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RISK THEORETIC ISSUES IN LOSS RESERVING: THE CASE OF 
WORKERS COMPENSATION PENSION RESERVES 

GLENN MEYERS 

Abstract 

Opposition to the discounting of loss reserves is based on the 
premise that loss reserves are uncertain and insurance com- 
panies must retain additional funds in order to reduce the 
chance of insolvency. This paper explores the explicit calcu- 
lation of a risk load for discounted loss reserves. Underlying 
considerations include: (I) the random nature of the claim 
settlements; (2) our ability to describe the distribution of 
actual results; and (3) how the risk load we use for loss 
reserves compares to the profit load we use for pricing insur- 
ance. These ideas are expressed in terms of an example: 
workers compensation pension reserves. 

The research for this paper was supported by a grant from 
the Society of Actuaries upon recommendation of the Actuarial 
Education and Research Fund. 

1. INTRODUCTION 

Should loss reserves be determined with an explicit recognition of 
risk? This question was posed by the Casualty Actuarial Society’s Com- 
mittee on the Theory of Risk at the November, 1984 CAS annual meet- 
ing.’ For the sake of discussion, the committee assumed that the answer 
was yes, and then proceeded to outline several points that should be 
considered in setting a risk load for loss reserves. 

The issue of discounting reserves is linked to the issue of risk loading. 
It could be argued that carrying reserves at the nominal value rather than 

1 The Committee on the Theory of Risk made similar presentations in 1985 at meetings of the 
Midwest Actuarial Forum and the Casualty Actuaries of Greater New York. Copies of the presen- 

tation, titled “Risk Theoretic Issues in Loss Reserving,” are available from the Casualty Actuarial 

Society. 
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the present (or discounted) value represents an implicit risk load. The 
long tailed lines have the most uncertain reserves and the largest differ- 
ence between the nominal and present values. 

The discounting of loss reserves has received a lot of recent attention. 
The federal Tax Reform Act of 1986 requires that property and casualty 
insurers calculate their taxes using discounted reserves. However, the 
Loss Reserve Discounting Study Group of the National Association of 
Insurance Commissioners declared that “. . discounting of loss reserves 
is not a generally accepted statutory accounting practice, except in re- 
gards to fixed and determinable payments, such as those emanating from 
workers compensation and long-term disability claims.” [I] Very re- 
cently, a prominent actuary declared himself to be “solidly in favor of 
reserve discounting, unless the change would take place without con- 
comitant recognition of the need for contingency reserves.” (2) 

While the Committee on the Theory of Risk discussed several im- 
portant principles on risk loading in their presentation, they did not 
provide a unified example applying these principles. This paper will give 
such an example. 

Our goal is to calculate risk loads for workers compensation pension 
reserves. The author considers this to be a good place to start for two 
reasons: (1) it is a line with perhaps the longest tail of reserves; and (2) 
much of the necessary mathematical work has already been done. The 
new textbook Actuarid Mathematics [3] views the future lifetime of an 
individual as a random variable. Formulas are provided which enable 
one to quantify uncertainty in the loss reserves. 

While we are focusing on workers compensation pension reserves, 
it is hoped that this example will be rich enough to highlight issues that 
are relevant to other lines of insurance. 

This paper is being written in the spirit of the Committee on the 
Theory of Risk’s presentation, that is, to provoke discussion. The reader 
is warned in advance that a number of debatable assumptions will be 
made. It is hoped that the state of the art of loss reserving will be 
advanced by this debate. 
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2. UNDERLYING CONSIDERATIONS 

It should be clear that the risk load becomes more important when 
reserves are discounted. Thus we assume that reserves are discounted. 
We shall also assume that the interest rate is known and fixed. While 
this is clearly not the case, there are a number of strategies available to 
the insurer which minimize the effect of varying interest rates. In addi- 
tion, Woll [4] argues that the insurance operation of an insurance com- 
pany should get “credited for funds it provides to the investment de- 
partment at risk-free rates” and that the “difference between the amount 
of investment income and its cost of funds” is the profit earned by the 
investment department. 

We define the expected reserve as an estimate of the expectation of 
the present value of future payments to be made. 

Let n be the total number of claims which are open. Let Pi, be a 
random variable denoting the payment made for the ifh claim at the t’* 
time period. Let Fir be an estimate of the expected value of Pir and let 
6 be the force of interest. In this case the expected reserve, R, is: 

(2.1) 

Since Pi, is a random variable, the expected reserve may be different 
from the amount, R, necessary to pay the claims. If the distribution of 
each P,, is known, it is possible to calculate the distribution of the amount 
necessary to pay the claims. We shall refer to the risk created by the 
randomness of Pit as the process risk. Bowers, et al. [3, Chapter 51, 
describe the distribution of R for the case of life annuities (i.e. workers 
compensation pension reserves). 

In practice, the distribution of Pi, is not known. It must be estimated. 
The uncertainty in the distribution of Pi, creates an additional risk which 
we refer to as parameter risk. There may be a number of ways to 
estimate the distribution of Pi,. The amount of parameter risk will depend 
on how this distribution is estimated. 

The risk load in the loss reserve should reflect both process risk and 
parameter risk. 
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Our goal is to translate the uncertainty in the amount necessary to 
pay all claims into a risk load, which is expressed in dollars. We shall 
use utility theory as our tool to accomplish this goal. The main problem 
with the use of utility theory is the selection of a utility function. Reserves 
are less subject to market discipline than are prices for new insurance 
policies. There may be strong incentives such as taxes or perceived 
profitability, which may influence the choice of a utility function. It is 
our contention that the utility function should be calibrated by examining 
decisions that are voluntarily made. A decision that is continually being 
made is whether or not to write new business with a profit margin that 
is determined by the marketplace. One could use utility theory to link 
the profit margin for new business to the risk load for loss reserves. 

It is possible that the estimates used in setting the loss reserve will 
also be used in pricing new business. For example, a mortality table 
used in setting workers compensation pension reserves could also be 
used for ratemaking. This will introduce a correlation between under- 
writing results and estimates of the loss reserve for existing claims. 

These considerations will be addressed below. This list of consider- 
ations is not intended to be complete. 

3. THE PROCESS DISTRIBUTION OF PENSION RESERVES 

Throughout this paper we will illustrate our results with a mortality 
table based on Makeham’s mortality law 13, p. 71): 

s(x) = e 
--A\ -MC.‘- I l!ln(~-I 

(3.1) 

where B > 0, A 2 -B and c 2 1. 

In this section we assume that the mortality table is known (3, 
Appendix 2AJ with A = .0007, B = .OOOOS and c = IO “‘. 

Let T be a random variable representing the future lifetime of an 
individual aged x. The cumulative distribution function of T, F(t), is 
defined: 

F(f) = I - 
s(x + t) 

s(x) . (3.2) 
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If this individual is paid a pension continuously until death at an 
annual rate of I per year, the present value of this pension is: 

The cumulative distribution function of Lfrl can be expressed in terms of 
F(r): 

Pr{& I &I} = F(r). (3.4) 

The density functions for T and &I are shown in Exhibits I and 2 
for an individual aged 40. We are assuming here, as we will throughout 
this paper, that the effective interest rate, i, is equal to 6%. 

Bowers, er al. [3, chapter 51, give formulas for the mean and variance 
of +I. For the sake of completeness, we repeat them here. 

Let A., denote the net single premium for a whole life insurance 
policy of I payable at the end of the year of death. Starting with Al 1o 
= 0, we calculate A., according to the following recursion formula: 

A., = vy, + cprAx+, . (3.5) 

Under the assumption that deaths are uniformly distributed between 
integral ages, the net single premium for a whole life insurance policy 
payable at the moment of death becomes: 

We then have: 

I - A, E[crrl] = 6 . 

(3.6) 

(3.7) 

Let 2A., denote the net single premium of a whole life insurance 
policy of I, payable at the moment of death, and calculated with the 
force of interest 26. We then have: 
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In our example, we will be considering two groups of lives. Group 
A will consist of lives for which reserves are currently being held. Group 
A is described in the following table. 

TABLE 3.1 

As Annual Pension 

30 $10,000 
40 12,500 
50 15,000 
60 17,500 

# Lives 

24 
36 
48 
60 

Group B will consist of lives which are currently being insured in 
addition to those lives for which reserves are currently being held. The 
lives which are currently being insured are described in the following 
table. 

TABLE 3.2 

Age Annual Pension 

30 $10,000 
40 12,500 
50 15,000 
60 17,500 

# Lives Pr{Claim} 

1500 .002 
1500 ,003 
1500 ,006 
1500 ,014 

Using equations (3.7) and (3.8) we calculate 30,482,413 and 630,686 
as the expected value and standard deviation of the loss reserve for 
Group A. We also calculate 6,897,916 and I, 170,220 as the mean and 
standard deviation of the incurred loss for new business described in 
Table 3.2. Since losses for the lives described in the two tables are 
independent, the means and variances in the two tables can be summed 
to obtain the mean and the variance for Group B. The resulting mean is 
37,380,329 and the resulting standard deviation is 1,329,353. 
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Bowers, et al. [3, chapter 51, use the normal approximation to 
describe the distribution of the total loss reserve. These distributions can 
be calculated numerically by use of the Heckman-Meyers [5] algorithm. 
Exhibits 3 and 4 show the numerically calculated density functions for 
Groups A and B. The “0” marks on the graphs show the density 
functions for normal distributions with the same mean and variance. The 
normal approximation is apparently a good one, and thus we use it to 
describe the process distribution. 

4. MAXIMUM LIKELIHOOD ESTIMATION OF THE MORTALITY TABLE 

The distribution of the loss reserves derived above assumed that the 
distribution was known. This is clearly not the case. The distribution 
must be estimated by mortality studies. One should consider the method 
of estimation when examining the risk in loss reserves. For example, 
one should expect a different precision in the estimates if the fitting of 
the mortality table was done by the method of moments rather than by 
maximum likelihood estimation. Also, one should expect greater preci- 
sion when the sample size is increased. 

In our example, we assume that the parameters of Makeham’s law 
were estimated by maximum likelihood. The study was assumed to 
observe n = 1000 people starting at age to = 25 and observing their 
(integral) age of death. It is assumed that everybody dies by age o = 
110. 

There are many methods of fitting mortality tables. By the choice of 
maximum likelihood as our method to estimate parameters, we do not 
necessarily mean to imply that this is the best way to fit mortality tables. 
This choice was made in order to take advantage of some very powerful 
mathematical tools which measure the uncertainty of our estimates. 

Let 6 = (A&J) be a vector consisting of the parameters for Mak- 
eham’s law. The maximum likelihood estimate, GM, of 6 is the vector 
which maximizes: 

w-1 

L(8) = n [S(f ; 6) - s(f + 1 ; 6)]“’ 
t=t, (4.1) 

where n, is the number of deaths observed in the inteval [t, t t 11. 
Hogg and Klugman [6_] provide methods of calculating 0~. Now tl,,., is 
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a statistic. For given 0, the sampling distribution of 6.~ has an approx- 
imate trivariate normal with mean 6 and covariance matrix E-. The 
probability density function, fc&#), is given by: 

The elements a,(e) of the information matrix .cQ = C-‘, are given 
by the following formulas [6]. 

and 

lo-’ aP,(e) JP,(G) I a,j(ij) = n 2 - * __ . - . 
,=I<> de, de, P,(0) 

(4.3) 

(4.4) 

5. THE PREDICTIVE DISTRIBUTION 01; PENSlON RESERVES 

To summarize the previous+section, we have given formulas for the 
distribution of the estimator, 0,~~ of our mortality table parameter in 
terms of the given parameter 6. This distribution depends upon the size 
of the sample, and the method of parameter estimation. 

What we nee_d, however, is just the opposite, i.c., the distribution - 
of 0 in terms of 8,,,. 

A historical comment may be in order here. Our problem is very 
similar to the one addressed by the Rev. Thomas Bayes for the binomial 
distribution. Stigler [7] attributes the following statement to Bayes. 

“G&W the number of times in which an unknown event has happened and 

failed: Reqrcirecl the chance that the probability of its happening in a single trial 

lies between any two degrees of probability that can he named.” 

We must go one step further. W@at we really need is the distribution 
of the loss reserve, R, in terms of 0,,.,. To get _this. w,e begin with the 
density function for the joint distribution of R. 8, and 8,~: 

(5.1) 
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Now R is independent of GM, andf(8, GM> = f($#) * f(e). Thus 

f(r, 6, hf> = fir@) * fl6~@) * f(6). (5.2) 

The process distribution, f(rl&, is assumed to be normal with the 
mean and variance calculated from equations (3.7), (3.8) and the infor- 
mation provided by Tables 3. I and 3.2. 

T_he sampling distribution of the maximum likelihood estimator, 
fl&#) is given by equation (4.2). 

Our version of “Baye_s’ Postulate”* is to assume that the prior distri- 
bution is uniform, i.e. f(e)) = I. This reflects the view that one should 
not favor one value of 6 over another. The author concedes that this 
choice is debatable. Our purpose in this paper is merely to illustrate an 
example. 

The joint distribution of R and 6, is obtained by integrating out 6. 

fir, &I) = /fir@) *f(Gk#) *f(G>d6 (5.3) 

Then 

fl6~4) = ,P fcr. 6bfM)dr 
I (5.4) 

and the predictive density of r is given by 

(5.5) 

The integrals in equations (5.3) and (5.4) are done numerically. 
Equation (5.4) is particularly difficuit since it involves a triple integral 
over an infinite region. Recall that 0 = (A, B, c)‘. The method used, 
which is best described as “brute force”, is outlined in the Appendix. 

The mean and standard deviation for Group A is 29,903,274 and 
1,700,463. The mean and standard deviation for Group B is 36,649,786 
and 2,389,486. Note the marked increased in the standard deviation 
when parameter uncertainty is considered. It is perhaps more interesting 
to note that the estimates of the mean are lowered when parameter 
uncertainty is considered. 

2 While our use of the term “Bayes’ Postulate” may correspond to common usage, it may not be 

what Bayes himself actually assumed. See Stigler 171. p. 127. 
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The mean and standard deviation for the group described by Table 2 
only has mean 6,746,5 I2 and standard deviation I ,223,232. If we as- 
sume independence of the reserves described by Tables 3. I and 3.2, we 
calculate a standard deviation of 2,094,724 for Group B by summing 
variances. This falls short of the variance calculated above. This is 
because the same estimate of 6 is used for the groups described by Tables 
3. I and 3.2. 

Plots of the predictive density of the reserve for Groups A and B are 
given in Exhibits 5 and 6. Note that the modes are equal to the means 
of the reserve distributions when parameter uncertainty is not considered. 
The skewness to the left of the predictive distribution causes its mean to 
be less than its mode. 

6. CALCULATION OF THE RISK LOAD USING UTILITY THEORY 

Let us consider an insurer who has reserves for expired polices 
described by Table 3. I. Assume that the insurer is considering three 
alternatives: (I) sell the reserves; (2) keep the reserves but do not write 
new business; or (3) keep the reserves and write the new business 
described by Table 3.2. Alternative 2 contains a provision for a risk 
load. Alternative 3 contains a provision for a risk load for the loss 
reserve plus a risk load for new business which is determined hq’ the 
competitivr murket. 

Acceptance of this alternative indicates an acceptance of the risk load 
for new business. 

Two of the three alternatives involve uncertain outcomes. We shall 
use utility theory to compare these outcomes. 

Let: 

S = surplus of the insurance company; 
RA = random variable for the reserve for Group A: 
Re = random variable for the reserve for Group B; 
i& = expected reserve for Group A; 
i& = expected reserve for Group B; 
LA = risk load for Group A; and 
P = risk load for new business. 
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Let u be a utility function. The insurer is indifferent to the three 
alternatives if: 

u(S) = E[u(S + RA + LA - RA)]; and (6.1) 

E[u(S + ji, + ,!,A - RA)] = E[u(S + Re + LA + p - &)I. (6.2) 

We shall consider utility functions of the form 
!&) = -e-‘.“b” (b > 0 and c I 1). (6.3 

This choice of utility functions is not unique. Others could be con- 
sidered. This utility function does satisfy certain criteria (e.g. risk averse 
and decreasing risk aversion) that are desirable for insurance compa- 
nies. [S] 

The Committee on the Theory of Risk suggests that the risk load 
could be obtained by solving equation (6.1) for the risk load, LA. Our 
solution is a bit more involved. Our goal is to use information provided 
by the decision to compete for new business in the marketplace. This 
information should provide us with some hints as to which utility function 
to use. We would like to choose the risk load, LA, and utility function 
parameters, b and c, which give a simultaneous solution to equations 
(6.1) and (6.2). 

Since we have two equations with three unknowns, we will pick 
several arbitrary values of c, and solve the resulting equations for b and 
LA. The solution will be iterative. We start by taking an initial guess at 
LA. We then repeat the following steps until the values of b and LA 
converge. 

Step Description 
1. Solve Equation (6.2) for b. 
2. Solve Equation (6.1) for LA. 

Convergence is rapid. Numerical integration was used to calculate 
the expected values and the secant algorithm [9] was used to solve the 
equations. 

In our example we set the surplus equal to one half of the expected 
loss for the new business, or 3,373,256. We set the profit equal to 12% 
of the surplus, or 404,791. The simultaneous solutions to equations (6.1) 
and (6.2) for given values of c appear in the following table. 
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TABLE 6.1 

C 
- 

0.5 
0.6 
0.7 
0.8 
0.9 
I .o 

b LA 

6,880,932 348,034 
4,042,686 376,560 
3.238.015 402,100 
2.92 I ,056 425,562 
2,783,539 447,068 
2,726,577 466,740 

The linking of equations (6.1) and (6.2) severely limits the subjective 
element in choosing the parameters of our utility function. The risk load, 
LA, is confined to a relatively narrow range. The main determinant of 
this range is the profit loading which is in turn determined by market 
pressures. The decision to compete is a real decision made by company 
management. 

It was mentioned in the introduction that carrying reserves at their 
nominal value represented an implicit risk load. We now compare this 
implicit risk load with the explicit risk load calculated above. The 
amounts reported here represent the mean of the predictive distribution 
(equation 5.5). The “implicit risk load” is the difference between the 
predictive mean and expected loss reserve, 29,903,274, for Group A. 
We also consider the interest rate of 3.5% which many regulators allow 
companies to use for discounting workers compensation pension 
reserves. 

TABLE 6.2 

Interest Rate Predictive Mean 

3.5% 39,158,882 
0.0 64,425,775 

Implicit Risk Load 

9,255,608 
34,522,501 
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7. DISCUSSION 

This paper has presented an example of how one might approach the 
problem of calculating risk loads for loss reserves. This being an ex- 
ample, we took great latitude in our assumptions and methods. We 
believe that this example is illustrative of a general approach that can be 
taken. However there are a number of conceptual and technical problems 
that must be addressed. 

Central to this approach is that a probabilistic model for loss reserves 
must be specified. In our case we assumed that the future lifetime for 
an individual is a random variable whose distribution is given by Make- 
ham’s mortality law.’ It will be difficult to come up with such a model 
which is appropriate for other lines of insurance. 

The reason for selecting a model is that the parameters of the model 
must be estimated from data. The design of the study and the method 
of estimation will determine the predictive distribution of the loss re- 
serves. Jewel1 [lo] demonstrates the effect of study design for predicting 
claims which have been incurred but not yet reported. His methods are 
similar to those described above. 

This approach is Bayesian. Great care must be exercised in selecting 
the prior distribution. While our assumption that the 8’s are uniformly 
distributed may seem innocent enough, consider a reparameterization of 
Makeham’s law. For example, 
could then estimate 6 

we could have 6’ = (0:, 02, 0:)‘. One 
M, and assume that the 4’s are uniformly distrib- 

uted. Question: would this make a noticeable difference in our estimation 
of the expected loss reserve, or the risk load? [ 1 l] 

There are computational problems with this approach. The dimension 
of the integral is equal to the number of parameters estimated. Actuarial 
models tend to have many parameters. Also, the integrand can be time 
consuming to evaluate. This is not an overwhelming problem. With the 
powerful computers that are available today, the problem can be solved. 
It would be nice to find a better solution. 

These are only a few of the problems that must be solved. 

1 It is not even agreed that Makeham’s law is appropriate for future lifetime. See Dick London, 
Gradunrion, ACTEX Publications, 1985, and Sunivu/ Models, ACTEX Publications, 1987, for a 
description of other approaches to fitting mortality tables. 
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The purpose of this paper is to continue the debate on risk loading 
and discounting of loss reserves. It is hoped that it provides a clearer 
view of the issues involved and an indication of what might be possible. 

APPENDIX 

Most of the calculations in this paper can be done with elementary 
numerical analysis. This subject is well within the grasp of most actu- 
aries. However, evaluating the integral in equation (5.3) requires con- 
siderable effort. This appendix outlines the method of evaluating this 
integral. 

The probability distributions involve several numerical constants 
which cancel when we form the quotient in equation (5.5). In what 
follows we will indicate the omission of the numerical constants in the 
probability distributions by replacing the symbol ‘I=” with “x”. 

Our goal is to evaluate: 

Jr, e, = fcrp, *f&f(e) +Mx 
I (5.2) 

We have: 

f(rlh x e 
-(r-)&l+2cr~ %ij) 

with ~(6) and a-‘(6) determined from equations (3.7). (3.8) and the 
information in Tables 3.1 and 3.2. 

We have: 
fcj&)) cx p-1 . ,-lA,-7i,,X ‘Iii,--?irJ 

with C-’ = ~4 = (a,j(G)). The formula for the LI,,‘s is given by Equation 
(4.4). 

The general form of the partial derivative dP,(G)/iN, is given by Hogg 
and Klugman [5). 

:i’s method 1X(-’ was calculated by factoring ,X = LL’ by Cholesk 
[9] and multiplying the diagonal elements of I!.. 

We chose f(6) = 1 when the restrictions of equation 
satisfied andf(8) = 0 otherwise. 

(3.1) were 
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Equation (5.2) can now be integrated numerically over a large three 
dimensional rectangle. The integral could be more easily evaluated if we 
had some idea how large this rectangle should be. We tried the following 
linear transformation: 

where CL is the covariance matrix for 6 = 6,. The motivation for this 
transformation was that if C was approximately constant, than the rec- 
tangle could be contained in a region corresponding to the high density 
region of a normal distribution, say - 3 5 Z; I 3 for i = 1, 2 and 3. 

It didn’t work. The region looked like a tadpole with the body in the 
high density region of a normal distribution, but the tail extended out 
quite far. After considerable trial and error, we settled on the following 
rectangular region. 

-6 I Z, 5 3, -12 5 Z2 5 6 and -40 I Z3 5 6. 

The numerical integration was done by the trapezoidal rule with 9 
intervals along the Z,-axis, 19 intervals along the Zz-axis and 45 intervals 
along the Zj-axis. The author feels comfortable with the numerical results 
obtained in the final answers, but there ought to be a better way to do 
this. 
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