
50 56 55 63 
50 57 55 64 
52 58 56 66 
54 59 58 69 
57 62 61 73 

* First IO years are not included in the computation of the squared 

errors in order to eliminate the calibration period. 
** Data reversed in time. 

In this case there is no significant reduction in squared error beyond 
what was previously obtained by applying credibility to the latest avail- 
able year. 34 

Table 13 displays the results of applying criterion #2, limited fluc- 
tuation. Values of the credibility between 40% and 80% generally per- 
form well. 

” For the NL data set the optimal credibility is 53%. For the NLR data set, it is 58%. For the AL 
data set it is 60%. For the ALR data set it is 54%. 

14 Compare the results in Table 6 for N = 1 with those in Table 12. 
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Table 14 displays the results of applying criterion #3, Meyers/ 
Dorweiler.j5 Unlike the previous two cases, the optimal credibilities are 
close to zero; 5% to 10% credibility produces correlations close to zero. 
The use of such small credibilities is approximately the same as using 
10 to 20 years of data as the basis for the estimate. since the geometrically 
decreasing weights decline only slowly. 

TABLE 13 

PERCENT- OF TIME* THAT THE ESTIMATI. IS IN ERROR BY 

MORE THAN 20% 
APPLYING Z fo LATEST YEAR OF DATA 

AND 1 - Z I’O PREVIOUS ESTI~~AI-F. 

Z NL NLR** AL ALR”* 

0 
.I 
3 .- 
3 ._ 

.4 

.5 

.6 

.7 

.8 

.9 
1.0 

25 31 33 31 

23 2.1 2s 26 
21 22 24 25 
1X 21 21 23 
16 21 20 21 

16 20 I9 22 
16 20 I9 21 
17 I9 20 22 
IX I9 I9 22 
18 20 IX 23 
19 21 I9 26 

* First IO years are not included In the computation in order to 
eliminate the calibration period. 

** Data reversed in time. 

‘5 In this case, the results of the first 20 years were excluded from the computation. in order to 
eliminate the calibration period. Twenty years were used, rather than ten years as in the previous 
two tables, since in this case smaller credibilities are optimal and smaller credibilities require a 
longer calibration period. 
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TABLE 14 

Z 
- 

NL NLR** AL ALR** 

o*** .I1 

.l - .03 

.2 -.05 

.3 -.08 

.4 -.I0 

.5 -.I3 

.6 -.I5 

.7 -.I8 

.8 -.20 

.9 -.23 
I.0 -.26 

CORRELATIONS* (KENDALL TAU) THAT RESULT FROM 

APPLYINGZTO LATEST YEAR OF DATA 

AND I - ZTO PREVIOUS ESTIMATE 

.I6 .28 .I4 

.Ol .oo -.09 
-.05 -.04 -.I0 
-.09 -.07 -.I2 
-.I2 -.lO -.13 
-.I5 -.I2 -.15 
-.I8 -.I4 -.I7 
-.20 -.I6 -.20 
-.23 -.I8 -.22 
-.25 -.2l -.24 
-.27 -.23 -.28 

* First 20 years are not included in the computation of the correlations 
in order to eliminate the calibration period. 

** Data reversed in time. 
*** Limit as Z approaches zero. 

10.2 More General Varying Weights 

In Section 9.2, varying weights 2, are applied to the most recent N 
years, while the remaining weight is given to the grand mean. This 
method will only be examined using criterion #I, least squares. One 
can solve numerically for the set of weights which produce the least 
squared error, using a given number of years of data.36 The results are 
as follows: 

lb Unfortunately, as the number of years increases, the amount of computer time required also 
increases. 
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Using Most Recent Two Years of Data (N = 2. A = I) 

Credibility 

Second Most Most Recent Mean Squared 
Recent Year Year Error (.OOOl) 

NL 9.6% 61.1% 48 

AL 13.1% 56.9% 54 

Using Most Recent Three Years of Data (N = 3. A = I) 

Credibility 

NL 
AL 

Third Most Second Most 
Recent Year Recent Year 

16.4% I. 1%’ 

8.1% 9.1% 

Most 
Recent Year 

59.0% 

55.7% 

Mean Squared 
Error (.OOOl) 

45 

53 

Most of the credibility is assigned to the most recent year. The 
complement of credibility, which is assigned to the grand mean, is about 
25 to 35 percent, decreasing as N increases. 

Complement of Credibility 

N= l* N=3 N=3 __- 

NL 32% 29% 24%’ 

AL 35% 30% 274 

* One minus the optimal credibility from Table c). 

The mean squared error is reduced from that using only the latest 
year of data. j7 

j7 Since the use of fewer years of data ih just a special case, the least squarr:d error using more 
years of data must be less than or equal that uvng leper years of data. 
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Mean Squared Error (.OOOl) 

N= I” N=2 N=3 

NL 49 48 45 

AL 56 54 53 

* From Table 6. 

1 1. EQUATIONS FOR LEAST SQUARES CREDIBILITIES 

In Section 11.2 are equations to solve for the least squares credibility. 
These equations follow from the assumed covariance structure discussed 
in Section 11.1. In Section 1 I .3 the equations in Section 11.2 are 
modified to constrain them to place no weight on the grand mean. Section 
1 I .4 compares the mean squared errors that result from different credi- 
bilities. Section 11.5 briefly discusses the validity of the results derived 
in this paper. 

II. I The Covariunce Structure 

By analyzing the covariance structure, one can set up matrix equa- 
tions to solve for the credibilities that minimize the squared error. These 
matrix equations are discussed in the next section. 

As shown in Appendix D, the variance of the data can be broken 
down into two pieces. There is the variance between the risks.j8 There 
is also the variance within the risks.‘” These two variances add up to the 
total variance. 

NL 
AL 

Between Variance 

.001230 

.001619 

Within Variance 

.007892 

.007875 

Total VarianceJo 

.009121 

.009494 

lx This has been denoted as 7’. 
Iq This has been denoted as 6’ + 5’. 6’ is what is usually termed process variance, while 6’ is the 
variance due IO shifting parameters over time. 
J(i May differ slightly from the sum of the other two variances due to rounding. 



262 (‘REIXBII,ITY 4ND SHIFTING PARAMI- I ERS 

Also of interest is the covariance between the years of data. It is 
assumed that this is a function of the number of years separating the 
data. The observed values are given in Table IS. As was seen in Table 
5, the covariance decreases as the years of data are further apart. After 
about 6 years the covariances are relatively close to zero. 

TABLE 15 

C~VAKIAN(.~ I .OoOl ) 

Years 

Separating 
Data NL AL 

0* 
I 
2 

4 

5 

6 

7 

8 

9 

IO 

11 

12 

13 

14 

15 

16 

17 

I8 

19 

20 

7x92 

4Yl9 

3416 

3128 

7551 

1x10 

I566 

MS 

3x7 

- 74 

- 394 

-558 

- 3x9 

59 

212 

603 

7X6 

302 

47 

-268 

7875 

4527 

3175 

241 I 

1766 

780 

3x3 

-YY 

--561 

- 1068 

-87X 

-980 

~ lOY2 

-737 

-814 

-453 

-39 

-139 

214 

279 

41s 

*Equal by definition to the within variance 
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It is possible to divide the within variance into two parts. The first 
part is the process variance excluding the effect of shifting parameters 
over time.4’ The second part is that portion of the within variance due 
to shifting parameters over time. 42 While this division may aid our 
understanding, it is not necessary for the calculation of the least squares 
credibilities. Not coincidentally, this division cannot be performed based 
solely on the reported data contained in Tables 1 and 2. This subject is 
discussed in more detail in Appendix D. 

I I .2 Matrix Equations for Least Squares Credibilities 

Using the estimation method described in Section 9.2: 

F= gZ,X;+(1 - $Z,)M (11.1) 
i=l i= I 

As derived in Appendix C, one gets the following expression for the 
expected squared error between the observation and prediction: 

V(Z) = 5 5 ZiZj (T2 + C(li - jl>> 

- 2 f$ Zi (T’ + C(iV + A - i)) 
i=l 

+ T2 + C(0) (11.2) 

In equation (11.2) we have used the following quantities defined in 
Appendix D. 

T2 = between variance 
C(k) = covariance for data for the same risk, k years apart 

= “within covariance” 
C(0) = within variance 
A = the length of time between the latest year of data used and 

the year being estimated 

J’ This has been denoted as a2. 
*> This has been denoted as [‘. 



Equation 11.2 shows that the squared error is a second order poly- 
nomial in the Z,.j3 This equation is the fundamental result for analyzing 
least squares credibility. 

One can differentiate equation I I .2 in order to get N linear equations 
in N unknowns, which can be solved for the optimal credibilities. 

5 zj(T’ + c(/i - jl)) = T2 + C(N + A - i) i = 1, 2, . N (11.3) 
J=I 

The set of equations 1 1.3 can be solved on a computer relatively 
easily using the usual methods from matrix theory. The results of doing 
so for A = 1, using the average of the variances and covariance deter- 
mined from the NL and AL data separately.” arc shown in Table 16. 

TABLE I6 

LEAST SQUARES CREDIBILITIES, SOLU I IONS 01: MAI RIX Ecju.4 IIONS I 1.3 (A = I) 

Number 
of Years ot 

Year\ Between Ihta and Estimate 

Data Used (N) I 2 1 -1 5 6 7 x Y 10 
- - - - - - - - - - 

I 
2 
3 
4 
5 
6 
7 
x 
9 

IO 

fj6,y3 - ~ ~ -~ ~~ 
51.1 12.6 - ~~ ~ -- ~ - - ~ 

56. I 4.8 13.5 ~ 
55.6 4.6 Il..5 3.5 - - - 
55.7 5.1 I I.7 6.0 -4.4 ~ ~ 
55.9 4.9 I I.3 5.x 6.6 3.9 ~ 
56.0 4.7 Ii.5 6.2 -6.S 5.9 -3,s - - - 
56.0 4.7 II.4 6.2 --6.3 5.9 -2.8 -1.2 - - 
Sh. I 3.9 I I.0 6.6 -6.7 5.3 -~?.I -5.3 5.6 - 
55.9 5.0 II.2 6.4 -6.4 5.1 3.4 4.5 3.6 3.5 

The complement of credibility i\ applied to the grand mean 

First column is the credibility applied to the mo\t recent yu~-. wcond column is, the credibility applied 
to the next most recent year. etc 

Vote: Based on the average of the variances and co\arinnc,e\ dctcrmined from the NL and AL data 
separately: houcver. awmles that for a wparation of clght )ear\ or m~vr. the covariance is Len). 

4’ When N = 1, the squared error is a parabola as a function of the credikhty. l‘his has been noted 
before, for example in Appendix B of Meyers [I?]. 
* It is assumed that for a separation of eight year!, or more, the covariancc i\ Lro. 
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The results conform reasonably well to those determined in Section 
10.2. 

The credibilities applied to the most recent year quickly converge to 
about 56%. The credibilities for the less recent years are much smaller. 
However, these credibilities do not monotonically decline as the years 
get less recent. There is a complicated pattern of weights determined by 
the covariance matrix. Some of the weights are even less than zero.4s 

The optimal credibilities are uniquely determined given the covari- 
ante structure. However, there are many other sets of credibilities which 
produce expected squared errors very close to minimal. The precise 
values of the credibilities are not particularly important, although the 
general range of credibilities that perform well might be instructive. 

One can apply equation (1 I .2) to the method discussed in Sections 
6.5 and 8.3 of applying equal weight Zi to the latest N years of data, 
where 

Z; = ZIN for i = 1, . . . , N 

As shown in Appendix C, the least squares credibility in this case is 
given by: 

NT* + 5 C(N + A - i) 
1=l 

Z=N 

N? + $ 5 C(li - jl) 

(11.4) 

i=l j=l 

The results of applying this equation for A = 1, using the average 
of the variances and covariances determined from the NL and AL data 
separately,46 are shown in Table 17. 

Table 17 can be compared to Table 11. 

The results in Table 11 conform reasonably well to those determined 
empirically for each data set (for A = 1). 

45 Giving negative weight to some years allows a larger weight IO be given to other years. The net 
effect is to reduce the expected squared error. 
+C It is assumed that for a separation of eight years or more, the covariance is zero. 
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TABLE 17 

LEAST SQUARES CREDIHIL.I.I \I’. SOI.UTION TO 
EQUA IION I I .3 (A = I) 

Number of Years 
of Data Used (N) Z Z+N 

I 66.0% 66.0%~ 
2 70.3 35.2 
3 72.9 24.3 
4 73.h 18.4 
5 72.2 14.4 
6 71.3 11.9 
7 69.9 10.0 
8 68.2 8.5 
9 67.3 7.5 

IO 66.9 6.7 

Equal weight Z/N 1s applied IO each of the N most recent years of data. 
The complement of credibility. I ~ Z. is applied to the grand mean. 

Note: Based on the average of the variances and covariances determined 
from the NL and AL data separately: however, assumes that for a 
separation of eight years or mom. the covariancc is zero. 

11.3 Placing No Weight on the Grad Mean 

Once the estimation method described in Sections 9.1 and 10. I gets 
“up to speed,” the initial estimate, which was taken as the grand mean, 
has very little weight. For all intents and purposes each risk is estimated 
based on its own past data, without relying on the data of other risks, 
in particular the grand mean.“’ 

47 The covariance structure is herein estimated using the data for all ri\ks. Thia in turn is used to 
estimate the optimal credibilities. However. the credihilities are applied to the dala fur the particular 
risk we are rstimating. 
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One can constrain the credibilities used in equation I 1.1, so that they 
add to unity, thus giving no weight to the grand mean. Equation 11.1 
then becomes 

F = 5 Z;X, (11.5) 
1=I 

with the constraint 

: z; = 1. (11.6) 
,= I 

The least squres credibilities for equations 11.5 and 11.6 are derived 
in Appendix C using the method of Lagrange Multipliers. The result is 
a set of N + 1 linear equations in N + 1 unknowns, the Z; for i = 
1 3 ..., N, and A, the Lagrange Multiplier. There is the single constraint 
equation 11.6, plus the N equations 11.7. 

2 Z, C((i - j() = C(N + A - i) + ; , i = 1, 2, . . . . N (11.7) 
J=i 

The set of equations 11.6 and 11.7 can be solved on a computer 
relatively easily using the usual methods from matrix theory. The results 
of doing so for A = 1, using the average of the variances and covariances 
determined from the NL and AL data separately,4x are shown in Table 
18. 

11.4 Mean Squared Et-t-cm 

The mean squared errors that result from using the credibilities in 
Tables 16, 17, and 18 are displayed in Table 19. 

When applying general weights to the latest N years of data, giving 
the most remote year of data no weight is equivalent to the case of using 
the latest N - 1 years of data. Since using the latest N - 1 years of 
data is a special case of using the latest N years of data, we expect the 
squared errors to decline, or remain constant. 

This is what we observe for the credibilities from Table 16. They 
decline until N = 6, where the point of diminishing returns is reached. 

‘” It is assumed that for a separation of eight years oc more. the covariance is zero. 



TABLE 18 

LEAST SQUARES CREIXBILITIES, SOI.UTIONS OF EQUATIONS 11.6 AND 11.7 (A = 1) 

Number 
of Years of 

Years Between Data and Estimate 

Data Used (A? I 2 3 4 5 6 I 8 9 IO 
;: 
z - - - - - - - - - - 
z 

1 1()o.oq - - - - - - - - - E 
2 12.6 27.3 :: - - - - _ - - - 

P 
3 66.1 10.3 23.6 - - - - ;5 
4 63.5 9.1 16.0 11.4 - - - - - - 

2 
5 63.1 X.7 15.8 9.5 2.9 - ; 

6 62.X 7.6 14.1 8.6) -3.9 10.8 - - _.“. ~ z 
7 62.5 7.7 13.8 8.2 -4. I 9.0 2.9 c: - - - 
8 h2.3 7.3 I-1.0 7.7 -4.x X.6 -0.2 5.1 2 -- - 

9 61.X 1.3 13.0 x.3 -5.7 7.0 -1.1 -’ I.9 I I .2 
F 

-..- K IO 60.X 7.5 13.1 1.7 -5.2 6.3 -2.2 -2.5 6.1 X.4 : 
2 
c 

The credibihtirs are conatrainod to sum to unit]. 

Flrsr column is the crediblhty applied to the most recent qear. second column is the crediknhty applied to the 
next most recent year. etc. 

Note: Based on the average of the variances and covarlances determined from the NL and AL data separately: 
however. assumes that for a separation of eight years or more, the covanance is zero. 
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Applying the same weight to each year is a special case of using the 
general weights. Thus the squared errors that result from using the 
credibilities from Table 17 should be greater than or equal to those that 
result from the credibilities from Table 16. This is the case, as shown 
in Table 19. Also, as was observed in Section 8.3, using more years of 
data leads in this case to larger squared errors. 

Applying no weight to the grand mean is a special case of using the 
general weights. Thus the squared errors that result from using the 
credibilities from Table 18 should be greater than or equal to those that 
result from the credibilities from Table 16. As is shown in Table 19, the 
squared errors are substantially greater, with the gap narrowing as the 
number of years increases. 

TABLE 19 

Number 
of Years of 

Data Used (N) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Mean Squared Errors (.OOOl)* 

Using the Using the Using the 
Credibilities Credibilities Credibilities 

From From From 
Table 16** Table 17*** Table 18**** 

52 52 63 
51 54 58 
49 55 54 
48 57 52 
48 60 52 
47 61 51 
47 64 51 
47 66 51 
47 68 51 
47 70 50 

* Mean squared error using the stated credibiiities to predict for the NL and AL data 
sets. 

** The complement of credibility is given to the grand mean. 
*** Equal weight to N years, with the complement of credibility given to the grand 

mean. 
**** The credibilities add up to one, and thus no weight is given to the grand mean. 



210 CREDIRILIIY AND SIIIFTING PARAMLTERS 

1 I .S Vulidity of Results 

The credibilities determined in Sections 10 and prior are all deter- 
mined empirically by directly working with the data. In this section 
equations for the least squares credibilities have been introduced along 
with an assumed covariance structure. 

The credibilities resulting from the use of the equations in this section 
are comparable to those determined in the previous sections empirically. 
As is shown in Appendix F, the observed pattern of squared errors is 
comparable to that derived from the assumed covariance structure. 

Therefore, the results of this section are an appropriate means of 
estimating least squares credibilities for this example. How well these 
results would apply to another situation would depend on the covariance 
structure that underlies the particular data set. 

12. MISCELLANEOUS 

Section 12.1 contrasts the Meyers/Dorweiler Criterion vs. the other 
criteria. Section 12.2 discusses a somewhat artificial ratemaking exam- 
ple. It is intended to point the way towards applying these or similar 
methods to practical situations. Section 12.3 compares the baseball ex- 
ample to typical insurance applications. Section 12.4 shows that the 
estimates that result herein from the use of the credibilities are in balance. 
Section 12.5 discusses the question of what estimation method to select 
for predicting the future loss record of baseball teams. It is included in 
order to complete the illustrative example used throughout this paper. 

12. I Contrasting the Me~erslDorcveiler Criterion 1~s. the Other 
Criteria 

Section 10.1 provides a good example of how criterion #3, Meyers/ 
Dorweiler, differs on a basic conceptual level from the first two criteria. 
Both of the other criteria are concerned with eliminating large errors.4” 
Criterion # 1, least squares, does this since even a few large errors will 

1v Mahler 171 compares the credibilities that result from the application of the Biihlmannileast 
squares criterion and the credibilities that result from the application of the classical/limited fluc- 
tuation criterion. 
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greatly increase the sum of squared errors. Criterion #2, limited fluc- 
tuation, does this directly by minimizing the number of errors larger than 
the selected size. 

In contrast, criterion #3, Meyers/Dorweiler, is concerned with the 
pattern of the errors. Large errors are not a problem, as long as there is 
no pattern relating the errors to the experience rating modifications. For 
example, consider the following two situations. In each case, for sim- 
plicity, only four risks are assumed. 

Situation # 1 
Modification Error 

1.20 +30% 
1.20 -30% 
.80 +40% 
.80 -40% 

Situation #2 
Modification Error 

1.30 +2% 
1.10 +I% 
.90 -1% 
.70 -2% 

Situation #2 with its small errors is preferable under the first two 
criteria. Situation #I with its lack of a pattern of errors is preferable 
under the MeyersiDorweiler criterion. Most actuaries would prefer Sit- 
uation #2. 

This example is not meant to discourage use of the Meyers/Dorweiler 
criterion. Rather it is meant to point out the potential hazards of relying 
solely on any single criterion, as well as the importance of understanding 
exactly what is being tested by any criterion that is being used. 
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12.2 A Ratemaking Example 

Assume for a given line of insurance that the five most recent annual 
loss ratios are being combined to calculate a rate level indication.50 
Assume that it is three years from the latest year of data to the average 
date of loss under the proposed new rates.s’ A weighted average of the 
annual loss ratios will be used to estimate the future loss ratio. 

If we assume a given covariance structure, equations 11.6 and 11.7 
can be used to calculate the optimal least squares set of weights, Z;, such 
that 

Assume the covariance of the loss ratios separated by a given number 
of years is as follows:s2 

Separation in Years Covariance in Loss Ratios (.OOOOl) 

0 130 
1 60 
2 55 
3 50 
4 45 
5 40 
6 35 
7 30 

Then the optimal weights are: 11.6%, 13.4%, 17.3%, 23.8%, 33.9%, 
with the more recent data receiving more weight. It is interesting to note 
that these weights can be reasonably approximated by the weights used 
in Walters [ 131, i.e., 1 O%, IS%, 20%. 25%. and 30%. 

This example is for illustrative purposes only. It should not be taken 
as a derivation of the correct weights to use in any real world application. 
Unfortunately, in order to apply this idea to real world applications one 

* The loss ratios for the separate years are preuned to have been adjusted for trend. development. 
and any other factors such as law changes. 
‘I This period will vary, but A = 3 is not uncommon 
‘! This would be produced by 6’ = .0004, c2 = .(xX)9, ((I) = .667. t(2) = ,611. P(3) = ,556. 
C(4) = ,500. ((5) = ,494. C(6) = ,389. t(7) = 333. where the quantities are defined as in 
Appendix D. 
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has to estimate the covariance matrix. This will be affected by shifting 
parameters over time. It will also be affected by the varying quantity of 
data available in each year.“” It will be affected by the uncertainty in the 
trend estimates and loss development estimates applied to each year. 
These complications are beyond the scope of this paper. 

12.3 Baseball Example 1’s. TJ@cal Insurance Applications 

In many typical insurance applications, credibility is used in the 
process of determining relativities. For example, credibility is used to 
determine the rate for a class or territory relative to the overall rate level. 
Credibility is also used in experience rating, where the rate for an 
individual risk is adjusted relative to an average. 

In these situations, where a class, territory, or individual risk is 
compared relative to an average, the result depends on the other classes, 
territories, or risks which make up the average. An automobile territory 
with a low relativity in Massachusetts could have a higher loss potential 
than a automobile territory with a high relativity in Vermont. A workers 
compensation insured could have a credit experience modification simply 
because of the bad loss experience of several other employers in the 
same business in the same state. An insured with a .9 experience mod- 
ification could have a higher loss potential than another risk with 1.1 
modification in a different business or in a different state. The baseball 
example has this same feature. A team is being compared relative to the 
average in the league. The losing percentage only has relevance to rank 
teams in a single league relative to the average for that league. The 
difference in this example is that the average is a known constant. The 
grand mean is always .500. 

In baseball if somebody loses, then somebody else wins. Thus the 
win-loss records of seven teams determine that of the remaining team in 
an eight team league.‘” 

51 In this paper, each year of baseball data represented a comparable number of games, so this 
aspect was not important. 
54 The win-loss record of teams in the same league should be negatively correlated by an amount 
proportional to the number of games the two teams have played. 
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This could have had a major impact on the analysis of this example. 
However, each team played each other team in the league approximately 
the same number of times each year and each team played approximately 
the same number of games in total.55 Thus no team had its results 
distorted by playing a weaker or stronger schedule 

12.4 Estimates in Balance 

The estimation methods used herein are always 

The most general estimation method considered 
equation 9.1, where the subscript j has been added 

in balance. 

herein was given by 
to identify teamj: 

Then the average of the estimates F, for all the teams in the league 
is given by: 

=M 

Note that for a given year i, the credibility Z, assigned to each team’s 
experience Xi, for that year is the same for all teams. Also note the fact 
that the grand mean is the same for all years. 

That the estimates are in balance can be verified directly for the 
example given in Table 20. The predicted losing percentages for each 
year average to ,500, subject to rounding. 

12.5 Choice qf u Prrdiction Method 

The example in this paper is for illustrative purposes only; the purpose 
of this paper was not to predict baseball teams’ win-loss records. Never- 
theless, it may be of interest to choose a reasonable prediction method 

w The schedule was exactly balanced. but a few scheduled games we sometimes not played 



1904 ,541 ,479 ,461 ,495 ,469 ,575 ,379 ,606 
1905 ,582 ,568 ,432 .456 ,398 ,610 ,423 .534 
1906 ,615 ,613 ,424 ,480 ,368 ,504 ,408 ,588 
1907 ,627 ,568 ,334 .533 ,389 ,531 .421 ,598 
1908 ,594 ,559 ,351 ,544 ,448 ,463 ,426 ,616 
1909 ,578 .598 ,375 .529 ,408 ,476 .405 ,631 
1910 ,633 ,599 ,366 ,508 .427 ,498 ,354 .614 
1911 ,614 ,576 ,371 .509 ,426 ,492 ,430 .581 
1912 ,651 ,563 ,411 ,524 .400 .490 ,443 .522 
1913 ,624 ,582 ,414 ,511 ,376 ,508 ,425 ,557 
1914 ,561 .555 .438 ,550 ,377 ,454 ,471 ,596 
1915 ,458 ,526 ,478 ,570 ,441 .504 .515 ,509 
1916 ,468 ,493 ,505 ,541 ,504 ,443 ,517 ,529 
1917 ,437 ,438 ,536 ,574 ,464 ,440 ,551 ,559 
1918 ,503 .506 ,519 ,511 .423 ,442 .603 ,492 
1919 .534 ,519 ,425 ,493 ,440 ,512 ,514 ,565 
1920 ,560 ,512 .467 ,394 ,413 ,584 ,509 ,565 
1921 ,567 ,448 ,488 ,458 ,449 ,573 .490 .528 
1922 ,509 ,486 ,543 .501 ,419 ,618 ,449 .474 
1923 ,592 .492 .499 .469 ,426 ,596 ,461 ,466 
1924 ,596 ,503 ,485 ,448 ,412 ,626 ,450 .479 
1925 ,615 ,448 ,478 .462 .418 ,605 .440 ,536 
1926 ,553 ,522 ,525 ,474 ,441 ,562 ,418 ,505 
1927 ,556 ,516 ,485 ,458 ,488 ,583 .452 ,465 
1928 ,571 ,550 ,472 .497 ,441 ,610 ,422 ,436 
1929 ,613 ,509 .441 ,487 .434 ,648 ,452 ,418 
1930 .603 ,530 .406 ,539 ,449 ,558 ,442 .47 1 
1931 ,556 .472 .430 .570 ,448 ,614 .476 ,434 
1932 ,564 ,487 ,452 ,586 .448 ,559 .498 ,403 
1933 ,513 .418 ,441 ,584 ,504 ,520 ,467 ,492 
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TABLE 20 

NATIONAL LEAGUE,PREDICTIONS OF LOSING PERCENTAGES 

NLI NL2 NL3 NL4 NL5 NL6 NL7 NL8 
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1934 ,487 .537 ,455 .sxx ,442 ,564 ,460 ,468 
1935 .487 ,523 ,447 .6OY ,334 ,578 ,492 ,433 
1936 .b33 ,534 ,405 ,558 ,427 .56X .460 .417 
1937 ,545 ,543 ,442 .532 ,426 ,603 ,470 ,440 
1938 ,518 .563 ,421 ,582 ,412 .579 ,457 ,467 
1939 ,498 ,536 .436 .4YO ,449 ,635 ,450 ,507 
1940 ,543 ,486 ,456 ,437 ,477 ,641 .518 .445 
1941 ,541 ,458 ,494 .39x ,508 ,635 ,495 ,466 
1942 ,569 .406 ,522 ,433 ,510 ,659 ,491 ,411 
1943 ,572 ,381 ,538 .417 ,412 .661 ,525 .378 
1944 .551 ,452 ,519 ,457 ,573 .590 .492 ,368 
1945 ,559 ,530 ,515 ,451 .544 ,586 ,455 ,363 
1946 ,546 ,470 ,428 ,543 .s13 ,629 ,472 ,399 
1947 ,450 ,487 .468 ,538 .5b2 ,559 .538 .4OO 
1948 .434 ,459 .511 ,531 ,495 ,579 ,559 .433 
1949 ,453 ,439 ,548 .553 so4 .554 ,497 ,451 
1950 ,413 ,492 ,571 ,564 .Sll ,502 .527 .41Y 
1951 ,440 ,470 ,564 .55b .47O .454 ,570 .477 
1952 ,414 .501 ,572 .54x .42Y ,503 ,563 .472 
1953 .411 ,542 ,518 .SJl ,428 .45x .646 ,457 
1954 ,315 .455 ,553 ,543 ,503 ,475 ,627 ,469 
195s ,416 ,456 .554 ,521 .423 .497 ,626 ,507 
1956 .395 ,454 .532 .SlS .48 1 ,497 ,594 .531 
1957 ,419 ,434 ,572 .453 ,521 .523 ,566 ,512 
1958 .45 1 ,421 ,567 ,482 ,533 ,504 ,571 ,471 
1959 ,507 ,425 .538 ,492 ,501 s32 ,492 ,512 
1960 ,464 .45 1 ,523 SOY ,382 .55 1 ,502 ,518 

NLI NL2 NL3 

TABLE 20 

(CONTINUED) 

NL4 NL5 NL6 NL7 NL8 

Note: Using late\t three years of data, with weight\ of 10%. 10%. 55% (55% weight to the most 
recent year; 2SRm weight to grand mean). 
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for this particular problem. Assume that A = 1, i.e., 1910 data are 
available to predict 19 1 1, etc. 

Based on Table 19, the credibilities in Table 16 work well. 

The author would recommend avoiding using many years of data 
unless it substantially improved the accuracy. It is better to keep things 
simple. For this particular problem, based on Table 19, there seems little 
advantage to using more than 3 years of data. For example, giving 55% 
weight to the most recent year, 10% weight to the next most recent year, 
10% weight to the third most recent year, and the remaining 25% weight 
to the grand mean works reasonably well.5h 

The predictions that result from this method of estimation applied to 
the National League data are shown in Table 20.s7 The errors are shown 
in Table 21. 

The mean squared error is .0046.sx There is a 14% chance of an 
error of more than 20%. The correlation used in the Meyers/Dorweiler 
criterion is .02, not significantly different from zero. Thus according to 
all three criteria this prediction method works well. 

13. CONCLUSIONS 

The data from baseball used in this paper provide a useful way to 
examine and illustrate credibility concepts. 

The methods and concepts illustrated here can be applied to problems 
actuaries deal with in insurance. However, this paper is only a first step; 
there is further work required to apply these general concepts to any 
specific practical situation. 

x Many other choices would also work reasonably well. This illustrates the typical situation where 
once the general form of the weights is determined, there is a range of weights that work well. 
Usually, the specific choice of weights within that range has relatively little impact on the final 
result. 
v For example, the 1904 entry under NL2: ,479 = (.10)(.419) + (.10)(.457) + (X)(.485) + 
(.25)(.500), where the first three values are from Table I, and .500 is the grand mean. 
?” The mean squared error is .0049 when the method is applied to both the AL and NL data sets. 
This is a standard deviation of 10% losses out of a season of 150 games; the process standard 
deviation is about 6 losses out of a season of 150 games 
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TABLE 21 

NATIONAL LEAGUE, ERRORS OF PRWICTIONS IN TABLE, 20 

NLl 

1904 -.I00 
1905 -.087 
1906 - ,060 
1907 ,019 
1908 ,003 
1909 -.I28 
1910 -.021 
1911 - .095 
1912 -.cQ9 
1913 ,081 
1914 ,175 
1915 .OiM 
1916 ,054 
1917 ~ ,092 
1918 - .070 
1919 - .056 
1920 - ,032 
1921 ,083 
1922 -.I45 
1923 - ,057 
1924 - ,058 
1925 ,073 
1926 -.013 
1927 - .054 
1928 -.I02 
I929 - ,023 
1930 ,058 
1931 - ,028 
1932 ,064 
1933 ,052 

NL2 

-.I55 
-.I16 

,047 
,007 

- ,097 
- ,043 

,015 
,003 

-.058 
.018 
.042 
,052 
,103 

- .098 
- ,042 

.Ol2 
,116 

- ,045 
- ,020 
-.014 

,100 
-.I08 
-.014 
~- ,059 

,053 
-.033 

.088 
- ,008 

.Ol3 
- ,097 

NL3 NL4 

,069 
,033 
,187 
,038 

-.006 
,055 
,041 

- ,032 
.018 

-.Oll 
- ,056 
- ,045 
- ,057 

,017 
,170 

- ,039 
- ,046 
- ,094 

,062 
.038 
,014 

-.0X0 
,057 
,041 
,063 
.086 

-.OlO 
- ,025 

,036 
- ,001 

.070 
-.02x 
- ,096 
- ,036 

.01X 

.032 
- ,005 
~ ,033 

,014 
- ,071 
- ,060 

.O3 I 
- ,067 

.0x0 
,043 
.17Y 

- ,070 
~ ,084 

.OSY 
,060 

-.OlO 
-.OlS 

,039 
~ .052 

.OlO 
- .0x4 
~ ,078 
- ,053 
- ,024 
~ ,033 

NL5 NL6 
__ - 

.I62 - ,083 
,084 .I.56 
.ooo - ,032 

- ,075 ,096 
,084 ,002 
,009 - .040 
.018 .008 
,073 ,012 
,082 - ,030 
,040 .091 

-.078 ~ ,065 
-.I05 ,096 

,070 .03x 
,100 .Ol? 

- .004 -.I11 
,061 p.14.5 

.~ ,029 - ,011 
,063 - .096 
,023 -- ,009 
.041 - ,079 
,020 - .OlO 

-.016 ,049 
.06Y - .054 
.0x.5 ~ .08h 
,045 -.I07 

~ .OlO .I I2 
,014 --.I04 
,020 ,043 

~ ,084 .06S 
I03 ~ .0x5 

NL7 NL8 

-- ,052 ,093 
,050 - ,089 
,016 - ,065 
,012 - .062 
,062 - ,066 
.I29 -.014 

-- ,084 ,026 
--,018 .084 

,059 - ,066 
~~ ,052 -.I03 
mm.081 .I25 
m.O1l - ,020 

-- ,061 - .07Y 
m.118 ,098 

,123 -.I13 
.025 -.04l 
,022 ,052 
.078 ,097 
,001 .026 
,026 -.018 
,038 - ,099 
.06l ,039 

- ,033 ,083 
,062 ,066 

-.Ol9 .053 
,027 - .06Y 

- ,039 .06X 
- ,037 .090 

.056 -.I29 

.032 .028 
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TABLE 2 I 

(CONTINUED) 

NLI 

1934 .004 
1935 -.265 
1936 ,094 
1937 ,065 
1938 ,025 
1939 - ,085 
1940 -.029 
1941 - ,050 
1942 - ,032 
1943 ,016 
1944 - ,027 
I945 ,000 
1946 ,161 
1947 ,060 
1948 -.02l 
1949 ,083 
1950 -.009 
1951 ,058 
1952 ,041 
I953 ,093 
1954 - ,028 
1955 ,057 
1956 -.OOl 
1957 - ,036 
1958 -.088 
1959 ,071 
1960 - ,004 

NL2 NL3 NL4 NL5 - - - - 

,004 ,025 
-.019 ,096 
-.031 - ,030 
- ,052 .046 

,026 ,007 
,085 -.019 
,061 - ,057 
.I07 -.051 
,081 - ,036 

- ,090 ,022 
-.I39 ,006 

,095 ,151 
-.OOl - ,036 

,045 - .084 
.054 -.073 

-.074 -.056 
,031 -.Oll 

- ,036 - ,033 
-.08f ,072 

,139 - ,060 
,033 -.031 
.008 .025 
.05 I - ,078 
,051 - ,025 
,018 ,035 

- ,024 ,019 
,022 - ,087 

- ,068 ,050 
,053 ,029 
,039 ,024 

-.104 ,051 
.I29 - ,035 
,120 -.041 
,091 -.049 

-.031 - .008 
- ,067 ,069 

,042 -.I69 
.035 .008 

-.I53 ,057 
- ,022 -.091 

,012 ,088 
-.05l .OOl 
- ,043 - ,022 
- ,005 ,069 
-.002 .094 
-.004 .026 
-.017 -.117 

,024 ,133 
,008 -.058 
.I06 - ,084 

- ,028 -.03l 
- ,024 ,052 
- ,027 ,040 
- ,056 - ,005 

NL6 

- ,060 
-.004 
-.081 

,002 
-.I21 
- .067 
- ,032 
- ,086 
- ,063 

,077 
-.Ol I 
-.I15 

,077 
-.038 

,008 
,080 
.093 

- ,072 
,068 

- .OO3 
- ,038 
- ,003 
- ,042 

,023 
- ,048 
- ,052 
- .066 

NL7 NL8 

- ,047 .089 
,054 .056 
,005 -.018 
,028 - ,034 
,030 -.063 

-.I06 ,108 
,024 - ,006 
,021 ,100 

-.060 ,099 
,044 .060 
.080 ,050 

-.013 -.020 
-.I19 ,027 
- ,059 - .022 

,098 -.015 
-.042 ,074 
-.I00 -.07l 
- ,014 ,003 
-.I64 ,043 
-.029 -.004 
-.029 - .063 

,016 -.05l 
.023 ,025 

-.03l ,077 
.I16 -.061 

- ,002 - ,027 
,119 ,076 

Note: Predicted Losing Percentage minus Actual Losing Percentage 
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When shifting parameters over time is an important phenomenon, 
older years of data should be given substantially less credibility than 
more recent years of data. The more significant this phenomenon, the 
more important it is to minimize the delay in receiving the data that is 
to be used to make the prediction. 

In this paper three different criteria were examined that can be used 
to select the optimal credibility: least squares. limited fluctuation, and 
Meyers/Dorweiler. In applications, one or more of these three criteria 
should be useful. While the first two criteria arc closely related, the third 
criterion can give substantially different results than the others. 

Generally the mean squared error can be written as a second order 
polynomial in the credibilities. The coefficients of this polynomial can 
be written in terms of the covariance structure of the data. This in turn 
allows one to obtain linear equation(s) which can be solved for the least 
squares credibilities in terms of the covariance structure. 
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APPENDIX A 

SOME RELEVANT FEATURES OF BASEBALL 

Baseball is a competitive sport involving a combination of luck and 
skill. Two teams play against each other in a game; the team that scores 
the most “runs” wins the game, the other team loses.’ 

Each team has nine players in the game at a time.2 Players may be 
substituted for, but once they leave the game they cannot return. Over 
this period of time each team had 20 to 25 players on its roster.” The 
individual skills of the players, as well as how their skills complement 
each other, has a direct impact on the quality of the team. 

In addition to the players, a team has coaches and a field manager. 
By supervising the players’ training and conditioning, providing advice, 
deciding who plays, and by various decisions throughout the game, these 
people have some effect on the percentage of games lost or won by the 
team. 

Each team has an owner(s) and other office personnel.4 By developing 
new players, trading for players with other teams, etc., management has 
some effect on the percentage of games lost or won by the team. 

All of these elements that affect the quality of the team shift over 
time. A team’s roster of players typically changes a little during the 
course of a single year; over the course of several years the changes are 
substantial. It is unusual for a player to be with a single team for more 
than 10 years, although on very rare occasions a player has played for 
a single team for 20 years. 

Even if the identity of the players were to stay the same, the skill 
level of individual players changes over time. The most important effect 
is aging; as a player gets older he generally improves until he reaches a 

I While it is possible for a baseball game to end in a tie, such games are ignored in major league 
standings. 
z Currently the American League has added a tenth player, the designated hitter. 
’ Of the players on the roster, about half get most of the playing time, while the remainder see 
much less playing time. 
J During the latter half of this period a team had a general manager. 
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peak and then declines. Injuries can have a profound impact on a player’s 
skill; sometimes that impact is temporary while sometimes it is perma- 
nent. 

The field managers and coaching staff also change over time.s In 
addition, the owner(s) and upper management change, but much less 
frequently. 

Finally, a team occasionally relocates to another city. 

It might be useful to think of the following analogy to a workers 
compensation risk. The baseball players correspond to the workers in 
the factory. The field manager corresponds to the plant manager. The 
baseball upper management corresponds to the corporation’s upper man- 
agement 

’ Quite often the departure of the field manager will be rrlatcd TV rhr potjr record of the team 
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APPENDIX B 

MEYERS/DORWEILER CRITERION AND KENDALL’S TAU 

If an experience rating plan works properly, then after the application 
of experience rating, an insurer should be equally willing to write debit 
and credit risks. In other words, the modified loss ratio of expected 
losses to modified premiums should be the same for debit and credit 
risks. 

Mathematically, we desire that the correlation between the experience 
modification and the modified loss ratio be zero. r 

In the example in this paper, the experience modification corresponds 
to the ratio of predicted losing percentage to the grand mean losing 
percentage.z For example, a predicted losing percentage of 60% is equiv- 
alent to an experience modification of 60% + 50% = 1.2. The modified 
loss ratio corresponds to the ratio of the actual losing percentage and the 
predicted losing percentage.3 The third criterion used in this paper is that 
the correlation between these two ratios be zero. This corresponds to the 
criterion used by Meyers. 

Meyers [I] uses the Kendall T to measure correlation. 

Let X and Y be two vectors of length IT.~ Kendall’s T can be calculated 
as follows [ 141. Suppose Y is arranged in its natural order. Assume that 
the corresponding ranks of X are XI, XZ, . . . X,,, a permutation of 1, 2, 
. . . n. Let Q be the number of inversions in Xi, X2, . . . X,.5 Then let 

7= l- 4Q 
n(n - 1) 

’ If the correlation is positive, then insurers would prefer to write credit risks. The credits and 
debits given are on average too small, i.e., the credibility assigned to the experience is too small. 
The situation is reversed for a negative correlation. 
2 The predicted losses are equal to the experience modification times the expected losses for an 
average risk in the class. In a more general situation one would have classifications of risks; in this 
example we have only one such classification and thus use the grand mean rather than the class 
mean. 
/ In general the modified loss ratio is equal to the expected loss ratio times the actual losses over 
the predicted losses. In this example, the expected loss ratio can be thought of as unity. 
J In our case, X would be the experience modifications and Y would be the corresponding modified 
loss ratios. 
’ For example, in the X-ranking 3214 for 11 = 4. there are 3 inversions of order. 



286 CREI)IBII.l~l-Y AND SHIF’I IN<; PAR4hlETERS 

T is symmetrically distributed on the range [ - I, + 11. As is usual 
for measures of correlation, + 1 signifies complete agreement and - 1 
signifies complete disagreement. 

As shown in Kendall and Stuart [ 141, 

Var T = *ml + 5) 
9n(n - 1) 

As II approaches infinity the distribution of r approaches the normal 
distribution. 

In the examples in this paper, the variance of r varies from .0009 to 
.0016.h The standard deviation of T goes from .031 to .040. Thus an 
approximate 955X confidence interval around zero for T has a radius of 
approximately .07. about two standard deviations. 
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APPENDIX C 

MATRIX EQUATIONS FOR LEAST SQUARES CREDIBILITY 

In this appendix, equations 11.2, 11.3, 11.4, and 11.7 in the main 
text are derived. The squared error is written as a second order polyno- 
mial in the credibilities, with the coefficients depending on the covariance 
structure discussed in Appendix D. This squared error is minimized by 
setting the partial derivative(s) with respect to the credibilities equal to 
zero. 

Assume an estimate for year N + A, using N years of data, is given 
by: 

F= $Z;X;+(I -xZ;)M 
i= I 

where Xi is the data for year i, and A4 is the grand mean.’ Let Z. = 1 - 
EZ;. Write Z for the vector Zo, Zr, . . ., Z,V. 

Then the mean squared error between the prediction and the obser- 
vation is given by the expected value of the squared difference between 
F and XN+a. 

V(z) = E[(F - X,v+& 

= E[ ( ;i, Z (Xi - X,_,) + zo ( M - xv+a 

= 5 ZfE[(Xi - X,V+,)*] 
,= I 

+ 5 c Z;Z, E[(X; - &+a)(X, - Xv+.dl 
i=l Jfl 

+ 2 2 Z&Z; E[(X, - xN+A)(M - x,+A)l 
i= I 

+ Z:, E[(M - &‘+A>‘] 

’ It is assumed that the grand mean is known. This is the case in this paper. It is the case whenever 
one is only concerned with relativities compared to the overall average. 
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From Appendix D we have,? 

E[(X, - XN+.$] = 26* + 25*(1 - rf(N + A - 8) 

E[(X, - XN+A)(xj - XN+A)] = 8’ + c’(1 + c’((i - jl) 

- t(N + A -- i) - t(N + A - j,, 

E[(X, - X,+~)(M -- X,v + s,] = 6’ + 1;? 1 - Y(N + A - i)) 

E[(M - X,,..)‘] = 6’ + c’ + T’ 

Therefore 

v(z) = 5 Z;(26’ + 25’( 1 - ((N + A - i))) 
I- I 

+ 5 c zz, 
,= I /iI [ 

6’ + c2( I + I+ - ,jl, ~ C(N t A - i) 

- t'(N + A -- j) 
I 

+ 2.5, 2 .z;@ + t’(1 - 1(N + A -- i)) 
1-l 

+ z,‘,@ + T2 + c’, 

V(z> = 6’ + z; T1 

+ 5’ 
L 

5 2 Z,Z, + 2 i Z,Zj(t( /i - ,;I) - t (a%’ + A - i) 
i-0 ,--(I r-l ,=I 

- t(N + A - j)) - 2Zo $ %t(N + A ~ i) 
I-. I I 

but 

i zi = Z() + i: z; = (I - i Z,) + 5 z, = I 
r=o i-1 ,= I ,-I 

? In Appendix D, X(O,r) = the observation for risk H at time I. Smce in thls appendix none of the 
calculations are performed for individual risks. the H has been wppresed in order to simplify the 
notation. 



CREDIBILITY AND SHIFTING PARAMETERS 

Therefore 

289 

V(z) = s2 + Z(‘,T2 + 5’ + 6” 5 z,’ 
,= I 

+ 5’ 2 2 ZZj(t(li - jl) - @I + A - i) - t!(N + A - j)) ;=I j=l 

- 5’zo2 5 Z&V + A - i) 
;= I 

V(z) = 6’ + 5’ + T2 + T2 2 - 2T2 2 Zi 
i=l 

+ S*g Zf + 5’ 2 2 - - + A - 
i= 1 

Z,Z,(e(li jl) @‘v 
i=l j=i i) 

- e(N + A - j>) - 25* 5 z;e(/v + A - i) 
i= I 

+ 25’ 5 5 Z;Zje(N + A - i) 
i=l ,=I 

V(z) = s2 + 4’ + T2 + T2 5 g z;zj - 272 -$ z, 
i=l ,=I i=l 

+ S* 2 zi’ + 5’ : $ z;z,(e(Ji - jl) - t(N + A - j)) 
i= I /=I ,j=i 

- 25* 2 Z,@‘v + A - i) 
i= I 

v(z) = 5 5 ZiZj(S2Si, + 2 + (‘l!T((i - jJ)) 
i=I ,=I 

- 2 5 Z;(T~ + <‘e(N + A - i)) + 6’ + 5’ + T* 
i= I 
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This is equation 11.2 in the main text, with S%l, + <‘tJ(li - j() = 
C(li - jl) the covariance between data for a given risk /i - jl years apart. 
It is left as an exercise to the reader to verify that the formula for the 
mean squared error compared to the underlying mean rather than the 
observed value would be exactly 6’ less. 

In order to minimize this squared error, one sets the partial derivatives 
with respect to Z; equal to zero. This yields the following set of N 
equations. 

2z;(6’ + T2 + (‘) + I: 2z,(T2 + [-?(li - jl), 
,#i 

- 2(T’ + &N + A - i,) 

=O, ;=I , ."> N 

5 z,(S'Si, + T2 + (‘e((i - jl)) = 7’ + (?(N + A - i), 
,‘I 

i= 1 , . . . . N 

This is equation Il.3 in the main text, again with 

S’S,, + c2t(li - jl) = Ctli - jl). 

It is worth noting that equation I I .3 is very similar to the usual 
general matrix equation for optimal least squares credibilities: 

2 = CW~,Yl 
COV[k,Z] 

where .% is the vector of observations, and Y is the quantity to be 
estimated.j Here in equation 11.3, there is an additional term of T', the 
between variance, added to the covariances. This is due to the application 
of the complement of credibility to the grand mean. 

In the absence of shifting parameters over time (5’ = 01, the squared 
error is given by: 

v(z) = 6’ (1 + ,g, z:> + T2 ( 1 - (+, z,)’ 

’ See, for example. Theorem 3.3 in Chapter 111 of De Vylder ] IS]. 
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The optimal credibilities are given by the solution to the equations: 

5 Zj(S2Si, + T2) = T2, i= 1, . . ..N 
j=l 

The solution has all the credibilities equal: 

z,= T2 NT2 + s2 , i = 1, . . . . N 

;g, z, = NT2 
N 

NT~ + 6’ = N + S’/T* 

This is the familiar expression for the least squares credibility in the 
absence of shifting parameters over time. 

If we set Zi = Z/N for i = 1, . . . , N then equation 11.2 becomes: 

V(z) = $ {NS’ + N2~2 + 5’ 5 5 ((Ii - ji)) 
i=l j=] 

- 2 $ NT* + t2 2 e(N + A - i) + s2 + 5’ + T* 
,= I 

Setting the derivative of V(z) equal to zero gives the least squares 
credibility: 

NT~ + 5” 5 t(N + A - i) 
i= I 

Z=N 
N2~2 + NS2 + 5’ 5 5 [(Ii - jl) i=t j=l 

This is equation 
5*e(li - jJ>. 

Il.4 in the main text, with C((i - jl> = 6%ii, + 

We can minimize V(Z) in equation 11.2, given the constraint 
x?= iZi = 1, by using Lagrange Multipliers. 

We set the partial derivatives with respect to Z; of 

V(Z) - A (i, Zi - 1) equal to zero. 
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This produces the following N equations: 

$ Zj(S2S,,j + (*e(ji - jj)) = &‘P(N + A - 1) + 1 i = I, . . . . N 
j= 1 

This is equation I I .7 in the main text. It is worth noting the absence 
from the above equation of TV, the between variance. This follows 
logically from the fact that the grand mean is given no weight and each 
risk is estimated solely from its own data. 
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APPENDIX D 

COVARIANCE STRUCTURE 

In this appendix, the covariance structure for the data sets in Tables 
1 and 2 will be analyzed. As discussed in Section 1 1, 1, the variance is 
the sum of three pieces, the between variance, the variance due to shifting 
parameters over time, and the process variance excluding the effect of 
shifting parameters over time. The analysis herein will define these three 
pieces. 

Let X(@,r) be the observation for risk 0 at time ?. 

Let ~(0,r) be the expected value for risk 6 at time t. 

p(O,f) = W@,f)l. 

Let ~(6) = E,[X(@,t)]. 

Let M be the grand mean. 

M = EM~AI = EtMWl. 

In our case, 0 and rare both discrete rather than continuous variables. 
We can observe X. M is known since we are dealing with relativities 
compared to the overall average. On the other hand b(f3,t) is unknown 
and can never be observed directly. 

We can observe the squared error that results from using different 
estimations. This squared error can be usefully expressed in another 
form. To do so, we split the variance of X into various pieces. Define 

S2 = ME,U%WBJ) - ~.(%~>~~)0,~111 

5’ = WS[M~J) - ~.(~))~~fNl 

(*W = En[E,[COVtX(B,r),X(B,r + .Ql/811 

= E,[E,[COvt~,(e,t),~.(8,r + ~>l~Wl 

T2 = VARdE,[p.(B,Oll = VAQJ-(~)~ 
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Then 6’ is the process variance excluding any impact of’ shifting risk 
parameters over time. t2 is the variance due to shifting parameters over 
time. U(S) is a correlation measuring how much the risk parameters shift 
over time. 4?(O) = 1. t(s) I I for s > 0. I 7’ is the parameter variance, 
the variance between the different risks. 

For later convenience of notation define 

6’(8,t) = E[(X(B.r) - /~(8.r))~j0.t] 

6’(O) = E,[6%I,r)] 

&I, = E,[(P(~J) - p(0))‘/01 

t(s,O) = E,[COV[k(B,f), p(0.r +m s,]] tm 1;?6) 

then 

s2 = E@(O)] = Eo,,(6?0,t)] 

5’ = Ed5’@)1 

1(& = E&(s,tI,l;‘(8,] 

It is useful to rearrange the definitions of the variances in the usual 
manner so as to express the expected value of a quantity squared as the 
sum of a squared mean and a variance. 

E(X’(r,t))(r.B] = &t,@) + 6’(W) 

E,[/.&,B)j = $(B) + <?H) 

E&.&I)] = M’ + T? 

A similar expression can be derived from the definition of the co- 
variance. 

For the formula for the expected value of the squared error of the 
estimate from the observation. one needs to express various expected 
values in terms of the variances and correlations defined above. 

I One should note that it is an assumption that this correlation depends only upon the separation of 
the two years in question. Whether or not this k a reasonable approximation to reality is an empirical 
question which depends un the particular applicatmn. 
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E,. ,[X’(t,@l = Ee[E,[E[X2(~,~)(~,~111 
= Et~lE~l~%,~) + I’ll 
= E&2(8) + &O, + 6’(O)] 

= M2 + T2 + 5’ + s* 

E,, ~[X(f,0Mt + s,@l = Ee[E,[E[X(f,fWCt + .U3)~f~~lll 

= EtJEtl~(f,Wp(t + s,Qll 

= Edp2W + Qd3,i2(Q)l 
= M2 + T2 + e(.s)(2 

E,.u[MX(f,B)] = ME[X(r,O)] = M’ 

Then it follows that: 

E,. o[(X(r,O) - X(r + s,8))‘] = E,,c,[X*(r,~)] + E,, dX2(t + s,fVl 
- 2E,.dX(t,t9X(r + s,Wl 

= M2 + T2 + 5’ + s* + &I* + 72 

+ 5’ + s2 - 2(M’ + T2 + e(s)(2) 
= 2s2 + 25*(l - t?(s)) 

E,.d(X(r,B) - X(t + s,O))(X(r + u,@ - Xft + s,@>l 
= E,.~[X(t,@x(r + u,t-Ol + Et. dX20 + s,@l 

- E,.@[X(t + s,@X(r + u,(j)] - E,. ,[X(r,O)X(f + s,@] 

= M2 + T2 + e(u)gZ + M2 + 7* + 5’ + s2 - (M2 + 72 

+ e(s - u)C2) - (M2 + T2 + e(s)(2) 

= s2 + <‘(I + e(u) - C(s - u) - e(s)) 

E,,H[(X(I,@ - X(t + s,O))(M - X(1 + s,@)l 
= M’ - M2 + (M2 + T2 + 5’ + S2) 

- (M2 + T2 + e(.s)<2) 
= s2 + (‘( 1 - e(s)) 



E,,A[(M - X(r,O))‘] = M’ - 2M’ + (M’ + 7’ + 1;’ + 6’) 

= 6’ + 5’ + $ 

These results are used in Appendix C. 

It is of interest to note that variance of X = E,, e[(M - X(t,O))‘] = 
6’ + 5’ + TV. Th’ IS is the split of the variance ot’X into three pieces that 
was discussed above. 

Let C(s) = Covariance for data for the same risk, ,I years apart. 
Then for s > 0 

C(s) = E[(X(r,B) - p(O))(Xct + s.8) - p-(0,)1 

C(s) = E[X(r,B)X(r + s,B)] - E[X(~,B)~(B)] - E[X(r - s)r~,(@] 

+ Eb2(W1 
= M’ + 2 + e(s)<’ - (M’ + 2) ~ (M’ + C) -t M2 + 2 

= t?(s)<’ 

C(0) = E[(X(r,B) -- p(O))‘] = E(X’(?.O)] - 2E[X(t,8&~(8)] 

+ El&N1 

It is worth noting that the covariance structure assumed herein differs 
from that in Gerber and Jones [ 161. The covariance structure which in 
Gerber and Jones is shown to give credibility formulas of the updating 
variety? can be written as: 

cowx,,xj1 = 
i I 

; + “- j 2 1; 
I 

That covariance structure would assume for example that the covar- 
iance of the 1Y40 data with the data for each of the years earlier than 

2 Credibilities of the updating varlcty are \uch that nt‘~\ t’\tlmatc = (pr~rr e&mate x complement 
of credibility) + (new data X credlbilit)). Thl\ i\ the form 01 the e\tlmate dlscursed in Section 
9. I. 
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1940 is the same. In fact we observe that the distance between the years 
has an extremely significant impact on the covariance between the years. 

The covariance structure assumed here can be written as: 

[ 

t(j - i)c’ i < j 
COV[Xi,Xjl = (2 + 6* i=j 

Thus the optimal least squares credibilities that result from the matrix 
equations that are given in Appendix C will generally not be of the 
updating variety.’ 

We can directly estimate only the following quantities from the data: 
T’, C(O), C(l), C(2), etc. Not coincidentally, these are the quantities 
that enter into the formula in Appendix C for the squared error. Thus, 
these are also the quantities that enter into the calculation of the optimal 
credibilities. 

Thus, it is not necessary to estimate 6* by itself. However, if one 
does so, the values for 5’ and e(i) follow. We will estimate 6* here 
solely in order to aid our understanding; it does not affect any of the 
calculated values of the credibilities.4 

For a binomial process, with a success rate of .4 or .6, the variance 
is .24n.5 This is approximately the variance for the average risk in this 
example, with n = 150.” The resulting variance of games lost is 
(I-50)( .24). The variance in losing percentage is (150)( .24)/( 150)* = 
.0016. 

Thus a reasonable approximate value for 6* is .0016. The values for 
the variances and correlations are shown in Table Dl . It should be noted 
that as the difference in years increases, the correlations get close to 
zero. 

For example, the observed value for the NL data for 6’ + 5’ = 
.007892. Thus since we assume 6* = .001600, we estimate 5’ = 
.006292. The observed value of <*-!‘(I) = .004919. Thus we estimate 
e(l) = .004919/.006292 = ,782. For this example, the observed value 
of 72 = .001230. 

i They will be of the updating variety when l(s) = I for all s. 
4 In general if something cannot be observed in the squared errors, then it is not needed to calculate 
the optimal least squares credibilities. 
5 The variance is p( I - p)n. 
h Teams played about 150 games per year over this period of time. 
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It is important to note that the total variance of the observations is 
equal to 6’ + 5’ + 72 = .009122. Thus, what has been done here is 
just an analysis of variance, breaking the variance into its various 
sources. For this example, about 13.5% of the variance of the observation 
is due to the differences between the risks, about 17.5%~ is due to the 
process variance, and about 69.0% is due to shifting parameters over 
time. 

One can verify that the observed pattern in the covariance structure 
in Table Dl is not due solely to random chance. One can rearrange the 
data in random fashion, and observe the covariances. 

TABLE DI 

COVARIANCE STRUCTURE 

NL AL 
- 

T2 .001230 .001619 

6% .001600 .001600 

<'** .006292 .006275 

e(o)*** 1 ,000 1.000 

e(l) ,782 ,721 

W) ,543 ,506 

1'(3) ,497 ,384 

f(4) ,404 ,283 

t(5) .288 .I24 

t(6) ,249 ,061 

e(7) .I58 -.016 

((8) ,062 -.089 

k(9) -.012 -.170 

F(10) -.063 -.140 

* 8’ estimated as .001600 based on an assumed binomial process. 
** 5’ is based on the assumed value of 6’ and the ohAerved value III’ 5’ + s2. 

*** e(O) is unity by definition. 
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First one can rearrange the entries in each row of Table 1; for each 
row separately, assign each entry in that row to a randomly selected 
column. Similarly one can rearrange the entries in each column of Table 
1; for each column separately, assign each entry in that column to a 
randomly selected row. The resulting covariances that are computed for 
these two “scrambled” data sets are shown in Table D2. All of the 
covariances e(i), i > 0 are close to zero. Therefore, one can conclude 
that there is a significant pattern being displayed in Table Dl. 

TABLE D2 

COVARIANCE STRUCTURE, SCRAMBLED DATA 

NL NL 
Entries in Entries in Each 

Each Row Rearranged Column Rearranged 

T2 
s2* 
5 2** 

e(o)*** 
e(l) 
W) 
e(3) 

e(4) 

e(5) 

e(6) 

em 

e(8) 

e(9) 

@lo) 

.000191 

.001600 

.007330 

I .ooo 

,010 
-.009 

.008 

- .084 

- .025 

- .020 

- ,030 

- .058 

.049 

.042 

.001230 

.001600 

.006292 

1.000 

-.I17 

.021 

- .070 

- .035 

- .039 

- .006 

- .053 

.082 

.091 

-.019 

* S2 estimated at .001600 based on an assumed binomial process. 
** 5’ is based on the assumed value of s2 and the observed value of 5’ + 6’. 

*** e(O) is unity by definition. 
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APPENDIX E 

PUTTING THE REDUCTION IN SQUARED ERROR IN CONTEXT 

The first criterion used to determine the optimal credibility is to 
minimize the squared error. Using the optimal credibility based on this 
criterion will reduce the squared error between the observed and predicted 
result. What should be considered a significant reduction in squared 
error? 

Let us examine an example. For the NL data set, using one year of 
data. the optimal credibility is 68% as shown in Table 9. As shown in 
Table 6 the mean squared errors are: 

Mean 
z Squared Error - 
0 ,009 I 

68% .0049 
100% .0059 

In this case, by the use of credibility, the squared error has been 
reduced from .0059 if the data were relied upon totally, or .0091 if the 
data were totally ignored, to .0049. In this case. the squared error has 
been reduced to 83% (.0049/.0059) of its previous value.’ 

All of these squared errors include the variation of the observed 
results around the expected value.? The use of credibility does not affect 
this source of variation. Thus credibility methods cannot reduce the 
squared error between the observed value and the estimated/predicted 
value to as great an extent as they reduce the squared error between the 
true mean and the estimated/predicted mean.’ 

It is shown in Mahler [9] that the best that can be done using 
credibility to combine two estimates is to halve the mean squared error 
between the estimated and theoretical true underlying mean. However, 

1 The “previous” value of the squared error is considered to be the minimum oi the squared error\ 
that vault from either ignoring the data entirely or relying on the data entirel) 
2 This random variation is usually referred to as process risk. 
’ It should be noted that the former squared error IS concrete and easily ohserved. whde the latter 
squared error ib theoretical and difficult if not impo\\ihle to ohserve. 
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in this paper the squared error being examined is between the estimated/ 
predicted and the observed result, rather than the true underlying mean. 
This squared error is inherently larger due to the random variation in the 
observed result. Also the result derived in Mahler [9] was derived in the 
absence of shifting parameters over time. 

It turns out that, in the current case, the best that can be done using 
credibility to combine two estimates is to reduce the mean squared error 
between the estimated and observed values to 75% of the minimum of 
the squared errors from either relying solely on the data or ignoring the 
data.j One can think of half5 of the squared error as being due to two 
sources: the inherent process variance associated with comparing to 
observed results, and the presence of shifting parameters over time. This 
portion of the squared error is independent of the value chosen for the 
credibility. The remainder of the squared error can be thought of as that 
which is affected by the choice of the value of credibility; as stated 
above this can be at most cut in half by the use of credibility methods. 
If half of the squared error is cut in half, this reduces the total squared 
error to 75% of what it was. 

Assume one is estimating the future by credibility weighting together 
a single year of data and the grand mean.h Let V(0) be the squared error 
between the predicted and observed results for Z = 0. Let V(1) be the 
squared error between the predicted and observed results for Z = 1. 
Then as is shown in Appendix F: 

Squared Error Between 
Z Predicted and Observed 

0 V(O) 
Optimal V(1) l-v0 

i 4V(O) ) 

100% V(1) 

with the optimal credibility given by: Z optimal = 1 - V(l)/2V(O). 

4 When using more than two or more years of data, the reduction in squared error depends on the 
impact of shifting parameters over time. However, in the absence of shifting parameters over time, 
for N years with the same weight applied to each year, the maximum possible reduction is 
1/(2(N + I)). 
5 This is only a half for the case when the squared erron for Z = 0 and Z = I are equal. However, 
this is the case when one gets the maximum reduction in squared error. 
h The formula given below does not hold when using several years of data. 
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In the example above, we had V(0) = .0091, V( 1) = .0059. Using 
these values in the above formula gives Z optimal = 68%, equal to the 
empirically determined 68%. The formula for the minimum squared error 
gives a value of .0049, which is equal to the empirical minimum squared 
error. The reduction of the squared error to 83% of its previous value 
appears significant in light of the maximum possible reduction to 75%.’ 

7 The maximum reduction is possible when the squared rrnm for Z = 0 and Z = I are equal 
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APPENDIX F 

SQUARED ERRORS 

In Appendix C, the fundamental formula for the squared error was 
derived: 

V(Z) = 5 5 ZiZj(6*6ij + 7’ + lT*e(li - j()) 
i=l j=I 

- 2 5 Zi(T2 + (‘e(N + A - i)) + 6* + 5’ + r*. 
i=l 

One can actually check this result against the observed squared 
errors. ’ For example, let N = 2 and A = 3. Then 

V(Z, ,Z*) = z:(s* + 7* + 5’) + 2Z,Z2(T2 + <‘e( 1)) 

+ zgs* + T2 + 5’) - 2Z*(T2 + [*e(4)) 

- 2Z*(T2 + 5*e(3)) + Is* + 5’ + T2 

Using the average of the NL and AL values in Table Dl for the 
covariance structure: 

72 = .001425 6* + 5’ = .007884 

<‘e( 1) = .004723 <*e(3) = .002770 5*[(4) = .002158 

V(Z,, Z2) = Z:( .009309) + Z,Z,(.Ol2296) + Z;(.009309) 

- Z,(.OO7166) - Z2(.008390) + .009309 

Table Fl contains the results of the test for various values of ZI and 
ZZ. (Z, is the credibility applied to the less recent year of the two.) The 
mean squared errors are a close match to those given by the equation.* 

’ The covariances were estimated from the same data as is being used to test the equation for the 
squared error. Thus, the magnitude of the covariances is not being tested. However, the validity of 
the assumed form of the covariance structure as well as the validity of the derivation of the equation 
for V(Z) are being tested. 
L The differences are largely due to the fact that at the two ends of the data period there are either 
no predictions or no actual observation to enter into the computation of an error. 
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When N = I, one gets the following parabola for V(Z): 

v(Z) = z2(6’ + $ + cz, - ~Z(T’ + c?(A)) + 6” + 5’ + 7’ 

V(0) = 6’ + 7’ + 5’ = squared error ignoring the data 

V(l) = 26’ + 25’( 1 - C(A)) = squared error relying solely on the 
data 

Z optimal = 
T? + <‘e(A) V(0) - V( I )/2 

2 + 6’ + 5’ = 
= ’ C’( 1) 

V(O) 21/(O) 

(7’ + <‘k’(A$ 
V(Z optimal) = - z 7 + 6? + (’ 

+ 6’ + 5’ + T7 

=- (V(O) - V(‘)2)’ + v(o) 
V(O) 

=-v(o)+v(l,-g + V(O) 

V( ’ > = 
v(‘) (I - 4V(O) i 

This is the result referred to in Appendix E. The reduction in mean 
squared error is greatest when V(l) = V(0); then the squared error is 
reduced to 7.5% of the minimum of the squared errors that result from 
relying solely on the data or ignoring the data. 

In the absence of shifting parameters over time.’ the estimate im- 
proves as one uses more and more years of data. For large N, relying 
solely on the data produces a very good estimate; this is reflected in the 
fact that the optima1 credibility approaches I as N gets large. Thus for 
large N, one cannot reduce the squared error significantly by using 
credibility. 

’ In the presence of shifting parameters over time the Gtuation i, much more complxated. 
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TABLE Fl 

MEAN SQUARED ERRORS (.OOOl) 

21 - 22 - Observed 

Estimated 
by 2nd Order 
Polynomial 

0 0 9,182 9,309 
0 .25 7,592 7,793 

.25 0 7,963 8,099 
0 .5 7,202 7,441 

.I5 .35 7,087 7,293 

.25 .25 7,172 7,352 
.5 0 7,949 8,053 
0 .7.5 8,011 8,253 

.25 .5 7,581 7,769 
.5 .25 7,957 8,057 

.75 0 9,140 9,171 
0 I 10,020 10,228 

.25 .75 9,189 9,349 
.5 .5 9,165 9,260 
.75 .25 9,947 9,961 
1 0 11,536 11,452 

.75 .75 15,162 15,031 
1 1 25,162 24,667 

Note: Mean Squared Errors in estimating NL and AL data. N = 2, A = 3. Estimate 
uses data from the fourth and third years prior to the estimation period with weights 
ZI and Z2, respectively, and the complement of credibility applied to the grand 
mean. ZI = 15% and Zr = 35% is the solution to equation 11.3 for the least 
squares credibility. 
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The exact behavior can be derived using the results of Appendix C. 
In the absence of shifting parameters over time (1’ = O), and applying 
equal weight ZIN to each of N years, based on the result in Appendix 
C, the squared error is given by: 

V(z) = z2 i; ! + T2 - 2z? + 6’ + 2 

V(0) = 6’ + T2 

2 

Z optimal = ,r/: 62 = 
(N + l)V(O) - NV(l) 

(N + I )V(O) - (N - l)V( 1) 
1 

V(Z optimal) = 6’ + 7’ - NTz p 62 

V’) = 
‘(I) (’ - (N + l)‘!‘(O) - (N2 - I)V(I) 

The maximum reduction in squared error compared to the minimum 
of V(0) and V(l) occurs when V(0) = V(1). For this case 

Z optimal = 112 

V(Z optimal) = V(l) 
1 

2(N +- I). 

As N gets large, there is no significant reduction in squared error due 
to using credibility (in the absence of shifting parameters over time). 
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APPENDIX G 

THE SECOND CRITERION AND LIMITED FLUCTUATION CREDIBILITY 

The second criterion in Section 7 deals with the probability that the 
observed result will be more than a certain percent different than the 
predicted result. The less this probability, the better the solution. 

This is related to the basic concept behind “classical” credibility 
which has also been called “limited fluctuation” credibility [7]. In clas- 
sical credibilty, the full credibility criterion is chosen so that there is a 
probability, P, of meeting the test, that the maximum departure from 
expected is no more than k percent. 

The reason the criterion is stated in this way rather than the way it 
is in classical credibility is that, unlike the actual observations, one 
cannot observe directly the inherent loss potential.’ 

However, the two concepts are closely related. If there is a small 
chance of the estimate differing by a large amount from the true value 
of the inherent loss potential, then, since the observed values are dis- 
tributed about the true value, the chance of the estimate differing by a 
large amount from the observed value will be smaller than it would 
otherwise be. 

For example, assume the inherent loss potential is .550 and that the 
observed values are distributed approximately normally with a standard 
deviation of .050. Then there is approximately a 95% probability that 
the observed value will be between .452 and .648.’ 

Assume the estimated values are also approximately normally dis- 
tributed about the inherent loss potential.” Assume a standard deviation 
of .028. Then there is a 95% chance that the estimate will be between 
,495 and .605, i.e., within 10% of the true inherent loss potential. 

I It has been shown that the loss potential varies for a risk over time. Thus, it cannot be estimated 
as the average of many observations over time. 
2 The mean plus or minus 1.96 standard deviations. 
’ An unbiased estimator has the same expected value as the inherent loss potential. 
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The difference between the estimated value and the observed value 
will also be approximately normally distributed about zero.” The standard 
deviation is .057.” Thus, there would be a 95% chance that the absolute 
difference between the estimated and observed value will be less than 
.112. This corresponds to about a 95% chance that the estimated value 
will be within 220% of the observed value.h 

In a particular example, the result would depend on the relative size 
of the variances of the observations and the estimates. However, the 
smaller the variance in the estimates, the smaller the variance in the 
difference between the estimates and the observations. Thus the smaller 
the probability that the estimate and the true mean differ by a large 
amount, the smaller the probability that the estimate and the observation 
differ by a large amount. 

I The sum or difference of two normal distributions is also a normal distribution The new mean is 
The difference of the two means. 
’ The new variance is the sum of the two variances 
’ .I I2 + .550 = .204. 
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THE DISTRIBUTION OF AUTOMOBILE ACCIDENTS- 
ARE RELATIVITIES STABLE OVER TIME? 

EMIL10 C. VENEZIAN 

Abstract 

Data on the distribution of automobile accidents typically 
reject the hypothesis that accident rates are the same for all 
members of a group. Given these findings, policy analysis is 
usually based on models that assume that accident proneness 
differs among individuals of a group and that the differences 
are stable over time. The analysis presented in this paper is 
aimed at assessing the validity of these assumptions. 

A simple model that allows for variability in both prone- 
ness and exposure level is used to estimate the potential 
contribution of variability in exposure levels to total variabil- 
ity in accident rates. Data indicate that variability of expo- 
sures may have a substantial bearing on the variability of 
accident rates. 

Data from several groups of drivers from California and 
North Carolina are used for direct tests of the stability of 
relative accident rates. When the California data are used, 
the tests do not lead to a rejection of the hypothesis that 
relative accident rates are stable. When the North Carolina 
data, based on a larger number of observations, are used, 
the tests clearly reject the hypothesis. 

The implications of these findings for economic and policy 
analysis are discussed. 
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I. INTRODUCTION 

For most types of accidental events, the number of accidents over a 
period does not exhibit a Poisson distribution, even when data are re- 
stricted to a group of individuals who are presumed homogeneous. This 
finding has been reported in a variety of settings such as automobile 
accidents [I 1, 13, 161, health insurance claims (61, and professional 
liability incidents [9, 151. This empirical finding is often rationalized by 
appealing to the notion of differences in “accident proneness” among the 
individuals in the groups under analysis. The typical model assumes that 
each individual within the group has an inherent accident rate, and that, 
for each individual, the number of accidents in a given period has a 
Poisson distribution with the appropriate parameter. Each individual in 
the group under study is viewed as having an inherent accident rate, and 
this rate is assumed to differ among individuals according to some 
probability distribution. This model, often called the “compound Poisson 
model”’ has reportedly been successful in fitting the distribution of the 
number of accidents or claims observed in a given time interval. 

The apparent success of these attempts, especially those based on 
the assumption that accident proneness has a Gamma distribution, does 
not provide a sound basis for the formulation of public policy.? In the 
first place, the usual interpretations of the compound Poisson require 
that the accident rate of a given individual be stable over time, a char- 
acteristic for which tests have seldom been performed. Another short- 
coming of these methods is that the distribution inferred from this model 
is identical to the distributions inferred from other models [2, lo]. 
Moreover, models exist that provide results which are as good as, or 
better than, those obtained under the assumption that accident proneness 
differs among individuals; however, these models have very different 
implications for public policy [IO, 14, 171. It is therefore of interest to 
examine more closely the relationship between data and hypothesis on 
one hand and the relationship between hypothesis and policy on the 
other. This paper examines the issue in the context of automobile insur- 
ance. 

’ See, for example, Feller 121, page5 28X-193: Seal 1 IO], page 31. 
? Public policy generally refers to policies adopted by governmental or qua+govemmental entities. 
In the present context. it includes such diverse areas as licensing. limitation of privileges. and the 
Imposition of premium penalties for past events. 
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The paper first discusses briefly, in Section 2, the data that will be 
used in exploring the theoretical issues. Section 3 discusses the com- 
pound Poisson model that is often used to justify both private and public 
initiatives in accident prevention. The paper then consists of three main 
sections. Section 4 discusses an alternate source of differences in the 
inferred proneness of individuals. This alternate model leads to a different 
valuation of the benefits of any policy that restricts driving by individuals 
who have had relatively large numbers of accidents in the past. There is 
relatively little that can be done with existing data to discriminate be- 
tween the models. Since the models lead to different conclusions, data 
to permit an assessment of the alternatives should be collected if at all 
possible. Section 5 considers a test of the hypothesis that claim pro- 
pensities (or more accurately, indices of claim propensity) are constant 
over time when taken over reasonably long durations. Such constancy 
is essential if we are to use historical data to implement a policy whose 
benefits can be asserted to exist only to the extent that past accidents 
predict future accident propensity for the individual. The available data 
on automobile accident involvement indicate that constancy is not a 
reasonable assumption. Section 6 provides a discussion of the findings 
in the context of economic and policy analysis of insurance issues. 

2. DATA FOR ANALYSIS 

In order to examine these issues, this article uses two sets of data 
from available literature. Both of these sets related to the accident records 
of groups of drivers whose records were followed over a long period of 
time. 

The first body of data relates to a sample of drivers in California. 
The data used in the present analysis were derived by the author from 
available tabulations [5]. The data relate to accidents experienced in the 
years 1969 to 1974 by a sample of California drivers who had licenses 
active for the period 196 1 to 1974. The original paper gives extensive 
tabulations by sex and by pattern of accidents. The basic data used in 
this paper were derived from the original data and are presented in three 
tables in Appendix A. The analysis will be performed separately on the 
three sets of data: (I) for female drivers, (2) for male drivers, and (3) 
female and male drivers combined. 
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The second set of data is available in the form used directly for 
computations [ 121. It relates to accidents experienced in the periods3 
1967-1968 and 1969-1970 by all North Carolina drivers who were at 
least 22 years old in November of 1970. and in the twelve-month periods 
1969 and 1970 for North Carolina drivers who were 2 1 years old in 
November of 1970. For drivers whose age at the end of the study was 
22 years or more, the data are available separately for ages 22-25, 26- 
39. 40-59, and 60 and over. In all cases. the drivers are classified by 
their age at the beginning of the study period. 

3. THE COMPOUND POISSON MODEI. AND ITS INTEKPKL(TATION 

The compound Poisson model pictures each individual as having an 
inherent propensity to be involved in an accident. Most models picture 
that propensity as a fixed number that does not vary over time. Strict 
constancy from day to day is not necessary as long as it holds over 
periods of time comparable with those for which data are available. 
Moreover, the mathematical and statistical analysis would not be affected 
substantially if that element which is constant were an index of proneness 
which modifies the average rate for the group as a whole. What is of 
major importance to the arguments surrounding the compound Poisson 
model is that this index is immutable for a given individual. 

The principal statistical implication of the compound Poisson hy- 
pothesis is that individuals with large numbers of accidents are relatively 
more common than would be predicted by the simple Poisson model. In 
statistical terms, the consequence of having a compound Poisson distri- 
bution is that the variance of the number of claims will be larger than 
the mean number of claims. In contrast, for the simple Poisson, the 
mean and the variance of the number of claims are identical. 

The usual interpretation of the compound Poisson hypothesis is that 
mdividuals with large accident propensities affect the group adversely, 
leading to a higher average number of claims. This affects the insurability 
of those members of the group who have low propensity indices. In 

’ The periods do not cover the calendar years. A\ explained in the origmal rei’erence, the nominal 
year 1970, for example. covers the twelve-month period hegmning m Drcember 1960 
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automobile insurance, two streams of rhetoric have arisen from this 
interpretation. Some argue that failure to reflect the differences among 
group members in insurance rates amounts to “guilt by association.” 
Others bemoan the fact that insurance premiums are made to depend on 
factors that are not controllable by the individual. In the context of 
medical professional liability, the model elicits the picture that a few 
“bad apples” are responsible for most of the problems and has resulted 
in calls to revoke the licenses of these “bad apples” and thus reduce the 
number of claims. 

If this picture is true, an economic analysis of restricting the privilege 
of driving, either through license restrictions or through the provision of 
insurance only at high rates, would be useful. The best level of restric- 
tions would be determined by balancing the costs and the benefits of 
such a decision. The costs arise primarily from curtailing the freedom 
of some individuals to drive automobiles; they have a monetary com- 
ponent related to the difference in price between driving one’s own car 
and relying on alternate modes of transportation, and a nonmonetary 
component related to loss of freedom. The benefits arise from the reduced 
number of accidents, and these also have monetary and nonmonetary 
elements. For society as a whole, monetary benefit? arise from avoiding 
costs to rectify the consequences of accidents, while the nonmonetary 
component stems from the reduction in pain and suffering associated 
with the avoided mishaps. The calculation of the benefits depends very 
strongly on the exact hypothesis which motivates the compound Poisson 
model. To explore the extent to which this might affect our thoughts 
about policy, it is worthwhile to contrast the usual assumption, that the 
differences in accident experience are due to differences in inherent 
ability, with a specific alternate hypothesis. 

The key parameter in the Poisson distribution is not an “accident 
propensity” that measures inherent ability, but a weighted measure that 
recognizes both the ability to perform a dangerous task and how often 
the task is performed. The expected number of automobile accidents 
which one individual might have in a year may not be a fixed quantity; 
it might, for example, depend on the number of miles that the individual 

4 Distributional costs and benefits will also result. Individuals with low accident rates will not have 
to subsidize individuals in the same group that have higher accident rates. 
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chooses to drive under various sets of conditions. Similarly, the expected 
number of claims against an engineer might depend on the number of 
plants she designs, and the number of claims that a physician might 
expect could depend on the number of patients that are treated by that 
physician. Thus variation in the Poisson parameter among drivers does 
not require that the rate of accidents differs among individuals when the 
level of activity is identical. It could be explained equally well, from a 
statisical point of view, if all drivers had exactly the same accident 
proneness under every given set of driving conditions but they differed 
in the miles they drove under various conditions. 

This alternate hypothesis as to sources of variability suggests a dif- 
ferent interpretation of the compound Poisson process. In this picture, 
all drivers in a group have exactly the same probability of having an 
accident in each mile they drive; but, they differ from each other inher- 
ently in the mileage driven. To keep an exact correspondence to the 
previous model, it is important that the distance and nature of driving in 
this version be as immutable as the inherent accident probability in the 
previous one; these measures of exposure may change only in ways that 
are strictly coupled with the average for the group as a whole. 

Neither of these simple models is likely to be strictly valid. In all 
likelihood, drivers differ with respect to the probability that they will be 
involved in an accident under a given set of conditions. In all likelihood, 
they also differ with respect to the exposure level they chose. Thus a 
model that recognizes differences in both propensity and activity levels 
is likely to provide a better explanation of actual experience.5 

4. INTERPRETATION OF THE EXCESS VARIANCF 

When the number of accidents observed for each of many members 
of the group is analyzed, we expect to see a variance that is approximately 
equal to the mean if all members have the same probability of having 

’ The combined effect of individual propensity and exposure is patticularly important in economic 
contexts in which the driver has control of the exposure level. at least within broad limits. 
Unfortunately, this dual determination has seldom been considered. The literature on moral hazard, 
for example. appeals to a “level of care” which might be selected by the driver, but does not take 
into account the possible direct choice over the level of exposure by restricting or expanding the 
mileage driven. 
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an accident in a unit of time, and a variance greater than the mean if 
individual members differ in this respect. A positive difference between 
the variance and the mean, or “excess variance,” results from differences 
in the Poisson parameters of the members of the group. 

If we are observing individuals over a period of time T, the Poisson 
parameter for individual i will be: 

Mi = kipiir, (1) 

where ki is the number of opportunities for individual i to have an 
accident and 

pc is the individual’s probability of an accident on any given 
opportunity. 

Usually there is a measure of T, but there are no measures of ki or 
pi; so this model does not have an operational meaning.6 The model 
adopted in arguing that probability of an accident varies across individ- 
uals in the group is equivalent to arguing that ki is the same for all 
individuals. The alternate model discussed earlier assumes that ki varies 
across individuals but pi does not. Equation 1 provides a more general 
formulation and can be made operational if there are measures of the 
level of activity; for example, the number of miles driven per year for 
automobile accidents, the number of takeoffs for small aircraft accidents, 
or the number of specific surgical procedures for medical professional 
liability. Even in the absence of such measures, formulation is worth 
considering because it may yield some insight into the process. 

If the Poisson parameter, Mi, varies across individuals, it can be 
proved that the average number of accidents for individuals in a group 
is given by: 

Ei(N) = Ei(Mi) = TEi(kipi), (2) 

and 

Vari(N) - E;(N) = T’Van(kipi). (3) 

b In some contexts it would be possible to obtain information about the level of exposure, even 
though imperfect. In relation to automobile accidents, the mileage driven per year might serve as 
a measure of k,. 
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In these equations, E;(Z) denotes the expected value of Z and Var,(Z) 
denotes the variance of Z, both measured over the population in the 
group. 

If we denote the excess variance, Var;(N) - Ei(N), as X,(N), the 
variance of this statistic under the null hypothesis that the Poisson pa- 
rameter is identical for all members of the population is given by: 

Var,(X&V)) = f E?(kip,) = t E’(N) 

where I is the total number of individuals observed [ 141. 

(4) 

It is worth noting that if k, is the same for all individuals, the excess 
variance is proportional to the variance of p,, whereas if p, is the same 
for all individuals, then the excess variance is proportional to the variance 
of k,. If both ki and p; vary, then the excess variance will depend on the 
joint distribution of pi and ki. 

Assuming for now that a stable compound Poisson is the proper 
model, it is of interest to determine whether the data indicate that there 
is significant heterogeneity in a given group and to interpret the excess 
variance, if it can indeed be said to be positive. The equations given 
above can be used for this purpose. A test requires simply computing 
the observed excess variance and the variance of that quantity under the 
null hypothesis; this statistic can be estimated by using Equation 4. The 
sample estimate of the excess variance is the sample estimate of the 
variance minus the sample estimate of the mean. If the number of 
observations is large, both these sample estimates are asymptotically 
normal [ 11; it follows that the difference is asymptotically normal, so 
the ratio of its sample value to the standard deviation should, under the 
null hypothesis, be distributed as a standard normal deviate. When 
interest is centered on determining whether there is significant hetero- 
geneity among members of the group, the null hypothesis is that there 
is no heterogeneity; under those conditions, the distribution of claims 
would follow a simple Poisson distribution. Table 1 summarizes the data 
used in assessing the significance of the excess variance. Table 2 presents 
the main results. It is clear that the excess variance is positive and highly 
significant for all the groups under consideration, since the ratio of the 
estimate to its standard deviation is always greater than 15. 



State and 
Group 

CA 
Females 
CA 
Males 
CA 
All 
NC 
22-25 
NC 
26-39 
NC 
40-59 
NC 
60+ 
NC 
21 

TABLE 1 

NUMBER OF DRIVERS BY GROUP AND NUMBER OF ACCIDENTS 

Number of Accidents 

0 1 2 3 4 5 6 7+ Total 
___~------~ 

19,634 3.573 558 83 19 4 1 0 23,872 

21,800 6,589 1,476 335 69 16 4 4 30,293 

41,434 10,162 2,034 418 88 20 5 4 54,165 

276,08 1 69,811 16,770 4,060 967 236 74 26 121,221 

709,649 143,601 29,401 6.658 1,725 447 124 51 891,656 

762,592 138,955 23,580 4,492 1,054 254 74 33 931,044 

254,255 47,095 8,159 1,511 344 97 28 24 311,513 

144,803 25,302 4.007 637 105 1.5 5 1 174,875 
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State and 
GlWlp 

.~ 

CA 
Females 
CA 
Males 
CA 
All 
NC 
22-2s 
NC 
26-39 
NC 
40-59 
NC 
60+ 
NC 
21 

TABLE 2 

ANALYSIS 01; Exc.tss V,WIANC.I. my GROUP 

Number of Accidents 

Mean” Varianceh 

0.2111 0.2483 

0.3617 0.4435 

0.2953 0.3631 

0.3294 0.4322 

0.2609 0.3439 

0.221 I 0.2152 

0.2252 0.1822 

0.2167 0.2353 

Sample Excess Variance 

Value’ Std.Dcv ” Value/Std.Dev. 
_- 

0.0372 0.0014 27.22 

O.C)XlX 0.0042 19.68 

0.0678 0.0025 26.72 

0. 1028 0.001 I 94.66 

0.0830 0.0006 155.63 

0.0541 0.000.5 Il8.05 

0.0570 0.000x 70.63 

0. IX67 0.0010 180.14 

a. Mean of thr numb of accidents 
b. Variance of the numbrr of accident\ 
c. Variance minus mean of the number of accidents 
cl. Calculated 3~ Ihe square rool of the vx~~nct! piien tq t:qualr~w 4 

The statistical significance of the excess variance is of importance in 
examining private policy issues such as merit rating and freedom to 
underwrite. From this perspective, it is important to know whether the 
data suggest that the Poisson parameter differs among individual mem- 
bers of the group. The existence of variability among individuals suggests 
that differential pricing based on experience may be useful in achieving 
an equitable allocation of future costs. From the point of view of public 
policy issues such as restricting the ability of individuals to drive, how- 
ever, this information is not sufficient because the variability may be due 
to differences in the level of activity of individuals rather than to differ- 
ences in claim propensity. 
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While this distinction is not important in dealing with private mech- 
anisms such as classification by individual companies in a market with 
open competition, it is important in dealing with public mechanisms such 
as classifications mandated by the state or licensing restrictions. As 
discussed earlier, if the difference in Poisson parameters arises predom- 
inantly from differences in the level of activity, restrictions placed on 
the privilege of driving by individuals with large numbers of accidents 
will either restrict their mobility or force them to use alternate drivers 
who have comparable or higher propensities to have accidents for cor- 
responding exposures. Thus social benefits might not be experienced, 
but substantial social costs would be incurred. 

It is not possible to draw firm conclusions about the relative impor- 
tance of level of exposure and accident propensity from the available 
data. The information is sufficient, however, to permit drawing tentative 
conclusions.’ The line of inference begins by noting that the excess 
variance measures the variance of Poisson parameters, as is shown by 
Equation 3. The ratio of this quantity to the square of the Poisson 
parameter represents the coefficient of variation of the parameter. 

TABLE 3 

VARIATION OF POISSON PARAMETER BY GROUP 

State and Poisson 
Group Parameter” 

Excess 
Varianceh 

Coefficient of 
Variation’ 

CA Females 0.21 I I 
CA Males 0.3617 
CA All 0.2953 
NC 22-25 0.3294 
NC 26-39 0.2609 
NC 40-59 0.221 I 
NC 60+ 0.2252 
NC 21 0.2167 

0.0372 0.83 
0.0818 0.63 
0.0678 0.78 

0.1028 0.95 
0.0830 1.22 

0.0541 1.11 
0.0570 I.12 
0. I867 3.98 

a. From Table 2, column 2 
b. From Table 2. column 4 
C. Coefficient of variation of the Poisson parameter 

’ Another possibility that deserves consideration is that the classification system is inadequate 
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Table 3 shows the results for the various groups. In most cases, the 
coefficient of variation of the Poisson parameter among members of a 
group is very close to one. In the case of North Carolina drivers of 21 
years of age, it is almost four. 

The interpretation of this number must, unfortunately, rely on the 
context of the problem because firm data arc not available.X At one 
extreme, if the level of exposure is the same for all individuals, the 
coefficient of variation of the Poisson parameter would approximately 
equal that of accident proneness. At the other extreme, if the accident 
proneness were the same for all individuals, this number would equal 
the coefficient of variation in the exposure level. Any measure of the 
coefficient of variation of the cxposurc level will therefore serve to help 
to place the results in context. in the present case, exposure might be 
measured by mileage driven in a unit of time [X] and might well exhibit 
a large coefficient of variation. Rough estimates are discussed in Appen- 
dix B; they range from 0.3 to 0.9. 

The observed coefficients of variation of the Poisson parameter are 
generally higher than the corresponding estimates for mileage driven. 
However, even with the lower estimates for the latter, variation in mile- 
age driven wouId account for about 25 percent of the variance of Poisson 
parameters. Thus exposure may play a substantial role in determining 
the accident rates of individuals. Data relating accident experience and 
mileage driven by individuals in different time periods could provide 
better measures of the relative contribution of exposure: even accurate 
data on the distribution of mileage driven would be useful in assessing 
the relative effects of exposure and propensity on the Poisson parameter 
of individuals. 

5. A TEST FOR GENERAL. COMPOUND POISSON MODELS 

The discussion presented above indicates that caution must be exer- 
cised in using results from a simple static analysis to guide policy. The 
usual analyses do not pinpoint the reason for variation in Poisson param- 

x Even II’ data were available, it should be remembered that the model used here assumes that 
indiwduals select their exposure level without regard IO their accident proneness. This may be 
appropriate when individuals are insured but may be a poor assumption in the absence of insurance. 
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eters and these reasons may have a bearing on policy issues. For example, 
even people who would accept the hypothesis that the accident propensity 
of an individual, pi, does not change over time might question the 
hypothesis that the exposure level of the individual, k,, does not change. 
Yet the predictability of the Poisson parameter plays a key role in the 
ideology of classification and merit rating [7]. The relevance of statistical 
analysis to policy requires analysis of models that are realistic and address 
the key issues. This is more likely to happen if the public policy issues 
are examined and statistical tools are developed to analyze the key issues. 

One of the important issues in automobile liability is the measurement 
of the benefits to be derived from restricting the mobility of drivers with 
several claims.’ The costs that would be incurred by such restrictions 
would depend primarily on the number of people on whom restrictions 
would be placed, not on the model assumed. The benefits, however, 
may be estimated only in relation to a model. In this context, statistical 
methods can provide assistance only if they are designed to provide 
relevant information and if they are valid. A common feature of the two 
models discussed earlier is the assumption that the likelihood that an 
individual driver will have an accident is an inherent characteristic of 
the individual. Statistics are useful in establishing whether this is a valid 
conclusion. 

For the most part, compound Poisson models have been tested by 
assuming a specific form for the distribution of accident propensities, 
inferring a theoretical distribution to the number of accidents and per- 
forming a goodness of fit test to establish that the fit is adequate in a 
statistical sense. If they result in a good fit, these statistical procedures 
can, at best, establish that it is plausible that during a given time period, 
individuals in a group differ with respect to accident propensity and that 
the propensities can be characterized as having a distribution similar to 
the one assumed. The procedures do not test the assumption that the 
claim propensity of an individual is the same in two different time 

V The statement is valid whether the restriction occurs by exercise of the power of the state to limit 
the privilege of driving, or by exercise of economic power IO increase the cost faced by certain 
individuals in order to drive. The discussion will be limited to the former, since analysis of the 
latter requires knowledge of tradeoffs whose value cannot be estimated readily. 
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intervals. lo That assumption is important in most arguments related to 
either pricing of insurance or to restrictive public policy, since these 
arguments assume that past experience is a good predictor of future 
performance for an individual. 

The analysis presented above still retains the untested assumption 
that the Poisson parameter corresponding to “h I individual. AZ,, is constant 
over time. Direct tests of this assumption are not feasible since we cannot 
observe the same individual repeatedly during the same time interval. 
The literature does provide a method for determining whether this key 
assumption is correct. The method uses data from a single population 
studied in successive time periods. It was tirst suggested by Lundberg 
161, who showed that, for a general compound Poisson with the Poisson 
parameter of each individual being equal to an individual parameter 
times the average rate for all individuals in any given subinterval of 
time, the probability that an individual will have m claims in the sub- 
interval fZ, and n claims in subinterval fl, given that he had m + II claims 
in the interval l1 + ta, is given by: 

P*(m,fzln,f*) = ‘“,+,‘:‘! O;l( 1 - 0 1)” 

where @r = rltl/(rlrl + rzfz), 

rj is the average accident rate in period j, and 
t, is the duration of period;. 

The operational time intervals, ry, contain the average accident rates, 
r,, which are not known, along with the calendar time. r,. In order to 
provide a valid test, it is necessary to develop measures of the ratios of 
operational time intervals. Lundberg argues that the ratios may be esti- 
mated by the ratio of the number of accidents or claims in each subperiod 
to the total number of accidents or claims. Once the parameters are 
known, the conditional distributions for all relevant values of m + n can 
be computed and compared to the observed data by using a chi-squared 
test. Lundberg recommends grouping cells so that the expected number 
of claims is five or more. The degrees of freedom for each value of m + 

‘” A notable exception is the analysis of Weber Il6]. who used methods attributed to Greenwood 
and Yule [3] and Kerrich (41 for the case in which the compounding distribution ia the Gamma 
distribution. The method of Greenwood and Yule actually turns out to bc valid for general com- 
pounding distributions and is equivalent to the method used here. 
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/z is one less than the number of cells used in the test; the additivity of 
chi-squared may be used to construct an overall test by adding the 
contributions to chi-squared and adding the degrees of freedom. Lund- 
berg used this test with data on health insurance claims in Sweden and 
found the results did not reject the hypothesis of a compound Poisson 
distribution with stable parameters. 

It is worth noting that the method recommended by Lundberg for the 
estimation of the parameters relies on ratios of the average accident rates. 
It follows that, if the average accident rates change and the individual 
accident rates change proportionately, the test will not be affected.” 
Thus the test will be valid if the accident relativities are constant, even 
though the actual accident rates change. From this perspective, the null 
hypothesis could be characterized as the assertion that rate relativities 
are constant over time. 

To illustrate the procedure, the data for all drivers in California, 
given in Table A3 of Appendix A, will be used. The data there were 
7,967 accidents for the period 1969-71 and 8,030 accidents for the 
period 1972-I 974. The total number of accidents was 15,997. The best 
estimate of the needed parameter is 0, = 7,967/15,997 = 0.4980. 

This parameter is used in Equation 5 to estimate the expected fraction 
of drivers with m accidents in the first period and n accidents in the 
second period given a total number of m + n accidents in the whole 
period. These probabilities are multiplied by the observed number of 
drivers with m + n accidents in the whole period to obtain the expected 
value of the number of drivers with m accidents in the first period and 
n accidents in the second period. The observed and predicted numbers 
of drivers with one, two, three, and four accidents in the period 1969- 
1974 are shown in Table 4. Tables 5 to 11 provide analogous information 
for the other groups. Note that in Lundgren’s scheme, the data for 
individuals that had no accidents in either the first or second interval 
contribute only to the estimation of the frequency of accidents in the two 
periods, but do not contribute to the value of the test statistic. Accord- 
ingly the tables do not show this group. 

II Lundgren’s original application to data on health insurance claims actually involved substantially 
different claim rates in the first and second period. 
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TABLE 3 

OBSERVED AND PREDICTED DISTRIBL’TION ok FEMAI.F. DRIV~:RS 

IN CALIFORNIA, HY NUMBER OF ACCIDENTS 

Number of 
Accident:, 

in 1969-74 

Obwrved 
Predicted 

Ohhewed 
Predicted 

ObSUVd 
Predicted 

Observed 
Predicted 

0 I 

1,816 I.757 
I .838.S I .734.x 

164 266 
147 7 27x x 

16 24 
I I.? 37 0 

5,’ 
6.4” 

2 

12x 
I31 5 

33 
30.7 

x 
7. I 

IO 
Y.S 

6” 
5 sh 

Total (8 degrees of freedom) 

TABLE 5 

OBSERVEI) AND PREDICTED DISTRIBUTION OF MALE DRIVERS 

1~ CALIFORNIA, BY NUMBER OF AC.~II)ENTS 

Number of 
Accidents 

m 1969-74 

Number of Accident\ in 146%1971 

Observed 
Predicted 

Observed 
Predicted 

Observed 
Predicted 

Observed 
Predicted 

0 I 
- -- 

3.226 3.363 
3.269 S 3.314.5 

403 692 
363.4 738.0 

44 126 
JO 4 174 I 

7 IS 
4.2 17.0 

Total (9 degrees of freedom) 

2 3 4 5 
__ ~ - - 

3x1 
374.6 

124 31 
126.6 42.x 

26 2 I” 
2S.Y 22.0” 

Chl- 

0.3 

2.5 

4.2 

2.0 

9.0 

Chi- 
Squared 

1.2 

1.3 

0.4 

2.2 

Il.1 
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TABLE 6 

OBSERVED AND PREDICTED DISTRIBUTION OF ALL DRIVERS 

IN CALIFORNIA, BY NUMBER OF ACCIDENTS 

Number of 
Accidents 

in 1969-74 

I Observed 
Predicted 

2 Observed 

PredIcted 

3 Observed 

Predicted 

4 ObV3Wd 
Predicted 

Number of Accidents in 1969-1971 
Chi- 

0 I 2 3 4 s Squared 
- - - - - - - 

5,042 5,120 

5,101.0 S.06l.O I .4 

567 958 509 

512 s 1,014.o so4.s 9.2 

60 IS0 I57 51 

52.9 157.4 156.1 51.6 I3 

9 IK 34 23 4 

5.6 22.2 33.0 21 8 5.4 3.3 

IS.3 

TABLE 7 

OBSERVED AND PREDICTED DISTRIBUTION OF DRW~RS 
OF AGF 22-25 IN NORTH CAROLINA. BY NUMBER OF CI.AIMS 

Numkr of Accident‘ in lYh7-196X 

0 I 
-- 

31.615 
33.847 3 

4.619 
3.442 I 

648 
Jh? 7 

73 
s3 4 

14 
h.3 

3h. IYh 
35.943 0 

7.1N 
8.377 3 

1.310 
I.475 0 

23’) 
227 I 

4, 
40 3 

Y” 
7 I” 

7 

4.967 
4.450 6 

I .35x 
I Shl 2 

313 
362 I, 

54 
71 3 

IX 
Ih 3 

3 4 
- - 

71s 
5%. 1 

237 105 
256 4 60 I 

h3 36 
75 8 40.3 

17 I8 
23 I I8 3 

31 

3sx 8 

lh07 

15 Y 

28 
8.6 M, 1 

IP 
Y P 3.2 

h22 0 
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TABLE 8 

OBSERVED AND PR~LW I tlu DIS I RIRUTION OF DRIVERS 

OF AGE 26-39 IN NoRw CAROI INA, BY NUMBER 01’ Cr AIMS 

Oh\cr\ed 

PrlXhWXl 

Obwncd 

Predicted 

Obrervcd 

PredIcted 

Obacrved 

PrcdlcteJ 

Ohacrved 

Predicted 

Ob\crvcd 

PtcdicttZd 

‘Total t 19 degrees of frecdnm) 

.i Driver\ Gth whcr zcm or one accidents m lY67-h8 

“. Dn\er\ wtth either tl\,e ,,r \IX accident\ 11, IYh7-hX 

Number of 

Accidents 

tn 1967-70 

s Squared 
~ - 

23 

92 3 

44.x 

b4Y 

30 
Ih I 40 I 

)-lb’ 

I 5 4“ 0.5 

244 Y 

TABLE Y 

OBSERVED AND PREDICTED DISTRIBU I ION ot DRIVERS 

OF AGE 40-59 IN NORTH CAROI INA. BY NL~MB~ZR OF CI AIMS 

Ohbcrvcd 

Prcdxted 

Observed 

Predicted 

Observed 

Prcdlcted 

Oh\en~ed 

Predicted 

Observed 

Predicted 

Observed 

Predicted 

Chl 

0 I 

66.875 72.0x0 

67.156.4 71.79X.6 

5.9% I I .04x 

5,507.7 I I .77h X 

62Y I.540 

507.1 I .h?h 4 

76 ?hi 

57 s 245 9 

IO 35 

70 37 2 

I (I” 

7.0” 

2 

h.hOJ 

6.295 s 

I .hW 

I .73x.x 

ih5 

194.4 

x5 

79 h 

20 

Ih.? 

1 

h7Y 

hlY.7 

?hl 

281 I 

no 

x5 I 

IY 

23.0 

4 5 Squared 

27 

Y2.3 

44.x 

x7 

7s I 12.9 

43 II 

4s 5 97 2.4 

I.1 12” 

1x.s 9.3” 5.3 

Iho. 
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TABLE 10 

OBSERVED AND PREDICTED DISTRIBUTION OF DRIVERS 

OF AGE 60 OR MORE IN NORTH CAROLINA, BY NUMBER OF CLAIMS 

Number of 
Accidents Number of Accidents in 1967-1968 

in 1967-70 0 1 2 3 4 5 
- - - 

I Observed 23,367 23,728 
Predicted 23,2.52.8 23.842.2 

2 Observed 2.083 3,878 2,198 
Predicted 1.9X9.0 4.078.9 2.091.1 

3 Observed 205 529 549 228 
Predicted 181.9 559.4 573.6 196.1 

4 Observed 23 70 11.5 90 46 
Predicted 20.4 83.8 129.0 88.2 22.6 

5 Observed 14” 30 29 24h 
Predicted 17.4* 29.9 30.7 18.6h 

Total (13 degrees of freedom) 

a Drivers with tither zwo or one acc&vna in 1967-68 
b. Dnverb with either four or five accidents in 1967-68 

TABLE 11 

OBSERVED AND PREDICTED DISTRIBUTION OF DRIVERS 

OF AGE 21 IN NORTH CAROLINA, BY NUMBER OF CLAIMS 

Number of 
Accidents Number of Accidents in 1967-1968 

in 1967-70 0 

1 Observed 13.118 12,184 
Predicted 13,lBS.O 12.167.0 

2 Observed 
Predicted 

1,204 
1,079.‘) 

3 Observed 
Predicted 

113 
89. I 

4 Observed 13 
Predicted 7.6 

1,767 1,036 
2.000.6 926.6 

21s 232 77 
247.6 229.4 70.8 

23 33 26 IO 
28.3 39.3 24.2 5.6 

I 2 3 4 5 
-~-- 

Chi- 
Squared 

1.1 

17.6 

10.9 

17.6 

2.4 

49.6 

Chi- 
Squared 

0.1 

54.5 

II.3 

9.3 

Total (10 degrees of freedom) 75.2 
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The results indicate that the data from California do not reject the 
hypothesis that Poisson parameters for each individual bear the same 
relationship to the aggregate average level in the two periods under 
consideration. When the two sexes are combined, the k,alue of chi- 
squared is 15.3 with 10 degrees of freedom. a value that would occur 
by chance about ten percent of the time if the null hypothesis were valid. 
This finding is consistent with that of Weber [ 161, based on California 
data for a different and shorter period. These data do not provide strong 
evidence against the hypothesis that relativities are stable. 

The results from the North Carolina data, on the other hand, lead to 
the clear rejection of the null hypothesis. Given the degrees of freedom, 
the observed values of chi-squared in any one group would correspond 
to probabilities much lower than one in one thousand if the null hypoth- 
esis were true. It is worth noting that large contributions to chi-squared 
arise from relatively small values of I)? + 11. This indicates that the data 
leading to the rejection of the null hypothesis are not concentrated in the 
cells corresponding to individuals with a high aggregate accident pro- 
pensity or to cells with relatively small numbers of observations. 

In view of the results with the data from North Carolina, the fact 
that the California data do not reject the null hypothesis could be attrib- 
uted to the fact that different mechanisms arc operating in the two 
environments. However, the number of observations in California is 
much smaller than that in North Carolina. The total number of drivers 
observed in California is just over 54,000, compared to over 2.5 million 
in North Carolina. Thus, an altcrnatc explanation of the results is that 
the power of the test to reject the null hypothesis is so low that the 
California data cannot attain the conventional levels of confidence. Un- 
fortunately, there are no other formal tests of the hypothesk of interest. I2 

2 Thyrion [ 131, among others, has pointed out that there is an Interesting recuwve relation for the 
compound Poisson of arbitrary compounding di,trlhution Starlkal tests based on that relation 
have not been developed. 
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6. DISCUSSION 

The data analysis suggests that driver accident frequencies may be 
determined jointly by the driver’s ability to drive and the exposure that 
the driver experiences. This finding is important for both economic 
analysis and policy formulation. 

Economic analysis usually assumes that economic agents act ration- 
ally, in the sense that they select the options that provide them the 
greatest level of satisfaction. Analyses of insurance purchasing and the 
related issue of moral hazard have not, however, considered seriously 
the possibility that individuals may, in the absence of insurance, select 
the level of exposure with due regard to the individual’s accident pro- 
pensity and risk aversion. Given the possibility of such effects, the 
analysis of the insurance purchasing decision may be misleading unless 
one explicitly recognizes that the utility function depends on both con- 
sumption of goods and ability to travel. It may even be important to take 
into account the relationship between ability to travel and ability to 
generate income. 

This possibility also creates some interesting problems in the analysis 
of insurance classifications. Given that the individual selects exposure 
by considering both accident propensity and risk aversion, the net ex- 
perience of that individual, measured in terms of the expected number 
of accidents, will reflect a complex interaction of accident propensity 
and risk aversion. Moreover, this expected number of accidents is not 
likely to provide much information regarding what its corresponding 
value after insurance is likely to be, since the existence of insurance 
coverage may have large effects on the individual’s choice of exposure. 
Also, the experience of an individual under one classification scheme 
will serve to predict the experience of the same individual under a 
different classification scheme only to the extent that the new classifi- 
cation scheme will affect neither the individual’s propensity to have an 
accident, nor his selection of a level of exposure, nor his inclination to 
purchase coverage. In this respect, particular care should be exercised 
in drawing inferences about plans based on merit rating or bonus-malus 
systems from corresponding information gathered under classification 
plans that do not include experience rating. 
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From the perspective of public policy, the possible effect of varia- 
bility of exposure suggests that the Poisson parameter of individuals will 
not be constant from period to period, even if the accident proneness 
remains fixed. The possibility that individuals will change their exposure 
level implies that past experience may not be the best predictor of the 
future experience for an individual. While prediction of average group 
performance based on the past may be appropriate and necessary for 
proper functioning of insurance markets, public policy should reflect 
concern about distributional equity if the past is not a good predictor of 
the future for an individual. Variation of the Poisson parameter over time 
implies that the public policy arguments favoring merit rating may not 
be properly based on fact. If the individual’s accident propensity varies 
from period to period, a rate based on past exposure is not necessarily 
a good predictor of future experience for the individual. In fact, if 
propensity varies over time, the issue of whether merit rating is a better 
predictor of future performance than classification rating must be ex- 
amined empirically rather than assumed. 

Given the likely effect of exposure levels, it is perhaps not surprising 
that the data do not support the hypothesis that Poisson parameters are 
constant over time or bear a constant relationship to the group average. 
.4t present, the conclusion that the data reject the hypothesis is based 
largely on the data from North Carolina. The other body of data that is 
currently available, that of California, does not reject the hypothesis. 
The California data for both sexes combined is barely consistent with 
the hypothesis at the ten percent level. I’ It may well be that the hypothesis 
would be rejected by a larger sample of drivers from this state and 
period. Additional data with which to probe this question would be 
valuable, especially if the data base included estimates of the exposure 
level. 

” It may be worth noting that if we were to focus our attention on the group with two accidents in 
the total observation period, the California d&a would reject the hypothesis. The more comprehen- 
sive data do not reject the hypothesis. since the other group\ contribute more to the degrees of 
freedom than they contribute to the chi-square value 
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APPENDIX A 

SUMMARY OF THE CALIFORNIA DATA 

This appendix records the data from California relevant to this study. 
The data were derived from Table N, Appendix I, of a report prepared 
by the Department of Motor Vehicles of the State of California [5]. That 
table gives the distribution of licensed drivers in the California data base 
by number of accidents in each of the calendar years 1961-63 and 1969- 
74. The number of accidents in the period 1961-63 was ignored in the 
present analysis since interest was focused on the accidents in two 
subintervals of a common length, and because instability of accident 
rates over the intervening period 1963-1969 could be due to the long 
gap in information. The tabulations presented below were obtained by 
grouping all combinations of accident numbers that gave the same total 
for the years 1969-7 1, and those that gave the same totals for the years 
1972-74. 

TABLE Al 

NUMBER OF DRIVERS WITH M CLAIMS IN PERIOD 1969-71 
AND N CLAIMS IN THE PERIOD 1972-74 

CALIFORNIA. FEMALE DRIVERS 

1972-74 
Claims 

1969-7 I Claims 

m=O 

n=Q 19,634 
n= 1 1,816 
n=2 164 
n=3 16 
n=4 2 
n=5 I 

Total 21.633 

m= I m=2 m=3 m=4 m=5 
- - - - - 

1.757 128 IO I 0 
266 33 5 I 0 

24 8 I 0 0 
3 0 1 0 0 
0 0 0 0 0 
1 0 0 0 0 

2.051 170 16 2 0 

Total 

21,530 
2,121 

197 
20 

2 
2 

23,872 
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I Yl2-74 
ClailllS 

n = 0 
n= I 
n=I! 
n=3 
n=4 
n=S 

Total 

1972-74 
Claims 

n=O 
n= I 
n=2 
n=3 
n=4 
n=5 

TABLEA 

NUMBER OF DRIVERS WITH M CI.AIMS IN PERIOD 1969-71 
AND N CLAIMS IN I‘HE PERIOD 1972-74 

CALIFORNIA, MALE DRIVERS 

1Y6Y-7 1 Claims 

m = 0 

21.800 
3,226 

403 
44 

7 
0 

25.480 

Ill = I 

3,363 
692 
126 

IS 
2 
0 

4. IYX 

111 = 7 Ill = 3 111 = 4 

381 41 3 
I34 IX 5 
26 5 0 

3 2 0 
2 0 0 
I I 0 

537 67 8 

m=S 
-~ 

Total 

I 25.589 
0 4,065 
I 561 
0 64 
I 12 
0 2 

3 30,293 

TABLEA 

NUMBER OF DRIVERS WITH M CL.AIMS IN PERKHI 1969-71 
AND N CLAIMS IN .f~t PERISH 1972-74 

CALIFORNIA. ALI. DRIVERS 

1069-7 I Claim\ 

m=O m= I m=2 111 = 3 Ill = 3 m = 5 
__ ___ - - - _~ 

41,434 5,120 509 51 4 1 
5.042 958 I57 23 6 0 

567 I SO 34 6 0 I 
60 I8 4 3 0 0 

9 2 2 0 0 I 
I I I I 0 0 

Total 47.1 I3 6,249 707 83 IO 3 54,165 

Total 

47,119 
6,186 

75x 
84 
I4 
4 
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APPENDIX B 

ESTIMATES OF THE COEFFICIENT OF VARIATION OF EXPOSURE LEVEL 

A number of studies have used data on mileage driven per unit of 
time by individual drivers. Unfortunately, none of these studies presents 
the essential summary statistics, the mean and variance of the mileage. 
These summary statistics would be sufficient to estimate the coefficient 
of variation and provide a standard for comparison. Since data are not 
available for direct estimation, indirect methods of estimation are needed. 

The approach taken in this appendix is to assume that the distribution 
of mileage driven by members of a population is lognormally distributed. 
Given this assumption, information on fractiles of the distribution would 
be sufficient to permit an estimate of the coefficient of variation. Even 
this, however, is not available directly. 

A plausible way of inferring fractiles of the distribution is to assume 
that published statistics will relate to groups that are of reasonable size. 
The California Driver Record Rook for 1976 gives accidents per driver 
and per mile for drivers using their vehicles for specified annual mileages. 
The lowest category listed is from zero to 2,250 miles; the highest one 
is over 100,000 miles. We assume that 2,250 and 100,000 are corre- 
sponding fractiles on the left and right tails of the distribution. This 
assumption leads to an estimate of 15,000 for the median annual mileage 
driver by California drivers, an estimate that appears acceptable. By 
postulating which fractile corresponds to these numbers, we obtain es- 
timates of the mean annual mileage and the coefficient of variation in 
this quantity. The estimates are shown in Table B 1. Note that the largest 
and smallest assumed fractiles are not likely to be correct. The highest, 
one percent, leads to a coefficient of variation for the exposure level 
which is comparable to that of the aggregate accident rate; this would 
imply virtually no variability in the accident propensity per mile driven 
among individuals. The lowest, one per million, would not allow enough 
drivers in the extreme groups to provide reliable statistics. Between these 
extremes, the inferred coefficient of variation is fairly stable. Thus, in 
spite of the lack of direct data, it is plausible that the coefficient of 
variation in mileage driven is between one quarter and one half. 
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TABLE B1 

ESTIMATES 01: ‘I’H~: M~:,\N >XNI) COWFIUENT OF 
VARIATION OF ANNU~~\I. MII.I:,YG~ DRI~FN 

Inferred Value 01 

Assumed 
Fractile ~- Mean 

Coefficient 
of‘ Variation 

l/l00 2O.YOO 0.94 
111.000 I 8,100 0.46 
1/10,000 17.lOO 0.30 
11100,000 I6.600 0.22 
I / I ,ooo,ooo 16.300 0. I7 
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DISCUSSION OF PAPER PUBLISHED IN VOLUME LXXV 

MINIMUM BIAS .WITH GENERALIZED LINEAR MODELS 

ROBERT L. BROWN 

DISCUSSION BY GARY G. VENTER 

1. INTRODUCTION 

This paper is a welcome addition to CAS literature on cross-classi- 
fication ratemaking. This review considers it in the context of other 
recent work outside the PCAS. Despite the title of the paper, the con- 
nection with general linear models does not seem to be the primary 
emphasis of the paper, and some skepticism about this aspect is voiced 
below. 

In his paper, Robert Brown provides additional insight into minimum 
bias procedures as well as an introduction to generalized linear models. 
The cross-classification framework is that provided by Bailey [l]. For 
data with IZ rows and p columns, the cell in the ith row and jth column 
has nij exposure units, e.g., premium, which generate data, e.g., a loss 
ratio, of rij = Lolnij. This is modeled by n row parameters xi . . . xn 
and p column parameters yl . . . yp. 

Bailey models the ijth cell as an arithmetic function of xi and yj; for 
example, the multiplicative model uses the function f(xi,yj) = Xiyj to 
estimate future observations of rij. He then, in effect, applies the principle 
of balance; he requires that the row and column totals from the model 
balance to those from the data. In formulas, for each row i: 

E nijrij = X n;f(&,yj), 

i j 

and for each column j: 

7 Qirij = 7 nif(xi.Yj). 
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There are tz + p such equations, which are enough to solve for all the 
X’S and y’s, and as Bailey notes, the solutions can be obtained iteratively. 
In fact, usually the equations arc of the form 

X, = s,(J,, . . ,y,,) and y, = I2,(s,, ,x,,) 

By starting with reasonable initial values for the X’S and J’S, the g and 
11 functions can be used to iteratively refine these values until stability 
is achieved. This is called fixed point iteration, and its convergence 
properties can be found in numerical analysis texts. Thus an estimation 
method is specified by giving its system of equations. Brown follows 
this convention, as does this review. A detail not usually mentioned is 
that only n + p - 1 independent equations are specified in such systems. 
The result of this is that one of the n + p parameters can be set arbitrarily, 
e.g., to 1. In a multiplicative model, for example, multiplying the X’S 
by a factor and dividing the y’s by the same factor will not affect the 
cell estimates, so one less parameter is really needed. 

As will be discussed more fully below, at least four types of alter- 
natives to Bailey’s method have been devclopcd. mostly outside the CAS 
Proceedings or not recognized as relating to the minimum bias procedure. 
These are: (I) alternatives to the balance principle: (2) more general 
arithmetic functions; (3) using the arithmetic function as a base, but 
allowing individual cells to vary from that, based on their own data; and 
(4) estimating individual cells without postulating an arithmetic relation- 
ship between rows and columns. Brown’s paper addresses primarily the 
first area. This review points out some remaining difficulties, and briefly 
recaps how they have been approached in other studies, using the above 
alternatives. The connection with general linear models is also discussed. 

2. ALTERNATIVES TO BAL.ANCf: f’RfN(‘fP1.E 

Brown provides several alternatives to the principle of balance, al- 
though he does not give explicit reasons for abandoning it. One such 
reason may be that it assigns full credibility to each row and column in 
total, which may not be appropriate. A possible response, however, 
would be to credibility-adjust the row and column totals before applying 
the balance principle. Another response might be to tind models that 
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automatically quantify the likely deviations from the cell estimates. 
However, this could probably be done without discarding the balance 
principle. Perhaps the basic motivation for abandoning balance is that 
the principle, while appealing, is not self evident, and thus more fun- 
damental principles should be sought. 

In any case, the first alternative Brown presents is to model the 
numerator of rji, i.e., Lij, as a random draw from a distribution with 
mean @(x;,J!,). Given a distribution and an arithmetic function f, max- 
imum likelihood estimation can be used to solve for all the parameters 
from the observations. Several distributions are illustrated, and for each 
a system of n + p equations in it + p unknowns is derived. 

For instance, assuming a normal distribution with a multiplicative 
model, i.e., that the L;j are normally distributed with mean n,,LX;yj and 
variance u2, gives the following equation for each xi: 

.r;C n$ = 2 tZ$r,jyj, 

i i 
and similarly for each 4;. Interestingly, these equations do not involve 
the o2 parameter of the normal distribution. 

For the multiplicative model with a Poisson distribution assumption, 
Brown finds that the system of equations for Bailey’s balanced multipli- 
cative model is reproduced. This result was also shown by van Eeghen, 
Greup, and Nijssen [8]. While it shows that the Poisson distribution 
satisfies the principle of balance, it does not give much support for using 
a balanced model, in that the cell data is not usually Poisson distributed. 
In fact, this might be a reason for dropping the balance requirement, 
since most distributions will not reproduce it. Thus, the equivalence of 
the Poisson and Bailey models, rather than supporting their use, suggest 
that alternatives might be more appropriate. 

For the exponential distribution, the following simple equations are 
produced: 
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This reviewer has found that the same equations hold for the gamma 
model, which adds a parameter to the exponential. Like the a2 of the 
Normal distribution, this parameter does not enter the equations for the 
x’s and y’s. 

The most logical distribution for the multiplicative model would 
probably be the lognormal, because that results when the errors are also 
due to multiplicative effects. The estimating equations can be derived 
by using the additive normal model with the logs of the data. 

The normal distribution models Brown use5 are unusual in that each 
cell has the same variance a2 for L,,. It is hard to see how this could 
occur from cells with different exposures. For instance, if each exposure 
unit has the same variance TV, then the cell variance would be ni;r2 due 
to the additivity of independent exposures, that is, it would not be 
constant but would be proportional to n,,. Or, if there are additional gaps 
between the arithmetic function and the exposure unit means, which 
average to zero over all cells, i.e.. E(L,,) = .rix, + g,,. with E( fiJ . ..) = 0, 
then the variance of this gap, Var(g,i), would be added to n;;r to give 
the variance of Lo. Only if the variance of the gap, i.e., error from the 
arithmetic function assumption, were large compared to the risk variance 
ny? would the constant variance assumption be a reasonable approxi- 
mation. However, in this case the use of that arithmetic function would 
be questionable. 

It is not difficult to carry out the estimation assuming a variance of 
n,,d rather than a7 for L,,i. For instance, for the multiplicative model, 
the .r equations become: 

Xi 2 n;jJ!f = I: n;jri,?ii, 
J J 

which are in fact the equations Brown derived for the least squares 
multiplicative model. 

The latter is another alternative Brown presents, namely minimizing 
the weighted least squares difference between the data and the model. 
For instance, for the multiplicative model, minimize X,-n,J(r,J - SXi+J)2. 

This was also advocated by Sant [7], and, under the label “analysis 
of variance” approach, by Chamberlain [2] and others. The least squares 
approach has the advantage of not assuming a distributional form, al- 
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though it does still assume a particular arithmetic function of the param- 
eters xi and yj. If the different cell means themselves come from a highly 
skewed distribution, e.g., display very large percentage differences 
among the cells, then minimizing the sum of squared errors could allow 
significant percentage errors for the low mean cells. Thus least squares 
works reasonably well only for certain types of distributions. 

It is generally advisable when doing weighted least squares to use 
weights which are inversely proportional to the cell variances. The 
weights Brown uses are thus consistent with rij having variance inversely 
proportional to n;j, which seems appropriate. However, the constant 
variance model for Lij would lead to weights of ni, which, for the least 
squares model, would produce the system of equations Brown gave for 
the normal model. 

3. GENERALIZATIONS OF ARITHMETIC FUNCTIONS 

Although not mentioned in the paper, both of Brown’s alternatives, 
as well as Bailey’s original method, can be generalized to use other 
arithmetic functions of the row and column parameters. For example, 
the function x;yj + Zj has sometimes been used to good effect in class- 
by-territory ratemaking. This is a combination of additive and multipli- 
cative effects that uses n + 2p parameters. Maximum likelihood esti- 
mation with the constant variance normal distribution, for instance, 
provides a set of n + 21, equations which have the forms: 

x; x n&j = 2 &(r;j - Zj)y,, 

i i 

Zj C flz = 2 ns(rij - Xiyj). 

The squares on the exposures would be dropped under the assumption 
of the variance of LjJ proportional to ~?+r . The combined additive- 
multiplicative function is sometimes appropriate when the high rated 
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classes in the high rated territories. for example, get too much charge 
from a multiplicative mode1 and not enough from an additive one. Other 
arithmetic functions are possible, also, such as .r,‘$ ‘, etc., although the 
term “arithmetic” might be a misnomer for such functions. There is a 
wide variety of possibilities of this type which have been largely unex- 
plored. An important exception is Harrington [4]. who applies an additive 
model after applying the Box-Cox transformation to the data. This trans- 
formation is rt,j = (rQ -- 1)/c. This is really a common generalization of 
both the additive ((’ = 1) and multiplicative models, in that the limit of 
rl; as c goes to zero is ln(r,,). giving an additive log model. By searching 
for the best fitting c* parameter, improved fits can be produced. 

4. GI,IM DISCUSSION 

The GLIM section of Brown’s paper is somewhat difficult to follow, 
but he does recommend background material. Even so, it will not be 
clear to those without experience with linear models how GLIM as 
defined might apply to the cross-classification problem. The following 
example illustrates how this can be done for the multiplicative mode1 
with Normal constant variance errors. 

If L,, denotes the numerator II,,T,, of I-,,. and p,., its expected value, 
the Normal density can be put in the GLIM form: 

Since the GLIM definition uses variables .I- and y, let the row and column 
effects formerly denoted by .t and J now be denoted by \%’ and 2 instead. 
The observed vector Y to be modeled is the set of L,, all strung out in a 
single vector, i.e., if k = (i - 1)~ + j, then .vI = L,,. There are m = 
np of these VL’S. The coefticicnts p,, to be estimated will be interpreted 
as the ln(\tl,j’s and ln(z,)‘s listed as a single vector (z’s after all the W’S), 
followed by a constant term which should turn out to be 1. Thus, there 
are q = n + p + 1 of these p,,‘s. The explanatory vector, .u, for h < 
q is a list of m elements .Q/, that are all O’s except for I’s which occur 
when yk comes from either a row or a column corresponding to Ph. That 
is for k = (i - 1)p + .j, XX/, = 1 only for h = i and h = FI + j. The last 
vector .T<, , consists of the logs of all the exposures 11,~. 



GENERALIZED LINEAR MODELS 343 

With these definitions, let nk = C;I=ix&,. If we defined the x’s 
right, then /zk = ln(w;) + ln(zj) + ln(n,,j) = ln(bij) = ln(lQ. Therefore 
the link function g is the log function. From the form of the density 
function, it can be seen, in Brown’s notation, that the dispersion param- 
eter $ is (T’, a($) = $, and c@,+) = -.5[(v2/$) + ln(2n$)]. Also, 
0,. = l.~k, and b(8) = SO’. 

Thus, this GLIM model is just the original Normal model with 
constant variance, assuming that maximum likelihood is used to estimate 
the GLIM parameters. For some reason, the constant variance assumption 
seems to be inherent in the GLIM models, although it is not necessary 
when using regular maximum likelihood methods outside of GLIM. For 
this application, then, GLIM seems to require a fair amount of work to 
properly arrange the data, with benefits that are unclear. 

From the deviances shown in the paper for I2 models, as well as 
their apparent reliance on density functions, it would appear that devi- 
ances cannot be compared across distributions to determine the best 
fitting model. They probably can be compared to evaluate link functions 
for one distribution. 

5. ALTERNATIVES TO ARITHMETIC FUNCTIONS 

Another criticism of minimum bias methods has been the strict reli- 
ance on the arithmetic function. Just because data is organized in rows 
and columns does not imply that there is such an arithmetic relationship. 
For instance, if loggers have 20% more injuries than cab drivers nation- 
wide, can we expect this will hold true in New York? If office workers 
have a 90% lower work related accident frequency than workers in 
general, will this be the case in lower Manhattan? The multiplicative 
models assume such relationships will hold, and the additive models are 
based on similar assumptions. In some lines of insurance, it is felt that 
any arithmetic function of row and column averages can adequately 
model individual cell results. 

At least two methods have been developed in response to this criti- 
cism: allowing individual cells to vary from the arithmetic function, or 
estimating individual cells without using an arithmetic function, e.g., by 
credibility methods. 
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The first method was used in the 198 I Massachusetts auto rate 
hearings, where the calculated relativity was credibility weighted with 
the cell data r,j. Thus, cells with enough credibility could be based 
largely upon their own experience. As described in DuMouchel [3], the 
arithmetic function f was the combined additive-multiplicative function, 
and the credibility for cell ij was given by: 

ni, z;, = - 
flij + Kf 

Here Kj is the ratio of two variance components s:/t2, where .r,’ is the 
within-cell variance scalar over time, and 8 is the average variance of 
true cell means from their calculated relativities. More precisely, for 
time period t, rlj, has mean l.~;, and variance s:/Pz,,, and p+,, has mean 
f(x;,yl,zj) and variance t2. If there are c time periods in the data, ST is 
estimated by: 

$ = C fli,(rij, - riJ)‘ln(C - I). 
i, I 

DuMouchel gives a somewhat intricate method of estimating t2. A Biihl- 
mann-Straub type estimation would also be possible. For this, let 

Then it can be shown that 

E( Iv) = nc c s,’ + t2 c n,J,. 
i i,J. I 

This means that W is an unbiased estimator of the right hand side, and 
can thus be used to estimate t2. That is, 

t2 = W - nc x 3ff 
L 

+ 2 nor. 
J I i.j.r 

If the estimate is negative, it should be set to zero, which would give 
full credibility to the model and none to the cell data. In the Massachu- 
setts case, DuMouchel found that the combined additive-multiplicative 
model fit the data very well, so that the credibilities given individual cell 
data were low. 
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Other approaches to giving credibility to individual cell variation 
from the arithmetic function can be used. An example is found in 
Weisberg, Tomberlin, and Chatterjee [lo], who use similar model as- 
sumptions to those of DuMouchel, but just with pure additive or multi- 
plicative functionsf. They use a different, possibly more general, statis- 
ical method to estimate the credibilities. 

Another alternative is to incorporate so-called interaction effects, 
which are essentially additional parameters for specific cells. This was 
suggested by Chamberlain [2], who showed how to measure the signif- 
icance of such terms. Jee [6], who summarizes and tests many of the 
above methods, added all individual cell variables that improved the F 
statistic at a 15% significance level, and found that this improved the 
predictive accuracy of the additive, multiplicative, and Box-Cox models. 

The credibility only method, not using any arithmetic function, is 
illustrated by the national relativity approach often used in workers 
compensation, as described by Harwayne [5]. The indicated percentage 
change in non-serious pure premiums for the ith class in industry group 
1 in state j, for example, is calculated by a variant of the following. Let 
X; be the indicated change for class i countrywide, and let yj be the 
indicated change for industry group 1 in state j, with r;j the indicated 
change based on the cell data alone. If the expected number of claims 
for the 0th cell is at least 300, rij receives full credibility. Otherwise, 
the credibility it receives, z;j, is the ratio of expected claims to 300, 
raised to the two-thirds power. The credibility given to xi is calculated 
by essentially the same rule, but it is limited to (1 - zij) + 2. The 
balance of the credibility goes to yj. In formulas, the estimate for the ij 
cell is: 

i;j = Zijrij + Z&Xi + Zjyj, 

where zij and zi are calculated by the rule (expected claims/300)2’3, where 
the expected claims are for the class in the state or the class countrywide, 
as appropriate. Although the estimate uses the row and column averages, 
there is no mathematical relationship postulated between the cell and the 
totals for the row and column it is in. The x’s and y’s in the previous 
models were parameters to be estimated from the data, presumably with 
some estimation error, while here they are statistics calculated exactly. 



The credibilities above may work well in practice, but they could be 
criticized as being ad hoc. A least squares credibility type approach is 
given in Venter [9]. The estimate for the ,qth row and hth column for a 
future time period is a linear sum of the observations for all the cells 
available, i.e., 

where the Z’S are the weights in the linear function, and y is the constant 
term. These are found by minimizing the expected squared error E(F,h - 
rghO)‘, where rKlr(l is a future observation of the cell. Thus the credibility 
estimator is the linear function of all the cell data that minimizes the 
expected squared error between the estimate and a future observation. 
This is the standard least squares credibility, applied to the cross-clas- 
sification problem. As is often the case with credibility, it will probably 
work better with indicated changes than with pure premium itself. 

To express the resulting weights z,, more compactly, introduce the 
notation Stj = 1 if i = j and 6,, = 0 otherwise. The weights are derived 
as functions of four variance components: u2 is the variance between 
row means, v* is the variance between column means, W’ is the variance 
of a cell mean from row-column additivity, and .Y’ is the average relative 
variance of the cells from their means over time. Also, m is the overall 
rnean of all cells. More precisely, the assumption is: 

This holds for both additive and multiplicative models, and many others 
as well. The weights z are expressed in terms of ratios of the variance 
components. K, J, and L are the ratios of s2 to l?, r2, and HI*, respec- 
tively. Using a dot in a subscript to denote summation over that subscript, 
the weights are: 

q = m(1 - z..), and 

1 1 1 
L KJ 

, where - = - + L . 
Wij r1t.j 
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This requires the summed row and column weights z;. and z,j, which can 
be found from the system of n + p linear equations below, one for each 
row u and column b: 

Z.h [I + y] = f [Wg, - 7 WjbZf.1 + S)jh [y + y] 

As these equations are linear, they can be solved by matrix methods, 
although iteration may also work well. The resulting weights differ from 
credibilities in that they are not necessarily between zero and one, 
although they are derived in the same manner as credibility weights in 
the single dimension case. 

A method for estimating the required variance components is to 
compute the four sums of squared differences below: 

D1 = I: nijt(rijt - r;,)* , 
i..i.r 

02 = C nijr(r,y, - xi)* , 
i.j.t 

03 = 2 n;j,(rij, - yj)* , and 
i.j.t 

04 = 2 no,(r;j, - th)* . 
id, I 

Using their expected values below, these can be used to estimate s2, J, 
K, and L. 
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E(Dl) = hp(c - l), 

E(D2) = .? n(pc - 1) + 
1 ~ (n - c n;. - n, )-I , 

J+L 

Brown’s paper is a valuable addition to the Proceedings, particularly 
the least squares and maximum likelihood methods. Further empirical 
studies on how well all of the above models work would be a good area 
for future research. Both the goodness of fit and accuracy of prediction 
should be tested, and any distributional assumptions should be reviewed 
through an analysis of the residuals. 



GENERALIZED LINEAR MODELS 349 

REFERENCES 

[l] Bailey, R.A., “Insurance Rates with Minimum Bias,” PCAS L, 
1963. 

[2] Chamberlain, C., “Relativity Pricing through Analysis of Vari- 
ance,” 1980 Discussion Paper Program, Casualty Actuarial Society. 

[3] DuMouchel, W.H., “The Massachusetts Automobile Insurance 
Classification Scheme,” The Statistician, 32, 1983. 

[4] Harrington, S.E., “Estimation and Testing for Functional Form in 
Pure Premium Regression Models,” ASTIN Bulletin, Vol. 16S, 
1986. 

[5] Harwayne, F., “Use of National Experience Indications in Workers’ 
Compensation ,” PCAS LXIV, 1977. 

[6] Jee, B., “A Comparative Analysis of Alternative Pure Premium 
Models in the Automobile Risk Classification System,” Journal of 
Risk and Insurance, Vol. LVI:3, 1989. 

[7] Sant, D.T., “Estimating Expected Losses in Auto Insurance,” Jour- 
nal of Risk and Insurance, Vol. XLVII: I, 1980. 

[8] van Eeghen, J., Greup, E.K., and Nijssen, J.A., “Rate Making,” 
Surveys of Actuarial Studies, Vol. 2, 1983, National-Nederlanden 
N.V., Rotterdam. 

[9] Venter, G.G., “Structured Credibility in Application-Hierarchical, 
Multi-dimensional and Multivariate Models,” ARCW2, 1985. 

[lo] Weisberg, H.I., Tomberlin, T. J., and Chatterjee, S., “Predicting 
Insurance Losses under Cross-Classification: A Comparison of Al- 
ternative Approaches,” Journal of Business and Economic Statis- 
tics, Vol. 2, 1984. 



ADDRESS TO NEW MEMBERS-NOVEMBER 12, 1990 

FREDERICK W. KILBOURNE 

Good morning, and congratulations to you new Fellows and Asso- 
ciates of the Casualty Actuarial Society. My job over the next five 
minutes or so is to imprint the wisdom of the ages on you; your job is 
to become inspired to contribute even more to mankind and the actuarial 
profession over the decades remaining to you. 

After accepting this assignment, I wondered why my remarks are to 
be directed exclusively at new members. I learned that actuaries are like 
coins: those without the requisite number of exams are unformed, and 
are too soft for any imprint to take hold and stay; those minted more 
than a few months ago, on the other hand, have become so hardened 
and sullied that nothing leaves any impression on them. Only those of 
you who are freshly struck are suitable candidates for inspirational im- 
printing. My remarks are for you alone. 

There’s a great deal of inspirational wisdom out there-xven beyond 
that which you’ve gleaned from the Syllabus and the exams-but our 
time is short. I considered offering you nine commandments, or warning 
you about the six deadly sins. I decided instead to focus on the three 
R’s-and the big F. If each of you will conduct your actuarial practice 
keeping in mind the three R’s-and the big F-the world will be a better 
place. And you’ll get more out of your work. 

While I don’t mean to discourage you from reading, ‘riting, and 
‘rithmetic, these are not the three R’s I have in mind today. To distinguish 
my three R’s, I shall sometimes refer to them as Be-R’s. I worried briefly 
whether you’d be able to absorb wisdom simply by memorizing a con- 
fusing and arbitrary list, but I soon realized you are experts in such 
matters. 

First, be reliable. If you agree to do a job, do it. If you agree to 
complete it by Friday, plan to complete it on Tuesday, so you can actually 
finish it on Wednesday, and deliver it on Thursday. Use the same 
approach on your budget. If you think or suspect that you can’t do the 
job right, on time, within budget--don‘t accept it. or try to have it 
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changed. If unanticipated major problems arise along the way, let the 
person relying on you know immediately, so that together you can take 
corrective or defensive action. If your work product is important, unre- 
liability will have serious repercussions. If it isn’t important, get a new 
job. 

Second, be rigorous. While our profession does need more and better 
communicators and people who can see the forest, as we remind our- 
selves frequently, we must never forget that, in our heart of hearts, we 
are essentially tree-people. Among the questions to be asked when un- 
dertaking an assignment are: what exactly is your actuarial problem of 
the hour, what specific question do you need answered, and what pre- 
cision actuarial tools are available to you in doing the work? 

Actuaries have an important advantage due to the fact that we focus 
on the tree-and often on the branch or the leaf-relative to sometimes 
competing professionals, such as the forester economist, or the blue-sky 
futurist. Focus ensures that someone cares enough about our work to 
pay us. And focus is the key to rigor. The fact that the actuarial territory 
is the future-and thus that our conclusions necessarily are subject to 
uncertainty-makes it especially important that we know exactly what it 
is we’re trying to estimate, that our logic and thinking be rigorous rather 
than fuzzy or wishful or conservative, and that we brainstorm freely, but 
avoid tangents like the plague. Which reminds me to share with you Joe 
Brownlee’s speech at the Annual Meeting of the Academy regarding the 
three kinds of actuaries: those who can count, and those who can’t. 
Finally, we must express our actuarial conclusions, and the uncertainty 
that lurks beneath them, with precision. You might say to your employer 
or client: “My best estimate of the actuarial number you seek is exactly 
$15 million-or exactly $13 million under scenario A and $18 million 
under scenario B-but never that it is $15.376 million, and never that 
it is in the range of $10 to $20 million,” unless you’re willing to 
personally insure against the result coming in at $21 million. You might 
go on to say, “the uncertainty underlying my exact best estimate, by the 
way, may be precisely defined as ‘uncertain’-but the CAS is working 
on the problem, and we’ll keep you posted.” 
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Third, be righr. Actually, this is redundant. The best way to be right 
rnore often than the next fellow is to be more rigorous. While you’re at 
it, follow up on your actuarial projections. and keep a running score for 
yourself. I wish I’d done that over the years, and recommend it to those 
with the time to see their IBNR’s convcrtcd into paids. But, back to 
being right, and living up to my promise to have a confusing and arbitrary 
list, what I really mean to say is (k., thr right thing. You know what that 
covers: don’t use your actuarial skills on projects that are contrary to the 
public interest. By the same token, don’t fail to speak out when actuarial 
principles are trashed, whether or not you are asked for your opinion. 
The Federal Budget comes to mind, and you can undoubtedly think of 
other examples closer to home (such as Proposition 103). Contribute to 
the development of standards for your profession, and then follow them. 
Tell the truth. Treat other people fairly. Few, if any of you, don’t know 
right from wrong, or don’t care. 

We may not always agree on the particulars, but if each of us does 
the right thing as we see it, we all will advance together. This is important 
for all professions-well, almost all-but it is critical for the actuarial 
profession, which is totally dependent on public trust. Jim Anderson 
recently spoke of our need to maintain our integrity and objectivity. If 
we had an oath, as was proposed some years ago, those terms would 
certainly be in it. Thank God we don’t have an oath, and thank God we 
have a sufficient supply of integrity and objectivity to go around as we 
do the right thing in our actuarial work. 

BIG F IS FOR FREEDOM. Freedom is our most important posses- 
sion, the most undervalued, and the hardest to regain once it is lost. 
Whatever strength our economy may have is due to freedom. Our medical 
and technological advances would have been retreats without freedom. 
The joyful act without freedom is sorrow, except for those few who 
prefer bondage. When freedom goes, the actuary will follow, for both 
require a strong and open market in risk to survive. 

So I close with a plea for you to use your talent and your actuarial 
skills to defend and promote freedom-while at the same time being 
reliable and rigorous, and doing the right thing. If you think I may have 
overdone this freedom thing, ask someone from eastern Europegr 
China--or ask an enrolled actuary. 
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PRESIDENTIAL ADDRESS-NOVEMBER 12, 1990 

THE SEVEN DEADLY SINS 

MICHAELFUSCO 

Like all presidents before me, I struggled trying to decide what to 
say. I turned to past presidents and their addresses for guidance, and I 
heard a lot about the traditions of our Society. While many former 
presidents provided input and some even lamented that they would like 
to revise their remarks, none offered to actually help me write mine. To 
future presidents in the room, please remember that I will also be a 
traditionalist soon. 

I am and have been all year a strong advocate of the hyphenated 
actuary concept. I call myself an actuary-casualty and think of all of you 
in the same way. We know that we are part of the broader actuarial 
profession, but we tend to focus on the casualty specialty of that profes- 
sion. While that focus may be appropriate at most times, I am fearful 
that, by thinking of ourselves in such a narrow way, we may be losing 
sight of the rest of the world. 

We do not live in a monastery, but rather in a world cluttered with 
regulation, financial ramifications and social issues. Yet perhaps we 
should remember the concept articulated by Cassian in the fifth century 
and embellished by St. Thomas Aquinas in their advices to monastery 
monks. Seven deadly sins were enumerated as the chief obstacles to 
perfection. These deadly sins can be distinguished not so much by their 
gravity, but by their power to generate even more misdeeds. As actuaries- 
casualty in the Casualty Actuarial Society, we have been striving for the 
last 76 years for perfection. Let’s examine how we relate to these seven 
deadly sins. 
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DEADLY SIN #I--PRIDE 

It is best defined as “inordinate self-esteem.” Although we are guilty 
of this sin, we rationalize that it is a virtue as well and is justified. We 
are proud of our profession and pleased that it was ranked number one 
by an outside objective source. We take pride in our work and well we 
should because it is filled with creativity. We are pleased with our 
Society’s growth, its uniqueness, and its independence. I personally 
swelled with pride as I travelled this year from the Seattle Space Needle, 
to the Alamo in San Antonio, to the Inn at Sturbridge Village, visiting 
our regional affiliates and seeing so many students eager to learn and 
enter this profession, so many competent actuaries seeking to further 
their education, and so many potential leaders for our Society. My crystal 
ball clearly displays only a bright future for the CAS. 

But we must not be so blinded by our pride that we diminish the 
value of other specialty groups of actuaries or of other professions; that 
we erect artificial barriers of entry to our own specialty group; or that 
we overlook the incompetence of some actuaries. We are spending 
resources wisely to establish standards of practice. When these standards 
are violated-and unfortunately that is inevitable-we must take the 
necessary disciplinary actions, as distasteful as those actions may be, If 
we fail to, we will have little to be proud of as a professional society. 

DEADLY SIN #2<OVETOUSNESS 

This is best described as “an inordinate desire for wealth or posses- 
sions.” While I cannot name too many spendthrifts in our group, I cannot 
label us as sinners in this regard. We despise the evil associated with 
waste and therefore attempt to establish insurance rating systems that are 
efficient and accurate, but we are not greedy. The excess profits laws in 
several states make certain of that. 

Our main wealth is in our knowledge, and we readily share that with 
others. Our Society membership is open to all who wish to study for 
exams, our literature is freely available, and our seminars are open to 
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nonmembers, although we do levy a modest surcharge. No, if misers 
are what we are, then counting would be our main pleasure, and that 
we know is the domain of another profession, while analysis is reserved 
for actuaries. 

DEADLY SIN #3-LUST 

If I were brave, I would use the definition that is fairly common- 
manly necessity-but I fear that that would disturb the female Fellows 
(one of my favorite oxymorons) in our Society. Instead, I will define it 
as “unlawful passion” and again, without taking a straw poll, I will say 
that we fail as sinners here. What we have done instead, through an 
extraordinary act of will, has been to transform this “unlawful passion” 
that is innate to all of us, into “lawful passion” and then display our lust 
openly. 

We lust for our work-not only to stay busy but to succeed at it. We 
yearn for the right answer or for the best answer possible, given the 
limitations of data and tools. Look around the room and guess at how 
often the person seated next to you has stayed up until 3 in the morning 
working on a personal computer to solve a problem that appeared un- 
solvable. Oh, if only we used these lustful energies and hours differently, 
our profession too could have been the subject of a prime time TV series. 

DEADLY SIN #~-ANGER 

I define it as rage or desire for vengeance or, if anger can be righteous, 
then maybe justice. But guess what? We fail miserably as sinners here 
again. Perhaps we have become very good at controlling our anger, as 
we’ve often had to when testifying as expert witnesses and being abused 
on cross examination. But we don’t display anger even when we should. 
I’ll use IBNR as my example. 

For years we have accepted “qualified loss reserve specialist” (QLRS) 
as the description of one who can be allowed to determine IBNR reserves, 
when we knew that “actuary” should be in that definition. Even with the 
change this year to the term “qualified actuary” (QA), we accepted add- 



ens to that definition to make it not too difficult for others to intrude 
into our professional specialty. We know that only with the proper basic 
education, continuing education, and experience can one accurately de- 
termine the reserves needed to pay ultimate liabilities. And yet, we allow 
others to practice this purest form of casualty actuarial science without 
a license. Other professions would not stand for this, and we should not 
either. 1 am not recommending that you throw things, as I have been 
known to do on occasion, but make it clear that you’re mad as hell and 
not going to stand for it anymore! 

DEADLY SIN #S*I.UT,~~NY 

“Overindulgence to the point of absurdity.” The word “too” is very 
important here-whether too much or too eagerly or too expensively or 
with too much ado. Notwithstanding our performance last night at the 
cocktail reception, I cannot classify us as sinners here either. 

We use terms like range of reasonableness and margins for error to 
prevent us from going to extremes. And while we very much want our 
Society to grow, we are content to do so from within and not to canni- 
balize other societies. We must retain respect for other specialty groups 
or actuaries, yet maintain our distance from them, and should insist on 
similar treatment. To misquote from a famous Shakespearean character, 
our motto should be “neither an acquirer. nor an acquirce be!” 

But we should seek to expand our horizons in the next decade, 
without being gluttonous. The CAS name is not well known intemation- 
ally and it should be. We must improve our visibility overseas in the 
1990s. 

DEADLY SIN #~-ENVY 

It’s easily defined as jealousy-petty or otherwise. Let’s not kid 
ourselves-we have all experienced it. The first time probably was as a 
student when we failed an actuarial exam while watching someone else 
in our study group pass. And in our careers, I’ll bet there have been a 
few occasions when we’ve vied for a particular position or for a particular 
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client and finished second best. But we’ve managed to overcome those 
disappointments and continue to work together successfully on CAS 
committees-a tribute to true professionals. 

No, we have not let envy overwhelm us-if we had, we would never 
be creators, only imitators. But, we must learn to deal better with others 
who envy us. We are well thought of by the insurance industry that we 
serve and by other actuarial specialty groups and other professionals. 
We are very much in demand. And why not? What other profession, 
other than fortune tellers, does as well as we do in predicting the future? 

DEADLY SIN #T--SLOTH 

This is “disinclination to action or labor” and is not characteristic of 
us at all. Instead of indolence, we exhibit hyper-activity. We try to stay 
too busy, not only in our work, but in our professional society respon- 
sibilities as well; and yet we never hide behind that simple fact. In truth, 
our slogan is: “When you want something done, give it to a busy Fellow 
(or Associate).” 

The point is, our Society runs because you make it run. It is only 
through our volunteer efforts that anything gets done. My advice to the 
new Fellows and new Associates in the room is to get involved and stay 
involved. The meritocracy works-keep it going! 

That completes the 7 deadly sins. If the sins are deadly to us as 
individuals, they are no less deadly to our Society. But I hope I have 
convinced you that, while not perfect, we can hardly be classified as 
“sinners.” 

This quest for perfection began 76 years ago. Some say the CAS’s 
basic mission has not changed much. Thomas Jefferson recognized the 
necessity for institutions to change many years ago in a letter to a friend: 
“ . . . institutions must go hand in hand with the progress of the human 
mind. As that becomes more developed, more enlightened, as new 
discoveries are made, new truths discovered and manners and opinions 
change, with the change of circumstances, institutions must advance also 
to keep pace with the times.” 
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I maintain that the CAS has kept pace with the times. Our three 
primary functions-giving exams, sponsoring meetings, and stimulating 
research-remain, but through the years, we have strived for more, 
better, and different. 

There are more exams today than before-even without partition- 
ing-because the subject matter to be mastered is greater. The Syllabus 
is different because society needs actuaries to know different things. 
And the exams are more rigorous-ask anyone who has taken one 
recently. We have improved in this area and will continue to do so. 

Our meetings are more plentiful-seminars are given on many new 
topics and regional affiliates are providing additional forums. We didn’t 
need an Environmental Issues seminar in the early days of the CAS, but 
we need one now. And the meetings are much more professionally run 
with the advances in technology that have been made. I predict a video- 
conference meeting soon. 

Research remains the area of high visibility. Computer technology 
should make our modeling processes better, and our call papers are on 
new and different subjects. The Global Issues Discussion Paper Program 
for next Spring could not have been issued by our founding fathers. And 
your Board of Directors has recently approved a major funding expen- 
diture for 1991 to stimulate even more research, so good things are in 
store for us. 

In researching our Proceedings, I noticed that a former President in 
his Presidential Address some 20 years ago, predicted that a merger of 
the various actuarial societies into one society was inevitable. That did 
not occur and it will not occur. Whether we keep our name as the 
Casualty Actuarial Society or change it one day to the Society of Actu- 
aries-casualty, we will retain our uniqueness and our independence. 

But preserving our independence requires cohesion among ourselves. 
On this point, I offer to all of us the following words from Benjamin 
Franklin: “We must all hang together, or assuredly we shall all hang 
separately.” 
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And now, please let me close by thanking a few individuals. 

Thanks to my family for accepting the demands on my time this past 
year. 

Thanks to my employer, ISO, for also accepting the demands on my 
time this year. 

Thanks to the 1990 Executive Council, not only for their hard work, 
but also for their patience and guidance. They are symbolic of not just 
the Executive Council, but also the Board, the Committee Chairmen, 
and so many of you who served on committees or task forces. 

Thanks to Kathy Spicer, not only as a representative of the CAS 
office, but also for being my tangible legacy to the CAS. I hired her as 
CAS Meeting Planner 3 years ago; and she has made our meetings much 
more professional and, as a result, has made my hiring decision look 
very good. 

And thanks to Denise De Angelis for being my partner in all this not 
just this year, but for the past 14 years. She knows only too well that I 
could not have done it without her. 

And lastly, thanks to all of you-the CAS membership-for giving 
me the privilege and the pleasure to serve as President of the Society I 
love. 
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MINUTES OF THE 1990 ANNUAL MEETING 

NOVEMBER 1 l-14. I990 

LE MERIDIEN. NEW ORLEANS. LOIJISIANA 

Surzduv, November II, 1990 

The Board of Directors held their regular quarterly meeting from 
1:00 p.m. to 4:00 p.m. 

Registration was held from 4:00 p.m. to 6:30 p.m. 

From 5:30 p.m. to 6:30 p.m., there was a special presentation to 
new Associates and their guests. This session included an introduction 
to standards of professional conduct and the CAS committee structure. 

A general reception for all members and guests was held from 6:30 
p.m. to 7:30 p.m. 

Monduy, November 12, 1990 

Registration continued from 7:00 a.m. to 8:00 a.m 

President Michael Fusco opened the meeting at 8:00 a.m. The first 
order of business was to introduce Robert Congcr to give the Secretary’s 
and Treasurer’s report. Robert Conger also announced the results of 
elections of ofticers and directors. 

The members of the 1991 Executive Council will be Vice President- 
Administration, Robert F. Conger; Vice President-Admissions, Steven 
G. Lehmann; Vice President-Continuing Education, Irene K. Bass; Vice 
President-Programs and Communications, Albert J. Beer; and Vice Pres- 
ident-Research and Development, Alan M. Kaufman. President-Elect 
will be Michael L. Toothman. New Board members will be Robert A. 
Anker, Linda L. Bell, W. James MacGinnitie, James N. Stanard, and 
David J. Oakden. 

Michael Toothman introduced 5.5 new Associates for 1990. Mr. 
Bryan introduced 54 new Fellows for 1990. The names of these individ- 
uals follow: 
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Kenneth Apfel 
Lawrence J. Artes 
Robert K. Bender 
Stephen W. Book 
Christopher S. Carlson 
Lynn R. Carroll 
Michael J. Caulfield 
Danielle Charest 
Walter P. Cieslak 
Carol Desbiens 
Timothy B. Duffy 
Denis Dumulon 
Richard L. Fox 
Jacque B. Frank 
Richard N. Gibson 
Bonnie S. Gill 
Steven A. Glicksman 
David C. Harrison 

Richard R. Anderson 
Guy A. Avagliano 
Katharine Barnes 
David Bechtel 
Jeffrey R. Cole 
Francois Dagneau 
Edgar W. Davenport 
Kendra M. Felisky- 

Watson 
David N. Fields 
David A. Foley 
Jacque B. Frank 
Deborah A. 

Greenwood 
Dawson T. Grubbs 
George M. Hansen 

FELLOWS 

David R. Heyman 
Anthony D. Hill 
Alan M. Hines 
John M. Hurley 
Steven J. Johnston 
Edward M. Jovinelly 
Mary Jean King 
Charles D. Kline, Jr. 
Kenneth R. Krissinger 
John R. Kryczka 
Kay E. Kufera 
Paul E. Lacko 
David A. LaLonde 
Jon W. Michelson 
H. Elizabeth Mitchell 
Karl G. Moller, Jr. 
Chris E. Nelson 
Jonathan Norton 

ASSOCIATES 

Diane K. Hausserman 
Gordon K. Hay 
Thomas G. Hess 
Peter H. James 
Tony J. Kellner 
Bryan J. Kincaid 
France LeBlanc 
Eric F. Lemieux 
Stephen J. McGee 
Dennis T. McNeese 
M. Sean McPadden 
Christopher J. McShea 
Robert L. Miller 
Charles B. Mitzel 
Todd B. Munson 
John Nissenbaum 

Kai-Jaung Pei 
Isabelle Perigny 
Steven J. Peterson 
Kevin B. Robbins 
Richard D. Robinson 
Randy J. Roth 
Jeffrey C. Salton 
Richard D. Schug 
Mark E. Schultze 
Mark J. Silverman 
Lisa A. Slotznick 
David Spiegler 
Lawrence J. Steinert 
Edward C. Stone 
Christopher M. Suchar 
Ernest I. Wilson 
Martha A. Winslow 
Heather E. Yow 

Laura A. Olszewski 
Naomi S. Ondrich 
Margaret O’Brien 
Teresa K. Paffenback 
Susan R. Pino 
Richard W. Prescott 
Alfred Raws III 
James E. Rech 
Diane R. Rohn 
John M. Ruane, Jr. 
Timothy J. Rundle 
Gary E. Shook 
Christy L. Simon 
Patricia E. Smolen 
Tom A. Smolen 
Elizabeth L. Sogge 
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ASSOCIATES 

Thomas N. Stanford Susan M. Treskolasky Beth M. Wolfe 
Elissa M. Sturm Scott D. Vandermyde Kathy A. Wolter 
Jeffrey L. Subeck Marjorie C. Weinstein Nancy E. Yost 

Fred Kilboume was introduced next and gave an address to the new 
members. 

Al Beer gave a summary of the program and Irene Bass summarized 
the Proceedings papers being presented. She called for reviews of pre- 
vious papers from the floor. There were none. The following awards 
were presented: 

Woodwood-Fondiller Prize: Amy S. Bouska 

Dorweiler Prize: Glenn G. Meyers 

The featured speaker, Heiko H. Thieme, spoke from 9:00 a.m. to 
IO:00 a.m. A general session panel was held from lo:30 a.m. to 12:00 
p.m. Ernest G. Jacob, CFA, Vice President, Barclays deZoete Wedd, 
moderated a panel on the “Capital Management of Property/Casualty 
Insurance Companies.” The panel consisted of Ronald E. Compton, 
President, Aetna Life & Casualty; Joseph W. Brown, Jr., President, 
Fireman’s Fund Insurance Companies; and Ronald L. Bomhuetter, Pres- 
ident and Chief Executive Officer, NAC Re Corporation. 

This panel was followed by a luncheon with the Presidential Address 
by Michael Fusco. Lunch was from 12:30 p.m. to 1:45 p.m. 

The afternoon was devoted to concurrent sessions which consisted 
of various panels and papers. 

The panel presentations covered the following topics: 

I. Catastrophe Pricing and Trends 

Punelists: David H. Hays, Senior Assistant Actuary 
State Farm Fire and Casualty Company 

William M. Gray, Professor 
Department of Atmospheric Science 
Colorado State University 

Stuart B. Mathewson, Vice President 
E. W. Blanch Company 
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2. The Anti-Trust Mine Field 

Presenter: Roger Moak, Senior Vice President and General Counsel 
Insurance Services Office 

3. No-Fault Automobile Insurance 

Moderutor: John B. Conners, Senior Vice President and Manager 
Liberty Mutual Insurance Company 

Panelists: Gregory L. Hayward, Actuary 
State Farm Mutual Automobile Insurance Company 

Joseph A. Herbers, Consulting Actuary 
Tillinghast/Towers Pert-in 

Donald Segraves, Executive Director 
Insurance Research Council 

4. Workers Compensation Issues 

Moderator: Richard L. Johe, Executive Consultant 
Coopers & Lybrand 

Panelists: Ronald C. Retterath, Senior Vice President and Actuary 
National Council on Compensation Insurance 

Richard A. Hoffman, Vice President 
Midwest Employers Casualty Company 

John P. Tierney, Consulting Actuary 
TillinghasVTowers Pert-in 

5. Increased Limits Issues 

Moderator: Glenn R. Meyers, Assistant Vice President and Actuary 
Insurance Services Office 

Panelists: Robert J. Finger, Principal 
William M. Mercer, Inc. 

Oakley E. Van Slyke, Director 
Coopers & Lybrand 

Isaac Mashitz, Vice President and Actuary 
North American Reinsurance Corporation 
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6. Questions and Answers with the CAS Board of Directors 

Moderator: Albert J. Beer, Senior Vice President 
Skandia America Group 

Panelists: Lee R. Steeneck, Vice President 
General Reinsurance Corporation 

Jerome A. Scheibl, Vice President-Industry Affairs 
Wausau Insurance Companies 

Charles A. Bryan, Partner 
Ernst & Young 

Janet L. Fagan, Vice President and Senior .4ctuary 
CIGNA Property & Casualty Group 

The new Proceedings papers were: 

1. “On the Representation of Loss and Indemnity Distributions” 

Author: Yoong-Sin Lee 
National University of Singapore 

2. “Risk Load for Insurers” 

Author: Sholom Feldblum 
Liberty Mutual Insurance Company 

3. “The Distribution of Automobile Accidents-Are Relativities Stable 
Over Time’?” 

Author: Emelio C. Venezian 
Rutgers University 

The officers held a reception for new Fellows and their guests from 
S:30 p.m. to 6:30 p.m. 

There was a general reception for all members from 6:30 p.m. to 
7:30 p.m. 
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Tuesday, November 13, 1990 

Following breakfast, there were concurrent sessions. The panel pre- 
sentations, in addition to some of the subjects covered on Monday, 
covered the topic of: 

1. Risk Margins for Discounted Loss Reserves 

Panelists: Michael A. McMurray, Consulting Actuary 
Milliman & Robertson, Inc. 
Committee on Reserves 

Stephen W. Philbrick, Consulting Actuary 
Tillinghast/Towers Perrin 
Committee on Theory of Risk 

The new Proceedings papers were: 

1. “Discounted Return-Measuring Profitability and Setting Targets” 

Author: Russ Bingham 
Hartford Insurance Company 

2. “An Example of Credibility and Shifting Risk Parameters” 

Author: Howard C. Mahler 
Workers’ Compensation Rating and 
Inspection Bureau of Massachusetts 

From lo:30 a.m. to 12:OO p.m. a general session was held. The 
subject was actuarial standards and professional guidelines. This panel 
consisted of: 

Moderator: Mavis A. Walters, Executive Vice President 
Insurance Services Office 
President-American Academy of Actuaries 

Panelists: Harry D. Garber, Vice Chairman 
Equitable Life Assurance Society 
Chairperson-Joint Task Force on Professionalism 
President-Elect-American Academy of Actuaries 
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Michael A. Walters, Consulting Actuary 
TillinghastiTowers Perrin 
Chairperson-Casualty Practice Council 

Walter N. Miller, Vice President and Actuary 
Prudential Insurance Company 
Chairperson-Actuarial Standards Board 

Michael J. Miller, Consulting Actuary 
TillinghastiTowers Perrin 
Chairperson-Casualty Committees of the 
Actuarial Standards Board 

The afternoon was free. 

Dinner was held from 6:00 p.m. to 8:30 p.m. on the Cajun Queen 
Riverboat. 

Wednesday, Nollember 14, 1990 

There were concurrent sessions from 890 a.m. to IO:00 a.m. 

The panel presentation, in addition to some of the subjects presented 
Monday and Tuesday, included: 

1. Closing the Actuarial Communications Gap 

Presenter: C. A. Miller Associates. Inc. 

2. Expert Systems 

Panelists: Joseph J. DeSalvo, Director 
Insurance Industry Decision Support Group 
Coopers & Lybrand 

Eric Marcus, Managing Associate 
Coopers & Lybrand 

The new Proceedings papers included: 

1. “Reinsurer Risk Loads from Marginal Surplus Requirements” 

Author: Rodney E. Kreps 
Sullivan Payne Company 
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2. A Discussion of “Minimum Bias with Generalized Linear Models” 
Paper by Robert L. Brown, PCAS LXXV 

Author: Gary G. Venter 
Workers’ Compensation Reinsurance Bureau 

3. “Pricing the Impact of Adjustable Features and Loss Sharing Provi- 
sions of Reinsurance Treaties” 

Authors: Robert A. Bear 
North Star Reinsurance Corporation 

Kenneth J. Nemlick 
North Star Reinsurance Corporation 

Following a break, a general session was held on contemporary auto 
insurance cost containment opportunities. 

Moderator: Steven F. Goldberg, Senior Vice President 
and Chief Actuary USAA 

Panelists: Brian O’Neill, President 
Insurance Institute for Highway Safety 

Honorable Leo W. Fraser, Jr., Representative 
State of New Hampshire House of Representatives 
Chairperson-Committee on Commerce, Small Business 
and Consumers Affairs 

Paul Hasse, Consultant 
McKinsey and Company 

After the transfer of the Presidency, Charles Bryan gave the closing 
remarks. 

November 1990 Attendees 

In attendance, as indicated by the registration records, were 287 
Fellows, 120 Associates, and 37 guests, subscribers, and students. The 
list of their names follows. 
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Addie, B. 
Aldin, N. 
Almagro, M., Jr. 
Amundson, R. 
Angell, C. 
Anker, R. 
Apfel, K. 
Artes, L. 
Asch, N. 
Atkinson, R. 
Bailey, V. 
Bashline, D. 
Bass, I. 
Bassman, B. 
Bear, R. 
Beer, A. 
Ben-Zvi, P. 
Bender, R. 
Berens, R. 
Berquist , J. 
Biondi, R. 
Blakinger, J. 
Blanchard, R. 
Blivess, M. 
Book, S. 
Bomhuetter, R. 
Bowen, D. 
Braithwaite, P. 
Brannigan, J. 
Brooks, D. 
Brown, J., Jr. 
Bryan, C. 
Bujaucius, G. 
Cardoso, R. 
Carlson, C. 
Carponter, J. 
Carroll, L. 
Cascio, M. 
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FELLOWS 

Caulfield, M. 
Charest, D. 
Chuck, A. 
Cieslak, W. 
Conger, R. 
Connell, E. 
Conners, J. 
Conway, A. 
Crawshaw, M. 
Curry, A. 
Dahlquist, R. 
De Falco, T. 
Degemess, J . 
Dembiec , L. 
Desbiens, C. 
Di Donato, A. 
Diamantoukos, C. 
Dodd, G. 
Dolan, M. 
Donaldson, J. 
Domfeld, J. 
Drennan, J. 
Drummond-Hay. E. 
Duda, D. 
Duffy, B. 
Duffy, T. 
Dumulon, D. 
Eagelfeld, H. 
Easlon, K. 
Edie, G. 
Egnasko, G. 
Egnasko, V. 
Ericson, J. 
Evans, G. 
Fagan, J. 
Fallquist, R. 
Feldblum, S. 

Finger, R. 
Fisher, R. 
Fisher, W. 
Fitzgerald, B. 
Fitzgibbon, W. 
Fleming. K. 
Flynn, D. 
Forbus, B. 
Fox. R. 
Frank, J. 
Friedberg, B . 
Frohlich, K. 
Fusco, M. 
Gannon, A. 
Gardner, R. 
Gebhard, J . 
Ghezzi, T. 
Giambo, R. 
Gibson. R. 
Gill, B. 
Gilles, J. 
Gillespie, J. 
Glicksman, S. 
Goldberg, S. 
Goldfarb, I. 
Gottlieb, 1,. 
Grace, G . 
Grady, D. 
Graves. G. 
Greco, R. 
Grippa, A. 
Gunn, C. 
Hachemeister. C. 
Haefner, L,. 
Hallstrom, R. 
Harrison, D. 
Hartman, D. 
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Haskell, G. 
Hayne, R. 
Hays, D. 
Hayward, G. 
Herbert, B. 
Herbert, N. 
Hermes, T. 
Heyman, D. 
Hill, A. 
Hines, A. 
Hough, P. 
Hurley, J. 
h-van, R. 
Jaeger, R. 
Johe, R. 
Johnson, A. 
Johnson, E. 
Johnson, W. 
Johnston, S. 
Jordan, J. 
Josephson, G. 
Jovinelly, E. 
Kasner, K. 
Keatinge, C. 
Kelley, R. 
Kilboume, F. 
King, M. 
Kleinman, J. 
Kline, C. 
Kollar, J. 
Koupf, G. 
Kozik, T. 
Krause, G. 
Kreps, R. 
Krissinger, K. 
Kryczka, J. 
Kucera, J. 

FELLOWS 

Kudera, A. 
Kufera, K. 
Lacko, P. 
Lacroix, M. 
Lalonde, D. 
Lamb, D. 
Lange, D. 
Lattanzio, F. 
Lee, R. 
Lee, Y. 
Lehman, M. 
Lehmann, S. 
Levin, J. 
Linden, 0. 
Lino, R. 
Lipton, B. 
Lockwood, J. 
Lotkowski, E. 
Loucks, W. 
Lyons, D. 
Mac Ginnitie, J. 
Mahler, H. 
Mashitz, I. 
Mathewson, S. 
MC Clenahan, C. 
MC Clenahan, D. 
MC Dermott, S. 
MC Murray, M. 
MC Padden, M. S. 
Meyer, R. 
Meyers, G. 
Michelson, J. 
Miller, M.F. 
Miller, M. 
Miller, P. 
Miller, R. 
Miller, S. 

Mitchell, E. 
Mohl, F. 
Morell, R. 
Moylan, T. 
Mueller, N. 
Mulder, E. 
Muleski, R. 
Muller, R. 
Murphy, F., Jr. 
Murphy, W. 
Murrin, T. 
Myers, N. 
Nelson, C. 
Nemlick, K. 
Nester, K. 
Ng, K. 
Niswander, R. 
Norton, J. 
Noyce, J. 
O’Connell, P. 
Overgaard, W. 
Patrik, G. 
Pei, K. 
Perigny, I. 
Petersen, B. 
Peterson, S. 
Philbrick, S. 
Phillips, G. 
Pinto, E. 
Potts, c. 
Pratt, J. 
Pruiksma, G. 
Purple, J. 
Quintano, R. 
Raman, R. 
Rapoport, A. 
Reale, P. 
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Reichle, K. 
Retterath, R. 
Robbins, K. 
Robertson, J. 
Robinson, R. 
Roland, W. P. 
Rosenberg, S, 
Ross, G. 
Ruegg, M. 
Ryan, K. 
Salton, J. 
Scheibl, J. 
Schneider, H. 
Schug, R. 
Schultze, M. 
Schwartzman, J. 
Shoop, E. 
Silverman, M. 
Simon, L. 
Skumick, D. 
Slotznick, L. 
Smith, R. 

Allen, D. 
Anderson, R.C. 
Anderson, R.R. 
Avagliano G. 
Barnes, K. 
Bauer, B. 
Cadorine, A. 
Caron, L. 
Cellars, R. 
Chorpita, F. 
Christhilf, D. 
Clark, D. 
Coca, M. 

FELLOWS 

Snader, R. 
Spiegler. D. 
Steeneck, L. 
Steer, G. 
Steinen, P. 
Steiner-t, L. 
Stone, E. 
Suchar. C. 
Surrago, J. 
Svendsgaard, C. 
Tatge, R. 
Taylor, C. 
Terrill, K. 
Thompson, K. 
Tiemey. J. 
Toothman, M 
Treitel, N. 
Van Ark, W. 
Van Slyke, 0. 
Venter, G. 
Volponi, J. 

ASSOCIATES 

Cole, J. 
Connor. V. 
Cutler, J. 
Dagneau, F. 
Danielson, G. 
Dashoff. T. 
Davenport, E. 
Diss, G. 
Felisky-Watson, K 
Fields, D. 
Fisher, N. 
Fletcher, J. 
Foley, D. 

Votta, J. 
Wacker, G. 
Wainscott, R. 
Wallace, T. 
Walters, Mavis 
Walters, Michael 
Webb, B. 
Webb, N. 
Webster, P. 
Whitlock, R. 
Wickwire, J. 
Wildman, P. 
Wilson. E. 
Wilson, R 
Winslow. M. 
Woll, R. 
Woods, P. 
Yingling, M. 
Yonkunas. J. 
Yow, H. 
Yow, J. 

Gelinne, D. 
Goldberg, S. 
Greenhill, E. 
Greenwood, D. 
Gutman, E. 
Gwynn, H. 
Hansen, G. 
Harbage, R. 
Hausserman. D. 
Hay, G. 
Hay, R. 
Herbers, J. 
Hess, T. 
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ASSOCIATES 
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Hess, T.G. 
Higgins, J. 
Hofmann, R. 
James, P. 
Jensen, J. 
Johnston, D. 
Jones, B. 
Kellner, T. 
Kincaid, B. 
Kolk, S. 
Kolojay, T. 
La Berge, C. 
Lacek, M. 
Leblanc, F. 
Lemieux, E. 
Lepage, P. 
Letoumeau, R. 
Licht, P. 
Limper-t, J. 
Llewellyn, B. 
Mahon, M. 
Malik, S. 
Marles, B. 
Marlowe, B. 
MC Creesh, J. 
MC Gee, S. 
MC Govern. E. 

Arnold, D. 
Behan, D. 
Berry, B. 
Bingham, R. 
Burnett, L. 
Colver, C. 
Compton, R. 
Cullinan, T. 

MC Neese, D. 
MC Shea, C. 
Miller, R. 
Mitzel, C. 
Miyao, S. 
Moody, A. 
Mozeika, J. 
Munson, T. 
Nelson, J. 
Nissenbaum, J 
O’Brien, M. 
Olszewski, L. 
Ondrich, N. 
Ottone, J. 
Paffenback, T. 
Pagliaccio, J. 
Pino, S. 
Prescott, R. 
Pubis, R. S. 
Raman, S. 
Raws, A. 
Rech, J. 
Reed, D. 
Riff, M. 
Rohn, D. 
Ruane, J. 
Salton, M. 

Sandler, R. 
Santomenno, S. 
Sarosi, J. 
Schmitt, K. 
Schoenberger, S. 
Schwandt, J. 
Simon, C. 
Smith, B. 
Smolen, P. 
Smolen, T. 
Snow, D. 
Sogge, E. 
Stanford, T. 
Stenmark, J. 
Strommen, D. 
Sturm, E. 
Thome, J. 
Tingley, N. 
Torgrimson, D. 
Treskolasky, S. 
Vandermyde , S . 
Weinstein, M. 
White, L. 
Williams, B. 
Wolfe, B. 
Woher, K. 
Yen, C.Y 

GUESTS-SUBSCRIBERS-STUDENTS 

D’Aho, L. 
De Angelis, D. 
Desalvo, J. 
Folkesson, J. 
Fraser, L. 
Garber, H. 
Gibbs, S. 
Gray, B. 

Hasse, P. 
Jacob, E. 
Kaufman, D. 
Marcus, E. 
Miller, C. 
Miller, W. 
Moak, R. 
Murphy, J. 
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GUESTS-SUBSCRIBERS-STUDENTS 

O’Neill, B. 
Radhakrishnan, R. 
Reott, J. 
Rice, V. 
Schneider, C. 

Segraves, D. Thieme, H. 
Spangler, J. Van Leer. P. 
Spicer, K. Venezian. E. 
Stenson, T. Winn, J. 
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REPORT OF THE VICE PRESIDENT-ADMINISTRATION 

The objective of this report is to provide the membership with a brief 
summary of CAS activities since the last annual meeting. 

As stated in Article II of our Constitution, the purposes of the 
Casualty Actuarial Society are to: 

* advance the body of knowledge of actuarial science in applications 
other than life insurance, 

* establish and maintain standards of qualification for membership, 
* promote and maintain high standards of conduct and competence 

for the members, and 
. increase the awareness of actuarial science. 

There has been significant activity in all of these areas during the 
past twelve months. 

Particularly noteworthy are the number and quality of continuing 
education opportunities that the CAS has made available to its mem- 
bers-and the enthusiasm with which our members partake of these 
activities. These opportunities clearly fulfill the purpose of promoting 
and maintaining high standards of competence for our members. Meet- 
ings and seminars have included: 

* the Spring meeting in Colorado Springs, attended by 466 members 
and 233 non-members; 

* the Annual meeting in New Orleans, with advance registrations of 
408 members and 213 non-members; 

* the Casualty Loss Reserve Seminar in Dallas-Fort Worth, of which 
the CAS is a co-sponsor, attended by nearly 700; 

* the Canadian Property and Casualty Insurance Liability Seminar in 
Toronto, 122 attendees; 

* the Ratemaking Seminar, which attracted 621 registrants; 
* the Specialty Lines Seminar, attended by 75; 
* the Environmental Issues Seminar, which was attended by 111; and 
. the cosponsored ASTIN Colloquium, which was held in New York 

in November, 1989. 



With the Environmental Issues Seminar. the CAS initiated a process 
of producing and selling audio tapes of selected meetings and seminars, 
so that non-attendees may benefit from these educational opportunities. 

Our nine Regional Affiliates and two Special Interest Sections con- 
tinued to prosper, and also provided rich educational opportunities during 
this past year. Most of the Regional Affiliates held two meetings during 
the year, attracting Fellows, Associates and students from their local 
areas. Our newest Special Interest Section, Casualty Actuaries in Rein- 
surance, conducted a seminar on reinsurance issues which attracted 190 
attendees from all over the country. Two more Regional Affiliates are 
in the formative process. A specific goal established by the Long Range 
Planning Committee has been to nurture the Regional Affiliates, and the 
leaders of all the Regional Affiliates will be meeting with the CAS 
Executive Council in New Orleans during the Annual Meeting to discuss 
ways in which the CAS and the Regional Affiliates can work together, 
among other topics. 

Another category of continuing education resources to which the 
CAS can point with pride is our publications. Most noteworthy among 
our publications during this past year is the CAS textbook, entitled 
Found&ions of Casuulty Actunrial Science. The initial print run of 2,000 
copies was virtually sold out by the time it was received from the printer, 
and the second print run is selling steadily. The textbook represents an 
important addition to the CAS literature, and an important addition to 
the libraries of students and practitioners alike. Other CAS publications 
important to the continuing education of our members are the Proceed- 
ings, the Actuarial Review, the Forum, and the Discussion Paper Pro- 
gram. 

Clearly, as members of the actuarial profession attempt to fulfill the 
continuing education requirements of the American Academy of Actu- 
aries, CAS members have no shortage of opportunities to partake of 
continuing education. Indeed, based on the high level of participation, 
attendance and interest at our various meetings and seminars, it seems 
likely that most of our members already meet the requirements. 
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The Education and Examination process of the CAS supports two of 
the CAS purposes: to establish and maintain standards of qualification 
for membership, and to promote high standards of conduct and compe- 
tence for members. 

In addition to the annual review and update of examination reading 
requirements (which now also include several readings from the new 
CAS textbook), a significant Syllabus change was implemented during 
1990. Operations Research, formerly Part 3b and jointly sponsored by 
the CAS and Society of Actuaries, was removed from the CAS Syllabus 
(but not from the Society of Actuaries Syllabus). In its place, the CAS 
incorporated as Part 3B, Introduction to Property and Casualty Insurance. 
This exam part covers property and casualty coverages, operations, and 
an introduction to ratemaking and reserving. Formerly, a student did not 
encounter these topics until Part 5. With the movement of these intro- 
ductory topics out of Part 5, a new subject, Finance, was added to Part 
5. As has been the practice when Syllabus changes are introduced, 
transition rules are provided for students that are in the midst of the 
examination track. 

Another important change introduced in 1990, but not yet imple- 
mented, is the addition of a Course on Professionalism to the require- 
ments for becoming an Associate. This course will focus on conduct, 
ethics, and business practice-not on technical actuarial issues. As cur- 
rently planned, the one-day seminar-format course will be offered in 
various locations to students who have completed five or more exams. 
Implementation is scheduled for 1991, and the new requirement will 
apply to students who complete their Associateship examinations after 
May, 1991. 

These Syllabus changes are the result of recommendations contained 
in a landmark White Paper on the educational content of the Syllabus. 

An exam-related matter of considerable interest to our students is the 
question of whether to partition the examinations into smaller units. 
Much input has been collected and much study and discussion conducted 
over the past twelve months, and the Board of Directors took action at 
its November, 1990 meeting. Specifically: (1) Part 4 will be partitioned 
beginning in May, 1992, and will be offered in both May and November 
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thereafter; (2) Part 5 will be partitioned beginning in November, 1993, 
and will be offered in both May and November thereafter; (3) the current 
Part 5 transition program will be extended through 1992, and students 
having credit for half of Part 5 will not lose that credit at the end of the 
transition; (4) Parts 6 and 7 will not be partitioned; and (5) a decision 
on Parts 8-10 has been deferred at least three years. 

New papers published in the Proceedings, the Discussion Paper book, 
and the Forum represent very important efforts “to advance the body of 
knowledge of actuarial science in applications other than life insurance.” 
During this past year, six papers were accepted for publication in the 
1990 Proceedings; and the May, 1990 Discussion Paper Program, enti- 
tled “Pricing,” attracted 23 papers. 

Another anticipated source of research and papers is a new class of 
participation in the CAS that was introduced this year: the Academic 
Correspondent Program. This program is for non-members who are 
involved in teaching actuarial science, mathematics, business, or related 
courses, and who have an interest in the CAS. Academic Correspondents 
receive the publications of the CAS. are invited to attend meetings, and 
may submit Proceedings papers. 

Historically, the work of our committees also has been an important 
source of research, which generally has been conducted on a volunteer 
basis by the members of the committees. The Board of Directors, at its 
September meeting, took steps to extend the leverage of the committee 
efforts by creating a program that will allow the committees to solicit 
and manage funded research, rather than having to rely solely on the 
volunteer efforts of the committee members. One piece of funded work, 
entitled “The Profit Provision in the Ratemaking Formula.” is nearly 
complete, and we can look forward to more work products in the coming 
years. 

Of course, committees play a vital role not just in research efforts, 
but in all facets of the CAS. Currently, the CAS has approximately two 
dozen active committees, staffed by over 350 of our members. Beginning 
with the staffing of the 1990 committees, the CAS instituted a new 
Participation Survey to identify members who are interested in serving 
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on the various committees. At the same time, committee staffing pro- 
cedures were changed to invite CAS Associates to participate on com- 
mittees (other than Board Committees and Admissions Committees). 

Continuing a valued tradition, the Committee Chairs met as a group 
with the Executive Council in April, 1990, to exchange ideas and to 
provide input to the Executive Council. 

Efforts to “increase the awareness of actuarial science” were brought 
to a focus this year when, following an audit of the CAS public relations 
needs, the Board of Directors formally established public relations ob- 
jectives: 

* to increase recognition of the casualty actuarial profession at the 
university student level; 

. to increase the stature of the CAS as an organization, particularly 
internationally; 

. to provide adequate communications to the membership, including 
exam-taking students, on all CAS activities; and 

* to increase the awareness of the value added by casualty actuaries 
in insurance-related fields. 

The Executive Council will be establishing several goals for 1991 that 
are intended to achieve these objectives. 

Two external events created publicity for the CAS this year. First, 
the continuing debate surrounding California Proposition 103 kept rate 
regulation and casualty actuaries in the public eye. Second, the National 
Association of Insurance Commissioners approved a change in the 1990 
Annual Statement that requires an actuarial statement of opinion on 
property/casualty loss and loss adjustment expense reserves by a “qual- 
ified actuary”; the first definition of “qualified actuary” is “a member in 
good standing of the Casualty Actuarial Society.” 

Our relationships with foreign actuarial bodies continue to develop. 
The past year was marked by the cosponsorship of the ASTIN Collo- 
quium, mentioned previously, and by the establishment of an Intema- 
tional Relations Policy by the Board of Directors. 



We have actively nurtured our relationships with the other North 
American actuarial organizations as well. The Executive Council held a 
joint meeting with the Society of Actuaries Executive Council last De- 
cember. More recently, the Board of Directors authorized the signing of 
a “Working Agreement” with the other actuarial organizations. This 
working agreement defines various areas of responsibility for each or- 
ganization and areas for cooperation among the organizations. 

The Board of Directors, with prime responsibility for setting policy, 
met four times in 1990. New members elected to the Board for next 
year include Robert Anker, Linda Bell, James MacGinnitie. James Stan- 
at-d, and David Oakden. The membership elected Michael Toothman to 
the position of President-Elect, and Charles Bryan will be President for 
the 1990-1991 year. 

The Executive Council, with primary responsibility for day-to-day 
operations, met several times during the year. The Board of Directors 
elected the following Vice Presidents for the coming year: 

Vice President-Administration Robert Conger 
Vice President-Admissions Steven Lehmann 
Vice President-Continuing Education Irene Bass 
Vice President-Programs and Albert Beer 

Communications 
Vice President-Research and Allan Kaufrnan 

Development 

In summary, the CAS continues to grow and thrive. During 1990, 
141 new members joined our ranks, and 70 new Fellows were named. 
The CAS remains financially healthy as well. A budget of approximately 
$1.2 million for the 1990-1991 year was approved by the Board of 
Directors. Dues for next year will be $190, an increase of $15; exami- 
nation fees for Parts Four through Ten will be increased $10 to $120. 
The fee for the Academic Correspondent program was reduced to $75. 
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Finally, the Audit Committee examined the CAS books for fiscal 
year 1990 and found the accounts to be properly stated. The year ended 
with an increase in surplus of $107,989.86. Members’ equity now stands 
at $576,137.46, subdivided as follows: 

Michelbacher Fund $ 76,654.lO 
Dorweiler Fund 7,531.38 
CAS Trust 2,772.12 
Scholarship Fund 7543.86 
CLRS Fund 5,ooo.oo 
CAS Surplus 476,636.OO 

TOTAL MEMBERS’ EQUITY $576,137.46 

Respectfully submitted, 

ROBERT F. CONGER 
Vice President-Administration 
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FINANCIAL REPORT 
FISCAL YEAR ENDED 9’30/90 

OPERATING RESULTS BY FUNCTION 

FUNCTION INCOME DISBURSEMENTS NET RESULTS 
____ 

Exams s 39821371 1.31: 476 52, iI $ 86727’9 
Member Serwces (h) 41054200 168301 14 1157 759 14, 
Progratrs 164 847 52 82 759 32 1,” I 82 OK3 20 
Other (d) 96 923 61 0 00 96 923 61 

__- 
TOTAL $1 070 526 84 i-562 iv! ‘58 $107 98’3 86 ,P/ 

Notes (a, Does not Include examreIa!ed expenses incurred by lr,e deveqxnenf fLncK,n 
(h) Areas under Ihe supews~on of VP Adrnrl$stratior S VP Development 
(c) Does not Include program-related expenses incared my Ihe developmwt xnct~on 
(d) Investment income less Foreign Exchanqe and Miscellaneous bank det,its and 

ASTIN Fund 
(e) Change I!> CAS Surplus 

BALANCE SHEEl 

ASSETS 9>30:89 9:30!90 CHANGE 

Checking Account 
Money Market Fund 
Bank Certlllcates of Deposil 
U S Treasurv Noles & BI Is 
Accrued ln&st 
CLRS Fund 

TOTAL ASSETS 

LIABILITIES 

Olf~ce Expenses 5 92 591 79 $11413860 
Printing Expenses 183 4018b 239 306 11 
PrepaId Exam Fees 1 JR 00s 00 166 698 00 
Prepad Inv Program 1991 0 00 1268500 
New Orlea~s Mlq Fees 0 OC 1246000 
ASTIN Meellng 5937763 000 
Diamond Jubilee 275 713 5!> 000 
Other 97’ 811 526461 

TOTAL LIABILITIES 

MEMBERS EQUITY 

5 12888711 
104 287 45 
300 000 00 
678 127 65 

9082 19 
5 000 00 

%’ 715 384 40 

$760 06: 69 $550 552 32 

Mlchelbacher Fund 
Dorwe~ler Fund 
CAS Trust 
Scholarship Fund 
CLRS Fund 
CAS Surp:us 

TOTAL EQUITY $46531671 $576 137 46 

x 73418 34 B 76654 IO I C 235 76 
804847 7 531 38 is17 09) 
261S21 2 772 12 15691 
7 :m? 5’1 1143 86 I44 69) 
5 000 oc 5 000 00 0 00 

368 646 1.1 476 636 00 IO? 989 86 
~- 

BilC82075 

I 19726829 $ 63 381 18 
000 (104 287 45) 

10000000 12oc 000 00) 
806 526 28 12e 398 63 

2289521 l? 81302 
5 000 cm 000 

Sl 12fi6R97R I$ 9e 694 62) 

9 21 546 81 
55 898 25 
iE 69300 
12 68500 
12 46000 

(59 377 63) 
CL’75 713 55) 

4 292 75 
-- 
EOC 515 371 
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1990 EXAMINATIONS-SUCCESSFUL CANDIDATES 

Examinations for Parts 4, 6, 8 and 10 of the Casualty Actuarial 
Society were held on May 8, 9, 10 and 11. Examinations for Parts 3(B), 
5, 5(A), 5(B), 7, and 9 were held on November 7, 8, 9, and 13. 

Examinations for Parts 1, 2, and 3 (SOA courses 100, 110, 120, 130 
and 135) are jointly sponsored by the Casualty Actuarial Society and the 
Society of Actuaries. Parts 1 and 2 were given in February, May and 
November of 1990 and Part 3 was given in May and November of 1990. 
Candidates who were successful on these examinations were listed in 
the joint releases of the two societies. 

The Casualty Actuarial Society and the Society of Actuaries jointly 
awarded prizes to the undergraduates ranking the highest on the Part 1 
examination. 

For the February, 1990 examination the $200 first prize was awarded 
to Raymond Jung. The $100 prize winners were Corey Bilot, Lance 
Dyrland, Pak-Chuen Li, and Questor Ng. 

For the May, 1990 examination the $200 first prize was awarded to 
Joel Rosenberg. The $100 prize winners were Ken Eliezer, Andrew 
Erman, Daniel Golberg, Ronald Neath, and Philip Wunderlich. 

For the November, 1990 examination the $200 first prize was 
awarded to Edward Eickenberg. The $100 prize winners were Steven 
Grondin, Gilbert Pak, Erik Vee, Kai-Yip Wang, and Jeung-Horng Wu. 

The following candidates were admitted as Fellows and Associates 
as a result of their successful completion of the Society requirements in 
the May, 1990 examinations. 

FELLOWS 

Kenneth Apfel Michael J. Caulfield Richard L. Fox 
Lawrence J. Artes Danielle Charest Jacque B. Frank 
Robert K. Bender Walter P. Cieslak Richard N. Gibson 
Stephen W. Book Carol Desbiens Bonnie S. Gill 
Christopher S. Carlson Timothy B. Duffy Steven A. Glicksman 
Lynn R. Carroll Denis Dumulon David C. Harrison 



David R. Heyman 
Anthony D. Hill 
Alan M. Hines 
John M. Hurley 
Steven J. Johnston 
Edward M. Jovinelly 
Mary Jean King 
Charles D. Kline, Jr. 
Kenneth R. Krissinger 
John R. Kryczka 
Kay E. Kufera 
Paul E. Lacko 

Richard R. Anderson 
Guy A. Avagliano 
Katharine Barnes 
Jeffrey R. Cole 
Francois Dagneau 
Edgar W. Davenport 
Kendra M. Felisky- 

Watson 
David N. Fields 
David A. Foley 
Jacque B. Frank 
Deborah A. 

Greenwood 
Dawson T. Grubbs 
George M. Hansen 
Diane K. Hausserman 
Gordon K. Hay 
Thomas G. Hess 
Peter H. James 

FELLOWS 

David A. Lalonde 
Jon W. Michelson 
H. Elizabeth Mitchell 
Karl G. Moller, Jr. 
Chris E. Nelson 
Jonathon Norton 
Kai-Jaung Pei 
Isabelle Perigny 
Steven J. Peterson 
Kevin B. Robbins 
Richard D. Robinson 
Randy J. Roth 

ASSOCIATES 

Tony J. Kellner 
Bryan J. Kincaid 
France LeBlanc 
Eric F. Lemieux 
Stephen J. McGee 
Dennis T. McNeese 
M. Sean McPadden 
Christopher J. McShea 
Robert L. Miller 
Charles B. Mitzel 
Todd B. Munson 
John Nissenbaum 
Margaret O’Brien 
Laura A. Olszewski 
Naomi S. Ondrich 
Teresa K. Paffenback 
Susan L. Pin0 
Richard W. Prescott 
Alfred Raws III 

Jeffrey C. Salton 
Richard D. Schug 
Mark E. Schultze 
Mark J. Silverman 
Lisa A. Slotznick 
David Spiegler 
Lawrence J. Steiner? 
Edward C. Stone 
Christopher M. Suchar 
Ernest I. Wilson 
Martha A. Winslow 
Heather E. Yow 

James E. Rech 
Diane R. Rohn 
John M. Ruane Jr. 
Timothy J. Rundle 
Gary E. Shook 
Christy L. Simon 
Patricia E. Smolen 
Tom A. Smolen 
Elizabeth L. Sogge 
Thomas N. Stanford 
Elissa M. Sturm 
Jeffrey L. Subeck 
Susan M. Treskolasky 
Scott D. Vandermyde 
Marjorie C. Weinstein 
Beth M. Wolfe 
Kathy A. Wolter 
Nancy E. Yost 
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The following is the list of successful candidates in examinations 
held in May, 1990. 

Part 4 

Kristen M. Albright 
Craig A. Allen 
Rhonda K. Allison 
Ann L. Alnes 
Mark D. Ames 
Newton E. Amoh 
Scott C. Anderson 
Michael J. Andring 
Michael E. Angelina 
Bhim D. Asdhir 
Gad Attias 
Kim G. Balls 
Katharine Barnes 
Rose D. Barrett 
Philip A. Baum 
Brian P. Beckman 
Douglas S. Benedict 
Lyne Bergeron 
Annie Bisaillon 
Stephen D. Blaesing 
Betsy L. Blue 
Alain Boisvert 
John T. Bonsignore 
Christopher L. Bowen 
David B. Bowls 
Christopher K. 

Bozman 
George P. Bradley 
Mark L. Brannon 
James L. Bresnahan 
Lisa M. Brieden 
Louis M. Brown 
Stephen J. Bruce 
Russell J. Buckley 

Paul A. Bukowski 
Michelle M. Bull 
Peter V. Burchett 
John F. Butcher II 
Robert N. Campbell 
Michael E. Carpenter 
Daniel G. Carr 
Martin Carrier 
Michael W. Cash 
Tania J. Cassell 
Jessalyn Chang 
Jean-Francois Charest 
Wanchin W. Chou 
Pin J. Chung 
Susan D. Ciardiello 
Christopher J. Claus 
Thomas D. Coatney 
James Paul Cochran 
Danielle Comtois 
Mary L. Corbett 
Gregory L. Cote 
Timothy J. Cremin 
Richard J. Currie 
Thomas V. Daley 
Edgar W. Davenport 
Karen L. Davies 
Michael L. DeMattei 
Mike Devine 
Jeffrey E. Doffing 
Andrew J. Doll 
Jeffrey L. Dollinger 
Victor G. dos Santos 
William F. Dove 
Alicia G. Doyle 

Peter F. Dragon 
Mary Ann Duchna- 

Savrin 
Jean-Sebastien Dumais 
Bernard DuPont 
Sondra H. Einig 
David M. Elkins 
Paul E. Ericksen 
Jennifer L. Ermisch 
Madelyn C. Faggella 
Matthew G. Fay 
Judith Feldmeier 
John D. Ferraro 
Audrey M. Ferrier 
Stephen A. Finch 
Joyce L. Fish 
Robert F. Flannery 
John B. Folkesson 
Douglas E. Franklin 
Charles S. Fuhrer 
Nathalie Gamache 
James E. Gant 
Andrea Gardner 
Jeffrey N. Gamatz 
Susan T. Gamier 
Rita M. Geraghty 
Bradley J. Gleason 
Richard S. Goldfarb 
Mathew L. Gossell 
Jeffrey S. Goy 
Odile Goyer 
M. Harlin Grove 
Julie K. Halper 
Bradley A. Hanson 
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Diane K. Hausserman 
Shlomo 0. Haviv 
Gordon K. Hay 
Paul D. Henning 
Keith D. Holler 
Beth M. Hostager 
Annie Houle 
Thomas A. Huberty 
Jeffrey R. Hughes 
Daniel Hurtubise 
Annette Y. Jiang 
Mark R. Johnson 
Dieter E. Jurkat 
Hariharan 

Kanagalingam 
Stephen H. Kantor 
Trina C. Kavacky 
Stephen G. Kellison 
Mary V. Kelly 
Susan E. Kent 
Robert W. Kirklin 
Paul H. Klauke 
Joan M. Klucarich 
Timothy F. Koester 
Gilbert M. Korthals 
Karen L. Krainz 
Peter A. Kraus 
Adam J. Kreuser 
Sun J. Kwon 
Eurico A. Lacerda 
Koch Lacroix 
Carl Lambert 
W. Keith Landry 
Mylene Landry 
Christian B. Lapointe 
James W. Larkin 
Claude Larochelle 
Michael D. Larson 

Lawrence K. Law 
Scott J. Lelkowitz 
Marie-Pierre Legault 
Elizabeth A. Lemaster 
Deanne C. Lenhardt 
Chantal Letourneau 
Richard S. Light 
Kevin E. Litton 
Ronald P. Lowe. Jr. 
Robert G. Lowery 
Richard Maguire 
Cathy A. Mahanna 
William G. Main 
Donald E. Manis 
Anthony L. Manzitto 
Stephen N. Maratea 
Maria Mattioli 
Melinda H. Mayerchak 
Heidi J. McBride 
Robert D. McCarthy 
Teresa J. McCorkle 
Thomas S. McIntyre 
Christian Menard 
Stephen V. Merkey 
Stephen J. Meyer 
Anne C. Meysenburg 
Todd M. Miller 
Steven L. Minuk 
John H. Mize 
Annie Monfet 
Russell E. Moore 
Francois R. Morin 
Josee Morin 
Thomas M. Mount 
Raymond D. Muller 
Timothy 0. Muzzey 
David Y. Na 
Denis P. Neumann 

Quang C. Nguyen 
Keon Nielsen 
Douglas K. Nishimura 
Victor Njakou 
Stephen R. Noonan 
Michel Nystrom 
Russell R. Oeser 
Steven J. Olson 
William L. Oostendorp 
John E. Pannell 
Prabha Pattabiraman 
Fanny C. Paz-Prizant 
Karen L. Pehrson 
Beverly L. Phillips 
Mark W. Phillips 
Genevieve Pineau 
Susan L. Pin0 
Joseph W. Pitts 
Ted Poon 
On Cheong Poon 
John F. Radwanski 
Andrew T. Rippert 
Anthony V. Rizzuto 
Douglas A. Roemelt 
Paul J. Rogness 
Diane R. Rohn 
Luis Romero 
Laura A. Romine 
David A. Rosenzweig 
Lisa M. Ross 
Martin Roussel 
Robert A. Rowe 
James B. Rowland 
Caroline Roy 
David Ruhm 
Asif Mohammad Sardar 
Leigh A. Saunders 
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Melodee J. Saunders 
Marilyn E. Schafer 
Peter Senak 
Cynthia S. Siemers 
Christy L. Simon 
Patricia E. Smolen 
David B. Sommer 
Keith R. Spalding 
Angela K. Sparks 
William G. Stanfield 
Douglas W. Stang 
Deborah A. Stobo 
Brian M. Stall 
John W. Stonehill 
Collin J. Suttie 

Part 6 

Marc J. Adee 
Richard R. Anderson 
Guy A. Avagliano 
Todd R. Bault 
Nathalie Begin 
Wayne E. Blackbum 
Daniel D. Blau 
Alicia E. Bowen 
Anthony J. Burke 
Julie S. Chadowski 
Mario Champagne 
John Chittenden 
Bryan C. Christman 
Cindy C. Chu 
Jeffrey R. Cole 
Kathleen F. Connor 
Martin L. Couture 
David A. Cullather 
Francois Dagneau 

Scott J. Swanay 
Yachung Syu 
David M. Teme 
Michel Theberge 
Georgia A. 

Theocharides 
Edward D. Thomas 
Daniel J. Tinter 
Michael J. Toth 
Stacy L. Trowbridge 
Son Trong Tu 
David B. 

VanKoevering 
Monique Veilleux 
Jennifer A. Violette 

Michael K. Daly 
Manon Debigare 
Herb Desson 
Laura Deterding 
Patrick K. Devlin 
Stephen R. DiCenso 
Kevin G. Dickson 
Michel Dionne 
Pierre Dionne 
Michael C. Dubin 
Francois Dumas 
Patrick Dussault 
Charles C. Emma 
Thomas R. Fauerbach 
Kendra M. Felisky- 

Watson 
David N. Fields 
David A. Foley 
Yves Francoeur 

Linda M. Waite 
Qing Wang 
Bryan C. Ware 
Stephen D. Warfel 
Robert G. Weinbert 
John P. Welch 
Calvin Wolcott 
Lynne M. Woody 
Eva M. Woolley 
Donald S. Wroe 
Floyd M. Yager 
Gerald T. Yeung 
Shawn M. Young 
Joshua A. Zirin 
Barry C. Zurbuchen 

Kim B. Garland 
Bruce R. Gifford 
Michael A. Ginnelly 
Richard S. Goldfarb 
Charles T. Goldie 
Matthew E. Golec 
Bradley A. Granger 
Jeffrey W. Graver 
Deborah A. Greenwood 
Dawson T. Grubbs 
Paul J. Hancock 
George M. Hansen 
Steven T. Harr 
Thomas G. Hess 
David B. Hostetter 
Kathleen M. Ireland 
Peter H. James 
Hou-Wen Jeng 



Tony J. Kellner 
Deborah E. Kenyon 
Joseph P. Kilroy 
Changseob Kim 
Bryan J. Kincaid 
David 0. Kirste 
Howard A. Kunst 
Benoit Laganiere 
D. Scott Lamb 
Alan E. Lange 
Paul W. Lavrey 
France LeBlanc 
Eric F. Lemieux 
Giuseppe F. LePera 
Comwell H. Mah 
Blair E. Manktelow 
Leslie R. Marlo 
Keith A. Mathre 
Stephen J. McGee 
Dennis T. McNeese 
M. Sean McPadden 
Christopher J. McShea 
Robert L. Miller 
Charles B. Mitzel 
Todd B. Munson 
David A. Murray 
Sarah L. Nellis 
Richard N. Nevins 
John Nissenbaum 

Randall S. Nordquist 
Margaret O’Brien 
Laura A. Olszewski 
Naomi S. Ondrich 
Teresa K. Paffenback 
Chandrakant C. Pate] 
Timothy B. Perr 
Brian D. Poole 
C. Stuart Powers 
Richard W. Prescott 
Lewis R. Pulliam 
Mark S. Quigley 
Kenneth P. Quintilian 
Eric K. Rabenold 
Donald K. Rainey 
Thomas 0. Rau 
Alfred Raws III 
James E. Rech 
Elizabeth M. Riczko 
William E. Roche 
Diane R. Rohn 
Bradley H. Rowe 
Michael R. Rozema 
John M. Ruane. Jr. 
Timothy J. Rundle 
Yves Saint-Loup 
Stephen P. Sauthoff 
David M. Savage 

Part 8 

Gary R. Abramson Roberto G. Blanc0 
Kenneth Apfel Jack B. Brauner 
W. Brian Barnes Lynn R. Carroll 
Gavin C. Blair Martin Cauchon 
Jean-Francois Blais Charles Cossette 

Suzanne E. Schoo 
Lisa M. Scorzetti 
Vincent M. Senia 
Derrick D. Shannon 
Gary E. Shook 
David A. Smith 
Tom A. Smolen 
Elizabeth L. Sogge 
Thomas N. Stanford 
Elissa M. Sturm 
Jeffrey L. Subeck 
Yuan-Yuan Tang 
Susan M. Treskolasky 
James F. Tygh 
Peter S. Valentine 
Scott D. Vandermyde 
Michael A. Visintainer 
Sebastien Vu 
Alice M. Wang 
Marjorie C. Weinstein 
Robert J. White 
Kevin Wick 
Gnana K. Wignarajah 
Beth M. Wolfe 
Kathy A. Wolter 
John M. Woosley 
Vincent F. Yezzi 
Nancy E. Yost 
Sheng Hau Yu 

David J. Darby 
Brian W. Davis 
Edward D. Dew 
Brad C. Eastwood 
Bob D. Effinger, Jr. 
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John W. Ellingrod 
Catherine E. Eska 
William G. Fitzpatrick 
Louis Gariepy 
David B. Gelinne 
Richard J. Gergasko 
John F. Gibson 
Peter M. Gidos 
Eric L. Greenhill 
Anne G. Greenwalt 
Cynthia M. Grim 
Anthony D. Hill 
George A. Hroziencik 
Jeffrey R. Ill 
Brian A. Jones 
Kevin A. Kesby 
Jean-Marc Leveille 
Sam F. Licitra 
Andre Loisel 
Brian E. MacMahon 

Purt 10 

Jeffrey Adams 
Rebecca C. Amoroso 
Lawrence J. Artes 
Bruno P. Bauer 
Robert K. Bender 
Stephen W. Book 
Christopher S. Carlson 
Kenneth E. Carlton 
Michael J. Caulfield 
Danielle Charest 
Walter P. Cieslak 
Carol Desbiens 
Timothy B. Duffy 
Denis Dumulon 

Robert J. Meyer 
Richard B. Moncher 
Daniel M. Murphy 
Jonathan Norton 
G. Christopher Nyce 
Gregory V. Ostergren 
Timothy A. Paddock 
Rudy A. Palenik 
Julia L. Perrine 
Jill Petker 
Deborah Price 
Timothy P. Quinn 
Kay K. Rahardjo 
John F. Rathgeber 
Scott E. Reddig 
Steven C. Rominske 
Pierre A. Samson 
Karen E. Schmitt 
Gordon L. Scott 
Robert F. Scott, Jr. 

Steven R. Fallon 
Nancy G. Flannery 
Richard L. Fox 
James J. Gebhard 
Richard N. Gibson 
Bonnie S. Gill 
Steven A. Glicksman 
David C. Harrison 
Todd J. Hess 
David R. Heyman 
Alan M. Hines 
John M. Hurley 
Steven J. Johnston 
Edward M. Jovinelly 

Christopher M. Smerald 
Linda D. Snook 
David Spiegler 
Stephen D. Stayton 
John A. Stenmark 
Sharon K. Sublett 
Rae M. Taylor 
Mary L. Turner 
Melanie A. Turvill 
Ricardo Verges 
Leigh M. Walker 
Patrick M. Walton 
Nancy P. Watkins 
Peter A. Weisenberger 
Elizabeth A. Wellington 
Gregory S. Wilson 
Windrie Wong 
Richard P. Yocius 

Mary Jean King 
Charles D. Kline, Jr. 
Constantine G. 

Koufacos 
Kenneth R. Krissinger 
John R. Kryczka 
Kay E. Kufera 
Paul E. Lacko 
David A. Lalonde 
Peter M. Licht 
Jon W. Michelson 
H. Elizabeth Mitchell 
Karl G. Moller, Jr. 
Brian A. Montigney 
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Chris E. Nelson 
Kathleen M. Pechan 
Kai-Jaung Pei 
Steven J. Peterson 
Jennifer A. Poison 
Robert Potvin 
Kevin B. Robbins 
Richard D. Robinson 

Randy J. Roth Lawrence J. Steinert 
Jeffrey C. Salton Russell Steingiser 
Melissa A. Salton Edward C. Stone 
Valerie Schmid-Sadwin Christopher M. Suchar 
Richard D. Schug Ting-Shih Teng 
Mark E. Schultze Ernest 1. Wilson 
Mark J. Silverman Martha A. Winslow 
Lisa A. Slotznick Heather E. Yow 
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The following candidates were admitted as Fellows and Associates 
as a result of their successful completion of the Society requirements in 
the November, 1990 examinations. 

James J. Gebhard 
Melissa A. Salton 

Marc J. Adee 
Karen L. Ayres 
Nathalie Begin 
Thomas S. Boardman 
Pierre Bourassa 
Alicia E. Bowen 
Anthony J. Burke 
Janet L. Chaffee 
Mario Champagne 
Cindy C. M. Chu 
Dianne Costello 
Martin L. Couture 
Kenneth M. Creighton 
Patrick K. Devlin 
Kevin G. Dickson 
Pierre Dionne 
Yves Doyon 
Patrick Dussault 
Brad C. Eastwood 
Charles C. Emma 
William E. Emmons 
Y ves Francoeur 
Louis Gariepy 
Bruce R. Gifford 
Michael A. Ginnelly 
Richard S. Goldfarb 

FELLOWS 

Valerie Schmid-Sadwin Nancy P. Watkins 
Warren B. Tucker 

ASSOCIATES 

Charles T. Goldie 
Matthew E. Golec 
Todd A. Gruenhagen 
Ellen M. Hardy 
Jeffrey R. Ill 
Kathleen M. Ireland 
Changseob Kim 
Richard 0. Kirste 
David R. Kunze 
Frank 0. Kwon 
D. Scott Lamb 
Mathieu Lamy 
Nicholas J. Lannutti 
Paul W. Lavrey 
Giuseppe F. Lepera 
Donald F. Mango 
Blair E. Manktelow 
Donald R. McKay 
Sara L. Nellis 
Marlene D. Orr 
Donald D. Palmer 
Chandrakant C. Pate1 
Timothy B. Perr 
Julie L. Perrine 
Brian D. Poole 

Kenneth P. Quintilian 
Eric K. Rabenold 
Donald K. Rainey 
Elizabeth M. Riczko 
William E. Roche 
Bradley H. Rowe 
Y ves Saint-Loup 
Joanne Schlissel 
Vincent M. Senia 
Derrick D. Shannon 
David A. Smith 
Keith R. Spalding 
Stephen D. Stayton 
Frederick M. Strauss 
Rae M. Taylor 
Peter S. Valentine 
Kenneth R. Van Laar 
William Vasek 
Michael A. Visintainer 
Sebastian Vu 
Kevin Wick 
Gnana K. Wignarajah 
John M. Woosley 
Vincent F. Yezzi 
Sheng Hau Yu 
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The following is the list of successful candidates in examinations 
held in November. 1990. 

Part 3B 

Rimma Abian 
Kim M. Abramek 
Shawna S. Ackerman 
Michael W. Allard 
Craig A. Allen 
Rhonda K. Allison 
K. Athula Alwis 
Scott C. Anderson 
Michael J. Andring 
Richard T. Arnold 
Bhim D. Asdhir 
Nathalie J. Auger 
Lewis V. Augustine 
Rita Ann Basile 
Dominic Bazin 
John A. Beckman 
Brian K. Bell 
Sheila J. Bertelsen 
Donna K. Bever 
Gina S. Binder 
Bruce E. Binnig 
Annie Bisaillon 
Laverne J. Biskner I11 
Annie Blais 
Ming Y. Blinn 
Betsy L. Blue 
Maurice P. Bouffard 
Christopher K. 

Bozman 
Lori M. Bradley 
Kevin M. Brady 
Lisa M. Brieden 

Tracy L. Brooks- 
Szegda 

Eric J. Brosius 
David Browan 
Lisa A. Brown 
Stephanie J. Brown 
Laura L. Burnaford 
John F. Butcher II 
Robert N. Campbell 
Anthony E. Cappelletti 
Kristi 1 Carpine-Taber 
Benoit Carrier 
Martin Carrier 
Terri L. Cartwright 
Tania J. Casscll 
Richard J. Castillo 
Julia C. Causbie 
Kevin J. Cawley 
Julie S. Chadowski 
Andrea L. S. Chan 
Debra S. Charlop 
Sigen Chen 
John S. Chittenden 
Bryan C. Christman 
Kuei-Hsia R. Chu 
Rita E. Ciccariello 
Denise R. Clark 
Kay A. Cleary 
William B. Cody 
Jeffrey R. Coker 
Pamela A. Conlin 
Sharon L. Cooper 

Conni J. Craig 
Richard S. Crandall 
Malcolm H. Curry 
Michael T. Curtis 
Charles A. Dalcorobbo 
David J. Darby 
Karen L. Davies 
Kristin D. Defrain 
Marie-Julie Demers 
Ronald M. Dennis 
Dina M. Deschino 
Dawn M. Desousa 
Marybeth Diffley 
Lisa A. Doedtman 
Shawn F. Doherty 
Bernard DuPont 
Colleen L. Eberts 
David M. Elkins 
Gregg Evans 
Joseph G. Evleth 
Charles V. Faerber 
Arlene M. Fahey 
Patrick V. Fasciano 
Bruce D. Fell 
John R. Ferrara 
Audrey M. Ferrier 
George Fescos 
Brian C. Fischer 
David 1. Frank 
Mark R. Frank 
Russell Frank 
Cynthia J. Friess 
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Jeffery N. Garnatz 
Carol A. Gamey 
Lynn A. Gehant 
Rita M. Geraghty 
Margaret W. Germani 
Judith E. Ghirardelli 
Thomas J. Ginnelly 
Michael F. Glatz 
Donna L. Glenn 
Annette J. Goodreau 
Chris D. Goodwin 
Karl Goring 
Odile Goyer 
Lawrence E . 

Grabowski 
Marc C. Grandisson 
Jeffrey W. Graver 
Sheri M. Green 
Charles R. Grilliot 
William A. Guffey 

Robert J. Hopper 
Geoffrey W. Horton 
Melissa K. Houck 
Annette Y. Hu 
Paul R. Hussian 
Jonathon D. Imboden 
Cindy Jacobowitz 
Patrick C. Jensen 
Brian E. Johnson 
Anthony N. Katz 
James M. Kelly 
Rebecca A. Kennedy 
Susan E. Kent 
Glenda J. Kettelson 
Jean-Luc E. Kiehm 
Martin T. King 
Jean-Raymond 

Kingsley 
Bradley J. Kiscaden 
Joan M. Klucarich 

Jean-Francois Guimond Terry A. Knull 
Howard A. Gullbrand Timothy F. Koester 
Kristy A. Hadaway Fred S. Koppenheffer 
Nasser Hadidi Karen L. Krainz 
Elizabeth E. Hansen Debra K. Kratz 
Robert L. Dean F. Kruger 

Hamatkiewicz Jason A. Kundrot 
Adam D. Hartman Mylene J. Labelle 
Curtis D. Harvey Josee Lambert 
Gary M. Harvey Mathieu Lamy 
Jonathon B. Hayes John B. Landkamer 
Barton W. Hedges Gregory D. Larcher 
Rhonda R. Hellman David L. Larson 
Shohreh Heshmati Robert J. Larson 
Lisa R. Hilton Helen P. Leclair 
Amy J. Himmelberger Doris Lee 
Carl F. Hirschman Jeanne P. Lee 
Brook A. Hoffman Glen Leibowitz 

Elizabeth A. Lemaster 
Julie Lemieux-Roy 
Deanne C. Lenhardt 
Chantal Letoumeau 
Shu Ching Lin 
Steven C. Lin 
Andrew M. Lloyd 
Ronald P. Lowe, Jr. 
Tai-Kuan Ly 
Susan A. Lynch 
Christine Macisaac 
Kenneth W. Macko 
Joleen P. Mallon 
Donald F. Mango 
Richard J. Marcks 
Keith M. Marcus 
Leslie R. Marlo 
Maria Mattioli 
Bonnie C. Maxie 
Melinda H. Mayerchak 
Robert D. McCarthy 
Timothy L. McCarthy 
Jay E. McClain 
Richard J. McElligott 
Carole R. McIntyre 
Thomas S. McIntyre 
Matthew M. McKenzie 
William E. McWithey 
Anne C. Meysenburg 
Brenda D. Miller 
John H. Mize 
Douglas J. Moeller 
Francois R. Morin 
Randy J. Murray 
Karen E. Myers 
Donna M. Nadeau 
Kathleen V. Najim 
Aaron W. Newhoff 
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James J. Niemann 
Michael A. Nori 
Michael Nystrom 
Kimberly A. Oaks 
Steven J. Olson 
William L. Oostendorp 
James D. O’Malley 
Linda M. O’Shea 
Jennifer J. Palo 
Brian S. Pauling 
Rick S. Pawelski 
Charles C. Pearl 
Kenneth J. Peschell 
William Peter 
Anne M. Petrides 
Genevieve Pineau 
Glen-Roberts 

Pitruzzelo 
Gregory J. Poirier 
Ted Peon 
Christine A. Porcelli 
Alfred0 Portillo 
Mary E. Potts 
Charlene M. Pratt 
Walter D. Price 
Arlie Proctor 
Richard B. Puchalski 
Patricia A. Pyle 
Robert E. Quane 
Karen L. Queen 
Kathleen M. Quinn 
John F. Radwanski 
Darin L. Rasmussen 
hlichael T. Ray 
Yves Raymond 
Brenda L. Reddick 
Timothy 0. Reed 
Cynthia L. Rice 

Patsy A. Riley 
Andrew T. Ripper-t 
Mam Rivelle 
Mark R. Rodgers 
Dave H. Rodriguez 
Douglas A. Roemelt 
Paul J. Rogness 
Cindy J. Roper 
Liz Rosenthal-Wiesner 
David A. Rosenzweig 
Joseph F. Rosta 
Robert A. Rowe 
David A. Royce 
Giuseppe A. Ruggieri 
Kenneth W. Rupert. Jr 
Peter A. Rutan 
Charles J. Ryherd 
Barbara A. Sable 
Margaret J. Sanchez 
Brandelyn C. Sanders 
Letita M. Saylor 
Cindy R. Schauer 
David B. Schofield 
Jeffrey J. Scott 
Polly W. Searfos 
Kelvin B. Sederburg 
Thomas J. Sheppard 
Paul 0. Shupe. Jr. 
Jeffrey J. Smith 
Michelle Smith 
William L. Smith 
Darryl L. Snyder 
Sheila R. Socks 
David B. Sommer 
John B. Sopkowicz 
Linda M. Sowter 
Michael J. Sperduto 
William G. Stanfield 

Christine L. Steele 
Michael J. Steward II 
Brian M. Stoll 
Deborah L. Stone 
llene G. Stone 
Jayme P. Stubitz 
Colleen M. Sullivan 
Francis P. Sullivan 
Anuradha Sundram 
Jay M. Sussman 
Beth M. Sweeney 
Steven J. Symon 
Todd D. Tabor 
Christopher Tait 
Yuan-Yuan Tang 
Pamela A. Thomas 
W. Mont Timmins 
Mike Toledano 
Katherine A. Tollar 
Wesley J. Toner 
Marie-Claire Turcotte 
James F. Tygh 
Eric Vaith 
Daniel J. Vander Ploeg 
Thomas W. Vanwinkle 
Monique Veilleux 
Barbara A. Vetter 
Jennifer A. Violette 
Linda M. Waite 
Joseph W. Wallen 
Cynthia J. Walschot 
Keith A. Walsh 
Isabelle T. Wang 
Linda F. Ward 
Faith A. Wellman 
Bonnie S. Wittman 
Barbara A. Wolinski 
Tad E. Womack 
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Perry K. Wooley 
Michele N. Yeagley 
Claude D. Yoder 

Part 5 

Elise M. Aheam 
Philip A. Baum 
Steven L. Berman 
Janet P. Cappers 
Daniel G. Carr 
Joseph G. Cerreta 
Lisa M. Diminich 
John P. Doucette 
Sondra H. Einig 
George Fescos 
Sy Foguel 
Matthew T. Hayden 
Renee J. Helou 

Part 5A 

Christopher R. Allan 
Michael W. Allard 
Craig A. Allen 
Kay L. Allen 
Rhonda K. Allison 
Scott C. Anderson 
Michael J. Andring 
Marc Archambault 
Bhim D. Asdhir 
William M. Atkinson 
Lewis V. Augustine 
Robert S. Ballmer 
Rose D. Barrett 
Martin Beaulieu 

Richard L. Zarnik 
Doug A. Zearfoss 

Sandra L. Hunt 
Elizabeth A. Kinney 
Robert W. Kirklin 
Jason A. Kundrot 
Shiu-Shiung Lin 
James A. Lloyd 
Sally A. MacFadden 
Anthony L. Manzitto 
Lawrence F. Marcus 
John D. Martin 
Jason N. Masch 
Kelly J. Mathson 
Lauren E. Norton 

Brian P. Beckman 
John A. Beckman 
Brian K. Bell 
Peter Bennett 
Cynthia A. Bentley 
Lyne Bergeron 
Annie Bisaillon 
Annie Blais 
Gary Blumsohn 
Maurice P. Bouffard 
Erik R. Bouvin 
Christopher K. 

Bozman 
Michael D. Brannon 

Ranae L. Zielich 
Ralph T. Zimmer 

Dan C. Pickens 
Joseph W. Pitts 
Igor Pogrebinsky 
Douglas S. Rivenburgh 
Christine R. Ross 
Gerson Smith 
Kellie A. Thibodeau 
Patrick Thorpe 
Diane R. Thurston 
Dom M. Tobey 
Jane A. Wahl 
Wyndi S. White 
William M. Wilt 

Richard A. Brassington 
Kevin J. Brazee 
Tracy L. Brooks-Szegda 
Eric J. Brosius 
Stephanie J. Brown 
Patrick R. Buckie 
Russell J. Buckley 
Michelle L. Busch 
Robert N. Campbell 
Anthony E. Cappelletti 
Kristi I. Carpine-Taber 
Benoit Carrier 
David S. Cash 
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Richard J. Castillo 
Debra S. Charlop 
Peggy P. Cheng 
John S. Chittenden 
Hong Joon Chough 
Norman C. Chretien 
Bryan C. Christman 
Kuei-Hsia R. Chu 
Susan D. Ciardiello 
Rita E. Ciccariello 
Kay A. Cleary 
Maryellen J. Coggins 
Alfred D. Commodore 
David C. Coplan 
Matthew D. Corwin 
Michelle D. Coussens 
Michael T. Curtis 
Joyce A. Dallessio 
Alain Daoust 
Karen L. Davies 
Francis L. Decker 
Marie-Julie Demers 
Catherine L. Depolo 
Kurt S. Dickmann 
Lisa A. Doedtman 
Shawn F. Doherty 
Jeffrey L. Dollinger 
Mary Jane B. Donnelly 
Mark A. Dossett 
Daniel Drolet 
Pierre Drolet 
Raymond S. Dugue 
Gail E. Elsby 
Paul E. Ericksen 
Gregg Evans 
Farzad Farzan 
John R. Ferrara 

Brian C. Fischer 
David 1. Frank 
Russell Frank 
Douglas E. Franklin 
Rebecca A. Fux.iaeger 
Daniele Gagnon 
Charles E. Gegax 
Lynn A. Gehant 
Robert W. Geist 
Julie T. Gilbert 
Donna L. Glenn 
Cynthia L. Gordon 
Judith M. Gottcsman 
Odile Goyer 
Marc C. Grandisson 
Jeffrey W. Graver 
Frank X. Gribbon 
Gary J. Griesmeyer 
Charles R. Grilliot 
William A. Guffey 
Kristy A. Hadaway 
Marc S. Hall 
Christine M. Hansen 
Scott W. Hanson 
Michelle L. Hartrich 
Barton W. Hedges 
Lisa R. Hilton 
Thomas E. Hinds 
Carl F. Hirschman 
Linda L. Hoback 
Bernard R. Horovitz 
Annie Houle 
Paul R. Hussian 
Brian L. Ingle 
John F. Janssen 
Daniel K. Johnson 
Mary V. Kelly 

Tricia M. Keyes 
Jean-Luc E. Kiehm 
Martin T. King 
Jean-Raymond Kingsley 
Bradley J. Kiscaden 
Timothy F. Koester 
Christopher K. 

Koterman 
Elcni Kourou 
Karen L. Krainz 
Myron W. Kraynyk 
Cheung Sing Kwan 
Carl Lambert 
Mathieu Lamy 
John B. Landkamer 
David L. Larson 
Joan K. Lee 
Frederic A. Leederman 
Marie-Pierre Legault 
Julie Lemieux-Roy 
Deanne C. Lenhardt 
Daniel E. Lents 
Brian P. LePage 
Teresa P. L. Leung 
Richard S. Light 
Shu Ching Lin 
Ronald P. L,owe, Jr. 
Sak-Man Luk 
Allen S. Lynch, Jr. 
Andre L’Esperance 
Brian A. MacDonald 
Kenneth W. Macko 
James M. Maher 
Joleen P. Mallon 
Donald F. Mango 
Katherine A. Mann 
David K. Manski 

Steven J. Finkelstein Susan E. Kent 
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Richard J. Marcks 
Keith M. Marcus 
Leslie R. Marlo 
Maria Mattioli 
Deann M. Mays 
Timothy L. McCarthy 
Richard J. McElligott 
Thomas S. McIntyre 
Lynne S. McWithey 
Robert F. Megens 
Jeffrey A. Mehalic 
Christian Menard 
Mitchell Merberg 
Paul A. Mestelle 
Anne C. Meysenburg 
John H. Mize 
Douglas J. Moeller 
Francois R. Morin 
Matthew C. Mosher 
Timothy 0. Muzzey 
Leonard D. Myers 
Prakash Narayan 
James F. Neary 
Denis P. Neumann 
Aaron W. Newhoff 
Stephen R. Noonan 
Michael Nystrom 
Steven J. Olson 
Jennifer J. Palo 
Fanny C. Paz-Prizant 
Miriam E. Perkins 
William Peter 
Thomas L. Poklen, Jr. 
Christine A. Porcelli 
Lind R. Pratt 
Steven G. Protz 

David S. Pugel 
Eduard J. Pulkstenis 
Lewis R. Pulliam 
John F. Radwanski 
Peter S. Rauner 
Al J. Rhodes 
Andrew T. Rippert 
Dennis L. Rivenburgh, 

Jr. 
Mark R. Rodgers 
Douglas A. Roemelt 
John R. Rohe 
James J. Romanowski 
David A. Rosenzweig 
Lisa M. Ross 
James B. Rowland 
Clement Roy 
Michael R. Rozema 
David Ruhm 
Kenneth W. Rupert, Jr. 
Letita M. Saylor 
Cindy R. Schauer 
Michael B. Schenk 
David B. Schofield 
Ia F. Scholdstrom 
Lisa M. Scorzetti 
Alan J. Sexter 
Thomas J. Sheppard 
Catherine J. Simon 
Jose A. Sobrino- 

Reineke 
David B. Sommer 
John B. Sopkowicz 
Carl J. Somson 
Richard L. Stein 
Michael J. Steward II 

Shelley A. Stone 
Jayme P. Stubitz 
Francis P. Sullivan 
Anuradha Sundram 
Steven J. Symon 
Todd D. Tabor 
Christopher Tait 
Joy Y. Takahashi 
Yuan-Yuan Tang 
Antonio Tan-Torres, Jr. 
Francois Tardif 
David M. Teme 
Pamela A. Thomas 
Glenn A. Tobleman 
Mike Toledano 
Theresa A. Traynor 
Thomas A. Trocchia 
James F. Tygh 
Daniel J. Vander Ploeg 
Rasa T. Varanka 
Monique Veilleux 
Jennifer A. Violette 
Linda M. Waite 
Joseph W. Wallen 
Gregory S. Wanner 
Bryan C. Ware 
Robert G. Weinberg 
Elizabeth S. Wells 
Scott Werfel 
Carol B. Werner 
Geoffrey T. Werner 
Jeffrey S. Wood 
John S. Wright 
Floyd M. Yager 
Ralph T. Zimmer 
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Part X3 

Ward M. Brooks 
Matthew G. Fay 
Richard K. Fullmer 
Kim B. Garland 

Part 7 

Daniel N. Abellera 
Marc J. Adee 
Nancy L. Arico 
Karen L. Ayres 
Nathalie Begin 
Xavier Benarosch 
Thomas S. Boardman 
John D. Booth 
Pierre Bourassa 
Alicia E. Bowen 
Tobias E. Bradley 
Mark L. Brannon 
Steven A. Briggs 
Peter V. Burchett 
Anthony J. Burke 
Carol A. Cavaliere 
Janet L. Chaffee 
Mario Champagne 
Dennis K. Chan 
Jessalyn Chang 
Cindy C. M. Chu 
Dianne Costello 
Martin L. Couture 
Kenneth M. Creighton 
Wayde A. Daigneault 
Patrick K. Devlin 

Victoria A. Grossack 
Ronald L. Helmeci 
Michael R. Hill 
Gilbert M. Korthals 

Kevin G. Dickson 
Pierre Dionne 
Victor G. DOS Santos 
William F. Dove 
Yves Doyon 
Patrick Dussault 
Brad C. Eastwood 
Maribeth Ebert 
Charles C. Emma 
William E. Emmons 
Carole F. Ferrer0 
Y ves Francoeur 
Louis Gariepy 
Bruce R. Gifford 
Michael A. Ginnelly 
Mary K. Gise 
Bradley J. Gleason 
Richard S. Goldfarb 
Charles T. Goldie 
Laurence B. Goldstein 
Matthew E. Golec 
Todd A. Gruenhagen 
Sandra K. Halpin 
Ellen M. Hardy 
Gayle L. Hartzen 
Keith D. Holler 

Mark S. Quigley 
John F. Rathgeber 
Collin J. Suttie 
Charles A. Vigorita 

Anthony lafrate 
Jeffrey R. Ill 
Kathleen M. Ireland 
Anthony Iuliano 
Sadagopan S Iyengar 
Edwin G. Jordan 
Trina C. Kavacky 
Daniel R. Keddie 
Changseob Kim 
Richard 0. Kirste 
Craig W. Kliethermes 
Eleni Kourou 
Adam J. Kreuser 
David R. Kunze 
Frank 0. Kwon 
D. Scott Lamb 
Nicholas J. Lannutti 
James W. Larkin 
Michael D. Larson 
Christopher Lattin 
Paul W. Lavrey 
Stephen E. L,ehecka 
Giuseppe F. Lepera 
Emma B. Macasieb 
Bindranath Maharajh 
Donald E. Manis 
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Blair E. Manktelow 
Jeffrey F. McCarty 
Teresa J. McCorkle 
John W. McCutcheon 
Richard T. McDonald 
Donald R. McKay 
Van A. McNeal 
John P. Mentz 
Stephen J. Meyer 
Antoine A. Neghaiwi 
Sara L. Nellis 
Richard A. Olsen 
Marlene D. Orr 
Todd F. Orrett 
Ann Overturf 
Donald D. Palmer 
Chandrakant C. Pate1 
Wayne V. Paulauskis 
Timothy B. Perr 
Julie L. Perrine 
Brian D. Poole 

Part 9 

Jean-Luc E. Allard 
Guy A. Avagliano 
Karin H. Beaulieu 
Douglas L. Beck 
Gavin C. Blair 
Jean-Francois Blais 
Cara M. Blank 
Paul A. Bukowski 
Chyen Chen 
Kathleen F. Connor 
Charles Cossette 
Robert J. Curry 
Francois Dagneau 

On Cheong Poon 
C. Stuart Powers 
Kenneth P. Quintilian 
Eric K. Rabenold 
Donald K. Rainey 
Frank J. Rau, Jr. 
Elizabeth M. Riczko 
William E. Roche 
Laura A. Romine 
Bradley H. Rowe 
Maureen S. Ruth 
Yves Saint-Loup 
Leigh A. Saunders 
David M. Savage 
Joanne Schlissel 
Vincent M. Senia 
Derrick D. Shannon 
David M. Shepherd 
David A. Smith 
Keith R. Spalding 
Stephen D. Stayton 

Edward D. Dew 
Bob D. Effinger, Jr. 
John W. Ellingrod 
Jennifer L. Ermisch 
Philip A. Evensen 
David A. Foley 
France Fortin 
Luc Gagnon 
Scott F. Galiardo 
Andrea Gardner 
James J. Gebhard 
David B. Gelinne 
Susan M. Gozzo 

Frederick M. Strauss 
Rae M. Taylor 
Edward D. Thomas 
Stacy L. Trowbridge 
Peter S. Valentine 
Kenneth R. Van Laar 
William Vasek 
Michael A. Visintainer 
Sebastian Vu 
Patricia K. Walker 
Stephen D. Warfel 
Joyce Weisbecker 
Kevin Wick 
Gnana K. Wignarajah 
Robert F. Wolf 
John M. Woosley 
Charles J. Yesker 
Vincent F. Yezzi 
Sheng Hau Yu 
Barry C. Zurbuchen 

Deborah A. Greenwood 
Carleton R. Grose 
Farrokh Guiahi 
Michele P. Gust 
Jonathan M. Harbus 
Diane K. Hausserman 
Gordon K. Hay 
Peter H. James 
Bryan J. Kincaid 
Paul E. Kinson 
Jean Marc Leveille 
Andre Loisel 
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Brian E. MacMahon 
Burton F. Marlowe 
Heidi J. McBride 
Liam M. McFarlane 
Cassandra M. McGill 
Leonard L. Millar 
Charles B. Mitzel 
Richard B. Moncher 
Todd B. Munson 
Daniel M. Murphy 
Robin N. Murray 
Keith R. Nystrom 
Laura A. Olszewski 
Charles P. Orlowicz 
Jacqueline E. Pasley 
Susan J. Patschak 

Brian G. Pelly Marc Shamula 
Andre Perez Rial R. Simons 
Jill Petker Linda D. Snook 
Michael J. Petrocik Thomas N. Stanford 
Timothy P. Quinn Leslie D. Svoboda 
Kay K. Rahardjo Ting-Shih Teng 
Diane R. Rohn Warren B. Tucker 
John M. Ruane, Jr. Mary L. Turner 
Melissa A. Salton Melanie A. Turvill 
Pierre A. Samson Patrick M. Walton 
Edmund S. Scanlon Nancy P. Watkins 
Jeffrey W. Schmidt Marjorie C. Weinstein 
Valerie Schmid-Sadwin Kathy A. Wolter 
Karen E. Schmitt Ronald J. Zaleski 
Gordon L. Scott 
Alan R. Seeley 



FELLOWS ADMITTED IN MAY 1990 

' 
u-q+Js .q ,F -'~-y+ 

I 

Front Row: Jane E Jaqzr. I. Scort Bradley. John J Joyce. Mlchacl Furo. proldenl. V~nccnt T Donnelly. Teresa J Hcrdenck. Thomas J. Ellcfson. Chnstine 

E Rad.u. Eh\rbeth Sladler 

Back Row: G Clwon Somberger. Malcolm t Brzuhwuw. Richard J Henhng. Debbtc Schwab, Wdham G. Fanning. Krrk G. Flcmlng. SC&I H. Dodge. Dawd % 
a 

C Scholl 



FELLOWS ADMITTED IN NOVEMBER 1990 

F 

Sealed in Front: Thorno Dully. Iwbcllc Pcrpy, D.-uuelle Chant. Kay Kufcra. Mnchael lwco lCAS 

Prevdent). Stcvcn Johncon, Jon Mlchelwn. L:wrcnce Artr\ Middle Row: Chrn Nelson. Carol Dc\h~cn\, 

Kal-Jaung Pa. Roberl Bender, Paul Lacko. Rlch.4 Ghwn. Walter Cwlak. RlLhard Schug, Jeffrey S&m 

Top Ruw: Steven Book. Mark Schultr. Edward Stone, Mlchacl Caulfield. Chn\tophcr Carlson. Charler Klme. 

Richard Fox. and Kenneth Aptcl 
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FELLOWS ADMITTED IN NOVEMBER 1990 

Seated in Front: Steven Peterson, Edward Jovinclly. David Harriwn, Bonnie Gill, Mlchacl tu\co lC,\S 
President). Mark Silvemnn. Lynn Carroll. Martha Winslow. Middle Row: Elizabeth Mitchell. Jacqur Frank. 
Richard Robinson, John Kryczka. David LalA>ndc. David Heymatt. Lisa Slotmick, Ernest Wilson. Kevin Rob- 
hits, Mary King, Heather Yaw. Top Row: Anthony Hill. David Spiegler. Kcnncth Krissinger. Alan Hines. 
Jonathan Norton. Chris Suchar. Lawrcncc Steincrt. and Denis Dumulon. Steven Glicksman, John Hurley, Karl 
Moller and Randy Roth arc not pictured 



OBITUARIES 

George B. Elliott 
Jarvis Farley 

Gerald J. Jerabek 

GEORGE B. ELLIOTT 
1908-1990 

George B. Elliott, a Fellow of the Casualty Actuarial Society since 
1940, died on November 5, 1990 at the age of 82. 

George was rightly called the patriarch of the Pennsylvania Compen- 
sation Rating Bureau. He became General Manager in 1948, and contin- 
ued in that responsibility until he retired in 1973. He was the central 
figure in all that went on in workers compensation in Pennsylvania 
throughout those years. Prior to his arrival at the Pennsylvania Bureau, 
he had been employed by the Pennsylvania Insurance Department as a 
rate actuary, his job when he obtained his Fellowship in 1940. 

George served two three-year terms on the CAS Council (now the 
Board), from 1947 to 1950 and from 195 1 to 1954. From 1964 to 1966, 
he was Chairman of the Committee on Development of Papers. And he 
was the author of two notable papers: “Multiple Injury Accidents and 
Losses in Excess of any Specific Retention-Pennsylvania Workmen’s 
Compensation” ( 1946), and “The Making of Workmen’s Compensation 
Rates as Illustrated by the 195 1 Pennsylvania Rate Revision” (195 1). 



OBITUARIES 403 

JARVIS FARLEY 
1910-1991 

Jarvis Farley, a Fellow of the Casualty Actuarial Society since 1940, 
died on July 12, 1991 at the age of 8 1. 

When Mr. Farley became a CAS Fellow, he was actuary and assistant 
treasurer of the Massachusetts Indemnity Company. He remained with 
that company (which became the Massachusetts Indemnity and Life 
Insurance Company) throughout his career, rose in the ranks, and was 
made Chairman of the Board and Chief Executive Officer in 1970. He 
retired in 1974 and lived in Needham, Massachusetts. 

Mr. Farley was a member of the CAS Council from 1947 to 1950, 
joining George Elliott for that term, and he was Chairman of the Com- 
mittee on Social Insurance from 1964 to 1967. He was the author of 
two important papers in his field: “A 1940 View of Non-Cancellable 
Disability Insurance” (1940), and “An Approach to a Philosophy of 
Social Insurance” (1942). 

Jarvis Farley, in his retirement years, continued to be busy in the 
affairs of the American Academy of Actuaries. He was Chairman of the 
AAA’s Specialty Committee of the Actuarial Standards Board, and was 
an active member of the Joint Task Force on Professionalism, the Com- 
mittee on Guides to Professional Conduct, and the Committee on Con- 
tinuing Care Retirement Communities. 
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GERALD J. JERABEK 
1948-1990 

Gerald J. Jerabek, a Fellow of the Casualty Actuarial Society and a 
Member of the American Academy of Actuaries since 1979, died on 
August 14, 1990, at the age of 42. Hc was born on July 22, 1948, in 
Manitowoc, Wisconsin. 

Mr. Jerabek received a bachelor of science degree in mathematics 
from Michigan Technological University in 1970 and a masters degree 
in statistics from Purdue University in 1972. From 1972 to 1976, he 
performed actuarial pricing duties at State Farm Insurance Companies. 
He joined Nationwide Insurance Companies in 1976. There, his respon- 
sibilities included personal auto and homeowners ratemaking. state fil- 
ings. and special projects. He was elected Vice President, Personal Lines 
Pricing in August, 1989. 

Mr. Jerabek served the Casualty Actuarial Society as a member of 
the Education and Examination Committee, the Examination Committee, 
the Committee on Principles of Ratemaking. and the Committee on 
Ratemaking. 

Mr. Jerabek had a wide range of interests. He was well known among 
CAS golfers and tennis players for his proficiency in those sports. He 
competed in regional and national tournaments and won several awards. 

Mr. Jerabek is survived by his wife, Jaclyn, of Columbus, Ohio; 
sister, Valerie Joens, of Topeka, Kansas; and parents, Mr. and Mrs. 
Milos Jerabek, of Pembine, Wisconsin. 

Mr. Jerabek is deeply missed by his family and by his friends and 
colleagues. 
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