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FOREWORD 

The Casualty Actuarial Society was organized in 1914 as the Casualty Actuarial and Statistical 
Society of America, with 97 charter members of the grade of Fellow; the Society adopted its 
present name on May 14, 1921. 

Actuarial science originated in England in 1792, in the early days of life insurance. Due to 
the technical nature of the business, the first actuaries were mathematicians; eventually their 
numerical growth resulted in the formation of the Institute of Actuaries in England in 1848. The 
Faculty of Actuaries was founded in Scotland in 1856, followed in the United States by the 
Actuarial Society of America in 1889 and the American Institute of Actuaries in 1909. In 1949 
the two American organizations were merged into the Society of Actuaries. 

In the beginning of the twentieth century in the United States, problems requiring actuarial 
treatment were emerging in sickness, disability, and casualty insurance-particularly in workers’ 
compensation-which was introduced in 1911. The differences between the new problems and 
those of traditional life insurance led to the organization of the Society. Dr. I. M. Rubinow, who 
was responsible for the Society’s formation, became its first president. The object of the Society 
was, and is, the promotion of actuarial and statistical science as applied to insurance other than 
life insurance. Such promotion is accomplished by communication with those affected by insur- 
ance, presentation and discussion of papers, attendance at seminars and workshops, collection of 
a library, research, and other means. 

Since the problems of workers’ compensation were the most urgent, many of the Society’s 
original members played a leading part in developing the scientific basis for that line of insurance. 
From the beginning, however, the Society has grown constantly, not only in membership, but 
also in range of interest and in scientific and related contributions to all lines of insurance other 
than life, including automobile, liability other than automobile, fire, homeowners and commercial 
multiple peril, and others. These contributions are found principally in original papers prepared 
by members of the Society and published in the annual Proceedings. The presidential addresses, 
also published in the Proceedings, have called attention to the most pressing actuarial problems, 
some of them still unsolved, that have faced the insurance industry over the years. 

The membership of the Society includes actuaries employed by insurance companies, rate- 
making organizations, national brokers, accounting firms, educational institutions, state insurance 
departments, and the federal government; it also includes independent consultants. The Society 
has two classes of members, Fellows and Associates. Both classes are achieved by successful 
completion of examinations, which are held in May and November in various cities of the United 
States and Canada. 

The publications of the Society and their respective prices are listed in the Yearbook which is 
published annually. The Syllabus ofExaminations outlines the course of study recommended for 
the examinations. Both the Yearbook, at a $10 charge, and the Syllabus ofExaminations, without 
charge, may be obtained upon request to the Casualty Actuarial Society, One Penn Plaza, 
250 West 34th Street, New York, New York 10119. 
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THE CONSTRUCTION OF 
AUTOMOBILE RATING TERRITORIES 

IN MASSACHUSETTS 

ROBERT F. CONGER 

Abstract 

In Massachusetts, the past ten years have witnessed the evolution of 
an increasingly sophisticated system of methodologies for determining 
the definitions of rating territories for private passenger automobile 
insurance. In contrast to territory schemes in other states, which tend 
to group geographically contiguous towns, these Massachusetts method- 
ologies have had as their goal the grouping of towns with similar 
expected losses per exposure, regardless of the geographic contiguity or 
non-contiguity of the grouped towns. This paper describes the evolving 
Massachusetts methodologies during that ten year period. 

The paper includes the latest methodology, which was employed to 
establish rating territories for use in Massachusetts in 1986. That meth- 
odology evaluates by-town claim frequency and by-town claim severity 
separately and then combines the results. The claim frequency approach 
is to compile detailed insurance data by town, and to compare those 
actual observations to an a priori model of the expected insurance losses 
in each town. The model and the actual observations are blended using 
empirical Bayesian credibility procedures. The claim severity analysis 
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uses a two layer hierarchical empirical Bayesian method in which coun- 
tywide and statewide severity data supplement less than fully credible 
town severity data. The combined results of the frequency and severity 
analyses serve as the basis for ranking the towns according to expected 
losses per exposure and for placing the towns into rating groups. 

The evolution of the current Massachusetts methodology chronicled in this paper has 
involved the development and exchange of ideas by a number of individuals in addition 
to the author. The other principal players have been Richard Derrig, William DuMouchel, 
Howard Mahler, Stefan Peters, Peter Siczewicz, and Richard Woll. Credit is due also to 
Ronald Dennis and Lesley Phipps, who played invaluable supporting roles. 

1. INTRODUCTION 

Classification of risks, including classification of risks by territory, plays an 
important part in the determination of private passenger automobile insurance 
premiums in the United States (Stem [29]). In Massachusetts, for example, an 
experienced driver in Boston may pay more than $400 for a package of com- 
pulsory liability coverages costing less than $200 in the territory with the lowest 
rates. In addition to the magnitudes of the premium differences that depend on 
risk classification, there are significant public policy issues related to classifi- 
cation (or categorization) of the driving public. As a consequence, private 
passenger automobile insurance risk classifications have long been a focus of 
debate in Massachusetts (Massachusetts Division of Insurance [16]) and else- 
where (SRI International [28]). As long ago as 1950, the electorate of Massa- 
chusetts specifically voted on a classification issue; in that year, a proposal to 
eliminate automobile insurance territorial rate variations was placed on the ballot 
as a referendum question (but was defeated). While the maintenance and pricing 
of automobile rating territories is just one of many classification issues, it is a 
very important one. 

In recent years the debate about Massachusetts automobile insurance terri- 
tories has shifted to the technical arena. Mathematicians, statisticians, and 
actuaries have labored to develop procedures that are practical and workable, 
and that produce territories best satisfying the criteria suggested nine years ago 
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(State Rating Bureau (SRB) [23]): equity, homogeneity, discrimination, reli- 
ability, stability and compatibility. Briefly, in the context of territory definitions, 
these criteria were defined as follows: 

Equity 

Homogeneity 

Discrimination 

Reliability 

Stability 

Compatibility 

The costs of insurance should be distributed fairly among 
different classes of insureds. “Statistical” equity refers to pric- 
ing in accordance with expected losses, while social equity 
refers to public policy concepts of “fairness.” The latter con- 
cept is viewed as a series of constraints that perhaps would 
require recombining statistically justifiable classification sep- 
arations. 
All the towns in a territory should have approximately the 
same expected insured losses per car. 
The probability of a town being placed in the wrong territory 
should be minimized. 
The index used to categorize a town should be a good esti- 
mator of the expected insured losses per car in the town. 
The assignments of towns to territories should not change 
dramatically over time. 
A single set of territory definitions should be established so 
as to be reasonably appropriate for each of the insurance 
coverages. 

The satisfaction of these criteria generally has been sought through efforts 
to develop an effective way to estimate the expected insured losses per car in 
each town. These estimates provide a basis for identifying towns in which 
expected losses are similar, and for grouping towns which are as homogeneous 
as practicable. The evolution has yielded a territory review methodology that 
has several interesting features. 

* A regular review, typically biennial, of all territory definitions. 

* The use of detailed insurance data, by town, as the basic information 
underlying the determination of the town groupings. 

* The development of a model that predicts variations in claim frequency 
among towns, and the use of empirical Bayesian credibility procedures to 
combine the predicted claim frequency patterns with the actual by-town 
claim frequencies. 
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. The implementation of an empirical Bayesian credibility procedure that 
estimates the average claim severity in a town by credibility weighting 
(a) the observed claim severity in the town with (b) the claim severity in 
the town’s county, and (c) the statewide claim severity. 

* The development of several measures of the homogeneity of various 
groupings of towns into territories. 

This paper describes the latest territory review methodology and describes 
the development of that methodology. All of the evolutionary steps described 
in this paper reflect methods evaluated for and/or included in actual filed rec- 
ommendations to the Massachusetts Commissioner of Insurance. Thus, while 
various methodological advances have been accomplished, the parties necessar 
ily have observed a constraint that any methodology be sufficiently practical to 
include in a Massachusetts rate filing. 

The details of the latest methodology, which is described in this paper, are 
set forth in a rate filing of the Massachusetts Automobile Rating and Accident 
Prevention Bureau’ (MARB [ 141) and in the resulting decision of the Commis- 
sioner (Massachusetts Division of Insurance [20]). This paper relies in part on 
that Bureau filing, which is quoted or paraphrased without specific attribution 
at several points in this paper (see Appendices A and B). 

2. HISTORY 

Automobile insurance rates have varied according to location of garaging 
for many years. Shortly after the turn of the century, automobile insurers 
recognized variations in accident frequency from one area to another and divided 
the United States into two rating territories (All-Industry Research Advisory 

’ The reader may be assisted by a brief description of the regulatory process that governs Massa- 
chusetts private passenger automobile insurance and a brief description of the parties involved. The 
Commissioner of Insurance, who is the state regulator, affirmatively establishes rates, territories, 
rating procedures, and so forth, effective January 1 each year. The Commissioner has statutory 
authorization to allow insurance companies to set rates competitively, but has chosen to retain the 
rate setting authority himself in each of the recent years, following a brief experiment with 
competitive rating in 1977. In establishing the various rating components, the Commissioner must 
rely on recommendations from participants in the annual rate hearing process. With regard to the 
establishment of territory definitions, three participants have offered the principal recommendations. 
First, the Massachusetts Automobile Rating and Accident Prevention Bureau (MARB), also known 
as the Massachusetts Rating Bureau, represents the insurance industry. Second, the State Rating 
Bureau (SRB), which is an arm of the Division of Insurance, the state regulatory body on insurance 
matters, participates routinely. Third, the Attorney General (AG) intervenes in the hearing process, 
ostensibly on behalf of the motoring public. 
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Council (AIRAC) [ 11): Greater New York, Boston and Chicago; and Remainder 
of the United States. 

By 1917, the country was divided into eleven rating territories (DuMouchel 
[3]): Greater New York; Chicago and St. Louis; Boston; Philadelphia; Provi- 
dence; Baltimore, Washington, D .C . , and Pittsburgh; Detroit, Indianapolis, and 
Milwaukee; Minneapolis and St. Paul; Alabama, Kentucky, Tennessee; Arkan- 
sas and portions of other states; Arizona and other states. 

Over the years, the system of territories proliferated, and as the patterns of 
state definition of automobile insurance laws and state regulation of automobile 
insurance rates solidified by 1950, it became clearly appropriate for each state 
to have unique rates. In addition, most states were subdivided into a number of 
territories, as is the case today; the average number of territories per state is 
fourteen (AIRAC [ 11). 

The early territory definitions apparently were established largely by judg- 
ment, but typically many rating territories were subdivided into two or more 
statistical territories, so that possible alterations to the existing scheme of rating 
territories could be studied in a systematic fashion. 

In recent years, various methods have been used in different states to review 
and revise territory definitions. Those methods are beyond the scope of this 
paper but are described in other sources (California Department of Insurance 
[2]; McDonald and Thornton (Texas) [24]; New Jersey Department of Insurance 
[25]; Rhode Island Ad Hoc Committee on Territorial Rating [26]; AIRAC [l]). 

3, THE EVOLUTION OF MASSACHUSETTS METHODOLOGIES 

Perhaps nowhere has the problem of establishing territory definitions been 
subjected to the frequent review and pace of methodological development that 
have occurred in Massachusetts over the past ten years. Several factors have 
contributed to this history, including: 

. The availability of a long and continuing history of detailed insurance 
data by town, for each of the 351 cities and towns that comprise Massa- 
chusetts.2 This data base provides ready building blocks for alternative 
territory schemes, and the continuity of reporting of town data facilitates 
regular reviews and revisions of such schemes. 

’ In Massachusetts, unlike some states, all land falls inside the boundaries of cities and towns. Note 
that references below to 360 “towns” include a subdivision of Boston into ten “towns” for automobile 
rating purposes. 
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. Regulatory and statutory pressures to flatten rate differentials between 
territories, which have led to an increased interest by insurers in at least 
knowing the indicated rates for each geographic cell of the state. 

* Regulatory demands for “scientific” approaches to all aspects of ratemak- 
ing. 

Although the start of the evolution of the current territorial review process 
was stimulated by the revision of territories that took effect in 1977, some 
mechanisms for the regular review of territories were in place prior to 1977. 

As recently as 1976, two sets of Massachusetts automobile rating territories 
existed, one set for liability coverages and one set for physical damage cover- 
ages.3 As if the existence of two sets of territories were not sufficiently confus- 
ing, liability territory 1 was charged the highest liability rates, while physical 
damage territory 1 was charged the lowest physical damage rates. Since 1977, 
the various parties have unanimously agreed that a single set of territories should 
apply to all coverages (the SRB’s “compatibility” criterion), and that the poten- 
tial marginal actuarial precision to be gained by maintaining separate territories 
did not merit the accompanying additional administrative costs and confusion. 
This position is supported by the fact that most drivers purchase physical damage 
coverages and increased limits liability coverage in addition to compulsory 
liability coverages. 

Prior to the 1977 rate revision, the methodologies used for devising liability 
and physical damage rating territories also were independent (SRB [23]). For 
physical damage coverages, twenty-four territories had been established on a 
geographic basis similar to that used in other states currently. For liability 
coverages, towns were grouped together into six territories based on the simi- 
larity of historical loss pure premiums4 for the two principal compulsory injury 

3 The existence of separate territory definitions for different coverages was due, at least in part, to 
the fact that the two different sublines were under the jurisdiction of two different insurance industry 
rating bureaus in that era. 

4 Loss pure premium is defined as: (a) the claims dollars associated with claims against policies 
insuring cars in the town, divided by (b) the number of exposures, or insured cars, in the town. 
All data-exposures, claim counts, and losses-are coded to the town in which the car is garaged 
(not, for example, to the town in which the accident occurs). As is fairly common in the actuarial 
techniques applied to classification issues, loss development and trend are ignored on the assumption 
that they will not have measurably different effects in the different towns. 
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coverages, no-fault and liability; the two coverages were combined into a single 
pure premium in a somewhat complicated fashion that is beyond the scope of 
this paper.5 A classical credibility factor was assigned to each town’s data, 
based on a full credibility standard of 1000 claims. For any town with less than 
full credibility, the historical town pure premium was credibility weighted 
against the underlying pure premium for the territory to which the town had 
been assigned previously. The resulting “formula pure premiums” were used to 
rank the towns and to group each town with other towns having similar formula 
pure premiums, so as to produce six territories. Finally, various constraints 
were imposed to prevent a town from moving too many territories in any one 
revision or reversing direction from its movement in the previous revision. 

The term “territory” in the 1976 liability methodology, and in all method- 
ologies adopted since then, was purely an historical convention; no geographical 
constraints were imposed on the selection of towns to be included in a territory. 
Thus, each of the six territories could contain a variety of non-contiguous towns 
from all parts of the state. This approach is potentially somewhat confusing to 
the motoring public, who might hold a more geographically-based concept of 
territory; in recent years, the Commissioner has been offered proposals for 
partial imposition of geographic constraints (Massachusetts Division of Insur- 
ance [17], AG [lo]). Each of the reviews since 1977, however, has indicated 
substantial variations in pure premiums among neighboring towns. Thus, im- 
position of geographical constraints would carry a cost: a reduction in the claims- 
experience homogeneity of the resulting territories. The Commissioner, since 
1977, has maintained the freedom from geographic constraint in grouping towns 
into territories, and many of the territories include towns from all corners of 
the state. 

The 1977 Revision of Territories 

The review of territories for 1977 (SRB [23]) indicated that the historical 
methodologies were failing to produce homogeneous territories comprised of 
towns having similar pure premiums; rather, the town pure premiums within a 
territory varied widely. Several methodological sources of the inadequacy of 
traditional review techniques were identified: 

. Excessive reliance on geographical factors in the establishment of physical 
damage territories; 

5 No use was made of data for the property damage liability coverage. The bodily injury territory 
definitions applied to this coverage as well. The exclusion of PDL data apparently was attributable 
in large part to the frequent enactment of statutes changing the nature of this coverage. 
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* Reliance on a subset of liability coverages to formulate liability territories, 
particularly since the subset used (bodily injury coverages) was perceived 
in 1976 as being subject to relatively great volatility in claim severity; 

e Inadequate credibility treatment; and 

* Excessive application of constraints on town movements. The constraints 
applied included both direct constraints-actual restrictions on town move- 
ments-and indirect constraints, such as assigning the complement of 
credibility to the town’s former territory. 

For 1977, an entirely new algorithm was introduced by the Massachusetts State 
Rating Bureau (SRB [23]). The new approach diverged from past methods in 
several respects. 

First, claim frequency6 rather than pure premium data were used. The 
exclusion of claim severity data was justified on the basis of the relatively great 
variability that the SRB perceived in such data, and the difficulty of studying a 
phenomenon whose distributions are “poorly known, badly skewed, and difficult 
to estimate from samples of actual experience” (SRB [23]). Although the pos- 
sibility of systematic variations in claim severity from town to town was not 
denied, apparently the value of any information in the historical severity data 
was believed to be overwhelmed by the instability introduced by the use of such 
data. Preliminary tests underlying the 1977 review indicated to the actuaries at 
the State Rating Bureau that the use of claim frequency alone produced satis- 
factorily discriminatory territories. Subsequent reviews (SRB [22]); MARB [ 131; 
MARB [14]; see below) have developed methodologies for extracting claim 
severity information from the historical data without also capturing undesirable 
chance variations in severity. These reviews have indicated that, with the benefit 
of the new methodologies, claim severity patterns are quite significant and 
should be reflected in the analysis of town data; but these new methodologies 
had not been developed by 1976. 

Second, the review for 1977 relied on claim frequencies for the physical 
damage coverages (comprehensive and collision) only; no liability data were 
used, even though the resulting territories applied to all coverages.’ A combined 

6 Claim frequency is defined as: (a) the number of claims against policies insuring cars in the town, 
divided by (b) the number of exposures, or insured cars, in the town. See also the definition of loss 
pure premium, above. 

’ By 1977, a single insurance industry rating bureau (MARB) had jurisdiction over all coverages; 
as a result, a unified approach to territories could be implemented more readily than in prior years. 
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“frequency” was constructed as the sum of comprehensive and collision claim 
counts, divided by comprehensive exposures. Concerns with the stability of 
bodily injury data, particularly for small towns, apparently contributed to the 
decision to exclude these data; the impact of this concern was amplified by the 
difficulty at that time of identifying an appropriate data element to which the 
complement of credibility could be applied systematically. The property damage 
liability (PDL) data, as in earlier years, was tainted by the effects of numerous 
statutory coverage changes, and thus was excluded from the methodology. The 
SRB analysts tested the performance of the constructed frequency, however, 
and concluded that this constructed physical damage frequency could be used 
to establish a single set of territories that would be acceptably homogeneous for 
every coverage. Later analyses reached a different conclusion and developed 
approaches that could successfully employ data from all coverages. 

Third, the graduated credibility approach used prior to 1977 was replaced 
by a decision to assign zero credibility to the 72 smallest towns (based on their 
exposure volume) and full credibility to all larger towns. The small towns were 
assigned judgmentally to the same territory as a nearby larger “mother” town 
having similar demographic, economic, and industrial characteristics. This ap- 
proach represented a rejection of the former complement rather than a rejection 
of the former credibility formula itself. In prior liability reviews, the complement 
of credibility was assigned to the data for a town’s existing territory. For 1977, 
the existing territories were seen as being too out-dated to perform this function. 
Further, the existing territories for physical damage had been based on geo- 
graphical contiguity, and thus did not necessarily provide an appropriate point 
of departure for the development of territories based on expected losses. Finally, 
the prior approach was seen as being structurally too restrictive on town move- 
ments. The 1977 resolution of the credibility issue was not entirely satisfactory, 
however, in that it provided no partial credibility and provided no systematic 
basis for the treatment of the “noncredible” towns. These issues were the focus 
of considerable analysis in subsequent reviews. 

Fourth, as in the review for 1976 liability territories, the review for 1977 
ranked towns according to the selected data element (in this case, the constructed 
physical damage claim frequency) and then towns having similar values were 
combined into territories. The review for 1977, however, introduced a more 
systematic method (which is beyond the scope of this paper) for deciding where 
to make the cutoff between one group of towns and the next. The result was 
one set of twenty-four territories used for all coverages in 1977. 

’ Except for a few coverages that have rates not varying by territory 
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Finally, the numerous constraints on town movements were removed, and 
as a result many towns were affected sharply by the territory reassignments. In 
later reviews, constraints were reimposed. These constraints were intended 
primarily to avoid sudden rate changes. 

The method used for 1977, while lacking many of the important features of 
the later methodologies, can be credited with four significant achievements. 
First, it produced territories that were more homogeneous than the predecessor 
territories. Second, it highlighted the potential perils of including claim severity 
results in an assessment of the claims experience of smaller towns. Third, it 
pointed to the need for a credibility procedure that could deal with the small 
towns. Finally, and more generally, by dislodging the embedded process, the 
review of 1977 served to stimulate the ongoing research that followed. 

The MARB Review for 1981 Territories 

The 1977 territories remained intact through 1980. During 1980, the staff 
of the Massachusetts Automobile Rating and Accident Prevention Bureau 
(MARB), working with the Class-Territory Subcommittee of the Bureau’s Pri- 
vate Passenger Actuarial Committee, conducted an extensive review of the data 
that had emerged since the 1977 revision, a review of the methods used in the 
1977 revision, and research into possible methodological improvements. That 
research and review culminated in a filing (MARB [ 111) that recommended a 
revision to the territory definitions based on a method that addressed some of 
the perceived shortcomings of the techniques used to construct the 1977 terri- 
tories and that utilized the latest data. The key aspects of that proposed method 
are discussed below. 

The MARB proposal for 1981 continued to rely on town-to-town differences 
in claim frequency rather than on town-to-town pure premium patterns. For 
each coverage, each town was assigned a severity equal to the statewide severity. 
A synthetic pure premium for the town was calculated as the product of (a) the 
town claim frequency, and (b) the statewide claim severity: 

PPr,. = Yr,, x xc, 
where Y,,, is the claim frequency for town t, coverage c; 

X, is the statewide average claim severity for coverage c; and, 
PP,,. is the synthetic pure premium for town t, coverage c. 

The inclusion of the statewide average claim severity served only to intro- 
duce a measure of the relative importance to overall premium of the various 
coverages. This approach, then, continued to ignore any town-to-town differ- 
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ences in claim severity. As in the 1977 review, the practitioners at this time 
believed that claim frequency effects explained most of the significant variation 
in pure premiums. The exclusion of the severity information was also based on 
concerns about the instability of the severity data, and on the absence of a 
credibility or modeling approach capable of separating information from noise 
in the severity data. While later reviews filled this void and indicated the 
significance of severity differences between towns, the later reviews also con- 
firmed that the claim frequency effects were the dominant elements in defining 
town-to-town differences in pure premiums. 

A major difference between the MARB proposal for 198 1 and its predecessor 
methodologies was the inclusion of data for all the coverages for which rates 
varied by territory.9 The use of data for all coverages has been retained in 
subsequent territory reviews. The MARB cited several reasons for this change 
in approach. First, public policy considerations seem to indicate, a priori, that 
the motorists in a town ought to bear more responsibility, not less, for the at- 
fault (liability) claims than for the physical damage claims; thus, the liability 
coverages ought to be returned to the territory review process. Second, the 
review for 1981 indicated that liability claim frequency patterns among towns 
did not parallel physical damage claim frequency patterns (contrary to the 
conclusions implicit in the preceding methodology), and thus that physical 
damage data could not be used as a proxy for all coverages. Third, the review 
indicated that, contrary to prior expectations, instability in liability claim fre- 
quencies was not a serious problem, so that there was no need to exclude them. 
Fourth, the statutory definition of PDL had finally stabilized (in 1977), so a 
usable data series for that coverage could, at last, be compiled. Fifth, the 
liability coverages are too large a component of overall rates to be ignored. 
Finally, the MARB review for 1981 introduced an empirical Bayesian credibility 
procedure that seemed to be capable of accommodating any inherent variations 
in claim frequencies. The several coverages were incorporated in the territory 
review process for 1981 by creating an overall average synthetic pure premium 
for each town that is simply the exposure-weighted average of the synthetic 
pure premium for each coverage: 

z Et,. x PP,,. 

9 Compulsory Bodily Injury Liability (known as coverage A-l), compulsory No-Fault BI (A-2), 
compulsory Property Damage Liability (PDL), Collision, and Comprehensive. 
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where E,,. is insured exposures for town t, coverage c; 

PP,,. is the synthetic pure premium for town t, coverage c (see above); 
and, 

Zr is the all-coverages synthetic pure premium for town t. 

This formula not only returns liability data to the analysis; it actually accords 
them dominant weight (since the insured exposures are greater for the compul- 
sory liability coverages than for the optional physical damage coverages). This 
weighting scheme simply reflects the contribution of each coverage to overall 
premium rather than any conclusion that liability data are inherently more 
suitable for territory analyses. 

A major area reviewed for 1981 was the treatment of credibility and the 
element to which the complement of credibility is assigned. Concerns with these 
aspects of the 1977 review included the absence of any systematic basis for 
assigning a complement to non-credible towns; the determination of a point of 
full credibility; and, the absence of any partial credibility treatment. 

The MARB review for 1981 introduced a significant new element to sup- 
plement actual town data, to the extent town data were judged to be less than 
fully credible. As described above, the 1976 procedure assigned the complement 
of the town credibility to data from the town’s previous territory, and the 1977 
procedure judgmentally assigned the indications from a nearby “mother” town 
to a town whose data was judged not credible. In its proposal for 1981, the 
MARB introduced a claim frequency model that was assigned the complement 
of the town’s credibility. This model estimated the claim frequency (or, more 
properly, the all-coverages synthetic pure premiums, 1,) in each town as a linear 
function of traffic densitylo in each town. For each town, the model A4, was 
calculated as: 

M, = aD, + b, 

where D, is the town “traffic density” 
= E, + Road-miles in town; 

Ef is the PDL exposure in the town; 

a and b are regression coefficients; and, 

M, is the model synthetic pure premium for the town. 

” The relationship of traffic density to geographical variations in insurance experience has been 
observed in the literature (e.g., HLDI [9]; AIRAC [l]), as well as in some of the methodologies 
used in other states. 
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The regression parameters a and b were calibrated by a weighted linear least 
squares regression of It against Dt (weighted by compulsory coverage exposures 
in each town). A similar (but not identical) model has been used in all subsequent 
reviews. 

The “traffic density” variable does not measure all components of traffic 
density. The numerator includes only a count of vehicles insured in a town. 
Unfortunately, reliable vehicle count data are not available from the Registry 
of Motor Vehicles, so the insured exposures were utilized, and any town-to- 
town variations in compliance with the state’s compulsory insurance laws are 
assumed away. This is not perceived as a major modeling problem in Massa- 
chusetts. The vast majority of motorists (on the order of 95%) do purchase 
compulsory insurance. Furthermore, the insurance statistical plan does properly 
match insured exposures and insured losses, so that any systematic patterns of 
coverage should be captured by other elements of the analysis. The traffic 
density variable also omits the effect of one town’s residents driving in another 
town. This omission was purposeful, as there was no intent to directly attribute 
to residents of one town the effects of congestion caused by non-resident drivers. 
Thus, while D, is not traffic density in a wholly traditional sense, the MARB 
concluded that it was adequate and appropriate for the task at hand. 

The calculated traffic densities vary significantly-by a factor of SO-from 
town to town, as illustrated in Exhibit 2 for a sample of towns, and the regression 
relationship explained a significant portion of the town-to-town variations’i in 
I f- 

Other explanatory variables were explored. For the most part, these variables 
related to the size or socio-economic characteristics of a town. It did not prove 
possible at that time to identify a variable for which data were available and 
that contributed meaningfully to the explanatory power of the regression. 

M,, then, is an estimate of the town’s claim frequency based on a modeling 
process; Z, reflects the actual claim frequency. The analysis utilized It, to the 
extent credible, and assigned the complement of the credibility to M,. 

” Boston data did not fit the regression relationship and thus were omitted from the calibration of 
regression parameters. The assignment of the Boston subdivisions to territories was judgmental, 
placing each section of Boston in an independent territory, as had been done for 1977. 
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EXHIBIT 1 

1985 MASSACHUSETTS PRIVATE PASSENGER BASE RATES FOR 
EXPERIENCED OPERATORS 

COVERAGE 

TERRITORY* 

BI NO-FAULT 

LIABILITY BI 
(A-1) (A-2) PDL COLLISION 

COMPRE- 

HENSIVE 

1 s 43 $10 $113 $147 $ 67 
2 46 11 122 154 68 
3 48 12 123 153 69 
4 49 12 127 158 71 
5 55 14 129 159 74 
6 54 13 134 162 73 
7 55 14 142 167 76 
8 59 15 146 172 85 
9 62 16 151 175 84 

10 60 15 155 187 94 
11 64 16 157 179 87 
12 73 19 164 187 91 
13 75 19 172 195 110 
14 74 19 175 200 125 
15 75 19 177 217 129 
16 83 22 189 234 154 

17 63 16 155 190 97 
18 77 20 179 226 123 
19 84 22 182 238 129 
20 78 20 175 229 125 
21 107 27 204 310 158 
22 117 31 229 329 158 
23 89 23 195 283 152 
24 72 19 174 221 115 
25 82 21 189 238 137 
26 91 24 212 259 159 

* Territories 17-26 are subdivisions of Boston. 
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EXHIBIT 2 

EXAMPLE OF TRAFFIC DENSITY CALCULATIONS 

TOWN NAME 
1983 PDL 

EXPOSURES 
ROAD 
MILES 

(3) 
TRAFFIC 
DENSITY 
(1) + (2) 

Hampden 2,968.9 57 52. I 
Holland 914.0 37 24.7 
Montgomery 314.4 31 12. I 
Tolland 165.8 38 4.4 
Wales 641.7 28 22.9 
Amherst 10,022.2 121 82.8 
Easthampton 8,556.3 83 103.1 
Northampton 13,633.4 178 76.6 
South Hadley 8,218.0 99 83.0 
Ware 4,745.5 121 39.2 
Belchettown 4,679.7 147 31.8 
Hadley 3.034.7 80 37.9 
Hatfield 2,023.O 59 34.3 
Huntington 1,098.6 54 20.3 
Williamsburg 1.492.7 48 31.1 
Chesterfield 555. I 56 9.9 
Cummington 439.5 62 7.1 
Goshen 403.7 43 9.4 
Granby 3.104.1 70 44.3 
Middlefield 212.1 37 5.7 
Pelham 658.7 43 15.3 
Plainfield 294.4 49 6.0 
Southampton 2.527.3 71 35.6 
Westhampton 678.1 49 13.8 
Worthington 622.1 64 9.7 
Cambridge 30,201.7 142 212.7 
Lowell 37,722.5 239 157.8 
Everett 15,385.O 63 244.2 
Malden 23,400.l 107 218.7 
Medford 26,637,s 151 176.4 
Newton 44,546.0 311 143.2 
Somerville 26.169.1 105 249.2 
Waltham 27.703.2 152 182.3 
Watertown 17.042.1 77 221.3 
Arlington 25,049.7 121 207.0 
Belmont 14,010.8 82 170.9 
Chelmsford 19,038.3 186 102.4 
Concord 9,960.S 109 91.4 
Dracut 12,546.6 112 112.0 
Framingham 35,207.4 233 151.1 
Hudson 9,345.9 79 118.3 
Lexington l&274.3 153 119.4 
Marlborough 17,001.5 130 130.8 
Melrose L5,376.9 82 187.5 
Maynard 5,420.l 41 132.2 

(1) (2) 

15 
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The credibility-weighted formula pure premium, F,, for each town was 
calculated as 

F, = z, I, + (1 - Z,) M,, 

where Z, is the credibility assigned to the data for town t. 

Finally, the MARB review for 198 1 territories introduced empirical Bayesian 
credibility procedures to assess the credibility to be assigned to the actual town 
data. Conceptually, the procedure treats the model pure premiums, M,, as a 
“prior” estimate of the town experience, and the calculated synthetic pure 
premiums, It, as a subsequent observation. The credibility assigned to town 
data, I,, was 

PC 
” = P, + K ’ 

where P, is an estimate of the town premium, and 

K is the empirically determined credibility constant. 

The credibility constant, K, is the ratio: 

an overall measure of year-to-year variations in town experience 

a measure of the extent to which actual town data, I,, deviate 
consistently from the model, MI 

This same conceptual formulation of K has been used in the subsequent territory 
reviews, although the actual procedures for estimating K have changed.i2 In 
each of these reviews, the derivation of K (or rather, the numerator and denom- 
inator of K) has relied on empirical methods that utilize the actual numerical 
values of the prior estimates and the observations. 

The derivation of the credibility constant is beyond the scope of this paper 
(but see MARB [l 11). The following interpretations, however, may be placed 
on the credibility formula and formula for K (see, for example, Hewitt [7]; and 
Hickman [S]): 

(1) The magnitude of K is affected directly by the extent to which the 
density model, Mr, fits the actual data, I,. If the model fits well, then 
the credibility algorithm concludes that little additional information is 
available from I,. The denominator of K is small, K is large, and the 
credibilities assigned to I, are relatively small. 

‘* Only the current procedures for estimating K are detailed in this paper. 
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(2) Conversely, if the model, M,, fits the data poorly, then the denominator 
of K is large, K is small, the credibilities assigned to Zt are relatively 
large, and the weights assigned to Mt are relatively small. 

(3) If the town experience, It, varies significantly from year to year, the 
formulation concludes that Zr should not receive much weight. The 
numerator of K is large, K is large, and the credibilities assigned to If 
are small. 

(4) The credibility formula structurally resembles the familiar Z = PI(P+K) 
formula, which assigns more credibility to larger towns. 

The factors described in (l), (2), and (3) are relative, not absolute. This 
highlights a major difference between the Bayesian credibility procedures used 
here and classical credibility: in the approaches used here, the credibility as- 
signed to a set of data depends not only on the characteristics of that data, but 
also on the characteristics of the information that will be accorded the comple- 
ment of the credibility. 

The MARB proposal for 1981 continued the procedure of grouping together 
towns with similar values of the one-dimensional index (in this case, F,) chosen 
to reflect town claims experience, although the details of the grouping procedure 
were somewhat different than in prior years. I3 Like the procedure used for 1977, 
the result was twenty-four rating territories: Territory 1 was the lowest rated 
territory, Territory 14 was the highest rated non-Boston territory, and Territories 
15-24 were the ten subdivisions of Boston (not ranked in any particular order). 
Constraints on the movements of towns from their old territory assignments 
were reintroduced; however, restrictions applied only if an otherwise-indicated 
reassignment of a town would produce an unacceptably large rate change.14 

In addition to identifying aspects of the territory analysis procedure in which 
methodological changes were needed, and proposing such changes, the data 
analyses undertaken in connection with the MARB proposal for 1981 territories 
indicated that the claims experience for towns shifted with sufficient rapidity 
that territory realignments should be evaluated regularly-preferably every other 
year. 

I3 The details of the grouping procedure were virtually identical to those used by the Commissioner 
in subsequent years and in the MARB proposal for 1986, described below. 

I4 Exhibit 1 displays the 1985 base rates by territory for experienced drivers, and provides a 
perspective on the rate implications of changing territories. 
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The State Rating Bureau recommendations for 1981 (as described in Mas- 
sachusetts Division of Insurance [ 171) concurred in the need for an updating of 
the 1977 territories, but did not embrace the methodological changes proposed 
by MARB. Rather, the SRB proposed either: (a) a simple updating of the 1977 
territories based on later data, or (b) an updating of the town rankings based on 
later data and the introduction of a “territory within region” concept. Under this 
concept, each territory would be comprised of all towns having similar claims 
experience and located within a common geographic region of the state. 

The Commissioner of Insurance, faced with this methodological dispute, 
chose the simple updating for 1981 and directed the parties to undertake a 
cooperative review and development of methodological changes (Massachusetts 
Division of Insurance [ 171). 

Review for 1982 Territories 

For the development of 1982 territories, the parties did join in a cooperative 
effort, as well as continuing independent research efforts. Not the least of these 
research efforts was a master’s thesis by one of the State Rating Bureau staff 
members (Siczewicz [27]). In this joint study for 1982, the work of Siczewicz 
provided most of the technical refinements to the treatment of credibility that 
had been developed in the MARB proposal for 1981. In general, the joint 
MARB-SRB-AG components of the proposal for the modification of rating 
territories for 1982 bore a strong resemblance to the MARB proposal for 1981. 
The major differences are summarized below. 

In the review for 1982, the tabulation of the actual town data claims expe- 
rience, the calibration of the density model, and the empirical determination of 
credibility parameters were conducted for each coverage separately, rather than 
for all coverages combined. This separate approach was intended to allow the 
credibility procedure to deal more fully with any differences between coverages 
in the stability of town claims experience. The town claim frequency (by 
coverage) was not converted into a pure premium at this stage, but rather was 
expressed as a claim frequency index.15 

With the benefit of further study, the density model of claim frequency 
patterns was expanded to include two additional explanatory variables besides 
traffic density: a measure of the mix of driver classes in a town, derived from 

I5 Claim frequency index = Town claim frequency/Statewide claim frequency. 
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the average classification relativity (ACRF) in the town; and a dummy variable 
that allowed the aberrant data in Boston to be included in the parameterization 
calculations without distorting the density regression coefficient. l6 

The ACRF variable is intended to reflect the fact that the claim frequency 
of the insureds in a town is affected by the mix of driver classifications in the 
town. For example, a town populated solely by senior citizens would be expected 
to have a lower claim frequency than an otherwise similar town comprised 
solely of operators with less than three years of experience. Actual towns fall 
somewhere between these extremes. 

The ten subdivisions of Boston were observed to have claim frequencies 
significantly different from the claim frequencies of the 350 remaining towns 
in Massachusetts. These differences were not explained by the density and the 
class mix variables. In fact, differences between the ten subdivisions of Boston 
depart from the patterns which would be predicted by the traffic density model. 

The form of the model proposed for 1982, and still utilized today, is: 

Model Frequency Index C,f = Ao,~ 
+ AI,, X Density, 
+ A2.c x ACRF,, 1 
+ A3,c X Boston Dummyt; 

where Ao, AI, AZ, A3 are the regression parameters; 
Boston Dummy = 1 in Boston, 

0 elsewhere; and, 
c refers to coverage, t refers to town. 

The credibility procedure was refined so that the credibility parameters and 
the model regression parameters were determined simultaneously. As noted 
above in the discussion of the MARB proposal for 1981, the value of the 
credibility parameter depends on the characteristics of the claim frequency 
model, since the credibility parameter K depends on differences between the 
model and actual claim frequencies. In turn, in the review for 1982, the model 
regression parameters were determined by a weighted least squares regression, 
where the weights depended on the credibility assigned to the towns’ data. 

I6 The abnormalities of the Boston data were attributed to the high density of commercial vehicles 
in Boston (commercial vehicles are not captured in the traffic density variable or in any of the 
insurance data used in the territory analyses) and the small geographic size of the Boston subdivi- 
sions, which suggests that most driving is between subdivisions, not within a single subdivision. 
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In a broad sense, the use of regression weights dependent on the credibility 
assigned to a town is similar to the use of exposures, since exposures are a key 
factor in calculating credibility for a town. 

The credibility for a particular town utilized a formula similar to 1981: 

where H, = exposures divided by claim frequency; 

r2 is a measure of year-to-year variation in claim frequency; and, 

o2 is a measure of the extent to which actual claim frequencies differ 
from model claim frequencies. 

The use (for the 1981 review) of premiums to calculate the town credibility, Zt, 
is replaced in this formula by H,. Like premium, Hz produces larger credibility 
for towns with more exposures. With H,, however, the higher the claim fre- 
quency, the less credibility is attributed to the actual data. This formulation of 
Hz assumes that the variability of claim frequency is proportional to claim 
frequency itself, and that the actual frequency in a town should be given less 
weight (credibility) as the variability of that claim frequency increases. This 
approach parallels the overall interpretation of the credibility constant, which is 
that less weight should be given to a body of data that exhibits instability. The 
specific methodology used to estimate o2 and r2 also was changed from the 
MARB review for 198 1, based on Siczewicz [27]. That new methodology has 
been retained in subsequent reviews and is described below in connection with 
the MARB proposal for 1986 territories (see Appendix A). I7 

In the review for 1982, the formula frequency index in each town (for each 
coverage) was, as in the 1981 proposal, calculated as the credibility-weighted 
average of the actual claim frequency index and the model claim frequency 
index. In the next step, after this calculation, the effects of the class mix in 
each town were removed from the town’s formula frequency index, since class 
effects are captured by classifications and classification relativities. The proce- 
dure for removing classification effects has been retained in subsequent reviews 
and is detailed in the Appendix A description of the latest methodology. A final 
formula claim frequency for each town and coverage is estimated by applying 
the town claim frequency index to the statewide claim frequency for the cov- 
erage. 

I’ This credibility methodology also has been adapted for use in calculating Massachusetts private 
passenger class-territory rate relativities (MARB [ 151). 
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The treatment of claim severity in the review for 1982 paralleled the implicit 
treatment in the previous year’s review: for each coverage the statewide average 
claim severity, X,, was assigned to each town, recognizing no variations in 
claim severity. This statewide average severity, applied to the town formula 
claim frequency, produced, for each coverage, a formula “pure premium” by 
town. 

Finally, a one-dimensional index that combined all coverages was calculated 
for each town as 

C&f x Formula Pure Premium,,, 

C&t X Statewide Pure Premium 

where EC, I is the insured exposures for coverage c, town t. 

This index calculates an all-coverages formula pure premium for the town 
and compares it to the statewide pure premium that would be observed if the 
town’s coverage purchase patterns were observed statewide. The intent is to 
ascertain the extent to which a town is above or below average for the coverages 
purchased in that town. 

An alternative formulation using actual statewide exposures in the denomi- 
nator was rejected, since this alternative formulation would improperly differ- 
entiate between two towns identical in all respects except the extent to which 
physical damage coverages are purchased. Viewed another way, the residents 
of the town in which physical damage coverages are purchased heavily pay for 
those coverages directly and should not also pay indirectly by being placed in 
a higher rating territory. 

The MARB, AG, and SRB joined in recommending this final index as the 
basis for establishing 1982 automobile rating territories (MARB [ 121; AG [lo]; 
SRB [21]), and the Commissioner adopted that recommendation (Massachusetts 
Division of Insurance [18]). With the exception of the treatment of claim 
severity, which has been refined in the subsequent two reviews, this method- 
ology developed for 1982 has been retained in subsequent reviews and thus is 
set forth in greater detail in the Appendix A description of the most recent 
methodology. 

The AG differed from the other parties in the method of using the final 
index to group towns. The AG proposed a clustering algorithm that would have 



22 AUTOMOBILE TERRITORIES 

placed two constraints on the towns in a territory: (1) the towns should have 
similar final index values, and (2) all the towns in a territory must be contiguous 
WG [lOI). 

The addition of the contiguity constraint reflected, and imposed, the expec- 
tation that two adjacent towns would tend to have similar expected losses. This 
constraint was also intended to address concerns expressed by members of the 
driving public that sharp rate differentials between neighboring areas were 
unfair. 

The resulting territories, while comprised of chains of contiguous towns, 
did not resemble tight clusters, as might have been hoped. In addition, the 
addition of the contiguity constraint cost a significant loss of homogeneity in 
the expected losses of towns in each territory. Various technical problems, 
beyond the scope of this paper, were also identified with the cluster algorithm. 

Thus, the SRB and MARB recommended the continued use of town group- 
ings based solely on similarity of town index values, and the Commissioner 
followed this recommendation. As in the prior revision, the reassignments of 
individual towns were constrained to avoid any unacceptably large rate changes 
from 1981 to 1982. The combination of the later data and the methodological 
changes resulted in territory reassignments for more than 2.50 towns. 

Review for 1984 Territories 

During the discussions that led to the joint recommendations for 1982, the 
parties agreed that a biennial review of territories would be appropriate. The 
agreement to follow a biennial schedule was based on several considerations: 

(1) The claims experience of towns, relative to the statewide average, 
changes significantly over time. For example, one analysis performed 
by the MARB indicated that two years of later data (with no method- 
ological changes) would produce indications that over 160 towns should 
be assigned to new territories, including 35 towns whose territory as- 
signments should change by more than one territory. Thus, delaying a 
review beyond two years would allow miscategorization of many towns, 
and might necessitate unacceptably large rate effects when a territory 
revision did occur. 

(2) A two-year interval provides adequate time for the parties to consider 
methodological improvements. 
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(3) Because of statistical coding procedures used in Massachusetts, insur- 
ance companies can accommodate territory realignments fairly easily, 
so that biennial revisions are not burdensome. 

(4) Annual repetition of the entire territory review and decision process was 
viewed as impractical. 

In accordance with the agreed biennial review schedule, representatives of the 
MARB, SRB, and AG met during 1983 to consider a possible revision of the 
territory definitions for 1984. Again the goals of the group were to review the 
methodologies previously used; to consider alterations and refinements to those 
methodologies; to review the data that had emerged since the prior review; and, 
to present to the Commissioner recommendations that had some common bases, 
even though it was not expected that complete unanimity would be achieved. 

As in the previous review, the territory realignment process divided naturally 
into two major components: the determination of an index for ranking the towns, 
and the grouping of the ranked towns into territories. The work of the group 
led to a refinement in the index calculation and to complete unanimity as to the 
best index and rankings that could be devised for the 1984 review. The process 
of using the resulting index to group the towns into territories remained an area 
of some disagreement among the parties. 

The index procedure agreed to by the parties, which was documented in the 
MARB filing [13], recommended only one methodological change to the ap- 
proach used for the 1982 revision. Specifically, the treatment of severity was 
modified by assigning to each town the average claim severity for the town’s 
countyl*, rather than the statewide average claim severity. This refinement 
reflected the clear regional differences in average claim severity, but did so 
without introducing the instability observed in town claim severities. At that 
time, the parties had not been able to develop a credibility or modeling procedure 
that was satisfactory for incorporating by-town claim severities. 

This methodological change had a significant impact on the final town index 
values, because the county average claim severities differ significantly from the 
statewide average claim costs, as shown in Exhibit 3. This exhibit, which 
displays the ratios of county average claim costs to statewide average claim 
costs, reveals for each coverage differences of at least 20% between the county 
with the lowest average claim severity and the county with the highest average 
claim severity. 

” Or county group: in some cases small counties were combined. 
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EXHIBIT 3 

ILLUSTRATIVE CLAIM COST VARIATIONS AMONG COUNTIES 

COUNTY CLAIM COST INDICES (1979-8 1) 

COUNTY GROUP 

Barnstable, Dukes, Nantucket .9983 1.0332 
Berkshire 1.0389 .9611 
Bristol .8713 .9221 
Essex .9693 .9776 
Franklin, Hampshire .9963 .9599 
Hampden .9453 .9330 
Middlesex 1.0070 1.0069 
Norfolk 1.0628 1.0043 
Plymouth 1.0293 1.0329 
Suffolk 1.0718 1.1734 
Worcester 1.0271 .9840 

BI PIP PDL COLLISION COMPREHENSIVE - - - 

.9917 1.0761 .8250 

.9257 1.0608 .5895 

.9147 .9305 .9764 

.9945 .9903 1.0315 

.9084 1.0672 .6030 

.9270 .9148 .8109 
1.0261 .9902 I .0304 
1.0468 1.0403 1.0309 
1.0437 1.0978 1.0288 
1.0983 .9480 1.3419 
.9745 1.0355 .7701 

Note: Indices calculated as follows: 

A. For each year and each coverage, divide each county group average claim cost by statewide 
average claim cost. 

B. For each county group and coverage, calculate an exposure weighted average of the resulting 
1979, 1980 and 1981 indices. 
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The Commissioner (Division of Insurance [19]) adopted the parties’ joint 
recommendations as to the calculation of the final town index values, and, as 
in the prior revision, selected town groupings based solely on similarity of town 
index values. This approach created sixteen non-Boston territories; the ten 
Boston territories were retained, as recommended by the SRB and MARB.19 

Review for 1986 Territories 

In preparing its recommendations for 1986 territories, the MARB retained 
the 1984 treatment of claim frequency, but again reviewed the handling of claim 
severity, in addition to incorporating updated data in the analysis.*O This analysis 
introduced a newly-developed credibility procedure for claim severity which 
allowed, for the first time, the utilization of claim severity information by town. 
Of course, these data still were viewed as being less-than-fully credible, so that 
complementary data sources were also employed. The selected sources were 
the countywide2’ average claim severity and the statewide average claim sever- 
ity. ** Within each coverage, the claim severity relativity for a town was deter- 
mined as a credibility-weighted average of the indications from the three sources. 
The credibility parameters were determined by a two layer hierarchical empirical 
Bayesian method, described more fully in Appendix A. The empirical Bayesian 
method compares the variation in relative severity within a town across years; 
the variation in relative severity across towns within a county; and, the variation 
in relative severity across counties within the state. 

In this approach, the estimated severity for a town is the combination of the 
severity for the town, the severity for the county that contains the town, and 
the overall statewide severity. The town’s own severity is used to the extent it 
is credible, with the complement of credibility being given to the estimated 
severity for the county. In turn, the estimated severity for the county is the 
credibility-weighted mean of the county to the extent it is credible, with the 
complement of credibility being given to the credibility-weighted severity over- 
all. 

I9 The AG recommended combining the ten subdivisions of Boston into three territories. 

*’ These recommendations were developed by the MARB [14]. Recommendations of the AG and 
SRB were prepared and submitted separately. 

*I Actually, county groups in some cases. This component, taken alone, is equivalent to the stand- 
alone severity treatment used in the revision for 1984. 

*’ This component, taken alone, is equivalent to the claim severity treatment used in the revision 
for 1982. 
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The introduction of this new procedure makes very little difference, of 
course, for small towns whose data is given little credibility and which therefore 
are assigned approximately the county average claim severity, as they were in 
the review for 1984. Similarly, the new procedure makes very little difference 
for a town with claim severities close to the county average. For larger towns 
that have average claim severities differing significantly from their county taken 
as a whole, the partial recognition of the town data can make a significant 
difference. In a few cases the credibility-weighted town severity is as much as 
7% different from the county severity. Exhibit 4 illustrates the change in final 
town index values (for a selection of towns) due to this methodological change. 

The other details of the MARB’s methodology for 1986 are substantially 
the same as in the methodology used in the review for 1984. The entire procedure 
proposed by the MARB for calculating the town index values for use in estab- 
lishing 1986 automobile rating territories is detailed in Appendix A. 

The final town index values produced by the methodology are displayed in 
Exhibit 5 for a sample of towns. In this exhibit the towns are displayed in rank 
order, according to the final town index values, ranging from Buckland with a 
final index of 5034 (expected losses per car are about half the statewide 
average), to Chelsea with a final index of 1.93 18 (expected losses per car are 
nearly twice the statewide average). The ten subdivisions of Boston are shown 
at the end of the exhibit and have final index values ranging from 1.23 11 to 
2.7791. These index values were used by the MARB in proposing 1986 territory 
definitions. As in prior years, the MARB recommended grouping towns having 
similar index values. 

The AG’s recommendations concurred with the MARB’s new index calcu- 
lations. The SRB did not offer a single specific index methodology, but rather 
expressed a concern that the revision of territories was occurring too frequently 
and that too many towns were being reassigned in each revision. The Commis- 
sioner’s Decision (Massachusetts Division of Insurance [20]) employed the 
MARB index but, mirroring the SRB’s concerns, imposed tight constraints on 
allowed reassignments of towns. 
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EXHIBIT 4 

SAMPLE COMPARISON OF TOWN INDEX VALUES 
PRODUCED BY TWO METHODS 

(1980-1983 DATA) 

TOWN NAME 1984 METHOD 1986 METHOD DIFFERENCE 

Hampden 
Holland 
Montgomery 
Tolland 
Wall3 

Amherst 
Easthampton 
Northampton 
South Hadley 
Ware 
Belchertown 
Hadley 
Hatfield 
Huntington 
Williamsburg 
Chesterfield 
Cummington 
Goshen 
Granby 
Middlefield 
Pelham 
Plainfield 
Southampton 
Westhampton 
Worthington 
Cambridge 
Lowell 
Everett 
Malden 
Medford 
Newton 
Somerville 
Waltham 
Watertown 

.I659 .7708 .0049 

.6475 .6567 .0092 

.6424 .6503 .0079 

.6488 .6509 .0021 

.8009 .8072 .GO63 

.7211 .I298 .OiI87 

.7546 .7325 -.0222 

.7512 .7299 -.0213 

.7535 .7366 -.0169 

.7604 .7694 .0090 

.7820 .7879 .0060 

.6149 .6024 -.0125 

.6583 .6548 -.0035 

.7498 .7923 .0425 

.7065 .7091 .0026 

.72Sl .7339 .0087 

.6561 .6618 .0057 

.6323 .6565 .0243 

.7600 .7763 .0163 

.5793 .5786 -.0006 

.6884 .6680 -.0204 

.6693 .6646 -.0047 

.6912 .7071 .0158 

.7513 .7548 .0035 
,623 1 .6292 .0061 

1.3202 1.3130 -.0073 
1.1582 1.1488 -.0094 
1.3963 1.4757 .0793 
1.2804 1.3440 .0636 
1.2249 1.2576 .0327 

.9684 .9076 -a609 
1.5165 1.5588 .0423 
1.0395 1.0412 .0017 
1.0894 1.0819 -.0075 

.9562 .9330 -.0233 

.9184 .8772 -.0412 

.7610 .7438 -.0171 

.7150 .6968 -.0183 

.9456 1.0045 .05&S 

.9564 .9359 -.0204 

.8916 x935 .0019 

.7993 .7612 -.038 1 

.9501 .9526 .OO24 
1.0178 1.0369 .0191 

.7719 .7571 -.0147 

Belmkt 
Chelmsford 
Concord 
Dracut 
Framingham 
Hudson 
Lexington 
M&borough 
Melrose 
Maynard 

27 
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Towu NAME 

TERRITORY I 
Buckland 
Middlefield 
Hadley 
Wonhmgton 
Montgomery 
Tolland 
Hatfield 
Goshen 
Holland 
Cummington 
Plainfield 
TOTAL (48 towns) 

TERRITORY 2 
COlKilll 
Pelham 
Concord 
Westminster 
TOTAL (33 towns) 

TERRITORY 3 
Rockport 
Southampton 
Wdliamsburg 
Amherst 
Northampton 
Easthampton 
Chesterfield 
South Hadley 
Chelmsford 
Bnmfield 
TOTAL (43 towns) 

TERRITORY 4 
D&On 
Westhampton 
Maynard 
Lexillgt0tl 
Ware 
Hampden 
Granby 
Belchertown 
TOTAL (52 towns) 

EXHIBIT 5 
SHEET 1 

MASSACHUSETTS 
INDICATED 1986 RATING TERRITORIES 

(FOR SELECTED TOWNS) 

BI 

0.5218 0.7366 04851 0.5470 0.3501 
0.603 I 0.8149 0.5193 0.6633 0.4216 
0 602X 0.7590 0.6461 0.6664 0.3850 
0 484X 0.7371 0.5603 0.8248 0.5624 
0.6284 0.8956 0 5669 0.8384 0.4171 
0.6041 0.8572 0 6676 0.7491 0.4391 
0.7726 0.7326 0 6637 0.7104 0.4177 
0.5767 0 7435 0.6027 0.8800 0.4543 
0.5397 0.8712 0.6477 0.8328 0.4253 
0.5592 0.7008 0.6663 0.8621 0 4390 
0.6870 0 7631 0 5609 0.X870 0.4990 

0.6147 
0.7262 
0.6206 
0.8263 

0.5922 0.7192 0.8276 0.7717 0.5292 
0 8541 0.9494 0.6603 0.7553 0.4671 
0.7943 0.7382 0.7546 0 7765 0.4272 
0 68X7 0.6539 0.7270 0.8517 0.6172 
0 7930 0.9033 0.8373 0 7261 0 4467 
0 8141 0.8874 0.8341 0.7618 0 3950 
0.7669 0.9490 0.5845 0.8806 0 6588 
0.8665 0.927 I 0 8201 0.7660 0.4004 
0.7609 0.6756 0.8297 0.7881 0.5589 
0.9462 0.9789 0.7243 0.7987 0.3833 

0 X673 0.7354 0.X972 0.7410 0.4462 
0.7902 0.9104 0.7261 0 9326 0.4372 
0.7847 0 7828 0 8X02 0 7766 0.5040 
0.7151 0.6436 0.8919 0 8103 0.5826 
0.9327 0.9597 0 7733 0.8745 0.3557 
0.8769 I 0627 0 7932 0.8385 0.4141 
0.8929 I.0815 0 7670 0.8488 0.4533 
0.9374 I .004Y 0 7505 0.8X13 0.4590 

IVDEX 

PIP 
COM- 

PDL COLL. COW. BlNED 

0.5034 952 $40.66 $109.89 
0.5786 212 32.76 100.02 
0 6024 3,035 68.80 156.29 
0 6292 622 45.35 164 7X 
0.6503 374 61.44 213.45 
0.6509 166 65.13 251 95 
0.6548 2.023 77.94 165.05 
0.6565 404 29.52 199.34 
0.6567 914 69 30 190.59 
0.6618 440 74.37 174.67 
0.6646 294 87.60 196.53 
0.6235 8 I .045 $63.90 $161.92 

0 7210 0.6560 0.8020 0.5095 0.6651 924 $81.64 $192.84 
0.6530 0.6822 0.7369 0 4839 0.6680 659 75.40 163.79 
0.6773 0.7900 0.8217 04302 0.696X 9,961 73.91 198.98 
0.7813 0.6824 0.8120 04102 0.7041 3,378 79.75 186.29 

0.6900 94,683 $77.00 s188.88 

0.7068 3,920 
0.7071 2,527 
0.7091 I.493 
0.729X 10,022 
0 7299 13,633 
0.7325 8,556 
0.7339 555 
0.7366 8,218 
0.7438 19,038 
0.7467 I.336 
0.7313 192.994 

0.7518 3,427 
0.7548 67X 
0.7571 5,420 
0.7612 18,274 
0.7694 4,746 
0.7708 2,969 
0 7763 3,104 
0 7879 4,680 
0 76X8 244.42 I 

PDL 
EXPO- 
SURES 

OBSERVED PUKE 
PREMIUM 

(LATEST THREE 

S69.03 S187.59 
69.55 179.61 
83.44 187.00 
78 67 204.44 
85.53 180.99 
87.51 184.02 
75.75 217.71 
85.80 183.24 
86.94 218.69 
96.42 195.70 

$8 1.48 $200. I I 

$86.45 $185.69 
113.21 249.89 

89.74 203.76 
88.X7 222.39 
85.02 194.39 

100.69 219.45 
93.16 205.79 
95.83 212.63 

$88.71 $219.64 
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TOWN NAME BI PIP 

TERRITORY 5 
Freetown 
Huntington 
Wales 
Cheshire 
TOTAL (5X towns) 

TERRITORY 6 
Pittsfield 
Belmont 
Groveland 
TOTAL (29 towns) 

TERRITORY 7 
Lynnfield 
Hudson 
NWWlll 
Arlington 
Framingham 
TaUntOIl 
TOTAL (29 towns) 

TERRITORY 8 
Norwood 
Marlborough 
Wilmington 
Tewksbury 
TOTAL (I I towns) 

TERRITORY 9 
Marshfield 
DrWXt 
M.ZlK% 
Waltham 
Holyoke 
TOTAL (2 I towns) 

TERRITORY IO 
Haverhill 
Wab3tlXWl 
WOKeSter 
TOTAL (6 towns) 

0.7255 
0.8181 
0.9791 
I.1968 

1.0134 0.7048 0.8121 0.8952 0.7923 4,429 
1.0210 0.7228 0.9715 0.5001 0.7923 1,099 
1.1784 0.7330 0.8517 0.4766 0.8072 642 
0.8297 0.8353 0.7898 0.5492 0.8393 1,858 

0.8133 377. I84 

0.9237 
0.8108 
I.0068 

1.0037 I.0512 0.7716 0.4955 0.8405 23,215 
0.7705 0.9853 0.9192 0.7551 0.8772 14.01 I 
0.9376 0.9187 0.9202 0.6729 0.8897 2,997 

0.8623 246,318 

0.7559 
I.0119 
0.8075 
0.8520 
0.8947 
0.9870 

0.7815 0.8793 0.9499 0.9536 0.8903 7,022 
0.9559 0.9603 0.9667 0.5376 0.8935 9,347 
0.7563 1.0137 0.9686 0.7953 0.9076 44,546 
0.8296 1.0094 0.9641 0.8836 0.9330 25,050 
0.9556 1.0863 0.9804 0.6821 0.9359 35,207 
1.1305 0.8896 0.8941 0.9970 0.9433 21.884 

0.9155 316.422 

I .0023 
I .0850 
I .0063 
I .0542 

0.8238 0.9998 0.9462 0.8767 0.9473 16,092 
1.0861 1.0098 0.9880 0.6390 0.9526 I7.002 
0.9694 1.0451 0.9645 0.9674 0.9938 10,232 
1.0173 1.0043 I .051X 0.8375 0.9973 13,205 

0.9701 133.231 

0.8233 
1.0308 
1.0408 
I .0843 
1.3525 

I .0737 0.9463 1.0817 I .0827 1.0006 I I.537 
I.2132 1.0090 0.9948 0.9184 I .0045 12,547 
0.9126 1.0519 0.9753 I 1626 1.0369 15.377 
1.0354 1.1057 1.0299 0.9376 1.0412 27.703 
1.1436 I.1678 0.9313 0.8089 I .0597 17.069 

I .0345 35 I.465 

I .2649 
I .0245 
I 2873 

1.1987 1.0834 0.9720 0.9866 I .0679 21,905 
0.8988 I. 1275 1.1080 1.0918 I.0819 17,042 
I .0872 I .2669 I .0435 0.8536 I.1113 63,452 

1.0914 149,630 

EXHIBIT 5 
SHEET 2 

MASSACHUSETTS 
INDICATED 1986 RATING TERRITORIES 

(FOR SELECTED TOWNS) 

INDEX 

COM- 
PDL COLL. COMP. BINED 

PDL 
EXPO- 
SURES 

OBSERVED PURE 
PREMIUM 

(LATEST THREE 
YEARS) 

S77.97 $214.40 
97.82 259.53 

103.84 229.27 
114.34 230. I6 
$93.36 $225.84 

$103.34 $213.53 
94.29 242.68 

121.45 215.98 
$99 29 S237.42 

$89.51 $278.18 
113.63 262.89 
97.82 265.62 
97.88 257.57 

110.40 270.40 
108.03 254 07 

Si03.49 $259.77 

$107.88 $267.20 
117.22 27 I .45 
124 82 299.34 
118.43 301.59 

$1 IO 64 $280.22 

$104.63 $298.99 
128.22 295.68 
110.18 290.56 
118.94 288.15 
132.77 261.19 

$I 16.81 S287.84 

$132.68 $294.1 I 
I I I .42 293.96 
134.67 292 29 

$126.23 $297.59 
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EXHIBIT 5 
SHEET 3 

MASSACHUSETTS 
INDICATED 1986 RATING TERRITORIES 

(FOR SELECTED TOWNS) 
OBSEtlVED PURE 

INDEX 
PDL 

EXPO- 
SURES BI PIP 

COM- 
PDL COLL COW BINED Towv NAME 

TERRITORY I I 
Holbrook 
Lowell 
Qumcy 
TOTAL (7 towns) 

TERRITORY I2 
Sprmgfield 
Medford 
Brockton 
TOTAL (3 towns) 

TERRITORY 13 
Cambridge 
Malden 

I.1936 1.0925 I 1007 I.1166 I. 1444 
I .205x I .2939 1.1749 I.1143 I .0629 
1.1494 I .0244 1.1279 I 1782 I .4034 

I.1276 6,136 $130.64 $325.24 
I.1488 37,723 138.40 324.54 
I.1907 39,832 121.99 330.82 
I.1604 138,765 $124.57 $330.05 

I .2463 62,300 
I .2576 26,638 
I .2832 41.920 
I .2604 130,857 

1.3130 30,202 
I .3440 23,4W 
I .3690 33.217 
I 3415 91.504 

$153 62 $309.41 
125.71 365.73 
143.62 360.58 

$14474 $337 27 

S124.92 $362.73 
140.38 378.93 
144.02 369.84 

$136.84 $370 I5 

I .442l 23,935 $162.76 $394.42 
I .4757 15,385 147 74 424 12 
I .4549 48,036 $154.29 $407.97 

I .558X 
1.5588 

1.7956 
I.9318 
I .a359 

I.231 I 

I .6536 

I 8918 

26,169 
26,169 

17,396 
7,307 

24.704 

12.867 

10,769 

IO.400 

1 6534 

2.4664 

2.7791 

2 0513 

11,481 

33,479 

6.538 

16.904 

$151.50 $436.19 
$151.50 $436.19 

$162.89 $547.65 
183.39 573.08 

S168.95 $555.17 

$I IS.80 $335.09 

$150.58 $457.66 

$155 81 $512.46 

$151.63 5463.63 

$213.34 $727.76 

S245.62 $818.45 

$162.83 $613 69 

I .6355 I .6528 I .2426 I .0985 0.9862 
I .0835 I 0678 1.1427 I 1778 I .786l 
1.3352 I .2X59 I .2262 I 2281 I 4207 

I.1122 I. 1053 I. 1675 1.3506 I .7395 
I .2725 I 222X I .2689 1.2197 1 7768 
1.2561 1.1420 I 3693 1.1942 1.8444 Lynn 

TOTAL (4 towns) 
TERRITORY 14 

LaWK?llCe 
Everett 
TOTAL (3 towns) 

TERRITORY I5 
Somerville 
TOTAL (I town) 

TERRITORY I6 
Revere 
Chelsea 
TOTAL (2 towns) 

I .4980 16148 I .3072 I.1900 I .9389 
I 3023 1.2718 I .3755 I .2769 2.2025 

I.3551 1.2398 I 3910 I 4373 2.3460 

1.5148 I .4559 I .4578 I 5443 3 1677 
I.6758 I .6544 I .5957 1.6970 3.3012 

TERRITORY I7-Wert Roxbury (Boston) 
1.2349 I.035 I I.1328 1.1949 1.495 I 

TERRITORY IX-Rosltndale (Boston) 
I .45 14 I 2973 I .4038 I .5675 2.4886 

TERRITORY l9-Jamaica Plain (Boston) 
I 5896 I .6845 I 4404 I7914 3.1083 

TERRITORY 2GHyde Park (Boston) 
1.3877 1.6163 I .3734 I 5910 2.4247 

TERRITORY Zl-Dorchester (Boston) 
2.1882 2.3175 1.6118 2 3901 42874 

TERRITORY 22-Roxbury (Boston) 
2.4487 2.8154 1.8756 2.6X57 4.8291 

TERRlTORY 23-Boston Central (Boston) 
1.6152 I6337 1.4941 I .9746 3 6202 
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EXHIBIT 5 
SHEET 4 

MASSACHUSETTS 
INDICATED 1986 RATING TERRITORIES 

(FOR SELECTED TOWNS) 

INDEX 
PDL 

COM- EXPO- 
TOWN NAME Bl PIP PDL C0t.L. COMP. BlNED SURES 

__ - - - ~ 

TERRITORY Z&Brighton (Boston) 
I .2748 1.2898 I .3588 I .5606 2.0844 1.5361 15,873 

TERRITORY 25-South Boston (Boston) 
1.6416 1.6759 1.4753 1.9179 3.2148 1.9269 6.49 I 

TERRITORY Z&-East Boston (Boston) 
1.7229 1.6995 1.8241 I.9951 3.9162 2.2038 10.780 

TOTALS ALL TERRITORIES 10000 2.783.010 

ITY ACE 

$137.77 $422.43 

$168.47 $572.51 

$197.54 $669.83 

$109.48 $279.68 

Perspective 

The continuing evolution since 1976 of the improved methods described 
above, which are used for calculating a one-dimensional town index that reflects 
for each town the relative expected insured losses per car, has contributed to a 
trend towards satisfying the criteria set forth by the SRB in 1976 (and described 
in the introduction to this paper). Specifically, the criteria of (statistical) equity 
and reliability depend directly on the quality of the estimation of expected 
losses; the compatibility criterion has been satisfied by the decision to maintain 
a single set of territories; and the stability criterion has been addressed by 
scheduling regular territory reviews to minimize the number of dramatic territory 
changes, and by imposing constraints on any large changes that are indicated 
by the data. The criteria of homogeneity and discrimination depend on the 
accuracy of the estimation of expected losses, which serves as the basis for 
making territory assignments, but also depends on the selection of a grouping 
process, given the final town index. The next section discusses the grouping 
process. 
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4. GROUPING TOWNS INTO TERRITORIES 

The presentation of territory recommendations in Massachusetts in the last 
nine years generally has involved two principal steps: first, developing a one- 
dimensional index that quantifies the relative claims experience in each town; 
and second, using the one-dimensional index to group towns into territories. 
The preceding section focused on the first step, from the use of composite 
physical damage claim frequencies in 1977 to the use for 1986 of a synthetic 
pure premium index computed from Bayesian estimates of town claim frequen- 
cies and claim severities by coverage. 

This section discusses the methodology used to group towns into territories, 
given the one-dimensional final town index. Although various techniques have 
been discussed and proposed, the Commissioner has used basically the same 
approach in each of the territory revisions since 1977. 

Principal Considerations 

The principal considerations that have governed the proposals for groupings 
of towns into territories are: 

(1) The homogeneity of competing territory configurations. 

(2) The possible reintroduction of proximity constraints. 

(3) The handling of the ten subdivisions of Boston. 

(4) The magnitude of rate differentials between territories. 

(5) The magnitude of individual town rate changes that would result from 
proposed realignments of territories. 

(6) The number of territories. 

(7) The size (number of exposures) of each territory. 

The first of these considerations, homogeneity, has been defined in practice 
to refer to the extent to which individual town claims experience differs from 
the average claims experience for all towns in a territory. Several quantitative 
measures have been developed, as discussed below, to compare the overall 
homogeneity of competing territory configurations. 

The second consideration, reintroduction of geographical constraints, has 
been suggested for several reasons, including improved public understanding of 
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territories and social equity advantages of increasing the probability that appar- 
ently similar towns in the same area of the state would be placed in the same 
territory. 

Suggested alternatives to the current ten independent territories for the ten 
subdivisions of Boston have involved combining some of the sections of Boston 
with one another and/or with non-Boston territories. Doing so would increase 
the exposure base used for pricing and resulting territories, would provide a 
degree of cross-subsidization between the combined Boston subsections, and 
would degrade the homogeneity of the territory configuration. 

The fourth and fifth considerations, the magnitude of rate differentials be- 
tween territories and the magnitude of individual town rate changes from year 
to year, have principally acted as constraints on otherwise-indicated territory 
changes. 23 In the grouping procedures actually adopted, these considerations 
generally have been incorporated by partially tempering the reassignments of a 
few towns for which the analysis indicated substantial changes, although a more 
restrictive constraint was employed by the Commissioner for 1986. These con- 
siderations have also contributed to the rejection of some proposals to reintro- 
duce geographical constraints, since: (a) some of the geographic proposals could 
not be introduced without causing unacceptably large rate changes for certain 
towns (Massachusetts Division of Insurance [19]), and (b) with the large rate 
differentials between territories that would be implied by restrictions on the 
number of territories available to towns in a particular geographical area, small 
changes in data or methodology could cause a large rate change for a town. 
These implications of the geographic proposals follow from the fact that each 
geographic region of the state contains towns from a wide range of current 
territories. 

The sixth consideration, the number of territories, is largely a practical one. 
Approximately two dozen territories have been viewed as enough to maintain a 
reasonable degree of homogeneity without the system becoming administratively 
cumbersome. 

The final consideration, the number of exposures in each territory, has two 
aspects: each territory should provide a sufficient data base for the ratemaking 
process, and no territory should be dramatically larger than the remaining 
territories (since homogeneity might suffer). These factors have guided the 
development of proposals for grouping towns into territories. 

23 The rate changes discussed here affect individual towns only. All territory proposals are imple- 
mented so as to have no overall rate level effects. 
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Selected Grouping Methodology 

The town grouping methodologies used in the 1977, 1982, 1984, and 1986 
revisions all are generally similar (but with details differing). In essence, the 
towns are ranked in accordance with their final town index values, and index 
value breakpoints are selected. A territory is then defined as including all towns 
having index values between two consecutive breakpoints. 

For the most part, the town index values form a continuum, with few obvious 
breakpoints, so that the breakpoints generally have been selected by a numerical 
algorithm. In the MARB proposal for 1986, for example, breakpoints initially 
were selected at an index value of unity (which is the statewide average index 
value) and at each integer power of 1.06; all towns with an index value below 
.665 (1.066’) are placed in Territory 1, and all towns with an index value above 
1.504 (1.067) are combined in a single territory.24 

The selection of the 1.06 factor was based on: (a) the number of territories 
it produced, (b) the sizes of the resulting territories, and (c) the homogeneity 
of the resulting territories (see below). Judgment, however, is superimposed on 
the territories at the high end of the index value range, where natural breakpoints 
are evident. Further, a judgment was made to continue the ten independent 
Boston territories. 

Finally, a capping algorithm is applied to determine the rate impact on each 
town of the territory realignment. In the 1982 and 1984 revisions, any town 
seen as being subjected to an unacceptably large rate increase due to the 
realignment is reassigned to a territory closer (in territory number) to its current 
territory placement. 

In the 1986 revision, the Commissioner imposed additional constraints: any 
town proposed by the MARB to move one territory up or down was not moved 
at all, while any town proposed by the MARB to move more than one territory 
up or down was constrained to move one territory (in the direction indicated). 
With these additional constraints, only 22 towns changed territories, and thus 
the 1986 territories are nearly identical to the 1984-85 territories. 

Homogeneity Measures 

Appendix B details several quantitative measures that have been designed 
to compare the relative homogeneity of alternative Massachusetts automobile 

24 The algorithm used for 1982 and 1984 was similar. The revision for 1977 used a more complex 
algorithm to select breakpoints. 
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territory configurations. Each of the measures captures a slightly different di- 
mension of homogeneity or heterogeneity, and no attempt has been made to 
calibrate the measures so that one measure can be compared to another; nor is 
there an absolute scale against which a territory configuration can be judged 
“homogeneous” or “not homogeneous.” Rather, the appropriate comparison is 
among the results of a single homogeneity measure applied to various territory 
configurations. The territory configuration with a homogeneity value closer to 
zero is considered relatively more homogeneous by the standards of a particular 
measure. 

These homogeneity measures have been used in three aspects of the territory 
review process in Massachusetts. First, they have been used to determine 
whether existing territory configurations are showing a significant25 deterioration 
in homogeneity as they become outdated. Second, the measures have been used 
to compare different methods of constructing the final town index, to see which 
produces more homogeneous territories. Finally, and most obviously, the homo- 
geneity measures have been used to evaluate alternative proposals for selecting 
territory groupings, given a set of final town index values. Exhibit 6 illustrates 
these uses of the homogeneity measures. 

Outdated Territories 

Exhibit 6 displays homogeneity measures for the 1982-83 territories, the 
1984-85 territories, and the territories proposed by MARB for 1986.26 The 
results indicate clearly that the 1982-83 and 1984-85 territories are significantly 
less homogeneous than are the territories proposed for 1986. It is not immedi- 
ately evident from Exhibit 6, whether this difference is due to shifting claims 
experience or due to improving methodologies, but the inclusion on Exhibit 6, 
of the updated calculations based on the 1984 methodology makes it apparent 
that much of the difference is due to shifting claims experience. 

Index Methodology 

Exhibit 6 compares the homogeneity of territories produced by the 1984 
town index methodology and by the 1986 town index methodology. Each is 

25 “Significant” in this context is a qualitative term, as statistical significance levels have not been 
determined for the homogeneity measures. 

x Prior to the additional constraints that the Commissioner imposed on town movements. 
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EXHIBIT 6 
SHEET 1 

HOMOGENEITY MEASURES FOR TERRITORY GROUPINGS 
INDEX BASED ON 1984 INDEX METHOD 

UPDATED FOR NEW DATA VS. 1986 INDEX METHOD 

5% 5.5% 6% 6.5% 
1984-85 

1984 1986 1984 I986 I984 I986 I984 1986 TERRITORY 
HOMOGENEITY MEASURE* METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD GROUPING 

-~~ ~__-- -- 

l. P.P. Squared Diff. 
(Absolute) 
a) Liability 78.18 61.71 75.98 61.06 74.57 60.54 68.22 59.56 88.03 
b) Package 370.20 345 74 403.21 301.84 373.66 277.07 320.06 288.38 427.04 

2. P.P. Squared Diff. 
Cred. Weighted (%I 
a) Liabihty .008722 .OO7414 .CO8370 .006662 .0079X2 .006506 .007391 .006314 .009365 
b) Package .005353 .004372 .005492 .004013 .005302 .003877 .004954 .003904 .007294 

2A. P.P. Squared Diff. (W) 
a) Liability 
b) Package 

3. Index Squared Diff. 
(Absolute) 

4. P.P. Mawmum Diff 
(Absolute) 
a) Llabdity 
b) Package 

5. P.P. Maximum Dlff 
Cred. Weighted (%) 
a) Liability 
b) Package 

5A. P.P. Maximum Diff. 

(70) 
a) Liability 
b) Package 

6. Index Manmum Diff 
(Absolute) 

7. Error Entropy 

.009681 .008415 .009276 .007451 .008769 .007234 .00X047 .006994 

.OO5652 .004638 .005780 004228 .005568 .0040X4 .005193 .004080 

.OOO768 .001161 .000719 .000852 000611 .000645 .000328 .000650 

25.22 26.35 23.30 23.68 23.18 23.35 20.67 22 I4 25.59 
52 41 46.59 52 72 45.48 51 99 45.91 48.79 43.07 51.43 

.2283 .2378 .226l ,208s .22Ol .?I43 .2167 .2052 .3068 

.I613 1493 .I567 .I444 .I533 .I337 .I450 .I417 .2198 

.3170 .3700 .3028 .2X31 .269l -2761 .2489 .2522 

.I938 .I857 .I890 .I735 .I819 .1634 .I700 .I683 

.03572 .04294 .03416 .03335 .03104 03114 .02983 .03096 
1.9366 1.9019 I.8101 1.9290 1.7993 1.9718 1.9038 1.9709 

.01035 

.007665 

.001271 

.3859 

.2565 

.0822l 
2.6141 
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EXHIBIT 6 
SHEET 2 

HOMOGENEITY MEASURES FOR TERRITORY GROUPINGS 

USING 1986 INDEX METHODOLOGY 
TERRITORY DIVISION INDEX INTER- MARB RECOMMEN- 

“AU; No CAPPING DATLON 
1984-85 1982-83 

UNCAPPED CAPPED TERRITORY TERRITORY 
HOMOCENEI~Y MEASURE*** 5% 5.5% 6% 6.5% Ttnn.* Tea.** GROUPING GROUPING __~~__ -- 

I. P.P. Squared Diff. 
(Absolute) 
a) Liability 61.71 61.06 60.54 59.56 59.15 60.05 88.03 127.07 
b) Package 345.74 301.84 277.07 288.38 224.99 234.38 427.04 718.08 

2. P.P. Squared Diff. 
Cred. Weighted (%) 
a) Liability .007414 .006662 .a06506 .006314 .006456 .006537 .a09365 .01276 
b) Package X04372 .004013 .003877 .003904 .a03738 .003885 .007294 .Oll76 

2A. P.P. Squared Diff. (%) 
a) Liability .008415 .a07451 .1X7234 .006994 .@I7183 .007273 .01035 .01401 
b) Package .a04638 .004228 .004084 .004080 .@I3941 .004lOl .007665 .01226 

3. Index Squared Diff. (Ab- 
SOlUte) .oOll6l .000852 .a00645 .OOO650 .COO315 .a00346 .001271 .005063 

4. P.P. Maxlmum Diff. 
(Absolute) 
a) Liability 
b) Package 

5. P.P. Maximum Dlff. 
Cred. Weighted (%) 
a) Liability 

b) Package 

26.35 23.68 23 35 22.14 23.20 24.02 25.59 27.27 
46.59 45.48 45.91 43.07 44.49 48.29 51.43 62.16 

.2378 ,208s .2143 .2052 .2151 .2183 ,306s .3635 

.I493 .I444 .I337 .I417 .I318 .I343 .2198 .2849 
5A. P.P. Maximum Diff. (%) 

a) Liability .3700 .2831 .2761 .2522 .2769 .2804 .3859 .6260 
b) Package .1857 .I735 .I634 .I683 .I614 .I700 .2565 .3349 

6. Index Maximum Diff. 
(Absolute) .04294 .03335 .03114 .03096 .02854 .04292 .0822 I .I581 

7. Error Entropy 1.9019 1.9290 I.9718 1.9709 I .9522 I .9844 2.6141 3.1465 

* Reflecting judgmental adjustments to wrmxies at high end of scale 
** Prior to imvosltion of Commissioner’s additional constraints (see text) 

*** Refer to Appendix B for formulas 
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displayed with various alternatives to the 1.06 index value boundaries actually 
used for 1986. The results indicate that: 

(a) For most of the homogeneity measures based on actual loss pure pre- 
miums, the 1986 method of treating claim severity substantially im- 
proves the homogeneity of the territories. 

(b) For the homogeneity measures based on the constructed index values 
and for the error entropy measure, the 1986 and 1984 methodologies 
produce similar homogeneity values. However, since the dispersion of 
the index values has been increased by the recognition of claim cost 
variations by town, the index-based homogeneity measures and the error 
entropy measures probably have little useful value in comparing the 
homogeneity of the final territories produced by the two methods. 

Territory Groupings 

Exhibit 6, displays the homogeneity measures produced by territory group- 
ings based on the selected 1.06 breakpoint factor as well as those based on 
alternative breakpoint factors of 1.05, 1.055, and 1.065. Generally, the homo- 
geneity measures indicate that the breakpoint factors of 1.06 and 1.065 are to 
be preferred, with the 1.06 factor performing best on the measures that reflect 
a package of all major insurance coverages. The 1.06 factor actually was selected 
for the several reasons indicated above. Exhibit 6 also indicates that the MARB’s 
judgmental adjustments to the territory breakpoints and the MARB’s application 
of the “traditional” capping process produce only minor changes in the homo- 
geneity measures. 

By all measures, the proposed territories are far more homogeneous than 
the 1984-85 territories. However, the additional constraints imposed by the 
Commissioner nearly recreate, in 1986, the 1984-85 territory definitions and 
thus bear a nontrivial cost in terms of homogeneity. 

Perspective 

This loss of homogeneity usefully may be viewed as the cost of shifting the 
regulatory emphasis from the homogeneity criterion towards the stability crite- 
rion. This trade-off illustrates two general principles often encountered in clas- 
sification issues (and other issues): that not all constraints can be satisfied 
simultaneously; and that the relative emphasis placed on the different constraints 
ultimately must be resolved by the application of judgment, even if complex 
methodologies are available to clarify the nature and implications of the nec- 
essary choices. 
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5. SUMMARY 

The methodologies described in this paper may be useful specifically to 
practitioners in the automobile insurance field. In addition, particularly with 
regard to the empirical Bayesian credibility techniques, the formulas-or the 
concepts they implement-may be useful in other fields as well. 

Two conclusions of the Massachusetts territory analysis are of particular 
interest in that they suggest a change to the conventional structure of automobile 
rating territories and a change to the frequency with which territories are re- 
viewed. These two conclusions are: 

(1) That claims experience varies significantly from town to town, even 
among neighboring towns with generally similar characteristics; and 

(2) That claims experience of towns shifts materially over time and, there- 
fore, that territory definitions should be reviewed regularly. 

While the author expects that Massachusetts methodologies will continue to 
evolve in the future, the procedures and results of the current Massachusetts 
state of the art may prove useful elsewhere in the meantime. 
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APPENDIX A 

CALCULATION OF THE TOWN INDEX AND TOWN RANKING2’ 

Al. SUMMARY 

This appendix describes the calculation of the index that is intended to reflect 
a town’s overall loss potential relative to the statewide average loss potential. 
The calculation methodology described here is that underlying the 1986 Mas- 
sachusetts automobile rating territories, as described in the body of the paper. 
Exhibit 7 schematically displays the process of deriving the final town index 
used to rank the towns. 

The starting point for the calculation of the town index is the actual expe- 
rience (exposures, number of claims, and loss payments) of the vehicles insured 
in each town. This actual experience may be expressed in terms of claim 
frequency (average number of claims per insured exposure) and average claim 
cost (average cost per claim). 

The analysis uses the actual claim frequency by coverage of each town, 
credibility weighted with model claim frequencies by town and coverage; the 
parameters of the model and the calibration of the credibility functions are based 
on an analysis of patterns and variations in claim frequency across towns and 
years. The claim frequency method of analysis is detailed in Section A2. 

The analysis also utilizes average claim cost data by town, credibility 
weighted with average claim cost data by county and statewide. The procedure 
used to estimate the relative average claim cost by town is detailed in Section 
A3. 

The resulting claim frequency and claim cost indications by town are com- 
bined to produce a pure premium index by town and coverage. These pure 

*’ This Appendix was excerpted, with editing, from sections of the Massachusetts Automobile 
Rating and Accident Prevention Bureau’s (MARB) Filing for 1986 Private Passenger Territory and 
Chsijication Definitions, July 1985, which was written by Dr. Richard Derrig, Howard Mahler, 
and the author of this paper. The Bayesian credibility procedures used in the claim frequency 
analysis were developed by the MARB and by Peter Siczewicz. The Two Layer Hierarchical 
Empirical Bayesian Method of analyzing claim severities (see below) was developed and prepared 
by Howard Mahler for the MARB Filing for 1986 Private Passenger Territov and Classification 
Dejnitions. Howard Mahler’s work on the Two Layer Hierarchical Empirical Bayesian Method 
was based on P. Heckman, “Credibility and Solvency,” Pricing Property and Casualty Insurance 
Products, CAS Discussion Paper Program, May 1980; and G. Venter, “Structured Credibility in 
Applications-Hierarchical, Multidimensional, and Multivariate Models,” 1984 (unpublished). 
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EXHIBIT 7 
SHEET 1 

OUTLINE OF TOWN INDEX CALCULATIONS 
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EXHIBIT 7 
SHEET 2 

OUTLINE OF TOWN INDEX CALCULATIONS 

TOWN DATA 
LOSSES. CLAIM COUNTS 

BY Coverane 
By Year 

By Town 

Actual Severity Index; Claim Count 
By Town 

BY CoveraRe 
By Year 

r Calculate 
Credibility 

\ Parameters > I 

I Credibility 
I I 

‘ourmy 4 
stat-i, 

Parameters c^--^-I +_ 
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EXHIBIT 7 
SHEET 3 

OUTLINE OF TOWN INDEX CALCULATIONS 

Town F-la Preauencv Index 
By coverage 

I 

Town Pure Premium Index 
By Coverage 

i 
I 

To? Net Pure Premium Index 

FINAL TOWN INDEX 
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premium indices are then modified to the extent they reflect components of the 
town’s driver classification mix already captured by other elements of the rating 
system. 

As described in Section A4, the final town index is a weighted average of 
the pure premium indices for the five major coverages for which rates vary by 
territory. 

A2. BUILDING THE CLAIM FREQUENCY INDEX 

The details of the methodology used to determine the claim frequency index 
are described and illustrated in this section. Exhibit 8 details the formulas used. 

a. Data 

Exposures and claim counts by town and year (latest four years) for each 
of the coverages A-l, A-2, PDL, Collision, and Comprehensive are used. In 
order to ensure that the ultimate ranking of an individual town is not adversely 
affected by a single natural catastrophe, a listing of physical damage experience 
for each town by month is reviewed and compared with a list obtained from 
the Insurance Services Office of catastrophes assigned serial numbers during 
the experience period. The current review indicated that none of the serialized 
catastrophes produced unusual claim counts that might require adjustment or 
special treatment. 

b. Actual Claim Frequency 

The claim frequency in a town for a particular coverage and year is calculated 
as claims divided by exposures. The claim frequency index in a town for a 
particular coverage and year is the ratio of the town’s claim frequency to the 
statewide claim frequency for the same coverage and year. 

A claim frequency index for a town and coverage for all years combined is 
calculated as the average of the claim frequency index for each year, weighted 
by the town’s exposure by year for the specified coverage. The resulting indices 
are re-balanced to produce an average index of unity across all towns. 

c. Claim Frequency Model 

Three explanatory variables affecting the claim frequency in a town are used 
in the claim frequency model: the traffic density in the town, the class mix in 
the town, and whether the town is part of Boston. The effect of each of these 
variables differs from coverage to coverage. 
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EXHIBIT 8 
SHEET 1 

CALCULATION OF CLAIM FREQUENCY INDEX MODEL 
PARAMETERS AND CREDIBILITY PARAMETERS 

FORMULAS2* 

The basic structure of the claim frequency model is: 
Frequency Index,,, = Ao,~ 

+ AI,, X Density, 
+ A2.c x ACRFc,, 
+ A3.c X Boston Dummyt 

where the subscripts c and t refer to coverage and territory; 
Density, is the town density for non-Boston towns; 
ACRF,, I is the average class rating factor for the coverage and town; 
Boston Dummyr = 1 in towns which are part of Boston, 0 elsewhere; 
and 
Ao, c; AI, =; AZ, =; A3, c are regression coefficients. 

The regression coefficients are determined separately for each coverage, so the 
c subscripts will be dropped in the remaining formulas. 

With 360 towns in Massachusetts, it is convenient to perform the algebra 
in matrix notation, which parallels the structure of the APL program used in 
the analysis: 

y is a 360 X 1 vector of actual town claim frequency indices. 
9 is a 360 X 1 vector of model claim frequency indices. 
x is a 360 X 4 matrix of the independent variables in the claim frequency 

model, where 
Column 1 is unity; 
Column 2 is Densityz; 
Column 3 is ACRF,; 
Column 4 is Boston Dummy,. 

*’ For a more detailed exposition of these formulas refer to Siczewicz [27]. Also see DuMouchel 
and Harris [4]. 
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EXHIBIT 8 
SHEET 2 

xT is the 4 X 360 transpose of x; 
A is a 1 X 4 matrix of the regression coefficients; 
W is a 360 X 360 diagonal matrix of the weights to be applied to each 

town in the weighted least squares regression; and, 
W-’ is the inverse of W. 

In practice, W is determined from W-‘; the entry for each town in W-’ is an 
estimate of the variance of the claim frequency in the town. 

The first estimate of this variance in town t is 

T2fH*, 

where 72 is a statewide measure of the year to year variations in claim frequency 
(see below), and Hr is 

Hz = 
Exposurest 

Actual Claim Frequency Index, 
(all years combined). 

That is, given the statewide claim frequency variation, a town with more 
exposures is estimated to have a lower variance, while a town with a high claim 
frequency is estimated to have a high variance in claim frequency. 

The statewide value of 7’ is calculated as: 

r2 = 360 X (number of years of data - 1) 

where t = town; 

y = year; 

H I, Y = exposurest, J Y,; 

Y, = claim frequency index for town t, all years combined; and, 

Y f.Y = claim frequency index for town t, year y. 

The first estimate of the regression coefficients A is calculated using a 
weighted least squares regression 

A = (XT WX)-’ XT WY. 
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EXHIBIT 8 
SHEET 3 

The second estimate of the variance in town t is: 

(&Hz) + (TV, 

where o2 is a measure of the variation of the model from the data. u2 is 
calculated as: 

O* = (RSS - (n-m))i( (~Hrh2) - trace <X’ W* x) (<XT W-X?-‘)) , 

where RSS = Residual sum of squares 

= x((Y, - gJ21 (T~/HJ); 

I’, = Model claim frequency index for town t 

= WI),; 
n = 360 = number of towns; and, 

m = 4 = number of years of data. 

With the revised values of W-l, W is recalculated, and the final estimate of 
the regression parameters is 

A’ = (XT WX-’ XT WY. 

The credibility assigned to the actual town frequency index is: 

z, = 
a* 

u2 + ?2 X (fz + Exposures,) 

(Exposures, + PJ 
= (Exposures, + PJ + (~*/a~) 



AUTOMOBILE TERRITORIES 51 

The traffic density in a town is calculated as the ratio of insured exposures29 
in the town to road miles in the town. 

The class mix in a town is quantified as the average of the rating class 
relativities underlying the current rates, weighted by the exposure distribution 
by class within the town; class mix factors (ACRF’s) are calculated by town 
separately for each coverage. 

In order to reduce the possibility of Boston claim frequency patterns dis- 
torting the model for the remaining 350 towns, a “dummy” variable is introduced 
into the model; this variable has a value of unity in Boston, zero elsewhere. In 
addition, the traffic density variable is set equal to zero in Boston. 

The structure of the claim frequency model is 

Model Frequency Index,, f = Ao, c 
+ Ai, C X Density, 
+ A2.c x ACRFc,, 
+ A3,. X Boston Dummy,, 

where the subscripts c and t refer to coverage and town, respectively. 

d. Model and Credibility Parameters 

The values of the model coefficients (the A values in the above equations) 
are determined empirically for each coverage using the latest four years of data. 
In addition, the credibility attributable to the actual claim frequency is deter- 
mined by an analysis of the extent to which the actual claim frequency index 
contains meaningful information about town frequencies not captured by the 
model. 

The values of the model coefficients are determined for each coverage 
separately by a weighted least squares regression of actual claim frequencies on 
density, ACRF, and the Boston Dummy variable. The weight applied in the 
regression analysis to the data for each town is essentially proportional to the 
credibility assigned to that data. The specific formulas used in this analysis, 
which determines both the regression parameters and the credibility parameters, 
are outlined in Exhibit 8. 

” The latest year’s PDL exposures are used. 
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The regression model parameters estimated in the latest review are: 

A-l A-2 
COMPRE- 

PDL HENSIVE COLLISION 

Intercept 
MO, .> -1.1233 -0.5227 -0.07902 -0.5680 -0.2486 
Density 
coefficient (Al, =) .002142 .0007907 .002672 .002625 .002647 
ACRF 
coefficient (AZ, .) 1.8124 1.3714 0.7270 1.1949 0.8816 
Boston 
Dummy 643, .I 0.8052 0.6200 0.7320 1.7224 1.3393 

For illustrative purposes, collision model claim frequency indices for Hol- 
land (rural), Wilmington (suburban), and Brighton (part of Boston) are calcu- 
lated below: 

HOLLAND WILMINGTON BRIGHTON 

(1) Town Density (X .002647) 24.7 97.5 0.0 
(2) ACRF (x.8816) .9682 1.0528 1.0014 
(3) Boston Dummy (X 1.3393) 0 0 1 
(4) Intercept (- .2486) -0.2486 -0.2486 -0.2486 
(5) Model Claim Freq. Index .6703 .9376 1.9735 
(6) Balancing Factor to Produce 

Average Index of 1 .OOO 
(averaged over all towns, 
4 years) .98704 .98704 .98704 

(7) Model Claim Frequency 
Index, Balanced .6791 .9499 1.9994 
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The credibility to be assigned to the actual claim frequency index for a 
particular town and coverage is calculated as: 

Z C,f = 
H, 

H,,, + ;~‘ch~c) 

where Z,, I = credibility assigned to actual frequency index for coverage c, 
town t; 

H c, I = Ec,, + MFI,, r; 

E c, f = exposures for coverage c, town t, all years combined; 

MFI,,, = model claim frequency index for coverage c, town t; 

T$ = a measure of the year to year variation in claim frequencies (see 
Exhibit 8); and, 

o: = a measure of the extent to which actual claim frequencies differ 
from model claim frequencies (see Exhibit 8). 

The credibility parameters (rf , of) determined in the latest review in accor- 
dance with the formulas outlined in Exhibit 8, are 

cr2 T2 

A-l .03898 194.66 
A-2 .03574 112.12 
PDL .01327 22.94 
Comprehensive .04078 25.01 
Collision .01816 13.59 

Continuing the three town example, credibilities for collision are calculated 
as follows: 

HOLLAND WILMINGTON BRIGHTON 

(1) Model Claim Frequency (MFI,, ,) .6791 .9499 1.9994 
(2) Exposures (E,, ,) 1,629.5 21,480.6 35,513.6 
(3) Collision Credibility .7623 .9680 .9596 

(2) + (1) 
((2) + (1)) + (r2/w2) 
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e. Formula Frequency Index by Coverage and Town 

The formula frequency index for each coverage is the weighted average of 
the actual frequency index and the model frequency index. The weight accorded 
the actual frequency index is the credibility, 2, determined in accordance with 
the above procedure; the model frequency index is calculated using the model 
parameters determined above. 

Algebraically, the formula frequency is calculated as: 

FFc,, = (Zc,, x AFL, J + ((1 - Zc, t> X MFLr) 

where 

FFc, r = Formula frequency index for coverage c, town t; and 

AFI,,, = Actual claim frequency index for coverage c, town t. 

Continuing the three town example, the formula frequency index values are: 

HOLLAND WILMINGTON BRIGHTON 

(1) Actual Claim Frequency Index 
WI,, J 

(2) Model Frequency Index (MFI,, J 
(3) Credibility (2,. ,) 
(4) Formula Frequency Index 

WI,,,) = (3)X(l) + (l.O-(3))x(2) 

.7636 .9671 1.7234 

.6791 .9499 1.9994 

.7623 .9680 .9596 

.7435 .9665 1.7346 

A3. CALCULATING THE CLAIM COST INDEX 

Separately for each coverage, claim severity relativities for each town are 
estimated. These relativities compare the estimated average claim severity for 
the town to the statewide average claim severity. 

These claim severity relativities for each town are determined as a credibility- 
weighted average of the town, the county30, and the statewide claim severity 
relativities indicated by historical data. The credibility parameters are determined 
by a Two Layer Hierarchical Empirical Bayes Method. 

" Bamstable, Dukes, and Nantucket Counties are grouped together as Dukes and Nantucket are 
too small to remain ungrouped. 
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The estimated severity for a town is the combination of the severity for the 
town, the severity for the county that contains the town, and the overall statewide 
severity. The town’s own severity is used to the extent it is credible, with the 
complement of credibility being given to the estimated severity for the county. 
In turn, the estimated severity for the county is the credibility-weighted mean 
of the county severity to the extent it is credible, with the complement of 
credibility being given to the credibility-weighted statewide severity. 

The mechanics of the process are described in Exhibits 9 and 10. The 
calculated parameters are shown in Exhibit 11. Illustrative examples of the 
credibility-weighting process are included in Exhibit 12. 

The input variables needed for this method of evaluating claim severities by 
town are: 

1. Claims by coverage by year by town. 

2. Relative average claim cost by coverage by year by town, modified by 
average age/symbol relativity by coverage by town3’ 

= average claim cost by coverage by year by town 
average claim cost by coverage by year, statewide 

-l. average age/symbol relativity by coverage by town 
average age/symbol relativity by coverage statewide 

3. County or county group assignments of the towns. 

As shown in Exhibit 12, for the three town collision example the method- 
ology yields: 

Holland Wilmington Brighton 

Estimated Relative 
Severity 1.0846 1.0508 .9011 

3’ The modification for average age/symbol is only needed for comprehensive and collision. This 
modification is intended to remove from the territory analysis variations between towns that are 
captured by another rating variable, age/symbol factors. 
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EXHIBIT 9 
SHEET 1 

CALCULATION OF THE CLAIM COST INDEX USING THE TWO 
LAYER HIERARCHICAL EMPIRICAL BAYESIAN CREDIBILITY MODEL 

SUMMARY OF FORMULAS3* 

Assume a nested series of groupings. In this specific implementation, the 
nested series of groupings is: towns, groups of these towns into counties (actually 
county groups), and the statewide group of all counties. 

Assume an observed variable, X, for each town, for several time periods. 
(In the territory analysis, X is the relative claim severity.)33 The intent is to 
estimate X in the future. 

Let X,,(t) represent X for time t, town g, in county C. 

Similarly, let PcJt) represent the corresponding measure of exposure (in 
our case, number of claims). 

The use of a dot, instead of a variable, denotes summation over that variable. 
For example: 

PC.(.) = 2 Peg(t), and 
&Ts f 

WC. = 22 wcg- g 
The mean of X, weighted by P, is denoted by x. For example: 

32 These formulas and their derivatives and implementation were developed and prepared by Howard 
Mahler and included in Massachusetts Automobile Rating and Accident Prevention Bureau, FiZz’ng 
for 1986 Private Passenger Territory and Classi&ztion Dejkitiom, July, 1985. 

33 For the physical damage coverages, X is the relative claim severity divided by the relative average 
age/symbol relativity. 
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EXHIBIT 9 
SHEET 2 

Then, given certain assumptions, the least squares estimate for the variable 
X in the future, denoted by t = 0, is given by: 

Xc,(O) = wcg%g + (1 - Wcg>mc 

where mc = V&f,= + (1 - Vc)A = estimated relative severity for the county; 

z VCMC 
fi = 

V. 
= credibility weighted mean overall; 

wcg = PC, 
PC, + kc 

= credibility for the town; 

vc = WC. 
WC. + klkc 

= credibility for the county; and, 

MC credibility weighted mean for the county. 

The parameters k, kc are to be estimated from the observed data. 

It should be noted that the estimated severity for a town is the combination 
of the severity for the town, the severity for the county that contains the town, 
and the overall severity. The town’s own severity is used to the extent it is 
credible, with the complement of credibility being given to the estimated severity 
for the county. In turn, the estimated severity for the county is the credibility 
weighted mean of the county to the extent it is credible, with the complement 
of credibility being given to the credibility weighted severity overall. 
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EXHIBIT 9 
SHEET 3 

Let I(P) = 0 if P = 0 
lifP#O 

and Dlc = Ix PCg(O Gwo - %,>’ 
g. f 

D *c = 2 PC,(t) &g(f) - %I’ 
g. f 

D3 = c PC&> WC&) - B2 
C,g.r 

Let E(Y) represent the expected value of Y; E(Y) will be estimated by the 
observed value of Y. For example, E(DI~) will be estimated by the observed 
value for DIG. 

The estimates of the parameters are as follows: 

E(D I c> 

ss = [Ix z&&))] - [c WMH] 
8. f 

PC.(.) - ; !+!f 

kc = E (D2c) 
2- 

SC 
[z 4PcAt; - wm] 

k= 

E CDs) - c d 
PC&) 

1 V’cg(t)) - - 
C&?’ P..(.> kc I 
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EXHIBIT 10 
SHEET 1 

CALCULATION OF THE CLAIM COST INDEX USING THE TWO 
LAYER HIERARCHICAL EMPIRICAL BAYESIAN CREDIBILITY MODEL 

IMPLEMENTATION 

In the use of the Empirical Bayesian Credibility Model described in Exhibit 
9 to calculate average claim costs by town, some fluctuations in the calculated 
values would be expected, since the parameters of the model are being calculated 
from only a limited quantity of data. For the practical implementation of the 
model, it is desirable to eliminate undue fluctuations. 

Limitations on si 

The parameters s$ are estimated separately for each county (and each cov- 
erage). Since certain counties are relatively small, the computed value of & can 
be subject to undue fluctuations. 

z PC&) WC&> - sz,,)” 

s: = [ fiPcgW,] - [T r(Pcg(.iJ 

& can be viewed as a weighted average of si for each town g in the county 
C, where 

2 PC&) (xc,(t) - r;;,,)” f 

si = [z I(PcgW,] - Wcg(.)) ’ 
t 

the weights34, wg, are 

[ Iz Z(Pcdt)~] - ICPcg(.)) 
t 

w, = ; and, 

Ix WC&)) - I: WC,(.)) 
b-9 f 

34 The weights for all towns are equal if every town has at least one claim in each year. Those 
towns in which no claims occurred in some years would receive less weight. 
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EXHIBIT 10 
SHEET 2 

s: is defined as 

SC = 2 wg$ . 
8 

Since s: is a weighted average of sz for individual towns, a reasonable way 
to limit variations in s$ is to limit the contribution made by any individual town. 
This can be accomplished by restricting the value of si that enters the compu- 
tation of ss to lie between chosen minimum and maximum values. The minimum 
and maximum values can be chosen as a factor times the overall s* (which is a 
weighted average of si over all towns in the state). Factors of l/5 and 5 were 
chosen judgmentally. 

Thus, in computing ss for each county, si for each town was restricted to 
be within a range of l/5 or 5 times the overall s* for all counties. 

2 PC&) (Xc,(t) - %g)” 
s* = c&P 

c WC&)) - c. WC,(.)) C&F 
l/5 s2 if sf Z l/5 s2 

-2 - 
sg - 

1 
2 

sg if 1/5s* 5 sz 5 5s2 
5s2 if si 2 5s2 

3: = zw,s; 

The resulting values of S$ which were used in the review for 1986 are 
displayed in Exhibit 11. 

Limitations on k values 

Even with the application of these limitations, calculated k values may 
exhibit some fluctuations. Therefore, for each coverage, the credibility param- 
eters k and kc (k applies to the state, while there is a kc for each county) are 
limited by the imposition of a maximum value and a minimum value. When 
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EXHIBIT 10 
SHEET 3 

the calculated value was less than the minimum, the value of the parameter was 
set equal to that minimum.35 When the calculated value was more than the 
maximum value, the value of the parameter was set equal to the maximum 
value. 

The choice of maximum and minimum values for k and kc involves the use 
of some actuarial judgment, although tests indicated that the resulting combined 
indices for towns are relatively insensitive to these choices. A maximum value 
of 2500 claims and a minimum value of 100 claims were used for all coverages. 
The resulting values of k and kc which were used in the latest territory review 
are displayed in Exhibit Il. 

35 In certain cases, the calculated value of the parameter k, was a large negative number. This 
occurred when the calculated denominator was negative because the observed variations of the 
average claim costs between the towns within a county were small relative to the observed variation 
of the average claim costs within the individual towns from year to year. (For the overall k this 
would have occurred if the observed variations of the average claim costs between the different 
counties were small relative to the observed variation within a county from year to year.) This case 
was treated as an extension of the case where the calculated denominator was a very small positive 
quantity, and the calculated parameter was a very large positive quantity. Thus in those cases where 
the calculated parameter was negative, its value was set equal to the ,chosen maximum value. This 
choice has the appropriate effect on credibilities: it will assign less credibility to the towns within 
a county and more to the county. 
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EXHIBIT 11 
SHEET 1 

CALCULATION OF THE CLAIM COST INDEX USING THE TWO 
LAYER HIERARCHICAL EMPIRICAL BAYESIAN CREDIBILITY 

MODEL 

CREDIBILITY PARAMETER K, SEVERITY 

COUNTY GROUP 

Overall 548 740 515 143 1026 

Barnst., Dukes, Nant. 132 571 501 766 2500 
Berkshire 100 268 631 1276 100 
Bristol 309 339 165 929 153 
Essex 1503 703 1319 100 387 
Franklin 2500 2500 2500 317 211 
Hampden 1812 356 2500 185 342 
Hampshire 2500 2500 1731 898 202 
Middlesex 2500 544 2500 125 199 
Norfolk 2500 667 1272 245 269 
Plymouth 421 409 978 380 646 
Suffolk 1005 332 1157 696 2500 
Worcester 2500 227 631 719 177 

BI PIP PDL COMP. COLL. 
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EXHIBIT 11 
SHEET 2 

CALCULATION OF THE CLAIM COST INDEX USING THE TWO 
LAYER HIERARCHICAL EMPIRICAL BAYESIAN CREDIBILITY 

MODEL 

CREDIBILITY PARAMETER S*. SEVERITY 

COUNTYGROUP 

Overall 

BI - 

1.7 

PIP - 

2.0 

PDL 

1.2 

COMP. 

4.1 

COLL. 

1.6 

Bamst., Dukes, Nant. 1.4 2.3 1.3 2.7 1.6 
Berkshire 1.4 2.2 1.3 2.5 1.4 
Bristol 1.8 2.6 1.1 7.2 1.7 
Essex 1.5 1.7 1.1 3.4 1.1 
Franklin 2.1 1.5 1.3 1.8 1.9 
Hampden 1.7 1.7 1.0 4.2 2.1 
Hampshire 1.6 2.2 1.3 2.0 1.8 
Middlesex 1.8 2.0 1.3 4.4 1.3 
Norfolk 1.7 1.7 1.4 3.9 1.6 
Plymouth 1.6 1.7 1.2 5.4 2.0 
Suffolk 1.4 1.8 1.7 13.6 2.0 
Worcester 1.9 1.6 1.0 3.0 1.7 



EXHIBIT 12 
SHEET 1 

PRICING EXAMPLES-SEVERITY METHODOLOGY 
BRIGHTON 
SUFFOLK TOWN’s PDL EXPOSURES 15,872.8 

(1) Claims for Town 
(2) Cred. Weighted Mean for County Group 
(3) Overall K (Claims) 
(4) Credibility for County Group 
(5) Cred. Weighted Mean Overall 
(6) Est. Rel. Sev., Cnty. = (2) X (4) + (5) X 1 - (4) 
(7) Actual Relative Sev. for Town 
(8) K for County Group (Claims) 1 
(9) Cred. for Town = (1)/((l) + (8)) 

(10) Est. Rel. Sev. for County Group = (6) 
(11) Est. Rel. Sev., Town = (7) X (9) + (10) X 1 - (9) 

BI PIP PDL COMP. COLL. 
; 

657.0000 1,197.OOOO 5,569.OOOO 6,770.OOOO 
1.0944 1.1421 1.0718 1.3749 

548.0728 740.3648 515.3687 142.6349 
.9034 .8148 .9580 .9825 
.9968 .9891 .9900 .8527 

1.0849 1.1138 1.0684 1.3657 
1.1094 1.0858 1.0178 1.1788 

,004.7278 331.8594 1,156.6019 696.4471 
.3954 .7829 .8280 .9067 

1.0849 1.1138 1.0684 1.3657 
1.0946 1.0919 1.0265 1.1962 

6,388.OOOO 2 

.9381 5 

1,026.1405 
m 
K 

.9526 
1.0684 

d 

.9443 
E 
‘j 

.8842 $ 
2,500.OOOO i 

.7187 

.9443 

.9011 



EXHIBIT 12 
SHEET 2 

PRICING EXAMPLES-SEVERITY METHODOLOGY 
HOLLAND 
HAMPDEN TOWN’S PDL EXPOSURES 914.0 

(1) Claims for Town 
(2) Cred. Weighted Mean for County Group 
(3) Overall K (Claims) 
(4) Credibility for County Group 
(5) Cred. Weighted Mean Overall 
(6) Est. Rel. Sev., Cnty. = (2) X (4) + (5) X 
(7) Actual Relative Sev. for Town 
(8) K for County Group (Claims) 
(9) Cred. for Town = (1)/((l) + (8)) 

(10) Est. Rel. Sev. for County Group = (6) 
(11) Est. Rel. Sev., Town = (7) X (9) + (10) : 

BI PIP PDL COMP. 

14.0000 56.0000 164.0000 105.0000 128.0000 
.9334 .9513 .9325 .7344 1.0438 

548.0728 740.3648 515.3687 142.6349 1,026.1405 
.9167 .8349 .9743 .9514 .8162 
.9968 .9891 .9900 .8527 1.0684 

1 - (4) .9387 .9575 .9340 .7402 1.0483 
.9478 .9118 1.0217 .6832 1.1810 

1,812.2624 355.5324 2,500.OOOO 184.7182 342.3312 
.0077 .1361 .0616 .3624 .2737 
.9387 .9575 .9340 .7402 1.0483 

< 1 - (9) .9388 .9513 .9394 .7195 1.0846 

COLL. 



EXHIBIT 12 
SHEET 3 

PRICING EXAMPLES-SEVERITY METHODOLOGY 
WILMINGTON 
MIDDLESEX TOWN’s PDL EXPOSURES 10,232.4 

BI PIP PDL COMP. COLL. 

(1) Claims for Town 419.0000 734.0000 3,010.0000 2,386.OOOO 2,170.OOOO 
(2) Cred. Weighted Mean for County Group 1.0063 .9865 1.0308 ,884s 1.0383 
(3) Overall K (Claims) 548.0728 740.3648 515.3687 142.6349 1,026.1405 
(4) Credibility for County Group .9726 .9524 .9923 .9772 .9014 
(5) Cred. Weighted Mean Overall ,996s .9891 .9900 .8527 1.0684 
(6) Est. Rel. Sev., Cnty. = (2) x (4) + (5) x 1 - (4) 1.0060 .9866 1.0305 .8841 1.0413 
(7) Actual Relative Sev. for Town 1.0411 .9717 1.0661 .9980 1.0517 
(8) K for County Group (Claims) 2,500.OOOO 543.7111 2,500.OOOO 124.9303 198.6265 
(9) Cred. for Town = (1)/((l) + (8)) .1435 .5745 .5463 .9502 .9161 
10) Est. Rel. Sev. for County Group = (6) 1.0060 .9866 1.0305 .8841 1.0413 
11) Est. Rel. Sev., Town = (7) x (9) + (10) X 1 - (9) 1.0111 .9781 1.0499 .9923 1.0508 
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A4. FINAL TOWN INDEX 

This section describes the combining of the claim frequency indices (from 
Section A2) and claim cost indices (from Section A3) and the determination of 
an overall index that incorporates all coverages. 

The first step is to calculate a pure premium index by town and coverage. 
This index is simply the product of the claim frequency index and the claim 
cost index, and is interpreted as being a measure of the town’s pure premium 
(average insurance loss dollars per vehicle) relative to the statewide average 
pure premium. 

Any town-to-town variation in pure premiums that is captured by other 
rating variables, however, should not also influence a town’s territory assign- 
ment, Therefore, each town’s pure premium index is adjusted to remove the 
effects of the mix of insured drivers by driver classification36 as measured by 
the ACRF described above. The resulting town net pure premium indices are 
re-balanced to unity within each coverage. In the three town example for 
collison: 

HOLLAND WILMINGTON BRIGHTON 

(1) Claim frequency index .7435 .9665 1.7346 
(2) Claim cost index 1.0846 1.0508 .9011 
(3) Pure premium index 

= (1) x (2) .8064 1.0156 1.5630 
(4) Average class rating 

factor .9682 1.0528 1.0014 
(5) Net pure premium index, 

re-balanced to unity 
= ((3) + (4)) f 1.00015 .8328 .9645 1.5606 

Finally, an average index across all coverages (c) is calculated for each town 
(t) by weighting the coverage net pure premium indices. The weight assigned 
to each coverage depends on the number of exposures purchasing the coverage 
and on the statewide pure premium for the coverage: 

x Exposuresc, f x Statewide Pure Prem X Net Pure Prem Index,,, 
c 

2 Exposuresc, f x Statewide Pure Premium 
c 

36 As noted in Section AS, a corresponding adjustment to remove the effects of varying distributions 
by age and symbol is incorporated in the claim severity index calculation. 
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The resulting index is balanced to unity (on the latest year’s PDL exposures) 
across all towns. 

Applying the above formula to the three towns: 

HOLLAND WILMINGTON BRIGHTON 

(1) Exposure (latest year) 
A-l, A-2, PDL 
Comprehensive 
Collision 

(2) Net Pure Premium Index 
A-l 
A-2 
PDL 
Comprehensive 
Collision 

(3) Statewide Average Pure 
Premium 

A-l 
A-2 
PDL 
Comprehensive 
Collision 

(4) Balancing Factor 
(5) Weighted average net 

pure premium index 

914.0 10,232.4 15,872.8 
533.7 7,176.6 11,806.O 
422.2 5,794.7 9,679.2 

.5397 1.0063 1.2748 

.8712 .9694 1.2898 

.6477 1.0451 1.3588 

.4253 .9674 2.0844 

.8328 .9645 1.5606 

38.61 38.61 38.61 
14.92 14.92 14.92 
62.01 62.01 62.01 
57.28 57.28 57.28 

120.00 120.00 120.00 
1.0011 1.0011 1.0011 

.6567 .9938 1.5361 

The resulting index is used to rank the 360 towns according to their loss 
potential. For the three town example the ranks are: 

RANK 

Holland 30 
Brighton 349 
Wilmington 302 
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APPENDIX B 

HOMOGENEITY AND HOMOGENEITY MEASURES3’ 

B 1. INTRODUCTION 

As discussed in the body of this paper, one of the criteria by which alternative 
territory schemes are assessed is homogeneity; i.e., towns within the same 
territory grouping should possess similar inherent loss potential. If the territories 
are to be homogeneous then no town’s loss potential measure should differ 
substantially from the average loss potential measure of all towns in that terri- 
tory. This notion can be used formally to construct several quantitative indices 
which then can be used to guide the ratemaker in some of the grouping judgments 
which need to be made. 

This appendix defines the indices that have been constructed for use in 
Massachusetts; all of them are referred to as homogeneity measures and are 
displayed in Exhibit 6. 

B2. LOSS POTENTIAL 

There are two readily available data sources which can be used to indicate 
a town’s loss potential. One is the value of the combined index produced by 
the procedure described in Appendix A and displayed in Exhibit 5 for a sample 
of towns. Another is the actual latest three year experience pure premiums for 
the liability coverages and for the typical package of coverages. Exhibit 5 also 
displays these pure premiums for a sample of towns. Each measure has rele- 
vance. The combined index is a true credibility weighted estimate of a synthetic 
pure premium relationship between towns, while the actual three year pure 
premiums are the data used to set territory relativities in the ratemaking process. 
Rather than choose between these two measures, both are used as homogeneity 
indicators. 

37 This appendix was taken, with minor editing, from sections of the Massachusetts Automobile 
Rating and Accident Prevention Bureau’s Filing for 1986 Private Passenger Territory and Classi- 
$cation Dejinitions, July, 1985. These sections of the MARB’s filed analysis, including the specific 
homogeneity measures, were developed and prepared by Dr. Richard Derrig. 

38 The liability coverages consist of basic limits (10120) A-l, PDL (5,000) and A-2. The package 
coverages consist of A- 1 (10120)) PDL (5 ,OOO), A-2, Collision, and Comprehensive. 
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Homogeneity Measures 

This section defines several measures of the homogeneity of a territory 
grouping procedure. In general, the measures test the difference between the 
town’s loss potential and the average of the entire territory’s loss potential. The 
measures utilize both the actual pure premium and the combined index values 
of loss potential. The first tests calculate both the average absolute squared 
difference (measure 1) and the percentage squared difference for the pure 
premium values. Since the latter will measure the percentage difference from 
the town’s actual pure premium, which might be unstable for small towns, this 
measure is calculated with (measure 2) and without (measure 2A) a credibility 
weight for the reliability of the actual data. In order to test the average spread 
of the territory grouping, the next measures rely on the average maximum 
deviations of the town value from the territory average both using the absolute 
difference (measure 4), percentage difference with (measure 5) and without 
(measure 5A) a credibility weight, and the model combined index (measure 6). 
The precise definitions are listed in Exhibit 13. For all these measures, a 
homogeneity value closer to 0 indicates a more homogeneous set of territories. 

B3. ERROR ENTROPY 

One further measure of homogeneity can be defined based upon the infor- 
mation-theoretic concept of entropy. In general, entropy quantifies the degree 
of disorder or uncertainty in a system. An entropy-like measure is applied to 
determine the disorder or uncertainty in the difference between a town’s com- 
bined index and the territory average index. In a sense, that difference is the 
“error” which results when the territory average index is assigned to the town. 
This is the assumption of perfect homogeneity. The entropy measure will then 
quantify the relative information about the concentration of these errors among 
territory grouping procedures. The notion of entropy has been used in a some- 
what similar way by Garrison and Paulson [5] to compare concentrations in 
economic activity over time. 

Consider a set of k categories Cl, . . . , Ck and a random sample of size n. 
Each observation of the sample falls into one of the categories Ci with some 
fixed probability pi > 0; i = 1, 2, . . , k with Xpi = 1, and in the sample a 
total of ni observations fall into category Ci. Then the entropy or expected 
information of the system is defined by 

H = i Pi log Pi . 
i=l 



EXHIBIT 13 
SHEET 1 

HOMOGENEITY MEASURE DEFINITIONS 

MEASURE DEFINITION 

1. Pure Premium Squared Diff. 

2. Pure Premium Cred. Wgtd. 
Percentage Squared Diff. 

2a. Pure Premium Percentage 
Squared Diff. 

2 83 EXP; (Town PPi - Terr PPij2 + z 83 EXPi 
Town j TOWI, 

2 83 EXPi Max Credi Toivn~~~~p~ “‘)’ + Tz” 83 EXPi 
TWII, ( I 

c. 83 EXPj 
Town PPi - Terr PPi * 

Town PP; 
+ x EXP 83i 

Town I TOWIf 

3. Index Squared Diff. 

4. Pure Premium Maximum Diff. 

2 83 EXPi (Town Indi - Terr IndJ2 + 
Town, 

T& 83 EXPi 

x 83 EXPi Max 1 Town PPi - Terr PPi 1 + x 83 EXP, 
TU, I TOWIli 



EXHIBIT 13 
SHEET 2 

HOMOGENEITY MEASURE DEFINITIONS 

MEASURE DEFINITION 
5 

5. Pure Premium Cred. Wgtd. 
Percentage Max. Diff. 

5a. Pure Premium Percentage 
Max. Diff. 

% 2 83 EXP; Max Max Credi Town~~~,p’p”” ppi f 2 83 EXPi 
TelT, I I Town; m 

c 

2 83 EXPi Max 
Town PPi - Terr PPi 

+ c 83 EXP; 
T.Si I Town PPi Town i 

6. Index Max. Diff. z 83 EXP; Max ( Town Indi - Terr Ind; 1 + x 83 EXPi 
L 
e 

TUI; I TOM, 

7. Error Entropy -c (EXP(,,,IEXP) log (EXP(,,,/EXP) 
Cl 
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SHEET 3 

HOMOGENEITY MEASURE DEFINITIONS 

NOTATIONAL CONVENTIONS 

1. 83 EXPi means the 1983 PDL exposure in earned car years for Town i. z 

2. Town PPi means the pure premium of 1981-1983 losses divided by 1981-1983 earned car years for z 
Town i. 0 

m 

3. Terr PPi means the pure premium of 1981-1983 losses divided by 1981-1983 earned car years for all 
G 

towns in the territory containing Town i. 
ii 
E 
7 

4. Max Cred; means the maximum of the Empirical Bayes produced credibility values for all coverages (5 or $ 
6) for Town i. B 

5. Town Indi means the model combined index for Town i. 

6. EXP(e,, means the total earned car years of exposure for all towns whose “error,” Town Indi - Terr 
Indi = e;, lies in the interval (ei). 

7. EXP means total exposure in earned car years. 
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The underlying probabilities pi indicate the strength or concentration of the 
category Ci. On a sampling basis, for purposes of the current analysis, entropy 
is defined by the approximation39 

h = - i: (niin) log (r&t). 
i=l 

The greatest uncertainty occurs when H (or h) is the maximum value of log k, 
while the least uncertainty (most categorial information) occurs when H (or h) 
equals zero. 

The construction of territories seeks the information content for the per 
exposure error in territory index assignment to towns. Assuming homogeneous 
towns, the sample size is the total exposure n. The categories are intervals of 
errors. (For this application, intervals of .Ol were chosen to define categories.) 

c-2 C-l CO Cl c2 

-.Ol 

Thus, define: 

0 .Ol .02 

Iii = x Town Exposure, 
I 

when e, = Town Index, - Territory Index, falls into C,. Then, the entropy 
measure h will define the “concentration” of the errors e,. The smaller the value 
of h, the more homogeneous the territory grouping will be. This is designated 
as homogeneity measure 7 and labelled the “Error Entropy” measure. 

39 As usual, if n; = 0 then (n,ln) log (n,/n) = 0. 



REVISIONS IN LOSS RESERVING TECHNIQUES NECESSARY TO 
DISCOUNT PROPERTY-LIABILITY LOSS RESERVES 

STEPHEN P. D’ARCY 

Abstract 

Statutory accounting principles for property-liability insurers in the 
United States, in all but very special circumstances, do not recognize 
the time value of money in the establishment of loss reserves. The Tax 
Reform Act of 1986 stipulates an interest rate and a methodology for 
discounting loss reserves for tax purposes. The National Association of 
Insurance Commissioners (NAIC) is studying the discounting issue. In- 
surers need to consider the appropriate procedures and interest rates to 
be used in discounting loss reserves. This paper proposes a method of 
calculating loss payout patterns based on paid loss development data 
combined with other reserving techniques that would minimize the ad- 
ditional effort involved in adopting discounting. It also analyzes the 
repercussions of adopting discounting for statutory accounting purposes. 

Discounting loss reserves would have both positive and negative 
effects on the property-liability insurance industry. Discounting at an 
appropriate interest rate would increase the usefulness of the combined 
ratio as a profitability measure, with values less than 100 indicating 
profits and in excess of 100 indicating losses, subject to the accuracy of 
loss reserves. Statutory surplus would increase as a result of discounting, 
which, although having no real economic effect, might provide more 
capacity for the insurance industry due to regulatory reliance on statu- 
tory values. Conversely, discounting would increase the complexity of 
loss reserving, create a dependence of reserve adequacy on future in- 
terest rate levels, and increase the expenses of insurers by raising tax 
levels. Discounting would have its greatest impact on commercial and 
professional liability insurers. 
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1. INTRODUCTION 

The Revenue Act of 1921 established the statutory accounting principles of 
the property-liability insurance industry as the basis for determining federal 
income taxes. These accounting principles include the provision for an unearned 
premium reserve that ignores prepaid expenses, thus leading to an equity in the 
unearned premium reserve. These principles also establish that the loss reserves 
represent the best estimate of total future payments on losses that have already 
occurred regardless of when the payment is to be made. Discounting, although 
allowed in specific instances of periodic payments, is generally not used. Sta- 
tutory accounting principles are based on the need to assure company solvency 
and, in most instances, are recognized as being conservative. 

Several recent developments led the federal government to reconsider the 
provisions of the Revenue Act of 1921. The property-liability insurance industry 
has been extremely unprofitable from 1982 through 1986, based on statutory 
accounting principles, reducing federal income tax receipts. The industry re- 
ceived tax refunds of approximately $1.7 billion in 1984 and $2.0 billion in 
1985 for taxes paid in prior years [ 16, 211. New forms of insurance transactions 
also demonstrate that, in times of high interest rates, the opportunity to use 
undiscounted loss reserves can lead to tax driven financial transactions. A group 
of insurers provided retroactive liability insurance at a price below expected 
losses to MGM Grand Hotels after a major fire had occurred. Leading to this 
below full cost pricing was the knowledge that the underwriting loss created by 
this transaction would shelter other income from taxes and the premium income 
would be invested for a number of years before the loss would be paid [28]. In 
another case, a large insurer with a surfeit of tax losses sold loss reserves to an 
insurer in a tax paying situation by transferring responsibility for paying losses 
to the other insurer and paying that insurer a sum less than the value of the loss 
reserves. The first insurer immediately booked an underwriting profit and the 
second an underwriting loss on the transaction [ 151. Finally, an important motive 
behind the development of captive insurers is for noninsurance corporations to 
obtain the right to use insurance accounting techniques for their self insurance 
programs by meeting whatever legal constraints apply [27]. 

The combined ratio is the total of the loss ratio and the expense ratio. 
Traditionally, an insurer is considered profitable as long as the combined ratio 
is below 100 percent. The use of an undiscounted loss ratio generates problems 
with this benchmark because insurers can operate profitably with combined 
ratios well in excess of 100 percent. An alternative profitability measure is the 
operating ratio, which subtracts the ratio of investment income to earned pre- 
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mium from the combined ratio. Often an operating ratio less than 100 percent 
is considered profitable for the insurer in total by combining underwriting and 
investment results. Two problems arise from this measure. First, the investment 
income value includes interest and dividend income and realized capital gains 
and losses, but does not include unrealized gains or losses. The realized gains 
may have been generated in the current period or in prior years. Thus the 
investment income does not really reflect the achieved rate of return in the 
current period. Second, the investment income is based to a large extent on 
prior periods’ premiums collected, loss reserves established, and investments 
made. It does not reflect the future investment experience on the current book 
of business as it develops. Therefore, the operating ratio is an inexact profit- 
ability measure. 

Although the emphasis of the discounting issue has involved loss reserves, 
premiums may also need discounting. If the premium is paid after the coverage 
period, as is the case for paid loss retrospective contracts, premiums must be 
discounted if losses are discounted. 

The General Accounting Office (GAO) proposed requiring property-liability 
insurers to discount loss reserves for determining federal income taxes [lo, 141. 
This provision would immediately boost insurer taxable income which would 
increase the amount of Federal taxes payable by the property-liability insurance 
industry. Use of tax loss carry-forwards could delay the impact of the increased 
tax level. Under the GAO proposal, loss reserves would be discounted based 
on the average pre-tax investment income rate achieved by each insurer over 
the preceding five years, The Treasury Department recommended requir- 
ing property-liability insurers to establish qualified reserve accounts (QRA) 
as a method of discounting loss reserves for all policies issued on or after 
January 1, 1986 [ 13, 231. This proposal allows insurers to establish their own 
procedures and interest rates for the QRA, subject to approval of the Internal 
Revenue Service. Under certain circumstances, the QRA method is equivalent 
to applying a cash accounting system to losses. 

The Tax Reform Act (TRA) of 1986 includes five changes in property- 
liability insurance taxation in addition to the general corporate tax changes. 
Starting in 1987, loss reserves are to be discounted using the applicable federal 
rate on midmaturity (three to nine year) securities based on the five year period 
prior to the calendar year for which discounting is applied. Months prior to 
August, 1986, however, are not included in determining the discount rate. A 
“fresh-start” approach applies under which beginning reserves are treated as 
having been discounted, but the change in accounting profits generated by 
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applying discounting to previously undiscounted loss reserves is not taxed. 
Insurers can use either loss payout patterns calculated by the Treasury Depart- 
ment or company payout patterns. In addition to discounting loss reserves, 20 
percent of the change in unearned premium reserve is included in taxable 
income, the loss reserve deduction is reduced by 15 percent of tax-exempt 
interest and dividends received on investments made after August 7, 1986, the 
protection against loss account (PAL) for mutuals is eliminated, and special 
deductions for small mutual insurers are rescinded. Of the general corporate 
tax provisions included in TRA, applying the alternative minimum tax to 
book earnings, which include tax-exempt income, will also significantly affect 
property-liability insurance operations. 

All federal discounting provisions apply only to loss reserve deductions used 
in determining taxable income. They do not address the issue of discounting 
statutory loss reserves, which have always been subject to state regulation. The 
current situation requires maintaining statutory loss reserves as stipulated by 
state insurance law and separately calculating the discounted loss reserves for 
income tax purposes. The National Association of Insurance Commissioners is 
also considering loss reserve discounting, although no model regulations have 
been adopted. A number of industry trade associations have raised issues related 
to discounting [ 1, 91. 

By not discounting loss reserves, insurers are maintaining a safety margin, 
which varies by reserve accuracy, interest rates, and loss payout patterns. There 
is no formal recognition of this safety margin and it is not generally quantified. 
If loss reserves were discounted, this safety margin would be eliminated. In its 
place, some actuaries propose the establishment of a formal risk loading. This 
risk loading would vary with the size and degree of accuracy of the loss reserve. 
It could vary by line and by insurer. If such a risk loading were adopted as an 
allowable deduction, it would serve to reduce the tax impact of discounting and 
improve the theoretical support for conservatism in statutory accounting. 

The purposes of this paper are to determine what steps property-liability 
insurers would have to take in order to comply with loss reserve discounting 
and to analyze the repercussions of these changes. This research demonstrates 
the effect of discounting on the industry and proposes a methodology for insurers 
to calculate loss payout patterns based on company data. 
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2. LOSS RESERVING TECHNIQUES 

Currently a number of loss reserving techniques are used to determine the 
value for the loss reserve. For statutory accounting purposes, actuaries need 
only project the total amount to be paid in the future for losses that have already 
occurred (or have been reported for claims-made coverage), without any concern 
about when the loss will be paid. The one exception is for periodic payments 
under workers’ compensation. The difficulty of achieving this goal is apparent 
by observing the accuracy of past loss reserve figures. Numerous studies have 
indicated that large errors in loss reserves, either under or overreserving, have 
occurred from the 1960s through the most recent reserves tested. Forbes [12], 
Anderson [2], and Balcarek [3] demonstrate that loss reserves for the industry 
were progressively less adequate through the 1960s. Smith [26] determines a 
pattern of overreserving during the period 1955-196 1, underreserving for 1962- 
1970, overreserving for 1971-1972, and underreserving for 1973-1974, for a 
sample of insurers’ automobile liability loss reserves. Weiss [30] shows that 
reserving errors tend to stabilize insurer profitability. 

A number of specific loss reserving techniques are described and critiqued 
in the actuarial literature [24, 251. Among the more commonly used reserving 
procedures are individual case estimates, the average value method, the loss 
ratio method, incurred loss development, and paid loss development. Also, for 
each basic technique a number of enhancements have been proposed to deal 
with special circumstances. Each technique has its advantages and disadvan- 
tages. Generally actuaries recommend using more than one technique and es- 
tablishing the loss reserve at the level about which several methods cluster. 

The paid loss development reserving technique, described in detail later, is 
readily adaptable to discounting. However, insurers should not emphasize this 
reserving technique and dismiss the other reserving methods simply due to this 
feature. Actuaries should continue to determine loss reserves based on a variety 
of reserving techniques and then apply the paid loss development data, as 
demonstrated in this paper, to establish the loss payout pattern. The primary 
loss reserving techniques will be presented and critiqued to demonstrate the 
need for reliance on a manner of calculations in establishing the loss reserve. 
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Individual Case Estimates 

Under the individual case estimates method of loss reserving, claims de- 
partment personnel assign an individual value to each known claim. The total 
loss reserve is the sum of all the individual claim estimates, with an adjustment 
to reflect historical differences between the total case reserve and ultimate loss 
development. This adjustment covers the incurred but not reported loss reserve 
plus or minus any systematic underreserving or overreserving on the case 
estimates. The individual case estimates method is accurate only if any bias in 
individual case reserving estimates is consistent and if claim reporting patterns 
do not change. The case reserve value is based on the presumed final settlement 
value of the claim and does not consider the length of time until settlement. 
This method does not provide any information concerning when the loss is 
likely to be paid. 

One problem with this reserving methodology is the learning process of 
claim personnel. As these individuals develop more expertise in settling claims, 
any consistent bias they may have reflected in prior years could be corrected. 
For example, a claims person who consistently underreserved losses is likely to 
increase reserve values. If this change occurred throughout the claims depart- 
ment, the adjustment made to total case reserves based on historical factors 
would prove to be inaccurate. 

Another problem is the effect of shifts in reporting patterns. If new claim 
procedures increase the speed of entering claims into the system, or if a weekend 
or other work interruption delays recording claims at the end of a reporting 
period, this method could be incorrect. Consistency in both claim estimation 
and reporting is necessary for the individual case estimate method to be accurate. 

Average Value Method 

The average value method of loss reserving uses claim counts and average 
claim values to determine the loss reserve. If this method is used to value 
reported claims only, the number of reported but unsettled claims is multiplied 
by an estimate for the average cost of settling the claims. Individual loss 
estimates are not material. If this method is used to value the total reserve, the 
total number of claims is projected from reported claims based on historical 
claim reporting patterns. Average claim values are projected from prior claim 
payments, with the recognition that larger claims tend to be settled more slowly 
than smaller claims. 

The average value loss reserve method provides no information on when a 
claim is to be paid. Although this procedure does not depend on consistency in 
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claims department reserving estimates, it does depend on consistency in report- 
ing and settlement patterns. Also, the projection of average values, based on 
historical averages and trends, must be accurate. Changes in the rate of inflation 
or other factors that affect claim severity, such as deductibles or policy limits, 
must be considered. 

A commonly used combination of reserving techniques is for insurers to use 
the average value reserving method for quickly settled claims. After a claim 
has been open for a period of time, a case estimate method is used. In this 
situation, the strengths and weaknesses of each method apply depending on the 
length of time the claim is open. For claims that have not been open long, on 
which information is likely to be incomplete, average values are used to establish 
the reserve. The simple cases that are settled quickly never change value using 
this reserving method. As a case remains open and the opportunity exists for 
more information to be collected, individual case reserve estimates are used. 
During the average reserve period, reporting patterns must be consistent for this 
method to produce accurate reserves. Also, the method used to determine 
average claim values must be accurate. For the time that the case estimate 
method is used, reserving bias and reporting patterns have to be consistent for 
the method to generate accurate reserves. The major advantage of this combi- 
nation of reserving methods is that claims personnel need not maintain reserving 
consistency prior to the investigation of the claim. 

Loss Ratio Method 

The loss ratio method of loss reserving determines the reserve by subtracting 
the losses paid to date from the total expected losses. Total expected losses are 
calculated by multiplying the expected loss ratio by the earned premium. 
Changes in claim reporting patterns, bias in establishing case reserves, and 
shifts in average claim values do not affect the accuracy of this reserving 
procedure. As long as the ultimate loss ratio estimate is accurate, this procedure 
will be correct. Any inaccuracy in the loss ratio estimate, however, generates 
inaccurate loss reserves. 

This method of loss reserving does not provide any information on when 
the loss is to be paid. It is a useful method when the expected loss ratio can be 
projected accurately, and claim reporting and reserving patterns have not been 
consistent. For lines of business with long loss payment tails, this method can 
be risky for an insurer, since rates are established from past loss experience and 
any inaccuracy in this loss reserving procedure would not be apparent for a long 
time. 
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Incurred Loss Development 

The incurred loss development method of loss reserving calculates the loss 
reserve by projecting current incurred losses, which are paid losses plus out- 
standing case reserves, to ultimate incurred loss levels based on historical 
development patterns. The loss reserve is the total projected incurred losses 
minus losses paid to date. Outstanding reserves may be established on an average 
value basis-, by individual case estimates, or by a combination of these methods. 
Unlike the case estimate reserving method, losses paid to date are also used in 
projecting ultimate losses. 

Partial and ultimate incurred loss development factors are calculated from 
historical information. Partial loss development factors are generally determined 
by examining the change in incurred losses for a specific accident year (or other 
exposure period) from one report period to the next. The ultimate incurred losses 
are not known until all losses are settled which, for liability lines, can take 
decades. Reliance on loss development factors based on an era when conditions 
may have been considerably different from the current time introduces substan- 
tial risk into the reserving process. A commonly used technique in this reserving 
method is to combine partial incurred loss development factors with ultimate 
development factors. This technique combines the currency of recent develop- 
ment experience for the most volatile segment of the reserve period with the 
stability of older values for the remaining period. 

This method of loss reserving does not provide information on when losses 
are to be paid. The accuracy of this method depends on consistency in loss 
reporting, settlement, and reserving. It is less sensitive to changes in loss 
reserving than the case estimate methodology since paid losses are also included. 
This reserving procedure is widely used by insurers and is useful for long tailed 
lines. 

Paid Loss Development 

The paid loss development method of loss reserving calculates the reserve 
by projecting ultimate losses from losses paid to date based on historical de- 
velopment patterns. The loss reserve is the total projected losses less the losses 
paid to date. This method of loss reserving can easily be used to indicate when 
losses will be paid in the future. A number of variations of paid loss development 
are described in Berquist and Sherman [4], all of which could be used to 
calculate when losses will be paid. 
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The accuracy of this reserving technique depends on consistency in loss 
settlement patterns. It is not dependent on consistent reporting patterns or case 
reserve estimates. Changes in the rate of inflation, which can affect loss pay- 
ments, shifts in company procedures that infuence settlement patterns, or societal 
shifts such as changes in court backlog can all cause inaccuracies in this 
reserving method. This procedure is widely used by insurers. The major draw- 
back for this technique is the length of time necessary to determine ultimate 
loss payments for long tailed lines and the likelihood of changes in factors that 
influence payment patterns occurring during this time. A possible combination 
of reserve procedures is to use payment development for a number of years and 
then incurred development to ultimate subsequent to that period. When losses 
will be paid cannot be determined directly from the loss development data for 
the time incurred loss development is applied. 

An example of the method used to calculate paid loss development values 
is illustrated on Exhibit I. 

Ultimate paid losses for accident year i, Ciur are projected from losses paid 
through development year j, Cq, by 

c, IU = c.. c., 
c 1 ” C.j ’ 

where C.,IC.j is the standard paid loss development factor from development 
year j to ultimate. The standard paid loss development factor is calculated from 
historical experience. The most recent ultimate experience, average values for 
a number of years, or trended values could be used to determine the standard 
factors. Once the ultimate paid’ losses are projected, the outstanding reserves 
are determined by subtracting paid losses to date, Cg, from the estimate of 
ultimate paid losses, Ciu. Partial paid loss development factors are often used 
to modify indications produced by the use of ultimate paid loss development 
factors. This technique, similar to the use of partial incurred loss development 
factors, is useful when changes in the loss payment pattern have occurred. 

In order to determine when losses will be paid in the future, loss payout 
patterns can be calculated from paid loss development factors. Let Pij equal the 
percent of ultimate paid losses for accident year i paid in development year j. 
Pu is calculated by 

pij = (Cjj - Ci, j-1)lCiU 



EXHIBIT I 

Paid Losses 

Accident 
Year 1 2 -- 

1976 C76, 1 C 76,2 

1977 c77, 1 C77.2 

1978 C78,l C 78,2 

1979 c C79,2 79, 1 

1980 CSO, 1 Go,2 

1981 CSl, I CSl, 2 

1982 C82, I C82.2 

1983 C83, 1 

Development Year 
3 4 5 6 7 8 -- ---- 

C76,3 C 76.4 C76.5 C 76.6 C76,7 C76.8 

C77.3 C 77,4 c77,s C77.6 C 77,7 

c 78.3 C78,4 C78.5 C78,6 

c79.3 C79.4 C79,5 

C80,3 C80,4 

C81.3 

Incurred 
Losses E f/l 

C 
cl 

76.8 + R76,8 D 

C77.7 + R77,7 
P 
5 

C78.6 + R78,6 3 

C 7935 + R79.5 2 

C80.4 + R80.4 G 
% 

C81,3 + R81.3 ii; 

C 82.2 + R82,2 

C83, 1 + R83, 1 

where Cij = cumulative paid losses for accident year i through the end of development 
year j, and 

Rij = reserves for accident year i as of the end of development year j. 
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The more mature an accident year, the more accurate the estimate of ultimate 
losses is likely to be. The paid loss development factors can be used to project 
when the outstanding reserves will be paid. The outstanding reserve for accident 
year i at the end of development year j is represented by 

Rij = (,$, pi,> ciu . 

This equation states that the outstanding reserve is the sum of the percentage 
of losses to be paid in each subsequent development year times ultimate losses. 
The amount to be paid in the next development year, j-t 1, can be determined 

by 

Pi.j+l 
Ci,j+l - Cv = Rij 

i 1 
i pik . 

k=j+ 1 

Similarly, subsequent years of loss payments can be determined. Thus, this 
method of loss reserving can be used to project when losses will be paid for 
use in discounting loss reserves. 

3. PROPOSED REVISION IN RESERVING TECHNIQUES 

In order to discount loss reserves, it is necessary to estimate both the total 
future payments on losses that have already occurred and when the loss payments 
will be made. Since most insurance accounting occurs on an annual basis, 
projecting the year of loss payment will usually be sufficient. This paper assumes 
annual periods for loss payment patterns. More accurate determination of the 
proper discounting reserve level could be made if a shorter unit of time were 
used. McClenahan has proposed a reserving methodology based on monthly 
periods that would allow discounting [ 181. 

If insurers relied solely on paid loss development to establish reserves, shifts 
in loss settlement patterns could lead to inaccurate reserves. Although this loss 
reserving technique directly projects when losses will be paid, a combination 
of paid loss development and other reserve procedures can be used to estimate 
loss reserves and to project when losses will be paid. 

In order to discount loss reserves without reducing the accuracy of loss 
reserving methods, the loss reserve should be established based on the best 
reserving methods available without regard to discounting. This approach will 
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generally involve selecting a value from a number of reserve indications deter- 
mined by applying several methods of loss reserving. The payment pattern for 
the outstanding reserves can then be determined as follows: 

Let Rij = the outstanding reserve for accident year i as of the end of develop- 
ment year j, and 

P.j = the standard percentage of losses paid during development year j. 

The standard percentage of losses paid, P.j, can be determined by a number 
of methods, subject to the constraint that I?,“=1 P.j = 1. Averages, least squares 
regression, trending, or use of the most recent values are all potential methods 
to determine P.j. 

The losses for accident year i to be paid within one year of the evaluation 
date j can be calculated by 

Ei,j+ 1 = Rij (P.j+,/ ,=t+, p.k) > 

where Ei,j+ 1 are the losses for accident year i projected to be paid in development 
year j+ 1. 

The best estimate of the loss reserve as of evaluation date j for accident year i 
is multiplied by the proportion of outstanding losses based on the paid loss 
development method that will be paid during the next, j+ 1, development year. 
The paid loss development method is used to project the payout pattern, but 
not necessarily the loss reserve. Similarly, the losses for accident year i to be 
paid in the second year after the evaluation date j are determined by 

Ei,j+2 = Rij (Pit21 *=t+, P.k) . 

To determine the total losses from all accident years to be paid in the year 
following evaluation date j, the following calculation should be performed 

TI = i Ri,,-itI 
i 

PA-i+Zi 
i=f 

where f is the first accident year with losses still outstanding; 
1 is the latest accident year; and 

TI is the total losses from prior accident years to be paid in the following 
development year. 
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4. INDUSTRY IMPACT 

Assuming that property-liability insurers do not implicitly discount loss 
reserves now, the adoption of discounting would result in a number of changes. 
Loss reserves would be lower, surplus would increase, and loss reserves would 
decline [ 171. To examine the effect of discounting on the industry, the 1983 
Industry Total Annual Statement, provided by A. M. Best Company, was 
analyzed. The loss development data included on Schedules 0 and P were used 
to project industry loss payment patterns for the Schedule 0 lines, automobile 
liability, other liability, medical malpractice, workers’ compensation, and the 
multiple peril lines. These payment patterns were then applied to the outstanding 
reserves to project when the outstanding losses would be paid. The future 
payments were then discounted. 

Determination of the appropriate discount rate is a crucial problem in im- 
plementing loss reserve discounting. No consensus yet exists on the correct 
methodology. The GAO proposal relies on an individual insurer’s past invest- 
ment income rate. The TRA dictates use of the historical interest rate on 
midmaturity U.S. securities. Cummins and Chang propose use of the current 
risk-free interest rate, which is generally considered the rate on short term U.S. 
government issues [5]. Myers and Cohn propose use of the risk adjusted rate 
of return based on the capital asset pricing model [19]. The risk adjustment 
factors, however, are not constant over time or consistent across insurers, which 
leads to severe implementation problems [6]. 

The discount rates as of 1987 determined by the various approaches de- 
scribed above range from approximately 5 percent for the risk free rate to 10 
percent for some insurers’ historical values. A rate of approximately 7 percent 
will be required by the TRA method for 1987 and prior accident years. The 
two endpoints are used to illustrate the ramifications of loss reserve discounting. 
The results are extremely sensitive to the selected discount rate, indicating that 
much additional research should focus on the proper methodology for determin- 
ing the discount rate. The rate mandated under the Tax Reform Act of 1986 
does not have any theoretical support and was chosen primarily for revenue 
producing considerations [20]. 

As discussed earlier, a number of methods exist for determining loss payment 
patterns based on historical data. The 1983 Annual Statement blank provides 
for information on cumulative paid losses and loss adjustment expense for the 
most recent eight years as shown on Table I. Losses paid in a particular 



88 LOSS RESERVING TECHNIQUES 

TABLE I 

ANNUAL STATEMENT INFORMATION 
CUMULATIVE PAID LOSSES AND Loss ADJUSTMENT EXPENSE 

Accident Development Year 

Year 1 2 3 4 5 6 7 8 - - - - - - 

1976 Y 
1977 X X X X X Y 
1978 X X X X X Y 
1979 X X X X x+y 
1980 X X X x+y 
1981 X X x+y 
1982 X X-tY 
1983 x+y 

Source: 
X Schedule P, Part 3 
Y Schedule P, Part 1; Schedule 0, Part 3 
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development year can be determined by subtracting adjacent cumulative values, 
if both are available. The percent of ultimate losses can be determined by 
dividing the losses paid in a development year by the total accident year losses, 
which can be estimated by adding the outstanding reserve for a given accident 
year to the cumulative paid losses through the latest available development year. 

For this project, the loss payment pattern was determined by using the 
cumulative paid loss value for each accident year as of the latest development 
period. This method assumes that all years develop similarly and all future paid 
loss development will be consistent with the latest year’s experience. Use of 
averages or trended values can produce more stable results, but the Annual 
Statement does not provide enough information to use a better method for all 
development years and for all lines. For the five years that multiple development 
is available, paid loss development factors have been fairly consistent for 
automobile liability, workers’ compensation, and multiple peril lines. Other 
liability and medical malpractice both indicate a shift to greater loss payments 
in the early development years starting in 1982. Introduction of claims-made 
policies may have caused this shift in payment pattern or underreserving for 
these years may be indicated. 

Paid loss development must be projected for each development year until 
all losses are paid. The Annual Statement shows only eight years of develop- 
ment. Based on the outstanding reserves after eight years, Schedule 0 lines 
have 2.85 percent of losses unpaid, automobile liability 1.74 percent, other 
liability 16.19 percent, medical malpractice 32.16 percent, workers’ compen- 
sation 13.69 percent, and multiple peril lines 1.63 percent. For all except the 
Schedule 0 lines, the same percent of losses paid in development year eight 
are assumed to be paid in subsequent years until all losses are settled. This 
assumption is conservative since losses are likely to be paid at a decreasing 
rate. This method results in all losses being settled by development year 18. 
Unpaid losses after eight years of development on Schedule 0 lines generally 
represent reinsurance involving lines that would normally appear on Schedule 
P. The same 18 year maximum settlement time is applied to Schedule 0 
development. The calculated percent of losses and loss adjustment expenses 
paid in each development year by line is shown on Table II. 

Assuming that the payment patterns by line projected from the 1983 Industry 
Total Annual Statement apply to accident year 1983, a discounted accident year 
loss and loss adjustment expense ratio by line can be calculated. Losses paid in 
the first development year, 1983, are undiscounted. Losses to be paid in the 
second development year, 1984, are discounted by (1 +d)1’2, where d is the 



Development Schedule Automobile Other Medical Workers’ Multiple 
Year 0 Lines Liability Liability Malpractice Compensation Peril 

TABLE II 

PERCENT OF ULTIMATE Loss AND Loss ADJUSTMENT EXPENSE 
PAID IN EACH DEVELOPMENT YEAR BY LINE 

PROPERTY-LIABILITY INDUSTRY TOTALS 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

58.90% 
29.37 
4.53 
2.00 
1.44 
0.59 
0.18 
0.14 
0.29 
0.29 
0.29 
0.29 
0.29 
0.29 
0.29 
0.29 
0.29 
0.24 

100.00% 

35.95% 
29.75 
14.38 
9.00 
4.49 
2.58 
1.19 
0.92 
0.92 
0.82 

12.10% 
15.56 
11.38 
13.09 
9.91 
8.25 
6.98 
6.54 
6.54 
6.54 
3.11 

100.00% 100.00% 

5.80% 27.42% 
8.59 24.80 
9.00 12.71 

12.17 8.75 
10.34 4.84 
10.58 3.51 
8.07 2.88 
3.29 1.40 
3.29 1.40 
3.29 1.40 
3.29 1.40 
3.29 1.40 
3.29 1.40 
3.29 1.40 
3.29 1.40 
3.29 1.40 
3.29 1.40 
2.55 1.09 

100.00% 100.00% 

56.18% 
26.87 s 
5.12 E 
4.46 E 
2.26 B 

5 
1.44 3 
1.31 ;;1 

0.73 8 
0.73 5 
0.73 5 
0.17 

100.00% 
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interest rate at which losses are discounted. The use of this factor assumes that 
losses to be paid in the second development year will be paid halfway through 
the year or equally throughout the year. Losses to be paid in the third devel- 
opment year, 1985, are discounted by (1 +d)3’2, and so forth, with losses to be 
paid in the 18th development year, 2000, discounted by (1+d)33’2. The undis- 
counted loss and loss adjustment expense ratios by line for 1983 and the 
corresponding discounted loss and loss adjustment expense ratios based on 5 
percent and 10 percent interest rates are shown in Table III. 

Discounting reduces the total loss and loss adjustment expense ratio from 
82.43 percent to 77.67 at a 5 percent discount rate and to 74.18 percent at a 
10 percent discount rate. The combined ratio, based on the 28.44 percent 
industry expense ratio, is 110.87 percent undiscounted, but only 102.62 if loss 
and loss adjustment expense reserves are discounted at 10 percent. Even with 
discounting at a rather high rate, the industry did not earn an underwriting profit 
based on discounted loss reserves for 1983. 

Several caveats should be emphasized at this point. Calculation of these 
discounted loss and loss adjustment expense ratios assumes that the outstanding 
reserves for accident year 1983 are correct. Many observers feel these reserves 
are inadequate [22]. Second, it is assumed that current reserves are not dis- 
counted. If they are already discounted, this calculation indicates the effect of 
additional discounting, At the end of 1983, most insurers were not explicitly 
discounting any reserves except some periodic payments under workers’ com- 
pensation. Some medical malpractice writers now do discount loss reserves, but 
the insurer used as an illustration was not explicitly discounting at the end of 
1983. 

The procedure used to discount all years’ loss reserves is similar to the 
method used to discount accident year 1983 loss and loss adjustment expense 
reserves. For accident year 1982 outstanding reserves, two years of payments 
have already occurred by the end of 1983. Thus, the outstanding losses are 
projected to be settled based on payment development from year three to 
ultimate. Similarly, outstanding reserves for accident years 1976 through 1981 
are projected to be paid based on the remaining payment tail values. The Annual 
Statement blank combines all accident years prior to 1976; for this project these 
reserves are treated as accident year 1975 losses. 

The effect on the industry of discounting all years’ loss and loss adjustment 
expense reserves but not including any increase in income taxation (based on 
the “fresh-start” provision) is shown in Table IV. The loss and loss adjustment 
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TABLE III 

ACCIDENT YEAR 1983 Loss AND Loss ADJUSTMENT 
EXPENSE RATIOS 

PROPERTY-LIABILITY INDUSTRY TOTALS 

Discounted 
Undiscounted at 5% 

Schedule 0 78.03% 75.75% 
Automobile Liability 88.78 84.29 
Other Liability 93.40 79.71 
Medical Malpractice 117.41 90.70 
Workers’ Compensation 84.35 75.10 
Multiple Peril 75.13 72.73 

Total 82.43% 77.67% 
Expense Ratio 28.44% 28.44% 
Combined Ratio 110.87% 106.11% 

TABLE IV 

NET WRITTEN PREMIUM TO SURPLUS RATIOS 
PROPERTY-LIABILITY INDUSTRY TOTALS 

(000 OMITTED) 

Discounted 
at 10% 

74.10% 
80.59 
69.68 
73.92 
68.97 
70.79 

74.18% 
28.44% 

102.62% 

Undiscounted 
Discounted Discounted 

at 5% at 10% 

Loss and Loss Adjustment 
Expense Reserve $121,205,523 $105,534,079 

Policyholders’ Surplus 65,X35,979 8 1,507,423 
Net Written Premium 109,263,815 109,263,815 

$ 94,449,381 
92,592,121 

109,263,815 
1.66 1.34 1.18 Premium/Surplus 
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expense reserve declines from $121 billion undiscounted to $106 billion if 
discounted at 5 percent and $94 billion if discounted at 10 percent. Discounting 
reserves would increase policyholders’ surplus which would affect premium to 
surplus ratios. The 1983 industry premium to surplus ratio is 1.66 without 
discounting, 1.34 discounting reserves at 5 percent, and 1.18 discounting re- 
serves at 10 percent. The industry’s reported financial position would be dra- 
matically different if loss reserves were discounted. In economic terms, no real 
change would occur. Statutory values would be different, but no change in the 
economic value of the industry would take place. 

5. INDIVIDUAL COMPANY IMPACT 

The impact of discounting loss reserves varies markedly by company based 
on line of business mix, claim settlement patterns, and individual financial 
position. Three companies were selected to illustrate the differing impact. Com- 
pany A is a multiline insurer, Company B specializes in personal lines, and 
Company C writes only medical malpractice insurance. The effect of discounting 
loss reserves on the loss and loss adjustment expense ratio, the combined ratio, 
and the net written premium to surplus ratio for each company is shown on 
Table V. 

In calculating the effect of discounting for individual insurers, two differ- 
ences from the industry method were used. First, cumulative paid loss devel- 
opment for each of the first eight development years is the average of values 
shown in the 1982 and 1983 Annual Statements. Prior years are not available 
for the industry aggregate experience. Second, Schedule P experience for that 
insurer in total, rather than by line, is used to avoid distortions of a single line’s 
payout pattern of an insurer. 

For the multiline insurer, Company A, discounting at a 10 percent rate 
reduces the accident year loss and loss adjustment expense ratio from 95.7 
percent to 79.1 percent. The combined ratio is still unprofitable at 111.3 percent, 
reduced from 127.9 percent. The personal lines carrier, Company B, shows a 
much smaller reduction in loss and loss adjustment expense ratio, from 85.8 
percent to 82.0 percent. The smaller reduction results from faster loss payments 
in these lines. Even this minor reduction is enough to reduce the combined ratio 
below 100 from 103 .O percent to 99.2 when loss reserves are discounted at a 
10 percent rate. For Company C, the medical malpractice insurer, discounting 
reduces the loss and loss adjustment expense ratio significantly, from 156.8 
percent to 96.1 percent when discounted at a 10 percent rate. The combined 
ratio decreases from 161.5 percent to an almost profitable 100.8 percent. 



TABLE V 

IMPACT OF DISCOUNTING ON INDIVIDUAL INSURERS 
ACCIDENT YEAR 1983 

Company A Company B 

Discount Rate 0% 5% 10% 0% 5% 10% - - - - 

Loss and Loss Adjustment 
Expense Ratio 95.7% 86.3% 79.1% 85.8% 83.7% 82.0% 

Expense Ratio 32.2 32.2 32.2 17 . 2 17 . 2 17 . 2 

Combined Ratio 127.9% 118.5% 111.3% 103.0% 100.9% 99.2% 

Net Written Premium 
to Surplus Ratio 1.60 1.24 1.06 0.96 0.93 0.90 

Company C E 

0% 5% 10% F 
- - s 

i? 

156.8% 121.0% 96.1% ;;1 

47 A 4.7 4.7 $ 
161.5% 125.7% 100.8% z 

2 

3.71 0.68 0.43 
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Similar differences in the impact on the premium to surplus ratio occur. On 
the extremes, Company B shows only a modest shift in this ratio, whereas for 
Company C the premium to surplus ratio plummets from 3.71 to 0.43 when 
reserves are discounted at the 10 percent rate. It should be remembered that 
these values are correct only if current reserves are accurate and undiscounted, 
and loss payment patterns are consistent. 

6. REPERCUSSIONS FROM ADOPTING DISCOUNTING 

Discounting property-liability insurance loss reserves would have a number 
of effects on the industry, some favorable and some unfavorable. Among the 
favorable results would be: 

1) Reestablish the value of the combined ratio as a profitability indicator. 
Investment earnings would be directly included in this ratio. Hence, 
levels under 100 would be profitable and levels over 100 would be 
producing losses, assuming the proper discount rate is used and reserve 
accuracy is consistent at the beginning and end of the year. 

2) Increase the statutory capacity of the industry. Statutory surplus would 
increase as loss reserve liabilities were reduced. To the extent that 
statutory surplus values serve as a constraint on an insurer’s ability to 
write more business, this accounting change would indicate that there is 
more surplus available to write additional business or to shift to other 
uses. Current concerns over capacity shortages may be alleviated by this 
accounting change [29]. Many insurance conventions, including allow- 
able premium to surplus ratios, have evolved from historical periods 
when economic conditions were significantly different from today. Com- 
pared with any time prior to the 197Os, interest rates are now higher and 
loss payout patterns longer. Both of these changes serve to reduce the 
value of discounted loss reserves compared to undiscounted values. Thus 
statutory surplus, which is calculated based on undiscounted loss re- 
serves, is reduced well below the level that would have been determined 
based on a market value accounting for loss reserves. When interest rates 
were low and loss payments relatively short, discounted loss reserves 
did not differ much from the undiscounted values. Thus, statutory surplus 
was a reasonable estimate of the insurer’s economic worth. The higher 
interest rates and slower loss payment patterns have, in effect, made 
statutory surplus a far more conservative estimate, but allowable premium 
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to surplus ratios have not been adjusted to offset this development. 
Adopting loss reserve discounting for statutory accounting would correct 
this distortion that has gradually crept into insurance accounting. 

Among the unfavorable effects of discounting would be the following: 

1) Complicate the reserving process by requiring estimates of the total value 
of losses to be paid in the future, the timing of those payments, and the 
discount rate. The process, which is currently a time consuming calcu- 
lation, will become even more involved, delaying the production of 
operating results. 

2) Create a dependence on future interest rates. Discounting loss reserves 
is reasonable only if the insurer can earn interest on invested assets 
supporting the reserves in line with projected values. Volatile interest 
rates create the risk that the insurer may earn a rate less than that 
projected. To the extent that actual earnings fall below the interest rate 
used to discount loss reserves, loss reserves would be inadequate. Cur- 
rently, for almost all cases, changes in interest rates do not affect the 
accuracy of statutory loss reserve levels. It is conceivable that future 
insurance insolvencies could result from falling interest rates if discount- 
ing is adopted for statutory accounting, as this would cause the loss 
reserves to be inadequate. Several authors have suggested that property- 
liability insurers could match assets and liabilities, as is common for life 
insurers and banks, to eliminate interest rate risk [8, 111. Liabilities of 
property-liability insurers vary stochastically, in some cases in line with 
changes in inflation. Therefore, it is impossible to match those liabilities 
with bond investments [7]. 

3) Increase taxation. The purpose of discounting proposals for the federal 
government is to raise additional tax revenue from the property-liability 
insurance industry. Additional taxes would simply be an expense passed 
on to the policyholders. Raising expenses would make the insurance 
product less attractive to consumers with a viable alternative to insuring. 
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7. SUMMARY AND CONCLUSIONS 

Federal government pressure to raise revenues collected from the insurance 
industry has led to discounting loss reserves for income tax purposes. Arguments 
for a uniform accounting system and the desire to constrain rate levels may in 
turn lead regulators to impose discounting requirements for statutory accounting. 
This paper indicates some of the complications raised by discounting loss 
reserves. The effect of discounting loss reserves is significant. Current combined 
ratios decrease toward 100 percent when discounting at market rates is applied. 
Premium to surplus ratios also decline drastically, potentially indicating the 
presence of additional insurance capacity that was not evident under statutory 
accounting conventions. The reported financial position of the property-liability 
insurance industry would look very different if discounting for statutory ac- 
counting were adopted. 

The property-liability insurance industry officially ignores the concept of the 
time value of money and publicly declares that undiscounted values are the best 
indicators of industry results. Although many insurers do reflect the time value 
of money for internal reporting purposes, little uniformity in techniques exists. 
Lengthening loss payouts and high interest rates, in addition to the TRA pro- 
visions, are bound to increase pressure on regulators to extend this concept. 
Including investment income in rate calculations is one method of recognizing 
the time value of money. Discounting loss reserves is another. Insurers should 
initiate a more open discussion of the various techniques for dealing with 
discounting. This paper presents a method for calculating discounted loss re- 
serves that can be implemented without disrupting the current loss reserving 
calculations. Hopefully, this research will encourage greater discussion and 
debate about incorporating the time value of money into insurance calculations. 
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ADJUSTING LOSS DEVELOPMENT PATTERNS FOR GROWTH 

CHARLES L. McCLENAHAN 

Abstract 

This paper examines the impact of changes in exposure growth on 
loss development patterns. An adjustment methodology for use in cases 
where growth patterns have changed materially during the observation 
period is proposed and an example is presented. 

1. INTRODUCTION 

The vast majority of pricing and reserving analysis performed by casualty 
actuaries is based, at least in part, upon the construction of loss development 
triangles and the projection of “loss development factors” (or “link ratios”). 
Where these factors are based upon historical development patterns there is an 
underlying, and generally unstated, assumption that each historical exposure 
period at a given point of development represents a body of claim experience 
at a consistent average age. In practice, the average age of the exposure period 
may change over time as a result of variations in inflation, settlement practices, 
reporting patterns, and exposure growth. The purpose of this short paper is to 
examine the impact of exposure growth changes upon the development patterns 
and to propose a method for the adjustment of historical patterns where such 
impact is material. 

While this paper deals with the impact of exposure growth upon the loss 
development patterns, an earlier paper by LeRoy J. Simon [l J deals with the 
specific impact of such growth patterns upon exposure-based IBNR factors. 

2. GROWTH AND DEVELOPMENT PATTERNS 

In order to understand the relationship between exposure growth and loss 
development, let us look at a highly simplified development pattern. We will 
assume that losses only occur on the first day of a month and are always reported 
on the first day of the month immediately following occurrence. Each claim 
has an associated indemnity benefit of $300 with $100 being paid on the first 
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day of each of the three months immediately following reporting. Case reserves 
are assumed to be exactly adequate on an undiscounted basis. The following 
example will summarize the assumed pattern for a single claim occurring on 
711186: 

Date 

711186 
X/1/86 
911186 

1011/X6 
1111186 

Cumulative Cumulative Case 
Reported Paid Reserve 

$ 0 $ 0 $ 0 
300 0 300 
300 100 200 
300 200 100 
300 300 0 

Let us now look at three companies, each having 156 claims occurring 
during accident year 1986. Company A has increasing exposure, and therefore 
increasing monthly claims. Company B has stable exposure and Company C 
has declining exposure. The assumed claim counts are as follows: 

Accident 
Date 

111186 
211186 
311186 
411186 
511186 
611186 
711186 
811186 
911186 

10/l/86 
1111186 
1211186 

Total 

Company A Company B Company C 

2 13 24 
4 13 22 
6 13 20 
8 13 18 

10 13 16 
12 13 14 
14 13 12 
16 13 10 
18 13 8 
20 13 6 
22 13 4 
24 13 2 

156 1.56 156 
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For accident year 1986, the three companies have the following situations 
as of 12131186: 

Company A Company B Company C 

Paid Loss $27,200 $35,100 $43,000 
Case Reserve 12,400 7,800 3,200 
Case Incurred 39,600 42,900 46,200 
IBNR 7,200 3,900 600 
Ultimate Loss 46,800 46,800 46,800 
Ultimate/Paid 1.721 1.333 1.088 
Ultimate/Case Inc. 1.182 1.091 1.013 

In practice, of course, the ultimate values will not be known with certainty at 
12/31186. For the sake of illustration we are assuming perfect knowledge. 

Here we have three hypothetical companies writing the same line of business 
with identical accident year claim counts and very different accident year de- 
velopment patterns. The differences, of course, arise from the varying distri- 
butions of the claims in time over the accident year. The average age of claim 
at 12131186 is 4.67 months for Company A, 6.50 months for Company B, and 
8.33 months for Company C. Inasmuch as claims growth can be generally 
expected to reflect exposure growth, the exposure growth pattern can be seen 
to have a potentially significant impact upon the loss development pattern. 

This relationship between exposure growth and development pattern is not, 
in and of itself, a problem. Should either Company A or Company B continue 
to experience consistent exposure patterns, the indicated loss development pat- 
terns would produce reliable estimates for unpaid and for unreported losses. 
When exposure growth is inconsistent, however, an adjustment to historical 
indications may be warranted. 

3. HYPOTHETICAL CASE STUDY 

Appendix A contains the assumptions and data underlying a somewhat more 
complex example for a hypothetical company. A totally fictitious reporting 
pattern has been assumed along with uniform exponential pure premium trend. 
The exposure growth assumption is a period of uniform positive growth followed 
by a period of declining growth with the final exposure growth rate being 
negative. The observed loss development factors are as follows: 
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Accident 
Year 

1983 
1984 
1985 

Weighted Average 
To Ultimate: 

Age-to-Age Factors (Age in Years) 

1-2 2-3 3-4 

1.8699 1.1144 1.0009 
1.8697 1.1143 
1.8537 

1.8635 1.1144 1.0009 
2.0785 1.1154 1.0009 

Using ultimate factors based upon observed weighted averages: 

Accident Reported Ultimate Projected “Actual” 
Year 1213 l/86 Factor Ultimate Ultimate 

1984 $1,469,650 1.0009 $1,470,973 $1,470,979 
1985 1,542,366 1.1154 1,720,355 1,718,089 
1986 875,722 2.0785 1,820,188 1,755,193 

While it may be argued that the use of the weighted average factors is 
inappropriate in light of the observed “trend” in the l-2 factors, it is unlikely 
that the selected factor for l-2 would have been as low as the 1.7971 required 
to generate the “actual” ultimate value had the “trend” been projected to con- 
tinue. Comparing the projected and “actual” IBNR needs: 

Accident Projected “Actual” Percent 
Year IBNR IBNR Error 

1984 $ 1,323 $ 1,329 -0.5% 
1985 177,989 175,723 1.3 
1986 944,466 X79,47 1 7.4 

Total $1,123,778 $1,056,523 6.4% 

Since we have used a consistent monthly reporting pattern along with con- 
stant pure premium change, the error in projection, other than rounding error, 
is due entirely to our inability to accurately reflect the impact of the varying 
rate of exposure growth on the development pattern. 
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4. PROPOSED ADJUSTMENT TO DEVELOPMENT FACTORS 

Assume that in a growth-free environment, observed losses at accident year 
age x are 1 - ax of ultimate. (Note that if a is replaced with e? this becomes 
1 - e-O”, the standard single parameter exponential decay function. While the 
author does not contend that any single parameter function can be expected to 
provide a good fit to an entire development pattern, the assumption is sufficiently 
reasonable for use in calculating adjustment factors within the context of this 
paper. Appendix B contains information relating to the indicated values of a 
for various industry data.) 

Further assume that exposure growth is at a rate of lOOg% per annum. Let 
us now define L;” to be the observed proportion of ultimate losses at accident 
year age i: 

Lf = 
I 
il, (1 + g)‘-“(1 - a*)& i?l 

g -t 
= In(1 + g) 

a’?(1 + g - a) 
In(u) - ln(1 + g) 

ir l;g#O 

If we now define the age-to-age development factor from age i - 1 to i as 
i-IF!: 

i-,Ff = $ i 2 2; g # 0 
r 1 

g{ln[(l + g)lu]} + ln( 1 + g){l - [( 1 + g)lu]}u’ 

= g{ln[(l + g)/u]} + ln(1 + g){l - [(l + g)lu]}a’-’ i z 2’ g # O 

Or, letting c = g{ln[( 1 + g)la]} and b = -ln(l + g){l - [( 1 + g)/a]}, 

i-1Ff = ’ - bui 

c - b&’ 

In the special case where g = 0: 

LY=lt- 
a’-‘(1 - a) 

W> 
ir 1 

,-,I$ = 
In(u) + a’-‘(1 - a) 

In(a) + a’-‘(1 - a) 
ir2 

(4.2) 

(4.3) 
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It is proposed that, where growth has been erratic, an attempt be made to 
estimate the value of a and that historical development patterns be adjusted to 
a growth-free basis. After selection of factors, growth would be re-introduced 
into the projected ultimates. 

5. EXAMPLE OF PROCESS 

Going back to the hypothetical case outlined in Appendix A, the first 
requirement is an estimate of the parameter a. Looking at the 1983 accident 
year, we note that at accident year age 1, .479 (589,380/l ,229,203) of “ultimate” 
losses were observed. Using l/83 to l/84 earned exposure growth, the observed 
growth rate was .127 [(1,062/942) - 11. Setting (4.1) equal to .479, and 
substituting .127 for g yields an estimate for a of .251. (Of course, we don’t 
know the true ultimate losses in actual practice. The goal here is to attempt, by 
the best means available, to estimate the parameter a. By using a reasonably 
well-developed year, or group of years if available, where exposure growth is 
known or can be reasonably estimated, an approximate value for a can be 
derived.) Using (4.2) we can now generate the following: 

Accident 
Year U g b C 

1983 ,251 .127 .417 .191 
1984 .251 ,126 .414 ,189 
1985 .251 .060 .188 .086 
1986 .251 -.138 -.361 -.170 

Accident 
Year 

1983 
1984 
1985 
1986 

Theoretical Development Factors 

l-2 2-3 3-4 

1.908 1.119 1.027 
1.915 1.120 1.027 
1.911 1.120 1.027 
1.855 1.116 1.026 

Note that the growth factors (g) for 1984 through 1986 are based upon the 
December-to-December growth from Appendix A. 
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Application of (4.3) provides the following “growth-free” factors: 

l-2 2-3 3-4 

1.886 1.118 1.026 

The following factors adjust to a “growth-free” basis: 

Accident 
Year 

1983 
1984 
1985 

l-2 2-3 3-4 

,988 .998 1.000 
.985 .998 
.987 

The following factors adjust back to a “growth-inclusive” basis: 

Accident 
Year 

1984 
1985 
1986 

l-2 2-3 3-4 

1.000 
1.002 1.000 

.984 .99X 1 .ooo 

Next we adjust the observed development factors to a “growth-free” basis 
and project the remainder of the development to ultimate (brackets indicate 
projected factors). In this example the projection is assumed to be the beginning- 
incurred-weighted “growth-free” factor: 

Accident 
Year 

1983 
1984 
1985 
1986 

Weighted Average 

Growth-Free Development Factors 

l-2 2-3 3-4 

1.8475 1.1133 1.0009 
1.8417 1.1121 [ 1.0009] 
1.8296 [1.1126] [ 1.0009] 

[1.8385] [1.1126] [ 1.0009] 

1.8385 1.1126 1.0009 
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Now we readjust the projected “growth-free” factors back to a “growth- 
inclusive” basis: 

Accident 
Year l-2 2-3 3-4 

1984 [ 1.0009] 
1985 [1.1148] [ 1.0009] 
1986 [ 1.80721 [1.1104] [ 1.0009] 

Finally, we calculate the adjusted projected ultimate losses: 

To 
Ultimate 

[ 1.0009] 
[1.1158] 
[2.0085] 

Accident Reported Ultimate 
Year 1213 1186 Factor 

1984 $1,469,650 1.0009 
1985 1,542,366 1.1158 
1986 875,722 2.0085 

Total $3,887,738 

Looking at the efficacy of the projections: 

Projected 
Ultimate 

$1,470,973 
1,720,972 
1,758,888 

$4,950,833 

Accident Adjusted Actual Percent 
Year IBNR IBNR Error 

1984 $ 1,323 $ 1,329 -0.5% 
1985 178,606 175,723 1.6 
1986 883,166 879,471 0.4 

Total $1,063,095 $1,056,523 0.6% 

Obviously this represents an improvement over the unadjusted error of 6.4%. 
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6. WHEN TO USE ADJUSTMENT PROCESS 

The reader will have noted that where changes in growth are small or where 
development factors are close to unity there is little impact of the adjustment 
process. In order to help the user decide when it may be appropriate to utilize 
the proposed adjustment process, Appendix C contains “growth-free” adjustment 
factors for various values of a and g. Note how insensitive the factors are to 
the underlying value of a. In order to use this table, the appropriate factor for 
the “old” growth rate should be divided by the factor for the “new” growth rate. 
The resultant factor represents the approximate impact on the unadjusted age- 
to-age factor. For example: 

Auto Liability-Paid Loss Development (a = ,600) 
Observed l-2 Factor = 2.100 
Growth Underlying Observation = + 15% Per Year 
Current Exposure Growth Rate = -5% Per Year 
Approximate l-2 Factor = 2.100 (.984/l .006) = 2.054 

7. CONCLUSION 

This method is intended to produce appropriate adjustments to indicated loss 
development factors in situations where there have been material changes in 
exposure growth patterns. While frequency and severity changes can produce 
variations in development patterns as well, this method does not address those 
situations. Where frequency andlor severity changes are observed concurrently 
with exposure growth changes, this method can be used to eliminate the impact 
of the exposure growth changes in order to facilitate the analysis of frequency 
and severity. 

In most cases, exposure growth will have been sufficiently consistent to 
obviate the need for the approach outlined in this paper. For new lines of 
business or where rapid growth or withdrawal occur, however, this approach 
provides a relatively simple and efficacious basis for improving estimates of 
ultimate losses. 

REFERENCE 

[l] LeRoy J. Simon, “Distortion in IBNR Factors,” PCAS LVII, 1970, p. 64. 



110 ADJUSTING LOSS DEVELOPMENT 

APPENDIX A 

HYPOTHETICAL REPORTED LOSS DEVELOPMENT 

Assume the following loss reporting pattern (ages in months): 

Age 

Incremental Cumulative 
Reports Reports 

1 5.0% 5.0% 
2 5.0 10.0 
3 15.0 25.0 
4 10.0 35.0 
5 10.0 45.0 
6 7.5 52.5 
7 7.5 60.0 
8 5.0 65.0 
9 4.0 69.0 

10 3.0 72.0 
11 2.5 74.5 
12 2.5 77.0 
13 2.5 79.5 
14 2.5 82.0 
15 2.0 84.0 
16 2.0 86.0 
17 2.0 88.0 
18 2.0 90.0 
19 1.5 91.5 
20 1.5 93.0 
21 1.5 94.5 
22 1.5 96.0 
23 1.0 97.0 
24 1.0 98.0 
25 1.0 99.0 
26 1.0 100.0 

Assume further that exposure in force during January, 1983 was 942 units 
and that exposure grew between January, 1983 and December, 1984 at a monthly 
rate of 1.0% (12.7% per annum), and then grew at a declining rate such that 
growth was zero at December, 1985 and -25.0% per annum by December, 
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1986. Finally, assume that the January, 1983 pure premium per exposure unit 
was $100.00 and that pure premium grew between January, 1983 and December, 
1986 at a monthly rate of 0.5% (6.2% per annum). 

As detailed below, the observed reported loss development pattern would 
be as follows: 

Accident 
Year Age 12 Age 24 Age 36 Age 48 

1983 $589,380 $1,102,063 $1,228,092 $1,229,203 
1984 705,364 1,318,846 1,469,650 
1985 832,041 1,542,366 
1986 875,722 
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Month 

ADJUSTING LOSS DEVELOPMENT 

HYPOTHETICAL REPORTED LOSS DEVELOPMENT 

Earned Pure 
EXpoWd Premium 

l/83 942 $100.00 $ 92,316 $ 94.200 $ 94,200 
2/X3 952 loo.50 92,806 95,676 95,676 
3/x3 961 101.00 93,179 97.06 I 97.061 
4183 971 101.51 93,145 98,566 98,566 
5/83 980 102.02 92,981 99.980 99,980 
6/X3 990 102.53 92,877 101,505 101,505 
7183 1,000 103.04 92.736 103.040 103,040 
8/X3 1,010 103.56 92,044 104.596 104,596 
91x3 I.020 104.08 91,299 106,162 106,162 
IO/83 I.031 104.60 90.588 107.843 107,843 
I l/83 1,041 105.12 89,733 109.430 109,430 
12/X3 I.052 105.65 88,359 110,033 III.144 
1184 I.062 106.18 86,828 110,508 112,763 
2/84 I .073 106.71 85.303 I I I.065 I14.500 
3/84 I .0X3 107.24 83,622 I I 1,495 116,141 
4184 I.094 107.78 81,359 I I 1,426 117,911 
5184 I.105 108.32 77,801 III.315 119,694 
6/X4 I.1 I6 108.86 72.893 111,162 121,488 
7184 I.127 109 40 64,729 110.965 123,294 
8184 I.139 109.95 56,355 110,205 125,233 
9/84 I.150 110.50 44,476 109,285 127,075 
IO/84 I.162 Ill.05 32,260 108,394 129,040 
I l/84 1.173 III.61 13,092 107,354 130,919 
I2184 1,185 112.17 6,646 105,672 131,592 
Ii85 1.196 112.73 103.815 132,129 
21x5 1,206 113.29 101.788 132,529 
3/85 1.216 113.86 99,687 132,916 
4185 1,224 I 14.43 96.643 132,359 
5185 I .232 115.00 92.092 131,762 
6185 1.238 115.58 
7185 I.244 116.16 1441503 

85,853 130,926 
75.864 130,053 

8185 I .24X 116.74 145,692 65.561 128.209 
9/x5 1,252 117.32 146,885 51,410 126.321 
IO/X5 1,254 117.91 147,859 36,965 124.202 
11/x5 1,256 118.50 148.836 14.884 122.046 
12185 I.256 119.09 149,577 7,479 I IS.914 
1186 1,255 119.69 150.21 I 115.662 
2l86 I.25 I 120.29 150,483 112,110 
3/X6 I.244 120.89 150.387 108,279 
4/86 I.236 121.49 150.162 103.612 
5186 I.224 122.10 149,450 97.143 
6/86 1,211 122.71 148,602 89.161 
7186 1,195 123.32 147,367 77.368 
8/86 1,177 123.94 145,877 65.645 
9186 1,157 124.56 144,116 50.44 I 
I O/X6 1,134 125.18 141,954 35,489 
I l/86 1,110 125.81 139,649 13.965 
I2186 1,083 126 44 136,935 6,847 

AY 83 I 1,950 $102.86 $I ,229,203 $589,380 % I, 102,063 $1.228.092 S I .229,203 
AY 84 13,469 109.21 I ,470,979 705,364 1.318.846 I .469.650 
AY 85 14,822 115.91 1,718,089 832,041 I .542.366 
AY 86 14,277 122.94 1.755,193 875.722 

$ 94,200 $ 72,534 
95,676 71,279 
97,061 69,884 
98,566 68.01 I 
99,980 64,987 

101,505 60,903 
103.040 54,096 
104.596 47,068 
106.162 37,157 
107.843 26,961 
109.430 10,943 
Ill.144 5,557 
112.763 
Il4.500 
116.141 
117,911 
119,694 
121,488 
123,294 
125.233 
127,075 
129,040 
130,919 
132,921 
134.825 
136,628 
138.454 
140.062 
141.680 
143.088 

Ultimate Reported Losses as of Date: 

Incurred 12/83 I2184 12185 I2186 
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APPENDIX B 

U VALUES IMPLIED BY INDUSTRY PAID LOSS AND LOSS EXPENSE DATA 

A.M. BEST 200 COMPANY SCHEDULE P DATA AS OF 12131185 

Accident 
Year 

1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 

1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 

Auto Workers’ 
Liability Compensation 

Paid-to-Incurred Percentage 

General Multi- 
Liability Peril 

99.12% 89.59% 87.96% 
98.83 88.95 87.15 
98.55 87.47 85.05 
97.88 85.77 80.59 
96.65 83.86 75.40 
93.94 80.31 66.40 
89.18 75.81 55.11 
80.38 68.04 39.68 
65.28 54.66 24.94 
34.27 26.04 8.81 

Implied a to Generate Observed Cumulative Percentage 

99.12% 
98.78 
98.08 
97.72 
96.65 
94.19 
91.14 
86.48 
79.15 
55.80 

.6226 .7975 .8092 

.6097 .7829 .7961 

.5893 .7713 .7886 

.5768 .7569 .7912 

.5678 .7379 .7916 

.5709 .7225 .8040 

.5735 .7013 .8185 

.5811 .6837 .8449 

.5892 .6734 .8664 

.6573 .7396 .9119 

Method: 1980 Workers’ Compensation 
1980 is age 6 at years 1213 l/85 

Set 1 - a6 = .8386 thus, a = .7379 

.6233 

.6131 

.6103 

.5826 

.5679 

.5660 

.5455 

.5133 

.4566 

.4420 
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APPENDIX C 

FACTORS TO ADJUST TO “GROWTH-FREE” BASIS 

a = .250 a = ,600 a = .800 

g l-2 2-3 3-4 1-2 2-3 3-4 1-2 2-3 3-4 -----~~~-___ 

-.250 
-.200 
-.150 
-.lOO 
- .050 

,033 1.004 1.001 
.025 1.003 1 .OOl 
.01X 1.002 1.000 
.012 1.001 1 .ooo 
,006 1.001 1.000 

.ooo 1 .ooo 1 .ooo 

.050 .994 .999 

.lOO .989 .999 

.150 .984 .998 

.200 ,979 .998 

.250 .974 ,997 

.300 .970 .996 

.350 .965 .996 

.400 ,961 .995 

.450 ,957 ,995 

.500 .953 ,994 

1.000 

1 .ooo 
1 .ooo 
1 .ooo 
.999 
,999 

.999 

.999 

.999 
,999 
,999 

.033 1.006 

.025 1.005 

.019 1.003 

.012 1.002 

.006 1.001 

1.002 1.032 1.006 1.003 G 
1.002 1.025 1.005 1.002 2 
1.001 1.018 1.004 1.001 : 
1.001 1.012 1.002 1.001 3 
1.000 1.006 1.001 1 .ooo s 

E 
1.000 1.000 1.000 1.000 1.000 

.994 .999 1.000 ,994 .999 

.989 .998 .999 .989 .998 

.9X4 .997 .999 .984 .997 
,979 ,996 .999 ,979 .996 
.974 ,995 .998 .974 .995 

.969 .994 ,998 ,970 ,994 

.965 .994 ,998 .965 ,993 

.961 .993 .997 .961 ,993 

.956 .992 .997 .957 .992 

.952 .991 .997 ,953 .991 

1 .ooo 

1 .ooo 
.999 
,999 
.998 
,998 

,998 
.997 
.997 
.997 
.996 
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DISCUSSION BY DANIEL E GOGOL 

Mr. McClenahan presents a method that can be very useful when there has 
been a recent, significant change in exposure. The average accident date in the 
most recent accident year may be considerably different from what it was for 
previous accident years at the same stage of development. Both loss reserving 
and pricing decisions can benefit greatly from an accurate estimate of the effect 
of changing exposure on loss development patterns. For a method that is so 
simple, the one presented by Mr. McClenahan seems to apply very well to a 
fairly large portion of the exposure and development patterns encountered in 
practice. 

The mathematical derivation of the method applies to a development pattern 
that has the property that for some a < 1, the observed losses at accident age 
x are 1 - ax of ultimate. Actual development patterns sometimes poorly fit 
curves of this form. Exposure changes during an accident year are represented 
in the paper by the function (1 + g)“, and it also may poorly fit actual patterns. 

Another problem is the following. Mr. McClenahan defines the observed 
proportion of ultimate losses at accident year age i, if exposure growth is at a 
rate of lOOg% per annum, by: 

LB = ,:-, (1 + g>‘-“( 1 - ax)& 

If 1 - ax is the proportion of ultimate losses at accident age x (not accident 
year age x), then Lig t J-:-i (1 + g)i-Xd x would be the proportion of ultimate 
losses at accident year age i. The divisor was omitted from Mr. McClenahan’s 
expression. This does not affect the development factors since they are of the 
form Lig + Lig_ i and the factor SC1 (1 + g)‘-Xdx cancels out. But the curve 
1 - ax should represent the proportion of ultimate losses at accident age X, and 
the curve that is calculated in Appendix B represents the proportion at accident 
year age x instead. The proportion at accident age x is closer to the proportion 
at accident year age x + S, since the average accident is approximately one- 
half year old at the end of accident year age 1. In order to produce a curve, 
1 - a”, that would be a good fit for the recent accident years, which are 
generally the most important in loss reserving, it would probably be better to 
use a much smaller value for x than 6, which is the value Mr. McClenahan uses 
in Appendix B. 
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x are 1 - ax of ultimate. Actual development patterns sometimes poorly fit 
curves of this form. Exposure changes during an accident year are represented 
in the paper by the function (1 + g)“, and it also may poorly fit actual patterns. 

Another problem is the following. Mr. McClenahan defines the observed 
proportion of ultimate losses at accident year age i, if exposure growth is at a 
rate of lOOg% per annum, by: 
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year age x), then Lig t J-:-i (1 + g)i-Xd x would be the proportion of ultimate 
losses at accident year age i. The divisor was omitted from Mr. McClenahan’s 
expression. This does not affect the development factors since they are of the 
form Lig + Lig_ i and the factor SC1 (1 + g)‘-Xdx cancels out. But the curve 
1 - ax should represent the proportion of ultimate losses at accident age X, and 
the curve that is calculated in Appendix B represents the proportion at accident 
year age x instead. The proportion at accident age x is closer to the proportion 
at accident year age x + S, since the average accident is approximately one- 
half year old at the end of accident year age 1. In order to produce a curve, 
1 - a”, that would be a good fit for the recent accident years, which are 
generally the most important in loss reserving, it would probably be better to 
use a much smaller value for x than 6, which is the value Mr. McClenahan uses 
in Appendix B. 
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The numbers ei can be chosen to reflect changes in exposure, frequency 
(e.g., seasonal changes), and severity (e.g., due to claim cost inflation) that are 
estimated to be representative of the loss development data. The numbers Ak 
can be based on the loss development data and whatever curve fitting seems 
appropriate. The numbers Xj that are derived from the ei’s and Ak’s can then be 
used to produce yearly development patterns resulting from a different pattern 
of change in exposure, frequency, and severity (i.e., a different e1 , e2, e3, e4). 
By subdividing the year into quarters or months, the problem of variable 
expected losses between quarters or months is dealt with, but not the variability 
during quarters or months. However, the overall variability is decreased by 
subdividing. Two different patterns of exposure during a year can theoretically 
cause a difference of almost twelve months between the expected average 
accident dates. But, if the two patterns have the same total amount of exposure 
during each quarter, or during each month, then the difference between the 
expected average accident dates must be less than three months, or less than 
one month, respectively. 

In order to use the method presented, it is necessary to choose some IZ such 
that Ak = 1 for k > n. This can be done for some 12 that is not so large as to 
be impractical. Some adjustment to the actual estimates of some of the later Ak 
may be necessary, but it does not have to significantly affect the early devel- 
opment factors derived from the method. These early factors are the ones that 
are most significantly affected by changes in exposure during an accident year. 

Example 

Suppose that an insurance company has started writing a new line of business 
and that the line’s estimated ultimate losses for the year’s accident quarters are 
.0.5, .12, .27, and .56, respectively, of the estimated ultimate losses for the 
accident year. Suppose reported loss development factors at the end of the year 
are based on industry-wide data for the line, and that the estimated average 
industry losses for the four quarters of the accident years on which the data is 
based are .238, .246, .254, and .262, respectively, of the estimated average 
accident year losses. Also, assume that the following smoothed progression is 
selected as a good fit to the industry data: Ad = .662, AZ = .832, As = .935, 
A, = .987, As = 1.000. 
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Since As = 1 .OOO, it is assumed that xi = 1 .OOO for j 2 5. Therefore, the 
equations 

,238 x4 + .246x3 + .254x2 + .262x1 = ,662 
.238x5 + .246x4 + .254x3 + .262x2 = ,832 
.238x6 + .246x5 + .254x4 + .262x3 = .935 
.238x7 + .246x6 + .254x5 + .262x4 = .987 

can be solved, giving XI = .330, x2 = .600, x3 = .800, x4 = .950. So the 
portion of ultimate accident year losses for the company’s new line of business 
that is reported as of the end of the year is estimate by 

.05(.95) + .12(.80) + .27(.60) + .56(.33) = .490. 

So the development factor to ultimate for the company’s new line is estimated 
as 2.041 (i.e., l/.490) as compared to 1.511 from the industry data. 
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Gary Venter for reading an earlier version of this discussion and providing helpful com- 
ments. I also wish to thank Lesley Phipps for typing this discussion, 

1. INTRODUCTION 

This paper is another valuable contribution by Glenn Meyers to the actuarial 
literature [ 11. In it, the author analyzes mauy aspects of experience rating 
formulas. Mr. Meyers’s paper contains a remarkable amount of material. 

It can be divided into four parts, each of which would have been a useful 
paper on its own. His first two sections give an introduction to experience rating. 
His third section examines private passenger automobile merit rating data, 
illustrating a general result in credibility theory with important practical impli- 
cations. Meyers’s fourth, fifth, and sixth sections examine commercial lines 
experience rating in terms of a useful general concept which Meyers has called 
efficiency. His seventh section gives a generally applicable method of applying 
statistical tests to choose the most appropriate form of an experience rating plan. 

Although I will concentrate my discussion on certain portions of Mr. Mey- 
ers’s paper, this in no way reflects upon the importance of the other portions of 
this paper. Rather, it reflects the large amount of significant material Mr. Meyers 
has presented, and the inability of this author to analyze it all thoroughly in a 
single discussion of tractable length. 

Section 2 of this discussion concerns Meyers’s discussion of the Bailey- 
Simon results [2]. Meyers proposes an explanation for the observed credibilities 
based on parameter uncertainty. I also discuss two other similar phenomena- 
risk heterogeneity and shifting parameters over time. Section 3 of this discussion 
presents simple examples of the phenomena discussed in Section 2. 

Section 4 of this discussion summarizes Meyers’s fourth section on the 
efficiency criterion. 
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Section 5 of this discussion presents the Btihlmann credibility result for a 
split experience rating plan. i It gives the general formulas to use to assign 
credibility to the primary and excess losses so as to maximize efficiency. 

In Section 6 of this discussion, the formulas derived in Section 5 are used 
to analyze Meyers’s General Liability example. Among the important points 
discussed is the use of credibilities other than the optimal credibilities from 
Section 5. 

Section 7 of this discussion continues that analysis in more detail. The loss 
in efficiency due to the use of other than the optimal credibilities is shown to 
be small for this example. Also, the effects of the choices of different loss 
limits is explored. 

Section 8 of this discussion points out that under certain circumstances it is 
theoretically valid to have a self-rating point. 

Section 9 of this discussion contains the conclusions I draw from my analysis 
of Meyers’s General Liability example. 

Section 10 of this discussion analyzes Meyers’s Workers’ Compensation 
example. The analysis of the multi-split plan parallels that of the General 
Liability single split plan. In addition, the multi-split plan is compared to a 
single split plan, and is found not to perform significantly better for this example. 

Section 11 of this discussion summarizes Meyers’s seventh section, which 
gives a generally applicable method of testing experience rating plans. 

Section 12 of this discussion gives my conclusions. I believe that some of 
Mr. Meyers’s conclusions do not follow from the work he presents even though 
they may well turn out to apply in many specific cases encountered in real world 
applications. 

Following the main body of this discussion, there are ten appendices which 
provide the mathematical support. Appendix A contains two results for covar- 
iances which should be more widely known among actuaries. Appendix J 
contains an interesting example with continuous mixing functions. The other 
appendices should be of interest to those with a serious interest in credibility 
theory. 

* The mathematical derivation is in Appendix F. 
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2. FORMULAS FOR THE CREDIBILITY 

In the third section of his paper, Mr. Meyers discusses two formulas for the 
credibility. The first, Meyers’s formula 3.2, is the usual Bayesian credibility 
formula 

Z=N 
NfK’ 

K 2 0. 

The second is Meyers’s formula 3.3 

Z=N 
JN+K’ 

JZ 1,KZO. 

(2.1) 

(2.2) 

which the author derives assuming parameter uncertainty. (See Appendix B for 
a further discussion of this formula.) 

2.1 Parameter Uncertainty and the Bailey-Simon Data 

He goes on to see how well the two formulas fit data from the classic paper 
by Bailey and Simon on the credibility of a single private passenger car [2].2 
He estimates values of J and K from the credibility for one and two years of 
data. He finds that formula 2.2 does a better job of fitting the credibility observed 
for three years. In itself, this should not be surprising since formula 2.1 is a 
special case of formula 2.2, and the extra choice of parameter available should 
allow a better fit for formula 2.2. Nevertheless, the resulting fit for Classes 1 
and 2 is quite impressive.3 Even for the other classes the fit is a substantial 
improvement over that for formula 2.1. It should be noted that Class 1, with 3 
million car years, has over ten times the data in any of the other classes. 

There is an explanation for the poor fit of formula 2.2 to the Bailey-Simon 
data for Class 4; this same explanation applies, to a lesser extent, to Class 5. 
The key point is that one cannot have three clean years of experience unless 
one has been licensed for at least three years. Class 4 includes many drivers 
who have less than three years of driving experience. Those risks with one year 
of experience go into Merit Rating Class Y (clean for one year) if they are 
clean, and Merit Rating Class B (clean for less than one year) if they are not, 

2 This section of Mr. Meyers’s paper constitutes a discussion of this remarkable paper by Bailey 
and Simon written over a quarter of a century ago. 

3 The definitions of the classes are given in the Bailey-Simon paper. Class 1 is Pleasure-No Male 
Operator under 25. Class 2 is Pleasure-Non-principal Male Operator under 25. Class 3 is Business 
Use. Class 4 is Unmarried Owner or Principal Operator under 25. Class 5 is Married Owner or 
Principal Operator under 25. 
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as explained in Wittick [3]. Both Merit Rating Class A (clean for three years) 
and Merit Rating Class X (clean for two years) contain no risks with only one 
year of experience. We expect drivers with only one year of experience to be 
worse than the average for Class 4. Thus Merit Rating Class A (clean for three 
years) for driving Class 4, will have a lower frequency than the average for 
driving Class 4, merely because all of its drivers have at least three years of 
experience. Thus when we compare it to the remainder of driving Class 4, the 
resulting Bailey-Simon credibility for three years of data is overstated. The 
same is true to a lesser extent for the Bailey-Simon credibility for two years of 
data.4 

2.2 Practical Implications of Parameter Uncertainty 

As noted by the author, formula 2.2 has a maximum credibility of l/J. 
Based on the fit to the Bailey-Simon data, this implies maximum credibilities 
between 7% and 13%.s This implies that no private passenger automobile merit 
rating scheme can ever attain extremely large credits regardless of how many 
years of data are used. More generally, when parameter uncertainty is present 
(J>l), then the maximum credibility is less than 100%. 

If formula 2.2 holds, the law of diminishing returns sets in very quickly. 
Using Mr. Meyers’s parameters, roughly two-third@ of the theoretical maximum 
credibility has been achieved using three years of data. 

2.3 Shifting Parameters Over Time 

An important conceptual distinction should be made between adding up 
separate units during the same time period (e.g., a large commercial risk) and 
adding up different years of experience (e.g., a private passenger automobile 
merit rating plan). While similar formulas might fit the observations in both 
cases, they do not have exactly the same meaning. 

4 This problem, which applies to an analysis of many merit rating plans, could have been avoided 
if it were possible to remove from the data all risks for which the insured and/or principal operator 
has been licensed for less than three years. 

5 If a more refined class plan were used, the credibilities would be lower. If the number of accidents 
rather than just the number of years since the last accident were taken into account, the credibilities 
would differ. If severity were taken into account, the credibilities would differ. The credibilities 
will differ depending on whether just accidents or accidents and convictions are taken into account. 

6 The value differs by class. It is 62% for Class 1, and 75% or greater for the other classes. 
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There are other similar phenomenon which, when important, cause formula 
2.1 to no longer apply. One phenomenon is the shifting of parameters over 
time, which is discussed briefly by both Bailey-Simon and Meyers. Bailey and 
Simon put this forward as one possible explanation for the observation that extra 
years of data add relatively little credibility. “It can be fully accounted for only 
if an individual insured’s chance for an accident changes from time to time 
within a year and from one year to the next, or if the risk distribution of 
individual insureds has a marked skewness reflecting varying degrees of accident 
proneness.“7*8 

In Appendix C, a formula is derived for the credibility when the parameters 
shift over time.9 The exact solution is complicated for N 2 3. However, the 
following formula is approximate for N = 3, and exact for N = 1 or N = 2. 
(For N Z 3 this formula produces credibilities slightly too high.) 

z= N 

( > lz pi-’ + K 
(2.3) 

where p I 1 is the covariance between the risk processes one year aparti and 
A is the time between the mid-point of the last year of experience used in the 
rating and the mid-point of the policy year to which the rating will be applied.” 

’ Bailey and Simon explain in their subsequent paper [4] that what they meant by “marked skewness” 
leads to formula 2.1. 

* Bailey and Simon also put forward as a partial explanation the fact that risks enter and leave the 
various classes. In addition, their use of a premium basis for frequency does not completely eliminate 
the maldistribution that would result from the use of an imperfect exposure base, as pointed out in 
the discussion by Hazam [5]. Finally, the Bailey-Simon credibilities are estimated by only looking 
at the indicated claims-free discounts. In contrast, the optimal credibility is a least squares fit to 
the Bayesian result for all the observed levels of claims. 

9 A simple assumption is made to quantify the impact of the shift. Other assumptions could be 
made which lead to other formulas. However, the basic idea remains, if the parameters shift over 
time, then data from far in the past can be of minimal value in predicting the future. 

ia p would capture some aspects that might be considered to be due to parameter uncertainty. 

‘1 Typically, A = 2 for workers’ compensation, and A = 1 for private passenger automobile merit 
rating. 
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We see that the 2 pi-’ 5 N has replaced N in formula 2.1. Also, there 
i=l 

is a maximum credibility of 

P4 
1 + K(l - p) (2.4) 

For p considerably less than one, adding more years of data quickly reaches 
the point of having no practical advantage. 

Using the Bailey-Simon credibilities for one and two years of data, we can 
solve for the parameters in formula 2.3 (A = 1). The results are 

TABLE 2.1 
Three Year Credibility 

Class K P Predicted Observed - 

1 10.9 .55 8.0% 8.0% 
2 7.7 .39 6.5% 6.8% 
3 6.9 .40 7.4% 8.0% 
4 3.0 .28 8.7% 9.9% 
5 8.6 .37 5.5% 5.9% 

Formula 2.3 produces a good fit for Class 1, a fair fit to Classes 2, 3, and 
5, but it is unacceptable for Class 4. Formula 2.2 does considerably better for 
Classes 2 and 3. As has already been explained, we do not expect a good fit 
for Classes 4 and 5. The maximum credibilities indicated range from 8% to 
13%, roughly the same range as indicated by formula 2.2. 

One can use all three years of data in an attempt to estimate the parameters 
in either formula 2.2 or formula 2.3. Using a least squares fit, the results for 
formula 2.2 are given in Table 2.2 and for formula 2.3 in Table 2.3. We note 
that overall the fits of the formulas to the Bailey-Simon data, which is reproduced 
for convenience in Table 2.4, are as good as can be expected given the nature 
of the data. While the assumptions behind formula 2.3 seem more applicable 
to the situation here, formula 2.2 does at least as good a job of fitting the 
observed data. We note that the indicated maximum credibilities (N = 00) are 
consistently lower for formula 2.3 than for formula 2.2. 
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TABLE 2.2 

FORMULA 2.2 FIT TO THE DATA IN TABLE 2.4 

Class J K N= 1 N=2 N=3 N=co 
- ~ 

1 7.88 13.78 4.62% 6.77% 8.02% 12.7% 
2 10.96 11.30 4.49 6.02 6.79 9.1 
3 9.00 10.85 5.04 6.93 7.93 11.1 
4 8.30 6.06 6.96 8.83 9.69 12.0 
5 12.37 14.33 3.75 5.12 5.83 8.1 

TABLE 2.3 

FORMULA 2.3 (A = 1) FIT TO THE DATA IN TABLE 2.4 

Class J P N= 1 N=2 N=3 N=m 

1 11.14 .557 4.59% 6.83% 8.00% 9.4% 
2 8.61 ,428 4.45 6.09 6.75 7.2 
3 8.47 .473 4.99 7.01 7.89 8.7 
4 4.51 .381 6.91 8.93 9.63 10.0 
5 11.09 .448 3.71 5.17 5.80 6.3 

TABLE 2.4 

EMPIRICAL CREDIBILITIES FROM BAILEY-SIMON 
PAPER 

Class N=l N=2 N=3 

1 4.6% 6.8% 8.0% 
2 4.5 6.0 6.8 
3 5.1 6.8 8.0 
4 7.1 8.5 9.9 
5 3.8 5.0 5.9 
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The extent to which parameters actually shift over time for any given line 
of insurance is an important empirical question worthy of further investigation. 
One would examine the correlations between years of data separated from each 
other by different time spans. One would also examine the empirical credibility 
of one year of data being used to predict some later year of data, for different 
separations between the two years. 

The results of such an investigation should be quite useful in the design of 
experience rating plans. It would help to decide how many years of data should 
go into the plan. Also, it would help decide whether it is worthwhile, i.e. 
produces a significant increase in efficiency (as defined by Meyers), to give 
more weight to the more recent years of data. I2 It would also help in deciding 
what those relative weights should be. 

2.4 Risk Heterogeneity 

Another phenomenon is risk heterogeneity. In other words, a large risk may 
be made up of smaller risks. If we treat the smaller risks within a single large 
risk as independent observations from the same distribution we get the usual 
Bayesian formula 2.1. However, if smaller risks were grouped together in a 
totally random fashion to give larger risks, then there would be no increase in 
credibility between a small risk and a large risk. The actual situation is generally 
somewhere between those two extremes. 

As shown in Appendix D, this would lead to a formula for credibility of 
the form 

N+I 
Z=- 

N+K’ 
QSIdK. (2.5) 

It should be noted that the value of K in formula 2.5 differs from that in 
formula 2.1. Formula 2.5 does not fit the Bailey-Simon data. 

Formula 2.5 was derived for large risks. It would not apply for small risks, 
i.e., those too small to have separate and distinct subunits.r3 Specifically, no 
conclusion should be drawn from the fact that formula 2.5 has a minimum 
credibility of IIK. 

‘* For example, the Massachusetts Private Passenger Automobile Safe Driver Insurance Plan cur- 
rently gives less weight to older incidents via a so-called aging process. 

I3 It should be noted that generally experience rating plans have an eligibility requirement which 
excludes very small risks. 
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If both parameter uncertainty and risk heterogeneity are important, as shown 
in Appendix D, the formula for credibility takes the form 

z= N+I 

JNfK’ 
OSIIK,JZl. (2.6) 

Formula 2.6 can be fit to the Bailey-Simon data. However, using three years 
of data to fit three parameters I, J, and K leaves no way to test the predictions. 

Let M be a measure of the (average) size of the risk in each year. Let N be 
the number of years of data used for experience rating. Then if all three 
phenomena are taking place, we get the following formula in Appendix E:i4 

PA ,sj Pi-’ CM + I) ( > 
Z= 

( > ,i2 pi-’ (A4 + I) + JM + K 

For p = 1, formula 2.7 reduces to 

NW + I) 
’ = (N--l)@4 + Z) + JM + K ’ 

(2.7) 

(2.8) 

For N = 1, formula 2.8 reduces to formula 2.6, as it should. 

2.5 Conclusions 

I suspect that each of the three phenomena discussed is taking place to some 
extent. It would be worthwhile to obtain a more current set of private passenger 
automobile data that followed a risk for more than three years. Then one could 
determine the relative importance of the three phenomena. It would also be 
worthwhile to investigate the effects of these phenomena on other lines of 
insurance. For example, parameter uncertainty and risk heterogeneity would be 
expected to be particularly important for large commercial risks. 

More generally, it would be worthwhile to determine empirically the cred- 
ibility associated with each size of risk .I5 For such an investigation, identifying 

I4 As stated previously, p captures certain aspects that might be. labeled parameter uncertainty. Here 
J captures only those aspects of parameter uncertainty that relate to adding up subunits at the same 
point in time. 

I5 The National Council on Compensation Insurance is currently doing so for workers’ compensa- 
tion. 
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the underlying causes would be helpful but not necessary. However, the above 
reasoning leads to useful candidates to check against the observed behavior with 
size of risk.16 

3. AN EXAMPLE ILLUSTRATING PARAMETER UNCERTAINTY, 

SHIFTING PARAMETERS OVER TIME, AND RISK HETEROGENEITY 

This example will try to illustrate what is meant by the three related but 
somewhat different concepts of parameter uncertainty, shifting parameters over 
time, and risk heterogeneity. The mathematics are developed and discussed in 
Appendices B, C, D, and E. 

Assume we have the legendary little old lady from Pasadena who only uses 
her car to drive back and forth to church on Sundays. Let us ignore any seasonal 
variations in driving conditions. Further assume she always travels at the same 
time of day and always uses the same route. 

One year actually consists of 52 observations of her claims process. If we 
treat these as 52 independent observations from the same distribution then we 
would get formula 2.1 for the credibility. 

3 .I Parameter Uncertainty 

However, we note that there are factors outside of her risk process that will 
vary her loss potential randomly, i.e., change the parameters of her risk process 
on any given day. To take one example, whether or not it is raining would 
affect her risk process. 

Assume that there is a higher chance of an accident when it rains. Further, 
assume whether or not it rains during her trip is a random variable. Then we 
have a risk process such as described by Mr. Meyers’s algorithm A. 1 (ignoring, 
for simplicity, claim severity). This is an example of parameter uncertainty. 

There is a kernel of uncertainty in the number of accidents she has in a year 
due to the variability caused by the different possible states of the universe, 
Extra observations will not reduce the effect of this kernel of uncertainty. This 
is why we get the lower credibilities indicated by formula 2.2. This is also why 
the maximum credibility is less than one. 

3.2 Shifting Parameters Over Time 

Let us change the example to illustrate risk parameters shifting over time. 

I6 The table at the end of Appendix G gives a good list of such candidates. 
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(They shift in a definite direction, but we cannot predict beforehand in which 
direction.) Assume that the little old lady changes churches, and that her trip is 
significantly different (e.g., longer or shorter). Then her accident potential is 
different. Experience based on old data when she was driving to her old church 
is less useful for predicting her expected future claims experience driving to her 
new church. Thus the credibility assigned to it would be lower. The credibility 
would be given by formula 2.3. Once again, the maximum credibility is less 
than one. Many observations in a single year will not take this shift into account, 
and observations over a longer period of time include, of necessity, “stale” data. 

3.3 Risk Heterogeneity 

Finally, let us change the example to illustrate risk heterogeneity. Let us 
assume we have a classification of risks which is made up solely of cars which 
are only driven by little old ladies, who only use them to drive to church on 
Sundays.17 Further, let us assume that in each case the car is jointly owned by 
two little old ladies. Finally, assume that they take turns driving, each one 
driving every other Sunday. In this case, the average process variance per car 
for the class remains the same as the case where each car was driven by one 
little old lady.‘* 

However, since the distribution of the loss potential of cars has become 
more concentrated toward the mean, the variance between the cars making up 
the class would be less than in the case where each car was driven by one little 
old lady.ig Thus, the claims data for a car is less credible than the similar 
situation where we had only one driver of each car. It would be even less 
credible if they alternated churches each Sunday, as well as drivers. 

The formula for credibility when there were heterogeneous risks was given 
by formula 2.5. Another simple but illustrative example is given in Appendix 
D of this discussion. 

1’ While this is clearly unrealistic, many class plans for private passenger automobiles do have a 
senior citizens class. 

‘* This would not be the case if they flipped a coin in order to decide who did the driving each 
Sunday. In that case, the process variance would be greater. This can be usefully thought of as a 
case of parameter uncertainty. 

I9 This would not be the case if for each pair of little old ladies who jointly own a car, the two 
drivers in each pair have the exact same loss potential as each other. 
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3.4 Conclusions 

It should be noted that part of the difficulty in assigning credibilities to one 
car year of exposure is that a car year can mean considerably different things 
depending on how the car is used, how far it is driven, and how many drivers 
it has. Part of the purpose of experience rating is to make up for any such 
inadequacies in the exposure base or risk classification system. 

The interested reader would probably find it useful to construct a similar 
example of his own for a large commercial risk. One could take a workers’ 
compensation insured consisting of ten separate locations of equal size, and 
give examples of each of the three phenomena. 

4. THE EFFICIENCY CRITERION 

In Section 4 of his paper, Mr. Meyers defines the efficiency of an experience 
rating plan as the reduction in the expected squared error. (See formula 5.2 
below.) The higher the efficiency, the more accurate the experience rating plan. 

The author defines the efficiency so that it is never more than 1OO%.2o The 
efficiency can only reach 100% if all the risks in the class have the same mean. 
Since classes are usually not perfectly homogeneous, the efficiency obtainable 
by any estimator is usually less than 100%. The author shows that the maximum 
efficiency using credibility is achieved when the credibility is equal to the 
Biihlmann (i.e., Bayesian credibility) result. For this case, the efficiency equals 
the credibility. 

The author also shows that the efficiency as a function of the credibility is 
a parabola. Thus, even if the credibility used is not quite the Btihlmann result, 
there is still a substantial improvement in accuracy due to the use of credibility.*’ 
In the next section of his paper, the author shows how this general principle 
applies to the use of a self-rating point. 

5. MAXIMIZING EFFICIENCY, PRIMARY AND EXCESS LOSSES 

It is possible to generalize the Btihlmann result to the cases Meyers exam- 
ines. Assume we have an experience rating plan, and our estimate of the mean 

20 The efficiency can be negative for a particularly poor choice of estimator. 

21 This pleasant and useful property of credibility estimates is explored in more detail in Mahler 
161. 
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F is given by 

F = (1 - Z,) Ep + Zfi, + (1 - 2,) E, + ZJ, . 

The subscripts p and e will stand for primary and excess; however, for now 
they can be treated as any two well defined portions of the total losses. Ep and 
E, are the expected losses of each type. A, and A, are the actual losses of each 
type. Z, and Z, will be thought of as the credibilities assigned to each portion 
of the losses; however, for now they can be treated as just numbers to be 
determined. 

In accordance with Meyers, define the efficiency of F by the expression 

1 _ E[(F - 1-0~1 
E[(M - vJ21 ’ 

Where M is the grand mean, and p, is the mean for individual risks. In this 
case, M = Ep f E,. 

In order to maximize the efficiency, one must minimize E[(F - p)‘]. In 
Appendix F, Z, and Z, are determined so as to maximize the efficiency. Let: 

a = total variance of the primary losses 
b = total variance of the excess losses 
c = variance of the hypothetical means of the primary losses 
d = variance of the hypothetical means of the excess losses 
r = total covariance of the primary and excess losses 
s = covariance of hypothetical means of the primary and excess losses. 

Then the optimum Z, and Z, are 

z 

P 

= Cc + 4b - Cd + $1~ , and 

ab - r2 

z = (d + s)a - (c + s)r 
e ab - r2 

It is interesting to note that if we set the primary losses equal to the total 
losses and thus the excess losses equal to zero, then the solution to the equations 
becomes 

z, zz c 
a’ 

which is the usual expression for credibility, as in Meyers’s equation 3.1. 
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However, unlike the usual case for credibilities, formulas 5.3 and 5.4 do 
not have the property of restricting Z,, or Z, to the closed interval between zero 
and one. Thus, although it may merely be a matter of semantics, some caution 
is required before labelling Z, and Z, as credibilities. For simplicity of exposi- 
tion, I will refer to them as credibilities, but perhaps a more precise term to 
apply would be weights. 

The maximum efficiency that results from the optimal values of Z, and Z, 
given by formulas 5.3 and 5.4 is 

Maximum Efficiency = 
Z,(c + s) + Z,(d + s) 

c+d+2s . (5.5) 

Thus, the maximum efficiency is a weighted average of the two credibilities 
that produce this maximum.22 

In Appendix G, the dependence of the credibilities and efficiency on the 
size of risk is explored. One does not get the familiar formula 2.1 that we had 
for the no-split situation.23 

6. SINGLE SPLIT PLANS 

In Section 5 of his paper, Mr. Meyers illustrates the advantage of having a 
loss limit as per the General Liability single split plan. He does this by means 
of an example in which he assumes four types of risks.24 It is useful to think 
of these risks as excellent, good, bad, and terrible. While this choice simplifies 
the computations, it still captures the essence of experience rating, which is to 
distinguish between risks to the extent that they are otherwise not distinguished 
by the class plan. 

The claim count distribution is chosen as a binomial with N trials. N is used 
as a measure of the size of the insured. Once again this simplifies the compu- 
tations, but captures the essential features. There are high and low frequency 
risks and the process variance increases linearly with N. 

22 The denominator is the variance of the hypothetical means of the total losses (primary plus 
excess). 

23 Of course as discussed above, one can make alternative assumptions, and get alternative formulas 
for the no-split situation, as for example formulas 2.2, 2.3, and 2.5. 

24 In Appendix J, an example is given of a continuous distribution of types of risks. 
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The severity distribution is chosen as a discrete version of the Shifted 
Pareto.25 The use of the discrete version again simplifies the computations while 
maintaining the essential features. There are high and low severity risks. Most 
of the claims are small; however, the large claims contribute a large part of the 
mean and most of the variance.26 

Mr. Meyers employs the Panjer algorithm to derive the aggregate loss 
distribution from the assumed frequency and severity distributions.27 The reader 
should note that, for these simple examples, it is relatively simple to calculate 
the aggregate distributions directly via convolutions. Also, all of the calculations 
necessary to explore the behavior of the credibility results can be done from the 
separate frequency and severity distribution without first obtaining the aggregate 
loss distribution.28 

6.1 Frequency versus Severity 

Mr. Meyers looks at three different examples. In his first example, which 
is displayed in his Table 5.2, only the frequency distributions vary between the 
risks. In his second example, which is displayed in his Table 5.3, only the 
severity distributions vary between risks. In his third example, which is dis- 
played in his Table 5.4, both the frequency and severity distributions vary 
between risks. In actual applications, which example is a better approximation 
to reality will depend on the relative importance of the variance between risks 
of the frequency and the variance between risks of the severity. For each 
example, Mr. Meyers displays the results of using Bayes Theorem as well as 
credibility. I will only discuss the results of using credibility. 

Mr. Meyers points out the conflicting roles of the frequency and severity 
variances between risks in the choice of a loss limit. If only the frequency 
distributions vary, then the loss limit should be low. The assumption in Meyers’s 

25 While the Pareto has been extensively used as a size of loss distribution for a group of risks, it 
is unclear whether or not the Pareto is an appropriate size of loss distribution for individual risks. 

26 In fact, for Mr. Meyers’s choice of parameters, 4 = 1.25, the unlimited Pareto has an infinite 
variance. 

27 The Panjer algorithm is explained in Venter [7]. It is simpler than the Heckman-Meyers algorithm 
and designed to handle the case where one has a discrete severity distribution. The Heckman- 
Meyers algorithm is explained in Heckman and Meyers [S]. 

28 In fact, they need only be done completely for N = 1, with the results for other values of N 
following from the results in Appendix G. Mr. Meyers’s results for the use of Bayes Theorem do 
require that the aggregate loss distributions be calculated. 
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first example is that the size of a claim is completely random and does nothing 
to distinguish good and bad risks. On the other hand, if only the severity 
distributions vary, we want a higher loss limit. In Meyers’s second example, 
we want to capture as much of the valuable information contained in the size 
of claim as is useful. When both the severity and frequency distributions vary, 
the optimal loss limit is somewhere between the results for the first two cases. 

In,his third example, Mr. Meyers takes the frequency and severity as highly 
correlated.29 Those risks with a high mean frequency also have a high mean 
severity. Thus, although frequency and severity are assumed to be independent 
for a given risk, they cannot be treated as independent when looking at all risks 
combined. 

This high correlation chosen by Mr. Meyers, as well as the particular choice 
of parameters, affects the particular results obtained. Thus, when attempting to 
apply Mr. Meyers’s method of analysis to a particular real world situation, it is 
important to carefully choose those assumptions which most closely match that 
situation. With this caveat, the method of analysis should be widely applicable. 
I will analyze Meyers’s third example extensively below in Section 7. 

6.2 Basic Limits versus Total Limits 

Sometimes the question that is asked is as important as the answer. Mr. 
Meyers poses the question in Section 5 of his paper as trying to maximize the 
efficiency, where only the error in predicting basic limits losses is considered 
in the efficiency. A useful extension might be to consider the error in predicting 
total limits losses,30 which would produce different results, If you assume that 
each of these risks would receive the same increased limits factor, then one 
could explore the behavior of the efficiency for various total limits using the 
methods discussed below. 

6.3 Primary and Excess Credibilities 

Formulas 5.3 and 5.4 give the primary and excess credibilities which will 
maximize the efficiency. (However, these “credibilities” do not necessarily lie 
between zero and one.) It is possible to use other values for the credibility, but, 
of course, the efficiencies will be lower. 

w In Meyers’s Section 6, when examining the Workers’ Compensation Experience Rating Plan, 
frequency and severity are taken as independent of each other. 

3o In the next section, Mr. Meyers deals with unlimited losses while exploring the features of the 
Workers’ Compensation Experience Rating Plan. 
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As shown in Appendix F, if the excess variance is relatively large, as it is 
for this example, then it is a good approximation to the optimal credibilities to 
take 

zp = 
C-tS 
- , and 

a (6.1) 

z, = 0. 
In fact, the General Liability Plan sets Z, = 0. Subject to that constraint, 

formula 6.1 gives the maximum efficiency. As shown in Appendix F, this is 
equivalent in the General Liability Plan to taking 

z=W(g%J (6.2) 

In actual application, formula 6.2 can lead to values greater than one. Thus, 
it might be more practical to employ 

z = MIN [l, (?) (&-)I . 

In his tests, Mr. Meyers uses 

z=c. 
a 

(6.31 

The ratio of the credibility given by formula 6.2 to that given by formula 
6.4 is 

(1 + :) + (1 + 2). 
For the assumptions used here, this is independent of N. For the Meyers 

example, this expression is greater than one, so that the credibilities given by 
formula 6.2 are larger than those given by formula 6.4. 

In Appendix F, a formula is given for the loss in efficiency due to using 
formula 6.4 rather than formula 6.2. 31 As will be seen below for the cases 
explored by Mr. Meyers, the loss in efficiency is relatively small. Nevertheless, 
for certain applications, it may be significant. 

31 The relative loss in efficiency turns out to be independent of N. 
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7. MEYERS’S GENERAL LIABILITY EXAMPLE IN MORE DETAIL 

Meyers displayed in more detail in Exhibit 5.1 the case of varying frequen- 
cies and severities when N = 4 with a loss limit of 4.32 For this case we have 
a = 4.744, b = 29.740, c = 1.026, d = .753, r = 4.752, ands = .874. 

Using formulas 5.3 and 5.4 gives Z, = 41.2%, and Z, = -l.l%, with a 
resulting efficiency of 2 1.7%. 

Using formula 6.2 results in 2 = 26.3% and an efficiency of 21.6%.33 In 
this case Z S 1, so formula 6.3 gives the same result as formula 6.2. 

Formula 6.4 (used by Meyers) gives Z = 21.6% and an efficiency of 20.9%, 
which matches Meyers’s result.34 

The behavior observed by Mr. Meyers for credibilities in Table 5.4 can be 
explained in terms of formula 6.4 being an approximation to formula 6.3, which 
is in turn an approximation to formula 6.2, which in turn is an approximation 
to formulas 5.3 and 5.4, the true optimal credibility result.35 

7.1 Results of the Various Formulas for Credibility 

In Tables 7.1 to 7.4, I have calculated the equivalent of Meyers’s Table 5.4 
(frequency and severity both vary) for these various different credibility for- 
mulas. I have extended the tables to cover more values of N and loss limits. 

32 There are four prior distributions given equal weight. They have binomial parameters p of .2, 
.3, .4, and .5 respectively. They have first parameters of the Pareto, which Meyers calls 6, of .25, 
SO, .75, and 1 .OO respectively. They all have the second parameter of the Pareto, which Meyers 
calls 4, equal to 1.25. 

33 Note that this is approximately equal to the Biihlmann credibility from formula 6.4 given below. 
Why this is the case is explained in Appendix H. 

34 The efficiency is not equal to the credibility as one might expect from Meyers’s Appendix B, 
since we are measuring the error in predicting the basic limits losses rather than just the primary 
portion of the basic limits losses. 

35 Which is in mm a linear approximation to the optimal Bayesian result. 
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TABLE 7.1 

EFFICIENCIES 
(COUNT AND SEVERITY DISTRIBUTIONS VARY AS PER MEYERS’S TABLE 5.4) 

PRIMARY AND EXCESS CREDIBILITIES AS PER FORMULAS 5.3 AND 5.4 

Loss 
Limit 

($1000) 

1 
2 
2.5 
3 
4 
6 
8 

12 
16 

N=4 N=8 - - 

19.9% 33.1% 
22.7 37.0 
22.8 37.1 
22.5 36.7 
21.7 35.6 
20.0 33.3 
18.5 31.3 
16.4 28.2 
15.0 26.1 

N= 16 N = 32 N=64 N= 128 N = 256 N=m 

49.6% 66.2% 79.4% 88.2% 93.4% 100.0% 
53.9 69.9 82.1 90.0 94.5 100.0 
54.1 70.1 82.2 90.1 94.6 100.0 
53.6 69.7 82.0 90.0 94.6 100.0 
52.5 68.8 81.4 89.6 94.4 100.0 
49.9 66.5 79.9 88.7 93.9 100.0 
47.6 64.5 78.4 87.8 93.5 100.0 
44.0 61.1 75.9 86.2 92.6 100.0 
41.4 58.5 73.8 84.9 91.8 100.0 

TABLE 7.2 

EFFICIENCIES 
(COUNT AND SEVERITY DISTRIBUTIONS VARY AS PER MEYERS’S TABLE 5.4) 

CREDIBILITY AS PER FORMULA 6.2 

Loss 
Limit 

($1000) N = 4 N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = c-~ ----- - ~ ___ - 

1 18.6% 31.4% 47.6% 64.3% 77.9% 87.1% 92.6% 98.8% 
2 22.6 36.9 53.8 69.8 82.0 89.9 94.4 99.4 
2.5 22.8 37.1 54.0 70.0 82.2 90.0 94.5 99.5 
3 22.5 36.7 53.6 69.7 82.0 90.0 94.5 99.6 
4 21.6 35.5 52.3 68.7 81.3 89.6 94.4 99.7 
6 19.6 32.8 49.4 66.1 79.5 88.5 93.9 99.9 
8 18.0 30.5 46.7 63.7 77.8 87.5 93.3 99.9 

12 15.5 26.9 42.4 59.5 74.6 85.4 92.1 100.0 
16 13.8 24.3 39.1 56.2 71.9 83.7 91.1 100.0 
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TABLE 7.3 

EFFICIENCIES 

(COUNT AND SEVERITY DISTRIBUTIONS VARY AS PER MEYERS'S TABLE 5.4) 
CREDIBILITY AS PER FORMULA 6.3 

Loss 
Limit 

Glow N=4 N=8 N= 16 N = 32 N=64 N= 128 N = 256 ,‘,J=w 

1 18.6% 31.4% 47.6% 63.8% 73.2% 77.9% 80.3% 82.7% 
2 22.6 36.9 53.8 69.8 80.8 86.3 89.1 91.9 
2.5 22.8 37.1 54.0 70.0 81.6 87.7 90.7 93.7 
3 22.5 36.7 53.6 69.7 81.8 88.9 91.7 95.0 
4 21.6 35.5 52.3 68.7 81.3 89.0 92.8 96.6 
6 19.6 32.8 49.4 66.1 79.5 88.5 93.3 98.1 
8 18.0 30.5 46.7 63.7 77.8 87.5 93.1 98.8 

12 15.5 26.9 42.4 59.5 74.6 85.4 92.1 99.4 
16 13.8 24.3 39.1 56.2 71.9 83.7 91.1 99.7 

TABLE 7.4 

EFFICIENCIES 
(COUNT AND SEVERITY DISTRIBUTIONS VARY AS PER MEYERS'S TABLE 5.4) 

CREDIBILITY AS PER FORMULA 6.4, I.E. SHOULD MATCH MEYERS’S TABLE 5.4 

Loss 
Limit 

($1000) N = 4 N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = m ---- ~ ___ - 

1 15.6% 26.2% 39.8% 53.8% 65.2% 72.9% 77.5% 82.7% 
2 20.9 34.1 49.7 64.5 75.8 83.1 87.2 91.9 
2.5 21.5 34.9 50.9 65.9 77.4 84.7 89.0 93.7 
3 21.4 35.0 51.1 66.5 78.2 85.8 90.2 95.0 
4 20.9 34.4 50.7 66.5 78.8 86.8 91.4 96.6 
6 19.3 32.2 48.5 64.9 78.1 87.0 92.2 98.1 
8 17.8 30.1 46.2 62.9 76.9 86.5 92.2 98.8 

12 15.4 26.7 42.1 59.2 74.2 85.0 91.6 99.4 
16 13.8 24.2 38.9 56.0 71.7 83.4 90.8 99.7 
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7.2 Eficiency as a Function of Loss Limit 

Table 7.4 here should match Meyers’s Table 5.4.36 We see the same behavior 
noted by Mr. Meyers. Taking larger loss limits gives higher efficiency only up 
to a point; then it decreases. The optimal loss limit increases with size of risk, 
as was noted by Mr. Meyers. Table 7.1, using primary and excess credibilities, 
shares the former feature, but not the latter feature. 

The fact that, for fixed N, the efficiencies in Table 7.1 have a maximum 
somewhere in between L = 0 and L = 50 (the limit for basic limit losses in 
Meyers’s example) is not surprising. If L = 50, then all of the losses are 
primary. If L = 0, then all of the losses are excess. In each case, the solution 
reduces to that of the no-split plan. Thus, the two endpoints have the same 
efficiency. For 0 < L < 50, the special case where we restrain 2, = Z, reduces 
to that of the no-split plan. Thus we know that the split plan allowing Z, and 
Z, to vary independently so as to get the maximum efficiency does at least as 
well as the no-split plan, which is just a special case. 

Thus 0 < L < 50 does at least as well as L = 0 or L = 50. In fact, it does 
better. The efficiency peaks somewhere between the endpoints and decreases as 
L approaches the two extremes. This behavior carries over to Tables 7.2, 7.3, 
and 7.4 which can be thought of as successive approximations getting further 
and further from the optimal results in Table 7.1 

In Table 7.1, the optimal loss limit is about 2.5, independent of N.37 This 
behavior carries over to Table 7.2. In Table 7.3, the optimal loss limit increases 
slowly with N, after N = 32. The reason is that we have restricted Z S 1;38 if 
formula 6.2 would indicate Z > 1, we set Z = 1 instead. Thus we are giving 

36 In fact, it does not for a loss limit of $1000. Apparently, Mr. Meyers mistakenly set these 
efficiencies equal to those from his Table 5.2 where only the claim count distributions vary. The 
efficiencies here should be lower, even though the two cases are very similar. It is true that since 
the severity distributions are discrete in units of $1000, choosing a loss limit of $1000 means that 
all limited claims are of size $1000. In other words, the experience rating plan ignores the size of 
claim in both cases for a loss limit of $1000. In each case, the experience rating plan is explaining 
the same amount of variation, based solely on the observed difference in claim counts. However, 
in the case here, the total observed variation in losses is greater than when only the claim count 
distributions vary, since here the severity distributions also vary. Thus, a smaller proportion of the 
total observed variation is explained here. Therefore, the efficiency is lower here. 

37 The reason this is so for Table 7.2 is explained in Appendix H. 

38 This becomes applicable in the upper righthand comer of the table. For example, for N = 64 
and a loss limit of 2.5, the credibility indicated by formula 6.2 is 109.1%. 
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less than the optimum weight to the primary losses. We can afford to raise the 
loss limit somewhat (staying within the range where formula 6.2 would indicate 
2 2 1, thus formula 6.3 indicates Z = 1) so as to make the mean primary loss 
larger, in order to make up for the lessened weight that is being applied to the 
primary losses. 

Finally, Table 7.4 has the optimum loss limit increase faster with N than 
does Table 7.3. This is so since formula 6.4 is close to formula 6.3, but in 
Meyers’s example yields lower credibilities. Thus, once again, we raise the loss 
limit to make up for a too low weight applied to the primary losses. 

In Table 7.3, we notice that, for a given loss limitation, after a certain point 
there is little increase in efficiency with increasing size of risk. This is explained 
in Appendix F. 

8. SELF-RATING POINT 

Formulas 6.2 and 6.3 for credibility illustrate the theoretical validity of a 
self-rating point. One can have Z 2 1. In fact, this is the case for Meyers’s 
third example. 

It makes sense to define the self-rating point as the smallest size risk such 
that Z = 1 at the optimum loss limit. Using formula 6.2 this means that 

whereas in Appendix G we let: 

n s 
s = 7 , and 

N 

f = tlN = (a - c)lN. 

Formula 8.1 can be solved for 

N = f G + Eel 
s^ Ep - E E, 

(8-l) 

In the Meyers example, we saw in Table 7.2 that the optimum loss limit is 
about 2.5. For this loss limit we have c^ = .041, s^ = .054, I = .548, Ep = 
.495, and E, = .375. Thus, formula 8.2 gives N = 42. 
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Thus, in this example, the self-rating point would be 42.39 When using 
formula 6.3, we expect the optimum loss limit to increase above this self-rating 
point. This is confirmed by Table 7.3 where the optimum loss limit began to 
increase for N 2 64 after remaining constant for N 5 32. 

9. CONCLUSIONS FROM MEYERS’S GENERAL LIABILITY EXAMPLE 

Those features and assumptions of Meyers’s third example that are probably 
true for most applications are: 

(1) Both the frequency and severity distributions vary between risks (al- 
though perhaps not in the same relative importance as in this example). 

(2) Frequency and severity are somewhat correlated (although probably not 
to the extent they are in the example). 

(3) The excess losses have a much higher coefficient of variation than do 
the primary losses. 

(4) The primary severity and excess severity are highly correlated. 

Based on the above analysis of Meyers’s example, when the general as- 
sumptions of his example hold, the behavior we expect to see for a single split 
experience rating plan is as follows: 

(1) The optimum loss limit increases slowly as the size of risk gets larger 
up to the self-rating point. 4o (It shall be shown when examining Meyers’s 
next example that the optimum loss limit remains virtually constant here 
because of the particular choice of parameters for this example.) 

(2) The optimum loss limit increases more rapidly as the size of risk in- 
creases beyond the self-rating point. 

(3) The more important the differences in severity, the higher the optimum 
loss limit. The more important the differences in frequency, the lower 
the optimum loss limit. 

(4) The efficiency is very close to optimal for loss limits close to optimal. 
(5) The optimal credibilities will not be of the form N/(N + K), although 

such a formula will give efficiencies close to optimal. (This will not be 
true if any of the phenomena discussed in Sections 2 and 3 of this 
discussion are significant.) 

39 This corresponds in this example to expected basic limits losses of about $37,000, or about 26 
claims on average. 

4o In certain cases it may not be appropriate to have a self-rating point. For example, this will be 
the case if the phenomena discussed in Sections 2 and 3 of this discussion significantly reduce the 
credibilities. 
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10. MULTI-SPLIT PLAN 

In Section 6 of his paper, Mr. Meyers constructs an example to illustrate 
the behavior of a multi-split plan such as that currently used for workers’ 
compensation. As in his Section 5, the risks are divided into a small number 
of possible types.41 

He uses a Poisson distribution to model the claim counts. He uses a (con- 
tinuous) Weibull distribution to model claim severity. The frequency and se- 
verity are treated as independent.42 

No overall limit is applied by the author to the losses. In actual application 
of the Experience Rating Plan, a per claim accident limit is applied.43 The value 
differs considerably by state, but I will use $100,000 here for illustrative 
purposes. If the severity distribution has a large tail, this accident limitation can 
add to the efficiency of the plan. 

10.1 The Current Workers’ Compensation Experience Rating Plan 

Mr. Meyers examines whether the current Workers’ Compensation Experi- 
ence Rating Plan or his formula 6.1 works better, i.e., which produces higher 
efficiency. Mr. Meyers concludes that his formula 6.1, which gives no credibility 
to the excess losses, outperforms the current Workers’ Compensation plan. 

The first thing to note is that the current workers’ compensation formula 
can be written as the new estimate of expected losses equals the old estimate 
of expected losses times the experience modification, 

10. 
F=A,+WA,+(l-W)E,+(l-W)KE 

E+(l-W)K 

Then, following Snader [9], let 

( 1) 

z, = E 
E + Kp ’ 

(10.2) 

z,=E= 
E+K, wz~7 (10.3) 

Kp = (1 - W)K = B, and (10.4) 

4* In Appendix J, an example is given of a continuous distribution of risks. 

42 In Section 5 of his paper, Mr. Meyers’s example had the frequency and severity highly correlated. 

43 For accidents involving multiple claims, the limitation is twice that for single claim accidents. 



EXPERIENCE RATING 143 

K = Cl- wm + 0 e w . (10.5) 

Then formula 10.1 can be written as 

F = Ep (1 - Z,) + A$-, + E, (1 - Z,) + A&. . (10.6) 

Formula 10.6 is the form of F that has been previously discussed. As was 
shown previously, the solution for the optimal Z, and Z, given in formulas 5.3 
and 5.4 do not have the form of formulas 10.2 and 10.3, even if Kp and K, 
were constants with size of risk. In the current workers’ compensation plan, 
1 - W and thus Kp decreases with increasing size of risk until it is zero for 
self-rated risks. Below a certain value, W = 0 and thus Z, = 0. Above that 
value, W increases to 1 with increasing size of risk, and K, decreases with 
increasing size of risk until it reaches zero for self-rated risks. Values of Kp, 
Kc, Z,, and Z, are displayed in Table 10.1 for a typical choice of parameters.& 

Mr. Meyers makes the excellent point that there is no theoretical framework 
in which the standard workers’ compensation formula (with this particular 
variation of Kp and K, with size of risk) is optimal.45 

10.2 Meyers’s Alternative, Zero Excess Credibility 

Meyers’s formula 6.1 can be written as 

F=G{l - (1 + 2) &)} 

+A,(1 + 2) (& +E,. 

which is a special case of formula 5.1 with 

Z, = (1 + 2) (&) , and 

ze = 0 

44 These are the values currently in use in Massachusetts. 

45 It is also of interest to note that Z, increases very quickly with the size of risk. 

(10.7) 

(10.8) 
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TABLE 10.1 

WORKERS’ COMPENSATION EXPERIENCE RATING 
CURRENT PLAN 

EXAMPLE FOR TYPICAL VALUES* 

Expected 
Losses 

Credibility 
Parameters K (00) 

Primary Excess 

5 200 Infinite 
10 200 Infinite 
1.5 200 Infinite 
20 200 Infinite 
25 200 Infinite 
30 198 49500 
35 196 26950 
40 194 19400 
45 194 21017 
50 192 16800 
60 188 12533 
70 184 10350 
80 182 10111 
90 178 8900 

100 174 803 1 
120 168 7350 
140 162 682 1 
160 154 6026 
180 148 5692 
200 140 5133 
225 132 4756 
250 124 4405 
275 116 4074 
300 106 3609 
325 98 3315 
350 90 3027 
375 82 2745 
400 72 2363 
425 64 2094 
450 56 1828 
475 48 1563 
500 38 1220 
525 30 962 
550 22 704 
575 14 448 
600 6 192 
625 0 0 

Credibilities 
(Percent) 

Primary Excess 

20 0 
33 0 
43 0 
50 0 
56 0 
60 I 
64 1 
67 2 
70 2 
72 3 
76 5 
79 6 
81 7 
83 9 
85 11 
88 14 
90 17 
91 21 
92 24 
93 28 
94 32 
95 36 
96 40 
97 45 
97 50 
97 54 
98 58 
98 63 
99 67 
99 71 
99 75 
99 80 
99 85 

100 89 
100 93 
100 97 
100 100 

* Self-Rating Point varies by state. Self-Rating Point taken as S = 9615,000. 
Q = $25,000. K = $20,000. See Snader [9]. 
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As we saw in the discussion of Meyers’s Section 5, the use of the credibilities 
in formula 10.8 results in less efficiency than the use of the theoretically optimal 
credibilities, but for many applications the loss in efficiency may be acceptable. 

10.3 A Modijcation of Meyers’s Example 

The loss in efficiency will be examined for the example in Meyers’s section 
6. In order to simplify the calculations, a discrete version of the Weibull will 
be used.46 In order to better match the current plan, an accident limitation will 
be used. The accident limitation will be chosen at $100,000. The probability, 
F(x), that a claim will be less than or equal to x is given by:47 

lqx) = 1 - e-(x’w x = $100, $200, . :. $100,000 (10.9) 

The remaining probability will be at the accident limitation $100,000. 

The primary portion of each loss will be determined by the multi-split 
formula 

X, xSB 

xp = (B + C) x 
x+c ’ 

xlB. 

(10.10) 

The current plan has C = 4B and B = $2,000. 

The frequency will be Poisson as per Mr. Meyers; however, we will take 
the parameter A equal to N times 4, 7, 10, 13, and 16. Thus N represents the 
size of risk, with N = 10 in Meyers’s example.48 

Appendix I shows how to calculate the quantities that enter formulas 5.3 
and 5.4, when the frequency and severity are independent. 

The results for this example with N = 10 are a = 86961, b = 349814, 
c = 65952, d = 101857, r = 123788, and s = 77843, Z, = 185.8%, 
Z, = - 14.4%, and Efficiency = 74.6%. 

46 The use of the discrete version changes some of the actual values, but the essence of the example 
is preserved. It should be noted that the continuous Weibull usually does not fit the observed size 
of loss distribution for small claims. For example, with b = 50 and c = .25, 31% of the losses 
will be one dollar! 

Q Meyers takes c = .25. He lets b = 30, 40, 50, 60, and 70 with equal probability. 

48 It should be noted that really small risks are currently not eligible for experience rating. The 
eligibility level for a risk with three years of experience eligible for experience rating is generally 
set so that for each state it approximates the average premium of a risk with 10 full time employees. 
(For example, in one state, this is currently $3500 in premium per year.) 
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Using formula 6.2 would result in Z = 81.4% and an efficiency of 73.5%. 
This is quite close to optimal. 

Using formula 6.4 would result in Z = c/a = 75.8% and an efficiency of 
73.2%. This is still quite close to optimal. Thus, as we saw in Section 7 of this 
discussion, the use of formula 6.4, as suggested by Mr. Meyers, results in a 
relatively small loss in efficiency compared to optimal. 

10.4 Results of Using the Various Formulas for Credibilities 

Table 10.2 gives, for various sizes of risks and various choices of B (as per 
formula lO.lO), the efficiencies for this example using formulas 5.3 and 5.4 
for credibility. We notice that for smaller risks, the optimal choice of B is much 
lower than the current value of $2000.4g The optimal B rises with size of risk. 
For the largest risks it reaches $2000. 

Table 10.3 is similar to Table 10.2, except that the credibilities are calculated 
using formula 6.2. There is a similar pattern to Table 10.2. The loss in efficiency 
is relatively small compared to Table 10.2. Table 10.4 uses formula 6.3 in order 
to calculate the credibilities. It is virtually identical to Table 10.3. 

Table 10.5 is similar to the preceding tables, except that the credibilities are 
calculated using formula 6.4, as recommended by Meyers. The pattern is again 
very similar, and the losses in efficiency are probably sufficiently small to be 
acceptable for most practical applications. Thus, at least for this example, there 
is little disadvantage to setting the excess credibility equal to zero. 

Table 10.6 is similar to Table 10.2, except that a single split plan has been 
used instead of a multi-split plan. The loss in efficiency is relatively small. 
Thus, at least for this example, there is little disadvantage to the use of the 
simpler single split plan. 

Table 10.7 is similar to Table 10.2, except that an accident limitation of 
$200,000 rather than $100,000 has been used. The pattern is similar to that in 
Table 10.2. As expected, the optimal value of B is (slightly) higher, since the 
tail of the severity distribution is relatively more important. The efficiencies in 
Table 10.2 are lower than those in Table 10.7, but it is inappropriate to compare 

+ This result depends on Meyers’s choice in this example of the relative importance of variation 
of frequency and variation of severity as well as the use of the Weibull distribution even for small 
sizes of claims. 
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them directly. Table 10.7 is the result of attempting to estimate losses capped 
at $200,000. This is a more difficult task than trying to estimate losses capped 
at $100,000 as in Table 10.2.50 

TABLE 10.2 

EFFICIENCIES 

MULTI-SPLIT PLAN, FORMULAS 5.3 AND 5.4 

B N= 1 N=3 N = 10 N = 30 N= 100 

$100 45.8% 65.5% 78.4% 85.9% 92.7% 
$200 41.4 63.6 79.1 86.9 93.1 
$500 34.6 58.9 78.5 87.8 93.7 

$1,000 29.6 54.3 77.0 88.0 94.0 
$2,000 25.2 49.4 74.6 87.7 94.3 
$5,000 20.3 42.9 70.5 86.5 94.3 

$10,000 17.2 38.3 66.8 85.0 94.1 

TABLE 10.3 

EFFICIENCIES 

MULTI-SPLIT PLAN, FORMULA 6.2 

B 

$100 
$200 
$500 

$1,000 
$2,000 
$5,000 

$10,000 

N=l N=3 N = 10 N = 30 

45.8% 65.5% 77.1% 81.2% 
41.0 63.5 78.7 84.4 
33.6 58.3 78.5 87.1 
28.2 53.0 76.7 87.9 
23.2 47.0 73.5 87.6 
17.4 38.7 67.3 85.4 
13.9 32.7 61.7 82.6 

N= 100 

82.7% 
86.6 
90.6 
92.7 
93.9 
94.3 
93.7 

5o One could put the two tables on a comparable basis by adjusting the efficiencies in Table 10.2 
to what they would have been if one measures efficiency in terms of the variation of the losses 
capped at $200,000. However, this is beyond the scope of this discussion. 
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TABLE 10.4 

EFFICIENCIES 
MULTI-SPLIT PLAN, FORMULA 6.3 

B 

$100 
$200 
$500 

$1,000 
$2,000 
$5,000 

$10,000 

B 

$100 
$200 
$500 

$1,000 
$2,000 
$5,000 

$10,000 

N=l N=3 N= 10 N = 30 

45.8% 65.5% 77.1% 81.1% 
41.0 63.5 78.7 84.3 
33.6 58.3 78.5 87.1 
28.2 53.0 76.7 87.9 
23.2 47.0 73.5 87.6 
17.4 38.7 67.3 85.4 
13.9 32.7 61.7 82.6 

TABLE 10.5 

EFFICIENCIES 
MULTI-SPLIT PLAN, FORMULA 6.4 

N=l N=3 N= 10 N= i0 

45.6% 65.3% 76.8% 80.9% 
40.8 63.2 78.3 84.0 
33.4 58.0 78.1 86.6 
28.0 52.7 76.3 87.4 
23.0 46.8 73.2 87.2 
17.4 38.6 67.1 85.2 
13.9 32.6 61.6 82.5 

N= 100 

82.6% 
86.3 
90.3 
92.4 
93.8 
94.3 
93.7 

N= 100 

82.5% 
86.2 
90.1 
92.2 
93.5 
94.1 
93.6 
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TABLE 10.6 

EFFICIENCIES 
SINGLE SPLIT PLAN, FORMULAS 5.3 AND 5.4 

B N= 1 N=3 N = 10 N = 30 N = 100 

$100 47.8% 63.8% 74.8% 83.4% 91.9% 
$200 48.2 65.4 76.8 84.6 92.3 
$500 44.1 64.7 78.6 86.2 92.8 

$1,000 38.8 61.9 78.9 87.2 93.3 
$2,000 33.0 57.5 78.1 87.9 93.8 
$5,000 25.6 49.9 74.9 87.7 94.3 

$10,000 20.6 43.5 70.9 86.6 94.4 
$20,000 16.4 36.9 65.6 84.4 94.0 

B 

$100 
$200 
$500 

$1,000 
$2,000 
$5,000 

$10,000 

TABLE 10.7 

EFFICIENCIES 
MULTI-SPLIT PLAN, FORMULAS 5.3 AND 5.4 

$200,000 ACCIDENT LIMITATION 

N=l N=3 N= 10 N = 30 

44.7% 64.0% 76.6% 83.9% 
40.4 62.2 77.5 85.3 
33.7 57.7 77.3 86.6 
28.7 53.1 75.8 87.0 
24.2 48.0 73.4 86.7 
19.1 41.1 68.8 85.4 
16.0 36.1 64.7 83.7 

N = 100 

91.1% 
91.7 
92.5 
93.1 
93.5 
93.7 
93.5 
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11. TESTING AN EXPERIENCE RATING PLAN ON ACTUAL DATA 

In Section 7 of his paper, Mr. Meyers gives a generally applicable method 
of testing experience rating plans. It is a more modem and statistically sophis- 
ticated version of the method presented by Dorweiler. The author uses this 
method on actual data to test which formula for credibilities performed best, as 
well as to test which values of parameters worked best given a particular 
formula. 

Meyers looked at formulas 2.1 and 2.2, and found that formula 2.2, which 
assumes parameter uncertainty, performed better. It would be interesting to 
perform the same test on other candidates, such as formula 2.5. In fact, given 
the other features of the plan, one can find by trial and error a relation of 
credibility with size of risk that works well. 

Given the appropriate data, the general method presented by the author 
should be able to answer the following questions which were not tested in the 
paper. 

1. What is the best loss limit to use? 
2. Does a loss limit which increases with the size of risk significantly 

improve the performance of the plan? 
3. Does a multi-split plan perform significantly better than a single split 

plan? 
4. Does assigning non-zero credibility to the excess losses perform signif- 

icantly better than assigning zero credibility to the excess losses? 

Mr. Meyers is able to use the method in this section not only to get a point 
estimate of the credibility parameter K, but also to get a confidence interval for 
K. It is interesting to note that the best estimate of K is not at the center of the 
confidence interval. Rather, the best estimate is nearer the low end of the 
confidence interval. This is at least partially explained by the fact that it is the 
ratio of different estimates of K rather than their difference which is important.51 

51 This feature of estimates of K is discussed in Mahler [6]. For example, if one either doubles or 
halves K, the resulting maximum changes in credibility are the same. The connection to the result 
here was pointed out to this author by Mr. Meyers. 
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12. CONCLUSIONS AND SUMMARY 

While Mr. Meyers’s paper is an excellent contribution to the actuarial 
literature which opens up many areas for further investigation, I think the author 
goes a little too far in drawing conclusions from his work. I will arrange my 
conclusions in a manner parallel to the author’s, in order to allow ready com- 
parison. 

MEYERS 

1. A loss limit can be an effective tool la. A loss limit can be an effective 
for increasing the accuracy of an tool for increasing the accuracy of 
experience rating formula. Loss an experience rating formula.s2 
limits are particularly helpful when lb. If the differences between risks 
there are differences in claim fre- 
quency. Even if the only differ- 
ences among the insureds are in 
claim severity, little accuracy will 
be lost with a loss limit. 

lc. 

within rating classes are mainly 
due to differences in frequency, 
then a lower loss limit is optimal. 
If they are mainly due to severity, 
then a higher loss limit is optimal. 
The efficiency is relatively insen- 
sitive to the choice of the loss 
limit. If your chosen loss limit is 
close to optimal, and assuming 
you choose credibilities close to 
optimal, then your efficiency will 
be very close to optimal. 

Id. The larger the maximum loss that 
can occur,s3 and the thicker the 
tail of the size of loss distribu- 
tion,54 the more important it is to 
have a loss limit. 

*2 Appendix J gives an example where there is no practical advantage to the use of a loss limit. 

53 Here we mean the largest loss considered by the plan, that is $50,000 in the Meyers’s general 
liability example and $100,000 in my version of Meyers’s workers’ compensation example. 

54 The Pareto has a very thick tail. The Weibull has a thick tail for Meyers’s c < 1, but not quite 
as thick as the Pareto. See Hogg and Klugman [IO]. 
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MEYERS 
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MAHLER 

le. The optimal loss limit increases 
slowly or remains virtually con- 
stant up to a large size of risk. For 
very large risks, the optimal loss 
limit increases more quickly. 

If. The optimal credibilities depend 
on the loss limit chosen. 

lg. Under certain conditions, there is 
a theoretical as well as a practical 
justification for having a self-rat- 
ing point. 

2. The current formula in the Work- 2a. The current formula used in the 
ers’ Compensation Experience Rat- Workers’ Compensation Experi- 
ing Plan, which has a separate ence Rating Plan can be im- 
treatment of primary and excess proved. 
losses, is less accurate than a for- 2b. The current manner in which the 
mula which uses only primary credibilities in the Workers’ Com- 
losses. pensation Plan vary with size of 

risk has no theoretical justifica- 
tion. Empirical studies should be 
done to come up with more ap- 
propriate relationships. 

2c. The gain in efficiency from the 
use of a multi-split rather than a 
single split plan may not be large 
enough to justify the use of the 
more complicated multi-split 
plan. 

2d. The excess credibilities are ex- 
pected to be relatively small. The 
gain in efficiency may not be large 
enough to justify the use of the 
excess losses. 

2e. The per claim limitation in the 
Workers’ Compensation Plan 
serves a useful purpose. 
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MEYERS 

3. There are some very plausible sit- 
uations when the standard credibil- 
ity formula Z = EI(E + K) is not 
appropriate. These include param- 
eter uncertainty over time and loss 
limit which increases with the size 
of the insured. Failure to recognize 
this will result in overstating cred- 
ibilities for larger insureds. 

MAHLER 

3a. The traditional formula for credi- 
bility, formula 2.1, applies in only 
limited special situations. 

3b. Three specific phenomena are ex- 
amined: parameter uncertainty, 
shifting parameters over time, and 
risk heterogeneity. Each of these 
will tend to lower credibilities for 
large risks compared to those 
from the traditional formula. (For- 
mulas for each are presented.) 
One or more of them are expected 
to be important in many situa- 
tions. 

3c. Under certain conditions, the op- 
timal credibility will remain sub- 
stantially less than one, regardless 
of how large the risk gets or how 
many years of data are used. 

3d. Under certain circumstances, 
older years of data should be 
given substantially less credibility 
than more recent years of data. 
There may be only a minimal gain 
in efficiency from using additional 
years of data. 

3e. If the loss limit changes, the op- 
timal credibilities also change. 
This is another reason why for- 
mula 2.1 may not apply. 

3f. The efficiencies are relatively in- 
sensitive to the choice of the cred- 
ibilities. The credibilities, in turn, 
are relatively insensitive to the 
choice of parameters entering the 
formula. 
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MEYERS MAHLER 

4. The author would recommend an 4. Any reasonable experience rating 
experience rating formula based on plan is expected to achieve a sub- 
the credibility formula 2.2 stantial increase in efficiency. 

Z = EI(JE + K>. 
However, theoretical and empiri- 
cal studies should allow a signif- 

A loss limit that does not vary by 
size of insured should be a part of 
the plan. Excess losses should not 
be a part of the plan. This formula 
is less complicated than current for- 
mulas and should be easier to ad- 
minister. 

icant improvement in the effi- 
ciency of most plans. 

Mr. Meyers’s paper has already stimulated work on experience rating plans 
which should lead to substantial improvements in the design of these plans in 
the near future. The paper also examines some interesting features of credibility 
which should have implications outside the area of experience rating plans. 
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APPENDIX A 

TWO RESULTS FOR COVARIANCES 

In this appendix will be established two useful results involving covariances. 
The first result is: 

Total covariance = expected value of the process covariance 
+ parameter covariance 

where the parameter covariance is another term for the covariance of the hy- 
pothetical means. It should be noted that the similar result involving variances 
is just a special case of this result.55 

If 8 represents the set of parameters, this result can be written as follows 

Theorem: COV[X,y1 = & [COV[X,YlWj] + COVe [E[X\tl], E[flfj]] 

Proof: COV[X, yl = E[XYJ - E[X] E[Yj 
= Ee LE[XYIBlI - EetXjtU EetY(‘31 
= Ee [EQY(‘311 - Ee [E[X(Ol E[Y(Oll 

+ -51 [ELXlOl E[YjOll - Ee [X\Q Ee W101 
= Ee [E[XY(B] - E[X(8] E[YlO]] 

+ Ee LJWlOl E[YjOll - EetX~Ol EdYl81 
= Ee [COV[X,Yl0]] + COVe [E[XlO], E[Yj9]] 

The second result puts the covariance of the primary losses and excess losses 
in terms of the means, variances, and covariance of the primary and excess 
severity and the frequency. The familiar result for the variance of the losses in 
terms of frequency and severity is a special case of this result.56 

Theorem: Assume a claims process in which frequency and severity are inde- 
pendent of each other, and the claim sizes are mutually independent 
random variables with a common distribution. Then let each claim 
be divided into two pieces in a well-defined manner not dependent 
on the number of claims. For convenience, we refer to these two 
pieces as primary and excess. 

55 Both results are familiar to statisticians. See, for example, Snedecor and Co&ran [ll]. However, 
the result for variances seems more familiar to actuaries. 

56 The proof given here parallels that for the more familiar result given in Appendix 2 of Venter 
IW. 
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Let: 
Tp = Primary Losses 
T, = Excess Losses 
X, = Primary Severity 
X, = Excess Severity 
N = Frequency 

Then: 
COV [Tp, Tel = ED7 COV [X, ,X,1 + VAR[Nl EIX,] E[X,I 

Proof Tp is the sum of the individual primary portions of claims X,(i), where 
i runs from 1 to N, the number of claims. Similarly, T, is a sum of 
X,(i). Since N is a random variable, both frequency and severity 
contribute to the covariance of Tp and T,. 

To compute the covariance of T, and T,, begin by calculating 

E[T,TejN=nl, 

fix the number of claims n and find 

Expanding the product yields n* terms of the form X,(i) X,(i). 
When i = j the expected value of the term is 

E[X,(i) X,(i)1 = COV IX,,Xel + E[X,l E[XeI 

from the definition of covariance. Otherwise it is E[X,] E[X,], since 
then X,(i) and XJj) are independent. Thus 

E [& x,(i)) (2 X49)] = n COV [X,,XJ + n* E[X,l E[Xel. 

NOW, by general considerations of conditional expectations, 

E [TpT,] = E,, [E[T,Te ( N = nll. 

Thus, taking the expected value of the above equation with respect 
to N gives 

E [TpTe] = E[N] COV [X,,X,] + E[N2] E[X,l E[X,l, and 
COV [T, ,Te] = E[TpTe] - E[T,l EF”eI 

= E[N] COV[X,,X,] + (VARW + E2[N9 E[X,l EtXel 
- EWI E[Xpl EWI E[XeI 

= E[N] COV[X,,X,l + VAR[Nl E[XpI EL&I . 
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APPENDIX B 

PARAMETER UNCERTAINTY 

In this appendix, the effect of parameter uncertainty on the formula for 
credibility is discussed. This discussion is intended to aid in the understanding 
of both Meyers’s result for this phenomenon and the results obtained here in 
the later appendices for the two other similar phenomena, risk heterogeneity 
and shifting parameters over time. 

As explained in Mr. Meyers’s Appendix A, when there is parameter uncer- 
tainty, the credibility as a size of risk no longer follows formula 2.1, but rather 
follows formula 2.2. 

The important point is the behavior of the expected variance within classes, 
which Meyers labels S2. 

a2 = E [(A - /J,)*] 

This is normally thought of as the expected value of the process variance. 
If for each risk the parameters of the risk process themselves vary randomly,57 
then a2 really is made up of two pieces. 58 The first piece of g2 is due to the 
variance of the parameters due to different states of the universe.5g The second 
piece of S2 is due to the process variance, given a specific state of the universe. 
The first piece is expected to be proportional to N2, just as was the variance 
between risks due to different parameters. 6o The second piece is expected to be 
proportional to N as usual. 

In other words, we can write S2 as 

6* = N’ ix2 + N X2. 

57 An example is given in Section 3 of this discussion. 

5* This is a special case of the first result in Appendix A 

59 In the example in Section 3, there were for simplicity two states, determined by whether it was 
raining or not. 

6o Thus somewhat paradoxically, S2, which is usually thought of as “process variance” actually 
includes a piece of “parameter variance,” albeit of a very special variety. 
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The “good” piece of s2 goes up only as N, while the “bad” piece goes up 
as N*. This bad piece of 6’ was introduced due to the assumed different possible 
states of the universe. Unlike the good piece of 6*, this piece of 6* increases 
as quickly as the variation between risks (Meyers’s r2), which also increases as 
N”. 

Thus taking more observations will not get rid of the effect due to the 
variation inherent in the universe.61 

If 

72 = N2 p’. 

then 

z= T2 N 
m= N(l + o?@*) + x2/p’ ’ 

which is of the form 

which is equation 2.2. 

G1 The same idea has applications to risk assessment efficiency and class homogeneity. See 
Wall [13]. 
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APPENDIX C 

RISK CHARACTERISTICS CHANGING OVER TIME 

In this appendix, the effect of shifting parameters over time on the formula 
for credibility is discussed. A general formula is derived and the results are 
applied for a reasonable special case. It is this special case that results in formula 
2.3 in the main text. 

Assume that the parameters that describe the loss process of a risk are not 
constant over time.62 Then the theoretical true mean for each risk is a function 
of time. For example, the shift might be due to a change in the attitude of 
management with regard to safety or due to a change in the upkeep of the roads 
on which the insured usually drives his car. We are not including shifts that are 
expected to affect all risks in the same manner, for example, claim cost trend. 

Assume we have an experience rating plan, and we use N years of data, 
such that our estimate of the mean F we expect in year N + A is given by: 

F = (I- 2 2;) EN+& + g ZAi 

where Ai is the actual losses observed for year i, (brought up to the expected 
level of year N + A), 63 Zi is the credibility assigned to that year losses, and 
EN+& is the expected losses for year N + A.64 

We assume that the individual years of data are generated by the same size 
of risk (or same number of risks). Thus except for the assumed shifting param- 
eters over time, we would assign each of the years equal weight, 

General Case 

We wish to find Z, for i = 1 to N, such that the efficiency is maximized. 
In order to proceed, we will assume a covariance structure. We will assume 
that the correlation expected between two years of data separated in time by i 

62 We assume that while individual risk parameters shift, the overall distribution of risks remains 
the same. Also, we assume there is no way to predict the shift of an individual risk, and that the 
class plan doesn’t pick up the shift. 

63 Thus we assume Ei = E, = E 

@ Typically N = 3. For workers’ compensation usually A = 2. For private passenger auto usually 
A =I. 
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years, is a function of i, l(i). It is assumed that the expected correlation decreases 
(or stays the same) as the years get further apart. Specifically, we assume: 

I(0) = 1 

l(i) 2 l(i -I- 1). 

The covariance structure assumed is: 

E[(Ai - E)(Aj - E)] = 6’ Q(i - j() + 6ijX2 

6.. = 0 i #j 
13 

i 1 i=j 

where for different years, i # j, we get the variation of the hypothetical means, 
p2, times a factor equal to a correlation I((i - jl) 5 1, dependent on the number 
of years of difference. For i = j, we get the variation of the hypothetical means 
f3*, plus the expected value of the process variance x2. The closer 1(1i - j() is 
to 1, the less shifting of parameters there is over time. 

Efficiency = 1 - 
E [(F - /hv+a>*1 
E [(E - ~-~+a)*1 

Substituting our expression for F, letting K = x*/p* and simplifying we get: 

5 EZj Zj {l(li - jl) -t K6ii) - ztiZi l(lN + A - iJ> js, j=] 
Efficiency = 

E[(E - ~~+a)*1 

We get the maximum efficiency by setting each of the partial derivatives 
with respect to the different credibilities equal to zero. This gives the following 
set of N linear equations in N unknowns. 

i Zj {/(Ii - jl) + i&K} = 1(/N + A - ji) j= 1,2,. . ,N 
i=1 

These equations can be solved simply by using the usual matrix methods. 
However, for N > 2 the expressions for the solutions are complicated to actually 
write out. For N = 2 remembering that I(0) = 1, we get: 

z 
1 

= (1 + m &A + 1) - 41) KA> 
(1 + K,? - z(l)* 

z 
2 

= (1 + m l(A) - &l) 0 + 1) 
(1 + z# - E(1)2 
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The ratio of Zr to Z2 is given by: 

Zl 
z,= 

(1 + K) l(A + 1) - Z(1) 1(A) 
(1 + K) I(A) - I(l)(A + 1) 

For the usual case where Z(A + 1) < 1(A), this ratio is less than one, and 
thus Z1 < Z2. As expected the more recent data (year 2) is given more credibility 
than the less recent data (year 1). 

z 
1 

+ z 
2 

= (1 + K) - UNKA + 1) + KA.)) 
(1 + m2 - Z(1)2 

= 4A + 1) + W 
1 + Z(1) + K 

For Z(i) = 1 for all i, this reduces to the familiar 242 + K). 

For N > 2, one can approximate the exact solution as follows. 

Adding up the N linear equations gives after rearranging the order of sum- 
mation: 

2 zi { [ 2 z()i - jl)] + K] = j 4/N + A - jl) 
i=l ,=l 

The term Xg, Z(\i - j\) depends on the value of i. For i = 1 and i = N it 
is equal to $$r Z(i). For values of i between 1 and N, smaller values of 
(i - ‘1 J are u tea e m t d pl’ t d . h e sum, while larger values of Ii - j\ no longer enter 
it.65 Thus since we have assumed that Z is a decreasing function, we have 

5 Z(li - 4 2 I$ K./I j=l 
Thus if we substitute zc<’ Z(j) into our previous equation wherever 

I$‘LI Z([i - j\) appeared we get: 

(2 Zt) {(I! “j)) + K} d i KtN + A - A) 

This suggests the following approximation, which gives lower credibilities 
than the exact solution. 

65 For example, if N = 5 and i = 2, then the sum is 1(l) + 1(O) + 1(l) + l(2) + l(3) 
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N-l 

The sum of the Zi is the credibility assigned to the data for all the separate 
years combined. In the main text this is called Z. 

For Z(i) = 1 for all i, this reduces to the familiar 2 = N/(N + K). 

If the covariance structure has the basic property assumed here, that the 
correlation between individual years of data is smaller the longer the time span 
between the years, then the credibilities will have the following properties. The 
credibility assigned to a more recent year of data should be higher than that 
assigned to a more distant year of data.66 If the correlation between distant years 
of data is significantly lower, i.e., I (i) gets small relatively quickly, then beyond 
a certain point using more recent years of data will lead to little improvement 
in the estimate of the mean. If the individual years of data are given the same 
weight, then using more years of data will eventually lead to a worse estimate 
of the mean, since the very old data provides a poor estimate of the future mean. 
Finally, the smaller A is, i.e., the less the delay is in getting and using the data, 
the higher the credibilities and the better the resulting estimate of the future 
mean.67 

Special Case 

Let us take a special case of the general covariance structure that has been 
assumed. Let l(i) = pi, p 5 1. Then: 

E[(Ai - E)(A. - E)] = P’P’~-” J + SijX” 

Thus for two different years of data, their covariance is proportional to a 
constant p taken to the power equal to the number of years separating them. 
For p < 1, the covariance decreases the larger the separation, and goes to zero 
rather quickly. 

66 This concept of giving more recent data more weight than less recent data is a familiar one to 
actuaries. See for example, “Homeowners Insurance Ratemaking” by Walters [ 141. However, when 
estimating values at ultimate, it might be appropriate in certain circumstances to assign less weight 
to more recent but immature data. 

6’ For experience rating generally A 2 1 
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While for illustrative purposes this is not an unreasonable assumption for 
the structure of covariances, it is far from the only assumption that could be 
made. The actual covariance structure for a particular real world application 
would have to be determined empirically. 

For this special case, we have for N = 2: 

z1 = PAPK 
(1 + m2 - p* 

A 

Zz = (1 + &2 _ p2 (1 + K - ~‘1 

PAi\(l + PI 
z1 + ” = (1 + p) + K 

For p = 1, Zr + Z2 reduces to the familiar 2/(2 + K). 

As discussed above, one can approximate the exact solution by? 

This is formula 2.3. For p = 1, this reduces to the familiar N/(N + K). 

68 The exact solution gives lower credibilities. 
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APPENDIX D 

RISK HETEROGENEITY 

In this appendix, the effect of risk heterogeneity on the formula for credibility 
for large risks is discussed. In addition, the combined effect of risk heterogeneity 
and parameter uncertainty is discussed. 

In general, a large risk is made up of smaller risks. For example, a large 
commercial risk might consist of a grouping of separate factories. Assume our 
different risks consist in each case of grouping together N factories of the same 
size.69 Then how does the variance between different risks, E [(E - l-r,)‘], which 
Meyers calls r2, depend on the size of risk N?‘O 

A Simple Example 

To illustrate the point, let us examine a very simple example. Assume that 
half the factories are “good” and half are “bad.” The good factories have an 
expected mean of one, while the bad factories each have an expected mean of 
two. Depending on how the factories are grouped together to form risks, r2 has 
a different dependence on N. 

Case I 

Assume that the risks consist solely of good factories or bad factories, but 
never a mixture. Then the risks of size N have an expected mean of either N 
or 2N, with equal frequency. Thus 7’ is N214. 

Case 2 

Assume that the risks consist of good and bad factories grouped together 
totally at random. A risk of size N, is merely a random sample of size N from 
the set of all factories. Thus in this case, 72 is N times the variance between 
individual factories. r2 = N/4. 

Case 3 

Assume that half the risks are “superior” and half “inferior”. Each factory 
in a superior risk has a 213 chance to be good and a l/3 chance to be bad. The 
situation is reversed for inferior risks. Then the expected means of the superior 

69 In certain cases, a factory could be usefully broken up into smaller subunits. We are merely 
presenting a simple example here. 

To ? measures how homogeneous the classes are. The smaller ?, the less the separation between 
the risks and the more homogeneous the class. 
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risks of size N extend from N to 2N, with the probabilities given by the binomial 
distribution with p = l/3. The inferior risks also have expected means from N 
to 2N, but with the probabilities given by the binomial distribution with 
p = 213.71 

One can compute the variance r2 for specific values of N in the usual 
straightforward manner. 72 However, T* can be broken up into two pieces.73 The 
first piece is the variation among different superior risks or the variation among 
different inferior risks. This is just 2N/9, since the variance of the binomial 
distribution is just Np( 1 - p). The second piece of r* is the variance between 
the grand mean of superior risks and the grand mean of the inferior risks. Since 
these grand means are 4Nl3 and 5N/3 respectively, this piece of 72 is just 
N2f36. Adding the two pieces together, one gets: 

72 = 2Ni9 f N’l36. 

Generalizing the Simple Example 

In Case 1, it was assumed that the risks are homogeneous. Each of the 
factories making up a risk has the same expected mean. In this case, r2 is 
proportional to N2, since the expected mean for each risk just gets multiplied 
by N. This special case is the one that is usually dealt with. 

On the other hand, in Case 2, we have assumed the other extreme, that the 
factories are grouped together totally at random.74 Each risk is merely a sample 
of size N from the overall set of factories, and thus 72 is N times the variance 
between the individual factories. In this special case r* is proportional to N. 

Thus in the two extreme cases, we have either 72 proportional to N or r2 
proportional to N’. We expect most real world situations to be in the intermediate 
situation, such as Case 3, where bad factories are more likely to be grouped 

” The use of the terms superior and inferior could be thought of in terms of some underwriting 
criterion. While the average superior risk has a lower expected mean than the average inferior risk, 
there are inferior risks with low means and vice versa. 

72 For example, for N = 3, the risks will have expected means of 3, 4, 5, and 6 with probabilities 
of I/6, l/3, 113, l/6. Thus T’ = 11112. The reader can verify that this matches the formula for ? 
given below. 

73 This is a special case of the first result given in Appendix A. 

74 As demonstrated in Hewitt [15], for loss ratio distribution purposes, the sum of two $50,000 
risks doesn’t act the same as a single $100,000 risk. Thus, Case 2 is not a good model of the 
reality; it is an extreme case chosen for illustrative purposes. 
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together with bad factories, but a single risk can be made up of both good and 
bad factories. For this intermediate case 7’ had the form 

72 = Nrr2 + N2p2 

This form for 72 follows from breaking the variance into two pieces. The 
first piece is the variation among risks of similar type.75 This piece of T* is 
proportional to N. The second piece is the variance between the grand means 
of different types of risks. This piece of T* is proportional to N’. 

In order to get the credibility we must combine T* with S2. As explained in 
Appendix B, without parameter uncertainty it makes sense to assume 

a2 = Nx2, 

2 N + n2/p2 

x2f2r2’ N+ 

P 

which can be written in the form 

which is formula 2.5 in the main text. 

While it at first appears that I > 0 (i.e. risk heterogeneity) leads to higher 
credibilities than formula 2.1 (Z = 0), that is not the case. One must remember 
that the K in formula 2.5 is not equal to the K in formula 2.1. The K here has 
an additional term of n2/p2 compared to the K in formula 2.1. Thus since risk 
heterogeneity affects both I and K, a more careful analysis is required. 

Formula 2.5 can be rewritten in the form 

X2 
’ = ’ - x2 + N(p2 + r2) - (N - 1)~~ ’ 

The variance between single units (for example, between individual facto- 
ries) is p” + &. Keeping p” + r2 constant, we can see from the above 
equation, that as 7~~ increases, Z decreases (for N > 1). In other words, the 

75 Thus somewhat paradoxically T’, which can be thought of as the “between variance,” actually 
includes a piece of “within variance,” albeit of a very special variety. In Appendix B, a similar but 
reversed situation was explained for 6’, when there is parameter uncertainty. 
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greater the risk heterogeneity that is present, the lower the credibility, all other 
things being equal. Looked at another way, the more risk heterogeneity, the 
smaller -r2 is, all other things being equal (for N > 1). Therefore, the more risk 
heterogeneity, the smaller the credibility. 

Risk Heterogeneity and Parametric Uncertainty 

If both risk heterogeneity and parameter uncertainty (see Appendix B) are 
important then we have: 

s2 = N2ci2 + Nx2 
,r2 = NT~ + N2p2 

Thus: 

z= T2 yyg= 
N + m21p2 

This can be written in the form 

N-t1 
Z=- 

NJ-tK’ 
OSISK,JZl 

which is equation 2.6. 
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APPENDIX E 

PARAMETER UNCERTAINTY, SHIFTING RISK PARAMETERS 

AND RISK HETEROGENEITY 

In this appendix, all three phenomena discussed in Appendices B, C, and 
D will be assumed to be of importance. The resulting formula for the sum of 
the credibilities will be a combination of the features of those in the prior 
appendices.76 The notation from the previous appendices will be used. 

Let M be a measure of the (average) size of the risk in each year. Let N be 
the number of years of data used for experience rating. 

Assume the following covariance structure: 

E [(Aj - E)(Aj - E)] = P’+~’ (M2p2 + M7r2) + &j (M2a2 + A4x2) 

E [(pi - E)(pj - E)] = pli-” (M2p2 f MT’) 

Then proceeding as in the previous appendices we get the following set of 
linear equations for the optimal credibilities Z,, m = 1, . . . , N. 

,$ Zi {(M2p2 + MT2) piipm + 6j, (M*a” + MX*)} = pA+N-m 

This set of equations can be solved by matrix methods. As in Appendix C, 
we can get an approximate solution that is exact for N < 3. (I, J, and K are 
defined in the previous appendices.) 

This is formula 2.7. 

76 The formulas from the prior appendices are special cases of the formula presented here. 
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APPENDIX F 

EFFICIENCY AND CREDIBILITIES FOR SPLIT EXPERIENCE RATING PLANS 

In this appendix, the optimal primary and excess credibilities for a split 
experience rating plan are derived. The solution, equations 5.3 and 5.4 in the 
main text, is a generalization of the familiar Btihlmann result for the no-split 
situation. ,The second part of this appendix explores the results of using credi- 
bilities other than the optimal ones. 

Assume we have an experience rating plan, and our estimate of the mean F 
is given by 

F = (1 - Z,) EP + ZAP + (1 - Z,) E, + Z,A, 

The subscripts p and e will stand for primary and excess; however, for now 
they can be treated as any two well-defined portions of the total losses. EP and 
E, are the expected losses of each type. A, and A, are the actual losses of each 
type. Z, and Z, will be thought of as the credibilities assigned to each portion 
of the losses; however, for now they can be treated as just numbers to be 
determined. 

ESJiciency 

In accordance with Meyers, define the efficiency of F by 

Efficiency = 1 - E[(F - 14~1 
E[(Ep + Ee - 14~1 ’ 

where k is the theoretical true mean for each risk. Let pP and p,, be the excess 
and primary pieces of p. l.i, = bP + kc. P is a function of the parameters that 
describe each risk. 

(F - p)2 = Z; (AP - E,)’ + Z; (A= - EJ2 + (EP + E, - p)’ 
+ 2Zp.C 6% - Ep) (Ae - Eel + 2Zp (Ap - E,) (Ep - kp) 
+ 2-G 6% - E,) 6% - 1-4 + 2.C 6% - Ee) (Ee - pe) 
+ 22, (A - EJ (E, - F,,) 

6% + Ee - N2 = 6% - Q2 + 6% - t-G2 + 26% - pp) (E, - ke) 
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Let: 

a = total variance of the primary losses; 
b = total variance of the excess losses; 
c = variance of the hypothetical means of the primary losses; 
d = variance of the hypothetical means of the excess losses; 
r = total covariance of the primary and excess losses; and, 
s = covariance of hypothetical means of the primary and excess losses. 

Remembering that F is only a function of the set of parameters $, p is 
subject to parameter variance but not process variance. The actual observed 
losses AP and A, are subject to both parameter and process variance. EP and E, 
are the overall grand means and are subject to neither kind of variance. 

Then we have 

E[(A, - EJ2] = a; 
E[(Ae - Ee)2] = b; 
E[(A, - E&p - 441 = E[olp - 4N-+ - 44 = c; 
RCA, - E&e - EdI = d; 
E[(Ae - Ep>& - .&)I = r; 
EL@, - Ep)(pe - Ed = E[(pp - -4J& - E41 = s; and, 
El& - Ee)(r~,, - 44 = EL& - &)(I+ - E,>l = .s. 

Substituting these values back in the definition of efficiency, we get 

Efficiency = 
2Z,(c + s) f 2Z,(d + s) - Zsa - Zzb - 2Z&r 

c+d+2s 

Optimal Credibilities 

The optimal credibilities are given by the least squares solution, which 
results in the maximum efficiency. In order to maximize the efficiency, we set 
the partial derivatives with respect to Z, and Z, equal to zero. This gives 

aZ,, + rZ, = c + s, and 
rZ, + bZ, = d + s. 

The solution of this simple set of two equations in two unknowns is 

z 
P 

= Cc + s)b - Cd + Sk , md 
ab - r2 

z = (d + s)a - (c + s>r 
e ab - r2 ’ 
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This is the desired result, which is equations 5.3 and 5.4 in the main text. 

If we substitute these values of Z, = Z,,, and Z, = Ze,,,, into the formula 
for efficiency and simplify we get 

Maximum Efficiency = 
zP,m(C + s) + Z,,,(d + s) 

(c + d + 2s) ’ 

Thus, the maximum efficiency is a weighted average of the two credibilities 
that produce this maximum. This is similar to Meyers’s result in his Appendix 
B, where the maximum efficiency was equal to the credibility that produces the 
maximum. 

Zero Excess Credibility 

Now we will explore the results of using credibilities other than the optimal 
ones. Let us take a special case when the variance of the excess losses is very 
large; in other words, b + 03. Then 

z, = 
CfS 
- , and 

a 

In fact, if we set Z, = 0, then the formula for efficiency becomes 

Efficiency = 
2Z,(c + s) - Zga 

c+d+2s ’ 

For this case, the value of Z, such that the efficiency is maximized is given 
by 

cfs 
z, = - 

a ’ 

This is equation 6.1 in the main text. 

The credibility obtained by applying the Btihlmann method to the primary 
losses alone is c/a. The credibility here is larger (for s > 0) since we have 
taken into account the positive correlation between the primary and excess 
severities. 
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CfS 
When Z, = a - and Z, = 0 we get 

(c + sy 
Efficiency = (c + d + 2s)a 8 

If we let our estimate of the losses be given as in the General Liability 
Experience Rating Plan, using credibility Z as described by Meyers then 

This is a special case of the previous case, with 

z,=z1++. ( ! P 

Thus, we know the maximum efficiency occurs when 

Z 1 + $ = Z, = +, or 
( > 

z=(g-q(&). 

This is equation 6.2 in the main text. 

Meyers’s Case 

Meyers instead uses 2 = c/a. Putting the corresponding value of Z, into the 
formula for efficiency gives, after simplifying terms 

(s + c)’ - (s - c 2) 

Meyers’s Efficiency = 
’ (c + d + 2s) a 

Comparing this efficiency to that obtained when Z = Fe) C&J ’ 

we get: 

Meyers’s Efficiency = 1 _ 
Maximum Efficiency (s + cy . 
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So, using the usual value of Z in accordance with Meyers leads to a loss of 
efficiency. However, the loss will be small whenever the second term is small. 
This is the case for all the examples tested in Meyers’s Tables 5.2, 5.3, and 
5.4. 

Credibility Equal to One 

Another useful special case is when in formula 6.3 in the main text for large 
N we take Z = 1 and thus 

Z, = 1 + $ , and Z, = 0 
P 

Then the efficiency is given by 

Efficiency = 
c+d+2s 

Using the notation of Appendix G, this becomes 

Efficiency = 1 - 

which has a limit as N gets large of: 

Efficiency = 1 - 
e+;i+2s^ 

Thus using formula 6.3 for a fixed loss limit, the maximum efficiency is 
less than lOO%, and we expect to get relatively little improvement in efficiency 
beyond the point where Z = 1. This is the behavior observed in Table 7.3. 
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APPENDIX G 

DEPENDENCE ON SIZE OF RISK 

In this appendix, the variation of credibility with size of risk is explored for 
the cases examined in Meyers’s Sections 5 and 6. Also tables of the specific 
values of the parameters entering the credibility formulas are given for two 
specific cases from Meyers’s Sections 5 and 6. Finally, the general behavior of 
N(l - Z)/Z with size of risk is examined. In the examples in Meyers’s Sections 
5 and 6 there is no parameter uncertainty, the individual risks are homogeneous, 
and the parameters for an individual do not change over time. Then, as discussed 
by Meyers in his Section 3, the factors that go into formulas 5.3 and 5.4 for 
Z, and Z, vary as follows with the size of risk N. 

Increase as N 

a - c = t = process variance 
of primary losses 

Increase as N’ 

C 

b - d = u = process variance 
of excess losses 

d 

r - s = v = process covariance of 
primary and excess losses 

s 

c”=c 
N’ 

with similar definitions, for the other quantities, such that we obtain new 
quantities which are independent of N. 

Then substituting into formula 5.3 we get: 

Z, = N 
N(& - s”) + tfi + 6 - & - 99 

N2(& - S2) + N(M + & - 23) + Eif - 9’ 

Substituting into formula 5.4 would give a similar complicated formula for 
Z,. If we set the primary losses equal to the total losses, and set the excess 
losses equal to zero, then 
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which is the familiar expression for credibility, given in Meyers’s formula 3.2. 
However, we notice that in the more general expression, we do not have the 
familiar simple function of N. Instead we have: 

N + K3 

zp = N N’ + NK1 -k K2 
where K, = 

Similarly 

N + K4 
Z,=N N’ + NK1 + K2 
where 

For large N, if K1 > K3 we have Z, < 1, but if K3 > K1, we have Z, > 
1.77 In the latter case, it makes sense to refer to risks such that Z, L 1 as self- 
rated. Notice, the difference from the usual result, formula 2.1 in the main text, 
where Z remains strictly less than one, but gets so close to one so as to make 
no practical difference in the resulting efficiencies. As N -+ CO we do have 
Zp4 1 andZ,+ 1.78 

We can write formula 5.5 for the maximum efficiency as: 

Maximum Efficiency = z,(f + f) + ze(a + s^) 
f+a+2f 

” For the example as per Meyers’s Table 5.4, the table below uses a loss limit of 2500, K, = 
8,308, KZ = 110,847, & = 19,119 and & = 76. For the example as per Meyers’s Section 6, the 
table below uses B = 2000, K1 = 169, Kz = 461, K, = 407, and Kq = -42. 

78 Thus, this is a different phenomenon than discussed in Meyers’s Section 3, where N + M, 
z+ l/J 5 1. 
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The dependence of the maximum efficiency on N is solely contained in Z, and 
Z, themselves. The weights are independent of N. As N + ~0, we have 
Z, 4 1, Z, * 1, Maximum Efficiency -j 1, 

EXAMPLE AS PER MEYERS’S TABLE 5.4 

Loss 
Limit N=l 

1 .013 .129 .338 .040 .215 9.303 .299 .350 .520 
2 .033 .084 .626 .052 .441 8.525 .574 .463 .407 
2.5 ,041 ,072 .752 .054 .548 8.171 .698 .495 .375 
3 .050 .061 .848 .055 .684 7.846 .793 .528 .343 
4 .064 .047 1.024 .055 .930 7.247 .970 .572 .299 
6 .087 .031 1.287 .051 1.418 6.225 1.236 .631 .240 
8 .104 .022 1.470 .047 1.897 5.374 1.422 .670 .200 

12 .130 .012 1.678 .039 2.817 4.020 1.639 .722 .149 
16 .148 .007 1.749 .033 3.694 2.987 1.717 .756 .115 

B 
($000’s) 

.l 

.2 

.5 
1 
2 
5 

10 

EXAMPLE AS PER MEYERS’S SECTION 679 

N=l 

2 d P s^ t^ 12 P Ep E, - - - - - - - 

50 2550 784 317 41 35110 467 1.65 9.38 
92 2305 1278 419 105 34263 859 2.23 9.26 

209 1864 2394 581 365 32094 1813 3.30 8.19 
380 1454 3698 700 901 29190 2998 4.37 7.12 
660 1019 5373 778 2101 24796 4595 5.65 5.84 

1234 499 7580 751 5751 16676 6829 7.53 3.95 
1803 221 8218 605 11057 9803 7612 8.93 2.56 

79 Meyers’s example corresponds to N = 10, B = $2000, except that here a claim limitation of 
$100,000 has been used, and the Weibull distribution has been approximated by a discrete analog. 
See Section 10 of this discussion. 
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When doing empirical studies it is sometimes useful to focus on the following 
quantity as a function of size of risk, rather than the credibilities themselves. 
Define K = N(l - Z)/Z. Then for the usual simple case, formula 2.1 in the 
main text, K = K. With parameter uncertainty, formula 2.2 in the main text, 
K = (.I - l)N + K. For the split plan case handled previously in this appendix, 
KP = [N(Kr - &) + &]I(JV + KS). One can take other cases and derive the 
expected behavior of K as a function of N, the size of risk. For some cases, 
this requires combining the results of this appendix with those in Appendices 
B, D, and F. Note that for the case of a split plan, the same general functional 
form applies to K~ and K,, even though the specific coefficients may make the 
specific curves look very different. The following table presents the results for 
the different cases. 

K= 
NC1 -z> 

Z 
as a function of N, the size of risk 

No-Split Plan 

No Parameter Uncertainty 
No Risk Heterogeneity 

Constant 

With Parameter Uncertainty 
No Risk Heterogeneity 

Linear 

No Parameter Uncertainty N 
With Risk Heterogeneity Linear 

With Parameter Uncertainty 
With Risk Heterogeneity 

N Linear 
Linear 

Split Plan 
(Primary vs. Excess) 

Linear 
Linear 

Quadratic 
Linear 

Linear 
N Quadratic 

N Quadratic 
Quadratic 
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APPENDIX H 

MAXIMUM EFFICIENCY AS A FUNCTION OF LOSS LIMIT AND SIZE OF RISK 

In this appendix, the behavior of the maximum efficiency with changing 
loss limit and size of risk is explored. The observed behavior for the examples 
in Meyers’s Sections 5 and 6 is explained in terms of the underlying mathematics 
and the specific choices of parameters for those examples. Which example is a 
better approximation to a real world application of experience rating will deter- 
mine whether the loss limit used should increase significantly for large risks. 

Using the credibilities from formula 6.2 in the main text, and the notation 
of Appendix G, the maximum efficiency is given by 

Maximum Efficiency = 
(c + ig2 (e + s^y N” 

(c + d + 2s)a = (3 + a + 23) N’ (t&V + tN*) 

1 N 

N-t! 
E 

The first term is independent of NSso It can be rewritten as 

I 
(2 + q2 1 Cl- ta - St 

2~8 + a + 29 e(t + a + 23) 

We expect s” to be close to 62, since we expect the hypothetical mean 
primary losses to be highly correlated with the hypothetical mean excess losses. 
(If they were perfectly correlated then P = ?a.> Thus we expect the first term 
in the expression for the maximum efficiency to be close to one. In fact, for 
the examples here, that is the case, as shown in the table below. 

The second term in the expression for the maximum efficiency is the Btihl- 
mann credibility used by Meyers. It varies with the loss limit only in so far as 
K = Dlc^ does. The smaller K, the larger the second term. However, in general, 
we do not expect the second term to be extremely sensitive to K. 

Thus neither term is expected to be extremely sensitive to the loss limit 
chosen. In fact, the observed optimal efficiencies for fixed N are relatively 
insensitive to the loss limit. 

80 In fact, t + ci + 23, which is part of the denominator, is the variation of the hypothetical means 
of the total losses, and is thus independent of the loss limit chosen. 
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For the examples in Meyers’s Table 5.4, the variation of the second term 
with loss limit is more important than that of the first term. Thus, selecting the 
smallest K will produce the largest efficiency regardless of N. As shown in the 
table below, a loss limit of 2.5 gives the smallest K. As was seen in Table 7.2 
the largest efficiency was indeed obtained by taking a loss limit of 2.5 regardless 
of N, the size of the risk. 

In the example in Meyers’s Section 6, the first term increases significantly 
with the loss limit. Thus in order to get the largest efficiency, we have a conflict 
between choosing a smaller value of K (low loss limit) and a larger value of 
the first term (high loss limit). For larger N, the second term depends less on 
K, thus the first term is relatively more important. Thus we expect the optimal 
loss limit to increase significantly with size of risk. This was indeed the behavior 
observed in Table 10.1. 

EXAMPLE AS PER MEYERS’S TABLE 5.4 

Limit (c^ + s”) 2 

($000’s) e (c^ + d + 23) 
K=j 

1 .988 17.2 
2 .994 13.6 
2.5 .995 13.5 
3 .996 13.7 
4 .997 14.5 
6 .999 16.3 
8 .999 18.2 

12 1.000 21.7 
16 1 .ooo 24.9 
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EXAMPLE AS PER MEYERS’S SECTION 6*’ 

B (c” + s^>* 
($000’s) e (c^ + a + 2ij 

.l .834 

.2 .876 

.5 .922 
1 .949 
2 .969 
5 .987 

10 .995 

K=j 

.82 
1.14 
1.74 
2.37 
3.19 
4.66 
6.13 

81 Meyers’s example corresponds to N = 10, B = $2000, except that here a claim limitation of 
$100,000 has been used, and the Weibull distribution has been approximated by a discrete analog. 
See Section 10 of this discussion. 
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APPENDIX I 

CALCULATION OF THE QUANTITIES ENTERING THE CREDIBILITY FORMULA 

In this appendix, expressions for the parameters entering the formulas for 
credibility will be derived. The results are summarized at the end of the appen- 
dix. We will assume that the frequency and severity are independent and that 
the individual claims are taken independently from a size of loss distribution.82 

Let + be a set of parameter(s) that describes the claims process.83 

We assume that C$ may take on different values, with probability density 
function fl+); f is commonly referred to as the mixing distribution. 

Let 0 be the parameter(s) which specify the severity distribution. Assume 8 
takes on different values, with probability density function g(0). Similarly, let 
$ be the parameter(s) which specify the frequency distribution. Assume + takes 
on different values, with probability density function h($). 

Since frequency and severity have been assumed to be independent we have: 

X4) = m W) 
Let 

EP = expected value of the primary losses taken over all values of 4. 
E,(4) = expected value of the primary losses given a specific set of 

parameters 4. 
Use a similar definition of the corresponding symbols for excess losses. 

DeJnitions 

Define the following quantities, which will be useful: 

ii = average frequency 
mp = average primary portion of a claim 

= Ep + Ti = primary severity 

82 This assumption is made by Meyers in his Algorithm 6.1. For real risks, this may not be true. 
In Meyers’s Section 5, although for a given risk the frequency and severity are independent, the 
frequency and severity between risks are not independent, thus the formulas in this appendix do 
not all apply to that situation. 

83 Following Meyers’s Algorithm 3.2, 9 is assumed constant over time for an individual risk, but 
may be different for different risks. In fact, for real risks I$ varies over time, as noted by Meyers 
in his discussion of the Bailey and Simon results on the credibility of a single private passenger 
CX. 
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me = average excess portion of a claim 
= E, + 7i = excess severity 

af = parameter variance of the frequency 
cl, = parameter variance of the primary severity 

= variance of the hypothetical mean primary severities 
a = parameter variance of the excess severity 
& = expected value of the process variance of the frequency 
pp = expected value of the process variance of the primary severity 
Pe = expected value of the process variance of the excess severity 
Y = covariance of hypothetical mean primary severity and excess severity 
5 = expected value of the process covariance of the primary severity and 

excess severity 
Also let 

m,(e) = expected value of primary severity 
for a specific set of parameters 8 

= E,(O) + Z 
m&3) = Ee(0) + 7i 

Derivation of Results 
Let c = variance of the hypothetical means of the primary losses. 

= S E&t4 A+> d+ - E; 
= J- ii2 (6) /z(G) d+ J m;(9) g(O) de - iz2m; 
= (elf + Z2)(ap + ng) - n2m; 

= oLpcy.fS ap?i2 + afm; 

Similarly, let d = variance of the hypothetical means of the excess losses. 
d = ol,clf + (Y,Fz’ + olfmt 

Let a = total variance of the primary losses. By a well-known result used 
by Meyers,84 total variance equals parameter variance plus expected value of 
the process variance. 

Thus 

a = c + expected value of the process variance of the primary losses. 

84 This result is a special case of a result derived for covariances in Appendix A of this discussion. 
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The process variance of the primary losses can be put in terms of the frequency 
and severity in the usual manner.85 

a = c + &[&B) (process variance of frequency) + 
$6)) (process variance of primary severity)] 

= c + -53[&@ pr + @,I 
= c + (ap + m;) pf + npp 
= (cxp + m&if + pr> + n%!p + Tip, 

Similarly, let b = total variance of the excess losses. 

b = (01, + m:)(af + pf) + Z*a, + Tif3e 

Let s = covariance of the hypothetical means of the primary and excess losses 
s = J- EA+) Ed+> .f+ d+ - We 

= S m,(e) meW d+) 4 S ~*NJ> MN 4~ - ~*m,m 
= (y + m,m,)(ctf + E2) - Ti2mpm, 
= ycxf + yii* + Olrm,m, 

Let r = total covariance of the primary and excess losses 

The total covariance can be split into two pieces in a manner similar to that 
for the variance.*6 

Total covariance = parameter covariance + 
expected value of the process covariance. 

Thus, r = s + expected value of the process covariance. 

The process covariance can be written in terms of the frequency and severity 
in a manner similar to the usual formula for the process variance.@j Given a set 
of parameters 4: 

process covariance of the primary and excess losses = (process covariance 
of the frequency) (mean primary severity) (mean excess severity) + (mean 
frequency) (process covariance of the primary and excess severity) 

= VAR[~bbl m,(W m&9 + +JJ> WV 

85 This result is also a special case of a result derived for covariances in Appendix A. 

86 This result is derived in Appendix A. 
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Taking the expected value over all values of the parameters gives the expected 
value of the process covariance of the primary and excess losses equal to 

Pfer + ?Jme> + a 

Thus 

r = s + pf(y + mpme) + ii5 
r = (cdf + pf)(y + mpme) + n2y + ii5 

For the special case of a single split plan*’ 5 has a relatively simple form. 

Let the probability density function of the severity be n(x$). For a fixed 
value of 8, the process covariance is 

c(O) = Jo” MIN[.x,L] MAX[O,x - L] n(x$) dx - m,(O)m,(0) 
= s; 0 d.x + J: L(x - L) n(x$) dx - m,(~)m,(~) 
= Lm,(B) - m,(6>m,(O) 

Thus, the expected value of the process covariance is: 

t; = Lm, - (Y + %me> 

= m,(L - mp) - y. 

Thus, for a single split plan we have 

r = (cxf + &)(y + mpm,) + ?i26 + E(m,(L - mp) - y). 

Summary of Results 

a = (CY~ + m$(q + Pf) + E2cfp + ?& 
b = (a, + mS)(q + Pf) + 2~2, + EPe 
c = cxpcxf + cQi* + olfmz 
d = cx,q + (Y,?? + qrnz 
r = (cif + p&c2 + mpme) + E2y + % 
s = yaf + y7iz + afm,m, 

*’ Those dollars below L are primary; those above are excess. The current Workers’ Compensation 
Experience Rating Plan is a multi-split plan. The difference is discussed in Snader [9]. 
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APPENDIX J 

GAMMA-POISSON, GAMMA-EXPONENTIAL PROCESS 

In this appendix, the results of Appendix I are carried forward for a specific 
choice of distributions. In addition, the resulting efficiencies are shown for a 
specific choice of parameters. 

We assume a single split rating plan with a loss limit of L. We assume no 
overall limitation on claims. ** The frequency is given by a Gamma-Poisson 
process.89 The frequency for an individual risk is Poisson, with parameter 9: 

w(n; +I) = e -* Jr . 
n! ’ 

mean $, variance +. 

In turn, the parameter $ has a mixing distribution which is Gamma, with 
parameters of -q and E: 

The severity is given by a Gamma-Exponential process.90 The severity for 
an individual risk is exponential, with parameter 0: 

lT(x; e) = ee-ex; mean l/8, variance MY. 

In turn, the parameter 8 has a mixing distribution which is Gamma, with 
parameters 5 and V: 

VE -we c-1. 
g(e) = r(5> e 0 , 

e 

mean 1, ’ 

5 variance T _ 
V 

We assume 5 > 2 so that the resulting Pareto has finite variance. If 
2 > .$ > 1 the means are finite, but the excess variances are infinite, and the 
following formulas are not valid.91 

** The mathematics are only slightly more complicated for an overall limitation. However, an overall 
limitation applied in both Sections 7 and 10 of this discussion. 

*9 The resulting overall frequency distribution is a negative binomial 

9o The resulting overall severity distribution is a Pareto. The exponential distribution is a special 
case of the Gamma. The more general Gamma-Gamma process results in a Generalized Pareto 
Distribution; see Hogg and Klugman [lo]. While the Gamma-Gamma is probably a better model 
of reality, the mathematics here would be much more complicated. 

91 With an overall limitation on losses, the variances would be finite 
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Quantities Entering the Credibility Formulas 

= -q/E 
= expected value of the process variance of the frequency 
= Ti = T-j/E 
= variance of the hypothetical mean frequencies 
= v-)/E2 

-BL 

m,(8) = + - ?--- 
0 

m,(e) = $ 

= variance of the hypothetical mean primary severity 
2 2v2(1 + LIu)2-C v2(1 + 2Llv)2-~ 

- (5 - 11;(5 - 2) - (5 - l)([ - 2) + (5 - l>(C$ - 2) - mi 

= variance of the hypothetical mean excess severity 

= v2(1 + 2L/v)2-~ 
(5 - l)(< - 2) - m,2 

= covariance of the hypothetical mean primary and excess severity 

= u2(1 + LIu)2-c u2(1 + 2Llp 
(5 - l)(‘$ - 2) - (5 - l)(.$ - 2) - mpme 

Process Variance of the Primary Severity (0) = 

1 xe-OL e-eL 

-i-- 
0 8 

-2 
8 

Process Variance of the Excess Severity (0) = 

2e -BL 
e 

-2OL 

2 
e 

-2 
0 
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Process Covariance of the Primary and Excess Severity (0) = 

Le -OL -20L --BL 
e 

--- 

8 
+ eg2 82 

pp = Expected Value of the Process Variance of the Primary Severity 
2 

= (5 - lK, - 2) - 
2Lu(l + L/v)‘-’ v2(1 + 2L)2-c 

(5-l) - (5 - 1M - 2) 

Pe = Expected Value of the Process Variance of the Excess Severity 

= 2v2(1 + L/u)2-e v2(1 + 2Llv)2-k 

(5 - 1>(5 - 2) - (5 - 1x5 - 2) 

5 = Expected Value of the Process Variance of the Excess Severity 

= Lv(1 + L/vyt + v2(1 + 2Llv)2-” v2(1 + L/v)2-C 

(5 - 1) (5 - 1>(5 - 2) - (5 - 1x5 - 2) 

A Specific Example 

In the Gamma distribution the first parameter controls the shape92, while the 
second parameter basically determines the scale once the first parameter is 
chosen. 

The mixing distribution of the frequency is Gamma, with parameters q and 
E. Let n = 4 and E = 4/N. Thus since Z = T/E, N is the mean number of 
claims. 

The mixing distribution of the severity is Gamma, with parameters 5 and u. 
Let 5 = 2.5 and v = 4500. Thus, since m = m, + m, = vl(e - l), the average 
size of claim is 4500/1.5 = 3000. 

Then the resulting efficiencies are as follows: 

92 For parameters T and E, the skewness of the Gamma is two over the square root of 9. For q = 
1, the Gamma is the exponential distribution. For -q large, the Gamma approaches the normal 
distribution. 
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EFFICIENCIES 

L N=l N= 10 N = 100 

0 31.43% 82.09% 97.86% 
100 32.11 82.25 97.87 

1000 32.01 82.23 97.87 
10000 31.67 82.14 97.87 

co 31.43 82.09 97.86 

We note that for this example, the efficiencies are almost independent of 
the loss limit L. In fact, the single split plan has no practical advantage over 
the no split plan (L = 0 or L = to). 
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DISCUSSION OF PAPER PUBLISHED IN VOLUME LXX111 

THE COST OF MIXING REINSURANCE 

RONALD F. WISER 

VOLUME LXX111 

DISCUSSION BY NEAL J. SCHMIDT 

Most insurers have complex reinsurance arrangements. Ron Wiser’s paper 
examines the effect of mixing proportional facultative placements with excess 
of loss treaties. This discussion will review the mixing problem from the treaty 
reinsurer’s perspective. It will be shown that the mixing of facultative and treaty 
is a specific example of a more general problem underlying all treaty reinsurance. 
Potential pitfalls in the author’s proposals will be discussed and alternative 
suggestions presented. 

We often see excess of loss protection of proportional treaties where the 
excess treaty is applied before the proportional treaty. Facultative transactions, 
whether excess or proportional, usually inure to the benefit of treaties and 
therefore are applied first. The order of application results in the mixing problem 
that, if unanticipated, can undermine an otherwise well planned reinsurance 
program. 

The main thesis of the paper is well illustrated by specific examples, intuitive 
argument and mathematical proofs. The underwriter who places proportional 
facultative reinsurance without regard to the effect of any applicable excess 
protection will be unpleasantly surprised by the effect the placement will have 
on the net position. Any placement of proportional reinsurance that inures to 
the benefit of any existing excess treaty will penalize net results. This follows 
from the general principle that any action taken by the ceding company that 
reduces the exposure to the excess treaty by a greater proportion than it reduces 
premium ceded to the treaty will adversely affect net results. Given the shape 
of the common size of loss distributions, the effect can be considerable. 

The reader must be careful not to conclude that proportional facultative 
reinsurance should never be considered when an excess of loss treaty is in place. 
The paper states “. . . the net position after mixed reinsurance will always be 
worse than under a pure excess reinsurance . . .” An illustrative example and 
a proof are offered. If we examine the structure of the example, the nature of 
the results becomes clearer. 
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The price of an excess of loss treaty is usually determined before the subject 
business is written and any facultative protection is placed. As the example is 
constructed, the excess treaty price is fixed and the decision to place proportional 
facultative reinsurance is variable. The implication is that the excess of loss 
treaty is priced without any consideration of the benefit of inuring reinsurance. 
In this case, it follows that the excess treaty is overpriced and net results will 
suffer. But, as the author points out in his conclusion, excess of loss reinsurance 
treaties are priced anticipating a certain part of the book will be ceded propor- 
tionally before the treaty applies. This is an essential part of treaty negotiations. 

If an appropriate credit is applied in the treaty pricing, then the aggregate 
net position after mixed reinsurance will be no different than under a pure excess 
situation. It is important to include the phrase “aggregate net position,” because 
the excess treaty is priced to be appropriate for the sum of all subject policies. 
The excess treaty rate will only coincidentally be appropriate for any individual 
policy. 

The example very effectively demonstrates that treaty pricing should reflect 
anticipated inuring proportional cessions. This is a point well worth making. It 
is just as important to emphasize that this is not an appropriate model for 
individual risk underwriting. There are shortcomings to using this procedure to 
analyze the marginal effect on results of writing a particular primary policy. 
Treaty pricing is an aggregate concept and it is inappropriate to include its 
effects in underwriting individual primary risks. 

In opposition to the chronological order of placement, it might be more 
appropriate to treat proportional facultative placements as fixed and the treaty 
price as variable. Due to practical considerations, the treaty is placed first. 
However, the anticipated effect of facultative placements is reflected in the 
treaty rate and should be considered a prerequisite for treaty placement. Once 
a treaty is in place it seems inappropriate to change company policy on inuring 
facultative reinsurance. 

The procedure used in the paper allows for the decision on whether to place 
facultative reinsurance without regard for the long term effects on the treaty. 
Extensive implementation of this type of analysis could lead to a change in the 
practice of purchasing facultative protection. Treaty reinsurers would then right- 
fully charge the cedant with selecting against the treaty. This would surely lead 
to a breakdown in the relationship required for an effective treaty. 
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Generalization of the Mixing Problem 

The particular mixing situation examined in the paper is one aspect of a 
more general problem existing in all excess treaty reinsurance. A group of risks 
are reinsured under one agreement, often with one rate. There are obvious 
expense benefits to treaty reinsurance over facultative. The cost for these expense 
savings is a decrease in pricing accuracy. 

Determining a single rate for a treaty is difficult because the risks reinsured 
may vary by line of business, state, classification, policy limit, deductible, 
inuring facultative reinsurance, etc. It is made even more difficult by the changes 
in distribution from year to year. The mixing of proportional reinsurance place- 
ments is one of many possible distribution changes that must be anticipated to 
properly price a treaty. 

If we look at the treaty rate as a weighted average of correct rates for each 
anticipated exposure, we can see why it is inappropriate to apply an overall 
treaty rate to an underwriting analysis of an individual risk. To do so would 
lead us to write only the most hazardous risks due to the favorable treaty rate 
for their exposure. 

If, as suggested earlier, the example was constructed assuming a fixed 
distribution of business ceded to the treaty, the results would be consistent with 
our expectations. It is unanticipated distribution changes in the subject business 
that affect the adequacy of the treaty rate and, therefore, the net position. 

In the example in the paper, no credit was given in the excess treaty rate 
for proportional facultative placements. Reducing the exposure to the treaty 
through use of inuring facultative reinsurance benefits the treaty and penalizes 
net results. This is an unanticipated change in the distribution of the subject 
business that benefits reinsurers. 

It is easy to present an alternative example in which exposure to the treaty 
is greater than originally anticipated and net results benefit. Assume the cedant’s 
subject book of business is comprised of two lines. The low hazard line has an 
anticipated subject premium of $30 million. The high hazard line has $45 million 
in anticipated subject premium. It is determined that the exposure for each line 
requires a rate of 1% for the low hazard line and 50% for the high hazard line. 
A weighted average determines an overall rate of 30.4% and a reinsurance 
premium of $22.8 million. If the actual distribution of business at year end is 
$25 million in low hazard subject premium and $50 million in high hazard 
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subject premium, the exposure rate is 33.67% producing $25.3 million in 
required reinsurance premium. The actual premium is $2.5 million less. This 
may seem an extreme example, but it closely parallels an actual treaty in place 
during 1985. In practice, changes in distribution can be much greater than 
shown in this example. 

The author is admittedly presenting the ceding company’s point of view. 
His paper focuses on one example that has detrimental effects on the cedant. 
The reinsurer may be more inclined to believe that, due to the much greater 
control of the business exercised by the ceding company, distribution changes 
to the detriment of reinsurers are more prevalent. Whether or not either view 
reflects reality, the opportunity to abuse a treaty is always present. It is essential 
to the continuity of a good reinsurance relationship that every effort be made 
to avoid such a possibility. 

In order to minimize the negative effect of distribution changes, both parties 
must strive to develop an understanding of the book of business and the purpose 
of treaty reinsurance. Assumptions that underlie treaty pricing must be conveyed 
from management to individual underwriters and effectively implemented. 

In contrast to one of the paper’s contentions, it is imperative that the 
underwriter and actuary involved with pricing individual risks be concerned 
only with producing rates geared to a profitable direct premium. The effect of 
ceded reinsurance on net results is the domain of the ceded reinsurance manager, 
and actuarial involvement should address proper pricing for the aggregate ex- 
posure. The direct pricing process should take place without recognition of the 
treaty but within management guidelines. These guidelines should reflect the 
understandings that were reached with reinsurers and upon which the rate is 
based. In this way both parties’ concerns are addressed. The cedant is satisfied 
that the rate reflects any exposure-reducing actions on its part. The reinsurer is 
satisfied that the danger of selecting against the treaty is reduced. 

Conclusion 

Proportional facultative reinsurance can have a considerable effect on the 
exposure ceded to an excess of loss treaty. In order to insure a fair price on an 
excess treaty, it is necessary to reduce the rate in recognition of anticipated 
facultative placements. However, incorporating net considerations into the direct 
pricing system is inappropriate and likely to lead to abuse of the treaty. These 
issues should be dealt with at the management level to insure compliance with 
the intent of the treaty. 
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In practice, we are likely to find that many companies do not effectively 
communicate the essentials of the treaty agreement to the primary underwriters 
responsible for individual accounts. Insurers and reinsurers will undoubtedly 
endorse the author’s call for an improvement to this vital link as necessary to 
maintain stable reinsurance relationships. 

I commend Ron Wiser on a very well organized and understandable paper 
on a difficult subject. It presents many insightful ideas and should stimulate 
more actuaries to examine the complexities of the many different reinsurance 
arrangements found in most companies. 
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ADDRESS TO NEW MEMBERS-MAY 11, 1987 

RONALD L. BORNHUETTER 

Although my brief remarks this morning are directed to the new Fellows 
and Associates we honor today, I do hope there will be something for the rest 
of the audience too. 

Each of us here in this room knows how hard he or she has worked to attain 
Associateship or Fellowship. It is a road we have all followed and there will 
be many future rewards for each of you in the years ahead. I only cite the recent 
emergence of casualty actuaries serving as senior management officials in many 
property and casualty companies as an example. 

Your focus for these past several years while you have been taking exami- 
nations, has, by necessity, been inward in scope. The CAS has been all con- 
suming for you and, therefore, I would like to briefly turn your attention outward 
to the actuarial world in which we live and the one which you are entering. 

With the addition of this Associate class, the CAS membership now exceeds 
1,300, while five years ago the number was just over 900, and ten years ago 
the CAS was half of today’s size--certainly a growing, vibrant organization of 
which we are all proud to be a part. 

I would remind you that there are others here in North America who also 
call themselves actuaries and some are even beyond these borders. A brief 
overview may be of enlightenment to you. 

First, there is the Society of Actuaries, the other learned actuarial organi- 
zation and our friendly rival. They number over 10,000 strong, which makes 
eight-plus life actuaries for every casualty actuary-which is about an equal 
match. Seriously, though, the Society of Actuaries has many common threads 
with the CAS and, as you can tell from the President’s column in the latest 
issue of the Actuarial Review, we will again be looking to see if we can bring 
the two organizations closer together. One last point on the Society of Actuar- 
ies-only five examinations are needed for membership. I congratulate each of 
you for taking the longer route to membership. 

The two organizations in which you should become involved, or at least 
follow their activities closely, are the two national organizations-the American 
Academy of Actuaries, with some 8,500 members, and the Canadian Institute 
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of Actuaries, with its 1,300 members. Each is comprised of life, health, pension, 
and casualty actuaries. I could spend some time talking about these organiza- 
tions, but I leave you with just one thought-whether one agrees with the 
situation or not, these organizations are the spokespersons for our profession in 
the public arena, and will continue to be. The only way to ensure the quality 
of these statements is to be an active member and participant. Please put this 
on your future agenda. 

There are more professionals here in the United States who carry the des- 
ignation of actuary: the Conference of Actuaries in Public Practice with 900 
members, who are consulting actuaries; Enrolled Actuaries, some 4,000 strong, 
who are licensed pension actuaries; and, ASPA-the American Society of 
Pension Actuaries. Don’t panic, the numbers are not all additive. For example, 
over 1,000 members of the American Academy are CAS members, which is an 
extremely high percentage of those U.S. casualty actuaries who are eligible. 

For a brief moment, let’s become global and go beyond North America. 
The International Actuarial Association, which meets once every four years at 
its Congress, has 4,600 members. However, only 1,200 come from the United 
States and Canada. This is a poor showing, considering that over 10,000 
actuaries are eligible. ASTIN is the property/casualty section of the IAA and 
has 1,400 members, with 500 coming from the two North American countries. 
This organization meets annually, usually in Europe. These organizations are 
currently dominated by European actuaries; however, this is slowly changing as 
foreign members are looking to North American actuaries for leadership in the 
future. 

One interesting piece of trivia concerns one of our sister organizations, the 
Institute of Actuaries in the United Kingdom, which is very similar to the two 
learned organizations in North America with examinations, etc. Do you realize 
that over 25% of their membership does not work in the insurance industry? 
They are employed in the securities industry-an interesting commentary which 
does make some sense. 

That is a very brief thumbnail sketch of the populace of the actuarial world 
you are entering. Now I would like to turn to another part of your new world 
which is a little closer to home. I am referring to the concepts of statements of 
principles and standards of practice. Each of you must take heed of this activity 
as principles are the “thou shall” and “thou shall not,” and standards are the 
“how to” of our profession. They are the ground rules of the game. The exami- 
nations you have successfully completed have, by necessity, concentrated on 
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casualty actuarial principles, but this is only the beginning. In addition, this 
activity is very much in the forefront right now. Others in this room should also 
pay attention to this activity as it emerges toward maturity. 

There are two elements at work right now-the CAS is again taking the lead 
in the profession by currently working on the “thou shall and thou shall not”-the 
statements of principles on ratemaking and reserving. These will serve as the 
cornerstone for the development of standards of practice. The development of 
standards is currently being handled by a relatively new organization-the 
Interim Actuarial Standards Board (IASB)-a group of nine very senior actuaries 
coming from all disciplines within the profession. All nine members each have 
at least twenty years’ membership in their Society. All but two have served as 
president of at least one of the actuarial organizations in the United States. There 
are two other members of the CAS besides myself serving as members of the 
Board-Tom Murrin and Jim Hickman. 

My message to you today is that the IASB takes its charge very, very seri- 
ously and intends to actively pursue the development of standards where they 
are needed. The Board is waiting for the CAS principles to be finalized and will 
then proceed to promptly work on the needed standards of practice. We are not 
talking about trivial concepts now-subjects such as the discounting of loss 
reserves and its ramifications are very high on the agenda. In fact, work on 
standards by the IASB Casualty Committee has already begun in order that as 
little time as possible elapses between the “thou shall and thou shall not” and 
the “how to’s.” 

Most importantly, we are working swiftly towards dropping the “I” from 
IASB and having the Board become permanent in 1988. To give you some frame 
of reference, we expect the Board’s annual budget to run in the hundreds of 
thousands of dollars, which includes a paid staff to work full time on Board 
activities. With 10,000 U.S. actuaries as the support base, we could be talking 
about $20.00 to $30.00 or more per actuary each year to support the principles/ 
standards movement. Please pay attention and participate if you can. It is your 
lifeblood. 

Ladies and gentlemen, I welcome you to the world of actuaries-it is an 
exciting, ever-changing, challenging, and very rewarding world and you should 
feel very proud today to be a part of it. The CAS is only an organization of 
individuals and it is those individuals-its members-that make it great. May 
your careers blossom and prosper in the years ahead-the opportunity is there. 

Thank you for your kind attention. 
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KEYNOTE ADDRESS-MAY 11, 1987 

SHAPING AMERICA’S ECONOMIC FUTURE 

PAT CHOATE 

What I’d like to do this morning is three things. The first is to describe a 
little American economic history. The second is to describe the current economic 
situation in the United States and what it’s likely to be. The third is to talk 
about politics-where we are, where we seem to be going, and what it’s going 
to mean to you and your profession. 

In doing this, I think it’s useful for us to recognize that you actuaries take 
a look at uncertainties of the future. I was very impressed with some of the 
discussions last night when I got to ask some questions. For example, how do 
you explain to your wife what you do? Or, how do your children explain to 
their friends what you do? I got some very detailed and complex answers. What 
I got out of those discussions is that, by and large, this group, whether they 
will acknowledge it or not, comprises probably the most sophisticated futurists 
in America, because in effect what you’re doing is taking some slice of the 
future. You’re determining what some of the risks are that are associated with 
that future, and then you’re really putting your names and reputations on the 
line by putting a dollar value on them. You’re actually pricing the future. In a 
very real sense, you are the most sophisticated futurists in America. 

One of the things I would suggest for you to consider for your November 
meeting this year is to acknowledge that this is also the 100th anniversary of 
the publication of the most profound book on the future ever published in the 
United States. It was published in 1887 by Edward Bellamy. It is called Looking 
Backward: 2000-1887. It’s instructive for people in your profession and mine. 
Bellamy had an insight. He wanted to talk about what was happening in this 
country with the industrial revolution. He wanted to talk about how it was 
changing people’s lives. But he wanted to do it in a manner that could reach 
large numbers of people. 

His insight was that he had his principal character in the novel go to sleep 
in the year 1887 and awaken in the year 2000. When he awoke, he had perfect 
recall of what the 19th Century was like, and he could then compare what had 
happened over the 113 year period of time. What he imagined was absolutely 
phenomenal. He imagined, first of all, the supermarket. He imagined credit 
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cards. He imagined something comparable to the Sony Walkman, where you 
could walk into a room and dial up music and listen to the music without being 
disturbed. He imagined a six-day work week-which was revolutionary. He 
imagined the end of child labor. He imagined retirement at the age of forty- 
five--early retirement. He imagined child care services. He imagined women 
being educated and working on the same basis as men. And he imagined that 
they would be paid on the same basis as men. Maybe in the year 2000 that will 
be true. His predictions are not over. 

What’s really striking about Bellamy’s book is that in about a year and a 
half it sold over 3.5 million copies in the United States alone. Let me put that 
in perspective: Lee Iacocca’s book, which I thought would never get off the 
New York Times Top 10 List, sold 2.5 million copies. What Bellamy was able 
to do was capture the essence of change occurring in our economy. Today his 
book is largely forgotten. Jules Verne is remembered, H.G. Wells is remem- 
bered, but Edward Bellamy is seldom remembered. One of the reasons Bellamy 
is not remembered is that his ideas were so powerful they got picked up by the 
political movement. When you take a look at the New Deal, when you take a 
look at Woodrow Wilson’s New Freedoms, you find that the fiction that Edward 
Bellamy imagined quickly became the reality of contemporary politics. His 
issue was less that of precedence and more that of defining a set of political 
philosophies and ideas that could define our life and times. What I’m suggesting 
is that as discerning Victorians then, they began to determine what was going 
to be happening in our future, and they began to create ideas, philosophies, and 
approaches to deal with the future. We’re into that same sort of period. We’re 
in the midst, as they were in 1887, of great underlying, far-reaching changes 
that are affecting our work, our industries, our businesses. What we’re really 
talking about today is identifying those ideas, those concepts, those frameworks, 
and those decisions that we could take to shape work and life in this country in 
the balance of this century and well into the 21st Century. 

We are at one of those times that come in American history that can truly 
be called a hinge of history. It’s happened before. It happened with Woodrow 
Wilson when he became President. It happened during the New Deal. It hap- 
pened in that time period 1943 through 1947. It happened briefly, and to some 
small degree, in the period 1981-1982 with the Reagan revolution. What I’m 
suggesting to you is that we’re moving in 1987 into another one of those periods 
of fundamental political and economic change. It’s also going to be one of those 
periods of change where we’re going to have a real generational shift in lead- 
ership in this country. Think about it. When Gary Hart left the race he was fifty 
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years old; he was one of the oldest Democratic candidates. Only Paul Simon 
was older at the age of fifty-eight. All of the Democratic candidates for President 
are under the age of fifty with the exception of Simon. The youngest is thirty- 
nine-Albert Gore. When you take a look at the Republicans, you’re seeing 
people such as Jack Kemp and others now moving into their ranks of leadership. 
In a very real sense, this is the same situation that existed in 1959-1960, when 
Kennedy and Nixon fought it out, the first two presidential candidates born in 
this century. When they came into power, when they came into their political 
maturity, they and their colleagues defined economic and political life, the 
debate in this country for almost three decades. That’s the period we’re now 
going into. It becomes very important for us to sort out the choices. What’s at 
stake? What does it mean? Because in large measure, what’s done over the next 
four or five years, in politics and economics, is going to have a major influence 
on our work and life well into the 21st Century. 

Let me put into perspective what’s happening. I think the first thing we’ve 
got to recognize is that we’re moving into this country’s third economic era. 
The first era was from George Washington to Taft. That was the developmental 
period. It was a period when we closed our borders to everything except people. 
From 1857 to 1912 we didn’t lower the tariff one time in this country. 

The second period was Wilson through Ronald Reagan, the free trade era, 
a period when we opened our borders, accepted imports, and did a great deal 
of exporting. We moved from a debtor to a creditor nation. 

Now we’re moving into a third era, what I call an era of interdependence. 
We have gone from a period of economic isolation to a period of economic 
interdependence. The point I’m making is that so far we’re not making that 
shift very well. Let me give you four facts that suggest our inability to deal 
with our realities. 

The first fact is in industry such as autos. This country has drifted from half 
of the global market share twenty years ago to somewhere in the neighborhood 
of 23% of global market share. When we look at business services, we find 
that this country has declined from 15% of global market share to 7% of global 
market share. When we look at high technology trade, we find that we’ve gone 
from a $26 billion trade surplus eight years ago to a $2 billion trade deficit last 
year. And when we look at agricultural trade, in May of last year, the United 
States actually imported more food than we exported. So when we look at it, 
what we find (though we’ve gone into a period of economic interdependence) 
across the board is that our firms, our industries, our workers, are being pushed 
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out of one market after another, What makes that particularly dangerous for us 
as a country is the fact that 70% of our industry now faces intense foreign 
competition in these markets, up sharply from 25% as recently as 1963 when 
John Kennedy was President. 

The difficulty we have is arousing our population to this reality. We have 
the lowest levels of unemployment that we’ve had since the 1970s. We have 
low inflation. Our stock market is proceeding apace very well. What is less 
obvious to our public is that a major portion of this prosperity is false in the 
sense that it’s being propelled by the largest Keynesian stimulus that this country 
has ever had: these massive federal budget deficits. This can’t continue. The 
issue is going to be how do we end these deficits and move back to self- 
sustaining, non-inflationary economic growth, and how, in the process of making 
this transition, do we do it in a manner so that we don’t pitch the world into 
another global recession, if not a global depression. 

In the very real sense, we’re in a period of very risky business, as we work 
our way out of our dilemmas, as we try to move back to a period of self- 
sustaining growth. What must we do? That is really the central question that 
all of these presidential candidates and the members of Congress and the business 
leaders are grappling with. 

My advice goes along several lines: the first thing we must do is put out of 
our minds some of the false choices that are being laid before us today. Let’s 
just speak about the four principal ones. The first of those false choices is 
manufacturing versus service industries. Yes, it’s very true that we’re seeing a 
real decline in employment in manufacturing. And yes, it is true that the 
overwhelming majority of our jobs are being created in the service industries. 
But it is not true that the United States can afford to lose its manufacturing base 
as many now advocate. The fact of the matter is that manufacturing contributes 
about 30% of all of the value added created in this economy. More importantly, 
the manufacturing base underpins a major portion of the service industries. 
When we look at our foreign competitors, what we also find is that their 
manufacturing and service industries are closely linked. The Japanese, for 
example, over the next two years will be building over 300 auto parts plants in 
the United States. Almost without exception, what they’re doing is bringing 
their own engineering services, their own architects and construction companies, 
to control the design and the construction of those facilities. In other words, 
you can see the linkages here between the manufacturing and the service 
industries. 
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What’s happening in our industrial sector is what happened to agriculture 
seventy-five years ago. We shifted out of high labor intensive agriculture into 
low labor intensive agriculture. But, because we were able to maintain the 
productivity and the production, we were able to create the agri-businesses and 
create millions of jobs in those industries. That’s the same route we must take 
today. 

This leads us to the second false choice of industrial production versus 
industrial employment. The only way that this country is going to be able to 
sustain its industrial production and be competitive is to reduce the number of 
manufacturing workers. We must automate, and automate quickly. We must 
move from 18% of our population in manufacturing to IO-12%, and we must 
do that very quickly. That’s the only way that we can maintain a competitive 
edge and produce at the high quality levels that are now required in the global 
marketplace. What that’s going to mean is massive disruption in our labor 
markets. What we’re already seeing is two million people a year become 
unemployed because their jobs have disappeared. 

The real question that we face is how we take these workers, the prepon- 
derance of whom are middle aged, and get them back in the workforce. How 
do we do it quickly? And how do we do it with minimal disruption, both 
economically and politically? 

The third false choice that we’re presented is big business versus small 
business. This is a pervasive choice. This is a choice that is almost part of our 
culture. It is one of our cultural myths. Part of that can be traced back to the 
robber barons and the reality that this is the only country in the world where 
big government was created to control big business. In every other nation, big 
government came first and facilitated the creation of big business. There has 
been a long, historical, adversarial relationship that is translated into an adver- 
sarial relationship between big and small business. But the fact of the matter is 
that the overwhelming preponderance of our exports are done by big business. 
They alone have the capital, the necessary resources on a massive scale, to 
build the plants, and equipment, and to take on foreign competitors from Japan 
and Korea which are often double and triple the size of our largest corporations. 

At the same time, we find a majority of our jobs are being created by small 
firms-70% of our jobs are being created by our small firms. We also find that 
big business is the primary customer for these small firms, and we find increas- 
ingly that big business is placing a good amount of its business with small firms 
to get the lower operating cost, to fill out the niches, to get flexibility, much as 
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the Japanese do. The real question is not big versus small business. The question 
is how do we have a prosperous big and small business section. 

The final choice we’ve been given, again a false choice, is high-tech versus 
basic industries. The fact is, our basic industries, such as auto and steel, are 
not going to survive unless they get those advanced technologies that can 
automate their facilities quickly. The reality is that high-tech is going to be the 
salvation of big industry in this country. What we need is an economic envi- 
ronment where capital investment can proceed much faster than it is now. Once 
we put these myths aside, once we put these false choices aside, then the 
question logically is-how do we proceed? How do we go about creating the 
type of economy that we need? My argument is that what we really need is an 
economy that is flexible, an economy that’s got vigor, one that’s dynamic. In 
fact, you could almost say that there are two schools of economic thought on 
how to do it. One was expressed by Damon Runyon in his musical “Guys and 
Dolls.” He had Bat Masterson, the protagonist, say-“The race may not go to 
the swift or the battle to the strong, but that’s how to bet your money.” That’s 
opposed to the Mae West school. She said, “If something is worth doing well, 
it’s worth doing very slowly.” 

I personally am of the Damon Runyon school. If you are going to have a 
swift and strong economy, how do you go about it? What’s keeping us from 
doing what we should be doing? There’s a series of obstacles, or choke points, 
or bottlenecks, that really keep this economy from moving along. The first and 
the most important today is the fact that we just haven’t recognized the fact that 
we are in an interdependent global economy. Our policies are still trapped in 
the 1940s and 1950s when we dominated the global economy. When you go 
back and look, what you find is that the global trade system we now have was 
designed by us and the British between 1943 and 1947. We built it on three 
foundations: the International Monetary Fund, the World Bank, and something 
called the International Trade Organization. The International Trade Organiza- 
tion was to be a supemational organization whose basic purpose was to control 
unfair trade practices. It was to knock them down and not permit a re-occurrence 
of the Great Depression. The United States Senate refused to ratify that treaty. 
Then what we had to do was go into a very complex, very difficult set of 
negotiations with other nations and create something called the GATT (General 
Agreement on Tariffs and Trade). When it was first created it worked fairly 
well. It was based on the assumption that the rest of the world’s economies 
were, in some degree, like those of the United States and England, that in effect 
it was an Anglo-American rule-driven economy. The government sets the rules; 
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then the entrepreneurs, and the market, can work. For twenty years it worked 
very well. But two or three things have since happened. The first is that the 
very nature of trade has changed. The GATT only deals with merchandise trade, 
but, as you know in your business, increasingly trade is now in services, in 
capital flows and financial flows. In fact, we’re at a point today where the 
GATT only covers 7% of global imports/exports, financial flows, and commerce. 
93% of all global exchanges are done without rules. Most of your industry is 
done without rules in the global marketplace. 

The second basic thing that’s occurred is that four other types of economic 
systems have now come into play. What we now see, for example, is that the 
Marxist economies, Eastern Europe, the People’s Republic of China, the Soviet 
Union, do 20% of all the trade in the world. We also now have Socialist 
economies in Europe, France, for example, where government owns the busi- 
nesses, or Sweden where it will be privately owned but heavily government- 
regulated. They now do about 20% of global trade. We find the developing 
economies in Brazil, Latin America, Africa, and Southeast Asia. These econ- 
omies are scrambling to deal with the reality that they’re going to have three 
billion more people over the next forty years. That’s more people than there 
were on the earth when John Kennedy was president. 

Then we have the fifth type of economic system, the plan-driven market 
economies of Asia, Japan, Korea, Taiwan, and Singapore. Here are economies 
where business and government blend the power of the state with the flexibility 
of the marketplace. Business and government have a vision. That vision targets 
certain industries. It may be textiles in the ’40s steel in the ’50s consumer 
electronics in the ’60s automobiles in the ‘7Os, computers and high-tech in the 
‘SOS, or advance material and bio-genetics in the ’90s. Credit is given, infant 
industry protection is given, foreign firms aren’t permitted to compete. They 
take their products to the point where they’re competitive on a world class 
basis, and then they work together, business and government, and surge onto 
the global marketplace. What is different about that system and our system? 

Our system focuses on process. Their system focuses on results. We focus 
on quarterly earnings. They focus on marketshare-long-term marketshare. 
They have a different set of relationships between business and government 
than we do. And equally important, they have a different set of industrial 
structures than we do. For example, in Japan 40% of all the manufacturing is 
owned by the banks. Not only will it be owned by banks, but you’ll find in 
those great industrial combines a horizontal and a vertical integration that’s not 
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permitted in this country by anti-trust and a variety of other laws. So suddenly 
what they have is the power of size and the benefits really of a dynamic oligopoly 
without any of the laziness of monopoly. They have become the most formidable 
competitors that we face. They’re unsentimental, they’re predatory, they’re fully 
willing to do whatever it takes to get the business and to take the marketshare. 
And, as many of you are aware, the financial industry is one that the Japanese 
have targeted for the late 1980s and into the 1990s. They’re tough, aggressive 
competitors, and for that we must respect them. 

At the same time, it is important for us to recognize that there are a number 
of things that we’re going to have to do here to enable us to produce goods and 
services that are more competitive, that are competitive in terms of price, quality, 
service, innovation, and marketing. The five foundations: price, service, quality, 
marketing, and innovation. By and large, I’m absolutely convinced that we can 
do it. 

In 1981 I wrote a book called America in Ruins. I’m not pointing that out 
for any reason other than to say that I’m not inherently an optimist. I point it 
out in order to say that this is a job that we’re fully capable of doing. We’ve 
got the capital, even though we’ve slipped on technology and really can be 
criticized for not deploying our technology. We really do have first-rate tech- 
nology, and more importantly, the capacity to create even more technology. We 
have millions of skilled, dedicated workers. But, when you take a look at our 
assets, what you find is we’re not deploying them, either as well or as rapidly 
as we should. Equally important, we find that we have some real bottlenecks 
that keep this great economic engine from performing the way it can and must 
if we are to realize most of our national aspirations. 

Let me talk about just a few of these. These are some of the things that 
you’re now beginning to see the Congress and the presidential candidates focus 
on. These are some of the issues that you’re going to see become very visible 
in 1988 and certainly visible in 1989. Political policy, economic policy, is a 
business in which the gestation period is roughly equivalent to that of an 
elephant. It takes about twenty-four months. What happens is you’ll see the 
ideas thrown up in op-ed pieces; they’ll come out in books; they’ll be discussed. 
You’ll see a draft piece of legislation; it will be batted around; and then, if it 
can survive that sort of an intellectual and political salmon run, it stands a 
chance. Here are some of the ideas that are now in that salmon run, some of 
which I think have a chance at getting someplace. 
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For business, I believe that the principal obstacles to meeting the competitive 
challenge are the enormous pressures that American businesses face for quick 
results and short-term earnings. I trace that to two different sources. For big 
business I think the principal cause, or the principal source, of the short-term 
myopia is the fundamental changes that have occurred in the New York stock 
market over the past thirty years. Specifically, what we’ve seen is the shift of 
ownership of stock from individuals to institutions. In 1952, for example, 
institutions owned 5% of the stock. Today, they own somewhere in the neigh- 
borhood of 35%. What we have seen, and what we did not anticipate as this 
shift occurred, is the fundamental difference in the way that individuals and 
institutions treat their stock. Individuals, by and large, will hold their stock for 
longer periods of time-six or seven years-at least according to the economist 
on the New York Stock Exchange staff. 

What we find is that, increasingly, institutions are turning over their stock- 
they’re going for the earnings. Those institutional fund managers find themselves 
under intense pressure to get quick results. We can measure this in a number 
of ways. One is simply the large block trades. In 1965, there were on average 
nine large block trades; last year there were about 2,400. Another way we can 
measure it is the total pace in which the New York Stock Exchange turns over. 
In the mid-1970s, the total value of the New York Stock Exchange was turning 
over roughly every five years. Now the total value of the New York Stock 
Exchange is turning over every twenty-two months. You take that rapid turnover; 
you take this large amount of money in the hands of institutions; you take the 
fact that of your largest 200 corporations, such as TRW, 50-60% of the stock 
is held in the hands of institutions, in other words, no long-term loyalty to the 
company or to its products; and then you take on top of that the raiders that are 
willing to take a corporation, break it up, and just suck the equity out of it, 
like a vampire; and suddenly you have a dynamic underway in which American 
corporations are really holding back: they’re moving to the defensive. 

What you’re seeing across the board is large numbers of American corpo- 
rations that are simply buying back their own stock. They’re pulling back on 
research. They’re holding back much of their capital investment. In other words, 
they’re moving to a defensive posture to prepare themselves. That’s not a foolish 
position, but it imperils our long-term ability to meet the competitive challenge. 
When you look, for example, at what’s happening in research, the National 
Science Foundation reports that we’ve seen a fundamental shift in the character 
of the research that corporations are doing. Specifically, rather than putting their 
money into those type of activities where you can have a real long-term break- 
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through, such as xerography, increasingly what’s happened is our American 
corporations are putting their money on those kinds of activities where they can 
simply refine existing technologies, in other words, where they can get it to 
market quickly. 

What they’re saying is they can’t afford to wait. They can’t afford to wait 
five to eight years through the research program. There are very few corporations 
in this country, such as General Electric or IBM, that have the profitability to 
permit them to keep their earnings up and, at the same time, to do the research 
to prepare to compete in the 1990s. For small business, the principal driving 
force for short-term pressures on them is their inability to get long-term money. 
What we find is a real boom in venture capital activity in this country over the 
past ten years. We also find that only about 1% of our startups of small 
businesses are financed by venture capital. The preponderance, 99% of the small 
businesses in this country, are financed by people taking their savings, borrowing 
from their families, taking a second mortgage on their house, scrimping here 
and there, pulling it together. Even when those firms are able to succeed in the 
short-term, they quickly move to a point when they’ve reached some level of 
success, when they have a plateau when they need longer-term money. 

It’s at that point that they’re really cut off at the knees. While the United 
States has the largest formation rate of small business, we also have the largest 
failure rate. One of the problems is that we don’t have the ways and means for 
our small businesses to get patient capital-long-term capital. What we now 
see moving through the House Small Business Committee is the means to create 
that. It’s called an industrial mortgage corporation. It would have the federal 
government establish a device much like Fannie Mae or Ginnie Mae in the 
housing market that in effect would be a secondary mortgage mechanism that 
would permit banks and other commercial lending organizations to take a portion 
of a small business industrial loan and sell it off to that instrument where they 
can put it into larger play. Whether that winds up being the mechanism or not, 
the fact is it addresses the right issue. That issue is that over 85% of the small 
business loans of under $1 million are due within five months. The fact is that 
when you’re dealing in this type of economy, you can’t make it on five month 
money. You’ve got to have some five to ten year long-term money. What this 
country needs is to find the ways and means to channel lots of money to the 
small business sector and do it on sound business principles. 

Another major problem this country has is within our workforce. By the 
same token, it is for the foreseeable future one of our prime opportunities. Let 
me just describe some of this, and some of this is going to directly touch you 
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and your companies in your personal lives. When we take a look at the dem- 
ography of our workforce, what we find is that because of the post-World War 
II baby generation, the majority of our workers are now moving into their most 
productive years. For economists, we say that’s generally between the ages of 
twenty-five and fifty-five. In 1970, we had 61% of our people in that population 
cohort. Now it’s roughly 67%. By 1995, when we take a look with the demog- 
raphers, we see that roughly 75% of our people will be in that population cohort. 
That gives us a real demographic advantage if we can deploy and use those 
people. Flip it around and you say that it’s a necessity that we deploy those 
people and make sure that they’re competent. Another simple fact is, roughly 
nine out of ten of our workers in the year 2001 are already adults and most are 
at work. We’re going to make it or break it with today’s workers. That’s the 
message over the next decade: we’re going to make it or break it with today’s 
workers. Whatever we do in this K through 12 system, as important as it is, 
whatever we do on that will not begin to show up until the 199Os, or perhaps 
the late 1990s. That’s for the future. The real issue is how do we retool 110 
million American workers, most of whom got their education and thought it 
would last them a lifetime? How do we deal with a workforce where one out 
of five workers changes jobs every year? 

The first problem we face is that while one out of five of our people have 
been to college, another one out of five of our adults in this country cannot 
read, write, or count at a 7th grade level. A fifth of all of our adults are 
functionally illiterate. 

Roughly 10% of our workers are now impaired, to some degree, because 
of drugs and alcoholism. It’s costing our employers roughly $45-60 billion a 
year in health cost, absenteeism, and accidents. It’s tough to tell when somebody 
is on drugs or alcohol, but it’s a major problem that we have. 

A third major issue is that we have the least motivated workforce of all 
industrial nations. Daniel Yankelovich reports out of his surveys that only ten 
out of every 100 workers believe that if they work harder it will result in any 
increased pay or benefit to them. They believe that the money will go to the 
boss, to the top CEO, to the stockholders, to somebody else. I don’t know that 
they’re that stupid. They may be actually right, given our structure. For most 
of our workers we don’t have a pay system that’s set up to relate reward and 
effort. Maybe, in effect, these workers are seeing reality. But the fact is when 
you take a look at the Japanese, what you find when you run surveys on their 
workforce is that 93% of their workers think if they work harder and smarter 
that they’re going to be beneficiaries. Ten out of 100 for Americans, ninety- 
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three out of 100 for the Japanese. That’s a serious indictment of our management 
in compensation systems. 

Take a look at the Toyota-GM plant in Freemont, California. As you know, 
General Motors was set to build a massive plant in Tennessee, the Saturn Plant, 
and they were going to automate it and were going to use the technology and 
do these various things. The Japanese came in and put in their management 
system in that facility, in that joint venture. What they found is they were 
getting 20 or 30% greater productivity out of the same workers, with the same 
equipment, than what they could expect out of the Saturn plant. 

Ford Motor Company has made a major change in their management style 
and their motivation practices since 1980. The chairman of Ford Motor Company 
just says it flat out-“The only thing at our plants that is not new are the workers 
and the walls: management, machines, everything.” They’re getting compound 
productivity growth rates of over 7% a year. That’s one of the reasons, in 
addition to their quality, why Ford Motor Company was able for the first time 
this year to surge ahead of General Motors in profits. It’s a real challenge that 
each of us faces in business. How do we take and motivate these workers? 

We have two other worker issues that are important, that as a society we 
have not yet addressed. The first is we’ve not yet accommodated the reality of 
large numbers of women in the workforce. Let me put it another way. This 
country has undergone one of the most formidable workplace revolutions that 
we’ve ever had. It’s been largely invisible and it’s been a very polite revolution. 
That is the movement of women on a permanent basis into the workforce. In 
the 1960s and 70s we had a circumstance in which most of the women that 
went into the workforce went into traditional areas such as teaching. In 1970, 
for example, we had a circumstance where only eight-tenths of 1% of the 
engineering graduates were women. It’s just now moved up to about 15%. 
When you move into law and medicine, you’re moving into rates that are into 
the 30s and 40%. And across the board what you’re seeing, in most professions, 
is the same massive movement, on a permanent basis, of women into the 
workforce. That’s important for two reasons. One, it says we have the type of 
opportunity as an egalitarian society that we should have. But it also says that 
increasingly a major portion of this country’s human capital and knowledge 
now resides in our women workers. That’s important because this quiet revo- 
lution has occurred so quickly that nine out of ten women in the workforce 
today are still in their childbearing years, and seven out of ten of them will 
have one more child. You can see where that’s leading me in the argument- 
child care services. 
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Child care services has suddenly become, I believe, one of the major 
workplace issues in this country. It’s increasingly less a social issue and more 
an economic and workplace issue. Yet what we find is the majority of our 
employers have not yet recognized this. Given your profession, you’ll see it in 
the benefits, in other plans, but most companies have not yet addressed this 
reality. If we are to make full use of our limited human capital in this country, 
in this period of intense competition, we must find the ways and means to 
assure safe, nurturing, affordable, convenient child care services. Child care 
services will be one of the major campaign issues in 1988. 

The final issue I want to bring to your attention is portable pensions. We’re 
at a point in this country where we increasingly have a middle-aged workforce. 
When people become middle-aged, they begin to think about retirement and 
responsibilities. Yet what we also find in this country is a circumstance in which 
only half of the workers are employed by firms that even offer a private pension 
plan. Because of the vesting periods, and because of the high turnover rate that 
we now have, only about a third of our workers are vested in any pension plan, 
and for many of them, that vesting is of a very short nature and so the value 
of that plan doesn’t mean much. In the past, the issues about pensions have 
centered around how do you level out benefits for that worker who goes from 
job to job. How do you manage the plans, etc? For firms it’s been an issue of 
how do you set up a pension plan that will hold the worker. How do you put 
platinum handcuffs on the worker? How do you keep the worker there? Increas- 
ingly, those issues are going to shift; they’re going to shift to that of how do 
you have flexibility within the workforce? How do you create the ways and 
means whereby the worker can have a pension and move from job to job? Our 
demand now is not for workers to stay with the same job; our demand now is 
for people to move. What William White wrote thirty years ago in his book 
The Organization Man is no longer true. Then, as White envisioned it, what 
we would have in this country is most of our workers, workers of high caliber, 
going to work for some of the great institutions, business, academia, govern- 
ment, and then they would stay with those institutions for the majority of their 
lives. They would tend those great organizations, and the compact that was 
made is the institutions would then provide them services, benefits, and pen- 
sions. That compact has broken down. That compact because of external realities 
no longer exists, 

Let me just ask this audience-how many of you in your careers, since past 
the age of twenty-two, have been with three or more employers? The Harvard 
Department of Economics estimates workers over thirty who change their pen- 
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sion plans once will lose 27% of their benefits. If they change jobs twice, 
they’ll lose 52% of their benefits. The reality is that most of our workers will 
change occupations three times and jobs six to ten times during their careers. 
The time has come in this country for us to devise a private pension system 
where all workers are covered and where those workers can go from job-to- 
job, place-to-place, occupation-to-occupation, in and out of the workforce, 
between the public and the private sector, and all the while build up a safe, 
sound, well-financed retirement system. 

In short, the time has come to tie the pension to the worker rather than to 
the job. I think we’re going to see something on that. One of your speakers in 
the next panel, Congressman Ed Feighan, has been one of the leaders in 
Congress and at the national level to make that happen. You might want to talk 
to him about that. 

In summary, what I’m saying is we’re coming into a period, one of those 
hinges of history, one of those great periods of change, where the decisions 
that we make will be big decisions. They will affect the balance of our lives, 
and they will have a disproportionate influence on the lives and welfare of our 
children. The challenge that we face as a nation is how do we deal in an 
interdependent world. And how do we deal in a world where we no longer have 
an easy superiority over other nations? How do we deal with other nations, 
increasingly in Asia and Europe, as equals, rather than supplicants? Equally 
important, how do we deal domestically, in an environment of great uncertainty, 
where we have much catch-up business to do from the past, out of the ’60s and 
‘7Os, things that we didn’t do that we must now do? And at the same time, we 
must deploy our formidable assets of capital, technology, and workers in a 
manner where we can meet that foreign competition. 

If we were to have a motto, I would almost go back and use the one of a 
friend of mine in college. He was an electrical engineer, very popular, always 
dating. I was very jealous of him, so I once asked Bartus, I said, “Bartus, 
you’re so popular.” He answered, “Well, it’s my philosophy. Beauty is only 
skin deep, but that’s thick enough for me.” So I propose, as a national motto, 
that economic prosperity may not be everything, but that’s good enough for us. 
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Clive L. Keatinge 
Eric R. Keen 
Jerome F. Kletow 
Kenneth R. Krissinger 
Paul E. Lacko 
Dean K. Lamb 
Pierre G. Laurin 
Joseph R. Lebens 
Nicholas M. Leccese, Jr. 
John J. Lewandowski 
Sam F. Licitra 
Elise C. Liebers 
Brett A. MacKinnon 
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Sean P. McDermott 
Mary F. Miller 
Karen J. Pichler 
Richard A. Plan0 
Donald W. Procopio 
Mark R. Proska 
Sara E. Schlenker 
Frederic F. Schnapp 
Debbie Schwab 
Kim A. Scott 
Mark R. Shapland 
Peter J. Siczewicz 
Craig P. Taylor 
R. Glenn Taylor 
Andre Veilleux 
James C. Votta 
Robert A. Weber 
Peter G. Wick 
Lincoln B. Williams 
Robin M. Williams 
Ernest I. Wilson 
Bill S. Yit 

Mr. Walters then introduced Mr. Ronald Bornhuetter, a past President of 
this society, who addressed the members concerning their professional respon- 
sibilities. 

Mr. Michael Fusco, Vice President-Programs, gave the highlights of the 
program. 

Mr. Stephen Philbrick, Chairman of the Committee on Review of Papers, 
summarized the three new Proceedings papers and the one review of a previous 
Proceedings paper. 

Mr. Gary Venter summarized his review of a Proceedings paper. 

Ms. Janet Fagan, Chairman of the Committee on Continuing Education, 
gave a summary of the Discussion Paper program. 
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Mr. Walters concluded the business session at 9:00 A.M. and introduced Dr. 
Pat Choate, Director of Policy Analysis, TRW, Inc., who delivered the keynote 
address. Dr. Choate spoke on a wide range of issues including competitiveness, 
foreign trade, and the role of government in the regulation of business and 
industry. 

A panel presentation, “The McCarran-Ferguson Act; Have We Seen the Last 
of It” followed. The panel was moderated by Mr. David G. Hartman, Senior 
Vice President and Actuary, Chubb Group of Insurance Companies. The panel 
members were James M. Stone, President, Plymouth Rock Assurance Corp.; 
Bruce A. Bunner, Principal, Pete Marwick, Mitchell & Company; and, Rep- 
resentative Edward F. Feighan, U.S: House of Representatives. 

A luncheon followed from Noon to 1:30 P.M. 

The afternoon was devoted to presentations of the twelve discussion papers, 
four new Proceedings papers, and six panel presentations. 

The new Proceedings papers were: 

1. “Adjusting Loss Development Patterns for Growth’ 
Author: Charles L. McClenahan 

Coopers & Lybrand 

2. “The Construction of Automobile Rating Territories in Massachusetts” 
Author: Robert F. Conger 

Tillinghast/Towers Perrin 

3. “Revisions in Loss Reserving Techniques Necessary to Discount Property 
Liability Loss Reserves” 
Author: Stephen P. D’Arcy 

University of Illinois 

4. Discussion of “An Analysis of Experience Rating” 
Author of Discussion: Howard C. Mahler 

Massachusetts Rating Bureau 
Author of Paper: Glenn Meyers 

University of Iowa 
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The Discussion Papers presented were: 

1. “An Analysis of the Impact of the Tax Reform Act on the P/C Industry” 
Authors: Gerald I. Lenrow 

Coopers & Lybrand 

Owen Gleeson 
General Reinsurance Corporation 

2. “An Investigation of Methods, Assumptions, and Risk Modeling for 
the Valuation of P/C Insurance Companies” 
Author: Robert S. Miccolis 

Tillinghast/Towers Perrin 

3. “Investor’s Valuation of an Insurance Company” 
Author: Joel S. Weiner 

CIGNA Property & Casualty Companies 

4. “Underutilization of Capacity” 
Author: Neal J. Schmidt 

St. Paul Reinsurance Management Corporation 

5. “Allocation of Surplus for a Multi-Line Insurer” 
Author: Paul J. Kneuer 

Insurance Services Office 

6. “A Non-Parametric Approach to Evaluating Reinsurers’ Relative 
Financial Strength” 
Authors: Stephen J. Ludwig 

Hartford Insurance Company 

Robert F. McAuley 
Hartford Insurance Company 

7. “Regulatory Standards for Reserves” 
Author: Oakley Van Slyke 

Coopers & Lybrand 

8. “Insurance Profits: Keeping Score” 
Author: Richard G. Wall 

Allstate Insurance Company 
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9. “A Framework for Forecasting P/C Insurers’ Financial Results” 
Authors: Paul Braithwaite 

Insurance Services Office 

Isaac Mashitz 
North American Reinsurance Company 

10. “Asset/Liability Management: Beyond Interest Rate Risk” 
Author: William H. Panning 

Aetna Life & Casualty Insurance Company 

11. “Measuring R.O.E. From a Financial Planning Perspective” 
Authors: Bruce R. Jones 

Travelers Insurance Company 

Neil Aldin 
Travelers Insurance Company 

12. “An Analysis of the Capital Structure of an Insurance Company” 
Author: Glenn Meyers 

University of Iowa 

The panel presentations covered the following topics: 

1. “Actuarial Principles and Standards of Practice” 

The statement of principles and standards of practice affect the profes- 
sional activities of every practicing actuary. This panel discussed the 
distinct roles of the CAS and the IASB in developing such guidelines 
for both the insurance ratemaking and reserving disciplines. 

Moderator: Charles A. Bryan 
Senior Vice President & Actuary, USAA 

Panelists: Chairman of Committee on Ratemaking 
Michael J. Miller 
Consulting Actuary, TillinghastiTowers Perrin 

Chairman of Committee on Reserves 
James A. Faber 
Principal, Peat, Marwick, Mitchell & Company 
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2. “Personal Lines Classification Plans: Actuarial and Real World Consid- 
erations” 

The panel discussed how companies approach private passenger pricing 
by classification. The discussion included actuarial techniques and type 
of data used by the companies, as well as other considerations such as 
marketing strategies, interaction with underwriting, and regulatory con- 
straints. 

Moderator: Steven F. Goldberg 
Vice President & Actuary, USAA 

Panelists: Irene K. Bass 
Vice President & Senior Actuary, Crum & Forster 

Alan R. Ledbetter 
Vice President, GEICO 

John J. Javaruski 
Secretary, Hartford Insurance Company 

3. “Report on Current Activities of the Financial Analysis Committee and 
its Interaction With the Committee on Valuation Principles and Tech- 
niques” 

The CAS Committee on Financial Analysis presented initial results on a 
study of the problems created by asset/liability mismatch in an environ- 
ment of unstable interest rates. There was also a discussion of the genesis 
and goals of the Committee on Valuations and its relationship to other 
development committees including the Financial Analysis Committee. 

Moderator: Steven Petlick 
Vice President, Continental Reinsurance 

Panelists: Robert P. Eramo 
Vice President & Chief Actuary, Unigard 

Charles H. Berry, III 
Actuary, Aetna Life & Casualty Insurance Company 

Robert A. Miller, III 
Consulting Actuary, Milliman & Robertson, Inc. 
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4. “Risk Retention Act” 

A well structured Risk Retention entity should be both attractive to its 
members as a risk bearing entity and profitable to insurers as a risk 
transferee. This workshop reviewed the key features of the Liability Risk 
Retention Act of 1986 and, using a case study, presented the critical 
multi-disciplinary worksteps in evaluating the feasibility of forming a 
Purchasing Group or Risk Retention Group. 

Moderator: Albert J. Beer 
Principal, Tillinghast/Towers Perrin 

Panelists: Alfred 0. Weller 
Vice President & Chief Actuary, Fred S. James & Company 

P. Bruce Wright, Esq. 
Partner, LeBoeuf, Lamb, Leiby & MacRae 

5. “How to Start an Insurance Company” 

Two insurance company executives related their motivations and expe- 
riences in starting up a new insurance company. In particular, they 
discussed perceived opportunities in the marketplace, regulatory con- 
cerns, financing, marketing strategies, inherent risks, and ultimate suc- 
cess. 

Kenneth R. Rosen 
President & Chief Executive Officer, Victoria Financial Corporation 

E. Dow Walker, Jr. 
Chief Operating Officer, Mutual Assurance 

6. “How to End an Insurance Company” 

Two actuaries experienced in rehabilitating and running off troubled 
insurance companies discussed what must be considered from an eco- 
nomic, legal, and social standpoint in performing their services. 

Dale F. Ogden 
Executive Vice President, Kramer Capital Consultants, Inc. 

David M, Patterson 
Vice President, Philadelphia Insurance Research Group 
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The officers held a reception for the new Fellows and their spouses from 
5:30 P.M. to 6:30 P.M. 

The Presidents Reception for all members and guests was held from 6:30 
P.M. t0 7:30 P.M. 

Tuesday, May 12, 1987 

Tuesday was devoted to a continuation of the Monday afternoon sessions. 

A Reception and Barbecue was held from 6:30 P.&to 900 P.M. 

Wednesday, May 13, 1987 

The business session resumed at 9:00 A.M. with a presentation of the Harold 
Schloss Award to Mr. Brett Scrantan. 

There was also an award of the Michelbacher prize to Mr. Glenn Meyers. 

The business session was convened at 9:30 A.M. and a panel presentation, 
“Insurance Company Ratings: Do They Mean What We Think They Mean” 
followed. The panel was moderated by Robert A. Bailey, Senior Vice President, 
E. W. Blanch & Company. The four panelists included Lawrence A. Hayes, 
Vice President, Standard & Poors Corporation; Michael Miron, U.S. Editor, 
Insurance Solvency International; Robert Arvanitis, Senior Analyst, Moodys’ 
Investors Service; and Robert A. Brian, General Partner, Conning & Company. 
These speakers described how they see their role in the formal financial evalu- 
ation process. 

The meeting was adjourned at 11:15 A.M. 

May, 1987 Attendees 

In attendance, as indicated by the registration records, were 335 Fellows; 
203 Associates; and 39 guests, subscribers, and students. The list of their names 
follows. 

FELLOWS 

Aldin, N. C. Bailey, R. A. 
Aldorisio, R. P. Bailey, V. M. 
Alfuth, T. J. Barclay, D. L. 
Allaben, M. S. Barrow, B. H. 
Angell, C. M. Bashline, D. T. 
Asch, N. E. Bass, I. K. 

Bassman, B. C. 
Beer, A. J. 
Bell, L. L. 
Bellinghausen, G. F. 
Belvin, W. H. 
Ben-Zvi, P. N. 
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FELLOWS 

Bensimon, A. S. 
Berens, R. M. 
Berry, C. H., III 
Berry, J. L. 
Bertrand, F. 
Beverage, R. M. 
Biegaj, W. P. 
Bill, R. A. 
Biller, J. E. 
Biondi, R. S. 
Biscoglia, T. J. 
Boccitto, B. L. 
Bornhuetter, R. L. 
Boulanger, F. 
Bouska, A. S. 
Bovard, R. W. 
Bowen, D. S. 
Boyd, W. A. 
Braithwaite, P. 
Brian, R. A. 
Brooks, D. L. 
Brubaker, R. E. 
Bryan, C. A. 
Burger, G. 
Cantin, C. 
Chansky, J. S. 
Chanzit, L. G. 
Cheng, J. S. 
Chemick, D. R. 
Chiang, J. D. 
Childs, D. M. 
Christiansen, S. L. 
Christie, J. K. 
Chuck, A. 
Coffin, J. D. 
Cohen, H. L. 
Conger, R. F. 
Cook, C. F. 

Corr, F. X. 
Covney, M. D. 
Cripe, F. F. 
Crowe, P. J. 
Cundy, R. M. 
Cm-ran, K. F. 
Currie, R. A. 
Curry, A. C. 
Daino, R. A. 
D’Arcy, S. P. 
Dawson, J. 
Demers, D. 
Dempster, H. V. 
Deutsch, R. V. 
Dodd, G. T. 
Doellman, J. L. 
Doepke, M. A. 
Dolan, M. C. 
Donaldson, J. P. 
Dorval, B . T. 
Drennan, J. P. 
Drummond-Hay, E. T. 
Duffy, B. 
Duffy, T. J. 
Dye, M. L. 
Eagelfeld, H. M. 
Easlon, K. 
Edie, G. M. 
Ehrlich, W. S. 
Eland, D. D. 
Engles, D. 
Evans, G. A. 
Eyers, R. G. 
Faber, J. A. 
Fagan, J. L. 
Fallquist, R. J. 
Fein, R. I. 
Fisher, R. S. 

Fisher, W. H. 
Fitzgibbon, W. J., Jr. 
Flynn, D. P. 
Foote, J. M. 
Foster, R. B. 
Fresch, G. W. 
Friedberg, B. F. 
Furst, P. A. 
Fusco, M. 
Gapp, S. A. 
Garand, C. P. 
Gersie, M. H. 
Gleeson, 0. M. 
Gluck, S . M. 
Goddard, D. C. 
Goldberg, S. F. 
Goldfarb, I. H. 
Gottheim, E. F. 
Gottlieb, L. R. 
Grace, G. S. 
Grady, D. J. 
Graves, J. S. 
Greco, R. E. 
Grippa, A. J. 
Gruber, C. 
Guenthner, D. G. 
Gutterman, S. 
Hachemeister, C. A. 
Hafling, D. N. 
Hall, J. A., III 
Hallstrom, R. C. 
Haner, W. J. 
Hankins, S. E. 
Hanson, J. L. 
Hapke, A. J. 
Hartman, D. G. 
Hartman, G. R. 
Haseltine, D. S. 



Haskell, G. E. 
Hayne, R. M. 
Hennessy, M. E. 
Henry, D. R. 
Henzler, P. J. 
Herder, J. M. 
Herman, S. C. 
Herzfeld, J. 
Hewitt, C. C., Jr. 
Hibbard, W. J. 
Hillhouse, J. A. 
Hoffmann, D. E. 
Homan, M. J. 
Horowitz, B. A. 
Hosford, M. T. 
Howald, R. A. 
Hutter, H. E. 
Ingco, A. M. 
Irvan, R. P. 
Jaeger, R. M. 
Jameson, S . 
Jean, R. W. 
Jerabek, G. J. 
John, R. T. 
Johnson, A. P. 
Johnston, T. S. 
Jones, B. R. 
Judd, S. W. 
Kallop, R. H. 
Kaufman, A. M. 
Keatts, G. H. 
Keller, W. S. 
Kelly, A. E. 
Khury, C. K. 
Kilbourne, F. W. 
Kist, F. 0. 
Kline, D. F. 
Klinker, F. L. 
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FELLOWS 

Kneuer, P. J. 
Koch, L. W. 
Kollar, J. J. 
Koupf, G. I., 
Kozik, T. J. 
Krakowski, I. 
Krause, G. A. 
Kuehn, R. T. 
Lamb, R. M. 
Lamonica, M. A. 
Lange, D. L. 
LaRose, J. G. 
Larsen, M. R. 
Lattanzio, S. P. 
Ledbetter, A. R. 
Lee, R. H. 
Lehman, M. R. 
Levin, J. W. 
Lewis, M. A. 
Lindquist, P. L. 
Lino, R. 
Lino, R. A. 
Lipton, B. C. 
Littmann, M. W. 
Livingston, R. P. 
Lo, R. W. 
Lommele, J. A. 
Loper, D. J. 
Lotkowski, E. P. 
Lowe, R. F. 
Ludwig, S. J. 
MacGinnitie, W. J. 
Mahler, H. C. 
Makgill, S. S. 
Marks, S. D. 
Mashitz, I. 
Mathewson, S. B. 
Mayer, J. H. 

LLI 

McCarter, M. G. 
McClenahan, C. L. 
McClenahan, D. L. 
McClure, J. W., Jr. 
McClure, R. D. 
McConnell, C. W. 
McDonald, G. P. 
McGovern, W. G. 
McLean, G. E. 
Mealy, D. C. 
Mendelssohn, G. A. 
Meyer, R. E. 
Meyers, G. G. 
Miccolis, J. A. 
Miccolis, R. S. 
Miller, M. J. 
Miller, P. D. 
Miller, R. A., III 
Miller, R. R. 
Miner, N. B. 
Montgomery, W. D. 
Moody, R. A. 
Moore, B. C. 
Moore, B. D. 
Moore, P. S. 
Muetterties, J. H. 
Mulder, E. T. 
Muleski, R. T. 
Munt, D. S. 
Murad, J. A. 
Murrin, T. E. 
Myers, N. R. 
Neidermyer, J. R. 
Neis, A. R. 
Nester, K. L. 
Newlin, P. R. 
Newville, B. S. 
Nichols, R. W. 
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Nickerson, G. V. 
Nikstad, J. R. 
Normandin, A. 
Noyce, J. W. 
Oakden, D. J. 
O’Connell, P. G. 
Onufer, L. M. 
Palczynski, R. W. 
Paquette, S. L. 
Parker, C. M. 
Patrik, G. S. 
Pearl, M. B. 
Petersen, B . A. 
Petit, C. I. 
Petlick, S. 
Philbrick, S. W. 
Phillips, H. J. 
Pierce, J. 
Pinto, E. 
Plunkett, R. C. 
Pratt, J. J. 
Prevosto, V. R. 
Purple, J. M. 
Quirin, A. J. 
Racine, A. R. 
Raman, R. K. 
Rapp, J. W. 
Reichle, K. A. 
Reynolds, J. J., III 
Richardson. J. F. 

Abell, R. L. 
Abramson, G. R. 
Allaire, C. 
Allard, J. E. 
Almagro, M., Jr. 
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FELLOWS 

Robertson, J. P. 
Rodermund , M . 
Rogers, D. J. 
Rosenberg, D. M. 
Roth, R. J., Jr. 
Rowland, W. J. 
Scheibl, J. A. 
Schilling, T. L. 
Schmidt, N. J. 
Schneider, H. N. 
Schumi, J. R. 
Schwartzman, J. A. 
Sheppard, A. R. 
Sherman, H. A. 
Sherman, 0. L., Jr. 
Shoop, E. C. 
Shrum, R. G. 
Silver, M. S. 
Simon, L. J. 
Skin-nick, D. 
Smith, M. B. 
Snader, R. H. 
Splitt, D. L. 
Stanard, J. N. 
Steeneck, L. R. 
Stergiou, E. J. 
Stewart, C. W. 
Snug, E. J. 
Suchoff, S. B. 
Taht, V. 

ASSOCIATES 

Amoroso, R. C. 
Anderson, B. C. 
Andler, J. A. 
Apfel, K. 
Atkinson, R. V. 

Tatge, R. L. 
Thibault, A. 
Thompson, K. B. 
Toothman, M. L. 
Treitel, N. R. 
Tuttle, J. E. 
Van Ark, W. R. 
Venter, G. G. 
Wacek, M. G. 
Walters, M. A. 
Walters, M. A. 
Warthen, T. V., III 
Wasserman, D. L. 
Weller, A. 0. 
Westerholm, D. C. 
Whatley, P. L. 
White, J. 
Whitman, M. 
Wickwire, J. D., Jr. 
Wilson, J. C. 
Wilson, R. L. 
Wiseman, M. L. 
Wiser, R. F. 
Withers, D. A. 
Wall, R. G. 
Yingling, M. E. 
Yonkunas, J. P. 
Zatorski, R. T. 
Zubulake, T. J. 

Austin, J. P. 
Bellafiore, L. A. 
Blakinger, J. M. 
Boisvert, P., Jr. 
Boor, J. A. 



Boucek, C. H. 
Boudreau, J. J. 
Bourdon, T. W. 
Brahmer, J. 0. 
Brathwaite, M. E. 
Brehm, P. J. 
Brutto, R. S. 
Buchanan, J. W. 
Bujaucius, G. S. 
Cadorine, A. R. 
Campbell, K. A. 
Cardoso, R. A. 
Carpenter, W. M. 
Cellars, R. M. 
Chen, C. 
Chorpita, F. M. 
Cieslak, W. P. 
Connor, V. P. 
Conway, A. M. 
Costner, J. E. 
Crawshaw, M. 
Cross, S. L. 
Cutler, J. Z. 
Davis, R. C. 
DeConti, M. A. 
Der, W. 
Desbiens, C. 
DiDonato, A. M. 
Donelson, N. E. 
Donnelly, V. T. 
Doyle, M. J. 
Dufresne, J. 
Duperreaut, B. 
Dupuis, C. 
Ear-waker, B. G. 
Englander, J. A. 
Eramo, R. P. 
Ericson, J. M. 

MAY MINUTES 

ASSOCIATES 

Esposito, D. L. 
Fleming, K. G. 
Fletcher, J. E. 
Francis, L. A. 
Friedman, H. H. 
Fromentin, P. 
Gaillard, M. B. 
Gardner, R. W. 
Gebhard, J. J. 
Gidos, P. M. 
Girard, G. S. 
Godbold, M. E. 
Godbold, N. T. 
Goldberg, L. R. 
Goldberg, T. L. 
Granoff, G. 
Graves, G. T. 
Greene, A. R. 
Griffith, A. V. 
Gunn, C. H. 
Gwynn, H. M. 
Haefner, L. A. 
Halpert, A. 
Handte, M. R. 
Harrison, D. C. 
Harrison, E. E. 
Hay, R. S. 
Hays, D. H. 
Head, T. F. 
Henry, T. A. 
Heyman, D. R. 
Holdredge, W. D. 
Jaso, R. J. 
Javaruski, J. J. 
Johnson, R. W. 
Keatinge, C. L. 
Keen, E. R. 
Kleinberg, J. J. 
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Klenow, J. F. 
Kline, C. D., Jr. 
Koegel, D. 
Kolk, S. L. 
Kolojay, T. M. 
Konopa, M. E. 
Krissinger, K. R. 
Lacek, M. 
Lacko, P. E. 
Lamb, D. K. 
Laurin, P. G. 
Lebens, J. R. 
Leccese, N. M., Jr. 
Leiner, W. W., Jr. 
Levine, G. M. 
Lewandowski, J. J. 
Licitra, S. F. 
Liebers, E. C. 
MacKinnon, B. A. 
Maguire, B. P. 
Mair, S. A. 
McConnell, D. M. 
McCoy, M. E. 
McDermott, S. P. 
Miller, M. F. 
Miller, W. J. 
Mittal, M. L. 
Miyao, S. K. 
Mohrman, D. F. 
Moody, A. W. 
Morgan, S. T. 
Morrow, J. B . 
Mucci, R. V. 
Mueller, R. A. 
Muller, R. G. 
Musante, D. R. 
Nelson, J. K. 
Neuhauser, F., Jr. 
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Newman, H. E. 
Ogden, D. F. 
Ostergren, G. V. 
Overgaard, W. T. 
Peacock, W. W. 
Pei, K. J. 
Peterson, S. J. 
Petrel& J. L. 
Philbrick, P. G. 
Placek, A. C. 
Post, J. H. 
Potok C. M. 
Pridgeon, R. D. 
Procopio, D. W. 
Proska, M. R. 
Pulis, R. S. 
Quintano, R. A. 
Rathjen, R. L. 
Rice, D. E. 
Rice, J. W. 
Rice, W. V. 
Robinson, R. D. 
Roth, R. J. 
Rowland, V. T., Jr. 
Sandler, R. M. 

Brescia, J. 
Butsic, R. 
Cheng, P. C. 
Clause, R. 
Cronin, M. 
DeMarlie, G. 
Derrig, R. 
Duitsman, W. 
Eversmann, T. 
Franz, V. 

ASSOCIATES 

Sansevero, M., Jr. 
Scheuing, J. R. 
Schlenker, S. E. 
Schlenz, J. W. 
Schnapp, F. F. 
Schwab, D. 
Schwandt, J. C. 
Scott, K. A. 
Scully, M. W. 
Seiffertt, B. A. 
Shapland, M. R. 
Siczewicz, P. J. 
Silverman, J. K. 
Silverman, M. J. 
Skolnik, R. S. 
Slusarski, J. 
Snow, D. C. 
Somberger, G. C. 
Stadler, E. 
Steingiser, R. 
Stroud, R. A. 
Sweeney, E. M. 
Swisher, J. W., Jr. 
Taylor, C. P. 
Taylor, R. G. 

Theisen, J. P. 
Tistan, E. S. 
Toczylowski, D. L. 
Trudeau, M. 
Valenti, K. P. 
Varca, J. J. 
Veilleux, A. 
Vogel, J. F. 
Votta, J. C. 
Weber, R. A. 
Weiner, J. S. 
Whatley, M. W. 
Wick, P. G. 
Williams, L. B. 
Williams, R. M. 
Willsey, R. L. 
Wilson, E. I. 
Wilson, 0. T. 
Wilson, W. F. 
Yatskowitz, J. D. 
Yau, M. W. 
Yit, B. S. 
Yow, J. W. 
Yunque, M. A. 

GUESTS-SUBSCRIBERS-STUDENTS 

Gale, E. 
Gutman, E. 
Jensen, P. 
Kaltman, A. 
Kartechner, J. 
Kaufman, D. 
Lacefield, D. 
Lenrow, J. 
McAuley, R. 
Miron, M. 

Mitchell, K. 
Murphy, K. A. 
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AN ANALYSIS OF EXCESS LOSS DEVELOPMENT 

EMANUEL PINTO AND DANIEL F. GOGOL 

Abstract 

There is very little information available regarding excess loss de- 
velopment, despite its importance in excess of loss pricing and reserving. 
In this study, paid and reported excess loss development patterns are 
estimated at various retentions for certain casualty lines of business. 
The effects of allocated loss adjustment expense and policy limits on 
excess development are discussed. The pattern of change, as develop- 
ment progresses, of Pareto distributions fitted to casualty loss distribu- 
tions was considered in developing curve fitting methods. A method is 
described for determining development factors by layer. Applications to 
excess loss pricing, loss reserving, and increased limits factors are 
mentioned. 

Special thanks to ISO, which provided us with a great deal of data, and to Susan Greiff, 
Thomas Highet, Madelyn Esposito and Francine Leong who assisted in the data processing 
and compilation. 

1. INTRODUCTION 

Loss development patterns for both reported and paid excess losses are of 
fundamental importance in excess of loss pricing as well as in estimating loss 
reserves for excess of loss insurance and reinsurance. Excess of loss reinsurance 
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constitutes a major portion of the business written by reinsurers and is the area 
involving the greatest degree of independent pricing and reserving activity. 

There is a paucity of published information regarding both reported and paid 
excess loss development. The Reinsurance Association of America (RAA) pub- 
lishes a study biennially of reported excess casualty loss development patterns 
for certain lines of business, based on data supplied by member companies. 
Incurred’ loss development patterns for automobile liability, general liability, 
workers’ compensation and medical malpractice have been described in these 
studies. Certain of these lines of business have well over twenty years of 
significant reported excess loss development, indicating that excess reporting 
patterns vary significantly from first dollar reporting patterns. In that study, 
however, excess losses in various layers are all grouped together, so the data 
does not indicate the development patterns by line for various individual layers. 
Since the data indicates that excess business generally exhibits much slower 
reporting than that normally associated with primary business, there appears to 
be a relationship between the layer for which business is written and the resulting 
development pattern. It is this relationship that we intend to analyze in this 
paper for both paid and reported losses. Applications to increased limits and 
excess of loss pricing are also noted. 

The protracted development of excess losses reflected in the RAA study 
suggests that the development is not only caused by late reported claims and 
increases in the average reported loss per claim but also by changes at successive 
maturities in the proportion of claims with losses which are large multiples of 
the average. Thus, the shape of the size of loss distribution changes at successive 
valuations. Accordingly, we requested and received from the Insurance Services 
Office various data comprising size of loss distributions at successive maturities. 
Specifically, included in the data were size of loss distributions of incurred 
losses, for policy year evaluations up to 99 months, or the latest evaluation, for 
policy years 1972 through 1982. This countrywide monoline data was provided 
separately for OL&T; M&C and Products with each size of loss distribution 
containing 118 intervals. 

These size of loss distributions combine data from business written at dif- 
ferent policy limits. Thus, the data includes losses censored at each of the policy 
limits. While no adjustments were made to this data, the implications of using 
combined limits data are discussed in Appendix B. 

I “Incurred” is used in this study to mean the same as reported, i.e., it excludes IBNR. 
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Finally, the treatment of allocated loss adjustment expense in these distri- 
butions should be mentioned. Losses were assigned to a given size of loss 
interval based on reported loss size (paid plus outstanding) excluding allocated 
loss adjustment expenses. The total allocated loss adjustment expense associated 
with the losses in each interval was given separately. As loss adjustment expense 
is treated in different ways in excess reinsurance, the treatment of these expenses 
will be discussed further in the context of deriving excess development factors. 

Size of loss distributions listing paid losses and outstanding losses separately, 
as well as paid and outstanding allocated loss adjustment expense separately, 
were also provided by IS0 for OL&T and M&C. The latest valuation available 
with this policy year data was 63 months. The RAA study provides reported 
loss development data for over twenty years of development for general liability 
and other lines on an accident year basis. 

2. INCURRED EXCESS LOSS DEVELOPMENT FACTORS 

In this section, we will display and discuss the incurred excess loss devel- 
opment factors derived from the size of loss distributions. 

In developing these factors, we adjusted the retentions for policy years prior 
to 1982 to recognize changing levels of average cost per occurrence. For policy 
year 1982, the retentions used were $10,000, $25,000, $50,000, $100,000, 
$250,000, $500,000 and $l,OOO,OOO. For prior policy years, these retentions 
were multiplied by relativities reflecting the average cost per occurrence for the 
given policy year relative to the average cost per occurrence for the 1982 year. 
(Although IS0 has used higher trend for higher layers in determining increased 
limits factors, we did not find support for this procedure in the data provided. 
Higher trend for higher layers would produce a trend towards smaller maximum 
likelihood estimates of the Pareto parameter, but this is not the case, as shown 
in Reichle and Yonkunas 121.) Thus, the relativity for 1982 was 1 .OO, while for 
each prior policy year N it was computed by multiplying the relativity for the 
policy year N + 1 by the ratio of the average cost per occurrence for year N to 
the average cost per occurrence for year N + 1. The ratio was based on the 
latest available pair of reports at the same stage of development, excluding 
claims closed without payment. As the resulting deflated retentions did not 
correspond with endpoints of the 118 size of loss intervals, the closest possible 
endpoints were selected. 
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Allocated loss adjustment expense (ALAE) is handled in different ways in 
excess reinsurance contracts. The three most common treatments are as follows: 

1) ALAE is added to the pure loss amount and the total is treated as one 
in determining coverage. 

2) ALAE is assigned to an excess layer on a pro rata basis. That is, the 
ratio that the excess portion of the pure loss bears to the total loss is 
applied to the total ALAE to determine the excess ALAE. 

3) ALAE is not included in the coverage. 

Separate sets of excess loss development factors were calculated to reflect 
each of the above treatments of ALAE. This was done, respectively, as follows: 

1) All ALAE on occurrences with pure loss greater than a given retention 
was included with the pure losses excess of that retention. 

2) The total ALAE on occurrences for which the pure loss exceeded a given 
retention was multiplied by the ratio of the pure excess losses to the 
ground up losses on these same occurrences to determine the excess 
ALAE. This excess ALAE was then included with the pure excess losses. 

3) No ALAE was added to the pure excess losses. 

A discussion of the degree of accuracy of these methods of assigning ALAE 
can be found in Appendix A. 

The factors shown in Exhibits 1 through 3 are dollar weighted averages of 
the factors by policy year. The retentions shown are retentions on policy year 
1982 level, although they actually correspond to different retentions for different 
policy years. By estimating the factor for the increase in average cost per 
occurrence from policy year 1982 to accident year 1987, for example, one could 
bring the retentions to accident year 1987 level. 

A review of the factors will show that the development is not materially 
affected after 39 months by the treatment of allocated loss adjustment expense. 
Therefore, future discussion will only deal with the case in which ALAE is 
included in the limit. This is probably the most common treatment in reinsur- 
ante, and it corresponds to the factors for excess losses plus ALAE. It is also 
clear from these factors that the development increases as the retention increases. 
Some exceptions to this trend occur at retentions of $500,000 and $l,OOO,OOO 
for individual stages of development. This may be due to the fact that there is 
a lesser amount of data at these retentions which increases the variability of the 
factors. Despite the exceptions, these higher retentions tend to have the largest 
development factors. 
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EXHIBIT 1 

OL&T BI DEVELOPMENT FACTORS 

Excess Losses Plus ALAE 

Retention 

$ -o- 
10,000 
25,000 
50,000 

100,000 
250,000 
500,000 

$1 ,ooo,ooo 

27-39 39-5 1 5 l-63 63-75 75-87 87-99 

1.2113 1.1178 1.0682 1.0437 1.0504 1.0094 
1.3356 1.1799 1.1056 1.0664 1.0710 1.0118 
1.3849 1.2200 1.1402 1.0877 1.0909 1.0146 
1.4055 1.2549 1.1764 1.1128 1.1134 1.0167 
1.4021 1.2942 1.2168 1.1506 1.1424 1.0235 
1.3512 1.3517 1.2963 1.2120 1.2015 1.0383 
1.2742 1.3940 1.4080 1.2787 1.2626 1.0613 
1.0688 1.3061 1.6135 1.3662 1.3534 1.1111 

Excess Losses Plus Pro Rata ALAE 

Retention 27-39 39-5 1 51-63 63-75 75-87 87-99 - - - 
$ -o- 1.2113 1.1178 1.0682 1.0437 1.0504 1.0094 

10,000 1.3437 1.1870 1.1111 1.0695 1.0729 1.0127 
25,000 1.3909 1.2291 1.1483 1.0926 1.0938 1.0160 
50,000 1.4098 1.2655 1.1860 1.1189 1.1172 1.0191 

100,000 1.4023 1.3070 1.2287 1.1573 1.1468 1.0264 
250,000 1.3563 1.3611 1.3150 1.2180 1.2077 1.0446 
500,000 1.2648 1.3957 1.4292 1.2838 1.2701 1.0684 

$1 ,ooo,ooo 1.0503 1.3501 1.6417 1.3731 1.3576 1.1182 

Excess Losses Only 

Retention 27-39 39-5 1 5 1-63 63-75 75-87 87-99 - - 
$ -o- 1.2064 1.1185 1.0702 1.0458 1.0504 1.0115 

10,000 1.3451 1.1940 1.1181 1.0735 1.0737 1.0155 
25,000 1.3955 
50,000 1.4148 

100,000 1.4107 
250,000 1.3689 
500,000 1.2753 

$1 ,oOO,oOO 1.0316 

.2389 

.2777 

.3191 

.3690 

.3981 

.3888 

.1578 1.0981 1.0943 

.1963 1.1249 1.1176 
_ 2404 1.1626 1.1474 
.3277 1.2199 1.2067 
.4340 1.2832 1.2663 
.6258 1.3629 1.3504 

.0193 

.0239 

.0319 

.0517 

.0740 

.1197 
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$ -o- 1.4959 1.2077 1.0865 
10,000 1.6246 1.2630 1.1100 
25,000 1.6816 1.2974 1.1316 
50,000 1.7201 1.3280 1.1509 

100,000 1.7528 1.3583 1.1771 

Retention 27-39 39-5 1 51-63 63-75 75-87 87-99 - ~ 

1.0297 1.0285 1.0210 
1.0401 1.0360 1.0267 
1.0513 1.0449 1.0319 
1.0642 1.0554 1.0382 
1.0788 1.0724 1.0491 

250,000 1.7481 1.3775 1.2214 1.1008 1.1194 1.0782 
500,000 1.6110 1.3845 1.2520 1.1340 1.1898 1.1192 

$1 ,ooo,ooo 1.4056 1.5619 1.2130 1.1942 1.4206 1.2383 

EXCESS DEVELOPMENT 

EXHIBIT 2 

M&C BI DEVELOPMENT FACTORS 

Excess Losses Plus ALAE 

Excess Losses Plus Pro Rata ALAE 

Retention 27-39 39-5 1 51-63 63-75 75-87 87-99 - - - - - 
$ -o- 1.4959 1.2077 1.0865 1.0297 1.0285 1.0210 

10,000 I .6326 1.2682 1.1128 1.0414 1.0375 1.0274 
25,000 1.6909 1.3044 1.1354 1.0531 1.0475 1.0332 
50,000 1.7297 1.3353 1.1556 1.0660 1.0594 1.0401 

100,000 1.7689 1.3654 1.1828 1.0811 1.0789 1.0525 
250,000 1.7652 1.3862 1.2306 1.1049 1.1267 1.0826 
500,000 1.6093 1.4190 1.2534 1.1372 1.1993 1.1264 

$1 ,ooo,ooo 1.4064 1.5551 1.1934 1.1901 1.4891 1.2350 

Excess Losses Only 

Retention 27-39 39-51 51-63 63-75 75-87 87-99 - - - - - 
$ -o- 1.4865 1.2039 1.0838 1.0273 1.0300 1.0216 

10,000 1.6294 1.2690 1.1136 1.0410 1.0410 1.0285 
25,000 1.6933 1.3090 1.1367 1.0533 1.0519 1.0349 
50,000 1.7368 1.3418 1.1587 1.0659 1.0649 1.0423 

100,000 1.7835 1.3723 1.1871 1.0814 1.0858 1.0551 
250,000 1.7878 1.3927 1.2346 1.1070 1.1300 1.0839 
500,000 1.6334 1.4367 1.2555 1.1372 1.2014 1.1250 

$1 ,ooo,ooo 1.4010 1.5516 1.1970 1.1846 1.5060 1.2276 
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EXHIBIT 3 

PRODUCTS BI DEVELOPMENT FACTORS 

Excess Losses Plus ALAE 

Retention 

$ -o- 1.6284 1.1974 1.1032 1.0545 1.0707 1.0332 
10,000 1.7891 1.2906 1.1276 1 SO632 1.0800 1.0293 
25,000 1.9089 1.3561 1.1501 1.0776 1.0932 1.0369 
50,000 1.9563 1.3844 1.1736 1.0928 1.1058 1.0405 

100,000 2.0207 1.4221 1.1993 1.1165 1.1165 1.0421 
250,000 2.1053 1.4790 1.2301 1.1453 1.0944 1.0440 
500,000 2.3936 1.5098 1.4073 1.1660 1.1180 0.9605 

$1 ,ooo,ooo 1.8026 1.5847 1.9141 1.2074 1.2271 0.7657 

27-39 39-51 5 l-63 63-75 - - 

Excess Losses Plus Pro Rata ALAE 

75-87 87-99 

Retention 27-39 39-5 1 5 l-63 63-75 75-87 87-99 

$ -o- 1.6284 1.1974 1.1032 1.0545 1.0707 1.0332 
10,000 1.7995 1.3065 1.1302 1.0653 1.0812 1.0311 
25,000 1.8940 1.3571 1.1538 1.0805 1.0939 1.0398 
50,000 1.9255 1.3847 1.1777 1.0961 1.1053 1.0443 

100,000 1.9550 1.4214 1.2041 1.1203 1.1135 1.0465 
250,000 1.9284 1.4790 1.2514 1.1494 1.0924 1.0302 
500,000 2.1034 1.5104 1.4556 1.1520 1.1271 0.9303 

$1 ,ooo,ooo 1.7797 1.5970 1.9188 1.2199 1.2676 0.7245 

Excess Losses Only 

Retention 27-39 39-51 5 l-63 63-75 75-87 87-99 

$ -o- 1.5635 1.1844 1.0958 1.0511 1.0636 1.0347 
10,000 1.7291 1.2966 1.1266 1.0663 1.0758 1.0403 
25,000 1.8118 1.3416 1.1505 1.0810 1.0885 1.0483 
50,000 1.8340 1.3699 1.1752 1.0969 1.0993 1.0536 

100,000 1.8344 1.4096 1.2034 1.1199 1.1081 1.0546 
250,000 1.7100 1.4690 1.2601 1.1528 1.0942 1.0252 
500,000 1.5748 1.5052 1.4556 1.1485 1.1267 0.9242 

$1 ,ooo,ooo 1.4736 1.5162 1.9311 1.2105 1.2719 0.7226 
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The excess development factors shown were all derived directly from the 
underlying size of loss distributions. We now use these factors to estimate 
curves which, in addition to smoothing the underlying factors, will generate 
excess development factors beyond 99 months as well as for retentions other 
than those previously treated. This would be necessary for computing devel- 
opment factors at policy year 1982 retentions that are equivalent to various 
retentions at accident year 1987 level, for example. 

For each development interval, a curve is estimated to fit the excess loss 
development factors as a function of retention. These curves are then fitted to 
a smoothly progressing series of curves. The procedure is done separately for 
each line of business. 

The curve selected to fit the excess development factors as a function of 
retention was y = ax” where x is the retention divided by $10,000. Thus, a is 
the value given by the curve for development excess of $10,000. 

The use of this function was motivated by the qualities of the single param- 
eter Pareto distribution used to model size of loss distributions. This is discussed 
further in Section 4. 

Separate curves of the form y = a,x” were fit to the excess loss development 
factors by retention for each interval of development of the form 27 to 27 + 
12n months, for IZ = 1, 2, 3, 4, 5 or 6. These intervals were used rather than 
individual successive intervals of development in order to stabilize the curve 
fitting process. Only retentions up to $250,000 were used, since the data for 
larger retentions had much less credibility. 

The a, and b, values were determined from the corresponding data points 
x,y by fitting the values of log y and log x to a least squares line which gives: 

log y = log a, + b, log x. 

Thus, values for a,, and b, were determined for each of the development 
intervals. These values were then separately fit to curves as a function of the 
stage of development. The method is illustrated in Exhibit 4 for the a, values 
for M&C BI. 

Thus, it is actually the values of aA - 1 that are fitted to the curve y = cxd 
to obtain the fitted values. Sherman [3] recommends this type of approach for 
fitting loss development factors. An exactly analogous procedure is used to 
obtain fitted b;’ values. The formulas chosen to determine the fitted values a;’ 
and b;’ through 99 months are used to produce the tail beyond 99 months. In 
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DEVELOPMENT 

INTERVAL 

FITTED 

b VALUES 

27- 39 .01000 

39- 51 .03986 

5l- 63 .05066 
63- 75 .03x73 
15% 87 .02528 
87- 99 .Ol616 
99-111 .OlO55 

Ill-123 .00712 
123-135 .00497 

135-147 .00357 
147-159 .00263 
159-171 .oo I99 
171-183 .00153 
183-195 .oo I20 
195-207 .00096 
207-219 .00077 
219-231 .00063 
23 l-243 .00052 
243-255 .00044 

255-267 .00037 
267-279 0003 1 
279-29 I .00027 
291-303 .00023 
303-3 15 .00020 
315-327 .00018 

327-339 .00015 
339-35 I ,000 I4 

35 l-363 .00012 

RETENTION 

10,000” 25.000 50,000 100,000 250,000 500,000 

I .36556 I.37813 1.38771 I .39736 1.41023 I .42004 

1.15206 I 19492 I .22839 .2628l I .30978 1 34447 
I .08024 I.13157 I.17202 I 21390 I.27158 1.31703 

1.05099 I .08X95 I.11858 .I4901 1.19051 1.22290 

I .03587 I .06014 I .07889 .09796 I .I2370 1 14356 

1.02691 I .04222 I .05396 I .06583 1.01873 1.09391 

I.021 IO 1.03102 I .03x59 .04622 I .05638 1.06414 

1.01710 1.02375 I .02X82 .03391 I .04068 1.04583 

I .42991 

I01420 

I 00573 

1.01882 

I 

I .02234 

.00645 I .00699 

I 

I .01203 

.00521 

I .01534 

I .00579 

I .01785 

I .00624 

I .00476 

I01035 

I 

1.01279 

.00524 I .00561 

I .01464 

I .00437 I 

I .00902 

.00477 

I .01086 

I .0050X 

I 

1.01226 

.00403 I .00437 

I .00795 

I .00463 

I 

I .00937 

00373 

I .01044 

I .00402 I .00424 

I .0070x 

I .00347 

1.00819 

I 

I .00903 

.00372 I .00390 

I 

I .00635 

.00323 

I .00723 

I .00345 

I .00790 

I .0036 I 

I .00302 I .00321 I .00335 
I .00284 I .00300 1.00312 

I .00267 I .00281 I .0029 I 
I .0025l I .00264 I .00273 

I .00237 I .00248 I .00257 

.00753 I .00824 I .0087X 

I .02586 

.0066X 

I .03054 

1.00726 

I .03409 

I .00770 

.00597 1.00646 I .00682 

I .02037 

.00538 

1.02372 

I .00579 

I .02625 

1.00609 

.004X9 I .00523 I .00548 

I .01649 

.00446 

I .Ol895 

1.00475 

I .02081 

I .00497 

.00409 I .00434 I .00452 

1.01365 

.00377 

1.01550 

1.00398 

1.01690 

I .00414 

.00349 I .00367 I .00181 

IO1152 

.00324 

I .01294 

I .00340 

1.01401 

I .00352 

.00302 1.003 I6 I .00327 

I .00987 

.00282 

1 .OlO98 

I .00295 

I.01182 

I .00304 

.00265 I .00276 I .002X4 

I .00857 I .00946 I01013 

.38420 

.36410 

.25617 

.I6378 

.I0623 

.07195 

.05100 

.03766 

.02X79 

.02267 

.01830 

.01509 

.01267 

.01080 

.00933 

.00X15 

.00719 

.00640 

.00574 
,005 I8 

.0047 1 

.00430 

.00395 

.00365 

.00338 

.00314 

.00293 

27- 39 I .33560 1.38490 1.40550 1.40210 1.35120 I 27420 .06880 
39- 51 1.17990 I .22000 I .25490 I .29420 1.35170 1.39400 .30610 
5l- 63 1.10560 1.14020 1.17640 I .21680 1.29630 I .40800 .61350 
63% 75 I .06640 I .0X770 1.11280 I.15060 1.21200 1.27870 .36620 
75- 87 I .07100 I .09090 1.11340 1.14240 I .20150 1.26260 .35340 
87- 99 I .Ol I80 I .01460 I .01670 I .02350 1.03830 1.06130 l.llllO 

27- 99 Actual 

27- 99 Fitted 

CUhlULATlVE COMPARlSON 

2.01300 2.31900 2.61400 2.97100 3.58000 4.28500 4.62700 
I.913000 2.24200 2.54100 2.88000 3.39900 3.85200 4.36600 

EXCESS DEVELOPMENT 

EXHIBIT 5 
OL&T BI EXCESS Loss & ALAE DEVELOPMENT FACTORS 

Fitted Factors 

* These equal the fitted n values. 
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EXHIBIT 6 
M&C BI EXCESS Loss & ALAE DEVELOPMENT FACTORS 

Fitted Factors 
RETENTION 

DEVELOPMENT FITTED 
INTERVAL b VALUES 10,000* 25,000 50,000 100,000 250,000 500,000 ___ - - - - ~ 

1.64008 1.67658 1.70472 1.73334 1.77190 1.80165 

I ,ooo,ooo 

21- 39 .02402 
39- 51 .027X4 
51- 63 .02666 
63- 75 .02266 
75s 87 .01867 
87- 99 .01534 
99-111 .Ol270 

Ill-123 .01063 
123-135 .00899 
135-147 .a0769 
147-159 .00665 
159-171 .00579 
171-183 .00509 
183-195 ,004s I 
195-207 .00402 
207-2 19 .00360 
219-231 .00325 
231-243 .00294 
243-255 .00267 
255-267 .00244 
267-279 .00224 
279-29 I .00206 
291-303 .00190 
303-3 15 .00176 
3 15-327 .oOl64 
327-339 .00153 
339-3s I .00142 
35 l-363 .00133 

1.25665 1.28913 1.31425 1.33986 
1.0948 I 1.12188 1.14280 I.16412 
1 .a1677 I .06874 I .08566 I.10285 
I .02704 I .04476 I .05836 1.07214 
I .Ol728 I .03168 I .04270 I .05385 
I.01183 1.02367 1.03272 1.04185 
I .00852 1.01839 1.02592 1.03351 

1.83189 

I .CQ638 
I .00493 
1.00390 
I.00315 
I .00259 
I.00216 
1.00182 
1.00155 
I .00134 
I.00116 
1.00102 
l.COO9Q 
I .00080 

.37449 1.40127 

.I9290 I.21515 

.I2599 I .I4382 

.09064 I. 10484 

.06876 1.08018 

.05405 I .06337 

.04362 I .05133 
1.01471 I.02106 I .02744 I .03594 .04242 
I.01204 I.01745 I .02289 1.03012 .03563 
I .01003 I .01470 I .01938 I .0256l .03034 
I .00849 I.01255 1.01662 1.02203 .02614 
1.00728 I.01084 I.01441 I.01915 .02276 
I .00630 I .00945 1.01261 I.01680 .01998 
I .00551 I .00832 I.01113 1.01486 .01769 
I .00486 I .00737 I .00989 1.01323 .01576 
I .00432 I .00658 1 .CQ885 1.01185 .01413 
I .00386 I.00591 I .00796 I .01068 .01274 
1.00347 1.00534 I .00720 I .00967 .01155 
1.00314 I .00484 1.00655 I .00880 .OlOSl 
1.00285 I .00441 I .00597 1.00804 .0096l 

.0007l I .00260 I .004@4 1.00547 1.00738 .00882 

.00064 1.00238 I.00371 I .00503 1.00679 1.00812 

.00057 I.00219 1.00342 1.00465 I.00627 1 JO750 

.00052 1.00202 1.00316 1.00430 1.00581 1.00695 

.00047 I.00187 1.00293 1.00399 1.00539 1.00646 

.OOO43 I.00174 1.00272 1.00371 1.00502 1.00602 

.00039 I.00161 I.00254 1.00347 1.00469 1.00562 

I .42848 
1.23781 
1.16193 
1.11923 
1.09173 
I .07277 
I.05911 
1.04894 
I.04117 
1.03510 
I .03027 
I .02637 
1.02317 
1.02052 
1.01830 
1.01642 
1.01481 
1.01342 
I .01223 
1.01118 
1.01026 
I .00945 
1.00873 
1.00809 
I .00752 
I .00701 
I .00655 

27- 39 I .62460 
39- 51 I .26300 
51- 63 1.11000 
63- 75 1.04010 
75- 87 I .03600 
87- 99 I .02670 

ACTUAL FACTORS 

1.68160 1.72010 1.75280 1.74610 
1.29740 I.32800 1.35830 I .37750 
I.13160 I.15090 1.17710 1.22140 
1.05130 I.06420 1.07880 l.l0@30 
I .04490 I .05540 I .07240 1. II940 
1.03190 I .03820 I.04910 1.07820 

CUMULATlVE COMPARISON 

1.61100 1.40560 
I .38450 1.56190 
1.25200 1.21300 
I.13400 1.19420 
I. 18980 1.42060 
I.11920 1.23830 

27- 99 Actual 2.52000 2.79900 3.06600 3.40100 3.90800 4.21700 5.59400 
27- 99 Fitted 2.46800 2.79300 3.06800 3.36900 3.81300 4.18800 4.59900 

* These equal the fitted a values 
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EXHIBIT 7 
PRODUCTS BI EXCESS Loss & ALAE DEVELOPMENT FACTORS 

Fitted Factors 
RETENTION 

DEVELOPMENT FITTED 

INTERVAL b VALUES 10,000* 25,000 50,000 100,000 250,000 500,000 
__ - ~ - - ____ 

1.80564 1.88815 1.95307 2.02022 2.11254 2.18517 

I ,ooo,ooo 

27- 39 .04877 

39- 51 .04373 

51- 63 .02738 

63- 75 .01617 

75- 87 .00997 

87- 99 .00650 
99-111 .C04!6 

111-123 .00318 
123-13.5 .00235 

135-147 .00179 

147-159 .00140 

159-171 .00111 

171-183 .OQO90 

183-195 .00074 
195-207 .00061 

207-219 .00052 

219-231 .OQO44 

23 l-243 HI038 

243-255 mo33 

255-267 .00028 

267-279 .00025 

279-291 .00022 

291-303 .00019 

303-3 15 .cQOl7 

3 15-327 .00015 

327-339 .coo14 

339-35 1 .00013 
35 I-363 .OOOl I 

1.27527 
I. 13277 

I .07914 

1.05298 
1.03817 

1.02893 
1.02275 

1.01841 

1.01523 
I .01283 

1.01097 

1 a0950 

1.00832 
I .00735 

I .00654 
I .00587 

I .00529 
1.00480 

I .00438 

1.00401 

I.00369 
1.00341 

1.00316 
I .00293 

I .00273 

I .0025S 
1.00239 

1 

1 

1 

I 

.32740 1.36825 1.41036 1.46802 1.51320 

16155 1.18381 1.20649 1.23715 I .26086 

.09525 I. 10759 1.12007 1.36791 1.14960 

.06265 I .07002 I .07744 1.08733 1.09487 

.04438 I .04909 I .05383 1.06013 I .06492 

.03314 I .03634 I .03954 I .04380 1.04703 

.02574 I .02801 I .03028 I .03329 1.03557 

.0206 I 1.02228 1.02395 1.02616 I .02784 

01690 1.01816 I .01943 1.02110 I .02237 
.01413 1.01511 1.01609 1.01739 1.01838 
.012Oa 1.01278 1.01356 1.01459 I .01537 
.01033 I .01096 1.01159 1.01242 1.01306 

.00900 I .00951 I .01003 1.01071 1.01123 

.0079 1 I .00834 I .00877 I .00934 1.00977 

.00702 1.00738 1.00774 I .0082 I l.OQ858 

.OQ627 1.00658 1.00688 I .00729 I .00759 

.00564 1 .cO590 1.00616 1.0065 I I .00677 
,005 IO I .00533 I.00556 I .00585 I .00608 
.00464 I .00484 I .00503 I .co530 1.00549 
.00424 I .00441 I .00459 1.00481 1.00499 
.00389 1.00404 I .00420 I .00440 1.00455 
.00358 I .00372 1.00385 I .00403 1.00417 
.0033 I 1.00343 1.00355 I .00371 I .00383 
.00307 1.00318 1.00329 1.00343 I .00354 
.00286 I .00296 I .00305 1.00318 I .00328 
.00267 I .00276 I .00284 I. 00296 1.00305 
00250 1.00258 I .00265 I .00276 1.00284 

I 

2.26030 

I .55977 

1.28502 
1.16256 

I 10246 
I .06973 

I .05027 

I .03786 

1.02951 
1.02364 

1.01937 
1.01616 

1.01369 

1.01175 

I .01020 
1.00894 

1.00790 

1.00704 
I.00631 

I .00569 

1.00516 

I .00470 
I .00430 

1.00395 

1.00365 
1.00338 

1.00313 

I .00292 

AC TUAL FA( 3TORS 

27- 39 
39- 51 

51- 63 

63- 75 
75- 87 
87- 99 

1.78910 1.90890 1.95630 2.02070 2.10530 2.39360 I .80260 
I .29060 I .35610 1.38440 1.42210 1.47900 1.50980 1.58470 

1.12670 1.15010 1.17360 1.19930 1.23010 1.40730 1.91410 
1.06320 1.07760 1.09280 1.11650 1.14530 1.16600 I .20740 

1 .OBOOO I .09320 I. 10580 1.11650 I .09440 l.Il800 1.22710 

1.02930 1.03690 1.04050 1.04210 1.04400 .96050 .76570 

th.fULATlVE COMPARISON 

27- 99 Actual 3.07700 3.63700 3.99600 4.47700 5.01200 6.36800 6.20300 
27- 99 Fitted 3.07700 3.53900 3.93300 4.37200 5.02800 5.58800 6.21100 

* These equal the fitted a values 
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As has been mentioned, the RAA Loss Development Study combines busi- 
ness written at various retentions. The subline mix underlying the “General 
Liability Excluding Asbestos” experience is also difficult to estimate. For these 
reasons, as well as the fact that the RAA experience is accident year, it is 
difficult to make a precise comparison of our results with those of the RAA. 
Nevertheless, Exhibit 8 shows a rough comparison based on the following 
assumptions: 

1) A retention of $250,000 is used to reflect the development characteristics 
of the various retentions and limits underlying the RAA experience. 

2) An equal weighting of the excess loss development factors for OL&T, 
M&C and Products is used to approximate the subline mix of the RAA 
data. 

3) A weighting of 25% of the accident year factor from 12 + 12k months 
to 12 + 12(k + 1) months and 75% of the accident year factor from 12 
+ 12(k + 1) months to 12 + 12(k + 2) months is used to estimate the 
policy year factor from 27 + 12k months to 27 + 12(k + 1) months. 

4) Dollar weighted factors are derived using the most recent five years of 
RAA experience. 

EXHIBIT 8 

DEVELOPMENT FACTOR COMPARISON 

Development 
Interval Fitted IS0 Data Excess $250,000 

RAA 
(as of 12184) 

27-39 1.765 1.801 
39-5 1 1.384 1.392 
5 l-63 1.234 1.242 
63-75 1.151 1.153 
75-87 1.101 1.097 
87-99 1.070 1.072 
99-l 11 1.051 1.067 

111-123 1.039 1.049 
123-135 1.031 1.038 
135-147 1.025 1.038 
147-159 1.021 1.030 
159-17 1 1.017 1.029 
171-183 1.015 1.036 
183-u1t. 1.105 1.228 
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The RAA data begins to show higher developments than the curves fitted 
to IS0 data after 99 months. This could be partially due to the effects of 
reinsurance coverage on an aggregate basis showing up later in the development. 
Also, the RAA study points out that unidentified longer tailed medical mal- 
practice losses are present in the RAA data, particularly in the older years. This 
could have a great effect on development at later valuations. It is also possible 
that the distribution of RAA retentions and limits results in larger development 
at later stages relative to earlier stages than the development associated with the 
fixed IS0 retention. Higher layer losses have more relative weight at later stages 
since they develop more slowly. The RAA data, unlike the IS0 data, includes 
excess and surplus lines and umbrella business written with large policy limits. 
Finally, as mentioned, the curves chosen to fit the IS0 data through 99 months 
are used to produce the tail beyond 99 months. The RAA development, despite 
its limitations, is based on actual data at all maturities. 

It is possible, if so desired, to calculate development factors by retention 
beyond 99 months that are more consistent with the RAA factors. One simple 
method is as follows. Suppose the OL&T, M&C, and Products factors for a 
retention of $250,000 are 1 + a, 1 + b and 1 + c, respectively, and the RAA 
factor is 1 + d. Solve for x such that (a + b + c)x + 3 = d and let 1 + ax, 
1 + bx and 1 + cx be the OL&T, M&C, and Products factors for a $250,000 
retention. (This is based on the approximation that the 3 sublines comprise 
equal portions of the RAA data.) Then use the fitted factors by subline for a 
retention of $10,000 to solve for the b value using y = ux’. Factors at other 
retentions can then be calculated. 

In calculating adjusted development factors at other retentions, this method 
assumes the fitted factors at the $10,000 retention are accurate. The lower 
development of the $10,000 retention, as well as the substantial amount of data 
available for determining factors at the $10,000 retention, support this as a 
reasonable method. This method operates identically for producing factors to 
ultimate as for age-to-age factors. 

Commercial Auto Liability 

The commercial auto liability study was based on a total of almost $4 billion 
in losses from accident years 1980, 1981 and 1982. These were the only years 
available to us and our study is of the only available development factors: 21 
to 33, 33 to 45, and 45 to 57 months. 
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The development factors for losses plus ALAE excess of various retentions 
(on an accident year 1982 level) are: 

Retention 21-33 33-45 45-57 21-57 33-57 

-o- 1.084 1.031 1.011 1.130 1.042 
10,000 1.137 1.044 1.012 1.201 1.057 
25,000 1.152 1.050 1.014 1.227 1.065 
50,000 1.159 1.053 1.016 1.240 1.070 

100,000 1.172 1.058 1.013 1.256 1.072 
250,000 1.177 1.030 1.043 1.264 1.074 
500,000 1.444 .949 1.168 1.601 1.108 

A pattern of increasing development with increasing retentions can be ob- 
served, especially in the 21-57 month factors. The factors for the $500,000 
retention have limited credibility. Due to the small change in development 
factors from one retention to another, no curve fitting was performed. 

The breakdown of premium by policy limits for accident year 1982 can be 
approximated as 5% at $100,000, 15% at $300,000, 60% at $500,000, and, 
20% at $750,000 or $l,OOO,OOO. 

Accident year development factors for excess losses based on a weighted 
average of RAA development data for the last five years as of 1213 1184 for auto 
liability are: 

12-24 24-36 36-48 48-60 60-72 72-84 84-ultimate - - 

1.804 1.204 1.093 1.062 1.052 1.026 1.076 

3. EXCESS PAID LOSS & ALAE DEVELOPMENT 

In this section, ratios of excess paid losses and ALAE to excess incurred 
losses and ALAE were determined at policy year valuations from 27 months to 
ultimate for OL&T BI and M&C BI. (Sufficient data was not available for 
Products BI.) These ratios of paid to reported, in conjunction with excess 
incurred loss and ALAE development, will produce excess paid loss and ALAE 
development factors. 

The procedure previously discussed which was used in developing excess 
incurred losses and ALAE by retention at various valuations was used for both 
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paid and reported losses and ALAE from 27 months to 63 months of develop- 
ment. The resulting ratios of paid to reported are shown in Exhibit 9 for policy 
year 1982 cost levels. 

EXHIBIT 9 

RATIO OF PAID TO REPORTED EXCESS Loss AND ALAE 

OL&T BI 

Retention 27 mo. 39 mo. 51 mo. 63 mo. 

$ 10,000 .1937 .3587 .5041 .6356 
25,000 .1616 .3217 .4634 .5964 
50,000 .1518 .3080 .4469 .5754 

100,000 .1585 .3210 .4519 .5838 
250,000 .1852 .3616 .4919 .5640 

$500,000 .2269 .3103 .5106 .4205 

M&C BI 

Retention 27 mo. 39 mo. 51 mo. 63 mo. 

$ 10,000 .1417 .2427 .4098 .5350 
25,000 .1425 .2358 .4069 .5294 
50,000 .1526 .2364 .4054 .5233 

100,000 .1751 .2473 .4142 .5279 
250,000 .2312 .2924 .4464 .5094 

$500,000 .2209 .3586 .4285 .4794 

It appears that the paid-to-reported ratios shown for excess loss and ALAE 
do not vary meaningfully as a function of the retention. Accordingly, we selected 
the paid-to-reported ratios for loss and ALAE excess of $25,000 as characteristic 
of the various retentions shown in producing a development pattern of paid-to- 
reported ratios. It should be noted that small losses exhibit significantly higher 
paid-to-reported ratios than those shown for the retentions above. 
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The following IS0 excess of $25,000 loss development data was available 
beyond 63 months for loss and ALAE combined. 

OL&T BI Ratios 

(1) 

Months 

63 
7.5 
87 
99 

(2) (3) (4) 
Paid Outstanding Ratio of (3) to 

to Reported to Reported Prior Value of (3) 

.5710 .4290 - 

.6809 .3191 .7438 

.7768 .2232 .6995 

.8717 .1283 .5748 

M&C BI Ratios 

(1) 

Months 

63 
75 
87 
99 

(2) (3) (4) 
Paid Outstanding Ratio of (3) to 

to Reported to Reported Prior Value of (3) 

.5660 .4340 - 

.7091 .2909 .6703 

.8019 .1981 .6810 

.8680 .1320 .6663 

In light of the column (4) ratios, and the fact that the outstanding to reported 
ratio will ultimately reach zero, a factor of .67 was selected judgmentally to be 
repeatedly applied to the outstanding to reported ratios at 63 months. The 
resulting patterns of paid to reported excess loss and ALAE are shown on 
Exhibit 10. 
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EXHIBIT 10 

IS0 EXCESS OF $25,000 Loss DEVELOPMENT DATA 
RATIOS OF PAID TO REPORTED EXCESS Loss AND ALAE 

OL&T BI M&C BI 

Valuation Ratio Valuation Ratio 

27 .1616 27 .1425 
39 .3217 39 .2358 
51 .4634 51 .4069 
63 .5964 63 .5294 
75 .7296 75 .6847 
87 .8188 87 .7887 
99 .8786 99 .8585 

111 .9187 111 .9052 
123 .9455 123 .9365 
135 .9635 135 .9574 
147 .9755 147 .9715 
159 .9836 159 .9809 
171 .9890 171 .9872 
183 .9926 183 .9914 
Ult. 1.0000 u1t. 1.0000 

Excess paid to reported ratios have been used thus far since they vary less 
by retention and valuation than paid development factors. Also, they allow for 
the use of the more extensive reported data in estimating paid development. 
Excess paid loss and ALAE development factors can be determined simply by 
multiplying each reported loss development factor linking two valuations by the 
quotient of the paid to reported ratios for the later and earlier valuations. For 
example, the estimated paid loss development factors for loss and ALAE excess 
of $100,000 are as follows (see Exhibits 5 and 6). 
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OL&T BI M&C BI 

27- 39 2.7817 
39- 51 1.8190 
51- 63 1.5623 
63- 75 1.4056 
75- 87 1.2322 
87- 99 1.1437 
99-111 1.0940 

111-123 1.0641 
123-135 1.0454 
135-147 1.0331 
147-159 1.0249 
159-171 1.0192 
171-183 1.0152 
183-Ult. 1.0872 

27- 39 
39- 51 
51- 63 
63- 75 
7% 87 
87- 99 
99-l 11 
11-123 
23-135 
35-147 
47-159 
59-171 
71-183 
83-Ult. 

2.8682 
2.3121 
1.5146 
1.4264 
1.2351 

1 

1 
1 

1 

.1470 

.0985 

.0692 

.0504 

.0379 

.0293 

.0232 

.0188 

.1152 

4. RELATION OF RESULTS TO THE SINGLE PARAMETER PARETO DISTRIBUTION 

It has been seen that excess loss development increases as the retention 
increases. A perspective on this relationship, and excess loss development in 
general, can be obtained by considering a model that illustrates the two influ- 
ences underlying loss development: 

1) The reporting pattern of claims over time. 
2) The changing characteristics of the size of loss distribution at successive 

reports. 
Without the latter influence, the development factors for losses excess of dif- 
ferent retentions would be identical. 

It has been noted, by both Philbrick [l] and Reichle and Yonkunas [2], that 
the single parameter Pareto distribution fits the tail of casualty loss distributions 
fairly well (at least if the interval of loss sizes is not too long), and that the 
parameter tends to decrease at successive stages of development. This motivated 
our use of the curve axb to fit loss development factors as a function of the 
retention x, as explained below. 

If a series of Pareto distributions with parameters that are decreasing and 
greater than one were to perfectly represent a series of actual tails of loss 
distributions at successive development stages, the excess loss development 
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factor from any stage m to stage m + R (n > 0) for retention x (where x is big 
enough to be included in the tail) would increase as x increased, since it equals 
axb for some fixed a > 0 and b > 0. The proof follows. 

If k is the lower bound of the tail which is represented by a Pareto distribution 
with parameter q, and x represents the size of loss divided by k, then the density 
function qxeCq+ ‘I, as x ranges from one to infinity, represents the “normalized” 
(i.e., divided by k) loss distribution. The probability of a loss greater than k 
being between ak and bk equals Jtqx -(q+l)dx and the losses excess of a retention 
ck are nkJc”(x - c)qx -(q+‘)dx where IZ is the number of losses greater than k. 
If the distribution of losses greater than k at ith report is represented by a Pareto 
with parameter qi, and at f” report (j > i) by a Pareto with parameter qi, and 
the numbers of losses greater than k at i” and j” report are iZi and nj, then the 
development factor for losses excess of ck from ith to j’” report equals 

3 qi-1 
t > n; qj-1 

(y?-4, 

Therefore, if d is the development factor from ith to jth report for losses excess 
of k, then dyqfp4’ is the development factor for losses excess of yk (for y > 1). 

The development factor for losses excess of X, where x > k, is thus 

which equals 
d d -x-‘J, and - 

k4’ - 4, kqi-4, > 0 and qi - qj > 0. 

This completes the proof. 

The term z in the expression 
I 

ment due to additional reportings greater than k. The term (qi - l)/(qj - 1) 
represents the development arising from the change in the average excess loss 
above ck for occurrences greater than ck. The term cq’-% reflects the development 
arising from the increased proportion of occurrences greater than k which are 
also greater than ck, resulting from the changing shape of the distribution. It 
can be seen that cqi-% is the only term affected by a change in the retention. 

As an example, let: 

k = the lower bound of the tail = 25,000; 
x = the primary retention = 100,000; 

ql = the Pareto parameter for 1st report tail losses = 1.75; 
qIo = the Pareto parameter for 10th report tail losses = 1.25; and, 

d = the 1st to 10th development factor for losses excess of $25,000 = 2.5. 
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Then the 1st to 10th development factor for losses excess of 100,000 is given 
by the formula 

d : 4’-q’ y 0 i.e., 2.5 (4).5 = 5.0. 

Philbrick [l] and Reiche and Yonkunas [2] also noted that when a Pareto is 
fitted to a distribution of casualty losses greater than some amount k, the tail of 
the Pareto is thicker than the tail of the empirical loss distribution at very large 
loss sizes. Nevertheless, the effect of this error is lessened in using a ratio to 
estimate a development factor if the error is similar in the numerator and 
denominator. 

5. DEVELOPMENT FACTORS BY LAYER, EXCESS LOSS RATIOS, AND INCREASED 

LIMITS FACTORS 

The following method is used to produce development factors by layer, 
where the layer of losses from a to b is defined as the total of the portions 
between a and b of every loss. By applying the excess age-to-ultimate loss 
development factors to the latest available excess losses for each retention for 
each policy year, we get projected ultimate excess losses for each retention for 
each policy year. We also have “ground up” development factors, based on the 
same data, with which we project ultimate ground up losses for each policy 
year. The ground up age-to-ultimate factors are derived by fitting a curve 1 + 
ax” to the factors through 99 months. 

By taking weighted averages of the ratios of ultimate excess losses to 
ultimate ground up losses for all policy years for the retentions (in 000’s) 10, 
25, 50, 100, 250, 500, and 1000, we get ratios that we callfllO),f(25),fi50), 
f(lOO), fl250), f(500) and fl1000). An exponential curve could then be fit 
between any two successive data points to get intermediate values off(x). This 
curve gives estimates of the ratios of ultimate excess losses to ultimate ground 
up losses for each retention. In order to produce the nth-to-ultimate development 
factor for the layer from c to d, we first divide the curve values f(c) and fld) 
by the n* to ultimate development factors for losses excess of c and d, respec- 
tively, to get estimates ec,n and ed, ,, of the ratios of ll* report excess losses, for 
retentions c and d, to ultimate ground up losses. 

We then let the development from nfh-to-ultimate for the layer from c to d 
equal (f(c) - f(d)3 f Ccn - ed,n)r i.e., the estimated ultimate excess losses 
in the layer divided by the R* report excess losses in the layer. The #’ to 
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(n + l)Ih development factor for a layer is produced by dividing the nth to 
ultimate factor by the (n + l)‘h-to-ultimate factor. 

The values off(x) (X is in $000’s) given by the data and derived development 
factors for losses and ALAE are: 

X10) 
f(25) 
fl50) 
f(lW 
f(250) 
fww 
.f( 1,000) 

OL&T BI M&C BI Products BI 

.677 ,802 .835 

.579 .755 .735 
,484 .674 .617 
.372 .543 .463 
.240 .319 ,243 
.144 .148 .I25 
.076 .041 .032 

The OL&T development factors for 27 months to ultimate for retentions of (in 
000’s) 50, 100, 250,500 and 1,000 are 3.150, 3.668,4.485, 5.223, and 6.081, 
respectively. The factors for the layers 50-100, 50-250, 50-500, and 50-l ,000, 
using the above method, follow: 

Layer (in $000’s) 

50-l ,000 
50- 500 
50- 250 
50- 100 

Method and Development Factor 

(.484 - ,076) + ((.484 + 3.150) - (.076 + 6.081)) = 2.891 
(.484 - .144) + ((.484 + 3.150) - (.144 + 5.223)) = 2.697 
(.484 - .240) f ((.484 + 3.150) - (.240 + 4.485)) = 2.437 
(.484 - .372) + ((.484 f 3.150) - (.372 + 3.668)) = 2.144 

As with our unlimited development factors by retention, these factors for 
layers are somewhat lower than the factors would be for losses uncensored by 
policy limits. (See Appendix B.) Since about 80% of the losses are not censored 
by policy limits below $500,000, the factors produced by the above method are 
more accurate for layers whose upper bound does not exceed $500,000. The 
techniques of producing different development factors by retention or layer and 
projecting development to ultimate could be useful in estimating ultimate un- 
censored excess loss ratios, which are important in reinsurance pricing. The 
techniques could also be used in producing increased limits factors, which are 
an important part of primary insurance pricing. The actual development factors 
and data from this study concerning excess losses by layer could provide 
estimates of increased limits factors up to $100,000 or possibly $250,000 limits, 
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since the policy limits in effect have little effect on the layer up to $100,000, 
or even $250,000. We do not present such estimates, however. 

6. SUMMARY 

The results that have been produced indicate clearly that loss and ALAE 
development varies significantly by retention. Accordingly, pricing and reserv- 
ing estimates incorporating development factors may be substantially in error if 
this is not taken into account. As this applies to paid as well as reported loss 
development, recognition of retention is also a major factor in estimating dis- 
counted losses using paid development factors. 

The protracted development of excess losses and the data limitations inherent 
in this study suggest a need for further study of development factors beyond 99 
months. It would also be beneficial to review development by retention for other 
lines of business such as medical malpractice and workers’ compensation.* 

The results are closely related to the decrease in the Pareto parameter in 
successive reports and its relationship to loss development by retention. The 
principles employed would have relevance for other lines for which the Pareto 
provides a good fit. 

With sufficient data, it would be very worthwhile to study excess develop- 
ment for uncensored losses and for higher retentions than those examined here. 

2 Study of New York data appears in Taylor and Lattanzio [4]. 
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APPENDIX A 

TREATMENT OF ALAE IN ESTIMATING DEVELOPMENT FACTORS 

The type of occurrence excess coverage that is most common in casualty 
treaty reinsurance covers the amount of the loss and allocated loss adjustment 
expense combined in excess of the retention for each occurrence. The method 
of estimating the development factors for this type of reinsurance, however, 
was based on the development of the amount of the loss and allocated loss 
adjustment expense combined in excess of the retention for only those occur- 
rences for which the pure loss exceeded the retention. 

The error involved in using this approach is relatively small, since the 
amount in excess of any retention that is produced by the losses plus ALAE for 
all occurrences for which the losses alone are less than the retention is small 
compared to the total losses plus ALAE in excess of the retention. In other 
words, only a small portion of the excess is missing from our development 
factors. 

Suppose, for example, that for every occurrence, the ratio of the loss to the 
loss plus ALAE is a. If the tail of the “normalized” (see Section 4) loss 
distribution is represented by the Pareto density function qx--(q+l), with q > 1, 
then the portion of the total losses plus ALAE in excess of the retention ~0 that 
is produced by occurrences for which the pure loss is greater than the retention 
equals 

1 q++‘) (; - x0) dx + I-0 qx-(q+cj (a - x0) dx, 

which equals (q + a - qa)l(a’-q). If q = 1.5 and a = .X7, for example, then 
the above expression equals .993. 

If q = 1.5 and a = .87 at first report and q = 1.3 and a = .85 at ultimate 
report, then the expression changes from ,993 to ,995. In this case, the estimate 
of the first to ultimate development factor would be 1.002 times the development 
that would be computed using a precise treatment of ALAE. 

This problem does not apply to the development factors for losses plus 
prorated ALAE, since occurrences with pure losses below the retention are not 
covered by reinsurance arrangements with prorated ALAE. Those factors in- 
volve a different estimate-use of losses excess of a retention divided by total 
losses for the occurrences greater than the retention-as a multiplier for the 
ALAE. To be precise, the ALAE for each occurrence should be multiplied by 
the loss excess of the retention divided by the total loss for that occurrence. 
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The distortion in development factors should be small, even in the product of 
all the development factors. For each loss and corresponding ALAE and each 
retention, prorated ALAE = (excess loss + loss) ALAE, so prorated ALAE + 
excess loss = ALAE + loss for each loss. Since the data indicated that ALAE 
+ loss is about .I5 on the average, whatever distortion there is in the estimate 
of the prorated ALAE would cause less than .15 times as much distortion in 
losses plus prorated ALAE. 
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APPENDIX B 

EFFECT OF POLICY LIMITS ON DEVELOPMENT FACTORS 

The general liability sublines studied had policy limits distributions based 
on policy year 1982 and policy year 1983 data. 

Distribution of Premium 

Policy Limit 
(in $000’s) OL&T BI M&C BI Products BI 

25 .0043 .0034 .0018 
50 .0069 .0031 .0042 

100 .0366 .0347 .0248 
200 .0022 .OOlO . 0000 
250 .0013 .0032 .0025 
300 .1351 .1367 .1792 
500 .4161 .5334 .6464 

1,000 .3609 .2464 .1354 
1,500 .0043 .0027 .0005 
2,000 .0191 .0136 .0019 
3,000 .0132 .0218 .0033 
Total 1 .oooo 1 .oooo 1 .oooo 

As an illustration of the approximate effect of these policy limits on excess 
loss development factors, consider the following example of their effect on an 
unlimited (no policy limits) loss distribution. Let $10,000 be the lower bound 
of a tail of unlimited losses for which the “normalized’ (divided by 10,000) 
loss distribution is represented by the Pareto density function qx-@+l). 

Let q = 1.6 for a policy year as of 27 months and 1.3 for a policy year at 
ultimate development, and let a represent the development factor from 27 
months to ultimate for losses excess of $10,000. 

Since b’leq’ f (q - 1) is the formula for the losses excess of bk, normalized 
at k and divided by the number of occurrences greater than k, the unlimited 
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losses excess of $10,000, $100,000, $300,000, $500,000 and $1,000,000 at 27 
months and at ultimate development can be represented as: 

Retention Excess at 27 months 

$ 10,000 x 
100,000 .251x 
300,000 .130x 
500,000 .096x 

$1 ,ooo,ooo .063x 

Excess at Ultimate 

ax 
.501UX 
.36Oax 
.309ax 
,251~~ 

From this, the excess losses can be divided into the following layers, by 
subtracting from each excess amount the amount directly below it: 

Layers (in $000’s) 

100-300 
300-500 
500-1000 
over 1000 

Amount at 27 months 

.121x 

.034x 

.033x 

.063x 

Amount at Ultimate 

.141ax 

.051ux 

.058ax 

.251ax 

Now suppose that the policy limits earned premium distribution corresponding 
to the time period of the losses is 20% at $300,000 (per occurrence), 60% at 
$500,000, and 20% at $1 ,OOO,OOO, instead of the losses being unlimited. 

The development of the unlimited losses excess of $100,000 from 27 months 
to ultimate = (.501 ax) + (.25 1 x) = 1.996 a, whereas the development of the 
limited losses = (.141 ax + .8(.051 ax) + .2(.058 ax)) + (.121x + .8(.034x) 
+ .2(.033x)) = 1.252a. This is a big difference, but we should consider that 
the development factor for the losses limited only by $500,000 limits = (. 141~7~ 
+ .051ax) + (.121x + .034x) = 1.239a and that the development factor for 
the losses limited only by $l,OOO,OOO limits = (.141au + .051ax + .058ax) 
+ (.121x + .034x + .033x) = 1.330a. Thus, the limited development is not 
that different from the development of losses limited only at $500,000 or only 
at $l,OOO,OOO. If a = 3, which is not unreasonable, then 1.252a = 3.756, 
1.239a = 3.717, and 1.330a = 3.990. For retentions less than $100,000, the 
difference between these types of development factors is less, since the portion 
below $100,000 is not affected by the limits. Similarly, the development factors 
for losses excess of $300,000 from 27 months to ultimate for unlimited losses, 
limited losses, losses limited only at $500,000 and losses limited only at 
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$l,OOO,OOO are 2.769~1, 1.559~1, 1.500q and 1.627a, respectively. The devel- 
opment factors for losses excess of $500,000 are the same for the given policy 
limit distribution as for losses limited only at $1 ,OOO,OOO. 

For simplicity, we have considered only one policy year rather than a series 
of policy years with inflation operating on both average cost per occurrence and 
the average policy limit. But it seems probable that the development factors for 
retentions up to amounts corresponding to $500,000 on a 1982 cost level, using 
actual limited losses for any policy year prior to 1982, are similar to development 
factors for losses limited only by any single limit which is between amounts 
corresponding to $500,000 and $l,OOO,OOO on a policy year 1982 level. The 
development factors for limited losses are considerably different from unlimited 
development factors, but only a small portion of premium is written at policy 
limits over $l,OOO,OOO, so development factors for limited losses are very 
useful. Also, the substantial disparity between limited and unlimited losses 
would be expected given the excessive thickness of the Pareto tail at extremely 
large loss amounts. 
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DISCUSSION BY GEORGE M. LEVINE 

1. INTRODUCTION 

Messrs. Pinto and Gogol have written a paper rich with practical techniques 
for determining excess loss development by layer of loss for liability lines. I 
have used their novel approach for analyzing reporting patterns by liability 
layer, and had success in tailoring their patterns to determine expected devel- 
opment for various reinsurance programs. Before presenting my results, I will 
summarize their technique and present some goodness of fit tests comparing the 
actual data to their fitted curves. In addition, some limitations of the use of 
their method will be offered. 

2. SUMMARY OF PINTOkOGOL TECHNIQUE 

The authors begin by describing the lack of available published information 
by layer for reported and paid excess loss development. Although the Reinsur- 
ante Association of America (RAA) publishes accident year reported loss de- 
velopment studies every two years, and the Insurance Services Office (ISO) 
annually distributes policy year reported loss development patterns, empirical 
loss detail by layer is generally not available. This lack of published data dictates 
the use of theoretical loss distributions (like the Pareto distribution). The Pinto/ 
Gogol technique, although theoretically supported by the properties of the Pareto 
distribution, has the advantage of being applicable to empirical data. 

From IS0 excess loss development data by subline, Pinto/Gogol smooth the 
data two ways-by liability limit (retention), and by development interval. From 
the “Actual Factors” matrices that they present in Exhibits 1 through 3, they 
initially smooth the data horizontally by retention, for the monthly intervals 27- 
99, 39-99, 51-99, 63-99, 75-99, and X7-99. The curve selected to fit the data 
is y = axb, where x is the retention divided by $10,000. Next, the authors 
convert the factors by retention back to the report-to-report intervals (27-39, 
39-5 1, etc.), and smooth the data vertically (by retention) using a normal power 
approximation developed by Sherman [I]. 

By fitting the curve CLX~ to the excess loss development within each devel- 
opment interval by layer, the authors have provided an easy method to determine 
development for layers of retention not published (for example, $75,000 and 
$150,000). In Section 4, the authors explain that the motivation of the selection 
of the curve axb to fit loss development factors was the single parameter Pareto 
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distribution’s good fit to the tail of casualty loss distributions. Another interesting 
parallel is the technique that Rosenberg and Halpert applied regarding their 
analysis of methods to adjust historical loss distributions for trend [2]. In their 
research, Rosenberg and Halpert chose the model tr(x,) = u.a$ over two other 
models because that model provided the best fit to the trend data via a least 
squares regression test. 

The parallel use of this same curve to fit actual liability data for trend and 
loss development is noteworthy. After rereading the sections of Rosenberg and 
Halpert regarding their fitting techniques of their model to trend, one can 
understand the relevancy of their comments regarding the function ax: for trend 
to Pinto and Gogol’s comments regarding aw” for loss development. By setting 
b > 0, Rosenberg and Halpert have allowed trend to increase by claim size, 
and PintoiGogol have allowed excess loss development to increase by size of 
retention. Although much discussion has centered around the alleged “overlap” 
of trend and loss development, the use (and we will see later, the good fit) of 
the same theoretical function in both instances illustrates the similarity of the 
forces impacting trend and loss development. 

Through the application of the Sherman normal power curve approximation, 
tail factors for development beyond 99 months have been determined. The 
authors offer several reasons why the fitted IS0 tails are faster than the devel- 
opment based on RAA data. In addition, Pinto/Gogol offer a method to use the 
RAA development with the IS0 fitted patterns, for development beyond 99 
months, if the actuary believes that the RAA development is more appropriate. 

3. GOODNESS OF FIT TESTS 

The authors’ intent is to find a loss distribution which will fit the three actual 
IS0 loss development data matrices reasonably well. In their smoothing tech- 
nique, cumulative intervals (27-99, 39-99, etc.) are used by the authors for 
smoothing development by retention. Additionally, Pinto/Gogol present the 
cumulative comparison of actual and fitted factors, for the 27-99 interval, 
showing the apparent similarity of those cumulative factors. For that reason, 
the goodness of fit tests are performed for the development of all six cumulative 
intervals. 

The goodness of fit tests are applied to the actual and fitted cumulative data 
on Exhibit 1, Sheets 2-4, for OL&T BI, M&C BI, and Products BI, respec- 
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tively. The formula for percentage error is as follows: 

Fitted Cumulative Factor 
Actual Cumulative Factor 

(3.1) 

For each subline, three groups of mean percentage errors are calculated and 
shown on Exhibit 1, Sheet 1: 

+ by development interval, retention layers excess of $10,000 to excess of 
$250,000; 

* by development interval, retention layers excess of $10,000 to excess of 
$1 ,OOO,OOO; and, 

* by retention, all development intervals (27-99 to 87-99). 

Restated, the goodness of fit tests are performed by row (development 
interval) twice, for the $10,000 to $250,000 retention columns and $10,000 to 
$l,OOO,OOO retention columns; and by column (retention) once, for all devel- 
opment intervals. Also, mean percentage errors are calculated for the entire data 
matrices (all development intervals and retentions), to provide an indicator of 
the goodness of fit for the overall technique. 

The conclusions from the goodness of fit tests are as follows: 

* Excluding the excess development for retentions greater than $250,000, 
the mean percentage errors for OL&T BI, M&C BI, and Products BI are 
-1.7%, -0.4%, and -0.6%, respectively. Therefore, the fitted cumu- 
lative development errors are at most 2% below the actual cumulative 
development errors, averaged over all retentions and development inter- 
vals. 

* For every subline, the mean absolute percentage errors (MAPE) by reten- 
tion (columns) exceed 1.5% for the following areas: 
OL&T BI: $10,000 and $250,000 retentions 
M&C BI: $10,000 and $250,000 retentions 
Products BI: $100,000 retention 

* For OL&T and M&C, the MAPEs for $500,000 and $l,OOO,OOO reten- 
tions are between 8% and 27%. The Products MAPE for the $l,OOO,OOO 
retention is 8% in contrast to the other retentions’ MAPEs of less than 
2%. These observations show that the Sherman normal power approxi- 
mation works reasonably well for the development through $250,000 
retentions, but is inconsistent for retentions in excess of $250,000. 

* The fit of the actual data by development interval (row) for retention 
intervals $10,000 through $250,000 is fine for M&C and Products, with 
all MAPEs below 1.5%. 
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EXHIBIT 1 
SHEET 1 

GOODNESS OF FIT TESTS 
MEAN PERCENTAGE ERRORS 

OL&T BI EXCESS Loss & ALAE DEVELOPMENT FACTORS 

By Development interval 

Retentmn Lavera 

Developmenr 10.000 to 10,000 to 27-99 to 
interval 25O.OiX l,ooo,ooo Retenua” 87-99 

27-99 -4 0% -5.1% 10,000 -3.7% 
39-99 -4.8% - 10.4% 25X00 -0.8% 
51-519 -2.4% -8.9% 50,000 0.2% 
63-99 - 1.3% -5 5% 100.000 -0.3% 
75-99 -0 8% -3.6% 250,000 -3.8% 
87-99 3.2% 2.7% 5OiwM - 10.0% 
All -I .7% -5.1% I ,oowml -17.4% 

M&C BI EXCESS Loss & ALAE DEVELOPMENT FACTORS 

By Developmem Interval By Retentmn 

Retenuon Layers 

Development 
Interval 

10.000 to 
250.000 

10,000 1” 
1.omm 

27.99 
39-99 
5 l-99 
63-99 
75-99 
87-99 
All 

-I I% 
-I I% 
-0 3% 

0.9% -5.3% 
-0.8% -6 4% 
-0 2% 
-0.4% 

-3.4% 
-7.1% 
-6.4% 

-2 3% 
-4.5% 

27-99 to 
RetentlOn 87-99 

10,000 -1.9% 
25.003 0.4% 
5o.ooo I .2% 

100,000 0 7% 
250.000 -2 5% 
5Oil.Oal -7 9% 

I .ooo.ooo -26.8% 

PRODUCTS BI EXCESS Loss & ALAE DEVELOPMENT FACTORS 

By Development Interval 

Retentmn Layers 

By Retentmn 

I”&i?l 25O.OCQ I ,m.m RdC”,lO” 87-99 

27-99 -1.390 -2.6% lO.CKO -0 3% 
39-99 -1.3% -4 3% 25 .OOO -0.9% 
51-99 -0.1% -3 3% 5O.ooO - I .O% 
63-99 -0.8% 3.5% loo.oiM -1.6% 
75-99 -I .5% 3.8% 2so.Ool 0.6% 
87-99 I .O% 8.0% 5vO,ca I.090 
All -0.6% 0.8% 1.oco.m 7.9% 

27-99 to 
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Development 
Interval 

27-99 
39-99 
51-99 
63-99 
75-99 
87-99 

Development 
lntewal 

27-99 
39-99 
51-99 
63-99 
75-99 
87-99 

27-99 
39-99 
51-99 
63-99 
75-99 
87-99 

All Intervals Mean 
Percentage Errors: 

OL&T BI EXCESS Loss & ALAE DEVELOPMENT FACTORS 

10,OiYJ 25,ooo 

I 89995 2.24203 
1.39133 I .626X6 
I .20769 I 36148 
I II799 I.20318 
I .a6375 I. IO490 
IO2691 I .04222 

Fated Cumulative Factors 
R~t~~tl0” 

50.003 100,ooo 25O,ccAl 5oo.caI I .ooo,ooo 

2.54120 2.88023 3 39887 3.85234 4.36635 
I.83122 2.06120 2 41015 2.71284 3.05358 
I .49075 I 63223 I84012 2.01478 2.20603 
I.27195 I .34462 I.44711 I .52979 I61720 
I.13711 1.17024 121554 I .25095 I .28741 
I 05396 I .06583 IO8173 I .09391 I. IO623 

Actual Cumulaove Factora 
R~klltlOll 

iO.OlM 2s.ooo 

2.01337 2.31925 
I .50747 I 67467 
I 27762 I 37268 
1.1555’) I .20390 
I .08364 I 10683 
101180 1.01460 

50,nlx lOO.ooO 250,ooO 5NKKJo I ,ooo,cca 

2 61370 2 97050 3.57977 4.28524 4.62738 
I .X5962 2.11861 2.64932 3.36309 4.32951 
1.4818’) I .63700 I .95999 2.41254 3 31484 
I .25968 I 34533 I51199 1.71345 2.05444 
I 13199 1.16925 I .24752 I .34oou I .50376 
IO1670 I .02350 I .03830 I06130 I11110 

Percentage Errors Mean Percentage Errors 
Retention For Retentions: 

10,000 25,MKJ 50,ocQ 100,CGC 250,t’hXl 500,cKK 
--__ ~ - - 

-56% -3.3% -2.8% 
-7 7% -2.9% -1.5% 
-5.5% -0.8% 0.6% 

-3.0% -5.1% -IO I% 
-2.7% -9.0% - 19.3% 
-0.3% -6.1% - 16.5% 
-“.I% -4 3% - 10.7% -3.3% -0 1% I .O% 

-I 8% -0.2% 0.5% 
1.5% 2.7% 3 7% 

-~ 

-3.7% -0 8% 0.2% -0 3% -3 8% - 10.0% -174% -1.7% -5.1% 

0 I% -2.6% -6.6% 
4.1% 4.2% 3.1% 

I ,Kwm 250,“OO I ,ooo,~ 
__ __ - 

-5.6% -4 0% -5 1% 
-29.5% -4.8% - 10.4% 
-33.4% -2.4% -8.9% 
-21.3% -1.3% -5.5% 
-144% -0 8% -3.6% 

-0 4% 3.2% 2.7% 
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M&C BI EXCESS Loss & ALAE DEVELOPMENT FACTORS 

Fitted Cumulative Faclors 
Retention 

Development 
10.000 25,ooo 

2.46773 2.79319 
I 50464 1.66601 
1.19734 I 29235 
I .09365 I 15195 
I .04479 I .07786 
I.01728 1.03168 

50,KO IO,Mw) 

3.06752 3.36890 
I .79943 I .94359 
I.36917 I .45059 
I. 19808 1.24608 
1.10355 I. I2987 
I XI4270 I .053x5 

Actual Cumulativr 
Retention 

3.81312 4.18770 4.59910 
2. IS200 2.32437 2.51057 
1.56567 I .65876 I .75739 
1.31249 1.36506 1.41976 
1.16563 I. 19343 I.22190 
I.06876 1.08018 1.09173 

27-99 
39-99 
51-99 
63-99 
75-99 
87-99 

lO,oxJ 25,cal 

2.51971 2.79852 
1.55097 I .66420 I .78220 

l.lMU6 

50,ooo lao,O@l 

I. 94054 

I.21371 

3.06557 3.40139 

1.34202 

I .09572 

I .42866 

I.12505 
1.03820 I a910 

250,MKl 500,m 

2.23533 

1.32860 

I .~,ooo 

3.90759 
2.61753 

1.51006 

4.21684 
3.98005 

2.10075 

5.59436 

I .62275 

I .20694 

I.89060 

1.33162 

2.54821 

1.75913 
I .07820 1.11920 I .23830 

27-99 
39-99 
51-99 
63-99 
75-99 
87-99 

I .22801 I .28272 
I.10631 I.13355 
I .06366 I .07823 
I .02670 I.03190 

Development 
Interval 

-3.4% 
-7.7% 
-6 4% 
-5.3% 
-6.4% 
-2.3% 

10,ooo to 
25O,O@!l 

-1.1% 
-1.1% 
-0.3% 

0.9% 
-0.8% 
-0.2% 

10,000 

-2 1% 
-3.0% 

27-99 
39-99 

-0.2% 0.1% -1.0% -2.4% -0.7% -17.8% 
0 I% I 0% 0.2% -3.7% -11.2% -36.9% 
0.8% 2.0% I .5% -3.5% - 12.3% -31.0% 
I .6% 2.7% 2.7% -I .2% -9 6% -32.4% 

-0 0% 0.7% 0.4% -3.4% -10.4% -30.5% 

5 l-99 -2.5% 
63-99 -1.1% 
75-99 
87-99 

-1.8% 
-0.9% -0.0% 0.4% 0.5% -0.9% -3.5% -11.8% 

____ - __ 

-19% 0.4% I .2% 0.7% -2.5% -7.9% -26.8% -0.4% -4.5% 
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PRODUCTS-BI EXCESS Loss & ALAE DEVELOPMENT FACTORS 

Fitted Cumulatwe Factors 
Retention 

10.m 

27-99 
39-99 
5 IL99 
63-99 
75-99 
87-99 

Development 
Interval 

3 07710 3.53866 
1.70416 1.87414 
1.33631 I41189 
I 17969 I 21552 
1.09317 I.10981 
1.03817 I .04438 

lO.WO 25.ow 

27-99 
39-99 
51-99 
63-99 
75-99 
87-99 

3.07724 3 63668 
I 72CQO I 90512 
1.33271 1.40485 
1.18190 I22150 
I.11164 I 13354 
I 02930 I .03690 

Development 
Interval 

27-99 
39-W 
5 l-99 
63-99 
75-99 
87-99 

All Intervals Mean 
Percentage Errors: 

25,000 

10,ooO 25,Ocnl 
-~ 

-0.0% -2 7% 
-0.9% -1.6% 

0.3% 0.5% 
-0.2% -0.5% 
-1.7% -2.1% 

0.9% 0.7% 0.8% 1.1% 
-__ __- 

-0.3% -0.9% 

50,wO Iw,ooo 250,OcQ 5co.ml I .ooo,m 

3.93323 4.37181 5.M759 5.58824 6.21139 
2 01387 2.16403 2.37988 2.55735 2.74804 
1.47186 I .53438 I.62115 I.69003 1.76182 
I .24332 1.27177 I .31039 I .34037 I 37105 
I 12255 1.13544 1.15271 I. 16595 I 17933 
I .MW9 1.05383 I.06013 I.36492 1.06973 

Actual Cumulative Factors 
Retention 

5o.ccu loo.ml 25o.tYM 5or.ooo I.m.m 

3.99647 4.47700 5.01208 6 36789 6.20299 
2.04287 2 21557 2 38070 2.66038 3.44113 
I 47564 I .55795 I .60967 1.76208 2.17147 
I 25736 I .29905 I .30857 I 25210 1.13446 
1.15058 1.16350 I. 14255 I 07384 0.93959 
I .04050 1.04210 l.044tnl 0.96050 0.76570 

Perce”tage Errors Mean Percentage Errors 
Retention 

50,LWl loo,cQo 
__- 

-1.6% -2 3% 
- I.410 -2.3% 
-0.3% -1.5% 
-1 I% -2 1% 
-24% -24% 

I .O% -I .6% 

250,ooo 500,Qoo 

0.3% 
-0 0% 

0.7% 
0.1% 
0.9% 
I 5% 

- 12.2% 0 I% 
-3 9% -20.1% 
-4.1% -18.9% 

7 1% 20.9% 
86% 25.5% 

10.9% 39.7% 

For Retentions: 

-1.3% -2.6% 
-1.3% -4.3% 
-0.1% -3.3% 
-0.8% 3.5% 
-1.5% 3.8% 

1 .O% 8.0% 

0 6% I .O% 7.9% -0.6% 0.8% 
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Based upon the above observations, several areas for understatement of 
actual development exist for these three sublines’ data. For OL&T, fitted de- 
velopment at $10,000 and $250,000 retentions is at least 7% below actual 
development for the development interval 39-99 months. The M&C actual 
development is understated at least 3% for these same cells. Products fitted 
development data is about 2% understated for the $100,000 retention; this 
difference is not substantial, These differences might be adjusted for on an ad- 
hoc basis after application of the technique. 

I initially performed these same tests on the data as of successive (e.g., non- 
cumulative) intervals, and discovered that the goodness of fit can reverse with 
the accumulation of development. For example, for OL&T BI, the percentage 
error for development interval 27-39, retention $250,000, is +4.4%; the cor- 
responding factor for the interval 27-99 is -5.1%. This shows that random 
variations in reporting do not always get smoothed out when the development 
for successive intervals is accumulated. 

In conversations with the authors, they indicated their goal was to produce 
an intuitively reasonable, natural, and smooth sequence of curves for develop- 
ment to provide knowledge where published information is not available. Based 
upon these goodness of fit tests, and ignoring pockets of discrepancies, the 
authors have met their goal. 

4. RETENTIONS IN EXCESS OF $250,000 

Based on the goodness of fit tests, it is obvious that the fit to the actual data 
for retentions in excess of $250,000 is poor. The authors mention that the ten- 
dency for development to increase as retention increases is reversed at $500,000 
and $1000,000 for the 27-39 month intervals. 

The authors suggest this may be due to a credibility problem of the data for 
these large claims. However, there may be another reason. Some claims people 
feel that, for very large claims, an estimate of the loss put up in the first year 
often is not revised until several years later, closer to a jury trial. The following 
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comparison for Products, based on goodness of fit tests for excess development 
factors at the $1 ,OOO,OOO retention, is interesting: 

DEVELOPMENT INTERVAL PERCENTAGE ERROR 

27-39 (SUCCESSIVE) +2.5.4% 
27-99 (CUMULATIVE) + 0.1% 

63-7.5 (SUCCESSIVE) - 3.7% 
63-99 (CUMULATIVE) +20.9% 

The inclusion of the later 39-99 month development provides a better fit 
for the data than the 27-39 month development alone. At 63 months, however, 
the inclusion of the 75-99 month development provides a much poorer fit than 
the 63-75 month development alone. 

In summary, this “catch-up” theory is supported by the goodness of fit tests. 
For less mature data, the inclusion of later development tends to smooth out 
the random variations; for more mature data, including the tail provides a poorer 
fit. For either reason, a lack of credibility or differing reserving practices, it 
seems wise to exclude the very high retentions when applying this technique. 

5. THE METHOD APPLIED 

In Section 5, the authors introduce the formula for the excess development 
factor as follows: 

(f(c) -f(d)) + ('%,,I - ed,n) (5.1) 

with f(c) being the ratio of the excess losses to the “ground-up” projected 
ultimate losses, and’e,, ,, representing the excess loss ratio divided by the loss 
development factor to ultimate, for retention c and month n. The function f(x) 
is a very familiar one to actuaries-it is merely an excess loss function. In 
standard actuarial terminology, these flx)‘s are also noted as X3(x) [3]. For 
workers’ compensation, the excess loss premium factors could be a readily 
available published source for these excess ratios. 

At first, I found this formula to be somewhat problematic, but found the 
proof to be somewhat straightforward. (The proof is presented in Appendix A.) 
From that formula, other powerful formulas can be derived to estimate other 
development patterns. 
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For example, loss development data sometimes is available only for basic 
limits and total limits, but is not available for excess limits. Setting the basic 
limit equal to B (in 000’s), the formula for development from 12 months to 
ultimate in the layer $0 to $B, the basic limits “layer,” is the following: 

LDFBASIC, 12 = 
1 -f(B) 

(5.2) 
1 .fW --- 

LDFQJZ LDFB, 12 

with LDF~Asc,~~ representing the basic limits loss development factor, LDFo.12 
the total limits loss development factor, and LDFe.12 being the excess loss 
development factor, all from 12 months to ultimate. Also, f(0) = 1 andflB) = 
the excess loss ratio for losses in excess of $B, the basic limits. Here, basic 
limits development is treated as development for the layer of losses in excess 
of $0 retention minus the losses in excess of the basic limit of $B. This also 
leads to the formula: 

LDFEXCESS = LDFB.Iz = 
f(B) 

(5.3) 
(1 -f(W) 1 

LDFo, I 2 LDFBASIC. 12 

From this discussion, it can be inferred that primary loss development, from 
ground up, can be considered a special case of excess development. Therefore, 
primary development factors by layer can be produced using the Pinto/Gogol 
formula, as long as total limits “ground-up” loss development is available (that 
is, retention = $0). Since the raw IS0 development was presented on the 
exhibits, I extrapolated to 363 months the M&C BI “ground-up” development 
data using the Sherman method that Pinto and Gogol used for the excess 
development for other retentions. The application of formula (5.2) for primary 
development ($15,000, $25,000, up to $250,000) is presented on Exhibit 2. 

The results from this technique for M&C primary development are disap- 
pointing. The reason for these intuitively disturbing factors may be given by 
Rosenberg and Halpert. In their study for trend, they found that “a concern with 
the trend function uxt is that it tends to underestimate the trend for small xZ, 
that is, small sizes of losses.” This conclusion may extend to conclusions for 
excess loss development as well. Although the ground-up development is not 
part of the smoothing technique, its use with the excess development (that had 
been smoothed and tested for goodness of fit) to produce primary development 
factors does not provide sensible results. 
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EXHIBIT 2 

DETERMINATION OF PRIMARY Loss LAYER Loss DEVELOPMENT FACTORS 
M&C BI BASIC LIMITS LOSSES & ALAE 

LOSS 
Development Interval 

LAYER 27:ult 39:ult 5l:lllt 63:ult 
- - - - 

%0-X I5 .ooo 1.201 0 962 0.955 0.936 
$0~$25.000 (from ISO) 2007 1.379 1.164 I.075 
$O-1625,OLXl (computed) 1.123 0.862 0.830 0.818 
$O-$35,ooo 1.137 0.853 0.806 0.792 
s&$5O,ooo I.189 0.874 0.811 0.793 
$0~.$75,ooo I .288 0 927 0.844 0.819 
so-51co,ooo 1.385 0.984 0.884 0.888 
$06250.000 I.727 1.187 1.032 0.975 

Formula. (,mow, - Ahiah,,i((Alow)ilow;ulr) - (Jvtrgh,ih@.“b~~ 

Development 
I”kTWl 

27.Ull 
39.Ull 
51.uIt 
63:ult 

Development 
Interval 

27- 39 
39- 51 
51- 63 
63- 75 
75- 87 
87- 99 
99slll 

Ill-123 
123-135 
135-147 
147-159 
159-171 
171-183 
183-195 
195-207 
207-Z 19 
219-231 
23 l-243 
243-255 
255-267 
267-279 
279-29 I 
291-303 
303-3 I5 
315-327 
327-339 
339-35 I 
35 l-363 

Cumulative Fitted Factors 
0 15ooo 25COO 35000 5OalO 75Oca IOOOOO 25oooo 

2.2093 2 8639 3.2210 3.4802 3 7778 4.1472 44309 5 4702 
I 4769 1.7293 1.9212 2.0591 2.2161 2.4092 2.5563 3.0872 
I 2475 I.3607 1.4903 1.5824 1.6862 1.8126 1.9079 2.2461 
I 1521 1.2295 1.3284 I 3979 1.4755 1.5690 1.6389 1.8829 

I.000 0 786 0.755 0.721 0 674 0.605 0.543 0.319 

Repon-to-Report Fitted Factors 
0 15KQ 25000 35ooo 5coOo 75ooo IOalca 25oooo __ __ __ __ __ - __ ~ 

1.49590 1.65613 167658 1.69018 1.70472 1.72141 I .73335 I .77192 
I 18395 1.27092 1.28912 1.30125 I 31424 1.32916 1.33984 1.37446 
I .08278 1.10671 I 12188 1.13199 1.14281 1 15523 I.16412 1.19291 
1.04456 1 05643 I .06873 I .07691 I .08565 1 09567 1.10284 1.12597 
I 02687 I 03484 1.04476 1.05134 1.05837 1.06641 1.07215 1.09065 
101720 1.02363 1.03168 I03702 1.04271 1.04921 1.05385 I .06877 
I 01180 I 01705 1.02367 1.02806 IO3272 I.03806 104186 1.05405 
1.00850 1.01288 I .01839 I .02204 I .02592 1.03035 1.03351 I .04363 
I.00630 1.01006 I01470 1.01778 I02105 1.02478 I .02743 I .03593 
I .00490 I .00807 I01204 1.01466 1.01744 102062 1.02288 103012 
I .00380 1.00661 IO1004 1.01230 1.01470 1.01744 1.01939 1.02562 
I00314 IO0551 I .00849 1.01045 1.01254 1.01492 1.01661 1.02202 
I .00256 I .00466 I .00728 I.00900 1.01084 1.01293 1.01441 I.01908 
IO0211 I 00399 1.0063 I I.00784 I.00946 I.01131 1.01262 1.01681 
IO0177 I .00345 I .00552 I .,X688 I .00832 1.00997 1.01114 1.01487 
I 00149 1.00301 I .00486 I .00608 I 00737 I.00884 I 00989 1.01322 
1.00127 I 00266 1.00433 I.00543 I.00659 1.00792 1.00886 I.01187 
1.00110 1.00235 I .00386 I .00485 I.00591 IO0711 1.00796 101068 
I .00095 IOO2lO I .cO347 I .w437 I.00533 1.00642 I.00719 I.00966 
I .oM)83 I.00189 I.00314 I00396 I.00484 I .00583 I .00654 I .30879 
I .ooo73 l.cQ171 I MS86 I .00361 1.00441 1.00533 I.00598 I 00804 
LcKM64 I.00155 1 00260 I.00330 I 00403 1.00487 I .00547 I .00737 
l.ooo57 l.cQ141 I .00238 I .00302 I.00370 I.00448 100503 1.00678 
l.OGQ51 1 Oil128 l.CQ218 I.00278 I .cQ341 I.00412 I.00463 I.00625 
1.00046 I 00119 I x0202 I 00258 1.00316 I00383 I.00431 I .00582 
! .oOQ41 1.00109 1.00187 I Oil239 I .CO294 I.00356 I.00400 1.00541 
100037 I00101 1.00173 100221 I .00272 I .00330 1 a37 I I .00501 
I .ooo34 I .oco93 IO0161 I 00206 1.00253 I .00307 I .00346 I .0046X 
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Rosenberg and Halpert may provide the solution, however, by suggesting 
that the understatement could “be corrected by changing the model to . . . 
4x1 + CY, or by using the function a.8 only for claim sizes greater than a 
selected value and using empirical data to trend small losses.” In this case, the 
fitted development for lower retentions (say below $35,000) may need to be 
adjusted to produce reasonable primary development. That study is beyond the 
scope of this discussion. 

However, I also applied their data for some standard excess development 
layers, and obtained satisfyingly reasonable results for the excess layers. These 
results are presented in Exhibit 3. 

6. SUMMARY 

Messrs. Pinto and Gogol have written a fine paper with practical and useful 
applications. Although excess development at very low retentions (for use in 
primary development) or large retentions (in excess of $250,000) may be du- 
bious, application for development at retentions between those extremes are 
easy to apply and tailor for today’s “mix and match” reinsurance program 
environment. 
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EXHIBlT 3 
DETERMINATION OF PRIMARY Loss LAYER Loss DEVELOPMENT FACTORS 

M&C BI EXCESS LIMITS LOSSES & ALAE 

27:uk 39:ult 

2 551 I.552 
3.143 1.874 
3 430 2 027 

51:ult 

1.234 
1.454 

63 ult 

I.126 
I 297 
1 375 
1 470 
I 542 
I.794 
I.288 
I 363 
I.452 
1.516 
I.733 

Layer 

$15.ooo-$515.ooo 
$35.00&$535.OK 
$50.000-5550.000 I.557 

I.683 
1 779 
2 124 
1.442 
I 540 
I 659 

$75,ooo-%575.000 
$IW.oOO-$600,ooO 
$250.000-$750.000 
$35,000-$500.000 
1650.000-%500.000 

3 789 2.217 
4.066 2.363 
5.102 2.897 
3 112 1.857 
3 386 2.003 

zi75,OcK-$500,000 
$Iw,m-%5oo,m 
$25O,CCG$5OO,COC 

3.721 2.181 
3.971 2312 I 745 
4.x51 2 768 2.041 

Cumulative Fitted Factors 
500000 515OCNl 535000 550000 575000 600000 75CWl __ __ __ __ __ __ __ 

6.4157 64595 6 5164 6.5579 6.6253 6.6905 7.0429 
3 5610 35828 3 6110 36316 3 6650 3 6973 3.8712 
25413 2.5547 2 5721 25848 26054 2 6252 2.7317 
2.0913 2.1007 2 1129 2.1218 2 1361 2.1499 2.2238 

0.148 0.142 0 I35 0 130 0.122 0 114 0 078 

Development 
In1ewal 

27:ult 
39:ult 
51:uIt 
63:uIl 

Development 
IlltUWl 

27- 39 
39- 51 
51- 63 
63- 75 
75- 87 
87- 99 
99slll 

III-123 
123-135 
135-147 
147-159 
159-171 
171-183 
183-195 
195-207 
207-219 
219-231 
231-243 
243-255 
255-267 
267-279 
279-291 
291-303 
303-315 
315-327 
327-339 
339-351 
351-363 

Repon-to-Report Fmed Factors 
500000 515ooo 535000 55m 575000 6OOCM 75Oiloo __ __ __ __ 

1.80167 1.80295 I 80460 I .85080 
1.40124 1.40240 1.40389 I .40497 

I 80772 I .80957 1.81930 
1.40671 I .40837 1.41715 
1.21970 I22108 1 22837 1.21516 1.21612 1.21735 1.21825 

1.14380 I. 14457 I 14555 I. 14627 I. 14743 1.14853 I 15436 
1.10486 1.10547 I 10626 1.10683 I 10775 1.10863 I I1326 
1 08020 I .08069 I08132 1.08178 I 08251 I .08322 I .08694 
I .06337 I 06377 I 06428 I .06466 I 06526 1.06584 I .06886 
I05134 I05167 I05210 1.05241 1.05291 1.05338 I 05588 
I .04240 I .0426X I .a4304 1 .a4330 I 04371 I.04411 1.04621 
I .03562 I 03586 1.03616 I 03638 I .03673 I .03707 1.03886 
I .03036 I .03056 I .030X2 1.03101 1.03132 I.03161 1.03314 
1.02613 
1.02267 
1.02ccQ 
1.01770 
1.01575 
101415 

1.02631 1.02653 I .02670 
1.02316 
I .02044 
1.01809 
1.01610 
10,447 

I .02696 I 02722 I .02X54 

1.01782 

I .02282 

1.01283 

I01586 

1.02013 

I01425 

1.01161 

I01798 

I 02302 

I 016cnl 
I 01438 

I 02031 

1.01294 
1.01171 
1.01067 
I .00976 
I .00895 
I 00823 
I .QO760 
I .00707 
I .OO&% 
1.00610 
I 00570 

1.02339 I 02362 1.02477 
I .a2064 1.02084 I02187 
IO1827 
I 01627 
I01461 

1.01845 I .01936 
1.01642 
1.01475 
I01328 
1.01202 

1.01724 
1.01549 

1.01274 

1.01050 
1.00961 

1.01153 

I.00881 
l.oQ81l 
1.00748 
I .00696 
I.00648 
1.00600 
I .00561 

1.01302 I.01316 
IO1179 1.01191 

1.01395 
1.01263 
1.01150 1.01057 

1.00968 
1 00887 
IO0816 
I 00754 
I .00701 
I .00652 
I .00605 
I .00565 

I01073 1.01084 I .a1095 
I .00982 1.00992 1.01002 1.01053 
I 00901 1.00910 1.00919 I 00965 
I .00829 I .00837 

I .00773 
I.00719 
I CC669 
I .00620 
I .00580 

1.00845 
I.00781 
1.00726 
I .00676 
I .00626 1.00658 
I X0585 1.00615 

I .00888 
I .00x20 
I .00763 
1.00710 

I .00765 
1.00712 
I 00662 
100614 
I 00574 
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APPENDIX A 

PROOF 

AC) = Excess loss ratio at retention c, the lower retention. 

f(d) = Excess loss ratio at retention d, the upper retention. 

f(C) ec,n = ___ 
LDF,, n 

with LDF,, ,, the excess loss development factor at retention c from n 
months to ultimate. 

f(d) 
ed’n = LDFd,,, 

with LDFd,. the excess loss development factor at retention d from IZ 
months to ultimate. 

We know, however, that: 

f(c) = 
Ultimate Losses Excess of Retention c ULT, 

= - Ultimate Ground-Up Losses ULT, 

f(d) = 
Ultimate Losses Excess of Retention d ULTd 

= - Ultimate Ground-Up Losses ULT, 

LDF,,. = 
Ultimate Losses Excess of Retention c ULT, 
Reported Losses Excess of Retention c = - REP, 

LDFd.. = 
Ultimate Losses Excess of Retention d uL?“d 
Reported Losses Excess of Retention d = - REf’d 

(I have dropped the subscript n for months of development.) 
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so: 
f(c) - Ad) 
ec,n - ed,n 

ULT, ULTd --- 
ULT, ULT, 

= 

uLT”x-...- - REP, L!E&-- REPd 
ULT, ULT, 1 [ ULT, ULTd 1 

ULT, - ULTd ULT, - ULTd 
ULT, ULT, = = 

REP, REPd REP, - REP* __-- 
ULT, ULT, ULT, 

ULT, - ULTd 
= REP, - REPd 

It is obvious that the excess loss development factor for the layer c to d is the 
ultimate losses greater than c minus ultimate losses in excess of d, divided by 
the reported losses in excess of c minus the reported losses in excess of retention d. 
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CREDIBILITY FOR CLASSIFICATION RATEMAKING 
VIA THE HIERARCHICAL NORMAL LINEAR MODEL 

STUART KLUGMAN 

Abstract 

In the past twenty years there has been ever increasing improvement 
in the techniques of classcfication ratemaking. Most of this has centered 
around improvements in credibility procedures and most of the improve- 
ments have been due to incorporating aspects of Bayesian analysis. In 
this paper, I attempt to take this trend to its (perhaps) final stage by 
developing a true Bayesian approach to the classification ratemaking 
credibility problem. 

The opening section will provide the rationale for the Bayesian 
approach. I will argue that a hierarchical model with a noninformative 
prior is the most appropriate general framework. I will argue further 
that a normal model is a reasonable choice, and this model will provide 
results at least as good as those currently available. An indication of 
how the normality condition can be relaxed will also be presented. 

The second section contains a general description and analysis of 
the hierarchical normal linear model (HNLM). Included are point esti- 
mation, estimation of the error in the estimator, and prediction intervals 
for future losses. The last two items are of special interest since current 
credibility procedures provide little insight with respect to variation. 

The next two sections discuss the special case of the one-way model. 
This is the most common ratemaking model and is the simplest case of 
the HNLM. In Section 3, the formulas from Section 2 are evaluated for 
this model. In Section 4, two data sets are analyzed. TheJirst set provides 
an indication of the computational work required to use the HNLM. The 
second set provides a comparison of this method with two other rate- 
making approaches. 

The$nal section contains a discussion of the more complex models 
that can be handled with the HNLM. 



CREDIBILITY 273 
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1. JUSTIFICATION FOR BAYESIAN CREDIBILITY WITH A NORMAL MODEL AND A 

NONINFORMATIVE PRIOR 

The historical basis for credibility procedures is long, varied, and generally 
considered to be one of the major actuarial contributions to statistical data 
analysis. Virtually from the beginning (Whitney [35] and Bailey [l]), the 
Bayesian and shrinkage nature of the problem was recognized. In a breakthrough 
paper, Btihlmann [6] placed the credibility problem in the framework of Baye- 
Sian decision analysis. I will begin by reviewing the Bayesian view and then 
discuss the four schools of Bayesian methodology that are prominent today. As 
part of this paper, I will argue that one of these methods is superior to the 
others. Next, I will argue that the normal model is appropriate even though we 
know that it does not accurately model insurance losses. This part closes with 
a suggestion for allowing for non-normal losses while retaining the advantages 
of normal theory. The final element of this section is a discussion of the 
noninformative prior. 

1 .I Credibility as a Bayesian Problem 

The basic credibility problem for classification ratemaking can be posed as 
follows: The population can be separated into k groups, the various rating 
classes, Our objective is to estimate the mean loss per year generated by a 
randomly selected member of a particular group. Data is collected from a sample 
of members from each group. It is usually assumed that the observed losses are 
independent and that the variances of the observations are proportional to some 
measure of exposure. If this were all that were known, the most reasonable 
answer would be to use the sample mean from each group as an estimate of the 
population mean. Usually, however, we know more. In particular, when indi- 
vidual classes have abnormally good or bad experience, we tend to discount the 
experience when setting rates. This clearly makes good business sense and with 
the correct model makes good statistical sense. 
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The usual way to model this phenomenon is to treat the group means as a 
random sample from some probability distribution. This implies that experience 
from the other groups tells us something about the overall level of claims (the 
mean of this second level distribution), and therefore tells us something about 
the mean for the group in question. It also sets bounds on how much one can 
legitimately expect one class to differ from another. If more is known about the 
relationship among the groups, that knowledge can be incorporated into the 
second level distibution. Examples of this are presented in Section 5. 

The model described in the previous paragraph is a standard Bayesian 
problem. We have a model given by the p.d.f. p(xlO,g) where x represents the 
data and (8,g) represents all unknown parameters. The parameters in 8 are the 
ones we want to estimate. The parameters in g are nuisance parameters, usually 
variances. In the above setting, 0 would be the group means. The prior (second 
level) p.d.f. p(O,g) represents our knowledge of (tl,g) before the data are 
collected. Since the Bayesian approach has now been widely accepted among 
actuaries (at least for this estimation problem), I will provide no further argu- 
ments to support that view. Interested readers who desire a wide ranging dis- 
cussion of the merits of the Bayesian view are referred to Berger [2]. 

Given this setup, there are two ways to proceed. If the forms of the two 
distributions are known, the Bayes estimator is the posterior mean of Cl given 
the data X. Btihlmann [6] took a different approach. To avoid thinking about 
the distributions, he first restricted himself to estimators that are linear functions 
of the data. He then searched for the estimator that minimized the mean squared 
error. This mean would be taken over all possible values of x and 8. For his 
result it was essential that g be empty. That is, the model variance had to be 
known. Under this framework, it turned out that the estimator depended only 
upon the first two moments of the model and prior distributions. To many 
people, the word credibility is now reserved only for procedures that find linear 
estimators. In fact, Hewitt [14] compares a credibility estimator to a Bayes 
estimator (as I have defined it above). In this paper, the objective is to find the 
best estimator, and I see no reason to restrict attention to those that are linear 
functions of the data. I use the word credibility to describe any procedure that 
uses information (“borrows strength”) from samples from different, but related, 
populations. 

A larger problem is the fact that the moments of the model and prior are 
rarely known, and therefore must be estimated. This has led to a number of 
schools of Bayesian thought. Having agreed to use a Bayesian procedure, the 
remaining task is to identify the best one. 
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I .2 Four Schools of Bayesian Analysis 

There are at least four different approaches that are currently being used to 
solve the estimation problem. In this section I briefly outline them and then 
offer some opinions as to their respective merits. 

1.2 .I Pure Bayes with Two Levels 

This is the view that has already been mentioned. Here, the prior distribution 
must be elicited. This is very difficult to do in the insurance setting as one 
would have to be able to set out a distribution that describes the class-to-class 
variation in losses. Since we do not even know the means (determining them 
is the point of the exercise), it is unlikely that we know much about how the 
means vary. 

This problem can be resolved by removing the prior to a higher level of 
abstraction. This is done in the fourth school discussed in this subsection. To 
my knowledge, no one today is using the two level approach. At best, it is a 
starting point for the second method to be discussed here. 

I .2.2 Empirical Bayes 

This method evolved as an attempt to resolve the problems created by the 
first method. Although they did not use the phrase “empirical Bayes,” Btihlmann 
and Straub [7] were the first to employ this method in the credibility setting. It 
remains popular, being advocated in more recent articles by the Insurance 
Services Office [16] and Meyers 1251. There is considerable evidence that it 
provides excellent solutions to the estimation problem. 

Many people do not consider empirical Bayes methods to be at all Bayesian. 
Also, there is considerable disagreement as to what the phrase “empirical Bayes” 
means. To avoid controversy, I will describe an estimation method that corre- 
sponds to the approach used in the papers cited above. It will be referred to as 
the EB approach and the reader can decide what that means. Begin with the 
density p(xlO,g), the first level density (or distribution, when talking about the 
random variable). The density p(B,glh) will be referred to as the second level 
density. Note the introduction of h. To the pure Bayesian, the parameters of the 
second level density must be known, and therefore do not need to be displayed. 
In reality, that is not true, so we add them to the formulation. 

In brief, the EB idea is to first act as if g and h were known and find the 
Bayes estimate of 0. Next, use the data in some manner to estimate the nuisance 
parameters g and h and insert these estimates into the Bayes solution. The first 
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thing to note is that upon doing so, we no longer have a Bayesian analysis. The 
second level distribution was supposed to represent prior opinion, yet here we 
are unable to establish this distribution until after we have seen the data. The 
usual justification is to show that as the sample size goes to infinity, the estimates 
of the second level distribution converge to what they ought to be if we had 
complete knowledge (which is what one has with an infinite sample size). A 
thorough discussion of these principles can be found in Norberg [30]. 

An alternative approach can yield the same solution as the EB approach. 
Assume again that the nuisance parameters are known and then search for the 
estimator that is linear in the data and minimizes the expected squared error. 
Once again, substitute ad hoc estimates of the nuisance parameters into the 
solution. This has been called least-squares credibility. 

There are three major objections to the EB approach. The first is that some 
external theory must be used to find estimators of the nuisance parameters. 
Since these parameters are usually variances, it is common to begin with sums 
of squares that look “right” and then to adjust them to create unbiased estimators 
of the various parameters. One drawback is that the resulting estimators (even 
in the simplest cases) can take on negative values. This does not make sense 
when one is trying to estimate a variance. The second objection is that EB 
theory gives no guidance as to the optimal choice of the estimator. All that is 
required is that they be consistent. The final objection is that for complex 
models, there may be no hope of finding useful sums of squares. 

A final problem with EB methodology is that it gives no insight into the 
sampling error of the estimator. The best it can do is evaluate the error when 
the variances are known. The additional error introduced by estimating the 
variances cannot be accounted for. Even if a good estimator of the nuisance 
parameters can be found (in which case, the method works quite well), the 
investigator will have no idea of the quality of the estimate. The previous 
statement that EB methods work well was in reference to alternative methods 
and does not mean that the results could be considered accurate. That can only 
be determined by some measure of sampling error. The next method is an 
attempt to rectify this problem without leaving the EB framework. 

1.2.3 Parametric Empirical Bayes 

To see the difficulties in determining the variance of the estimator, we need 
to take a closer look at what we are trying to do. The general Bayes problem 
is to find E(0)x), the posterior mean given only the data. The EB approach uses 
the result E(6)x) = E[E(Bl.~,g,h)l. The interior expectation E(Blx,g,h) is just the 



CREDIBILITY 277 

pure Bayes solution with g and h known. The EB approach avoids taking 
the outer expectation and instead replaces g and h with their estimates. EB 
theory indicates that this is a reasonable thing to do. A measure of the qual- 
ity of the result would be the posterior variance, Var(Blx). We have 
Var(0ln) = E[Var(B\x,g,h)] -t- Var[E(BIx,g,h>]. It is apparent that merely in- 
serting estimates of g and h in Var(Blx,g,h) will underestimate the desired 
variance. The second term reflects the additional variance due to the estimation 
of g and h. EB theory does not provide any ideas for estimating the second 
term. 

An attempt to resolve this problem is the parametric empirical Bayes theory 
of Morris [27]. The key ingredient is to have some idea of the variability of the 
estimators of g and h. His theory requires not only the discovery of good 
estimators of g and h but also the ability to determine their sampling distribu- 
tions. In simple cases (normal distribution, equal exposures), it is possible to 
show that the usual estimators have chi-square distributions. In slightly more 
complicated cases, the distribution is approximately chi-square. A detailed 
discussion of the distribution of some commonly used variance estimators is 
given in Klugman [21]. As should be apparent, there are considerable difficul- 
ties associated with putting this method into practice. One that is not apparent, 
and is often not mentioned in Morris’s articles, is that to complete the calcu- 
lation it is necessary to formulate a prior distribution for g and h. Morris uses 
p(g,h) = 1, but does not provide a justification for that choice. Other choices 
are supported by an argument that the resulting estimator of the credibility factor 
is unbiased, a surprising justification for a Bayesian. 

The fourth model also requires prior distributions for g and h but proceeds 
in a more direct Bayesian manner. Before moving on, I should add one final 
criticism of the parametric empirical Bayes approach. Whatever errors in esti- 
mation are introduced cannot be reduced by improving the computational aspects 
of the method. The errors are due to lack of knowledge of the exact distribution 
of the estimators of the variances and no amount of computation can resolve 
that issue. 

1.2.4 Hierarchical Bayes 

We have seen that the two EB schools are somewhat artificial attempts to 
resolve the problems of the pure Bayes method. This is mostly due to a lack of 
recognition of the real problem with the pure Bayes approach. The problem is 
that the second level distribution is not a prior distribution at all, but is part of 
the model. In the ratemaking setting, this distribution contains our knowledge 
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of the relationships among the various rating classes. It is not our prior opinion 
about a particular class. The solution is to reformulate the model into three 
levels. 

Level 1: p(.@,g)-Describes variations within each group. 
Level 2: p(8lp,h)-Describes variations among the groups. 
Level 3: p@,g,h)-A true prior distribution on the unknown parameters. 

This is once again a pure Bayesian problem. As with any Bayesian analysis, 
a prior distribution must be established before any data is collected. By dis- 
placing the prior to a level further removed from the observations, the choice 
of the prior will have less influence on the final outcome. To repeat, level 2 
describes an underlying (though not directly observable) physical process. Sub- 
jective beliefs enter only at the third level. The remaining problems are to select 
the prior distribution and to select the form of the p.d.f.‘s for levels 1 and 2. 

Assuming the two problems just mentioned can be resolved, this would 
appear to be an ideal solution to the credibility problem. With the three densities 
in hand, it is just a matter of employing the probability calculus to obtain the 
posterior distribution of 0 given X. Any difficulties that will be encountered will 
be of a computational nature. Once the posterior distribution has been obtained, 
additional computation will yield the mean and variance. Another useful quantity 
is the predictive distribution, the p.d.f. (or the mean and variance) of the next 
observation from the group in question. This is once again obtained by an 
application of the probability calculus. The other methods do not provide this 
item. 

An additional advantage of this approach is that the tools of Bayesian 
modeling and inference are all available. For example, one might want to 
compare various models for the level 2 distribution (e.g., cross-classification 
vs. one-way classification). Many of these tools are presently in the development 
stage, but more and more techniques are likely to become available in the future. 

1.3 The Normal Model 

As mentioned in the previous subsection, it is necessary to specify the 
probability distributions for the three levels. For levels 1 and 2, multivariate 
normal models are an appropriate choice. At the end of the section, a suggestion 
for improving the process is proposed. 

It is obvious that individual losses do not follow the normal distribution. 
Since losses are non-negative quantities, a distribution with support on the entire 
real line cannot be expected to be a good model. Furthermore, there is consid- 
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erable evidence that the tails of loss distributions are much heavier than those 
of the normal distribution. See Hogg and Klugman [15] for a number of 
examples. One way to minimize the disparity is to work with loss ratios. The 
distribution at the second level will now reflect group to group variations in the 
departure from the expected losses. This will be more stable than the group to 
group variation in the absolute level of losses. In addition, loss ratios are likely 
to have identical unconditional distributions. That is, if you were given a list 
of risk classes and a list of loss ratios, you would be unable to do better than 
chance in attempting to match them up. The loss ratios are likely to be depen- 
dent. Knowing that the loss ratio for one class is high increases the chances 
that the others are also. The multivariate normal model is one of the few 
multivariate models that allows for dependence in a manner that is easy to 
construct and interpret. 

Despite the fact that the observations are not normally distributed, there are 
a number of good reasons for employing the normal model. The first, though 
least appealing, justification is computational convenience. Although the algebra 
is tedious, as demonstrated in Section 2, a number of results can be obtained 
analytically. The remaining numerical work will be simple, at least relative to 
that required for non-normal models. It is likely that as our numerical capabilities 
increase, this argument for normality will lose its validity. For the present, the 
following quote due to Novick and Jackson [31] is appropriate. 

“Surely it is better to get some results using a model which is only approximately 
relevant than to sit twiddling one’s thumbs in front of a model which is felt to 
be more accurate but which one is unable to manipulate.” 

The second justification for normality is related to the link between the 
normal model and linear credibility. It was mentioned above that in a particular 
simple model, the linear least squares solution depended only upon the first two 
moments. It turns out that the Bayes solution for the same model with normal 
distributions is identical. Therefore, at least in this case, normality and linear 
least squares are equivalent. It has been shown that, in general, any model that 
is a member of the linear exponential family of distributions will produce the 
same result as the linear least squares solution (Ericson 191 and Jewel1 [17]). 
There has been speculation (Goel [ 111) that the linear exponential family con- 
tains all the distributions with this property. So, to a certain extent, those who 
are willing to accept linear solutions should be equally comfortable with models 
from the linear exponential family. As far as choosing the normal distribution 
as the member to use, a second argument is needed. Most current practitioners 
estimate the variances using sums of squares. These estimates are unbiased for 



CREDIBILITY 279 

erable evidence that the tails of loss distributions are much heavier than those 
of the normal distribution. See Hogg and Klugman [15] for a number of 
examples. One way to minimize the disparity is to work with loss ratios. The 
distribution at the second level will now reflect group to group variations in the 
departure from the expected losses. This will be more stable than the group to 
group variation in the absolute level of losses. In addition, loss ratios are likely 
to have identical unconditional distributions. That is, if you were given a list 
of risk classes and a list of loss ratios, you would be unable to do better than 
chance in attempting to match them up. The loss ratios are likely to be depen- 
dent. Knowing that the loss ratio for one class is high increases the chances 
that the others are also. The multivariate normal model is one of the few 
multivariate models that allows for dependence in a manner that is easy to 
construct and interpret. 

Despite the fact that the observations are not normally distributed, there are 
a number of good reasons for employing the normal model. The first, though 
least appealing, justification is computational convenience. Although the algebra 
is tedious, as demonstrated in Section 2, a number of results can be obtained 
analytically. The remaining numerical work will be simple, at least relative to 
that required for non-normal models. It is likely that as our numerical capabilities 
increase, this argument for normality will lose its validity. For the present, the 
following quote due to Novick and Jackson [31] is appropriate. 

“Surely it is better to get some results using a model which is only approximately 
relevant than to sit twiddling one’s thumbs in front of a model which is felt to 
be more accurate but which one is unable to manipulate.” 

The second justification for normality is related to the link between the 
normal model and linear credibility. It was mentioned above that in a particular 
simple model, the linear least squares solution depended only upon the first two 
moments. It turns out that the Bayes solution for the same model with normal 
distributions is identical. Therefore, at least in this case, normality and linear 
least squares are equivalent. It has been shown that, in general, any model that 
is a member of the linear exponential family of distributions will produce the 
same result as the linear least squares solution (Ericson 191 and Jewel1 [17]). 
There has been speculation (Goel [ 111) that the linear exponential family con- 
tains all the distributions with this property. So, to a certain extent, those who 
are willing to accept linear solutions should be equally comfortable with models 
from the linear exponential family. As far as choosing the normal distribution 
as the member to use, a second argument is needed. Most current practitioners 
estimate the variances using sums of squares. These estimates are unbiased for 



CREDIBILITY 281 

use. In Section 4, an indication of how one might “verify” the choice of model 
and prior is presented. 

Three approaches can be taken to specifyingp(p,g,h). The first is to always 
use p(p+g,h) = 1, Morris [27] uses this prior in obtaining his parametric 
empirical Bayes results. The first thing to note is that since the support of 
(p,g,h) is usually unbounded in at least one direction, this prior is not a proper 
probability distribution. Box and Tiao [3] argue that this is acceptable. Suppose 
l..~ is the average loss ratio over all rating classes. We can be virtually certain 
that this value is between 0 and 10. A uniform distribution over this interval 
combined with one that tails off slowly outside this interval would reflect the 
fact that very little is known about the true average loss ratio. Inferences that 
we would make using this prior would differ very little from those made using 
p(p) = 1 for --CO < lo < m. Two features of this approach should be noted. 
First, there is no guarantee that the posterior distribution of 81~ will exist. This 
would make it impossible to determine the posterior mean or variance. Second, 
the posterior mode is identical to the maximum likelihood estimator (after 
integrating out all nuisance parameters). In general, when this prior admits a 
solution it is quite reasonable. 

The second school of thought is to find a general way of obtaining prior 
distributions that reflect minimal prior knowledge. Words such as “noninform- 
ative” or “reference” are often attached to such priors. The goal of research in 
this area is to find a way to automatically generate the noninformative prior for 
a given distribution. The fact that there is still disagreement on the appropriate 
reference prior for the probability of success in a sequence of Bernoulli trials 
(Geisser [lo]) indicates how much work remains in this area. In the simple 
univariate case, Box and Tiao [3] support the prior p(g) = l/g when g is the 
variance. An extension is given by Tiao and Zellner [33] who argue that if g is 
a covariance matrix, the appropriate prior density is the inverse of its determi- 
nant. 

The third belief is that only proper densities (those that integrate to 1) should 
be allowed for the prior distribution. Proponents of this approach insist that 
everyone has a prior distribution and it is just a matter of care and effort to 
bring it out. This makes excellent theoretical sense but is very difficult to 
implement. It is even more difficult to convince someone else that your opinion, 
as expressed by your prior distribution, is valid. 

I have elected to take the middle ground. For credibility problems, the 
reciprocal prior for variances seems to be an appropriate choice for the prior 
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density. This prior appears to be more “balanced” than the uniform one. Since 
the support is the interval from zero to infinity, we should expect that our prior 
opinion is equally apportioned between points near zero and those near infinity. 
The prior l/g does this as it bounds an infinite area over all regions of the form 
(0,~) and (a,~). The uniform prior puts infinite probability only on the latter 
region. That is, it seems biased towards larger values of the variance. In Section 
3, some brief attention will be given to a proper prior, so those who have one 
can still employ the methods to be discussed. 

All of the ideas presented in this section other than the use of normality are 
summarized in the following quote (Berger [2]): 

“We would indeed argue that noninformative prior Bayesian analysis is the single 
most powerful method of statistical analysis, in the sense of being the ad hoc 
method most likely to yield a sensible answer for a given investment of effort.” 
(author’s italics) 

2. THE HIERARCHICAL NORMAL LINEAR MODEL 

In this section, the algebraic manipulations required to evaluate the three 
level hierarchical model are performed. Attention will be restricted to linear 
versions of the model. This is done mostly for computational convenience. 

Before beginning the manipulations, a few notational items will be pre- 
sented. Scalars will be represented by lower case letters. Vectors will be rep- 
resented by bold face characters. Matrices will be represented by upper case 
letters. In classical statistics it is common to use upper case symbols to represent 
random variables. In a Bayesian analysis the various quantities are sometimes 
random and are sometimes fixed, so no attempt is made to use notation to 
identify random quantities. For example, in the model, the data are random and 
the parameters are fixed, but in the posterior, the parameters are random and 
the data are fixed. At times, the distribution of some parameters conditioned on 
others is needed. When examining a density function, the way to tell the fixed 
quantities from the random ones is to look at the left hand side. For example, 
p(B/y,G,H) indicates that in the function which follows, 8 is the random quantity 
and is the variable in the density, while y, G, and H are fixed quantities. The 
density is for the indicated random variable, conditioned on the specific values 
given. When the two sides are separated by a proportionality symbol (m), the 
constant of proportionality may depend upon the conditional items. The constant 
can always be found by integrating the function with respect to the random 
elements. 
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2,l The Model 

The linear version of the three level Bayesian model is usually attributed to 
Lindley and Smith [24]. The three levels are: 

yl%G - NAW) @’ x 11, 

%0-f - WW,,,H) (k x 11, 

and 

(r. - N(W) (z x l), 

where p and C are known and A and B (also known) are of full rank. A special 
case, and the only one considered here, is obtained by letting C-i + 0. This 
is equivalent to setting p(p) 0~ 1, the widely accepted noninformative prior for 
the mean. It is not necessary in this case to make any statement about p. In 
most applications the covariance matrices G and H will not be known. It is then 
necessary to specify a prior distribution for them. Let p(G,H) be the density for 
this prior distribution. 

The standard credibility problem is to make inferences about 8, the expected 
losses (or loss ratios) for the various groups under consideration. The matrix A 
reflects the nature of the data collected. For example, there may be data from 
various years for each group. The second level indicates any relationships 
between the groups. One particular version of this model is analyzed in Sections 
3 and 4; examples of other models are presented in Section 5. In any event, the 
objective of all the manipulations in this section is to obtain the posterior 
distribution and moments of 9 given the data y. Of less interest are the posterior 
distributions of G and H. 

2.2 Three Helpful Mathematical Items 

The first useful relationship is a matrix equation that is true for any symmetric 
non-singular matrix G; it will be used for completing the square. 

X’GX - 2x’B = (x - G-‘B)‘G(x - G-IB) - B’G-‘B. 

The second item relates to the multivariate normal density. In general, the 
multivariate normal p.d.f. for a random variable with mean p and covariance 
C (a positive definite matrix) is 

f(x) = (2+ZJ)-“2exp[-(x - p) ‘C-l(x - ~)/2], 

where ICI denotes the determinant of the matrix C. This implies that in general 

Jexp{- (x - I.L) ‘C-l(x - p)/2]dx = (~IT[C[)“~. 
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The final item is concerned with finding conditional densities. The general 
problem is the following: Letf(a,, . . a&, . . ., b,) be proportional to the 
conditional density of AL, . . _, A, given BI = br, . . ., B, = b,, (n may be 0). 
To find the conditional density of Al, . . ., A, given B1 = bl, . . ., BJ, = bh 
(where g 5 m and h I n and at least one of the inequalities is strict) evaluate 
J _ _ . Jf(u,, . . am/b,, . . ., b,)du,+l . . . da, and then drop all terms that 
involve only bl, . . ,, 6,. (This latter step can be done first; additional terms 
can be eliminated after the integration.) The resulting function will be propor- 
tional to the desired density. 

A related fact is that a conditional density is proportional to the conditional 
density in which some of the quantities on the left hand side of the “I” are 
moved to the right hand side. For example, f(ul, u2Jbl, b2) is proportional to 
the conditional density of A, given AZ = ~2, BI = bl, B2 = b2. Any factors 
that depend only on uz can be deleted. 

2.3 Two Useful, Non-Buyesiun Quantities 

In the first level of the model, with G assumed known and 8 taken to 
represent a fixed, but unknown, parameter, the classical least-squares estimator 
of 0 is found by minimizing 

tj - AO) ’ G-’ (y - AO) 

= y’ G-‘y - 20’ A’ G-‘y + 0’ A’ G-IA8 

= y’ G-‘y + 
[8- (A’ G-IA)-’ A’ G-‘y]’ (A’ G-‘A) [t-I- (A’ G-‘A)-‘A’ G-‘y]. 

Let A = (A’ G-‘A)-‘, a positive definite matrix. Then the minimum must occur 
at 6 = AA’ G-‘y. 

Combining the first two levels gives 

yl/wZH - N(ABp,G + AHA’). 

The same manipulations yield 

jI = [B’A’(G + AHA’)-‘AB]-‘B’A’(G + AHA’)-‘y 

and some matrix algebra produces the alternative form 

p = [B’(H + A)-‘B]-‘B’(H + A)-%. 

While the theory behind the above development is not germane to a Bayesian 
analysis, it is comforting to note that a Bayesian analysis often produces results 
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that match those from classical theory. The quantities fi and p will appear often 
in the analysis that follows, but will arise from a different algebraic procedure. 

2.4 The Joint Density of (y,0, p,G,H) 

The joint density involving all of the quantities from the three levels is the 
ideal place to begin. The last concept presented in Section 2.2 indicates that it 
is also the conditional density of any subset of the five variables given the 
remaining ones. The density is given by 

pCvle,G)p(O(~,H)p(l~l)p(G,H) 

which is proportional to (recalling that p(p) 0: 1) 

X exp[-0) - A0)‘G-‘0, - A@/2 - (fl - Bp)‘H-‘(8 - Bp)/2]. 

It would be pleasant to proceed directly to the density of 0 given y. However, 
it is not possible to obtain this density analytically. Instead, begin by obtaining 
those conditional densities that are reasonably easy to derive. This is done in 
the next section. In the following section these densities are used to obtain the 
desired result. 

2 .S Several Conditional Densities 

The following subsections contain the derivations of a number of important 
conditional densities. The results are summarized in Section 2.5.6. Readers 
who are uninterested in the derivations can skip to that point. 

2.5.1 Density of B(y,G,H 

This derivation is presented in great detail in order to indicate how these 
calculations are done. Since the joint density from Section 2.4 is also the 
conditional density of (O,p(y,G,H) it is only necessary to integrate p out of the 
joint density. Begin by removing terms involving only y,G, H, and constants. 
The remaining part of the joint density is 

exp[-0, - A0)‘G-‘01 - A@/2 - (0 - Bp)‘H-‘(0 - Bp)/2] 
= exp[-(y - AO)‘G-‘0, - A@/2 - B’H-‘(32 + ~I.A’B’H-%/~ 

- p’B’H-‘Bp/2]. 

Let B = (B’H-lB)-l. Completing the square with respect to h in the above 
expression yields 

exp[(-0, - AB)‘G-‘O, - A@/2 - B’H-%/2 
_ (,,, _ gB’H-lfj)fz-L (p - tiB’H-‘8)/2 + O’H-‘BBB’H-‘O/2]. 
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Now integrate with respect to w. p only appears as the quadratic form in the 
third term and upon integration produces only constants and the determinant of 
E. Since 5 is a function of H only, it can ‘be dropped. Therefore the density 
is proportional to 

exp[-0, - AO)‘G-‘0 - A@/2 - 0’H-‘O/2 + O’H-‘B%B’H-‘O/2]. 

Expand the first term and remove the part not involving 8. The result is now 

exp[-B’(A’G-‘A - H-‘BEB’H-’ + H-‘)0/2 + B’A’G-‘y]. 

Let V-’ = A’G-‘A - H-‘BSB’H-’ + H-‘. 
Complete the square on 0 to obtain 

exp[-(0 - VA’G-‘y)‘V/-‘(8 - VA’G-‘y)/2 + y’G-‘AVA’G-‘y/2]. 

Since the second term does not depend on 8 it can be dropped. The final result 
is 

p(@/y,G,H) 0~ exp[-(0 - VA’G-‘y)‘V-‘(0 - VA’G-‘y)/2]. 

By inspection it is immediately apparent that 

t$,G,H - N(VA’G-‘y,V). 

Let fi = VA’G-ly be the conditional mean. It can be rewritten as 

6 = (H-’ + A-‘)-‘(A-‘6 + H-‘BP). 

This is the customary weighted average common in a Bayesian analysis. It is 
also a (linear) credibility formula. In fact, this is the result that arises from an 
EB analysis. As discussed in Section 1, the point of departure is the treatment 
of the unknown G and H. 

2.5.2 Density of p!y,G,H 

This calculation is included mostly for completeness. It is not used in any 
subsequent work. The procedure is exactly the same as that used above, only 
now integrate out 8 instead of I.L. The result is 

ply,G,H - N(@,[B’(A + H)-‘B]-‘). 

2.5.3 Density of O,G,Hb 

To find this density, integrate or. out of the joint density. The difference 
between this calculation and the one in Section 2.5.1 is that terms involving G 
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and H must be retained. The result is 

p(B,G,Hjy) 0: p(G,H)/G/-1’2)H/-1’2)zj1’2 
X exp[-(y - AB)‘G-‘(y - A@)/2 - B’H-‘O/2 
+ 8’H-‘BEB’H-‘8/2]. 

Let Q = H-’ - H-‘BSB’H-‘. Then 

p(B,G,Hjy) 0~ p(G,H)~G~-1’2~H~-1’2~~~1” 
X exp[ -(y - AO)‘G-‘0, - A@)/2 - tYQt3/2]. 

2.5.4 Density of p,G,Hb 

Begin by integrating 0 out of the joint density, once again retaining terms 
involving G and H. 

p(p,G,Hb) m p(G,H)(G(-“*IHI-“*Jexp[-yG-‘y/2 + 2BA’G-‘y/2 
- WA’G-‘A812 - WH-‘O/2 + 20’H-‘BP/~ 
- &B’H-‘Bp./2]d% 

m p(G,H)IGI-1’21HI-1’2Jexp[ -yG-‘y/2 - W(R-’ + H-‘)8/2 
+ 2O’(A’G-‘y + H-‘Bp)/2 - &8-‘p/2]d0. 

The third term in the exponent can be written A-% + H-‘BP. Complete the 
square to obtain 

p(p,G,H/y) m ~(G,H)/Gj-~‘~lHI-“*Jexp(-y’G-‘y/2 
- [8 - (A-’ + H-‘)-‘(A-% + H-‘B&]‘(A-’ + H-l) 
X 18 - (A-’ + H-‘)-‘(A-% + H-‘BP)] 
+ (A-‘6 + H-‘B&‘(A-’ + H-‘)-‘(A-% + H-‘BP) 
-P ‘?~/2}d0 

cc p(G,H)IGI-“*~H~-“*~A-’ + H-‘I-“* x exp[-y’G-‘y/2 
-P ‘E-‘p/2 + $B’H-‘(A-’ + H-‘)-‘H-‘By/2 
+ 2pB’H-‘(A-’ + H-‘)-‘A%2 
+ ~YA-~(A-’ + H-‘)-‘A-‘&2]. 

Now use the three identities 

H-‘(A-’ + H-‘)-‘H-l = H-l - (A + H)-‘, 

H-‘(A-’ + H-‘)-‘A-’ = (A + H)-‘, and 
A-‘(A-’ + H-l)-‘A-’ = A-’ - (A + H)-‘. 
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Let T = A + H. Then, 

p(p,G,H!y) CC 1?(G,H)IGI-“21HI-“21A-’ + H-‘1-“2 X exp[-y’G-‘y/2 
‘8-‘p/2 + p’B’H-‘Bp12 - p’B’?-‘BP/~ 

I ~p%W,2 + e’A-‘ea - &T-%/2]. 

The second and third terms in the exponent cancel. From Section 2.3, 
(B’Y’B)& = B’q-‘4. Complete the square to obtain 

p(p,G,Hb) cc p(G,H)IG(-1’ZIHI-1’21R-1 + H-11-1’2 X exp[-y’G-‘y/2 
- (p - @)‘(B’q-‘B)(p - jk)/2 + &‘(B’q-‘B)@I2 
+ &n-‘&2 - &W’8/2]. 

2.5.5 Density of G,Hly 

Integrate p out of the density in Section 2.5.4 to obtain 

p(G,Hly) m p(G,H)~G~-1’2~H~-1’2~A-1 + H-‘I-1’21B’~-1BI-1’2 
X exp[-y’G-‘y/2 + &h-‘&2 - 8’q-18/2 + @‘(B’q-‘B)&I2]. 

In the second term of the exponent write 6 in terms of y. Then complete the 
squares to obtain 

p(G,H(y) CC p(G,H)IGI-1’2/Hj-1’2jA-’ + H-11-1’2)B”P-1BI-1’2 
X exp[-(‘y - Ab)‘G-‘(y - Ab)/2 
- (6 - Bp>T’(e - B@)/2]. 

The two terms in the exponent are the within and between sums of squares, 
respectively. Both depend on the unknown variances, G and H. While it is once 
again comforting to note that frequentist quantities have appeared in the Bayesian 
development, we should keep in mind that these quantities have no special 
meaning. The determinants can be rewritten as 

(~G-‘~I~A’G-1A~)“2()~-1(I~B’~-1B()”2. 

The two numerator terms can form the basis for a prior distribution on (G,H). 
This is somewhat consistent with the ideas presented in Box and Tiao [3] and 
in Tiao and Zellner [33]. 

2.5.6 Summary 

The important matrices and distributions from this section are repeated for 
convenience: 

A = (A’,-‘,)-’ 

a = (,f,-‘,)-l 
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“P=h+H 

Q = H-’ - H-‘BEB’H-’ 

V = [A’(--‘A - H-‘BEB’H-’ + H-l]-’ = (A-’ + Q)-’ 

(j = &‘G+,, 

fi = [B’(H + A)-l~]-l~‘(H + A)-% 

6 = (H-’ + A-‘)-‘(A-% + H-‘BP) 

Ob,G,H - N&V) 

X exp[-(y - AO)‘G-“0, - A@/2 - 0’QW2] 

p(G,H!y) cx p(G,H)~G~-“2~~~1’2~!4’-1’2~B’~-1B(-”2 
X exp[-0, - AB)‘G-‘O, - A&)/2 
- (6 - Bfi)‘?-‘(6 - Bfk)/2]. 

2.6 Two Empirical Bayes Approaches to Estimating 8 

As introduced in Section 1.2.2, the EB approach begins by finding the 
posterior mean of 8 given the covariance terms G and H. In the HNLM this is 
6. External estimates are then found for G and H. In this section, two general 
approaches to finding such estimates are introduced. 

The first method uses the posterior density p(G,H!y). Either the mean or the 
mode could be used as the estimate. The mean is superior in that it is guaranteed 
to be in the interior of the parameter space. The mode is often easier to compute, 
but may be on a boundary. Either estimate usually requires a numerical evalu- 
ation, Specific formulas for a simple model are presented in Section 3.8. 

The second method is an iterative technique. Begin with a preliminary 
estimate of 8, say 6. Then in p(B,G,Hb) hold 8 fixed at its current value and 
find the values of G and H that maximize this density. Obtain a revised estimate 
of 0 by evaluating 6 at the values of G and H just obtained. Repeat this 
procedure until 6,G, and H stabilize. It is not entirely clear what the results 
mean, but the procedure is similar to that recommended by Morris [27]. Com- 
putationally, this tends to be the simplest approach, as the maximization can 
often be done analytically. This is demonstrated for a simple model in Section 
3.5. If an analytical approach is not possible, an all-purpose maximization 
method like that of Nelder and Mead [29] is likely to provide the answer. 
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Recall that one of the drawbacks of the usual EB method is its inability to 
produce variance estimates. In Section 3.8, it is shown how this can be done 
when G and H are estimated by the posterior mean. 

2.7 Finding Posterior Quantities by Integration 

All of the integrations done up to this point were easy to accomplish by 
completing the square. The one needed to obtain the posterior density of fjy is 
found from 

P@~Y> = Sp(0(G,H,r>p(G,Hly>dGdH. 

The first density in the integrand is a multivariate normal density and was 
obtained in Section 2.5.1. The second density was obtained in Section 2.5.5 
up to a constant of proportionality. We must obtain that constant in order to 
insert the exact density in the integral above. That can be found by integrating 
the expression found in Section 2.5.5 with respect to both G and H. These two 
integrals are of equal difficulty and usually must be done numerically. The 
degree of difficulty will depend on the form of the covariance matrices G and 
H and the prior density p(G,H). It will be seen in Section 3 that in a specific 
case the problem can be analytically reduced to a one-dimensional numerical 
integration. Some excellent procedures for performing multidimensional nu- 
merical integration are given in Smith, Skene, Shaw, Naylor, and Dransfield 
[321. 

In most applications, the vector 0 will be of a reasonably high dimension, 
certainly greater than two. It is unlikely that much insight will be gained by 
examining the posterior density. The remainder of this section is devoted to 
obtaining various summary quantities. This will conclude the development of 
the general hierarchical normal linear model. 

2.7.1 Posterior Mean of 0jjy 

One way to obtain this quantity would be to evaluate the following integral: 

Jfhp(~/y)dfJ. 

Given the fact that a numerical step is necessary to yield each evaluation of the 
integrand, the cost of performing this integration is likely to be quite high, 
Instead, employ the following result (this notion was introduced in Section 
1.2.3): 

E(eiJy) = E[E(OilG,H,y)] = E(fiib) = JBp(G,H/y)dGdH. 

Note that 6, is a function of G and H. 
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2.7.2 Posterior Variance of 0ib 

A similar argument yields the following. 

V~(~i~> = VdE(0iJG,H,y)] + E[VX(B~~G,H,Y)] 

= Vat(BJ+y) + E(v&) 

= J(Bi)$(G,H!y)dGdH - [E(Oib)]’ + S~iip(G,H~)dGdlY 

where Vii is the ith diagonal element of the matrix V introduced in Section 2.5.1. 

2.7.3 Posterior Density of Oi!J 

This univariate density could be plotted to provide insight about a particular 
group mean. An approximate integration needs to be performed to get each 
point from the posterior density. The formula is 

P(eib> = SP(eiJG,H,y>p(G,Hlv)dcdH. 

The first density is a univariate normal density with mean 6, and variance 
Vii. 

If this calculation appears to be too time-consuming, the posterior distribu- 
tion may be approximated by a normal distribution with moments as given in 
Sections 2.7.1 and 2.7.2. This result is given in Berger [2] and is a Bayesian 
version of the central limit theorem. The same result applies in the following 
section. 

2.7.4 Predictive Density of a Future Observation 

In the insurance setting it may be more useful to get information about the 
losses in a future period than to estimate the class mean. Such a calculation 
would incorporate both the uncertainty with respect to the group mean and the 
uncertainty about the experience of next year’s insureds. 

In general, consider a new observation, x - N(AxO,Cx) where C, will depend 
in some way on the elements of G. A typical example would have A, be a 
1 X k vector of zeros with a one in the i” column. This would make x (a scalar) 
an observation from the i” group. The matrix C, would be a scalar of the form 
o*/P where o2 is the variance from the original model and P is a measure of 
exposure for the year to come. 

The density of interest is 

p(xb) = Sp(xle,G,H,y)p(B,G,Hly)dedGdH. 
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This is likely to be difficult to obtain. It is much easier to get the moments, 

W/y1 = EF~x(B,G,H,y)l 
= E[A,Bly] = AxE[e/y]. 

The expectation can be found using the formula in Section 2.7.1 since each 
element of the vector of expectations can be found individually. 

For the variance 

Covb/yl = Cov[E(x~B,G,H,y)l + EPv(x(B,G,H,y)l 

= CovktxB~yl + EGbI 

= A,Cov[B!y]A,’ + E[C,(y]. 

The covariance requires evaluation of CoV(Bi,Bj(y). This can be done from 
Jv;jp(G,H!y)dGdH. The (ij)‘h term of the expected value is evaluated as 
S(Cx)q~(G,Hly)dGdff. 

3. THE ONE-WAY MODEL 

In this section a specific hierarchical model is investigated. It is similar to 
the model treated by Biihlmann and Straub [7] in their EB analysis and is 
appropriate when there are k identically distributed groups and the goal is the 
simultaneous estimation of their means. The three levels of the one-way model 
are 

Level I-yijlt3i,u2 - N(0i,U2/Pij) i = 1, . ) k j = 1) . . . ) t~i 

Level 2-4~,~~ - fV(p,~~) 

Level 3-p - N(O,m). 

The random variables at each level are conditionally independent and Pij is 
some measure of exposure. The usual situation is that yij is the average loss (or 
loss ratio) in year j for class i. This differs from the Btihlmann-Straub model 
in just one respect. In their model, the level one variances were allowed to 
differ from class to class. Their result, however, uses only the average of these 
variances. That is, at no point is this variability taken into account. An indication 
of how one could truly account for unequal variances is given in Section 5. 

To use the formulas of the previous section it is necessary to identify the 
various matrices and vectors. Begin by letting y be the N X 1 vector of the 
observations where N = Xni. Arrange the observations so yl,, . . , yr,,, appears 
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first, followed by ~21, . . . , yzrz2. and so forth. The matrix A is N X k and 
contains only zeros and ones. In the first column, the ones are in the first nl 
rows. In the second column, the ones are in rows ni + 1 through ni + n2, and 
so forth. The vector 8 is k X 1 and contains the unknown group means, 01, 
. . . ) Ok. The covariance matrix G is diagonal with diagonal elements running 
from a’/Pii in the upper left corner to o*/P knk in the lower right comer. At the 
second level, B is a k X 1 vector consisting entirely of ones. Let 1 indicate 
such a vector. The vector or. is a scalar and so will be written k. The covariance 
matrix H is diagonal with all elements equal to r2, that is, H = T~Z~. 

The exposition will proceed in four steps. The first is a development of a 
pair of useful matrix relationships. They will aid in the evaluation of the 
determinants and inverses. Next, prior distributions for c? and r2 are introduced. 
The third step is to obtain the conditional densities. The final step is to perform 
the integrations. 

3.1 Two Useful Matrix Facts 

If A is a nonsingular matrix and c and d are vectors, then 

IA + cd’\ = (Al(1 + d’A-‘c). 

If the determinant is non-zero then 

(A + cd’)-’ = A-’ - (A-‘cd’A-‘)l(l + d’A-‘c). 

For the special case where A is diagonal (al, . . , , ak), c = cl, and 
d = 1, the results are (where Jk = 11’) a k X k matrix) 

\A + cJk( = (k)(l + 6%; ‘) 

and 

(A + cJk)-l has (iQth term a; ’ - c/(u?~) and (ij)‘h term -c/(a&) 

where b = 1 + c&z;‘. 

Derivations of these results can be found in Graybill [ 121 (Theorem 8.9.3). 

3.2 Prior Densities for (G,H) 

In this section, three noninformative priors and one proper prior will be 
introduced. Two of the noninformative priors are based on a general theory that 
can be used in any setting of the HNLM. The third one is particular to the one- 
way model. 
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The easiest one to describe is the naive version of a noninformative prior. 
It is p(G,H) = 1. In the one-way model the only random elements are o* and 
72, so the actual prior in this case is P(u’,T~) = 1. This prior is used by Morris 
[28]. While it is convenient for computational purposes, there are good theo- 
retical reasons (Box and Tiao [3]) for not using it. The essence of the argument 
is that this prior puts too much weight on large values of the parameters. On 
the other hand, it is often the case that this improper prior will yield a proper 
posterior (something that must always be checked when using a noninformative 
prior). Also, the posterior mode is the maximum likelihood estimate. This should 
give comfort to those who are troubled by Bayesian methods. Call this prior 1. 

The second prior is based on the arguments of Box and Tiao [3] for the 
balanced model. The balanced model is the special case where nl = . . = izk 
and PII = . . . = Pknt. The first requirement is common in insurance studies, 
as n, often is the number of years of observation for the ith class. However, it 
is extremely unlikely that the exposures will be equal for all years and all 
classes. In any event, in the one-way balanced model the reasonable noninform- 
ative prior is p(02,r2) CC (~~)-‘(a’ + PTZT~)-’ where P is the common value 
of the PC and n is the common value of the ni. A generalization for the un- 
balanced model is to use p(cr*,~~) w (a*)-‘(~* + m?-‘. Since m is to play 
the role of Pn one choice is m = XPij/k. An alternative is taken from the 
constant used when creating the unbiased frequentist estimator of 72. It is 
m = [(EPy)2 - C(Pi)2]/(k - l)CPij where Pi = EPij. Call this (with arbitrary 
m) prior 2. 

The final noninformative prior is, like the first one, available in all situations. 
In general, it is 

p(G,H) cc I(--Pdim(G)/dim(G)lA + ~I-pdim(W/dim(fO~ 

This prior is taken after Box and Tiao [3] and is related to the Fisher information 
about G and H. In the above expression, pdim(G) refers to the number of 
distinct parameters in the matrix G while dim(G) is the number of rows in G. 
For the one-way model, P(u*,T~) CC (u2)-‘[lI(u* + P~T~)]-“~. In the balanced 
case this prior is identical to prior 2. Call it prior 3. 

The fourth and final prior is an attempt to offer a proper distribution. As 
such, it requires that the investigator have a genuine opinion about the variances. 
When seeking a proper prior, mathematical convenience is always a high prior- 
ity. At the very least, the family of proper priors should include a sufficiently 
large variety of possibilities so as to give the investigator a chance of finding a 
representative prior. The natural choice for variances is the inverse gamma 
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distribution. The general form of the density is 

p(x) K x-“exp( - h/x). 

For it to be a proper distribution we must have 1, > 1 and h > 0. The limiting 
case of 1, = 1 and h = 0 is similar to prior 2. Since prior 1 is equivalent to v 
= 0 and A = 0 we see how far from being a proper distribution prior 1 is. The 
inverse gamma prior will be referred to as prior 4. A specific version appropriate 
for the one-way model will be given later. 

3.3 Conditional Densities in the One-Way Model 

This section contains all the details of the evaluation of the formulas in 
Section 2 in the special case of the one-way model. 

3.3 .I Preliminary Quantities 

A = diagonal (02/PI, . . . , u2/Pk) where Pi = &Pij 

E = 7*/k (a scalar) 

6i = CjPijyijlPi 

b = CW&W. where wi = P(T~/(~ + PATS) and W. = CiWi. 

3.3.2 91y,G,H 

This is a multivariate normal random variable. The mean vector 6 has ith 
element 

6, = W&j f (1 - Wi)/i. 

The matrix V- ’ is 

V- ’ = diagonal (r? + O-‘Pi) - (kT2)-‘Jk 
= diagonal [?(l - wi)-‘1 - (kT’)-‘Jk, 

where as before Jk is a k X k matrix of 1’s. The covariance matrix is V. Using 
the inversion formula from Section 3.1, 

vii = Var(Bi~,02,r2) = r2(1 - wJ[l + (1 - wJIw.] and 

Vij = COV(Oi,0jjly,U2,T2) = T2(1 - wij(i - Wj)lW. 
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3.3.3 O,G,H/y 

The two required sums of squares are 

0, - AO)‘G-‘0, - AtI) = Z,P,&j - 8J2/a2 
= [EijPij(yij)’ - ZiPi( + ZiPi(Oi - 8i)*]/O* 

and 

O’QO = [X,(0,)’ - kG2J/7* where 6 = C#i/k. 

The second version of the first quantity is useful for computational purposes as 
the first two sums depend only on the data while the last sum has only k terms. 
The desired density is 

p(e,02,T21y) cc p(u2,T2)(u2)-N’*(T2)--(k-‘)‘2 
X exp(-&Pjj(yti - Oi)2/2U2 - (Ei(Oi)* - ke2)/2T2}. 

3.3.4 G,H!y 

Two important matrices are 

1I’ = diag(u2/Pi + T*) = T*diag(llwJ 

and 

B’?-‘B = W./T*. 

The two sums of squares are 

0, - Ad)‘G-‘(JJ - Ad) = XijPij(yij - fii)*/U’ 

and 

(e - B~)‘~-l(~ - By) = ~iWi(ei - ~)*/T*. 

The desired density is 

For computation the exponent can be written 

-[X~P,(yij>’ - EiPi(Bi)*]/2~* - [CiWi(8i)’ - (CiWidi)*/W.]/Z!T*. 
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3.3.5 Prior Distributions for (a2,7’) 

To make this section complete, the four priors developed in Section 3.2 are 
displayed. 

Prior l----p(0~,7~) = 1. 

Prior ~-~(cJ~,T~) m (cr2)-‘(0’ + rn?-‘. 

Prior 3-p(u2,T2) m (d)-‘[IIj(U* + Pi72)]-1’k. 

Prior 4--P(a*,?) m (u2)-V’(?-Vzexp(-X~/u2 - h2/T2). 

Prior 4 uses two independent inverse chi-square random variables. Prior 1 is a 
special case. In the next section the four priors will be written with one general 
formula. 

3.4 A Transformation 

It turns out that calculations are much easier to carry out with a transfor- 
mation of u* and 7’. The one to use is 

6 = T2/02 and o = u2. 

The Jacobian for this transformation is CY. The four prior densities become 

Prior l-~(a$) K cy. 

Prior 2--p(a,6) E or-‘(1 + ma)-‘. 

Prior 3--p(a,6) cc a-‘[I&(1 + Pi6)]-1’k. 

Prior 4--p(o,6) m cx ~~“‘+vz~1~8~v*exp(-A~/~ - h2/a6). 

A general form that includes all four is 

p(43 cc cx -q’2h(6)exp(-X1/o - &/(x6). 

The two important conditional densities become (note that since the Jacobian 
was included in the prior, no other adjustments are needed) 

P@dd.Y) cx (a) 
-(N+k+q-l)/2~~)-(k-11)/2h(6) 

X exp{-[A, + &jPij(yG - 8i)2]/2Cl 
- [A2 + (Zi(8J2 - k~=)1/21d} 

and 

P(‘Y,FlYY) Oc (a> -(N+q--)/=(~)-(k-l)/*h(~) [~iwiIw~~l’= 

X exp{-[Al + CuPij(yij - 6i)*]/2CX 
- [A2 + Ci(6i - ~)2~i]/2~6}. 
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The other important quantity is the distribution of 8!y,a,6. From Section 
3.3.2, it is multivariate normal. The ifh element of the mean vector is 

6, = widi + (1 - wi)l?, where wi = P&(1 + P,6) and b = E,WiGi/W. . 

The covariance matrix has diagonal elements 

Vjj = cUS(l - Wj)[ 1 + (1 - Wj)IW.] 

and off diagonal elements 

Vi = cXS(l - Wj)(l - Wj)lW. 

3.5 Iterative EB Estimates 

Recall the two-step iterative procedure from Section 2.6. For the one-way 
model, the first step is to find the values of cx and 6 that maximize p(8,01,6/y) 
with 4 replacing 0. This density was obtained in the previous section. Let 

C = Al + EjjPjj(yjj - Gj)* 

and 

D = h2 + Cj(Qj - fi)’ where F = CiGi/k. 

Differentiating the density with respect to cx and 6 produces the two equations 

C + D/6 - (N + k + q - l)cx = 0 

and 

Dh(G)lcx - (k - l)h(6)6 + 2h’(6)F2 = 0. 

Solve the first equation for 01 = (C6 + D)l(N + k + 4 - 1)s. Insert this in 
the second equation to obtain 

2Ch’(6)6* + [2Dh’(S) - (k - l)Ch(6)]6 + (N + q)Dh@). 

The solutions for the four priors are 

Prior l-8 = (N - 2)Dl(k - l)C. 

Prior 2-8 is the non-negative root of 
(k + l)mC6* + [(k - 1)C - NmD]G - (N + 2)D. There 
is exactly one non-negative root and it is slightly larger than 
NDl(k + I)C. 

Prior 3-This one must be solved numerically. 

Prior 4-6 = (N + 2vr - 2)Dl(k - l)C. 
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The second step is to obtain the revised estimate of 9. It is 

6 = Wi6 + (1 - wi)@ where Wi = P&( 1 + PiS). 

A surprising observation is that for prior 4 the estimate does not depend on 
~2. The solution with prior 1 is the ratio of the appropriate sums of squares but, 
unlike the usual EB estimate, it can never be negative. It is, however, possible 
to get a value of zero. 

3.6 Density of S(y 

As indicated in Section 2.6, the iterative algorithm does not provide the 
other quantities of interest. Before developing the integration formulas, analyt- 
ically integrate (x out of the posterior density of CX,S~. For future use, let c be 
the constant of proportionality in the posterior density of ol,Sjy. 

p(S(y) = JC(ol)-‘N+q-1)‘2(S)--(k-1)‘2h(S)[lIIiWJW.]1’2 

X exp{-[hr + C,P,(yO - 8J2]/2a 
- [h2 + Cj(6i - /i)2Wi]/2CY-S}dol 

= c(S) -(k- *“2h(8)[IIiWi/W.]“2 X {hl + CPij(yij - 63’ 

+ [h2 + Cj(6i - /i)2Wi]/8}-(N+q-3)‘2 

x r[(iV + q - 3)/2]2(N+q-3)‘2. 

3.7 Evaluation by Integration 

Let f(S) be the essential part of ~$31~). That is, 

AS) = (6)-‘k-1”2h(8)[niWj/W.]“2 

X {hl + EijP,(yi, - 6,’ + [X2 + Ei(6i - ~)2Wi]/S}-(N+q-3)‘2. 

Let the constant g = Jf(S)&. Sop(SLy) = gf(S) and the relationship between 
the constants g and c is 

c = {gr[(N + q - 3)/2]2(N+q-3)‘2}-1. 

The integral for g must be done numerically. An approach that is not necessarily 
the most efficient but is sure to work is to use separate numerical integrations 
on the intervals [O,l], [1,2], [2,4], [4,8], . . . until the contribution from the 
latest interval is sufficiently small. An iterative Gaussian integration converges 
fairly quickly. Any numerical analysis text (e.g., Burden, Faires, and Reynolds 
[Xl) is likely to prove useful. 

When doing numerical integration, it is important to know in advance if the 
integral will be finite. For the integral above it is sufficient to look at the 
balanced case. After removing some constants that depend only upon n and P, 
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the integrand becomes 

h@)(l + nP6)-(k-‘)‘2[C, + AZ/i5 + &(I + nP8)]--(N+q-3)‘2 

with cl and c2 being positive constants that depend only on the data. The four 
priors can be generalized to h(6) = Sdu2(1 -t- nBPh where v2 = vz for prior 
4 and is zero otherwise and h is 1 for priors 2 and 3 and zero otherwise. It is 
necessary to verify the conditions under which the integral will exist as both 
6 + 0 and 6 -+ ~0. For the first case, the essential part of the integrand is 

ij-yc3 + h2/q-‘N+9-w2, 

For existence, either 

hZ>OandN+q-2v2>10r 

A2 = 0 and (u2 > 1 or v2 = 0) 

must hold. This condition is always satisfied for priors 1 through 3. For the 
second case, the tail behavior is governed by 

p-1 +2/2+2v92 

and so the integral will exist if k - 1 + 2h + 2v2 > 2. This reduces to k > 3 
for prior 1, k > 1 for priors 2 and 3, and k > 3 - 2~2 for prior 4. Keep in 
mind that both conditions need to be satisfied. Rather than repeat these argu- 
ments for the integrals that follow, the existence results are summarized in a 
table at the end of this section. 

Returning to the estimation problem, the first quantity to compute is 

E@(y) = JSf(S)&/g. 

The next, and most useful quantity, is 

E(B;[y) = J[w,& + (1 - wJ;lf(S)&lg. 

The next quantity of interest is Var(B,ly). From Section 2.7.2, two integrals 
are needed. The first one is similar to the one above. It is 

E(8l’ly) = J[wAi + (1 - wi)kJ2f(6)&/g. 

The second one is Jviip(o,GJy)doA. With regard to cx (see Section 3.4), vii 
contributes a multiplicative constant of (Y and so the integral with respect to (y 
is similar to the one done in Section 3.6. 
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SViiP(~,~l.Y)dffd8 = J(1 - Wi)[l + (1 - Wj)lW.]Scwp(ol,Sly)dolds 

= J( 1 - Wi)[ 1 + (1 - Wj)/W.]S 

x cm -‘k-“‘2h(S)[~iWilW.]1’2 X {Xl + CuPij(yij - 6i)” 
+ [A2 + Xj(hj - ~)2Wj]/S}-(N+q-5)‘2 

x r[(TV + q - 5)/2]2(N+4--5%8. 

Letf*@) = (S)-‘k-1)‘2h(S)[IIiWilW.]“’ 

X {Xl + CPij(yg - 6,” 
+ [h2 + Cj(6j - $)2Wj]/S}-(N+q-5)‘2 

+ (iv + q - 5) 
and so 

Jviip(CJ,S~)dotdS = J(1 - Wi)[l + (1 - Wi)/W.]Sfy(S)dS/g. 

In case there is interest in the two variance components, their posterior 
means are given by 

Wu2b) = J?VWS/g 

E(r2(y) = j-8~(6)&lg. 

The predictive distribution for the next observation in the ith class was 
discussed in Section 2.7.4. If the next X is N(Bi,02/Ri) then 

E(XI.Y) = E(ei1.Y) 

Va~(Xly) = E(a2~)/Ri + Var(Bi(y). 

These quantities have already been obtained. 

The final item to obtain by integration is the posterior density of Bi. From 
Section 2.7.3, 

p(ejly) = J(bSi)-1S-k’2h(S)[lIiWi/W.]1’2 

X {[(ej - mi)/Ssi12 + CPij(Jij)2 - Eij(6i)2PiWi 

- (~iWi6i)2/W.S}-(N+q-2)‘2dS 

x r[(N + q - 2)12]l{r[(N + q - 3)/2]&} 

where 

l?Zi = WiQi + (1 - Wi)b 

and 

(LS~)~ = (1 - Wj)[l + (1 - Wi)IW.]. 
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TABLE 1 

CRITERIA FOR THE EXISTENCE OF THE INTEGRALS 

SfGWS 
j%&S)dS Sr;@W 
J+@flf)dS SSf@)ds $vi~(S)dS SVYSWS 

Prior 1 k>3 k>5 k>3 k>5 
Priors 2,3 k> 1 k>3 k> 1 k>3 
Prior 4 k > 3 - 2vz k > 5 - 214 k > 3 - 214 k > 5 - 2~~2 

and XZ > 0 N + 2v, > 3 N + 214 > 3 N + 219 > 5 N + 2~1 > 5 
or A* = 0 IQ > 1 or vz = 0 v2 > 2 or v2 = 1 Y2 > 1 or vz = 0 vz > 2 or vz = 1 

3.8 An EB Procedure Based on Integration 

To do all the calculations listed in the previous section requires a large 
number of approximate integrations. It would be helpful if those that are needed 
for each of the k groups individually could be avoided. A compromise that is 
reminiscent of EB methodology is presented here. 

To proceed it is necessary to obtain a general result for the mean and variance 
of a function of a random variable. To do this begin with a general random 
variable X and a function g(x). Use the Taylor series expansion about 5 = E(X) 
to write 

WX)I + EMS) + (X - Sk’(81 = g(t) 
and 

Vark(X)1 G VarMO + (X - E>s’@l = k’(5)12Var(X). 
Generally, for these approximations to be reasonable, the random variable X 
should in some sense be the average of a fairly large number of observations 
and the function g(x) should be thrice differentiable around 5. Almost any 
advanced text on mathematical statistics will contain theorems that make the 
above results precise. The random variable under consideration here is 6/y and 
its density will converge in the same manner in which a sample mean converges 
as the sample size, N, increases. 

To evaluate E(fli(y) = E(w,& + (1 - Wi)ib), let S/y play the role of 
X and so 5 = E(6jy) = 6, a quantity obtained in Section 3.7. Then let 
Rj = P&(1 + P$). Finally, 

E(O& * @j& + (1 - ~Cj)fi 
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the Japanese do. The real question is not big versus small business. The question 
is how do we have a prosperous big and small business section. 

The final choice we’ve been given, again a false choice, is high-tech versus 
basic industries. The fact is, our basic industries, such as auto and steel, are 
not going to survive unless they get those advanced technologies that can 
automate their facilities quickly. The reality is that high-tech is going to be the 
salvation of big industry in this country. What we need is an economic envi- 
ronment where capital investment can proceed much faster than it is now. Once 
we put these myths aside, once we put these false choices aside, then the 
question logically is-how do we proceed? How do we go about creating the 
type of economy that we need? My argument is that what we really need is an 
economy that is flexible, an economy that’s got vigor, one that’s dynamic. In 
fact, you could almost say that there are two schools of economic thought on 
how to do it. One was expressed by Damon Runyon in his musical “Guys and 
Dolls.” He had Bat Masterson, the protagonist, say-“The race may not go to 
the swift or the battle to the strong, but that’s how to bet your money.” That’s 
opposed to the Mae West school. She said, “If something is worth doing well, 
it’s worth doing very slowly.” 

I personally am of the Damon Runyon school. If you are going to have a 
swift and strong economy, how do you go about it? What’s keeping us from 
doing what we should be doing? There’s a series of obstacles, or choke points, 
or bottlenecks, that really keep this economy from moving along. The first and 
the most important today is the fact that we just haven’t recognized the fact that 
we are in an interdependent global economy. Our policies are still trapped in 
the 1940s and 1950s when we dominated the global economy. When you go 
back and look, what you find is that the global trade system we now have was 
designed by us and the British between 1943 and 1947. We built it on three 
foundations: the International Monetary Fund, the World Bank, and something 
called the International Trade Organization. The International Trade Organiza- 
tion was to be a supemational organization whose basic purpose was to control 
unfair trade practices. It was to knock them down and not permit a re-occurrence 
of the Great Depression. The United States Senate refused to ratify that treaty. 
Then what we had to do was go into a very complex, very difficult set of 
negotiations with other nations and create something called the GATT (General 
Agreement on Tariffs and Trade). When it was first created it worked fairly 
well. It was based on the assumption that the rest of the world’s economies 
were, in some degree, like those of the United States and England, that in effect 
it was an Anglo-American rule-driven economy. The government sets the rules; 



304 CREDIBILITY 

demonstrate the evaluation of prediction intervals. In both cases, the results will 
be compared to those obtained from the usual EB formulas. 

4.1 Workers’ Compensation Frequency Data 

The data were supplied by the National Council on Compensation Insurance 
(NCCI) and comprise observed frequencies from 7 years on 133 rating groups 
in 36 states. To make this data set somewhat manageable, the years were 
combined to yield the following: 

yij = relative frequency in state j from group i 

Pq = Payroll in state j from group i. 
i=l,..., k = 133 j = 1, . . . , FZ~. 

The number of states per group (ni) is not always 36 as some states had no 
exposures for some groups. The total number of observations was N = 4,572, 
indicating that 216 cells had no exposure. 

The objective is to estimate 8i, the relative frequency of claims from insureds 
in rating group i. While the payrolls were adjusted for inflation, no attempt was 
made to adjust for any trend in the number of claims. As a final note, only 
claims resulting in permanent partial disability were included. It is important to 
recognize that the purpose of these illustrations is not to recommend a specific 
ratemaking procedure for workers’ compensation insurance, but rather to illus- 
trate the calculations using the formulas of Section 3. In particular, one might 
check the possibility that a cross-classified (state by group) model better de- 
scribes the process. 

For comparison, the formulas recommended by Biihlmann and Straub [7] 
were evaluated. These are the conventional EB formulas and produce the fol- 
lowing results: 

I? = ZPij(yij - di)‘/(N - k) = 4.746 

‘i2 = [CPj(& - $)2 - (k - l)&‘]/(P - XPf/P) = -. 1123 
where b = EPidilP and P = CPi. 

When a negative value is obtained for r2, the convention is to use zero. This 
produces credibility weights of zero and so the grand mean is used as the 
estimate for each of the group means. As has been mentioned before, this 
method does not allow for evaluation of the quality of the estimates. 

The key function in all the integrations isA6) as displayed in Section 3.7. 
The only item that involves the index j is Z(y,- - &)’ and it depends only on 
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the data and so is constant. The number of observations per group will not 
affect the computation, other than the evaluation of a single sum of squares. 
All of the sums that involve 6 have k = 133 terms. A second item is the size 
and shape of the integrand. The function fl6) is well-behaved, being small at 
8 = 0 and zero as 6 --$ 30, and having a single mode. However, because a vari- 
ety of constants were removed from this density, it turned out that the value at 
the mode was very large. To see just how large, a variety of values of ln(A6)) 
were computed. In the actual calculations that followed, I worked with 
fl6)/exp(4,650) as the maximal value was near exp(4,650). Since all expressions 
are the ratio of two integrals involving this function, the adjustments cancel. 
Finally, it should be noted that f(6) was calculated by first obtaining the loga- 
rithm of each of its constituent factors, adding them, subtracting 4,650, and 
then exponentiating the result. This avoided any overflow or underflow problems 
in the intermediate calculations. 

In Table 2, the results for the first three priors are displayed. Note that while 
the posterior mean of ~~ is indeed small (so zero was not an unreasonable 
estimate), it is large relative to a2/Pi, and so zero was not a reasonable choice 
for the credibility weight. This led to results that were considerably different 
from those obtained by the Btihlmann-Straub formula. Values of p. and the zi 
were found by solving the following system of k equations: 

E(eib) + z&i + (1 - ~i)(i where p = Ez~~JCZ~. 

The zi then take on the role of credibility factors. These do not automatically 
arise in a Bayesian framework, and except for the fact that actuaries are accus- 
tomed to seeing this quantity, there is no reason to compute it. The three classes 
displayed were the ones with the smallest, median, and largest values of 8i, 
respectively. 

It is not surprising that the three priors produced virtually identical results. 
The large amount of data overwhelms all of these priors. In addition, I computed 
the standard deviation of (r2!y). Under prior 2 it is 0.000416. The mean of 
0.003087 is over seven standard deviations above zero, indicating that the 
Biihlmann-Straub estimate is extremely unlikely to be valid. 

The same items were evaluated using the approximations from Section 3.8. 
This was done only for prior 2, since the results will be similar for the others. 
The results are displayed in the last column of Table 2. In this case, the 
approximation performed well. 
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TABLE 2 

ESTIMATES BY INTEGRATION IN THE ONE-WAY MODEL 

Prior 1 Prior2 

E(~/Y) .0006613 .0006498 

E(~Y) 4.755 4.753 

W%) .003143 .003087 
Inferred p .07488 .07487 

Class 107 (Auditors, Accountants, Draftsman) 

Pi 102,471 102,471 

e, .002762 .002762 

E(O;;; 
.9852 .9849 

.003830 .003848 

SD(Oijy) .006763 .006761 

Class 68 (Explosives and Ammunition Mfg.) 

PI 3,018 3,018 
6, .06262 .06262 

E(Oiii 

.6638 .6599 
.06674 .06679 

SW~IY) .03237 .03227 

Class 89 (Stevedore) 

PZ 11,275 11,275 
6, .3895 .3895 

E(Oi{i 
.8800 .8782 
.3518 .3512 

SW& .01980 .01979 

CPU (sec.) 14.92 15.23 
Cost ($) 3.91 3.97 

Prior3 

.0006503 
4.753 

.003089 
.07487 

EBStyle 

d .0006498 

a .07488 

102,471 102,471 
.002762 .002762 

.9850 cj .9852 
.003847 .003829 
.00676 1 .006762 

3,018 3,018 
.06262 .06262 

.6600 Pi% .6623 
.06678 .06676 
.03227 .03234 

11,275 11,275 
.3895 .3895 
.8783 K& .8799 
.3512 .3517 

.01979 .01980 

15.11 12.49 
3.94 3.50 

The computation was done on an IBM 4381 computer. The time did not include 

that used for setting up the data set (computing and arranging the values of yii 
and Pii), so this can be viewed as the increase in cost of the Bayesian method 
over the Biihlmann-Straub formula (which is essentially free). 
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In addition, the iterative algorithm (Section 3.5) was employed with 
prior 2. Eight iterations were required for convergence. The results 
were 8 = 0.0005936, 6’ = 4.625, and a = 0.07479. The results compare 
favorably with those obtained by integration. 

4.2 Workers’ Compensation Loss Ratio Data 

This data set was taken from Meyers [25]. He provided loss ratios for three 
years of experience in 319 rating classes in the state of Michigan. In addition, 
the premium volume was given for each class/year; they will be used as the Pij 
as in the Meyers paper. In that paper he used the Btihlmann-Straub formulas to 
obtain the credibility estimates. In view of the success from the previous section, 
I only computed estimates based on prior 2 and the EB approximation. The 
results were (the column labelled EB contains the results from the Meyers 
paper): 

EB HNLM 
cr2 92,374 101,650 
T2 0.019237 0.019762 

P 0.5822 0.5799 
K = 02h2 4,801,900 5,143,710 

It is not surprising that the results are similar. This also indicates that the 
Btihlmann-Straub formulas are indeed based on a hidden assumption of nor- 
mality. 

One of the most useful features of the Meyers data set is that it also provided 
the premiums and actual losses for the year following the three years of expe- 
rience. This admits an evaluation of the predictive ability of the various pro- 
cedures. I will begin the evaluation by duplicating the two tests performed by 
Meyers. In performing the tests, the expected losses based on the estimated loss 
ratios were adjusted to make the total expected losses equal to the actual losses. 
This is legitimate, since both credibility procedures were formulated to indicate 
relativities, not the absolute level of future losses. To do so would require trend 
factors to be incorporated into the analysis. An indication of how this might be 
done within the HNLM is given in the next section. 

The first test is to measure the squared error of the predicted versus the 
observed losses. Bayes procedures (of any kind) should do well since the 
objective is to minimize squared error. The formula is XPi(Ai/Ei - 1)*/k where 
Ai is the observed losses, Ei is the expected losses, and P; is the premium. Also 
available for this test were the losses expected according to the rates promulgated 
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by the NCCI. In addition, the weighted average relative error of the predictions 
was computed. The formula is CPi(A,/Ei - ll/XPi. The results were: 

Mean squared errors Mean relative errors 
NCCI 298,063 0.26776 
EB 289,651 0.26396 
HNLM 287,416 0.26368 

The second test was invented by Meyers [25]. He called it the “Underwriting 
Test.” The idea is to consider an insurer with established rates and a new entrant 
into the market. The new entrant uses his own method to determine premiums. 
He then offers insurance only to applicants in those rating classes for which his 
calculations produce rates less than those of the established insurer. He then 
charges a slightly lower premium than the established insurer and gets all of 
this business. If the new entrant’s ratemaking methods are superior, he will 
expect a profit from his actions. Assuming differences only in relativities, but 
not in overall level, the established insurer will lose the same amount that the 
new entrant gains. A formalization of this process has Ai as the actual losses, 
Ei (for established) as the established insurer’s expected losses, and N, (for new) 
as the new entrant’s expected losses. The profit and loss ratio, respectively, for 
the new entrant will be 

C(Ei - Ai) and CA;/CEi, 

where all sums are taken over those classes for which N, < Ei. The comparisons 
among the three estimators are presented in Table 3. 

TABLE 3 

THE UNDERWRITING TEST 

Established New Entrant Profit for New Ent. Loss Ratio 

NCCI EB 9,751,941 .950 
NCCI HNLM 9,929,786 .949 
EB NCCI 2,311,720 .990 
EB HNLM 7,493,090 .952 
HNLM NCCI 2,584,151 .989 
HNLM EB -6,753,204 1.026 
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According to Meyers [25], a loss ratio of less than 0.957 has less than a five 
percent probability of occurring by chance. The results are consistent with the 
mean squared error ordering in that HNLM has a significant loss ratio as a new 
entrant against both EB and NCCI. Neither is significant as a new entrant against 
HNLM. By the same reasoning, EB is superior to NCCI. There is also an 
inconsistency present in that HNLM appears to do better versus NCCI than it 
does versus EB. An examination of the data reveals that the problem is the lack 
of sensitivity of this approach. Below are the results from two of the 319 classes 
(all figures in thousands of dollars): 

Expected 

Class Loss NCCI EB HNLM 

8033 4,704 8,135 8,165 8,149 
9079 22,208 15,464 16,087 16,108 

In these classes HNLM scores a big “win” over EB, although the predictions 
are indistinguishable. Also note that in class 8033, HNLM defeats EB but loses 
to NCCI. It happened that there were no similar cases producing great gains 
under EB with a premium only slightly better than HNLM. The similarity of 
the expected losses should not have produced such a large overall difference 
between EB and HNLM. I attribute this to the method itself. 

Recall that one of the stated advantages of HNLM is that it also produces 
prediction intervals for the future observations. This was done for the 319 
classes. The standard deviations of the predictions were computed according to 
the approximation in Section 3.8. The formula is 

Var(Bi\y) e (di - 0.5’799)2(Pi)2(2.030 X 10-15)/(1 + 1.957 X 10-7P34 
+ (0.01993 + 3.842 X 10e9Pi)/(l + 1.944 X 10-7Pi)2. 

If all is well, the standardized actual losses (actual minus predicted divided by 
the standard deviation) should follow a normal distribution with mean zero and 
variance one. To see if that is so, two plots were prepared. Figure 1 shows a 
histogram of the 319 standardized losses. It is apparent that there is more 
skewness present than one would expect from a normal distribution. The chi- 
square goodness-of-fit test statistic using 20 intervals is 71.55. With 17 degrees 
of freedom there is clearly a lack of fit. Figure 2 is a plot of the standardized 
errors against the expected losses. This can be used to check for serial corre- 
lations and constant variances. The former is not a problem and that is confirmed 
by performing a sign test. There are 153 sign changes out of 318 opportunities, 
clearly close to the expected number of 159. There does appear to be a problem 
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Standardized Prediction Errors 
Histogram from 319 predictions 

50 
1 

with the variances. For small predicted losses, the points are much too concen- 
trated about the horizontal axis. This would lead us to suspect that we are 
overstating the variances in this range. One way to allow for this would be to 
adopt the unequal variance model of Section 5.1. 

With these problems in mind, is there any value in attempting to predict 
these values? I believe there is. First of all, as was stated in Section 1, an 
inadequate model is almost always better than none at all. Secondly, we have 
some idea of the shortcomings, and could make some ad hoc corrections in the 
future. 

As an illustration of the benefit of knowing the prediction errors, consider 
the following analysis which is done in the spirit of the “Underwriting Test.” 
Identify all classes for which the HNLM predicted loss exceeds the NCCI 
predicted loss by at least k standard deviations. Do not offer insurance to these 
classes. For k = 1 there is only one class, number 4420. In thousands the 
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Std. Pred. Error vs. Predicted Loss 
(222 smallest predicted losses) 
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predictions were 4,329 and 3,427. The actual loss turned out to be 3,855. The 
point here is that this analysis can help identify classes in which the current rate 
levels are out of line, perhaps inspiring an investigation to see if something 
unusual has happened, either to the insureds in that class, or to the data in the 
process of recording it. 

A final comment is in order. The above analysis leads us to believe that the 
normal model is not appropriate for these losses. In most settings we would not 
have the actual losses available in order to check this out. Can this be done 
with the original data? Box [4],[5] suggests the following approach to model- 
checking. In the general Bayesian setting, let X be the marginal distribution of 
the observations. Its density is computed from f(x) = @$(9)fltl)& where, as 
usual, &]0) is the model density and f(O) is the prior density. If the model and 
prior are reasonable, the observed data x should, in some sense, be a “typical” 
observation from this density. While Box suggests a specific test, I will just 
display the standardized observations. 
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First Level Std. Obs. 
Histogram from 957 values 

Figure 3 

In particular, I will restrict attention only to the assumption of normality 
and will condition on the other aspects of the model such as constant variance. 
I will also condition on the estimated values of the variances. In the general 
HNLM, the distributions of interest are 

First level-y - N(A6,6), 

Second level-6 - N(Bb,&), and 

Overall-y - N(AB$,G + A&A’). 

In the particular case of the one-way model, these distributions become 

First level-yij - N(&,~-‘/&‘Q), 

Second level-& - N(l?.,+2), and 

Overall-yii - N(/I,G2/Pij + t2). 
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Second Level Std. Obs. 

40 
Histogram from 319 values 

1 

Figure 4 

Figures 3, 4, and 5 display the histograms for the three sets of observations. In 
each case the appropriate values Cyii or 6i) were standardized according to the 
indicated means and variances. If the normal model was correct, the histograms 
should correspond to the standard normal distribution. An examination of the 
figures indicates that normality might indeed hold at the first level, but definitely 
does not at the second level. As a result, it is clear that the overall model should 
not be normal and that is indicated by the histogram. 

Does the discovery of non-normality invalidate all the work that has been 
done? I believe the answer is no. We are at least as well off as one who used 
the EB methodology and we have the additional knowledge that we do not have 
the optimal solution. It is now a matter of deciding if the extra effort of analyzing 
a non-normal model is justified. Perhaps the ideas suggested in Section 1.3 are 
worth investigating. 
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Combined Model Std. Obs. 
Histogram from 957 values 
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Figure 5 

5. OTHER HIERARCHICAL LINEAR MODELS 

In this section I will present a number of other models that fit the framework 
set out in Section 2. No attempt will be made to analyze these models and, in 
particular, no attempt will be made to assess the computational difficulties of 
evaluating these models. Unless there is an indication to the contrary it should 
be assumed that all of the random variables at a given level of the model are 
conditionally independent. 

5.1 Unequal Variances 

The process variance within each class may differ from class to class. From 
year to year within one class it is still assumed that variances are proportional 
to some exposure measure. The first two levels of the model are 

Level l-Yg/ei - N(Bi,o?/Pii) and 

Level 2-41il~ - ~V(~J,T*). 

Noninformative priors would then be placed on p,, r2, and UT, , . . , a:. 



CREDIBILITY 315 

It is easy to see what the EB approach to this model would be. Each (T? 
would be estimated from data in the i” class. This is not in the spirit of credibility 
analysis where we would expect that information from the other classes can 
improve the estimation of a particular a:. A model that would do this would 
have an additional component at Level 2 such as 

cdlu,X - Inverse gamma(v,X). 

Noninformative priors would then be placed on l.~, TV, u, and A. 

5.2 Parameter Uncertainty 

Suppose it is possible that the class mean 8i varies from year to year, but 
not in any predictable manner. A model for this would be 

Level l-Y&j - N(CXij,U*/Pi/) 

Level 2aGl0i - N(&,y2), and 

Level 34~ - N(~,T*). 

Collapse the first two levels to produce 

Yijl8i - N(Oi,U*/Pij + r2) 

This is similar to a model proposed in Meyers [26]. It is not possible to derive 
EB estimates of the three variance terms as the within sum of squares is all that 
is available to estimate both u2 and y2. There is, however, a least squares 
approach based on the relationship of the variance in one group to its exposure 
that can yield estimates of the three parameters. A detailed HNLM analysis of 
this model is presented in Klugman [23]. The major problem is the evaluation 
of a two dimensional integral. 

5.3 Hierarchical 

In this paper, the word hierarchical applies to all the models. In credibility 
work this term has been reserved for the case where the k classes can be divided 
into g groups, where the i* group would have rni classes in it (ml + . . . + mg 
= k). Begin with a three level model: 

Level l-Yfj*I 8ij - N(Oij,U2/Pijt) 

Level 2-0ijlf3i - iV(Bi,r*) 

Level 3+3iJp - N(p,r2) 
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Noninformative priors would be required for p, 72, y*, and u2. Levels 2 and 3 
may be combined to form a single distribution. However, when conditioned 
only on p, the t3;/ are no longer independent. EB formulas for this model and 
the one in Section 5.4 are given in Venter [34]. 

5.4 Cross-Classified 

Suppose each rating class is identified by two variables, such as sex and 
age, or state and occupation. An additive model, with the possibility of error, 
can be expressed with three levels: 

Level l-Yijrl0, - N(O~j,O*/Pij~) 

Level 2--8ijl~,CYi,@j - N(p + (Yi + pj,r’) 

Level 3~~ - N(0,7:) 
@j - N(Ojd) 

Noninformative priors would be placed on p,, r:, & y2, and cr2. The first two 
levels are easily collapsed to produce the single level 

Yijtlk9&,Pj - N(/Jw + 01, + pj,r” + U’IPijr). 

It has been common to set y2 = 0 in analyzing this model. Including it allows 
for some departure from additivity. Letting T: and 7: become infinite (so uniform 
priors are placed on all (Yi and l3,) produces a simple version of the model. The 
credibility compromise is between a strict additive model and the use of indi- 
vidual class means. 

5.5 Linear Trend 

In the one-way model we might observe that there is a year to year trend in 
the means. A simple linear trend would be modeled as 

Level l-Yi,lCXi,Bi - N(CX; + jBi,021Pjj) 

Level 2dilpi - N(pr,r:) 
PiI& - Mp2d) 

with noninformative priors on pl, b2, 77, r:, and u2. This is similar to the 
well-known model introduced by Hachemeister [ 131. It could be generalized to 
other types of trend by altering the structure of the mean at level 1. 

5.6 Time Series 

A linear time series model can be formulated in two stages. Here the 
subscripts indicate observations at a given time t. 
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Level l-Y,l& - N(F&, A) 

Level 2--&l&- 1 - N(G& i ,B) 

The matrices F, and G, are known while A and B require prior distributions. 
The first level is the process distribution which explains how the observations 
relate to the underlying parameters. The second level is the state distribution 
which explains how the parameters change over time. 

As an example, consider the linear trend model from Section 5.4. In this 
setting it would look like 

Level 1-Y$3U - N(0U,cr2/Pjj) 

Level 2-0,10i,j- 1 - N(pi + O,j-l,T’). 

It is not exactly the same, as level 2 implies that there are some disturbances 
that let the progression of means depart from strict linearity. The parameter (pi 
in Section 5.5 is unchanging over time. Prior distributions would be needed for 
&,o (to get the system started) and for pi, r2, and u2. 

This model is very similar to the Kalman filter. An excellent non-Bayesian 
application of this model to loss reserving is found in deJong and Zehnwirth 
[ 181. A discussion of its relationship to the usual credibility models is given in 
deJong and Zehnwirth [19]. 

6. CONCLUSIONS AND AREAS FOR FUTURE RESEARCH 

The intent of this paper was to introduce the hierarchical normal linear 
model as a tool for classification ratemaking. This model has three advantages 
over the EB approach. First, methods for estimating the variances do not have 
to be created on a case-by-case basis. Instead, the estimates fall naturally out 
of the analysis. Second, estimates of estimation and prediction error are avail- 
able. Finally, model-checking and model-selection procedures can be employed. 
The latter was not discussed in this paper, but methods do exist for identifying 
the most appropriate model when there are several to choose from (for example, 
a one-way vs. a cross-classified analysis). See Klugman 1231 for an application. 

Of course, this approach also introduces difficulties of its own. Foremost 
among them are the intensive computations needed to perform the analysis. In 
addition, the derivation of formulas for specific models can be very time con- 
suming (although once obtained they can be used over and over). These prob- 
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lems are really another advantage of the HNLM approach; they are all technical 
in nature and are certain to be solved if there is sufficient interest in doing so. 

The major area for future work (other than grinding out the solution to the 
many models of interest) is the relaxation of the normality assumption. There 
is overwhelming evidence that insurance data are not normal and so methods 
to accommodate that fact are most desirable. I envision two ways to attack this 
problem. One is to create methods that are robust against general departures 
from normality. To do this, the t-distribution or a mixture of normal distributions 
could be used in the model. Another way would be to find methods that are 
superior under specific distribution assumptions that are likely to correspond to 
insurance experience. In any case, considerable sensitivity testing should be 
done to any recommended formula. 
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RESERVING LONG TERM MEDICAL CLAIMS 

RICHARD H. SNADER 

Abstract 

In this paper, the use of life contingencies to establish reserves for 
claimants requiring ltfetime medical care is explored. In evaluating such 
claims, consideration should be given to the effects of inflation, dis- 
counting for interest, life expectancy, the impact of the claimant’s med- 
ical condition on ltfe expectancy, and the accurate measurement of 
medical costs. The evaluation is made in three phases: a claim evalua- 
tion, a medical evaluation, and an actuarial evaluation. 

The claim evaluation consists of gathering accurate information 
about the claimant’s medical condition and the current cost of providing 
medical care. The medical evaluation consists of using the medical 
information obtained from the claim evaluation to estimate the effect on 
the claimant’s life span. information obtained from the claim and med- 
ical evaluations is combined with assumptions regarding interest, injla- 
tion, and mortality to produce the actuarial evaluation. 

1. INTRODUCTION 

Among the most difficult claims to adjust are those requiring medical care 
for the lifetime of the claimant. These claims usually arise from unlimited 
medical coverage provided under workers’ compensation insurance or in con- 
nection with unlimited PIP benefits in certain no-fault auto states. In many 
cases, the claimants are seriously injured with little likelihood of recovery, and 
the cost of providing the required care is extremely high. 

Although such claims occur infrequently, the potential financial impact of a 
mere handful of them very often can be catastrophic for an insurer. Consider, 
for example, the case of a permanently disabled person of age 20 requiring 
continuing medical care and treatment currently costing $50,000 annually. De- 
spite serious injuries, a normal life span of 50 years might safely be assumed 
for this individual, suggesting a potential total cost of $2.5 million. 

This amount is expressed in current dollars. What of the consequences of 
inflation? Inflation rates applicable to medical care expenditures are much greater 
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than overall monetary inflation rates. Suppose costs are assumed to increase by 
10% annually, a rate that reasonably approximates long term inflation rates 
applicable to medical care. The potential cost then becomes approximately $150 
million. Of course, there are other elements to consider. Suppose the claimant 
dies early or lives to the age of 100. How can these and other contingencies be 
dealt with? How can an insurer set reasonable reserves on cases of this nature? 

In this paper, an approach is suggested that combines claim adjusting ex- 
pertise with actuarial processes and with principles employed in underwriting 
life insurance and annuity contracts. By its nature the suggested approach 
requires centralization in order to bring together these diverse elements. Claim 
adjusters in the field can hardly be expected to acquire all of the skills needed 
to deal with long term medical cases. Many will not see even one such claim 
in a lifetime of adjusting. 

In evaluating long term medical claims, consideration must be given to the 
effects of inflation, discounting for interest, normal life expectancy, the claim- 
ant’s medical condition (i.e., the probability of living a normal life span) and 
the accurate measurement of medical costs. The evaluation can then be made 
in three steps: 

* a claim evaluation; 
* a medical evaluation; and, 
* an actuarial evaluation. 

Taken together, these three steps constitute the financial evaluation of the claim. 

The claim evaluation consists of gathering accurate and current data con- 
cerning (1) the amount and timing of medical expenditures and (2) the medical 
condition of the claimant based on the most current medical information avail- 
able. The claim evaluation should be performed annually. The medical evalu- 
ation consists of using the medical information obtained from the claim evalu- 
ation to estimate the effect on the claimant’s life span. Such an evaluation might 
be performed by a person with life insurance underwriting expertise or by some 
other person capable of relating medical information to life expectancies. Ideally, 
the result of the medical evaluation should be expressed as a multiplier applicable 
to standard mortality rates taken from an appropriate mortality table. 

2. ACTUARIAL EVALUATION 

Information obtained from the claim and medical evaluations together with 
appropriate assumptions regarding inflation and interest rates can be used to 
make the actuarial evaluation. Before getting too deeply involved in the details 



324 MEDICAL CLAIMS 

of the evaluation, a brief review of the applicable principles of life contingencies 
will be helpful. It will be assumed that the reader is familiar with standard 
actuarial notation as presented by Jordan [l] or by Bowers, et al [2]. 

3. REVIE’ 

An immediate life annuity of 1 payable to a life aged (x) with the first 
payment commencing at the end of one year is given by 

a 
ax = C vftpx. 

Where v = (1 + i)-’ for effective interest rate i and ,px may be considered the 
probability of making a payment at the end of year (t), or more simply the 
“probability of payment.” 

If the first payment is due at the beginning of the year, the series of payments 
is called an annuity due and is given by 

. . a, = rz vtrpx = 1 + ax . 

A temporary annuity payable for n years is given by 

a,,,l = i v*gh. 
r=1 

An annuity deferred for a period of n years is given by 

4. GENERALIZED FORMULAE 

Before annuity principles can be applied to reserving lifetime medical claims, 
the formulas must be generalized in order to gain sufficient flexibility to deal 
with more complicated situations. 

Assume initially that only medical payments are being reserved, as might 
be the case in dealing with a Michigan no-fault claim. 

Let M,, f be the medical payment due to (x) at the end of year (t), expressed 
in terms of current dollars. 
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Let i be the interest rate assumption expected to prevail over the lifetime of 
the claim and j be the inflation rate assumption pertaining to medical care costs. 

If the reserve for future medical payments for a life aged (x) is denoted by 
Rx, an expression for the reserve is 

Rx = tzl Mx.41 + i)-‘(1 + J?‘~JG. 

The expression can be simplified somewhat by letting vm denote the combined 
interest rate-inflation rate assumption and defining it by 

v, = (1 + i)-’ (1 + j). 

The incurred cost of the claim is determined by adding the payments made to 
date to the reserve, R,. If C, is the incurred cost and P is the amount paid to 
date, 

C, = P + Rx. 

When dealing with workers’ compensation insurance, income replacement 
benefits as well as medical care costs are usually paid over the claimant’s 
lifetime. In most cases, income replacement benefits are made at a fixed rate, 
but in some instances they are indexed to the CPI and therefore subject to 
inflation. 

The previous formulation is easily extended to cover this situation by the 
introduction of a few additional terms. 

Let SX,t be the indemnity payment due to (x) at the end of year (t). 

Let i be the interest rate assumption, and k be the inflation rate assumption. 

The combined interest rate-inflation rate assumption is given by 
v, = (1 + i)-’ (1 + k), the reserve is 

Rx = 5 (Sx,tv: + Mx, dz)tpx, 
t=1 

and the incurred cost is still given by 

C, = P + R,. 

Since R, is a discounted reserve, it will have an impact on reserve devel- 
opment observed in Schedule P. Even if mortality assumptions materialize 
exactly as predicted, adverse development will occur as a result of discount 
amortization over the lifetime of all claims reserved in this manner. This phe- 
nomenon is illustrated in Appendix A. 
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5. REINSURANCE 

Ferguson [3] addressed the problem of calculating retained and ceded reserve 
components, but did not cover the situation involving lifetime medical care. 
The generalized formulas can be extended with relative ease to deal with 
reinsurance 

If Q is the primary insurer’s reinsurance retention, the problem is solved by 
finding an integer, n, such that 

Q- = P + 2 [( 1 + k)‘S,, f + (1 + I)‘& J 5 Q, and 
t=1 

Q’ = P + rz [(l + W’S,,, + (1 + j)‘K,rl > Q- 

n can be thought of as the number of years required to exhaust the primary 
layer of coverage under the assumption that the claimant is still living. 

The primary insurer’s reserve is denoted by R*,,J, where 

Rx,,7 5 R*,:J < RxZih 

Rx:,7 = f: CL. t . vf, + K, t . viz) tpx, and 
r=1 

a+1 

Rx:rZJ = x (S,,, . v: + Mx,, * v;> px. 
t=1 

R*,J is approximated by linear interpolation: 

R*x:,l + G?nZiI - RJ) (;+-$) + Rx,& 

And the reinsurer’s reserve is given by 

Some reinsurance agreements provide coverage only for so called catastrophe 
claims, where more than one worker is injured by a single event. Confusion 
occasionally results from the situation where the lifetime benefits of two or 
more claimants of different ages must be considered in establishing reinsurance 
reserves. 

A general approach for resolving this problem can be illustrated by the 
following example. 
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* Let A,, f be the amount expected to be paid to (x) at the end of year (t). 
* Let B,, f be the amount expected to be paid to (y) at the end of year (t). 
* Let C,, f be the amount expected to be paid to (z) at the end of year (t). 
- Assume A,,,, By,t and Cz,f have already been adjusted to the expected 

inflation level of year (t). 
. Assume Al, *, B;, f, and C:,, have been discounted to the present day for 

interest. 

R = 5 (A:, c . rpx + B;,t . rpy + Cl,, * sz). 
z=1 

Now find an integer n such that 

P + i GLt + By,r + C,,J 5 Q, and 
t=1 

n+1 

f’ + c, (Ax,r + B,,r + C,,,) > Q. I=1 

It follows that the primary insurer’s share can be determined by linear interpo- 
lation between 

i (A:, t * tax + B;,t * tpy + c-2, t . tpz), and t=1 
n+l 

2 (A:, I * tpx + B;, t . fpy + G, t . tpz). 

The reinsurer’s share is the total reserve less the primary insurer’s share. 

This method determines n based on the assumption that all three claimants 
live long enough for their combined payments to exceed the primary retention. 
It is possible that one or more of the claimants might die earlier than expected, 
in which case the time required to reach the retention could be much longer. 
The proposed method is conservative in that it provides the reinsurer with the 
earliest possible recognition of liability. A technically more exact method con- 
ceivably could be constructed based on the multiple life status (x y z), but such 
a method would be quite complicated. The procedure outlined above is reason- 
able for real life situations. 

The foregoing procedures can easily be extended to deal with several layers. 
It is possible, however, that C, will exceed all layers of reinsurance, in which 
case the excess over the limit of the uppermost layer will revert to the primary 
insurer. 
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6. REVISED MORTALITY ASSUMPTIONS 

Usually the very seriously injured claimants have extremely high annual 
costs associated with their medical care. Paraplegics, quadriplegics and brain 
stem injuries are examples of cases requiring expensive care. If these individuals 
could be expected to live normal life spans, the reserve values for their claims 
could become astronomical. Many times, however, such individuals are not 
expected to live as long as an unimpaired life. In such cases, a thorough medical 
evaluation will provide a basis for altering the mortality assumptions inherent 
in a standard table. Usually the results of such an evaluation are expressed in 
terms of the relationship to standard mortality. Normally revised values of qi 
are related to the qx values of a standard mortality table so that 

subject to the restrictions that f > 1 andf * qx 5 1. Then 

pi = 1 - q: = 1 - f . qx, and 

tp; = (1 -f * qJ(1 -f . 9x+1) . . . (1 -.f . 4x+,-1). 

The generalized reserve formulas can now be given as 

R: = 5 6Yx.r * v: + Mx,, . v6) *pi; 
r=, 

R&J is found by interpolation and n(Rz is found by subtraction. 

An alternative might be to relate pi to px by 

p: = (1 -f&x, 0 <f < 1. 

In this case, 

tp: = (1 - f )‘rpx. 

It should be noted that other, possibly more rigorous methods for adjusting 
mortality can be found in actuarial literature ([I], p, 57). There also are alter- 
natives to adjusting mortality rates from a standard table. For example, one 
method is to estimate a fixed remaining life, e.g., five years, for the claimant. 
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Another method would be to construct a separate impaired life table that would 
reflect the average mortality rates of claimants with certain serious injuries. 

7. FURTHER GENERALIZATION 

Additional refinements can be made in the reserve formulas. For example, 
interest rates and inflation rates can be allowed to vary with time. Consider the 
expression for a medical expense reserve. Suppose i, is the interest rate expected 
to be earned in year Y, and j, is the inflation rate expected to be applicable to 
payments made at the end of year r. Recall that M,,, is expressed in terms of 
current dollars. Then the present value of M,, f is given by 

M,,,(l + jJ(1 + jz) . . . (1 + j,) . . . (1 + j,)(l + il)-‘(1 + i&l . . . 
. . . (1 + L.-i . . . (1 + Q-l, 

and the present value of expected future payments is 

tz jjl [Cl + k-Y1 + jr)lK,t . h. 

The formulas can be generalized even further by assuming that payments 
occur at the mid-point of the time intervals instead of at the end-points. This 
last refinement is achieved by adjusting exponents applicable to inflation and 
interest and by adjusting mortality factors. For example: 

R, = : Mx,r~,j,-~‘~ . 2-u zf x, 
t=1 

where 

8. THE MODEL IN OPERATION 

The general approach should now be obvious. Claims must be reviewed 
annually to obtain current medical data and cost information. This is the re- 
sponsibility of adjusters in the field who must provide accurate estimates of the 
amount and timing of payments expected to be made after the reserve evaluation 
date. 

Timing of payments is the essence of the discount calculation. It should not 
automatically be assumed that payments will be made in equal amounts each 
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year. For example, it might be that very large payments will be required over 
the first few years of a claimant’s injury when hospital care is needed. After- 
wards, however, lower payments may be required if the claimant can be cared 
for in a less expensive facility or at home. 

In addition to providing estimated payments, field adjusters must acquire 
sufficient medical information to determine if the claimant’s life is impaired 
and, if so, the extent of impairment. Since the claimant’s medical condition is 
subject to change, it must be evaluated frequently. A change in medical condition 
results in a change in life expectancy and usually is accompanied by a change 
in expected costs. 

Once payment data and medical information have been assembled, it is a 
fairly easy task to develop a reserving model. 

. First, display the expected payment stream by year of expected payment. 
* Adjust the individual payments to reflect the level of inflation expected to 

apply to each year of payment. 
* Next, discount the individual payments for interest to the present time. 
* Multiply each discounted payment by the probability of payment (& to 

obtain the discounted values of expected payments. 
* Sum the discounted expected payments to obtain the reserve. 

If the claimant is so badly impaired that a shortened life span is anticipated, 
it will be necessary to estimate the increase in mortality rates resulting from the 
impairment. Such an estimate can be made only by a person trained in evaluating 
medical information and translating such information into revised mortality 
rates. 

Life insurance underwriters are often called upon to make such assessments. 
Their judgments are usually expressed as multipliers applicable to the qx values 
in some standard mortality table. Multipliers might range from 1.2 to 10 or 
even higher. Once the multiplier has been determined, the payment probabilities 
can be adjusted and the operational steps described above can be taken. 

The following examples are given as illustrations of the model in operation. 



MEDICAL CLAIMS 331 

Example 1 

Assume unimpaired individuals aged (x) are expected to experience the 
following mortality. 

Number Living Expected 
t Aged (X + t) Deaths 

0 1,000 
1 693 
2 475 
3 322 
4 216 
5 144 
6 95 
7 62 
8 40 
9 25 

10 15 

307 
218 
153 
106 
72 
49 
33 
22 
15 
10 
15 

l,ooO 

Assume a claim is being evaluated for which both medical and indemnity 
payments are made and that the total amount paid to date is $230,000, consisting 
of $30,000 for indemnity and $200,000 for medical expense. Assume further 
that indemnity payments have been awarded at an annual rate of $15,000 and 
medical expenses are expected to be $100,000 each year for the claimant’s 
lifetime. Indemnity payments are discounted at 3.5%. Medical payments are 
not discounted and are not expected to be increased by inflation. Claim payments 
in excess of $1 million are reinsured. 

The schedule of payments is shown in the following table. 
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Year (t) 
Indemnity Medical 
Benefits Payments 

Total 
Annual 

Payments 
Cumulative 
Payments 

Paid to Date $30,000 $200,000 
1 15,000 100,000 
2 15,000 100,000 
3 15,000 100,000 
4 15,000 100,000 
5 15,000 100,000 
6 15,000 100,000 
7 10,435 69,565 

$115,000 
115,000 
115,000 
115,000 
115,000 
115,000 
80,000 

$ 230,000 
345,000 
460,000 
575,000 
690,000 
805,000 
920,000 

1 ,ooo,ooo 

7 4,565 30,435 35,000 1,035,000 
8 15,000 100,000 115,000 1,150,000 
9 15,000 100,000 115,000 1,265,OOO 

10 15,000 100,000 115,000 1,380,000 

Inflation Rate, Indemnity = 0.0% 
Inflation Rate, Medical = 0.0% 
Interest Rate, Indemnity = 3.5% 
Interest Rate, Medical = 0.0% 

Details of the reserve calculations are shown in the following table. 
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Year (t) 

Indemnity Medical 
Discount Discount 

Factor Factor 
Probability 
of Payment 

1 .9662 1 .ooo .693 
2 .9335 1 .ooo .475 
3 .9019 1 .ooo .322 
4 .8714 1.000 .216 
5 .8420 1.000 .144 
6 .813.5 1.000 .095 
7 .7860 1 .ooo .062 

7 .7860 1.000 .062 
8 .7594 1.000 .040 
9 .7337 1.000 .025 

10 .7089 1 .ooo .015 

Year (t) 
Discounted Discounted Discounted Discounted 
Indemnity Medical Total Cumulative 

Paid to Date $30,000 $200,000 $230,000 $230,000 
1 10,044 69,300 79,344 309,344 
2 6,651 47,500 54,151 363,495 
3 4,356 32,200 36,556 400,05 1 
4 2,823 21,600 24,423 424,474 
5 1,819 14,400 16,219 440,693 
6 1,159 9,500 10,659 451,352 
7 509 4,313 4,822 456,174 

7 222 1,887 2,109 458,283 
8 456 4,000 4,456 462,739 
9 275 2,500 2,775 465,514 

10 160 1,500 1,660 467,174 

$58,474 $408,700 $467,174 

From these tables it can be seen that: 

- the incurred cost of the claim, with future payments discounted for both 
interest and mortality, is $467,174, 
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* the present value of future payments, which is the reserve for the claim, 
is $237,174, 

* claim payments will exceed the retention between the sixth and seventh 
yew 

- the primary insurer’s share of the reserve is approximated by $226,174, 
and 

- the reinsurer’s share of the reserve is approximated by $11,000. 

Example 2 

- In this example, it is assumed that medical payments are subject to an annual 
inflation rate of lo%, and these payments can safely be discounted at 8%. For 
convenience, indemnity payments are discounted at a statutory rate of 3.5%. 

Inflation Rate, Indemnity = 0.0% 
Inflation Rate, Medical = 10.0% 
Interest Rate, Indemnity = 3.5% 
Interest Rate, Medical = 8.0% 

Year (t) 
Indemnity Medical 
Benefits Payments 

Total 
Annual 

Payments 
Cumulative 
Payments 

Paid to Date $30,000 $200,000 
1 15,000 110,000 
2 15,000 121,000 
3 15,000 133,100 
4 15,000 146,410 
5 15,000 161,051 
6 7,199 21,609 

$125,000 
136,000 
148,100 
161,410 
176,051 
23,439 

$230,000 
355,000 
49 1,000 
639,100 
800,510 
976,561 

1 ,ooo,ooo 

6 7,801 155,547 168,717 1,168,717 
7 15,000 194.872 209,872 1,378,589 
8 15,000 214,359 229,359 1,607,948 
9 15,000 235,795 250,795 1,858,742 

10 15,000 259,374 274,374 2,133,117 
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Year (1) 

1 
2 
3 
4 
5 
6 

Indemnity 
Discount 

Factor 

.9662 

.9335 

.9019 

.8714 

.8420 

.8135 

Medical 
Discount 

Factor 
Probability 
of Payment 

.9259 .693 

.X573 .475 

.7938 .322 

.7350 .216 

.6806 .144 

.6302 .095 

Year (1) 

6 .8135 .6302 .095 
7 .7860 .5835 .062 
8 .7594 .5403 .040 
9 .7337 .5002 .025 

10 .7089 .4632 .015 

Paid to Date $30,000 $200,000 $230,000 $230,000 
1 10,044 70,583 80,627 310,627 
2 6,651 49,276 55,927 366,554 
3 4,356 34,022 38,379 404,933 
4 2,823 23,245 26,068 431,001 
5 1,819 15,784 17,602 448,603 
6 556 1,294 1,435 450,038 

Discounted Discounted Discounted Discounted 
Indemnity Medical Total Cumulative 

6 603 9,312 10,330 460,368 
7 731 7,050 7,781 468,149 
8 456 4,632 5,088 473,237 
9 275 2,949 3,224 476,461 

10 160 1,802 1,962 478,423 
$58,474 $419,949 $478,423 

Incurred Cost of the Claim $478,423 
Present Value of Future Payments 248,423 
Primary Insurer’s Share 220,038 
Reinsurer’s Share 28,385 
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Making no assumptions regarding inflation or interest and basing all esti- 
mates of future expenditures on current costs, as was done in the first example 
with respect to medical payments, is often thought to be equivalent to assuming 
interest earnings will be exactly offset by inflation. It might, therefore, be said 
that payments have been discounted at an implied interest rate equal to the rate 
of future inflation. 

This oversimplification may be sufficient for estimating the gross reserve 
but does not work very well when reinsurance is involved. If future costs are 
projected in current dollars, the time required to reach the reinsurance retention 
will be overestimated and the reserve will not be accurately divided into rein- 
surance layers. The proper sequence of calculations is to adjust future payments 
so that they reflect the levels of inflation expected to apply at the time the 
payments are made, and then to estimate the retention period, IZ. 

Example 3 

This example is the same as the first, except that it is assumed the claimant 
is subject to a mortality rate 50% greater than normal. Using the relationship 

q’x = 1.5 4x3 

the following table can be developed. 

t 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

rPx - 

.693 

.475 

.322 

.216 

.144 

.095 

.062 

.040 

.025 

.015 

q,+r-1 q&-1 *p: - 

.3070 .4605 .5395 

.3146 .4719 .2849 

.3221 .4832 .1472 

.3292 .4938 .0745 

.3333 .5000 .0373 

.3403 .5105 .0182 

.3474 s211 .0087 

.3548 .5322 .0041 

.3750 .5625 .0018 

.4000 .6000 .0007 

Reserve values are now calculated as follows: 
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Year (t) 

1 
2 
3 
4 
5 
6 

Indemnity 
Discount 

Factor 

.9662 

.9335 

.9019 

.8714 

.8420 

.8135 

Medical 
Discount 

Factor 
Probability 
of Payment 

.9259 .5395 

.8573 .2849 

.7938 .1472 

.7350 .0745 

.6806 .0373 

.6302 90182 

6 .8135 .6302 .0182 
7 .7860 .5835 .0087 
8 .7594 .5403 .0041 
9 .7337 .5002 .0018 

10 .7089 .4632 .0007 

Year (t) 
Discounted Discounted Discounted Discounted 
Indemnity Medical Total Cumulative 

Paid to Date $30,000 $200,000 $230,000 $230,000 
1 7,819 49,952 57,771 287,771 
2 3,989 26,867 30,856 318,627 
3 1,991 14,139 16,130 334,757 
4 974 7,288 8,262 343,019 
5 471 3,717 4,188 347,207 
6 107 887 994 348,201 

6 115 961 1,076 349,277 
7 103 899 1,002 350,279 
8 47 432 479 350,758 
9 20 193 213 350,971 

7 76 83 

$45,643 $305,411 $35 1,054 

Incurred Cost of the Claim $351,054 
Present Value of Future Payments 121,054 
Primary Insurer’s Share 118,201 
Reinsurer’s Share 2,853 
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Example 4 

In this example, (x) and (y) are injured in a common occurrence. Expected 
medical costs are $50,000 per year to (x) and $100,000 per year to (y). Rein- 
surance is excess over $1 million. Payments are not discounted and are not 
expected to be increased by inflation. Expected mortality is shown in the 
following table. 

Number Living Expected Number Living Expected 
t Aged (x + t) Deaths Aged 0, + t) Deaths 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1,000 307 
693 218 
475 153 
322 106 
216 72 
144 49 
95 33 
62 22 
40 15 
25 10 
15 15 

1,000 257 
743 201 
542 147 
395 108 
287 75 
208 58 
150 42 
108 31 
77 23 
54 17 
37 12 
25 9 
16 6 
10 4 
6 3 
3 3 

Details of the reserve calculations are shown in the following table. 
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Year (t) 

1 
2 
3 
4 
5 
6 
7 

Payments Payments Total Cumulative 
to (4 to w Payments Payments 

$50,000 $100,000 $ 150,000 $ 150,000 
50,000 100,000 150,000 300,000 
50,000 100,000 150,000 450,000 
50,000 100,000 150,000 600,000 
50,000 100,000 150,000 750,000 
50,000 100,000 150,000 900,000 
33,333 66,667 100,000 1 ,ooo,OOo 

7 16,667 33,333 50,000 1,050,000 
8 50,000 100,000 150,000 1,200,OOo 
9 50,000 100,000 150,000 1,350,OOo 

10 50,000 100,000 150,000 1,500,000 
11 100,000 100,000 1,600,OOO 
12 100,000 100,000 1,700,oOO 
13 100,000 100,000 1,800,000 
14 100,000 100,000 1,900,000 
15 100,000 100,000 2,000,000 

$2,000,000 
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Year (t) P I x - P f Y - 

Expected Expected 
Payments Payments 

to (-4 to (v) 

1 .693 .743 $ 34,650 
2 .475 .542 23,750 
3 .322 .395 16,100 
4 .216 .287 10,800 
5 .144 .208 7,200 
6 .095 .150 4,750 
7 .062 .108 2,067 

Expected Cumulative 
Total Total 

$ 74,300 $108,950 $108,950 
54,200 77,950 186,900 
39,500 55,600 242,500 
28,700 39,500 282,000 
20,800 28,000 310,000 
15,000 19,750 329,750 
7,200 9,267 339,017 

7 .062 .108 
8 .040 .077 
9 .025 .054 

10 .015 .037 
11 .025 
12 .016 
13 .OlO 
14 .060 
15 .030 

1,033 3,600 
‘2,000 7,700 
1,250 5,400 

750 3,700 
2,500 
1,600 
1,000 

600 
300 

$104,350 $266,100 

4,633 
9,700 
6,650 
4,450 
2,500 
1,600 
1,000 

600 
300 

$370,450 

343,650 
353,350 
360,000 
364,450 
366,950 
368,550 
369,550 
370,150 
370,450 

Present Value of Future Payments = $370,450 
Primary Insurer’s Share = 339,017 
Reinsurer’s Share = 31,433 
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9. SENSITIVITY 

An additional example based on more realistic mortality assumptions is 
given in Appendix B. The example also employs plausible inflation and interest 
rate assumptions. It is constructed from the following hypothetical set of cir- 
cumstances . 

* The claimant is 40 years old, 
* Annual medical payments, currently estimated at $50,000, are expected 

to be required for the lifetime of the claimant. Payments are estimated in 
current dollars. 

* Payments are uniformly distributed throughout each year. 
* Mortality follows the 1969-7 1 U.S. Life Table for the Total Population. 
* The primary insurer’s retention is $1 ,OOO,OOO. The limit for the first layer 

of reinsurance is $5,000,000 over the $1 ,OOO,OOO retention. The limit for 
the second layer is $S,OOO,OOO excess over $6,000,000. 

The problem is to find the reserve required for the primary insurer and the 
reinsurers. Several inflation rate, interest rate, and mortality scenarios have been 
constructed. Three of these scenarios are displayed in Appendix B. The first 
exhibit of the appendix portrays the situation where future payments are not 
inflated and not discounted. The second exhibit shows the situation where 
inflation and interest are both assumed to be 6%. The third exhibit portrays 
“realistic” interest and inflation assumptions. 

The “realistic” interest rate assumption is similar to an assumption that a 
life insurer might use in calculating GAAP reserves for annuities. Specifically, 
the following assumption is employed. 

First 10 years 8% 
Next 10 years 7% 
Next 10 years 6% 
Remaining years 5% 

In constructing a “realistic” inflation rate assumption, we assume the medical 
care component of the CPI is a good indicator. Over a relatively long period 
the medical inflation rate, as measured by the CPI, ranged between 9% and 
lo%, but more recently has declined to approximately 7.5%. It is reasonable 
to anticipate a gradual return to the long term level in the near future. In the 
very long term, it seems reasonable to assume that medical inflation and interest 
rates will follow each other fairly closely, with medical inflation (as opposed to 
general economic inflation) exceeding interest rates by a slight margin. From 
these considerations, the following “realistic” inflation scenario is constructed. 
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Year 1 7.5% 
Year 2 8.0% 
Year 3 8.5% 
Years4 to 10 9.0% 
Next 10 years 8.0% 
Next 10 years 7.0% 
Remaining years 6.0% 

In the following tables, we examine the effect that variations in the as- 
sumptions have on the reserve calculations. Table 1 illustrates the effect of 
several different interest/inflation combinations. Mortality is assumed to follow 
the 1969-7 1 population table and is referred to as “standard mortality.” Reserves 
are in thousands. 

TABLE l-STANDARD MORTALITY 

INSURANCE 
INTEREST/INFLATION ASSUMPTION 

LAYER O%, 0% 6%, 6% 8%, 8% lO%, 10% Realistic ____ ____ ___ 

1 
2 
3 

Total 

$ 941 $ 641 $ 588 $ 545 $ 591 
760 842 738 651 868 

0 218 375 540 - 505 - 

$1,701 $1,701 $1,701 $1,701 $1,999 

In the first four columns, interest and inflation are separately but equally 
quantified. The first column illustrates the notion that using no specific inflation 
or interest assumption is equivalent to discounting at an implied interest rate 
equal to inflation. 

The total reserves shown for the first four columns are equal, as expected. 
The fifth column shows the results of realistic inflation and interest assumptions. 
The total reserve is higher in this case because inflation exceeds interest over 
most of the payout period. 

Except for the O%, 0% assumption, the primary insurer’s reserve is relatively 
insensitive to changes in interest and inflation. This result occurs when the 
retention is low compared with possible total payments. The inflation and interest 
rate assumptions selected are more important to reinsurers. 
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Table 2 shows the effect of variations in interest rates when mortality and 
inflation rates are held constant. 

TABLE 2-STANDARD MORTALITY, REALISTIC INFLATION 

INSURANCE 
LAYER 

1 
2 
3 

Total 

6% - 

$ 661 
1,130 

662 
$2,453 

INTEREST ASSUMPTION 

8% 10% - 

$ 590 $ 530 
770 534 
328 166 

$1,688 $1,230 

Realistic 

$ 591 
868 
540 - 

$1,999 

As expected, the total reserve decreases as the interest rate assumption 
increases. As previously observed, the primary insurer’s reserve is low relative 
to possible total payments. 

In Table 3, the effect of changes in inflation rates for constant mortality and 
interest rates is illustrated. 

TABLE 3-STANDARD MORTALITY, REALISTIC INTEREST 

INSURANCE 
LAYER 

1 
2 
3 

6% - 

$ 571 
646 
185 

$1,402 

INFLATION ASSUMPTION 

8% 10% - 

$ 589 $ 605 
837 1,010 
634 1,593 

$2,060 $3,208 

Realistic 

$ 591 
868 
540 

$1,999 

As expected, the total reserve increases with inflation while the primary 
reserve is not materially affected. The choice of the inllation assumption is 
obviously a prime concern for the insurer of the third layer. 
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The final table illustrates the effect of variations in mortality assumptions. 
The results require no comment. 

TABLE 4-REALISTIC INFLATION, REALISTIC INTEREST 

MORTALITY ASSUMPTION 

INSURANCE 
LAYER 

1 
2 
3 

Standard 

$ 591 
868 

540 
$1,999 

2.5 x 
Standard 

$ 566 
649 
149 - 

$1,364 

5x 10 x 
Standard Standard 

$528 $460 
414 189 

27 --I. 
$969 $650 
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APPENDIX A 

The amortization of discount and its impact on reserve development can be 
illustrated by assuming a block of claims exists for a large number of annuitants, 
each one aged (x). Suppose annual payments of one dollar are made to all 
surviving members of the group with the first payment being made at the end 
of one year. Payments to survivors are unaffected by inflation. 

Denote the number of claimants by l,, the number of survivors at the end 
of one year by Ll, at the end of two years by lxtz, and so on. Denote the 
undiscounted or “full value” reserve by 

FVX = l,+, + 1x+2 + lx+3 + . . . 

= tz L-t* . 

The reserve for any one individual is 

where e, is known as the expectation of life. 

The expected value of payments made at the end of the first year is lX+I, 
and the reserve for the surviving claimants is given by 

FVx+l = tz lx+,+1 . 

Development on the initial reserve is 

1 x+1 + FV,+l - FV, 

= lx+, + i lx+*+, 
f=l 

Denote the discounted or “present value” reserve by 

PV, = vl,+, + v21,+2 + v31,+3 + . . . 

= r: vxtr . 
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For any one individual, the reserve is 

The expected value of payments made at the end of the first year is still 
1 *+I. The reserve for the survivors is 

PV,,l = 5 Vflx+*+l . 
r=1 

In this case, development on the initial reserve is 

1 xi-, + PVx+l - PK 

= 1 x+, + 5 V’lx+,+l 
t=l 

- s v%+t 

= 1 x+1 + (vlx+z + v21x+3 + . . .) - (vZx+l + v2zx+* + v31,+3 + . . .) 

= (1 - v)(l,+1 + vz,+2 + V2L+3 + . . .> 

= 
( > 

+ (vz,+l + v21x+2 + v31x+3 + . . .) 

cc l-v = i x vflx+z = i PV,, since - = i . 
r=1 V 

It has been shown that, for this set of circumstances, observed development 
equals the interest earned on the original reserve. 

This observation can be extended intuitively to any situation where reserves 
are discounted. If reserves have been estimated with total accuracy and payments 
precisely follow the assumed payment pattern, observed development for un- 
discounted reserves will be zero and for discounted reserves will equal the 
interest earned on the average value of assets required to secure the reserves 
during the payment period. 
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Year 

Medical 
Payments 

Current 
Dollars 

Medical 
Payments 
Inflated 
Dollars 

Disc. Mort. Reserve 
Factor Factor Amount 

Cumulative 
Reserve 
Amount 

1 50,000 50,000 1 .oooo .9969 49,843 49,843 
2 50,000 50,000 1 .oooo ,993s 49,673 99,516 
3 50,000 50,000 I .oQoo .9898 49,489 149,005 
4 50,000 50,000 1.0000 .9858 49,289 198,295 
5 50,000 50,000 1 .oOOo .9814 49,071 247,366 
6 50,000 50,000 1.0000 .9767 48,833 296,199 
7 50,000 50,000 1.000 .9715 48,576 344,775 
8 50,000 50,000 1.0000 .9659 48,297 393,071 
9 50,000 50,000 1 .oOOo .9599 47,995 441,067 

10 50,000 50,000 1 .oOOo .9534 47,670 488,737 
11 50,000 50,000 1 .oOOo .9464 47,318 536,055 
12 50,000 50,000 1.0000 .9388 46,938 582,993 
13 50,000 50,000 1.0000 .9305 46,527 629,519 
14 50,000 50,000 1.0000 .9216 46,08 1 675,601 
15 50,000 50,000 1 .oOOo .9120 45,601 721,201 
16 50,000 50,000 1.0000 .9017 45,083 766,284 
17 50,000 50,000 1.0000 .8905 44,525 810,810 
18 50,000 50,000 1.0000 .8786 43,928 854,738 
19 50,000 50,000 1.0000 .8658 43,291 898,028 
20 50,000 50,000 1 .oOOo .8522 42,611 940,639 
21 0 0 1.0000 .8378 0 940,639 

APPENDIX B 

SCENARIO 1 

Age of Claimant = 40 
Interest on Medical Payments = 0 % 

Inflation Rate for Medical Payments = 0 % 
Mortality Rate = 1 Times Standard Mortality 

Retention Limits = 1 ,OOO,OOO 

21 50,000 50,000 1.0000 .8378 41,889 982,528 
22 50,000 50,000 1.0000 .8224 41,122 1,023,650 
23 50,000 50,000 1.0000 .8062 40,311 1,063,961 
24 50,000 50,000 1.0000 .7890 39,451 1,103,412 
25 50,cQO 50,000 1.0000 .7708 38,541 1,141,953 
26 50,000 50,000 1.0000 .7516 37,580 1,179,533 
27 50,000 50,000 1.0000 .7313 36,565 1,216,098 
28 50,000 50,000 1.0000 .7100 35,498 1,251,596 
29 50,000 50,000 1 .oOOo .6876 34,379 1,285,976 
30 50,000 50,000 1.0000 .6642 33,210 1,319,186 
31 50,000 50,000 1.0000 .6399 3 1,995 1,351,181 



32 50,000 50,ooo 1.0000 .6147 30,733 1,381,914 
33 50,000 50,000 l.OOoo .5884 29,422 1,411,336 
34 50,000 50,ooo l.OoOO .5611 28,056 1,439,392 
3.5 50,000 50,000 l.oooo .5326 26,632 1,466,024 
36 50,000 50,000 l.oooO so31 25,153 1,4!y,177 
37 50,000 50,000 1.0000 .4726 23,629 1,514,806 
38 50,000 50,000 l.oOOO .4414 22,070 1,536,876 
39 50,000 50,000 1.0000 A098 20,492 1,557,368 
40 50,000 50,000 1.oooo .3781 18,905 1,576,273 
41 50,000 50,000 1.0000 .3464 17,319 1,593,592 
42 50,OQo 50,000 1 .oOOo .3148 15,739 1,609,330 
43 50,000 50,000 1.0000 .2836 14,182 1,623,512 
44 50,000 50,000 1.0000 .2533 12,665 1,636,177 
45 50,000 50,000 1.0000 .2241 11,203 1,647,380 
46 50,000 50,000 1.0000 .1959 9,795 1,657,175 
47 50,000 50,000 1.0000 .I690 8,449 1,665,624 
48 50,000 50,000 1 .ocQo .1437 7,183 1,672,807 
49 50,000 50,000 1.0000 .1205 6,023 1,678,830 
50 50,000 50,000 1.0000 .0996 4,981 1,683,811 
51 50,000 50,000 1.0000 .0812 4,060 1,687,870 
52 50,000 50,000 1 .ooOo .0650 3,252 1,691,123 
53 50,000 50,000 1 .oOOo .0511 2,557 1,693,680 
54 50,000 50,000 1.0000 .0395 1,973 1,695,652 
5.5 50,000 50,000 1 .oOOo .0298 1,492 1,697,145 
56 50,000 50,000 1.0000 .0222 1,108 1,698,253 
57 50,000 50,000 1 .ooOo .0162 809 1,699,063 
58 50,000 50,000 1 .oooo .0117 583 1,699,645 
59 50,000 50,000 1.0000 .0083 414 1,700,059 
60 50,000 50,000 1 .oOOo .0058 290 1,700,349 
61 50,000 50,000 1.0000 .0040 201 1,700,550 
62 50,000 50,000 1.0000 .0028 138 1,700,688 
63 50,000 50,000 1 .oooo .0019 94 1,700,782 
64 50,000 50,000 1 .oooo .0013 63 1,700,845 
65 50,000 50,000 1.0000 .0008 42 1,700,886 
66 50,000 50,000 1.0000 .0006 28 1,700,914 
67 50,000 50,000 1 .oOOo .0004 18 1,700,932 
68 50,000 50,000 1 .oooo .0002 12 1,700,944 
69 50,000 50,000 1 .oooo .0002 8 1,700,952 
70 50,000 50,000 1.0000 .OOOl 5 1,700,956 
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RETENTION RESERVE 

LAYER SHARE 

1 940,639 
2 760,317 

TOTAL 1,700,956 
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SCENARIO 2 

AGE OFCLAIMANT = 40 
INTEREST ON MEDICAL PAYMENTS = 6 % 

INFLATION RATE FOR MEDICAL PAYMENTS = 6 % 
MORTALITY RATE = ~TIMES STANDARDMORTALITY 

RETENTION LIMITS = 1,000,OOO s,ooo,ooo 

Medical Medical 
Payments Payments 

Current Inflated Disc. Mart. Reserve 
Dollars Dollars Factor Factor Amount 

___ ____ - - 

50,000 51,478 .9713 .9969 49,843 
50,000 54,567 .9163 .9935 49,673 
50,000 57,841 .8644 .9898 49,489 
50,000 61,311 .81S5 .9858 49,289 
50,000 64,990 .7693 .9814 49,071 
50,000 68,889 ,725s .9767 48,833 
50,000 73,023 .6847 .9715 48,576 
50,000 77,404 .6460 .9659 48,297 
50,000 82,048 .6094 .9599 47,995 
50,000 86,971 .5749 .9534 47,670 
50,000 92,190 .5424 .9464 47,318 
50,000 97,721 .5117 ,938s 46,938 
50,000 103,584 .4827 .9305 46,527 
12,743 27,982 .4554 .9216 11,744 

2 

4 
5 
6 

8 
9 

10 
11 
12 
13 
14 

Cumulative 
Reserve 
Amount 

49,843 
99,516 

149,005 
198,295 
247,366 
296,199 
344,775 
393,071 
441,067 
488,737 
536,055 
582,993 
629,519 
641,263 

14 37,257 81,817 .4554 
1s 50,000 116,387 .4296 
16 50,000 123,370 .4053 
17 50,000 130,773 .3823 
18 50,000 138,619 .3607 
19 50,000 146,936 .3403 
20 50,000 155,752 .3210 
21 50,Oilo 165,097 .3029 
22 50,000 175,003 .2857 
23 50,000 185,503 .2695 
24 50,000 196,634 .2543 
25 50,000 208,432 .2399 
26 50,000 220,938 .2263 
27 50.000 234,194 ,213s 
28 50.000 248,245 .2014 
29 50,000 263,140 .1900 
30 50,000 278,929 .1793 
31 50,000 295,664 .1691 

.9216 

.9120 

.9017 

.8905 

.8786 

.8522 

.8378 

.8224 

.8062 

.7890 

.7708 

.7516 

.7313 

.7100 

.6876 

.6642 

.6399 

34,337 675,601 
45,601 721,201 
45,083 766,284 
44,525 810,810 
43,928 854,738 
43,291 898,028 
42,611 940,639 
41,889 982,528 
41,122 1,023,650 
40,311 1,063,961 
39,45 1 1,103,412 
38,541 1,141,953 
37,580 1,179,533 
36,565 1,216,098 
35,498 1,251,596 
34,379 1,285,976 
33,210 1,319,186 
3 1,995 1,351,181 
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32 50,000 313,404 .1595 .6147 30,733 1,381,914 
33 50,000 332,208 .1505 .5884 29,422 1,411,336 
34 50,000 352,141 ,142O .5611 28,056 1,439,392 
35 50,000 373,269 .1340 .5326 26,632 1,466,024 
36 33,304 263,544 .1264 .5031 16,754 1,482,117 

36 16,696 132,122 
31 50,000 419,405 
38 50,000 444,570 
39 50,000 47 1,244 
40 50,000 499,519 
41 50,000 529,490 
42 50,000 561,259 
43 50,000 594,935 
44 50,000 630,631 
45 50,000 668,469 
46 50,000 708,577 
41 50,000 751,091 
48 50,000 196,157 
49 50,000 843,926 
50 50,000 894,562 
51 50,000 948,235 
52 50,000 1,005,130 
53 50,000 1,065,437 
54 50,000 1,129,364 
55 50,000 1,197,125 
56 50,000 1,268,953 
57 50,000 1,345,090 
58 50,000 1,425,196 
59 50,000 1,511,343 
60 50,000 1,602,024 
61 50,000 1,698,145 
62 50,000 1,800,034 
63 50,000 1,908,036 
64 50,000 2,022,518 
65 50,000 2,143,869 
66 50,000 2,212,502 
67 50,000 2,408,852 
68 50,000 2,553,383 
69 50,000 2,706,586 
70 50,000 2,868,981 

.1264 

.I192 

.1125 

.1061 

.lOOl 

.0944 

.0891 

.0840 

.0193 

.0748 

.0706 

.0666 

.0628 

.0592 

.0559 

.0527 

.0497 

.0469 

.0443 

.0418 

.0394 

.0372 

.0351 

.0331 

.0312 

.0294 

.0278 

.0262 

.0247 

.0233 

.0220 
.0208 
.0196 
.0185 
.0174 

5031 
4726 
.4414 
.4098 
.3781 
3464 
3148 
2836 
.2533 
.2241 
,1959 
.1690 
,143l 
.1205 
.0996 
.0812 
.0650 
.0511 
.0395 
.0298 
.0222 
.0162 
.0117 
.0083 
.0058 
.0040 
.0028 
.0019 
.0013 
.0008 
.0006 
.0004 
.OOil2 
.0002 
.OOOl 

RETENTION RESERVE 
LAYER SHARE 

1 641,263 
2 841,514 
3 218,179 

TOTAL 1,700,956 

8,399 1,491,177 
23,629 1,514,806 
22,070 1,536,876 
20,492 1,557,368 
18,905 1,576,273 
17,319 1,593,592 
15,739 1,609,330 
14,182 1,623,512 
12,665 1,636,177 
11,203 1,647,380 
9,795 1,657,175 
8,449 1,665,624 
7,183 1,672,807 
6,023 1,678,830 
4,98 1 1,683,811 
4,060 1,687,870 
3,252 1,691,123 
2,557 1,693,680 
1,973 1,695,652 
1,492 1,697,145 
1,108 1,698,253 

809 1,699,063 
583 1,699,645 
414 1,700,059 
290 1,700,349 
201 1,700,550 
138 1,700,688 
94 1,700,782 
63 1,700,845 
42 1,700,886 
28 1,700,914 
18 1,700,932 
12 1,700,944 
8 1,700,952 
5 1,700,956 
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SCENARIO 3 

Year 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

AGE OF CLAIMANT = 40 
INTEREST ON MEDICAL PAYMENTS = REALISTIC 

INFLATION RATE FOR MEDICAL PAYMENTS = REALISTIC 
MORTALITY RATE = 1 TIMES STANDARD MORTALITY 

RETENTION LIMITS = 1 ,OOO,OOO 5,~,~ 

Medical Medical 
Payments Payments Cumulative 

Current Inflated Disc Mort. Reserve Reserve 
Dollars DoIlars Factor Factor Amount Amount 

50,000 51,841 .9623 
50,000 55,729 .8910 
SO,@30 60,188 .8250 
50,000 65,303 .7639 
50,000 71,181 .7073 
50,000 77,587 .6549 
50,000 84,570 .6064 
50,000 92,181 .5615 
50,000 100,477 .5199 
50,000 109,220 .4814 
50,000 119,377 .4478 
43.453 112.045 .4185 

.9969 

.9935 

.9858 

.9814 

.9767 

.9715 

.9659 

.9388 

49,727 49,727 
49,328 99,056 
49,146 148,202 
49,174 197,376 
49,409 246,785 
49,626 296,411 
49,821 346,232 
49,993 396,225 
50,141 446,367 
50,263 496,629 
50,588 547,217 
44.018 591.235 

12 6,547 16,883 .4185 .9388 6,633 597,868 
13 50,000 139,242 .3911 .9305 50,676 648,544 
14 50,000 150,381 .3655 .9216 50,660 699,204 
15 50,000 162,411 .3416 .9120 50,600 749,805 
16 50,000 175,404 .3193 .9017 50,493 800,298 
17 50,000 189,437 .2984 .8905 50,335 850,633 
18 50,000 204,592 .2789 .8786 50,124 900,757 
19 50,000 220,959 .2606 .8658 49,858 950,615 
20 50,000 238,636 .2436 .8522 49,534 1,000,149 
21 50,000 257,727 .2287 .8378 49,381 1,049,530 
22 50,000 275,767 .2158 .8224 48,935 1,098,464 
23 50,000 295,071 .2035 .8062 48,421 1,146,886 
24 50,000 315,726 .I920 .7890 47,836 1,194,721 
25 50,000 337,827 .I812 .7708 47,173 1,241,895 
26 50,000 361,475 .I709 .7516 46,430 1,288,325 
27 50,000 386,778 .1612 .7313 45,603 1,333,929 
28 50,000 413,853 .I521 .7100 44,690 1,378,619 
29 50,000 442,822 .I435 .6876 43,690 1,422,309 
30 43,794 415,009 .1354 .6642 37,315 1,459,624 

30 6,206 58,811 .1354 .6642 5,288 1,464,912 
31 50,000 506,987 .1283 .6399 41,627 1,506,539 
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32 
33 
34 
35 
36 
37 
38 
39 

I’ 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
-59 
60 

.61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

50.000 537.406 .I222 .6147 
50,OOU 569.65 1 .I164 -5884 
SO.000 603.830 .I108 x11 

mm 6a- .I056 .5326 
50,000 678,463 .I005 SO31 

We 719.171 .0957 .4726 

5%~ 762.321 .0912 .4414 
50,ooO 808.061 .0868 .4098 
50.000 856,544 .0827 .3781 
50.000 907.937 .0788 .34&t 
50,000 962.413 .0750 .3148 

5w@J 1.020.158 .0714 .2836 

50.~ 1.08 1,367 .0680 2533 

m.cQo 1.146.249 .0648 2241 

50.~ 1.215.024 .0617 .I959 
50,000 I .287.926 .0588 .I690 

5%~ 1.365.201 .0560 .1437 

mm 1.447.113 :0533 .I205 
50.000 I.533940 .0508 .0996 

so.c@o 1.625.977 .0484 .0812 
50.000 I .723,535 a461 .0650 
50.000 I .826.947 -0439 .0511 

50.~ 1.936.564 .0418 .0395 

5o.ooo 2.052.758 -0398 .0298 

mu 2.175.924 .0379 .0222 

5o.m 2.306.479 .0361 .0162 

wcJ@J 2.444.868 .0344 .0117 

mooo 2.591 .S60 .0327 .0083 
50,000 2.747.053 .0312 .0058 
50.000 2.9 I I.877 .a297 .0040 
50.000 3.086.589 .0283 ~3028 

5%~ 3.27 I ,785 .O269 .0019 
50.000 3.468.092 .0256 .col3 
so;ooo 3.676.177 .0244 BOO8 
50,CKJO 3.896.748 .0233 .0006 
50,000 4.130.553 .a222 .0004 

50.000 4.378.386 .cr211 .0002 

50,000 4,641,089 .0201 .OGm 
50,000 4.919.554 .0191 .oOOl 

RETEHT~ON RESEdVE 
LAYER SHARE 

1 591,235 
2 868,389 
3 539,599 

TOTAL 1.999.223 

40.367 I s46.905 

39.013 1.585.918 
37,555 I .623.473 
35.989 1.659.462 
34.314 1.693.776 
32.542 1.726.318 
30,685 1.757.003 
28.761 1.785.764 
26.788 t.a12,552 
24,773 I .837,325 
22.727 I .860.052 
20,674 I .880.726 
18.639 1 ,&X99.365 
16.644 I .916.009 
14.692 1.930.700 
12.792 1.943.493 
10.980 I ,954.473 
9.293 1.963.766 
7.760 1.971.526 
6,384 3.977.910 
5.163 I ,983,073 
4.099 1.987.172 
3.192 1.990.363 
2,438 1.992.801 
I.827 1.994.629 
1,348 i $95.976 

979 1.996.955 
702 1997,657 
497 1.998.154 
348 1.998.502 
241 1.998.743 
165 I JJ98.907 
112 1.999.019 
75 I.999.W 
50 I .999.144 
33 1.999,lTl 
22 1.999.199 
14 1999.213 
9 I.999.2= 

. 
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REGRESSION MODELS IN CLAIMS ANALYSIS I: THEORY 

GREG C. TAYLOR 

Abstract 

This paper considers the application of regression techniques to the 
analysis of claims data. Examples are given to indicate why, in certain 
circumstances, this might be preferable to traditional actuarial methods. 

The various errors of prediction which occur when loss reserves are 
estimated by regression are classijied and discussed. 

Formal procedures are discussed for determining which of the avail- 
able predictors will be entered into a regression, and the drawbacks of 
these procedures. 

Various approaches to the estimation of uncertainty associated with 
loss reserves estimated by regression are considered. 

The effect on regression techniques of outlying data points, and hence 
the subject of robustlresistant regression, is considered brie$y. 

1. INTRODUCTION 

Regression models have not been prevalent in claims analysis leading to 
loss reserving. This is evident from a survey of claims reserving methods 
(Taylor, [23]). 

The scarcity arises from the suspicion with which many actuaries regard 
such models. Their use does not have the “hands on” nature characteristic of 
methods based on age-to-age factors, for example, with which actuaries tend to 
feel at ease. There is a feeling of abstractness and loss of control in the estimation 
of parameters from the data. 



REGRESSION 355 

This skepticism is justified by the countless misapplications of regression 
methods which occur in practice. Despite this, it appears that regression tech- 
niques have a very definite place in the actuarial repertoire. But they will serve 
their users effectively only if it is realized that blind and mechanical application 
of simple least squares regression will, in certain circumstances, be statistically 
inefficient. 

In these circumstances, regression becomes a delicate tool rather than the 
crude bludgeon as which it is often regarded, and in which role it is even more 
often used. A proposition which is all too often neglected in practice is that a 
user can expect effective performance of any body of methodology only if the 
user is aware of its general properties, its strengths and weaknesses, the circum- 
stances in which it should and should not be applied, the response of its output 
to input anomalies, the whole array of quirks and pitfalls awaiting the unwary, 
how to “tune” the model building procedure for maximum results, and so on. 

The intention of this paper is to canvass briefly the various aspects of 
regression modelling. Within this larger purpose, there are two intentions. First, 
some of the grosser abuses of such modelling will be suitably exposed. Second, 
from a more positive viewpoint, it is hoped that the exposure of the causes of 
anomalous regression output will set the procedures in a perspective from which 
their beneficial aspects can be more clearly seen. 

The following sections deal very briefly with such questions as: 

(i) Why use regression models as opposed to the “traditional” actuarial 
ones such as those using age-to-age factors? 

(ii) Precisely what criteria are to be satisfied, and how should the extent to 
which they are satisfied be assessed? 

(iii) How many of the available predictors should be included in a regression 
model, .and how should the choice be made? 

(iv) What procedures, other than ordinary least squares regression, are 
available for fitting the selected model to data? 

(v) How might the impact on the fitting of isolated rogue data points be 
assessed, and how might the fitting procedures be modified to reduce 
this impact? 
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2. MOTIVATING EXAMPLES 

Consider first a relatively complex example. A simpler one will be presented 
shortly. 

In what follows, let 

i= 
j= 

Ni = 
Nij = 
co = 
Sij = 
Fij = 

tjo’) = 

iii(k) = 

year of occurrence of claim; 
development year, i.e., number of years after year of occurrence; 
number of claims incurred in year of occurrence i; 
number of claims settled in (i,j); 
amount of claim payments (adjusted for claims escalation) in (i,j); 
C,/N, = average claim payment per settlement in (i,j); 
Nii/Nf = rate of settlement in (ij); 
c’,=, Nik/Ni = proportion of claims from year of occurrence i settled 
by the end of development year j; 
min(*[tQ) + ti(j + I)]& for some partition {uO, . . . , ~1,+~} of 
ro,11. 

Suppose that the following model has been suggested: 

Sij = a + 2 b&(k) + clFG + eq, 
k=O 

(2.1) 

where a, bo, . . , b,, and c are unknown parameters and eti is a random error 
term. This is the invariant see-saw model (Taylor, [22]). 

Formula (2.1) expresses Sg as a linear function of the observations iii(O), 
. . . ) &i(n), l/Fij and a random error. Evidently, the unknown parameters may 
be determined by some form of linear regression of the S, on these observations. 

Indeed, how else might the parameter estimation be carried out? Note that 
the parameter values a, bo, . . . , b,, c are common to all cells (i,j). In contrast 
with the example below involving age-to-age factors, there is no simple trans- 
formation of the dependent variable SG which will isolate any one of the 
parameters. 

In this example, the very “shape” of the model, the intertwining of dependent 
and independent variables, virtually demands regression for parameter estima- 
tion. 
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In the next example, a much simpler model is considered but the situation 
is somewhat subtler. Using the same notation as before, let 

Cc = NiUirj + e+ 

where 

(2.2) 

ui = average claim size (adjusted for claims escalation) experienced in year 
of occurrence i; 

rj = the average proportion of claim payments (again adjusted for claims 
escalation) deriving from year of origin i which are payable in devel- 
opment year j. 

The model (2.2) may be rewritten in the form: 

log Cij = log (NiUi) + log rj + fj, (2.3) 

wherefi, is a new random error term. The transformed model (2.3) is linear in 
the parameters log (Niui) and log Vj which may therefore be estimated by 
regression methods. This indeed is the basis of Kremer’s [13] ANOVA ap- 
proach. 

Note also, however, that (2.2) is the prototype for development of age-to- 
age factors (e.g., Skumick, [20]; Berquist and Sherman, [3]). This is because 
it implies 

Ci,j+r/Cij = rjtlirj + error term, 

or more commonly, 
j+l 

Ai,j+liAg = 2 rki 5 rk + error term, 
k=O k=O 

where 

Au = i Cik = total claim payments (adjusted for 
k=O 

(2.4) 

(2.5) 

claims escalation) made in respect of year of occurrence i 
up to the end of development year j, 

j+l 

and the rj+rlrj in (2.4), or the 2 t-k/ i rk in (2.5), are the age-to-age factors. 
k=O k=O 

This example is subtler than the previous one in the sense that one has a 
choice as to the method of estimation of its parameters. This choice should be 
made against reasonable criteria, and therefore one needs to specify these. 
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Consider, for example, the following three possibilities: 

(i) proceed with regression estimation of the log (NiuJ and log rj via (2.3) 
after appropriate specification Of fij; 

j+l 

(ii) ignore the error term in (2.5) and estimate x rk/ $ rk 
k=O k=O 

by Ai.,+ 1IAij; 

(iii) assume the vector (log t-0, log t-1, . . .) to lie within some finite- 
dimensional vector space spanned by gr, gz, . . , g, where g, = (g,o, 
gm1, . . .), and so use regression methods to fit the following adaptation 
of (2.3): 

log Ci, = log (NiUi) + x bmgmj + Jj. (2.6) 
m=l 

It is instructive to consider the number of parameters to be estimated in each 
case. 

In case (i), there are I + J - 1 parameters if I values of i are considered 
and rj is assumed zero for j = J, J + 1, etc. The - 1 arises from the constraint 

ki$o rj= 1, (2.7) 

by definition. 

In case (ii), there are again I + J - 1 parameters, the only difference 
between the two cases being that the former approaches parameter estimation 
in a formal manner whereas the latter takes an ad hoc approach. 

In case (iii), where the g,,, are fully specified in advance, the parameters b,, 
. . . , b, and the log (N,ui) number just I + S. 

Note that in the last case the number of parameters is independent of J. This 
contrasts with the first two cases in which increasing J without limit increases 
the number of model parameters also without limit. For example, consider the 
case I = J = 10, s = 3. The numbers of model parameters are: 

Case (i): 19 
Case (ii): 19 
Case (iii): 13. 

Case (iii) involves only two-thirds as many parameters as cases (i) and (ii). 
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Note that the number of parameters in case (iii) may be reduced further by 
treating the log (Niui) in the same way as the log rj and representing them in 
some vector space of reduced dimension. 

Every actuary is aware, intuitively at least, of the dangers of over fitting, 
i.e., fitting a model involving more parameters than are justified by the volume 
of available data. Generally, the fitting of models which are parsimonious in 
their use of parameters smoothes out the roughness inherent in the raw obser- 
vations. Increasing the number of model parameters diminishes this smoothing 
effect until ultimately, when there are enough parameters that they are in one- 
to-one correspondence with the observations, the instability of the parameter 
estimates is equal to that of the observations themselves. 

Many actuaries have a distaste for models like (2.6) on the ground that the 
parameters b, under estimation are too abstract, that they do not correspond 
sufficiently with real world objects. This is what I meant in referring at the start 
of Section 1 to the “hands on” nature of the more traditional actuarial models. 

The formal objection to models such as (2.6) is likely to take the form: 
“What if basis vectors bl, . . . , b, cannot be found (for s sufficiently small to 
be useful) which capture the more subtle features of the rj?” 

The answer is that any such losses of accuracy cannot be considered in 
isolation from possible gains in stability accruing from a reduction in the number 
of model parameters requiring estimation. In formal terms, the approximation 
of (2.3) by (2.6) may introduce some bias into the model, but this bias must 
be weighed against any reduction in variability of the model’s predictions. 

The distaste for abstraction that individuals may experience is perhaps un- 
derstandable, but ultimately the relative merits of competing models must be 
assessed by the models’ objective performance, rather than the users’ preferences 
or prejudices. 

The above remarks concerning questions of bias versus stability do no more 
than state the intuitively obvious. However, it is possible, and useful, to for- 
malize the concepts involved so that model selection (such as the choice between 
cases (i), (ii) and (iii) dealt with above) can proceed on a more rigorous basis. 

These matters are pursued in Section 4. A helpful preliminary to this is an 
examination and classification of the types of error that arise in the prediction 
of future observations on the basis of a model fitted to past data. This forms 
the subject of Section 3. 
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3. ERRORS OF PREDICTIONS 

3.1. Illustrative example 

Again it will be useful to consider an example which is highly simplified 
but nevertheless illustrative of the wrong turns that can be taken in a slipshod 
approach to errors of prediction. Though oversimplified, the essence of the 
model corresponds to some of the approaches which I have seen in practice. 

Suppose it is assumed for the model (2.2) that: 

V[Cgl{U,, rj}] = NdCT2, 

where o2 is independent of both i and j. 

(3.1.1) 

Suppose also, that estimates Lii, 3 of the ui, rj have been obtained in the 
manner described in case (ii) of Section 2. Hence, estimates C, corresponding 
to the observations C, have been found. More particularly, though, predic- 
tions Pi = EJEr+i C, have been obtained of the future claim payments 
Pi = Eg,+, Cij arising from year of occurrence i, where C’ir is the latest observa- 
tion on that year of occurrence. 

Suppose that one seeks: 

V[Bi] = g V[e,] + covariances. 
j=T+ L 

(3.1.2) 

In practice, the estimation of the covariances may prove awkward. However, 
let us concentrate for the moment on some of the pitfalls involved in the 
estimation of the V[cJ. 

An argument that seems to appeal to some practitioners begins by consid- 
ering the scaled residuals (C, - Co)/Nj’2z&. If C, is regarded as replaceable by 
E[Cij], assuming C, to be unbiased, the squares of these residuals become 
estimators of u2, i.e., 

6’ = n-’ C [(Cij - ~~j)‘/N;lii’], 
i,j 

(3.1.3) 

the summation running over the 12 pairs i,j for which observations exist, and 
perhaps with some reduction of n to reflect loss of degrees of freedom. The 
required estimate of V[eij] can then be obtained by means of (3.1.1) as: 

n-‘Ni&? 2 [(Ck, - C?kJ21N&I. 
k, i 

(3.1.4) 
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While this procedure may appear a reasonable practical solution to the 
problem, uncluttered by the quibbles of purists, it is suggested that it is in fact 
far from the truth. It is suggested further to contain a major error of reasoning 
likely to carry substantial numerical consequences. V[Pi] is not even the second 
moment of interest. Even if it were, material contributions to it have been 
omitted. 

Essentially, the difficulties arise from the cavalier approach to the problem. 
A more careful and organized approach is required. 

3.2. Component errors of prediction 

To achieve the requirement of the previous subsection, let us drop the 
particular problem we have been considering and consider a generalized problem 
instead. Let Y denote an observable n-vector whose ith component is, apart 
from random noise, some function of observable quantities Xii, . . . , Xi,: 

Y = f(x, + e, (3.2.1) 

where X is the n X p matrix with XV as (i&-element, f: RnP * R” has the 
particular (possibly non-linear) form described above, and e is a random error 
term with zero mean. 

Suppose that the functional form f is unknown in this context and consider 
linear approximations Xb to f(X) where b is a p-vector of parameters. Then 
(3.2.1) becomes: 

Y = Xb + Lf(X) - Xb] + e. (3.2.2) 

Suppose further that the exact set of independent variables on which Y 
depends (the columns of X) is unknown, and that as a consequence Y is modelled 
as a linear function of a subset of Y, i.e., Yi is modelled by: 

E X$j (3.2.3) 
jEA 

for some AC { 1, 2, . . . , p} instead of by 5 Xobj. 
j=l 

Let (3.2.3) be denoted by XAbA, whereupon (3.2.2) decomposes as: 

Y = XAb,zj + XBbe + [f(x) - Xb] + e, (3.2.4) 

where B denotes the set (1, 2, . , , p} - A. 
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Let 6j denote the regression estimate of bj, where the term “regression 
estimate” is deliberately left vague for the moment. Let X* denote an m X p 
matrix, each column of which represents m further values of the relevant 
predictor. The task is to predict the m-vector 

Y* = f* (x*) + e”, 

where now?: RmP * R”. 

(3.25) 

Corresponding to (3.2.4): 

Y* = XxbA + Xsbe + If*(X*) - X] + e* 

Let Y* be the regression prediction of Y*: 

P* = x36.4, 

so that the prediction error is: 

(3.2.6) 

(3.2.7) 

Y* - P* = XJ(b,., - &J + XSbs + v(X*> - x] + e* 

= X$(E& - &,) + [XJ(b/, - E&A) + Xj$bB] 
+ p(x*) - x] + e”. (3.2.8) 

In many applications X represents observation of the predictors in the past, 
and X* represents values to be assumed by the same predictors in the future. 

At this point it is convenient to stop and consider the components of 
prediction error appearing on the right side of (3.2.8). They are: 

(i) the specijcation error p(X*) - x] essentially due to unmodeled 
nonlinearity; 

(ii) the selection error [X3bB + X;$(bA - EVA)] due to incorrect selection 
of predictors; 

(iii) the estimation error X2(E6A - 6A) arising from the fact that even the 
most efficient estimators of the regression coefficients are still only 
random variables; and, 

(iv) the statistical error e* reflecting the inherent random noise in the 
process. 

The terminology in (i), (iii), and (iv) is taken from Bartholomew [2]. The 
terminology in (ii) is taken from Miller [ 151. 

By the first version of (3.2.8), it might appear simpler to regard 
X,$(bA - 6A) as estimation error and XebtT as selection error. Note, however, 
that the selection of the set A of (linear) predictors instead of AUB introduces 
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a bias in 6~ as estimator of bA. For example, in the case of ordinary least 
squares regression with no specification error, 

6.4 = (X~XJ’X~Y, 

whence (3.2.4) yields 

E&I = bA + (X:X,& ’ X:XBbs. (3.2.9) 

In the case of claims analysis, it is possible to characterize the four contri- 
butions to prediction error as follows. 

In the fitting of a model to past claims data, the wrong algebraic model 
structure may be chosen. This will lead to specification error. 

Suppose that the true underlying model is in fact linear, and all of the 
relevant predictors are identified, so that there is no specification error. Still it 
will usually be necessary to use past data (incorporating its random noise) to 
decide which of the available predictors are included in the model. The noise 
in the process may lead to wrong decisions; relevant predictors may be omitted, 
and irrelevant ones included. This will result in selection bias. 

Suppose that the true underlying model is linear and is correctly selected, 
so that there is neither specification nor selection error. Still it will be necessary 
to estimate the parameters of the linear model by reference to past data. As 
these data contain random noise, so will the parameter estimates. The deviation 
of these estimates from their true values constitutes estimation error. 

Suppose that, by some unspecified means, it were possible to select the 
correct (linear) model form and estimate its parameters precisely, so that there 
were no specification, selection, or estimation error. Even then future claims 
experience could not be predicted with precision because the inherent random- 
ness of the claims process would generate deviations of experience from ex- 
pected values. These deviations constitute statistical error. 

3.3. Prediction bias and mean square error of prediction 

Let us now consider the prediction bias Ef* - EY* and the mean square 
error of prediction (MSEP) 

E(Y* - f*)2 = E(Y* - f*)=(Y* - f*). 

By (3.2.6) and (3.2.7) the prediction bias is: 

Ef” - EY* = XA(E& - bA) - XB - p(X*) - Xl. (3.3.1) 



364 REGRESSION 

In finding an expression for the MSEP, it will be advantageous to decompose 
the prediction error as: 

y* - f* = (y” - Ey*) - (f* - EPY) - (Ep* - Ey”) 

= (Y* - EY*) - (Y* - EY*) - prediction bias. (3.3.2) 

In any form of linear regression of Y on X A, Y* and Y* will be uncorrelated 
(easily checked from first principles since the former depends on future obser- 
vations and the latter on past), so that (3.3.2) yields: 

MSEP = E(Y* - EY*)2 + E(E” - .!?I;*)* + (prediction bias)’ 

= E(e*)* + E[X*(~A - E6,)]* + (prediction bias)*, 

by (3.2.5) and (3.2.7). 

(3.3.3) 

The MSEP is thus seen to comprise three identifiable contributions deriving 
from: 

(i) statistical error; 
(ii) estimation error; and, 

(iii) prediction bias (incorporating specification error and selection error). 

It is convenient at this point to revert to the example of Section 3.1, recalling 
particularly the critical remarks made at the end of that section. 

With the benefit of the more formal analysis of Section 3.2 and the present 
subsection, it is possible to recognize that the expression (3.1.4) for V[pJ is 
essentially only estimation error. Both statistical error and prediction bias are 
omitted. 

3.4 Components of selection error 

Section 3.2 defined selection error as the term [X8& + Xj(ba - E6A)] in 
(3.2.8). As seen in (3.3. l), this is the part of prediction bias not arising from 
nonlinearity. It was shown in Section 3.2 that the first member represents the 
bias introduced directly by the omission of the set B of predictors; the second 
member is the bias in 6A arising from this omission. 

It must now be recognized that E6A has been implicitly regarded as an 
unconditional expectation in the above. This would be appropriate if the set A 
were chosen without reference to the data Y. In practice, however, and partic- 
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ularly in claims analysis, this will not be the case. Usually, A will be chosen 
because it produces a better fit of model to data than certain other sets. 

In this case, 

-& = E[6~lPl + {E& - EhjPl), (3.4.1) 

where EhA is now explicitly the unconditional expectation of 6* and P denotes 
the procedure for subset selection. Substitution of (3.4.1) in the expression for 
selection error given at the start of this subsection yields: 

selection bias = Xsbs + XJ{bA - E[~A\P]} + Xx {E[~AIP] - E&A}. (3.4.2) 

There are now three contributions to selection bias: 

(i) omission bias, consisting of the first two members on the right of 
(3.4.2), and representing the bias due to the omission of the set B of 
predictors; 

(ii) stopping rule bias, consisting of that part of the final member of (3.4.2) 
which arises from the limitation imposed by P on the number of 
predictors included in A; and 

(iii) competition bias, consisting of that part of the final member of (3.4.2) 
which, for a given size of set A, arises from the manner in which P 
selects A from subsets of AUB of that size. 

These components of selection error are discussed in some detail by Miller [ 151 
(pp. 400-405), who gives various other references. 

Miller also gives a simple example of competition bias in a case in which: 

(i) AUB consists of just 2 predictors; 
(ii) A consists of just a single predictor; 
(iii) P consists of selection of the single predictor according to ordinary 

least squares; 
(iv) E&i = 1 and V[&] = V[&]; and, 
(v) the size of the sample of observations is large (presumably, results will 

be worse otherwise). 

Values of E[&]variable 1 selected] are calculated for varying values of E&, 
Vl64, and c[& ,621, and range from 1.02 to 1.53, compared with E61 = 1. The 
value of ~[6~1 variable 1 selected] increases with increase in each of the variables 
E62, V[bi], and C[61,62]. 
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Thus, it is apparent that selection bias may be substantial. Miller suggests 
a number of possible remedies for competition bias, though not for stopping 
rule bias. They are: 

(i) using half of the data to select predictors and the other half to fit the 
model; 

(ii) using jackknife or bootstrap methods (see Section 5 of this paper); 
(iii) using shrunken estimators of the ridge or Stein type; 
(iv) using simulation to estimate bias; or, 
(v) using maximum likelihood estimation of regression coefficients, taking 

the subset selection procedure P into account in the likelihood. 

4. SUBSET SELECTION 

4.1. General 

Consider the method by which the subset A of predictors (in the terminology 
of Section 3) might be chosen. What criterion might be adopted? 

Starting at the most naive end of reasoning, consider (3.2.8) and the iden- 
tification of the different types of prediction error in the passage immediately 
following. If all available predictors are included in A, then B is empty and 
selection error falls to zero. 

However, such a suggestion is likely to introduce the very practical problem 
(and, we shall see shortly, the theoretically objectionable fact) that the number 
of predictors runs literally into hundreds. Moreover, the evidence may be that 
the majority are statistically insignificant. 

Alternatively, then, one might consider including in A only those predictors 
which can be demonstrated as statistically significant, and specifically as sig- 
nificant not only in isolation but also in conjunction with the other members of 
A. This, typically, is the type of procedure followed by stepwise regressions 
(Efroymson, [6]). 

Certainly, this alternative procedure might reduce selection error to quite 
tolerable levels. It is necessary to recognize, however, that reduction of this 
type of error does not of itself result in efficient prediction. High efficiency in 
fact requires a low MSEP. 

Recall from (3.3.3) and the text just following it that the MSEP consists of 
three components, only one of which is selection error. Of the remaining two, 
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statistical error is independent of the model selected. Hence, an examination of 
the prediction efficiency of various models amounts to an examination of the 
respective effects of increasing the number of predictors on: 

(i) selection error (as noted above, this decreases); and, 
(ii) estimation error. 

It turns out that, broadly, estimation error increases as the set of predictors 
increases. This is intuitive. The more predictors that need to be fitted to a fixed 
number of data points, the more difficult the fitting becomes. As the number of 
predictors becomes too large, the phenomenon of over fitting mentioned in 
Section 2 becomes more in evidence. 

In the extreme case in which the numbers of data points and predictors are 
roughly equal, the whole fitting procedure is concentrated on achieving adher- 
ence of the model to past observation. The model is then being fitted to the 
random noise of past observation as well as the underlying signal, with conse- 
quent loss of predictive power. That is, estimation error is increased. 

The opposite effects on selection error and estimation error of increasing 
the number of predictors are illustrated by Exhibit I. 

ERROR 

I PREDICTORS 
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This indicates the existence of an optimal subset of available predictors in 
the sense of minimizing MSEP. The next couple of subsections deal with simple 
statistics aimed at facilitating the selection of the subset which is optimal or, 
more realistically, which is not too far sub-optimal. 

4.2 Mallows’ C, statistic 

Consider once again the situation introduced in Section 3.2, but assume now 
the underlying algebraic structure f(.) in (3.2.1) is linear. In this case (3.2.2) 
becomes: 

Y=Xb + e, (4.2.1) 

where, as before, e has zero mean, and is further assumed to have stochastically 
independent components all with equal variance cr’. 

Recall the decomposition of MSEP: 

E(Y* - Y*)’ = E(Y* - EY*)’ + E(Y* - EY*)’ + (prediction bias)2. 
(3.3.3) 

A somewhat simplified version of this is: 

A = E(EY* - Y*)’ = E(Y* - Ep*)’ + (prediction bias)2 

= estimation error + prediction error. (4.2.2) 

The left side of (4.2.2) is a measure of deviation of the expected values of 
future observations from predictions, whereas MSEP is a measure of deviation 
of the actual values of future observations from predictions. 

The difference between the two measures is the statistical error E(e*)*. Since 
this is independent of the model chosen, subset selection according to minimum 
MSEP is the same as minimizing A. This is the basis of Mallows’ C, statistic 
introduced by Mallows [ 141 and discussed by Seber ([19], pp. 364-369). 

In the following, let a subscript q indicate that the quantity under consid- 
eration relates to a model based on q of the available predictors (one of them 
representing a constant term, i.e., a constant column of X). Seber shows that: 

As = qo* + (I’@;, (4.2.3) 

with PB denoting prediction bias 
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NOW the usual definition of residual sum of squares (RSS) is: 

RSS = (Y - fi2, 

and as is well-known, 

E(RSS,) = (n - q)a2 + (PB);. (4.2.4) 

By (4.2.3) and (4.2.4), 

E(RSS,) + (2q - n)u* = A4. 

Therefore, if 

C, = RSS,i62 + 2q - n, (4.2.5) 

with b2 a suitable estimator of 02, C, will be an approximately unbiased 
estimator of A,/o*. Then minimization of MSEP, equivalently of A4, will be 
approximately achieved by selection of the subset of predictors which minimizes 
C, defined by (4.2.5). 

In the case in which the number of predictors included in the model is 
denoted by p (recall that this symbol has been reserved for the total number of 
available predictors), (4.2.5) becomes C,. This is the name by which it is 
usually known-Mallows’ C, statistic. 

4.3. Breiman and Freedman S, statistic 

Breiman and Freedman [4] consider a situation similar to that of Section 
4.2. In their case, however, the elements of the design matrix X in (4.2.1) are 
random variables. 

It is assumed, in addition to the assumptions of Section 4.2, that e and the 
columns of X are jointly normal with zero mean and that e is stochastically 
independent of the columns of X. As before o* denotes V(e*), and in addition 
we adopt the notation: 

a; = vrxd%lx.41, (4.3.1) 

where Xa, XB, have the same meaning as in Section 3, the set A now containing 
q predictors. 
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Just as in Section 4.2, the quality of the regression is assessed by reference 
to the MSEP, though in the presence of random variation of X this requires 
further definition. Breiman and Freedman define 

MSEP = E[E[(Y* - I’*)‘)X, yl], (4.3.2) 

where the outer expectation operator is unconditional, i.e., averages over the 
data X, Y. The algebra is developed in terms of the case m = 1 (i.e., the vector 
Y* has a single component) though this does not result in any loss of generality 
in the S, statistic presented below. 

The algebraic development is rather similar to that of Section 4.2. The 
extended MSEP (4.3.2) may be written in the form, parallel to (3.3.3): 

MSEP = statistical error + E[estimation errorlX,YJ 

+ E[(prediction bias)*]X,Y]. (4.3.3) 

Now, apart from the averaging over data, the final two terms of (4.3.3) are 
those appearing as A on the right side of (4.2.2). Hence, (4.3.3) becomes: 

MSEP = a2 + E[(P@2]X,yl + E[estimation errorlX,Y] 

= u2 + a; + E[l& - EfGl)=x~xAt&l - -&4)~X,Yl, (4.3.4) 

where use has been made of (4.3.1). 

With a little further development, Breiman and Freedman show that: 

MSEP = (a2 + a;) [l + q/(n - 1 - q)]. (4.3.5) 

The first bracketed term on the right is estimated by (n - q)-l(RSS), whence 
MSEP is estimated by 

S, = (n - q)-‘(RSS)[l + q/(n - 1 - q)]. (4.3.6) 

The paper by Breiman and Freedman goes on to demonstrate certain optimality 
properties of S,. 

In the case in which the number of predictors included in the model is 
denoted by p (recall that in the present paper this symbol has been reserved for 
the total number of available predictors), (4.3.6) becomes S,. This is the name 
by which it is usually known-Breiman and Freedman S, statistic. 

In application of S,, the subset of regression predictors is selected from 
those available in such a way as to minimize S,. 
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The choice between C, and S, in regressions arising from claims analysis is 
not always easy. In the first example of Section 2, the values entering the design 
matrix, iij(k) and l/Fg will indeed be random variables, as allowed by S, (but 
not C,). On the other hand, however, their mean values will be necessarily non- 
zero, contrary to the assumption underlying S, (but not C,,). 

This will be particularly true of any constant term in the regression equation, 
such as a in (2.1). It is perhaps desirable to examine the behavior of both C, 
and S, as the subset of predictors entered into the regression is varied. 

Miller [15] (pp. 406-407) suggests in strong terms that the efficacy of 
stopping rules such as those based on C, and S, is very much limited by the 
existence of competition bias (Section 3.4): 

“the vast literature on stopping rules . . is an irrelevant academic exercise 
until the problems of estimation have been overcome.” 

He points out that competition bias can easily be of the order of two standard 
errors when the same data set is used for subset selection and parameter esti- 
mation. He provides a simulated example in which the true MSEP is compared 
with that estimated, ignoring competition bias, by the formula: 

MSEP (false) = [1 + (4 + 1)/n] RSSI(n - 1 - s), 

for a model containing q predictors and a constant term. The results were as 
shown in Exhibit II. 

4.4. Spj#tvoll’s goodness-of@ 

Spjotvoll [21] provides a test of the goodness-of-fit of one subset of predic- 
tors relative to another. This is dealt with in reasonable detail by Miller [ 151 
(pp. 397-399). 

Spjotvoll’s measure of goodness-of-fit is: 

(Xb - X,E6J (Xb - X.&A) = (Xb>=(Xb) - (Xbf X,4(x~x‘4>-‘XAT(Xb). 
(4.4.1) 

Since the first member of this last expression is independent of the subset of 
predictors selected, Spjotvoll chose to use just: 

(Xby xA(x;x,4- ‘xgxb). (4.4.2) 
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EXHIBIT II 
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Miller points out that, if goodness-of-fit is to be assessed for prediction 
purposes, (4.4.1) might reasonably be modified by the inclusion of a statistical 
error term. (See Section 3.2 for explanation.) Then (4.4.1) is replaced by: 

(Xb - X,s&)‘(Xb - X,6,) = (Xb)=(Xb) - (Xb)T X,(X:X,)-‘X;(Xb) 

- + u2 trace [XA(XiXJ’XAT], 

where a21 = Ve. This extra term is equal to qu2 (just as in (4.2.3)) when there 
are q linear predictors including a constant term, so that (4.4.1) is replaced by: 

(Xb - XA6,)*(Xb - XA&) = (Xb)T(Xb) - (Xbf X,(X:X,.,-‘X:(Xb) 

+ +J2, (4.4.3) 

and (4.4.2) by: 

(Xb)=X,(X:X.s,- ‘X,T(Xb) - qa2. (4.4.4) 

Note that (4.4.3) is identical to A, defined in (4.2.2) in the development of 
Mallows’ C, with the exception that in the latter case it is based on the future 
design matrix X* whereas (4.4.3) is based on the past X. 
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By (4.4.4), different subsets of predictors, say A4 and N, are compared by 
means of the statistic: 

GMN = (Xb)T[X,(XLX~)- ‘XL - XN(X;XN)-‘X;](Xb) - (qM - q,v)a’, 

= bTC.wvb - (qm - q,v)rr*, (4.43 

where CMN is the appropriate p X p matrix. We note that the final member of 
this expression was not used by Spjotvoll. 

Spjotvoll goes on (summarized by Miller) to develop maximum and mini- 
mum values for GiuN conditional upon b lying within a (1 - 01) confidence set 
of the form: 

Pr[(b - 6)‘Xrx’(b - 6) c k] = 1 - (Y, 

where 6 is the regression estimate of b in the full model. 

These limits on GM~ may be used to test whether A4 provides a significantly 
better or worse fit than N to the data. 

5. METHODS OF ESTIMATION OF SECOND MOMENTS OF LOSS RESERVES 

5.1. General 

This section will consider methods by which MSEP of loss reserves can be 
estimated. 

First note that this will not consist merely of estimating (3.3.3). Typically, 
Y* will be some vector of future claim payments, subdivided for example 
according to year of occurrence and development year. In such a case, the 
estimated loss reserve would be: 

lj = 1TF*, 

where 1 is an m-vector with every component equal to unity. 

Then (3.3.3) is replaced by: 

(5.1.1) 

MSEP(R) = lre(e*)’ 1 + l’,?Z[x*(6~ - &A)]* 1 + (prediction bias)2. 
(5.1.2) 

This last equation shows that the MSEP of loss reserve R consists of separate 
terms representing statistical error, estimation error and prediction bias respec- 
tively. 
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There is little that can be said as to the formal inclusion of the last of these 
components in any estimate of MSEP. To the extent that it is perceptible, it 
should be removed from the estimated loss reserve (i.e., first moment thereof) 
rather than allowed for in MSEP estimation. Some components of prediction 
bias, e.g., specification error (Section 3.2), are by their very nature, likely to 
defy any reliable formal evaluation. 

The usual situation is therefore that the first two members on the right of 
(5.1.2) can be evaluated in systematic manner, but only informal allowance can 
be made for the third, bearing in mind Miller’s remarks quoted in Section 4.3. 

There are several approaches to this evaluation. They are discussed in detail 
by Ashe [ 11. Brief details are given in the next few subsections. 

5.2. Parametric estimation 

The linear model (4.2.1) will be referred to here as the parametric model- 
parametric in the sense that the error term e is assumed to have certain (usually 
parametric) properties. 

If e is well-defined, then its parameters (e.g., 0’) may be estimated from 
the data, and hence the first two components of MSEP(R) in (5.1.2) estimated. 
Logically, this is straightforward even if the algebraic manipulation involved 
may be cumbersome occasionally. The algebraic details are provided by Taylor 
and Ashe [24]. 

The calculations involved in this procedure are quite manageable with just 
about any reputable regression package. Naturally, the results are reliable only 
to the extent that the parametric assumptions underlying the procedure may be 
relied upon. Care is therefore necessary in dealing appropriately with the co- 
variance structure of e. See, for example, the weighting procedure used by 
Taylor and Ashe [24] in their regressions. 

5.3. Jackknife 

The jackknife algorithm was introduced by Quenouille [17] and is now 
found in many standard texts, e.g., Mosteller and Tukey [ 161. The purpose of 
the algorithm was to reduce bias in parameter estimates based on limited data. 

An outline of the method is as follows. Suppose that some parameter 0 is 
estimated by a statistic S. This statistic may be a complicated function of the 
data. The precise properties of S are either unknown or difficult to compute. It 
is known, however, that the bias contained in S is of order n-r for sample size 
n. 
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Let S be denoted by S(n) for sample size n. Now, for each i = 1, 2, . . . , 
n, define Si(n) as the value of S based on the (n - 1)-sample obtained by 
deletion of the ith observation. Then define a pseudo-value: 

Pi(n) = d(n) - (n - 1) Sj(n), i = 1, 2, . , . , n. (5.3.1) 

By assumption, 

d(n) = 0 + a/n + o(n-‘). 

Hence 

/$i(n) = 0 + O(K’), 

and so 

F(n) = i Pi(n)/?2 = 0 + o(n-‘) + error term 
i=l 

(5.3.2) 

contains a bias of order less than n-l as an estimator of 8. 

The variance of P(n) is estimated by (Mosteller and Tukey, 1977, p. 135): 

{F2(n) - [P(n)l*}l(n - l), (5.3.3) 

where 

F*(n) = i P2(n)ln. 
i=1 

(5.3.4) 

This algorithm may be applied to the present context by setting S(n) equal 
to the estimated loss reserve obtained from a regression claims model based on 
n data points (a single data point being, for example, the observed claim 
payments in a given development year of a given year of occurrence). This can 
be generalized by taking S(n) to be the vector of loss reserves for the different 
years of occurrence; or the vector of claim payments projected for each of the 
years of run-off; or, indeed, any one of the many cross-sections which might 
be taken from the regression forecast of future cash flows according to year of 
occurrence and development year. 

In practical application, it might seem reasonable to adapt the jackknife 
estimates (5.3.1) to (5.3.4) to weighted regression. Possible replacement for- 
mulas are: 

Pi(n) = [WS(n) - (W - wi)Si(n)]/wi (5.3.la) 

where wi is the weight applied to observation i in the weighted regression and 
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F(n) = i VViP,(?Z)lW; 
i=l 

{P(n) - [F(n)]z} x ,g w?lW2 

P’(n) = i w;P’(n)lW. 
r=l 

(5.3.2a) 

(5.3.3a) 

(5.3.4a) 

Despite the seeming reasonableness of (5.3.la) to (5.3.4a), Ashe [l] (p. 
SIOS) points out that the response of the weighted jackknife to his particular 
numerical examples is wild. It is possible that the bias assumption underlying 
the jackknife is incorrect and that the adoption of unequal weights Wi magnifies 
this in P(n). Indeed, Miller [ 151 (p. 404) provides a semi-rigorous argument 
that competition bias is of order n-1’2, not n-’ as required for the jackknife to 
be valid. 

Ashe [l] (p. Sl 10) points out the usefulness of the pseudo-values in their 
own right as providing an indication of the influence of individual data points. 
A deviant value of pi(n) indicates that the whole regression is strongly influenced 
by data point i. Further discussion of the influence function and the appropriate 
response to it will appear in Section 6. 

There are two shortcomings of the jackknife. 

First, the entire procedure is dependent on the assumption that bias in the 
statistic S is of order n-i. In practical applications, this may not be known with 
any certainty. 

Secondly, variance estimates (5.3.3) and (5.3.3a) are in fact estimates of 
estimation error only. Presumably, regression estimates b’(n) of statistical error 
could also be jackknifed. The results would however be dubious since the 
assumption of a bias of order n-r would be even more uncertain in the case 
s*(n) than S(n). 

5.4. Bootstrap 

The bootstrap (Efron, [5]) is a procedure which makes use of data re- 
sampling. Application of the technique to regression problems is discussed by 
Freedman and Peters [7]. 
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Consider the model: 

Y = Xb + e, (5.4.1) 

where X is a given design matrix and e is a random vector with mean zero and 
covariance matrix V. 

As in previous sections, let 6 denote the regression estimate of b. Then let: 

ii! = Y - x6, (5.4.2) 

and 

,$ = v-‘/2@, (5.4.3) 

where the meaning of V -“’ is the conventional one for a positive definite matrix 
V. 

Note that the components of 5 are independent, identically distributed (i.i.d). 
Let F(.) denote the empirical distribution function obtained by assigning equal 
masses to them. It is now possible to generate pseudo-data sets: 

Y”‘=X6+e”‘,i= 1,2,. . . (5.4.4) 

where 
p = v”25(” 9 

and {e”‘} is a random sample drawn from F(.). Each set of pseudo-data leads 
to a new estimate 6”’ of b. 

Let X*, Y* have the same meaning as in earlier sections. Then each estimate 
6@’ leads to an estimate Y*“’ of Y* where 

k*(” = X*6”‘, i = 1, 2, . . . (5.4.5) 

The collection {Y*‘i’} provides an empirical distribution of the random variable 

k* = x*6. (5.4.6) 

This distribution may be used to study the mean, variance, non-normality, 
confidence limits, etc. of (5.4.6). Note that: 

;d) _ X*b = xy6”’ _ b], (5.4.7) 

which contains only estimation error. More pertinent to forecasting is a collection 
of forecasts of Y* which contains statistical error also. 
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This is obtained by replacing (5.4.5) and (5.4.6) by: 
+(i) = x*@O + e*(G, 

F* = Xx6 + e*, 

where 

(5.4.5a) 

(5.4.6a) 

e* = W”‘(*, (5.4.8) 

e*(i) = wlQp(l), (5.4.9) 

for a known matrix W, the components of t, <* are i.i.d., and {e”‘, e”‘*} is a 
random sample drawn from F(.), i.e., a particular 5”’ and i$‘)* are stochastically 
independent. 

In this case (5.4.7) is replaced by: 
$0 _ x*b = x”[p - b] + e*“‘, 

which includes both estimation and statistical error. 

(5.4.7a) 

Freedman and Peters [7] (p. 99) deal with the case in which V is unknown 
and provide an iterative scheme for its estimation simultaneously with the 
generation of pseudo-data. 

It is to be emphasized that the whole procedure assumes the validity of the 
basic model (5.4.1). If the model is invalid, estimates of second moments will 
probably be enlarged but not necessarily in the correct way. 

For example, if prediction bias is present in model (5.4.1), it will be 
absorbed into & of (5.4.2) and hence 5 of (5.4.3). The components of 5 will 
then have non-zero mean and will not in general be identically distributed as 
assumed in the generation of pseudo-data (5.4.4). 

5.5. Comparison of the estimation procedures 

The advantages and disadvantages of the three estimation procedures con- 
sidered in Sections 5.2 to 5.4 are summarized by Ashe [l] (p. S 112) as follows: 

Parametric estimation l small number of calculations 
l estimation error and statistical error available 
l accurate if the parametric assumptions are correct 

Jackknife: l influence of individual data points on the estimate is 
available 

l only estimation error is available 
l estimate of loss reserve possible has reduced bias 
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Bootstrap: l non-parametric 
l estimation error and statistical error available 
l distribution of loss reserve given 

6. ROBUSTNESS 

6.1. Influence function 

The concept of an influence curve was introduced by Hampel [9]. It is 
discussed by Mosteller and Tukey [16] (pp. 351-356). A generalization to an 
influence function, a multi-dimensional version of the influence curve, is dis- 
cussed by Rey [18] (pp. 15, 16). 

The influence function of data points yl, . , . , yn on statistic S(yi, . . . , 
yn) is defined as the vector, 

IcyI, . . . , yn) = g cyl, . . . ,Yn>, 

withy denoting the vector (yi, . . . , y,). It indicates the influence on S of small 
variations in the data points. 

A single component &S/@i of (6.1.1), plotted as a function of yi, with yl, 
. . . , yi-19 yi+l, . . . j y, fixed at their observed values, provides the influence 
curve Of yi. 

In the context of loss reserving by regression methods S(yi, . . . , yn) may 
be taken as the forecast (5.1.1): 

i = I$* = lTXX&, (6.1.2) 

where 

6.4 = &dYl, . . . , m> 

is the regression estimate of ba as in (3.2.7) and is a function of the data vector 
Y = (Y,, . . . , Y,)? 

Since Zi( .) measures the effect of small variations of yi on S, and the jackknife 
pseudo-estimate P,(n) measures the effect of removing yi from the data, the two 
are related, as foreshadowed in Section 5.3. As suggested there, the pseudo- 
values perhaps serve as some kind of proxy for the influence function. 
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6.2. Robust regression 

Regression need not be carried out by means of least squares, weighted or 
unweighted. Indeed, the importance of least squares regression derives, through 
the Gauss-Markov theorem (Graybill, [S]), from the oft-made assumption that 
random error terms in the data are normally distributed. When this assumption 
does not hold, least squares regression may not be appropriate. 

There is no doubt that most classes of insurance involve long tailed claim 
size distributions. The basic data of any claims analysis, such as claim payments 
subdivided by year of occurrence and year of development, are therefore likely 
to incorporate error terms with long tailed distributions. Under weighted least 
squares regression, one or two rogue data points might well drag the entire 
regression away from the estimates which it would otherwise provide. 

Robust regression encompasses procedures for fitting linear models whose 
properties are relatively insensitive to the distribution of these error terms. 
Resistant regression includes procedures leading to estimates which are not 
greatly distorted by extreme cases. 

The latter of these two concepts is evidently related to the influence function. 
The smaller the influence function of a particular data point, the more resistant 
the regression to outlying values at that point. 

Various methods have been used to reduce the influence function from that 
associated with least squares regression. For a summary, see Huber [ll], [12]. 
An actuarial reference is Hogg [lo]. Most of these methods can be viewed as 
fairly simple modifications of weighted least squares regression. 

Consider the model, 

Y = Xb + e, (6.2.1) 

where the notation is as in previous sections and, in particular, e is not neces- 
sarily normal although it is assumed to have zero mean. Under weighted least 
squares regression, b is estimated by that 6 which minimizes the weighted sum 
of squares (WSS): 

wss = (Y - x6)Tw(Y - X6), (6.2.2) 

for some n X n matrix W which is independent of Y. Under resistant regression 
(6.2.2) is replaced by: 

wss = (Y - Xlylv(2)(Y - X6), (6.2.3) 
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where the weight matrix W depends on an estimate Z of the vector of standard- 
ized residuals, 

Z = diag (6;‘, . , 6,‘)(Y - X6), 

with 6: an estimate of V[Y,]. 

(6.2.4) 

Most commonly, the form of W(z) is: 

wjj = hi(ij), j = i; 

= 0, j # i; (6.2.5) 

for some function hi which decreases asA& departs from zero. Thus, outlying 
observations, generating large values of Zi, are assigned little weight in WSS. 

Typical choices of the attenuating function h,(.) are: 

hi(Z) = wj, IZI ;s 2; 

= 4wJlz12, 1zI a 2, (6.2.6) 

where diag (WI, . . . , w,) is the weight matrix which would have been used 
for weighted least squares regression; or alternatively, 

hi(z) = WiZ-’ sin (2~/3), 1~1 S 3~/2; 

= 
0, IzI 2 37~12; 

or again, 

hi(Z) = Wi [1 - (Z/5)2]2, JZI G 5; 

(6.2.7) 

= 0, Iz( 2 5. (6.2.8) 

It is apparent that any system (6.2.3) in which the weight matrix W(Z) 
depends on 6 renders WSS non-quadratic in 6. Then the solution b is nonlinear 
in the data Y. It will usually be necessary, therefore, for (6.2.3) to be minimized 
iteratively. At each iteration, the a: need to be recalculated on the basis of the 
residuals at the preceding iteration. Then W(2) can also be calculated on the 
basis of the same residuals, and (6.2.3) minimized with the new W(Z) treated 
as independent of 6. 
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A NOTE ON THE GAP BETWEEN TARGET AND EXPECTED 
UNDERWRITING PROFIT MARGINS 

EMIL10 C. VENEZIAN 

Abstract 

Profit margins experienced by insurance companies are, on average, 
considerably lower than the “target” margins used to compute the 
premiums. The difference has been attributed to a variep of factors, 
ranging from errors in actuarial projections, to regulatory delays, to 
regulatory and competitive pressures. This note examines the potential 
impact qf the procedure used to “mark up” the projected cost per policy 
on the gap between two quantities, the intended or “target” margin and 
the expected value of the realized profit margin. 

The analysis shows that the practice of dividing the expected loss 
cost by a ‘permissible loss ratio” computed by deducting the anticipated 
expenses and a profit provision from unity will produce an expected 
underwriting projit margin that is, on average, lower than that built into 
the rates. 

1. INTRODUCTION 

A stylized view of actuarial ratemaking involves a provision for profit. 
Mathematically, the provision is made by dividing the expected cost of servicing 
an insurance contract by a number which represents unity minus the “target” 
profit margin.’ The results of this computation may be used directly in the 
market, as in situations in which rates are promulgated by a department or 
bureau, or may be merely estimates of the marginal cost of providing insurance 
which guide management in its pricing policies. In either event, the result is a 
key input into the pricing decision. 

Over extended periods of time in most jurisdictions, the average underwriting 
profit margins achieved by the industry as a whole, or by individual firms, differ 
substantially from the targets ostensibly built into the rates. This “gap” has been 

’ In practice the numerator may include the costs of losses and loss adjustment services and the 
denominator reflects other anticipated expenses (such as commissions, administrative expenses, and 
premium taxes) as well as the target proft margin. 
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emphasized by various authors [2,3,4]. One view is that the gap exists because 
the target profit built into the rates is excessive [2]. In this view, the gap 
represents the difference between improperly regulated prices and prices that 
would hold in a competitive economic system. Others attribute the gap to 
difficulties in ratemaking and to “cutbacks and delays in implementing rate 
increases” [3]. Still others remark on the existence and importance of these gaps 
but don’t provide a rationale for their existence [4]. 

This note analyzes the gap in terms of the stylized procedure described 
above. The emphasis is on the difference between the underwriting margin that 
is incorporated into the ratemaking formula, here called the “target” margin, 
and the margin that would be expected on a statistical basis from the direct use 
of the formula. The analysis shows that the procedure used in developing 
premiums from actuarial projections is responsible for at least part of the 
difference between the target and expected profit margins, even if the projections 
used in making rates are unbiased. 

2. A STYLIZED MODEL OF RATEMAKING AND PROFIT DETERMINATION 

For our purposes, a very simple stylized model of actuarial ratemaking is 
adequate. The simple model presented here would be applicable directly to 
state-mandated rates or to bureau rates with no deviations. Trivial extensions 
would be needed for situations in which uniform deviations from promulgated 
rates are permissible. The analysis would also be applicable to rates developed 
through management discretion as long as the actuarial projections of needed 
rates are a major determinant of the rates ultimately adopted by management. 
We view ratemaking as consisting of the following steps: 

1. The forecast cost per policy, F, is developed from past data. 
2. The target margin, T, is determined. 
3. The price, P, is calculated from 

p=F 
1-T’ 

(2.1) 

Policies are sold at this price and will, eventually, prove to involve a cost 
per policy of C. The underwriting profit per policy during the period in question 
will be the difference between the revenue, P, and the cost, C. The underwriting 
profit margin during the period will, accordingly, be 

P-C 
m=-F-. 

(2.2) 
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Combining these equations, the underwriting profit margin may be expressed 
as 

W-$(1-n. (2.3) 

Denoting the true expected value of the cost per policy as CT, the observed 
cost per policy will be a random variable whose expected value is Cr. Accord- 
ingly, we write 

c = CT-U + y), (2.4) 

where y is a random variable. By definition the expected value of y is zero. 

From these equations it follows that the achieved underwriting margin can 
be expressed as 

A=E(m)= 1 -(l -T)E ; 
0 

= 1 - (1 - 7.) E 

(2.5) 

(2.6) 

If we were to view the value of F as being identical to CT, then we could 
use equation 2.6. In view of the fact that the expected value of y is zero, we 
would then conclude that the achieved margin is the same as the target margin. 
This appears to be the origin of the conventional wisdom that the two are equal 
in the absence of effects such as competition or regulatory lags. The value of 
F is, however, a forecast rather than the true value of the cost per policy. It is, 
accordingly, a random variable whose value depends on the unobservable value 
of the true cost. Assuming that F is fixed is tantamount to assuming that the 
actual cost per policy will tend to cluster around the forecast rather than around 
its true expected value. 

In order to recognize the effect of forecast errors, we denote the forecast 
cost per policy as: 

F = CT(I + x), (2.7) 

where x is a random variable measuring the prediction error. Since the premium 
is always greater than zero we can guarantee that x > - 1. The expected value 
of x will be zero if the estimators used in ratemaking are unbiased, but this is 
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not assured. We assume that the values of x and y are independent unless the 
errors in the forecast affect actual experience.2 

Recognizing the random elements in the forecast we must write 

A=E(m)=l-(1-T)E 

In view of the independence of x and y, this can be simplified to 

= 1 - (1 - T) E(1 + y) E & , 
( i 

and since the expected value of y is zero 

=I-(1-Z-)E & . 
( 1 

This can be written in a more suggestive form as 

A=]- (1-T) 
E(l + x) - (’ - T, [E (ik) - E(1 : x)] ’ 

Gw 

(2.9) 

(2.10) 

(2.11) 

If the actuarial estimates are unbiased, as they strive to be, the expected 
value of 1 + x will be one. The first two terms on the right hand side will, 
accordingly, be equal to T. The quantity in brackets in the third term will always 
be positive due to the fact that the harmonic mean3 of a positive variable (in 
this case, 1 + x) is always less than the arithmetic mean [I]. Since 1 - T is 
also positive and the third term has a negative sign, it follows that in general 
the expected value of the underwriting margin will be less than the target margin. 

3. AN EXAMPLE 

A concrete example may serve to illustrate the relationship. Let us consider 
the situation when the logarithm of variable 1 + x is normally distributed with 
mean m and standard deviation s. This is realistic in that it corresponds to a 

* Dependence can arise in a number of ways. Two deserve mention: the self-selection of the 
purchasers of insurance in response to changing effective prices and the easing or tightening claims 
settlement practices by management as profit margins change. 

3 The harmonic mean is defined as the reciprocal of E( 1 + x)-l 
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situation in which rates are always positive and have lognormally distributed 
errors. In this case Mn, the expected value of (1 + x)~, is given by 

M, = exp(nm + ?hn2s2) 

for any value of n. 

Since the rate estimator is presumed to be unbiased, the expected value 
of 1 + x must be one. This requires that Mi be one and, accordingly, that 
m = -Y2s2. 

Imposing this condition and obtaining M-r from Equation 3.1, we find that 
Equation 2.11 may be written as 

A = T - (1 - T) [exp(s’) - l] . 

It is worth noting that the factor multiplied by 1 - T is the variance of the 
relative error in the forecast. Thus, if the standard deviation of the relative 
forecast error is 10 percent, the bias in the underwriting profit margin will be 
very close to one percentage point. If the standard deviation of the relative 
forecast error were as high as 30 percent, the bias would be nine percentage 
points. 

4. CONCLUSION 

When premiums are set by marking up unbiased predictions of cost per 
policy by dividing them by one minus a target margin, it can be guaranteed that 
there will be a gap between the “target” and the “expected” underwriting profit 
margin. Mathematically, the gap is generated by the difference between the 
expected value of the reciprocal of a random variable and the reciprocal of the 
expected value of the variable. If projected loss ratios estimate the “true” 
expected loss ratios at current rates but are subject to random error, the same 
results apply when the premiums are derived by dividing the projected loss ratio 
at current rates by a “permissible loss ratio” that incorporates a target provision 
for underwriting profit. 

This paper does not present estimates of the magnitude of the effect. Direct 
estimates of the difference could be calculated if there were records of the actual 
forecasts that could be compared with realized values. That data is not generally 
available. Even with that data, additional assumptions would be required in 
order to develop exact estimates. The example provided illustrates that the gap 
may be large. Extensive simulation based on distributions other than the log- 
normal and approximations based on publicly available data indicate that for 
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workers’ compensation insurance, the difference between intended and achieved 
margins attributable solely to the effect described in this paper is larger than 
one percentage point in most states, and may well reach five percentage points. 

While errors of this magnitude are not uncommon, it must be remembered 
that this is a systematic, not a random effect. It is also important to keep in 
mind that the regulatory process and the rigors of competition may well result 
in estimators that are biased downward. In fact, if the estimates given above 
are correct, then for workers’ compensation insurance, the effect of biased 
estimators may be three to four times larger than the statistical gap described 
in this note. Attempts to collect better data and refine the estimation procedure 
are in progress. 
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SOME CONSIDERATIONS ON AUTOMOBILE RATING SYSTEMS 
UTILIZING INDIVIDUAL DRIVING RECORDS 

LESTER B. DROPKIN 

REPRINTED FROM VOLUME XLVI 

1. INTRODUCTION 

With the recent introduction of automobile rating systems which modify an 
otherwise applicable rate by utilizing some form of individual driving record, a 
number of questions presented themselves. On the one hand, it was felt that a 
mathematical description of a phenomenon-in this case risk distributions by 
number of accidents-is intrinsically of value and constitutes an advance. The 
first part of this paper is concerned with the presentation of such a description, 
A frequency distribution known as the negative binomial distribution is utilized 
in these first sections. 

Of considerable and immediate importance is the question: What is the 
probability that an individual rated according to a given “driving record sub- 
classification” has been correctly classified? The answer to the question as 
phrased is actually an objective and, as such, is not specifically answered here. 
Rather, we have utilized a simple type of segregating system, based on the 
number of traffic violations only without regard to the type of violation in- 
volved.’ In the concluding parts of this paper an analysis of this simple model 
is made and conclusions are drawn. As is there pointed out, this paper has as 
one of its prime intents, the introduction and utilization of certain approaches 
to the problem. While an extrapolation of some of these conclusions to the 
actual rating systems currently being introduced by the rating bureaus and others 
is made, this paper is by its nature preliminary. It is hoped that the near future 
will produce more extensive investigations. 

2. THE RATIONALE OF USING THE NEGATIVE BINOMIAL DISTRIBUTION 

Of those individuals who have no accidents during an experience period 
some will be persons with a high loss-causing propensity but have been “lucky”, 

1 For a description of the California study which constitutes the basic data for this paper, see 
Harwayne [ 11. 
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some will be persons with a very low propensity and have seen their “expec- 
tations” realized, and conversely. All this we know (or assume). The attempt 
is made here to unravel some of these threads and to gain a means of approach 
whereby some of the probabilities involved may be set forth. 

In discussions of the distributions of risks by number of accidents it has 
been traditional to base such discussions on the Poisson frequency function, 
P (x). That is, if we let n be a random variable (equal to the number of accidents) 
we have assumed that the probability that n = x, where x = 0, 1, . . . is given 
by 

P (x) = probability that iz equals x = (m” e-“)/x!. (2.1) 

In dealing with a given body of experience, the parameter m is set equal to the 
observed mean because in the Poisson distribution E (x) = m. 

A test of goodness of fit by use of the chi-square distribution will, however, 
often indicate a significant deviation. A much improved fit will often result by 
considering that n is distributed in accordance with the two parameter frequency 
function 

N (x) = probability that IZ equals x = (+-J (,‘) (+-J (2.2) 

wherex= 0, 1, . . 

This frequency function is known as the negative binomial distribution.* 
For this function E (x) = r/a and cr* = (r/a) [(a + 1)/a] as will be shown 
subsequently. In fitting observed data to equation (2.2), the observed mean and 
variance are set equal to r/a and (r/a) [(a + 1)/a] respectively, whence the 
parameters r and a can be determined by solving the two equations simulta- 
neously. Upon solving we get that r = m2/ (a* - m) and a = ml (02 - m). In 
actually using N (x) with a given body of data, it is usual to use the following 
expanded form in which the values are obtained when 

* See Appendix B for a comparison of the fit achieved by the use of the negative binomial and by 
the Poisson. The Chi-square test on the Poisson and the very good fit of the negative binomial was 
called to my attention by F. Harwayne. 
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is multiplied by the terms of the sequence 

{ 
1,- 

r(r-t 1) r(rf 1) (r+2) 
1 + a’ 2! (1 + a)*’ 3! (1 + a)3 I ’ . . . . 

That is, the probability that n = 0 is 

a r 
( ) 
- . 
1+a ’ 

and that n = 2 is 

The rationale of the applicability of N (x) to distributions by number of 
accidents results from the following considerations. If we assume that the 
parameter m in equation (2.1) is itself a (continuous) random variable with the 
frequency function T (m) then the probability that n takes on any given value x 
is 

I 

P 
P (x)T (m) dm. 

0 
(2.3) 

Without for the moment specifying the form of T (m), the introduction of a 
variable m can be interpreted as a way of accounting for the variation of risk 
among the members of a given population. That is, it is assumed that 

(a) the individual chances vary from one person to another but (for the 
given individual) remain constant throughout the experience period, and 

(b) these initial propensities are distributed in the population in a simple 
curve, T(m). 

The negative binomial, N (x) results from assigning to T (m) the specific 
form 

T (m) = 6 m r-1 eeam (a, r positive) (2.4) 

which is a Pearson Type III. The Type III curve is selected because of its skew 
form and because it leads to conveniently simple equations for fitting. It is also 
possible if a frequency is expressible by a Type III curve to express the chance 
of a variation within a given limit by utilizing Pearson’s Tables of the Incomplete 
Gamma Function. This enters into later considerations. The mathematics of 
these considerations is given in Appendix A. 



394 INDIVIDUAL DRIVING RECORDS 

3. THE EFFECT OF SEGREGATING BY DRIVING RECORD 

As indicated in the Introduction, we have dealt here only with a simple 
segregation by traffic violation; i . e . , we have used only the data appearing in 
the California Study. 

While the average accident involvement generally increases with increasing 
number of violations (see F. Harwayne, op. cit.) it does appear that for the 
groups with 5, 6, 7, 8 and 9 or more violations, the mean accident frequencies 
have become relatively stable. (The respective means are .557, .508, 502,545, 
and .656). 

The fact that the negative binomial fits the data for the total group indicates 
that there is a real spread, that is, a distribution, of the probability of having 
an accident. From the construction of the negative binomial we have seen that 
this distribution is describable by a Type III curve. 

Now it is clearly the function of a segregating system to split up the total 
heterogeneous group into homogeneous groups. The question is therefore raised 
as to whether or not, or to what degree, a segregating system based on traffic 
violations does split up the total group. If the system we are dealing with here 
accomplished this purpose totally, then the distributions by number of accidents 
of the individual groups should be describable by Poisson curves. Now if the 
variance of the separate groups were less than the Binomial variance,3 then 
Poisson curves would indeed be indicated. However, Appendix C shows that 
this is not the case. In every instance, the variance is greater than the Binomial 
variance. This would seem to indicate that the desired segregation was not 
achieved. 

We can, however, go further. Since a Poisson distribution is not indicated 
for the distributions by number of accidents, a negative binomial is indicated. 
But a negative binomial for the distribution by number of accidents is describable 
by a Type III curve. Now if we can picture these individual Type III curves, 
we can see in which groups, if any, the probability of having an accident is 
highly concentrated about the mean probability for that group. In other words, 
if we can determine what portion of the distribution is within stated deviations 
from the mean, then we can see how closely a given mean probability (of 
having an accident) approximates a constant probability and thus how closely 
the segregating system under consideration achieves its aim. 

3 The Binomial variance is equal to the product of the mean and the complement of the mean 
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The required areas (or rather portion of total area) under the various Type 
III curves can be determined through a utilization of Pearson’s Tables of the 
Incomplete Gamma Function. (See Appendix D for details.) Appendix E sets 
forth, by individual group, the portion of the distribution within stated deviations 
from a given mean probability of having an accident. The deviations utilized 
are plus and minus 20%, 30%, 40%, and 50%. 

4. REVIEW, SUMMARY AND CONCLUSIONS 

We have, in a certain sense, conceptually separated this paper into two 
parts. This was done in order to emphasize what to us seems to be the importance 
of the negative binomial distribution as a valuable instrument in its own right. 
It is our belief that this distribution can be an equally useful tool in attacking 
numerous other actuarial problems. It is also believed that many worthwhile 
results can flow from a utilization of the general approach illustrated by equation 
(2.3). This equation is typical of the general theory of processes random in time 
(stochastic processes) and we believe that this theory will come to be of partic- 
ular value to the actuary. 

It is also important to emphasize here that there are two distributions which 
enter into our considerations. On the one hand, there is the distribution of the 
probability of having an accident. On the other hand, there is the distribution 
of risks by number of accidents. If the first distribution is a constant, then the 
second is a Poisson. If the first is a Type III, then the second is a negative 
binomial. Since the two parameters of the negative binomial are also the two 
parameters of the component Type III we can use the sample mean and variance 
to determine them. From a knowledge of the values of these parameters we can 
determine the spread about the mean probability of having an accident. If there 
is little spread then the segregating system has performed its function. A review 
of the figures shown in Appendix E indicates that in no group was there a real 
concentration about the mean. Thus for the group with 1 violation only about 
25% of the group can be expected to lie within plus or minus 20% of the mean, 
62% can be expected to fall outside of an interval of plus or minus 30% of the 
mean, etc. Notice, too, that for the group having no violations, which represents 
58.7% of the total number of individuals in the study, only a little over 25% of 
the group can be expected to lie in an interval of plus and minus 40% of the 
mean. 

It is also very instructive to look at the question of overlapping. We see that 
about 25% of each of the groups having 1, 2, 3 or 4 violations can be expected 
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to have a probability of having an accident greater than or equal to the mean 
probability for the succeeding group. As examples: The mean probability in 
group 3 is .354; the portion of group 2 having a probability of .356 (= 1.3 
times the mean of group 2) or more is .25 (= 1 - .75). The mean probability 
in group 5 is .553; the portion of group 4 having a probability of .554 (= 1.3 
times the mean of group 4) or more is .26 (= 1 - .74). 

There is, in addition, considerable overlapping in the other direction. Thus, 
for example, the mean probability in Group 1 is .194; the portion of Group 2 
having a probability of .192 (= .7 times the mean of group 2), or less is .36. 
For Group 2, therefore, about 60% of the group may be expected to have a 
probability of having an accident which is either less than the mean of the 
preceding group or greater than that of the following group. Similar figures 
obtain for other groups. 

If, in asking these questions we were to think of an interval about the means 
of the preceding and following groups, the amount of overlapping would of 
course be greater. 

Having now performed these calculations, what are our conclusions? We 
are, it would seem, to conclude that the segregating system here considered 
does not function to effectively separate the total into groups sufficiently ho- 
mogeneous to merit modifications of the rate. 

We may well expect, a priori, that a segregating system which is based on 
only certain violations rather than all violations, that introduces a weighting 
process for these violations and that includes accident record as well as violation 
record, will produce a separation into groups more homogeneous than we have 
seen here. We must, however, also note that the use of 2 years’ experience 
instead of the 3 years which form the data for this study, will act to decrease 
whatever sharpness of separation the foregoing will presumably introduce. 

While it is dangerous to extrapolate, it would appear from the results 
presented in this paper that two conclusions of general application may be 
drawn. These are that: 

(a) after a certain point an increase in the number of violations does not 
contribute proportionately to an increase in the average number of ac- 
cidents; and, 

(b) the effect of segregating according to driving record is less effective 
than might be heretofore thought. 
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It is clear that the general area with which this paper is concerned is of 
current importance and is obviously a fertile field for many future papers. 
Presentations dealing with models more closely approximating the actual rating 
systems in use and with utilizations of the negative binomial distribution in 
other areas are earnestly to be desired. 
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APPENDIX A 

Mathematics of the Negative Binomial 

We display here the mathematics of the considerations set forth in the first 
part of the paper. By substituting in equation (2.3) the specific forms P(x) and 
T(m) given by equations (2.1) and (2.4), we derive therefrom the equation for 
N(x) given by equation (2.2). Following this, we show that: 

(b) E(x) = r/a, 

(c) E(x’) = 2 (” ’ 1 ’ ‘) and that therefore, 

(d) a* = E(x*) - [E(x)]~ = ; (+) . 

Derivation of N(x) 

From equation (2.1), P(x) = (m” e-“)/x! and from equation (2.4), 
T(m) = (a’m’-‘e-“” )/r(r) we are to derive N(x). We proceed as follows: 

r-le-am 
l?(r) dm 

(x+r-I) e -m(l+a) dm 

a’ (x + r - l)! =- 
x! T(r) (1 + a)x+r 

[see Pierce #493] 

a r ( ) 1 (x + r - l)! - ~ 
= l+a (l+a)* x! T(r) 
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Now, since the last factor in this equation can be transformed as follows: 

(x + r - l)! = (r + x - l)! r(r + 1) . . . (r + x - 1) 
x! r(r) x!(r - l)! = I x. 

= (-r)[-(r + l)J[-(r + 2)] . [-(r + x - 1)1(-l)” 
x! 

= C-1)” (y) , 
we have that 

which is equation (2.2): 

NC4 = (&)’ (-:> (2)‘. 

From this it immediately follows that 

z. N(x) = (&)’ (I- &J’ = (+-jr (+J = 1. 

Derivation #E(x), E(x2) and IT* 

By definition, E(x) = c x N(x), whence 
x=0 

E(x) = x x N(x) = 0 + 2 x N(x) 
x=0 .X=, 

= (+J (&) (1 -+-)-(r+l) 

= (A-)’ (-2-J (&)-“+” = & (-2-J = I. 
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Similarly, from E(x’) = Xx2 N(x) and a2 = E(x2) - [E(x)]*, we have 

E(x2) = t: x2 N(x) = 0 + x=0 ii%)’ (ik) + z2 x2N(x)- 
By writing [x(x - 1) + x] for x2, we get 

E(X2) = (i%J ki) + 2 x(x - l)N(x) + x x N(x). 
x=* x=2 

But, since x x N(x) = r/a, it follows that 
.X=1 

XT2 x N(x) = rla - 
(id’ (id . 

Accordingly, 

E(x2)=i+ Xx(x- 1) 
x=2 KkJ’ C-3 EJ 

=- ;+x A- ( > 
r r(r + 1) 

x=2 1 + a (1 

2, a 
( 1 

7Y(?-+1) 1 
a 1 + a (1 + a)2 ( 

(-(; ” 22)) (-A-J2 

1 
) 

-(r+2) 
-- 

1+a 

From this it immediately follows that 

02=1: a+f-fl) 

( > - (3 

2 r 
a a a 

r a+1 (g=- - 
a ( > a ’ 
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APPENDIX B 

COMPARISON OF FIT BY POISSON AND NEGATIVE BINOMIAL FOR TOTAL GROUP 

Observed Freq. Theoretical Frequency 

Number of 
Accidents 

0 
1 
2 
3 
4 
5 or more 

No. % - - 

81714 86.07 
11306 11.91 

1618 1.71 
250 .26 
40 .04 

7 .Ol 
94935 

Mean = .163 2- G- 

Negative Binomial Poisson 

No. % No. % 

81726 86.086 80655 84.959 
11273 11.874 13147 13.848 

1647 1.735 1072 1.129 
245 .258 58 .061 

37 .039 3 .003 
7 .008 - - 
94935 94935 

193 Binomial Variance = .136 . 

For fitting the neg. binomial: r = .8927; a = 5.472; & = .8455 

For fitting the Poisson: e-.163 = .84959. 



Group (Violations) Mean Variance 
Binomial 
Variance4 

0 .087 .096 .079 
1 .194 .207 .156 
2 .274 .299 .199 
3 .354 .395 .229 
4 .426 .501 .245 
5 or more .553 .610 .247 
Total .163 .193 .136 
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APPENDIX C 

4 Equals the product of the mean and its complement. 
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APPENDIX D 

The determination of the ratios of yb T(m)dm to j-0” T(m)& with r(m) as 
defined in equation (2.4), is accomplished by utilizing the Tables of the Incom- 
plete Gamma Function prepared under the direction of Karl Pearson in 1922. 

The complete gamma function r(p + 1) is defined as Jte-“x”dx while the 
incomplete gamma function r,(p + 1) is defined as roe-Y&. If Z&p) denotes 
the ratio of the incomplete to the complete gamma function, then Z(x,p) gives 
the portion of the curve to the left of x. However, Z(x,p) has not been published. 
Instead, a variable u = x/m is used and it is these equivalent tables of 
Z(u,p) which were prepared by Pearson. That is 

I 

uv$GT 
Ye-“dv 

0 
e&P) = 

v pe- “dv 

In order to use the tabulated values of Z(u,p) it is necessary to proceed as 
follows: 

We first recall that JgT(m)dm = 1 so that we are looking for values of 
JiT(m)dm and recall that 

T(m)dm = 
I 

’ arm r- le--am 

0 T(r) dm. 

NOW let v = am SO that m = a-‘v and dm = a-‘dv. The integral thus becomes 

i 

or 
V r-le-v 

0 l-(r) dv- 

Now let p = r-l ; we then have 

I 

a* P -v 

o r-k”+ 1) dv. 
But this is precisely Z(u,p) with at = u m from this we get that 

u = at/ $Y7 = ati fi 

Since we know a and r from the data for a given t we have the values of u and 
p with which to enter the tables. One could for example determine values with 
t = mean, mean * 5%, mean -+ lO%, mean * 20%, etc. 
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APPENDIX E 

When the procedures indicated in Appendix D are carried out, for values of 
t = 50%, 70%, 80%, 120%, 130%, 140% and 150% of the mean, separately 
for each individual group, the following results are obtained: 

PORTION OF CURVE WITHIN INTERVAL SHOWN FOR GROUP SHOWN 

Group (Violations) 

Interval 

0 to .5x 
0 to .6Z 
0 to .7z 
0 to .8X 
0 to l.E 
0 to 1.32 
0 to 1.4? 
0 to 1.5x 

0 - 1 - 2 - 3 - 4 - 

.45 .18 .20 .19 .23 

.50 .25 .28 .27 .31 

.54 .32 .36 .35 .39 

.59 .40 .43 .43 .46 

.71 .65 .70 .70 .70 

.73 .70 .75 .75 .74 

.76 .74 .79 .79 .78 

.78 .78 .83 .83 .81 

5 or 
more 

.lO 

.17 

.26 

.36 

.72 

.78 

.83 

.88 

.5x to 1.5x .33 .60 .63 .64 .58 .78 

.6T to 1.4? .26 .49 .51 .52 .47 .66 

.7? to 1.3K .19 .38 .39 .40 .35 .52 

.8: to l.E .12 .25 .27 .27 .24 .36 



406 INDIVIDUAL DRIVING RECORDS 

DISCUSSION BY ROBERT A. BAILEY 

REPRINTED FROM VOLUME XLVII 

As Mr. R. E. Beard, secretary and editor of ASTIN, said,’ 

“The literature in the English language relating to analytical expressions of the 
risks involved in general insurance is scanty and largely limited to papers 
presented to International Congresses of Actuaries and the Proceedings of the 
Casualty Actuarial Society. There are, however, a number of contributions to 
the subject in various other languages, scattered over various journals, mainly, 
insurance publications of European countries, e.g. Skandinavisk Aktuarietidskrift 
and a few books.” 

The C.A.S. can rightfully be proud of its contributions in this field which have 
been ably enhanced by Mr. Dropkin’s treatment of the negative binomial dis- 
tribution. 

The analytical expression of risk distributions provides a valuable insight 
into many practical problems. One of the important results of Mr. Dropkin’s 
paper is a realization of the large amount of variation among individual risks. 
Automobile risks even within a single class or merit rating group are far from 
being all alike. In order to help visualize this variation, there are shown in 
Figure 1 the graphs of the distribution of risks which Mr. Dropkin shows to be 
inherent in the negative binomial distribution. Four graphs are shown, all 

for an average accident frequency I= . 100, and with variances of the accident 

frequency (not the variances of m, the inherent hazard) of .120(r = &), 
. llO(r = l), .105(r = 2) and .lOl(r = 10). 

One of the many practical applications to which Mr. Dropkin’s development 
can be applied is the calculation of the discount for n accident-free years. This 
application was suggested to the writer by Mr. Dropkin’s paper because it 
provided a means of deriving mathematically what had been derived empirically 
in the paper presented at the same time as Mr. Dropkin’s, “An Actuarial Note 
on the Credibility of Experience of a Single Private Passenger Car,” since the 
discount from the overall average rate for IE accident-free years is equal to the 
“credibility” as defined in the paper just cited. 

The chance that any individual risk with inherent hazard (m) will be acci- 
dent-free for 1 year is e-“’ where e --m is the value of the Poisson distribution 

’ Transactions of the XVth International Congress of Actuaries, Volume II, 1957, p. 230. 
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FIGURE 1 

-nl- 

x --m 

P(k) = y when x = 0. Mr. Dropkin shows that the total distribution of 

individual risks can be described by the distribution 
r 

r-l --am T(m) = $ m e . 

Therefore, the distribution of risks with 1 or more accident-free years is 

Tl(m) = 
T(m)e-” 

St T(m)e-“dm = 
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Likewise the distribution of risks with 2 or more accident-free years is 

T(m)e-2m . 

This provides us a means of immediately calculating the expected claim fre- 
quency of claim-free risks. Mr. Dropkin shows that the claim frequency for all 
risks = E(x) 

arm ‘-‘e-““dm 
J3) 

r =-. 
a 

Therefore, the claim frequency for risks with 1 or more accident-free years 

r CT- 
afl’ 

Similarly, the expected claim frequency for risks with 2 or more accident-free 

years is 5 , 
r 

and for 3 or more accident-free years is - 
a+3’ 

and so on. 

Therefore, the expected claim frequency for risks accident-free for it or more 
years relative to the expected claim frequency for all risks, assuming that the 
inherent hazard (m) for each individual risk remains unchanged from one year 

a 
to the next, is - 

a+n 
and the corresponding discount from the average rate is 

&. This is the same as saying that these risks are & better than 

average. 

The expression & is equal to the “credibility” of risks accident-free for 

n or more years, as defined in the paper cited above, and it is the same result 
obtained independently by Dr. F. Bichsel, in a paper entitled “Une methode 
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pour calculer une ristome adequate pour annees sans sinistres” (A method of 
calculating an adequate no-claim bonus for years without accidents) presented 
at the ASTIN Colloquy in La Baule, France, in June, 1959. Furthermore, if 
this expression for the credibility of the experience of an individual risk for IZ 
yeas, 

is multiplied in the numerator and denominator by the premium for one car 
year, it becomes 

Z-L.- 
PfK’ 

where P is the premium during the experience period and where K is a constant 
which equals the parameter a multiplied by the premium for one car year. This 
is the credibility formula derived by Mr. A. W. Whitney in “The Theory of 
Experience Rating,” PCAS, Vol. IV, and used ever since in almost all experience 
rating plans. 

Another application which Mr. Dropkin’s development suggested is a com- 
parison of the variation of hazard among licensed drivers and among licensed 
automobiles. In Appendix B, Mr. Dropkin fits the negative binomial to the total 
distribution of California drivers and obtains r = .8927. From the graphs shown 
in Figure 1 and also from an analysis of the formula for T(m) it can be seen 
that when 0 < r 5 1, T(m) is a “J” shaped curve with a maximum height at 
m = 0. (T(m), it should be remembered, is the distribution of the inherent 
hazard of the individual drivers and is to be distinguished from N(X), the 
distribution of the resulting accidents.) It is reasonable that the California data 
should be described by a “J” shaped curve since some drivers licensed in 
California do not drive in California for a number of reasons, such as they do 
not have a car or they live outside the state. Since such licensed drivers will 
have an inherent hazard m = 0, a “J” shaped curve is a reasonable distribution 
of hazard for licensed drivers. On the other hand, however, the distribution of 
hazard for licensed automobiles should not be a “J” shaped curve, since prac- 
tically no automobiles have a hazard m = 0 and therefore for the distribution 
of hazard for licensed automobiles, Y should be greater than 1. 

This proposition can be tested by using the Canadian merit rating experience 
for insured automobiles. By setting the one-year credibility for Class 1 cars of 
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.055’ equal to the expression derived above for the one-year credibility, 

1 
- we obtain a = 17.2. Since the average frequency for 
a + 1’ 

Class 1 = .087 = i , we obtain r = 1.50 which is greater than 1 as we would 

expect. From this we can draw the conclusion that there is more variation of 
hazard among drivers than among cars. 

There are undoubtedly many other applications which can be made of Mr. 
Dropkin’s work and we are fortunate to have a development of the negative 
binomial distribution in the Proceedings, especially at this time when merit 
rating is of such great concern. We are entering a time of great competitive 
effort in the search for more accurate classification systems, not only in private 
passenger automobile insurance but in other lines as well, as Mr. Pruitt pointed 
out so forcefully last November in his presidential address, “St. Vitus’s Dance.” 
The negative binomial distribution, which has also been called the “accident 
proneness” distribution, provides a valuable tool for that search. 

2 R. A. Bailey and L. J. Simon, “An Actuarial Note on the Credibility of Experience of a Single 
Private Passenger Car,” PCAS XLVI, Table 4, p. 163. 
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DISCUSSION BY SHOLOM FELDBLUM 

Actuaries have generally used the Poisson distribution to model accident 
frequencies for “repeatable” risks-that is, where more than one accident is 
possible in an exposure period. The reasons for this are both theoretical and 
practical. Theoretically, if the following conditions are true, then the Poisson 
distribution is indicated: 

1. The probability of exactly one accident in an infinitesimal unit of time 
dt is approximately equal to k dt, where k is a constant, during any 
interval of time in the exposure period. 

2. The probability of more than one accident in an infinitesimal unit of time 
is negligible compared to the probability of exactly one accident. 

3. The distribution is “memoryless”; that is, the numbers of accidents in 
distinct intervals of time are independent. 

Practically, the Poisson distribution is mathematically convenient in numer- 
ous ways: 

1. The mean and variance of the Poisson distribution are equal, so the 
variance may be estimated along with the mean from a simple averaging 
of raw results. 

2. Since the mean and variance are equal, their ratio is unity, a known 
constant. This makes “classical pure premium credibility” easier to cal- 
culate, as discussed by Mayerson, Jones, and Bowers [l]. 

3. The Poisson distribution is conjugate to the gamma, a distribution both 
convenient and realistic for modeling the mean accident frequency among 
individuals in a population. This makes Bayesian estimation of future 
mean accident frequency distributions particularly convenient. 

4. The Poisson claim frequency distribution can be combined with a claim 
size distribution to form a “compound Poisson” aggregate claim distri- 
bution. The compound Poisson distribution has advantages over other 
compound distributions. For instance, if the claim size distribution is 
discrete (or can be realistically modeled by a discrete distribution), the 
aggregate claim distribution can be determined by a recursive procedure, 
which facilitates the mathematics of determining this distribution [2]. 

Lester Dropkin’s paper complicates this simplified Poisson world [3]. He 
points out that if the accident frequency is Poisson distributed for each individual 
in a population, but the mean accident frequencies vary by individual, then the 
accident frequency for the population as a whole is no longer Poisson distributed. 
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In particular, if the mean accident frequencies among individuals are gamma 
distributed, and the accident frequency for each individual is Poisson distributed, 
then the accident frequency for the population as a whole has a negative binomial 
distribution. 

For the Poisson frequency, the mean and variance are equal. For the negative 
binomial, the variance is always greater than the mean. Using Dropkin’s nota- 
tion, the mean of the negative binomial is r/a, while the variance is r (a + 1)/a*. 
(In this notation, r is the scale parameter and a is the shape parameter of the 
underlying gamma distribution.) 

This analysis shows that the wider the dispersion of mean accident frequen- 
cies among individuals, the greater the variance of the total population accident 
frequency. For instance, suppose that the mean accident frequency for the 
population as a whole is 1; that is, r = a. For the underlying gamma distribution, 
the mean is air and the variance is air’; thus, the ratio of the variance to the 
square of the mean is l/u. That is, as a decreases, the values are more widely 
dispersed relative to the mean, and as a increases, the values are more closely 
situated to each other. By examining the variance of the negative binomial 
distribution, we note that as a decreases, the variance of the population accident 
frequency increases, and vice versa as a increases. 

Surprisingly, this result is not generally true. In life insurance, the accident 
frequency is generally modeled as a Bernoulli random variable, since at most 
one claim is possible per individual per exposure period. The mean death rate 
of the population, that is, the parameter of the Bernoulli random variable, may 
be determined from actual data by dividing the number who die at a given age 
by the number exposed in the population at that age. For example, if there are 
1,000 individuals at age 50 in the population, and 20 individuals die at age 50, 
then the mean death rate at age 50 is 2%.’ 

Using the actual data, we hypothesize that the mean death rate is 2%. 
Assuming also that the death rate is 2% for each individual, the variance of the 
death rate for each individual is (0.02) (0.98) = 0.0196. The variance of the 
estimate of the mean death rate is (0.02) (0.98)/1000 = 0.0000196. 

After reading Dropkin’s analysis, one may question this: since the individual 
death rates vary about 2%, and only average to 2% for the population as a 
whole, should not the population variance differ from 0.0196? Should it not be 

’ To be exact, we should assume that there is no migration; i.e., there are no new entrants or 
withdrawals at age 50. Thus, there were 1,000 individuals who attained age 50; 20 of these died 
during the course of the year; and 980 individuals attained age 5 I 



INDIVIDUAL DRIVING RECORDS 413 

similar to the Poisson case, where if the population mean accident rate is 2%, 
but the individual mean accident rates vary about 2%, the population variance 
is greater than 2%? 

The answer is no, as can be seen by a simple example, as well as by a more 
formal mathematical proof. Suppose there are two individuals, with a mean 
population death rate of 50%. Assume two cases: 

1. Each individual has a death rate of 50%. 
2. One individual has a death rate of 75%, and the other individual has a 

death rate of 25%. 

For each case we determine the first two moments for each individual, the 
moments of the “mixture” distribution, and the variance of the “mixture” dis- 
tribution. 

1. Each individual has a death rate of 50%. For each individual, both the 
first and second moments are 0.50, and so the first and second moments 
of the mixture distribution are also 0.50. Therefore the variance of the 
mixture distribution is 0.50 - (0.50) (0.50) = 0.25. 

2. One individual has a death rate of 75%, and the other individual has a 
death rate of 25%. For the first individual, the first and second moments 
are 0.75$ while for the second individual, they are 0.25. Therefore, the 
first and second moments of the mixture distribution are 0.50, and the 
variance is 0.25. 

The general proof follows the same reasoning. Suppose each individual has 
a mean death rate of pi, and over the population as a whole these average to 
m. Then the second moments for each individual are also pi, and over the 
population as a whole these also average to m. Therefore, the variance of the 
population mean death rate is m (1 - m). 

The Bernoulli distribution allows only one occurrence, while the Poisson 
distribution has no limit on the number of occurrences. What if the number of 
possible occurrences is finite but is greater than one, such as with the binomial 
distribution?* 

’ The following result for the binomial distribution was shown to me by Dr. Rodney Kreps, an 
actuary at Fireman’s Fund Insurance Companies. 
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Theorem: Suppose the accident frequency is modeled by a binomial distribution 
with parameters pi and n, i.e., 

“f(x) = (:) pr (1 - p;)‘i-X 

Further, suppose n is fixed for all individuals in the population, but pi varies 
according to a p.d.f. g(p), which has mean m and variance 3’. For each 
individual, the mean is n pi, and the variance is n pi (1 - pi). For the population 
as a whole, the mean is n m, and the variance is n m (1 - m) + s2 n (n - 1). 

Proof: For each individual, the mean is n pi, and the second moment is n pi - 
n pz2 + n2 pi*. 

Therefore, the mean for the population is 

i 

I 
(n P) g(p) dp = n m. 

0 

The second moment for the population is 

i 
o’ (n p - n p2 + n2 P’) g(p) dp 

= n m - n SM + n2 SM (where SA4 is the second moment of g(p)) 
= n m + n (n - 1) (Sk2 - m2) - n (n - 1) m2 

Subtracting the square of the mean, we get 
= n m (1 - m) + n (n - 1) s2, which is the desired result. 

Thus, the more that the number of possible occurrences for each individual 
(n) increases, the more the variance for the population as a whole depends upon 
the variance of g(p). 

A useful application of this result is in Bayesian estimation. Generally, in 
performing a Bayesian estimation, the accident frequency is chosen as Poisson 
or binomial, and the prior distribution as gamma or beta. However, the problem 
of selecting the parameters of the prior distribution can be serious, and the 
choice of these parameters will influence the resultant posterior distribution [4]. 

The above result provides a method of selecting parameters. Suppose the 
binomial distribution is chosen for accident frequency, with a given n. Then if 
the population mean is II, the mean of the prior distribution of the pi is 
u/n = m. Similarly, if the variance of observed results is VXR, the variance of 
the prior distribution of the pi is 
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s2 = (VAR - n m (1 - m)) / (n (n - 1)). 

Given these values of m and s*, the two parameters of the prior beta distribution 
are easily determined. 

This discussion may help clarify two apparently misleading items in Drop- 
kin’s paper. First, Dropkin’s criterion for choosing whether to model accident 
frequency by a Poisson or negative binomial distribution is the observed relation 
of the population variance to the population mean. If the population variance is 
approximately equal to the binomial variance, i.e., p (1 - p), where p is the 
population mean, then use a Poisson distribution; if it is significantly larger, 
then use a negative binomial distribution. 

Presumably, this criterion should be, “If the population variance is approx- 
imately equal to the Poisson variance, i.e., p, where p is also the population 
mean, then use a Poisson distribution .” Dropkin’s statement at first seems 
logical if he is referring to the probability of having one or more accidents, 
rather than to the number of accidents per exposure unit. But then the accident 
frequency is a Bernoulli distribution, and the population variance will be inde- 
pendent of the underlying distribution of mean accident frequencies. 

Second, Dropkin implies that the only choices for modeling the accident 
frequency are the Poisson and the negative binomial. He shows that his data 
has a variance and mean incompatible with the Poisson distribution, and he 
concludes: 

We can, however, go further. Since a Poisson distribution is not indicated for 
the distributions by number of accidents, a negative binomial is indicated [3]. 

This is hardly so. His actual data only indicates that the Poisson distribution 
does not provide a perfect fit. It in no way indicates that a negative binomial 
distribution is better than other two-parameter distributions. The negative bi- 
nomial distribution is only “indicated” if one assumes that each individual has 
a Poisson accident frequency and the mean accident frequencies among individ- 
uals are gamma distributed. One may test this by calculating the third moment 
of the observations and comparing it to the hypothetical third moment of the 
negative binomial distribution; unfortunately, Dropkin does not do this.3 

3 George Phillips, an actuary with the Transamerica Corporation, has recommended to me that use 
of other statistical methods, such as percentile matching, may give better results than examination 
of the third moment. 
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Other users of Dropkin’s results have adopted this reasoning, such as May- 
erson, et al., in “On the Credibility of the Pure Premium” [l] (though since the 
authors’ purposes there are heuristic and not intended for practical applications, 
one can hardly fault them). They take the first two moments from Dropkin’s 
accident frequency distribution, assume that it can be modeled by a negative 
binomial distribution, and calculate the third moment. But until one compares 
the derived third moment with the observed third moment, there is no evidence 
that the negative binomial provides an appropriate model. (I must reiterate, 
though, that the purpose of this paper is only to show how to apply a theory, 
not to provide firm credibility tables, and for such heuristic purposes, the 
assumptions are entirely plausible.) 

To sum up: the Poisson distribution is a theoretically appealing model for 
accident frequencies for each individual. The accident frequency distribution 
for the population as a whole will depend upon the distribution of mean accident 
frequencies among the individuals in the population. The negative binomial 
distribution for the population accident frequency is indicated only if the indi- 
vidual mean accident frequencies are gamma distributed. The form of the mean 
accident frequency distribution may depend upon the line of insurance, class of 
risk, and so forth; in any case, there is no easy way to test it. Rather, one may 
test the first three (or more) moments of the observed results. In Dropkin’s 
case, the first two moments provide the parameters of the negative binomial 
distribution as well as of the underlying gamma distribution. The observed third 
moment would then test whether the negative binomial provides an appropriate 
model. If not, a different two parameter population accident frequency distri- 
bution may be assumed. If the individual accident frequencies are Poisson 
distributed, this implies an underlying distribution of mean accident frequencies 
among individuals that is not gamma. Once more, the observed third moment 
can test whether this population accident frequency model is appropriate. 

Of course, the more complex the distribution chosen, the better it may agree 
with observed results, but the less mathematically tractable it may be-and a 
mathematically intractable model is hardly useful. A great advantage of the 
Poisson distribution is its simplicity; the negative binomial distribution is also 
quite versatile. Nevertheless, there is a need to test the hypothetical models, to 
strike a balance between simplicity and accuracy. 
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DISCUSSION BY STEPHEN W. PHILBRICK 

Mr. Dropkin’s paper consists of two parts. The first is a discussion of the 
“importance of the negative binomial distribution as a valuable instrument in 
its own right.” Second, this tool is used to comment on the use of the number 
of traffic violations to “split up the total heterogeneous group into homogeneous 
groups.” 

-The author succeeds admirably in his first endeavor. A concise explanation 
of the rationale for the use of the negative binomial distribution is given. The 
arguments are intuitively appealing, since the choice of a Poisson distribution 
for an individual risk is desirable, and the notion that the parameters for the 
individuals vary from person to person is certainly more reasonable than the 
assumption that all drivers have identical accident propensities. The author is 
also to be commended for the algorithm for the calculation of the probabilities 
of N(x), which is much more convenient than evaluating the traditional formula. 

The second section contains some problems. The author concludes, “the 
fact that the negative binomial fits the data for the total group indicates that 
there is a real spread, that is, a distribution, of the probability of having an 
accident.” Unfortunately, this conclusion cannot be supported by this argument. 
To demonstrate this, I randomly sampled from a Poisson distribution and at- 
tempted to fit both a Poisson and a negative binomial to the sample data. A 
Poisson distribution would have absolutely no “spread” of the parameter since 
the parameter is a fixed constant. The distribution of the parameter should not 
be confused with the distribution of the number of accidents. As Dropkin 
correctly points out, “It is important to emphasize here that there are two 
distributions which enter into our considerations. On the one hand, there is the 
distribution of the probability of having an accident. On the other hand, there 
is the distribution of risks by number of accidents. If the first distribution is a 
constant, then the second is a Poisson.” 

The example in Table 1 shows the result of 10,000 trials from a Poisson 
distribution with the parameter of .274. The parameter value was selected to 
equal the mean of the group with two violations. The sample mean and variance 
are shown, as well as the values of a and r as calculated by Dropkin’s formulas. 
Comparison of the actual results with the expected results of a Poisson indicates 
a reasonably good fit (as expected), which is further corroborated by calculating 
the chi-square statistic and noting that it is significant at the 5% level. Note, 
however, that the negative binomial provides an even better fit. This should not 
be completely surprising, since the negative binomial is a two-parameter distri- 
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bution and, more importantly, the Poisson can be thought of as the “limit” of a 
negative binomial. (Let a and r go to infinity such that r/a remains constant, 
and the result is a Poisson with parameter r/a.) This concept is given added 
intuitive appeal by examining the formula for a; the denominator is (02 - M) 
whose expected value is zero. Hence, calculations of the parameter a for samples 
from a Poisson would be expected to produce large values, which is borne out 
by observation. 

TABLE 1 

FIXED VALUE OF M 

Expected Mean .274 
Number of Trials 10,000 

Sample Mean .2749 
Sample Variance .2801 
Sample a 52.5622 
Sample r 14.4494 

Number of 
Claims Actual 

0 7613 
1 2061 
2 296 
3 24 

4 or more 6 

Poisson Chi-square 9.75 

Negative Binomial Chi-square 5.58 

Expected Expected 
Poisson Negative Binomial 

7603.32 7616.12 
2083.31 2054.58 

285.41 296.31 
26.07 30.33 

1.89 2.65 

Therefore, we see that a good fit of a negative binomial does not imply a 
real spread of the parameter, since a good fit is expected when there is no 
spread. 

It should not be inferred that I disagree that there is a real spread of the 
parameter. I merely disagree with his proof. Indeed, the sample variance of 
.193 is too much larger than the mean of .163 to be accounted for by process 
variance. * 

1 This could be shown mathematically, but my statement is made upon empirical observations. A 
sample of 95,000 trials from a Poisson distribution with a mean of. 163 produced variances generally 
no more than ,002 higher than the mean. 
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He next suggests that “the function of a segregating system is to split the 
total heterogeneous group into homogeneous groups.” I generally agree with 
this except I would prefer to replace “homogeneous” with “more homogeneous.” 

He states, “If the system we are dealing with here accomplished this purpose 
totally, then the distributions by number of accidents of the individual groups 
should be describable by Poisson curves.” This statement is too strong. He has 
hypothesized that the accident propensities are describable by a Type III curve, 
which is continuous. He proposed to partition this curve into six discrete groups 
and measure the results against a standard (the Poisson) which requires that 
each group have a single-valued accident propensity. This is clearly impossible 
with a discrete partitioning. I would prefer that he would test to see if the result 
were closer to a Poisson curve. 

His test is to compare the sample variance to the binomial variance. I am 
at a loss as to the reasoning behind this. If the results were Poisson, I would 
expect the variance to be close to the mean, not to the binomial variance which 
is always less than the mean. 

He then concludes, “since a Poisson distribution is not indicated for the 
distributions by number of accidents, a negative binomial is indicated.” This 
statement does not follow at all. This statement is equivalent to the following 
reasoning: “I have shown that the total group is negative binomial. This means 
that the distribution of parameters, T(m), is describable by a Type III curve. 
The segregating system can be thought of as assigning individuals, hence their 
particular parameter, to various groups. Define T;(m) as the resulting distribution 
of m for the ith group. If the distribution of accidents for each group is Poisson, 
then the associated Ti(m) is a constant. If the distribution is not Poisson, then 
the associated T,(m) is Type III.” It should be clear that this is not true. Even 
if one accepts that the distribution of parameters of the total group is Type III, 
it is unreasonable to assume that the only possible partitions of T(m) into T,(m) 
are either constants or Type III curves. This error is serious, since he uses it to 
draw conclusions about the overlap of parameter between groups. 

He has made two errors of implication: 

1. If the underlying Ti(m) are not constants, they must be Type III. (This 
is equivalent to the statement that if the accident distributions are not 
Poisson, they must be negative binomial.) 

If we could analyze the actual distribution of accidents within each group 
and find that, indeed, it is closely fit by a negative binomial, then the 
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above problem would be moot. But he still could not draw his conclu- 
sions. To see this, we have to examine the second (and most critical) 
error of implication. 

2. If a distribution is closely fit by a negative binomial, then the distribution 
of parameters, T(m), is closely fit by a Type III curve. Furthermore, the 
parameters of the Type III curve can be estimated from the mean and 
variance of the accident distribution. 

This is basically a sensitivity question. How sensitive is the resulting distri- 
bution to the form of T(m)? How “close” to a Type III must T(m) be to cause 
the accident distribution to be “close” to a negative binomial? The fact is that 
many reasonable forms of T(m) other than a Type III curve will produce a 
distribution which is fit very well by a negative binomial. Table 2 shows the 
result of 10,000 trials from a Poisson distribution whose parameter is uniformly 
distributed between .194 and .354 (hence, has mean .274). Notice that the 
result is fit quite well by a negative binomial. 

TABLE 2 

M IS UNIFORMLY DISTRIBUTED OVER (. 194, .354) 

Expected Mean .274 
Number of Trials 10,000 

Sample Mean .2667 Poisson Chi-square 10.71 
Sample Variance .2776 
Sample a 24.5329 Negative Binomial Chi-square .23 
Sample Y 6.5429 

Number of 
Claims 

0 
1 
2 
3 

4 or more 

Actual 

7698 
1978 
287 

33 
4 

Expected Expected 
Poisson Negative Binomial 

7603.32 7699.67 
2083.31 1973.08 

285.41 291.44 
26.07 32.50 

1.89 3.31 
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Table 3 is another example where the parameter could take on the value 
.184 or .364 with equal probability. Again, the negative binomial fits well. 

TABLE 3 

M HAS EQUAL PROBABILITY OF BEING .184 OR .364 

Expected Mean .274 
Number of Trials 10,000 

Sample Mean .2690 Poisson Chi-square 4.57 
Sample Variance .2806 
Sample a 23.1120 Negative Binomial Chi-square 2.60 
Sample r 6.2171 

Number of 
Claims 

0 
1 
2 
3 

Actual 

767 
203 

24 
6 

Expected Expected 
Poisson Negative Binomial 

760.33 768.48 
208.33 198.15 

28.54 29.65 
2.80 3.72 

These examples were not chosen arbitrarily. Note that in the example used 
in Table 2, there is no overlap as defined by Dropkin, i.e., no value of the 
parameter falls outside the mean of the neighboring groups. On the other hand, 
also in the example in Table 2, the possible values of the parameter are always 
outside the means of the neighboring groups. Hence, the conclusions he reaches 
concerning overlap are not well-founded. 

Let me reemphasize: Although the form of the distribution of T(m) needs to 
be Type III for the negative binomial to follow, a distribution of T(m) which is 
significantly different from Type III will produce an accident distribution which 
can be fit very closely by a negative binomial. Hence, it is improper to conclude 
that a good fit of a negative binomial necessarily implies that the underlying 
T(m) is Type III. 



INDIVIDUAL DRIVING RECORDS 423 

This result is certainly unfortunate, particularly with the recent furor over 
classifications. To my knowledge, the questions of overlap are currently unre- 
solved, since the true accident propensities are unknown and only the resulting 
accident distributions are known. For a particular individual, the expected 
frequency is so low that process variance overpowers the information contained 
in the results. Dropkin’s paper provides a novel approach to the problem. His 
approach, in brief, is to observe the distribution of accidents and, together with 
an assumed knowledge of the accident producing process, make inferences 
about the underlying distribution of accident propensities. The concept is theo- 
retically sound; unfortunately, the low sensitivity of the resulting distribution to 
the form of T(m) makes it impossible to draw meaningful conclusions about 
T(m). The approach, however, should not be quickly discarded. Is there another 
way of looking at our data? Can we find some function of our data that is 
dependent on the form of the distribution of the accident propensities and is 
highly sensitive to the form? If so, then we could draw valid conclusions about 
accident propensities. 

In conclusion, this paper has given an excellent discussion of the propensities 
of the negative binomial, and an interesting approach to the solution of a knotty 
problem, although this specific application of the approach was less than con- 
clusive. 
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DISCUSSION BY CHRIS SVENDSGAARD 

Abstract 

When the chi-square test is .used in the manner suggested by Mr. 
Dropkin, the hypothesis tested is that all insureds have the same Poisson 
frequency distribution (with identical means). Rejection of the hypothesis 
does not necessarily imply a non-Poisson frequency distribution, if in- 
dividual insureds have d$erent mean frequencies. 

The “Binomial Variance” test suggested by Mr. Dropkin is invalid. 

The author grarefull,: acknowledges the suggestions for improvements to this discussion 
made by Michael Fusco, Paul Brairhwaite, and Dr. John Cozzolino. 

1. INTRODUCTION 

Mr. Dropkin’s 1959 paper is important in two major respects. It shows 
conclusively that classifying risks solely on their driving records is not correct. 
(Class and territory cannot be ignored.) And it introduced the negative binomial 
distribution to the casualty actuarial community. 

Since the paper is still on the syllabus of examinations, it is clearly relevant 
today. However, it has been discovered that one of the hypothesis-testing tech- 
niques used by Mr. Dropkin is invalid. Additionally, even when using the 
correct technique (as Mr. Dropkin does for his main results), pitfalls in inter- 
preting the result may trap the unwary. 

A common practical application of Mr. Dropkin’s paper has been to apply 
either the chi-square or “Binomial Variance” test to a frequency distribution, 
reject the Poisson assumption, and conclude that frequency is negative binomial. 
In this review, I will show that the “Binomial Variance” test is invalid. In 
addition, I will show that the negative binomial is not necessarily a correct 
conclusion, even if the particular Poisson hypothesis tested is rejected using a 
valid test. Finally, I will make a quibble. 

2. THE “BINOMIAL VARIANCE” TEST IS INVALID 

Mr. Dropkin states, “The Binomial Variance is equal to the product of the 
mean and the complement of the mean[ 11.” His test is to compare the “Binomial 
Variance” to the “variance.” If the latter were greater than the former, Mr. 
Dropkin would reject the Poisson hypothesis. 
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The semantics are a little fuzzy here-are we talking about parameters or 
estimates of parameters? Is the “mean” in. or CXJn? Parameters are unknowable. 
Hence Mr. Dropkin’s “mean” must be the sample mean. Similarly, the “vari- 
ance” must be one of the two popular sample estimates of the variance. 

In the Appendix, I demonstrate that the “Binomial Variance” is always less 
than or equal to either sample estimate of the variance. The inequality is strict 
if any insured has more than one claim. This means that (if any insured has as 
many as 2 claims) the Poisson hypothesis would always be rejected using Mr. 
Dropkin’s “Binomial Variance” test. 

An alternative might be to compare the sample mean to the sample variance. 
Since the mean and the variance of the Poisson distribution are equal, the sample 
mean and the sample variance ought to be close to one another. This comparison 
would be a valid (although perhaps not the most powerful) test if care were 
taken to calculate the significance levels associated with various differences 
between the sample mean and sample variance. (Simply rejecting the Poisson 
hypothesis if the sample variance were greater than the sample mean would 
probably lead to a 50% rejection rate+ven if the data were generated by a 
Poisson process, no matter how extensive the data were.) However, the chi- 
square test is already available-why go to the trouble of calculating significance 
levels for another test? 

3. NEGATIVE BINOMIAL NOT NECESSARILY CORRECT 

What hypothesis is being tested? Even assuming the chi-square test is 
performed, the answer is not “Poissoness.” The null hypothesis is really: “Each 
driver’s number of accidents is Poisson AND each driver has the same mean 
frequency (Poisson parameter).” When we reject the null hypothesis using the 
chi-square test, we know that either the distribution is not Poisson, OR the 
drivers do not have the same mean frequency (Poisson parameter), ORboth. 

The data must all come from a single territory, a single class, and a single 
time period. Otherwise, drivers will have different mean frequencies, and the 
chi-square test will be useless, whether or not it rejects the null hypothesis. 

For example, suppose that our portfolio consists of 200 drivers. Suppose 
100 Class A drivers have mean claim frequency 1 per year and 100 Class B 
drivers have mean claim frequency 100 per year. Finally, suppose each driver’s 
claim frequency distribution is Poisson, and each driver’s claim frequency is 
independent of every other driver’s claim frequency. 



426 INDIVIDUAL DRIVING RECORDS 

In this case, it is extremely unlikely that the chi-square test as applied by 
Mr. Dropkin would accept the Poisson hypothesis.’ Yet each driver’s distribution 
is Poisson, and the total number of claims, being the sum of independent Poisson 
random variables, is Poisson. The negative binomial distribution is clearly 
inappropriate, and the prior distribution is clearly not gamma (or any other 
continuous distribution). 

4. A QUIBBLE 

Mr. Dropkin makes the assumption (repeated by other authors) that the claim 
propensity must be constant over time in order to have a Poisson distribution. 
This assumption is false. Consider a risk that has constant Poisson frequency 
with mean 1 for the first half of the year, and constant Poisson frequency with 
mean 2 in the second half of the year. The sum of independent Poisson random 
variables is Poisson, so the frequency for the whole year is Poisson with mean 
3. (Note that the claim propensity is not even differentiable with respect to 
time, let alone constant.) Nor is it necessary that claim propensity be piecewise 
constant. Biihlmann [2], for instance, shows this conclusion. 

’ On the average, the estimated mean would be 50.5. If every insured had this mean, the expected 
number of insureds having between 40 and 60 claims would be over 170. In fact, in this situation 
the expected number of insureds in the range is (much) less than one. 
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APPENDIX 

Proof that “Binomial Variance” is always less than or equal to variance (equal- 
ity) only if no insured has more than 1 claim). 

Situation: 

m = Number of insureds 

n, = Number of claims for ith insured 

“Binomial variance” 

Variance Estimate - “Binomial Variance” = L - 3 Cn2 
m m 

Since the number claims n; is always an integer, nf 2 ni always. 

The variance estimate used in the above has m as a denominator. This 
variance estimate is less than the variance estimate which has m - 1 in the 
denominator. Hence the above proof shows that the Variance Estimate minus 
the “Binomial Variance” is always non-negative. (Note also that when the mean 
number of claims is greater than 1, the “Binomial Variance” is negative.) 
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ADDRESS TO NEW MEMBERS-NOVEMBER 16, 1987 

TWENTY-TWENTY HINDSIGHT 

LEROY J. SIMON 

To each of the new Fellows and new Associates of the Casualty Actuarial 
Society, let me extend a personal “Welcome!” And to the spouses and accom- 
panying persons that are a part of this great accomplishment, let me say, “Thank 
you for the perseverance and for the sacrifice that each of you has had to make 
to allow this to be possible.” 

In the next few minutes, I’m going to make five quick points, so listen 
carefully, or one may zip right by you. 

Point number one is borrowed from Malcolm Young’s presidential address 
to the CPCU in 1955, which I will paraphrase to say, “It is easier to become 
an actuary than to be one.” You now have inherited a mantle from your 
profession. The developments of the past 73 years by some of the actuarial 
giants have built the Casualty Actuarial Society to its position today where you 
inherit it. Your task is simple-work hard for your profession; pay it back; 
carry it forward to even greater heights. 

The second point that I would like to make is that actuarial work is an 
international activity. Close to one thousand United States actuaries belong to 
the International Actuarial Association, and about five hundred of these belong 
to ASTIN. ASTIN is the acronym for Actuarial Studies in Non-Life Insurance 
and is the international casualty actuarial society. However, only an average of 
about eight United States casualty actuaries have attended ASTIN meetings over 
the recent past. Whether you’re a Fellow or an Associate, at your earliest 
opportunity, consider joining IAA and simultaneously signing up for ASTIN. 
The literature produced and disseminated by these organizations is the principal 
motivation for most of the Americans that belong, and I’m sure you will find 
it worthwhile also. But ASTIN offers much more than that, and I urge you to 
try very hard to get involved in the meetings. The misinformation on ASTIN 
is that it is too theoretically inclined, but the facts from those who attend ASTIN 
meetings are that, just as in the United States, there is a mixture of theoretical 
and applied matters. As a special introductory one-time offer, the 1989 meeting 
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of ASTIN will be held in the United States, linked to the November CAS 
meeting, so hurry now and join and be ready to register when you get your first 
chance. 

The third point is that the world is changing-which may not be news to 
most people, but you, who have been poring over the textbooks so long and 
hard, may not have noticed. A magazine article on the ten greatest inventions 
this century got me to thinking about the five great events that have happened 
in the United States in just the span of my business career thus far. The first of 
these is the introduction of Playboy. I start with this because it tends to get your 
attention. I saw the publication of the first issue of Playboy and, for better or 
for worse, it represents a turning point in the cultural values guiding personal 
conduct and attitudes. The second great event I have seen was Howdy Doody. 
To me, Howdy Doody symbolizes the introduction, on a mass basis, of tele- 
vision into homes throughout the country. It has revolutionized communication 
and the use of leisure time. The third great event was the rise of Elvis Presley. 
I saw Elvis appear on the Ed Sullivan show when his music and his gyrations 
were near scandalous. But Elvis Presley, and others around that time, revolu- 
tionized the way music is written and performed. The fourth great event was 
Stopette. Stopette was the sponsor of a television program, “What’s My Line,” 
that had enormous popularity because of its stars: Bennett Cerf, Steve Allen, 
Dorothy Kilgallen, Martin Gabel, and Arlene Francis. Their product was an 
underarm deodorant that was dispensed through a small squeezable plastic bottle. 
It revolutionized the personal hygiene habits of the country, and most particularly 
those of men, who now even use cologne and hairspray, which would have 
been unheard of in past eras. Finally, the fifth great event that happened during 
my business career was Pacman. I credit Pacman with having taught us very 
subtly that computers can be fun because people suddenly realized that this very 
popular arcade game was, in fact, a computer. Suddenly, instead of computers 
being derided and joked about, the world saw that they could be fun to play 
with. This led to the personal computer and the discovery that they could be 
fun to work with as well as extraordinarily productive. 

There will be at least five great events during the course of your business 
careers. I became an FCAS 33 years ago, and as you look back on your business 
careers 33 years from today-in the year 2020-with your twenty-twenty hind- 
sight, you will picture this year as strangely as I now picture a time without 
Playboy, Howdy Doody, Elvis, Stopette, and Pacman. The lesson here is to 
prepare for change. Work with it; roll with it; but most of all, manage it. 
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Manage change in a way that will build on the foundations of the past, but with 
a focus on the future. 

The fourth point I would like to make today is to get with a class outfit. 
You have obviously worked hard and diligently and sacrificed a good deal to 
obtain this position today. You owe it to yourself to hire yourself a good boss 
and be associated with an organization that you can be proud of. When Walter 
Wriston, the retired Chairman and CEO who led Citibank to such great heights, 
was asked recently to list the characteristics that he looked for in selecting 
people for promotion throughout the organization, his first answer was integrity. 
Combine integrity with the pride of accomplishment that you feel today, then 
blend in confidence in yourself with actuarial work, an employment you can be 
proud of because of the principles and the ethic for which it stands, and you 
have an unbeatable formula for career success. Use your best instincts and sound 
judgments to select wisely those few critical branches in your career path that 
will keep you on that first-class track. 

Thus, I come to my final point: Yolc are rhe future. It is out of this group 
of 1987 Fellows and Associates, and others like you, that the future leadership 
of the Casualty Actuarial Society must come. Individually, you will go many 
different ways in your careers, but wherever they may lead, you have this 
actuarial specialty as a safe harbor, as a solid rock, as a secure base. Develop 
your careers with careful planning and foresight and be sure to include a large 
measure of payback to the Casualty Actuarial Society-I have tried; I’m still 
trying. I’ll be watching you because in some small part, you’re my Class of 
1987. 
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CAS AT A CROSSROADS 

MICHAEL A. WALTERS 

Over the past fifteen years, the CAS has experienced remarkable growth. 
With over 1,300 members at present, we can almost supply one actuary for 
each insurance company. At this same rate of growth, we’ll admit our 2,000th 
fellow in the year 2000, and have over 3,000 members. 

At this prosperous point in our history, we are nonetheless at a crossroads 
with regard to our growth, direction, and identity. To navigate our way through 
some difficult decisions, we need to understand ourselves, our profession, and 
the clients we serve. 

Fortunately, our long range planning committee and board of directors are 
well on their way to charting our path. A new mission statement reflecting input 
from the members has been drafted, and we have a working definition of a 
casualty actuary. To construct a profile of the insurance industry of the future, 
we have begun a series of interviews with chief executives that focus on the 
problems to be solved, the people needed to solve those problems, and the 
strengths and weaknesses of actuaries and the qualities they can bring to bear 
on the solutions. 

What follows is a summary of the status of these projects, with some personal 
observations as well. 

INDUSTRY OF THE FUTURE 

A consolidation of insurers is inevitable in the future, with strong carriers 
becoming even stronger. But some new ventures are likely to succeed, thus 
helping the industry remain very competitive. Regulation, technology, the en- 
vironment, the tort system, the economy, and changes in consumer and business 
attitudes will all contribute to making an already complex business among the 
most complex of American industries. Increased retentions and self-insurance, 
including the growth of risk retention groups and risk purchasing groups, will 
make commercial insurance even more complex than at present and increasingly 
based on leveraged risk. 
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How will insurers thrive in this environment? The successful ones will learn 
how to unbundle and sell services when the prices for assuming risk are too 
low. This implies that they will also learn how to detect the approach of those 
threshold points. 

SKILLS OF THE FUTURE 

What kind of skills are needed for success in this world of increased risk? 
Strong quantitative and financial skills are the key to solving underwriting and 
pricing problems in the future. In addition, of course, organizations must look 
for individuals with leadership qualities, a code of ethics, and interpersonal, 
communication, and other management skills. 

Toward this end, casualty insurers have, no doubt, experimented with hiring 
MBA’s over the past decade, possibly with mixed success. MBA’s certainly 
understand the financial side of the business and what drives Wall Street. 
However, learning the complex world of casualty insurance may take more time 
than some MBA’s are allowing. Recently, we asked one of the CEO’s we 
interviewed what particular skills are needed in the future. He gave us an 
interesting variation on the “brains and guts” combination that traditionally is 
the hallmark for business success. He called it “brains and no guts.” What is 
needed, in other words, is thoughtful pessimism, grounded in strong analytical 
skills. 

ACTUARY OFTHE FUTURE 

Where does the actuary of the future fit into the industry of the future? 
Leaving aside for the moment the opportunities with government, buyers of 
insurance, or consulting firms, what does an FCAS bring to the table in man- 
aging the supply of insurance? 

First and foremost, actuaries are eclectics rather than scientific specialists. 
The application of calculus and statistics in no way puts us on the cutting edge 
of those subjects. Similarly, exposure to economics, accounting, and law makes 
us conversant with, but not experts in, those subjects. Being tested on policy 
forms or regulation doesn’t license us to practice in those areas without addi- 
tional training. Even in the areas of pricing and reserving, where extensive 
testing is done, without an apprenticeship in a particular area, a new FCAS 
would not qualify as expert enough to give opinion testimony in a rate case or 
to sign a reserve statement. 
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So what does an FCAS designation imply about a person’s overall qualifi- 
cations? Given the diversity of subjects studied, the combination of which few 
others have likely encountered, actuaries are trained in the fundamentals of all 
the areas that define the practical operations of insurance, including some 
exposure to life insurance. This set of knowledge, obtained in, say, a seven 
year post-graduate span, might otherwise require twenty years of on-the-job 
training. 

Next, an FCAS brings a high level of intelligence to apply to new problems, 
plus such qualities as ambition, dedication, competitiveness, and persistence. 
For more than a few, it also may bring a bit of arrogance for having overcome 
so many obstacles, and at the same time a certain trust or even gullibility for 
having persevered so long with the confidence that the end would be worth the 
struggle. Hence the syllabus committee has a great responsibility to make sure 
the exam process is relevant. 

The designation also implies discipline, for this career has most of the 
characteristics of the “road less traveled’-from delaying gratification, to ac- 
ceptance of responsibility, and dedication to truth. 

Thus the making of an FCAS is as much a selection process as an educational 
one. And although attaining the FCAS doesn’t guarantee integrity, it at least 
suggests it, for who would risk losing it all for a small and transitory advantage? 

CAREERS AND TRAINING 

What role does this education and selection process qualify an actuary to 
fulfill? Given a mastery of the fundamentals, the discipline, and the dedication, 
an actuary’s potential should be limitless. In addition to the obvious areas of 
pricing and reserving, several CEO’s suggested that the CAS offers an excellent 
training program for senior underwriting positions. In fact, the shortage of 
casualty actuaries has no doubt stifled a natural pipeline of talent into the 
underwriting function as well as senior management positions. When we raised 
the hypothetical question of tripling the number of casualty actuaries, we re- 
ceived favorable responses from the senior executives interviewed thus far. 

Expanding the actuary’s career path beyond traditional actuarial work, how- 
ever, is not an easy and automatic transition. The commitment to the funda- 
mentals of the insurance business and emphasis on technical information may 
put some actuaries at a disadvantage with regard to leadership and management 
advancement. The very analytical orientation of actuarial training is in partial 
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conflict with a basic tenet of management training. Management is “the art of 
getting things done through others” and requires a certain letting go of technical 
details and ability to trust in the process to achieve the right results. Actuaries, 
on the other hand, are trained to cut through to the heart of a problem and try 
to solve it themselves. 

Does this suggest management training should be on the Syllabus? Almost 
ten years ago, the Society of Actuaries (SOA) met with the CAS on joint 
education topics and suggested the idea of management topics because of a 
perception that new actuaries made bad managers. When the problem was 
studied, however, it appeared that some life companies were justifying the high 
salaries of their new fellows by immediately putting them in managers’ posi- 
tions. With little or no supervisory training or experience, no wonder these 
individuals struggled. 

Now the SOA is seriously talking again about management training in the 
context of flexible education. I still think it would be better to let employers 
tackle that subject. What the CAS can do, however, is highlight the importance 
of management training, and cover the subject in continuing education work- 
shops, rather than expanding an already comprehensive syllabus. 

SYLLABUS OF THE FUTURE 

The syllabus is perhaps already too detailed for the actuary of the future. If 
you accept that an FCAS can’t remain current in every practice area, then what 
should be tested are the fundamentals and just enough of the details to assess 
overall problem solving skills. Rather than testing in some cases the ability to 
memorize facts, why not have a few open book exams to test the application 
of facts and understanding of concepts? 

Some details being memorized today may have to give way to a greater 
breadth of topics such as finance and, possibly, the fundamentals of life insur- 
ance and pension plans. Although the content and method of education has 
served us well throughout our growth, we must now ask whether a ten-exam 
sequence of mostly self-study is the right mode for future actuaries. The tradi- 
tional syllabus may not be the way to develop other skills that actuaries will 
need, particularly in the areas of communications-both oral and written-and 
public relations. 

These skills depend heavily on empathy or audience awareness, traits that 
unfortunately are not well developed in many of today’s actuaries who are 
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trained in logic and quantitatively oriented. Actuaries may have to learn to pay 
as much attention to the audience receiving the message as to the message itself. 
Examples, analogies, or even parables do not, of course, constitute valid proofs, 
but they can go a long way towards helping the listener get the message. As for 
writing ability, essay questions on a revised Part 3 might help send the right 
message to students about future professional skills. 

A focus on public relations is equally important. For some actuaries, public 
relations has almost a pejorative ring to it. And yet, unless we reach out to our 
two principal publics-the employers of actuaries and the students we recruit- 
our best laid plans may not succeed. 

We have been trying to set up a joint public relations effort with the Council 
of Presidents. We interviewed a public relations firm that suggested we start 
with a communications audit of college placement directors. They also suggested 
contacting our employers, a process we had already begun with our CEO 
interviews. The SOA, which had not really considered employers as one of 
their publics, has recently expressed a lot of interest in these interviews. 

DISCIPLINE AND STANDARDS 

Another issue we must address at this crossroads is discipline. We must 
overcome our reluctance to “blow the whistle” when obvious transgressions 
occur. Poor quality work by anyone, even a competitor, hurts us all. And high 
quality work, even by a competitor, helps us all. 

You may even be doing a favor for an actuary who is breaching the standards 
by reporting the violation early. A private warning or admonition by the disci- 
pline committee might help prevent a more serious violation and public sanction 
later in an actuary’s career. 

An effective discipline system is also perhaps a good way to deal with the 
issue of qualifications. Trying to define specific preconditions to practice in 
certain areas can create an unnecessary bureaucracy or result in some inequities. 
The issue of continuing education recognition is a good example of the latter. 

Putting an asterisk next to an actuary’s name in the Yearbook to designate 
a higher level of qualification implies that the outside study is crucial to one’s 
area of practice. It also implies that those without the recognition code have 
not stayed current in their own specialty area and may not be qualified in any 
area of actuarial practice. 
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As an alternative to a “prior approval” system of qualification, why not use 
the honor code method of discipline? This means essentially a self-policing by 
actuaries to practice only within their areas of competence. The fear of disci- 
plinary action by a vigilant and active group of monitoring actuaries would 
serve as a deterrent to actuaries practicing in areas in which they are not 
competent. 

The formation of a permanent actuarial standards board or council in 1988 
will signal the start of this new phase of professionalism. Anticipation of this 
has already accelerated the formulation of actuarial principles in several of our 
key practice areas. These principles will constitute the foundation by which the 
standards body will start issuing casualty standards of practice. 

Without standards by which our practice areas can be judged, our body of 
knowledge could be viewed as neither unique nor relevant enough to serve as 
the foundation of a profession. Nor is discipline really possible without written 
standards. Such standards not only define quality service in the key areas of 
practice, but also offer a “safe harbor” for those who follow them in the event 
of an adverse outcome (when disappointed clients may vent their frustrations 
on the actuary). 

Writing down these standards can also help enrich the knowledge of those 
actively involved in the process, as was the case when the actuarial principles 
were being articulated. 

THE ORGANIZATION OF THE PROFESSION 

Another fork in the road for the CAS will clearly be the question of merger 
with other actuarial organizations. Whether it’s called unification, consolidation, 
or greater coordination, the idea implies some need for give and take for a 
greater overall good. Ideally, it would allow us to retain our autonomy and 
responsiveness to our casualty constituents, while improving efficiency, gaining 
greater leverage, and achieving synergy to address such common issues as 
public relations, recruiting, and discipline (particularly the triple jeopardy that 
is currently possible with tribunals in three different actuarial organizations that 
could hand down three different verdicts for the same alleged crime). 

Improved efficiency does not necessarily mean that the profession’s leaders 
can avoid a few extra meetings a year. Those who are motivated to consolidate 
in order to streamline meetings should realize that having others look out for 
their interests is false economy. Liaison representatives or their equivalent will 
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probably still be needed, no matter what the structure of the profession. 

Emotions run high when merger is discussed, as our name, heritage, and 
pride in our success are not easily discarded. Consequently, those CAS repre- 
sentatives charged with studying the possibilities will no doubt try to find 
alternative ways to accomplish the above goals short of actual merger. However, 
whatever the outcome, we must not lose the cooperation and sense of community 
we have built up over the years with our sister actuarial organizations. 

We have much in common with our actuarial brethren in North America 
and much we can learn. There is also much that can be learned from what the 
CAS has done in its soon-to-be-celebrated 75 years in existence. We can take 
pride in creating a unique body of knowledge and forging an identity as the 
only sole-purpose casualty organization of its kind in the world. This pride 
gives us an extra competitive push to see where the future will take us. As Phil 
Ben-Zvi mentioned last year at this time, the tenets of casualty actuarial science 
know no national boundaries. We are hosting the ASTIN meeting in 1989 right 
after our Diamond Jubilee; we will then have the opportunity to celebrate the 
world-wide nature of the casualty business. 

The idea of six specific casualty exams in addition to a common core of 
actuarial knowledge is appropriate for a world with more than three hundred 
billion dollars in casualty and property insurance premiums-more than for life 
and health insurance combined. So there is ample reason to believe that casualty 
actuaries might ultimately outnumber life actuaries. Perhaps early in the next 
century a CAS president will be standing here addressing a profession that has 
dramatically increased in size to match its stature. 

Thank you for the privilege of serving this honorable profession as president. 
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THE TROUBLE WITH THE FUTURE 

ROBERT M. EVANS 

Let me begin with a brief word of gratitude, to extend to you my appreciation 
for inviting me to share this time with you today. I want to do something that 
may seem a little bit obscure or odd. I want to talk about tomorrow. I want to 
talk about the world of the future. Now, to many people that seems to touch 
on the bizarre, because the process of education you and I have grown up in 
would imply that we can read about the past, we can live in the present, but 
how can anybody possibly know about the future? 

I recall when I first got a job in a newsroom in a broadcast station. There 
was an editor there who said it was all right if we wanted to write about the 
problems of tomorrow just as long as we didn’t use “the future” in whatever 
we wrote. When I was in the seventh grade, I had to memorize Patrick Henry’s 
“Give Me Liberty or Give Me Death” speech for a presentation before the 
Virginia House of Delegates. There was a phrase in it that still sticks in my 
mind. He said, “I have but one lamp by which my feet are guided and that is 
the lamp of experience. I know of no way of judging the future but by judging 
the past.” And there was a French poet by the name of M. Paul Valery who 
had a most intriguing thing to say about the world of tomorrow. He said, “The 
trouble with the future is that it is no longer what it used to be.” 

Now, that is an entertaining aphorism, but all of that relates to the concept 
of what it is that people who deal with the future do, and how they choose to 
perform whatever services they offer to deal with the future. It has nothing to 
do with previews or predictions. There is nothing by way of forecast that comes 
close to that. There is nothing that is magical or mystical about it. There is no 
kind of a glass ball that you hold up high and gaze deep into imperturbable 
depths and look at some dim, vague outline of a horizon of tomorrow. There 
is nothing by way of witchery or sorcery in this. Not at all. It is a process of 
projection and there is a very simple, even scientific premise involved in it. 
That is to say, you take the facts of today, project them down a time frame, 
and, the projection will come out to the desired point in time with its obvious 
result. If that doesn’t please you, you do the obvious; you intercede. You make 
some kind of interruption to make sure that that event will not take place in 
that way. 
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I find it intriguing, for example, that both John Naisbitt, author of Mega- 
trends, and Tom Peters, author of In Search of Excellence, had virtually the 
same thing to say about the process that they use. They make a point of the 
fact that they have nothing new or unusual. They’ve had no incredible flash of 
something unrevealed. They speak of it as being an accumulation of obvious 
things, that is to say, a blinding flash of the obvious. Which is to say that we 
deal with current circumstances, project them down a time frame, and yield 
what that future will bring, unless you wish to change that future result. 

Now, if you look beyond these years of the 1980’s into the decade of the 
1990’s, we are talking about a common denominator of the decade of the 
1990’s. They will probably focus around the single concept of change. There 
are other concepts, of course, other things occurring, other directions, other 
trends. But, if there is one commonality under which we could group the trends 
of the decade of the 1990’s, it will be that elemental concept of change. We 
are talking about changes in the way we work, changes in the way we live, 
changes in our family structure and in our professional responsibilities. We are 
talking about changes in competition, changes in the market place, changes in 
our customer base, changes in services, changes in products--quite literally- 
changes in virtually everything we do. 

I have had several academicians make the point to me that the kind of 
change we are talking about for the 1990’s could probably be characterized by 
four words, each beginning with the letter “p.” First, we deal with changes that 
are literally without precedent. We have had no known parallel of it in the 
experience of our work lives in decades gone by. Second, we are talking about 
changes that are profound. Third, we are talking about changes that are perva- 
sive. They surround us on every side. Fourth and last, we are talking about 
changes that are permanent. That is, the style of life that you and I grew up in, 
the way of working and accommodating the business problems that we have 
become accustomed to by our own traditions and habits, is now a world of the 
past. That world will no longer return as we used to know it. 

There are a lot of things that go into any response to the question of what 
is happening, and a lot of them involve technology. Again, there is nothing that 
is new or magical about this. A great deal of this I’m sure you are familiar 
with. Very briefly, we now talk about an increasing era of high technology, 
“High Tech,” that magic phrase we see in headlines and on book jackets and 
hear on the air all the time. To any person dealing with it alone, it probably 
would be difficult to perceive the entire vista of what is happening. 
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If you go back to the beginning of the industrial revolution, two or three 
centuries ago, there may have been some who perceived part of what was 
happening. But the difficulty, the quandary, of trying to get an accumulation of 
everything that is occurring is an enormously difficult exercise to engage in. 
Any one of us might have a perception that we have our own thin sliver of 
awareness and, therefore, we know what is behind it all. So any one of us, 
particularly people who are involved in the insurance industry as you are, could 
immediately say, “Well, we know what is causing the changes of today. It is 
the computer, isn’t it?’ That is valid. But it is not just the computer. Someone 
else might say, with a different sliver of perception, “Well, I know what is 
causing it. It is this new laser beam technology.” And what an extraordinary 
impact that will have on all of us. That’s also valid. But it’s not just the new 
laser beam technology. And someone else will say, “I know exactly what it is. 
It is those new optical fibers that are coming, this optical fiber network that will 
quite literally girdle this globe we live on.” That’s also valid. But it is not just 
optical fibers alone. Someone else will say, “Well, it must be the new genetics, 
the new biotechnological revolution to come.” And that, too, is valid. But it is 
not just biotech alone. 

Going beyond that, someone else will say, “It’s got to be the new energy 
forms: energy, funding and fueling everything we do, quite literally.” That, too, 
is true. But it is not just the new energy forms alone. Someone else might make 
the judgment, “Well, it must be these new satellite communications.” And that 
is equally valid. After all, satellite communications will literally change the 
way we contact each other. But it is not just satellite communications alone. 
And, as many of you, I think, begin to perceive, it is not only one or some of 
these. It’s all of these together. It is all of these and dozens of others. Other 
things like credit cards, video games, localism, globalism, stereo, microchips, 
cable television, electronic banking, word processing, information workers, flex 
time, video recording, robotics, artificial intelligence. And what’s happening? 
All of these things together are convening and converging and quite literally 
assaulting the basic framework that you and I have grown up in, the industrial 
world that the United States has built for itself. The analogy is not to a hurricane, 
which with an enormous force comes in and flattens structures but leaves the 
ground unchanged, Rather, the analogy is much more akin to an earthquake, 
where the ground beneath our feet trembles and there is an enormous upheaval, 
and the terrain on which we walk is never again the same. 

I’m sure all of you have heard descriptions of the new information era to 
come, so let’s dispense with those. One thing you may not be as aware of, 
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however, is an intriguing aspect of the new information era to come. I refer to 
the time frame, the collapse of the time frame. 

If you go back over the course of the last two or three centuries, there was 
indeed an effort wherein we moved away from agriculture and moved toward 
industry. If you would go back over this entire 20th century of the United 
States’ economy, and if you allow the over-simplification involved, you could 
describe the growth and development in only three words: farmer, laborer, and 
clerk. Go back to the first decade of the 20th century. The great majority of 
American people worked on the land. We tilled the soil; we sowed our seeds; 
and we raised the produce we needed to survive. Jump ahead, if you would, to 
the mid-point of the century, the decade of the 1950’s. The great preponderance 
of American people labored in factories. We were on assembly lines; we used 
machine tools to fabricate things. 

Come now, if you will, to this decade of the 1980’s. The great majority of 
American people are clerks. Without being denigrating by the use of that 
concept, it means that basically we work in information pursuits with ideas or 
concepts. Now note, if you will, the progression: from farmer to laborer to 
clerk, that is to say, from agriculture to industry to information. What is 
extraordinary is the remarkable collapse of the time frame. Because, whereas 
that first progression from agriculture to industry might have taken two or three 
centuries, the progression today from industry into information is taking place 
in only a decade, or, in some specific technologies, in some particular industries, 
in just a few years. Change is coming so remarkably fast that we scarcely have 
time to cope with it. We scarcely have time to reflect on what our reactions and 
interactions should be down that corridor, the decade of the 1990’s. 

If you would accept the analogy that there is a great tome that sits on a 
shelf and the title is The Story ofMankind, I think you would agree that we are 
coming to the end of a chapter. The chapter that has been entitled “The Age of 
Industry” is drawing to a close. And we are now in the opening paragraphs of 
the age of information. 

We are not really certain what it is going to be like. We are not absolutely 
certain how it is going to reshape our lives. We can’t give you any kind of 
detail on what its impact is going to be. I dare say that a great part of the 
American people perhaps are not even aware that it is taking place, but it may 
be the single most significant change in the nature of our lives and the way our 
economy functions since we first began that factory process that led to the rise 
of the age of industry. An academician described it to me in these terms: The 
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changes in the next fifty years will have a greater impact and make a far more 
monumental change in our lifestyles than the changes that took place from the 
time primitive man lived in caves through the medieval era in central Europe. 
That is an enormous change, and it begins to emphasize some of the elements 
of what the decade of the 1990’s is going to be like. 

Now focus on things that are more related to your immediate work respon- 
sibilities and to your own industry’s interests. Let’s talk for just a little bit about 
insurance and some of the changes that are portended for the decade of the 
1990’s. Bear in mind, coming back to both Tom Peters and John Naisbitt, we 
talk not about startling new revelations that are anything undreamed of before: 
we talk about the blinding flash of the obvious. And yet, when strung together 
like beads upon a string to compose a necklace, they begin to give you a 
perspective on what is taking place. 

There was a time, I’m sure you are well aware of it, when the insurance 
dollar used to belong to the insurance company alone, just as the banking dollar 
belonged to the bank, the real estate dollar belonged to the real estate broker 
and, of course, the investment dollar belonged to the investment broker. No 
longer. Because today all of those things begin to compete for the same dollar. 

If you look at what has been happening to financial services, whoever dared 
to dream that at the mid-point of the 1980’s, the largest seller of financial 
services in all the United States would not be the large life insurance companies 
like Prudential, not the largest banks in the U.S. like Citicorp, not the big 
accounting firms or Wall Street brokerage houses? The largest seller of financial 
services is a company that began as a mail order warehouse firm and then 
expanded to become a retail department store chain, Sears Roebuck. You’ve 
seen the sign. You go into a store at a shopping center and go past the ladies’ 
lingerie and the men’s ready to wear, beyond sportswear, beyond the kitchen- 
ware department with the pots and pans and dishes and saucers, and there you 
see the sign-financial services. They do the entire range of interests for people 
who come to inquire. You can acquire investment vehicles; you can buy insur- 
ance coverage; you can acquire real estate. And what that specifies is that the 
whole basis of competition is changing. It is not simply insurance; it’s not 
simply banking; it’s not simply real estate; it’s not simply brokerage services. 
It all becomes a part of that vast anomolous vagary called financial services. 

Now, that results in immense changes in the marketplace, does it not? First 
and most dramatically, it brings new, hitherto unrealized players into the game. 
It changes the roles and the rules under which the old players conduct their 
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business as well. There has been an upheaval in the way your industry functions 
and operates. The boundaries between product lines in the industry begin to 
blur and then slowly disappear. New products pop up with increasing, almost 
alarming, frequency, and old products begin to fade out with increasing rapidity 
as well. And, of course, the baseline of the consumer to whom this industry 
has to sell is changing too. The market place is vastly different today. 

People are living longer; people are living differently; lifestyles are changing; 
the work force is new and different today. Females are coming into the mar- 
ketplace to hold jobs. Other minorities are rising to a position of prominence. 
It is interesting that 1984 was the first year that blacks were no longer the largest 
minority in the United States. Hispanics now outnumber blacks as the largest 
minority in the country. 

People today are better educated. They understand more. In a financial 
services marketplace they are far more aware, far more informed about the array 
of choices that they have in front of them. They are becoming much more 
technologically aware. They are becoming familiar bit by bit (no pun intended) 
with computers. Some of them are even, perish the thought, becoming computer 
literate. 

I had a young son that I sent off to Duke University to be a freshman this 
past year. When Jason was in the eighth grade he was introduced to computers. 
For him it was a source of fun because of the games that were played on it. 
When Jason got to Duke, he, of course, blew economics, and physics was a 
mystery to him, but computers he was able to zap away. They had a final exam 
with seven questions, four required, three optional. Jason answered all seven. 
He got 155 on the final exam and they then gave him an invitation to become 
an instructor in the freshman computer lab. The relevance of that? Jason rep- 
resents a generation only in their teens, a generation in their twenties, a gen- 
eration in their thirties and some beginning to spill into their forties, a generation 
that understands what so many of us would regard as technical engineering 
vocabulary. We are not familiar with vocabulary like peripherals and megabytes 
and random access memory. 

Those things are as commonplace in the everyday jargon of that generation 
as are the designations on a baseball score card that indicate shortstop, second 
base, strike out, and home run. Which is to say that the vocabulary, which so 
many of us regard as industrial jargon that we are not familiar with, will be as 
commonplace in the world of tomorrow as baseball and sports terminology is 
today. 
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Will that have an impact upon you and your company and how it operates? 
You can bet your bottom megabyte that it will, because the present structure in 
corporate America will have to be realigned and changed. The definition of 
executive responsibilities will have to be redefined and restated. Some of you 
may well have jobs, portions of which may change, and portions of which may 
totally disappear. Just as there will be the rise of new jobs and new job 
responsibilities to take their place, there is going to be a demand to develop 
new products and new services. There will be the necessity to differentiate 
between present products and present services, the necessity to develop new 
marketing positions, the necessity to develop entirely new systems of distribu- 
tion. 

I must confess that I find all of that a little bit intimidating. I frequently find 
myself encountering corporate officials and executives from a variety of com- 
panies, across a whole cluster of different industries, who are concerned, who 
are anxious, and some of whom even confess to a sense of fright. That is very 
commonplace; it is part of human nature. I feel that way. I think all of us share 
in that sense of intimidation. After all, by definition, change has to be new; it 
has to be strange; it has to be untried. By definition it has to have uncertainty 
in it. But a time of change can be seen not just as a problem to cope with or a 
dilemma to be avoided. If it can be seen as an opportunity to be challenged by, 
it means there are extraordinary new opportunities that you open for yourselves 
and your personal careers, indeed, that you open for your companies in terms 
of realizing so much more of your corporate goals for the future. 

Adapting to change can enable you to achieve those kinds of new goals for 
self and for company, but perhaps it is more important to reflect upon the 
converse of that, that is to say, the failure to change. The absence of adaptation 
to this new challenge can put you and all of the people who work with and for 
you at an enormous disadvantage, possibly even imply the risk of severe 
financial penalty. Which is to say, the company that can adapt to these changes 
can create for itself enormous advantages in reaching new markets, in reacting 
to new market demands and changes, in developing alternative channels for 
distribution and alternative products and services and, perhaps most important 
of all, it can begin to lock in a substantial customer base because of the sorts 
of services and new things it can provide for them. 

If you can learn to respond to these challenges of change, if you can be 
aware of the potential as well as the problems and the limitations, if you can 
learn to adapt and adjust to these changes that will come tomorrow, those that 
will be most relevant to you and your needs, you will be far better armed to 
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compete effectively and efficiently in today’s marketplace, of course, but even 
better prepared to compete in tomorrow’s marketplace that is ever growing, 
ever widening, ever deepening, ever expanding, ever challenging, and, of 
course, ever changing. 

If you look back over the past half century of American business, there was 
so much about American business activity that was comfortable, prosperous, 
and predictable. Some industries became staid, proper, and tradition-bound. If 
there was any room for change, it was very limited. If there was any allowance 
of competition, it was quite controlled and constrained as well. Obviously, 
nobody in the 1980’s could begin to describe an American marketplace with 
those sorts of characteristics, because what is happening in our economy today? 
It’s exploding with entrepreneurship. It’s being prodded by competition. It’s 
being unleashed by deregulation. It is being sparked by the new marketplace. 
It is being spurred on by the new consumer. It is being powered by computers 
and fueled by a whole host of new technologies. Our world of business is 
changing. Indeed, a new society is struggling to be sculpted, molded, or shaped 
into a form that we can’t quite perceive yet. I love Bob Hawkins’s phrase, “the 
next economy.” The next economy is now struggling to be born. 

Let’s take that into some aspects of demographics. Again, some of this I’m 
sure you may have familiarity with. There are certain things in basic demo- 
graphics that constitute part of the marketplace in which you must compete that 
I think are most intriguing. I made reference to the first already. What is 
happening with women? 1983 was the last year, at least in terms of count, that 
a minority of women held jobs. In 1984 more than 53% of American females 
were actively involved in the marketplace, held employment. The projection is 
that, by the year 1990, 60% of American women will hold jobs, and by the 
year 2000, a little more than a dozen years away, 75% of American women 
will be gainfully employed. Virtually every woman under the age of thirty-five 
today holds a job. Or, to put it another way, under age thirty-five, virtually as 
many women as men are in the marketplace and are at work. 

Move to a second aspect of change of demographics, the extraordinary 
entrepreneurial explosion that the American economy is going through. If you 
go back to the height of the industrial development of the U.S., the decade of 
the 1950’s, the American economy was able to create 72,000 new business 
entities in one calendar year. At the time that happened we thought that was 
gang busters. In 1984, the American economy created over 500,000 new busi- 
ness entities. In 1985, it was 560,000. In 1986, it has risen to 640,000 and it 
is still rising. 640,000 new businesses compared with the “height” of industrial 
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development in the U.S. of only 72,000. What is remarkable is the female role 
in this. More than 300,000 of those new entities were women-created, women- 
owned, women-run. That is to say, compared with the height of what our 
industrial economy was able to make, women in the 1980’s have created four 
and a half times that volume of new business activity. 

The other aspect of demographics that I suspect is of relevance to people 
who are involved with insurance is the aging of America, the seniors boom. 
The American society is growing older as the years go by. It is extraordinary. 
In this very year, people over age sixty-five as a group are expanding at two 
times the rate of the general American population. Taking it a step further, by 
me year 1990, the projection is that one third of the American people will be 
over age sixty-five. Ladies and gentlemen, that is a little staggering: one third 
of the American people over the age of sixty-five. The estimate is that by the 
time we get into the next century, when the baby boomers from 1946 and the 
next two decades begin to reach age sixty-five, by the year 2025, the ratio of 
people over 65 to people in their teens will be two to one. That is also staggering. 

I suppose the best contemporary evidence of it is that 1984 marked the last 
time that teenagers were a dominant factor in the American population in terms 
of sheer numbers. 1984 was the first time in American history that people over 
age sixty-five were greater in number than teenagers. It is intriguing because 
they are easily located. If we wanted to take a survey of where the oldest senior 
citizens were in the U.S., seven states are where the senior citizens tend to 
congregate. Some are obvious; they are the sunbelt states of Florida, Texas, 
and California. Added to that are the four population centers of the mid-west 
and the northeast: New York, Pennsylvania, Ohio, and Illinois. It is intriguing, 
though, that there are states to which older senior citizens moue, five in number 
that are attracting the greatest preponderance of them. Four of them, I am sure 
we know. I’m not sure many of us could say what the fifth state is. The four 
states with which we are familiar that the older senior citizens move to are 
Florida, Texas, California, and Arizona. But what is the fifth state to which 
senior citizens move? Anyone care to take a guess? Hawaii? North Carolina? 
Any other suggestions? It is interesting, because the fifth state to which senior 
citizens move, perhaps most improbably, is New Jersey. I must seek some 
counsel and advice from people who live there as to why that brings smiles and 
laughter to your faces. 

What is there about New Jersey that attracts people who are retiring senior 
citizens? If you think about where the American population is concentrated, 
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from Boston in the north to Washington in the south (a concentration that at 
some time will grow into one immense, lengthy, oblong community that will 
carry the name of Boswash), the central point is the New Jersey coastline. Out 
of all of those states on the Atlantic seacoast, that is the state that has the 
longest coastline. But that is only part of the reason. The major reason, quite 
apart from the central location between the population centers of New York to 
the north and Philadelphia to the south, from what we can gather, is the rise of 
a new aspect of real estate development. 

I’m talking about a concept of congregate housing. We are familiar with the 
fact that elderly citizens, when they have a place, a condominium, that they 
buy for the future, want to have shopping close at hand. They would like to 
have some recreation facility close by. What is intriguing is that not only do 
they need financial services, they also need health facilities. The new concept 
of congregate housing for older citizens implies the existence of a health care 
center, right in whatever other facilities are constructed for the people who live 
there. Not necessarily an extraordinary or amazing new development, but it 
does account for New Jersey’s value to the community of Boswash of the future. 

There are a lot of marketing implications that arise from those kinds of 
facts, as I’m sure you would agree. This kind of congregate living will increase 
over time, and, as time goes on, older Americans will tend to be female. You 
are well aware of the fact of nature that women have a longer life expectancy 
than do men. It is intriguing because today, of people over the age of seventy- 
five in the U.S., more than seventy percent are widows, are females. I dare say 
that the yet unperceived political issue for the early part of the 1990’s is going 
to be possibly the “feminization of poverty” as the elderly senior citizen com- 
munity becomes increasingly female and increasingly poor. There are a lot of 
other marketing opportunities that are realizable in terms of a projection of an 
aging older population to cover a whole host of different concerns of marketing 
specialization for people in your business. 

There is a final aspect of financial services that I want to touch on. I suspect 
again that it may be within some of your ranges of awareness, but I dare say 
many people have not really focused on it yet. I want to talk about the coming 
accumulation of enormous financial resources. Spectacular investments will be 
made in areas of the economy that have never existed before. It comes back to 
a concept of banking and what is happening with the change of banks. I’m sure 
you have heard the kind of elementary question that commentators sometimes 
raise-what is a bank? Everybody today is providing banking services: not only 
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the Sears Roebuck I mentioned, but also other retailers like J. C. Penney, from 
American Express on one end to 7-l 1 convenience stores on the other, 

What is a bank? What would you say to take account of the fact that a 
supermarket chain, the Safeway supermarkets, in the New England states alone, 
in any given period of time, cashes more checks than do Citicorp, Bank of 
America, and Chase Manhattan combined? A supermarket rendering the fun- 
damental banking service of cashing checks for people has led to the rise of a 
whole host of non-banks doing banking, as we are all familiar with. A lot of 
that has been due to the rise of a new technology, the new automated teller 
machine doing banking business electronically, and there are some extraordi- 
narily intriguing kinds of projections of what an electronic marketplace the 
future will yield. 

Since the courts have already settled the issue of whether or not an automated 
teller machine is a branch bank, saying it is not, does it raise the prospect that 
a lot of neighborhood branch banks will become obsolete and disappear? Reflect 
for one moment that the great majority of banking transactions at a branch bank 
do not require negotiation with dbank officer. The great majority of transactions 
involve the elementary functions of either putting money in or taking money 
out. That can be done with an ATM, and it raises the prospect that branch 
banks will begin to disappear. Instead of having two or three banks on the north 
side of a city, the bank may well choose to have two or three dozen or more 
ATMs spread across the suburban landscape. After all, not only are they more 
widespread, they’re available to their customers twenty-four hours a day, week- 
ends and holidays included. 

I am sure all of you are familiar, if you go into airports or shopping centers 
with teenagers, with what are called video game arcades. What would you say 
to the prospect of ATM arcades? They could be located in places like hotels, 
airports, shopping centers, office towers, factories, or even convention centers 
and hotels. An arcade might have two to four dozen ATMs from a whole host 
of different banks. You walk out on a street, or down a hallway, and find what 
look like telephone booths but are ATM booths, and your local bank has perhaps 
a dozen booths for banking transactions. 

The outcome of that relates to another. aspect of what electronic banking is 
bringing us. I am referring now to the aspect we call plastic money, not a credit 
card, but the converse of that, a debit card, that is to say, a point of sale 
transaction. You go to the cashier in a department store; you give them not 
your credit card, but your debit card. You have deposited a small amount of 
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money with that store. The debit card is a direct transaction. Your account with 
that store is debited and their account is credited. There is no paperwork trail; 
there is no banking institution that has to participate in it. At a retail point of 
sale, a debit card can be a direct transaction, and all that is required is for the 
customer to make an advance deposit of funds and for the retail outlet then to 
pay interest on whatever the unused balance is at the end of the month. There 
is no reason that this is applicable only to a retail department store. It could be 
used by a restaurant, a department store, a shopping center, a hotel, a fast food 
outlet. You could go on a trip and, with your debit card, pay for your room at 
a Holiday, Ramada, or Hilton Inn. You could drive up to a Texaco, Gulf, or 
Exxon station and, having made a deposit with that oil company, use your debit 
card to pay for it. You could do the same with a shopping center, or a restaurant. 
On a Saturday, you could drive into McDonalds or Wendy’s and treat the kids 
to a Big Mac, fries, and a milkshake by use of the debit card. After all, 
collectively, these kinds of outlets extend a far greater dollar volume of consumer 
credit than do banks. As I say, all they need is permission to hold a balance 
and to pay interest on it. 

We are talking about what will become an incredibly intense, competitive 
marketplace. What organization, what retail outlet will be allowed to hold the 
money of the people who shop with them? It is going to run into hundreds of 
billions of dollars. We are talking essentially about banking transactions that 
have nothing to do with a bank. We are talking about the accumulation of vast 
new capital, capital resources for investment and for expenditure in a lot of 
different directions, many choices that have nothing to do with banks, but the 
accumulation of immense financial reserves that have so much to do with 
insurance interests and where insurance investment dollars go as well. As my 
French poet M. Paul Valery said about the trouble with the future, the trouble 
with the future is that it is no longer what it used to be. 

I want to focus just a few moments on some changes that are taking place 
in the global arena. Raise your gaze from the horizon of the U.S. and focus on 
some things that are transpiring in the world around us. We have lived the better 
part of a half century in a world structured on certain basic assumptions that, 
quite frankly, flowed out of the end of WWII. Now, the basic structures of 
global life, what happens economically, financially, socially, militarily, and in 
security matters, are almost a half century old. They have never been opened 
to challenge or question by anyone. Yet changes are under way today that will 
quite fundamentally alter the basic shape of the globe as we have structured it. 
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The very elemental question comes to one’s lips: Are we creating the shape of 
a world to come that is beyond our ability to imagine today? 

Let me talk about a couple of concepts again, things you have heard, nothing 
magically new or revolutionarily different, but things that begin to change the 
perception of what is happening in the world around us, that alter the basic 
assumptions of a half century of human life on this minor planet we call Earth. 
Talk about a concept we have labelled Western Europe; Western Europe is no 
longer tied to and dominated economically by the U.S. Talk about the military 
strategic area; the Western alliance has become an empty shell. Talk about the 
disintegration of the Iron Curtain; talk about a deterioration in basic Soviet 
control and domination of Eastern Europe. Talk about closer links between East 
and West; talk about a possible reunification of East Germany with West 
Germany in the central part of the European continent. We are talking about 
changes that alter the basic assumptions for what a half century of our life has 
been like. As M. Paul Valery said, the trouble with the future is that it is no 
longer what it used to be. 

Very briefly, in terms of NATO and the Western alliance, the Undersecretary 
of State for Political Affairs in the first Reagan administration, Lawrence Eag- 
leberger, stated on several occasions that he thought the NATO alliance had 
only a 60/40 chance of survival: better than even, but not a great deal better. 
His concept was not that there would be any kind of legislative repeal of the 
Western alliance, no kind of a pronunciamento from a podium that any man 
would make in front of his own parliament, but that in terms of basic structure 
it would merely come to be a skeleton, an empty shell, in which there was no 
substance or content. And the obvious question is why. What is happening to 
imply that kind of trend for change? First, we, as a people in the U.S., are 
beginning to shift our attention and our focus away from the Atlantic and onto 
the Pacific, a most remarkable and monumental change in our basic attitude 
towards what we do in life. Second, the demographic focus of the U.S. is 
moving westward too. Population and prosperity go from the east to the west. 
John Naisbitt said in Megatrends that this very state we are in, Texas, is not 
southern, but much more western. Of the ten most rapidly growing cities in the 
U.S., eight lie in western states. We are, therefore, becoming much more 
attuned to what happens in the Pacific countries. Third, Western Europe as a 
competitive factor is opting out of a lot of high tech competition that is rising 
in the marketplaces of today. 
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It comes down to these as conclusions: a Western Europe no longer domi- 
nated by the U.S. ; a Western alliance that begins to fade and disappear; a 
disintegration of the Iron Curtain; a deterioration of Soviet control; the reunifi- 
cation of East and West. We talk about changes that are generational, and M. 
Paul Valery’s comment about the trouble with the future becomes relevant 
again. 

Move your gaze a little further beyond Europe to what is happening in the 
Soviet Union. Enormous, monumental changes are taking place there. Mikhail 
Gorbachev is his name. He came to power in March of 1985. He was the 
youngest member of the Politburo, the youngest Soviet leader since Joseph 
Stalin assumed power before WWII, and the first Soviet leader since Nikolai 
Lenin to have an academic degree from college, holding a baccalaureate in law 
from Moscow University. Mr. Gorbachev has made us familiar with the new 
words glasnost (openness) and perestroika (restructuring). It is extraordinary. If 
you go back to 1917, the beginning of that Russian revolution, the ideology of 
communism had a ghostlike, haunting impact on so many parts of the world 
outside of Soviet borders. For three-quarters of a century, one of the major 
political preoccupations of dozens of governments has been that haunting con- 
cern with the ideology of communism. If you would, indulge a gross oversim- 
plification involving two or three basic premises. The Soviets talk about the 
inevitability of conflict with imperialism, which means us. They talk about the 
inevitability of their triumph in that conflict. And they talk about the inherent 
superiority of their system. Conflict, triumph, and their superiority: that has 
been basic to every Soviet leader since 1917. It has been the fundamental tool 
of that society. 

With Mr. Gorbachev, that basic belief is beginning to be challenged, and 
it’s beginning to be changed. When Gorbachev talks about these things to his 
people, they often have a compelling, alarming quality. If you were a Soviet 
citizen, consider how you would react to a leader who takes a public podium 
and on television says to you, “Everybody in this society must change; every- 
body, from the worker to the minister to the Secretary of the Central Committee 
must change; and those who do not intend to change will be swept out of the 
road, violently if need be.” How much change? How wide, as long as everyone 
has to participate in it, is the change to become? Mr. Gorbachev says the current 
perestroika (restructuring) embraces not only the economy but all other facets 
of public life: social relations, the political system, the educational system, the 
health care system, the ideological sphere, the political work of the party. Said 
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Gorbachev, “I would equate restructuring with the same import as the word 
revolution.” 

Now to you and me, who have spent so many years of our lives hearing 
how much the word revolution is in the holy pantheon of communism, even a 
sacrosanct deity kind of belief, the idea of restructuring is important to revo- 
lution, as it implies the extent, the enormousness, of the things Gorbachev is 
attempting to create there. If you go back over the course of these decades gone 
by, the Soviet state was created in the belief that they could create jobs, 
accumulate power, aspire to world leadership, dominate this planet we call 
Earth, and that, in time, their ideology would sweep the globe. All of mankind 
would become Marxist: their projection of the future. 

Now in this decade of the 1980’s, the Soviet economy cannot begin to keep 
pace with the U.S. The Soviets don’t even purport to be competitive with the 
Japanese! The Soviet economy cannot even keep up with South Korea today. 
That does indeed begin to challenge the basis of their ideological belief, the 
very fundamental foundation of their creed, their role in life. A lot of us in the 
Western world could say there is a way to do it, and perhaps Gorbachev has 
the key to it: restructuring, change, accommodation, adaptation to this new high 
technology world. 

The Soviets don’t give a great deal of promise of being able to do it. It is 
a society in which merely having a mimeograph machine can be an act of 
treason. They can’t reproduce printed material without having the approval of 
the central political organization that controls all materials published there. 
When I say all materials published, I mean even the print work that goes on 
the face of a matchbook cover, even a street sign, even a store sign that tells 
what kind of shop it is. Everything that is reproduced for reading has to be 
approved by the central authority. Is that the kind of society that can entertain 
the concept of a computer, a modem, data banks, and printers? It is beyond 
their capacity to really reflect upon. They are being asked to change, and yet 
the current gerontocracy, that pantheon of leaders who are in their seventies and 
eighties, cannot change the system. They have spent their lifetimes constructing 
it and building it to what it is today. They are being asked to replace it with an 
entirely new concept of operations that is totally unfamiliar to them. They have 
had no experience with it. Perhaps most important of all, for any of the leaders 
to change means that he has to become irrelevant and unimportant. He has to 
remove himself from power. 
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I think it would be beyond human nature for us to imagine any person being 
willing to collaborate in the elimination of his own access to power. It does go 
to the heart of the system. They were able to transform themselves from a 19th 
century agricultural state into a 20th century industrial giant. Can they move 
into the 21st century of high technological sophistication? They have given 
themselves a bureaucratic system that is swollen, immobilized. Their system 
encourages mediocrity; it rewards it. It discourages innovation. It puts down 
any concept of initiative. It chokes off experimentation. It rewards deceit. It is 
rife with corruption. You could postulate, then, that change and reform may 
conceivably be impossible for the Soviet Union as they march down this corridor 
to the decade of the 1990’s. 

I want to close with a focus on a concept that, again, many of you have 
heard of: the Pacific basin, the Pacific rim countries. It has an enormous impact 
and import for American business, for American corporate efforts. It is startling. 
We talk about a basic shift of interests in the United States away from the 
Atlantic alliance, away from being an Atlantic civilization to being a Pacific 
civilization. 1980 was the first year that the dollar volume of American trade 
with Pacific nations was higher than the dollar volume of trade with the Atlantic 
countries. That is extraordinary. Not only has that persisted through the 1980’s, 
but in each and every year the gap between the Pacific and Atlantic trade has 
widened, as America more and more comes to focus on a Pacific civilization, 
on an economy dominated by Pacific economic relationships rather than by the 
Atlantic countries. 

It is interesting because, in the White House, Ronald Reagan is well aware 
that that is taking place. He has said on several occasions words to the equivalent 
of, “The future of our world lies much more in the Pacific than it does in the 
Atlantic.” The concept is not new. It goes all the way back to President 
Roosevelt. President Roosevelt was one who said that the dawn of the Pacific 
Ocean era will give rise to a new focus in man’s life. Ladies and gentlemen, 
the Roosevelt who said that was not Franklin Delano in the 1930’s or 40’s. It 
was Theodore Roosevelt in 1903. 

These projections by academicians, analysts, planners, commentators, policy 
makers, corporate officials, leaders, politicians, and government leaders are all 
coming true. It is equally relevant to Canada as it is to the U.S. The Canadians 
experienced in 1983, for the first time, an increase in dollar volume of trade 
with Pacific nations. For us in the U.S., this is an enormous change of focus 
and emphasis because you and I, as a people, come from antecedents who are 
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basically European. The founding fathers crossed that body of water they called 
the Atlantic. The original thirteen colonies all had waters of the Atlantic lapping 
on their beaches and their coastlines. The waves of immigrants that increased 
the American population came from European countries as well. We speak a 
European language-English. We have a common law structure that governs 
our marketplace, our corporate lives, our daily work responsibilities, and our 
individual relationships that is derived from the European common law system. 
Our basic religious patterns are from European Christianity. Our family con- 
ventions, customs, and traditions of daily life are all European in their origin. 

Now, after two centuries of life as a republic, we are shifting away from 
being an Atlantic to being a Pacific civilization. That is an extraordinary change. 
The Pacific rim countries, all of those countries around that great arc of the 
Pacific, contain forty-four percent of the world’s population. It has forty-five 
percent of the world’s gross industrial product. As a marketplace, it is in the 
neighborhood of three trillion dollars; not millions, not billions, but trillions 
and growing rapidly today. 

I had it put to me in an intriguing way in Washington. Someone had 
commented that, for two centuries, every time American leaders looked up 
from their desks and gazed across a body of water, it would be the Atlantic. 
When Ronald Reagan and the Californians whom he has chosen as advisors and 
counselors raise their eyes from the desks in their studies and gaze across a 
body of water, it is the Pacific Ocean that they look upon. Something to reflect 
on: the dawn of the Pacific Ocean era. 

All of this implies what I hope may be a little obvious: we are on the 
threshold of a startlingly new and dramatically different era. It is an era that is 
different from anything in our past human experience. There was once a Chinese 
classical philosopher, Confucius. He was able to assemble a large group of men 
and women, and he was very direct and to the point when he said, “All of you 
are cursed to live in the midst of very interesting times indeed.” John Naisbitt, 
the closing phrase of that best selling publishing event of the 1980’s, Mega- 
trends, said “My God, what a fantastic time in which to be alive.” Whereas 
that French poet, M. Paul Valery, said that the trouble with the future is that it 
is no longer what it used to be. 
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MINUTES OF THE 1987 ANNUAL MEETING 

November 15-18, 1987 

THE HYATT REGENCY HOTEL, SAN ANTONIO, TEXAS 

Sunday, November 1.5, 1987 

The Board of Directors held their regular quarterly meeting from 1:00 P.M. 

t0 4:00 P.M. 

Registration was held from 4:00 P.M. to 630 P.M. 

A presentation to the new Associates and their guests on the workings of 
the Casualty Actuarial Society was held from 5:30 P.M. to 6:30 P.M. The Vice 
Presidents made short presentations concerning their areas of responsibility and 
the workings of the committees which report to each of them. 

A general reception for all members and guests was held from 6:30 P.M. to 
7:30 P.M. 

Monday, November 16, 1987 

Registration continued from 7:30 A.M. to 8:30 A.M. 

The meeting opened with general remarks from the C.A.S. President, Mi- 
chael A. Walters. Mr. Walters then announced the results of the elections of 
Officers and Directors: 

President-Elect 
Kevin M. Ryan 

Directors 
Albert J. Beer 
Alan C. Curry 
Charles L. McClenahan 
Jerome A. Scheibl 

Mr. Walters recognized the twenty-five new Associates and presented diplo- 
mas to the thirty-nine new Fellows, who were introduced by Mr. David Hartman, 
President-Elect. The names of these individuals follow. 
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FELLOWS 

William R. Gillam 
Catherine B. Harwood 
Jeffrey R. Jordan 
Andrew E. Kudera 
David L. Miller 
Susan M. Miller 
Francis X. Murphy, Jr. 
Anthony Peraine 
Roberta J. Pflum 
Jeffrey H. Post 
Pamela S. Reale 
Jeffrey R. Scheuing 
Peter J. Schultheiss 

Richard V. Atkinson 
Roger A. Atkinson, III 
Robert S. Bennett 
Gary S. Bujaucius 
Andrew R. Cartmell 
Susan J. Comstock 
Martin W. Deede 
Thomas J. DeFalco 
Janet B. Dezube 
Jacques Dufresne 
Dennis D. Fasking 
Sholom Feldblum 
Robert W. Gardner 

Charles T. Bell 
Kathleen N. Casale 
Angela F. Elliott 
John S. Ewert 
Randall A. Farwell 
Nathan J. Gendelman 
Anne G. Greenwalt 
Marshall J. Grossack 
Norman P. Hebert 

ASSOCIATES 

Mary Jean King 
Christopher P. Maher 
Blaine C. Marles 
Rade T. Musulin 
Walter R. Naylor 
Rudy A. PaIenik 
Bruce Paterson 
Steven C. Peck 

Mark W. Scully 
John Slusarski 
Richard A. Smith 
Bruce R. Spidell 
Phillip A. Steinen 
Gerald R. Visintine 
Steven M. Visner 
Robert H. Wainscott 
Michael C. Walsh 
Kelly A. Wargo 
Guy H. Whitehead 
Robert L. Willsey 
James W. Yow 

Mark E. Schultze 
Susanne Sclafane 
Lisa A. Slotznick 
Linda D. Snook 
Judith E. Stoffel 
Mary Jane Styczynski 
Thomas A. Wallace 
Edward M. Wrobel, Jr. 

Mr. Walters then introduced LeRoy J. Simon, who delivered a brief address 
to the new members. 

Michael Fusco, Vice President of Programs, gave a brief summary of the 
program content. 

Mr. Walters next introduced Stephen Philbrick, Chairman of the Committee 
on the Review of Papers, who gave a brief summary of the new Proceedings 
papers. Mr. Philbrick announced the joint winners of the Dorweiler Prize, 
Howard C. Mahler for a discussion on “An Analysis of Experience Rating,” 
and Ronald F. Wiser for “The Cost of Mixing Reinsurance.” Mr. Walters then 
called for reviews of prior papers from those in the audience. There were none. 
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Mr. Walters concluded the business session at 9:45 A.M. 

At lo:30 A.M., Mr. Joseph A. Herbers of Tillinghast/Towers Perrin mod- 
erated a panel entitled “Natural Catastrophes.” His panel consisted of: 

Donald Seagraves 
Executive Director, AIRAC 

Leo Jordan 
Associate General Counsel, State Farm 

Michael Wacek 
Vice President & Actuary, E. W. Blanch 

The panelists presented their views on the impact of natural catastrophes on 
the insurance industry. 

Lunch was served from 12:00 P.M. to 1:30 P.M. A luncheon for new Fellows 
was hosted by members of the Executive Council. 

Beginning at 1:45 P.M., there were a series of concurrent sessions, including 
four Proceedings paper presentations, a discussion of a previous Proceedings 
paper, and five workshops. 

The new Proceedings papers presented were: 

1. “Reserving Long Term Medical Claims” 
Author: Richard H. Snader 

United States Fidelity and Guaranty Company 

2. “An Analysis of Excess Loss Development” 
Authors: Emanuel Pinto 

Metropolitan Reinsurance Company 
Daniel F. Gogol 
Metropolitan Reinsurance Company 

3. “On the Gap Between Target and Expected Underwriting Profit Margins” 
Author: Emilio C. Venezian 

Venezian Associates 

4. “Credibility for Classification Ratemaking Via the Hierarchical Normal 
Linear Model” 
Author: Stuart Klugman 

The University of Iowa 
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Also presented were discussions of a previous paper: 

“Some Consideration on Automobile Rating Systems Utilizing Individual 
Driving Records” by Lester B. Dropkin 
Discussions by: Sholom Feldblum 

Stephen W. Philbrick 
Christian Svendsgaard 

The workshops covered the following topics: 

1. “Questions and Answers with the CAS Board of Directors” 
Moderator: Michael Fusco 

Vice President, CAS Programs 
Panelists: Alan C. Curry 

Board of Directors, CAS 
David G. Hartman 
President-Elect, CAS 
Allan M. Kaufman 
Board of Directors, CAS 
Mavis A. Walters 
Board of Directors, CAS 

2. “Commercial Lines Simplification” 
Moderator: Michael Averill 

Vice President, Home Insurance Company 
Panelists: Barry C. Lipton 

Assistant Actuary, Fireman’s Fund Insurance Co. 
William E. Sleeper 
Principal, Sleeper, Sewell & Co. 

3. “Insuring the Long Haul Trucking Industry” 
Moderator: Jay Deragon 

President, National Risk Management 
Panelists: Lana Batts 

Vice President, American Trucking Association 
Gene S. Yerant 
President, Transport Insurance Company 



460 NOVEMBER MINUTES 

4. “Flexible Education: Which Way the CAS? 
Panelists: Michael L. Toothman 

Vice President, CAS Membership 
Steven G. Lehmann 
Chairman, CAS Syllabus Committee 

5. Limited Attendance Workshop: “Tax Planning” 
Moderator: Christopher P. Garand 

Vice President, General Reinsurance Corporation 

The Officers held a reception for new Fellows and their guests from 5:30 
P.M. to 6:30 P.M. 

The President’s Reception was held from 6:30 P.M. to 7:30 P.M. 

Tuesday, November 17, I987 

Tuesday morning from 8:30 A.M. until 9:30 A.M. was devoted to the business 
session of the American Academy of Actuaries. 

Ms. Mavis Walters, Vice President, American Academy of Actuaries, mod- 
erated a panel entitled, “The CAS and the AAA: Working Together.” Her panel 
consisted of: 

Albert Beer 
Chairperson, Committee on Property and Liability Insurance Issues, Amer- 
ican Academy of Actuaries 

Stephen Lowe 
Chairperson, Committee on Property and Liability Insurance Financial Re- 
porting, American Academy of Actuaries 

M. Stanley Hughey 
Member of IASB and Past President, American Academy of Actuaries 

At 9:30 A.M., Mr. Walters introduced the guest speaker, Robert Evans, 
Senior Associate of the Naisbitt Group, who presented his views on the future. 
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From 11:00 A.M. to 12 P.M., Jeffrey H. Post, Senior Actuarial Officer, St. 
Paul Fire and Marine, moderated a panel entitled “Update on Medical Malprac- 
tice Insurance.” The panel consisted of: 

James 0. Wood 
Consulting Actuary, Tillinghast/Towers Perrin 

Raymond Scalettar, M.D. 
Board of Directors, American Medical Association 

Lunch was served from 12:45 P.M. to 2:15 P.M. during which Mr. Walters 
delivered his Presidential Address. 

Open CAS committee meetings were held from 2:30 P.M. to 5:OO P.M. 

From 6:30 P.M. to 7:30 P.M., a general reception was held. 

Wednesday, November 18, 1987 

Concurrent sessions were held from 8:15 A.M. to 9:30 A.M. 

At 10:00 A.M., there was a panel discussion on “Wall Street’s Perspective 
on the Insurance Industry.” The moderator was Martin Bondy, Senior Vice 
President, Home Insurance Company. The panelists were: 

Thomas V. Cholnoky 
Securities Analyst, Goldman, Sachs & Company 

Leandro S. Galban, Jr. 
Senior Vice President, Donaldson, Lufkin & Jenrette 

David Seifer 
Vice President-Research, First Boston Corporation 

The closing remarks were made by Mr. Walters after which the Annual 
Meeting was adjourned at 11:45 A.M. 

In attendance as indicated by registration records were 223 Fellows; 79 
Associates; and 38 guests, subscribers, and students. The list of their names 
follows. 
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Alff, G. N. 
Asch, N. E. 
Atkinson, R. A. III 
Atkinson, R. V. 
Bailey, V. M. 
Balcarek, R. J. 
Barclay, D. L. 
Bartlett, W. N. 
Bass, I. K. 
Baum, E. J. 
Bear, R. A. 
Beer, A. J. 
Bellusci, D. M. 
Bennett, R. S. 
Bensimon, A. S. 
Ben-Zvi, P. N. 
Berquist, J. R. 
Bethel, N. A. 
Beverage, R. M. 
Bill, R. A. 
Blanchard, R. S. III 
Blivess, M. P. 
Boone, J. P. 
Bomhuetter, R. L. 
Bradshaw, J. G., Jr. 
Braithwaite, P. 
Brannigan, J. F. 
Briere, R. E. 
Brooks, D. L. 
Bryan, C. A. 
BuJaucius, G. S. 
Bursley, K. H. 
Captain, J. E. 
Carbaugh, A. B. 
Carponter, J. D. 
Carter, E. J. 
Cartmell, A. R. 
Comstock, S. J. 

FELLOWS 

Conger, R. F. 
Connell, E. C. 
Crowe, P. J. 
Curry, A. C. 
Daino, R. A. 
Dean, C. G. 
Deede, M. W. 
DeFalco, T. J. 
Degemess, J. A. 
Dembiec, L. A. 
Dezube, J. B. 
Dolan, M. C. 
Donaldson, J. P. 
Dufresne , J . 
Dyck, N. P. 
Dye, M. L. 
Easton, R. D. 
Eyers, R. G. 
Faber, J. A. 
Fasking, D. D. 
Feldblum , S . 
Ferguson, R. E. 
Fiebrink, M. E. 
Finger, R. J. 
Fisher, R. S. 
Fitzgibbon, W. J., Jr. 
Flaherty, D. J. 
Foote, J. M. 
Ford, E. W. 
Forde, C. S. 
Foster, R. B. 
Furst, P. A. 
Fusco, M. 
Gallagher, C. A. 
Gallagher, T. L. 
Gannon, A. H. 
Garand, C. P. 
Gardner, R. W. 

Giambo, R. A. 
Gibson, J. A., III 
Gillam, W. R. 
Gillespie, J. E. 
Gluck, S. M. 
Goldberg, S. F. 
Golz, J. F. 
Grady, D. J. 
Graham, T. L. 
Grannan, P. J. 
Greco, R. E. 
Hafling, D. N. 
Hale, J. B. 
Hall, A. A. 
Hall, J. A., III 
Hallstrom, R. C. 
Hartman, D. G. 
Harwayne, F. 
Harwood, C. B. 
Hebert, B. J. 
Heer, E. L. 
Hennessy, M. E. 
Hewitt, C. C., Jr. 
Higgins, B. J. 
Hoppe, K. J. 
Hough, P. E. 
Howald, R. A. 
Hoylman, D. J. 
Hughey, M. S. 
Hutter, H. E. 
Jean, R. W. 
Jordan, J. R. 
Kaliski, A. E. 
Kallop, R. H. 
Kane, A. B. 
Kaplan, R. S. 
Kaufman, A. M. 
Kelly, A. E. 



NOVEMBER MINUTES 463 

FELLOWS 

Nichols, R. S. 
Niswander, R. E., Jr. 
Oakden, D. J. 
Parker, C. M. 
Patrik, G. S. 
Peraine, A. 
Pflum, R. J. 
Philbrick, S. W. 
Phillips, H. J. 
Pinto, E. 
Post, J. H. 
Potts, C. M. 
Pruiksma, G. J. 
Purple, J. M. 
Reale-Sealand, P. 
Rodgers, B . T. 
Rosenberg, D. M. 
Roth, R. J., Jr. 
Ryan, K. M. 
Scheibl, J. A. 
Scheuing, J. R. 
Schultheiss, P. J. 
Schwartz, A. I. 
Scully, M. W. 
Sherman, 0. L., Jr. 
Siewert, J. J. 
Simon, L. J. 
Skumick, D . 
Slusarski, J. 
Smith, L. M. 
Smith, R. A. 
Snader, R. H. 
Spidell, B. R. 
Steeneck, L. R. 
Steer, %. D. 
Steinen, P. A. 

Kleinman, J. M. 
Kneuer, P. J. 
Knilans, K. 
Kollar, J. J. 
Koupf, G. I. 
Krause, G. A. 
Kudera, A. E. 
Lamb, R. M. 
LaRose, J. G. 
Lehmann, S. G. 
Levin, J. W. 
Linden, 0. M. 
Lindquist, P. L. 
Lipton, B. C. 
Lommele, J. A. 
Lonergan, K. F. 
Lowe, S. P. 
Lyle, A. C. 
Lyons, D. K. 
Makgill, S. S. 
Martin, P. C. 
Masterson, N. E. 
McClenahan, C. L. 
McDonald, G. P. 
McMurray, M. A. 
Mendelssohn, G. A. 
Meyer, R. E. 
Miccolis, R. S. 
Miller, D. L. 
Miller, R. A., III 
Miller, S. M. 
Mohl, F. J. 
Munt, D. S. 
Murphy, F. X., Jr. 
Murrin, T. E. 
Muza, J. J. 
Nester, K. L. 

Snug, E. J. 
Suchoff, S. B. 
Swift, J. A. 
Terrill, K. W. 
Tiller, M. W. 
Toothman, M. L. 
Truttmann, E. J. 
Van Ark, W. R. 
Venter, G. G. 
Visintine, G. R. 
Visner, S. M. 
Wacek, M. G. 
Wainscott, R. H. 
Walker, G. M. 
Walsh, M. C. 
Walters, M. A. 
Walters, M. A. 
Wargo, K. A. 
Warthen, T. V., III 
Webb, B. L. 
White, C. S. 
Whitehead, G. H. 
Williams, P. A. 
Willsey, L. W. 
Willsey, R. L. 
Wilson, J. C. 
Winkleman, J. J. 
Withers, D. A. 
Woll, R. G. 
Wood, J. 0. 
Woods, P. B. 
Wulterkens, P. E. 
Yow, J. W. 
Zatorski, R. T. 
Zicarelli, J. D. 
Zubulake, T. J. 
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Anderson, B. C. 
Andler, J. A. 
Bell, A. A. 
Bell, C. T. 
Brathwaite, M. E. 
Cadorine, A. R. 
Canetta, J. A. 
Carlton, K. E., III 
Cascio, M. J. 
Cathcart, S. B. 
Chorpita, F. M. 
Christhilf, D. A. 
Cohen, A. I. 
Connor, V. P. 
Costner, J. E. 
Covitz, B. 
Crifo, D. A. 
Dashoff, T. H. 
DeGarmo, L. W. 
Elliott, P. L. 
Evans, D. M. 
Ewert, J. 
Far-well, R. A. 
Fiebrink, D. C. 
Flanagan, T. A. 
Gendelman, N. J. 
Gogol, D. F. 

Altschuler, M. 
Berry, B. 
Brant, J. F. 
Brassier, D . 
Cunningham, J. 
Demarle, G. P. 
Dumontet, F. 
Eversmann, T. 
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ASSOCIATES 

Goldberg, T. L. 
Greenwalt, A. G. 
Groh, L. M. 
Grossack, M. J. 
Halpert, A. 
Harbage, R. A. 
Head, T. F. 
Hebert, N. P. 
Herbers, J. A. 
Hobart, G. P. 
Hurley, P. M. 
Jensen, J. P. 
King, M. J. 
Kolojay, T. M. 
Kulik, J. M. 
Kuo, C. K. 
Levine, G. M. 
Limper-t, J. J. 
Lis, R. S., Jr. 
Maher, C. P. 
Marles, B. C. 
McGovern, E. 
Morgan, S. T. 
Musulin, R. T. 
Naylor, W. R. 
Newell, R. T. 

Ollodart, B. E. 
Paterson, B. 
Peck, S. C. 
Quintano, R. A. 
Salton, J. C. 
Sansevero, M., Jr. 
Schultze, M. E. 
Schwab, D. 
Sclafane, S. 
Silverman, J. K. 
Slotznick, L. A. 
Smith, B. W. 
Snook, L. D. 
Snow, D. C. 
Somers, E. C. 
Stoffel, J. E. 
Styczynski, M. J. 
Svendsgaard, C 
Taylor, A. E. 
Tucker, W. B. 
Turner, G. W., Jr. 
Varca, J. J. 
Wallace, T. A. 
Webster, P. J. 
Whatley, M. W. 
Wrobel, E. M., Jr. 

GUESTS-SUBSCRIBERS-STUDENTS 

Feldmeier, J. Kellison, S. G. 
Fenrich, K. Kido, C. T. 
Galban, L. S., Jr. Knox, F. 
Gale, E. Laberge, C. 
Graves, G. Lemaire, J. 
Guarini, L. Little, D. 
Gutman, E. Metzner, C . 
Hopkovitz, M. Mitchell, K. 
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GUESTS-SUBSCRIBERS-STUDENTS 

Morrison, G. 
Narayan, P. 
Salton, M. A. 
Scrnggs, M. 
Simms, G. 

Smith, D. 
Smith, S. 
Spangler, J . 
Van Leer, P. 
Werland, D. 

Wheaton, K. 
Wills, M. E. 
Wilson, G. 
Winn, J. G. 



466 

REPORT OF THE VICE PRESIDENT-ADMINISTRATION 

This report is intended to provide the membership with a summary of the 
significant activities of the CAS during the past year. 

During 1987, the CAS continued to grow with 86 new members admitted 
and 61 Associates becoming new Fellows. Total membership now stands at 
1,365. A new regional affiliate, Casualty Actuaries of the Southeast (CASE), 
was formed. 

The Board of Directors, with primary responsibility for setting overall CAS 
policy, met four times during 1987. Several policy decisions were made. The 
significant actions taken by the Board were published in The Actuarial Review. 

The Executive Council, with primary responsibility for day to day activities, 
also met four times during the year. The April meeting of the Executive Council 
was held in conjunction with a committee chairpersons meeting. In addition, 
the Executive Council met with the leadership of the regional affiliates at the 
Annual Meeting in November. 

1987 was an unusually active year for the CAS. The activities of the Board, 
the Executive Council, and the CAS Committees included the following items. 

Enhancement of the Body of Actuarial Knowledge 

* Actuarial Principles 

Final exposure documents for statements of principles on ratemaking 
and reserving were released to the membership in October. A statement 
of principles on actuarial valuation has been drafted and will be released 
to the membership in 1988. 

* Actuarial Textbook 

Progress is being made on a textbook on casualty actuarial science. 
All chapters except one have been written and are being reviewed. Ex- 
posure to the membership is expected during 1988, and publication is 
expected in 1989. 
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* Bibliographies 

Bibliographies on ratemaking, reserves, management information, risk 
classification, and risk theory were published. The bibliographies will be 
updated and expanded during 1988. 

* Actuarial Forum 

The publication of a non-refereed journal was authorized. Entitled 
Actuarial Forum, the publication is scheduled for release in November. 

. Loss Reserve Discounting 

Two white papers were completed on the topic of loss reserve dis- 
counting. One is a discussion paper prepared by the Committee on Theory 
of Risk. The other is a paper on techniques and considerations prepared 
by the Committee on Reserves. Both will appear in the Actuarial Forum. 

Examinations, Education, and Continuing Education 

* Canadian Part 8 

The first CAS examination with separate Canadian content was given. 

* Flexible Education 

A proposal to extend the Flexible Education System to CAS Part 4 
was considered but deferred until 1989. The CAS and the Society of 
Actuaries are jointly considering proposals by the Canadian Institute of 
Actuaries for several changes in Parts 3 and 4 of both organizations. 

* Seminars 

A special interest seminar on ratemaking was held in March, and a 
Canadian loss reserve seminar was held in April. 

* Continuing Education Catalog 

A catalog of continuing education opportunities was distributed to the 
membership. 
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Programs 

. Actuarial Centennial 

The actuarial centennial will be held in June, 1989 to celebrate the 
100th anniversary of the actuarial profession in North America. In con- 
nection with the centennial, a history of the profession is being written. 
A task force of casualty actuaries has been appointed to help with the 
writing and editing. 

* Diamond Jubilee 

The CAS Diamond Jubilee will take place in November, 1989. A 
steering committee is actively working on plans. The 1989 ASTIN meeting 
will be hosted by the CAS in conjunction with the Diamond Jubilee. A 
history of the first 75 years of the CAS is being written. 

Organization and StafJing 

. Organizational Review 

An Organizational Review Task Force was formed to review the 
organizational structure of the CAS that was established in 1983. The 
Task Force’s objective is to determine if the structure is working as 
effectively as originally intended and what changes, if any, might be 
required to increase its effectiveness. The Task Force expects to conclude 
its review in 1988. 

* Meeting Planner 

A part-time meeting planner will be added to staff. 

Planning 

* Organization of the Profession 

A task force under the direction of the Council of Presidents has been 
formed to explore ways to strengthen the actuarial profession as a whole 
and to consider whether restructuring the organization of the profession 
would help achieve this goal. The task force has three casualty represen- 
tatives. A separate ad hoc CAS committee has also been formed to review 
the activities of the task force and formulate recommendations for the 
CAS Board of Directors. 



REPORT OF THE VICE PRESIDENT-ADMINISTRATION 469 

. CEO Interviews 

Interviews are being conducted with CEO’s of major companies for 
the purpose of surveying industry needs in the 1990’s, management’s 
assessment of what skills are needed to deal with those needs, and man- 
agement’s perspective on how well actuaries provide those skills. 

Communication 

* Publicity 

An arrangement was made to obtain publicity services from the Amer- 
ican Academy of Actuaries’ public information staff. Efforts have been 
directed toward coverage in the trade press for CAS meetings and special 
interest seminars. 

. Membership Survey 

A comprehensive membership survey was completed and the results 
have been compiled for the Board of Directors, the Executive Council, 
and the Long Range Planning Committee. Copies were sent to committee 
chairmen and regional affiliates. 

For 1988, the Board of Directors re-elected the following Vice Presidents: 

Vice President-Administration Richard H. Snader 
Vice President-Development Charles A. Bryan 
Vice President-Membership Michael L. Toothman 
Vice President-Programs Michael Fusco 

The membership elected Kevin Ryan to President-Elect and four new mem- 
bers to the Board: Albert Beer, Alan Curry, Charles McClenahan, and Jerome 
Scheibl . 

The CAS financial condition remained strong in 1987. The surplus increase 
in 1987 was greater than anticipated, primarily due to unexpected revenues 
from the ratemaking seminar and CLRS. Despite the favorable results achieved 
in 1987, both a dues increase and an exam fee increase will be needed in 1988 
to cover major new items of expense such as the Actuarial Forum. Dues will 
be increased to $150 for both Fellows and Associates. Exam fees will be $100. 
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The Audit Committee examined the CAS books for fiscal year 1987 and 
found the accounts to be properly stated. The year ended with an increase in 
surplus of $40,287.71. Members’ equity now stands at $373,208.41, sub- 
divided as follows: 

Michelbacher Fund $ 67,175.45 
Dorweiler Fund 9,168.31 
CAS Trust 2,327.53 
Scholarship Fund 7,225.48 
CLRS Fund 5,ooo.oo 
CAS Surplus 282,311.64 

Total Members’ Equity 373,208.41 

Respectfully submitted, 

RICHARD H. SNADER 

Vice President-Administration 
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FINANCIAL REPORT 
FISCAL YEAR ENDED g/30/87 

OPERATING RESULTS BY FUNCTION 

FUNCTION INCOME DISBURSEMENTS NET RESULTS 

Exams $186,722.03 $137,563 29 (a) $49,158 74 
Member Services (b) 1wo57.93 253,997 67 (71,939.74) 
Programs 321,212.76 298,612 96 22.599.80 
Other (c) 40,468.91 0 00 40 468 91 I 
Total $730,461.63 $690,173 92 5 40,287 71 (d) 

Notes: (a) Does not Include exam related expenses incurred by the development functw 
(b) Areas under superuslon of VP-AdministratIon & VP-Development. 
(c) Investment income less Foreign Exchange and Miscellaneous Bank Debt&. 
(d) Change in CAS Surplus. 

ASSETS 

Checking Account 
Money Market Fund 
Bank Certificates of De- 
posit 
U.S. Treasury Notes & Bills 
Accrued Interest 
CLRS Fund 

Total Assets 

LIABILITIES 

Office Expenses 
Printing Expenses 
Prepaid Exam Fees 
Prepaid Reading Fees 
Meeting Expenses & 
Prepaid Fees 
Diamond Jubilee Expense 
Reserve 
Other 

Total Liabilities 

MEMBERS EQUITY 

Michelbacher Fund 
Dorweiler Fund 
CAS Trust 
Scholarship Fund 
CLRS Fund 
CAS Surplus 

Total Equity 

BALANCE SHEET 

9130186 

$ 63,313.38 $105,648.35 
175,786.78 107,559.25 
100.000.00 0.00 

243,247 83 
9,443 40 

00 5,000 

$596,791.39 

443,631.19 200,383.36 
15,934.63 6,491.23 

5,ooo.oo 0.00 

$667.773.42 $ 80,982.03 

$ 34,965.oO 
146,133 06 

55,712 20 
0.00 

10,435.38 

$ 46.000.00 
137,389.59 

39,211.oo 
117.00 

(7,529.31) 

18.729.37 84,210.03 

253 00 

$266,228.01 

5,166.70 

$304.565.01 

$ 64,351.65 
9.703.83 
2,195.78 
7,288.19 
5,oM).oo 

242,023.93 

$330563.38 

$ 67,175.45 
9,168.31 
2,327.53 
7,225.48 
5,ooo.oo 

282.311 64 

$373.208.41 

9130187 CHANGE 

$ 42.334.97 
(68.227.53) 

(100.000.00) 

5 11.035.00 
(8.743.47) 

(16,501 20) 
117.00 

(17.964.69) 

65.480 66 

4,913.70 

$ 38,337.OO 

$ 2.823.60 
(535.52) 
131.75 
(62.71) 

0.00 
40,287.71 

$ 42,645.03 

Richard H Snader, 
VIE Presrdent-Admlnistfation 

This IS to certify that the assets and accounts shown in the above financial statement have 
been audited and found to be correct. 

Audit Commttee 

David M. Klein, Chairman 
Albert J. Quinn 
Wllllam J. Rowland 
Charles Walter Stewart 
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1987 EXAMINATIONS-SUCCESSFUL CANDIDATES 

Examinations for Parts 4, 6, 8, and 10 of the Casualty Actuarial Society 
were held on May 5, 6, 7, and 8, 1987. Examinations for Parts 5, 7, and 9 
were held on November 4, 5, and 6. 

Examinations for Parts 1, 2, and 3 (SOA courses 100, 110, 120, 130, and 
135) are jointly sponsored by the Casualty Actuarial Society and the Society of 
Actuaries. These examinations were given in May and November of 1987. 
Candidates who passed these examinations were listed in the joint releases of 
the two societies. 

The Casualty Actuarial Society and the Society of Actuaries jointly awarded 
prizes to the undergraduates ranking the highest on the Calculus and Linear 
Algebra examination. For the May, 1987 examination, the $200 prize was 
awarded to Giuseppe Russo. The additional $100 prize winners were Martin 
Leroux, Steven P. Lindblad, David W. Littleton, and Robert S. Manning. 

For the November, 1987 examination, the $200 prize was awarded to Daniel 
C. Testa. The additional $100 prize winners were Daniel B. Finn, Michael J. 
Johnson, Timothy A. Kelley, and Andrew A. Samwick. 

The following candidates will be admitted as Fellows and Associates at the 
May, 1988 meeting as a result of their successful completion of the Society 
requirements in the November, 1987 examinations. 

Richard V. Atkinson 
Roger A. Atkinson, III 
Robert S. Bennett 
Gary S. Bujaucius 
Andrew R. Cartmell 
Susan J. Comstock 
Martin W. Deede 
Thomas J. DeFalco 
Janet B. Dezube 
Jacques Dufresne 
Dennis D. Fasking 

FELLOWS 

Shalom Feldblum 
Robert W. Gardner 
William R. Gillam 
Catherine B. Harwood 
Jeffrey R. Jordan 
Andrew E. Kudera 
David L. Miller 
Susan M. Miller 
Francis X. Murphy, Jr. 
Anthony Peraine 
Roberta J. Pflum 

Jeffrey H. Post 
Pamela S. Reale 
Jeffrey R. Scheuing 
Peter J. Schultheiss 
Mark W. Scully 
John Slusarski 
Richard A. Smith 
Bruce R. Spidell 
Phillip A. Steinen 
Gerald R. Visintine 
Steven M. Visner 
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By (4.4.4), different subsets of predictors, say A4 and N, are compared by 
means of the statistic: 

GMN = (Xb)T[X,(XLX~)- ‘XL - XN(X;XN)-‘X;](Xb) - (qM - q,v)a’, 

= bTC.wvb - (qm - q,v)rr*, (4.43 

where CMN is the appropriate p X p matrix. We note that the final member of 
this expression was not used by Spjotvoll. 

Spjotvoll goes on (summarized by Miller) to develop maximum and mini- 
mum values for GiuN conditional upon b lying within a (1 - 01) confidence set 
of the form: 

Pr[(b - 6)‘Xrx’(b - 6) c k] = 1 - (Y, 

where 6 is the regression estimate of b in the full model. 

These limits on GM~ may be used to test whether A4 provides a significantly 
better or worse fit than N to the data. 

5. METHODS OF ESTIMATION OF SECOND MOMENTS OF LOSS RESERVES 

5.1. General 

This section will consider methods by which MSEP of loss reserves can be 
estimated. 

First note that this will not consist merely of estimating (3.3.3). Typically, 
Y* will be some vector of future claim payments, subdivided for example 
according to year of occurrence and development year. In such a case, the 
estimated loss reserve would be: 

lj = 1TF*, 

where 1 is an m-vector with every component equal to unity. 

Then (3.3.3) is replaced by: 

(5.1.1) 

MSEP(R) = lre(e*)’ 1 + l’,?Z[x*(6~ - &A)]* 1 + (prediction bias)2. 
(5.1.2) 

This last equation shows that the MSEP of loss reserve R consists of separate 
terms representing statistical error, estimation error and prediction bias respec- 
tively. 
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Greenwood, Deborah A. 
Gross, Marian R. 
Gusler, Terry D. 
Harr, Steven T. 
Heise, Mark A. 
Hemerick, Mary B. 
Highet, Thomas H. 
Ikeda, Joanne K. 
Ill, Jeffrey R. 
Jones, Brian A. 
Jones, Terre11 A. 
Kangas, Patricia L. 
Kelso, Kevin E. 
Kerin, Allan A. 
Kerner, Michael G. 
Lavallee , Normand 
Lavrey, Paul W. 
Lefebvre, Christine 
Letourneau, Roland D. 
Lew, Allen 
Loisel, Andre 
Lomartire, Katherine A. 
MacKenzie, Kathleen A, 
McCarty, Jeffrey F. 
McFarlane, Liam M. 

Part 6 

Allen, Danny M. 
Ayres, Karen F. 
Ayres, William P. 
Bauer, Bruno P. 
Bell, Charles T. 
Book, Steven W. 
Bowman, David R. 
Briggs, Steven A. 
Bryant, Deborah H. 
Burns, Patrick J. 
Byington, Jennifer S. 

1987 EXAMINATIONS 

Mercier, Mark F: 
Mitchell, H . Elizabeth 

McIntosh, Heather L. 

Murphy, Daniel M. 

McMillan, Liming S. 

Musulin, Rade T. 
Naigles, Mark 
Naylor, Walter R. 

McShea, Christopher J. 

Norton, Jonathan 
Nystrom, Keith R. 
Ottone, Joanne M. 
Patschak, Susan J. 
Perez, Andre 
Phifer, Robert C. 
Poe, Michael D. 
Pouliot, Lisa M. 
Prescott, Richard W. 
Redding, Scott E. 
Regnier, Steven J. 
Retterath, Robin M. 
Roberge, Linda 
Rodrigue, Michel 
Samson, Pierre 
Scanlon, Edmund S. 

Share, Robert D. 
Shook, Gary E. 
Speedling, Michael P. 

Schmidt, Jeffrey W. 

Stahley, Barbara A. 
Stephenson, Karin L. 

Schultze, Mark E. 

Suchar, Christopher M. 
Tang, Lee M. 

Shampo, Jonathan N. 

Taylor, Rae M. 
Teetsel, Marianne 
Teng, Ting-Shih 
Tremblay, Paul 
Vanier, Anne-Marie 
Van Laar, Kenneth R., Jr. 
Wagner, Rebecca A. 
Walker, Christopher P. 
Wallace, Thomas A. 
Wanner, Gregory S. 
Watkins, Nancy P. 
Weinstein, Scott P. 
Wenitsky, Russell B. 
Winslow, Martha A. 
Yocius, Richard P. 

Cain, Mark J. 
Casale, Kathleen N. 
Caudill, Teresa J. 
Chaffee, Janet L. 
Cloutier, Denis 
Cofield, Joseph F. 
Conley, Kevin J. 
Crowe, Alan M. 
Darby, Robert N. 
Elliott, Angela F. 
Ely, James 

Emmons, William E. 
Evans, Karen F. 
Ewert, John S. 
Flannery, Nancy G. 
Fontaine, Andre F. 
Gagnon, Luc 
Gendelman, Nathan J 
Gibson, John F. 
Gozzo, Susan M. 
Grossack, Marshall J. 
Gruenhagen, Todd A. 
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Hebert, Norman P. 
Higdon, Barbara A. 
Higgins, James S. 
Hill, Robert C. 
Hrozinecik, George A. 
Jasper, Jane E. 
King, Mary Jean 
Lamy, Mathieu 
Leveille, Jean-Marc 
Maher, Christopher P. 
Mahoney, Michael W. 
Marchena, Eduardo P. 
Marles, Blaine C. 
McCreesh, James B. 
Meyer, Robert J. 
Mitchell, William H. 

Part 8 

Abell, Ralph L. 
Allaire, Christiane 
Artes, Lawrence J. 
Bellafiore, Leonard A. 
Blakinger, Jean M. 
Bourdon, Theresa A. 
Bradley, J. Scott 

Mohler, Elena D. 
Moylan, Thomas G. 
Nemlick, Kenneth J. 
Nyce, G. Christopher 
Palenik, Rudy A. 
Pate& Bhikhabhai C. 
Paterson, Bruce 
Peck, Steven C. 
Penick, Robert L. 
Popejoy, Kathy 
Premont, Andre 
Schmid, Valerie L. 
Schug, Richard D. 
Schwartz, Arthur J. 
Sclafane, Susanne 

Girard, Gregory S. 
Graves, Nancy A. 
Griffith, Ann V. 
Groh, Linda M. 
Haefner, Larry A. 
Hays, David H. 
Herbers, Joseph A. 

Brathwaite, Malcolm E. Johnson, Eric J. 
Brehm, Paul J. 
Carlson, Christopher S 
Caron, Louis P. 
Chabarek, Paul 
Conway, Ann M. 
Crawshaw, Mark 
Donnelly, Vincent T. 
Feldblum, Sholom 
Fletcher, James E. 
Francis, Louise A. 
Frank, Jacque B. 
Gillam. William R. 

Johnson, Wendy A. 
Joyce, John J. 
Keatinge, Clive L. 
Kudera, Andrew E. 
Lalonde, David A. 
Lamb, Dean K. 
Lamb, John A. 

Skov, Steven A. 
Slotznick, Lisa A. 
Snook, Linda D. 
Spieler, David 
Steinberg, Karen F. 
Stoffel, Judith E. 
Strommen, Douglas N. 
Styczynski, Mary Jane 
Swanstrom, Ronald J. 
Van de Water, John V. 
Vetter, Barbara A. 
White, Lawrence 
Wildman, Peter W. 
Wrobel, Edward M. 
Yow, Heather E. 

Miller, David L. 
Miller, Mary F. 
Mueller, Nancy D. 
Muller, Robert G. 
Mulvaney, Mark W. 
Murphy, Francis X., Jr. 
Ng , Wai Hung 
Overgaard, Wade T. 
Phillips, George N. 
Privman, Boris 
Radau, Christine E. 
Schwab, Debbie 
Somberger, George C . 
Tucker, Warren B. 
Wacker, Gregory M. 

Leccese, Nicholas M., Jr. Whitehead, Guy H. 
Lessard , Alain Whitlock, Robert G. 
MacKinnon, Brett A. Wilk, Roger A. 
McDermott, Sean P. Wilson, Ernest I. 
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Part 10 

Atkinson, Richard V. 
Atkinson, Roger A., III 
Anderson, Mary V. 
Bennett, Robert S. 
Boudreau, Joseph J. 
Brown, Brian Y. 
Bujaucius, Gary S. 
Cartmell, Andrew R. 
Comstock, Susan J. 
Cross, Susan L. 
Deede, Martin W. 
DeFalco, Thomas J. 
Dekle, James N. 
Dezube, Janet B. 
Dufresne, Jacques 
Earwaker, Bruce G. 
Fasking, Dennis D. 
Feldblum, Sholom 

Gardner, Robert W. Scully, Mark W. 
Gorvett, Richard W. Shepherd, Linda A. 
Greaney, Kevin M. Slusarski, John 
Handte, Malcolm R. Smith, Richard A. 
Harwood, Catherine B. Spidell, Bruce R. 
Jordan, Jeffrey R. Steinen, Phillip A. 
Lacroix, Marthe A. Sutter, Russel L. 
Miller, Susan M. Turner, George W., Jr. 
Ollodart, Bruce E. Visintine, Gerald R. 
Peraine, Anthony Visner, Steven M. 
Pflum, Roberta J. VonSeggem, William J. 
Post, Jeffrey H. Wainscott, Robert H. 
Reale, Pamela S. Walsh, Michael C. 
Sandman, Donald D. Wargo, Kelly A. 
Scheuing , Jeffrey R . Weber, Dominic A. 
Scholl, David C. Whitehead, Guy H. 
Schultheiss, Peter J. Willsey, Robert L. 
Schultz, Roger A. Yow, James W. 
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The following candidates will be admitted as Fellows and Associates at the 
May, 1988 meeting as a result of their successful completion of the Society 
requirements in the November, 1987 examinations. 

FELLOWS 

Mary V. Anderson 
Brian Z. Brown 
William M. Carpenter 
Sanders B. Cathcart 
Bruce G. Earwaker 
Kenneth R. Kasner 
Eric R. Keen 

Mat-the A. Lacroix 
Patrick Mailloux 
William J. Miller 
George N. Phillips 
Donald D. Sandman 
Roger A. Schultz 

Linda A. Shepherd 
Russel L. Sutter 
Jean Vaillancourt 
William J. VonSeggern 
James C. Votta 
Patricia J. Webster 

Jeffrey Adams Susan M. Gozzo Thomas G. Moylan 
Lawrence J. Artes Nancy A. Graves Chris E. Nelson 
Robert K. Bender Bruce H. Green Kenneth J. Nemlick 
Kay E. Bennighof James W. Haidu Kwok C. Ng 
Steven W. Book James S. Higgins Christopher G. Nyce 
Michael Caulfield Alan M. Hines George N. Phillips 
Denis Cloutier Jane E. Jasper Denis Poirier 
Joseph F. Cofield Steven J. Johnston Sasikala Raman 
Steven L. Colin John J. Joyce Srinivasa Ramanujam 
Kevin J. Conley Chester T. Kido Thomas E. Schadler 
Alan M. Crowe Constantine G. Koufacos Valerie L. Schmid 
Michael K. Curry David A. Lalonde Richard D. Schug 
Robert N. Darby Susan E. LaPointe Steven A. Skov 
Donna R. Dickinson Richard Lebrun John A. Stenmark 
Mark DiGaetano Cecilia M. LePere Douglas N. Strommen 
James Ely Roland D. Letoumeau Ronald J. Swanstrom 
Karen F. Evans David J. Macesic Guy Vezina 
William G. Fanning Michael W. Mahoney Debra L. Werland 
Beth E. Fitzgerald James B. McCreesh Peter W. Wildman 
Richard J. Gergasko William H. Mitchell Heather E. Yow 
Richard N. Gibson Elena D. Mohler 

ASSOCIATES 
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The following is the list of successful candidates in examinations held in 
November, 1987. 

Part 5 

Abellera, Daniel N. Fallon, Steven R. 
Adams, Jeffrey Felisky, Kendra M. 
Adams, Lawrence E. Finnerty, Deborah C. 
Allen, Nancy S. Fitzpatrick, Kerry L. 
Ayres, Karen F. Francoeur, Yves 
Ayres, William P. Gleason, Bradley J. 
Barnes, Walter B. Goldstein, Laurence B 
Becker, Allan R. Golec, Matthew E. 
Belleau, Richard Grim, Cynthia M. 
Blank, Cara M. Groshong, Susan J. 
Bodiford, William T., III Gruenhagen, Todd A. 
Bourassa, Pierre 
Brassier, Dominique E. 
Brauner, Yaakov B. 
Burt, Richard F., Jr. 
Cain, Mark J. 
Carroll, Lynn R. 
Carter, Victoria J. 
Cauchon, Martin 
Caudill, Teresa J. 
Chang, Jessalyn 
Chu, Cindy C. 
Cloutier, Jean 
Cole, Jeffrey R. 
Colford, Cynthia S . 
Connor, Kathleen F. 
Cossette, Charles 
Costello, Dianne 
Czabaj, Daniel J. 
Daigneault, Wayde A. 
Denoncourt, Germain 
Doyon, Yves 
Duffy, Timothy B. 
Dumulon, Denis 
Ely, James 

Hat-r, Steven T. 
Hartzen, Gayle L. 
Hausserman, Diane K. 
Hemerick, Mary B. 
Hess, Thomas G. 
Highet, Thomas H. 
Huberman, Gloria A. 
Hwang, Li Hwan 
111, Jeffrey R. 
Jasper, Jane E. 
Kelso, Kevin E. 
Kenyon, Deborah E. 
Kemer, Michael G. 
Kim, Changseob 
Kincaid, Bryan J. 
Kirste, Richard 0. 

Lew, Allen 
Luker, Christopher J. 
Mackenzie, Kathleen A. 
Mailhot, Susan C. 
Main, William G. 
Marcinko, Carole F. 
McCarty, Jeffrey F. 
McIntosh, Heather L. 
McNeese, Dennis T. 
McPadden, Matthew S. 
Merlino, Paul M. 
Meyer, Stephen J. 
Michel, Aaron E. 
Michelson, Jon W. 
Miller, Brett E. 
Mitchell, H. Elizabeth 
Mitzel, Charles B. 
Moynihan, Kevin J. 
Murphy, Daniel M. 
Murphy, Marianne M. 
Nerone, Anthony J. 
Nimick, Anne H. 
Norton, Jonathan 
Olszewski, Laura A. 
Ondrich, Naomi S. 
Palmer, Donald D. 
Patschak, Susan J. 

Koufacos, Constantine G Perez, Andre 
Kozlowski, Ronald T. Petersen, Loren V. 
Kretsch, David J. Premont, Andre 
Lam-in, Michel Prescott, Richard W. 
Lavrey, Paul W. Price, Debbie 
Lee, Ramona C. Quinn, Timothy P. 
Lemieux, Eric F. Raguse, Jeffrey C. 
L.ePere, Cecilia M. Rahardjo , Kay K. 
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Ramsey, Deborah L. Skov, Steven A. 
Reddig, Scott E. Speedling, Michael P. 
Revilla, Victor U. Spiegler, David 
Rominske, Steven C. Steenken, Lisa N. 
Rundle, Timothy J. Steinert, Lawrence J. 
Sadwin, Stuart G. Stobo, Deborah A. 
Scott, Robert F. Strauss, Frederick M. 
Shadman-Valavi, Ahmad Struzzieri, Paul J. 
Sheng, Michelle G. 
Simon, Christy L. 

Tang, Lee M. 
Taylor, Rae M. 

Part 7 

Allen, Danny M. 
Artes, Lawrence J. 
Barnes, Katharine E. 
Bender, Robert K. 
Bennighof, Kay E. 
Book, Steven W. 
Bradley, J. Scott 
Bums, Patrick J. 
Bums, William E. 
Caulfield, Michael 
Clark, David R. 
Cloutier, Denis 
Cofield, Joseph F. 
Colin, Steven L. 
Conley, Kevin J. 
Crowe, Alan M. 
Curry, Michael K. 
Darby, Robert N. 
Davenport, Edgar W. 
Dickinson, Donna R. 
DiGaetano , Mark 
Evans, Karen F. 
Evensen, Philip A. 
Fanning, William G. 
Fitzgerald, Beth E. 
Gergasko, Richard J. 

Teetsel, Marianne 
Teng, Ting-Shih 
Turvill, Melanie A. 
Vanier, Anne-Marie 
Vasek, William 
Wagner, Rebecca A. 
Walker, Christopher P. 
Wenitsky, Russell B. 
Wickenden, Leigh F. 
Wischmeyer, Chad C. 

Gibson, Richard N. 
Gill, Bonnie S. 
Gozzo, Susan M. 
Graves, Nancy A. 
Gray, Margaret 0. 
Green, Bruce H. 
Greenhill, Eric L. 
Haidu, James W. 
Heise, Mark A. 
Higgins, James S. 
Hines, Alan M. 
Hurley, John M. 
James, Peter H. 
Jeffery, Philip W. 
Johnston, Steven J. 
Jones, Brian A. 
Joyce, John J. 
Kaufman, David L. 
Kido, Chester T. 
Konopa, Milan E. 
Laberge, Christian 
Lalonde, David A. 
LaPointe, Susan E. 
Lebrun, Richard 
Letoumeau, Roland D 
Macesic, David J. 

Mahoney, Michael W. 
McCreesh, James B. 
McShea, Christopher J. 
Meyer, Robert J. 
Mitchell, William H. 
Mohler, Elena D. 
Moylan, Thomas G. 
Nelson, Chris E. 
Nemlick, Kenneth J. 
Nesmith, Robin 
Ng, Kwok C. 
Nyce, G. Christopher 
Ottone, Joanne M. 
Paddock, Timothy A. 
Phillips, George N. 
Pino, Susan L. 
Poirier, Denis 
Provencher, Yves 
Radau, Christine E. 
Raman, Sasikala 
Ramanujam, Srinivasa 
Rech, James E. 
Roberts, Jonathan S. 
Rosenbach, Allen D. 
Schadler, Thomas E. 
Schill, Barbara J. 
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Schmid, Valerie L. Sublett, Sharon Wellington, Elizabeth A. 
Schug, Richard D. Suchar, Christopher M. Werland, Debra L. 
Seiter, Margaret E. Swanstrom, Ronald J. White, Lawrence 
Stenmark, John A. Tinkler, William P. Wildman, Peter W. 
Stone, Edward C. Vezina, Guy Winslow, Martha A. 
Strommen, Douglas N. Weihrich, Leslie D. Yow, Heather E. 

Part 9 

Allaire, Christiane 
Anderson, Mary V. 
Bakel, Leo R. 
Boisvert, Paul, Jr. 
Boucek, Charles H. 
Boudreau, Joseph J. 
Bourdon, Theresa A. 
Brahmer, John 0. 
Brehm, Paul J. 
Brown, Brian Z. 
Cardoso, Ruy A. 
Carlson, Christopher S. 
Cat-on, Louis P. 
Carpenter, William M. 
Cathcart, Sanders B. 
Conley, Kevin J. 
Conway, Ann M. 
Crawshaw, Mark 
Cross, Susan L. 
DiDonato, Anthony M. 
Earwaker, Bruce G. 
Ericson, Janet M. 
Girard, Gregory S. 
Goldberg, Leonard R. 
Gorvett, Richard W. 
Graves, Gregory T. 
Greene, Alex R. 
Griffith, Ann V. 

Groh, Linda M. 
Grossack, Marshall J. 
Gunn, Christy H. 
Haefner, Larry A. 
Hays, David H. 
Hebert, Norman P. 
Hill, Anthony D. 
Hofmann, Richard A. 
Johnson, Wendy A. 
Kadison, Jeffrey P. 
Kasner, Kenneth R. 
Keatinge, Clive L. 
Keen, Eric R. 
Kryczka, John R. 
Lacroix, Mar-the A. 
Lamb, Dean K. 
Lebens, Joseph R. 
Lewandowski, John J. 
Maher, Christopher P. 
Mailloux, Patrick 
Math, Steven E. 
McCoy, Mary E. 
Miller, Mary F. 
Miller, William J. 
Mucci, Robert V. 
Overgaard, Wade T. 
Paterson, Bruce 
Peck, Steven C. 

Peterson, Steven J. 
Procopio, Donald W. 
Proska, Mark R. 
Rice, Denise E. 
Sandman, Donald D. 
Schultz, Roger A. 
Shapland, Mark R. 
Shepherd, Linda A. 
Stoffel, Judith E. 
Sutter, Russel L. 
Taylor, Angela E. 
Theisen, Joseph P. 
Thompson, Robert W. 
Tistan, Ernest S. 
Vaillancourt, Jean 
Veilleux, Andre 
Volponi, Joseph L. 
VonSeggem, William J. 
Votta, James C. 
Wachter, Christopher J. 
Wacker, Gregory M. 
Webster, Patricia J. 
Whitlock, Robert G., Jr. 
Wilson, Ernest I. 
Woemer, Susan K. 
Woodruff, Arlene F. 
Yit, Bill S. 
Yunque, Mark A. 



h I:W FELLOWS ADMITTED MAY, 1987 (Left to Right): First Row: Michael A. Walters (President). Rajagopalan 
K. Raman, Denis G. Guenthner. David A. Withers, D. Lee Barclay, Charles I. Petit, Layne M. Onufer, Neil C. 
Aldin. Grover M. Edie; Second Row: Howard M. Eagelfeld. Myron L. Dye, Timothy L. Schilling, Ruth A. 
Howald. Allan Chuck, Wayne S. Keller. Warren D. Montgomery; Third Row: Steven A. Gapp, Paul J. Kneuer. 
Frederick F. Cripe. Charles Gruber, Robert H. Lee. Kenneth Easlon, Mark J. Homan. 

is 



NEW ASSOCIATES ADMITTED MAY. 1987 tLrft to Right): First Row: Dean K. Lamb. Donald W. Procopio. Alex R. Greene. Larry A Haefner. I ,.i’> Id H. 

Hay,. Malcolm E. Brathwaite. Karen Pichler Valsnti, Susan L. Cros,. Bill S. Yit. William Der. Sara E. Schlenker. Michael A. Walters (President]. Second 

Row: Charlrr H. Boucrk. David R. Hryman. Mark R. Prwka. Mark R. Shapland. Ralph L. Abell. John W. Buchanan. Jame\ C. Votta. Gregory T. Graves. 

Lincoln B. Williams, R. Glenn Taylor. Roheti A. Wchcr: Third Rnu: Nicholas 51. Leccew. Richard S. Brutto. Paul J. Brchm. Ktm Scott, Ray Cardow. Brett 

A. MacKinnon. Ann V. Griffith. Norman E. Donelwn: Fourth Rou: Jean-Luc Allard. Debbie Schwab. Gregor) S. Girard. Ertc R. Keen. Mark Crawshaw. 

Sean I? McDermott. Eliw C. L~ehen. Peter G. Wck. Jowph J Boudreau: Fifth Row: Anthonk M. DiDonato. Chyen Chen. Craig P. Taylor. Leonard R. 

G,,ldhrrg. Jrromr F. Klcnou. Rohln Willlams. Chn\tianr Allaire. Ann hl. Conway: Sixth Row: Cliw L. Keatin~e. Paul Boisvcn. Jr.. Carol Dubian. W;lltrr 

P Cir\lak. Pierre G. Launn. Pierre Fmmcntin. Mary E Miller. Thereu Wilwn Bourdon: Seventh Rou: .Andre Veilleux. Janet hl. Erioon. Sam F. Licitra. 

Peter J. Sicrcw~cr. Paul E. Lacko. Kenneth R Kri5singer. John I. Leuandowski. Ernest I. Wtlaon: Not pictured: Joseph Lehen\. Richard Piano. Frederic 

Schnapp 



I 

4X3 

I 

lrst Row. 

M~chacl A. Walter\ (I’rc~itlent). C’athcrin~ Harwood. 1’;1m Rcalc. Roberta Pllum, 

Susan Miller; Second Row: Kelly Wargo, Gerald Visintinc, Michael Walsh. 

Phillip Steinen, Jell Jordan: Third Row: James Yaw. Shalom Fcldblum. Janet 

Dczubc. Anthony Pcrainc, Andrew Kudcra. Jcfl’rcy Schcuing: Fourth Row: 

Gary Bulaucius, Robert Willsey, Susan Comstock. Bruce Spidell, Robert Wain- 

hcott; Fifth Row: Martin Deede, Guy Whitehead, Bob Bennett, Roger Atkinson. 
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OBITUARIES 

Edward C. Andrews 
Russell 0. Hooker 
Ralph M. Marshall 

Nels M. Valerius 
Max S. Weinstein 
John C. Wooddy 

EDWARD C. ANDREWS 
1908-1987 

Edward C. Andrews, an Associate of the Casualty Actuarial Society since 
1955, died March 22, 1987 in West Hartford, Connecticut at the age of 83. 

“Andy” Andrews was born in Norwich, Connecticut; graduated from Nor- 
wich Frie Academy; and received his degree from Amherst College in 1926. 
Soon thereafter, he joined The Travelers Insurance Companies where he worked 
for more than 40 years and became an Associate Actuary. 

At Travelers, Andy worked most of his career in the Casualty Actuarial 
Department. He established himself as an expert in federal and state taxation 
of fire and casualty insurance companies and served on many industry commit- 
tees in that capacity. He was also much in demand as a panelist at tax seminars. 

As a young man, Andy was an accomplished musician and sat in with many 
of the name bands of that time. He has also served in many capacities with the 
Boy Scouts of America. 

Andy is survived by his son Hugh of Orleans, Massachusetts and one 
grandson, Edward C. Andrews, II of Marquette, Michigan. 
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RUSSELL 0. HOOKER 
1899-1987 

Russell 0. Hooker, a Fellow of the Society of Actuaries since 1933, a 
Fellow of the Casualty Actuarial Society since 1924, and a Charter Member of 
the American Academy of Actuaries, died on March 31, 1987 at his home in 
West Hartford, Connecticut at the age of 88. He was a 1920 graduate of Cornell 
University. 

Mr. Hooker, a nationally known insurance executive, was Actuary and 
Director of Examinations for the Connecticut Insurance Department for 28 years 
and was recognized throughout the insurance industry by his representation on 
many committees of the National Association of Insurance Commissioners. In 
1956, he established an actuarial consulting firm known as Russell 0. Hooker, 
Consulting Actuary. This expanded to Russell 0. Hooker and Associates, which 
in 1969 became Hooker & Holcombe, Inc. 

Mr. Hooker was a ninth generation descendant of the Reverend Thomas 
Hooker, founder of Hartford, Connecticut. 

Mr. Hooker is survived by his wife, Gertrude, a son, John Hooker, and two 
daughters, Barbara Thorpe and Elise Sirman. 
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RALPH M. MARSHALL 
1896-1987 

Ralph M. Marshall, a Fellow of the Casualty Actuarial Society since 1928, 
died August 28, 1987 in Easton, Maryland. He was 91. 

Born in Pennsylvania, Mr. Marshall was a United States Army veteran of 
World War I. He was a 1918 graduate of Worcester Polytechnic Institute in 
Massachusetts. He spent his entire actuarial career at the National Council on 
Compensation Insurance in New York City. Mr. Marshall is remembered by 
most CAS members as the author of the basic text on workers’ compensation 
ratemaking. Although some of the procedures have been revised since 1954, 
the paper is still a fundamental reference work on WC ratemaking. 

In 1929, Mr. Marshall became a member of the CAS Education Committee, 
and from 1932 to 1936 served on the Examination Committee. He served as 
General Chairman of that committee in 1936. Mr. Marshall was a member of 
the Council (now the Board) from 1936 to 1939. He served on the Special 
Committee on Reserves for Fidelity and Surety lines in 1937 and 1938, and 
was a member of the Special Committee on Mortality for Disabled Lives from 
1937 to 1945 and from 1955 to 1957. 

In addition to his paper on WC ratemaking, Mr. Marshall co-authored a 
paper in 1933 on remarriage tables, and authored discussions of papers in 1932, 
1934, 1939, and 1941 on WC and loss reserving topics. He retired to Maryland 
in 1961. 

Mr. Marshall’s wife, Maude (Wells), died in 1985. He is survived by a 
brother, Paul, of Avon, Connecticut, and several nieces and nephews. 
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NELS M. VALERIUS 
1904-1986 

Nels M. Valerius became a Fellow of the Casualty Actuarial Society in 
1928. He worked for Aetna Life and Casualty for 44 years before retiring in 
1969. Nels died on August 4, 1986 in Cheshire, Connecticut at the age of 82. 

Born in Muskegan, Michigan, Nels lived in Connecticut most of his life. 
He graduated valedictorian of the Class of 1925, Trinity College, and was 
elected to Phi Beta Kappa. 

The “big Aetna” was the scene of Mr. Valerius’s actuarial life. In 1928, 
when he became a Fellow, he was in the Accident and Liability Department of 
the Aetna Life Insurance Company. He became Assistant Actuary of the Aetna 
Casualty and Surety Company in 1947. In 1959, he was named Associate 
Actuary. By the time he retired, the company was known as Aetna Life and 
Casualty. 

Nels’s contributions to the CAS were notable, both in service and in pub- 
lications. He was a member of the Council (now the Board) from 1939 to 1942, 
from 1945 to 1947, and from 1953 to 1956. He served on the Examination 
Committee from 1934 to 1938 as Chairman of the Associate Part, then Chairman 
of the Fellowship Part, and in 1938 as General Chairman. From 1939 to 1948, 
he served on the Education Committee; from 1947 to 1952 on the Committee 
on Review of Papers; and from 1955 to 1957 on the Committee on Mortality 
for Disabled Lives. He was Chairman of the Committee on Review of Papers 
from 1949 to 1952. 

Nels also provided the Society a wealth of knowledge through his papers 
and discussions. He authored a 1933 paper on workers’ compensation reserves; 
co-authored a 1934 paper on WC ratemaking; authored another WC ratemaking 
paper in 1939, a retrospective rating paper in 1942, and notes on the Whittaker- 
Henderson Formula A in 1967. His discussions were published in 1934, two in 
1935, another in 1941, and again in 1947. 

Nels was also very active in his community and served as a member of the 
Newington, Connecticut Board of Finance; as a lay leader of the Bethel Baptist 
Church; and as a director of the Hartford Hearing League and the Elm Park 
Baptist Home. 
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Nels Valerius is survived by his wife, Gunhild Gunnarson Valerius of 
Cheshire, Connecticut; and three daughters, Sunnie Bachelder of Granville, 
New York, Cynthia Bums of Newington, Connecticut, and Sylvia Matthews of 
New Britain, Connecticut. He also leaves two brothers, Eric of Newington, 
Connecticut, and Erling, a missionary in Brazil; a sister, Esther Smith of 
Cheshire, Connecticut; 12 grandchildren; and 13 great-grandchildren. 

MAX S. WEINSTEIN 
1903-1988 

Max S. Weinstein, an Associate of the Casualty Actuarial Society since 
1932, and a Fellow of the Society of Actuaries, died on March 12, 1988. He 
was 84 years old. 

Born in Brooklyn, New York, Mr. Weinstein was the first Chief Actuary of 
the New York State Employees Retirement System, a position he held from 
1945 until his retirement in 1965. After retirement, he was a consultant to Jack 
Bigel Associates of New York City on union pension plans. He was instrumental 
in organizing the Actuarial Bureau of the New York State Teachers’ Retirement 
System. 

Mr. Weinstein held a Bachelors Degree in Electrical Engineering from the 
Cooper Union in New York City. Besides being a Fellow of the Society of 
Actuaries and an Associate of the Casualty Actuarial Society, he was a member 
of the Conference of Actuaries in Public Practice, The Adirondack Actuaries 
Club, the American Statistical Association, and the Mathematical Association 
of America. 

Surviving family is located in the Albany, New York area. 
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JOHN C. WOODDY 
1915-1987 

John Culver Wooddy, an Associate of the Casualty Actuarial Society since 
1950, and a Fellow of the Society of Actuaries since 1954, died on November 
9, 1987 after a long illness. He was 72 years old. 

Born September 9, 19 15 in Houston, Texas, Mr. Wooddy graduated from 
the University of Chicago in 1936. Before enlisting in the Army in 1941, he 
was employed by Lumberman’s Mutual Casualty Company in Chicago and 
passed the first two examinations of the Casualty Actuarial Society. His Army 
service, with rank of lieutenant, continued until 1946. 

After his return to civilian life, Mr. Wooddy continued to associateship in 
the Casualty Actuarial Society and to fellowship in the Society of Actuaries. 
His first post-war employment was as staff actuary of the American Telephone 
and Telegraph Company in New York. In 1954, he became associated with the 
North American Reassurance Company, first as Assistant Actuary, and ulti- 
mately as Senior Vice-President. He retired in 1979 and entered actuarial con- 
sulting. 

Mr. Wooddy’s service to the profession was extraordinary in both quality 
and scope. He participated on many of the Society of Actuaries committees 
including the Examination Committee, the Committee on Research, and the 
Risk Theory Committee. He was elected twice to the Society of Actuaries Board 
of Governors. 

Mr. Wooddy was also active in the Casualty Actuarial Society and published 
discussions of papers written by J. Lange and L. Simon. In 1971 he was a 
member of the Committee on Forms of Amalgamation. 
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Mr. Wooddy represented the United States in several International Actuarial 
Association posts, culminating as Vice-President for the United States between 
1980 and 1984. John Wooddy will be remembered for his exemplary standards 
of integrity and responsibility, for his graciousness and patience in dealing with 
others, for the loyalty and affection he inspired, and for the courage with which 
he continued his life’s work during years of debilitating illness. These excep- 
tional qualities were fully shared by his wife Lucy who, until her death early 
in 1987, mastered the handicaps of her own illness so she could care for her 
husband. 

In John’s honor, the John Culver Wooddy annual prize for actuarial research 
in reinsurance and transfer of risk is to be administered by the Actuarial Edu- 
cation and Research Fund and is being funded by his admirers. 

Mr. Wooddy is survived by his sister, Jane Wooddy Wright, of Dana Point, 
California. 
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