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FOREWORD

The Casualty Actuarial Society was organized in 1914 as the Casualty Actuarial and
Statistical Society of America, with 97 charter members of the grade of Fellow; the Society
adopted its present name on May 14, 1921,

Actuarial scicnce originated in England in 1792, in the carly days of life insurance.
Due to the technical nature of the business, the first actuaries were mathematicians; even-
tuafly their numerical growth resulted in the formation of the Institute of Actuarics in
England in 1848. The Faculty of Actuaries was founded in Scotland in 1856, followed in
the United States by the Actuarial Society of America in 1889 and the American Institute
of Actuaries in 1909. In 1949 the two American organizations were merged into the Society
of Actuaries.

In the beginning of the twentieth century in the United States, problems requiring
actuarial treatment were emerging in sickness, disability, and casualty insurance--- partic-
ularly in workers’ compensation—which was introduced in 1911. The differences between
the new problems and those of traditional life insurance led to the organization of the
Society. Dr. 1. M. Rubinow, who was responsible for the Society's formation, became its
first president. The object of the Socicty was, and is, the promotion of actuarial and statistical
science as applied to insurance other than life insurance. Such promotion is accomplished
by communication with those affected by insurance, presentation and discussion of papers,
attendance at seminars and workshops, collection of a library, research, and other means.

Since the problems of workers’ compensation were the most urgent, many of the
Society’s original members played a leading part in developing the scientific basis for that
line of insurance. From the beginning, however, the Society has grown constantly, not only
in membership, but also in range of interest and in scientific and related contributions to
all lines of insurance other than life, including automobile, liability other than automobile,
fire, homecowners and commercial multiple peril, and others. These contributions are found
principally in original papers prepared by members of the Society and published in the
annual Proceedings. The presidential addresses, also published in the Proceedings, have
called atiention to the most pressing actuarial problems, some of them still unsolved, that
have faced the insurance industry over the years.

The membership of the Saciety includes actuaries employed by insurance companies,
ratemaking organizations, national brokers, accounting firms, educational institutions, state
insurance departments, and the federal government; it also includes independent consultants.
The Society has two classes of members, Fellows and Associates. Both classes are achieved
by successful completion of examinations, which are held in May and November in various
citics of the United States and Canada.

The publications of the Society and their respective prices are listed in the Yearbook
which is published annually. The Syllabus of Examinations outlines the course of study
recommended for the cxaminations. Both the Yearbook, at a $10 charge, and the Syllabus
of Examinations, without charge, may be obtained upon request to the Casualty Actuarial
Society, One Penn Plaza, 250 West 34th Street, New York, New York 10119,
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ON STEIN ESTIMATORS:
“INADMISSIBILITY” OF ADMISSIBILITY AS A
CRITERION FOR SELECTING ESTIMATORS

JAMES E. BUCK

Abstract

Stein estimators are an alternative (non-Bayesian) explanation for
credibility. Until this year, the syllabus for Part 4 of the Society’s
examinations contained an article discussing Stein estimators, or James-
Stein estimators, as part of the credibility readings for the exam [2]. The
article focuses on some examples where Stein estimators are applied to
baseball players’ batting averages, among other things. In the examples,
Stein estimators seem much like Bayesian credibility estimators and, in
fact, credibility estimators derived from Stein’s theory have been used
by the Insurance Services Office for products liability classification rate-
making.

Alike as Stein estimators and Bayesian credibility estimators are in
practice, the theory behind Stein estimators is very much different and
does not make much sense from the author’s point of view. This paper
consists of a discussion of the theory that underlies Stein estimators,
including an example which illustrates the flaw in logic behind this
alternative explanation of credibility.
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INTRODUCTION

The literature of the Casualty Actuarial Society has been replete for years
with papers on the theory of credibility (for instance, 3], [7], [8]). Practice, at
least for most direct lines of business, has lagged far behind. In 1980, the
Insurance Services Office (ISO) Credibility Subcommittee [S5] produced a com-
prehensive report on credibility which recommended adoption of an empirical
Bayes credibility procedure for products liability classification ratemaking. Nor-
mally, one would rejoice at this attempt of life to imitate art. However, the
method chosen for use was adapted from the method of Morris and Van Slyke
[9]. which in turn is based on Stein estimation. Stein estimation is derived from
the work of Charles Stein [10] (also, James and Stein [6]), and herein lies the
reason for the author’s less-than-jubilant reaction to the method of estimation
chosen: the theory underlying Stein estimators does not make sense.

From a practical point of view, the adapted Morris-Van Slyke procedure
worked better than the Buhlmann-Straub empirical Bayesian procedure in the
testing done by the ISO. This is not all that surprising, given that the Morris-
Van Slyke procedure is biased upwards and the testing included groups where
the expected class loss ratios trended up or down over time. One of the as-
sumptions underlying the Buhlmann-Straub credibility procedure is that the
expected loss ratio of a class remains fixed over time. If the expected loss ratio
changes, then the credibility to be applied to the most recent experience should
be higher, since this recent experience is more related to the expected future
experience of the class than the rate based on past class data.

While the Morris-Van Slyke procedure seems to work well in the simulations
performed by the 1SO, its theoretical flaws make the application of the technique
to other problems dangerous. For example, the degree of upward bias in the
class credibilities is directly related to the number of classes in the group: in its
report, the 1SO Subcommittee notes (p. 1-19), “An interesting observation is
that this process [the adapted Morris-Van Slyke method] effectively produces a
minimum credibility of 3/k [where k is the number of classes] for each class in
the group.” Interesting, indeed. The 1SO testing procedure involved groups with
between 9 and 24 classes, and so the minimum credibility for each class was
between 1/3 and 1/8. However, if the Morris-Van Slyke credibility procedure
were applied without adjustment to private passenger auto territorial ratemaking
for Rhode Island, the experience of each of the three territories would be given
full credibility, regardless of the amount of experience! In this instance, it is
clear that the Morris-Van Slyke procedure would not work well. What we have,
then, is a procedure which works well in some instances, and yet produces poor
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results in other instances. Why? In the author’s view, it is because the Morris-
Van Slyke procedure used by the ISO is based, among other things, on Stein
estimators, and Stein estimators are theoretically unsound. To understand the
flaw in the theory, it is necessary to review the underlying statistical assumptions

that form the basis of the development of Stein estimators.

THE THEORETICAL BASIS FOR STEIN ESTIMATORS

The focus of Bayesian estimation and Bayesian credibility is on modifying
an estimate based on additional data. That is, the Bayes approach assumes that
we already know something about the parameter to be estimated (the prior
distribution). Bayes theorem and Bayesian credibility give us a way to combine
that prior knowledge with additional information to produce a revised estimator
of the parameter.

Stein estimators are based on a different (sometimes called frequentist or
classical) view of estimation. According to this view, it is meaningless to discuss
prior distributions of parameters; the parameters of a distribution are fixed
values, even though the values may be unknown. Frequentists study the distri-
bution of estimators about parameters in order to make inferences about the
quality of different estimators. One of the properties of estimators used for
comparison is expected squared error. To use a more specific example, let’s
take the normal distribution of mean w and variance [, or N(j.,1). If we select
a sample point x from the distribution and use it as an estimator of p, we know
from the definition of variance that the estimator has an expected squared error
of 1. Are there better estimators of w? That is a very tough question to answer
directly, if you believe that talking about the distribution of w is meaningless.
Since p is fixed but unknown, there may well be better estimators, depending
on the particular value of . For instance, if i happens to be between 1 and
3, the fixed estimator f{x)=2 has smaller expected squared error than 1, the
expected squared error of the estimator x.

Thus, we need an additional requirement besides low expected squared error
if we are to choose among estimators in the frequentist framework. One such
requirement is that an estimator be unbiased. An estimator is said to be unbiased
if its expected value is always equal to the parameter to be estimated. In terms
of the example, an estimator is unbiased if the expected value of the estimator
is equal to W for all values of . The sample point, x, is an unbiased estimator
of w and has been shown to be the unbiased estimator of minimum expected
squared error (see, for example, [4], pp.362-365).



4 STEIN ESTIMATORS

The requirement that an estimator be unbiased is one way to help define
what is meant by best estimate, but in some cases it is felt to be too stringent.
After all, an estimator that is biased but with low expected squared error may
well be more desirable than an unbiased estimator of high expected squared
error. This led to the alternate standard of admissibility for estimators. An
estimator is said to be admissible with respect to a loss function (e.g. expected
squared error) for a class of distributions if there is no other estimator which
has expected squared error less than or equal to the expected squared error of
the estimator for ali distributions in the class, with the strict inequality holding
for at least one distribution. Admissibility certainly sounds like an admirable
quality for an estimator to have, but using it produces some disturbing results.
In fact, the theoretical basis for Stein estimates is a proof by Stein [10] that the
sample mean is not an admissible estimator of the mean of the n-variate normal
distribution, n = 3. (This result is sometimes referred to as Stein’s paradox.)

In order to discuss Stein’s results, let’s review briefly the multivariate normal
distribution and its notation. Conceptually an n-variate normal distribution can
be thought of as a collection of n separate variables, cach normally distributed.
Using vector notation, any particular multivariate normal distribution can be
specified as N(p,Z), where L is a mean vector pu(p1,....lk,), with p; repre-
senting the mean of the i-th variable, and Z is a symmetrical n-by-n covariance
matrix, with each element of the matrix. o, representing the covariance between
the i-th and j-th variables. If the n-variate distribution is independent, then the
covariances between variables are equal to zero, and X is a diagonal matrix.

Stein considers the task of estimating (ji,...,M,) given a single sample
point x(xi,...,x,) selected from the multivariate independent normal distribution
of variance 1, i.e., x ~ N(m, I), where [ is the identity matrix. The usual
estimator, X, has expected squared error of n, the number of parameters to be
estimated. James and Stein {6] developed an estimator with smaller squared
error. The development of the estimator is based on the following property of
the multivariate normal distribution: for any point p,

P(x = p| > [p - p)) > .50

In words, there is always a better than even chance that a point chosen at
random from the multivariate normal distribution is farther away from p than
fL, the mean of the distribution, is from 5, no matter what p is chosen to be.
Stein estimators which shrink x to an arbitrary p by a factor of

n—2
k- pf°
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have smaller expected squared error than x for all . That is,

Elp — gl> <n,

- n—21]. n—2 .
f = — X+ T—==p, n=
or . [l ]x—plz]x lx_plzp n=3

When Stein estimators are applied to problems, p is usually chosen to be
the average result for the group—in the notation above, the average of the x—
and the resulting formula looks a lot like a Bayesian credibility estimate.

It's important to note, however, that there is no requirement that p be chosen
as the average of the group in the theoretical work by Stein. And this flexibility
with regard to p produces unusual results, particularly if we change the frame
of reference. For instance, consider the three-dimensional case, where we select
X(x1,x2,x3) from a multivariate normal distribution of mean p(pi,m2,pu3) and
covariance matrix {, the identity matrix. To make the presentation simpler, let
X = (0,0,0), the origin. According to Stein, x can be combined with any arbitrary
P (shrunk toward p) to produce a better estimate of .. For example, if we select
p = (1,0,0), the Stein estimate combining p and X is Ox + Ip, or p itself. In
fact, for any point chosen from the sphere of radius | centered at origin, the
estimate is the point itself. Thus, every point on the sphere of radius | centered
at the origin is a “better” estimate of { than X, the origin.

If that were not unusual enough, we can go further and show that any point
a is a Stein estimate of L, if we select an appropriate p. The p to choose,
for any given @, is determined from the formula @|al>. So. to show that
a = (100,0,0) is a Stein estimate, we need only choose p = (.01,0,0). There-
fore, based on the theory underlying Stein estimators, even a point as far away
as (100,0,0) is a better estimate of L than ¥ = (0,0,0), the sample point!

THE CIRCLE DISTRIBUTION

To understand what’s wrong with Stein estimators, it helps to go through
the development of a Stein-like estimator for a simpler distribution. The chosen
distribution is the one-dimensional distribution defined on a plane by the function

1 2 2

flxxg) = E X1+ xp = 1

0, elsewhere.

1l

This distribution represents the chance of randomly picking a point on the circle
of radius | centered at the origin. The mean of the distribution is also the origin.
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The circle distribution was chosen because from any point p on the plane, there
is a better than 50% chance that the distance between a randomly selected point
on the circle and p will be greater than the distance between the origin and p.
Geometrically, we can see this by noting that, for any point p, the arc around
p through the origin contains less than half the circle. Because the circle
distribution shares this property with the multivariate normal distribution, we
should be able to shrink the values of the circle distribution to an arbitrary p
and get an estimate that is, on average. closer to the mean. Indeed, if we notice
that, for any p = (p,, p2), the average squared distance between the circle
distribution and p is

1 2w

- — sin 8)° + (p> — cos 8)°
77 ) (p1 sin 8) (p> — cos 8) dO

| S . s : .
= — pi— 2pisin @ + sin"® + p3 — 2pscos 6 + cos™0 dO
27 ), / /

=pi + p3 + 1,
we might consider estimators of the form

L M S
1 . X =pl+ l.\_.

TRt FopF e

And, in fact, Appendix I shows that if ¢ is greater than (¥ — p| + 1)°, the
expected squared error of this estimator. . is always less than [, the expected
squared error of the usual estimator, x.

If one were to take the classical viewpoint, and the viewpoint that underlies
the standard of admissibility of estimators, we should use this form of estimator
in determining [, given a particular X. The fallacy in this approach can be seen
by taking a Bayesian point of view. Let’s again use the circle distribution of
radius 1 and choose at random a point x from a circle of radius I with an
unknown center. Without loss of generality, we can set ¥ = (0,0). Now, we
want to estimate the center of the circle, given that X is a point on the circle.
If we consider all possible circles of radius 1 equally likely, then a good
candidate for the distribution of AfL|¥ = (0.0)) would be

|

ﬂfk)zg-u

= (), elsewhere.
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In fact, if we represent equally likely (or no prior knowledge) as the prior
distribution

I 1
h(u)llmgn(ul,uz)=4—nz,—n5u1$n,—nspzsn

n—x

= 0, elsewhere,

among others, then the candidate distribution shown as f{jL) above can be derived
through the use of Bayes Theorem for continuous functions (see Appendix II).

Now, from a Bayesian point of view, we have determined the distribution
of f{ja|¥). The next step is to determine the best point etimate of the ji. distribution
(uniform distribution on the unit circle centered at the origin). The squared error
function between the fL distribution and any estimate ¢ = (e;,ez) is given by

L Jx (sin 8 — e)®> + (cos 8 — e2)* dO
2T Jo

=1+e + e
which obviously is at a minimum at (0,0), or x.
Stein estimation takes another approach. Stein’s argument in this case would

be, let us select an arbitrary point p, say p = (2,0). It was previously shown
that, if we shrink the fi’s to p by a factor of

1
I — B +c
the transposed i’s are closer to x. Based on this, it is therefore appropriate to
shift x towards p by a factor of

1
k—pF+c

1 coz(p - pl+ 17

1 ,e=(x—p|l+ 1Y

(or, equivalently, choose an estimate of (2/13, 0)) to give a better estimate of
L.

A geometric analogy may be of some help in understanding this point.
Figure } shows the problem in graphical terms, from a Bayesian standpoint.
Imagine that i represents the rim of a dartboard attached to the back of a door,
and p represents the doorknob. The problem is to place a dart on the wall that
is closest, on average, to the points on the rim of the dartboard (fi|x)). From
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the calculations above, and from common sense. we can sce that the dart should
be placed at the center of the dartboard ().

Figures 2 and 3 represent the Stein estimator approach. Figure 2 shows that
if one squishes the rim of the dartboard a bit towards the doorknob (shifts the
L’s), there is a smaller average distance between the rim of the dartboard and
the center of the dartboard (x). This is then used to justify aiming the dart at a
point closer to the doorknob, even though the problem is to get as close
as possible, on average, to the rim of the original (unshifted) dartboard
(Figure 3).

APPLICABILITY TO MULTIVARIATE NORMAL DISTRIBUTION

While it is easier to see the fallacy of admissibility and Stein estimators
with respect to the circle distribution, Stein estimators are equally invalid for
the multivariate normal distribution. Let’s again take the problem of estimating
R given X, ¥ ~ N(L,0).

Using a variety of “flat™ prior distributions, including N(0,%) and the rec-
tangular distribution used above, we can derive p. ~ N(x,/). Here, also, the
standard of admissibility asks the wrong question from the Bayesian viewpoint.
The proper question to ask is not what function fijL) minimizes E|f(i) — iJ°.
but rather, what value p minimizes E[i — p|*. Because the multivariate normal
distribution is independent and can be expressed as the product of one-dimen-
sional normal distributions, the minimum of p at X follows from the fact that
the squared distance function is minimized at the mean in the one-dimensional
case.

From a theoretical point of view, it would seem that the major accomplish-
ment of Stein estimators is to show that admissibility as applied by Stein isn’t
a very good criterion for choosing estimators and that the Bayesian theory of
estimation, when properly applied, gives consistent and reasonable results. In
fact, Stein’s paradox is not a paradox at all when viewed from a Bayesian
standpoint. From a practical point of view, biased estimators are still appropriate
10 use in many cases, but not those derived from this particular theory of
estimation.
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APPENDIX 1

DEMONSTRATION THAT THE MEAN IS INADMISSIBLE AS AN ESTIMATOR OF THE
CIRCLE DISTRIBUTION

The following shows that there is a function that combines a data point, X,
with any p to produce an estimate of (L = (0,0) that has expected squared error
less than 1, the squared error of x. This treatment is consistent with the frame
of reference discussed in the text. However, this is equivalent to showing that
for a circle distribution centered at p, there is a function which combines x, a
randomly selected point on the circle, and the origin to produce an estimate of
P, the mean of the circle distribution, with expected squared error of less than
1. We consider estimators of the form

1 _+|x—;3|2+(—1x(_ |
F=af+ e’ " R e 7O
X =pI" +c’

For x = (sin B,cos 8) and p = (p;,p2), the expected squared error is given by

L‘r"[sin9+ pi — sin 8 ]2
2T Jo ) (p1 — sin 6)2 + (p2 — cos 0P + ¢

p2 — cos 6 ]2
e é d
[COS b pr — sin 8)” + (p2 — cos 0y + ¢ b

2(py — sin 8) sin §
f sin” 8 + (p1 — sin 8)° + (p2 — cos 0)° + ¢

(p) — sin 9)2 ,
+
[(pr — sin 02 + (pz2 —cos 0 + cff i
2(p2 — cos 0) cos 0
(p1 — sin 8)> + (p2 — cos 0)° + ¢
(p2 — cos 0)° "

[(p1 — sin 8)° + (p2 — cos B)° + ¢]°
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2w e . N e — e B co
= o f 1 + 2(py —sinB)sin ® + 2(p; — cos 9) cos 8 + |
2w Jo

— 3 d
(pr — sin @) + (p> — cos B)” + ¢ o
2w L + 2p-cOS _
ne |+ — 2p.|sm 0 . pacos O — | 40
2w o p1 — 2pisin O+ p3 — 2pcos O + 1 + ¢
1 o 2pisin O + 2pycos B — 1
27 Jo

. o R d
2pisin 8 + 2pacos 8 — 1 — (pi + pr + ) b

Using the relation

b
=1+ .
a—b

a
a—b

LGl_[]_{. [)f+p§+(' ]de
2 Jo 2pisin 8 + 2pacos O — 1 — (p? + p% + )

_—pitpto f“ do
21 o 2pisin 0 + 2pacos B — ([)12 + p% +c+ 1
_—pitpito j" d8
2m - [2[)1Sin (m + 8) + 2pacos (W + 9)]
—(pitptet )

:pf+p§+('f" de
2m = 2pisin @ + 2pacos B 4+ pi o+ p3 4o+ |

Using integral tables, we find that the above is equivalent to

pf+p§+(‘ 2

2m Vipi+pi+ et )~ 2p) - @p

—

2)”

L 22t (Pi+pi+ce+1—2p)tan(02) |
Vipi+pi+ce— 1y —@py —@py |-
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:P%+p%+(" 2

Y
<

N 3 7 AT T~ 2
Vipr —p2Tc+ 1) — () — (Up2)

:\/ (pi +p2+ o)
(Pi—pr+ P +2pi+pi+tco)+ 1 —4pi —4p3

P+ pite)

:\/(p?+p%+c)2+2c+1—2pf—2p§

So, if ¢ > pi + p3 — 1/2, the squared error is less than 1. In particular, since
(p — x| + 1)’ > pi + p3 — 172, if we choose ¢ = ([p — ¥| + 1)°, the estimator
has expected squared error of less than 1.
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APPENDIX 11

DERIVATION OF THE POSTERIOR DISTRIBUTION USING THE CIRCLE DISTRIBUTION
AND A “FLAT" PRIOR DISTRIBUTION

The purpose of this appendix is to determine f(fi|%) for

- A =1

- |
fElpy =5,
= 0, elsewhere and

~ 1
h(R) = lim g, (pi.p2) = e e e
—x n

= 0, elsewhere.
For x = (0,0) and any particular n = 1, the joint distribution is given by

]
.
8mn”

. p
E-RF =0 = s s po =,

fxlga(n) =

0. elsewhere.

1

e =1

0, elsewhere, and

do

5
8mn”

ff(»?lrl)g,,(;l) dii = J“

|
an’

From Bayes Theorem for continuous functions, we have, for all n = 1,

e SERIgR)
P = e b

, 1 s

I
oo 5 = T T = l.
4n 8mwn~ 2w I

= (), elsewhere.
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and thus the distribution of f{{|x) is given by

SfIR) hGL)

FER = sl iy o

lim fu(R[3)

n—x

_ 1 <12 _
_211' ’ (“’l '*

= 0, elsewhere.
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DISCUSSION BY CHRISTIAN SVENDSGAARD AND PAUL BRAITHWAITE

INTRODUCTION

Having worked on Empirical Bayes credibility for a combined total of over
ten years, we share Mr. Buck’s frustration at the slow acceptance in practice of
Empirical Bayes techniques. Part of the reason, we believe, is the inherent
conservatism of the insurance business. Considering the sums at stake, practicing
actuaries are reluctant to adopt new methods untii they have been thoroughly
researched and tested. It is gladdening, then, to see further discussion of cred-
ibility in the Proceedings. Only after undergoing thorough scrutiny can new
methods hope to be adopted in practice.

Mr. Buck has written a paper that considers one aspect of credibility—Stein
estimation—from a theoretical point of view. Lay actuaries hoping to see a
comparison based on real data of an Empirical Bayes credibility procedure and
(say) the square root rule must look elsewhere. But Mr. Buck’s paper could
still have relevance to lay actuaries. If a method can be shown to be theoretically
incorrect, there is no reason to test it on real data.

While we applaud further exchange of ideas on credibility, we find parts of
Mr. Buck’s fundamental approach, and several of his conclusions, problematic.
Our thoughts regarding his approach can be summarized as follows:

1. There are three schools of statistical thought: classical, Bayesian, and
Empirical Bayesian. A case may be made for one school or another on
philosophical grounds, or possibly on practical grounds. But from a
mathematical viewpoint, arguing against one school based on the as-
sumptions underlying another begs the question. This, Mr. Buck has
done, treating Stein (classical) estimation from a Bayesian viewpoint.

2. The circle distribution example is interesting but not really relevant to
actuarial problems.

More specific criticisms are:

1. In the normal case, the mean is the Bayes estimator only for a flat prior.
In that case, the Stein estimator approaches the mean with probability
one. (The concept of a “flat prior” is an attempt to extend the concept
of a uniform prior distribution to an infinitely large parameter space.
This is done by examining a sequence of uniform prior distributions,
each covering a larger area of the parameter space. Loosely speaking, a
flat prior gives the Bayes estimate if there is no prior belief.)
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2. The circle distribution example, besides suffering from irrelevance, has
the same problems as the normal case.

3. The adapted Morris-Van Slyke procedure, while akin to the Stein esti-
mator, is based on Empirical Bayes rather than classical ideas. While
Mr. Buck is correct in pointing out the bias in the procedure, the bias is
due to the logical constraint that estimates of variances should not be
negative. Because the bias is non-linear, it cannot be corrected by a
linear transformation of the estimate. By making distributional assump-
tions, it might be possible to construct an unbiased estimator. However,
the procedure would be valid only in situations where the posited distri-
bution held and would lose its generality. In practice, Empirical Bayes
credibility procedures have been applied to loss ratios. The distributional
properties of loss ratios are complicated and it seems unlikely that an
unbiased Empirical Bayes estimator could be constructed based on a
realistic loss ratio distribution.

4. Tests on simulated data show that the 3/k adjustment factor that Mr.
Buck criticizes should be used whether or not individual classes are
trending at different rates from one another.

We explain and elaborate on these comments below.

COMMENTS ON THE APPROACH

Currently, there exist at least three schools of statistics: classical, Bayesian,
and Empirical Bayesian. Each school makes different assumptions. Bayesians
assume a prior distribution; classicists do not. Empirical Bayesians assume the
parameters of the prior distribution are unknown; Bayesians do not.

It is easy to “prove” that one school is wrong by examining it from the
viewpoint of another school. However, this makes no more sense than “proving”
non-Euclidean geometry is wrong by making Euclidean assumptions. (“Assum-
ing the parallel postulate holds, then any geometry where it does not hold has
a contradiction. Therefore the parallel postulate holds.”)

One set of assumptions may be more useful than another, because it fits
reality better. Prior to general relativity, non-Euclidean geometry was an inter-
esting curiosity. Afterwards, non-Euclidean geometry became the geometry. It
is conceivable that in practice (say) Bayesian estimators will always perform
best. The data could tell us which school of statistics is right. But it cannot be
decided a priori.
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The approach we advocate for selecting estimators in practice is:

(1) Selection of reasonable models;

(2) Testing of the model assumptions using the data;
(3) Derivation of estimators based on the models; and
(4) Testing of the estimators using the data.

The different schools of statistical thought might select different models, and
testing of the model assumptions might not eliminate any of the models. This
seems especially true of (pure) Bayesian models, which incorporate prior belief.
But the various estimators derived will yield different results when tested on
the data. Given enough data, one estimator will prove most attractive.

One of the major themes of Mr. Buck’s paper is an argument that, from a
certain Bayesian viewpoint, Stein estimators (i.e., classical estimators) do not
make sense. He presents no empirical data. In our view, this argument is no
more convincing than the argument against non-Euclidean geometry from a
Euclidean point of view.

While you cannot “prove” one school is wrong from the point of view of
another, it may be that the assumptions underlying one school are self-contra-
dictory. Mr. Buck hints that the disturbing property of the Stein estimator, that
it is not translation-invariant (i.e., that for a given data point, the Stein estimator
could be anywhere, depending on the location of the origin you are shrinking
toward) is such a contradiction.

While the non translation-invariance of the Stein estimator is disturbing,
Mr. Buck has not shown that it is paradoxical. As a footnote, the Morris-Van
Slyke and Biithlmann-Straub Empirical Bayes credibility procedures are trans-
lation-invariant. This is accomplished by shrinking towards the group mean,
rather than the origin.

Mr. Buck attempts to illustrate the failings of Stein estimation by means of
a similar estimator derived for the circle distribution. Reasoning by analogy is,
of course, inappropriate in a mathematical context. The success or failure of
the illustration must therefore be judged on its effectiveness as a pedagogical
device. In our case, at least, we were not convinced by the illustration.
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SPECIFIC COMMENTS

Inadmissible Estimator is Bayes Only For Flat Prior

We argue above that it is incorrect to criticize a classical estimator by
making Bayesian assumptions. You will not find us making the converse mistake
here. However, we do wish to show that in the normal case the mean is not a
Bayes estimator except in the case of a flat prior.

We believe this is an important fact because, strictly speaking, a flat prior
is not a prior distribution at all. The concept of a flat prior is based on a sequence
of ever-flatter distributions. For any distribution in the sequence, the mean is
not the Bayes estimate; this follows from Stein’s result, as we will show below.
Thus, while it is true that in the limit the mean is the Bayes estimate, it is not
true for any intermediate point.

Moreover, in the limit, the Stein estimator approaches the mean with prob-
ability one. This means that under a flat prior the mean is not better than the
Stein estimator: it is essentially equal to it.

Proof

We are attempting to estimate an (at least) 3-dimensional vector of means,
0, given a vector of observations, X, distributed normally around 0 with covar-
iance matrix, /, the identity:

X ~ N@.,D.

For an estimator & of 8, the squared error loss is
Loss = L(§,0) = |6 — 0]

The risk is the expectation given 9:
Risk = R¢(0) = E(L(8,0)0)

The Bayes risk is

B(6) = Eo(Ro(8)) = L Re(8) dF(6)
where Eq denotes “expectation with respect to 0,” the integral is over all possible

values of 0 (i.e., the sample space is () ), and [ ...dF(@) denotes Riemann-
Stieltjes integral where F(8) is the CDF of the prior of 9.
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When Stein proved that the mean is not admissible, he proved it by showing
that

RH(GSlein) < RG(éMean)

for all 8’s, where 8s.in denotes the Stein estimator, and Oy denotes the mean
(i.e., X). (See “Estimation with Quadratic Loss,” p. 363 {2].)

The size of the difference
Rﬂ(éMean) - RB(GS!ein)

depends on the value of 9. It is greatest at the origin (which makes sense, since
the Stein estimator shrinks the estimate towards the origin). It decreases as 0
moves away from the origin, but it is always positive.

How does the Bayes risk of @ue.n compare to the Bayes risk of Ogein?

B(Bnmean) — B(Bseein) =

j Rﬂ(éMean) dF(e) - j Re(éSmm) dF(e) =
Q 2

C
L 1 [Ro(Bmean) — Ro(Bsicin)] dF(0).

The expression inside the integral
RO(éMean) - RB(GS!ein)

is greatest at the origin and decreases as 8 moves away from the origin. But it
is always positive. This is what Stein proved.

The value of the integral will depend on F(0), the prior distribution. The
more weight given to 0’s away from the origin, the smaller the integral will
be. But it will always be positive.

Since the Bayes estimator minimizes Bayes risk, the mean cannot be the
Bayes estimator for any prior. Only by taking the limit of distributions throwing
more and more weight away from the origin can the mean be made to approach
the Bayes estimate.

Note, however, that in the limit the difference in Bayes risk is zero. The
mean and the Stein estimator are equal in the limit. In the expression

n—2)- (n—2)A
l-'_ ) x+ - - .
( k- pF A
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|x — p|* is greater than 100 (1,000,000, 10%°, ...) with probability .99 (.999,
1 — 107°%_ ) in the limit: the Stein estimator reduces to the mean X.

A careful re-reading of the above proof should convince the reader that it
can be made entirely general. An inadmissible estimator cannot be a Bayes
estimate. In other words, Bayes estimators are admissible. (See {3].)

Generality of the Circle Distribution Example

To repeat our main concern, this is not relevant. If normal-distribution Stein
estimation has faults, they cannot be discerned by examining circle distribution
Stein-like estimators.

We showed earlier that Bayes estimators are admissible. Mr. Buck claims
to “prove” that his Stein-like estimator dominates the mean (in Appendix I).
He then derives the mean as a Bayes estimator. This is a contradiction due to
the use of a flat prior. Note that in Appendix I, he claims to show that the
Stein-like estimator has risk less than one. Then he shows that the risk of the
mean is one. In the limit, the Stein-like estimator is the mean.

There is also a mistake in the derivation of the Stein-like estimator in
Appendix 1. The quantity c is treated as a constant in all the integrals—but at
the end “... we chose ¢ = ([p — x| +1)* ...,” i.e., ¢ depends on X.

ISO’s Empirical Bayes Credibility Procedure
Mr. Buck says that the Morris-Van Slyke Empirical Bayes credibility pro-

cedure is “based on ‘Stein estimation’.” This is not entirely accurate. While the
Morris-Van Slyke procedure is similar to, and to an extent suggested by, the
Stein procedure, it is developed in an Empirical Bayes framework. In fact,
Efron and Morris, in [4], show that the Stein estimator itself can be developed

as an Empirical Bayes estimator.

Mr. Buck states that the adapted Morris-Van Slyke procedure with the 3/k
factor is biased upwards and that, because the tests included groups where the
expected class loss ratios trended up or down over time, the results were slanted
in favor of the 3/k factor. While the testing included the “residual trend” case,
the original testing was done on the no residual trend case. For instance, in 5],
page 79 ff., among other things, the adapted Morris-Van Slyke procedure is
tested on simulated data against the same procedure without the 3/k factor where
no residual trend is in effect. The with-3/k procedure does better than the
without-3/k procedure in 86 out of 110 cases.
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For instance, Table 1 reproduces the results given in [5] of simulated
consecutive reviews for six different groups of simulation parameters. The error
(“premium weighted test statistic,” which is defined as the premium-weighted
sum over all classes of the squared difference between the class loss ratio after
the rate change and the expected loss ratio, see [6] p. 1I-15) is shown for the
first through fifth reviews after the implementation of the new credibility pro-
cedure. Each entry is the average of 21 independent simulations.

As a footnote, group 4 was constructed with a very low original between-
variance. This is why the procedure without the 3/k correction did better—lower
credibilities were called for.

Mr. Buck says that Empirical Bayes credibility procedures using the 3/k
correction factor are biased. The adapted Morris-Van Slyke procedure is biased,
but not due to the 3/k factor. The bias is caused by logical constraints imposed
on the variance estimators and there are good Empirical Bayesian reasons for
these constraints.

The credibility formula depends on using an estimate of between-variance
(parameter variance) in the denominator. Even though the between-variance
estimator is unbiased, the credibility is not unbiased, because the credibility is
not a linear function of the between-variance. To correct this, the indicated
credibility is adjusted as follows:

jus k—3 3
ZAdJua(ed — ZlndlLdted 3 =
k k

where k is the number of classes. The derivation of this bias correction is given
in [6].

At this point, we have an unbiased estimate of the credibility. Technically,
the procedure is only unbiased for a highly restrictive set of assumptions. But,
even without these assumptions, the bias correction is in the right direction.

Unfortunately, this unbiasedness depends on allowing the estimate of the
between-variance to be negative. While the explanation of this [6] is compli-
cated, the reader can see this intuitively by looking at the above equation and
trying to imagine ‘what value of Z"™*“** is necessary for a class whose “true”
credibility is less than 3/k.

A priori, negative between-variances are impossible. Restricting the estimate
of the between-variance to be non-negative leads to the minimum credibility of
3/k that Mr. Buck mentions. Unfortunately, restricting the estimate of the
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TABLE |
COMPARISON OF MORRIS-VAN SLYKE PROCEDURE WITH AND WITHOUT THE
3/k FACTOR
(ERRORS X 107%)

23

% Reduction in

Group Review Error With 3/k Error Without 3/k Error With 3/k
1 1 2.30 2.43 53
2 2.11 2.39 11.7
3 1.84 2.25 18.2
4 1.66 1.97 15.7
5 1.47 1.69 13.0
2 1 1.49 1.58 5.7
2 1.43 1.53 6.5
3 1.38 1.52 9.2
4 1.25 1.49 16.1
S 1.14 1.23 7.3
3 1 2.61 2.67 22
2 2.40 2.67 10.1
3 2.18 2.62 16.8
4 1.96 2.53 22.5
5 1.66 2.11 21.3
4 1 0.72 0.66 -9.1
2 0.83 0.65 =277
3 1.03 0.74 -39.2
4 1.16 0.73 —58.9
5 1.19 0.72 —65.3
5 1 2.59 2.55 —-1.6
2 2.26 2.51 10.0
3 2.09 2.37 11.8
4 1.89 2.23 15.2
S 1.77 2.21 19.9
6 1 3.10 3.40 8.8
2 3.04 3.43 11.4
3 3.03 3.32 8.7
4 3.10 3.21 3.4
5 2.62 2.99 12.4
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between-variance also biases the procedure. Because the bias is a non-linear
function of the between-variance, it cannot be corrected for all values of the
between-variance. The bias is less in cases where there are many classes (k is
large) and the underlying between-variance is high (so the probability of a
negative between-variance estimate is low). These two conditions tend to hold
in ISO’s Products review.

As a practical matter, we do not recommend applying Empirical Bayes

procedures if k i1s less than six. At least for the current generation of Embpirical
procedures tf k 1s less than s1X. At least Tor the current generation of Empirical

Bayes procedures, there simply aren’t enough degrees of freedom to get a good
estimate of the between-variance when there are five or fewer classes.

We do not regard current Empirical Bayes credibility procedures as the final
word. Empirical Bayes procedures are, in general, the best credibility procedures
we've seen thoroughly tested. However, other families of techniques offer hope
for greater accuracy, particularly when data are classified by more than one
rating variable (e.g., class and territory). As estimates of loss costs improve,
insurers, insured, and society as a whole receive benefits. By focusing interest
on improving credibility procedures, Jim Buck has performed a valuable service.

REFERENCES

[1] James E. Buck, “On Stein Estimators: ‘Inadmissibility’ of Admissibility as
a Criterion for Selecting Estimators,” PCAS LXXII, 1985.

[2] W. James and C. Stein, “Estimation with Quadratic Loss,” Proceedings of
the Fourth Berkeley Symposium on Mathematical Statistics and Probability,
Vol. 1, University of California Press, Berkeley. 1961, pp. 361-379.

[3] Thomas S. Ferguson, Mathematical Statistics: A Decision-Theoretic Ap-
proach, New York, Academic Press, 1967.

4] Bradley Efron and Carl Morris, “Stein’s Estimation Rule and Its Competi-
tors—An Empirical Bayes Approach,” JASA, March 1973, Volume 68,
Number 341.

{51 Minutes, ISO Credibility Subcommittee Meeting of December 13, 1979.

[6] Insurance Services Office, Report of the Credibility Subcommittee: Devel-
opment and Testing of Empirical Bayes Credibility Procedures for Classi-
fication Raternaking, September, 1980.



25

AN ESTIMATE OF STATISTICAL VARIATION
IN DEVELOPMENT FACTOR METHODS

ROGER M. HAYNE

Abstract

This paper explores some properties of the lognormal distribution. It
is possible that these properties can provide information not only re-
garding the variability of age-to-age development factors but also re-
garding that of age-to-ultimate factors, if the actuary is willing to assume
that these factors are lognormally distributed. Considered are problems
of parameter estimation and uncertainty under the assumption of inde-
pendence of the age-to-age factors. Some results are generalized by
weakening the independence hypothesis, and a method of parameter
estimation with missing observations is presented. This paper is intended
as a starting point, indicating useful results if factors are assumed to be
lognormally distributed. Still an open question is the specific situations
where such is the case.

1. INTRODUCTION

Development factor techniques have long been in the casualty actuary’s
repertoire of projection methods and are used extensively in both ratemaking
and in the estimation of loss reserves. There are, however, numerous sources
of variability in such results. For this reason an actuary often applies several
techniques to obtain several estimates of ultimate losses. The actuary then selects
a “best estimate™ which reflects his or her best judgment of the amount of those
losses.

The complex interactions in the data and the influence of non-random events
(such as changes in claims practices) add to the variability inherent in the results
of any projection technique. This makes it difficult to assess whether random
fluctuations alone can be responsible for a range of estimates provided by various
techniques or whether the various methods detect different patterns actually
present in the data, or whether some combination of the two exists.

This paper will not present a loss projection technique but rather will explore
properties of the lognormal distribution which will allow for some estimation
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of the statistical variability inherent in development factor projections if certain
specific assumptions are satisfied. This can be useful in judging the differences
among several projection techniques. For example, if wide fluctuations can be
expected in projections (evidenced by wide confidence intervals), then variations
in projections using different methods can be expected. If, on the other hand,
there is little evidence of statistical variability and if the results of two methods
are “far” apart, there is reason for further investigation to determine the cause
of such differences.

Since the objective here is to study variability, the results depend on the
underlying probability distributions and not on the particular age-to-age factors
selected in practice. Thus, the resulting estimates of variability can be used as
a measure of a “range of reasonableness” for various development factor selec-
tions and projections of other methods.

There are several useful properties of the lognormal probability distribution
which motivated its choice as the statistical model here. First, the lognormal is
defined for positive values of the random variable (development factors, except
for extreme situations, are positive). Next, the distribution is skewed to the
right but retains positive probabilities for large factors. This also has intuitive
appeal for development factors which can be very large and experience anom-
olous swings. A third, and most useful, property of the lognormal distribution
which suggested its consideration is its reproductive property. As will be stated
in more precise form and greater generality below. the product of two lognormal
random variables is, under certain assumptions, itself lognormal. In addition,
the parameters of the product distribution can be determined easily from those
of the two distributions. In terms of development factors this allows inferences
regarding the age-to-ultimate factors to be made based on assumptions on the
age-to-age factors.

The purpose of this paper is to explore the consequences of the assumption
that the development factors are lognormally distributed. As stated above, the
lognormal was chosen due to its useful properties and not on the basis of
empirical data. Just as the normal distribution has been used to derive approx-
imations in other areas of statistical work, it is possible that the lognormal
model here may provide useful approximations in practice.

2. NOTATION AND BASIC CONCEPTS

This paper will deal with development factor techniques (see, for example,
[1]). For this purpose, let L, ; denote data for exposure period / valued j valuation
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periods from the start of the exposure period i. Exhibit 1 gives a few of the
possible choices for each of the parameters. For simplicity, L; ; will generally
be referred to here as incurred losses for accident year i valued j years from the
beginning of year {. This is by no means an attempt to limit the results shown
here.

Let D; denote the factor to develop losses valued at j years into losses valued
at j + 1 years (commonly called the age-to-age development factor). Thus, if
the loss data strictly followed this model, the following relation would hold:

Loy =D,L:; 2.1

Let D;k denote the factor to develop losses from age j years to their ultimate
value (commonly called the age-to-ultimate development factor). From the
above definition of D, the following formula holds:

D} = [ID. (2.2)
k=

Extensive use will be made here of the lognormal probability distribution
which depends on two parameters, denoted here by p and o”. As used in this
paper the probability density function is defined as:

fix) = exp{—[(In(x) — p)’)2c%}Yxo V27 (2.3)

Here In(x) denotes the natural logarithm and exp(x) its inverse. This distribution
has been used rather extensively in actuarial work especially in the modeling
of size-of-loss distributions (see, for example, [2], [3] and [4]) and has many
useful properties.

In particular, if the random variable X is lognormally distributed with pa-
rameters | and 02, then the random variable ¥ = In(X) is normally distributed
with mean p and variance o”. This fact, and reference to tables of normal
probabilities, allows for easy calculation of confidence intervals for this distri-
bution.

Probably of greatest use here is the following theorem (see p. 11 of [5]):
THEOREM 2.1

If {X;} is a sequence of independent variables, where X; is lognormally
distributed with parameters p; and o, {b} a sequence of constants and ¢ =
exp(a) a positive constant, then provided Zh;u; and Sa7b} both converge, the
product
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c [ x2 (2.4)
is lognormally distributed with parameters ¢ + Zb;u; and Tbio;.

This theorem thus gives rise to the primary result used in this paper. In
particular:

COROLLARY
If: (1) each age-to-age development factor D, is lognormally distributed with
parameters ., and o} (j = 1, 2.3, ...),
(2) all age-to-age development factors are independent, and

(3) X m,and 2, o} both converge;
Jj=1 =1

then each age-to-ultimate development factor D,* 1s lognormally distributed with
parameters

> mand X of (2.5)
k= k=)

In most applications the third assumption above is fulfilled. Usually it is assumed
that loss development stops after some finite point in time so that w, = af = 0
for j sufficiently large.

3. SIMPLIFIED EXAMPLE

As an example of an application of these results assume that there is no
development after four years (i.e. u, = a; = 0 for j > 3). that the age-to-age
development factors D, D, and D5 are each lognormally distributed with known
hypothetical parameters given in the top half of Exhibit 2, and that all D,, D,,
and D, are independent. Then the age-to-ultimate factors DY, D3, and D7 are
all lognormally distributed with parameters as shown in the bottom part of
Exhibit 2.

These parameters then allow for the calculation of various percentiles for
the distributions of the age-to-age and age-to-ultimate development factors. To
this end, let 7 denote the p (0 < p < 1) quantile of a standard normal random
variable Z. That is, ¢ satisfies the equation

PZ<n=p (3.1)

Since D, is assumed to be lognormally distributed with parameters W, and o7
the following formula holds:
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P(D; < exp{p; + toy}) = p. (3.2)

Formula (3.2) then allows the computation of percentiles for the age-to-age
factors using p;, o; and various percentiles of the normal distribution. Some
examplei/ge_presemed in the top part of Exhibit 3. For example, exp(.175 +
.674 X V.075) = 1.433, and so forth. Similar examples for the age-to-ultimate
factors are shown on the bottom of that exhibit.

4. REFINEMENTS

Under the assumption of lognormality, this procedure provides a means to
estimate the statistical uncertainty inherent in the development factor method.
This method assumes the parameters , and @; are known. Yet to be addressed,
however, is the uncertainty surrounding w; and ;. In actual practice W, and
o; are not known for certain. Most often the only source of knowledge lies in
the historical development factors themselves.

Assume here that there are n; accident years of incurred loss data available
valued at year j and year j + | and that there are & such periods of development

under consideration. Thus L; ; and L, ,+, are defined fori = 1, 2, 3, ..., n; and
Jj=1,2,3, ..., k. Assume further that the historical development factors at
age j, defined by

d,',j = L,'.j+|/L,'.,‘ (4 l)

form a random sample from a lognormal distribution of unknown parameters
w; and ;. Moreover, define the statistics:

1 IIJ

Y, =~ 21 In(d;. )) (4.2)
Joi=

) l £l 2

§? = " E. (In(d; ) — Y))° 4.3)
o=

It follows that Y, and S} are the maximum likelihood estimators of p,; and o}
respectively (see [5], p. 39) but, as in the normal analog, 57 is biased. However,
the statistic

2 W
1% p— S; (4.4)

is an unbiased and minimum variance estimator for o7, though it is no longer
a maximum likelihood estimator (see [6], p. 165). Using these statistics, con-
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fidence intervals for ., and o7 can be obtained. This follows from the fact that,
under these assumptions of lognormality and independence, for each j,
In (d; ;) form a sample from a normal distribution and thus

Y, — n; T .
20— P pas a 1 distribution with n; — | degrees of freedom, and 4.5)
ViV,
- Hv; . o
% has a chi-squared distribution with n; — | degrees
i of freedom. (4.6)

Exhibit 4 shows a hypothetical development factor triangle which is gener-
ated using lognormally distributed random numbers. Since it is assumed that
each column represents a random sample from a lognormal distribution, ¥, and
V7 provide estimators for W, and a7, respectively, for each value of j. In addition,
the above observations regarding the distributions of ¥, and V; lead to the
confidence intervals for W, and o given on the bottom of that exhibit. This
information is helpful in estimating the degree of parameter uncertainty con-
tained in the various age-to-age estimates. It cannot, however, be easily extended
in general to the age-to-ultimate factors without additional assumptions, usually
made about o7

Since In(d;. ;) are normally distributed with mean p,; and variance o}, the Y,
values are normally distributed with mean ., and variance o//n,. Moreover, any
sum, such as ¥, + ¥, + ... + Y4, is also normally distributed, in this case with
mean W, + W2 + ... + W« and variance o/, + 0¥ + ... + oiine. If oy,
o2, ..., o4 are all known then the normal distribution can be used to obtain a
confidence interval for w; + w2 + ... + s of the form

Yi+ ...+ Yot Voin + ...+ oin 4.7)
where 1 is the selected percentile for the standard normal distribution.

Normal distribution theory also provides results in the case where o7 = 03
= g3 = ... = 0% = o but all are unknown. The obvious generalizations can
be made in this case; however, it is quite unlikely that this would occur in
development factor applications. The author is not aware of further statistics
which do not need a restrictive assumption such as those on o7 through o
above and which can be used to obtain estimates of parameter variability.

Exhibit 5 provides an example of an application of the first of these as-
sumptions, that the values of o, o . ot are all known. Here they are
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assumed equal to the corresponding estimates V7. The second set of assumptions,
that all the o} are equal, is not applied to this data. The fact that the 90%
confidence interval for ot does not intersect any of the confidence intervals for
the remaining o7 leaves the validity of this assumption open to serious question
in this case.

5. RELAXATION OF INDEPENDENCE CONDITIONS

In the results presented this far, independence has been a necessary condi-
tion. The principal result in Theorem 2.1, however, is a special case of a more
general theorem where the independence assumption can be replaced with one
of multivariate lognormality. For this, some additional notation is necessary.

Denote by R"™" the set of matrices with m rows and n columns, having
real entries. Following Aitchison and Brown (see [5], p. 11) a random variable
Xe R"™' is said to have a multivariate lognormal distribution with parameters
i e R and I € R"*" if the variable ¥ = In(X) = (In(X)), ..., In(X,))" has a
multivariate normal distribution with mean vector [ and covariance matrix .
It is assumed that X is symmetric (i.e. g, ; = ¢} ;) and positive definite, thus
assuring that its inverse, ', exists. If A is a matrix, denote its transpose by
A’. The following result then holds:

THEOREM 5.1

If the age-to-age development factors D= (D, ... D) € R have a
multivariate lognormal distribution with parameters i = (., ..., m,)’ € R"™'
and X = (0, ;) € R"™", symmetric and positive definite, then, each age-to-
ultimate factor

D =1IDw j=1,2,....n (5.1
k=

is lognormally distributed (with a single variate lognormal distribution) with
parameters given by:

> peand 2 Ok (5.2)
k—j i k=

Proof: By definition ¥ = In(D) is normally distributed with parameters . and
2.

By a well known result in multivariate normal analysis (see {6], p. 383),
the sum Y; + Y., + ... + Y, is normally distributed with mean and variance
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given respectively by the parameters in (5.2). Since ¥; + Y;,, + ... + ¥V, =
D) + In(D;+1) + ... + In(D,) = In(D; X D;., X ... x D,) = In(D}), it
follows that In(D;’) is normally distributed and thus D] is lognormally distrib-
uted. The parameters for that distribution are then given by the sums in (5.2).
This completes the proof.

From multivariate normal theory (6], p. 382), each of the above Y; is
normally distributed with mean ; and variance o, ;. Thus, each D, has a
lognormal distribution with parameters w; and o; ;. Hence, once jL and 3 are
known, confidence intervals for the D, can be determined as in the case when
independence is assumed. Similarly, confidence intervals for the D,* can be
determined.

Parameter estimation, however, is not as simply generalized. The author is
unaware of any method to estimate the parameters fiL and 3 in the general case
based on the usual triangular form of historical development factors arrays.

If d;.; denotes the historical age-to-age factor for accident year { from age j
to age j + | and the collection of such factors is based on n + | years of
annual experience, ending in the current year, then . ; is not defined if i + j
exceeds n + 1. Thus, the usual estimators for L and 2, which would require
data for all allowable i,j values, cannot be applied. If it is assumed that the
age-to-age factors are independent for j = m for some m then the previously
stated results apply to each column for which j = m.

If, now, m = (n + 1)/2 then the array of factors d; ;,, i = |, 2, ..., n; j =
1,2, ..., m i+ j=n+ | will have at least m observations in each column.
In this case the results of Bhargava [7] are applicable. In that paper, Bhargava
derives maximum likelihood estimators for L and X for normal distributions
based on samples with data missing in particular patterns. The available data
from the first m columns of a development triangle form such an array if m <
(n + 1)y2.

Following Bhargava set

B =t 2 B, (5.3)
Ok = E Blay ni= 1.2, ... k1 (5.4)
k=1 k=1

Gik = Tin + 2 2 Bik' ;MUI, (5.5

i=1 j=1
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Given the parameters . and ¥, the equations in (5.4) form a set of ¥ — ! linear
equations in k — 1 unknowns, B, BY, ..., Bi|. Once these values are
determined, v; and 0';(9, can be found from (5.3) and (5.5), respectively.
Conversely, given vi, B and o), these equations give the parameters i and
3. Bhargava then determined maximum likelihood estimates for the parameters
v, B, and 0%e), and, using (5.3), (5.4) and (5.5), derived maximum likelihood
estimates for i and 2.

To state those results some further notation is necessary. Suppose that ¥,
¥2, ¥, ..., yn are n independent observations from a population that has a
multivariate normal distribution with m variates with m =< (n + 1)/2. The sample
will satisfy Bhargava’s definition of a monotone sample if observations for the
i™ variate are available in 71, ¥, ..., ¥a+1-i. Since m =< (n + 1)/2, there will
be at least m complete vectors. Note, this merely formalizes the situation that
exists in a development factor matrix showing annual development for n + 1
accident years if the vector y; is thought of as the first m elements of the ;"
row. Though independence of the various age-to-age factors is no longer as-

sumed, independence of the rows (accident year observations) is.

Given this sample, define the matrix yu,«— 1, as the matrix composed of a
column of 1’s, followed by the first k — 1 elements of the observations yi, ¥,
-y Ynrk—1. This is a matrix with a column of 1’s followed by the first £k — 1
columns of the largest matrix containing observations for all of the first k variates
in the data triangle. Let yy denote the column matrix composed of the
n + k — 1 observations of the k™ variate.

With this notation, Bhargava presents the following result:
THEOREM 5.2

Assume that i € R™*', 3 € R™" is symmetric and positive definite, and
that ¥1, V2, ..., ¥. is an independent, monotone sample from the multivariate
normal population with mean vector ji and covariance matrix . If v, B* and
O'f'e, are defined as in (5.3), (5.4) and (5.5) then the maximum likelihood
estimators for v, B> and o, are given by:

B = ¥ 0¥ -0 Y aL -0 (5.6)
nt 1k k-1

(n+ 1= koke = 2 One — 0~ 2B (5.7)
j= i=1

Vol = Yly o, k- 0¥, k-1) " T
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Though not immediately obvious, the value of ¥ is the constant coefficient of
the least squares multiple linear regression of v, against the first k — | variates,
based on the observations in the first n + | — k rows of the matrix. Similarly
B are the coefficients of each of the first k — 1 variates. Finally, 0%, is the
conditional variance of the fit. It denotes the amount of variance which remains
unexplained by the regression. Thus, estimation of the vy, B”" and ok can be
accomplished using multiple regression for k = 2, 3. ..., m while ¥, and 073,
are the sample mean and variance of the first column of the matrix.

If, now, it is assumed that the first m columns of the development factor
matrix have a multivariate lognormal distribution with parameters i € R™'
and X € R”™™, symmetric and positive definite, then the above procedures,
applied to v, ; = In(d, ;), will produce the maximum likelihood estimates for
vi, B* and o3 and thus L and ¥. This result follows since. under this
assumption, the values of In(d; ;) form a monotone sample from a multivariate
normal distribution.

~

As an example of these methods, Exhibit 6 shows the estimators ¥, B
and (}fw, along with estimators for L and ¥ based on the hypothetical devel-
opment factors shown in Exhibit 4. In this case, the matrix is 6 X 6 (n = 6).
Here it is assumed that i = 3, that there is no development after the sixth year,
that is, D, = D7 = Dg = ... = |, and that D, through D, are all independent
and independent of the first three factors. Finally, it is assumed that D, through
D: have a multivariate lognormal distribution with parameters [ € R**' and 2
€ R*™’, symmetric and positive definite.

If it is assumed that the paramcters of the distributions for D, through Ds
are equal to their maximum likelihood estimates then Exhibit 7 shows the
resulting confidence intervals for the resulting age-to-age and age-to-ultimate
factors. The intervals for D, through D; are based on the fact that the natural
logarithm of each is normal with mean w, and variance o, «. This exhibit also
compares the intervals with those derived under the assumption of independence,
assuming that the parameters equal the values of ¥, and V; in Exhibit 4.

Correlation among the age-to-age development factors will, of course, im-
pact the marginal variance of any given factor and ulso the variance of the
resulting age-to-ultimate factors. If the various age-to-age factors are positively
correlated then the resulting age-to-ultimate factors will have wider variation
(and hence wider confidence intervals) when derived using the multivariate
estimation than those derived using the assumption of independence. Con-
versely, if there is negative correlation among the age-to-age factors then the
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resulting estimates of the age-to-ultimate factors derived using the multivariate
techniques will probably have less variation than those derived assuming inde-
pendence. This follows from the variance formula given in (5.2).

Parameter uncertainty is not as straightforward as in the completely inde-
pendent case. Though the author does not know the distributions of the various
estimates, Bhargava does provide likelihood ratio tests to test the hypothesis
Hy: L = 0 against H: . e R™™'. Those results are sufficiently complex, however,
that they will not be presented here. One interesting result mentioned by Bhar-
gava, however, is that the distribution of (n + 1 — k) Gie/Cie), given the
observations in the first n + | — k rows and k columns, has a chi-squared
distribution with n + | — 2k degrees of freedom.

6. OBSERVATIONS

The usefulness of any theory lies in the nearness of the hypothesis of that
theory to reality. In this regard, the first question that comes to mind is that of
the lognormality of development factors in actual practice. The lognormal
distribution has the benefit of being defined for only positive values of the
random variable and does not impose an upper bound on those values. This
corresponds to development factors which are generally positive and are un-
bounded. In practice, statistical tests such as the Kolmogorov-Smirnov Test as
presented by Gary Patrik ([8], p. 65) may help in assessing the validity of the
assumption of lognormality.

The independence of the various columns may also be able to be tested.
Since In(d;. ;) are assumed to be normally distributed for i = 1, 2, ..., n; a test
based on the sample correlation coefficient between the natural logarithms of
two columns may give some insight as to the validity of this assumption. In
addition, these results require the independence of the development factors of
a given age from each other. Again, usual statistical tests, applied to the natural
logarithms of the development factors, may be helpful in assessing the validity
of this hypothesis. In any case, in actual applications, actuarial judgment is
required to detect any patterns which may appear in the data (for example,
correlation between columns, trend in age-to-age factors over time, etc.). Such
patterns often add to the variation apparent in the factors. Actuarial judgment
will thus decrease statistical variability.

In order to compare the results of various loss projection methods, the age-
to-ultimate development factors must be multiplied by the appropriate loss
amount to date. To draw statistical conclusions about the resulting loss projec-
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tions, the age-to-ultimate factors must then be assumed to be independent from
the amounts recorded to date.

The methods presented here can only provide estimates of statistical varia-
bility under very explicit assumptions. They should be looked on as providing
a “‘range of reasonableness” of loss projections. based on such variability, rather
than as a confidence interval about any specific ultimate loss estimate. In the
latter case, the actuary’s judgment is used to narrow a large range of possible
choices (as presented by the historical development factors) in light of his or
her knowledge of the underlying data.

7. CONCLUSIONS AND BEGINNINGS

This paper is presented more as an opening to further investigation than as
a definitive solution to a problem. The model selected for study, that of devel-
opment factor projection, is one of the simplest of the projection techniques in
use by casualty actuarics and any actuary with cxperience in applying this
technique knows its limitations and weaknesses. Hopefully the results presented
here help in assessing the variability inherent in this method.

The larger challenge still facing casualty actuaries is to devise estimates of
the amount of variation to be expected in the more complex projection methods
used. However, a precise estimate of variability inherent in an actuary’s “best
estimate” probably is not possible. Actuarial judgment used to interpret diverse
results of various methods, in light of the actuary’s knowledge of events that
may impact the patterns to be expected in the data, cannot be statistically
quantified. This judgment is usually the most important aspect of the estimation
of ultimate losses, but any further insight that can be gained from these tech-
niques can be helpful in forming that judgment.
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EXHIBIT 1 EXHIBIT 2

SOME CHOICES AS TO DATA ARRANGEMENT SIMPLIFIED EXAMPLE DEVELOPMENT FACTORS

FOR DEVELOPMENT FACTOR TECHNIQUES Parameters for the Age-to-Age Factors

. Dx, Dz. and D;
Type of Data (L) Aggregation Type ; 2

J B aj
Paid Losses Report Period 1 0.175 0.075
Incurred Losses Accident Period 2 0.045 ()-005
Paid (Closed) Claim Counts Policy Period 3 OA()O»S ()‘()(')1

Reported Claim Counts

Parameters for the Age-to-Ultimate Factors

Exposure Period (i) Valuation Period (/) DY. DY, and D}
Year Year J W o
Half-year Half-year -
Quarter Quarter ] 0.225 0.081
2 0.050 0.006
3 0.005 0.001

8¢
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EXHIBIT 3

ExaMPLE PERCENTILES BASED ON
SIMPLIFIED DEVELOPMENT FACTOR DATA

Percentile
10% 25% 50% 75% 90%
Age (1= —1.282) (= —0.674) (t = 0.000) (t = 0.674) (r=1.282)
Percentiles for Age-to-Age Development Factors
1 0.839 0.990 1.191 1.433 1.692
2 0.955 0.997 1.046 1.097 1.145
3 0.965 0.984 1.005 1.027 1.047
Percentiles for Age-to-Ultimate Development Factors
1 0.869 1.034 1.252 1.517 1.804
2 0.952 0.998 1.051 1.108 1.161
3 0.965 0.984 1.005 1.027 1.047

SUOHIMIW A0LIOV: INTNJO TIAMCA
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HYPOTHETICAL DEVELOPMENT FACTORS

DEVELOPMLENT I'ACTOR METHODS

EXHIBIT 4

Stage of Development (years)

Accident
Year 2/1 32 413 5/4 6/5 716
1 1.932 1.036 1.009 1.003 1.002 1.000
2 1.975 1.038 1.013 1.006 1.001
3 1.809 1.041 1.011 1.005
4 1.954 1.043 1.009
5 1.997 1.035
6 1.932
Estimators:
Y 6.59x 3.79x 1.04% 4.66% 1.50%
107! 1077 10 ° 10 ° 10°
V: 1.21x 1.05% 3.59% 2.31x 4.99%
10" 1077 107° 10°° 1077
90% Confidence Intervals for:
6.30x 3.48% 8.20x 2.10% —1.65%
107" 1077 107 10 ° 10"
v to to to to to
6.88x 4.10% 1.26% 7.22% 4.65x%
10" 1072 107 10" 10°°
5.45% 4.41x 1.38% 771X 1.30x
10°* 10°° 10°° 1077 107
02 to to to o to
5.26x 5.80X 3.06X 4.49% 1.25%
107 1077 10 °° 10 ° 10°*
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EXHIBIT 5

EXAMPLE CONFIDENCE INTERVALS FOR THE PARAMETERS
OF THE AGE-TO-ULTIMATE DEVELOPMENT FACTORS

Assumptions:
ol =121 %10 os=1.05%x10"°
03 =359 x 10°° o3 =231 x10°°

03 =499 x 1077
of = =0forj=6

Estimator 90% Confidence Interval for
* ®
Age for w; for w;
1 0.714 0.690 to 0.737
2 0.0554 0.0511 t0 0.0578
3 0.0166 0.0143  t0 0.0189
4 0.00616 0.00450 to 0.00782
5 0.00150 0.000678 to 0.00232

41
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EXHIBIT 6

ExaMPLE PARAMETER ESTIMATES USING MULTIVARIATE

SAMPLE ESTIMATION

Variable:
D, D> Ds
Estimators:
i 6.59 x 10 ' 6.31 x 10 * 1.53 x 1072
g ~3.84 % 10 ° ~1.00 x 10°°
—1.09 x 107"
Tio) 1.01 x 10 * 6.60 x 10 ° 261 x10°°
i 6.59 x 10" 3.79 x 1077 1.05 x 107*
)3 1.01 x 10 ° ~3.86 x 107" 3.20 X 10°°
-3.86 x 107° 8.08 X 107° —-8.42 x 107’
3.20 x 10°° ~8.42 x 10’ 270 x 10°°
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EXHIBIT 7

ExXAMPLE 90% CONFIDENCE INTERVALS BASED
ON MULTIVARIATE PARAMETER ESTIMATION

Intervals For Age-to-Age Factors:
Dl D2 D3 D4 D5

Assuming Independence:
1.825 1.033 1.007 1.002 1.000
to to to to to
2.046 1.044 1.014 1.007 1.003

Using Multivariate Estimators:
1.834 1.034 1.008 1.002 1.000
to to to to to
2.036 1.044 1.013 1.007 1.003

Intervals for Age-to-Ultimate Factors:
py b Dy DI D}

Assuming Independence:
1.926 1.049 1.013 1.003 1.000
to to to to to
2,161 1.063 1.021 1.009 1.003

Using Multivariate Estimators:
1.904 1.050 1.013 1.003 1.000
to to to to to
2.147 1.062 1.021 1.009 1.003

43
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“The ultimate goal of model-building is either as ua tool for communicating
. or for predicting and making decisions . . "

A PRACTICAL GUIDE TO THE
SINGLE PARAMETER PARETO DISTRIBUTION

STEPHEN W. PHILBRICK
Abstract

The actuarial literature has discussed several candidates for size-of-
loss distributions—log normal, Weibull. multi-parameter Pareto,
gamma, as well as others. However, despite the demonstrated success
of these distributions, there is a dependence on techniques such as
empirical data, judgment, or at times some unwieldy formulae. This
suggests that there may be a need for a size-of-loss distribution that is
relatively easy to apply in practice.

The one-parameter Pareto is an example of such a distribution. Its
use may be restricted to the tail of a distribution, but it is casy to apply.
The formulae for the mean, variance. and the variance of the aggregate
loss distributions are simple in form and may be used as quick approx-
imations in many cases.

I. INTRODUCTION

—William S. Jewell

Although model-building is common to many branches of science, there are
important distinctions among the properties of various models. The laws of
physics such as Newton's laws arc attempts at mathematical models of reality.
These efforts have been particularly successful because the major forces at work
are few in number and often constant over time and position. Although tech-
nically there are many forces involved in, say, the movement of the planetary
bodies. the dominant force of gravity dwarfs the other forces such as friction.
Models can be developed based solely on the properties of the gravitational
force which describe the motion of the planets to a very high degree of precision.
In these situations, it 1S common to find mathematical models with few param-
eters that are highly accurate models of reality. It is appropriate, even if tech-

nically incorrect, to speak of the search for the correct mathematical model.
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In the social sciences the situation is quite different. The forces involved in
economics, for example, are numerous and usually not constant over time.
Many forces exist that have the same order of magnitude; hence they cannot be
ignored. Furthermore, in the social sciences it is often more difficult to do
controlled experiments where one force is allowed to vary while all others are
held constant. For these reasons, it is less appropriate to think of a search for
the model in the social sciences than in the physical sciences. Although we
might talk about such a concept theoretically, the practical reality is that any
parameter-based model that completely describes an existing situation will re-
quire so many parameters as to make it unusable. In these situations, model-
building requires a trade-off between accuracy and practicality.

Thus, the question “What is the appropriate loss distribution?” does not
have a unique answer. It depends on the intended use of the distribution and
the available data.

The question requires a cost-benefit analysis. Different models will have
various costs related to:

Mathematical complexity,
Availability of computer/calculator software routines,
- Computer processing time requirements,
Conceptual simplicity (ease of explanation to others), and
Availability and accuracy of data.

Generally speaking, increasing sophistication of the model produces more
accurate results. The selection of an appropriate model for a particular problem
requires deciding whether the increased accuracy of the more complex model
justifies the increased costs associated with it. Furthermore, in many situations
the available data may be sparse or subject to inaccuracies. In these instances,
a simple model may be preferred because the accuracy of results will not be
materially improved by the use of a more complex model.

For example, suppose an actuary is trying to solve a typical risk management
problem: the projection of losses for an individual risk. A common procedure
in this analysis is to separate the projections of the large or excess losses from
the projections of the more stable primary portions of the losses. Several
characteristics of this situation make a simple model particularly appropriate.

- The projection of the limited losses may be accomplished without the
need for a specific size-of-loss distribution. The moments of the data,
using a frequency/severity or total loss approach, may be sufficient for a
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reasonable projection. It will then be necessary to fit a model only above
a particular loss amount. Fitting a distribution to only a portion of the
range will reduce the required complexity of the model.

Inaccuracy of estimates of expected losses arises from a number of
sources. Two major ones are:

—Oversimplified models, and

—Misestimated parameters.

In a situation involving an individual risk, the number of large losses used
to estimate the parameters will typically be less than the number involved
in an insurance company or industry analysis. The errors arising from the
sample size may dominate those arising from a less complex model. As
a consequence, the simplicity of the less complex model may be preferred
because the possible loss of accuracy is more than offset by the benefits
of a simpler model.

There may be a need to explain the loss projection process to people
without extensive actuarial or statistical training. Although techniques
should not, in general, be dictated by the sophistication of the audience,
if competing models produce almost identical results, the ease of expla-
nation of one may be an important consideration.

The remainder of this paper will be organized as follows:

Section II-—A discussion of the way distributions are depicted. An alter-
native to the “standard” representation will be presented.

Section [II—A discussion of the busic propertics of the single parameter
Pareto distribution.

Section IV—Various methods of parameter estimation using empirical
data.

Section V—The results of trend on losses when a Pareto distribution is
assumed.

Section VI—A method to simulate Parcto losses.

Section VII—Specific applications using a Pareto distribution.



SINGLE PARAMETER PARETO DISTRIBUTION 47

The author would like to acknowledge the help of several people, including
Jerry Miccolis and Claudia Leme, who reviewed early drafts of this paper; Kurt
Reichle and John Yonkunas, who provided many helpful suggestions and en-
couragement; and Jerry Jurschak, who contributed some of the concepts em-
bodied in this paper.

Ii. SIZE-OF-LOSS REPRESENTATIONS

Most texts on probability and statistics portray distributions (as well as
density functions) using similar conventions. That is, the horizontal axis rep-
resents the value of the observations and the vertical axis represents the relative
frequency (for density functions) or the cumulative frequency (for distributions).
It is clear, from a mathematical point of view, that this choice is arbitrary. The
axes could be switched without violating or changing any of the statistical
concepts.

Despite the almost universal acceptance of this “standard” representation,
the alternative representation turns out to be a clearer choice for size-of-loss
distributions in some situations. The reason for this preference is that this
representation can be developed in a “natural” way and will allow a number of
concepts, such as loss limitation (truncation and censorship), to be applied in a
more intuitive fashion. Appendix D contains a more detailed discussion of
reasons for preferring this orientation.

In the following discussion, we will develop a size-of-loss representation
where the y-axis is the horizontal axis and the x-axis is the vertical axis. We
will refer to this representation as the “alternative” representation.

Because we have switched the axes rather than redefined them, the defini-
tions of x and y will remain unchanged; that is, x refers to loss amounts and y
refers to cumulative frequency.

Discrete Case

Consider a set of n losses from some arbitrary size-of-loss distribution where
each loss has size S;, i = 1, 2,...,n. Represent each loss by a rectangle with
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FIGURE 1
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width one and height S;. Arrange these losses from smallest to largest, each
perpendicular to the y-axis. Figure | displays a typical example of such a
procedure.

Define G(y) to be the curve represented by the tops of each of the rectangles.
Then, G(y) = S: for i—1 < y = /. Note that the interpretation of the random
variable Y is the number of losses less than or equal to G(y) (for integral values
of y).

Continuous Case

When we consider the continuous case, the width of each loss is dy. The
value of y ranges from 0 to 1 and represents the percentage of losses less than
or equal to G(y). A typical example would look like Figure 2.
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FIGURE 2
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From this point on, the continuous version of the representation will be
used. However, some of the concepts may be better understood if the original
motivation of this representation is recalled, namely “stacking” individual losses
along the y-axis.

When we work with a set of losses (whether actual or theoretical), we
generally wish to partition these losses in some way. The most common parti-
tions are “large” versus “small” and primary versus excess. These partitions can
be graphically represented by defining areas under the curve X = G(y).!

Generally, we will indicate the losses of interest by defining one or more
straight lines on the graph (see Figure 3). When we define an area by a pair of
lines parallel to the horizontal axis, we will refer to these losses as a “layer” of
losses. Alternatively, if we use a pair of lines that are parallel to the vertical

' A third type of partition is described in Hewitt and Lefkowitz [H1]. That partition cannot be
handled in this way.
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FIGURE 3
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axis, these will be referred to as “interval” losses. In this case, we are referring
to those losses that correspond to an interval specified on the (horizontal) axis.

We could define the areas we are interested in by directly writing the integral
over the appropriate limits. However, we can keep the notational complexity to
a minimum if we adopt symbols for the areas that will be used most often.

. 2
Given loss amount, r, we define”:

Verbal Mathematical
T(r) — The average claim size of fx dF(x)
all losses less than or —Ur————
equal to r; i.e., losses are f dF(x)
[0}

truncated at amount r.

? The reader may note that the notation used here is not entirely consistent with that developed in
a discussion of LaRose [L.1]. The notation developed by LaRose calculates claim amounts as
percentages of the average claim. Unfortunately, the average claim size is not always well-defined,
s0 a more general notation is required.
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FIGURE 4
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C(r) — The average claim size of

all claims where the
amount of each claim is
limited to size r; i.e.,
losses are censored at
amount r.

frx dF(x) + r[l — F(n)]
0

For example, if r is $100,000, then T($100,000) represents the average of
all losses less than or equal to $100,000. In Figure 3, this average would be
represented by the ratio of the area bounded by ABD divided by the number of
claims in the interval. The quantity C($100,000) is the average of all claims
where amounts greater than $100,000 are capped or limited to $100,000.

The preceding discussion is applicable to any size-of-loss distribution. Figure
3 applies to any distribution that is used to model the entire range of losses. In
the remainder of this paper, we will work with the tail of a loss distribution that
is applicable to “large” losses. Consequently, we will truncate the loss distri-
bution at some value and remove each loss less than that value. A typical
distribution representing the remaining “large” losses is shown in Figure 4.
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Figure 4 is derived from Figure 3 by truncating the loss distribution at loss
amount r. Physically, we remove the portion of the graph to the left of the
vertical line BD, then renormalize our axes so that the y-axis is the cumulative
percentage of the “large™ losses, that is, losses greater than or equal to r. It
should be emphasized that Figure 3 is not drawn to scale for typical loss
distributions. If we select a lower limit r such as $25,000. the cumulative
probability that a claim is less than $25,000 (which is represented by point B)
is typically in excess of 90%. We will work only with the large losses in the
remainder of this paper, so Figure 4 is the important figure to keep in mind.

111.  BASIC PROPERTIES OF THE SINGLE PARAMETER PARETO

The Pareto distribution as described in Johnson and Kotz [J1] has cumulative
distribution function:

F(x)=l~<!<—> k>0 a>0x=k
X

This is also known as the *Pareto distribution of the first kind.” Strictly speaking,
this distribution has two parameters, & and «. In general, both k and ¢ may be
estimated from the data. However, the verbal definition of & is the lower bound
of the data in question. Although there may be situations where this value must
be estimated, in virtually all insurance applications this value will be selected
in advance. The typical insurance application will be to model losses whose
value is in excess of some pre-selected size, such as $25,000 or $100,000.

Furthermore, if we “normalize™ our losses, that is, divide each loss by the
selected lower bound, then the normalized lower bound is |, and the parameter
does not need to be stated explicitly. Finally, we will use ¢ as the parameter,
rather than a. to be consistent with ISO usage (ISO [I1], p. 34). The distribution
can then be written as:

Fy=1-x" n
and the density function is
fo = g7 (2)

This is the distribution that will be discussed in the remainder of this paper.’
Typical values for ¢ can range from .7 to 2.0, although values outside this

* See Appendix C for a discussion of alternative forms of the Pareto.
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range are possible. A typical value for g of property losses is 1.0, while a
typical value for casualty losses is 1.5 (based upon empirical evidence). Note
that a low value of ¢ corresponds to a distribution with high severity. Fire may
not be thought of as a {ine with high severity, but that is because there are so
many very small claims. Considering only larger claims, e.g., claims greater
than $25,000, fire claims have a fairly “thick” tail. The density function for a
Pareto with parameter ¢ = 1.5 is shown in Figure 5; the corresponding c.d.f.

is shown in Figure 6.

If we “flip” the x- and y-axes of the cumulative distribution, we will produce
Figure 4. Note that the curve intersects the x-axis at x=1, because we have
normalized the losses. The curve is asymptotic to y=1. As mentioned earlier,
we can visualize the area under the curve as being made up of thin vertical
rectangles whose height corresponds to the size of loss. Thus the total area
under the curve represents the total losses, and the losses associated with various
retentions or policy limits can be described by different areas under the curve.

The distribution as shown in Figure 4 is based upon the assumption that the
lower limit is 1 and the expected frequency of claims greater than or equal to
this value is also |. Formulae will be derived under these assumptions. The
necessary conversions to real problems are simple and straightforward. Exam-
ples of conversions will be given in most cases. Although it may seem awkward
at first to work with a normalized distribution, it will soon become very natural.
The motivation for using the normalized distribution should become clear when
we analyze the losses contained in different layers.

Unlimited Claims

The formula for the average claim size is as follows:

Unlimited Mean Claim Size = q—z—l— q>1 3)
Note that this formula also represents the expected total losses when the expected
frequency is | (assuming independence of frequency and severity).

If the data being analyzed has a lower limit of $K per claim, then the mean
size in “real” dollars 1s:
q

Unlimited Mean Claim Size = K (5——1> (3a)
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If we anticipate n claims greater than or equal to $K per claim, then the
total expected losses are:

Unlimited Expected Losses = n K (q—z—]) (3b)

For example, suppose we are analyzing claims where the lower limit is
$25,000. That is, all claims are greater than or equal to $25,000. After nor-
malizing our losses (dividing each by $25,000) we conclude that a parameter
value of g = 1.5 is appropriate. (A later section will discuss parameter esti-
mation.) Then the normalized gross mean claim size is 1.5/(1.5 — 1) = 3. In
terms of “real” dollars, where K = $25,000, the gross mean claim size is 3 X
$25,000 = $75,000.

If we expect 7 claims to exceed $25,000, then our gross expected losses are
7 x $75,000 = $525,000. (Again, it should be remembered that we are ana-
lyzing the large claims only. The expected losses arising from claims less than
$25,000 are assumed to be estimated separately.)

We may wish to calculate the net losses, for example, if we have a $25,000
deductible. The formula for the net mean claim size is derived from the gross
mean claim size simply by subtracting 1:

1
-1 =— > 1 4
) q—1 q 4

The conversion to “‘real” dollars and total losses follows the same approach
as above. For example, with ¢ = 1.5, K = $25,000 and a frequency of 7, the
net expected losses above $25,000 are 7 X $25,000 x 1/(1.5 — 1) = $350,000.

Net Mean Claim Size (q -

Censored Claims

If we impose an upper limit (such as a policy limit) with value b, then the
formula for the average loss limited to $/ per claim is:
g —b"*

Cb) = ——

q#1 (5)

If ¢ = 1 we can calculate the formula using L’Hdépital’s Rule:
Chy=1+Inb g =1 (6)

In the case where we want net losses, we can simply subtract 1 from each
formula. Note especially, when ¢ = 1 the average loss with upper limit b is
simply In b.
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Continuing our previous example (with ¢ = 1.5 and lower limit of $25,000),
if we impose an upper limit of $500,000, then b = 20 x (500,000/25,000).
The average claim whose value is greater than $25.000 but limited to $500,000
can be calculated using (5):

1.5 — 2013
1.5 — 1

In “real” dollars, the average claim is 2.553 X $25,000 = $63,820 (calculations
here and subsequently are performed without rounding at intermediate steps).
If we are pricing reinsurance for the net layer ($475,000 xs $25,000), then
we would subtract 1| first to calculate the net claim size: 1.553 x $25,000 =
$38.820. Assuming we expect 7 claims over $25,000, the expected losses in
the layer are 7 X $38,820 = $271,738.

= 2.553

Truncated Claims

The situation described above (with an upper censorship limit) arises natu-
rally in practice because of the existence of policy limits and the way companies
commonly write excess of loss reinsurance. Another way to limit losses is to
truncate the losses at some value. This means that losses in cxcess of the
truncation point are “thrown away,” rather than simply “capped” at the limit.
Note that this is different from censorship in two ways:

1. More dollars are removed when losses are truncated at a value because
the entire loss above the limit is removed.

2. Truncation affects the frequency. Censorship removes the excess portion
of a claim, but does not affect the number of claims. Truncation removes
the entire claim, so the formulae for average values must reflect the
reduced claim count.

The concept of truncation arises rarely in property/casualty policy language
(with the rare exception of franchise deductibles). However. the concept may
arise in the analysis of experience. For example, it might be appropriate to
separate losses into large versus small (rather than primary versus excess). In
this case, the limit chosen to distinguish between large and small losses will be
a truncation point, rather than a censorship point.

The formula for the average claim size with lower value 1 and truncation
point b is:
g1 = b9

Tb) = —
e TR

g # 1 (7
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The comparable formula for the case g = 1 is:

L1 L
U v

T(b) = 3— g=1 (8)

Continuing our example, suppose we are interested in the losses larger than
$25,000 but ignoring all losses greater than $500,000 (rather than including the
first $500,000 of those claims greater than $500,000). With ¢ = 1.5 and b =
20, the average claim size is calculated with (7):

1.5(1 =207
S50 —-20")

In “real” dollars, the average claim is 2.356 X $25,000 = $58,888. If we
expect 7 claims over $25,000 we can calculate the total dollars for the interval.
Given 7 claims over $25,000, we expect 7 X F(20) = 7 X 9888 = 6.922
claims in the interval between $25,000 and $500,000. We have already calcu-
lated the average of those claims, so we multiply the frequency by the average
claim size to yield the total dollars: 6.922 X $58,888 = $407,606.

= 2.356

The formula for the average truncated size follows directly from the defi-
nition of truncated claims given earlier. However, we can simplify the formula
and reduce the amount of calculation by adopting a slightly non-standard con-
vention. Note that, in our example, one of the terms in the denominator for the
average truncated claim size is 1 — b~ 7. Note also that the number of claims
in the interval is calculated by multiplying the expected frequency (above the
lower limit) by F(b) which is 1 — b~ “. Obviously, these terms cancel out when
the total dollars in the interval are calculated.

Define T'(b) to be the average claim size, where the denominator is not just
the claims in the interval, but the number of claims above the lower limit. In
other words, use the same denominator as in the censored situation. The moti-
vation is two-fold:

(1) The formulae will be simpler.

(2) It is more likely that we will have an estimate of the total number of
claims above a limit than that we will have an estimate of the number
of claims in an interval.

The formula for the revised “‘average” truncated claims size is:

gl — b'™9

) = £

q# 1 (9)
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When g = 1, the formula simplifies to:
T'b)=Inb g=1 (10)
Redoing the example above, the “average™ claim size is calculated using:

1.5(1 — 20 %)
5

In “real” dollars, the “average” claim size is 2.329 X $25,000 = $58,229.
Multiplying this by the number of claims expected over $25,000 yields
7 X $58,229 = $407,606.

= 2.329

In summary, if we are interested in the true average claim size, we use
formula (7) or (8). However, if the calculation of the average claim size is
simply an intermediate step in the calculation of the total dollars, we may prefer
to use alternative formula (9) or (10).

Next we will look at the excess portion of the distribution. In this case, we
are interested in the total losses or average claim size of claims greater than
some limit b. In terms of Figure 4, the area of interest is bounded by HIK.
Rather than directly calculate the total losses and average losses in this layer,
we will exploit a powerful property of the Pareto distribution. If we renormalize
the excess portion by dividing each loss by b and dividing the excess frequency
by 1 — F(b), the resulting distribution will have a shape identical to that in
Figure 4. (This renormalization is the result of a scale change to both axes. For
more discussion of scale changes, see Venter [V1].) Thus, we may use the
formulae already calculated, although keeping careful track of the appropriate
factors to convert back to “real” dollars.

The average gross claim size is still ¢/(¢ — 1) and the average net claim
size is 1/(g — 1). In terms of our first renormalization, the average gross claim
size is b (g/(q — 1)) and in “real” dollars, the average is bK (¢/(q¢ — 1)). The
total dollars involved in claims greater than b can be calculated by multiplying
by the frequency of claims greater than b which is 1 — F(b) = b 9.

In practice this works out easier than the formulae would indicate. Continu-
ing our example (¢ = 1.5, K = $25,000, frequency over $25,000 = 7), suppose
we are interested in the losses in excess of $100.000 per claim. We don’t
actually perform the renormalization: we simply use the formula for net average
claim size (1/(g — 1)) and substitute ¢ = 1.5 into the formula yielding a net
claim size of 2. Multiply by $100,000 (it isn’t necessary to multiply first by
$25.000, then by 4) to produce the average net claim size of $200,000. To
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calculate the total dollars, recall that the ratio of claims exceeding $100,000 is
calculated by using the cumulative distribution 1 — F(b) = b ¢ = 47'° =
.125. Multiply this by the expected frequency over $25,000 of 7 yielding .875
claims expected to exceed $100,000. Thus, the expected excess losses are
.875 x $200,000 = $175,000.

This concept is important, as it allows us to quickly calculate the total losses
and average claim sizes for arbitrary layers and intervals. As another example,
suppose we continue our assumption that losses over $25,000 have a Pareto
distribution with ¢ = 1.5 and the expected frequency of claims over $25,000
is 7. Suppose we are asked to analyze the layer between $75,000 and $187,500
(i.e., $112,500 xs $75,000). The first step is to calculate the value of b, which
is simply 187,500/75,000 = 2.5. We can use (5) to calculate the gross average
(censored) claim sizes:

1.5 - 257
5

The net average claim size is .735 or .735 x $75,000 = $55,132 in
“real” dollars. The frequency of claims is 7 X (1 — F(75,000/25,000)) X
F(187,500/75,000) = 7 X (3™"%) x (1 — 2.57'%) =7 X (.192) x (.747) =
1.006, so the expected losses in the layer are 1.006 X $55,132 = $55,482.

= 1.735

Next, we will calculate the variance of the individual claim amounts as well
as the total loss variance. The formulae shown above for expected values are
sufficient for pricing on an expected value basis or some function of the expected
value. However, there are methods of pricing that include risk loading based
upon variance, as well as other risk theoretic analyses that require the calculation
of variances. (See Gerber [G1] for a discussion of various pricing approaches.)

Again, this is one of the motivations for the use of the Pareto. The calculation
of total loss variance is a fundamental issue in risk theory, yet the procedures
necessary to calculate the variance generally involve complex formulae or, more
likely, computerized estimation techniques. The formulae associated with the
single parameter Pareto are often easy to evaluate and may provide, at the very
least, a reasonable first approximation.

Recall that the variance can be calculated as the second moment minus the
square of the mean. The formula for the n™ moment of the Pareto distribution
with no upper limit is

7™ moment = —3 (1
qg+n
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Thus, the second moment is ¢/(¢ + 2) and the formula for the variance of a
single claim is:

. oy’ g
Variance = ( ) - ( ) >2 12
ariance p— p— g (12)
Again, we have the problem that the variance is undefined for typical values of
g. But if we restrict ourselves to reasonable upper limits, the variance will
always be finite. If we impose upper limit b, then the variance of losses within
the layer is:

_ ap2q w2
Variance = 4 p 3b2 - (qq _bl ) Z;é ; (12a)
The formula simplifies in the cases where ¢ = | or 2 as tollows:
Variance = 2b — 1 — (1 + In b)° g =1 (12b)
Variance = 1 + 2 In b — ((2b — 1)/bY’ g =2 (12¢)

These formulae apply in either the net or unlimited layer cases.

To convert these results to “real” dollars, multiply by K~ where K is the
lower bound of the losses. It is important to realize that these formulae reflect
only the variance associated with the loss severity. The total loss variance also
reflects the variability of frequency, which will be covered shortly.

We will continue the example where the lower limit is $25,000 and ¢ =
1.5. As we have shown earlier, the gross mean claim size is 3 and the net mean
claim size is 2 when no upper limit is imposed. However. the variance is not
defined in this case. With an upper limit of $500,000, b = 20 and the variance
of a single claim is calculated by substituting into (12a) with¢ = 1.5 and b =
20. The result is 8.372. In “real” dollars, the variance is 8.372 X ($25,000)* =
5.23 x 10°. This means that the standard deviation is $72,335.

The claim size variance is rarcly useful by itself. The major motivation for
calculating this formula is because it is needed in the formula for the total loss
variance. This refers to the variability of total losses, arising either from fre-
quency or severity. The vartance we will calculate is also sometimes called
“process variance,” because it relates to the possible variations in results arising
from the loss causing process. This is to be distinguished from “parameter
variance,” which relates to the variations arising from the possibility that the
parameters used differ from the “true” parameters. Parameter variance is beyond
the scope of this paper.
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Calculation of the total loss variance is necessary if a risk loading will be
used that is a function of either the total loss variance or standard deviation. In
addition, the variance can be used to specify percentiles of the total loss
distribution using the Cornish-Fisher expansion [M1] or other techniques [L3].
For example, we may wish to determine the probability that total losses will
exceed $1,000,000 when the expected losses are $600,000.

The general formula for the total loss variance is given in various sources
including Mayerson, Jones and Bowers [M3]:

o’ = M 0; + Ml o} (13)

where M;, o/, M,, and o} represent the mean and variance of the frequency
and severity distributions respectively.

If we make the reasonable assumption that the claim frequency follows a
Poisson distribution, then M, = a7 and we can simplify (13):

a’ = Mi(ai + M) (14)

Again, recalling that the variance can be expressed as the second moment less
the square of the mean, we note that the expression in parentheses above
simplifies to the second moment of the severity. Thus, the total loss variance
can be simply calculated as the product of the expected claim frequency and
the second moment (mean of the squares) of the loss severity.

We have seen the formula for the second moment of the severity in the case
of no upper limit earlier (11). In this case, the total loss variance is:

q

7 :qu+2

g>2 (15)

where M, is the expected claim frequency.

We have seen earlier that the severity variance is the same in the case of
the unlimited and net layers. This is not the case for the total loss variance. If
we have upper censorship point b, the total loss variance for the unlimited layer
is:

2 q— 26*
=Mj—— #* 2 16
o — q (16)
In the case of the net layer, the total loss variance is:
2 g —2"¢ <q - b“") } g#2
? ’{ q—2 g1 : g=1 17
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The expression in the parentheses may be recognized more quickly if we recall
that E[(X — ])2] = E[le — 2 E{X] + 1. Formula (16} for the case where
g = 2 is shown in Appendix A. As before, to convert the results to “real”
dollars, we multiply by K* where K is the lower limit of the losses used to
normalize the values.

If we have the truncated case, with truncation point b, the total loss variance
for the unlimited layer:

g (1 — b7
(g — 21 —b%

Note carefully: the definition of My in this case is the expected number of claims
greater than the lower limit, not simply thec number between the lower limit and
b. The situation with truncation point b and a ner layer is almost never seen in
practice, so it will not be discussed.

0-2 = M/.

q#*2 (18)

Continuing our example, suppose we are pricing the Josses in excess of
$25,000 but censored at $500,000. As we have seen earlier, the expected losses
in this layer are $271,738 (assuming the expected number of claims is 7).
Suppose we wish to add a risk loading that is a function of the total loss
variance. We can calculate the total loss variance using (17). Substituting the
parameters into the formula yields a variance of 75.48. In “real” terms, this is
75.48 x $25,000°. The standard deviation of this value is $217,199. We won’t
go into methods for calculating a factor to multiply by the variance to arrive at
an appropriate risk load, but, even without such methods, the total loss variance
can be used to compare the relative risk on different treaties.

Finally, we note that the formulae derived in this paper are only applicable
to the portion of losses above the selected lower limit. In practical situations,
it is necessary to combine the results of the analysis of the large losses with the
results of the analysis of the small losses. Clearly, the expected losses of the
two portions of the analysis can simply be added together. The overall average
claim cost can be calculated as the weighted average of the means of each
portion, where the weights are the expected number of claims. The variances
of the severity cannot be combined so easily, although, if one recalls that the
second moments can be weighted by claim counts. the formula for the combined
severity variance follows easily. If we assume a Poisson distribution for the
frequency of the small losses, then the total loss variance of the small losses
will be of the same form as the large losses, specifically, the mean claim
frequency multiplied by the second moment of the severity, so the total loss
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variance of the entire distribution is simply the sum of the total loss variance
of each portion.

1V. PARAMETER ESTIMATION

Numerous articles in the actuarial and statistical literature (e.g., Patrik [P1],
p. 62.) discuss the attractive propertics of the maximum likelihood estimate
(MLE). However, the MLE is often difficult to calculate in practice.

One of the attractive properties of the Pareto distribution is the ease of
calculation of the maximum likelihood estimate of the parameter. Consider a
set of n losses, each greater than or equal to some value K, which are normalized

by dividing each loss by K. Denote this set by (X;),i = 1,2, . . ., n. The MLE
of g is
n
= 1
77 %X (19

Note that an alternative formula is

- _n_
7 nilx,

These formulae are equivalent, but the second is easier to calculate. Note also
that the MLE of ¢ is such that ¢'“ is the geometric mean of the X,. If we use
the 25 losses contained in Appendix B, the estimated parameter is g = 25/
26.16 = .955.

(20)

Although the MLE has attractive properties and is easy to calculate, we will
examine the use of alternative methods. Probably the most common method is
matching of moments. We have shown that the mean of the unlimited Pareto
distribution is g/(¢ — 1). If this is equated to the sample mean of the values in
Appendix B, we have

g = 1.192

This value is not particularly close to the true value. The discrepancy arises,
not because of the relatively small sample, but from the method itself. If the
formula for the mean is examined, it will be clear that a value of 1.0 could
never result. If the true value of the parameter of the distribution is 1.0 or
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smaller, the method of moments will always produce too high a result. Because
in many situations the value of the parameter may be close to or even less than
1.0, the method of moments may not be an appropriate method.

Another method of parameter estimation is based on quantiles.” Using the
formula for the c.d.f.,

— T
Fy=1-—x ¢, 2n
............. ta tha caonmnla valivac o EfvY ¢t thate thaneatinal valitace Alshharos b
woe Lail Cl{udlc L1IC >dal IPIC YALUuCTy U £700) W Uil uHicuicucal vdiucy., r\uuuugu

this method of estimation is somewhat less efficient® than MLE, it is much
faster and may be used as a quick method for approximating the parameter
when only a rough estimate is needed. In our example the median, or 13"
largest loss, is  $55,843 or 2.234 when normalized. Solving
S5 =1 — 22347 for ¢ is straightforward yielding ¢ = 0.826. If we look at
the other two quartiles. which are approximately the 6" and 19" largest losses,
we solve the equations

25=1-0a31n™
A5 =1 —-1(3.955) ¢
which yield estimates
g = 1.062
1.008

q

A more important use of this method is when the individual claim sizes are
not available (or not easily available), and only grouped statistics are available.
Suppose that the losses in Appendix B had been incurred, but the only infor-
mation was as follows:

Interval (000) Frequency

25-100 20
100-1,000 4
1.000-« ]

* Quantiles is the general term which includes the median, quartiles, and percentiles as special
cases.

* For a discussion of efficiency, see Hoel. Port and Stone [H5[. Introduction to Statistical Theory,
page 16.
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fol Y
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Using the information that 80% of the losses are no greater than $100,000, we
solve the following:

8=1-47
yielding
g = 1.161

This estimate is remarkably good when one considers the limited information
available.

Alternative methods of parameter estimation are discussed in Quandt [Q1].

To this point, in this section we have assumed that there is no upper
limitation on the loss data either by an upper censorship point created by policy
limits or an upper truncation limit where certain values may be missing.

There are several reasons for suspecting that actual data has some type of
limitation. In the case of insurance company data, the losses may be censored
due to reinsurance agreements. In some cases, gross losses are available, but
in others only net losses may be available in a usable form. Even if the losses
are gross to reinsurance, there may be limitations due to policy limits.® Most
casualty coverages have policy limits.”

One of the advantages of working directly on an individual risk is that these
limitations can be overcome. Although the primary source for data is usually
insurance company records, it is usually possible to make the appropriate
adjustments whenever losses have been limited.

This does not totally remove the problems of limitations. In the case of
property insurance, there is an upper bound to the amount of loss, namely the
total value of the property. There seems to be no useful upper bound to liability
situations, but most actual data suggests that the tail of the Pareto is still
somewhat too “thick” at extremely high loss amounts. In other words, the
theoretical density at high loss amounts is larger than empirical experience tends
to indicate. Rather than discard the Pareto, it is easier to postulate that the
distribution is censored or truncated at some high, but finite, value. As we have
seen earlier, any upper limitation (either censorship point or truncation point)

® A discussion of the impact of policy limits can be found in Patrik [P1].

" Exceptions include workers® compensation coverage A and no-fault PIP in some states.
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will produce formulae for the mean claim size that are finite for all possible
values of g.

If we assume a censorship point ¢, then the density function is unchanged
between 1 and ¢ but wil! have a mass point at ¢ and will be zero for all values
greater than ¢. Let f{x) be the unlimited Pareto density, that is

ﬂx) — q X (gt 1)
Let f.(x) be the density function censored at ¢. Then,

o = o e
Jlx)y = j Sfloddx =
) =0 e

If we wish to consider the distribution truncated (above) at 1, then the density
function at all points less than or equal to ¢ will have to be proportionately
increased so that the total area under the curve still equals one, and the new
density function is zero for all values greater than 7. Let f(x) be the distribution
truncated above at . Then,

f:(.r)=—l('L |l =x=1
ff(x)dx
8]

f:(-\”) =0 X >t

Assume that we have n losses, of which m are less than the censorship limit
c and n — m are equal to ¢. The maximum likelihood estimate is

n—m

q = no-m
>nX; + (m)n ¢

Suppose we have the loss data in Appendix B except that each loss is
censored at $100,000. Then,

20
9% 3704+ 501386 %

Note that the MLE approach produces the parameter of the unlimited dis-
tribution; censorship is handled through definition of the density function.
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V. EFFECT OF TREND

One of the nractical nroblems with fittineg size-of-loss distributions ig the
one practical probicms wilh hthing $17€-01-108s distniputions 1s the

proper way to handle adjustments for trend and development. With most distri-
butions, inflation of losses will change one or more of the parameters. In Hogg
and Klugman, [H2] page 180, there is a table that shows the parameters of
various distributions after the application of a trend factor. In each case (in-
cluding the Pareto and generalized Pareto), the parameters are changed due to
inflation.

However, the parameter of the Pareto distribution in this paper is unchanged
due to trend. This result appears counterintuitive. After all, each of the formulae
for mean claim size is a function of the parameter. If the parameter is unchanged,
then the estimated average claim sizes must be unchanged. This appears unrea-
sonable for several reasons.

First, it is obvious that, under influence of trend, the overall average claim
size increases. This is true, but note that the distribution in question does not
apply to the entire range of losses. It is not simply better suited for modeling
excess losses, it does not fit small losses well at all. The typical size-of-loss
distribution starts out with a small frequency of very small losses, growing to
a larger frequency of intermediate losses, then a decreasing frequency of larger
losses. The maximum density for the Pareto is always at the leftmost value,
and the density is always decreasing as we move to larger claim sizes. Thus,
the fact that the overall average claim increases with trend is simply evidence
that the single parameter Pareto is not likely to fit the entire range.

Second, it may be recalled that trend is assumed to have a leveraged effect
on excess losses, where the Pareto is supposed to fit so well. This is true (see
Miccolis [M1]), but the leveraged effect is on the total excess dollars, not
necessarily on the average excess claim size. It may seem ironic, but the major
effect of trend is to increase the frequency of an excess claim, rather than its
severity. This may be more obvious if we recall that a size-of-loss distribution
is, by definition, the distribution of the relative frequencies of various sizes of
claims.

Third, and most imporant, a review of empirical excess average claim sizes
will show that they have been increasing over time for most coverages. This
point is conceded and is inconsistent with an assumption that a Pareto fits the
entire excess distribution to infinity. As has been noted earlier, the Pareto has
“too thick™ a tail, and, in most practical applications, an upper bound should
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be used. If one looks at the average excess claim with a reasonable upper limit,
the average claim size will not be materially increasing over time.

Because this point is important, we will explore it in more detail. Consider
the losses contained in Appendix B. These have been generated from a Pareto
distribution with ¢ = 1.0. The appendix contains both the normalized values
and the raw dollars, which indicate that the raw losses represent losses greater
than or equal to $25,000. If we calculate the MLE of these losses (assuming
we did not know how they were generated). we would estimate the parameter
to be .955. As can be verified. this value will produce average claim sizes for
various layers of intervals (with reasonable upper bounds) that arc reasonably
close to the theoretical values. Specifically. we can use this parameter to estimate
the average claim for layers or intervals where the lower limit is $50,000. Thus,
this parameter can be thought of as the appropriate parameter for the size-of-
loss distribution for claims greater than $50,000.

Suppose these losses were from year zero. and we wished to project losses
for year n. Suppose further that the annual trend, 1 + 7, is such that (1 + )" =
2.00. If we were to trend each of our losses in Appendix B by this trend factor
and use these losses to calculate a parameter to fit losses in excess of $50,000,
it should be obvious that the estimated parameter would still be exactly .955.

What may be less than obvious is the fact that this parameter can be used
for losses in excess of $25,000 in year n. This means that the losses between
$25.000 and $50,000 in year n, which correspond to losses less than $25,000
in year O, must be distributed in such a way that the Pareto distribution will
stilt fit the distribution above $25.000 (to the upper limit) in year n.

As may be guessed, the requirement is that the Pareto distribution must fit
the losses in year 0 as low as $12.500 ($25.000/2.00). In general, if we are
using losses greater than K from year O to estimate a parameter to use in year
n, we must assume that the Pareto distribution (with the same parameter)
provides a reasonably good fit to losses in year O which are as small as K/(1 +
i)". Experience has shown that this is typically true for casualty losses as low
as $5,000 to $10,000 (higher for medical matlpractice). so values of lower limits
in the oldest year of experience greater than $25.000 will typically work. Of
course, it is prudent to check the fit at the lower end of the range if possible.

We have gone over this point in some detail because it leads to an extraor-
dinary result: to calculate the MLE of the Pareto parameter, given individual
losses greater than a single fixed value K arising from several different years,
it is not necessary to adjust the losses for trend.
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For example, suppose the following data are available:

1978 100,000, 150,000, 225,000

1979 109,000, 140,000, 180,000, 240,000

1980 105,000, 115,000, 170,000, 290,000

1981 104,000, 121,000, 160,000, 200,000, 300,000

Suppose we are interested in projecting losses for 1984 and the annual trend,
I+ i = 1.1. Under typical methods of analysis, we would trend each of the
losses to a common date. The trend factor for 1978 would be (1.1)* = 1.77.
But if we did not have any data on losses less than $100,000 for older years,
we would have to use a lower limit of $177,000. Several of the losses in more
recent years would then have to be thrown out, because their trended value is
less than $177,000.

With the Pareto distribution, we can use all of the data points, if we have
reason to believe that the Pareto distribution fits losses as fow as $100,000/1.77
in 1978. But note that if we assume that the Pareto will fit above $100,000 in
1984, this is equivalent to assuming that it fits equally well above $100,000/
1.77 in 1978 (assuming trend affects all claim sizes approximately the same).

Of course, this will allow us to estimate the parameter of the distribution,
which will allow us to calculate the average severities for 1984. This is only
half the problem, as we also need to estimate the frequency of claims to arrive
at estimates of the total loss dollars. We cannot simply use the raw historical
frequencies of claims greater than $100,000 to estimate our future frequency.
We can, however, calculate an adjustment factor that will allow us to put each
of the historical frequencies on a comparable basis.

The calculation of this factor can be shown most easily with a concrete
example. Suppose we expect 10 claims greater than $25,000 in year n, where
¢ = 1.5. Recall the formula for the distribution is F(x) = 1 ~ x~ 9. How many
claims in year n are expected to exceed 1.1 X $25,000 = $27,500? We calculate
this using the distribution function, F(1.1) = 1 ~ 1.17"* = .133. This means
13.3% of the claims will be less than $27,500, or 86.7% will be greater than
$27,500. Thus, we expect 10 X .867 = 8.67 claims greater than $27,500. This
means that we expect 1/.867 = 1.153 claims over $25,000 for every claim
greater than $27,500. If we now examine year n — 1, the $27,500 claim in
year n would be $25,000 in year n — 1, and the $25,000 claim would be
$25,000/1.1 = $22,727 in year n — 1. Clearly, for every claim greater than
$25,000 in year n — 1, we would expect 1.153 claims greater than $22,727.
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So if we multiply the number of claims greater than $25,000 in year n — 1 by
1.153, we have the best estimate of the number of claims greater than $22,727
in year n — 1, which corresponds to the number of claims that, if trended,
would exceed $25.000 in year n.

Typically, the frequency of claims in each year will be related to an exposure
base such as number of beds (hospital malpractice), number of employees
(workers™ compensation), etc. When using the Pareto distribution, the first step
is to multiply the raw frequency of claims greater than the underlying limit by
the adjustment factor, then divide through by the exposure. The resulting values
may be averaged, or perhaps a regression analysis will be performed. (Note
that infiation sensitive exposure bases such as sales or payroll must also be put
on a comparable basis.) The adjustment factor for n years of trend at annual
inflation rate 1 + / with parameter ¢ is simply (1 + /)"*. The following table
displays the factors for various combinations of / and g. Each valuc in the table
is the one-year adjustment factor.

q
1+ 1.00 1.20 1.50 1.80 2.00
1.05 1.050 1.060 1076 1.092 1.103
1.08 1.080 1.097 1.122 1.149 1.166
1.10 1100 1121 1154 1.187 1.210
1.12 1.120  1.146  1.185 1.226 1.254
1.15 LI5S0 1183 1.233  [.286  1.323

V1. SIMULATION OF LOSSES

One type of analysis frequently performed by actuaries involves Monte Carlo
simulation of results based upon a particular model of the loss process. One
advantage of this Pareto distribution is the ease with which it can be simulated.

One method for simulating values for a function involves inverting the
cumulative distribution. This is not always possible with some functions, but it
is particularly easy with the Pareto. The cumulative distibution 1s

FX)y=1-X1
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Thus

r=len g1 o —lia
ro(ry=a—-r)y -

where Y has the uniform distribution.

A moment’s reflection will reveal that (1 ~ Y) is symmetric when Y has the
uniform distribution, so we can replace 1 — Y with Y. Thus, if we can generate
a uniform random variable Y, then ¥~ "¢ will have a Pareto distribution with
parameter g.

Consequently, we find that even hand-held calculators, such as the HP-15,
can be used to simulate Pareto losses. For example, the following values in the
first column were generated from a calculator with a random number generator.
The second column contains the normalized loss when g = 1.5, and the third
column contains the “real” claim amount if the lower limit is $25,000.

(1) (2 (3)

Random Value Normalized “Real”
from Uniform Distribution Pareto Value Dollars
.19875 2.93630 73,407
73616 1.22655 30,664
.52174 1.54298 38,575
.97358 1.01801 25,450
.26635 2.41562 60,390
.54727 1.49462 37,366
.85879 1.10682 27,670
31708 2.15058 53,764
.38295 1.89630 47,407
.23006 2.66341 66,585

VII. APPLICATIONS

In this section, we will discuss several applications of the Pareto distribution.
In some of the cases, we will use actual data from published sources for two
reasons: first, to demonstrate that this distribution works well with “real” data,
and second, so that this distribution can be compared to those used in the
original source of the data.
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Application |

Consider the OL&T BI claims for policy year 1976 contained in Appendix
F of Patrik |P1]. We will fit the Pareto to losses greater than $25,000. There
are 90 losses in this exhibit. Individual losses are not shown, but the ranges are
quite narrow, as they are $5,000 ranges up to $100,000, and $10,000 thereafter.
We can use the average claim size in the range as a reasonable proxy for the
individual claim amounts (with wider ranges, we might need to make adjust-
ments). The sum of the normalized logs (dividing each claim by $25,000) is
81.2; thus, our estimate of ¢ is 1.108. Note that therc are no claims greater
than $500,000. We would expect 90 (1 - F(20)) = 90 x (20 ') = 90 x
0362 = 3.26 claims greater than $500,000 if the Pareto fit all the way to
infinity. This is evidence that the theoretical tail overstates the actual tail. We
can calculate the expected average claim size with an upper limit of $500,000,
using (5) with & = 20. This yields an estimate of $25,000 x 3.559 = $88,975.
The actual average claim size is $89,703.

Application 2

Consider the 40 wind-related catastrophes in 1977 listed in Hogg and Klug-
man [H2] page 64. Only claims of $2.000,000 or more were included. These
values, recorded in millions, are as follows:

2,002,022, 02,02, 02,2, 2.2
2,02, 3, 3,3, 3. 4. 4, 4, 5,
5, 5.5, 6. 6. 6, 6, 8 8, 9,
15, 17,22, 23,24, 24.25.27. 32,43

If we calculate the MLE of the parameter using (19) or (20), the result is g =
.976. This tends to confirm the statement made carlier that a typical parameter
value for property is 1.0. In the same reference. on page 68, are 31 wind
catastrophes over $1 million for 1971. The MLE for these losses is ¢ = .959.

Application 3

Suppose we have the following hypothetical information for the professional
liability experience of a hospital. Assume that the hospital has a $25.000
retention and that information on claims less than the retention is either un-
available or unreliable.
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Accident
Year 1978 1979 1980 1981
# Occupied 200 200 260 260
Beds
Individual 127,000 71,000 34,000 55,000
Claims 28,000 119,000 26,000 43,000
Greater 32,000 135,000 38,000 40,000
than 103,000 42,000 93,000 42,000
$25,000 37,000 40,000 50,000
55,000 34,000 31,000
228,000 30,000
57,000 29,000
27,000 29,000
36,000 137,000
61,000

Suppose we are interested in projecting the experience for 1984 for the layer
$225,000 excess of $25,000. Assume that external data leads us to believe that
the severity trend has been 20% annually between 1978 and 1981, but is
projected to be 15% annually between 1981 and 1984. We also estimate 240
occupied beds in 1984.

First, as noted earlier, we can use all 31 losses in the analysis. Each loss is
normalized by dividing by $25,000. The MLE of the parameter is calculated
using (19) or (20). The sum of the logs is 22.024, so the estimate of the
parameter is 31/22.024 = 1.408.

We can calculate the average claim size in the layer $225,000 xs $25,000
using formula (1)

g—b""
1

With b = 250/25 = 10 and g = 1.408, the result is 2.493, which corresponds
to an average claim size of $25,000 X 2.493 = $62,326. Thus, we expect that
the average claim, greater than $25,000 but limited to $250,000, will be
$62,326. The amount within the insured layer will be $62,326 — $25,000 =
$37,326 per claim.

XC(b) =
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To estimate the frequency of claim within the layer, we first calculate the
frequencies in terms of claims per 100 beds. The resulting ratios are:

Year # Claims/100 Beds
1978 2.00
1979 3.00
1980 3.85
1981 4.23

We now have to adjust the frequency for trend, so that each year will be on
a comparable basis. We will convert each frequency to the frequency that would
be expected in 1981, using the adjustment factor in the section on trend,
(1 + D™ where 1 +i = 1.20, g = 1.408, and » is the number of years between
each year and 1981. For example, the adjustment factor for 1978 is
(1.20y'*® = 2 16. This means that for every claim that exceeded $25,000
in 1978, we would expect 2.16 claims over $25,000 in 1981. The adjustment
factors and the adjusted frequencies are shown in the following:

Year Raw Frequency Adjustment Factor Adjusted Frequency
1978 2.00 2.16 4.32
1979 3.00 1.67 5.01
1980 3.85 1.29 4.98
1981 4.23 1.00 4.23

We can calculate a simple average of the adjusted frequencies to arrive at
an estimate of the frequency of claims greater than $25,000 for 1981. This
value is 4.63. Alternative methods to calculate an overall frequency could be
used. For example, it might be appropriate to use the number of occupied beds
as weights. If the adjusted frequencies show a pronounced trend over time, then
the frequencies are being affected by something other than changes in claim
sizes and further analysis is indicated.

We now calculate the frequency appropriate for 1984. Based upon the
assumption of a 15% annual trend. the adjustment factor is (1.15)""*® =
1.805. Thus, our estimated frequency for 1984 is 1.805 X 4.63 = 8.36 claims
per 100 occupied beds. Using our assumption that there will be 240 occupied
beds in 1984, we expect 8.36 X 2.4 = 20.07 claims greater than $25,000 in
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1984. Thus, our expected losses in the layer $225,000 xs $25,000 are 20.07 X
$37,326 = $749,301.

Application 4

Finally, we note that the fact that a typical value of ¢ for property losses is
1.0 and the formula for the average loss when ¢ = 1.0 is so simple, allows us
to easily provide a rough estimate of the average claim size for various layers.
Suppose we are asked to quote a reinsurance cover on a book of property
business for the layer $2,750,000 xs $250,000. The ratio of the upper limit to
the lower limit is 3,000/250 = 12, so an estimate of the gross mean claim size
is 1 + In 12 = 2.485 or $621,000. The net mean claim size would be $371,000.
This could be used as a rough estimate for discussion purposes. More refined
analysis can be performed if both parties to the intended transaction are still
interested.
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APPENDIX A
SUMMARY OF FORMULAE

This appendix contains a summary of the most commonly used formulae.
It begins with the formulae used to calculate the maximum likelihood estimates
of the parameter. Formulae are shown later for the mean and total loss variance
(under the assumption of a Poisson frequency). The formula for the variance of
severity alone is not given, because the primary use for this formula is to derive
the formula for the total loss variance.

It should be noted that “K™ 15 used to represent the lower bound of the
distribution in nominal or “real” dollars. This is the value used to normalize the
distribution. The letter “*n” is used in the formula for the MLE to denote the
actual number of losses used in the calculation. In the calculation of the expected
losses, “n” is used to denote the expected number of claims in the period of
interest. The letter /" is used to denote an upper limit to losses, either a

censorship or truncation point.

Density flxy = gx ' 7
Distribution Fx)y=1-x"¢
Maximum Likelihood
Estimates
Unlimited g=n/n]]x
or
g=n 2 Inx

znoom

(n—m)y > Inxy+minb

Censored at b ¢

Truncated at b ¢ = n/ 2 Inx, — (nln b/(b* — 1))

Note that ¢ is on both sides of the equation; thus, it must be
solved using numerical methods.
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Censored Distribution
_ (Gross Layer)
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Expected Losses
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q — 2b
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q q-2
q =2 1 +2Inb

Total Loss Variance
in Real Dollars

Truncated Distribution
(Gross Layer)

LR R 0
(33 05 [543 100
PROPORTION OF TOTAL CLANLS

g1 =89
=D -b%
(Inb) /7 (1 — b
Multiply appropriate

formula by K

Multiply appropriate
formula by nK

g(l — b9
g—2)( - b9
Qlnb)y/ (1 — b?)

Multiply appropriate
formula by nk’

Net Layer—Mean formula can be calculated by observing that £ [X — 1] =
E [X] — 1. Variance formulae can be calculated by noting that the
variance is equivalent to E [X°], and using the relationship
E{X— 1D =E[X]-2E[X]+ L
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APPENDIX B

SIMULATED PARETO LOSSES

25 pseudo-random losses from a Pareto distribution with ¢ = |

and a lower limit of $25,000.

SO~ bW —

DO B D N D) B me e et e e e
DN H WK = O O 00O L bW N —

Amount of Loss

69,976
62,913
25,766
39,800
97,739
36,356
139,665
34,749
45,716
96,353
1,847,213
25,231
48,057
31,744
98,882
209,031
214,700
396,323
32,772
45,190
32,044
55,843
99,601
29,900
60,463

Normalized Amount of Loss

2.799
2.517
1.031
1.592
3.910
1.454
5.587
1.390
1.829
3.854
73.889
1.009
1.922
1.270
3.955
8.361
8.588
15.853
1.311
1.808
1.282
2.234
3.984
1.196
2.419

81
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APPENDIX C

The Pareto distribution is mentioned in a large number of statistical texts
and technical papers. Although many distributions (e.g., Poisson and normal)
have a fairly standard notation, there is a wide variety of formulations of the
Pareto distribution. This appendix will present a brief survey of some of the
alternatives.

Johnson and Kotz [J1] contains one of the most thorough treatments of this
distribution, as it devotes an entire chapter to the Pareto distribution. This
reference includes a discussion of the history of the distribution, which can be
traced to the Italian born, Swiss professor of economics, Vilfredo Pareto. Three
main representations of the cumulative distribution are given:

K (43
Johnson and Kotz F, (x) = 1 — (;) K>0a>0, x=K
K,
Johnsonand Kotz F, (x) = 1 — ————
(x + ¢)
K b
Johnson and Kotz F, (x) = | — ‘LT
(x + ¢)

The first is referred to as the “Pareto distribution of the first kind,” the second
as the “Pareto distribution of the second kind,” and the third as the “Pareto
distribution of the third kind.” Johnson and Kotz note that the first two formu-
lations are Pearson Type VI distributions.

Patrik [P1] uses a form of the Pareto distribution of the second kind:

Patrik F (x|B.8) = 1 — (x f B)

Hogg and Klugman [H2] discuss two formulations. The first is referred to
as the Pareto distribution and has the cumulative distribution:

A x
= — >
Hogg and Klugman F (x) = 1 ()\ - x) a>0 A>0
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The second is referred to as the generalized Pareto distribution and has a
cumulative distribution as follows (where B (+) refers to the beta distribution):

X
Hogg and Klugman F (x) = B (K, o= x)

The density function is as follows:
[ (o + K)A* XX
T@l @&+

They note that the Pareto distribution is a special case of the generalized Pareto
when K = 1.

Hogg and Klugman f(x) =

Formulations by authors who work primarily with the cumulative distribution
include:

Huang GCGX,a,v)=1—a x" x>a,a>0,v>0
Benktander F(x) =1~ x“ x=1
Quandt F(x)=l—<!§) K>0,a>0, x=K

Other authors present this distribution in terms of the density function:

Malik fx)=va x""! a>0,v>0,x=a
Lwin fan, @) =xd x! a>0,A>0,x>a
Kendall and Stuart dF=x—1§dx 0<K=x=so, a>1
Hastings and Peacock f(x) = ex <! l<x, ¢>0

Finally, the ISO uses a Pareto distribution in the “Report of the Increased
Limits Subcommittee: A Review of Increased Limits Ratemaking” [I1]. In that
paper, they use “q” as a parameter. For that reason, “g” has been selected as
the parameter in this paper.
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APPENDIX D

Although we typically portray density and distribution functions with the
loss size along the horizontal axis and the density or cumulative probability
along the vertical axis, there are a number of logical reasons for preferring the
“alternative™ representation, as portrayed tn Figures 1, 2, 3, and 4.

1. In the standard representation, a loss limit is a vertical line and the excess
losses lie to the right of the line. In my representation, a loss limit would
be a horizontal line, and excess losses would lie above the line. It seems
more intuitive to think of excess losses lying above a line.

2. In my representation, losses eliminated by a deductible would be below
the line representing the deductible amount, rather than to the left of a
line.

3. If we apply a trend factor to the cumulative distribution of losses, the
new line is below the old line in the standard representation but above
it in my representation. It makes more sense to think of inflation as
producing a new curve above the old one.

Finally, I would note that this alternative representation is not new. It is
essentially equivalent to that used in Snader {S1] to depict the insurance charge
and savings.
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DISCUSSION BY KURT A. REICHLE AND JOHN P. YONKUNAS

Once again, Steve Philbrick has taken a concept which makes many actuaries
feel uncomfortable and, through lucid writing and clear examples, made it
available to all who take the time to read him. Prior to Mr. Philbrick’s paper,
fitting size of loss distributions has been a tool primarily available only to the
“pure actuary.” This guide to the Pareto distribution provides all actuaries access
to a powerful means of analysis. The strength of this tool is matched only by
its simplicity as presented by Mr. Philbrick.

Using data prepared by the Actuarial Committee of the Insurance Services
Office (1SO), this review will examine three facets of the single parameter
Pareto distribution: the impact of development, the impact of trend, and evidence
that the Pareto may overstate the tail of the distribution function. We also will
suggest some practical guides for putting the Pareto distribution to use, including
an analysis of the sensitivity of the parameter estimate to the number of claims
available.

WHY THE PARETO?

Beginning in 1977, the Ad Hoc Increased Limits Subcommittee of 1SO
(subsequently the Increased Limits Committee) searched for the best-fitting
continuous distribution for liability losses. Because no distribution seemed to
fit both small and large claims well, the Subcommittee decided instead to look
for the best-fitting curve for losses above a lower truncation point. After a good
deal of research, the two parameter Pareto was selected as providing the best
fit to liability losses. Although many enhancements have been made in the
methodology used to derive increased limits factors since 1977, the Pareto curve
remains 1SO’s favored distribution.

Implementation of the two parameter Pareto distribution does require com-
plex formulas, including a set of Newton-Raphson equations used iteratively to
solve for the Maximum Likelihood Estimates (MLE) of each parameter. These
formulas are not solved easily without the use of a computer, and therefore
require extensive programming and computing costs. While this complexity
does not pose an insurmountable problem to the “pure actuary,” it may hinder
the efforts of the “lay actuary” to use models rather than empirical data directly.

The one parameter Pareto distribution is quite simple to use, as demonstrated
in Mr. Philbrick’s article. Estimates of various moments of the distribution are
very simple to calculate, and the formulas are easily remembered. The same is



86 SINGLE PARAMLETER PARETO DISTRIBUTION

true for many estimates of the parameter, including the MLE. However, to our
knowledge. no extensive research has been published on how appropriate the
one parameter Pareto is for loss distributions. The two parameter Pareto has a
proven track record as an acceptable model for excess losses. A simple math-
ematical transformation will show that the parameter of the one parameter Pareto
is equivalent to a parameter of the two parameter Pareto (see Appendix A).
Hence, by using the one parameter version, we obtain much of the power of
the two parameter Pareto without its accompanying complexity.

LOSS DEVELOPMENT

The change in the cumulative value of losses for a given accident period
has been discussed extensively in the actuarial literature. But very little has
been published on how the distribution of individual claims changes as losses
mature, and in particular how the parameters underlying that distribution change.
A full discussion of loss development and its effect on the Pareto is beyond the
scope of this review. We will, however, cite some of our observations from
examining data provided by ISO.

An analysis of losses usually begins by segregating the data into various
time periods (report year, accident year, policy year, etc.). To put these periods
on a comparable basis, two adjustments are commonly utilized: trend and loss
development. Although the use of the one parameter Pareto implies that severity
trend may be ignored (as discussed in a later section), loss development may
not. An adjustment must be made for loss development prior to combining
various periods for analysis.

In casualty lines of insurance, loss development generally has a positive
impact on losses; t.e., average losses become more severe as the largest losses
emerge most slowly. Remember that severity and the Pareto parameter are
inversely related. Therefore, an a priori expectation is that the Pareto parameter
should decrease as an accident period becomes more mature.

As will be seen, the value of the Pareto parameter varies substantially from
one valuation to another. Property losses from several accident periods may be
combined to derive the parameter with no recognition of the date of loss.
Applying the same approach to casualty lines may severely overstate the param-
eter and understate the excess severity. An excellent example of this is inad-
vertently included in Mr. Philbrick’s paper. In Application 3 in Section VII,
Mr. Philbrick combines professional liability claims from four accident years
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with no adjustment for development, calculating a MLE of the Pareto parameter
of 1.408. Deriving the maximum likelihood estimate of each year separately
produces Pareto parameters of 1.176, 1.002, 1.570 and 1.746 for 1978 through
1981 respectively. The clear upward trend in these values is to be expected and
most often results in an overstatement of the parameter if the claims are simply
combined with no adjustment for development.

Additional evidence that the parameter is inversely related to maturity was
found when we examined occurrence size distributions (OSD’s) provided by
[SO. A lower truncation point of $25,000 has been selected. The MLE of the
Pareto parameter was calculated by policy year, by evaluation month. A table
of parameters for Owners, Landlords, and Tenants (OL&T) Bodily Injury Lia-
bility follows.

Policy Year Evaluation Month
27 39 51 63 75 87 99
1975 1.313  1.546 1.412 1.377 1.308 1.283 1.281
1976 1.547 1.467 1.407 1.309 1.258 1.225
1977 1.539 1.578 1.482 1389 1.347
1978 1.644 1.578 1.460 1.364
1979 1.688 1.518 1.443
1980 1.700  1.590
1981 1.717

As expected, the parameter decreases as the policy year matures. Loss
development must be accounted for prior to analysis. One could use a triangu-
lation to adjust immature parameters to their ultimate values.

Note that with the exception of the 27 month evaluation, the parameter is
relatively stable across policy years within a given evaluation. We found this
to be true for other values of the truncation point and for Products Bodily Injury
Liability data.

Why the parameters calculated at 27 months exhibit an upward trend is not
clear. It may indicate that data as of 27 months is too immature for analyzing
excess losses. It may also indicate a change in industry reserving practices.
Such a change would affect the distribution most at the earliest evaluation and
least at later maturities.
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We suggest that more research be devoted to determining the impact of loss
development on the Pareto parameter. We also recommend that the user of the
one parameter Pareto not blindly combine data without adjusting for loss de-
velopment.

TREND

Of all the implications of the Pareto distribution, the most vexing is that
trend does not affect excess loss severity, only loss frequency. How can such a
distribution be appropriate for casualty-property losses? It is “obvious” that
trend changes severity values. The work of ISO in fitting Pareto distributions
to excess liability losses provides us with much data to evaluate this property.

As shown in the section on loss development, the Pareto parameter has
remained relatively stable across policy periods for a given evaluation, which
provides solid evidence that the parameter may be unaffected by trend.

Another empirical test is to examine the value of the average excess claim
size over time. We again turn to the OSD’s for OL&T Bodily Injury as compiled
by ISO. Note that this raw data has not been adjusted far trend or loss devel-
opment.

It is readily apparent that the average claim sizes have remained stable over
time: both across policy years and within policy years. Trend does not appear
to affect the average size ot loss within a specific excess layer.

A more direct approach is to examine the form of distribution after making
a transformation for trend. Assuming uniform trend. the value of the parameter
is preserved; that is, ¢ remains unchanged. The mathematical details of this
transformation can be found in Appendix B.

How does one explain that the average claim size within a given excess
interval remains unaffected after trend (and development)? At first glance it is
intuitively unappealing if not totally unacceptable. Is it possible that the Pareto
simply is not a realistic model for size of loss distributions?

The explanation is that the forces of trend and development fall upon the
frequency side of the equation. As Mr. Philbrick points out, trend and devel-
opment merely act to shift claims from one layer to another without changing
the average in the layer. Instead. the frequency by layer changes as losses
develop and occur later in time. So we still are stuck with adjustments for trend
and development when the objective is to forecast aggregate loss dollars.



Policy Year

AVERAGE CLAIM SI1ZE IN LAYER

$50,000 To $100,000

Evaluation Month

1975
1976
1977
1978
1979
1980
1981

‘w
~1

79,174
77,039
77,742
75,247
73,067
73,789
75,011

39
77,135
75,303
76,496
76,994
76,232
75,733

51
78,306
76,920
76,373
78,765
77,827

63

78,407
78,484
77,540
79,026

75 87
80,263 80,462
79,264 79,864
78,278

80,533
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AVERAGE CiLAIM SIZE IN LAYER
$100.000 To $250,000

Policy Year Evaluation Month
27 39 51 63 5 87 99

1975 172,059  165.249 163,967 166215 167.825 171.715 173,931
1976 170,587  170.295 170,584 173,939 176.422 179.241

1977 156.528 159315 159453 165,980 167.384

1978 161.748  162.952  167.251 173.905

1979 156.233  162.447  165.895

1980 161.820  165.275

1981 154.519

06
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In developing increased limits factors or excess loss premium factors, claim
frequency drops out of the equation. All that remain are ratios of severities.
Therefore, since the parameter is preserved after trend, an adjustment for trend
may not be necessary. This could greatly simplify current procedures.

Data we have examined support the conclusion that trend does not affect
excess severity. Hence, our preconceptions turned out to be significant stumbling
blocks to accepting the Pareto. We hope that other readers will note the strength
of the empirical evidence before accepting what appears to be “common sense.”

GOODNESS OF FIT

In its initial consideration of the Pareto, the Increased Limits Subcommittee
of ISO expressed concern that the Pareto may overstate the tail probabilities.
Mr. Philbrick also refers to the fact that “most actual data suggests that the tail
of the Pareto is still somewhat too ‘thick’ at extremely high loss amounts.”
Empirical evidence for casualty lines demonstrates the greater the truncation
point, the larger the parameter estimate. That is, the indicated excess severity
declines as one raises the truncation point when fitting the distribution. If excess
claims were truly Pareto distributed, then one would obtain the same maximum
likelihood estimate of the parameter independent of the truncation point chosen.

To demonstrate this overstatement, we look at Pareto parameters derived
from ISO data for liability lines. These data are censored above at $500,000.
The Workers’ Compensation data are from a single insurer and are unlimited.

PARETO PARAMETERS

Line of Insurance Lower Truncation Point (000)
25 50 100 250
OL&T Bodily Injury 1.281 1.330 1.447 1.508
Products Bodily Injury 991 1.269 1.714 2.584
Workers’ Compensation 1.454 1.715 2.316 2.086

It is clear from these data that, depending on the line of insurance, the
Pareto parameter may be influenced greatly by the truncation point chosen. A
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significant implication of this upward trend is that parameters estimated with a
low truncation point will generate conservative estimates of severities in the
higher layers. For example, the estimate of the layer $1.000,000 excess of
$1,000,000 may be greatly overstated if the truncation point for deriving the
parameter is $25,000. The impact of this shortcoming is minimal if the excess
layer estimated has a lower bound close to the truncation point. For instance,
the estimate of the severity of any layer excess of $25,000 will be close to the
actual severity in that layer if the truncation point for deriving the ¢ parameter

R, o Y- SNaTaTa I i Lia oo b Gem

is close to $25,000. This is true even when the parameter increases rapidly with
the truncation point.

ISO data provide evidence to support these conjectures. Displayed in the
following table are comparisons of actual and fitted average severities for a
selected group of gross layers.

OWwNERS, LANDLORDS AND TENANTS BODILY INJURY
Gross Losses IN Excess oF $100,000
PoLicy YEAR 1975 As oF 99 MONTHS

Difference Between
Actual and Fitted
Severities for Truncation

Losses Actual Point of
Limited to Severity $25.000 $100,000
$125,000 $119,486 1.8% 1.5%
$150,000 $135,162 2.3% 1.4%
$175,000 $147.818 2. 7% 1.1%
$200.000 $158.,426 2.9% 0.7%
$250,000 $173,931 3.9% 0.7%
$300.000 $184,779 5.3% 1.1%
$350,000 $190.338 8.0 2.9%
$400,000 $195,144 10.1% 4.2%
$450,000 $199,153 11.8% 5.2%
$500,000 $202,348 13.4% 6.1%

Two facts are readily apparent from this exhibit. First, the wider the layer
being estimated, the greater the potential error. Second, the closer the truncation
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point is to the lower end of the layer, the smaller the error. For those interested,
Appendix C contains similar data for other truncation points and evaluations.

In using the Pareto to derive increased limits factors, the magnitude of these
errors is significantly reduced. Losses in excess of the lower truncation point
generally represent a small percentage of the total claim count. Since increased
limits factors incorporate claims of all sizes, the large percentage of losses
below the truncation point reduces the impact of any error in the excess estimate
and, therefore, any error in the increased limits factor.

PRACTICAL CONSIDERATIONS

The inability to correctly estimate the Pareto parameter will obviously affect
the accuracy of the excess severity. As is commonly true when modelling, the
error in the parameters is dependent upon the amount of data available. The
Pareto is no exception.

A generally accepted way to express the potential errors in a parameter
estimate is a classical credibility approach based on claim counts. Confidence
intervals, although complex in their derivation, can be developed and used to
indicate the number of claims required to achieve a given level of confidence
for a given level of tolerance. For example, it can be shown that 310 claims
are necessary to be 90% confident of being within 10% of the true value of the
Pareto parameter. Confidence intervals in the following table were generated
based on the MLE of the parameter. Formulas for the confidence intervals are
developed in Appendix D.

Level of Confidence

Level of

Tolerance 97.5% 95% 90% 85% 80%
+ 5% 2160 1655 1165 890 710
+10% 580 445 310 240 190
+15% 275 210 150 115 90
*25% 115 85 60 45 40
*+50% 40 30 20 15 10

This table can give the user an indication of the accuracy of the MLE.
Clearly, a large number of excess claims is required for a high degree of
accuracy. When sample data lack the credibility required, it is desirable to have
available a source of parameters based on a larger volume of data. These
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parameters can then be used as the complement ot credibility to the parameter
derived from the data being analyzed. In Appendix E are Pareto parameters
from ISO for various sublines of General Liability, Automobile Liability and
Professional Liability. When either no data or limited volumes of data are
availeble, these factors can provide reasonable estimates of excess severities.

An important question to answer before determining whether enough claims
are available or whether to use 18O factors for credibility weighting is: “How
sensitive is the estimate of an average net claim size to errors in the parameter
estimate?” The following charts display the crror in the estimate of the average
net claim size for various layers of loss for a given error in the MLE.

ErRrROR IN AVERAGE Craim Cost
PARETO PARAMETLR = 1.0

Error in MLE

Net Layer 10% 25% 50%

$400,000 excess of $100,000 7.6% 17.7% 31.3%
$900,000 excess of $100,000 10.7% 24.0% 40.6%
$1,900,000 excess of $100,000 13.6% 29.6% 48.6%

ERROR IN AVERAGE CLAIM COST
PARETO PARAMETER = 1.50

Error in MLE
Net Layer 10% 25% 50%
$400,000 excess of $100,000 9.7% 21.9% 37.3%
$900,000 excess of $100,000 12.7% 27.6% 44 .8%

$1,900,000 excess of $100,000 15.1% 31.8% 50.0%
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Two generalizations can be drawn from this example. The percentage error
varies with both the size of the parameter and the width of the layer being
estimated. It is also interesting to note that the error in estimating an average
net claim size for a specific layer can easily exceed the error in the MLE.

Because of the special properties of the Pareto, the errors for the layers
shown above are dependent only on the relationship of the endpoints to the
truncation point. Thus, the error in each of the two layers $400,000 xs $100,000
and $4,000,000 xs $1,000,000, with truncation points of $100,000 and
$1,000,000, respectively, is the same, given an identical error in the underlying
parameter.

Even though the percent error in a layer varies with the size of the parameter,
the absolute dollar error decreases. This may be obvious since severity is
inversely proportional to the Pareto parameter. Thus we might be more lenient
with a lower degree of tolerance for a larger value of the parameter.

The following table displays absolute dollar errors in various net layers for
a 10% error in the MLE.

DoLLAR ERROR IN NET LAYER

Net Layer 4¢=1.00 g=1.50
$400,000 excess $100,000 $12,284 $10,756
$900,000 excess $100,000 $24,587 $17,350

$1,900,000 excess $100,000 $40,708 $23,382
CONCLUSION

The empirical data we have examined indicate that the implications under-
lying the use of the one parameter Pareto are satisfied for casualty lines of
insurance. This is not to say that limitations and restrictions on its use do not
exist. It would be asking too much of any one parameter distribution to perfectly
fit excess losses of all property and casualty lines. But the range of applications
of the Pareto are substantial and, therefore, significant to anyone involved in
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excess pricing. This paper should provide encouragement to those who may
have felt intimidated by the complexity of most modelling techniques available
to actuaries. At the same time, it provides a powerful tool for those who regularly
use more complex models but do not always need ten decimal point accuracy.

Most of the data referenced in this review is the product of the Increased
Limits Committee and the staff of the Insurance Services Office. We wish to
thank the ISO for allowing us the use of their data and analysis.
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APPENDIX A

DERIVATION OF THE ONE PARAMETER PARETO
FROM THE TWO PARAMETER PARETO

The one parameter Pareto is a special case of the two parameter Pareto. A
common form of the two parameter Pareto and the one currently used by
Insurance Services Office is:

fig = 92X 08

—mﬁ for0 = x < = N

In this formula, the value of x represents individual claim sizes. Generally,
this form is fit to losses above some lower truncation point.

We wish to derive g (v), where

y = (x+ b)b forl =y <> 2)
and

dy = dx/b (3
Substituting (2) and (3) into (1} we have,

g ) = f(x) X (dxidy)

—(g+1)

g0 =gXy forl s y<x

which is the general form of the one parameter Pareto.
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APPENDIX B
PARETO AND TREND

This appendix will show that, assuming uniform trend (i.c., all claims sizes
trend at the same rate), the value of the parameter ¢ is prescrved (remains
unchanged). We start by restating the Parcto,

flo=¢gxx“Vforl=nx<=
Under uniform trend we have the following transformation,
y=adXxfora<y<=
and,
dv = a X dx

Here the multiplicative factor ¢ represents the impact of trend on individual
claims.
Making this change of variable and solving for g (v) we have,

g () = (1a) X g X (va) “ Mora =y < %

Renormalizing this density function by dividing all values of y by a, we
have,

2 =ya,d: = dylafor]l =z <<%
The transformation then becomes,
h(2) = g (v) X (dvidz)

h (:) — q % :' g+ 1)

The parameter ¢ in all three density functions is the same and has not been
affected by the transformation.
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APPENDIX C

Presented in the following exhibits are comparisons of actual severities to
data fitted by a one parameter Pareto. All data are from OL&T Bodily Injury
as provided by 150.

Exhibit C-1 displays fits of gross losses excess of $25,000 using a truncation
point of $25,000. These fits produce an average absolute error of 1.3% and
range from 0.0% to 3.8%.

Exhibit C-2 displays fits of gross losses excess of $100,000 using a truncation
point of $100,000. The absolute errors in these fits average 2.0% and range
from 0.0% to 6.1%.

Exhibit C-3 displays fits of gross losses excess of $100,000 using a truncation
point of $25,000. The absolute errors are much greater in these fits. They
average 5.6% and range from 1.9% to 13.4%.

In general, the wider the interval the greater the divergence. But these
differences are relatively small when the lower bound of the layer is equal to
the truncation point. Exhibit C-3 demonstrates that the error in predicting
average severities can be quite large when the lower bound of a layer is much
larger than the truncation point.
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EXHIBIT C-1

OWNERS, LANDLORDS, AND TENANTS
PARETO GOODNESS OF FiT
Gross Losses IN Excess oF $25,000
PoLicy YEAR 1981 as or 27 MONTHS
MLE oOF THE PARAMETER: 1.7172

Actual
Severity

$37,975
$43,649
$47.087
$48.962
$50.527
$51,605
$52,549
$53,546
$54,955
$55,548
$56.006
$56,370
$56,702

SHEET |

Fitted Percent
Severity Difference
$38.655 1.8%
$44.005 0.8%
$46.960 —0.3%
$48.,868 —0.2%
$50,215 -0.6%
$51.224 -0.7%
$52,013 —1.0%
$53,173 —1.4%
$53.992 —1.8%
$54.606 ~1.7%
$55,086 —1.6%
$55.472 —1.6%
$55.791 —1.6%
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EXHIBIT C-1

OWNERS, LANDLORDS, AND TENANTS
PARETO GOODNESS OF FIT
Gross Losses IN ExcEess ofF $25,000
PoLICY YEAR 1980 As OF 39 MONTHS
MLE oF THE PARAMETER: 1.5899

Actual
Severity

$38,695
$44,758
$48.,499
$50,850
$52,765
$54,135
$55,335
$57,196
$58,550
$59.413
$60,143
$60,721
$61,207

SHEET 2

Fitted
Severity

$39,223
$45,213
$48,673
$50,980
$52,653
$53,933
$54,951
$56.,484
$57,595
$58,446
$59,123
$59,677
$60,141

Percent

Difference

{.4%
1.0%
0.4%
0.3%
—0.2%
—0.4%
-0.7%
-1.2%
—1.6%
-1.6%
=1.7%
—1.7%
-1.7%
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EXHIBIT C-1

OWNERS, LANDLORDS, AND TENANTS
PARETO GOODNESS OF FIT
Gross Losses IN ExcEss oF $25.000
Poricy YEAR 1979 as oF 51 MONTHS
MLE oF THE PARAMETER: 1.4427

Actual
Severity

$39,551
$46,500
$51.110
$53,954
$56,253
$58.053
$59.646
$61,993
$63,613
$64.614
$65.447
$66,088
$66.601

SHEET 3

Fitted
Severity

$39.922
$46.749
$50.901
$53.777
$55.924
$57.610
$58,979
$61.095
$62.675
$63.915
$64.923
$65,764
$66.479

Percent

Difference

0.9%

0.5%
—0.4%
-0.3%
-0.6%
—0.8%
—1.1%
—1.4%
—1.5%
—-1.1%
—0.8%
—0.5%
-0.2%



LLosses
Limited to

$50,000

$75,000
$100,000
$125,000
$150,000
$175,000
$200,000
$250,000
$300,000
$350,000
$400,000
$450,000
$500,000

SINGLE PARAMETER PARETO DISTRIBUTION

EXHIBIT C-1

OWNERS, LANDLORDS, AND TENANTS
PARETO GOODNESS OF FIT
Gross Losses IN ExcEess ofF $25,000
PoLICY YEAR 1978 as OF 63 MONTHS
MLE ofF THE PARAMETER: 1.3644

Actual
Severity

$39,696
$47,088
$52,090
$55,529
$58,321
$60,545
$62.,466
$65,349
$67,484
$68,749
$69,806
$70,706
$71,518

SHEET 4

Fitted
Severity

$40,313
$47,633
$52,209
355,442
$57,895
$59,846
$61,449
$63,960
$65,866
$67,381
568,627
$69,676
$70,577

Percent

Difference

1.6%

1.2%

0.2%
—0.2%
—0.7%
-1.2%
—1.6%
—2.1%
—2.4%
—2.0%
—1.7%
—1.5%
—1.3%
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Losses

Limited to

$50,000

$75,000
$100,000
$125,000
$150,000
$175,000
$200.,000
$250,000
$300.,000
$350,000
$400,000
$450,000
$500,000

SINGLE PARAMETER PARETO DISTRIBUTTON

EXHIBIT C-1

OWwWNERS, LANDLORDS, AND TENANTS
PARETO GOODNESS OF FIT
Gross Losses IN Excess oF $25.000
PoLicy YEAR 1977 as oF 75 MONTHS
MLE oOF THE PARAMETER: 1.3466

Actual
Severity

$39,895
$47.363
$52,203
$55,322
$57,747
$59.602
$61,216
$63,890
$66,044
$67,240
$68,175
$68.979
$69,716

SHEET S

Fitted
Severity

$40.404
$47.841
$52.519
$55.839
$58.367
$60.384
$62,046
$64.657
$66.646
$68.232
$69,539
$70.642
$71,592

Percent

Difference

1.3%
1.0%
0.6%
0.9%
1.1%
1.3%
1.4%
1.2%
0.9%
1.5%
2.0%
2.4%
2. 7%
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EXHIBIT C-1

OWNERS, LANDLORDS, AND TENANTS
PARETO GOODNESS OF FIT
GRross LOSSES IN EXCEss of $25,000
PoLicYy YEAR 1976 As OF 87 MONTHS
MLE oF THE PARAMETER: 1.2254

Losses Actual
Limited to Severity

$50,000 $40,414

$75,000 $48.,555
$100,000 $53,923
$125,000 $57,602
$150,000 $60,653
$175,000 $63,165
$200,000 $65,374
$250,000 $68.936
$300,000 $71,613
$350,000 $73,314
$400,000 $74,685
$450,000 $75.,807
$500,000 $76,844

SHEET 6

Fitted
Severity

$41,043
$49,329
$54.,765
$58,746
$61,853
$64,382
$66,503
$69,908
$72,565
$74,728
$76,543
$78,098
$79,455

Percent

Difference

1.6%
1.6%
1.6%
2.0%
2.0%
1.9%
1.7%
1.4%
1.3%
1.9%
2.5%
3.0%
3.4%

105



106

Losses

Limited to

$50,000

$75,000
$100,000
$125.000
$150.000
$175.000
$200.000
$250.000
$300.000
$350,000
$400,000
$450.000
$500,000

SINGLE PARAMETER PARETO DISTRIBUTION

EXHIBIT C-1

OWNERS., LANDLORDS, AND TENANTS
PARETO GOODNESS OF FIT
GRoss Losses IN ExcEss oF $25,000
PoLicy YEAR 1975 As OF 99 MONTHS
MLE ofF THE PARAMETER: 1.2805

Actual
Severity

$40,137
$48,060
$53,525
$57,217
$60.188
$62,586
$64,597
$67,535
$69.591
$70,644
$71,555
$72,315
$72.,920

SHEET 7

Fitted
Severity

$40.748
$48.637
$53.714
$57.379
$60.208
$62,490
$64.388
$67.406
$69,735
$71.614
$73.177
$74.,508
$75.661

Percent

Difference

1.5%
1.2%
0.4%
0.3%
0.0%
~0.2%
—0.3%
-0.2%
0.2%
1.4%
2.3%
3.0%
3.8%



Losses

Limited to

$125,000
$150,000
$175,000
$200,000
$250,000
$300,000
$350,000
$400,000
$450,000
$500,000

SINGLE PARAMETER PARETO DISTRIBUTION

EXHIBIT C-2

OWNERS, LANDLORDS, AND TENANTS

SHEET |

PARETO GOODNESS OF FIT

Gross Losses IN Excess oF $100,000
PoLiCY YEAR 1981 As OF 27 MONTHS
MLE oF THE PARAMETER: 2.0623

Actual
Severity

$114,905
$127,343
$135,917
$143.,421
$154,519
$162,540
$167,257
$170,897
$173,788
$176,430

Fitted
Severity

$119,867
$132,944
$142,187
$149,057
$158,571
$164,833
$169,259
$172,549
$175,088
$177,104

Percent

Difference

4.3%
4.4%
4.6%
3.9%
2.6%
1.4%
1.2%
1.0%
0.7%
0.4%
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EXHIBIT C-2
SHEET 2

OWNERS, LANDLORDS, AND TENANTS
PARETO GOODNESS OF FIT
Gross Losses IN Excess oF $100,000
Poricy YEAR 1980 as oF 39 MONTHS
MLE oOF THE PARAMETER: 1.6478

Losses Actual Fitted Percent
Limited to Severity Severity Difference
$125,000 $117,647 $120,777 2.7%
$150,000 $132,015 $135,659 2.8%
$175,000 $142,302 $146,940 3.3%
$200,000 $151,305 $155,842 3.0%
$250,000 $165,275 $169,103 2.3%
$300,000 $175,438 $178,602 1.8%
$350,000 $181,915 $185,802 2.1%
$400,000 $187,391 $191.484 2.2%
$450,000 $191,733 $196.104 2.3%

$500,000 $195,380 $199.948 2.3%



Losses

Limited to

$125,000
$150,000
$175,000
$200,000
$250,000
$300,000
$350,000
$400,000
$450,000
$500,000

SINGLE PARAMETER PARETO DISTRIBUTION

EXHIBIT C-2

OwNERS, LANDLORDS, AND TENANTS

SHEET 3

PARETO GOODNESS OF FIT

Actual
Severity

$117,217
$131,141
$142,041
$151,681
$165,895
$175,709
$181,765
$186,812
$190,693
$193,797

Gross Losses IN Excess orF $100,000
PoLicy YEAR 1979 As OF 51 MONTHS
MLE ofF THE PARAMETER: [.741

Fitted
Severity

$120,567
$135,022
$145,809
$154,207
$166,513
$175,162
$181,616
$186,641
$190,679
$194,004

109

Percent

Difference

2.9%
3.0%
2.7%
1.7%
0.4%
-0.3%
-0.1%
-0.1%
0.0%
0.1%
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EXHIBIT C-2
SHEET 4

OWNERS, LANDLORDS, AND TENANTS
PArRETO GOODNESS OF FiT
Gross Losses IN Excess oF $100,000
PorLicy YEAR 1978 As OF 63 MONTHS
MLE oOF THE PARAMETER: 1.5282

Losses Actual Fitted Percent
Limited to Severity Severity Difference
$125.000 $119.167 $121,049 1.6%
$150,000 $134,728 $136,499 1.3%
$175.000 $147,124 $148.449 0.9%
$200.000 $157.831 $158.043 0.1%
$250.,000 $173.905 $172.639 —-0.7%
$300,000 $182.802 $183.351 0.3%
$350,000 $192.851 $191.638 —0.6%
$400,000 $198,746 $198,290 —-0.2%
$450,000 $203.759 $203,781 0.0%

$500,000 $208,289 $208.412 0.1%



Losses
Limited to

$125,000
$150,000
$175,000
$200,000
$250,000
$300,000
$350,000
$400,000
$450,000
$500,000

SINGLE PARAMETER PARETO DISTRIBUTION

EXHIBIT C-2
SHEET 5

OwNERS, LANDLORDS, AND TENANTS
PARETO GOODNESS OF FiT
Gross Losses IN Excess or $100,000
PoLicy YEAR 1977 As OF 75 MONTHS
MLE oF THE PARAMETER: 1.5706

Actual Fitted
Severity Severity
$117,980 $120,952
$131,964 $136,198
$142,660 $147,907
$151,968 $157,249
$167,384 $171,357
$179,804 $181,622
$186,699 $189,506
$192,095 $195,797
$196,731 $200,962

$200,977 $205,296

Percent

Difference

2.5%
3.2%
3.7%
3.5%
2.4%
1.0%
1.5%
1.9%
2.2%
2.1%
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EXHIBIT C-2
SHEET 6

OWNERS, LANDLORDS, AND TENANTS
PARETO GOODNESS OF FIT
Gross Losses IN Excess ofF $100,000
PoLICY YEAR 1976 As OF 87 MONTHS
MLE OF THE PARAMETER: 1.2489

Losses Actual Fitted Percent
Limited to Severity Severity Difference
$125,000 $119,416 $121,706 1.9%
$150,000 $135,523 $138,568 2.2%
$175,000 $148,781 $152,239 2.3%
$200,000 $160,440 $163,665 2.0%
$250,000 $179,341 $181,931 1.4%
$300,000 $193,369 $196,121 1.4%
$350,000 $202,346 $207,626 2.6%
$400,000 $209,584 $217,242 3.7%
$450,000 $215,508 $225.,462 4.6%

$500,000 $220,981 $232.613 5.3%



Losses

Limited to

$125,000
$150,000
$175,000
$200,000
$250,000
$300,000
$350,000
$400,000
$450,000
$500,000

SINGLE PARAMETER PARETO DISTRIBUTION

EXHIBIT C-2
SHEET 7

OWNERS, LANDLORDS, AND TENANTS
PARETO GOODNESS OF FIT
Gross Losses IN Excess or $100,000
PoLICY YEAR 1975 As OF 99 MONTHS
MLE oF THE PARAMETER: 1.4467

Actual Fitted
Severity Severity
$119,486 $121,238
$135,162 $137,087
$147,818 $149,515
$158,426 $159.611
$173,931 $175,194
$184,779 $186,822
$190,338 $195,941
$195,144 $203,348
$199,153 $209,525

$202,348 $214,782

Percent

Difference

1.5%
1.4%
1.1%
0.7%
0.7%
1.1%
2.9%
4.2%
5.2%
6.1%
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EXHIBIT C-3
SHEET |

OWNERS, LANDLORDS, AND TENANTS
PARETO GOODNESS OF FIT
Gross Losses IN Excess oF $100,000
PoLicy YEAR 1981 as oF 27 MONTHS
MLE OF THE PARAMETER: 1.7172

Losses Actual Fitted Percent
Limited to Severity Severity Difference
$125,000 $114,905 $120,620 5.0%
$150,000 $127,343 $135,183 6.2%
$175,000 $135,917 $146,094 7.5%
$200,000 $143 421 $154,618 7.8%
$250,000 $154,519 $167,161 8.2%
$300,000 $162,540 $176,020 8.3%
$350,000 $167,257 $182,657 9.2%
$400,000 $170,897 $187,842 9.9%
$450,000 $173,788 $192,020 10.5%

$500,000 $176,430 $195.471 10.8%



Losses

Limited to

$125,000
$150,000
$175,000
$200,000
$250,000
$300,000
$350,000
$400,000
$450,000
$500,000

SINGLE PARAMETER PARETO DISTRIBUTION

EXHIBIT C-3

OWwWNERS, LANDLORDS, AND TENANTS

SHEET 2

PARETO GOODNESS OF FIT

Gross Losses IN Excess oF $100,000
PoLicy YEAR 1980 As oF 39 MONTHS
MLE oF THE PARAMETER: 1.5899

Actual
Severity

$117,647
$132,015
$142,302
$151,305
$165,275
$175,438
$181,915
$187,391
$191,733
$195,380

Fitted
Severity

$120,908
$136,062
$147,662
$156,893
$170,784
$180,852
$188,559
$194,692
$199,714
$203,921

Percent

Difference

2.8%
3.1%
3.8%
3.7%
3.3%
3.1%
3.7%
3.9%
4.2%
4.4%

115



SINGLE PARAMETER PARETO DISTRIBUTION

EXHIBIT C-3
SHEET 3

OWNERS, LANDLORDS, AND TENANTS
PARETC GOODNESS OF FIT
Gross Losses IN Excess ofF $100,000
PoLicy YEAR 1979 as oF 51 MONTHS
MLE oF THE PARAMETER: 1.4427

Losses Actual Fitted Percent
Limited to Severity Severity Difference
$125,000 $117,217 $121,248 3.4%
$150,000 $131,14] $137.116 4.6%
$175,000 $142,041 $149,568 5.3%
$200,000 $151,681 $159.689 5.3%
$250,000 $165,895 $175,322 5.7%
$300,000 $175,709 $186,997 6.4%
$350,000 $181,765 $196,159 7.9%
$400,000 $186,812 $203.606 9.0%
$450,000 $160,693 $209.818 10.0%

$500,000 $193,797 $215,108 11.0%



Losses

Limited to

$125,000
$150,000
$175,000
$200,000
$250,000
$300,000
$350,000
$400,000
$450,000
$500,000

SINGLE PARAMETER PARETO DISTRIBUTION

EXHIBIT C-3

OwNERS, LANDLORDS, AND TENANTS

SHEET 4

PARETO GOODNESS OF FIT

Gross Losses iN Excess oF $100,000
PoLicy YEAR 1978 As oF 63 MONTHS
MLE oF THE PARAMETER: 1.3644

Actual
Severity

$119,167
$134,728
$147,124
$157,831
$173,905
$182,802
$192.851
$198,746
$203,759
$208,289

Fitted
Severity

$121,431
$137,693
$150,624
$161,254
$177,901
$190,533
$200,578
$208,835
$215,792
$221,767

Percent

Difference

1.9%
2.2%
2.4%
2.2%
2.3%
4.2%
4.0%
5.1%
5.9%
6.5%

[y
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Losses

Limited to

$125,000
$150,000
$175,000
$200,000
$250,000
$300,000
$350,000
$400,000
$450,000
$500,000

SINGLE PARAMETER PARETO DISTRIBUTION

EXHIBIT C-3

OWNERS, LANDLORDS, AND TENANTS

SHEET 5

PARETO GOODNESS OF FIT

Gross Losses IN Excess oF $100,000
PoLICY YEAR 1977 as OoF 75 MONTHS
MLE OF THE PARAMETER: 1.3466

Actual
Severity

$117,980
$131,964
$142,660
$151,968
$167,384
$179,804
$186,699
$192,095
$196,731
$200,977

Fitted
Severity

$121.,473
$137,826
$150,869
$161,617
$178,504
$191,365
$201,622
$210,075
$217,213
$223,356

Percent

Difference

3.0%
4.4%
5.8%
6.3%
6.6%
6.4%
8.0%
9.4%
10.4%
11.1%
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EXHIBIT C-3
SHEET 6

OWwNERS, LANDLORDS, AND TENANTS
PARETO GOODNESS OF FIT
Gross Losses IN Excess oF $100,000
PoLicy YEAR 1976 As oF 87 MONTHS
MLE ofF THE PARAMETER: 1.2254

Losses Actual Fitted Percent
Limited to Severity Severity Difference
$125,000 $119,416 $121,762 2.0%
$150,000 $135,523 $138,749 2.4%
$175,000 $148,781 $152,576 2.6%
$200,000 $160,440 $164,171 2.3%
$250,000 $179,241 $182,786 2.0%
$300,000 $193,369 $197,315 2.0%
$350,000 $202,346 $209,143 3.4%
$400,000 $209,584 $219,061 4.5%
$450,000 $215,508 $227,565 5.6%

$500,000 $220,981 $234,983 6.3%
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Losses

Limited to

$125,000
$150.000
$175.,000
$200,000
$250.,000
$300,000
$350,000
$400,000
$450.000
$500,000

SINGLE PARAMLETER PARETO DISTRIBUTION

EXHIBIT C-3

OWNERS, LANDLORDS, AND TENANTS

SHEET 7

PARETO GOODNESS OF FIT

Gross Losses IN ExcEiss oF $100,000
PoLICY YEAR 1975 AS OF 99 MONTHS
MLE oF THE PARAMETER: 1.2805

Actual
Severity

$119,486
$135,162
$147.818
$158.426
$173,931
$184,779
$190,338
$195,144
$199,153
$202.348

Fitted
Severity

$121,630
$138,326
$151,790
$162.993
$180,801
$194,546
$205.632
$214 855
§222.708
$229,517

Percent
Difference

1.8%
2.3%
2.7%
2.9%
3.9%
5.3%
8.0%
10. 1%
11.8%
13.4%
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APPENDIX D
CONFIDENCE INTERVALS FOR THE PARETO PARAMETER

This appendix derives a formula that can be used to approximate the number
of claims necessary to achieve a given level of confidence for a given level of
tolerance in estimating the Pareto parameter. The results of this appendix are
based upon the work of Jerry Jurschak in an unpublished paper entitled “The
Pareto Distribution and Excess of Loss Reinsurance.”

In Mr. Jurschak’s paper he shows that the following formula represents a
100(1 — d)% confidence interval for the Pareto parameter,

{qu’ (‘Xq'}
n ' n

where

'

¢’ = MLE of the parameter
n = number of claims in the sample

b= % X (Z(//z + \ﬂi;l - I)z

l —
¢ =3 X Zaaz + Van =17
Z = standard normal values.

Using a classical credibility approach, various values of n can be determined
for a given level of confidence and a given level of tolerance (i.e. being
within =10% of the true value of g).

Assume that we wish to be within 100(k — 1)% of the true value of the
parameter 100(1 — d)% of the time. The number of claims to comply with
these constraints can be determined by solving the following confidence interval
for n.

{bx(,xk CXqu}

n ’ n

Substituting the above formulas into this confidence interval,

—_— X
%x(z,¢,2+\/in— 1)~><(i;ﬁ_>_

1 X k)
Zx(zmdn*'\/ )xq
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Since the absolute values of the standard normal numbers are equal, nothing
is lost by dropping the right term. A few algebraic manipulations will produce

Van
Vk

and,
\/2‘; - (\/47’1 - l X \/7() = Z” £i2y X \’/k

For large n, we may question the necessity, bearing in mind the search for
a simpler form, of subtracting the 1. In other words.

Vian ~ Van — 1
Using this simplifying assumption we have
Van — (\/471 X V)= Zi a2 X Vk

Solving this equation for n yields

= (Z—azn + Van — 1)

n = Z(ll —eli2y X k
4 x (1 — V&)

This formula is then used to generate the following table. Note that all
figures have been rounded to the nearest multiple of five.

Level of Confidence

Level of

Tolerance 97.5% 95% 90% 85% 80%
* 5% 2160 1655 1165 890 710
*+10% 580 445 310 240 190
*+15% 275 210 150 115 90
*+25% 115 85 60 45 40

+50% 40 30 20 15 10
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APPENDIX E

INDUSTRY VALUES OF THE PARETO PARAMETER ¢
AS PRODUCED BY INSURANCE SERVICES OFFICE

Truncation
Line of Insurance Value of g Point
GENERAL LIABILITY
—Products
—Bodily Injury
—High Severity 0.938 $25,000
—Low Severity 0.848 $25,000
—Property Damage 1.144 $ 3,000
—Manufacturers and Contractors
—Bodily Injury
—All Classes 0.945 $40,000
—High Severity 0.825 $35,000
—Low Severity 1.031 $40,000
—Property Damage 0.987 $ 4,000
—Owners, Landlords, and Tenants
—Bodily Injury
—AIl Classes 1.245 $25,000
—High Severity 1.159 $30,000
—Low Severity 1.600 $30,000
PROFESSIONAL LIABILITY
—Physicians 1.141 $22.,000
—Surgeons 1.110 $22,000
—Hospitals 0.932 $ 1,000
—Dentists 1.527 $ 7,000
—Lawyers 2.098 $ 2,000
COMMERCIAL AUTOMOBILE LIABILITY
—Zone Rated 0.882 $ 9,000
—Light/Medium Trucks 1.061 $ 9,000
—Heavy Trucks 0.941 $ 9,000
—Extra Heavy Trucks 0.949 $ 9,000
—Private Passenger, Publics, and 1.080 $ 9,000

Garages
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A SIMULATION TEST OF PREDICTION ERRORS OF
LOSS RESERVE ESTIMATION TECHNIQUES

JAMES N. STANARD

Abstract

This paper uses a computer simulation mode! to measure the expected
value and variance of prediction errors of four simple methods of esti-
mating loss reserves. Two of these methods are new to the Proceedings.
The simulated data triangles that are tested are meant to represent sample
sizes typically found in individual risk rating situations.

The results indicate that the commonly used age-to-age factor ap-
proach gives biased estimates and is inferior to the three other methods
tested. Theoretical arguments for the source of this bias and a comparison
of two of the methods are presented in the Appendices.

I. INTRODUCTION

The purpose of this paper is to measure the expected value and variance of
prediction errors of four simple methods of estimating loss reserves. This is
done by using a computer simulation model to generate several thousand dif-
ferent sets of known loss data, applying each estimation method to predict
ultimate losses, and then calculating the difference between the predicted and
the actual (simulated) ultimate values.'?

Various reserve estimation techniques based on accident year data triangles
are described in [2], [5], [6]. [7], [20], and [21]. [21] contains a very extensive
bibliography. However, the only paper to test the efficiency of the technique it
proposes is (6] (and a sample size of only 50 iterations was used).

' The expected value of the prediction error is referred to as the “bias™: the bias and variance of
the prediction error are together referred to as the “efficiency” of the estimation technique.

2 Results from a previous version of this simulation model were described in {19). The new computer
model is written in Forth and assembly language on an IBM-PC. and is over twenty times faster
than the old version written in APL on an IBM 5110 (each iteration now takes 11 to 15 seconds).
This allows many more iterations and, therefore. much higher precision in measurements of bias.
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The simulated data triangles that are tested here are meant to represent an
amount of data that is typically found in individual risk rating, either self
insurance programs, or working excess reinsurance treaties (expected values of
40 claims per year and $10,400 per claim). For projecting loss reserves on
much larger amounts of data, the statistical variations that are measured with
this model will obviously be much less important.

11. AN OVERVIEW OF THE MODEL

View the loss process as follows: a given insured’s losses during an accident
year, a, are random variables drawn from some probability distribution deter-
mined by a vector of parameters, 6, Let @ represent a vector (of vectors)
containing all the parameters from the first accident year of the experience
period through the latest year under consideration (denoted y). So

8= (B1.....0,).

Let K be a vector representing the insured’s known loss experience during the
experience period.* K is a random sample drawn from the distributions deter-
mined by 0.

Let the ultimate losses that a particular insured will have for accident year
a be a random variable L,. The loss reserving and rate making processes both
seek to find the “best” estimate of E(L,).** E(L,) is some function of the 8.,
whereas the experience K was drawn from distributions determined by 84,....8,.
In order for K to be useful in estimating £(L.), there must be some relationship
between the §’s for different accident years.

The simplest assumption would be that §, =...= 8,, that is that an insured’s
loss potential is constant over the experience period. A more refined model
would be that the severity and frequency components of the 0’s would be

* Later in the paper K will be used to denote the familiar loss development triangle matrix, which
is a particular way of summarizing the information in K. K; denotes the a,j element of K, where
a is the accident year.

4 This paper will only consider estimates of E(L). One might also want to estimate other attributes
of the distribution of L, such as Var(L) or 95% percentile of L.

5 Actually the loss reserving process seeks to find E(L, — B.|K.+,B.) where K- is the total known
dollars of loss for accident year a (* denoting the latest known column) and B, is total paid dollars
of loss. Footnote 7 shows that this distinction does not affect the methodology of this paper.
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influenced by inflationary trends and by changes in a measurable exposure base,
and that, after proper adjustments for these, the parameters would be stable
over time. Examples of these type of adjustments are given in [2].

Any experience rating or reserving procedure is an estimator® of E(L); it is
some function R of the insured’s past known loss and exposure information K.
A perfect reserve estimation procedure for accident year ¢ would be a function
R, such that R(K) = E(L,). However, K is also a4 random variable, so fulfilling
this condition is not possible, except by chance. We can, however, hope that
R.(K) is an unbiased estimator of E(L,), that is, that E(R.(K)) = E(L,).

We would also like R(K) to be close to E(L), on the average. One common
way of expressing this is to minimize E(R(K) — E(L))"), the mean square error,
which for an unbiased estimator is equivalent to minimizing Var(R(X)). For
many simple statistical models, the form of estimator R that satisfies these
criteria can be explicitly calculated. This is referred to as a Uniform Minimum
Variance Unbiased (UMVU) estimator.’

For large samples, the Maximum Likelthood Estimator (MLE) usually sat-
isfies these properties (asymptotically). However, there are reasons why we
cannot always use the MLE, the main one being that in order to calculate it we
must explicitly know the forms of the probability distributions that generate L.
Of course, we can specify a model of the process that we believe is “reasonable”
(as is done later in this paper). but there still are several problems. First, the

® An estimator is a function of a random sample and is therefore a random variable; an estimate is
the result of the estimator function applied to a particular realization of the random variable, and
is therefore itself a particular number. This paper will use the term prediction as a synonym for
estimate. Also, note that L denotes the vector (L, . . ., L.); R 1s defined similarly.

7 In the computer model that follows, the quantities actually being measured are the expected value
and variance of the prediction error (R(K) — L). Note that:

. The error of any prediction R.(K) of ultimate losses L, is identical to the error of using
R.(K) — B, to predict necessary Toss reserves L, — B, so the expected values and variances
measured in this paper apply equally well to loss reserves.

2. E(R(K) — L) = E(R(X)) — E(L) = Bias of R(X)

3. Var®(K) — L) = VarR(K)) + Var(L) — 2 Cov(R(K).L)

IfL per?ains to an accident_year for which there is no known experience, then Cov (R(K),L) =
0 and we are measuring Var(R(K)) plus a constant that does not depend on R. If there is
some known experience for the accident year—as is typical for loss reserving—then we are
not actually measuring Var(R(K)); however the variance of the prediction error is actually
what we are interested in. -

Note that we have dropped the subscript a when not referring to a specific accident year.
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MLE can be very difficult to calculate; second, although it is known to have
good properties for large samples, it may be a bad estimator for smaller samples
(it is usually biased); third, while it may be a good estimator if the model we
assume is in fact the true one, it may be a bad estimator for a different model—
that is, it may not be robust.

1. COMPUTER MODEL

The computer generates six accident years of known loss experience (K"
for the i iteration) from distributions with fixed parameters. It then applies four
estimation techniques to this set of known losses, arriving at four different
predictions of é’”. The differences between each of the predictions and the
actual ultimate losses are stored. This whole process (generating experience,
then calculating predictions) is repeated several thousand times—using the same
underlying distributions and parameters. It can then be determined how well
the estimates R(K'"") fared as “guesses” of L' and which estimator function R
does the best.

Each iteration produced a set of loss experience for six accident years—
(a = 0,...,5) where five years of development are known for accident year 0,
four years of development for accident year 1, etc. Not only was the uitimate
experience generated for each of these years, but also the portion of it that
would be known at any point in time.

For a single accident year a, a single iteration was generated as follows:?

A random number of losses, N, was drawn from a normal® distribution with
mean = 40, variance = 60.
For each of the N claims, the following random variables were drawn
(i=1,....N):
M; = Month of loss within accident year (uniform with minimum = 0,
maximum = 11)

¢ The forms of the distributions chosen are somewhat arbitrary, but are consistent with actuarial
literature. For negative binomial frequency see {1], {8] and [17]; for lognormal severity see {4},
[10], [13], {14], [16] and [18]; for exponential report lags see {15] and {22]. However, it is important
1o note that, as demonstrated later in the paper, the conclusions are not particularly sensitive to the
choice of the underlying loss generation model.

 The normal distribution was chosen as a good approximation for the negative binomial, which is
more difficult to simulate. Also, N was restricted to be greater than zero.
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Q; = Report lag in months (waiting time between accident date and
report date) (exponential with mean = 18 months)
All experience was viewed as being ana]y7ed as of year-end, so a claim

‘-(M + Qi -

2 years after the accident

would first become known in

year.'¢

P; = Payment lag in months (waiting time between report date and

payment date) (exponential with mean = 12 months)!!

Then the following dates are calculated:
m; = accident month = 124 + M,
r; = report month = 12¢ + M, + @,
pi = payment month = 12a + M, + Q: + P;

Note that m;, r;, and p;, are fixed dates (where the first month of the first accident
year is taken to be 0). M,, Q,, and P; are lags relative to the accident year (a =
0,...,5) in which the simulated claim occurs, and relative to each other.

The random untrended payment amount, C,, was drawn from a lognormal
distribution with mean = $10,400 and variance = ($34,800)".

The final settlement value of the claim is calculated as C.T(m;,p;), where

. . . lm ¢4 ¢ 1"1 : « . . . .
T(m,p) is an inflation factor equal to (—;i) (T) and [, is an inflation index

at month k. This inflation model was suggested by Robert Butsic in [9].

So far, the number of claims, and (for each of these claims) the report date,
the payment date, and the final payment amount have been determined. The
last thing to do is set the reserve on each open claim. Each reserve was set as
an unbiased guess of what the claim would settle for, if it closed in the month
for which the reserve was being set.

0 The APL symbol [, referred to as “ceiling,” means “the smallest integer greater than or equal
to.” Note that if M; + Q; < 12 the claim is reported during the accident year, “zero” years after
the accident year.

" These parameters for M, P and Q result in the following average age-to-ultimate factors:

12-ult 24-ult  36-ult  48-ult  60-ult

Incurred 3.72 1.60 1.24 t.11 1.05
Paid 14.29 2.94 1.69 1.30 1.15
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For each claim a random Reserve Error, V;, was drawn from a lognormal
distribution with mean = 1, and variance = 2. To calculate the reserve amount,
this was multiplied by C.T(m;,r;) where r; is the month that the claim was first
reported (and therefore reserved). Two things should be noted about this model
of case reserving: (1) the reserve error is only chosen once for each claim,
regardless of how many years it remains open; and, (2) this system, on the
average, leads to under-reserving—by (/,//,), the amount of inflation between
the report month and the payment month.'?

The known loss amount at the end of year ¢ on the i™ loss from accident
year a is

0 ifri> 12t + 11

k,-(a,t) = C,-V,»T(m,—,ri) fri<12t+ 11 < Di
CTimipy  if pr =12t + 11

A

So the actual ultimate losses are
N
L =3 CTim.p)
i=1

The full experience matrix known at the end of year four for an insured would
be

No No
> k(0,00 - - > k(0,4)
i=1 =1

0
n ) )
> ki4,4) 0 --- 0

i=]

This represents the familiar “loss development triangle.” We will denote such
an experience matrix by K (for known data).

'2 The author admits that this is a crude model of the case reserving process; however, it is unlikely
that a more sophisticated model would significantly affect the results—unless it was one that allowed
for changes in relative reserve adequacy along the diagonal. A method of setting reserves at V times
the ultimate payment, which does not lead to under-reserving, was tested in [19], and it did not
make a significant difference in the results. Also, see Section VI on sensitivity tests.
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The matrix K is the statistic that we will use to estimate the vector of
expected final loss amounts E(L). Note that there are many other possible
statistics we could have chosen (such as a triangle of claim counts, or a triangle
of losses truncated at some ‘“‘basic limits” point). Other such statistics would
probably allow us to construct more efficient estimators—in fact, they definitely
would unless K happened to be a “sufficient statistic™ for E{L), and there is no
reason to believe that it is sufficient.

1V. RATING METHODS

Once the experience matrix K is calculated for one iteration, it is used as
input for four different rating techniques (estimators of E(L)).

Let K., = Losses for accident year a known through period j (in other
words, the aj element of matrix K)
K.- = Latest known losses for accident year a
f« = The age-to-ultimate factor tor accident year ¢
R. = The estimate of expected ultimate losses, E(L.,)

I

[: Age-to-Age Factors

This is the very common procedure of projecting each accident year to its
ultimate value by age-to-age factors (also known as the “chain ladder” method).
So

Ru = Ku*f;l a = 0,...,4
Rs undefined (because Ks+ = O)
2: Modified Bornhuetter-Ferguson

This 1s a modified version of a commonly used method first presented in
[5].14

R,= K. + Rs(l - L) a=10,...4

a

' Age-to-age factors throughout this paper arc calculated by summing corresponding elements in
two adjacent columns of the triangle, then dividing these two sums. This is usually superior. as
shown in [12], to taking a straight average of the individual age-to-age factors, which is likely to
produce substantial additional bias.

“n [5] Rs was obtained from external sources. rather than as shown here.
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4
Rs = (1/5) 2 Kinf

h=0

3: Adjustment to Total Known Losses

This method (also referred to as the “Cape Cod method”)is described in [7]
and [19]. Appendix B presents a theoretical comparison of Rs under this method
with Rs under method 2. It consists of averaging the known losses first, then
applying an adjustment factor to the sum.

R(,ZK‘,*-?—R,(I —;—) a=0,.4

Rs = (é K[,*) -+ (éﬂ (I/ﬁ,))

a=(

4: Additive Model

Let K’ denote the matrix of known loss experience where each cell is the
losses incurred during a particular period (rather than cumulative losses through
the period, as the matrix K denotes). The elements of K’ are the differences of
adjacent columns of K.

Project the unreported losses for an accident year as the sum of the expected
unreported losses during each future period. Estimate the expected unreported
losses by period as the average of the known losses by row. Specifically,

a—1

R. = Ko + 2 2 K' o a=1,..5

=S5—a a 2=0
Ry = Kp+

This additive method is suggested by Hans Biihlmann {7]; he refers to it as the
complementary loss ratio method.

V. RESULTS

Each of the four rating methods was tested under each of the following
progressively more complex loss generation models. Exhibits I through V dis-
play the results for each model. These exhibits show the mean and standard
deviation of the prediction error for each rating method for each accident year.
The prediction error is R, — L, {the estimated ultimate result minus the actual
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ultimate result). The “% of actual” is the prediction error divided by the true
expected losses.

We would expect any rating technique based on known data to (on the
average) under-predict by the expected amount of development between the
most mature known data amount and ultimate E(K,+ — L.). Therefore, each of
the expected prediction errors has been adjusted by this amount, so the exhibits
actually show E(R, — L.) — E(Kus — L.) = E(R, — K.s). That is, we do not
expect the estimation techniques to be able to predict beyond the triangle.'?

EXHIBIT I—Claim Counts Only, No Inflation

In this version of the model, C; was not randomly chosen, but was set at
$1. The inflation index /,, was also held constant. The results show that simple
age-to-age factors produced biased results and higher standard deviations. Meth-
ods 2 and 3 have very slight biases while method 4 is unbiased. Methods 3 and
4 have slightly smaller standard deviations than method 2.

What is interesting here is not the amount of the bias (which for practical
purposes is negligible), but the fact that there is a bias. This fact was greeted
with surprise and skepticism by many actuaries when it was first presented in
[19]. Appendix A gives a technical argument to support this result.

EXHIBIT [[—Random Claim Size, No Inflation

In this version, C; is randomly chosen from a lognormal distribution with
mean = $10,400 and variance = ($34,800)°. The inflation index /,, was held
constant. Here we see that method 1 is clearly inferior—it is significantly biased
upward and has very high standard deviations in years 3 and 4. An interesting
result from the older version of the model is that the median prediction error
for method 1 was usually negative—that means that in over half of the cases
method | under-predicted the actual (simulated) results, but a few cases of large
over-predictions made the mean prediction error (the bias) positive. This is
because the distribution of prediction errors for method 1 was very positively
skewed. Method 3 has the lowest standard deviation. Methods 3 and 4 do not
appear to have significant biases.

15 A technique of estimating the parameters of the distribution of Q; directly, such as described in
[22]. would allow prediction beyond the triangle.
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EXHIBIT lII—Constant 8% Inflation, o = 0.5

In this version, an 8% per year inflation was assumed, with 50% applying
to date of accident and 50% applying to date of settlement. Here we expect that
methods 2, 3 and 4 will under-predict, because they all implicitly assume that
expected losses by accident year are the same, which, with inflation, is not true.
Method 1 does not rely on such an assumption.

The addition of inflation accentuates the bias in method 1, making its
predictions 35% above the actual values (after the “tail adjustment™). Method
2 does very well on this example because the upward bias inherent in each age-
to-ultimate prediction is balanced by the fact that the method assumes no
inflation. Once again methods 3 and 4 do the best in terms of standard deviation,
but, as expected, they are somewhat biased downward.

EXHIBIT IV—Constant 8% Inflation, o = 0.5,
Adjust Rating Methods for 8% Inflation

This version was run with the same loss parameters and inflation assumptions
as model III. However, each of the rating methods was modified as follows:

Each element of each row, where an arbitrary row is row a, was divided by an
assumed inflation index [I;. The rating method was applied to the resulting
triangle, then each projected ultimate result was multiplied by its respective /.
In this case [, was set as 1.08“, a = 0,...,5. This obviously represents perfect
clairvoyance about the underlying past and future inflation rate. ¢

This slightly improves the standard deviation of method 1, but does not improve
the bias, which is still quite high. However, this adjustment completely removes
the bias on method 4, and leaves only a slight upward bias in method 3.

EXHIBIT V—10% Inflation Dropping to 6%, o« = 0.5,
Adjust Rating Methods for 10% Inflation

In this version, the actual inflation rate was 10% for 60 months (which
covers the entire known claim period), then it drops to 6%. The index assumed
by the rating methods is (1.10)".

16 Note that a similar adjustment can be made when dealing with a triangle where the exposure
varies by accident year, i.e., (1) divide cach row by the corresponding exposure, (2) apply the
rating method, then (3) multiply each estimate by its exposure. This could be further improved by
using credibility weighted averages in the rating method, where a row’s credibility was a function
of its exposure; however, developing such a system is beyond the scope of this paper.
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This results in only a slight btas in method 4, and a fairly small one in
method 3.

VI, SENSITIVITY TESTING

As a test of the sensitivity of the results to the specific distributions used to
generate loss experience, the following additional three scenarios were run.
Note that these were all run with an assumption of no inflation, so they are
meant to be compared with the results on Exhibit {1 (which will be referred to
as the “standard model™).

EXHIBIT Vi—No Reserve Development

The standard model was used except that the reserve error, V, was always
set equal to one.

EXHIBIT Vil—Uniform Frequency and Severity

The standard model was used except that the frequency. N, was distributed
discrete uniform [1.79] and severity, C, was distributed continuous uniform
[0,20800]. This results in an ultimate aggregate loss distribution with about the
same mean and variance, but much less skewness, than the standard model.

EXHIBIT VIII—Uniform Report and Pavment Lags

The standard model was used except that the report lag, 0, was distributed
discrete uniform {0,36) and payment lag, P, was distributed discrete uniform
[0,24]. This results in the same average lags, but with a higher percentage of
claims being reported and paid within the five columns of the experience triangle
than the standard model.

Although the magnitudes of the biases and standard deviations differ in
Exhibits VI through VIII from Exhibit 11, conclusions about the existence of
bias and about the relative efficiency of the four rating methods remain sub-
stantially unchanged.

VII. CONCLUSIONS
These results indicate that for data triangles of the size tested:

1. The common age-to-age factor approach (method 1) is clearly inferior
to the other three methods.
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2. The additive method 4 and the average-then-adjust method 3 have sig-
nificantly lower variances than methods 1 and 2, and small biases (if
adjusted for inflation). In fact, method 4 may be completely unbiased.

It is important to emphasize that the bias of the various methods is heavily
influenced by a few large prediction errors. This means that in practical rate-
making situations it would usually be wrong to use method 1 and then do a
judgment “bias adjustment”—doing so in most cases would result in under
predicting. Instead, the practitioner simply should not put much credibility in
predictions based on highly leveraged age-to-ultimate factors.

One may object that allowing accurate knowledge of the underlying inflation
rate gives an unfair advantage to methods 2 through 4, because it allows all of
the rows of the triangle to be used in estimating any particular row’s ultimate
value. However, one will normally have exogenous knowledge of past inflation
rates and forecasts of future rates, and using this information should improve
one’s ability to predict. Also, in [19] it was shown that attempts to estimate the
trend rate solely from data samples of this size by fitting lines to projected
ultimate values produced terrible results—extreme bias, variance, and skewness.

The above major conclusions concern the relative ranking of techniques and
the existence in some cases of bias. These conclusions were found to be robust
to an extreme change in the form of the underlying distributions; this robustness
was also found in [19]. Of course, the specific numerical results on Exhibits I
through VIII should not be considered to be any more than examples—changing
the parameters or the form of the loss generating model will change these in
unpredictable ways.

One way in which numerical results from a model such as this would be of
interest is if the parameters of the loss generation model were estimated from
an actual data set which had been projected to ultimate by a specific loss
reserving technique. Simulating the distribution of prediction error would give
an estimate of the potential variability of the reserve estimate—which could be
used to calculate confidence intervals (containing both “parameter” and “pro-
cess” risk) for the loss reserve.
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EXHIBIT I

MoODEL I—Cr.aM CounTs ONLY. NO INFLATION
5000 ITERATIONS

Prediction Error: (R, — L,) minus E(K,s — L,)

Rating Accident Mean Standard Deviation
Method Year Counts % of Actual Counts % of Actual
1 0 4] 0% 1.5 4%

1 0.1 0 2.6 6
2 0.2 1 3.7 9
3 0.3 1 5.8 14
4 0.9 2 1.6 29
5 — _ _ _
2 0 0 0% 1.5 4%
1 0.1 0 2.5 6
2 0.2 ] 3.6 9
3 0.2 | 5.1 13
4 0.3 | 7.2 18
5 0.4 ] 8.8 22
3 0 0 0% 1.5 4%
1 0.1 0 2.5 6
2 0.2 0 35 9
3 0.1 0 5.0 13
4 0.1 0 7.1 18
5 0.2 0 8.6 22
4 0 0 0% 1.5 4%
1 0 0 2.5 6
2 0.1 0 3.5 9
3 0 0 5.0 13
4 0 0 7.2 18
5 0.1 0 8.6 22
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EXHIBIT 11

MODEL II-—RANDOM CLAIM S1ZE, NO INFLATION
5000 ITERATIONS

Prediction Error: (R, — L,) minus E(K., — L.)

Rating Accident Mean Standard Deviation
Method Year Dollars % of Actual Dollars % of Actual
1 0 $ 0 0% $ 88,600 21%
I 9,892 2 182,206 44
2 24,680 6 252,951 61
3 49,766 12 392,435 94
4 113,397 27 823,429 198
5 — — _

2 0 h) 0 0% $ 88,600 21%
I 9,354 2 177,605 43
2 16,234 4 412,028 99
3 29,183 7 303,322 73
4 32,183 8 377,037 90
5 36,314 9 372,499 89

3 0 $ 0 0% $ 88,600 21%
1 5,712 1 163,078 39
2 13,138 3 212,171 51
3 14,501 3 263,962 63
4 4,662 1 320,142 7
5 4,370 1 322,794 77

4 0 $ 0 0% $ 88,600 21%
1 —894 0 170,483 41
2 —-4,787 -1 438,705 105
3 —~3,986 -1 290,293 70
4 —11,622 -3 338,545 81
5 —7,490 -2 341,970 82
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EXHIBIT 111

MoDEL 8% INFLATION, @ = 0.5

IO 1ax

15,000 ITERATIONS

Prediction Error: (R, — L.) minus E(K.. — L.,)

Rating Accident Mean Standard Deviation
Method Year Dollars % of Actual Dollars % of Actual
1 0 $ 0 0% $132,643 28%

l 13,325 3 233,786 45
2 40,012 7 528,989 95
3 75,972 13 674,655 113
4 225,406 35 1,636.846 254
5 _ . _ _
2 0 $ 0 0% $132.643 28%
1 18,162 4 281,171 54
2 35,581 6 376,524 68
3 37.095 6 498,673 83
4 15,500 2 639,790 99
5 —62,654 -9 609,556 87
3 0 $ 0 0% $132,643 28%
1 9,766 2 194,158 38
2 15,783 3 280,995 51
3 —-607 0 385,999 65
4 —49,904 -8 451,253 70
5 —138,589 —20 450,961 64
4 0 $ 0 0% $132,643 28%
1 —2.,462 -1 185,358 36
2 —8,613 -2 273,372 49
3 —32,982 -6 363,169 61
4 —80,318 —13 423,457 66
5 —158,472 —23 441.974 63
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EXHIBIT IV

MOoDEL 1V—8% INFLATION, a = 0.5, 8% INDEX USED IN RATING
12,750 ITERATIONS

Prediction Error: (R, — L,) minus E(K,s — L,)

Rating  Accident Mean Standard Deviation
Method Year Dollars % of Actual Dollars % of Actual
1 0 $ 0 0% $108,748 23%

1 17,024 3 226,684 44
2 41,313 7 368,332 66
3 81,257 14 627,023 104
4 214,678 33 1,545,088 240
5 _ —_ — —
2 0 $ 0 0% $108,748 23%
1 17,021 3 242 467 47
2 34,663 6 328,942 59
3 56,512 9 486,315 81
4 75,782 12 597,070 93
5 83,162 12 640,675 92
3 0 $ 0 0% $108,748 23%
1 12,228 2 209,716 41
2 22,240 4 284,919 51
3 30,927 5 398,680 66
4 27,951 4 451,586 70
5 24,978 4 496,771 71
4 0 $ 0 0% $108,748 23%
1 1,546 0 228,070 44
2 3,571 0 289,117 52
3 6,014 1 405,582 68
4 4,862 1 433,385 67
5 6,569 1 492 804 71
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EXHIBIT V

MoDEL V—10% INFLATION DROPPING TO 6%, o = 0.5, 10% INDEX USED

8000 ITERATIONS

IN RATING

Prediction Error: (R, — L,) minus E(K.s — La)

Rating Accident Mean Standard Deviation
Method Year Dollars % of Actual Dollars % of Actual
1 0 $ 0 0% $120,911 25%

1 13,748 3 260,039 48
2 34,538 6 397,028 69
3 79,547 13 569,751 90
4 227,292 33 1,331,666 193
5 _ _ _ _
2 0 $ 0 0% $120,911 25%
1 12,627 2 243,327 45
2 27,992 S 344 815 60
3 54,273 9 446,620 70
4 89,787 13 577,771 34
5 108.456 15 617,252 83
3 0 $ 0 0% $120.911 25%
| 8.522 2 225.986 42
2 17,345 3 310,728 54
3 30,093 5 393,830 62
4 42,842 6 481.436 70
5 49,802 7 519.365 70
4 0 $ 0 0% $120.911 25%
1 —1,386 0 230,404 43
2 —~672 0 320,637 56
3 6,152 | 393,860 62
4 19,540 3 469,071 68
5 31,185 4 516,946 69
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EXHIBIT VI

SENSITIVITY TEST—PERFECT CASE RESERVING
6522 ITERATIONS

Prediction Error: (R, — L,) minus E(K. — L,)

Rating Accident Mean Standard Deviation
Method Year Dollars % of Actual Dollars % of Actual
1 0 $ 0 0% $ 50,557 12%

I 5,092 { 117,095 28
2 12,428 3 147,644 35
3 19,602 5 231,091 56
4 67,650 16 504,934 122
5 — _ _ _
2 0 $ 0 0% $ 50,557 12%
1 4,726 1 109,725 26
2 10,880 3 130,699 31
3 14,206 3 186,497 45
4 22,904 6 251,845 61
5 17,081 4 305,529 73
3 0 $ 0 0% $ 50,557 12%
1 2,898 1 104,576 25
2 6,574 2 120,845 29
3 6,057 1 172,281 41
4 8,546 2 229,368 56
5 942 0 281,352 67
4 0 $ 0 0% $ 50,557 12%
1 —-542 0 101,240 24
2 899 0 116,160 28
3 —658 0 168,233 41
4 2,361 1 225,834 55
5 —3,461 -1 278,649 65
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EXHIBIT VI

3049 ITERATIONS

Prediction Error: (R, — L,) minus E(K,.s — L,)

Rating Accident Mean Standard Deviation
Method Year Dollars % of Actual Dollars % of Actual
1 0 $ 0 0% $ 34,704 8%

1 9,824 2 175,539 43

2 8,593 2 155,670 37

3 14,083 3 195,329 46

4 44,232 11 331,371 79

5 _ _ _ _
2 0 $ 0 0% $ 34,704 8%

1 7,410 2 128,228 31

2 7.579 2 143,738 35

3 8,791 2 168,244 40

4 15,059 4 222,905 53

5 20,915 5 287,287 70
3 0 $ 0 0% $ 34,704 8%

| 3,690 1 74,962 18

2 2,208 | 97,500 23

3 1,123 0 130,512 31

4 3,353 1 204,091 49

5 7,643 2 263,368 64
4 0 $ 0 0% $ 34,704 8%

1 342 0 65,336 16

2 -2,937 -1 94,379 23

3 —4,874 -1 133,405 32

4 -2,227 —1 209,730 50

5 3,629 1 264,368 65
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EXHIBIT VIII

Tlavtrmnase DeonaAanm

EST—UNIFORM REPORT AND
6000 ITERATIONS

Prediction Error: (R, — L,) minus E(K,. — L,)

Rating  Accident Mean Standard Deviation
Method Year Dollars % of Actual Dollars % of Actual
1 0 $ 0 0% $ 33,898 0%

1 8,958 2 154,927 38
2 40,911 10 371,052 89
3 94,371 23 667,695 162
4 261,076 63 1,627,441 393
5 _— _ — —
2 0 $ 0 0% $ 33,898 8%
1 7,452 2 183,330 45
2 39,655 10 348,887 84
3 66,107 16 447,484 109
4 79,065 19 499,807 121
5 81,733 20 481,770 117
3 0 $ 0 0% $ 33,898 8%
1 5,097 1 153,015 37
2 21,913 5 279,507 67
3 23,616 6 321,873 78
4 14,848 4 301,852 73
5 13,765 3 297,400 72
4 0 $ 0 0% $ 33,898 8%
1 -3,670 -1 195,110 47
2 4,794 1 276,092 66
3 3,478 1 306,744 75
4 —1,347 0 292,257 71
5 1,321 0 293,734 71
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APPENDIX A
AN ANALYTICAL ARGUMENT FOR BIAS OF AGE-TO-AGE FACTORS

Consider Model 1, (i.e., claim counts only and no inflation). Each row
(accident year) of the data triangle K is independently and identically distributed
with each other row.

This implies that E[g(X;;+1.X,)] = Elg(Xi+1.Xy}] Vi,k for any function g.

However E{g(X;+.Xy)] # g(ElXy+:].E[X;]) unless g is linear.
Xij+
Let g(Xyr1.Xy) = =~

Let f; be an age-to-age factor estimated from row i. Age to age factors attempt
to estimate E[X,,+1|Xi] with Xy, f;. If this estimate were unbiased it would mean
that

E[E[Xy1|X]] = E[Xyfy)
But this becomes

ElXye1] = E[XkJ]E[fU]

Xij+
E[Xiy+1] = EIXylE [—;—‘]
i

X+
ElXye1]l = E[XylE [_;(u]
kj

or

ElXi+1] _ E[ij+l]
E[X4) X

which is not true in general.!”

17 A similar derivation was arrived at independently by John Robertson.
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APPENDIX B
COMPARISON OF “ADJUSTING, THEN AVERAGING” VERSUS “AVERAGING, THEN
ADJUSTING”

Let X; be a random variable representing observed losses for accident year i.

Assume that these losses arise from distributions with expected values that
are constant over time, except for an adjustment factor. This adjustment factor
can represent either a loss development factor or a trend factor or both.

SoXi=E4e  i=l...n

where p = underlying expected losses
a; = non-random adjustment factor
e; = random error E(e;) = 0, Var(e)) = o7

We wish to estimate ..

M=

Let }:M = X,-a,~

S =

=1

This represents trending (and/or developing) known losses for each year and
averaging the results.

Let b, = (é X,-) —(E") l).

i=1 i=1 Qi
This represents the “adjustment to total known losses method.”

It is easy to see that both ;ll and ;12 are unbiased, i.e. E(}l;) = E(;lz) =
p. (It is important to note that this only holds if 4; is non-random, which is not
the case in real estimation problems.)

Calculate the Best Linear Unbiased Estimate (B.L.U.E.)'® of . That is,

find weights c¢;, such that ;l<= ZC,'X,) is unbiased and has minimum vari-
i=1

ance. So, minimize Var <EC,X,-) subject to E[EC;X.] =p

i=1 i=1

n

Var(E c,x,-) = > clo?
i=1

i=1

'8 The approach of calculating the B.L.U.E. was suggested by Aaron Tenenbein.
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E[Z c-;Xi]=2§u:u:>E(—"=l

i=1 i=1 i=1 i
Let
L=3dot+a(1-3 2
i=1 i=1 di
oL 2 A
— =2c0; —— =0 i=1,.., n
aC,' a;
A n (‘I n A
So Ci = 3, - =
zalq: i=1 a; i=1 zalo-:
2
So A = —; I
2 2
| 1
Soc =T
T2
=1 G0

. . TS L 2
Now consider various possibilities for o7

1. Let X;a; = p + €; where Var(e;) = oV,

. €; 2 L
This means that ¢; = =, 50 07 = — 0°, S0 ¢; = a/n

i i

Therefore ., is the BLUE.

varX) _, .,
2. Let EIX] =k V,
o, o 2
So — = —— > gia; = kp
wa. R

. o1
This means that ¢; = 1 > -
i=1 di

Therefore jL is the BLUE.

As was discussed in the results section, fL, performed better than @, in the
simulation.
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DISCUSSION BY JOHN P. ROBERTSON

Mr. Stanard’s paper offers the reader three things:

1) reserving techniques;

2) a methodology for assessing reserving techniques; and
3) conclusions about the reserving techniques.

Of these three, the methodology for assessing reserving techniques is the
most significant. This methodology consists of developing a model of the loss
emergence process and then simulating this process, applying the various re-
serving techniques, and keeping score of the results. This methodology is
important because it is the most scientific system yet presented for assessing
the validity and the accuracy of alternative reserving techniques. It is a general
method, as readily applied to other models of the claim emergence process as
to the model used in the paper.

The reserving methods Mr. Stanard presents are fundamental to casualty
actuarial work. He is “filling out” familiar loss triangles and forecasting the
next year’s result. This is obviously the basis for most reserving methods and
is also a key part of most ratemaking.

Previous literature on reserving techniques generally has concentrated on
overcoming the effects of changes in the underlying mix of business, changes
in the individual claim reserving and settling policies, and changes in claims
reporting systems. Most of this prior literature assumes that once these changes
are accounted for and the data has been restated so as to have relatively constant
underlying conditions, then any number of loss development methods can be
applied to obtain valid forecasts.

For instance, in Berquist and Sherman [1], examples are given of adjusting
historical data to eliminate the effects of changes in the relative adequacy of
case reserves and to eliminate the effects of changes in the rate of settlement
of claims. Following these adjustments, standard loss development methods are
applied with no question being raised as to the validity of these methods. Clearly,
making adjustments for changes in the mix of business, etc., is an important
part of reserve analysis; but the question of the validity of reserving methods,
even in the face of completely uniform historical conditions, is also an important
one.

Prior to this and Mr. Stanard’s previous paper [2], there have only been a
handful of attempts at evaluating reserving techniques. In one of these, Professor
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Bithlmann, et al., sharply contrast the bases for development of reserving
techniques between life and casualty actuaries [3]:

“Since the early days of Life Insurance it has been understood that ‘reserves for
future payments of claims . . . had to be calculated from the probabilistic model
describing the process of death within a specified population.”. . . . Strangely
enough when actuaries were asked to put their skill to work in Non Life
Insurance, they did not feel it necessary to have a probabilistic model for the
setting of claims reserves. . . . The reason for the absence of probabilistic models
leading to reserving techniques in Casualty Insurance may be explained (to some
extent) by the common fashion in this field of assuming the individual claim
amount to ‘occur’ suddenly even if in practice it is delayed portionwise over
long periods of time. This paper takes exception to this fashion and models the
individual claim amount as a random process over time.”

Professor Bilhlmann, et al., then proceed to develop a stochastic model of
the claims process and to test several reserve estimation techniques against this
model. They draw no conclusion about possible bias of the various methods,
but do observe that the standard deviations of all the methods they consider
seem quite high, and offer the opinion that the search for better methods should
continue. They cite [4] and [5] as papers also exploring the validity of loss
reserving methods based on stochastic models of the claims process.

It is easy to criticize Mr. Stanard’s model of the loss development process
as being too simple to be realistic. He only allows three sources of loss devel-
opment: 1) late reporting of claims, 2) inflation from the the time a claim reserve
is opened to the time the claim is settled, and 3) random variation between the
estimated value of the claim and the final value of the claim. In particular, he
does not allow for changes in the estimated value of a claim while the claim
remains open, nor does he allow for any systematic development in the value
of a claim, except for that due to inflation.

Does use of such a simple model invalidate Mr. Stanard’s results? 1 think
not. Any of the features which would make his model more realistic, i.e., more
complicated, might just as well add to the biases and variances as they might
subtract from them. If, for example, standard loss development methods really
work so well, they should work in artificially simplified situations. The fact that
Mr. Stanard has presented a situation where the standard loss development
methods are biased may not quite prove that they fail in other more realistic
situations, but it does show that they need to be tested and justified in relation
to possible models of the claims development process they are used to forecast.
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I continue to find the “Adjustment to Total Known Losses™ or “Cape Cod”
technique to be of interest. In addition to the possible advantages pointed out
as a result of the simulations and in Appendix B, this technique complements
the Bornhuetter-Ferguson technique in a way no other technique can, as dis-
cussed below.

Consider the case where there is no change in real exposure from year to
year and there is no inflation (or past years’ losses have been adjusted to
eliminate these effects). Then an obvious estimator for Rs is the average of Ry
to Rs, or (5)Ro + . .. + Rs). In Mr. Stanard’s paper, both the “Modified
Bornhuetter-Ferguson™ method and the “Adjustment to Total Known Losses”

method start by computing Rs. The former uses the formula:

1 < ‘
Rs=- > K, X fa.
5 w=o

The latter computes Rs by:

4 4 ]

Rs = <2 Km) + (2 —.) :

a—={0 a=0 fa

In each method, this value of Rs is used to calculate R, through Rs. Once
Ry to R4 are computed, their average can be compared to Rs. Under the
“Adjustment to Total Known Losses” method, this average will always be
exactly Rs. A proof of this is given in the Appendix to this discussion. Under
the “Modified Bornhuetter-Ferguson™ method, this average will not necessarily
equal Rs. The consistency between the original estimate of Rs and the average
of Ry to R4 in the “Adjustment to Total Known Losses” method indicates, |
believe, that this method makes the best use of loss information from all the
years in order to project any given year. If the average of Ry to R, is less than
Rs then one could argue that too high an Rs had been selected, as reported
development would appear to be occurring at a lower rate than predicted by Rs.
The converse argument could be made if the average were higher than Rs. This
inconsistency cannot happen under the “Adjustment to Total Known Losses”
method.

It may be that there is reason to choose an Rs from external sources or by
some other method when the Bornhuetter-Ferguson method is being used. But
in situations where one is estimating Rs from the loss information, the consis-
tency discussed above argues strongly for the use of the “Adjustment to Total
Known Losses™ method.
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In conclusion, I believe Mr. Stanard’s paper offers a valuable method for
assessing whether common actuarial methods are accurate and reliable. As
actuaries are called upon to look at smaller and smaller insurance, reinsurance,
and self-insurance programs, and as determination of confidence levels for
reserves becomes more important, then the usefulness of the methods in this
paper should become more apparent. Additionally, the conclusions reached
should spur development of improved models of the loss development process
and improved reserving techniques.
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APPENDIX
Purpose
This table will show that Rs = Y5(Ro + . . . + Ry) for the “Adjustment to
Total Known Losses” method, as claimed in the review.
Proof
Given:

(1) Rs = (5450 K)/ (é i>

1
(2)R112K11*+R5<1——); a=0to4

Ja
Then:
1
-~ + ... t+tR
5 (R[) 4)
—l[K +R(1—i)+ + K +R<l—l>] (By (2))
5 0x s % R 4x 5 fi y
= % [Ko. + ... Ka + 5Rs — Rs (é + .0+ é)] (Rearranging)
] | 1 .
= Rs + 5 (Knx + ... +Ki—Rs (ﬁ + ... +f—4>> (Rearranging)
1 Koo + ... + Ka
=R+—(K~+...+K.— X
P s\ M)+ (M)
! l))
-+ ...+ = By (1
(fu % (By (1))
= Rs {(Cancelling)

Q.E.D.
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LOSS PORTFOLIOS: FINANCIAL REINSURANCE*
LEE R. STEENECK
Abstract

The property-casualty insurance operating environment has changed
dramatically. Total return is more a function of investment results than
ever before. Competition has pressured rate levels. And a greater pro-
portion of total premiums 1s coming from “long tail” lines, making
reserving more difficult.

Reinsurance is becoming somewhat more financiaily oriented. Loss
portfolio transfer reinsurance is becoming popular for a variety of rea-
sons, not the least of which involves poor operating results. This paper
surveys loss portfolio transfer reinsurance from a benefit-cost standpoint
and includes actuarial, tax, accounting and contractual aspects necessary
to the evaluation process.

With the advent of high interest rates and cash flow underwriting, composite
ratios have skyrocketed to unprecedented high levels. For a variety of reasons,
insurance executives seeking to improve results are investigating loss portfolio
transfer reinsurance.

In the simplest terms, this form of financial reinsurance involves the transfer
of a portfolio of loss liabilities from a cedent to a reinsurcr at a price. The
cedent extinguishes his liability with a favorable cash (or equivalent) outlay.
The consideration is generally based on a discounted cash flow analysis of loss
reserves plus a reinsurer loading. The amount by which the extinguished lability
exceeds the consideration becomes a financial benefit to the cedent. The loss
lability may be for case reserves only, case reserves plus development. or case
reserves plus development and IBNR losses. The transfer can include allocated
and sometimes unallocated loss adjustment expenses. Transterred liabilities may
belong to a single class of business. a territory, a policyholder, or an accident
year. The transfer may apply to all net (of other valid reinsurance, collectible
or not) losses, or depend on an aggregate attachment level (in dollars or days)
or size per occurrence.

* Mr. Steeneck’s paper was first submitted to the Casualty Actuarial Society in 1983, References
in this paper to future events and to future time periods should be interpreted accordingly.
— Editor
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Understanding financial reinsurance is becoming a top priority among in-
surance executives, regulators, stock security analysts, and others in the prop-
erty-casualty insurance field.! Balance sheets and income statements can become
less meaningful. And the voiume of loss portfolio transfers is increasing. In-
dustry observers and participants estimate that over $1 billion of such transac-
tions occurred during 1983. The following example, albeit a dramatic one,
shows the effect loss portfolio reinsurance can have on a company’s accounting
position.

A New York based reinsurance company recently sold a loss portfolio at
about the same time as a regular triennial examination (12/31/80) found liabilities
exceeded assets by $12,400,000. The result of the loss portfolio reinsurance
transfer left the company with a healthy income statement and a statutory surplus
of $10,800,000! Although the details are unknown, we can speculate that assets
could have been $200 million and examined liabilities estimated at $212.4
million. Suppose $50 million of loss reserves were sold for $26.8 million. The
net resulting liabilities would be $162.4 million with assets of $173.2 million.
Statutory surplus would be the difference or $10,800,000. The $23.2 million
gain could be reflected in the income statement.

The following two lists outline business purposes served by loss portfolio
transfers and the costs the cedent must consider. The paper then treats the
actuarial, tax, and accounting aspects. Then contractual and pricing considera-
tions are mentioned. Finally, the uncertain regulatory environment is noted.

BUSINESS PURPOSES LOSS PORTFOLIO TRANSFERS SERVE

Depending on the financial position of the insurance company, several but
not all of the following nine purposes may be attractive.

l. Improve underwriting results. By converting future investment income
into current underwriting income, the composite ratio and income state-
ment are improved. The case of the New York based reinsurance com-
pany loss portfolio transaction exemplifies these effects.

2. Increase GAAP earnings. In the case of the New York reinsurer, the loss
portfolio transaction increased GAAP earnings directly by $23.2 million.

3. Improve GAAP deferred tax position. By raising GAAP taxable income
the validity of the tax deduction for other underwriting losses is dem-
onstrated.

! Mary Rowland, “Games insurers play with loss reserves,” Institutional Investor, November 1983.
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Increase surplus. The after-tax benefit goes directly into statutory surplus.
Later in this paper, examples of the accounting treatment for loss portfolio
transfers will illustrate the generation of underwriting income which flows
into the surplus account.

Strengthen loss reserves. A cushion between carried loss reserves and
possible adversely developing loss reserves will strengthen the cedent’s
balance sheet implicitly.

Improve NAIC IRIS Test results. This type of reinsurance is not penal-
1ized as are surplus relief treaties. Favorabie Best's ratings may be re-
tained.

Maintain premium volume. Ceded premium need not be affected but
could be if controls on premium to surplus ratios are required.
Terminate a segment of business instantly. This was the original purpose
of loss portfolio transfers.? Certain medical malpractice occurrence form
writers may be considering a rapid exit from the business. Rather than
running off the associated liabilities, they may sell their complete books.
Discount reserves. Without setting a precedent and changing accounting
methods, the cedent effectively can discount reserves. Other industries
have recently received SEC endorsement of accounting treatments termed
“insubstance defeasance.” The balance sheet is strengthened as a large
amount of old debt is retired while paying for it with a smaller face
amount of new debt at a higher rate. The ceding insurer’s large debt
(loss reserves) i1s replaced with a smaller debt (loss portfolio transfer
payment) reflecting a higher interest rate.

COST CONSIDERATIONS TO LOSS PORTFOLIO TRANSFERS®

Decreases future GAAP earnings and surplus increases. The current year
surge in GAAP eamings (see purpose #2) is at the cost of future
investment income. Recall that assets are reduced by the transfer payment
amount.

Adds reinsurance costs not budgeted. This includes reinsurer expenses,
proftt, and risk charge.

2 For example, in 1595 “one Roemer Visscher of Amsterdam took over the insurance of certain
marine risks, because the original insurer, Jacob Bruynsen Smallinck, had gone bankrupt.” (Ex-
cerpted from a speech by Mr. Michael Felts, CAS Special Interest Seminar on Reinsurance, 1982.)

* Some of these business purposes and cost considerations come {rom a speech by Mr. John Murad
at the American Academy of Actuaries Loss Reserve Seminar, 1983,
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3. Reduces the liquidity of assets. The purchase may cause a cedent to keep
taxable bonds (with higher coupons, effectively shielded from taxes if
in a non-taxable position) and sell tax-exempts (generally considered to
be more easily marketed at favorable prices). Other liquid assets may
also be sold, leaving the less liquid ones.

4. May subject cedent to future taxes. If the cedent gets into a future taxable

position and has retained less liquid taxable bonds, the after-tax invest-

ment returns may not be optimized.

Can create a capital loss by the sale of bonds to purchase the reinsurance.

6. Can lose tax deferred status. If cedent is in a taxable position, actual
payment of taxes can occur.

7. Will likely distort schedules O and P. The abrupt decrease in loss and
expense reserves and surge in payments can distort any loss ratio, loss
development, or triangle projection analysis.

8. Creates dependence on reinsurer security. The possible non-collectibility
of the reinsurance (by insolvency or dispute in coverage) has a cost
which is difficult to quantify.

9. May create future costs.

a. The transaction may prove unacceptable to regulators, tax authorities,
and auditors from a risk transfer perspective. The consideration paid
by the cedent may overfund the loss transfer especially if payment
schedules are imposed on recoveries. Open ended retrospective ad-
Jjustments of the consideration will also fail the risk transfer test.

b. The company’s accounting may have to be restructured as the ac-
counting profession and regulators establish stricter guidelines. Be-
ginning in 1984, the NAIC blank will require disclosure of loss
reserves ceded, the consideration, the effect on underwriting results
and statutory surplus, and limiting schedules of actual recovery. In-
surance departments may require different accounting treatments than
registered by the companies.

c. There is a potential loss of company stature in the insurance com-
munity. On the other hand, the sale may be judicious.

wn

The predominant statutory and tax accounting requirement of a loss portfolio
transfer agreement is that it exhibit legitimate risk transfer. Without it, the
transaction is voided and the accounting and financial effects must be unraveled.*

4 See AICPA SBAS #5 paragraph 44 and #60 paragraph 40.
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The cedent must use an authorized reinsurer to get credit for the reserves
taken down. If it is using an unauthorized reinsurer, that reinsurer should post
a letter of credit on the cedent’s behalf or place assets equal to the transfer
liability in escrow.

ACTUARIAL ASPECTS

In order to accelerate the greatest amount of investment income and place
it in the underwriting account, “long tail” business (from a payment profile
perspective) is required. if a company has littie long tail business to cede, it
cannot gain much financially from loss portfolio transfer reinsurance. Lines
generally considered to give maximum effect are medical malpractice, workers’
compensation, and products liability or other liability.

Basic actuarial loss data is required for a quantitative analysis leading to a
responsible reinsurance offer. Payment and reported loss development triangles
for the subject business are essential. In this author’s experience, all too often
data is not supplied with sufficient detail for scrutiny.

Large loss “outliers” and under represented losses must be normalized. Large
losses may be over represented or under represented. These may also have loss
development characteristics camouflaging the underlying loss process. Certain
hazards may have produced too few losses to date. The actuary must use intuition
and observed or postulated continuous size of loss distributions to adjust history
SO projections are accurate.

Allocated loss adjustment expense reserves are analyzed and included where
necessary. Unallocated loss adjustment expense reserves may be analyzed and
included as well (but in practice this is seldom done). Certain annual statement
schedule P expense data may prove useful if both allocated and unallocated loss
adjustment expense reserves are to be included in the portfolio transfer.

This author knows of no completely stochastic process in viewing potential
outcomes regarding ultimate loss and payment profiles. Many reinsurance ac-
tuaries look at “best case-expected case-worst case” scenarios in determining
outgoing cash flow. The various present values of those outgoing cash flows
are calculated.

It is likely that in costing coverage reinsurers will attempt to match bond
maturities with expected cash requirements. Unlike the single reinsured policy
where loss payments are totally unpredictable, the loss portfolio has expected
cash outflows. Coupons and maturing bonds can be matched to expected cash
requirements. Bonds lock in specific returns (as opposed to many other invest-
ment vehicles). The reinsurer’s management specifies the quality and type of



L.OSS PORTFOLIOS 159

securities acceptable in loss portfolio transfer reinsurance arrangements. De-
pending on secured rates of return and the reinsurer’s tax position, a variety of
corporate and government bonds with taxable and tax exempt status ate available
for a dedicated portfolio. Reinvestment risks on coupons can be of staggering
importance.® Currently, there are a variety of “felines” on the market to eliminate
this risk. For example, Merrill-Lynch has TIGR, or Treasury Investment Growth
Receipts, which repackages T-Bonds to act like zero coupon bonds. Other felines
include CATS and LIONS. Felines offer somewhat lower yields than non-
stripped bonds as investment houses require a hedge on reinvestment.

TAX ASPECTS

The reinsurer’s tax position is critical in the choice of taxable or tax exempt
bond purchases and the resulting present value (market value) cost of the bond
portfolio. Insurers are taxed like other corporations except as noted in Parts 2
and 3 subchapter L of the Internal Revenue Code. They use a modified accrual
accounting system and have two classes of income: underwriting and investment.
If the reinsurer or its consolidating parent has taxable income, the underwriting
loss it will assume will effectively shield federal income taxes and a higher rate
than tax exempt interest may be credited in the pricing. If the reinsurer has no
taxable income and expects none in the foreseeable future, then marginal ex-
pected results suggest taxable bonds are most advantageous as an investment
vehicle.

My understanding is that an over-structured transaction may be viewed by
the IRS as, in essence, a single premium immediate annuity purchase. In that
event, the ceding company would include in taxable income a portion of each
payment recovered from the reinsurer. Over structuring may be hazardous.

The most competitive quotes combine high risk-adjusted yields with low
reinsurer margin. Since bond yields vary day to day, today’s quoted consider-
ation must expire quickly and be subject to requotation. Changes in interest
rates have a leveraged effect on cost.

The following exhibit demonstrates the effect tax position has on a reinsur-
er's net present value calculation. Suppose, for simplicity, that a portfolio
consists of two $1,000 liabilities to be paid in 12 and 24 months. The reinsurer
can purchase taxable bonds with 7% coupons semi-annually or tax exempt
bonds with 5% coupons payable semi-annually. Tax exempts may prove pref-
erable if the reinsurer is in a taxable position.

s Ronald Ferguson, “Duration,” PCAS LXX, 1983, pp. 265-288.
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ILLUSTRATION OF EFFECT OF REINSURER TAN POSITION

Loss portfolio transfer date 1/1/85
$1.000 loss payment expected 1/1/86
$1.000 loss payment epected 11187
#1 Taxable Bonds—7% per coupon semit-annually (including reinvestment).

Present Value® = S1.000 (ag oy - $1.636.33

1985 1986
Underwriting  [nvestment Uinderwriting  Investment
Income Income Income Income
Net Premium Earned $1.636.33 $0.00
Incurred Loss 2.000.00 0.00
Result $ (363.67) $237.10 $0.00 $126.57
Carry forward to 1986 $ (126.57) $126.57

#2 Tax Exempt Bonds—3% per coupon semi-annually {including reinvest-
ments).

Present Value* — $1.000 (ag) os/s50s) - $1.729.73%% (betore tax ctfect)

1985 1986
Underwriting  Investment Underwriting  Investment

Income Income Income Income
Net Premium Earned $1.565.20 $U.00
Incurred Loss 2.000.00 0.00
Result $ (434.80) S160.43 $0.00 $74.37
Recouped
Taxes (46%) $ 200.00
Net $ (234 .80) $160.43 $73.37

Depending on the reinsurer’s tax position. the net present value is between
$1.565.20 and $1.636.33. Reinsurer expenses and profitrisk charge have not
been included in Net P.E. (premium carned).

*This standard actuarial notation represents the present value ot 2 annual
$1.000 payments when interest is credited on a semi-annual basis at 7% and
5%.

**Net Premium Earned + Recouped Taxes/1.057 = $1.729.73
Also. .46 (2,000 — Net Premium Earned) = Recouped Taxes.
Solving the equations: Net Premium Earned = $1.565.20 (after tax).
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The challenge facing the pricing actuary is to meet the financial objectives
of the cedent while at the same time offering a risk product which has the
expectation of reinsurer profit. This is frequently difficult since potential pay-
ment profiles, possible runoff liabilities, and unanticipated “shock” disturbances
play havoc. The following scenarios demonstrate the effect payment profile and
quality of carricd reserves have on the present value (at 10%) of potential
outcomes.

Scenario (A) describes the present value of the complete 4 and 7 year
possible payouts of possible runoff liabilities. Cessions under scenario (A) have
large cash flow consequences. With slightly less benefit (reserve less present
value). the portfolio ceded may be structured more effectively in scenarios (B)
and (C).

Also notice that, if the cedent believes the likely outcome to be 2a and the
reinsurer believes the likely outcome to be 3b, a deal may be struck. They may
agree to cede/accept company paid losses after 24 months but with an overall
limitation in recoveries of $3.5 million. This cedent releases $3.4 million of
carried reserves. The reinsurer’s net present value is $2.0 million/1. 10" + $1.5
million/1.10* or $2.527,150. If the reinsurer prices this at $2.7 million the
cedent will generate $700,000 of income.

ACCOUNTING ASPECTS

At this point, there is no standard accounting treatment for these transactions.
The simplest accounting treatment, however, from the cedent’s perspective is
to note, tollowing the last example, that $3.4 million of loss reserves is offset
by a negative $3.4 million reinsurance recoverable. Further, $2.7 million of
paid losses are registered and the gain flows through the balance sheet, income
statement, and schedule O or P (as appropriate). This accounting treatment can
be called the “loss method™.

There is also a “premium method.” The treatment calls for premium reduc-
tion of $2.7 million. Paid losses remain unchanged. Reserves are reduced by
$3.4 million. Iimplied by this treatment, the cedent’s loss ratio goes down and
his expense ratio goes up. If the reinsurer offers a 10% commission ($300,000),
ceded premium goes up by $300,000 and the net loss ratio increases. But the
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EFFECT OF 1.0SS AND PAYMENT CHARACTERISTICS IN VARIOUS Loss

. Optimistic

a. Fast pay

b. Slow pay

Expected
a. Fast pay

b. Slow pay

. Pessimistic

a. Fast pay

b. Slow pay

PORTFOLIO SCENARIOS

Loss Portfolios
(in 000’s)

Current Payment Profile (in months)

OSplusIBNR + 12 +24 +36 +48 +60 + 72 + 84
$6.000
2,000 1.500  1.500  1.000
1.500  1.500  1.000 1,000 500 300 200
$8.000
2,600 2,000  2.000 1.400
2000 2,000 1.300  1.300 700 400 300
$12.000
4.000  2.000 3,000 2.000
3000 3.000  2.000  2.000 1.000 600 400

91
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1b.
2a.
2b.
3a.
3b.

Present or Current vaiues at {0% interest
Payments in 12 month increments

Scenario (A)
Entire Portfolio

Scenario (B)
Over 24 Months

Scenario (C)
Over $5,000,000 Retained

$4.867,837
4,620,069

6.475.377
6.150,083

9.735.674
9,240,137

$1,809,986
2,016,763

2,458,848
2,679,009

3.619.971
4,033,525

$ 683,013
582.434

2,158.323
1,927,694

5,272,864
4,859,972

SOUTOA1LAOd SS5071

9]



164 1OSS PORTEOTIOS

commission will offset insurer operating cxpenses and. therefore. the expense
ratio will decline. To illustrate (statutory accounting):

Premium Method

Ceding Company

Marginal Effects Loss Method  No Commission  Commission
Earned Premium (+) $ 0 $  2.700.000 $--3,000,000
Operating Expenses (—) $ 0 % 0 % —300.000
Paid Losses (—) § 2.700.000 $ 0 8 0
Change in O/S Losses (—)  $-3.400,000 % 3,400,000  $--3.400,000
Underwriting Gain $ 700,000 S 700,000 $ 700,000

The reinsurer could mirror these accounting entrics by merely changing
signs and penalizing surplus. As yet it is not necessary. but regulators, auditors,
etc. and advise it.

As an astde, for GAAP accounting purposes. the reinsurer might book the
present value ($2.7 million) of expected puyments to escape this “surplus hit™,
He could do this if he normally discounts for GAAP purposes. and he makes
adequate disclosure. The same is not true for statutory accounting purposes.
Full reserves must be established. otherwise general interrogatories 16 and 28
of the convention blank must be answered so as to invite criticism,

“Another (reinsurer) statutory alternative is to consider the transaction as
other income as opposed to underwriting income. A rationale here is that the
investment income to be earned to offset future loss payments does not flow
through underwriting income either, and the effect of the transactions still
mmpacts statutory results. This treatment has not recetved broad acceptance.™

There are other considerations to be made in the pricing of loss portfolios.
Some are contractual. Others deal with reinsurer margin requirements.

CONTRACTUAL ASPECTS
Extra contractual obligations (ECO) can be defined as punitive and/or com-
pensatory damages assessed against an insurer as a consequence of his tortious
acts. ECO’s do not fall under the auspices of the original subject insurance

* Taken from a speech by Mr. James Faber at the American Academy of Actuaries Loss Reserve
Seminar. 1983.
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policy. Historic data is not generally available nor projectable so cedent pay-
ments from this hazard should be excluded.

The reinsurer will also insist on some verbal, if not written, understanding
on the use of structured settlements. The commutation of a claim by the purchase
of a life annuity changes both the expected liability transfer amount and the
payment timing. Special treatment is required such as substituting an actuarial
equivalent payment stream for the commuted value.

The insurance industry now faces more “common causc” losses than ever
before. These are the “asbestos type”, unpredictable from one exposure over
time. But when they occur, they create a flood of individual claimants demanding
tremendous aggregate sums of money. For certain classes of insurance, the
reinsurer will consider the likelihood of common cause events, charge for it,
limit it in some way contractually, or both.

Claims handling is also important. Loss portfolio transfers are frequently
sought by self-insureds wishing to extricate themselves from their developing
insurance experience or arc being acquired and, therefore, in need of a fully
insured program. 1t is difficult to properly run off liabilities without continuity
in claims handling.

A front company may be necessary to issue a primary insurance policy
which is then reinsured.

EXPENSE/PROFIT ASPECTS

Having considered all of the above, the reinsurer now must decide how
much to charge in excess of the bond portfolio cost. The reinsurer will have
expenses, both current in the marketing and initial set up of administration, as
well as on going administrative costs. In addition, it will desire a profit and risk
charge dependent on the following:

1. Predictability of results—Investment risk and underwriting risk can be
significant. Actual runoff could be heavier and/or faster than expected.
To the extent a structure of reimbursements exists as to timing and
amount, this lessens risk.

2. The surplus rent—The reinsurer’s charge against surplus will restrict its
writings for potentially 5-30 years. This requires substantial profit load-
ing. It can be measured as a percentage of the first year charge against
surplus, or the present value of the annual charges.
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The contractual risk—Structured settlements. common cause losses, and
claims handling features have some bearing on the value the reinsurer
places on the proposed transaction. Other features such as a contingent
commission or an experience rating scheme will cause the reinsurer to
change profit and risk charge expectations.

FUTURE EXPECTATIONS

It should be evident loss porttolios involve more than “shelf technology.™
Only the educated professtonal can and will be successful. But what does the
future hold?

The ultimate destiny of loss porttolio transfer reinsurance may be in the
hands of the taxing authorities and accountants.

The AICPA is studying the issuc of loss reserve discounting. It sees four
types of claims:

1.

Short term claims closing in one or at most two years. Discounting may
not be economically justified here.

Long term uncertain claims like medical malpractice and auto bodily
injury having reserves which carn investment income but are not subject
to rigorous loss payment schedule. It is possibly mpractical to discount
here since conservative interest rates are indicated.

Long term reasonably certain claims like periodic medical payments for
lite under worker’s compensation pension cases.

Long term claims with fixed payment like some workers™ compensation
fixed periodic indemnity tor life claims. These annuities or near annuities
are subject to accurate discounting procedures.

Discounting has some negative connotations including the publication of
unstable and petentially unreadable insurer results. These could confuse regu-
lators, analysts. and the public. Loss reserve evaluations and tests would prove
difficult. Some actuaries observe that in recent years, reserve shortfalls are
generally offset by investment carnings. As the crutch is removed, the lame
patient must fall. The pressure on companies to set adequate reserves would
intensify if the investment crutch were removed.

To more closely monitor the financial etfects of loss portfolio transfers,
many states are requiring disclosure. The NAIC is adopting a disclosure note
to first appear on the 1984 Blank. The SEC is also concerned about the ability
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of investors to evaluate the financial condition and results of companies with
P/C operations.’

Finally, the government has a large stake in the loss reserve discounting
arena. There are current attempts to restructure life and health and property-
casualty insurance company taxation regulations in order to generate substan-
tially greater tax revenues. It is quite conceivable that the 1983 proposal to
discount liabilities for schedule P lines at a 5% rate of interest could be even-
tually adopted. This would generate taxable income. Accountants would likely
endorse this, 1 believe.

Some companies discount loss reserves on a GAAP basis already (but these
are largely offshore companies). If the definition of taxable income changes to
embrace discounted loss reserves, can a change in statutory accounting principles
be far behind? The market for loss portfolio financial reinsurance would largely
cvaporate. There are some very unhealthy implications currently under inves-
tigation and discussion. Until the final outcome is known, loss portfolio transfer
reinsurance will continue to be a valuable tool for insurance and self-insured
company managements.

7 See “"SEC Seek Loss-Reserve Disclosure Rule To Assist Investors in Property Insurers,” The Wall
Street Journal. March 12, 1984, p. 10.
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DISCUSSION OF PAPER PUBLISHED IN VOLUME LXX

LEE R. STEENECK
YOLUME 1.XX

DISCUSSION BY OQAKLEY E. VAN SLYKE

Mr. Steencck has presented the basic principles of applying utility theory in
reinsurance pricing in an admirable fashion. His article is straightforward and
comprehensive. The footnotes provide an excellent bibliography of the current
literature on the subject.

The interested reader is particularly directed to the monograph by Leonard
Freifelder (Freifelder (1976)). These two works complement cach other well.

Utility theory has been useful to this reviewer as a means of achieving a
fresh viewpoint on a problem, rather than as a simphistic solution to the problem
of finding numerical results (e.g.. rates) that adequately reflect one’s risk av-
ersion. If the user avoids the pursuit of simple answers through abstract for-
mulas, he can tind much of practical value in the methods discussed by Mr.
Steeneck. This is especially true for exponential utility functions.

Several of Mr. Steeneck’s points merit discussion. This review also provides
an opportunity to show two minor results of the reviewer’s investigations into
utility theory.

PRACTICALITY

Utility theory is practical. We are all familiar with the inadequacy of the
simple calculation of expected value. Using utility theory only requires that we
shift our mental framework from calculating the £ (X) and £ (X — )" to include
the calculation of £ (U (X)).

This mental shift will be clear it a train of thought developed by Steeneck
on page 257 is followed. together with a change in terminology. Let the utility
function be

RACIX.c) = ol — exp (x/)).
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RAC(X,¢) is the “risk adjusted cost” of outflow X with utility scale c.

Then for an aggregate loss distribution

F(X) = Prix < X)
RACHc) = ¢ In Ep (exp (¥e))

In other words, the risk adjusted cost of an aggregate loss distribution is a
scale adjustment in ¢ of the calculation of the expected value of the aggregate
loss distribution. The adjustment in ¢ scales down each possible loss to its
multiple of ¢, inflates it using the exponential function, takes an average, and
then backs out the scale adjustments by taking the log and multiplying by ¢.

In the example given by Steeneck on page 259, ¢ was $4,000,000.

The use of ¢ instead of I/r makes sense. It puts the constant in real units,
dollars, instead of imaginary ones, (dollars) !

RAC(c) is a simple concept which includes a great deal of information about
F(X). (As we shall see, it includes all of the information about F(X}.) We expect
to see the day when RAC(c¢) will be computed as routinely as Var (X) is today,
particularly when it can be expressed in closed form.

ESTIMATING RISK CAPACITY

It is easy to estimate the risk capacity, ¢, well enough for practical appli-
cations. Reinsurance exists because all insurance companies have a limited
capacity to bear risk. In some cases, risk aversion is so high that the firm will
do whatever possible to ensure that a catastrophic loss will not bankrupt the
firm. In practical applications, however, the level of loss at which management
begins to get really concerned is quite a bit less than the level of loss that would
bankrupt the firm. In insurance jargon, we call this level of loss the firm’s “risk
capacity.”

Exhibit 1 shows an example of the risk capacity of a particular firm. In this
example, the height of the line shows the surcharge the reinsured would be
willing to pay to avoid a 0.1% chance of losing a sum of money. The reinsured
would be willing to pay only about 0.1% of the sum of money if this sum, X,
were not very great. It would not pay a significant surcharge to avoid a 0.1%
chance of losing $10,000. If the amount were much greater than the reinsured’s
risk capacity, however, then the firm would be willing to pay much more than
0.1% of the possible loss.
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EXHIBIT 1

SURCHARGE FOR Risk CURVE

Surcharge you would
pay to avoid 1/1000
chance of losing

X dollars.

50%
40%
30% Risk Capacity, ¢
20%
10%
0%

$0.1 $0.2 $0.5 $1 $2 $5 S1o 520 $50

Loss X
(Millions)

Move the bottom scale left or right until it is in the right place for your decision.
Your risk capacity, ¢, will be below the vertical arrow.
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Because of the reinsured’s limited capacity to bear risk, management is
willing to pay a surcharge (risk charge) to avoid financial fluctuations. To avoid
a 0.1% chance of paying out $1,000,000, for example, management is willing
to pay something in excess of 0.1% of $1,000,000. The additional amount is
called a “risk charge.” The total amount management is willing to pay, perhaps
$1,100 in this example, is called the “risk adjusted cost” (RAC) of the risk’s
probability distribution.

As Cozzolino (1979) has pointed out, the selection of risk capacity ¢ is not
even necessary to make a decision. All that it is generally necessary is that
one’s risk capacity is known to be in a certain range.

The technique suggested by Cozzolino is to show the risk adjusted cost for
one’s own aggregate loss distribution with and without the inclusion of the
reinsurance contract being evaluated. Each net aggregate loss distribution leads
to a unique risk adjusted cost profile. Exhibit 2 shows the profile for a reinsur-
ance decision about a possible cession that involves a considerable amount of
risk. In this example, if the reinsurer’s risk capacity is less than about
$2,000,000, he will not accept the retrocession.

The success of this technique hinges on the fact that more risky alternatives
will always have curves that slope downward more steeply than less risky
alternatives. As a result, different options will produce risk profile curves that
intersect one another if there are significant differences in the uncertainty of
results for the options. Obviously, if the risk profile curve for one option is
lower than the risk profile curve for another option regardless of one’s risk
capacity, it is the more attractive alternative.

REINSURANCE NEGOTIATIONS

Reinsurance makes sense even when the reinsurer is more risk averse than
the reinsured. Steeneck’s statement, “If the reinsurer has the same utility func-
tion or is less risk averse, a deal can be struck™ is unnecessarily restrictive. This
1s seen in practice as small reinsurers take small pieces of treaties reinsuring
large primary companies.

The reason is simple: The reinsured losses are not correlated with the
reinsurer’s losses; they are correlated with the reinsured’s losses.
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EXHIBIT 2

Risk PROFILE CURVES FOR THE REINSURANCE DECISION

Risk-Adjusted

Cost
(Thousands)
$1000
Risk profile if cession is accepted
$ 500
risk profile
if cession is
not accepted
$ 0
$-500

$500  $1000 $2000  $5000 $10000  $20000

Risk Capacity {(Thousands)

A risk profile is a display of RAC(X,c) for a range of ¢. A risk profile is a
unique mapping of an aggregate loss distribution F(X).
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To the excess writer of, say, $1,000,000 xs $1,000,000, the risk looks like
Max(0,X** — $1 mil]ion))]

Ce

RAC, = ¢c.In E [exp (

where X** is limited to $2,000,000, and the excess writer’s risk capacity is c..

To the primary writer, the cession is worth

ot [onp (5] ~ o [ (2]
E [exp(x—)]

where X* is limited to $1,000,000, and the primary writer’s risk capacity is ¢,.

RAC,

i

= ¢, In

Reinsurance makes sense when
RAC, > RAC.
This leads to two thoughts:

— One’s own risk profile and estimates of the risk profiles of the potential
players in a reinsurance deal can help one create a negotiating strategy.
Changes in the terms of the reinsurance arrangement can be reflected in
changes in the risk profiles. This will identify ways to change the deal
to improve it for all parties.

— This analysis makes it clear why new entries always appear in the
reinsurance market. Reinsurers have portfolios of losses that are corre-
lated with the potential cession. In workers’ compensation, for example,
losses in various contracts may be correlated through inflation, benefit
level changes, or loss of statutory immunities or defenses. The new
entries have risk capacity arising from their own cash flow, but do not
have existing portfolios of losses that are correlated with the new cession.
(Of course, presumably, they do not have the underwriting expertise of
the experienced writer, either.)
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EXPONENTIAL UTILITY VS. THE VARIANCE PRINCIPLE

Two advantages of using exponential utility instead of the popular variance
principle are:

— Exponential utility provides the correct asymptotic behavior as the loss
being considered gets large and its probability gets small. This is illus-
trated in Exhibit 3.

In contrast, the variance principle lcads to premiums greater than the
loss itself.

— Exponential utility leads to a more distinct concept of risk capacity.
Exhibit 4 shows that the disutility associated with a loss in excess of
one’s capacity (as defined above) reflects a marked aversion to losses
greater than one’s risk capacity. This agrees with our intuitive under-
standing of how we accept and cede risks. The variance principle, in
contrast, does not show such a distinct “flinch point.”

ESTIMATION

New methods of estimating aggregate loss distributions make practical ap-
plication much easier. Monte Carlo simulation is readily available, although
somewhat costly in terms of computer time. Monte Carlo simulation handles
virtually all practical problems including multiline contracts. Monte Carlo sim-
ulation also gives the flexibility to break apart workers’ compensation losses by
type of injury, distinguish various sublines of liability coverage, and so on.

Aggregate distributions are receiving more attention recently. Heckman and
Meyers (1983) describe a method of calculating aggregate loss distributions by
a method of characteristic functions. Venter (1983a) shows an application of a
method of numerical estimation developed by Panjer. Jewell (1983) extends
Panjer’s work to a dynamic risk portfolio. Each of these authors shows how to
calculate the expected value of an excess premium as well as first dollar losses.
We can expand Venter’s conclusion (from page 69) to read:

“By approximating the severity distribution with discrete probabili-
ties, the aggregate distribution and excess premium functions and the
risk adjusted cost can thus be estimated recursively.”

Venter (1983c) has dicussed the advantages of modeling aggregate loss
distributions with transformed Gamma distributions. Distributional models may
lead directly to general formulas for the risk adjusted cost.



EXHIBIT 3

ASYMPTOTIC BEHAVIOR

Surcharge to avoid 1/1000 chance of losing x units

of risk capacity, expressed as a multiple of X.
S = (In (.999 + .001 exp (x/c)) =~ .001 x/ic) — 1 This line is at the point you would

(exponential utility principle) pay 99% of the cost of the loss to
avoid a 0.1% chance of the loss.

Surcharge or
for risk
of loss S = .999X/c

1000 (variance principle)

300
Exponential
Utility Principle
600
Variance
400 Principle
200
0

¢
The flinch point
.d { 10 100 1000

X/c

AINVANSNITH

SLI
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EXHIBIT 4

THe Frincen PoiNt

Surcharge
tor Risk
600% Exponential Utility
Principle
500%
400%
300% Variance Principle,
twice as great
a value of c.
200%
100%
T A2 T T T T T L R
1 2003 .5 1 2 3 5 10

™
"flinch point"
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DECREASING AVERSION TO RISK

Venter (1983b) has pointed out the theoretical advantages of

XP
RAC (X,c,p) = ¢ (1 — exp (— ?))
or some other utility function with decreasing aversion to risk.

This may be a valuable point, but in practice a reinsurer is not likely to
vary its risk capacity significantly in response to a loss under a single treaty. It
is more realistic to expect a reinsurer to become more or less aggressive in
response to a series of losses, a change in the competitive marketplace, or some
other factor affecting many treaties. In short, the refinement will not matter in

most practical applications.

Indeed, as we have seen, it is easy to explain the search for one’s risk
aversion if risk aversion is taken to be constant. It is difficult to develop such
a procedure if one’s risk aversion is supposed to be expressed as a function of
the surplus left after the loss.

Most importantly, using an exponential utility function does not necessarily
result in a misstatement of our utility function. We can be correct if we can
correctly see the utility of (¢ — X) from our vantage point at a. We can be as
averse to (a — X) as we wish.

DISTRIBUTIONAL STATISTICS

Characteristic functions and moment generating functions (m.g.f.’s) can be
used in tandem to derive simple results for frequently used models. As Heckman
and Meyers (1983) showed,

&r (1) = E [exp(itx)] = [ exp (itx) dF(x).
0

where ¢ is the characteristic function of F(x).

This leads directly to

RACHc) = ¢ In Er [exp (x/c)] = c In f exp (x/c) dF(x)
o

e (2

where the subscript F refers to the aggregate loss distribution.

I
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They also showed that
brac(t) = belt) dols)

and that the characteristic function for an aggregate loss distribution F (with
claim severity distribution §) is:

(1) = % p(n)(s(1)".
This leads directly to

RACi{¢c) = ¢ In iﬂ p(n) exp [n - (RAC(c)/0)]
where RAC, is the risk adjusted cost of a single claim.

The RAC; (¢) is also closely related to the moment generating function of
the severity distribution

RAC(c) = cIn M, ((l) )

We mentioned earlier that the RACx{c) contained all the information in F(X).
This is now clear because the m.g.f. of a probability distribution is unique
(Hogg and Klugman (1984), page 19). Hogg and Klugman have shown (page
50) that if the moment generating function of the severity distribution, M (1),
is known, and the claim frequency distribution is Poisson, the moment gen-
erating function of the aggregate loss distribution is

Mr(1) = exp[MM(1) — 1)]
The risk adjusted cost is therefore

RACH(c) = ¢ In [Mg(1/0)]
cln [MJ(1l/c) — 1].

For example, if the claim size distribution is exponential

_ 1 o x—9
- Lon (-5

then

exp (18)

M =T-g
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1\ _ exp (8/0)
M, (c) 1 — (o/c)

The roles of o, 0 and ¢ as scale adjustments are clear. This leads to the
following risk adjusted costs:

RACH(C) = ch [ex_p(_ﬁ_/i) _ 1]
1 — o/c
ch o
1 ~ ofc [c exp (8/c) l]
If6 =0,
RACH(c) = ¢\ g .
c—- G
If B/c is close to 0,
+
RACHc) = oA 7= 8

This development suggests several obvious extensions to be pursued:

—To determine the risk adjusted cost if the claim frequency distribution is
negative binomial.

—To determine the risk adjusted costs for other severity distributions for
which the m.g.f. is known in closed form.

—To determine the risk adjusted costs for truncated versions of distributions
for which the m.g.f. is infinite.

—Numerical approximations based on m.g.f.’s, characteristic functions, or
recursive methods.

PROBABILITY, UTILITY, AND PRESENT VALUE

The time value of money is important in many practical problems. In these
problems a present value factor v(i) can be associated with each event that
produces a loss X(i). The functions v and X may be continuous or discrete.

Interest should be handled in such a way that the distributive property applies
to the function RAC. That is, the risk adjusted cost of a possible set of events
should be independent of how fine a description one makes of the set of possible
events.
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The function
RAC(c) = ¢ In X p(i) v(i) exp (X/c)

meets this criterion. So does its continuous counterpart

RAC(c) = ¢ In f v(x) exp (X/c) dF(X).
(4]

With this definition, the total risk ad)usted cost RAC of a set of possible
events with risk adjusted costs RAC(i) is the risk adjusted cost of all possible

events, with each taken at its present value:

RAC, = ¢ In X p(i) v(i) exp (RAC(i)/c)

I

¢ In 2 p(i) v(i) {2 p(x) v(x) exp (r/c)]

within
i

cln X Y (p(Hp))vivix)) exp (x/c).
i within
In practice, then, probability and present value are almost interchangeable
concepts. Present value and utility are not interchangeable concepts. This sur-

prising result follows from the distributive property.’

CONCLUSION

The reader is encouraged to try the utility-user’s viewpoint in practical
problems. Starting perhaps with a discrete decision (such as whether or not to
underwrite a particular risk or block of risks), decide on your risk capacity using
Exhibit 1 or Exhibit 4. Sketch the risk profile curves for the decision by
calculating a few points on each. Think about the interplay between your risk
capacity and the decision you prefer (yes or no). Are you being consistent?
Have you learned anything about the decision you didn’t know before? With
use, this additional viewpoint may begin to feel as natural as considering both
probability and time in the decision.

' It would be reasonable to postulate that the multiplicative associativity of p(i) with p(x) and v(i)
with v(x) follows directly from a distributive property on RAC. I have not been able to prove this,
nor find an exception. A friend of mine says he proved it on a popcorn box at an Oilers game, but
lost the proof. I would like a demonstration of whether or not “Oilers postulate” is true.
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DISCUSSION OF PAPER PUBLISHED IN VOLUME LXXI

EXTRAPOLATING, SMOOTHING, AND INTERPOLATING
DEVELOPMENT FACTORS

RICHARD E. SHERMAN
VOLUME LXXI

DISCUSSION BY STEPHEN P. LOWE AND DAVID F. MOHRMAN

Mr. Sherman’s paper presents a potpourri of practical applications involving
the fitting of a parametric equation to loss development factor data. The partic-
ular equation utilized is called the inverse power curve, the form of which is

a
n=1+-—— 1
£@ T (1
where a, b and ¢ are parameters to be estimated, and ¢ represents time as it
relates to the maturity of the body of claims.

It should be readily seen that the parameter ¢ provides a linear transformation
of the time variable ¢, and is therefore somewhat extraneous to the formulation.
The definition of t is arbitrary; f (¢) can be the development factor from ¢ to
t + 1, or alternatively f (#) can be the development factor from ¢z — 1 to ¢.
Similarly, the beginning of the accident year can be t = 0 or ¢t = 1 (or even
t = —1ort=1.7275).

The above comment is not intended to suggest that the selection of the time
scale embodied in the variable ¢ is trivial; a different result will be obtained for
each scale chosen. However, to simplify discussion, we can express Mr. Sher-
man’s equation as

f=1 +t% @

where we are searching for the best a, b, and scale ¢ that fits the data.

Like the author, these reviewers have found it useful in many circumstances
to fit parametric equations to incomplete, erratic or irregular loss development
data. This review will expand slightly on Mr. Sherman’s paper by offering some
alternative equations, and discussing some desirable characteristics for loss
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development models of this kind. In addition, we will offer some specific
comments and point out some pitfalls associated with Mr. Sherman’s approach.

ALTERNATIVE MODELS

The parametric equation in (2) above is referred to by the author as the
inverse power curve. We refer to this equation as the polynomial decay model.
As the author points out in Section II, this equation has the property that the
initial development, a, decays at a rate of

ey

over the interval from (¢ — 1) to r. For example, if b = 1, then the following
decay rates would apply.

Rate
t Development from ¢ — 1 to ¢ of Decay
l l+a
2 1 +axX' 50%
3 I +aXxX X% 33%
4 lt+tax¥h Xk X 25%
5 l +a X VX% X¥XY% 20%

An alternative model to the polynomial decay is one involving exponential
decay:

a
fo =1+ 4)
In this model the initial development, a, decays at a constant rate, | — b, over
each interval.

Viewing loss development as a decay process is intuitively appealing. It is
certainly reasonable that, as an ever increasing proportion of losses are paid,
their propensity to develop must decline.

Both the polynomial and the exponential decay models can be expanded by
the addition of a third parameter involving a squared term.

a ¢
=t = (5)

f(t)=l+[ ;
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S+ 6)

f(t)=1+b, b

There are also a variety of mixed models that might prove useful.

e
f(t)—l+b, (7
+.
f(z)=1+“t,,” (8)

All of these six models have been used by the reviewers to fit emergence data
of one form or another.

Equations (5) and (6) are interesting as they can be conceptualized as
modelling two different kinds of development taking place simuitaneously, but
decaying at different rates. For example, if the data were accident year reported
losses, the ¢ term might represent development caused by newly reported claims,
while the ¢ term might represent development on existing claims.

A specific instance where this approach is very useful is in the case of
subrogation and salvage. The following table compares actual loss development
factors for Auto Physical Damage to those obtained using the three parameter
polynomial decay model. presented in equation (5).

Year of Actual Model
Development Development Development
2:1 1.240 1.240
3:2 993 992
4:3 .996 997
5:4 998 999
6:5 999 999
7:6 1.000 1.000
In this instance the parameters of the model are « = —.07, b = 3 and ¢ = .31.

In this instance the model has a nice intuitive appeal. The positive development
of losses embodied by the ¢ term decays very quickly, leaving the slower
negative development of subrogation and salvage embodied by the a term.
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CHOOSING A MODEL

As we have noted, all of the models described previously have proven useful
in fitting various kinds of emergence data. We suspect that the reader could
easily conjure up other models that would also prove useful.

Each of the models that we have described is “well-behaved”, but only over
a limited range of parameter values. It is worthwhile to consider what kinds of
constraints on the parameters are necessary for a model to be reasonable.

In traditional applications, we want the development factors to be positive,
decreasing, and approaching one. These can be expressed mathematically as

L fo =1 lim f() = 1

f—x

2. f'(n <0 lim f'(r) =0

—x

3.f"n >0 lim f"(r) = 0
.
While the constraints on the limits are probably necessary in all situations,
special circumstances may require the relaxing of one or more of the constraints
on values of f(s), f'(#) or f"(r). For example, to produce the auto physical
damage factors cited earlier, it was necessary to violate the first constraint.
Similarly, the third constraint restricts us to curves that are concave upward
over the entire domain of r. In some instances a curve that starts out concave
downward may be desired.

For Sherman’s two parameter polynomial decay model

-b
@ = tb_+(ll

bb + 1
f”(z) = (TJE

t
We see that all conditions are satisfied when a > 0 and b > 0 (and 1 > 0).
For the two parameter exponential decay model

e
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S N AL
f0 =y (1" b)
Here all conditions are satisfied whena > Qand b > 1.

Similar calculations to these should be performed on any proposed model
before its use, so that a clear understanding of the properties and limitations of
the mode! is obtained.

A much more critical property of any model used to estimate report-to-
report development factors is whether the product of the infinite series con-
verges. While arbitrary truncation of the series at some point (such as 80 years)
may be acceptable from a practical standpoint, it would be more desirable to
restrict the model by requiring that it produces a less-than-infinite development

factor to ultimate.

Unfortunately, testing for convergence of the product of an infinite series is
often difficult, as it usually involves intractable series of logarithms.

Such is the case with Mr. Sherman’s equation. Several quick attempts failed
to produce an algebraic solution to the question of whether the product series
converges for all values of a and b, or some limited set. The reviewers are,
however, convinced that with further effort (perhaps by someone more adept at
real variable analysis) a solution to this question ts obtainable.

Our investigations did lead us to the following conclusion, however. Con-
sider the following hypothetical loss development data.

Reported Report-to-Report
Maturity(s) Losses Development Factor
1 $ 100 2.000
2 200 1.500
3 300 1.333
4 400 1.250
5 300 1.200
6 600 1.167
7 700 1.143
8 800 1.125
9 900 1.11]
10 .

1,000
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The reader should readily recognize that if the loss development continues at
its present rate of $100 per interval, losses will be infinite. It follows that the
loss development factor product series must not converge.

However, it is also true that the development factors above can be produced
identically using Mr. Sherman’s equation by setting both « and b equal to one.
This strongly suggests that the parameter » should be restricted to values greater
than one in order to guarantee convergence.

We were led to raise the question of convergence by the discussion in
Section Il of Mr. Sherman’s paper. In that section he derives the rate of
decay for his model and points out that the rate of decay (as we have defined
it) declines towards zero as t increases. (His ““decay ratio” approaches unity.)
This is in strong contrast to the exponential decay model, under which the
rate of decay is constant for all values of .

Upon initial reading of this section of the paper we were concerned that a
declining rate of decay implied non-convergence of the ultimate development
tactor. However, upon reflection this does not appear to be the case.

It seems reasonable that there should be a relationship between the rate of
decay of the development and the convergence or non-convergence of the
development factor to ultimate. Clearly this question should be resolved before
any model gains widespread use.

FITTING THE FUNCTION TO ACTUAL DATA

In Section i of his paper, Mr. Sherman suggests a simple procedure for
fitting his equation to loss development factor data. The technique uses only
natural logarithms, exponentials and linear regression, and therefore has the
distinct advantage of requiring only a (reasonably sophisticated) pocket calcu-
lator to perform the calculations.

While the technique is handy, any prospective user should be aware that it
does suffer from several problems. First, under the proposed transformation, an
actual loss development factor of 1.000 is inadmissable because the natural
logarithm of zero is undefined. What does one do under such circumstances?
One possibility is to substitute a factor “sufficiently” close to 1.000.

A similar problem exists with observed development factors less than 1.000.
These must be ignored or somehow smoothed out of the data.
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Another problem is that the fitting technique minimizes the errors of
In(f(+) —1) and not the errors of f{(r). The result is that. in the fitting process,
differences between actual and fitted values are more significant when the
development factors are close to 1.000 than when the development factors are
significantly greater than 1.000. This bias in the errors is not necessarily bad;
it simply needs to be understood as a part of the fitting process.

A related problem is that, since the measured errors are of the logs of the
factors rather than the factors themselves, the coefficient of determination that

results directly from the computation is inaccurate, and usually overstates the
goodness of the fit.

For example, the coefficient of determination of the fit presented in Exhibit
I is described as .99887. This is the coefficient of determination of a straight
line through coiumn (4) and not the coefficient of determination of the inverse
power curve through column (2). This latter coefficient of determination is .971,
which is still good, but less favorable than the author suggests (especially
considering that there are only three data points being fit).

Obviously, the proper measurement of crrors. and the decision as to what
errors to minimize is key to any curve fitting procedure.

A particular problem with fitting Mr. Sherman’s inverse power curve (or
any of the other alternative curves that we have proposed) to the report-to-report
development factors is that the resulting fitted factors will be multiplied together,
compounding the errors. This can be a particular problem when the errors are
not random. In such cases a significant error in the development factors to
ultimate can accumulate.

For example, in Section Il of his paper, Mr. Sherman uses his model to
extrapolate general liability report-to-report development factors, using only the
first few development factors to obtain the equation’s parameters. While ex-
pressing some caution about the reliability of the resulting factors, the author
does suggest that the extrapolated report-to-report development factors compare
relatively favorably when compared to the actual factors over each interval.

The comparison is considerably less favorable if one compares the com-
pounded, rather than the report-to-report, development factors. The errors
in the IBNR reserve that would result from using the extrapolated factors
range from 16% (1.667 vs. 1.575), to 112% (1.495 versus 1.234).
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Year of Extrapolated Development Actual
Development Factors Based On Factors
First 2 First 3 First 4
Factors Factors Factors
3t 15 1.667 1.575
41015 1.455 1.670 1.329
Sto IS 1.331 1.495 1.322 1.234

An alternative fitting approach that avoids the compounding of errors would
be to fit the curve that results from compounding the factors to the actual loss
emergence data, measuring the errors between actual and fitted losses reported
at each valuation point. In cssence, this alternative approach “dollar weights”
the fitted factors.

An outline of this approach can be stated as follows. Minimize

2 (1:1,,,,) - Llp.())z
Yip.n
Where L, is a valid point in the loss triangle, with p representing the exposure
period of the losses (accident year, for example) and ¢ representing the valuation
point; and

i

i f

v= |

L(p.n = L*(p.r*)

’* .

Il 7

v

where L, %) is some base value for the accident year in question at some time
r* (e.g., the latest valuation point), and f is the chosen decay model.

The problem so stated can be solved using partial derivatives and non-linear
programming techniques.

CONCLUSION

Mr. Sherman’s paper provides an excellent introduction to a timely topic.
The paper presents practical ideas and approaches for the solution of problems
encountered with increasing regularity in reserve analysis: incomplete, immature
or fluctuating loss development data. We wholeheartedly agree with the author
that the fitting of loss development data to curves such as the inverse power
function often provides a practical solution to these problems.
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AUTHOR'S REPLY TO DISCUSSION

One of my hopes in writing a paper on development factor analysis was
that it would help to stimulate others in their research in this arca. The subject
15 so important that if Charles Darwin were alive today, his contribution to link
ratio analysis might be the discovery of the long-awaited missing link. In the
absence of a re-vitalized Darwin, we are fortunate to have the review of Stephen
P. Lowe and David F. Mohrman and the ideas and models they present.

Why is this subject so timely? Let us consider a commonly encountered
situation. As we head out toward the more mature parts of our development
triangles, and our data transition from the credible to the less credible, we are
presented with several alternatives (presented in ascending order of preference):

l. Satisfy the actuarial craving to deploy a complex model which fits the
given data points perfectly and wildly diverges as we attempt to use it
to extrapolate beyond the historical experience.

2. Close your eyes, swallow hard, make an undocumentable selection, smile
like a Cheshire cat, turn to the world at large and exclaim, “Trust me.”

3. Rely on the indications of only two or three factors, each of which is
often heavily impacted by large claims. The dictum. “When in doubt,
throw it out,” is often invoked here.

4. Use models which closely fit related data to extrapolate factors for later
development factors based on earlier factors from more credible data.
Some of the Lowe-Mohrman models could be very useful here.

It would have been helpful if the reviewers had provided some comparative
tests of how well their models fit actual data, such as was provided for equation
(5) and the salvage and subrogation data. I suspect that cquation (5) often would
represent a better fitting model than the basic inverse power function because
each term behaves in the same manner as the inverse power curve and an extra
parameter should increase accuracy. However, equations (6) through (8) present
models which add complexity and may or may not increase accuracy. It is often
true that more complex models improve accuracy within the range of historical
data points. But, it is also true that they may tend to diverge from expected
patterns when used for the purpose of extrapolation. The advantage of a simpler
model is that its behavior for extrapolation purposes tends to be more reliable.
This suggests that an important criterion in assessing different models is their
ability to predict known factors for later periods of development based solely
on earlier factors.
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The reviewers’ presentation of the hypothetical results obtained when « and
b are set equal to unity in the two-parameter inverse power curve is quite
interesting. It clearly illustrates the necessity of an eventual decline in the
incremental amounts of development if convergence is to occur. This is generally
not a problem as long as the historical data include later periods when the
incremental amounts of development decline. If the incremental amounts are
constant (as in Lowe’s example) or increasing, the product series will diverge.

[.owe and Mohrman observe that the fitting method in the paper minimizes
the errors in In (f (1) — 1) and not the errors of f (). They further observe that
differences between actual and fitted values are more significant when the
development factors are close to 1.000 than when the development factors are
significantly greater than 1.000. Thus, the fitting method puts more emphasis
on factors for the more mature periods than for the earlier periods. This is
usually a desirable result, since the estimated factors of consequence are those
of the later development periods. For applications where greater accuracy is
required for the earlier periods, the errors of f (#) should be minimized instead

of In (f(t) —1).

With regard to estimating a tail factor by multiplying together the extrapo-
lated factors, the reviewers correctly note that this procedure results in a com-
pounding of the errors. It should be noted, however, that a compounding of
errors as the extrapolating proceeds further into the future is probably unavoid-
able as it would appear to be inherent in the process of foreseeing the distant
future. The degree of uncertainty in our estimates will, in all likelihood, increase
progressively as we forecast events occurring further away from the immediate
present. Even if we are using the best possible model, the extrapolation is based
on data of limited credibility and the results are very sensitive to statistical
fluctuations in the historical experience.

In closing, it may be noted that the inverse power curve can easily be used
for estimating the number of IBNR claims as an alternate method to that
presented by Edward Weissner in his paper, “Estimation of the Distribution of
Report Lags by the Method of Maximum Likelihood” (PCAS LXV, 1978). The
procedure is much easier to apply and chi-square tests for goodness of fit indicate
that a closer fit is obtained using the inverse power curve rather than maximum
likelihood. A comparison of actual and fitted development factors for cumulative
reported claims is included here as Exhibit 1.
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EXHIBIT |

COMPARISON OF ACTUAL AND FiTreD REPORTED COUNT DEVELOPMENT
FACTORS USING AN INVERSE POWER FUNCTION

Y. £ Medical Other Bodily Auto Bodily
ear o . ] A, . o
Develop- Malpractice Injury Liability Injury Liability
ment Actual Fitted Actual Fitted Actual Fitted
2:1 2.094 2.162  1.274 1.295 1.160 1.163
3:2 1.179 1.199  1.062 1.060 1.013 1.014
4:3 1.099 1.071 1.027 1.024 1.004 1.003
5:4 1.032 1.034 1.014 1.012  1.001 1.001
6:5 1.021 1.019  1.006 1.007  1.000 1.001
7:6 1.010 1.012  1.005 1.005 1.000 1.000
8.7 1.008 1.008 1.003 1.004  1.000 1.000
9:8 1.007 1.006 1.003 1.003  1.000 1.000
10:9 1.004 1.004 1.001 1.002  1.000 1.000
R’ 98759 99038 99483
a= 1.16241 0.29501 0.16288
b= 2.54727 2.29051 3.56889
¢ = —1.00000 —1.00000 —1.00000
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THOMAS E. MURRIN

Twenty years ago last November in New York City, at the Fiftieth Anni-
versary meeting of the Casualty Actuarial Society, one of my duties as President
of the Society was to admit the new members. At that time there were six
Fellows admitted and Stan was one of the ten new Associates. To put our
Society’s growth in perspective, the membership today is more than two-and-
one-half times the number at the time of that meeting. Since then, society and
business have changed greatly; in the future they will change even more. Our
challenge is to be prepared.

The warm applause of welcome you just heard was well-deserved, genuine,
and not perfunctory. It has been so for the 71 years of our Society’s history
because the audience members know and remember well the effort, the diffi-
culty, and the obstacles encountered along the way, as well as the sense of
achievement, pride, and satisfaction that one feels toward having completed
one of the two milestones that we note here this morning. Equally deserving of
the applause of recognition and welcome are the spouses, the families, and the
friends who shared the sacrifice and encouraged your endeavors. For Associates,
it is the first major step and for Fellows a second, not a final one. While
Associateship does confer membership, I urge all Assaciates not to slacken their
efforts but to achieve Fellowship by concentrating on the remaining exams in
the next few years. Incidentally, the proportion of Fellows and Associates is
about the same as it was for [984. Successful completion of these exams will
significantly enhance your actuarial knowledge and effectiveness, as well as
broaden your horizons of your dynamic business and the role the actuary plays
in it. Additional experience gained in your employment between the Associate-
ship and the Fellowship designations will also help improve your understanding
of the profession, the business of insurance, and the society it serves.

I would equally urge the new Fellows to consider continuing education as
part of their career development. Increased knowledge can be gained in many
ways—through formal educational programs; actuarial, insurance, and financial
literature; broader and new experiences that impart additional knowledge; as
well as private study. Increasingly, seminars sponsored by different organiza-
tions, including the Casualty Actuarial Society and the Academy, offer oppor-
tunities for continuing education. On a related subject, I would urge the Fellows
to use some of the time previously allocated to exam preparation to serving on
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our Society's committees—or by writing papers for the Society’s Proceedings
on topics where your experience, knowledge. and/or research has provided you
with insights that are worthy of sharing with the members. This is particularly
true if the topical area is one where a previous paper has opened up a new area
for exploration. or one wherein the literature is thin.

To sum up before turning to another subject: Associates and Fellows, take
pride and satisfaction in the achievements gained thus far, and in your own way
enhance your knowledge and value to the profession and to the Society. Each
of you probably has thirty or more years of vour career ahead of you. It will
pass quickly. more quickly than you think. and the enjoyment and satisfaction
you receive from it will be in proportion to your efforts to make it so.

Now to a topic which is part of every profession. In a word, I am talking
about professionalism. It 1s a subject which must be uppermost in your mind
throughout your career because. in my opinion. no professional person—or even
one whose occupation is not so designated—can be internally satisfied, content.
or proud of perceived accomplishments or success (no matter how great in
monetary terms) if they have been gained by compromising personal integrity,
ethical principles. or truthfulness.

The introductory sentences of the “Guides to Professional Conduct™ are
worth repeating:

“Professional conduct involves the actuary’s own sense of ntegrity and his
professional relationship with those to whom he renders service, with his em-
plover, with other members of the profession, and with the world at large. In

all these relationships every member of the profession is concerned with his own
hehavior and, as the good name of the profession is the concern of all s
members, with the behavior of his colleagues.”

These guides have been developed over many years and revised {rom time
to time, but with great care and deliberation always to avoid infringement upon
the personal nature of the actuary’s work and to keep in mind the overriding
importance of his or her professional duty and relationship to a client and to
employers, as well as to colleagues. The guides are worthy of careful reading
from time to time—several times a year—to keep them fresh in mind, as are
the more detailed supporting interpretive opinions.

In the introduction to “Interpretive Opinion 1.7 Francis Bacon is quoted as
follows:

“I hold every man a debtor to his profession, from which us men of course do
seek 1o receive countenance and profit. so ought they of dury to endeavor
themselves by way of amends to be a help and ornament thereunto.”



ADDRESS TO NEW MEMBERS 195

Each of our members should be a help and ornament to our profession and the
Society, and reciprocally so to each member colleague.

For the first time, in my memory. we are having a panel discussion on
actuarial malpractice. I am confident that through familiarity, understanding,
and application of the “Guides to Professional Conduct” in all our endeavors
we can avoid or minimize any exposure to allegations of actuarial malpractice.
[ urge all of you to attend and participate in the discussion.

In conclusion, | want to wish each of the new Fellows and Associates long,
healthy, successful, and happy careers in the truc meaning of each word. I also
thank President Stan Khury for affording me this unique privilege of welcoming
you.
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KEYNOTE ADDRESS—MAY 9, 1985
ADAPTING TO AN ERA OF CHANGE

DR. MICHAEL J. KAMI

Today I am going to discuss the future. 1 read the Casualty Actuarial Society
booklet about all your accomplishments and all the exams you have to take;
obviously you know all about the past. The future, as you know from looking
at the record of insurance companies, is a little bit more confusing.

There is nothing permanent except change. That observation was made some
500 years before Christ. An early papyrus dated 4000 B.C.. the first written
piece of information, started: “Alas, things are not what they used to be.”

We live today in a new era. For five thousand yeuars we were an agricultural
society: the major source of power was human strength and a few animals. Our
industrial revolution started only 250 years ago. Since the invention of the steam
and then, of course, the combustion engine and nuclear power, we multiplied
our force by a hundred. a thousand. a million. a trillion times.

And then we left the industrial society and entered the cra of service. The
exact date was 1956. That was then the proportion of employees in the service
industry in the United States passed the 50 percent mark. And today, in 1985,
76 percent of workers are in the service industry; only 24 percent are in industries
such as construction or manufacturing. The service era also was an evolutionary
era.

I would like to suggest that we entered. in [980, only five years ago, a
brand new era of our society: the era of knowledge. 1 believe that is a very
important transition for the future, and that a major psychological adaptation is
required to really understand that future.

You probably took a lot of courses in economics. Forget them all. All the
Nobel prizes for analysis of the economics of modern society arc based on a
premise that the standard of living of a country depends on the proportion and
growth of energy consumption in that country. For 250 years economies could
be modelled by the approximation that the consumption of energy and the GNP
moved in parallel: the more energy consumed, the higher the standard of living.

However, energy consumption per dollar of GNP since 1973, which was
the time of the OPEC oil embargo, has declined gradually. The real GNP since
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then has increased by 43 percent, while the energy consumption in the United
States has decreased by 23 percent. Something new has been added to the entire

gtrnimtiiea ~f erriaty
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Furthermore, we are facing a brand new economy because of microminia-
turization. This is not just an empty word. For example, if ten million cars built
in 1974 and ten million cars built in 1985 are compared, the average difference
is two thousand pounds less weight per car. Multiply this weight difference by
ten million cars and you have how much? Twenty billion pound less . . . of
what? Of steel, of aluminum, of tires, of rubber, of everything. Yet, the product
performs the same function.

Another example is even more dramatic. Fifteen years ago, a telephone
conversation to London relied on a transatlantic cable. That transatlantic cable
weighed 275,000 tons, and required ships made out of steel to lay the cable.
Today, the same communication, or better, uses a one-quarter ton satellite. This
represents a difference of many magnitudes in materials needed, with the same
results produced.

This is a revolutionary new world, with changes in economics, changes in
perception, and a new ingredient—knowledge—that differs from energy, which
always ruled us as a consumable commodity. Knowledge is a self-regenerative
cumulative commodity and we really have to understand the change that has
occurred.

Psychological adaptation to this new society is critical. Yet it is not accom-
plished easily. I deal with presidents of large corporations and small corpora-
tions, with members of the power structure. The power structure, in my opinion
is like an ostrich with its head in the sand. And this ostrich does not look up.

How does one adapt? How does one change? How does one plan, establish
strategies, and think of everything that is uncertain about this new revolutionary
future, but in practical terms. Why don’t corporations adapt? Corporations fail
and new ones replace them. For example, Penn Square, which didn’t understand
that the oil boom was not forever. AM International: the company that still used
electromechanical technology when everybody else was using electronics. Bran-
iff, whose megalomaniac president decided to paint planes multi-color, thinking
that people would fly Braniff because the plane was pink and yellow. And
Lionel: who plays with trains today? Your kids play with electronic games like
Atari. Atari started with seven people and in eighteen months grew to a $1.3
billion company with thousands of employees. And today. guess what Atari is:
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seven people in South Korea. Today we have a compression of time: things
don’t last as long.

Now, why do corporations and institutions go through a long, wonderful
period of growth and then decline very, very fast? There is an unlimited potential
for losses. Let me offer a few examples. Beatrice Foods was voted in 1977 by
Dunn’s Review as one of the best managed companies. Today they are struggling
to create an identity with some questionable advertising programs. Caterpillar
was voted the best managed company in 1978, Today, in 1985, halt of Cater-
pillar’s employment in Peoria is gone. and Komatzu is beating Caterpillar
throughout the world. In 1978, the bank voted the best managed bank in the
United States was Continental of Illinots. In 1984, it wus voted by peer banks
as the most hated, least admired in the Fortune 500. Pan Am was great in the
1960s and is almost bankrupt today.

You probably have read the book by Thomas Peters and Robert Waterman,
In Search of Excellence. And then you probably read the Business Week article
“Oops.” What was “Oops™ The book was rescarched four years ago: a current
review of the companies selected as the most excellent companies is quite
enlightening. Here then, is “excellence™ revisted.

Texas Instruments: major failures in marketing consumer electronics and
quality failures. Caterpillar: losing its market position in the world.

Fleur: a good example of corporate forecasting. This was a construction
company that spent $2.5 billion to buy St. Johns minerals to have a supply of
copper; six months luter, the price of copper declined to the towest level since
1932. That's a decision.

Levi-Strauss: remember denims and jeans”? Levi-Strauss became arrogant
and started trying to dictate the market.

Kodak is a company married to an obsolete technology of silver nitrate. In
a few years cameras won't have film, they will have little chips. After taking
300 pictures, remove the chip, and play it through a television screen. You can
buy it, by the way, next year. This is an excellent example of change.

Some companies—by which we really meun the companys’ management.
people, and talent—Ilose. while others succeed. IBM, Mernill-Lynch, Lincoln
Electric, Cannon, American Express—except for the casualty insurance opera-
tion, Federal Express, and Delta are consistent winners. We also have consistent
losers. Why?
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One answer lies in a simple but complex observation: the economic life of
a decision, whether it’s a decision to build a plant, to pay a compensation plan,
to establish a risk factor, to promote someone or to retire someone, or to get a
product on the market, has shortened. It has shortened from ten years to seven
years to four years to two or three years.

Changes are occurring faster. Technological breakthroughs are faster. Com-
puters are now changing at the rate of every four years. Combined with two-
and-a-half year delivery time, this means that your machine already is obsolete
by the time it comes into your office.

In response to the shortened economic life of decisions, we must make
decisions faster. Doing so tends to increase risk. But management doesn’t want
to increase risk; therefore we need faster decisions with the same risk factor.
There is the simple—but complex—formula for the strategy of planning.

Let us examine this a little bit. [ want to make decisions today and in the
future twice as quickly as ever before. Therefore, I need better data twice as
fast. I want better information about the external environment and the internal
operation of the company organization. Twice as fast; twice as good. | need
better communications. It's no use just having the data. 1 want twice-as-fast
communications between people, between customers, between entities. There-
fore, I want a flat organization, and ] want a fast feedback of communications
from the grassroots.

But there is no use having fantastic communications and fantastic data if
you have people incapable of making the decisions. I also want faster decision-
making.

In short, what | am saying is that we have entered an era of unpredictability
in an era of knowledge; this is a paradox in itself. And that unpredictability has
created fluctuations. We have entered an era where the fluctuations are going
to be twice as big and occur in one-half the time. This is my formula for
fluctuations.

What are some examples of these fluctuations?

In the past five or six years interest rates have been 6 percent, 10 percent,
20 percent, 24 percent, 10 percent, 20 percent, and then 10 percent. Inflation
has been 6 percent, 18 percent, 2 percent. How about the U.S. dollar versus
other currencies? In 1980 and 1981, it was 65 percent of parity; at the beginning
of this year, it was 165 percent of parity. These figures were never predicted,
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predictable, or used. If you knew how to do so. you wouldn’t be here: you
would be on your 100-foot yacht in the Mediterranean with a crew of nine.

Remember that in 1980 our President—at that time slightly younger—was
running on the promise of a balanced budget. And today we have a $200 billion
a year unbalanced budget. I don’t blame him; I'm just saying that’s life.

When you talk about the Iran-lrag War, you talk about a 6-day war that
changed to a 6-month war that changed to a 6-year war. Every expert in the
world said that if we experienced a 6-year war between Iran and Iraq the supply
of oil would be curtailed and there would be a shortage of oil in the world.
Today we have the biggest glut of oil in history. Those are the predictions. This
1s the type of forecasting that is common.

Therefore, 1 say that the era of unpredictability, because of our known
adaptation to knowledge. will continue. That’s my assumption. Assuming you
share this assumption, then what can we do? The first thing is psychological
adaptation, learning to expect the unexpected. For instance, a very interesting
unexpected that just happened is that there is not a single country in the world—
whether it’s an oil exporting country, industrial country or non-developing
country—that doesn’'t have a federal deficit.

The world, and I wish | had coined the phrase, is not going to be good or
bad, better or waorse: it’s going to be different. We have to understand this.

Let me describe one major difference that is going to affect our planning,
our understanding. The population of the whole world is only growing now
at 1.7 percent per year. The population of the key industrial countries is
growing at 0.3 percent: 0.9 in the United States but 0.0 in West Germany,
0.1 in France, and 0.2 in England. When the world population stops growing,
particularly in the industrial countries, there will be fewer consumers to buy
things. Fewer consumers to buy things does not necessarily imply a worse
economy, but it will be a different economy. We have entered a period of
replacement and substitution instead of growth and addition. For everything
that goes up something has to go down. That is substitution. For every market
or telecommunication or computer or electronics segment that grows at a
rate of forty percent, some other other sector of the economy is going to
shrink at a rate of forty percent.

When this happens in a slow growth world economy. the companies must
compete. For every company that grows at 4 rate of 15 or 20 percent, one must
decline at 15 to 20 percent. Therefore. this situation creates a very competitive
environment. This is apparent even today in the manufacturing sector, particu-
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larly with regard to the imports that are coming to United States. So one of the
very important considerations for the future, in addition to the fast fluctuations
[ described earlier, will be an extremely competitive situation between compa-
nies.

There are two generic strategies that sellers must consider along with all the
risks and all the various events in this world. A seller dealing with commodities
that only depend on price must be one of two things. That seller must be a low-
cost producer worldwide, because worldwide the price comparisons are being
made, and it doesn’t matter whether it’s a service or a product. Or, if not the
low-cost producer, the seller must have a deep pocket. A deep pocket is very
important because a larger company that doesn’t have the low-cost production
can reduce prices for quite a while to put the small company out of the business,
at least for a while. The winning combination for a commodity product with
no differentiation is worldwide low-cost with a deep pocket.

Such a combination forces competitors to seek specialty products or try for
uniqueness. Service becomes very important because here you can charge more
in that service provides a dimension of uniqueness in addition to the price.

Another approach to consider is the niche strategy. This is sometimes illus-
trated by the difference between a very small company and a large company.
The large companies fight for an additional one percent market share. That one
percent for Coca-Cola is worth $250 million; that one percent for a cigarette
manufacturer is worth $300 million. The little companies fight for the one
percent that the large competitor doesn’t want. A company must decide whether
it wants 90 percent of the one percent specialty market or one percent of the
overall market. Only the company can decide where it fits.

You may say that | am exaggerating; I am not. For years I made a comment
that it is useless to fight against Pepsi-Cola and Coca-Cola: they fight against
each other and the little competitors lose. So I suggested a possible specialty—
a cola for dogs. After all, that’s a small market; I am sure Coca-Cola will not
want it. However, ladies and gentlemen, as of two months ago, Canine Cola
has been introduced in Phoenix and its sells for $4.99 a six-pack. I tasted it; it
isn’t bad.

The next thing you have to consider in this changing environment is the
present tremendous merger-mania. And merger-mania will continue because as
big corporations get bigger they want to consolidate their hold on the market.
This is not nefarious; it’s good business, at least if you are smart enough to do
it right. Every merger is intended to combine two plus two and yield five.
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That's synergy. The reality is that in 80 percent of the cuses two plus two yields
three.

Let me suggest something else that is going to happen. Because of the
compression of time, because of the desire to be in the market fast, I recommend
joint ventures. Very difficult to accomplish, but they allow “instant vertical
integration.” And you see this approach with increasing frequency. Companies
take someone who has the marketing ability. someone who has the production
ability, somecone who has the money, and someone who has manufacturing or
distribution capability: instant joint venturc. instant entry into the market, instant
everything. It's necessary because the current cnvironment allows only four
months or six months, not two and a halt years.

Procter and Gamble, which was the paragon of marketing, is changing its
entire marketing and merchandising approach. They use market forecasters.
Why? You can’t go to Squeedunk and test-market a product for two and a half
years and then go national because by the time you go national, everybody else
and their brother is already there. So even Procter and Gamble is trying to learn
how to introduce new products, new ideas. and new expansions of their existing
products. This applies to the insurance business, too. Decide on extension of
products. or new products. by sampling in three months time.

Coca-Cola, which in seventy years introduced three new products, has a
new management that I really admire. Coca-Cola introduced more than a dozen
new products in three years and lately has made a major risk decision by
changing a formula that was okay for seventy vears.

“Speed™ is the message that I'm trying to give vou. To get data fast we
must understand information management. We really have to manage the man-
agement of information, not the information itself. We are up to our ears in
information. How do we manage information better?

I do believe that in a few years companies that don’t have the executive
communication station are going to be passe. But what do I mean by that? 1
mean an executive, president of a company, chairman of the board, who sits at
his terminal and really uses it: not one who gives it to a secretary for word
processing. 1 mean a manager who actually gets fast information, fast data,
from distributive shared data bases and is able to make intelligent decisions.
Meetings are no longer occasions to present the data for hours: instead the data
are available ahead of time and the meccting is to discuss strategy and make
decisions. Virtually no presidents of corporations have reached this stage.
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Some companies pioneer. Flextime to flexplace. 1 don’t know why actuaries
have to be in an office in Hartford. They just as well could live in Colorado
and have a nice computer and communications facilities and never see anybody.
I know of four insurance companies that have saved a great amount of money
by not having people commute but having them work at home. But that’s
breaking a mold, breaking tradition.

Uniqueness and innovation are important characteristics for success. The
key ingredient to profitability is for a company to have uniqueness. The future
depends on the creativity in the present. The mind has tremendous potential;
creativity 1s something that really must be cultivated.

Coleco, for instance, lost $500 million on a computer, but they made it up.
They made it up on what? On this strange Cabbage Patch doll. $500 million.
Why? Not because of the doll but because someone said that the kids would
like to sign the adoption papers. What 1 admire most is not the Cabbage Patch
doll, but is the fact that someone at Coleco saw the doll somewhere in Arkansas
or Georgia and said, “Yes, that is going to sell,” and bought it.

Now, think of yourself, your management, your operation. How many
managements really are that innovative to try something new? That’s what is
needed. And that newness is important because of the fast obsolescence of
products.

However, there is a clever way of being unique and a stupid way. For
example, a principle that was used by airlines was to fly passengers through a
hub city: Atlanta for Delta; Chicago for United; Dallas for American. But
remember the gentleman who said five years ago, “I'm going to ship a package
from Los Angeles to San Francisco by taking it from Los Angeles to Memphis
and then from there to San Francisco.” The world’s greatest planner said; “That’s
a stupid idea!” As you know, Federal Express has become an extremely inno-
vative, multi-billion dollar corporation.

But you see that innovation is only possible through people. No machine
can innovate. And therefore I say, take a talent inventory in your company.
This is how to do it. Think of four people, other than yourself, who are so
indispensable to the company that it would be a major catastrophe if they left.
Now write down their names. If you can’t visualize only four peole who are so
fantastic that it would make a difference, your company is in trouble. We need
talented, unusual people and they don’t have to be president of the company.
Actually, it sometimes is a disadvantage for the president of the company to be
innovative because then everything depends on him.
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A good president of the company, a CEO, should have only one character-
istic: the ability to find, motivate, nurture. and encourage talent. That’s all there
is to it. Management must try to be receptive because new ideas, new ways of
approaching things, faster ways, define entreprencurs. Don’t expect anything
original from an 2cho.

The best of all worlds is to find individuals who combine several unique
characteristics. Some people are detectors of change, they can see things chang-
ing. Other people, having been told of changes become the architects of change:
they plan and they calculate. Then the agents of change take that plan and run
with it. Successful companies need people who are detectors of change, archi-
tects of change, and agents of change, all combined in one person. Those are
the talented. unique. indispensible people that are needed in a company.

Another important consideration is internal organization. For faster and
better communication, eliminate the middle management of a company, seek a
horizontal organization. An organization must be fast, fluid, and flexible.

Look for a lean, highly-paid, intelligent staff. Strive for an organized chaos.
An organized chaos has the ability to change fast. Seek a company that has a
chairman of the board or chief executive officer and eighty division managers
reporting to him. Does that sound ridiculous? The eighty managers must be
very smart because if they are not the boss is going to spend all his life talking
to them. But if they're smart, they can work independently. There really are
companies with eighty people reporting to one president that are doing very,
very well.

Think about why we need a foreman on the factory floor. The foreman
serves only two purposes: first, to tell the worker what to do; and second, to
maintain discipline. If the worker is trained 10 read a cathode ray tube or
terminal and knows what to do, he does not need the foreman. And if the
worker is motivated by incentive, he does not need the discipline. And com-
panies are taking this approach to eliminate middle management. Decentralized
authority is effective not because it’s nice but because the speed of communi-
cation and decision-making requires it. Fight bureaucracy.

Another thing that is very important, and that is a part of the knowledge of
the external environment, is the urgent need for customer orientation and for
understanding the present and future behavior of people. What do | mean by
that? We live today in an era where the homogeneous mass market no longer
exists. There is no homogeneous market because we are in an era of pluralism.
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When I came to this country 45 years ago, 1 wanted to be assimilated. 1
wanted to be part of the masses. Today, in 1985, [ see a set of subcultures in
which the young don’t want to be like the old, and the old don’t want to be
like the young. Women don’t want to be like men; men don’t want to be like
women. The blacks don’t want to be like whites; and vice versa. These are all
niches. Why do you think that big companies no longer have one advertising
agency? They have an Hispanic advertising agency, a black advertising agency,
a West advertising agency, and an East advertising agency, et cetera. They
understand the pluralism.

Today’s consumer, lovable but irrational, may be more affluent because of
two family members working. The consumer may be less loyal to a brand or a
company or an insurance product or anything else. Today’s consumer is more
mature, as you know. The consumer is older, more impatient, and less gullible.
There is a new female role. All these factors must be understood by a company,
and incorporated into a company’s changes.

We have a trend that is very interesting: a trend toward extremes, which |
call polarization. That polarization stems from the fact that we now have a
bimodal society. The bimodal society has fewer of the blue-collar $30-an-hour
workers; but more of the service workers at $9,000 to $10,000 per year, and
more of the technical, managerial, talent workers at $30,000, with few workers
in the middle of these extremes.

I see a trend to extremes: we now need either no service or excellent service;
we need cheap products or expensive products. The strategies of companies are
going to be aimed at the extremes. The companies hedging in the middle are
not going to succeed.

The principles of mass merchandising, specialized boutiques, and bargain
basements (for example, Sears, Gucchi, and K-Mart, respectively) apply to
financial services, too. At one extreme, the customer is provided with insurance,
mortgages, financial accounts, and stock brokerage services. For example,
American Express and Merrill-Lynch take this approach. On a bargain basement
level, Schwab or the Bank of America offer no service, but discount prices.
Then there’s the specialized boutique, a salesman in East Cleveland sitting with
an old lady discussing five shares of stock for three hours. Where does your
company fit? What is your marketing, your merchandising, your understanding?

From what I have said already you know that strategic planning is becoming
tougher all the time. But I would like to eliminate the word “strategic planning”
from your vocabulary. I don’t want planning; | want management. Planning is
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filling books; planning is making learned studies; planning is preparing pres-
entations; planning is not action. Management is action. Therefore, let’s
combine planning with action. And I want you to put into your planning
more thinking; not just extrapolation, calculation, regression, and so forth. 1
want you to put your imagination to work, to imagine future new concepts,
to understand unpredictability.

One simple planning principle is to identify an important change you can
make tomorrow. I want an action proposal to be effected next Monday morning.
If you present to me a plan for the future that says in 1989 you are going to
change something, [ will not be interested because you have four years to
change your mind. But I will be interested if you say that. towards that change
in 1989, you are going to spend money on energy and people. Monday morning,
then you are doing long-range planning and implementation. Very few com-
panics actually do it well.

Avoid paralysis through analysis. Because of the compression of time, 1
need smarter people. better tools. and better data. But it’s not absolute. All [
want is to be five percent better than the other guy. Because I'm not using
absolute planning, | only want be a little bit better than the competition and |
want to compare myself to the leading edge. Who does the best caleulations?
Who doges the best planning? Who has the best personnel department? Who has
the best data processing department in the world? How do I compare? And if
['m the leader; how fast are they cuatching up to me?

A key clement of your planning should occur cach morning: identty five
issues that are absolutely urgent—-in your opinion- -for your company, your
profession, or your operations. Five issues only, in order of priority. You may
have a hundred issues: select only five. Then for cach ssue identify the action
you will take today. Let me make it a little bit more difficult for you by insisting
that the action be innovative and imaginative. Bernard Shaw said many years
ago, “For every complex problem there is a simple solution.”™ He was wrong.
Ladies and gentlemen, there are no simplistic solutions: there are complex,
imaginative, good solutions to very complex problems.

Don’t believe in torecasting. Believe in assumptions about the tuture. When
we talk of tomorrow, the gods laugh. And when you think that you really know

how to forecast, and you belicve in your own magic. be caretul.

Let me tell you one little story. One of the greatest miscaleulations in IBM
history was in 1957, when | predicted for IBM that there would be only 52
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large computers in the world. And now there are hundreds of thousands. How
did 1 make that famous forecast? There were 52 experts in IBM, one for
wholesaling, one for electrical, one for insurance, one for banking, and so on.
I went to each one of them and showed them something new, a set of plans
they didn’t understand. Every one of the 52 was afraid to say, “I can’t sell any,”
and didn’t want to commit themselves to sell two, so they each said they could
sell one. Those experts provided the basis for my famous forecast, but that is
not an illustration of how forecasts should be made.

I really believe that you have in the current environment a tremendous
opportunity to work with the two sides of your brain, left and right. You have
tremendous mathematical, analytical, technological abilities. And you also have
the ability, hopefully, to look at the world that is changing, to understand that
change, and to introduce this compression of time, technology, psychology,
action, and reaction into your mathematical formulas through intuition or guess-
timate. You can provide an unforgettable and extremely valuable combination.

I would like to close with my favorite prayer, by Niebuhr: “God give me
serenity to accept things [ cannot change, courage to change things I can change;
and the wisdom to know the difference between the two.”
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MINUTES OF THE 1985 SPRING MEETING
May 8-11, 1985

BOCA RATON HOTEL AND CLUB. BOCA RATON. FLORIDA

Wednesday, May 8, 1985

The Board of Directors held their regular quarterly meeting from 1:00 p.m.
to 4:00 p.m.

Registration was held from 4:00 p.m. to 6:00 p.m.

The Officers held a reception for the new Fellows and their spouses from
5:30 p.m. to 6:30 p.m.

A general reception for all members and guests was held from 6:30 p.m. to
7:30 p.m.
Thursday, May 9, 1985

Registration continued from 7:15 a.m. to 8:00 a.m.

President C. K. Khury opening the meeting at 8:00 a.m. The first order of
business was the admission of members.

Mr. Khury recognized the sixty-eight new Associates and presented diplomas
to the nineteen new Fellows, who were introduced by Mr. Wayne Fisher, Vice
President—Membership. The names of these individuals follow.

FELLOWS
Francois Bertrand John R. Forney, Jr. Allan R. Neis
Raja R. Bhagavatula Loyd L. Fueston, Jr. Donald W. Palmer
William P. Biegaj Alan J. Hapke Lois A. Ross
Terry J. Biscoglia Heidi E. Hutter James Surrago
Jeffrey R. Carlson Michael J. McSally Diane M. Symnoski
Stephan L. Christiansen Robert E. Meyer David L. White

Warren S. Ehrlich



Mark S. Allaben
Leonard A. Bellafiore
David M. Bellusci
Joseph A. Boor
Brian Y. Brown
George R. Busche

Willine M Carmoantar
¥y lukalll vi. L aipeinci

Andrew R. Cartmell
Daniel B. Clark
Frederick F. Cripe
Kathleen F. Curran
Janice Z. Cutler
Todd H. Dashoff
Thomas J. DeFalco
Robert V. DeLiberato
Jacques Dufresne
Bruce G. Earwaker
Kenneth Easlon
Kirk G. Fleming
Robert W. Gardner
Daniel F. Gogol
Kevin M. Greaney
Christy H. Gunn
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ASSOCIATES

Gregory L. Hayward
Wayne D. Holdredge
Jeanne M. Hollister
Ruth A. Howald
Charles D. Kline, Jr.
Frederick L. Klinker

DRahart T 1 an
RNUUCIL F1. LAC

Martin A. Lewis
Barry C. Lipton
Mark W. Littmann
Rebecca B. Lyons
Brian P. Maguire
Eugene McGovern
David L. Menning
William J. Miller
Warren D. Montgomery
Robert V. Mucci
Robert G. Muller
Thomas G. Myers
James W. Noyce
Arthur C. Placek
Jeffrey H. Post
Richard A. Quintano
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Daniel A. Reppert
Richard D. Robinson
Jeffrey C. Salton
Joseph F. Sarosi
Jeffrey R. Scheuing
Timothy L. Schilling

Navid 7 Qerhall
LJaviu . Sunion

Roger A. Schultz
Arlyn G. Shapiro
John Slusarski
Michael B. Smith
Edward C. Somers
Kathleen W. Terrill
Joseph P. Theisen
Nancy R. Treitel
Jean Vaillancourt
Gerald R. Visintine
Joseph L. Volponi
Stacy J. Weinman
Robert G. Whitlock, Jr.
Robert L. Willsey
Susan K. Woerner

Mr. Khury then introduced Mr. Thomas Murrin, a past President of the
Society, who addressed the new members concerning their professional respon-

sibilities.

Mr. Khury announced the first winner of the Harold W. Schloss Scholarship:
Steven Book at the University of [owa.

Mr. Charles A. Bryan described the recent activities of the Committee on
Review of Papers, and summarized the five new Proceedings papers.

Oakley E. Van Slyke presented a discussion of Lee Steeneck’s paper,

“Reinsuring the Captive/Specialty Company.” Richard E. Sherman, author of
“Extrapolating, Smoothing, and Interpolating Development Factors,” responded
to a discussion of that paper by Stephen Lowe and David Mohrman.
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Mr. Michael Walters summarized the activities of the Discussion Paper
Program Committee, which had led to the current set of Discussion Papers
related to “Analysis of Results, Forecasting and Corporate Planning,” and
introduced the Discussion Paper topic for 1986, "Reinsurance.”

Mr. Khury conciuded the business session at 9:00 a.m. and introduced Dr.
Michael J. Kami, President, Corporate Planning, Inc. who delivered a very
stimulating Keynote Address. Dr. Kami stressed that change is the single greatest
force with which managers must deal, and highlighted that point with a discus-
sion of the progress, in the most recent four years, of those corporations singled
out for their excellence in 1981.

A panel presentation, “Managing the Insurance Industry into the 19907s,”
followed. The panel was moderated by Dr. Edwin S. Overman, President of
the Insurance Institute of America. The panel members were Mr. John E. Fisher,
Chairman, Nationwide Insurance Company; and Mr. Peter B. Walker, Director,
McKinsey and Company, Inc.

A buffet luncheon followed from noon to 1:30 p.m.

The afternoon was devoted to presentations of the sixteen Discussion Papers,
five new Proceedings papers, and a workshop presentation by the Membership
Committees.

The Discussion Papers were presented in eight sessions, listed below.

Session |.  Moderator: James E. Biller
Chubb Group

“Corporate Planning: An Approach for an Emerging Company”
Authors: Irene K. Bass and Larry D. Carr
Crum & Forster Personal Insurance

“Budget Variances in Insurance Company Operations™
Author: George M. Levine
National Council on Compensation Insurance

Session 2. Moderaior: Eric F. Gottheim
GEICO

)

“Branch Office Profit Measurement for Property-Liability Insurers’
Author: Robert P. Butsic
Fireman’s Fund Insurance Company
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“Measuring Division Operating Profit”
Author: David Skurnick
Argonaut Insurance Company

Session 3. Moderator: Stephen W. Philbrick
Tillinghast, Nelson & Warren, Inc.

“A Formal Approach to Catastrophe Risk Assessment and Management”
Author: Karen M. Clark
Commercial Union Insurance Companies

“An Econometric Model of Private Passenger Liability Underwriting

Results™
Authors: Richard M. Jaeger and Christopher J. Wachter
Insurance Services Office

Session 4.  Moderator: Bruce C. Anderson
General Reinsurance

“Measuring the Impact of Unreported Premiums on a Reinsurer’s Finan-
cial Results”
Author: Douglas J. Collins
Tillinghast, Nelson & Warren, Inc.

“Projecting Calender Period IBNR and Known Loss Using Reserve Study -

Results”
Authors: Edward W. Weissner and Arthur Beaudoin
Prudential Reinsurance Company

Session 5. Moderaior: Richard 1. Fein
Insurance Technical & Actuarial Consulting Corp.

“Pricing, Planning and Monitoring of Results: an Integrated View”
Author: Stephen P. Lowe
Tillinghast, Nelson & Warren, Inc.

“Application of Principles, Philosophies and Procedures of Corporate
Planning to Insurance Companies”
Author: Mary Lou O’Neil
Department of Insurance-New Jersey
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Session 6.  Moderator: Frank Harwayne
National Council on
Compensation Insurance

“The Cash Flow of a Retrospective Rating Plan”
Author: Glenn G. Meyers
The University of lowa

“Bank Accounts as a Tool for Retrospective Analysis of Experience on
Long-Tail Coverages”
Authors: Claudia S. Forde and W. James MacGinnitie, Jr.
Tillinghast, Nelson & Warren, Inc.

Session 7. Moderator: Sanford R. Squires
Commercial Union Insurance Companies

“Actuarial Aspects of Financial Reporting”
Author: Lee M. Smith
Ernst & Whinney

“Contingency Margins in Rate Calculations”
Author: Steven G. Lehmann
State Farm Mutual Automobile Insurance
Company

Session 8. Moderator: Leroy A. Boison, Jr.
Insurance Services Office

“Interaction of Total Return Pricing and Asset Management in a Property/
Casualty Company”
Author: Owen M. Gleeson
General Reinsurance Corporation

“Projections of Surplus for Underwriting Strategy™
Author: William R. Gillam
North American Reinsurance Corporation

The five new Proceedings Papers are listed below.

“An Estimate of Statistical Variation in Development Factors Methods”
Author: Roger M. Hayne
Milliman & Robertson, Inc.
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“A Simulation of the Efficiency of Loss Reserve Estimation Techniques”
Author: James N. Stanard
F & G Reinsurance, Inc.

“On Stein Estimators: Inadmissibility of Admissibility as a Criterion for
Selecting Estimators”
Author. James E. Buck, Jr.
Prudential Insurance Company

“Loss Portfolios: Financial Reinsurance”
Author: Lee R. Steeneck
General Reinsurance Corporation

“A Practical Guide to the Single Parameter Pareto Distribution™
Author. Stephen W. Philbrick
Tillinghast, Nelson & Warren, Inc.

The CAS Membership Committees Workshop was presented in an effort to

give Society members a better understanding of the structure and responsibilities
of these committees. The Chair of each Committee described the committee’s
functions, reporting hierarchy and goals. The participants were:

Wayne H. Fisher Vice President—Membership

Linda L. Bell Chairman—Education Policy Committee
Allan Kaufman Chairman—Examination Committee
David L. Miller Chairman—Syllabus Committee

The President’s Reception was held from 6:30 p.m. to 7:30 p.m.

Friday, May 10, 1985

Friday was devoted to a continuation of the Thursday afternoon sessions.

A reception was held from 6:30 p.m. to 7:30 p.m.

Saturday, May 11, 1985

A panel entitled “Actuarial Malpractice: How Can It Be Avoided?” was held

from 8:30 a.m. to 10:15 a.m. The panelists were:

Moderator: Philip N. Ben Zvi
Senior Vice President
Continental Insurance Cos.
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Panelists: William Hager
Principal
Hager & Associates

M. Stanley Hughey
Consulting Actuary
Tillinghast, Nelson & Warren. Inc.

A film from Peat, Marwick, Mitchell & Co. concerning accountants’ negligence
was shown, followed by a presentation by Mr. Hager on current case jaw, and
a presentation by Mr. Hughey on professional standards.

At 10:45 a.m., Mr. Khury reconvened the business session. The Michel-
bacher Prize was jointly awarded to Robert Butsic and David Skurnick.

At 11:00 a.m., Mr. F. Lee Bailey addressed the membership concerning his
career as a lawyer, with particular emphasis upon negligence suits in which he
has been involved. This discussion included the Union Carbide plant in Bhopal,
Johns-Manville asbestos litigation. and the DC-10 crash at O Hare Airport.

Mr. Khury adjourned the meeting at 12:15 p.m.

In attendance by registration records were 261 Fellows: 146 Associates; and
32 guests and subscribers. The list follows.
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ANALYSIS AND SYNTHESIS

C. K. KHURY

THE ACTUARIAL METHOD

I would like to preface my comments on the actuarial method by quoting
from the July-August, 1981 Harvard Business Review. In his “letter from the
editor” column, Mr. Kenneth Andrews writes:

“Many teachers and students find quantitative techniques and theoretical models
easier to teach, intellectually fascinating, beguilingly self-contained, rigorous,
and capable of being memorized and quickly applied, widely if not wisely. They
forget to insist that for the most part only trivial management problems are
neatly structured and quantifiable. All modeling and quantitative analysis directed
at a decision are only preludes to subjective judgment. Vision then must transcend
technique.”

This quote neatly sums up the problem of those who look to canned methods
for the solution of their business problems.

We’re all familiar with the scientific method. One of the key aspects of the
scientific method is that it can be applied with predictable outcomes. For
example, two parts of hydrogen combined with one part oxygen, under certain
conditions, will yield water plus some amount of heat. This process can be
repeated at will, by anyone, with identical results. Today I'd like to explore the
actuarial method in an attempt to obtain a perspective on the nature of actuarial
practice: how much art and how much science.
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Broadly speaking, given a specific actuarial question, the actuary goes
through a number of steps in formulating an answer. For example, the actuary:

determines the universe of available data that may be relevant.,

selects the types of data to be used.

makes a number of assumptions,

adjusts the data to recognize the special conditions associated with the
specific problem (deseasonalizing historical data. projecting to recognize
future cost changes, etc.).

synthesizes the data with the aid of mathematical methods and judgment
to produce a mathematical response to the question. and

interprets the numerical result in the context of the original problem.

This sequence of activities, measured strictly against the criteria of the
scientific method, would clearly render the actuarial method not a scientific
method. If not a scientific method. then what is it?

A close examination of the steps listed above reveals two key points:

Within the actuarial method, there are several applications of the scientific
method. For example, all the mathematical computations, trend methods,
deseasonalizations of data. cte., are 100% scientific exercises.

The various applications of the scientific method are preceded by, con-
nected together with, and followed by a host of applications of judgment.

At the risk of greatly oversimplifying. I could describe the actuarial method
as a process which consists of a number of scientific applications embedded in
a collection of judgments. In this sense, the actuarial method is neither pure ant
nor pure science; it is a synthesis. And different actuarial problems require
different proportions of art and science. If the art-science mix is placed on a
continuum where pure art is set at 0 and pure science is set at 100, then
estimating next year’s pure premium for the auto collision coverage would be
closer to 100; but estimating next year's medical malpractice pure premium
would be closer to 0.

Not infrequently two actuaries have produced vastly ditferent answers to the
same actuarial problem. For example. at a public hearing on medical malpractice
rates, the rate level indications as calculated by two actuaries were more than
200 points apart (an increase of 210 percent vs. a decrease of 5 percent), If one
assumes that the scientific methods used were correctly applied, then the entire
difference is attributable to the judgmental aspects of the actuaries’ work.
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A corollary question is, “To what should the buyer of actuarial services be
entitled in terms of the standards that govern the selection and application of
those judgments?” Not an easy question to answer; but answer it we must.

FULL DISCLOSURE

My view is that the buyer of actuarial services is entitled to full disclosure
of the judgments made by the actuary in arriving at a solution to an actuarial
problem. Although the precise meaning of full disclosure remains to be worked
out, my idea of full disclosure consists of two aspects:

disclosure of assumptions, judgments, interim conclusions, and whatever
else influences the outcome by more than some preselected tolerance, and
sensitivity analyses sufficient to illustrate the operation of these judgments.

In this manner, the buyer should be able to observe the pressure points
governing the process and appreciate their relative impacts on the final outcome.
If the buyer has a (rational or irrational) basis for differing with the actuary on
any of the disclosed items, then the buyer would be free to make alterations to
those judgments and accept the consequences.

One example might illustrate what I have in mind. Suppose an actuary,
enroute to a conclusion, needed to select a trend line to be fitted to historical
data. The disclosure and sensitivity analyses might include the following:

Number of points actually used in deriving the line of best fit. Outline the
rationale for this choice and demonstrate the effect of selecting fewer or
more points on the final answer.
Historical points omitted from the historical data. Outline the rationale for
this choice and demonstrate the effect of restoring those points on the
final answer.
Seasonal adjustments. Outline the rationale for any seasonal adjustments
and demonstrate the effect of “no seasonal adjustment” on the final answer.
» Tempering the projection of the line of best fit. Outline the rationale for
tempering and demonstrate the effects of “no tempering,” or other mag-
nitudes of tempering, on the final answer.

And there are several others: type of line used (straight, exponential), length of
period used (month, quarter, year), type of observations used (12 months moving
averages, discrete time measurements), and so on.

One of the key ingredients of a profession is the existence of observed
standards of practice. The actuarial profession needs rigorous standards of
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practice in order to accelerate the effort to obtain legal recognition. Also one
can hear the footsteps of actuarial malpractice (to a few actuaries, it has already
arrived). Adopting a universal standard of full disclosure accompanied by rel-
evant sensitivity analyses can only strengthen the profession by separating fact
from opinion in presenting the actuarial work product.

1 should also note that all actuaries are included within the scope of my
comments: actuaries who sell their skills to one client (employees) as well as
actuaries who sell their skills to many clients (consultants).

Whenever I think of standards of practice, my mental reflexes tend to deal
in terms of what is permitted and what is prohibited. And that reminds me of
a wonderful quote from former FCC chairman, Newton Minow, on the results
of his study of the legal systems of European countries:

“In Germany, under the law everything is prohibited except that which is per-
mitted. In France, under the law everything is permitted except that which is
prohibited. In the Soviet Union, everything is prohibited, including that which
is permitted. And in Italy, under the law cverything is permitted. especially that
which is prohibited.”

It is important to be aware not only of the need for full disclosure, but of
the implication of its absence.

The buyer of the actuarial product, a priori, does not know how to separate
actuarial art from science, actuarial fact from opinion, and mathematical wiz-
ardry from pedantic applications of formulas. All of these ingredients may be
mixed well, carefully packaged, and eloquently presented; without full disclo-
sure, the buyer of the actuarial product is completely at the mercy of the actuary.
This is an unnecessary jeopardy for both the actuary and the buyer of the work
product. The actuary, if operating with professional integrity, has absolutely
nothing to fear from exposing the assumptions and judgments that went into the
final work product. The worst possible outcome i3 that the buyer can exercise
his or her own judgment (instead of the actuary’s) if he or she so desires. The
point here is that failure to disclose the assumptions and judgments along with
appropriate sensitivity analyses renders the actuarial work product incomplete.

ACTUARIAL CHALLENGES

Over the years a number of questions have lingered in my mind that, I
believe, the actuary is particularly well suited to answer. Let me share some of
these problems with you.
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Functions of surplus.

What are the functions that surplus serves? Some functions are readily
apparent: to provide a cushion for absorbing adverse investment fluctuations, to
provide a cushion for absorbing the collective risk assumed by the insurer, to
provide a cushion for absorbing adverse reserve fluctuations. And I can think
of several others. The challenge is to define an exhaustive set of the functions
of surplus.

How much surplus?

Having defined the functions of surplus, the next question is how much
surplus is needed to support each function and how much surplus is needed to
support all the functions combined? Interestingly enough, the only rule that has
emerged over the years that is remotely related to this question has been the
Kenney rule. Can we do better? I believe we can. The challenge is to devise a
general model that uses a number of insurer measures as input and yields a
range for required surplus as output.

Risk classification index.

We all know the extremes of risk classification for rating purposes. On one
extreme we have the individual risk rate and on the other we have the average
rate for the total subject risk population. Classification plans attempt to group
risks somewhere in between. Is there an index that describes exactly where a
risk classification plan falls between the two extremes? I believe there is. The
challenge is to define such an index—to be used for management purposes as
well as an aid to enlightened regulation of business.

Confidence intervals for loss reserves.

Loss reserves are stated as point estimates. This fact, we all recognize, is
only part of the story. Every reserve estimate has a corresponding confidence
interval, albeit one that is usually not known or, if known, not stated. The
challenge is to define a general mode! for determining loss reserves confidence
intervals so that a reserve is always stated as a point estimate together with a
corresponding confidence interval.

Present value ratemaking.

With very few exceptions, ratemaking formulas generally use calendar/
accident year loss ratio methods. The propriety and elegance of present value
ratemaking can hardly be overstated. The challenge is to come up with a
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generalized model for making rates using present value methods that recognizes
the peculiar characteristics of casualty insurance.

Sampling .

Much of our industry manages its affairs by using 100% samples. With few
exceptions, sampling has not found its way onto center stage of actuarial science.
The challenge here is to develop small sample models to derive answers to the
two classic actuarial problems: ratemaking and reserving.

Solvency tests.

The current NAIC tests are. at best. pragmatic tests, lacking a sound theo-
retical basis. The challenge is to develop a set of actuarial tests of solvency that
have a sound theoretical basis, not just empirical observation. There can be no
overestimation of the value such a set of tests would have on a number of
different fronts.

Inflation sensitive exposure bases.

With inflation already very much a part of the world economic fabric, the
need for inflation sensitive exposure bases grows more acute on a daily basis.
The problem has been substantially solved for property exposures. But for
liability exposures the problem lingers. The result is a constantly recurring gap
between the true rate and the rate actually in effect, causing insurers to engage
in an endless game of catch-up. The challenge is to tind a set of inflation
sensitive exposure bases for liability exposures.

I invite cach of you to reflect on these guestions. to pick out a small part
of anyone of them and adopt it. Let your mind engulf it, understand it, feel it,
stalk 1t, own it, and then, ultimately, subdue it. And when you have thus solved
it, write a paper and share it with us. Writing a paper is precisely the single
most powerful method we have to expand the horizons of actuarial science.
And I extend this invitation to each of you, whether an Associate, a new Fellow,
or a thirty-year Fellow.

I am sure you have observed that all of the questions | have posed lie within
a traditional insurance framework. The applicability of the actuarial method to
areas outside the traditional insurance framework has been cxpanding. 1 will
cite two examples. One is the rapidly growing involvement of actuaries in the
field of risk management. Another 1s that one of our members has made it his
life's work to extend actuarial applications to any question involving a contin-
gency and a consequent transfer of money. My judgment is that these applica-
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tions will continue to grow and will occupy a larger and larger proportion of
our membership. My invitation to you in this regard is be alert to such oppor-
tunities to expand our horizons. Eventually we will likely have to amend and
broaden the statement of objectives of the Casualty Actuarial Society.

PROFESSIONALISM

In The Fountainhead, Ayn Rand writes: “Throughout the centurics there
were men who took first steps down new roads armed with nothing but their
own vision.”

Our founders had a vision in 1914. They saw a need. And they formed
(what later became) the Casualty Actuarial Society for the purpose of meeting
that need.

Over the years the CAS has grown in both numbers and stature. It continues
to serve a useful purpose; and incidentally, that purpose has grown over time
(as evidenced by the expansion in 1961 of the statement of objectives of the
CAS). And, as | suggested earlier, our purpose will grow even more in the
future.

The CAS today enjoys a very fine reputation. We are known as a learned
association of professionals with rigorous entry requirements. The value of the
education our members receive enroute to Fellowship is continually demon-
strated by the incredible variety of functions actuaries are called upon to per-
form—as employees and as consultants.

I submit to you that the life force of our reputation derives from two sources,
one from within and one from without:

The contributions from within derive from those who write papers, develop
the Svllabus, construct and grade examinations, put our programs together,
serve on our program panels and workshops, publish our periodicals,
question and challenge conventional wisdom, and otherwise conduct the
business of the CAS.

The contributions from without are accomplished by making sure that all
the work we do is of uniformly high quality and by making sure that we
conduct our business lives with impeccable professional integrity.

History gives us many accounts of great organizations that faltered because
of complacency. They looked too much to past success and too little to current
opportunities. The CAS, in order to continue to thrive and meet its objectives,
requires each of us to contribute to each of the sources of its life force.
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Every talent we have, every ability we possess. every skill we have acquired
is a gift. Tt is a gift entrusted to us to put to good use. Also, it is well to
remember, whether we are consciously aware of it or not, that in the course of
achieving every success we have experienced, someone helped us.

Today you belong to a healthy, vibrant. and forward looking organization.
In a very direct way, it has helped you. I'd like to ask you to ask yourselves
the following question:

“Is the Casualty Actuarial Society better and stronger for having me as a

member?”

If we are the fulfillment of the vision of our founders and if we are to
continue to keep the torch lit, your answer to this question must be a resounding
ves. Your mission is to make sure the answer to this question will always be
yes.



THE VALUATION OF AN INSURANCE COMPANY
FOR AN ACQUISITION INVOLVING A
SECTION 338 TAX ELECTION
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Abstract

One method of treating the acquisition of a stock company is a
Section 338 election. This paper discusses such an election in the ac-
quisition of a stock insurance company. The tax aspects are explored
and the role of the casualty actuary in such an election is discussed.

INTRODUCTION

This paper discusses one possible tax treatment of an insurance company
acquisition and the role of the casualty actuary in this process.

Traditionally, the casualty actuary has played a significant role in the ac-
counting practices of the insurance industry through his work in analyzing loss
reserves. However, actuarial input to other accounting arecas has been more
theoretical than applied. While casualty actuaries have written important papers
and made valuable contributions to statutory accounting and annual statement
accounting, most actuaries do not work closely with accountants.

The average company actuary is probably reasonably familiar with statutory
accounting principles and has some idea of adjustments that must be made for
purposes of generally accepted accounting principles (GAAP). Purchase ac-
counting and tax accounting are probably much more foreign to most casualty
actuaries working for insurance companies.

The purchase of an insurance company is a challenging opportunity for the
casualty actuary, the insurance tax and valuation specialist, and the insurance
accountant to cooperate in a multi-disciplinary team. The Section 338 election
described herein is only one approach to the acquisition of an insurance com-

pany.
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VAT LATION FOR ACQUISIHION
TAX ISSUES

Overview of Section 338

A significant provision of the Tax Equity and Fiscal Responsibility Act of
1982 (“TEFRA") concerns acquisitions of corporations and continues to afford
an opportunity to partially “finance” such acquisittons through tax amortization
of certain nonstatement asscts. Under prior law, certain acquisitions of target
corporations generally took the form of either an asset acquisition or a stock
purchase. If the buyer acquired the asscts from the target corporation, the buyer’s
basis in each purchased asset was that asset’s share of the purchase price. The
selling corporation would not recognize a gain on asset appreciation under
Section 337 if it liquidated within a time frame provided by statute. The buyer
who acquired stock instead of assets could allocate the purchase price to the
underlying assets and liquidate the acquired corporation. . instead, the buyer
did not liguidate the acquired company. the target’s tax attributes (e.g. net
operating loss carryovers) continued and its assets retained their historical basis.

Congress, in what it perceived to be a correction of several arcas of abuse
as well as a simplification of existing law. repealed the stock purchase-liqui-
dations of Section 334(b)(2) and added new Section 338. Among the abuses
which Congress corrected was the buyer’s ability to “pick and choose” in
determining which asscts received a tavorable “step-up in basis™ and which
assets avoided a recapture tax. (A “step-up in basis™ occurs when the buyer is
allowed to increase the tax basis of the target company's assets (generally cost)
to an amount equal to its cost (the current fair market value) of purchasing the
target’s stock). Further, under prior law a buyer was permitted to continue the
target corporation’s tax attributes for a period up to five years after the initial
stock purchase while also treating the transaction as though assets had been
purchased. This extended “survival™ period led both to significant opportunities
to combince the target corporation’s tax attributes with those of the purchasing
corporation as well as major complexities in determining the basis to be assigned
to the target's assets on liquidation. Finally. it consolidated returns were filed
by the acquiring corporation, the recapture tax hability could be deferred and
in certain sttuations avoided.

In general, new Section 338 provides that with respect to certain stock
acquisitions, the purchasing corporation may clect to treat the target corporation
as having sold all of its assets on the stock purchase date und as having purchased
those assets, acting as a new corporation. on the next day. This “sale™ is
gencrally considered tax free to the target corporation to the extent it would
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have been a sale under Section 337. Finally, the tax attributes of the target
corporation, including net operating losses, are not carried over to the new
successor corporation.

Under the new rules, it is no longer necessary to form a new company and
liquidate the target corporation to get a stepped-up basis: the buyer merely needs
to elect to have the stock purchase treated as a direct asset purchase. Thus,
unlike certain instances under the prior law where a legal liquidation of the
acquired corporation was required, outstanding contracts need not be amended,
and permission from state insurance authorities to treat the stock purchase as
an asset acquisition generally should not be needed. Under Section 338, the
election applies only for tax purposes.

The election generally applies to “qualified stock purchases™ (1.R.C. Section
338(d) (3)), of the target corporation’s stock occurring after September 1, 1982.
The term “qualified stock purchase™ contains the same requirements previously
provided in the prior law, i.e., a purchase within a 12-month period of 80% or
more of the voting power and 80% or more of the nonvoting stock (except
nonvoting, nonparticipating preferred stock) of the target corporation. For qual-
ified stock purchases made after August 31, 1982, the purchasing corporation’s
affirmative election of Section 338 must be filed by the later of (1) the 15th day
of the 9th month after the month in which the acquisition date occurs or (2)
December 31, 1985. This means that decisions generally must be made more
quickly now than in the past where, under a prior law, a buyer could wait up
to two years before deciding whether a stepped-up basis was desirable. Once
made, the election is irrevocable.

Tax Implications Resulting from the Election

A Section 338 election is particularly beneficial where the purchase price
cxceeds the book value of the target. Under this election, where the purchase
price of the stock includes a “premium” over book value of the underlying
assets, the basis in the acquired stock, including unsecured liabilities assumed,
may be apportioned to all the acquired assets based on their relative net fair
market values. As we discuss below, the actuary can be instrumental in helping
to determine the fair market value of certain insurance-related intangible assets
and their amortizable lives. In this process, appreciated property obtains a
stepped-up basis, thereby providing an opportunity to obtain higher cost recovery
and amortization deductions. The step-up also serves to reduce potential taxable
gains on future dispositions of such assets. It should be noted that assets that
have depreciated in value will be written down thereby producing the opposite
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results. Further, transactions between the purchasing corporation and the target
or target affiliate for a period of one year both before and after the acquisition
date must be treated as if included as part of the stock acquisition unless the
sale by the target corporation is in the ordinary course of its trade or business,
or one of several other limited exceptions arc met.

The assets of the target corporation will be treated as sold (and purchased)
tor an amount equal to the grossed-up basis of the acquiring corporation in the
stock of the target corporation on the acquisition date. “Grossed-up basis™ is a
tax concept and was devised tor situations where less than 100 percent of the
target’s stock is purchased. If the purchasing corporation owns all of the target
corporation’s outstanding stock. the grossed-up basis of the target corporation’s
stock is 1ts cost basis. If the purchasing corporation acquires less than 100
percent of the target corporation’s stock, an adjustment must be made to the
basis of assets acquired to reflect the continued interest of minority shareholders.
The formula used to determine the grossed-up basis provides that this amount
is to be adjusted under the regulations o be issued for habilities of the target
and other relevant items such as recapture tax liability.

Significant tax benetits are achieved where tdentifiable amortizable intangible
assets are acquired. An intangible assct can be generally defined as a property
or property right which does not have physical existence. but which can be
expected to produce income in future vears.

Intangible assets can be more narrowly categorized as identifiable and uni-
dentifiable (e.g. sec Revenue Ruling No. 74-456). To be considered an identi-
fiable intangible asset for federal income tax purposes. the intangible asset
should be “identifiable™ with specific rights, propertics, relationships, contracts,
or other definable source of income potential. Common examples of identifiable
intangible assets are patents, trademarks, franchises. equity in favorable con-
tracts, and certain types of customer relationships.

Unidentifiable intangible ussets. as the name implies, are valuable properties
whose source of income potential cannot be pinpointed to a specific source.
These assets are often referred to for tax purposes as goodwill (defined more
narrowly as the propensity of satisfied customers to return to the old place of
business resulting in an “excess earnings” potential) and going concern value
(defined as a “turn key™ premium for an established enterprise which can be
expected to conduct a continuous and rcasonably profitable business despite a
change of ownership).
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To justify that an intangible asset is amortizable, a taxpayer, moreover, must
demonstrate that the asset has a life of limited duration and that this life can be
estimated (see Rev. Rule 74-456). Examples of amortizable intangible assets
may include customers and service lists, subscription lists, leaseholds, data-
bases, future profits in existing company contracts, and the sales force.

With respect to property and liability insurance companies, amortizable
intangible assets which the target corporation may possess include the following:

Value of future profits in the loss reserves. This asset may exist because, for
statutory purposes, companies are required to establish loss reserves at undis-
counted values. It appears that the acquirer could take into consideration antic-
ipated future investment income as an amortizable intangible asset.

Value of future profits in the unearned premium reserve. This asset represents
the potential future investment income and underwriting profits on the unearned
portions of policies already written.

Future profits on renewal business. Often referred to as either Book of Business,
Expirations, or Dailies, this asset is the present value of the future profit stream
associated with renewals of the current book. If the target company can accurately
project its renewal business, underwriting profits on renewals, and future in-
vestment income associated with related reserves, then this may represent an
amortizable intangible asset.

In the case of a life insurance company, identifiable amortizable intangible
assets may include the following:

Future profits on business in force. This represents the present value of future
profits on current business. The determination of the value of this asset requires
actuarial analysis of such key items as investment income, assumed rates of
interest, lapse rate and mortality experience.

Policy loans. Life insurance companies are required to make loans to policy-
holders at rates well below the current market rate. No rulings or decisions have
dealt with the values to be assigned to this category of asset, but assigning a
face value with an offset of an equivalent amount of reserves appears to be in
accord with the statute rather than discounting the value of the loan with a
possible increase in income when the loans are repaid.

In the case of both life and property and liability companies, the agency
force may be an identifiable amortizable intangible asset. The value of the
agency force is akin to the present value of future profits produced from new
policyholder premiums. Profit margins from future sales may be based on
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actuarial assumptions similar to those made in valuing current business in force.
However, an additional assumption must be made on th‘ volume and product
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and amortized for tax purposes can be addressed only on a case-by-case basis.

Unresolved issues. In Rev. Proc. 83-57, the Service announced that it is
extensively studying the consequences of an acquisition of a life insurer followed
by a Section 338 election. Accordingly, the Service assumed (among other
issues) a no ruling position regarding:

—whether life insurance reserves may be treated as unsecured labilities for
purposes of determining allocable basis, and

—whether a portion of the purchase price is properly allocable to insurance-
in-force.

When the results of the Service study will be made known cannot be
predicted at this time (November, 1985). However. suffice it to say that reso-
lution of these issues may not occur in the foreseeable future.

Moreover, numerous issues as to the manner of making the election, allo-
cation of the purchase price among others, remain unresolved. This is evidenced
by the language of Section 338 that contains many references where Congress
specifically authorizes the Treasury to promulgate regulations to amplity or
implement this provision.

Evaluating the Trade-Offs. While an election pursuant to Section 338 may
produce fairly significant tax advantages through the amortization of intangibles,
the election is not without tax and economic costs. The extent to which net
operating loss carryovers may be terminated should be included. Depreciation
and investment tax credits claimed by a target corporation prior to the acquisition
may be recaptured as of the date of the acquisition. Depreciation recapture is a
limitation of the amount of long term capital gain arising on the sale of certain
depreciable assets. Gain on the sale of such property is treated under recapture
as ordinary income to the extent of depreciation taken as a deduction in prior
years.

The assets with respect to which such recapture would arise would be valued
at their fair market values as of the date of acquisition and such value would
be used prospectively over several years in calculating depreciation and invest-
ment tax credit.

Recapture income and investment tax credit recapture from a Section 338
election cannot, except for limited exceptions. be included in a consolidated
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return of either the seller or the purchasing corporation. If the target corporation
was not a member of an affiliated group, the recapture income is included in a
short period return (i.e. a return for less than one year) which would also include
the target corporation’s income up through the date of acquisition. If the target
corporation is a member of an affiliated group, a separate return, which reflects
the recapture tax liabilities, is required.

Tax Planning. 1t is clear that opportunities exist to ascribe values to the
amortizable intangibles not found on the statutory statement. Proper tax planning
dictates that early consideration of these issues be incorporated into the nego-
tiations. This planning must be done by a team of qualified tax professionals.
As we shall see, there is ample opportunity for a casualty actuary to participate
on this team.

THE ACTUARY'S ROLE

In order to comply with a Section 338 election one must value all assets as
of the acquisition date. At first this does not seem to be an actuarial problem
since most assets may be valued by auditors and appraisers. There are various
methods based on cost, depreciation and market value that can be used. Actu-
aries, on the other hand, are typically concerned with future events. How many
losses will occur next year? How will the reserves run off ? But, as we’ll see
shortly, the same issues and techniques that an actuary deals with in resolving
“standard actuarial problems” must be dealt with in valuing certain intangible
assets not found on an insurance company’s annual statement.

For purposes of this discussion we will consider two broad categories of
assets. The first category consists of the assets usually found on the asset page
of any company’s annual statement. These include stocks, bonds, cash on hand,
computers, accounts receivable, etc. They are reflected in policyholders’ sur-
plus. In addition, the annual statement discloses elsewhere certain non-admitted
assets excluded from surplus. Considered together, we will refer to these assets
as statement assets. Most of these assets the company or its auditor can value.

Since the annual statement is the basis for calculating taxable income, asset
valuation for a Section 338 election logically should begin here. Of course,
there are complications since the annual statement was not designed for this
purpose. Statutory accounting requires certain types of valuations. In valuing
the statement assets for tax purposes, adjustments must be made. Bonds at
amortized values should reflect market values as of the acquisition date. (A
word to the wise: The market value shown in Schedule D is often not a true
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market value.) Non-admitted assets also must be added back to the balance
sheet at market values. Stocks and real estate must be set at market value as of
the valuation date. All these adjustments are typically performed by auditors
and appraisers.

The other category of assets is not displayed on the annual statement. These
are the intangible assets where actuarial issues such as the run-off of past,
present, or future business are a critical ingredient tn the valuation process and
have significant ramifications in regard to future tax treatment. Identifiable and
unidentifiable intangible assets typically exist in any msurance company for
three reasons:

—~Companies sell insurance.

—Statutory accounting requires that insurance companies keep large sums
of money, or liquid assets, available to puy claims.

—Funds held can earn money.

Consideration of intangible assets is critical for the buyer and seller in negoti-
ating a purchase price.

For a Section 338 election, all assets whether tangible or intangible, amor-
tizable or non-amortizable, should be valued. Furthermore, the IRS has ac-
knowledged in numerous private rulings that certain intangible assets may be
amortizable where the taxpayer mects his burden of proof of three critical
requirerments:

1. The asset must be severable from unidentitiable goodwill; that is, the
specific source(s) of future income potential must be identifiable and
capable of being separately valued:
The asset must be a “wasting asset™; that is, the economic viability of
the identified asset must be of limited duration. such that its value
declines over time: and

3. The remaining period of economic viability must be capable of being

estimated within reasonable business accuracy.

It is here that an actuary can play a major role. Working closely with the tax
specialist, actuarial expertise can be used in several ways. He can provide
formulas to evaluate. He can review historical data to project runoff of current
or future premiums and losses. He can analyze historical cash flows and project
future contingencies.

2
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EXAMPLES OF INTANGIBLE ASSETS OF A TYPICAL INSURANCE COMPANY

As mentioned, there are at least three potentially amortizable intangible
assets common to every insurance company. The first of these deals with the
loss reserves. We refer to it as “Future Profits in the Loss Reserves.” Most loss
reserves are carried at the full amount needed to settle all losses, reported or
not, that have occurred to date. To the extent that the actuary can assist his
client sustain the burden of proof that the reserves are identifiable with a specific
group of insurance exposures; that the life of the reserves is of limited duration;
that the runoff (or consumption) rate of the reserves can be estimated with
reasonable accuracy and that appropriate projections of anticipated investment
income can be allocated to the reserves in question, “Future Profits in the Loss
Reserves” may be valued and amortized for tax purposes.

The second of these deals with the “Future Profits in the Unearned Premium
Reserve.” The unearned premium reserves will earn interest while they are
being held by the insurance company. In addition, as the unearned premium
reserve expires, the losses and expenses incurred may be less than the premium
earned and produce an underwriting profit. The ability to earn investment income
and underwriting profit form a valuable identifiable intangible asset. Again, to
the extent that the actuary can assist with valuing this asset, and demonstrating
that it is a wasting asset, where remaining life can be reasonably estimated, it
may be amortized for tax purposes.

The third identifiable and potentially amortizable intangible asset is the
“Future Profits on Renewals.” A company can reasonably expect to renew
a certain portion of its current book each year. These renewals will generate
reserves and these reserves will possess the intangible assets described above.
To see that this asset exists one need only note that often an insurance company
will be bought solely to acquire its book of business.

The techniques applied in valuing these intangibles is beyond the scope of
this paper. The literature abounds with such. Also, most companies need tailored
methods. A clear understanding is necessary for evaluating the above assets as
well as the unidentifiable intangible assets. Rather than try to give recipes we’ll
discuss concepts underlying these valuations.

The actuary is very familiar with the main tool needed to evaluate many
intangible assets—projection of cash flow. Whether we are dealing with losses
that have already occurred, or losses that will occur in the future, premium, or



236 VALUATION FOR ACQUISITION

expenses, one must project not only the amount that a company will receive or
pay but also the rate of payment. The next step is to determine an approprlate

investment rate. This investment rate need not be based on a company’s in
stment raie. 1ais imvestment rate need not Be 0ased on a company s in-

vestment portfolio. Since stocks and bonds reflect market value for a Section
338 election, the historical interest rate is already removed. U.S. Government
bonds give a reliable indicator of the available interest rate. A mix of U.S.
Government securities, with appropriate durations, can be used for an average
return. It is also possible to incorporate a mix of tax-free municipals. Other
sources are available.

A different discount rate may be needed for projected profits. If projected
investment income is to be used to make future payments, then the discount
rate should equal the investment rate. However, profits available for stockholders
should be discounted with an appropriate rate for the company.

Often the discount rate applied to future profits is greater than the projected
investment yield, reflecting risk considerations. One choice of risk-related dis-
count rate is given by the Capital Asset Pricing Model (CAPM). It’s easy to
use, it’s objective, it can be tailored to a specific company, it's consistent with
the government bond rate. and it is often used for tax valuation purposes.
However, this choice is not without controversy. Other choices also exist.

SOURCES OF DATA

To project the above cash flows a large amount of data is needed. Federal
income taxes are based on the annual statement, so this is the place to start.
Schedules O and P offer information on the loss payment rates. The five-year
history is a good source of calendar year premiums. earnings, and expenses.
The other exhibits are also useful. The amount of additional detailed data
necessary 1s an important consideration for the actuary and the tax specialist.

Knowledge of company operations is critical. As with any other actuarial
area, changes in company operations may inhibit the usefulness of historical
data. Here interviews are important. Senior company management will be
helpful in pointing out problem areas. Annual reports. 10-K's, and even special
data requests may also be helpful. The information developed may suggest
adjustments be made to historical data to reflect new circumstances prior to
making any projections. However, no such adjustment should be made unless
evidence (e.g. new reinsurance contracts. etc.) is available to support the ad-
justment.
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Valuing the future projects on renewals requires special care. The main
problem here is to estimate the portion of business that will be renewed year to
year. For this purpose, most companies rely on runs that start with a fixed block
of business. The portions of this block renewed in succeeding years should be
shown on a “dollar” and a “number of policies” basis. From these runs, future
renewals of current business are predictable. There is, however, a pitfall. Due
to intense competition in recent years, may companies have been canceling
policies and rewriting them on different terms. Often a company will show this
transaction as a Caﬁce”auun, and a new writmg HUVV’%VET, this is in effect a

renewal and it is important to count it as such.

ADDITIONAL ANALYSIS

Before starting to evaluate intangibles some preliminary considerations
should be addressed. It is important that current loss reserves be adequate and
not redundant, so a reserve study may be necessary. The actuary must consider
the effects of any restatements in choosing his parameters. For example, a
severe reserve deficiency will not only require an increase in reserves. It will
also be necessary to adjust historical loss ratios and earnings for this deficiency.
If this isn’t done projected loss ratios will probably be too low, and projected
earnings will probably be too high. A redundancy has the opposite effect.

Once the valuation of the intangible asset is complete, an amortization
schedule of the asset should be prepared. Usually amortization formulas, from
compound interest theory, are sufficient. However, due to certain statutory
accounting principles, straight amortization formulas may distort the deprecia-
tion schedule. For example, since statutory accounting requires an immediate
writeoff of deferred expenses, a projected profit stream may start off negative
in the early years and turn positive later on. In this case, use of a present value
type of amortization would lead to results that aren’t useful for balance sheet
purposes. In these cases it might be better to choose a straight line depreciation
schedule. Another alternative is to combine two or more profit streams from
different intangible assets, so that the net profit stream is positive. Ongoing
consultations between the actuary and the tax specialist may be necessary to
select the most appropriate method.

Since projections of the future are used, and since insurance is a risky
business, some sensitivity analysis may be required. Often an actuary estimates
probabilities of different parameters in order to arrive at expected values. For
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documentation purposes it is probably better to work with an expected scenario
and choose a discount rate that suitably adjusts for the risk involved.

OTHER ACTUARIAL CONSIDERATIONS

There are other factors to consider in a Section 338 election. Other intangible
assets may exist. A company-owned agency force, relationships with indepen-
dent agents. or the right to participate in a pool might generate future profits.

. it - aggeate hard tna claccifu ne aith t. ikl int ihla hat
!n dddi{icﬂ. SOME 4sseis are narg o uafﬁﬁ.y as &iner ldﬂgiule or 1nlangiule Ot

still should be valued. Computer software is a good example. One must also
estimate the effect of income tax on projected future profits. Subsidiaries offer
another complication. A similar analysis of each subsidiary may be needed.

FINAL ACTUARIAL REPORT

When all the analysis is completed a final report is a must. All computations
should be carefully documented along with the selected methods and parameters.
Documentation of data sources and parameter cstimation must be included. If
historical data has been adjusted this must also be cited. Schedules of amorti-
zation of intangible assets should also be included.

This documentation should be kept on file should the nced for it arise.
Again, consultation with the tax specialist is mandatory.

One cannot overemphasize the importance of this final actuarial report.
Accountants and valuation specialists must have an explanation of all the factors
contributing to the analysis in order to proceed with the Section 338 election.
Equally important, in the event of an IRS audit, documentation of results is
crucial to sustaining the taxpayer’s burden of proof. Remember, what’s obvious
today will probably be incomprehensible three years from now. It is better to
overdocument today than to not be able to reconstruct your thinking at an IRS
audit.

CONCLUSION

In summary, the actuary can play a vital role in helping to quantify and
support significant tax benefits in connection with the purchase of an insurance
business. Working closely with tax professionals, he can use his traditional
actuarial tools and professional expertise to help resolve complicated tax and
valuation issues.
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AN INTRODUCTION TO UNDERWRITING PROFIT MODELS

HOWARD C. MAHLER

Abstract

This paper will provide an introduction to the subject of underwriting
profit models in order to provide actuaries with a basic framework for
further study. This paper starts with the premise that the subject of
underwriting profit provisions is an area in which actuaries can be of
assistance in advancing knowledge and developing methods. While this
paper will concentrate on the theoretical aspects, this subject has many
potential practical applications.

The basic structure of the paper is to start off with an extremely
simple model, and then add additional considerations. For clarity, this
paper has focused on one basic method of calculating a provision for
underwriting profits.

There are three basic ingredients used in these models. First, via a
“cashflow” analysis, one estimates the length of time an insurer will
have premium dollars on hand, prior to paying losses and expenses.
Second, one estimates how much investment income an insurer will earn
on this cashflow and the necessary equity backing up the policies.
Finally, one sets the expected return on equity equal to a target return
on equity. One can then solve this equation for the underwriting profit
provision.

INTRODUCTION

The question of what provision for underwriting profits (or losses) to use
has become a topic of increasing discussion over the last decade. Rather than
use traditional numbers found in the actuarial literature, such as 5%, there have
been attempts made to calculate profit provisions. These calculations have
involved making certain assumptions and algebraic derivations. Thus they are
commonly called underwriting profit “models.” This paper will provide an
introduction to the subject, in order to give actuaries a basic framework for
further study.
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In spite of the use in the title of the term underwriting profit, this paper
concentrates on the total return on equity concept. In each particular case, one
can calculate an underwriting margin (positive or negative) that can be expected
to produce the desired or required total return on equity. From this point of
view there is no fundamental difference between a positive and negative under-
writing margin. Equivalently, there is no fundamental difference between a
target combined ratio which is greater than 100% and one that is less than
100%. Rather, they are different points along the same continuum.

The basic structure of the paper will be to start off with an extremely simple
model, and then add additional considerations. (Those readers already familiar
with the subject may want to go directly to the third model or even the summary
of that model.) Care has been taken to list all the assumptions made in each
model. If, in a particular application, one or more of the assumptions are not
reasonable, one can then make the appropriate change in the list of assumptions
and derive modified equations. As with most actuarial calculations, the results
produced by the models are dependent on the assumptions made and input
values used. In actual applications, choosing the appropriate input values is
usually a difficult task. (Examples of this are given in the numerical examples
using model three and in Appendix II.)

For the reader’s convenience, Appendix I contains the definitions of the
various symbols used in this paper.

DEFINITION OF AN UNDERWRITING PROFIT PROVISION

Let P* be the premiums loaded for profits. (The asterisk indicates that P
has been loaded for profit. The author has found that this use of the asterisk to
denote quantities that are loaded for profit avoids much confusion when working
with underwriting profit models.)

In general, ignoring uncollected premium, the underwriting profit provision,
u, is defined so that:

P* = P*u + losses + expenses.

This is the fundamental definition of an underwriting profit provision which
will be used throughout this paper.

Let L be the losses paid by the insurer.

The expenses are made up of T*, those expenses which are proportional to
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the premium, and E, the remaining expenses. We define T*/P* = t. (The use
of the letter 7 comes from premium taxes, which vary with premiums.)

Thus:
Pr(l-wy=L+E+T*=L+ E+ (P*
u=1— @+ (L+E)P*)

In this paper we will usually solve for P*, the premium loaded for profits,
and then use the above equation to get the underwriting provision u.

THE FIRST MODEL
We make the following assumptions:

(0) An insurer writes a set of similar policies. Each policy is expected to be
in effect for one year. (This assumption is labeled zero, since it is so basic that
it is often left unstated.)

(1) The insurer receives premiums P*. All premiums are received exactly
at policy inception.

(2) The insurer pays losses L. All losses are paid exactly one year after
policy inception.

(3) The insurer earns income on its investments at a rate r.

(4) The insurer wishes to break even. (We ignore any investment income
the insurer may earn on its equity.)

For this very simple model, we have ignored expenses, equity, income
taxes, and all the other complications that exist in the real world. Alse, we
have assumed that the insurer merely wishes to break even on average. (Under
certain circumstances this might be true of a non-profit organization, such as
Blue Cross or a Medical Malpractice Joint Underwriting Association.)

We will calculate the premium, P*, the insurer should charge, so that it can
be expected to break even. (Elsewhere in the paper, the insurer will desire a
return on its equity.) Assumptions (1) and (2) imply that the insurer can invest
a sum P* for one year. During that time, rP* investment income will be earned,
due to assumption number (3). So the insurer will have P* + rP* available at
the end of the policy year. It will have to pay out L at that time, due to
assumption (2). Assumption (4) is that the insurer wishes to break even. There-
fore:
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0=P*+ P - L

P* = Li(1+r)

In our special case, t = E = 0. Thus:
u=1-LP*x=1—-(+r= —r

So even this very simple example demonstrates a basic feature. One can
have a negative provision for underwriting “profit”. This will occur when
the target return is relatively small and/or when you can earn a large amount
of investment income (either due to a high rate of return r, or due to a long
period of time between when the premiums are received and losses are paid
out.) In that case, you can achieve the desired total return, even though you
have an underwriting loss. This basic feature has been noted by others, among
them Ferrari [1].

THE SECOND MODEL

Until now, we have dealt with a very simple timing of transactions. The
value of receiving one dollar depends on when one expects to receive it. See,
for example, Kellison [2]. The further in the future one receives it, the less the
dollar is worth to you now. In general, we wish to take the present value of the
income received. (In taking present values in this paper, we will for convenience
always discount to the end of the policy year. Why this is a convenient choice
is explained below. In present value equations using a single discount rate, the
choice of the point in time to which one discounts should not affect the answer,
provided that all terms in the equation are discounted to the same point in time.)

If a dollar is to be received n- years hence, and we discount to the end of
the first year, using an interest rate i, then the present value is (1+#)"' ™.

We modify the assumptions of the first model, (1) and (2), in order to allow
a general timing of the payment of premiums and losses.

(1') The insurer receives premiums P*. (The expected pattern of the timing
of payments is known or can be estimated.)

(2') The insurer pays losses L. (The expected pattern of the timing of
payments is known or can be estimated.)

We modify or add the following assumptions:

(4)The insurer desires a target rate of return of R on the funds it supplies.
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(5a) The insurer supplies funds, S, of its own. These funds exist throughout
the entire policy year in a constant amount.

(5b) The required equity S is proportional to the premium P*, with propor-
tionality constant s = P*/S.

We have assumed the insurer supplies S at the beginning of the policy year,
and desires (1 + R)S back at the end of the policy year.

T e i o ~ Lo o abe o ool oo Dl oy atanl b 1.0 o
For the purposes of this paper, these insurer-supplied funds are stockholder-

supplied equity. However, the reader may find it helpful to think of them as
surplus. These funds in some sense back up a group of policies so that even in
the case of unexpected occurrences the insurer will be able to meet its obligation
of paying claims.

We have yet to include expenses in the model. Examples of categories of
expenses are loss adjustment expense, commissions, other acquisition expenses,
general expenses, and premium taxes. (Investment expenses are presumably
taken into account by subtracting them from the investment rate of return.)
Generally, these expenses can be divided into three types: those that are fixed,
those that vary with premium, and those that vary with losses. In this paper,
the method by which the specific assignments were made will not be explored.
One example of such an assignment is given in Snader [3].

In this paper we will make a slightly different division. First, we include in
L those expenses that are assumed to have the same timing as the loss payments.
(Alternatively they may have been included in the data from which we made
our estimate of the timing of the loss payments.) Next, we separate out those
expenses that vary with premiums, and call them T*. (This almost always
includes premium taxes, usually includes commissions, and sometimes includes
all or part of other acquisition or general expenses.) Whatever expenses are left
are called £. (See Appendix Il for an example of such assignments. Although
the calculations are not shown there, the expense-to-loss ratios depend on a
determination of the relative amount of each type of expense. This depends in
turn on a determination of which expenses are fixed, and which vary with
losses.)

In order to include expenses, we make a minor revision to one of the prior
five assumptions; otherwise, we retain them.

(2") The insurer pays L, losses including those expenses whose timing is
the same as the losses. (The expected pattern of the timing of such payments
is known or can be estimated.)
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We also add two additional assumptions.

(6) The insurer pays 7*, expenses that vary with premiums. (The expected
pattern of the timing of such payments is known or can be estimated.)

(7) The insurer pays expenses E, other than those included in L and T*.
(The expected pattern of the timing of such payments is known or can be
estimated.)
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income on the equity. Second, it earns income on the cashfiow (premiums in,
losses and expenses out.) The present value of the total income earned on the
cashflow is P*' — (L'+E’+T*'). (The primes denote discounting by the rate
of return on investments r.) This is a special case of a more general result. The
present value of the total income on a cashflow is the present value of the
inflows minus the present values of the outflows.

For this second model we have

present value of return on equity =
{(present value of income earned on equity)
+ (present value of income earned on cashflow).

Setting the target return on equity equal to the present value of the return
on equity, we get

RS = 1S + P¥' — (L'+E'+T*)

Note that RS and r§ are assumed to be received at the end of the policy
year, and thus they are already equal to their present values, since we are
discounting to the end of the policy year. (If one had discounted to some other
point in time, then this convenient relationship would no longer hold. This is
why this point in time was chosen for use in these models.)

Let g = P*'/P* = P'/P
h=T*IT* = T'IT

It should be noted that g and /4 depend only on the timing of the premium
flow and the premium tax flow, and not on their overall magnitudes. Thus they
can each be computed from quantities assuming a profit loading of zero for
convenience. This is why we introduce g, & and other similar ratios into the
model equations.
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Then we have

RS =rS+ P¥ — (L' + E' + T*)

.
*
|

=(L" + E"(ris + g — th — Rls)

We use the definition of the underwriting provision, u, when there are
expenses

u=1-t— (E+LyP* =1 -1t~ (ris + g —th — RIS((L'+EN(L+E))

Two points are worth making. First, we have not carefully distinguished
here between surplus and equity. R is meant to represent the target return on
equity, i.e., stockholder-supplied funds. Statutory surplus as defined in the
Annual Statement is numerically different from the concept of equity used here,
which can be thought of as net worth in accordance with Generally Accepted
Accounting Principles (GAAP). It is important that the target return on equity
R and the concept of equity S match each other. Adjustments might be appro-
priate for certain applications of the model. Among areas where adjustments
might be appropriate are the treatment of prepaid expenses and the equity in
the unearned premium reserves, estimated federal income taxes and policyholder
dividends. The details would depend on the source of and the exact meaning
attached to R and §. Unfortunately, the details are beyond the scope of this
paper. See, for example, Section 1 of Appendix I to the Report of the Advisory
Committee to the NAIC Task Force on Profitability and Investment Income [4],
Measurement of Profitability and Treatment of Investment Income in Property
Liability Insurance, pp. 783-799 [5], and Report of the NAIC Investment
Income Task Force, p. 43 [6].

Also, the reader should notice that we have not distinguished between the
rate of return on investments earned on equity and that assigned to the cashflows.
Such a distinction may be appropriate in certain circumstances. For example,
you may allocate different types of investments, different maturities of invest-
ments, etc., to the equity. Also some of the equity may be in fixed assets which
can not be invested. These and other refinements could be reflected in the
model.

This model reduces to the previous model if we take the special case where
E=T*=0, L'=L, P'=(1+r)P, and either R=r or §=0.
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FEDERAL INCOME TAXES
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rate FIT, one rate for all types of income. Also for the moment, let us ignore
the question of the timing of the payment of these income taxes. Then simpl-
istically our former equations would be changed, by multiplying all the income
terms by (1—FIT). The target rate of return, R. is the desired rate of return
after the insurer pays Federal Income Taxes.

RS = (1-FID(rS + P¥ — L — FE —T%)
P*

f

(L' + ENY1=FID)/((ris + g — th)(1=FIT) — Rls)

There is no inherent reason to divide the income into different types. How-
ever, different types of income are treated differently by the federal income tax
system, as is explained in Beckman [7]. Income generally is divided into two
types, underwriting income (or loss) and investment income. We will assume
that the former is taxed at a rate F{TU. In the case of an underwriting loss
rather than a profit, FITU should be the rate at which the income that is offset
by the underwriting loss would have been taxed. (One can usually assume, for
modelling purposes, that the insurer will offset that income which is taxed at
the maximum rate first, before using any remainder to offset income taxed at a
lower rate.)

We will assume that the investment income is taxed at a rate FIT]. (In many
implementations, FITI will be some sort of weighted average of the tax rate on
the different types of investment income. In a later section, an example of such
a calculation is given.)

MODEL THREE
We make the following assumptions in addition to those in mode! two.

(8a) Underwriting income is taxed at a rate F/TU. Underwriting income
equals premiums minus losses and expenses = P* — L — £ ~ T*,

(9a) Investment income is taxed at a rate FIT/. Investment income is defined
as the total income minus underwriting income.

The following assumptions concerning the timing of the payment of taxes
have been found useful.

(8b) Federal income taxes on underwriting are paid at the end of the quarter
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in which the underwriting profit or loss is incurred.' (Ignoring any development
of incurred losses, this leads to four equal payments at times Y3, %, ¥ and 1
year after policy inception.)

(9b) Federal taxes on investment income on the cashflow are paid at the
time losses and expenses are paid.

It is common to make the following assumption, when one has made
assumption (5) concerning the equity.

(9¢) The Federal income taxes on the investment income earned on the
equity are paid at the end of the policy year.

_ present value of federal income taxes on underwriting
federal income taxes on underwriting

The ratio e is dependent only on the timing of the payment of the federal
income taxes on underwriting.

Assumption (8b) leads? to
e=((1+n*" + (1+n* + (1+0" + (1+1°)4
Thus, e is approximately (1+r)*®.

Define a ratio d, similar to the previously defined e.
Let d = (present value of FITI on cashflows)/(FITI on cashflows).

The present value of the total return after taxes can be broken up into five
pieces. We have, where PV stands for present value,

PV (total return after taxes) =

PV(investment income on equity)

— PV(taxes on investment income on equity)

+ PV(total income on the cashflows)

— PV(taxes on underwriting income)

— PV(taxes on investment income on the cashflow)

' The timing of tax payments does not actually conform to this simplifying assumption. Expenses
are deducted from income in accordance with Statutory Accounting Principles (SAP). This advances
the recognition of expenses to an earlier time and makes the resulting tax credit more valuable than
indicated by assumption (8b). On the other hand, incurred losses (including IBNR) generally develop
upwards for long-tailed lines of insurance. This postpones the recognition of losses to a later time
and generally makes the tax credit less valuable than indicated by assumption (8b).

? In a particular application, calculation of a more exact value of ¢ may be appropriate.
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We now need to write down expressions for each of these five pieces.
PV(investment income on equity) = rS
Due to assumptions (9a) and (9c¢),
PV{(tax on investment income on equity) = rSFITI
Also, we have the general result that
PV(total income on the cashflows) = P*' — L' — E' — T*’
By definition,
tax on underwriting income = (P* — L — £ — TH)FITU
By the definition of ¢ we have

PV(tax on underwriting income) = (P* — L — E — T*) FiTUe

We have four out of the five pieces we need. In order to get the fifth piece,
first we will derive an expression for the investment income on the cashflow.
From this will follow the taxes paid on this income and then the present value
of these taxes. Unfortunately, this first step will be a little complicated. We

know that

investment income on cashflow =
(total income on cashflow) — (underwriting income on cashflow).

We know that the present value of the total income on the cashflows is
P*¥ — (L" + E' + T%"). In Appendix Il it is demonstrated, given some not
unreasonable assumptions, that we can remove the present value by dividing by
a factor v, where v = (L' + E' + T*)(L. + E + T*). (It is useful to think of
this as follows. Multiplying by v would adjust the timing to when the losses
and expenses are paid, which is the timing of the total income on the cashflow.

Dividing by v backs that timing out.) Therefore

investment income on the cashflows =
(P¥ = L' — E'" —=T*)y —(P* — L - E—T%

income tax on investment income on the cashflow =
FITI(P*' — L' — E' =T*)/y — (P¥ — L - k£ —T%))

Then we have from the definition of d

PV(income tax on investment income on the cashflow) =
FITIA((P* — L' — E" —T* )y — (P* ~ L — E -T*))
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Assumption (9b) leads to
d=L"+E +T*YNYIL+E+T*H=y
Then we have

PV(income tax on investment income on cashflow)

= FITIy(P*' —L' — E' —T*)/y + (L +E +T* — P¥%))
= FITKP* — L' — E' ~T* + L'+ E'" + T — P*y)
= FITI(P*' — P*y)

This same result can be arrived at starting with a different approach. See
Appendix VI for this approach, using a so-called investment balance for taxes.

Thus, the basic equation becomes

RS = rS —rSFITI +P* ~L'~E'~T*' —FITUe(P*~L—E—T)
— FITI(P*' — P*y)

We can solve for P*

_ L'+ E' — FITUe(L +E)
(ris + g1 —FIT) —th — Ris + FITly — (1—DFITUe

*

However, y depends in turn on P*, i.e., on the profit loading
y=(L"+E + uP)L + E + tP¥)

Fortunately, vy is usually relatively insensitive to the profit loading, since it
is a weighted average of (L'+E")/(L+E) and h, wiih weights L+E and tP*.

One can solve numerically via iteration on P* and y. (For the usual range
of input values, the iteration converges very quickly.)

As usual one now uses the defining equation to get the underwriting provision u
u=1~—(+ (L+EYP%

With this third model, we have reached a level of refinement which can be
used for real world applications. We will later show how a few more refinements
can be added, but of course at the cost of further complexity in the model. (As
with any actuarial subject, the question of whether a particular technical refine-
ment is worthwhile for a particular application is a matter of judgment. One
has to compare the benefits of the extra precision with the extra complications
introduced to the model and the cost of obtaining the additional data required.)
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SUMMARY OF MODEL THREE

One can solve numerically via iteration on P* and v

_ L'+ E' — FITUe(L +E)
(ris + g)1—FITI) —th — R/s + FITIy — (1-0)FITUe

y=( +E + mPL + E + 1P¥)

%

Then the underwriting provision is given by
u=1- @+ (L+EYP*
The following assumptions were used.

(0) An insurer writes a set of similar policies. Each policy is expected to be
in effect for one year.

(1) The insurer receives premiums P*. (The expected pattern of the timing
of payments is known or can be estimated.)

(2) The insurer pays losses L, including those expenses whose timing is the
same as the losses. (The expected pattern of the timing of such payments is
known or can be estimated.)

(3) The insurer earns income on its investments at a rate r.
{4) The insurer desires a target rate of return on equity of R.

(5) The insurer supplies funds, §. of its own. This equity is around through-
out the entire policy year in a constant amount. The required equity is propor-
tional to the premium, with proportionality constant 5 =P*/§.

(6) The insurer pays T*, expenses that vary with premiums. (The expected
pattern of the timing of such payments is known or can be estimated.)

(7) The insurer pays expenses E, other than those included in L and T*.
(The expected pattern of the timing of such payments is known or can be
estimated. )

(8) Underwnting income is taxed at a rate FITU. Underwriting income
equals premiums minus losses and expenses = P* — L — F — T*. Federal
income taxes on underwriting are paid at the end of the quarter in which the
underwriting profit or loss is incurred. (Ignoring any development of incurred
losses, this leads to four equal payments at times Y4, %, ¥4 and | year after
policy inception.)
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(9) Investment income is taxed at a rate FI71. Investment income is defined
as the total income minus underwriting income. Federal income taxes on the
investment income earned on the equity, are paid at the end of the policy year.

Federal income taxes on investment income earned on the cashflow are paid at
the time losses and expenses are paid.

NUMERICAL EXAMPLES USING THE THIRD MODEL

We will use all of the assumptions of this third model, including (8b), (9b),
and (9¢). We will choose input values which are not unreasonable for a real
world insurer. However, these values are for illustrative purposes only. In any
application it is very important to choose a consistent set of inputs. If the
different input values are chosen independently of each other, one can get
unusual results to say the least. Just as in ratemaking, the answer is only as
valid as the assumptions of the method and the input values chosen.

For the target rate of return on equity after taxes, R, we will use 17%. This
may have been given to the actuary by the president of the insurer, the com-
missioner of insurance, etc. It may have been estimated by looking at the rates
of return earned by similar firms or industries. It may have been estimated by
using an economic model such as the Capital Asset Pricing Model (CAPM),
together with the observed “risk free” rate of return available on U.S. Treasury
securities of the appropriate maturities. It may have been estimated by looking
at the past results for that line of insurance in competitive markets. Of course,
another method or combination of methods may have been used.

There are a number of questions of interest concerning the rate of return on
equity. Should rates of return be measured with respect to book or market value
of equity? Should the target rate of return differ by line of insurance? How does
the target rate of return depend on the other inputs, among them the types of
investments and the premium-to-equity ratio?

For the premium-to-equity ratio, s, we will use a value of 2. In the model,
we are really interested in stockholder equity, rather than statutory surplus.
Therefore, as stated previously, if one is trying to estimate s from data, various
adjustments may have to be made to switch from the Annual Statement to
Generally Accepted Accounting Principles (GAAP). As stated above, an im-
portant consideration is whether one should use the book or market value of
equity. Another important consideration would be whether to adjust the equity
for the effect of the discounting of loss reserves. Another question of interest
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is whether different lines of insurance have different acceptable or desirable
premium-to-equity ratios.

For the rate of return on investments before taxes, r, we will use 10%. The
rate of return, as well as the tax rate, depend on what types of investment the
insurer will hold. Also, an insurer who takes more investment risk will generally
expect a higher target rate of retumn, R. One of the questions of interest is
whether to use the “imbedded” yields an insurer can be expected to earn on his
current portfolio, or whether to use the current yields one could obtain by
investing fresh funds. Generally, the rate of return on investments should be
measured after taking into account necessary investment expense.

For the federal income tax rate on investment income, FITI, we will use
28%. As stated previously, the value of F/TI would depend on the proportion
of each type of asset held, and the rate of return cxpected on each type of asset.

For the federal income tax rate on underwriting income, FITU, we will use
46%. This is the current maximum corporate rate. In the event of an underwriting
loss, the 46% tax rate would only be appropriate if there was sufficient income
that would be taxed at the 46% rate, so as to be offset by the underwriting loss.
As pointed out in Beckman [7], interest from tax-exempt bonds is not taxed
and long term capital gains are taxed at less than the corporate rate. (While
85% of dividends on stocks can be deducted from net taxable income, the
remaining 15% is taxable at the full corporate rate. )

We will use a ratio of variable expenses to premium, 7, of 20%.

For simplicity, we will assume here that all the premium is collected at
policy inception, and that all the variable expenses are paid out at policy
inception. Also, we will assume that fixed cxpenses and losses are all paid
precisely N years after policy inception. (These are unrealistic simplifications,
but in Appendix Il is a numerical example for private passenger automobile
property damage liability, with more realistic timing assumptions.)

Assuming an arbitrary $800 for losses plus fixed expenses, we get

Nyears) P* ¥ Underwriting Profit Provisions
5 $1.044 1.059 3.4%
1.0 980 1.020 —1.6%
1.5 916 981 -7.3%

2.0 853 .943 - 13.8%
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Note: as we shall see later, the profit provision calculated above for N=2
assumes that there is income taxable at 46%, available from other than the
investment income on this line of insurance and the equity backing it up, that
can be offset by a portion of the projected underwriting loss.

We notice that all other things being equal, the larger N, i.e., the longer
tailed the line of insurance, the more negative the profit provision. As has been
mentioned above, there is no fundamental difference between positive and
negative underwriting margins. We can see here that they are merely different
points along the same continuum.

SENSITIVITY TO VARIOUS INPUTS

It is of interest to see how the underwriting profit provision changes as we
vary one input at a time. Above we have already seen how the profit provision
varies as the length of the cashflow changes. Let’s now hold the length of the
cashflow constant at N=1. For the set of inputs used above this gave a profit
provision of —1.6%.

As expected, if you desire a higher target rate of return, you must have a
more positive underwriting profit provision, all other things being equal. If you
can earn a higher return on investments, you can afford a less positive under-
writing profit provision. When you have a higher premium-to-equity ratio, you
can afford a less positive profit provision. When you have a projected under-
writing loss, the higher the federal income tax rate on underwriting, the more
negative the profit provision, since the “tax shield” is worth more. The situation
is reversed when you project an underwriting gain. The profit provision gets
more sensitive to FITU as the profit provision gets further from zero. Finally,
the higher the rate of federal income taxes on investments, the more positive
the profit provision. The profit provision gets more sensitive to the value of
FITI as the cashflow gets longer, and thus more investment income can be
earned.

We have varied the different inputs one at a time. In actual practice, many
of the inputs will depend on one another. Thus, one can not just vary them
independently of each other. However, it is still enlightening to see how the
profit provision varies, all other things being equal.

One could perform a similar analysis using differentiation. This is outlined
in Appendix V.
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SENSITIVITY TO VARIOUS INPUTS

Underwriting
Profit
Assumptions Provision
target return on equity
R=16% —2.6%
R=17% - 1.6%
R=18% -0.7%
rate of return on investments
r=9% 0.1%
r=10% —1.6%
r=11% —3.4%
premium-to-equity ratio
s=1.5 1.5%
s=2.0 —1.6%
§=2.5 —-3.5%
federal income tax rate on underwriting
FITU=30% —1.2%
FITU=46% - 1.6%
federal income tax rate on investments
FITI=18% —4.1%
FITI=28% -1.6%

FITI=38% 0.8%
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A COMPUTATION OF THE AVERAGE INCOME TAX RATE ON INVESTMENTS

In the previous numerical examples, a 10% rate of return and a 28% tax
rate on investment income were used. Here is one possible source for these
values.

Make the following specific assumptions as to the source of the projected
invested income. Assume that the insurer will have his assets invested solely
in bonds, one half taxable, and one half tax-exempt. Further, assume that
the taxable bonds will return 129% before taxes, while the tax-exempts will
earn 8%. Then the rate of return, r, and the federal income tax rate on
investment income, FITI, can be computed as follows.

Type of Asset Amount  Rate of Return Income Tax rate  Tax
Taxable Bond 5 12% .06 46% .0276
Tax-Exempt Bond .5 8% .04 0% 0
Combined 1.0 10 0276

Thus the combined rate of return is .10/1.0 = 10%. The combined tax rate
15 .0276/.10 = 27.6%, or 28% to the nearest percent. This matches the choices
of r=10% and FITI=28%, which were made for the numerical models above.

TAX SHIELD, UNDERWRITING LOSSES

We have seen that underwriting losses can be used to offset otherwise taxable
income. As such they have a potential value, which can be only realized if there
is taxable income available to be offset. In general, when one has a negative
provision for underwriting profits, one should check whether income is available
to be offset that would have been taxed at the value of FITU chosen.

Here we will check our numerical examples from above to see whether there
is enough income taxed at 46%, so as to be offset by our projected underwriting
loss. We will use the distribution of assets and rates of return on assets from
the previous section.

How much taxable income is available to be offset by an underwriting loss?
From the previous section, .06/.10 = 60% of the pre-tax investment income is
taxable (at 46%).
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We have for model three

investment income on the cashflows

=(P¥ — L' — E —T*¥)/y —(P* — L — F —T%)

=Pty =P — (L' + E'" +T¥WL + FE+ T + E +T*)+
(L +E+T%)

= P*'/y — P* = P¥(g/y — 1)

However, we also have

investment income on the equity = P*r/s

Therefore, adding the two sources of investment income gives
investment income = P*(r/s + g/y — 1)

In this case, 60% of the investment income is taxable (at 46%).
taxable investment income = .6P*(ris + giv — 1)

If our projected underwriting loss exceeded our projected income taxable at
46%, it might no longer be appropriate to take FITU = 46%. It might still be
appropriate if there is taxable income somewhere else which may be offset. For
example, the use of Tax-Loss Carry-Overs allows interactions between separate
calendar years, as explained in Beckman {7]. Also there may be taxable income
generated elsewhere in the corporation. However, this gets into a complicated
question of possible subsidies across lines of insurance or states, or even the
question of the insurer being part of a larger corporate structure. While this
subject 1s beyond the scope of this paper, the value of being able to use these
tax credits available due to underwriting losses is far from merely theoretical.
In part, it may explain some of the takeovers of property casualty insurers by
firms outside the industry, as well as attempts at diversification by property
casualty insurers.

Here we will assume that there is no taxable income available from other
sources. Then the expected underwriting loss will exceed the income taxable at
46% if

L+ E+T+—P*> 6P*ris + giv — 1)
(L + E + T*/P* — | > 6(ris + giv— 1)
—u > 6(ris + giy — 1)
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Note that, more generally, .6 would be that portion of investment income
that is taxable at 46%.

In our numerical examples, the expected underwriting loss will exceed the
income taxable at 46% if

—.6(.102 + 1.1/y = 1) > u
or, since y is approximately one for all our numerical examples,
—9% > u

This is the case for our numerical example with N = 2. The calculated
underwriting loss exceeds the taxable income available to offset it. (Here, for
simplicity, we have assumed that we have income which is either taxed at 46%
or is tax-exempt. In general there are other types of income. In certain cases
the use of statutory tax rates may not be appropriate. See, for example, Report
of the NAIC Investment Income Task Force, p. 23 [6].)

So unless one assumes that taxable income is available from somewhere
else, the calculated underwriting provision for ¥ = 2 is incorrect. In this case,
a solution is to set FIT] = FITU = 0%. When we recalculate the profit provision
it increases from —13.8% to —13.0%. This difference becomes more pro-
nounced as N gets larger.

In general, a good check of any calculated profit provision is to rerun the
calculation with FIT! = FITU = 0. The profit provision in the former case
should not be more negative than the latter case. However, even if this test is
passed, you may still have a value for FITU which is too large, if some of the
income to be offset is taxed at a lower rate, e.g., long term capital gains.

NON-ITERATIVE APPROXIMATIONS TO MODEL THREE

Instead of the above iterative solution, one could solve for P* in closed
form, but the solution of the quadratic equation is less than illuminating. Except
when dealing with long-tailed lines of insurance, (e.g. one in which loss pay-
ments take as long as for workers’ compensation or longer), one can approximate
the iterative solution fairly closely in either of two ways. One can either just
set y = | in the above equation for P*, or one can do so in the previous equation
for the rate of return. In the latter case, we would get:

. - (L' + E"Y(1 — FITI) — (E + L)FITUe — FITI)
(ris + g — th)(1 — FITI) — R/s — (1 — t)(FITUe — FITI)
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THE TIMING OF INVESTMENT TAXES ON THE CASHFLOWS

One can get slightly different equations from those in the third model
depending on what timing assumptions you make concerning the timing of the
federal income taxes on investment income carned on the cashflows. In Appen-
dix IV a result is developed for a slightly different assumption than (9b).

When using these models for a specific case, it may be possible to more
carefully determine when these taxes will be paid. Generally, interest income
is taxed as accrued, but capital gains are only taxed as realized. While different
assummptions about the timing of the payments of these taxes can have a large
effect for a long tailed line of insurance, a further exploration of this subject is
beyond the scope of this paper.

FOURTH MODEL
FINANCE CHARGE INCOME AND UNCOLLECTED PREMIUM

In calculating underwriting profit provisions two additional refinements have
been found useful for certain applications. These will be presented as good
examples of how additional refinements can be incorporated into the basic
model. (In one actual application, finance charge income lowered the profit
provision by about 1%, while carned but uncollected premium raised it by about
1/12%.)

Many insurers have finance plans under which the premium is paid in
installments. The insured ts often charged for this privilege. [t scems appropriate
to include separate consideration of this finance charge income, if it has not
somehow already been included clsewhere, when such financing is responsible
for a significant delay in the premium inflow. and the expenses relating to
financing are included in the expenses used elsewhere in the ratemaking process.

Insurers usually do not collect all the premium that is “carned.” Therefore,
it seems appropriate to make the manual rate larger than otherwise determined,
in order to end up collecting the desired premium. (This effect of the earned
but uncollected premium can be incorporated somewhere else in the ratemaking
process instead. However, it can be conveniently incorporated here.)

For this fourth model, we add the following two assumptions.

(10) The insurer receives finance charge income F*. (The expected pattern
of the timing of such payments is known or can be estimated.) Define v =
F/P = F*/P*  the ratio of finance charge incomc to premium. Let f = F'/F =
F*F*,
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(11) The insurer will collect only a portion of the premiums which are
earned. Define ¢ = ratio of earned but uncollected premium to earned premium.
(In the case of a cancelled policy, one should distinguish between any uncol-
lected portion of the original written premium that was never earned and the
uncollected portion of the earned premium.)

To include finance charge income in the equations from model three, one
merely includes it as another inflow, similar to premium. The basic equation
becomes

RS = rS — rSFITI + (P* + F*' — L' — E' — T*")
~ FITUe(P* + F* — L — E — T*) — FITI(P* + F*' — P*y — F*y)
When we divide by P* and solve for P* we get
L' + E' ~ FITUe«L + E)

[(r/s + g+ vf X1 — FITH) —th — R/s]
+ FITIy(1 + v) ~ (1 + v —FITUe

where as before this can be solved by iteration on P* and y, where y is
yv=(L"+E +T*Y(L+E+T*h=(L+E + P + E + tP¥)

Now we wish to calculate the underwriting profit provision, taking into
account earned but uncollected premium. The usual manner in which # would
be used to construct manual rates is

(earned manual premium)(l — u) = losses + expenses.

The proper collected premium is by definition P*. By the definition of ¢,
P*/(1 — ¢) is the proper earned manual premium, since ¢ = (earned manual
premium — P*)/earned manual premium. The variable expenses are assumed
to be ¢ times the collected premium P*, rather than the earned manual premium.
(This is true for the premium taxes, and is not an unreasonable asumption for
other expense items which might be treated as variable, such as commissions.)

Then we would have
P¥1l —wy(l —¢)y=L + E + tP*
=1—(l =)t + (L + E)P¥)

This differs from the equation in mode! three, by the addition of a factor of
I — c. It reduces to the prior case when ¢ = 0.
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FIFTH MODEL
EQUITY AS A FLOW

Starting with the second model, we have assumed in assumption (5) that
the equity exists throughout the policy year in a constant amount. This simple
assumption can be generalized, by thinking of equity as a flow.

{5’) The insurer supplies funds of its own, which we will call equity. The
amount of equity backing up the policy varies over time. (It is zero in the distant
past as well as in the far future.) Let W be the equity inflow and outflow, by
quarter. Then the cumulative sum by quarter of W is the desired equity flow by
quarter.

When treating equity as a flow, it has been found useful to introduce two
new terms, the “cumulative premium-to-equity ratio” and the “initial premium-
to-equity ratio.” Depending on the equity flow chosen, one or the other
concept is usually more readily applicable.

The cumulative premium-to-equity ratio is the usual concept of premium to
equity as used elsewhere in insurance. Conceptually, it is the ratio one would
observe if one looked at the insurer, or perhaps more abstractly, looked at just
that portion of the insurer writing this line of business. Given a particular equity
flow, the cumulative premium-to-equity ratio observed would usually depend
on what growth rate one assumed for premium. Sometimes it is calculated using
a zero growth rate, the so-called steady state case.

The initial premium-to-equity ratio ts the ratio of premiums to equity at the
inception of the policy.

We now assume

(5b") Let S be either the cumulative equity or the initial equity, whichever
concept is applicable. Then the required equity S is proportional to the premium
P*, with proportionality constant s = P#/S.

For the basic equation we need the present value of the total return we wish
to earn after taxes. As before, when dealing with the cashflows, this is just the
present value of the inflows of equity minus the present value of the outflows
of equity, at the target rate of return R.? The present value of the investment

* This assumes that the target return on equity is received at the time(s) the surplus tlows out.
While other assumptions could be made as to when the return on equity is received and/or paid
out. a further discussion of this subject is beyond the scope of this paper.
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income on the equity is similar, but instead uses the rate of return r. (There is
nothing analogous to underwriting income as on the cashflows, since the sum
of W is zero.)

Let’s define W' = W discounted by r
W' = W discounted by R.

Then, the desired present value of the total return is W”. PV (investment income
on equity) = W',

If we assume

(9b’) The federal income taxes on the investment income earned on the
equity are paid as the equity flows out.

Then we have an analogy to the cashflow case
PV(tax on investment income on equity) = FITI W’
Thus the basic equation from model four becomes
W' =W — WFITI + (P* + F* — L' — F’' —T*%)
= FITUe(P* + F* — L — E — T*) —FITI(P* + F*' — P*y — F*y)
Let w =W/S, then when we divide by P* and solve for P* we get
L'+ E' — FITUe(L + E)

[(w'/s + g + v — FITI) —th — w”/s]
+ FITIy(t +v) — (1 + v —)FITUe

Px =

As before this can be solved by iteration on P* and y, where y is
y=(L +E +T*YL+E+T"H=(L"+E + uPL + E + 1tP¥

Our previous models are just special cases of this one. There we had the
equity flow in at policy inception, and flow out one year later. This is sometimes
referred to as the “block equity” assumption. In this case, w is a vector with
value 1 at time = O and value —1 at time = 1 year. Thus

w=0+r-1=r
Similarly
w'=(l+R)~-1=R,.

If one makes those substitutions in the equations here, and one uses the
cumulative equity concept, the equations reduce to those in the fourth model.
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For illustrative purposes, here is an example of an equity flow that varies
over time. Set the equity backing up the policy at an initial value, and then
have a decreasing balance as losses and expenses are paid. When the last
payment is made, there is no longer any equity backing up this policy or
group of similar policies. Let

w=1000,.. — L+ E+T*/sum(lL + E + T%)

where 1,0.0,0... is a vector by quarters, and represents an inflow of 1 at time
£
1

nale N Hara 7 <+ F £+ T* 1 alg “ hy mnartar {(In tha

EQuaL\ U, nére o T is dis0 d S Oy quarter. (in (nc
rest of the paper, this expression has represented their sum, which is a scalar
rather than a vector quantity.) As we perform an iterative solution, 7* will vary
with each iteration, and thus so will w. The sumof w = 1 — | = ( as expected,

since equity that flows in eventually flows out.

In this case, s represents the initial premium-to-equity ratio. If one used the
same s, this flow would assign more cumulative equity to longer tailed lines
than shorter tailed lines.

As an alternative, one could construct a flow based on when losses are
incurred. One could of course come up with other timings of equity. One could
have the desired amount of equity be determined in some manner other than as
a proportion to premium.

In any case, it is important to remember that an insurer’s entire equity is in
theory available to back up each policy. So while the assignment of equity to a
particular line or state may be a necessary assumption for the running of these
profit models, one should not take it too literally. One must remember that an
insurer who writes more than one line of insurance, in more than one state,
would generally need less equity per dollar of premium, than one which wrote
only a single line in a single state. When assigning equity for the purposes of
these models, one should not ignore the spreading of risk available in multi-
state and multi-line operations, since this goes to the very heart of the insurance
process.

MISCELIL.ANEOUS

Unless one thinks about it carefully, it is easy to misinterpret a negative
underwriting profit provision, particularly a very negative one such as —50%.
Since P* = (L + E + T*)/(1 — w), if u =—50%, the premium is two-thirds
of the losses and expenses. Presumably, in this extreme case, one can earn
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enough investment income during the long time prior to paying the losses so
that one will have the money available to pay the losses, as well as enough left
over to earn the target return. For example, this might be the case for lifetime
escalating benefits to widows under workers’ compensation. An underwriting
profit provision of —100% would mean that the premium was one half of the
losses and expenses, something far from unheard of for annuities.

In this paper, the concept of return on equity has been used. This concept
may not be appropriate for a mutual rather than stock insurer. One can adapt
the methods presented here to deal with some other concept more appropriate
for a mutual insurer. One example might be to substitute a target return on
policyholder’s surplus. This would relate to a desired growth rate in surplus.
Another example might be to substitute a desired return on premiums, so as to
cover “‘contingencies.”

Dividends to policyholders have not been dealt with in this paper. However,
anticipated or desired dividends could be incorporated into the models, as
another outflow. If used in a ratemaking context, one must take care to be
consistent with whatever ratemaking methodology has been used, i.e., one must
not double count anticipated dividends.

Throughout this paper, we have assumed that one knows, or can make an
unbiased estimate of, the input values to be used. Specifically, it is assumed,
when using these methods in a ratemaking context, that some ratemaking method
has been used in order to make an unbiased estimate of the expected value of
losses and expenses. (If the estimation method is biased, the method should be
changed so as to remove the bias. Methods of estimating future losses and
expenses are dealt with extensively in the actuarial literature, and specifically
on the Casualty Actuarial Society syllabus of the examination on the principles
of ratemaking.) The fact that actual losses will vary around the prediction is an
inherent feature of the insurance business. Such uncertainty should be taken
into account either explicitly or implicitly when choosing a target rate of return
for an insurer.

CONCLUDING REMARKS

There are a number of methods of reflecting the total return needs of an
insurer. There is no single best procedure or method. However, for the sake of
clarity, this paper has focused on one basic method of calculating a provision
for underwriting profits. As with most actuarial questions, the choice of what
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method to use will depend on the peculiarities of the situation and the purpose
for which it is to be used. One should carefully examine the assumptions
underlying any model, as well as the choice of inputs, in order to see whether
they are reasonable for the given situation.

In this paper, the author has been very careful to state all the assumptions
used. The author feels that such a careful axiomatic approach is necessary, since
it is very easy to get absurd results by mixing inconsistent assumptions or using
input values which do not match the assumptions. Also, this approach allows
one to examine the underlying assumptions and change those which may not
hold for a particular application. For a particular application, it may be useful
to modify a particular assumption in order to test the sensitivity of the result to
this assumption.

This paper is not meant to address such controversial issues as whether
investment income should be explicitly reflected when rate filings are submitted
to state insurance departments. Rather this paper starts with the premise that
the subject of underwriting profit provisions is an area in which actuaries can
be of assistance in advancing knowledge and developing methods.

While this paper has concentrated on the theoretical aspects, this subject has
many practical applications. A company actuary might use it to help price a
product. or to estimate what rate of return on equity has been earned on a
certain book of business. In reguiated lines of insurance, these methods could
be used by an actuary in regulation either to set rates or to examine the
reasonableness of filed rates.

If one wants to employ these methods for some practical application, one
runs into the usual problem with most actuarial methods: one must choose or
determine the input values to use. In most cases the input values chosen will
have an extremely large effect on the resulting answer. It is important to choose
a consistent set of input values.

The input values should reflect the economic climate one expects during the
relevant period of time. For example, as we have secn, the underwriting profit
provision depends on the rate of return available from investments. A model
allows one to adjust the profit provision for changing economic conditions.
What may have been a proper claim cost trend in the 1950’s, may no longer
be appropriate for the 1980’s. Similarly. a proper underwriting provision then
may no longer be appropriate now.
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APPENDIX 1
NOTATION AND VARIABLE NAMES

All discounting is to the end of the policy year.

The present value using the rate of return r is denoted by a single prime.
The present value using the rate of return R is denoted by a double prime.
An asterisk indicates that a quantity is loaded for profits.

u = provision for underwritng profit

r = rate of return on insurers investments (before taxes)

R = target rate of return on equity (after taxes)

FITI = federal income tax rate on investments

FITU = federal income tax rate on underwriting

S = stockholders’ equity or insurer's net worth (although it is useful to think
of this as surplus, the two concepts are not numerically equivalent)

P = premiums (based on 0% profit loading)

P* = premiums loaded for profit.

s = P*§

L = losses, including those expenses whose timing is the same as losses

E = expenses which are not included in either L or T

7 = expenses which are proportional to premium {(based on premium with 0%
profit loading)

F = finance charge income (based on premium with 0% profit loading)

t = T/P = T*/P*

v=F/P = F*P*

g = P'/P = P*/P*
h =T/ = T*/T*
f= F'F = F*F*
e = (present value of federal income taxes on underwriting)/(federal income

taxes on underwriting)

d = (present value of federal income taxes on investment)/(federal income taxes
on investment)

y=(L"+ E'"+ T¥ WL + E + T*) = (present value of the outflows)/(out-
flows)

¢ = (earned but uncollected premium)/(earned premium)

W = surplus inflow and outflow

w = W/§
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APPENDIX 11
PRIVATE PASSENGER AUTO PDL

Here we will present, for illustrative purposes only, a numerical example
using the third model. The timing of the cashflows presented here is similar to
that which one might find for a real insurer. Many of the inputs are the same
as the previous numerical examples we have presented for model three.

This example is for property damage liability coverage for private passenger
automobile insurance. In practice it is not unreasonable to calculate separate
profit provisions for different sublines of automobile insurance. One reasonable
division is into bodily injury coverages, property damage liability, and physical
damage coverages. The profit provision and the length of the loss flow for
property damage liability is generally between the other two. Bodily injury
coverages generally have the longest loss flow, and thus the smallest (least
positive or most negative) profit provision of the three.

The timing of premium and loss payments used here is based on the timing
of payments observed in one state in the recent past.

It is also necessary to estimate the magnitude and timing of the different
expense payments. In the numerical example given here, certain assumptions
have been made concerning expenses. (These particular assumptions are of little
importance in and of themselves. However, they do serve to illustrate one
method of estimating the timing of expense payments for modelling purposes.)

The allocated loss adjustment expense and one half of the unallocated loss
adjustment expense have been assumed to be expended with the losses and are
included in the loss flow. The remaining half of the unallocated loss adjustment
expense is assumed to be expended evenly throughout the policy year. Other
acquisition expense is assumed to be expended evenly over the five month
period beginning with the first month prior to the policy effective date. General
expenses are used here to mean expenses other than loss adjustment expense,
commissions, other acquisition, and premium taxes. General expenses are as-
sumed to be expended 30% in the three months prior to the policy effective
date, while 70% is expended evenly during the policy year. We assume that
general expenses and unallocated loss adjustment expense are equal in size, and
other acquisition expense is half of these. (This assumption is a fair approxi-
mation for a typical agency company writing private passenger automobile
insurance.) Also, let company expense be defined as general expense, plus other
acquisition expense, plus one half of unallocated claims expense. Then our
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assumptions lead to a payment pattern for company expense of 20%, 30%,
20%, 15%, 15%, starting in the Oth quarter. (The policy effective date is the
end of the Oth quarter and the beginning of the 1st quarter.) Commission expense
is assumed to be paid as premiums are received. Premium taxes are assumed
to be paid quarterly.

In general, the assignment of expenses to either the fixed category or the
group that varies with premium should match the assumptions used elsewhere
in the ratemaking methodology. This assignment has an important numerical
impact on the calculated profit provision when the profit provision is far from
zero, ¢.g., —10% or less. In the numerical example given here, only premium
taxes are assumed to vary with premiums. This is why the ratio of variable
expenses to premium, ¢, is only 2.3%.

Answers and Inputs

u = provision for underwriting profits = 3.7%

P* = 1039.7
P = 1000.000
T = 23.000
t=T/P = .023

g = PP = 1.0668
h =TT = 1.0492

E = 367.594
L = 609.406
E’ = 392373
L' = 610.700
e = 1.0368
R=17%

= 10%
FITU = 46%
FITI = 28%
s =2

y=(L" + E + mPYHI(L + E + P*) = 1.0272
Private Passenger Auto PDL Cashflows

Based on a company expense-to-loss ratio of .2545. Based on a commission
expense-to-loss ratio of .3487. (Assume 0% profit loading for determining the
weights of the various cashflows.)
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Premium Company Commission

Quarter Premium Tax Expense Expense Loss
0 31.100 31.019 6.609
| 334.000 5.750 46.528 70.975 29.046
2 467.900 5.750 31.019 99.429 92.869
3 143.200 5.750 23.264 30.430 110.577
4 23.800 5.750 23.264 5.057 125.722
5 111.860
6 56.510
7 27.011
8 16.311
9 9.562
10 7.676
11 4.630
12 3.447
13 3.928
14 3.235
15 1.928
16 1.692
17 1.455
18 0.851
19 0.669
20 0.427
Sum 1000.000 23.000 155.094 212.500 609.406

Note: one half of the unallocated loss adjustment expense is contained in
“company expenses” and “losses.” All the allocated loss adjustment expense is
contained in the “losses.”

All discounting of cashflows is to the end of the policy year. Cashflows are
assumed to occur in the middle of the relevant quarter. For example

P = GLDA.D” + 339)(1.1)% + 467.9(1.1)"° +

(143.2)(1. 1) + (23.8)1.1)'*
= 1066.8
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APPENDIX 11I
PRESENT VALUE OF INCOME ON THE CASHFLOW

In developing model three, we used a relationship between the total income
on the cashflow and its present value. In this appendix we will show that, given
certain assumptions, the present value of the income on the cashflow divided
by the income on the cashflow is given by v, a similar quantity for the outflows.

Assume we have an outflow O, divided into payments O(k) by quarter.
Assume we have an inflow /, divided into payments by quarter /j). We wish
to find out how much total income is earned on the cashflows. This depends on
how long the inflow is invested.

This requires some assumptions. A not unreasonable assumption is to assume
that the inflow is invested until the time of the outflow. With inflows and
outflows occurring at various times, it is necessary to make a more precise
assumption.

We assume that the inflow is divided up in proportion to the present values
of the outflows. (This is neither a first-in first-out assumption, nor a last-in first-
out assumption.) In other words, we assume {, or more precisely each I{j} is
divided up into pieces using weights O(k)'/O’. (We divide by O’ so that the
weights add up to one.) The kth piece of I{j) is invested until O(k) is paid.
During the time it is invested each piece of / grows by a factor
(OkY Ok WUGHISG)' ). That this is the increase becomes clearer if one just puts
each of the two ratios in terms of powers of 1 + r. If I{j) occurs at time a and
O(k) occurs at time b, then the ratio is just (1 + »''~" divided by (1 + /' ™%,
or (1 + N“™?.

Thus we have that after growth, the kth piece of I{j), which was
I{Ok)" /0’ has grown to:

IGYOKY 10 NOUN O NV UGYIGH') = Ok 1) 1 O

Then the total income is

2 GOk 10)) — O
=100 -0
= (' — O')0/0")

Now I' —O’ is the present value of the total income on the cashflow. So
we have that

income on cashflow = (present value of income on cashflow) / y

where y = (present value of outflows)/ outflows = 0'/0O
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APPENDIX 1V
ALTERNATIVE TIMING OF FITI ON CASHFLOWS

In this appendix we will develop further the work done in the previous
appendix. We will use the same notation. We will see how an alternate as-
sumption concerning the timing of federal income taxes on the investment
income on the cashflows yields a different result than in medel three.

We saw how the kth piece of I{j), which was I{j) O()'/0’, grew to

FIN I T . h 2 W

Oy’ /O’ . Thus the investment income is their difference
(OWKMGY — Kjotky' Yo'

Let’s assume that the income taxes on this investment income are paid at
time k. Then one gets this piece of the federal income taxes on investment by
multiplying by FITI. Since the tax payment has been assumed to be made at
time k, we get the present value by multiplying by a factor O(k)'/O(k). Thus
the present value of the federal income taxes on this piece of the investment
income is

FITHO® 1OUNOMNGY — KOk YO’
= FITIO®Y IGY' 10" — KHOWK)Y Ok 100"

When we sum over all / and j we get

PV(FITI on cashflows)/FIT] =
I' — (1O Ok Oy 10k))

This differs from model three where we had

PV(FIT! on cashflows)/FITI = y(I'y — I) = I' — yI
If we define

z = (2 O Ok 1Ok O
Then the result here can be rewritten as

PV(FITI on cashflows)/FITI = I' — zI

This is of the exact same form as the result used in model three, except we
have z in place of y. Thus the equation for P* would be the same, except we
would replace y by z.
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The resulting profit provisions are similar. For example, below are the results
for the same numerical examples we calculated for model three, using the same
inputs.

As Per This Appendix As Per Model Three
N(years) P* z Profit Prov. P* ¥ Profit Prov.
5 $1.044  1.060 3.4% $1,044  1.059 3.4%
1.0 979 1,021 —1.7% 980  1.020 -1.6%
1.5 914 .984 -7.5% 916 981 =7.3%

2.0 850 948 —14.2% 853 .943 —13.8%
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APPENDIX V
DIFFERENTIATION OF THE FORMULA FOR PROFIT PROVISION

In this appendix will be shown the manner in which the underwriting profit
provision varies with various important inputs. This will be done by differen-
tiating the formula for the underwriting profit provision. (In the main text were
shown some actual numerical results of varying inputs.) We will use the third
madel.

u=1—t—(E+LYPr=1—-1t~-ND

where N = (v/s + g)(1 — FITI) — th — R/s + FITly — (1 — )FITUe
and D = (L' + E"(L + E) — FITUe
(N and D have been used for numerator and denominator, only in this appendix.)

Then we have
du/dR = 1/sD

Thus, du/dR is greater than zero, and is approximately 1 for the values used
here.

dulds = ({1 — FITI) — R)/Ds®

Thus, du/ds is less than zero and is approximately —.05 for the values used
here.

dwldFITU = (1 — DelD — eN/D?
e(l — /D — e(l —u — tyD
eu/D

i

Thus, dw/dFITU has the same sign as u, and is approximately equal to 2u.
du/dFITI = (ris + g — y)/ID

Thus, du/dFITI is generally greater than zero. It is significantly larger the longer
the cashflows.

The reason we don’t give an algebraic result for du/dr is that the result of
differentiating u by r would be quite a complex expression. Remember that
variables which involve present values, such as g, &, y, E’, and L’, involve r,
in a rather complicated manner.
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APPENDIX VI
INVESTMENT BALANCE FOR TAXES

In this appendix we will explore an alternate way to get the expression
for the present value of the taxes on investment income on the cashflow, which
was used in the third model. We will set up something called the investment
balance for taxes, /BT for short.

Assume there is an inflow /(j) and outflow O(j), each by quarter. Call the
nume 7 and ) Deal with I/ and (NI co that hath vectare ciim tn tha cama

mg
ULHES £ Al /. L/0dl Wil 1Y)/ aul U\y/iiv, SU didalr Uval veLunS Sulll U uiv Saiic

wn

value /. (Think of / as the premiums loaded for profits. Intuitively this manner
of doing things prevents counting the underwriting profit or loss twice, since it
is dealt with separately elsewhere in the model.)

Let N() = I{j) — O(MI/O. N is the net cashflow by quarter, but adjusted so
that the outflows are loaded for profit.

Then the /BT is set up as follows. Take the cumulative sum by quarter of
N. (Since we have set them up so that both vectors have the same sum, for
large enough values of time IB7 is 0.) IBT(j) = 24— w ; N(k), Then in each
quarter this amount is available to earn investment income. So we multiply it
by ¢ = (1 + ry® — 1, the quarterly rate of investment return. Assume the
income taxes are paid on this investment income the following quarter. Assume
for convenience that the first element of the vectors has a discount factor of 1.
(One can discount to any point in time. If another point in time is taken, an
additional discount factor will appear, but make no difference in the result.)

PV(gIBT)FITI(1 + r)~ % |
= FITlq (3; Z4-1 w0 ; (VR (1 + r) )

Now collect all the terms involving a given N(j). Each N(j) appears starting
with a term in which it is multiplied by a factor of (1 + r)™?. Then it appears
in all the subsequent terms, except in the next term it is multiplied by
(1 + r)7Y" Y in the one after that by (1 + ) ¥**"*, etc. Thus,

= FITlq (; (N() Zimj o = (1 + 1))
Now take the sum of the infinite geometric series.

= FITIq 2, NG)X(1 + "1 = (1 + ) %)
= FITI 3, NGdg(1 + )11 + 1) >
= FITI 3, NGY(1 + r)~ 970
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But we have assumed for convenience that the N(1) term has its present
value given by a discount factor of 1. Each subsequent term of N{j) has an
additional factor of (1 + r)"* in order to get its present value, since it is one

quarter later. Thus,
= FITI Z; PV(N(j)) = FITI (I' — O'l/0)
What we use in model three is

FITI (P*' — L' —E' =T* — y(P* — L' ~ E' ~T*"))
= FITII' = 0’ ~y( — 0))
= FITII' — 0" —(0"10)I — 0)) = FITII' — 0'1/0)

This is the same result as we got using the /BT method here.
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AN ANALYSIS OF EXPERIENCE RATING

GLENN

o]

MEYERS

Abstract

Experience rating formulas that are currently in use have features
that have no counterpart in the literature on Bayesian credibility. These
features include the limiting of individual losses that go into the expe-
rience rating, separate treatment of primary and excess losses, and the
gradual transition to self-rating. This paper analyzes the effect of these
features using the collective risk model.

Most developments in Bayesian credibility assume that the variance
of an individual insured’s experience is inversely proportional to the size
of the insured. This will not be the case if the parameters of the insured’s
loss distribution are changing over time. This paper analyzes the effect
of this parameter uncertainty on the Bayesian credibility formulas.

Finally, Paul Dorweiler's method of testing experience rating for-
mulas is updated using modern statistical methodology. The result is a
very general method of evaluating the parameters of an experience rating
formula.

1. INTRODUCTION

The passage of open competition laws for Workers’ Compensation has
indeed sparked a high degree of competition. Much of the competition is taking
place on the individual insured level in the form of schedule and experience
rating. In this new competitive environment the performance of these rating
plans becomes crucial. The purpose of this paper is to examine the performance
of some experience rating plans that are currently being used.

The predominant experience rating plan for Workers” Compensation is pro-
mulgated by the National Council On Compensation Insurance (NCCI). This
plan is widely adhered to. In addition, the National Council performs the service
of maintaining the experience and calculating the experience modification for
each insured. These services relieve the insurance companies of considerable
administrative expense.

For lines other than Workers’ Compensation, an experience rating plan is
promulgated by the Insurance Services Office (1SO). Variations from this plan
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by individual insurance companies are common. Also, ISO does not maintain
experience for individual insureds. Getting reliable experience for new insureds
is a real problem.

When designing experience rating plans, there are some administrative con-
siderations that cannot be overlooked. The first is that experience ratings are
done frequently and so simplicity is of paramount importance

A second consideration is that experience rating, as opposed to class rating,
is very visible to the individual insured. A consequence of this is that the
experience rating plans must give due consideration to what the insured perceives
to be fair. Historically, see Snader [1], these considerations have included the
following:

I. A single claim should change the experience modification by no more
than a predetermined amount. This predetermined amount is known as
the swing of the experience rating plan.

2. All insureds above a certain predetermined size are self-rated, that is
they are rated entirely on the basis of their own experience.

In addition to the administrative considerations mentioned above, there are
some mathematical considerations that should be made. The mathematical foun-
dations of experience rating come from Bayesian estimation and credibility
theory. As is the case with many other mathematical theories, a simplified
mathematical model s proposed, and the optimal method of rating the insured
is derived. The success of Bayesian estimation and credibility theory depend
upon how closely the model represents reality.

The experience rating formulas derived from administrative considerations,
hereafter referred to as “practical” formulas, may be different from those derived
from the mathematical considerations, hereafter referred to as “theoretical”
formulas. This paper investigates the compatibility of these two kinds of rating
formulas. We would judge the formulas to be compatible if the accuracy of the
“practical” formula is near that of the “theoretical” formula on the simplified
models. While it is by no means certain that accuracy on simplified models
implies accuracy in real life situations, inaccuracy on a simplified model should
imply that something is wrong with the formula being tested.

Our first goal is to find “practical” formulas that perform well on simplified
models. These formulas will depend upon unknown parameters which must be
estimated from data. Our second goal is to show how these unknown parameters
can be estimated. An example will be provided.
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2. CURRENT EXPERIENCE RATING FORMULAS
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in use. We will concentrate on the structure of the plans. The methods currently
being used to derive the parameters of the plan are not really an issue at this
time. In what follows, an experience modification will refer to the ratio of the

premium after experience rating to the premium before experience rating.

2.1 The Workers' Compensation Experience Rating Plan

The Workers’™ Compensation Experience Rating Plan {2] has a long and rich
history. Its development is described in detail by Perryman [3], Uhthoff {4] and
Snader [1]. It is very much a “practical”™ experience rating plan and it has a
strong appeal to common sense.

A feature of this plan is the partitioning of the actual losses into primary
losses. denoted by A,, and excess losses, denoted by A.. In most states, the
primary part, X,,, of a claim of amount X is given by the following formula:

X, =X if X < 2000
10000 X X

= ——— 2 i X > 2000

X = %1 g if X > 2000

The excess part of a claim, X,, is equal to X — X,. A, is the total of the
primary parts of all claims, and A, is the total of the excess parts.

Let: £, = expected primary loss;
E. = expected excess loss; and
E=E,+ E.

it

I

Then the experience modification, Mod, is given by the following formuia:

A, P WXA + (1 - W)X E +(1 - W XK
E+(-WxK '

Mod =

W is equal to zero for £ less than some number @, typically 25,000, and
increases linearly to one as £ increases to the sclf rating point §, which is
usually around 500,000. K is generally set equal to 20,000.

E, and E, are products of expected loss rates and the amount of exposure
for the insured. These expected loss rates are in the Workers™ Compensation
rating manual and are updated whenever there is a rate change.
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1 If E < ) tha farmnla cimnlifiag ta tha fallawing
1. Al I, — !, i uvliijuia Dllllpllll\:D W oLiv lUllUWllls
A, +E + K .
Mod = = i (Equation 2.1)
E+K

This simplifies experience rating for small insureds.

2. Since X, is always less than 10,000, the impact of a single large claim
on the modification is limited.

3. The insured is self-rated for £ = §. Also, the transition to self-rating is
gradual.

4. It is generally believed that claim frequency rather than claim severity
differentiates the good insured from the poor insured. The relatively
greater impact of small claims is consistent with this belief.

2.2 The General Liability Experience Rating Plan

The General Liability Experience Rating Plan [5], like the Workers® Com-
pensation plan, is very much a “practical” experience rating plan.

Let: ALR = adjusted actual loss ratio;
AELR = adjusted expected loss ratio; and
Z = credibility factor.

Then the experience modification, Mod, is given by the following formula:

ALR — AELR
Mod = 1 + ————— X Z.
i AELR
The term “adjusted” refers to the fact that individual claim amounts are
limited before entering the experience rating calculation. This limit increases
with premium size. It is chosen so that a single large claim can change the
experience modification by no more than .3.

Let: P = premium associated with the loss period; and
K = credibility constant (currently 100,000).

Then the credibility is given by the following formula:
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[ 5]
2
[1%]

If this formula were to apply for all values of P. no insured would ever be
self-rated. Since self-rating is desired for very large insureds, the credibility
formula changes to a linear function between a selected point, Q, and a selected
self-rating point, §.

For £ > (:
Q'+ KXE )
7 =53 t .
(0 + K (Equation 2.2)
In the current General Liability cxperience rating plan. K = 100,000,

Q = 483,333 and § = 1,049,654.

Currently, the premium used is collected basic limits premium. However,
this is slated to be revised in 1985, The premium used in the adjusted expected
loss ratio will be based on estimated prospective premium and adjusted for
inflation and average exposure growth. Ideally, the premium should be based
on the actual exposures of the experience period. but administrative considera-
tions led to using estimated prospective premium. It should be noted that the
plan contains optional provisions to use actual exposures if they are available.

When comparing the two experience rating plans, it should be noted that
the Workers’ Compensation plan is mandatory in most states. This includes
many open competition states! The National Council can enforce the standards
of their plan on all companies. They do this. of course. with the consent of the
member companies.

3. MATHEMATICAL MODELS FOR EXPERIENCE RATING

Let X be a random variable which represents the total loss incurred by the
insured. Let £ be a measure of the size of the insured. £ could be ecither the
expected loss for the average insured or the premium of the insured which has
been determined by a rating manual. Let K = X/E and w = E[R]. where E[ ]
denotes expected value. R and w are called the loss ratio and the expected loss
ratio.

Experience rating is based on the premise that the expected loss ratio, w, is
different for each insured in a given classification. To model this, we assume
that an insured has a loss ratio distribution, d, which is selected at random from
a class of distributions, D. Each distribution ¢ has its own mean, p, and
variance. V. Let M = E{wl. T = Var[pl]. and o’ = E[v’|. where these statis-
tics are calculated over all distributions ¢ in D.
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This process is described by the following algorithm:

Aloorithm 3.1
fgorinm 3.1

I. Select the distribution, d, along with w and v, at random from the class
of distributions D.

2. Select the loss ratio, R, at random from the distribution d.

The goal of experience rating is to estimate the expected loss ratio, W, given
the loss ratio, R.

Two solutions to this problem are described by Biihlmann [6]. The first
solution is the Bayesian solution:

B(R) = E[p/R|
Biihlmann shows that the solution is optimal in the sense that
E((B(R) ~ p)’)
is minimized.
A drawback to the Bayesian solution is that it requires knowledge of all the

distributions 4 in D. The second solution, called the credibility solution, only
requires knowledge of the quantities M, 7° and . It can be written in the form:

CRY=ZXR+ (1 —-2)x M
Z is called the credibility factor. We want to choose Z so that
E[(CX) — w)°]

is minimized. The solution, given by Bithlmann, is

-

T .
Z = m (Equation 3.1)

Bithlmann goes on to show that the same choice of Z minimizes
E[C(R) — B@R))").

Thus the credibility solution can be characterized as the best linear approxi-
mation to the Bayesian solution. As Hewitt [7) and Mayerson [8] demonstrate,
the Bayesian solution can be linear, and thus the credibility solution is identical
to the Bayesian solution. However, Hewitt also gives an example where the
Bayesian solution is different from the credibility solution. As we shall see
below, the distinction can be important.
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We shall use the collective risk model to describe the distribution of the
losses. This model describes the total losses of an insured in terms of its claim
count and claim sevecrity distributions. This model has been described exten-
sively by Meyers and Schenker [9], Heckman and Meyers [10], and Panjer
[11].

Let N and S be random variables denoting the claim count and the claim
severity for an insured, respectively. In its simplest form. the collective risk
model can be described by the following algorithm:

Algorithm 3.2

1. Select the claim count, N, at random from a Poisson distribution.

[y

Do the following N times:
2.1 Select the claim severity, §. at random.

3. Set the total loss, X, equal to the sum of the claim amounts, S, selected
in step 2.1.

Since credibility formulas are applied over a wide range of premium sizes,
we need to be concerned with how the guantity ¢~ varies with premium. The
usual assumption made is to let o vary inversely with premium. This is done
mathematically by setting o = X”/K. where 37 is the constant of proportion-
ality.

This assumption agrees with the intuition of many actuaries. One would
certainly expect the variance of the loss ratio to decrease as £ increases. This
assumption can also be justified using collective risk theory. If we assume that
the claim count distribution is Poisson for each insured and that the claim
severity distribution is the same for all insureds, then it is demonstrated in
Appendix A that ¢” is inversely proporiional to E.

Substituting 3*/E for o” in Equation 3.1 yields the following expression for
the credibility:
E
Z=
E+ K
where K = 2717,

This formula for credibility is almost universally used in the actuarial liter-
ature on Bayesian credibility. An exception to this is in a paper by Robert A.
Bailey and LeRoy J. Simon [12]. This exception is important and their dem-
onstration is worth discussing in detail.

(Equation 3.2)
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Using experience from the Canadian Merit Rating Plan, they were able to
calculate empirical credibilities for the experience of a single private passenger
car for one, two and three years of experience. These credibilities are given in
the following table.

TABLE 3.1

EMPIRICAL CREDIBILITIES

Class I Year 2 Years 3 Years
| 046 .068 .080
2 .045 .060 .068
3 .051 .068 .080
4 071 085 099
5 .038 050 .059

Let £ denote the number of years in the merit rating period. Using the
credibilities based on one year, the constant K in the credibility formula
Z = E/(E + K) is calculated. The credibilities for two and three years are then
calculated using this value of K. The results are in the following table.

TABLE 3.2

DEeRIVED CREDIBILITIES Z = E/AE + K)

Class K 2 Years 3 Years
1 20.7 .088 126
2 21.2 .086 124
3 18.6 .097 .139
4 13.1 133 187
5 253 .073 106

We see, as Bailey and Simon observed, that the usual assumptions suggest
that credibility should increase roughly in proportion to the number of years in
the experience rating period. When comparing Tables 3.1 and 3.2 we see that
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the empirical credibilities are significantly less than what the usual assumptions
would suggest!

Bailey and Simon attribute the failure of the usual assumptions to match the
empirical credibilities, in part, to an “individual insured’s chance for an accident
changes from time to time within a year and from one year to the next.” This
phenomenon is very similar to that of parameter uncertainty. which is described
by Meyers and Schenker [9]. In Appendix A it is demonstrated that the collective
risk model with parameter uncertainty implies that ¢” is of the form 3YE + B,
where B > 0. Substituting £/E + B for ¢ in Equation 3.1 yields the following
expression for the credibility:

E
Z”Ex1+1<

where J = 1 + B/77 and K = 271"

(Equation 3.3)

Using Equation 3.3, it is possible to take the credibilities for one and two
years and solve for J and K. One can then calculate the credibility implied for
three years. The results of these calculations are in the following table:

TABLE 3.3

DERIVED CREDIBILITIES Z = F/(E X J + K)

Class J K 3 Years
{ 7.7 14.1 081
2 11 1 068
3 9.8 9.8 077
4 9.4 4.0 091
5 13.7 12.6 056

By comparing the above tables we see that the credibilities derived using
Equation 3.3 come much closer to the empirical credibilities than those derived
using Equation 3.2.

It should be noted that the maximum credibility obtainable in Equation 3.3
is 1/7. Recall J = 1. Low maximum credibilities could be interpreted by saying
that the insured is changing over time and that change is of a significant size
when compared to differences between insureds.
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Besides parameter uncertainty, there are other reasons why the usual as-
sumptions may not be appropriate. The variable loss limit that is in the ISO
experience rating plans is one such case. In Appendix A, it is demonstrated
that the constant of proportionality, %°, depends upon the second moment of
the claim severity distribution. Since the effect of changing the loss limit is to
change the claim severity distribution, one should not expect 2 to be the same
for all loss limits.

Since the loss limit increases with premium size, we would expect o° to
decrease slower than 1/E (See Appendix A.) Thus an attempt to impose a
credibility formula of the form Z = E/(E + K) will result in credibilities which
are too small for the small insureds, and too large for the large insureds.

The formula 0> = 2%E + B also has the property that ¢~ decreases slower
than 1/E. Thus Equation 3.3 should provide a better estimate of the credibility.
But the derivation of Equation 3.3 did not anticipate an increasing loss limit,
and so one should not expect the estimated credibility to be perfect.

4, THE EFFICIENCY OF AN EXPERIENCE RATING PLAN

In the previous section we discussed optimal (for specific assumptions)
experience rating plans. There are a number of reasons why an optimal plan
might not be used. As discussed above, there may be several practical reasons
for using some alternative plan. Another reason is that one must estimate the
parameters M, 1> and o”. Estimation error will occur. The purpose of this
section is to present a yardstick for comparing the performances of alternative
experience rating plans.

The purpose of experience rating is to estimate the expected loss ratio, .
If experience rating were not used, our estimate of p. would be M, which would
be subject to error. A good measure, with historical precedent, would be to
calculate the amount the expected error is reduced by a given experience rating
formula.

Let F be an estimator of p which results from an experience rating formula.
F can be a function of any kind of loss experience of the insured such as total
losses, claim count or limited losses. We then define the efficiency of F by the
expression:

El(n — M)’] — El(np — F)]
Ei(p — M)’|
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If F is a perfect estimator for . its efficiency will be equal to 1. If F = M its
efficiency will be equal to 0. It is possible. as we shall soon see, for the
efficiency to be negative for a poorly chosen F.

One should note the similarity of this measure of efficiency with the statistic
R’ that is used in regression analysis. It is different from R” in that it does not
automatically assume that F was chosen in some optimal manner.

If F is a credibility estimator of the form Z X R + (1 — Z) X M, it is
shown in Appendix B that the efficiency of F is given by the expression 2 X
Z — 7%/Z,.. where Z,, is the optimal credibility given by Equation 3.1. A graph
of the efficiency as a function of S is shown in Figure 1. This expression has
the following properties:
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1. The efficiency is maximized when Z = Z,. This is Biihimann’s [6]
result.

2. As a function of Z, the efficiency starts at 0 when Z = 0, raises to a
maximum of Z,, when Z = Z,, and falls to 0 when Z = 2 X Z,. The
efficiency is negative for Z > 2 X Z,,.

It is not difficult to see why credibility , even the non-scientific version, has
been so popular. If Z < 2 X Z,, then a credibility estimate using Z will be more
accurate than no experience rating. If Z,, > 0.5 then any choice of Z < 1 will
guarantee an improvement in accuracy.

It should be noted that Z,, is not the maximum efficiency obtainable by any
experience rating formula. As noted above, a Bayesian formula could be more
accurate. As we shall soon see, it is also possible that an experience rating
formula that uses detailed information such as claim count and claim severity
can be even more accurate than the Bayesian formula.

5. THE GENERAL LIABILITY EXPERIENCE RATING PLAN

We now use the concepts developed above to analyze the General Liability
experience rating plan. In particular, we will discuss the effect of self-rating
and loss limits. Also, credibility and Bayesian estimation will be compared.

Let us suppose, for the sake of discussion, that the credibility formula Z,, =
E/E + K), with K = 100,000 is the “correct” formula. Now suppose that
instead of using Z,, for credibility we use Z = (Q° + K X EY(Q + K)*, where
Q = 483,333. Then the following table shows the efficiency of the formula for
zZ.

TABLE 5.1
E z Efficiency of Z Zm
500,000 .8335 .8333 .8333
600,000 .8629 .8571 8571
700,000 .8922 .8748 .8750
800,000 9216 .8877 .8889
900,000 9510 .8971 .9000

1,600,000 .9804 .9035 9091
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Examination of this table shows that there is minimal loss of efficiency when
using Z instead of Z,,. If one accepts the credibility formula Z = E/E + K),
the gradual shift to self-rating should also be acceptable.

We now turn to loss limits. The collective risk model will be used to describe
the loss distributions. The mathematics will be less cumbersome if there is a
finite number of loss amounts. For this reason, the claim count distribution will
be binomial with N trials and the probability of a claim equal to p. The claim
severity distribution will be a discrete version of the shifted Pareto, which is
used to describe claim severity in many lines of casualty insurance. The prob-
ability, F(x). that a claim will be less than or equal to x is given by:

Floy=1— (i + b)Y x=1,2,...,49
The remaining probability will be at the basic limit, 50.

The parameter ¢ will be set equal to 1.25 for all prior distributions. The
parameter b, in the claim severity distribution and p, in the claim count distri-
bution may be different for each prior. N will reflect the size of the insured.

For a selected loss limit, L, the total losses can vary anywhere from 0 to
L x N. Using Panjer’s algorithm [11] one can calculate the probability of each
total loss for each prior distribution. One then calculates credibility and Bayes
estimates of the experience modification for basic limits losses, as well as the
efficiency of each estimate. Detailed calculations are given for one case in
Exhibit 5.1. Efficiencies for several cases are given in Tables 5.2-5.4,

We first consider the case where only the claim count distributions vary.
The efficiency is at a maximum for both the credibility estimator and the Bayes
estimator when the loss limit is equal to 1, and decreases as the loss limit
increases. This should come as no surprise. When the loss limit is I, there is
no random element due to claim severity. As we increase the Joss limit, we
increase the randomness in our measurements.

As expected, the Bayes estimator is more accurate than the credibility
estimator. It is worth noting that the Bayes cstimator is less affected by the
increasing loss limit. The accuracy of the credibility approximation to the Bayes
estimator gets worse as the loss limit increases.

We now turn to the case where only the claim scverity distributions are
varying. In this case, information about the distribution, as well as the random
element. increases as the loss limit increases. The efficiency of both the credi-
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bility and the Bayes estimators is near maximum at a loss limit of 8. After that
point the increase in efficiency is, at best, marginal. In fact it can decrease.

When both the claim severity and claim count distributions vary, the effi-
ciency first increases and then decreases as the loss limit increases. The best
loss limit is 4 for this example.

Attempting to draw conclusions about real life experience rating plans from
models can be a risky undertaking. But accuracy is important, and not attempting
to draw conclusions can also be risky. With this in mind, we proceed.

The first conclusion is that limiting the loss for an individual claim is a good
idea. A well chosen loss limit will be large enough to capture differences in
claim severity distributions. If the loss limit is too large, increased randomness
will wipe out any extra information gained by the higher loss limit. This has
been the traditional argument in favor of loss limits. It is gratifying to see it
verified on a mathematical model.

While the Bayes estimator is more accurate, in practice we do not have
enough information to use it. An alternative is to create conditions where the
credibility estimator is a good approximation to the Bayes estimator. A loss
limit serves this purpose.

The negative effects of high loss limits appear to be less pronounced for
larger insureds. Perhaps this could be taken as justification for varying the loss
limit. However one should not raise the loss [imit indefinitely. Once the loss
limit reaches a sufficient level to capture enough information on the claim
severity, it should go no higher.
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EXHIBIT 5.1

CREDIBILITY AND BAYES ESTIMATES

N=4 Loss limit = 4
Limited Limited Basic Limits
Prior#  Weight p b g Sev. Mean  Std. Dev.  Sev. Mean
I 0.25 0.20 0.25 1.25 1.24 0.69 1.48
2 0.25 0.30 0.50 1.25 1.47 0.93 2.03
3 0.25 040 075 1.25 1.68 1.07 2.57
4 0.25 0.50 1.00 1.25 1.85 1.16 3.09
Aggregate Probabilities
X Prior#1 Prior#2 Prior#3 Prior#4
0 0.40960000 0.24010000 0.12960000 0.06250000
1 0.35481700 0.30735000 .22576000 0.14488800
2 (0.14376800 0. 19673800 0.19920200 0.16774800
3 0.04484430 0.09761280 0.13228600 0.14045300
4 0.02853980 0.07571090 0.11665700 0.13708900
5 0.01326000 0.04745030 0.09041290 0.12598400
6 0.00364740 0.02021520 0.05102120 0.08841880
7 0.0009094 1 0.00771968 0.02505340 0.05248160
8 0.000444 14 0.00442423 0.01612450 0.03707380
9 0.00013752 0.00186283 0.00844632 0.02315500
10 0.00002474 0.00053879 0.00323913 0.01092810
11 0.00000535 0.00016668 0.00122928 0.00481558
12 0.00000245 0.00008447 0.00068151 0.00287956
13 0.00000042 0.00002078 0.00021562 0.00111993
14 0.00000004 0.00000341 0.00004769 (.00029946
15 0.00000001 0.00000101 (.00001552 0.00010565
16 0.00000000 0.00000048 0.00000819 0.00006104

Limited Grand Mean = 2.28643

Credibility = .216312
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Prob(X)

0.21045000
0.25820400
0.17686400
0.10379900
0.08949920
0.06927680
0.04082570
0.02154100
0.01451670
0.00840042
0.00368269
0.00155422
0.00091200
0.00033919
0.00008765
0.00003055
0.00001743

Expected Error: Bayes
Efficiency: Bayes

EXPERIENCE RATING

EXHIBIT 5.1 (continued)

Credibility Mod

0.7837
0.8783
0.9729
1.0675
1.1621
1.2567
1.3513
1.4459
1.5405
1.6352
1.7298
1.8244
1.9190
2.0136
2.1082
2.2028
2.2974

i

226192 Credibility = .230147
.222546 Credibility = .208954

293

Bayes Mod Difference
0.7325 0.0512
0.8629 0.0154
1.0177 —0.0448
{.1504 —0.0829
1.2006 —0.0385
1.2722 —0.0155
1.3487 0.0026
1.4012 0.0447
1.4218 0.1188
1.4552 0.1799
1.4880 0.2417
1.5071 0.3173
1.5152 0.4037
1.5347 0.4789
1.5498 0.5584
1.5551 0.6477
1.5605 0.7369
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TABLE 5.2

COUNT DISTRIBUTIONS VARY

Prior P b q

#1 0.2 (.75 1.25

#2 0.3 0.75 .25

#3 0.4 0.75 1.25

#4 0.5 0.75 1.25
Credibility Bayes

Loss o
Limit N=4 N=28 N =16 N=4 N =8 N =16

1 189 317 482 190 323 496
4 123 218 359 152 237 377
8 087 160 275 147 214 309
12 .069 130 .230 146 2210 .288
16 059 12 201 145 .209 .281
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TABLE 5.3

SEVERITY DISTRIBUTIONS VARY

Prior p b q

#1 0.4 0.25 1.25

#2 0.4 0.50 1.25

#3 0.4 0.75 1.25

#4 0.4 1.00 1.25
Credibility Bayes

Loss

Limit N =4 N=2§ N =16 N=4 N=28 N =16

4 026 .051 .096 038 059 .101
8 .035 .068 127 046 077 134
12 035 .068 127 048 .079 137
16 .034 .065 122 048 .080 137
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TABLE 5.4

COUNT AND SEVERITY DISTRIBUTIONS VARY

Prior p b q

#1 0.2 0.25 1.25

#2 0.3 0.50 [.25

#3 0.4 0.75 1.25

#4 0.5 1.00 1.25
Loss Credibility Bayes

Limit N=4 N=28 N =16 N=4 N =28

| 189 317 482 190 323
4 .209 344 507 223 365
8 178 301 461 223 354
12 154 267 A21 223 351
16 138 .242 .389 223 .350
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6. THE WORKERS' COMPENSATION EXPERIENCE RATING PLAN

It was demonstrated in the last section that a loss limit can increase the
accuracy of an experience rating plan. However, the Workers’ Compensation
Experience Rating Plan gradually introduces excess losses as the size of the
insured increases. We now analyze this treatment of excess losses using the-
collective risk model.

We shall use the Weibull distribution to model claim severity. The proba-
bility, F(x), that a claim will be less than or equal to x is given by:

Flx)y=1— ¢ ™",
The Poisson distribution will be used to model claim count. The probability of
n claims, P(n), is given by:

P(n) = ¢ ™ x \'n!

The parameter ¢ will be set equal to .25 for all prior distributions. The
parameter b for the claim severity distribution and the parameter A for the claim
count distribution will be independently chosen at random from the following
table. Each parameter value is equally likely to be chosen.

TABLE 6.1
b A
30 40
40 70
50 100
60 130
70 160

It was necessary to resort to Monte Carlo methods in order to properly treat
primary and excess losses. The following algorithm was repeated 10,000 times.

Algorithm 6.1
[. Select the Poisson parameter, A, at random from Table 6.1.

2. Select the number of claims, n, at random from a Poisson distribution
with parameter .
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3. Select the Weibull parameter, . at random from Table 6.1.

4. Do the following » times.
4.1 Select a claim value. x, at random from a Weibull distribution with
parameter b and ¢(=.25).
4.2 From x, calculate the primary loss, x,, and the excess loss, x..

5. A, is the sum of all the x,,’s and A, is the sum of all the x.’s.

It can be demonstrated by numerical integration of the severity distribution that
E, = 48,000 and E. = 72,000.

In addition to the standard Workers® Compensation experience modification
formula, we want to consider a modification formula in which the excess losses
are ignored. This formula will take the following form:

A+ K

Y (Equation 6.1)

One should note the difference between this formula and formula 2.1. Using
Hewitt’s formulas [7], it can be demonstrated that the optimal value for K in
this formula is 22,900.

For each trial in the simulation it is possible to calculate the modification
for various formulas involving primary and excess losses. By comparing the
calculated modification with the “true” modification one can estimate the effi-
ciency of each formula. The results are in the following table.

TABLE 6.2

EFFICIENCY

w K = 18,000 K = 23,000 K = 28,000

Formula 6.1 0.68 0.68 0.66
Standard Formula 0.0 0.48 0.46 0.45
i " 0.1 0.51 0.50 0.49
" " 0.2 0.50 0.50 0.49
" " 0.3 0.44 0.44 0.44
" " 0.4 0.32 0.33 0.34
" " 0.5 0.13 0.15 0.17

! i 0.6 -0.12 —0.09 -0.07
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Formula 6.1 is a clear winner in this case. There are two possible reasons
for this. First, as demonstrated in the previous section, the primary losses seem
to capture most of the information about the severity distribution. Second, the
structure of the experience rating formula may very well be wrong! The Bayesian
and credibility formulas described above are optimal under certain specified
conditions. This author does not know of any conditions where the standard
formula is optimal. At the very least, a proposal to retain the present formula
should include a plausible model in which the present formula outperforms the
competing formulas.

7. CHOOSING AN EXPERIENCE RATING FORMULA

So far, we have seen how modeling can give some good hints for the right
form of an experience rating formula. Since we rarely, if ever, have the distri-
butional information to do a pure Bayesian analysis, it appears that a good
choice of an experience rating formula would be a credibility formula. The
credibility could be given by either Equation 3.2 or Equation 3.3. A loss limit
of some kind should definitely be used.

As of this writing, there is no nice clean way to pick an optimal loss limit.
This author has had good luck with the Weibull distribution for severity in
Workers” Compensation and the shifted Pareto distribution, see Patrik [13], for
the severity in other lines of insurance. By trial and error on various models,
as was done in the previous sections, one might come up with a reasonable loss
limit, or loss limit formula. There is room for improvement here.

Once a loss limit has been selected one then gathers the limited losses and
the expected limited losses for individual insureds over a period of years. This
information is absolutely essential. Experience rating depends upon how well
the experience of one year predicts that of another. With data such as this one
can use the empirical Bayesian credibility procedure as described originally by
Bithlmann and Straub [14], and later by the ISO Credibility Subcommittee [15]
and Meyers [16].

A problem with these procedures is that they all assume that the o is
inversely proportional to the expected losses, which results in using Equation
3.2 for the credibility. While these procedures might well be modified to handle
more general assumptions about o, the author would like to propose a different
approach. This approach has the advantage that: (1) it is easy to modify the
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parameter estimation to accommodate alternative assumptions about o; and (2)
one can test the assumption made about ¢, This approach has its origins in a
study done by Paul Dorweiler {17].

In what follows we shall take the term “loss ratio” to mean current losses
divided by the modified premium,. where the experience modification is calcu-
lated from prior years’ loss experience. We assume that the expected losses
used in the experience rating formula are correct. If the loss ratio is positively
correlated with the experience modification, then the credibility factors used are
too low. Conversely, if the loss ratio is negatively correlated with the experience
modification. then the credibility factors used are too high.

This can be justified by the following. Suppose an insured had a low
experience modification and tends to have a lower than average loss ratio. Then
to raise his loss ratio, one can give the insured a lower experience modification
by giving more credibility to the expericnce. A similar argument applies when
the insured tends to have a higher than average loss ratio.

Dorweiler tested the performance of an experience rating plan by partitioning
insureds by manual premium size and modification size. For each premium size
group he calculated the trend in loss ratio as the maodification increased. The
idea was to compare the number of times a positive trend occurred with the
number of times a negative trend occurred. This method of testing credibility
formulas is very general. No assumptions about the nature of the experience
rating formula are required.

During the past fifty years, our understanding of statistics has vastly im-
proved. Our computing capability today was unthinkable in Dorweiler’s time.
Today, Dorweiler’s method might well be similar to the following.

Assume we have the correct form of the experience rating formula and we
want to know if we have selected the right parameters. That is. we want to test
the hypothesis

Ho: The parameters of the experience rating formula are correct
against the alternative hypothesis
H,: At least one of the parameters of the experience rating formula is

mncorrect.

To test this hypothesis, we proceed as follows.
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1. Partition the insureds into groups with similar modified premium size.
Modified premium is used rather than manual premium because we want
all insureds in the group to have the same loss ratio distribution. It is
felt that expected losses rather than exposure is a better indicator of the
loss ratio distribution.

2. Calculate the correlation coefficient between the loss ratio and the ex-
perience modification for each group.

Kendall’s 7, see Conover [18], is the preferred measure in this case.
This correlation coefficient compares the number of pairwise increases
with the number of pairwise decreases. Let T; denote Kendall’s cor-
relation coefficient for group / and let n; be the number of insureds in
group I. Under the null hypothesis, 7, = 0 for each group, the distribu-
tion of 7, is approximately normal with mean O and variance
ni{n; — 1) (2n; + 5)/18. This is a nonparametric result.

3. Calculate the normalized correlation coefficient, for each group, and a
combined normalized correlation coefficient. These terms are defined as
follows.

For each group i, set T, equal to 7, divided by its standard deviation.
Under the null hypothesis T; is approximately normal with mean 0 and
variance 1. We call 7, the normalized correlation coefficient for group i.
Let m be the number of groups. Set T equal to the sum of all the 7/’s
divided by the square root of m. T also has mean 0 and variance 1 under
the null hypothesis. We will call T" the combined normalized correlation
coefficient.

4. Reject Hq at significance level a if the percentile of T is outside the
interval (o/2, 1 — a/2). The percentile of T can be determined from the
standard normal distribution.

By noting that the confidence region of the parameters is the set of all
parameters for which one fails to reject Ho, one can find a confidence
region of the parameters by testing several sets of parameters. Acceptable
parameters are those for which the percentile of 7 falls within the interval
(a/2, 1 — a/2). A best estimate of the parameters is one for which the
percentile of T is equal to .5.

Let’s see how this test works on live data. During the late seventies, the
Individual Risk Rating Plan Committee at 1SO issued a special call for individual
insured data from actual experience ratings. ISO supplied the author with the
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following data elements from this call. For each of three years there was given
the basic limits premium and the basic limits losses (adjusted for the loss limit).
In addition, the adjusted expected loss ratio (AELR) was given. ldeally, one
would like to have the losses that resulted from the policy that was actually
experience rated, but we did the next best thing. The first two years of data
were used to predict the third year.

Before doing the analysis, two adjustments to the ISO data were made.
First, all insureds which did not have a full three years of experience were
deleted. Second, the AELR was adjusted so that the total expected losses were
equal to the total actual losses for the first two years. In all, there were 1,980
insureds which form 33 groups of 60 insureds.

Let us first assume that the credibility formula given by Z = P/(P + K) is
correct. Hypothesis tests were performed for a set of K values, with the following
results.

TABLE 7.1
K T Percentile
16,000 —2.9442 .0016
18,000 —=2.1870 0144
20,000 —1.1476 1256
22,000 —0.2060 4184
24,000 0.2449 .5967
26,000 0.5558 .7108
28,000 1.0665 .8569
30,000 1.6194 19473
32,000 2.1078 9825
34,000 2.5697 .9949
36,000 2.9850 .9986

The best estimate for K will be between 22,000 and 24,000. The 95 percent
confidence interval for K will range from slightly over 18,000 to slightly less
than 32,000. Table 7.2 shows the T.'s for each group when K = 22,000.

Close examination of Table 7.2 reveals that the correlations are predomi-
nantly positive for the smaller insureds and very definitely negative for the
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larger insureds. This indicates that the credibility is too low for the smaller
insureds and too high for the larger insureds. Thus the formula Z = P/(P + K)
is not the correct form of the credibility formula. This can be explained in terms
of the changing loss limit and parameter uncertainty as described in Section 3
above. If we have the correct form of the credibility formula, the hypothesis
test described above should apply equally well for any subset of groups.

Let us now examine the credibility formula Z = P/(P X J + K). In addition
to calculating the combined normalized correlation coefficient for all insureds,
we calculate the combined normalized correlation coefficient for the five differ-
ent subsets of groups. The rationale for selecting the subsets will be discussed
below.

Before discussing the above tables one should note that there are some small
reversals in what might seem to be a clear pattern. These are random fluctuations
caused by the insureds shifting groups with each set of parameters. Recall that
the groups were based on modified premium.

Let us first examine the subsets consisting of Groups 1 to 5, Groups 6 to
19 and Groups 20 to 33. It can be observed that when J = 1.0, no value of K
is in the 95 percent confidence region for each subset. The following pairs (J,K)
are in the 95 percent confidence region for each subset.

(4.0, 1000)
(4.0, 2000)
(4.0, 3000)
(4.0, 4000)
(3.0, 5000) (4.0, 5000)
(3.0, 6000) (4.0, 6000)
(3.0, 7000) (4.0, 7000)
(3.0, 8000) (4.0, 8000)
(3.0, 9000) (4.0, 9000)
(3.0, 10000)
(3.0, 12000)
(2.0, 14000) (3.0, 14000)
(2.0, 16000)

The details of the calculations for J = 4.0 and K = 2,000 are given in Table
7.3. As mentioned above, the derivation of the credibility formula Z = P/(P X
J + K) does not anticipate a loss limit which increases as the size of the insured
increases. Thus we should not expect this credibility formula to be exactly right



TABLE 7.2

Headings

MINMBLP —Minimum modified basic limits premium

MAXMBLP —Maximum modified basic limits premium

N —Number of insureds

TAU —XKendall’s tau correlation coefficient between the loss ratio and the experience modification
MODPCT10 —10" percentile of experience modifications

MODPCTS0 —50™ percentile of experience modifications

MODPCT90 —90™ percentile of experience modifications

T —Normalized correlation coefficient

EXPERIENCE RATING ANALYSIS—GENERAL LiaBiLity: K = 22,000 J = 1.00

OBS MINMBLP MAXMBLP N TAU MODPCTI0O MODPCT50 MODPCT90 T

1 10.0 250 60 0.10031 0.962409 0.98257 0.99638 1.1324
2 251.5 418 60 —0.01243 0.962809 0.97386 0.98161 —0.1403
3 422.4 604 60 0.10056  0.929858 0.95987 1.01518 1.1353
4 606.5 759 60 0.02147 0.908815 0.94638 0.97613 0.2424
5 762.8 384 60 0.01469  0.892809 (.93845 0.97723 0.1658
6 887.1 1032 60 —0.05537 0.879143 0.93260 1.01479 —0.6250
7 1036.8 1151 60 —0.04181 0.864093 0.92675 1.01257 —0.4720
8 1151.7 1279 60 0.10345 0.862320 0.92053 1.18874 1.1678
9 1286.5 1447 60 0.02318 0.824655 0.91998 1.10541 0.2616
10 1452.0 1603 60 —0.02373 0.839008 0.90577 1.06497 —0.2679
11 1609.1 1747 60 —0.05537 0.845583 0.90363 1.15102 —0.6250
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TABLE 7.2 (continued)

OBS MINMBLP MAXMBLP N TAU MODPCT10 MODPCT50 MODPCT90 T
12 1747.7 1910 60 0.20339  0.818599 0.89558 1.00920 2.2961
13 1913.8 2020 60 0.02938  0.803793 0.89252 1.17428 0.3317
14 2024.6 2169 60 0.14237  0.798667 0.90054 1.20914 1.6072
15 2169.8 2316 60 —0.02712  0.785614 0.86615 1.01141 —0.3061
16 2318.4 2495 60 0.14463  0.786776 0.86784 1.16782 1.6327
17 2498.1 2680 60 0.08475  0.743469 0.86263 1.23809 0.9567
18 2681.3 2885 60 0.08927  0.766698 0.85704 1.06101 1.0077
19 2885.0 3064 60 —0.00452  0.743238 0.84386 1.18246 —0.0510
20 3067.4 3346 60 0.07006  0.723105 0.84160 1.20551 0.7909
21 3352.6 3629 60 0.25085  0.717498 0.85007 1.24072 2.8318
22 3632.1 3880 60 0.02147  0.667270 0.85448 1.33079 0.2424
23 3883.3 4209 60 0.10734  0.713127 0.81707 1.26421 1.2118
24 4215.7 4580 60 0.01243  0.675236 0.80978 1.91797 0.1403
25 4581.6 5023 60 —0.04859  0.684537 0.82988 1.90822 ~0.5485
26 5040.9 5529 60 0.05311 0.634504 0.77695 1.28748 0.5995
27 5533.5 6302 60 —0.08701 0.590834 0.83498 1.91602 ~0.9822
28 6316.8 7390 60 —0.08023  0.641002 0.86242 1.95935 —0.9057
29 7405.5 3645 60 —0.35593  0.522315 0.80239 1.89673 —4.0181
30 8702.0 10808 60 —0.19955  0.46899] 0.78968 1.97431 —2.2527
31 10847.9 15885 60 —0.20000  0.447977 1.06263 2.48548 —2.2578
32 16077.5 26102 60 —0.21695  0.622667 1.36827 2.34570 —2.4491
33 26118.2 297046 60 —0.26893  0.652677 1.52027 2.96620 ~3.0359
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TABLE 7.3

Headings

MINMBLP —Minimum modified basic limits premium

MAXMBLP —Maximum modified basic limits premium

N —Number of insureds

TAU —Kendall’s tau correlation coefficient between the loss ratio and the experience modification
MODPCT10 —10" percentile of experience modifications

MODPCTS50 —50™ percentile of experience modifications

MODPCT90 —90™ percentile of experience modifications

T —Normalized correlation coefficient

EXPERIENCE RATING ANALYSIS—GENERAL LiaBILiTY: K = 2000 J = 4.00

OBS MINMBLP MAXMBLP N TAU MODPCT10 MODPCTS0 MODPCT90 T

1 9.9 230 60 0.07764  0.870207 0.90389 0.96442 0.8765
2 2329 382 60 0.07910  0.862833 0.88592 0.90232 0.8929
3 389.4 572 60 0.01582  0.834214 0.86588 0.91637 0.1786
4 572.3 705 60 —0.07910  0.822935 0.85410 (.96478 —0.8929
5 709.2 821 60 —0.11073  0.812158 0.84499 0.89705 —1.2501
6 823.7 961 60 —0.26328 0.808248 0.83594 0.88607 -2.9721
7 971.3 1085 60 —0.02712  0.810787 0.83640 .98953 —0.3061
8 1086.9 1232 60 —0.05483  0.810880 (0.84006 1.03652 —0.6190
9 1243.2 1390 60 -0.11815  0.794511 0.83726 1.19594 —1.3337
10 1394.3 1553 60 —0.07910  0.799560 0.83418 1.06445 —0.8929
11 1555.2 1701 60 0.03277  0.803051 0.83198 1.09454 0.3699

90¢
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TABLE 7.3 (continued)

OBS MINMBLP MAXMBLP N TAU MODPCT10 MODPCT50 MODPCT90 T
12 1701.3 1830 60 —0.00339  0.799704 0.83866 1.35855 —-0.0333
13 1833.6 1996 60 0.06893  0.795396 0.83288 1.33904 0.7781
14 1996.4 2142 60 0.11186  0.794848 0.82466 1.02667 1.2628
15 2146.2 2326 60 0.07797  0.788719 0.82349 1.01559 0.8802
16 2340.1 2518 60 0.10508  0.796236 0.82021 1.20622 1.1863
17 2518.6 2717 60 0.23616  0.792849 0.82674 1.27064 2.6660
18 2719.5 2924 60 —0.02486  0.787838 0.80931 1.04337 —0.2806
19 2927.5 3174 60 0.07232  0.785318 0.81290 1.21608 0.8164
20 3174.8 3446 60 0.13672  0.789134 0.82195 1.80638 1.5435
21 3450.3 3767 60 —0.06441 0.798985 0.85378 1.35756 -0.7271
22 3782.2 4143 60 0.15254  0.789817 0.90983 1.81165 1.7220
23 4147.5 4535 60 0.19096  0.782837 0.82072 1.32675 2.1557
24 4541.2 5042 60 —0.20791 0.790398 0.89006 2.10844 =2.3471
25 5043.4 5426 60 0.00452  0.783358 0.82616 1.84692 0.0510
26 5439.8 6073 60 0.05198  0.791312 0.84412 1.74888 0.5868
27 6084.6 6997 60 0.00339  0.788521 0.87782 2.34622 0.0383
28 7011.6 8064 60 —0.00339  0.785978 0.38043 2.35557 —0.0383
29 8115.5 9887 60 —0.11751 0.791988 0.98504 2.35900 —1.3266
30 9899.0 12103 60 —0.17467  0.783483 0.90444 2.02998 -1.9719
31 123449 17413 60 —0.04746  0.779974 0.90431 2.50209 —0.5357
32 17495.2 26177 60 -—0.03164 0.810414 1.12274 1.73464 —0.3572
33 26221.3 206941 60 —0.00565  0.808315 1.05283 2.17655 —0.0638

ONLLVYH AIINAIYIAdXH
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TABLE 7.4
PERCENTILES OF T's
J =10

K Groups 1:33  Groups 6:33  Groups 1:5 Groups 6:19  Groups 20:33
18000 0144 0051 6795 .8646 .0000
20000 1256 0661 7306 9220 0002
22000 4184 2411 8716 9677 0022
24000 5967 .3959 .8950) 9864 0049
26000 7108 5197 9050 9875 0149
28000 .8569 7050 9285 9938 0412
30000 .9473 .8665 9374 9976 1063
32000 9824 .9498 9367 9991 2159
34000 9949 9795 9609 9994 .3594
36000 .9986 9933 9655 9997 .5345

J =20

K Groups 1:33  Groups 6:33  Groups 1:5  Groups 6:19  Groups 20:33
8000 0118 0132 2875 6563 .0002
10000 0843 .0863 3785 .8020 .0027
12000 .2388 2336 4586 8977 .0108
14000 5767 5186 L6505 .9662 .0391
16000 7900 7016 .7940 9604 1568
18000 .8964 .8358 8235 .9809 .2449
20000 9727 9410 8919 9912 4356
22000 .9893 9754 8951 9954 .5696
24000 .9979 9944 9161 .9980 7624



EXPERIENCE RATING 309

K Groups 1:33  Groups 6:33  Groups 1:5  Groups 6:19  Groups 20:33

3000 0136 0152 2913 .2652 0075
4000 .0535 .0587 3316 4202 .0220
5000 .1626 1677 4024 .5796 0590
6000 .3080 .2940 4972 7576 0715
7000 4104 .3837 .5471 .7854 1134
8000 5645 .5234 .6096 9115 1026
9000 7601 .7388 .6183 9435 .248]1
10000 .8223 .8088 .6205 .9469 3519
12000 .9430 .9229 1546 .9597 .6054
14000 9827 9715 8235 9750 7677
16000 9963 9935 .8421 .9931] .8535
=4.0

K Groups 1:33  Groups 6:33  Groups 1:'5  Groups 6:19  Groups 20:33

1000 .5953 .4443 .8293 6717 .2602
2000 .5035 5185 .4653 6574 3672
3000 6111 .6415 4471 .7501 4356
4000 7106 7164 .5289 .8901 .3380
5000 .8044 .8108 .5472 .8704 .5467
6000 8676 .8405 .6938 .7904 7262
7000 9215 9317 .5450 .8689 .8373
8000 .9596 .9592 6421 .9087 8707
9000 9878 .9886 6526 9732 9014

10000 9941 9929 7510 9771 9288
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over the entire range of premium sizes. Examination of Table 7.3 reveals this
to be the case. However, the results are superior to any that could be obtained
with the credibility formula Z = P/(P + K).

If loss limit increases with the size of the insured the credibility will increase
more slowly than the formula Z = P/(P X J + K) would suggest. This is
verified in Table 7.4 where the formula tends to assign too low a credibility to
the medium size insureds in Groups 6 to 19 and too high a credibility to the
large sized insureds in Groups 20 to 33. However, the formula tends to assign
too high a credibility to the smaller sized insureds in Groups | to 5, and too
low a credibility to the medium sized insureds in Groups 6 to 19. This is the
opposite of what is expected.

We attempt to explain this reversal. We first note that there 1s a minimum
premium size that qualifies an insured for experience rating. It is possible for
an insured to have a sizeable decrease in exposure which will result in premiums
which are below the minimum in the year being rated. But this happens rather
infrequently. A far more common cause of insureds having a smaller size is for
the insured to have low modification. This can be verified in Table 7.3 where
over ninety percent of the insureds in Groups 1 to 5 have experience modifi-
cations which are less than 1.00.

Two possible explanations for the reversal can be given. First, since most
insureds are those with good experience, the groups are more homogeneous
(i.e. 7" is lower) and lower credibility is called for. Second, since the loss limit
is assigned according to unmodified premium. o is not necessarily smaller for
the smaller insureds. This would also have a tendency to lower credibility for
the smaller insureds. If these explanations are correct, one should separate the
very smallest insureds from the main part of the analysis. This is why the
subsets were grouped in the above manner.

In summary, a very general way of analyzing data for experience rating has
been proposed. Not only can it be used to determine parameters of an experience
rating formula, but one can also test to see if the assumptions made in deriving
the form of the credibility formula are valid.
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8. SUMMARY AND CONCLUSIONS

National Council on Compensation Insurance and Insurance Services Office.
The first goal of this paper was to find an experience rating formula that worked
well on mathematical models and would be easy to administer. An examination
of the performance of experience rating plans on mathematical models led to
the following conclusions.

1. A loss limit can be an effective tool for increasing the accuracy of an
experience rating formula. Loss limits are particularly helpful when there
are differences in claim frequency. Even if the only differences among
the insureds are in claim severity, little accuracy will be lost with a loss
limit.

2. The current formula in the Workers” Compensation Experience Rating
Plan, which has a separate treatment of primary and excess losses, is
less accurate than a formula which uses only primary losses.

3. There are some very plausible situations when the standard credibility
formula Z = E/(E + K) is not appropriate. These include parameter
uncertainty over time and a loss limit which increases with the size of
the insured. Failure to recognize this will result in overstating credibilities
for larger insureds.

The author would recommend an experience rating formula based on the
credibility formula Z = E/(E£ X J + K). A loss limit that does not vary by size
of insured should be a part of the plan. Excess losses should not be a part of
the plan. This formula is less complicated than current formulas and should be
easier to administer.

It should be noted that the service performed by the NCCI in calculating
the experience modification is probably more important than the choice of
experience rating formulas. ISO would do well to perform a similar service, or
at the very minimum, provide experience in a standard format so that individual
insureds could calculate their own experience modifications.

A second goal was to show how the parameters of an experience rating plan
could be estimated from data. This paper demonstrates, with live data, a very



312 EXPERIENCE RAVING

general procedure for testing the parameters of a proposed credibility formula.
Systematic testing of various alternative parameters should enable one to derive
a reasonably accurate formula. This method requires data with which one can
compare actual losses with losses predicted by the proposed formula. The author
considers this kind of data absolutely essential for accurate experience rating.

Experience rating has always been a combination of scientific and intuitive
reasoning. While the intent of this paper is to put experience rating on a more

scientific basis, it is hoped that the reader now has a better intuitive understand-

ing of this very important subject.
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APPENDIX A
WITHIN VARIANCE AND THE SIZE OF THE INSURED

In this appendix we discuss how the expected within variance, o, depends
upon the size of the insured.

Let: N be a random variable denoting the claim count;
A be the expected number of claims;
x be a random variable with E[x] = 1 and Var[x] = ¢;
S be a random variabie denoting the ciaim severity; and
B be a random variable with E[1/8] = 1 and Var[1/B] = b.

The collective risk model with parameter uncertainty can be described by the
following algorithm.

Algorithm A.l
1. Select x at random.

2. Select the number of claims, N, at random from a Poisson distribution
with parameter x X \.

3. Select B at random.

4. Do the following N times.
4.1 Select the claim severity, S, at random.

5. Set the total loss, X, equal to the sum of the claim amounts, S, divided
by B.
b and ¢ measure uncertainty in the scale of the claim severity distribution and
the mean of the claim count distribution, respectively.
Let R, = X/E[X]. Meyers and Schenker {9] show that

Var[R\] = (1 + b) X E[S’VN X E(SD+ b+ c + b X c.

The size of the risk E is proportional to E[X] and can be written as C X E{X].
Thus we can then write:

Var[R] = 2VE + a, (Equation A.1)
where 37 = (1 + b) x C x E[S"JE[S] and
a=b+c+bXec
In keeping with the notation of Section 3, let d denote a distribution gen-
erated by the process described above. The linear relationship of Equation A.1
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is preserved when taking expected values over all distributions, d. Thus we
have

o’ =2VE + « (Equation A.2)
where 3° = E[3]] and
a = Ela,].

Equation A.2 is used to derive the credibility formula 3.3, If b and ¢ are
equal to zero for cach distribution . then ¢° = T/ In this case the credibility
formula 3.2 applies.

We see from Equation A.1 that 27, and thus Y, depend upon the severity

distribution. An increase in the loss limit will increase 2.
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APPENDIX B
A FORMULA FOR THE EFFICIENCY

We prove that the efficiency is equal to 2 X Z — Z%/Z,,. The proof is simply
a rearrangement of concepts originated by Bithlmann [6] and discussed by ISO
[15].

Lemma 1: Cov|X.u| = 7°

Proof: Cov[X.p] = E[(X — M) X (p — M)}
= EJE(X = M) X (1 = M)lpl|
= 7u~[(l~-“ - M)}
= T

Lemma 2: Var|X] = o> + 7°
Proof: Var[X] = E,[Var|X|p]] + Var,[E[X|w]]
=g+ 7
Theorem. Efficiency = 2 X Z — ZHZ,,

Proof: Let F be an estimator for p. By the definition of efficiency given in
Section 4 we have:
Efficiency = 1 — E[(F — p)’)r’
Inourcase: F =Z X X + (I — Z) X M. Thus we have:
Efficiency = | — E{(Z X (X — M) — (n — M))’)i1°
=1 —(Z" X Var(X) + 7° — 2 X Z X Cov(X,))/v°
=1 - (Zx(@+H+17-2xZx)r
=2xXZ~—Z72,

Corollary: The efficiency is maximized when Z = Z,,.
Proof: d(Efficiency)/dZ = 0 when Z = Z,,.

This corollary is simply a restatement of Bithimann’s result.
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ADDRESS TO NEW MEMBERS—NQOVEMBER (1, 985

GEORGE D. MORISON

First | would like to extend to all members of the Class of November 1985
congratulations on achieving the milestone which has just been acknowledged
by this assemblage. While those of us who have experienced the thrill of such
public recognition in the past can share with you the joy of this occasion, you
alone know the particulars of the efiort and sacrifice required to reach thus stage
of your protessional careers. For that dedication to the accomplishment of the
objective you have carned the respect of all of us.

Those largely unheralded supporters, such as spousces. relatives, and friends
who have helped in their inimitable ways should not be overlooked in this
celebration. The long hours of drudgery would no doubt have been even more
intolerable without such loyal. interested backers.

In the belief that any comments in the nature of advice proffered today
ought to be limited to matters that arc substantially achievable. I would begin
by suggesting that those who have just been admitted into the CAS as Associates
unstintingly pursue their Fellowship designations. Among the less diabolical
objectives of the ten-year old restructuring of the syllabus of examinations was
that of enhancing new Associates’ motivation to go the extra mile to achieve
Fellowship. It was thought that a maximum of threc more examinations to pass
would be viewed as a rather modest hurdle. | therefore urge, in particular, the
new Associates admitted today to bend every effort to clear that last hurdle that
stands tn the way of total involvement in the Casualty Actuarial Society. In
today’s argot. you ought to “go for it!" Experience has shown that sustained
effort i1s more successful than is succumbing to the allure of even a brief hiatus
which, all too often, becomes permanent.

The new Fellows, on the other hand, might devote some of their newly
acquired free time to Society activities. One of the most rewarding experiences,
[ believe., comes from helping with vital education and examination work which
has earned for us that valued designation as a learned society. The new Fellow’s
recent experience with the examining process can be used to keep the system
responsive to the needs of the students. Here is offered that long-sought oppor-
tunity to introduce into the system those improvements which are best identified
by recent exam-takers. Certainly the present size of the Education and Exami-
nation Committee, together with the ever-growing demands on its members,
leaves room for all new Fellows willing to serve
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And it is precisely such a “willingness to serve” that is the key ingredient
in the voluntarism which has enabled the Casualty Actuarial Society to continue
to attract bright, dedicated members into its ranks. In addition to the service
rendered the organization and the camaraderie that attends joint efforts, the
personal sense of fulfillment that results from voluntarily helping to achieve the
objectives of a professional society is seldom found elsewhere. This reward is
described as “inwardly satisfying” in an article by John Tierney in the May
1985 Actuarial Review—an article which I commend to your attention for some
elaboration on the joys and benefits of voluntarism.

As new Fellows are volunteering their assistance with CAS activities and
new Associates are pursuing their Fellowship status, like all members of the
Society, today’s graduates should also keep abreast of developments in the
profession. One such development that is advancing toward fruition is the
preparation of formal Standards of Actuarial Practice, not to be confused with
the more gencral Guides to Professional Conduct. Those standards designed to
govern the practice of casualty actuaries should be reviewed critically when
exposed for comments and then observed with care when promulgated in final
form. Guides to Professional Conduct and related Opinions should be reviewed
frequently, not only for their substance, but also because of the tone they set
for our dealings with others as well as their importance in setting us off as
professionals. The remarkable level of acceptance we enjoy as members of the
CAS depends on a continuing commitment to standards of professionalism.

On an occasion such as this it is not inappropriate to ponder also some
longer range possibilities. If we actuaries weren't such a practical-minded lot,
we might even describe this exercise as dreaming a bit about the future—a
future which suddenly offers enhanced opportunities thanks to the professional
designations conferred here this morning.

Whether the objectives of the individual members of the Class of November
1985 be to render service to the public at large, to their professional clients,
employers or confreres is largely a personal decision. But success in achieving
the selected goal will require creativity, flexibility and continuing analysis of
the best available information. Only then can the actuary’s unique contribution
be brought to bear on those problems which cry out for solution in the years to
come.

May you all find as much joy in the challenging interface of dreams and
reality as has your grateful and honored speaker.
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THE SEARCH FOR COMPETITIVE ADVANTAGE

WILLIAM A. SHERDEN

It is a pleasure to be here today to talk about competitive advantage, a
subject of widespread interest throughout all industries and one that dominates
current business literature. Why the sudden burst of interest in competitive
advantage? History tells us much. After World War II. the U.S. cconomy was
the only game around. We had an established industrial base that was undamaged
by the war and fueled by the consumer demand pent up since the Great Depres-
sion. On top ot that, Europe was rebuilding its economy and unable to fulfill
its domestic market’s demand for goods and services. This was a time when
the countries of Europe, and perhaps most of the rest of the world, looked up
to American management know-how and wondered whether they would ever
catch up.

During the post-war period, it was difficult for American management not
to excel. But now all of this is history. Stimulated by the entry of aggressive
foreign firms, the deregulation of domestic industries. and the maturation of the
U.S. market, competition has intensified to unprecedented levels. With so many
U.S. firms struggling in this environment, it is not surprising that seckers of
management technology look more to Japan than the United States.

To see how the competitive environment holds nothing sacrosanct, onc need
only look at the membership in the Fortune 500 tfrom 1955 to 1985, This list
includes the largest and presumably strongest U.S. competitors. Yet of the 500
leading firms in 1955, only 219 survived to be included in the list in 1985, Of
the 281 firms that dropped out of the 500. some went bankrupt. some dwindled
in size, while others were subsumed into more successful corporations through
acquisition. Indeed, of the 43 firms classifted as “excellent”™ in the 1981 book
In Search of Excellence. 13 were experiencing competitive difficulties in 1985.

With one-half of the top 100 property-casualty firms experiencing a negative
cash flow in 1984, I nced not acquaint you with the impact of competitive
forces. Yet much of your industry’s adverse performance has been shrouded by
the underwriting cycle and other trends such as mounting litigation. Once the
dust settles, however, you will find new competitive threats to deal with,
especially from banks, retailers, and other parties that seck to enter niches of
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your business. As we see it, the strongest among you will struggle to thrive,
while the weakest struggle to survive. There are even scenarios in which whole
sectors of the insurance business diminish or change into unrecognizable forms.
This s not to say that all of you will be working for Citicorp or Sears; but |
bet some of you will.

It comes as no surprise that in this environment the literature and advice of
consultants and academics are full of prescriptions for gaining a competitive
advantage. Unfortunately, there has been too much advice, too much confusion,
and too little demonstrated success. As a consultant working with financial
service firms to develop competitive strategies, I want to put this advice in
perspective, pointing out useful concepts and demonstrating how to apply them
to your business.

All the current ideas about competitive strategy can be mapped on the grid
in Figure 1, with the classifications of economic versus qualitative, and concept
versus process. The economic ideas derive from the “rational” studies of indus-
trial economics, whereas the qualitative, or “irrational,” ideas spring more from
the science of marketing. “Concept” refers to prescriptive ideas suggesting
specific formulas for success, while “process™ refers to frameworks for thinking
about your business to gain a competitive advantage.

Let us first consider the economic concepts, since they have played such a
major role in competitive strategy over the past 15 years that they are now
almost synonymous with strategic planning. Economic concepts focus predom-
inantly on costs and employ such phrases as “cost curves,” “industry structure,”
“barriers.” and "mobility.” Many of these concepts were intellectually appealing,
if not addictive, and came to be used throughout U.S. industry. Although there
are too many concepts to cover here, | do want to give you a sense of their

development and use today.

One of the earfiest concepts was the product life cycle, which dictates that
all products and businesses inexorably follow the path from development to
decline shown in Figure 2. The concept identifies not only the nature of the
competitive environment but also the specific market strategies a firm should
pursue. For example, a firm should secure broad distribution capability in growth
markets while emphasizing cost reduction and product differentiation in mature
markets.

The concept of product life cycles, when properly applied, illustrates the
falsity of the common assumption that financial services is a growth business.
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Life cycles apply to insurance only if you use real growth measures, such as
policies. instead of premiums, which tend to escalate with inflation and many
other factors, obscuring the true maturity of the market. By definition, mature
markets grow at a slower rate than rcal GNP, When real growth mcasures are
used. as in Figure 3, it becomes clear that most major insurance lines are mature
and exhibit many of the competitive characteristics predicted by the product life
cycle.

Another early economic concept was the experience curve, which is shown
in Figure 4. The concept dictates that a firm’s production costs decline in a
predictable pattern as production volume accumulates. Specifically, a percentage
increase in accumulated production volume (or “experience™) gives rise to a
proportional percentage decrcase in unit production cost. This concept 15 very
appealing. since it provides a definite course of action to gain competitive
advantage: increase volume faster than competitors in order to lower costs.

The experience, or learning. curve was little used in competitive strategy
until it was tncorporated into the growth-share matrix (Figure 5). The introduc-
tion of this new concept raised prescriptive tormulas for competitive success to
new heights of popularity. Very simply, the growth-share matrix uses the product
life cycle as its vertical axis. Its horizontal uxis 1s market share. a surrogate for
the experience curve (the greater the market share, the greater the production
experience and the lower the costs). The growth-share matrix prescribed a
different course of action for the various business lines fitting within ecach of
the four cells. For example, cash cows (low growth. high share lines) should
be “milked” for the cash needed to convert question marks into stars. The stars,
in turn, would eventually become new cash cows as their market matures.
Above all, the growth-share concept prescribes cost reduction and market share
expansion.

The growth-share matrix was the most elegant and popular competitive
concept of its time. It has been estimated that by 1981 nearly one-half of the
Fortune 500 tirms used the matrix in their planning processes. Yet it soon
became apparent that the concept failed to explain many anomalies, such as
why small businesses in mature markets have been able to displace larger. well-
established firms. Further, it has been recognized that not all products sell on a
price-commodity basis and that cost structures vary widely across industries and
often do not conform to the experience curve. Recently, the growth-share matrix
has been blamed for bringing to near ruin a number of leading firms that widely
adopted it.
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One does not have to look hard at the breakdown of insurance costs (Figure
6) to realize that the growth-share matrix does not apply to your business. Of
all the cost elements, only the 10 percent administrative cost might be affected
by the learning curve, and even that is driven much more by organizational
structure, processing methods, and automation. If you really wanted to lower
insurance costs, you would obviously focus on the 70 percent claims cost, which
is affected by actuarial, underwriting, and claims methods. This may sound like
a back to basics message. You have long competed by focusing on underwriting
because that is where the largest costs are. In the future, much of the cost
advantage for carriers, especially in personal lines, will come from reducing
sales costs, which involves a consideration of distribution methods, not expe-
rience curves.

The heavy criticism of the growth-share matrix spawned many elaborate
variations that attempted to overcome its weaknesses. The matrices grew larger,
with more cells, vaguer definitions, and less straightforward prescriptions for
gaining a competitive advantage. It is interesting to follow Michael Porter’s
exposition of these concepts in his first book. Ultimately, he proposes a new
matrix called “strategy space.” This is actually just an empty matrix, which you
must label by determining the “key mobility barriers” in your business. Reading
between the lines, I take this to mean that you have to determine the key success
factors and you have to do so by yourself.

If you're getting the sense that these economic concepts do not offer an easy
route to a competitive advantage, you're getting the right message. In fact,
these prescriptive concepts recently have become so discredited as to cast a
heavy pall over strategic planning in general. Many firms have disbanded
corporate-level planning departments and pushed competitive strategy back
down to the business units where managers know best how their markets
function.

The major lesson from this review of prescriptive economic concepts is that
there is no simple method for gaining a competitive advantage. Industries are
too different and businesses too complex. Prescriptive economic concepts are
reminiscent of stock market forecasts and models of the U.S. economy, both
of which have been discredited for trying to explain the infinitely complex with
simple rules. The only way to attain a competitive advantage is to take a hard,
objective look at your own firm and the environment in which it exists.

Betore leaving the subject of economic concepts, I should note Michael
Porter’s new book, which introduces the value chain (Figure 7). The value
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chain suggests that a firm is a collection of numerous activities and that to gain
a competitive advantage one must isolate cach activity, as well as the activities
of upstream suppliers and downstream distributors. 1o determine how to reduce
costs or add value to the end customer. The value chain is not in fact a
prescriptive concept, but rather a framework for analyzing a firm which provides
a lengthy checklist of ideas to consider. Again, the message is clear: there are
no pat answers.

The insurance business holds many good examples of innovation to enhance
value-added. Direct billing has eliminated the inefficient agency-billing method
and reduced premium float. Agency automation and interface have reduced
manual and redundant tasks. Expert systems have given rise to a new value-
added approach to risk management. Computer access to claims data has en-
hanced the value of management reports. And finally, some carriers have re-
placed insured objects such as cars rather than reimburse customers for losses.

New competitors can also use the value chain framework 1o gain an advan-
tage in your business. Banks, for example. believe that they will have a signif-
icant distribution advantage over agents, enabling them to heighten convenience
and lower costs. In the group health business. hospital chains ure the ultimate
suppliers of health benefits and now believe they can increase consumer value
by selling directly to corporations, bypassing the traditional intermediaries.

But the value chain is still an economic framework . not a qualitative concept.
Qualitative concepts have existed for many years, upheld by adherents such as
Theodore Levitt, and have recently been popularized by the two “Excellence™
books. Rejecting the notion that all products are commodities sold on price
alone, qualitative concepts are based on the belicf that customers and employees
are real human beings and must be properly cared for if a firm s to succeed.

The latest “Excellence”™ book suggests that a firm gains a competitive ad-
vantage by doing hundreds, if not thousands, of things well. The book’s recipe
for doing things well includes four ingredients: being close to customers, in-
novating constantly, having “turned-on™ people. and having inspirational lead-
ership. Though it may be hard to believe that such qualitative aspects lead to
competitive advantage, we have seen it proved a number of times in the
insurance industry.

In this regard, I want to share with you an interesting case study involving
Third Party Administrators (TPAs), which are smallish firms that are making
inroads into the self-insured niches of the industry. In particular, they have
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rapidly established themselves in the heavily self-insured group health business.
In this segment alone, there are an estimated 3,000 TPAs, which have increased
their share of the market from 5 percent in 1977 to 25 percent in 1985.

The success of these small firms at the expense of established carriers
illustrates the value of the qualitative aspects of competition. At Temple, Barker
& Sloane, we have undertaken extensive rescarch on TPAs. We have found
that consumers rate TPAs higher than carriers on systems and other capabilities,

a startline fact since we know firsthand that carriers are much more sonhisticated
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than TPAs in service offerings. There was only one explanation for this paradox:
qualitative factors drive consumers” perception of quality. That is, the attitude
and responsiveness of employees, as well as other service factors, cloud a
customer’s perception of fundamental product features.

We saw the same thing when we analyzed how commercial brokerage firms
choose among carriers in competitive bids. We were surprised to find that
brokers’ decisions were often based on qualitative factors, such as personal
relations, responsiveness, flexibility, competence, and authoritativeness, rather
than strictly on price. As illustrated in the grid (Figure 8), brokers clearly judged
carriers on these subjective criteria. Carriers A and B had highly skilled field
people who were granted considerable authority and were flexible and responsive
to brokers’ requests. Carrier C ranked relatively low in this regard and won
considerably fewer competitive bids than Carriers A and B.

Our experience indicates that qualitative factors are integral to achieving a
competitive advantage. They are also more subtle than tangible economic ad-
vantages such as lower prices and superior claims systems. For example, the
Japanese determined that car consumers place a higher priority on the quality
of car interiors than exteriors. In response, the Japanese manufacturers focused
on interiors, while U.S. manufacturers continued to focus on bodies. Perhaps
we need a concept called ““quality space,” an empty matrix that requires one to
label on the basis of how customers perceive quality. To determine how con-
sumers define quality, you must ask them. It is particularly useful to inquire
about why you won or lost a particular competitive bid or lost an established
account.

Before ending my discussion of qualitative advantages, 1 want to mention
market positioning, a concept that has its origins in advertising. According to
the concept, illustrated in Figure 9, a customer can identify only one or, at
most, a few suppliers that occupy certain niches, or positions, in the market;
all other suppliers operate in a sea of anonymity. These positions are not
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necessarily traditional product or segment niches but rather perceptual niches
that the customer can readily identify. For example. IBM occupies the positions
of “industry standard™ and “safety” in the computer market. while Intel occupies
the position of “innovation” in the integrated circuit market. The competitive
advantage of dominating a markct position is clear: a dominant firm is more
frequently included in competitive bids and wins them on bases other than price.

The concept of market positioning readily applies to the vast property-
casualty industry, where hundreds of firms compete. Though some firms dom-
inate various product or market niches, only a very few have recognizable
positions in the major markets such as personal lines. Most carriers are afloat
in the sea of anonymity.

As we have seen, the road to a competitive advantage is a twisting one;
there are no simple rules. no toolproof prescriptions. Some general concepts
are useful, but each industry practitioner must objectively analyze his or her
own business to find the winning formulas. And. as we have also seen, a
competitive advantage encompasses more than the rational cconomic model of
industry structure: it also includes many of the qualitative factors presented
here.

Let me now suggest a straightforward planning tramework that we at TBS
use to help clients apply these concepts and develop a competitive advantage.
As shown in Figure 10, the framework involves four levels of analysis in the
development of a strategic plan. The first step is to analyze three broad areas:
(1) the environment. (2) the competition. and (3) vour firm itself. The environ-
mental analysis should include first and foremost the market. Where appropriate,
the analysis should also include other factors such as legal and regulatory issues,
which are particularly key to the property-casualty environment. In analyzing
competitors, you must focus not just on traditional rivals but also on emerging
firms with increasing market share, particularly non-traditional competitors. In
analyzing your internal capabilities. you might use the value chain or other
concepts. but it is most important that you apply them with objectivity.

By comparing developments in the environment with your analysis of the
competition, you should be able to identify the threats and opportunitics your
firm faces. Similarly, by comparing vour firm with its competitors, you should
be able to define your competitive strengths and weaknesses. This analysis
should produce u clear understanding of your overall competitive position in
terms of the opportunities and challenges ahead and how well your firm is suited
to deal with them. Once your competitive position is well defined. you will
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have a solid basis for identifying and evaluating alternative courses of action in
the development of a strategic plan.

We would note, however, that even when armed with a brilliant strategy
most firms have organizational and cultural barriers that will block their attempt
to gain a competitive advantage. | recall a recent quote in Business Week that
recommended spending 20 percent of your time on developing a competitive
advantage and 80 percent on developing the culture to make it work. Judging
from our experience, this might be understated: strategy, organization, and
culture are inseparable aspects of gaining a competitive advantage.

The barriers to effective implementation are intrinsic to the typical organi-
zation with its many managerial layers and functional divisions. As Figure 11
shows, these organizations keep key decision makers too distant from the
market. Market information filters out as it passes up through the myriad levels
of management. Too often firms respond to this problem with a “bootstrap”
marketing approach, attempting to compensate for the lack of direct market
contact by feeding senior management quantitative market research. Market
research is important, but it is a poor substitute for actual market exposure.

Organizational complexity often produces an ivory tower effect where senior
managers have little or no contact with the customers who are the reason for
their existence. We have, however, seen a number of cases of a firm breaking
this barrier, gaining a significant competitive advantage by placing senior man-
agement in contact with customers. In one instance a major brokerage firm,
which was consolidating its carriers, chose the winning firms largely because
their CEOs were involved in the sale. The CEO is the most effective sales
resource you have to gain an advantage, and one that is too often overlooked.

Remoteness from the market also breeds imitation, a common occurrence
in the insurance industry. Firms often closely copy the innovations and proce-
dures of their counterparts. Competitive advantage will again go to those carriers
that buck this trend and start chasing the market rather than each other.

A second barrier to strategic implementation is tunnel vision, which is caused
by the rigid functional structure that plagues many industries, especially insur-
ance. A functional orientation may be necessary in a technical industry such as
insurance, but when taken too far it breeds insularity. Employees know only
their particular sphere of activity and are ignorant about the market’s broader
context. They are distant not only from the market but from each other. This
structure results in functional specialists becoming CEQOs or division heads,
precluding any generalist perspective. It is illuminating to note that the devel-
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opment of Universal Life, the major product innovation in individual insur-
ance, resulted when a securities executive was put in charge of an acquired
life company.

The ponderous organization is the third barrier to strategic implementation.
Even when a typical firm finds a competitive advantage, it often loses it by
taking too long to exploit it in the market. The symptoms of the ponderous
organization are an overreliance on committees. protracted decision making,
slow response to the environment, a lack of anyone in charge, overlooked
responsibilities, and conflict resolution residing in the CEO’s office.

The fourth barrier to implementation is the risk-averse culture of most
carriers. Carriers are in the risk management business by definition, but oo
often this cultural heritage spills over into many aspects of business. With regard
to attitude toward customers, for example. there arc often more people in a
carrier that can say no to a customer than yes. Risk avoidance too often
influences a carrier’s attitude toward business risks, resulting in a paralyzing
conservatism. Sacred cows block new innovations. and old, time-tested (and
often outdated) ways are the only accepted ways. In this environment, innovation
becomes frozen and competitive advantage becomes an 1llusion.

The risk-adverse culture also leads carriers to have an overly conservative
human resources policy, built on the belief that ten lower-paid, mediocre em-
ployees are better than a few higher paid, highly motivated, skilled individuals.
I know from experience this is false. Another manifestation of risk-aversity is
a paternalistic attitude toward employees, which management takes in the hope
that it will lead to loyalty when ultimately it leads only to a polarization of
semor management and workers.

The development of insurance generalists is impeded by the typical orga-
nizational culture. It’s been said that it is hard to find an industry that does so
little job rotation as insurance. Judging from our observations of the talent at
many leading-edge financial service firms, if you cannot attract high quality
generalists or develop them internally, you are going to face stiff competition
in the future.

The clear winners in tomorrow’s financial services market will be those
firms that make a successful transition from the traditional environment to the
current competitive environment, as outlined in Figure 12. The winners will
overcome the organizational and cultural barriers and will be able to identify
and exploit competitive advantages in the market. Once again, strategy, orga-
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nization, and culture are inseparable considerations in pursuing a competitive
advantage.

I would like to conclude by discussing how my comments relate to your
profession and the career paths you might take. The options before you are to
pursue a technical career either within a firm or in consulting or to progress in
the organization to the level of senior actuary or general manager. If you choose
the fatter path, you will be faced with the challenge of seeking a competitive
advantage for your firm, and in this you must consider your own career devel-
opment. Though actuaries are in some ways the intelligentsia of the firm, their
long years of schooling and professional practice can lead to isolation. If you
truly seek a general management career, you might consider advanced manage-
ment programs, job rotation, or other vehicles to gain broad exposure. Although
it is hard to imagine a flood of actuaries making sales calls, perhaps something
along these lines would not be so bad.

Our experience has shown that directly exposing bright, intuitive executives
to the market builds superior market intelligence and yields superior strategies.
The development of a broadly skilled senior actuary who is market- and em-
ployee-oriented might be a large step a carrier can take toward attaining a
competitive advantage.
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Figure 3

POLICY GROWTH IN MAJOR LINES
Compound Annual Growth

Growth in Real GNP
INDIVIDUAL MARKETS 3.0%

Life [ 0-3

Auto

Homeowners

CORPORATE MARKETS

Group Insurance
Commercial Auto
Workmen’s Comp.
Multiperil

[4%3

SSTHGAY LLON AN



Figure 4
THE EXPERIENCE CURVE
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Figure 6

DETERMINANTS OF INSURANCE COSTS
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Figure 7
THE VALUE CHAIN
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Figure 10
ANALYTICAL APPROACH
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Figure 11

BARRIERS TO IMPLEMENTATION
Typical Organization

AN

/ ‘ FIELD ORGANIZATiON ‘

HOME
OFFICE

<o O 0
_ DISTRIBUTORS \
o o o

MARKET

A\

[¢}:43

SSACY SLLONANY



Figure 12

CHANGES IN CULTURE
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MINUTES OF THE 1985 ANNUAL MEETING
November 10-12, 1985

WESTIN CROWN CENTER, KANSAS CITY. MISSOURI

Sunday, November 10, 1985

The Board of Directors held their regular quarterly meeting from 1:00 p.m.
to 4:00 p.m.

Registration was held from 4:00 p.m. to 6:30 p.m.

The Officers hosted a reception for new Fellows and their spouses from
5:30 p.m. to 6:30 p.m.

A general reception for all members and guests was held from 6:30 to 7:30
p.m.

Monday, November 11, 1985

Registration continued from 7:30 a.m. to 8:30 a.m.

President C. K. Khury opened the meeting at 8:30 a.m. He introduced
Fletcher Bell, Kansas Commissioner of Insurance. who welcomed the member-
ship to Kansas City.

Mr. Khury then announced the results of the elections of Officers and
Directors:
President-Elect
Michael A. Walters

Directors
James R. Berquist
Charles F. Cook
David P. Flynn
Mavis A. Walters

Herbert J. Phillips was appointed by the Board of Directors to fill the remaining
term of Michael Fusco, who resigned to take a position on the Executive
Council.
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Mr. Khury recognized the nine new Associates and presented diplomas to
the twenty-eight new Fellows, who were introduced by Mr. Wayne Fisher, Vice
President—Membership. The names of these individuals follow.

FELLOWS

Steven D. Basson Gregory S. Grace Gail A. Mendelssohn
Kevin H. Bursley Ronald E. Greco William S. Morgan
John E. Captain Jonathan B. Hale E. Toni Mulder
Joel S. Chansky Jeffrey L. Hanson John C. Narvell
Ross A. Currnie Gayle E. Haskell Andre Normandin
Linda A. Dembiec Timothy T. Hein Raobert L. Sanders
Claude Desilets Kenneth J. Hoppe Harvey A. Sherman
Robert V. Deutsch Robert S. Kaplan Jerome J. Siewert
Brian Duffy Jeffrey H. Mayer Joanne S. Spalla
N. Paul Dyck

ASSOCIATES
Janet B. Dezube Jeffrey R. Jordan Sharon A. Mair
Scott H. Dodge Robert S. Kaplan Roger A. Yard
Steven B. Goldberg Andrew E. Kudera Mark A. Yunque

Mr. Khury then introduced Mr. George Morison, a past President of the
Society, who addressed the new Fellows concerning their professional respon-
sibilities.

Mr. Charles A. Bryan summarized the three new Proceedings papers. Paul
Braithwaite delivered a review of James E. Buck’s paper, “On Stein Estimators:
‘Inadmissibility’ of Admissibility as a Criterion for Selecting Estimators.”

Mr. Khury concluded the Business Session at 9:30 a.m. and introduced the
Keynote speaker, Mr. William A. Sherden, Vice President, Temple, Barker &
Sloane, Inc., who spoke on “The Search for Competitive Advantage.”

The remainder of the morning was devoted to concurrent sessions, consisting
of four General Attendance Workshops, a Limited Attendance Workshop, a
workshop presentation by the Committee on Ratemaking Principles, and three
new Proceedings Papers.
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The General Attendance Workshops are listed below.

1. “Are Auto Residual Market Mechanisms Effective?”
John Corbley—Moderator
President
AIPSO

Gary Grant
Actuary
State Farm Mutual Automobile Insurance Company

Michael A. LaMonica
Actuary
Allstate Insurance Company

-2

“State-Of-The-Art Personal Auto Pricing Techniques™
Charles A. Bryan—Moderator

Senior Vice President. Actuary

USAA

Kyleen Knilans
Director, Personal Auto Pricing
Nationwide

Robert T. Muleski
Associate Actuary
Liberty Mutual

Glenn M. Walker
Associate Actuary
GEICO

3. “The Practical Implications of Insurer Insolvency™
David G. Hartman—~Moderator
Vice President and Actuary
Chubb Group

James E. Gustafson
Senior Vice President
General Reinsurance Corporation

Richard Heydinger
Director of Risk Management
Hallmark Cards, Inc.
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Chris Milton
Vice President
AlIG Reinsurance

4. “Controlling Legal Expenses by Rebuilding the Courthouse Steps”
Patrick J. Grannan—Moderator
Consulting Actuary
Milliman & Robertson, Inc.

Jerome Wolf
Spencer, Fane, Britt and Browne

Deborah R. Hensler
Senior Social Scientist
The Rand Corporation

The Limited Attendance Workshop was

“The Insurer’s Market Identity Crisis”
William A. Sherden—Moderator
Vice President
Temple, Barker & Sloane, Inc.

The Committee on Ratemaking Principles workshop was an “Open Discus-
sion on a Statement of Ratemaking Principles.” The session provided an open
forum for the review and discussion of the Committee’s first draft of a Statement.

The three new Proceedings papers are listed below:

“An Analysis of Experience Rating”
Author.: Glenn G. Meyers
University of lowa

“The Valuation of an Insurance Company for an Acquisition Involving a
Section 338 Tax Election”
Authors: Orin M. Linden, James A. Hall, [II, Stephen Gerard,
Michael Heitz
Coopers & Lybrand

“An Intoduction to Underwriting Profit Models™
Author: Howard C. Mahler
Massachusetts Rating Bureaus
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Mohl, F. I.
Moore, P. S.
Morison, G. D.
Mulder, E. T.
Muleski, R. T.

Murdza, P, J., Jr.

Muza, J. J.
Myers, N. R.
Narvell, J. C.
Newlin, P. R.
Niles, C. L., Jr.
Normandin, A.
O’Connell, P. G.
O’Neil, M. L.
Otteson, P. M.
Phillips. H. J.

Andler, J. A.
Austin, J. P.
Bailey, V. M.
Cadorine, A. R.
Chorpita, F. M.

Cimini, E. D, Ir.

Clark, D. G.
Cohen, A. L.
Connor, V. P.
Crifo, D. A.
Dezube, J. B.
Dodge, S. H.
Domfeld, J. L.
Eagelfeld, H. M.
Edie, G. M.
Einck, N. R.
Galiley, B. J.
Gapp. S.
Goldberg, S. B.

NOVEMBER MINUTES
FELLOWS

Renze, D. E.
Roberts, L. H.
Rodermund, M.
Ryan, K. M.
Sanders, R. L.
Sherman, H. A.
Shoop, E. C.
Skurnick, D.
Smith, L. M.
Snader, R. H.
Spalia, J. S.

Stephenson, E. A.

Streff, J. P.
Tatge. R. L.
Tiller, M. W.
Tom, D. P.

ASSOCIATES

Gould, D. E.
Harwood, C. B.
Henry. T. A.
Jensen, J. P.
Jordan, J. R.
Kelly, M. K.
Klawitter, W. A.
Kolk, S. L.
Koupt, G. 1.
Kudera, A. E.
Leo, C. J.
Licht, P. M., St.
Lis, R. S.. Jr.
Loper, D. I.
Mair, S. A.
McDaniel, G. P.
Mokros, B. F.
Mozeika, |. K.
Murphy, W. F.

Tresco, F. J.
Tuttle, J. E.

Van Ark., W. R.
Van Slyke, O. E.
Walker, G. M.
Walker, R. D.
Watters, M. A.
Walters, M. A,
Weimer, W. F.
Weller, A. O.
Wilson, J. C.
Wilson, R. L.
Wiseman, M. L.
Woods, P. B.
Waulterkens, P. E.

Napierski, J. D.
Nelson, J. K.
Ogden, D. F.
Pelletier, C. A.
Penniman, K. T.
Peterson, S. J.
Port, R. D.
Potts, C. M.
Ratnaswamy, R.
Rice. W. V.
Rudduck, G. A.
Sansevero, M., Jr.
Schulman, J.
Schultheiss, P. J.
Smith, B. W,
Stroud. R. A.
Terrill, K. W.
Townsend, C. J.
Tucker, W. B.



Waldman, R. H.
Whatley, M. W.
White, C. S.

Armstrong, S. H.
Bradley, S.
Carpenter, J. G.
Colver, C. F.
Colvin, S. P.
Comstock, S.
Demarlie, G.

NOVEMBER MINUTES
ASSOCIATES

Yard, R. A.
Yatskowitz, J. D.

GUESTS-SUBSCRIBERS-STUDENTS

Didonato, A. M.
Dunn, J. T.
Farwell, R. A.
Furtney, G.
Graves, G. G.
Johnson, I. E.
Johnston, S. J.
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Yau, M. W.
Yunque, M. A,
Natte, B.

Peck, S.
Schmidt, L.
Smith, D. A.
Stenmark, J. A.
Sterk, J.
Wilson, G. S.
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REPORT OF THE VICE PRESIDENT-—ADMINISTRATION

This report, by the Vice President—Administration, is intended to provide
the members with a brief summary of the more important activities of the
Society during the last fiscal year.

Both the Board of Directors and the Executive Council, as well as all the
standing committees were extremely active in this year, our second year under
the reorganization program. A great deal of progress has been made on your
behalf. The Board of Directors, with the prime responsibility of setting policy,
met four times, and took several key policy positions affecting all facets of the
Society: Administration, Programs, Membership, and Development. These pol-
icies were announced in the Actuarial Review and will also appear in the next
edition of the Yearbook. The Yearbook, by the way, is being expanded gradually
to include more information relative to policies set by the Board, as well as
operational items enacted by the Executive Council.

The Executive Council, with the prime responsibility of running the day-to-
day activities of the CAS, also met four times during the year and dealt with
the very extensive agendas at each meeting. In addition, for the first time, the
Executive Council held a meeting of all committee chairmen, which was well
attended and very well received. It provided a forum for both the officers and
committee chairmen to get to know each other; to openly discuss their mutual
problems, goals, and activities; and to discuss the best way to accomplish the
various tasks assigned. It is planned that such a meeting will be held at least
annually from now on.

The membership of the CAS continues to grow at a rapid rate. At the Spring
Meeting in Boca Raton, sixty-eight new Associates and nineteen new Fellows
were admitted. At this meeting in Kansas City, nine new Associates and twenty-
eight new Fellows were admitted. The membership is now approximately 1,190.
Certainly, we will surpass the 1,200 mark next year.

As a result of this growth in membership and the fact that the CAS operates
largely by the willingness of its members to volunteer their time and effort, the
Executive Council commissioned a study of the future of the CAS office. The
recommendation of the committee was that one staff member be added to the
business office, basic automation be installed (one personal computer) and the
necessary space and furniture be acquired. This recommendation was approved
by the Council and will go into effect uickly.
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Another facet of the membership growth and the resulting budget require-
ments to maintain adequate services was the need to install a functional ac-
counting system. This concept was also approved by the Executive Council and
installed with the 1985/86 fiscal year budget. Income and disbursement items
now will be segregated into four distinct functions—Membership Services,
Examinations, Programs, and All Other. The budget approved for the 1985/86
fiscal year is in excess of $500,000 and will require an increase of $20 in dues
for all classes of members and an increase of $20 in exam fees for Parts 4
through 10.

The activities of both Board and Council in this past year, in no particular
order of priority, included the subjects listed below.

1. Goals and objectives governing the educational efforts of the CAS. This
subject includes the basic examination process, as well as continuing
education for current members.

2. Establishment of a talent bank to provide for the identification of mem-

bers willing to serve on committees and an indication of their primary

interests or specialties.

Revised and updated guides for the submission of papers.

4. Registering of the Proceedings in the Library of Congress and obtaining

an International Standard Serial Number (ISSN).

5. Establish bibliographies on ratemaking principles and loss reserving prin-

ciples.

6. Canadian content on the CAS Syllabus.

Finally, the Audit Committee audited the 1984/85 fiscal year books of the
CAS and found the accounts to be properly stated. The year ended with an
increase in surplus of $37,281.22, which fortunately offset the operating loss
of the previous year. The reason for the increase was the success of the Boca
Raton meeting—registrations far exceeded anticipated levels—and a much better
investment yield than the budget predicted.

Members® equity now stands at $258,799.90, subdivided as follows:

Michelbacher Fund $ 59,681.87

had

Dorweiler Fund 9,881.80
CAS Trust 2,005.28
Scholarship Fund 7,112.50
CAS Surplus 180,118.45

$258,799.90
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For 1985/86, the Board of Directors elected the following Vice Presidents:

Vice President—Administration Richard H. Snader
Vice President—Development David G. Hartman
Vice President—Membership Wayne H. Fisher
Vice President—Programs Michael Fusco

This is my final report as Vice President—Administration and 1 would be
remiss if I did not publicly thank those who have worked with me over the past
years: Bob Daino as Assistant Secretary; Tony Grippa as Assistant Treasurer,
and his staff; and, in particular, Edee Morabito in charge of the business office;
as well as the other committee members within the Administration function.
The CAS is indeed fortunate to have such people and I enjoyed working with
them.

Respectfully submitted,

HERBERT }. PHILLIPS
Vice President—Administration
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FINANCIAL REPORT
FISCAL YEAR ENDED 9/30/85 (ACCRUAL BASIS)

INCOME DISBURSEMENTS
Dues $115.857.72 Printing & Stationery
Exam Fees . 103,281 .22 Office Expenses
Meetings 196,611.99 Exam Expenses
Proceedings 12,743.95 Meeting Expenses. .
Readings 14.514 53 Library
Invitational Program. .. 4,880.00 Insurance. .
Interest.................. ... 35.094 08 Refund—Dues ...
Actuarial Review 332.00 Refund—Exam...
Yearbook . 950.00 Refund-—Meeting........
Foreign Exchange L (551.92) Refund—Reading . .
Miscellaneous........... 1.014.73 Math. Assoc of America ...
Total..... - $484.728.30 Expenses—President
Expenses—Pres.-Elect ...
Outside Services ...
Miscellaneous
Total
Income [T $484,728.30
Disbursements................ _447447.08

Change in CAS Surplus: §( 37.281.22)

$122.703.66
107,422 90
4,464 88
177.851.74
41524
7.333.48
230.00
2.735.00
9,350.00
94.00
2.000.00
5,000.00
2.500.00

a

5,286.18

$447.447.08

ACCOUNTING STATEMENT (ACCRUAL BASIS)

ASSETS 9/30/84 9/30/85 CHANGE
Checking Account $ 3586694 § 125080 § (34.607.14)
Money Market Fund 61,930 62 143,120.28 81,189.76
Bank Certificates of Deposit. 102,573.00 0 (102,573.00)
U.S. Treasury Notes & Bills 99,871.90 222926.78 122,954.88
Accrued Interest 24,216.75 11.684.06 (12.532.69)
Total Assets $324559.11  $37899092 $ 5443181
LIABILITIES
Office Expenses....... $ 2800000 $ 30.000.00 $ 2.000.00
Printing Expenses R 62,000.00 30.611.00 (31,389.00)
Prepaid Examination Expenses (273.14) 0 273.14
Meeting Expenses & Prepaid Fees (3.500.00} 13.813.02 17.313.02
Prepaid Exam Fees 29.970.00 45,767.00 15,797.00
Other 0 0 Q
Total Liabilities $116.19686  $120,19102 §  3,994.16
MEMBERS' EQUITY
Michelbacher Fund $ 54,791.76 $ 5968187 § 4.890.11
Dorweiler Fund 8,922.62 9,881.80 959.18
CAS Trust 1.810.64 2.005.28 194.64
Scholarship Fund 0 711250 711250
CAS Surplus 142.837.23 180,118.45 37.281.22
Totals $208362.25 $258,799.90 § 5043765

Herbert J. Phillips
Vice President—Admnistration

This 1s to certify that the assets and accounts shown in the above financial statement

have been audited and found to be correct

Audit Committee
Walter J. Fitzgibbon, Jr., Chairman
George G. Bertles
David M. Klein
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1985 EXAMINATIONS—SUCCESSFUL CANDIDATES

Examinations for Parts 4, 6, 8 and 10 of the Casualty Actuarial Society
were held on May 2 and 3, 1985. Examinations for Parts 5, 7 and 9 were held
on November 6, 7, and 8, 1985.

Examinations for Parts 1, 2 and 3 are jointly sponsored by the Casualty
Actuarial Society and the Society of Actuaries. These examinations were given
in May and November of 1985. Candidates who passed these examinations
were listed in the joint releases of the two societies.

The Casualty Actuarial Society and the Society of Actuaries jointly awarded
prizes to the undergraduates ranking the highest on the General Mathematics
examination. For the May, 1985 examination, $200 prizes were awarded to
Noam D. Elkies, Francois Grenon, Martin Papillon, and Jeffrey M. Sanders.
The additional $100 prize winner was Andrew Lee. For the November, 1985
examination, the $200 prize was awarded to Stephen J. Stribling. The additional
$100 prize winners were Rajasekhar Malyala. Darien G. Lefkowitz, Howard P.
Hines, and Anthony J. Benjamin.

The following candidates were admitted as Fellows and Associates at the
November, 1985 meeting as a result of their successful completion of the Society
requirements in the May, 1985 examinations.

FELLOWS

Steven D. Basson Gregory S. Grace Gail A. Mendelssohn

Kevin H. Bursley
John E. Captain
Joel S. Chansky
Ross A. Currie
Linda A. Dembiec
Claude Desilets
Robert V. Deutsch
Brian Duffy

N. Paul Dyck

Ronald E. Greco
Jonathan B. Hale
Jeffrey L. Hanson
Gayle E. Haskell
Timothy T. Hein
Kenneth J. Hoppe
Robert S. Kaplan
Jeffrey H. Mayer

William S. Morgan
E. Toni Mulder
John C. Narvell
Andre Normandin
Robert L. Sanders
Harvey A. Sherman
Jerome J. Siewert
Joanne S. Spalla



Janet B. Dezube
Scott H. Dodge
Steven B. Goldberg

1985 EXAMINATIONS

ASSOCIATES

Jeffrey R. Jordan
Robert S. Kaplan
Andrew E. Kudera
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Sharon A. Mair
Roger A. Yard
Mark A. Yunque

The following is the list of successful candidates in examinations held in

May, 1985.
Part 4

Aquino, John G.
Audet, Daniel
Billings, Holly L.
Blakinger, Jean M.
Boudreau, Joseph J.
Bradley, J. Scott
Brehm, Paul J.
Caulfield, Michael J.
Cohen, Sheldon
Commodore, Alfred D.
Conway, Ann M.
Crawshaw, Mark
Cross, Susan L.
Desnoyers, Lee A.
Drent, Susan M.
Feldblum, Sholom
Fitzpatrick, William G.
Forbus, Barbara L.
Francis, Louise A.
Franz, Vincent-M.
Gagnon, Luc
Garneau, Denis
Gergasko, Richard J.
Gevlin, James M.
Gibson, Richard N.
Goldberg, Leonard R.
Goldberg, Robert H.
Griffith, Ann V.
Groh, Linda M.

Groshong, Susan J.
Grossack, Marshall J.
Gruenhagen, Todd A.
Haefner, Larry A.
Haidu, Deborah D.
Hawley, Karin S.
Hays, David H.
Herderick, Teresa J.
Hurley, John M.
Johnson, Eric J.
Johnston, Steven J.
Kaplan, Robert S.
Keatinge, Clive L.
Keen, Eric R.

Kesby, Kevin A.
Kwon, Frank O,
Lalonde, David O.
Lamb, Dean K.
Lamy, Mathieu
Lapointe, Susan E.
Lebens, Joseph R.
Leveille, Jean-Marc
Lyons, Mark D.
Mahon, Mark J.
Mallison, Robert G., Jr.
Marchena, Eduardo P.
Marles, Blaine C.
Maud, Christine E.

Mayer, Malkie
McNichols, James P.
Millar, Leonard L.
Miller, John E.
Miller, Mary F.
Nelson, Chris E.
Nyce, Glen C.
Panjer, Harry H.
Paterson, Bruce
Pipitone, Faith M.
Popejoy, Kathy
Protz, Steven G.
Saton, Melissa A.
Sauthoff, Stephen P.
Shimkus, Mary B.
Sliwa, Jan
Slotznick, Lisa A.
Spiegler, David
Spore, Louis B.
Steinberg, Karen F.
Strasser, Benjamin C.
Swanstrom, Ronald J.
Sweeney, Eileen M.
Wacker, Gregory M.
Werland, Debra L.
Wilson, Theresa A.
Wrobel, Edward M.
Wu, Chien-Chien L.
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Part 6

Adams, Jeffrey
Allard, Jean-Luc
Anderson, Mary V.
Apfel, Kenneth
Atkinson, Richard V.
Bender, Robert K.
Boucek, Charles H.
Brissman, Mark D.
Cardoso, Ruy A.

Carlson, Christopher S.

Carlson, Karyl T.
Caron, Philippe
Closter, Donald L.
Comstock, Susan J.
Crane, Veronika K.
Curry, Michael K.
Danielson, Guy R.
Desjardins, Charles
Dezube, Janet B.

DiDonato, Anthony M.

Dodge, Scott H.
Doyle, Michael J.

Dunlap, George T.. IV

Ericson, Janet M.

Part 8

Almagro, Manuel, Jr.
Amundson, Richard B.
Becraft, Ina M.
Bellusci, David M.
Bennett, Robert S.
Bursley, Kevin H.
Cartmell, Andrew R.
Chen, Chyen
Cieslak, Walter P.
Colin, Barbara
DeConti, Michael A.

1985 EXAMINATIONS

Fanning, William G.
Fletcher, James E.
DiGaetano, Mark
Goldberg, Steven B.
Graves, Gregory T.
Graves, Nancy A.
Johnson, Wendy A.
Johnston, Joyce M.
Jordan, Jeffrey R.
Kelly, Beverley A.
Kido, Chester T.
Kreps, Rodney E.
Kudera, Andrew E.
Lacko, Paul E.
Lewandowski, John J.
Lewis, Michael E.
Lombardi, Paul M.
Mair, Sharon A.
Maiik, Sudershan
Miller, Susan M.
Ng, Kwok C.
Ollodart, Bruce E.
Ostergren, Gregory V.
Overgaard, Wade T.

Deede, Martin W.
DeFalco, Thomas J.
Dekle, James M.
Dembiec, Linda A.

Diamantoukos, Christopher

Downing, Jeremiah M.
Dufresne, Jacques
Earwaker, Bruce G.
Edmondson, Alice H.
Elliott, Paula L.

Gapp, Steven A.

Pelly, Brian G.
Plano, Richard A.
Privman, Boris
Procopio, Donald W,
Rhodes, Frank S.
Rice, Denise E.
Schustak, Marlene D.
Scruggs, Michael L.
Scully, Mark W.
Spalding, Keith R.
Sutter, Russel L.
Tan, Suan-Boon
Taylor, Craig P.
Taylor, R. Glenn
Vezina. Guy

Von Seggern, William J.

Wargo, Kelly A.
Whitehead, Guy H.
Wilson, Ernest 1.
Wilson, Gregory S.
Yard, Roger A.
Yow, James W.
Yunque. Mark A.

Guenthner, Denis G.
Haskell, Gayle E.
Henry, Thomas A.
Hollister, Jeanne M.
Johnson, Andrew P.
Kartechner, John W.
Kneuer, Paul J.
Koupf, Gary 1.
Lacroix, Marthe A.
Levine, George M.
Littmann, Mark W.



Lyons, Daniel K.
Maguire, Brian P.
Martin, Paul C.
Mayer, Jeffrey H.
McClure, John W., Jr.
McDonald, Gary P.
Menning, David L.
Miller, William J.
Morgan, William S.
Mulder, Evelyn T.
Myers, Thomas G.
Noyce, James W.

Part 10

Aldin, Neil C.
Barclay, David L.
Basson, Steven D.
Bear, Robert A.
Berry, Janice L.
Boyd, Wallis A.
Bursley, Kevin H.
Captain, John E.
Chansky, Joel S.
Clark, Daniel B.
Curran, Kathleen F.
Currie, Ross A.
Desilets, Claude
Deutsch, Robert V.
Dornfeld, James L.
Duffy, Brian
Dyck, N. Paul

1985 EXAMINATIONS

Pei, Kai-Jaung
Putney, Alan K.
Rathjen, Ralph L.
Reppert, Daniel A.
Roth, Randy J.

Sandman, Donald D.
Schnapp, Frederic F.

Schultheiss, Peter J.
Shepherd, Linda A.
Siewert, Jerome J.
Silver, Melvin S.

Dye, Myron L.
Easlon, Kenneth
Einck, Nancy R.
Gillam, William R.
Grace, Gregory S.
Greco, Ronald E.
Hale, Jonathan B.
Hanson, Jeffrey L.
Hein, Timothy T.
Homan, Mark J.
Hoppe, Kenneth J.
Keller, Wayne S.
Krakowski, Israel
Lee, Robert H.
Lewis, Martin A.
Lipton, Barry C.

Terrill, Kathleen W.
Thorrick, John P.
Townsend, Christopher J.
Trudeau, Michel
Veilleux, Andre
Visintine, Gerald R.
Votta, James C.
Wick, Peter G.
Williams, Robin M.
Willsey, Robert L.
Woodruff, Arlene F.

Mendelssohn, Gail A.
Montgomery, Warren D.
Murphy, Francis X., Jr.
Narvell, John C.
Normandin, Andre
Onufer, Layne M.
Pelletier, Charles A.
Ryan, John P.

Sanders, Robert L.
Schilling, Timothy L.
Sherman, Harvey A.
Smith, Michael B.
Spalla, Joanne S.
Treitel, Nancy R.
Webster, Patricia J.
White, Charles S.



1985 EXAMINATIONS

The following candidates will be admitted as Fellows and Associates at the
May, 1986 meeting as a result of their successful completion of the Society

requirements in the November, 1985 examinations.

Allaben, Mark S.
Bear, Robert A.
Berry. Janice L.
Boyd, Wallis A.
Clark, Daniel B.
Curran, Kathleen F.
Dornfeld, James L.

Aldin, Neil C.
Almagro, Manuel, Jr.
Amoroso, Rebecca C.
Anderson, Mary V.
Apfel, Kenneth
Atkinson, Richard V.
Callahan, James J.

Carlson, Christopher S.

Caron, Louis-Philippe
Cascio, Michael J.
Cathcart, Sanders B.
Cellars, Ralph M.
Christhilf, David A.
Comstock, Susan J.
Cox, David B.
Davis, Dan J.

Debs, Raymond V.
Dekle, James M.
Doyle, Michael J.
Englander, Jeffrey A.
Fletcher, James E.
Forbus, Barbara L.
Gauthier, Richard
Gebhard, James J.

FELLOWS
Hall, Allen A.
Hayward, Gregory L.
Lewis, Martin A.
Lipton, Barry C.
Mashitz, Isaac
Miller, Robert A.. 111

ASSOCIATES

Gidos, Peter M.

Glicksman, Steven A.

Graham, Jeffrey H.
Guenthner, Denis G.
Hay, Randolph S.
Herbers, Joseph A.
Hertling, Richard J.
Homan, Mark J.
Johnson, Wendy A.
Kasner, Kenneth R.
Kneuer, Paul J.
Koegel, David
Kreps. Rodney E.
Kulik, John M.
Kuo, Chung-Kuo
Lacek, Mary Lou
Lacroix, Marthe A.
Lessard, Alain
Lyons, Mark D.
Mailloux, Patrick
McCoy, Mary E.
Millar, Leonard L.
Miller, Susan M.
Mohrman, David F.

Murphy, William F.
Nester, Karen L.
Port. Rhonda D.
Smith, Michael B.
Treitel, Nancy R.
White, Charles S.

Mueller. Robert A.
Musante, Donald R.
Newell, Richard T., Jr.
Newman, Henry E.
Ollodart. Bruce E.
Ostergren, Gregory V.
Overgaard, Wade T.
Peraine, Anthony
Pridgeon, Ronald D.
Privman, Boris
Rhodes, Frank S.
Rice, Denise E.

Rice, James W.
Roesch, Robert S.
Sandman, Donald D.
Scully, Mark W,
Shepherd, Linda A.
Sornberger, George C.
Spidell, Bruce R.
Steingiser, Russell
Sutter, Russel L.

Tan, Suan-Boon
Thompson, Robert W.
Tingley. Nanette



Tistan, Ernest S.
Trudeau, Michel
Turner, George W., Jr.

Von Seggern, William J.

The following is the list of successful candidates in

November, 1985.

Part 5

Allen, Danny M.
Almagro, Manuel, Jr.
Artes, Lawrence J.
Atkins, Heather E.
Barnes, Katharine E.
Bauer, Bruno P.
Benninghof, Kay E.
Boisvert, Paul, Jr.
Bonte, Sharon R.
Boudreau, Joseph J.
Brathwaite, Malcolm E.
Brehm, Paul J.
Burns, William E.
Byington, Jennifer S.
Cardoso, Ruy A.
Caulfield, Michael J.
Chabarek, Paul
Cloutier, Denis
Cofield, Joseph F.
Cote, Jean
Crawshaw, Mark
Crouse, John W.
Darby, Robert N.
Desjardins, Charles
DiDonato, Anthony M.
DiGaetano, Mark
Elliott, Angela F.
Evans, Karen F.
Fitzgerald, Beth E.
Fitzpatrick, William G.

1985 EXAMINATIONS

Walker, David G.
Wargo, Kelly A.
Weber, Dominic A.

Fletcher, James E.
Fonticella, Ross C.
Forbus, Barbara L.
Frank, Jacqueline B.
Gagnon, Luc
Gardner, Andrea
Gebhard, James J.

Gendelman, Nathan J.

Gill, Bonnie S.

Goldberg, Leonard R.

Graham, Jeffrey H.
Greenhill, Eric L.
Griffith, Ann V.,
Groh, Linda M.
Gross, Marian R.
Hawley, Karin S.
Hayes, Thomas L.
Hays, David H.
Hebert, Norman P.
Hertling, Richard J.
Hess, Todd J.
Heyman, David R.
Hostetter, David B.
Hurley, John M.
James, Peter H.
Johnston, Joyce M.
Johnston, Steven J.
Jones, Terrell A.
Kaufman, David
Keatinge, Clive L.
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Woodruff, Arlene F.
Yen, Chung-Ye

Yow, James W.

examinations held in

Kerin, Allan A.
Kesby, Kevin A.
Kishi, Leslie K.
Klenow, Jerome F.
Kligman, Daniel F.
Kryczka, John R.
Lalonde, David A.
Lamb, Dean K.
Lebens, Joseph R.
Leiner, William W., Jr.
Lewandowski, John J.
Lewis, Michael E.
Lifschitz, David E.
Lyons, Mark D.
Mahoney, Michael W.
Marchena, Eduardo P.
McCreesh, James B.
McGill, Cassandra M.
McNichols, James P.
McShea, Christopher J.
Meyer, Robert J.
Millar, Leonard L.
Miller, Mary F.
Moylan, Thomas G.
Naylor, Walter R.
Nelson, Chris E.
Nemlick, Kenneth J.
Ng, Wai Hung
Nordquist, Randall S.
Nyce, G. Christopher
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Oliver, Douglas W.
Peck, Steven C.
Pestcoe, Marvin
Phifer, Robert C.
Phillips, George N.
Pichler, Karen J.
Pino, Susan L.
Poirier, Denis
Popejoy, Kathy
Proska, Mark R.
Provencher, Yves
Rhoads, Karin M.

Part 7

Aldin, Neil C.
Amoroso, Rebecca C.
Anderson, Mary V.
Apfel, Kenneth
Aquino, John G.
Atkinson, Richard V.
Atkinson, Roger A., Il
Baker, Mark S.
Billings, Holly L.
Buchanan, John W.
Callahan, James J.
Carlson, Christopher S.
Caron, Louis-Philippe
Casale, Kathleen N.
Cascio, Michael J.
Cathcart, Sanders B.
Cellars, Ralph M.
Christhilf, David A.
Comstock, Susan J.
Cox, David B.

Cross, Susan L.
Davis, Brian W.
Davis, Dan J.

Debs, Raymond V.
Dekle, James M.

1985 EXAMINATIONS

Roberts, Jonathan S.
Schadler, Thomas E.
Schug, Richard D.
Shimkus. Mary B.
Snook, Linda D.
Steinberg, Karen F.
Sterling, Mary E.
Stone, Edward C.
Sublett, Sharon
Swanstrom, Ronald J.
Szczepanski, Chester J.

Diamantoukos, Christopher

Doyle, Michael J.
Edlefson, Dale R.
Englander, Jeffrey A.
Epstein, James C.
Feldblum, Sholom
Francis, Louise A.
Gauthier, Richard
Gidos, Peter M.
Glicksman, Steven A.
Guenthner, Denis G.
Harbage, Robin A.
Hay, Randolph S.
Herbers, Joseph A.
Hill, Tony D.
Homan, Mark J.
Huberman, Gloria L.
Johnson, Eric J.
Johnson. Wendy A.
Kasner, Kenneth R.
Kinson, Paul E.
Kneuer, Paul J.
Koegel, David
Koufacos. Constantine G.
Kreps, Rodney E.

Thorrick, John P.
Tremblay, Martin-Eric
Van de Water, John
Veilleux, Andre
Watkins, Nancy P.
Werland, Debra L.
Wilson, Gregory S.
Woodruff, Arlene F.
Yen., Chung-Ye

Yit, Bill S.

Yocius, Richard P.

Kulik, John M.
Kuo, Chung-Kuo
Lacek, Mary Lou
Lacroix, Marthe A.
Lessard, Alain
Liebers, Elise C.
Mailloux. Patrick
Math. Steven
McCoy, Mary E.
Miller, Susan M.
Mohrman, David F.
Mueller, Nancy D.
Mueller, Robert A.
Mulvaney, Mark W.
Musante, Donald R.
Musulin, Rade T.
Newell, Richard T., Jr.
Newman, Henry E.
Ollodart. Bruce E.
Ostergren, Gregory V.
Overgaard, Wade T.
Pagheri, Wayne C.
Peraine, Anthony
Pridgeon. Ronald D.
Privman. Boris



Rhodes, Frank S.
Rice, Denise E.
Rice, James W.
Roesch, Robert S.
Ryan, Beverley K.
Sandman, Donald D.
Schultze, Mark E.
Schwandt, Jeffory C.
Scully, Mark W,
Shepherd, Linda A.
Skov, Steven A.
Sornberger, George C.

Part 9

Allaben, Mark S.
Bear, Robert A.
Bellafiore, Leonard A.
Bellusci, David M.
Berry, Janice L.
Blakinger, Jean M.
Boor, Joseph A.
Boyd, Wallis A.
Busche, George R.
Chiang, Jeanne D.
Clark, Daniel B.
Curran, Kathleen F.
Deede, Martin W,
DeLiberato, Robert V.
Dezube, Janet B.
Dornfeld, James L.
Dufresne, Jacques
Gardner, Robert W.
Hall, Allen A.
Halpern, Nina S.
Harwood, Catherine B.

1985 EXAMINATIONS

Sperger, Mary Jean
Spidell, Bruce R.
Steingiser, Russell
Sutter, Russel L.
Svendsgaard, Christian
Sweeney, Eileen M.
Tan, Suan-Boon
Thompson, Robert W.
Tingley, Nanette
Tistan, Ernest S.
Trudeau, Michel
Turner, George W., Ir.

Hayward, Gregory L.
Hollister, Jeanne M.
Johnson, Andrew P.
Kelley, Robert J.
Klinker, Fredrick L.
Koupf, Gary I.
Lewis, Martin A.
Lipton, Barry C.
Littmann, Mark W.
Livingston, Roy P.
Loper, Dennis J.
Lyons, Daniel K.
Mashitz, Isaac
Menning, David L.
Miller, David L.
Miller, Robert A., 111
Murphy, William F.
Myers, Thomas G.
Nester, Karen L.
Noyce, James W,
Port, Rhonda D.
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Von Seggern, William J.
Wachter, Christopher J.
Wacker, Gregory M.
Walker, David G.
Wargo, Kelly A.
Weber, Dominic A.
Weber, Robert A.
Whitehead, Guy H.
Williams, Robin M.
Wrobel, Edward M.
Yow, James W.

Post, Jeffrey H.
Putney, Alan K.
Reppert, Daniel A.
Roth, Randy J.
Scheuing, Jeffrey R.
Schultheiss, Peter J.
Sealand, Pamela J.
Silver, Melvin S.
Slotznick, Lisa A.
Slusarski, John
Smith, Michael B.
Smith, Richard A.
Terrill, Kathleen W.
Townsend, Christopher J.
Treitel, Nancy R.
Visner, Steven M.
Walsh, Michael C.
Weinman, Stacy J.
White, Charles S.
Willsey, Robert L.
Woomer, Roy T., Il
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OBITUARIES

WALTER T. EPPINK
HuGH P. Ham
EXEQUIEL S. SEVILLA

WALTER T. EPPINK
1902-1984

Walter T. Eppink, a Fellow of the Casualty Actuarial Society since 1935,
and a charter member of the American Academy of Actuaries, died of congestive
heart failure on August 20, 1984, at the age of 82.

Walter was a graduate of Western Reserve University (now known as Case
Western Reserve University) in Cleveland.

During his fifty year career at Merchants Mutual Insurance Company he
held various positions, including Assistant Treasurer, Treasurer, Actuary, and
Assistant Vice President. At the time of his retirement in 1972 he was Executive
Vice President of the company.

Walter thoroughly enjoyed his work and his association with co-workers at
Merchants Mutual. He was well known for his kindness and helpfulness.

Walter was a devoted family man. Following his retirement at the age of
70, he and his wife traveled extensively throughout North America visiting their
children and grandchildren.

Walter is survived by his wife, Marion, two sons, Richard and Robert,
sixteen grandchildren, and one great-grandchild.

HUGH P. HAM
1905-1984

Hugh P. Ham, an Associate of the Casualty Actuarial Society since 1936,
died April 6, 1984 at the age of 78.

Before retiring due to ill health in 1966, Hugh spent more than forty-two
years in the service of the Western-British America Group of Insurance Com-



Rhodes, Frank S.
Rice, Denise E.
Rice, James W.
Roesch, Robert S.
Ryan, Beverley K.
Sandman, Donald D.
Schultze, Mark E.
Schwandt, Jeffory C.
Scully, Mark W.
Shepherd, Linda A.
Skov, Steven A.
Sornberger, George C.

Part 9

Allaben, Mark S.
Bear, Robert A.
Bellafiore, Leonard A.
Bellusci, David M.
Berry, Janice L.
Blakinger, Jean M.
Boor, Joseph A.
Boyd, Wallis A.
Busche, George R.
Chiang, Jeanne D.
Clark, Daniel B.
Curran, Kathieen F.
Deede, Martin W.
DeLiberato, Robert V.
Dezube, Janet B.
Dornfeld, James L.
Dufresne, Jacques
Gardner, Robert W.
Hall, Allen A.
Halpern, Nina S.

Harwood, Catherine B.
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Sperger, Mary Jean
Spidell, Bruce R.
Steingiser, Russell
Sutter, Russel L.
Svendsgaard, Christian
Sweeney, Eileen M.
Tan, Suan-Boon
Thompson, Robert W.
Tingley, Nanette
Tistan, Ernest S.
Trudeau, Michel
Turner, George W, Jr.

Hayward, Gregory L.
Hollister, Jeanne M.
Johnson, Andrew P.
Kelley, Robert J.
Klinker, Fredrick L.
Koupf, Gary L.
Lewis, Martin A.
Lipton, Barry C.
Littmann, Mark W.
Livingston, Roy P.
Loper, Dennis J.
Lyons, Daniel K.
Mashitz, Isaac
Menning, David L.
Miller, David L.
Miller, Robert A., 111
Murphy, William F.
Myers, Thomas G.
Nester, Karen L.
Noyce, James W.
Port, Rhonda D.
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Von Seggern, William J.
Wachter, Christopher J.
Wacker, Gregory M.
Walker, David G.
Wargo, Kelly A,
Weber, Dominic A.
Weber, Robert A.
Whitehead, Guy H.
Williams, Robin M.
Wrobel, Edward M.
Yow, James W.

Post, Jeffrey H.
Putney, Alan K.
Reppert, Daniel A.
Roth, Randy J.
Scheuing, Jeffrey R.
Schultheiss, Peter J.
Sealand, Pamela J.
Silver, Melvin S.
Slotznick, Lisa A,
Slusarski, John
Smith, Michael B.
Smith, Richard A.
Terrill, Kathleen W.
Townsend, Christopher J.
Treitel, Nancy R.
Visner, Steven M,
Walsh, Michael C.
Weinman, Stacy J.
White, Charles S.
Willsey, Robert L.
Woomer, Roy T., Il



NEW FELLOWS ADMITTED MAY 1985 (Left to Right): First row: C. K. Khury (President), Francois Bertrand, Terry Biscoglia,
Donald Palmer, Loyd Fueston; Second row: Heidi Hutter, Lois Ross, Raja Bhagavatula, Jeffrey Carlson; Third row: Alan Hapke,
Michael McSally, Diane Symnoski, Robert Meyer, Warren Ehrlich; Fourth row: James Surrago, William Biegaj, Allan Neis,

Stephan Christiansen, John Forney.
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NEW ASSOCIATES ADMITTED MAY 1985 (Left to Right): First row: William Miller, Arthur
Placek, Mark Allaben, Christy Gunn, Barry Lipton, David Scholl, Jeffrey Salton; Second row:
Robert Muller, Richard Quintano, Roger Schultz, Jeffrey Scheuing, Robert Willsey, Frederick
Cripe; Third row: Thomas Myers, Edward Somers, Brian Maguire, Robert Whitlock, Brian Brown,
Jeffrey Post; Fourth row: Robert Gardner, Warren Montgomery, Robert Lee, Daniel Gogol, Leonard
Bellafiore, Andrew Cartmell; Fifth row: Mark Littmann, Daniel Reppert, Jerry Visintine, Jacques
Dufresne, Thomas DeFalco, Martin Lewis; Sixth row: Kenneth Easlon, Susan Woerner, Arlyn
Shapiro, Robert Mucci, Kevin Greaney; Seventh row: Kirk Fleming, Michael Smith, Kathleen
Curran, Kathleen Terrill, Jeanne Hollister, Ruth Howald; Eighth row: Stacy Weinman, Nancy
Treitel, Daniel Clark, William Carpenter, Janice Cutler, Joseph Theisen; Ninth row: C. K. Khury
(President), Eugene McGovern, John Slusarski.




r9¢

NEW FELLOWS ADMITTED NOVEMBER 1985 (Left to Right): Front row: Claude Desilets, Ronald Greco, John Captain,
Andre Normandin, Evelyn Toni Mulder, Gail Mendelssohn, C. K. Khury (President), Joanne Spalla, Linda Dembiec, Robert
Kaplan, Kevin Bursley, Steven Basson, Brian Duffy, Jeffrey Mayer; Back row: Joel Chansky, N. Paul Dyck, Robert Sanders,
Harvey Sherman, Gregory Grace, Timothy Hein, Kenneth Hoppe, Robert Deutsch, John Narvell, Ross Currie.



NEW ASSOCIATES ADMITTED NOVEMBER 1985 (Left to Right): Roger Yard, Andrew Kudera, Mark Yunque, Robert Kaplan,
Sharon Mair, Janet Dezube, Jeff Jordan, Steven Goldberg, Scott Dodge.

tn
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WALTER T. EPPINK
1902-1984

Walter T. Eppink, a Fellow of the Casualty Actuarial Society since 1935,
and a charter member of the American Academy of Actuaries, died of congestive
heart failure on August 20, 1984, at the age of 82.

Walter was a graduate of Western Reserve University (now known as Case
Western Reserve University) in Cleveland.

During his fifty year career at Merchants Mutual Insurance Company he
held various positions, including Assistant Treasurer, Treasurer, Actuary, and
Assistant Vice President. At the time of his retirement in 1972 he was Executive
Vice President of the company.

Walter thoroughly enjoyed his work and his association with co-workers at
Merchants Mutual. He was well known for his kindness and helpfulness.

Walter was a devoted family man. Following his retirement at the age of
70, he and his wife traveled extensively throughout North America visiting their
children and grandchildren.

Walter is survived by his wife, Marion, two sons, Richard and Robert,
sixteen grandchildren, and one great-grandchild.

HUGH P. HAM
1905-1984

Hugh P. Ham, an Associate of the Casualty Actuarial Society since 1936,
died April 6, 1984 at the age of 78.

Before retiring due to ill health in 1966, Hugh spent more than forty-two
years in the service of the Western-British America Group of Insurance Com-
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panies. He joined the staff in Winnipeg in 1924; was transferred to the head
office in Toronto in 1943; was appointed General Manager in 1952, and a
Director in 1958. In 1960, he was named President of the Western-British
America Companies and, following the acquisition of those companies by the
Royal Insurance Group, also was appointed a General Manager for Canada of
the Royal Insurance Group.

Hugh is survived by his wife, Dorothy Emma.

EXEQUIEL S. SEVILLA
1904-1985

Exequiel Sevilla, an Associate of the Casualty Actuarial Society since 1930,
died on January 6, 1985 at his home in Manila, Philippines at the age of 80.
He had suffered a massive stroke in 1979 and had been bedridden since then.

Exequiel Sevilla was born on March 4, 1904 in Manila. In 1927, he grad-
uated summa cum faude from the University of the Philippines. Even before
graduation, he had been appointed an Insurance Examiner by Dr. Emeterio Roa,
the first Filipino Actuary. The territorial government sent him as a scholar to
the University of Michigan, where he graduated with a Master of Science degree
in Actuarial Mathematics in 1929. He trained for one year at the United States
Life Insurance Company in New York City.

Upon his return to the Philippines, he was appointed Actuary in the Office
of the Insurance Commissioner. In 1933, he left the government service to help
found the National Life Insurance Company in Manila. He stayed with this
company, first as Actuary, then as General Manager, and finally as President
and member of the Board of Directors, until his retirement in 1974. Following
his retirement, he continued to serve the company in a consulting role.

In 1937, President Quezon appointed Mr. Sevilla a member of the first
Board of Directors of the Government Service Insurance System. He taught
mathematics at the University of the Philippines, Far Eastern University, and
the University of the East.

Mr. Sevilla was a member of the American Academy of Actuaries and the
International Actuarial Association, a corresponding member of the Instituto de
Actuarios Espanioles and a fellow of the Actuarial Society of the Philippines.



368 OBITUARIES

He served as President of the Actuarial Society of the Philippines, the Philippine
Statistical Association, the Philippine Association of Life Insurance Companies
and the Advanced Management Association of the Far East.

Mr. Sevilla is survived by his wife, Lourdes de Veyra Sevilla, his six

children, Josefina, Exequiel Ir., Eduardo, Ernesto, Silvia and Aida, and thirteen
grandchildren. His first wife, Susanna Guidote Sevilla, died in 1956.
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