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FOREWORD 

The Casualty Actuartal Society was organized in 1914 as the Casualty Actuarial and Statistical 

Society of America, with 97 charter members of the grade of Fellow; the Society adopted its 
present name on May 14, 1921. 

Actuarial science originated in England in 1792, in the early days of life insurance. Due to 
the technical nature of the business, the first actuaries were mathematicians; eventually their 
numerical growth resulted in the formation of the Institute of Actuaries in England in 1848. The 
Faculty of Actuaries was founded in Scotland in 1856, followed in the United States by the 
Actuarial Society of America in 1889 and the American Institute of Actuaries in 1909. In 1949 

the two American organizations were merged into the Society of Actuaries. 

In the beginning of the twentieth century in the United States, problems requiring actuarial 
treatment were emerging in sickness. disability, and casualty insurance-particularly in workers’ 
compensation-which was introduced in 191 I. The differences between the new problems and 
those of traditional life insurance led to the organization of the Society. Dr. I. M. Rubinow, who 

was responsible for the Society’s formation, became its first president. The object of the Society 
was, and is, the promotion of actuarial and statistical science as applied to insurance other than 

life insurance. Such promotion is accomplished by communication with those affected by insur- 
ance, presentation and discussion of papers, attendance at seminars and workshops, collection of 
a library, research, and other means. 

Since the problems of workers’ compensation were the most urgent, many of the Society’s 
original members played a leading part in developing the scientific basis for that line of insurance. 
From the beginning, however, the Society has grown constantly, not only in membership, but 
also in range of interest and in scientific and related contributions to all lines of insurance other 
than life, including automobile. liability other than automobile, fire, homeowners and commercial 

multiple peril, and others. These contributions are found principally in original papers prepared 

by members of the Society and published in the annual Proceedings. The presidential addresses, 
also published in the Proceedinp. have called attention to the most pressing actuarial problems, 
some of them still unsolved, that have faced the insurance industry over the years. 

The membership of the Society includes actuaries employed by insurance companies, rate- 
making organizations. national brokers, accounting firms, educational institutions, state insurance 
departments, and the federal government; it also includes independent consultants. The Society 
has two classes of members. Fellows and Associates. Both classes are achieved by successful 
completion of examinations. which are held in May and November in various cities of the United 
States and Canada. 

The publications of the Society and their respective prices are listed in the Yearbook which is 
published annually. The Syllabus of Examinarions outlines the course of study recommended for 
the examinations. Both the Yearbook, at a $10 charge, and the Syllabus of ihminurions. without 
charge, may be obtained upon request to the Casualty Actuarial Society, One Penn Plaza, 
250 West 34th Street, New York, New York 10119. 
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AN ACTUARIAL NOTE ON CREDIBILITY PARAMETERS 

HOWARD C. MAHLER 

Abstract 

in this paper the relationship between the Bayesian credibility pa- 
rameter, k, and the classical credibility standard for full credibility, F, 
is examined from a practical standpoint. A very useful “rule of thumb” 
is developed. 

For most practical applications one can determine the F that roughly 
corresponds to k, and vice versa. First convert k to a number of claims, 
if necessary, by multiplying by an expected frequency. Then take F equal 
to approximately eight times k. 

A few other interesting results are also derived. Among them is the 
effect of misestimating the Bayesian credibility parameter k. The results 
of using credibility are relatively insensitive to misestimates of k. 

INTRODUCTION 

Credibility concepts and formulas are used in many actuarial applications. 
In this paper some practical questions concerning the use of credibility will be 
explored. While a few results of theoretical interest are derived, the emphasis 
is strictly on the practical impacts. This paper assumes that the reader is already 



generally familiar with credibility. For those interested in the theoretical ques- 
tions, there are many fine papers. some of which are listed in the references at 
the end of this paper. 

The first question explored is the practical impact of choosing between 
classical and Bayesian credibility. The answer depends on the parameters used 
in the two credibility formulas. For a certain simple relationship between the 
parameters, the choice between classical and Bayesian credibility makes only a 
relatively small difference. For many practical applications this difference is 
acceptable. ’ 

The second question explored is what is the practical impact of misestimating 
the Bayesian credibility parameter. The credibilities are relatively insensitive to 
misestimating this parameter. 

CLASSICAL CREDlBILl~I Y FORML’1.,2 

This paper assumes the following formula for the “classical” credibility Zc.. 

where n is the number of claims. and F is the so-called standard for full 
credibility. This formula is discussed further in [I] and [3]. 

BAYESIAN CREDIBILITY FORMULA 

This paper assumes the following formula for the “Bayesian” credibility Z”. 

where P is some measure of exposure such as payroll, premium. number of 
claims, etc. This formula and methods of deriving a value for k are discussed 
further in [3], 141. 151. [6], and [7].’ 

In many cases P is the number of claims. for example. when we are trying 
to estimate the average claim cost by class. In those cases where P is an 

1 The degree of accuracy required depend\ on Ihe particular applicatwn The d~t’t’erence~ in credibilrt) 

are gwen in this paper. The question 01 whether the rewltmg dlffcrencv in the quantity IO be 
&mated arc large or small will have to be decided on a caw h) caw ha\l\ 
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exposure unit other than claims, the formula for credibility can be approximated 
by multiplying P and k by an estimate of the expected claim frequency? Then 

where n is the number of claims and k’ is in units of claims; k’ equals k times 
the expected frequency. 

For simplicity, hereafter, we will assume a claim-based form of the formula 
for credibility, such as 

& = II 
n+k (2) 

where n is the number of claims. 

COMPARISON OF THE TWO FORMULAS 

The formulas (1) and (2) were derived from different points of view or 
different methods. A discussion of these differences is beyond the scope of this 
paper. In spite of these differences, the two formulas yield curves with very 
similar shapes, as stated in Longley-Cook [I]. This is illustrated in Exhibit 1. 

The credibility given by formula (1) is equal to the credibility given by 
formula (2) when 

n n ’ -= - 
0 n+k F 

k = F (n/F) 5[ I - (n/F).‘] 

k = FZc( 1 - Zc). 

Since we specifically have Zc~ = ZB, this can be written as 

k= FZ(I -Z). (3) 

If we define R = F/k, equation (3) can be rewritten as l/R = Z( 1 - Z). In 
other words, the curves given by formula (1) and formula (2) will cross at the 

’ This estimate need not be very accurate since the credibility is not very sensitive 10 the value of 

k as shown in a later section of this paper. Therefore. one can usually use a larger body of data IO 
estimate the expected claim frequency sufficiently uselI for this purpose. 
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two points where the credibility has the values Z and I - Z, provided we have 

R= ’ 
Z(1 -Z). 

That is, selecting the credibilities Z at which the classical and Bayesian 
credibilities are to be the same, yields the factor R that is used to relate the 
credibility parameters. Or, alternatively, given Bayesian parameter k and clas- 
sical parameter F, formula (4) indicates the points at which the two will yield 
equivalent credibilities. 

Choosing the value of R determines the two credibility values at which the 
two curves intersect. To cross near the middle,“ take l/R = (.5) (1 - .5) or 
R=4,Tocrossneartheends,takel/R= .](I-.l)orR= ll.Intheformer 
case, the two curves are relatively far apart near the end points. In the latter 
case, the two curves are relatively far apart near the middle. 

We are interested in having the two curves be “close” over the entire range 
of possible values for the credibility. One useful criterion, to define the concept 
of how close the two curves are. would be the maximum difference between 
the curves. 

Thus, one might want to minimize the maximum difference between the 
two curves. Taking R = 6.75 does so, producing a maximum difference of 
13%s, as illustrated numerically in Exhibits 1 and 2. This is a relatively small 
difference in credibility. For many practical applications, it will make relatively 
little difference which credibility formula is utilized. provided that R = 7. 

MINIMIZING VARIANCE 

In Bayesian credibility theory, the credibility is chosen so as to minimize 
the variance of the estimate around the true result.6 See. for example, the IS0 
Credibility White Paper (31. 

4 Actually, in this particular case the IWO curves are tangent at a single point, 2 = 50%. 

5 This problem reduces to the solution of a fifth-degree equation. The solution via numerical analysis 
is R 2 6.757. The maximum difference of 12.89% occurs at r = R and r = 1.5401 

o The estimate given by Bayesian credibility IS the least squares lmear unbiased estimate 
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Appendix I shows that if we use in place of the Bayesian credibility, Zg, a 
different estimate, ZB + AZ, then the variance increases. The variance is given 
by a parabola.’ For small changes from the optimal credibility, there is only a 
very small increase in the variance. Thus, for most applications, it will make 
no practical difference if the credibilities used differ slightly from optimal. The 
use of credibilities other than the optimal one still usually leads to a substantial 
decrease in variance compared to not using credibility at all. The relative 
increase in variance is given by 

A Variance (AZ)’ 
Variance = Zs(1 - Ze) (5) 

The full credibility standard that will produce the classical credibility curve 
with the smallest maximum relative increase in variance requires a choice of R 
that will minimize the maximum of 

(Zc - Zd2 
ml - ZB) . 

The solution is R = 8. See Appendix II and Exhibit 3. The maximum increase 
in the variance in this case is only 12.5% = l/8. 

CHOOSING A RULE OF THUMB 

A value of R = 6.75 minimizes the maximum difference between the 
classical and Bayesian credibility curves. However, taking R = 8 only increases 
this maximum difference from 13% to 17%. (See Exhibit 2.) On the other hand, 
taking R = 6.75 rather than R = 8, only increases the maximum variance to 
l/6.75 = 14.8% from l/8 = 12.5%. (See Appendix II.) Thus, either 7 or 8 
would be equally good integral values of R for use as a general rule of thumb. 
They each have something to recommend themselves. The author is more 
concerned with the reduction in variance and thus prefers R = 8. 

’ This is the same result noted by Meyers [8]. Meyers’ concept of efficiency is closely related to 
the variance of the estimate around the true result. One minus the efficiency is proportional to that 
variance. 
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EXAMPLES OF USES OF ‘THb. KC’1.F. OF THUMB 

Example I 

You generally use Bayesian credibility methods to develop your territory 
relativities for private passenger automobile. However, you have to file for a 
rate change in one particular state whcrc rates are tightly regulated. The insur- 
ance department refuses to accept anything but classical credibility methods. 

Let’s assume your Bayesian credibility parameter is 2500 car-years. Then, 
multiply this by the expected frequency and then by a factor of 8. If the expected 
frequency is 5%. then we get 2500 X 5% X 8 = 1000 claims. Thus you can 
use for your classical credibility standard roughly 1000 claims, for example, 
the traditional 1084. See Longley-Cook [ Il. 

Example 2 

You are computing estimated severities by classihcation for workers’ com- 
pensation insurance, using an empirical Baycsian credibility method. When 
actually implementing the method, you find it is necessary to impose maximums 
and minimums on the computed values of k, the Bayesian credibility parameter. 
To aid you in choosing these values. you convert them to a classical credibility 
basis. 

For example, k = 350 claims would correspond to a full credibility standard 
of 350 X 8 = 2800 claims. This could be thought of as a frequency standard 
of 1084. multiplied by a factor of 2.6 in order to convert it to a standard for 
severity. (2.6 can be thought of as the ratio of’ the variance of the severity to 
the square of the mean severity). See Langley-Cook 1 I]. 

THE EFFE(“I OF MISESTIMATING k 

Quite often in the use of Bayesian credibility it is necessary to estimate k. 
For example, one might estimate k from the data as in either 131 or (71. 
Fortunately. the results are not very sensitive to the value of k. Let k be our 
estimate of the correct k. 

Let T = ilk. 

Then, as shown in Appendix III, the maximum difference in the credibility 
that results from k as an estimate of k is 

(Azhlax = 
T-l 

(I + VT)” 
(6) 
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For values of T near I, this is relatively small. (See Exhibit 4.) For example, 
if T = I .25 or .8, then it is 6%. Even if T = 2 or T = .5, then the maximum 
difference is only l7%.x In other words, even if the estimated k is wrong by a 
factor of 2, the estimated credibilities are off by at most 17%.’ For many 
practical purposes this is an acceptable difference. 

In Appendix IV it is shown that the maximum change in variance is given 
by: 

(T - I)’ =--- 
M<,r I 4T (7) 

For values of T near I, this is relatively small. (See Exhibit 5.) For example, 
if T = 1.5 or 213, then it is 4%. Even if T = 2 or .5, then the maximum 
relative increase in the variance is only I18 = 13%.“’ Once again, even if the 
estimated k is wrong by a factor of 2 in either direction, for many practical 
purposes the result is still acceptable. 

CONCLUSION 

For most practical applications, one can determine the standard for full 
credibility F that roughly corresponds to the Bayesian credibility parameter k, 
and vice versa. First convert k to a number of claims, if necessary, by multi- 
plying by an expected frequency. Then take F equal to approximately eight 
times k. 

When estimating the Bayesian credibility parameter k, the estimate need not 
be extremely precise. For many practical applications, the estimate of k can be 
wrong by as much as a factor of two in either direction and still produce a fairly 
good estimate of the quantity, e.g., frequency, severity, pure premium, etc., 
that credibility is being used to estimate. 

” For T = 2. this maximum difference occurs when the correct credibility is 58.6% and the estimated 
credibility is 31.4%. For T = .S. the correct and eqimated credibilities are reversed. 

’ Of course. if the estimated k is wrong h) more than a factor of 2, the estimated credibilities can 
be off by more than 17%. 

I” For T = 2, this maximum relative increase in variance occurs when the correct credibility is 
213. For T = .S, this occurs when the correct credibility is l/3. 
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EXHIBIT 1 
PART 1 

ILLUSTRATIVE COMPARISON OF CREDIHILITIES 
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ILLUSTRATIVE COMPARISON OF CREDIBILITIES 
BAY-E-SIAN CREDIBILITY WITH K=ZOO VS. CLASSICAL. CREDIBILITY 

WITH VARIOUS VALUES OF F 

(in Powers of 10) 

DASHED LINE BASED ON CLASSICAL CREDIBILITY WlTH CLAIMS ,000. 

VARIED LINE BASED ON CLASSICAL CREDIBILITY WITH CLAIMS = ,600. 

CONTINUOVS LINE BASED ON A SAVESIAN CREDIBILITY WITH K = 200 



CRE,,,“,,.,TY PARAMETERS 

EXHIBIT 2 
PART 1 

CLASSICAL CREDIBILITY MINUS BAYESIAN CREDIBILITY 

r = Claims + k 

025 5%’ 4% 

05 5 4 

.I0 5 4 

.I5 4 3 

.20 3 2 

.25 2 0 

.30 I I 

.35 I -2 

.40 0 3 

.45 -I -4 

..50 -2 -4 

,625 -3 -6 

.I5 -4 -x 

,875 -5 -R 

1.00 -5 -9 

1.25 -6 IO 
1.50 -5 -. IO 
1.75 -4 - 10 
2.00 -3 -9 

2.25 -2 -8 

2.50 -I 7 

3.00 2 -4 

3.50 6 -1 
4.00 9 2 
4.50 I3 5 

5.00 I7 8 

6.00 14 I4 

7.00 I3 I3 

8.00 II II 

9.00 IO IO 

10.00 9 9 

15.00 6 b 

20.00 5 5 

25.00 4 4 

50.00 2 2 

1oo.oil I I 

R=S R-b H 7 b.75 R-7 

4% 4% 

4 4 

3 3 

2 2 

I 0 

I I 

2 2 

3 4 

-4 -5 

5 -6 

b 7 

x 9 

IO IO 

-11 -II 

II I2 

12 I3 
-13 -14 
-13 ~- I4 

I3 I3 
I2 I3 
II -12 
8 -10 

-6 -7 

3 -4 

0 -2 

3 I 
9 7 

13 I3 
II II 
I(1 IO 

9 9 

6 b 
5 5 

4 4 

2 2 

I I 

R=K 

w 
3 
2 
I 

-I 
-2 

4 

-5 

-6 

-7 

x 

II 

I2 

-14 

IS 

I6 

-17 

-17 

-17 

I6 

-lb 

I4 

-12 

-9 

-7 

-4 

I 

6 

II 

IO 

9 

b 

5 

4 

2 

I 



CLASSICAL MINUS BAYESIAN CREDIBILITY 

r0-l . 
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EXHIBIT 3 
PART I 

INCREASE IN VARIANCE THROUGH USF OF 
CLASSKAI. CREDILHU~Y 

RATHER THAN BAYESIAN CREDIBILITY 



lNCREASE IN VARIANCE 
THROUGH USE OF CLASSICAL CREDIBILITY 

RATHER THAN BAYESIAN CREDlBlLllY 
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BAYESIAN CREDIBILITY 

DIFFERENCE IN CREDIBILITY DUE TO MISESTIMATING k 
ESTIMATED CREDIBILITY MINUS CORRECT CREDIBILITY 

Note: r = Exposures + k T = ” = Estimated Bayesian Credibility Parameter 
k Correct Bayesian Credibility Paramer 

AZ= 
r(1 - T) 

(1 + r)(T + r) 
See Appendix III. 



DIFFERENCE IN CREDIBILITY 
DUE TO MISESTIMATING K 

r = Exposures/K (Log Scale) 

(in Powers of 10) 
LLOLW0: IYPL . . . . T = ,5 .-.-.- T = 1.5 - T=2 .--- T=*,3 
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BAYESIAN CREDIBILITY 

INCREASE IN VARIANCE DUE TO MISESTIMATING k 

Note: r = Exposures + X 
T = k = Estimated Bayesian Credibility Parameter 

I Correct Bayesian Credibility Parameter 

AV r(T - If 
- = ~ See Appendix IV. V (T + rJZ 
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APPENDIX I 

This appendix derives an expression for the relative increase in variance that 
occurs when one uses a value for the credibility other than that indicated by 
Bayesian credibility. It is shown that the variance is given by a parabola.” The 
bottom of the parabola, i.e. minimum variance, occurs when the value for 
credibility indicated by Bayesian credibility is used. For different values near 
this, the increase in variance is relatively small. 

Let X be a random variable whose distribution depends on a parameter 8. 
Let the mean of X for the value of the parameter 0 be given by 
I.@) = m/81. 

Let F be an estimate of p that gives weight (I to the observed value X and 
weight 1 - o to the overall mean M. 

F=uX+(l -a)M 
where M = E(X ) = EdE[X /0]] 

F is a function of the parameter u 

We wish to determine the variance of the estimate F around the mean p, 
averaged over all possible values of the parameter 0. 

Let V(u) = &[E[(F ~ p)‘/O]]. 

Let ? = VA&[ p(O)] = EH[ (p(0) - II~)~] = “between variance” 

6’ = &[VAR(X/B]] = “within variance.” 

F ~ p = a(X - p) + (I - u)(M ~~ p) 

(F - p)* = a’(X - & + (1 - o)‘(M ~ k)’ 
+ 2u(l - u)(X ~ p..)(M - p) 

E[(F - p)*/e] = a’VAR[X/9] + (1 - u)*(M - /A@))’ 

V(u) = Ee(E((F - p)‘/O]] = a2ti2 + (I - a)‘~’ 

Thus, this variance is given by a parabola in u. V(u) = u%* + (I - a)*~~. 
It has a minimum when the derivative is zero. 

0 = 2aS2 - 2(1 - U)T2 

I’ This well known result is given for example in Appendix B of Meyers 171 
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Thus, combining the observed value with the overall mean reduces the 
variance. It is interesting to note in passing that 

I 
Minimum Variance 

the variance if you use observation 

I 
+ 

the variance if you use overall mean . 

It is useful to think in terms of the reciprocals of the variance. We want to 
maximize the reciprocal variance by combining our two estimates. The maxi- 
mum reciprocal variance is just the sum of the two individual reciprocal vari- 
ances. Thus, the best that can be done is to double the reciprocal variance 
(when the two individual variances happen to be equal) and thus halve the 
variance. I2 

The usual expression for the Bayesian credibility is the value for the param- 
eter a that gives the minimum variance, ZLI = T~/(T* + 6’). 

The variance is larger than the minimum for a = ZR + AZ. In this case, 

(A.3’ AV = V(ZR + AZ) - V(ZB) = v’(ze)AZ + V’(Z,X) 2 

where V’ and V” are the first and second derivatives, respectively. (Higher 
derivatives are zero since V is given by a parabola.) Then 

AV = (AZ)*(S2 + -r2) 

AV (AZ)‘@’ + 72)2 -= 
V ti2T2 

AV WI’ -= 
V Z,(l - Ze) 

This is the desired expression for the relative increase in variance that occurs 
when the value used for the credibility is other than that indicated by Bayesian 
credibility. 
I2 A related result is given in Appendix C of Chapter 2 of the IS0 Credibility White Paper [3]. 
The optimal weights to assign to the individual estimates are inversely proportional to the variances. 



APPl:NI)IX II 

This appendix explores the behavior of the expression derived in Appendix 
I for the relative change in variance. It is shown that AViV has the smallest 
maximum for R = 8 

LetR = f = 
Standard for Full Credihilitj 

Bayesian Credibility Paramctcr 

II Number of Claims 
r=i= Bayesian Credibility Parameter 

Let g(r.R) = 
(ZH - Zc)’ 

(ZHNI - Z,3) 

This is the expression derived in Appendix 1 for AC’:\/. However, 

I tz + k 1 l+r -= 
ZH 

-= 1 +-TX- 
I1 r r 

I tz + k -= l-zn y-=‘+r 

5 
0 5 I? 5 F 

ZR - Z(. = 
n - - 

tl + k 
1 FZn 

l+r 
r?R 

Therefore, if r 2 R, 

drJ0 = ( - +r)2 (+) (1 + ,.) = i , 

and, if r S R. 
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For any given R, the local maximums on the interval 0 5 r I R occur at 
r = 0, r = R/4, r = R.17 

g(O,R) = g(R,R) = l/R 
,g(‘hR,R) = l/R + ‘h(Ri8 - 1) 

Thus, MAXIMUM, g(r,R) = 
l/R 
,,R + R,,6 _ ‘/ 

2 
: z i 

Thus, MINIMUMK MAXIMUM, g(r,R) = 118, which occurs when R = 8. 

‘I The first and last are endpomts. The second has @l~?r = 0. The other points where the partial 
derivative is zero are the minimums where ,q = 0. For r Z R. g(r,R) = I/r and is decreasing. 
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APPENDIX 111 

The appendix details the derivation of an expression for the maximum 
difference in Bayesian credibilities that occurs when an estimated value for the 
Bayesian credibility parameter k is used, rather than the correct value of the 
parameter. 

Estimate of Bayesian Credibility Parameter 
Correct Bayesian Credibility Parameter 

,,P, Exposures 
k Correct Bayesian Credibility Parameter 

Then the difference in credibilities is 

N r r &=“---=p 
n+k n+k rfT r+ I 

AZ= 
r(1 - T) 

(1 + r)(T + r) 

As expected, when k is overestimated, (T > I), the estimated credibility is 
too low, (AZ < 0). 

Taking the partial derivative of AZ with respect to r indicates that AZ has 
a maximum when r = T’. The maximum value of /AZ/ is 

/A-qM,, = !T - ” (T’ + 1)2 . 

As expected, this quantity has a minimum value of zero at T = I, i.e., 
when the Bayesian credibility parameter is correctly estimated. This expression 
has the same value for T and l/T. In other words, when k is misestimated by a 
given factor, the magnitude of the maximum difference in the credibility is the 
same whether k is overestimated or underestimated. 
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APPENDIX IV 

This appendix derives an expression for the relative increase in variance that 
occurs when an estimated value for the Bayesian credibility parameter k is used, 
rather than the correct parameter value. An expression for the maximum relative 
increase in variance is also derived. 

Let T = & = Estimate of Bayesian Credibility Parameter 
k Correct Bayesian Credibility Parameter 

n Exposures 
r = k = Correct Bayesian Credibility Parameter 

Then, from equation (5), 

AV WI’ -= 
V &?(I - ZB) ’ 

but, as is shown in Appendix III, 

AZ= r(T - I) 
(I + r)(T + r) 

Also note that 

I n+k l+r -c-z- 
-G n r 

1 n+k =-=1+r 
l-Z, k 

Substituting in equation (5) gives 

Av r(T - I)* -= 
V (T + r)* 

Taking the partial derivative with respect to r indicates a maximum when 
r = T. Therefore, the maximum value of AVIV is 

(T - I)* =--- 
4T ’ 
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As expected, this quantity has a minimum value of zero at T = I, i.e., 
when the Bayesian credibility parameter has been correctly estimated. This 
expression has the same value for T and I/T. In other words. the maximum 
relative increase in variance is the same whether X has been overestimated or 
underestimated by a given factor. 

In Appendix III. the same behavior was noted for the maximum difference 
in credibility. The factor by which k is misestimated. rather than /k - li/, the 
difference between the estimated and correct values. is the important quantity. I4 

I4 Therefore. we would expect that confidence interval\ for rC would not be \ymmrtrtc around our 
best estimate. Rather. they should be larger on the high end and mallrr cm the low end. This 
behavior WI:, noted in Section 7 of Meyers [Xl. 
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CLASSICAL PARTIAL CREDIBILITY WITH APPLICATION TO TREND 

GARY G. VENTER 

Abstract 

Even with the recent advances in Bayesian credibility theory, there remain 
situations in which some may prefer the classical approach. Such situations 
may include dutu limitutions, the failure of Bayesian model assumptions, the 
desire to incorporate a broader class of auxiliary information, ease of calcu- 

lation und explanation, or just the force of tradition. 

This paper discusses a probabilistic interpretation of the classical square 
root rule which provides some rationale for its use. The same rationale applied 
to trend projections leads to a similar rule, which utilizes the relative goodness 
of fit of the trend line. 

While classical credibility for pure premiums is calculated from the volume 
of dutu used, the importunce of volume is only in determining certain confidence 
intervals, which in turn determine credibility. In the trend model, the relative 
goodness of jt determines the conjidence intervals. Using these confidence 
intervuls in the same manner as in the pure premium case yields classical 
credibilities for the trend. 

Volume is importunt here only to the extent that the stability it imparts 
contributes to the goodness offit. As there may be other influences affecting the 
fit, volume alone does not guarantee high credibility in the trend cuse. 

Credibility requirements under the Normal Power approximation also are 
revietcved. For these a partial credibility method dtferent from the square root 
formulu is indicated. 

Partial credibility in the “classical” approach (Longley-Cook [5]) has often 
been presented in a somewhat ad hoc fashion, not particularly related to the 
statistical development of the full credibility standard. 

An exception is provided by the “limited fluctuation” development (De- 
Vylder [2] and Hossack, Pollard, and Zehnwirth [4]), which shows that the 
square root rule can be given a reasonable probabilistic interpretation when the 
full credibility standard is developed from a normal approximation to aggregate 
losses. The limited fluctuation concept is similar to an interpretation of credi- 
bility theory found in the 1932 PCAS (Perryman [8]). 
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The present paper outlines the limited fluctuation interpretation of credibility 
and uses it to develop a classical credibility approach to trend. As a further 
illustration, this method is extended to the computation of partial credibilities 
when the normal power approximation to aggregate losses is used to develop a 
full credibility standard (Mayerson. Jones, and Bowers 161). To present this 
method clearly, a review of the standard credibility procedure is in order. 

ELEMENTARY CREDIBILITY FROM AN ADVANCED STANDPOINT 

The primary focus in classical credibility is the establishment of a full 
credibility standard. This is viewed as the expected number of claims needed 
to meet a predefined standard of stability of the aggregate losses. (“Aggregate 
losses” refers to the total dollar amount of the claims.) The standard is expressed 
in terms of confidence intervals. A typical standard would be that there be a 
90% probability of observed aggregate losses for a year being within ?5% of 
the expected aggregate losses. 

The limited fluctuation approach to partial credibility proceeds by establish- 
ing a confidence interval of the same precision and width as desired for full 
credibility, but centered at the credibility weighted estimate rather than at the 
observed mean. Some rationale for this method will be discussed below. This 
approach turns out to yield the square root rule for partial credibility in the case 
that aggregate losses are adequately approximated by a normal probability 
distribution. This distribution may not be a very good approximation in practice, 
but it is useful to illustrate the development of the theory. The development of 
the full credibility standard under this assumption proceeds as follows. 

Since the normal distribution is symmetric about its mean, a 90% probability 
of the aggregate losses T being within ?kE(T) of E(T) corresponds to a 95% 
probability of T being below E(T)( 1 + k). In general, a probability p of T being 
within *kE(7) of E(7) translates to a probability of .S( I + p) of T being below 
E(T)( 1 + k). For notational convenience, then. let d = .5( I + p) and yd denote 
the dth quantile of the standard normal distribution, i.e., there is a probability 
d that a standard normal variate is less than y,,. For example, v V5 = 1.645. 

Thus, to meet the standard of T being within *kE(T) of E(7) wi 
p, kE(T) must equal yd standard deviations of T, i.e., kE(T) = ?d 
express this standard in terms of the number of claims requires an expression 
for the variance of T in terms of the moments of N, the number of claims, and 
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X, the claim size. This expression, derived in Appendix 2, is 

Var(7) = Var(X)E(N) + Var(N) E(X)2. 

Thus, the full credibility requirement is 

k2E(X)2E(N)2 = yi (Var(X)E(N) + Var(N)E(X)*) 
or 

E(N) = hik)2((Var(X)lE(x)2) + WarOVYE(N))). 

Now, this is supposed to be an equation for E(N), but.E(N) also occurs on 
the right side. However, the ratio Var(N)IE(N) can often be treated as a constant 
of the frequency distribution. In fact for a Poisson frequency, this constant is 
1.0. The negative binomial distribution with parameters x and p has E(N) = 
x( 1 - p)/p and Var (N) = x (1 - p)/p2, so the ratio of variance to mean is 
l/p. As long as p does not change, the expected number of claims can increase 
or decrease due to the x parameter without influencing the variance to mean 
ratio. 

For any frequency distribution, increasing E(N) by adding independent iden- 
tically distributed exposure units does not change this ratio, because Var(N) will 
increase proportionally. (For independent risks, E(N + M) = E(M) + E(N) and 
Var(N+M) = Var(N)+Var (M). From this it follows that if Var(N)IE(N) = r = 

Var(M)IE(M), then also Var(N + M)IE(N + M) = r.) In more sophisticated 
models, large risks or portfolios are not assumed to behave as aggregations of 
independently distributed exposure units, and then this ratio is not a constant 
(Meyers and Schenker [7]). However, this constancy will be assumed here. 
Thus, the full credibility standard can be written as 

where c = (Var(X)/E(X)2) + (Var(N)IE(N)) is a constant of the distribution. 
The first term of c can be denoted as CV’ with CV the severity coefficient of 
variation. For example, with a Poisson frequency, c = 1 + CV2. 

A standard example (Longley-Cook [5]) is given by a Poisson frequency 
and a severity distribution with CV = 0 (constant severity) and thus c = 1. 
Taking yd = 1.645 and k = .05 then yields E(N) = 1082.4. This might be a 
reasonable standard for claim frequency, or for aggregate losses with constant 
severity. To achieve the same confidence intervals, still with a Poisson fre- 
quency, this standard would have to be multiplied by 1 + CV2 to account for 
severity variation. In Longley-Cook [5], this factor is referred to as 1 + 
Sf/Mf and in Hossack [4] as 1 + (alm)2. 



It is of interest to note that c is also invariant under scale changes in severity, 
since Var(X)/E(X)’ has this invariance. A scale change is a transformation that 
affects every claim by a uniform factor, such as simple monetary inflation 
(Venter [ I I]). Real world inflation may affect different claim sizes differently, 
however (Rosenberg and Halpert [9]). Var(X)/E(X)’ is invariant in this sense 
because numerator and denominator both change by r’ under a scale change of 
r. Thus. for given constants p and k. the credibility standard will not change 
due to growth of the business (i.e., addition of independent identically distrib- 
uted exposure units) or uniform inflation. 

In practical applications, E(N) is often estimated by the number of claims 
arising. Thus, for example, if 1,082 expected claims is the full credibility 
standard, a body of experience with 1,082 claims may be deemed fully credible. 
The model, however, specifies a standard in terms of the exact expected number 
of claims. Using an estimate of this expected number changes the confidence 
intervals. Expected claims of 1,000 or of 1,164, for example, could occasionally 
produce 1,082 claims. Using k = !,,1,‘&E(N) yields k’s of .OS2 and .048 for 
these two expected values. Thus, the confdence interval widths arising in 
practice may be slightly different than those contemplated by the theory. This 
problem seems to be minor, given the degree of judgment used to select k 
originally. 

PARTIAL. CREDIBILI’I‘Y 

When E(N) is less than the full credibility standard, a weighting scheme is 
used to estimate E(7). The estimate, u. is a weighted average of the observed 
aggregate claims T with 1’. a previous estimate of E(n. The previous estimate 
r can be regarded as the best available estimate of E(T) without the observation 
T. Thus 

u = zT + (I - :)I 

Under the limited fluctuation partial credibility approach. the weight z is 
calculated so that there will be a probability 11 of II being within kE(7) of 
=E(n + (1 - 2)~‘. where p and k are the detining constants of the full credibility 
standard. Thus the credibility estimate [I is. with probability p, within the 
originally desired distance X-E(T) of a weighted avcragc of E(7J and the previous 
estimate r. 

For u to meet this criterion, :T must be within kE(T) of -E(T) with probability 
p. as can be seen from the definition of II. This is equivalent to requiring T to 
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be within (k/z)E(T) of E(T) with probability p. But this is just the full credibility 
requirement with k replaced by k/z. Thus, under the above assumpdons, the 
expected number of claims needed for credibility 2 is 

E(N) = c(y<,/(k/z))‘. 

Comparing the resulting expected number of claims NZ needed for a credibility 
of z to the full credibility standard Nf yields that 

N; = zzN, 

or 

That is, the credibility factor z for an expected number of claims Ni is just the 
square root of the ratio of NZ to the full credibility standard N,, with a maximum 
ofz = 1. 

Also, since (k/z)E(T) is the width of thep confidence interval when E(N) = 
NI, then z is just the ratio of the target p confidence interval kE(T) to the wider 
p confidence interval around E(T), (k/z) E(T), that arises for E(m = N,. As a 
result, the p confidence interval around zE(n is of the targeted width kE(T), 
and thus there is a probability p of the credibility estimate u being within this 
target width of zE(T) + (I - z)v. 

This gives a reasonable probabilistic interpretation to the square root rule 
for partial credibilities. It does not, however, rule out other possible partial 
credibility rules which also may be reasonable. The classical approach is essen- 
tially pragmatic, and does not claim optimality. 

For an example, again assume Poisson frequency and constant severity, so 
c = 1. Suppose 683 claims are observed, and this is taken as the estimate of 
E(N). Using k = ?;,I&@@ = ,063, a 90% confidence interval of 683 ( 1 2 
,063) = 683 * 43 is computed. However, suppose an interval half width of 
(.05) (683) = 34 is desired, which is smaller than the actual by the ratio of 
.050/.063 = .79. The 90% confidence interval around .79N = (.79) (683) is 
of the desired half width 34 = (.79) (43). Adding the constant (1 - .79) v does 
not change this half width. Thus, taking z = .79 meets the limited fluctuation 
criterion, and this z can be simply calculated as the square root of the ratio 
683/1082. 
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It is sometimes claimed in casual conversation that the classical credibility 
criterion is biased against downward estimates. There are two lines of reasoning 
used for this. The first notes that a portfolio with a smaller expected number of 
claims has a smaller confidence interval radius than one with more expected 
claims, and thus asserts that it is unfair to give it lower credibility. 

This argument in effect questions the use of a target confidence interval 
expressed as a percentage of the expected losses, and favors an absolute con- 
fidence interval. There are good reasons for using a relative confidence interval, 
however. For instance, the resources to absorb adverse fluctuations are usually 
available in approximate proportion to expected losses. These resources may 
include surplus, investment income, and a profit/contingency provision in the 
rates. It should also be noted that a criterion based on absolute confidence 
intervals would give the greatest weight to the smallest volumes of data, which 
is just the opposite of what is intended by credibility. 

The other argument for bias applies when the actual rather than the expected 
number of claims is used for credibility. The model assumes random fluctuations 
occur equally on either side of the expected value. However, downward fluc- 
tuations get lower credibility than upward ones. giving the whole procedure a 
slight upward bias. 

To illustrate this, consider a case where the full credibility standard is 
1089 = 33* claims, and E(N) = 1000. Assume also that the previous estimate 
v = 1000. The credibility should be .9.58 based on E(N) = 1000. However, if 
credibility is based on the actual number of claims it will usually differ somewhat 
from this value. The credibility z and credibility estimate u are shown below 
for several n’s that could arise. 

n Z u n z U 

1023 .969 1022 977 ,947 978 
1063 .98X 1062 937 ,928 942 
1088 1.000 1088 912 ,915 919 

1047.6 954.8 

As can be seen, the fluctuations above the expected value do produce slightly 
larger indicated changes than do those below the mean. In fact the average 
estimate produced is 1001, so there is a 0.1% expected upward bias in this 
case. The weights used for each row to compute this average are .4679, .3607, 
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and .1713. These and the n’s selected derive from the 6 point Gaussian quad- 
rature integration procedure for the interval (905, lO!Z), which under the normal 
approximation contains about 99Y4% of the values of n that could arise. 

The 0.1% expected bias in this case comes about because the practice departs 
from the theory, i.e., the credibility is calculated based on the latest observed 
rather than the expected number of claims. This problem need not occur in 
other applications of the limited fluctuation theory which use some other estimate 
for expected claims. 

To summarize classical normal approximation credibility, then, a full cred- 
ibility standard is first established, based on a specified high probability of the 
data being within a specified narrow band around the expected value being 
estimated. Partial credibility standards are then derived by requiring that the 
credibility weighted estimate be within just as narrow a confidence band, but 
this confidence band is now centered at the credibility estimate. The partial 
credibility z then turns out to be the ratio of the width of the target full credibility 
confidence interval to the corresponding confidence interval produced by the 
actual data. 

Does classical credibility theory make sense in this form, and if so, under 
what circumstances‘? 

Assumptions for aggregate losses (e.g., approximately normally distributed) 
that lead to the confidence interval properties of the credibility estimator have 
been given, but the relationship between the observed aggregate losses, those 
being estimated, and the previous estimate need to be clarified in order to 
evaluate the methodology. 

Without formulating a specific model, the credibility estimate seems useful 
when a situation like the following is involved. 

Things (i.e, the underlying processes) tend to be fairly stable over time, but 
occasionally they change, and these changes are of varying degrees and direc- 
tions. Observations fluctuate randomly around the underlying processes, and 
the degree of this latter fluctuation is fairly well known. Rates should respond 
to fundamental changes but not to fluctuations. 

Under such a scenario, it seems reasonable to set up a target confidence 
criterion with respect to the random fluctuations so that the latest year’s indi- 
cation will be used at face value if the confidence interval this experience 
produces is tight enough, in reference to selected constants p and k. This would 
delimit the degree of random fluctuation that would be deemed acceptable. 
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At the other extreme, if no observation can be made. the previous estimate 
will continue to be used. Between these extremes, a weighted average of the 
observation and the previous estimate seems like a reasonable and appropriate 
choice. What should be the weights? One possibility is to attribute just enough 
weight to the last observation so that that observation gives the resulting 
weighted average only the degree of random fluctuation that has already been 
deemed acceptable. As the above analysis has demonstrated, this is the result 
the classical credibility procedure produces. given the assumptions involved. 

Thus, although no claims about optimality are advanced, the classical pro- 
cedure can at least be seen to have a reasonable probabilistic interpretation. It 
may be particularly useful when the premises of Bayesian credibility, such as 
homogenity over time, cannot be assumed to hold. when the data is not available 
to do a full Bayesian credibility analysis, and when the auxiliary data to be 
incorporated comes from a different source. such as broader economic indices. 

In the next section, the above procedure will be used to develop a classical 
credibility standard for trend projections. In Appendix 1, it is used to produce 
partial credibility when the normal power approximation to aggregate losses is 
employed. 

CREDIBILITY FOK A I‘IME WEND 

To apply classical credibility to a trend projection. a full credibility standard 
relative to p and k must first be determined. In the classical spirit. this can be 
specified as follows: a projected point will be deemed fully credible relative to 
p and k if there is a probability of at least p that the actual value being projected 
will fall within 1 + k of the projected point. 

Note that this standard is more restrictive than in the aggregate loss credi- 
bility framework in that it requires the realiration of the random variable. not 
just its expected value, to be in the interval. Accordingly, a larger value of k 
may be deemed appropriate for a given /, in this situation than for aggregate 
losses. There may be other ways to specify a reasonable full credibility standard, 
but the above definition will be used herein. As in the classical approach, the 
target confidence interval is expressed as a percentage of the estimate. which 
seems appropriate for most of the reasons advanced above. 

There are standard statistical formulas. in texts covering regression, for 
calculating confidence intervals around a trended point. In general. these utilize 
the number of points in the experience period. the number of points forward 
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the projection is carried. and the goodness of tit of the least squares line. Let 
us suppose, then, that the line is based on rt equally spaced observed points and 
the projection of interest is rn points beyond the midpoint of the observations. 
Goodness of tit will be measured by s. where 01 - 2)s’ = SSR, the sum of the 
squares of the residuals, i.e., the sum of the squared differences between the 
observed and titted points. The n - 2 is an adjustment for degrees of freedom. 
because 2 parameters are required for titting a line. 

Under normal least squares assumptions, to be discussed further below. the 
usual formulas yield that the standard deviation of the projected point is 

svT+ (l/n) + 1~2rn?,7$ 

and the p confidence interval measures 

t(d.n - 2)sdl + (l/n) + 12rn?$YI) (1) 

on each side of the projected point, where r(d,n - 2) is the 100&h percentile 
of the f distribution with II - 2 degrees of freedom, and, as before, d = .5( 1 + 
p). Formulas that reduce to these for a time trend can be found in many 
regression texts. The confidence interval incorporates both the variance of the 
subsequent point from its expected value on the line and the uncertainty as to 
where the line really is. since its parameters are estimated. 

To use this contidence interval for credibility. it is tirst necessary to select 
p and k. For example, a 90% confidence interval of k 10% of the projected 
value might be chosen as the full credibility standard. Then the actual p conf- 
dence interval is measured for the data at hand. Suppose, for example. the 90% 
confidence interval around the projected point is found in fact to be 2 12.5% 
of the projected value. Then, following the principles of classical credibility, 
the partial credibility for the particular case at hand would be the ratio of the 
full credibility interval to the actual interval. In this case the ratio is IO/. 125 = 
.X0, and thus the trend projection receives 80% credibility. 

Applying a credibility factor in this manner limits the possible random 
deviation of the credibility weighted estimate to the targeted amount. i.e., to 
*k of the projected point. However, the resulting contidence band, while of 
the desired width, is not centered on the value being estimated, but rather on 
the weighted average of this value with a previous estimate V. This is precisely 
what the classical procedure does in the aggregate loss case as well. 

In other words, the credibility estimate is z times the projected point plus 
1 - 2 times the prior expectation. The !, confidence band around this estimate 
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has been shrunk by a factor of z, which is chosen to give the resulting confidence 
band a width of k times the projected point. Then p expresses the probability 
that the credibility weighted average of the actual value being projected and the 
prior expectation will be within the given interval around the credibility estimate. 

The theory does not specify what the prior estimate v should be, but it seems 
reasonable to stipulate that v is the best estimate available prior to the current 
projection. Possibilities may include a previous projection; a projection based 
on a wider population, e.g., countrywide data; or a projection based on a 
broader economic perspective. e.g., pure inflationary considerations. 

An example of this method is given in Appendix 3, for a loss ratio trend. 
A loss ratio of .647 at current rate level is projected, with a 90% confidence 
interval of *. 159. If the full credibility standard is taken to be a 90% confidence 
interval of 2.0647, a credibility of z = .0647/.159 = .41 results. Thus I - 
z = .59 will apply to the prior estimate. Suppose the prior estimate is v = ,620. 
Then the credibility estimate is u = (.59)(.620) + (.41)(.647) = ,631. 

The probabilistic interpretation of this procedure is then as follows. There 
is a 90% probability that the expected loss ratio E being estimated is within 
.I59 of ,647. Thus, there is also a 90% probability that .41E is within 
(.41)(.159) = .065 of (.41)(.647) = ,265. Adding .59~ = ,366 to this shows 
that there is then a 90% probability that the credibility estimate u = .265 + 
,591~ is within ,065 of .41E + .59\*. 

PROS AND CONS OF THE METHOD 

The confidence interval approach to credibility for trend has several advan- 
tages and some disadvantages, as enumerated below. Some features of the 
method have positive and negative aspects, and thus are listed under both. 

Advantages 

I. The method is derived explicitly from a statistical model. Thus, it is 
possible to describe the estimate in probabilistic terms. It is not based 
on analogy or ad hoc reasoning. 

2. Credibility bears a direct relationship to the goodness of tit of the trend 
line. 

3. Since the model is simple, the concepts are relatively easy to explain 
and the estimation is not difficult to carry out. 
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4. The method leaves room for the informed judgment of trained experts, 
both in the selection of the full credibility standard and in the choice of 
the prior estimate. This makes the method responsive to the needs of 
different constituencies, which may have different evaluations of the 
applicability of the various sources of prior data, such as countrywide 
data or broader economic trends. 

Disadvantages 

I. The method does not optimize anything. This is in contrast to the modem 
least squares credibility approach, which does optimize a specific error 
function. 

2. Subjective judgment is required. This is again in contrast to the least 
squares approach, in which all estimates are produced strictly from the 
data with no input from subjective probabilities called for. While in- 
formed judgment can truly be an advantage over purely data driven 
methods, judgment can be inconsistent over time and circumstances, and 
poor judgment can be a disadvantage. 

3. The model requirements, while simple, are restrictive. The usual regres- 
sion assumptions, for example, include normality of the residuals. This 
assumption can be tested, however, as is discussed further in Appendix 
4. If normality is not found, it still may be possible to estimate confidence 
intervals by other means. 

In summary, classical credibility, which can be thought of as a ratio of 
confidence intervals, can be extended directly to apply to trend. This has several 
advantages, including flexibility and ease of application and exposition. It is a 
pragmatic approach with a probabilistic interpretation, but is not derived as a 
statistical optimization. This leaves open the possibility that, under further 
assumptions about the statistical relationship between the data and a specific 
prior estimate, a different credibility procedure can be derived that optimizes a 
specified error measure. 

LEAST SQUARES ASSUMPTIONS 

The normal least squares assumptions provide that the various years’ obser- 
vations T, are normally distributed random variables, each with the same vari- 
ance, and with the expected value for each given as a linear function of time, 
i.e., E(TJ = a + bi. 
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In application, these assumptions may only hold as approximations. In some 
cases, for instance, the expected values may move as a non-linear function of 
time. Also, the data is often adjusted to remove systematic influences. e.g.. 
rate changes and benefit changes. before the linear model is fit. 

Further, nothing in the model assumptions requires the variance to be due 
to frequency and severity distributions alone. Price levels, the level of economic 
activity. and reserving changes could all contribute to the variance of the 
individual results from their expected values on the line. Thus the volume of 
experience underlying each point is not the xolc determinant of the variance. 
and in fact may be overshadowed by other. factors. 

DEVELOPING A WORKING FORMUI,A 

A projected point is fully credible p,X if the I> confidence interval around 
the projected point has radius no more than k times that point. By ( 1) and the 
definition of s. this criterion will be fulfilled if 

k PRO = t(d,n - 2)L ‘{l + (l/n) + Il,m’!(r~‘ir~)).SSRi(rl ~~ 2). (2) 

Here PRO denotes the projected pomt. Also. for credibility :. a contidence 
interval of (k/z) PRO is required. by the limited fluctuation principle. This can 
be expressed by substitution (k/z) for k in (3-j. 

Rearranging terms then leads to 

SSRJPRO’ = k’(n ~ 2)/[:‘t(d.r1 - ?)‘f 1 + (1,~ + 12r,r’i(rr’ - /r))] (3) 

where SSR, is associated with credibility :. Thus 

SSRIIPRO’ = k’(n - ?)llt(d.tl - ’ ?)-(I + (Iill) t I’ttl.‘:(tlq - n))] (4) 

gives the full credibility standard relative sum of squared residuals in terms of 
p and k. the selected criteria; n, the number of points used IO tit the line: and 
m, the number of points projected beyond the midpoint of the tl original points,. 

Full credibility is expressed by a relative SSR. not an absolute SSR. because 
the target confidence interval is specified as a percentage of the projected value. 
As with credibility for aggregate losses. a smaller absolute confidence interval 
can lead to lower credibility if that interval is wider relative to the value being 
estimated. and again this appears to be entirely appropriate. 
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From (4). the full credibility relative %X’s are given for various increasingly 
specitic assumptions below. First, take p = .90, so d = .95. and assume 5 
points are used to fit the line so II = 5. Then t(d,tz - 2) = 2.353 and: 

SSR,iPR02 = 5.418 k’i( 12 + m’) 

If k = .06, this becomes 

SSRJPRO’ = .0195/(12 + m’). 

A typical projection may be to point 7.5, so m = 4.5 points beyond the 
midpoint of the data. This yields 

SSR,IPRO’ = .0006 

This full credibility standard for the relative SSR only coincidentally is .Olk. 
For k = .05, the standard is .0004. and for k = .07 it is .0008. 

For a given PRO, (4) can be divided by (3) to yield 

z = L%??ISSR;, 

which is the square root rule for partial credibility for trend. Here SSR, is the 
actual SSR for the fitted line, and SSR, is the target relative SSR multiplied by 
PRO’. 

MAKINCi THE JUDGMtNTS 

Given the above working formulas, choosing p and k can be replaced by 
selecting a target full credibility relative SSR. This is perhaps a more reasonable 
judgment to make. Instead of picking p’s and k’s in advance. experienced 
actuaries, having a feel for the ratemaking process as a whole, and also for 
their corporate goals, may prefer to review a collection of fitted lines and select 
those which can be regarded as fully credible for ratemaking use. However, the 
resulting p’s and k’s may be a useful part of this review. 

Such a process is also advantageous in that it is less tied to the normal 
distribution assumption of the model. The selection of the full credibility relative 
SSR can be made with recognition that the residuals may not be normally 
distributed. and that the confidence intervals involved might actually be wider 
than the model would predict for that relative SSR. 

A judgment could also be made that a wider contidence interval may be 
acceptable when a longer projection is necessary, in recognition of the inherently 
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greater uncertainty involved with a longer projection. One way to reflect this is 
to keep the target relative SSR constant under various projection periods. 

Under these circumstances, the Actuarial Committee of the National Council 
on Compensation Insurance adopted a target relative SSR of .OOO6 for a five- 
year fitted trend line. As noted above. this results in k = ,060, that is, a 90% 
confidence interval radius of 6.0% of the projected value when rn = 4.5. which 
corresponds to a 2.5year projection. For this relative SSR and ITI = 5.5. a 3.5. 
year projection, k = .06X, that is, there is a 90% confidence interval radius of 
6.8% of the projected value. Normally. workers’ compensation ratemaking uses 
a projection period of 2.5 to 3.5 years. 

The more general target relative SSR of .0195/( 12 + m’) can be used for 
other projection periods. This maintains the target relative 90% confidence 
interval radius at 6.0%’ regardless of the length of the projection. 

The Committee also noted that the above formula for the confidence interval 
around a projected point allows for random fluctuation of the projected loss 
ratio as well as for uncertainty about the parameters of the regression line. It 
only the latter were to be considered. the resulting confidence interval would 
actually be tighter than the formulas indicate. 

This indication of a tighter interval may in part be counterbalanced by the 
possibility that residuals are not normally distributed. Although that distribution 
was not rejected by standard tests, the tests are not detinitive in this context. 
To the extent that the residuals are from a skewed distribution, the target 
confidence interval may be wider than the formulas suggest. 

Practical considerations such as these support the approach of selecting a 
target relative SSR based on informed judgment which considers. but is not 
strictly limited by. the implications of the statistical model. 

The complement of credibility in this framework should apply to the best 
estimate of the trended point available prior to the projection that is being 
weighted. Logical candidates for this are projections based on the countrywide 
trend. the previous trend in the state. or broader economic indices. The as- 
sumption of no trend would not be appropriate unless there is an a priori reason 
to believe the trend is in fact flat. There may be, for example, good reason to 
believe this for the ratio of workers’ compensation indemnity losses to payroll. 
However, as medical costs have been increasing faster than payroll in the 
economy at large, the ratio of medical losses to payroll could not be expected 
a priori to show no trend. 
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As medical benefits are quite similar across states, and are subject to similar 
inflationary influences, the latest available countrywide trend factor was selected 
as the prior estimate to be used with the complement of credibility for the 
medical pure premium trend. For indemnity trend, this was felt to be inappro- 
priate, due to widely differing benefit laws. Zero trend was chosen as the prior 
estimate because of its a priori reasonableness. 
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APPENDIX 1 

CREDIBII.l~I~Y \h’l FH I Ht NP APPROXIMA-IION 

Mayerson. Jones. and Bowers [6] note that the normal approximation is 
inappropriate for casualty insurance aggregate claims distributions because these 
are almost always positively skewed. They suggest using the NP (normal power) 
approximation instead. although they never USC’ that term. The NP adjusts the 
normal approximation for skewness. If f,r is the tlth quantile of T. i.e.. 
Pr (T 5 f,,) = d. and y,/ is the rlth quantile of the standard normal distribution, 
then the NP approximation is 

t,/ = E(7-)( 1 + c&v,/ + .s/ (v<< ~ I )/6)). (5) 

where for any random variable X. c 4 is the coefficient of variation (ratio of 
standard deviation to mean) and .y4 is the coefficient of skewness (ratio of third 
central moment to the cube of the standard deviation). In this notation, the 
normal approximation is 

t,i = E(T)(I + ~I:\‘<I). 

which is the NP with zero skewness 

The NP approximation arises from the first few terms of the Cornish-Fisher 
expansion. an infinite series expansion which expresses the percentiles of a 
distribution in terms of its moments. ‘This is an alternating series expansion and 
is not necessarily convergent. Thus, adding more terms may or may not signif- 
icantly improve the accuracy of this approximation. See Beard. Pentikainen, 
and Pesonen [ I ] for further discussion of this approximation. 

As with the normal approximation. the starting point for credibility is to 
find a full credibility standard such that T is within ikE(T) of E(T) with 
probability p. The NP does not in general provide a symmetric distribution 
of T around E(T); however. requiring 7‘ to be below (I + k)E(T) with proba- 
bility d = (I + p)/2 is generally assumed to be sufficient for T to be within 
E(n +kE(n with probability p for positively skewed aggregate claim distri- 
butions. This will be assumed for now, but it is discussed further below. With 
this assumption. the full credibility requirement gives the equation 
E(n( I + k) = r,,. which must be solved for E(N) to get the full credibility 
standard. E(N) does not appear in this equation. but it is an element of both 
sides. 
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Employing the NP approximation (5) at this point and solving for k yields 

k - c&y<, + ST (J; - I )/6). 

To solve for E(N), cr and So must be expressed in terms of N and X, i.e., 
frequency and severity. The methods of Appendix 2 provide the following 
formulas for the coefficients of variation and skewness of aggregate losses 

cg = (ct + n2)/E(N), and 
sr = (.s,(. + 3n7(.f + n+c;E(N)‘, 

where 11, is defined by E(N)n, = E(N - E(N))‘. For example, n2 is the frequency 
ratio of variance to mean. For the Poisson, n2 = n3 = 1. 

Introducing further notation for the numerators of the aggregate moments 
will simplify these expressions. Let 

MI = cf + n2, and 
M.3 = s,c: + 3nzcf + n3. 

M2 and MJ are shape descriptors for the aggregate loss distribution. For example, 
MzIE(N) is the square of the coefficient of variation of aggregate claims, and, 
in fact, Mr is the adjustment factor c referred to above in the discussion of the 
normal approximation credibility formulas. Mj is a third moment measure for 
aggregate losses, and comes up frequently in calculations. With this notation 
the formula for k becomes 

k = ?;,,k/M%(N) + (MdM,)(y: - l)/6E(N). 

This equation can be solved in general for the full credibility standard. 
Considering it to be a quadratic equation in a gives 

2k m = ?;I%& + fl&;p+‘kT;:mL l)Mj/3Mz. 

The resulting value of E(N) is the full credibility standard based on the NP 
approximation. Setting the last term under the square root to zero gives the 
formula for the normal approximation full credibility standard. Thus, that term 
is the end result of the NP adjustment. 

Purtial Credihilities 

The limited fluctuation method can be used to calculate partial credibilities 
under the NP approximation. Following the development in the text, for an 
E(N) less than N,, the partial credibility z represents a scaling factor that scales 



the 1’ confidence interval that would arise for that number of claims down to 
the target p contidencc interval of kl$V). The number of claims that generates 
a credibility of :. i.e. N,. can be developed from the above full credibility 
formula by replacing k with k,z. Thi4 allows l’or the calculation of credibility 
tables. but no simple relationship. such as the square root rule of the normal 
approximation. is evident. 

An example would probably bc useful at this point. Consider a case with a 
Poisson frequency distribution and a lognormal severity with a coefficient of 
variation of 7.0. For the Poisson. 11~ - II{ = I. Thus .zrl- = SO. For the 
lognormal generally. s, = c,’ + 3(,,. so in this case .s, = 364. Thus M3 = 
125.000. Take a 90%’ confidence interval. so j’Ci = I ,645. Then 2k tm = 
I I.632 + V’J35.3 + 2843k. Ifk = .05, E(N) = 80,026 is then the full credibility 
standard. Replacing k by k/z gives the following standards N. for partial credi- 
bility z 

.15 :: .so .7s 
N,: 9,103 25.786 49.468 

?N,: 5 .OO I 20,007 4s ,()I 5 

The square root rule partial credibility criteria z;‘N, for this N, are consistently 
lower. 

The high credibility requirements in this example derive in part from the 
large severity CV assumed. For high limits of insurance or unlimited coverage, 
CV’s of this magnitude have been reported by actuaries involved in various 
lines of commercial property and liability insurance (LeRoy Simon in his review 
[IO] of the Mayerson, Jones. and Bowers paper). 

Instead of the Poisson. a negative binomial frequency can be assumed. The 
negative binomial can be described by means of two parameters. .\ and p, so 
that Pr(N = n) = (’ ’ :: I) p’( I ~ p)“. with moments E(N) = .r( I - p)/p, nz = 
Iif, n3 = (2 - p)/p’. This illustrates that !I~ and 11~ can be considered funda- 
mental measures of the shape of the frequency distribution. in that they are 
functions of p only, while the mean can be changed by moving x. Dropkin [3] 
found that nz = I 184 in an automobile insurance study. This implies p = .8446 
and so n3 = I .620. In the above example. this increases M1 to 50. I84 and M 
to 125,027.668. Thus, 2kbjm = I I.653 + I”l35.8 + 2834k. For k = .05 
this yields E(N) = 80, I53 expected claims for full credibility. Thus. in this 
case. the full credibility standard is not significantly changed by going to the 
negative binomial assumption. 
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Another example of a negative binomial frequency distribution is provided 
by Meyers and Schenker [7]. They discuss a workers’ compensation setting in 
which the compound process of picking a risk at random from a class and 
observing its number of claims can be described by a negative binomial distri- 
bution. In their case each risk has a Poisson claim count distribution, and the 
risks’ Poisson parameters are gamma distributed across the class. The resulting 
negative binomial distribution with mean E(N) is estimated to have n, = I + 
.037E(N). Since n? is increasing with risk size, very large values can arise for 
large risks. In this model, a portion of the uncertainty about a risk’s claim count 
comes from the distribution of risks in the class, and this portion is not reduced 
by increasing the risk size. Essentially II, is no longer a fundamental frequency 
constant, but depends on E(N). 

Ignoring the context, however, suppose a negative binomial distribution is 
given with a constant but large n2, say n2 = 51. Then p = l/51, and n3 = 
5 151. In the above example these values give Mz = 100 and Mg = 137,500. 
Thus 2km = 16.45 + v2--1564k, and k = .05 gives E(N) = 
123.385. Thus the negative binomial model does make a considerable difference 
when nz is large. 

The lognormal assumption increases the skewness in these examples over 
what some other distributions would provide. A Weibull distribution with a CV 
of 7 has a shape parameter of .2678046 and thus skewness of 44.44. In the 
Poisson case above this reduces M to 15,391. Thus 2km = 11.632 + 
V’%%? 350. I k, or, for k = .05, E(N) = 57,568. 

One-und Twwsided Intervuls for Skewed Distributions 

Previously it was stated that the NP approach to credibility usually assumes 
that if T has a probability of d = (1 + p)/2 of being below (1 + k)E(7J, then 
T will be within *ItE(T) of E(T) with probability at least p. That this is not 
necessarily true for positively skewed distributions is shown in the following 
example. 

Assume T is Pareto distributed with distribution function F(t) = 1 - (I + 
t/2.5~p3.s. Then E(T) = I .O and F( I .O) = .6920. Take p = .5, so a 50% 
symmetric confidence interval around 1 .O is sought. This interval is 1.0 5 
.6898ascanbeverifiedusingF(t). Sincep = .5,d = .75,andsinceF(1.215) = 
.75. tl = I.2 15. However, the probability of T being in the interval 1 .O 2 ,215 
is less than 50%; in fact it is only 13.45%. 
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This arises because E(7J is well above the median of the distribution, so 
going only a small distance above E(T) reaches the IOOdth percentile for this 
d. For this distribution. this situation holds up to a p = 71.13% confidence 
interval around the mean. i.e. up to I .O ? .XYOS. For thih interval. the proba- 
bility d of T being less than E(T)( I + k) is given by (/J + I )/2 = 86.07% 
exactly. For higher p. the desired relationship doe\ hold, i.e.. being below the 
(1 + p)/Z quantile is enough to guarantee that the corresponding symmetric 
interval contains at least p in probability. 

Since it is higher confidence intervals that are of interest in credibility. the 
assumed relationship would be fultilled in this case. However. a more highly 
skewed distribution would place the mean at an even higher percentile. which 
would aggravate this problem. However. most loss distributions for which this 
credibility procedure is intended arc not so highly skewed that this would be 
likely to occur. In fact the NP ithclf is of questionable accuracy for highlq 
skewed distributions. 

Applicabili& of’ the NP to Skrnwl Distr-ihtrtiorts 

To investigate this. the percentiles of the scvcral distributions are calculated 
directly and by the NP approximation. The Pareto distribution F(t) = I ~ 
(I + t/b)-’ has moments defined by 

E(T’) = fi ib/(.s - i). 

Using these with the above values (h = 2.5. .s = 3.S) yields. after some algebra. 
cf = 713 and c v I. I = 18. Thus the NP approximation becomes 

This is compared to the actual values 01‘ t,/ for this distribution hclow 

d: .I0 .25 .so .7s (90 .95 
I,/ NP: ,969s - I.665 2.000 .3YS7 4.885 X.630 

t,/ Actual: .0764 .?I42 .5375 I .?lS 1.327 3.383 

The NP approximation is clearly not appropriate for this distribution. From 
the table, the NP might bc rea\onabl! accurate for a mall range of values 
somewhere in between the 75th and YOth percentiles. For the right hand tail, it 
clearly overstates the percentiles. The problem here apparently is the high 
skewness. 
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Distributions of this great a skewness are not likely for large portfolios of 
risks, for which the NP was originally developed. The aggregate claim distri- 
bution for a small portfolio or a single risk could easily be this highly skewed, 
however, and use of the NP could lead to large errors in such a case. 

For less skewed distributions (e.g., skewness below I .O) the NP can be 
fairly accurate. Two distributions, the gamma and the Weibull, are compared 
below to their NP estimates. Both of these distributions are assumed to have 
mean 1 and standard deviation 113, which tixes their parameters. The gamma 
then has skewness of 213, while that for the Weibull is approximately ,077. The 
percentiles are shown below. 

d: .Ol .05 .25 ..50 .75 .95 .99 

t,l Gamma: ,390 .522 ,760 .963 1.200 1.604 1.934 
I,/ NP: ,388 .515 ,755 .963 I.205 1.61 I I.939 

t,/ Weibull: ,277 .454 .765 ,998 I.231 I.554 1.770 
I,/ NP: ,243 ,459 ,773 ,996 1.223 I .556 I .794 

The NP approximation is reasonably close for both distributions, although at 
the extremes it is better for the gamma than for the Weibull. 
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API+,Nl)lX ? 

1;OKMLIIA FOK \‘,\K( I I 

T is the sum of the individual claims A’,. whcrc i runs from I to N. the 
number of claims. Since N is a random \,ariable. both frequency and severit! 
contribute to the variance of T. It is gcncrallq a~umcd that all claims have the 
same distribution. and that individual claim G/es arc indepcndcnt of each other 
and of N. 

To compute the variance of T under these assumptions, begin by calculating 
E(7”/N = n), i.e., fix the number of claims-at II and tind E((Xr + + X,,)‘). 

Expanding the square yields ,I’ terms of the form X,X,. When i = ,i the 7 
expected value of the term is E(X-). Otherwise. it is E(X)‘, Gnce then X, and 
X, are independent. Thus 

E((X, + + X,,)‘) = rzE(X2) + (rr‘ ~I)E(XI’ 
= rlVar(X) + ~r’l<,(X)~. 

Now, by general considerations of conditional expectations, E(7“) = 
E(E(T’/N = II)). Thus. taking the expected value of the above equation with 
respect to N gives 

E(p) = E(N)Var(X) + E(N’)E(X)’ 
= E(N)Var(X) + Var(N)E(X)’ + E(N)‘EtX)‘. 

The last term is just E(T)‘. Subtracting it from both sides then yields 

Var(71 = E(N)Var(X) + Var(N)E(X)’ 
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APPENDIX 3 

LOSS RATIO ‘TREND EXAMPLE 

The points labeled “Line” below were computed from the formula Line = 
.96X4 - .042X Year. and represent tht: least squares fit to “Data”. 

Year Data Line 

1 ,909 ,926 
2 ,929 ,883 
3 ,819 .840 
4 ,767 .797 
5 .776 ,754 

The point for year 7.5 is projected to be ,647. and the 90% confidence 
interval around this point is sought. The sum of the squared residuals is .00423, 
so s = .03755. since 3s’ = .00423. For year 7.5, M = 7.5 - 3 = 4.5. so 1 + 
l/n + 1 3m~l(nJ ~ II) = 3.275 = 1.796’. Also, r(.95,3) = 2.353. Thus, the 
90% confidence interval is .647 -t (2.353)(.03755)(1.796) = ,647 2 ,159. 



APPENDIX 4 
TESTING RESlDUAI S FOR NORMALITY 

As mentioned in the text, the confidence interval calculation relies on the 
assumption of normally distributed residuals. To some extent this assumption 
is testable, but for a trend based on a small number of data points. the tests are 
not particularly conclusive. 

The SAS package provided a test of normality for small samples, namely 
the Shapiro-Wilk W statistic. W is the ratio of two estimates of the variance of 
the residuals, one (the numerator) based on order statistics, and the other the 
usual sample variance approach. This ratio is between 0 and I. and small values 
lead to the rejection of normality. 

For example, in Appendix 3, W = .88l was calculated by SAS. From the 
critical values provided by Shapiro and Wilk, the probability of a lower value 
of W arising from a sample of 5 from a truly normal population is 35%. This 
is not a low enough value to reject normality. 

Since tests like this are not conclusive for small samples, one may want to 
appeal to general principles. In the case at hand. loss ratios are usually believed 
to have positively skewed distributions, so it may seem inappropriate to assume 
a normal distribution. 

Three comments are in order, however: 

I. In some cases the skewness may be small enough that the normal ap- 
proximation is reasonable. 

2. In some cases the deviations of the expected loss ratios for each year 
from the trend line may follow a normal distribution. and the deviation of the 
actual loss ratio from the expected for the year a positively skewed distribution. 
If the deviations of the expected from the line have a greater magnitude than 
the deviations of the actual from the expected. the normal approximation may 
not be too bad overall. 

3. Confdence intervals using a skewness correction could possibly be de- 
veloped in cases where a positive skewness is significant. In light of the role 
of informed judgment in selecting the full credibility standard, however. an 
explicit calculation of this type may not be required for moderately skewed 
distributions. 
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ADDRESS TO NEW MEMBERS--MAY 12. IOX6 

IN I RC)DL’(‘I ION 

it is a genuine pleasure for mc to address the new members of the Casualty 
Actuarial Society today. While my remarks are primarily intended for the new 
Fellows and Associates. I hasten to recognize the role that your partners. spouses 
or otherwise. have played in the achievement which has .just been recognized. 
So. my remarks are also addressed to those. here today, who have sacrificed in 
order that the person sitting next to you may’ now append the letters FCAS or 
ACAS to her name or his name. 

Incidentally, for you spouses and partners of new Fellows. the old alibi. 
“But I have to study for exams” is no longer \#alid. Back to changing diapers 
and all the other joys of conjugal life. 

When Phil Ben-Zvi called me to ask if I would accept this assignment I was 
particularly delighted for a very personal reason. One of the new Fellows is a 
young lady whom I recruited for the profession. Next to being a parent and 
enjoying the achievements of one’s children, there is no greater satisfaction than 
participating in the success of someone for whom you have opened the door. 
The young lady knows who she is and I’m not going to embarrass her by 
identifying her publicly. But I do want to say to her, “Rhonda, you did it on 
your own and I’m very proud to be here today to participate in this important 
moment in your life!” 

My remarks will be brief. I intend to cover three general areas which I will 
label COMMUNICATION, ACTUARY. and SPAN. The reason for this rather 
awkward choice of labels will become apparent later, although some of you 
may see through this selection of titles. 

COMMUNI(‘A I ION 

Actuaries, as a class, are literal-minded people. They, too often, assume 
that words speak for themselves, thus ignoring the importance that tone of voice 
plays in oral communication, or that it is necessary to lay groundwork and 



provide emphasis in all forms of communication. They should be aware of 
“body language” as a means of understanding what others are trying to com- 
municate. It took me thirty years of marriage to realize that my wife listened 
more closely to my tone of voice than to my words. It took me somewhat less 
time to understand that when she took out her emery boards and began working 
on her finger nails with a vigor that would have cut through solid oak, she was 
upset about something, but was not yet ready to discuss it. 

In thinking about methods of communication, I am reminded of the story 
of the Irish priest whose sermons were constantly filled with vilification of the 
English. Word of this reached his bishop and the latter decided to attend mass 
on Palm Sunday and listen to the priest’s sermon. As usual. the Irish priest 
managed to lambaste the English to a fare-thee-well. After mass the bishop 
took the priest aside. “My son,” he said, “You do preach a good sermon. but 
do you really think it’s proper to bring your political feelings into discussions 
of the Lord’s work‘? Now, I would suggest that in the future you omit any 
reference to the English even though it’s obvious your feelings on this subject 
are very strong.” The following Sunday, Easter, the priest declared that his topic 
was to be the Last Supper. He described how Christ announced that one of his 
disciples had betrayed him, and how Christ proceeded to go around the supper 
table, one disciple at a time, asking who it was. “And each disciple answered 
firmly ‘Not I. Lord’ until Jesus came to Judas Iscariot. And, Jesus asked, ‘Was 
it you, Judas. that betrayed me ?’ And, Judas replied, ‘Blimey, guv’ner, it wasn’t 
me! “’ 

Actuaries have a terrible time making themselves understood by people who 
are not actuaries! That bald statement of self-criticism is worth repeating. Yes, 
ACTUARIES HAVE A TERRIBLE TIME MAKING THEMSELVES UNDER- 
STOOD BY PEOPLE WHO ARE NOT ACTUARIES! Ask any senior member 
of our organization who is currently in an administrative position which factor 
most influences him or her when employing or promoting an otherwise qualified 
actuary, and he or she will readily identify the ability to explain ideas and 
results to others as paramount. Check our own Proceedings and find the number 
of times that presidential addresses take up this same issue. 

To me, communication begins with putting oneself into the position of the 
person with whom you are communicating. What does that person expect to 
hear? Does the person have a lot of time or are they in a hurry? What analogies 
would be most readily appreciated? If you have an idea or set of facts that are 
worthy of being passed on, then, for heaven’s sake, make the additional effort 
to pass them on properly. We all know the old philosophers’ question, “If a 



tree falls in the forest and there is no one to hear it. is there any sound’?” If you 
wish to pass on a thought or report something important. it may be lost if no 
one can understand you or if you can’t make them want to listen. 

What does it mean to be an actuary’? It means that you. and sometimes only 
you. will take the long-range point of view. Managers are here today and gone 
tomorrow, and most frequently look only for the short-tern1 advantage that will 
further their own careers. Being an actuary means integrity: it means standing 
firm when you’re in the right. not thinking any less of those who disagree with 
you, but trying to use facts and reason to overcome objections vvrongfully come 
by. 

Many of you will ultimately find yourselves in positions where very little 
of your day-to-day work is actuarial. Thumb through the CAS Yearbook and 
see how many of our members are in non-actuarial assignments. But as long as 
you bear the designation which you have studied so hard to achieve, and have 
received today. remember that other people think of you and respect you as an 
actuary. Others will continue to come to you for your actuarial advice or opinion. 

Being an actuary is not unlike being a weather man. People will make snide 
remarks about you and your profession. Nevertheless, you will find that you 
have earned their respect for objectivity and honesty. Avoid the trap of telling 
people only what they want to hear. Learn to recognize the pros and cons in a 
decision; think them through and then hc prepared to discuss both sides of an 
issue. 

Speaking about being an actuary at all times, I came across the following 
statement which appeared recently in the NCJM~ York Titus Sundq Ma,qxim~ in 
an article seriously questioning the need for liability insurance rate increases: 

The context in which this statement is contained is clearly intended to make the 
layman feel that there is something called the ‘median’ which has a significant 
bearing on whether or not liability insurance rates should go up or down. 
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(For our guests, here today, who are not actuaries, let me say that the 
‘median’ is simply the middle number in a string of numbers which have been 
arranged in order from smallest to largest or vice versa.) 

To illustrate, come with me on a shopping trip to the supermarket. I’ll try 
to be semi-realistic and yet keep my example simple. We buy a loaf of bread 
for 80 cents, a quart of milk for 70 cents, and a pound of coffee for $3.50. The 
median price of 70 cents, 80 cents and $3.50 is the middle amount-80 cents. 
Let’s add up the bill. Ignoring sales tax, we’ll expect to pay 70 cents plus 80 
cents plus $3.50. That’s $5. 

Next week we’ll go to the store and buy three loaves of bread at 80 cents 
per loaf, three quarts of milk at 70 cents, and three pounds of coffee at $3.50 
per pound. The amounts, by item, are 70 cents, 70 cents, 70 cents, 80 cents, 
80 cents, etc. Clearly the median price is still 80 cents. Would we expect the 
supermarket to charge $5, the same as last week‘? 

Alternatively. suppose that bread and milk had stayed the same price but 
coffee had jumped to $4.50 a pound because of a freeze in Brazil. Then, if, 
next week, we bought the same items, but only one of each, would we expect 
the same total at the register, since the median price is still only 80 cents? 

If the median liability award ‘hovers’ around $20,000, but the number of 
awards, or claims, doubles or triples, should we expect our bill for liability 
insurance to remain the same‘? If this median remains relatively constant but the 
larger awards get bigger and bigger, should we expect the cost of liability 
insurance to stay constant’? Finally, if it’s the large awards that are the major 
problem, should the cost of excess liability covers ignore this fact and not 
change? 

The author of the Ne)t’ York Times article from which I quoted is a member 
of this Society. Unfortunately, this person would seem to have forgotten what 
it means to be an actuary. Now. I don’t want my remarks to be misinterpreted 
as saying that you should never espouse a position that is unpopular with the 
majority of your actuarial brethren. Far from it; some of the older members will 
remember that Charlie Hewitt has been on the unpopular side of more than one 
issue. What I am saying is: get your facts straight and then interpret them 
objectively, i.e., actuarially. 



Cl’\ \ 

When congratulating new Fellows, rn) 4toch inqnirq has always been, “Now 
what are you going to do with all your free time?” Recently. I received the 
reply. -‘Well. I’m certainly not going 10 read an) more papers by Valcrius!” 
Naively I responded. “You knou I hncw Valerius.” NOLV. it should be explained 
that Nels Valerius is a fine old gentleman. and at last report was still living in 
Cheshire. Connecticut. He received his Fellowship in ISlX. 

The group of younger members bvith whom I wa\ conversing looked aghast. 
One of them said. in disbelief. “You knew Valeriux!‘!” When I nodded assent. 
the young member blurted out. “Boy. you’re a real link with the past!” Now I 
must confess that 1 even knew Dorwcller---and he was the man who hired 
Valerius. 

The point I’d like to make with you is that our careers as actuaries will span 
a considerable period of time: our lives will span an even longer period of time. 
Most of us focus, with the greatest intensity, on the present. and pay decreasing 
amounts of attention to either the past or the future. Picture a Normal curve 
with no beginning and no end, and with time as the x-axis. The present moment 
in time is the mode (median and mean, also). The height of this curve at any 
point in time can represent the effect that other times in our careers (or our 
lives) have upon our present actions and decisions. What we did or thought 
yesterday. or expect to do or think tomorrow will usually affect today’s thought 
and actions far more than those things did one year ago or will do one year 
from now. 

As you grow older you will appreciate that looking upon the full span of a 
career (or a life) will give a better perspective as to the importance of what’s 
happening right now, or what happened yesterday, or what might happen to- 
morrow. Try to live your life and your careers without the perspective that 
today’s deeds are all-important. Realize that what took place in the past has 
some importance, but with an ever-lessening intensity as we go backward in 
time. Similarly. although tomorrow seems awfully important and will be even 
more important when it becomes today, the other tomorrows further off must 
be acknowledged as having bearing on our actions and thoughts today. 
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COMMUNICATION, ACTUARY, SPAN-by now some of you may have 
perceived that the initial letters of these awkwardly chosen titles for my subjects 
spell C A S-for Casualty Actuarial Society. Once again, I’m reminded of a 
story; this time about the late Herman Hickman of whom 1 suspect most of you 
have never heard. 

Herman was a 300-pound college and professional football player and some- 
time professional wrestler and durin g a brief period a notably unsuccessful 
football coach at Yale University. During this tenure as Yale’s football coach, 
he told the story that during a halftime intermission he gave his team a pep talk 
in which he chose to use the letters of Yale-Y A I!, E-as the theme around 
which he would inspire his players to better deeds in the second half of the 
game. 

“Y,” said Herman, “is for You. You must get out there and tight, fight, 
fight. A is for All. All of us must give every ounce of our ability to win this 
football game. L is for Loyalty. It’s our loyalty to dear old Yale that will enable 
us to go on to victory. E is for Each and Every one of us who must give his 
all to insure that we walk off the field today triumphant. Y A L E; those letters 
spell victory.” Newly inspired, the Yale team charged out of the locker room. 
Trailing behind the rest of the team were two substitutes who had not played 
in the first half and had little prospect of playing at all. Unaware that the coach 
was immediately behind them, one sub turned to the other and said, “What did 
you think of the coach’s pep talk‘?” The other replied, “All I can say is thank 
heavens we don’t go to California Polytechnic University at San Luis Obispo.” 

It has been a pleasure and a privilege to address the new members of the 
Casualty Actuarial Society. You have my congratulations and my best wishes 
for both long and successful careers in whatever line of endeavor you may 
choose. Thank you. 



MINUTES OF THE 1986 SPRING MEETING 

May I I-14. 1986 

HOTEL DEL CORONADO. CORONADO, CALIFORNIA 

Sunduy, May I I, 1986 

The Board of Directors held their regular quarterly meeting from 
12:00 noon to 4:00 p.m. 

Registration was held from 3:00 p.m. to S:30 p.m. 

A presentation to the new Fellows and Associates on the workings of the 
Casualty Actuarial Society was conducted from 5:30 p.m. to 6:30 p.m. The vice 
presidents made short presentations concerning their areas of responsibility and 
the workings of the committees which report to each of them. 

A general reception for all members and guests waq held from 6:30 p.m. 
to 7:30 p.m. 

Monduy, May 12, 1986 

Registration continued from 7:00 a.m. to 7:55 a.m. 

President Phillip Ben-Zvi opened the meeting at 8:00 a.m. The first order 
of business was the admission of new members. Mr. Ben-Zvi recognized the 82 
new Associates and presented diplomas to the I9 new Fellows. The names of 
these individuals follow. 

FELLOWS 

Mark S. Allaben 
Robert A. Bear 
Janice L. Berry 
Wallis A. Boyd 
Daniel B. Clark 
Kathleen F. Cut-ran 
James L. Domfeld 

Allen A. Hall William F. Murphy 
Gregory L. Hayward Karen L. Nester 
Martin A. Lewis Rhonda D. Port 
Barry C. Lipton Michael B. Smith 
Isaac Mashitz Nancy R. Treitel 
Robert A. Miller, III Charles S. White 



Neil C. Aldin 
Manuel Almagro, Jr. 
Rebecca C. Amoroso 
Mary V. Anderson 
Kenneth Apfel 
Richard V. Atkinson 
James J. Callahan 
Christopher S. Carlson 
Louis-Philippe Caron 
Michael J. Cascio 
Sanders B. Cathcart 
Ralph M. Cellars 
David A. Christhilf 
Susan J. Comstock 
David B. Cox 
Dan J. Davis 
Raymond V. Debs 
James M. Dekle 
Michael J. Doyle 
Jeffrey A. Englander 
James E. Fletcher 
Barbara L. Forbus 
Richard Gauthier 
James J. Gebhard 
Peter M. Gidos 
Steven A. Glicksman 
Jeffrey H. Graham 
Denis G. Guenthner 

MAY MtNUTES 

ASSOCIATES 

Randolph S. Hay 
Joseph A. Herbers 
Richard J. Hettling 
Mark J. Homan 
Wendy A. Johnson 
Kenneth R. Kasner 
Paul J. Kneuer 
David Koegel 
Rodney E. Kreps 
John M. Kulik 
Chung-Kuo Kuo 
Mary Lou Lacek 
Marthe A. Lacroix 
Alain Lessard 
Mark D. Lyons 
Patrick Mailloux 
Mary E. McCoy 
Leonard L. Millar 
Susan M. Miller 
David F. Mohrman 
Robert A. Mueller 
Donald R. Musante 
Richard T. Newell, Jr 
Henry E. Newman 
Bruce E. Ollodart 
Gregory V. Ostergren 
Wade T. Overgaard 
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Anthony Peraine 
Ronald D. Pridgeon 
Boris Privman 
Frank S. Rhodes 
Denise E. Rice 
James W. Rice 
Robert S. Roesch 
Donald D. Sandman 
Mark W. Scully 
Linda A. Shepard 
George C. Somberger 
Bruce R. Spidell 
Russell Steingiser 
Russel L. Sutter 
Suan-Boon Tan 
Robert W. Thompson 
Nanette Tingley 
Ernest S. Tistan 
Michel Trudeau 
George W. Turner, Jr. 
William J. Von Seggem 
David G. Walker 
Kelly A. Wargo 
Dominic A. Weber 
Arl.ene F. Woodruff 
Chung-Ye Yen 
James W. Yow 

Mr. Ben-Zvi then introduced Charles Hewitt, who delivered a brief speech 
to the new members concerning the responsibilities of a casualty actuary. 

Mr. Ben-Zvi then introduced Michael Fusco, Vice President of Programs, 
who gave a brief summary of the program content. 

Mr. Ben-Zvi next introduced Stephen Philbrick, Chairman of the Commit- 
tee on Review of Papers, who gave a brief summary of the new Proceedings 
papers. 



Janet Fagan, Chairman of the Committee on Continuing Education, gave 
a brief summary of the Discussion Paper program and of the process of issuing 
the call for papers and reviewing the papers submitted. 

Mr. Ben-Zvi concluded the business session at 9:00 a.m 

At 9:OO a.m., Mr. Leroy Simon moderated a panel entitled “Reinsurance 
- A Global Perspective.” His panel consisted of: 

James Meenaghan 
President and CEO 
John F. Sullivan Co. 

Erkki Pesonen 
Chairman of the Board 
Kansa Group 

Michael Fitt 
President and CEO 
Employers Reinsurance Corporation 

The panelists commented on the current availability and affordability of 
reinsurance and implications for the primary domestic market. 

Beginning at I I :00 a.m., there was a series of concurrent sessions, includ- 
ing eight Discussion Paper presentations. two ProceedinKs papers presentations, 
and four workshops. 

The new Proceedings papers were: 

1. “Classical Partial Credibility with Application to Trend” 
Author: Gary G. Venter 

Vice President & Actuary 
National Council on Compensation Insurance 

2. “An Actuarial Note on Credibilty Parameters” 
Author: Howard C. Mahler 

Vice President & Actuary 
Massachusetts Rating Bureaus 

The Discussion Papers presented were: 

1. “The Operational Aspects of Outwards Reinsurance Treaties” 
Author: David S. Powell 

Tillinghast, Nelson & Warren, Inc. 
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2. “The Cost of Mixing Reinsurance” 
Author: Ronald F. Wiser 

St. Paul Fire and Marine Insurance Company 

3. “Foreign Exchange Fluctuations in the Annual Statement” 
Author: Kirk G. Fleming 

Milliman & Robertson, Inc. 

4. “Recent Developments in Reserving for Losses in the London Reinsurance 
Market” 
Author: Harold E. Clarke 

Bacon & Woodrow 

5. “An Analysis of Excess Loss Development” 
Authors: Emanuel Pinto and Daniel F. Gogol 

Metropolitan Reinsurance Company 

6. “Reserve Review of a Reinsurance Company” 
Author: Stephen W. Philbrick 

Tillinghast, Nelson & Warren, Inc. 

7. “Reinsurance Pricing for the New Transitional Claims-Made G.L. Product” 
Author: Nolan E. Asch 

SCOR Reinsurance Co. 

8. “Simulating Serious Workers’ Compensation Claims” 
Authors: Gary G. Venter and William R. Gillam 

National Council on Compensation Insurance 

The workshops covered the following topics: 

1. “State-of-the-Art Homeowner’s Ratemaking Techniques” 
Moderator: Charles A. Bryan 

Senior Vice President & Actuary 
USAA 

Panelists: Harry T. Byrne 
Actuary 
Aetna Life and Casualty 

John P. Drennan 
Assistant Vice President & Actuary 
Allstate Insurance Company 



62 MAY P.llNl!‘l’t.S 

Harold N. Schneider 
Vice President & Actuary 
Farmers Insurance Group 

2. “Application of Operations Research: A Syllabus Update” 
Moderator: Robert J. Finger 

Vice President & Actuary 
Future Cost Analysts 

3. “How Reinsurance Really Works!” 
Moderator: Mary E. Hennessy 

Consulting Actuary 
Towers, Pen-in, Forster &L Crosby 

Panelists: Paul C. J. Markey 
Second Vice President 
Herbert Clough, Inc. 

Frank S. Wilkinson 
Partner 
E. W. Blanch 

4. “The Federal Government as a Source of Reinsurance Capacity” 
(limited attendance workshop) 
Workshop Coordinator: Mavis A. Walters 

Senior Vice President 
Insurance Services Office 

The President’s Reception was held from 6:3O p.m. to 7:30 p.m. 

Tuesday, May 13, 1986 

Tuesday was devoted to a continuation of the concurrent sessions from 
Monday afternoon. 

A general reception and western barbeque was held from 6:30 p.m. to 
9:30 p.m. 
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Wednesday, May 14, 1986 

Mr. Ben-Zvi reconvened the business session at 8:00 a.m. He awarded the 
Harold Schloss Scholarship to Mark Meyer. 

Mr. Ben-Zvi introduced Patricia Furst, the chairman of the Michelbacher 
Committee. Ms. Furst briefly described the judging process and then awarded 
the Michelbacher Prize to Ronald Wiser, author of the Discussion Paper entitled 
“The Cost of Mixing Reinsurance.” 

Mr. Thomas Murrin then gave a brief summary of the activities of the 
Interim Actuarial Standards Board. 

Mr. Ben-Zvi thanked those individuals who had planned the meeting and 
executed those plans. He then turned the podium over to Mr. Michael Walters. 
Mr. Walters introduced the first of the two panels, entitled “Should I Go Direct 
or Broker My Reinsurance?” The panel consisted of: 

Patrick J. McFadden 
Director - Reinsurance Brokerage Division 
Towers, Perrin, Forster & Crosby 

Tom N. Kellogg 
Senior Vice President 
General Reinsurance Corporation 

At 9:30 a.m., a second panel was presented, moderated by Mr. Daniel 
McNamara, entitled “Does the United States Tort System Make Pricing Liability 
Insurance Impossible?’ The panelists were: 

Leslie Cheek 
Vice President - Federal Affairs 
Crum & Forster 

Bruce Foudree 
Insurance Commissioner 
State of Iowa 

Edward Hamilton 
President 
Hamilton, Rabinovitz, Szanton & Alschuler, Inc. 

Mr. Ben-Zvi then closed the meeting, reminding all participants that the 
1987 Discussion Paper subject is “The Financial Analysis of Insurance Com- 
panies.” The meeting was adjourned at 11: 15 a.m. 
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May 1986 Attendees 

MAY MINUTES 

In attendance as indicated by the registration records were 303 Fellows; 
I95 Associates; and 42 guests, subscribers, and students. The list of their names 
follows. 

FELLOWS 

Addie, B. J. Brooks, D. L. 
Adler, M. J. Bryan, C. A. 
Alfuth, T. J. Bursley, K. H. 
Asch, N. E. Byrne, H. T. 
Atwood, C. R. Cantin, C. 
Barrow, B. H. Captain, J. E. 
Bartlett, W. N. Chansky, J. S. 
Bass, I. K. Chanzit, L. G. 
Bassman, B. C. Cheng, J. S. 
Basson, S. D. Chemick. D. R. 
Baum, E. J. Childs, D. M. 
Bear, R. A. Christiansen, S. L. 
Beer, A. J. Christie, J. K. 
Belden, S. A. Cis, M. M. 
Bell, L. L. Clark, D. B. 
Bensimon, A. S. Cohen, H. L. 
Ben-Zvi, P. N. Conger, R. F. 
Berquist, J. R. Cook, C. F. 
Berry, J. L. Corr, F. X. 
Bethel, N. A. Covney, M. D. 
Beverage, R. M. Cundy, R. M. 
Bill, R. A. Curley, J. 0. 
Biondi, R. S. Curran, K. F. 
Boccitto, B. L. Currie, R. A. 
Boison, L. A., Jr. Curry, A. C. 
Boone, J. P. Dahlquist, R. A. 
Bomhuetter, R. L. Dean, C. G. 
Boulanger, F. Dempster, H. V. 
Bouska, A. S. Deutsch, R. V. 
Boyd, W. A. Doellman, J. L. 
Bradshaw, J. G., Jr. Doepke, M. A. 
Braithwaite, P. Dolan, M. C. 
Brannigan, J. F. Donaldson, J. P. 
Briere, R. S. Domfeld. J. L. 

Dorval, B. T. 
Downer, R. B. 
Drennan, J. P. 
Duffy, T. J. 
Easton, R. D. 
Egnasko, G. 1. 
Egnasko, V. M. 
Ehlert, D. W. 
Eldridge, D. J. 
Engles, D. 
Fagan, J. L. 
Fallquist, R. J. 
Fein, R. I. 
Fiebrink, M. E. 
Finger, R. J. 
Fisher, R. S. 
Fisher, W. H. 
Flaherty, D. J. 
Foote, J. M. 
Forker, D. C. 
Fomey, J. R., Jr. 
Foster, R. B. 
Fresch, G. W. 
Friedberg, B. F. 
Furst, P. A. 
Fusco, M. 
Gallagher, C. A. 
Gallagher, T. L. 
Garand, C. P. 
Gilles, J. A. 
Ginsburgh, H. J. 
Gleeson, 0. M. 
Gluck, S. M. 
Goddard, D. C. 
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FELLOWS 

Jones, B. R. 
Kane, A. B. 
Kaplan, R. S. 
Karlinski, F. J., III 
Kaufman, A. M. 
Keatts, G. H. 
Khury, C. K. 
Kilboume, F. W. 
Knilans, K. 
Kollar, J. J. 
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Abstract 

Insurers paid $1.6 billion on property claims arising from catastro- 
phes in 1984. Researchers have estimated that annual insured catastro- 
phe losses could e.weed $16 billion. Certainly, thejnanciaI implications 
for the insurance industry of losses of this magnitude would be severe; 
even industry losses much smaller in magnitude could cause financial 
di$iculties for insurers who are heavily exposed to the risk of catastrophe 
losses, 

The yuantiJication of exposures to catastrophes and the estimation 
of expected and probable maximum losses on these exposures pose 
problems for actuaries. This paper presents a methodology based on 
Monte Carlo simulation for estimating the probability distributions of 

property losses from catastrophes, and discusses the uses of the proba- 
hilit?: distributions in manugement decision-making and planning. 

INTRODUCTION 

There were 28 catastrophes in 1984; they resulted in an estimated $I .6 
billion of insured property damage. Most of these catastrophes were natural 
disasters such as hurricanes, tornadoes, winter storms, and floods. In 1985, 
Hurricane Elena caused over $543 million of insured losses, and a tornado 
outbreak affecting nine states caused insured damage of $231 million. 
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Hurricane Elena barely rated a three on ;i severity scale ranging from one 
to five, in which destruction from hurricanes increases exponentially with in- 
creasing severity. A hurricane that rated a tour hit New York and New England 
in 1938; 600 people died and wind speeds of IX3 mph caused hundreds of 
millions of dollars of damage. 

If this storm were to strike again, dollar losses to the insurance industry 
could exceed ten billion given the current insured property values on Long 
Island and along the New England coast. Estimates of the dollar damages that 
will result if a major earthquake occurs in Northern or Southern California are 
even larger in magnitude. 

A very severe hurricane or earthquake would produce a year of catastrophic 
loss experience lying in the upper tail of the probability distribution of annual 
losses from catastrophes. It is the opinion of the author that the 1984 catastrophe 
loss figure lies in the lower end of this distribution. However, the determination 
of the shape and the estimation 01’ the parameters that describe this distribution 
are tasks that are not easily performed using standard actuarial methodologies. 
Yet since insurers require knowledge of their exposure to catastrophes and the 
probability distributions of annual catastrophe losses to make pricing. marketing, 
and reinsurance decisions. actuaries must be able to estimate the parameters of 
the distributions. including the expected and probable maximum losses. 

Standard statistical approaches to loss estimation involve the use of historical 
data to estimate future losses. However. approaches that employ time series ol 
past catastrophe losses can give poor estimates of potential catastrophe losses. 
Catastrophes are rare events so that the actual loss data are sparse and their 
accuracy is questionable; average recurrence intervals are long ho that many 
exogenous variables can change in the time periods between occurrences. In 
particular, changing population distributions, changing building codes. and 
changing building repair costs alter the annual catastrophe loss distribution. 

Since most catastrophes are caused by natural hazards. and since most natural 
hazards have geographical frequency and severity patterns associated with them, 
the population distribution impacts the damage-producing potentials of these 
hazards. A natural disaster results when a natural haLard occurs in a populated 
area. Changing population patterns necessarily alter the probability distribution 
of catastrophic losses. Since the average recurrence intervals of natural hazards 
in any particular area are long. patterns of insured property values may vary 
between occurrences to an extent that damage figures of historical occurrences 
have little predictive power. For example. the 1906 San Francisco earthquake 
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caused losses of $364 million. In 1985 dollars, this equals $4.5 billion. Yet 
some have estimated that an earthquake of this size could cause damages 
exceeding $30 billion today. 

It is primarily the influence of the geographic population distribution that 
renders time series models of natural catastrophe losses inadequate, although 
changing building codes also alter the loss-producing potentials of natural haz- 
ards. Over time, building materials and designs change, and new structures 
become more or less vulnerable to particular natural hazards than the old 
structures. Of course, changes in building repair costs also affect the dollar 
damages that could result from catastrophes. 

The above issues do not render the estimation problem intractable, but they 
do indicate a need for an alternative methodology to approaches which employ 
historical catastrophe losses adjusted for inHation to estimate the probability 
distribution of losses. Even models which adjust historical losses for population 
shifts can give only very rough approximations of expected and probable max- 
imum losses. 

This paper presents a methodology based on Monte Carlo simulation, and 
it focuses on property damage arising from natural disasters. The next two 
sections discuss the simulation approach to catastrophe loss estimation. A wind- 
storm example is then presented. Output analysis. model validation, and model 
uses are discussed in the following three sections. 

THE SIMULATION APPROACH 

The simulation approach is. very basically, the development of computer 
programs which describe or model the particular system under study. All of the 
system variables and their interrelationships are included. A high speed computer 
then “simulates” the activity of the system and outputs the measures of interest. 

Simulation models may be deterministic or stochastic. Monte Carlo simu- 
lation models are stochastic models, and therefore, the variables which they 
include are random variables. Numbers are generated from the probability 
distributions of the random variables to assign values to the variables for each 
model simulation. These probability distributions are either standard statistical 
distributions (selected on the basis of good fits with empirical data) or actual 
empirical distributions. 

Typically, many simulations or iterations are performed to derive estimates 
of the measures of interest from Monte Carlo simulation models. This is nec- 
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essary to ensure that the output distribution ha:, converged to the true distribution 
and that model derived estimates are “accurate.” Obviously, the larger the 
variances of the model variables. the larger the number of model iterations 
necessary to reach convergence. 

Computer simulation models can provide powerful tools for the analyses of 
a wide variety of problems, especially problems which involve solutions that 
are difficult to obtain analytically. Law and Keltctn IX) xtate that “Most complex. 
real-world systems cannot be accurately described by a mathematical model 
which can be evaluated analytically. Thus, a simulation is often the only type 
of investigation possible.” The natural ha/at-d loqs-producing system is one such 
system. 

I-HE NAl.URAI. HA%RD SIML’1.A I-ION MODE1 

The natural hazard simulation model is a model of the natural disaster 
“system.” The primary variables arc meteorological or geophysical in nature. 
They may be classified as frequency or severity variables. The frequency vari- 
ables determine the number of occurrences of tho particular events within a 
given time period. Severity variables account for a hazard’s force, size. and 
duration. These variables are. of course. random variables with stable (time 
independent’) probability distributions. 

The model simulates the physical occurrences of the natural hazards by 
generating numbers from these probability distributions. Numbers are generated 
to assign values to each variable for each simulated occurrence. The probability 
distributions are estimated using historical data combined with the knowledge 
of authoritative meteorologists and geophysicists. 

It is most efficient from a computational standpoint to generate numbers 
from the well-known statistical distributions. The empirical distributions formed 
by the raw data may be fit to these theoretical distributions using appropriate 
goodness-of-fit tests. If the data do tit any of these probability distributions, the 
moments of the distributions may be estimated and employed by the simulation 
model. 

If the empirical data do not tit any theoretical distributions. the empirical 
distribution may be used for the generation of values for particular model 
variables. This procedure, however. has some drawbacks. First, since the sample 
is a collection of random data, a different sample could yield a very different 
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empirical distribution. Second, the generation of random variables from an 
empirical distribution precludes the possibility of generating values of the var- 
iable outside of the observed range, and the observed range may not include all 
possible values of the variable. If the empirical data are sparse or do not fit 
theoretical distributions, knowledgeable physical scientists may provide infor- 
mation regarding the ranges of possible values of particular variables, as well 
as the shapes of the distributions and the most likely values of the variables. 

Variables that change with time, e.g., the geographic distribution of expo- 
sure units, the insured property values, and the building construction types, are 
inputs into the model. The probability distribution of losses from natural hazards 
given these inputs is the model output. Per occurrence as well as annual 
aggregate distributions are estimated. 

The model simulates the physical occurrences of the natural hazards and 
their effects on exposed properties thousands of times in order to estimate the 
distributions of losses. Thousands of iterations are performed to ensure that all 
possibilities have been simulated in accordance with the actual probabilities of 
occurrence and that the estimated distributions converge to the true distributions. 

A WlNDSTORM EXAMPLE 

A model of the hurricane hazard has been developed and will be used to 
illustrate the Monte Carlo simulation approach. Exhibit I is a simplified flowchart 
of the computer model. 

Most of the storm data used in the development of the model were obtained 
from the U.S. Department of Commerce. The data had been collected and 
analyzed by various agencies of the National Weather Service, and they included 
86 years of history spanning the period 1900 to 1985. Complete and accurate 
meteorological data were available for most of the hurricanes that struck the 
U.S. in this time period. 

A hurricane is a closed atmospheric circulation which develops over tropical 
waters and in which winds move counterclockwise around a center of pressure 
lower than the surrounding area. It is a severe tropical storm, with a center of 
pressure less than or equal to 29 (inches), which causes sustainable wind speeds 
of 74 mph or more. One hundred and thirteen hurricanes made landfall in the 
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U.S. during the sample period. One hundred and thirty-eight hurricanes either 
approached and bypassed (within IX) nautical miles). exited?, or entered the 
U.S. during the period. 

Referring to Exhibit I. the first step of the model (for each iteration) is the 
generation of the annual number of landfalling hurricanes. Table I shows the 
number of years in which the number of occurrences was 0. I, 2, and so on. 
The historical data tit a negative binomial distribution with s = 5 and p = .79. 
The chi-square goodness-of-fit test statistic equals 2.923 which is not significant 
even at the cy = .S level. 

TABLE I 

ANNUAL. NUMBEK OF HCKKK,\N~S L~NDI.AL.I INC; IN L!.S 

(EXCLUDING EXITING STORMSI 

I c)oo- 19x5 

No. Storms 
Per Year 

0 
1 
2 
3 
4 

>4 

Observed Relative 
Occurrence Frequency 

26 ,302 
29 ,337 
IX ,209 
6 ,070 
6 .070 
I ,012 

Neg. Bin. 
Rel. Frey. 

.308 

.323 
,204 
.I00 
,042 
,023 
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EXHIBIT1 

MODEL FLOWCHART 

GENERATE VALUES FOR SEVERITY VARIABLES 

(PO. R, T, A) 

CALCULATE MAXIMUM WIND SPEED I 

J, 

GENERATE ANNUAL NUMBER OF HURRICANE OCCURRENCES 

GENERATE LATITUDE AND LONGITUDE 
COORDINATES OF LANDFALL LOCATION 

For each zip code in affected area 
CALCULATE WIND SPEED 

(dependent on distance from eye and hours since landfall) 

CALCULATE DAMAGE FACTOR 

APPLY TO DOLLARS OF INSURED LIABILITIES 
DAMAGE FACTOR AND WLNERABILITY FACTOR 

i 

TOTAL DAMAGE 

+ 

I I , Yes / 

II{ Go to next iteration 1 



The next step of the model is the determination of the landfall location of 
each storm. Hurricanes enter the U.S. from the Gulf and East Coasts. The map 
in Exhibit II shows the U.S. coastline from Texas to Maine divided into 31 
smoothed 100 nautical mile segments. ’ The number of hurricanes that entered 
through each segment or bypaxscd within 150 nautical miles of the segment 
during the sample period is also shown. 

The numbers indicate that there are variations in locational frequencies. In 
this case. it would not be correct to generate the landfall location from a 
distribution which assigns equal probabilities to all values, i.e., a uniform 
distribution. Neither would one want to use the actual numbers of storms to 
form the empirical distribution from which the landfall locations will be gen- 
erated. This is because the selection of length of coastal segment is necessarily 
arbitrary. If a different length were used, the empirical distribution would be 
different. Additionally. although several segments are completely free of his- 
torical storm occurrences, it is not clear that the probability of hurricane landfall 
is zero in those areas. 

To derive the model locational freyuencY distribution. the raw data on the 
numbers of occurrences were smoothed using a procedure selected on the basis 
of its ability to capture turning points in the data while smoothing slight varia- 
tions. The coastline was redivided into SO nautical mile segments, and the 
number of occurrences for each segment was set equal to the weighted average 
of I 1 successive data points centered on that segment. The smoothed frequency 
values were obtained as follows: 

2 w, c, +,I 
,I= -5 

F, = 
5 w,, 

n--5 

where C, = the number of historical hurricane occurrences for the ith 
segment; 

F, = the smoothed frequency value for the ith segment: and, 

w,, = .30. ,252. .14. ,028. -.04. --.03 

for tf = 0. ?I, k2, 23. 24. 25. respectivelY. 

’ The coastline 1s smoothed for irrepularitws wch ;I\ mlet\ and bays. 
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EXHIBIT11 

HURRICANES ENTERING OR BYPASSING THE U.S. 1900-1985 



This is the preferred smoothing procedure in climatological analyses because 
the weighting scheme maintains the frequency and phase angle of the original 
series of numbers. The endpoints of the series arc approximated so that each 
segment of the coast is assigned a relati\,e frecluenc!~. The landfall location of 
each storm is generated from the thus derived locational frequency distribution. 

Sr\wi!\ 

Step three of the model is the generation of values for the severity variables. 
There are four primary variables which account for hurricane severity. These 
variables are: the minimum central pressure. the radius of maximum winds. the 
forward speed, and the angle at which the storm enters the coast, i.e.. the track 
direction. 

Central pressure (/I~,) ia defined as the sea-lcvcl pressure at the hurricane 
center or eye. This is the most important variable for computing hurricane wind 
speeds. and it is a universally acccptcd index of’ hurricane intensity. All else 
being equal, the square of the wind speed \aric\ directly with &I ($ = II,, -- 
pll where I>,, is the peripheral pressure). 

The radius of maximum winds (R) is the radial distance from the hurricane 
center to the band of strongest winds. Forward speed (7‘) refers lo the rate of 
translation of the hurricane center from one geographical point to another. Track 
direction (A) is the path of forward movcmcnt along which the hurricane is 
traveling and is measured clockwise from north. 

Hurricane severity varies by location as does frequency. In general. as 
latitude increases. average hurricane scvcrity decreases. When a hurricane 
moves over cooler waters. its primary source of energy (latent heat from warm 
water vapor) is reduced so that the intensity of circulation decreases in the 
absence of outside forces. As such. the shapes and parameters of the severity 
variable probability distributions wcrc r\timatcd for each coastal location. 

For each severity variable except track direction, samples of data points 
from 400 nautical mile segments of coastline were used to estimate the param- 
eters of the distribution for each 100 nautical milt segment. Overlapping 400 
nautical milt segments were centered on huccc\sivc IO0 nautical milt segments. 
the data were tit to theoretical statistical distributions. and the parameters were 
estimated. 
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The selection of 400 nautical mile lengths of coastline was somewhat arbi- 
trary; 300, 400, and 500 nautical mile segments have all been used in clima- 
tological analyses of hurricane data. Obviously, shorter segments capture more 
of the variation in the historical data while larger segments increase the size 
and hence the credibility of the data sample used for estimation. 

CENTRAL. PRtSSURE 

The distribution of historical hurricane central pressures is a skewed distri- 
bution with an upper bound of 29 inches. Tropical storms with higher central 
pressures will in most cases not produce winds of hurricane force. Since the 
distribution is truncated at one end, the variable Pdif’ was modeled instead of 
po. P&f was defined as 29 minus the central pressure of the storm. Pdif also 
has a skewed distribution so that the historical data were tit to both lognormal 
and Weibull distributions using the Kolmogorov-Smirnov goodness-of-fit test. 

The Weibull distribution produced the best tit of the empirical data. Table 
2 shows the estimated parameters, LY and p, for each coastal segment along 
with the number of data points in each sample, N, and the goodness-of-tit test 
statistic, KS. No klS statistic was significant at the 99% confidence level. 

RADIUS OF MAXIMUM WINDS 

The distribution of R for each coastal segment is symmetrical around the 
average value. The normal distribution provided a good tit of the historical data, 
and the parameters of this distribution were estimated for each coastal segment. 
The mean value of R increases with increasing latitude. Exhibit III shows a plot 
of latitude versus the radius of maximum winds for the historical Gulf and East 
Coast hurricanes. 

The radius of maximum winds seems to be positively correlated with central 
pressure as well as with latitude. Table 3 shows linear correlation coefficients 
(Pearson’s) between the pairs of variables. Although tests of significance could 
not be performed on the correlation coefficients since it could not be assumed 
that pairs of variables form bivariate normal probability distributions, it is 
assumed that there is a positive correlation between ,uo and R. The meteorological 
literature on hurricanes supports this assumption. 
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TABLE 2 

CENTRAL PRESSURE-WEIHUI 1 DIS~I~KIHUIION 

PARAMETER ESTIMATES F~K I00 NAII I KAI MII by SIX;MENTS 

100 n.mi. 
Segment 

400 n.mi. 
Segment 

I - 150-250 
2 - 50-350 
3 50-450 
4 150-550 
5 250-650 
6 350-750 
7 450-850 
8 550-950 
9 650-1050 

IO 7.x- 1 I50 
II 850-1250 
I2 950-1350 
I3 1050-1450 
I4 1150-1.550 
I5 1250-1650 
16 1350-1750 
I7 1450-1850 
I8 1550-1950 
I9 1650-2050 
20 1750-2150 
21 1850-2250 
22 1950-2350 
23 2050-2450 
24 2 150-2550 
25 22.50-2650 
26 2350-2750 
27 2450-2850 
28 2550-2950 
29 3550-2950 
30 2550-2950 
31 2550-2950 

(Y 

2.020 

I.773 
.XX? 
.8lY 
.46X 
.350 
33-3 .--_ 

,270 
.12x 
.I61 
.251 
.2Y6 
.lII 
,545 

I .52Y 
I.423 
I.703 
I.534 
0.844 

,007 
.2x5 
.204 
,316 
.-Iris 
.I77 

1 .SS6 
I.439 
I.325 
I.325 
I.325 
I .325 

B N 

I .0x0 Y 
0.974 I6 
0.910 22 
0.906 22 
0.738 26 
0.80 I 23 
0.707 23 
0.690 25 
0.571 23 
0.573 20 
0.426 IX 
0.624 I6 
0.837 21 
0.875 2x 
0.953 31 
0.x3x 24 
0.815 I3 
0.485 x 
0.463 7 
0.563 I2 
0.676 IY 
0.655 I8 
0.668 I6 
0.6% I2 
0.566 x 
0.663 9 
0.646 Y 
0.596 IO 

0.5Y6 IO 

O.S96 IO 
0.596 IO 

KS 

,223 
I65 

.I47 

.14Y 

.I I I 

.OY4 
,066 
OYO 
.09s 
IO7 

.I87 
,135 
.l3Y 
,144 
.I I6 
I40 
I41 

.I76 
,166 
.I56 
,207 
,204 
.302 
,234 
,296 
,260 
,277 
.252 
,252 
,352 
.252 
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EXHIBIT III 

LATITUDE Vs. RADIUS OF MAXIMUM WINDS 
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TABLE 3 

East Coast Hurricanes Gulf Coast Hurricanes 

PO R T A Lat /‘U R T A Lat 

PO .I!7 -.04 -.08 .31 p 1 .31 .04 .I7 .I7 
R .35 .24 .49 R .I3 04 .16 
T .42 .73 7 .06 .35 
A .SO A .I1 

This correlation is accounted for by the model in two ways. First. since p. 
and R are both correlated with latitude and the distributions of p. and R have 
been estimated at various latitude points. the simulated values of the variables 
will necessarily be correlated. Also. the lower and upper bounds of simulated 
R values are determined by the value of /to for the simulated storm. As shown 
in Table 3. p. and R are positively correlated so that severe storms typically 
have smaller R’s than weak storms. 

It should be noted at this point that the simulated values of all severity 
variables are bounded so that only storms with a nonzero probability of occur- 
rence are simulated. The upper and lower bounds of the model variables have 
been determined somewhat subjectively by meteorologists who are experts on 
the subject of hurricanes. The model procedure is to regenerate values that are 
out of range rather than assign a value equal to the lower or upper bound of the 
range. This ensures that the simulated values will not be clustered at the 
endpoints of the ranges. Since the estimated distributions fit quite well. the 
simulated values fall within the acceptable range a high proportion of the time. 

The historical data on forward speed fit lognormal distributions, and these 
distributions are employed by the model to generate values of 7‘ for each 
simulated storm. The average value of T increases with increasing latitude, and 
the lower and upper bounds of Tare dependent on latitude. Exhibit IV is a plot 
of latitude versus forward speed for the historical storms. 
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EXHIBIT IV 

LATITUDE Vs. FORWARD SPEED 
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Four hundred nautical mile segments were not used to estimate the param- 
eters of the distributions of track direction I’or each coastal location. Since the 
orientation of the coastline influences the likel! as well as the possible angles 
of entry at each coastal point, segments of varying length were employed. The 
length that was selected for each segment was the length of smoothed coastline 
with the same angle orientation as the segment of interest. 

Track direction is distributed symmetrically around its average value. thus 
values for A are generated from the normal distribution. However, at some 
coastal locations, the standard deviation is quite wide relative to the range 01 
possible values so that the distributional shape begins to tend to uniform. In 
these cases, a relatively high proportion of simulated values could need to be 
regenerated. For example, at three coastal segments. the range of possible values 
is only + one standard deviation wide. Values for A could need to be regenerated 
32% of the time for storms landfalling in these segments. Fortunately, the 
number of such segments is small. 

Mcr.ritnwt~ Wind Speeds 

Once values are obtained for all of the severity variables, the maximum 
sustained wind speed is calculated via straightforward meteorological formulas. 
The movement of the storm is next simulated by the computer model, and 
maximum wind speeds are calculated for each zip code area in the affected 
region. 

The wind speed at each zip location is dependent on the distance of the 
location from R and on the hours since landfall. The wind speeds decrease as 
the distance from R increases and as the time since landfall increases. 

Insured Dtrmuges 

Dollar damages are estimated by applying damage and vulnerability factors 
to the insured property values in each zip code area. The damage factors are 
based on the results of engineering studies of the relationship between wind 
speed and structural damage. The vulnerability factors account for the variability 
in inflicted damage due to construction type and age. The dollar damages are 
accumulated for each storm. 

Two thousand years of hurricane experience are simulated by the model. 
These two thousand iterations provide estimates of the complete probability 
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distributions of annual hurricane losses and per occurrence losses from which 
expected and probable maximum loss estimates are derived. 

OUTPUI' ANALYSIS 

Exhibit V shows the expected losses as well as the X0’%, 90%. 95%. and 
99% confidence level losses calculated as the 80th. 90th, 95th. and 99th per- 
centile losses, respectively, for the geographical distribution of property expo- 
sures of a hypothetical company. The confidence level losses may be interpreted 
in two ways. A given confidence level loss shows the loss amount for which 
the probability of experiencing losses above that amount is I .O minus the 
particular confidence level. For example, for the loss distribution in Exhibit V, 
the probability of experiencing losses greater than $10 million is .20. The 
confidence level loss also shows the loss amount for which losses greater than 
that amount will be experienced, on average. once in every I.O/ 
(1 .O - confidence level) years. Again, from Exhibit V, losses greater than $10 
million will be experienced once in every five years, on average. The loss 
distribution is highly skewed with a median value which is much below the 
mean and a high proportion of zero values. 

EXHIBIT V 

MODEL-GENERATED Loss ESTIMATES (000’s) 

Insured Expected 
Liabilities Losses 

7.170.753 9.01 I 

Confidence Level Losses 

80% 90% 957c 99% 

10.003 24,179 44,827 117,946 

Since the estimated loss distribution is so skewed, many model iterations 
are performed to ensure convergence to the true underlying loss distribution. 
Unfortunately, there is no straightforward formula for calculating the number 
of iterations necessary to obtain estimates with specific levels of precision. If 
computer resources are not a constraint, thousands of iterations should be 
performed to ensure convergence. If computing power is limited, iterations can 
be performed in groups of a hundred or so. and the distribution can be tested 
for significant changes after each group of iterations. When changes become 
arbitrarily small, the simulation run can be terminated. 
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The validation of simulation models is often problematic. Since simulation 
models are representations ofrcal world systems, they are usually simplitications 
of complex systems. As such. statistical tests of differences between actual data 
and simulated data will typically show statistically signiticant differences even 
if the simulation model is a good or at least “acceptable” representation of 
reality. As mentioned previously, simulation models are often built when no 
alternative means of analysis are available. The model builder must decide if 
model performance is acceptable or if more resources should be employed in 
improving the simulation model. The decision is more of a cost versus benefit 
decision than an accept versus re.ject decision. 

In cases in which there is little actual data to compare to the simulated data. 
model validation is even more difficult. The natural hazard simulation model 
output, i.e., the catastrophe loss distribution, is an estimate of long run average 
costs given a particular geographical distribution of property exposures. It 
includes estimates of long run expected losses and probable maximum losses. 
There are no actual data to compare to the model output. 

There are, however, two sets of assumptions to be tested. The first set 
includes all of the assumptions concernin g the physical characteristics of the 
particular type of natural hazard. Do the physical characteristics of the simulated 
natural hazards match the characteristics of actual historical occurrences’? If the 
probability distributions of the t’requency and severity variables have been 
selected and estimated properly, simulated occurrences should bc very similar 
to the historical occurrences. 

In the hurricane model, the probability distributions of the model variables 
were tit to theoretical statistical distributions using the chi-square and Kohno- 
gorov-Smimov goodness-of-tit tests. Since the theoretical distributions were 
selected on the basis of a good tit with the empirical data. the simulated values 
of the variables match closely the historical values. 

The second set of assumptions to be tested include all of tho engineering 
assumptions which correlate the loss-producing phenomena with actual structural 
damage. These assumptions are more difficult to test empirically since actual 
loss data are needed. Testing requires the comparison of losses from particular 
natural catastrophes with the losses that the model would estimate for occur- 
rences with the same physical characteristics. given the same geographical 
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distributions of exposed properties. Frequently, these data are unavailable. If 
they are available, they are generally not available in the quantity necessary for 
statistical testing. 

Results of these tests could be used to calibrate the model. however, it is 
not clear that the model builder would want to calibrate the model to a small 
number of actual data points. The objective of the model is to project long run 
average costs, not to predict losses from individual occurrences. There is so 
much randomness involved in a single occurrence that one cannot expect the 
model loss estimates to mirror exactly actual losses on each individual occur- 
rence. 

The question that arises then is whether or not the model is valid if it cannot 
be tested statistically. What is the value of the model if one cannot prove that 
its estimates are “correct”? 

The nature of statistics is such that one can never prove that the sample is 
a true representation of the population. Statistical tests of significance merely 
provide confidence intervals for parameter estimates which are based on certain 
assumptions. These tests are used to choose between alternatives or competing 
hypotheses. 

In the case of the catastrophe simulation model. there are no good alternative 
estimators. Yet there is a real need for the model output. i.e., an estimate of 
the catastrophe loss distribution. Insurers and reinsurers make decisions every 
day that affect the catastrophe loss distributions. They need to know how their 
decisions impact these distributions so that they can make the appropriate risk 
versus return trade-offs. 

The degree of confdence that one has in model-generated estimates is a 
direct function of the level of confidence in the model assumptions. If each 
assumption has been tested for reasonabilityj, then the model output should 
provide reasonable estimates. The area of validation of the natural hazard 
simulation model is an area worthy of further research. 
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Knowledge of the probability distrihutionh of propert> losses due to catas- 
trophes enables management to plan for these events. The natural haLard sim- 
ulation model helps insurers to manage their exposure to catastrophes: it serves 
as an aid to decision-making in the areas of pricing. marketing, and reinsurance 
buying and selling. 

Pric,ittg 

The model-generated expected lash estimatc~ can bc used to calculate catas- 
trophe premitmi loadings. Theoretically. it’ an insurer establishes a reserve for 
catastrophe losses and makes annual ctmtrihutions equal to the annual expected 
losses, the insurer will break even with respect to catastrophe losses over the 
long run. 

Of course, competitive factors influcncc the amount of freedom that an 
individual insurer has to set prices. If demand is very elastic. small increases 
in price will lead to large decreahcs in market share. Pricing can be used as part 
of marketing strategy to manage the geographical distribution of property ex- 
posures and hence the catastrophe 10~4 distributions. 

Marketing 

The windstorm simulation model output as illustrated in Exhibit V shows 
the probability distribution of annual countrywide losses from the hurricane 
hazard. For marketing purposes. however. it may bc more useful to divide the 
country into smaller zones so that the specific areas 01‘ high windstorm risk are 
clearly identifiable. 

The computer model can be programmed to accumulate dollar damages by 
state. by country, or by any other geographical configuration. Exhibit VI shows 
the state of Louisiana divided into eight Lanes. The dollars of liability, i.e. 
exposure. the expected loss. and various confidence level losses” are shown for 
each zone. The figures clearly show that the higher risk areas arc the coastal 
zones. The hurricane is at maximum force .just as it crosses over land; as it 
travels inland, the storm dissipates because OK the elimination of its primary 
energy source (kinetic energy from the ~a) and because of surface frictional 
effects. 

’ It is intrrestlng 10 note thar li)r WXIII geographic area\. the ccmtidrncc lekct lo\w\ ma) be mn, 
since the trequrncirs of hurricane\ m \pcclfic Iocatlon\ are low 
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EXHIBIT VI 

I 1 

b nI-2 

LOUSIANA WINDSTORM ZONES 

Zone $ Exp 
Expected - 

Loss 80% 

Confidence Level Losses 

90% 95% 99% 

LOUIS I 90.417.112 
LOUIS 2 9,210,1 13 
LOUIS 3 56.674,660 
LOUIS 4 50.672.900 
LOUIS 5 79.796.656 
LOUIS 6 I76.149,552 
LOUIS 7 40.664.7 16 
LOUIS 8 33.114,748 

256.512 0 276,770 I-947,396 4.938.375 
25.540 0 12.932 213,693 537,37 I 
94,866 0 31,306 653,101 2.098,500 
71.042 0 0 234,088 I ,722,377 
80.965 0 0 547,837 2,021,005 

231.604 0 0 598,946 6,823,092 
47,598 0 0 193,227 1.309,985 
16,552 0 0 5,991 772,278 



Because all natural hazards have associated with them geographical fre- 
quency and severity patterns. they will produce gradations of damage or pockets 
of high risk and low risk. Management will want to avoid concentrations of 
property exposures in high risk areas, and the model output enables the devel- 
opment of marketing plans that are based on the long term profit potentials of 
various markets. 

Property business in high risk areas may be veq protitable in years of no 
natural hazard occurrences. As ycarx pass and no catastrophes occur, insurers 
may begin to compete for the business in a high ri& area. The competition may 
drive the protits as well ax the catastrophe loadings to zero so that there are no 
resources available to cover the catastrophic losses when they occur. Knowledge 
of the probability distributions of losxcs from nutural hazards in these areas 
enables insurers to resist the temptation to write business based on the very 
recent loss experience in these areas. 

The natural hazard simulation model provides an cxccllcnt tool for evaluating 
the exposure to natural hazards resulting from alternative marketing plans. 
Alternative geographical distributions of property cxpoana may be input into 
the model to estimate the resulting catastrophe 105s distributions. 

Pricing in accordance with cxpectcd losses does not eliminate the risk of 
large losses since catastrophes can occur when the loss fund is at a level that is 
not sufficient to cover all of the losacs. Nor can marketing plans eliminate this 
risk since no area of the continental U.S. ia free of natural hazards of all types. 
Insurers can use the probable maximum loss estimates to decide how much 
reinsurance to purchase for protection against large losses. .4n estimate of the 
probable maximum losses enables company management to make the appropri- 
ate risk versus return tradeoffs in evaluating reinsurance options. 

SUMMAKY AND CONCLUSlONS 

Catastrophic events can impact significantly the results of property and 
casualty insurers. Since the losses resulting from the occurrences of catastrophes 
could affect adversely the financial condition of a company. management must 
plan for these events. In order to plan for these events. an estimate of the 
probability distribution of losses ib needed. 

The Monte Carlo simulation approach to the estimation of the probability 
distribution of catastrophe losses involves the development of computer models 
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to simulate catastrophes. Each model is developed around the probability dis- 
tributions of the random variables of the loss-producing “system.” 

There are several advantages of the simulation approach. First, it is able to 
capture the effects on the catastrophe loss distribution of changes over time in 
population patterns, building codes, and repair costs. Second, this estimation 
procedure provides management with a complete picture of the probability 
distribution of losses rather than just estimates of expected and probable maxi- 
mum losses. And finally, the Monte Carlo simulation approach provides a 
framework for performing sensitivity analyses and “what-if” studies. 

Disadvantages of the simulation approach include long model development 
time and potentially high development costs. Model validation is also problem- 
atic. However the benefits provided by the model and the value of the model 
output would seem to outweigh the costs. The simulation approach, while not 
perfect in an absolute sense, is far superior to competing approaches to catas- 
trophe risk assessment and management. 
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A PROBABILISTIC MODEL FOR IBNR CLAIMS 

FARROKH GUlAHI 

A hstract 

IBNR reserl-es are presented as a stochastic variable. The model 
presented shows explicitly that the main factors contributing to IBNR 
resewes are number of claims, severity, and report lag distributions. 
The mean and variance of IBNR reserves are derived. Procedures to 
obtain an IBNR conjidence interval are discussed. Two examples are 
provided on the use of the model. Suggestions are made as to how to 
obtain model parameters from actual insurance data. 

I. INTRODUCTION 

Accurate estimation of IBNR liabilities is a matter of concern for regulators, 
management, and investors in proper evaluation of financial statements of prop- 
erty-casualty insurance companies. Some commonly used methods to compute 
IBNR reserves were presented in Skumick (1973), and in Bomhuetter and 
Ferguson (1972). In a survey of loss reserve methods, Skumick (1973) men- 
tioned the runoff method and the procedures that apply a factor to a current 
value of a base. Bomhuetter and Ferguson (1972) recommended procedures that 
initially require the computation of age-to-age factors derived from a loss 
development triangle. In a critique of reserve methodplogies, Khury (1980) 
stated that reserve estimates are point estimates with no provision given for 
possible rrariations from their respective true values; he also stated that the 
actuarial assumptions used in determining reserve estimates are not mentioned 
explicitly. 

Some commonly used procedures have two main shortcomings. First, a 
procedure that applies a constant factor to a current value of a base is ad hoc. 
For instance, statutory IBNR reserves for fidelity and surety coverages are 
computed as 10%~ and 5%, respectively, of premiums in force. Such an ad hoc 
procedure does not differentiate among companies with respect to underwriting 
practices, company operations, and management’s attitude to risk bearing. Sec- 
ond, many of these procedures are a by-product of a retrospective reserve 
analysis (e.g., the runoff method or age-to-age factors derived from a loss 
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development triangle). A retrospective reserve analysis provides information 
with regard to the adequacy or inadequacy of prior reserve estimates, but its 
implications about the accuracy of a current reserve are questionable. 

Another more philosophical problem associated with retrospective proce- 
dures such as the runoff method or procedures based on age-to-age factors is 
that these procedures are not “statistical.” A “statistical” procedure would con- 
sider an estimator that is usually unbiased and/or consistent: see Bickel and 
Doksum (1977). Statistical theory would guarantee that such estimators will be 
“about” the true parameter value or will “converge” to the true parameter value 
for large sample sizes (large volume of data). Even when adjusted for the 
volume of business or other pertinent facts. methods based on runoff procedures 
are not “on the average” guaranteed to cstimatc the true IBNR value. Similarly. 
procedures based on age-to-age factors. even when these factors are trended, 
cannot be relied on to estimate the true IBNR value correctly. Runoff procedures 
and procedures related to age-to-age factors may have an intuitive appeal for 
calculating IBNR. But there is no proof, at least to the extent of the author’s 
knowledge, that these computational methods have desirable properties such as 
being unbiased and/or consistent. 

In this presentation a probabilistic model. a statistical procedure. is devel- 
oped that may be used as an altcrnativc method for computing IBNR reserves. 

' IBNR MODhI -. 

IBNR liability is presented as a stochastic variable. Parameters used in the 
model are distribution of number of claims. scvcrity. and report lag by accident 
periods. These parameters (frlctors) arc dependent on a company’s mix of 
business written (current and past) and to some extent on a company’s proce- 
dures for investigating and reporting claims. In this section, the probabilistic 
formulation of the model is considered. The specitication of parameters has 
been delegated to another section. IBNR is presented as a tinite sum of random 
variables. Each term in the finite sum is an “IBNR contribution by an accident 
period.” These IBNR contributions are random sums (see Appendix B). Mean 
(expected value) and variance of 1BNR have heen dcrivcd. 

Claims are grouped by accident periods. The unit of time for an accident 
period may be a month or a quarter. For the sake of simplicity it is assumed 
that each accident occurs at the middle of an accident period. It should he noted 
that when the accident period is one year. the assumption that all accidents 
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occur at the midpoint of the accident year may be invalid for certain types of 
coverage because of seasonality and other pertinent facts. The “experience 
period” includes all the accident periods of interest. Diagram A is useful in 
presenting the “experience period.” 

DIAGRAM A 

experience period > 

t----------- c, - 

s - 1 
“initial”s 

i- 1 i t-l t 
accident “current” 

accident period period i accident period 

where ci = t - i + ( l/2), a known constant, 
i = s. s + I, , t. 

The accident period i is the interval (i - I, il. In this presentation, accident 
periods s and t represent “initial” and “current” periods, respectively. 

The model assumptions and the main symbols used are as follows. For each 
accident period i, 

(i) N,, a random variable, denotes the number of accidents occurring; 
(ii) corresponding to N,, there are claim amounts X,,, j < N,, that are 

independent identically distributed (i.i.d.) random variables with the 
same probability distribution as X,; 

(iii) each claim X,, corresponds to a report lag denoted by T,,. For a given 
claim, the report lag is defined as the time difference between the 
accident date and the claim report date. The To, j s N,, are i.i.d. 
random variables with the same probability distribution as T,; 

(iv) it is assumed that N,, X,,, and T;, are independent random variables for 
each j < N, and i = s. s + I, . , t. 

The random variables N,. X,. and T,, for s < i < t. correspond to the number 
of claims, the severity, and the report lag, respectively. Ni’s are related to both 
frequency and volume (exposure). The values of X,,, correspond to their ultimate 

cost realizations. The probability distributions for N,, X,, and T, can be different 
for each i. In Section 4, more information about the specification of N,, X,, and 
T, distributions is provided. The assumption of independence, (iv) above, has 
two major implications: for each accident period, the number of claims is 
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independent of claim amounts; and for each claim, the claim amount is inde- 
pendent of its report lag. If there is strong unpirical e\kfencr that for certain 
types of coverage a significant correlation (say. positive correlation) exists 
between claim amounts and their respective report lags. then the independence 
assumption, (iv) above, is violated and the derivations based on it are invalid. 
In such a case, one has to modify the model, or alternatively assess the sensitivity 
of the model to departures from independence. 

Let la denote an indicator random variable for the event A. That is. 

/A = 
1 

I, if A occurs, 
0, if A does not occur. 

The following equation ( I) 

1 = 1(7,/Z<.,) + fir,, ‘I.,1 (1) 

implies that the claim X,, is either a reportrd claim or an IBNR cluitn as of the 
end of accident period I. Let Y, denotc the contribution to IBNK liability from 
accident period i. Then, 

Note that Y, is a random sum (see Appendix B) (i.e.? Y, is the sum of random 
variables with the number of random variables contributing to the sum being 
random). IBNR as of the end of the “current” accident period t is dctined as, 

IBNR = c Y,. (3) 
t-5 

(4) 

Equation (3) presents IBNR as a sum of a tinite number of random variables, 
where each random variable in the sum is a random sum denoting an accident 
period contribution to IBNR. 

The mean and variance of Y,. equation (2) above, are 

E(Y,) = E(N,)E(X,)P(T, > c,), (5) 

where P(T, > c.,), in (5) above, denotes the probability that the random variable 
Ti exceeds the value c,. and 

Var(Y,) = E(N,)E(X:)P(T, > c,) + [E(X,)P(T, > ~~,)l’IVar(N,) ~ E(N,)l. (6) 
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Equations (5) and (6) are a consequence of (iv) above and Appendix B. 

The Expected Vulue (Mem) of lBNR 

Using (3) and (5), we have 

E(IBNR) = 2 E(N,)E(X,)P(T, > c,), 
I-5 

where B, = E(N,)E(X,), 
It’, = P(T, > c,). 

(7) 

B, is “expected incurred losses” for the accident period i. If we use “expected 
incurred losses” as a LISP. it is clear from (8) that IBNR is a function of current 
and prior base values. Because it is common for IBNR estimates to be calculated 
from a base that is only a function of a single year, the above analysis, equation 
(8), implies that such procedures are inappropriate. The weights W, can be 
computed using the report lag distribution(s), and their effect diminishes as we 
consider earlier accident periods. A deterministic procedure for calculating 
IBNR using lag probabilities, I$‘, above, has been presented by Patrik (1978). 

The Vcrriutwe of IBNR 

Using the independence assumption about N,, X,,, and T,], and equations (3) 
and (6), we have 

Var(IBNR) = c E(N,)E(Xf)P(T, ) c,) 
I \ 

+ c IE(X,)P(T, > c,)]‘[Var(N,) - E(N,)J. 
I-\ 

If Ni’s are Poisson random variables, equation (9) becomes 

Var(lBNR) = i E(N,)E(Xf)P(T, > c,). 
,- 5 

(10) 

One may be interested in Poisson number of claims for at least two reasons. 
First, if one expresses the parameter of a claim process in terms of the “oper- 
ational” time rather than the “natural” time, then many claim count processes 
of interest are in fact Paissotz processes. A claim count process is a stochastic 
process, {N(u), s - 1 S u S t), where u is the parameter of the stochastic 
process. The parameter II denotes the time (“natural” time), and N(u) is the 
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number of claims (accumulated number of claims) at time u during the time 
interval (s - I, u]. The number of claims in the accident period (i - I. i], N,, 
can be expressed in terms of the claim count process by the following relation- 
ship: N, = N(i) - N(i - I ). For an elaborate discussion of “operational” time 
and claim count processes, the interested reader should refer to Biihlmann 
(1970). Second, the negative binomial is a suitable probability model for htting 
claim count data; see Benjamin ( 1977). But negative binomial distribution arises 
from a Poisson random variable because of uncertainty in its parameter speci- 
tication: see Longley-Cook ( 1962). 

Equation ( IO) may be written as 

Var(IBNR) = x M,B,. (I 1) 

14, = (E(X’)IE(X,)]P(T, > c,). 

Now the weights U, depend on both severity and report lag distributions. When 
the number of claims has a Poisson distribution, the variance of IBNR can also 
be expressed in terms of current and prior values of a base. Moreover, in the 
case of the Poisson number of claims and the further assumption of a severity 
distribution. X. that does not change over the entire “experience period,” we 
have 

Var(IBNR) = c IE(N,)E(X)P(T, ’ (,,)I /E(X’)/E(X)I. 

= E(IBNR) IE(X’)/E(X)]. (12) 

Equation (12) implies that the ratio of Var(IBNR) to E(IBNR) depends only on 
the severity in this case! 

Some remarks on the derivation of a confidence interval for IBNR arc 
appropriate at this time. In order to &rive an fwrct confidence interval for 
IBNR reserves, it is necessary to know the distribution of IBNR. Note that 
IBNR is composed of a sum of a tinite number of random variables. where 
each term in the sum is a random sum. Determining the exact distribution of a 
random sum is extremely difticult. It requires the evaluation ot’ an intinite 
number of distributions where each one is a convolution of many distributions. 
This problem is well known in reinsurance. that is. the aggregate losses in stop- 
loss reinsurance arrangements are in fact a random sum; see Buhlmann (1970). 
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The distribution of IBNR can be analytically approximated by using the 
cumulative distribution of standard normal distribution, its derivatives, and the 
moments of IBNR. This approach is known as Edgeworth expansion and is 
discussed in Beard, Pentikainen, and Pesonen (1969). This approximate distri- 
bution can be used to construct a confidence interval for IBNR. 

Expressions for the mean and variance of IBNR have been given; now a 
crude IBNR confidence interval may be computed by using the Chebyshev 
inequality. 

The author believes that a reasonably accurate IBNR confidence interval 
may be obtained by resorting to simulation. IBNR realizations can be generated 
and a “simulated” distribution computed by specifying an input scenario, that 
is, specification of the claim count, the severity, and the report lag distribution 
for each accident period, based on actual insurance data. Such a distribution 
may be used to derive a reasonable contidence interval for IBNR. 

3. APPLICATION 

In this section are two examples that use the preceding model. The speci- 
fications of input parameters in these examples are not based on any real 
insurance data. but are stated merely for illustrative purposes and c‘ompututiotzal 
e.rpediemy. Given specifications of input parameters should not be construed as 
model assumptions. The main assumptions of the model are in condition (iv) 
in Section 2: independence of claim count, severity, and report lag. A more 
appropriate use of the model would be to generate many IBNR values (realiza- 
tions) by resorting to simulation based on input parameters derived from actual 
insurance data. Results of such a simulation may be used to provide an IBNR 
confidence interval and determine the sensitivity of IBNR to input assumptions. 

E.wtple A: Effkt of Changes in Input Purumeters on IBNR 

IBNR, or more precisely, expected value of IBNR, can be calculated ac- 
cording to equation (7) in Section 2. Each IBNR computation requires an input 
scenario, that is, a specification of expected number of claims, mean severity, 
and report lag distribution for each accident period included in the experience 
period. In this example, we consider one input specification and refer to it as 
“Scenario A.” We then investigate the effect of change(s) in input parameters 
relative to Scenario A on the value of IBNR. These investigations will show 
the sensitivity of IBNR value to changes in input parameters. In Table A, 
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several deviations from Scenario A’s input specifications are considered. In each 
case, a percentage change in IBNR value has been computed. 

TABLE A 

Scenario A: (i) Growth in expected claim count is 6% annually. 
(ii) Mean severity increases uniformly at the rate of 5%’ an- 

nually during the entire IO-year experience period. 
(iii) Report lag distribution for each accident period is exponen- 

tial with mean of 40 months 

Change in Input Assumptions 
Relative to Scenario A 

1. Change in growth rate for expected claim count 
from 6% to 9%. 

2. Change in rate of increase in mean severity from 
5% to 10% during the second S-year experience 
period. 

3. Change in mean lag from 40 to 50 months (as- 
suming the distribution of lag remains exponen- 
tial). 

4. Changes in expected claim count and mean se- 
verity as in I and 2 above. 

5. Changes in expected claim count and mean lag 
as in I and 3 above. 

6. Changes in mean severity and mean lag as in 2 
and 3 above. 

7. Changes in expected claim count, mean severity. 
and mean lag as in 1, 2. and 3 above. 

*Percentage Change 
in IBNR 

24.1 

15.0 

15.6 

43.3 

42.4 

31.8 

63.0 

*To compute the percentage change, let (IBNR),, and (IBNR)., denote the value of mean 
IBNR according to Scenario 0, that is any other scenario. and Scenario A. respectively. 
Then, the percentage change in IBNR is defined as 

For more detail5 on computation of the above percentage\ rekr to Appendix A. 
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Example B: Projecting IBNR Values After Discontinuing Writing u Line of 
Business or u Coverage 

Consider a situation in which at time t, end of the experience period, the 
insurer decides to discontinue writing a certain line of business or a coverage. 
The insurer may pay for IBNR claims as they are subsequently reported and 
settled, or the insurer may transfer the liability at a given price to an accom- 
modating reinsurer. The rate of decline in IBNR, subsequent to discontinuation 
of coverage, is considered as follows. 

Let E[IBNR(u,v)] denote the mean value of IBNR as of moment t’ evaluated 
at time u. Then, according to equation (7), we have 

E[IBNR(r,t)] = x E(N,)E(X,)P(T, > c;). (13) 
I=, 

If coverage is discontinued at time I, E(N,) = 0, for i > [. The claim X,, is an 
IBNR claim as of moment t + 1 if T,, > L‘, + 1. Thus, 

EIIBNR(r,t + I,] = c E(N,)E(X,)P(T,, > c, + I). (14) 
I -\ 

If T,‘s are exponential with density f(r), 

f(t) = 4x8’, t > 0, 

where the parameter 19 is equal to l/(mean lag). Then 

P(T, > c, + 1) = em ““+I) = em”P(T, > c,), 

Using (I 3). ( 14). and (I 5). we have 

E[IBNR(r,t + I)] = eF”E[IBNR(l.r)]; 

(15) 

similarly we have 

E]IBNR(t,f + k)] = (eF”)“E]IBNR(r,r)], for k = !,2,... (16) 

In particular, if the accident period is one month, then, according to equation 
(16), the projected value of IBNR a year after the evaluation date is equal to 
the current IBNR value multiplied by a factor (less than one) that is equal to 

le. 
I ,mean Lig) 

1 
17 

(17) 
The above factor is based on the premise that the lag distribution remains 
unchanged during the entire experience period and is exponential. Choosing an 
accident period of one month, IBNR is declining geometrically at an annual 
rate given by equation (17). Note that no restriction is put on the expected claim 
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counts and the mean severity by accident periods. Table B shows one year 
decline factors for different mean lags assuming exponential lag distribution. 

TABLE B 

ONE YtAK bK’I.INt F,\c.t’o~ 

Mean Lag 
(Months) 

IO 
20 
30 
30 
50 

Factor 

,301 
,549 
,670 
,741 
.7X6 

The emerged IBNR amounts in the respective future accident periods t + 
1, t + 2. . . . . are given by the following differences 

E[IBNR(t,t)l - E[IBNR(t.t + I)], 
E[IBNR(t,t + I,] - EI1BNRCt.r + 211. 

based on our evaluation at time r. These emerged IBNR amounts may be used 
to give an estimate of a “discounted” IBNR. 

4. SPE(‘IFI(‘A I ION OF MODtL. I’AKAMI: I I:KS 

For each accident period i. the specification of distributions for number of 
claims, severity, and report lag (i.e.. N,. X,, and T,) is required. 

In determining N,. the number of claims. distributions commonly fitted to 
insurance data are Poisson and negative binomial: see Benjamin (1977). In the 
case of Poisson, the only required input is the value of E(N,), the expected 
number of claims. E(N,) should not be based entirely on reported claims in 
accident period i, but adjusted for accident period i claims that will be subse- 
quently reported. As Salzmann ( 1984) stated, “the extrapolation of the incurred 
count is straightforward and results are quite dependable.” 
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The specification of claim distribution X, is a more difficult task. Many 
parametric distributions have been fitted to claim data. Some popular distribu- 
tions used are lognormal, Pareto, and gamma; see Beard, Pentikainen. and 
Pesonen (1969). It is the author’s belief that for earlier accident periods, the 
claim cost data are nearly “fully developed,” and a parametric distribution fitted 
to individual claims (incurred losses) is the appropriate procedure. The term 
curlier uccident periods. in the preceding sentence, depends on the circum- 
stances of a given situation. It should be evaluated in terms of the volume of 
claim cost data and the claim settlement period relevant to that line of business. 
Finger (1976) wrote an interesting paper related to fitting a lognormal curve to 
claim data. For more recent accident periods, the claims are only “partially 
developed” and are not close to their “ultimate” cost values. A possible approach 
is to extrapolate (trend) the distribution of earlier periods to arrive at distributions 
for more recent periods. A procedure for trending distrihutiom was presented 
by Rosenberg and Halpert (1981). 

The distribution of report lag, T,. can be obtained by a procedure outlined 
by Weissner (1978). where reported lags are fitted, by the method of maximum 
likelihood, to a parametric truncated distribution. The underlying report lag 
distribution is recovered by exploring the relationship between truncated and 
nontruncated distributions. 

The last point to consider is the selection of an appropriate “experience 
period.” Usually t is December 31 of the year of IBNR evaluation. The choice 
for .I‘. the “initial” accident period, requires considerable judgment. For a new 
company or an existing company with a new line of business, the s should be 
the earliest possible period. In other cases. the choice of s depends on the report 
lag distribution. From equation (8). it is clear that for earlier accident periods, 
I$‘, is small because C, is large. and consequently the contributions to IBNR from 
earlier accident periods tend to diminish. Thus, when IBNR is computed by 
lines of business or coverages, a judgmental choice with regard to the value of 
s should be made. 

Finally, the distributions of N,, X,. and T, are based on our knowledge at 
the end of the current period t. If the accident period is a month and IBNR is 
computed annually, at time t + 12, we have to update these distributions in the 
light of data gathered during period (t,t + 121. Thus, the distributions for the 
claim count, the severity, and the report lag may be updated from one evaluation 
period to the next. 
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5. (‘ONCI LISION 

The model described in this paper has merits of its own in estimating IBNR 
reserves. particularly the following points. The model is not ad hoc because the 
parameters used are dependent on a company’s book of business written. which 
is the most important factor in determining IBNR. The input parameters (dis- 
tributions) may be continually updated from one evaluation to the next. If the 
company’s operations change. or if other factors suggest an appreciable diver- 
gence from past development of input parameters. then. to the extent that these 
changes can be quantified, “historical” inputs should be replaced by these 
“subjective” inputs that incorporate the changes. The model is stochastically 
presented so that we can evaluate variability. The actuarial assumptions used 
are stated explicitly in terms of probability distributions for the number of 
claims, the severity. and the report lag. We have a tool. a stochastic model, to 
work with. More time can now be spent in examining the model assumptions 
and improving methods of estimating parameters from actual insurance data. 
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APPENDIX A 
FORMULAS USED IN COMPUTING THE PERCENTAGES GIVEN IN TABLE A 

Precise specification of the input parameters for the computation of per- 
centages in Table A is given below. The accident period is assumed to be one 
month. Let s = 1 in equation (7); rl denotes the rate of growth for the expected 
number of claims; r-1 and rj denote the rate of growth of the mean severity 
during the first and second five years of the experience period, respectively. 
The input specifications are as follows: 

E(N,) = E(N)(l + r,)” ‘)“‘, for 1 <i-(120 

E(X,) = 
1 

E(X)( I + r2)“m” I’, for I -(is60 
E(X)( I + r2)(M’m ““2( I + r3)‘i-ho)“z, for 6O<i-(120 

where E(N) and E(X) denote the expected values of claim count and severity in 
the initial accident month. The lag distibution is selected to be exponential for 
each accident period with the densityf(t) as given in Example B. Using equation 
(7), the mean IBNR value is 

E(IBNR) = E(N)E(X) ($ (1 + r,)” ““‘(I + r2)” m”“zemBc” 
,= I 

120 
+ 2 (l + r,)tr-I,,r2(l + r2)c60-lv12(] + r3)11-M))‘12e-AC~, 

IFhI 1 

where 6 = l/(mean lag). 

For Scenario A, rl = .06, t-2 = r-3 = .05, with mean exponential lag of 40 
months. For any other scenario, the input parameters that are not explicitly 
changed (see Table A) will be the same as those of Scenario A. In computing 
the percentage change in IBNR values, the E(N)E(X) term drops out. 
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MEAN AND VAKIAN~‘I: OF A RANDOM SUM 

In this appendix, we state (not derive) the appropriate expressions for the 
mean and variance of a random sum. The interested reader may refer to Feller 
(1971) or Mayerson. Jones, and Bowers ( 196X) for the derivation of the results 
stated below. 

Let Y, Yr. Y:, ._., Y,,, be independent and identically distributed random 
variables with tinite first two moments. Let N denote a nonnegative integer- 
valued random variable with finite first two moments. A random sum. SN, is 
defined as 

s,v = c Y,. (B.1) 
,= A 

Let us assume that N and Y,. Y?. ..are independent variables; then it can 
be shown-see Feller ( 197 I fithat 

f3S.v) = EW)E( Y). (B.2) 

Var(S.v) = E(N)Var(Y) + [E(Y)j%‘ar(N). (B.3) 

Equation (B.3) can be rewritten as 

Var(S,v) = E(N)E(Y’) + [E(Y)]‘IVar(N) ~ E(N)]. (B.4) 

If N is a Poisson random variable. the second term on the right-hand side of 
(B.4) is equal to zero. 

It should be noted that for an indicator random variable I,\ (see Section 2). 
we have 

E(I,) = P(A) . and 
E(l;i) = P(A) 

These results concerning the mean and second moment (about Lero) of the 
indicator random variable have been used in the derivation of equations (5) and 
(6) in Section 2. 
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DISC’LISSION HI’ KI(‘H4KI) F.. SHERMAN 

In the paper. “A Probabilistic Model t’or IBNR Claims.” a numhcr of results 
of interest have been presented. The ax\umptions of the model have been clearly 
detined and several useful derivations worked out. It should be noted that this 
paper addresses “pure IBNR”-to the exclusion of reserves li)r adverse devel- 
opment on case reserves. 

The author openly admits that application of the model is dependent on 
claim severities being independent of the report lag. Without exception. every 
set of casualty loss experience that thi\ reviewer has studied (that contains 
sufficient detail to test the hypothesis of independence) indicates that claim 
severities increase markedly with report lag-up to some stage of development- 
and then tend to level off for later stagch. Much of the more recent loss 
experience available to this reviewer is either confidential in nature or is based 
on too small a volume of claims. However, two generally available, though 
older. sources clearly demonstrate this phenomenon for a large body of data. 
Exhibit 1 presents the results of the NAIC Closed Claim Study (62,096 medical 
malpractice claims), and Exhibit 2 shows comparable data from the ISO’s 
Products Liability Closed Claim Survey ( 12.2 I3 claims). 

This suggests that the derivations prehentcd in this paper should be valid for 
that portion of the IBNR reserve associated with more mature accident years 
(where the claim severity of yet unsettled claims tends to be independent of the 
report lag). More specifically. the interesting and useful results for Example B 
should be valid for lines of business that were discontinued a number of years 
ago. 

It also suggests that the derivations in this paper must undergo considerable 
modification before application to the IBNR reserve associated with the most 
recent accident years. Unfortunately, this latter portion tends to represent the 
bulk of the IBNR reserve for any long tail line. 

The author expresses a number of appropriate misgivings about retrospective 
procedures such as runoff methods and age-to-ape factor methods. What is 
unclear is whether the techniques presented in this paper would represent an 
approach that overcomes these misgivings. I do not sense that the methods 
presented in the paper will liberate the actuary from biases derived from past 
data and enable him/her to better foresee the future. On the other hand. the 
author’s approaches and derivations do offer a refreshing perspective. and can 
serve as a basis for further advancements in IBNR analysis. 
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In the introduction, reference is made to IBNR reserves for fidelity and 
surety coverages. Ad hoc procedures, such as a fixed percentage of premiums 
in force are criticized for their failure to differentiate among companies on 
several counts. To the author’s list, I would add the following: definition of 
accident date (especially for contract surety) and practices in setting case re- 
serves. 

EXHIBIT I 

RELATIONSHIP OF CLAIM SEVERITY AND RHWRT LAG 

NAIC CL.OSED CLAIM STUDY 

MEDICAL MALPRACTICE 

Time from 
Incident 

to Report 
(Months) 

0- 6 
7-12 

13-24 
25-36 
37-48 

Over 48 

Indemnity Number 
Paid of 

(000’S) Claims 
Claim 

Severity 

$243,576 22,293 $10,926 
138,435 10,370 13,350 
234,814 15,089 15,562 
134,054 8,63 I 15,532 
60,456 2,732 22,129 
64,837 2,981 21,750 

$876,172 62,096 $14,110 



110 MODEL I-OK IHNK <‘I AlhfS 

EXHIBlT 2 

RELATIONSHIP OF CLAIM SEV~RI I Y AND RHWRI LAG 

IS0 PRODUVTS LIABIU 1’~ CI.OSED Cl.-\Ihf .(;~IR\,E\ 

BODM.~ INJURY LIAHLI I ‘1 CLAIMS 

Time from 
Incident 

to Report 
(Months) 

0 
l-6 

7-12 
13-18 
1 Y-24 
25-30 
3 l-36 
37-G 

Over 3X 

0 
l-6 

7-12 
13-1x 
19-23 
25-30 
3 l-36 
37-48 

Over 48 

Number 
of Claim 

Claims Severity 

(Trended for Severity) 

3.927 9, 7.x3-l 
5.570 1.377 

Y4Y 23,146 
581 21,843 

464 27.603 
271 lY,X27 
IS7 27,536 
l-13 22.Y7.3 
IS2 lO3.l.36 

12.213 $ 0.171 

(Llntrcnded) 

3,Y27 ‘3 I .x0 
5.570 2.292 

Y4Y Y.6SY 
SXI IO.314 
464 IO..572 
‘7 I X.452 
IS7 6.X02 
I32 7.408 
IS3 10.824 

12.213 s 3.570 

Claim 
Severity 
($25,000 

Limit) 

$ 740 
I .SS3 
5. IO0 
5.846 
7.546 
6.299 
7.73 I 
6.168 
7 874 A 

$2.316 

$ 622 
I.21 I 

3.YS6 
1.265 
5,178 
4,2Y2 
4,490 
3,x52 
7 Y40 A 

$1.6Y4 



MODEL FOR IBNR CLAIMS 111 

DISCUSSION BY MARGARET WILKINSON TILLER 

Mr. Guiahi’s paper presents a model that is a good starting point for esti- 
mating the reserve associated with claims that have been incurred but are not 
reported. Since he refers only to “claim costs,” it is not clear whether this 
reserve is for losses only, or losses and allocated loss adjustment expense. His 
technique can be applied to either or to allocated loss adjustment expenses only, 
provided that the model parameters are selected appropriately. 

An important point to note is that the model does not produce an estimate 
of case reserve development, i.e., the difference between the ultimate value of 
claims and the total of the payments plus case reserves for claims that have 
been reported as of a given date. Again, the terms “value,” “payments,” and 
“case reserves” could refer to losses only, losses and allocated loss adjustment 
expenses, or allocated loss adjustment expenses only, as long as the definitions 
are consistent. 

One of the main assumptions underlying Mr. Guiahi’s model is that claim 
severity and report lag are independent. While this may be close to reality for 
a short-tailed line such as automobile property damage, it is probably not true 
for long-tailed lines such as medical malpractice and products liability. Mr. 
Guiahi points out that if there is empirical evidence that the assumptions are 
not valid. adjustments to the model must be made. He does not, however, 
explore what those adjustments are. For those lines of business in which claim 
severity and report lag are dependent or in which other model assumptions 
appear to be invalid the model can be used only as a starting point. 

Mr. Guiahi states that his model overcomes many of the problems associated 
with retrospective reserve analysis (e.g., age-to-age factors derived from a loss 
development model). In particular: “A retrospective reserve analysis provides 
information with regard to the adequacy or inadequacy of prior reserve estimates, 
but its implications about the accuracy of a current reserve are questionable.” 

Any reserve analysis, including one based on Mr. Guiahi’s model, assumes 
that the past is a good predictor of the future. Where known or suspected 
changes are taking place, a good actuary will modify the analysis techniques 
being used to reflect these changes as appropriate. 

For example, if the number of claims and/or average claim size is increasing 
but the claim reporting pattern and the payment and case reserving practices 
have not changed, the loss development technique used on accident year reported 
losses to project ultimate losses for all incurred claims will not be affected by 
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these changes. In Mr. Guiahi’s model to project ultimate losses for incurred but 
not reported claims, these changes must be explicitly recogrkcd and the model 
parameters adjusted accordingly. 

If the claim reporting pattern is changing, the development technique can 
be used separately on accident year claims and average claim sire to project 
ultimate losses for all incurred claims. This allows the development factors for 
claims to be modified so that the estimated ultimate claims retlect the change 
in the claim reporting pattern. In Mr. Guiahi’s model to project ultimate losses 
for incurred but not reported claims. this change must also he explicitly rec- 
ognized and the model parameters adjusted accordingly. 

In summary, Mr. Guiahi’s model is a good starting point for estimating 
reserves for losses. losses and allocated loss ad.justment expenses. and allocated 
loss adjustment expenses only associated with claims that have been incurred 
but are not reported. To be of practical value. the model’s assumptions should 
be evaluated carefully in light of empirical data and appropriate changes made 
to the model if the assumptions appear to be invalid. In addition, the reserve 
for case development must be estimated in order for the reserve picture to be 
complete. 
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THE CASH FLOW OF A RETROSPECTIVE RATING PLAN 

GLENN MF.YtKS 

1. INTRODUCTION 

In recent years, the state of the property and casualty insurance industry 
could be characterized by three highs: high combined ratios, high interest rates, 
and a high degree of competition. Insurance company managers know that a 
great deal of investment income can be made by writing insurance, and they 
are willing to lower prices in order to do this. 

The question to be asked, then, is how much can rates be lowered and still 
maintain an acceptable overall profit? It should be noted that, in practice. 
actuaries do not have complete control of the pricing process. Underwriting and 
marketing personnel have considerable input. If actuaries do not calculate the 
contribution of investment income to the profitability of a line of insurance, 
someone else will. And the resulting “calculation” may amount to no more than 
a reaction to competitive pressures. 

The question is not whether to reflect investment income in the calculation 
of rates. Instead the question is hokc, to reflect investment income in the calcu- 
lation of rates. 
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This paper considers the effect of investment income in the choice of the 
parameters of a retrospective rating plan. With current methodology, the param- 
eters of a retrospective rating plan are chosen to place the plan in balance on a 
nominal, or underwriting basis. By this we mean that the expected retrospective 
premium is equal to the sum of the losses, expenses. and the anticipated profit. 
However. it is possible for different plans to have the same expected premium 
and have different cash flows. 

For example, a plan with no maximum will have premium flowing in as 
long as losses develop, while a plan with a low maximum will stop producing 
premium as the insured breaks the maximum. Not all insureds will break the 
maximum, but there will, on average. be a faster premium How for the low 
maximum plan because of the higher basic and the increased number of insureds 
who do break the maximum. 

Other factors, such as the loss conversion factor and the minimum premium 
factor will also affect the cash flow of a retrospective rating plan. 

This paper will provide a way of calculating the present value of the 
retrospective premium. Using this methodology. one can compare the proft- 
ability of various retrospective rating plans on a discounted or operating basis. 
This method also applies to paid loss retros. It I\ also possible to calculate 
parameters of a plan that will yield a predetermined operuting protit. 

The principal tool used will be the collective risk model. Excess pure 
premiums will be calculated for the insured at various stages of development. 
One can then calculate the expected retrospective premium at each stage, and 
obtain the present value of the retrospective premium. 

This technique will enable the insurer to offer a standard incurred loss retro 
which is competitive with a paid loss retro. This alternative could help relieve 
some of the pressure that the Internal Revenue Service is putting on paid loss 
retros. In addition. it will become possible to price a retro with loss development 
factors. This will minimize the size of retrospective adjustments as time passes. 

We begin by defning the parameters of a retrospective rating plan 

2. I‘HE YAKAMtTEKS DEFINI~I) 

The retrospective premium. K, for an insured is given by the following 
formula [ 1 I: 

R = (B + c.E + c.L).t. 
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R is subject to a maximum of G and a minimum of H. 

B is the basic premium. Traditionally, B covers general expenses, profit, 
and the insurance charge (i.e., the net cost of the minimum and maximum 
premium provisions). There is no particular reason why B has to be set equal 
to these cost provisions. In its pure form, B is simply an amount used to 
determine the retrospective premium. 

The factor c is called the loss conversion factor. Traditionally, c covers the 
loss adjustment expenses. Again, there is no reason why it has to be set equal 
to a loss adjustment factor. In its pure form. c is simply a factor used to 
determine the retrospective premium. 

Many retrospective rating plans provide that no claim amount over a spec- 
ified loss limit shall be used to calculate the retrospective premium. In this case, 
the expected value of the losses resulting from this provision must be added to 
the retrospective premium. This amount is denoted by E. 

L represents the actual losses, subject to the per claim loss limit. incurred 
under the plan. Premium taxes are provided for by the factor 1. 

In order to keep this paper as simple as possible. we will not consider the 
effect of loss limits and premium taxes until the end of the paper. We shall also 
ignore the minimum premium. This results in a simplified formula for the 
retrospective premium: 

R = B + c.L. 

subject to the maximum, G. 

The timing of the retrospective premium payments is of particular impor- 
tance. Recall that some claims are open a long time before final settlement. 
Thus, incurred losses are necessarily estimates of the final claims costs. Expe- 
rience has shown these estimates are usually low, so one should expect the 
retrospective premium to increase over time. The first calculation is based on 
losses reported eighteen months after the effective date of the policy. Subsequent 
calculations are performed on a yearly basis. Payments typically lag three 
months behind the retrospective premium calculations. 

It is usually required to make a premium payment before the first retrospec- 
tive adjustment. Traditionally, this payment has the standard premium due on 
the effective date of the policy. More recently, the trend has been to pay an 
amount totaling less than the standard premium in installments. 
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We will be following a single hypothetical inhured throughout this paper. 
The loss and expense information for this insured is given in the following 
table. 

TABLE I 

EXPECTED INWKRED LOSSES 
EXPECTED Loss ADJ. EXP. 

OTHER EXPENSES 

TO-~AI. 

NOhllNAI. 

$ I .000,000 
I00.000 
57.500 

$1.157.S00 

PKbSt-NI VAI.L:t; Al 8% 

$x20.000 
X7.000 
55 .OOO 

$962,000 

The expected incurred losses for each retrospective adjustment period are given 
in the following table. 

TABLE 2 

RETROSPECTIVE ADIUSTMKNT Ex~+.c. I ED 1NC'UKKI:D LOSSES 

#I ((1 18 MONTHS $833,333 
#2 ((1 30 MONTHS 946.970 
#3 @l 42 MONTHS 975.610 
#4 @I 54 MONTHS 986, I93 
#5 (?I 66 MONTHS Y9 1.080 

#6 (il 78 MONTHS 996.016 
#7 6 ')o MONTHS I .ooo.ooo 

In order to calculate the average retrospective premium, one needs to have 
tables of excess pure premiums which correspond to each retrospective adjust- 
ment. These tables are provided in Exhibit 1. The Heckman-Meyers algorithm 
[2] was used to generate these tables. While the input for this algorithm could 
be provided, it seems just as easy to assume the tables arc given. These tables 
provide excess pure premiums for loss amounts in increments of $10,000. Linear 
interpolation can be used to calculate excess pure premiums for loss amounts 
that are not a multiple of $10.000. 
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The average retrospective premium is calculated in the following manner 
131. Detine the effective maximum to be equal to (G - B)ic. and let X be the 
excess pure premium for losses over the effective maximum. Then, the average 
retrospective premium is given by: 

The average retrospective premium must be calculated for each evaluation 
period. 

As an example. assume B = $232.450, G = $1,.500,0(K). (‘ = 1. I. and 
El.!,] = $1,000,000. Then the effective maximum equals $I, 152,320. By linear 
interpolation on Exhibit 1 (90 months), we find X = $13 1,775 and E[R] + 
$1.187.500. 

3. THE STANDAKD 1NCURRED LOSS RETRO 

We first calculate the expected underwriting profit for a standard incurred 
loss retro. We need only consider the seventh (final) retrospective adjustment 
for this calculation. 

TABLE 3 

BASIC $232,450 
L.C.F. 1.1 
MAXIMUM $1,500,000 
E[R] (nl 90 MTHS. I, 187,500 
Loss & EXPENSE I ,157.500 
UNDERWRITING PROFIT 30,000 

This plan was designed to yield approximately the 2.5% underwriting profit that 
is budgeted in standard Workers’ Compensation rate filings. 

Next, we calculate the expected operating profit for the same plan assuming 
an effective annual interest rate of 8%. That is to say, for example, that a 
payment due in three months is discounted at a rate of 1.08” ‘5. A deposit 
premium of $960,000 is to be payable in six quarterly installments of $160,000. 
The present value of the deposit premium is $915,410. Additional amounts of 
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premium due to retrospective adjustments are assumed to be paid three months 
after the calculation of the retrospective premium. 

TABLE 4 

BASIC 

L.C.F. 

MAXIMUM 
DESWSIT 
E[R] @I 18 MI'HS. 

((1 3oMIHS. 

((1 42 MI HS. 

((1 54 MIHS. 

Ctl 66 M.IHS. 

61 78 M'IHS. 

((1 90 M'IHS. 

P.V. RETRO PREMIUM 

P.V. LOSS & EXPkNSI: 

OPERA IING PKOEI I 

$232.450 
I.1 

s I ,soo,ooo 
960,000 

I .078.380 
l.l.55.720 
1.173,210 
I, I7Y .4X0 
1. I X2.340 
I . I x5.300 
I, 187,500 
I. 103.720 

Y62.000 
131.720 

In this example we see that the standard rating method yields an operating profit 
of nearly 12% of the ultimate average retrospective premium. This is tine if the 
competition will allow it. If not, the insurance company management must 
decide what operating protit to seek. 

Suppose management decides to seek an operating profit of $100.000. 
Perhaps there is a vague notion that an underwriting prom of $30,000 already 
anticipates a certain amount of investment income. and is not appropriate for 
an operating profit. Anyway, the question becomes one of selecting the basic 
premium that yields the desired operating profit. This can be done by repeating 
the calculations of Table 4 on a trial and error basis, although a numerical 
method may yield the desired solution mot-c quickly 131. The results of this 
process are in the following table. 
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TABLE 5 

BASK 

L.C.F. 

MAXIMUM 

DEPOSIT 

E[R] fi!' 18 MTHS. 

(il 30 M-I‘HS. 

61’ 42 MTHS. 

(it 54 MTHS. 

@I' 66 MTHS. 

(iC 78 MTHS. 

(iC' 90 MTHS. 

P.V. RETRO PREMIUM 

P.V. Loss & EXPENSE 

OPEKATING PROFIT 

$167,150 
I.1 

$1,500,000 
960,000 

1,024,l00 
1.106,410 
1,125,210 
I,l31,970 
I, 135,050 
l,l38,140 
I, 140,620 
I ,062,000 

962,000 
100.000 

Having described how to select the basic premium which yields a predeter- 
mined operating profit. it should be pointed out that it is possible to fix the 
basic premium and select the loss conversion factor which yields a predetermined 
operating profit. 

Certain other cash How provisions of a retrospective rating plan are often 
subject to negotiation between insurer and insured. Thus it seems appropriate 
that we show how to account for them. 

4. RETRO DEVELOPMENT FACTORS 

An optional provision of most retrospective rating plans is to adjust the 
incurred losses to their ultimate value by means of a loss (or retro) development 
factor. An advantage to the insured is that the retrospective premium is close 
to its ultimate value at the first retrospective adjustment. A disadvantage is that 
the insured must pay the premium sooner. To overcome this disadvantage, the 
insurer can offer to lower either the basic premium or the loss conversion factor. 



In the followmg table we consider the latter option. The deposit premium 
is to be paid in installments ;I\ before. Although several retrospective adjust- 
ments are made. the contribution of the later adjustments is assumed to be 
negligible. The final table of excess pure premiums in Exhibit I (evaluated at 
90 months) was used to calculate the average rctrospectivc premium at the first 
adjustment. 

TABLE 6 

BASIC 

I..C‘.F. 

MAXIMUN 

DEWSI r 

E[RJ @i IX blIHS. 

P.V. RErRo PRE~III’M 

PV. Loss & ENH:NSk 
~h’ER~AIlNC; PROFI I 

%167.150 
I.0775 

5 1 .suo.ow 
960,000 

1,127.730 
I .06’.ow 

963 .ooo 
100.0(X) 

The results of this calculation should be directly comparable with the previous 
calculation (Table 5). The introduction of retro development factors caused 
about a I. I c/c decrease in the avderage retrospective premium on a nominal basis. 

The accuracy of this calculation depends upon our ability to calculate the 
proper loss development factors. Even if we get the correct overall loss devel- 
opment factors. changes in the shape of the aggregate loss distribution over 
time will affect the average retrospective premium. The author suspects that the 
result, over time. will be a thicker tail for the aggregate loss distribution, a 
higher excess pure premium, and a slight decrease in the average retrospective 
premium. Losses which are re-valued upward will be limited by the maximum 
premium, while losses which are valued downward will be unaffected. A full 
treatment of this effect is beyond the scope of this paper. 

5. PAID Loss REPROS 

A very popular rating plan in recent years has been the so called “paid loss 
retro.” While the details of the financial transactions may vary. a typical plan 
could work as follows. A basic premium is paid. possibly in installments. The 
retrospective premium based on paid losses is continuously paid from a special 



RETROSPECTIVE RATING 121 

fund set up by the insured. At some point in time, usually 54 months after the 
effective date, the plan switches over to an ordinary incurred loss retro. 

The continuous adjustment of the retrospective premium presents a technical 
problem. There is always the possibility that the insured will break the maximum 
on paid losses before the 54 month switchover. This could, in theory, require 
daily tables of excess pure premiums. In practice, the possibility of breaking 
the maximum before the switchover is considered remote, and is ignored in the 
following calculations. The average retrospective premium can then be estimated 
using ordinary loss payout patterns. 

The effect of this simplifying assumption would be to overstate the average 
retrospective premium before the switchover. It will be corrected at the 54 
month adjustment. The end result will be to overstate the present value of the 
average retrospective premium by the amount of interest earned on the excess 
pure premium before the switchover. This should be a negligible amount. 

Let us assume that our hypothetical insured is expected to have paid 
$800.000 in losses by the switchover time, and that the present value of these 
payments is $720,000. Let us also assume that the basic premium is paid on 
the effective date of the plan. The following table describes the plan in detail. 

TABLE 7 

BASIC 

L.C.F. 

MAXIMUM 

E[PAID R] 
E[R] 61' 54 MTHS. 

@I 66 MTHS. 

@I 78 MTHS. 

61’ 90 MTHS. 

P.V. E[PAID R] 
P.V. RETRO PREMIUM 

P.V. LOSS&EXPENSE 
OPERATING PROFIT 

$ 215,170 
1.1 

$ I ,500,000 
1,095,170 
1,167,130 
I ) 170,050 
I, 172,980 
1,175,320 
1007,170 
I ,062,000 

962,000 
100,000 



The results of this calculation should be directly comparable to the straight 
incurred loss retro (Table 5). The paid loss provision caused about a 3%’ increase 
in the average retrospective premium on a nominal basis. 

6. EXCESS I.OSS PREMlL:M AND 1.4X MC’1.T1PI.IF.R 

We did not consider the excess loss premium or the tax multiplier in the 
above calculations. The intent was to keep the discussion as simple as possible. 
We now show how to modify the calculation to take these into account. 

On the premium side of the calculation, the only adjustment needed to 
handle the loss limit is to input a limited claim severity distribution into the 
Heckman-Meyers algorithm. 

No adjustment is needed on the loss and expense side. Make note that the 
present value of the unlimited losses is still used. 

A wrinkle in the above adjustment occurs vvhen the excess layer is reinsured 
and one wants to incorporate the cost of reinsurancc in the pricing. In this case 
one takes the sum of the present value of the limited losses and the cost of the 
reinsurance. This sum is used in place of the present value of the unlimited 
losses. A note of caution: the payout pattern for limited losses is taster than 
that of unlimited losses. 

Premium taxes are paid on the basis of written premium. One should note 
that retrospective adjustments are also adjustments in written premium. The 
present value of the premium taxes can be calculated by using the average 
retrospective premium at each adjustment. 

The following question should be asked at this point. Do we really need to 
have separate factors in the retrospective rating plan for excess losses and 
premium taxes? 

Tax multipliers are not used in guaranteed cost plans. so why use them for 
retrospective rating? Rates for other guaranteed cost plans reflect premium taxes, 
and so could the basic premium and the loss conversion factor. Skurnick [5] 
put the excess premium into the basic premium for the California Table L, and 
there is no reason why this could not be done for all retrospective rating plans. 

What really matters is that the present value of the retrospective premium 
is equal to the profit plus the present value of the losses and expenses. This can 
be accomplished by a proper selection of the basic premium and the loss 
conversion factor. The result will be a simpler fi)rnmula for retrospective rating. 
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7. CONCLUSION 

This paper is written under the premise that an explicit calculation of 
investment income is superior to the implicit recognition of investment income 
that some suggest is in many present rating formulas. We do not attempt to 
determine the proper operating profit. This task belongs to insurance company 
management and/or regulators. It does not belong to some ratemaking formula 
based on underwriting profit. 

We have provided a methodology for finding the expected operating profit 
for a retrospective rating plan. This methodology is presently used by at least 
one major insurance company. 

The author suspects that the more complicated versions of retrospective 
rating, such as paid loss retros, arose because the present plan does not allow 
for investment income. Now that the various versions of retrospective rating 
can be rated on a comparable basis, it is hoped that the more complicated 
versions will no longer be necessary. Retrospective rating can be made simple. 
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EXHIBIT I 

EXCESS PURE PREMIUMS 

.I 25 

LOSSES VAI.L.~,D A I IX MONTHS 

Expwrw LOSXS = $833.333 

Lows VAI.UF.D AT 30 MONTHS 
EXPECTED Losses = 5946.970 

Loss 

AMOLIN I 

$YOO.OOO 0.6508 
‘)10.000 0.6594 
920.000 0.667X 
930.000 0.6760 
940.000 0.6830 
9so.OOa 0.6919 
960,OOil 0.6996 
970,OOiI 0.7071 
980.000 0.7144 
99O.OOa 0.7216 

I .ooo,cw 0.72X6 
I ,010,ooo 0.7355 
I .020,000 0.7422 
1.030,ooo 0.7488 
I .04o.Ow 0.7552 
I .oso.ooo 0.7614 
I .060.000 0.7675 
I ,070.000 0.7735 
I .08O.w0 0.7793 
I .09o.c00 0.7850 
1.100,ooo 0.7906 
1.110.c0O 0.7960 
1.120.000 0.8013 
1.130,000 0.8065 
I .140.000 0.81 IS 
1.150.000 0.8165 
1.160.000 0.8213 
1.170.000 0.8260 
1,180.@30 0.8306 
I, 190.000 0.8350 
I ,200.000 0.8394 
1.210.000 0.8436 
I ,220,OOO 0.8478 
I .23O,ooO 0.8519 
I ,240.OOO 0.8558 
I ,250,OOO 0.8597 
1.260,OOo 0.8634 
1.270.000 0.867 I 
1.280.000 0.8707 
1.290.000 0.8742 
I .300.000 0.8776 

Exwss Puw 

PREMII:M 

Loss 

AMWNT 

CUMULATIVE 

PROBARILHTY 

EXCESS PURE 

PREMIUM 

$129.345 $900,000 0.5469 $196.000 
12.5.846 910,000 0.5561 191,516 
122.532 920,000 0.5653 187.123 
119.251 930,000 0.5742 182,820 
I lh.OSI 940,000 O.SX3I 178,607 
112,930 950,000 0.5918 174,48 I 
109,887 960,000 0.6003 170,442 
106.920 Y7O.OGa 0.608X 166.487 
104,028 98O.OGa 0.6170 162,616 
IOI.208 990.000 0.6252 158,827 
98,459 I .ooo.ooo 0.6332 155.1 I9 
95.780 I .010,000 0.6410 151,490 
93,168 I ,020,ooa 0.6487 141,939 
90.623 I ,030.ooo 0.6563 144,464 
X8.143 I .040.000 0.6638 141,064 
X5.726 I .050,000 0.67 I I 137,739 
83.37 I I .060,000 0.6782 134,485 
81,076 1.070,000 0.6853 131,303 
78,840 I .080.oao 0.6922 128, I90 
76.662 1.090,000 0.6989 125,145 
74.540 l,lOO,OOO 0.7056 122,168 
72,473 1.110.000 0.7121 119,256 

70.459 I. 120.000 0.7185 116,409 

68.498 I ,I30,000 0.7247 113,625 
66,588 1,140,000 0.7309 110,903 
64.728 1.150,OOlI 0.7369 108,241 
62.917 1,160.OOO 0.7427 105,639 
61,153 1.170.000 0.7485 103,095 
59.435 l,180,000 0.7542 100,609 
57,763 1,190,000 0.7597 98,178 
56,135 I ,200,OOo 0.7651 95,802 
54.5so 1.210.000 0.7704 93,479 
53,007 I ,220,Ooo 0.7756 91.209 
5 I.505 I ,230,OOO 0.7807 88.991 
50.043 I ,240.OOO 0.7857 86,823 
48.620 I .25o,ooo 0.7906 84,704 
47.235 I .260.000 0.7954 82,634 
45,887 I ,270.OOO 0.8ool 80.61 I 
44,576 I .280,000 0.8046 78,635 
43,300 I ,290,ooO 0.8091 76,703 
42,058 1,300,OOO 0.8135 74.816 
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EXHIBIT 1 

EXCESS PURE PREMIUMS 

LOSSES VAI.UED A i 42 MON I HS 
EXP~.CIED Losses = $Y75.610 

Loss 

AMU~N r 
CUMUI ATIVF 
PROBABII.IT~ 

$Yoo,ooo 0.5218 
Y 10,ooo 0.53 I I 
920,ooo 0.5403 
930,ooa O.SJ94 
Y4O.ooo 0.5584 
YSO.ooo 0.5672 
96O.OOO 0.5759 
97o.cQo 0.5844 
98O.QOO 0.5928 
YW.OtM) 0.6011 

I.ooo.o(x) 0.6093 
1.010.ow 0.6173 
1.020.oca 0.62.52 
1.030,ooo 0.6330 
1.040,ooo 0.6406 
1.050,ooo 0.648 I 
1.060,OOO 0.6555 
1.070,ooo 0.6627 
l.OUO,OOO 0.6698 
1.090.ooo 0.6768 
l.loo.ooo 0.6837 
1.110.ooo 0.69O4 
1.120.wo 0.6970 
l.130.ooo 0.7035 
1.14o.ooo 0.7099 
l.1.50.ooa 0.7161 
l,l6o,ooa 0.7222 
1.170,ooa 0.7282 
l.lXO.000 0.7341 
1,190.ooo 0.7399 
1,200.ooo 0.7455 
1,210.ooo 0.75 I 1 
1.220.ooo 0.7565 
1,730.ooo 0.7618 
1.24O.OOO 0.7670 
I .2so.o00 0.7722 
1.26O.OOO 0.7772 
1.27O.OOQ 0.7821 
1,280.OOO 0.7869 
1,290.oGa 0.7916 
1,3OO.ooO 0.7962 

$213.htXl 
2OY.X6S 
205.223 
700,672 
lY6,210 
191.838 
IX7,5S3 
1X2.3.55 
179.241 
175.111 
171.267 
167.3Y6 
163.608 
159.XYY 
156.267 
lS2.711 
139.229 
145.x20 
I42.4X3 
13Y.216 
136.019 
132.889 
129.826 
126.X2') 
123.895 
121.02s 
I18.316 
IlS.46X 
112.77') 
IlO.14') 
107.576 
105.05x 
102.SY6 
I0().lXX 
07.x.32 
95.528 
93,274 
Yl.070 
xn.YIs 
X6,X0X 
x4.747 

$Y00,000 
Y I0,otW) 
Y20,ooo 
‘)30,ooo 
040,ooo 
Yso.ooo 
Y6O.oCW) 
Y7O.ow 
Yno.oou 
Y9O.oofl 

I.ooo.oot) 
1.010.ooo 
1.020.ooc) 
1.03o.MMl 
1.o40.o0c1 
1.050.ooo 
I .MO.ooo 
1.070.ooo 
I .080.0(M) 
1.090.ooo 
l.Ioo.ow 
I,I lo.cna 
l,I20.ooU 
1.130,ow 
1.140.c0o 
1. I so.ow) 
I. lhO.O(H) 
l.170.ooo 
I.180,OW 
I. I Y0,oao 
I .?00.000 
1.210.ooo 
1.720.ooo 
1.730.000 
1.240,OOO 
I .2so.ooo 
1.?6Q.ooo 
1.270,ooo 
1.280.000 
1.?9O.ooo 
I.300.ooo 

Exctx PUKt 

PREMIUM 

0.5177 S22l.641 
0.5221 216.815 
0.5313 212.081 
NS4o4 207.440 
0.5493 202.888 
0.5581 198.426 
0.5664, 194.051 
0.5755 189.763 
0.5x40 185,560 
0.5923 181,442 
0.600s 177,406 
0 60X6 173.452 
Oh166 16Y.578 
0.6244 165.782 
0 632 I 162,065 
0 6397 158.423 
0.6471 154.x.57 
0 hS44 151,365 
0.66lh 147.945 
0.6686 144,596 
0.6756 141,317 
0.6X24 13x.106 
0 6X91 134.963 
0 6956 131.887 
0 702 I IZX.X7S 
0 70x4 125.927 
0.7146 123.042 
0 7207 120.218 
0.7266 117.454 
0.7325 114.749 
0.73x2 112.103 
0.7438 109.513 
0.74Y4 106.Y7X 
0.754x 104.499 
0.7Mll 102.073 
117653 99.700 
0.7704 Y7.378 
0.7754 95.106 
0.7803 92.884 
0.785 I Yo.71 I 
0.7XYX XX.585 



RETROSPECTIVE RATING 

EXHIBIT 1 

EXCESS PURE PREMIUMS 

CUMUI A I IVE. 

PKOHAHII IIY 

$900.000 050x6 

Y 10.000 O.Sl79 

920,000 0.527 I 
930.000 0.5362 
940.000 0.5452 
950,000 0.5.540 
960.000 (I..5628 
970.000 0.57 l-4 

Yxo.ooo OS7YY 

Y90,ooo o.sxx3 

I .ooo.ooo O.SYhS 

I .0I0.000 0.6046 

I ,020,ooo 0.6126 
I .030,ow 0.6204 
I ,040.000 0.6282 
I .OSO.(K)O 0.6358 
I ,060.ooo 0 6432 
I .070.000 0.6506 
I ,080.000 0.6578 
I ,090.000 0.664Y 
1.100.000 0.6718 
I.1 10.000 0.6787 
I. I20.000 0.6X54 
I , I30,oca 0.6920 
I. I40,000 0.698.5 
I , I so.cw 0.7048 
I, 160.000 0.71 IO 
I , I70.000 0.7172 
I. 18O.OfM) 0.7232 
I , I 90.000 0.729 I 
I ,200,OOo 0.7348 
I .2lO.OoO 0.740s 
I ,220.OOo 0.7460 
I .23O,OaO 0.7515 
I ,240.000 0.7568 
I .250.000 0.7621 
I .26n.(xx) 0.7672 
I .270.000 0.7723 
1.28O.ooo 0.7772 
I .290,0(W) 0.7820 
I ,300,0(x) 0.7868 

EXCt.SS PIIRk 
PK~MICM 

Loss 
AMOIIN I 

CUMUL.ATIVE 

PRUBABILI FY 

EXCESS PURE 
PREMIUM 

$2X.Y22 $Yoo ,ooo 0.5044 $228.254 
220.054 910,000 0.5137 223.34.5 
21.5.279 920.000 0.5229 218,528 
2lO.SYS 030,ooo 0.5320 213.803 
206.002 940,000 0.5410 209.168 
20 I .4YY 9so.000 0.5499 204.622 
197,083 960.000 0.5.586 200.16.5 
lY2.754 ‘)70.000 0.5673 195.795 
Isx.510 9x0.000 0.5758 191.510 
184.351 990,oOO 0.5842 IX7.310 
I80.275 I .O(H).OOO 0.5924 183.1Y3 
176,280 I .0I0.000 0.6006 179.lS8 
372.366 I ,020.000 0.6086 175,203 
168.531 I .030*Ow 0.6164 171.328 
164,774 I .040,000 0.6242 167.532 
I6 I .OY4 I .oso.Ooo 0.6318 163.812 
1.57.489 I .060.000 0.6393 160.167 
1.53.957 I .070.000 0.6467 156,597 
lSO.4YY I ,080,000 0.6539 153. IOU 
137.112 I .090.(x)0 0.661 I 149.675 
143,7Y6 1.100.000 0.6681 146.321 
I40.54X I.1 I0.000 0.6749 143.036 
137.368 I, 120.000 0.6817 139,818 
134.255 I, 130.O(H) 0.6883 136.668 
131.207 I. 140.000 0.6948 133.S84 
12x.223 I. I50.000 0.7012 I30.564 
I25.302 I , I60.000 0.7075 127,607 
122,443 I. I7O.oOO 0.7136 124.712 
119.645 I. I X0.000 0.7197 121.879 
Il6.906 I I YO.000 0.7256 Il9.los 
114.225 I ,200.OOO 0.7314 116,390 
111.601 1.210.oOO 0.7371 113.732 
109,034 I .220.000 0.7427 111,131 
106.S22 I .230,000 0.7482 108,585 
104.063 I ,240.ooo 0.7536 106.094 
101.6% I .2so,OOO 0.7588 103.656 
99.304 I ,260,OOO 0.7640 101,270 
97.001 I .270,00 0.7691 98,936 
94,748 I ,280.OOO 0.7741 96.65 I 
92,544 I .2YO.O00 0.7789 Y4.416 
90,388 I .3OO.OOO 0.7837 Y2.229 

Lossts Vu.uED AI 78 MONTHS 
ExPtcrtD LOSSES = $996,016 

127 
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EXHIBIT 1 

EXCESS PURE PREMIUMS 

Lows V&I 11tu AI Yo MOHIHS 

EXPM I F.D Lossts = $ I .Ow.O(K) 

Loss 

AMOL!N I 

$9oo.ooo 

910.000 

920.000 
930.000 
Y40,OlN 
950,ooll 
Y60,ooo 
970,000 
980.000 
9YO.000 

I .ooo.ooo 
I ,010,000 

I ,020,ooo 

I ,030.wO 
I ,040.Ow 

I .050.wO 

I ,060.ooo 

I .070.000 
I .080,0(x) 

I .oYO,OOO 

1.100.000 

I, 110,000 

l,120.ooo 

1,130.OOa 

1.140.000 

1.150.000 

I. 160.000 

I. 17o.Oal 

1.180.000 

I, 190,000 

I .200.@30 

I .2lO.c00 

I .220.000 

I .230.000 

I ,240.OOO 
I ,250.cao 

I ,260,OoO 
I ,270.CKKl 
I ,280,OOO 
I ,290.ooO 
I .3OO.o00 

0 5010 

0 s IOi 
0 SIYS 
0 S2X7 
I) 5377 
O.SJhS 
0 5.553 
0 %-IO 
0 5725 
0 SXOY 
I) 5XY2 
0 507.3 
0 bos3 
1) hIi2 

0.6210 

0 h2Xh 

0.6362 
0 h33h 
0 650X 
0 hSX0 
0 hhS0 
0 6719 
0.67X7 
O.bXS? 
0 6YlY 
0 hYXi 
0 7(!46 
0 7108 
0 716X 
0 722X 
0.77X6 
0.7 34-i 
0.7410 
0 7355 
0 7509 
0 7562 
0 761-l 
0 7665 
0 771.5 
0 1765 
0 7813 

Exe FSS PURL 

PR~~MIUM 
- 

523O.YS7 
276.014 
221.163 
2lh.JOS 

711.73h 

207. IS7 
702.667 
IYX.263 
lY3.945 
lXY.712 
IX5.5h2 

IXl.3Y4 

177.50X 
173.6OC) 
IhY.771 
I hh.020 
Ih2.344 

lSX.712 

155,214 

lSl.7SX 

14X.372 
14S.057 
I4l.XlO 
I3X.630 
15.516 
132.467 
124.4X I 
17h.SSX 
123.696 
I ?(I.XYJ 
I IX.151 
115.466 
I 12.X37 
IlO.26S 
107.747 
lOS.ZX3 
102.X7I 
lotb.51 I 
9X.201 
95.941 
Yi.729 
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A BAYESIAN CREDIBILITY FORMULA FOR IBNR COUNTS 
DR. IRA ROBBIN 

A bstruct 

A formulu for IBNR counts is derived as the credibility weighted average of 

three standard actuarial estimates: 

IBNR 
Estimate Formula 

Pegged Initial Estimate of Ultimate - Reported to Date 
LDF (Reported to Date) X (LDF - I) 
Bornhuetter-Ferguson lnitiul Estimate of Ultimate x (I - IILDF) 

Here LDF denotes the age-to-ultimate development fuctor. The credibility 
weights vary by age of development in a methodical fashion rejecting prior 
belief in the reporting pattern and the estimate of ultimate. 

To derive the formula, IBNR is modelled us a parametrically dependent 
rundom variable. Bayes Theorem leads to u natural revision of the prior 
distribution of the parameters based on the dutu to date. Using the best least 
squares linear upprosimation to the true Bayesian estimate, and per$orming 
some algebraic manipulations, the credibility formula is obtained. While the 
formula could be applied in many ways, for demonstration purposes a fully 
automatic procedure is upplied to three hypothetical triangles c>f data. 

1. INTRODUCTION 

This paper will present a formula which estimates IBNR (Incurred But Not 
Reported) claim counts in terms of a credibility weighted average of more 
traditional actuarial estimates. The formula will be derived from a theoretical 
foundation using Bayesian analysis methods applied to claim count development 
models. 

Before presenting the formula, it is instructive to review the traditional 
actuarial estimates under discussion. In the usual context, we are estimating 
IBNR counts for an exposure period at a certain stage of development. We are 
given, or can obtain some preliminary estimate of ultimate counts that does not 



depend on the count data reported to date. For instance, the preliminary estimate 
could be the product of expected frequency times exposures, where the expected 
frequency is calculated with data from prior exposure periods. We also have 
count data reported to date and a set of expected age-to-ultimate count loss 
development factors (LDF). With all this information, three different IBNR 
count estimates may be obtained for the exposure period in question at its 
current stage of development. 

1. Pegged Method 
IBNR = Preliminary Estimate of Ultimate Counts 

- Counts Reported to Date 
2. Loss Development Factor Method 

IBNR = Counts Reported to Date x (LDF - 1 ) 
3. Bomhuetter-Ferpuson Method 

IBNR = Preliminary Estimate of Ultimate Counts X ( I - l/LDF) 

To decide amongst these, the actuary has heretofore been forced to rely on 
qualitative reasoning. Such “actuarial judgement” is not necessarily the arbitrary 
Delphic process one might suppose. For instance, if the actuary knows from 
long experience that reporting patterns arc generally stable, the LDF method 
would be preferred. If reporting patterns have characteristically been erratic and 
the preliminary estimate of ultimate counts is generally near the mark, the 
pegged estimate would be favored. Such qualitative reasoning involves implicit 
non-quantified assumptions regarding the stochastic variability of ultimate claim 
counts and reporting patterns. It also reflects the degree of confdence in the 
prelimary estimate of expected ultimate counts and in the expected LDF. 

By constructing an explicitly stochastic claims development model. and 
making Bayesian prior assumptions on the parameters defining the model, one 
advances the art of reserving beyond the realm of qualitative guesswork. The- 
oretically, Bayes Theorem leads to revised IBNR estimates reflecting prior belief 
appropriately modified by the data to date. Unfortunately, the mathematics often 
becomes intractable. Thus, one is led to considering linear estimators with least 
squared error. 

The simplest general estimator one obtains can be expressed as a credibility 
weighted average of the three traditional estimates. The credibility weights vary 
with the stage of development, so that, for instance. the pegged estimate might 
receive the most weight initially, the Bomhuetter-Ferguson estimate might pre- 
dominate for a few subsequent periods, and the loss development estimate could 
have the most weight thereafter. This methodical evolution of credibility weights 
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is perhaps the key practical advantage of the Bayesian approach. Based on our 
initial beliefs, we are able to decide when to give each method credence. 

The object of this paper is to present the formula and demonstrate one 
method of applying it to a triangle of data. The method of application uses the 
data to approximate needed parameters, so that, in the end, one has an automated 
procedure for estimating IBNR counts. Other methods of application are pos- 
sible. 

Finally, it should be noted that the theory leads naturally to an estimate of 
the variance of the IBNR counts. This variance reflects both process and param- 
eter uncertainty. 

II. BAYESIAN ANALYSIS OF COUNT DEVELOPMENT MODELS 

Let N denote the ultimate number of claims for a fixed set of exposures and 
write N, for the counts reported in the jfh development period. Set M, = N, + 
. + N, so that M, denotes the counts reported to date as of the end of the j’” 
period. Define the IBNR count as of the end of the jth period as R,. Thus, R, 
can be written as the sum, N,, r + N,+z + . + N,,. where u is the number 
of periods until ultimate, or one can write R, = N - M,. 

Assume the N, are (conditionally) independent Poisson random variables 
whose parameters we denote as n,. It follows that N, M,, and R, are also Poisson 
distributed, since the sum of independent Poisson variables is Poisson. Let n = 
nl + + n,, and define p, = q/n. Thus, the sum of the pj is unity. Also, set 
q, = p,+1 + . . + p,,. We summarize the random variables thus far defined: 

II. I Conditional Poisson Random Variables 

Poisson 
Variable Description Parameter 

N, Counts Reported During Period j n, = np, 
M, Counts Reported as of Period j m, = 41 - q,) 
4 IBNR Counts as of Period j rl = nq, 
N Ultimate Counts n 

subject to constraints 

(i) 0 5 p, 5 I 
(ii) pl + p2 + . + p, = I 
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Next we define LDF, = N/M, when M, is strictly positive. Though not 
strictly true mathematically, we may from time to time estimate E(LDF,) as 
Ml - q,). 

It should be further noted that the parameter p, is distinct from, but related 
to, the ratio random variable, N,/N. Maintaining the assumption that the param- 
eters n and p, are fixed, one can show: 

11.2. Relurion of p, to N,IN 

p, = E(N,IN 1 N > 0) 

Proof 

See Appendix A. 

Next, we allow the parameters n and p, to vary according to some prior 
distribution whose density we write as ,f‘(n,p). Unconditional expectation and 
variance formulas for N, N,, M,, and R, can then be derived in terms of 
expectations and variances involving n. p,, and q,. 

11.3. Expectation und Variance Formulns 

(i) N 
E(N) = E(n) 

Var(N) = E(n) + Var(n) 

(ii) Nj 
EW,) = E(p,n) 

Var(N,) = E(p,n) + Var(p,n) 

(iii) Mj 
EW,) = ElC1 - q,Ml 

Var(M,) = El1 - q,bzl + Var((l - q,)n) 

(ii*) R, 
EM,) = Wq,n) 

Var(Rj) = E(q,n) + Var(q,n) 
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Proof 

We prove only (ii) and leave the rest as an exercise for the reader. Consider 

UN,) = E~.p(WNj/~,p)) 
= L,(np,) = E(w) 

WY,‘) = E,,,WNf/n,p)) 
= E((np,?) + E(npj) 

Thus, 

Var(N,) = E(N,?) - (E(N,))Z 
= E((np,)‘) + WV,) - (E(np,))’ 
= VaO,n) + E(p,N 

Before providing a simple example demonstrating these concepts, it should 
be noted that in writingf(n,p) we have implicitly incorporated the constraints 
on the p parameters. In applications, these restrictions must be explicitly re- 
flected. One way to do this is to define the pj as functions of some other 
parameters in such a way that the constraints are automatically satisfied. Letting 
g denote these generating parameters, we may writef(n,p(g)) orf(n,g). 

Now, for a simple example to demonstrate these concepts suppose: 

11.4. Assumptions for Example 

(i) The prior distribution for n is a gamma with a mean of 1,000 and a 
variance of 10,000. 

f(n) = (LJ $ gy e-““O 

E(n) = 1,000 E(d) = 1,010,OOO 

(ii) (a) p and Q are given via: 

pl = 1 - g1 q1 = gl 

p2 = g,(l - g2) q2 = glg2 

p3 = glg2 q3 = 0 

where g, E (0,l). (Observe that the constraints on the p, are automatically 
satisfied.) 

(b) The prior joint distribution for gl and g2 is 

f(Rl&) = 31 - gz) 
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We compute the first and second moments of the p, 1 - y? and q variables: 

11.5. First and Second Moments oj’p, I - y, crnd q Vuriuhles in Example 

First Moments Second Moments 
j UP,) Et 1 - q,) E(q,) U/I;) E(( I -- y)‘) E(yf) 

1 112 112 11’ 113 113 113 
2 113 516 l/6 116 1311X 1118 
3 116 1 0 Ii18 1 0 

To show how these figures were obtained, we calculate Et&) in detail. 
I I 

E(p;) = II gi’( 1 - ~z)‘2( 1 - ~2) dg, dg> 
0 0 

1; 
= c ‘$13 Ihi 

0 
-2(1 - RJI4 ,:, 

= (l/3)( 112) = 116 

We are now in a position to compute the means. variances. and standard 
deviations of the various count random variables. 

11.6. Means, Vuriunc~es, und Strmdard Ikvitrfiw7.s of N. N,. M,. und R, in 
Example 

Means 
E(N) = 1,000 

j UN,) ECM,) EW,) 

1 500 500 SO0 
2 333 833 167 
3 167 1 .ooo 0 
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Variances 
Var(N) = 11,000 

j VarW,) VarW,) Var( R,) 

T X7,167 87,167 87,167 
2 57,558 35,889 28,502 
3 28,502 11,000 0 

Standard Deviations 
Var”‘(N) = 105 

j VarlJ2(N,) Var”2(M,) Var”‘(Rj) 

1 295 295 295 
2 240 189 169 
3 169 105 0 

Again demonstrating one of the calculations in more detail, we compute: 

Var(Nz) = Var(np2) + E(np2) 

= E(n’)E(pz) - E(n)E(p2)2 + E(npz) 

= (I ,olO,oOO)( 116) - (333)’ + 333 = 57,556 

We return now to the general presentation and follow the Bayesian approach 
by modifying our beliefs about the parameter distribution, f(n,p), as more data 
becomes available. Letf”’ denote the prior density before any development has 
occurred, and let fCJ’ denote the revised density as of the end of the jth period 
of development. Given development data (Nr = XI, N2 = x2, . , N, = x1), 
Bayes Theorem allows one to derive the modified belief density, f”“. in se- 
quential fashion. 

II.7 Buyes Revised Belief Density 

f”‘(n,p) = c Prob(N, = .r,/n,p) fqm “(n,p) 

where c is a normalization constant, and 

Prob(N, = x/n,p) = exp( -np,)(np,)‘ix! 
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Equivalently, one can write 

where c is some normalization constant and L is the likelihood function. 

L = n Prob(N, = .+I,!>) 
I I 

The revised belief density yields revised IBNR count estimates via 11.3. 

Thus, the IBNR count estimation problem is theoretically solved. Further, 
the variance equation in II.3 (iv) could be used to calculate the standard deviation 
of the 1BNR estimate. This deviation would reflect both process and parameter 
uncertainty. 

Returning to our example. our prior density is: 

If we observe N, = 400, the revised parameter density would be 

J’” (II. gl, gz) = c’ e “1’ c’I1 (,I(, .~ R,))J’K’ (, - sL) ,1”” e ‘1 ‘0 

where c is a normalizing constant. This density is rather inconvenient to work 
with. 

Such difficulties are not peculiar to this example. Indeed. the computations 
become intractable in most interesting models. Thus. the formulas are difficult 
to apply and consequently of limited practical use. As is usually the case in 
Bayesian analysis. one is led to consider linear estimators. 

III. LINEAR APPROXIMATION OF THE BAYf-SIAN ESTIMATOR 

We first recall some general results of Bayesian credibility theory. Let X 
and Y be (possibly vector-valued) random variables. each parameterized by a 
common (vector) parameter. Assume the distribution of the parameter is gov- 
erned by some underlying structure function. We consider linear estimators of 
Y given results for X. It is known that the linear estimator. Y*, with least mean 
square error (against the Bayesian estimator) is given via: 
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III. 1. General Least Squares Linear Approximation 

Y* = E(Y) + C(X,Y’)V(X)-‘(X - E(X)) 

where 

X and Y are column vectors 

X’ = transpose of X 

C(X,Y) = Cov(X,Y) = E(XY’) - E(X)E(Y’) 

V(X) = C(X.X’) 

Applying this result with X = (11, . . Nj)’ and Y = R,, we obtain: 

111.2. General Linear lBNR Count Estimator 

Rr; = E(R,) + 

((WI. R,), . . SW,, R,)) 
L 

C(NI,NI) . . . CWI ,A’,) 

C(Nj, Nt) : 1 Y C(N,, NJ) 

The quantities in the above equation can be expressed i, 
variances, and covariances of the n, p, and q. 

III, 3. E.xpectation Variance and Covariance Formulas 

(9 E(R) = E(n) E(qJ 

(ii) For i 2 j 
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1-l [Z; ;.Y] 
n terms of expectations, 

CO’,, RJ = E@,) E(qJ V(n) + EW C(P,,qJ 

(iii) C(N,, N,) = E(n’) C@,, p,) + E(p,) E@j) V(n) + 6, E(n) IQ,) 

where V(X) = Var (X) 

6 = lifi=j 
V 1 0 otherwise 

Formula III.2 is thus reasonable to apply in practice and there is no necessity 
for further simplification due to computational considerations. However, with 
one additional simplification, we achieve a formula expressing the estimator as 
a credibility weighted average of the traditional actuarial estimators as discussed 
in the introduction. 

Applying III. 1 with X = M, and Y = Rj, and grouping terms appropriately 
(as shown in Appendix B). we obtain 
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R,* = Z,,(E(n) - M.,) + Z,,, 
M,Uy,) 

I - E(c/,) 
+ ( I ~~ z,,, ~ Z,,,, E(n)E(y,) 

where 

Z,, = E(n’)V( I - q,YD, 

Z,,., = E(1 - q,)%n)lD, 

and 

0, = E(n’)V(I - (I/) + E( 1 ~ y,)%(n) + E(n)E( 1 - 4,) 

Approximating E(q,) via (I - IILDF,). WC have: 

111.5. CredibiliQ Weighting Forrnulu ,fiw IBNR Counts LDF Notution 

R,* = Z,,, (E(n) - (M,)) + Z,,, (M,) (LDF‘, - 1) 
+ ( 1 - z,,, - Z,,,, E(n) (1 - IILDF,) 

This is the formula promised at the outset since in this notation the traditional 
estimates may be expressed as: 

IBNR 
Estimate Expression 

Pegged E(n) ~ M, 
LDF M,(LDF, - I) 
Bornhuetter-Ferguson E(n) (1 - IILDF,) 

There are several qualitative conclusions that can be drawn from the formula. 
First, if there is no parameter uncertainty with respect to both ultimate counts 
and reporting patterns. then the data to date is given no credibility. In that case, 
the formula reduces to a Bomhuetter-Ferguson type estimate. 

If there is some parameter uncertainty regarding counts. but none regarding 
reporting patterns, then the formula become a weighted average of loss devel- 
opment factor and Bomhuetter-Ferguson estimates. As the count parameter 
uncertainty increases, the formula approaches a loss development factor esti- 
mate. Finally, if there is some parameter uncertainty about reporting patterns, 
but none regarding counts, then the formula becomes a weighted average of 
pegged and Bomhuetter-Ferguson estimates. 
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IV. APPLICATION 

In this section, the formula will be applied to three triangles of hypothetical 
data. The first triangle was constructed so that the Bornhuetter-Ferguson method 
will work almost exactly. The second triangle was generated to have nearly 
constant age-to-age factors. The last triangle is obtained by averaging the counts 
from the original triangles. 

The formula could be applied in many different ways. For instance, a pure 
Bayesian approach would entail making explicit assumptions for the forms and 
parameters of the prior distributions. The resulting system would then require 
actuarial judgement in setting the parameters appropriately each time it was run. 
While this would be the most theoretically pure method of application, it might 
be regarded as somewhat impractical. 

In order to provide a reasonably convincing demonstration that the formula 
is of practical use, we proceed now to present a fully automatic method of 
application. Under this particular approach, we let the data dictate parameter 
values to the degree possible. We introduce explicit forms for prior distributions 
if needed, but let the data determine the parameters of the priors. 

To begin the application in detail, assume that a triangle of data is given. 
Let N, denote the counts reported in the jfh development period for the ith 
accident period. where i = I, 2, . , u andj = I, 2, . . , u - i + I. 
Define MO and R,, in a fashion analogous to the definitions of h4, and R, in II. 

Assume N,, is (conditionally) Poisson distributed with parameter n,, = B,wl,,, 
where B, denotes the exposures for the ith accident year. 

Define: 

11, = IS n,, 

p,, = W,,/Wi 
so that no = B,w,p,, 

Now assume that each of the frequency parameters, n’i, is, in effect, drawn 
from a common distribution. Thus, a priori, we have E(w,) = E(w). Similar 
assumptions are made for the set of pij and the set of qij when i is fixed. Thus, 
we may write E(p,,) = E( p,) and E(q;j) = E(q,). 
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We next find maximum likelihood estimators. rr*,* and p,*. for H’, and p,. The 
likelihood function is: 

IV. 1. Likelihood Function 

L(p, w/N) = fi “ G ’ e “‘““‘(B,,r’,l,,)‘~‘llN,,! 
,= I I- 1 

subject top, + pi + + p,, = I 

We maximize as usual by taking the natural log and then the necessary 
partial derivatives. 

IV.2. “Log Likelihood” und Parricrls 
I‘ ItI 

In L = i x - B,w,,p, + N,, In(rr,q,) 
,=I ,= I 

+ independent terms of LV, and p, 

Jln L ,4-i+ I 
- = c - Bp, + N,,h,, 
hi ,=I 

atn L u-,+ I 
- = 2 - B,w, + N,,lp, 

43 ,=l 

Utilizing the constraint, we solve the equations via numerical iteration to 
obtain HOP and ~7 which satisfy: 

IV.3. Muximum Likelihood Estimates 

~‘7 = A!,.,-,+JB,(l - qu* ,i I) 

pl* = (“s’ N,,/(“z *T&j 

Using the maximum likelihood estimates just obtained, we approximate the 
frequency mean and frequency variance. 

IV.4. Frequency Mean and Vuriance Estimators 

E(M,) = @ = 
CB,wP(l - 9,*-,+r, 

c&Cl - 9: ,+I) 1 
Var( NV) z=zz s’,. = CB,( 1 - ~~LI)(M,?: - IC)~ 

CBA1 - 9: ,+I) I 



CREDIBILITY FOR IBNK COUNTS 141 

While this seems intuitively reasonable, the properties of this variance 
estimator need further investigation in the future. Perhaps it is biased. 

To estimate the required second moments of the reporting pattern parameters, 
we assume that plj is Beta distributed with parameters (HP,?, H(I - p,*)). We 
further have that q,, is Beta distributed with parameters (HqjJ, H(l - 4:)). Note 
the use of the maximum likelihood estimates in defining the parameters of these 
Betas. Under these assumptions, we can obtain convenient expressions for the 
mean and variance of the reporting pattern parameters. 

IV.5. Mean and Variance of pv und q,, 

Rpti) = P: Var(piA = pT( I - p.TMI + HI 

Uq,) = q.7 Vartqijl = q.3 I - qJ*Y(l + H) 

Observe that the parameters of the reporting pattern have variances inversely 
proportional to H. To use the data to solve for H, we first estimate p,, via: 

Bt, = Nrjl(M,.u-,+I + B,w?q,?) and define 

IV.6. Estimator For Variance of Reporting Pattern Parameters 

$ = [ ,i+ uz: ’ Bd,% - P?)~]/ 7 7 Bi 

Plugging the Var(po) formula of IV.5 in place of I& - p,T)‘, we obtain the 
approximation 

W;) = c B,pjYI - pj9’ c 841 + H). 
?I ij 

Thus we derive an estimator for H: 

IV.1. Estimator for H 

2 81~: (1 - P?) 
He= ” -I 

$ C Bi 
U 

As before, the author must caution that the theoretical vices or virtues of 
this estimator have not been investigated. It is probably biased toward over- 
stating H and thus understating Var( 1 - q,). This will tend to give too much 
credibility to the LDF method. 
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At this point, we have enough to estimate all the terms required in the 
credibility formulas. 

IV. 8. Estimtltors for Terms in Crrrlihilit~~ F~ormul~~s 

Notation Used in Chapter 

II IV Estimator 

E(ri) Eh) 
Var( n ) Var(n,) 
E(n”) E($) 
Et I - q.,) Et I ~ c/d,) 
Var( 1 ~ q,) Var( I - q,,) 

These were used to obtain the Bayesian credibility IBNR estimates shown 
in the attached exhibits. While the credibilities are not 100% for the “right” 
method in the “pure” cases. they nonetheless show that the application meth- 
odology is at least somewhat responsive. The credibility estimated IBNR is in 
all cases reasonably close to the correct answer. Further. the correct answer is 
well within one standard deviation of the estimate. Finally. considered over all 
three examples, the credibility formula approach appears IO perform better than 
any one of the methods alone. The reader will. of course. arrive at his or her 
own judgement. 

V. (‘ON<‘1 I~SION 

To conclude, it is hoped that the proposed IBNR count formula will not 
only advance reserving theory. but will also prove of practical use. It settles 
old arguments about which of three traditional actuarial estimates should be 
employed by showing how they may be credibility weighted in a methodical 
fashion to obtain a final estimate. The credibility weights differ depending on 
the development period. Thus, the Baycsian credibility approach provides a far 
more subtle method than simply picking one set of credibility weights which 
would apply at every development period. The formula could be applied in 
many ways. but at least one practical application has been demonstrated with 
fairly good results. 



CREDIBILITY FOR IBNR COUNTS 143 

APPENDIX A 

Let NI and Nz be two independent Poisson random variables with parameters 
nl and ~12, respectively. Set n = n, + nz and p = n,ln. We consider the ratio 
random variable N,/(N, + N2). 

A. I. Proposition on Espectation 

E(N,I(N, + Nr)/N, + Nz > 0) = p 

Proof 

E(NII(NI + N2)/NI + Nz > 0) Prob (N, + N2 > 0) 
z I 

= e-” Lg, :i, (xlz)n;n$-‘l(x!(z - x)!) 

= e-” 2 --‘(z!)(n)‘+ = pee”(e” - I) 
2’ I 

= p( I - em”) 

The result follows since 

Prob (N, + Nl > 0) = 1 - e-” 
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APPENDIX B 
DERIVATION OF CREDlBIL.ITY WEtGHTING FORMULA 

FROM 
GENERAL LINEAR LEAST SQUARt ERROR BAYESIAN APPROXIMATION 

Applying the general formula yields 

B.1. 
Rj+ = E(R,) + C(MjJ,)C(M,) ‘(M, - E(M,)) 

Expressing the terms of B. 1 using terms involving II and 4,. 

B.2. 

EW,) = E(n)E(l - 4,) 

E(4) = E(nE(q,) 

C(M,,R,) = E(n’) E((1 - 4,)4,) - E(n?E( I - y,)E(y,) 

CM,) = E(d) E(( 1 - 4,)‘) + E(n)E( I - 4,) - E(n)‘Et I - 4,)’ 

Simplify the second order terms as follows 

B.3. 

(i) CW,,RJ = E(n’) E((I - q,)q,) - E(n’) E( 1 - q,)E(q,) 
+ E(n’) E( 1 - y,) E(y,b - E(n?E( I - q,)E(q,) 

= E(n’) E( 1 - q,)’ - E(n’) E(( I ~ 4,)‘) 
+ V(n)E(I - 4,) E(q,) 

= -E(d) V(1 - 4,) + V(n)E( 1 - y,)E(q,) 

(ii) C(M,) = E(d) E(( 1 - q,)‘) - E(r?)E( I - 4,)’ 
+ E(n’)E( I - q,)’ - E(n)‘E( 1 ~ q,)’ + E(n)E( I - 4,) 

= E(d)V( 1 - cu’, + E( I - q,)%‘(n) + E(n)E( 1 - 4,) 
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Plugging into B.l one finds 

8.4. 

RT =E(rz)E(q,)+ 

V(n)E(4,)E( I- 4,)~ E(n’)V( 1 - 4j) 
E(,r”)V(I - q,)+E(l - 4,)2V(n)+E(~~)E(1 - 4,) 

(M., - E(n)E(l - a)) 

= (E(n) - M,) (E(n’)V(I - 4,)) i D + (M, V(II) E(4,) E(1 - 4,)) / D 
- (E(n) V(n) E(4,) E(1 - 4,)) i D 
+ E(n)E(y,) (1 + (V(n)E(y)E( 1 - 4,) 
- E(n’)V(l - 4,)) / D) 

= (E(N) - M,)(E(n”)V( I - 4j) I D) + M, 
E(a) x V(n)E(I - 4,? 

Et1 - q,) D 

+ E(n)E(y,) (1 - (V(n)E( I - 4,) (E(4,) - 1) - E(n’)V( 1 - 4,)YD) 

which simplifies immediately to 111.4. 
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EXHIBIT 1 

SHEET 1 

BORNHUETTER-FERGUSON DATA 

BAYESIAN CREDIBILITY FORMULA 

IBNR ESTIMATION 

HYPOTHETICAL DATA 

NU, 4 
COUNTS REPORTED DURING 

DEVELOPMENT PERIOD J 

ACCIDENI. 

YEAR 

(0 EXPOSURES 1 2 3 4 5 6 7 8 
- - 

I 100 50 150 450 225 100 50 25 5 
2 100 25 150 450 225 100 50 25 
3 100 75 I50 450 225 100 50 
4 100 15 150 450 225 100 
5 100 50 I50 450 225 
6 100 25 1.50 450 
7 100 75 150 
8 loo 15 

MU, J) 
COUNTS REPORTED To DATE 

DEVELOPMENT PERIOD J 

ACCIDENI 

YEAR 
(0 EXPOSURES 1 2 3 4 5 6 I 8 

- - - - - - - - 

loo 50 200 650 875 975 1,025 1,050 1.055 
100 25 175 625 850 950 1,000 1,025 
100 75 225 675 900 1,000 I.050 
100 15 165 615 840 940 
100 50 200 650 875 
100 25 175 625 
100 75 225 
100 I5 
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ACCIDENT 
YEAR 

(1) I 

o.soo 

0.350 

0.750 
0. 150 

0 500 

0.350 

0.750 
0. I so 

BORNHU~ I IXK-Ft KC~CISON DA I A 

2 - 

I .soO 

1.500 
I .500 
I .soo 

I.500 

1 .soo 

1 .SOo 

AGE-TO-Ac;t F.WIORS 

DEWLOPMENT PERIOD J 

AU.I DEN I 
YEAR 

(I) I-’ 2-3 s-4 4-s s 6 6-7 7-x 

1 4.000 3.250 I.346 I.114 I .os I 1.0’3 I.005 
2 7.000 3.571 I.360 1.118 I .os3 I .0’S 
3 3.000 3.000 I.333 I.111 I .050 
3 11.000 3.727 1.366 1.119 
5 4.000 3.250 1.346 
6 7.000 3.571 
7 3.000 



ACCIDENT REPORT REPORTED PEGGED LDF 
YEAR PERIOD TO DATE METHOD METHOD 

1 

2 
3 
4 
5 
6 
7 
8 

TOTAL 

1,055 -10 0 0 0 

1,025 20 5 5 5 

1,050 -5 31 30 31 
940 105 77 80 78 
875 170 181 179 181 

625 420 393 404 398 
225 820 1,009 855 897 

1.5 !,030 y34J !,ool 948 
5,810 2,551 2,038 2,553 2.537 

EXHIBIT I 

SHEET 3 
BORNHUETTER-FERGUSON DATA 

IBNR ESTIMATES 

BORNHUETTER- BAYESIAN 

FERGUSON CREDIBILITY 

METHOD METHOD 

STANDARD 

DEV. OF 

BAYESIAN 

CRED. IBNR 

0 
3 
8 

13 
22 
38 
67 
76 



EXHIBIT I 

SHEET 4 
BORNHUETrER-FERGLJSON DATA 

ESIIMA I FS OF I’I. I IM.\ I t 

A(.CIDI.N I PLGGED 

Yt-AK !bl t- I HOI) 

I‘III. 

MI, I HOI) 

k)Khlll'l~I IhK- 

t:t KCSL‘SON 

kit I tiot) 

I I.045 

2 I ,045 

3 I .OJ5 

-I I .045 

5 I ,015 

h I .045 

7 1 .035 

8 I .015 

REPORT 

PERIOD 

I .o.F 

I.030 

I .0x I 

I.017 

I .OSh 

I .o I x 

I .13-l 

3% 

CREDIBILI IIES 

0.43lY.3 
0.29 I 70 
0.08355 
0.03 I06 

0.01283 

0.00468 
0.00076 
O.OOOOO 

I.055 

I .030 

I .0x0 

I.070 

I .051 

I .07Y 

I .0x0 

I .Olh 

B-F 

0.46Y33 
0.37060 
0 21500 
0. 1 X830 
0 17551 
O.lhY8I 

0. I 6706 

0 I6653 

BAYWAN 

CR~DIBII.I I 1 

ME t HOD 

I ,oss 

I .030 

I .0x I 

I ,OIX 

1,056 

I.033 

I.122 

963 
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EXHIBIT 1 

SHEET 5 
BORNHUUTER-FERGUSON DATA 

ACCIDENT 

YEAR 

MAXIMUM LIKELIHOOD ESTIMATES 

INITIAI. 

MLE ESTIMATED 

FREQUENCY EXPOSURES COUNT PARAMETER 

WI) BUI UN) x W(I)* 

I IO.550 
2 10.299 
3 10.810 
4 10.173 
5 IO._560 
6 IO.175 
7 12.274 

ESTIMATED FREQUENCY MEAN 

ESTIMATED FREQUENCY VARIANCE 

PtRCENT 

Pt.Kt.N I REPORTED 

R~POK I MLE RI- I’OR I I; I) TO DATE 

PbKlOI) P(J) UP,) &I - Q,) ___ __ 

I 0.042 

2 0. I10 

3 0.43 I 

4 0.215 

5 0.096 

6 0.047 
7 0.024 
X o.005 

TOTAL I 000 

4.2 
14.0 

4.3. I 

21.5 

9.6 

4.1 

2.4 

0.5 I 

4.2 
18.2 
61.4 
x2.x 
92.4 
97.1 
99.5 
100.0 

100 1,055 

100 1,030 

100 1,081 
100 1,017 
loo 1,056 

100 I.017 

IO0 1.227 

PERCENI 

UNREPORTED 

E(Q,) 

95.x 
81.X 
38.6 
17.2 
7.6 
2.9 
0.5 
0.0 

10.45106 
.52307 

AGE-TO-AGE 

FACTORS 

4.332 
3.366 
1.350 
I.115 

I.051 

I.025 

I.005 

I .ooo 

FAC IORS 

I.0 

UI.-rIMATI. 
~. 

23.759 
5.484 
1.629 
1.207 
I.082 

I.030 

I .OOS 

I .oOo 



EXHIBIT I 

SHEET 6 
BORNHUETTER-FERGUSON DATA 

REPORT PATTERN PARAMETERS 



CREDIBILITY FOR IBNR COUNTS 153 

EXHIBIT 2 

SHEET 1 
LDF DATA 

BAYESIAN CREDIBILITY FORMULA 

IBNR ESTIMATION 

HYPOTHETICAL. DATA 

NU,J) 
COUNTS REPORTED DURING 

DEVELOPMENT PERIOD J 

AKID~N.I 
YEAK 

(0 EXKXXKI-s 

ACCIDENT 
YEAR 

(0 

100 
100 
IO0 
100 
100 
100 
100 
100 

EXPOSURES 

loo 
100 
100 
100 
100 
loo 
100 
100 

I 2 3 4 s - - - - 

so 217 730 986 I.100 
3s IO9 366 494 551 
75 325 I .OY4 1,477 I .647 
15 65 219 296 330 
50 217 730 986 
25 109 366 
75 325 
I5 

MU+0 
COUNTS REPORTED To DATE 

DEVELOPMENT PERIOD J 

I 2 3 4 5 - - 

50 167 513 256 114 
25 84 257 128 57 
75 250 769 383 170 
I5 50 I54 17 34 
50 167 513 256 
25 84 257 
75 250 
15 

6 7 x - - 

I.128 I.134 1.13’) 
S65 56X 

I .68Y 

6 7 8 - - - 

28 6 5 
14 3 
42 



I 

0 500 

0 ‘50 

0.750 

0. 150 

0.500 

0 250 

0 750 

0. I so 

I-7 

4 3-10 

4 360 

4 333 

4.333 

4,340 

4 360 

AGE- I-O-AGE F4CIOR!, 

DEVEI OPMEN r I’ERmr) J 

7 X 

( I. ( Jh( I 0.050 

0 030 

h-7 7-x 

I (IO5 I.004 

I .OO? 



ACCIDENT REPORT REFQRTED PEGGED LDF 
YEAR PERIOD TO DATE METHOD METHOD 

1 

2 
3 
4 
5 
6 
7 
8 

TOTAL 

1,139 -187 0 0 0 

568 384 3 4 3 
1,689 -737 16 9 16 

330 622 12 33 12 
986 -34 153 128 153 
366 586 205 341 206 
325 627 1,380 770 I .368 

15 J3J 327 -t-g J7J 
5,418 2,196 2,095 2,195 2,132 

EXHIBIT 2 

SHEET 3 
LDF DATA 

IBNR ESTIMATES 

BORNHUETTER- BAYESIAN 

FERGUSON CREDIBILITY 

METHOD METHOD 

STANDARD 

DEV. OF 

BAYESIAN 

CRED. IBNR 

0 
3 
6 

18 
66 

176 
395 
467 
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AKIDF.N I 

YEAR 

PFGtitD 

METHOD 

I 952 
2 952 
3 952 
4 OS2 
5 YS2 
6 952 
7 YS2 
x YS2 

REPOKI 
PtRIOD 

EXHIBIT 2 

SHEET 4 
LDF DATA 

ESIIW~T~S OF ULTIMAIF 

HOHNHI~~ I 1t3- 

l-tlK,t:SoN 

Mt I ~IOI) 

0.oooo-l 

0.wiX)I 
o.ooow 
O.OOOOO 
0.00000 
0.00000 
o.ooooo 
o.ooooO 

O.Ylh?? 0.0x37-l 
0.97936 (1 07063 
O.YY37X 0.00622 
O.YYS39 0.004hI 
0 ‘%5X6 0.00414 
0.99596 0.00404 
0.99.59x 0.00402 
0 ‘)%00 0.00400 

I. 13’) 

577 
I .hYX 

363 
I.114 

707 
I .OYS 

92s 

H-F 

B4YFSIAN 

~Rtl~lBILIl\ 

Mt- I HOI) 

I. 13’) 
571 

I .7os 
341 

I, I39 
572 

I .693 
390 
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EXHIBIT 2 

SHEET 5 
LDF DATA 

MAXIMUM LIKELIHOOD ESTIMATES 

ACCIDENT 

YEAR 

MLE 
FREQUENCY EXPOSURES 

W(f) B(f) 

Il.390 100 
5.705 100 

17.055 100 
3.417 loo 

I I.390 100 
5.711 100 

17.059 100 

ESTIMATED FREQUENCY MEAN 9.51743 
ESTIMATED FREQUENCY VARIANCE 23.70887 

PERCENT 
PERCENT REPORTED 

REPORT MLE REPORTED TO DATE 
PERIOD pm W',) Et1 - Q,) - - 

I 0.044 4.4 
2 0.147 14.7 
3 0.451 45.1 
4 0.225 22.5 
5 0.100 10.0 

6 0.025 2.5 
7 0.005 0.5 
8 o.004 0.4 

TOTAL l.ooO 

4.4 95.6 4.340 22.768 
19.1 80.9 3.364 5.246 
64.1 35.9 I .350 1.560 
86.6 13.4 I.115 1.155 
96.6 3.4 I.025 1.035 
99.0 1.0 I .005 I.010 
99.6 0.4 1.004 I.004 

100.0 0.0 l.oQo I.000 

INITIAL 

ESTIMATED 

COUNT PARAM 

B(I) x WV)* 

1,139 
571 

1,705 
342 

1,139 
571 

1,706 

PERCENT FAC-TORS 
UNREFORTED AGE-TO-AGE TO 

UQ,) FACTORS ULTIMATE 



BFTA 
RFPORT PAWAM 

PtRWD IA, 

I Y7.715 43 

1 12h.344 YO 

3 I .On?.477 70 
4 4YY ,940 bb 

s 222. IOX Y? 

6 54.730 5’) 

7 11.714 IS 
x Y.-lb? Cl 

HFT4 
PARAM 

IBI 

’ I ?7.084 44 -. 
I .x9x.454 Yl 

I .1??.??? lb 

I .lX.XSY 21 

Z.OO1.b’NY~ 
’ I71,.0hY ?X -. 
2.211.0x5 77 

2.2IS.Oi2 u 

BkIA 

MFALI 

A tA + BJ 

on44 

0 I47 

OII 

0 22s 

0 I(W) 
0 u1 

0 on? 

0 NM 

EXHIBIT 2 

SHEET6 
LDF DATA 

REPORT PATTERN PARAMETERS 

EXPECTLU EXPbCTkD 
PCT PCT EXPbCTkLl 

Rtfwmm REPORTFD PC? 

DL’RING 10 Dirt UNREP 

PFRIOD E(I Q,, E(Q,) 

4.4 44 9s 6 

I-l 7 1’) I x0 Y 

45 I WI 3.5 Y 

?? 5 Xb b 13 4 

,,/ ,I Yfl b 34 

5 YY 0 I 0 

II 5 YY.6 0 4 

0 4 loo 0 0 0 

H = 2.223.799.9 

EXPECTEU 

PCT 

UNREP. 

SQUARED 

E(Q,?, 

PC1 PC1 

UNREP. UNRFP 

VAR SIAND DE\ 

VmlQ,) SD 

PIT 

RtPoRTtD 

TO DATE 

(‘V 

SD MEAN 

91 4 

65 5 

I? Y 

I x 

0 I 

0 0 

0 I, 

0 0 

oooo 

no00 

0 uon 

o.ooo 

II cw 

u onlo 

UOOII 

0 014 

0 026 

0 032 

0 O?i 

0 012 
I, (X17 

II uo4 

0 two 

0 313 
0 11x 

II 050 

0 026 

0 (II \ 
n m17 

0 004 

0 uolI 
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ACCIDENT 

YF.AR 

(0 

EXHIBIT 3 

SHEET I 
MIXED DATA 

BAYESIAN CREDIBILITY FORMULA 
IBNR ESTIMATION 

HYFQTHETICAL DATA 

NUJ 
COUNTS REPORTED DURING 

DEVELOPMENT PERIOD J 

EXPOSURES 

I 00 

100 

100 
100 
l(K) 
IO0 
100 
I 00 

I 2 3 4 5 6 7 8 - - - - - - - - 

50 IS9 482 241 IO7 39 I6 5 
25 117 354 177 79 32 14 
75 200 610 304 I35 46 
15 100 302 I.51 67 
SO I59 482 241 
2s II7 354 
75 200 
I5 

MV,J) 
COUNTS RE~ORTCD To DATE 

DEVELOPMENT PERIOD J 

AWIDF,NT 

YEAR 

(0 EXPOSURES I 2 3 4 5 6 7 8 - - - - - - 

100 50 209 691 932 1,039 1.078 1,094 1,099 
100 25 I42 496 673 752 784 798 
IO0 75 275 885 I.189 1,324 1.370 
100 I5 II5 417 568 635 
IOQ 50 209 691 932 
100 25 142 496 
100 75 275 
100 I5 
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ACCIDENT 

YtAR 

(I) I - 

0.500 
0.250 

0.750 

0.150 
0.500 

0.250 

0.750 
0.150 

ACCIDENT 
YEAR 

(0 l-2 - 

I 4.180 
2 5.680 
3 3.667 
4 7.667 

5 4.180 

6 5.680 

7 3.667 
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EXHIBIT 3 

SHEET 2 
MIXED DATA 

N(I,JYBU) 
DEVELOPMEN r PERIOD J 

2 3 4 5 - - - - 

I.590 3.820 2 410 I 070 
1.170 3.540 I.770 0 790 
2.ooo 6.100 3.030 I 3.50 
1.000 3.020 I.510 0.670 
I.590 4.820 2.410 
I.170 3.540 
2.m 

AGE-TO-AW FACTORS 

DEVELOPMENT PERIOD J 

2-3 3-4 4-5 - - - 

3.306 1.349 I.115 
3.493 1.357 I.117 
3.218 I.344 I.114 
3.626 1.362 I.118 
3.306 1.349 
3.493 

6 7 8 - - 

0.390 0. 160 0.050 
0.320 0.150 
0.460 

5-6 6-7 7-8 - - 

I.038 I.015 I.005 
I.043 I.018 
I.035 



ACCIDENT RETORT REPORTED PEGGED LDF 
YEAR PERIOD TO DATE METHOD METHOD 

I 

2 
3 
4 
5 
6 
7 
8 

TOTAL 

1,099 -100 0 0 0 
798 201 4 5 4 

1,370 -371 28 20 28 
635 364 38 56 38 
932 67 169 153 169 
496 503 295 373 297 
275 724 1,201 813 1,165 

15 -9&J 334 956 522 
5,620 2,375 2,069 2,376 2,224 

EXHIBIT 3 

SHEET 3 
MIXED DATA 

IBNR ESTIMATES 

BORNHUETTER- BAYESIAN 

FERGUSON CREDIBILITY 

METHOD METHOD 

STANDARD 

DEV. OF 

BAYESIAN 

CRED. IBNR 

0 
3 
8 

17 
43 

102 
219 
25x 
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PttiGF.D 

MF I’HOD 

YYY 
YYY 
YYY 
YYY 
99’) 
YYY 
999 
YYY 

EXHIBIT 3 

SHEET-I 

ESTIMATES or UI TIMA I E, 

I .OYY I.099 1,099 

802 803 802 

I .3Y8 1,390 1.398 
673 6Y1 673 

1.101 I .08S I.101 

791 869 793 
I .4x I .08X I.440 

349 971 537 

CRtDIHII I 1It.S 

P~GGtD 

0.07lOl 

0.01x14 

0.00x4 

O.ooo8 I 

0.00026 

O.OOOQY 

o.ooooz 

n.oooon 

B-F 

0 7W66 0.22833 

O.Y13?7 0.06859 
0.97558 0.02178 
O.Yt(2Y4 0.01615 
0.98s I3 0.01460 
0.98% 0.01408 

0.9861 I 0.01386 

O.YXhN 0.0 I3XO 

BAYESIAN 

CREDIBILITY 

METHOD 
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EXHIBIT 3 

SHEET 5 
MIXED DATA 

MAXIMUM LIKELIHOOD ESTIMATES 

MLE 
FREQUENCY 

WI) 
EXPOSURES 

B(I) 

10.990 100 1,099 
8.016 100 802 

13.984 100 1,398 
6.725 100 672 

II.007 100 1,101 
7.907 100 791 

14.711 100 1,471 

ESTIMATED FREQUENCY MEAN 9.99352 
ESTIMATED FREQUENCY VARIANCE 7.14026 

Pm(.EN I 
P~R(XN I RE~ORTHJ PERCENI FA(. I OKS 

AGIL-IO-A<;t IO 

Fj\rr ORS U1.I IMATE 

4.33Y -. .& 93 ?&I 

3.364 5.366 
1.350 I.595 
I.1 I5 I.181 
1 .03x I .OSY 
I .Olh I.021 
I 00s I.005 
I.000 I 000 

REPOR I MLE RLPORTW To DATE UNREPORTED 

PERIOD P(J) UP,) EC1 - Q,) E(Q,) 

I 0.043 
2 0. I43 
3 0.441 
3 0.220 
5 0.098 
6 0.035 
7 0.016 
8 o.005 

TOTAL I.000 

3.3 4.3 95.7 
14.3 IX.6 81.4 
44. I 62.7 37.3 
22.0 x4.7 IS.3 
9.X 94.4 5.6 
3.5 98.0 2.0 
1.6 99.5 0.5 
0.5 IO.0 0.0 

INITIAL 

ESTIMATED 

COUNT PARAM 

B(I) x W(f)* 



EXHIBIT 3 

SHEET6 
MIXED DATA 

REPORT PATTERN PARAMETERS 

EXI’!XI m EXPECTED EXPECTELI 

PC-T PCT EXPECTED PCT PCT 
REPoRTED REPORTEU PC7 UNREP. UNREP. 

DURING TO DATE UN&P SQUARED VAR 
PERIOn ECI 0,) E(Q,) E(Q;) VMQ,) - - - - - 

E 

BETA 
REPORT PARAM 
PERIOD (A) -- 

BETA 
PARAM 

IB) 

l 141.48 3.152.57 

2 472 38 ?.XZI .66 

3 I.451 43 I.842 62 

4 723.27 2.570 77 

5 321 73 2.972.31 

6 116.79 3.177.25 

1 51 98 3.242 06 

8 I4 98 3.279.06 

BETA 
MEAN 

A (A + B) 

0.041 
0 143 

0 441 

0 220 

0 098 

0 035 

0.016 
n ws 

43 

I4 3 

441 

22 0 

4X 

1s 

Ih 

0 5 

43 95.7 

I8 6 81.4 

62 7 37 3 

x4 7 IS 3 

94 4 56 

YX II 2.0 

YYq II 5 
IW 0 0 0 

H = 3.294.0 

91 6 0.001 
66.2 0.005 

13.9 0.007 

24 0.004 

03 0 002 

0 0 0001 

0 0 0000 

0.0 0 ooo 

PC7 

UNREP 
sTb.NDDLv 

SD 

PCT 

REPWT~D 

TO DATF 
cv 

SD - MEAN 

0.353 8 224 

0 678 3 640 

0 842 I 344 
0 628 0 742 

u 4(K) 0 423 

0.246 0 2SI 

0 II7 0 IIX 
0 cw (I ow 

PCT 

UNREP 

cv 

SD - MEAN SD - MEAN 
0 0 

0.369 0.369 
ri ri 

0 834 0 834 
t? t? 
E E 

’ ‘59 ’ ‘59 - _. - _. 1 1 

4.092 :: 
7 167 

I? oY4 ; 
2s 772 5 

- 5 

9 

F 
z 

;j 
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DISCUSSlON BY GARY G. VENTER 

If an indicator of a significant paper is that it opens the door for further 
research, Dr. Robbin’s paper should stand the historical test. This review will 
emphasize generalizing the Poisson assumptions of the paper. Attention to 
optimal parameter estimation and other model assumptions may also prove 
fruitful, as may the quantification of uncertainty in the IBNR estimates. 

The three way credibility weighting for IBNR is an interesting result of the 
paper. Credibility weights are specified for three estimators of IBNR: 

(i) the original (e.g., pricing) expected claims less the observed claims to 
date; 

(ii) the observed claims to date times a development factor; and, 

(iii) the original expected claims less the expected claims to date. 

To see the origin of these credibility weights, a slightly more general framework 
will be used here. A vector of parameters, U, is postulated to determine the 
distribution of N, the ultimate number of claims; M, the observed claims to 
date; and R, the IBNR claims. 

It is assumed that M and R are conditionally independent given II. Further, 
n and q are functions of u, and S’ is a positive constant with 

E(N/u) = n 
E(M/u) = n(l - q) 
&R/u) = nq 
EV(M/u) = s2 

This last assumption generalizes the Poisson assumption of the paper, where 
the expected conditional variance of M was EnE( 1 - 4). 

It is also assumed that II is a vector of random variables such that n and y 
are independent. 

The fundamental credibility formula from Robbin, section III. 1. is then 
invoked to estimate R: 

R* = ER + (M - EM)C(M,R)IVM. 

‘From the assumptions, ER = EnEq and EM = EnE( 1 - y) = En( 1 - Eq) = 
En - EnEq. Also Vhf = EV(M/u) + VE(M/u) = s2 + V(n( I - q)) = s’ + 
E(n*(l - q)*) - E(n(1 - 4))‘. Then by the reasoning of B.j.(ii) of the paper, 
VM = .? + E(n’)V( 1 - q) + E( 1 - q)*Vn. 
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These three components of the variance of the observed claims, when divided 
by that variance. will turn out to be the three credibility weights to be applied 
to the three IBNR estimators (i), (ii), and (iii). above. To see this. a general 
formula on covariances is used to compute C(M,R): 

C(M, R) = EC(M,R/u) + C(E(M/u),E(R/u)). 

Because of the conditional independence of M and R. the first term is zero, 
and so 

C(M,R) = C(n( 1 - y),nq) 
= E(n( 1 - y)nq) - E(n( 1 - y))E(ny) 

Then, by the reasoning 01 B.S.(i) of the paper, 
C(M,R) = VnEqE( 1 - q) - E(n’)V( 1 ~ 4). Plugging all of this back into the 
original credibility formula gives: 

R* = EnEq + (M + EnEq - En)[VnEqE( I - q) ~ E(r?)V( I - q)]/VM 

This is regrouped into Robbin’s three way credibility formula as follows: 
first combine the EnEq terms; apply M ~ En to the second term in brackets to 
yield (En - M)E(n’)V(l - q)lVM. When applied to the first term in brackets 
the M and En are separated, giving a) En combined with Ey and adding to the 
EnEq component; and b) (M]Ey/E( I - q)]VnE( I ~ q$lVM. The underlined 
terms are the IBNR estimators (i) and (ii) timex credibility weights. where the 
weights are the second and third components of the variance VM above. divided 
by VM. 

This interprets EqIE( 1 - q) as a development factor. and in fact by the 
hypotheses above, ERIEM = Eq/E( 1 - y) and ENIEM = llE( I - q). This 
corresponds to the method of estimating LDF’s from several accident years’ 
data by CNJCM,, as recommended by Stanard (PCAS 1985). With this defnition 
of the LDF, the mathematically imprecise estimate of the development factor 
used by Dr. Robbin becomes unnecessary. 

Finally the remaining terms of R* can be algebraically combined to yield 
the credibility weight of s’/VM applied to EnEq. Writing EnEq as En - 
EnE( 1 - q) shows this term to be the original expected claim> less the expected 
claims to date. 

The assumption that M and R are conditionally independent may be some- 
what limiting. The possibility that some claims come in earlier than usual, so 
fewer come in later (or vice versa), suggest that R and M are not unconditionally 
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independent. Assuming they are conditionally independent then attributes their 
correlation to non-independent parameters. But this suggests that the parameters 
are different from year to year. If the claims reported before and after a given 
point are each modelled as conditionally independent draws from a fixed. 
possibly unknown, report lag distribution, a negative correlation between re- 
ported and unreported claims would not be anticipated. 

Dr. Robbin is to be congratulated for this thought provoking and potentially 
useful paper. He has proven his main point: a Bayesian credibility formula for 
IBNR does count. 
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THE COST OF MIXING REINSURANCE 

RONALD I-. M’IStR 

E.~cess und surplus lines undrn~v-iters, cmd others. rely haoily on 
fuculrutivc reinsuruncr support us m irnportont put-t of their underwrit- 
ing function. Indi\iduul risks we r>jirn subjet~t to multiple reinsurance 
trunsuctions us N result CIJ’ the underrc~riting procr.ss The net retuined 
by the undent,riters for the cwmpuny’.s urwunt is then subject to the 
overull company winsurunce tretrty. As (1 rrsult. the ,finul cornpuny net 

position bus been &wed in N complicuted ,fil.vhion. It is munugement’s 
tusk to pror+de guidelines for the proper USC of ,ficcultrrti\*r proportionul 
und e.wess reinsurunce thut uchiervs c’orporute risk und projitubiIit> 
objectives under such conditions. 

This pupc’r irnvstigatrs the impuct on projitubilit~ of’ u cwmmon 
reinsurunce mi.ring situution. Thp impuct on the stuhility function oj 
e.wess reinsurunce is qwntiJied. Gerwrul ru1p.s to guide pruc’ticul use 
und e~wlnution oj’ mi.\-ed sitnutions urc rlewlopc~d. 

These results urt’ rquul!\~ trI~plic~trble IO property us ~vll us c~.suult~ 
risks. The implicutions ure \ulid jiw jirclcltutiw rein.wrunce undenc~rit- 
et-s. rrnd others thrrt muke heut:\. tat’ (?/‘ firc,lrltrrti,‘tl proportionul reinsur- 
unce clrrcl,iSements. 

IN TRODCIC‘I-ION 

Many underwriters rely heavily on facultative reinsurance support as an 
important part of their underwriting function. This is especially the case in the 
excess and surplus lines and commercial property lines. Individual risks are 
often subject to multiple reinsurance transactions as a result of the initial un- 
derwriting process. The net exposure retained by the underwriters for the com- 
pany’s account is then subject to the overall company rcinsurance treaty. As a 
result, the final company net retention has been layered in a complicated fashion. 
This complicated net position can lead to unexpected net loss ratio and combined 
ratio results. 
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The purpose of this paper is to investigate the consequences of one such 
reinsurance situation-the application of an excess of loss reinsurance treaty 
after the placement of proportional reinsurance on the same risk-and to inves- 
tigate ways of managing this situation. We will take the viewpoint of the ceding 
company, although the subject is also of interest to the excess reinsurer. We 
will assume that. in general, the mixed reinsurance situation comes about 
through the application of proportional facultative reinsurance on individual 
risks, and the retained amounts are then subject to a corporate excess of loss 
treaty. In the case of a portfolio of risks, we assume the aggregate effect of 
individual facultative cessions can be adequately modeled by an average pro- 
portional retention applying to the entire portfolio. 

The consequences of this mixed reinsurance situation are twofold: 

Magnitude of net loss ratio: The application of proportional reinsurance 
below an excess of loss layer reduces the excess reinsurer’s loss ratio and raises 
the ceding company’s loss ratio. The expected loss ratio on the pro rata rein- 
surance is unchanged; it will always be the same as the gross loss ratio. 

Stubility of net loss ratio: While the purpose of excess of loss reinsurance 
is to provide stability to the net retained loss ratio, the application of proportional 
reinsurance under the excess of loss cover actually decreases the stability of the 
net loss ratio. 

A heuristic argument can show that each of these effects is intuitively 
plausible. Actual examples will show the mechanics of both the magnitude and 
the stability effects. Beyond the examples, it is demonstrated that these are not 
isolated instances, but the effects can be mathematically shown to hold always. 
We will use the term “mixing reinsurance” or “mixing” to denote this scenario 
of applying an excess of loss reinsurance treaty ufter a proportional transaction. 

Reasons for Mixing 

As we investigate the implications of mixing proportional and excess rein- 
surance, we need to keep in mind the purpose for the particular mixing situa- 
tions. Since all instances of mixing will penalize the net loss ratio to different 
extents, management must carefully evaluate whether the cost of mixing is 
justified by the advantage gained. Generally, senior management is heavily 
involved in negotiating and placing the major treaties of the company. Histori- 
cally, lower levels of management have directed the use of facultative reinsur- 
ante. Often, the individual desk underwriter places quota share facultative 
reinsurance on a risk as he writes it. 



The premise of this paper is that the tottri corporate reinsurance program 
(not just the major corporate treaties) must be actively managed to assure that 
corporate objectives are met. The interaction between proportional and excess 
reinsurance in the mixed case can be very significant. Management must institute 
guidelines and controls for use of proportional reinsurance which assure the 
objectives intended by placement of the corporate excess treaties are met. These 
objectives will generally be stated in the form of expected net loss ratio, or cost 
of reinsurance. and protection from large swings in net loss ratio (stability). 

Some common reasons for the occurrence of mixed reinsurance situations 
are : 

a) capacity; 
b) net premium targets: 
c) protecting the treaty; 
d) sharing of layers; and, 
e) commission overrides. 

Capucit~; An individual risk is too large to he retained net by the insurer. 
A proportion of the risk may be ceded on a quota share or ~rplus share basis 
to reduce its size. This is common on property risks. A mixed situation exists 
if the corporate property treaty is on an excess of‘ loss basis. 

Net Premium Targets: A corporate plan may call f’or a certain net premium 
increase that must be strictly adhered to (for instance. because of statutory 
income or surplus restrictions). If more gross premium is written than planned, 
the net target may be achieved by increased USC of facultative proportional 
reinsurance. This strategy should be evaluated in light of the penalty imposed 
on the net loss ratio position. 

Protecting the Treaty: If the rate on the excess treaty is clearly insufficient 
to absorb the exposure from a risk the insurer wishes to write, the excess loss 
potential can be scaled down by a Cdcultative quota share placement to fit the 
treaty pricing. This comes about because proportional reinsurance changes the 
frequency and severity characteristics of the excess loss exposure. This is one 
case where mixing reinsurance may be the prescribed course of action to achieve 
the corporate objective of excess treaty perpetuation at a reasonable price. 

Sharing of Layers: For any of the reasons above, the underwriter may 
substitute the direct writing of a proportional share of a risk in place of acc~p- 
tance of the entire risk followed by a facultative quota share reinsurance trans- 
action. This is. in fact, a disguised mixed reinsurance situation and is fully 
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equivalent in its effect on net loss ratio and stability. The popularity of sharing 
layers increases as the facultative reinsurance market tightens. The normal 
operating procedure of the facultative reinsurance underwriter or the brokered 
treaty underwriter is to accept proportional shares of an excess layer. This is 
also a mixed reinsurance situation if an excess of loss treaty protects the 
reinsurer’s net position. 

Commission Ol,errides: In most cases, the proportional facultative reinsurer 
pays a ceding commission to the ceding company. This ceding commission is 
meant to cover direct commission costs, plus an additional “override” commis- 
sion to cover the cedent’s non-commission costs. The override has the effect of 
reducing the net expense ratio, and can even cause a negative net commission 
expense in some cases. A company, or an individual underwriter, may cede 
large amounts of facultative proportional reinsurance to obtain this override 
relief to the commission expense ratio. 

A Simple Example: The magnitude effect can be demonstrated by inspecting 
a very simple situation. Suppose a ceding company has a size of loss distribution 
that allows only claim sizes of either $10,000 or $90,000, with equal probability. 
With an expected claim frequency of 48 claims per year, and an average claim 
size of $50,000, we have annual expected losses of $2,400,000 annually. If the 
company carries an excess of loss treaty with a $40,000 retention, the treaty 
reinsurer will have expected losses of $1,200,000 per year (24 claims at $50,000 
each). Assuming an 80% expected loss ratio for both companies, the excess of 
loss reinsurer will expect a treaty rate of 50% of subject premium. 

Now assume the underwriters writing this portfolio for the company place 
50% quota share facultative reinsurance on every policy as they write it. The 
ceding company will retain 25% of gross premium, or $750,000, after paying 
for treaty and facultative reinsurance. The facultative reinsurer will pay half of 
every loss while the excess reinsurance only responds when the ceding com- 
pany’s 50% share of each loss penetrates the $40,000 retention. Since there are 
only 24 of these large losses expected, and after the proportional reinsurance 
they are $45,000 each, the excess reinsurer will have an expected incurred loss 
of $120,000. This will give it an expected loss ratio of 16% on the $750,000 
of treaty premium. The ceding company will retain $l,OSO,OOO of expected 
losses, for a loss ratio of 144% on its net retained premium of $750,000. 

In this simplified example the two reinsurance negotiations have a combined 
unfavorable effect on the company. The treaty rate was correct for placement 
of 100% of each risk into the treaty. Because the underwriters did not tailor the 
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facultative cessions to coordinate with the treaty rating. the company has suf- 
fered a penalty of 64 loss ratio points. Even though the direct business was 
correctly priced and evaluated. the net result is a totally unacceptable combined 
ratio. While the example is constructed to illustrate a point. actual variations 
on this situation can easily occur. In fact. every instance of an excess of loss 
reinsurance contract placed over proportional reinsurance works to the disad- 
vantage of the net position, and thus the ceding company. 

THE ROLE OF THE SlZt Of- 1 OS I~IS~I‘RIHl1’I’ION 

An inspection of a typical size of loss distribution indicates the underlying 
cause of mixing effects. Consider a size of loss frequency distribution of the 
amount of a single claim, as shown in Figure I. The amount of loss can be 
read from the horizontal scale. and the relative frequency of such a loss amount 

FIGURE I 
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from the vertical scale. Figure I can also be used to determine the percent of 
total claim counts due to claims in a given range of amounts. For instance, we 
can see that loss over $150,000 will represent 20% of the claims arising from 
this particular loss distribution. This is because the area under the size of loss 
curve above $150,000 represents 20% of the total area under the curve. 

The application of a 50% quota share reinsurance to this size of loss distri- 
bution essentially “shrinks” the curve horizontally. while maintaining its relative 
“shape,” as shown in Figure 2. 

Now consider the area of the “tail” of this new distribution over $150,000. 
This area represented 20% of the total number of claims of the original loss 
distribution of Figure I. The tail area of the “shrunken” distribution (Figure 2) 
over $ISO,OOO, however, accounts for only 3.4% of total claims counts-much 
less than half of the original gross loss size distribution. 

FIGURE 2 
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Thus, after the proportional “shrinking .” the excess reinsurer will receive 
50% of the premium that would have been received before proportional rein- 
surance was placed. but will experience much less penetration of its coverage 
layer than would have been expected in a situation without proportional rein- 
surance. In fact, the frequency of loss for the excess reinsurer after the 50% 
proportional reinsurance will be 17%’ (3.4% / 20%) of its original excess fre- 
quency. As a result, the excess reinsurer’s expected net loss ratio after propor- 
tional reinsurance is now substantially improved over the experience before the 
proportional transactions. 

Of course, this is simply a consequence of the nonlinear nature of the size 
of loss distribution. It is another way of stating that for large loss activity. a 
loss double a given size is cxpericnced much less than half of the time. 

Note also that the area under the curve of Figure 2 beyond $150.000 is the 
same as the area under the curve of Figure 1 beyond $300.000 ($150.000 / 
50%). Thus the excess rate over $150.000. after a 50% quota share placement, 
should be the same as the excess rate for a $300.000 retention with no quota 
share, ignoring risk charge and expense components. and the effect of the upper 
limit on the excess layer. 

In understanding the impact of proportional rein\urance on the net position 
and the excess reinsurer. the fundamental relationship ix the simple idea illus- 
trated above. An excess retention of M after a proportional reinsurance retention 
of 100~1%. is equivalent to an excess retention of Mitr without proportional 
reinsurance. This result is shown as the Mixing Price Rule below. 

This relationship is key in understanding how mixed reinsurancc destabilir.es 
net results. It seems intuitive. and can be shown mathematically (see the Ap- 
pendix), that net aggregate loss results will show more stability (i.e.. a lower 
coefhcient of variation) under a SlSO.000 retention than under a $300,000 
retention. In general. if an entire portfolio is proportionally reinsured to retain 
lOO& of the total risk. with an excess of loss treaty with retention M, the 
stability of the portfolio’s results will be identical to that of the same portfolio 
without proportional reinsurance and an excess loss limit of Mitr. This result is 
shown as the Mixing Stability Rule below. 

It is worth noting that the application of proportional reinsurance uftct- the 
application of an excess of loss treaty does not change the magnitude of stability 
of the net loss ratio position. Hence. the order of application of reinsuranco is 
extremely important. 
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Some simple examples will be instructive, and show situations where a 
disadvantageous net position can result in the ordinary course of business 
through mixing of reinsurance. This will be especially apparent if we consider 
the process of underwriting a single risk. 

LOSS RATIO MAGNITUDE EFFECTS 

A Casuals Example: Suppose an insurer is operating under an excess of 
loss treaty with $2,000,000 limits, excess of a retention of $250,000. The 
premium for this cover will be 30% of the subject premium that remains 
available for net and treaty, i.e., remaining after facultative placements. 

The primary company underwriter writes an excess liability policy with 
limits of $1 ,OOO,OOO, excess of a self-insured retention of $lOO,OOO. He prices 
this at $400,000, expecting a loss ratio of 60%. He pays a commission of 15%, 
and his internal expenses will account for another 10% of the gross premium. 
This leaves him with 15% ($60,000) for profit and contingency load on this 
risk. This allows a 25% load on expected losses as a fluctuation margin. That 
is, the underwriter could suffer losses of up to $300,000, or 125% of expected 
losses, before he has to dip into his surplus funds. 

Next, he wishes to reduce his net and treaty exposure to this risk, so he 
arranges a facultative quota share placement of 50% of the risk. Thus, he is left 
with a $500,000 exposure, net and treaty, and a subject premium for purposes 
of the excess treaty of $200,000. 

Generally, the cedent will receive a ceding commission that will cover his 
direct ceding commission costs (15% in this example), plus an “override” that 
is meant to cover the cedent’s non-commission, or fixed, expenses. The override 
for this example will be lo%, which is identical to the ceding reinsurer’s other 
expense ratio. 

One can analyze the underwriter’s net position before his facultative quota 
share placement. Assume that a lognormal distribution is an adequate model 
(Benckert (I]) for size of loss on this risk, with a mean claim size of $30,000 
and a coefficient of variation (CV) of 5.0. The following analysis of direct, 
reinsurance, and net results is summarized in Exhibit 1, the Mixing Cost 
Worksheet for this risk. Calculations on this exhibit are discussed below. 

The size of loss assumption implies an average first-dollar claim severity of 
$270,190 in the layer of interest, hence, an excess policy claim severity of 
$170.190. Recall that this is the expected severity for all claims greater than 
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EXHIBIT I 

MIXING (‘OS1 W’OKKSHt-t: I 

Policy: a casualty example without mtxmg 

Input parameters: 

Direct premium 
Policy limits 
Underlying retention 
Expected loss ratio 
Commission ratio 
Other expense ratio 

Reinsurance: 
Percent proportional 

Ceding commission 
Excess retention 
Excess limits 
Excess rate 

Ceding commission 
Loss distribution: mean 
Lognormal CL’ 

Net results: 

Loss ratio 
Expense ratio 
Combined ratio 
Net underwriting prom 
Cost of Reinsurance: 
with mixing 
Pure excess 
Additional cost of reinsurance 
Cost of Mixing Calculation: 
Actual cost of excess reinsurance 
Cost based on subject premium 
Cost of mixing 

$4oo.ooo 
$ I ,ooo,ooo 

$ltxj.ooo 
60.0% 
lS.O% 
10.0% 

O.O’% 

3 .O% 
$150,ooo 

$~.000.000 
30 0% 

0.0% 
$30,000 

5 

Proportional 

NA 
NA 
NA 

‘60 
0 

40 

Excess Net 

7 I .O% 55.3c% 
5.0 35.7 

76.0’% 91 .O% 
$15.144 

84.X56 U4,XSh 
34,856 34,856 

$0 $0 

834.X.56 
34 ,XSh 

50 
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$lOO,OOO, but with a maximum ceding carrier liability of $I ,OOO.OOO on those 
claims that are greater than $1 ,lOO,OOO first-dollar. Expected losses of $240,000, 
(60% X $400.000) imply an expected claim frequency of 1.41 claims per annum 
on this risk for the excess carrier ($240.000/$170,190). This analysis is dis- 
played on Exhibit I. 1. 

Now the excess of loss reinsurer would assume all loss amounts over 
$350,000 first-dollar. up to a maximum policy limit loss of $I ,100,OOO first- 
dollar. Thus the excess of loss reinsurer will be providing the coverage for the 
layer from $350.000 first-dollar to $I ,lOO,OOO first-dollar for its $120,000 
premium. Since 582 losses out of 10,000 exceed $lOO,OOO first-dollar, and I 18 
losses out of 10,000 exceed $350,000 first-dollar, the excess of loss reinsurer’s 
frequency will be 20% (1 18/582) of the direct reinsurer’s frequency. Then, the 
reinsurer should expect 0.286 claims (1.41 X 20.3%) at an average severity of 
about $298,000 in the layer from $350,000 to $1 ,lOO,OOO first-dollar. This 
implies a pure premium (expected losses) of about $85,000 (0.286 claims at 
$298, I 13 each), and an expected loss ratio of 71% for the excess of loss 
reinsurer. This analysis of the excess carrier’s frequency and severity is displayed 
on Exhibit I .3. 

The primary company underwriter retains an expected loss cost of $lSS,OOO 
and a net premium of $280,000, for an expected loss ratio of 55%. This would 
leave $25,000 for profit and contingency load on the net position, giving a 16% 
loading of expected losses for a fluctuation margin. 

Thus, the primary company has paid 30% of its direct premium to the excess 
reinsurer. In return, its maximum exposure to loss from any one claim has been 
reduced from $l,OOO,OOO to $250,000. The margin in the premium that is 
available to absorb fluctuations in results, however, has also decreased from 
25% to 16%. In light of this reduction in the fluctuation loading. it is not 
immediately obvious whether the insurer is in a better position in terms of 
protection from random variation of results after this excess reinsurance trans- 
action. As will be demonstrated below, however, excess of loss reinsurance 
decreases the probability of large aggregate losses to such a significant extent 
that this 16% risk margin actually reflects more safety than the gross position 
with its 25% margin. 

On Exhibit 1 we have also calculated the cost of reinsurance. Of course, 
this is the expected cost of the reinsurance transaction. The actual cost in 
retrospect will vary considerably from year to year. The cost of reinsurance is 
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Policy Parameters: 

1. Premium 
2. Commission 
3. Other expenses 
4. Expected losses 
5. Profit/risk charge 

6. Retention 
7. First-$ equivalent* 
8. Nominal layer width 
9. First-$ equivalent* 

10. Effective layer width 
I I First-$ equivalent* 

12. Claim severity 
13. Claim frequency 
14. Commission ratio 
15. Other expense ratio 
16. Premium rate 

17. Fluctuation loading 
IS. Expected loss ratio 
19. Combined ratio 

20. Cost of reinsurance 

MIXING REINSIIRANC‘I: 

EXHIBIT I. I 

MtXINCi COS I WORKSHEE I 

Casualty Example 
Allocation of Layer Costs 1L 

Determination of Net Position 

Ia) 
Gross 

(b) 
Proportional ___-.. 

%4Qo,OOO $0 
6OJY.M 0 
40.000 0 

240,000 0 
60.000 0 

$lOO.O0O 
100,000 

I .OOO.OOO 
1.100.000 
I ,OOO,OOo 
l.lOO,ooo 

NA 
NA 

0 
NA 

0 
NA 

$170.192 
I.410 

lS.O% 
10.0%’ 

100.0% 

$0 
I.410 
25.0% 
3.0% 
0.0% 

25 .OQ’ 
60.0% 
85.0% 

NA 
NA 
NA 

$0 $0 

(L-J 
Excess 

$ I ‘0,000 
0 

6.000 
XS.I‘tJ 
28.856 

$250,000 
350.000 

2,000,ooo 
I .100.000 

750,000 
I. 100,000 

$29X.1 13 
0.286 

0.0% 
5.0% 

30.0% 

33.9% 
71.0% 
76.0% 

$34.856 

cd) 
NC1 

%2x0,000 
60 .OOO 
40,000 

154.856 

$IOo.oW 
100.000 
‘50.000 
350.000 
250,ooo 
350,000 

$109.814 
I .4lO 
2 I .4(X 
14.34 
70.0% 

16.2% 
55.3% 
91.0% 

$34,856 

* First-dollar equivalent is the amount of first dollar loss needed to hlr thib hmrt. 
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Primary retention 
Reinsured’s retention 
Primary policy limit 
Effective excess limit 

EXHIBIT I .2 

LOSS DISTRIBUTION TABLE 

Loss Number Amount 
Amount Distribution Distribution 

x ,f?w) f $(.4 

$100,000 0.94 I7370 0.4069118 
350,000 0.9881997 0.6767204 

1,100,000 0.9981221 0.8627949 
I, 100,000 0.9981221 0.8627949 

Distribution type: lognormal 
Distribution parameters: 

mean = $30,000 p = 8.6799043 
cv= 5 o = 1.8050198 



I. 

2. 
3. 
4. 
5. 
6. 

7. 

8. 
9. 

IO. 
II. 
12. 
13. 

14. 
15. 
16. 
17. 

MIXIN<; Kl~INSI~KRN~‘t 

EXHIBIT 1.3 

DERIVATION OF I.OSS (‘HAKAC-FtRISI I(‘!, 

Primary frequenq 
First dollar equivalents: 
Primary retention 
Primary policy limit 
Reinsured’s retention 
Effective reinsurer limit 
Ratio of excess carrier’s frequency 
to primary frequency {I.() - (4h)] , 
{I .o - (2b)J 
Excess layer frequency 
Expected claims per policy term 
(6) x (1) 
Severity calculations: 
Mean loss (SOL) 
Layer loss cost {(k) - (4c)j X (X) 
Limit loss cost (5a) X {I - (Sb)] 
Number of layer losses (Sb) ~ (4b) 
Number of limit losses I.0 ~ (Sb) 
Average severity of reinsured losses 
{(Y, + (IO)]/ {(II) + (12)) 
Less: effective retention 
Excess layer severity ( 13) - ( 14) 
Percent pro rata reinsurance 
Excess reinsurer’s severity 
(15) x 1’1 ~ (16)1 

(a) 
,Amounts 

I.410 

s I(K).(K)0 0.94 1736YY 0.4069 I I8 
9 I . 100.000 0.99812207 0.862794’) 

$3s0.000 O.Y8819966 0.6767204 
pd I . I ()0.()(H) O.YY812207 0.8627949 

?O.?‘;i 

0.2X6 

530,000 
$5.5X3 
$2.066 
O.YY2V 
0. I xxv 

Qj4X.l I? 
$350.000 
$298.1 I3 

0.0% 

$‘Y8.1 I? 
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simply defined as the reinsurance premium paid, less the sum of ceding com- 
missions received and expected reinsurance recoveries. Note that since reinsur- 
ante is a service that provides value to the cedent, we should expect a positive 
cost of reinsurance to be the hallmark of any long term reinsurance relationship. 
This definition of cost of reinsurance ignores investment income lost by the 
ceding carrier. This component may be required, however, to get realistic cost 
estimates. 

The cost of excess reinsurance in this case is $34,856, which can be 
expressed as a cost of $87.14 per $1,000 of premium subject to the excess 
treaty. 

The EfSect of u Proportional Cession: Now consider the net position of the 
ceding underwriter after a 50% proportional reinsurance transaction on this 
policy. As shown in Exhibits 2-2.3, $200,000 net and treaty premium remains, 
of which $60,000 must go to the excess of loss reinsurer. Since all losses are 
50% shared before application of this excess of loss treaty, a first-dollar loss of 
at least $600,000 is needed before the excess of loss reinsurance responds. 
Since such a loss occurs for only 52 claims out of every 10,000, the excess of 
loss reinsurer’s frequency has been cut to 9% of the reinsured’s frequency by 
use of the proportional reinsurance (Exhibit 2.3). 

The average severity of losses greater than $600,000 limited at $1 , 100,000 
is $900,586. These losses are 50% quota shared above $lOO,OOO, so the pro 
rata reinsurer and the reinsured evenly split the layer $500,000 excess of 
$ IOO,OOO. The pro rata reinsurer and the excess reinsurer split the next $500,000 
loss layer evenly. This leaves the excess of loss reinsurer with an average claim 
severity of $150,293 in its layer. With a claim frequency of 0.126 claims in the 
excess reinsurance layer, the excess reinsurer has an expected loss cost of only 
about $19,000. The reinsurer, however, has received $60,000 of premium for 
the excess reinsurance, so it has now improved its expected loss ratio position 
to 31.4%. 

Who pays for this improvement of the excess reinsurer’s loss ratio? Consider 
the proportional reinsurer’s position. For 50% of the premium, the proportional 
reinsurer shares in all the gross losses equally. Thus, the expected losses of the 
proportional reinsurer are $120,000. This indicates an expected loss ratio of 
60% for the pro rata reinsurer, the same as the gross loss ratio. In fact, the 
expected loss ratio of the quota share reinsurer will always be identical to that 
of the gross position. 
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EXHIBIT 2 

MIXING COST WOKKSHEF.1 

Policy: a casualty example with mtxtng 

Input parameters: 

Direct premium 
Policy limits 
Underlying retention 
Expected loss ratio 
Commission ratio 
Other expense ratio 

Remsurance: 
Percent proportional 
Ceding commission 

Excess retention 
Excess limits 
Excess rate 
Ceding commission 

Loss distribution: 
Lognormal 

mean 
cv 

Net results: 

Loss ratio 
Expense ratio 
Combined ratio 
Net underwriting profit 
Cost of Reinsurance: 
with mixing 
Pure excess 
Additional cost of reinsurance 
Cost of Mixing Calculation: 
Actual cost of excess reinsurance 
Cost based on subject premium 
Cost of mixing 

Gross 

60 OQ 
25.0 
85.0%’ 

$0 
0 

$0 

$4OO.OOt) 
$1 .ooo.ooo 

$I00.000 
60.0% 
15.0% 
IO.O% 

50.0% 
25 .O% 

$250,ooo 
$2.000.000 

30.0’% 
0 .oc/r 

$30,000 
5 

Proportional Excess 

60.0% 
28.0 
XX.O% 

$30.000 
0 

$3O,ooo 

31.5% 
5.0 

36.5% 

$41,081 
34,856 
$6,225 

$41,081 
17.428 

$23.653 

Net 

72.2% 
35.7 

107.0% 
($11.081) 

$71,081 
34,856 

$36,225 



Policy Parameters: 

I. Premium 
2. Commission 
3. Other expenses 
4. Expected losses 
5. Profit/risk charge 

6. Retention 
7. First-$ equivalent* 
1(. Nominal layer width 
9. First-$ equivalent* 

IO. Effective layer width 
I I. First-$ equivalent* 

12. Claim severity 
13. Claim frequency 
14. Commission ratio 
15. Other expense ratio 
16. Premium rate 

17. Fluctuation loading 
18. Expected loss ratio 
19. Combined ratio 

20. Cost of reinsurance 

MIXING REINSURANCE 

EXHIBIT 2. I 

MIXING COST WORKSHEET 

Casualty Example 
Allocation of Layer Costs & 

Determination of Net Position 

(a) 
Gross 

(b) 
Proportional 

Cc) 
Excess 

(4 
Net - 

$400 BOO 
60,000 
40.000 

240,000 
60.000 

$200.000 
50.000 
6.@33 

120,000 
24.000 

$60,000 
0 

3,000 
IX.919 
38,081 

$140,QOO 
10,000 
40.000 

101,081 
(11,081) 

$lOO,OOO 
100.000 

I .ooo.ooo 
1.100.000 
I .ooo ,000 
1.100.000 

NA 
NA 

500,000 
NA 

500,000 
NA 

$250,000 
600.000 

2.000.000 
l,loo,OQo 
I ,ooo,ooo 
1.1oo.ooo 

$lOO,OOO 
100.000 
250,000 
350.000 
250,000 
350,000 

$170.192 $85,096 $150.293 $7 I ,680 
I.410 I.410 0.126 1.410 
15.0% 25.0% 0.04 7.1%’ 
10.0% 3.0% 5.0% 28.6% 

IOO.O% 50.0% 30.0% 35.0% 

25.0% 
60.0% 
85 .O% 

20.0% 
60.0% 
88.0% 

201.3% 
31.5% 
36.5% 

$0 $30,000 $4 I ,08 I 

- I I .O% 
72.2% 

107.9% 

$71.081 

183 

* First-dollar equivalent i\ the amount of tirst dollar loss needed to hit thts limtt. 
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EXHIBIT 2.2 

Primary retention 
Reinsured’s retention 
Primary policy limit 
Effective excess limit 

Loss Number Amount 
Amount Distribution Distribution 

.\- f#c(.r) .f $Lr) 

$100.000 O.Y3 I7370 0.4069118 
600,000 O.YY47Y91 0.7755223 

1,100.000 O.YY8 122 I 0.8627949 
I .100.000 O.YYXl221 0.8627949 

Distribution type: lognormal 
Distribution parameters: 

mean = $30.000 pe = 8.6799043 
cv= 5 u = 1.8050198 
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EXHIBIT 2.3 

DERIVATION OF LOSS CHARACTERISTIC3 

FOR EXCESS TREATY 

1. Primary frequency 
First dollar equivalents: 

2. Primary retention 
3. Primary policy limit 
4. Reinsured’s retention 
5. Effective reinsurer limit 
6. Ratio of excess carrier’s frequency 

to primary frequency {I.0 - (4b)} / 
jl.0 - (Zb)] 

7. Excess layer frequency 
Expected claims per policy term 
(6) x (I) 
Severity calculations: 

8. Mean loss (SOL) 
9. Layer loss cost {(5c) - (4~)) X (8) 

IO. Limit loss cost (5a) X {l - (5b)j 
1 I. Number of layer losses (5b) - (4b) 
12. Number of limit losses 1.0 - (5b) 
13. Average severity of reinsured losses 

f(9) + (WI/ AlI) + (12)/J 
14. Less: effective retention 
15. Excess layer severity (13) - (14) 
16. Percent pro rata reinsurance 
17. Excess reinsurer’s severity 

(15) x /I - (16)) 

(a) 
Amounts 

1.410 

(b) 
f#(x) 

CC) 
f $(.r) 

$lCWOO 0.94173699 0.40691 I8 
$1,100,000 0.99812207 0.8627949 

$6oO,ooO 0.99479906 0.7755222 
$1 ,lOO,OOO 0.998 12207 0.8627949 

8.9%’ 

0.126 

$30.000 
$2,618 
$2,066 

0.332% 
0.188% 

$900,586 
$600,000 
$300,586 

50.0% 

$150,293 
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Consider the net loss ratio. which was 60% gross and 55% net before any 
facultative placement. Of the total expected loss costs of S240.000, the propor- 
tional reinsurer takes $120,000 and the cxccss reinsurer assumes $lY,OOO. This 
leaves $101,000 of expected losses for the reinsured’s net position. Since 
$140,000 of premium remains net, the expected net loss ratio is now 72%‘. This 
is substantially worse (I7 loss ratio points) than the net loss ratio without any 
facultative proportional reinsurance. In addition. there is now no premium 
margin available for profit and contingency loading. since we are now at a 
combined ratio of 108%. Thus we see that use of proportional reins-trance below 
an excess of loss treaty simply moves loss dollars out of the excess reinsurer’s 
account into the ceding insurer’s account. without affecting the proportional 
reinsurer. 

The Cost oJ‘Mi.ritrg: Notice that on Exhibit 2 we have calculated the Cost 
of Mixing. Recall that in the absence of any proportional reinsurance we 
calculated a cost of reinsurance of S87. I4 per $I ,000 of subject premium for 
the excess treaty. If we regard this cost as the reinsurer’s price for providing an 
excess cover for this policy, we will hold this cost constant for any fraction of 
the policy that is retained after proportional reinsurance. This rate on the 
$200.000 of subject premium implies a reinsurance cost of $17,428 should be 
expected. In this mixed case, however, the actual cost for the excess rcinsurance 
is $41,081. We detine the Cosr of Mixing to be the difference of $23.653. Note 
that this Cost of Mixing is greater than the underwriting loss on the policy of 
$1 1.08 I. This implies that without the Cost of Mixing, this net position would 
have been profitable for the ceding company. The total cost of reinsurance in 
the mixed situation can also be decomposed as follows: 

Cost of proportional reinsurdnce $30,ooo 
Cost of excess reinsurance 17.428 
Cost of mixing ‘3,653 
Cost of total reinsurancc S71.081 

This example demonstrates a general principle that is independent of the 
choice of the size of loss distribution or policy parameters. A corollary of the 
Mixing Price Rule is that the net position after mixed reinsurance will always 
be worse than under a pure excess reinsurance. This rule states that the excess 
loss rate for an excess rctcntion of b1 after a proportional retention of LOO& 
must equal the loss rate for a pure e.xccss retention of M/U. 
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The progressive deterioration of the loss ratio and combined ratio as the 
percent of proportional reinsurance increases can be seen in the table below. 
This table is for the casualty risk analyzed above, which has a gross expected 
loss ratio of 607~~ with a gross combined ratio of 85%. 

Percent Net Loss Expense Combined 
Ceded Ratio Ratio Ratio 

0% 55.3% 35.7% 91.0% 
10 58.0 35.7 93.7 
20 61 .O 35.7 96.7 
30 64.3 35.7 100.0 
40 68.0 35.7 103.7 
50 72.2 35.7 107.9 
60 77.0 35.7 112.7 
70 82.6 35.7 118.3 
75 85.7 35.7 121.4 
80 85.7 35.7 121.4 
90 85.7 35.7 121.4 

As the percent proportional ceded increases, losses are reduced for the excess 
reinsurer. These costs are shifted to the ceding company, and result in the 
increasing net loss ratio. Note that in the pure excess case. the loss ratio is 
reduced from 60% gross, to 55.3% net. The excess reinsurer, however, pays 
no ceding commission. This increases the expense ratio, and hence the net 
combined ratio. 

When 75% of the risk is proportionally reinsured, no losses can penetrate 
the excess retention. This is simply because policy limits are $1 .OOO,OOO. and 
the 25% of each loss retained net and treaty can never be greater then the 
$250,000 excess treaty retention. At this point, ceding larger shares of a risk 
no longer affects the net loss ratio. 

THE MIXING PRICE RULE 

The mean value of a random variable representing the size of claim after 
application of proportional reinsurance and excess of loss reinsurance can be 
expressed analytically. This allows the calculation of the loss cost portion of 
the excess reinsurance rate. The risk charge and expense load components of 
the reinsurance rate are ignored for the purposes of this demonstration. 
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Let Ax) be the probability density function of X, the random variable rep- 
resenting the amount of one claim. We will assumef(.r) is appropriately truncated 
to reflect the policy limit issued by the ceding carrier. Let u be the fraction of 
each loss retained by the ceding insurer after proportional reinsurance, and M 
the retention under the excess reinsurance program. (This notation is identical 
to that used in Centeno [2].) 

Then. if X is the gross claim size. the amount of claim after both reinsurances 
apply is given by 

X(u,M) = Min (uX,M). 

First, we establish the expected value of X under each single reinsurance 
type alone. 

If only excess reinsurance applies, 

E(min(X,M)) = JY &r)dr + M J;,Jt.~)dr. 

If only proportional reinsurance applies. 

E(ux) = a J;; ,@.r)dr. 

It will also be useful to have an explicit formulation of the probability 
density of claim size subject to a proportional reinsurance. Let K‘~ be the density 
of x subject to proportional reinsurance that retains lt)o& of each claim. 

Then g,(x) = l/af(.r/a) will yield the expected value above. (Note: This is 
a probability density function since 

J g&)dr = (l/a) Jf(.TIU)dV 

Let .V = ur; then dy = ud.r. Now we can substitute to obtain: 

J g,(.r)dx = (I/a) J-J.v)UdJ 
= Jfcy,dy = I.) 

Then applying excess of loss reinsurance to a claim after proportional 
reinsurance yields an expected value of 

E( min(uX,M)) = Jf q,,(x)cl.r + M S; g,,(.r)dr. 

Again set a~ = .r, so that du = tr& and .r = M if and only if y = M/u. 
Rewrite these integrals in terms of the variable x. 
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E(min(uX,M)) = J;“:“’ (uy)( l/u)f(v)udv + it4 Jk, (l/a)f(y)udy 

= a JP yfly)dy + A4 Jrfk,flf(v)dJ 

= u[JY yJy)dy + (Mlu) J;,<,f(.Y)dyl 

= uE(min(X,Mla)) 

This means that the expected net value of the amount of a single loss subject 
to the combination of proportional reinsurance that retains lOOa% of each claim, 
and excess reinsurance that retains the first M amount of each claim, is equivalent 
to lOOa% of the expected value under an excess of loss reinsurance that retains 
that first M/u amount of each gross claim. This is a specific instance of the 
more general Mixing Moment Principle demonstrated below when we discuss 
stability. 

Excess treaty premiums are usually calculated using a rate as a percent of 
subject premium. 

Let Rare XS(u.M) represent the excess rate for an excess retention M after 
a proportional retention of 1 OOu% 

For purposes of simplifying the demonstration, recall that f(x) reflects un- 
derlying primary policy limits and assume that the excess treaty limit extends 
above the primary policy limits. This allows us to ignore the truncation term 
due to the excess layer limit. 

If we consider only the loss component of the excess premium rate, before 
any proportional reinsurance, the excess loss rate for limits of L over a retention 
of M will be 

Rule xs(l M) = JVM (x - Jw A-w.r + CL + w JFLX+Mfc.r)~ 
Subject Premium 

in the most general case. 

This simplifies to Rate XS( 1 ,M) = 
$; (x - M) f(x)d.x 
Subject Premium ’ 

because of our assumptions. 
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After proportional reinsurance that retains lOOtr% of each claim. let Rura 
XS(u,M) represent the rate. Then 100~1’7 of the prior sub.ject premium is now 
subject premium for the excess treaty, and 

Rate XS(u.M) = 
a[ J;‘)<, (.a - M/u~~.r)dr] 

u(St4bject Pretnium) 

Thus, we can state the following: 

Mixing Price R14le: The excess reinsurancc loss rate for a retention M under 
a proportional reinsurance that retains lOOn% of each loss is identical to the 
excess loss rate over a retention of M/u, with no proportional reinsurance. 

Note one simple implication of the Mixing Price Rule. The limited mean of 
a distribution F under limit M is given by 

EM(X) = j-y .a dF + M( I - F(M)) 

and is the “complement” of the excess loss cost s;, (.I- - M)dF. 

Then the excess reinsurance loss rate under a mixed reinsurance case must 
be smaller than under pure excess if and only if the limited mean of the 
distribution limited at M/m is larger than the limited mean at M. Thus we have 
the following: 

Mixing Loss Rufio Rule: If the limited mean of a loss distribution is a strictly 
increasing function of the limit, then the net loss ratio will always deteriorate 
under a mixed reinsurance case. 

Only a most unusual loss distribution does not have the property of increasing 
limited means. Consider the following: 

If MI < Mz then 

unless J$i (.v - M)dF + J-if: (Mz - Ml)dF = 0. 

The above sum of integrals is zero only if dF = 0 for .\- z Ml. 
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Thus if MI < Mz, then s;, (x - M,)dF > $& (x - M2)dF; hence EA.,, 5 
EM2 with equality only if dF=O for .X 2 MI. In practice, equality will occur 
only whenf(.r), the density associated with F, is truncated by policy limits. 

We can write the full excess reinsurance rate as follows including the risk 
charge, RC(o,M). and treaty expenses. E.vp: 

Rate XS(rr.M) = 
u$G ,,(x - Mla)f(x)d~t- + RC(a,M) + Exp 

a(Suhject Premium) 

Without further rnformation about the form of the risk charge, little more 
can be said about the excess rate. Note that Buhlmann 131 has identified four 
premium calculation principles based on the form of the risk charge. These 
principles calculate the risk charge on the expected value, standard deviation or 
variance of losses. or utility theory. If the premium calculation principle used 
in the excess rate is stated, then explicit calculations of equivalent excess rates 
in terms of the limit M/u are possible. 

APPLICATIONS TO PROPERTY INSURANCE 

The phenomenon described in the casualty example is due to the shape of 
the size of loss distribution.. The same deterioration of net loss ratio due to 
mixed reinsurance situations will occur in property situations, if the underlying 
size of loss distributions follow any of the accepted probability models. A study 
of this subject done by Shpilberg [4] indicates that a loss distribution that falls 
between the lognormal and Pareto distributions in its tail behavior is an adequate 
model for tire insurance. The Mixing Price Rule discussion shows that if the 
limited mean is an increasing function of the limit M, any mixture of proportional 
and excess of loss reinsurance worsens the net loss ratio. 

As we have seen, the limited mean condition is not very restrictive. Any 
reasonable choice of size of loss distribution, in particular the Pareto or log- 
normal, will satisfy this condition. Thus, the adverse consequences of mixing 
reinsurance will also hold for property risks. 

There are, however, special characteristics of property risks that are notable. 
The policy limits of a property policy may be extremely large if there is a high 
Probable Maximum Loss level. The traditional approach to reducing this loss 
exposure to a level appropriate for an excess reinsurance treaty is the use of 
proportional reinsurance. Hence, a very high percentage of policy limits may 
be ceded before excess reinsurance. 
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Thus. property risks are a particularly fertile ground for finding examples 
of mixed reinsurance situations. The use of facultative reinsurance on large 
property risks is traditional and necessary to cut large policy limits down to net 
and treaty positions appropriate for the insurer’s treaty capacity. This usage can 
have a substantial impact on the net loss ratio. 

A property example will show net effects of proportional reinsurance similar 
to the casualty example already considered above. 

Suppose the insurer has an excess of loss property treaty with $2,000,000 
limits over a retention of $250.000. for this example. If a property risk requiring 
policy limits of $20 million is written, the underwriter must place $18 million 
of facultative reinsurance before he can place the remaining risk into his treaty. 
Most facultative property reinsurance has traditionally been on a proportional 
basis. resulting in a 90% cession to the facultative reinsurers. 

If the gross premium for the risk is $500,000, we will cede $450,000 to the 
facultative reinsurers and retain $50.000 net as shown in Exhibit 3-3.4. 

The results of the reinsurance can be quite different based on the type of 
property risk being underwritten. The differences we can attempt to model will 
be reflected in the Probable Maximum Loss (PML) potential, which should be 
closely related to the underlying size of loss distribution. The policy limits 
should also be based on the PML potential. For instance, if the risk consists of 
a single large warehouse. there is a potential probability of losing the entire 
insured value. For the purposes of this discussion we will model this by choosing 
a size of loss distribution with 1 chance in 10.000 of a $20.000,000 loss. A 
lognormal distribution with a mean of $67,500 and a coefficient of variation of 
IO is used. The net expected loss ratio in this case is shown in Exhibit 3 as 
74%. with a combined ratio of 110%~. 

As expected, this net position compares unfavorably to the gross position 
with an 85% combined ratio. Note that this example demonstrates a capacity 
problem, where facultative reinsurance nr~.st be used before the treaty can come 
into use. The use of excess of loss facultative reinsurance in place of proportional 
may improve these net positions. if such reinsurance is available at an appro- 
priate price. If not, the only recourse to the underwriter is to price the gross 
risk appropriately to achieve his target 95% net combined ratio. A premium of 
$610,000 for this risk would be required to achieve a 95% combined ratio under 
this mixing situation with 90% proportional reinsurance. This would require 
pricing to a gross loss ratio of 49% and a gross combined ratio of 74% for the 
property. It is unlikely that the marketplace will allow such pricing. 
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EXHIBIT 3 

MIXING COST WORKSHEET 

Policy: a property example 

Input parameters: 

Direct premium 
Policy limits 
Underlying retention 
Expected loss ratio 
Commission ratio 
Other expense ratio 

Reinsurance: 
Percent proportional 
Ceding commission 

Excess retention 
Excess limits 
Excess rate 
Ceding commission 

Loss distribution: 
Lognormal 

Net results: 

Loss ratio 
Expense ratio 
Combined ratio 
Net underwriting profit 
Cost of Reinsurance: 
with mixing 
Pure excess 
Additional cost of reinsurance 
Cost of Mixing Calculation: 
Actual cost of excess reinsurance 
Cost based on subject premium 
Cost of mixing 

mean 
cv 

Gross 

60.0% 
25.0 
85.0% 

$0 
0 

$0 

$500,000 
$20,000,OfJo 

$0 
60.0% 
15.0% 
10.0% 

90.0% 
25.0% 

$250,000 
$2,000.000 

30.0% 
0.0% 

$67,500 
IO 

Proportional 

60.0% 
28.0 
88.0% 

$67,500 
0 

$67,500 

Excess 

27.8% 
5.0 

32.8% 

$10,836 
47,155 

($36,319) 

$10,836 
4,715 

$6.121 

193 

Net 

73.8% 
35.7 

109.5% 
($3,336) 

$78,336 
47,155 

$31.181 
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EXHIBIT 3.1 

Policy Parameters: 

1. Premium 
2. Commission 
3. Other expenses 
4. Expected losses 
5. Profit/risk charge 

6. Retention 
7. First-$ equivalent* 
8. Nominal layer width 
9. First-$ equivalent* 

10. Effective layer width 
I I. First-$ equivalent* 

12. Claim severity 
13. Claim frequency 
14. Commission ratio 
15. Other expense ratio 
16. Premium rate 

17. Fluctuation loading 
18. Expected loss ratio 
19. Combined ratio 

20. Cost of reinsurance 

MIXING C‘OSI‘ WC)KKSHI:I:I 

Property Example 
Allocation of Layer Costs & 

Determination of Net Position 

(a) 
Gro\s 

(I?) (C) (d) 
Proporttonal Excess Net 

$500.000 
7 5 .ooo 
50.000 

300,ooo 
75.000 

%50.000 $ I 5 SKX) $35,0(M) 
I 12.500 0 (37.500) 

I 3.500 750 50.000 
270.0(X) 4.164 25 .X36 

54.000 IO.OX6 (3.336) 

$0 NA $250.000 $0 
0 NA 2.500.000 0 

20.000.000 Ix.000.000 2,ooo.ooo 250,oot~ 

2o.ooo,ooo NA 2o.ooo.ooo 250.0(M) 

2o.ooo.ooo I 8 .ooo,ooo ‘0,ooo.ooo 25o.ooo 
2o.ooo.o(x) NA 2o.ooo.ooo 250,000 

$65.577 S5Y,OlY $3 10.572 $5,64X 
4.575 4.575 0.013 4.575 

15.0% 2.5.07f 0.0% ~ 107. I% 

10.0% 3.0% 5.0% I42.Y% 
100.0% 90.0% 30.0% 7.0% 

75 0% 20.0% 242.x 

60.0% 60.0% 27.8% 

X5.0% 8X.Ocr, 32.8% 

$0 $67.500 $10.836 

- 12.9% 

73.8% 

109.5% 

$78.336 

* First-dollar cqulvalent is the amount of lir\r dollar loss needed to hit this limit. 
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EXHIBIT 3.2 

LOSS DISTRIBUTION TABLE 

Primary retention 
Reinsured’s retention 
Primary policy limit 
Effective excess limit 

LOSS Number Amount 
Amount Distribution Distribution 

x f#(x) f $(-d 

$0 0.0000000 0.0000000 
2,500,000 0.9970693 0.7281287 

20,000,000 0.9999017 0.9423854 
20‘000,000 0.9999017 0.9423854 

Distribution type: lognormal 
Distribution parameters: 

mean= $67,500 p. = 8.8123226 
cv= 10 u = 2.1482831 
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2. 
3. 
4. 
5. 
6. 

8. 
9. 

IO. 
Il. 
12. 
13. 

14. 
15. 
16. 
17. 

MIXING REINSURANC’t: 

EXHIBIT 3.3 

DERIVA IION OF LOSS CHARA<‘ IRIS1 IC’S 

FOR EXCESS TREA-It 

Primary frequency 
First dollar equivalents: 
Primary retention 
Primary policy limit 
Reinsured’s retention 
Effective reinsurer limit 
Ratio of excess carrier’s frequency 
to primary frequency {I .O ~ (4b)J ’ 
(I.0 - (2b)J 
Excess layer frequency 
Expected claim5 per policy term 
(6) x (I) 
Severity calculations: 
Mean loss (SOL) 
Layer loss cost {(SC) ~ (4c)) X (X) 
Limit loss cost (Sal X {I ~ (Sb)) 
Number of layer losses (Sb) - (3b) 
Number of limit losses I.0 - (5b) 
Average severity of reinsured lowe\ 
{(9, + (IO,)/ {(II, + (l2,1 
Less: effective retention 
Excess layer severity ( 13) ~ (lit) 
Percent pro rata reinsurance 
Excess reinsurer’s severity 
(15) x {I - (16)) 

(a) 
Amounts 

4.575 

(b) 
f#fx) 

$0 0 0 
$20.000,000 0.99990169 0.9423854 

$3,500,000 0.99706933 0.7281287 
$20.000.ooo 0.99990169 0.9423854 

0.3% 

0.013 

%67.500 
$14.46’ 
9; I ,966 

0.2X3% 
0.010% 

$5.605.719 
$2.s00.000 
$?.lOS.719 

YO.OC/r 

$3 10.573 
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EXHIBIT 3.4 

DERIVATION OF LOSS CHARACTERISTICS 
FOR PRIMARY POLICY 
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Expected losses 
First dollar equivalents: 
Primary retention 
Primary policy limit 
Severity calculations 
Mean loss (SOL) 
Layer loss cost 
R3c) - C2c)J x (4) 
Limit loss cost (3a) X /I - (3b)j 
Number of layer losses 
(3b) - (2b) 
Number of limit losses I .O - (3b) 
Average severity of primary losses 
0 + (6)) 1 j(7) + (8)) 

10. Less: retention 
11. Primary policy severity (9) - (10) 
12. Primary policy frequency 

Expected claims per policy term 
(I) l(11) 

(a) 
Amounts 

$300,000 

(b) fc) 
fhw f %4-r) 

$0 0 0 
$20,000,000 0.99990169 0.9423854 

$67,500 

$63,611 
$1,966 

99.990% 
0.010% 

$65,577 
$0 

$65,577 

4.575 



Note one very important implication of this example. We can no longer 
assume the underwriter can price this risk on the basis of gross frequency and 
severity characteristics alone. In order to achieve combined ratio results that 
allow long-run survival of the ceding insurer. the gross price must be set based 
on gross frequency and severity. the excess reinsurance rate. the amount of 
proportional reinsurance needed for capacity, and the ceding commission struc- 
tures. 

The excess reinsurance rate must also anticipate some use of facultative 
reinsurance for capacity purposes. Specitically. for property risks the excess 
rate must be calculated anticipating a certain amount of use of proportional 
reinsurance. This will be the case if a loss rating approach using past experience 
is used to calculate the excess rate. and this past period reflects a similar use 
of proportional reinsurance as anticipated for the next treaty year. 

OTHER MAGNIWDE lIlW:(‘ I (‘ONSIDEKATIONS 

The net results of the casualty and property examples are not only a function 
of the percentage of proportional reinsurance used. Both the excess reinsurance 
rate and the ceding commission structure have an effect on the final net position. 
A detailed treatment of these subjects is not possible here. but some issues that 
relate to the magnitude effect will be mentioned. 

Tll~ E.rc~~.ss Rein.swrrrzc~e Rute: In the casualty example. an excess treaty 
was specified with a $2,000.000 limit over a $2SO.O00 retention. Depending on 
the underlying size of loss distribution one might assume that a “correct” excess 
loss rate could simply be calculated from the distribution statistics. However, 
the policy subject to the excess reinsurance could be any one of the following. 

A primary policy with policy limits of rF-.-. 7 ~50.000 that uses the entire 
reinsurance layer of $2.000.000. 

If the primary policy limits are only $1 .OOO,OtlO the rate should be substan- 
tially different. 

If the $1 ,OOO,OOO policy limits are excess of a self insured retention of 
$100.000. the appropriate rate for the excess reinsurance would also be different. 

If the ceding company writes an excess policy for $1 .OOO.OOO limits over a 
primary policy with $500,000 limits, the correct excess rcinsurance rate is again 
different from any of the above. 
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One can immediately see that with no change in the underlying risk’s loss 
potential (as characterized by its size of loss distribution), several different but 
“correct” excess reinsurance rates are possible. It becomes apparent that one 
cannot speak of a proper excess reinsurance rate on a portfolio without some 
measure of the anticipated underlying distributions of retentions and policy 
limits in the portfolio. Thus, the excess reinsurance rate must be formulated in 
anticipation of a certain portfolio structure. 

This point has practical implications that generate mixing situations. Suppose 
an excess reinsurance program has been negotiated, with the parameters agreed 
to for two years forward. At the time of the negotiation, management of the 
ceding carrier fully intended to write a book of small surplus lines SMP risks. 
An excess and surplus lines carrier is usually very responsive to market oppor- 
tunities; hence, six months into the program, management modifies its original 
marketing plan because conditions are excellent for obtaining strong rates on 
small casualty umbrellas. Management wants to take advantage of this oppor- 
tunity. The original excess reinsurance rate, however, contemplated the SMP 
book and carried a provisional rate of 10%. The same calculations based on a 
book of small umbrella business would yield a proper rate of 35% for the excess 
reinsurance. 

An excess reinsurance program can easily have 10 to 20 participants and 
have taken months of effort to place. Renegotiating the treaty at every shift in 
portfolio composition is not a realistic option. Furthermore, the excess and 
surplus lines market depends heavily on the reinsurance market for capacity. 
Many such companies may cede out 50% or more of their gross writings. Thus, 
including this umbrella book in the treaty at an inadequate excess rate is not a 
viable option for management concerned about maintaining a long term presence 
in the market with consistent reinsurer support, 

As a practical matter, the ceding underwriter has little real choice but to 
attempt to “protect the treaty.” As we have seen, the ceding underwriter has 
great control over his treaty loss ratio, through his use of proportional facultative 
reinsurance. By altering the percent of proportional reinsurance placed on a 
risk, the size of loss characteristics of the net position can be fit into the treaty 
rate structure. 

Consider the casualty example given above to be representative of a typical 
umbrella policy. At a 10% rate, the excess reinsurer would receive $40,000 of 
premium and would have an expected loss ratio of 210% ($85, I14 / $40,000), 
if no proportional reinsurance were placed. After the 50% proportional cession, 
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however, the excess reinsurer would receive $30.000 of premium at the 10% 
rate. With expected losses of $18.853. this would yield an expected loss ratio 
of 94%. much better than the original 2 10%. Under the original scenario 
presented for the casualty example, the placcmcnt of 50% proportional reinsur- 
ante was not warranted. Under this new scenario. however. the 50% propor- 
tional reinsurance should clearly be placed before the identical policy is placed 
into the excess treaty. The cost of mixing in this case should be paid to the 
cxccss reinsurer to bolster an inadequate treaty rate for a rish not contemplated 
in the original treaty price. 

Thus, the situation is manageable but becoming exceedingly complex. The 
underwriter must ascertain a correct price for the risk insured on a gross basis. 
This is no different from any underwriting situation. In addition. we again see 
that an essential part of the direct company’s underwriting and pricing process 
must be the correct placement of reinsurance to achieve an acceptable net result. 
Even this, however, is not enough. The underwriter must also balance out his 
net position against the results he is passing on to the excess reinsurer. He must 
be able to maintain long-term acceptable results for his excess reinsurance 
support. in the face of continuing shifts in his portfolio composition due to 
market conditions. 

The calculations we have made in our exnmples are complex and assume 
knowledge of the size of loss distribution underlying the policy. This is clearly 
an area where actuarial expertise can be applied to produce general guidelines 
and specific pricing procedures that aid in determining the net underwriting 
position. Without such pricing analysis available, management will have no 
effective way of controlling and evaluating the proper. coordinated use of 
proportional and excess reinsurancc. 

i% Gearing Frrctor: The existence of the override in the ceding commission 
has been remarked on above. The purpose of the override is to reimburse the 
ceding company for the non-commission expenses it incurred in writing the 
direct business. Unfortunately, in times of excessive reinsurance capacity the 
override is used as a competitive tool by reinsurers. Thus. the casualty example 
considered above may be entitled to a IO% override based on the expense 
structure of the ceding carrier: however. a particularly aggressive reinsurer may 
offer an override of 15%. This. of course. makes the determination of the net 
position even less straightforward. and offers a powerful incentive to cede larger 
proportional reinsurance amounts. 
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The excessive override will tend to improve the combined ratio while the 
mixing effect will act to worsen the combined ratio. Hence, it becomes even 
more imperative to calculate the net position before a risk is bound and facul- 
tative arrangements settled. For instance, the 50% proportional reinsurance on 
the casualty risk with a 15% override would yield the same net loss ratio of 
72.2%, but an improved net combined ratio of 100.8%. The effect on the 
property example with 90% ceded proportional reinsurance is even more le- 
veraged, with a net loss ratio of 73.8%, but a net combined ratio of 45.2%, 
much improved from the original 110%-/c. 

The combined effect of an excessive override and a large percent of pro- 
portional ceded reinsurance may not only cancel out the mixing penalty, but 
also produce a favorable net combined ratio even when the direct risk is severely 
underpriced. For example, if the property risk example of Exhibit 3 were priced 
at a 100% gross loss ratio, the premium would be $300,000. Net retention after 
a 90% proportional reinsurance cession only would be $30,000 of written 
premium and expected losses. Expenses before ceding commission total 25% 
of gross premium, or $75,000. The ceding commission at a 15% override would 
total 30% of the $270,000 ceded premium, or $8 1,000. Thus, after the propor- 
tional cession the insurer would have net premium income of $30,000 and net 
costs as follows: 

Net incurred losses: $30,000 
Direct expenses: 75,000 
Ceding commission: (8 1,000) 

Net incurred costs $24,000 

This is equivalent to a combined ratio of 80%, a substantial improvement 
over the direct combined ratio of 125O/ at which the risk was written direct. 
This aspect of the override in proportional reinsurance has been termed the 
“Gearing Factor” by Buchanan IS]. The existence of the gearing factor effect 
can overwhelm the unfavorable mixing effects in the transaction. 

STABILITY EFFECTS 

One of the less obvious effects of mixing proportional and excess of loss 
reinsurance types is the effect on the variation of the net loss ratio after rein- 
surance. The use of proportional reinsurance below an excess of loss treaty 
actually makes the resulting net aggregate loss costs more variable than would 
be the case under the excess treaty alone. This is significant because stability 
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of net results is one of the most important benetits resulting from an excess 
reinsurance treaty. Any degradation of the stability “component” of the excess 
treaty “product” makes the treaty worth less. 

We will use the casualty policy example to form a cmall portfolio that will 
allow us to investigate the impact on stability of mixing reinsurance. Assume 
we have a portfolio of 50 policies identical to the casualty example. Therefore. 
we have a book of excess casualty business that generates $30 million of gross 
premium and an average of 70.5 claims annually (SO X 1.410). These claims 
follow the lognormal size of loss distribution specified earlier. i.e. with a mean 
of $30,000 and a CV of 5.0. The expected loss ratios on this book of business 
are identical to those on the single policy-that is, 60% gross. 55% if only the 
excess treaty is applied but 72% in the mixed reinsurance case. 

The aggregate loss distribution differs in the case of the portfolio and the 
single policy. As a simple demonstration. there is a substantial probability (24%) 
that the single policy will be loss-free. It is effectively impossible. however. 

FIGURE 3 
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for the entire portfolio to be loss-free in any year (a probability of 2.4 X IO-” 
of a loss-free year). The expected annual claim cost of the portfolio is 
$12.000.000 (70.5 claims at $170,200 each) and the aggregate losses of the 
portfolio are distributed as shown in Figure 3. All computations of aggregate 
loss distributions were made using the algorithm developed by Heckman and 
Meyers [ 61. 

In order to make comparisons between aggregate loss distributions. we will 
normalize such distributions. by setting the mean aggregate loss to loo%, and 
present the probabilities of achieving various percentages of the mean. This 
maintains the relative shape of the distribution and facilitates the comparison of 
different distributions with various underlying aggregate loss means. The nor- 
malized aggregate distribution of the unreinsured portfolio above can be seen 
as Figure 4. This distribution has a coefficient of variation of 0.2. 

FIGURE 4 
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After placement of the Excel treat! on this portfolio. the spread of the 
distribution is much reduced. as can be seen from Figure 5 below. Note that 
the probability of losses totalling over 150% of expected is substantially reduced 
by use of excess reinsurance. and the entire curve is distrihuted closer around 
its mean of I .O. The coefticient of variation after excess reinsurance is reduced 
to 0.155. 

FIGURE 5 
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Now, if the 50% proportional reinsurance is placed on each of the 50 policies 
in the portfolio. we obtain the aggregate loss distribution shown as Figure 6. 
This distribution clearly lies between the unlimited case and the pure excess 
case in its dispersion of possible loss amounts. Note the larger area under the 
curve over 1.50% of mean loss, for example, than under the pure excess treaty. 
The coeffcient of variation has also increased to 0.175. 

FIGURE 6 
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Since all aggregate distributions are normalized. they can be compared on 
the same scale as shown in Figure 7. This chart shows that the “spread” of 
possible results around the mean loss in the mixed case lies between the 
unlimited and pure net of excess distribution. In thih sense. the stability paid 
for by purchase of excess reinsurancc is “undone” by application of the pro- 
portional reinsurance. 

Regarding the stability of the portfolio. we are most interested in the behavior 
of the aggregate loss distribution at the extreme right-hand tail. As shown in 

FIGURE 7 
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Figure 8. the tail behavior of the aggregate loss distribution in the mixed 
reinsurance case is substantially more severe than the pure excess treaty case. 

The problem, of course, is that we are paying the same 30% rate of net and 
treaty premium for excess reinsurance protection in both the mixed reinsurance 
and pure excess cases. As Figure 8 shows, the protection from extreme fluctua- 
tions we receive for our 30% rate is substantially less in the mixed case. 

While the normalized aggregate distributions are useful for comparing ag- 
gregate loss distributions with disparate means, it is also important to focus on 

FIGURE 8 
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the bottom line-the distribution of combined ratios under the three different 
scenarios. The combined ratio becomes a random variable through the equation: 

Combined Ratio = Expected 1,oss Ratio x Nor-mall/cd ,4ggregate Loss 
Ratio + Expcnsc Ratio. 

Figure 9 shows the distribution of’ combined ratio\ t’k the three accnario~. 
Clearly. the range of alternatives under the mixed reinsurancc scenario is the 
least desirable, not only in terms of its expected value. but also in terms of the 
probability of experiencing extremely adverse combined ratios. Note that there 
is little or no chance of a combined ratio over IX’% in the cast of the gross or 
pure excess case. The mixed case, however, leaves us expoxcd to a substantial 
probability that a combined ratio over I20% will be experienced. 

Even the combined ratio comparison doe?, not take the absolute talc into 
account. Dollar magnitudes are important. howe\,cr. it‘ WC arc to gauge the 

FIGURE 9 
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impact of the reinsurance programs on company surplus. An additional way of 
evaluating the bottom line is to simply review the distribution of statutory 
underwriting protit or loss. Profit can be represented as a random variable by: 

Profit = Premium - Aggregate Losses - Expenses 

where Aggregate Losses is the random variable we have been examining above. 
but not normalized. The resulting distribution is shown in Figure 10. 

This chart is clearly of interest in evaluating ruin probabilities. Note that 
the gross loss distribution has a non-negligible probability of suffering an 
underwriting loss of over $4 million. The pure excess reinsurance makes a loss 
of over $3 million unlikely, and even the mixed case reduces the chance of 
suffering a $4 million underwriting loss significantly. The price that must be 
paid for this protection in the mixed case, however, is an expected underwriting 
loss. Thus the mixed case is clearly inferior to pure excess reinsurance in terms 
of both magnitude and stability of net underwriting results. 
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A usable table representing the tail probabilities for the three scenarios is 
presented below. 

TAII. PROBABILITIES 
Probabilities of’ Exceeding the Percent of Mean 

Type of Reinsurance 

Percent of 
Mean 

125% 
130% 
135% 
140% 
145% 
150% 

Gross 

I1 .07% 
7.45 
4.85 
3.06 
1.87 
1.11 

Excess Over 
Proportional 

8.15% 
4.Y3 
2.84 
I .56 
0.82 
0.41 

Excess OnI> 

5.77% 
3.09 
I .55 
0.73 
0.32 
0.14 

151% I .oo 0.36 0.1 I 
152% 0.84, 0.3 I 0.09 
153% 0.80 0.27 0.08 
154% 0.72 0.23 0.07 
155% 0.64 0.20 0.05 

Mean aggregate loss $12,000,000 $S.O54,O50 $ 7.742&X) 
Net premium 20,000,000 7.oOO.000 14.000.000 
Expenses 5 ,000 ,000 2,500 .ooo 5 .ooo ,000 
Expected U/W profit $ 3.000.000 $ (554.050) pd I .257,200 

Using this table it is possible to investigate alternate scenarios. using pro- 
portional only or excess of loss only. to achieve a desired risk level with net 
incurred loss. For instance, suppose that the 50% proportional reinsurance were 
placed in order to keep the probability of an extra S3.000.000 loss at about I % 
or less. From the middle column, there is about a 1% probability of a loss over 
142% of mean aggregate loss in the mixed reinsurance case. This corresponds 
to $2.1 million dollars of loss over the expected amount of $5,054,050. Taking 
expenses into account. about a 1% chance of suffering an underwriting loss of 
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$2.7 million is implied. Note that in order to achieve this protection. the 
company will have an expected underwriting loss of about $500,000. 

Is there a more rewarding way to achieve the same risk position’? There are 
at least two other reinsurance configurations that appear preferable. For instance, 
on a gross basis. there is a I % probability of suffering a loss of $18,000.000 
or higher. This is equivalent to a I’% chance of an underwriting loss of 
$3,000,000 or more. A 10% cession of this portfolio would reduce the 1% level 
of loss to $2.7 million. leaving an expected underwriting profit of $2.7 million. 
Even though the 90% proportional retention tail does not diminish as fast as the 
mixed case, the I% level of risk is the same and expected profit is $3.2 million 
more. 

Similarly, the 1 c/c expected loss level for the excess of loss portfolio is 138% 
of the mean, or an underwriting loss of $1.7 million. Thus, the 1% loss level 
is much lower than the mixed reinsurance case, and the expected underwriting 
profit of $1.3 million is much higher than the mixed case. 

To summarize, at the 1% probability of loss level we have inspected three 
alternatives. and the mixed case is the least desirable. 

I% level of 
u/w loss 

Expected protit 

90% $250,000 Excess Over 
Quota Share 50% Proportional 

($2.700,000) ($2,700,000) 
$2,700,000 ($554,050) 

$250,000 
Excess Only 

($ I .700,000) 
$I .257,200 

The simple calculations above hint at the complexity of the optimal rein- 
surance problem. Surprisingly. actuaries have studied this complex question 
extensively. See. for instance, Beard, Pentikainen, and Pesonen 171 for a bib- 
liography. Three related results of interest are given: 

I. For a hxed amount of reinsurance premium and ignoring risk loadings, 
aggregate stop loss is the optimum reinsurance to minimize the variance 
of net results [S]. 

2. With a risk load that increases with variance, proportional (quota-share) 
reinsurance is optimal to minimize the reinsurance cost for a given 
variance level [9]. 
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Finally, 

3. Allowing mixed reinsurance treaties and constraints on both mean and 
variance, in most cases pure excess of loss reinsurance is optimal to 
minimize the skewness of net aggregate loses [ IO]. 

In a mixed reinsurance situation. a decrease in the amount retained after 
proportional reinsurance will decrease the stability of the net aggregate losses. 
In this sense proportional reinsurancc will negate the major benetit of’ excess 
reinsurancc. 

As a measure of stability we will use the coeflicient of variation of net 
aggregate loss results. Recall that if X is a random variahlc. UC dcline 

cv (Xi = 
Standard Deviation (X) 

Mean (X) 

Let X be the random variable representing the amount of’ one claim. and N 
be the random variable representing the number of claims in the experience 
period. Let M be amount retained under an excess of loss treaty, and lOOu% 
be the percent retained under proportional reinsurance. 

Let X(u.M) = min(l1X.M) represent the net amount of one claim under both 
reinsurances. This is the random variable of claim amount under the mixed 
reinsurance situation. 

Let AA be the X-th moment of N, the number of losses, and PI the h-th moment 
of X, the amount of loss. Then for any compound process Y defined by 

we know that 

E(Y) = A,p, and. 

Thus. 

Var (Y) = A, Var (X) + Var (N) PI’ (see Miccolis I l l I) 

Var (Y) = At (Pz - PI’) + (h2 - AI’) PI’ 

in terms of central moments. 
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And. in general, 

which simplies to 

(-vz (y) zz p1 + 
AZ-Al-A,’ 

Alp,- A,? 

Both the mixing price and stability rules are essentially a result of the 
following relationship that holds for the kth central moment of X(N.M), 
denoted by &(a,M). 

Mixirlg Moment Principle: Pk(a,M) = uhpL( I .Mlu) 
Proof: By delinition, 

where g,,(x) = ( l/rr)J,~/u) is the probability density of .r under proportional 
reinsurance. If we set us = s, then crdy = d\-, and s = M if and only if y = 
M/u. Now rewrite pi in terms of x, 

&(u,M) = &%q)“( l/u]~(j~)u& + M” J;,J Ila)f~)o& 

= uA jf ” $fly)dy + M” l,&<, f(y)& 

&(a.M) = u’[Ji?j” ?‘2fl?‘)& + (M/u)” J;,<, j(g)dyl. 

= u’f31( I ,M/u), 

which proves the result. 

Following notation in Centeno 121, let Y(u,M) represent net aggregate loss 
after application of both the proportional and excess reinsurance. Then 

Y(u,M) = Crr min(uX,,M). 

We are interested in the stability of Y(u,M) as u decreases. The following 
rule characterizes the stability of Y as a changes. 

Mixing Sruhiliry Rule: The stability (coefficient of variation) of net aggregate 
losses after retention of lOOa% under proportional reinsurance and retention of 
M under an excess of loss treaty is equivalent to the stability of net aggregate 
losses under an excess treaty with a retention of M/u. 
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Proof: Write the coeffcient of variation in terms of A, and P,(u.M), 

CV(Y(rl,M)) = [A,P+,M) + (A2 - A, ~ A;) p,(,~M)‘j’ ’ 
A,P,(u.M) 

= lA,u’Pd I .M/tr) + (A? ~ A, ~ Af)c&( I .M/LI)']' ' 
A,uf3,( I,M/u) 

= [A,&dI,Mh) + (AZ - A, - A;)@,( l,M/c~)‘]’ ’ 
A,P,fI,M/tr) 

= CV (Y(1 ,Miu)), 

which proves the result. 

We would suspect that the stability of net losses decreases as the retention 
of the excess of loss treaty increases. This is indeed the case. as shown in the 
Appendix. Thus, we can conclude that. in general. as the percent retained under 
proportional reinsurance decreases. and the excess of loss retention M remains 
fixed, the stabilty of net results of the portfolio decreases. 

This shows that the situation of Figure 7 is not the result of any fortuitous 
choice of distributions or parameters. For any compound process. represented 
in general by Y(u,M). the distribution of net results after mixed reinsurance will 
show more “spread” than the pure excess reinsurance case but less than the 
gross position. 

The application of an excess of loss treaty after a proportional reinsurance 
transaction on a policy has been shown to have a significant adverse impact on 
the net expected loss ratio. In addition, the stability of net results sought from 
the excess of loss reinsurance is also adversely affected. The Mixing Price Rule 
and Mixing Stability Rule allow us to evaluate these effects of the mixing 
situation. The Cost of Mixing Worksheet allows us to calculate the net position 
in a mixed reinsurance situation. These three tools should allow the underwriter 
to make appropriate evaluations of pricing and facultative reinsurance decisions 
in individual risk situations. 

From a broader management perspective, the mixing of reinsurance at the 
individual risk level presents a difficult management control issue. In a worst 
case scenario, if company underwriters were to make facultative reinsurance 
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arrangements without proper coordination and direction from management, a 
substantial loss ratio penalty on the entire book of business could be expected. 
Extremely adverse fluctuations in net results would also be possible. The chal- 
lenge for management is to establish guidelines and controls enabling under- 
writers to understand the structure and objectives of overall corporate reinsur- 
ante. The underwriters will then be able to make decisions on individual risk 
facultative reinsurance placements that work with, not against, the excess treaty. 
It is hoped that the ideas developed here will give actuaries a start in attempting 
to explore this aspect of the underwriting and pricing process. 

Pricing a risk at a profitable direct premium is not sufficient to assure a net 
profit when significant amounts of different reinsurances apply. As our examples 
show. one can price the risk perfectly on a direct basis, yet still have an 
unfavorable net combined ratio. due to facultative placements with high mixing 
costs. 

On a corporate level, the more subtle concept of probability of ruin comes 
into play. We have shown that unanticipated large amounts of proportional 
placements can destabilize net results significantly. While most insurance or- 
ganizations are large enough to make the probability of ruin of academic interest 
only, the chance of suffering extremely large combined ratios increases as the 
share retained on a proportional basis decreases. The protection in the excess 
treaty is negated by proportional reinsurance. 

Finally. most of the discussion has been from the viewpoint of the ceding 
company. The mixing cost, however, can work both ways. The excess treaty 
rate is calculated anticipating a certain percent of the book will be ceded 
proportionally before the treaty applies. If the ceding company finds that it can 
only cede a smaller than anticipated portion of its business facultatively. it will 
be putting larger shares of each risk into the treaty. This will result in a highly 
leveraged adverse loss ratio and destabilization effect on the excess treaty. This 
is a sensitive issue for both the excess reinsurer and the ceding company. 

Pricing actuaries on both sides of the excess reinsurance treaty transaction 
have an interest in the mixing effects. The more use a ceding company makes 
of proportional reinsurance prior to the treaty, the more important the mixing 
effect becomes. An increased awareness of the effects of mixing should decrease 
the likelihood of unexpected adverse consequences to both treaty partners. 



Tko~~rrr; As the fraction (1 retained under proportional reinhurance de- 
creases, the stability of the net aggregate losses decrease\. 

Proof: We wish to prove that as (I decreases. the quantity CV(Y(tr,M)) 
decreases. From the Mixing Stability Rule. it suffices to prove that if 
MI < Mz. then. 

CV(Y(I.M,)) < CV(Y(I.M?)). 

This is the case it’ 

(S/SM) CV(Y( I .M)) 1 0. 

which is equivalent to 

(S/SM) CV’(Y( I .M)) .> 0. because (‘v 2 0 

Let /XL represent &( I .M): then 

AL+ (A: - A; - A,) 
A,pi A: -’ 

Since only & is a function of M. 

(S/&f) (y( y( 1 Jf)) = 

= pIp2’ - 2fvPI’ 
A,@: 

Thus, (616M) (CV’(Y( I .M)) > 0 it’ and only it’ 

p,pz’ - 2P43,’ > 0. 

Now compute PI’ and f32’. 

(SiSM) p, = S/SM (JfxtlF + M( I - F(M))) 

= I - F(M). and 

(S/SM, pz = S/SM (f;;.U’dF + M211 ~ F(M))) 
= 2M(l - F(M)). 



Then. 

so. 
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PIP2 = [f, + M(I - F(M))I [2M(l - F(M))], and 

2(3&i,’ = 2[/2 + &(I - F(M))I [I - FMf)]. 

3pJ3, = 2/,M(I - F(M)) - 212(1 - F(M)) 

= 2( I - F(M)) (MI, - 12) 

= 2( I - F(M)) JR’x(M - x)dF. 

217 

Since 0 < .r < M. we know M - .r > 0; hence. this integral is positive, and 
the result is proved. 

(The author thanks professor Nasser Hadidi of the University of Wisconsin- 
Stout for his helpful discussions on this proof.) 
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PRESIDENTIAL ADDRESS - NOVEMBER 11, 1986 

YESTERDAY, TODAY AND TOMORROW 

PHILLIP N. BEN-ZVI 

One of the most common techniques which actuaries use is to examine past 
experience, evaluate current conditions, identify factors which are changing, 
and then use these to project the future. In my remarks today, I want to follow 
this same actuarial approach and first look back at history, then comment on the 
current situation, and finally make some predictions about the future. 

All of us are familiar with the history of the Casualty Actuarial Society, 
which is summarized very well on the first page of our Yearbook. Our Society 
goes back to 1914; from that, one might assume that the first casualty actuaries 
probably began their practice a few years previously. The Yearbook then goes 
on to report that actuarial science originated in England in 1792, in the early 
days of life insurance. In preparing for this speech, I did some further research 
on actuarial history; and I am pleased to be able to tell you that not only is the 
actuarial profession far older than reported in the Yearbook, but the first actuary 
was a casualty actuary, not a life actuary. In fact, the actuarial profession goes 
back to Biblical times, and the name of the first actuary is a very well-known 
name - Joseph, that wild dresser with the technicolor coat. 

I can see from the reactions of some of you that this is no surprise as there 
are clearly some Biblical scholars in this group. It is really all very obvious if 
you read the Bible carefully. If you recall, Joseph was a dreamer and an interpre- 
ter of dreams, in other words, clearly a practitioner of actuarial science. Further- 
more, he was hated by his brothers - need I say more! 

The Bible tells us quite a bit about Joseph’s actuarial career. He was the 
first to identify the underwriting cycle, which at the time consisted of seven fat 
years followed by seven lean years. This led to his first assignment which was 
to price a new product, drought insurance. The premium was, of course, not 
paid in cash in those days, but was rather in the form of grain, and when his 
company put away reserves they did it literally - they put it into silos. 

When pricing his product he built in an underwriting profit factor, and this 
allowed his company to have a consistently excellent total rate of return. He 
established his company’s loss reserves on an ultimate basis. He did not believe 
in discounting to present value. A recently discovered papyrus contained the 
Annual Statement of his company and, believe it or not, it included an early 



version of Schedule P. And what a runoff it showed - the reserves were perfectly 
adequate at the end of the seven lean years of paid claims. Joseph maintained 
a solid balance sheet for his company and he had no hesitation in signing his 
statement of actuarial opinion. Perhaps the best proof of his abilities is that he 
was the first actuary to become president of his insurance company - in fact, of 
all of Egypt. 

Of course, Joseph had some advantages. His company had no competitors 
and, therefore, as the actuary, he did not have to deal with marketing people. 
He also controlled the courts, and so, had no problems with attorneys. He had 
no difficulties with uncollectible reinsurance as “innocent capacity” had not yet 
been born. Finally, he had a tough bunch of claims adjusters working for him. 
In his time, pain and suffering was not something that inflated claims payments; 
rather, it was something that happened to the claimant if he tried to inflate the 
claim. 

Several thousand years may have passed since Joseph’s time and the world 
may have changed quite a bit, but the insurance industry hasn’t really changed 
that much. We are still going through underwriting cycles and the latest one has 
had almost seven lean years. We have just come through a period of grossly 
inadequate prices and of clearly inadequate loss reserve levels. Various industry 
observers had estimated the reserve deficiency at anywhere from 10% to 20% 
or more, with much higher numbers for some lines of business. We have suffered 
through a period of horrendous underwriting results and extremely inadequate 
rates of return, culminating in a year in which the entire industry produced a 
net operating loss before adjusting for tax credits. We have had a record number 
of insolvencies of both primary and reinsurance companies, including some 
fairly sizeable ones. 

It would be easy for us to sit here today feeling comfortable and enjoying 
improved industry results. We certainly see sharply improved commercial lines 
experience and there is no question that many companies have been strengthen- 
ing their balance sheets. But many problems still remain, and many lines such 
as personal lines and workers’ compensation have a long way to go before the 
results will be satisfactory. The uncertainty of the tort system still hangs over 
our heads as reforms thus far have been modest at best. Who is to say which 
substance will represent the next environmental pollution problem and what 
price the industry will have to pay to reimburse the injured parties? In personal 
lines, we need to deal with the impact of lower gas prices and greater automobile 
usage plus the proliferation of smaller, more damageable, and less protective 
automobiles. Reversing the recent trend towards a free market, regulatory pres- 
sures are becoming greater in reaction to the corrective actions taken by the 
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insurance industry, and to the political pressures applied by those who oppose 
tort reform. As an industry, we also have to face an increased financial burden 
because of the new federal income tax law. At the same time, no one truly 
believes that loss reserves are yet adequate for the industry and we have certainly 
not seen the last of significant insurer insolvencies and their resulting impact on 
guarantee funds and uncollectible reinsurance. Indeed, the latter two are part of 
a vicious cycle which could in turn trigger even more insolvencies. 

With this picture of the recent past and current conditions in mind, let’s 
ask ourselves some questions. What has the track record of actuaries been during 
these lean years? How many of us, whether employed by companies, consulting 
firms, or regulators, can say that we made recommendations during these last 
few years that would have produced adequate prices, resulted in adequate re- 
serves, avoided the poor returns that weakened many companies, and, in fact, 
avoided some of the insolvencies that occurred? Can all of the blame be laid at 
the doorstep of the top management of the insurance companies or the operating 
or marketing people in those firms? Are we really blameless as actuaries, or did 
our judgements and recommendations get colored by the events around us? Did 
our hearts often take over from our minds? Did some of us who are part of 
management confuse our management roles with our actuarial roles? In other 
words, are we comfortable that we have fulfilled our professional responsibilities 
during these lean years? 

All of us in this room certainly recognize that actuarial work is a combina- 
tion of art and science. Indeed, our entire educational process in the CAS reflects 
that reality. Our syllabus and our continuing education programs attempt to 
provide a knowledge of the needed mathematics and actuarial techiques, plus 
an overall understanding of all elements impacting the insurance business includ- 
ing policy coverages, underwriting, marketing, claims, regulation, and financial 
matters. That lengthy and continuing process of education is an attempt to 
provide us, as actuaries, with a broad view of every aspect of the business so 
that we can best make our actuarial judgements. 

I feel relatively comfortable that we, as actuaries, know how to handle the 
science part of our responsibilities, difficult though it is. It has been the applica- 
tion of the actuarial art that has often been the source of our problems. Let’s 
look at data as an example. Not only do we rarely have the right kind of data 
or enough of it to satisfy our needs, but it is in the interpretation of this informa- 
tion where the most professional judgement is required. Evaluating changes in 
the way in which business has been done or will be done is truly an actuarial 
art in that much of this is yet to be reflected in the available data. The values 
we place on the impact of underwriting actions that have been taken, marketing 
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plans which may have changed the book of business, changes which may have 
been made by the claims department in adjusting or reserving cases, or even 
changes in processing policies, claims, or expenses are crucial. Finally, and 
most obviously, the judgements which we regularly make in selecting the most 
appropriate actuarial methodology and the most appropriate assumptions are a 
significant part of the actuarial art. 

Our actuarial responsibility is, first and foremost, to provide the best esti- 
mate possible, ignoring any and all constraints. This may mean that actuarially 
indicated reserves may be much lower or much higher than those currently being 
carried by the company, and their use might present financial problems. It may 
mean that the indicated price is far higher or far lower than the market will bear. 
I do not in any way suggest that the best actuarial estimate should be made using 
a static approach. In fact, a very important part of the analysis is to help deter- 
mine the optimal business strategy in a dynamic environment. In making the 
best estimate of the price which will produce the target rate of return, one has 
to consider the effects of the marketplace and the change in the mix of business 
that may result from a proposed set of rates. 

A second but still very important actuarial responsibility is to determine the 
financial effects of strategies being considered by the employer or client. That 
may differ from the best estimate. The insurance business is a risk business and 
our role as actuaries is to evaluate those risks and provide that information to 
the client or employer. This will allow the management of the company to 
consider the risk versus reward tradeoffs in reaching a business decision. 

We do no one any favors if we mingle real world constraints with our 
attempts to come up with a best estimate. If we do so, we quickly start to have 
our own judgements clouded and we begin to believe the resulting answers and 
think that they are indeed the best estimate. Similarly, our employers think that 
they are getting the best actuarial advice, when in fact they are not. Our role is 
to maintain our objectivity and our heads even when those around us may be 
losing theirs. Many actuaries have been gaining important managerial respon- 
sibilities. This could easily result in swelled heads, but even a swelled head 
cannot hold two hats at the same time. It is our actuarial responsibility to wear 
each of those hats, but only one at a time. 

I think it is a safe prediction to say that we will soon have another oppor- 
tunity to test ourselves on the proper exercise of actuarial responsibility. There 
will not be any gong that goes off to announce the beginning of the next cycle, 
but I think it is fair to assume that some elements will begin in the very near 
future. After all, cycles really begin when competitors perceive that some seg- 
ments of business have reached, or will shortly reach, a point at which extraor- 
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dinary profit opportunities are presented. In a business like ours, in which there 
are hundreds or even thousands of competitors, it requires only a small number 
of significant players to try to exploit those opportunities before we are off and 
running into a competitive period. This is actually a good and healthy part of 
our economic process. The danger begins, however, when the perceptions of 
potential profitability are wrong, and there is no appreciation of when the profits 
are disappearing as other competitors react in defense of their markets. Under- 
writing cycles develop segment by segment and heat up as more and more 
companies attack and defend their markets. 

I would suggest that the actuary has a very vital role to play in this process 
and, in fact, can be the key to making this a healthy rather than a destructive 
process. First, the actuary must be involved in identifying the desirable segments 
and in quantifying the available profit margins. Next, he should establish a 
dynamic model that can provide insight into the most likely results as com- 
petitors react. His model must be able to quantify when the return becomes 
substandard and hence when opportunity turns into a problem. Finally, the 
actuary must regularly analyze the true results of the venture so that he can 
provide advice to management and allow them to take appropriate action based 
on sound financial input. The actuary’s tools are becoming more sophisticated 
and actuaries are becoming more and more skilled. I strongly believe that if we 
carry out our actuarial responsibilities, we can help to minimize the amplitude 
of the next cycle. 

It appears that one lesson the industry has learned from the last cycle is 
that there is a severe economic impact from operating in a business with so many 
competitors. When this is combined with the fact that insurance is a business 
which is perceived as having products which are commodities, and which has 
a substantial social content and a large degree of regulation, the results are 
almost inevitable. It produces an industry whose business is excessively competi- 
tive and one in which the competition is largely price-driven. It produces a 
business which is excessively cyclical; a business in which profits are always 
being squeezed and hence, tend to be inadequate even over a long period of 
time. And, finally, it produces a business in which there are more and more 
companies in weakened condition, leaving either a social problem or a burden 
to be borne by the remaining carriers. 

What we have, therefore, been seeing and will continue to see is a move- 
ment to segment the marketplace and a tendency for companies to find niches 
over which they can have much greater control. There is also a movement to 
differentiate products - whether through changes in the insurance contract, 
through service, delivery mechanisms or any other approach which fertile minds 
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can discover. Again, the identification of those profitable market segments is an 
actuarial challenge and responsibility; the development of the new products, and 
particularly their pricing, will require the greatest exercise of actuarial science 
and the most refined use of the actuarial art. 

I am also convinced that we will be seeing more and more consolidation 
in the insurance industry. The industry simply cannot support so many carriers 
in the long run. Small and medium sized carriers will disappear at an accelerating 
rate and will be able to survive only if they mm themselves into insurance 
boutiques - that is, only if they offer something unique in the way of expertise, 
product, or service to their ultimate customers. Even the larger companies have 
discovered that they cannot be successful being all things to all people. Even 
those companies are trying to restructure themselves into conglomerations of 
specialty segments. Mergers and acquisitions will, therefore, increase greatly in 
the coming years and actuaries will be called upon to play an important role in 
those activities. It is clearly the actuary who is best able to assess the proper 
value of the companies involved. But actuaries will need to be much more 
knowledgeable in financial matters than we currently are. This is an area where 
our syllabus has traditionally been weak, though I am pleased to see that we 
have already begun to work on strengthening the financial content, and I believe 
we will see much more of this in the future. Presently, there are very few 
actuaries who serve as chief financial officers of their companies, but, in my 
opinion, actuaries have that unique combination of broad knowledge of the 
insurance business and quantitative skills which, if combined with an increase 
in financial expertise, make actuaries the ideal chief financial officers for insur- 
ance companies. 

At the same time, our customers have become much more financially 
sophisticated. After years and even decades of modest inflation and low and 
stable interest rates, we saw a rapid acceleration in the late 1970s and the early 
198Os, with inflation rates rising into the double digits and interest rates ap- 
proaching 20%. No longer were people satisfied putting their savings into pass- 
book accounts paying 4%. Consumers ran from bank to bank looking for higher 
yields on certificates of deposit, money market funds, tax deferred annuities, 
and all forms of high yielding securities or tax deferred investments. The so- 
called cash flow underwriting of the last cycle was not solely driven by indi- 
vidual companies’ desires to increase their market shares and get the use of 
premium dollars in order to invest in high yield securities. It was also driven by 
the sophistication of the large commercial insured who became very conscious 
of the cost of money and wanted that to be reflected in his insurance arrange- 
ment. To some extent, even smaller commercial insureds and individuals became 
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very conscious of the cost of money in the insurance process, as installment 
plans proliferated, often at little or no finance charge. During the last decade 
the genie escaped from the bottle, and make no mistake about it, we are never 
going to get the genie to go back into the bottle. 

Even though interest rates have dropped dramatically and inflation has been 
reduced to a very modest and fairly stable level for the last couple of years, we 
can expect to see much more consciousness of the value of money. Not only 
will large commercial insureds be interested in cash flow type programs, but the 
same concepts will expand into the medium size account range. Insureds have 
also become more aware of alternatives available to them in managing their risk. 
Unless tax considerations make it undesirable to do so, more and more insureds 
will choose to retain or self insure the lower layers or relatively predictable 
levels of losses and will demand an unbundling of their insurance programs. 
Thus, companies will increasingly get into the sale of services with insurance 
provided only for the levels which the insured decides he cannot afford to retain. 
I believe the same will apply to the personal lines area, as individuals will 
increasingly be willing to self insure and raise average deductibles sharply. 
Finally, the products offered by our industry will cross traditional barriers with 
contracts beginning to encompass both the personal and commercial needs of 
the customer, property and casualty as well as life insurance needs, insurance 
plus other financial service needs, and all of this will become international in 
scope. 

For actuaries, this process will have enormous implications. Our knowledge 
and our skills will have to expand rapidly to keep pace with these developments. 
In designing and pricing our products, we will no longer be able to assume 
relatively stable inflation or interest rates. We will have to develop the ability 
to assess the risks and determine the appropriate financial reward, explicitly 
dealing with this important variable. We have been through only one, relatively 
brief period of sharply changing inflation rates, and our track record of reserving 
and pricing in that environment was certainly very poor. Insurance companies 
in other countries deal with this problem constantly, and we will need to develop 
the sophisticated methodologies to separate this risk element and build it into 
our modeling approaches. 

This changing environment also highIights the important task we face of 
learning to measure the true surplus needs of our business. For years we have 
lived by rules of thumb of premium to surplus relationships, as a rough measure 
of the capital requirements of our business. We have all known of the deficien- 
cies in this approach and they have never been more obvious than in recent 
years. Whether explicitly or implicitly, all companies do, and will continue to 
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do, business on a total return basis. That total return must be measured in 
relation to the capital requirements and then compared to an appropriate target 
return in order to retain and attract capital to our business. We can no longer 
live with simplistic measures of surplus or with relative surplus requirements for 
different lines of business. We need to develop and refine the theoretical means 
to determine absolute surplus needs and this must be done on a product by 
product basis. Clearly, the surplus requirements are quite different if an insurer 
is providing ground up coverage as compared to catastrophic layers only. If we 
fail to get our hands around this problem, we are not only doomed to go through 
further severe underwriting cycles, but also to see a large number of insurer 
insolvencies in the coming years. 

In the long run, economic realities will break down most political and 
regulatory barriers. We are already seeing an increasing internationalization of 
our business and more is certain to come. Presently, North America generates 
the lion’s share of the insurance business worldwide. While there will undoub- 
tedly be future growth in our part of the world, the business here is relatively 
mature, but the growth opportunities in other parts of the world are simply 
enormous. This puts the CAS in a very interesting position. We remain the only 
actuarial organization in the world solely devoted to educating and accrediting 
actuaries specifically in the property and casualty insurance area. But almost all 
of our members, with only a literal handful of exceptions, reside in North 
America. Is actuarial science really nation-specific or is it merely some of the 
exam content and the language of our syllabus and exams that limit its scope? 
Shouldn’t there be some way for the Casualty Actuarial Society to play a larger 
role in the education and development of casualty actuaries in other parts of the 
world? There are many problems to overcome in attempting this, not the least 
being political, but it is an area which I would recommend that our future leaders 
explore since we are in a unique position to aid in the development of the 
property and casualty insurance business throughout the world. 

The insurance business has been through some tough times lately and more 
difficulties and challenges face us in the years ahead. If the business were 
simple, it would be no fun and certainly there would be little need for actuaries. 
However, just as the genie will never go back into the bottle, our business will 
never become simple again. In fact, quite the contrary. As the business becomes 
more complex and our customers more sophisticated, actuaries must do likewise. 
The ability to evaluate and quantify risk and the appropriate reward will differen- 
tiate the successful from the unsuccessful company. And actuaries will, there- 
fore, play an increasingly key role in the business. I think that few, if any. of 
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us have regretted our decisions to become actuaries. We are part of a fascinating, 
vital business and members of a vibrant and growing actuarial organization. We 
have come a long way since our first actuary, Joseph, and the future we face is 
bright and exciting. 
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MINUTES OF THE 1986 ANNUAL MEETING 

November 9-l I. 1986 

OPRYLAND HOTEL. NASHL’ILL1:. ‘IXNNESSEE 

Sunday, November 9, 1986 

The Board of Directors held their regular quarterly meeting from I?:00 p.m. 
to 4:00 p.m. 

Registration was held from 4:Oo p.m. to 6:X1 p.m. 

A presentation to the new Fellows and Associates on the workings of the 
Casualty Actuarial Society was held from S:30 to 6:30 p.m. The Vice Presidents 
made short presentations concerning their areas of responsibility and the work- 
ings of the committees which report to each of them 

A general reception for all members and guests was held from 6:30 to 7:30 
p.m. 

Registration continued from 7:00 a.m. to 755 a.m. 

President Phillip Ben-Zvi opened the meeting at 8:00 a.m. The first order 
of business was the admission of new members. Mr. Ben-Zvi recognized the 
24 new Associates and presented diplomas to the 36 new Fellows. The names 
of these individuals follow. 

Amundson, Richard B. 
Bailey. Victoria M. 
Bellusci, David M. 
Chiang, Jeanne D. 
Driedger, Karl H. 
Faltas, Bill 
Forde, Claudia S. 
Hankins, Susan E. 

Hollister, Jeanne M. 
Hosford, Mary T. 
Huyck, Brenda J. 
Johnson, Andrew P. 
Kelley, Robert J. 
Klinker, Frederick L. 
Koupf, Gary I. 
Krakowski, Israel 

Littmann, Mark W. 
Livingston, Roy P. 
Loper, Dennis J. 
Lyons, Daniel K. 
Martin, Paul C. 
McClure, John W., Jr. 
McDonald, Gary P. 
Menning, David L. 
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Myers, Thomas G. 
Noyce, James W. 
Potts, Cynthia M. 
Reppert, Daniel A. 

Aquino, John G. 
Atkinson, Roger A., III 
Billings, Holly L. 
Blakinger, Jean M. 
Davis, Brian W. 
Feldblum, Sholom 
Francis, Louise A. 
Gorvett, Richard W. 

Ruegg, Mark A. 
Silver, Melvin S. 
Terrill, Kathleen W. 

Townsend, Christopher J. 
Vitale, Lawrence A. 
Weinman, Stacy J. 

ASSOCIATES 

Griffith, Roger E. Mulvaney, Mark W. 
Groh, Linda M. Schwandt, Jeffory C. 
Handte, Malcolm R. Snow, David C. 
Harbage, Robin A. Svendsgaard, Christian 
Hill, Tony D. Sweeney, Eileen M. 
Johnson, Eric J. Wachter, Christopher J. 
Leiner, William W., Jr. Wacker, Gregory M. 
Mueller, Nancy D. Whitehead, Guy H. 

Mr. Ben-Zvi then introduced M. Stanley Hughey, who delivered a brief 
speech to the new members concerning the responsibilities of a casualty actuary. 

Mr. Ben-Zvi then introduced Mike Fusco, Vice President of Programs, who 
gave a brief summary of the program content. 

Mr. Ben-Zvi next introduced Stephen Philbrick, Chairman of the Committee 
on the Review of Papers, who gave a brief summary of the new Proceedings 
papers. Mr. Ben-Zvi then called for reviews of prior papers from those in the 
audience. There were none. 

Mr. Ben-Zvi concluded the business session at 9:00 a.m. 

At 9:OO a.m., Representative John J. LaFalce delivered the keynote speech. 
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At IO:30 a.m., Ms. Mavix Walters moderated a panel entitled “The Liability 
Crisis-Legislative, Regulatory and Company Perspectives.” Her panel con- 
sisted of: 

David Gates 
Commissioner 
Nevada Insurance Division 

Judge Frederick B. Karl 
Partner 
Karl, McConnaughhay. Roland, Maida and Beal 

Peter Lardner 
President and CEO 
Bituminous Casualty Corporation 

The panelists reviewed their thoughts on the current liability crisis 

Lunch was served from 12:OO to I:30 p.m. Mr. E. J. Fenncll. a reinsurance 
consultant. delivered a luncheon speech. 

Beginning at I:30 p.m.. there were a series of concurrent sessions. including 
five Procwditirr~qs paper presentations. and four workshops. 

The new Proccwfi~~gs papers presented were: 

“A Probabilistic Model for IBNR Claims” 
Farrokh Guiahi, Assistant Professor 

Hofstra University 

“The Cash Flow of a Retrospective Rating Plan” 
Glenn G. Myers, Associate Professor 

Dept. of Statistics and Actuarial Sciences 
Division of Mathematical Science 
The University of Iowa 

“The Cost of Mixing Reinsurance” 
Ronald F. Wiser, Senior Actuarial Officer 

St. Paul Fire & Marine Insurance Co. 

“A Bayesian Credibility Formula for IBNR Counts” 
Dr. I. Robbin, Director & Actuarial Associate 

CIGNA Corporation 
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“A Formal Approach to Catastrophe Risk Assessment and 
Management” 

Karen M. Clark, Vice President 
InSoft, Inc. 

The workshops covered the following topics: 

I. “An Actuary’s Perspective on: Underwriting” 

Moderator: Russell S. Fisher, Second Vice President 
General Reinsurance Corporation 

Panelists: Frank Neuhauser, Vice President & Actuary 
AIG Risk Management 

Dennis R. Henry, Vice President 
Huggins Financial Services 

2. “An Actuary’s Perspective on: Data Management” 
CAS Committee on Management Data and Information 

Michael F. McManus, Chairman 
Edward W. Ford Donna S. Munt 
Anthony J. Grippa Raymond F. Nichols 
Philip D. Miller Glenn J. Pruiksma 

3. “An Actuary’s Perspective on: Marketing” 

Moderator: David Skumick, Vice President & Actuary 
F&GRe 

Panelists: James R. Young, Vice President - Sales 
Allstate Insurance Company 

David M. Klein, Second VP - Marketing 
Hartford Insurance Company 

4. “Personal Umbrella Ratemaking” 

Moderator: Robert T. Muleski, Associate ActuXy 

Liberty Mutual 

Panelists: Alice H. Gannon, Actuary 
USAA 

Lee R. Steeneck, Second Vice President 
General Reinsurance Corporation 
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The President’s Reception was held from 6:?0 p.m, to 7:30 p.m. 

T14esh~. Not,emher I I, I986 

Tuesday morning from 8:30 a.m. until I I:30 a.m. was devoted to a contin- 
uation of the concurrent sessions from Monday afternoon. 

Mr. Ben-Zvi reconvened the business session at I I:45 a.m. and delivered 
his Presidential Address. 

Lunch was served at 12: I5 p.m 

At 1:3O p.m.. Mr. Kevin Ryan moderated a panel entitled “How Will Tort 
Reform Affect Claim Costs and Insurance Availability’!” Hi\ panel consisted 
of: 

Anne E. Kelly 
Assistant Chief Consulting Actuary 
New York Insurance Department 

Franklin W. Nutter 
President 
Alliance of American Insurers. 

Sidney Gilreath 
Parliamentarian 
Association of Trial Lawyers of America 

Mr. Ben-Zvi then closed the meeting and thanked those individuals who had 
planned the meeting and executed those plans. The meeting was adjourned at 
?:I5 p.m. 
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In attendance, as indicated by registration records, were 1.59 Fellows, 
61 Associates. 9 Guests, 11 Subscribers, 7 Students, and 76 Spouses. 

Aldorisio, R. P. 
Alff, G. N. 
Amundson, R. B. 
Bailey, R. A. 
Bailey, V. M. 
Bashline, D. T. 
Bass, I. K. 
Baum, E. J. 
Bell, L. L. 
Bennett, N. J. 
Bensimon, A. S. 
Ben-Zvi, P. N. 
Bertles, G. G. 
Bill, R. A. 
Blanchard, R. S., III 
Bomhuetter, R. L. 
Bothwell, P. T. 
Brooks, D. L. 
Brubaker, R. E. 
Bryan, C. A. 
Ciezadlo, G. J. 
Cis, M. M. 
Crowe, P. J. 
Cm-y, A. C. 
Daino, R. A. 
Davis, L. S. 
Dean, C. G. 
Degemess, J. A. 
Donaldson, J. P. 
Domfeld, J. L. 
Evans, G. A. 
Eyers, R. G. 
Fallquist, R. J. 
Fein, R. I. 
Ferguson, R. E. 

FELLOWS 

Ford, E. W. 
Forde, C. S. 

Finger, R. J. 

Fowler, T. W. 

Fisher, R. S. 

Furst, P. A. 
Fusco, M. 
Gannon, A. H. 

Fitzgibbon, W. J., Jr. 

Gleeson, 0. M. 
Golz, J. F. 
Gottlieb, L. R. 
Graves, J. S. 
Grippa, A. J. 
Hafling, D. N. 
Hallstrom, R. C. 
Hankins, S. E. 
Hartman, D. G. 
Harwayne, F. 
Hein, T. T. 
Henry, D. R. 
Honebein, C. W. 
Hoppe, K. J. 
Hughey, M. S. 
Huyck, B. J. 
Inkrott, J. G. 
Johe, R. L. 
Johnson, A. P. 
Johnson, L. D. 
Johnson, M. A. 
Kallop, R. H. 
Kaufman, A. M. 
Kelley, R. J. 
Kelly, A. E. 
Khury, C. K. 

Klinker, F. L. 
Koski, M. I. 
Koupf, G. I. 

Kilboume, F. W. 

Krakowski, 1. 

Klein, D. M. 

Krause, G. A. 
Kucera, J. L. 
Larose, J. G. 

Kleinman, J. M. 

Lehman, M. R. 
Levin, J. W. 
Linden, 0. M. 
Lino, R. A. 
Livingston, R. P. 
Loper, D. J. 
Lyons, D. K. 
Macginnitie, W. J. 
Mahler, H. C. 
Marker, J. 0. 
Martin, P. C. 
Mathewson, S. B. 
McClure, J. W., Jr. 
McDonald, G. P. 
McManus, M. F. 
Menning, D. L. 
Meyer, R. E. 
Meyers, G. G. 
Miccolis, J. A. 
Miccolis, R. S. 
Miller, M. J. 
Miller, P. D. 
Mohl, F. J. 
Mulder, E. T. 
Muleski, R. T. 
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Munro, R. E. 
Munt, D. S. 
Murdza, P. J., Jr. 
Murrin, T. E. 
Myers, T. G. 
Newman, S. H. 
Nichols, R. S. 
Noyce, J. W. 
Patrik, G. S. 
Petersen, B. A. 
Phillips, H. J. 
Pinney, A. D. 
Potts, C. M. 
Pratt, J. J. 
Pruiksma, G. J. 
Purple, J. M. 
Reppert, D. A. 
Riddlesworth, W. A 

Anderson, B. C. 
Aquino, J. G. 
Atkinson, R. A., III 
Balling, G. R. 
Billings, H. L. 
Blakinger, J. M 
Cadorine, A. R. 
Chorpita, F. M. 
Clark, D. G. 
Comstock, S. J. 
Connor, V. P. 
Costner, J. E. 
Crifo, D. A. 
Douglas, F. H. 
Driedger, K. H. 
Easlon, K. 
Feldblum, S. 

FELLOWS 

Rodermund, M. 
Roth, R. J., Jr. 
Ruegg, M. A. 
Ryan, K. M. 
Scheibl, J. A. 
Schwartz, A. I. 
Shrum, R. G. 
Silver. M. S. 
Simon, L. J. 
Skumick. D. 
Smith, F. A. 
Smith, L. M. 
Snader, R. H. 
Steeneck, L. R. 
Snug, E. J. 
Suchoff. S. B. 
Surrago, J. 
Terrill, K. W. 

ASSOCIATES 

Francis, L. A. 
Gorvett, R. W. 
Griffith, R. E. 
Groh, L. M. 
Harbage, R. A. 
Head, T. F. 
Hill, T. D. 
Jaso, R. J. 
Jensen, J. P. 
Johnson, E. J. 
Johnson, R. W. 
Johnson, W. A. 
Kollmar. R. 
Lafrenaye, C. 
Masella, N. M. 
Montigney, B. A. 
Mueller, N. D. 

Tiller, M. W. 
Toothman, M. L. 
Townsend, C. J. 
Tuttle, J. E. 
Tverberg, G. E. 
Van Slyke, 0. E. 
Venter, G. G. 
Vitale, L. A. 
Walters, M. A. 
Walters. M. A. 
Webb, B. L. 
White, C. S. 
White, D. L. 
Wilson, J. C. 
Wiseman, M. L. 
Wiser, R. F. 
Wright, W. C., III 
Zatorski, R. T. 

Mulvaney, M. W. 
Napierski, J. D. 
Neuhauser, F., Jr. 
Orlowicz. C. P. 
Pei, K. J. 
Putney. A. K. 
Riff, M. 
Sansevero, M., Jr. 
Schultz. R. A. 
Schwandt, J. C. 
Simons, M. M. 
Snow, D. C. 
Steinen, P. A. 
Svendsgaard, C. 
Sweeney, E. M. 
Torgrimson. D. A. 
Urschel, F. A. 
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ASSOCIATES 

Van Cleave, M. E. 
Visner, S. M. 
Von Seggem, W. J. 
Wachter, C. J. 

Wacker, G. M. 
Waldman, R. H. 
Webb, N. H. 

Whitehead, G. H. 
Wilson, 0. T. 
Youngner, R. E. 

GUESTS - SUBSCRIBERS ~ STUDENTS 

Booher, J. P. 
Brickman, S. J. 
Clark, K. 
Davis, B. 
Demarlie, G. 
Earls, R. R. 
Fennell, E. 
Guiahi, F. 
Franz, V. 

Fujii, Y. Robbin, I. 
Gutman, E. Roberts, J. 
Huang, M. I. Santomenno, S. 
Ingraham, H. G., Jr. Smith, D. A. 
Jensen, P. A. Taylor, J. 
Lepere, C. Thomas, A. M. 
Maxon, R. G. Van Leer, P. 
Michelson, J. Wilson, G. 
Mohler, E. Wright, J. 



REPORT OF THE VICE PRI?SII)EN’f-r\l)MINISTRATION 

The purpose of this report is to pro\ idc the membership with a brief summary 
of CAS activities since the last annual meeting. 

I Y86 was a good year for the CAS with IO6 new members admitted and 
totai membership climbing to I .775. Recognking that continued rapid growth 
could impair the ability of the CAS office to continue its ef’licicnt operation. a 
study of the future of the CAS office ~4;~s undertaken in 1985. During I Y86, 
the following recommendations which emerged from the study were imple- 
mented: 

* An additional staff member. Jennifer Dcwar. Joined the CAS oftice as 
Assistant Manager. 

* New and expanded CAS office space has been occupied by the staff. 
. Computer hardware (IBM PC-AT) and software have been acquired. 
. All tinancial and accounting record\ have been automated. 
* Examination registration and student cramination history are being auto- 

mated. 
The CAS ix also financially healthy. Despite the expansion of the CAS 

office, surplus was increased durin g fiscal vear I YXh. A budget li)r fiscal year 
1987 approaching $600,000 was approved with no increase in dues or exami- 
nation fees. 

The Board of Directors, with prime responsibility for setting policy. met 
four times in lY86. A meeting of the CAS Regional Affiliates was held in 
conjunction with the February Board meeting. Scvcral policy decisions were 
made. These policies were published in the rl(~t~c~ir~l K~~\*i~,~t~ and also appear 
in the 1987 edition of the Yc,clrhook. 

The Executive Council. with primary responsibility for day to day activities. 
also met four times during the year. Continuing with the precedent established 
last year, the Committee Chairpersons meeting was held in conjunction with 
the April meeting of the Executive Council. 
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The activities of both the Board and the Council included the following 
items: 

* Guidelines were established for maintaining the CAS surplus at an appro- 
priate level. 

* Guidelines were established for the administration of CAS trusts, me- 
morials. and bequests. 

* A policy for the investment of CAS funds was adopted. 
* A policy was adopted allowing CAS meetings to be open for press 

coverage. 
* Separate U.S. and Canadian Part 8 examinations were authorized begin- 

ning in 1987. 
* The Syllabus was revised with respect to jointly administered examinations 

to reflect modilications resulting from the Society of Actuaries’ Aexible 
education program. 

* The Board of Directors authorized exposure of an amendment to Article 
II of the CAS Constitution. Article II deals with the purpose of the CAS. 

* A discussion draft of Ratemaking Principles was authorized for distribution 
to the membership. 

* A Committee on Financial Analysis was appointed replacing the Com- 
mittee on Financial Reporting Principles. 

* A Committee on Valuation Principles and Techniques was created under 
the Vice President-Development. The appointment resulted from the rec- 
ommendations of a Task Force appointed in 1985 to study and plan for 
CAS activities related to the valuation actuary issue. The purpose of the 
committee is to develop valuation principles and techniques applicable to 
property/casualty business and to monitor development in this area. 

. The Casualty Actuaries of the Bay Area became a new regional affiliate. 

. The CAS extended an invitation to ASTIN to hold a colloquium in the 
United States in November 1989. 

* Joint sponsorship with the CIA of a Canadian loss reserve seminar was 
authorized. 
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For 1987. the Board of Directors elcctcd the following Vice Presidents: 

Vice President-Administration Richard Snadcr 
Vice President-Development Charles Bryan 
Vice President-Membership Michael Toothman 
Vice President-Programs Michael Fusco 

The membership elected David Hartman as President-Elect and four new 
Board members: Irene Bass, Allan Kaufman. LeRoy Simon and David Skurnick. 

Finally, the Audit Committee examined the (‘AS books for fiscal year I%6 
and found the accounts to be properly stated. The year ended with an increase 
in surplus of $61,905.4X. Members‘ equity nou’ stands ax $330363.38. sub- 
divided as follows: 

Michelbacher Fund 
Dorweiler Fund 
CAS Trust 
Scholarship Fund 
CLRS Fund 
CAS Surplus 

$64.35 I .65 
9.7003.x3 
2.195.78 
7.188. IY 
5.000.00 

742.073.Y3 
S330.563.3X 

Respcctfullq submitted. 
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FINANCIAL REPORT 
FISCAL YEAR ENDED 9130186 (ACCRUAL BASIS) 

INCOME 

Dues $146.872 80 
Exam Fees 137 324 72 
Meetings 21789334 
Proceedings 9 456 50 
Readings 21 056 15 
lnYllallOnal Program 8 740 00 
Interest 35 809 76 
Actuarial Review 234 50 
Yearbook 1,684 00 
Mweltaneous (256 63) 

Total $578815 14 

DISBURSEMENTS 

Printing & stat\onery 
Office Expenses 
Exam Expenses 
Meettng Expenses 
Library 
Insurance 
Math Assoc of America 
Pres & Prl?s -Elect 
Expenses 
Diamond Jubilee Expense 
Reserve 
Other 

TOtal 

$191,94795 
124,041 54 

1,934 49 
157 750 39 

705 38 
8 778 65 
2,000 00 

7 500 00 

18.729 37 
3 521 89 

$516 909 66 
Income $578815 14 
Expenses 66 516,909 
Change I” CAS Surplus $61 905 48 

ACCOUNTING STATEMENT (ACCRUAL BASIS) 
ASSETS g/30185 9130186 CHANGE 

~ ~ 

Checking Account 
Money Markel Fund 
Bank Cert~t~cates 01 Deposit 
U S Treasury Notes & Bills 
Accrued Interest 
CLRS Fund 

Total Assets 

$ 125980 $ 6331338 $ 62 053 58 
143 12028 175 786 78 32 666 50 

0 00 100 000 00 100,000 00 
222 926 78 243.247 83 20 321 05 

11 684 06 9,443 40 (2.240 66) 
0 00 5,000 00 5 000 00 

$378,990 92 $596 791 39 $217,800 47 

LlABlLtTlES 

Oft~ce Expenses $ 30 000 00 $ 34,965 00 5 496500 
Prlntlng Expenses 30.61 1 00 146.13306 115,522 06 
Prepaid Examinalnn Fees 45 767 00 5571220 3 945 20 
Meeting Expenses & Prepaid Fees 1381302 10.435 38 (3 377 64) 
Diamond Jubilee Expense Reserve 0 18.729 37 la.729 37 
Olhei 0 253 00 253 00 ~ ~ 

rotai Lebllws $120 191 02 $266 228 01 $14603699 

MEMBERS’ EQUITY 

Mchelbachei Fund $ 59681 87 $ 64 351 65 $ 4,669 78 
Dorwe~ler Fund 9 881 80 9.703 83 (177 97) 
CAS Trust 2 005 28 2 195 78 190 50 
Schotarshlp Fund 7 11250 7 288 19 17569 
CLRS Fund 000 5.000 00 5 000 00 
CAS Surplus 18011845 242,023 93 61,905 48 

Totat $258,799 90 $330,563 38 $ 71,76348 

&chard H Snader 
Vice Pres,denl--Adminrsl,alron 

This IS lo certify that the assets and accwnts shown I” ,he above t~nanc~al statement 
have been audited and lound IO be c~rrec, 

Audrl Commrlree 
David M Klein ChaIrman WIltlam J Rowland 
Albert J Clulr~n Charles Walter Stewart 
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1986 EXAMINATIONS-SUC‘CI:SS~~Lll, CANDIDATES 

Examinations for Parts 4. 6. 8. and IO of the Casualt) Actuarial Societ) 
were held on May 6. 7. 8. and 9. 1986. Examination\ for Parts S. 7. and Y 
were held on November 5, 6, and 7. IYXh. 

Examinations for Parts 1, 2. and 3 arc @ntIy sponsored by the Casualty 
Actuarial Society and the Society of Actuaries. These examinations were given 
in May and November of 1986. Candidates who passed these examinations 
were listed in the joint releases of the two \ocicties. 

The Casualty Actuarial Society and the Society of Actuaries jointly awarded 
prizes to the undergraduates ranking the highest on the General Mathematics 
examination. For the May, 1986 examination, the $200 prize was awarded to 
Robert B. Cumming. The additional 9100 prire Minners were Nathaniel G. 
Calvin, Ampon Dhamacharden, Christopher Lattin. Ralph L. Neill, and Michael 
Reid. For the November, 1986 examination, the $200 priLe was awarded to 
Scott N. Wilson. The additional $100 prize winners were Andrew K. Fung. 
Siu C. Szeto, Thomas S. Watts. Thomas A. Zcller. and Josh A. Zirin. 

The following candidates were admitted as Fellows and Associates at the 
November, 1986 meeting as a result of their successful completion of the Society 
requirements in the May, 1986 examinations. 

Amundson, Richard B. 
Bailey, Victoria M. 
Bellusci, David M. 
Chiang, Jeanne D. 
Driedger, Karl H. 
Faltas, Bill 
Forde, Claudia S. 
Hankins, Susan E. 
Hollister, Jeanne M. 
Hosford, Mary T. 
Huyck, Brenda J. 
Johnson, Andrew P. 

FELLOWS 

Kelley, Robert J. 
Klinker, Frederick L. 
Koupf, Gary I. 
Krakowski, Israel 
Littmann, Mark W. 
Livingston. Roy P. 
Loper. Dennis J. 
Lyons, Daniel K. 
Martin, Paul C. 
McClure, John W., Jr. 
McDonald, Gary P. 

Menning. David L. 
Myers. Thomas G. 
Noyce, James W. 
Potts, Cynthia M. 
Reppert, Daniel A. 
Ruegg, Mark A. 
Silver. Melvin S. 
Terrill, Kathleen W. 
Townsend, Christopher J. 
Vitale, Lawrence A. 
Weinman, Stacy J. 



IWh EXAh,,N*-,-IoNS 241 

ASSOCIATES 

Aquino, John G. Griffith, Roger E. Mulvaney, Mark W. 
Atkinson, Roger A., Ill Groh, Linda M. Schwandt, Jeffory C. 
Billings, Holly L. Handte, Malcolm R. Snow, David C. 
Blakinger, Jean M. Harbage, Robin A. Svendsgaard, Christian 
Davis, Brian W. Hill, Tony D. Sweeney, Eileen M. 
Feldblum, Sholom Johnson, Eric J. Wachter, Christopher J. 
Francis, Louise A. Leiner, William W., Jr. Wacker, Gregory M. 
Gorvett, Richard W. Mueller, Nancy D. Whitehead, Guy H. 

The following is the list of successful candidates in examinations held in 
May, 1986 

Part 4 

Abellera, Daniel N. 
Atkins, Heather E. 
Atkinson, Roger A., III 
Beaulieu, Gregory S. 
Belleau, Richard 
Blackbum, Wayne E. 
Boisjoli, Marthe 
Bonte, Sharon 
Book, Steven W. 
Bourassa, Pierre 
Buckley, Joseph 
Burt, Richard F., Jr. 
Burrill, Linda J. 
Cain, Mark J. 
Carpentier, Marie 
Casale, Kathleen N. 
Chaffee, Janet L. 
Champagne, Mario 
Cloutier, Jean 
Coca, Michael A. 
Cofteld, Joseph F. 
Colton, Gary S. 
Crowe, Alan M. 
Daniels, Paul F. 

Daoust, Alain 
Darby, Robert N. 
Dineen, David K. 
Edlefson, Dale 
Elliott, Angela F. 
Ely , James 
Emmons, William E. 
Ewert, John S. 
Fitzpatrick, Kerry L. 
Gendelman, Nathan J. 
Ghezzi, David J. 
Giles, John S. 
Gorvett, Richard W. 
Gozzo, Susan M. 
Griffith, Roger E. 
Hebert, Norman P. 
Hess, Todd J. 
Higgins, James S. 
Huang, Ming-I 
Jovinelly, Edward M. 
Klinger, Kenneth A. 
Kopel , Noson 
Kryczka, John R. 
Lamer, Kenneth P. W. 

Laurin, Michel 
Lepage, Pierre 
Li, Siu Kuen 
Maher, Christopher P. 
Mahoney, Michael W. 
Martin, Claude 
Math, Steven 
McKay, Donald R. 
Moylan, Thomas G. 
Nemlick, Kenneth J. 
Nerone, Anthony J. 
Nesmith, Robin 
Nonken, Peter M. 
On-ett, Todd F. 
Palmer, Donald D. 
Papadopoulos, Constantina 
Peck, Steven C. 
Pestcoe, Marvin 
Plano, Richard A. 
Pompeii, Peter A. 
Royek, Peter A. 
Santoro, Lawrence 
Schmid, Valerie L. 
Schoenberger, Susan C. 
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Schug, Richard D. 
Schwab, Debbie 
Sclafane, Susanne 
Seeley, Alan R. 
Seto, Hopland 
Sheng, Michelle G. 
Silverman, Jack 
Simi. Laura J. 

Part 6 

Aquino, John G. 
Artes, Lawrence J. 
Bennighof, Kay E. 
Billings, Holly L. 
Blakinger, Jean M. 
Boisvert, Paul, Jr. 
Boudreau, Joseph J 
Bourdon, Theresa A. 
Brathwaite, Malcolm 
Brehm, Paul J. 
Caulfield, Michael 
Conway, Ann M. 
Core, Jean 
Crawshaw , Mark 
Creighton, Kenneth M. 
Cross, Susan L. 
Davis, Brian W. 
Davis, James R. 
Desbiens, Carol 
Doe, David A. 
Dumontet, Francois R. 
Erlebacher, Alan J. 
Feldblum, Sholom 
Francis, Louise A. 
Frank, Jacqueline B. 
Gergasko, Richard J. 
Gibson, Richard N. 
Girard, Gregory S. 

Sperger, Mary Jean Vandermyde, Scott D. 
Stefanek, John P. Van de Water, John V. 
Steinert, Lawrence J. Vasek, William 
Stoffel, Judith E. Weihrich, Leslie D. 
Stone, Edward C. White, William A. 
Strommen, Douglas N. Whitehead, Guy H. 
Sublett, Sharon Wildman, Peter W. 
Szczepanski, Chester J Wong, Windrie 

Golberg, Leonard R. 
Grab, Edward M. 
Greene, Alex R. 
Griffith, Ann V. 
Groh, Linda M. 
Haefner, Larry A. 
Hampshire, Michael H. 
Handte, Malcolm, R. 
Harbage, Robin A. 
Hawley, Karin S. 
Hays, David H. 
Heyman, David R. 
Hill, Tony D. 
Hines, Alan M. 
Johnson, Eric J. 
Johnston, Steven J. 
Joyce, John J. 
Keatinge, Clive L. 
Kinson, Paul E. 
Kohan, Richard F. 
Krissinger, Kenneth R. 
Lalonde, David A. 
Lamb, Dean K. 
LaPointe, Susan E. 
Lebens, Joseph R. 
Leiner, William W., Jr. 
Mahon, Mark J. 
Maud, Christine E. 

Michelson, Jon W. 
Miller, Mary F. 
Mueller. Nancy D. 
Mulvaney , Mark W. 
Naylor. Walter R. 
Nelson, Chris E. 
Perigny . Isabelle 
Pino, Susan L. 
Proska, Mark R. 
Raman, Sasikala 
Rouillard, Marc L. 
Salton, Melissa A. 
Samson, Sandra 
Schadler, Thomas E. 
Schlenker, Sara E. 
Schultze, Mark E. 
Schwandt, Jeffory C. 
Snow, David C. 
Stahley, Barbara A. 
Sterling, Mary E. 
Svendsgaard, Christian 
Sweeney. Eileen M. 
Wachter, Christopher J. 
Wacker, Gregory M. 
Weisenberger, Peter A. 
Werland, Debra L. 
Yit. Bill S. 
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Part 8 

Anderson, Mary V. 
Atkinson, Richard V. 
Boor, Joseph A. 
Brown, Brian Y. 
Busche, George R. 
Carlton, Kenneth E. 
Comstock, Susan J. 
DeLiberato, Robert V. 
Dezube, Janet B. 
Dickinson, Donna R. 
DiDonato, Anthony M. 
Dodge, Scott H. 
Ericson, Janet M. 
Fanning, William G. 
Fitzgerald, Beth E. 
Gardner, Robert W. 
Gevlin, James M. 
Gunn, Christy H. 
Haidu, James W. 
Hankins, Susan E. 

Part 10 

Amundson, Richard B. 
Bailey, Victoria M. 
Bellusci, David M. 
Buchanan, John W. 
Carpenter, William M. 
Chiang, Jeanne D. 
Driedger, Karl H. 
Englander, Jeffrey A. 
Faltas, Bill 
Forde, Claudia S. 
Guenthner, Denis G. 
Hankins, Susan E. 
Hollister, Jeanne M. 
Hosford, Mary T. 
Huyck, Brenda J. 
Johnson, Andrew P. 

Hertling, Richard J. Roesch, Robert S. 
Hughes, Brian A. Scheuing, Jeffrey R. 
Jordan, Jeffrey R. Schultz, Roger 
Klinker, Frederick L. Scott, Kim A. 
Krakowski, Israel Scully, Mark W. 
Lewandowski, John J. Sealand, Pamela J. 
Miller, Susan M. Shapland, Mark R. 
Mohrman, David F. Slusarski, John 
Newell, Richard T., Jr. Spidell, Bruce R. 
Ollodart, Bruce E. Sutter, Russel L. 
Pechan, Kathleen M Tan, Suan-Boon 
Pence, Clifford A., Jr. Taylor, R. Glenn 
Peraine, Anthony A. Volponi, Joseph L. 
Peterson, Steven J. VonSeggem, William J 
Placek, Arthur C. Wainscott, Robert H. 
Post, Jeffrey H. Walsh, Michael C. 
Procopio, Donald W. Wargo, Kelly A. 
Quintano, Richard A. Woemer, Susan K. 
Robbins, Kevin B. Yow, James W. 

Kasner, Kenneth R. Miller, William J. 
Kelley, Robert J. Morrow, Jay B. 
Kneuer, Paul J. Myers, Thomas G. 
Koupf, Gary I. Noyce, James W. 
Kudera, Andrew E. Phillips, George N. 
Laurin, Pierre G. Potts, Cynthia M. 
Littmann, Mark W. Reppert, Daniel A. 
Livingston, Roy P. Ruegg, Mark A. 
Loper, Dennis J. Siczewicz, Peter J. 
Lyons, Daniel K. Silver, Melvin S. 
Mailloux, Patrick Terrill, Kathleen W. 
Martin, Paul C. Townsend, Christopher J. 
McClure, John W., Jr. Vitale, Lawrence A. 
McDonald, Gary P. Votta, James C. 
Menning, David L. Weinman, Stacy J. 
Miller, David L. Williams, Robin M. 
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The following candidates will be admitted as Fellows and Associates at the 
May, 1987 meeting as a result of their successful completion of the Society 
requirements in the November, 1986 examinations 

Aldin, Neil C. Gapp, Steven A. 
Barclay, 0. Lee Gruber , Charles 
Chuck, Allan Guenthner, Denis G. 
Cripe, Frederick F. Homan, Mark J. 
Dye, Myron L. Howald, Ruth A. 
Eagelfeld, Howard M. Keller, Wayne S. 
Easlon, Kenneth Kneuer, Paul J. 
Edie. Grover M. Lee, Robert H. 

Abell, Ralph L. 
Allaire, Christiane 
Allard, Jean-Luc E. 
Boisvert, Paul, Jr. 
Boucek, Charles H. 
Boudreau, Joseph J. 
Bourdon, Theresa A. 
Brathwaite, Malcolm E 
Brehm, Paul J. 
Brutto, Richard S. 
Buchanan, John W. 
Cardoso, Ruy A. 
Chen, Chyen 
Cieslak, Walter P. 
Conway, Ann M. 
Crawshaw , Mark 
Cross, Susan L. 
Der, William 
Desbiens, Carol 
DiDonato, Anthony M. 
Donelson, Norman E. 
Ericson, Janet M. 

FELLOW s 

ASSOCIATES 

Fromentin. Pierre 
Girard, Gregory S. 
Goldberg, Leonard R. 
Graves, Gregory T. 
Greene, Alex R. 
Griffith, Ann V. 
Haefner. Larry A. 
Hays, David H. 
Heyman, David R. 
Keatinge, Clive L. 
Keen, Eric R. 
Klenow, Jerome F. 
Krissinger, Kenneth R. 
Lacko. Paul E. 
Lamb, Dean K. 
Laurin. Pierre G. 
Lebens, Joseph R. 
Leccese, Nicholas M., Jr 
Lewandowski, John J. 
Licitra, Sam F. 
Liebers, Elise C. 
MacKinnon, Brett A. 

Montgomery, Warren D. 
Onufer, Layne M 
Petit, Charles I. 
Raman, Rajagopalan K. 
Schilling, Timothy L. 
Withers, David A. 

McDermott, Sean P. 
Miller, Mary F. 
Pichler, Karen J. 
Plano, Richard A. 
Procopio, Donald W. 
Proska, Mark R. 
Schlenker, Sara E. 
Schnapp, Frederic F. 
Schwab, Debbie 
Scott, Kim A. 
Shapland, Mark R. 
Siczewicz, Peter J. 
Taylor, Craig P. 
Taylor, R. Glenn 
Veilleux, Andre 
Votta, James C. 
Weber, Robert A. 
Wick, Peter G. 
Williams, Lincoln B. 
Williams, Robin M. 
Wilson, Ernest 1. 
Yit, Bill S 
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The following is the list of successful candidates in examinations held in 
November, 1986. - 

Part 5 
Anderson, Richard R. 
Ashman, Martha E. 
Bahnemann, David W. 
Barton, Frances H. 
Beaulieu, Gregory S. 
Beck, Douglas L. 
Book, Steven W. 
Bouchard, Lloyd J. 
Bowman, David R. 
Bradley, Tobe E. 
Bryant, Debbie H. 
Buchanan, John W. 
Bums, Patrick J. 
Burrill, Linda J. 
Chaffee, Janet L. 
Chan, Sammy S. Y. 
Charbonneau, Scott K. 
Charest, Danielle 
Clark, David R. 
Conley, Kevin J. 
Cooper, Nancy L. 
Cross, Susan L. 
Crowe, Alan M. 
Curry, Michael K. 
Curry, Robert J. 
Davenport, Edgar W. 
Desnoyers, Lee A. 
Ermisch, Jennifer L. 
Eska, Catherine E. 
Evensen, Philip A. 
Fauerbach, Thomas R. 
Feldmeier, Judith 
Fields, David N. 
Fontaine, Andre F. 
Fox, Richard L. 
Fung, Kai Y. 

Gergasko, Richard J. McGee, Stephen J. 
Giles, John S. McKay, Donald R. 
Goss, Linda M. Mech, William T. 
Graves, Nancy A. Mercier, Mark F. 
Gray, Margaret 0. Mitchell, Sandra K. 
Greenwood, Deborah A. Murray, David A. 
Grossman, William G. Nesmith, Robin 
Hampshire, Michael H. Nevins, Richard N. 
Heise, Mark A. Orrett, Todd F. 
Hill, Robert C. Ottone, Joanne M. 
Hoerl, Frederick L. Paffenbach, Teresa K. 
Iyengar, Sadagopan S. Palmer, Joseph M. 
Johnson, Victor A. Papadopolous, Constantina 
Jones, Brian A. Paterson, Bruce 
Jones, William R. Perigny, Isabelle 
Jonske, James W. Poe, Michael D. 
Jovinelly, Edward M. Punzak, John K. 
Kangas, Patricia L. Raman, Sasikala 
Kantor, Stephen H. Rau, Thomas 0. 
Kellner, Tony J. Raymond, Stephen E. 
Kido, Chester T. Reynolds, Margaret M. 
Kim, Ho K. Robertson, James 
Kish, George A. Roth, Scott J. 
Klinger, Kenneth A. Samson, Pierre 
Koester, Steven M. Samson, Sandra 
Kot, Nancy E. Schmidt, Jeffrey W. 
Lepage , Pierre Schmitt, Karen E. 
Leveille, Jean-Marc Schoenberger, Susan C. 
Li, Siu Kuen Schutte, Robert J. 
Liebers, Elise C. Schwartz, Arthur J. 
Lin, Simon S. Seeley, Alan R. 
Little, Laurie A. Shook, Gary E. 
Lombardi, Paul M. Simons, Rial R. 
Mahon, Mark J. Spore, Louis B. 
Manley, Laura Stahley, Barbara A. 
McDonnell, Janet A. Stauffer, Laurence H. 



Strommen, Douglas N. 
Sturm, Elissa M. 
Subeck, Jeffrey L. 
Suchar, Christopher M. 
Thomas, Richard D. 
Tscharke, Jennifer L. 
Vandermyde, Scott D. 

Verges, Ricardo Wildman, Peter W. 
Vezina, Guy Williams, Janice K. 
Weber, Robert A. Williams, Robin M. 
Weihrich, Leslie D. Winslow, Martha A. 
Weinstein, Scott P. Wolter, Kathy A. 
Wellington, Elizabeth A. Wong, Windrie 
Weltmann, L. Nicholas, Jr. Yuen. Benny S. 

Van Laar, Kenneth R., Jr. Whalen. William T 

Part 7 

Abell, Ralph L. Frank, Jacque B. 
Adams, Jeffrey Franklin, Barry A. 
Allaire, Christiane Fromentin, Pierre 
Allard, Jean-Luc E. Gaudreault, Andre 
Boisvert, Paul, Jr. Gelinne, David B. 
Boucek, Charles H. Gendelman, Nathan J. 
Boudreau, Joseph J. Gibson, John F. 
Bourdon, Theresa A. Girard, Gregory S. 
Brathwaite, Malcolm E. Goldberg. Leonard R. 
Brehm, Paul J. Graves, Gregory T. 
Brutto, Richard S. Greene, Alex R. 
Cadorine, Arthur R. Greenwalt, Anne G. 
Cappers, Janet P. Griffith, Ann V. 
Cardoso, Ruy A. Grossack, Marshall J. 
Chen, Chyen Gruber, Charles 
Cieslak, Walter P. Haefner, Larry A. 
Conway, Ann M. Hays, David H. 
Crawshaw, Mark Hebert. Norman P. 
Der, William Heyman, David R. 
Desbiens, Carol Hroziencik, George A. 
DiDonato, Anthony M. Jasper, Jane E. 
Donelson. Norman E. Kartechner, John W. 
Elliott, Angela F. Keatinge, Clive L. 
Ely , James Keen, Eric R. 
Ericson, Janet M. Klenow, Jerome F. 
Ewert, John S. Krissinger. Kenneth R. 

Zaleski, Ronald J. 

Kryczka, John R. 
Lacko, Paul E. 
LaFrenaye, A. Claude 
Lamb, Dean K. 
Lamb, John A. 
Laurin, Pierre G. 
Lebens, Joseph R. 
Leccese, Nicholas M., Jr 
Lewandowski, John J. 
Licitra, Sam F. 
MacKinnon, Brett A. 
Maher, Christopher P. 
McDermott, Sean P. 
McNichols, James P. 
Miller, Mary F. 
Naylor, Walter R. 
Nielsen, Lynn 
Palenik. Rudy A. 
Paterson, Bruce 
Peck, Steven C. 
Pichler, Karen J. 
Piano, Richard A. 
Procopio, Donald W. 
Proska, Mark R. 
Radin, Katherine D. 
Schlenker, Sara E. 



247 

Schnapp, Frederic F. 
Schwab, Debbie 
Sclafane, Susanne 
Scott, Kim A. 
Shapland, Mark R. 
Siczewicz, Peter J. 
Snook, Linda D. 

Part 9 

Aldin, Neil C. 
Aquino, John G. 
Atkinson, Richard V. 
Atkinson, Roger A., III 
Balchunas, Anthony J. 
Barclay, D. Lee 
Billings, Holly L. 
Cartmell, Andrew R. 
Chuck, Allan 
Comstock, Susan J. 
Cripe, Frederick F. 
Davis, Dan J. 
DeFalco, Thomas J. 

Stoffel, Judith E. 
Styczynski, Mary Jane 
Taylor, Craig P. 
Taylor, R. Glenn 
Veilleux, Andre 
Votta, James C. 
Watkins, Nancy P. 

Gapp, Steven A. 
Glicksman, Steven A. 
Guenthner, Denis G. 
Halpert, Aaron 
Homan, Mark J. 
Howald, Ruth A. 
Johnson, Eric J. 
Jordan, Jeffrey R. 
Keller, Wayne S. 
Kneuer, Paul J. 
Kreps, Rodney E. 
Lee, Robert H. 
Lessard, Alain 

Diamantoukos, Christopher Marles, Blaine C. 
Dye, Myron L. Miller, Susan M. 
Eagelfeld, Howard M. Mohrman, David F 

Wick, Peter G. 
Williams, Lincoln B. 
Wilson, Ernest I. 
Yates, Patricia E. 
Yit. Bill S. 

Petit, Charles I. 
Phillips, George N. 
Placek, Arthur C. 
Quintano, Richard A. 
Raman, Rajagopalan K. 
Roesch, Robert S. 
Schilling, Timothy L. 
Scully, Mark W. 
Spidell, Bruce R. 
Steinen, Phillip A. 
Svendsgaard, Christian 
Tan, Suan-Boon 
Trudeau, Michel 
Turner, George W., Jr. 
Visintine, Gerald R. 
Wainscott, Robert H. 

Easlon, Kenneth Montgomery, Warren D. Wallace, Thomas A. 
Edie, Grover M. Mueller, Nancy D. Wargo, Kelly A. 
Englander, Jeffrey A. Muller, Robert G. Whitehead, Guy H. 
Fasking, Dennis D. Onufer, Layne M. Withers, David A. 
Feldblum, Sholom Pence, Clifford A., Jr. Wrobel, Edward M. 
Francis, Louise A. Peraine, Anthony A. Yow, James W. 
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NEW FELLOWS ADMITTED MAY 1986 (Left to Right): First row: Phil Ben-Zvi (President). 
Martin Lewis, Robert Bear, Mark Allaben. James Domfeld; Second row: Barry Lipton, Greg 
Hayward, Rhonda Port, Kathy Curran, Karen Nester; Third row: Allen Hall. Nancy Treitel, Robert 
Miller; Fourth row: Wallis Boyd. Isaac Mashitz. Michael Smith, William Murphy; Fifth row: Dan 
Clark, Janice Berry. Charles White. 



I 



NEW FELLO\\ S ADS1ITTl.D ho\ tZ1BtR. I’)Sh ~Lclt 10 Rlphtl blr\t K~IU Cidn Kuupf. Su\dn H.mh~n\. Victoria Bailey. 
Brenda Huyck. Cynthia Pott\, Phil Ben-Z\1 (Prevdent). Dame1 Reppen, Richard Amundson. Karl Dnedger. Second Row: Claudia 
Forde, Mark Ruegg, Mary Hosford, Jim Noyce. Paul Martm. John McClure, Fred Klinker, Tom Myers; Third Row: Daniel Lyons, 
Kathleen Terrill, Andrew Johnson. Melvin Silver. Gary McDonald, Christopher Townsend, Lawrence Vitale; Fourth Row: Israel 
KrakowskI, Roy Livingston, Robert Kelley. David Menning, Dennis Loper. 



NEW ’ ASSOCIATES ADMITTED NOVEMBER, 1986 (Left to Right): Ftrst Row: Nancy Mueller. Phd Ben-Zvt (President), Jean 
Blaki nger, Louise Francis, Sholom Feldblum, Jeffory Schwandt; Second Row: Roger Griffith, Gregory Wacker, Mark Mulvaney, 
John Acquino, Christian Svendsgaard; Third Row: Holly Billings, Linda Groh, Eileen Sweeney, Chrtstopher Wachter, David 
Snoa ,; Fourth Row: Guy Whitehead, Eric Johnson, Richard Gorvett, Roger Atkinson, Brian Davis, Robin Harbage. 
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OBITUARIES 
Bruce W. Batho 

James B. Haley,. Jr. 
Mark Kormea 

Murray W. Latimcr 
Richard Pcnnock 

Rajaratnam Ratnaswamy 
Harwood Rosscr 
David A. Tapley 

BRUCE W. BATH0 
lYO8-lYX6 

Bruce Max Willard Batho, an Associate of the Casualty Actuarial Society 
since 1940. died on February 9. IY86. at the age of 77. 

Born in Winnipeg, Manitoba. Canada. Mr. Batho was educated at the 
University of Manitoba. He graduated magna cum laude with a business ad- 
ministration degree. He later moved to Springfield. Illinois. and became a United 
States citizen in 1938. 

Mr. Batho was an assistant actuary for the Illinois State Insurance Depart- 
ment, and worked for Illinois insurance companies. 

He joined Life of Georgia in lY4-l as associate actuary and was elected vice 
president and actuary in 1954. A year later. he was elected to the board of 
directors. He was named comptroller in 10.57. was elected to the executive 
cotnmittee in 1961, and was named executive vice president-Administration in 
1963. During his career, he also served as chairman of the underwriting. claims, 
and profit sharing committees, and as a mcmher of the finance committee. and 
common stock sub-committee. He rettred in 1077. continuing as a director, and 
was named advisory director in May. IY7Y. 
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Mr. Batho had also served as board chairman of Insurance Systems of 
America. a national insurance consortium, from 1972 to 1975. He was also past 
president of the Chicago and Southeastern actuarial clubs. 

Mr. Batho is survived by his wife, Mrs. lzora Powell Batho of Atlanta; a 
son, Norman of East Windsor, New Jersey; two daughters, Mrs. Mabel Green 
of Franklin, North Carolina, and Miss Barbara Batho of Atlanta; a brother, 
Elgin Batho of Cape Coral, Florida; 12 grandchildren, and four great-grand- 
children. 

JAMES B. HALEY, JR. 
-1986 

James B. Haley, Jr., an Associate of the Casualty Actuarial Society since 
1950, and a Fellow since 1953, died recently. Mr. Haley’s actuarial career 
started at Fireman’s Fund. Upon achievement of Fellowship, he joined Argo- 
naut, and served there as Actuary until 1958. He also worked 10 years for 
Coates, Herfurth and England in San Francisco. From 1969 to 1972, Mr. Haley 
was a consulting actuary. From 1973 to 1980, he was Vice President and Actuary 
with Employee Benefits Insurance Company. He returned to consulting in 198 1. 

MARK KORMES 
1900-1985 

Mark Kormes, a Fellow of the Casualty Actuarial Society since 1933, died 
in January, 1985. Mark worked as Associate Actuary for the Compensation 
Rating Board from 1933 to 1938. He was Director of Training and Organization 
for the NY State Insurance Fund from 1938 to 1940. Mark worked as a 
consulting actuary from 1940 until his retirement in 1980, serving as President 
of Actuarial Associates, Inc. in New York from 1960 to 1980. 

Mark is remembered for his regular attendance at CAS meetings and his 
penchant for playing bridge there. Mark contributed a paper to the Proceedings 
on excess workers’ compensation losses in 1948. 
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MURRAY W. LATIMER 
lYol-lYxs 

Murray W. Latimer, a Fellow of the Casualty Actuarial Society since IY6l. 
died in October. 1985. Prior to achieving membership in the Society, Mr. 
Latimer worked for several years for the 11s Railroad Retirement Board. In 
1957, Murray joined the Industrial Relations Consultants. In 1968. Murray 
formed his own consulting organization in Washington. D.C. He retired in 
19x0. 

RICHARD M. PENNOCK 
1883-1976 

Richard Pennock, became an Associate of the Casualty Actuarial Society in 
1924. He served as Actuary for the Pennsylvania Manufacturers Association 
Insurance Company until he retired in 1950. Dick IS remembered for his con- 
tributions to the committees of the Pennsylvania Workers Compensation Rating 
Bureau. He was soft spoken and reserved, but wtould expound his theses force- 
fully and defend them ably. 

RAJARATNAM RATNASWAMY 
lY27-1986 

Rajaratnam Ratnaswamy. an Associate of the Casualty Actuarial Society 
since 1965. died on February 28. 1986. 

In 1956, Raj joined the Mutual Service Insurer Group. He worked there 
until 1964, when he joined the Detroit Auto Inner-lnxurance Exchange. While 
there, he reviewed the book The> Rqrrltrricttt of RrcYprocul Itt.swcuwc E.rchtrrzg:e.s 
for the 1968 Praceetlitz~s. From IY69 to lYX4. he was at St. Paul Marine 
Insurance Group, In 1984, Raj joined the Michigan Millers Mutual Insurance 
Company as Actuary. 

Raj is survived by his son, John. and a daughter. Mary. 
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HARWOOD ROSSER 
1909-1986 

Harwood Rosser. an Associate of the Casualty Actuarial Society since 197 I . 
died on August 22. 1986, at the age of 86. 

Mr. Rosser’s history was quite varied. During college, Mr. Rosser received 
awards for swimming and poetry. He studied to be a concert pianist in the 
1930’s. Unfortunately, pianists were barely paid enough to keep eating. Mr. 
Rosser received a scholarship to Princeton to pursue a doctorate. Although he 
is credited with some original mathematics research, he did not complete his 
doctorate. 

Mr. Rosser worked as an actuary for Gulf Life and Metropolitan Life. He 
also worked in the insurance departments in some Northeastern states. Most 
recently, he worked for the United States Department of Labor. He started there 
on June 2, 1975 in the Pension Welfare Benefits Administration as a consultant. 
He was converted to a career conditional appointment as an actuary in May. 
1976. He retired from the Department of Labor on February 28, 1986. 

Mr. Roxser represented the United States at a number of International Ac- 
tuarial Association meetings. He also helped develop problems for some of the 
CAS examinations. He was noted for his keen sense of humor and his public 
speaking skills. 

Mr. Rosser also served on the President’s Council for the University of 
Florida. 

Mr. Rosser is survived by a brother, Dr. J. Barkley Rosser; two sisters, Dr. 
Merryday Rosser, and Mrs. Julie Glenn McGuire; many cousins, and several 
nieces and nephews. 
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DAVID A. TAPLEY 
-19x1 

David A. Tapley. a Fellow of the Casualty Actuarial Socict) \ince 1956. 
died on October 25, I98 I. 

David was a determined individualist, who was key to the development of 
the actuarial profession. as well as to fhc success of \ome of today’s larger 
insurance companies. In his twenties. David was told he had a s&~us lung 
disease. He was not expected to live pa\t 30. and became a forest ranger in 
Montana. Within a few years. he was running up and down the mountains 
without even breathing hard. Being cured, David entered the insurance business. 
and brought wifh him the same boundless energy that ~~vcd him in Montana. 

In the early 40’s. David worked for the Ohio F:arm Bureau--now Nation- 
wide-in the claims department. Harold Curry I FCAS. I Y53) rccogniyed Dave’s 
unique mathetnatical talent and enticed him into the actuarial field. Dave even- 
tually rose to the top actuarial position at the Ohio Farm Bureau. After World 
War II. the shift from a suppressed driving population to ;I \h idcspread driving 
population forced tnany insurance companic\ out of business. Dave’s astute 
actuarial and tnanagement skills probably helped prevent Ohio Farm Bureau 
from suffering the same fate. One example of hi\ ingenuity was his use of raw 
cotton commodity price changes as an indicator for automobile rate making. 
His reason: they were the only prices not sub.jcct to govet-nment regulation and, 
therefore. the only tneasure of the true inflation rate. 

Dave eventually followed Harold Curq to the State Farm actuarial depart- 
ment. and there worked on ways to build the successful insurance organization 
we know today. He became concerned about the fluctuation in the ~~aluc of’ 
claim reserves . and “discovered” loss development patterns in automobile in- 
surance at a time when IBNR was all but an unknown concept. In 1YS6. Dave 
was admitted to the Casualty Actuarial Society. after many year\ of practice in 
the field. based on his paper on loss reserving for automobile insurance. Man) 
of the principles in David’s paper are still in wide use today. 

Dave left State Farm for ;I briel‘ try at consulting in SI. Louis. Diq~pointed 
with the amount of travel, Dave joined the Transamcrica Group in Michigan. 
Dave’s astute perception and management shills again came into play in turning 
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Transamerica into the successful corporation it is today. He became President 
of Transamerica Insurance Company, in Los Angeles, in 196X. David moved 
up to the Board of Directors at Transamerica and remained active there until 
his retirement in 1979. 

Dave is survived by his son, Rice, and his daughter, Judith LaFollette. 

WALTER 1. WELLS 
1901-1986 

Walter I. Wells, an Associate of the Casualty Actuarial Society since 1930, 
and a Fellow of the Society of Actuaries, died on April 13. 1986. 

Walter was born in Sackville, New Brunswick, Canada. At age 19, he taught 
grades 7 and 8 in Dorchester, New Brunswick, before earning a bachelor’s 
degree in mathematics and physics in 1925 from the University of Toronto. He 
then entered the insurance arena at State Mutual Life Assurance Company of 
America. Hc worked there for two years before returning to Canada. Then, he 
joined Acadia University, in Nova Scotia, as a teacher of mathematics. He was 
also a Fellow in mathematics for a year at the University of Toronto. 

In 192Y, Walter joined Woodward, Fondiller, & Ryan, in New York City, 
as an associate actuary. From 193 1 to 194.5, he was head of sickness and 
accident underwriting at the Paul Revere Life Insurance Companies and the 
Massachusetts Protective Association. 

Walter rejoined State Mutual in 1945 as an assistant actuary. In 1953, he 
was named director of the newly formed sickness and accident division-later, 
the health insurance division. In 1959, he became second vice president. He 
worked for State Mutual for 20 years, and served on the management council 
there. Walter retired in 196.5, and returned to teaching mathematics and actuarial 
science at Worcester Polytechnic Institute. 

Walter is survived by his wife, Lillian (Murdoch); a son, Richard; two 
daughters, Ann Boglc, and Ruth Zimmerman; IO grandchildren; and three great- 
grandchildren. 
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