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A BAYESIAN CREDIBILITY FORMULA FOR IBNR COUNTS
DR. IRA ROBBIN

Abstract

A formula for IBNR counts is derived as the credibility weighted average of
three standard actuarial estimates:

IBNR
Estimate Formula
Pegged Initial Estimate of Ultimate — Reported to Date
LDF {Reported to Date) X (LDF — 1)

Bornhuetter-Ferguson Initial Estimate of Ultimate X (I — l/LDF)

Here LDF denotes the age-to-ultimate development factor. The credibility
weights vary by age of development in a methodical fashion reflecting prior
belief in the reporting pattern and the estimate of ultimate.

To derive the formula, IBNR is modelled as a parametrically dependent
random variable. Bayes Theorem leads to a natural revision of the prior
distribution of the parameters based on the data to date. Using the best least
squares linear approximation to the true Bayesian estimate, and performing
some algebraic manipulations, the credibility formula is obrained. While the
formula could be applied in many ways, for demonstration purposes a fully
automatic procedure is applied to three hypothetical triangles of data.

1. INTRODUCTION

This paper will present a formula which estimates IBNR (Incurred But Not
Reported) claim counts in terms of a credibility weighted average of more
traditional actuarial estimates. The formula will be derived from a theoretical
foundation using Bayesian analysis methods applied to claim count development
models.

Before presenting the formula, it is instructive to review the traditional
actuarial estimates under discussion. In the usual context, we are estimating
IBNR counts for an exposure period at a certain stage of development. We are
given, or can obtain some preliminary estimate of ultimate counts that does not
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depend on the count data reported to date. For instance, the preliminary estimate
could be the product of expected frequency times exposures, where the expected
frequency is calculated with data from prior exposure periods. We also have
count data reported to date and a set of expected age-to-ultimate count loss
development factors (LDF). With all this information. three different IBNR
count estimates may be obtained for the exposure period in guestion at its
current stage of development.

1. Pegged Method
IBNR = Preliminary Estimate of Ultimate Counts
— Counts Reported to Date
Loss Development Factor Method
IBNR = Counts Reported to Date X (LDF — 1)
3. Bornhuetter-Ferguson Method
IBNR = Preliminary Estimate of Ultimate Counts X (I — /LDF)

o

To decide amongst these, the actuary has heretofore been forced to rely on
qualitative reasoning. Such “actuarial judgement™ is not necessarily the arbitrary
Delphic process one might suppose. For instance, if the actuary knows from
long experience that reporting patterns are generally stable, the LDF method
would be preferred. If reporting patterns have characteristically been erratic and
the preliminary estimate of ultimate counts is generally near the mark, the
pegged estimate would be favored. Such qualitative reasoning involves implicit
non-quantified assumptions regarding the stochastic variability of ultimate claim
counts and reporting patterns. It also reflects the degree of confidence in the
prelimary estimate of expected ultimate counts and in the expected LDF.

By constructing an explicitly stochastic claims development model. and
making Bayesian prior assumptions on the parameters defining the model, one
advances the art of reserving beyond the realm of qualitative guesswork. The-
oretically, Bayes Theorem leads to revised IBNR estimates reflecting prior belief
appropriately modified by the data 1o date. Unfortunately, the mathematics often
becomes intractable. Thus, one is led to considering linear esttmators with least
squared error.

The simplest general estimator one obtains can be expressed as a credibility
weighted average of the three traditional estimates. The credibility weights vary
with the stage of development, so that, for instance, the pegged estimate might
receive the most weight initially, the Bornhuetter-Ferguson estimate might pre-
dominate for a few subsequent periods. and the loss development estimate could
have the most weight thereafter. This methodical evolution of credibility weights
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is perhaps the key practical advantage of the Bayesian approach. Based on our
initial beliefs, we are able to decide when to give each method credence.

The object of this paper is to present the formula and demonstrate one
method of applying it to a triangle of data. The method of application uses the
data to approximate needed parameters, so that, in the end, one has an automated
procedure for estimating IBNR counts. Other methods of application are pos-
sible.

Finally, it should be noted that the theory leads naturally to an estimate of
the variance of the IBNR counts. This variance reflects both process and param-
eter uncertainty.

II. BAYESIAN ANALYSIS OF COUNT DEVELOPMENT MODELS

Let N denote the ultimate number of claims for a fixed set of exposures and
write N, for the counts reported in the j™ development period. Set M, = N, +
...+ N, so that M, denotes the counts reported to date as of the end of the j™
period. Define the IBNR count as of the end of the ;™ period as R;. Thus, R,
can be written as the sum, N+, + N4> + . . . + N,, where u is the number
of periods until ultimate, or one can write R, = N — M,.

Assume the N, are (conditionally) independent Poisson random variables
whose parameters we denote as n;. It follows that N, M;, and R; are also Poisson
distributed, since the sum of independent Poisson variables is Poisson. Let n =
m + ...+ n,and define p; = n/n. Thus, the sum of the p; is unity. Also, set
q; = pi+1 + ...+ p. We summarize the random variables thus far defined:

I1.1. Conditional Poisson Random Variables

Poisson
Variable Description Parameter
N; Counts Reported During Period j  n; = np;
M; Counts Reported as of Period j m; = n(l — g
R, IBNR Counts as of Period j rj = ng;

N Ultimate Counts n
subject to constraints

() 0=p =1
(ll) [)1+[72+.‘.+[)":1
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Next we define LDF; = N/M, when M, is strictly positive. Though not
strictly true mathematically, we may from time to time estimate E(LDF;) as

(1 = gp.

It should be further noted that the parameter p, is distinct from, but related
to, the ratio random variable, N/N. Maintaining the assumption that the param-
eters n and p; are fixed, one can show:

I1.2. Relation of p; to N/N
p;i = E(N/N [N >0)

Proof

See Appendix A.

Next, we allow the parameters n and p; to vary according to some prior
distribution whose density we write as f(n,p). Unconditional expectation and
variance formulas for N, N;, M, and R, can then be derived in terms of
expectations and variances involving n, p;. and g;.

11.3. Expectation and Variance Formulus

(i) N
E(N) = E(n)
Var(N) = E(n) + Var(n)
(i) N;
E(N;) = E(pn)
Var(N;) = E(pn) + Var(pn)
(i) M;
E(M) = El0d — g)n)
Var(M,) = E[l — ¢,)n] + Var((l — g;)n)

(iv) R,
E(R)) = E(gn)
Var(R;) = E(q;n) + Var(gn)
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Proof
We prove only (ii) and leave the rest as an exercise for the reader. Consider
EWN) = E.,(E(N;jn.p))
= En,p(npj) = E(’lp,)
E(N)) = En (EWN;/n.p))
= E((np))") + E(np)
Thus,
Var(N) = EWN}) - (EWN))Y° .
= E((np)°) + E(np;) — (E(np))”
= Var(pn) + E(pn)

Before providing a simple example demonstrating these concepts, it should
be noted that in writing f(n,p) we have implicitly incorporated the constraints
on the p parameters. In applications, these restrictions must be explicitly re-
flected. One way to do this is to define the p; as functions of some other
parameters in such a way that the constraints are automatically satisfied. Letting
g denote these generating parameters, we may write f(n,p(g)) or f(n,g).

Now, for a simple example to demonstrate these concepts suppose:

11.4. Assumptions for Example

(i) The prior distribution for n is a gamma with a mean of 1,000 and a
variance of 10,000.

RS T 10
— _ - —n/
S (10) 991 " €

E(n) = 1,000 E(n) = 1,010,000

(ii) (a) p and g are given via:

p=1—-g q1 = &

p: =gl — g2) 9 = 8182

Py = g8 g3 =0
where g, € (0,1). (Observe that the constraints on the p; are automatically
satisfied.)

(b) The prior joint distribution for g, and g- is
flgi,g2) = 2(1 — g2}
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We compute the first and second moments of the p, | — ¢, and ¢ variables:

11.5. First and Second Moments of p. | — g, and g Variables in Example

First Moments Second Moments
j Ep) EU —g) Eq) Ep) E(l - ¢ Eqg)
1 12 1/2 172 1/3 1/3 1/3
2 173 5/6 1/6 1/6 13/18 1/18
3 1/6 1 0 1/18 1 0

To show how these figures were obtained, we calculate E(p3) in detail.
1 1

E(p3) = f fgf(l — 220’21 — g2) dgy dg»
0 0

[E |
(gf/3‘ ) (—2(1 - gz)‘/4' )
0 QO

(1/3)(1/2) = 1/6

fl

it

We are now in a position 1o compute the means, variances, and standard
deviations of the various count random variables.

11.6. Means, Variances, and Standard Deviations of N, N, M,. and R; in
Example

Means
E(N) = 1.000

J E(N) E(M)) E(R)
1 500 500 500
2 333 833 167
3 167 1.000 0
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Variances
Var(N) = 11,000

j Var(N;) Var(M)) Var(R))
1 87.167 87,167 87.167
2 57,558 35,889 28,502
3 28,502 11,000 0
Standard Deviations
Var'*(N) = 105
i Var'*(N)  var'* (M) Var'(R)
1 295 295 295
2 240 189 169
3 169 105 0

Again demonstrating one of the calculations in more detail, we compute:
Var(N;) = Var(np;) + E(np2)

E(n)E(p3) ~ E(ME(p2)” + E(np2)

(1,010,000)(1/6) — (333)* + 333 = 57,556

I}

i)

We return now to the general presentation and follow the Bayesian approach
by modifying our beliefs about the parameter distribution, f(n,p), as more data
becomes available. Let ©’ denote the prior density before any development has
occurred, and let f denote the revised density as of the end of the ;™ period
of development. Given development data (N, = x;, No = x2, . . . , N; = x)),
Bayes Theorem allows one to derive the modified belief density, fY. in se-
quential fashion.

1.7 Bayes Revised Belief Density
fPn.p) = ¢ Prob(N; = xfn.p) V" "(n,p)
where ¢ i1s a normalization constant, and

Prob(N; = x/n,p) = exp(—np,)(np,)"/x!
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Equivalently, one can write

fPnpy = c Linpfxy, xa .. x)f

where ¢ is some normalization constant and L is the likelihood function,

()3

(n.p)

J

L = [] ProbN, = x,n,p)

il

The revised belief density yields revised IBNR count estimates via I1.3.

Thus, the IBNR count estimation problem is theoretically solved. Further,
the variance equation in 1.3 (iv) could be used to calculate the standard deviation
of the IBNR estimate. This deviation would reflect both process and parameter
uncertainty.

Returning to our example. our prior density is:

i i "
FUngg) = 21 = g2) [ oy ne M
If we observe N, = 400, the revised parameter density would be

K} W e nilo

fPngogy =ce "N E Gl - g™ = gon

where ¢ is a normalizing constant. This density is rather inconvenient to work
with.

Such difficulties are not peculiar to this example. Indeed. the computations
become intractable in most interesting models. Thus, the formulas are difficult
to apply and consequently of limited practical use. As is usually the case in
Bayesian analysis, one is led to consider linear estimators.

III. LINEAR APPROXIMATION OF THE BAYESIAN ESTIMATOR

We first recall some general results of Bayesian credibility theory. Let X
and Y be (possibly vector-valued) random variables, each parameterized by a
common (vector) parameter. Assume the distribution of the parameter is gov-
erned by some underlying structure function. We consider linear estimators of
Y given results for X. It is known that the linear estimator, Y*, with least mean
square error (against the Bayesian estimator) is given via:
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II1.1. General Least Squares Linear Approximation
P = EY) + CX.Y)WVX) (X — EX))
where
X and Y are column vectors
X' = transpose of X
C(X,Y) = Cov(X,Y) = E(XY') — E(X)E(Y")
V(X) = C(X.X")
Applying this result with X = (N, . . . , Np" and Y = R,, we obtain:
II1.2. General Linear IBNR Count Estimator
R¥ = E(R) +

C(Ny,Ny) ... C(N,,N) 17 [Ny — E(N))
(C(N1. R)), . . . ,C(N;, R) o o
CWN;, N\) ... CN,, Ny N, — EN)

The quantities in the above equation can be expressed in terms of expectations,
variances, and covariances of the n, p, and ¢.
1.3, Expectation Variance and Covariance Formulas

(1) E(R) = E(n) E(g)

(i1) Fori{ = j

C(N;, R)) = E(py) E(gi) Y(n) + E(n") C(p;.q:)
(iii) CN,, N)) = E(®) C(p.. pp) + E@) E(pp) V(n) + 3, E(n) E(p)
where V(X) = Var (X)

5 {1 ifi=
v 0 otherwise

Formula I1I.2 is thus reasonable to apply in practice and there is no necessity
for further simplification due to computational considerations. However, with
one additional simplification, we achieve a formula expressing the estimator as
a credibility weighted average of the traditional actuarial estimators as discussed
in the introduction.

Applying III.1 with X = M, and Y = R;, and grouping terms appropriately
(as shown in Appendix B), we obtain
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IlI.4. Credibility Weighting Formulu for IBNR Counts

MIE(‘I/)

R} = Zy(En) = M) + Zy 7

+ (1 — Z, — Z,)) E(n)E(g))

where

Z,; = Em)V(l - g)/D;

Z, = E(1 — ¢)’V(n)/D;
and

D, = E(m)V(I — ¢) + E(l — ¢)’V(n) + EmE — )
Approximating E(g)) via (1 — ULDF)), we have:

H1.5. Credibility Weighting Formula for IBNR Counts - LDF Notation
R¥ = Z.; (E(n) — (M;)) + Z,; (M) (LDF, — 1)
+ (1 - 2Z, — Z,;) E(n) (1 — I/LDF))

This is the formula promised at the outset since in this notation the traditional
estimates may be expressed as:

IBNR

Estimate Expression
Pegged E(n) — M,
LDF MALDF; — 1)

Bornhuetter-Ferguson E(n) (1 — V/LDF))

There are several qualitative conclusions that can be drawn from the formula.
First, if there is no parameter uncertainty with respect to both ultimate counts
and reporting patterns, then the data to date is given no credibility. In that case,
the formula reduces to a Bornhuetter-Ferguson type estimate.

If there is some parameter uncertainty regarding counts, but none regarding
reporting patterns, then the formula become a weighted average of loss devel-
opment factor and Bornhuetter-Ferguson estimates. As the count parameter
uncertainty increases, the formula approaches a loss development factor esti-
mate. Finally, if there is some parameter uncertainty about reporting patterns,
but none regarding counts, then the formula becomes a weighted average of
pegged and Bornhuetter-Ferguson estimates.
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IV. APPLICATION

In this section, the formula will be applied to three triangles of hypothetical
data. The first triangle was constructed so that the Bornhuetter-Ferguson method
will work almost exactly. The second triangle was generated to have nearly
constant age-to-age factors. The last triangle is obtained by averaging the counts
from the original triangles.

The formula could be applied in many different ways. For instance, a pure
Bayesian approach would entail making explicit assumptions for the forms and
parameters of the prior distributions. The resulting system would then require
actuarial judgement in setting the parameters appropriately each time it was run.
While this would be the most theoretically pure method of application, it might
be regarded as somewhat impractical.

In order to provide a reasonably convincing demonstration that the formula
1s of practical use, we proceed now to present a fully automatic method of
application. Under this particular approach, we let the data dictate parameter
values to the degree possible. We introduce explicit forms for prior distributions

if needed, but let the data determine the parameters of the priors.

To begin the application in detail, assume that a triangle of data is given.
Let N; denote the counts reported in the /™ development period for the i
accident period, where i = 1,2, . . . ,uandj =1,2, ..., u— i+ 1.
Define M;; and R; in a fashion analogous to the definitions of M; and R; in I

Assume N;; is (conditionally) Poisson distributed with parameter n; = Bwy,
where B, denotes the exposures for the i accident year.
Define:
n, = E nij
J
w; = 2 Wi
J

pii = wiy/wi
so that n; = Bwpy

Now assume that each of the frequency parameters, w;, is, in effect, drawn
from a common distribution. Thus, a priori, we have E(w;) = E(w). Similar
assumptions are made for the set of p; and the set of g; when i is fixed. Thus,
we may write E(p;) = E(p;) and E(g;) = E(g)).
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We next find maximum likelihood estimators, wi¥ and p¥. for w; and p;. The
likelihood function is:

IV.1. Likelihood Function
w w o itl
L, wiNy =TI T1 e " Bwp) N,
i=1 j=1
subjecttop, + p» + ...+ p, =1
We maximize as usual by taking the natural log and then the necessary
partial derivatives.

IV.2. “Log Likelihood” and Partials

u ouitl

InL=73% X - Bwp + Nyln(wp)
=1 =1

+ independent terms of w; and p,

al L w—i+l

(:v = 2‘ — Bipp, + Ny/w,
i j=

(ﬂ L u—j+1

;’p‘ = 3 - Bw+Np
) i=

Utilizing the constraint, we solve the equations via numerical iteration to
obtain w¥ and p¥ which satisfy:
IV.3. Maximum Likelihood Estimates

“"l* = Ml.u~:+|/Bi(] - q;k i+ l)

w j+1l w—j+1
pr = ( > N,,)/( > w,"‘B,)
=1 i=1 /

Using the maximum likelihood estimates just obtained, we approximate the
frequency mean and frequency variance.
IV.4. Frequency Mean and Variance Estimators

EBJWJ*(I - q.’f-.,u)]
2Bl — g¥ /+0)

E(w) ~w = [

2Bl — gF i ) wF — w)z]

1y =~ 2, =
Var(w) =~ S, { SBAl — gf 1)



CREDIBILITY FOR IBNR COUNTS 141

While this seems intuitively reasonable, the properties of this variance
estimator need further investigation in the future. Perhaps it is biased.

To estimate the required second moments of the reporting pattern parameters,
we assume that p; is Beta distributed with parameters (Hp}, H(I — pf)). We
further have that g, is Beta distributed with parameters (Hg?, H(1 — g¥)). Note
the use of the maximum likelihood estimates in defining the parameters of these
Betas. Under these assumptions, we can obtain convenient expressions for the
mean and variance of the reporting pattern parameters.

IV.5. Mean and Variance of p; and g
E(py) = p} Var(py) = pH(1 — p#)i(l + H)
Egy) = ¢f Var(gy) = gF(1 — ¢/)/(1 + H)

Observe that the parameters of the reporting pattern have variances inversely
proportional to H. To use the data to solve for H, we first estimate p, via:
Dy = Ny/(Miu—ivr + Bwiq}) and define

IV.6. Estimator For Variance of Reporting Pattern Parameters

5 = [E E Bipy —p,*)z]/ ; 2 B;

i=1  j=1

Plugging the Var(p;) formula of IV.5 in place of (5, — p¥)°, we obtain the
approximation

E(S;) = 2 Bpr(l — p¥) 2 Bl + H).
y i
Thus we derive an estimator for H:
IV.7. Estimator for H
2 BipF (1 — p¥)
i

H* = -1
Sy > B
i

As before, the author must caution that the theoretical vices or virtues of
this estimator have not been investigated. It is probably biased toward over-
stating H and thus understating Var(1 — ¢;). This will tend to give too much
credibility to the LDF method.



142 CREDIBILITY FOR IBNR COUNTS

At this point, we have enough to estimate all the terms required in the
credibility formulas.

IV.8. Estimators for Terms in Credibility Formulas

Notation Used in Chapter

11 v Estimator
E(n) E(n;) B
Var(n) Var(n,) B;S.
E(n®) E(n}) BiSL + Blw”
E(l — gy E(1 — ¢i) I = gF
Var(l — ¢;) Var(l - g,) (1 - gF)griH* + 1)

These were used to obtain the Bayesian credibility IBNR estimates shown
in the attached exhibits. While the credibilities are not 100% for the “right”
method in the “pure” cases, they nonetheless show that the application meth-
odology is at least somewhat responsive. The credibility estimated IBNR 1s in
all cases reasonably close to the correct answer. Further, the correct answer is
well within one standard deviation of the estimate. Finally, considered over all
three examples, the credibility formula approach appears to perform better than
any one of the methods alone. The reader will, of course. arrive at his or her
own judgement.

V. CONCLUSION

To conclude, it is hoped that the proposed IBNR count formula will not
only advance reserving theory, but will also prove of practical use. It settles
old arguments about which of three traditional actuarial estimates should be
employed by showing how they may be credibility weighted in a methodical
fashion to obtain a final estimate. The credibility weights differ depending on
the development period. Thus, the Bayesian credibility approach provides a far
more subtle method than simply picking one set of credibility weights which
would apply at every development period. The formula could be applied in
many ways. but at least one practical application has been demonstrated with
fairly good results.
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APPENDIX A

Let N, and N; be two independent Poisson random variables with parameters

n, and no, respectively. Set n = n, + n; and p = n/n. We consider the ratio
random variable N/(N, + N»).

A.l. Proposition on Expectation
E(NV(Ni + N2)INe + N2 > 0) = p
Proof

E(N/(Ny + N2)IN) + N; > 0) Prob (N, + N2 > 0)

=e " Y > ((x + ynin¥(xty)
x=1 v=0

X_Z—X

(x/zymns Hx!(z — )

M

x
— efn 2

-
|
I

1

=e " X Nz ) E (z) xp'd = py
x=1 X

z=1

=e " X z \z)nyz, = pe " — 1)

=1
=pll —e ")
The result follows since

Prob (N, + N, >0)=1—¢ "
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APPENDIX B

DERIVATION OF CREDIBILITY WEIGHTING FORMULA

FROM

GENERAL LINEAR LEAST SQUARE ERROR BAYESIAN APPROXIMATION

Applying the general formula yields

B.1

R¥ = E(R) + CIM,,R)C(M,) ' (M, — EM,))

Expressing the terms of B.1 using terms involving # and ¢,,

B.2.

EM))
E(R))

C(MI,RI') =

C(M,))

I

E(mE( — ¢

= E(mE(g;)

I

E(n®) E((1 — ¢)g;) — E(’E(l — ¢)E(g)
E(n°) E(1 — g)%) + EmE(l — ¢,) — EmyE(l — ¢))°

Simplify the second order terms as follows

B.3.

(‘) C(Mstj)

(i)

avph

fl

Il

E(n*) E(1 = g))¢) — E(a) E(l ~ ¢)E(q)
+ E(n”) E(1 — g E(¢) — E(n)’E(l — ¢,)E(q))

E(n®) E(1 — ¢,)° — E() E(1 — ¢,)°)
+ V(mE(l — gq,) E(g))

—E(nY) VA — ¢) + VIWE(l - ¢,)E(g)

E(n) E(1 = ¢)°) — En)E( — g)"
+ E(n)E(l ~ ¢)" = Em’E(l — )" + EmE(l - ¢)

E(m*)V(1 — gj) + E(1 — ¢)’V(n) + EmE(l — ¢)
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Plugging into B.1 one finds
BA4.

R} =E(m)E(g)+

V(n)E(g)E(1 - ¢)— E)VU — g)
7 . — E(mE(l - ¢
E()V( — ¢)+E( — q)*V(n)+EmE( — q)) (M — B0 o

= (E(n) — M) (E(nHV(l — @)/ D + (M; V(n) E(q) EQ — g))/ D
— (E(n) V(n) E(g)) E(1 — g/ D
+ E(n)E(g) (1 + (V(n)E(QE(l — g))
— E(n*)V(1 ~ ¢p)/ D)

) E V(mE(l — g,)°
= () ~ M)EGV( = ¢) / D) + M, (Zf)q‘) x ) (D 9,
7

+ E(mE(g) (1 — (VE(l — ¢) (E(g) — 1) — E(mHV(1 = g))/D)

which simplifies immediately to I11.4.

145
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EXHIBIT 1

SHEET 1
BORNHUETTER-FERGUSON DATA
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N(.J)
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ACCIDENT
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100
100
100
100
100
100
100
100

1

50
25
75
15
50
25
75
15

150
150
150
150
150
150
150

450
450
450
450
450
450

M.

225
225
225
225
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EXPOSURES
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75
15
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225
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650
625
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875

W
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1,000
940

50
50
50

6
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1,000
1,050

~

[N
b

7

1,050
1,025
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0.750
0.150
0.500
0.250
0.750
0.150

CREDIBILITY FOR IBNR COUNTS

EXHIBIT 1
SHEET 2
BORNHUETTER-FERGUSON DATA

NU . J)/B()
DEVELOPMENT PERIOD J

2 3 4 5
1.500  4.500 2.250 1.000
1.500  4.500 2.250 1.000
1.500 4.500 2.250 1.000
1.500  4.500 2.250 1.000
1.500 4.500 2.250
1.500  4.500
1.500

AGE-TO-AGE FACTORS
DEVELOPMENT PERIOD J
2-3 3-4 4-5 56

|
|
|
|

3250 1.346 1.114 1.051
3571 1.360  1.118  1.053
3.000 1.333 1111 1.050
3.727  1.366 1.119

3.250 1.346

3.571

6

0.500
0.500
0.500

6-7
1.024
1.025

7

0.250
0.250

1.005

8

0.050



EXHIBIT |

SHEET 3
BORNHUETTER-FERGUSON DATA

IBNR ESTIMATES

STANDARD
BORNHUETTER- BAYESIAN DEv. oF
ACCIDENT REPORT REPORTED PEGGED LDF FERGUSON CREDIBILITY BAYESIAN
YEAR PERIOD TO DATE METHOD  METHOD METHOD METHOD Crep. IBNR
1 8 1,055 ~10 0 0 0 0
2 7 1,025 20 5 5 5 3
3 6 1,050 -5 31 30 31 8
4 5 940 105 77 80 78 13
5 4 875 170 181 179 181 22
6 3 625 420 393 404 398 38
7 2 225 820 1.009 855 897 67
8 l _15 1,030 _341 1,001 948 76
TOTAL 5,810 2,551 2,038 2,553 2,537

SINNOD ¥N™l dO4 ALI'Uglaaydd
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ACCIDENT
YEAR

(VI S

oL~ D

PEGGED
METHOD

045
045
045
045
045
045
045
D45

REPORT
PERIOD

W hD =

o0 -~ O\ W ok

EXHIBIT |
SHEET 4

L.DF

METHOD

1.055
1,030
1.081
1.017
1.056
1.018
1.234

356

CREDIBILITY FOR IBNR COUNTS

EsTIMATES OF UL TIMATE

BORNHUETTER-FERGUSON DATA

BORNHUETTER-
FERGUSON

CREDIBILITIES

PEGGED

0.43193
0.29120
0.08355
0.03106
0.01283
0.00468
0.00076
0.00000

LDF
0.09885
0.33820
0.69136
(1.78064
0.81165
0.82550
0.83218
0.83347

METHOD

RIAN
030
080
020
054
029
080
016

B-F
0.46923
0.37060
0.22509
0.18830
0.17552
0.16981
0.16706
0.16653

BAYESIAN
CREDIBILITY
METHOD

1.055
1,030
1.081
1.018
1,056
1,023
1,122

963



CREDIBILITY FOR IBNR COUNTS

EXHIBIT 1

SHEET 5§
BORNHUETTER-FERGUSON DATA

MAXIMUM LIKELIHOOD ESTIMATES

151

INITIAL
MLE ESTIMATED
ACCIDENT FREQUENCY EXPOSURES COUNT PARAMETER
YEAR W) B(I (B{I) x W)*
1 10.550 100 1,055
2 [0.299 100 1,030
3 10.810 100 1,081
4 10.173 100 1,017
5 10.560 100 1,056
6 10.175 100 1,017
7 12.274 100 1,227
ESTIMATED FREQUENCY MEAN 10.45106
ESTIMATED FREQUENCY VARIANCE 52307
PERCENT
PERCENT REPORTED PERCENT FACTORS
REPORT MLE REPORTED TO DATE UNREPORTED  AGE-TO-AGE TO
PERIOD PJ) E(P,) E(l - Q) E(Q) FACTORS ULTIMATE
1 0.042 4.2 4.2 95.8 4.332 23.759
2 0.140 14.0 18.2 81.8 3.366 5.484
3 0.431 431 61.4 38.6 1.350 1.629
4 0.215 21.5 82.8 17.2 1.115 1.207
5 0.096 9.6 92.4 7.6 1.051 1.082
6 (.047 4.7 97.1 2.9 1.025 1.030
7 0.024 2.4 99.5 0.5 1.005 1.005
8 0.005 0.5 100.0 0.0 1.000 1.000

TOTAL  1.000



EXHIBIT |

SHEET 6

BORNHUETTER-FERGUSON DATA

REPORT PATTERN PARAMETERS

EXPECTED  EXPRCTED EXPECTED Pct
PcT Pcr ExPECTED Per Pct Pct REPORTED Pci
BE1A BrTa BETA REPORTED ~ REPORTED Pct UNREP. UNREP UNREP TO DAtk USNREP
REPORT  ParaM Param MEaN DurinG TO DATE UNREP. SQUARED VAR. S1anDp Dy (&% v
PERIOD (A) (B) AT (A B PERIOD E(l = Qn E(Q) EQ5 Var(Q,) SD SI> = Mian SD = Mrax
1 45.95 1.045.83 0.042 4.2 4.2 EAR 91.% 0.004 0.607 14.32¢ 0634
2 153.11 938.67 0.140 14.0 18.2 %18 66.9 0.014 1.168 6.406 1.428
3 470.96 620.82 0.431 431 61.4 8.6 149 0.022 1473 2,400 3813
4 234 34 857 44 0.2158 MU 82K 17.2 30 0.013 1141 1.377 6.643
§ 104.36 987 43 0.096 9.6 92 4 7.6 0.6 0.006 0.802 (.868 10,542
6 51.71 1.040.07 0.047 4.7 9714 29 0l 0.003 (.505 (1520 17.595
7 26.17 1.065.61 0.024 24 4995 Q.5 (LG Q.00 0.208 a.209 43 Rd6
8 517 1.086.61 0.005 0.5 100.0 0.0 0.0 .000 0.000 .00 —
H = 1.091.8

3
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ACCIDENT
YEAR
(I

EXPOSURES

00~ O\ L b ) —

ACCIDENT
YEAR
)

100
100
100
100
100
100
100
100

EXPOSURES

[-- RN I WV RNV O

100
100
100
100
100
100
100
100

CREDIBILITY FOR IBNR COUNTS

BaYESIAN CREDIBILITY FORMULA
IBNR ESTIMATION
HypOTHETICAL DATA

N(LJ)

EXHIBIT 2

SHEET 1
LDF DatA

CouNTs REPORTED DURING
DEVELOPMENT PERIOD J

1
50
25
75
15
50
25
75
15

It

217
109
325

65
217
109
325

>

730
366
1.094
219
730
366

M1.J)

986
494
1,477
206
986

1,100
551
1.647
330

CounTs REPORTED TO DATE
DEVELOPMENT PERIOD J

167
84
250
50
167
84
250

513
257
769
154
513
257

256
128
383

77
256

L

114
57
170
34

1.128
565
1.689

28
14
42

2

1.134
568

-

W Or

153

1.139



154

ACCIDENI
YFEAR
)

1
2
3
4
5

6

-~

ACCIDENT
YEAR
th

P N

~1 O '»a

0.500
0.250
(.750
0.150
0.500
0.250
0.750
0150

340
L3600
1333
333
340
360
333

CREDIBILITY FOR IBNR COUNTS

EXHIBIT 2
SHEET 2
[.DF Dara

N, JB()
DEVELOPMENT PERIOD J

2 3 1 5
1.670  5.130 2.560 | 140
0840 2570 1280 0.570)
25000 7.690 31,430 1.700
0.500 1,540 0.770 0,340
1,670  5.130 2,560
0.840  2.570
2.500

AGE-TO-AGE FACTORS

DEVELOPMENT PERIOD J
2-3 LY 4 3
3364 1,351 L.116
3,358 1.350 I 11s
3.366 1 350 1115
3.369 1.352 1.115
3.364 1.351
3.358

6

(.280
0. 130
(1420

S 6
1.025
1.028
1.026

0.060
0.030

6-7

1.0058
1.005

.050

7-8

1.004



EXHIBIT 2

SHEET 3
LDF DaTA

IBNR ESTIMATES

STANDARD
BORNHUETTER- BAYESIAN DEv. oF
ACCIDENT REPORT REPORTED PEGGED LDF FERGUSON CREDIBILITY BAYESIAN
YEAR PERIOD TO DATE METHOD  METHOD METHOD METHOD Crep. IBNR
1 8 1,139 —187 0 0 0 0
2 7 568 384 3 4 3 3
3 6 1,689 —-737 16 9 16 6
4 5 330 622 12 33 12 18
5 4 986 —-34 153 128 153 66
6 3 366 586 205 34] 206 176
7 2 325 627 1,380 770 1.368 395
8 1 15 937 327 910 375 467

TOTAL 5,418 2,196 2,095 2,195 2,132

SINNOOD ANMl 404 ALIHGIQTdD
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ACCIDENT
YEAR

[V [ O

X~

CREDIBILITY FOR IBNR COUNTS

EXHIBIT 2

SHEET 4
LDF DaTta

ESTIMATES OF ULTIMATE

BORNHUF I'l ER-

B-F
0.08374
0.02063
0.00622
0.00461
0.00414
0.00404
0.00402

PEGGED L.DF FERGUSON

METHOD METHOD METHOD
952 1139 1.139
952 571 572
952 1,708 1.698
952 342 363
952 1.139 1.114
952 571 707
952 1.705 1,095
952 342 925

CREDIBILITIES
REPORT
PERIOD PEGGED LDF

l (.00004 0.91622

2 0.00001 0.97936

3 0.00000 ().99378

4 0.00000 0.99539

5 0.00000 0).99586

6 0.00000 0.99596

7 0.00000 (1.99598

8 0.00000 (3.99600

(.00400

BAYESIAN
CREDIBILITY
METHOD

1.139
571
1,705
342
1.139
572
1.693
390



CREDIBILITY FOR IBNR COUNTS

EXHIBIT 2

SHEET §
-t

DLREEs

LDF DATA

MAXIMUM LIKELIHOOD ESTIMATES

157

INITIAL
MLE ESTIMATED
ACCIDENT FREQUENCY EXPOSURES CouNT ParRAM
YEAR w{) B() B X W)*
1 11.390 100 1,139
2 5.705 100 571
3 17.055 100 1,705
4 3.417 100 342
5 11.390 100 1,139
6 5.711 100 571
7 17.059 100 1,706
ESTIMATED FREQUENCY MEAN 9.51743
ESTIMATED FREQUENCY VARIANCE 23.70887
PERCENT
PERCENT  REPORTED PERCENT FACTORS
REPORT MLE REPORTED TO DATE  UNREPORTED AGE-TO-AGE TO
Periop  P(J)) E(P)) E(l — @) E(Q)) FACTORS ULTIMATE
| 0.044 4.4 4.4 95.6 4.340 22.768
2 0.147 14.7 19.1 80.9 3.364 5.246
3 0.451 45.1 64.1 35.9 1.350 1.560
4 0.225 22.5 86.6 13.4 1.115 1.155
5 0.100 10.0 96.6 3.4 1.025 1.035
6 0.025 2.5 99.0 1.0 1.005 1.010
7 0.005 0.5 99.6 0.4 1.004 1.004
8 0.004 0.4 100.0 0.0 1.000 1.000

TOTAL 1.000



EXHIBIT 2

SHEET 6
LDF DATaA

REPORT PATTERN PARAMETERS

EXPECTED EXPECTED EXPECTED Pct
PcT Pct EXPECTED Pcr Pct Pc1 REPORTED Pct
BeTa Brta Be1a REPORTED REPORTED PcT UNREP. UNREP. UNREP. TO DATE UNREP.
REPORT PARAM Param MEan DURING TO DATE UNREP SQUARED VaR. Stanp DEV Ccv cv
Periop tA) (B) A+ (A+ B}y Perion E(l — Q) EWQ) E(Q,:) VaAR(Q,} SD SD + Mean  SD = MEgan
1 9771543 2.127.084 .44 0.044 4.4 4.4 95.6 91.4 0.000 0.014 0.313 1.4 x 1077
2 326.344.90 1.598.454.97 0.147 14.7 19.1 80.9 65.5 (3.000 0.026 0.138 62=10"
3 1.002.477.70 1.222.322 16 0.451 451 641 359 12.9 0.000 0.032 0.050 23« 107"
4 499.940.66 1,724,859.21 0.225 225 6.6 13.4 1.8 0.000 0.023 0.026 12x10°"
N 22210892 2.002,690.95 0100 0.0 96.6 R 0.1 0.000 0.012 0.013 S7 107
6 S4.730.59  2.170.069.28 0.025 25 99.0 1.0 0.0 0.000 0.007 0.007 30 = 107
7 1171415 221308572 0.008 0.5 99.6 0.4 0.0 0.000 0.004 0.004 19 - 10"
8 9.767.53  2.215.032.34 0.004 (4 100.0 0.0 0.0 0.000 0.000 0.000

H = 272247999

861
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CREDIBILITY FOR IBNR COUNTS

EXHIBIT 3

SHEET |
MIXED DATA

BAYESIAN CREDIBILITY FORMULA
IBNR ESTIMATION
HYPOTHETICAL DATA

N(LJ)
CouNTS REPORTED DURING
DEVELOPMENT PERIOD J

ACCIDENT
YEAR
V2] EXPOSURES 1 2 3 4 5 6 7 8
1 100 50 159 482 241 107 39 16 5
2 100 25 117 354 177 79 32 14
3 100 75 200 610 304 135 46
4 100 15 100 302 151 67
5 100 50 159 482 241
6 100 25 117 354
7 100 75 200
8 100 15
Ml.J)
CounNTs REPORTED To DATE
DEVELOPMENT PERIOD J
ACCIDENT
YEAR
V3] EXPOSURES | 2 3 4 5 6 7 8
1 100 50 209 691 932 1,039 1.078 1,094 1,099
2 100 25 142 496 673 752 784 798
3 100 75 275 885 1,189 1,324 1,370
4 100 15 115 417 568 635
5 100 50 209 691 932
6 100 25 142 496
7 100 75 275
8 100 15

159



ACCIDENT

Vean
ICAR

)

Q0 ~1 N ke D

ACCIDENT
YEAR
H

~N N AW -

0.500
0.250
0.750
0.150
0.500
0.250
0.750
0.150

1-2

4.180
5.680
3.667
7.667
4.180
5.680
3.667

CREDIBILITY FOR IBNR COUNTS

]

1.590
1.170
2.000
1.000
1.590
1.170
2.000

DEVELOPMENT PERIOD J

EXHIBIT 3

SHEET 2

Mixep DATA

N.JVB()
DEVELOPMENT PERIOD J

V)

4.820
3.540
6.100
3.020
4.820
3.540

4

2410
1.770
3.040
1.510
2.410

5
1.070
0.790
1.350

0.670

AGE-TO-AGE FACTORS

6
0.390
0.320
0.460

7
0.160
0.140

8

0.050



EXHIBIT 3

SHEET 3
MixXeED DAaTA

IBNR ESTIMATES

STANDARD
BORNHUETTER- BAYESIAN DEV. OF
ACCIDENT  REPORT REPORTED PEGGED LDF FERGUSON CREDIBILITY BAYESIAN
YEAR PERIOD TO DATE METHOD  METHOD METHOD METHOD CreDp. IBNR
t 8 1,099 - 100 0 0 0 0
2 7 798 201 4 5 4 3
3 6 1,370 —-371 28 20 28 8
4 5 635 364 38 56 38 17
5 4 932 67 169 153 169 43
6 3 496 503 295 373 297 102
7 2 275 724 1,201 813 1,165 219
8 1 15 984 _ 334 956 522 258

TOTAL 5,620 2,375 2,069 2,376 2,224

SINMOD ¥NH] ¥40d4 ALITIEIgI™D
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ACCIDEN1
YEAR

e R B Y S S

CREDIBILITY FOR IBNR COUNTS

EXHIBIT 3

SHEET 4
MixED DATA

ESTIMATES OF ULTIMATE

BORNHUETTER- BAYESIAN
PEGGED LDF FERGUSON CREDIBILITY
METHOD METHOD METHOD METHOD
999 1,099 1,099 1,099
999 802 803 802
999 1,398 1,390 1,398
999 673 691 673
999 1,101 1.085 1,101
999 791 869 793
999 1.476 1.088 1,440
999 349 971 537

CREDIBILITIES

REPORT

PERIOD PEGGED L.DF B-F
1 0.07101 0.70066 (.22833
2 0.01814 0.91327 0.06859
3 0.00264 .97558 0.02178
4 0.0008 1 0.98294 0.01625
5 0.00026 0.98513 0.01460
6 0.00009 0.98582 0.01408
7 0.00002 0.9861 1 0.01386
8 0.00000 1.98620 0.01380



CREDIBILITY FOR IBNR COUNTS 163

EXHIBIT 3

SHEET 5
MIXED DaTa

MAXxIMUM LIKELIHOOD ESTIMATES

INITIAL
MLE ESTIMATED
ACCIDENT FREQUENCY EXPOSURES COUNT PARAM
YEAR W) B(I) B(I) X W()*
1 10.990 100 1,099
2 8.016 100 802
3 13.984 100 1,398
4 6.725 100 672
5 11.007 100 1,101
6 7.907 100 791
7 14.711 100 1,471
ESTIMATED FREQUENCY MEAN 9.99352
ESTIMATED FREQUENCY VARIANCE 7.14026
PERCENT
PERCENT REPORTED PERCENT FACTORS
REPORT MLE  REPORTED  TO DATE  UNREPORTED  AGE-TO-AGE TO
PERrIOD P) E(P,) E(l — @) E(Q)) FACTORS ULTIMATE
1 0.043 4.3 4.3 95.7 4.339 23.284
2 0.143 14.3 18.6 81.4 3.364 5.366
3 0.441 44.1 62.7 37.3 1.350 1.595
4 0.220 22.0 84.7 15.3 1118 1.181
5 0.098 9.8 94.4 5.6 1.038 1.059
6 0.035 35 98.0 2.0 1.016 1.021
7 0.016 1.6 99.5 0.5 1.005 1.005
8 0.005 0.5 100.0 0.0 1.000 1.000

TOTAL

1.000



EXHIBIT 3

SHEET 6
Mixep Data

REPORT PATTERN PARAMETERS

EXPECTED  EXPECTED EXPECTED Pct

PcT Pcr EXPECTED Pct Pcr Pct REPORTED Pct
BETA BeTA BETA REPORTED  REPORTED Pcr UNREP. UNREP. UNREP. TO DATE UNREP.

REPORT ParaM PARAM MEAN DurING 10 DATE UNREP. SQUARED VaRr. STAND DEV Ccv Ccv

PeRIOD (A) (B) A+ (A+B PErIOD E(l — Q) E(Q)) E(Q,z) VAR(Q)) SD SD - MEaN  SD =+ MEaN

1 141.48  3.152.57 0.043 4.3 4.3 95.7 91.6 0.001 0.353 8.224 0.369
2 472.38  2.821.66 0.143 14.3 18.6 81.4 66.2 0.005 0.678 3.640 0.834
3 1,451.43  1.842.62 0.441 44.1 62.7 373 13.9 0.007 0.842 1.344 2.259
4 723.27  2.570.77 0.220 2.0 84.7 15.3 24 0.004 0.628 0.742 4.092
N 321.73 297231 0.098 9.8 94 4 5.6 03 0.002 0.400 0.423 7.167
6 116.79 3.177.25 0.035 35 98.0 2.0 0.0 0.001 0.246 0.251 12.094
7 51.98 3.242.06 0.016 1.6 99.5 0.5 0.0 0.000 0117 0.118 25.772

8 1498  3.279.06 0.005 Q0.5 100.0 0.0 0.0 0.000 0.000 04.000 —

H = 32940

¥91
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