
DISCUSSION BY CHRISTIAN SVENDSGAARD AND PAUL BRAITHWAITE 

INTRODUCTION 

Having worked on Empirical Bayes credibility for a combined total of over 
ten years, we share Mr. Buck’s frustration at the slow acceptance in practice of 
Empirical Bayes techniques. Part of the reason, we believe, is the inherent 
conservatism of the insurance business. Considering the sums at stake, practicing 
actuaries are reluctant to adopt new methods until they have been thoroughly 
researched and tested. It is gladdening, then, to see further discussion of cred- 
ibility in the Proceedings. Only after undergoing thorough scrutiny can new 
methods hope to be adopted in practice. 

Mr. Buck has written a paper that considers one aspect of credibility-stein 
estimation-from a theoretical point of view. Lay actuaries hoping to see a 
comparison based on real data of an Empirical Bayes credibility procedure and 
(say) the square root rule must look elsewhere. But Mr. Buck’s paper could 
still have relevance to lay actuaries. If a method can be shown to be theoretically 
incorrect, there is no reason to test it on real data. 

While we applaud further exchange of ideas on credibility, we find parts of 
Mr. Buck’s fundamental approach, and several of his conclusions, problematic. 
Our thoughts regarding his approach can be summarized as follows: 

1. There are three schools of statistical thought: classical, Bayesian, and 
Empirical Bayesian. A case may be made for one school or another on 
philosophical grounds, or possibly on practical grounds. But from a 
mathematical viewpoint, arguing against one school based on the as- 
sumptions underlying another begs the question. This, Mr. Buck has 
done, treating Stein (classical) estimation from a Bayesian viewpoint. 

2. The circle distribution example is interesting but not really relevant to 
actuarial problems. 

More specific criticisms are: 

1. In the normal case, the mean is the Bayes estimator only for a flat prior. 
In that case, the Stein estimator approaches the mean with probability 
one. (The concept of a “flat prior” is an attempt to extend the concept 
of a uniform prior distribution to an infinitely large parameter space. 
This is done by examining a sequence of uniform prior distributions, 
each covering a larger area of the parameter space. Loosely speaking, a 
flat prior gives the Bayes estimate if there is no prior belief.) 



2. The circle distribution example, besides suffering from irrelevance, has 
the same problems as the normal case. 

3. The adapted Morris-Van Slyke procedure, while akin to the Stein esti- 
mator, is based on Empirical Bayes rather than classical ideas. While 
Mr. Buck is correct in pointing out the bias in the procedure, the bias is 
due to the logical constraint that estimates of variances should not be 
negative. Because the bias is non-linear, it cannot be corrected by a 
linear transformation of the estimate. By making distributional assump- 
tions, it might be possible to construct an unbiased estimator. However, 
the procedure would be valid only in situations where the posited distri- 
bution held and would lose its generality. In practice, Empirical Bayes 
credibility procedures have been applied to loss ratios. The distributional 
properties of loss ratios are complicated and it seems unlikely that an 
unbiased Empirical Bayes estimator could be constructed based on a 
realistic loss ratio distribution. 

4. Tests on simulated data show that the 3/k adjustment factor that Mr. 
Buck criticizes should be used whether or not individual classes are 
trending at different rates from one another. 

We explain and elaborate on these comments below. 

COMMENTS ON THE APPROACH 

Currently, there exist at least three schools of statistics: classical, Bayesian, 
and Empirical Bayesian. Each school makes different assumptions. Bayesians 
assume a prior distribution; classicists do not. Empirical Bayesians assume the 
parameters of the prior distribution are unknown; Bayesians do not. 

It is easy to “prove” that one school is wrong by examining it from the 
viewpoint of another school. However, this makes no more sense than “proving” 
non-Euclidean geometry is wrong by making Euclidean assumptions. (“Assum- 
ing the parallel postulate holds, then any geometry where it does not hold has 
a contradiction. Therefore the parallel postulate holds.“) 

One set of assumptions may be more useful than another, because it fits 
reality better. Prior to genera1 relativity, non-Euclidean geometry was an inter- 
esting curiosity. Afterwards, non-Euclidean geometry became rhe geometry. It 
is conceivable that in practice (say) Bayesian estimators will always perform 
best. The data could tell us which school of statistics is right. But it cannot be 
decided a priori. 



The approach we advocate for selecting estimators in practice is: 

(I) Selection of reasonable models; 
(2) Testing of the model assumptions using the data; 
(3) Derivation of estimators based on the models; and 
(4) Testing of the estimators using the data. 

The different schools of statistical thought might select different models, and 
testing of the model assumptions might not eliminate any of the models. This 
seems especially true of (pure) Bayesian models, which incorporate prior belief. 
But the various estimators derived will yield different results when tested on 
the data. Given enough data, one estimator will prove most attractive. 

One of the major themes of Mr. Buck’s paper is an argument that, from a 
certain Bayesian viewpoint, Stein estimators (i.e., classical estimators) do not 
make sense. He presents no empirical data. In our view, this argument is no 
more convincing than the argument against non-Euclidean geometry from a 
Euclidean point of view. 

While you cannot “prove” one school is wrong from the point of view of 
another, it may be that the assumptions underlying one school are self-contra- 
dictory. Mr. Buck hints that the disturbing property of the Stein estimator, that 
it is not translation-invariant (i.e., that for a given data point, the Stein estimator 
could be anywhere, depending on the location of the origin you are shrinking 
toward) is such a contradiction. 

While the non translation-invariance of the Stein estimator is disturbing, 
Mr. Buck has not shown that it is paradoxical. As a footnote, the Morris-Van 
Slyke and Biihlmann-Straub Empirical Bayes credibility procedures are trans- 
lation-invariant. This is accomplished by shrinking towards the group mean, 
rather than the origin. 

Mr. Buck attempts to illustrate the failings of Stein estimation by means of 
a similar estimator derived for the circle distribution. Reasoning by analogy is, 
of course, inappropriate in a mathematical context. The success or failure of 
the illustration must therefore be judged on its effectiveness as a pedagogical 
device. In our case, at least, we were not convinced by the illustration. 
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SPECIFIC COMMENTS 

Inadmissible Estimator is Bayes Only For Flat Prior 

We argue above that it is incorrect to criticize a classical estimator by 
making Bayesian assumptions. You will not find us making the converse mistake 
here. However, we do wish to show that in the normal case the mean is not a 
Bayes estimator except in the case of a flat prior. 

We believe this is an important fact because, strictly speaking, a flat prior 
is not a prior distribution at all. The concept of a flat prior is based on a sequence 
of ever-flatter distributions. For any distribution in the sequence, the mean is 
not the Bayes estimate; this follows from Stein’s result, as we will show below. 
Thus, while it is true that in the limit the mean is the Bayes estimate, it is not 
true for any intermediate point. 

Moreover, in the limit, the Stein estimator approaches the mean with prob- 
ability one. This means that under a flat prior the mean is not better than the 
Stein estimator: it is essentially equal to it. 

Proof 

We are attempting to estimate an (at least) 3-dimensional vector of means, 
8, given a vector of observations, X, distributed normally around 0 with covar- 
iance matrix, 1, the identity: 

X - NW,1). 

For an estimator 6 of 8, the squared error loss is 

Loss = L&0) = 10 - 012 

The risk is the expectation given 8: 

Risk = &(6) = E(L(d,fl)l@ 

The Bayes risk is 

B(O) = Ee(Re(6)) = j-o R46) dF(8) 

where Ee denotes “expectation with respect to 9,” the integral is over all possible 
values of 8 (i.e., the sample space is fi ), and s . ..dF@) denotes Riemann- 
Stieltjes integral where F(8) is the CDF of the prior of 8. 



When Stein proved that the mean is not admissible, he proved it by showing 
that 

ML,“) < RdQMean) 

for all B’s, where &,e,n denotes the Stein estimator, and hMea,, denotes the mean 
(i.e., X). (See “Estimation with Quadratic Loss.” p. 363 121.) 

The size of the difference 

Ma Mean) - Re&d 

depends on the value of 8. It is greatest at the origin (which makes sense, since 
the Stein estimator shrinks the estimate towards the origin). It decreases as tl 
moves away from the origin, but it is always positive. 

How does the Bayes risk of &.;,n compare to the Bayes risk of OS,,,,‘? 

B(OM~~~) - B(Ld = 

I R~(&,can) dF(O) - 
I 

R~(&icm) dF(~l = 
(1 (1 

The expression inside the integral 

Rd~~ean ) - R&stem) 

is greatest at the origin and decreases as 8 moves away from the origin. But it 
is always positive. This is what Stein proved. 

The value of the integral will depend on F(8), the prior distribution. The 
more weight given to B’s away from the origin, the smaller the integral will 
be. But it will always be positive. 

Since the Bayes estimator minimizes Bayes risk. the mean cannot be the 
Bayes estimator for any prior. Only by taking the limit of distributions throwing 
more and more weight away from the origin can the mean be made to approach 
the Bayes estimate. 

Note, however, that in the limit the difference in Bayes risk is zero. The 
mean and the Stein estimator are equal in the limit. In the expression 
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‘; 1 ;Ati;greater than 100 (l,OoO,OOO, 1026, . ..) with probability .99 (.999, 
, . .) in the limit: the Stein estimator reduces to the mean 2. 

A careful re-reading of the above proof should convince the reader that it 
can be made entirely general. An inadmissible estimator cannot be a Bayes 
estimate. In other words, Bayes estimators are admissible. (See (31.) 

Generality of the Circle Distribution Example 

To repeat our main concern, this is not relevant. If normal-distribution Stein 
estimation has faults, they cannot be discerned by examining circle distribution 
Stein-like estimators. 

We showed earlier that Bayes estimators are admissible. Mr. Buck claims 
to “prove” that his Stein-like estimator dominates the mean (in Appendix I). 
He then derives the mean as a Bayes estimator. This is a contradiction due to 
the use of a flat prior. Note that in Appendix I, he claims to show that the 
Stein-like estimator has risk less than one. Then he shows that the risk of the 
mean is one. In the limit, the Stein-like estimator is the mean. 

There is also a mistake in the derivation of the Stein-like estimator in 
Appendix I. The quantity c is treated as a constant in all the integrals-but at 
the end “. . . we chose c 2 (b - Xl + I)’ . . ,” i.e., c depends on X. 

ISO’s Empirical Bayes Credibility Procedure 

Mr. Buck says that the Morris-Van Slyke Empirical Bayes credibility pro- 
cedure is “based on ‘Stein estimation’.” This is not entirely accurate. While the 
Morris-Van Slyke procedure is similar to, and to an extent suggested by, the 
Stein procedure, it is developed in an Empirical Bayes framework. In fact, 
Efron and Morris, in [4], show that the Stein estimator itself can be developed 
as an Empirical Bayes estimator. 

Mr. Buck states that the adapted Morris-Van SIyke procedure with the 3/k 
factor is biased upwards and that, because the tests included groups where the 
expected class loss ratios trended up or down over time, the results were slanted 
in favor of the 3/k factor. While the testing included the “residual trend” case, 
the original testing was done on the no residual trend case. For instance, in (51, 
page 79 ff., among other things, the adapted Morris-Van Slyke procedure is 
tested on simulated data against the same procedure without the 3/k factor where 
no residual trend is in effect. The with-3/k procedure does better than the 
without-3/k procedure in 86 out of 110 cases. 



For instance, Table 1 reproduces the results given in [S] of simulated 
consecutive reviews for six different groups of simulation parameters. The error 
(“premium weighted test statistic,” which is defined as the premium-weighted 
sum over all classes of the squared difference between the class loss ratio after 
the rate change and the expected loss ratio, see [6] p. II-IS) is shown for the 
first through fifth reviews after the implementation of the new credibility pro- 
cedure. Each entry is the average of 21 independent simulations. 

As a footnote, group 4 was constructed with a very low original between- 
variance. This is why the procedure without the 3/k correction did better-lower 
credibilities were called for. 

Mr. Buck says that Empirical Bayes credibility procedures using the 3/k 
correction factor are biased. The adapted Morris-Van Slyke procedure is biased, 
but not due to the 3/k factor. The bias is caused by logical constraints imposed 
on the variance estimators and there are good Empirical Bayesian reasons for 
these constraints. 

The credibility formula depends on using an estimate of between-variance 
(parameter variance) in the denominator. Even though the between-variance 
estimator is unbiased, the credibility is not unbiased, because the credibility is 
not a linear function of the between-variance. To correct this, the indicated 
credibility is adjusted as follows: 

Z ~dpsted _ k - 3 Zlndicated + 3 -- 
k k 

where k is the number of classes. The derivation of this bias correction is given 
in [6]. 

At this point, we have an unbiased estimate of the credibility. Technically, 
the procedure is only unbiased for a highly restrictive set of assumptions. But, 
even without these assumptions, the bias correction is in the right direction. 

Unfortunately, this unbiasedness depends on allowing the estimate of the 
between-variance to be negative. While the explanation of this [6] is compli- 
cated, the reader can see this intuitively by looking at the above equation and 
trying to imagine.what value of Zrndicated is necessary for a class whose “true” 
credibility is less than 3/k. 

A priori, negative between-variances are impossible. Restricting the estimate 
of the between-variance to be non-negative leads to the minimum credibility of 
3/k that Mr. Buck mentions. Unfortunately, restricting the estimate of the 
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COMPARISON OF MORRIS-VAN SLYKE PROCEDURE WITH AND WITHOUT THE 

3/k FACTOR 

(ERRORS x lo-‘) 

2 

3 

4 

5 

6 

Group Review 

1 I 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

Error With 3/k Error Without 3/k 

2.30 2.43 
2.11 2.39 
1.84 2.25 
1.66 1.97 
1.47 1.69 

1.49 1.58 
I .43 1.53 
1.38 I .52 
1.25 1.49 
1.14 1.23 

2.61 2.67 
2.40 2.67 
2.18 2.62 
1.96 2.53 
1.66 2.11 

0.72 0.66 
0.83 0.65 
1.03 0.74 
1.16 0.73 
1.19 0.72 

2.59 2.55 
2.26 2.51 
2.09 2.37 
1.89 2.23 
1.77 2.21 

3.10 3.40 
3.04 3.43 
3.03 3.32 
3.10 3.21 
2.62 2.99 

% Reduction in 
Error With 3/k 

5.3 
11.7 
18.2 
15.7 
13.0 

5.7 
6.5 
9.2 

16.1 
7.3 

2.2 
10.1 
16.8 
22.5 
21.3 

-9.1 
-27.7 
-39.2 
-58.9 
-65.3 

-1.6 
10.0 
11.8 
15.2 
19.9 

8.8 
11.4 
8.7 
3.4 

12.4 



between-variance also biases the procedure. Because the bias is a non-linear 
function of the between-variance, it cannot be corrected for all values of the 
between-variance. The bias is less in cases where there are many classes (k is 
large) and the underlying between-variance is high (so the probability of a 
negative between-variance estimate is low). These two conditions tend to hold 
in ISO’s Products review. 

As a practical matter, we do not recommend applying Empirical Bayes 
procedures if k is less than six. At least for the current generation of Empirical 
Bayes procedures, there simply aren’t enough degrees of freedom to get a good 
estimate of the between-variance when there are five or fewer classes. 

We do not regard current Empirical Bayes credibility procedures as the final 
word. Empirical Bayes procedures are, in general. the best credibility procedures 
we’ve seen thoroughly tested. However, other families of techniques offer hope 
for greater accuracy, particularly when data are classified by more than one 
rating variable (e.g., class and territory). As estimates of loss costs improve, 
insurers, insured, and society as a whole receive benefits. By focusing interest 
on improving credibility procedures, Jim Buck has performed a valuable service. 
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