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UTILITY WITH DECREASING RISK AVERSION 

GARY G. VENTER 

Abstract 

Utility theory is discussed as a basis for premium calculation. Desirable 
features of utility functions are enumerated, including decreasing absolute risk 
aversion. Examples are given of functions meeting this requirement. Calculating 
premiums for simplified risk situations is advanced as a step towards selecting 
a specific utility function. An example of a more typical portfolio pricing 
problem is included. 

“The large rattling dice exhilarate me as torrents borne on a precipice flowing in a 
desert. To the winning player they are tipped with honey, slaying hirri in return by taking 
away the gambler’s all. Giving serious attention to my advice, play not with dice: pursue 
agriculture: delight in wealth so acquired.” 

KAVASHA Rig Veda X.3:5 

Avoidance of risk situations has been regarded as prudent throughout history, 
but individuals with a preference for risk are also known. For many decision 
makers, the value of different potential levels of wealth is apparently not strictly 
proportional to the wealth level itself. A mathematical device to treat this is the 
utility function, which assigns a value to each wealth level. Thus, a 50-50 
chance at double or nothing on your wealth level may or may not be felt 
equivalent to maintaining your present level; however, a 50-50 chance at nothing 
or the value of wealth that would double your utility (if such a value existed) 
would be equivalent to maintaining the present level, assuming that the utility 
of zero wealth is zero. This is more or less by definition, as the utility function 
is set up to make such comparisons possible. 

For an individual with a steeply ascending utility function, the value of 
potential wealth needed to risk losing everything on a 50-50 bet may be less 
than twice the current level; if the function rises slowly it may be considerably 
greater than twice the current level; and if the utility increases asymptotically 
to a value not greater than twice the utility of current wealth, such a bet would 
not be acceptable for any amount. 
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Through the device of the utility function, diverse risk situations can be 
compared. For each situation the expected value of the utility of the possible 
outcomes can be computed, and the situation with the highest expected utility 
is preferred. 

The pioneering work in the modem application of utility theory was done 
by von Neumann and Morgenstem[6]. They showed that if a preference ordering 
for a set of risk situations follows certain consistency requirements, then there 
is a utility function that will give the same preference ordering on those situa- 
tions. That in effect removes utility theory from the pleasure-pain area; it can 
be set up as an essential element of consistent management decision making 
without addressing questions like “Can a corporation feel pain?’ 

The consistency requirements can be boiled down to three (e.g., see [4]): 

i) any two risk situations can be compared; i.e., one is preferable to the 
other or they are both equivalent; 

ii) if A is preferred to B and B to C, then A is preferred to C; 
iii) if A is preferred to B and B to C, then there is a unique r between 0 

and 1 such that B is equivalent to rA + (1 - r)C. 

If risk situations are evaluated consistently, under this definition of consis- 
tency, they can be ordered by some utility function. 

Thus, utility theory seems to be a potentially valuable tool for choosing 
between alternative risk situations, such as transferring or accepting the risk of 
loss for a fixed price, in a consistent way. 

The practical actuary, however, finds utility theory somewhat of a dilemma: 
on one hand it provides the basic theoretical foundation for the worth of the 
insurance product; on the other hand, no examples of its useful application to 
insurance are available. Dismissing the whole theory risks throwing out the 
baby with the bath, but until it can be made to work in practice it will not have 
much appeal. 

The training of most actuaries includes an introduction to utility theory and 
its general relation to risk situations. There is a gap between this and actual 
application, however. How to choose a specific utility function is part of this 
gap; applying this function in realistic situations is another. 

The present paper aims to narrow this gap somewhat, but is not so ambitious 
as to try to close it entirely. Several criteria that a utility function should meet 
are discussed, and examples are given of functions that meet these requirements. 
The possible application of utility theory to pricing is also addressed. Since an 
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insurer is taking an uncertain situation for a fixed price, a utility approach may 
help evaluate the attractiveness of the deal. 

Finally, simplified risk situations are evaluated using some of the utility 
functions discussed. The prices implied by different utility functions for these 
simplified situations can be used by the analyst to close in on a specific function 
that most closely reflects the insurer’s own risk preferences.. 

As mentioned above, two risk situations can be compared by computing the 
expected utility of each, with the higher value being preferred. To apply this to 
premium calculation, the situation of having the risk and the premium is com- 
pared to the situation of having neither; i.e., the expected utility for these two 
situations is compared. For an insurer with surplus of a and no other policies, 
the indifference premium g for a random loss variable L is defined as the amount 
that results in the same expected utility both with and without this premium and 
potential loss. Thus, assuming the utility function U, a, and L are known, g is 
the solution of 

E+(a)) = E(u(a + g - L)) 
(&u(a)) = u(a) if a is constant). 

The calculation of this g in a reinsurance context is illustrated in [5]. 

Presumably, something in addition to g would be needed to make the transfer 
worthwhile to the insurer. The excess of the premium offered over the indiffer- 
ence premium can be called the risk adjusted value, or RAV, of the proposal. 
Applications of the RAV concept can be found in [3] and [8]. However, in this 
context, any premium above the indifference premium would lead to the accep- 
tance of the contract. 

In order to apply this pricing principle, a specific utility function is needed. 
Several criteria for the selection of a utility function have evolved over time. 
Among them are: 

(1) U(X) is an increasing function on (0,~); i.e., U’(X) > 0. That is, more 
is always better. The variable U’ is referred to as marginal utility, so 
this criterion says that marginal utility is always positive. 

(2) U(X) is concave downwards; i.e., u”(x) < 0. This property is referred to 
as risk aversion in that it implies that the certainty of the expected value 
of the outcomes is preferred to an uncertain situation. Concave down- 
ward utility also means that marginal utility (U’(X)) is a decreasing 
function of wealth; i.e., as more wealth is accumulated less value is 
placed on an additional dollar. A gambler might have a utility function 
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that violates this principle; i.e., a price higher than the expected value 
might be paid for the chance of a large gain. 

(3) Absolute risk aversion decreases as wealth increases. Absolute risk 
aversion is measured by ra(x) = -u”(~)Iu’(x). The ra(x) function so 
defined,can be seen to be the percentage change in the marginal utility 
u’(x). Decreasing absolute risk aversion means that the percentage de- 
crease in marginal utility is itself decreasing. This property can be shown 
to equate to greater acceptance of risky situations with greater wealth 
(see [4], p. 35), which seems intuitively appropriate. This concept is 
illustrated in Appendix 1. 

(4) U(X) is bounded above; i.e., there is a number b such that u(x) < b no 
matter how large x is. This criterion is necessary to keep very rare large 
value situations from dominating preferences. 

As an example, consider a hypothetical national lottery in which Joe, 
the winner, receives a choice of either $10 million certain or a risk 
situation in which he gets a very fabulous sum if he can pick the ace of 
spades at random from a deck of cards and zero otherwise. If the utility 
of $10 million is above l/52 of Joe’s maximum possible utility, he will 
take the $10 million no matter how fabulous the sum may be. On the 
other hand, if Joe’s utility function is not bounded, the choice will 
depend on what the sum is: for a large enough sum he will choose to 
draw for the ace. 

The bounded utility situation seems more reasonable, but this criterion 
is somewhat controversial. For instance, it could be argued that Joe 
would indeed choose to draw if the sum were huge enough, but that 
such a sum would be greater than the current wealth of the world. Since 
we know that world wealth is finite, we judge Joe’s decision to keep 
the $10 million as reasonable; however, if greater wealth were available 
the decision to draw would eventually become reasonable and would 
become compelling as the prize continued to increase. 

This argument does not seem persuasive, because the finite wealth of 
the world does not appear all that relevant to the decision to keep the 
$10 million and be content with the lifestyle it can support. However, 
to recognize the degree of subjectivity in this judgment, the opposite 
opinion has been allowed some consideration. Nonetheless, the bound- 
ary criterion will be maintained herein. See [l], p. 35, for a complete 
discussion of this standard. 
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A fifth criterion is occasionally advanced. 
(5) u’(x) = 0 for x < 0; i.e., utility is constant for negative values of 

wealth. This is designed to reflect bankruptcy laws and the corporate 
form of organization, which presumably make financial entities indif- 
ferent as to how bankrupt they become. In a regulated insurance indus- 
try, an insurer would not be completely free to act in accordance with 
this principle, and it probably exaggerates the effect limited liability has 
on decisions. However, the behavior of the utility function for negative 
values of wealth is important and must be considered explicitly when 
choosing a utility function. A more reasonable approach to negative 
wealth may be to take U(X) = -u(--x). While raising this issue, the 
current paper does not attempt to settle it. In the examples below, 
negative values of wealth will not be possible. The following minimal 
condition will, however, be imposed: 

u(k) is defined, continuous, and non-decreasing for x % 0. 

Since preference orderings are not altered by linear transformations of the 
utility function, by suitable normalization any utility function meeting the criteria 
1, 4, and 5 could be transformed to take values between 0 and 1, for x 2 0, 
without altering the preference orderings. Such utility functions and increasing 
probability distribution functions for positive variables are, therefore, the same 
class of mathematical mappings from the positive real numbers to the unit 
interval. Thus, the literature on probability distributions provides a rich source 
of functional forms for utility functions. Some distribution functions will not 
satisfy criteria 2 and 3, however, so these properties must be checked individ- 
ually. 

Examples of functions that do not meet the above criteria are: 

44 Fails 

X 2 
x - a/2x2 (x I a) 3 
a + b ln(x + c) 4 
1 - exp(-bx) 3 
2 (0 < a < 1) 4 
1 - l/x 5 

The Weibull and Pareto distribution functions do meet all criteria for proper 
parameters; e.g., U(X) = 1 - exp(-bx”), c < 1 and U(X) = 1 - (bx + l)-‘. 
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Other special cases of the transformed beta and gamma distribution functions 
[7] will also suffice. 

Although exponential utility fails criterion 3, it leads to relatively simple 
computations. Advocates of exponential utility argue that decreasing absolute 
risk aversion is important but its effects can be provided by changing the 
parameter of the function as wealth increases. While feasible, it seems undesir- 
able to do this, as the example in Appendix 1 illustrates. A utility function 
should capture the preferences of the decision maker, including, the relationship 
of preferences to wealth. Questions such as, “if you had $50 million and were 
offered . . .” should be used to help determine these preferences. In other 
words, the utility function should be able to get at fundamental attitudes towards 
risk including how reactions will change with wealth. 

Looking at absolute risk aversion as the percentage change in marginal 
utility provides another approach to this issue. The marginal utility of wealth 
should decrease as wealth increases, but decreasing absolute risk aversion means 
that the percentage decrease in marginal utility should itself be declining. If a 
utility function does not reflect this decline, it is not properly valuing various 
wealth potentials. In other words, decreasing absolute risk aversion is not simply 
a matter of having different attitudes towards risk at different wealth levels. It 
is rather an aspect of the shape of the utility function at every point and reflects 
the relative desirability of the different levels of wealth themselves. 

Exponential utility has other aspects that make it unrealistic in insurance 
situations. One of these is additivity. Of course, the individual risk premiums 
must add up to the portfolio premium; this does not mean, however, that the 
indifference premium for a single risk should be .OOl of the premium for 1000 
such risks. Under exponential and linear utility, and only with these forms, the 
indifference premium for a number of independent risks will be the sum of the 
indifference premiums for the risks separately [ 11, [4]. This is contrary to usual 
practice. For instance, there is generally thought to be a benefit to pooling, 
since the probability of being a large percentage away from expected results 
becomes less as individual risks are pooled. In other cases, adding independent 
risks might jeopardize surplus enough that a higher charge would be needed for 
the last one. Neither such effect is captured by exponential or linear utility. 

Risk decisions under exponential utility do not reflect the other risks that 
may be in the portfolio [8], which again appears unrealistic. All these problems 
essentially derive from the constant absolute risk aversion of the exponential, 
which renders decision making independent of wealth. Although calculations 
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are more difficult when decreasing risk aversion is required, this seems un- 
avoidable in realistic insurance situations. 

Using utility concepts can help bring consistency to risk decisions. However, 
the selection of a utility function requires some time and attention. Examining 
many simplified risk situations to determine which functions best reflect the 
preferences of the decision maker is one approach. 

For example, the indifference premium g is calculated below for some very 
simple loss distributions, using the utility functions U(X) = 1 - exp(-.01X.*‘) 
and V(X) = 1 - (1 + lo-‘x)-l . These functions are primarily illustrative and 
are not necessarily advocated. Companies with surplus, a, of $20,000,000 and 
$50,000,000 will be considered. A risk with a .OOl probability of a total loss 
of $10,000,000 and a .999 probability of no losses will be used. 

The indifference premium for v is the solution of: 

v(a) = .OOl v(a + g - 10,000,000) + .999 v(a + g) 
or l/(1 + alO-‘) = .OOl/((a -t g)lO-‘) + .999/(1 + (a + g)lO-‘). 

For selected values of a the equation can be solved for g algebraically. In 
fact, g = - a + (10’/2c)(l - c + ((1 + c)’ + .004 c)“*) where c = (1 + 
lo-‘a)-‘. The similar equation for u may be solved iteratively. The indifference 
premiums are shown below. 

Surplus U V 

20,000,000 13,422.56 14,988.78 
50,000,000 11,101.62 11,997.13 

Two such independent risks would have a .OOOOOl probability of 
$20,000,000 in losses, a .001998 probability of a single $10,000,000 loss, and 
a .998001 probability of no losses. Thus for u, the indifference premium g is 
the solution of: 
u(a) = .OOOOOl u(a + g - 20,000,OOO) + .001998 u(a + g - 10,000,000) + 

.998001 u(a + g). 

This and the corresponding equation for v can be solved iteratively to yield: 

Surplus U V 

20,000,000 26,889.03 29,985.23 
50,000,000 22,203.42 23,994.49 

As would be anticipated, the less wealthy company needs a higher premium 
to take on these risks. Also, contrary to what might be expected from pooling 
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considerations, the premium for two independent risks is somewhat more than 
twice the premium for a single risk in these cases, especially for the smaller 
company. This may be realistic in this case because the risk loss is a substantial 
proportion of surplus and two losses will nearly bankrupt the company. Since 
the coefficient of variation of the two independent risks is lower than that of a 
single risk, premium calculation principles based on the standard deviation (or 
variance) of the aggregate loss distributions would not capture this effect. It 
would be nice to have an example of a case where a pooling benefit were 
shown. This would probably require the specification of utilities of negative 
wealth. The benefit of pooling might be to reduce the surplus needed per risk 
at a given price; i.e., for a fixed ratio g/E(L), the ratio of needed surplus to 
number of risks may decrease with the addition of independent risks. 

The consideration of simplified situations such as those above can help 
determine a utility function. The indifference premium for a portfolio of real 
business can be calculated by these same principles from the utility function 
and the probability distribution function of aggregate losses, although the cal- 
culation will be more intricate for a continuous loss distribution function. An 
example is given in Appendix 2. 

Spreading a portfolio premium to the individual risks is unfortunately a 
somewhat arbitrary process in this context. Possibilities include spreading in 
proportion to expected losses or finding the exponential utility function that 
gives the same overall portfolio premium, and using that to determine the 
individual insured’s premium. 

The expected value method does not differentiate contracts by hazard, and 
thus is probably most appropriate when the riskiness is fairly homogeneous. 
Exponential utility will give such a differentiation, but this may be somewhat 
artificial. In the typical situation, where individual insureds are not independent, 
due to common parameter risk, even the exponential utility premiums will not 
add up to the portfolio premium. Spreading premium to individual insureds in 
a realistic way is a problem that merits further research. 

An elegant suggestion has been presented by Borch [2]. He recommends 
calculating the premium for the random loss variable X by the formula 
(1 + i) E(X) + j cov(X,L), where L is the portfolio aggregate loss random 
variable. This formula gives premiums that add up to the portfolio premium 
even when risks are not independent. An example is discussed in Appendix 2. 

The selection of a realistic utility function requires careful consideration of 
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the implications of this choice in comparison with the judgments the function 
aims to model. Starting with functions that meet certain general criteria and 
then examining how they perform in simplified situations can help in this 
process. The Weibull and Pareto distribution functions provide forms that meet 
all the criteria discussed herein, although the extension to negative wealth 
deserves further attention. A practitioner would need to consider specific param- 
eter values and decide which, if any, are appropriate for a specific application. 
The rewards of this effort would be a procedure for evaluating diverse risk 
situations from a consistent perspective. 
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APPENDIX 1 

RISK AVERSION EXAMPLE 

Consider two utility functions u(x) = 1 - exp(-x/b) and v(x) = 1 - 
exp(-(x/b).5), which have the ra(x) functions l/b2 and (1/2b)(b/~).~( 1 + (b/x).‘) 
respectively. Thus, u has constant risk aversion and v has decreasing risk 
aversion. 

Now it is easy to show for u that decisions do not depend on the current 
wealth: some algebraic manipulation yields E(u(a + L)) = 1 - exp(-al 
b)E(exp(-L/b)) for any wealth level a and risk situation L. This is greater than 
u(a) if and only if E(exp(-L/b)) is less than unity; thus, preferences are inde- 
pendent of wealth. 

However, for v this is not true. The acceptance of risk will in fact increase 
as wealth increases. Consider a risk which will yield a profit of $11,750 with 
90% probability and a loss of $100,000 with 10% probability. This is examined 
at two levels of wealth, a = $1 ,OOO,OOO and a = $5,000,000, below. A value 
of 1 ,OOO,OOO is selected for b. 

a. 1 ,ooo,ooo 5,000,000 
u(a): .632121 .99326205 
u(a + 11,750): .636418 .99334076 
u(a - 100,000): .593430 .99255342 
E(u(a + L)): .632119 .99326203 
v(a): .632121 .893122 
v(a + 11,750): .634269 .893402 
v(a - 100,000): .612749 .890693 
E(v(a + ~5)): .632117 .893131 

Thus for u, the risk is rejected at every wealth level, while for v it is rejected 
at a = 1,000,000 and accepted at a = 5,000,OOO. 

Now, if one wanted to stay with exponential utility because of its easier 
calculations, one could change b to 5,000,OOO when a changed. This would 
lead to the acceptance of the risk at the higher wealth level. However, the 
situation at this level is similar to a choice between L + !$4,000,000 and 
$4,000,000 certain at the lower wealth level. In fact, with the fixed value b = 
1 ,OOO,OOO, v will evaluate this choice at a = 1 ,OOO,OOO the same as L versus 
zero at a = 5,000,OOO. However, u with the changed parameter will evaluate 
them differently. 
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APPENDIX 2 

PREMIUM CALCULATIONS 

In this Appendix the indifference premium is calculated for a continuous 
aggregate loss distribution with a stop loss cover. The insurer has $50 million 
of surplus and the utility function v(x) = 1 - (1 + lo-‘x)-l. The aggregate 
losses, L, to be insured are transformed gamma distributed [7] with mean, 
coefficient of variation, and coefficient of skewness of $50 million, .363, and 
.406 respectively. The density function is taken in the form fix) = (ab/(r - 
l)!)(bx)“‘-‘exp(-(bx)“), where (r - l)! denotes the gamma function evaluated 
at r. This gives E(X”) = (r - 1 + nla)!/b”(r - I)!. The moments given arise 
whena=r=2andb-’ = 37,612,639. This distribution is a bit more dangerous 
than would arise in many property-casualty insurance lines with that much 
volume, but not exceptionally so. It could represent one of the more risky 
liability lines. 

Stop loss insurance with a $100 million retention is proposed, so negative 
surplus would not be possible if at least $50 million is charged. The indifference 
premium for the retained business is desired. This will be the solution g of: 

v(a) = E(v(a + g - L)) or 
1 - (1 + lo-‘a)-’ = 1 - E((1 + lo-‘(a + g - L))-‘), or 
(1 + lo-‘a)-’ = E((1 + lo-‘(a + g - L))-‘), or 
l/6 = E((6 + h - lo-‘L)-‘), where h = IO-‘g. 

Because of the stop loss, any loss greater than $100 million will be cut off at 
$100 million in computing this expectation. Thus the equation for g becomes: 

IOOM 

l/6 = .m a!x 
6 + h - 10 

where j(x) = 2x3b4exp (- (bx)2). 

Now Pr (L 5 100M) = .00687 can be calculated via the incomplete gamma 
function [7], and so we seek h, the solution of: 

1OOM 

-= .fw~ 

6 + h - lo-‘x’ 

By numerical integration and iteration, h = 5.6568 can be found, yielding 
the indifference premium g = $56,568,000. This calculation can be done by 
computer or a good programmable calculator. 
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To apply Borch’s formula to distribute this premium to individual insureds 
we must first choose constants i and j so that (1 + i)E(L) + j var(L) = g. Then 
the premium for an insured with random loss variable X will be (1 + I’)E(X) + 
j cov(X,L). These will add up to g since cov(X + Y,L) = cov(X,L) + cov(Y,L) 
and cov(L,L) = var(L). 

One way to select i and j might be to first select i as a desired profit load 
for a hypothetical insured that does not contribute to the overall portfolio 
variance, i.e., for which cov(X,L) = 0. Then j can be solved for from g and 
;he moments of L. Thus suppose i = .02 is selected. Then j = (g - 1.02 E(L))/ 
w(L). 

For instance, suppose that in the above example g = $60,000,000 were 
calculated for the case where the stop loss is removed. (This calculation would 
require specification of v(x) for x < 0.) Since E(L) = 50,000,OOO and var(L) 
= 3.3 X 1014, j = 9,000,000/3.3 X lOI = 2.7 X IO-* can be computed for 
this case. 


