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FOREWORD

The Casualty Actuarial Society was organized in 1914 as the Casualty Actuarial and Statistical
Society of America, with 97 charter members of the grade of Fellow; the Society adopted its
present name on May 14, 1921.

Actuarial science originated in England in 1792, in the early days of life insurance. Due to
the technical nature of the business, the first actuaries were mathematicians; eventually their
numerical growth resulted in the formation of the Institute of Actuaries in England in 1848. The
Faculty of Actuaries was founded in Scotland in 1856, followed in the United States by the
Actuarial Society of America in 1889 and the American Institute of Actuaries in 1909. In 1949
the two American organizations were merged into the Society of Actuaries.

In the beginning of the twentieth century in the United States, problems requiring actuarial
treatment were emerging in sickness, disability, and casualty insurance—particularly in workers’
compensation—which was introduced in 1911. The differences between the new problems and
those of traditional life insurance led to the organization of the Society. Dr. I. M. Rubinow, who
was responsible for the Society’s formation, became its first president. The object of the Society
was, and is, the promotion of actuarial and statistical science as applied to insurance other than
life insurance. Such promotion is accomplished by communication with those affected by insur-
ance, presentation and discussion of papers, attendance at seminars and workshops, collection of
a library, research, and other means.

Since the problems of workers’ compensation were the most urgent, many of the Society's
original members played a leading part in developing the scientific basis for that line of insurance.
From the beginning, however, the Society has grown constantly, not only in membership, but
also in range of interest and in scientific and related contributions to all lines of insurance other
than life, including automobile, liability other than automobile, fire, homeowners and commercial
multiple peril, and others. These contributions are found principally in original papers prepared
by members of the Society and published in the annual Proceedings. The presidential addresses,
also published in the Proceedings, have called attention to the most pressing actuarial problems,
some of them still unsolved, that have faced the insurance industry over the years.

The membership of the Society includes actuaries employed by insurance companies, rate-
making organizations, national brokers, accounting firms, educational institutions, state insurance
departments, and the federal government; it also includes independent consultants. The Society
has two classes of members, Fellows and Associates. Both classes are achieved by successful
completion of examinations, which are held in May and November in various cities of the United
States and Canada.

The publications of the Society and their respective prices are listed in the Yearbook which is
published annually. The Syllabus of Examinations outlines the course of study recommended for
the examinations. Both the Yearbook, at a $10 charge, and the Syllabus of Examinations, without
charge, may be obtained upon request to the Casualty Actuarial Society, One Penn Plaza,
250 West 34th Street, New York, New York 10119.
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PROCEEDINGS
May 11, 12, 13, 14, 1986

AN ACTUARIAL NOTE ON CREDIBILITY PARAMETERS

HOWARD C. MAHLER

Abstract

In this paper the relationship between the Bayesian credibility pa-
rameter, k, and the classical credibility standard for full credibility, F,
is examined from a practical standpoint. A very useful “rule of thumb”
is developed.

For most practical applications one can determine the F that roughly
corresponds to K, and vice versa. First convert k to a number of claims,
if necessary, by multiplying by an expected frequency. Then take F equal
to approximately eight times k.

A few other interesting results are also derived. Among them is the
effect of misestimating the Bayesian credibility parameter k. The results
of using credibility are relatively insensitive to misestimates of k.

INTRODUCTION

Credibility concepts and formulas are used in many actuarial applications.
In this paper some practical questions concerning the use of credibility will be
explored. While a few results of theoretical interest are derived, the emphasis
is strictly on the practical impacts. This paper assumes that the reader is already
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generally familiar with credibility. For those interested in the theoretical ques-
tions, there are many fine papers. some of which are listed in the references at
the end of this paper.

The first question explored is the practical impact of choosing between
classical and Bayesian credibility. The answer depends on the parameters used
in the two credibility formulas. For a certain simple relationship between the
parameters, the choice between classical and Bayesian credibility makes only a
relatively small difference. For many practical applications this difference is
acceptable.!

The second question explored is what is the practical impact of misestimating
the Bayesian credibility parameter. The credibilities are relatively insensitive to
misestimating this parameter.

CLASSICAL CREDIBILITY FORMULA
This paper assumes the following formula for the “classical™ credibility Z.

Zo = {(n/F)’5 O0=n=F

1
1 n=F (h

where n is the number of claims, and F is the so-called standard for full
credibility. This formula is discussed further in [1] and [2].

BAYESIAN CREDIBILITY FORMULA
This paper assumes the following formula for the “Bayesian™ credibility Z.
P

P+ k
where P is some measure of exposure such as payroll. premium. number of

Zg

claims, etc. This formula and methods of deriving a value for & are discussed
further in [3], [4]. [5]. [6]. and [7].}

In many cases P is the number of claims. for example. when we are trying
to estimate the average claim cost by class. In those cases where P is an

' The degree of accuracy required depends on the particular application. The difterences in credibility
are given in this paper. The question of whether the resulting differences in the quantity 1o be
estimated are large or small will have to be decided on a case by case basis.

* An example of where a more complicated formula holds is given in Meyers [8}.
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exposure unit other than claims, the formula for credibility can be approximated
by multiplying P and & by an estimate of the expected claim frequency.® Then

n
Ip = ——
T+ K
where n is the number of claims and &’ is in units of claims; k' equals & times
the expected frequency.

For simplicity, hereafter, we will assume a claim-based form of the formula
for credibility, such as

n

n+k (2)

Zﬁ:

where n is the number of claims.

COMPARISON OF THE TWO FORMULAS

The formulas (1) and (2) were derived from different points of view or
different methods. A discussion of these differences is beyond the scope of this
paper. In spite of these differences, the two formulas yield curves with very
similar shapes, as stated in Longley-Cook [1]. This is illustrated in Exhibit 1.

The credibility given by formula (1) is equal to the credibility given by
formula (2) when

()
n+k \F
k=F (nF) 1 — (wF)Y

Since we specifically have Z, = Zg, this can be written as
k=FzZ(1 — 7). (3)

If we define R = F/k, equation (3) can be rewritten as 1/R = Z(1 — 7). In
other words, the curves given by formula (1) and formula (2) will cross at the

* This estimate need not be very accurate since the credibility is not very sensitive to the value of
k as shown in a later section of this paper. Therefore, one can usually use a larger body of data 10
estimate the expected claim frequency sufficiently well for this purpose.
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two points where the credibility has the values Z and | — Z, provided we have

1
R = Z0-2 4
That is, selecting the credibilities Z at which the classical and Bayesian
credibilities are to be the same, yields the factor R that is used to relate the
credibility parameters. Or, alternatively, given Bayesian parameter & and clas-
sical parameter F, formula (4) indicates the points at which the two will yield
equivalent credibilities.

Choosing the value of R determines the two credibility values at which the
two curves intersect. To cross near the middle,* take /R = (.5) (1 — .5) or
R = 4. To cross near the ends, take I/R = .1 (1—.1) or R = 11. In the former
case, the two curves are relatively far apart near the end points. In the latter
case, the two curves are relatively far apart near the middle.

We are interested in having the two curves be “close” over the entire range
of possible values for the credibility. One useful criterion, to define the concept
of how close the two curves are, would be the maximum difference between
the curves.

Thus, one might want to minimize the maximum difference between the
two curves. Taking R = 6.75 does so. producing a maximum difference of
13%°, as illustrated numerically in Exhibits 1 and 2. This is a relatively small
difference in credibility. For many practical applications, it will make relatively
little difference which credibility formula is utilized, provided that R = 7.

MINIMIZING VARIANCE

In Bayesian credibility theory, the credibility is chosen so as to minimize
the variance of the estimate around the true result.® See, for example, the ISO
Credibility White Paper [3].

4 Actually, in this particular case the two curves are tangent at a single point, Z = 50%.

s This problem reduces to the solution of a fifth-degree equation. The solution via numerical analysis
is R = 6.757. The maximum difference of 12.89% occurs at r = R and r = 1.5401.

© The estimate given by Bayesian credibility is the least squares linear unbiased estimate.
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Appendix I shows that if we use in place of the Bayesian credibility, Zz, a
different estimate, Zg + AZ, then the variance increases. The variance is given

h\l a narahala 7 Fnr emall chanoeg from the ont1 imal credihilitv  there ic onlv a
paiaviia. siflain: Cnaliges 1O e OpPhiilldr CICURDMILLY, uiCic 15 Oilly a

very small increase in the variance. Thus, for most applications, it will make
no practical difference if the credibilities used differ slightly from optimal. The
use of credibilities other than the optimal one still usually leads to a substantial
decrease in variance compared to not using credibility at all. The relative
increase in variance is given by

A Variance _ (AZ)*
Variance Zg(1 — Zp)

(5)

The full credibility standard that will produce the classical credibility curve
with the smallest maximum relative increase in variance requires a choice of R
that will minimize the maximum of

(Zc — Za)’
Zo(l — Zp)

The solution is R = 8. See Appendix II and Exhibit 3. The maximum increase
in the variance in this case is only 12.5% = 1/8.

CHOOSING A RULE OF THUMB

A value of R = 6.75 minimizes the maximum difference between the
classical and Bayesian credibility curves. However, taking R = 8 only increases
this maximum difference from 13% to 17%. (See Exhibit 2.) On the other hand,
taking R = 6.75 rather than R = 8, only increases the maximum variance to
1/6.75 = 14.8% from 1/8 = 12.5%. (See Appendix II.) Thus, either 7 or 8
would be equally good integral values of R for use as a general rule of thumb.
They each have something to recommend themselves. The author is more
concerned with the reduction in variance and thus prefers R = 8.

7 This is the same result noted by Meyers [8]. Meyers’ concept of efficiency is closely related to
the variance of the estimate around the true result. One minus the efficiency is proportional to that
variance.
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EXAMPLES OF USES OF THE RULE OF THUMB

Example 1

You generally use Bayesian credibility methods to develop your territory
relativities for private passenger automobile. However, you have to file for a
rate change in one particular state where rates are tightly regulated. The insur-
ance department refuses to accept anything but classical credibility methods.

Let’s assume your Bayesian credibility parameter is 2500 car-years. Then,
multiply this by the expected frequency and then by a factor of 8. if the expected
frequency is 5%, then we get 2500 X 5% x 8 = 1000 claims. Thus you can
use for your classical credibility standard roughly 1000 claims, for example,
the traditional 1084. See Longley-Cook [1].

Example 2

You are computing estimated severities by classification for workers’ com-
pensation insurance, using an empirical Bayesian credibility method. When
actually implementing the method, you find it is necessary to impose maximums
and minimums on the computed values of k, the Bayesian credibility parameter.
To aid you in choosing these values, you convert them to a classical credibility
basis.

For example, k = 350 claims would correspond to a full credibility standard
of 350 x 8 = 2800 claims. This could be thought of as a frequency standard
of 1084, multiplied by a factor of 2.6 in order to convert it to a standard for
severity. (2.6 can be thought of as the ratio of the variance of the severity to
the square of the mean severity). See Longley-Cook |1].

THE EFFECT OF MISESTIMATING k

Quite often in the use of Bayesian credibility it is necessary to estimate k.
For example, one might estimate & from the data as in either (3] or [7].
Fortunately. the results are not very sensitive to the value of k. Let k be our
estimate of the correct k.

Let T = k/k.

Then, as shown in Appendix III, the maximum difference in the credibility
that results from k as an estimate of & is
T—1

ax — T = 6
(AZ)Nl (l + \//-7—‘)2 ( )
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For values of T near 1, this is relatively small. (See Exhibit 4.) For example,
if T = 1.25or .8, then itis 6%. Evenif T = 2 or T = .5, then the maximum
difference is only 17%.% In other words, even if the estimated k is wrong by a
factor of 2, the estimated credibilities are off by at most 17%.° For many
practical purposes this is an acceptable difference.

In Appendix IV it is shown that the maximum change in variance is given
by:
(Avy @ - 1) 7
14 /1\1(1\ 4T W
For values of T near 1, this is relatively small. (See Exhibit 5.) For example,
if T = 1.5 or 2/3, then it is 4%. Even if T = 2 or .5, then the maximum
relative increase in the variance is only 1/8 = 13%.'" Once again, even if the
estimated & is wrong by a factor of 2 in either direction, for many practical
purposes the result is still acceptable.

CONCLUSION

For most practical applications, one can determine the standard for full
credibility F that roughly corresponds to the Bayesian credibility parameter k,
and vice versa. First convert k to a number of claims, if necessary, by multi-
plying by an expected frequency. Then take F equal to approximately eight
times k.

When estimating the Bayesian credibility parameter k, the estimate need not
be extremely precise. For many practical applications, the estimate of k can be
wrong by as much as a factor of two in either direction and still produce a fairly
good estimate of the quantity, e.g., frequency, severity, pure premium, etc.,
that credibility is being used to estimate.

* For T = 2, this maximum difference occurs when the correct credibility is 58.6% and the estimated
credibility is 41.4%. For T = .5, the correct and estimated credibilities are reversed.

? Of course. if the estimated k is wrong by more than a factor of 2, the estimated credibilities can
be off by more than 17%.

" For T = 2, this maximum relative increase in variance occurs when the correct credibility is
2/3. For T = .5, this occurs when the correct credibility is 1/3.
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EXHIBIT |
PART 1

ILLUSTRATIVE COMPARISON OF CREDIBILITIES
BAYESIAN CREDIBILITY WITH k& = 200 VERSUS
CLASSICAL CREDIBILITY WITH VARIOUS VALUES OF F
Bayesian Classical Credibility

Credibility T T T T

Claimns k= 200 F = 1000 F 1200 F = 1350 F - 14300 F - 1600

5 2% 7% 6% 6% 6% 6%
10 5 10 Y 9 R K
20 9 14 13 12 12 11
30 13 17 16 15 15 14
0 17 20 1% 17 17 16
50 20 22 20 19 19 18
60 23 24 22 21 21 19
70 26 26 24 23 2 21
80 29 28 26 24 24 22
90 3 30 27 26 28 24
100 3 32 Y 27 27 25
125 38 35 32 30 30 28
150 43 19 35 a3 3 31
175 47 42 kH 36 35 13
200 S0 45 41 38 3K 35
250 56 S0 16 13 42 40
300 60 55 S0 47 46 43
350 o4 59 sS4 51 50 47
400 67 63 58 54 53 50
450 69 67 61 58 57 53
500 7 71 63 61 o0 56
600 75 77 71 67 65 61
700 78 84 76 72 71 66
800 80 89 82 77 76 71
900 82 95 87 ¥2 80 75
1000 83 100 91 %6 85 79
1206} 86 100 100 94 93 %7
1400 88 100 100 100 100 94
1600 89 100 100 100 100 100
1800 90 100 100 100 100 100
2000 9] 100 100 100 100 100
3000 94 100 100 100 100 100
4000 95 100 100 100 100 100
SO0 96 100 100 100 100 100
10000 98 100 100 100 100 100
20000 9 100 100 100 100 100
- n
g n+k
. [tniFy® Osn=sF
2 - 1 nzF



LLUSTRATIVE COMPARISON OF CREDIBILITIES
BAYESIAN CREDIBILITY WITH K=200 VS. CLASSICAL CREDIBILITY
WITH VARIOUS VALUES OF F

)
100~
75-
c -
R -
E -
o -
1 50—
B -
1 : ~
- >
L - =
I - 5
- [\
T 28—
y -
N
0
0.5 1.0 1.5 2.0 2.8 3.0 3.8 4.0 ..
NUMBER OF CLA!MS (LOG SCALE)
(in Powers of 10)
DASHED LINE BASED ONCLASSICALCREDIBILITY WITHCLAIMS = 1000.
VARIED LINE BASED ON CLASSICAL CREDIBILITY WITH CLAIMS = 1600.

CONTINUOUS LINEBASED ON ABAYESIAN CREDIBILITY WITH K = 200.
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EXHIBIT 2
Part 1

CLassicAL CREDIBILITY MINUS BAYESIAN CREDIBILITY

r = Claims + k R=35 R=6 R = 6.75 R =7 R =28

025 5% 4% 4% 4% 3%
.05 A 4 4 4 3
10 5 4 3 3 2
15 4 3 2 2 1
20 3 2 i 0 -1
.25 2 0 1 -1 -2
.30 1 1 2 -2 -4
.35 1 -2 3 4 -5
.40 0 3 -4 -5 -6
45 -1 -4 -5 -6 -7
.50 -2 —4 6 7 -8
625 -3 —6 8 9 il
.75 —4 -8 10 10 -12
.875 -5 8 -1 -t —14
1.00 -5 -9 3 12 15
1.25 -6 - 10 i2 i3 16
1.50 -5 - 10 -13 -14 17
1.75 -4 -10 —13 - 14 =17
2.00 -3 -9 -13 i3 -17
2.25 -2 -8 =12 - 13 -16
2.50 -1 7 - 11 -12 ~-16
3.00 2 -4 8 -10 - 14
3.50 6 -1 -6 7 —12
4.00 9 2 3 -4 -9
4.50 13 S 0 -2 -7
5.00 17 8 3 1 -4
6.00 14 14 9 7 |
7.00 13 13 13 13 6
8.00 13 I 11 11 1]
9.00 10 10 10 10 10
10.00 9 9 9 9 9
15.00 6 6 6 6
20.00 5 5 5 S 5
25.00 4 4 4 4 4
50.00 2 2 2 2 2
100.00 1 1 I 1 1
F
k=%
hl
(1) _- 0=r=R
R I +r
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CLASSICAL MINUS BAYESIAN CREDIBILITY
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-2.0 -1.8 -1.0 -0.8 0.0 0.8 1.0 1.8 2.0 2.
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EXHIBIT 3
PART |

INCREASE IN VARIANCE THROUGH USE OF
CrAssicAal CREDIBILITY
RATHER THAN BAYESIAN CREDIBILITY

r = Claims @ &

0
LLUN
001
005
010
015
02
03
04
05
0
20
30
40
.50
75
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
S.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
10.00
15.00
20.00
25.00
50.00
100.040

R 7 R K R
14% 134 %
13 11 1
2 0 9
10 ¥ 7
X 7 6
7 f 5
f s 4
5 4 3
4 3 2
3 2 2
! 1 [
()] u )
i t i
1 2 A
2 3 4
4 6 R
] 9 ll
b 12 [Nl
X 13 17
7 12 17
N 10 13
3 8 i4
I S t
0 3 b
0 1 6
| o 3
4 [} |
N 1 [}
14 3 (}
13 7 t
13 13 3
12 12 6
1l B H
H 11 1
10 10 10
7 7 7
5 s N
4 4 4
2 2 2
1 ! |

Note: The value given for r - 11 is actually the Bt as r = ¢

R = Fik

Av Az

v Zptl

Zar

See Appendix 11
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'NCREASE IN VARIANCE
THROUGH USE OF CLASSICAL CREDIBILITY
RATHER THAN BAYESIAN CREDIBILITY

B A B B et I SO L S S L AL S T L A A S N S S S S S S A A e S B S S S SN A S N L L S A A S B B

.9 ~4.8 -3.0 -1.8 0.0 1.8
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BAYESIAN CREDIBILITY

DIFFERENCE IN CREDIBILITY DUE TO MISESTIMATING &
ESTIMATED CREDIBILITY MINUS CORRECT CREDIBILITY

r =13 T=V2 T=23 T=28 T=125 T=15 T=2 T=3

0 0% 0% 0% 0% 0% 0% 0% 0%
.01 2 1 0 0 0 0 0 -1
.02 4 2 1 0 0 -1 -1 -1
.05 8 4 2 1 -1 -2 -2 -3
10 14 8 4 2 -2 -3 -4 -6
25 23 13 7 4 -3 -6 -9 -12
.50 27 17 10 5 -5 -8 -13 -19
75 26 17 10 6 -5 —10 - 16 -23
1.00 25 17 10 6 -6 -10 —-17 -25
1.50 22 15 9 5 -5 -10 —17 =27
2.00 19 13 8 5 -5 —10 =17 =27
5.00 10 8 5 3 -3 -6 —12 —21
10.00 6 4 3 2 =2 -4 -8 -14
20.00 3 2 2 1 -1 =2 -4 -8
50.00 1 1 1 0 0 -1 -2 -4
100.00 1 0 0 0 0 0 -1 -2

Estimated Bayesian Credibility Parameter
Correct Bayesian Credibility Paramer

Note: r = Exposures + k T = % =

r(l —T)

= A+nT+n See Appendix III.
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BAYESIAN CREDIBILITY
INCREASE IN VARIANCE DUE TO MISESTIMATING k

r T=13 T=12 T=6 T=23 T=8 T=125 T=15 T=175 T=2 T=1

8l

0 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
.01 4 1 0 0 0 0 0 0 0 0
.02 7 2 1 0 0 0 0 0 0 1
.05 15 4 2 1 0 0 1 1 1 2
.10 24 7 3 2 0 0 1 2 2 4
25 33 11 6 3 1 1 2 4 5 9
.50 32 13 7 4 1 1 3 6 8 16
75 28 12 7 4 1 1 4 7 10 21
1.00 25 11 6 4 1 1 4 7 11 25
1.50 20 9 5 4 1 1 4 3 12 30
2.00 16 8 5 3 1 | 4 8 13 32
5.00 8 4 3 2 1 1 3 6 10 31
10.00 4 2 ] 1 0 0 2 4 7 24
20.00 2 1 1 1 0 0 1 2 4 15
50.00 1 0 0 0 0 0 0 1 2 7
100.00 0 0 0 0 0 0 0 1 1 4

Note: r = Exposures = k 7= E _ Estimated Bayesian Credibility Parameter

(T +

Ty
r)2

See Appendix IV.
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APPENDIX 1

This appendix derives an expression for the relative increase in variance that
occurs when one uses a value for the credibility other than that indicated by
Bayesian credibility. It is shown that the variance is given by a parabola.'' The
bottom of the parabola, i.e. minimum variance, occurs when the value for
credibility indicated by Bayesian credibility is used. For different values near
this, the increase in variance is relatively small.

Let X be a random variable whose distribution depends on a parameter 0.
Let the mean of X for the value of the parameter 6 be given by
(0) = EIX [8].

Let F be an estimate of . that gives weight a to the observed value X and
weight 1 — a to the overall mean M.

F=aX+ (1 — aM
where M = E(X) = Eo|E[X /0]].

F is a function of the parameter a.

We wish to determine the variance of the estimate F around the mean p.,
averaged over all possible values of the parameter 0.

Let V(a) = EolEI(F — p)’/l1.
Let 7° = VAR L(B)] = Eol(Ju(8) — M)?] = “between variance”
d® = Fo[VAR[X/0]] = “within variance.”
F-—p=aX-—p+{d-—aM-pn

(F-p'=dX - +d-a’M - p’
+ 2a(l — a)X — M — )

E[(F — w)’fe] = &’VARIX[B] + (1 — a)*(M — w(®))’
Via) = EolE[(F — n)'8]] = &8 + (1 — a)’1’

|

1l

I

Thus, this variance is given by a parabola in a. V(a) = a’d” + (1 — a)’1".

It has a minimum when the derivative is zero.

0 =248 - 201 — &7’

T
7+ 8

! This well known result is given for example in Appendix B of Meyers |7].
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V( T2 ) 3 821'2
7+ 8 3+ 1
Thus, combining the observed value with the overall mean reduces the
variance. It is interesting to note in passing that
1 o+ 8
Minimum Variance T 3 T

the variance if you use observation

1
the variance if you use overall mean

It is useful to think in terms of the reciprocals of the variance. We want to
maximize the reciprocal variance by combining our two estimates. The maxi-
mum reciprocal variance is just the sum of the two individual reciprocal vari-
ances. Thus, the best that can be done is to double the reciprocal variance
(when the two individual variances happen to be equal) and thus halve the
variance. 2

The usual expression for the Bayesian credibility is the value for the param-
eter g that gives the minimum variance, Zg = 72/(72 + 82).

The variance is larger than the minimum for @ = Zg + AZ. In this case,

(AZ)’
2

AV = V(Zg + AZ) — V(Zp) = V'(Zp)AZ + V'(Zs)

where V' and V" are the first and second derivatives, respectively. (Higher
derivatives are zero since V is given by a parabola.) Then

AV = (AZ)'(®* + )
ﬂ B (AZ)Z(SZ + TZ)Z
1% 5%’
Av @y
V. Zp(1 —Zp)

This is the desired expression for the relative increase in variance that occurs
when the value used for the credibility is other than that indicated by Bayesian
credibility.

12 A related result is given in Appendix C of Chapter 2 of the ISO Credibility White Paper [3].
The optimal weights to assign to the individual estimates are inversely proportional to the variances.
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APPENDIX 1

This appendix explores the behavior of the expression derived in Appendix
I for the relative change in variance. It is shown that AV/V has the smallest
maximum for R = 8.

F Standard for Full Credibility

Letk = k- Bayesian Credibility Parameter
_n Number of Claims
r=-= e ‘
k& Bayesian Credibility Parameter
Zn — 32
Let g(r.R) = s = Zo)

CZw(l — Z)

This is the expression derived in Appendix | for AV/V. However,

1 n+k 1 1 + r
o = =14+ -=
Zn n r r
1 n+ k |+
= = r
| A k
(( n n
e 0=n=F
7 (F)
ZB—Z(:ﬁn k F
n
- F=
Kn+l\ ] n
{ r ‘(_L:‘ <<
1 + r \R,) r=~
anz(.:J |
- r=R
. l+r

Therefore, if r = R,

wrky = [~ ) (L -

and, if r = R,

o= (72 () ) () v (v )
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For any given R, the local maximums on the interval 0 = r = R occur at
r=0,r=Ri4, r=RD"

gO.R) = gR.R) = LR
g(VaR.R) = LR + YA(RI8 — 1)

1/R R=38
I/R +R/I16 -2 R=8

Thus, MINIMUMx MAXIMUM, g(r,R) = 1/8, which occurs when R = 8.

Thus, MAXIMUM, g(r,R) = {

'* The first and last are endpoints. The second has dg/dr = 0. The other points where the partial
derivative is zero are the minimums where ¢ = 0. For r Z R, g(r,R) = 1/r and is decreasing.
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APPENDIX 111

The appendix details the derivation of an expression for the maximum
diffaranca in Ravacian pradihilitiac that aecnrg whan an actimatad valuua for tha
Liwdvlive g ua.y\.slau LIVUIUHIILIVY L1Al ULL UL WLl dll LoLLIIdivug vailuo 1ul Lo

t t value of the

Bayesian credibility parameter & is used, rather than the correc
parameter.

Let T = k _ Estimate of Bayesian Credibility Parameter
k Correct Bayesian Credibility Parameter
n Exposures
r=-

k ~ Correct Bayesian Credibility Parameter

Then the difference in credibilities is

_ n _ n _ r -~ r
n+k n+k r+T r+1
r(l —T)

BT
As expected, when & is overestimated, (7 > 1), the estimated credibility is
too lfow, (AZ < 0).

Taking the partial derivative of AZ with respect to r indicates that AZ has
a maximum when r = T°. The maximum value of /AZ/ is

IAZ = AL
T+ 1)

As expected, this quantity has a minimum value of zero at T = 1, i.e.,
when the Bayesian credibility parameter is correctly estimated. This expression
has the same value for 7 and 1/T. In other words, when £ is misestimated by a
given factor, the magnitude of the maximum difference in the credibility is the
same whether k is overestimated or underestimated.
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APPENDIX 1V

This appendix derives an expression for the relative increase in variance that
occurs when an estimated value for the Bayesian credibility parameter k is used,
rather than the correct parameter value. An expression for the maximum relative
increase in variance is also derived.

Estimate of Bayesian Credibility Parameter
Correct Bayesian Credibility Parameter

k
T=-=
Let X

n_ Exposures
k  Correct Bayesian Credibility Parameter

r =

Then, from equation (5),

Av _ @Az
|4 Zg(l — Zp)~

but, as is shown in Appendix III,

_ . rr—n
AZ"(l+r)(T+r)'

Also note that
1 n+k 1+7r

=1+r

Substituting in equation (5) gives

Av _ (T - 1)

1% (T + r)?

Taking the partial derivative with respect to r indicates a maximum when
r = T. Therefore, the maximum value of AV/V is

(Fh-
|4 Max 4T )
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As expected, this quantity has a minimum value of zero at T = 1, i.e.,
when the Bayesian credibility parameter has been correctly estimated. This
expression has the same value for T and 1/7. In other words. the maximum
relative increase in variance is the same whether & has been overestimated or
underestimated by a given factor.

In Appendix III, the same behavior was noted for the maximum difference
in credibility. The factor by which k is misestimated. rather than k — k/, the
difference between the estimated and correct values., is the important quantity. '

4 Therefore, we would expect that confidence intervals tor & would not be symmetric around our
best estimate. Rather, they should be larger on the high end and smaller on the low end. This
behavior was noted in Section 7 of Meyers [8}.
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CLASSICAL PARTIAL CREDIBILITY WITH APPLICATION TO TREND

GARY G. VENTER

Abstract

Even with the recent advances in Bayesian credibility theory, there remain
situations in which some may prefer the classical approach. Such situations
may include data limitations, the failure of Bayesian model assumptions, the
desire to incorporate a broader class of auxiliary information, ease of calcu-
lation and explanation, or just the force of tradition.

This paper discusses a probabilistic interpretation of the classical square
root rule which provides some rationale for its use. The same rationale applied
to trend projections leads to a similar rule, which utilizes the relative goodness
of fit of the trend line.

While classical credibility for pure premiums is calculated from the volume
of datu used, the importance of volume is only in determining certain confidence
intervals, which in turn determine credibility. In the trend model, the relative
goodness of fit determines the confidence intervals. Using these confidence
intervals in the same manner as in the pure premium case yields classical
credibilities for the trend.

Volume is important here only to the extent that the stability it imparts
contributes to the goodness of fit. As there may be other influences affecting the
Jit, volume alone does not guarantee high credibility in the trend case.

Credibility requirements under the Normal Power approximation also are
reviewed. For these a partial credibility method different from the square root
SJormula is indicated.

Partial credibility in the “classical” approach (Longley-Cook [5]) has often
been presented in a somewhat ad hoc fashion, not particularly related to the
statistical development of the full credibility standard.

An exception is provided by the “limited fluctuation” development (De-
Vylder [2] and Hossack, Pollard, and Zehnwirth [4]), which shows that the
square root rule can be given a reasonable probabilistic interpretation when the
full credibility standard is developed from a normal approximation to aggregate
losses. The limited fluctuation concept is similar to an interpretation of credi-
bility theory found in the 1932 PCAS (Perryman [8}).
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The present paper outlines the limited fluctuation interpretation of credibility
and uses it to develop a classical credibility approach to trend. As a further
illustration, this method is extended to the computation of partial credibilities
when the normal power approximation to aggregate losses is used to develop a
full credibility standard (Mayerson, Jones, and Bowers [6]). To present this
method clearly, a review of the standard credibility procedure is in order.

ELEMENTARY CREDIBILITY FROM AN ADVANCED STANDPOINT

The primary focus in classical credibility is the establishment of a full
credibility standard. This is viewed as the expected number of claims needed
to meet a predefined standard of stability of the aggregate losses. (“Aggregate
losses” refers to the total dollar amount of the claims.) The standard is expressed
in terms of confidence intervals. A typical standard would be that there be a
90% probability of observed aggregate losses for a year being within +5% of
the expected aggregate losses.

The limited fluctuation approach to partial credibility proceeds by establish-
ing a confidence interval of the same precision and width as desired for full
credibility, but centered at the credibility weighted estimate rather than at the
observed mean. Some rationale for this method will be discussed below. This
approach turns out to yield the square root rule for partial credibility in the case
that aggregate losses are adequately approximated by a normal probability
distribution. This distribution may not be a very good approximation in practice,
but it is useful to illustrate the development of the theory. The development of
the full credibility standard under this assumption proceeds as follows.

Since the normal distribution is symmetric about its mean, a 90% probability
of the aggregate losses T being within +kE(T) of E(T) corresponds to a 95%
probability of T being below E(T)(1 + k). In general, a probability p of T being
within *kE(T) of E(T) translates to a probability of .5(1 + p) of T being below
E(T)(1 + k). For notational convenience, then, letd = .5(1 + p)and y, denote
the dth quantile of the standard normal distribution, i.e., there is a probability
d that a standard normal variate is less than v,. For example, y g5 = 1.645.

Thus, to meet the standard of T being within +kE(T) of E(T) with probability
p, KE(T) must equal y, standard deviations of T, i.e., kE(T) = y, V%ar(T). To
express this standard in terms of the number of claims requires an expression
for the variance of T in terms of the moments of N, the number of claims, and



CLASSICAL PARTIAL CREDIBILITY 29

X, the claim size. This expression, derived in Appendix 2, is
Var(T) = Var(X)E(N) + Var(V) E(X)".
Thus, the full credibility requirement is

KE(X)’E(NY* = y5 (Var(X)E(N) + Var(M)E(X)*)
or

E(NV) = (/) ((Var(XYE(X)*) + (Var(NYEN))).

Now, this is supposed to be an equation for E(N), but. E(N) also occurs on
the right side. However, the ratio Var(N)/E(N) can often be treated as a constant
of the frequency distribution. In fact for a Poisson frequency, this constant is
1.0. The negative binomial distribution with parameters x and p has E(N) =
x(1 — p)p and Var (V) = x (1 — p)/pz, so the ratio of variance to mean is
l/p. As long as p does not change, the expected number of claims can increase
or decrease due to the x parameter without influencing the variance to mean
ratio.

For any frequency distribution, increasing E(N) by adding independent iden-
tically distributed exposure units does not change this ratio, because Var(¥V) will
increase proportionally. (For independent risks, E(N + M) = E(M) + E(N) and
Var(N+M) = Var(N)+ Var (M). From this it follows that if Var(NyE(N) = r =
Var(M)/E(M), then also Var(N + M)/E(N + M) = r.) In more sophisticated
models, large risks or portfolios are not assumed to behave as aggregations of
independently distributed exposure units, and then this ratio is not a constant
(Meyers and Schenker [7]). However, this constancy will be assumed here.
Thus, the full credibility standard can be written as

EWN) = ¢ (vk)?,

where ¢ = (Var(X)/E(X)?) + (Var(N)/E(N)) is a constant of the distribution.
The first term of ¢ can be denoted as CV> with CV the severity coefficient of
variation. For example, with a Poisson frequency, ¢ = 1 + CV?.

A standard example (Longley-Cook [5]) is given by a Poisson frequency
and a severity distribution with CV = 0 (constant severity) and thus ¢ = 1.
Taking y; = 1.645 and k = .05 then yields E(N) = 1082.4. This might be a
reasonable standard for claim frequency, or for aggregate losses with constant
severity. To achieve the same confidence intervals, still with a Poisson fre-
quency, this standard would have to be multiplied by 1 + CV? to account for
severity variation. In Longley-Cook [5], this factor is referred to as 1 +
SZ/M: and in Hossack [4] as 1 + (o/m)’.
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It is of interest to note that ¢ is also invariant under scale changes in severity,
since Var(X)/E(X): has this invariance. A scale change is a transformation that
affects every claim by a uniform factor, such as simple monetary inflation
(Venter [11]). Real world inflation may affect different claim sizes differently,
however (Rosenberg and Halpert [9]). Var(X)/E(X)" is invariant in this sense
because numerator and denominator both change by r* under a scale change of
r. Thus, for given constants p and . the credibility standard will not change
due to growth of the business (i.e., addition of independent identically distrib-
uted exposure units) or uniform inflation.

In practical applications, E(N) is often estimated by the number of claims
arising. Thus, for example, if 1,082 expected claims is the full credibility
standard, a body of experience with 1,082 claims may be deemed fully credible.
The model, however, specifies a standard in terms of the exact expected number
of claims. Using an estimate of this expected number changes the confidence
intervals. Expected claims of 1,000 or of 1,164, for example, could occasionally
produce 1,082 claims. Using &k = vu V/EN) yields &’s of .052 and .048 for
these two expected values. Thus, the confidence interval widths arising in
practice may be slightly different than those contemplated by the theory. This
problem seems to be minor, given the degree of judgment used to select &
originally.

PARTIAL CREDIBILITY

When E(N) is less than the full credibility standard, a weighting scheme is
used to estimate E(7). The estimate, u. is a weighted average of the observed
aggregate claims 7 with v, a previous estimate of E(7). The previous estimate
v can be regarded as the best available estimate of E(T) without the observation
T. Thus

u=:T+ (1 — ).

Under the limited fluctuation partial credibility approach. the weight z is
calculated so that there will be a probability p of u being within kE(T) of
zE(T) + (1 — z)v, where p and £ are the defining constants of the full credibility
standard. Thus the credibility estimate w« is., with probability p, within the
originally desired distance kE(T) of a weighted average of E(T) and the previous
estimate v.

For u to meet this criterion, z7 must be within kE(T) of zE(T) with probability
p. as can be seen from the definition of u. This is equivalent to requiring T to
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be within (k/z)E(T) of E(T) with probability p. But this is just the full credibility
requirement with & replaced by 4/z. Thus, under the above assumptions, the
expected number of claims needed for credibility z is

E(N) = c(va(k/2))*.

Comparing the resulting expected number of claims N, needed for a credibility
of z to the full credibility standard N, yields that

Nz = zzlvf
or
Z = N;/Nf.

That is, the credibility factor z for an expected number of claims N, is just the
square root of the ratio of N to the full credibility standard Ny, with a maximum
ofz = 1.

Also, since (k/z)E(T) is the width of the p confidence interval when E(N) =
N, then z is just the ratio of the target p confidence interval kE(T) to the wider
p confidence interval around E(T), (k/z) E(T), that arises for E(N) = N,. As a
result, the p confidence interval around zE(7) is of the targeted width kE(T),
and thus there is a probability p of the credibility estimate u being within this
target width of zE(T) + (1 — z)v.

This gives a reasonable probabilistic interpretation to the square root rule
for partial credibilities. It does not, however, rule out other possible partial
credibility rules which also may be reasonable. The classical approach is essen-
tially pragmatic, and does not claim optimality.

For an example, again assume Poisson frequency and constant severity, so
¢ = 1. Suppose 683 claims are observed, and this is taken as the estimate of
E(N). Using k = y,V¢/E(N) = .063, a 90% confidence interval of 683 (1 *
.063) = 683 = 43 is computed. However, suppose an interval half width of
(.05) (683) = 34 is desired, which is smaller than the actual by the ratio of
.050/.063 = .79. The 90% confidence interval around .79N = (.79) (683) is
of the desired half width 34 = (.79) (43). Adding the constant (1 ~ .79) v does
not change this half width. Thus, taking z = .79 meets the limited fluctuation
criterion, and this z can be simply calculated as the square root of the ratio
683/1082.
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It is sometimes claimed in casual conversation that the classical credibility
criterion is biased against downward estimates. There are two lines of reasoning
used for this. The first notes that a portfolio with a smaller expected number of
claims has a smaller confidence interval radius than one with more expected
claims, and thus asserts that it is unfair to give it lower credibility.

This argument in effect questions the use of a target confidence interval
expressed as a percentage of the expected losses, and favors an absolute con-
fidence interval. There are good reasons for using a relative confidence interval,
however. For instance, the resources to absorb adverse fluctuations are usually
available in appjoximate proportion to expected losses. These resources may
include surplus, investment income, and a profi/contingency provision in the
rates. It should also be noted that a criterion based on absolute confidence
intervals would give the greatest weight to the smallest volumes of data, which
is just the opposite of what is intended by credibility.

The other argument for bias applies when the actual rather than the expected
number of claims is used for credibility. The model assumes random fluctuations
occur equally on either side of the expected value. However, downward fluc-
tuations get lower credibility than upward ones, giving the whole procedure a
slight upward bias.

To illustrate this, consider a case where the full credibility standard is
1089 = 337 claims, and E(N) = 1000. Assume also that the previous estimate
v = 1000. The credibility should be .958 based on E(N) = 1000. However, if
credibility is based on the actual number of claims it will usually differ somewhat
from this value. The credibility z and credibility estimate « are shown below
for several n’s that could arise.

n z u n z u
1023 969 1022 977 .947 978
1063 .988 1062 937 928 942
1088 1.000 1088 912 915 919
1047.6 954.8

As can be seen, the fluctuations above the expected value do produce slightly
larger indicated changes than do those below the mean. In fact the average
estimate produced is 1001, so there is a 0.1% expected upward bias in this
case. The weights used for each row to compute this average are .4679, .3607,
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and .1713. These and the n’s selected derive from the 6 point Gaussian guad-
rature integration procedure for the interval (905, 1095), which under the normal
approximation contains about 99%% of the values of » that could arise.

The 0.1% expected bias in this case comes about because the practice departs
from the theory, i.e., the credibility is calculated based on the latest observed
rather than the expected number of claims. This problem need not occur in
other applications of the limited fluctuation theory which use some other estimate
for expected claims.

To summarize classical normal approximation credibility, then, a full cred-
ibility standard is first established, based on a specified high probability of the
data being within a specified narrow band around the expected value being
estimated. Partial credibility standards are then derived by requiring that the
credibility weighted estimate be within just as narrow a confidence band, but
this confidence band is now centered at the credibility estimate. The partial
credibility z then turns out to be the ratio of the width of the target full credibility
confidence interval to the corresponding confidence interval produced by the
actual data.

Does classical credibility theory make sense in this form, and if so, under
what circumstances?

Assumptions for aggregate losses (e.g., approximately normally distributed)
that lead to the confidence interval properties of the credibility estimator have
been given, but the relationship between the observed aggregate losses, those
being estimated, and the previous estimate need to be clarified in order to
evaluate the methodology.

Without formulating a specific model, the credibility estimate seems useful
when a situation like the following is involved.

Things (1.¢, the underlying processes) tend to be fairly stable over time, but
occasionally they change, and these changes are of varying degrees and direc-
tions. Observations fluctuate randomly around the underlying processes, and
the degree of this latter fluctuation is fairly well known. Rates should respond
to fundamental changes but not to fluctuations.

Under such a scenario, it seems reasonable to set up a target confidence
criterion with respect to the random fluctuations so that the latest year’s indi-
cation will be used at face value if the confidence interval this experience
produces is tight enough, in reference to selected constants p and k. This would
delimit the degree of random fluctuation that would be deemed acceptable.
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At the other extreme, if no observation can be made. the previous estimate
will continue to be used. Between these extremes. a weighted average of the
observation and the previous estimate seems like a reasonable and appropriate
choice. What should be the weights? One possibility is to attribute just enough
weight to the last observation so that that observation gives the resulting
weighted average only the degree of random fluctuation that has already been
deemed acceptable. As the above analysis has demonstrated, this is the resuit
the classical credibility procedure produces. given the assumptions involved.

Thus, although no claims about optimality are advanced, the classical pro-
cedure can at least be seen to have a reasonable probabilistic interpretation. It
may be particularly useful when the premises of Bayesian credibility, such as
homogenity over time, cannot be assumed to hold, when the data is not available
to do a full Bayesian credibility analysis, and when the auxiliary data to be
incorporated comes from a different source, such as broader economic indices.

In the next section, the above procedure will be used to develop a classical
credibility standard for trend projections. In Appendix 1, it is used to produce
partial credibility when the normal power approximation to aggregate losses is
employed.

CREDIBILITY FOR A TIME TREND

To apply classical credibility to a trend projection, a full credibility standard
relative to p and k must first be determined. In the classical spirit. this can be
specified as follows: a projected point will be deemed fully credible relative to
p and k if there is a probability of at least p that the actual value being projected
will fall within 1 * k of the projected point.

Note that this standard is more restrictive than in the aggregate loss credi-
bility framework in that it requires the realization of the random variable, not
just its expected value, to be in the interval. Accordingly, a larger value of 4
may be deemed appropriate for a given p in this situation than for aggregate
losses. There may be other ways to specify a reasonable tull credibility standard,
but the above definition will be used herein. As in the classical approach, the
target confidence interval is expressed as a percentage of the estimate, which
seems appropriate for most of the reasons advanced above.

There are standard statistical formulas, in texts covering regression, for
calculating confidence intervals around a trended point. In general, these utilize
the number of points in the experience period, the number of points forward
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the projection is carried. and the goodness of fit of the least squares line. Let
us suppose, then, that the line is based on #n equally spaced observed points and
the projection of interest is m points beyond the midpoint of the observations.
Goodness of fit will be measured by s, where (n — 2)s* = SSR. the sum of the
squares of the residuals, i.e., the sum of the squared differences between the
observed and fitted points. The n — 2 is an adjustment for degrees of freedom,
because 2 parameters are required for fitting a line.

Under normal least squares assumptions, to be discussed further below, the
usual formulas yield that the standard deviation of the projected point is

and the p confidence interval measures
Hd,n — 2).@\/1 + (l/r!)i% I2m,‘/ﬁ(n'37?n) nH

on each side of the projected point, where #(d.n — 2) is the 100dth percentile
of the ¢ distribution with n — 2 degrees of freedom, and, as before, d = .5(1 +
p). Formulas that reduce to these for a time trend can be found in many
regression texts. The confidence interval incorporates both the variance of the
subsequent point from its expected value on the line and the uncertainty as to
where the line really is, since its parameters are estimated.

To use this confidence interval for credibility, it is first necessary to select
p and k. For example, a 90% confidence interval of = 10% of the projected
value might be chosen as the full credibility standard. Then the actual p confi-
dence interval is measured for the data at hand. Suppose, for example. the 90%
confidence interval around the projected point is found in fact to be £ 12.5%
of the projected value. Then, following the principles of classical credibility,
the partial credibility for the particular case at hand would be the ratio of the
full credibility interval to the actual interval. In this case the ratio is .10/.125 =
.80, and thus the trend projection receives 80% credibility.

Applying a credibility factor in this manner limits the possible random
deviation of the credibility weighted estimate to the targeted amount, i.e.. to
*k of the projected point. However, the resulting confidence band. while of
the desired width, is not centered on the value being estimated, but rather on
the weighted average of this value with a previous estimate v. This is precisely
what the classical procedure does in the aggregate loss case as well.

In other words, the credibility estimate is z times the projected point plus
I — z times the prior expectation. The p confidence band around this estimate
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has been shrunk by a factor of z, which is chosen to give the resulting confidence
band a width of & times the projected point. Then p expresses the probability
that the credibility weighted average of the actual value being projected and the
prior expectation will be within the given interval around the credibility estimate.

The theory does not specify what the prior estimate v should be, but it seems
reasonable to stipulate that v is the best estimate available prior to the current
projection. Possibilities may include a previous projection; a projection based
on a wider population, e.g., countrywide data; or a projection based on a
broader economic perspective, e.g., pure inflationary considerations.

An example of this method is given in Appendix 3, for a loss ratio trend.
A loss ratio of .647 at current rate level is projected, with a 90% confidence
interval of =.159. If the full credibility standard is taken to be a 90% confidence
interval of *.0647, a credibility of z = .0647/.159 = .41 results. Thus 1| —
z = .59 will apply to the prior estimate. Suppose the prior estimate is v = .620.
Then the credibility estimate is 4 = (.59)(.620) + (.41)(.647) = .631.

The probabilistic interpretation of this procedure is then as follows. There
is a 90% probability that the expected loss ratio £ being estimated is within
159 of .647. Thus, there is also a 90% probability that .41F is within
(.41)(.159) = .065 of (.41)(.647) = .265. Adding .59v = .366 to this shows
that there is then a 90% probability that the credibility estimate u = .265 +
.59v is within .065 of .41F + .59v.

PROS AND CONS OF THE METHOD

The confidence interval approach to credibility for trend has several advan-
tages and some disadvantages, as enumerated below. Some features of the
method have positive and negative aspects, and thus are listed under both.

Advantages

1. The method is derived explicitly from a statistical model. Thus, it is
possible to describe the estimate in probabilistic terms. It is not based
on analogy or ad hoc reasoning.

2. Credibility bears a direct relationship to the goodness of fit of the trend
line.

3. Since the model is simple, the concepts are relatively easy to explain
and the estimation is not difficult to carry out.
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4. The method leaves room for the informed judgment of trained experts,
both in the selection of the full credibility standard and in the choice of
tha nrinr agtimato Thic malkac tha mathad racnoncive tn tha nasde f
uie PllUl Lollllialv., 11110 {l1IdRvO lllb vy IUYPUIIDIV\’ wr lllb ll\«\rub i
different constituencies, which may have different evaluations of the
applicability of the various sources of prior data, such as countrywide

data or broader economic trends.

Disadvantages

I. The method does not optimize anything. This is in contrast to the modern
least squares credibility approach, which does optimize a specific error
function.

2. Subjective judgment is required. This is again in contrast to the least
squares approach, in which all estimates are produced strictly from the
data with no input from subjective probabilities called for. While in-
formed judgment can truly be an advantage over purely data driven
methods, judgment can be inconsistent over time and circumstances, and
poor judgment can be a disadvantage.

3. The model requirements, while simple, are restrictive. The usual regres-
sion assumptions, for example, include normality of the residuals. This
assumption can be tested, however, as is discussed further in Appendix
4. If normality is not found, it still may be possible to estimate confidence
intervals by other means.

In summary, classical credibility, which can be thought of as a ratio of
confidence intervals, can be extended directly to apply to trend. This has several
advantages, including flexibility and ease of application and exposition. It is a
pragmatic approach with a probabilistic interpretation, but is not derived as a
statistical optimization. This leaves open the possibility that, under further
assumptions about the statistical relationship between the data and a specific
prior estimate, a different credibility procedure can be derived that optimizes a
specified error measure.

LEAST SQUARES ASSUMPTIONS

The normal least squares assumptions provide that the various years’ obser-
vations 7; are normally distributed random variables, each with the same vari-
ance, and with the expected value for each given as a linear function of time,
i.e., E(T) = a + bi.
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In application, these assumptions may only hold as approximations. In some
cases, for instance, the expected values may move as a non-linear function of
time. Also, the data is often adjusted to remove systematic influences, e.g..
rate changes and benefit changes, before the linear model is fit.

Further, nothing in the model assumptions requires the variance to be due
to frequency and severity distributions alone. Pricc levels, the level of economic
activity. and reserving changes could all contribute to the variance of the
individual results from their expected values on the line. Thus the volume of
experience underlying each point is not the sole determinant of the variance,
and in fact may be overshadowed by other factors.

DEVELOPING A WORKING FORMUILA

A projected point is fully credible p & if the p confidence interval around
the projected point has radius no more than & times that point. By (1) and the
definition of s. this criterion will be fulfilled if

k PRO = tld.n — 2)V(1 + (Un) + 12m>0in)SSRitn — 2). 2)

Here PRO denotes the projected point. Also. for credibility z. a confidence
interval of (k/z) PRO is required, by the limited fluctuation principle. This can
be expressed by substitution (k/z) for £ in (2).

Rearranging terms then leads to

SSR/PRO™ = K°(n — 2)V[z"Hd.n = 2V (1 + (Lin) + 2o0dn’ — nn) (3)
where SSR. is associated with credibility . Thus

SSRI/PRO® = ki n — 2)|ttd.n — 201 + (Lim) + 12min’ — m))] (4)

gives the full credibility standard relative sum of squared residuals in terms of
p and k, the selected criteria; n, the number of points used to fit the line; and
m, the number of points projected beyond the midpoint of the # original points.

Full credibility is expressed by a relative SSR. not an absolute SSR. because
the target confidence interval is specified as a percentage of the projected value.
As with credibility for aggregate losses. a smaller absolute confidence interval
can lead to lower credibility if that interval is wider relative to the value being
estimated. and again this appears to be entirely appropriate.
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From (4), the full credibility relative SSR’s are given for various increasingly

specific assumptions below. First, take p = .90, so d = .95, and assume 5
it g srond g Bt Jlen Cov 2 — & Thaw 408 0 Y — ) 282 S d.
PULLIL alC ustu W U UHIC THIC SU 1 — o, I A4, n L) — £.000 dilu.

SSR/PRO® = 5.418 K3(12 + m?).
It kK = .06, this becomes
SSR/PRO® = .0195/(12 + m™).

A typical projection may be to point 7.5, so m = 4.5 points beyond the
midpoint of the data. This yields

SSR/PRO* = .0006.

This full credibility standard for the relative SSR only coincidentally is .014.
For & = .05, the standard is .0004, and for &k = .07 it is .0008.

For a given PRO, (4) can be divided by (3) to yield

which 1s the square root rule for partial credibility for trend. Here SSR: is the
actual SSR for the fitted line. and SSR, is the target relative SSR multiplied by
PRO”.

MAKING THE JUDGMENTS

Given the above working formulas, choosing p and k& can be replaced by
selecting a target full credibility relative SSR. This is perhaps a more reasonable
judgment to make. Instead of picking p’s and k’s in advance, experienced
actuaries, having a feel for the ratemaking process as a whole, and also for
their corporate goals, may prefer to review a collection of fitted lines and select
those which can be regarded as fully credible for ratemaking use. However, the
resulting p’s and &’s may be a useful part of this review.

Such a process is also advantageous in that it is less tied to the normal
distribution assumption of the model. The selection of the full credibility relative
SSR can be made with recognition that the residuals may not be normally
distributed. and that the confidence intervals involved might actually be wider
than the model would predict for that relative SSR.

A judgment could also be made that a wider confidence interval may be
acceptable when a longer projection is necessary, in recognition of the inherently
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greater uncertainty involved with a longer projection. One way to reflect this is
to keep the target relative SSR constant under various projection periods.

Under these circumstances, the Actuarial Committee of the National Council
on Compensation Insurance adopted a target relative SSR of .0006 for a five-
year fitted trend line. As noted above. this results in k& = .060, that is, a 90%
confidence interval radius of 6.0% of the projected value when m = 4.5, which
corresponds to a 2.5-year projection. For this relative SSR and m = 5.5, a 3.5-
year projection, k = .068, that is, there is a 90% confidence interval radius of
6.8% of the projected value. Normally, workers” compensation ratemaking uses
a projection period of 2.5 to 3.5 years.

The more general target relative SSR of .0195/(12 + m") can be used for
other projection periods. This maintains the target relative 90% confidence
interval radius at 6.0% regardless of the length of the projection.

The Committee also noted that the above formula for the confidence interval
around a projected point allows for random fluctuation of the projected loss
ratio as well as for uncertainty about the parameters of the regression line. If
only the latter were to be considered, the resulting confidence interval would
actually be tighter than the formulas indicate.

This indication of a tighter interval may in part be counterbalanced by the
possibility that residuals are not normally distributed. Although that distribution
was not rejected by standard tests, the tests are not definitive in this context.
To the extent that the residuals are from a skewed distribution, the target
confidence interval may be wider than the formulas suggest.

Practical considerations such as these support the approach of selecting a
target relative SSR based on informed judgment which considers, but is not
strictly limited by, the implications of the statistical model.

The complement of credibility in this framework should apply to the best
estimate of the trended point available prior to the projection that is being
weighted. Logical candidates for this are projections based on the countrywide
trend, the previous trend in the state, or broader economic indices. The as-
sumption of no trend would not be appropriate unless there is an a priori reason
to believe the trend is in fact flat. There may be, for example, good reason to
believe this for the ratio of workers’ compensation indemnity losses to payroll.
However, as medical costs have been increasing faster than payroll in the
economy at large, the ratio of medical losses to payroll could not be expected
a priori to show no trend.
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As medical benefits are quite similar across states, and are subject to similar
inflationary influences, the latest available countrywide trend factor was selected
as the prior estimate to be used with the complement of credibility for the
medical pure premium trend. For indemnity trend, this was felt to be inappro-
priate, due to widely differing benefit laws. Zero trend was chosen as the prior
estimate because of its a prtori reasonableness.
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APPENDIX |
CREDIBILITY WITH THE NP APPROXIMATION

Mayerson. Jones, and Bowers [6] note that the normal approximation is
inappropriate for casualty insurance aggregate claims distributions because these
are almost always positively skewed. They suggest using the NP (normal power)
approximation instead. although they never use that term. The NP adjusts the
normal approximation for skewness. If ¢, is the dth quanule of 7, ie..
Pr (T = 1) = d. and v, is the dth quantile of the standard normal distribution,

then the NP approximation is
te = B+ erlya + 50 (v = 1)/6)), (5)

where for any random variable X. ¢y is the coefficient of vanation (ratio of
standard deviation to mean) and sy is the coefficient of skewness (ratio of third
central moment to the cube of the standard deviation). In this notation, the
normal approximation is

te = E(DI(T + vy,
which is the NP with zero skewness.

The NP approximation arises from the first few terms of the Cornish-Fisher
expansion, an infinite series expansion which expresses the percentiles of a
distribution in terms of its moments. This is an alternating series expansion and
is not necessarily convergent. Thus, adding more terms may or may not signif-
icantly improve the accuracy of this approximation. See Beard. Pentikainen,
and Pesonen [1] for further discussion of this approximation.

Full Credibility with the NP

As with the normal approximation. the starting point for credibility is to
find a full credibility standard such that T is within *=kE(T) of E(T) with
probability p. The NP does not in general provide a symmetric distribution
of T around E(T); however, requiring T to be below (1 + KHE(T) with proba-
bility d = (1 + p)/2 is generally assumed to be sufficient for 7 to be within
E(T) +kE(T) with probability p for positively skewed aggregate claim distri-
butions. This will be assumed for now, but it is discussed further below. With
this assumption. the full credibility requirement gives the equation
E(TY1 + k) = 1,. which must be solved for E(N) to get the full credibility
standard. E(N) does not appear in this equation. but it is an element of both
sides.
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Employing the NP approximation (5) at this point and solving for k yields

t2

k + e

= clys + st (va — 1)6).

2,

To solve for E(N), ¢r and sy must be expressed in terms of N and X, i.e.,
frequency and severity. The methods of Appendix 2 provide the following
formulas for the coefficients of variation and skewness of aggregate losses

¢} = (¢ + n2)/B(N), and
sy = (sv\rc‘f + 3n;c'f + n;)/(';E(N)2 s

where #; is defined by E(N)n, = E(N — E(N))'. For example, n, is the frequency
ratio of variance to mean. For the Poisson, n; = n: = 1.

Introducing further notation for the numerators of the aggregate moments
will simplify these expressions. Let

,
M, = ¢; + n», and

3 2
My = sy + 3nac; + na.

M> and M are shape descriptors for the aggregate loss distribution. For example,
M/E(N) is the square of the coefficient of variation of aggregate claims, and,
in fact, M- is the adjustment factor ¢ referred to above in the discussion of the
normal approximation credibility formulas. M; is a third moment measure for
aggregate losses, and comes up frequently in calculations. With this notation
the formula for & becomes

k = yaVMAEN) + (MyM2)(va — 1/6EN).

This equation can be solved in general for the full credibility standard.
Considering it to be a quadratic equation in VEWN) gives

2 VEWN) = v VM2 + VAIM, + 2k (v — DHM3/3M,.

The resulting value of E(N) is the full credibility standard based on the NP
approximation. Setting the last term under the square root to zero gives the
formula for the normal approximation full credibility standard. Thus, that term
is the end result of the NP adjustment.

Partial Credibilities

The limited fluctuation method can be used to calculate partial credibilities
under the NP approximation. Following the development in the text, for an
E(N) less than Ny, the partial credibility z represents a scaling factor that scales
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the p confidence interval that would arise for that number of claims down to
the target p confidence interval of kE(N). The number of claims that generates
a credibility of z, i.e. N.. can be developed trom the above full credibility
formula by replacing & with &/z. This allows for the calculation of credibility
tables. but no simple relationship. such as the square root rule of the normal
approximation, 1s evident.

An example would probably be useful at this point. Consider a case with a
Poisson frequency distribution and a lognormal severity with a coefficient of
variation of 7.0. For the Potsson. n. = sn: = 1. Thus M. = 50. For the
lognormal generally. s, = ¢! + 3c¢,. so in this case s, = 364. Thus M; =
125.000. Take a 90% confidence interval, so v, = 1.645. Then 2k VE(N) =
11.632 + V135.3 + 2843k If& = .05, E(V) = 80.026 is then the full credibility
standard. Replacing &k by A/z gives the following standards V. for partial credi-
bility ¢

hof 25 .50 5

N 9,103 25786 49,468
“Ng 5000 200007 45,015

The square root rule partial credibility criteria =°N, for this N, are consistently
lower.

The high credibility requirements in this cxample derive in part from the
large severity C'V assumed. For high limits of insurance or unlimited coverage,
CV’s of this magnitude have been reported by actuaries involved in various
lines of commercial property and liability insurance (LeRoy Simon in his review
{10} of the Mayerson, Jones. and Bowers paper).

Instead of the Poisson, a negative binomial frequency can be assumed. The
negative binomial can be described by means of two parameters. x and p, so
that PNV = n) = (* " Yy p'(1 — p)". with moments E(N) = x(1 — p)ip, n, =
Up, ns = (2 — p)yp”. This illustrates that n> and ns can be considered funda-
mental measures of the shape of the frequency distribution. in that they are
functions of p only, while the mean can be changed by moving x. Dropkin [3]
found that n, = 1.184 in an automobile insurance study. This implies p = 8446
and so n; = 1.620. In the above example, this increases M- to 50.184 and M,
this yields E(N) = 80,153 expected claims for full credibility. Thus, in this
case, the full credibility standard is not significantly changed by going to the
negative binomial assumption.
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Another example of a negative binomial frequency distribution is provided
by Meyers and Schenker [7]. They discuss a workers’ compensation setting in
which the compound process of picking a risk at random from a class and
observing its number of claims can be described by a negative binomial distri-
bution. In their case each risk has a Poisson claim count distribution, and the
risks” Poisson parameters are gamma distributed across the class. The resulting
negative binomial distribution with mean E(¥) is estimated to have no = | +
.037E(N). Since a2 is increasing with risk size, very large values can arise for
large risks. In this model, a portion of the uncertainty about a risk’s claim count
comes from the distribution of risks in the class, and this portion is not reduced
by increasing the risk size. Essentially n2 is no longer a fundamental frequency
constant, but depends on E(N).

Ignoring the context, however, suppose a negative binomial distribution is
given with a constant but large n», say n, = 51. Then p = 1/51, and n3 =
5151. In the above example these values give M> = 100 and M, = 137,500.
Thus 2k VE(N) = 16.45 + V270.6 + 1564k, and k = .05 gives E(N) =
123.385. Thus the negative binomial model does make a considerable difference

when n, is large.

The lognormal assumption increases the skewness in these examples over
what some other distributions would provide. A Weibull distribution with a CV
of 7 has a shape parameter of .2678046 and thus skewness of 44.44. In the
Poisson case above this reduces M3 to 15,391. Thus 2k \/E(N) = 11.632 +

One-and Two-sided Intervals for Skewed Distributions

Previously it was stated that the NP approach to credibility usually assumes
that if 7 has a probability of d = (1 + p)/2 of being below (1 + k)E(T), then
T will be within =kE(T) of E(T) with probability at least p. That this is not
necessarily true for positively skewed distributions is shown in the following
example.

Assume 7 is Pareto distributed with distribution function F(t) = 1 — (1 +
#/2.5)"*". Then E(T) = 1.0 and F(1.0) = .6920. Take p = .5, so a 50%
symmetric confidence interval around 1.0 is sought. This interval is 1.0 *
.6898 as can be verified using F(¢). Since p = .5,d = .75, and since F(1.215) =
.75, 11 = 1.215. However, the probability of T being in the interval 1.0 = .215
is less than 50%; in fact it is only 13.45%.
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This arises because E(T) is well above the median of the distribution, so
going only a small distance above E(7) reaches the 100dth percentile for this
d. For this distribution, this situation holds up to a p = 72.14% confidence
interval around the mean. i.e. up to 1.0 £ .8905. For this interval. the proba-
bility d of T being less than E(T)1 + k) is given by (p + 1)/2 = 86.07%
exactly. For higher p, the desired relationship does hold, i.e.. being below the
(1 + p)/2 quantile is enough to guarantee that the corresponding symmetric
interval contains at least p in probability.

Since it is higher confidence intervals that are of interest in credibility, the
assumed relationship would be fulfitled in this case. However, a more highly
skewed distribution would place the mean at an even higher percentile, which
would aggravate this problem. However. most loss distributions for which this
credibility procedure is intended are not so highly skewed that this would be
likely to occur. In fact the NP itself is of questionable accuracy for highly
skewed distributions.

Applicability of the NP to Skewed Distributions

To investigate this, the percentiles of the several distributions are calculated
directly and by the NP approximation. The Pareto distribution F(r) = | —
(I + #/b)"" has moments defined by

"

ET = I1 ibrs — ).

il

Using these with the above values (b = 2.5.5 = 3.5) yields. after some algebra,
¢7 = 7/3 and ¢rs7 = 18, Thus the NP approximation becomes

o= 3vi+ 1.5275v, — 2.

This is compared to the actual values of ¢, for this distribution below.

d .10 .25 .50 5 .90 95
o NP 9698  —1.665 2.000 L3952 4885 8.630
t; Actual:  .0764 2142 5475 12150 2327 3.384

The NP approximation is clearly not appropriate for this distribution. From
the table, the NP might be reasonably accurate for a small range of values
somewhere in between the 75th and 90th percentiles. For the right hand tail, it
clearly overstates the percentiles. The problem here apparently is the high
skewness.
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Distributions of this great a skewness are not likely for large portfolios of
risks, for which the NP was originally developed. The aggregate claim distri-
bution for a small portfolio or a single risk could easily be this highly skewed,
however, and use of the NP could lead to large errors in such a case.

For less skewed distributions (e.g., skewness below 1.0) the NP can be
fairly accurate. Two distributions, the gamma and the Weibull, are compared
below to their NP estimates. Both of these distributions are assumed to have
mean 1 and standard deviation 1/3, which fixes their parameters. The gamma
then has skewness of 2/3, while that for the Weibull is approximately .077. The
percentiles are shown below.

d: .01 .05 .25 .50 5 .95 .99
ty Gamma: .390 522 .760 963 1.200 1.604 1.934

t: NP: 388 S15 755 .963 1.205 t.611 1.939
1, Weibull: 277 454 .765 .998 1.231 1.554 1.770

t: NP: .243 459 773 996 1.223 1.556 1.794

The NP approximation is reasonably close for both distributions, although at
the extremes it is better for the gamma than for the Weibull.
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APPENDIX 2
FORMULA FOR VAR(T)

T is the sum of the individual claims X,. where ¢ runs from 1 to N, the
number of claims. Since N is a random variable. both frequency and severity
contribute to the variance of 7. It is gencrally assumed that all claims have the
same distribution, and that individual claim sizes are independent of each other
and of N.

To compute the variance of 7" under these assumptions, begin by calculating
E(TQ/N = p), i.e., fix the number of claims at n and find E(X; + . . . + X.)%).

Expanding the square yields #° terms of the form X.X,. When i = j the
expected value of the term is E(X”). Otherwise. it is E(X)". since then X, and

X, are independent. Thus

E(X: + ...+ X0 = nEX) + (0 — mEX)
nVar(X) + n:E(X)Z.

Now, by general considerations of conditional expectations, E(T7) =
E(E(T°/N = n)). Thus, taking the expected value of the above equation with
respect to NV gives

E(T?) = E(N)Var(X) + E(NHEX)”
= E(N)Var(X) + Var(ME(X)" + ENYE(X)".

The last term is just E(7)°. Subtracting it from both sides then yields

Var(T) = E(N)Var(X) + VarN)E(X)".
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APPENDIX 3
LOSS RATIO TREND EXAMPLE

The points labeled “Line™ below were computed from the formula Line =
9684 — 0428 Year. and represent the least squares fit to “Data™.

Year Data Line
1 .909 .926
2 .929 .883
3 819 .840
4 767 .797
5 776 .754

The point for year 7.5 is projected to be .647, and the 90% confidence
interval around this point is sought. The sum of the squared residuals is .00423,
s0 s = .03755, since 3s° = .00423. Foryear 7.5, m = 7.5 — 3 =4.5.s0 1 +
Vn + 12m*/(n* — n) = 3.275 = 1.796°. Also, (.95,3) = 2.353. Thus, the
90% confidence interval is .647 = (2.353)(.03755)(1.796) = .647 = .159.
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APPENDIX 4
TESTING RESIDUALS FOR NORMALITY

As mentioned in the text, the confidence interval calculation relies on the
assumption of normally distributed residuals. To some extent this assumption
is testable, but for a trend based on a small number of data points, the tests are
not particularly conclusive.

The SAS package provided a test of normality for small samples, namely
the Shapiro-Wilk W statistic. W is the ratio of two estimates of the variance of
the residuals, one (the numerator) based on order statistics, and the other the
usual sample variance approach. This ratio is between () and 1, and small values
lead to the rejection of normality.

For example, in Appendix 3, W = .881 was calculated by SAS. From the
critical values provided by Shapiro and Wilk, the probability of a lower value
of W arising from a sample of 5 from a truly normal population is 35%. This
is not a low enough value to reject normality.

Since tests like this are not conclusive for small samples, one may want to
appeal to general principles. In the case at hand, loss ratios are usually believed
to have positively skewed distributions, so it may seem inappropriate to assume
a normal distribution.

Three comments are in order, however:

I. In some cases the skewness may be small enough that the normal ap-
proximation is reasonable.

2. In some cases the deviations of the expected loss ratios for each year
from the trend line may follow a normal distribution, and the deviation of the
actual loss ratio from the expected for the year a positively skewed distribution.
If the deviations of the expected from the line have a greater magnitude than
the deviations of the actual from the expected. the normal approximation may
not be too bad overall.

3. Contidence intervals using a skewness correction could possibly be de-
veloped in cases where a positive skewness is significant. In light of the role
of informed judgment in selecting the full credibility standard, however, an
explicit calculation of this type may not be required tfor moderately skewed
distributions.
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ADDRESS TO NEW MEMBERS-—MAY 12, 1986

CHARLES €. HEWITT. JR

INTRODUCTION

Actuarial Society l()d‘w While my remdrks are primarily lnlended for the new
Fellows and Associates. [ hasten to recognize the role that your partners. spouses
or otherwise. have played in the achievement which has just been recognized.
So. my remarks are also addressed to those. here today, who have sacrificed in
order that the person sitting next to you may now append the letters FCAS or
ACAS to her name or his name.

Incidentally, for you spouses and partners of new Fellows, the old alibi,
“But 1 have to study for exams™ is no longer valid. Back to changing diapers
and all the other joys of conjugal life.

When Phil Ben-Zvi called me to ask if [ would accept this assignment 1 was
particularly delighted for a very personal reason. One of the new Fellows is a
young lady whom 1 recruited for the profession. Next to being a parent and
enjoying the achievements of one’s children, there is no greater satisfaction than
participating in the success of someone for whom you have opened the door.
The young lady knows who she is and I'm not going to embarrass her by
identifying her publicly. But I do want to say to her, “Rhonda, you did it on
your own and I'm very proud to be here today to participate in this important
moment in your life!”

My remarks will be brief. I intend to cover three gencral areas which I will
label COMMUNICATION, ACTUARY, and SPAN. The reason for this rather
awkward choice of labels will become apparent later, although some of you
may see through this selection of titles.

COMMUNICATION

Actuaries, as a class, are literal-minded people. They, too often, assume
that words speak for themselves, thus ignoring the importance that tone of voice
plays in oral communication, or that it is necessary to lay groundwork and
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provide emphasis in all forms of communication. They should be aware of
“body language™ as a means of understanding what others are trying to com-
municate. It took me thirty years of marriage to realize thai my wife listened
more closely to my tone of voice than to my words. It took me somewhat less
time to understand that when she took out her emery boards and began working
on her finger nails with a vigor that would have cut through solid oak, she was

upset about something, but was not yet ready to discuss it.

In thinking about methods of communication, I am reminded of the story
of the Irish priest whose sermons were constantly filled with vilification of the
English. Word of this reached his bishop and the latter decided to attend mass
on Palm Sunday and listen to the priest’s sermon. As usual, the Irish priest
managed to lambaste the English to a fare-thee-well. After mass the bishop
took the priest aside. “My son,” he said, *You do preach a good sermon, but
do you really think it’s proper to bring your political feelings into discussions
of the Lord’s work? Now, I would suggest that in the future you omit any
reference to the English even though it’s obvious your feelings on this subject
are very strong.” The following Sunday, Easter, the priest declared that his topic
was to be the Last Supper. He described how Christ announced that one of his
disciples had betrayed him, and how Christ proceeded to go around the supper
table, one disciple at a time, asking who it was. “And each disciple answered
firmly ‘Not I, Lord’ until Jesus came to Judas Iscariot. And, Jesus asked, ‘Was
it you, Judas, that betrayed me?’ And, Judas replied, ‘Blimey, guv’ner, it wasn’t
me!™

Actuaries have a terrible time making themselves understood by people who
are not actuaries! That bald statement of self-criticism is worth repeating. Yes,
ACTUARIES HAVE A TERRIBLE TIME MAKING THEMSELVES UNDER-
STOOD BY PEOPLE WHO ARE NOT ACTUARIES! Ask any senior member
of our organization who is currently in an administrative position which factor
most influences him or her when employing or promoting an otherwise qualified
actuary, and he or she will readily identify the ability to explain ideas and
results to others as paramount. Check our own Proceedings and find the number
of times that presidential addresses take up this same issue.

To me, communication begins with putting oneself into the position of the
person with whom you are communicating. What does that person expect to
hear? Does the person have a lot of time or are they in a hurry? What analogies
would be most readily appreciated? If you have an idea or set of facts that are
worthy of being passed on, then, for heaven’s sake, make the additional effort
to pass them on properly. We all know the old philosophers’ question, “If a
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tree falls in the forest and there is no one to hear it, is there any sound?” If you
wish to pass on a thought or report something important. it may be lost if no
one can understand you or if you can’t make them want to listen.

ACTUARY

What does it mean to be an actuary? It means that you, and sometimes only
you, will take the long-range point of view. Managers are here today and gone

tomorrow, and most freauently ook onlv for the short-term ad\mntage that will

tomorrow, and most frequently look only for the short-term advantage that w
further their own careers. Being an actuary means integrity; it means standing
firm when you're in the right, not thinking any less of those who disagree with
you, but trying to use facts and reason to overcome objections wrongfully come

by.

Many of you will ultimately find yourselves in positions where very little
of your day-to-day work is actuarial. Thumb through the CAS Yearbook and
see how many of our members are in non-actuarial assignments. But as long as
you bear the designation which you have studied so hard to achieve, and have
received today, remember that other people think of you and respect you as an
actuary. Others will continue to come to you for your actuarial advice or opinion.

Being an actuary is not unlike being a weather man. People will make snide
remarks about you and your profession. Nevertheless, you will find that you
have earned their respect for objectivity and honesty. Avoid the trap of telling
people only what they want to hear. Learn to recognize the pros and cons in a
decision; think them through and then be prepared to discuss both sides of an
issue.

Speaking about being an actuary at all times, I came across the following
statement which appeared recently in the New York Times Sunday Magazine in
an article seriously questioning the need for liability insurance rate increases:

Actually liability awards are remarkably consistent. In constant dollars, the
median award has hovered around $20.000 over the last 25 vears, according
to the Rand Corporation’s Institute for Civil Justice, although the average award
has risen appreciably, reflecting the impact of a few huge setilements.

The context in which this statement is contained is clearly intended to make the
layman feel that there is something called the “median” which has a significant
bearing on whether or not liability insurance rates should go up or down.
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(For our guests, here today, who are not actuaries, let me say that the
‘median’ is simply the middle number in a string of numbers which have been
arranged in order from smallest to largest or vice versa.)

To illustrate, come with me on a shopping trip to the supermarket. I'll try
to be semi-realistic and yet keep my example simple. We buy a loaf of bread
for 80 cents, a quart of milk for 70 cents, and a pound of coffee for $3.50. The
median price of 70 cents, 80 cents and $3.50 is the middle amount—80 cents.
Let’s add up the bill. Ignoring sales tax, we'll expect to pay 70 cents plus 80
cents plus $3.50. That's $5.

Next week we’ll go to the store and buy three loaves of bread at 80 cents
per loaf, three quarts of milk at 70 cents, and three pounds of coffee at $3.50
per pound. The amounts, by item, are 70 cents, 70 cents, 70 cents, §0 cents,
80 cents, etc. Clearly the median price is still 80 cents. Would we expect the
supermarket to charge $5, the same as last week?

Alternatively, suppose that bread and milk had stayed the same price but
coffee had jumped to $4.50 a pound because of a freeze in Brazil. Then, if,
next week, we bought the same items, but only one of each, would we expect
the same total at the register, since the median price is still only 80 cents?

If the median liability award ‘hovers’ around $20,000, but the number of
awards, or claims, doubles or triples, should we expect our bill for liability
insurance to remain the same? If this median remains relatively constant but the
larger awards get bigger and bigger, should we expect the cost of lability
insurance to stay constant? Finally, if it’s the large awards that are the major
problem, should the cost of excess lability covers ignore this fact and not
change?

The author of the New York Times article from which 1 quoted is a member
of this Society. Unfortunately, this person would seem to have forgotten what
it means to be an actuary. Now, I don’t want my remarks to be misinterpreted
as saying that you should never espouse a position that is unpopular with the
majority of your actuarial brethren. Far from it; some of the older members will
remember that Charlie Hewitt has been on the unpopular side of more than one
issue. What I am saying is: get your facts straight and then interpret them
objectively, i.e., actuarially.
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SPAN

When congratulating new Fellows, my stock inquiry has always been, “Now
what are you going to do with all your free iime?” Recently. I received the
reply, “Well. I'm certainly not going to read any more papers by Valerius!™
Naively I responded, “You know | knew Valerius.” Now, it should be explained
that Nels Valerius is a fine old gentleman, and at last report was still living in
Cheshire. Connecticut. He received his Fellowship in 1928,

The group of younger members with whom | was conversing looked aghast.
One of them said. in disbelief. “You knew Valerius!?” When I nodded assent,
the young member blurted out, "Boy. you're a real link with the past!™ Now I
must confess that 1 even knew Dorwetler—and he was the man who hired
Valerius.

The point I'd like to make with you is that our careers as actuaries will span
a considerable period of time: our lives will span an ¢ven longer period of time.
Most of us focus, with the greatest intensity, on the present, and pay decreasing
amounts of attention to either the past or the future. Picture a Normal curve
with no beginning and no end, and with time as the x-axis. The present moment
in time is the mode (median and mean, also). The height of this curve at any
point in time can represent the effect that other times in our careers (or our
lives) have upon our present actions and decisions. What we did or thought
yesterday, or expect to do or think tomorrow will usually affect today’s thought
and actions far more than those things did one year ago or will do one year
from now.

As you grow older you will appreciate that looking upon the full span of a
career (or a life) will give a better perspective as to the importance of what’s
happening right now, or what happened yesterday, or what might happen to-
morrow. Try to live your life and your careers without the perspective that
today’s deeds are all-important. Realize that what took place in the past has
some importance, but with an ever-lessening intensity as we go backward in
time. Similarly, although tomorrow seems awfully important and will be even
more important when it becomes today. the other tomorrows further off must
be acknowledged as having bearing on our actions and thoughts today.
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CONCLUSION

COMMUNICATION, ACTUARY, SPAN—by now some of you may have
perceived that the initial letters of these awkwardly chosen titles for my subjects
spell C A S—for Casualty Actuarial Society. Once again, I'm reminded of a
story; this time about the late Herman Hickman of whom I suspect most of you
have never heard.

Herman was a 300-pound college and professional football player and some-
time professional wrestler and during a brief period a notably unsuccessful
football coach at Yale University. During this tenure as Yale’s football coach,
he told the story that during a halftime intermission he gave his team a pep talk
in which he chose to use the letters of Yale—Y A L £~—as the theme around
which he would inspire his players to better deeds in the second half of the
game.

“Y,” said Herman, “is for You. You must get out there and fight, fight,
fight. A is for All. All of us must give every ounce of our ability to win this
football game. L is for Loyalty. It’s our loyalty to dear old Yale that will enable
us to go on to victory. E is for Each and Every one of us who must give his
all to insure that we walk off the field today triumphant. ¥ A L E; those letters
spell victory.” Newly inspired, the Yale team charged out of the locker room.
Trailing behind the rest of the team were two substitutes who had not played
in the first half and had little prospect of playing at all. Unaware that the coach
was immediately behind them, one sub turned to the other and said, “What did
you think of the coach’s pep talk?” The other replied, “All I can say is thank
heavens we don’t go to California Polytechnic University at San Luis Obispo.”

It has been a pleasure and a privilege to address the new members of the
Casualty Actuarial Society. You have my congratulations and my best wishes
for both long and successful careers in whatever line of endeavor you may
choose. Thank you.
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MINUTES OF THE 1986 SPRING MEETING
May 11-14, 1986

HOTEL DEL CORONADO, CORONADQO, CALIFORNIA

Sunday, May 11, 1986

The Board of Directors held their regular quarterly meeting from
12:00 noon to 4:00 p.m.

Registration was held from 3:00 p.m. to 5:30 p.m.

A presentation to the new Fellows and Associates on the workings of the
Casualty Actuarial Society was conducted from 5:30 p.m. to 6:30 p.m. The vice
presidents made short presentations concerning their areas of responsibility and
the workings of the committees which report to each of them.

A general reception for all members and guests was held from 6:30 p.m.
to 7:30 p.m.

Monday, May 12, [986
Registration continued from 7:00 a.m. to 7:55 a.m.

President Phillip Ben-Zvi opened the meeting at 8:00 a.m. The first order
of business was the admission of new members. Mr. Ben-Zvi recognized the 82
new Associates and presented diplomas to the 19 new Fellows. The names of
these individuals follow.

FELLOWS
Mark S. Allaben Allen A. Hall William F. Murphy
Robert A. Bear Gregory L. Hayward Karen L. Nester
Janice L. Berry Martin A. Lewis Rhonda D. Port
Wallis A. Boyd Barry C. Lipton Michael B. Smith
Daniel B. Clark Isaac Mashitz Nancy R. Treitel
Kathleen F. Curran Robert A. Miller, III Charles S. White

James L. Dornfeld



Neil C. Aldin
Manuel Aimagro, Jr.
Rebecca C. Amoroso
Mary V. Anderson
Kenneth Apfel
Richard V. Atkinson
James J. Callahan
Christopher S. Carlson
Louis-Philippe Caron
Michael J. Cascio
Sanders B. Cathcart
Ralph M. Cellars
David A. Christhilf
Susan J. Comstock
David B. Cox

Dan J. Davis
Raymond V. Debs
James M. Dekle
Michael J. Doyle
Jeffrey A. Englander
James E. Fletcher
Barbara L. Forbus
Richard Gauthier
James J. Gebhard
Peter M. Gidos
Steven A. Glicksman
Jeffrey H. Graham
Denis G. Guenthner

MAY MINUTES

ASSOCIATES
Randolph S. Hay

Joseph A. Herbers
Richard J. Hertling
Mark J. Homan
Wendy A. Johnson
Kenneth R. Kasner
Paul J. Kneuer
David Koegel
Rodney E. Kreps
John M. Kulik
Chung-Kuo Kuo
Mary Lou Lacek
Marthe A. Lacroix
Alain Lessard

Mark D. Lyons
Patrick Mailloux
Mary E. McCoy
Leonard L. Millar
Susan M. Miller
David F. Mohrman
Robert A. Mueller
Donald R. Musante
Richard T. Newell, Jr.
Henry E. Newman
Bruce E. Ollodart
Gregory V. Ostergren
Wade T. Overgaard
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Anthony Peraine
Ronald D. Pridgeon
Boris Privman

Frank S. Rhodes
Denise E. Rice

James W. Rice
Robert S. Roesch
Donald D. Sandman
Mark W. Scully
Linda A. Shepard
George C. Sornberger
Bruce R. Spidell
Russell Steingiser
Russel L. Sutter
Suan-Boon Tan
Robert W. Thompson
Nanette Tingley
Emest S. Tistan
Michel Trudeau
George W. Turner, Jr.
William J. Von Seggern
David G. Walker
Kelly A. Wargo
Dominic A. Weber
Arlene F. Woodruff
Chung-Ye Yen

James W, Yow

Mr. Ben-Zvi then introduced Charles Hewitt, who delivered a brief speech
to the new members concerning the responsibilities of a casualty actuary.

Mr. Ben-Zvi then introduced Michael Fusco, Vice President of Programs,
who gave a brief summary of the program content.

Mr. Ben-Zvi next introduced Stephen Philbrick, Chairman of the Commit-
tee on Review of Papers, who gave a brief summary of the new Proceedings

papers.



60 MAY MINUTES

Janet Fagan, Chairman of the Committee on Continuing Education, gave
a brief summary of the Discussion Paper program and of the process of issuing
the call for papers and reviewing the papers submitted.

Mr. Ben-Zvi concluded the business session at 9:00 a.m.

At 9:00 a.m., Mr. Leroy Simon moderated a panel entitled *“Reinsurance
— A Global Perspective.” His panel consisted of:

James Meenaghan
President and CEO
John F. Sullivan Co.

Erkki Pesonen
Chairman of the Board
Kansa Group

Michael Fitt
President and CEO
Employers Reinsurance Corporation

The panelists commented on the current availability and affordability of
reinsurance and implications for the primary domestic market.

Beginning at 11:00 a.m., there was a series of concurrent sessions, includ-
ing eight Discussion Paper presentations, two Proceedings papers presentations,
and four workshops.

The new Proceedings papers were:

1. *“Classical Partial Credibility with Application to Trend”
Author: Gary G. Venter
Vice President & Actuary
National Council on Compensation Insurance

2. “An Actuarial Note on Credibilty Parameters”
Author: Howard C. Mahler
Vice President & Actuary
Massachusetts Rating Bureaus

The Discussion Papers presented were:

1. “The Operational Aspects of Qutwards Reinsurance Treaties”
Author: David S. Powell
Tillinghast, Nelson & Warren, Inc.
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2. “The Cost of Mixing Reinsurance”
Author: Ronald F. Wiser
St. Paul Fire and Marine Insurance Company

3. “Foreign Exchange Fluctuations in the Annual Statement”
Author: Kirk G. Fleming
Milliman & Robertson, Inc.

4. “Recent Developments in Reserving for Losses in the London Reinsurance
Market”
Author: Harold E. Clarke
Bacon & Woodrow

5. “An Analysis of Excess Loss Development”
Authors: Emanuel Pinto and Daniel F. Gogol
Metropolitan Reinsurance Company

6. “Reserve Review of a Reinsurance Company”
Author: Stephen W. Philbrick
Tillinghast, Nelson & Warren, Inc.

7. “Reinsurance Pricing for the New Transitional Claims-Made G.L. Product”
Author: Nolan E. Asch
SCOR Reinsurance Co.

8. “Simulating Serious Workers’ Compensation Claims”
Authors: Gary G. Venter and William R. Gillam
National Council on Compensation Insurance

The workshops covered the following topics:

1. “State-of-the-Art Homeowner’s Ratemaking Techniques”
Moderator: Charles A. Bryan
Senior Vice President & Actuary
USAA

Panelists: Harry T. Byrne
Actuary
Aetna Life and Casualty

John P. Drennan
Assistant Vice President & Actuary
Allstate Insurance Company
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Harold N. Schneider
Vice President & Actuary
Farmers Insurance Group

2. “Application of Operations Research: A Syllabus Update™
Moderator: Robert J. Finger
Vice President & Actuary
Future Cost Analysts

3. “How Reinsurance Really Works!”
Moderator: Mary E. Hennessy
Consulting Actuary
Towers, Perrin, Forster & Crosby

Panelists:  Paul C. J. Markey
Second Vice President
Herbert Clough, Inc.

Frank S. Wilkinson
Partner
E. W. Blanch

4. “The Federal Government as a Source of Reinsurance Capacity”
(limited attendance workshop)
Workshop Coordinator: Mavis A. Walters
Senior Vice President
Insurance Services Office

The President’s Reception was held from 6:30 p.m. to 7:30 p.m.

Tuesday, May 13, 1986

Tuesday was devoted to a continuation of the concurrent sessions from
Monday afternoon.

A general reception and western barbeque was held from 6:30 p.m. to
9:30 p.m.



MAY MINUTES 63

Wednesday, May 14, 1986

Mr. Ben-Zvi reconvened the business session at 8:00 a.m. He awarded the
Harold Schloss Scholarship to Mark Meyer.

Mr. Ben-Zvi introduced Patricia Furst, the chairman of the Michelbacher
Committee. Ms. Furst briefly described the judging process and then awarded
the Michelbacher Prize to Ronald Wiser, author of the Discussion Paper entitled
“The Cost of Mixing Reinsurance.”

Mr. Thomas Murrin then gave a brief summary of the activities of the
Interim Actuarial Standards Board.

Mr. Ben-Zvi thanked those individuals who had planned the meeting and
executed those plans. He then turned the podium over to Mr. Michael Walters.
Mr. Walters introduced the first of the two panels, entitled “Should I Go Direct
or Broker My Reinsurance?” The panel consisted of:

Patrick J. McFadden
Director — Reinsurance Brokerage Division
Towers, Perrin, Forster & Crosby

Tom N. Kellogg
Senior Vice President
General Reinsurance Corporation

At 9:30 a.m., a second panel was presented, moderated by Mr. Daniel
McNamara, entitled “Does the United States Tort System Make Pricing Liability
Insurance Impossible?” The panelists were:

Leslie Cheek
Vice President — Federal Affairs
Crum & Forster

Bruce Foudree
Insurance Commissioner
State of lowa

Edward Hamilton
President
Hamilton, Rabinovitz, Szanton & Alschuler, Inc.

Mr. Ben-Zvi then closed the meeting, reminding all participants that the
1987 Discussion Paper subject is “The Financial Analysis of Insurance Com-
panies.” The meeting was adjourned at 11:15 a.m.



64 MAY MINUTES

May 1986 Attendees

In attendance as indicated by the registration records were 303 Fellows;
195 Associates; and 42 guests, subscribers, and students. The list of their names
follows.

FELLOWS
Addie, B. J. Brooks, D. L. Dorval, B. T.
Adler, M. J. Bryan, C. A. Downer, R. B.
Alfuth, T. J. Bursley, K. H. Drennan, J. P.
Asch, N. E. Byme, H. T. Duffy, T. J.
Atwood, C. R. Cantin, C. Easton, R. D.
Barrow, B. H. Captain, J. E. Egnasko, G. J.
Bartlett, W. N. Chansky, J. S. Egnasko, V. M.
Bass, I. K. Chanzit, L. G. Ehlert, D. W.
Bassman, B. C. Cheng, J. S. Eldridge, D. J.
Basson, S. D. Chernick, D. R. Engles, D.
Baum, E. J. Childs, D. M. Fagan, J. L.
Bear, R. A. Christiansen, S. L. Fallquist, R. J.
Beer, A. J. Christie, J. K. Fein, R. I.
Belden, S. A. Cis, M. M. Fiebrink, M. E.
Bell, L. L. Clark, D. B. Finger, R. J.
Bensimon, A. S. Cohen, H. L. Fisher, R. S.
Ben-Zvi, P. N. Conger, R. F. Fisher, W. H.
Berquist, J. R. Cook, C. F. Flaherty, D. J.
Berry, J. L. Corr, F. X. Foote, J. M.
Bethel, N. A. Covney, M. D. Forker, D. C.
Beverage, R. M. Cundy, R. M. Forney, J. R., Ir.
Bill, R. A. Curley, J. O. Foster, R. B.
Biondi, R. S. Curran, K. F. Fresch, G. W.
Boccitto, B. L. Currie, R. A, Friedberg, B. F.
Boison, L. A., Jr. Curry, A. C. Furst, P. A.
Boone, J. P. Dahlquist, R. A. Fusco, M.
Bornhuetter, R. L. Dean, C. G. Gallagher, C. A.
Boulanger, F. Dempster, H. V. Gallagher, T. L.
Bouska, A. S. Deutsch, R. V. Garand, C. P.
Boyd, W. A. Doellman, J. L. Gilles, J. A.
Bradshaw, J. G., Jr. Doepke, M. A. Ginsburgh, H. J.
Braithwaite, P. Dolan, M. C. Gleeson, O. M.
Brannigan, J. F. Donaldson, J. P. Gluck, S. M.

Briere, R. S. Dornfeld, J. L. Goddard, D. C.
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FELLOWS
Goldfarb, I. H. Jones, B. R. McMurray, M. A.
Gorvett, K. P. Kane, A. B. McNamara, D. J.
Gottlieb, L. R. Kaplan, R. S. McSally, M. J.
Grace, G. S. Karlinski, F. J., III Mealy, D. C.
Grady, D. J. Kaufman, A. M. Meeks, J. M.
Graham, T. L. Keatts, G. H. Mendelssohn, G. A.
Grannan, P. J. Khury, C. K. Meyer, R. E.
Greco, R. E. Kilbourne, F. W. Meyers, G. G.
Hafling, D. N. Knilans, K. Miccolis, J. A.
Hale, J. B. Kollar, J. J. Miccolis, R. S.
Hall, A. A. Kooken, M. W. Miller, D. L.
Hallstrom, R. C. Kozik, T. J. Miller, R. A, III
Haner, W. J. Lamb, R. M. Miller, R. R.
Hanson, H. D. LaRose, 1. G. Mills, R. J.
Hanson, J. L. Larsen, M. R. Moody, R. A.
Hartman, D. G. Lattanzio, S. P. Morgan, W. S.
Harwayne, F. Lehmann, S. G. Morison, G. D.
Haskell, G. E. Leong, W. Muetterties, J. H.
Hayne, R. M. Levin, J. W. Mulder, E. T.
Hayward, G. L. Lewis, M. A. Munro, R. E.
Heer, E. L. Linden, O. M. Murad, J. A.
Hennessy, M. E. Lino, R. Murphy, W. F.
Henzler, P. J. Lino, R. A. Murrin, T. E.
Herder, J. M. Lipton, B. C. Muza, J. J.
Hewitt, C. C., Jr. Lommele, J. A. Myers, N. R.
Hibberd, W. J. Longley-Cook, L. H. Narvell, J. C.
Higgins, B. J. Loucks, W. D., Jr. Nash, R. K.
Hillhouse, J. A. Ludwig, S. J. Neale, C. L.
Hough, P. E. Lyle, A. C. Neidermyer, J. R.
Hutter, H. E. Mabhler, H. C. Nelson, J. R.
Ingco, A. M. Makgill, S. S. Nester, K. L.
Irvan, R. P. Marks, S. D. Nichols, R. S.
Jameson, S. Mashitz, 1. Nickerson, G. V.
Jean, R. W. Mathewson, S. B. Niles, C. L., Jr.
Jerabek, G. J. Mayer, J. H. Niswander, R. E., Jr.
Johe, R. L. McCarter, M. G. Normandin, A.
Johnson, W. H., Jr. McConnell, C. W. O’Brien, T. M.

Johnston, T. S. McGovern, W. G. Otteson, P. M.



66 MAY MINUTES

FELLOWS

Parker, C. M. Schmidt, N. J. Tom, D. P.
Pastor, G. H. Schneider, H. N. Toothman, M. L.
Patrik, G. S. Schumi, J. R. Treitel, N. R.
Pearl, M. B. Schwartzman, J. A. Tverberg, G. E.
Philbrick, S. W. Sherman, H. A. Van Ark, W. R.
Phillips, H. J. Sherman, O. L., Jr. Van Slyke, O. E.
Piersol, K. E. Sherman, R. E. Walker, R. D.
Pierson, F. D. Shoop, E. C. Walsh, A. J.
Pinto, E. Siewert, J. J. Walters, M. A.
Plunkett, R. C. Simon, L. J. Walters, M. A,
Pollack, R. Skurnick, D Warthen, T. V.
Port, R. D. Smith, L. M. Wasserman, D. L.
Pratt, J. J. Smith, M. B Weimer, W. F.
Pruiksma, G. J. Sobel, M. J Weller, A. O.
Purple, J. M. Spalla, J. S Westerholm, D. C.
Quirin, A. J. Spitzer, C. R. White, C. S.
Radach, F. R. Splitt, D. L. White, J.
Reichle, K. A. Squires, S. R. Whiting, D. R.
Richards, H. R. Stanard, J. N. Wilson, J. C.
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A FORMAL APPROACH TO
CATASTROPHE RISK ASSESSMENT AND MANAGEMENT

KAREN M. CLARK

Abstract

Insurers paid $1.6 billion on property claims arising from catastro-
phes in 1984. Researchers have estimated that annual insured catastro-
phe losses could exceed $16 billion. Certainly, the financial implications
for the insurance industry of losses of this magnitude would be severe;
even industry losses much smaller in magnitude could cause financial
difficulties for insurers who are heavily exposed 1o the risk of catastrophe
losses.

The quantification of exposures to catastrophes and the estimation
of expected and probable maximum losses on these exposures pose
problems for actuaries. This paper presents a methodology based on
Monte Carlo simulation for estimating the probability distributions of
property losses from catastrophes, and discusses the uses of the proba-
bility distributions in management decision-making and planning .

INTRODUCTION

There were 28 catastrophes in 1984; they resulted in an estimated $1.6
billion of insured property damage. Most of these catastrophes were natural
disasters such as hurricanes, tornadoes, winter storms, and floods. In 1985,
Hurricane Elena caused over $543 million of insured losses, and a tornado
outbreak affecting nine states caused insured damage of $231 million.
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Hurricane Elena barely rated a three on a severity scale ranging from one
to five, in which destruction from hurricanes increases cxponentially with in-
creasing severity. A hurricane that rated a four hit New York and New England
in 1938; 600 people died and wind specds of 183 mph caused hundreds of
millions of dollars of damage.

If this storm were to strike again, dollar losses to the insurance industry
could exceed ten billion given the current insured property values on Long
Island and along the New England coast. Estimates of the dollar damages that
will result if a major earthquake occurs in Northern or Southern California are
even larger in magnitude.

A very severe hurricane or earthquake would produce a year of catastrophic
loss experience lying in the upper tail of the probability distribution of annual
losses from catastrophes. It is the opinion of the author that the 1984 catastrophe
loss figure lies in the lower end of this distribution. However, the determination
of the shape and the estimation of the paramecters that describe this distribution
are tasks that are not easily performed using standard actuarial methodologies.
Yet since insurers require knowledge of their exposure to catastrophes and the
probability distributions of annual catastrophe losses to make pricing, marketing,
and reinsurance decisions, actuarics must be able to estimate the parameters of
the distributions, including the expected and probable maximum losses.

Standard statistical approaches to loss estimation involve the use of historical
data to estimate future losses. However, approaches that employ time series of
past catastrophe losses can give poor estimates of potential catastrophe losses.
Catastrophes are rare events so that the actual loss data are sparse and their
accuracy is questionable; average recurrence intervals are long so that many
exogenous variables can change in the time periods between occurrences. In
particular, changing population distributions, changing building codes, and
changing building repair costs alter the annual catastrophe loss distribution.

Since most catastrophes are caused by natural hazards, and since most natural
hazards have geographical frequency and severity patterns associated with them,
the population distribution impacts the damage-producing potentials of these
hazards. A natural disaster results when a natural hazard occurs in a populated
area. Changing population patterns necessarily alter the probability distribution
of catastrophic losses. Since the average recurrence intervals of natural hazards
in any particular arca are long, patterns of insured property values may vary
between occurrences to an extent that damage figures of historical occurrences
have little predictive power. For example, the 1906 San Francisco earthquake
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caused losses of $364 million. In 1985 dollars, this equals $4.5 billion. Yet
some have estimated that an earthquake of this size could cause damages
exceeding $30 billion today.

It is primarily the influence of the geographic population distribution that
renders time series models of natural catastrophe losses inadequate, although
changing building codes also alter the loss-producing potentials of natural haz-
ards. Over time, building materials and designs change, and new structures
become more or less vulnerable to particular natural hazards than the old
structures. Of course, changes in building repair costs also affect the dollar
damages that could result from catastrophes.

The above issues do not render the estimation problem intractable, but they
do indicate a need for an alternative methodology to approaches which employ
historical catastrophe losses adjusted for inflation to estimate the probability
distribution of losses. Even models which adjust historical losses for population
shifts can give only very rough approximations of expected and probable max-
imum losses.

This paper presents a methodology based on Monte Carlo simulation, and
it focuses on property damage arising from natural disasters. The next two
sections discuss the simulation approach to catastrophe loss estimation. A wind-
storm example is then presented. Output analysis, model validation, and model
uses are discussed in the following three sections.

THE SIMULATION APPROACH

The simulation approach is, very basically, the development of computer
programs which describe or model the particular system under study. All of the
system variables and their interrelationships are included. A high speed computer
then “simulates” the activity of the system and outputs the measures of interest.

Simulation models may be deterministic or stochastic. Monte Carlo simu-
lation models are stochastic models, and therefore, the variables which they
include are random variables. Numbers are generated from the probability
distributions of the random variables to assign values to the variables for each
model simulation. These probability distributions are either standard statistical
distributions (selected on the basis of good fits with empirical data) or actual
empirical distributions.

Typically, many simulations or iterations are performed to derive estimates
of the measures of interest from Monte Carlo simulation models. This is nec-
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essary to ensure that the output distribution has converged to the true distribution
and that model derived estimates are “accurate.” Obviously, the larger the
variances of the model variables, the larger the number of model iterations
necessary to reach convergence.

Computer simulation models can provide powertul tools for the analyses of
a wide variety of problems, especially problems which involve solutions that
are difficult to obtain analytically. Law and Kelton [8] state that “Most complex,
real-world systems . . . cannot be accurately described by a mathematical model
which can be evaluated analytically. Thus, a simulation is often the only type
of investigation possible.” The natural hazard loss-producing system is one such
system.

THE NATURAL HAZARD SIMULATION MODEL

The natural hazard simulation model is a model of the natural disaster
“system.” The primary variables arc meteorological or geophysical in nature.
They may be classified as frequency or severity variables. The frequency vari-
ables determine the number of occurrences of the particular events within a
given time period. Severity variables account for a hazard's force, size, and
duration. These variables are. of course, random variables with stable (time
independent') probability distributions.

The model simulates the physical occurrences of the natural hazards by
generating numbers from these probability distributions. Numbers are generated
to assign values to each variable for each simulated occurrence. The probability
distributions are estimated using historical data combined with the knowledge
of authoritative meteorologists and geophysicists.

It is most efficient from a computational standpoint to generate numbers
from the well-known statistical distributions. The empirical distributions formed
by the raw data may be fit to these theoretical distributions using appropriate
goodness-of-fit tests. If the data do fit any of these probability distributions, the
moments of the distributions may be estimated and employed by the simulation
model.

If the empirical data do not fit any theoretical distributions. the empirical
distribution may be used for the generation of values for particular model
variables. This procedure, however, has some drawbacks. First, since the sample
is a collection of random data, a different sample could yield a very different

' There may be a time-space dependence with respect (o carthquake severity.
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empirical distribution. Second, the generation of random variables from an
empirical distribution precludes the possibility of generating values of the var-
iable outside of the observed range, and the observed range may not include all
possible values of the variable. If the empirical data are sparse or do not fit
theoretical distributions, knowledgeable physical scientists may provide infor-
mation regarding the ranges of possible values of particular variables, as well
as the shapes of the distributions and the most likely values of the variables.

Variables that change with time, e.g., the geographic distribution of expo-
sure units, the insured property values, and the building construction types, are
inputs into the model. The probability distribution of losses from natural hazards
given these inputs is the model output. Per occurrence as well as annual
aggregate distributions are estimated.

The model simulates the physical occurrences of the natural hazards and
their effects on exposed properties thousands of times in order to estimate the
distributions of losses. Thousands of iterations are performed to ensure that all
possibilities have been simulated in accordance with the actual probabilities of
occurrence and that the estimated distributions converge to the true distributions.

A WINDSTORM EXAMPLE

A model of the hurricane hazard has been developed and will be used to
illustrate the Monte Carlo simulation approach. Exhibit I is a simplified flowchart
of the computer model.

Most of the storm data used in the development of the model were obtained
from the U.S. Department of Commerce. The data had been collected and
analyzed by various agencies of the National Weather Service, and they included
86 years of history spanning the period 1900 to 1985. Complete and accurate
meteorological data were available for most of the hurricanes that struck the
U.S. in this time period.

A hurricane is a closed atmospheric circulation which develops over tropical
waters and in which winds move counterclockwise around a center of pressure
lower than the surrounding area. It is a severe tropical storm, with a center of
pressure less than or equal to 29 (inches), which causes sustainable wind speeds
of 74 mph or more. One hundred and thirteen hurricanes made landfall in the
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U.S. during the sample period. One hundred and thirty-eight hurricanes either
approached and bypassed (within 150 nautical miles). exited”. or entered the
U.S. during the period.

Annual Frequency

Referring to Exhibit [, the first step of the model (for each iteration) is the
generation of the annual number of {andfalling hurricanes. Table 1 shows the
number of years in which the number of occurrences was O, I, 2, and so on.
The historical data fit a negative binomial distribution with s = Sand p = .79.
The chi-square goodness-of-fit test statistic equals 2.923 which is not significant
even at the o = .5 level.

TABLE |

ANNUAL NUMBER OF HURRICANES LANDEALLING IN U.S.
(EXCLUDING EXITING STORMS)

19001985

No. Storms Observed Relative Neg. Bin.
Per Year Occurrence Frequency Rel. Freq.

0 26 302 .308

1 29 337 323

2 18 .209 .204

3 6 070 100

4 6 070 042

>4 ] 012 023

2 An exiting storm is & hurricane that moves from land to sea and has a central pressure lower than
29 inches.
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EXHIBIT 1

MODEL FLOWCHART

Y

GENERATE ANNUAL NUMBER OF HURRICANE OCCURRENCES

4

GENERATE LATITUDE AND LONGITUDE

COORDINATES OF LANDFALL LOCATION

N

GENERATE VALUES FOR SEVERITY VARTIABLES
(Po, R, T, A)

4

CALCULATE MAXIMUM WIND SPEED

Y

75

For each zip code in affected area
CALCULATE WIND SPEED
(dependent on distance from eye and hours since landfall)

CALCULATE DAMAGE FACTOR

APPLY TO DOLLARS OF INSURED LIABILITIES
DAMAGE FACTOR AND VULNERABILITY FACTOR

TOTAL DAMAGE

Yes Another hurricane

N

this year?

A

Go to next iteration
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Locational Frequency

The next step of the model is the determination of the landfall location of
each storm. Hurricanes enter the U.S. from the Gulf and East Coasts. The map
in Exhibit 11 shows the U.S. coastline from Texas to Maine divided into 31
smoothed 100 nautical mile segments.’ The number of hurricanes that entered
through each segment or bypassed within 150 nautical miles of the segment
during the sample period is also shown.

The numbers indicate that there are variations in locational frequencies. In
this case, it would not be correct to generate the landfall location from a
distribution which assigns equal probabilities to all values, i.e., a uniform
distribution. Neither would one want to use the actual numbers of storms to
form the empirical distribution from which the landfall locations will be gen-
erated. This is because the selection of length of coastal segment is necessarily
arbitrary. If a different length were used, the empirical distribution would be
different. Additionally, although several segments are completely free of his-
torical storm occurrences, it is not clear that the probability of hurricane landfall
is zero in those areas.

To derive the model locational frequency distribution, the raw data on the
numbers of occurrences were smoothed using a procedure sclected on the basis
of its ability to capture turning points in the data while smoothing slight varia-
tions. The coastline was redivided into 50 nautical mile segments, and the
number of occurrences for each segment was set equal to the weighted average
of 11 successive data points centered on that segment. The smoothed frequency
values were obtained as follows:

5
E Wn Ci tn
n=-5

F, = <

2 W,

n=-5

where C; = the number of historical hurricane occurrences for the ith
segment;
F. = the smoothed frequency value for the ith segment; and.

W, = .30, .252. .14, .028. —.04. —-.03
for n =0, *1, £2, 3, *4 =5 respectively.

* The coastline is smoothed for irregularities such as inlets and bays.
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EXHIBIT Ii

HURRICANES ENTERING OR BYPASSING THE U.S. 1900—1985
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This is the preferred smoothing procedure in climatological analyses because
the weighting scheme maintains the frequency and phase angle of the original
series of numbers. The endpoints of the series are approximated so that each
segment of the coast is assigned a relative frequency. The landfall location of
each storm is generated from the thus derived locational frequency distribution.

Severity

Step three of the model is the generation of values for the severity variables.
There are four primary variables which account for hurricane severity. These
variables are: the minimum central pressure. the radius of maximum winds. the
forward speed. and the angle at which the storm enters the coast. i.c., the track
direction.

Central pressure (py) is defined as the sea-level pressure at the hurricane
center or eye. This is the most important variable for computing hurricane wind
speeds. and it is a universally accepted index of hurricane intensity. All else
being equal, the square of the wind speed varies directly with Ap (Ap = p,, —
po where p,. is the peripheral pressure).

The radius of maximum winds (R) is the radial distance from the hurricane
center to the band of strongest winds. Forward speed (T) refers to the rate of
translation of the hurricane center from one geographical point to another. Track
direction (A) ts the path of forward movement along which the hurricane is
traveling and is measured clockwise from north.

Hurricane severity varies by location as does frequency. In general, as
latitude increases, average hurricane scverity decreases. When a hurricane
moves over cooler waters. its primary source of energy (latent heat from warm
water vapor) is reduced so that the intensity of circulation decreases in the
absence of outside forces. As such. the shapes and parameters of the severity
variable probability distributions were estimated for cach coastal location.

For each severity variable except track direction, samples of data points
from 400 nautical mile segments of coastline were used to estimate the param-
eters of the distribution for cach 100 nautical mile segment. Overlapping 400
nautical mile segments were centered on successive 100 nautical mile segments,
the data were fit to theoretical statistical distributions, and the parameters were
estimated.
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The selection of 400 nautical mile lengths of coastline was somewhat arbi-
trary; 300, 400, and 500 nautical mile segments have all been used in clima-
tological analyses of hurricane data. Obviously, shorter segments capture more
of the variation in the historical data while larger segments increase the size
and hence the credibility of the data sample used for estimation.

CENTRAL PRESSURE

The distribution of historical hurricane central pressures is a skewed distri-
bution with an upper bound of 29 inches. Tropical storms with higher central
pressures will in most cases not produce winds of hurricane force. Since the
distribution is truncated at one end, the variable Pdif was modeled instead of
po. Pdif was defined as 29 minus the central pressure of the storm. Pdif also
has a skewed distribution so that the historical data were fit to both lognormal
and Weibull distributions using the Kolmogorov-Smirnov goodness-of-fit test.

The Weibull distribution produced the best fit of the empirical data. Tabie
2 shows the estimated parameters, o and [, for each coastal segment along
with the number of data points in each sample, N, and the goodness-of-fit test
statistic, KS. No K§ statistic was significant at the 99% confidence level.

RADIUS OF MAXIMUM WINDS

The distribution of R for each coastal segment is symmetrical around the
average value. The normal distribution provided a good fit of the historical data,
and the parameters of this distribution were estimated for each coastal segment.
The mean value of R increases with increasing latitude. Exhibit 1l shows a plot
of latitude versus the radius of maximum winds for the historical Gulf and East
Coast hurricanes.

The radius of maximum winds seems to be positively correlated with central
pressure as well as with latitude. Table 3 shows linear correlation coefficients
(Pearson’s) between the pairs of variables. Although tests of significance could
not be performed on the correlation coefficients since it could not be assumed
that pairs of variables form bivariate normal probability distributions, it is
assumed that there is a positive correlation between p, and R. The meteorological
literature on hurricanes supports this assumption.
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TABLE 2

CENTRAL PRESSURE—WEIBULL DISTRIBUTION
PARAMETER ESTIMATES FOR {00 NauTical MiLE SEGMENTS

100 n.mi. 400 n.mi.

Segment Segment « B N
1 —150-250 2.020 1.080 9
2 —50-350 1.773 0.974 16
3 50-450 1.882 0.910 22
4 150-550 1.819 0.906 2
5 250-650 1.468 0.748 26
6 350-750 1.350 0.801 23
7 450-850 1.223 0.707 23
8 550-950 1.270 0.690 25
9 650-1050 1.128 0.572 23

10 750-1150 1.161 0.573 20
11 850-1250 1.251 0.426 18
12 950-1350 1.296 0.624 16
13 1050-1450 1111 0.832 21
14 1150-1550 1.545 0.875 28
15 1250-1650 1.529 0.953 31
16 1350-1750 1.423 0.838 24
17 14501850 1.793 0.815 13
18 1550-1950 1.534 0.485 8
19 1650-2050 0.844 0.463 7
20 1750-2150 1.007 0.563 12
21 1850-2250 1.285 0.676 19
22 1950-2350 1.204 0.655 18
23 2050-2450 1.416 (.668 16
24 2150-2550 1.455 0.628 12
25 2250-2650 1177 0.566 8
26 2350-2750 1.556 0.663 9
27 2450-2850 1.429 0.646 9
28 2550-2950 1.325 0.596 10
29 2550-2950 1.325 0.596 10
30 2550-2950 1.325 0.596 10
31 2550-2950 1.325 0.596 10
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EXHIBIT Il

LATITUDE Vs. RADIUS OF MAXIMUM WINDS
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TABLE 3

LINEAR CORRELATION COEFFICIENTS

East Coast Hurricanes Gulf Coast Hurricanes
Po R T A Lat Po R T A Lat
Po 27 -04 08 32 p 31 04 17 17
R .35 24 49 R A3 .04 16
T 42 73T 06 .35
A S0 A 1

This correlation is accounted for by the model in two ways. First, since po
and R are both correlated with latitude and the distributions of p, and R have
been estimated at various latitude points, the simulated values of the variables
will necessarily be correlated. Also. the lower and upper bounds of simulated
R values are determined by the value of pq for the simulated storm. As shown
in Table 3, py and R are positively correlated so that severe storms typically
have smaller R’s than weak storms.

It should be noted at this point that the simulated values of all severity
variables are bounded so that only storms with a nonzero probability of occur-
rence are simulated. The upper and lower bounds of the model variables have
been determined somewhat subjectively by meteorologists who are experts on
the subject of hurricanes. The model procedure is to regenerate values that are
out of range rather than assign a value equal to the lower or upper bound of the
range. This ensures that the simulated values will not be clustered at the
endpoints of the ranges. Since the estimated distributions fit quite well, the
simulated values fall within the acceptable range a high proportion of the time.

FORWARD SPEED

The historical data on forward speed fit lognormal distributions, and these
distributions are employed by the model to generate values of T for each
simulated storm. The average value of 7 increases with increasing latitude, and
the lower and upper bounds of T are dependent on latitude. Exhibit IV is a plot
of latitude versus forward speed for the historical storms.
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EXHIBIT IV
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TRACK DIRECTION

Four hundred nautical mile segments were not used to estimate the param-
eters of the distributions of track direction for cach coastal location. Since the
orientation of the coastline influences the likely as well as the possible angles
of entry at each coastal point, segments of varying length were employed. The
length that was selected for each segment was the length of smoothed coastline
with the same angle orientation as the segment of interest.

Track direction is distributed symmetrically around its average value, thus
values for A are generated from the normal distribution. However, at some
coastal locations, the standard deviation is quite wide relative to the range of
possible values so that the distributional shape begins to tend to uniform. In
these cases, a relatively high proportion of simulated values could need to be
regenerated. For example, at three coastal segments, the range of possible values
is only * one standard deviation wide. Values for A could need to be regenerated
32% of the time for storms landfalling in these segments. Fortunately, the
number of such segments is small.

Maximum Wind Speeds

Once values are obtained for all of the severity variables, the maximum
sustained wind speed is calculated via straightforward meteorological formulas.
The movement of the storm is next simulated by the computer model, and
maximum wind speeds are calculated tor each zip code area in the affected
region.

The wind speed at each zip location is dependent on the distance of the
location from R and on the hours since landfall. The wind speeds decrease as
the distance from R increases and as the time since landfall increases.

Insured Damages

Dollar damages are estimated by applying damage and vulnerability factors
to the insured property values in each zip code area. The damage factors are
based on the results of engineering studies of the relationship between wind
speed and structural damage. The vulnerabitity factors account for the variability
in inflicted damage due to construction type and age. The dollar damages are
accurnulated for each storm.

Two thousand years of hurricane experience are simulated by the model.
These two thousand iterations provide estimates of the complete probability
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distributions of annual hurricane losses and per occurrence losses from which
expected and probable maximum loss estimates are derived.

OUTPUT ANALYSIS

Exhibit V shows the expected losses as well as the 80%, 90%. 95%, and
99% confidence level losses calculated as the 80th, 90th, 95th, and 99th per-
centile losses, respectively, for the geographical distribution of property expo-

f a hynothetical company. The confidence level lo
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in two ways. A given confidence level loss shows the loss amount for which
the probability of experiencing losses above that amount is 1.0 minus the
particular confidence level. For example, for the loss distribution in Exhibit V,
the probability of experiencing losses greater than $10 million is .20. The
confidence level loss also shows the loss amount for which losses greater than
that amount will be experienced, on average, once in every 1.0/
(1.0 — confidence level) years. Again, from Exhibit V, losses greater than $10
million will be experienced once in every five years, on average. The loss
distribution is highly skewed with a median value which is much below the
mean and a high proportion of zero values.

EXHIBIT V

MODEL-GENERATED Loss EsTIMATES (000’s)

Confidence Level Losses

Insured Expected
Liabilities Losses 80% 90% 95% 99%
7,170,753 9.011 10,003 24,179 44,827 117,946

Since the estimated loss distribution is so skewed, many model iterations
are performed to ensure convergence to the true underlying loss distribution.
Unfortunately, there is no straightforward formula for calculating the number
of iterations necessary to obtain estimates with specific levels of precision. If
comiputer resources are not a constraint, thousands of iterations should be
performed to ensure convergence. If computing power is limited, iterations can
be performed in groups of a hundred or so, and the distribution can be tested
for significant changes after each group of iterations. When changes become
arbitrarily small, the simulation run can be terminated.
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MODEL VALIDATION

The validation of simulation models is often problematic. Since simulation
models are representations of real world systems, they are usually simplifications
of complex systems. As such, statistical tests of differences between actual data
and simulated data will typicaily show statistically significant differences even
if the simulation model is a good or at least “acceptable™ representation of
reality. As mentioned previously. simulation models are often built when no
alternative means of analysis are available. The model builder must decide if
model performance is acceptable or if more resources should be employed in
improving the simulation model. The decision is more of a cost versus benefit
decision than an accept versus reject decision.

In cases in which there is little actual data to compare to the simulated data,
model validation is even more difficult. The natural hazard simulation model
output, i.e., the catastrophe loss distribution, is an estimate of long run average
costs given a particular geographical distribution of property exposures. It
includes estimates of long run expected losses and probable maximum losses.
There are no actual data to compare to the model output.

There are, however, two sets of assumptions to be tested. The first set
includes all of the assumptions concerning the physical characteristics of the
particular type of natural hazard. Do the physical characteristics of the simulated
natural hazards match the characteristics of actual historical occurrences? If the
probability distributions of the frequency and severity variables have been
selected and estimated properly. simulated occurrences should be very similar
to the historical occurrences.

In the hurricane model, the probability distributions of the model variables
were fit to theoretical statistical distributions using the chi-square and Kolmo-
gorov-Smirnov goodness-of-fit tests. Since the theoretical distributions were
selected on the basis of a good fit with the empirical data. the simulated values
of the variables match closely the historical values.

The second set of assumptions to be tested include all of the engineering
assumptions which correlate the loss-producing phenomena with actual structural
damage. These assumptions are more difficult to test empirically since actual
loss data are needed. Testing requires the comparison of losses from particular
natural catastrophes with the losses that the model would estimate for occur-
rences with the same physical characteristics. given the same geographical
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distributions of exposed properties. Frequently, these data are unavailable. If
they are available, they are generally not available in the quantity necessary for
statistical tesiing.

Results of these tests could be used to calibrate the model, however, it is
not clear that the model builder would want to calibrate the model to a small
number of actual data points. The objective of the model is to project long run
average costs, not to predict losses from individual occurrences. There is so
much randomness involved in a single occurrence that one cannot expect the
model loss estimates to mirror exactly actual losses on each individual occur-
rence.

The question that arises then is whether or not the model is valid if it cannot
be tested statistically. What is the value of the model if one cannot prove that
its estimates are ‘“‘correct”™?

The nature of statistics is such that one can never prove that the sample is
a true representation of the population. Statistical tests of significance merely
provide confidence intervals for parameter estimates which are based on certain
assumptions. These tests are used to choose between alternatives or competing
hypotheses.

In the case of the catastrophe simulation model, there are no good alternative
estimators. Yet there is a real need for the model output, i.e., an estimate of
the catastrophe loss distribution. Insurers and reinsurers make decisions every
day that affect the catastrophe loss distributions. They need to know how their
decisions impact these distributions so that they can make the appropriate risk
versus return trade-offs.

The degree of confidence that one has in model-generated estimates is a
direct function of the level of confidence in the model assumptions. If each
assumption has been tested for reasonability?, then the model output should
provide reasonable estimates. The area of validation of the natural hazard
simulation model is an area worthy of further research.

* There are several ways (o test for reasonability. One way is 1o show experts in the field samples
of simulated data and samples of actual data. If the experts cannot separate the actual data from
the simulated data, the model builder can safely assume that the model is a good representation of
reality.
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MODEIL USES

Knowledge of the probability distributions ot property losses due to catas-
trophes enables management to plan for these events. The natural hazard sim-
ulation model helps insurers to manage their exposure to catastrophes: it serves
as an aid to decision-making in the areas of pricing, marketing. and reinsurance
buying and selling.

[ 5 JO
Cricing

The model-generated expected loss estimates can be used to calculate catas-
trophe premium loadings. Theoretically, i an insurer establishes a reserve for
catastrophe losses and makes annual contributions equal to the annual expected
losses, the insurer will break even with respect to catastrophe losses over the
long run.

Of course, competitive factors influence the amount of freedom that an
individual insurer has to set prices. If demand 15 very elastic, small increases
in price will lead to large decreases in market share. Pricing can be used as part
of marketing strategy to manage the geographical distribution of property ex-
posures and hence the catastrophe loss distributions.

Marketing

The windstorm simulation model output as illustrated in Exhibit V shows
the probability distribution of annual countrywide losses from the hurricane
hazard. For marketing purposes. however, it may be more useful to divide the
country into smaller zones so that the specific areas of high windstorm risk are
clearly identifiable.

The computer model can be programmed to accumulate dollar damages by
state, by country, or by any other geographical configuration. Exhibit VI shows
the state of Louisiana divided into eight zones. The dollars of lability, i.e.
exposure. the expected loss, and various confidence level losses® are shown for
each zone. The figures clearly show that the higher risk areas are the coastal
zones. The hurricane is at maximum force just as it crosses over land: as it
travels inland, the storm dissipates because of the elimination of its primary
energy source (kinetic energy from the seca) and because of surface frictional
effects.

* 1t is interesting to note that for small geographic areas. the confidence level losses may be zero
since the frequencies of hurricanes in specific locations are low
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EXHIBIT VI

LouisiaANA WINDSTORM ZONES

Confidence Level Losses

Expected
Zone $ Exp Loss 80% 90% 95% 99%
LOUIS 1 90,417,112 256,512 0 276,770 1,947,396 4,938,375
LOUIS 2 9,210,113 25.540 0 12,932 213,693 537,371
LOUIS 3 56.674,660 94,866 0 31,306 653,101 2,098,500
LOUIS 4  50,672.900 71,042 0 0 234,088 1,722,377
LOUIS 5  79.796.656 80.965 0 0 547,837 2,021,005
LOUIS 6 176,149,552  231.604 0 0 598,946 6,823,092
LOUIS 7 40,664,716 47,598 0 0 193,227 1,309,985
LOUIS 8 33,114,748 16,552 0 0 5,991 772,278
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Because all natural hazards have associated with them geographical fre-
quency and severity patterns. they will produce gradations of damage or pockets
of high risk and low risk. Management will want to avoid concentrations of
property exposures in high risk areas, and the model output enables the devel-
opment of marketing plans that are based on the long term profit potentials of
various markets.

Property business in high risk areas may be very profitable in years of no
natural hazard occurrences. As years pass and no catastrophes occur, insurers
may begin to compete for the business in 4 high risk area. The competition may
drive the protits as well as the catastrophe loadings to zero so that there are no
resources available to cover the catastrophic losses when they occur. Knowledge
of the probability distributions of losses from natural hazards in these areas
enables insurers to resist the temptation to write business based on the very
recent loss experience in these areas.

The natural hazard simulation model provides an excellent tool for evaluating
the exposure to natural hazards resulting from alternative marketing plans.
Alternative geographical distributions of property exposures may be input into
the model to estimate the resulting catastrophe loss distributions.

Reinsurance

Pricing in accordance with expected losses does not eliminate the risk of
large losses since catastrophes can occur when the loss fund is at a level that is
not sufficient to cover all of the losses. Nor can marketing plans eliminate this
risk since no area of the continental U.S| is free of natural hazards of all types.
Insurers can use the probable maximum loss estimates to decide how much
reinsurance to purchase for protection against large losses. An estimate of the
probable maximum losses enables company management to make the appropri-
ate risk versus return tradeoffs in evaluating reinsurance options.

SUMMARY AND CONCLUSIONS

Catastrophic events can impact significantly the results of property and
casualty insurers. Since the losses resulting from the occurrences of catastrophes
could affect adversely the financial condition of a company. management must
plan for these events. In order to plan for these events. an estimate of the
probability distribution of losses is needed.

The Monte Carlo simulation approach to the estimation of the probability
distribution of catastrophe losses involves the development of computer models
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to simulate catastrophes. Each model is developed around the probability dis-
tributions of the random variables of the loss-producing “system.”

There are several advantages of the simulation approach. First, it is able to
capture the effects on the catastrophe loss distribution of changes over time in
population patterns, building codes, and repair costs. Second, this estimation
procedure provides management with a complete picture of the probability
distribution of losses rather than just estimates of expected and probable maxi-
mum losses. And finally, the Monte Carlo simulation approach provides a
framework for performing sensitivity analyses and “what-if " studies.

Disadvantages of the simulation approach include long model development
time and potentially high development costs. Model validation is also problem-
atic. However the benefits provided by the model and the value of the model
output would seem to outweigh the costs. The simulation approach, while not
perfect in an absolute sense, is far superior to competing approaches to catas-
trophe risk assessment and management.
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FARROKH GUIAHI

Abstract

IBNR reserves are presented as a stochastic variable. The model
presented shows explicitly that the main factors contributing to IBNR
reserves are number of claims, severity, and report lag distributions.
The mean and variance of IBNR reserves are derived. Procedures to
obrain an IBNR confidence interval are discussed. Two examples are
provided on the use of the model. Suggestions are made as to how to
obtain model parameters from actual insurance data.

l. INTRODUCTION

Accurate estimation of IBNR liabilities is a matter of concern for regulators,
management, and investors in proper evaluation of financial statements of prop-
erty-casualty insurance companies. Some commonly used methods to compute
IBNR reserves were presented in Skurnick (1973), and in Bornhuetter and
Ferguson (1972). In a survey of loss reserve methods, Skurnick (1973) men-
tioned the runoff method and the procedures that apply a factor to a current
value of a base. Bornhuetter and Ferguson (1972) recommended procedures that
initially require the computation of age-to-age factors derived from a loss
development triangle. In a critique of reserve methodologies, Khury (1980)
stated that reserve estimates are point estimates with no provision given for
possible variations from their respective true values; he also stated that the
actuarial assumptions used in determining reserve estimates are not mentioned
explicitly.

Some commonly used procedures have two main shortcomings. First, a
procedure that applies a constant factor to a current value of a base is ad hoc.
For instance, statutory IBNR reserves for fidelity and surety coverages are
computed as 10% and 5%, respectively, of premiums in force. Such an ad hoc
procedure does not differentiate among companies with respect to underwriting
practices, company operations, and management’s attitude to risk bearing. Sec-
ond, many of these procedures are a by-product of a retrospective reserve
analysis (e.g., the runoff method or age-to-age factors derived from a loss
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development triangle). A retrospective reserve analysis provides information
with regard to the adequacy or inadequacy of prior reserve estimates, but its
implications about the accuracy of a current reserve are guestionable.

Another more philosophical problem associated with retrospective proce-
dures such as the runoff method or procedures based on age-to-age factors is
that these procedures are not “statistical.”™ A “statistical™ procedure would con-
sider an estimator that is usually unbiased and/or consistent; see Bickel and
Doksum (1977). Statistical theory would guarantee that such estimators will be
“about” the true parameter value or will “converge™ to the true parameter value
for large sample sizes (large volume of data). Even when adjusted for the
volume of business or other pertinent facts. methods based on runoff procedures
are not “on the average™ guaranteed to estimate the true IBNR value. Similarly,
procedures based on age-to-age factors, even when these factors are trended,
cannot be relied on to estimate the true IBNR value correctly. Runoff procedures
and procedures related to age-to-age factors may have an intuitive appeal for
calculating IBNR. But there is no proof, at least to the extent of the author’s
knowledge, that these computational methods have desirable properties such as
being unbiased and/or consistent.

In this presentation a probabilistic model. a statistical procedure. is devel-
oped that may be used as an alternative method for computing IBNR reserves.

2. IBNR MODEI

IBNR liability is presented as a stochastic variable. Parameters used in the
model are distribution of number of claims. severity, and report lag by accident
periods. These parameters (factors) are dependent on a company’s mix of
business written (current and past) and to some extent on a company’s proce-
dures for investigating and reporting claims. In this section, the probabilistic
formulation of the model is considered. The specification of parameters has
been delegated to another section. IBNR is presented as a finite sum of random
variables. Each term in the finite sum is an “IBNR contribution by an accident
period.” These IBNR contributions are random sums (see Appendix B). Mean
(expected value) and variance of IBNR have been derived.

Claims are grouped by accident periods. The unit of time for an accident
period may be a month or a quarter. For the sake of simplicity it is assumed
that each accident occurs at the middle of an accident period. It should be noted
that when the accident period is one year, the assumption that all accidents
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occur at the midpoint of the accident year may be invalid for certain types of
coverage because of seasonality and other pertinent facts. The “‘experience
period” includes all the accident periods of interest. Diagram A is useful in
presenting the “experience period.”

DIAGRAM A
experience period >
Ci d
s — 1 $ i—1 i t— 1 t
“initial” accident “current”
accident period period i accident period

where ¢; = 1t — i + (1/2), a known constant,
i =5, s+ 1,....,L

The accident period i is the interval (i — 1, {]. In this presentation, accident
periods s and f represent “initial” and “current” periods, respectively.

The model assumptions and the main symbols used are as follows. For each
accident period i,

(1) N,, a random variable, denotes the number of accidents occurring;

(ti) corresponding to N,, there are claim amounts X, j < N,, that are
independent identically distributed (i.i.d.) random variables with the
same probability distribution as X;;

(ii1) each claim X;; corresponds to a report lag denoted by T);. For a given
claim, the report lag is defined as the time difference between the
accident date and the claim report date. The T, j < N,, are i.i.d.
random variables with the same probability distribution as T7;

(iv) it is assumed that V,, X;, and T;; are independent random variables for
eachj=Nandi=s, s+ 1,...,L

The random variables N;, X;. and T;, for s < i =<1, correspond to the number
of claims, the severity, and the report lag, respectively. N;'s are related to both
trequency and volume (exposure). The values of X, correspond to their ultimate
cost realizations. The probability distributions for N, X;, and 7; can be different
for each i. In Section 4, more information about the specification of N,, X;, and
T, distributions is provided. The assumption of independence, (iv) above, has
two major implications: for each accident period, the number of claims is
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independent of claim amounts; and for each claim, the claim amount is inde-
pendent of its report lag. If there is strong empirical evidence that for certain
types of coverage a significant correlation (say, positive correlation) exists
between claim amounts and their respective report lags, then the independence
assumption, (iv) above, is violated and the derivations based on it are invalid.
In such a case, one has to modify the model, or alternatively assess the sensitivity
of the model to departures from independence.

Let I denote an indicator random vartable for the event A. That is,

[ = {l, if A occurs,
A 0, if A does not occur.

The following equation (1)
1 = ey + 1(1*,J e (1)

implies that the claim X, is either a reported claim or an IBNR claim as of the
end of accident period ¢. Let Y, denote the contribution to IBNR lability from
accident period ¢. Then,

Yo= 2 X, o (2)
JEN; !
Note that Y, is a random sum (see Appendix B) (i.e.. Y, is the sum of random
variables with the number of random variables contributing to the sum being
random). IBNR as of the end of the “current” accident period ¢ is defined as,

IBNR = X ¥, (3)
=2 EN Xidiry - (4)
=5 juN;

Equation (3) presents IBNR as a sum of a finite number of random variables,
where each random variable in the sum is a random sum denoting an accident
period contribution to IBNR.

The mean and variance of Y,, equation (2) above, are
E(Y) = E(NOEX)P(T; > ), (5)

where P(7; > ¢;), in (5) above, denotes the probability that the random variable
T: exceeds the value ¢;, and

Var(Y) = EWN)EXDPT, > ¢) + [EX)P(T, > ¢)|°|Var(N,) — E(N)]. (6)
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Equations (5) and (6) are a consequence of (iv) above and Appendix B.

The Expected Value (Mean) of IBNR
Using (3) and (5), we have

!

E(IBNR) = X EW)EX)P(T: > ¢, (7

= > wB, (8)

where B, = E(N)E(X)),
w, = P(T; > ).

B; is "expected incurred losses” for the accident period i. If we use “expected
incurred losses™ as a base, it is clear from (8) that IBNR is a function of current
and prior base values. Because it is common for IBNR estimates to be calculated
from a base that is only a function of a single year, the above analysis, equation
(8), implies that such procedures are inappropriate. The weights w; can be
computed using the report lag distribution(s), and their effect diminishes as we
consider earlier accident periods. A deterministic procedure for calculating
IBNR using lag probabilities, w; above, has been presented by Patrik (1978).

The Variance of IBNR

Using the independence assumption about N;, X;;, and T;, and equations (3)
and (6), we have

Var(IBNR) = > EWN)EXHP(T; > ¢)

+ 2 EXIPT, > e)P[Var(V) — EN)].

If N/’s are Poisson random variables, equation (9) becomes

7

Var(IBNR) = > EW)EXDP(T, > c)). (10)
i=s
One may be interested in Poisson number of claims for at least two reasons.
First, if one expresses the parameter of a claim process in terms of the “oper-
ational” time rather than the “‘natural” time, then many claim count processes
of interest are in fact Poisson processes. A claim count process is a stochastic
process, {N(u), s — 1 < u < 1}, where u is the parameter of the stochastic
process. The parameter « denotes the time (“natural” time), and N(u) is the
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number of claims (accumulated number of claims) at time u during the time
interval (s — 1, u]. The number of claims in the accident period (¢ — 1, i], N,
can be expressed in terms of the claim count process by the following relation-
ship: N; = N(i) — N(i — D). For an elaborate discussion of “operational™ time
and claim count processes, the interested reader should refer to Bithlmann
(1970). Second, the negative binomial is a suitable probability model for fitting
claim count data; see Benjamin {1977). But negative binomial distribution arises
from a Poisson random variable because of uncertainty in its parameter speci-
fication: see Longley-Cook (1962).

Equation (10) may be written as

r

Var(IBNR) = > u8B,, (1Y

i=a

u; = [EXCYVEX)IP(T; > ¢).

Now the weights u; depend on both severity and report lag distributions. When
the number of claims has a Poisson distribution, the variance of IBNR can also
be expressed in terms of current and prior values of a base. Moreover, in the
case of the Poisson number of claims and the further assumption of a severity
distribution, X, that does not change over the entire “experience period,” we
have

Var(IBNR) = 3 [E(N)EX)P(T, > )] [EXCVEX)].

= E(IBNR) |E(X"VE(X)]. (12)

Equation (12) implies that the ratio of Var(IBNR) to E(IBNR) depends only on
the severity in this case!

Derivation of an IBNR Confidence Interval

Some remarks on the derivation of a confidence interval for IBNR are
appropriate at this time. In order to derive an exwct confidence interval for
IBNR reserves, it is necessary to know the distribution of IBNR. Note that
IBNR is composed of a sum of a finite number of random variables, where
each term in the sum is a random sum. Determining the exact distribution of a
random sum is extremely difficult. It requires the evaluation of an infinite
number of distributions where cach one is a convolution of many distributions.
This problem is well known in reinsurance, that is, the aggregate losses in stop-
loss reinsurance arrangements are in fact a random sum: see Bithlmann (1970).
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The distribution of IBNR can be analytically approximated by usmg the
cumulative distribution of standard normal distribution, its derivatives, and the
moments of IBNR. This approach is known as Edgeworth expansion and is
discussed in Beard, Pentikiinen, and Pesonen (1969). This approximate distri-
bution can be used to construct a confidence interval for IBNR.

Expressions for the mean and variance of IBNR have been given; now a
crude IBNR confidence interval may be computed by using the Chebyshev
inequality.

The author believes that a reasonably accurate IBNR confidence interval
may be obtained by resorting to simulation. IBNR realizations can be generated
and a “simulated” distribution computed by specifying an input scenario, that
is, specification of the claim count, the severity, and the report lag distribution
for each accident period, based on actual insurance data. Such a distribution
may be used to derive a reasonable confidence interval for IBNR.

3. APPLICATION

In this section are two examples that use the preceding model. The speci-
fications of input parameters in these examples are not based on any real
insurance data, but are stated merely for illustrative purposes and computational
expediency. Given specifications of input parameters should not be construed as
model assumptions. The main assumptions of the model are in condition (iv)
in Section 2: independence of claim count, severity, and report lag. A more
appropriate use of the model would be to generate many IBNR values (realiza-
tions) by resorting to simulation based on input parameters derived from actual
insurance data. Results of such a simulation may be used to provide an IBNR
confidence interval and determine the sensitivity of IBNR to input assumptions.

Example A: Effect of Changes in Input Parameters on IBNR

IBNR, or more precisely, expected value of IBNR, can be calculated ac-
cording to equation (7) in Section 2. Each IBNR computation requires an input
scenario, that is, a specification of expected number of claims, mean severity,
and report lag distribution for each accident period included in the experience
period. In this example, we consider one input specification and refer to it as
“Scenario A.” We then investigate the effect of change(s) in input parameters
relative to Scenario A on the value of IBNR. These investigations will show
the sensitivity of IBNR value to changes in input parameters. In Table A,



100 MODEL FOR IBNR CLAIMS

several deviations from Scenario A’s input specifications are considered. In each
case, a percentage change in IBNR value has been computed.

TABLE A

Scenario A: (1) Growth in expected claim count is 6% annually.
(ii) Mean severity increases uniformly at the rate of 5% an-
nually during the entire 10-year expericnce period.
(iti) Report lag distribution for each accident period is exponen-
tial with mean of 40 months.

Change in Input Assumptions *Percentage Change
Relative to Scenario A in IBNR

1. Change in growth rate for expected claim count 241
from 6% to 9%.

2. Change in rate of increase in mean severity from 15.0
5% to 10% during the second 5-year experience
period.

3. Change in mean lag from 40 to 50 months (as- 15.6
suming the distribution of lag remains exponen-
tial).

4. Changes in expected claim count and mean se- 433
verity as in | and 2 above.

5. Changes in expected claim count and mean lag 42.4
as in | and 3 above.

6. Changes in mean severity and mean lag as in 2 31.8
and 3 above.

7. Changes in expected claim count, mean severity, 63.0
and mean lag as in 1, 2, and 3 above.

*To compute the percentage change. let (IBNR)(, and (IBNR)A denote the value of mean
IBNR according to Scenario O, that is any other scenario. and Scenario A, respectively.
Then, the percentage change in IBNR is defined as

{{(IBNR)o/(IBNR)A] — 1} x 100.

For more details on computation of the above percentages refer to Appendix A.
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Example B: Projecting IBNR Values After Discontinuing Writing a Line of
Business or a Coverage

Consider a situation in which at time ¢, end of the experience period, the
insurer decides to discontinue writing a certain line of business or a coverage.
The insurer may pay for IBNR claims as they are subsequently reported and
settled, or the insurer may transfer the liability at a given price to an accom-
modating reinsurer. The rate of decline in IBNR, subsequent to discontinuation
of coverage, is considered as follows.

Let E[IBNR(u,v)] denote the mean value of IBNR as of moment v evaluated
at time u. Then, according to equation (7), we have

E[IBNR(1,0] = 3 EN)EX)P(T: > c)). (13)

If coverage is discontinued at time ¢, E(N;) = 0, for i > t. The claim X;; is an
IBNR claim as of moment ¢ + 1 if T;; > ¢; + 1. Thus,

E{IBNR(7.: + )] = 2 EINJEX)P(T, > ¢ + 1). (14)

If T:’s are exponential with density f(z),
fin =Ve ¥ 1 >0,
where the parameter VU is equal to 1/(mean lag). Then
P(T, > + 1) = e ™70 = e P(T: > ¢y). (15)
Using (13), (14), and (15), we have
E[IBNR(t.z + 1)] = ¢ "E[IBNR(1.1)];
similarly we have
E[IBNR(z,t + k)] = (¢” ")'E[IBNR(1,)], for k = 1,2,... (16)

In particular, if the accident period is one month, then, according to equation
(16), the projected value of IBNR a year after the evaluation date is equal to
the current IBNR value multiplied by a factor (less than one) that is equal to

[(’ - 1{(mean Iug)]ll (17)
The above factor is based on the premise that the lag distribution remains
unchanged during the entire experience period and is exponential. Choosing an
accident period of one month, IBNR is declining geometrically at an annual
rate given by equation (17). Note that no restriction is put on the expected claim
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counts and the mean severity by accident periods. Table B shows one year
decline factors for different mean lags assuming exponential lag distribution.

TABLE B

ONE YEAR DECLINE FACTOR

Mean Lag

(Months) Factor
10 301
20 549
30 670
40 741
50 L7186

The emerged IBNR amounts in the respective future accident periods ¢ +
1, ¢+ 2, ..., are given by the following differences

E(IBNR(7,1)] — E[IBNR(:.t + 1)],
E{IBNR(:.t + 1)] — E[IBNR(7.t + 2)].

tes

based on our evaluation at time 7. These emerged IBNR amounts may be used
to give an estimate of a ““discounted” IBNR.

4. SPECIFICATION OF MODEL PARAMITERS

For each accident period /, the specification of distributions for number of
claims, severity, and report lag (i.e.. N,, X, and T}) is required.

In determining N;. the number of claims, distributions commonly fitted to
insurance data are Poisson and negative binomial: see Benjamin (1977). In the
case of Poisson, the only required input is the value of E(N,), the expected
number of claims. E(V;) should not be based cntirely on reported claims in
accident period i, but adjusted for accident pertod i claims that will be subse-
quently reported. As Salzmann (1984) stated, “the extrapolation of the incurred
count is straightforward and results are quite dependable.™
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The specification of claim distribution X, i1s a more difficult task. Many
parametric distributions have been fitted to claim data. Some popular distribu-
tions used are lognormal, Pareto, and gamma; see Beard, Pentikdinen, and
Pesonen (1969). It is the author’s belief that for earlier accident periods, the
claim cost data are nearly “fully developed,” and a parametric distribution fitted
to individual claims (incurred losses) is the appropriate procedure. The term
eurlier accident periods, in the preceding sentence, depends on the circum-
stances of a given situation. It should be evaluated in terms of the volume of
claim cost data and the claim settlement period relevant to that line of business.
Finger (1976) wrote an interesting paper related to fitting a lognormal curve to
claim data. For more recent accident periods, the claims are only “partially
developed™ and are not close to their “ultimate” cost values. A possible approach
is to extrapolate (trend) the distribution of earlier periods to arrive at distributions
for more recent periods. A procedure for trending distributions was presented
by Rosenberg and Halpert (1981).

The distribution of report lag, 7., can be obtained by a procedure outlined
by Weissner (1978), where reported lags are fitted, by the method of maximum
likelihood, to a parametric truncated distribution. The underlying report lag
distribution is recovered by exploring the relationship between truncated and
nontruncated distributions.

The last point to consider is the selection of an appropriate “experience
period.” Usually ¢ is December 31 of the year of IBNR evaluation. The choice
for 5, the “initial” accident period, requires considerable judgment. For a new
company or an existing company with a new line of business, the s should be
the earliest possible period. In other cases, the choice of 5 depends on the report
lag distribution. From equation (8), it is clear that for earlier accident periods,
w; 18 small because ¢; is large, and consequently the contributions to IBNR from
earlier accident periods tend to diminish. Thus., when IBNR is computed by
lines of business or coverages, a judgmental choice with regard to the value of
s should be made.

Finally, the distributions of N;, X;. and T, are based on our knowledge at
the end of the current period ¢. If the accident period is a month and IBNR is
computed annually, at time ¢ + 12, we have to update these distributions in the
light of data gathered during period (7,¢ + 12]. Thus, the distributions for the
claim count, the severity, and the report lag may be updated from one evaluation
period to the next.
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5. CONCI.USION

The model described in this paper has merits of its own in estimating IBNR
reserves. particularly the following points. The model is not ad hoc because the
parameters used are dependent on a company’s book of business written, which
is the most important factor in determining IBNR. The input parameters (dis-
tributions) may be continually updated from one evaluation to the next. If the
company’s operations change, or if other factors suggest an appreciable diver-
gence from past development of input parameiers. then, o the exient that these
changes can be quantified, “historical” inputs should be replaced by these
“subjective” inputs that incorporate the changes. The model is stochastically
presented so that we can evaluate variability. The actuarial assumptions used
are stated explicitly in terms of probability distributions for the number of
claims, the severity, and the report lag. We have a tool, a stochastic model, to
work with. More time can now be spent in examining the model assumptions
and improving methods of estimating parameters from actual insurance data.
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APPENDIX A
FORMULAS USED IN COMPUTING THE PERCENTAGES GIVEN IN TABLE A

Precise specification of the input parameters for the computation of per-
centages in Table A is given below. The accident period is assumed to be one
month. Let s = 1 in equation (7); r, denotes the rate of growth for the expected
number of claims; r» and r; denote the rate of growth of the mean severity
during the first and second five years of the experience period, respectively.
The input specifications are as follows:

EWN) = EMW( + rpt 0 for 1<i<120
_JEGO + )t for 1<i<60
E(X,) - {E(X)(l + rz)(b()fl):‘n(] + r})(i\ﬁ())r‘lz‘ fOl' 60<l$120

where E(N) and E(X) denote the expected values of claim count and severity in
the initial accident month. The lag distibution is selected to be exponential for
each accident period with the density f{(#) as given in Example B. Using equation
(7), the mean IBNR value is

60

E(IBNR) = E(V)E(X) {2 (L4 ) 4 ) TR
i=1

120
+ 2 (l + rl)(l*l)f‘l?.(l +r2)(6()“l)/12(l +r3)ll\b())e’12€*ﬂr,}
i=61

where 9 = 1/(mean lag).

For Scenario A, ry = .06, r; = r; = .05, with mean exponential lag of 40
months. For any other scenario, the input parameters that are not explicitly
changed (see Table A) will be the same as those of Scenario A. In computing
the percentage change in IBNR values, the E(VM)E(X) term drops out.
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APPENDIX B
MEAN AND VARIANCE OF A RANDOM SUM

In this appendix, we state (not derive) the appropriate expressions for the
mean and variance of a random sum. The interested reader may refer to Feller
(1971) or Mayerson, Jones, and Bowers (1968) for the derivation of the results
stated below.

Let ¥, ¥,. Y., ..., Y,. ... be independent and identically distributed random
variables with finite first two moments. Let N denote a nonnegative integer-
valued random variable with finite first two moments. A random sum. Sw, is
defined as

Sy = E\ Y. (B.1)

Let us assume that N and Y,. Y.. ...are independent variables; then it can
be shown—see Feller (1971)—that

E(S~v) = EWMWE(Y), (B.2)

Var(Sy) = E(N)Var(Y) + [E(Y)|Var(N). (B.3)
Equation (B.3) can be rewritten as

Var(Sy) = E(VE(Y?) + [E(Y)*| Var(N) — E(N)]. (B.4)

If N is a Poisson random variable. the second term on the right-hand side of
(B.4) is equal to zero.

It should be noted that for an indicator random variable [, (see Section 2),
we have

E(/,) = P(A) . and

E(I}) = PA) .
These results concerning the mean and second moment (about zero) of the

indicator random variable have been used in the derivation of equations (5) and
(6) in Section 2.
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DISCUSSION BY RICHARD E. SHERMAN

In the paper. A Probabilistic Model for IBNR Claims.™ a number of results
of interest have been presented. The assumptions of the model have been clearly
defined and several useful derivations worked out. It should be noted that this
paper addresses “pure IBNR™—to the exclusion of reserves for adverse devel-
opment on case reserves.

The author openly admits that application of the model is dependent on
claim severities being independent of the report lag. Without exception, every
set of casualty loss experience that this reviewer has studied (that contains
sufficient detail to test the hypothesis of independence) indicates that claim
severities increase markedly with report lag—up to some stage of development—
and then tend to level off for later stages. Much of the more recent loss
experience available to this reviewer is either confidential in nature or is based
on too small a volume of claims. However, two generally available, though
older, sources clearly demonstrate this phenomenon for a large body of data.
Exhibit | presents the results of the NAIC Closed Claim Study (62,096 medical
malpractice claims), and Exhibit 2 shows comparable data from the ISO’s
Products Liability Closed Claim Survey (12,213 claims).

This suggests that the derivations presented in this paper should be valid for
that portion of the IBNR reserve associated with more mature accident years
(where the claim severity of yet unsettled claims tends to be independent of the
report lag). More specifically, the interesting and useful results for Example B
should be valid for lines of business that were discontinued a number of years
ago.

It also suggests that the derivations in this paper must undergo considerable
modification before application to the IBNR reserve associated with the most
recent accident years. Unfortunately, this latter portion tends to represent the
bulk of the IBNR reserve for any long tail line.

The author expresses a number of appropriate misgivings about retrospective
procedures such as runoff methods and age-to-age factor methods. What is
unclear is whether the techniques presented in this paper would represent an
approach that overcomes these misgivings. I do not sense that the methods
presented in the paper will liberate the actuary from biases derived from past
data and enable him/her to better foresce the future. On the other hand. the
author’s approaches and derivations do offer a refreshing perspective, and can
serve as a basis for further advancements in IBNR analysis.
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In the introduction, reference is made to IBNR reserves for fidelity and
surety coverages. Ad hoc procedures, such as a fixed percentage of premiums
in force are criticized for their failure to differentiate among companies on
several counts. To the author’s list, I would add the following: definition of
accident date (especially for contract surety) and practices in setting case re-
serves.

EXHIBIT 1

RELATIONSHIP OF CLAIM SEVERITY AND REPORT LAG
NAIC CLoseD CLAIM STUDY
MEDICAL MALPRACTICE

Time from
Incident Indemnity Number
to Report Paid of Claim
(Months) (000’s) Claims Severity
0- 6 $243,576 22,293 $10,926
7-12 138,435 10,370 13,350
13-24 234,814 15,089 15,562
25-36 134,054 8,631 15,532
37-48 60,456 2,732 22,129
Over 48 64,837 2,981 21,750

$876.,172 62,096 $14,110
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EXHIBIT 2

RELATIONSHIP OF CLAIM SEVERITY AND REPORT LAG
I1SO ProbucTs LIABILITY CLOSED CLAIM SURVEY
BobpiLy InJUurRY LiaBiLity CLAIMS

Time from Claim
Incident Number Severity
to Report of Claim ($25,000
(Months) Claims Severity Limit)

{Trended for Severity)

0 3,927 $ 2.834 $ 740
1-6 5,570 4.477 1,553
7-12 949 23,146 5,100
13-18 581 21,843 5.846
19--24 464 27.603 7.546
25-30 271 19,827 6.299
31-36 157 27.536 7.731
37-48 142 22973 6.168
Over 48 152 102,136 7.874
12.213 $ 9.171 $2.316

(Untrended)
0 3,927 $ 1,200 $ 622
1-6 5.570 2.292 1.211
7-12 949 9.659 3.956
1318 581 10,314 4,265
19-24 464 10.572 5.178
25-30 271 8.452 4,292
31-36 157 6.802 4,490
37-48 142 7.408 3.852
Over 48 152 10,824 2,940

12.213 $ 3.570 $1.694
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DISCUSSION BY MARGARET WILKINSON TILLER

Mr. Guiahi’s paper presents a model that is a good starting point for esti-
mating the reserve associated with claims that have been incurred but are not
reported. Since he refers only to “claim costs,” it is not clear whether this
reserve 1s for losses only, or losses and allocated loss adjustment expense. His
technique can be applied to either or to allocated loss adjustment expenses only,
provided that the model parameters are selected appropriately.

An important point to note is that the model does not produce an estimate
of case reserve development, i.e., the difference between the ultimate value of
claims and the total of the payments plus case reserves for claims that have
been reported as of a given date. Again, the terms “value,” “payments,” and
“case reserves” could refer to losses only, losses and alfocated loss adjustment
expenses, or allocated loss adjustment expenses only, as long as the definitions
are consistent.

One of the main assumptions underlying Mr. Guiahi’s model is that claim
severity and report lag are independent. While this may be close to reality for
a short-tailed line such as automobile property damage, it is probably not true
for long-tailed lines such as medical malpractice and products liability. Mr.
Guiahi points out that if there is empirical evidence that the assumptions are
not valid, adjustments to the model must be made. He does not, however,
explore what those adjustments are. For those lines of business in which claim
severity and report lag are dependent or in which other model assumptions
appear to be invalid the model can be used only as a starting point.

Mr. Guiahi states that his model overcomes many of the problems associated
with retrospective reserve analysis (e.g., age-to-age factors derived from a loss
development model). In particular: “A retrospective reserve analysis provides
information with regard to the adequacy or inadequacy of prior reserve estimates,
but its implications about the accuracy of a current reserve are questionable.™

Any reserve analysis, including one based on Mr. Guiahi’s model, assumes
that the past is a good predictor of the future. Where known or suspected
changes are taking place, a good actuary will modify the analysis techniques
being used to reflect these changes as appropriate.

For example, if the number of claims and/or average claim size is increasing
but the claim reporting pattern and the payment and case reserving practices
have not changed, the loss development technique used on accident year reported
losses to project ultimate losses for all incurred claims will not be affected by
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these changes. In Mr. Guiahi’s model to project ultimate losses for incurred but
not reported claims, these changes must be explicitly recognized and the model
parameters adjusted accordingly.

If the claim reporting pattern is changing, the development technique can
be used separately on accident year claims and average claim size to project
ultimate losses for all incurred claims. This allows the development factors for
claims to be modified so that the estimated ultimate claims reflect the change
in the claim reporting pattern. In Mr. Guiahi's model to project ultimate losses
for incurred but not reported claims. this change must also be explicitly rec-
ognized and the model parameters adjusted accordingly.

In summary, Mr. Guiahi's model is a good starting point for estimating
reserves for losses, losses and allocated loss adjustment expenses, and allocated
loss adjustment expenses only associated with claims that have been incurred
but are not reported. To be of practical value, the model’s assumptions should
be evaluated carefully in light of empirical data and appropriate changes made
to the model if the assumptions appear to be invalid. In addition, the reserve
for case development must be estimated in order for the reserve picture to be
complete.



13

THE CASH FLOW OF A RETROSPECTIVE RATING PLAN
GLENN MEYERS
Abstract

With current methodology, the parameters of a retrospective rating
plan are calculated to place the plan in balance on an underwriting
basis. This paper provides a way of calculating the present value of the
retrospective premium. Using this methodology, one can compare the
expected profitability of various retrospective rating plans on a dis-
counted or operating basis. This includes paid loss retros. It is also
possible to determine the parameters of a plan that will vield a prede-
termined operating profit.

This paper is an outgrowth of a project which I directed during my final year at CNA Insurance
Companies. I worked very closely with John Meeks and Steve Maguire in developing the conceptual
basis for what we called the “Account Pricing System.” Many of these ideas originated with Brad
Alpert before I was on this project. Steve and Ron Swanstrom wrote a program which made these
ideas very workable in a production environment.

I. INTRODUCTION

In recent years, the state of the property and casualty insurance industry
could be characterized by three highs: high combined ratios, high interest rates,
and a high degree of competition. Insurance company managers know that a
great deal of investment income can be made by writing insurance, and they
are willing to lower prices in order to do this.

The question to be asked, then, is how much can rates be lowered and still
maintain an acceptable overall profit? It should be noted that, in practice,
actuaries do not have complete control of the pricing process. Underwriting and
marketing personnel have considerable input. If actuaries do not calculate the
contribution of investment income to the profitability of a line of insurance,
someone else will. And the resulting “calculation” may amount to no more than
a reaction to competitive pressures.

The question is not whether to reflect investment income in the calculation
of rates. Instead the question is Aow to reflect investment income in the calcu-
lation of rates.
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This paper considers the effect of investment income in the choice of the
parameters of a retrospective rating plan. With current methodology, the param-
eters of a retrospective rating plan are chosen to place the plan in balance on a
nominal, or underwriting basis. By this we mean that the expected retrospective
premium is equal to the sum of the losses, expenses. and the anticipated profit.
However, it is possible for different plans to have the same expected premium
and have different cash flows.

For example, a plan with no maximum will have premium flowing in as
long as losses develop, while a plan with a low maximum will stop producing
premium as the insured breaks the maximum. Not all insureds will break the
maximum, but there will, on average. be a faster premium flow for the low
maximum plan because of the higher basic and the increased number of insureds
who do break the maximum.

Other factors, such as the loss conversion factor and the minimum premium
factor will also affect the cash flow of a retrospective rating plan.

This paper will provide a way of calculating the present value of the
retrospective premium. Using this methodology, one can compare the profit-
ability of various retrospective rating plans on a discounted or operating basis.
This method also applies to paid loss retros. It is also possible to calculate
parameters of a plan that will yicld a predetermined operating profit.

The principal tool used will be the collective risk model. Excess pure
premiums will be calculated for the insured at various stages of development.
One can then calculate the expected retrospective premium at each stage, and
obtain the present value of the retrospective premium.

This technique will enable the insurer to offer a standard incurred loss retro
which is competitive with a paid loss retro. This alternative could help relieve
some of the pressure that the Internal Revenue Service is putting on paid loss
retros. In addition, it will become possible to price a retro with loss development
factors. This will minimize the size of retrospective adjustments as time passes.

We begin by defining the parameters of a retrospective rating plan.
2. THE PARAMETERS DEFINED

The retrospective premium, R, for an insured is given by the following
formula [1]:

R=®B+ cE + ¢L)t.
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R is subject to a maximum of G and a minimum of H.

B is the basic premium. Traditionally, B covers general expenses, profit,
and the insurance charge (i.e., the net cost of the minimum and maximum
premium provisions). There is no particular reason why B has to be set equal
to these cost provisions. In its pure form, B is simply an amount used to
determine the retrospective premium.

The factor ¢ is called the loss conversion factor. Traditionally, ¢ covers the
loss adjustment expenses. Again, there is no reason why it has to be set equal
to a loss adjustment factor. In its pure form, ¢ is simply a factor used to
determine the retrospective premium.

Many retrospective rating plans provide that no claim amount over a spec-
ified loss limit shall be used to calculate the retrospective premium. In this case,
the expected value of the losses resulting from this provision must be added to
the retrospective premium. This amount is denoted by E.

L represents the actual losses, subject to the per claim loss limit, incurred
under the plan. Premium taxes are provided for by the factor r.

In order to keep this paper as simple as possible, we will not consider the
effect of loss limits and premium taxes until the end of the paper. We shall also
ignore the minimum premium. This results in a simplified formula for the
retrospective premium:

R=B+ L,
subject to the maximum, G.

The timing of the retrospective premium payments is of particular impor-
tance. Recall that some claims are open a long time before final settlement.
Thus, incurred losses are necessarily estimates of the final claims costs. Expe-
rience has shown these estimates are usually low, so one should expect the
retrospective premium to increase over time. The first calculation is based on
losses reported eighteen months after the effective date of the policy. Subsequent
calculations are performed on a yearly basis. Payments typically lag three
months behind the retrospective premium calculations.

It is usually required to make a premium payment before the first retrospec-
tive adjustment. Traditionally, this payment has the standard premium due on
the effective date of the policy. More recently, the trend has been to pay an
amount totaling less than the standard premium in installments.
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We will be following a single hypothetical insured throughout this paper.
The loss and expense information for this insured is given in the following
table.

TABLE 1|
NOMINAL PRESENT VALUE AT 8%
EXPECTED INCURRED LOSSES $1.000,000 $820,000
EXPECTED Loss AD1. Exp. 100,000 87.000
OTHER EXPENSES 57,500 _55.000
ToTAL $1.157.500 $962.,000

The expected incurred losses for each retrospective adjustment period are given
in the following table.

TABLE 2
RETROSPECTIVE ADJUSTMENT EXprCTED INCURRED LOSSES
#1 (@ 18 MONTHS $833.333
#2 (@ 30 MONTHS 946,970
#3 (u 42 MONTHS 975,610
#4 (@ 54 MONTHS 986,193
#5 (@ 66 MONTHS 991,080
#6 (- 78 MONTHS 996.016
#7 (@ 90 MONTHS 1,000.000

In order to calculate the average retrospective premium, one needs to have
tables of excess pure premiums which correspond to each retrospective adjust-
ment. These tables are provided in Exhibit 1. The Heckman-Meyers algorithm
[2] was used to generate these tables. While the input for this algorithm could
be provided, it seems just as easy to assume the tables are given. These tables
provide excess pure premiums for loss amounts in increments of $10,000. Linear
interpolation can be used to calculate excess pure premiums for loss amounts
that are not a multiple of $10,000.
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The average retrospective premium is calculated in the following manner
(3]. Define the etfective maximum to be equal to (G — B)/c, and let X be the
excess pure premium for losses over the effective maximum. Then, the average
retrospective premium is given by:

EIR) = B + ¢«(E|L] — X).

The average retrospective premium must be calculated for each evaluation
period.

As an example, assume B = $232,450, G = $1,500,000, ¢ = 1.1, and
ElL} = $1,000.000. Then the effective maximum equals $1,152,320. By linear
interpolation on Exhibit 1 (90 months), we find X = $131,775 and E[R] +
$1.187.500.

3. THE STANDARD INCURRED LOSS RETRO

We first calculate the expected underwriting profit for a standard incurred
loss retro. We need only consider the seventh (final) retrospective adjustment
for this calculation.

TABLE 3
Basic $232,450
L.C.F. 1.1
MAXIMUM $1,500,000
E[R] @ 90 MTHS. I,187,500
Loss & EXPENSE 1,157,500
UNDERWRITING PROFIT 30,000

This plan was designed to yield approximately the 2.5% underwriting profit that
is budgeted in standard Workers’ Compensation rate filings.

Next, we calculate the expected operating profit for the same plan assuming
an effective annual interest rate of 8%. That is to say, for example, that a
payment due in three months is discounted at a rate of 1.08"7°. A deposit
premium of $960,000 is to be payable in six quarterly installments of $160,000.
The present value of the deposit premium is $915,410. Additional amounts of
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premium due to retrospective adjustments are assumed to be paid three months
after the calculation of the retrospective premium.

TABLE 4
Basic $232.,450
L.C.F. 1.1
MaximMum $1,500,000
DeposIT 960,000
E[R] @ |8 MTHS. 1.078.380
(@ 30 MTHS. 1.155.720
(¢ 42 MTHS. 1.173.210
(@ 34 MTHS. 1,179.480
(@ 66 MTHS. 1,182,340
(ct 78 MTHS. 1.185.200
(@ 90 MTHS. 1,187.500
P.V. RETRO PREMIUM 1,103,720
P.V. Loss & ExXPENSE 962,000
OPERATING PROFIT 141.720

In this example we see that the standard rating method yields an operating profit
of nearly 12% of the ultimate average retrospective premium. This is fine if the
competition will allow it. If not, the insurance company management must
decide what operating profit to seek.

Suppose management decides to seek an operating profit ot $100.000.
Perhaps there is a vague notion that an underwriting profit of $30,000 already
anticipates a certain amount of investment mcome. and is not appropriate for
an operating profit. Anyway, the question becomes one of selecting the basic
premium that yields the desired operating profit. This can be done by repeating
the calculations of Table 4 on a trial and error basis, although a numerical
method may yield the desired solution more quickly [4]. The results of this
process are in the following table.
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TABLE 5
Basic $167,150
L.C.F. 1.1
MaxiMuM $1,500,000
DEPOSIT 960.000
E[R] (@ 18 MTHS. 1,024,100
(. 30 MTHS. 1,106,410
(' 42 MTHS. 1,125,210
{t: 54 MTHS. 1,131,970
(@' 66 MTHS. 1,135,050
(@ 78 MTHS. 1,138,140
(@ 90 MTHS. 1,140,620
P.V. RETRO PREMIUM 1,062,000
P.V. Loss & EXPENSE 962,000
OPERATING PROFIT 100,000

Having described how to select the basic premium which yields a predeter-
mined operating profit, it should be pointed out that it is possible to fix the
basic premium and select the loss conversion factor which yields a predetermined
operating profit.

Certain other cash flow provisions of a retrospective rating plan are often
subject to negotiation between insurer and insured. Thus it seems appropriate
that we show how to account for them.

4. RETRO DEVELOPMENT FACTORS

An optional provision of most retrospective rating plans is to adjust the
incurred losses to their ultimate value by means of a loss (or retro) development
factor. An advantage to the insured is that the retrospective premium is close
to its ultimate value at the first retrospective adjustment. A disadvantage is that
the insured must pay the premium sooner. To overcome this disadvantage, the
insurer can offer to lower either the basic premium or the loss conversion factor.
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In the following table we consider the latter option. The deposit premium
1s to be paid in installments as before. Although several retrospective adjust-
ments are made, the contribution of the later adjustments is assumed to be
negligible. The final table of excess pure premiums in Exhibit | (evaluated at
90 months) was used to calculate the average retrospective premium at the first
adjustment.

TABLL 6
Basic $167.150
I..C.F. 1.0775
MAXIMUM $1,500.000
DeposIT 960,000
E[R] (@ 18 MTHS. 1,127.730
P.V. RETRO PREMIUM 1,062,000
PV. Loss & EXPENSE 962.000
OPERATING PROFIL 100,000

The results of this calculation should be directly comparable with the previous
calculation (Table 5). The introduction of retro development factors caused
about a 1.1% decrease in the average retrospective premium on a nominal basis.

The accuracy of this calculation depends upon our ability to caiculate the
proper loss development factors. Even if we get the correct overall loss devel-
opment factors, changes in the shape of the aggregate loss distribution over
time will affect the average retrospective premium. The author suspects that the
result, over time, will be a thicker tail for the aggregate loss distribution, a
higher excess pure premium, and a slight decrease in the average retrospective
premium. Losses which are re-valued upward will be limited by the maximum
premium, while losses which arc valued downward will be unaffected. A full
treatment of this effect is beyond the scope of this paper.

5. Paip Loss RETROS
A very popular rating plan in recent years has been the so called “paid loss
retro.” While the details of the financial transactions may vary, a typical plan
could work as follows. A basic premium is paid. possibly in installments. The
retrospective premium based on paid losses is continuously paid from a special
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fund set up by the insured. At some point in time, usually 54 months after the
effective date, the plan switches over to an ordinary incurred loss retro.

The continuous adjustment of the retrospective premium presents a technical
problem. There is always the possibility that the insured will break the maximum
on paid losses before the 54 month switchover. This could, in theory, require
daily tables of excess pure premiums. In practice, the possibility of breaking
the maximum before the switchover is considered remote, and is ignored in the
following calculations. The average retrospective premium can then be estimated
using ordinary loss payout patterns.

The effect of this simplifying assumption would be to overstate the average
retrospective premium before the switchover. It will be corrected at the 54
month adjustment. The end result will be to overstate the present value of the
average retrospective premium by the amount of interest earned on the excess
pure premium before the switchover. This should be a negligible amount.

Let us assume that our hypothetical insured is expected to have paid
$800.000 in losses by the switchover time, and that the present value of these
payments is $720,000. Let us also assume that the basic premium is paid on
the effective date of the plan. The following table describes the plan in detail.

TABLE 7
Basic $ 215,170
L.C.F. 1.1
MaxiMum $1,500,000
E[PAID R] 1,095,170
E[R] (@ 54 MTHS. 1,167,130
(0 66 MTHS. 1,170,050
(i 78 MTHS. 1,172,980
(@ 90 MTHS. 1,175,320
P.V. E[PAID R] 1,007,170
P.V. RETRO PREMIUM 1,062,000
P.V. Loss & EXPENSE 962,000

OPERATING PROFIT 100,000
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The results of this calculation should be directly comparable to the straight
incurred loss retro (Table 5). The paid loss provision caused about a 3% increase

in the average retrospective premium on 4 nominal basis.

6. EXCESS 1.LOSS PREMIUM AND TAX MULTIPLIER

We did not consider the excess loss premium or the tax multiplier in the
above calculations. The intent was to keep the discussion as simple as possible.
We now show how to modify the calculation to take these into account.

On the premium side of the calculation, the only adjustment needed to
handle the loss limit is to input a limited claim severity distribution into the
Heckman-Meyers algorithm.

No adjustment is needed on the loss and expense side. Make note that the
present value of the unlimited losses 1s still used.

A wrinkle in the above adjustment occurs when the excess layer is reinsured
and one wants to incorporate the cost of reinsurance in the pricing. In this case
one takes the sum of the present value of the limited losses and the cost of the
reinsurance. This sum is used in place of the present value of the unlimited
losses. A note of caution: the payout pattern for limited losses is faster than
that of unlimited losses.

Premium taxes are paid on the basis of written premium. One should note
that retrospective adjustments are also adjustments in written premium. The
present value of the premium taxes can be calculated by using the average
retrospective premium at each adjustment.

The following question should be asked at this point. Do we really need to
have separate factors in the retrospective rating plan for excess losses and
premium taxes?

Tax multipliers are not used in guaranteed cost plans, so why use them for
retrospective rating? Rates for other guaranteed cost plans reflect premium taxes,
and so could the basic premium and the loss conversion factor. Skurnick [5]
put the excess premium into the basic premtum for the California Table L. and
there is no reason why this could not be done for all retrospective rating plans.

What really matters is that the present value of the retrospective premium
is equal to the profit plus the present value of the losses and expenses. This can
be accomplished by a proper selection of the basic premium and the loss
conversion factor. The result will be a simpler formula for retrospective rating.
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7. CONCLUSION

This paper is written under the premise that an explicit calculation of
investment income is superior to the implicit recognition of investment income
that some suggest is in many present rating formulas. We do not attempt to
determine the proper operating profit. This task belongs to insurance company
management and/or regulators. It does not belong to some ratemaking formula
based on underwriting profit.

We have provided a methodology for finding the expected operating profit
for a retrospective rating plan. This methodology is presently used by at least
one major insurance company.

The author suspects that the more complicated versions of retrospective
rating, such as paid loss retros, arose because the present plan does not allow
for investment income. Now that the various versions of retrospective rating
can be rated on a comparable basis, it is hoped that the more complicated
versions will no longer be necessary. Retrospective rating can be made simple.
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EXHIBIT 1

EXxcEss PURE PREMIUMS
LossEs VALUED AT 30 MONTHS

LossEs VALUED AT 18 MONTHS
ExPECTED Losses = $833.333

EXPECTED Losses = $946,970

Loss CuMULATIVE  EXCESs PURE Loss CuMULATIVE  EXCEss PURE
AMOUNT PROBABILITY PREMIUM AMOUNT PROBABILITY PREMIUM
$900.000 0.6508 $129,345 $900,000 0.5469 $196,000

910,000 0.6594 125.896 910,000 0.5561 191,516

920.000 0.6678 122,532 920,000 0.5653 187,123

930.000 0.6760 119.251 930,000 0.5742 182,820

940.000 0.6840 116,051 940,000 0.5831 178,607

950.000 0.6919 112,930 950,000 0.5918 174,481

960,000 0.6996 109,887 960,000 0.6003 170,442

970,000 0.7071 106,920 970.000 0.6088 166,487

980.000 0.7144 104,028 980,000 0.6170 162,616

990.000 0.7216 101,208 990.000 0.6252 158,827
1.000.000 0.7286 98,459 1.000,000 0.6332 155,119
1,010,000 0.7355 95.780 1.010,000 0.6410 151,490
1,020,000 0.7422 93,168 1,020,000 0.6487 147,939
1,030,000 0.7488 90,623 1.030,000 0.6563 144,464
1,040,000 0.7552 88.143 1.040,000 0.6638 141,064
1.050.000 0.7614 85,726 1.050,000 0.6711 137,739
1.060,000 0.7675 83,371 1,060,000 0.6782 134,485
1,070,000 0.7735 81,076 1,070,000 0.6853 131,303
1.080.000 0.7793 78.840 1,080,000 0.6922 128,190
1.090.000 0.7850 76,662 1,090,000 0.6989 125,145
1,100,000 0.7906 74,540 1,100,000 0.7056 122,168
1,110.000 0.7960 72,473 1,110,000 0.7121 119,256
1,120.000 0.8013 70,459 1,120,000 0.7185 116,409
1,130,000 0.8065 68,498 1,130,000 0.7247 113,625
1,140,000 0.8115 66,588 1,140,000 0.7309 110,903
1,150,000 0.8165 64,728 1,150,000 0.7369 108,241
1,160,000 0.8213 62,917 1,160,000 0.7427 105,639
1.170,000 0.8260 61,153 1,170,000 0.7485 103,095
1,180,000 0.8306 59,435 1,180,000 0.7542 100,609
1,190,000 0.8350 57.763 1,190,000 0.7597 98,178
1,200,000 0.8394 56,135 1,200,000 0.7651 95,802
1,210,000 0.8436 54,550 1,210,000 0.7704 93,479
1,220,000 0.8478 53,007 1,220,000 0.7756 91,209
1,230,000 0.8519 51,505 1,230,000 0.7807 88.991
1,240,000 0.8558 50,043 1,240,000 0.7857 86,823
1,250,000 0.8597 48,620 1,250,000 0.7906 84,704
1,260,000 0.8634 47,235 1,260,000 0.7954 82,634
1,270,000 0.8671 45,887 1,270,000 0.8001 80,611
1,280,000 0.8707 44,576 1,280,000 0.8046 78,635
1,290,000 0.8742 43,300 1,290,000 0.8091 76,703
1,300,000 0.8776 42,058 1,300,000 0.8135 74 816
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EXHIBIT 1
EXCESS PURE PREMIUMS
LOSSES VALUED AT 42 MONTHS LossEs VALUED AT 54 MONTHS
ExPeCTED Losses = $975.610 EXPECTED Lossks = $986.193

Loss CUMULATIVE ExcCEss PURE Loss CUMULATIVE Excess PURE
AMOUNT PROBABILITY PrEMIUM AMOUNT PROBABILITY PREMIUM
$900.000 0.5218 $214.6(0 $900,000 00.5127 $221.641

910,000 0.5311 209,865 910,000 0.5221 216.815

920,000 0.5403 205.223 920,000 0.5313 212,081

930,000 0.5494 200.672 930,000 (.5404 207.440

940.000 0.5584 196,210 940.000 0.5493 202.888

950.000 0.5672 191.838 950,000 0.5582 198.426

9560.000 0.5759 187,553 960,000 (.5669 194,051

970.000 0.5844 183.355 970.000 0.5755 189.763

980.000 0.5928 179.241 980,000 0.5840 185,560

9950.000 0.6011 175.211 990.000 0.5923 181.442
1,000,000 0.6093 171.263 1.000.000 0.6005 177,406
1.010.000 0.6173 167,396 1.010.000 0.6086 173,452
1.020.000 0.6252 163.608 1.020,000 0.6166 169,578
1.030.000 0.6330 159.899 1.030,000 0.6244 165,782
1,040,000 0.6406 156.267 1.040,000 0.6321 162,065
1.050.000 0.6481 152,711 1.050.000 0.6397 158,423
1.060.000 0.6555 149,229 1,060,000 0.6471 154,857
[.070.000 0.6627 145,820 1.070.000 0.6544 151,365
1,080,000 0.6698 142.4%83 1.080.000 0.6616 147.945
1.090.000 0.6768 139,216 1.090.000 0.6686 144,596
1.100.000 0.6837 136.019 1.100.000 0.6756 141,317
1.110.000 0.6904 132.889 1 110.000 0.6824 138,106
1.120.000 0.6970 129.826 1,120,000 0.6891 134,963
1.130,000 0.7035 126.829 1.130,000 0.6956 131,887
1.140.000 0.7099 123.895 1.140.000 0.7021 128.875
1.150,000 0.7161 121.025 1.150.000 0.7084 125,927
1,160,000 0.7222 118.216 1.160.000 0.7146 123,042
1,170,000 0.7282 115,468 1.170,000 0.7207 120,218
1,180,000 0.7341 112.779 1.180,000 0.7266 117,454
1,190,000 0.7399 110.149 1.190,000 0.7325 114,749
1,200,000 0.7455 107.576 1,200,000 0.7382 112,103
1.210.000 0.7511 105.058 1.210,000 ().7438 109.513
1,220,000 0.7565 102,596 1.220,000 0.7494 106,978
1,230,000 0.7618 100,188 1.230.000 0.7548 104,499
1,240,000 0.7670 97.832 1.240.000 0.7601 102.073
1.250,000 0.7722 95,528 1.250.000 0.7653 99,700
1,260,000 0.7772 93,274 1.260,000 0.7704 97.378
1,270,000 0.7821 91.070 1.270.000 0.7754 95,106
1,280,000 0.7869 88.915 1.280.,000 0.7803 92 884
1.290.000 0.7916 86,808 1.290.000 0.7851 90,711
1,300,000 0.7962 84,747 1,300,000 (1.7898 88,585
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EXHIBIT 1

ExcEss PURE PREMIUMS

LOSSES VALUED AT 66 MONTHS

EXPECTED LOSSES

= $991,080

Losses VALUED AT 78 MONTHS
EXPECTED Losses = $996,016

Loss CumMuLATIVE  EXCESS PURE Loss CUMULATIVE  EXCESs PURE
AMOUNT PROBABILITY PREMIUM AMOUNT  PROBABILITY PREMIUM
$900,000 0.5086 $224.922 $900,000 0.5044 $228,254

910,000 0.5179 220,054 910,000 0.5137 223.345

920,000 0.5271 215.279 920,000 0.5229 218,528

930,000 0.5362 210,595 930,000 0.5320 213,803

940,000 0.5452 206,002 940,000 0.5410 209.168

950,000 0.5540 201.499 950.000 0.5499 204,622

960,000 0.5628 197,083 960,000 0.5586 200,165

970.000 0.5714 192,754 970,000 0.5673 195,795

980,000 0.5799 188,510 980,000 0.5758 191,510

990,000 0.5883 184,351 990.000 0.5842 187.310
1.000.000 0.5965 180,275 1.000,000 0.5924 183,193
1,010,000 0.6046 176,280 1,010,000 0.6006 179,158
1,020,000 0.6126 172.366 1,020,000 0.6086 175,203
1.030,000 0.6204 168.531 1.030.000 0.6164 171.328
1,040,000 0.6282 164,774 1,040,000 0.6242 167,532
1,050,000 0.6358 161,094 1,050,000 0.6318 163,812
1,060,000 0.6432 157.489 1,060,000 0.6393 160,167
1.070,000 0.6506 153,957 1.070,000 0.6467 156,597
1,080,000 0.6578 150.499 1.080,000 0.6539 153,100
1,090,000 0.6649 147.112 1,090,000 0.6611i 149,675
1,100,000 0.6718 143,796 1,100.000 0.6681 146,321
1,110,000 0.6787 140,548 1,110,000 0.6749 143,036
1,120,000 0.6854 137.368 1,120,000 0.6817 139,818
1,130,000 0.6920 134,255 1,130.000 0.6883 136,668
1,140,000 0.6985 131,207 1,140,000 0.69438 133,584
1,150,000 0.7048 128.223 1,150,000 0.7012 130,564
1,160,000 0.7110 125.302 1,160.000 0.7075 127,607
1,170,000 0.7172 122,443 1. 170,000 0.7136 124.712
1.180.000 0.7232 119,645 1,180,000 0.7197 121,879
1,190,000 0.7291 116.906 1,190,000 0.7256 119,105
1,200,000 0.7348 114,225 1,200,000 0.7314 116,390
1,210,000 0.7405 111,601 1,210,000 0.7371 113,732
1,220,000 0.7460 109,034 1,220,000 0.7427 111,131
1,230,000 0.7515 106.522 1,230,000 0.7482 108,585
1,240,000 0.7568 104,063 1,240,000 0.7536 106,094
1,250,000 0.7621 101,658 1,250,000 0.7588 103.656
1,260,000 0.7672 99.304 1,260,000 0.7640 101,270
1,270,000 0.7723 97,001 1,270,000 0.7691 98,936
1,280,000 0.7772 94,748 1,280,000 0.7741 96,651
1,290,000 0.7820 92,544 1,290,000 0.7789 94,416
1,300,000 0.7868 90,388 1,300.000 0.7837 92,229
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EXHIBIT 1

Excess PURE PREMIUMS

LossEs VALUED AT 90 MONTHS

EXPECTED LOSSES

= $1,000,000

Loss

AMOUNT

$900.000

910.000

920,000

930.000

940,000

950,000

960,000

970,000

980.000

990,000
1,000,000
1.010.000
1.020.000
1,030,000
1,040,000
1,050.000
1,060,000
1.070.000
1,080,000
1,090,000
1,100,000
1,110,000
1,120,000
1,130,000
1,140,000
1.150.000
1.160.000
1.170.000
1,180,000
1,190,000
1.200.000
1.210,000
1,220,000
1.230.000
1,240,000
1,250.000
1,260,000
1,270,000
1.280.000
1,290.000
1,300.000

CUMULATIVE
PROBABILITY

0.5010
0.5103
0.5195
0.5287
0.5377
0.5465
(.5553
0.5640
0.5725
0.5809
0.5892
0.5973
0.6053
0.6132
0.6210
(1.6286
0.6362
0.6436
0.6508
0.6380
0.6650
0.6719
0.6787
0.6853
(.6919
(0.6983
0.7046
0.7108
0.7168
0.7228
0.7286
0.7344
0.7400
0.7455
0.7509
0.7562
0.7614
0.7665
0.7715
0.7765
0.7813

ExCEss PURE

PREMIUM

$230.957
226,014
221,163
216.405
211,736
207.157
202.667
198,263
193,945
189.712
185,562
181,494
177.508
173,600
169.771
166.020
162,344
158,742
155.214
151,758
148.373
145.0587
141,810
138,630
135.516
132.467
129 481
126,558
123.696
120,894
118,151
115,466
112.837
110,265
107.747
105,283
102 .871
100,511
98,201
95941
93 729
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A BAYESIAN CREDIBILITY FORMULA FOR IBNR COUNTS
DR. IRA ROBBIN

Abstract

A formula for IBNR counts is derived as the credibility weighted average of
three standard actuarial estimates:

IBNR
Estimate Formula
Pegged Initial Estimate of Ultimate — Reported to Date
LDF {Reported to Date) X (LDF — 1)

Bornhuetter-Ferguson Initial Estimate of Ultimate X (I — l/LDF)

Here LDF denotes the age-to-ultimate development factor. The credibility
weights vary by age of development in a methodical fashion reflecting prior
belief in the reporting pattern and the estimate of ultimate.

To derive the formula, IBNR is modelled as a parametrically dependent
random variable. Bayes Theorem leads to a natural revision of the prior
distribution of the parameters based on the data to date. Using the best least
squares linear approximation to the true Bayesian estimate, and performing
some algebraic manipulations, the credibility formula is obrained. While the
formula could be applied in many ways, for demonstration purposes a fully
automatic procedure is applied to three hypothetical triangles of data.

1. INTRODUCTION

This paper will present a formula which estimates IBNR (Incurred But Not
Reported) claim counts in terms of a credibility weighted average of more
traditional actuarial estimates. The formula will be derived from a theoretical
foundation using Bayesian analysis methods applied to claim count development
models.

Before presenting the formula, it is instructive to review the traditional
actuarial estimates under discussion. In the usual context, we are estimating
IBNR counts for an exposure period at a certain stage of development. We are
given, or can obtain some preliminary estimate of ultimate counts that does not
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depend on the count data reported to date. For instance, the preliminary estimate
could be the product of expected frequency times exposures, where the expected
frequency is calculated with data from prior exposure periods. We also have
count data reported to date and a set of expected age-to-ultimate count loss
development factors (LDF). With all this information. three different IBNR
count estimates may be obtained for the exposure period in guestion at its
current stage of development.

1. Pegged Method
IBNR = Preliminary Estimate of Ultimate Counts
— Counts Reported to Date
Loss Development Factor Method
IBNR = Counts Reported to Date X (LDF — 1)
3. Bornhuetter-Ferguson Method
IBNR = Preliminary Estimate of Ultimate Counts X (I — /LDF)

o

To decide amongst these, the actuary has heretofore been forced to rely on
qualitative reasoning. Such “actuarial judgement™ is not necessarily the arbitrary
Delphic process one might suppose. For instance, if the actuary knows from
long experience that reporting patterns are generally stable, the LDF method
would be preferred. If reporting patterns have characteristically been erratic and
the preliminary estimate of ultimate counts is generally near the mark, the
pegged estimate would be favored. Such qualitative reasoning involves implicit
non-quantified assumptions regarding the stochastic variability of ultimate claim
counts and reporting patterns. It also reflects the degree of confidence in the
prelimary estimate of expected ultimate counts and in the expected LDF.

By constructing an explicitly stochastic claims development model. and
making Bayesian prior assumptions on the parameters defining the model, one
advances the art of reserving beyond the realm of qualitative guesswork. The-
oretically, Bayes Theorem leads to revised IBNR estimates reflecting prior belief
appropriately modified by the data 1o date. Unfortunately, the mathematics often
becomes intractable. Thus, one is led to considering linear esttmators with least
squared error.

The simplest general estimator one obtains can be expressed as a credibility
weighted average of the three traditional estimates. The credibility weights vary
with the stage of development, so that, for instance, the pegged estimate might
receive the most weight initially, the Bornhuetter-Ferguson estimate might pre-
dominate for a few subsequent periods. and the loss development estimate could
have the most weight thereafter. This methodical evolution of credibility weights
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is perhaps the key practical advantage of the Bayesian approach. Based on our
initial beliefs, we are able to decide when to give each method credence.

The object of this paper is to present the formula and demonstrate one
method of applying it to a triangle of data. The method of application uses the
data to approximate needed parameters, so that, in the end, one has an automated
procedure for estimating IBNR counts. Other methods of application are pos-
sible.

Finally, it should be noted that the theory leads naturally to an estimate of
the variance of the IBNR counts. This variance reflects both process and param-
eter uncertainty.

II. BAYESIAN ANALYSIS OF COUNT DEVELOPMENT MODELS

Let N denote the ultimate number of claims for a fixed set of exposures and
write N, for the counts reported in the j™ development period. Set M, = N, +
...+ N, so that M, denotes the counts reported to date as of the end of the j™
period. Define the IBNR count as of the end of the ;™ period as R;. Thus, R,
can be written as the sum, N+, + N4> + . . . + N,, where u is the number
of periods until ultimate, or one can write R, = N — M,.

Assume the N, are (conditionally) independent Poisson random variables
whose parameters we denote as n;. It follows that N, M;, and R; are also Poisson
distributed, since the sum of independent Poisson variables is Poisson. Let n =
m + ...+ n,and define p; = n/n. Thus, the sum of the p; is unity. Also, set
q; = pi+1 + ...+ p. We summarize the random variables thus far defined:

I1.1. Conditional Poisson Random Variables

Poisson
Variable Description Parameter
N; Counts Reported During Period j  n; = np;
M; Counts Reported as of Period j m; = n(l — g
R, IBNR Counts as of Period j rj = ng;

N Ultimate Counts n
subject to constraints

() 0=p =1
(ll) [)1+[72+.‘.+[)":1
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Next we define LDF; = N/M, when M, is strictly positive. Though not
strictly true mathematically, we may from time to time estimate E(LDF;) as

(1 = gp.

It should be further noted that the parameter p, is distinct from, but related
to, the ratio random variable, N/N. Maintaining the assumption that the param-
eters n and p; are fixed, one can show:

I1.2. Relation of p; to N/N
p;i = E(N/N [N >0)

Proof

See Appendix A.

Next, we allow the parameters n and p; to vary according to some prior
distribution whose density we write as f(n,p). Unconditional expectation and
variance formulas for N, N;, M, and R, can then be derived in terms of
expectations and variances involving n, p;. and g;.

11.3. Expectation and Variance Formulus

(i) N
E(N) = E(n)
Var(N) = E(n) + Var(n)
(i) N;
E(N;) = E(pn)
Var(N;) = E(pn) + Var(pn)
(i) M;
E(M) = El0d — g)n)
Var(M,) = E[l — ¢,)n] + Var((l — g;)n)

(iv) R,
E(R)) = E(gn)
Var(R;) = E(q;n) + Var(gn)
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Proof
We prove only (ii) and leave the rest as an exercise for the reader. Consider
EWN) = E.,(E(N;jn.p))
= En,p(npj) = E(’lp,)
E(N)) = En (EWN;/n.p))
= E((np))") + E(np)
Thus,
Var(N) = EWN}) - (EWN))Y° .
= E((np)°) + E(np;) — (E(np))”
= Var(pn) + E(pn)

Before providing a simple example demonstrating these concepts, it should
be noted that in writing f(n,p) we have implicitly incorporated the constraints
on the p parameters. In applications, these restrictions must be explicitly re-
flected. One way to do this is to define the p; as functions of some other
parameters in such a way that the constraints are automatically satisfied. Letting
g denote these generating parameters, we may write f(n,p(g)) or f(n,g).

Now, for a simple example to demonstrate these concepts suppose:

11.4. Assumptions for Example

(i) The prior distribution for n is a gamma with a mean of 1,000 and a
variance of 10,000.

RS T 10
— _ - —n/
S (10) 991 " €

E(n) = 1,000 E(n) = 1,010,000

(ii) (a) p and g are given via:

p=1—-g q1 = &

p: =gl — g2) 9 = 8182

Py = g8 g3 =0
where g, € (0,1). (Observe that the constraints on the p; are automatically
satisfied.)

(b) The prior joint distribution for g, and g- is
flgi,g2) = 2(1 — g2}
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We compute the first and second moments of the p, | — ¢, and ¢ variables:

11.5. First and Second Moments of p. | — g, and g Variables in Example

First Moments Second Moments
j Ep) EU —g) Eq) Ep) E(l - ¢ Eqg)
1 12 1/2 172 1/3 1/3 1/3
2 173 5/6 1/6 1/6 13/18 1/18
3 1/6 1 0 1/18 1 0

To show how these figures were obtained, we calculate E(p3) in detail.
1 1

E(p3) = f fgf(l — 220’21 — g2) dgy dg»
0 0

[E |
(gf/3‘ ) (—2(1 - gz)‘/4' )
0 QO

(1/3)(1/2) = 1/6

fl

it

We are now in a position 1o compute the means, variances, and standard
deviations of the various count random variables.

11.6. Means, Variances, and Standard Deviations of N, N, M,. and R; in
Example

Means
E(N) = 1.000

J E(N) E(M)) E(R)
1 500 500 500
2 333 833 167
3 167 1.000 0



CREDIBILITY FOR [BNR COUNTS 135

Variances
Var(N) = 11,000

j Var(N;) Var(M)) Var(R))
1 87.167 87,167 87.167
2 57,558 35,889 28,502
3 28,502 11,000 0
Standard Deviations
Var'*(N) = 105
i Var'*(N)  var'* (M) Var'(R)
1 295 295 295
2 240 189 169
3 169 105 0

Again demonstrating one of the calculations in more detail, we compute:
Var(N;) = Var(np;) + E(np2)

E(n)E(p3) ~ E(ME(p2)” + E(np2)

(1,010,000)(1/6) — (333)* + 333 = 57,556

I}

i)

We return now to the general presentation and follow the Bayesian approach
by modifying our beliefs about the parameter distribution, f(n,p), as more data
becomes available. Let ©’ denote the prior density before any development has
occurred, and let f denote the revised density as of the end of the ;™ period
of development. Given development data (N, = x;, No = x2, . . . , N; = x)),
Bayes Theorem allows one to derive the modified belief density, fY. in se-
quential fashion.

1.7 Bayes Revised Belief Density
fPn.p) = ¢ Prob(N; = xfn.p) V" "(n,p)
where ¢ i1s a normalization constant, and

Prob(N; = x/n,p) = exp(—np,)(np,)"/x!
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Equivalently, one can write

fPnpy = c Linpfxy, xa .. x)f

where ¢ is some normalization constant and L is the likelihood function,

()3

(n.p)

J

L = [] ProbN, = x,n,p)

il

The revised belief density yields revised IBNR count estimates via I1.3.

Thus, the IBNR count estimation problem is theoretically solved. Further,
the variance equation in 1.3 (iv) could be used to calculate the standard deviation
of the IBNR estimate. This deviation would reflect both process and parameter
uncertainty.

Returning to our example. our prior density is:

i i "
FUngg) = 21 = g2) [ oy ne M
If we observe N, = 400, the revised parameter density would be

K} W e nilo

fPngogy =ce "N E Gl - g™ = gon

where ¢ is a normalizing constant. This density is rather inconvenient to work
with.

Such difficulties are not peculiar to this example. Indeed. the computations
become intractable in most interesting models. Thus, the formulas are difficult
to apply and consequently of limited practical use. As is usually the case in
Bayesian analysis, one is led to consider linear estimators.

III. LINEAR APPROXIMATION OF THE BAYESIAN ESTIMATOR

We first recall some general results of Bayesian credibility theory. Let X
and Y be (possibly vector-valued) random variables, each parameterized by a
common (vector) parameter. Assume the distribution of the parameter is gov-
erned by some underlying structure function. We consider linear estimators of
Y given results for X. It is known that the linear estimator, Y*, with least mean
square error (against the Bayesian estimator) is given via:
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II1.1. General Least Squares Linear Approximation
P = EY) + CX.Y)WVX) (X — EX))
where
X and Y are column vectors
X' = transpose of X
C(X,Y) = Cov(X,Y) = E(XY') — E(X)E(Y")
V(X) = C(X.X")
Applying this result with X = (N, . . . , Np" and Y = R,, we obtain:
II1.2. General Linear IBNR Count Estimator
R¥ = E(R) +

C(Ny,Ny) ... C(N,,N) 17 [Ny — E(N))
(C(N1. R)), . . . ,C(N;, R) o o
CWN;, N\) ... CN,, Ny N, — EN)

The quantities in the above equation can be expressed in terms of expectations,
variances, and covariances of the n, p, and ¢.
1.3, Expectation Variance and Covariance Formulas

(1) E(R) = E(n) E(g)

(i1) Fori{ = j

C(N;, R)) = E(py) E(gi) Y(n) + E(n") C(p;.q:)
(iii) CN,, N)) = E(®) C(p.. pp) + E@) E(pp) V(n) + 3, E(n) E(p)
where V(X) = Var (X)

5 {1 ifi=
v 0 otherwise

Formula I1I.2 is thus reasonable to apply in practice and there is no necessity
for further simplification due to computational considerations. However, with
one additional simplification, we achieve a formula expressing the estimator as
a credibility weighted average of the traditional actuarial estimators as discussed
in the introduction.

Applying III.1 with X = M, and Y = R;, and grouping terms appropriately
(as shown in Appendix B), we obtain
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IlI.4. Credibility Weighting Formulu for IBNR Counts

MIE(‘I/)

R} = Zy(En) = M) + Zy 7

+ (1 — Z, — Z,)) E(n)E(g))

where

Z,; = Em)V(l - g)/D;

Z, = E(1 — ¢)’V(n)/D;
and

D, = E(m)V(I — ¢) + E(l — ¢)’V(n) + EmE — )
Approximating E(g)) via (1 — ULDF)), we have:

H1.5. Credibility Weighting Formula for IBNR Counts - LDF Notation
R¥ = Z.; (E(n) — (M;)) + Z,; (M) (LDF, — 1)
+ (1 - 2Z, — Z,;) E(n) (1 — I/LDF))

This is the formula promised at the outset since in this notation the traditional
estimates may be expressed as:

IBNR

Estimate Expression
Pegged E(n) — M,
LDF MALDF; — 1)

Bornhuetter-Ferguson E(n) (1 — V/LDF))

There are several qualitative conclusions that can be drawn from the formula.
First, if there is no parameter uncertainty with respect to both ultimate counts
and reporting patterns, then the data to date is given no credibility. In that case,
the formula reduces to a Bornhuetter-Ferguson type estimate.

If there is some parameter uncertainty regarding counts, but none regarding
reporting patterns, then the formula become a weighted average of loss devel-
opment factor and Bornhuetter-Ferguson estimates. As the count parameter
uncertainty increases, the formula approaches a loss development factor esti-
mate. Finally, if there is some parameter uncertainty about reporting patterns,
but none regarding counts, then the formula becomes a weighted average of
pegged and Bornhuetter-Ferguson estimates.
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IV. APPLICATION

In this section, the formula will be applied to three triangles of hypothetical
data. The first triangle was constructed so that the Bornhuetter-Ferguson method
will work almost exactly. The second triangle was generated to have nearly
constant age-to-age factors. The last triangle is obtained by averaging the counts
from the original triangles.

The formula could be applied in many different ways. For instance, a pure
Bayesian approach would entail making explicit assumptions for the forms and
parameters of the prior distributions. The resulting system would then require
actuarial judgement in setting the parameters appropriately each time it was run.
While this would be the most theoretically pure method of application, it might
be regarded as somewhat impractical.

In order to provide a reasonably convincing demonstration that the formula
1s of practical use, we proceed now to present a fully automatic method of
application. Under this particular approach, we let the data dictate parameter
values to the degree possible. We introduce explicit forms for prior distributions

if needed, but let the data determine the parameters of the priors.

To begin the application in detail, assume that a triangle of data is given.
Let N; denote the counts reported in the /™ development period for the i
accident period, where i = 1,2, . . . ,uandj =1,2, ..., u— i+ 1.
Define M;; and R; in a fashion analogous to the definitions of M; and R; in I

Assume N;; is (conditionally) Poisson distributed with parameter n; = Bwy,
where B, denotes the exposures for the i accident year.
Define:
n, = E nij
J
w; = 2 Wi
J

pii = wiy/wi
so that n; = Bwpy

Now assume that each of the frequency parameters, w;, is, in effect, drawn
from a common distribution. Thus, a priori, we have E(w;) = E(w). Similar
assumptions are made for the set of p; and the set of g; when i is fixed. Thus,
we may write E(p;) = E(p;) and E(g;) = E(g)).
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We next find maximum likelihood estimators, wi¥ and p¥. for w; and p;. The
likelihood function is:

IV.1. Likelihood Function
w w o itl
L, wiNy =TI T1 e " Bwp) N,
i=1 j=1
subjecttop, + p» + ...+ p, =1
We maximize as usual by taking the natural log and then the necessary
partial derivatives.

IV.2. “Log Likelihood” and Partials

u ouitl

InL=73% X - Bwp + Nyln(wp)
=1 =1

+ independent terms of w; and p,

al L w—i+l

(:v = 2‘ — Bipp, + Ny/w,
i j=

(ﬂ L u—j+1

;’p‘ = 3 - Bw+Np
) i=

Utilizing the constraint, we solve the equations via numerical iteration to
obtain w¥ and p¥ which satisfy:
IV.3. Maximum Likelihood Estimates

“"l* = Ml.u~:+|/Bi(] - q;k i+ l)

w j+1l w—j+1
pr = ( > N,,)/( > w,"‘B,)
=1 i=1 /

Using the maximum likelihood estimates just obtained, we approximate the
frequency mean and frequency variance.
IV.4. Frequency Mean and Variance Estimators

EBJWJ*(I - q.’f-.,u)]
2Bl — g¥ /+0)

E(w) ~w = [

2Bl — gF i ) wF — w)z]

1y =~ 2, =
Var(w) =~ S, { SBAl — gf 1)
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While this seems intuitively reasonable, the properties of this variance
estimator need further investigation in the future. Perhaps it is biased.

To estimate the required second moments of the reporting pattern parameters,
we assume that p; is Beta distributed with parameters (Hp}, H(I — pf)). We
further have that g, is Beta distributed with parameters (Hg?, H(1 — g¥)). Note
the use of the maximum likelihood estimates in defining the parameters of these
Betas. Under these assumptions, we can obtain convenient expressions for the
mean and variance of the reporting pattern parameters.

IV.5. Mean and Variance of p; and g
E(py) = p} Var(py) = pH(1 — p#)i(l + H)
Egy) = ¢f Var(gy) = gF(1 — ¢/)/(1 + H)

Observe that the parameters of the reporting pattern have variances inversely
proportional to H. To use the data to solve for H, we first estimate p, via:
Dy = Ny/(Miu—ivr + Bwiq}) and define

IV.6. Estimator For Variance of Reporting Pattern Parameters

5 = [E E Bipy —p,*)z]/ ; 2 B;

i=1  j=1

Plugging the Var(p;) formula of IV.5 in place of (5, — p¥)°, we obtain the
approximation

E(S;) = 2 Bpr(l — p¥) 2 Bl + H).
y i
Thus we derive an estimator for H:
IV.7. Estimator for H
2 BipF (1 — p¥)
i

H* = -1
Sy > B
i

As before, the author must caution that the theoretical vices or virtues of
this estimator have not been investigated. It is probably biased toward over-
stating H and thus understating Var(1 — ¢;). This will tend to give too much
credibility to the LDF method.
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At this point, we have enough to estimate all the terms required in the
credibility formulas.

IV.8. Estimators for Terms in Credibility Formulas

Notation Used in Chapter

11 v Estimator
E(n) E(n;) B
Var(n) Var(n,) B;S.
E(n®) E(n}) BiSL + Blw”
E(l — gy E(1 — ¢i) I = gF
Var(l — ¢;) Var(l - g,) (1 - gF)griH* + 1)

These were used to obtain the Bayesian credibility IBNR estimates shown
in the attached exhibits. While the credibilities are not 100% for the “right”
method in the “pure” cases, they nonetheless show that the application meth-
odology is at least somewhat responsive. The credibility estimated IBNR 1s in
all cases reasonably close to the correct answer. Further, the correct answer is
well within one standard deviation of the estimate. Finally, considered over all
three examples, the credibility formula approach appears to perform better than
any one of the methods alone. The reader will, of course. arrive at his or her
own judgement.

V. CONCLUSION

To conclude, it is hoped that the proposed IBNR count formula will not
only advance reserving theory, but will also prove of practical use. It settles
old arguments about which of three traditional actuarial estimates should be
employed by showing how they may be credibility weighted in a methodical
fashion to obtain a final estimate. The credibility weights differ depending on
the development period. Thus, the Bayesian credibility approach provides a far
more subtle method than simply picking one set of credibility weights which
would apply at every development period. The formula could be applied in
many ways. but at least one practical application has been demonstrated with
fairly good results.
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APPENDIX A

Let N, and N; be two independent Poisson random variables with parameters

n, and no, respectively. Set n = n, + n; and p = n/n. We consider the ratio
random variable N/(N, + N»).

A.l. Proposition on Expectation
E(NV(Ni + N2)INe + N2 > 0) = p
Proof

E(N/(Ny + N2)IN) + N; > 0) Prob (N, + N2 > 0)

=e " Y > ((x + ynin¥(xty)
x=1 v=0

X_Z—X

(x/zymns Hx!(z — )

M

x
— efn 2

-
|
I

1

=e " X Nz ) E (z) xp'd = py
x=1 X

z=1

=e " X z \z)nyz, = pe " — 1)

=1
=pll —e ")
The result follows since

Prob (N, + N, >0)=1—¢ "
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APPENDIX B

DERIVATION OF CREDIBILITY WEIGHTING FORMULA

FROM

GENERAL LINEAR LEAST SQUARE ERROR BAYESIAN APPROXIMATION

Applying the general formula yields

B.1

R¥ = E(R) + CIM,,R)C(M,) ' (M, — EM,))

Expressing the terms of B.1 using terms involving # and ¢,,

B.2.

EM))
E(R))

C(MI,RI') =

C(M,))

I

E(mE( — ¢

= E(mE(g;)

I

E(n®) E((1 — ¢)g;) — E(’E(l — ¢)E(g)
E(n°) E(1 — g)%) + EmE(l — ¢,) — EmyE(l — ¢))°

Simplify the second order terms as follows

B.3.

(‘) C(Mstj)

(i)

avph

fl

Il

E(n*) E(1 = g))¢) — E(a) E(l ~ ¢)E(q)
+ E(n”) E(1 — g E(¢) — E(n)’E(l — ¢,)E(q))

E(n®) E(1 — ¢,)° — E() E(1 — ¢,)°)
+ V(mE(l — gq,) E(g))

—E(nY) VA — ¢) + VIWE(l - ¢,)E(g)

E(n) E(1 = ¢)°) — En)E( — g)"
+ E(n)E(l ~ ¢)" = Em’E(l — )" + EmE(l - ¢)

E(m*)V(1 — gj) + E(1 — ¢)’V(n) + EmE(l — ¢)
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Plugging into B.1 one finds
BA4.

R} =E(m)E(g)+

V(n)E(g)E(1 - ¢)— E)VU — g)
7 . — E(mE(l - ¢
E()V( — ¢)+E( — q)*V(n)+EmE( — q)) (M — B0 o

= (E(n) — M) (E(nHV(l — @)/ D + (M; V(n) E(q) EQ — g))/ D
— (E(n) V(n) E(g)) E(1 — g/ D
+ E(n)E(g) (1 + (V(n)E(QE(l — g))
— E(n*)V(1 ~ ¢p)/ D)

) E V(mE(l — g,)°
= () ~ M)EGV( = ¢) / D) + M, (Zf)q‘) x ) (D 9,
7

+ E(mE(g) (1 — (VE(l — ¢) (E(g) — 1) — E(mHV(1 = g))/D)

which simplifies immediately to I11.4.

145



146 CREDIBILITY FOR {BNR COUNTS

REFERENCES

F. DeVylder, "“Estimation of IBNR Claims by Credibility Theory,” Insurance:
Mathematics and Economics, Vol. 1, January 1982, North-Holland.

P. M. Kahn, (Editor), Credibility Theory and Applications, 1975, Academic
Press.

R. Norberg, “The Credibility Approach to Experience Rating,” Scandinavian
Actuarial Journal, 1979, pp. 131-142, Almgvist and Wiksell.

R. Norberg, “Empirical Bayes Credibility,” Scandanavian Actuarial Journal.
1980, pp. 177-194, Almqvist and Wiksell.

H. Buhlmann, “Experience Rating and Credibility,” Astin Bulletin, 4, 1967,
pp. 199-207, Tieto Ltd.

H. Buhlmann and E. Straub, “Credibility for Loss Ratios,” Actuarial Research
Clearing House, 1972.

R. L. Bornhuetter and R. E. Ferguson, “The Actuary and IBNR,” PCAS LIX,
1972, p. 181.

E. W. Weissner, “Estimation of the Distribution of Report Lags By the Method
of Maximum Likelihoad,” PCAS LXV, 1978, p. 1.



ACCIDENT
YEAR
(0
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BAYESIAN CREDIBILITY FORMULA
IBNR ESTIMATION

EXHIBIT 1

SHEET 1
BORNHUETTER-FERGUSON DATA

HYPOTHETICAL DATA

N(.J)

CoOUNTS REPORTED DURING

EXPOSURES

9 —

o SRS Be IS

ACCIDENT
YEAR
0))

100
100
100
100
100
100
100
100

1

50
25
75
15
50
25
75
15

150
150
150
150
150
150
150

450
450
450
450
450
450

M.

225
225
225
225
225

DEVELOPMENT PERIOD J

n

100
100
100
100

CounTs REPORTED To DATE
DEVELOPMENT PERIOD J

EXPOSURES

=N Be NV A N

100
100
100
100
100
100
100
100

50
25
75
15
50
25
75
15

200
175
225
165
200
175
225

650
625
675
615
650
625

875
850
900
840
875

W

975
950
1,000
940

50
50
50

6

1,025
1,000
1,050

~

[N
b

7

1,050
1,025

147

| oc

8

1,055



148

ACCIDENT
YEAR
13

XL N ety —

ACCIDENT
YEAR
(1

b —

~N N

1
0.500
0.250
0.750
0.150
0.500
0.250
0.750
0.150
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EXHIBIT 1
SHEET 2
BORNHUETTER-FERGUSON DATA

NU . J)/B()
DEVELOPMENT PERIOD J

2 3 4 5
1.500  4.500 2.250 1.000
1.500  4.500 2.250 1.000
1.500 4.500 2.250 1.000
1.500  4.500 2.250 1.000
1.500 4.500 2.250
1.500  4.500
1.500

AGE-TO-AGE FACTORS
DEVELOPMENT PERIOD J
2-3 3-4 4-5 56

|
|
|
|

3250 1.346 1.114 1.051
3571 1.360  1.118  1.053
3.000 1.333 1111 1.050
3.727  1.366 1.119

3.250 1.346

3.571

6

0.500
0.500
0.500

6-7
1.024
1.025

7

0.250
0.250

1.005

8

0.050



EXHIBIT |

SHEET 3
BORNHUETTER-FERGUSON DATA

IBNR ESTIMATES

STANDARD
BORNHUETTER- BAYESIAN DEv. oF
ACCIDENT REPORT REPORTED PEGGED LDF FERGUSON CREDIBILITY BAYESIAN
YEAR PERIOD TO DATE METHOD  METHOD METHOD METHOD Crep. IBNR
1 8 1,055 ~10 0 0 0 0
2 7 1,025 20 5 5 5 3
3 6 1,050 -5 31 30 31 8
4 5 940 105 77 80 78 13
5 4 875 170 181 179 181 22
6 3 625 420 393 404 398 38
7 2 225 820 1.009 855 897 67
8 l _15 1,030 _341 1,001 948 76
TOTAL 5,810 2,551 2,038 2,553 2,537

SINNOD ¥N™l dO4 ALI'Uglaaydd

(34!
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ACCIDENT
YEAR

(VI S

oL~ D

PEGGED
METHOD

045
045
045
045
045
045
045
D45

REPORT
PERIOD

W hD =

o0 -~ O\ W ok

EXHIBIT |
SHEET 4

L.DF

METHOD

1.055
1,030
1.081
1.017
1.056
1.018
1.234

356

CREDIBILITY FOR IBNR COUNTS

EsTIMATES OF UL TIMATE

BORNHUETTER-FERGUSON DATA

BORNHUETTER-
FERGUSON

CREDIBILITIES

PEGGED

0.43193
0.29120
0.08355
0.03106
0.01283
0.00468
0.00076
0.00000

LDF
0.09885
0.33820
0.69136
(1.78064
0.81165
0.82550
0.83218
0.83347

METHOD

RIAN
030
080
020
054
029
080
016

B-F
0.46923
0.37060
0.22509
0.18830
0.17552
0.16981
0.16706
0.16653

BAYESIAN
CREDIBILITY
METHOD

1.055
1,030
1.081
1.018
1,056
1,023
1,122

963
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EXHIBIT 1

SHEET 5§
BORNHUETTER-FERGUSON DATA

MAXIMUM LIKELIHOOD ESTIMATES

151

INITIAL
MLE ESTIMATED
ACCIDENT FREQUENCY EXPOSURES COUNT PARAMETER
YEAR W) B(I (B{I) x W)*
1 10.550 100 1,055
2 [0.299 100 1,030
3 10.810 100 1,081
4 10.173 100 1,017
5 10.560 100 1,056
6 10.175 100 1,017
7 12.274 100 1,227
ESTIMATED FREQUENCY MEAN 10.45106
ESTIMATED FREQUENCY VARIANCE 52307
PERCENT
PERCENT REPORTED PERCENT FACTORS
REPORT MLE REPORTED TO DATE UNREPORTED  AGE-TO-AGE TO
PERIOD PJ) E(P,) E(l - Q) E(Q) FACTORS ULTIMATE
1 0.042 4.2 4.2 95.8 4.332 23.759
2 0.140 14.0 18.2 81.8 3.366 5.484
3 0.431 431 61.4 38.6 1.350 1.629
4 0.215 21.5 82.8 17.2 1.115 1.207
5 0.096 9.6 92.4 7.6 1.051 1.082
6 (.047 4.7 97.1 2.9 1.025 1.030
7 0.024 2.4 99.5 0.5 1.005 1.005
8 0.005 0.5 100.0 0.0 1.000 1.000

TOTAL  1.000
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SHEET 6

BORNHUETTER-FERGUSON DATA

REPORT PATTERN PARAMETERS

EXPECTED  EXPRCTED EXPECTED Pct
PcT Pcr ExPECTED Per Pct Pct REPORTED Pci
BE1A BrTa BETA REPORTED ~ REPORTED Pct UNREP. UNREP UNREP TO DAtk USNREP
REPORT  ParaM Param MEaN DurinG TO DATE UNREP. SQUARED VAR. S1anDp Dy (&% v
PERIOD (A) (B) AT (A B PERIOD E(l = Qn E(Q) EQ5 Var(Q,) SD SI> = Mian SD = Mrax
1 45.95 1.045.83 0.042 4.2 4.2 EAR 91.% 0.004 0.607 14.32¢ 0634
2 153.11 938.67 0.140 14.0 18.2 %18 66.9 0.014 1.168 6.406 1.428
3 470.96 620.82 0.431 431 61.4 8.6 149 0.022 1473 2,400 3813
4 234 34 857 44 0.2158 MU 82K 17.2 30 0.013 1141 1.377 6.643
§ 104.36 987 43 0.096 9.6 92 4 7.6 0.6 0.006 0.802 (.868 10,542
6 51.71 1.040.07 0.047 4.7 9714 29 0l 0.003 (.505 (1520 17.595
7 26.17 1.065.61 0.024 24 4995 Q.5 (LG Q.00 0.208 a.209 43 Rd6
8 517 1.086.61 0.005 0.5 100.0 0.0 0.0 .000 0.000 .00 —
H = 1.091.8

3
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BaYESIAN CREDIBILITY FORMULA
IBNR ESTIMATION
HypOTHETICAL DATA

N(LJ)

EXHIBIT 2

SHEET 1
LDF DatA

CouNTs REPORTED DURING
DEVELOPMENT PERIOD J

1
50
25
75
15
50
25
75
15

It

217
109
325

65
217
109
325

>

730
366
1.094
219
730
366

M1.J)

986
494
1,477
206
986

1,100
551
1.647
330

CounTs REPORTED TO DATE
DEVELOPMENT PERIOD J

167
84
250
50
167
84
250

513
257
769
154
513
257

256
128
383

77
256

L

114
57
170
34

1.128
565
1.689

28
14
42

2

1.134
568

-

W Or

153

1.139
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ACCIDENI
YFEAR
)

1
2
3
4
5

6

-~

ACCIDENT
YEAR
th

P N

~1 O '»a

0.500
0.250
(.750
0.150
0.500
0.250
0.750
0150

340
L3600
1333
333
340
360
333
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EXHIBIT 2
SHEET 2
[.DF Dara

N, JB()
DEVELOPMENT PERIOD J

2 3 1 5
1.670  5.130 2.560 | 140
0840 2570 1280 0.570)
25000 7.690 31,430 1.700
0.500 1,540 0.770 0,340
1,670  5.130 2,560
0.840  2.570
2.500

AGE-TO-AGE FACTORS

DEVELOPMENT PERIOD J
2-3 LY 4 3
3364 1,351 L.116
3,358 1.350 I 11s
3.366 1 350 1115
3.369 1.352 1.115
3.364 1.351
3.358

6

(.280
0. 130
(1420

S 6
1.025
1.028
1.026

0.060
0.030

6-7

1.0058
1.005

.050

7-8

1.004



EXHIBIT 2

SHEET 3
LDF DaTA

IBNR ESTIMATES

STANDARD
BORNHUETTER- BAYESIAN DEv. oF
ACCIDENT REPORT REPORTED PEGGED LDF FERGUSON CREDIBILITY BAYESIAN
YEAR PERIOD TO DATE METHOD  METHOD METHOD METHOD Crep. IBNR
1 8 1,139 —187 0 0 0 0
2 7 568 384 3 4 3 3
3 6 1,689 —-737 16 9 16 6
4 5 330 622 12 33 12 18
5 4 986 —-34 153 128 153 66
6 3 366 586 205 34] 206 176
7 2 325 627 1,380 770 1.368 395
8 1 15 937 327 910 375 467

TOTAL 5,418 2,196 2,095 2,195 2,132

SINNOOD ANMl 404 ALIHGIQTdD
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ACCIDENT
YEAR

[V [ O

X~

CREDIBILITY FOR IBNR COUNTS

EXHIBIT 2

SHEET 4
LDF DaTta

ESTIMATES OF ULTIMATE

BORNHUF I'l ER-

B-F
0.08374
0.02063
0.00622
0.00461
0.00414
0.00404
0.00402

PEGGED L.DF FERGUSON

METHOD METHOD METHOD
952 1139 1.139
952 571 572
952 1,708 1.698
952 342 363
952 1.139 1.114
952 571 707
952 1.705 1,095
952 342 925

CREDIBILITIES
REPORT
PERIOD PEGGED LDF

l (.00004 0.91622

2 0.00001 0.97936

3 0.00000 ().99378

4 0.00000 0.99539

5 0.00000 0).99586

6 0.00000 0.99596

7 0.00000 (1.99598

8 0.00000 (3.99600

(.00400

BAYESIAN
CREDIBILITY
METHOD

1.139
571
1,705
342
1.139
572
1.693
390
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EXHIBIT 2

SHEET §
-t

DLREEs

LDF DATA

MAXIMUM LIKELIHOOD ESTIMATES

157

INITIAL
MLE ESTIMATED
ACCIDENT FREQUENCY EXPOSURES CouNT ParRAM
YEAR w{) B() B X W)*
1 11.390 100 1,139
2 5.705 100 571
3 17.055 100 1,705
4 3.417 100 342
5 11.390 100 1,139
6 5.711 100 571
7 17.059 100 1,706
ESTIMATED FREQUENCY MEAN 9.51743
ESTIMATED FREQUENCY VARIANCE 23.70887
PERCENT
PERCENT  REPORTED PERCENT FACTORS
REPORT MLE REPORTED TO DATE  UNREPORTED AGE-TO-AGE TO
Periop  P(J)) E(P)) E(l — @) E(Q)) FACTORS ULTIMATE
| 0.044 4.4 4.4 95.6 4.340 22.768
2 0.147 14.7 19.1 80.9 3.364 5.246
3 0.451 45.1 64.1 35.9 1.350 1.560
4 0.225 22.5 86.6 13.4 1.115 1.155
5 0.100 10.0 96.6 3.4 1.025 1.035
6 0.025 2.5 99.0 1.0 1.005 1.010
7 0.005 0.5 99.6 0.4 1.004 1.004
8 0.004 0.4 100.0 0.0 1.000 1.000

TOTAL 1.000



EXHIBIT 2

SHEET 6
LDF DATaA

REPORT PATTERN PARAMETERS

EXPECTED EXPECTED EXPECTED Pct
PcT Pct EXPECTED Pcr Pct Pc1 REPORTED Pct
BeTa Brta Be1a REPORTED REPORTED PcT UNREP. UNREP. UNREP. TO DATE UNREP.
REPORT PARAM Param MEan DURING TO DATE UNREP SQUARED VaR. Stanp DEV Ccv cv
Periop tA) (B) A+ (A+ B}y Perion E(l — Q) EWQ) E(Q,:) VaAR(Q,} SD SD + Mean  SD = MEgan
1 9771543 2.127.084 .44 0.044 4.4 4.4 95.6 91.4 0.000 0.014 0.313 1.4 x 1077
2 326.344.90 1.598.454.97 0.147 14.7 19.1 80.9 65.5 (3.000 0.026 0.138 62=10"
3 1.002.477.70 1.222.322 16 0.451 451 641 359 12.9 0.000 0.032 0.050 23« 107"
4 499.940.66 1,724,859.21 0.225 225 6.6 13.4 1.8 0.000 0.023 0.026 12x10°"
N 22210892 2.002,690.95 0100 0.0 96.6 R 0.1 0.000 0.012 0.013 S7 107
6 S4.730.59  2.170.069.28 0.025 25 99.0 1.0 0.0 0.000 0.007 0.007 30 = 107
7 1171415 221308572 0.008 0.5 99.6 0.4 0.0 0.000 0.004 0.004 19 - 10"
8 9.767.53  2.215.032.34 0.004 (4 100.0 0.0 0.0 0.000 0.000 0.000

H = 272247999

861
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EXHIBIT 3

SHEET |
MIXED DATA

BAYESIAN CREDIBILITY FORMULA
IBNR ESTIMATION
HYPOTHETICAL DATA

N(LJ)
CouNTS REPORTED DURING
DEVELOPMENT PERIOD J

ACCIDENT
YEAR
V2] EXPOSURES 1 2 3 4 5 6 7 8
1 100 50 159 482 241 107 39 16 5
2 100 25 117 354 177 79 32 14
3 100 75 200 610 304 135 46
4 100 15 100 302 151 67
5 100 50 159 482 241
6 100 25 117 354
7 100 75 200
8 100 15
Ml.J)
CounNTs REPORTED To DATE
DEVELOPMENT PERIOD J
ACCIDENT
YEAR
V3] EXPOSURES | 2 3 4 5 6 7 8
1 100 50 209 691 932 1,039 1.078 1,094 1,099
2 100 25 142 496 673 752 784 798
3 100 75 275 885 1,189 1,324 1,370
4 100 15 115 417 568 635
5 100 50 209 691 932
6 100 25 142 496
7 100 75 275
8 100 15

159



ACCIDENT

Vean
ICAR

)

Q0 ~1 N ke D

ACCIDENT
YEAR
H

~N N AW -

0.500
0.250
0.750
0.150
0.500
0.250
0.750
0.150

1-2

4.180
5.680
3.667
7.667
4.180
5.680
3.667

CREDIBILITY FOR IBNR COUNTS

]

1.590
1.170
2.000
1.000
1.590
1.170
2.000

DEVELOPMENT PERIOD J

EXHIBIT 3

SHEET 2

Mixep DATA

N.JVB()
DEVELOPMENT PERIOD J

V)

4.820
3.540
6.100
3.020
4.820
3.540

4

2410
1.770
3.040
1.510
2.410

5
1.070
0.790
1.350

0.670

AGE-TO-AGE FACTORS

6
0.390
0.320
0.460

7
0.160
0.140

8

0.050



EXHIBIT 3

SHEET 3
MixXeED DAaTA

IBNR ESTIMATES

STANDARD
BORNHUETTER- BAYESIAN DEV. OF
ACCIDENT  REPORT REPORTED PEGGED LDF FERGUSON CREDIBILITY BAYESIAN
YEAR PERIOD TO DATE METHOD  METHOD METHOD METHOD CreDp. IBNR
t 8 1,099 - 100 0 0 0 0
2 7 798 201 4 5 4 3
3 6 1,370 —-371 28 20 28 8
4 5 635 364 38 56 38 17
5 4 932 67 169 153 169 43
6 3 496 503 295 373 297 102
7 2 275 724 1,201 813 1,165 219
8 1 15 984 _ 334 956 522 258

TOTAL 5,620 2,375 2,069 2,376 2,224

SINMOD ¥NH] ¥40d4 ALITIEIgI™D
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ACCIDEN1
YEAR

e R B Y S S
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EXHIBIT 3

SHEET 4
MixED DATA

ESTIMATES OF ULTIMATE

BORNHUETTER- BAYESIAN
PEGGED LDF FERGUSON CREDIBILITY
METHOD METHOD METHOD METHOD
999 1,099 1,099 1,099
999 802 803 802
999 1,398 1,390 1,398
999 673 691 673
999 1,101 1.085 1,101
999 791 869 793
999 1.476 1.088 1,440
999 349 971 537

CREDIBILITIES

REPORT

PERIOD PEGGED L.DF B-F
1 0.07101 0.70066 (.22833
2 0.01814 0.91327 0.06859
3 0.00264 .97558 0.02178
4 0.0008 1 0.98294 0.01625
5 0.00026 0.98513 0.01460
6 0.00009 0.98582 0.01408
7 0.00002 0.9861 1 0.01386
8 0.00000 1.98620 0.01380



CREDIBILITY FOR IBNR COUNTS 163

EXHIBIT 3

SHEET 5
MIXED DaTa

MAXxIMUM LIKELIHOOD ESTIMATES

INITIAL
MLE ESTIMATED
ACCIDENT FREQUENCY EXPOSURES COUNT PARAM
YEAR W) B(I) B(I) X W()*
1 10.990 100 1,099
2 8.016 100 802
3 13.984 100 1,398
4 6.725 100 672
5 11.007 100 1,101
6 7.907 100 791
7 14.711 100 1,471
ESTIMATED FREQUENCY MEAN 9.99352
ESTIMATED FREQUENCY VARIANCE 7.14026
PERCENT
PERCENT REPORTED PERCENT FACTORS
REPORT MLE  REPORTED  TO DATE  UNREPORTED  AGE-TO-AGE TO
PERrIOD P) E(P,) E(l — @) E(Q)) FACTORS ULTIMATE
1 0.043 4.3 4.3 95.7 4.339 23.284
2 0.143 14.3 18.6 81.4 3.364 5.366
3 0.441 44.1 62.7 37.3 1.350 1.595
4 0.220 22.0 84.7 15.3 1118 1.181
5 0.098 9.8 94.4 5.6 1.038 1.059
6 0.035 35 98.0 2.0 1.016 1.021
7 0.016 1.6 99.5 0.5 1.005 1.005
8 0.005 0.5 100.0 0.0 1.000 1.000

TOTAL

1.000



EXHIBIT 3

SHEET 6
Mixep Data

REPORT PATTERN PARAMETERS

EXPECTED  EXPECTED EXPECTED Pct

PcT Pcr EXPECTED Pct Pcr Pct REPORTED Pct
BETA BeTA BETA REPORTED  REPORTED Pcr UNREP. UNREP. UNREP. TO DATE UNREP.

REPORT ParaM PARAM MEAN DurING 10 DATE UNREP. SQUARED VaRr. STAND DEV Ccv Ccv

PeRIOD (A) (B) A+ (A+B PErIOD E(l — Q) E(Q)) E(Q,z) VAR(Q)) SD SD - MEaN  SD =+ MEaN

1 141.48  3.152.57 0.043 4.3 4.3 95.7 91.6 0.001 0.353 8.224 0.369
2 472.38  2.821.66 0.143 14.3 18.6 81.4 66.2 0.005 0.678 3.640 0.834
3 1,451.43  1.842.62 0.441 44.1 62.7 373 13.9 0.007 0.842 1.344 2.259
4 723.27  2.570.77 0.220 2.0 84.7 15.3 24 0.004 0.628 0.742 4.092
N 321.73 297231 0.098 9.8 94 4 5.6 03 0.002 0.400 0.423 7.167
6 116.79 3.177.25 0.035 35 98.0 2.0 0.0 0.001 0.246 0.251 12.094
7 51.98 3.242.06 0.016 1.6 99.5 0.5 0.0 0.000 0117 0.118 25.772

8 1498  3.279.06 0.005 Q0.5 100.0 0.0 0.0 0.000 0.000 04.000 —

H = 32940

¥91
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DISCUSSION BY GARY G. VENTER

If an indicator of a significant paper is that it opens the door for further
research, Dr. Robbin’s paper should stand the historical test. This review will
emphasize generalizing the Poisson assumptions of the paper. Attention to
optimal parameter estimation and other model assumptions may also prove
fruitful, as may the quantification of uncertainty in the IBNR estimates.

The three way credibility weighting for IBNR is an interesting result of the
paper. Credibility weights are specified for three estimators of IBNR:
(i) the original (e.g., pricing) expected claims less the observed claims to
date;

(ii) the observed claims to date times a development factor; and,
(1ii) the original expected claims less the expected claims to date.

To see the origin of these credibility weights, a slightly more general framework
will be used here. A vector of parameters, u, is postulated to determine the
distribution of N, the ultimate number of claims; M, the observed claims to
date; and R, the IBNR claims. ‘

It is assumed that M and R are conditionally independent given u. Further,
n and g are functions of u, and s° is a positive constant with

ENluy =n
EMlwy = n(l - q)
ERJu) = ng
EViMlw) = §°

This last assumption generalizes the Poisson assumption of the paper. where
the expected conditional variance of M was EnE(1 — g).

It is also assumed that u is a vector of random variables such that n and ¢
are independent.

The fundamental credibility formula from Robbin, section 111, is then
invoked to estimate R:

R* = ER + (M — EM)YC(M,R)/VM.
From the assumptions, ER = EnEq and EM = EnE(1 — q) = En(1 — Eq) =
En — EnEq. Also VM = EV(MJu) + VEMu) = 5° + Vin(l — q)) = s +
E(n*(1 — q)z) — E(n(1 — q))z. Then by the reasoning of B.3.(ii) of the paper,
VM = ¢ + Em)V(l — ¢) + E(1 — g)’Vn.
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These three components of the variance of the observed claims, when divided
by that variance. will turn out to be the three credibility weights to be applied
to the three IBNR estimators (i). (i), and (iii). above. To see this, a general
formula on covanances is used to compute C(M R):

C(M, R) = EC(M,Rlu) + CUEM/u).F(Ru)).

Because of the conditional independence of M and R, the first term is zero,
and so

CM,R) = C(n(1 — g).nq)
E(n(l — gng) — E(n(1 — g)E(ng)

Then, by the reasoning of B.3.(1) of the paper,
C(M.R) = VnEgE(l — ¢q) — E(m)V(1 — g). Plugging all of this back into the
original credibility formula gives:

R* = EnEq + (M + EnEq — En)[VaEqE(l — q) — EmOV( — ¢))/IVM.

This is regrouped into Robbin’s three way credibility formula as follows:
first combine the EnEq terms; apply M — En to the second term in brackets to
yield (En — MER)V( — ¢)VM. When applied to the first term in brackets
the M and En are separated, giving a) En combined with E¢ and adding to the
EnEg component; and b) (M|Eq/E(1 — ¢)]VaE(l — ¢)*/VM. The underlined
terms are the IBNR estimators (i) and (ii) times credibility weights, where the
weights are the second and third components of the variance VM above, divided
by VM.

This interprets Eg/E(1 — ¢) as a development factor, and in fact by the
hypotheses above, ER/EM = Eq/E(1 — ¢) and EN/EM = 1/E(1 — g). This
corresponds to the method of estimating LDF’s from several accident years’
data by EN/2M,, as recommended by Stanard (PCAS 1985). With this definition
of the LDF, the mathematically imprecise estimate of the development factor
used by Dr. Robbin becomes unnecessary.

Finally the remaining terms of R* can be algebraically combined to yield
the credibility weight of s/VM applied to EnEq. Writing EnEq as En —
EnE(1 — g) shows this term to be the original expected claims less the expected
claims to date.

The assumption that M and R are conditionally independent may be some-
what limiting. The possibility that some claims come in earlier than usual, so
fewer come in later (or vice versa), suggest that R and M are not unconditionally
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independent. Assuming they are conditionally independent then attributes their
correlation to non-independent parameters. But this suggests that the parameters
are different from year to year. If the claims reported before and after a given
point are each modelled as conditionally independent draws from a fixed,
possibly unknown, report lag distribution, a negative correlation between re-
ported and unreported claims would not be anticipated.

Dr. Robbin is to be congratulated for this thought provoking and potentially
useful paper. He has proven his main point: a Bayesian credibility formula for
IBNR does count.
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THE COST OF MIXING REINSURANCE

RONALD F. WISER

Abstract

Excess and surplus lines underwriters, and others, rely heavily on
Sfacultative reinsurance support as an important part of their underwrit-
ing function. Individual risks are often subject to multiple reinsurance
transactions as a result of the underwriting process. The net retained
by the underwriters for the company’'s account is then subject to the
overall company reinsurance treatv. As a result, the final company net
position has been lavered in a complicated fashion. It is management's
task 1o provide guidelines for the proper use of fucultative proportional
and excess reinsurance that achieves corporate risk and profitability
objectives under such conditions.

This paper investigates the impact on profiability of a common
reinsurance mixing situation. The impact on the stability function of
excess reinsurance is quantified. General rules to guide practical use
and evalwation of mixed situations are developed.

These results are equally applicable to property as well as casualty
risks. The implications are valid for facultative reinsurance underwrit-
ers, and others that make heavy use of facultative proportional reinsur-
ance arrangements.

INTRODUCTION

Many underwriters rely heavily on facultative reinsurance support as an
important part of their underwriting function. This is especially the case in the
excess and surplus lines and commercial property lines. Individual risks are
often subject to multiple reinsurance transactions as a result of the initial un-
derwriting process. The net exposure retained by the underwriters for the com-
pany’s account is then subject to the overall company reinsurance treaty. As a
result, the final company net retention has been layered in a complicated fashion.
This complicated net position can lead to unexpected net loss ratio and combined
ratio results.



MIXING REINSURANCE 169

The purpose of this paper is to investigate the consequences of one such
reinsurance situation—the application of an excess of loss reinsurance treaty
after the p.acemem of proport tional reinsurance on the same risk—and {o inves-
tigate ways of managing this situation. We will take the viewpoint of the ceding
company, although the subject is also of interest to the excess reinsurer. We
will assume that. in general, the mixed reinsurance situation comes about
through the application of proportional facultative reinsurance on individual
risks, and the retained amounts are then subject to a corporate excess of loss
treaty. In the case of a portfolio of risks, we assume the aggregate effect of
individual facultative cessions can be adequately modeled by an average pro-
portional retention applying to the entire portfolio.

The consequences of this mixed reinsurance situation are twofold:

Magnitude of net loss ratio: The application of proportional reinsurance
below an excess of loss layer reduces the excess reinsurer’s loss ratio and raises
the ceding company’s loss ratio. The expected loss ratio on the pro rata rein-
surance 1s unchanged; it will always be the same as the gross loss ratio.

Stability of net loss ratio: While the purpose of excess of loss reinsurance
is to provide stability to the net retained loss ratio, the application of proportional
reinsurance under the excess of loss cover actually decreases the stability of the
net loss ratio.

A heuristic argument can show that each of these effects is intuitively
plausible. Actual examples will show the mechanics of both the magnitude and
the stability effects. Beyond the examples, it is demonstrated that these are not
isolated instances, but the effects can be mathematically shown to hold always.
We will use the term “mixing reinsurance™ or “mixing” to denote this scenario
of applying an excess of loss reinsurance treaty after a proportional transaction.

Reasons for Mixing

As we investigate the implications of mixing proportional and excess rein-
surance, we need to keep in mind the purpose for the particular mixing situa-
tions. Since all instances of mixing will penalize the net loss ratio to different
extents, management must carefully evaluate whether the cost of mixing is
justified by the advantage gained. Generally, senior management is heavily
involved in negotiating and placing the major treaties of the company. Histori-
cally, lower levels of management have directed the use of facultative reinsur-
ance. Often, the individual desk underwriter places quota share facultative
reinsurance on a risk as he writes it.
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The premise of this paper is that the rotal corporate reinsurance program
(not just the major corporate treaties) must be actively managed to assure that
corporate objectives are met. The interaction between proportional and excess
reinsurance in the mixed case can be very significant. Management must institute
guidelines and controls for use of proportional reinsurance which assure the
objectives intended by placement of the corporate excess treaties are met. These
objectives will generally be stated in the form of expected net loss ratio, or cost
of reinsurance, and protection from large swings in net loss ratio (stability).

Some common reasons for the occurrence of mixed reinsurance situations
are:

a) capacity:

b) net premium targets;
¢) protecting the treaty:
d) sharing of layers: and,
€) commission overrides.

Capacirv: An individual risk is too large to be retained net by the insurer.
A proportion of the risk may be ceded on a quota share or surplus share basis
to reduce its size. This is common on property risks. A mixed situation exists
if the corporate property treaty is on an excess of loss basis.

Net Premium Targets: A corporate plan may call for a certain net premium
increase that must be strictly adhered to (for instance, because of statutory
income or surplus restrictions). If more gross premium is written than planned,
the net target may be achieved by increased use of facultative proportional
reinsurance. This strategy should be evaluated in light of the penalty imposed
on the net loss ratio position.

Protecting the Treatv: If the rate on the excess treaty is clearly insufficient
to absorb the exposure from a risk the insurer wishes to write, the excess loss
potential can be scaled down by a facultative quota share placement to fit the
treaty pricing. This comes about because proportional reinsurance changes the
frequency and severity characteristics of the excess loss exposure. This is one
case where mixing reinsurance may be the prescribed coursc of action to achieve
the corporate objective of excess treaty perpetuation at a reasonable price.

Sharing of Lavers: For any of the reasons above. the underwriter may
substitute the direct writing of a proportional share of a risk in place of accep-
tance of the entire risk followed by a facultative quota share reinsurance trans-
action. This is, in fact, a disguised mixed reinsurance situation and is fully
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equivalent in its effect on net loss ratio and stability. The popularity of sharing
layers increases as the facultative reinsurance market tightens. The normal
operating procedure of the facultative reinsurance underwriter or the brokered
treaty underwriter is to accept proportional shares of an excess layer. This is
also a mixed reinsurance situation if an excess of loss treaty protects the
reinsurer’s net position.

Commission Overrides: In most cases, the proportional facultative reinsurer
pays a ceding commission to the ceding company. This ceding commission is
meant to cover direct commission costs, plus an additional “override” commis-
sion to cover the cedent’s non-commission costs. The override has the effect of
reducing the net expense ratio, and can even cause a negative net commission
expense in some cases. A company, or an individual underwriter, may cede
large amounts of facultative proportional reinsurance to obtain this override
relief to the commission expense ratio.

A Simple Example: The magnitude effect can be demonstrated by inspecting
a very simple situation. Suppose a ceding company has a size of loss distribution
that allows only claim sizes of either $10,000 or $90,000, with equal probability.
With an expected claim frequency of 48 claims per year, and an average claim
size of $50,000, we have annual expected losses of $2,400,000 annually. If the
company carries an excess of loss treaty with a $40,000 retention, the treaty
reinsurer will have expected losses of $1,200,000 per year (24 claims at $50,000
each). Assuming an 80% expected loss ratio for both companies, the excess of
loss reinsurer will expect a treaty rate of 50% of subject premium.

Now assume the underwriters writing this portfolio for the company place
50% quota share facultative reinsurance on every policy as they write it. The
ceding company will retain 25% of gross premium, or $750,000, after paying
for treaty and facultative reinsurance. The facultative reinsurer will pay half of
every loss while the excess reinsurance only responds when the ceding com-
pany’s 50% share of each loss penetrates the $40,000 retention. Since there are
only 24 of these large losses expected, and after the proportional reinsurance
they are $45,000 each, the excess reinsurer will have an expected incurred loss
of $120,000. This will give it an expected loss ratio of 16% on the $750,000
of treaty premium. The ceding company will retain $1,080,000 of expected
losses, for a loss ratio of 144% on its net retained premium of $750,000.

In this simplified example the two reinsurance negotiations have a combined
unfavorable effect on the company. The treaty rate was correct for placement
of 100% of each risk into the treaty. Because the underwriters did not tailor the
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facultative cessions to coordinate with the treaty rating. the company has suf-
fered a penalty of 64 loss ratio points. Even though the direct business was
correctly priced and evaluated, the net result 1s a totally unacceptable combined
ratio. While the example is constructed to illustrate a point, actual variations
on this situation can easily occur. In fact, every instance of an excess of loss
reinsurance contract placed over proportional reinsurance works to the disad-
vantage of the net position, and thus the ceding company.

THE ROLE OF THE SIZE OF 1.OSS DISTRIBUTION

An inspection of a typical size of loss distribution indicates the underlying
cause of mixing effects. Consider a size of loss frequency distribution of the
amount of a single claim, as shown in Figure 1. The amount of loss can be
read from the horizontal scale, and the relative frequency of such a loss amount
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from the vertical scale. Figure 1 can also be used to determine the percent of
total claim counts due to claims in a given range of amounts. For instance, we
can see that loss over $150,000 will represent 20% of the claims arising from
this particular loss distribution. This is because the area under the size of loss
curve above $150,000 represents 20% of the total area under the curve.

The application of a 50% quota share reinsurance to this size of loss distri-
bution essentially “shrinks” the curve horizontally, while maintaining its relative
“shape,” as shown in Figure 2.

Now consider the area of the “tail” of this new distribution over $150,000.
This area represented 20% of the total number of claims of the original loss
distribution of Figure 1. The tail area of the “shrunken” distribution (Figure 2)
over $150,000, however, accounts for only 3.4% of total claims counts—much
less than half of the original gross loss size distribution.

FIGURE 2
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Thus, after the proportional “shrinking.” the excess reinsurer will receive
50% of the premium that would have been received before proportional rein-
surance was placed, but will experience much less penetration of its coverage
layer than would have been expected in a situation without proportional rein-
surance. In fact, the frequency of loss for the excess reinsurer after the 50%
proportional reinsurance will be 17% (3.4% / 20%) of its original excess fre-
quency. As a result, the excess reinsurer’s expected net loss ratio after propor-

Of course, this is simply a consequence of the nonlinear nature of the size
of loss distribution. It is another way of stating that for large loss activity. a
loss double a given size is experienced much less than half of the time.

Note also that the area under the curve of Figure 2 beyond $150.000 is the
same as the area under the curve of Figure 1 beyond $300.000 ($150.000 /
50%). Thus the excess rate over $150.000. after a 50% quota share placement,
should be the same as the excess rate for a $300.000 retention with no quota
share, ignoring risk charge and expense components, and the effect of the upper
limit on the excess layer.

In understanding the impact of proportional reinsurance on the net position
and the excess reinsurer, the fundamental relationship is the simple idea illus-
trated above. An excess retention of M after a proportional reinsurance retention
of 100a%. is equivalent to an excess retention of M/a without proportional
reinsurance. This result is shown as the Mixing Price Rule below.

This relationship is key in understanding how mixed reinsurance destabilizes
net results. It seems intuitive, and can be shown mathematically (see the Ap-
pendix), that net aggregate loss results will show more stability (i.e.. a lower
coefficient of variation) under a $150.000 retention than under a $300.000
retention. In general, if an entire portfolio is proportionally reinsured to retain
100a% of the total risk. with an excess of loss treaty with retention M, the
stability of the portfolio’s results will be identical to that of the same portfolio
without proportional reinsurance and an excess loss limit of M/a. This result is
shown as the Mixing Stability Rule below.

It is worth noting that the application of proportional reinsurance «after the
application of an excess of loss treaty does not change the magnitude of stability
of the net loss ratio position. Hence. the order of application of reinsurance is
extremely important.
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Some simple examples will be instructive, and show situations where a
disadvantageous net position can result in the ordinary course of business
through mixing of reinsurance. This will be especially apparent if we consider
the process of underwriting a single risk.

LOSS RATIO MAGNITUDE EFFECTS

A Casualty Example: Suppose an insurer is operating under an excess of
loss treaty with $2,000,000 limits, excess of a retention of $250,000. The
premium for this cover will be 30% of the subject premium that remains
available for net and treaty, i.e., remaining after facultative placements.

The primary company underwriter writes an excess liability policy with
limits of $1,000,000, excess of a self-insured retention of $100,000. He prices
this at $400,000, expecting a loss ratio of 60%. He pays a commission of 15%,
and his internal expenses will account for another 10% of the gross premium.
This leaves him with 15% ($60,000) for profit and contingency load on this
risk. This allows a 25% load on expected losses as a fluctuation margin. That
is, the underwriter could suffer losses of up to $300,000, or 125% of expected
losses, before he has to dip into his surplus funds.

Next, he wishes to reduce his net and treaty exposure to this risk, so he
arranges a facultative quota share placement of 50% of the risk. Thus, he is left
with a $500,000 exposure, net and treaty, and a subject premium for purposes
of the excess treaty of $200,000.

Generally, the cedent will receive a ceding commission that will cover his
direct ceding commission costs (15% in this example), plus an “override” that
is meant to cover the cedent’s non-commission, or fixed, expenses. The override
for this example will be 10%, which is identical to the ceding reinsurer’s other
expense ratio.

One can analyze the underwriter’s net position before his facultative quota
share placement. Assume that a lognormal distribution is an adequate model
(Benckert [1]) for size of loss on this risk, with a mean claim size of $30,000
and a coefficient of variation (CV) of 5.0. The following analysis of direct,
reinsurance, and net results is summarized in Exhibit 1, the Mixing Cost
Worksheet for this risk. Calculations on this exhibit are discussed below.

The size of loss assumption implies an average first-dollar claim severity of
$270,190 in the layer of interest, hence, an excess policy claim severity of
$170,190. Recall that this is the expected severity for all claims greater than
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EXHIBIT |

MIXING COST WORKSHEE'T

Policy: a casualty example without mixing

Input parameters:

Direct premium $400,000

Policy limits $1,000,000

Underlying retention $100,000

Expected loss ratio 60.0%

Commission ratio 15.0%

Other expense ratio 10.0%

Reinsurance:

Percent proportional 0.0%

Ceding commission 25.0%

Excess retention $250.000

Excess limits $2.000,000

Excess rate 30.0%

Ceding commission 0.0%

Loss distribution: mean $30.000

Lognormal cv

Net results: . .
Gross  Proportional Excess Net

Loss ratio 60.0% NA 71.0% 55.3%
Expense ratio 25.0 NA 5.0 35.7
Combined ratio 83.0% NA 76.0% 91.0%
Net underwriting profit $25.144
Cost of Reinsurance:
with mixing $0 $0 $34.856 $34.856
Pure excess 0. _0 34,856 34,856
Additional cost of reinsurance $0 $0 $0 30
Cost of Mixing Calculation:
Actual cost of excess reinsurance $34.856
Cost based on subject premium 34.856
Cost of mixing $0
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$100,000, but with a maximum ceding carrier liability of $1,000,000 on those
claims that are greater than $1,100,000 first-dollar. Expected losses of $240,000,
(60% x $400,000) imply an expected claim frequency of 1.41 claims per annum
on this risk for the cxcess carrier ($240,000/$170,190). This analysis is dis-
played on Exhibit 1.].

Now the excess of loss reinsurer would assume all loss amounts over
$350.,000 first-dollar, up to a maximum policy limit loss of $1,100,000 first-
dollar. Thus the excess of loss reinsurer will be providing the coverage for the
layer from $350,000 first-dollar to $1,100,000 first-dollar for its $120,000
premium. Since 582 losses out of 10,000 exceed $100,000 first-dollar, and 118
losses out of 10,000 exceed $350,000 first-dollar, the excess of loss reinsurer’s
frequency will be 20% (118/582) of the direct reinsurer’s frequency. Then, the
reinsurer should expect 0.286 claims (1.41 X 20.3%) at an average severity of
about $298,000 in the layer from $350,000 to $1,100,000 first-dollar. This
implies a pure premium (expected losses) of about $85,000 (0.286 claims at
$298,113 each), and an expected loss ratio of 71% for the excess of loss
reinsurer. This analysis of the excess carrier’s frequency and severity is displayed
on Exhibit 1.3.

The primary company underwriter retains an expected loss cost of $155,000
and a net premium of $280,000, for an expected loss ratio of 55%. This would
leave $25,000 for profit and contingency load on the net position, giving a 16%
loading of expected losses for a fluctuation margin.

Thus, the primary company has paid 30% of its direct premium to the excess
reinsurer. In return, its maximum exposure to loss from any one claim has been
reduced from $1,000,000 to $250,000. The margin in the premium that is
available to absorb fluctuations in results, however, has also decreased from
25% to 16%. In light of this reduction in the fluctuation loading, it is not
immediately obvious whether the insurer is in a better position in terms of
protection from random variation of results after this excess reinsurance trans-
action. As will be demonstrated below, however, excess of loss reinsurance
decreases the probability of large aggregate losses to such a significant extent
that this 16% risk margin actually reflects more safety than the gross position
with its 25% margin.

On Exhibit 1 we have also calculated the cost of reinsurance. Of course,
this is the expected cost of the reinsurance transaction. The actual cost in
retrospect will vary considerably from year to year. The cost of reinsurance is
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Policy Parameters:

Premium
Commission
Other expenses
Expected losses
Profivrisk charge

. Retention

. First-$ equivalent*

. Nominal layer width
. First-$ equivalent*

. Effective layer width
. First-$ equivalent*

. Claim severity

. Claim frequency

. Commission ratio

. Other expense ratio
. Premium rate

. Fluctuation loading
. Expected loss ratio
. Combined ratio

. Cost of reinsurance

MIXING REINSURANCE

EXHIBIT 1.1

MIXING COST WORKSHEET

Casualty Example

Allocation of Layer Costs &
Determination of Net Position

(a) (b) (c)
Gross Proportional Excess
$400,000 $0 $120,000
60,000 0 0
40,000 0 6.000
240,000 0 85.144
60,000 0 28.856
$100,000 NA $250.,000
100,000 NA 350.000
1,000,000 0 2.000,000
1,100,000 NA 1,100,000
1,000,000 0 750,000
1,100,000 NA 1,100,000
$170.192 $0 $298.113
1.410 1.410 0.286
15.0% 25.0% 0.0%
10.0% 3.0% 5.0%
100.0% 0.0% 30.0%
25.0% NA 33.9%
60.0% NA 71.0%
85.0% NA 76.0%
$0 $0 $34.856

* First-dotlar equivalent is the amount of first dollar loss needed 1o hit this limit.

(d)
Net

$280,000
60.000
40,000
154,856

$100.000
100,000
250,000
350.000
250,000
350,000

$109.814

1.410
21.4%
14.3%
70.0%

16.2%
55.3%
91.0%

$34,856



Primary retention
Reinsured’s retention
Primary policy limit
Effective excess limit

MIXING REINSURANCE

EXHIBIT 1.2

LOSS DISTRIBUTION TABLE
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Loss Number Amount
Amount Distribution Distribution
X J#(x) f300)
$100,000 0.9417370 0.4009118
350,000 0.9881997 0.6767204
1,100,000 0.9981221 0.8627949
1,100,000 0.9981221 0.8627949
Distribution type: lognormal
Distribution parameters:
mean= $30,000 p = 8.6799043
Cv= 5 o = 1.8050198
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EXHIBIT 1.3

DERIVATION OF 1.OSS CHARACTERISTICS

FOR E

Primary trequency

First dollar equivalents:

Primary retention

Primary policy limit

Reinsured’s retention

Effective reinsurer limit

Ratio of excess carrier’s frequency
to primary frequency {1.0 — (4b)}/
{1.0 — (2b)}

Excess layer frequency

Expected claims per policy term
(6) X (1)

Severity calculations:

Mean loss (SOL)

Layer loss cost {(5¢) — (4¢)} X (8)

0. Limit loss cost (5a) X {1 — (5b)}
1. Number of layer losses (5b) — (4b)
. Number of limit losses 1.0 — (5b)
. Average severity of reinsured losses

{9) + (10)} 7 {1y + (123}
Less: effective retention

Excess layer severity (13) — (14)
Percent pro rata reinsurance
Excess reinsurer’s severity

(15) x {1 = (16)}

XCESS TREATY

(a)

1410

$100,000
$1.100,000
$350.000
$1.100.000

20.3%

0.286

$30.000

$5.582

$2.066
0.992%
0. 188%

$648.113

$350.000

$298.113
0.0%

$298.113

Amounts

(b)
JH#(0)

(¢}
S3(x0)

0.94173699
0.99812207
0.98819966
0.99812207

0.4069118
0.8627949
0.6767204
0.8627949
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simply defined as the reinsurance premium paid, less the sum of ceding com-
missions received and expected reinsurance recoveries. Note that since reinsur-
ance is a service that provides value to the cedent, we should expect a positive
cost of reinsurance to be the hallmark of any long term reinsurance relationship.
This definition of cost of reinsurance ignores investment income lost by the
ceding carrier. This component may be required, however, to get realistic cost
estimates.

The cost of excess reinsurance in this case is $34,856, which can be
expressed as a cost of $87.14 per $1,000 of premium subject to the excess
treaty.

The Effect of a Proportional Cession: Now consider the net position of the
ceding underwriter after a 50% proportional reinsurance transaction on this
policy. As shown in Exhibits 2-2.3, $200,000 net and treaty premium remains,
of which $60,000 must go to the excess of loss reinsurer. Since all losses are
50% shared before application of this excess of loss treaty, a first-doliar loss of
at least $600,000 is needed before the excess of loss reinsurance responds.
Since such a loss occurs for only 52 claims out of every 10,000, the excess of
loss reinsurer’s frequency has been cut to 9% of the reinsured’s frequency by
use of the proportional reinsurance (Exhibit 2.3).

The average severity of losses greater than $600,000 limited at $1,100,000
is $900,586. These losses are 50% quota shared above $100,000, so the pro
rata reinsurer and the reinsured evenly split the layer $500,000 excess of
$100,000. The pro rata reinsurer and the excess reinsurer split the next $500,000
loss layer evenly. This leaves the excess of loss reinsurer with an average claim
severity of $150,293 in its layer. With a claim frequency of 0.126 claims in the
excess reinsurance layer, the excess reinsurer has an expected loss cost of only
about $19,000. The reinsurer, however, has received $60,000 of premium for
the excess reinsurance, so it has now improved its expected loss ratio position
to 31.4%.

Who pays for this improvement of the excess reinsurer’s loss ratio? Consider
the proportional reinsurer’s position. For 50% of the premium, the proportional
reinsurer shares in all the gross losses equally. Thus, the expected losses of the
proportional reinsurer are $120,000. This indicates an expected loss ratio of
60% for the pro rata reinsurer, the same as the gross loss ratio. In fact, the
expected loss ratio of the quota share reinsurer will always be identical to that
of the gross position.
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EXHIBIT 2

MIXING COST WORKSHEET

Policy: a casualty example with mixing

Input parameters:

Direct premium
Policy limits

Underlying retention

Expected loss ratio
Commission ratio
Other expense ratio

Reinsurance:
Percent proportional
Ceding commission

Excess retention
Excess limits
Excess rate

Ceding commission

Loss distribution:
Lognormal

Net results:

Loss ratio

Expense ratio
Combined ratio

Net underwriting profit
Cost of Reinsurance:
with mixing

Pure excess
Additional cost of reinsurance
Cost of Mixing Calculation:

Actual cost of excess reinsurance

Cost based on subject premium
Cost of mixing

$400.000
$1.000.,000
$100.,000
60.0%
15.0%
10.0%
50.0%
25.0%
$250.000
$2.000,000
30.0%
0.0%
mean $30.000
CvV 5
Gross  Proportional Excess Net
60.0% 60.0% 31.5% 72.2%
25.0 28.0 5.0 35.7
85.0% 88.0% 36.5% 107.9%
($11,081)
$0 $30.000 $41.,081 $71,081
0 0 34,856 34,856
$0 $30,000 $6,225 $36,225
$41,081
17,428
$23,653
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EXHIBIT 2.1
MIXING COST WORKSHEET
Casualty Example
Allocation of Layer Costs &

Determination of Net Position
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. Premium

. Commission

. Other expenses
Expected losses
. Profit/risk charge

. Retention

. First-$ equivalent*

. Nominal layer width
. First-$ equivalent*

. Effective layer width
First-$ equivalent*

Claim severity

. Claim frequency

. Commission ratio

. Other expense ratio
. Premium rate

. Fluctuation loading
. Expected loss ratio
. Combined ratio

. Cost of reinsurance

(a) (b) (c)
Gross Proportional Excess
$400.000 $200,000 $60,000
60,000 50,000 0
40,000 6,000 3,000
240,000 120,000 18,919
60.000 24.000 38,081
$100.000 NA $250,000
100.000 NA 600,000
1,000,000 500,000 2,000,000
1.100,000 NA 1,100,000
1,000,000 500.000 1,000,000
1.100.000 NA 1,100,000
$170,192 $85,096 $150,293
1.410 1.410 0.126
15.0% 25.0% 0.0%
10.0% 3.0% 5.0%
100.0% 50.0% 30.0%
25.0% 20.0% 201.3%
60.0% 60.0% 31.5%
85.0% 88.0% 36.5%
$0 $30.000 $41.081

* First-dollar equivalent is the amount of first dollar loss needed 1o hit this limit,
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(d)
Net

$140,000
10,000
40,000
101,081
(11,081)

$100,000
100,000
250,000
350,000
250,000
350,000

$71,680

1.410
T.1%
28.6%
35.0%

—11.0%
72.2%
107.9%

$71.081
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Primary retention
Reinsured’s retention
Primary policy limit
Effective excess limit

MIXING REINSURANCE

EXHIBIT 2.2

LOSS DISTRIBUTION TABLE

Loss Number
Amount Distribution
X f#(x)
$100.000 0.9417370
600,000 0.9947991
1.100.000 0.9981221
1.100.000 0.9981221
Distribution type: lognormal
Distribution parameters:
mean= $30.000 =
Ccv= S o=

Amount
Distribution

f$(x)

0.4069118
0.7755223
0.8627949
0.8627949

8.6799043
1.8050198
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EXHIBIT 2.3

DERIVATION OF [LOSS CHARACTERISTICS
FOR EXCESS TREATY

. Primary frequency

First dollar equivalents:

. Primary retention

. Primary policy limit

. Reinsured’s retention

. Effective reinsurer limit

Ratio of excess carrier’s frequency
to primary frequency (1.0 — (4b)}/
{1.0 — (2b)}

Excess layer frequency

Expected claims per policy term
6) X (I}

Severity calculations:

. Mean loss (SOL)

. Layer loss cost {(5¢) — (4¢)} X (8)
10.
11.
12.
13.

Limit loss cost (5a) X {1 — (5b)}
Number of layer losses (5b) — (4b)
Number of limit losses 1.0 — (5b)
Average severity of reinsured losses
{9 + Ay} /{an + 12y

Less: effective retention

Excess layer severity (13) — (14)
Percent pro rata reinsurance

Excess reinsurer’s severity

(15) x {1 — (16)}

(a)
Amounts

(b)
SH#(x)

185

(©)
f$0x)

1.410

$100,000
$1,100,000
$600,000
$1,100,000

8.9%

0.126

$30.000

$2,618

$2,066
0.332%
0.188%

$900,586

$600,000

$300,586
50.0%

$150,293

0.94173699
0.99812207
0.99479%06
0.99812207

0.4069118
0.8627949
0.7755222
0.8627949
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Consider the net loss ratio, which was 60% gross and 55% net before any
facultative placement. Of the total expected loss costs of $240,000, the propor-
tional reinsurer takes $120,000 and the excess reinsurer assumes $19,000. This
leaves $101,000 of expected losses for the reinsured’s net position. Since
$140.000 of premium remains net, the expected net loss ratio is now 72%. This
is substantially worse (17 loss ratio points) than the net loss ratio without any
facultative proportional reinsurance. In addition, there is now no premium
margin available for profit and contingency loading. since we arc now at a
combined ratio of 108%. Thus we see that use of proportional reinsurance below
an excess of loss treaty simply moves loss dollars out of the excess reinsurer’s
account into the ceding insurer’s account, without affecting the proportional
reinsurer.

The Cost of Mixing: Notice that on Exhibit 2 we have calculated the Cost
of Mixing. Recall that in the absence of any proportional reinsurance we
calculated a cost of reinsurance of $87.14 per $1,000 of subject premium for
the excess treaty. If we regard this cost as the reinsurer’s price for providing an
excess cover for this policy, we will hold this cost constant for any fraction of
the policy that is retained after proportional reinsurance. This rate on the
$200.000 of subject premium implies a reinsurance cost of $17,428 should be
expected. In this mixed case, however. the actual cost for the excess reinsurance
is $41,081. We define the Cost of Mixing to be the difference of $23,653. Note
that this Cost of Mixing is greater than the underwriting loss on the policy of
$11,081. This implies that without the Cost of Mixing. this net position would
have been profitable for the ceding company. The total cost of reinsurance in
the mixed situation can also be decomposed as follows:

Cost of proportional reinsurance  $30,000

Cost of excess reinsurance 17.428
Cost of mixing 23,653
Cost of total reinsurance $71.081

This example demonstrates a general principle that is independent of the
choice of the size of loss distribution or policy parameters. A corollary of the
Mixing Price Rule is that the net position after mixed reinsurance will always
be worse than under a pure excess reinsurance. This rule states that the excess
loss rate for an excess retention of M after a proportional retention of 100a%
must equal the loss rate for a pure excess retention of Mia.
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The progressive deterioration of the loss ratio and combined ratio as the
percent of proportional reinsurance increases can be seen in the table below.
This table is for the casualty risk analyzed above, which has a gross expected
loss ratio of 60%, with a gross combined ratio of 85%.

Percent Net Loss Expense Combined

Ceded Ratio Ratio Ratio
0% 55.3% 35.7% 91.0%
10 58.0 35.7 93.7
20 61.0 35.7 96.7
30 64.3 35.7 100.0
40 68.0 35.7 103.7
50 72.2 35.7 107.9
60 77.0 35.7 112.7
70 82.6 35.7 118.3
75 85.7 35.7 121.4
80 85.7 35.7 121.4
90 85.7 35.7 121.4

As the percent proportional ceded increases, losses are reduced for the excess
reinsurer. These costs are shifted to the ceding company, and result in the
increasing net loss ratio. Note that in the pure excess case, the loss ratio is
reduced from 60% gross, to 55.3% net. The excess reinsurer, however, pays
no ceding commission. This increases the expense ratio, and hence the net
combined ratio.

When 75% of the risk is proportionally reinsured, no losses can penetrate
the excess retention. This is simply because policy limits are $1,000,000, and
the 25% of each loss retained net and treaty can never be greater then the
$250,000 excess treaty retention. At this point, ceding larger shares of a risk
no longer affects the net loss ratio.

THE MIXING PRICE RULE

The mean value of a random variable representing the size of claim after
application of proportional reinsurance and excess of loss reinsurance can be
expressed analytically. This allows the calculation of the loss cost portion of
the excess reinsurance rate. The risk charge and expense load components of
the reinsurance rate are ignored for the purposes of this demonstration.
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Let fix) be the probability density function of X, the random variable rep-
resenting the amount of one claim. We will assume fix) is appropriately truncated
to reflect the policy limit issued by the ceding carrier. Let ¢ be the fraction of
each loss retained by the ceding insurer after proportional reinsurance, and M
the retention under the excess reinsurance program. (This notation is identical
to that used in Centeno [2].)

Then, if X is the gross claim size. the amount of claim after both reinsurances
apply is given by
X(a,M) = Min (aX.M).

First, we establish the expected value of X under each single reinsurance
type alone.

If only excess reinsurance applies.
E(min(X.M)) = [i xflx)dx + M [i; fix)dx.
If only proportional reinsurance applies,
E(aX) = a [¢ xfix)dx.

It will also be useful to have an explicit formulation of the probability
density of claim size subject to a proportional reinsurance. Let g, be the density
of x subject to proportional reinsurance that retains 100a% of each claim.

Then g.(x) = l/a fix/a) will yield the expected value above. (Note: This is
a probability density function since

I ga®dx = (l/a) | fixia)dx.

Let v = ax; then dv = adx. Now we can substitute to obtain:

f gu(x)ydx = (Va) § fyyady
= [Aydy = 1)

Then applying excess of loss reinsurance to a claim after proportional
reinsurance yields an expected value of

E(min(@aX,M)) = [ xg.(x)dx + M 3 g(x)dx.

Again set ay = x, so that dx = adv and v = M if and only if y = M/a.
Rewrite these integrals in terms of the variable v.
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E(min(aX M) = [ (ay)(1/a) f(vyady + M [rp. (Va)f(y)ady
a [ yAyydy + M [fa fiy)dy

alfo' yAydy + (Mia) [i. f(y)dy]
aE(min(X,M/a))

i

it

It

This means that the expected net value of the amount of a single loss subject
to the combination of proportional reinsurance that retains 100a% of each claim,
and excess reinsurance that retains the first M amount of each claim, is equivalent
to 100a% of the expected value under an excess of loss reinsurance that retains
that first M/a amount of each gross claim. This is a specific instance of the
more general Mixing Moment Principle demonstrated below when we discuss
stability.

Excess treaty premiums are usually calculated using a rate as a percent of
subject premium.

Let Rate XS5(a.M) represent the excess rate for an excess retention M after
a proportional retention of 100a%.

For purposes of simplifying the demonstration, recall that f{x) reflects un-
derlying primary policy limits and assume that the excess treaty limit extends
above the primary policy limits. This allows us to ignore the truncation term
due to the excess layer limit.

If we consider only the loss component of the excess premium rate, before
any proportional reinsurance, the excess loss rate for limits of L over a retention
of M will be

WM (x — M) fdx + (L + M) f“Mﬂr)dx

XS(1.M) =
Rate XS(1,M) Subject Premium

in the most general case.

Ju (x — M) fix)dx
Subject Premium '

This simplifies to Rate XS(1,M) =

because of our assumptions.
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After proportional reinsurance that retains 100a% of each claim. let Rute
XS(a,M) represent the rate. Then 100a% of the prior subject premium is now

PP PUS—,

cribalaa P S T o
buUJCLl plcl“lulll 10T UIC CXCONS Ut:aly, dana
alfar. (x — Mia)fix)dx]

a(Subject Premium)

xm x — M .— X
= Ji (’,( a)_/.(r)d\ = Rate XS(1 Mia).
Subject Premium

Rate XS(a,M) =

Thus, we can state the following:

Mixing Price Rule: The excess reinsurance loss rate for a retention M under
a proportional reinsurance that retains [00a% of each loss is identical to the
excess loss rate over a retention of M/a, with no proportional reinsurance.

Note one simple implication of the Mixing Price Rule. The limited mean of
a distribution F under limit M is given by

Exx) = [ x dF + M(1 — F(M))
and is the “complement” of the excess loss cost [y (x — M)dF.

Then the excess reinsurance loss rate under a4 mixed reinsurance case must
be smaller than under pure excess if and only if the limited mean of the

distribution limited at M/a 1s larger than the himited mean at M. Thus we have
the following:

Mixing Loss Ratio Rule: 1f the limited mean of a loss distribution is a strictly
increasing function of the limit, then the net loss ratio will always deteriorate
under a mixed reinsurance case.

Only a most unusual loss distribution does not have the property of increasing
limited means. Consider the following:
If My < M- then

Jon (x = MdF = [3 (x — M)dF + [i (x — M)dF

= [ (x — M\)dF + i, (M; — M))dF +
fars (x — MdF

> [in (x — Ma)dF,
unless [3 (x — MYdF + i (M2 — M)dF = 0.

The above sum of integrals is zero only if dFF = 0 for x = M,.
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Thus if M, < M, then [a, (x — M)dF > [, (x — My)dF, hence Exn =
Ewz with equality only if dF=0 for x = M,. In practice, equality will occur
only when f{x), the density associated with F, is truncated by policy limits.

We can write the full excess reinsurance rate as follows including the risk
charge, RC(a,M), and treaty expenses, Exp:
afwdx — Mia)fix)dx + RC(a.M) + Exp

Rate XS§(a,.M) = a(Subject Premium)

Without further information about the form of the risk charge, little more
can be said about the excess rate. Note that Bithlmann [3] has identified four
premium calculation principles based on the form of the risk charge. These
principles calculate the risk charge on the expected value, standard deviation or
variance of losses, or utility theory. If the premium calculation principle used
in the excess rate is stated, then explicit calculations of equivalent excess rates
in terms of the limit M/a are possible.

APPLICATIONS TO PROPERTY INSURANCE

The phenomenon described in the casualty example is due to the shape of
the size of loss distribution.. The same deterioration of net loss ratio due to
mixed reinsurance situations will occur in property situations, if the underlying
size of loss distributions follow any of the accepted probability models. A study
of this subject done by Shpilberg [4] indicates that a loss distribution that falls
between the lognormal and Pareto distributions in its tail behavior is an adequate
model for fire insurance. The Mixing Price Rule discussion shows that if the
limited mean is an increasing function of the limit M, any mixture of proportional
and excess of loss reinsurance worsens the net loss ratio.

As we have seen, the limited mean condition is not very restrictive. Any
reasonable choice of size of loss distribution, in particular the Pareto or log-
normal, will satisfy this condition. Thus, the adverse consequences of mixing
reinsurance will also hold for property risks.

There are, however, special characteristics of property risks that are notable.
The policy limits of a property policy may be extremely large if there is a high
Probable Maximum Loss level. The traditional approach to reducing this loss
exposure to a level appropriate for an excess reinsurance treaty is the use of
proportional reinsurance. Hence, a very high percentage of policy limits may
be ceded before excess reinsurance.
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Thus, property risks are a particularly fertile ground for finding examples
of mixed reinsurance situations. The use of facultative reinsurance on large
property risks is traditional and necessary to cut large policy limits down to net
and treaty positions appropriate for the insurer’s treaty capacity. This usage can
have a substantial impact on the net loss ratio.

A property example will show net effects of proportional reinsurance similar
to the casualty example already considered above.

e NNN ANN

Suppose the insurer has an excess of loss property treaty with $2,000,000
limits over a retention of $250,000, for this example. If a property risk requiring
policy limits of $20 million is written, the underwriter must place $18 million
of facultative reinsurance before he can place the remaining risk into his treaty.
Most facultative property reinsurance has traditionally been on a proportional
basis. resulting in a 90% cession to the facultative reinsurers.

If the gross premium for the risk is $500,000, we will cede $450,000 to the
facultative reinsurers and retain $50,000 net as shown in Exhibit 3-3.4.

The results of the reinsurance can be quite different based on the type of
property risk being underwritten. The differences we can attempt to model will
be reflected in the Probable Maximum Loss (PML) potential, which should be
closely related to the underlying size of loss distribution. The policy limits
should also be based on the PML potential. For instance, if the risk consists of
a single large warchouse, there is a potential probability of losing the entire
insured value. For the purposes of this discussion we will model this by choosing
a size of loss distribution with | chance in 10.000 of a $20,000,000 loss. A
lognormal distribution with a mean of $67,500 and a coefficient of variation of
10 is used. The net expected loss ratio in this case is shown in Exhibit 3 as
74% . with a combined ratio of 110%.

As expected, this net position compares unfavorably to the gross position
with an 85% combined ratio. Note that this example demonstrates a capacity
problem, where facultative reinsurance must be used before the treaty can come
into use. The use of excess of loss facultative reinsurance in place of proportional
may improve these net positions, if such reinsurance is available at an appro-
priate price. If not, the only recourse to the underwriter is to price the gross
risk appropriately to achieve his target 95% net combined ratio. A premium of
$610,000 for this risk would be required to achieve a 95% combined ratio under
this mixing situation with 90% proportional reinsurance. This would require
pricing to a gross loss ratio of 49% and a gross combined ratio of 74% for the
property. It is unlikely that the marketplace will allow such pricing.
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EXHIBIT 3

MIXING COST WORKSHEET
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Policy: a property example

Input parameters:

Direct premium $500,000

Policy limits $20,000,000

Underlying retention $0

Expected loss ratio 60.0%

Commission ratio 15.0%

Other expense ratio 10.0%

Reinsurance:

Percent proportional 90.0%

Ceding commission 25.0%

Excess retention $250,000

Excess limits $2,000,000

Excess rate 30.0%

Ceding commission 0.0%

Loss distribution: mean $67,500

Lognormal Ccv 10

Net results: Gross  Proportional Excess Net

Loss ratio 60.0% 60.0% 27.8% 73.8%
Expense ratio 25.0 28.0 5.0 35.7
Combined ratio 85.0% 88.0% 32.8% 109.5%
Net underwriting profit ($3,336)
Cost of Reinsurance:
with mixing $0 $67,500 $10,836 $78.336
Pure excess 0 0 47,155 _47,155
Additional cost of reinsurance $0 $67,500 ($36,319)  $31.181
Cost of Mixing Calculation:
Actual cost of excess reinsurance $10,836
Cost based on subject premium _ 475
Cost of mixing $6.121
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Policy Parameters:

. Premium

. Commission

. Other expenses

. Expected losses
. Profivrisk charge

Retention

— QO NN bW =

—

—_—
[&5]

. Claim severity
. Claim frequency
Commission ratio

—_— o —

. Premium rate

. Combined ratio

3
S

First-$ equivalent*
. Nominal layer width
. First-$ equivalent*
. Effective layer width
. First-$ equivalent*

. Other expense ratio

Fluctuation loading
. Expected loss ratio

Cost of reinsurance

MIXING REINSURANCE

EXHIBIT 3.1

MIXING COST WORKSHEET
Property Example
Allocation of Layer Costs &

Determination of Net Position

(@) (b)
Gross Proportional
$500,000 $450.000
75.000 112.500
50,000 13.500
300,000 270.000
75.000 54.000
$0 NA
0 NA
20,000,000 18,000.000
20,000,000 NA
20,000,000 18,000,000
20,000,000 NA
$65.577 $59.019
4.575 4.575
15.0% 25.0%
10.0% 3.0%
100.0% 90.0%
25.0% 20.0%
60.0% 60.0%
85.0% 88.0%
$0 $67.500

(c)
Excess

$15.000
Q

750
4.164
10.086

$250.000
2.500.000
2,000,000
20,000,000
20,000.000
20,000,000

$310.572
0.013
0.0%
5.0%

30.0%

242.2%
27.8%
32.8%

$10.836

* First-dollar equivalent is the amount of first dollar loss needed to hit this limit.

(d)
Net

$35.000
(37,5041
50,000
25.836
{3.336)
$0
0
250,000
250,000
250.000
250,000

$5.648

4.575
—107.1%
142.9%
7.0%

- 12.9%
73.8%
109.5%

$78.336



Primary retention
Reinsured’s retention
Primary policy limit
Effective excess limit
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EXHIBIT 3.2

LOSS DISTRIBUTION TABLE
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Loss Number Amount
Amount Distribution Distribution
X JH#(X) f3$(x)
$0 0.0000000 0.0000000
2,500,000 0.9970693 0.7281287
20,000,000 0.9999017 0.9423854
20,000,000 0.9999017 0.9423854
Distribution type: lognormal
Distribution parameters:
mean= $67,500 o= 8.8123226
CV= 10 o = 2.148283]
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EXHIBIT 3.3

DERIVATION OF LOSS CHARACTERISTICS
FOR EXCESS TREATY

Primary frequency

First dollar equivalents:

Primary retention

Primary policy limit

Reinsured’s retention

Effective reinsurer limit

Ratio of excess carrier’s frequency
to primary frequency {1.0 — (4b)} /
{1.0 — (2b)}

. Excess layer frequency

Expected claims per policy term
(6) x (1)
Severity calculations:

. Mean loss (SOL)
. Layer loss cost {(5¢) — (4¢)} X (8)

Limit loss cost (5a) x {1 — (5b)}
Number of layer losses (5b) — (4b)
Number of limit losses 1.0 — (5b)
Average severity of reinsured losses
{09) + (10)} 7 {(11) + (12)}

Less: effective retention

Excess layer severity (13) — (14)
Percent pro rata reinsurance

Excess reinsurer’s severity

(15) x {1 — (16)}

(a) (b) (c)
Amounts f#x) f38(x)
4.575
$0 0 0
$20,000,000 0.99990169 (0.9423854
$2,500,000 0.99706933 0.7281287
$20.000.000 0.99990169 0.9423854

0.3%

0.013

$67.500

$14.462

$1.966
0.283%
0.010%

$5.605.719

$2.500.000

$3.105.719
90.0%

$310.572
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EXHIBIT 3.4

DERIVATION OF LOSS CHARACTERISTICS
FOR PRIMARY POLICY

. Expected losses

First dollar equivalents:
Primary retention
Primary policy limit
Severity calculations
Mean loss (SOL)

. Layer loss cost

{(3c) — (2c)} X 4

Limit loss cost (3a) X {1 — (3b)}
Number of layer losses

(3b) — (2b)

Number of limit losses 1.0 — (3b)
Average severity of primary losses
{5y + &)} 1 {() + (B)}

Less: retention

Primary policy severity (9) — (10)
Primary policy frequency
Expected claims per policy term
M/ an

(a) (b)
Amounts fH#(x)
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()
3

$300,000

$0 0
$20,000,000 0.99990169

$67,500

$63.611
51,966

99.990%
0.010%

$65,577

$0
$65,577

4.575

0
0.9423854
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Note one very important implication of this example. We can no longer
assume the underwriter can price this risk on the basis of gross frequency and
severity characteristics alone. In order to achieve combined ratio results that
allow long-run survival of the ceding insurer, the gross price must be set based
on gross frequency and severity, the excess reinsurance rate, the amount of
proportional reinsurance needed for capacity, and the ceding commission struc-
tures.

The excess reinsurance rate must also anticipate some use of facultative
reinsurance for capacity purposes. Specitically, for property risks the excess
rate must be calculated anticipating a certain amount of use of proportional
reinsurance. This will be the case if a loss rating approach using past experience
is used to calculate the excess rate. and this past period reflects a similar use
of proportional reinsurance as anticipated for the next treaty year.

OTHER MAGNITUDE EFFECT CONSIDERATIONS

The net results of the casualty and property examples are not only a function
of the percentage of proportional reinsurance used. Both the excess reinsurance
rate and the ceding commission structure have an effect on the final net position.
A detailed treatment of these subjects is not possible here, but some issues that
relate to the magnitude effect will be mentioned.

The Excess Reinsurance Rate: In the casualty example. an excess treaty
was specified with a $2,000,000 limit over a $250.000 retention. Depending on
the underlying size of loss distribution one might assume that a “correct™ excess
loss rate could simply be calculated from the distribution statistics. However,
the policy subject to the excess reinsurance could be any one of the following.

A primary policy with policy limits of $2.250.000 that uses the entire
reinsurance layer of $2,000.000.

If the primary policy limits are only $1,000.000 the rate should be substan-
tially different.
If the $1,000,000 policy limits are excess of a self insured retention of

$100.000, the appropriate rate for the excess reinsurance would also be different.

If the ceding company writes an excess policy for $1.000.000 limits over a
primary policy with $500,000 limits. the correct excess reinsurance rate is again
different from any of the above.
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One can immediately see that with no change in the underlying risk’s loss
potential (as characterized by its size of loss distribution), several different but
“correct” excess reinsurance rates are possibie. It becomes apparent that one
cannot speak of a proper excess reinsurance rate on a portfolio without some
measure of the anticipated underlying distributions of retentions and policy
limits in the portfolio. Thus, the excess reinsurance rate must be formulated in
anticipation of a certain portfolio structure,

This point has practical implications that generate mixing situations. Suppose
an excess reinsurance program has been negotiated, with the parameters agreed
to for two years forward. At the time of the negotiation, management of the
ceding carrier fully intended to write a book of small surplus lines SMP risks.
An excess and surplus lines carrier is usually very responsive to market oppor-
tunities; hence, six months into the program, management modifies its original
marketing plan because conditions are excellent for obtaining strong rates on
small casualty umbrellas. Management wants to take advantage of this oppor-
tunity. The original excess reinsurance rate, however, contemplated the SMP
book and carried a provisional rate of 10%. The same calculations based on a
book of small umbrella business would yield a proper rate of 35% for the excess
reinsurance.

An excess reinsurance program can easily have 10 to 20 participants and
have taken months of effort to place. Renegotiating the treaty at every shift in
portfolio composition is not a realistic option. Furthermore, the excess and
surplus lines market depends heavily on the reinsurance market for capacity.
Many such companies may cede out 50% or more of their gross writings. Thus,
including this umbrella book in the treaty at an inadequate excess rate is not a
viable option for management concerned about maintaining a long term presence
in the market with consistent reinsurer support.

As a practical matter, the ceding underwriter has little real choice but to
attempt to “‘protect the treaty.” As we have seen, the ceding underwriter has
great control over his treaty loss ratio, through his use of proportional facultative
reinsurance. By altering the percent of proportional reinsurance placed on a
risk, the size of loss characteristics of the net position can be fit into the treaty
rate structure.

Consider the casualty example given above to be representative of a typical
umbrella policy. At a 10% rate, the excess reinsurer would receive $40,000 of
premium and would have an expected loss ratio of 210% ($85,114 / $40,000),
if no proportional reinsurance were placed. After the 50% proportional cession,
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however, the excess reinsurer would receive $20.000 of premium at the 10%
rate. With expected losses of $18.853. this would yield an expected loss ratio
of 94% . much better than the original 2109%. Under the original scenario
presented for the casualty example, the placement of 50% proportional reinsur-
ance was not warranted. Under this new scenario, however, the 50% propor-
tional reinsurance should clearly be placed betore the identical policy is placed
into the excess treaty. The cost of mixing in this case should be paid to the
excess reinsurer to bolster an inadequate treaty rate for a risk not contemplated

in the original treaty price.

R OREEERS

Thus, the situation is manageable but becoming exceedingly complex. The
underwriter must ascertain a correct price for the risk insured on a gross basis.
This is no different from any underwriting situation. In addition, we again see
that an essential part of the direct company’s underwriting and pricing process
must be the cotrect placement of reinsurance to achieve an acceptable net result.
Even this, however, is not enough. The underwriter must also balance out his
net position against the results he is passing on 1o the excess reinsurer. He must
be able to maintain long-term acceptable results for his excess reinsurance
support. in the face of continutng shifts in his portfolio composition due to
market conditions.

The calculations we have made in our examples are complex and assume
knowledge of the size of loss distribution underlying the policy. This is clearly
an area where actuarial expertise can be applied to produce general guidelines
and specific pricing procedures that aid in determining the net underwriting
position. Without such pricing analysis available, management will have no
effective way of controlling and evaluating the proper. coordinated use of
proportional and excess reinsurance.

The Gearing Factor: The existence of the override in the ceding commission
has been remarked on above. The purpose of the override is to reimburse the
ceding company for the non-commission expenses it incurred in writing the
direct business. Unfortunately, in times of excessive reinsurance capacity the
override is used as a competitive tool by reinsurers. Thus. the casualty example
considered above may be entitled to a 10% override based on the expense
structure of the ceding carrier: however. a particularly aggressive reinsurer may
offer an override of 15%. This. of course, makes the determination of the net
position even less straightforward, and offers a powerful incentive to cede larger
proportional reinsurance amounts.
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The excessive override will tend to improve the combined ratio while the
mixing effect will act to worsen the combined ratio. Hence, it becomes even
more imperative to calculate the net position before a risk is bound and facui-
tative arrangements settled. For instance, the 50% proportional reinsurance on
the casualty risk with a 15% override would yield the same net loss ratio of
72.2%, but an improved net combined ratio of 100.8%. The effect on the
property example with 90% ceded proportional reinsurance is even more le-
veraged, with a net loss ratio of 73.8%, but a net combined ratio of 45.2%,
much improved from the original 110%.

The combined effect of an excessive override and a large percent of pro-
portional ceded reinsurance may not only cancel out the mixing penalty, but
also produce a favorable net combined ratio even when the direct risk is severely
underpriced. For example, if the property risk example of Exhibit 3 were priced
at a 100% gross loss ratio, the premium would be $300,000. Net retention after
a 90% proportional reinsurance cession only would be $30,000 of written
premium and expected losses. Expenses before ceding commission total 25%
of gross premium, or $75,000. The ceding commission at a 5% override would
total 30% of the $270,000 ceded premium, or $81,000. Thus, after the propor-
tional cession the insurer would have net premium income of $30.000 and net
costs as follows:

Net incurred losses:  $30,000
Direct expenses: 75,000
Ceding commission:  (81,000)
Net incurred costs $24,000

This is equivalent to a combined ratio of 80%, a substantial improvement
over the direct combined ratio of 125% at which the risk was written direct.
This aspect of the override in proportional reinsurance has been termed the
“Gearing Factor” by Buchanan [5]. The existence of the gearing factor effect
can overwhelm the unfavorable mixing effects in the transaction.

STABILITY EFFECTS

One of the less obvious effects of mixing proportional and excess of loss
reinsurance types is the effect on the variation of the net loss ratio after rein-
surance. The use of proportional reinsurance below an excess of loss treaty
actually makes the resulting net aggregate loss costs more variable than would
be the case under the excess treaty alone. This is significant because stability
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of net results is one of the most important benefits resulting from an cxcess
reinsurance treaty. Any degradation of the stability “component™ of the excess
treaty “product” makes the treaty worth less.

We will use the casualty policy example to form a small portfolio that will
allow us to investigate the impact on stability of mixing reinsurance. Assume
we have a portfolio of 50 policies identical to the casualty example. Therefore.
we have a book of excess casualty business that generates $20 million of gross
premium and an average of 70.5 claims annually (50 X 1.410). These claims
follow the lognormal size of loss distribution specified earlier. i.e. with a mean
of $30,000 and a CV of 5.0. The expected loss ratios on this book of business
are identical to those on the single policy—that is, 60% gross, 55% if only the
excess treaty is applied but 72% in the mixed reinsurance case.

The aggregate loss distribution differs in the case of the portfolio and the
single policy. As a simple demonstration. there is a substantial probability (24%)
that the single policy will be loss-free. [t is effectively impossible. however.

FIGURE 3
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for the entire portfolio to be loss-free in any year (a probability of 2.4 x 107"
of a loss-free year). The expected annual claim cost of the portfolio is
$12,000,000 (70.5 claims at $170,200 each) and the aggregate losses of the
portfolio are distributed as shown in Figure 3. All computations of aggregate
loss distributions were made using the algorithm developed by Heckman and

Meyers [6].

In order to make comparisons between aggregate loss distributions, we will
normalize such distributions, by setting the mean aggregate loss to 100%, and
present the probabilities of achieving various percentages of the mean. This
maintains the relative shape of the distribution and facilitates the comparison of
different distributions with various underlying aggregate loss means. The nor-
malized aggregate distribution of the unreinsured portfolio above can be seen
as Figure 4. This distribution has a coefficient of variation of 0.2.

FIGURE 4
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After placement of the excess treaty on this portfolio, the spread of the
distribution is much reduced. as can be seen trom Figure 5 below. Note that
the probability of losses totalling over 150% of expected is substantially reduced
by use of excess reinsurance, and the entire curve is distributed closer around
its mean of 1.0. The coefficient of variation after excess reinsurance is reduced
to 0.155.

FIGURE 5
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Now, if the 50% proportional reinsurance is placed on each of the 50 policies
in the portfolio, we obtain the aggregate loss distribution shown as Figure 6.
This distribution clearly lies between the unlimited case and the pure excess
case in its dispersion of possible loss amounts. Note the larger area under the
curve over 150% of mean loss, for example, than under the pure excess treaty.
The coefficient of variation has also increased to 0.175.

FIGURE 6
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Since all aggregate distributions are normalized. they can be compared on
the same scale as shown in Figure 7. This chart shows that the “spread™ of
possible results around the mean loss in the mixed case lies between the
unlimited and pure net of excess distribution. In this sense. the stability paid
for by purchase of excess reinsurance is “undone™ by application of the pro-
portional reinsurance.

Regarding the stability of the portfolio, we are most interested in the behavior
of the aggregate loss distribution at the extreme right-hand tail. As shown in

AGGREGATE LOSS DISTRIBUTION

Comparison of Three Distributions
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Figure 8, the tail behavior of the aggregate loss distribution in the mixed
reinsurance case is substantially more severe than the pure excess treaty case.

The problem, of course, is that we are paying the same 30% rate of net and
treaty premium for excess reinsurance protection in both the mixed reinsurance
and pure excess cases. As Figure 8 shows, the protection from extreme fluctua-
tions we receive for our 30% rate is substantially less in the mixed case.

While the normalized aggregate distributions are useful for comparing ag-
gregate loss distributions with disparate means, it is also important to focus on
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the bottom line—the distribution ot combined ratios under the three different
scenarios. The combined ratio becomes a random variable through the equation:

Combined Ratio = Expected Loss Ratio x Normalized Aggregate Loss
Ratio + Expense Ratio.

Figure 9 shows the distribution of combined ratios for the three scenarios.
Clearly, the range of alternatives under the mixed reinsurance scenario is the
least desirable. not only in terms of its expected value. but also in terms of the
probability of experiencing extremely adverse combined ratios. Note that there
is little or no chance of a combined ratio over 120% in the case of the gross or
pure cxcess case. The mixed case, however, leaves us exposed to a substantial
probability that a combined ratio over 120% will be experienced.

Even the combined ratio comparison does not take the absolute scale into
account. Dollar magnitudes are important. however, it we are to gauge the

FIGURE 9
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impact of the reinsurance programs on company surplus. An additional way of
evaluatm& the b()ttom line is to slmply review the distribution of stdtulory
as a random variable

Premium — Aggregate Losses — Expenses

Profit =
where Aggregate Losses is the random variable we have been examining above
i Fieure 10,

——
but not normalized. The resulting distribution is shown in Figure 10
This chart is clearly of interest in evaluating ruin probabilities. Note that
the gross loss distribution has a non-negligible probability of suffering an
underwriting loss of over $4 million. The pure excess reinsurance makes a loss
of over $3 million unlikely, and even the mixed case reduces the chance of
suffering a $4 million underwriting loss significantly. The price that must be
paid for this protection in the mixed case, however, is an expected underwriting
loss. Thus the mixed case is clearly inferior to pure excess reinsurance in terms

of both magnitude and stability of net underwriting results

FIGURE 10
DISTRIBUTION OF PROFIT
Under 3 Reinsurance Scenorios
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A usable table representing the tail probabilities for the three scenarios is
presented below.

TAIL. PROBABILITIES
Probabilities of Exceeding the Percent of Mean

Type of Reinsurance

Percent of Excess Over
Mean Gross Proportional Excess Only
125% 11.07% 8.15% 5.77%
130% 7.45 493 3.09
135% 4.85 2.84 1.55
140% 3.06 1.56 0.73
145% 1.87 0.82 0.32
150% 1. 11 0.41 0.14
151% 1.00 0.36 0.11
152% 0.89 0.31 0.09
153% 0.80 0.27 0.08
154% 0.72 0.23 0.07
155% 0.64 0.20 0.05
Mean aggregate loss $12,000,000 $5.,054.050 $ 7.742 800
Net premium 20,000,000 7.000,000 14,000,000
Expenses 5,000,000 2,500.000 5.000,000
Expected U/W profit $ 3.000.000 $ (554.050) $ 1.257.200

Using this table it is possible to investigate alternate scenarios, using pro-
portional only or excess of loss only, to achieve a desired risk level with net
incurred loss. For instance, suppose that the 50% proportional reinsurance were
placed in order to keep the probability of an extra $3.000,000 loss at about 1%
or less. From the middle column, there is about a 19% probability of a loss over
142% of mean aggregate loss in the mixed reinsurance case. This corresponds
to $2.1 million dollars of loss over the expected amount of $5,054,050. Taking
expenses into account, about a 1% chance of suffering an underwriting loss of
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$2.7 million is implied. Note that in order to achieve this protection, the
company will have an expected underwriting loss of about $500,000.

Is there a more rewarding way to achieve the same risk position? There are
at least two other reinsurance configurations that appear preferable. For instance,
on a gross basis, there is a 1% probability of suffering a loss of $18,000,000
or higher. This is equivalent to a 1% chance of an underwriting loss of
$3.000,000 or more. A 10% cession of this portfolio would reduce the 1% level
of loss to $2.7 million. leaving an expected underwriting profit of $2.7 million.
Even though the 909% proportional retention tail does not diminish as fast as the
mixed case, the 1% level of risk is the same and expected profit is $3.2 million
more.

Similarly, the 1% expected loss level for the excess of loss portfolio is 138%
of the mean, or an underwriting loss of $1.7 million. Thus, the 1% loss level
is much lower than the mixed reinsurance case, and the expected underwriting
profit of $1.3 million is much higher than the mixed case.

To summarize, at the 1% probability of loss level we have inspected three
alternatives. and the mixed case is the least desirable.

90% $250,000 Excess Over $250.,000
Quota Share 50% Proportional Excess Only
1% level of
U/W loss ($2.700,000) ($2,700,000) ($1.700,000)
Expected profit $2,700,000 ($554,050) $1.257,200

The simple calculations above hint at the complexity of the optimal rein-
surance problem. Surprisingly, actuaries have studied this complex question
extensively. See, for instance, Beard, Pentikainen, and Pesonen |7] for a bib-
liography. Three related results of interest are given:

1. For a fixed amount of reinsurance premium and ignoring risk loadings.
aggregate stop loss is the optimum reinsurance to minimize the variance
of net results [8].

2. With a risk load that increases with variance, proportional (quota-share)
reinsurance is optimal to minimize the reinsurance cost for a given
variance level [9].
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Finally,

3. Allowing mixed reinsurance treatics and constraints on both mean and
variance, in most cases pure excess of loss reinsurance is optimal to
minimize the skewness of net aggregate losses [10].

THE MIXING STABILITY RUIE

In a mixed reinsurance situation. a decrease in the amount retained after
proportional reinsurance will decrease the stability of the net aggregate losses.
In this sense proportional reinsurance will negate the major benefit of excess
reinsurance.

As a measure of stability we will use the coefficient of variation of net
aggregate loss results. Recall that if X is a random variable, we define
Standard Deviation (X)
Mean (X)

CV (X) =

Let X be the random variable representing the amount of one claim, and N
be the random variable representing the number of claims in the experience
period. Let M be amount retained under an excess of loss treaty, and 100a%
be the percent retained under proportional reinsurance.

Let X(«.M) = min(aX.M) represent the net amount of one claim under both
reinsurances. This is the random variable of claim amount under the mixed
reinsurance situation.

Let A« be the &th moment of N, the number of losses, and (3, the &th moment
of X, the amount of loss. Then for any compound process Y defined by

N
Y = 2 Xii.
i=1
we know that
E(Y) = )\]Bl and.
Var (Y) = A, Var (X) + Var (V) B," (see Miccolis [11]).

|

Thus.
Var (Y) = A (B2 — B + O — A B

in terms of central moments.
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And, in general,

N2} At N y 2. n 2
APz T AT TAL) P

CVi(Y) = 5
( (MNP

which simplies to

LY Sl Vel N
NBir- AT
Both the mixing price and stability rules are essentially a result of the

following relationship that holds for the kth central moment of X(a,M),
denoted by Bifa.M).

CVi(y) =

Mixing Moment Principle: Bi(a,M) = d'Bu(1 . Mia)
Proof: By definition,
Buta,M) = [§ e 0dx + M [hr gu(x)dx,

where g4x) = (la)fix/a) is the probability density of x under proportional
reinsurance. If we set av = x, then ady = dx, and x = M if and only if y =
Mia. Now rewrite 3« in terms of y,

Bua, My = [ ay) lia)fivyady + M* [indLia)f(viady
d [ S ndy + M [ia fdy,
Bua.M) = d([5" Yfndy + (Mia)* [iga fiy)dy].
d'Bu(1.M/a),

Il

which proves the result.

Following notation in Centeno [2], let Y(a,M) represent net aggregate loss
after application of both the proportional and excess reinsurance. Then

Y(a,M) = =¥, min(aX;.M).

We are interested in the stability of Y(a,M) as a decreases. The following
rule characterizes the stability of Y as a changes.

Mixing Stability Rule: The stability (coefficient of variation) of net aggregate
losses after retention of 100a% under proportional reinsurance and retention of
M under an excess of loss treaty is equivalent to the stability of net aggregate
losses under an excess treaty with a retention of M/a.
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Proof: Write the coefficient of variation in terms of \; and B.(a.M),
[MiBa(a, M) + (A2 — Ay — AD) Bula. M|
A|B|((I,M)
M@ BaL.Mia) + (N — N — AN Bi(l M)
)\|(lB](l.M/(l)
B MIa) + (N — A = ADB(LMYa))
A]B](I,M/ll)

CV(Y(a.M)) =

CV (Y(1 ,Mia)),
which proves the result.

We would suspect that the stability of net losses decreases as the retention
of the excess of loss treaty increases. This is indeed the case. as shown in the
Appendix. Thus, we can conclude that. in general, as the percent retained under
proportional reinsurance decreases. and the excess of loss retention M remains
fixed, the stabilty of net results of the portfolio decreases.

This shows that the situation of Figure 7 is not the result of any fortuitous
choice of distributions or parameters. For any compound process. represented
in general by Y(a,M), the distribution of net results after mixed reinsurance will
show more “spread” than the pure excess reinsurance case but less than the
gross position.

CONCLUSION

The application of an excess of loss treaty after a proportional reinsurance
transaction on a policy has been shown to have a significant adverse impact on
the net expected loss ratio. In addition, the stability of net results sought from
the excess of loss reinsurance is also adversely affected. The Mixing Price Rule
and Mixing Stability Rule allow us to evaluate these effects of the mixing
sttuation. The Cost of Mixing Worksheet allows us to calculate the net position
in a mixed reinsurance situation. These three tools should allow the underwriter
to make appropriate evaluations of pricing and facultative reinsurance decisions
in individual risk situations.

From a broader management perspective, the mixing of reinsurance at the
individual risk level presents a difficult management control issue. In a worst
case scenario, if company underwriters were to make facultative reinsurance
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arrangements without proper coordination and direction from management, a
substantial loss ratio penalty on the entire book of business could be expected.
Extremely adverse fluctuations in net resuits would also be possibie. The chal-
lenge for management is to establish guidelines and controls enabling under-
writers to understand the structure and objectives of overall corporate reinsur-
ance. The underwriters will then be able to make decisions on individual risk
facultative reinsurance placements that work with, not against, the excess treaty.
It is hoped that the ideas developed here will give actuaries a start in attempting
to explore this aspect of the underwriting and pricing process.

Pricing a risk at a profitable direct premium is not sufficient to assure a net
profit when significant amounts of different reinsurances apply. As our examples
show, one can price the risk perfectly on a direct basis, yet still have an
unfavorable net combined ratio, due to facultative placements with high mixing
COStS.

On a corporate level, the more subtle concept of probability of ruin comes
into play. We have shown that unanticipated large amounts of proportional
placements can destabilize net results significantly. While most insurance or-
ganizations are large enough to make the probability of ruin of academic interest
only, the chance of suffering extremely large combined ratios increases as the
share retained on a proportional basis decreases. The protection in the excess
treaty is negated by proportional reinsurance.

Finally, most of the discussion has been from the viewpoint of the ceding
company. The mixing cost, however, can work both ways. The excess treaty
rate is calculated anticipating a certain percent of the book will be ceded
proportionally before the treaty applies. If the ceding company finds that it can
only cede a smaller than anticipated portion of its business facultatively, it will
be putting larger shares of each risk into the treaty. This will result in a highly
leveraged adverse loss ratio and destabilization effect on the excess treaty. This
is a sensitive issue for both the excess reinsurer and the ceding company.

Pricing actuaries on both sides of the excess reinsurance treaty transaction
have an interest in the mixing effects. The more use a ceding company makes
of proportional reinsurance prior to the treaty, the more important the mixing
effect becomes. An increased awareness of the effects of mixing should decrease
the likelihood of unexpected adverse consequences to both treaty partners.
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APPENDIX

Theorem. As the fraction « retained under proportional reinsurance de-
creases, the stability of the net aggregate losses decreases.

Proof:  We wish to prove that as « decreases. the quantity CV(Y(a,M))
decreases. From the Mixing Stability Rule. it suffices to prove that if
M, < M. then,

CVIY(I M)y < CVIY(L.M).
This is the case if
(3/0M) CV(Y(1.M)) >0,
which is equivalent to
(B/dM) CV(Y(1.M)) > 0. because CV = 0.
Let B« represent B«(1,M); then
MB: + (s = AT - B
AiBi
B- +()\3*Af~)\;)'

5

BT A

Since only B is a function of M.

CVHY(I.M)) =

> B — 2880
(aram) OV = MBI — 2B B,
(MBD)

_ BB’ — 2B
MBI '
Thus, (3/8M) (CV(Y(1.M) > 0 if and only if
BB — 2B:B) > 0.
Now compute 3, and B.’.
(3/3M) B = &/8M ([o'xdF + M(1 — F(M)))
=1 — F(M), and

It

(B/3M) B2 = M (fCdF + M(1 — F(M)))

2M(1 — F(M)).
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Let f1 = [{xdF and
1 = [MdF.
Then. BiB2' = 1, + M(1 — F(M)] [2M(1 — F(M))]. and
28,81 = 2l + M1 — FMY)| [1 — F(M)).

So.

BiBx — 2B:B1 = 2LM(1 — F(M)) — 201 — F(M))
= 2(1 — F(M)) (MI; — I)

=21 = FIM) [§x(M — x)dF.

rs

Since 0 < x < M. we know M — x > 0, hence, this integral is positive, and
the result is proved.

(The author thanks professor Nasser Hadidi of the University of Wisconsin-
Stout for his helpful discussions on this proof.)
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YESTERDAY, TODAY AND TOMORROW

PHILLIP N. BEN-ZVI

One of the most common techniques which actuaries use is to examine past
experience, evaluate current conditions, identify factors which are changing,
and then use these to project the future. In my remarks today, I want to follow
this same actuarial approach and first look back at history, then comment on the
current situation, and finally make some predictions about the future.

All of us are familiar with the history of the Casualty Actuarial Society,
which is summarized very well on the first page of our Yearbook. Our Society
goes back to 1914; from that, one might assume that the first casualty actuaries
probably began their practice a few years previously. The Yearbook then goes
on to report that actuarial science originated in England in 1792, in the early
days of life insurance. In preparing for this speech, I did some further research
on actuarial history; and I am pleased to be able to tell you that not only is the
actuarial profession far older than reported in the Yearbook, but the first actuary
was a casualty actuary, not a life actuary. In fact, the actuarial profession goes
back to Biblical times, and the name of the first actuary is a very well-known
name — Joseph, that wild dresser with the technicolor coat.

I can see from the reactions of some of you that this is no surprise as there
are clearly some Biblical scholars in this group. It is really all very obvious if
you read the Bible carefully. If you recall, Joseph was a dreamer and an interpre-
ter of dreams, in other words, clearly a practitioner of actuarial science. Further-
more, he was hated by his brothers — need I say more!

The Bible tells us quite a bit about Joseph’s actuarial career. He was the
first to identify the underwriting cycle, which at the time consisted of seven fat
years followed by seven lean years. This led to his first assignment which was
to price a new product, drought insurance. The premium was, of course, not
paid in cash in those days, but was rather in the form of grain, and when his
company put away reserves they did it literally — they put it into silos.

When pricing his product he built in an underwriting profit factor, and this
allowed his company to have a consistently excellent total rate of return. He
established his company’s loss reserves on an ultimate basis. He did not believe
in discounting to present value. A recently discovered papyrus contained the
Annual Statement of his company and, believe it or not, it included an early



220 PRESIDENTIAL ADDRESS

version of Schedule P. And what a runoff it showed — the reserves were perfectly
adequate at the end of the seven lean years of paid claims. Joseph maintained
a solid balance sheet for his company and he had no hesitation in signing his
statement of actuarial opinion. Perhaps the best proof of his abilities is that he
was the first actuary to become president of his insurance company — in fact, of
all of Egypt.

Of course, Joseph had some advantages. His company had no competitors
and, therefore, as the actuary, he did not have to deal with marketing people.
He also controlled the courts, and so, had no problems with attorneys. He had
no difficulties with uncollectible reinsurance as “innocent capacity” had not yet
been born. Finally, he had a tough bunch of claims adjusters working for him.
In his time, pain and suffering was not something that inflated claims payments;
rather, it was something that happened to the claimant if he tried to inflate the
claim.

Several thousand years may have passed since Joseph’s time and the world
may have changed quite a bit, but the insurance industry hasn’t really changed
that much. We are still going through underwriting cycles and the latest one has
had almost seven lean years. We have just come through a period of grossly
inadequate prices and of clearly inadequate loss reserve levels. Various industry
observers had estimated the reserve deficiency at anywhere from 10% to 20%
or more, with much higher numbers for some lines of business. We have suffered
through a period of horrendous underwriting results and extremely inadequate
rates of return, culminating in a year in which the entire industry produced a
net operating loss before adjusting for tax credits. We have had a record number
of insolvencies of both primary and reinsurance companies, including some
fairly sizeable ones.

It would be easy for us to sit here today feeling comfortable and enjoying
improved industry results. We certainly see sharply improved commercial lines
experience and there is no question that many companies have been strengthen-
ing their balance sheets. But many problems still remain, and many lines such
as personal lines and workers’ compensation have a long way to go before the
results will be satisfactory. The uncertainty of the tort system still hangs over
our heads as reforms thus far have been modest at best. Who is to say which
substance will represent the next environmental pollution problem and what
price the industry will have to pay to reimburse the injured parties? In personal
lines, we need to deal with the impact of lower gas prices and greater automobile
usage plus the proliferation of smaller, more damageable, and less protective
automobiles. Reversing the recent trend towards a free market, regulatory pres-
sures are becoming greater in reaction to the corrective actions taken by the
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insurance industry, and to the political pressures applied by those who oppose
tort reform. As an industry, we also have to face an increased financial burden
because of the new federal income tax law. At the same time, no one truly
believes that loss reserves are yet adequate for the industry and we have certainly
not seen the last of significant insurer insolvencies and their resulting impact on
guarantee funds and uncollectible reinsurance. Indeed, the latter two are part of
a vicious cycle which could in turn trigger even more insolvencies.

With this picture of the recent past and current conditions in mind, let’s
ask ourselves some questions. What has the track record of actuaries been during
these lean years? How many of us, whether employed by companies, consulting
firms, or regulators, can say that we made recommendations during these last
few years that would have produced adequate prices, resulted in adequate re-
serves, avoided the poor returns that weakened many companies, and, in fact,
avoided some of the insolvencies that occurred? Can all of the blame be laid at
the doorstep of the top management of the insurance companies or the operating
or marketing people in those firms? Are we really blameless as actuaries, or did
our judgements and recommendations get colored by the events around us? Did
our hearts often take over from our minds? Did some of us who are part of
management confuse our management roles with our actuarial roles? In other
words, are we comfortable that we have fulfilled our professional responsibilities
during these lean years?

All of us in this room certainly recognize that actuarial work is a combina-
tion of art and science. Indeed, our entire educational process in the CAS reflects
that reality. Our syllabus and our continuing education programs attempt to
provide a knowledge of the needed mathematics and actuarial techiques, plus
an overall understanding of all elements impacting the insurance business includ-
ing policy coverages, underwriting, marketing, claims, regulation, and financial
matters. That lengthy and continuing process of education is an attempt to
provide us, as actuaries, with a broad view of every aspect of the business so
that we can best make our actuarial judgements.

I feel relatively comfortable that we, as actuaries, know how to handle the
science part of our responsibilities, difficult though it is. It has been the applica-
tion of the actuarial art that has often been the source of our problems. Let’s
look at data as an example. Not only do we rarely have the right kind of data
or enough of it to satisfy our needs, but it is in the interpretation of this informa-
tion where the most professional judgement is required. Evaluating changes in
the way in which business has been done or will be done is truly an actuarial
art in that much of this is yet to be reflected in the available data. The values
we place on the impact of underwriting actions that have been taken, marketing
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plans which may have changed the book of business, changes which may have
been made by the claims department in adjusting or reserving cases, or even
changes in processing policies, claims, or expenses are crucial. Finally, and
most obviously, the judgements which we regularly make in selecting the most
appropriate actuarial methodology and the most appropriate assumptions are a
significant part of the actuarial art.

Our actuarial responsibility is, first and foremost, to provide the best esti-
mate possible, ignoring any and all constraints. This may mean that actuarially
indicated reserves may be much lower or much higher than those currently being
carried by the company, and their use might present financial problems. It may
mean that the indicated price is far higher or far lower than the market will bear.
I do not in any way suggest that the best actuarial estimate should be made using
a static approach. In fact, a very important part of the analysis is to help deter-
mine the optimal business strategy in a dynamic environment. In making the
best estimate of the price which will produce the target rate of return, one has
to consider the effects of the marketplace and the change in the mix of business
that may result from a proposed set of rates.

A second but still very important actuarial responsibility is to determine the
financial effects of strategies being considered by the employer or client. That
may differ from the best estimate. The insurance business is a risk business and
our role as actuaries is to evaluate those risks and provide that information to
the client or employer. This will allow the management of the company to
consider the risk versus reward tradeoffs in reaching a business decision.

We do no one any favors if we mingle real world constraints with our
attempts to come up with a best estimate. If we do so, we quickly start to have
our own judgements clouded and we begin to believe the resulting answers and
think that they are indeed the best estimate. Similarly, our employers think that
they are getting the best actuarial advice, when in fact they are not. Our role is
to maintain our objectivity and our heads even when those around us may be
losing theirs. Many actuaries have been gaining important managerial respon-
sibilities. This could easily result in swelled heads, but even a swelled head
cannot hold two hats at the same time. It is our actuarial responsibility to wear
each of those hats, but only one at a time.

I think it is a safe prediction to say that we will soon have another oppor-
tunity to test ourselves on the proper exercise of actuarial responsibility. There
will not be any gong that goes off to announce the beginning of the next cycle,
but I think it is fair to assume that some elements will begin in the very near
future. After all, cycles really begin when competitors perceive that some seg-
ments of business have reached, or will shortly reach, a point at which extraor-
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dinary profit opportunities are presented. In a business like ours, in which there
are hundreds or even thousands of competitors it requires only a small number
Ol >1guiucam players to iry to cxpwu those oppoﬁumixes before we are off and
running into a competitive period. This is actually a good and healthy part of
our economic process. The danger begins, however, when the perceptions of
potential profitability are wrong, and there is no appreciation of when the profits
are disappearing as other competitors react in defense of their markets. Under-
writing cycles develop segment by segment and heat up as more and more
companies attack and defend their markets.

I would suggest that the actuary has a very vital role to play in this process
and, in fact, can be the key to making this a healthy rather than a destructive
process. First, the actuary must be involved in identifying the desirable segments
and in quantifying the available profit margins. Next, he should establish a
dynamic model that can provide insight into the most likely results as com-
petitors react. His model must be able to quantify when the return becomes
substandard and hence when opportunity turns into a problem. Finally, the
actuary must regularly analyze the true results of the venture so that he can
provide advice to management and allow them to take appropriate action based
on sound financial input. The actuary’s tools are becoming more sophisticated
and actuaries are becoming more and more skilled. I strongly believe that if we
carry out our actuarial responsibilities, we can help to minimize the amplitude
of the next cycle.

It appears that one lesson the industry has learned from the last cycle is
that there is a severe economic impact from operating in a business with so many
competitors. When this is combined with the fact that insurance is a business
which is perceived as having products which are commodities, and which has
a substantial social content and a large degree of regulation, the results are
almost inevitable. It produces an industry whose business is excessively competi-
tive and one in which the competition is largely price-driven. It produces a
business which is excessively cyclical; a business in which profits are always
being squeezed and hence, tend to be inadequate even over a long period of
time. And, finally, it produces a business in which there are more and more
companies in weakened condition, leaving either a social problem or a burden
to be borne by the remaining carriers.

What we have, therefore, been secing and will continue to see is a move-
ment to segment the marketplace and a tendency for companies to find niches
over which they can have much greater control. There is also a movement to
differentiate products — whether through changes in the insurance contract,
through service, delivery mechanisms or any other approach which fertile minds
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can discover. Again, the identification of those profitable market segments is an
actuarial challenge and responsibility; the development of the new products, and
particularly their pricing, will require the greatest exercise of actuarial science
and the most refined use of the actuarial art.

I am also convinced that we will be seeing more and more consolidation
in the insurance industry. The industry simply cannot support so many carriers
in the long run. Small and medium sized carriers will disappear at an accelerating
rate and will be able to survive only if they turn themselves into insurance
boutiques - that is, only if they offer something unique in the way of expertise,
product, or service to their ultimate customers. Even the larger companies have
discovered that they cannot be successful being all things to all people. Even
those companies are trying to restructure themselves into conglomerations of
specialty segments. Mergers and acquisitions will, therefore, increase greatly in
the coming years and actuaries will be called upon to play an important role in
those activities. It is clearly the actuary who is best able to assess the proper
value of the companies involved. But actuaries will need to be much more
knowledgeable in financial matters than we currently are. This is an area where
our syllabus has traditionally been weak, though I am pleased to see that we
have already begun to work on strengthening the financial content, and I believe
we will see much more of this in the future. Presently, there are very few
actuaries who serve as chief financial officers of their companies, but, in my
opinion, actuaries have that unique combination of broad knowledge of the
insurance business and quantitative skills which, if combined with an increase
in financial expertise, make actuaries the ideal chief financial officers for insur-
ance companies.

At the same time, our customers have become much more financially
sophisticated. After years and even decades of modest inflation and low and
stable interest rates, we saw a rapid acceleration in the late 1970s and the early
1980s, with inflation rates rising into the double digits and interest rates ap-
proaching 20%. No longer were people satisfied putting their savings into pass-
book accounts paying 4% . Consumers ran from bank to bank looking for higher
yields on certificates of deposit, money market funds, tax deferred annuities,
and all forms of high yielding securities or tax deferred investments. The so-
called cash flow underwriting of the last cycle was not solely driven by indi-
vidual companies’ desires to increase their market shares and get the use of
premium dollars in order to invest in high yield securities. It was also driven by
the sophistication of the large commercial insured who became very conscious
of the cost of money and wanted that to be reflected in his insurance arrange-
ment. To some extent, even smaller commercial insureds and individuals became
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very conscious of the cost of money in the insurance process, as installment
plans proliferated, often at little or no finance charge. During the last decade
the genie escaped from the bottie, and make no mistake about it, we are never
going to get the genie to go back into the bottle.

Even though interest rates have dropped dramatically and inflation has been
reduced to a very modest and fairly stable level for the last couple of years, we
can expect to see much more consciousness of the value of money. Not only
will large commercial insureds be interested in cash flow type programs, but the
same concepts will expand into the medium size account range. Insureds have
also become more aware of alternatives available to them in managing their risk.
Unless tax considerations make it undesirable to do so, more and more insureds
will choose to retain or self insure the lower layers or relatively predictable
levels of losses and will demand an unbundling of their insurance programs.
Thus, companies will increasingly get into the sale of services with insurance
provided only for the levels which the insured decides he cannot afford to retain.
I believe the same will apply to the personal lines area, as individuals will
increasingly be willing to self insure and raise average deductibles sharply.
Finally, the products offered by our industry will cross traditional barriers with
contracts beginning to encompass both the personal and commercial needs of
the customer, property and casualty as well as life insurance needs, insurance
plus other financial service needs, and all of this will become international in
scope.

For actuaries, this process will have enormous implications. Our knowledge
and our skills will have to expand rapidly to keep pace with these developments.
In designing and pricing our products, we will no longer be able to assume
refatively stable inflation or interest rates. We will have to develop the ability
to assess the risks and determine the appropriate financial reward, explicitly
dealing with this important variable. We have been through only one, relatively
brief period of sharply changing inflation rates, and our track record of reserving
and pricing in that environment was certainly very poor. Insurance companies
in other countries deal with this problem constantly, and we will need to develop
the sophisticated methodologies to separate this risk element and build it into
our modeling approaches.

This changing environment also highlights the important task we face of
learning to measure the true surplus needs of our business. For years we have
lived by rules of thumb of premium to surplus relationships, as a rough measure
of the capital requirements of our business. We have all known of the deficien-
cies in this approach and they have never been more obvious than in recent
years. Whether explicitly or implicitly, all companies do, and will continue to
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do, business on a total return basis. That total return must be measured in
relation to the capital requirements and then compared to an appropriate target
return in order to retain and attract capital to our business. We can no longer
live with simplistic measures of surplus or with relative surplus requirements for
different lines of business. We need to develop and refine the theoretical means
to determine absolute surplus needs and this must be done on a product by
product basis. Clearly, the surplus requirements are quite different if an insurer
is providing ground up coverage as compared to catastrophic layers only. If we
fail to get our hands around this problem, we are not only doomed to go through
further severe underwriting cycles, but also to see a large number of insurer
insolvencies in the coming years.

In the long run, economic realities will break down most political and
regulatory barriers. We are already seeing an increasing internationalization of
our business and more is certain to come. Presently, North America generates
the lion’s share of the insurance business worldwide. While there will undoub-
tedly be future growth in our part of the world, the business here is relatively
mature, but the growth opportunities in other parts of the world are simply
enormous. This puts the CAS in a very interesting position. We remain the only
actuarial organization in the world solely devoted to educating and accrediting
actuaries specifically in the property and casualty insurance area. But almost all
of our members, with only a literal handful of exceptions, reside in North
America. Is actuarial science really nation-specific or is it merely some of the
exam content and the language of our syllabus and exams that limit its scope?
Shouldn’t there be some way for the Casualty Actuarial Society to play a larger
role in the education and development of casualty actuaries in other parts of the
world? There are many problems to overcome in attempting this, not the least
being political, but it is an area which I would recommend that our future leaders
explore since we are in a unique position to aid in the development of the
property and casualty insurance business throughout the world.

The insurance business has been through some tough times lately and more
difficulties and challenges face us in the years ahead. If the business were
simple, it would be no fun and certainly there would be little need for actuaries.
However, just as the genie will never go back into the bottle, our business will
never become simple again. In fact, quite the contrary. As the business becomes
more complex and our customers more sophisticated, actuaries must do likewise.
The ability to evaluate and quantify risk and the appropriate reward will differen-
tiate the successful from the unsuccessful company. And actuaries will, there-
fore, play an increasingly key role in the business. I think that few, if any, of
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us have regretted our decisions to become actuaries. We are part of a fascinating,
vital business and members of a vibrant and growing actuarial organization. We
have come a long way since our first actuary, Joseph, and the future we face is
bright and exciting.
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MINUTES OF THE 1986 ANNUAL MEETING
November 9-11, 1986

OPRYLAND HOTEL. NASHVILLE, TENNESSEE

Sunday, November 9, 1986

The Board of Directors held their regular quarterly meeting from 12:00 p.m.
to 4:00 p.m.

Registration was held from 4:00 p.m. to 6:30 p.m.

A presentation to the new Fellows and Associates on the workings of the
Casualty Actuarial Society was held from 5:30 to 6:30 p.m. The Vice Presidents
made short presentations concerning their areas of responsibility and the work-
ings of the committees which report to each of them.

A general reception for all members and guests was held from 6:30 to 7:30
p.m.

Monday, November 10, 1986
Registration continued from 7:00 a.m. to 7:55 a.m.

President Phillip Ben-Zvi opened the meeting at 8:00 a.m. The first order
of business was the admission of new members. Mr. Ben-Zvi recognized the
24 new Associates and presented diplomas to the 36 new Fellows. The names
of these individuals follow.

FELLOWS

Amundson, Richard B.

Bailey, Victoria M.
Bellusci, David M.
Chiang, Jeanne D.
Driedger, Karl H.
Faltas, Bill

Forde, Claudia S.
Hankins, Susan E.

Hollister, Jeanne M.
Hosford, Mary T.
Huyck, Brenda J.
Johnson, Andrew P.
Kelley, Robert J.

Klinker, Frederick L.

Koupf, Gary I.
Krakowski, Israel

Littmann, Mark W.
Livingston, Roy P.
Loper, Dennis J.
Lyons, Daniel K.
Martin, Paul C.
McClure, John W., Jr.
McDonald, Gary P.
Menning, David L.



Myers, Thomas G.

Naovea Tamac W

INUyLL, salivs vy .

Potts, Cynthia M.
Reppert, Daniel A.

Aquino, John G.
Atkinson, Roger A., III
Billings, Holly L.
Blakinger, Jean M.
Davis, Brian W,
Feldblum, Sholom
Francis, Louise A.
Gorvett, Richard W.
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Ruegg, Mark A.

Qilyar Malyin
DIYOL, viCiviin 3,

Temrill, Kathleen W.

ASSOCIATES

Griffith, Roger E.
Groh, Linda M.
Handte, Malcolm R.
Harbage, Robin A.
Hill, Tony D.

Johnson, Eric J.

Leiner, William W., Jr.
Mueller, Nancy D.
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Townsend, Christopher J.
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Weinman, Stacy J.

Mulvaney, Mark W.
Schwandt, Jeffory C.
Snow, David C.
Svendsgaard, Christian
Sweeney, Eileen M.
Wachter, Christopher J.
Wacker, Gregory M.
Whitehead, Guy H.

Mr. Ben-Zvi then introduced M. Stanley Hughey, who delivered a brief
speech to the new members concerning the responsibilities of a casualty actuary.

Mr. Ben-Zvi then introduced Mike Fusco, Vice President of Programs, who
gave a brief summary of the program content.

Mr. Ben-Zvi next introduced Stephen Philbrick, Chairman of the Committee
on the Review of Papers, who gave a brief summary of the new Proceedings
papers. Mr. Ben-Zvi then called for reviews of prior papers from those in the

audience. There were none.

Mr. Ben-Zvi concluded the business session at 9:00 a.m.

At 9:00 a.m., Representative John J. LaFalce delivered the keynote speech.
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At 10:30 a.m., Ms. Mavis Walters moderated a panel entitled “The Liability
Crisis—Legislative, Regulatory and Company Perspectives.” Her panel con-
sisted of:

David Gates
Commissioner
Nevada Insurance Division

Judge Frederick B. Karl
Partner
Karl, McConnaughhay, Roland, Maida and Beal

Peter Lardner
President and CEO
Bituminous Casualty Corporation

The panelists reviewed their thoughts on the current hability crisis.

Lunch was served from 12:00 to 1:30 p.m. Mr. E. J. Fennell. a reinsurance
consultant, delivered a luncheon speech.

Beginning at 1:30 p.m.. there were a series of concurrent sessions, including
five Proceedings paper presentations, and four workshops.

The new Proceedings papers presented were:

“A Probabilistic Model for IBNR Claims™
Farrokh Guiahi, Assistant Professor
Hofstra University

“The Cash Flow of a Retrospective Rating Plan™
Glenn G. Myers, Associate Professor
Dept. of Statistics and Actuarial Sciences
Division of Mathematical Science
The University of lowa

“The Cost of Mixing Reinsurance”
Ronald F. Wiser, Senior Actuarial Officer
St. Paul Fire & Marine Insurance Co.

“A Bayesian Credibility Formula for IBNR Counts™
Dr. 1. Robbin, Director & Actuarial Associate
CIGNA Corporation
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“A Formal Approach to Catastrophe Risk Assessment and
Management”
Karen M. Clark, Vice President
InSoft, Inc.

The workshops covered the following topics:
1. “An Actuary’s Perspective on: Underwriting”

Moderator: Russell S. Fisher, Second Vice President
General Reinsurance Corporation

Panelists:  Frank Neuhauser, Vice President & Actuary
AIG Risk Management

Dennis R. Henry, Vice President
Huggins Financial Services

2. “An Actuary’s Perspective on: Data Management”
CAS Committee on Management Data and Information
Michael F. McManus, Chairman

Edward W. Ford Donna S. Munt
Anthony J. Grippa Raymond F. Nichols
Philip D. Miller Glenn J. Pruiksma

3. “An Actuary’s Perspective on: Marketing”

Moderator:  David Skurnick, Vice President & Actuary
F&GRe

Panelists: James R. Young, Vice President — Sales
Allstate Insurance Company

David M. Klein, Second VP — Marketing
Hartford Insurance Company

4. “Personal Umbrella Ratemaking”

Moderator:  Robert T. Muleski, Associate Actuary
Liberty Mutual

Panelists:  Alice H. Gannon, Actuary
USAA

Lee R. Steeneck, Second Vice President
General Reinsurance Corporation



232 NOVEMBER MINUTES

The President’s Reception was held from 6:30 p.m. to 7:30 p.m.

Tuesday, November 11, 1986

Tuesday moming from 8:30 a.m. until 11:30 a.m. was devoted to a contin-
uation of the concurrent sessions from Monday afternoon.

Mr. Ben-Zvi reconvened the business session at 11:45 a.m. and delivered
his Presidential Address.

Lunch was served at 12:15 p.m.

At 1:30 p.m.. Mr. Kevin Ryan moderated a panel entitled “How Will Tort
Reform Affect Claim Costs and [nsurance Availability?” His panel consisted
of:

Anne E. Kelly
Assistant Chief Consulting Actuary
New York Insurance Department

Franklin W. Nutter
President
Alliance of American Insurers.

Sidney Gilreath

Parliamentarian

Association of Trial Lawyers of America

Mr. Ben-Zvi then closed the meeting and thanked those individuals who had

planned the meeting and executed those plans. The meeting was adjourned at
3:15 p.m.
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In attendance, as indicated by registration records, were 159 Fellows,
61 Associates, 9 Guests, 11 Subscribers, 7 Students, and 76 Spouses.

FELLOWS
Aldorisio, R. P. Finger, R. J. Kilbourne, F. W.
Alff, G. N. Fisher, R. S. Klein, D. M.
Amundson, R. B. Fitzgibbon, W. J., Jr. Kleinman, J. M.
Bailey, R. A. Ford, E. W. Klinker, F. L.
Bailey, V. M. Forde, C. S. Koski, M. 1.
Bashline, D. T. Fowler, T. W. Koupf, G. I.
Bass, 1. K. Furst, P. A. Krakowski, I.
Baum, E. J. Fusco, M. Krause, G. A.
Bell, L. L. Gannon, A. H. Kucera, J. L.
Bennett, N. J. Gleeson, O. M. Larose, J. G.
Bensimon, A. S. Golz, J. F. Lehman, M. R.
Ben-Zvi, P. N. Gottlieb, L. R. Levin, J. W.
Bertles, G. G. Graves, J. S. Linden, O. M.
Bili, R. A. Grippa, A. J. Lino, R. A.
Blanchard, R. S., 11l Hafling, D. N. Livingston, R. P.
Bornhuetter, R. L. Hallstrom, R. C. Loper, D. 1.
Bothwell, P. T. Hankins, S. E. Lyons, D. K.
Brooks, D. L. Hartman, D. G. Macginnitie, W. J.
Brubaker, R. E. Harwayne, F. Mabhler, H. C.
Bryan, C. A. Hein, T. T. Marker, J. O.
Ciezadlo, G. J. Henry, D. R. Martin, P. C.
Cis, M. M. Honebein, C. W. Mathewson, S. B.
Crowe, P. J. Hoppe, K. J. McClure, J. W., Ir.
Curry, A. C. Hughey, M. S. McDonald, G. P.
Daino, R. A. Huyck, B. J. McManus, M. F.
Davis, L. S. Inkrott, J. G. Menning, D. L.
Dean, C. G. Johe, R. L. Meyer, R. E.
Degerness, J. A. Johnson, A. P. Meyers, G. G.
Donaldson, J. P. Johnson, L. D. Miccolis, J. A.
Dornfeld, J. L. Johnson, M. A. Miccolis, R. S.
Evans, G. A. Kallop, R. H. Miller, M. J.
Eyers, R. G. Kaufman, A. M. Miller, P. D.
Fallquist, R. J. Kelley, R. J. Mohl, F. I.
Fein, R. 1. Kelly, A. E. Mulder, E. T.

Ferguson, R. E. Khury, C. K. Muleski, R. T.
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Munro, R. E.
Munt, D. S.
Murdza, P. J., Ir.
Murrin, T. E.
Myers, T. G.
Newman, S. H.
Nichols, R. S.

Naovee T W
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Patrik, G. S.
Petersen, B. A.
Phillips, H. J.
Pinney, A. D.

Potts, C. M.

Pratt, J. J.
Pruiksma, G. J.
Purple, J. M.
Reppert, D. A.
Riddlesworth, W. A.

Anderson, B. C.
Aquino, J. G.
Atkinson, R. A, III
Balling, G. R.
Billings, H. L.
Blakinger, J. M
Cadorine, A. R.
Chorpita, F. M.
Clark, D. G.
Comstock, S. J.
Connor, V. P.
Costner, J. E.
Crifo, D. A.
Douglas, F. H.
Driedger, K. H.
Easlon, K.
Feldblum, S.

NOVEMBER MINUTES

FELLOWS

Rodermund, M.
Roth, R. J., Jr.
Ruegg, M. A.
Ryan, K. M.
Scheibl, J. A.
Schwartz, A 1.
Shrum, R. G.
Silver, M. S.
Simon, L. J.
Skurnick, D.
Smith, F. A.
Smith, L. M.
Snader, R. H.
Steeneck, L. R.
Strug, E. J.
Suchoff, S. B.
Surrago, J.
Terrill, K. W.

ASSOCIATES

Francis, L. A.
Gorvett, R. W.
Griffith, R. E.
Groh, L. M.
Harbage, R. A.
Head, T. F.
Hill, T. D.
Jaso, R. J.
Jensen, J. P.
Johnson, E. I.
Johnson, R. W.
Johnson, W. A.
Kollmar, R.
Lafrenaye, C.
Masella, N. M.
Montigney, B. A.
Mueller, N. D.

Tiller, M. W.
Toothman, M. L.
Townsend, C. J.
Tuttle, J. E.
Tverberg, G. E.
Van Slyke, O. E.
Venter, G. G.

Vitale 1T A

yoamw, L. N

Walters, M. A.
Walters, M. A.
Webb, B. L.
White, C. S.
White, D. L.
Wilson, J. C.
Wiseman, M. L.
Wiser, R. F.
Wright, W. C., Il
Zatorski, R. T.

Mulvaney. M. W,
Napierski, J. D.
Neuhauser, F., Jr.
Orlowicz, C. P.
Pei, K. J.

Putney, A. K.
Riff, M.
Sansevero, M., Jr.
Schultz, R. A.
Schwandt, J. C.
Simons, M. M.
Snow, D. C.
Steinen, P. A.
Svendsgaard, C.
Sweeney, E. M.
Torgrimson. D. A.
Urschel, F. A.
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ASSOCIATES

Van Cleave, M. E. Wacker, G. M. Whitehead, G. H.
Visner, S. M. Waldman, R. H. Wilson, O. T.
Von Seggern, W. J. Webb, N. H. Youngner, R. E.
Wachter, C. J.

GUESTS — SUBSCRIBERS — STUDENTS
Booher, J. P. Fujii, Y. Robbin, 1.
Brickman, S. J. Gutman, E. Roberts, J.
Clark, K. Huang, M. L. Santomenno, S.
Davis, B. Ingraham, H. G., Jr. Smith, D. A.
Demarlie, G. Jensen, P. A. Taylor, J.
Earls, R. R. Lepere, C. Thomas, A. M.
Fennell, E. Maxon, R. G. Van Leer, P.
Guiahi, F. Michelson, J. Wilson, G.

Franz, V. Mohler, E. Wright, J.
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REPORT OF THE VICE PRESIDENT-ADMINISTRATION

The purpose of this report is to provide the membership with a brief summary
of CAS activities since the last annual meeting.

1986 was a good year for the CAS with 106 new members admitted and
total membership climbing to 1.275. Recognizing that continued rapid growth
could impair the ability of the CAS office to continue its etficient operation, a
study of the future of the CAS office wus undertaken in 1985, During 1986,
the following recommendations which emerged from the study were imple-
mented:

An additional statt member. Jennifer Dewar. joined the CAS oftice as
Assistant Manager.

New and expanded CAS office space has been occupied by the staff.
Computer hardware (IBM PC-AT) and software have been acquired.

All financial and accounting records have been automated.

Examination registration and student examination history arc being auto-
mated.

The CAS is also financially healthy. Despite the expansion of the CAS
office, surplus was increased during fiscal year 1986. A budget for fiscal year
1987 approaching $600.000 was approved with no increase in dues or exami-
nation fees.

The Board of Directors, with prime responsibility for setting policy, met
four times in 1986. A meeting of the CAS Regional Affiliates was held in
conjunction with the February Board meeting. Several policy decisions were
made. These policies were published in the Actuarial Review and also appear
in the 1987 edition of the Yearbook.

The Executive Council, with primary responsibility for day to day activities,
also met four times during the year. Continuing with the precedent established
last year, the Committee Chairpersons meeting was held in conjunction with
the April mecting of the Executive Council.
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The activities of both the Board and the Council included the following
items:

* Guidelines were established for maintaining the CAS surplus at an appro-
priate level.

- Guidelines were established for the administration of CAS trusts, me-
morials, and bequests.

- A policy for the investment of CAS funds was adopted.

* A policy was adopted allowing CAS meetings to be open for press
coverage.

-+ Separate U.S. and Canadian Part 8 examinations were authorized begin-
ning in 1987.

* The Syllabus was revised with respect to jointly administered examinations
to reflect modifications resulting from the Society of Actuaries’ flexible
education program.

- The Board of Directors authorized exposure of an amendment to Article
II of the CAS Constitution. Article II deals with the purpose of the CAS.

- A discussion draft of Ratemaking Principles was authorized for distribution
to the membership.

- A Committee on Financial Analysis was appointed replacing the Com-
mittee on Financial Reporting Principles.

- A Committee on Valuation Principles and Techniques was created under
the Vice President-Development. The appointment resulted from the rec-
ommendations of a Task Force appointed in 1985 to study and plan for
CAS activities related to the valvation actuary issue. The purpose of the
committee is to develop valuation principles and techniques applicable to
property/casualty business and to monitor development in this area.

* The Casualty Actuaries of the Bay Area became a new regional affiliate.

- The CAS extended an invitation to ASTIN to hold a colloquium in the
United States in November 1989.

- Joint sponsorship with the CIA of a Canadian loss reserve seminar was
authorized.
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For 1987, the Board of Directors clected the tollowing Vice Presidents:

Vice President-Administration Richard Snader
Vice President-Development Charles Bryan
Vice President-Membership Michael Toothman
Vice President-Programs Michael Fusco

The membership elected David Hartman as President-Elect and four new
Board members: Irene Bass. Allan Kautman. LeRoy Simon and David Skurnick.

Finally. the Audit Committee cxamined the CAS books for fiscal year 1986
and found the accounts to be properly stated. The year ended with an increase
in surplus of $61.,905.48. Members™ cquity now stands as $330.563.38. sub-
divided as follows:

Michelbacher Fund $64.351.65
Dorweiler Fund 9.703.83
CAS Trust 2.195.78
Scholarship Fund 7.288.19
CLRS Fund 5.000.00
CAS Surplus 242.023.93

$£330.563.38
Respectfully submitted.

RICHARD H. SNADER
Vice President-Administration
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FINANCIAL REPORT

FISCAL YEAR ENDED 9/30/86 (ACCRUAL BASIS)

INCOME

Dues
Exam Fees
Meetings
Proceedings
Readings
Invitational Program
Interest
Actuarial Review
Yearbook
Miscellaneous
Total

Income
Expenses
Change in CAS Surplus

DISBURSEMENTS

$ 146,872.80 Printing & Stationery
137.324 72 Office Expenses
217,893.34 Exam Expenses
9,456.50 Meeting Expenses
21,056 15 Library
8.740 00 Insurance
35.809 76 Math. Assoc of America
234.50 Pres & Pres -Elect
1,684.00 Expenses
256 63) Diamond Jubilee Expense
§578.815 14  Reserve
Qther
Total
$578.815.14
516,909.66
$61,905 48

$191,947.95
124,041.54
1,934 49
157.750 39
70538
8,778 65
2,000.00

7.500 00

18,729.37
3.521.89

$516.909.66

ACCOUNTING STATEMENT (ACCRUAL BASIS)

ASSETS 9/30/85 9/30/86 CHANGE
Checking Account $ 125980 § 6331338 $ 62,053.58
Money Market Fund 143,120.28 175,786 78 32,666.50
Bank Certificates of Deposit 0.00 100.000.00 100,000.00
U S Treasury Notes & Bilis 222.926.78 243,247.83 20.,321.05
Accrued Interest 11.684.06 9,443.40 {2.240 66)
CLRS Fund 0.00 5,000.00 5.000.00
Total Assets $378,990.92  $596.79139  $217,800.47
LIABILITIES
Oftice Expenses $ 30.000.00 $ 3496500 $ 496500
Printing Expenses 30.611.00 146,133.06 115,522.06
Prepaid Examination Fees 45767 00 55712 20 9.945 20
Meeting Expenses & Prepaid Fees 13.813.02 10.43538 (3.377 64)
Diamond Jubilee Expense Reserve 0 18,729.37 18,729.37
Other 0 253.00 253.00
Totat Liabilities $120,19102  $266,228.01 $146.036.99
MEMBERS' EQUITY
Michelbacher Fund $ 5368187 § 6435165 $ 466978
Dorweiler Fund 9.881.80 9,703.83 (177.97)
CAS Trust 2.005 28 219578 190.50
Scholarship Fund 7.112.50 7.28819 175.69
CLRS Fund 0.00 5,000.00 5,000.00
CAS Surplus 180.118.45 242,023 93 61,905 48
Totat $258,799.90  $330,563 38 $ 71,763.48

Richard H. Snader
Vice President—Admnistration

This is to certify that the assels and accounts shown in the above financial statement

have been audited and found to be correct

Audit Commuttee

David M. Klein, Chairman
Alpert J Quirin

William J. Rowland
Charles Walter Stewart
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1986 EXAMINATIONS—SUCCESSFUL. CANDIDATES

Examinations for Parts 4, 6. 8. and 10 of the Casualty Actuarial Society
were held on May 6. 7. 8. and 9. 1986. Examinations for Parts 5. 7, and 9
were held on November 5. 6, and 7. 1986.

Examinations for Parts 1. 2. and 3 are jointly sponsored by the Casualty
Actuarial Society and the Society of Actuaries. These examinations were given
in May and November of 1986. Candidates who passed these examinations
were listed in the joint releases of the two societies.

The Casualty Actuarial Society and the Society of Actuaries jointly awarded
prizes to the undergraduates ranking the highest on the General Mathematics
examination. For the May, 1986 examination, the $200 prize was awarded to
Robert B. Cumming. The additional $100 prize winners were Nathaniel G.
Calvin, Ampon Dhamacharden, Christopher Lattin, Ralph L. Neill, and Michael
Reid. For the November, 1986 examination, the $200 prize was awarded to
Scott N. Wilson. The additional $100 prize winners were Andrew K. Fung.
Siu C. Szeto, Thomas S. Watts, Thomas A. Zeller, und Josh A. Zirin.

The following candidates were admitted as Fellows and Associates at the
November, 1986 meeting as a result of their successful completion of the Society
requirements in the May, 1986 examinations.

FELLOWS
Amundson, Richard B. Kelley, Robert J. Menning, David L.
Bailey, Victoria M. Klinker, Frederick L. Myers, Thomas G.
Bellusci, David M. Koupf, Gary 1. Noyce, James W.
Chiang, Jeanne D. Krakowski, Israel Potts, Cynthia M.
Driedger, Karl H. Littmann, Mark W. Reppert, Daniel A.
Faltas, Bill Livingston, Roy P. Ruegg, Mark A.
Forde, Claudia S. Loper, Dennis J. Silver, Melvin S.
Hankins, Susan E. Lyons, Daniel K. Terrill, Kathleen W.
Hollister, Jeanne M. Martin, Paul C. Townsend, Christopher J.
Hosford, Mary T. McClure, John W, Jr. Vitale, Lawrence A.
Huyck, Brenda J. McDonald, Gary P. Weinman, Stacy J.

Johnson, Andrew P.



Aquino, John G.
Atkinson, Roger A., I
Billings. Holly L.
Blakinger, Jean M.
Davis, Brian W.
Feldblum, Sholom
Francis, Louise A.
Gorvett, Richard W.
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ASSOCIATES

Griffith, Roger E.
Groh, Linda M.
Handte, Malcolm R.
Harbage, Robin A.
Hill, Tony D.

Johnson, Eric J.
Leiner, William W., Jr.
Mueller, Nancy D.

Mulvaney, Mark W.
Schwandt, Jeffory C.
Snow, David C.
Svendsgaard, Christian
Sweeney, Eileen M.
Wachter, Christopher J.
Wacker, Gregory M.
Whitehead, Guy H.

The following is the list of successful candidates in examinations held in

May, 1986
Part 4

Abellera, Daniel N.
Atkins, Heather E.
Atkinson, Roger A., III
Beaulieu, Gregory S.
Belleau, Richard
Blackburn, Wayne E.
Boisjoli, Marthe
Bonte, Sharon
Book, Steven W.
Bourassa, Pierre
Buckley, Joseph
Burt, Richard F., Jr.
Burrill, Linda J.
Cain, Mark J.
Carpentier, Marie
Casale, Kathleen N.
Chaffee, Janet L.
Champagne, Mario
Cloutier, Jean

Coca, Michael A.
Cofield, Joseph F.
Colton, Gary §.
Crowe, Alan M.
Daniels, Paul F.

Daoust, Alain

Darby, Robert N.
Dineen, David K.
Edlefson, Dale
Elliott, Angela F.
Ely, James

Emmons, William E.
Ewert, John S.
Fitzpatrick, Kerry L.
Gendelman, Nathan J.
Ghezzi, David J.
Giles, John S.
Gorvett, Richard W.
Gozzo, Susan M.
Griffith, Roger E.
Hebert, Norman P.
Hess, Todd J.
Higgins, James S.
Huang, Ming-I
Jovinelly, Edward M.
Klinger, Kenneth A.
Kopel, Noson
Kryczka, John R.
Larner, Kenneth P. W.

Laurin, Michel
Lepage, Pierre

Li, Siu Kuen

Maher, Christopher P.
Mahoney, Michael W.
Martin, Claude

Math, Steven
McKay, Donald R.
Moylan, Thomas G.
Nemlick, Kenneth J.
Nerone, Anthony J.
Nesmith, Robin
Nonken, Peter M.
Orrett, Todd F.
Palmer, Donald D.
Papadopoulos, Constantina
Peck, Steven C.
Pestcoe, Marvin

Plano, Richard A.
Pompeii, Peter A.
Royek, Peter A.
Santoro, Lawrence
Schmid, Valerie L.
Schoenberger, Susan C.



Schug, Richard D.
Schwab, Debbie
Sclafane, Susanne
Seeley, Alan R.
Seto, Hopland
Sheng, Michelle G.
Silverman, Jack
Simi, Laura J.

Part 6

Aquino, John G.
Artes, Lawrence J.
Bennighof, Kay E.
Billings, Holly L.
Blakinger, Jean M.
Boisvert, Paul, Jr.
Boudreau, Joseph J.
Bourdon, Theresa A.
Brathwaite, Malcolm
Brehm, Paul J.
Caulfield, Michael
Conway, Ann M.
Cote, Jean
Crawshaw, Mark

Creighton, Kenneth M.

Cross, Susan L.
Davis, Brian W.
Davis, James R.
Desbiens, Carol
Doe, David A.

Dumontet, Francois R.

Erlebacher, Alan J.
Feldblum, Sholom
Francis, Louise A.
Frank, Jacqueline B.
Gergasko, Richard J.
Gibson, Richard N.
Girard, Gregory S.
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Sperger, Mary Jean
Stefanek, John P.
Steinert, Lawrence J.
Stoffel, Judith E.
Stone, Edward C.
Strommen, Douglas N.
Sublett, Sharon

Szczepanski, Chester J.

NEAVASY 1030

Golberg, Leonard R.
Grab, Edward M.
Greene, Alex R.
Griffith, Ann V.
Groh, Linda M.
Haefner, Larry A.
Hampshire, Michaet H.
Handte, Malcolm, R.
Harbage, Robin A.
Hawley, Karin S.
Hays, David H.
Heyman, David R.
Hill, Tony D.

Hines, Alan M.
Johnson, Eric J.
Johnston, Steven J.
Joyce, John J.
Keatinge, Clive L.
Kinson, Paul E.
Kohan, Richard F.
Krissinger, Kenneth R.
Lalonde, David A.
Lamb, Dean K.
LaPointe, Susan E.
Lebens, Joseph R.
Leiner, William W ., Jr.
Mahon, Mark J.
Maud, Christine E.

Vandermyde, Scott D.
Van de Water, John V.
Vasek, William
Weihrich, Leslie D.
White, William A.
Whitehead, Guy H.
Wildman, Peter W.

Wong, Windrie

Michelson, Jon W.
Miller, Mary F.
Mueller, Nancy D.
Mulvaney, Mark W.
Naylor, Walter R.
Nelson, Chris E.
Perigny, Isabelle
Pino, Susan L.
Proska, Mark R.
Raman, Sasikala
Rouillard, Marc L.
Salton, Melissa A.
Samson, Sandra
Schadler, Thomas E.
Schlenker, Sara E.
Schultze, Mark E.
Schwandt, Jeffory C.
Snow, David C.
Stahley, Barbara A.
Sterling, Mary E.
Svendsgaard, Christian
Sweeney, Eileen M.
Wachter, Christopher J.
Wacker, Gregory M.
Weisenberger, Peter A.
Werland, Debra L.
Yit, Bill S.



Part 8

Anderson, Mary V.
Atkinson, Richard V.
Boor, Joseph A.
Brown, Brian Y.
Busche, George R.
Carlton, Kenneth E.
Comstock, Susan J.
DeLiberato, Robert V.
Dezube, Janet B.
Dickinson, Donna R.

DiDonato, Anthony M.

Dodge, Scott H.
Ericson, Janet M.
Fanning, William G.
Fitzgerald, Beth E.

Gardner, Robert W.
Gevlin, James M.

Gunn, Christy H.
Haidu, James W.
Hankins, Susan E.

Part 10

Amundson, Richard B.

Bailey, Victoria M.
Bellusci, David M.
Buchanan, John W.

Carpenter, William M.

Chiang, Jeanne D.
Driedger, Karl H.
Englander, Jeffrey A.
Faltas, Bill

Forde, Claudia S.
Guenthner, Denis G.
Hankins, Susan E.
Hollister, Jeanne M.
Hosford, Mary T.
Huyck, Brenda J.
Johnson, Andrew P.
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Hertling, Richard J.
Hughes, Brian A.
Jordan, Jeffrey R.
Klinker, Frederick L.
Krakowski, Israel
Lewandowski, John J.
Miller, Susan M.
Mohrman, David F.

Newell, Richard T., Jr.

Ollodart, Bruce E.
Pechan, Kathleen M.
Pence, Clifford A., Jr.
Peraine, Anthony A.
Peterson, Steven J.
Placek, Arthur C.
Post, Jeffrey H.
Procopio, Donald W.
Quintano, Richard A.
Robbins, Kevin B.

Kasner, Kenneth R.
Kelley, Robert J.
Kneuer, Paul J.
Koupf, Gary I.
Kudera, Andrew E.
Laurin, Pierre G.
Littmann, Mark W.
Livingston, Roy P.
Loper, Dennis J.
Lyons, Daniel K.
Mailloux, Patrick
Martin, Paul C.
McClure, John W., Jr.
McDonald, Gary P.
Menning, David L.
Miller, David L.
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Roesch, Robert S.
Scheuing, Jeffrey R.
Schultz, Roger
Scott, Kim A.
Scully, Mark W.
Sealand, Pamela J.
Shapland, Mark R.
Slusarski, John
Spidell, Bruce R.
Sutter, Russel L.
Tan, Suan-Boon
Taylor, R. Glenn
Volponi, Joseph L.
VonSeggern, William J.
Wainscott, Robert H.
Walsh, Michael C.
Wargo, Kelly A.
Woerner, Susan K.
Yow, James W.

Miller, William J.
Morrow, Jay B.
Myers, Thomas G.
Noyce, James W.
Phillips, George N.
Potts, Cynthia M.
Reppert, Daniel A.
Ruegg, Mark A.
Siczewicz, Peter J.
Silver, Melvin S.
Terrill, Kathleen W,
Townsend, Christopher J.
Vitale, Lawrence A.
Votta, James C.
Weinman, Stacy J.
Williams, Robin M.
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The following candidates will be admitted as Fellows and Associates at the
May, 1987 meeting as a result of their successful completion of the Society
requirements in the November, 1986 examinations.

FELLOWS

Aldin, Neil C. Gapp, Steven A. Montgomery, Warren D.

Barclay, D. Lee
Chuck, Allan

Cripe, Frederick F.
Dye, Myron L.
Eagelfeld, Howard M.
Easlon, Kenneth

Edie, Grover M.

Abell, Ralph L.
Allaire, Christiane
Allard, Jean-Luc E.
Boisvert, Paul, Jr.
Boucek, Charles H.
Boudreau, Joseph J.
Bourdon, Theresa A.

Brathwaite, Malcolm E.

Brehm, Paul J.
Brutto, Richard S.
Buchanan, john W.
Cardoso, Ruy A.
Chen, Chyen
Cieslak, Walter P.
Conway, Ann M.
Crawshaw, Mark
Cross, Susan L.

Der, William
Desbiens, Carol
DiDonato, Anthony M.
Donelson, Norman E.
Ericson, Janet M.

Gruber, Charles

nanthnar Nanic 3
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Homan, Mark J.
Howald, Ruth A.
Keller, Wayne S.
Kneuer, Paul J.
Lee, Robert H.

ASSOCIATES

Fromentin, Pierre
Girard, Gregory S.
Goldberg, Leonard R.
Graves, Gregory T.
Greene, Alex R.
Griffith, Ann V.
Haefner, Larry A.
Hays, David H.
Heyman, David R.
Keatinge, Clive L.
Keen, Eric R.
Klenow, Jerome F.
Krissinger, Kenneth R.
Lacko. Paul E.
Lamb, Dean K.
Laurin, Pierre G.
Lebens, Joseph R.

Leccese, Nicholas M., Jr.

Lewandowski, John J.
Licitra, Sam F.
Liebers, Elise C.
MacKinnon, Brett A.

Onufer, Layne M.

Datit {Charlag T
reuy, wadiics 1.

Raman, Rajagopalan K.
Schilling, Timothy L.
Withers, David A.

McDermott, Sean P.
Miller, Mary F.
Pichler, Karen J.
Plano, Richard A.
Procopio, Donald W.
Proska, Mark R.
Schienker, Sara E.
Schnapp, Frederic F.
Schwab, Debbie
Scott, Kim A.
Shapland, Mark R.
Siczewicz, Peter J.
Taylor, Craig P.
Taylor, R. Glenn
Veilleux, Andre
Votta, James C.
Weber, Robert A.
Wick, Peter G.
Williams, Lincoln B.
Williams, Robin M.
Wilson, Ernest 1.
Yit, Bill S.
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The following is the list of successful candidates in examinations held in

November, 1986.

Part 5
Anderson, Richard R.
Ashman, Martha E.

Bahnemann, David W.

Barton, Frances H.
Beaulieu, Gregory S.
Beck, Douglas L.
Book, Steven W.
Bouchard, Lloyd J.
Bowman, David R.
Bradley, Tobe E.
Bryant, Debbie H.
Buchanan, John W,
Burns, Patrick J.
Burriil, Linda J.
Chaffee, Janet L.
Chan, Sammy S. Y.

Charbonneau, Scott K.

Charest, Danielle
Clark, David R.
Conley, Kevin J.
Cooper, Nancy L.
Cross, Susan L.
Crowe, Alan M.
Curry, Michael K.
Curry, Robert J.
Davenport, Edgar W.
Desnoyers, Lee A.
Ermisch, Jennifer L.
Eska, Catherine E.
Evensen, Philip A.

Fauerbach, Thomas R.

Feldmeier, Judith
Fields, David N.
Fontaine, Andre F.
Fox, Richard L.
Fung, Kai Y.

Gergasko, Richard J.
Giles, John §S.

Goss, Linda M.
Graves, Nancy A.
Gray, Margaret O.

Greenwood, Deborah A.

Grossman, William G.
Hampshire, Michael H.
Heise, Mark A.

Hill, Robert C.

Hoerl, Frederick L.
Iyengar, Sadagopan S.
Johnson, Victor A.
Jones, Brian A.
Jones, William R.
Jonske, James W.
Jovinelly, Edward M.
Kangas, Patricia L.
Kantor, Stephen H.
Kellner, Tony J.
Kido, Chester T.
Kim, Ho K.

Kish, George A.
Klinger, Kenneth A.
Koester, Steven M.
Kot, Nancy E.
Lepage, Pierre
Leveille, Jean-Marc
Li, Siu Kuen

Liebers, Elise C.

Lin, Simon §.

Little, Laurie A.
Lombardi, Paul M.
Mahon, Mark J.
Manley, Laura
McDonnell, Janet A.

McGee, Stephen J.
McKay. Donald R.
Mech, William T.
Mercier, Mark F.
Mitchell, Sandra K.
Murray, David A.
Nesmith, Robin
Nevins, Richard N.
Orrett, Todd F.
Ottone, Joanne M.
Paffenbach, Teresa K.
Palmer, Joseph M.
Papadopolous, Constantina
Paterson, Bruce
Perigny, Isabelle

Poe, Michael D.
Punzak, John K.
Raman, Sasikala
Rau, Thomas O.
Raymond, Stephen E.
Reynolds, Margaret M.
Robertson, James
Roth, Scott J.
Samson, Pierre
Samson, Sandra
Schmidt, Jeffrey W.
Schmitt, Karen E.
Schoenberger, Susan C.
Schutte, Robert J.
Schwartz, Arthur J.
Seeley, Alan R.
Shook, Gary E.
Simons, Rial R.
Spore, Louis B.
Stahiey, Barbara A.
Stauffer, Laurence H.



Strommen, Douglas N.

Sturm, Elissa M.
Subeck, Jeffrey L.

Suchar, Christopher M.

Thomas, Richard D.
Tscharke, Jennifer L.

Vandermyde Scott D.
Van I aar Kannath R
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Part 7

Abell, Ralph L.
Adams, Jeffrey
Allaire, Christiane
Allard, Jean-Luc E.
Boisvert, Paul, Jr.
Boucek, Charles H.
Boudreau, Joseph J.
Bourdon, Theresa A.

Brathwaite, Malcolm E.

Brehm, Paul J.
Brutto, Richard S.
Cadorine, Arthur R.
Cappers, Janet P.
Cardoso, Ruy A.
Chen, Chyen
Cieslak, Walter P.
Conway, Ann M.
Crawshaw, Mark
Der, William
Desbiens, Carol

DiDonato, Anthony M.

Donelson, Norman E.
Elliott, Angela F.
Ely, James

Ericson, Janet M.
Ewert, John S.
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Verges, Ricardo
Vezina, Guy
Weber, Robert A.
Weihrich, Leslie D.
Weinstein, Scott P.

Wellington, Elizabeth A.
Weltmann, L. Nicholas, Jr.

Whalen, William T.

Frank, Jacque B.
Franklin, Barry A.
Fromentin, Pierre
Gaudreault, Andre
Gelinne, David B.
Gendelman, Nathan J.
Gibson, John F.
Girard, Gregory S.
Goldberg, Leonard R.
Graves, Gregory T.
Greene, Alex R.
Greenwalt, Anne G.
Griffith, Ann V.
Grossack, Marshall 1.
Gruber, Charles
Haefner, Larry A.
Hays, David H.
Hebert, Norman P.
Heyman, David R.

Hroziencik, George A.

Jasper, Jane E.
Kartechner, John W.
Keatinge, Clive L.
Keen, Eric R.
Klenow, Jerome F.

Krissinger, Kenneth R.

Wildman, Peter W.
Williams, Janice K.
Williams, Robin M.
Winslow, Martha A.
Wolter, Kathy A.
Wong, Windrie
Yuen, Benny S.

alagl: Danalld T
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Kryczka, John R.
Lacko, Paul E.
LaFrenaye, A. Claude
Lamb, Dean K.
Lamb, John A.
Laurin, Pierre G.
Lebens, Joseph R.

Leccese, Nicholas M., Jr

Lewandowski, John J.
Licitra, Sam F.
MacKinnon, Brett A.
Maher, Christopher P.
McDermott, Sean P.
McNichols, James P.
Miller, Mary F.
Naylor, Walter R.
Nielsen, Lynn
Palenik, Rudy A.
Paterson, Bruce

Peck, Steven C.
Pichler, Karen J.
Plano, Richard A.
Procopio, Donald W.
Proska, Mark R.
Radin, Katherine D.
Schienker, Sara E.



Schnapp, Frederic F.
Schwab, Debbie
Sclafane, Susanne
Scott, Kim A.
Shapland, Mark R.
Siczewicz, Peter J.
Snook, Linda D.

Part 9

Aldin, Neil C.
Aquino, John G.
Atkinson, Richard V.
Atkinson, Roger A., IlI
Balchunas, Anthony J.
Barclay, D. Lee
Billings, Holly L.
Cartmell, Andrew R.
Chuck, Allan
Comstock, Susan J.
Cripe, Frederick F.
Davis, Dan J.
DeFalco, Thomas J.

Diamantoukos, Christopher

Dye, Myron L.
Eagelfeld, Howard M.
Easlon, Kenneth
Edie, Grover M.
Englander, Jeffrey A.
Fasking, Dennis D.
Feldblum, Sholom
Francis, Louise A.
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Stoffel, Judith E.
Styczynski, Mary Jjane
Taylor, Craig P.
Taylor, R. Glenn
Veilleux, Andre
Votta, James C.
Watkins, Nancy P.

Gapp, Steven A,
Glicksman, Steven A.
Guenthner, Denis G.
Halpert, Aaron
Homan, Mark J.
Howald, Ruth A.
Johnson, Eric J.
Jordan, Jeffrey R.
Keller, Wayne S.
Kneuer, Paul J.
Kreps, Rodney E.
Lee, Robert H.
Lessard, Alain
Marles, Blaine C.
Miller, Susan M.
Mohrman, David F.
Montgomery, Warren D.
Mueller, Nancy D.
Muller, Robert G.
Onufer, Layne M.
Pence, Clifford A., Jr.
Peraine, Anthony A.

247

Wick, Peter G.
Williams, Lincoin B.
Wilson, Ernest 1.
Yates, Patricia E.
Yit, Bill S.

Petit, Charles 1.
Phillips, George N.
Placek, Arthur C.
Quintano, Richard A.
Raman, Rajagopalan K.
Roesch, Robert S.
Schilling, Timothy L.
Scully, Mark W.
Spidell, Bruce R.
Steinen, Phillip A.
Svendsgaard, Christian
Tan, Suan-Boon
Trudeau, Michel
Turner, George W., Jr.
Visintine, Gerald R.
Wainscott, Robert H.
Wallace, Thomas A.
Wargo, Kelly A.
Whitehead, Guy H.
Withers, David A.
Wrobel, Edward M.
Yow, James W.
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Mo Lo N
NEW FELLOWS ADMITTED MAY 1986 (Left to Right): First row: Phil Ben-Zvi (President),
Martin Lewis, Robert Bear, Mark Allaben, James Domnfeld: Second row: Barry Lipton, Greg
Hayward, Rhonda Port, Kathy Curran, Karen Nester: Third row: Allen Hall, Nancy Treitel, Robert
Miller; Fourth row: Wallis Boyd, Isaac Mashitz, Michael Smith, William Murphy: Fifth row: Dan
Clark, Janice Berry, Charles White.
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NEW ASSOCIATES ADMITTED MAY 1986
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NEW FELLOWS ADMITTED NOVEMBER, 1986 (Left to Right): First Row: Gary Koupf, Susan Hankins, Victoria Bailey,
Brenda Huyck, Cynthia Potts, Phil Ben-Zvi (President), Daniel Reppert, Richard Amundson, Karl Driedger; Second Row: Claudia
Forde, Mark Ruegg, Mary Hosford, Jim Noyce, Paul Martin, John McClure, Fred Klinker, Tom Myers; Third Row: Daniel Lyons,
Kathleen Terrill, Andrew Johnson, Melvin Silver, Gary McDonald, Christopher Townsend, Lawrence Vitale; Fourth Row: Israel
Krakowski, Roy Livingston, Robert Kelley, David Menning, Dennis Loper.

0sT




NEW ASSOCIATES ADMITTED NOVEMBER, 1986 (Left to Right): First Row: Nancy Mueller, Phil Ben-Zvi (President), Jean
Blakinger, Louise Francis, Sholom Feldblum, Jeffory Schwandt; Second Row: Roger Griffith, Gregory Wacker, Mark Mulvaney,
John Acquino, Christian Svendsgaard; Third Row: Holly Billings, Linda Groh, Eileen Sweeney, Christopher Wachter, David
Snow: Fourth Row: Guy Whitehead, Eric Johnson, Richard Gorvett, Roger Atkinson, Brian Davis, Robin Harbage.
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Bruce W. Batho
James B. Haley. Jr.
Mark Kormes
Murray W. Latimer
Richard Pennock
Rajaratnam Ratnaswamy
Harwood Rosser
David A. Tapley
Walter 1. Wells

BRUCE W. BATHO
1908-1986

Bruce Max Willard Batho, an Associate of the Casualty Actuarial Society
since 1940, died on February 9. 1986, at the age of 77.

Born in Winnipeg. Manitoba, Canada, Mr. Batho was educated at the
University of Manitoba. He graduated magna cum laude with a business ad-
ministration degree. He later moved to Springfield. Illinois, and became a United
States citizen in 1938.

Mr. Batho was an assistant actuary for the Illinois State Insurance Depart-
ment, and worked for lllinots insurance companics.

He joined Life of Georgia in 1944 as associate actuary and was clected vice
president and actuary in 1954. A year later. he was eclected to the board of
directors. He was named comptroller in 1957, was clected to the executive
committee in 1961, and was named exccutive vice president-Administration in
1963. During his career, he also served as chairman of the underwriting, claims,
and profit sharing committees, and as a member of the finance committee. and
common stock sub-committee. He retired in 1977, continuing as a director, and
was named advisory director in May, 1979.
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Mr. Batho had also served as board chairman of Insurance Systems of
America, a national insurance consortium, from 1972 to 1975. He was also past
president of the Chicago and Southeastern actuarial clubs.

Mr. Batho is survived by his wife, Mrs. lzora Powell Batho of Atlanta; a
son, Norman of East Windsor, New Jersey: two daughters, Mrs. Mabel Green
of Franklin, North Carolina, and Miss Barbara Batho of Atlanta; a brother,
Elgin Batho of Cape Coral, Florida; 12 grandchildren, and four great-grand-
children.

JAMES B. HALEY, JR.
-1986

James B. Haley, Jr., an Associate of the Casualty Actuarial Society since
1950, and a Fellow since 1953, died recently. Mr. Haley’s actuarial career
started at Fireman’s Fund. Upon achievement of Fellowship, he joined Argo-
naut, and served there as Actuary until 1958. He also worked 10 years for
Coates, Herfurth and England in San Francisco. From 1969 to 1972, Mr. Haley
was a consulting actuary. From 1973 to 1980, he was Vice President and Actuary
with Employee Benefits Insurance Company. He returned to consulting in 1981.

MARK KORMES
1900-1985

Mark Kormes, a Fellow of the Casualty Actuarial Society since 1933, died
in January, 1985. Mark worked as Associate Actuary for the Compensation
Rating Board from 1933 to 1938. He was Director of Training and Organization
for the NY State Insurance Fund from 1938 to 1940. Mark worked as a
consulting actuary from 1940 until his retirement in 1980, serving as President
of Actuarial Associates, Inc. in New York from 1960 to 1980.

Mark is remembered for his regular attendance at CAS meetings and his
penchant for playing bridge there. Mark contributed a paper to the Proceedings
on excess workers’ compensation losses in 1948.
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MURRAY W. LATIMER
1901-1985

Murray W. Latimer, a Fellow of the Casualty Actuarial Society since 1961,
died in October. 1985. Prior to achieving membership in the Society, Mr.
Latimer worked for several years for the US Railroad Retirement Board. In
1957, Murray joined the Industrial Relations Consultants. In 1968, Murray
formed his own consulting organization in Washington. D.C. He retired in
1980.

RICHARD M. PENNOCK
1883-1976

Richard Pennock, became an Associate of the Casualty Actuarial Society in
1924, He served as Actuary for the Pennsylvania Manufacturers Association
Insurance Company until he retired in 1950. Dick 1s remembered for his con-
tributions to the committees of the Pennsylvania Workers Compensation Rating
Bureau. He was soft spoken and reserved. but would expound his theses force-
fully and defend them ably.

RAJARATNAM RATNASWAMY
1927-1986

Rajaratnam Ratnaswamy. an Associate of the Casualty Actuarial Society
since 1965, died on February 28, 1986.

In 1956, Raj joined the Mutual Service Insurer Group. He worked there
until 1964, when he joined the Detroit Auto Inner-Insurance Exchange. While
there, he reviewed the book The Regulation of Reciprocal Insurance Exchanges
for the 1968 Proceedings. From 1969 to 1984, he was at St. Paul Marine
Insurance Group. In 1984, Raj joined the Michigan Millers Mutual Insurance
Company as Actuary.

Raj is survived by his son, John, and a daughter. Mary.
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HARWOOD ROSSER
19091986

Harwood Rosser, an Associate of the Casualty Actuarial Society since 1971,
died on August 22, 1986, at the age of 86.

Mr. Rosser’s history was quite varied. During college, Mr. Rosser received
awards for swimming and poetry. He studied to be a concert pianist in the
1930’s. Unfortunately, pianists were barely paid enough to keep eating. Mr.
Rosser received a scholarship to Princeton to pursue a doctorate. Although he
is credited with some original mathematics research, he did not complete his
doctorate.

Mr. Rosser worked as an actuary for Gulf Life and Metropolitan Life. He
also worked in the insurance departments in some Northeastern states. Most
recently, he worked for the United States Department of Labor. He started there
on June 2, 1975 in the Pension Welfare Benefits Administration as a consultant.
He was converted to a career conditional appointment as an actuary in May,
1976. He retired from the Department of Labor on February 28, 1986.

Mr. Rosser represented the United States at a number of International Ac-
tuarial Association meetings. He also helped develop problems for some of the
CAS examinations. He was noted for his keen sense of humor and his public
speaking skills.

Mr. Rosser also served on the President’s Council for the University of
Florida.

Mr. Rosser is survived by a brother, Dr. J. Barkley Rosser; two sisters, Dr.
Merryday Rosser, and Mrs. Julie Glenn McGuire; many cousins, and several
nieces and nephews.
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DAVID A. TAPLEY
~19%1

David A. Tapley, a Fellow of the Casualty Actuarial Society since 1956,
died on October 25, 1981.

David was a determined individualist, who was key to the development of
the actuarial profession, as well as to the success of some of today’s larger
insurance companies. In his twenties, David was told he had a serious lung
disease. He was not expected to live past 30, and became a forest ranger in
Montana. Within a few years. he was running up and down the mountains
without even breathing hard. Being cured, David entered the insurance business,
and brought with him the same boundless energy that saved him in Montana.

In the carly 40's, David worked for the Ohio Farm Bureau—now Nation-
wide—in the claims department. Harold Curry (FCAS. 1953) recognized Dave’s
unique mathematical talent and enticed him into the actuarial field. Dave cven-
tually rose to the top actuarial position at the Ghio Farm Bureau. After World
War II. the shift from a suppressed driving population to a widespread driving
population forced many insurance companies out of business. Dave's astute
actuarial and management skills probably helped prevent Ohio Farm Burcau
from suffering the same fate. One example of his ingenuity was his use of raw
cotton commodity price changes as an indicator for automobile rate making.
His reason: they were the only prices not subject to government regulation and,
therefore. the only measure of the true inflation rate.

Dave eventually followed Harold Curry to the State Farm actuarial depart-
ment, and there worked on ways to build the successful insurance organization
we know today. He became concerned about the fluctuation in the value of
claim reserves. and “discovered” loss development patterns in automobile in-
surance at a time when IBNR was all but an unknown concept. In 1956. Dave
was admitted to the Casualty Actuarial Society, after many years of practice in
the ficld, based on his paper on loss reserving tor automobile insurance. Many
of the principles in David’s paper are still in wide use today.

Dave left State Farm for a brief try at consulting in St. Louis. Disappointed
with the amount of travel, Dave joined the Transamerica Group in Michigan.
Dave’s astute perception and management skills again came into play in turning
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Transamerica into the successful corporation it is today. He became President
of Transamerica Insurance Company, in Los Angeles, in 1968. David moved
cien bn thn Daad € T o atmee it Tapcnmaanming and eromained antive thaea il
up 10 e pudia Of LJICCLOIS dU 1 EdIballcrica alld 1CHiiaineyg acuve ticic uriinl
his retirement in 1979.

Dave is survived by his son, Rice, and his daughter, Judith LaFollette.

WALTER 1. WELLS
1901-1986

Walter I. Wells, an Associate of the Casualty Actuarial Society since 1930,
and a Fellow of the Society of Actuaries, died on April 13, 1986.

Walter was born in Sackville, New Brunswick, Canada. At age 19, he taught
grades 7 and 8 in Dorchester, New Brunswick, before earning a bachelor’s
degree in mathematics and physics in 1925 from the University of Toronto. He
then entered the insurance arena at State Mutual Life Assurance Company of
America. He worked there for two years before returning to Canada. Then, he
joined Acadia University, in Nova Scotia, as a teacher of mathematics. He was
also a Fellow in mathematics for a year at the University of Toronto.

In 1929, Walter joined Woodward, Fondiller, & Ryan, in New York City,
as an assoctate actuary. From 1931 to 1945, he was head of sickness and
accident underwriting at the Paul Revere Life Insurance Companies and the
Massachusetts Protective Association.

Walter rejoined State Mutual in 1945 as an assistant actuary. In 1953, he
was named director of the newly formed sickness and accident division—Ilater,
the health insurance division. In 1959, he became second vice president. He
worked for State Mutual for 20 years, and served on the management council
there. Walter retired in 1965, and returned to teaching mathematics and actuarial
science at Worcester Polytechnic Institute.

Walter is survived by his wife, Lillian (Murdoch); a son, Richard; two
daughters, Ann Bogle, and Ruth Zimmerman, 10 grandchildren; and three great-
grandchildren.
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