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FOREWORD 

The Casualty Actuarial Society was organized in 1914 as the Casualty Actuarial and Statistical 
Society of America, with 97 charter members of the grade of Fellow; the Society adopted its 
present name on May 14, 1921. 

Actuarial science originated in England in 1792, in the early days of life insurance. Due to 
the technical nature of the business, the first actuaries were mathematicians; eventually their 
numerical growth resulted in the formation of the Institute of Actuaries in England in 1848. The 
Faculty of Actuaries was founded in Scotland in 1856, followed in the United States by the 
Actuarial Society of America in 1889 and the American Institute of Actuaries in 1909. In 1949 
the two American organizations were merged into the Society of Actuaries. 

In the beginning of the twentieth century in the United States, problems requiring actuarial 
treatment were emerging in sickness, disability, and casualty insurance-particularly in workers’ 
compensation-which was introduced in I91 I. The differences between the new problems and 
those of traditional life insurance led to the organization of the Society. Dr. I. M. Rubinow, who 
was responsible for the Society’s formation, became its first president. The object of the Society 
was, and is, the promotion of actuarial and statistical science as applied to insurance other than 
life insurance. Such promotion is accomplished by communication with those affected by insur- 
ance, presentation and discussion of papers, attendance at seminars and workshops, collection of 
a library, research, and other means. 

Since the problems of workers’ compensation were the most urgent, many of the Society’s 
original members played a leading part in developing the scientific basis for that line of insurance. 
From the beginning, however, the Society has grown constantly, not only in membership, but 
also in range of interest and in scientific and related contributions to all lines of insurance other 
than life, including automobile, liability other than automobile, fire, homeowners and commercial 
multiple peril, and others. These contributions are found principally in original papers prepared 
by members of the Society and published in the annual Proceedings. The presidential addresses, 
also published in the Proceedings. have called attention to the most pressing actuarial problems, 
some of them still unsolved, that have faced the insurance industry over the years. 

The membership of the Society includes actuaries employed by insurance companies, rate- 
making organizations, national brokers, accounting firms, educational institutions, state insurance 
departments, and the federal government; it also includes independent consultants. The Society 
has two classes of members, Fellows and Associates. Both classes are achieved by successful 
completion of examinations, which are held in May and November in various cities of the United 
States and Canada. 

The publications of the Society and their respective prices are listed in the Yearbook which is 
published annually. The Syllabus of Examinations outlines the course of study recommended for 
the examinations. Both the Yearbook, at a $10 charge, and the Syllabus ofExaminarions, without 
charge, may be obtained upon request to the Secretary, Casualty Actuarial Society, One Penn 
Plaza, 250 West 34th Street, New York, New York IO1 19. 
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LOSS RESERVING FOR SOLVENCY 

DAVID A. ARATA 

Abstract 

Loss reserving plays an important role in safeguarding a casualty insurance 
company’s solvency. The specific role, however, depends upon the size of the 
carrier. 

For example, the primary threat to the surplus of most large, multiline 
insurers is the sudden and unanticipated development of losses from prior 
accident years. For such a carrier, loss reserving promotes solvency in the most 
direct manner possible-by attempting to maintain adequate reserves for each 
unresolved accident year. 

Of course, small casualty insurers share this concern over loss reserve 
adequacy. For this second type of carrier, however, adverse loss development 
represents only one of several ongoing threats to its existence. A small insurer’s 
surplus can also fall victim to less controllable hazards, such as a year or two 
of poor underwriting results or undetected rate level deficiencies. 

To combat these added dangers, the capital structures of new, monoline 
casualty companies often, incorporate features seldom seen in larger carriers. 
Small insurers, for instance, sometimes employ policyholder assessments and 
expensive, low level reinsurance as primary defenses against surplus impair- 
ment. 



2 LOSS RESERVING 

Unfortunately, most small insurance companies do not efficiently utilize 
these potentially powerful capital structures. A principal cause of this under- 
utilization is the failure of these companies to choose loss reserving policies 
appropriate to their specific type of capitalization. 

This report demonstrates, by example, how a small insurance company can 
energize its capital structure by selecting appropriate loss reserving policies. 
The dramatic impact of such a choice on the company’s profit and survival 
prospects is also quantified. 

I. USING COMPUTER SIMULATION TO SELECT LOSS RESERVES THAT 

COMPLEMENT A SMALL, PRIMARY INSURER’S CAPITAL STRUCTURE 

Most loss reserve reviews for large, established casualty insurers focus on 
the adequacy of the tested reserves. In this type of situation, an actuary’s 
attention centers on factors which directly affect the accuracy of his loss devel- 
opment calculations, such as the quality, availability, and form of underlying 
data.’ Once he understands these elements, the actuary typically recommends 
loss reserves which equal his estimates of each unresolved year’s expected loss 
development. 

Usually, recommending appropriate loss reserves for new or small casualty 
carriers is less straightforward. This complexity is not the result of the obvious, 
inevitable, and surmountable problem of data unavailability. Rather, loss re- 
serving for a small insurer is more complicated than reserving for an insurance 
monolith because a smaller company’s capital structure is, of necessity, more 
complex. 

These complex capital structures complicate the loss reserving process since 
a company’s loss reserves interact with its capital structure. In a typical captive 
insurance company, for example, higher than expected loss reserves may trigger 
additional capital contributions from the insurer’s parent, or assessments from 
its policyholders. Since these contingent capitalizations often form the carrier’s 
first line of defense against insolvency, this interplay between capital and re- 
serves directly impacts the company’s chances of survival. 

With its survival at stake, a small casualty insurance company should use 
loss reserve procedures which consider this interaction between loss reserving 
and its capital structure. Until now, however, an affordable technique for mea- 
suring this interplay has not been available. 

’ A fairly complete list of elements to be considered is found in J. R. Berquist and R. E. Sherman 
121. 
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Thanks to recent advances in microcomputer technology, it is now possible 
to inexpensively simulate the impact of specific loss reserving programs on a 
small insurer’s capital structure. This report illustrates how Monte Carlo com- 
puter simulation can be used to quantify the effect of several different loss 
reserving methods on a hypothetical captive insurance company’s policyholder 
assessment mechanism. As will be demonstrated, observing this interaction 
between reserves and capital enables the actuary to recommend a loss reserving 
procedure which unleashes the full potential of the carrier’s capital structure, 
thereby improving both the company’s solvency ‘prospects and its expected 
profitability. 

Outline of Section I 

Section I demonstrates, by example, how a small primary casualty company 
can energize its capital structure by selecting appropriate loss reserving policies. 
Specifically, the following passages describe how a mythical, monoline captive 
insurer selects and applies loss reserving policies which enhance the effective- 
ness of its policyholder assessment provisions. 

This example is presented in four parts: 

1. The two subsections immediately following this outline introduce the 
Consulting Actuaries’ Reciprocal Exchange (CARE), a hypothetical cap- 
tive insurance company. These sections also review the circumstances 
prompting CARE to reserve for solvency. 

2. The third subsection following discusses the mechanics of establishing 
“solvency reserves.” 

3. The fourth and fifth subsections describe the computer simulation model 
used to compare the effectiveness of different loss reserving methods. 

4. Finally, results and conclusions are summarized in the last three subsec- 
tions of Section I. 

The Company 

A recent article in these Proceedings [I] discusses a computer model for 
establishing the appropriate operational requirements of a hypothetical profes- 
sional liability insurance carrier. This paper extends these earlier findings. 

The company analyzed in that article, the Consulting Actuaries’ Reciprocal 
Exchange, is an offshore, mutual insurer with the following features: 

I. CARE provides $1 million per occurrence of casualty actuaries’ errors 
& omissions insurance. 

2. CARE begins operation with 1,000 members. 
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3. CARE charges uniform, $1,750 per actuary annual premiums. 
4. CARE policyholders pay a flat membership fee. 
5. CARE policies are assessable. 
6. CARE quota shares a portion of its exposure. 

The paper suggested twelve possible CARE membership fee/reinsurance/ 
policyholder assessment combinations. A simulation model then estimated the 
company’s profit and survival expectations under each scenario. 

As a result of this analysis, CARE elected to: 

* Quota share 25% of its exposures; 
* Charge prospective policyholders a $500 membership fee; and, 
* Include a policy provision empowering management to assess each mem- 

ber up to 100% of the annual premium whenever operating losses threaten 
to exhaust the company’s surplus. 

Given these decisions and the assumptions presented in that paper, CARE 
management can anticipate average annual surplus growth in excess of 20% 
with a 4% probability of insolvency over a ten year period. 

CARE and the Real World 

Unfortunately, the previous paper’s idyllic income tax provisions and surplus 
requirements seldom apply to real captive insurance companies. 

+ Generally, an insurer’s operating income is taxed on a carrybacklcarry- 
forward basis-that is, operating losses can only be used to offset taxes 
already paid, or which become due in future years. 

* In most cases, a captive insurer’s surplus must be maintained at a specified 
level, sometimes a percentage of net written premium. 

Assuming more realistic income tax and surplus requirements dramatically 
changes the results of the previous analysis. A 250 trial simulation carried out 
under appropriate tax and surplus assumptions, 2 for example, indicates an 11% 
chance that CARE’s policyholder surplus will be exhausted during the carrier’s 
first ten years of operation. Clearly, this result is in marked contrast to the 
corresponding 4% probability obtained under the original assumptions. 

2 Specifically, the model assumes that: 
. income is taxed subject to a three year carryback and seven year carryforward of operating losses; 

and, 
* policyholder surplus, after the deduction of all carried reserves, must be maintained at not less 

than 20% of premium. 
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Of course, CARE could reduce this probability of insolvency by directly 
strengthening its capital structure, e.g., by increasing policyholder assessments 
or purchasing more reinsurance. However, increases in capitalization invariably 
cost the company money or place a greater risk burden on individual CARE 
policyholders. 

Fortunately, increasing capital or buying more reinsurance are not the com- 
pany’s only options. The remainder of Section I demonstrates that: 

1. CARE’s existing capital structure operates inefficiently under traditional 
loss reserving approaches; and 

2. CARE can substantially improve its profit and survival prospects by 
selecting a loss reserving policy which interacts more effectively with 
its capital structure. 

The following paragraphs describe a procedure for choosing such a loss 
reserving program. 

The Mechanics of Establishing Solvency Reserves 

The next few subsections investigate the effect on CARE’s capital structure, 
and hence its solvency, of establishing loss liabilities over and above its required 
reserves.3 In particular, these subsections examine the profitability and surviv- 
ability of a carrier that bases its carried loss liabilities on selected upper per- 
centiles of the company’s aggregate incurred loss distribution. 

This concept of a solvency reserve, then, is quite simple.4 However, reserv- 
ing for solvency in a real world situation requires some not so simple decisions 
regarding methodology. 

The following paragraphs present two legitimate techniques for computing 
solvency reserves. The implications of using each method are also examined; 
as a result of this examination, one approach is selected for use in this paper. 

3 Required reserves are amounts necessary to fund anticipated loss development. 

J Some readers may feel that this use of the term “reserve” is inappropriate, since it is not readily 
apparent that solvency reserves meet generally applicable standards for legal reserves (quantifiability, 
relationship to specific events, etc.). 

Solvency reserves as presented and defined in this paper do meet these traditional standards. 
For example, Sections I and II establish their quantifiability, and Section 111 offers a reasonable 
argument for their foreseeability. In any event, whether they are reserves in the traditional sense or 
mere accounting nuances, solvency reserves are clearly an effective and necessary management tool 
for small, risky insurers. 
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Method I-Description: The first reviewed calculation sets each accident 
year’s incurred losses equal to a designated percentile of the line’s aggregate 
incurred loss distribution. Thus, the company’s total loss reserve equals 

Estimated Percentile of Aggregate Incurred Loss Distribution 
less 

Losses Paid to Date 

This total reserve is then broken into its “required” and “solvency” pieces. 

For example, suppose that an insurer decides to base its current accident 
year’s loss reserve, at the twelve month valuation, on its estimate of the 95th 
percentile of the coverage’s total loss distribution. Further assume that the 
company’s actuary estimates that this percentile equals 178% of expected losses. 
Finally, suppose that this coverage’s underlying rate levels assume expected 
losses of $1 ,OOO,OOO. 

Given these assumptions, Method 1 sets accident year incurred losses equal 
to $1,780,000, or 178% of $1 ,OOO,OOO. This $1,780,000 includes both required 
and solvency reserves, as well as loss payments to date. Required reserves, of 
course, are merely the difference between developed accident year losses and 
amounts paid to date. For instance, if developed incurred losses total 
$1,200,000, of which $250,000 were paid during the year’s first twelve months, 
then the following breakdown applies: 

Paid Losses Through I2 Months 
Reserve for Expected Losses 
[$I .2 MM - $250,000] 
Solvency Reserve 

$250,000 
$950,000 

$580,000 
[$I.78 MM - $1.2 MM] 

Total Accident Year Incurred Loss: $1,780,000 

Note that Method l’s logic self-destructs whenever a year’s developed 
incurred losses exceed the specified percentile level. In such cases, reserves 
must be based on the higher estimate; no solvency reserve is established. 

Method I-Analysis: Method 1 and the procedure for developing Schedule 
P statutory reserves share a number of similarities. First, unless developed 
incurred losses exceed the target loss level, the total reserve is established 
without consideration of the year’s actual incurred losses. Second, it follows 
from the previous observation that a given year’s total incurred losses, at least 
through early valuations, can be projected with reasonable precision. Finally, 
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for new, small insurers, this approach usually results in incurred loss develop- 
ment factors less than unity. 

Method 2-Description: A second technique for calculating solvency re- 
serves utilizes traditional loss reserving procedures to establish the reserve for 
expected loss development. A separate calculation then sets the solvency reserve 
equal to the expected difference between the year’s specified percentile and its 
mean loss levels.5 

Refer again to our earlier example. Given the previous assumptions, Method 
2 always produces a solvency reserve of $780,000, or 78% of expected losses. 
Of course, the required reserve ($950,000) and loss payments to date ($250,000) 
again apply. Thus, Method 2’s incurred losses of $1,980,000, the sum of these 
three components, are $200,000 higher than the Method 1 estimate. Reflection 
reveals the reason for this difference-under Method 2, solvency reserves are 
not reduced as a result of higher than expected reported losses. 

Method 2-Analysis: This second approach has the important advantage of 
directly incorporating the actuary’s best estimate of anticipated loss development 
into the established reserve. Also, Method 2 avoids the illogic of solvency 
reserves which vary inversely with a given accident year’s incurred losses. t 

For the above reasons, the solvency reserves examined in the following 
sections are developed using a Method 2 calculation. 

Illustrations of typical solvency reserve calculations used in this paper are 
provided in Appendix C. 

The Model: Assumptions 

The next few sections describe the computer simulation model used to 
compare the effectiveness of alternative loss reserving programs for the Con- 
sulting Actuaries’ Reciprocal Exchange. This model requires assumptions re- 
garding: 

* CARE’s expected claim frequency and distribution of the number of 
claims; 

* CARE’s average claim size, and the corresponding distributions of claim 
amounts; 

* The parameter error in estimating claim frequency and claim size averages; 
* The number of participating actuaries; 

5 The reader may recognize this technique of segregating actual and expected losses in the process 
of establishing loss reserves. See R. L. Bomhuetter and R. E. Ferguson [I+]. 
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* Frequency and severity trends; 
* Collectibility of assessments; 
* Overhead and other administrative costs; 
* Policy terms and the distribution of effective dates; 
* Anticipated rate level changes; 
* Commissions CARE earns on its ceded reinsurance; 
* Payout of incurred losses; 
* Interest earned on investable funds; 
* Taxation of CARE operating income; 
* Rate at which the accuracy of a given accident year’s pure premium 

estimate improves; 
* Tax treatment of reserves for losses greater than expected amounts; and, 
* Statutory policyholder surplus requirements. 

A detailed discussion of each of the above sixteen assumptions is provided 
in Appendix A. 

Four Loss Reserving Alternatives 

The Monte Carlo model compares simulated CARE operating results under 
four loss reserving programs: 

I. Standard loss reserving, in which all accident year reserves equal the 
actuary’s best estimate of expected loss development. 

2. A 90-A Program. Under this second approach, accident year reserves 
include, in addition to amounts for anticipated loss development, a 
solvency reserve equal to the expected difference between the company’s 
90th percentile and mean loss levels.h 

3. An 80-A Program, identical to Program 2, but with solvency reserves 
based upon 80th percentile loss levels. 

4. A 95/90/85/80 Program-i.e., loss reserving in which: 

(a) The current accident year’s reserve contains both funding for antic- 
ipated loss development and a Method 2 solvency reserve. This 
solvency reserve equals the expected difference between the com- 
pany’s 95th percentile and mean loss levels. 

(b) The immediately preceding accident year’s reserve equals the reserve 
required for expected loss development, plus a solvency reserve 
based on the 90th percentile of the line’s total loss distribution. 

6 In instances where establishing reserves greater than the actuary’s best estimate of expected loss 
development impairs CARE’s surplus, solvency reserves are reduced to the extent necessary to 
continue operating the company. 
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(c) Similarly, solvency reserves for the second and third prior accident 
years are based upon 85th and 80th percentiles of the respective loss 
distributions.’ 

For the interested reader, Appendix B provides a table displaying simulated 
percentiles of CARE’s go-in pure premium distribution. 

The Model: Results 

For each of these four loss reserving programs, our computer model simu- 
lates 250 trials of CARE operating experience. Each trial incorporates ten years 
of randomly generated CARE profits and losses. 

To illustrate how our model translates earlier assumptions into program 
output, Table I displays results of the third trial of a 95/90/85/80 simulation. 

From each simulation, our computer extracts the following information: 
* Whether CARE remains solvent; 
* CARE’s average annual surplus growthX over the simulated ten year 

period; 
+ The number of times a call for a policyholder assessment is needed during 

the ten year period. 

Table 2 summarizes these results. 

’ The subtle but significant advantages of a 95/90/85/80 program over a 90A or an 80A approach 
are discussed in the final passage in Section I: “Selecting the Best Loss Reserving Program.” 

R Average Annual Surplus Growth is determined by the tenth root of the ratio: 

Ending Surplus + Year IO Solvency Reserve - Policyholder Assessments 
Surplus at Start ($500,000) 

Note that this computation purposely includes investment income earned on policyholder as- 
sessments. These funds, once received, become a legitimate and indivisible part of CARE’s 
policyholder surplus. For the sake of the comparisons presented in this paper, however, average 
surplus growth calculations are adjusted to exclude the assessments themselves. Fairer comparisons 
result if call funds are removed from all calculations. 

Of course, other surplus growth calculations are possible 
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TABLE I 

RESULTS OF THE THIRD TRIAL OF 95/90/85/80 SCENARIO 
(All Dollar Figures are in Thousands) 

Net Earned Premium 
Reinsurance Commission 
Investment Income 
Calendar Year Inc’d Loss* 
Change in Solvency Reserve** 
Expenses Incurred 
Income Taxes Paid 
Surplus at Start*** 
Policyholder Assessments 
Surplus at End*** 
Claim Cost Inflation 

. Number of Members 

Net Earned Premium 
Reinsurance Commission 
Investment Income 
Calendar Year lnc’d Loss* 
Change in Solvency Reserve** 
Expenses Incurred 
Income Taxes Paid 

Surplus at Start*** 

Policyholder Assessments 
Surplus at End*** 
Claim Cost Inflation 
Number of Members 

YEAR YEAR 
I 2 

- - 

$1,313 $1,313 
33 33 

106 287 
$1,322 $762 

818 536 
263 210 

0 0 
%500 $863 
I.313 0 

863 987 
12.0% 13.7% 
1,000 1.000 

YEAR YEAR 
6 7 

- - 
$1.922 $2,325 

48 58 
629 755 

$2,537 $2,83 I 
347 492 
256 310 

-249 -228 
$2,650 $2,413 

0 0 
2,358 2,146 

12.7% 14. I% 
1,100 1,210 

YEAR YEAR 
3 4 

$1,313 
33 

358 
$205 

376 
I75 
56 

$987 
0 

1,878 

11.7% 

l.OcHI 

$ I ,444 

36 
460 

$1.141 
250 
193 
I64 

$I ,878 
0 

2,070 
12.3% 
I.000 

YEAR 
8 

YEAR 
9. 

$2,813 $3,404 
70 85 

871 991 
$2,697 $I 3607 

663 804 
375 454 

9 743 
$2,206 $2.283 

0 0 
2,217 3.156 
12.0% 9.8% 
1,331 I.464 

YEAR 
5 

$I .588 
40 

529 
$773 

191 
212 
451 

$2,070 
0 

2,600 
12.6% 
I.000 

YEAR 
IO 

$4.120 
103 

1,154 
$2.329 

919 
549 
727 

$3.229 
0 

4,083 
9.1% 
I.611 

Avg. Annual Surplus Growth (includes full solvency reserves): 
Avg. Annual Surplus Growth (solvency reserves taxed at 46%): 

32.2% 
27.5% 

* Before inclusion of solvency reserves. 
** See Appendix C for underlying calculalions. 

*** Surplus reflects full deduction of solvency rcscrves 
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The Model: Conclusions 

As indicated in Table 2, each nonstandard loss reserving program improves 
CARE’s profit and solvency expectations when compared with corresponding 
results achieved under standard reserving. 

* Column 2 quantifies the dramatic improvement in CARE’s solvency pros- 
pects which occurs under each alternative loss reserving program. Partic- 
ular improvement is observed under 90A and 95/90/85/80 reserving. 

. Column 3 illustrates that the company’s profitability, as measured by its 
average annual surplus growth over a ten year period, also improves under 
nonstandard reserving. Reflection (or a glance ahead to Appendix D) 

TABLE 2 

COMPARISON OF CARE’s !SIMULATED SOLVENCY AND PROFITABILITY UNDER 

ALTERNATIVE Loss RESERVING PROGRAMS 
I 

Reserving 
Policy 

(1) 

Percent of, 
Trials In Which 
CARE Becomes 

Insolvent 1 
(2) ! 

Standard 
Reserving 

90A 
80A 

95/90/85/80 

1 I .2% (28 Times) 
5.6% (14 Times) 
8.8% (22 Times) 
5.2% (I3 Times) 

Average Annual Surplus 
Growth’.” 

50th 10th 90th 
%ile %ile %ile 
(34 (3b) (3c) - - - 

CARE 
19.1% Fails 29.1% 
29.6% 0 34.4% 
25.5% 0 32. I% 
29.4% 0 34.4% 

# Trials* 
Requiring: 

0 or I 2 or More 
Call Calls 
(44 (4b) 

193 29 
96 140 

132 96 
97 140 

* Excluding trials in which CARE becomes insolvent. 

y Median surplus growth figures are used instead of mean results due to the extreme skew of the 
average surplus growth distribution. 

I I0 Column 3 assumes that solvency reserves are never taxed. A case can be made that these reserves 
must ultimately be repatriated and, therefore, taxed at 46%. Taxing year IO’s solvency reserve 
changes average annual growth figures as follows: 

Program 50th %ile 10th %ile 90th %ile - --- 
90A 24.5% 0 31.0% 
80A 22.0% 0 30.0% 

95/90/85/f/O 23.4% 0 30.9% 
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reveals the two sources of this increased profitability: 
Income tax savings, and accrued investment income thereon. 
Increased use of policyholder assessments, particularly during CARE’s 
early years. These policyholder assessments generate additional invest- 
ment income. 

Most importantly, column 4 demonstrates the reason for the column 2 and 
3 improvements. Specifically, this final column details the increased usage 
of CARE’s principal source of contingent capitalization-policyholder 
assessments-under all three nonstandard programs. 

In summary, Table 2 reveals that each of the three tested loss reserving 
alternatives energizes CARE’s capital structures and thus improve both the 
company’s profit and survival prospects. In so doing, prudent solvency oriented 
loss reserving policies enable CARE to avoid excessive use of more expensive 
capitalization or reinsurance options. 

The Final Step: Selecting the Best Loss Reserving Program 

Finally, CARE’s actuary must choose a reserving program to recommend 
to the company’s management. A review of Table 2 narrows his choices to the 
second and fourth programs tested. Moreover, given the obvious analytical 
parity of these two alternatives, selecting the more appropriate program-90A 
or 95/90/85/N)-becomes a matter of the actuary’s preference. 

For both aesthetic and practical reasons, a 95/90/85/80 approach should be 
favored. 

Aesthetically, 95/90/85/80 loss reserving allocates a larger proportion of the 
company’s solvency reserves to recent, unsettled accident years. In so doing, 
this program places a heavier share of the financial burden of solvency protection 
on those accounts whose riskiness poses the gravest threat against continued 
solvency. 

More importantly, despite the minimal difference suggested in the second 
column of Table 2, 95/90/85/80 loss reserving is often more effective than a 
90A approach. First, since a 95/90/85/80 program places greatest emphasis on 
the most recent accident years, this approach better protects solvency during 
periods of rapid premium growth. Furthermore, the following section demon- 
strates that this difference in effectiveness increases in proportion to the riskiness 
of the underlying exposure. 
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II. LOSS RESERVING FOR SOLVENCY: ANOTHER SITUATION 

Intuitively, the solvency reserving program described in Section I might 
seem less appropriate for a reinsurer dealing in volatile, excess layers of cov- 
erage. The following paragraphs test this conjecture by simulating the impact 
of a solvency oriented reserving policy on an insurance company that provides 
excess errors & omissions insurance. 

The Consulting Actuaries’ Reciprocal Exchange (Revisited) 

Again consider CARE, our hypothetical captive insurance company. In this 
case, however, suppose that the company provides $900,000 of insurance in 
excess of the first $100,000 of loss sustained in any covered occurrence. 

Assumptions (Revisited) 

As in Section I, we use computer simulation to test CARE’s relative solidity 
under four loss reserving policies. Also, most of the assumptions utilized in the 
earlier analysis apply again in this second situation. However, note the following 
three differences: 

1. First Year Premium: Given the layer of coverage insured and earlier 
assumptions regarding applicable claim size distributions, a more realistic 
per actuary premium is $875 ($1,750 in Section I). 

2. Loss Payout: To reflect the slower loss payout anticipated at this higher 
level of coverage, a uniform five year (i.e., 20/20/20/20/20) payout 
pattern is assumed. 

3. Member Assessability: Due to the smaller premium base and added 
riskiness of this insurance, CARE empowers its management to assess 
each member as much as 200% of his annual premium during a given 
calendar year. 

Results and Conclusions (Revisited) 

Given these revised assumptions, we used the same model to compare the 
relative effectiveness of the four reserving programs discussed earlier. Table 3 
shows the observed resu1ts.i’ 

‘I Results for Section I were based upon 250 simulations for each tested reserving policy. The 
results presented in Table 3, on the other hand, are generated from only 100 trials. Allowances 
must be made for the larger sampling error in these results. 
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TABLE 3 

EFFECTIVENESS OF ALTERNATIVE RESERVING PROGRAMS FOR EXCESS E&O 
INSURER (Coverage: $900K excess of $lOOK) 

Percent of 
Trials In Which 

Average Annual Surplus # Trials* 
Growth Requiring: 

Reserving 
Policy 

(1) 

CARE Becomes 50th 10th 90th 0 or I 2 or More 
Insolvent %ile %ile %ile Call Calls 

(2) (W W) (3c) (44 (4b) - - - - 

Standard CARE 
Reserving 16% (I6 Times) 16.4% Fails 24.1% 14 IO 

90A 10% (I 0 Times) 24.2% Fails 30.2% 41 49 
80A 12% (I2 Times) 20.6% Fails 28.3% 49 39 

95/90/85/80 8% (8 Times) 26.1% 0 31.0% 32 60 

* Excluding trials in which CARE becomes insolvent 

Columns 2 and 3 confirm that nonstandard loss reserving techniques improve 
this excess insurer’s profit and solvency expectations less dramatically than they 
improve the corresponding prospects of the primary company analyzed in Sec- 
tion I. Just as clearly, however, some improvements in both profitability and 
survivability occur. 

Again, reasons for these improvements are suggested by Column 4. 

III. ON CHOOSING LEGITIMATE LOSS RESERVING POLICIES 

The preceding analysis draws specific conclusions regarding the effective- 
ness of solvency oriented loss reserving as a means of energizing the potentially 
powerful capital structures of new, small insurance companies. Nothing said 
thus far, however, addresses the equally important question of what constitutes 
an acceptable loss reserving policy for such an insurer. 

Any legitimate reserving policy must meet at least two standards: 

1. Reserves must be based upon reasonably foreseeable estimates of in- 
curred loss. 

Applying this standard to a large, multiline carrier severely restricts 
the range of legitimate reserving policies, possibly to those based on 
traditional estimates of developed losses. For this reason, the analysis 
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presented on the preceding pages has little relevance for many domestic 
U.S. insurance companies. 

For small, risky insurers like the ones discussed in this paper, how- 
ever, estimates of ultimate losses are subject to substantial error, even 
when made at a 24- or 36-month development. For example, Appendix 
B illustrates that a given year’s losses for the primary insurance company 
described in Section I can be expected to differ from go-in estimates of 
expected losses by more than 30% in half of all instances. 

Thus, for carriers like the ones considered in this paper, this writer 
believes that loss reserving programs based on loss percentiles greater 
than expected levels meet this standard of foreseeability. 

2. The principal purpose of such a policy must be to decrease the company’s 
chances of insolvency, and not to avoid paying income taxes. 

In this regard, the following section demonstrates how solvency 
oriented loss reserving may actually increase the expected present value 
of the insurer’s ultimate tax payments. 

IV. ON THE INCOME TAX IMPLICATIONS OF LOSS RESERVING FOR SOLVENCY 

The results presented in Sections I and II assume favorable tax treatment of 
all established loss reserves, including solvency reserves.‘* That is, the preced- 
ing analysis assumes that taxing authorities allow a carrier to deduct from its 
taxable income an amount equal to its solvency reserve. 

Of course, the degree to which income tax authorities accept solvency 
reserves as legitimate deductions will depend upon several external factors, not 
the least of which is the incorporation of a solvency reserve calculation into the 
N.A.I.C. Convention Statement. Thus, speculating on the likelihood or timing 
of solvency reserves becoming deductible is probably premature, and certainly 
beyond the scope of this report. However, two general observations can be 
made: 

1. For reasons already presented, reserving for solvency works with or 
without favorable tax treatment of solvency reserves. 

2. Properly applied, reserving for solvency increases long-term tax expense. 
This increase occurs for three reasons: 

I* See assumption 15. Appendix A. 
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a. As described earlier, a new or risky insurer carrying solvency reserves 
can be expected to generate more investment income (on additional 
assessments and income tax savings) than a company not opting for 
these reserves. 

b. Eventually, a surviving insurer becomes large or mature enough to 
eliminate its dependence on solvency reserves. At such a time, the 
carrier’s solvency reserves would be taken down, resulting in a sizable 
flow of taxable income. 

c. A carrier which reserves for solvency is more likely to survive long 
enough to pay its income taxes. 

A Net Present Value Comparison of Income Tax Liabilities 

Straightforward actuarial analysis illustrates that reserving for solvency, 
when properly applied, actually increases the expected present value of an 
insurer’s income tax payments. 

Consider, for example, Appendix D’s development of the expected present 
value of CARE’s taxable income, discounted for both inflation and survivability, 
under traditional and solvency reserving. In particular, a comparison .of lines 
11 .c and 14.~ demonstrates that the expected present value of the company’s 
income tax payments under 95/90/85/80 reserving is greater than the correspond- 
ing figure developed under standard loss reserving. In addition, comparing lines 
12 and 15 establishes that the company can expect to have more investable 
assets at the end of ten years-a result of additional collected assessments and 
the investment income accruing thereon -under nonstandard loss reserving. This 
latter observation, of course, implies that CARE’s future taxable earnings will 
continue to be greater under the nonstandard reserving scenario, despite the just 
completed takedown of all solvency reserves. 

Clearly, loss reserving for solvency is anything but an effective means of 
avoiding income taxes. 

V. LOSS RESERVING FOR SOLVENCY: A POST-MORTEM 

This paper demonstrates the importance of a small casualty insurer selecting 
loss reserving policies which complement its capital structure. 

In fact, the previous sections illustrate how a well thought out loss reserving 
program can energize a dormant but potentially powerful capital structure, 
thereby improving a carrier’s chances of profitably surviving. Moreover, this 
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increased capital effectiveness enables the carrier to reduce its reliance on other, 
expensive forms of capitalization, such as stop loss or quota share reinsurance. 

On a more subjective level, reserving for solvency injects an element of 
discipline into the financial management of new, risky insurers. In particular, 
an actuarially sound, solvency oriented loss reserving program provides a carrier 
with a ready-made philosophy of maintaining specific levels of operating capital 
within the company. This discipline, in turn, may profoundly affect the insurer’s 
ability to withstand the temptation to distribute to its members premature and 
potentially unwarranted dividends. Furthermore, for exchanges like the ones 
discussed in this paper, loss reserving for solvency provides the most legitimate 
possible justification for delaying repatriation (hence taxation) of questionable 
captive income. 

I hope that this report will encourage a fuller examination of present and 
possible solvency oriented loss reserving procedures, and thereby promote the 
development of other applications of the concepts presented in this paper. 
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APPENDIX A 

SIXTEEN ASSUMPTIONS UNDERLYING CARE SOLVENCY SIMULATION (SECTION I) 

1. Expected Claim Frequency / Underlying Frequency Distribution:, CARE 
anticipates 2.5 claims per 100 insured actuaries. Also, a Poisson frequency 
process is assumed. 

2. Expected Average Claim Size / Assumed Severity Distributions: An average 
claim size (limited to $1 ,OOO,OOO/occurrence) of approximately $56,500 is 
assumed. CARE also estimates that 98% of all claims will be lognormally 
distributed with a 3.5 coefficient of variation; the remaining 2% of losses, each 
above $500,000, will follow a Pareto distribution (Pareto parameter = 1.30). 

3. Parameter Error: The average frequency and severity noted in the previous 
assumptions are subject to standard errors of 0.2 claims and $6,000, respec- 
tively. 

4. Number Of Insureds: CARE anticipates 1,000 participating actuaries in each 
of its first five years, with 10% annual membership growth thereafter. 

5. Frequency And Severity Trends: A 12% increase in CARE claim costs is 
assumed for the first year. Thereafter, the annual change in the claim inflation 
rate is assumed to be normally distributed with an average change of 0 and a 1 
point standard deviation. No claim frequency trend is anticipated. 

6. Assessment Collectibility: Three fourths (75%) of assessments are assumed 
to be collectible when due. 

7. Expenses: CARE’s administrative expenses and unallocated adjustment costs 
total 15% of premium during year 1, 12% in year 2, and 10% thereafter. 

8. Policy Term And Policy Effective Date: All policies are written for one year, 
effective January 1. 

9. Rate Level Changes: Annual premium increases of 10% occur at the end of 
each of years 3 through 9. 

10. Ceded Reinsurance Commission: CARE receives a 7.5% commission on 
all reinsurance it cedes. 

Il. Loss Payout: A given policy year’s losses are paid over five years, in 30/ 
25/20/15/ 10 proportions. 

12. Investment Return: Funds invested by CARE earn an average 10% return. 
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13. Taxation Of CARE Income: Operating income is taxed at 46%, subject to 
standard (3 year/7 year) carrybacWcarryforward provisions. 

14. Improvement In Policy Year Pure Premium Estimates: At its outset, a 
policy year’s pure premium estimate is subject to the variability described in 
Appendix B. These estimates improve linearly through the end of year five, at 
which point the pure premium is assumed to be fully known. 

15. Favorable Tax Treatment Of Solvency Reserves: All reserves are treated as 
an offset to CARE income in the year in which they are established. 

16. Surplus Requirements: Per the standards of certain offshore jurisdictions, 
CARE is required to maintain policyholder surplus at not less than 20% of the 
current year’s net written premium. 

APPENDIX B 

APPROXIMATE PERCENTILES OF A TYPICAL FIRST YEAR CARE 

TOTAL LOSS DISTRIBUTION 

(Based on 1,000 Simulations) 

Percen- 
tile 

Insurer Providing Insurer Providing 
First $1 MM of $900K x/s $lOOK 
E&O Insurance of E&O Coverage 

(Section I) (Section II) 

Percentage of Percentage of 
Expected Loss Expected Loss 

25th 
40th 
50th 
60th 
70th 
75th 
80th 
85th 
90th 
95th 

97.5th 

59% 
79% 
93% 

107% 
122% 
131% 
141% 
157% 
173% 
197% 
219% 

22% 
58% 
79% 

102% 
133% 
153% 
175% 
198% 
222% 
277% 
314% 
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CALCULATION OF 95/90/85/80 SOLVENCY RESERVES 

FIRST FOUR CALENDAR YEARS PRESENTED IN TABLE 1 

(Dollar Figures in Thousands) 

Selected Per- (4A) As a % of Accident AIY Solvency Accident Year 
1. . . Accident Yr centile: Per Percentage Year Vaiia- Reserve As a Contribution 

Valuation Net 95/90/85/80 of Expected bility Re- Percent of To Solvency 
at End of Act. Expected Reserving Losses maining Expected Loss Reserve 

Calendar Year YtX Losses Program O’er App B) (App A, # 14) {1(4B)-lOOlX(4C)} l(3) X (4D)I 

(1) (2) (3) (4A) (48) (4C) (4D) (5) 

I I $1,058 95th 196.6% 80% 77.3% $818 

2 $1,151 
I $1,058 

3 3 $1,270 
2 $1,151 
I $1.058 

4 4 %I ,386 
3 %I ,210 
2 $1,151 
1 $1,058 

95th 196.6% 
90th 173.2% 

Total Solvency Reserve for Calendar Year: $818 
Calendar Year Change in Solvency Reserve: $8 I8 

80% 77.3% $890 
60% 43.9% $464 

Total Solvency Reserve for Calendar Year: $1,354 
Calendar Year Change in Solvency Reserve: 5536 

95th 
90th 
85th 

95th 
90th 
85th 
80th 

196.6% 80% 77.3% $982 
173.2% 60% 43.9% $505 
157.4% 40% 23.0% 5243 

To&l Solvency Reserve for Calendar Year: $I ,730 
Calendar Year Change in Solvency Reserve: $316 - 

196.6% 80% 77.3% $1,071 
173.2% 60% 43.9% $557 
157.4% 40% 23.0% $265 
140.8% 20% 8.2% $87 

Total Solvency Reserve fortalendar Year: % I.980 
Calendar Year Change in Solvency Reserve: $250 
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COMPARISON OF EXPECTED PRESENT VALUE OF CARE’S tNCOME TAX PAYMENTS UNDER STANDARD AND SOLVENCY 

LOSS RESERVING PROCEDURES 

(Dollar Figures are in Thousands) 

Year - 
(I) 

I 
2 
3 
4 
5 
6 

8 
9 

10 

Standard Loss Reserving 

Expected Experted Taxable Income Taxes 

Net Imses & Income Paid 

Revenues Expenses l(2)-(3)1 146% of (4)l 
- - - ~ 

(2) (3) 

11.431 51.320 
$1,498 51.361 
51.549 51,431 
$1.721 s I ,565 
I I .898 $1.715 
$2.279 52.072 
52.746 52.506 
53.315 53.036 
$4.005 $3.682 
$4.841 54.474 

(4) 

III1 
s137 
$118 
$156 
5183 
9207 
5240 
5279 
5323 
$368 

(5) (6) (7) 

$51 51.434 5818 
$63 II .638 5536 
15-l 11.709 5365 
572 51.903 5244 
584 s2.106 5184 
$95 52.516 5334 

1110 53.017 5471 
5128 53,625 %08 
5148 $4.360 5756 
5169 55.248 -S4.316 

95/90/85/X0 Reserving With Solvency Reserves 
Taken Down at End of Year IO 

Expected Change in Taxable Tax Loss Carry- Income Taxes 

Net Solvency Income Forward Fmm Paid 146% of (8) 

ReVenUeSt ReS.ZIVe l(6)-(7)-(3)1 Prior Years +(9): 0 if neg.] 

(8) (9) (IO) 

-1704 
-1259 

-587 
594 

1207 
SIIO 

$40 
-a19 
-578 

S5.090 

N/A 0 
N/A 0 
N/A 0 

-543 0 
-595 0 
-%51 0 
-a19 0 

N/A 0 
N/A 0 

-584 52.258 

SUMMARY-STANDARD LOSS RESERVING: 
t I. ,a, Rerenl “alw ,at IO’%, of F.xpmed trrom Tax t’aymntr. 3545 

Yean t-10 
(b) Pnhbitily of CARE Surviving Thmugb Year IO ITable 21 
tc) Rnenl Value of Taxes. Diwauned for Survivability It t la) X tt I b)J 

t2. tnvntable AISEII Available 10 CARE al the End of b Tenth Year 
13. Policyholder Surplus at the End of CARE‘s Tenth Year 

88.86 
Is02 

$7.036 
11.951 

SUMMARY-95190185,RO RESERVlNG WITH RECOVERY: 
14. ,a, Prcwnl Vduc ,a, 10%) of E~pectcd horn Tax Payments. 
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THE CALCULATION OF AGGREGATE LOSS DISTRIBUTIONS FROM 
CLAIM SEVERITY AND CLAIM COUNT DISTRIBUTIONS 

PHILIPE. HECKMAN 

GLENNG.MEYERS 

Abstract 

This paper discusses aggregate loss distributions from the perspective of 
collective risk theory. An accurate, efficient and practical algorithm is given for 
calculating cumulative probabilities and excess pure premiums. The input re- 
quired is the claim severity and claim count distributions. 

One of the main drawbacks of the collective risk model is the uncertainty 
of the parameters of the claim severity and claim count distributions. Modifi- 
cations of the collective risk model are proposed to deal with these problems. 
These modifications are incorporated into the algorithm. 

Examples are given illustrating the use of this algorithm. They include (1) 
calculating the pure premium for a policy with an aggregate limit; (2) calculating 
the pure premium of an aggregate stop-loss policy for group life insurance; and 
(3) calculating the insurance charge for a multi-line retrospective rating plan, 
including a line which is itself subject to an aggregate limit. 

1. INTRODUCTION 

This paper discusses aggregate loss distributions from the perspective of 
collective risk theory. Our objective is to provide an efficient algorithm for 
calculating the cumulative probabilities and excess pure premium ratios for 
aggregate loss distributions in terms of the claim severity and claim count 
distributions. Examples illustrating the use of this algorithm will be given. 

Aggregate loss distributions are playing an increasingly important role in 
the pricing of insurance coverages. .The insurance buying public is becoming 
more sophisticated and is recognizing that it is to their advantage to absorb as 
much of their losses as they possibly can and to purchase excess insurance to 
cover the catastrophic losses. With the degree of competition that exists in the 
insurance marketplace, it is extremely important to obtain accurate estimates of 
the losses that could arise from such an insurance contract. 
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Aggregate loss distributions have been widely discussed in the insurance 
literature. Members of the Casualty Actuarial Society are familiar with the 
papers of Dorweiler [I], Valerius [2], Simon [3] and Hewitt [4]. The aggregate 
loss distributions in these papers are based on observed aggregate loss data of 
individual insureds. A problem with this approach is that to get a sufficient 
volume of data, one must combine the experience of insureds for which one 
would expect different aggregate loss distributions. 

The use of collective risk theory provides an alternative to the above ap- 
proach. Aggregate loss distributions are calculated in terms of the underlying 
claim severity and claim count distributions. Empirical data on claim severity 
and claim count distributions are, in many cases, readily available. Many feel 
that this approach is superior to observing actual aggregate losses because it 
makes more efficient use of available data. Much relevant detail is buried when 
one observes only aggregate loss data. 

However, the collective risk model does have some drawbacks. There are 
problems involved in fitting a distribution to the claim count. For a given insured 
we get one measurement of the claim count per year. During the years that we 
get the measurements, the exposure of the insured is most likely changing. In 
addition, observations are clouded by the fact that we must estimate the number 
of claims which have been incurred but not reported. Because of these problems 
it is difficult to fit a distribution to the claim count. Often, we must assume a 
distribution (usually Binomial, Poisson or Negative Binomial) with the param- 
eters selected by judgment. 

While empirical claim severity distributions are readily available, there are 
still some formidable problems that must be solved. There is no consensus as 
to how claim severity distributions should be adjusted for inflation. If we try to 
minimize this problem by choosing a relatively recent claim severity distribution, 
we will understate the variance of the ultimate claim severity distribution. To 
see this, consider the following equation. 

Var (Z) = &(Var (ZIR)) + VarR (E(ZIR)) 
Z = Ultimate Loss 
R = Case Reserve 

When case estimates are set at the expected value of the ultimate payment, the 
variance of the immature distribution will be Var,@(ZIR)). The variance of the 
ultimate claim severity distribution will be greater! Great care must be exercised 
in selecting the ultimate loss distribution. Methods of solving this problem can 
be found in the literature. [5][6]. 
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Another problem with the collective risk model is that the calculation of the 
aggregate loss distribution has been very difficult. A great deal has been written 
about the various methods of solving this problem. We shall attempt to sum- 
marize these methods. 

One general approach has been to calculate the moments of the aggregate 
loss distribution in terms of the moments of the claim severity distribution and 
the claim count distribution. One can then match the moments of the aggregate 
loss distribution with an assumed distribution. Probably the best known example 
of this approach is the Normal Power approximation 171. However, the condi- 
tions required to insure the accuracy of this method can be very restrictive. 
Gary Venter uses the transformed Gamma distribution and obtains better results 
[S]. While it is easy to compute the results using these methods, one runs the 
risk of inaccuracies because the assumed distribution is not the same as that 
implied by the collective risk model. 

A very popular method of calculating the aggregate loss distribution is by 
Monte Carlo simulation. Glenn Meyers has written an article illustrating this 
approach 191. This method is easy to understand and can be very accurate. 
However, it currently requires a great deal of computer time. 

A third method of calculating the aggregate loss distribution involves in- 
verting its characteristic function. A recent article illustrating this approach was 
written by Dr. Shaw Mong [IO]. This method requires that we have an explicit 
‘representation of the characteristic function of the claim severity distribution. 
Mong uses a shifted Gamma distribution to describe the claim severity distri- 
bution. Mong gives formulas for approximating other claim severity distributions 
with the shifted Gamma by matching the first three moments. The accuracy of 
this method depends upon how well the shifted Gamma distribution approxi- 
mates the desired claim severity distribution. 

A fourth method is the so-called “recursive method.” This method assumes 
a discrete claim severity distribution. By choosing a large enough number of 
points for the claim severity distribution, one can obtain any desired degree of 
accuracy. For this reason, it has been called an “exact” method. This method 
requires far less computer time than Monte Carlo simulation. The recursive 
method is derived in papers by Ethan Stroh [l l] and James Tilley [12] by 
inverting the Laplace transform of the aggregate loss distribution. Much of the 
mathematics involved is similar to that used in the characteristic function in- 
version method. Harry Panjer gives a derivation of the recursive method which 
does not involve inverting the Laplace transform [13]. 
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The method described in this paper inverts the characteristic function of the 
aggregate loss distribution. Like the recursive method, it ‘is an exact method. 
Its application goes beyond the recursive method in the following ways. 

1. This method allows one to combine the aggregate loss distributions of 
several different lines into a composite aggregate loss distribution. This 
is necessary if one is to apply the results of the collective risk model to 
multi-line retrospective rating plans. 

2. This method allows for parameter uncertainty in, both the claim severity 
distribution and the claim count distribution. Glenn Meyers and Nathaniel 
Schenker have shown that allowing for parameter uncertainty signifi- 
cantly improves the fit of the collective risk model to empirical data [ 141. 
It should be noted that Gary Venter’s method of Reference [8] also 
allows for parameter uncertainty. 

3. Philip Heckman and Phillip Norton have used the results of this paper 
to derive a method of selecting the specific and aggregate policy limits 
that minimize the variance of the retained losses while holding the cost 
of coverage constant [ 1.51. 

In short, this method is applicable to a wide variety of insurance pricing 
problems. We include several examples which illustrate this. 

The input required for this algorithm will be the claim count distribution 
and the claim severity distribution for each exposure class covered by the 
insurance contract. The claim count distribution can be either Binomial, Poisson 
or Negative Binomial. The cumulative claim severity distribution is assumed to 
be piecewise linear. We also allow the highest possible claim amount to occur 
with some non-zero probability. Figure 1 shows a cumulative distribution func- 
tion that might typically be considered. Since most claim severity distributions 
applicable to the insurance business can be approximated to any desired degree 
of accuracy by a piecewise linear cumulative distribution, we feel we have a 
completely general method of performing these calculations. 

It should be noted that these calculations will require a computer. With the 
nearly universal availability of computers, we do not consider this a drawback. 
We will warn the reader that the calculations are very complex, but, at the risk 
of being repetitious, we will stress the underlying concepts at every opportunity. 
This method is far more efficient than the more easily understood process of 
Monte Carlo simulation. Having fulfilled our duty to warn the reader, let us 
now proceed. 
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FIGURE 1 
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2. SUMMARY 

We begin by giving a full description of the aggregate loss model. We will 
show how this distribution can be expressed empirically in terms of Monte 
Carlo simulation or analytically in terms of convolutions. 

After reviewing some basic properties of complex numbers, we will .intro- 
duce the characteristic function of a probability distribution. One of the re- 
markable properties of this complex-valued function is that the characteristic 
function of the convolution of two probability distributions is equal to the 
product of the characteristic functions of the two individual probability distri- 
butions. It is this property of characteristic functions that makes this method 
work. It is easier to multiply characteristic functions than it is to calculate 
convolutions by Monte Carlo simulation. 

The next section will express the characteristic function of the aggregate 
loss distribution in terms of the claim count distribution and the characteristic 
function of the claim severity distribution. We will then derive formulas for the 
cumulative probabilities and the excess pure premiums for the aggregate loss 
distribution in terms of its characteristic function. These formulas involve im- 
proper integrals which can be evaluated using a Gaussian quadrature formula. 

We then provide an analysis of the errors made in numerically evaluating 
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the improper integrals. In some cases, the aggregate loss distribution is known. 
We test this algorithm by comparing the calculated results with known results. 
We also provide a comparison of the calculated results with results produced 
by Monte Carlo simulation. 

Four examples illustrating the use of this algorithm will be given: (1) 
calculating the pure premium of a policy with aggregate limits; (2) calculating 
the pure premium of an aggregate stop-loss policy for group life insurance; (3) 
calculating the insurance charge for a retrospective rating plan involving two 
policies, one of which is subject to an aggregate limit; and (4) an example 
similar to (3) except that there is parameter uncertainty for the claim severity 
distribution. 

3. THE COLLECTIVE RISK MODEL 

Collective risk theory started by considering the generalized Poisson distri- 
bution. However, it soon became apparent that the assumptions of this distri- 
bution are violated for many applications. In this section we will discuss the 
assumptions of the generalized Poisson distribution and indicate some common 
violations of these assumptions. We will then state a version of the collective 
risk model that can deal with certain violations of these assumptions. 

We start by considering the Poisson distribution. The assumptions underlying 
this distribution are as follows [16]. 

1. Claims occurring in two disjoint time intervals are independent. 
2. The expected number of claims in a time interval (tl, tz) is dependent 

only on the length of the interval and not on the initial value tl. 
3. No more than one claim can occur at a given time. 

There are situations when these assumptions are violated. We give three 
examples. 

I. Positive Contagion 
A manufacturer can be held liable for defects in its products which, in 
many cases, are mass produced. A successful claim against the manu- 
facturer may result in several other claims against the manufacturer. The 
notion that a higher than expected number of claims in an earlier period 
can increase the expected number.of claims in a future period is what is 
called positive contagion. 
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2. Negative Contagion 
Consider a group life insurance policy. A death in an earlier period will 
reduce the expected number of deaths in a later period. One does not 
die twice. The notion that a higher than expected number of claims in 
an earlier period can decrease the expected number of claims in a future 
period is called negative contagion. 

3. Parameter Uncertainty 
There are many cases when one feels that a Poisson distribution is 
appropriate, but one does not know the expected number of claims. Two 
options are available under these circumstances. The first option is to 
estimate the expected number of claims using historical experience. 
Parameter uncertainty can come from sample error. A second option is 
to use the average number of claims for a group of insureds that are 
similar to the insured under consideration. Parameter uncertainty arises 
if each member of the group expects to have a different number of 
claims. 

The effect of parameter uncertainty is similar to that of positive 
contagion. We give a heuristic argument for this which appeals to modem 
credibility theory. Suppose one observes n claims during a certain time 
period. Then one can estimate the number of claims, X, in a future period 
of equal length using the following formula. 

x=Z*n+(l -Z)*E 

where E = Prior estimate 
Z = Credibility factor. 

Note that if the estimate of the expected number of claims is precise or 
the group of insureds is homogeneous, the credibility factor will be 0. 

If n is greater than expected, the number of claims expected in the 
future will be greater than the prior estimate for non-zero values of 
credibility. 

It should be emphasized that we are not arguing that claims in an 
earlier period will cause claims in a later period, as in the positive 
contagion case. We are stating only that the claim count distributions 
observed under the conditions of parameter uncertainty and positive 
contagion should be similar. 

We now turn to specifying the claim count distributions we shall use for 
each of the above situations. We shall adopt the following notation. 
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n - A random variable denoting the number of claims 
A - The expected number of claims (A = E(n)) 
x - A random variable with E(X) = 1 and Var (x) = c 

Parameter uncertainty can be modeled by the following algorithm. 

Algorithm 3. I 

1. Select x at random from the assumed distribution. 
2. Select the number of claims, n, at random from a Poisson distribution 

with parameter xh. 

We have the following relationships. 

E(n) = E(nlx) * E(X) = X 

Var (n) = &War (nix)) + Var, MnlxN 
= E,(xA) + Var, (xh) 
= A + cA*. 

(3.1) 

(3.2) 

If x has a Gamma distribution, the claim count distribution described by 
Algorithm 3.1 is the Negative Binomial distribution [17]. We shall use the 
Negative Binomial distribution to model both the positive contagion and the 
parameter uncertainty cases. 

We shall call the paramter c the contagion parameter for the claim count 
distribution. We should note that c has also been called the contamination 
parameter by some authors [ 181. It should be noted that if c = 0, Algorithm 
3.1 yields the Poisson distribution. 

We shall use the Binomial distribution to model the negative contagion case. 
If m is the number of trials and p is the probability of success, we can formally 
define the contagion parameter to be equal to -l/m. Substituting this into 
Equation 3.2 yields the correct Binomial variance. 

Var(n) = A - X*/m = mp - m2p2/m = mp( 1 - p) 

While a negative contagion parameter makes no sense in terms of Algorithm 
3.1, we shall see below that this is a very appropriate definition. 

We now adopt the following notation. 

z-A random variable denoting the amount of a claim 
S(z)-The cumulative distribution function of z 

x-A random variable denoting the aggregate loss for an insured 
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Aggregate losses can be generated by the following algorithm. 

Algorithm 3.2 

1. Select the number of claims, n, at random from the assumed claim count 
distribution. 

2. Do the following n times. 
2. I Select the claim amount, z, at random from the assumed claim 

severity distribution. 
3. The aggregate loss amount, X, is the sum of all claim amounts, z, selected 

in step 2.1. 

Let F(x) denote the cumulative distribution function for the aggregate losses 
generated by Algorithm 3.2. We now give expressions for the mean and the 
variance of this distribution. 

E(x) = E(n) * E(z) = A * E(z) (3.3) 

Var (n) = E,,(Var (xln)) + Var,, (E(xln)) 
= E,,(n . Var (z)) + Var,, (n * E(z)) 
= A . Var (z) + (A + CA’) * E* (z) 
= A . E(z*) + CA* . E* (z) (3.4) 

Implicit in the use of Algorithm 3.2 is the assumption that the claim severity 
distribution, S(z), is known. In practice this distribution must be estimated from 
historical observations, or it must be simply assumed. Parameter uncertainty of 
the claim severity distribution can significantly affect the predictions of the 
collective risk model, and it should not be ignored. Our response to this problem 
is to make the simplifying (and we think reasonable) assumption that the shape 
of the distribution is known but there is uncertainty in the scale of the distri- 
bution. 

More precisely, we specify parameter uncertainty of the claim severity 
distribution in the following manner. Let p be a random variable satisfying the 
conditions E(lIP) = 1 and Var (I/p) = b. We then model aggregate losses by 
the following algorithm. 

Algorithm 3.3 

1. Select the number of claims, n, at random from the assumed claim count 
distribution. 

2. Select the scaling parameter, p, at random from the assumed distribution. 
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3. Do the following n times. 
3.1 Select the claim amount, z, at random from the assumed claim 

severity distribution. 
4. The aggregate loss amount, X, is the sum of all claim amounts, z, divided 

by the scaling parameter, B. 

Let 9(x) denote the cumulative distribution function for the aggregate losses 
generated by Algorithm 3.3. Let U(B) be the cumulative distribution function 
for the scaling parameter, B. Then the relationship between B(X) and F(x) is 
given by the following equation. 

x 
S(x) = 

I 
~~P&wP) (3.5) 

0 

We now give formulas for the mean and the variance for the aggregate 
losses generated by Algorithm 3.3. 

E(x) = E&WlPN 
= Ep(A . E(z)@) 
= A . E(z) . E(lIB) 
= A . E(z) (3.6) 

Var (4 = .&War CUP>> + Varp (E(xlP)) 

= Ea[(A * E(z*) + CA* * E*(z))@*] + Varp (A . E(z)@) 

= (A . E(z*) + CA* . E*(z)) * E(l/B2) + A* . E*(z) . Var (l/B) 

= (A . E(z*) + CA* . E*(z)) . (I+b) + A2 . E*(z) . b 

= A . E(z’) (l+b) + A* . E2(z) . (b+c+bc) (3.7) 

In this paper, we shall assume that B has a Gamma distribution. We shall 
call b the mixing parameter. The mixing parameter is a measure of parameter 
uncertainty for the claim severity distribution. 

It should be noted that we have chosen mathematically convenient distri- 
butions to model contagion and parameter uncertainty. We do not want to imply 
that these distributions are in any way the “correct” ones. Since parameter 
uncertainty is not directly observable, it is difficult to discover what the proper 
distribution should be. It should be noted that it is possible to infer the variance 
of the parameter uncertainty through the use of Equations 3.4 and 3.7 [ 141. But 
until statistical methodology has advanced to the point where the proper distri- 
bution can be determined, it should be acceptable to use ones which are math- 
ematically convenient. 
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4. CONVOLUTIONS 

The above discussion provides a complete description of the aggregate loss 
model we use in this paper. Algorithms 3.2 and 3.3 provide the means to 
calculate the cumulative distribution by Monte Carlo simulation. Unfortunately 
this is a long and expensive process. We now begin to develop the mathematical 
tools necessary to derive a more efficient process. 

Initially we will be concerned with the cumulative distribution function F(x) 
which is described by Algorithm 3.2. We will then make use of Equation 3.5 
to derive the cumulative distribution function B(X) described by Algorithm 3.3. 

Let x be a random variable which has a distribution function F(x). Similarly, 
let y be a random variable which has distribution function G(y). Let z = x + 
y. Then the convolution of F and G, denoted by F * G is the distribution 
function for z. We can express this analytically by the equation 

(F * G)(z) = 1’ F(z-y)dGCy). 
0 

Let S(z) be a claim severity distribution. Define 

so’(z) = { ‘: ;: f ; ; 

S”‘(z) = (P”’ * S)(z). 

One can see that S”‘(z) is the distribution of the total amount of exactly n claims. 

Algorithm 3.2 can be expressed in the following manner. 

Algorithm 4. I 

1. Select the claim count, n, at random. 
2. Select the aggregate loss amount, X, from the distribution 5”‘. 

We now give an analytical expression for this process. Let F(x) denote the 
distribution function for the aggregate loss distribution. Let P(n) denote the 
probability of exactly n claims. We then have 

F(x) = n$o P(n) . S”‘(x). (4.1) 
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5. CHARACTERISTIC FUNCTIONS 

It may be helpful at this point to review some properties of complex numbers. 
A complex number, z, is one which can be written in the form 

z = a + bi, (5.1) 

where a and b are real numbers and i = m. The number a is called the real 
part of z and b is called the imaginary part of z. Alternatively, z can be written 
in the form 

z = t-e”, (5.2) 

where r is a nonnegative real number and 0 is any real number; r is called the 
modulus of z, and 8 is called the argument of z. 

The equivalence of Equations 5. I and 5.2 can be seen by using Euler’s 
formula. 

e io = cos (0) + i * sin (0) (5.3) 

Using this formula it is not difficult to show that the following relationships 
hold. 

r=VTT? (5.4) 

1 

arctan (b/a) if a > 0 
7~ + arctan (b/a) if a < 0 and b 1 0 

0= arctan (b/a) - n if a < 0 and b 5 0 (5.5) 
~12 if a = 0 and b > 0 
- ~12 if a = 0 and b -C 0 

a = r cos (0) (5.6) 
b = r sin (0) (5.7) 

Having given a brief discussion of complex numbers, we define the char- 
acteristic function (or Fourier transform) of a cumulative distribution function 
F. 

&(t) = E(e’“) = Lm e”‘dF(x) (5.8) 

Let F and G be two cumulative distribution functions. 

&p&t) = E(e’“) = 6 e’“d(F * G) , 
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Since z is the sum of x and y, and x and y are independent, we have 

&-dt) = Ede”‘) = .&de i’(r+r)) = &(e’“) E,(e’“‘) = +F(t)$G(f). 

Thus we have proved the following well known result. 

+w*G)w = +4t) 4kw (5.9) 

As a consequence of this equation we have the following. 

4?dO = (~SWS’ (5.10) 

Combining Equations 4. I and 5.10 we get the following expression for the 
characteristic function of an aggregate loss distribution, F. 

4+(t) = ,go m)(4&))” (5.11) 

As stated above, we assume that the claim severity distribution is piecewise 
linear. We now specify the mathematical form of the claim severity distribution, 
S(z). 

1. Let n be a nonnegative integer. 
2. Let 0 I 01 < . . . < a,, < a,,+!. 
3. Let pk denote the probability that an individual loss is between ak and 

ak+ I. 
4. For up < z < u~+~, the probability density of z is given by 

dk = pkl(an+, - ak). 
5. The probability that a claim is equal to a,,+1 is given by 

1 - i pk. 
k=l 

This allows us to describe the accumulation of claim values at the policy 
limit (a,,+ I). 

We now calculate the characteristic function of S(z). 

+s(t) = [ e’“d.S(z) 

dk . ei”dz + ( 1 - i, pk) eirr”‘-’ 
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Using Euler’s formula (Equation 5.3) we continue. 

35 

$s(t) = $ kg, dk(Sh (1 uk+,) - sin (tak)) + 1 - i p, cos (tan+ I) 
( k=, k) 

+ i $ k$, dk (COS (tak) - COS (tak+,)) + i (I - $, pk) sin (r&+1) 

Let h(t) and f(t) denote the real and imaginary parts of +s(t) respectively. 

h(f) = ; $, dk (Sin (tan+,) - Sin (t&c)) + 
( ,, ) 

1 - z pk COS (tan,,) (5.12) 

sin (ta,,+ ,) (5.13) 

We now turn to the problem of calculating the characteristic function of the 
aggregate loss distribution. Our main tool will be Equation 5.1 I. 

Case I Binomial Distribution P(n) = 

$F(Z) = 2 (“) 
n=o n 

p”( 1 -p>‘“-“(+s(t))” 

W) = ,io (;) (phs(t))” - (1 -pyz 

cbM = (P440+ 1 -p) 
,” 

&o) = ( 1 + p (W)- I))“’ 

If we make a change of notation and let A = mp and c = - I/m, we get 

$F(r) = (1 - A(+&) -I))-“‘. (5.14) 
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e- AX” Case 2 Poisson Distribution F(n) = 7 
. 

(PM = ,zo $ (4sW 

(Pp.(t) = go e-“(A ;*!4@)” 

(b&) = e-A 5 (A * pw)” 

n=o 

,$&) = e-Ae”‘msc” 

4~0) = e 
A.(+s(o- I ) 

Case 3 Negative Binomial Distribution 

Qn)=(n’l~-f)(I +cA)-“‘.(A- 

4F(0 = iii ,,=o(n+1~-1)il+cA)“‘(~~(4s(t))” 

4FW = 5 n=o(n+ I;- I)(] +cA)-“C(+$!&)” 

4FW = Ii nzo(n+I;-l)(l +cA)-‘l’(e)” 

4sw 
where ’ = 1 - cA(+s(t) - 1) 

&(t) = (I + CA)- I/c (I + cX)“c 

&(t) = (I - cA(+s(t) - I))-“C 

(5.15) 

(5.16) : 

Note that Equations 5.14 and 5. I6 are identical except for the different I 
interpretation of the contagion parameter c. It should also be noted that the 
expression in Equations 5.14 and 5. I6 approaches the expression in Equation 
5. I5 as c approaches 0. 
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In the computer program described below, we set c = IO-’ whenever Ic( < 
IO-‘. Thus the same computer code handles all three cases. 

6. THE AGGREGATE LOSS DISTRIBUTION 

In the preceding section we derived the characteristic function for the ag- 
gregate loss distribution for a single coverage or exposure class. In this section 
we use the above results to derive formulas for the cumulative probabilities and 
the excess pure premiums for multiple coverages or exposure classes. 

For the sake of convenience, we make the following definitions. 

F(x) = Cumulative distribution function of the aggregate losses for all cov- 
erages combined 

p = Mean of aggregate loss distribution 
cr = Standard deviation of aggregate loss distribution 

At) = modulus (4~(tla>) 
g(t) = argument (+F(t/a)) 

For each coverage, j, we define the following. 

hi(t) = hj(tlU) - I (6.1) 

kj(t) = ij(t/U) (6.2) 

where hj and /?j are given in Equations 5.12 and 5.13. 

Note the F(x) is the convolution of the aggregate loss distributions for each 
individual coverage. Using Equations 5.4, 5.5, 5.9 and 5.12-5.16 we have the 
following. 

f(t) = n modulus (I - cjAj(+s,(tlo) - l))-“” 
j 

f(t) = n modulus (1 - cjAj(hj(t) + ikj(t)))-I”’ 
i 

At) = I-J ((I - cjAjhj(t))* + (cjAjkj(t))2)-“2”’ 
j 

g(t) = 2 argument (I - cjAj(+s,(t/o) - I))-“” 
i 

g(r) = z argument (I - cjAj(hj(t) + ik,{t)))-““j 
i 

(6.3) 

(6.4) 
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Once the modulus and the argument of the aggregate characteristic have 
been determined, it is possible to calculate the cumulative probabilities by use 
of the following formula. 

(txlu - g(t)) dr (6.5) 

The excess pure premium can be obtained from the cumulative distribution 
function by the following formula. 

EP(x) = 
i 
r (u - xMF(u) 

Applying this to Equation 6.5 we get the following formula. 

7 (cos (g(t)) - cos (txlu - g(t)))dr (6.6) 

The excess pure premium ratio is defined by the following formula. 

Ef?(x) = EP(x)Ipa 

We now introduce parameter uncertainty of the severity distributions. 

s(x) =; +; in”ly (] + (LJ)-““” 

sin ((I + r) arctan ($)- g(t)) dr (6.7) 

= At> %9(x) = f-l - 5 + ; o 7 cos (g(r)) - 
I [ 

(1 + ($)‘)-“‘cos (r . arctan ($) - g(r))] dr 

In the above two formulas. r = 1 + l/b. 

(6.8) 
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Equations 6.5-6.8 are derived in Appendix A. It should be noted that 
Equation 6.5 is the limit of Equation 6.7 as b approaches 0. Similarly Equation 
6.6 is the limit of Equation 6.8 as b approaches 0. In our program we set b = 
IO-’ whenever b < IO-’ and thus the same computer code handles both 
situations. 

Equations 6.7 and 6.8 are set up so that the parameter uncertainty of claim 
severity affects all coverages in the same way. This may be realistic if one 
believes that uncertainty in claim severity is due to inflation and that inflation 
affects all coverages in the same way. If one wants parameter uncertainty of 
claim severity for each coverage to be independent, several runs of the program 
will be required. An example showing how to do this will be given below. 

7. NUMERICAL INTEGRATION 

We now turn to the problem of evaluating the integrals given in Equations 
6.7 and 6.8. It should also be noted that our program is written in FORTRAN 
to run on a large (IBM 370) computer. In this environment, it gets nearly 
instantaneous response at the computer terminal. The same algorithm has also 
been coded in BASIC to run on a TRS80 Model III microcomputer where it 
reproduces the mainframe results though with substantially greater running time. 
The actual FORTRAN code is included as Exhibit IX. 

We now outline our algorithm. Explanation for the steps will be given 
below. 

Step 
1. Enter the parameters for the claim severity and the claim count distri- 

butions. 
2. Calculate the aggregate mean, )I, and standard deviation, cr. 
3. Enter the loss amounts, x. 
4. Calculate basic interval length, h. 

12 = 2rru /(maximum loss amount) 
5. In order to apply the Gaussian quadrature formulas, we must evaluate 

the integrands at specified points. We evaluate the functions f(f) and 
g(t) at the appropriate points in each of the following intervals. 
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Interval Number Interval 

I (0, h/16) 
2 (h/16, h/8) 
3 (h/8, h/4) 
4 (h/4, h/2) 
5 (h/2, h) 
6 (h, 2h) 

j+4 (0’ - l)h, jh) 

j is determined so that At)t < .00002 for all values of t evaluated in the 
interval ((j - I)h, jh). 

6. For each loss amount, x, evaluate 9(x) and %9(x) by summing the results 
of the Gaussian quadrature formulas over each of the intervals given in 
Step 5. 

We now give a more detailed explanation of the above steps 

Step I 

The parameters for each claim severity distribution are the claim severities 
a,, ; . . , a,,+ I and the associated probabilities PI, . . .p,,. 

The parameters for each claim count distribution are the expected number 
of claims and the contagion parameter, c. Note that if ICI < IO-‘, we substitute 
c = lo-‘. 

We must also enter the mixing parameter, b. If b < IO-’ we substitute 
b = IO-‘. 

Step 2 

For each coverage we calculate the aggregate mean and variance according 
to Equations 3.6 and 3.7. The aggregate mean and variance are the sums of the 
individual means and variances for each coverage. 

Step 4 

Evaluating a typical g(t) showed that g(t) changes slowly. See Figure 2. 
Also, r * arctan (xtlru) is an increasing function of t which is bounded by xtl 
u. Thus by choosing h = 2nu/(maximum loss amount) we assure that the 
interval of integration will contain no more than one oscillation of the integrand. 
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FIGURE 2 

Step 5 

The evaluation off(t) and g(t) is the most time consuming operation of this 
entire algorithm. Thus f(t) and g(t) should only be evaluated once for any given 
value of t, and the number of points, I, at which these functions are evaluated 
should be as few as possible. Inspection of the integrands of Equations 6.7 and 
6.8 revealed that they changed most rapidly in the interval (0, h). See Figures 
3 and 4. Thus it was felt that the intervals used in the numerical integration 
should be relatively short in the interval (0, h). 

By a change of variables, each interval of integration was transformed from 
the given interval to the interval (- 1, I). The Gaussian 5-point formula is then 
applied. The points, tj, where fit) and g(r) must be evaluated are as follows. 

11 = (-0.90617985 (b - u) + (b + a)) /2 
t2 = (-0.53846931 (b - a) + (b + u)) /2 
t3 = (b + a) /2 
t.q = (0.53846931 (b - u) + (b + a)) 12 
t5 = (0.90617985 (b - a) + (b + a)) /2 

Here a is the left endpoint of the interval, and b is the right endpoint of the 
interval under consideration. If f(<j) / Ij < .00002 for j = 1, . . . , 5 or the 
number of intervals equals 256, no more intervals are used. 
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FIGURE 3 

FIGURE 4 
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Step 6 

Now that f(t) and g(t) are evaluated and stored in an array, it becomes an 
easy task to evaluate B(X) and %9(.x). For each interval of integration we use 
the following rule to evaluate the integral. 

. (interval length/2) 

where P(t) = fct, 
t 

(interval lengthl2) 

1 + (zr)-““‘“sin ((1 + r) arctan (5) - g(r)) 

Q(t) = $? [ ( cos (g(t)) - (1 + ( $r)+2cos (r . arctan (z) - g(t))] 

W, = Ws = 0.23692689 
W2 = W4 = 0.47862867 
W3 = 0.56888889. 

Then 3(x) = .5 + (Sum of all the f,,‘s) 1~ and 
%9(x) = p, - x/2 + (Sum of all the IE’s) u/r. 

8. ERROR ANALYSIS 

There are three sources of error in the above calculations. 

Roundoff Error 

We use double precision arithmetic at every stage of our calculation. Double 
precision numbers are accurate to 16 significant digits on IBM equipment. Even 
though the calculations leading to a particular output value could number in the 
hundreds, it is doubtful that accumulated roundoff error could be an important 
factor in our calculations. 

Discretizution Error 

The discretization error for the Gaussian 5-point formula is given by the 
expression 
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f’“‘(S) 73 52 38 = 8.08 x 11 2 lo-‘O * *f’“’ (EJ, 5 in (-l,l). . . . 

Since the integrands are reasonably smooth (see Figures 3 and 4) the bound on 
f’“’ should be reasonable. Thus the discretization error should not be significant. 

Truncation Error 

The most significant source of error in these calculations is the truncation 
error, or the error made by substituting an integral with finite limits of integration 
for an integral with infinite limits of integration. We now turn to analyzing this 
truncation error. 

The truncation error, ET, for the excess pure premium is given by 

(1 + (s)‘)-d2cos (r * arctan (2) - g(tJ)]df 

where a is the limit of the finite integral. 

Now IET/ I ; j-- ‘3 (1 + 1)dt 

= % - max (f(t)) * i . 
120 

NowAt) = 1 6 e”“dF(x) / I [ 1 eirx 1 dF(x) = I. 

(8.1) 

(8.2) 
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The bound on the truncation error given by Equation 8.2 is extremely 
conservative because, as we show in Appendix B, maxrZ,Ar) will be signifi- 
cantly less than one for most cases of interest. In fact, if each (piecewise linear) 
claim severity distribution function is continuous, f(t) approaches the probability 
of zero claims as t approaches infinity. For example, when the claim count 
distribution is Poisson with a mean of 10 claims, f(t) will be close to e-” or 
0.0000454 for large t. 

The bound on the truncation error given by Equation 8.1 is also conservative 
because the integrand repeatedly changes sign. 

In our program, a is usually chosen so that max,,, (f(t)) * I/a < .00002. 
Thus we would expect the truncation error for the excess pure premium ratio 
to be bounded by .000013 * alp,. 

The truncation error for the cumulative probabilities does not permit an 
analysis similar to the above because the denominator of the integrand contains 
t instead of t’. The examples in the next section will show that cumulative 
probabilities calculated by this algorithm seem to be accurate. But they are 
somewhat less accurate than the excess pure premium. 

9. NUMERICAL TESTS OF THE ALGORITHM 

There are cases when the algorithm can be compared with known results. 
We consider two such cases. 

If the contagion parameter, c, is equal to - 1, then 4&r) = 4&r). The 
choice of c = - I corresponds to the Binomial distribution with m = p = I. 

For our first example, consider the following. 

F(x) = S(x) = x for 0 I x 5 I 

ER(x) = ; 
I 

I 

(I - F(u))du = (I - x)~ 
I 

Table 9. I compares computed to actual results. 
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X 

.lO .lOOO 

.20 .2000 

.30 .3000 

.40 .4000 

.50 .5000 

.60 .6000 

.70 .7000 

.80 .8000 

.90 .9000 
1.00 1 .oooo 

AGGREGATE DISTRIBUTIONS 

TABLE 9.1 

F(x) F(x) 
Actual Computed 

Wx) 
Actual 

.lOOO .8100 .8100 

.2000 .6400 .6400 

.3000 .4900 .4900 

.4000 .3600 .3600 

.5000 .2500 .2500 

.6000 .1600 .1600 

.7000 .0900 .0900 

.8000 .0400 .0400 

.9000 .OlOO .OlOO 

.9995 . 0000 . 0000 

ER tx) 
Comuuted 

For our next example, consider the following. 

F(x) = S(x) = x12 for 0 % x < 1 
F(1) = S(1) = I 

ER(x) = L 
1' p .I 

(1 - F(u))& = (3 - x)(1 - x)/3 

For reasons described in Section 7 above, the program required 256 intervals 
for the numerical integration. The value off(t)lt for the largest value of t was 
equal to .OOl. Using Equation 8.2 we obtained an estimate of .00027 as a 
bound on the truncation error for ER(x). Table 9.2 compares computed to actual 
results. 

These examples would seem to indicate that the calculation of ER(x) is more 
accurate than that of F(x). If F(x) is continuous, the error appears to be small, 
but, if F(x) is not continuous, the errors may not be so small near the points of 
discontinuity. 

We now turn to a more realistic example. Exhibit II shows an actual run of 
our program. Details concerning the input will be given in the discussion of 
aggregate increased limits factors which follows. Here we provide a comparison 
between the results of our program and a Monte Carlo simulation. One should 
not expect exact agreement between expected and observed results due to 
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TABLE 9.2 

x 
F(x) 

Actual 

.lO .0500 .0501 .8700 .8700 

.20 .lOOO .lOOl .7467 .7467 

.30 .1500 .1502 .6300 .6300 

.40 .2000 .2002 .5200 .5200 

.50 .2500 .2502 .4167 .4167 

.60 .3000 .3003 .3200 .3200 

.70 .3500 .3504 .2300 .2300 

.80 .4000 .4005 .1467 .1467 

.90 .4500 .4511 .0700 .0700 

.99 .4950 .4869 .0067 .0067 
1.00 1.0000 .7499 .oooo .OOOl 
1.01 1.0000 1.0081 . 0000 .oooo 
1.05 1.0000 .9979 .oooo .oooo 

F(x) Wx) 
Computed Actual 

J-(X) 
Computed 

simulation error. For this reason we performed a Chi-Square test on the results 
to see if the difference could be explained by random fluctuations. The results 
are in Table 9.3. 

The expected number of claims in each cell was obtained from Exhibit II. 
The observed number of claims in each cell was obtained by a Monte Carlo 
simulation using exactly the same input parameters as those in Exhibit II. Ten 
thousand trials were used. 

If the differences between observed and expected values are due solely to 
random fluctuations, one should expect a Chi-Square value of 25. In this case 
we get a slightly higher value of Chi-Square. We have performed similar tests 
on many occasions and have gotten similar results. The algorithm works. 

10. AGGREGATE LIMITS 

We now consider how this algorithm can be used to calculate the premium 
for a policy that is subject to an aggregate limit. 

Underwriters have long felt that lines of insurance such as Products Liability 
and Medical Malpractice present a severe catastrophe potential. For example, 
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TABLE 9.3 

CHI-SQUARE TEST FOR AGGREGATE Loss DISTRIBUTIONS 

Upper Cell Boundary Observed Expected 

50,000 51 52 
100,000 273 268 
150,000 432 435 
200,000 546 540 
250,000 589 587 
300,000 632 628 
350,000 736 737 
400,000 782 782 
450,000 789 769 
500,000 721 720 
550,000 641 662 
600,000 625 622 
650,000 597 561 
700,000 506 491 
750,000 402 416 
800,000 353 349 
850,000 269 294 
900,000 227 241 
950,000 201 195 

1 ,ooo,ooo 135 154 
1,050,000 93 121 
1,100,000 102 94 
1,150,OOO 73 73 
1,200,000 46 55 
1,250,OOO 39 42 

Over 1,250,OOO 140 112 

Chi-Square = 26.0 
Degrees of Freedom = 25 
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the publicity given a Products Liability lawsuit may well provoke several ad- 
ditional lawsuits by others who have purchased the same product. Thus under- 
writers have justifiably sought to limit the total amount of losses that can be 
paid out under a single policy. 

The price for a policy with an aggregate limit (ignoring expense consider- 
ations) will be the price of a similar policy with no aggregate limit less the 
excess pure premium for the aggregate limit. Below, we will give several 
examples of such calculations using Exhibits II to V. But, before we do this, 
let us discuss the input parameters. 

The claim severity distribution chosen is typical for Products Liability cov- 
erages. We will not discuss selection of the claim severity distribution here. 
Instead we will refer the interested reader to the literature [ 191 [20]. 

The claim severity distribution will be subject to a $250,000 occurrence 
limit. 

The mean of the claim count distribution was calculated by dividing total 
expected losses by the severity mean ($18,198). In Exhibits II, IV and V a 
contagion parameter of zero was chosen. This choice gives the Poisson distri- 
bution. In Exhibit III we chose a contagion parameter of .25. In light of the 
catastrophe potential for Products Liability that was discussed above, a more 
highly skewed claim count distribution would indeed seem justified. 

A mixing parameter of 0 is used in this example. 

Tables 10.1 and 10.2 show the discounts expressed as a proportion of the 
total expected loss. 

While a more highly skewed claim count distribution may be justified for 
Products Liability, it does not give a conservative price for a policy with an 
aggregate limit. Thus we would recommend using a Poisson distribution for the 
claim count unless one has definite evidence that a more skewed distribution is 
appropriate. 

Notice that the discounts depend upon the expected loss. Present tables of 
increased limits factors do not reflect this dependence. We admit that there is a 
practical problem involved in publishing increased limits factors that vary by 
expected loss. However, the “practical” solution of not considering the expected 
loss can produce embarrassing examples such as the following. This method is 
identical to that given in I.S.O. rating manuals. 
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TABLE 10.1 

DISCOUNTS FOR AGGREGATE LIMITS 

Expected Loss = $500,000 

Contagion 
Parameter 

Aggregate Limit 0.00 0.25 

$ 600,000 .I394 .2132 
800,000 .0516 .1125 

1 ,ooo,ooo .0165 .0570 
1,200,000 .0046 .0279 
1,400,000 .0012 .0133 

TABLE 10.2 

DISCOUNTS FOR AGGREGATE LIMITS 

Contagion Parameter = 0.0 

Expected Loss 

Aggregate Limit $250,000 $500,000 $1 ,ooo,oOO 

$ 600,000 .0296 .1394 .4202 
$ 800,000 .0060 .0516 .2665 
$1 ,ooo,ooo .OOlO .Ol65 .1528 
$1,200,000 .0002 .0046 .0791 
$1,400,000 - .OOl2 .0371 

Basic Limits - $25,000 per occurrence and $75,000 aggregate 
Base Rate - $1 .OO per unit of exposure 
Exposure - I ,OOO,OOO units 

If an insured bought a policy for the basic limits, he would pay $1 ,OOO,OOO and 
the most he could recover in losses is $75,000! While it is unlikely that such a 
policy has ever been sold, significant errors could be quite common. 
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We propose the following as a remedy to this situation. 

1. Publish increased limits tables for occurrence limits only. 
2. Do not give discounts for aggregate limits. Instead, publish a table of 

aggregate limits which are appropriate for a given expected loss. The 
aggregate limits should be sufficiently high so that the indicated discount 
is less than a nominal amount, say 0.5%. 

Using Exhibits II, IV and V we can derive the appropriate aggregate limits. 

Expected Loss Aggregate Limit 

$ 250,000 $ 825,000 
500,000 1,200,000 

1 ,ooo,ooo 1,900,000 

11. GROUP LIFE AGGREGATE EXCESS INSURANCE 

We now give the solution to a problem that was proposed to us by a life 
actuary of our company. 

A large employer wanted to self insure his group life insurance. To protect 
against a catastrophe, he wanted to purchase aggregate excess insurance to cover 
losses in excess of 1.25 times the expected loss. The following data were 
provided to us. 

Group Age Range Number of Lives Expected Loss 

1 29 and Under 2,073 47,086 
2 30-34 1,135 36,342 
3 35-39 1,044 35,380 
4 40-44 822 54,938 
5 45-49 1,004 136,126 
6 50-54 1,193 270,050 
7 55-59 975 395,47 1 
8 60-64 546 258,525 
9 65 and Over 25 13,247 

The expected loss was computed using a mortality table and the average 
amount of insurance in each group. 

It was felt that the claim count distribution should be binomial. Thus we 
chose a contagion parameter of - l/(number of lives) for each group. We were 
not given a distribution of insurance amounts for each group. Assuming that all 
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insureds had the average amount of insurance in each group would understate 
the excess pure premium. For this reason we requested rough estimates for 
those distributions. 

The mixing parameter selected was 0.0. 

It should be noted that the assumptions of the collective risk model are 
violated in this example. When a person dies, the amount of his insurance 
policy is removed from the claim severity distribution. However the turnover 
of group members should keep the claim severity distribution approximately the 
same. Thus we feel that the collective risk model will be a good approximation 
of the true situation. 

Exhibit VI gives the computer run for the problem. The pure premium for 
this coverage was calculated to be 1.53% of the expected loss. 

12. RETROSPECTIVE RATING; NESTED AGGREGATES 

A retrospective rating plan is a rating plan in which the final premium is 
determined after the policy period has expired [21]. While these plans have 
many features, we will limit this discussion to plans where the insurer is liable 
for all losses above an agreed upon amount. 

Retrospective rating plans can cover several different policies under a single 
plan. Here we provide a simple example showing how to calculate the pure 
premium, or insurance charge, for such a rating plan. Our example will consist 
of two coverages, Workers’ Compensation and Products Liability. 

The Workers’ Compensation policy has an expected loss of $500,000. The 
claim severity distribution is given in Exhibit I. The contagion parameter is .05. 
The mixing parameter is 0.0. 

The Products Liability policy has an expected loss of $500,000 before 
application of the aggregate limit. The claim severity distribution is given in 
Exhibit 1. The contagion parameter is .25. The policy that is written under the 
retrospective rating plan is subject to a $1 ,OOO,OOO aggregate limit. The mixing 
parameter is 0.0. 

The presence of a policy subject to an aggregate limit in the retrospective 
rating plan makes it necessary to run the program twice to determine the 
insurance charges. Exhibit III will serve as the first run of the program. For the 
second run we treat the Workers’ Compensation parameters in the usual manner. 
For the Products Liability, we substitute the aggregate loss distribution in Exhibit 
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III for the claim severity distribution. We, of course, limit the aggregate losses 
to $1 ,OOO,OOO. The contagion parameter is - 1. This corresponds to a binomial 
claim count distribution with m = p = 1. The results of the second run are 
shown in Exhibit VII. It can be seen, for example, that the insurance charge 
for a plan which covers losses in excess of $1,500,000 is $21,894. 

We now consider parameter uncertainty for the scale of the claim severity 
distribution. 

Misestimation of the claim severity distribution can occur because of limited 
information on the individual coverage. In this case one would expect the scale 
uncertainty for each coverage to be independent. Misestimation of future infla- 
tion can also cause scale uncertainty. In this case one could expect the scale 
uncertainty to affect each coverage in the same way. The following example 
shows how to handle both of these cases. It will be necessary to run the program 
once for each individual coverage. A final run is then required to combine the 
individual coverages. 

The Workers’ Compensation policy has the same parameters that were 
specified in the above example with the exception that the mixing parameter is 
set equal to .05. This reflects uncertainty in the scale of the claim severity 
distribution for Workers’ Compensation. The aggregate loss distribution for this 
coverage is given in Exhibit VIIIA. 

The Products Liability policy has the same parameters that were specified 
in the above example with the exception that the mixing parameter is set equal 
to .05. This reflects uncertainty in the scale of the claim severity distribution 
for Products Liability. The aggregate loss distribution is given in Exhibit VIIIB. 
It should be noted that this aggregate loss model adjusts the policy limit with 
the scaling parameter, while in the real world the policy limit remains fixed. 
However this should not significantly affect the final results. 

The aggregate loss distributions for Workers’ Compensation and Products 
Liability are then combined to get the aggregate loss distribution for the total 
losses of the two coverages. Here the aggregate loss distribution for each 
coverage is treated as the claim severity distribution for the final run of the 
program. The Products Liability loss is limited to $l,OOO,OOO. The contagion 
parameter for each coverage is set equal to - 1. The mixing parameter is set 
equal to .05. This reflects uncertainty in the scale of the aggregate loss distri- 
bution. For a given year the scale parameter is identical for both coverages. It 
should be noted that, as we do above, this aggregate loss model adjusts the 
aggregate limit with the scaling factor. 
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The results of the third run are shown in Exhibit VIIIC. It can be seen, for 
example, that the insurance charge for a plan which covers losses in excess of 
$1,500,000 is $46,424. Here one can see that that parameter uncertainty can 
significantly affect the required insurance charge. 

13. CONCLUSION 

We have described an efficient and accurate algorithm which calculates the 
cumulative probabilities and excess pure premiums for the collective risk model. 

The program and related programs have been used at our company in 
applications described above and many others. These include the analysis of 
profit sharing plans, large account pricing, aggregate deductibles and sliding 
scale dividend plans. Also, we are currently exploring applications involving 
the optimization of reinsurance retentions [IS] and designing a retrospective 
rating plan which properly accounts for the “overlap” problem [22]. In short, 
this is a very useful program. 

Our exposure to these applications has led us to believe that further work 
needs to be done with the collective risk model. In particular, we need to test 
the predictions of the collective risk model against actual aggregate loss data. 
We also need to test the sensitivity of the collective risk model to violations of 
the assumptions underlying it. 
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APPENDIX A 

DERIVATION OF EQUATIONS 6.5-6.8 

The purpose of this appendix is to derive Equations 6.5-6.8. We will first 
derive expressions for the cumulative probability and the excess pure premium 
in terms of c@(f) and U(p). Equations 6.5-6.8 will then be special cases of 
these expressions. 

The following formula is given by Kendall and Stuart [23]. 

F(Px) = f + & [ Pr’ * 44-O ; e-ip.r’ . 4%(0 dt 

From Equation 3.5 we have the following. 

= ++k I [ Ox ; +F(-r) . +u(xt) - +FO) . Wij dt (A. 1) 

Thus we have the following. 

Yw(x) = 
I 
,,; (v - x)dS(v) = 

= 1; [ j-,= dWv)] du = 1; (1 - B(u)@ 

= Jz (1 - B(v))dv - I’ (1 - S(v))dv 
0 0 
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$F( - t) * &/(vt) - c/%(t) * +U(-vf) 
it 

Mt) [ &A- VOdv] dt 

Note: $(r) = f(t)e”“‘; At) =A-t) and g(-t) = -g(t). 

Case1 U(p)=Oforp<landU(P)= lforprl. 

+u(t) = err 
+u(xt) = e’I’ 
+o(-xt) = e-“’ 

64.2) 

(A.3) 
(A.4) 

I ox +u(vt)dv = = 
it 

(A.5) 

I ; +u( -vt)dv = ’ -,‘-lX’ (A.61 , 
Equation 6.5 is obtained by substituting Equations A.3 and A.4 into Equation 

A. 1. and replacing t with t/a. Equation 6.6 is obtained by substituting Equations 
A.5 and A.6 into A.2 and replacing t with tla. 

We first show that U(p) satisfies the conditions stated for Algorithm 3.3. 

i 

I 

=- 

rir) 0 (+) ‘- ‘em@@ 

= 1 
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r 
I 

x r =- 
r - 1 r(r - 1) o 

(rp)‘-2e-‘Pd@ 

r =- 
r- 1 

If r = 1 + lib we have that Var (l/p) = (r/(r - 1)) - 1 = 6. 

57 

[( y-L II I - 

I ,,’ cjju(-vt)dv = ; [I - (I + :)-‘I 

(A.91 

(A. 10) 

Equation 6.7 is obtained by substituting Equations A.7 and A.8 into Equation 
A. 1 and replacing t with t/u. Equation 6.8 is obtained by substituting Equations 
A.9 and A.10 into A.2 and replacing t with r/a. 
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APPENDIX B 
ASYMPTOTIC BEHAVIOR OFJI) 

In the error analysis of Section 8 we indicated that max,z, f(r) could be 
significantly less than one for large a. We now give a demonstration of this 
fact. It will be sufficient to consider a single coverage or class of business. 

We will adopt the following notation for use in this appendix. 

D=l-iPa 
k-l 

A = a,,+, 

As t + 30, we have the following. 

h(t) + D cos (At) 
k(t) --;, D sin (At) 
+~(t) + D(cos (At) + i sin (At)) 

Case I Binomial Distribution 

OF(f) = [1 + p f&(C) - 1)l”’ 

As t + ~0, we have the following. 

At> + [(l - p + D p cos (At))’ + (D p sin (Af))2]““2 
f(t) + [( 1 - p)’ + 2 D p cos (At) + (D p)2]‘n’2 

If D = O,f(t) + (1 - p)“’ which is equal to the probability of having no claims. 
If D > 0,flt) does not approach a limit, but the asymptotic upper bound off(r) 
can be obtained by setting cos (At) = 1. 

max,,, f(t) + [( 1 - p)’ + 2 D p + (D P)~]““~ 

As an example, consider the case when m = 100, p = .l and D = .I : 

max j(t) + .0000905. 
12” 
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Case 2 Poisson Distribution 

+&) = e h(+sw - I) 

As t + m,At) + emA * eW ‘OS (A’). If D = O,flt) + emA, which is equal to the 
probability of having no claims. If D > 0, f(t) does not approach a limit, but 
the asymptotic upper bound off(t) can be obtained by setting cos (At) = 1. 

max f(t) + e-‘(‘+) 
12=(1 

As an example, consider the case when A = 10 and D = .I: 

max fit) + ep9 = .0001234. 
fZCl 

Case 3 Negative Binomial Distribution 

W) = [I - cA(+s(o - 111 --I/c 

As t --+ w, we have the following. 

fit) + [(I + CA + CA D cos (At))2 + (CA D sin (At))2]-“2c 
At) ---, [(l + cA)~ + 2(1 + CA) 1 CA D cos (At) + (CA D)‘]-I”’ 

If D = 0, f(t) --j (1 + CA)-“‘, which is the probability of having no claims. If 
D > 0, f(t) does not approach a limit, but the asymptotic upper bound of f(t) 
can be obtained by setting cos (At) = 1. 

max fit) + [(I + cA)~ - 2( 1 + cA)(cAD) + (cAD)~]-“~“ 
,Z=O 

As an, example, consider the case when A = 10, D = .I and c = .I : 

maxflt) * .001631. 
G=cI 
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LXX, 1983) appear in the subsequent volume of the Proceedings 
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DISCUSSION BY GARY VENTER 

Background 

Aggregate losses are easily defined as the sum of individual claims, but the 
distribution of aggregate losses has not been easy to calculate. In fact, this has 
been a central, and perhaps the central, problem of collective risk theory. The 
mean of the aggregate loss distribution can be calculated as the product of the 
means of the underlying frequency and severity distributions; similarly, there 
are well known formulas for the higher moments of the aggregate distribution 
in terms of the corresponding frequency and severity moments (e.g., see [5] 
Appendix C). However the aggregate distribution function, and thus the all 
important excess pure premium ratio, has been awkward to calculate from the 
distribution functions of frequency and severity. It is this calculation problem 
that is addressed and solved in this important paper. The result is generalized 
somewhat to the case where the severity distribution is known only up to a scale 
multiplicative factor, which itself follows a specific distribution (inverse 
gamma). In this review the approach in the paper is abstracted somewhat in an 
attempt to focus on the areas where the specific assumptions come into play. 

Principal Idea 

The derivation of the results involves comblex mathematics, but the results 
themselves and the ideas behind the derivation can be easily understood. It is 
not necessary to know what a characteristic function or a convolution or a 
complex’number is to understand these basic ideas and to use the results. The 
following properties of the characteristic function are germane to this under- 
standing. 

1) It is a transformation of the distribution function. 
2) It has an inverse transformation; i.e., the distribution function can be 

calculated from the characteristic function. 
3) The characteristic function of aggregate losses can be calculated from 

the moment generating function of frequency and the characteristic function of 
severity. 

The basic idea, then, is to calculate the characteristic function of severity and 
the moment generating function of frequency; use them to compute the char- 
acteristic function of aggregate losses; and, use that to calculate the distribution 
function of aggregate losses and the excess pure premium ratios. 



AGGREGATE DISTRIBUTIONS 63 

None of the above is actually new to risk theory or even to North American 
casualty actuaries. What is new and is the heart of this paper’s contribution 
centers around a snag in the above method: the characteristic function of severity 
is not directly calculable from the distribution function in most cases. The 
gamma severity is an exception and Mong presented its use to the CAS in this 
context in the 1980 call paper program. The authors point out that the charac- 
teristic function is also calculable when severity is piecewise linear, and the 
solution they present is for this case. They then assert that any severity distri- 
bution needed in property-casualty practice can be closely approximated by a 
piecewise linear form, which seems reasonable, and thus that this method is 
completely general. This summarizes the basic ideas of the derivation. 

Results 

The results can be expressed fairly simply without reference to complex 
numbers. The formulas below are essentially those derived in the paper, although 
generalized slightly in that they hold for any severity random variable S, not 
just one that is piecewise linear, and for binomial or negative binomial frequency 
with parameters c and A, defined below. Mong’s paper and others have also 
presented very similar general formulas. As usual, E denotes the expected value. 

Result 1: F, the aggregate distribution function, can be expressed as 

F(x) = ‘h + L 
I 

m sin (g(t) + LX) dt 
7r 0 tAt> 

whereflt) = [(1 + CA - cXE(cos t+S))* + (chE(sin tS))*][l/2c] 
g(t) = (-l/c) arctan [&sin tS)l((l/c X) - E(cos &))I. 

Result 2: The expected losses excess of retention X, EP(x), can be calculated 
as 

I 

m 
EP(x) = p - (x/2) + (l/IT) (l/flt)t*) (cos (g(t)) - cos (tx + g(t)))dt 

0 

where p is the expected aggregate losses. 

This is a very nice formula in that 1) aggregate excess losses can be computed 
without computing the loss probabilities; 2) the integral converges well before 
infinity because of the t* term; and 3) its error structure can be analyzed. 

Following Mong, the authors transform the integrals by a change of variables 
t + t/u. It is not clear that this is necessary or even useful. 



64 AGGREGATE DISTRIBUTIONS 

Note that the authors use the negative binomial in the form 

Pr (Y = y) = 
( 
y + :‘” -1) (1 + CA)--‘” (&)y. 

This has mean A and ratio of the variance to the mean of 1 + CA. Taking p = 
l/(1 + CA) and OL = l/c gives the more usual form 

pr (y = Y) = 
( 

Ci + % - ’ 
1 P” (1 - p)‘. 

Formulas for E(cos tS) and E(sin 6) (denoted by the authors as h(t) and k(t) 

respectively) for piecewise linear S are found as formulas 5.12 and 5.13 of the 
paper. This is where the piecewise linear assumption is used. Mong’s results 
can be obtained by substituting the corresponding formulas for the gamma 
severity, namely E(cos 6) = (cos (r arctan t/a))/ (1 + ?/a’)“* and &sin tS) = 
(sin(r arctan t/a)) / (1 + t*/a*)‘/*, where r and a are gamma parameters defined 
by E(S) = r/a and Var(S) = r/a*. 

It would also be possible to evaluate E(cos tS) and E(sin 6) for a discrete 
severity distribution function S and apply the above formula. Another possibility, 
which might turn out to be a useful alternative, would be to approximate the 
severity probability density function by a piecewise linear form, rather than 
doing so for the cumulative distribution function. 

To develop the formulas for the needed trigonometric expectations in this 
case, suppose the severity density g(s) between two points ai and ai+, is given 
by g(s) = ci + sdi, and there is a probability p of a claim of the largest size 
a,+,. Then the following formulas can be readily derived using integration by 
parts. 

E(COS tS) = i $ ((ci + Sdi) sin ts + (dJt) cos ts) 
ai+] 

+ p cos tan+! 
I I ai 

&sin 6) = : ,gl ((ci + sdi) cos ts - (dilt) sin ts) 

ai 
+ p sin tan+] 

ai+l 

Note also that for the probabilities to total 1 .O, 

p = 1 - ,$, (ai+, - ai) (Ci + di (a;+ 1 + aJ/2). 

For discrete severity distributions, E(cos tS) and E(sin tS) can also be directly 
calculated. For most severity distributions, these expected values can be cal- 
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culated numerically. In fact, approximating the severity distribution by a piece- 
wise linear function can be regarded as a numerical approximation of E(cos t.S) 
and E(sin tS). Other approximation methods are also possible. As this is the 
only use made of the piecewise linear severity assumption, it can be seen that 
this assumption is not an essential constraint of the method but rather a con- 
venient numerical device. 

In other words, the above formulas for F(x) and EP(x) hold for any severity 
distribution, 5, not just piecewise linear. Since &sin 6) and E(cos 6) need to 
be calculated for many t’s in order to evaluate the integrals, a method is needed 
to calculate these trigonometric expectations. Any number of numerical inte- 
gration techniques could be used for the purpose. The point of view of this 
paper is that approximating the density function of S by a step function provides 
a simple method for the calculation of E(sin tS) and E(cos 6) which is of 
sufficient accuracy for the end results. 

Subsequent discussion with the authors uncovered that this has been sup- 
ported by further empirical tests which began by approximating a smooth density 
(e.g. Weibull) by a step function, calculating F(x) and EP(x), and then refining 
the approximation. It was found that 20 to 25 approximating intervals provided 
a high degree of accuracy in this process. Thus the characteristic function method 
can be applied readily to any severity distribution. 

Although the formulas above use functions that have not been commonly 
employed in casualty actuarial practice, their calculation is straightforward. The 
integrands themselves can be computed on many hand calculators. Carrying out 
the integration requires numerical methods. The authors adopt a brute force 
approach, and it gets the job done. More efficient methods may be possible, 
but a fair amount of expertise in numerical integration would be needed to 
determine if this were so. 

Details of the Method 

The formula for the characteristic function of aggregate losses in terms of 
the frequency moment generating function and the severity characteristic func- 
tion is b(t) = M, (In &(t)). This is readily derived from formula 5.11 of the 
paper. Formulas 5.14 to 5.16 follow directly from this result and the formulas 
for the moment generating functions of the binomial, Poisson, and negative 
binomial distributions. In fact, the proofs of those formulas given are essentially 
derivations of the corresponding moment generating functions. 

The derivations of the above general formulas for F(x) and EP(x) are 
straightforward applications of the inversion formula to the aggregate charac- 
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teristic function. The inversion formula is the standard procedure for getting the 
distribution function from the characteristic function and can be found in ad- 
vanced statistical texts. 

Also, the issue of discontinuities in the distribution function deserves further 
attention. This inversion formula for calculating the distribution function from 
the characteristic function is not exact at points of discontinuity. This is easy to 
miss in Kendall and Stuart, which is cited as the source of the inversion formula. 
Because this has not been taken into account, the above formula for F(x) as 
well as the paper’s formula are incorrect at the discontinuity points. The error 
is an understatement of the distribution function equal to one half of the jump 
at those points. This would be an important issue, for example, if a discrete 
severity were used with the formulas above. In that case the aggregate distri- 
bution would also be discrete, and thus its distribution function would be a step 
function. To evaluate this function at a discontinuity point, then, it would suffice 
to evaluate it just above the discontinuity, in fact at any point before the next 
discontinuity. 

These errors can also be computed from the underlying distributions. In the 
case the authors treat most often, namely a severity distribution with a censorship 
point (e.g., per occurrence limit), the aggregate distribution function is discon- 
tinuous, with jumps at n times the censorship point (n = 0,1,2,. . .) equal to the 
probability of having exactly n claims all of which are total losses (i.e., equal 
the censorship point). These probabilities can be computed from the frequency 
and severity distribution function and then the aggregate can be adjusted by half 
the jump at those points. As an alternative, evaluating at slightly above the 
discontinuity should give a reasonable approximation. The example in Table 
9.2 of the paper illustrates this at x = 1 .OO, where the error is 25%. 

In examples given in Exhibits II-VIII, these adjustments would probably 
not be significant. If, however, the expected number of claims is small (e.g., 
5,1,.02) and/or the probability at the censorship point is large, the error at the 
discontinuity may be significant. In excess insurance/reinsurance applications 
both these conditions often hold. However, as discussed below under recursive 
computation, the characteristic function method may not be the most efficient 
in such applications in any case. 

Parameter Uncertainty 

The parameter uncertainty issue is an important one and is well considered 
in the paper. For large individual risks or for insurance companies, this uncer- 
tainty can far outweigh the variation that can occur from randomness within 
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known frequency and severity distributions. For example, parameter uncertainty 
can arise from severity trend and development. Although these may also affect 
the shape of the severity distribution, they have definite effects on its scale. 
The authors treat the situation in which the severity distribution is known up to 
a scale multiplier which is itself inverse gamma distributed. (Actually, they 
present this as a divisor which is gamma distributed.) The gamma is selected 
because it leads to tractable results. Note that applying a scale multiplier 
to severity is equivalent to applying the same multiplier to aggregate losses. 
This is not true for frequency, as increasing the number of claims changes the 
shape of the aggregate distribution. This is reflected in the standard formulas 
for the coefficients of variation and skewness of aggregate losses (e.g., [5], 
Appendix C) . 

The derivation in Appendix A of the paper shows that the gamma assumption 
for a scale is not absolutely required. What is required is a method of calculating 
the characteristic function of this divisor. This characteristic function can then 
be plugged into the formulas Al and A2 to yield expressions for the aggregate 
distribution function and the excess pure premium, respectively. In fact, the 
derivations labelled “case 1” and “case 2” do exactly that for the degenerate 
and gamma divisors, respectively. 

Estimating the parameters for the mixing distribution is a problem. The 
mean can be selected to give the proper severity mean. The variance is more 
difficult to arrive at. A study of historical errors in trend and development 
projections could be useful in this regard. The variance of accident year or 
policy year loss ratios for a large segment of the industry, where process variance 
can be assumed minimal, should also be a viable approach. The authors seem 
to suggest comparing the observed variance in loss ratios with the theoretical 
variance that would occur without parameter risk in order to estimate the degree 
of parameter risk. This also seems to be a potentially useful approach. 

The inverse gamma distribution, i.e., the distribution of X where l/X is 
gamma distributed, has density fix) = B e-“xa + T(r) (@I)“‘. This is a fairly 
dangerous probability distribution, more so than the gamma, in that only finitely 
many moments exist. In fact E(X”) = T(r - n) + p’??(r) exists if and only if 
n < r. It is an open question whether or not this will prove appropriate for a 
mixing distribution. 

Besides trend and development factors, parameter uncertainty also arises 
from risk classification. For computing the aggregate loss distribution of a large 
and diverse portfolio of risks, this may not be an important factor. However, 
for a single risk or a carrier specializing in a few classes, this could be an 
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essential consideration. If the risk is not typical of the classification or the class 
rate is based on insufficient data, the dispersion of possible results will be 
greater than frequency and severity, considerations might suggest. Historical 
errors in trend and development will also understate the parameter risk in this 
case. 

The parameter uncertainty approach discussed by Btihlmann [2] and devel- 
oped further by Patrik and John [4] can also be used with the characteristic 
function method. Biihlmann allowed all parameters of the distributions to have 
uncertainty and introduced a probability function, called the structure function, 
to describe the relative weights given to different parameter sets. If the structure 
function is approximated by a finite number of points, the distribution function 
of aggregate losses can be calculated for each parameter set by the authors’ 
method and then weighted together by the structure function. This gives a quite 
general method of dealing with parameter uncertainty. 

Recursive Computation of Aggregate Functions 

Another method of computing the aggregate distribution function was re- 
cently developed by Panjer [3] generalizing Adelson [ 11. It is interesting to 
compare this to the current paper. 

Panjer’s method involves a recursive formula for F(x) based on discrete 
severity distributions. For his formula the severity probability, function must be 
given at every multiple of some unit value up to the largest possible loss size, 
for example g(1) = .5, g(2) = .3, g(3) = .l, g(4) = .05, g(5) = .05, where 
g is the severity probability function, 10,000 is the unit, and 50,000 is thus the 
largest possible loss. In this case the aggregate losses will also come in multiples 
of the unit. If we now let f denote the aggregate probability, Panjer’s formula 
is 

A4 = i$ (a + b W g(i).lV - 9, 

where a and b come from the frequency distribution. This formula is valid for 
binomial, negative binomial, and Poisson frequencies. For the negative binomial 

Pr (Y = Y) = ( cY + ; - 1) pa (1 - py, 

a = 1 - p and b = (IX - 1) (1 - p). For the Poisson a = 0, b = A, and for 
the binomial Pr (Y = y) = (y) Py (1 - p)“-‘, a = p/p - 1 and b = (m + l)p/ 
1 -p. 
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As an example take the above g in units of 10,000 with Poisson A = 1. 
Thenflx) = X7=1 i g(i) fix 7 1)/x. 

Now f(0) = Pr (N = 0) = e-‘. Thus j(1) = .5e-‘, j(2) = .5 f(l)/2 + 
.3flO) = .425e-‘J(3) = .5A2)/3 + .2f(l) + .lflO) = .8125 e-‘/3, etc. 

Thus the aggregate distribution function can be built up by quite simple 
arithmetic operations using this method. 

The excess pure premium can be derived from the aggregate probabilities. 
The definition in discrete terms is EP(x) = XL”=, (i = x) Ai). Calculating this 
requiresfli) for the largest possible i’s whereas the recursive procedure builds 
up from the smallest. But since p, = CL*=, ifli) is known from frequency and 
severity, if it were possible to calculate p, - EP(x) then EP(x) would fall out. 

Nowp-EP(x=,goifli)-gifli)+xgfli) 
i=x i=x 

x-l X-l 
= igo iAi) + 41 - igo AN. 

x-1 x-1 

Thus let v(x) = ,go ifli), v(0) = 0, and w(x) = 1 - ,Fofli), w(0) = 1. 

Then the excess pure premium can be calculated by 

EP(x) = p - v(x) - x w(x) 

where v and w can be calculated recursively by 

v(x + 1) = v(x) + xflx) and w(x + 1) = w(x) -f(x). 

By approximating the severity distribution with discrete probabilities the 
aggregate distribution and excess pure premium functions can thus be estimated 
recursively. Exhibits 1 and 2 compare this with the characteristic function 
method. Exhibit 1 shows the piecewise linear severity assumed and the approx- 
imating discrete probabilities. A unit of 500 was taken. The largest possible 
claim is taken as 250,000. The discrete approximation was constructed by 
matching cumulative probabilities and average severities at 250 + 500 i points, 
to the extent possible. 

Exhibit 2 shows the cumulative probabilities and excess ratios for the two 
methods. (The excess ratio at x is EP(x) + p.) The excess ratio columns are 
practically identical, suggesting that very little is lost by the discrete approxi- 
mation. The cumulative probabilities are also rather close. In fact, since the 
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characteristic function method does not provide error estimates for cumulative 
probabilities, it is not clear which method is closer to the exact probabilities for 
,the piecewise linear severity. 

Although the recursive formulas are simpler than those of the characteristic 
function method, they do not always take less computation, especially when 
only one or two limits are to be evaluated. On a ground up coverage with a 
high occurrence limit, a large number of points would be needed to approximate 
the severity distribution because a small unit would be needed to represent small 
claims. If, in addition, there are a large number of expected claims, the recursive 
method can be time consuming. If, on the other hand, an aggregate distribution 
is being estimated for an excess occurrence layer where there are few expected 
claims and a large unit can be chosen, this method may be quite efficient. 

The recursive method does not provide a mathematically elegant way of 
accounting for the crucial element of parameter risk. However, this can be 
handled by enumerating a list of possible scenarios (frequency and severity 
functions), calculating the aggregate distribution function for each scenario, and 
then weighting these aggregate functions together by the relative probability 
attached to each scenario. As discussed above, this is more general than a 
gamma distributed divisor approach in that it allows for more types of parameter 
variation. 

In conclusion, the authors have produced a practical, efficient method for 
calculating aggregate probabilities and excess pure premiums. This is not an 
obscure exercise in complex mathematics but a powerful competitive tool for 
those who will use it. 

Ackowledgment 

The reviewer must acknowledge the very fine assistance provided by Farrokh 
Guiahi and Linh Nguyen in unravelling the complex mathematics of character- 
istic functions. 



AGGREGATE DISTRIBUTIONS 71 

REFERENCES 

[l] R. M. Adelson, “Compound Poisson Distributions,” Operations Research 
Quarterly, 17, 73-75, 1966. 

[2] H. Btihlmann, Mathematical Methods in Risk Theory, Springer-Verlag, 
1970. 

[3] H. H. Panjer, “Recursive Evaluation of a Family of Compound Distribu- 
tions,” ASTIN Bulletin, Vol. 12, No. 1, 1981. 

[4] G. S. Patrik and R. T. John, “Pricing Excess-of-Loss Casualty Working 
Cover Reinsurance Treaties,” Pricing Property and Casualty Insurance 
Products, Casualty Actuarial Society Discussion Paper Program, 1980. 

[5] G. G. Venter, “Transformed Beta and Gamma Distributions and Aggregate 
Losses,” Pricing, Underwriting and Managing the Large Risk, Casualty 
Actuarial Society Discussion Paper Program, 1982. 



72 AGGREGATE DISTRIBUTIONS 

EXHIBIT 1 

AGGREGATE Loss DISTRIBUTIONS 
COMPARATIVE ASSUMPTIONS 

Frequency: Poisson A = 13.7376 

Piecewise Linear CDF 

Limit (000): 1 5 6 7 8 9 
Cumulative Prob. 

- - - - 
: 38935 .77870 .78438 .7898 1 .79498 .79993 

10 12.5 15 17.5 20 25 35 50 - - - - - - 
.80466 .81564 .82553 .83449 .84264 .85690 .87927 .90280 

75 100 125 150 175 200 225 250 - - - - - - - - 
.92739 .94256 .95277 .96009 .96556 .96979 .97316 .97590 

Amount: 
Probability: 

4500 

.054731628 

Discrete PDF 

500 1000 

.38326640625 .03041796875 
5000 

.019691497 

249,500 250,000 

.0000685 .0241137 

Mean 

Severity 18,198 
Aggregate 250,000 

1500 to 4000 

.04866875 each 500 
5500 to 249.000 at each N = 5OOk 

Piecewise linear probability 
from N - 250 to N + 250 

Moments 

Coefficient of 
Variation 

2.6660 
.7667 

Coefficient of 
Skewness 

3.6746 
1.0744 



Aggregate 
LOSS 
ow 

Characteristic Recursive 
Function Method Method 

Cum. Prob. -- Excess Ratio Cum. Prob. Excess Ratio 

25 .0508 .9016 .0516 .9016 
50 .1291 .8107 .1298 .8107 
75 .2009 .7273 .2015 .7272 

100 .2616 .6507 .2683 .6507 
125 .3289 .5806 .3295 .5806 
150 .3843 .5163 .3848 .5163 
175 .4341 .4573 .4346 .4573 

200 .4788 .4030 .4793 .4029 
225 .5189 .3529 .5193 .3529 
250 .5548 .3066 .5552 .3066 
275 .6034 .2642 .6040 .2642 
300 .6556 .2213 .6561 .2213 
325 .7008 .1951 .7013 .1951 
350 .7405 .1672 .7408 .1672 

375 .I149 .1431 
400 .8047 .I221 
425 .8303 .1039 
450 .8524 .0880 
415 .8714 .0742 
500 .8878 .0622 
525 .9045 .0518 

.7152 .1431 

.8049 .I221 

.8305 .I039 

.8526 .0880 

.8716 .0742 

.8879 .0622 

.9047 .0518 

550 .9201 .0430 .9203 .0430 
575 .9332 .0351 .9333 .0357 
600 .9442 .0296 .9443 .0296 
625 .9534 .0245 .9535 .0245 
650 .9611 .0202 .961 I .0202 
675 .9675 .0167 .9675 .0167 
700 .9128 .0137 .9729 .0137 

725 .9773 .0112 .9113 .OI 12 
750 .9810 .0091 .9810 .0091 
775 .9844 .OO74 .9844 .0074 
800 .9873 .0060 .9873 .0060 
825 .9897 .0048 .9897 .0048 
850 .9916 .0039 .9916 .0039 

AGGREGATE DISTRIBLITIONS 

EXHIBIT 2 

AGGREGATE Loss DISTRIBUTIONS 

COMPARATIVE SUMMARY 

13 
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THE PRICING OF MEDI GAP COVERAGE 

EMIL J. STRUG 

Abstract 

This patier presents an abbreviated history of the events leading up to 
Medicare and the impact of Medicare since its inception upon the health care 
system and health care costs. Because of the social pressures brought about by 
ever increasing health care costs, especially to the elderly, Medi Gap policies, 
their benefits and pricing, have come under close scrutiny of the regulator. 

The main body of the text deals with those benefits which not only present 
particular pricing considerations, but which also are closely evaluated by the 
regulator. In many instances, the historic data collected and produced by the 
insurer to develop utilization and pricing trends must be supported by data from 
external sources. 

Hopefully, this presentation provides the reader with not only some new 
insights into the techniques of pricing programs of this type, but also of the 
social pressures which influence the regulator in assuring the availability of 
insurance at reasonable rates. In some states, this has led to subsidization of 
the Medi Gap policies by those people under age 65. One can see the pressure 
expanding to use insurance as a means to address the problem of economic and 
social inequities not only in the area of personal property and casualty coverage, 
but also in the area of health insurance. 
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I. BACKGROUND 

To set the stage for the current interest of the regulatory authorities in the 
pricing and benefit content of Medi Gap policies, some analysis of the advent 
of Medicare and its subsequent impact on the economy might be helpful. 

The seeds for providing health care to the aged were planted in 1935 in 
some of the initial versions of the Social Security Act. Under the study provi- 
sions of the Act, the Social Security Board was empowered to conduct research 
and investigations relative to national health insurance. From 1935 to 1965, 
when Medicare was enacted, a series of bills dealing with national health 
insurance were presented to the Congress: 1939, the Wagner Bill; 1943, the 
Wagner, Murray, Dingell Bill; and, 1946, the Taft Bill. In the 1951 to 1964 
era, most of the bills dealt with social insurance proposals for persons aged 65 
and over. In 1960, the Kerr-Mills Act was passed establishing a program of 
medical assistance for the aged. Beginning in 1960, efforts to enact a social 
insurance program for hospital benefits were stepped up with a series of attempts 
to enact a sound insurance program known as the King-Anderson Bills. Suffi- 
cient momentum was gained so that in 1964 the Senate passed an amendment 
providing hospital insurance benefits for people aged 65 and over. The House, 
however, would not agree on a compromise position and the legislation died in 
conference. In 1965, in addition to a King-Anderson Bill, other proposals were 
presented such as the Bymes Bill (named after its author Representative Bymes), 
and the Eldicare Bill (sponsored by the American Medical Association and 
introduced by Representatives Herlong and Curtis). Early in ,1965, under the 
leadership of Chairman Mills, the House Ways & Means Committee put together 
the Medicare program which was to become effective on July. I, 1966. 

The social pressures brought about by the cost to the aged for medical care 
were a major factor influencing the passage of Medicare. The aged were caught 
in the bind of fixed incomes, with rising medical care costs continually consum- 
ing more of their available income. An examination of Medicare benefits is in 
order to assess their impact on the covered individual as well as their impact 
upon the health care system and the group benefit package for people under 65. 

II. SUMMARY OF MEDICARE BENEFITS 

The Medicare program provides a most comprehensive package of benefits. 
Regarding hospital benefits, inpatient room and board for a semiprivate accom- 
modation (and where medically necessary, private room) and all special services 
(general nursing, drugs, operating room, diagnostic services, etc.) were paid in 



76 MEDI GAP 

full for the first 60 days, after payment of a deductible. From the 61st to the 
90th day, the same benefit provisions prevailed but with a daily copayment 
equal to 25% of the initial deductible. In addition, there was coverage for care 
provided in a skilled nursing facility (SNF), plus home health services. Full 
outpatient diagnostic benefits were also provided to minimize use of inpatient 
facilities for such services. Benefits in a skilled nursing facility were covered 
in full for the first 20 days, with the next 80 days of benefits having a daily 
copayment equal to i&h of the initial inpatient deductible. All of these benefits 
were provided under the hospital insurance portion of Medicare, commonly 
referred to as Part A. 

Physicians benefits, in addition to home health services, were provided under 
the Supplementary Medical Insurance (SMI) portion of Medicare, generally 
referred to as Part B. The SMI portion has an annual deductible (as contrasted 
to spell of illness deductible under Part A), plus a copayment feature with the 
patient paying 20%. Physicians were reimbursed on a reasonable charge basis. 

With the passage of Medicare, persons aged 65 and over had comprehensive 
benefits available to them which equalled and in many cases exceeded those 
held by the under age 65 population. Removal of the financial need caused the 
Medicare population to make full use of the program. Medicare’s impact upon 
the medical care system for the entire population has been well documented by 
health economists and is summarized in Tables l-4 which follow. 

TABLE I 

PORTION OF HEALTH CARE COSTS PAID BY INDIVIDUALS VERSUS THIRD 
PARTY PAYORS 

Under 65 65 And Over 

Fiscal Years 
Ending June 30 

1966 100% 51% 
1967 100% 48% 
1970 100% 43% 
1973 100% 38% 
1976 100% 35% 
1977 (Sept) 100% 32% 

out of 
Total Pocket - - 

Third 
party 

49% 
52% 
57% 
62% 
65% 
68% 

out of Third 
Total Pocket party - - - 

100% 53% 47% 
100% 37% 63% 
100% 33% 67% 
100% 33% 67% 
100% 27% 73% 
100% 27% 73% 
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TABLE 2 

HEALTH CARE EXPENDITURES 
As % OF GROSS NATIONAL PRODUCT 

Fiscal Years 
Ending 

1966 
1967 
1970 
1973 
1976 
1977 (Sept) 

Percentage 

5.8% 
6.2% 
7.2% 
7.7% 
8.7% 
8.8% 

TABLE 3 

RATIO OF PERSONAL EXPENDITURES FOR 
MEDICAL CARE To DISPOSABLE PERSONAL INCOME 

Calendar 
Year Ratio 

1966 6.2% 
1967 6.3% 
1970 7.1% 
1973 7.4% 
1976 8.6% 
1977 9.1% 
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TABLE 4 

ANNUAL CHANGES IN CONSUMER PRICE INDEX AND IN MEDICAL 
COMPONENTS OF THE INDEX 

Calendar 
Year 

All 
Items 

1966 2.9% 
1967 2.9% 
1970 5.9% 
1973 6.2% 
1976 5.8% 
1977 6.5% 

All Medical Physician Hospital 
Care ltems Fees Room 

4.4% 5.8% 10.0% 
7.1% 7.1% 19.8% 
6.3% 7.5% 12.9% 
3.9% 3.3% 4.7% 
9.5% 11.3% 13.8% 
9.6% 9.3% 11.5% 

Prescriptions 
& Drugs 

1.3% 
-0.5% 

2.3% 
0.3% 
6.1% 
6.4% 

The results speak for themselves as to the rapid rise in medical care costs. 
Considering the limited and relatively fixed income of the age 65 and over 
population, one can see how the social pressures to provide relief in the form 
of medical care arose in the early 1960’s. 

A history of the movement of the Medicare deductibles and the cost to 
purchase Part B (medical) benefits (Table 5) will also show how the increase in 
these elements has further affected the standard of living of the aged. 

It should be noted that in 1972 Medicare benefits were extended to the 
disabled under Social Security and those receiving treatment for chronic kidney 
disease. As was mentioned earlier in this paper, deductibles were introduced to 
keep down the cost of the program to the government. The initial hospital 
deductible was set equal to the daily cost of care in a semiprivate room. The 
Part B deductible was set at $50 per calendar year with 20% of the remaining 
balance coinsured by the recipient, with the first period limited to 6 months to 
minimize the cost of the program to the government. 

Ill. THE PRICING OF MEDI GAP BENEFITS 

To meet the insurance needs of the age 65 and over population for the 
uncovered portions of the Medicare program, policies were designed which 
tended to duplicate, when combined with Medicare, comprehensive programs 
offered by the insurance industry. 
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TABLE 5 

MEDICARE DEDUCTIBLES, COPAYS & COINSURANCE AND PREMIUM 

7166 
l/69 
1170 
l/71 
l/72 
l/73 
l/74 
l/75 
l/76 
l/77 
l/78 
l/79 

Benefit 
Period 

Deductible 

$ 40 
$ 44 
$ 52 
$ 60 
$ 68 
$ 72 
$ 84 
$ 92 
$104 
$124 
$144 
$160 

Daily Copay 
61st to 90th 

Hospital Days 

$10 
$11 
$13 
$15 
$17 
$18 
$21 
$23 
$26 
$31 
$36 
$40 

21st to 100th 
SNF Days 

$ 5.00 
$ 5.50 
$ 6.50 
$ 7.50 
$ 8.50 
$ 9.00 
$10.50 
$11 .oo 
$13.00 
$15.50 
$18.00 
$20.00 

Part B 

Premium 
Annual 

Deductible Coinsurance 

7166 $3.00 $50 20% 
4168 $4.00 $50 20% 
7170 $5.30 $50 20% 
717 1 $5.60 $50 20% 
7173 $5.80 $60 20% 
7174 $6.30 $60 20% 
7176 $7.20 $60 20% 
7177 $7.70 $60 20% 
7178 $8.20 $60 20% 
7179 $8.70 $60 20% 

PartA 

19 
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The major elements of cost to be met were: 

(1) The initial Part A inpatient hospital deductible for each spell of illness. 
(2) The Part A inhospital copayment days from the 61st to the 90th day. 
(3) Full inhospital coverage from the 91st day on. 
(4) The Part A copayment days in a skilled nursing facility from the 21st 

to the 100th day. 
(5) The Part B deductible (currently $60) and coinsurance (20%) for services 

provided by physicians and the outpatient department of a hospital which 
were routinely provided under a typical health insurance policy. 

(6) Prescription drugs not provided by the hospital. 

More than a decade has passed since the Medi Gap program began and there 
is now ample cost and utilization data particular to the insured Medicare pop- 
ulation. Data pertaining to the complementary Part A deductible and copayments 
are relatively clean as the benefits are for a spell of illness or benefit period. 
On the other hand, the Part B data present some problems due to the status of 
the deductible being maintained by Social Security and not by the carrier, plus 
the difficulty (if not the inability) to maintain appropriate service counts and 
distribution of losses by size. This constrains the ability to properly measure 
the impact of inflation upon the deductible and the truncation of service counts 
under the deductible. 

For analytical purposes, we have shown the calculation underlying the rate 
determination for policies renewed and issued April 1 thru June 30, 1979, for 
a duration of 12 months. It should be noted that rates are evaluated for each 
calendar quarter of the year. Rates are calculated to be adequate for all policies 
with inception dates within that quarter. After the program was introduced in 
July of 1966, rates were generally changed annually, primarily to reflect the 
change in the Part A deductible. After an analysis of the distribution of business 
by effective dates, coupled with the ever increasing unpredictability of Medicare 
changes, it was decided to evaluate and implement changes in rates on a 
quarterly basis. 

At the outset it should be stated that the methodology employed to produce 
pure premium generally follows the traditional method of multiplying projected 
incidence and cost. 

As one reviews the various techniques used to develop the underlying data 
to produce rates, he will note similarities in the methodology used with other 
lines of insurance. The use of time series regression analysis is found in the 



Content 

For ease of reference the exhibits and their content are summarized below: 

Exhibit 

1 
2 

3 

4 

5 

6 

7 
‘8 
9 

10 

11 
12 

13 

Part A Inpatient Hospital Deductible Annual Claims Incidence. 
Estimate of 1980 Medicare Part A Inpatient Hospital Deductible and 
Copayment Amounts. 
Part A Inpatient Hospital Copayment Annual Day Incidence 6 1 st to 
90th Day. 
Part A Skilled Nursing Facility Copayment Annual Day Incidence 
21st to 100th Day. 
Inpatient Hospital Benefits from the 91st Day on-Monthly Pure 
Premiums. 
Part B Physicians and Outpatient Services Annual Deductible 
Monthly Pure Premium. 
Part B Physicians Coinsurance Annual Service Incidence. 
Physicians Coinsurance Average Cost Per Service. 
Part B Outpatient Hospital Service Coinsurance Annual Incidence. 
Part B Outpatient Hospital Service Coinsurance Average Cost Per 
Service. 
Prescription Drugs Annual Claim Incidence. 
Prescription Drugs Average Number of Prescriptions Per Prescrip- 
tion Drug Claim. 
Prescription Drugs Calculation of the Average Charge per Prescrip- 
tion Drug Claim. 
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development of private passenger automobile rates for both claim incidence and 
claim cost projections. The time series approach is also used in many property 
and physical damage lines, as well as for bodily injury coverages and workers 
compensation to estimate future claim costs. 

The adjustment to compensate for the deductible in the calculation of the 
full claim cost component of drugs is not too dissimilar to that used in collision 
and property damage coverages where the use of deductibles is common. The 
one missing element is the loss elimination ratio calculation to adjust for claims 
below the deductible level. This variance in approach was and is due to the 
lack of any distribution of losses by size on a full coverage basis. 

With the exception of the Part A deductible and copayments (61st to the 
90th day and SNF) and Part B Physicians coinsurance, the use of time series 
regression analysis was for the most part employed in the development of the 
projected values. 
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Exhibit Content 

14 Prescription Drugs Average Charge Per Prescription. 
15 Calculation of Expected Monthly Pure Premium By Benefit 

Category. 

We will only address those calculations which presented some particular 
problems or modifications before being introduced into the pure premium cal- 
culations. 

To develop the cost elements of the Part A deductible and copayments we 
made use of data issued by Medicare. To estimate the value to be introduced 
into the Medicare formula the technique used was to raise the incomplete data 
from the base period (that would be used to calculate the deductible) to its 
ultimate value, much as one would do in developing the average claim cost for 
claim reserve calculations. In this case calendar year 1978 serves as the base 
year for the 1980 deductible calculation. The development of the value is shown 
in Exhibit 2. Once having developed the deductible, the calculation of the 
copayment values becomes an arithmetic exercise, as they are a proportion of 
the deductible amount. 

For two benefit categories, inhospital coverage from the 91st day on, and 
Part B physician and outpatient service deductible, the results were projected 
by using pure premiums rather than incidence and cost. 

The development of expected pure premiums for in hospital benefits beyond 
the 90th day is contained in Exhibit 5. Benefits for days beyond 90 days are 
paid in full by the insurance carrier. As previously noted, one would normally 
calculate this value by estimating the day utilization and the average daily costs. 
An analysis of these elements indicated erratic behavior in terms of utilization, 
length of stay, and per diem costs, whereas the pure premiums produced stable 
as well as reasonable results. 

The most difficult element of pure premium to calculate is that related to 
the Part B annual deductible, in whole or in part, for physician and outpatient 
hospital services. As was previously mentioned, there are no available statistics 
by size of loss to determine the impact of inflation and utilization upon the 
deductible value because the status of the Part B deductible and the benefits 
applicable to satisfy the deductible are maintained by Medicare. 

To solve the problem, the choice of the regression curve was paramount. It 
not only had to show a high degree of correlation to historical data, but also 
demonstrate a pattern of future development that was logical. With an increasing 
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unit cost one would expect that in successive years the average deductible would 
increase at a decreasing rate and become asymptotic as it approached the 
deductible ‘limit. 

The most recent observation would indicate that the values have become 
asymptotic; therefore, the last observed value was chosen as the expected pure 
premium for the rating period. The historic values and the projected pure 
premiums are shown in Exhibit 6. 

For the coinsurance benefits that complement the Part B 80% coinsurance 
payments, a, return to the more traditional technique of using utilization (fre- 
quency) and average cost per service for calculating pure premiums was adopted. 
The physicians and hospital elements are handled separately as each is influenced 
by the inflation factors particular to each of the segments. The increase in 
physicians’ prevailing fees is controlled by the Department of Health, Education 
and Welfare. For 1979, this value was calculated to be 5.08% above 1978 
values and the same rate of increase was assumed to continue in 1980. The 
increase in hospital charges reflects the inflationary pressures of the local hospital 
area. 

Exhibit 7 develops the expected service utilization for physicians coinsurance 
benefits. The average service cost associated with this benefit is developed in 
Exhibit 8. Projections are based upon values as issued by Health, Education 
and Welfare to Part B intermediaries. The companion piece to the physicians 
coinsurance is the outpatient hospital coinsurance benefit. The utilization and 
cost considerations are displayed in Exhibits 9 and 10. 

To assess the reasonableness of the cost trends for physicians and outpatient 
hospital services, a comparison is made of the estimates for these services made 
by the Medicare actuaries in developing Part B rates. These values can be found 
in the Part B rate promulgation as published in the Federal Register. 

The next and final benefit to be analyzed is prescription drugs. Prescription 
drugs, outside of those provided in a hospital setting, are not covered by 
Medicare. The benefit to be priced provides payment for prescription drugs 
subject to a $25 quarterly deductible and 20% coinsurance payment by the 
insured. Pure premiums are developed by estimating the number of claims, the 
average number of prescriptions per claim, and the average cost per prescription. 
The estimations of the number of claims and the average number of prescriptions 
present no unusual or unique considerations. Generally, the number of claimants 
has increased over time with the number of prescriptions showing a continuing 
decline. The underlying data and projections for these two elements are shown 
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in Exhibits 11 and 12. In order to develop the full prescription charge, the 
average prescription claim payment has to be adjusted to reflect the removal of 
the 20% coinsurance and the $25 deductible. Projecting the average prescription 
charge without modification would obviously produce erroneous results. The 
conversion of the average prescription cost from a partial to a full basis is 
developed in Exhibit 13. The resultant values are then transferred to Exhibit 14 
where the projected value is developed. To evaluate the reasonableness of this 
value, the inherent annual trend from the last observed value to the projected 
value is compared to the trends observed for the most recent annual values in 
the Consumer Price Index for drugs and for those shown in the Lilly Drug 
Digest. At the time of preparation of the filing, the Consumer Price Index trend, 
as of October 1978, was 7.5%, while the Lilly Digest (1977) showed 9.4%. 
The 5.5% trend used in the pure premium projections was therefore considered 
to be reasonable. The estimated pure premium for the benefit was calculated by 
developing the estimated full charge per claim and then reducing this value by 
the deductible amount and 20% coinsurance. 

The pure premium for each of the benefit categories previously described 
and its detailed calculations are contained in Exhibit 15. 

In reviewing the data contained in the calculation of the expected incidence 
and costs for the various benefits shown, the reader should be aware of the 
characteristics of the population, health care providers, and the manner in which 
the business is underwritten. 

In terms of the population, it is for all practical purposes totally resident in 
one state. By being essentially a single state program, the health care practices 
of the providers have a definite impact and influence upon the cost of the 
covered services. 

The physicians serving this population have almost universally accepted 
payment on an assignment basis from Medicare. This means that the physician 
accepts the level of fees established by Medicare as being payment in full, 
thereby limiting the patient’s liability to the coinsurance amount after satisfaction 
of the Part B deductible. This removes the problem of the patient being assessed 
an additional charge which could, depending upon the policy design, impact 
the pricing process. 

Hospital benefits, with the exception of those which are fill-ins of Part A 
deductibles or copayments, are subject to local inflationary pressures rather than 
that being experienced on a countrywide basis. Local statistics are therefore 
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more appropriate for determining this movement of hospital costs than those 
developed from regional or national data. 

As regards the manner in which this program is underwitten, there are two 
major considerations. The first is that the rate is uniform regardless of the age 
or sex of the member. The morbidity characteristics of this population are that 
the utilization and cost, and therefore the pure premium, increase by age. 
Additionally, the pure premiums by sex would require a higher rate for males 
versus females. 

The second and probably most liberal consideration is the provision of 
benefits for any pre-existing condition, no requirement of any symptom-free 
period before benefits become effective, and no waiting period before benefits 
are available. Because of the general health condition of the aged, the intro- 
duction of any of the previously mentioned limitations into the policy would 
require a reduction in rate. 
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EXHIBIT 1 

PART A INPATIENT HOSPITAL DEDUCTIBLE ANNUAL CLAIMS INCIDENCE 

Per 100 Contracts For Fiscal Years Ending 

Actual Projected 

3/31/75 6/30/75 9/30/75 12131175 3/31/76 6130176 9/30/76 12131176 3/31/77 6/30/77 9/30/77 12/31/77 5/14/80 
------------~ 

24.932 24.966 25.001 25.025 25.346 25.513 25.750 25.910 25.17 I 25.917 25.889 26.215 26.968* 

* The projected values resulting from the three projection methods indicated below were initially considered. Despite the significantly high indexes of determination 3 
and the reasonability of the values, it was determined to be appropriate to calculate the projected claim incidence value using the most recently observed annual 
rate of increase (I 2%) which is somewhat lower than the annual trends underlying the aforementioned projected values. [(26.215)( I .012**(28.5/12)) = 26.9681. e 

% 

Projection Method Form of Equation Index of Determination ,Projected Value 

Linear Y=A+BX ,928 27.329 
Hyperbolic Y= l/(A+BX) ,921 27.462 
Exponential Y = A(Exp(BX)) .926 21.392 

The remaining projection methods employed produce values and/or indexes of determination that were judged to be 
inappropriate for consideration. 



Form of 
Equation 

I. Y=A+(B*X) 
2. Y = Il(A + B *X) 
3. Y = A * Exp(B * x) 
4. Y = A * (X ** (B)) 
5. Y=A +B*Log(X) 
6. Y=X/(A+B*X) 
I. Y = A * Exp(B/X) 
8. Y =A + (B/X) 

Type of 
Function 

Linear 
Hyperbolic 
Exponential 
Power 
Logarithmic 
Hyperbolic 
Exponential 
Hyperbolic 

EXHIBIT 1 (CONT.) 

Equation 
Number 

Index of 
Determination A E 

,928 24.135696 .I20598 
.927 .040403 -.000186 
,926 24.743391 .004730 
,821 24.625612 .021323 
,826 24.615411 .542850 
.540 .001940 .038695 
,531 25.843334 - .049305 
,534 25.843736 - I .253488 

Proj Ann. 
Value Trend 

- - 

27.329 1.8,% 
27.462 2.0% 
27.392 I .9% 
26.290 .I% B 
26.281 .I% 9 
25.783 -3% p 
25.784 -.7% .a 
25.785 -.7% 
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EXHIBIT 2 

ESTIMATE OF 1980 MEDICARE INPATIENT HOSPITAL DEDUCTIBLE 
AND COPAYMENT AMOUNTS* 

Item Amount Source 

A. Average hospital charge per 
day for the period January 1, 
1977 to December 3 1, 1977 

B. Average per diem rate for the 
period January 1, 1977 to De- 
cember 3 1, 1977 

C. Ratio of per diem rate to aver- 
age hospital charge per day for 
the period January 1, 1977 to 
December 3 1, 1977 

D. Average hospital charge per 
day for the period January 1, 
1977 to June 30, 1977 

E. Average hospital charges per 
day for the period January 1, 
1978 to June 30, 1978 

F. Estimated average hospital 
charge per day for the period 
January 1, 1978 to December 
31, 1978 

$197.07 Appendix B 

$160.69 Page 44891, Federal Regis- 
ter, Vol. 43 No. 190, dated 
9129178. Appendix A 

.815 Item B + Item A 

$190.77 Appendix B 

$217.21 Appendix B 

$224.38 (Item E + Item D) (Item A) 

* The law provides that for spells of illness beginning in calendar years after 1968 the 
inpatient hospital deductible shall be equal to $40 multiplied by the ratio of (1) the 
current average per diem rate for inpatient hospital services for the calendar year pre- 
ceding the year in which the promulgation is made to (2) the current average per diem 
rate for such services for 1966. Changes in the amount of the inpatient hospital deductible 
also affect certain other cost-sharing provisions under the Medicare hospital insurance 
program, the patient co-payment for the 61st to 90th inpatient day which equals 25 
percent of the inpatient hospital deductible, and the skilled nursing home daily co- 
payment which is equal to 12.5 percent of the inpatient hospital deductible. 
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EXHIBIT 2 (CONT.) 

ESTIMATE OF 1980 MEDICARE INPATIENT HOSPITAL DEDUCTIBLE 
AND COPAYMENT AMOUNTS 

Item Amount Source 

G. 

H. 

I. 

J. 

K. 

L. 

M. 

N. 

0. 

Estimated ratio of per diem 
rate to average hospital charge 
per day for the period January 
1, 1978 to December 31, 1978 
Estimated average per diem 
rate for the period January 1, 
1978 to December 3 1, 1978 
Average per diem rate for the 
period January 1, 1966 to De- 
cember 3 1, 1966 
Estimated 1980 inpatient hos- 
pital deductible 

1979 Medicare inpatient hos- 
pital deductible 

Estimated 1980 Medicare in- 
patient hospital deductible 
Medicare inpatient hospital 
deductible for the period 
5115179 to 5/14/80 
Co-payment for the 61st to the 
90th inpatient hospital day for 
the period 5115179 to 5/14/80 
Skilled nursing facility daily 
co-payment for the period 
5115179 to 5/14/80 

.815 

$183.68 (Item F) (Item G) 

$ 40.01 

$184.00 

Page 4489 1, Federal Regis- 
ter, Vol. 43 No. 190, dated 
9129178. Attachment I 
(Item H/Item I) ($40) 
rounded to the nearest multi- 
ple of $4.00 
Page 44891, Federal Regis- 
ter, Vol. 43 No. 190, dated 
9/29/78. Attachment I 
Item J 

$160.00 

$184.00 

$169.00 

$ 42.25 

$ 21.13 

Based on 1977 experience. 
Item C. 

[(7.5/12) (Item J) + (4.5/12) 
(Item J)] 

(Item M) (.250) 

(Item M) (. 125) 



EXHIBIT 3 

PART A INPATIENT HOSPITAL COPAYMENT ANNUAL DAY INCIDENCE 
61~~ TO 9OTH DAY 

Per 100 Contracts For Fiscal Years Ending 

Actual Projected 

3/31/75 6/30/75 9/30/75 12/31/75 3/31/76 6130176 9130176 12l31/76 3131177 6/30/77 9130177 12/31/77 5114180 
---------- - - 

15.732 16.504 16.633 17.384 17.995 18.137 18.420 18.407 18.453 18.484 18.443 18.644 19.225* 3: 

* The projected values resulting from the two projection methods indicated below were initially considered. Despite the significantly high indexes of determination e 
and the reasonability of the values, it was determined to be appropriate to calculate the projected day incidence value using the most recently observed annual rate 
of increase (1.3%) which is somewhat lower than the annual trends underlying the aforementioned projected values [(18.644)(1.013**(28.5/12)) = 19.2251. 

Projection Method Form of Equation 

Logarithmic Y = A + B(ln X) 
Power Y=AxB 

Index of Determination 

,951 
,951 

Projected Value 

19.529 
19.648 

The remaining projection methods employed produce values and/or indexes of determination that were judged to be 
inappropriate for consideration. 



Form of Type of Equation Index of Proj 
Equation Function Number Determination A B Value 

1. Y=A+B*Log(X) Logarithmic 
2. Y = A * (X ** (B)) Power 
3. Y=Xl(A+B*X) Hyperbolic 
4. Y = A * Exp(BIX) Exponential 
5. Y=A+(BIX) Hyperbolic 
6. Y=A+(B*X) Linear 
7. Y = A * Exp(B * x) Exponential 
8. Y = ll(A + E *X) Hyperbolic 

EXHIBIT 3 (CONT.) 

.951 15.679929 1.254644 19.529 

.951 15.721701 .072661 19.648 
,867 .011565 .053449 18.523 
,855 18.675771 -.197837 18.505 
,843 18.646558 -3.390909 18.489 
,807 16.194574 .242322 21.404 
.I97 16.206697 .013945 21.873 
,786 .061665 -.CUO804 22.532 

Ann. 
Trend 

2.0% 
2.2% 

-.3% 
-.3% 
-.4% 
6.0% 
7.0% ; 
8.3% -a 



EXHIBIT 4 

PART A SKILLED NURSING FACILITY COPAYMENT ANNUAL DAY INCIDENCE 

21s~ TO 100~~ DAY 

Per 100 Contracts For Fiscal Years Ending 

Actual Projected 

313 1175 6/3OiJ5 9/30/75 12/31/75 3131176 6l3OlJ6 9/30/76 12/31/76 3/31/77 6i3OlJJ 9/30/77 12/31lJJ 5/14/80 
---------- - - 

38.222 37.110 36.874 36.101 34.642 34.094 32.028 29.945 27.113 23.493 20.563 18.111 11.257* 

* The projected value is the result of an exponential projection IV = A(Exp(BX))]. which has an index of determination of .879. This value is considered to be 
appropriate for inclusion in the rate calculation in view of the acceptable index of determination as well as the fact that the annual trend underlying the projected 
value is consistent with the expectation that day incidence for Skilled Nursing Facilities will continue to decrease, but at a somewhat lesser rate than has been s 
historically observed. A linear projection [Y = A + BXl has a higher index of determination (i.e., ,926); however the resulting projected value of 3.161 was 
considered to be clearly inadequate and therefore rejected. The remaining projection methods employed produce values and/or indexes of detemxina~ion that were 

B 
a 

judged to be inappropriate for consideration. 

Form of 
Equation 

I. Y=A+(B*X) 
2. Y = A * Exp(B *X) 
3. Y = l/(A + B *X) 
4. Y=A+E*Log(X) 
5. Y = A * (X ** (B)) 
6. Y = A + (BIX) 
7. Y=A*Exp(BIX) 
8. Y=X/(A+B*X) 

Type of 
Function 

Linear 
Exponential 
Hyperbolic 
Logarithmic 
Power 
Hyperbolic 
Exponential 
Hyperbolic 

Equation 
Number 

Index of 
Determination A B 

,926 
,879 
.821 
,691 
,631 
.395 
,340 
,288 

42.621060 - 1.835343 
45.623749 -.065091 

.018952 .002392 
43.344607 -7.596821 
46.313503 - .263028 
26.444535 16.422209 
25.892833 .5544OO 
-.019405 .03952 I 

Proj. 

Value 
Ann. 
Trend 

3.161 -52.0% 
11.257 -18.1% 
14.207 -9.7% 
20.037 4.3% 
20.665 5.1% 
21.208 18.7% 
26.569 17.5% 
25.894 16.2% 



EXHIBIT 5 

INPATIENT HOSPITAL BENEFITS FROM THE 91sT DAY ON-MONTHLY PURE PREMIUM 

Per Contract For Fiscal Years Ending 

Actual Projected 

3/31/75 6/30/75 9/30/75 12/31/75 3/31/76 6l3Ol76 9l3Ol76 12/31/76 3l31tJJ 6l3Ol77 9l3Ol77 32l31lJJ 5114180 
---i---- - - - - - 

$1.210 $1.324 $1.433 $1.525 $1.606 $1.601 $1.631 $1.643 $1.653 $1.643 $1.661 $1.650 $1.678* 

* The projected value is the result of a hyperbolic projection [Y = X/(A + Ex)] which has an index of determination of ,944, the highest index of determination 
of the projection methods employed. A logarithmic projection [Y = A + B(ln X)] has virtually the same index of determination (i.e.. .943); however the resulting 
projected value of $1.816 was considered to be excessive in view of the relative stability of the recent actual experience. The remaining projection methods 
employed produce values and/or indexes of determination that were judged to be inappropriate for consideration. 

Form of 
Equation 

Type of 
Function 

Equation 

Number 
Index of 

Determination A B 
Proj. 

Value 
Ann. 

Trend 

1. Y=XI(A +B*X) 
2. Y = A + B * Log(X) 
3. Y = A * (X ** (B)) 
4. Y = A * Exp(BIX) 
5. Y =A + @IX) 
6. Y=A+(B*X) 
7. Y=A*Exp(B*X) 
8. Y = ll(A + B *X) 

Hyperbolic 
Logarithmic 
Power 
Exponential 
Hyperbolic 
Linear 
Exponential 
Hyperbolic 

,943 
,936 
,928 
,910 
,736 
,713 
.689 

.265492 .583515 1.670 .7% 
1.229987 .191130 1.816 4.1% 
1.231339 .131828 1.854 5.0% 
1.698944 -.376911 1.669 .5% 
1.687731 -.539045 1.663 .3% 
1.318242 .035399 2.079 10.2% 
1.317486 .024125 2.213 13.2% 

.I59790 -.016557 2.416 18.6% 
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EXHIBIT 6 

PART B PHYSICIANS AND OUTPATIENT SERVICES ANNUAL DEDUCTIBLE 
MONTHLY PURE PREMIUM 

Per Contract For Fiscal Years Ending 

Actual Projected 

3/31/75 6130175 9/30/75 12131175 3/31/76 6l3Ol76 9130176 12I31IJ6 3/31/17 6l3OlJl 9l3Olll 12/31/17 5114180 
----- -------- 

$1.822 $1.851 $1.852 $1.837 $1.975 $2.065 $2.109 $2.134 $2.238 $2.235 $2.242 $2.234 $12.234~ f 

* The most recent observation (i.e., the year ending 12/31177) has been carried forward to the period of the rates. The three projection methods indicated below 8 
have significantly high indexes of determination; however due to the relative stability of the four most Fcent observations, the projected values were judged to be 
excessive and therefore rejected. e 

Projection Method Fan-n of Equation Index of Determination Projected Valuh 

Linear Y=A+BX .923 $2.745 
Exponential Y = A(Exp(BX)) ,919 $2.876 
Hyperbolic Y = ll(A + EX) ,914 $3.102 

The remaining projection methods employed produce values and/or indexes of determination that were judged to be 
inappropriate for consideration. 



EXHIBIT 6 (CONT.) 

Form of Type of 
Equation Function 

Equation 
Number 

I. Y=A+(B*X) 
2. Y = A * Exp(B * X) 
3. Y = ll(A + B * X) 

4. Y = A * (X ** (B)) 
5. Y = A + f3 * Log(X) 
6. Y=X/(A+B*X) 
7. Y = A * Exp(BIX) 
8. Y = A + (B/X) 

Linear 
Exponential 
Hyperbolic 
Power 
Logarithmic 
Hyperbolic 
Exponential 
Hyperbolic 

Index of 
\ 

Proj. Ann. 
Determination A 49 Value Trend 

- - 

,923 1.748182 .046357 2.745 9.1% 
,919 1.761175 .022810 2.876 11.2% 
,914 .564407 -.011259 3.102 14.8% 
.828 1.719763 .103302 2.361 2.4% 6 
,822 1.701871 .208711 2.342 2.0% = 
,550 .I19619 .460290 2.147 -1.7% $? 
.540 2.173125 -.239441 2.149 -1.6% - 
,530 2.173832 - .480788 2.151 -1.6% 



EXHIBIT 7 

PART B PHYSICIANS COINSURANCE 
ANNUAL SERVICE INCIDENCE 

Per 100 Contracts For Fiscal Years Ending 

Actual 
Projected 

313 1175 6l3Ol75 9l3Ol75 12l31ll5 3131176 6l30/76 9130176 12l31l76 3/31/17 6/30/77 9/30/77 12/31/71 5114180 
-- v---------i 

349.034 361.880 379.235 397.626 405.828 419.269 434.288 447.282 448.633 451.196 445.098 444.293 444.293* 
P 

* The most recent observation (i.e., the year ending 12/31/77) has been carried forward to the period of the rates. The two projection methods indicated below 
have significantly high indexes of determination; however, due to the relative stability of the five most recent observations. the projected values, which represent 

e 

upward trends, were judged to be inappropriate and therefore rejected. 

Projection Method Form of Equation In&x of Determination Projected Value 

Power Y=Axe .955 487.301 
Logarithmic Y = A + B(ln X) ,947 480.797 

I?te remaining projection methods employed produce values and/or indexes of determination that were judged to be 
inappropriate for consideration. 

--- ~___ ---- I 



EXHIBIT 7 (CONT.) 

Form of 
Equation 

1. Y=A*(X**(B)) 
2. Y = A + B * Log(X) 
3. Y=A+(B*X) 
4. Y = A * Exp(B * X) 
5. Y = lI(A + B *X) 
6. Y = Xl(A + B * X) 
7. Y=A*Exp(BIX) 
8. Y=A+(BIX) 

Type of 
Function 

Power 
Logarithmic 
Linear 
Exponential 
Hyperbolic 
Hyperbolic 
Exponential 
Hyperbolic 

Equation Index of 
Number Determination A 

.955 340.755047 
,947 337.525093 
,877 354.056190 
.868 355.636978 
,856 .002802 
,806 .000769 
.I83 447.533321 
,759 446.350307 

B 
FYoj. Ann. 
Value Trend 

.I16595 487.301 4.0% 
46.697891 480.797 3.4% 

9.422917 556.649 10.0% 
.023301 586.911 12.4% 

- .000058 641.861 16.8% 
.002227 441.929 -.2% 

-.303118 441.268 -.3% 
- 120.050450 440.767 -.3% 
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EXHIBIT 8 

PHYSICIANS COINSURANCE AVERAGE COST PER SERVICE 

Item 

A. Calculation of the cost trend 
factor to project the average 
cost per service for physicians’ 
coinsurance benefit category 
from the year ending 12/31/77 
to the year ending 5/14/80. 

1. The economic index applica- 
ble to physicians’ services 
announced by the Social Se- 
curity Administration for the 
period July 1, 1976 through 
June 30, 1977. 

2. The economic index applica- 
ble to physicians’ services 
announced by the Social Se- 
curity Administration for the 
period July 1, 1977 through 
June 30, 1978. 

3. Percent of increase for fiscal 
year 1978 over fiscal year 
1977 

4. The economic index applica- 
ble to physicians’ services 
announced by the Social Se- 
curity Administration for the 
period July 1, 1978 through 
June 30, 1979 

5. Percent of increase for fiscal 
year 1979 over fiscal year 
1978 

6. Expected percent of increase 
for fiscal year 1980 over fis- 
cal year 1979 

Amount Source 

1.276 

1.357 

6.35% 

1.426 

5.08% 

5.08% 

Part B Intermediary Letter 
No. 76-34 from Department 
of Health, Education and 
Welfare, dated August 1976. 
Appendix D 1 

Part B Intermediary Letter 
No. 77-24 from Department 
of Health, Education and 
Welfare, dated June 1977. 
Appendix D2 

Item A.2. P Item A.1. 

Part B Intermediary Letter 
No. 78-23 from Department 
of Health, Education and 
Welfare, dated June 1978. 
Appendix D3 

Item A.4. + Item A.2. 

Judgment 
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EXHIBIT 8 (CONT.) 

PHYSICIANS COINSURANCE AVERAGE COST PER SERVICE 

Item Amount Source 

B. Cost trend factor to project the 
year ending 12/31/77 to the 
year ending 5/14/80. 

1.132 (1 .0635)6”2( 1.0508) 
(1 .0508)‘“.5’12 

C. Cost per service for the physi- $7.85 Corporate Statistics 
cians’ coinsurance benefit cate- 
gory for the year ending 121 
31177. 

D. Expected average cost per ser- $8.89 (Item B)(Item C) 
vice .for physicians’ coinsur- 
ance benefit category for the 
year ending 5114180 



EXHIBIT 9 

PART B OUTPATIENT HOSPITAL SERVICE COINSURANCE 
ANNUAL INCIDENCE 

Per 100 Contracts For Fiscal Years Ending 

Actual 
Projected 

3131175 6130175 9/30/75 1213 l/75 3131176 6130176 9l3Ol76 12/31/76 3/31/77 6l3Ol77 9l3Ol77 12l31ll7 5114180 
--P------P--- 

70.307 74.164 78.924 83.151 85.813 90.751 95.921 99.602 102.056 105.553 108.745 113.426 150.742* 

* The projected value is the result of a linear projection [V = A + BXl which has an index of determination of ,996, the highest index of dekrmination of the 
projection mrhcds employed. This value is considered to be appropriate for inclusion in the rate calculation in view of the extremely high index of determination 
as well as the fact that the annual trend underlying the projected value is consistent with the decelerating annual rates of increase observed in the recent historical r 
experience. An exponential projection [Y = A(Exp(BX))] and a hyperbolic projection [Y = lI(A + BX)] also have extremely high indexes of determination (i.e., 
,987 and ,970, respectively); however the resulting projected values (Le., 173.859 and 257.553, respectively) we= considered to be excessive and therefore 

B 
0 

rejected. The remaining projection methods employed produce values and/or indexes of determination that were judged to be inappropriate for consideration. t 

Form of 
EPuation 

Type of 
Function 

Equation 
Number 

1. Y=A+(B*X) 
2. Y=A*Exp(B*X) 
3. Y = ll(A + B *X) 
4. Y = A * (X ** (B)) 
5. Y=A+B*Log(X) 
6. Y = X/(A + B * X) 
7. Y = A * Exp(BIX) 
8. Y=A+(BIX) 

Index of 
A B 

Proj. 
Value 

Ann. 
Trend 

Linear 
Exponential 
Hyperbolic 
Power 
Logarithmic 
Hyperbolic 
Exponential 
Hyperbolic 

.996 67.072222 3.891619 

.987 69.133700 .042893 
,970 .014183 - .ooo479 
,942 65.492350 .I99877 
,912 62.790400 17.757761 
.739 .005724 .009589 
.608 103.716866 - .490394 
,636 103.382814 -42.594857 

150.742 12.7% 
173.859 19.7% 
257.553 41.2% 
120.924 2.7% 
117.272 1.4% 
101.474 -4.6% 
101.378 -4.6% 
101.402 -4.6% 



EXHIBIT 10 

PART B OUTPATIENT HOSPITAL SERVICE COINSURANCE 
AVERAGE COST PER SERVICE 

For Fiscal Years Ending 

Actual 
F’rojected 

313 1175 6/3Ol75 9130175 12131175 3/31/76 6/3Ol76 9/3Ot76 32131176 3/31/77 6l3Ol77 9130177 12!33/77 5114180 
------A ------ 

$6.66 $6.98 $7.23 $7.36 $7.56 $7.72 $7.92 $8.16 $8.32 $8.47 $8.68 $8.89 $11.03* 

* The three projection methods indicated below result in extremely high and nearly equal indexes of determination. The projected value produced by the hyperbolic 
projection was rejected as being clearly excessive. It was determined to be appropriate to use the mean of the linear projection and the exponential projection B 

[(%10.73 + $I I .33)/2 = $1 I.031 in the rate calculation in consideration of the neatly equal validity of the linear and exponential projection methods, as well as 
P 

the fact that the annual trend underlying the mean value is consistent with both recent historical experience and reasonable expectations of future hospital cost 
o 

increases for outpatient services. 
% 

Projection Method Form of Equation Index of Determination Projected Value 

Linear Y=A+BX ,996 $10.73 

Exponential Y = A (Exp(BX)) ,991 $11.33 

Hyperbolic Y = lI(A + BX) ,983 $12.43 

The remaining projection methods employed produce values and/or indexes of determination that were judged to be 
inappropriate for consideration. 



EXHIBIT 10 (CONT.) 

Form of 
Equation 

Type of 
Function 

1. Y=A+(B*X) Linear 
2. Y = A * Exp(B * X) Exponential 
3. Y = ll(A + B *X) Hyperbolic 
4. Y = A * (X ** (B)) Power 
5. Y = A + B * Log(X) Logarithmic 
6. Y = X/(A + B * X) Hyperbolic 
7. Y = A * Exp(B/X) Exponential 
8. Y=A+(BIX) Hyperbolic 

Equation 
Number 

Index of 
Determination A 

,996 6.572121 .193392 10.730 
.991 6.635739 .024875 11.328 
,983 .149577 -.003215 12.429 
,940 6.434750 .115542 9.172 
.919 6.353128 .886190 9.072 
.I30 .037955 .118866 8.290 
,695 8.397684 -.285364 8.287 
,660 8.386769 -2.156228 8.286 

B 
Proj 
Value 

Ann. 
s Trend g 

8.2% $) 
10.7% 
15.2% 

1.3% 
.9% 

-2.9% 
-2.9% 
-2.9% 



EXHIBIT 11 

PRESCRIPTION DRUGS 
ANNUAL CLAIM INCIDENCE 

Per 100 Contracts For Fiscal Years Ending 

Actual Projected 

313 In5 6130175 9l3Ol75 12l31175 3/31/16 6l3Ol76 9l3Ol76 12/31/76 3/31/77 6l3Ol77 9l3Ol77 1213 1177 5/14/80 
- - - ---------- 

45.596 46.638 47.320 48.467 49.514 51.017 53.018 54.695 56.173 57.436 58.618 59.663 72.772* 

* The-projected value is the result of a linear projection [U = A + Ex] which has an index of determination of ,991. This value is considered to be appropriate 
for inclusion in the rate calculation in view of the extmmely high index of determination as well as the fact that the annual trend underlying the projected value is 
consistent with the decelerating annual rates of increase observed in the recent historical experience. An exponential projection [U = A(Exp(BX))] and a hyperbolic 
projection [Y = l/(A + EX)] have slightly higher indexes of determination (Le., .992), however the resulting projected values (i.e., 77.042 and 85.039, respectively) 
were considered to be- excessive and therefore rejected. The remaining projection methods employed produce values and/or indexes of determination that were 
judged to be inappropriate for consideration. 

Form of 
Equation 

1. Y=A*Exp(B*X) 
2. Y = l/(A + B *X-) 
3. Y=A+(B*X) 

- 4. Y = A * (X ** (B)) 
5. Y=A+B*Log(X) 
6. Y=XI(A+B*X) 
7. Y=A*Exp(BIX) 
8. Y=A+(BIX) 

Type of 
Function 

Exponential 
Hyperbolic 
Linear 
Power 
Logalitbmic 
Hyperbolic 
Exponential 
Hyperbolic 

Number 
Index of 

Determination A B 
FYoj 
Value 

.992 44.016928 .026036 77.042 
,992 .022510 - .000500 85.039 
,991 43.495270 1.361689 72.772 
,866 42.970726 .116@49 61.348 
,847 42.342538 6.006066 60.769 
,595 .005300 .017889 55.141 
.569 55.903593 - .269983 55.206 
.544 55.918910 -13.815348 55.276 

Trend 

11.4% 
16.1% 
8.7% 
1.2% 
.8% 

-3.3% 
-3.2% Er 
-3.2% w 



EXHIBIT 12 

PRESCRIPTION DRUGS 

AVERAGE NUMBER OF PRESCRIPTIONS PER PRESCRIPTION DRUG CLAIM 

For Fiscal Years Ending 

Actual Projected 

3/31/75 6130175 9/3Ol75 12/31/75 3131176 6130176 9130176 12/31/76 3131177 6130177 9/30/77 12J31l77 5/14/80 
----------- - - 

9.875 9.750 9.542 9.402 9.277 9.149 9.081 9.011 8.925 8.866 8.788 8.712 8.054* 

l The three projection methods indicated below result in extremely high and nearly equal indexes of determination. It was determined to be appropriate to use a is 
mean of the logarithmic, exponential, and hyperbolic projections [(7.877 + 7.778 + 8.058)/3 = 8.0541 in the rate calculation in consideration of nearly equal E 
validity of these three projection methods as well as the fact that the annual trend underlying the mean value is equal to the most recently observed annual rate of 
decrease (-3.3%). 

Projection Method Form of Equation Index of Determination Projected Value 

Hyperbolic Y = ll(A + Bx) .976 7.877 
Exponential Y = A(Exp(BX)) ,971 7.778 
Logarithmic Y=A + B(lnN) ,970 8.508 

The remaining projection methods employed produce values and/or indexes of determination that were judged to be inappm- 
priate for consideration. 



EXHIBIT 12 (CONT.) 

Form of 
Equation 

Type of 
Function 

1. Y= l/(A+E*x) 
2. Y=A*Exp(E*X) 
3. Y = A + E * Log(X) 
4. Y=A+(B*X) 
5. Y = A * (X ** (E)) 
6. Y = A + (E/x) 
7. Y = A * Exp(E/X) 
8. Y = X/(A + B * X) 

Hyperbolic 
Exponential 
Logarithmic 
Linear 
Power 
Hyperbolic 
Exponential 
Hyperbolic 

Equation Index of Proj Ann. 
Number Determination A B Value Trend 

- - - 

,976 .!01054 .001204 7.877 -4.2% 
,971 9.880607 -.011128 7.778 -4.7% B 
.970 10.017760 - .49207 1 8.508 -1.0% = 
,965 9.867120 -.I02916 7.654 -5.3% g 
,964 10.037782 - .052904 8.534 -.9% 
.745 8.877872 1.238568 8.935 1.1% 
,733 8.881842 .I32370 8.937 1.1% 
,720 -.014160 .112545 8.938 1.1% 



EXHIBIT 13 

PRESCRIPTION DRUGS 

CALCULATION OF THE-AVERAGE CHARGE PER PRESCRIPTION DRUG CLAIM 

For Fiscal Years Ending 

3131175 6130175 9/30/75 .12131175 3131176 6130176 9130176 12131176 3131177 6130177 9130177 12131177 
__ - - - - - __ - - - - - 

I. Average cost per $32.00 $32.47 $32.71 $32.97 $32.93 $32.86 $32.86 $33.16 $33.35 $33.68 $33.92 $34.37 

claim w 

2. Average charge per $65.00 $65.59 $65.89 $66.21 $66.16 $66.08 $66.08 $66.45 $66.69 $67.10 $67.40 $67.96 E 

claim 
3. Average number of 9.875 9.750 9.542 9.402 9.277 9.149 9.081 9.01 I 8.925 8.866 8.788 8.712 

prescriptions per 
claim 

4. Average charge per $ 6.58 % 6.73 $ 6.91 $ 7.04 $ 7.13 $ 7.22 % 7.28 $ 1.37 % 7.47 $ 1.57 % 7.61 f 7.80 
prescription 
(Item 2 f Item 3) 

’ Drug benefit covers 80% of cost after the satisfaction of a 525 deductible 



EXHIBIT 14 

PRESCRIPTION DRUGS AVERAGE CHARGE PER PRESCRIPTION 

For Fiscal Years Ending 

AClUiil Projected 

313 1175 6/30/75 9130175 1213 1175 3i31i76 6130176 9/30/76 1213 1176 313 1177 6/30/77 9130177 12/31/77 5/14/80 
- - - - - - - - - - - - - 

$6.58 $6.73 $6.91 $7.04 $7.13 $7.22 $7.28 $7.37 $7.47 $7.57 $7.67 57.80 %8.86* 

* The rhree projection methods indicated below have exuemcly high and nearly equal indexes of determination. The value produced by the hyperbolic projection 

was rejected as being excessive in view of the historical rates of increase. It was determined to be appropriate IO use the mean of the linear projection and the 

exponential projection {(%8.77 + 58.95)/2 = $8.861 in the raw calculation in consideration of the nearly equal validity of the linear and exponential projection 

methods. as well as the fact that the annual trend underlying the mean value is consistent with recent historical experience. 

Projection’ Method Form of Equation Index of Determination Projected Value 

Linear Y=A+t?X .98? $8.77 

Exponential Y = A(Exp(BX)) .982 $8.95 

Hyperbolic Y = l/(A + .5X) ,976 $9.19 

The remaining projection methods employed produce values and/w indexes of delermination that wcrc judged to be 
inappropriate for consideration. 



EXHIBIT 14 (CONT.) 

Form of 
Equation 

I. Y = A +(B *X) 
2. Y = A * Exp(E * X) 
3. Y = l/(A + B * X) 
4. Y = A * (X ** (E)) 
5. Y=A+B*Log(X) 
6. Y = X/(A + B * X) 
7. Y = A * Exp(B/X) 
8. Y=A+(E/Xl 

Type of 
Function 

Linear 
Exponential 
Hyperbolic 
Power 
Logarithmic 
Hyperbolic 
Exponential 
Hyperbolic 

Equation Index of 
Number Determination A 

,987 6.561969 
,982 6.580818 
,976 .I51582 
,952 6.457253 
.94l 6.432230 
,742 .023777 
,722 7.542393 
,701 7.537976 

B 
Proj 
Value 

Ann. 
Trend 

102902 8.774 
.O I4302 8.950 

-.001991 9.193 
.067192 7.936 
.479468 7.903 
I32492 7.485 

- I67905 7.484 
-1.187710 7.483 

5.1% 
6.0% 
7.2% 

.7% 

.6% 
-1.7% 
-1.7% 
- 1.7% 

- 
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EXHIBIT 15 

CALCULATION OF EXPECTED MONTHLY PURE PREMIUM 
BY BENEHT CATEGORY FOR THE PERIOD 5/15/79 TO 5/14/80 

109 

Item 

A. Inpatient hospital deductible 
per admission 

1. 

2. 

3. 

Annual claim incidence 
per 100 contracts 
Average payment per inpa- 
tient hospital deductible 
Expected monthly pure 
premium 

B. Co-payment for the 61st to 
the 90th inpatient hospital 
day 

1. Annual day incidence per 
100 contracts 

2. Average payment per day 
3. Expected monthly pure 

C. 

D. 

E. 

premium 
Expected monthly pure pre- 
mium for the 91st to the 
120th inpatient hospital day 
Expected monthly pure pre- 
mium for the joint physi- 
cians’ services and outpa- 
tient services annual 
deductible 
Physicians’ services coin- 
surance 

1. Annual services incidence 
per 100 contracts 

2. Average payment per ser- 
vice 

3. Expected monthly pure 
premium 

Amount Source 

26.968 Exhibit 1 

$169.00 Exhibit 2, Item M 

$ 3.798 [(Item Al) (Item A2) t 12001 

19.225 Exhibit 3 

$ 42.25 Schedule 2, Item M 
$ .677 [(Item Bl) (Item B2) + 12001 

$ 1.678 Exhibit 5 

$ 2.234 Exhibit 6 

444.293 Exhibit 7 

$ 8.89 Exhibit 8, Item D 

$ 3.291 [(Item El) (Item E2) + 12001 
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EXHIBIT 15 (CONT.) 

CALCULATION OF EXPECTED MONTHLY PURE PREMIUM 
BY BENEFIT CATEGORY FOR THE PERIOD 5/15/79 TO 5/14/80 

Item 

F. Outpatient hospital service 
coinsurance 

1. Annual service incidence 
per 100 contracts 

2. Average payment per ser- 
vice 

3. Expected monthly pure 
premium 

G. Skilled Nursing Facility 
1. Annual day incidence per 

100 contracts 
2. Average payment per day 
3. Expected monthly pure 

premium 
H. Prescription Drugs 

1. Average number of pre- 
scriptions per claim 

2. Average charge per pre- 
scription 

3. Average charge per claim 
4. Expected average payment 

per claim 
5. Annual claim incidence 

per 100 contracts 
6. Expected monthly pure 

premium 

Amount Source 

150.742 

$ 11.03 

$ 1.386 

11.257 

$ 21.13 
$ .198 

8.054 

$ 8.86 

$ 71.36 
$ 37.09 

72.772 

$ 2.249 

Exhibit 9 

Exhibit 10 

[(Item Fl) (Item F2) + 12001 

Exhibit 4 

Exhibit 2, Item 0 
[(Item Cl) (Item G2) + 
1200)] 

Exhibit 12 

Exhibit 14 

(Item Hl) (Item H2) 
[$71.36 - $25.00][.80] = 
$37.09 
Exhibit 11 

[(Item H4) (Item H5) + 12001 
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PARAMETER UNCERTAINTY IN THE 
COLLECTIVE RISK MODEL 

GLENN MEYERS 

NATHANIEL SCHENKER 

Abstract 

This paper proposes a new version of the collective risk model that allows 
for uncertainty in selecting the expected number of claims and the claim severity 
distribution. We provide two different methods of estimating the parameters of 
this model. It is demonstrated by computer simulation that one must combine 
the experience of several insureds in order to accurately quantify parameter 
uncertainty. Tests on a very large sample of individual insured data show a 
significant improvement in the accuracy of the collective risk model when 
parameter uncertainty is taken into account. The tests do not show perfect 
agreement between the model and the empirical data, but the agreement is close 
enough to be useful in many applications. 
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1. INTRODUCTION 

This paper discusses the role of collective risk theory in making insurance 
pricing decisions. Collective risk theory provides a way of calculating the 
probability that a loss arising out of an insurance contract will exceed a given 
amount. The calculation is done in terms of the underlying claim severity and 
claim count distributions. Related to this is the excess pure premium, which is 
the cost of insuring all losses above a given amount. Also of interest is the 
excess pure premium ratio, which is the excess pure premium divided by the 
expected loss. 

Of principal concern is the relationship between the variance of the loss 
ratio and the size of the insured. A common assumption was stated by Simon 
[lo, p. 441 as follows: “As the risk size increases, we expect the variance (of 
the loss ratio) to approach zero.” Large insureds are typically written on a 
retrospective rating plan or an aggregate excess contract. The effect of this 
assumption would be that for all loss amounts greater than the expected loss, 
the excess pure premium ratio would approach zero as the size of the insured 
becomes large. 

The practical underwriter would feel very uncomfortable with an agreement 
to provide coverage for all losses above the expected loss for a zero or nominal 
premium for even a very large insured. His complaint would be that the expected 
loss cannot be estimated with the necessary precision. 

Of interest is the distribution of actual losses about an unbiased estimate of 
the expected losses. Estimates of the expected losses vary because of many 
things such as future economic conditions, changes in loss development patterns, 
changes in the insured’s operations, and changes in loss control procedures. 
Many of these changes are independent of the size of the insured. Thus, one 
should not expect the variance of the loss ratio to approach zero as the size of 
the insured becomes large. 

The traditional models used in collective risk theory, such as the generalized 
Poisson distribution, do not allow for uncertainty in estimating the expected 
loss. This may be acceptable for the small insured, since the variance of the 
losses due to the random nature of the loss process is large compared to the 
variance due to the misestimation of the expected loss. As the insured increases 
in size, however, the variance due to the misestimation of the expected loss 
will dominate. 

Below we will propose a version of the collective risk model that allows 
for uncertainty in estimating the expected loss. Most excess pure premium ratios 
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used in the United States are calculated from the well known “Table M” [7]. 
This table is based on empirically derived excess pure premium ratios. Because 
of the predominant use of this table we must first address the following question: 
why use a model? 

2. THE ACTUARY’S DILEMMA 

It has been a long standing debate among actuaries as to whether one should 
use empirical data or theoretical models to derive aggregate loss distributions.. 
After completing the mammoth task of tabulating aggregate loss distributions, 
Simon [lo, p. 141 wrote: “To avoid the difficulties and pitfalls of empiricism 
we should borrow from the theory of risk, from Monte Carlo techniques, and 
from operations research. Let’s begin pushing some frontiers today, so that 
we’ll be ready to solve tomorrow’s problems.” 

Officially, it appears that those who favor the empirical approach have 
prevailed and Mr. Simon’s advice has gone unheeded. Skumick [ 1 l] constructed 
a table for the state of California based on empirical observations. In 1980, a 
National Council subcommittee constructed another table based on empirical 
observations. Mr. Simon’s table was in effect for seventeen years. 

While the use of empirical distributions does not require one to make the 
assumptions that are necessary with the theoretical approach, there are some 
fundamental problems with the empirical approach. It is generally agreed that 
the variance of the loss ratio distribution decreases as the size of the insured 
increases. It is also agreed that the variance of the loss ratio distribution increases 
as the average claim severity increases. But it is necessary to combine the 
experience of insureds of different sizes and average claim severities in order 
to get a’sufficiently large sample. For example, the tables constructed by the 
National Council on Compensation Insurance in 1980 combined all insureds on 
a countrywide basis into expected loss ranges that include $25,000 to $50,000, 
$5O,OOq ,to $100,000 and $100,000 to $200,000. 

Thus, the actuary is faced with the dilemma of choosing between two 
undesirable alternatives. If the empirical approach is chosen, a sample from a 
heterogeneous population is required. If the theoretical model is used, a number 
of simplifying assumptions must be made. 

By proposing a mathematical model, we do not advocate abandoning the 
use of empirical data. Once a model has been constructed, one should form 
hypotheses which can be tested on live data. If statistical tests demonstrate that 
the model is consistent with the data. the dilemma will be resolved. 
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It will become apparent that this is easier said than done, but this is the goal 
toward which we all must strive. If this goal is reached, there are many 
advantages to the theoretical approach. Since the size of the insured and the 
claim severity distribution are input variables, it is possible to adjust the param- 
eters of the model to account for situations when there is little or no data 
available. For example, it would be a simple matter to find the aggregate loss 
distribution that results when all claims are subject to an accident limitation. 

3. THE COLLECTIVE RISK MODEL 

In this section, we propose a version of the collective risk model that allows 
for uncertainty in estimating the expected loss. Heckman and Meyers [2] discuss 
this model in great detail, and so a full mathematical description will not be 
given here. Much of what follows is taken from their paper and is included here 
for the sake of completeness. 

We start by considering the Poisson distribution. In their classic book on 
risk theory, Beard, Pentikainen, and Pesonen [ 1, p. 181 give the assumptions 
underlying this distribution as follows: 

1. Claims occurring in two disjoint time intervals are independent. 
2. The expected number of claims in a time interval (tl, tz) depends only 

on the length of the time interval and not the initial value of tl. 
3. No more than one claim can occur at a given time. 

There are many cases when one feels that a Poisson distribution is appro- 
priate, but one does not know the expected number of claims. Two options are 
available under these circumstances. The first option is to estimate the expected 
number of claims from historical experience. Parameter uncertainty can arise 
from sampling variability and changes in claim frequency over time. A second 
option is to use the average number of claims for a group of insureds that are 
similar to the insured under consideration. Parameter uncertainty arises when 
some members of the group have different expected numbers of claims. 

We now turn to specifying the claim count distributions that we shall use 
when parameter uncertainty is present. We shall adopt the following notation. 

Let N be a random variable denoting the claim count, 
h be the expected number of claims, and 
x be a random variable with E[x] = 1 and Var[x] = c. 

The claim count distribution can be modeled by the following algorithm. 
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Algorithm 3.1 

1. Select X at random from the assumed distribution. 
2. Select the number of claims, N, at random from a Poisson distribution 

with parameter X * A. 

We have the following relationships. 

WI = &LW’IX)I = E,[x * Xl = A 

VdN = WMN~x)l + Var,[E(NIx)l 
= E,[x * A] + Var,[x - A] 
= A + c * A2 

(3.1) 

(3.2) 

If X has a Gamma distribution, the claim count distribution described by 
Algorithm 3..1 is the negative binomial distribution (Beard et al., [l, p. 1 lo]). 
We shall use the negative binomial distribution to model the claim count 
distribution when parameter uncertainty is present. 

We shall call the parameter c the contagion parameter for the claim count 
distribution. If c = 0, Algorithm 3.1 yields the Poisson distribution. 

We now adopt the following notation. 

Let Z be a random variable denoting claim severity, 
S(z) be the cumulative distribution function for the claim severity, z, and 
X be a random variable denoting the aggregate loss for an insured. 

Aggregate losses can then be generated by the following algorithm. 

Algorithm 3.2 

1. Select the number of claims, N, at random from the assumed claim count 
distribution. 

2. Do the following N times 
2.1 Select the claim amount, Z, at random from the assumed claim 
severity distribution. 

3. The aggregate loss amount, X, is the sum of all claim amounts, Z, 
selected in step 2.1. 

We now give expressions for the mean and variance of the aggregate loss 
distribution generated by Algorithm 3.2. 

E[X] = E[Nj - E[ZJ = A . E[Zj (3.3) 
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Var[xj = EN[Var(XIN>l + VarAwXIN)I 
= A . Var[Zj + (A + c . X2) . E’[z] 
= A . E[Z’] + c * A2 * E2[2] (3.4) 

Implicit in the use of Algorithm 3.2 is the assumption that the claim severity 
distribution, S(z), is known. In practice, this distribution must be estimated 
from historical observations, or it must be simply assumed. Under such condi- 
tions, errors in selecting the parameters of the claim severity are inevitable. To 
model parameter uncertainty in the claim severity distribution, we make the 
simplifying assumption that the shape of the distribution is known, but there is 
uncertainty in the scale of the distribution. Venter [ 121 makes the same as- 
sumption in his treatment of parameter uncertainty. 

More precisely, we specify parameter uncertainty of the claim severity 
distribution in the following manner. 

Let p be a random variable satisfying the conditions E[lIP] = 1 and 
Var[l/p] = b. We then model aggregate losses by the following algorithm. 

Algorithm 3.3 

1. Select the number of claims, N, at random from the assumed claim count 
distribution. 

2. Select the scaling parameter, p, at random from the assumed distribution. 
3. Do the following N times. 

3.1 Select the claim amount, Z, at random from the assumed claim 
severity distribution. 

4. The aggregate loss amount, X, is the sum of all claim amounts, Z, 
divided by the scaling parameter, p. 

We now give formulas for the mean and variance for the aggregate loss 
distribution generated by Algorithm 3.3. 

aX1 = 43rwm1 
= EdA + RTVPI 
= A * E[Z] . E[l@] 
= A - E[Z] (3.5) 

V~FI = J%War(XIP)l + m3[~(XIP)l 
= Ep[(A . E(Z2) + c * A2 * E2(Z))/p2] + Vara[A . E(Z)@] 
= (A . E[Z’] + c . A2 * E’[Zj) * E[l@‘] 

+ A2 - E2[2] . Var[l@] 
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= (A . E[Z’] + c - A2 - ,!?‘[a) * (1 + 6) + A2 * E2[2] - b 
= A . E[Z*] . (1 + b) + A2 * E2[2] * (b + c + b.c) (3.6) 

In this paper, we shall assume that p has a Gamma distribution. We shall 
call b the mixing parameter. The mixing parameter is a measure of parameter 
uncertainty for the claim severity distribution. 

Let R denote the ratio X/E[X]. From Equations 3.5 and 3.6, we get the 
following result: 

Var[R] = (1 + 6) . E[Z’]/(A - E’[Zj) + b + c + b - c (3.7) 

Under the above assumptions on parameter uncertainty, it is possible to 
calculate the cumulative probabilities and excess pure premium ratios in an 
efficient manner (Heckman and Meyers [2]). We have chosen mathematically 
convenient distributions to model parameter uncertainty. We do not want to 
imply that these distributions are in any way the “correct” ones. Since parameter 
uncertainty is not directly observable, it is difficult to discover what the correct 
distribution should be. As we shall show, it is possible to infer the values of b 
and c through the use of Equations 3.6 and 3.7. But until statistical methodology 
has advanced to the point where the proper distributions can be determined, it 
should be acceptable to use ones which are mathematically convenient. 

Interpreting the Model 

As mentioned in the introduction, we are concerned with the relationship 
between the variance of the loss ratio and the size of the insured. Parameter 
uncertainty can perhaps best be understood in terms of how it affects this 
relationship. 

In what follows, it will be helpful to recognize that Var[R] is equal to the 
squared coefficient of variation of the loss ratio. 

It can be seen from Equation 3.7 that this model implies a linear relationship 
between Var[R] and l/A. 

Figure 1 illustrates the effect of parameter uncertainty on Var[R]. If b = 
c = 0, the aggregate loss distribution is the generalized Poisson distribution. In 
this case Var[R] approaches zero as l/A approaches zero (or as the insured 
becomes larger). If we introduce parameter uncertainty in the claim count 
distribution, Var[R] lies on a line parallel to that implied by the generalized 
Poisson distribution, with the variance approaching c as l/A approaches zero. 
If we add parameter uncertainty in the claim severity distribution, the slope of 
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the line increases by a factor of 1 + b. The Var[K] approaches b + c + b - c 
as l/A approaches zero. 

FIGURE 1. 

Var[R] 

b+c+b-c 

lh 

4. ESTIMATING THE PARAMETERS OF THE MODEL 

In the previous section, we proposed a version of the collective risk model 
that accounts for parameter uncertainty. This model depends upon the expected 
number of claims, A, the claim severity distribution, S(z), the contagion param- 
eter, c, and the mixing parameter, b. 

The expected number of claims can be estimated from historical claim 
frequencies and estimates of current exposure. 
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A complete discussion of estimating claim severity distributions is beyond 
the scope of this paper. In our work, we typically obtain claim severity distri- 
butions from bureau circulars, or we estimate them from company data using 
methods similar to those described by Patrik [8]. These claim severity distri- 
butions are often derived from experience other than that of.the insured under 
consideration. For this reason, we adjust the scale of the distribution to match 
the average claim size that we project for the insured. 

Before discussing our methods for estimating b and c, we should mention 
the work of Patrik and John [9]. They deal with parameter uncertainty by 
picking a finite set of claim severity distributions and claim count distributions 
for the collective risk model. They then combine the various outputs of the 
model by taking a weighted average. The weights are probabilities which they 
assign subjectively. 

The use of subjective probabilities has always been controversial. Many 
consider the word “guess” to be more appropriate. It is unfortunate that in many 
situations an answer is demanded, but no data is available. Under these circum- 
stances, the use of subjective probabilities may be acceptable. 

Regardless of how one feels toward the use of subjective probabilities, one 
should always consider the possibility of estimating b and c from observations 
of aggregate loss data. The remainder of this section will develop ways of doing 
this. 

We will describe two approaches for estimating b and c. The choice of 
estimators will depend on the kind of data available. The general idea underlying 
both of these approaches will be to evaluate an expression which “resembles” 
Var[Nl, Var[X] or Var[R]. Using Equations 3.2, 3.6 or 3.7, we can then set the 
expression equal to its expected value, which depends upon b and c. The 
estimates are then obtained by solving for b and c. The details are given in the 
appendices. 

We first consider the case of a single insured for which we have r years of 
experience. We assume that all systematic adjustments of the data, such as trend 
and loss development, have been made. 

The following estimators for b and c are derived in Appendix A. 

Forj = l,..., r, let Nj be the claim count for yearj. Let ej be a number such 
that ej = K . E[Nj] for each year i. K is a constant of proportionality. The 
number ej represents either exposure or premium. 
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Let AI = (l/r) I: Nj * (eilej) and 
j=l 

V = i((ellej) * Nj - Al)‘. 
j=l 

Then an estimator for c is given by 

V - (r - 1)/r i (f?Jej) . fii 
e= 

j=l 

(r-l)*fi: ’ 
(4.1) 

Let x I ,. . . ,Xr be r independent aggregate loss amounts associated with 
N1 ,.. .,N,, respectively, and let Aj = Xj/Nj be average claim costs. Furthermore 
let 

@ * i XjlN be an estimate of E[Zl, 
j=l 

&’ be an estimate of Var[Zj, and 

W = ,$, Nj * (Aj - b)‘. 

Then an estimator for b is given by 

6= 
W-(r- 1)-G’ (4.2) 

(r - 1) . 5’ + 2 * (N - (l/N) i N$ 
j=l 

We used Monte Carlo simulation to test the accuracy. of these estimators. 
Specifically, we selected a claim severity distribution (given in Exhibit I) along 
with c = 0.1 and b = 0.1 We then simulated aggregate losses and claim counts 
using Algorithm 3.3, and tested how well the estimates 6 and 2 compared with 
the selected b and c. We obtained 6’ by multiplying the coefficient of variation 
of our claim severity distribution by the estimate of E[Zj obtained from the 
simulation. The results of these tests are given in Table 1. 
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TABLE 1 

SIMULATED ESTIMATES ‘OF b AND c 

Average 
c^ 

.1004 

.1002 

.1005 

.1013 

.0957 

.0973 

.1014 

.0986 

.0973 

.lOOl 

.0992 

.0988 

Std Dev 
e 

.0720 

.0326 

.0153 

.0086 

.0672 

.0305 

.0155 

.0077 

.0670 

.0308 

.0218 

.0084 

Average 
6 

.0364 
. . 0759 
.1017 
.0999 
.0787 
.0956 
.0961 
.1006 
.0873 
.0956 
.0995 
.0993 

121 

Std Dev 
6 

.1746 

.1203 

.0798 

.0441 

.1080 

.0624 

.0273 

.0145 

.0847 

.0390 

.0252 

.0098 

The averages and standard deviations of the estimates for r = 5, 25, 100, 
and 400 were based on 2000, 400, 100, and 25 trials, respectively. While the 
estimates of the errors are subject to simulation error, the above table suggests 
that one may need several hundred observations to accurately estimate b and c. 
Clearly, this is impossible for a single insured. We have repeated this experiment 
for different values of b and c and have gotten similar results. 

Table 1 does not tell how much accuracy is necessary. To answer this, one 
must first ask how the collective risk model will be used. An almost certain use 
is the calculation of excess pure premium ratios. How much error one may 
tolerate for b and c will then depend on how much error one may tolerate for 
excess pure premium ratios. 

Table 2 gives excess pure premium ratios for various sizes of insureds and 
various b's and c’s. The method of calculating the excess pure premium, ratios 
is that of Heckman and Meyers [2]. 
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TABLE 2 

EXCESS PURE PREMIUM RATIOS 
Expected Loss = l,OOO,OQO 

b = c = 0.0 b = c = .Ol b = c = .05 

0.500 0.500 0.504 
0.083 0.100 0.149 
0.005 0.009 0.032 
0.000 0.001 0.006 
0.000 0.000 0.001 

Expected Loss = 5,000,OOO 

b = c = 0.0 b = c = .Ol b = c = .05 

0.500 0.500 0.502 
0.038 0.068 0.130 
0.000 0.001 0.020 
0.000 0.000 .0.003 
0.000 0.000 0.000 

b=c= .lO 

0.513 
0.191 
0.064 
0.022 
0.007 

b=c= .lO 

0.509 
0.176 
0.053 
0.016 
0.005 

Table 2 shows that significant differences in excess pure premium ratios 
result from different values of b and c. Taking this result along with the results 
indicated by Table 1, we are forced to the rather unpleasant conclusion that 
parameter uncertainty cannot be adequately quantified on the basis of the ex- 
perience of a single insured. 

If we are to estimate b and c from empirical data, it would appear that our 
only alternative is to combine the experience of several insureds, and assume 
that the same b and c are appropriate for all of them. It is this question that we 
now address. 

5. ESTIMATING THE PARAMETERS OF THE MODEL-ONTINUED 

If we were to combine the experience of several insureds to estimate b and 
c, we might consider using the above estimators and treating the combined 
observations as annual observations of a single insured, We feel, however, that 
this would be inappropriate for the following reasons. 
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First, a key assumption in the estimation procedure for c is that the expected 
number of claims is directly proportional to the measurement of exposure. While 
this assumption may be appropriate for a single insured, different insureds may 
have different exposure bases or different inherent claim frequencies. 

Second, a key assumption in the estimation procedure for b is that the same 
claim severity distribution is appropriate for all observations of a single insured. 
Different insureds can expect to have different claim severity distributions. 

Below we will give estimators for b and c. The data requirements for these 
estimators are as follows. 

For each insured and each year we require three items: 

1. exposure, 
2. incurred losses, and 
3. incurred claim count. 

Some remarks concerning the data requirements are in order. 

First, it will be assumed that the exposure is directly proportional to the 
expected claim count for each insured. The constant of proportionality may vary 
with the insured. Many exposure bases, such as payroll, are inflation sensitive. 
Thus, trends in the exposure base that do not reflect expected claim count should 

I 
be removed. 

\ 
Second, it will be assumed that the expected claim severity is the same for 

all observations of a\ single insured. The expected claim size need not be the 
same for all insureds. Incurred losses must be adjusted for trends in claim 
severity. The trend factors must be derived from external sources so as not to 
introduce bias in the estimates. 

Third, every effort should be made to get the maximum number of obser- 
vations. A minimum of two observations per insured will be required. We 
should strive for the maximum number of observations per insured and the 
maximum number of insureds. 

The following estimators for b and c are derived in Appendix A: 

T = number of insureds 
ri = number of observations for insured i 

,, Nii = number of claims for observation j of insured i 
eG = exposure for observation j of insured i 
Xij = incurred loss for observation j of insured i 
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Zi = a random variable denoting claim severity for insured i. 

For each i, let 

fiir = (llri) 2 NV * (eirlec) and 
j=l 

Then, an estimator for c is given by 
T ri . 

V - IX (Ti - 1)lri C (eirleij) * A;, 
i=l j=l 

c^= (5.1) 

For each i, let 

Ni. = i Nij, 
j=1 

tL = 2 Xij/Ni. be an estimate for E[Zi], 
j=l 

6: be an estimate for Var[Zi], and 

W = i 2 Nij . (Au - bi)‘. 
i=l j=l 

Then, an estimator for b is given by 

W- E (Ti- l)‘&’ 
6= i= I 

T ,; . (5.2) 

iz ((r-i - I) . a: + Ii: * (Ni. - (l/Ni.) $ NC)) 
j=l 

Note that Equations 5.1 and 5.2 reduce to Equations 4.1 and 4.2, respec- 
tively, when T = 1. 

Many companies and rating bureaus do not have the data required for the 
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above estimators. However, all is not lost. We shall now show that it is possible 
to get rough estimates of b and c with quite a bit less data. 

One of the predictions of this version of the collective risk model is the 
linear relationship of the squared coefficient of variation of the loss ratio with 
l/h (or equivalently, l/expected losses). See Equation 3.7 and Figure 1. The 
following estimators of b and c will exploit this relationship. 

The data requirements for these estimators will be loss ratios and premiums 
for each insured, and a single claim severity distribution that represents all the 
insureds. Divide the insureds into T groups of size ri. For reasons stated above, 
we would prefer that the groups consist of multiple observations of the same 
insured. We shall say something about this in the next section. For observation 
j of group i, let 

eij = exposure (premium), 
XV = incurred loss, and 
Rij = Xijley. 

For each group i, let 

ki = (llri) 5 Rij, 
j=l 

Ei = (llri) 5 lieu, and 
j=l 

Wf = ,$, (R, - @i)*. 

An estimate of the squared coefficient of variation for the ith group is given by 
the expression 

Wi 

(Tim l)*tI:’ 

An estimate of l/expected losses for the ith group is given by the expression 

Ei 
G’ 

Using linear regression, we can find an approximate relationship of the following 
form: 

W ,. Ei . 
(ri - 1) . by = A * ; + B. (5.3) 
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Estimators for b and c are then given by 

6 = a . E[z]/E[Z*] - 1 and (5.4) 
c^ =(B - 6)/(1 + 6). (5.5) 

These estimators for b and c are derived in Appendix B. As mentioned 
above, we must select a single claim severity distribution that represents all 
insureds. In practice, it is questionable that this can be done. If estimates are 
obtained in this manner, then the variance of the aggregate loss distribution will 
be overstated for the low severity insured and understated for the high severity 
insured. Meyers [4] discusses several problems associated with this. It should 
be noted that the linear relationship between the squared coefficient of variation 
and l/expected losses derived from Equation 5.3 will be preserved in the model 
if any reasonable claim severity distribution is selected. However, one should 
not put undue faith in the particular estimates of b and c. 

6. TESTING THE MODEL 

Thus far we have proposed a version of the collective risk model which 
allows for parameter uncertainty, and we have given ways to estimate the 
parameters for this model. We now turn to the crucial question, how well does 

’ it fit empirical data? 

In 1980, a National Council committee assembled a large sample of indi- 
vidual insured data for the purpose of constructing a new table of excess pure 
premium ratios, otherwise known as Table M. This sample contained the stan- 
dard premium and the incurred losses for all insureds during the policy year 
beginning July 1, 1973 for all states in which the National Council had juris- 
diction. 

The data was grouped by premium size, and the empirical loss ratio distri- 
butions were used to calculate the excess pure premium ratios for the smaller 
premium sizes. For those insureds with premium of $200,000 or more, it was 
felt that the empirical excess pure premiums were not credible, and so a 
combination of modeling and empirical data was used., 

After the table was completed, we requested and received from the National 
Council a tape containing this experience. This data forms the basis of our 
analysis. 
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Estimating the Parameters of the Model 

Since we had only premium and loss data, we used Equations 5.4 and 5.5 
with the eG’s representing standard premiums. Since we had only one observation 
for each insured, we chose our groups on the basis of premium size. Thus there 
are two main sources of parameter uncertainty. The first source is heterogeneity 
of insureds, and the second is differences in premium adequacy. This is consis- 
tent with the construction of the new Table M. 

It should be noted that if we choose our groups on the basis of multiple 
observations on a single insured with the eu’s representing exposure, the sources 
of parameter uncertainty are quite different. Heterogeneity of insureds is not 
involved. Changes in the insured’s operations, changes in economic conditions, 
changes in loss development patterns and other changes over time are the main 
sources of parameter uncertainty. Thus, estimates of b and c under these con- 
ditions could be quite different. 

At the time this study was done, the National Council did not have a claim 
severity distribution available. The closest thing we had to a comparable claim 
severity distribution was estimated from our own company data for accident 
year 1975 developed to 42 months. We chose 42 months because it matched 
the average maturity of the NCCI data. We then changed the scale of the 
distribution to match the average claim size which was reported by the National 
Council for the policy year 1973-74. The resulting claim severity distribution 
is given in Exhibit I. 

In choosing the groups, we put those observations with the lowest r-1 pre- 
miums in the first group, those observations with the next lowest t-2 premiums 
in the second group, and so on. The problem remained of choosing the ri’s, 
i= 1,. . . , n for the n groups. We observed that when the ri’s were equal for 
all i the variance of the residuals of the regression decreased as the premium 
increased. In statistical terminology, this is known as heteroscedasticity. We 
dealt with this problem in two ways. One way was to have ri decrease as the 
premium increases. The other way was to use a weighted regression. 

The weighted regression can be described as follows. If the model Y = AX 
+ B + E is to be fitted, but if it appears that the standard deviation of E is 
proportional to X, then let Y’ = Y/X and let X’ = l/X. In the new model Y’ = 
A’ + B’X’ + E’, E’ will have approximately constant variance. A’ will be an 
estimate of A and B’ will be an estimate of B. 

Exhibit II gives the various sets of ri’s that we considered. Table 3 gives 
the resulting estimates of b and c. 
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TABLE 3 

ESTIMATES OF b AND c 

Set Of ri'S A Std Err a b Std Err k R* 6 F --- 

1 6283 1 5746 .275 .020 .820 .340 - .048 
2 85383 1609 .443 .038 .870 .181 .222 
2(1-l 1) 55378 3786 1.054 1.269 .071 .181 .740 
2( 12-22) 5283 1 2728 .469 .046 .921 .127 .304 
3 58997 2967 .305 .013 .976 ,258 .037 
3( l-8) 55418 2226 .495 .176 .570 .182 .265 
3(9-15) 64572 8328 .291 .025 .964 .377 -.062 
4 55539 4430 .445 .164 .401 .184 .220 
5* 59311 13939 .350 .103 .721 .265 .068 

* Used unweighted regression 

There are several points that should be made about these estimates. First, 
negative estimates of b and c are possible; 6 will be negative whenever 

/i * E[z]/E[Z*] < 1; 

E will be negative whenever 

(b + 1) . E[Z*]/E[z] < A. 

This can happen if the assumed mean and variance of the claim severity 
distribution are not appropriate for the given observations. Negative estimates 
of b and c can also occur because of random variation of the regression 
coefficients. Examination of the standard errors of A suggests that random 
variation could explain the two negative estimates of c. 

If a negative estimate of b is obtained, we suggest setting 6 equal to zero 
and setting e = d. If a negative estimate of c is obtained, we suggest setting e 
= 0 and 6 = 8. If h is negative, we suggest setting 6 and e equal to zero. 

Second, the estimates of A and B vary by the set of ri’s chosen. Examination 
of the standard errors of the coefficient a indicates that this variation could be 
random. However, the variation in the estimates of B cannot be explained by 
random variation. It would appear that the estimate of B is decreasing as the 
size of the insured increases. This can be seen by comparing the pairs of 
estimates #2(1-11) with #2( 12-22), #3(1-8) with #3(9-15), and #4 with 
#5. In all three comparisons, the estimate of B corresponding to higher premium 
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observations is lower than the estimate of B corresponding to lower premium 
observations. 

This means that the sum, b + c + b * c, is decreasing as the premium 
increases. As mentioned above, the division of parameter uncertainty between 
b and c is suspect for the estimators used. It seems that parameter uncertainty 
decreases as the size of the insured increases. 

This seems to be a reasonable conclusion. Because of experience rating, 
one would expect the standard premium to be more accurate for large insureds 
than for small insureds. 

Comparison of Expected with Actual Results 

Using the estimates of b and c obtained above, it is possible to calculate the 
cumulative probabilities and the excess pure premium ratios implied by the 
model. We now compare the results predicted by the model with the actual 
results in the National Council data base. This comparison will take two forms. 
We will first perform chi-square goodness of fit tests. A description of the chi- 
square goodness of fit test can be found in Hoe1 [3, p. 2261. We will then com- 
pare excess pure premium ratios predicted by the model with those of the new 
Table M. 

We chose three sets of parameters for our testing. In the first test, we set b 
= 0 and c = 0 because it represents the case with no parameter uncertainty. 
For the second test, we chose the estimates 6 = .258 and E = .037 from 
regression #3 since it produced the highest R* over all the points. For the third 
test, we chose the estimates 6 = .184 and L? = .220 when the premium was 
less than $125,000 (regression #4), and 6 = .263 and c? = .068 when the 
premium was greater than $125,000 (regression #5). This enabled us to test if 
B decreases as the premium increases. 

Since the variance of the loss ratio distribution changes with the size of the 
insured, we decided to estimate the distribution implied by the model and 
perform the chi-square test on each of several groups of insureds. Each group 
was to have a fairly narrow range of premium sizes. The results are given in 
Exhibit III. 

No set of parameter values performed well when the premium was less than 
$15,000. While the second and third sets of parameters performed better than 
the first, all sets severely underestimated the number of zero loss ratios. It 
appears that higher values of c are needed for small premium sizes. 

It is difficult to note a pattern in the results of the chi-square tests on 
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individual groups. The chi-square test is simply not powerful enough to distin- 
ugish between the various sets of parameter values on individual groups. How- 
ever, the chi-square test permits combining the results of independent tests. 
(Actually, the tests are not independent since the parameters b and c were 
estimated from all the observations. Since the number of observations used in 
estimating the parameters was far greater than .the number of observations in 
each chi-square test, however, the tests are very nearly independent.) When the 
results are combined, a clear pattern emerges. 

The results predicted by the second and third sets of parameters are better 
than the results predicted by the parameters b = 0 and c = 0. Allowing for 
parameter uncertainty significantly improves the performance of the collective 
risk model. The results predicted by the third set of parameters are better than 
the results predicted by the second set for the smaller premium sizes. This is 
consistent with our hypothesis that B decreases as the size of the insured 
increases. 

Comparisons with the new Table M are given in Exhibit IV. Again we see 
that allowing for parameter uncertainty significantly improves the performance 
of the collective risk model. While the model does not fit the new Table M 
perfectly, it does come reasonably close. 

Interpretation of the Results 

The combined chi-square statistic calculated in Exhibit III indicates that we 
should reject the hypothesis that aggregate losses have the distribution predicted 
by the model. This shows that we have indeed made a ‘number of simplifying 
assumptions. 

This brings us back to the “Actuary’s Dilemma.” As noted above, the 
construction of an empirical Table M is suspect because of the necessity of 
using heterogeneous groups of insureds. It is extremely difficult to tell which 
is the more accurate. One must look to the applications in order to determine 
which to use. 

Through the end of 1982, Table M was used to determine insurance charges 
in retrospective rating plans. The same insurance charges were used regardless 
of what claim severity distributions were appropriate for the insured and what 
accident limit was selected. Meyers [4] demonstrated that the claim severity 
distribution and the accident limit have a significant effect on the insurance 
charge. By examining Meyers’ tables, one can see that these differences are 
much larger than the differences between the collective risk model with param- 
eter uncertainty and the new Table M. 
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A revision of the retrospective rating plan is currently being considered by 
the National Council. This revision contains an adjustment for the “overlap” 
between the insurance charge and the excess loss premium factor. This adjust- 
ment was derived using the collective risk model with parameter uncertainty. 

While the “Actuary’s Dilemma” is not resolved, we see that the collective 
risk model with parameter uncertainty can make a significant contribution to 
the solution of today’s problems. 

7. LARGE INSUREDS 

As demonstrated above, it is necessary to combine the experience of several 
insureds to get stable estimates of b and c. The methods given for estimating b 
and c assume that these parameters are the same for all insureds. It seems 
unlikely that b and c are the same for all insureds. For example, a stable 
company that has been working in the same line of business for many years 
should have a lower b and c than a company that has recently made material 
changes to its operations. A detailed examination of a company’s operations 
may reveal additional sources of parameter uncertainty. 

For small insureds, it may not be cost effective to conduct such an exami- 
nation. Thus, it should be acceptable to assume that b and c are the same for 
all small insureds. 

For large insureds, close examinations are routine. It seems quite possible 
that an underwriter could more accurately quantify parameter uncertainty on the 
basis of judgmental factors. However, skeptical actuaries respond that while 
underwriters are very sensitive to both the natural desire to sell insurance and 
aversion to risk, their quantitative estimates depend very much on what the 
competition offers. We regard it as an open question as to which method 
performs the best. 

What is an actuary to do under these circumstances? First, we should provide 
estimates of b and c based on the combined experience of several large insureds. 
As Morel1 [6] remarked in his review of the first version of this paper, “We 
owe them at least that much.” Furthermore, the data should contain several 
years of experience for each insured and the appropriate estimators for b and c 
should be used. Parameter uncertainty arising from heterogeneity between mem- 
bers of a group of insureds is not applicable for large account pricing. 

If a close examination reveals additional sources of parameter uncertainty, 
sensitivity testing should be done to determine the effect of this uncertainty. 
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Quite often, the results of such testing can aid in designing a contract that is 
agreeable to all parties. 

The remarks in this section are quite speculative. But they point out the 
need for extreme caution in using the collective risk model with large accounts. 

8. CONCLUSION 

This paper proposes a new version of the collective risk model that allows 
for uncertainty in selecting the expected number of claims and the claim severity 
distribution. We provide two different methods of estimating the parameters of 
this model. It is demonstrated by computer simulation that one must combine 
the experience of several insureds in order to accurately quantify parameter 
uncertainty. Tests on a very large sample of individual insured data show a 
significant improvement in the accuracy of the collective risk model when 
parameter uncertainty is taken into account. The tests do not show perfect 
agreement between the model and the empirical data, but the agreement is close 
enough to be useful in many applications. 
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APPENDIX A - DERIVATION OF EQUATIONS 4.1, 4.2, 5.1 AND 5.2 
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The equations derived in this appendix require the following data. 

T = number of insureds 
ri = number of observations for insured i, (ri > 1) 

Nij = number of claims for observation j of insured i 
eg = exposure for observation j of insured i 
Xij = incurred loss for observation j of insured i 
a: = an estimate of Var[Zi], where Zi is a random variable denoting claim 

severity for insured i. 

Estiniating c 

Let Xii be the expected number of claims for insured i and observation j. 
Assume hij = Ki * eu. Then 

It 

Aij = Ail ’ c?fjlf?il. 

follows from Equations 3.2 and A. 1 that 

Var[Nij] = Xii . eij/eii + c * (hii * eo/eii)‘. 

Let 

(A.1) 

(A.21 

V= i .g (Nii ’ eilleij - &I)*. 
i=l j=l 

Adding and subtracting Xii inside the parentheses gives us 

v= g (5 (NV * eilleij - AU)* - ri * (ii, - Ail)’ . 
i=l j=l > 

Thus, 

WI = 5 (ri - l)lri 2 (eiileij)* * Var[Ng]. 
i=l j=l 

Using Equation A.2 we get 

WI = 5 (ri - l)lri ,$, (Deb) * Ai, + c * 5 (ri - 1) * Afi. 
i=l i=l 
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Solving for c we get 

E[Vj - 2 (ri - 1)/n 2 (eil/eG) . Ai, 
i=l j=l 

c= 

i (ri - 1) . AZ, 

Equation 5.1 is obtained by substituting V for E[Vl and fii, for Ai, (i = 
1 , . . . , r). Equation 4.1 is simply Equation 5. I with T = 1. 

Estimating b 

Let pi = E[Zi], 

Uf = Var[Zi], 

Ni, = $ Nij, Md 
j=l 

Aij = XijlNij. 

Let p denote the severity scaling factor. 

Then E[AglNu, p] = (l/p) . pi and 

Var[Aij)Nu, p] = (l/p2) * u?~NQ. 

Thus E[AglNij3 = pi and 

Var[AulN~] = (1 + b) * U?lNij + b * pf. 

Let 

I;i = 2 XijINi,, and 
j=l 

w = f: 5 NV * (Aq - (ii)*. 
i=l j=l 

Adding and subtracting pi inside the parentheses gives US 

w = ,$, (,$, Nti * (A, - pi)* - Ni. * (/Iii - pi)*). 

64.3) 
I 



PARAMETER UNCERTAINTY 135 

Thus, 

EWNij’sl = i ISI (No * Var[AulNij] - (l/Ni,) * NC * Var[AolNij]). i=l j=, 

Using Equation A.3 we get 

E[WINQ’S] = (1 + b) ii, (ri - 1) . U: + b ii, (Ni. - (l/Ni,) ,$, N$) . CL?. 

Solving for b we get 

E[WINij’s] - ii, (ri - 1) * U: 

b= 

ii ((ri - 1) * Uf + /J-T * (Ni. - (l/Ni.) ]$, N$)) 

Equation 5.2 is obtained by substituting W for E[KINij’s], ii for pi and 
6: for a:. Equation 4.2 is simply Equation 5.2 with T = 1. 

APPENDIX B-DERIVATION OF EQUATIONS 5.4 AND 5.5 

The equations derived in this appendix require that individual ObSeNatiOnS 

be divided into T groups of size ri. They also require the first moment, E[Zl, 
and the second moment, E[Z*], of an assumed claim severity distribution. 

For observation j of group i, let 

eij = exposure (premium), 
Xii = incurred loss, and 
Ru =, Xijle~. 

For each group i, let 

pi = E[RQ], and 

bi = (llri) 2 Rc. 
j=l 

It follows from Equation 3.6 that 

Var,R,,l = Pi * (1 Q 5) ’ E[Z*l 
V eii . E[Zj - + p’ . (b + c + b - c). (B.1) 
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For each group i, let 

Ei = (llri) 2 (lleij), 
j=l 

Wi = 2 (Rg - bi)*. 
j=l 
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and 

Adding and subtracting pi inside the parentheses gives us 

Wi = ,$, (R, - ki)* - ri * (ki - pi)‘. 

It then follows that 

E[Wi] = (ri - l)lri i Var[Rij]. 
j=l 

Combining Equations B. 1 and B.2 we get 

EWil 
(ri - 1) * /.lJ = 

(1 + b) * W*l . & + b + c + b . c 
EKI Pi 

If one finds an approximate relationship of the form 

Wi 

03.2) 

(B.3) 

Equation 5.4 follows by equating a with the coefficient of Eilki in Equation 
B.3. Equation 5.5 follows by equating k with the constant term in Equation 
B.3 and using Equation 5.4. 
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EXHIBIT I 

THE CLAIM SEVERITY DISTRIBUTION 

Loss Amount Cumulative Probability 

0.00 
19.79 

39.57 
79.15 

118.72 
158.29 
197.86 
277.01 
395.73 
593.59 
791.45 

1187.18 
1582.91 
1978.63 
2770.09 
3957.27 
5935.90 
7914.54 
9893.17 

11871.80 
15829.07 

19786.34 
27700.87 
39572.68 
59359.02 
79145.31 
98931.69 

118718.00 
158290.69 
197863.37 
277708.75 
395726.56 
593590.00 
791453.44 

Summary Statistics: 
Severity Mean 

0.00000 
0.21384 
0.51025 
0.74056 
0.79959 
0.82665 
0.84450 
0.86657 

0.88626 
0.90606 
0.91797 
0.93388 
0.94464 
0.95223 
0.96242 
0.97156 
0.97998 
0.98476 
0.98785 
0.99001 
0.99281 
0.99452 
0.99649 
0.99790 
0.99890 
0.99934 
0.99956 
0.99970 
0.99983 
0.99990 
0.99996 
0.99998 
0.99999 
1.00000 

= 632.56 
Severity Standard Deviation = 5704.69 
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EXHIBIT IIa 

GROUPINGS USED FOR THE REGRESSIONS 

Set of Q’S 
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i 

I 
2 
3 
4 
5 
6 
7 
8 
9 

IO 
II 
12 
13 
14 
I5 
I6 
17 
I8 
I9 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

#I 

48600 
3422 I 
26730 
21008 
31690 
22575 
29624 
18702 
I2955 
9478 
7304 
5477 
4592 
8573 
5684 
7318 
446 I 
2933 
3638 
2265 
1516 
1057 
724 
610 
453 
827 
541 
351 
231 
351 
188 
222 
129 
65 
41 
29 
33 

9 
23 
12 
8 
7 

IO 

#2 

45000 
39000 
34000 
29000 
25000 
21000 
I7500 
15000 
13000 
11000 
10000 
9000 
8000 
7OQO 
6000 
5000 
4500 
4000 
3500 
3000 
2500 
1472 

#3 

87922 
60000 
50000 
40000 
30000 
20000 
I2800 
6400 
3200 
1600 
800 
400 
200 
100 
50 

#4 

13632 
II500 
9500 
8000 
7000 
6000 
5000 
4500 
4000 
3500 
3000 
2500 
2000 

#5 

350 
325 
300 
275 
250 
225 
200 
175 
I50 

Grouping Range of Premium Sizes 

#I 
#2 
#3 
#4 
#5 

Premium S IO00 
Premium 2 1000 
Premium P 1000 

5000 5 Premium 5 125000 
Premium > 125000 
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EXHIBIT IIb 

GROUPINGS USED FOR THE REGRESSIONS 
The following table should provide one with an indication of how the pre- 

mium sizes were spread among the various ri’s. 

Premium 
Lower Boundary 

1000 
1100 
1250 
1500 
1750 
2000 
2500 
3000 
4000 
5000 
7500 

10000 
15000 
25000 
35000 
50000 
75000 

100000 
150000 
200000 
300000 
400000 
500000 
750000 

1000000 

Insured Count 

20444 
26275 
34277 
26756 
21024 
31724 
22588 
29273 
18709 
26329 
13759 
14261 
11779 
4994 
3843 
2946 
1414 
1368 
582 
539 
221 
130 
122 
55 
60 

Average 
Loss Ratio 

.706 

.689 

.698 

.724 

.710 

.711 

.730 

.745 

.728 

.800 

.743 

.764 

.757 
,733 
.760 
.722 
.696 
.655 
.684 
.645 
.614 
.654 
.538 
.503 
.432 

Total 313472 

Squared 
c. v. of 

Loss Ratio 

105.78 
45.16 
73.15 
45.29 
45.67 
37.34 
23.94 
20.28 
15.64 
13.99 
9.03 
5.38 
4.57 
2.69 
2.53 
1;49 
1.48 
1.02 
.96 
.76 
.68 
.49 
.47 
.43 
.39 
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EXHIBIT III 

CHI-SQUARE TESTS 

Range 

200001-205000 35 1.54 4 .82 
175001-178000 41 4.02 5 .55 
150001-153000 50 2.21 5 .82 
125001-127500 58 17.61 7 .Ol 
lOooOl-102500 129 34.76 IO .oo 
90001-91500 64 14.27 7 .05 
80001-81000 70 13.69 8 .09 
70001-70700 48 4.18 5 .52 
6500 I-65550 75 12.61 7 .08 
60001-60600 73 8.76 8 .36 
55001-55550 94 36.77 8 .OO 
5000 I-50500 103 25.82 8 .OO 

Subtotal 

4500 I-45450 99 
4000 l-40400 99 
35001-35350 II9 
3000 I-30300 I46 
25001-25250 195 
20001-20200 222 
15001-15075 148 

Subtotal 

Sample 
Size 

b = 0 and 
c=o 

X2 DF P* --- 

176.24 80 .OO 

34.28 8 .OO 
6.81 8 .44 

76.36 IO .OO 
55.40 IO .OO 

118.57 IO .OO 
60.48 10 .oO 
46.82 IO .oO 

391.91 66 .oo 202. I5 65 .OO 82.98 66 .07 

568.15 I46 .OO 

b = ,258 and 
c = .037 

X2 DF P* --- 

5.20 3 .33 
9.57 4 .05 
5.68 5 .34 
7.57 6 .27 

15.76 IO .I1 
4.22 7 .75 

Il.54 IO .I7 
2.82 5 .73 

13.34 8 .lO 
10.94 8 .20 
15.22 8 .05 
22.45 8 .OO 

124.32 82 .OO 

13.12 8 .I1 
6.68 8 .57 

38.25 IO .oO 
31.45 IO .OO 
56.35 10 .OO 
31.94 10 .oo 
24.36 9 .Ol 

326.47 147 .OU 
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b = .184and 
c = ,220 for 

Prem 5 125000 
b = ,263 and 
c = ,058 for 

Prem > 125000 

X2 DF P* --- 

5.44 4 .I6 
7.18 4 .I3 
8.16 6 .23 
2.82 7 .90 

16.57 IO .08 
2.38 8 .97 

17.05 8 .03 
5.44 5 .36 

18.17 8 .02 
14.17 8 .08 
9.03 8 .34 

19.63 8 .Ol 

126.04 84 .OO 

7.82 8 .45 
7.24 8 .51 

15.01 .I0 .I1 
7.22 10 .71 

12.03 IO .28 
18.70 IO .04 
14.96 IO .13 

209.02 I50 .OO 

* P = probability that x2 is greater than the observed x2 if the hypothesis is true 
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EXHIBIT IV 

EMPIRICAL AND MODEL EXCESS PURE PREMIUM RATIOS 

Entry Ratio 

0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 

Empirical-NCCI 1980 Table M 

Expected Loss 

25000 50000 75000 100000 150000 200000 - - - - - - 

.789 .771 ,764 .760 .756 .753 

.631 .592 .574 .562 .545 .537 

.516 .458 .43 1 .414 .388 ,373 

.430 .360 .330 .310 ,280 .260 

.365 .290 ,258 .238 .208 .184 

.316 .239 ,208 ,187 .I59 ,133 

.277 .200 .I71 .I54 .I28 .098 

.246 .171 .144 .128 .104 .074 

.220 .148 .123 .llO .087 .057 

.198 ,129 .106 .094 ,073 .044 

.180 .114 .091 .080 .061 .033 

.163 .lOl .080 .069 .051 .026 

Model--6 = .184 and c = .220 for premium 5 125000 
b = .263 and c = .058 for premium > 125000 

Expected Loss 

Entry Ratio 

0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 

25000 50000 75000 - - - 
.785 .771 .765 
.633 .597 .581 
.522 .470 .445 
,438 .376 .346 
.373 .305 .272 
.322 .251 ,218 
.28 1 .209 .176 
.247 .176 .144 
.219 .150 .119 
.195 .I29 .I00 
,175 .I11 .084 
.I58 .097 .071 

100000 150000 200000 

.762 .753 .752 
,572 .542 ,536 
.430 .288 .377 
.328 .281 .267 
,252 .207 ,193 
.197 .156 .142 
.156 .120 .106 
.125 .093 .081 
.lOl .074 .063 
.083 .059 ,049 
.069 ,048 ,039 
.057 .040 .032 



Entry Ratio 

0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 
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EXHIBIT IV (CONT.) 

EMPIRICAL AND MODEL EXCESS PURE PREMIUM RATIOS 

Empirical-NCCI 1980 Table M 

Model-b = 0 and c = 0 

Expected Loss 

25000 50000 75000 100000 150000 200000 

.764 .753 .751 .750 .750 .750 

.588 .546 .528 .518 .509 .505 

.465 .398 .364 .342 .317 .301 

.377 .296 .254 .227 .192 .170 
,313 .226 .182 .154 .119 .097 
.263 .176 .133 .107 .076 .057 
.224 .140 .101 .077 .050 .036 
.193 .113 .078 .057 .035 .023 
.168 .093 .061 .043 .025 .015 
.148 .078 .049 .034 .018 .Oll 
.130 .066 .040 .027 .013 .008 
.116 .056 .033 .021 .OlO .005 



144 

UTILITY WITH DECREASING RISK AVERSION 

GARY G. VENTER 

Abstract 

Utility theory is discussed as a basis for premium calculation. Desirable 
features of utility functions are enumerated, including decreasing absolute risk 
aversion. Examples are given of functions meeting this requirement. Calculating 
premiums for simplified risk situations is advanced as a step towards selecting 
a specific utility function. An example of a more typical portfolio pricing 
problem is included. 

“The large rattling dice exhilarate me as torrents borne on a precipice flowing in a 
desert. To the winning player they are tipped with honey, slaying hirri in return by taking 
away the gambler’s all. Giving serious attention to my advice, play not with dice: pursue 
agriculture: delight in wealth so acquired.” 

KAVASHA Rig Veda X.3:5 

Avoidance of risk situations has been regarded as prudent throughout history, 
but individuals with a preference for risk are also known. For many decision 
makers, the value of different potential levels of wealth is apparently not strictly 
proportional to the wealth level itself. A mathematical device to treat this is the 
utility function, which assigns a value to each wealth level. Thus, a 50-50 
chance at double or nothing on your wealth level may or may not be felt 
equivalent to maintaining your present level; however, a 50-50 chance at nothing 
or the value of wealth that would double your utility (if such a value existed) 
would be equivalent to maintaining the present level, assuming that the utility 
of zero wealth is zero. This is more or less by definition, as the utility function 
is set up to make such comparisons possible. 

For an individual with a steeply ascending utility function, the value of 
potential wealth needed to risk losing everything on a 50-50 bet may be less 
than twice the current level; if the function rises slowly it may be considerably 
greater than twice the current level; and if the utility increases asymptotically 
to a value not greater than twice the utility of current wealth, such a bet would 
not be acceptable for any amount. 
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Through the device of the utility function, diverse risk situations can be 
compared. For each situation the expected value of the utility of the possible 
outcomes can be computed, and the situation with the highest expected utility 
is preferred. 

The pioneering work in the modem application of utility theory was done 
by von Neumann and Morgenstem[6]. They showed that if a preference ordering 
for a set of risk situations follows certain consistency requirements, then there 
is a utility function that will give the same preference ordering on those situa- 
tions. That in effect removes utility theory from the pleasure-pain area; it can 
be set up as an essential element of consistent management decision making 
without addressing questions like “Can a corporation feel pain?’ 

The consistency requirements can be boiled down to three (e.g., see [4]): 

i) any two risk situations can be compared; i.e., one is preferable to the 
other or they are both equivalent; 

ii) if A is preferred to B and B to C, then A is preferred to C; 
iii) if A is preferred to B and B to C, then there is a unique r between 0 

and 1 such that B is equivalent to rA + (1 - r)C. 

If risk situations are evaluated consistently, under this definition of consis- 
tency, they can be ordered by some utility function. 

Thus, utility theory seems to be a potentially valuable tool for choosing 
between alternative risk situations, such as transferring or accepting the risk of 
loss for a fixed price, in a consistent way. 

The practical actuary, however, finds utility theory somewhat of a dilemma: 
on one hand it provides the basic theoretical foundation for the worth of the 
insurance product; on the other hand, no examples of its useful application to 
insurance are available. Dismissing the whole theory risks throwing out the 
baby with the bath, but until it can be made to work in practice it will not have 
much appeal. 

The training of most actuaries includes an introduction to utility theory and 
its general relation to risk situations. There is a gap between this and actual 
application, however. How to choose a specific utility function is part of this 
gap; applying this function in realistic situations is another. 

The present paper aims to narrow this gap somewhat, but is not so ambitious 
as to try to close it entirely. Several criteria that a utility function should meet 
are discussed, and examples are given of functions that meet these requirements. 
The possible application of utility theory to pricing is also addressed. Since an 
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insurer is taking an uncertain situation for a fixed price, a utility approach may 
help evaluate the attractiveness of the deal. 

Finally, simplified risk situations are evaluated using some of the utility 
functions discussed. The prices implied by different utility functions for these 
simplified situations can be used by the analyst to close in on a specific function 
that most closely reflects the insurer’s own risk preferences.. 

As mentioned above, two risk situations can be compared by computing the 
expected utility of each, with the higher value being preferred. To apply this to 
premium calculation, the situation of having the risk and the premium is com- 
pared to the situation of having neither; i.e., the expected utility for these two 
situations is compared. For an insurer with surplus of a and no other policies, 
the indifference premium g for a random loss variable L is defined as the amount 
that results in the same expected utility both with and without this premium and 
potential loss. Thus, assuming the utility function U, a, and L are known, g is 
the solution of 

E+(a)) = E(u(a + g - L)) 
(&u(a)) = u(a) if a is constant). 

The calculation of this g in a reinsurance context is illustrated in [5]. 

Presumably, something in addition to g would be needed to make the transfer 
worthwhile to the insurer. The excess of the premium offered over the indiffer- 
ence premium can be called the risk adjusted value, or RAV, of the proposal. 
Applications of the RAV concept can be found in [3] and [8]. However, in this 
context, any premium above the indifference premium would lead to the accep- 
tance of the contract. 

In order to apply this pricing principle, a specific utility function is needed. 
Several criteria for the selection of a utility function have evolved over time. 
Among them are: 

(1) U(X) is an increasing function on (0,~); i.e., U’(X) > 0. That is, more 
is always better. The variable U’ is referred to as marginal utility, so 
this criterion says that marginal utility is always positive. 

(2) U(X) is concave downwards; i.e., u”(x) < 0. This property is referred to 
as risk aversion in that it implies that the certainty of the expected value 
of the outcomes is preferred to an uncertain situation. Concave down- 
ward utility also means that marginal utility (U’(X)) is a decreasing 
function of wealth; i.e., as more wealth is accumulated less value is 
placed on an additional dollar. A gambler might have a utility function 
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that violates this principle; i.e., a price higher than the expected value 
might be paid for the chance of a large gain. 

(3) Absolute risk aversion decreases as wealth increases. Absolute risk 
aversion is measured by ra(x) = -u”(~)Iu’(x). The ra(x) function so 
defined,can be seen to be the percentage change in the marginal utility 
u’(x). Decreasing absolute risk aversion means that the percentage de- 
crease in marginal utility is itself decreasing. This property can be shown 
to equate to greater acceptance of risky situations with greater wealth 
(see [4], p. 35), which seems intuitively appropriate. This concept is 
illustrated in Appendix 1. 

(4) U(X) is bounded above; i.e., there is a number b such that u(x) < b no 
matter how large x is. This criterion is necessary to keep very rare large 
value situations from dominating preferences. 

As an example, consider a hypothetical national lottery in which Joe, 
the winner, receives a choice of either $10 million certain or a risk 
situation in which he gets a very fabulous sum if he can pick the ace of 
spades at random from a deck of cards and zero otherwise. If the utility 
of $10 million is above l/52 of Joe’s maximum possible utility, he will 
take the $10 million no matter how fabulous the sum may be. On the 
other hand, if Joe’s utility function is not bounded, the choice will 
depend on what the sum is: for a large enough sum he will choose to 
draw for the ace. 

The bounded utility situation seems more reasonable, but this criterion 
is somewhat controversial. For instance, it could be argued that Joe 
would indeed choose to draw if the sum were huge enough, but that 
such a sum would be greater than the current wealth of the world. Since 
we know that world wealth is finite, we judge Joe’s decision to keep 
the $10 million as reasonable; however, if greater wealth were available 
the decision to draw would eventually become reasonable and would 
become compelling as the prize continued to increase. 

This argument does not seem persuasive, because the finite wealth of 
the world does not appear all that relevant to the decision to keep the 
$10 million and be content with the lifestyle it can support. However, 
to recognize the degree of subjectivity in this judgment, the opposite 
opinion has been allowed some consideration. Nonetheless, the bound- 
ary criterion will be maintained herein. See [l], p. 35, for a complete 
discussion of this standard. 
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A fifth criterion is occasionally advanced. 
(5) u’(x) = 0 for x < 0; i.e., utility is constant for negative values of 

wealth. This is designed to reflect bankruptcy laws and the corporate 
form of organization, which presumably make financial entities indif- 
ferent as to how bankrupt they become. In a regulated insurance indus- 
try, an insurer would not be completely free to act in accordance with 
this principle, and it probably exaggerates the effect limited liability has 
on decisions. However, the behavior of the utility function for negative 
values of wealth is important and must be considered explicitly when 
choosing a utility function. A more reasonable approach to negative 
wealth may be to take U(X) = -u(--x). While raising this issue, the 
current paper does not attempt to settle it. In the examples below, 
negative values of wealth will not be possible. The following minimal 
condition will, however, be imposed: 

u(k) is defined, continuous, and non-decreasing for x % 0. 

Since preference orderings are not altered by linear transformations of the 
utility function, by suitable normalization any utility function meeting the criteria 
1, 4, and 5 could be transformed to take values between 0 and 1, for x 2 0, 
without altering the preference orderings. Such utility functions and increasing 
probability distribution functions for positive variables are, therefore, the same 
class of mathematical mappings from the positive real numbers to the unit 
interval. Thus, the literature on probability distributions provides a rich source 
of functional forms for utility functions. Some distribution functions will not 
satisfy criteria 2 and 3, however, so these properties must be checked individ- 
ually. 

Examples of functions that do not meet the above criteria are: 

44 Fails 

X 2 
x - a/2x2 (x I a) 3 
a + b ln(x + c) 4 
1 - exp(-bx) 3 
2 (0 < a < 1) 4 
1 - l/x 5 

The Weibull and Pareto distribution functions do meet all criteria for proper 
parameters; e.g., U(X) = 1 - exp(-bx”), c < 1 and U(X) = 1 - (bx + l)-‘. 
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Other special cases of the transformed beta and gamma distribution functions 
[7] will also suffice. 

Although exponential utility fails criterion 3, it leads to relatively simple 
computations. Advocates of exponential utility argue that decreasing absolute 
risk aversion is important but its effects can be provided by changing the 
parameter of the function as wealth increases. While feasible, it seems undesir- 
able to do this, as the example in Appendix 1 illustrates. A utility function 
should capture the preferences of the decision maker, including, the relationship 
of preferences to wealth. Questions such as, “if you had $50 million and were 
offered . . .” should be used to help determine these preferences. In other 
words, the utility function should be able to get at fundamental attitudes towards 
risk including how reactions will change with wealth. 

Looking at absolute risk aversion as the percentage change in marginal 
utility provides another approach to this issue. The marginal utility of wealth 
should decrease as wealth increases, but decreasing absolute risk aversion means 
that the percentage decrease in marginal utility should itself be declining. If a 
utility function does not reflect this decline, it is not properly valuing various 
wealth potentials. In other words, decreasing absolute risk aversion is not simply 
a matter of having different attitudes towards risk at different wealth levels. It 
is rather an aspect of the shape of the utility function at every point and reflects 
the relative desirability of the different levels of wealth themselves. 

Exponential utility has other aspects that make it unrealistic in insurance 
situations. One of these is additivity. Of course, the individual risk premiums 
must add up to the portfolio premium; this does not mean, however, that the 
indifference premium for a single risk should be .OOl of the premium for 1000 
such risks. Under exponential and linear utility, and only with these forms, the 
indifference premium for a number of independent risks will be the sum of the 
indifference premiums for the risks separately [ 11, [4]. This is contrary to usual 
practice. For instance, there is generally thought to be a benefit to pooling, 
since the probability of being a large percentage away from expected results 
becomes less as individual risks are pooled. In other cases, adding independent 
risks might jeopardize surplus enough that a higher charge would be needed for 
the last one. Neither such effect is captured by exponential or linear utility. 

Risk decisions under exponential utility do not reflect the other risks that 
may be in the portfolio [8], which again appears unrealistic. All these problems 
essentially derive from the constant absolute risk aversion of the exponential, 
which renders decision making independent of wealth. Although calculations 
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are more difficult when decreasing risk aversion is required, this seems un- 
avoidable in realistic insurance situations. 

Using utility concepts can help bring consistency to risk decisions. However, 
the selection of a utility function requires some time and attention. Examining 
many simplified risk situations to determine which functions best reflect the 
preferences of the decision maker is one approach. 

For example, the indifference premium g is calculated below for some very 
simple loss distributions, using the utility functions U(X) = 1 - exp(-.01X.*‘) 
and V(X) = 1 - (1 + lo-‘x)-l . These functions are primarily illustrative and 
are not necessarily advocated. Companies with surplus, a, of $20,000,000 and 
$50,000,000 will be considered. A risk with a .OOl probability of a total loss 
of $10,000,000 and a .999 probability of no losses will be used. 

The indifference premium for v is the solution of: 

v(a) = .OOl v(a + g - 10,000,000) + .999 v(a + g) 
or l/(1 + alO-‘) = .OOl/((a -t g)lO-‘) + .999/(1 + (a + g)lO-‘). 

For selected values of a the equation can be solved for g algebraically. In 
fact, g = - a + (10’/2c)(l - c + ((1 + c)’ + .004 c)“*) where c = (1 + 
lo-‘a)-‘. The similar equation for u may be solved iteratively. The indifference 
premiums are shown below. 

Surplus U V 

20,000,000 13,422.56 14,988.78 
50,000,000 11,101.62 11,997.13 

Two such independent risks would have a .OOOOOl probability of 
$20,000,000 in losses, a .001998 probability of a single $10,000,000 loss, and 
a .998001 probability of no losses. Thus for u, the indifference premium g is 
the solution of: 
u(a) = .OOOOOl u(a + g - 20,000,OOO) + .001998 u(a + g - 10,000,000) + 

.998001 u(a + g). 

This and the corresponding equation for v can be solved iteratively to yield: 

Surplus U V 

20,000,000 26,889.03 29,985.23 
50,000,000 22,203.42 23,994.49 

As would be anticipated, the less wealthy company needs a higher premium 
to take on these risks. Also, contrary to what might be expected from pooling 
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considerations, the premium for two independent risks is somewhat more than 
twice the premium for a single risk in these cases, especially for the smaller 
company. This may be realistic in this case because the risk loss is a substantial 
proportion of surplus and two losses will nearly bankrupt the company. Since 
the coefficient of variation of the two independent risks is lower than that of a 
single risk, premium calculation principles based on the standard deviation (or 
variance) of the aggregate loss distributions would not capture this effect. It 
would be nice to have an example of a case where a pooling benefit were 
shown. This would probably require the specification of utilities of negative 
wealth. The benefit of pooling might be to reduce the surplus needed per risk 
at a given price; i.e., for a fixed ratio g/E(L), the ratio of needed surplus to 
number of risks may decrease with the addition of independent risks. 

The consideration of simplified situations such as those above can help 
determine a utility function. The indifference premium for a portfolio of real 
business can be calculated by these same principles from the utility function 
and the probability distribution function of aggregate losses, although the cal- 
culation will be more intricate for a continuous loss distribution function. An 
example is given in Appendix 2. 

Spreading a portfolio premium to the individual risks is unfortunately a 
somewhat arbitrary process in this context. Possibilities include spreading in 
proportion to expected losses or finding the exponential utility function that 
gives the same overall portfolio premium, and using that to determine the 
individual insured’s premium. 

The expected value method does not differentiate contracts by hazard, and 
thus is probably most appropriate when the riskiness is fairly homogeneous. 
Exponential utility will give such a differentiation, but this may be somewhat 
artificial. In the typical situation, where individual insureds are not independent, 
due to common parameter risk, even the exponential utility premiums will not 
add up to the portfolio premium. Spreading premium to individual insureds in 
a realistic way is a problem that merits further research. 

An elegant suggestion has been presented by Borch [2]. He recommends 
calculating the premium for the random loss variable X by the formula 
(1 + i) E(X) + j cov(X,L), where L is the portfolio aggregate loss random 
variable. This formula gives premiums that add up to the portfolio premium 
even when risks are not independent. An example is discussed in Appendix 2. 

The selection of a realistic utility function requires careful consideration of 
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the implications of this choice in comparison with the judgments the function 
aims to model. Starting with functions that meet certain general criteria and 
then examining how they perform in simplified situations can help in this 
process. The Weibull and Pareto distribution functions provide forms that meet 
all the criteria discussed herein, although the extension to negative wealth 
deserves further attention. A practitioner would need to consider specific param- 
eter values and decide which, if any, are appropriate for a specific application. 
The rewards of this effort would be a procedure for evaluating diverse risk 
situations from a consistent perspective. 
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APPENDIX 1 

RISK AVERSION EXAMPLE 

Consider two utility functions u(x) = 1 - exp(-x/b) and v(x) = 1 - 
exp(-(x/b).5), which have the ra(x) functions l/b2 and (1/2b)(b/~).~( 1 + (b/x).‘) 
respectively. Thus, u has constant risk aversion and v has decreasing risk 
aversion. 

Now it is easy to show for u that decisions do not depend on the current 
wealth: some algebraic manipulation yields E(u(a + L)) = 1 - exp(-al 
b)E(exp(-L/b)) for any wealth level a and risk situation L. This is greater than 
u(a) if and only if E(exp(-L/b)) is less than unity; thus, preferences are inde- 
pendent of wealth. 

However, for v this is not true. The acceptance of risk will in fact increase 
as wealth increases. Consider a risk which will yield a profit of $11,750 with 
90% probability and a loss of $100,000 with 10% probability. This is examined 
at two levels of wealth, a = $1 ,OOO,OOO and a = $5,000,000, below. A value 
of 1 ,OOO,OOO is selected for b. 

a. 1 ,ooo,ooo 5,000,000 
u(a): .632121 .99326205 
u(a + 11,750): .636418 .99334076 
u(a - 100,000): .593430 .99255342 
E(u(a + L)): .632119 .99326203 
v(a): .632121 .893122 
v(a + 11,750): .634269 .893402 
v(a - 100,000): .612749 .890693 
E(v(a + ~5)): .632117 .893131 

Thus for u, the risk is rejected at every wealth level, while for v it is rejected 
at a = 1,000,000 and accepted at a = 5,000,OOO. 

Now, if one wanted to stay with exponential utility because of its easier 
calculations, one could change b to 5,000,OOO when a changed. This would 
lead to the acceptance of the risk at the higher wealth level. However, the 
situation at this level is similar to a choice between L + !$4,000,000 and 
$4,000,000 certain at the lower wealth level. In fact, with the fixed value b = 
1 ,OOO,OOO, v will evaluate this choice at a = 1 ,OOO,OOO the same as L versus 
zero at a = 5,000,OOO. However, u with the changed parameter will evaluate 
them differently. 
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APPENDIX 2 

PREMIUM CALCULATIONS 

In this Appendix the indifference premium is calculated for a continuous 
aggregate loss distribution with a stop loss cover. The insurer has $50 million 
of surplus and the utility function v(x) = 1 - (1 + lo-‘x)-l. The aggregate 
losses, L, to be insured are transformed gamma distributed [7] with mean, 
coefficient of variation, and coefficient of skewness of $50 million, .363, and 
.406 respectively. The density function is taken in the form fix) = (ab/(r - 
l)!)(bx)“‘-‘exp(-(bx)“), where (r - l)! denotes the gamma function evaluated 
at r. This gives E(X”) = (r - 1 + nla)!/b”(r - I)!. The moments given arise 
whena=r=2andb-’ = 37,612,639. This distribution is a bit more dangerous 
than would arise in many property-casualty insurance lines with that much 
volume, but not exceptionally so. It could represent one of the more risky 
liability lines. 

Stop loss insurance with a $100 million retention is proposed, so negative 
surplus would not be possible if at least $50 million is charged. The indifference 
premium for the retained business is desired. This will be the solution g of: 

v(a) = E(v(a + g - L)) or 
1 - (1 + lo-‘a)-’ = 1 - E((1 + lo-‘(a + g - L))-‘), or 
(1 + lo-‘a)-’ = E((1 + lo-‘(a + g - L))-‘), or 
l/6 = E((6 + h - lo-‘L)-‘), where h = IO-‘g. 

Because of the stop loss, any loss greater than $100 million will be cut off at 
$100 million in computing this expectation. Thus the equation for g becomes: 

IOOM 

l/6 = .m a!x 
6 + h - 10 

where j(x) = 2x3b4exp (- (bx)2). 

Now Pr (L 5 100M) = .00687 can be calculated via the incomplete gamma 
function [7], and so we seek h, the solution of: 

1OOM 

-= .fw~ 

6 + h - lo-‘x’ 

By numerical integration and iteration, h = 5.6568 can be found, yielding 
the indifference premium g = $56,568,000. This calculation can be done by 
computer or a good programmable calculator. 
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To apply Borch’s formula to distribute this premium to individual insureds 
we must first choose constants i and j so that (1 + i)E(L) + j var(L) = g. Then 
the premium for an insured with random loss variable X will be (1 + I’)E(X) + 
j cov(X,L). These will add up to g since cov(X + Y,L) = cov(X,L) + cov(Y,L) 
and cov(L,L) = var(L). 

One way to select i and j might be to first select i as a desired profit load 
for a hypothetical insured that does not contribute to the overall portfolio 
variance, i.e., for which cov(X,L) = 0. Then j can be solved for from g and 
;he moments of L. Thus suppose i = .02 is selected. Then j = (g - 1.02 E(L))/ 
w(L). 

For instance, suppose that in the above example g = $60,000,000 were 
calculated for the case where the stop loss is removed. (This calculation would 
require specification of v(x) for x < 0.) Since E(L) = 50,000,OOO and var(L) 
= 3.3 X 1014, j = 9,000,000/3.3 X lOI = 2.7 X IO-* can be computed for 
this case. 
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TRANSFORMED BETA AND GAMMA 
DISTRIBUTIONS AND AGGREGATE LOSSES 

GARY VENTER 

Abstract 

Distribution functions are introduced based on power transformations of beta 
and gamma distributions, and properties of these distributions are discussed. 
The gamma, beta, F, Pareto, Burr, Weibull and loglogistic distributions ares 
special cases. The transformed gamma mixed with a gamma yields a transformed 
beta. 

The transformed gamma is used to model aggregate distributions by match- 
ing moments. The transformed beta is used to account for parameter uncertainty 
in this model. Calculation procedures are discussed and APL program listings 
are included. 

The transformed gamma is compared to exact methods of computing the 
aggregate distribution function based on the entire frequency and severity dis- 
tributions. 

INTRODUCTION 

For pricing aggregate covers it is useful on occasion to have a way to 
estimate the distribution function for aggregate losses from the moments of this 
distribution. The usual approximation methods are designed primarily to cal- 
culate percentiles of the far right tail for mildly skewed distributions (e.g., see 
Pentikainen [9]). The gamma distribution has been suggested for this purpose 
(e.g., Hewitt [7]). However, the skewness of the gamma is always twice the 
coefficient of variation (see Hastings & Peacock [6]). Adding a third parameter 
to the gamma has been suggested by Seal [IO], but the added parameter shifts 
the origin, sometimes resulting in the possibility of negative losses, which is 
often unsatisfactory. The transformed gamma distribution offers an alternative 
third parameter that affects the shape of the distribution but not its location. 

The transformed beta and its special cases could be tried in this regard, also. 
However, its principal application herein is to deal with one kind of parameter 
uncertainty in the transformed gamma. The distributions are introduced below 
and then applications are discussed for each. 
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TRANSFORMED GAMMA AND TRANSFORMED BETA DISTRIBUTIONS 

Transformed Gamma 

The gamma function at r is defined as r(r) = E t’-‘e-‘dt. The percentage 
of this integral reached by integrating up to some point x defines a probability 
distribution, i.e., the probability of being less than or equal to x. The gamma 
distribution usually is given by adding a scalar transformation of the variable; 
i.e., the probability of being less than or equal to x is given by the percentage 
of the integral that occurs up to )cr for some positive number A. The transformed 
gamma distribution adds a power transformation; i.e., the cumulative probability 
is given by: 

G(x;r,a,h) = Pa tr- ‘e-‘dt 

Ur) 

This distribution will be considered below as a model for aggregate losses 
although it may be a reasonable candidate for severity distributions as well. As 
it has three parameters it can match three moments of the distribution being 
modeled. 

The gamma and exponential distributions are special cases given by 01 = 1 
and cx = r = 1 respectively. The Weibull distribution is also reached by taking 
r = 1. Thus the transformed gamma distribution provides a common general- 
ization of the gamma and Weibull distributions and offers the possibility of 
improved fits whenever either have been found approximately suitable. 

The moments are given by 

and the moment distributions 

$$x”dG, 
EW”) 

are given by G(a; (r + (nla),a,h). The probability density function is 

ax 
g(x,r,wV = I (W 

or- le-(hr)a 

These formulas require n > - w but not necessarily an integer. 
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Finding parameters r, 01, and A from data involves the solution of non-linear 
equations whether matching moments or maximum likelihood is used. These 
equations can be quite readily solved by numerical means, e.g., Newton- 
Raphson iteration, as discussed more fully in Appendices A and B. 

To match moments it has proven quite practical to solve for OL and r using 
the known (e.g., known from sampling or calculated from frequency and se- 
verity) coefficients of variation and skewness, which do not depend on A, in a 
system of two equations in two unknowns, and then to solve for A using the 
mean. Handy equations are: 

CV2 + 1 = T(r + 2/o) T(r) t T(r + W2, and 
(SK x CV3) + 3cV2 + 1 = I+ + 31~4 Q-j2 + r(r + I/Ix)~, 

where CV is the coefficient of variation and SK skewness. See Appendix A for 
a discussion of how to solve this system. 

Maximum likelihood techniques are discussed in Appendix B. 

Once the parameters r,oL, and A have been estimated, the expected losses, 
higher moments, and percentiles of the aggregate layer from a to b can be read 
from the distribution. For example, expected losses for the layer are expected 
losses excess of a less expected losses excess of 6. Define f?(a) to be the ratio 
of expected losses excess of a to all expected losses, i.e., 

It is not difficult to show that 

R(a) = 1 - w - & (1 - G(a)) 

So far this is valid for any positive distribution G. Now using the moment 
ratio property of the transformed gamma: 

R(a) = 1 - G(a;(r + (I/a)), a,A) - ,,p::‘&, (1 - G(a;r,d)). 

Thus, if we knew how to compute the probability distribution function G, the 
aggregate layer expected losses would follow immediately. G can be calculated 
using numerical integration, but there is a series expansion for the incomplete 
gamma function that is also fairly quick to use. The incomplete gamma function 
is defined as 
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fG(x;r) = 
i 

x 
fete-’ dr + r(r). 

0 

Then G(x;r,a,A) = IG((Ax)“;r). From Abramowitz and Stegun [l] formula 
6.5.29 (page 262) the expansion 

-1 r-l - i 
fG(x’r) = e I$) -XI-I- i=. k=O r T k 

can be derived. From 30 to 200 terms of this sum generally give acceptable 
accuracy. Exhibit 1 lists an APL program for IG. 

For cases where the expected number of losses is low, there is a non- 
negligible probability that no losses will occur. The transformed gamma can not 
account for this because it is an entirely positive distribution. An alternative is 
a point mass at zero with the conditional probability on losses greater than zero 
being modeled by a transformed gamma. The probability of no losses can be 
computed from the frequency distribution. Formulas for computing the moments 
of the positive (conditional) distribution from the moments of the entire loss 
distribution and the probability of having a loss are given in Appendix C, along 
with standard formulas for computing aggregate moments from those for fre- 
quency and severity.. 

Example 

Professional liability losses limited to $1 million per occurrence for a small 
group of hospitals are believed to have expected losses of $219,316 with 
coefficients of variation and skewness of 1.550 and 2.510 respectively and a 
probability of .I23 of no losses. The aggregate expected losses excess of $1 
million will be calculated by the above method. 

By the formulas in Appendix C the positive portion of the aggregate distri- 
bution has expected losses of 250,000 and coefficients of variation and skewness 
of 1.409 and 2.344. Using the method in Appendix A gives parameters r = 
.2478, (Y = 1.470, and A = 1.144 X 10m6 for the positive portion. Thus the 
entire distribution has the cumulative probability function Pr(L < x) = .123 + 
.877 G(x; .2478, 1.470, 1.144 X 10b6). The excess ratio at a = $l,OOO,OOO 
can be calculated by the methods above to be .0728 for the conditional positive 
distribution, so the excess expected losses are $18,200 = ,0728 X $250,000 
for this piece and .877 X 18,200 = $16,000 for the entire distribution. 

Transformed Beta 

The beta function B(r,s) may be defined as 
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.f;t’- ’ dt 
N-J) = (t + ,),-c, . 

This is a transformation of the more usual definition 

i 

I 
B(r,s) = u’-‘(1 - u)~-’ du 

0 

accomplished by taking t = u f (1 - u) or u = t + (t + 1). The beta is related 
to the gamma by 

Wud 
B(r,s) = rcr + s) . 

As in the gamma case a distribution function F may .be defined by the partial 
integral, i.e., 

I 

WP)~ 
F(x;r,s,a$) = 

t r-’ dt 
0 

(, + ,),+, + W-d. 

This will be called the transformed beta distribution. Its density is 

flx;r,s,a$> = 
(dp)(x//p)“‘-’ 

B(r,s)(l + (x/f3)“)“” f 

For r = 1 the closed form 

F(x;l,s,cr$) = 1 - ((x/p)” + l)-’ 

results. This is coming to be known as the Burr distribution, and in turn has 
two special cases, namely 01 = I which is the Pareto, and s = 1 which gives 
the log transform of the logistic. As the logistic is like a heavy-tailed normal 
the loglogistic can be thought of as being like a lognormal with heavier right 
and left tails. Its distribution function 

P” F(x; I,1 ,o;p) = 1 - ~ 
x* + p 

is of particularly simple form. 

The case IX = 1, i.e., F(x;r,s, I ,p) is a version of the transformed beta that 
has been investigated for severity applications. This will be called the general- 
ized-F as its special case cx = I, p = s/r gives the F distribution where 2r and 
2s are integers. The Pareto is also a special case of the generalized-F given by 
r= 1. 
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There is an interesting mixture property of the transformed gamma that 
generates a transformed beta, namely that with a population of transformed 
gamma random variables with fixed r and (Y, and with the transformed scale 
parameter A” itself gamma-distributed across the population, the compound 
process of picking a variable from the population, then taking a realization of 
that variable, is a transformed beta process. This ,i,s proved in Appendix D. 
Several corollary statements follow by taking the special cases of the transformed 
gamma (i.e., Weibull, gamma, and exponential) and mixing by a gamma, viz., 

(a) Weibull mixed by gamma yields Burr; 
(b) Gamma mixed by gamma yields generalized-F; 
(c) Exponential mixed by gamma yields Pareto; 
(d) Weibull mixed by exponential yields loglog/stic. 

Exhibit 2 diagrams this situation. 

Robert Hogg proved (a), (b), and (c) and Gary Patrik indepen- 
dently proved (c). The transformed beta and gamma distributions originally 
were developed in order to unify these results. Robert Miccolis pointed out that 
the generalized-F is a ratio of two gamma variates’. This suggested the result, 
proved in Appendix E, that if X is transformed betA with parameters r, s, OL, p, 
then l/X is also, with parameters s, r, ct, PM’. 

If X is transformed beta in r, s, (Y, B then 

E(X”) = p” B(r + nlcx, s - n/a) + B(r,s) 

if --(Yr < n C 0~s and non-existent otherwise. This is an example of a distribution 
with unbounded moments for n 2 01s which artses in a natural way as a 
combination of distributions with all moments finite. For OL = 1 (generalized- 
F, Pareto) the moments simplify to 

p-nE(xn) = (r) (r + 1) X . . . (r + n - 1) 1 n r+i-1 
(s - 1) x (s - 2) . * . (s - j) = ,; S-i 

This makes methods of moments parameter estimation quite simple for this 
special case. Maximum likelihood parameter estimation for the transformed beta 
is similar to that for the transformed gamma as covered in Appendix H. Loss 
severity distributions also have been fit by the t(ansformed beta and gamma 
distributions by matching sample and formula values of the excess ratio R(a) 
in a manner similar to that in Harwayne [S]. 

As with the transformed gamma, the moment distributions are of the same 
form as the original distribution, in fact 
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i 

II 

x” dF, + E(X”) = F(a;r + n/a, s - nlcx, (Y, p). 
0 

Thus, as with the transformed gamma, a calculation of excess losses can be 
made if the cumulative distribution can be calculated. This has proven to be 
most practically accomplished through numerical integration. Appendix F dis- 
cusses one method. The moment distribution formulas for the transformed beta 
and gamma show that the Burr and Weibull moment distributions do not main- 
tain the original form, i.e., r = 1. 

The mixture derivation of the transformed beta provides an interesting way 
to deal with so called “parameter risk.” It is fairly plausible that aggregate 
losses for a given company (insured or insurer) are distributed transformed 
gamma and that the shape parameters r and OL are fairly well known and stable 
but because of uncertain trend (or other factors) there is substantial uncertainty 
about the scale parameter A, which relates to the overall level of expected 
results. If A” is gamma distributed in s and y then the overall aggregate 
distribution is transformed beta in r, s, ct, p where B = y”O. It also is not 
difficult to show that A* is gamma in s, (Y means that A is transformed gamma 
in s, OL, B (see Appendix G). Thus it can be concluded that if aggregate losses 
are transformed gamma in r, (Y, A where A is unknown but is itself transformed 
gamma in s, IX, B (same a) then the aggregate losses are transformed beta in 
r, s, a, P. 

In theory it would be a great coincidence if the uncertainty about A had the 
same parameter CY as did the aggregate losses themselves. As a practical tech- 
nique for quantifying this uncertainty, however, it should not be too burdensome 
to use the rx already in hand for aggregate losses. There will still be two 
parameters, s and B, available to match to the uncertainty the analyst feels is 
inherent. 

There are several ways in which s and B could be determined. Different 
values could be tried and the 25th, 50th, and 75th percentile A calculated for 
each, with the corresponding percentile of aggregate expected losses 
r(r + l/o) + AT(r) following. These can be compared with the uncertainty 
that seems inherent in the overall level of losses. The latter uncertainty can be 
estimated by trying to combine the uncertainties in the trend, development, and 
other factors used to estimate the overall level. The regression statistics used in 
developing these factors may be helpful if regression was used. 

Another approach to measuring the distribution of A is using industry loss 
ratios. Expected losses for an aggregate loss distribution with cdf G(x;r,a,A) 
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are r(r + (l/a)) f Al+). Thus, for fixed r,a, the reciprocal of the aggregate 
losses, and thus the reciprocal of the loss ratio, is proportional to A. Therefore 
if A is unknown but is a realization of a random variable A which is transformed 
gamma in s, LX, p, where (Y is fixed, the shape parameter s can be estimated by 
looking at the historical distribution of loss ratio reciprocals. This would measure 
some of the variation that would occur even if A were known, however. An 
alternative is to look at some broader base of comparable experience, such as 
the line for the industry or state or class in question where the process variance 
is minimal and hence the principal source of variation is the parameter uncer- 
tainty. Depending on the similarity between the company in question and the 
broader base as to projection methods for trend and loss development, the 
stability of the historical data base, and so forth, this approach may give a 
reasonable estimate of the parameter uncertainty. 

Estimating p !hen could proceed by matching the formula E(l/A) for the 
transformed gamma distribution to the expected value of l/A calculated for the 
year and company in question. For A with cdf G(A;s,o,B) the E(lIA) is 
p r+ - lh) + r( s ) f rom the transformed gamma moment formula. 

Borrowing loosely from our earlier example, suppose a malpractice risk has 
aggregate losses distributed according to the transformed gamma with r = .2478, 
(Y = 1.470 and E( l/A) = 1 + (1.144 X 10e6), where A is transformed gamma 
in s, 1.470, p. Suppose the previous four years of industry malpractice expe- 
rience produced loss ratios of .505, .750, 1.001, and 1.357, which have recip- 
rocals 1.980, 1.333, .999, and .737. The reciprocals average 1.262 and have 
an unbiased sample standard deviation estimate of .5370 for an estimated CV 
of .4255. The formula 

1 + CV’ = r(s + 2/o) r(s) t r(S + l/o)2 then becomes 

1.181 = qs + 1.36) rcs) + rys + .68)2, 
which can be solved numerically to find s = 2.597. Then 

1 + 1.144 x 1O-6 = E(lIA) = p r(s - l/a) + r(s) 
= p r(2.597 - .68) + r(2.579) 

can be solved directly to yield B = 1,288,500. From the transformed 
r = .2478, s = 2.597, (Y = 1.470, p = 1,288,500 expected losses of 

beta in 

P r(r + w us - l/d = 250 ooo 
r(r) Us) 

9 

can be calculated, confirming the calculation of B. 
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The expected losses excess of $1 million in the aggregate increase substan- 
tially when this additional uncertainty is included. For this transformed beta an 
excess ratio of .1348 can be computed at $1 ,OOO,OOO which yields excess 
expected losses of $33,700 compared to .0728 and $18,200 for the transformed 
gamma. 

The great disparity between these figures comes from the wide divergence 
in loss ratios in the period studied. If the uncertainty in A really is so great that 
next year’s loss ratio for the whole industry can come out anywhere in the range 
.50 to I .35, then there is a much greater chance that total losses for a small 
segment of the industry will exceed the target $1 million. 

For other more stable lines a similar analysis would show a much smaller 
difference. In those cases there is a danger that the potential variation in level 
would be understated by looking at industry loss ratios. Swings in calendar year 
ratios may be dampened by reserve changes. Also, a particular sector of the 
industry would probably have wider variation than the total industry in the 
degree to which the proper level could be projected. This would be important 
if the company under study were concentrated in one area. The selection of the 
parameter s probably should be made with a good deal of judgement because 
of these considerations. 

SUMMARY AND EXTENSIONS 

The above gives a method of approximating the distribution function of 
aggregate losses from the moments of that distribution, based on the transformed 
beta and gamma distributions. Since a distributional assumption is involved, 
the method is likely to be less precise than the exact methods of Adelson [ 111, 
Panjer [ 121 and Heckman and Meyers [ 131. Those methods do, however, require 
more input information, namely the underlying frequency and severity distri- 
bution functions, and they also require substantially more computation. As 
computing becomes faster and less expensive and as good parameterized fre- 
quency and severity distributions become available those methods become in- 
creasingly viable, and the assumption of a distributional form for aggregate 
losses becomes more avoidable. Methods based on moments only are nonethe- 
less of definite value at present. 

The transformed beta distribution is a good candidate for casualty loss 
severity distributions, because it generalizes the Pareto and Burr which have 
been used with moderate success. The problems of trend and development by 
layer of loss have yet to be settled entirely in casualty lines, however, especially 
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with regard to having factors that are independent of distributional assumptions. 
Thus, there currently is a fair amount of uncertainty as to casualty severity 
distributions. 

The transformed gamma may be useful in loss severity, for example, in 
workers’ compensation. Also, the inverse transformed gamma, i.e., the distri- 
bution of Y when X’= 1 f Y is transformed gamma, is a heavy-tailed distribution 
which may have application to casualty loss severity. This distribution function 
is; 

G,CV) = id”*’ ‘F;;;‘+’ dt 

and E(X”) = A” r(r - n/a) + r(r) for n < ra. 

A problem that sometimes arises with maximum likelihood estimation with 
these distributions is that no maximum exists. Usually this happens because the 
maximum likelihood, given OL, increases as OL decreases. After some point the 
increase becomes negligible however. One alternative in this case is to pick a 
“low enough” value of OL and maximize the likelihood fixing that value. This 
usually gives much better fits than the Weibull, gamma, Burr, etc., in these 
cases. 

Another alternative is that there may be other functions that are limiting 
values of these distributions. For instance, in the Burr case, F(x) = 1 - ((xl 
p)” + l)-“, small c1 often leads to large p but with (x/p)” near zero for the 
range of interest, so 1 + (x/p)” is close to e(r’p)” and F(x) is approximately 1 
- e-s(~‘p)o which is a Weibull. Conversely, small p and large OL make (x/p) 
very close to (x/p)” + 1, relatively speaking, so F(x) is approximately 1 - (xl 
p,-““, which is a non-shifted Pareto. Similar relationships may occur for the 
general cases. 

A limitation of the above methods is that the transformed gamma does not 
seem able to take on any combination of moments. For example, it appears that 
the coefficient of skewness must be greater than the coefficient of variation (CV) 
if CV > 1.25. In the gamma case the coefficient of skewness is always twice 
the CV. Thus, the transformed gamma allows a fair amount of departure from 
gamma-ness but not complete latitude. Appendix J discusses this problem and 
suggests alternate approaches. 

Much of the interest in the gamma stems from a 1940 theorem of Lundberg 
[ 141 which shows that under certain conditions the negative binomial frequency 
leads to an approximately gamma aggregate distribution. Since aggregate dis- 
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tributions seem to be positively skewed for the most part, but do not always 
have the skewness double the CV, gamma-like distributions allowing some 
deviation from the gamma are thus appealing candidates for this purpose. 

Exhibit 3 gives the results of a test of the transformed gamma against an 
exact calculation of an aggregate distribution using the characteristic function 
method. The severity distribution is piecewise linear. Approximating the severity 
by a discrete distribution also permits a comparison to the recursive method of 
Adelson and Panjer. Intervals of $500 were chosen for this discrete approxi- 
mation. Details are provided in Exhibit 3. The results show that the two exact 
methods are extremely similar, indicating that not much is lost by the discrete 
approximation to severity. The transformed gamma also is reasonably close over 
a wide range of loss sizes, confirming, at least in this one case, the usefulness 
of this simplifying approximation. 



EXHIBIT 1 

VIG[n]V 
V E+V IG 1;R;X;D 

AINCOMPLETE GAMMA FCT 0 TO X, PARAH R; I IS PRECISION SUGGEST-35 TO 350 
X+VCll 
R+V[23 
+((R>~~)V(~~~CX)VX>~E~~*~R+~)/BIG 
D+((X*(R-l))x*(-X))+!(R-1) 
+END 

F~BIG:R+~E-~~~~~.~+R~~OOOOOOOOOOOO 
FISONETIMES ABOVE LIME NEEDED TO AVOID TRUNCATION PROBLEMS 
BIG:D+(X*~~R)~(X/X~(*XSIR-~)~R-~)~R-I~R-~)~:~~R 
END:E+Dx+/x\XfR+-l+lI 

V 

c51 
[61 
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EXHIBIT 2 

TRANSFORMED GAMMA MIXED BY GAMMA 

WITH SPECIAL CASES 

em 

t 
r-l e-’ dt 

(Transformed Gamma) 

I r= 1 

, _ e-R*a 

(Weibull) 

1 
-I 

ox 
r-l 

Ur) 0 t 
e-’ dt 

=3 (Gamma) 

I 
r= 1 

, - e-o+ 

* (Exponential) 

If 8 is distributed Gamma in S, y: 
f- 1 dt Wl3) 

(t + 1y+, 

(Transformed Beta) g> (Generalized-F) 

I 
r= I r= 1 

1 - (c@)” + I)-” 
(Bun-) 

1 - (x/P + l)y 
(Pareto) 

where p = y “” 



Aggregate 
Loss 

cmoo) 

25 
50 
75 

100 
125 
150 
175 
200 
225 
250 
275 
300 
325 
350 
375 
400 
425 
450 
475 
500 
525 
550 
575 
600 
625 
650 
675 
700 
725 
750 
775 
800 
825 
850 
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EXHIBIT 3 
PART 1 

AGGREGATE LOSS DISTRIBUTIONS 

COMPARATIVE SUMMARY 

Characteristic 
Function Method 

Recursive 
Method 

Cumulative 
Probability 

.0508 

.I291 

.2009 

.2676 

.3289 

.3843 

.434l 

.4788 

.5189 

.5548 

.6034 

.6556 

.7008 

.7405 

.7749 

.8047 

.8303 

.8524 

.8714 

.8878 

.9045 

.92Ol 

.9332 

.9442 

.9534 
,961 I 
,967s 
.9728 
.9773 
.9810 
.9844 
.9873 
.9897 
.9916 

Excess 
Ratio 

.9016 

.8107 

.7273 

.6507 

.5806 

.5163 

.4573 

.4030 

.3529 

.3066 

.2642 

.2273 

.I951 

.I672 

.I431 

.I221 

.I039 

.0880 

.0742 

.0622 

.0518 

.0430 

.0357 

.0296 

.0245 

.0202 

.Ol67 

.0137 

.Ol I2 

.0091 

.0074 

.0060 

.0048 

.0039 

Cumulative 
Probability 

.0516 

.I298 

.2015 

.2683 

.3295 

.3848 

.4346 

.4793 

.5193 

.5552 

.6040 

.656l 

.7013 

.7408 

.7752 

.8049 

.8305 

.8526 

.8716 

.8879 

.9047 

.9203 

.9333 

.9443 

.9535 

.96l I 

.9675 

.9729 

.9773 

.98lO 

.9844 

.9873 

.9897 

.9916 

Excess 
Ratio 

.9016 

.8107 

.7272 

.6507 

.5806 

.5163 

.4573 

.4029 

.3529 

.3066 

.2642 

.2273 

.I951 

.I672 

.I431 

.I221 

.I039 

.0880 

.0742 

.0622 

.0518 

.0430 

.0357 

.0296 

.0245 

.0202 

.Ol67 

.Ol37 

.Ol I2 

.OO91 

.0074 

.0060 

.0048 

.0039 

169 

Transformed 
Gamma 

Cumulative Excess 
Probability Ratio 

.062l ,903 I 

.I260 .8125 

.I895 .7283 

.2520 .6503 

.3129 .5786 

.3717 .5129 

.4280 .4529 

.4817 .3984 

.5324 .349l 

.5801 .3047 

.6245 .2650 

.6658 .2295 

.7039 .I981 

.7388 .I702 

.7707 .I457 

.7995 .I243 

.8255 .I055 

.8488 .0893 

.8696 .0752 

.888l ,063 I 

.9043 .0528 

.9186 XI439 

.93lO .0364 

.9418 .03Ol 

.95ll .0247 

.9592 .0203 

.9660 .Ol65 

.9718 .Ol34 

.9768 .OlO9 

.9809 .0088 

.9844 .0070 

.9873 .0056 

.9897 .0045 

.9917 .0035 
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EXHIBIT 3 
PART -2 

AGGREGATE LOSS DISTRIBUTIONS 

COMPARATIVE ASSUMPTIONS 

Frequency: Poisson A = 13.7376 
Piecewise Linear CDF 

Limit 

ww 

1 
5 
6 
7 
8 
9 

10 
12.5 
I5 
17.5 
20 

Cumulative Limit 
Probability WO) 

.38935 25 

.77870 35 

.78438 50 

.7898l 75 

.79498 100 

.79993 125 

.80466 I50 

.81564 I75 

.82553 200 

.83449 225 

.84264 250 
Discrete PDF 

Cumulative 
Probabilitv 

.85690 

.87927 

.90280 

.92739 

.94256 

.95277 

.96009 

.96556 

.96979 

.97316 

.97590 

Amount 

500 
1000 
1500 to 4000 
4500 
so00 
5500 to 249,000 

at each N = 500k 
249,500 
250,000 

Probability 

.38326640625 

.0304 1796875 
&I866875 each 500 
.05473 1628 
.019691497 
Piecewise linear probability 

from N - 250 to N + 250 
.0000685 
.0241137 

Moments 

Severity 
Aggregate 

Mean Coefficient of Variation 

18,198 2.6600 
250,600 .7667 

Coefficient of 
Skewness 

3.6746 
I .0744 

Transformed Gamma Parameters 

r : .5613125 
a : 1.8300318 
A : 1 + 417896.414 
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APPENDIX A 

SOLVING TWO EQUATIONS 

Many systems of two equations in two unknowns, including the transformed 
gamma moment system in the text, can be solved by Newton-Raphson iteration, 
with the partial derivatives taken numerically. The numerical partial derivative 
of f(x,y) with respect to y, for example, is (flx,y(l + A)) - fl.~,y)) + yA, 
where A is a small number; e.g., lo-‘. Because of limits to computer accuracy, 
A. should not be too small, e.g., A = 10m5’ would be too small for most 
computer installations. This method is quite useful when the partials are not 
available in closed form or are excessively intricate. 

Givenf(x,y) and g(x,y), initial estimates xo and yo and derivativeskc, IV, g,, 
g, the iteration proceeds by setting 

Xi+, = Xj - (fg.v - gLJ + cfxs, - &fJ 
yi+ I = yi - (gfx - fgx) + (j&y - g.&> 

where the functions and derivatives are evaluated at (xi,y;). See Conte and de 
Boor [3] page 86 for details. 

Exhibit Al gives an APL system for this procedure. The user interactively 
defines the equations to be solved. Any user-defined functions may be called in 
this process. A sample run of the system is shown in Exhibit A2. 



EXHIBIT Al 
PAGE 1 

VDELUXENRCUIV 
V DELUXENR;AA;AB;LOOPTOL;DELTOL;MODEFLRG;PFQA;PFQB;PGQA;PGQB 

cl1 AWRITTEN BY STAN STIEFEL 
CZI ‘SPECIFY ONE FUNCTIOI~AL RELATION. . .’ 

c31 ‘USE THE VARIABLE NAllES A AIlD B FOR THE UNKNOVNS.’ 
‘FQ’ EIAKEFX D 
‘SPECIFY THE OTHER RELATION’ 

C61 ‘GQ’ HAKEFX PI 
c71 ‘EHTER INITIAL VALUE FOR A’ 

C81 A+ti 
c91 ‘EIITER INITIAL VALUE FOR B’ 

cl01 B+[7 
cl11 MODEFLAG+lt,DELTOL-DELTOL+LOOPTOL+O.OOOOl 

‘IiOULD YOU LIKE TO USE DEFAULT CONDITIONS (0)’ 
‘OR SEE A HENU OF OPTIONS (1). . .O OR 1’ 

cl41 ~b/'I.lEl?Ll' 
cl51 LP:PARTIALS DELTOL 
cl61 A+A-AA+(DET(2 2 p(A FQ B).PFQE.(A GQ B).PGQE))‘DET 
cl71 t:IODEFLAG/'PARTIALS DELTOL' 
:;;; B+B-AB+(DET(2 2 pPFQA.(A FQ B).PGQA.(A GQ B)))+DET 

+(v/L~~PT~L<I(AA,AB)~(A.B)+O=A,B)/LP 
‘;B 

V 

VIIAKEFXCCl1V 
V NAME NAKEFX RELAT;X;TITLE 
+(O=‘=‘cRELAT)/DID 
RELAT[RELATt’=‘l+‘-’ 

DID:TITLE+‘RSLT’,NANE,‘+A ‘.NAIHE.’ B’ 
RELAT+‘RSLT’,NAHE.‘+‘,RELAT 
RELAT+RELAT.(O.SxX+IX+(pTITLE)-pRELAT)p’ ’ 
TITLE+TITLE.((pRELAT)-(pTITLE))p’ ’ 
OWA+nFX TITLE.CO.51 RELAT 

V 

(2 2 pPFQA.PFQB.PGQA.PGQB) 

(2 2 pPFQA.PFQB.PGQA.PGQB) 
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PAGE 2 

VNENU[OlV 
V NENU 
'FOR PURPOSES OF TAKING NIJIIERICAL DERIVATIVES, FUIlCTIONS WILL BE EVALUATED AT A. A-AA. B. B-AB,' 
‘AA AND AB ARE SPECIFIED AS FRACTIONS OF A AAD D. . .lE-5 IS TUE DEFAULT. PLEASE SPECIFY THE FRACTION.' 

c31 

;:3 
C61 
c71 
is1 
c91 
Cl01 
Cl11 

Cl1 

E:; 
C&l 

Cl1 

DELTOLd 
‘ITERATION I!ILL BE CONSIDERED COMPLETE YUEN BOTR A AND B RAVE CKALiGED BY LESS THAN SOME FRACTION OF THEWSELVES’ 
'DEFAULT IS lE-5. PLEASE SPECIFY TllE FRACTION.' 
LOOPTOL+O 
'SEQUENCE OF CALCULATION CAN BE EITUER OF TOO OPTIONS' 
'(0) GET PARTIALS. GET UE" A. GET NEY C.' 
'(11 GET PARTIALS, GET NEW A. GET PARTIALS, GET NEW B.' 
'DEFAULT IS 0. PLEASE SPECIFY 0 OR 1.' 
lIODEFLAC+O 
V 

VPARTIALSCOIV 
V PARTIALS XXXX:Z 
PFQA+((A FQ Bl-((A-2) FQ BlltZtlE-lOrIZ+XXXXxA 
PGQA+((A GQ B)-((A-Z) GQ B)liZ 
PFQB+((A FQ B)-(A FQ(B-Z)))tZclE-lGrIZ+XXXXxB 
PGQB+((A GQ B)-(A GQ(B-Z)))tZ 
V 

VDETCOlV 
V Y+DET X 
Y+(xcl;llxxc2;23)-xcl;2lxxc2:ll 
V 
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EXHIBIT A2 

vcvc01v 
V Y+A CV R 

cl1 Y+(!-l+R)x(:-l+R+2SA)+(!-l+R++A)*2 

c21 Y+(Y-1)*0.5 
V 

VSKWCUlV 
V Y+A SKW R 

Cl1 Y+( ( :- l+R)*2)X(:-l+K+3tA)+(:-l+R++A)*3 

c21 Y+Y+2-3x(:-l+R)x(!-l+R+2iA);(!-l+R++A)*2 

c31 Y+Yt(A CV II)*3 
v 

DELUXENR 
SPECIFY ONE FUNCTIONAL RELATION. . . 
USE THE VARIABLE NAMES A AND B FOR THE UNKNOWNS. 

(A CV B)=1.409 
SPECIFY THE OTHER RELATION 
(A SKC! B)=2.344 
ENTER INITIAL VALUE FOR A 
ii: 

1.2 

ENTER INITIAL VALUE FOR B 
II: 

.3 

WOULD YOU LIKE TO USE DEFAULT CONDITIONS (0) 
OR SEE A MENU OF OPTIONS (1). . .OOR 1 

ill: 
0 

A : 1.41 B: 0.2478 

A CV B 
1.400 

A SKU B 
2.344 

Cl1 

E:3 

c41 
c51 
C61 
[‘II 
[Sl 
c91 

V Y+A SKEN2 R 
N+t-l+R++A 
M+(-tN)+R++A 
o+:(-N+~)+R+~A 
S+(-tIi)+R+3fA 

T+:(-N+l)+R+3tA 
U+(x/S+M)x(T+O) 
Y+((! -1+R)*2)xUi(:-l+R++A)*2 

Y+Y+~-~x(~-~+R)x(!-~+R+~+A)+(:-~+R++A)*~ 
Y+Yi(A CV R)*3 
V 
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APPENDIX B 

MAXIMUM LIKELIHOOD FOR THE TRANSFORMED GAMMA 

Maximum likelihood in the case where there are no problems of truncation 
or censorship of the sample reduces to one non-linear equation to solve for (Y, 
then linear equations for r and A. The OL equation is somewhat intricate but is 
solved easily numerically. Given a sample yi, i = 1 to n, the likelihood function 
is 

L(r,o,h) = fi c~h~~y~-’ e-(hyi)n + T(r) and 
i=l 

In L(r,ol,X) = n In OL + n OL r In A - n In T(r) 

Setting the partial derivatives of this to zero, and denoting the derivative of 
In T(r) by rJ~(r) yields the likelihood equations: 

+ (ar - 1) C In y; - A” i y?. 
i--l 

Substituting for r in (a) via (b) gives a single equation for OL which when 
solved allows r and A to be calculated from (b) and (c). This is a generalization 
of the method found in Hachemeister [4] for the gamma distribution. Note that 
to solve (a), 

and y” = 1 
n i 

i=l 
y? In Yi9 

must be calculated from the sample at each iteration. 

As suggested on page 152 of Aquino [2], differentiating Abramowitz and 
Stegun’s [l] formula 6.1.34 (page 256) gives the series approximation 

+(z) = r(z) $ kck zk-‘, 
k=l 

where cl to c26 are as shown in Exhibit B 1. This expansion gives more than 13 
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place accuracy on [1,2] and the recursive relation tJ~(l + z) = $(z) + l/z can 
be used outside of this interval. 

To solve equation (a) with (b) substituted for r we have an equationflo) = 
0 wheref is calculable by computer or calculator. This can be solved iteratively 
by numerical Newton-Raphson: 

Start with a guess CXO. Then let 

ait1 = aj - f(W) 
flai (1 + A)) - flai) 

ai 

i.e. (Yi+l = olj 

( 

l- 
A 

.flai (1 + A)) 

Jai) - ' 1 

where A is small, e.g. lo-‘. 

A reasonable starting value o0 usually is given by calculating the sample 
ratio of the coefficient of variation over half the coefficient of skewness,, as this 
is greater, less than, or equal to 1 when (Y is. 

As an alternative, the secant method 

cli+l = CXi - 
Aai> (W - C&-l) 

.!I&) - Jai- I) 

can be used to solve for (Y. This involves only one computation off each 
iteration, so it may be faster than Newton-Raphson iteration. 
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EXHIBIT Bl 
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k 

r 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

SERIES EXPANSION FOR (J(Z) 

I)(Z) = l-(z) kg, kctzk-’ 

ck 

-1.00000 00000 000000 
-0.57721 56649 015329 

0.65587 80715 202538 
0.04200 26350 340952 

-0.16653 86113 822915 
0.04219 77345 555443 
0.00962 19715 278770 

-0.00721 89432 466630 
0.00116 51675 918591 
0.00021 52416 741149 

-0.00012 80502 823882 
0.00002 01348 547807 
0.00000 12504 93482 1 

-0.00000 11330 272320 
0.00000 02056 338417 

-0.00000 0006 1 160950 
-0.00000 00050 020075 

0.00000 00011 812746 
-0.00000 0000 1 043427 
-0.00000 00000 077823 

0.00000 00000 036968 
-0.00000 00000 005 100 

0.00000 00000 000206 
0.00000 00000 000054 

-0.00000 00000 000014 
-0.00000 00000 00000 1 
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APPENDIX C 

AGGREGATE MOMENTS 

A. In terms of frequency and severity moments, assume individual claim sizes 
are independent, identically distributed, and independent of the number of 
claims. 

Let N denote number of claims, X claim size, L aggregate losses, p, the 
mean, u the standard deviation, y the coefficient of skewness, c the coef- 
ficient of variation, and 

N, = E W - mdi 
1 

w . 

Then 

a2 = pAdi + (pxuN)* 

YL.a:. = pNyxd + 3pxcMJ + p&d! 

CT: = &A/&; + N2) 

yL = (yxc: + kiN2 + N3) + l&(c: + N2)’ 

c: = ($ + Nz) + k,.q 

B. Moments of conditional (positive) distribution in terms of moments of entire 
distribution and probability of losses being non-zero 

1 - p when a = 0 
F(a) = Pr (L 5 a) = 0 when a < 0 

(1 -p)+pG(a)whena>O 

Then 

YG=~2y~~:.+(~- lMpc:+p-2) 
Ci 



EXHIBIT Cl 

VCONDITMO[iJlV 
V X+P CONDITMO Q;TERbll;TERH2:COEFVAR;GAMEIA 

cl1 RMRITTEI! DY VICTOR PUGLISI 
I21 R THIS PROGRAII CALCULATES CONDITIOBAL MOIIENTS IN T,!E FORM OF THE COEFFICIENT OF VARIATION (CV) AHD THE SKEUHESS 
c31 R (GAMMA) BASED UPON RISKMODEL OUTPUT FOR THE PART OF THE DISTRIBUTION GREATER THAN 0. !! 
:;; R IT TAKES AS LEFT-HAND ARGUNEUT THE PROBABILITY OF CLAIMS BEING LARGER THA,, 0. 

RISKMODEL OUTPUT FOR EACH LAYER DENOTED BY 
CURRENTLY FOUND AT THE TOP OF THE $ 

'PROEABILITY OF LOSS' AND FOR RIGNT-HAND ARGUUENT REQUIRES A TWO 
C61 : ELEHENT VECTOR CONSISTING OF THE COEFFICIENT OF VARIATION AND THE COEFFICIENT OF SKEUNESS FOR EACH MAJOR GROUP. $ 
l-71 0 THESE ARE FOUND IN COLUNHS 6 AND 9 RESPECTIVELY OF THE RISKNODEL OUTPUT.' u 
CSI COEFVAR+((P.Q111+2)+P-11*0.5 
c91 TERMl+(P*2)xQC2]xQC11+3 
cl01 TERMZ+(P-l).(3xPxQ[ll*2)+P-2 
[Ill CAMNA+(TERHl+TERN2)iCOEFVAR*3 
cl21 X+COEFVAR.GANMA 

v 
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APPENDIX D 

TRANSFORMED BETA IS TRANSFORMED 
GAMMA MIXED BY A GAMMA 

The transformed gamma density function 

can also be parameterized as OL WCF-‘~-~‘~ + T(r), taking 8 = A”. Given a 
family of such random variables with (Y and r fixed and 8 itself gamma distrib- 
uted with parameters s and y, i.e., having density yS V-’ e-” + T(S), then 
the compound process is transformed beta. 

To demonstrate this the density for the compound distribution will be cal- 
culated. This is the probability-weighted average of the densities of the family, 
that at x equals: 

which, after the change of variable + = t3(x* + y), becomes 

= rcr) r(s)(xa + ?)r+s 
r(r + S) 

a-Y” xoLr- ’ 
= B(r,s)(x” f Y),~+’ . 
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Now defining p by y = p” gives for the compound density 

Avis xar- I 
a(r+s) 

p- cx as ar- I x 
B(r,s)(x” -I- pa)‘+” = B(r,s)((x/p)” -t l)‘+’ 

= (Cx./(3)(x@)“‘-’ + B(r,s)((x/P)” + l)‘+’ 

which is the transformed beta density. 

APPENDIX E 

RECIPROCAL OF TRANSFORMED BETA VARIATE IS TRANSFORMED BETA 

Let Y = f where X has cdf F(x;r,s,rx,P). 

Now Y s a s X 2 (l/a) so Pr (Y 5 a) = 1 - Pr (X < (l/a) 

Let u = (l/t); t = (l/u); dt = -dulu*. 

Then Pr(Y 5 a) = 1 + - 
‘-’ du 

(1 +“( l/U)r+S U2 

= jj& j”@“” [(u ;-,;r+s] du 
Therefore Y has cdf f(y;s,r,a, l/p). 



182 BETA AND GAMMA 

APPENDIX F 

NUMERICAL INTEGRATION BY GAUSSIAN QUADRATURE 

Gaussian quadrature is a method of numerical integration that estimates the 
integral by taking a weighted sum of the value of the function being integrated 
at several points. In general 

where 2yi = (b - U)X; + b + a and Wi and Xi are somewhat complex to 
calculate. Exhibits Fl and F2 give Wi and X; for a few values of n. See 
Abramowitz [l] pages 916-919 for others. Hildebrand [8] discusses the math- 
ematical background. 

This approach works best for functions that can be closely approximated by 
polynomials of degree n. 

The integration of the transformed beta distribution function is more accurate 
if two transformations are made. First the mapping u = tl(t + 1) transforms 
the integral to 

I 

m/m + pa 
FW,s,a,P) = [d-’ (1 - u)“-‘1 du + B(r,s) 

0 

which can be taken as the definition of the function IB. However, the approxi- 
mation of this integral by the above quadrature formula is not close for small 
values of r and s, e.g., below 1. A recurrence relation was derived to express 
IB(x;r,s) as a function of IB (X;T + 1, s + I), putting the integral to be solved 
in a more satisfactory area. This relationship is rslB(x;r,s) = ~~(1 - x)” (s - (r 
+ s)x) + (r + s + l)(r + s) IB(x;v + 1, s + l), and was derived by George 
Phillips from Abramowitz’s [l] formulas 26.5.2 and 26.5.16 on page 944. In 
practice this formula is applied thrice to’get to the r + 3, s + 3 level. Exhibit 
F3 gives a series of APL programs which performs the calculation of F(x; 
r,s,CLP). 
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EXHIBIT Fl 

ABSCISSAS AND WEIGHTS FOR n POINT 

GAUSSIAN QUADRATURE 

183 

n=6 

20.23861 ,“;860 83197 
kO.66120 93864 66265 
kO.93246 95142 03152 

kO.14887’ 43389 81631 0.29552 42247 14753 
50.43339 53941 29247 0.26926 67193 09996 
20.67940 95682 99024 0.21908 63625 15982 
kO.86506 33666 88985 0.14945 13491 5058 1 
kO.97390 65285 17172 0.06667 13443 08688 

n= 10 

n=24 

kO.06405 68928 62606 0.12793 81953 46752 
kO.191 I1 88674 73616 0.12583 74563 46828 
20.31504 26796 90163 0.12167 04729 27803 
20.43379 35076 26045 0.11550 56680 53726 
kO.54542 14713 88840 0.10744 42701 15966 
20.64809 36519 36976 0.09761 8652 1 04114 
kO.74012 41915 78554 0.08619 01615 31953 
kO.82000 19859 73903 0.07334 64814 11080 
kO.88641 55270 0440 1 0.05929 85849 15437 
k0.93827 45520 02733 0.04427 74388 17420 
20.97472 85550 71309 0.02853 13886 28934 
k0.99518 72199 9702 1 0.01234 12297 99987 

0.46791 
0.36076 
0.17132 

Wi 

39345 
15730 
44923 

72691 
48139 
79170 
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8 
9 

10 
II 
12 
13 
14 
I5 
16 
17 
I8 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

X Wi X, Wi 

-.999689503883231 BOO796792065552 49 .016276744849603 .032550614492363 
-.998364375863182 .001853960788947 50 .048812985136050 .032516118713869 
-.995981842987209 .002910731817935 51 .081297495464426 .0324471637141X4 
-.992543900323763 .003964554338445 52 .113695850110666 .032343822568576 
-.988054126329624 .005014202742928 53 .145973714654897 .032206204794030 
-.982517263563015 .006058545504236 54 .178096882367619 .032034456231993 
-.975939174585136 .007096470791154 55 .21CO31310460567 .031828758894411 
- .968326828463264 .008126876925698 56 .241743156163840 .031589330770727 
-.959688291448743 BO9148671230783 57 .273198812591049 .031316425596861 
-.950032717784438 .010160770535008 58 .304364944354496 .031010332586314 
-.939370339752755 .011162102099838 59 .335208522892625 .030671376123669 
-.927712456722309 .012151604671088 60 .365696861472314 .030299915420828 
-.915071423120898 .013128229566962 61 .395797649828909 .029896344136328 
-.901460635315852 .014090941772315 62 .425478988407301 .029461089958168 
-.886894517402420 .015038721026995 63 .454709422167743 .028994614150555 
-.8713X8505909297 .015970562902562 64 .483457973920596 .028497411065085 
-.a54959033434601 .016885479864245 65 .511694177154668 .027970007616848 
-.837623511228187 .017782502316045 66 .539388108324357 .027412962726029 
-.819400310737932 .018660679627411 67 .566510418561397 .026826866725592 
-.800308744139141 .019519081140145 68 .593032364777572 .026212340735672 
-.780369043867433 .020356797154333 69 .618925840125469 .025570036005349 
-.759602341176647 .021172939892191 70 .&I4163403784967 .024900633222484 
-.738030643744400 .021966644438744 71 .668718310043916 .024204841792365 
-.715676812348968 .022737069658329 72 .692564536642172 .023483399085926 
-.692564536642172 .023483399085926 73 .715676812348968 .02273706%58329 
-.668718310043916 .024204841792365 74 .738030643744400 .021966644438744 
-.644163403784%7 .024900633222484 75 .759602341176647 .021172939892191 
-.618925840125469 .025570036005349 76 .780369043867433 .020356797154333 
-.593032364777572 .026212340735672 77 .800308744139141 .019519081140145 
-.566510418561397 .026826866725592 78 .819400310737932 .018660679627411 
-.539388108324357 .027412962726029 79 .837623511228187 .017782502316045 
-.51169417715466X .027970007616848 80 .a54959033434601 .016885479864245 
-.483457973920596 .028497411065085 81 .871388505909297 .015970562902562 
-.454709422167743 .028994614150555 82 .886894517402420 .015038721026995 
-.425478988407301 .029461089958168 83 .901460635315852 .014090941772315 
-.395797649828909 .029896344136328 84 .915071423120898 .013128229566962 
-.365696861472314 .030299915420828 85 .927712456722309 .012151604671088 
-.335208522892625 .030671376123669 86 .939370339752755 .011162102099838 
- .304364944354496 .031010332586314 87 .950032717784438 .010160770535008 
-.273198812591049 .031316425596861 88 .959688291448743 .009148671230783 
-.241743156163840 .031589330770727 89 .968326828463264 .008126876925698 
-.210031310460567 .031828758894411 90 .975939174585136 .007096470791154 
-.178096882367619 .032034456231993 91 .982517263563015 .006058545504236 
-.145973714654897 .032206204794030 92 .988054126329624 XI05014202742928 
-.113695850110666 .032343822568576 93 AK'2543900323763 m39645543384.45 
-.081297495464426 .0324471637140&l 94 .995981842987209 .002910731817935 
-.048812985136050 .032516118713869 95 .998364375863182 Xl01853960788947 
-.016276744849603 .032550614492363 96 .999689503883231 .000796792065552 

BETA AND GAMMA 

EXHIBIT F2 

n = 96 
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EXHIBIT F3 
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vrn[ulv 
P l+*x 10 l~u:YI:YZ:Y3:Y4;Y5:A:u 

I ,,RITTEK EY CEORCE PllILLlPS 
n*ne[ll~l ucc 0 
ncdntzl 
Ylc- Itx\(x.l-x)*ns 
uZ*((o-l)*,3)-X~tA+n-2)+2~,3 
Ylc(Xrl-x1* 0 1 2 
Y’+I.x\(A+G-I)*\6 
Y5~n\~l.~a+l~.n*2~~l.~~+l~.8*2 
R*(ln.B).(YI.+/Y2.U3x~4[1 3 51 
v 

Y5[31)~(X 
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APPENDIX G 

RELATIONSHIP BETWEEN GAMMA AND TRANSFORMED GAMMA 

To show: A* is gamma in S, y if and only if A is transformed gamma in 
s,a,p where p = y’l”. 

Note that Pr(A I A) = F’r(A” I Aa) 

= G(h*;s, 1 ,y) 

= 
I 
dA 

a 
f- ’ e-’ dt 

I 

W)’ 
= f-’ e-’ dt = G(X;s,a,P). 

0 
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APPENDIX H 

MAXIMUM LIKELIHOOD ESTIMATORS FOR 

TRANSFORMED BETA PARAMETERS 

Given a sample xl, . . , I,,, fitting the parameters r, s, (Y, and p of the 
transformed beta by maximum likelihood involves finding the maximum of the 
log-likelihood function 

In L(r, s, a, p) = n In T(r + S) + n In 0L + (w - 1) i In Xi 
i=l 

- (ncxr In p + n In T(r) + n In T(S) + (r + S) i ln(1 + x#)~. 
i=l 

As with the transformed gamma let the derivative of In T(X) be denoted $(x). 
Dividing the partials of In L by n and setting to zero gives the following 4 
equations: 

(r): +(r i- s) = *(r) + In(1 + p/Xi)*) 

(S): +(r + S) = JI(S),+ ln(1 + Xi/p)*) 

(a): l/al + r ln(Xilp) = (r + S)(ln(.Xilp))(p/Xi)” + l)-’ 

(p): r = (r + S)(l + (p/Xi)“)-’ 

where the bar denotes the average over the sample of the barred function. 

The (a) and (p) equations are linear in r and s, so they can be solved to 
yield r and s as functions of cx and p. These can be substituted into the (r) and 
(s).equations to give two non-linear equations in two unknowns (a,P) which 
can be solved by the methods of Appendix A. 

An APL system for solving these equations is shown in Exhibit Hl and a 
run with sample data in Exhibit H2. 
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EXHIBIT Hl 

APL PROGRAtiS FOR 
TRANSFORHED BETA KLE 

VNRFN[n]V 
V ABl+V NRFN AB;YA;YB;J;Z 

Cl1 nWRITTEN BY GARY VENTER 
CZI nNE\JToN RAPBSOti ITERATION FOR TRBET PARAb:S. SAMPLE IN V 
c31 ABl+AB 
c41 Z+lE-7 
[5] TOP:AB+ABl 
C63 Y+V FN AB 

YA+V FN(AB[l]xl+Z).AB[2] 
YB+V FN AB[l].AB[2]rl+Z 

c91 YA+(YA-Y)+ZxAB[l] 
[lOI YB+(YB-Y)+ZxAB[L] 
[ll] J+(YA[l]xYBC2])-YAC2]~YB[l] 
[12] ABl+AB[l]-((Y[l]xYBC23)-YC23xYqCll)fJ 
5;;; AB~+AB~.AB[~]-((Y[~]xYA[~])-Y[~]~YAC~~)~J 

‘2 OLD TOLERANCES 2 NEW ' 
Et;; AB.Y,ABl 

'R.S:';R,S 
Cl71 +(~E-~<+/I-~+AB~~AB)/ToP 
[18] U+Y+V FN ABl 
Cl91 'R,S.ALPHA.BETA' 
C203 R,S.ABl 

V 

:‘4; 
c51 
[61 
c71 
C81 
c91 
Cl01 
Cl11 
Cl21 
Cl31 
Cl41 
Cl51 
Cl61 

VFN[U]V 
V Y+V FM AB;D;F;G;H;N;PS;PR;PRS;DL;LL 

RR AND S ARE GLOBALS 
RV A VECTOR OF OBSERVATIONS, AB IS ALPtlA,BETA 
flY IS A 2 VECTOR TRYING TO GET TO 0.0 FOR TBET NLE 

N++pV 
G+V+AB[2] 
li+@G 
D+l+G*-ABEL] 
F+Nx+/HSD 
H+AB[l]xNx+/H 
D+Nx+/+D 
R+-CH-AB[l]xF+D 
ScRx-1-iD 
G+Nx+/@l+G*AB[l] 
PS+SI s 
Y+H+PS-PR+SI R 
Y+Y.G+PS-PRS+SI R+S 
V 
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EXHIBIT Hl PAGE 2 

vsIcnlv 
V PSIX+SI X;Z;PSIZ;Y;M;N 

cl] APSI FUNCTION IE DERIVATIVE LOG GANIIA FUNCTION 

V 
60 
61 

62 
63 
64 
65 
66 
61 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

CEE 

1 
0.5772156649015329 

-0.6558780715202538 
-0.0420026350340952 

0.1665386113822915 
-0.0421977345555443 
-0.009621971527877 

0.007218943246663 
-0.0011651675918591 
-0.0002152416741149 

0.0001280502823882 
-2,01348547807E-5 
-I .250493482lE-6 

1.1330272328-6 
-2.0563384178-7 

6.1160958-9 
5.0020075E-9 

-1.18127468-9 
l.O43427E- IO 
7.78238- 12 

-3.6968E- 12 
5.lE-13 

-2.06E- 14 
-5.4E- 15 

I .4E- 15 
lE-16 

;!i; Ll:PSIZ+-( :-l-Z)x+/( 126)xCEExZ*-I+126 
Y+lOOO I Lx 

c73 N+O 
C81 Pl+LXilOOO 
c91 PSIX+PSIZ++/9Z+-l+tY 

Cl01 +(M=O) /O 
[ll] LT:N+N+l 
Cl23 PSIX+PSIX++/aZ+(1000xN-l~+Y+-l~+Y+-l+1looo 
Cl31 4 NW) /LT 
Cl41 +o 
Cl51 L2:Ps1z+-(:z)x+/(~26)xCEEx(Z+1)*-1+~26 
cl63 PSIX+PSIZ++/ttX-1 
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EXHIBIT H2 

SAMPLE RUN OF TRANSFORMED BETA MLE WITH GOOD STARTING ESTIMATES 

V 

2.201825487277711 1.747798995989603 I .555619456471727 1.434261861491408 
1.345898293955564 1.276532762732432 1.219472497925706 1.171009053335359 
1.128878212884788 1.091598560297855 ,1.058149169964544 1.027797375655266 
0.9999999999999999 0.9743434501286376 0.9505056924135983 0.9282311847924588 
0.9073138148639067 0.8875849650558165 0.86890496plO59015 0.8511568358547295 
0.8342416436253031 0.81807496609125 0.8025841905289312 0.7877064064383325 
0.7733867467937893 0.7595770676095318 0.7462348863847357 0.733322520898723. 
0.7208063846790024 0.7086564061646645 0.6968455463959924 0.6853493958275812 
0.674145835167939 0.6632147483965766 0.6525377785832587 0.642098 1190348407 
0.6318803337678372 0.6218702024548765 0.6120545858977834 0.60242 13087964627 
0.5929590571538267 0.5836572881149439 0.5745061504078917 0.5654964138531555 
0.5566194066522674 0.5478669593658831 0.5392313546553542 0.53070528199689 
0.5222817966889851 0.5139542825661741 0.5057164179087162 0.4975621441012036 
0.4894856366454348 0.4814812781759202 0.4735436331613866 0.4656674240036885 
0.4578475082673738 0.4500788567894164 0.4423565324296311 0.434675669228307 
0.4270314517386136 0.4194190942972299 0.4118338199870745 0.404270839030415 
0.3967253263281841 0.3891923978309076 0.3816670853866948 0.374144309660231 I 
0.3666188506509329 0.3590853152547595 0.3515381012078956 0.3439713566152265 
0.3363789340936847 0.32875433833861 I 0.3210906656344104 0.3133805334572376 
0.305615997826835 0.2977884554141212 0.2898885265394574 0.2819059140149433 
0.273829231162068 0.2656457900782352 0.2573413380345932 0.248899725301121 
0.2403024809791267 0.23 15282633825993 0.2225521361535894 0.2133445971882582 
0.2038702484700424 0.1940859297219838 0.1839380254588229 0.1733584487947235 
0.1622584092416313 0.1505182593963702 0.1379699089521555 0.1243638396796979 
0.1093001477080087 0.09205965646857106 0.07106750819518526 0.04089307909136584 

V NRFN 1.521 1.553 

2 OLD TOLERANCES 2 NEW 
1.52, 1.553 I .4569960260502068-6 1.0880126939671898-7 1.520915599542439 1.553092179774157 
R. s: l.441569975759713 6.476705211863293 
2 OLD TOLERANCE.5 2 NEW 
1.520915599542439 1.55x92179774157 2.3,448193943fM4E-1 I 2.4,850983684344,E-12 1.520915603822739 ,.553092175281865 
R.S: I.441699580189243 6.477401387277938 
4.4408920985006268-I6 2,775557561562891E-16 
R. S. ALPHA. BETA 
1.441699614500499 6.477400647693872 1.5209156(10822739 I.553092175281865 
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4PPENDIX J 

TRAYSFORMED GAMMA 

RELATION BETWEEN COEFkICIENTS OF VARIATION AND SKEWNESS 

Empirical investigations suggest that not all pairs of positive real numbers 
can be realized as the coefficients” of variation (0’) and skewness (SKW) of a 
transformed gamma distribution. bar example, as mentioned in the text, for 
CVs of 1.25 and greater the SKW always seems to exceed the CV. 

While not proven analytically, observation suggests the following: 

(1) For fixed r the ratio SKWICY is a decreasing function of alpha. 
(2) If the ratio SKWICV is held constant (by increasing alpha), then the CV 

and SKW increase as r decreases. 
(3) These increases are asymptotic to some finite value as r goes to zero. 

: 
Thus for a fixed SKWICV ratio, the CV and SKW can not exceed a maximum. 

The following table gives these approximate maximum values for selected ratios. 

SKWICV Maximum CV Maximum SKW 

1.4 11.1 15.5 
1.3 3.9 5.1 
1.2 2.0 2.4 
1.1 1.51 1.66 
1.0 1.25 1.25 
.9 1.09 .98 
.83 1.00 .83 
.8 .97 .78 
.I .88 .62 
.6 .81 .49 
.5 .I6 .38 
.4 .71 .28 
.3 .67 .20 
.2 .64 .13 

0.00 .58 0.00 

This relationship thus restricts the values which the CV, SKW pairs can take 
on. As the maxima seem to be increasing functions of the ratio SKWICV, each 
maximum is an upper bound over all lower values of that ratio. For example, 
if the SKW is less than or equal to .83CV, then the CV does not exceed 1 .O. 
Conversely, if the CV is above 1 .O the SKW is .83 or greater. 
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It is interesting to note that the skewness can be negative. This seems 
possible for any value of r. For small r, SKW reaches zero at about an alpha 
of l/r. In the Weibull case (r = 1) zero skewness occurs for a just above 3.6. 

The use of empirical studies in mathematical investigations is of course 
subject to pitfalls. The findings in this appendix should thus be regarded as 
hypotheses until more rigorous demonstrations can be provided. 

Further investigation has also revealed that matching transformed gamma 
moments is not possible if the CV is very small and the SKW is large. In this 
case, it has been possible to match transformed beta moments. The case OL = 
1 often suffices, and this yields closed form solutions for the parameters as 
follows: 

Define Mj = E(X’)IE(Xy for any random variable X. Then the transformed 
beta parameters r and s are: 

r=2 
M3 - M: 

M: + M2M3 -2M3 

s = r + 1 - 2Mzr 
r + 1 - Mzr 

Unfortunately, those equations sometimes yield negative parameters. In that 
case the transformed beta with r = 20 (rx # 1) has seemed to give satisfactory 
fits. 

Using the transformed beta to match moments in this way would seem to 
give up the parameter uncertainty. This is not necessary, however, as the 
moments of the combined process-parameter system can be found by combining 
the process and parameter moments. In fact, 

Mj(combined) = Mj(process) Mj(parameter). 

Thus the combined moments can be used to calculate the transformed beta or 
gamma parameters. This, in fact, allows for greater freedom in selecting the 
parameter distribution moments, in that the skewness need not be strictly de- 
termined by the CV. 
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GOOD AND BAD DRIVERS-A MARKOV MODEL OF ACCIDENT 
PRONENESS 

EMIL10 VENEZIAN 

VOLUME LXVBI 

DISCUSSION BY SANFORD R. SQUIRES 

A series of studies by the Department of Transportation in the 1960’s and 
early 1970’s first popularized analysis of automobile insurance experience 
through accident proneness models. Unlike many actuarial approaches which 
tend to be empirical and. emphasize practical interpretations, accident proneness 
models tend to be heavily theoretical and often prove difficult to interpret on a 
non-technical level. If one is not already familiar with the various Poisson 
process models found in actuarial literature, Dr. Venezian’s paper might be 
extremely slow going. 

Dr. Venezian’s summary of other authors’ models in the introduction is 
remarkable in its terseness without omitting the salient points. In the same style, 
the author points out many strengths and implications of his own proposed 
model. This is a paper which requires careful reading, working out details 
derived by the author, for full appreciation and understanding. 

Dr. Venezian analyzes some of the weaknesses in his own model. In partic- 
ular, the crucial role of mileage in determining the fitting parameters is noted. 
According to his data, males have almost twice the accident frequency of females 
in the younger age groups. The paper attributes all this difference to mileage 
alone, since mileage differences conveniently follow the same pattern of accident 
likelihood differences between the sexes. The author notes that detailed data of 
mileage by age and sex would be helpful. Such data was analyzed in the early 
seventies*-but the mileage patterns would seem to disrupt rather than enhance 
Dr. Venezian’s model. In particular, average annual mileage for male drivers 
rises steeply in the younger ages. This is directly counter to the exponential 
decay of accidents with age shown in the model. Female mileages show much 
less variation by age than male mileages. Mileage does contribute to explaining 

I The Nafional Trmsportarion Survey, 1969-1970, conducted by the Bureau of Census for the 
Federal Highway Administration developed average annual mileage data for the general driver 
population by age and sex of drivers. This data has recently been published and used in analysis 
of automobile classification plans by the Rate Regulation Division of the California Department of 
Insurance in Phase II of their Study of Cdifornia Driving Performance (November 1979). p. 17. 
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the variation in accident frequencies by age and sex, but not in as simple a way 
as used in the author’s paper. 

Dr. Venezian has created a “Markov process” model. That is, drivers bounce 
between “good” and “bad” states with a predetermined probability of transition 
back and forth. To someone familiar with Markov processes, it is obvious that 
the model will produce an exponential decay of accident likelihood over time. 
If driver data shows accidents decreasing with age in a somewhat exponential 
fashion, this model has to fit. It is disappointing that the way it fits is so 
philosophically unappealing-at least from this reviewer’s viewpoint. It is dif- 
ficult to give a layman’s explanation for the Markov process other than “it fits 
the data.” 

Only three drivers in a hundred go from the good to the bad state every 
year while seventeen in a hundred go the other direction. Intuitively one would 
like to see more frequent transitions of some sort reflecting heavy use of autos 
during the day, but not at night, occasional bad driving conditions and occasional 
non-use of the automobile for weeks at a time while on vacation-or any of the 
hundreds of other everyday real life situations where accident likelihood for an 
individual varies considerably over a short period of time. The long time between 
transitions in the model stems from the transition probability parameters fitted 
to the data. These parameters are a direct result of the overall rate of exponential 
decay in accident likelihood with age. These low transition probabilities fit best, 
but seem to defy intuitive interpretation other than to produce the steady, long 
term decrease in accident likelihood with age. High frequency transitions are 
more intuitive but are practically useless to produce the desired data fit from 
the model. 

The ad-hoc assumption made by the author that males and females start 
their transitions at different ages seems non-intuitive. In the author’s model, 
female transitions start before male transitions. This seems intuitively counter 
to the fact that females tend to start driving at later ages than males in our 
society. It would seem more plausible to either allow different accident likeli- 
hood ratios between “bad’ and “good” states for men and women or allow 
different transition probabilities or starting ages. These possibilities are some- 
what ad-hoc, too, but could fit the data. They are more in keeping with some 
particular data published by the state of California in Phase II of its recent 
study.2 A mileage-adjusted surrogate for accident likelihood shown graphically 

* Study of California Driving Performonce Phase If. Rate Regulation Division--California Depart- 
ment of Insurance (November 1979), p. 22. 
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in that study suggests different “bad” to “good” ratios for males and females. 
Better data from strictly insurance sources with loss costs and mileage would 
be helpful, but is not generally available. 

The data fit in the author’s paper does not strike this reviewer as particularly 
great. However, the calculated statistical significance test on the excess variance 
test shows that other models, like a simple Poisson, produce much worse fits 
to the data! This is the best fit offered so far. 

Dr. Venezian observes that one might be able to distinguish different models 
by looking at the distribution of time between accidents. For his own model, 
he implies that one would most likely see two clustered distributions for the 
number of accidents for an individual over subintervals of time. Both statements 
would seem to be only of theoretical interest and difficult to measure in the real 
world because of the low frequencies of accidents and the likelihood of changing 
driving environments during the period of years between accidents. Although 
data in this regard might support assertions about excess variance in total, it 
seems unlikely that one could use this test to distinguish between different 
competing models. 

Models on the order of complexity of the author’s will quickly approach the 
point where their mathematical robustness will necessitate more detailed data 
and more intricately structured statistical tests in order that further progress be 
made. It is this reviewer’s opinion that intuitive interpretation of models will 
become important in selecting the best among competing models. 

Several extensions of the author’s model are possible. 

One could possibly add more discrete states. In addition to “good” and 
“bad,” I’m sure someone will suggest a third “ugly” state. Surely, this would 
produce much improved data fits-but new insights are unlikely to result. 

One could create a continuous spectrum of states and a corresponding set 
of transition probabilities-a task to be tackled by only the purest of pure 
actuaries, but not an impossible task. 

Finally, one might follow up on the author’s speculations on the further 
utilization of mileage data. One might create a model using cumulative lifetime 
mileage and its first derivative (or first difference), annual mileage, as the entire 
basis for accident likelihood. (The mathematical treatment of accident likeli- 
hoods as separate from mileage in the author’s paper is cosmetic, resulting from 
a two variable notation, rather than any intrinsic functional independence in the 
equations .) 
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Dr. Venezian has written a very professional and accurate paper proposing 
a new model for accident proneness. Although this review has made general 
criticisms on non-intuitive aspects of the author’s model, the paper is of profes- 
sional calibre and few technical flaws can be found. Dr. Venezian has taken us 
a step in complexity beyond previous models. The long journey yet to go should 
provide significant challenge for future contributors to the Proceedings. 

. 
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ACTUARIAL VALUATION OF PROPERTY/CASUALTY 
INSURANCE COMPANIES 

ROBERT W. STURGIS 

VOLUME LXVIII 

DISCUSSION BY ROBERT ROTHMAN AND ROBERT V. DEUTSCH 

VOLUME LXIX 

AUTHOR’S REPLY TO DISCUSSION 

My paper points out that, in spite of voluminous readings in the Society of 
Actuaries literature, our Proceedings do not deal with this subject at all. The 
reviews by Mr. Lowe and by Messrs. ‘Rothman and Deutsch have added sig- 
nificantly to the discussion, and subsequently to my deeper understanding of 
the underlying interrelationships affecting company valuations. 

My paper is largely a synthesis of classical life literature. Thus, I was 
somewhat taken aback by the Rothman-Deutsch review suggesting that the 
present value of future cash flows was a better method than present value of 
future earnings. Nowhere in my review of the life insurance literature had this 
been suggested. Further, I had no intuitive understanding of what the real 
difference was between the two methods. So, I set about to reconcile the two 
approaches. 

The reconciliation, presented below, is an algebraic representation of the 
cash and earnings process for a theoretical insurance enterprise. 

First some definitions: 

V = Value of company 
s, = Net Worth at time t 
CF, = Cash flow at time t 
El = Statutory earnings at time t 
4 = Reserves at time t (not just loss reserves; all reserves) 
i = Assumed interest rate 
j = Risk-adjusted interest rate 
V = l/(1 + i) = Interest discount rate 
u = l/( 1 + j) = Risk-adjusted discount rate 
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It immediately struck me that one major difference between the earnings 
and the cash flow methods is the interest versus the risk-adjusted discount rate. 
In the cash flow method, they are the same (i = j). In the classical earnings 
method, the use of a higher risk rate of return is stressed.’ 

The two methods can be formularized as follows for a theoretical enterprise. 
CASH FLOW: 

V = So + R. + 5 u’CF, 
!=I 

or value is present cash (reserves and surplus), plus the present value of future 
cash. 

EARNINGS: 

V = So + 5 u’E, 
,= I 

or value is present surplus (net worth) plus the present value of future earnings. 
(One thing that may not be clear from the text of my paper, but should be clear 
from the example, is that beginning surplus and future earned surplus contri- 
butions are not retained and compounded, but rather, present valued to the 
owner(s).) 

Keeping in mind that earnings are equal to cash flow plus interest on reserves 
less reserve changes, the earnings formula can be restated as follows: 

V = SO + 5 u’[CF, - (R, - R,-1) + iR,- I]. 
t-1 

The appended exhibit algebraically restates this formula as 

V = [SO + Ro + ,s, u’CF,] - ,i, (j - i)u’R,-1. 

Thus, the earnings formula can be restated as equal to the cash flow formula 
less an interest penalty (j - i) on funds held in reserve. Therefore: 

(1) If j = i, the two methods are equivalent, and 
(2) If j > i, the earnings method introduces an interest penalty on reserves 

based on the assumption that such funds need to be invested conserva- 
tively. This penalty is analogous to the interest penalty on required 

’ James C:H. Anderson, “Gross Premium Calculations and, Profit Measurement for Non-Partici- 
pating Insurance,” Trunsac~ions Svcicty of Actuaries., Volume XI (1959), p. 378. 

,- 
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surplus, which is cited in the paper but not included in the above 
formulation. 

In summary, the cash flow method can be seen as a special case of 
the classical earnings formula. When the discount rate equals the as- 
sumed interest earnings rate, the timing of the booking of earnings no 
longer affects present values. That is, the present values of statutory 
earnings, GAAP earnings, and cash flows are all the same. 

ALGEBRAIC REPRESENTATION OF EARNINGS FORMULA 

(1) V = SO + 5 u’[CF, - (R, - RI-,) + iR,- ,] 
I=, 

This is algebraically equivalent to: 

(2) V = SO + 5 u’CF, + i u’( 1 + i)R,-I - i u’R, 
,= I I=, 1=l 

Removing the first term from the second summation: 

(3) V = SO + 2 u’CF, + u( I + i)Ro + g u’( I + i)R,-, - 5 u’R, 
I=, r=2 I=1 

(4) V = SO + 2 u’CF, + z R. + 2 u’( I + i)R,-, - i u’R, 
I=1 [ 1 r=2 ,= I 

(5) V = SO + 2 u’CF, + R. - j-i Ro + 5 u’( 1 + i)R,-1 - 5 u’R, 
I=, [ 1 I +j r=2 I=, 

Rearranging terms, and executing a change of variables on t in the second 
summation:* 

(6) V = [SO + Ro + 5 u’CF,] - u(j - i)Ro + $ u’+‘(l + i)R, - g u’R, 
r=, t=, t= I 

Then, combining the second and third summations: 

(7) V = [So + Ro + ,z u’CF,] - u(j - i)Ro - ,z u’R, [ 1 - +$-!I 

* This transformation is possible because the series converges to zero. 
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(8) V = [So + Ro + ,$, u’CF,] - u(j - i)Ro - ,i, u’R, f-$ [ 1 
(9) V = [So + Ro + ,: u’CF,] - u(j - i)Ro - 5 u’+‘R,(j - i) 

r=, 

Finally, bringing the Ro term back inside the summation and executing a second 
transformation of the variable t: 

(10) V = [So + R. + ,t u’CF,l - ,t 0’ - i)u’R,-1 
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A NOTE ON LOSS DISTRIBUTIONS 

J. GARY LAROSE 

VOLUME LXIX 

DISCUSSION BY CHARLES C. HEWITT. JR. 

This is a remarkable piece of synthesis! It finds a thread running through 
many significant papers in our Proceedings and weaves an entirely new fabric 
which, when reviewed on an overall or on a modular basis, should make life 
much simpler for both the student and the practicing actuary. The author rec- 
ognizes that mathematicians constantly strive for generalizations which provide 
solutions for superficially different problems. 

He has achieved that goal in three basic elements found in this paper: 

(1) Simplified (standardized?) notation, 
(2) Recognition of a commonalty of approach, and 
(3) Application of simplified notation to a gallimaufry of actuarial problems. 

Standardized Notation 

There is an opportunity here for the Casualty Actuarial Society to intervene 
on behalf of present and future generations of actuaries in the matter of actuarial 
notation. The textbook, currently in preparation under the auspices of the 
Actuarial Education and Research Fund (AERF), on distributions of a (single) 
loss will suggest a more mathematically oriented notation. Gary LaRose, with 
attribution to Robert Finger, suggests another notation. 

Taking advantage of symbols readily available on computers and word 
processors, I have proposed still another: 

(I) F#(x) = [ flt)dt 

(2) F$(x) = -& [ tf(t)dt and 

(3) F&(x) = W-4 + & 11 - F#(x)l 

where all three cumulative functions have a range from zero to one. 
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It is my feeling that this latter notation has a mnemonic value not possessed 
by the other forms. A comparison of the LaRose/Finger and Hewitt notations 
appears in the Appendix to this review. 

Loss Distribution Table 

A useful tool in valuing coverage limitation is a loss distribution table*. 

Loss DISTRIBUTION TABLE 

. Loss Elimination 
Loss Amount Number Amount Ratio (LER) 

(4 W.4 F$(x) F&(x) 

Xl F#(xd F$(xd F&(x,) 

x2 Wx2) FW2) F&(x2) 

Xi F#(xi) F$(xi) FWi) 

co 1 1 1 
where XI < x2 < . . . < Xi < . . < 03 

The values in the “Number, ” “Amount,” and “LER” columns are cumulative. 
Values of x are selected so as to make for easy calculation of frequently used 
deductibles (retentions) and limits. Formulas for commonly used actuarial ex- 
pressions in both LaRose/Finger and Hewitt notations are contained in the 
Appendix. 

Gary LaRose has earned the gratitude of many for the thought, research and 
clarity of expression which has gone into his effort. 

* See Charles C. Hewitt, Jr. and Benjamin Lefiowitz, “Methods for Fitting Distributions to 
Insurance Loss Data,” PCAS LXVI (1979), p. 147. 
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Item 

Cumulative Distribution Function 
(c.d.f.) 

Proportion of total losses on those 
losses whose amount is less than 
or equal to x 

Loss Elimination Ratios 
Deductible (Retention) . . . . . . . . . . . . . . . . . . . . . . . . . 
Limit(s) 

Interval Mean X1(x2) - X1(x1) 
a = E(l) FM - F(xd a 

Value of a Layer (~2 > XI) 
Prooortional 

.,....‘........................ 

Absolute 

Mean Value of Coverage 
Deductible (Retention) = xi 
Limit = x2 

Effect of changes in deductible (re- 
tention) from x0 to xi and limit from 
x2 to x3 

On Frequency 

. . . . . . . . . . . . . . . . . . . . 
On Severity 

. . . . . . . . . . . . . . . . . . . . . . . . . . 
On Pure Premium 

LaRose/Finger 

x I (x) 

X2(x) . . . . . . . . . . . . . . . . . . . . . . 
X3(x) 

X2h) - X2(x,) . . . . . . . . . . . . . . . . . . . . . . . . . . . 
[X2(x2) - mxdla 

m.4 - X2(x,) a 
1 - .wl) 

LaRose/Finger 

I - F(xd 
I - Fbc!) 

[I - Fh)lW(x3) - X2(x1)1 
[I - F(xdI[X2(x2) - X2(xo)l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

X2(.4 - X2(x1) 
X2(x2) - X2h) 

Hewitt 

F#(.r) 

F$(.r) 

F&(Q) - F&(x,) .,........................... 
[F&Cd - F&h)l W 

F&W - F&(x,) 
1 - F#(x,) E(t) 

ers 

Hewitt 

I - F#(x,) 
I - F#(xo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

[l - F#(xo)l[F&(xd - F&h)1 
[l - F#(x,)l[F&(xz) - F8441 ____................ . 

F&(x,) - F&(~I) 
F&(x2) - F&(xo), 
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ESTIMATING PROBABLE MAXIMUM LOSS WITH ORDER STATISTICS 

MARGARET E. WILKINSON 

VOLUME LXIX 
DISCUSSION BY JOHN S. MCGUINNESS 

It is always refreshing to see new thinking. This paper introduces to our 
Proceedings an approach-order statistics-that has not before been mentioned 
there as far as I can find. It would be most welcome if all our papers, as this 
and many others do, contained clear examples of how to apply practically the 
new ideas or techniques they propose. Miss Wilkinson is to be complimented 
for giving us this example of how to use examples. 

The paper also has a number of other major values. It points up several 
important needs and raises several important questions from which we all can 
learn. 

1. 

2. 

3. 

4. 

The essentials of the paper can be summarized as: 

It introduces and explains an unfamiliar method which seems to be a 
generalization of rank correlation and use of dummy variables in correl- 
ation problems into a broader realm in which quantitative values of a 
variable do not exist, or are not for some reason handy to use. 
It shows the need for, and benefits of, thorough presentation and thorough 
research. 
It shows the need by American actuaries to expand their horizons to 
foreign actuarial work and references. 
It raises several important questions, the answers to which can be very 
instructive: 
a. What does “probable maximum loss” mean, most particularly to the 

author? 
b. What shape does a curve of percentage losses really have? 
c. What work has been done in investigating partial losses and their 

frequency distribution? 
d. How well do order statistics work with a U-shaped curve and with 

others that depart materially in shape from that of the normal curve? 
The first point needs no further comment, but it will be useful to look at each 
of the other points in turn, the better to appreciate the paper. Prior to this, 
however, basics such as the purpose and nature of PML require consideration. 
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The Purpose of PML 

Noting the purpose of computing a PML can be helpful in keeping our eyes 
on the essentials. As the author mentions, the concept originated in property 
insurance (more specifically, in connection with fire insurance on fixed-location 
properties). It was observed that the preponderance of losses were only partial, 
due in large measure to public fire protection. Total losses were so rare in 
categories such as protected, fire-resistive structures that, instead of limiting the 
amount of liability retained on such structures according to the rules followed 
by ordinary risks, it was safe to anticipate a partial loss and base the retention 
on that amount instead. A real world PML is thus always relative: to a limit of 
insurance; to the value of a property; to the value of another insurable interest. 

Few underwriters are actuaries,’ so the concept of probable maximum loss 
among underwriters has usually been a matter of feel and completely unaided 
by the concept of a confidence interval. Errors such as a 10 percent estimate of 
PML on Chicago’s late McCormick Place and a 25 percent estimate of PML 
on the totally destroyed Lake Charles, Louisiana refinery have been the not 
infrequent result. 

The term “PML” appeared only after World War II, although a rough “theory 
of lines” and elaborate retention schedules or “line sheets” existed in fire insurers 
prior to 1900. Some time ago the Reinsurance Offices Association in London, 
after lengthy discussion, recognized the very imprecise nature of PML estimates 
that are actually used. It has instead standardized on EML (estimated maximum 
loss), a far more accurate name that is reflective of the judgmental nature of 
customary practice. The use of EML does not indicate that accurate, fact-based 
PML’s cannot be calculated, but only that they are not being calculated in 
common practice. 

Thorough Presentation and Thorough Research 

Frequency distributions of losses by percentage of the limit of insurance are 
not easily come by. This reviewer first thought that the author had the distinction 
of obtaining a new one. Nowhere are the data in the paper’s Exhibit I labelled 
as synthetic or hypothetical. The exhibit calls them “Sample Data.” The third 

I One leading underwriter who merited the designation was Benjamin Rush, whose researches 
substituted facts for underwriting feelings, and thereby changed the marine business of the Insurance 
Company of North America from a disaster to a profitable operation, and revolutionized ocean 
marine insurance ratemaking in the process. Another was Francis C. Moore of the Continental 
Insurance Company, whose Fire Insurunce and How to Build (New York: Bacon and Taylor 
Company, 1903) was for fifty years the leading work on how to set underwriting retentions. 
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paragraph in the section on application of order statistics states “Exhibit I 
contains a list of 100 claims that are representative of a particular problem in 
which a PML estimate is needed.” But the distribution in the paper was seen 
to be quite different from any that the reviewer had ever encountered, so the 
author was queried as to the source of the “data.” The author was completely 
forthcoming in response and acknowledged that they are not real data but 
synthetic numbers derived by assuming a particular (humped) frequency distri- 
bution. Clear and complete labelling should be a sine qua non. All evidence 
the reviewer has seen indicates that the author’s assumption is wrong, thus 
throwing into question the results and conclusions of the paper. Checking easily 
available references could supply real data that can test these conclusions. 

Insurance to Value by Dr. George Head has been in our syllabus of required 
reading for examinations for several years. Dr. Head cites a paper2 by one of 
our charter members, Professor A. W. Whitney, and quotes from it some actual 
data of the type needed.3 A second ready source is Ruth Salzmann’s “Rating 
by Layer of Insurance” in our 1963 Proceedings.4 A third source that was not 
available to Miss Wilkinson when she wrote her paper is one by Gunnar 
Benktander, presented to the 1982 ASTIN meeting.5 Although residing in Eu- 
rope, Dr. Benktander had been able to find Miss Salzmann’s paper and referred 
to it with admiration. 

Foreign Actuarial Work and Reference 

All of the references in the CAS Syllabus are to works published in America. 
None of the American or foreign contributions to the Transactions of the 
International Congresses of Actuaries, the ASTIN Bulletin, the proceedings of 
foreign national actuarial bodies, or foreign books, are being used. There is 
much material in these other publications that could be of real value to our 
students, even as much of the work in our Proceedings is being read and used 
by foreigners. Miss Wilkinson’s paper shows that use by this Society of foreign 
references as study materials would acquaint our newer members with sources 

2 A. W. Whitney, “The Actuarial Theory of Fire Insurance Rates as Depending on the Ratio of 
Insurance to Sound Value, Hence the Determination of the Rates for Use With the Coinsurance 
Clause,” Transactions, VI International Congress of Actuaries, Vol. 2, 1909, pp. 395-403. 

3 G. Head, fnsurance to Value, (Homewood, Illinois: Richard D. Irwin, Inc., 1971) pp. 83-88. 

4 R. Salzmann, “Rating by Layer of Insurance,” PCAS L (1963). pp. 15-26. 

J G. Benktander, “First and Second Risks,” 1982 ASTIN Colloquium, Liege. 



208 PROBABLE MAXIMUM LOSS 

they do not know about, and would lead ultimately to a considerably broadened 
perspective within our membership. 

Defining Probable Maximum Loss 

The author starts her paper by saying: “In the past there has been much 
discussion about the definition of probable maximum loss (PML), but little 
attention has been given to its quantification.” She quotes a little later an 
integrated set of three definitions that were designed to quantify the term quite 
precisely and thus to permit derivation of PML estimates directly from measured 
facts; she then quotes a contrasting definition that ignores facts and the concept 
of a confidence interval and makes a PML estimate a pure judgment or feeling; 
she then declines to adopt a definition for her paper. This leaves the reader 
puzzled as to what she is writing about. 

By her later use of confidence intervals, she implicitly seems to adopt the 
first set, but gives no hint of (1) why she mentioned the underwriter’s definition 
(which cannot serve as a base for her statistical analysis), (2) why in view of 
this limitation she treats it as of equal importance or validity with the former, 
(3) why she does not state the definition on which she is basing her paper, and 
(4) why she is not explicitly adopting a definition. This source of confusion for 
the reader of the paper seems to have adversely affected the paper itself. 

Failure to make another fine but important distinction also causes trouble. 
The statement is made: 

The PML depends upon (i) estimates of the likelihood that losses of various 
sizes will occur, (ii) the amount of losses and associated probabilities that the 
insured is willing to accept, and (iii) the amount of losses and associated 
probabilities that the underwriter is not willing to accept. Thus, the insured and 
the underwriter can have different estimates of the PML for the same loss 
exposure. 

Correctly stated, this would read: 

The PML depends upon the probabilities that losses of various proportions of 
the relevant limit of loss will occur, and upon the confidence level selected. 

The author’s statement ignores the fact that a PML is always relative to 
some limit of loss; the term cannot have meaning otherwise. It also fails to 
embrace the fact that a PML is always fact-based and fact-related. Estimates of 
the PML-not the actual PML-are what the author describes in the quote 
above. Naturally, by making different assumptions and guesses, insured and 
underwriter will make different estimates of PML, but that does not change the 
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actual PML. The quotation also fails to allow for the fact that the insured and 
underwriter (or any two persons) can also make different PML estimates simply 
by having different confidence levels, assuming that both know what a confi- 
dence level is and think in such terms, or implicitly without knowing it by using 
different confidence levels. 

It is hoped that the author will in her reply set down precisely what she is 
writing her paper about: what she is measuring or estimating and calling “PML.” 

Frequency Distribution of Proportional Losses 

Ignoring the essential proportional character of PML has led the author to 
some questionable conclusions. This proportional character is evidenced by 
more than the data on losses to fixed-location property that were previously 
cited. For further example, the existence of “total loss only” insurance on 
waterborne hulls would make no sense but for the U-shaped curve of propor- 
tional partial losses. The land-based fire insurance underwriter’s customary 
assumption that properties not under public fire protection are “total-loss” risks 
is an exact parallel, based on the observation that if a fire gets beyond a minor 
stage in such property it is generally extinguished only by the burning of all the 
combustible material that is present. 

Contrasting the numbers used by the author with some of Miss Salzmann’s 
real data can be highly informative, so this has been done in Exhibits I and II. 
The table in Exhibit I sets side by side the number of claims, total monetary 
amount of claims, and decimal fraction of claim dollars in each class. Each 
class contains claims of a particular size. Size is shown as a proportion of the 
limit of insurance (“insured value”), consistent with the purpose of determining 
a PML. Miss Wilkinson’s top loss is, for want of a stated loss limit, used 
therefor. The statistics from Miss Salzmann’s first table, covering protected 
frame homes, are used, although any of her other three sets or those from the 
other references could be. 

The great difference between the two frequency distributions is apparent. 
The graph in Exhibit II presents the contrast pictorially. These exhibits show 
the basis for the curves given in one reference Miss Wilkinson cited6 and the 
basis for the cautions appearing in the same source about setting confidence 
intervals,’ both of which seem to have escaped her attention. 

6 I. S. McGuinness, “Is Probable Maximum Loss (PML) a Useful Concept?‘, PCAS LVI (1969). 
pp. 34-35. 

’ Ibid., pp. 32-33. 
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Order Statistics and Non-Normal Distributions 

The paper is based on the assumption of at least asymptotic normality in 
the underlying data. All available evidence indicates this assumption to be 
incorrect, so the paper needs to be reworked. 

One fact that the Salzmann data reveal is a hump at the left extreme of the 
data when they are finely enough divided there (in this case, by tenths of one 
per cent). This would suggest the possibility of a Poisson distribution were it 
not for the rising right-hand tail.* The Salzmann data were, unfortunately, not 
split by individual percentages between 90 and 100 per cent, but clearly would 
display the typical rise were this done; only the extent is left unknown. 

Since proportions of a single limit are the relevant numbers in determining 
PML, assuming them to be mutually independent seems at least questionable. 
Robert Hurley’s cautions (in the first four paragraphs of his review of the 
Salzmann paper)g about dealing with this type of data are well taken and to the 
point here. 

In her Exhibit III Miss Wilkinson acknowledges that at least four of her six 
estimates are not distribution-free. Consequently, at least these are made erro- 
neous by the incorrect assumption of normal data. The 4th estimates, which 
exceeds by 71 per cent the upper limit of the numbers she presents as data, is 
thereby also inconsistent with any rational concept of PML, and any actual data 
so far revealed. 

Potential for Order Statistics 

The unrealistic results displayed in the paper are due to faulty data and not 
necessarily to the use of order statistics. Although order statistics hide infor- 
mation in the data that is relevant and important, they possibly can be useful in 
work on PML estimates. It is sincerely hoped that the author will accept the 
challenge to apply them to real world data and let us see in her reply whether 
she has given us a tool that is both new to us and practically useful. I hope she 
has. 

* For a relevant discussion of curve shapes see H. Buehlmann, Mafhemarical Methods in Risk 
Theory (New York: Springer-Verlag, 1970), pp. 4-12. 

9 R. Hurley, Discussion of “Rating by Layer of Insurance,” PCAS L (1963), p. 27. 
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EXHIBIT I 

COMPARISON OF Two PROPORTIONAL CLAIM FREQUENCY DISTRIBUTIONS 

Upper Class 
Limit as a % 
of Insurance 

Amount 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
20 
30 
40 
50 
60 
70 
80 
90 
91 
92 
93 
94 
95 
96 
91 
98 
99 

100 

Number of Claims 

Wilkinson 

0 
0 
0 
I 
0 
3 
0 
I 
0 
2 
9 

22 
24 
19 
10 
3 
3 
I 
0 
0 
0 
0 
0 
0 
0 
I 
0 
1 

Salzmann 

3,310 
671 
275 
132 
86 
46 
34 
31 
20 
31 
94 
37 
21 
I6 
8 

IO 
9 
6 

- 
- 
- 
- 

I9 
- 
- 
- 
- 
- 

Amount of Claims 
in Dollars 

Wilkinson Salzmann 

.O 194,386 
0 146, I I4 
0 98,098 

19,874 65,746 
0 54,913 

96,884 35,328 
0 3 I ,578 

40,660 31,793 
0 30,192 

110,051 47,294 
733,184 168,544 

3,214,792 135,034 
4,854,234 155,985 
4,922,466 168,850 
3,178,831 12,536 
1,136,200 122,774 
I ,322,259 104,923 

482,259 78,378 
0 - 
0 - 
0 - 
0 - 
0 239,237 
0 - 
0 - 

563,899 - 
0 - 

576,525 - 

Proportion of Total 
Amount of Claims 

Wilkinson 

0 
0 
0 

.000935 
0 

.004559 
0 

.001913 
0 

.005178 

.034499 

.I51269 

.228412 

.231622 
I49577 

.053463 

.062218 

.022692 
0 
0 
0 
0 
0 
0 
0 

.026534 
0 

.027128 

Salzmann 

.097196 

.073732 

.049502 

.033177 

.0277 IO 

.O I7827 

.Ol5935 

.016043 

.Ol5235 

.023865 

.035050 

.068140 

.078713 

.085204 

.036603 

.061954 

.052946 

.03955 I 
- 
- 
- 
- 

.I20723 
- 
- 
- 
- 
- 
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DISCUSSION BY ALBERT J. BEER 

With the increased importance of utilizing quantitative analysis in risk man- 
agement decision-making, Miss Wilkinson’s paper should provide our profes- 
sion with a valuable use of the concept of probable maximum loss (PML), a 
term that has been a fixture of the insurance vernacular for decades. Previously, 
underwriters have used the PML, or other related tools, to establish the range 
for the “working layer of coverage.” While it was always acknowledged that a 
larger loss was possible, the PML estimated the expected maximum loss poten- 
tial for the risk, with the exposure beyond the PML being treated as a catastro- 
phe. Today, the dramatic increase in the amount of risk retained by insureds 
has made the pricing of large accounts more complex, since the “buffer” of the 
working layer is no longer available. It is at these extreme values that the 
author’s work with order statistics may provide a variety of applications. 

Before I discuss the results of the paper, I would like to resolve what I 
perceive to be an ambiguity in the treatment of PML as defined by the author. 
In my opinion, any discussion of PML is unclear without a quantification of 
the term “probable.” If a pair of dice are rolled, is it reasonable to say the total 
will “probably” be leSS than eight (p = 2’h6); 1eSS than ten (p = 30/36); or, less 
than twelve (p = 35/36)? How certain of an outcome must one be in order to say 
it is probable? It is precisely this subjectivity that leads to the potential conflict 
between the insured and the carrier which is alluded to by the author. This 
dilemma could easily be resolved by quantifying the term “probable.” Mc- 
Guinness* accomplishes this by means of a reference to a “stated proportion of 
all cuses” which will be equaled or exceeded by the PML. This concept is 
similar to the confidence coefficient of a one-sided confidence interval. With 
these ideas in mind, I would suggest that the PML could be redefined as follows: 

Dejinirion: PML, is that amount (or proportion of total value) which will 
equal or exceed lOOa% of all losses that are incurred. 

For example, PML.95 would represent that amount which would be expected to 
equal or exceed 95% of the losses incurred by the risk. 

If the PML, is so defined, an insured and underwriter who agree on the 
underlying loss distribution would arrive at the same PML,. It is true that the 
respective risk aversion and risk acceptance levels would certainly affect the 
degree of satisfaction each would have at various (Y levels. However, at any 
fixed (Y point, there would be technical agreement on PML,. The “negotiation” 
’ John S. McGuinness, “Is Probable Maximum Loss (PML) A Useful Concept?’ PCAS LVI, 1969, 

p. 31. 
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on the appropriate price for risk transfer would at least have a common starting 
point. 

Miss Wilkinson’s definition of PML as the “worst loss likely to happen” 
does not include any quantification of the term “likely.” Therefore, as is noted 
in the paper, the PML estimates that appear in Exhibit III are not approximating 
the same quantities. For example, the nth sample order statistic Xcnj is intended 
to be an estimator for the upper bound of the loss variate X. Therefore, Xcn, is 
more closely related to the maximum possible loss. Clearly, this is not the same 
concept McGuinness had in mind when he discussed the generalized PML. It 
may be noted that my suggested definition of PML, allows for this degenerate 
case by choosing CL = 1.00. (Of course, it may not be technically possible to 
derive a PMLi.00 if the distribution has no finite upper bound.) In contrast, in 
a situation with 100 losses, using X~SS, as an estimate for k.95, the 95th percentile, 
is equivalent to approximating PML. 95. I will try to demonstrate that the results 
displayed in Exhibit III are much more consistent than they appear. 

Throughout this discussion an attempt will be made to provide more general 
results derived from the author’s excellent foundation. I hope these additional 
comments help to clarify any imprecision in the PML concept. 

General Results Concerning Xc,,) 

This section concisely presents the theory upon which most of the remainder 
of the paper is based. In addition to the results which appear, the corresponding 
distribution for Xcrj could be given by: 

fxcr, (4 = (r - 1) C!(n - r)! 
(Fx (x))‘- ’ f(n) (1 - F, (x))“-‘. 

The reason for introducing this more general result is to allow for the 
derivation of properties of Xc,, similar to those presented for Xc,,,. In particular, 
it may be shown that the order statistics from a uniform distribution over (O,l), 
with u(,) = F, (xc,,), have a beta distribution with parameters a = r, b = n - 
r+ 1. 

Therefore, E(u(,J = r/(n + 1) 

Var (u& = r (n - r + l)l((n + 1)2(n + 2)) for r = 1,2, . . . , n. 
Additionally, the first approximations displayed in the paper as (4) and (5) 

can be extended to: 

E(X(,)) * FL’ (r/(n + 1)) 

Var (X& A r (n - r + l)l((n + 1)2 (n + 2)) (f,[Fi' (r/(n + 1))])-2. 
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These results form the basis of the author’s initial three estimates of PML. 
Using the generalized forms above (with r = 100 a), estimates for our PML, 
may be computed as follows: 

Estimates for : 

Method PMbo PML.95 Ph4L.w PML.oo 

1) Xcr, from sample data 
2) EKr,) 

$;;,;U; $434,449 $563,899 $576,525 

3) ~(Xd + 2(Var Wd) 
l/2 399;632 

404,453 5 16,532 589,468 
482,839 662,380 803,420 

Methods 2 and 3 assume an underlying lognormal distribution with k = $212,521 and 
u = $110,506. 

It may be noted that the PML1.m estimates are those derived in the paper 
under the author’s definition of PML. 

Using Xcr) As An Estimate for the PA4L 

Although this is obviously the most convenient approach, it relates only to 
the data that are available from reported claims and may not be an accurate 
indication of the underlying exposure in the future. For example, immature loss 
history may not show any losses in excess of a few thousand dollars. Should 
the PML be chosen to be the largest claim paid to date, or the largest reported 
claim, or some other choice? 

From another point of view, suppose X(,9, = $400,000 and the largest claim 
X~W, = $2,000,000. Is the $2,000,000 loss catastrophic and, by definition, not 
probable? Clearly Xc,,, alone should not be used in any of these cases and 
judgment would play a critical role in the choice of an appropriate PML. 

I would also add that, technically, this method could have been described 
as distribution-free in Exhibit III since it requires no assumption regarding the 
underlying probability distribution. 

Distribution-Free Bounds for E(Xc,,) 

The advantage of a reliable distribution-free bound for any variable is 
obvious. Hopefully, some work may be done in the future to test the sensitivity 
of this bound with regard to accuracy for various distributions. 

The clever use of the Schwartz inequality was a novel application to this 
realm of actuarial science. In fact, this same technique may be used to derive 
the generalized result: 

E(X(r,) 5 CL + (J 
B(2r- 1,2n-2r+ l)- 1 iI2 

(B(r,n - r + 1))2 1 
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r (a> r (b) 
where f&d,) = r (a + b) . 

Assuming the same lognormal distribution as mentioned above, the follow- 
ing bounds may be computed: 

E(X(go,) I $531,509 
E(X(95)) 5 590,319 
E(Xe& I 756,736 
E(X(m,) 5 988,044 

General Results For Quantiles 

The introduction of the pth quantile technique is a useful concept for quan- 
tifying the meaning of “probable” in PML. Based upon the discussion of order 
statistics both in the paper and above, it is easily seen that a reasonable estimator 
of kP is the rth sample order statistic xcr) where: i) F, (k,,) = p 

ii) r = np for p fixed. 

It is interesting to note that this sample quantile estimate Xc,, is asymptoti- 
cally distributed as a normal variate; i.e. 

XW --, Nb, ~(1 - pYnf2 (44 

for r = np, as n increases with p fixed. 

The author has provided the technique for approximating the appropriate 
moments of this distribution by differentiating the Taylor series; namely, 

E(Xc,,) = E(Fl’ (UC,,)) G FJ’ (E(u(,$ = Fi’ (r/(n + 1)) 
= Fi’ (npl(n + 1)) 
+ F;’ (p) = kP 

Var (&r)> = Var 6' (u(d) k Var (u(r)) (fx @V';' (u~rj))-~ 

r(n - r + 1) 
= (n + 1)2(n + 2) v; UC’ (E(u(~,))-~ 

= n&n - np + 1) 
(n + 112tn + 2) (fx UC' (EW(n + 1>Ne2 

~ PC1 - P> 1 
n fX 

This analysis demonstrates the theory behind the intuitive appeal of using 
Xc?, as an estimate of kP, which can be interpreted as PML, as defined above. 
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Distribution-Free Confidence Interval For k, 

The clarity of this section is enhanced by the interesting heuristic explanation 
of the result: 

P&, < kp < X(s)) = ‘$; (;) pi (1 - PI”-’ 

as a binomial distribution. 

As a technical note, the equation which appears in the paper as: 

P& < kp < X(n) = P(FxKs)) < P) - P(Fx (Xv)) < p) 

may be expressed as: 

I 

P 

P(X,,, < kp < X(n) = [l/E(s,n - s + l)] 5’ (1 - X)“-l dx 
0 

- [l/B(r,n - r + l)] 
I 

’ x’-’ (1 - x)“-’ dr. 
0 

These integrals may be evaluated by means of an Incomplete Beta Function 
Table, a method which appears more efficient than actually calculating the 
various binomial probabilities. 

Since the distributions of XC+ and hence kp, are severely skewed, similar 
results for p = .99 and p = 1 .OO are not practical. However, I performed the 
related calculations for p = .90, a = .10 with the following results: 

P(X(g3) < kp < X,9,,) = .887349 
P(X(85) C kp C X(95)) = .902531 
P(&, < kp < X(96)) = .9037 15 
P(X(87) C kp < X& = .868286 

By minimizing s - r and Xcs’ - Xc,), we would choose the upper bound for k.90 
as XC,,, = $434,449. 

Summary 

The author’s results as displayed in Exhibit III are not as disparate as they 
may appear at first glance if the various methods are recognized for what they 
are designed to produce. By allowing PML, to be defined as I have suggested 
above, the consistency of the techniques proposed in the paper are better 
demonstrated as follows. 
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Estimates for : 

Method PML.90 I’MLie PML.99 PML,.oo 

1) X(r) $331,179 $434,449 $563,899 $576,525 
2) -Wk,) 344,158 404,453 516,532 589,468 

'12 
3) EGG,) + 2(Var Kr,)) 399,632 482,839 662,380 803,420 
4) Upper bound for E(X& 53 1,509 590,319 756,736 988,044 
5) XCrj as an estimate of k,, 331,179 434,449 563,899 576,525 
6) Upper bound for kp 434,449 563,899 - 2 

I believe this type of analysis would be extremely informative to individuals 
charged with determining proper retention limits on a per occurrence basis as 
well as to the underwriter and actuary who must set a price for the related 
excess coverage. In addition, these methods could similarly be used on an 
aggregate basis to heip select appropriate stop-loss thresholds. In one sense this 
latter approach would imply the existence of a’ new concept which is the 
aggregate analog to the PML,. Perhaps this new term could be defined as: 

Dejinition: The Probable Maximum Aggregate Loss at the a level (PMAL,) 
is that amount (or proportion of total value) which will equal or 
exceed the accumulation of all losses to the risk during a fixed 
period of time with probability 1OOo %. 

For example, if PMAL.95 = $l,OOO,OOO, you would expect the aggregate loss 
over a particular period to be less than $1 ,OOO,OOO ninety-five percent of the 
time. Expressed differently, it could be stated that the actual aggregate loss for 
the risk is expected to exceed $l,OOO,OOO five percent of the time, or once 
every twenty similar periods. 

Conclusion 

Ms. Wilkinson has provided the literature with.a number of valuable tech- 
niques for analyzing and determining estimates of the Probable Maximum Loss. 
The clarity of presentation and the numerous intuitive explanations are excellent 
pedagogical methods to utilize in the discussion of a term (PML) as familiar to 
the non-technician as it is to the actuary. 

My suggested generalizations were introduced only to present further appli- 
cations of the author’s ideas as well as to, hopefully, clarify what I perceived 
to be an ambiguity in the definition of PML. As mentioned above, these 
generalized results actually give the results of Exhibit III in the paper a greater 
semblance of consistency than it may seem to display initially. 

With regard to further study of this topic, I would be very interested in 
seeing more work done analyzing the accuracy of these estimates. In particular, 
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it would be informative to investigate this sensitivity of accuracy with respect 
to the skewness and kurtosis of the various distributions applicable to the 
property/casualty lines of business. 

AUTHOR’S REPLY TO DISCUSSIONS 

Discussion by Albert J. Beer 
My paper was originally written for the May, 1982, Casualty Actuarial 

Society Discussion Paper Program “Pricing, Underwriting and Managing the 
Large Risk.” Mr. Beer reviewed my paper at that time. His discussion so 
enhanced my paper that I made my submission to the Proceedings conditional 
on his agreement to submit his discussion. 

Mr. Beer’s definitions of PML, and PMAL, easily clarify an area I treated 
by implication, but did not address directly. These definitions explain how the 
risk manager and the underwriter can have different PML’s when they use the 
same loss distribution; the different PML’s are due to different values for (Y. 

Mr. Beer’s generalizations of my results nicely complete the ideas I pre- 
sented. It should be noted that his generalizations reduce the six methods 
presented to five, since “Xcr”’ and “Xc,’ as an estimate of kp” reduce to the same 
estimator. 

Discussion by John S. McGuinness 
Many of Mr. McGuinness’s questions, particularly those concerning defi- 

nitions, are answered if my paper and Mr. Beer’s discussion are read as a unit, 
as intended. Mr. McGuinness has raised other issues, several of which I will 
address. 

I) Sample Data 
The sample data presented in Exhibit I of my paper are used to illustrate 

the calculation of the proposed estimators for probable maximum loss (PML), 
to ensure that the concepts are clearly understood by the readers. The source of 
the data is not relevant to the concepts presented in the paper. 

The proposed estimators for PML were derived theoretically and tested on 
several sets of real and synthetic data. While of varying usefulness, I judged 
the estimators presented in the paper to be of sufficient interest to merit presen- 
tation to fellow actuaries. 

I purposely did not choose data used by A. W. Whitney’ or Ruth Salzmann2 

I A. W. Whitney, “The Actuarial Theory of Fire Insurance Rates as Depending on the Ratio of 
Insurance to Sound Value, Hence the Determination of the Rates for Use with the Coinsurance 
Clause,” Transacrions, VI International Congress of Actuaries. Vol. 2, 1909, pp. 395403. 

* R. Salzmann, “Rating by Layer of Insurance,” PCAS L, pp. 15-26. 
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to illustrate calculations because I wanted to get away from the idea that the 
PML concept applies only to property. Other actual data could not be presented 
in the paper because releases from clients could not be obtained in a timely 
fashion. 

The data presented in my paper are computer-generated. They are the 
aggregate distribution of claims, the number of claims having a Poisson distri- 
bution, and the claim size having a lognormal distribution. Several papers in 
the Proceedings and other journals have stated the success of the Poisson and 
lognormal distributions in approximating number of claims and claim size, 
respectively3. Consequently, I feel the data presented in my paper are represen- 
tative of a “real-life” situation where PMAL, might be sought. 

2) Order Statistics and Non-Normal Distributions 

This paper is not based on the assumption of asymptotic normality, as Mr. 
McGuinness states. &Xc,.,) and E(Xc,,) + 2(Var (Xc,.)))“’ as estimators for PML, 
do require assumptions concerning the underlying distribution of the data. 
However, XC~,, the upper bound of E(Xc,.,), and the upper bound for K,, are 

distribution-free. 

3) Potential for Order Statistics 

One of the reasons for writing this paper was to call attention to order 
statistics as a useful tool in actuarial work. As stated in the original paper: 

Order statistics are particularly useful for studying certain phenomena because 
quite a few of the results concerning the properties of X0, and the properties of 
functions of some subset of the order statistics are distribution-free. If an infer- 
ence is distribution-free, assumptions regarding the underlying population are 
not necessary. 

If reliable information about the underlying population is available, it should, 
of course, be used to the greatest reasonable extent. However, it has been my 
experience and, I suspect, that of many other actuaries, that we usually know 
very little about the underlying population. Consequently, I find order statistics 
a frequently useful, and often underutilized, tool, particularly with reference to 
PML, and PMAL,. 

3 For excellent bibliographies, see: 

A. L. Mayerson, “A Bayesian View of Credibility,” PCAS LIII, pp. 85-104. 

G. Patrik, “Estimating Casualty Insurance Loss Amount Distributions,” PCAS LXVII, pp. 57- 
109. 
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AN INFORMATION STRATEGY FOR INSURANCE 

DOUGLAS M. SWEENY 

IBM CORPORATION 

Thank you for that kind introduction. I am delighted to be here and honored 
to be your keynote speaker. It is always a pleasure to meet with some of our 
best customers-and you and the companies you. represent are just that. In fact, 
as an industry, you’re IBM’s fastest growing business segment. Perhaps that 
says something about automation in the insurance industry. It is also a pleasure 
to return to Miami-to catch some sun-and to check the progress of Christo’s 
“Plastic Islands.” 

This morning I would like to share with you a perspective on the impact 
that information systems technology is having, and may have in the future, on 
your business. The material is very current and represents the collective thoughts 
of my staff, along with those of some prominent industry analysts, academics, 
and insurance company executives, who serve as consultants to IBM. 

I would like to look briefly at the past, spend more time on current impacts, 
and then explore the future in greater depth. At the end, I’d like to suggest 
some basic precepts for an information strategy for insurance and provide some 
insight as to why we are witnessing the dawning of “the age of the workstation.” 
My premise is that as technology increasingly affects insurance business oper- 
ations, product design, company base economics, and even the structure of the 
industry, the role of the “Information Systems Executive” will change dramat- 
ically, and the role and involvement of the user executive, which is you, will 
change as well. 

Although as a unit of measure a decade is a crude yardstick, it does help to 
identify some major trends. Let’s begin with the recent past. In the Seventies 
your companies collectively grew 142% in premiums. That’s pretty impressive, 
and during that period data processing played a key role-although more in a 
back office or supportive way. 

The operational departments of your companies stepped up to this volume 
upsurge often by relying more and more on the function and capacity of their 
data processing systems. In general, the systems progressed in the decade of 
the Seventies from batch overnight . . . to online inquiry . . and finally to 
interactive processing. 
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It was just 7 years ago-at a meeting in Florida-that insurance data pro- 
cessing executives were sharing their successes using exciting new technologies: 
online interactive claims processing systems, with the 3270 Display Station, 
profitable uses of the 3850 Mass Storage System, and distributed data process- 
ing. 

Now, most of your companies have installed online interactive systems, and 
the breadth and sophistication of today’s systems far exceeds those of the mid- 
Seventies. Dozens of your companies now use the. mass storage concept, and a 
number of you count your distributed processors in the hundreds. Perhaps even 
more revealing, many of the future technologies envisioned a short time ago, 
including voice store and forward products, image transmission, and color 
graphics are already here today, from IBM and other companies. Technology 
is indeed galloping, and the past is truly a prologue to the future. 

And so, the focus in the Seventies was on learning new but basic information 
systems concepts-data base, online inquiry, distributed processing-and ap- 
plying them to the insurance business. 

I suppose in any decade analysis, the current must be viewed as a bridge 
between the past and future-and it’s true here. It seems that the changes- 
economics, competitive, governmental, and even consumer forces-are all peak- 
ing at once in the early Eighties. In fact, more change has occurred in insurance 
in the last two years than in the past two decades. On a broad basis, we have 
entered the era of Toffler’s “Global Economic Village.” Some key indicators 
are the recent spate of overseas acquisitions by your firms, and the projections 
that networks may soon interconnect the insurance exchanges around the world. 
Just last month, executives from .Lloyd’s visited us in Princeton to see and 
discuss the new Insurance Value Added Network Service (IVANS) which will 
go live this July. 

Our national economy is in its own state of flux, and within the broad 
financial community each component is looking enviously at his neighbor’s turf. 
As a recent NBC documentary pointed out, “even the staid, local business of 
banking has now become global, complex, and aggressively competitive.” As 
traditional industry lines blur, it’s become popular to.refer to insurance com- 
panies as “non-bank financial institutions.” Some insurers are now acquiring 
banks, and banks are circumventing regulations to buy insurance companies. 
The business of labeling is becoming quite complex. A more fitting term for 
banks might be “non-insurance financial institutions.” 

Several other factors are having a profound effect on your companies and 



KEYNOTE ADDRESS 223 

in turn on information systems. First of all, consumers have become more 
sensitive to the value of their assets and their yield. Public perception of money 
has changed. The “basis point consumer” will move for a quarter of a percent 
of additional yield, and loyalty to the financial institutions has lessened. Perhaps 
more importantly, insurance buyers are viewing insurance more as a commod- 
ity-one that can easily be replaced or even terminated. Consider that for 
ordinary life insurance the voluntary policy surrender rate jumped from 5.8% 
to 8.8% in just the last decade! Plus, increased attacks from the outside, like 
Walter Kenton’s new book, How Life Insurance Companies Rob You, and What 
You Can Do About It, do nothing for a company’s public image! 

Another issue is overcapacity. A recent university study indicates that the 
property and liability segment has the financial capacity to grow at twice the 
recent rate. Add to that capacity the entry of other financial firms into insurance, 
and we have a significant over-capacity, now and well into the future. As you 
well know, the result has been cut-throat price competition and “cash-flow” 
underwriting, which in turn has increased the pressure on information systems 
to be much more efficient. 

A third factor is that of “disintermediation.” Literally, this concept connotes 
the removal of any link in the process that does not add value-that does not 
pay its own way. For example, as many of you from companies writing life 
insurance know, continued customer borrowing against their policies removes 
the companies from the investment process. Applied to an insurance agent, 
clients may elect other means to secure insurance if the agent is not perceived 
as adding value to the transaction. To data processing support, this means 
accelerated change as clients and companies elect to add or remove links from 
the usual chain. 

All of these factors have created a driving force for productivity, expense 
control, and new applications of technology in data processing. 

Let’s look at how this technology is being applied today. First, there has 
certainly been a significant expansion of networks-a controlled explosion if 
you will-to regions, districts and branches, to claims offices, to agencies, and 
even to clients and health. providers. Over 50% of insurance companies now 
have distributed processors in their networks, and over 90% have remote online 
interactive terminals. In the agency area, a recent study by Frost and Sullivan 
revealed that more than 25,000 agents will automate over the next six years, 
and most of those will be network-connected to carriers in some way. And there 
is a recent flurry of activity in connecting health providers to insurers via regional 
or national networks. 
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In addition to networking, technology has been used to restructure and 
integrate business functions, from automated rating and quoting to machine- 
adjudication of claims; from integrated data and text applications to fully au- 
tomated correspondence. 

A third area, and perhaps the most exciting, is the one that led Time magazine 
to name the computer the “machine of the year.” The intelligent workstation 
has found its way into every segment of the insurance industry: as an executive 
workstation in New York, as an insurance service center device in Ohio, and 
as an extension to the information center across the country. It’s already being 
used as a total agency management system, a health insurance provider system, 
and an actuarial workstation. The fascination with this powerful microcomputer 
has resulted in it appearing as an executive Christmas present in one company, 
an award for top insurance producers in another, and as an agent incentive for 
writing more business. One insurance company has announced its intentions to 
provide a personal computer to every employee over the next four or five years. 
They foresee the day when management reports will arrive in diskette form and 
management meetings are attended with diskette in hand. 

Another insurance company has discovered that by attaching a communi- 
cating model/85 electronic typewriter to a personal computer, you can have the 
highest quality printed output, as well as the flexibility to use the typewriter 
independently when needed. A company in Europe is actually planning two 
workstations per employee, at least in the data processing area, so that creativity 
at home will not go unfulfilled. And with so many universities now requiring 
students to have their own personal computers, like the slide rules and calculators 
of yesterday, it is clear that the information age and workstation age will continue 
to gain momentum. 

As a result of the proliferation of individual workstations, users are becoming 
more independent. Their confidence is growing: they are now ready, willing, 
and able to use technology; and thus, the number of people demanding infor- 
mation processing is exploding, touching all parts of the U.S. workforce. That’s 
an enormous audience, nearly 100 million people. And so, understandably, our 
focus is increasingly on the end user. 

The problem is, users come in all shapes and sizes. That leaves us with the 
question-how do you understand the needs represented by this many individ- 
uals? That’s a key area we have been studying over the last 2 or 3 years- 
categorizing these users in a way that we think contributes to understanding 
their characteristics as users of information technology. So, I would like to 
outline this concept of user segmentation, and along the way, call out things 
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we are doing or plan to do as a direct consequence. Some of the results will 
apply to you-helping you to tailor your own information systems plans. Using 
federal government job classifications and Bureau of Labor Statistics, all of the 
occupations in the U.S. workforce were grouped into six broad segments. We 
did this tentatively-the six seemed to exhibit key differences in support and 
workstation needs, and we are testing these differences now. 

Of course, nothing in user segmentation implies that each segment is strictly 
homogeneous. Your world does not fit neatly into six cubicles. In time, I am 
sure we will increase the number of segments we study, but let me touch briefly 
on five segments that are important to insurance. 

Let us start with the engineers/scientists segment. This is a group that has 
characteristics and requirements that many of you will identify with. The ac- 
tuarial community has long been a heavy user of computing support, often 
being the most knowledgeable end user group. In fact, you were among the 
first in your industry to use timesharing terminals and build sophisticated com- 
puter models. Across the insurance industry, actuaries, statisticians, and indus- 
trial engineers represent only 2% of the workforce, but their computational 
requirements are, of course, very high. 

In these respects you resemble engineers and scientists in other industries. 
However, as we examined the variety of functions actuaries and actuarial de- 
partments perform, it seemed clear to us that they have more in common with 
members of the second segment-the business professional. As a professional, 
this kind of user has substantial discretion in the way problems are addressed 
and what tools are used. Productivity is very important for this user, but is 
measured by the quality of enterprise decisions, rather than transaction volumes. 
The business professional understands the productivity benefits of information 
systems, but does not want to become a data processing professional to obtain 
them. The business professional has urgent requests-and can easily become 
impatient at the queue of jobs that arrive at central data processing first. 

We have responded to these characteristics as they exist in all industries 
with a solution we call the information center-a solution that has been so 
successful I’d like to dwell on it a moment. What a business professional does 
can be broadly categorized into three application types-Decision Support, 
Professional Support, and Data Base/Data Communications-each supported by 
a variety of software and systems. Within these application types, however, are 
many individual needs, and the larger problem of how to apply the best solution 
without becoming a data processing professional. 
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The information center solves this by focusing the power and competence 
of the central staff on the user through an information center consultant. This 
consultant has the ability to understand the business professional application, 
and how the ultimate user can do it himself. In fact, a number of user depart- 
ments have established their own internal consultants, and I am sure some of 
you have staff professionals who function in this way. The results: faster, more 
relevant solutions and support of management’s objective to drive the infor- 
mation system resource to new users and uses. 

By the way, we regularly ask our customers about the reasons they see for 
data processing growth. Last year was the first time that the reason I just 
mentioned-new uses and new users-was the most frequent answer, and it 
occupied first place by a comfortable margin. 

Acceptance of the information center as the vehicle for user expansion was 
borne out by the same survey, with over 60% of all respondents expecting to 
have an information center in operation by the end of this year, and 87% of our 
largest customers. 

Overall, the information center, with its extension to include intelligent 
workstations, appears to be the best approach to satisfy the information systems 
support needs of the business professional. 

Another segment is the commercial or clerical segment. For some insurance 
companies this may be 50% of their employee population. The commercial 
workers-tellers, cashiers, clerks, and claims adjudicators, for example-tend 
not to be trained in data processing. What they do depends heavily on specific 
industry practices and procedures, and is usually justified by volume-based 
productivity. It is this segment of the population that has received the bulk of 
automated support to date. 

The fourth segment is the Data Processing Professional-a resource that is 
scarce both in insurance and in industry generally. Although only i/2% of the 
U.S. workforce, in some insurance companies 5% of the employees are data 
processing professionals. Evidence exists that over the long haul, the last 25 
years, this segment has maintained an astonishing 20% growth rate in produc- 
tivity, but the question is what can be done now .to maintain and then enhance 
productivity growth. One answer is an approach we call the ideal programming 
environment. In a nutshell, you trade off less expensive computer power and 
workstation availability against more expensive programmer time and effort. 
The payoff is twofold: vastly improved programming productivity, and pro- 
grammer satisfaction. 
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The most prominent members of the last segment are secretaries; occupa- 
tionally characterized by the creation, retrieval, and manipulation of text, but 
very dependent on others for the specifics of their functions. IBM, as well as 
literally hundreds of other office systems vendors, offers a variety of devices to 
address the needs of this segment. IBM also issued a statement of direction in 
which we promised to interconnect our various solutions for more fully inte- 
grated office systems, and to integrate text functions with the data processing 
applications which demand them. 

So let’s take a look, briefly, at where the workstation of the Eighties is and 
where it’s going. While much of what I say will apply to all workstation vendors, 
I am sure you’ll understand my tendency to use IBM products as examples! 

Now that we understand that there are some specific classifications of end 
users who need different amounts of either text, computation, information 
access, special output, or other workstation function, the next step is to select 
the best family of workstations to support each type of user. First, it is important 
to understand the key workstation trends. Across our entire industry, perfor- 
mance and function are improving dramatically, and price is dropping. You may 
read that in this “Age of the Workstation,” the computer terminal will become 
as pervasive as the telephone. While the price curve has not dropped that low 
yet, the trend is certainly in the right direction. 

Let me give you three or four examples-product announcements that IBM 
made in March of this year-that illustrate these trends. 

The IBM 3178 Display Station is a good example of a nonintelligent cathode 
ray tube, or CRT, whose price was cut by 50% from that of the 3278, the 
predecessor product, and yet has significant ergonomic, or human engineering, 
enhancements such as reduced footprint, tilt screen, and removable base. The 
square base can in fact be suspended vertically in a desk well by a small bracket, 
to further reduce occupied space. I know in my office, the credenza is only 20 
inches wide, and most workstations are just too big to fit on it! 

Another product has dramatically enhanced function by the attachment of 
PC (Personal Computer) intelligence to a nonintelligent 3270 workstation at a 
small cost. The importance of this announcement is that if you already have a 
major investment in 3270 Displays that you’ve purchased over the last 5 years, ’ 
you can add personal computer power to the display very inexpensively. 

Also announced in March was the enhancement of the Personal Computer 
to include color graphics and substantially more storage and processor power. 
The new IBM PC/XT, as it’s called, is now being adopted as a standard by 
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several insurance companies for use as an agency system, because its increased 
capacity will help to avoid future constraints. Also, I think this product, which 
can operate independently or be tied to your central system, is probably the best 
solution for you, as actuaries, today. By the way, this is one of the products 
we’re demonstrating downstairs. 

And finally, the 3290 Information Panel is clearly the most exciting tech- 
nology we’ve seen in the recent past. This device uses a gas panel concept 
which produces a flicker-free sharp image. The screen itself is only 4 inches 
deep and contains up to 9,920 characters of information, about 4 times the 
capacity of a standard display. A close-up of the 3290 screen shows that the 
device can actually display 4 different screens of information from 4 different 
application programs or data bases. I saw this product being tested for a Blue 
Cross Plan in Ohio in a claims application. Instead of an operator looking up 
some information, writing it down, and doing another inquiry, the 3290 saved 
and displayed multiple requests for that one application. A 27% productivity 
enhancement was realized in processing health claims. 

From a direction standpoint, 1 think over the next few years you will continue 
to see us expand upon the alpha/numeric display base and to integrate and 
enhance facilities for text, image, graphics, and facsimile, and at the same time 
offering variations in screen size, color, and increasing the levels of user 
programmability. And, of course, the other major technology to be integrated 
into the workstation will undoubtedly be voice systems as they develop. 

With all the new users and the proliferation of workstations, a variety of 
industry sources project the ratio of workstations to employees will grow eleven 
times-from 1:23 in 1980 to 1:2 before the end of the decade. I should add that 
a number of insurance companies we work with are already at a ratio of 1:4, 
and at least one firm plans to be at 1: 1 by 1987! 

Well, let’s turn to the future. From the current, where tactics are necessary, 
to the future, where strategy counts. The key really is planning. Both tactical 
and strategic planning are needed, and they must be in balance; one for survival, 
one for growth. 

Over the past year, we’ve noticed a new emphasis in insurance on long- 
range business planning, spurred in part by the financial services “free for all.” 
In fact, our department has hosted nearly a dozen strategic planning briefings 
in the past 12 months, mostly for insurance companies, but in a few instances 
for banks or manufacturers peering over the proverbial pasture fence. In our 
briefings we provide our assessment of the emerging financial services industry 

. . 
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and the role that technology is playing, particularly 
products. We also share some of IBM’s planning 
transferable to insurance. 
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in electronic delivery of 
techniques that may be 

We explore strategic questions that insurance executives are, or should be, 
asking . . . such as: 

* If we decide to expand into financial services, what value would we bring 
to the marketplace, and, what would be the impact on our traditional 
insurance business? 

* If we decide not to expand into financial services, but our peers and others 
do, how would that affect our competitive position? 

And finally we assess the comparative technological strengths and weak- 
nesses of the major players: the banks, security brokers, and insurers. 

Strategic vision and long-term thinking is beginning to be a familiar theme. 
It is a megatrend that John Naisbitt recognized, and it’s happening in insurance 
right now. 

As a result of more strategic thinking, insurance executives are now begin- 
ning to make organizational changes within their companies. From monolithic 
organizations, they are moving to more free-form or modular ones. Insurance 
companies will no longer be the tightly coupled businesses of the past. Products, 
functions, market segments, and distribution channels will be seen as separate 
entities or individual business units. Each company can then select those to be 
emphasized and those to be sold or discontinued. 

At the same time, top management is beginning to view technology and 
information systems in a new role, a role as a competitive weapon. 

It can be used: 

* To strengthen customer/client relationships and reach new markets, 
* To create new value-added features for product differentiation, 
* To establish barriers to entry or barriers to change between suppliers, 
* And, internally to increase productivity and efficiency, to help an insurer 

be the low cost producer or distributor of its products. 

With information systems as both a strategic and tactical weapon, financial 
executives in the most progressive firms are recognizing their potential as a 
sound investment. As so many bankers are learning today, the long-term return 
on investment in technology can be more attractive than alternative investments 
in brick and mortar, especially so when competitive positioning is considered. 
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For example, a recent New York Times article described Citicorp’s technol- 
ogy push that has introduced change so rapidly that both the consumer and bank 
management can barely cope. Two positive results have occurred, however; 
they have discovered that 25% of their consumer base actually prefers a me- 
chanical teller to a human one. An automated teller machine, by the way, is 
ten times more productive than a teller of similar expense. Secondly, the firm 
has discovered that its market share has grown from 4.4% to 9.6% in New 
York in just five years! Doubling market share-that’s not bad, is it? Perhaps 
most importantly for Citicorp, technology is redefining what a bank is. I think 
the same may be said for insurance in the immediate future. 

In light of all these shifts in the insurance environment and in top manage- 
ment’s thinking, we are beginning to see some fundamental precepts on which 
to build an information strategy for insurance. 

First, as insurance has grown to be critically dependent on technology, the 
requirement has increased for the information systems plan to be fully integrated 
with the business plan and for the information systems executive to become a 
full partner with you and other executive management. Strongly supportive of 
this is an analysis done by Warren McFarlan in his new book, Corporate 
Information Systems Management. In it he introduces a grid to help position 
the role of information systems in light of various industry climates. It is his 
view that the strategic relevance of information systems is different by industry. 
He points out that unlike most other industries, insurance has moved steadily 
into the strategic quadrant, in which company success, both short and long 
term, has become critically dependent upon information systems activities. 

Second, as insurance organization structures become modular to respond 
rapidly to market conditions, information systems must mirror that “loosely 
coupled” structure. This is indeed a challenge; maintaining sufficient integration 
so as not to duplicate data, programs, or networks, but modular enough so that 
component systems can be modified or even relocated without causing major 
disruption in connected systems. 

Third, with top management looking for any technological advantage which 
might be a competitive weapon, it is becoming increasingly important to scan 
the environment for new technologies with high payback potential, and to pilot 
them early before they mature. 

A recent Harvard Business Review article provides a useful framework for 
placing emerging technologies in perspective, by phases. Phase I calls for the 
early identification of potentially useful technologies. This initial phase involves 
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selection and evaluation on a research and development basis. For insurance, 
we see several new products that promise significant benefits such as the 3290 
information panel, which I referenced earlier. Another new technology, videotex 
(a concept linking Cable TV, a mini-computer, and low cost keyboards), is 
already in use in European insurance companies as an information center exten- 
sion and as an agency support function. One U.S. life company identified over 
30 potential uses of that technology in their Phase I planning process. 

The point.is, for new technologies, early experimentation is needed to gain 
experience and confront technical issues. 

In Phase II, the technology can begin to move out into selected user de- 
partments. This is still an experimental stage and often the users’ views of the 
new product differ substantially from the first data processing assessment. In 
this second pilot phase, detailed cost justification is still premature. As an 
example, the IBM Scanmaster I, a recently announced image storage and 
retrieval product, is here now. More than two dozen insurance companies are 
planning Scanmaster pilots to assess the new technology in user departments 
such as legal, personnel, and claims. I believe audio distribution has also reached 
this point. In fact, one insurance company has made substantial progress in 
putting voice store and forward into productive use for their top executives. 
Their goal is to eliminate telephone tag. 

Phase III is the controlled use of a technology. At this point it is ready for 
large scale, profitable use. Here economics become of prime importance, and 
each company must determine the extent to which it will invest in the technol- 
ogy. Office systems, such as the IBM Displaywriter, are in Phase III for many 
companies, as are personal computers. 

The transfer of the technology to widespread loosely controlled use repre- 
sents Phase IV. The technology is mature, understood, and easily installed. 
Online inquiry, distributed processing, and data base interaction are in this phase 
for most companies. 

I think the recognition of these phases, and the proper placing of each 
technology within that framework, is vitally important. What is needed is an 
ongoing technology assessment, a strong research and development function, 
and the flexibility to conduct user experiments before a new technology is 
mature. 

Fourth, with the explosion of personal workstations among users, it is 
imperative that both information systems and user department management focus 
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on connectivity, workstation standards, and data control to ensure productive 
growth and to protect company assets. There are two areas of concern, with the 
first being the management of data. A potential exposure exists here because 
the volume of data is growing exponentially as a result of client orientation and 
the complexity of insurance products. But even more importantly, dispersed 
users, armed with personal workstations at work or home, may proliferate 
hundreds of local data bases at a pace outstripping corporate core systems. 
Standards for data access and use must be established and enforced in order to 
protect this vital corporate asset. The second concern is network control. As it 
becomes less and less possible to manage what is communicated, it becomes 
more and more critical for companies to exercise responsible control over the 
means of communications. 

Fifth, and finally, all of insurance management must begin to view technol- 
ogy in its emerging new role: the financial executive-as an attractive investment 
alternative; the marketing executive-as a connection to the customer and as a 
product differentiator; the functional executive (such as claims, underwriting, 
and actuarial)-as a productivity enhancer; and, of course, the top executive- 
as a tool for both survival and growth. 

So what’s ahead of us is an exciting era-one that’s being termed the 
“information age,” more appropriately the “workstation age,” or perhaps the 
“age of the end user.” Successful firms, and especially insurance companies (or 
should I say financial service companies), will be those who apply technology / 
most effectively. 

! 
For you, the challenge of the Eighties will be to become and remain com- 

fortable with the new technology, to promote computer literacy throughout your ! 
organizations, and to accelerate your already innovative use of information 
processing. I think the payoff will be an economic one-some estimate a billion 
dollars per year industrywide. But more important than economics, it may be 
the key to survival. / 

I 
I have enjoyed being with you today, and hope you have a great meeting I 

here in Miami. 
I 
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MINUTES OF THE 1983 SPRING MEETING 

May 15-18, 1983 

DORAL COUNTRY CLUB, MIAMI, FLORIDA 

Sunday May 15, 1983 

The Board of Directors held their regular quarterly meeting from 1:00 p.m. 
to 4:00 p.m. 

Registration was held from 4:30 p.m. to 6:30 p.m. 

The Officers held a reception for new Fellows and their spouses from 5:30 
p.m. to 6:30 p.m. 

The general reception for all members and guests was held from 6:30 p.m. 
to 7:30 p.m. 

Monday, May 16, 1983 

President Frederick W. Kilboume opened the meeting at 9:00 a.m. Mr. Gary 
Granoff, Deputy Commissioner, Florida Insurance Department welcomed our 
Society to Florida. 

Mr. Kilboume presented the new Associates and then introduced the new 
Fellows and presented them with their diplomas. As part of the introduction, 
Mr. Kilboume emphasized the responsibilities of the new members. 

Michael Walters, Chairman of the Organizational Transition Team, reviewed 
the proposed changes to the Constitution and Bylaws, and answered questions 
on the new organization. 

~, Mr. Kilboume concluded the business session at lo:15 a.m. 

Mr. Douglas M. Sweeney, Manager, Insurance Industry Marketing, IBM 
Corporation, delivered the Keynote Address. He emphasized the growing use 
of data processing within the insurance industry and the important role it will 
play in the future. 

The afternoon session consisted of a series of concurrent presentations. The 
presentations included; six new papers, five workshops, and four data processing 
presentations. 
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The new papers presented were: 

1. “The Pricing of Medi Gap Coverage,” 
Emil J. Strug 
Actuary 
Blue Cross & Blue Shield of Massachusetts 

2. “The Calculation of Aggregate Loss 
Distributions from Claim Severity and Claim Count Distributions” 

Philip E. Heckman Glenn G. Myers 
Senior Actuarial Analyst Assistant Actuary 
CNA Insurance Companies CNA Insurance Companies 

3. “Loss Reserving for Solvency” 
David A. Arata 
Western Pricing Officer 
Sentry Insurance Company 

4. “Transformed Beta and Gamma Distributions and Aggregate Losses” 
Gary G. Venter 
Actuary 
National Council on Compensation Insurance 

5. “Utility with Decreasing Risk Aversion” 
Gary G. Venter 
Actuary 
National Council on Compensation Insurance 

6. “Parameter Uncertainty in the Collective Risk Model” 
Glenn G. Myers Nathaniel Schenker 
Assistant Actuary Ph.D. Candidate 
CNA Insurance Companies University of Chicago 

The workshops covered the following subjects: 

1. “Fitting Loss Distributions” 
Dr. Stuart Klugman 
Associate Professor of Statistics 
University of Iowa 

2. “Loss Reserve Modeling” 
Paul S. Liscord 
Consulting Actuary 
Liscord, Ward & Roy, Inc. 
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3. 

4. 

5. 
6. 

“Risk Exchange” 
Dr. Jean Lemaire 
Institute de Statistique 
Brussels, Belgium 
“Risk Management and Small Insurance Company Applications” 
James A. Hall, III Richard T. Zatorski 
Partner Consulting Actuary 
Coopers & Lybrand Frank B. Hall & Co. 

“Anistics” 
“Visicorp” 

The data processing presentations were demonstrations of personal comput- 
ers and various software by representatives from Apple, GRID, Hewlett Pack- 
ard, and IBM. 

Tuesday, May 17, 1983 

All day Tuesday was devoted to a continuation of the concurrent sessions 
from Monday afternoon. 

Wednesday, May 18, 1983 

At 8:30 a.m., W. James MacGinnitie moderated a panel on “Data Base 
Availability in The Future.” His panel consisted of: 

Joseph T. Brophy 
Senior Vice President 
Travelers Insurance Companies 

Anthony J. Grippa 
Senior Vice President 
National Council on Compensation Insurance 

Harry Schuford, Ph.D. 
Manager, Captive Development & Planning Division 
Fred S. James Co. 

After a short presentation by each panel member, Mr. MacGinnitie moved 
into the audience to lead a lively question and answer.session. The discussion 
covered a wide range of topics including Mr. Brophy’s use of personal computers 
within his company, the direction of the National Council on Compensation 
Insurance with regard to data availability, and the importance of data processing 
in risk management. 

n 
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At 9:30 a.m. Mr. Kilboume reconvened the business session and presented 
Mr. P. Adger Williams, President of the American Academy of Actuaries and 
Past-President of our Society. He updated the members on the Academy’s 
activities and expressed his thoughts on the proposed CAS reorganization. 

Mr. Kilboume then called for the vote on amending the CAS Constitution 
and Bylaws with regard to Organization. The proposed changes were approved 
unanimously by a hand vote. 

At IO:45 a.m., Mr. Joseph W. Brown moderated a panel entitled “Agency 
Automation, Telecommunication Network and Agency Interface.” His panel 
members were: 

John W. Folk 
President 
Insurance Institute of Research 

Carol A. Hammes 
Executive Vice President 
Hales & Associates, Inc. 

Chris Scattliff 
Sr. Vice President, Marketing 
ARC - Automation Services 

Kirk T. Foley 
Project Manager 
Hartford Insurance Co. 

The panel presented a variety of views reflecting their individual areas of 
expertise directed at the question, “Will agency automation, telecommunications 
network, and agency interface make the american agency system a more efficient 
competitor?” Although there was a consensus of the panel that the various 
technology components will result in efficiency, the panelists offered different 
views as to the magnitude and the timetable for realization of these efficiencies. 

Mr. Kilboume closed the meeting at 12:00 noon. 

In attendance, as indicated by registration records, were 150 Fellows, 121 
Associates, 18 guests, 13 subscribers, and 5 students. The list follows 
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FELLOWS 

Gallagher, T. L. 
Garand, C. P. 
Giambo, R. A. 
Gillespie, B. C. 
Gluck, S. M. 
Goldfarb, I. H. 
Gottheim, E. F. 
Graham, T. L. 
Gutterman, S. 
Hachemeister, C. A. 
Hall, J. A., III 
Haner, W. J. 
Hartman, D. G. 
Harwayne, F. 
Heer, E. L. 
Heersink, A. H. 
Henry, D. R. 
Herder, J. M. 
Hine, C. A. 
Hillhouse, J. A. 
Honebein, C. W. 
Horowitz, B. A. 
Hough, P. E. 
Ingco, A. M. 
Inkrott, J. G. 
It-van, R. P. 
Jameson, S. 
Jean, R. W. 
Johe, R. L. 
John, R. T. 
Johnson, W. H. 
Johnston, T. S. 
Kelly, A. E. 
Khury, C. K. 
Kilboume, F. W. 
Kollar, J. J. 
Krause, G. A. 
Kraysler, S. F. 

Addie, B. J. 
Adler, M. 
Aldorisio, R. P. 
Anker, R. A. 
Barrette, R. 
Bartik, R. F. 
Bass, I. K. 
Beverage, R. M. 
Bill, R. A. 
Bland, W. H. 
Boison, L. A., Jr. 
Bomhuetter, R. L. 
Carpenter, T. S. 
Childs, D. M. 
Christie, J. K. 
Cohen, H. L. 
Conger, R. F. 
Connell, E. C. 
Conners, J. B. 
Corr, F. X. 
Covney, M. D. 
Curry, A. C. 
Davis, L. S. 
Dawson, J. 
Dean, C. G. 
Degemess, J. A. 
Demers, D. 
Dempster, H. V. 
Doepke, M. A. 
Donaldson, J. P. 
Easton, R. D. 
Eland, D. D. 
Eliason, E. B. 
Fallquist, R. J. 
Fiebrink, M. E. 
Fisher, R. S. 
Fisher, W. H. 
Fresch, G. W. 

LaRose, J. G. 
Ledbetter, A. R. 
Let-wick, S. N. 
Linden, 0. M. 
Liscord, P. S. 
Lo, R. W. 
Lommele, J. A. 
Lowe, S. P. 
Lyle, A. C. 
MacGinnitie, W. J. 
MakGill, S. S. 
McGovern, W. G. 
McGuinness, J. S.’ 
McManus, M. F. 
Meyers, G. G. 
Miccolis, R. L. 
Miller, D. L. 
Miller, M. J. 
Moore, B. C. 
Muetterties, J. H. 
Munro, R. E. 
Murad, J. A. 
Naffziger, J. V. 
Nash, R. K. 
Newlin, P. R. 
Newman, S. H. 
Newville, B. S. 
Nickerson, G. V. 
Oakden, D. J. 
Palm, R. G. 
Patrick, G. 
Pearl, M. B. 
Petersen, B. 
Phillips, H. J. 
Pratt, J. J. 
Purple, J. M. 
Reynolds, J. J., III 
Riddlesworth, W. A. 
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Rodermund, M . 
Rogers, D. J. 
Rosenberg, M. 
Scheibl, J. A. 
Schumi, J. R. 
Schoop, E. C. 
Simon, L. J. 
Snader, R. H. 
Squires, S. R. 
Steeneck, L. R. 
Stephenson, E. A. 
Stewart. C. W. 

FELLOWS 

Streff, J. P. 
Stmg, E. J. 
Taht, V. 
Taranto, J. V. 
Tatge, R. L. 
Truttmann, E. J. 
Tuttle, J. E. 
Venter, G. G. 
Walker, R. D. 
Walsh, A. J. 
Walters, M. A. 
Wasserman, D. L. 

Weller, A. 0. 
Wess, C. 
Williams, P. A. 
Wilson, J. C. 
Wilson, R. L. 
Woll, R. G. 
Wulterkens, P. E. 
Yingling, M. E. 
Young, E. W. 
Youngerman, H . 
Zatorski, R. T. 
Zubulake. T. J. 

Abramson, G. R. 
Andler, J. A. 
Andrus, W. R. 
Bartlett, J. W. 
Baum, E. J. 
Belden, S. A. 
Bensimon, A. S. 
Bhagavatula, R. R. 
Bothwell, P. T. 
Brooks, D. L. 
Bujaucuis, G. S. 
Chanzit, L. G. 
Chorpita, F. M. 
Chou, P. S. 
Connor, V. P. 
Crifo, D. A. 
Currie, R. A. 
Davis, R. D. 
Deutsch, R. V. 
Downer, R. B. 
Duffy, B. 
Dye, M. L. 
Edmondson, A. H. 

ASSOCIATES 

Ellefson, T. J. 
Eramo, R. P. 
Fasking, D. D. 
Fiebrink, D. C. 
Flanagan, T. A. 
Forde, C. S. 
Friedman, H. H. 
Fueston, L. L., Jr. 
Gerard, F. R. 
Godbold, N. T. 
Goldberg, T. L. 
Gould, D. E. 
Granoff, G . 
Gruber, C. 
Halpert, A. 
Hanson, J. L. 
Harwood, C. B. 
Head, T. F. 
Her&es, J. P. 
Henry, T. A. 
Henzler, P. J. 
Hobart, G. P. 
Hofmann, R. A. 

Hutter, H. E. 
Kadison, J. P. 
Kane, A. B. 
Kaur, A. F. 
Kelly, M. K. 
Klawitter, W. A. 
Kleinberg, J. J. 
Klingman, G. C. 
Kolojay, T. M. 
Kooken, M. W. 
Kozik, T. J. 
Lafrenaye, C . 
Leong, W. 
Livingston, R. P. 
Marks, S. D. 
Martin, P. C. 
Mashitz, I. 
McIntosh, K. A. 
Merlino, M. P. 
Meyer, R. E. 
Miller, D. L. 
Millman, N. L. 
Mittal, M. L. 



Morgan, S. T. Potter, J. A. 
Morrow, J. B. Potts, C. M. 
Napierski, J. D. Powell, D. S. 
Narvell, J. C. Pulis, R. S. 
Neale, C. L. Rapoport, A. J. 
Nelson, J. K. Reynolds, J. D. 
Neuhauser, F., Jr. Sansevero, M., Jr. 
Nichols, R. S. Schmidt, N. J. 
Nichols, R. W. Schwartzman, J. A. 
Nikstad, J. R. Sellitti, M. 
Normandin, A. G. Sherman, H. A. 
O’Connell, P. G. Singer, P. E. 
Ogden, D. F. Smith, R. A. 
Petit, C. I. Stance, E. J. 
Piazza, R. N. Steinen, P. A. 
Pierson, F. D. Stroud, R. A. 
Pilon, A. Surrago, J. 

Allen, T. C. 
Belton, E. F. 
Brophy, J. T. 
Cassuto, I. A. 
Chansky, J. S. 
Curran, K. F. 
Earls, R. 
Fave, L. D. 
Folk, J. W. 
Gartlan, R. 
Gunter, B. 
Gutman, E. 
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ASSOCIATES 
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Swisher, J. W. 
Symnowski, D. M. 
Toczylowski, D. L. 
Townsend, C. J. 
Varca, J. J. 
Visner, S. M. 
Wacek, M. G. 
Waldman, R. H. 
Watford, J. D. 
Weimer, W. F. 
Weiner, J. S. 
Westerholm, D. C. 
White, C. S. 
Whiting, D. R. 
Windwehr, D. R. 
Withers, D. A. 
Yau, M. W. 
Young, R. G. 

GUESTS-STUDENTEUBSCRIBERS 

Hager, G. 
Hammes, C. A. 
Johnson, M. B. 
Keating, R. 
Klugman , S . 
Kuhn, W. N. 
Lemaire, J. 
Libbery, W. 
Mong, S. 
Neff, R. 
Pichler, K. J. 
Rapoport B. 

Rowe, R. 
Roy, T. S. 
Schenker, N . 
Schmidt, L. D. 
Schuford, H. 
Spangler, J. L. 
Stenmark, J. A. 
Sweeny, D. M. 
Thompson, R. M., Sr. 
Valenti, A. T. 
Vandemoth, J. P. 
Wootton, G. A. 

Respectfully submitted, 

BRIAN E. SCOTT 
Secretary 
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SOCIAL INSURANCE AND THE CASUALTY ACTUARY 

PRESIDENTIAL ADDRESS BY FREDERICK W. KILBOURNE 

Sixty-nine years ago, some forty actuaries gathered in New York and formed 
the Casualty Actuarial and Statistical Society of America. Article II of the 
constitution of this Society proclaimed its object to be “. . . the promotion of 
actuarial and statistical science as applied to the problems of casualty and social 
insurance . . .” We have always done well in fulfilling this object concerning 
workers’ compensation, the original line of social insurance. In our early days, 
we attended fairly well to both sides of the field our forefathers had tilled for 
us. The first thirty volumes of our Proceedings included 34 papers and actuarial 
notes on social insurance, of which a dozen dealt specifically with unemploy- 
ment insurance. In more recent years, however, one section of our original field 
has come to be neglected. The next thirty volumes contained only four papers 
on social insurance, and the ten most recent volumes are essentially silent on 
the subject. Yet social insurance, in its various versions and perversions, is one 
of the great burning issues of the Twentieth Century. The resolution of social 
insurance problems, for better or for worse, will play a major role in determining 
the quality of life in the Twenty-First Century. Society needs the Casualty 
Actuarial Society now more than ever, as it grapples with its problems in our 
field. We will be derelict in our responsibilities to the public and to our 
profession if we abandon the field, allowing it to become the exclusive property 
of the politician. Social insurance and the actuary should never have been 
divorced, and must be reconciled, if only for the sake of the children. 

Consider, first, the actuary. What is this “actuary?” The Fact Book of the 
American Academy of Actuaries says that actuaries, who are “trained in the 
science of mathematical probabilities and finance, ” “evaluate the current finan- 
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cial implications of future contingent events.” The Statement of Purpose of the 
Society of Actuaries says the actuary is “trained to analyze uncertainty, risk and 
probabilities,” and that actuarial science is “built on the evaluation of the 
financial, economic and other implications of future contingent events.” An 
upcoming encyclopedia article contends that “if both money and uncertainty are 
involved in a problem, the actuary can be important to the construction of a 
solution.” Succinctly, if not poetically, I see the actuary as a “future cost 
analyst.” Note that all these definitions encompass territory going well beyond 
the fields now being cultivated by the actuarial profession. Also note, on the 
other hand, that they are specific, dealing always with money and with the 
future. Perhaps the shortest definition of all is that we are “financial futurists,” 
It has been said that a profession must be both unique and necessary, and who 
but the actuary can claim training which has been directed at producing no more 
and no less than a financial futurist? The criterion that we be necessary, of 
course, is quite another matter. Yet the government of this country believes a 
valuation actuary to be necessary to the proper functioning of a life insurance 
company. And the U.S. Government requires an enrolled actuary where there 
are private pension plan liabilities. And stockholders in general need help in 
evaluating the recommendations of managers whose interests may favor short- 
term earnings at the expense of long-term survival; with the need existing 
whether or not those stockholders currently are getting that help. And taxpayers 
need help in evaluating the promises of politicians whose interests in being 
elected may overwhelm their skills as financial futurists. Nor are the taxpayers 
the only losers if these elected officials prove to have been better salesmen than 
engineers. We all lose if our social institutions come apart at the seams; whether 
they go bankrupt or whether they merely serve to distort or dampen our econ- 
omy. So we actuaries are necessary to public institutions such as social insur- 
ance, not because we can unerringly predict the future, but because we are 
experts in evaluating the current and long-term financial implications of pro- 
grams involving uncertain future events. 

Consider, next, social insurance. Ralph Blanchard defined social insurance 
as “any form of insurance in which the government goes beyond the regulation 
of practices and the dissemination of information” and does so by “compelling 
insurance” or by “becoming itself an insurer.” This was in his 1942 presidential 
address entitled “The Casualty Actuary and Social Insurance.” Also in the 1942 
Proceedings was “An Approach to a Philosophy of Social Insurance,” by Jarvis 
Farley and Roger Billings. This paper considered social insurance to be “when 
the government role is extended beyond the regulatory function, whether by 
making the purchase of insurance compulsory on certain classes of citizens or 
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by actually underwriting and assuming the risk, or both.” So perhaps we may 
agree that social insurance is insurance that is required or provided by the 
government. This includes, for example, auto insurance in New York; state 
disability insurance in California; medical insurance in Canada; and, workers’ 
compensation insurance everywhere. 

The distinction between insurance and subsidization should be noted. You 
are being insured when you pay your expected loss cost, as well as may be 
determined, into a common pool for the provision of benefits to those who 
suffer a fortuitous loss. You are being subsidized when you pay less than that 
cost. The two concepts are distinct, although a given program may have elements 
of both. A government program of subsidization is welfare, not social insurance. 
A private insurance company program of subsidization, in a competitive market, 
leads to bankruptcy. 

It is unfortunate that welfare has come to have negative connotations, for it 
is essential in a humane society with productive capacity beyond minimum 
subsistence for all. Some people are unable to produce, and they must be 
subsidized or they will die. Consider all of us at the beginning and end of our 
life span, for example. Furthermore, even producers may suddenly find them- 
selves unable to produce. Contingent events lurk everywhere, trying to keep 
you from your job, taking your arm or your youth, bringing depression to you 
or to your country, and more, and worse. Social insurance as opposed to welfare, 
is arguably a good solution to such producer problems, particularly where private 
insurance has failed to fill the need for one reason or another. It is often paid 
for by the employer, who treats the expense as an element of employee com- 
pensation and passes it on to the consumer of his goods or services. This seems 
appropriate in the case of workers’ compensation, at least, for it permits the 
price of a manufactured item, for example to reflect the true cost of its produc- 
tion. Social insurance is not the same thing as welfare, but together they have 
the potential of taking the rough edges off a free market economy, while 
retaining the incentives that are essential to a productive society. 

Social insurance can be abused, of course, as can all human institutions. 
Benefit levels and eligibility criteria can be debated, but most will agree that 
the public good suffers if incentives to produce are severely eroded. Social 
insurance, like all insurance, must be sold. The sales prospect here is the voter, 
however, rather than the would-be policyholder. Government has the responsi- 
bility, particularly since it is unregulated except by an inexpert electorate, to 
present the social insurance plan fairly when it is being sold or revised. If the 
plan includes a welfare or subsidy element, this fact should be identified. If 
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financing is to be on a “pay-as-you-go” basis, future cost estimates should not 
be predicted on “pray-as-you-go” assumptions. These simple rules of fair play 
and survival have not always been followed by North American and other 
governments. Some social insurance plans have been soundly based at their 
inception, and in subsequent operation; but others have not, including some of 
the more important ones. It is misrepresentation or worse to present a welfare 
system as insurance; to imply that one’s taxes are premiums which are being 
invested on one’s behalf when they are not. It is worse to promise benefits 
which are unsupported by adequate taxation, and which will be deliverable only 
with the help of divine intervention. Qualified actuaries in government have 
generally been doing a valiant job against powerful opposition in trying to keep 
their programs sound, or in struggling to restore them to health. But they are 
few in number, being only 3% of the Casualty Actuarial Society and less than 
2% of the actuarial profession at large. We should be doing more to help them. 

It is not my purpose to be critical in general of the government of the United 
States or of Canada. Many others are far worse. Consider the socialist states. 
The popular appeal of socialism is contained almost entirely within the issues 
covered by social insurance. Most of us have sufficient compassion to be 
moved-ven to the point of parting with a considerable portion of our earn- 
ings-by the truly needy family with dependent children, or the worker who is 
unemployed because of injury or recession. Few of us are so moved by the 
desire of those in government to have a state monopoly in the production of 
widgets-or bread, for that matter. So the socialist states rely on social insurance 
issues for the degree of legitimacy they enjoy. Some have even elevated the 
matter to a religion, with all the attendant horrors that absolutism invariably 
brings. It is surely a religion speaking when we are asked to have faith in a 
system because of a promise that it will bring us a bountiful tomorrow, while 
ignoring its dismal past record of underproductivity relative to systems based 
on freedom. There are worse governments than those found in North America. 

Social insurance was very much on the minds of the founders of our society. 
Our first president is a case in point. Isaac Rubinow published, in 1913, a book 
entitled “Social Insurance with Special Reference to American Conditions.” 
Twenty years later he published “Quest for Security” and along the way con- 
tributed a number of seminal papers on technical aspects of workers’ compen- 
sation insurance. Unfortunately, Dr. Rubinow was not with us long as a casualty 
actuary. An immigrant from Russia (not the Soviet Union) as a teenager, he 
became a medical doctor before he became an actuary. After only five years in 
the insurance business he left to become Director of the American Zionist 
Medical Unit in Palestine (not Israel). His second presidential address, in 1916, 
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was mailed to the CASSA from another distant land, California. Returning to 
the United States before long, he continued his lifelong devotion to the cause 
of social insurance, or at least to the issues that underlie the field. Before his 
death in 1936, he served as a member of the Ohio Commission on Unemploy- 
ment Insurance and was a consultant to the economic security committee which 
formulated the U.S. Social Security Act. In that 1916 address, he prophesied 
that social insurance developments would “swell the membership and importance 
of our Society beyond the wildest dreams of those who were responsible for 
the initial steps in its organization,” and that we would become “an institution 
which can and will apply the scientific methods of mathematics and statistics 
to the elimination of grave social ills, and to the betterment of the world we 
live in.” We have done much, but we can do so much more. 

Though I never met Dr. Rubinow, I did have the privilege of talking several 
times with another charter member, Bill Breiby. The founders of the CAS had 
a considerable sense’of purpose, and social insurance was much on their minds, 
though they were far from unanimous in their opinions on the subject. The 
original Fellowship examinations had two parts: the first dealt substantially with 
rates and reserves, while the second covered the principles and history of social 
insurance, government statistics, old age and disability insurance, unemploy- 
ment compensation, and premiums for and valuation of pension funds. Nor was 
Rubinow the only one exhorting us to play a role in the development of social 
insurance programs. Blanchard, in his 1942 address, suggested that “the casualty 
actuary, whether motivated by social consciousness or by self interest, should 
devote more attention . . to the social insurance field;” for this casualty 
actuary, “can be of great usefulness in giving technical guidance to government 
action, and in determining the lines to be drawn between social and private 
insurance.” Farley, in his 1942 paper, clearly had the actuary in mind when he 
spoke of “the obligation of our national leaders neither to overstate the need for 
(social) insurance nor to underestimate (its) cost, but to tell the nation candidly 
and to the best of their ability the actual facts upon which the decisions must 
be made.” An interesting historical note is that Farley’s paper was discussed in 
the 1942 Proceedings by two of our Fellows who have been prominent in 
American social insurance circles, W. Rulon Williamson and Robert J. Myers. 
Bringing matters up to date, it was just last month that I discussed the foregoing 
paper with Jarvis Farley, and that I talked with Bob Myers about his upcoming 
social insurance assignment in Granada. The CAS may be the oldest North 
American actuarial body, but it remains a young organization. After all, our 
first meeting took place only a few years before the Bolshevik Revolution. 
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The question naturally arises as to just what we can do to make the world 
safe for social insurance-or from it, depending on your point of view. There 
are many things we can do, both as the CAS and as individual members. We 
can reintroduce social insurance topics into our syllabus and examinations. We 
can add topics designed to broaden the world view of the actuary, and to suggest 
that his or her training is useful in solving problems beyond current narrow 
applications. We can broaden our own view and scope geographically; this 
meeting and an escalating relationship with the Canadian Institute of Actuaries 
are auspicious in this regard. We can tender a public expression of professional 
opinion when an egregiously unsound social insurance plan is proposed or 
enacted. We can support the American Academy of Actuaries in its government 
and public relations programs concerning matters such as unisex legislation. 
The new structure of the CAS should make it more feasible to undertake 
ambitious activities, and I know that Carl Honebein, and Stan Khury, and their 
troops will serve us all well in this regard. 

There also is a great deal that we can do as individual actuaries to promote 
the public interest goals of social insurance, whether by sound social insurance 
programs or by other means. One thing we can do is to speak out, professionally 
but emphatically, against unsound social insurance programs. We can evaluate 
and report on the financial implications of the redistribution of income and 
wealth. We can point out that the government can redistribute but it does not 
generate, and that the multitudes will go hungry if all that is available is two 
loaves and five fish. If we can establish that a social security plan is likely to 
turn into antisocial insecurity, we can say so, and then search for an audience 
capable of taking corrective action. We can put actuarial talent and techniques 
to work in helping to develop solutions to long-range economic problems. For 
example, an actuarial model of the economy could be developed in order to test 
the impact of making all government decisions in terms of maximizing produc- 
tivity. Another model could be designed based’on maximizing the long-term 
flow of income from the haves to the have-nots; such a model might have great 
promise in terms of bringing together so-called liberals and so-called conser- 
vatives. Actuaries are probably as well, or better, equipped than others to 
measure the long-term implications of radical economic plans, such as a hy- 
pothetical economy under which each person would receive net compensation 
directly proportional to his relative productivity-defined as absolute output 
relative to his potential. We can also endeavour to show our employers, and 
through them the public, that long-term profits in a competitive insurance market 
may not be at all inconsistent with the goals of social insurance. We can seek 
clients in the public sector, conduct seminars on actuarial matters of interest to 
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the public or their representatives, and write papers and articles on social 
insurance themes. We can each spend part of our career in government em- 
ployment. We can do much, and we can make a difference. The children need 
us. 

APPENDIX 

PERTINENT QUOTATIONS 

This appendix contains quotations selected to enhance and shed light upon 
the address to which it is appended. 

“Socialism is a stage in social development from a society guided by the 
dictatorship of the proletariat to a society wherein the state will have ceased to 
exist.” Joseph Stalin 

“Insurance is an ingenious modem game of chance in which the player is 
permitted to enjoy the comfortable conviction that he is beating the man who 
keeps the table.” Ambrose Bierce 

“Every form of refuge has its price.” Lying Eyes, The Eagles 

“You can see the stars and still not see the light.” Already Gone, The Eagles 

“I could be wrong, but I’m not.” Victim of Love, The Eagles 
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REINSURING THE CAPTIVE/SPECIALTY COMPANY 

LEE R. STEENECK 

Abstract 

This paper primarily discusses one quantitative excess of loss reinsurance 
pricing technique. European actuarial literature of the 1960’s explores mathe- 
matical utility theory in the context of insurance. Recently, Freifelder and 
Cozzolino have written about exponential utility’s value in pricing. This paper 
explores the relationship between wealth, reinsurance dollars and retention/ 
cession. It is hoped that actuaries can supplement management judgment on 
cost effective reinsurance programs with analyses such as described here. 

Introduction 

Much has been written about reinsurance lately. The topic has scored highly 
in topics of current interest to actuaries, regulators, and others. The scope of 
this reinsurance paper is limited to selecting and pricing an excess of loss 
reinsurance coverage for a captive or specialty company. Many of these are 
single line insurers, so applying theory is simplified. 

I intend to introduce risk theory but concentrate on utility theory concepts 
and applications. I believe utility theory presents an entire framework for risk- 
reward evaluation. A contract of reinsurance can be consummated only when 
an offer and acceptance has occurred. Since both parties to the contract have 
different and distinct expectations, each must be realistic in evaluating cost 
versus benefit. Utility theory allows for a mathematical treatment of the problem. 

Reinsurance Programs 

Virtually every insurance company must concern itself with the various 
forms of reinsurance that are available and the functions they perform. The 
establishment of a good reinsurance program is essential (a) to contain to a 
manageable level claim variance and (b) to reduce adverse effects on company 
growth and solvency caused by claim variance. 
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It has been said that the object of reinsurance is, in the first place, to protect the 
direct writing company, the cedent, against payments of such claims as would 
threaten his solvency, and, secondly, to secure the cedent a result of his risk 
business (‘earnings’) as even as possible.’ (Emphasis supplied.) 

To purchase reinsurance economically means to select a form suitable to the 
needs of the company, with a retention high enough to control costs, yet low 
enough to minimize loss experience fluctuations over the years. 

There are basically two types of treaty reinsurance: (a) pro rata or propor- 
tional reinsurance, which calls for the equal sharing of premiums and losses, 
and (b) excess of loss. Much reinsurance sold today is on an excess of loss 
form. Coverage can apply (a) per occurrence to an individual insured or (b) per 
event to a group of insureds. Event reinsurance is termed catastrophe reinsur- 
ante. Excess of loss can also be time dependent, as opposed to occurrence 
dependent. For example, aggregate or stop loss reinsurance is used to restrict 
total claims incurred for typically an annual period either (a) on a per risk basis 
or (b) for a collectidn of risks. 

Excess of loss per risk or per occurrence reinsurance is very popular today. 
Coverage usually is divided into several layers. According to Reinarz,2 layers 
are either “exposed” or “unexposed.” An exposed or working layer is expected 
to have reasonably predictable frequency/severity characteristics. If a moderate 
sized hospital company issues $1 million policy limits and its appropriate 
retention is $250,000, the layer $250,000 xs 250,000 could be a working layer 
(“xs” means “in excess of a retention of”). This narrow layer with substantial 
premium per annum should be self-funding over a three-to-five-year time horizon 
according to reinsurance practice. A layer of $500,000 xs 500,000 also would 
be exposed since any single loss could attach, but the layer would not work as 
often. Presumably, there would not be enough premium in the second layer to 
sustain full layer losses (an unbalanced condition); hence, the reinsurer should 
have highly variable accident year results. This layer would be expected to be 
self funding over a much longer time horizon. Since chronological stabilization 
is more valuable here for the cedent (and riskier to the reinsurer), rates for this 
layer would include a higher profit and risk charge than for the layer $250,000 xs 
250,000. 

1 S. Bjerreskov, “On ,the Principles for the Choice of Reinsurance Method and for the Fixing of 
Net Retention for an Insurance Company,” International Congress of Actuaries, 1954. 

2 R. Rein=, Reference Book of Property and Liabiliry Reinsurance Management, Mission Pub- 
lishing, Fullerton, Cal., 1969. 
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Of course, an employed physician with separate limits may have attended 
the claimant negligently while he was hospitalized. Although, in my example, 
an individual policy would not pay beyond $1 million, the claimant might 
recover $1.5 million because both policies would be expected to contribute. 
Reinsurance can protect against these multiple claims through a “clash cover.” 
Two policies with losses from the same occurrence would be subject to one 
retention (e.g., $250,000). 

Stability is enhanced as large losses are truncated, as far as the insurer is 
concerned, at a cost of modest premium outlay. Modest premium outlay is 
important in these days of high investment returns on funds withheld. The 
environment is one of knowledgeable buyer dealing with knowledgeable seller 
so transactions are free of rate and form regulation. This places great pressure 
on the negotiators to form an equitable alliance. 

Reinsurance Loss Loadings 

Reinsurance actuaries believe contracts exhibiting low risk should be priced 
at low expected reward, and conversely, high risk reinsurance should be priced 
with a high expected reward. When we divide the variance in a loss portfolio 
between insurer and reinsurer, we have a two-person game. More determined 
attempts to minimize variance on the retained portfolio concomitantly bring 
about more costly reinsurance. European actuarial literature discusses this. 

Lambert notes that the reinsurance loading generally increases according to 
the form of reinsurance-(a) pro rata, (b) excess of loss, and (c) stop loss or 
aggregate excess respectively. Vajda” demonstrates that for a given level of 
premium, the reinsurer’s variance is minimized if the form is pro rata:quota 
share. Borch5 notes that stop loss reinsurance minimizes the variance of the 
portfolio retained by the ceding insurer. 

It is no wonder that most reinsurance sold for capacity, stability, and catas- 
trophe protection today is of the excess of loss form. The form functions well 
and in an era where investment income on retained funds is extremely important, 
excess of loss reinsurance is in some sense optimal. Pro rata requires a large 
premium outlay. Stop loss reinsurance is heavily loaded for profit and contin- 

3 H. Lambert, “Contribution to the Study of Collective Risk Theory” (French), ASTIN 
Bulletin #2, 1963. 

4 S. Vajda, “Minimum Variance Reinsurance,” ASTIN Bulletin #2, 1963. 

5 K. Borch, “An Attempt to Determine the Optimum Amount of Stop Loss Reinsurance,” 
16th lnternarional Congress of Actuaries, 1960. 
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gency. Furthermore, it does not return cash quickly. 

Utility Theory 

Very little has been written in the U.S. about the quantitative study of (a) 
relative costs of various reinsurance forms and (b) methods of establishing 
retentions. One text, however, by Reinarz ,6 illustrates several pragmatic ap- 
proaches that can be taken. If the excess of loss form is chosen, a cost effective 
retention can be viewed in light of (a) the reinsurer’s loss loading, (b) minimizing 
the variation in retained loss ratio, (c) reinsuring where claims frequency drops 
off, and others. These are judgmental approaches calling for the actuary or 
reinsurance purchaser to guess at relative effectiveness. Can the consequences 
of the decision be measured objectively in advance? 

In European literature, beginning in the 1960’s, we see risk theory being 
applied in the insurance context. Retention and reinsurance programs are se- 
lected to help constrain the probability of ruin. For large companies more 
concerned with stable earnings growth, a fraction of surplus can be placed at 
risk. Stockholder or policyholder (in a mutual company) disappointment will 
certainly precede financial ruin or insolvency. 

For those interested in risk theory, I suggest reading Gerber,’ Seal,E Biihl- 
manng Philipson,l” Wilhelmsen,” Bjerreskov,*z Pentiklinen,13 Wooddy,i4 and 

6 R. Reinarz, op. cir. 

’ H. Gerber, An Introductioy to Mathematical Risk Theory. Huebner Monograph #8, Richard Irwin, 
Homewood, Ill., 1979. 

8 H. Seal, Stochastic Theory of a Risk Business, John Wiley &Sons, New York, N.Y., 1969. 

9 H. Bhhlmann, Murhemaficul Methods in Risk Theory, Springer-Verlag, Berlin, 1970. 

lo C. Philipson, “A Review of the Collective Theory of Risk,” supplement to ASTIN Buflerin, 
Vol. V, (from Skandinnvisk Aktuarietidskrif, 1968). 

ii L. Wilhelmsen, “On the Stipulation of Maximum Net Retentions in Insurance Companies,” 
International Congress of Actuaries, 1954. 

I2 S. Bjerreskov, op. cit. 

I3 T. Pentiklinen, “On the Reinsurance of an Insurance Company,” lnternutional Congress of 
Actuaries, 1954; T. Pen&linen, “Reserves of Motor-Vehicle Insurance in Finland,” ASTIN Bulletin, 
1962; T. PentikCnen, “On the Reinsurance of an Insurance Company,” op. cit. 

I4 J. Wooddy, “Part 5 Study Notes-Risk Theory,” Education and Examination Committee of the 
Society of Actuaries. 
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Beard et al.lS The methods they note generally are complicated in theory, 
simplified in practice, and may not be as safety oriented as stated. 

Game theory, developing at the same time, can be viewed in the insurance 
context.i6 Various players, employing competing strategies, obtain payoffs 
which they seek to maximize by some measure. Payoffs depend on each player’s 
strategy but all strategies are interactive. The simplest is the two-person zero 
sum game where “my gain is your loss.” Properly structured reinsurance pro- 
grams can benefit both the seller and buyer. Reinsurance should be thought of 
as a partnership arrangement. 

Traditional economic theory “at first glance” may not seem to apply to 
insurance. Businessmen seek to maximize profits. The purchase of insurance at 
a cost greater than expected losses is, therefore, an irrational business decision. 
The resulting reduction in profits is contrary to the businessman’s primary 
motive. But Bernoullii stated that a rational man does not seek to maximize 
gain but instead to maximize the expected utility of gain. Uncertainty creates 
anxiety. Supply and demand forces are altered. Current economic theory em- 
braces utility theory. 

Let us explore utility. Briefly, the utility of money, the value an individual 
places on an amount of money, varies depending on the individual’s wealth. 
Different individuals view $1, $10, and $1000 differently. One thousand dollars 
to the beggar is worth substantially more than $1000 to the millionaire. To the 
beggar, it represents food, shelter, and warmth. To the millionaire, it may only 
cover repairs to his prestigious automobile. 

Figure 1 illustrates one utility curve. Along the forty-five degree line each 
dollar is worth no less and no more than the previous one, an unrealistic 
situation. Instead, most likely, we should see a convex down curve. The value 
of additional dollars decreases generally over the length of the curve. There 
may be risk-taking sections of the curve, however, where we play unfair lotteries 
because of our aspirations. Siegel’s writes about levels of aspiration. 

I5 R. Beard, T. PentikBinen and E. Pesonen, Risk Theory, Methuen & Co., London, England, 1969. 

I6 K. Bo;ch, “Recent Developments in Economic Theory and Their Application to Insurance,” 
ASTIN Bulletin, 1964. 

I7 D. Bernoulli, “Exposition of a New Theory on the Measurement of Risk,” translation of the 
original 1738 work, Econometricu, 1954. 

18 S. Siegel, “Level of Aspiration and Decision Making,” Psychological Review #64, 1957 
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Utility of 
Dollars 

Nominal Dollars x 

We often see charities offering $10 tickets on a chance to win a new car. 
Although the game is unfair if ticket sales are brisk (the expected winnings are 
less than $10 per ticket sold), we might aspire to own that new car so we take 
a chance. The point is that the ticket price has lower utility than our aspiration 
to own the car. The equilibrium price or balance of indifference is what utility 
theory measures. In the case of insurance, how much premium is one willing 
to pay (the certain result) so as to escape an uncertain loss process? This is the 
mirror image of the car lottery example. In that example, you pay to gain 
(utility); for insurance, you pay not to lose (disutility). 

Savagei gives an interesting history of utility and the papers written about 
it. ArrowZo and PratP give accurate and meaningful interpretations of the 
concepts of risk aversion and risk preference. 

It may appear that some insurers are nearly indifferent to risk. Only recently 
has the IS0 varied profit and contingency loadings from the traditional 5% 

I9 L. Savage, The Foundations of Sturistics, John Wiley & Sons, New York, N.Y., 1954. 

2o K. Arrow, Essays in the Theory of Risk Bearing, Markham Publishing Co., Chicago, Ill., 1971. 

*’ J. Pratt, “Risk Aversion in the Small and in the Large,” Econometrica #32, 1964.’ 
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generally used. A $10,000 premium ($500 profit and contingencies load&:) 
OL&T large risk at 25/75 limits was priced for profit and contingencies indif- 
ferently to a $10,000 neurosurgeon at $1/3 million limits. 

Insurer underwriting practices reflect preferences. Certain insureds are de- 
sirable, as evidenced in Bailey’s paper on “Skimming the Cream.“22 (Auto- 
mobile classes weren’t homogeneous.) Just as this example demonstrates risk 
preference, we see FAIR plans with loss-free insureds. Insurers obviously prefer 
not to insure these policyholders at the voluntary market price. 

Utility theory is not abstract, incapable of practical use. Insurers can and 
do specify preferences. Utility theory quantitatively handles preferences. 

The Utility Function 

Figure 2 illustrates four families of utility functions. 

Logarithmic utility was first suggested by Bemoulli.23 It implies decreasing 
risk aversion. The family can be particularly useful for insurers if they become 
more risk prone or daring as they develop more wealth over time. 

Quadratic utility also may be useful for insurance companies. Markowitz24 
shows that if a decision maker maximizes expected utility and always prices on 
a best mean-minimum variance principle, he will develop a Pareto-optimal 
portfolio. This occurs only if his utility function is quadratic. Borch= demon- 
strates that stop loss reinsurance should be preferred for insurers exhibiting 
quadratic utility toward risk. 

I 
Quadratic utility curves have two drawbacks, however. First, the curves 

only increase up to a wealth level of b/2 (see Figure 2). Second, it can be 
demonstrated that these curves imply an increasing aversion to risk as wealth 
increases. So the larger the insurer gets, the more likely he will raise prices and 
reinsure more of his business. In my experience, insurers do not behave in this 
manner; thus, quadratic utility curves are not very useful 

. 
for msurance compa- 

nies. 

22 R. Bailey, “Any Room Left for Skimming the Cream?” PCAS, XLVII, 1960. 

u D. Bernoulli, op. cit. 

*4 H. Markowitz, Portfolio Selection, John Wiley & Sons, New York, N.Y., 1959. 

ZJ K. Borch, op. cit. 
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FOUR FAMILIES OF UTILITY FUNCTIONS 
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A third family of utility functions is termed exponential. Gould2’j shows that 
consumers choose deductibles consistent with those that exponential utility 
dictates. Shpilberg and DeNeufville*’ note that results are not particularly sen- 
sitive to the family of utility functions used; so, since the exponential is easiest 
to work with, use it. Cozzolino2* and Freifelder29 have developed ratemaking 
models relying exclusively on exponential utility. 

The fourth family is termed fractional power. 

Until recently insurance was largely priced on expected value (after ex- 
penses). Depending on the insurer, a level of underwriting return or total return 
was targeted. This implied the utility function U(X) = X, the forty-five degree 
line from Figure 1. (This linear function is a special case of the exponential 
utility family where, as r approaches zero, the quantity (l/r) X (1 - exp (-rx)) 
approaches X. An r of 0 would mean no risk aversion, or indifference.) 

Utility functions generally are concave down in the first quadrant. “More is 
better” so the curve is increasing, but the rate of climb slows since added dollars 
are worth slightly less than prior dollars. Mathematically, the first derivative 
U’(X) is greater than zero, but the second derivative U”(X) is negative. If we 
calculate -u”(x)Iu’(x) as an index of risk preference, then only for the expo- 
nential family does everything cancel, and we are left with r: constant risk 
aversion. Wealth is immaterial. The reader can verify that logarithmic utility 
has decreasing risk aversion with wealth. 

The constant risk aversion of the exponential family makes pricing a mul- 
tiplicity of insureds over time easier. Decisions can be made independent of 
order or time. Other families of functions rely on wealth for pricing purposes, 
and all decisions must be made in light of others. The exponential function is 
both clean and aesthetically appealing. 

x J. Gould, “The Expected Utility Hypothesis and the Selection of Optimal Deductible for a Given 
Insurance Policy,” Journal of Business, April, 1969. 

27 D. Shpilberg and R. DeNeufville, “Use of Decision Analysis for Optimizing Choice of Fire 
Protection and Insurance: An Airport Study,” Journal of Risk and Insurance, College of Business, 
University of Georgia, Athens, March, 1975. 

28 J. Cozzolino, “A Method for the Evaluation of Retained Risk,” Journal of Risk and 
Insurance XLV #3, College of Business, University of Georgia, Athens, 1978. 

29 L. Freifelder, A Decision Theoretic Approach to Insurance Ratemaking, Huebner Monograph #4, 
Richard Irwin, Homewood, Ill., 1976. 
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We could assume that for the long run r can vary; call it a different r each 
year. Then, exponential utility can displace logarithmic utility’s prime appeal. 
Risk aversion could decline periodically with increasing wealth with no com- 
plications in application. 

One final and most important item. Assuming exponential utility and given 
particular reinsurance terms for a book of business, an insurer can determine 
an indifference price such that the insurer does not care whether it is ceding the 
business or keeping it. The cedent must be willing to make a fair offer of 
reinsurance to the reinsurer. The striking price for reinsurance can be determined 
using exponential utility theory as a guide. The retention can be the most cost 
effective one of a group tested. 

The Mathematics of Utility 

Suppose an insured with wealth a is given a choice of self-insuring com- 
pletely a loss process X or paying a gross premium G for full coverage. Assume 
the insured has a linear utility attitude so that u(x) = bx + d. 

To determine G, we solve the general equation u(a - G) = E(u(a - X)). 
The utility of net wealth after insurance must equate to the expectation of the 
utility of wealth without insurance. From our expression bx + d, we substitute 
a - G and a - X respectively for x, and get: 

b(a - G) + d = E(b(a - X) + d) 
= b(a - E(X)) + d 
= b(a - m) + d, where E(X) = m, the mean expected losses 

G=m 

Recall I said linear utility implied risk indifference. In this case an insured 
would pay no more than expected losses to relieve himself of the uncertain loss 
process. 

Now suppose the insured’s utility function is exponential so u(x) = (11 
r)(l - exp(-t-x)). Let us modify this somewhat. Let us make the process X 
negative so the function relates to losses. Let us also negate the entire expression 
and speak of the disutility (Du) of losses (See Cozzolino). In this case, G is 
given by: 

Du (a - G) = E(u(a - X)) 
-(l/r) (1 - exp(r(a - G))) = E(-(l/r) (1 - exp(r(a - X)))) 

= -(l/r) (1 - E (exp(r(a - X)))) 
exp(r(a - G)) = E(exp(r(a - x))) 
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exp (-rG) = E(exp(-rX)) 
G = -(l/r) In E(exp(-rX)) 
G = (l/r) In E(exp(rX)) translated back! 

To make this arithmetically workable, we can take the claim size distribution 
and separate it into n partitions, if necessary, each with probability pi. Then if 
we assume a uniform distribution over the interval (Xi,Xi+l), the risk-adjusted 
severity is given by the following formula: 

G = $ ln 2 pi . (exp(,‘+‘) - exp(P)) 
j=l Xj+l - Xi r 1 

It is now only necessary to bring in the frequency distribution. Let k represent 
the number of claims. Then the risk premium adjusted for frequency and severity 
equals: 

G’ = i In 5 p(k) exp(krG) 
( k=O > 

In the case where frequency is Poisson distributed with parameter k, we 
have G’ = (k/r)(exp(rG) - 1). If frequency is distributed according to the 
negative binomial with parameters p and b, (mean b(1 - p)/p, variance 
b(1 - p)/$) then G’ = (b/r) In (p/(1 - (1 - p)exp(rG))). 

At this point an illustration is in order. Suppose a property owner has a 
utility function u(x) = exp(- .005x). Further suppose there is a 1 in 10 chance 
of a property loss whose distribution is f(x) = .10 (.Ol exp(- .01x)). Then 
expected loss is given by: 

E(X) = (.90)(O) + .lO JZx (.Ol exp(-.01x)) dr = 10 

Risk-adjusted premium, G’ is given by: 

u(u - G’) = .90 u(a) + G u(a - x)flx)dx 
-exp(-.005(a - G’)) = -.90 exp(-.005a) 

- .lO $? exp(-.005(u - x)) (.Ol exp(-.01x))& 
exp .005G’ = .90 + (.lO) (2) 

G’ = 200 ln(l.lO) 
G’ = 19.06 

The insured is willing to pay almost double expected losses because of the 
danger in the frequency/severity distributions coupled with his risk averseness. 

A Test Case 

Assume a hospital company writes only policy limits of $5 million. Ac- 
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cording to recent IS0 increased limit studies, losses can be modeled by a shifted 
Pareto distribution.30 

The following chart provides a representative example of average severities: 

Policy Average Allocated 
Limit Average Loss Loss Expense Sum 

$ 250,000 $ 54,402 $15,000 $ 69,402 
$5,000,000 $112,227 $15,000 $127,227 

Further, assume a claim frequency of .006 against 16,667 occupied beds, 
producing 100 expected claims. If acquisition; general expenses; taxes, licenses, 
fees; and profit amount to 25%, premium volume at $5 million limits should 
be: 

100 (127,227)/.75 = $16,963,600 

Expected losses in the $4,750,000 xs 250,000 layer (excluding pro rata 
allocated loss adjustment expenses) equal: 

100 (127,227 - 69,402) = $5,782,500 and 

divided by the 10 claims over $250,000 implied by the shifted Pareto, yields 
an average loss in this layer of $578,250. 

Now let us view the reinsurer’s loss distribution. If we move the y-axis of 
the gross loss distribution over to the right to $250,000; we have a decreasing 
reinsurance loss function defined on the interval (0; $4,750,000). Let us assume 
it is nearly exponential. (For ease in calculus the tail is included.) 

A characteristic of the exponential is that the mean, $578,250 here, is the 
reciprocal of the value r, so r = 1.729 X 10m6. The loss function is then given 
by: 

fix) = .lO (.000001729 exp (-.000001729x)); x positive. 

Mean losses are given by: 

I 

4.75o.oca 

E(x) = 100((.90)(0) + .lO .000001729 exp(- .000001729 x)dx) 
0 

= 100 (0 + (.lO) (578,250)) 

= 165.782,500 

M Insurance Services Office, “Report of the Increased Limits Subcommittee: A Review of Increased 
Limits Ratemaking,” 1980. 
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Suppose the insurer has a utility function given by 

u(x) = -exp (- .00000025x) 

Then, 

-exp (-.00000025 (a - (G’/lOO))) = .90 u(u) + 

I 

4,750,ooo 

exp(-.00000025(u - x)) (. 10) (.000001729 exp(-.000001729))dr 
0 

Dividing through by u(u) gives 

exp (.OOOOOO25 (G’/ 100)) 

I 

4.75o.aJo 

= .90 + .lO (.000001729) exp((.00000025 - .000001729)x)dr 
0 

= .90 + .10(.000001729) (675,000) 

= 1.0167 

Finally, we have 

G' 
zio= 

ln (1.0167) = 66 248 
.00000025 ’ 

or 
G’ = $6,624,800 

(The appendix gives the framework of a more complete mathematicahstatistical 
analysis.) 

In this example, the reinsured should be willing to cede S4,750,000 xs 
250,000 for $6,624,800 - 5,782,500 or $842,300 more than expected losses. 
If the reinsurer has the same utility function or is less risk averse, a deal can 
be struck. The reinsurer might express this as $16,963,600 (57,825/127,227) = 
$7,710,000 less a 14% ceding commission or $6,630,600. The $842,300 loading 
would have to cover all reinsurer operating expenses, including service, and a 
profit/risk charge. 

This retention pricing example probably is not optimal. Other retention levels 
should be studied. Diagramatically, Figure 3 shows the first attempt loss costs. 

An approach would be to minimize the sum of “Total” subject to a restriction 
on the risk proneness of the ceding company and a reasonably risk averse 
function for the reinsurer. 
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Risk in Risk in 

Cedent Cedent Reinsurer Reinsurer Total Total 

Each layer of loss by size will have certain frequencies. The insurer will 
calculate his risk load for each layer. The reinsurer, viewing the same data, 
may have similar pure premiums, but in any event, will also calculate risk 
loads. Depending on the optimism and risk proneness of the reinsurer, the 
ceding company may find layers cheaper (in terms of utility) to cede than retain. 
Other considerations will impact the purchased retention level (beyond the scope 
of this paper). Neither party has to know or attempt to negotiate the other’s risk 
propensity. The bottom line will determine whether reinsurance is purchased, 
and at what level. 

“r” Values 

The question always rises, “How can management specify their risk aversion 
function?” Kalcek and McIntyre3’ begin to explore this. They suggest risk capital 
can be determined as: (a) 1 to 5% of annual working capital, (b) 1 to 3% of 
total assets, (c) 3 to 5% of annual earnings, or (d) 0.1 to 0.5% of annual sales. 
The rules of thumb come from the manufacturing environment; insurers might 
substitute cash on hand and cash flow for working capital. Other measures could 
be invented. Suppose we set a value on risk capital of x. We have a desire to 

31 K. Kalcek and W. McIntyre, Financial Executive, April, 1977. 
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bet x in annual adverse claim variability, but only lose it with small probability. 
Small companies must be aggressive with x as a percent of base capitalization, 
large companies would tend to select at range minimums. Risk capital may be 
defined loosely as an amount of money an insurer is prepared to lose in the 
case of unusual adverse claim variability. 

From our exponential disutility (Du) function, we can take the first deriva- 
tive. The slope constantly increases. Suppose we set our risk-reward level at 
1O:l. One dollar is worth the risk of 10. By analogy, horse race handicappers 
don’t generally bet on “sure things.” If a win ticket for $2 will pay $2.20, they 
won’t bet $10 to win $11. The risk-reward is judgmentally poor. 

Suppose, for a small company, x must be $1 million. We can then calculate 
the r value. 

Du(x) = -(l/r) (1-exp(-m)) 

i h(x) = -exp (-rx) 

10 = -exp (-l,OOO,OOO r) 

(In 10)/1,000,000 = r 

r = .000002 

We can also use a polling technique. By interviewing management, we can 
determine risk propensity. Ask what premium management would charge for 
several loss/no-loss situations, then graph expected payoffs (abscissa) against 
premium (ordinate). For example, “How much would you pay for a lottery 
ticket with a .OOl chance of winning $1 million?’ Although the expected value 
is $1000, the risk avoider might pay only $500. If the question were asked, 
however, in the disutility context where there is a .OOl chance of losing $1 
million, he might say $1500. By getting premiums for a wide variety of expected 
payoffs, utility or disutility curves can be constructed. 

A third method for determining r is to perform price and resulting earnings 
studies based on a variety of r values near zero. A company’s earnings target, 
coupled with a business mix, can lead to an implied r value. 

Risk Assessment 

Once an appropriate excess of loss retention is determined, underwriters and 
actuaries can meet to discuss pricing techniques. Proposed treaty rates must be 
assessed both analytically and judgmentally. The pricing method previously 
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described is completely analytic once utility is specified. This price indication 
can be compared with both empirical and exposure methods. Empirically, the 
company would have a history of observed losses per exposure unit by layer 
(after trend and development/IBNR). The gross price for insurance can also be 
layered by exposure. National Council ELPF’s, IS0 increased limit factors, and 
property distributions such as published by SalzmantG* are useful. 

If no credible past data exist, reinsurance collective experience and judgment 
are used to rate the account. It is of great benefit to reinsure or quote on many 
state doctor and hospital companies. Each lacks complete credibility, but col- 
lective experience fills whatever gaps exist. When a totally new risk presents 
itself, such as in 1973 New Jersey no-fault excess of loss coverage, reinsurers 
price by analogy. This no-fault should be similar to a combination of first party 
long-tail workers’ compensation and automobile liability/medical payments. 

Only after actuarial, claims, and underwriting personnel have evaluated the 
company’s experience does a responsible quotation emerge. 

Conclusion 

It is not surprising that reinsurance has received little mathematical attention 
until lately in the Proceedings. Until recently, there have been but a handful of 
actuarial practitioners in the field. Mathematical and statistical tools, such as 
utility theory, were not studied in the U.S. for application to reinsurance. Utility 
theory, I believe, is a key to understanding which reinsurance forms make sense 
and what retentions are desirable. 

Throughout history, reinsurance has operated along traditional lines. Excess 
of loss reinsurance is very popular today. The burning question is, “What 
retention is appropriate for my business and how much should reinsurance be 
worth to me?” This essay primarily attempts to seek an analytical solution to 
an otherwise judgmental decision. (Two examples were given, an individual 
property risk and a portfolio of hospital bed exposures.) By setting limits on 
retained loss variability (as measured by utility) a natural consequence is excess 
cession, and furthermore excess pure loss cost and risk charge. No attempt has 
been made to define a corporate utility function but several curves have been 
noted and insight given in how to interpret and use them. 

My thanks go to William Weimer for extending my example. He eliminated 
the constraint that reinsurance frequency of loss be constant and I am grateful 
to him for the mathematics expressed in the appendix. 

32 R. Salzmann, “Rating by Layer of Insurance,” PCAS L, 1963. 
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APPENDIX-FREQUENCY IN UTILITY CALCULATIONS 

We can formalize the mathematical structure of the hospital example stated 
earlier. Specifically, we can eliminate the assumption of a constant number of 
excess $250,000 claims. Our choice of a Poisson frequency distribution will 
provide an elegant path to follow. In a collective risk theory framework, this 
will be a derivation using a particular frequency distribution and a particular 
severity distribution. We hope that after reviewing this example, the reader will 
gain more insight into the general formulas stated in the mathematical section 
and will be able to apply them with distributions of his or her choice. 

We make the following assumptions: 

Total losses (each is the excess of $250,000 portion) 

x = x1 + x2 + * * * + xiv 

Frequency of claims distribution: Poisson (h) with h = 10 

P(N = n) = exp (-h) h”ln!; n = 0,1,2, . . . 

Severity of claims distribution: Exponential with mean = $5,782,500 

fix) = s exp (-sx); x > 0 and s = .OOO 001 729 

Utility function: 

u(x) = -exp (-rx); r = .OOO 000 25 

Initial Net Worth = a 

With these assumptions, the hospital company should be willing to pay an 
amount G’ for a $250,000 excess of loss cover, where G’ satisfies the equation: 

u(a - G’) = E(u(u - X)). 

The “no memory” property of u(x) leaves us with: 
exp (rG’) = E(exp(rX)) 

= EW@qWYW) 

= 2 P(N = n) E (exp(r(X, + X2 + **a + X,))) 
n 

= x P(N = n) (s/(s - r))” 
” 
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= 2 (exp(-h)h”ln!) (s/(s - r))n 
” 

= exp (-h) z (hsl(s - r))“ln! 
n 

Solving for G’ gives G’ = (h/r) ((s/(s - r)) - 1). 
Replacing h, s, and r with their selected values leaves G’ = $6,761,325. 

We see that by letting the frequency vary, we are introducing more uncer- 
tainty into our problem, and the premium G’ has gone up from $6,624,800. 
(Actually, some of the increase, $41,578, is due to the severity distribution no 
longer being truncated.) 
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RONALDE.FERGUSON 

Abstract 

This paper begins by highlighting some of the changes in the macroeconomic 
environment that have affected the way insurers and reinsurers price their 
products. Attention is next focused on the importance of the time value of 
money for certain insurance products. The next topic is reinvestment risk and 
the ways investors try to deal with this problem. Working with fixed income 
securities, immunization theory and, in particular, duration are discussed. Du- 
ration is the word given to the statistic derived by weighting each year (of the 
bond’s life) by the present value of the associated cash flows; all aggregated 
and divided by the price of the bond. Duration provides a theory or framework 
that the investor can use to more or less guarantee (as far as the investment or 
reinvestment risks are concerned) a targeted wealth position. 
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Today’s economic environment has caused all’of us to think a lot more 
about the investment side of the insurance and reinsurance business. While the 
time value of money has always been at least an implicit factor in insurance 
and reinsurance pricing, it has now, for better or worse, come out of the closet. 
Certain insurance products-structured settlements and loss portfolio transfers, 
for example-put the investment issue on center stage. 

The pricing of some products is, in part, dependent upon an accurate 
determination of the present value of the dollars that will ultimately be paid 
out. For example, a structured settlement, made in lieu of a lump sum claim 
payment, guarantees that a specified number of dollars will be paid to the 
claimant at specified intervals for life or for a determined number of years. A 
loss portfolio transfer involves the transfer or reinsurance of a defined block or 
portfolio of known and/or unknown losses from one party to another. A present 
value is assigned to the portfolio of losses; pricing is largely a function of this 
estimated present v~alue. Once the ultimate value of the structured settlement or 
loss portfolio transfer has been determined (estimated), the insurer normally 
purchases one or more bonds that will fund the claim payments. As we will 
see, the concept of “duration” is useful in attempting to harmonize the liabilities 
and the related invested assets. 

A factor that makes the time value of money both critical and hard to deal 
with is that we are living in turbulent financial times. One set of statistics that 
highlights this is the frequency of prime rate changes. The prime rate changed 
only twice in the 1940’s; 16 times in the 1950’s; 17 times in the 1960’s; 132 
times in the 1970’s, and so far, with over two years of the 1980’s finished, 
we’ve already seen over 70 changes! [l] 

Since the time value of money is now an explicit and important part of some 
of our pricing and the financial environment is unstable or volatile, we will 
have to pay more attention to the investment side of the business. It is recognized 
that there are many factors that influence the rate of return of an insurance 
program. For life insurance, the principal underwriting risks are the mortality, 
lapse and long term expense assumptions. Property/casualty insurers face critical 
frequency and severity assumptions, both confounded by price and social infla- 
tion . 

Once a view is taken on these assumptions, no matter how certain or 
uncertain they may be, there remain timing (i.e., the actual incidence of pay- 
ments) and investment risks. This paper does not address underwriting risk (i.e., 
in the context of this paper, the expected ultimate loss level) or the timing of 
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the related payments. These are important but separate topics:-Similarly, this 
paper does not address the important topic of profit and contingency loadings. 

In pricing the financial, as opposed to underwriting, aspect of an insurance 
or reinsurance arrangement, the first step is usually to calculate a breakeven or 
internal rate of return. The internal rate of return or yield for an investment is 
the discount rate that equates the present value of the expected cash outflow 
with the present value of the expected inflows [2]‘. Next, an attempt is made 
to design an investment program to produce a return greater than the breakeven 
or internal rate of return. Obviously there would be little or no incentive to 
write the business if the internal rate of return cannot be exceeded with an 
acceptable level of investment risk. 

There are, of course, a number of financial risks or reasons why the targeted 
return might not be achieved. The principal investment related risks are: timing 
(i.e., the timing or incidence of the cash outflows, which might be very pre- 
dictable for auto physical damage, for example, but quite uncertain for the so- 
called long tail lines); credit risk (i.e., default as to interest and principal) which 
won’t be treated in this paper; and reinvestment risk which will be discussed. 

Our company recently had a submission that highlighted reinvestment risk 
in a dramatic way. Stripped of nonessential features and somewhat disguised, 
the proposal involved a single premium, paid in advance, in return for a 
commitment to pay $100,000,000 at the end of 20 years. Assuming the money 
is invested at 12% per annum and ignoring the credit risk, profit, overhead, 
taxes, arbitrage opportunities, etc., the price or “pure premium” is 
$lOO,OOO,OOO/(l. 12)*’ or $10,366,677. 

How do we get from $10,366,677 to $100,000,000? Let’s assume we buy 
a bond for $10,366,677 (assume cost = par value = redemption value) with a 
12% annual coupon. At the end of 20 years we have: 

Our $10,366,677 
and 
224.880.023 

(redemption) 

(20 years of interest, at a 12% coupon) 

’ In mathematical terms, r = the internal rate of return where CF, is the cash flow for period t such 
that 

(A discussion of the possible shortcomings of the Internal Rate of Return technique can be found 
in Financial Theory and Corporate Policy, by Thomas E. Copeland and J. Fred Weston, Reading, 
Massachusetts: Addison-Wesley Publishing Company, 1979 edition, pages 28-33). 
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The rest, a staggering $64,753,300, comes from interest on interest or 
reinvestment! Rut another way, 72% of the return comes from the interest earned 
on the interest.* Clearly, reinvestment can make or break an insurance program. 
Let’s say upon reinvestment we get 1OQ u-not 12%-we’ll then be short of the 
goal by $18,383,000. Of course, rates could go the other way, say to 14%, in 
which case we would have a windfall profit of $23,602,000. 

Volatile interest rates and the recognition of the time value of money in 
insurance and reinsurance pricing make it appropriate for us to put a new word 
in our vocabulary-immunization. Unfortunately, the word immunization isn’t 
always used precisely and, perhaps, it means different things to different people. 
The definition I offer is: the investment risks are immunized if the desired wealth 
level (of the investment portfolio) has been achieved at the end of the investment 
horizon (i.e., holding period) regardless of interest rate changes during the 
holding period. This, of course, implies that all intervening cash flows during 
the holding period have been met. 

Immunization, although much talked about today, is not a new concept. 
Some fairly sophisticated work was done on immunization theory at least as far 
back as 1938 by Mr. Frederick R. Macauley [3]. The earliest traces in the 
actuarial literature date to 1952 when a British life insurance actuary, Mr. Frank 
Reddington [4], suggested that insurance companies really ought to think about 
synchronizing their investments and underwriting risks. In this country, the 
cause has been championed, for the last 10 years or so, by Mr. Irwin T. 
Vanderhoof, FSA, ACAS [5]. 

To understand immunization techniques one needs to understand the several 
ways bonds can be characterized. First, there is the simple, but not very useful, 
notion of years or term to maturity. This is self-explanatory-a bond maturing 
in 2002 has a 20 year maturity as of 1982. As demonstrated in the above 
example, buying a 20 year bond to cover a liability maturing in 2002 does not 
immunize one from the “disease” of changing interest rates. In a period of 
volatile interest rates, characterizing a bond as a 20 or 30 or whatever years to 
maturity really isn’t very useful. 

Recognition of the fact that the years to maturity isn’t a useful way to 
describe a bond has led to another measure known as the weighted term or 
years to maturity. Under this approach all cash flows occurring over the life of 

z See Appendix I for some other examples. 
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the bond (i.e., interest coupons and the redemption value) are used as weights 
for the year involved. Put on a formula basis:3 

Weighted average- CFI * 1 I CF,, - n 
term to maturity XF 

CF2 . 2 + CF3 - 3 
ZCF 

~ . . . . - or 
ZCF ’ ZCF ’ 

,$ CFt(t) 
, ” 

1=I 

where 

t= year of cash flow (i.e., year 1, year 2, etc.) 
CF, = cash flow in year t 

n= number of years to maturity 

Thus, a 10 year bond with a 4% coupon would have a weighted average 
term to maturity of 8.71 years while the same type of bond with an 8% coupon 
would have a weighted average term to maturity of 8 years (see Table A below). 
Since this measure recognizes the cash flow differences between the bonds, it 
is somewhat rnore useful than the years to maturity in determining a portfolio’s 
overall sensitivity to changing interest rates. Although a better measure than 
years to maturity, weighted average years to maturity doesn’t have (much) 
operational significance. The problem with this measure is that each dollar has 
equal weight; that is, the time value is not considered. 

The quest for immunization has led to an even more sophisticated and more 
useful concept known as “duration” of the bond. Duration is a measure of a 
bond’s price volatility. Thus, duration can be derived using differential calculus 
(see Appendix II). 

In simpler terms, duration is a weighted average term to maturity where the 
years are weighted by the present value of the related cash flow. 

3 In this and all other formulas in this paper, annual end-of-year interest payments have been 
assumed. It would be relatively easy to modify the formulas to accommodate the more typical mode 
of semi-annual interest payments. 
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TABLE A [6] 

BOND A--$1,000 FACE VALUE WITH A 4% COUPON, 
MATURING IN loYEARS 

BOND B-$1,000 FACE VALUE WITH A 8% COUPON, . 
MATURING IN loYEARS 

WEIGHTEDAVERAGETERM TO MATURITY 
(ASSUMING ANNUAL INTEREST PAYMENTS) 

(1) 
Year 

BOND A 

(2) (3) (4) 
Cash Flow Cash Flow/TCF (1) x (3) 

1 $ 40 0.02857 0.02857 
2 40 0.02857 0.05714 
3 40 0.02857 0.0857 1 
4 40 0.02857 0.11428 
5 40 0.02857 0.14285 
6 40 0.02857 0.17142 
7 40 0.02857 0.19999 
8 40 0.02857 0.22856 
9 40 0.02857 0.25713 

10 1,040 0.74286 7.42860 

Sum $1,400 1 .ooooo 8.71425 

Weighted Average Term to Maturity-8.71 Years 

BOND B 

1 $ 80 0.04444 
2 80 0.04444 
3 80 0.04444 
4 80 0.04444 
5 80 0.04444 
6 80 0.04444 
7 80 0.04444 
8 80 0.04444 
9 80 0.04444 

10 1,080 0.60000 

Sum $1,800 1 .OOOOO 

0.04444 
0.08888 
0.13332 
0.17776 
0.22220 
0.26664 
0.31108 
0.35552 
0.39996 
6.00000 

7.99980 

Weighted Average Term to Maturity-8.00 Years 



DURATION 

n t- CFt 
Ix 
r=1 (1 

Duration = - - 

271 

CF, = cash flow in year t 
y = yield to maturity4 (not the coupon rate) 
t = year of cash flow 
n = number of years to maturity. 

Using the above formulas, for example, the 8% bond (maturing in 10 years) 
discussed above has a duration of 7.25 years compared with a weighted average 
term to maturity of 8.0 years. (See Table B.)5 

There are a couple of other ways to compute a bond’s duration (see Appendix 
II for a discussion of volatility and duration), one of which is a crude, but 
useful shortcut/approximation. If the coupon rate is fairly close to the yield to 
maturity, say 70% or more, the duration can be very roughly approximated as 
l/y + 1, the formula for a perpetuity (See Appendix II, Section II, Equation 
10). 

Duration can do some very interesting and wonderful things for the investor 
seeking to achieve a certain ultimate return or wealth level. Duration allows the 
interest rate risk (i.e., reinvestment) to be balanced with the price or capital 

4 There are three different yields associated with a bond 

I. Nominal yield is the ratio of interest to principal (without regard to compounding). This is 
also called the coupon rate. 

2. Current yield is the ratio of interest to the amount actually paid for the bond. The current 
yield overstates the return on premium bonds and understates the return on discount bonds. 

3. Yield fo maruriry--sometimes called the net yield to maturity, takes into account all cash 
flows associated with the bond, i.e., the amount paid, the interest and redemption amounts 
to be received if the bond is held to maturity. 

Price = ,g - CF, 
t-0 (1 + r)’ 

r is the yield to maturity 

5 See Appendix V for a replication of the Table B Duration Values and a simple program to calculate 
a bond’s duration. 
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TABLE B [7] 
DURATION OF A BOND 

DURATION (ASSUMING EIGHT PER CENT MARKET YIELD) 
BOND A-4% COUPON 

(1) (2) (3) (4) (5) (6) 
Year Cash Flow PV at 8% PV of Flow PV = % of Price (1) X (3) 

1 $ 40 0.9259 $ 37.04 0.0506 0.0506 
2 40 0.8573 34.29 0.0469 0.0936 
3 40 0.7936 31.75 0.0434 0.1302 
4 40 0.7350 29.40 0.0402 0.1606 
5 40 0.6806 27.22 0.0372 0.1860 
6 40 0.6302 25.21 0.0345 0.2070 
7 40 0.5835 23.34 0.0319 0.2233 
8 40 0.5403 21.61 0.0295 0.2360 
9 40 0.5002 20.01 0.0274 0.2466 

10 1,040 0.4632 481.73 0.6585 6.5850 

Sum $73 1.58 1 .ooOO 8.1193 

Duration-S. 12 Years 

BOND B-8% COUPON 

1 $ 80 0.9259 $ 74.07 0.0741 0.0741 
2 80 0.8573 68.59 0.0686 0.1372 
3 80 0.7938 63.50 0.0635 0.1906 
4 80 0.7350 55.80 0.0588 0.1906 
5 80 0.6806 54.44 0.0544 0.2720 
6 80 0.6302 50.42 0.0504 0.3024 
7 80 0.5835 46.68 0.0467 0.3269 
8 80 0.5403 43.22 0.0432 0.3456 
9 80 0.5002 40.02 0.0400 0.3600 

10 1,080 0.4632 500.26 0.5003 5.0030 

Sum $1000.00 1 .ooo 7.2470 

Duration-7.25 Years 
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risk. This balancing arises out of the inverse6 relationship between interest rate 
or reinvestment risk and price risk. 

The zero coupon bonds that have recently become fashionable may help to 
illustrate duration.7 An obligation to fund a liability of known proportion at the 
end of 10 years would be totally satisfied by a 10 year zero coupon bond; that 
is, there is no reinvestment risk. It doesn’t matter what happens to interest rates 
if the only goal is to exactly achieve a certain wealth position at the end of the 
holding period. Put ,another way, since a zero coupon bond has no interim cash 
flow, its term to maturity is equal to its weighted term to maturity which is also 
equal to its duration. 

It turns out that, for several reasons, zero coupon bonds are not a panacea. 

Zero coupon bonds are not as yet widely available. 
Zero coupon bonds may not be available at a credit risk level that suits 
the investor. (Also note that the entire credit risk is “stacked” at the 
redemption date.) 
Zero coupon bonds, other things being equal, carry a slight premium. 
Tax exempt institutions (such as pension funds) are currently the major 
investors in these bonds. The tax implication of zero coupon bonds can- 
to certain investors-be onerous (i.e., the bond owner is subject to tax 
on income which is accrued-not received).a 

6 Other things being equal, as interest rates rise the price or market value of fixed rate bonds decline 
and’ as interest rates decline the price or market value of fixed rate bonds rises. 

7 According to George L. Shinn’s article, “Innovative Approaches to Financing” appearing in the 
Winter 81/82 issue of Chief Execurive, J. %. Penney Inc. issued the first public zero coupon bond 
in April,: 1981. 

‘, 

* The obverse of this coin is, of course, a great attraction to the bond issuer, but the IRS wants to 
spoil the gameAa little. See page 43 of the May 5, 1982 edition of the Wall Street Journal. 
Currently the issuer takes a deduction on a pro-rata or equal installment accrual of interest. The 
proposed IRS change, which will require Congressional approval, will reflect the compounding of 
ac&ed,intemst. 

Example: 30 year $1,000 bond, purchased for $50, yielding 10.5% 
3 Deductible Interest 

., Current tax basis Proposed 

Year 1 $950130 = $31.67 $50.00 x ,105 = $5.25 
Year 2 $950/30 = $31.67 $55.25 X ,105 = $5.80 

It seems clear that such a change in the tax law will, other things being equal, reduce the enthusiasm 
of would-be zero coupon bond issuers. 
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An interesting recent development strikes at the first two shortcomings: 
availability and credit risk. In July of 1982, Merrill Lynch brought to market a 
cleverly designed new product called TIGR’s (Treasury Investment Growth 
Receipts) [S]. Other investment bankers have since followed suit. 

TIGR’s are treasury bonds repackaged to look and behave like zero coupon 
bonds. The new tax act, Tax Equity and Fiscal Responsibility Bill of 1982, 
effective July 1, 1983, added I.R.C. Section 1232B, which prescribes the tax 
treatment for bonds that have been stripped (i.e., for which the interest coupons 
have been separated). An investment bank might, for example, buy a 25-year 
bond, strip out the 50 interest coupons yielding 5 1 zero coupon bonds (including 
the bond itself). The “mini” zero coupon bonds are kept in a custodian bank. 
The investor gets a receipt as evidence of his claim on the securities. 

The last shortcoming, taxes, may yet be solved. Some state and local housing 
authorities have been issuing zero coupon municipal bonds. Most of the issues 
so far have call features, thus taking away one of the presumed advantages of 
zero coupon bonds and Original Issue Discount bonds. (According to Woohidge 
and Gray, Original Issue Discount, “OID”, bonds of which zero coupon is the 
extreme case are priced to yield as much as 100 basis points less than otherwise 
comparable full coupon bonds. They offer two reasons: non-callability and 
immunization. [9]) 

Working with bond durations, one can achieve nearly the same immunized 
result offered by zero coupon bonds. In other words, if a company has a 10 
year obligation and invests in a bond with a duration of 10 years, which may 
in fact involve a bond with a term to maturity of 18 years (for example), the 
return/wealth would be immunized. This happy result comes about because of 
the counterbalancing of interest rate risk and price risk. In other words, if 
interest rates go down, the investment return is less than anticipated but there 
is a counterbalancing capital gain in the market price of the bond. Rut another 
way, by buying a bond with a longer than apparently needed term to maturity- 
but with the right duration-the investor creates an interest sensitive overhang 
(i.e., the difference between the duration and the term to maturity) on the bond 
which is engineered to the right proportions. Consider the following examples 
in Table C: 
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TABLE C [lo] 

REALIZED RETURN FROM A ~-YEAR 9% PAR BOND 
OVER 

VARIOUS HORIZON PERIODS 

Reinvestment Rate 
and Yield-to-Maturity 

At Horizon 

Horizon Period 

I 3 4.13 5 
Year Years Years Years 

7% 

Coupon Income 

Capital Gain 
Interest-On-Interest 
Total Dollar Return 

Realized Compound Yield 

9% Capital Gain 
Interest-On-Interest 
Total Dollar Return 

Realized Compound Yield 

II% Capital Gain 
Interest-On-Interest 
Total Dollar Return 

Realized Compound Yield 

$90 

$68 
$2 

$160 

15.43% 

$0 
$2 

$92 

9.00% 

-$63 
$2 

$29 

2.89% 

$270 

$37 
$25 

$331 

9.77% 

$0 
$32 

$302 

9.00% 

-$35 
$40 

$275 

8.26% 

$372 

$16 
$51 

$439 

9.00% 

$0 
$67 

$439 

9.00% 

-$I6 
$83 

$439 

9.00% 

$450 

$0 
$78 

$528 

8.66% 

$0 
$103 
$553 

9.00% 

$0 
$129 
$579 

9.36% 

Table C illustrates a striking compensation effect for investment periods of less than 5 years. For the 3- 
year period, at the 7% reinvestment rate assumption, the interest-on-interest naturally falls short of the 
amount required to support a target return of 9%. However, if the bond could be sold at the price 
corresponding to the assumed 7% yield-to-maturity rate, then a capital gain would be realized which 
would more than compensate for the lower value of interest-on-interest. Table C illustrates the well- 
known facts that over the short term, lower interest rates lead to increased returns through price 
appreciation while, over the longer term, lower interest rates lead to reduced returns through reduced 
interest-on-interest. For periods lying between the short term and the longer term, it is not surprising to 
find these two effects providing some compensation for each other. 
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Duration is particularly useful when pricing a single risk or insurance pro- 
gram. Indeed, it is probably the only way to immunize the investment risks of 
such individual undertakings. Duration can also be used by the insurance com- 
pany as it aggregates risks and a corresponding portfolio of invested assets. The 
required duration of the portfolio could be computed as the weighted average 
of the various constituent durations or computed on an aggregate basis-by 
expected payout year (e.g., a certain block of assets with a duration of .5 for 
payments in the first year, 1.5 for payments in the second year, etc.). 

While duration is an elegant and appealing concept, it is not without a few 
practical problems. First, it’s nearly impossible to find bonds with a duration 
greater than 20 years.9 Second, a bond’s duration changes over time. For 
example, as one year of a 10 year holding period passes there remain 9 years 
on the obligation, but the duration has decreased only by perhaps 6/10 of a 
year. Thus, the liability and corresponding assets are out of synchronization and 
no longer immunized. Third, when interest rates change the bond duration also 
changes with the result that the investor is not immunized againstfurther interest 
rate changes. (See Appendix III.) Fourth, sinking funds and call features can 
make the whole process fairly complicated. These four problems can, however, 
be overcome by constantly retuning or rebalancing the duration of assets. Fifth, 
transaction costs and taxes can be a drag on the immunization program. 

The duration of the portfolio must be tracked-an ideal computer applica- 
tion-and the portfolio tuned as 

1. interest payments become available for investment 
2. bonds mature 
3. time passes 
4. market yields change, and 
5. new liabilities are taken on. 

The easiest way to envision the retuning is to sell the entire portfolio and 
reinvest at the new required/computed durations: not the most efficient approach, 
but easy to understand. Alternatively, retuning can be accomplished by merely 
shifting funds from longer term bonds to shorter term bonds to shorten the 

9 As noted earlier, duration is a specially weighted average term to maturity-the weights being the 
present value of the cash flows. A bond with a duration of 20 involves a term to maturity of 45 at 
4% yield to maturity with a coupon of 6%, 70 years at 5% YTM. At a 6% YTM, the duration 
starts to converge on 17.65 at about 120 years. Since bonds are rarely issued with terms succeeding 
35 years, it is nearly impossible to achieve a duration of more than 20 years with today’s coupon 
rates and yields to maturity. See also Appendix II, section II and Appendix III Exhibit A2. 
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duration (the usual requirement as time passes) or vice versa. Simply reinvesting 
the coupons, as they are paid, in short term bonds may fund and accomplish 
the needed rebalancing. For a fuller discussion of portfolio rebalancing, see 
Gushee’s article [ 111. 

Another portfolio approach is to strive for a perfect matching of the expected 
payments and the interest income and redemptions from the investment portfolio. 
The usual motivation for matching of this type is solvency considerations. The 
National Association of Insurance Commissioners has, from time to time, ex- 
pressed an interest in the matter and commissioned Tillinghast, Nelson and 
Warren, Inc. to study the idea and develop a program or protocol [ 121. 

In theory, an immunized portfolio can be achieved by cash flow matching. 
This condition will be obtained only if all interest coupons go directly to loss 
payments so that there is no reinvestment exposure. Similarly, all loss payments 
and maturities have to be precisely matched. All in all, a difficult but not 
impossible task. 

It would, of course, be easy to construct a cash flow matched portfolio using 
zero coupon bonds. While such a portfolio might be called a cash flow matched 
portfolio, it is in reality a duration based portfolio. 

It is also possible to construct a perfect cash flow matched portfolio using 
conventional bonds-specially if the liability or payment stream is decreasing 
over time. If the payment stream is increasing or variable (i.e., up and down 
from year to year), it may not be possible to achieve perfect matching (i.e., 
avoid reinvestment risks). 

Merrill Lynch and several other investment houses (Salomon Brothers, First 
Boston and Goldman Sachs, to name a few) have developed cash flow matching 
models. Under those systems, the customer specifies the “cash flow liability 
stream”. The “system” accesses the firm’s bond data base and develops a 
portfolio consistent with the customer’s expected payment profile, the custom- 
er’s credit risk appetite, and the customer’s attitude toward call risk. (The 
greater the coupon, the greater the call risk. Rut the other way around, bonds 
with lower coupons, other things being equal, will sell at a greater discount and 
hence afford greater call protection.) 

A sample portfolio is set forth in Appendix IV. A study of Appendix IV 
reveals that all coupon interest goes directly to loss payments leaving no rein- 
vestment risk. There is a very strong similarity or connection between a perfect 
cash flow matched portfolio and the TIGR’s discussed earlier. Indeed, as can 
be seen from Appendix IV, a perfect cash flow matched portfolio is developed 
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by taking a conventional bond and breaking it into n + 1 (i.e., n coupons plus 
a redemption value) constituent zero coupon bonds. Thus it can be seen that 
cash flow matching is actually a subset or type of duration. 

In general, a matching program will keep maturities shorter than a duration 
program. This, of course, will produce a yield penalty in (normal) times of a 
positive yield curve. lo 

Cash flow matching can be a very useful concept<specially for the regu- 
lator. Depending on the objectives and circumstances, matching may or may 
not be a good investment strategy. Cash flow matching is difficult to achieve at 
the individual risk or program level (where there’s a single payment or where 
the payments are so small that it would not be feasible to put together a portfolio 
of bonds.) Duration, on the other hand, can and does work both at the individual 
risk and portfolio level. 

Summary 

As Dr. Leibowitz has suggested, “the traditional motivation for bond in- 
vestment was to secure a fixed cash flow over some appropriate time frame. 
The typical bond investor was highly risk averse. He was more than willing to 
sacrifice the excitement of potentially spectacular results in order to achieve a 
reasonably reliable pattern of return. However, in recent years, the traditional 
role of bonds as an asset category has been buffeted by a series of dramatic 
changes in the marketplace. Surging interest rates and an explosion in volatility 
have characterized recent markets. This environment imposes a harsh dilemma 
on the bond portfolio manager: how to pursue prudent active strategies and still 
provide his client with the comfort level that probably served as the primary 
basis for allocating funds to the fixed-income market in the first place?’ [ 131 

In most insurance and reinsurance pricing, the reinvestment problem is a 
small, although not unimportant, element in the parcel of risks assumed. For 
the so-called long tail liability lines and life insurance, and specialty products 

‘0 A yield curve is a plot of yields (usually on the ordinate) and maturities (usually on the abscissa) 
for bonds of comparable quality. The bonds differ as to maturities but need to be identical in 
creditworthiness, e.g., treasury bonds or bonds issued at the same time by the same issuer. The 
yield curve tells us what a knowledgeable investor requires, other things being equal, to commit 
for longer times (i.e., maturities). A yield curve is said to be positive or upward sloping if yields 
increase as maturities lengthen. Yield curves am normally positive reflecting the greater uncertainty 
and “risk” premium associated with longer maturities. There have been periods, notably in the early 
1980’s. when the yield curve has been negative (i.e., short duration money commands higher 
interest rates than long term money). 
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such as structured settlements and loss portfolio assumptions, the reinvestment 
risk is very important. Often, this additional risk element is either underestimated 
or, perhaps more often, simply ignored. 

Sometimes an attempt is made to quantify the reinvestment risk, charge an 
additional premium for the risk, and use conventional investment techniques. 
In other words the actuary might price the business using yields derived from 
an immunized investment portfolio-even though the funds might be invested 
on another basis. 

Generally it would be prudent to immunize or harmonize the liabilities and 
the related invested assets. As discussed in this paper, immunization can be 
achieved by (exact) cash flow matching or by tuning the investment portfolio 
to the appropriate duration. 

Cash flow matching and duration are very useful concepts and are but the 
first steps (in a way, building blocks) in more sophisticated\ contemporary 
portfolio management. I believe actuaries as well as others in today’s insurance 
company need to be more familiar with the management or harmonization of 
assets and liabilities. We also need to have some familiarity with the newer 
active (versus the traditional passive) portfolio management theories and tech- 
niques. It is hoped that this paper is a step, even if a modest one, in that 
direction. 

HI 
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APPENDIX 1 

MAGNITUDE OF INTEREST-ON-INTEREST To ACHIEVE 9% REALIZED COM- 
POUND YIELD FROM 9% PAR BONDS OFVARIOUS MATURITIES [14] 

Maturity Total 
In Dollar 

Years Return 

Interest-On-Interest 
At 9% 

Reinvestment Rate 

Interest-On-Interest 
As Percentage 

Of Total Return 

1 
2 
3 
4 
5 
7 

10 
20 
30 

$92 $2 2.2% 
193 13 6.5 
302 32 10.7 
422 62 14.7 
553 103 18.6 
852 222 26.1 

1,412 512 36.2 
4,816 3,016 62.6 

13,027 . 10,327 79.3 

APPENDIX I1 

BONDPRICE VOLATILITY AND DURATION 

An idea suggested by Rountree [ 151 and others is to get a different perspective 
on duration by developing a measure of bond price volatility. Consider the 
financial world’s rule of thumb that one basis point change in yield for a long 
term coupon bond drives a ‘/s% bond price change. This implies a duration of 
.125%/.01% or 12.5. 

Studying bond price volatility leads to a more rigorous explanation/derivation 
of duration. 

If the price of the bond is P, 

p=;cF, 
t=1 (1 + y)’ (1) 

we can, using simple differential calculus, measure the change in the price of 
the bond related to a change in the yield: 

lim X - dp _ 5 CFt 
Aj-+0 Ay dy ,=I (1 + y)‘+’ * (-t) (2) 
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Relating this to the price of the bond, 

lim E!A2 = Z:,CF,(-t)l(l + y)‘+’ 
Ajv0 p ?&CF,I(l + y)’ 

ZfhZF,(-t)I( 1 + y)’ 
Z: ,CF,/( 1 + y)’ 

Thus, it can be seen that duration is a function of bond price volatility 

lim APlAy -1 
- = - * Duration 

Ay+O p l+Y 

(3) 

(4) 

Put another way, the relation between the duration of a bond and its price 
volatility (as set forth by Hopewell and Kaufman [16], is: 

AP 
lim - = -D*(Ay) 

Ay+O p 

where 

(5) 

AP 
- = the % change in bond price 
P 

D* = the adjusted duration of the bond in years 

which is equal to 
1 

( > 
- D, and 
l+Y 

Ay = the change in the market yield. 

Rearranging, we get: 

as in (3). 

In practice, the unadjusted duration figure (0) is used when computing the 
impact of market rate changes. Without the factor (l/l + y) we have the time- 
weighted “corporate average-life” formula with each payment period weighted 
by its present value discount factor as originally proposed by Macauley. [17] 

Thus, 

-APlAy 
D* = lim p 

- dPldy c-c Z?ZF,(t)I(l + y)’ 

b-0 P C:CFtI( 1 + y)’ (7) 
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Consider a discrete case: 

D$# = -“‘AY -AP 1 - price change . 1 c-.-c 
P P AY price yield change (8) 

(from 5), or 

-(Pz - PI) 1 .-= 
D* = (P, f P2)/2 y2 - y1 

2(Pl - P2) 1 .- 
PI + P2 Y2 - Yl 

Example: A 10 year bond with an 8% coupon (at the end of the year) 

P, = 99,:9665 Y, = .08005 

P2 = 100.0336 Y2 = .07995 

The adjusted duration equals 6.71 From (8) 

Duration = 7.247 as in Table A, Bond B. From (4) 

APPENDIX II-SECTION II 

Consider a perpetuity (of $1) 

pA 
Y 

dP -1 
;i;=,y’ 

D* = -dPW l/y2 1 -=-=- 
P l/YY 

D=l+l 
Y 

(9) 

(10) 

Thus for very long term bonds, l/y + 1 may be a good approximation for 
duration. 

This exercise also sheds some light on a comment in the text that it’s not 
possible with high yields for a bond to have a duration of 20 years or longer. 
Formula (10) would suggest that durations of 20 or more years can only be 
achieved when y, the yield, is less than 5.26%. 
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APPENDIX 111 

EXHIBIT Al 

DURATION OF VARIOUS BONDS ALL PRICED To YIELD 9% [18] 

Maturity 
in 

Years 0% 

Coupon 

7.5% 9.0% 10.50% 

‘1 1.00 0.98 0.98 0.98 
2 2.00 1.89 1.87 1.86 
3 3.00 2.74 2.70 2.66 
4 4.00 3.51 3.45 3.38 
5 5.00 4.23 4.13 4.05 
7 7.00 5.50 5.34 5.20 

10 10.00 7.04 6.80 6.59 
20 20.00 9.96 9.61 9.35 
30 30.00 11.05 10.78 10.59 

100 100.00 11.61 11.61 11.61 

Ex. Al shows the Duration of various bonds. Returning to the original objec- 
tive of providing an assured 9% target return over a 5-year period, we can see 
that one should choose a bond having a Duration of 5 years (as opposed to a 
maturity of 5 years!) 

To obtain a Duration of Syears in a 9% par bond, it turns out that one would 
need a maturity of around 6.3-years. 



EXHIBIT A2 

DURATION-VERSUS-MATURITY CURVES [ 191 

o”“*w,N I)URAIION-VtRSIIS-hiAllJRllV CIIRVES , DIIHAI1ON 
14 -___ 

I 

.---.__--_._--.__- _-____ _ ._ 14 --.-. 

13 _.- 6% C”IIP(IW R *.mx “I u 
/ 1 

-__ 13 

12 ._ 
I 

11 _- 
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APPENDIX IV 

Benefit 
Payment 
Required 

Sl.mmnl 
1.219.ooO 
1.175.m 
1,127.WO 
I ,078.cQo 
I .0260X 

974.m 
919mJ 
864,ooO 
807,cno 
748,coo 
688.cm 
628,000 
567.ooO 
508SXJl 
451,000 
396,wO 
344.Km 
2%.oOO 
252.ooo 
212,cm 
176.CnY.l 
14l.ooo 
I17,Oca 
93,OwJ 
73.m 
56,ooO 
42,OW 
3lml 
23,wO 
16,CNlO 

316.307.0(30 

Par Year 
- 

1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 
zoo0 
2col 
2002 
2003 
2004 
2005 
2006 
2007 
2038 
2009 
2010 
2011 

COUpOn Maturity 

8.703 91111981 
7.503 al511982 
8.125 I l/15/1983 

Y85.00 $1.260.662.00 
486,615 I .219.927.00 
447.473 1.175,127.00 
475,542 1.127.549.75 
453,270 I ,078.699.25 
448.941 1.027.047.25 
445,828 975.158.50 
353.823 919.779.75 
403.023 864.199.75 
328.850 X07.549.75 
298.815 748.703.50 
28 I ,544 688.648.50 
265,724 628.873.50 
238.763 567.528.50 
212.427 508.403.50 
184.870 451.578.50 
180.351 396.370.75 
173.784 344.698.63 
131.138 296.391.75 
118.673 252.55803 
105.030 212.8Ol.Kl 
82.618 176.269.M) 
62.174 144.874.00 
60.050 117.517.so 
47.451 93.499.w 
36,047 73.305.25 
31,037 56.683.25 
23.514 42.751.25 
19.412 31.535.63 
14.822 23.418.50 
Il.408 16.750.00 

Name 

ML Stares Tel. 
Norway 
Austmlin 
Export Dw. Bank 
Manuf. Han. Tr. 
Sweden 
European Invcsl. Bk. 
Ford Mtr. Credit 
Trailer Train 
GMAC 
Ford Mu. Credit 
Commercial Credit 
Hcllcr 
GMAC 
Ohio Edison 
Phil Electric 
H. F. C. 
Canada 
New En8land Pwr. 
Camlina P & L 
Public SK. Ele 
So. Cal. Edison 
Long Island Light 
Florida P & L 
Cammonwcalth Edison 
Duke Power 
Ontario Pmv. 
Central P & L 
Chcr. Pot. Tel. 
Ohio Bell Tel. 
Pacific G & E 

a505.Ool 
528.0X3 
503.MM 
522,wO 
52l.ooO 
516.000 
514.Lwo 
484,ooO 
493.cm 
46lWJ 
435,cm 
424,OCKl 
396.ooO 
35o.m 
318.000 
289,ooO 
269,CCO 
239,ooO 

9.850 l/15/1984 
8.503 6/l/1985 
9.500 4,15/1986 
9.875 6/l/1987 
8.250 I l/l/l988 

lO.lxa 5/15/1989 
7.125 I2/1/1990 
7.5ca 11/15/1991 
7.750 2/15/1992 
7.750 4/l/1993 
7.750 IO/l11994 
8.750 9/l/1995 
8.250 8/l/1996 
8.450 111511997 
8.625 4/l/1998 
8.375 91111999 
8.7M 8, I12ooO 

2OI.ooa 
174.000 
lS6.wO 
126.wO 
105.wa 

8.375 5115R001 
8.250 7/l/2002 
8.125 12/l/2003 

w.KQ 
73.ooo 

8.500 l/l/2@34 
8.750 3/l/2005 
8.375 lO/l/2@36 
8.400 III5ROO7 

56,OMl 
46ml 
34ml 
27.030 
2lml 
16,000 

8.875 9/ I12008 
8.875 6/l/2009 
8.750’ 11112010 
9.375 2/l/2011 

$6.908.017 $16.324.859.51 
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APPENDIX V 

10 RE” l *********** DIJRPTION CALCULATION l *********** 
20 REM THIS PROCRF\,, WAS WRITTEN IN “BASICCI” ON GIN IBM PC. 
30 REM THIS PROCRC\M WILL CALCULClTE DURATIONS FOR A SERIES OF BONDS PT FIVE 
40 REM YERR MFITURITY INTERVALS UP TO A SPECIFIED MRXIMUtl--NN 
50 REM WITH THE INPUT SPECIFIED FOLLOWING THE PROGRCIM LISTING THE PROGRAM 
SO REM WILL REPLICQTE THE DURATION VALUES SHOWN IN TPlBLE 8. 
70 REM VPiRIABLE DESCRIPTION 
SO REM _ _ _ _ _ _ _ _ ____--__-_- 

SO REM Y YIELD TO MPTURITY 
100 REM MAT REDEMPTION VRLUE 
110 REM CF THE COUPON OR INTEREST RECEIVED EACH YEAR 

120 REM CIS IN THE PAPER IT IS flSSUflED THCIT THE COUPON 

130 REM OR INTEREST IS RECEIVED AT YE4R END. 
140 REtl NN NUMBER OF YEC)RS TO MATURITY 
150 REM 
160 REM 
170 REM 
IS0 REM 
190 REM PROMPT FOR INPUT OF DC\TA 
200 REM 
210 PRINT “INPUT YIELD (EC. S% RS .OS)“i 
220 INPUT Y 
230 PRINT “INPUT REDEMPTION VfiLUE(EG. 10001”i 
ZUO INPUT MAT 
250 PRINT “INPUT COUPON (EG. SO)“; 
260 INPUT CF 
270 PRINT “INPUT ” OF YEEIRS TO MRTURITY”i 
290 INPUT NN 
290 REM 
300 REM PRINT REPORT HEADINGS 
310 REM 
320 FOR P=l TO 5 
330 PRINT 
340 NEXT P 
350 PRINT” YIELD(X) REDEMPTION(S) COUPON(S) MATURITYtYRS) DURPT ION” 

360 PRINT” ________ _____________ _________ _____________ ________(~ 

370 REM 
380 REM DURRTION CALCULATION 
390 REM 
400 FOR N=5 TO NN STEP 5 
410 NUtl=(MhT+N)/(l+Y)-N 
420 DEN =llAT/(l+Y)-N 
430 FOR T= 1 TO N 
440 NUM =NU” +(CF*T)/(l+Y)-T 
450 DEN= DEN + CF/(l+Y)*T 
460 NEXT T 
470 DUR = NUN/DEN 
490 PRINT USING” 0.00 0 ,DDlt li”” DOD 

” iY*lOO ,MAT ,CF IN *OUR 
490 NEXT N 
500 FOR P=l TO 5 
510 PRINT 
520 NEXT P 
530 END 
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RUN 
INPUT YIELD (EC. SX AS .OSl? -08 
INPUT REDEMPTION VRLUE(EC. lOOO)? 1000 
INPUT COUPON (EC. SO)? 40 
INPUT D OF YEARS TO MbTURITY? 25 

YIELD(%) REDEMPTIONIS) COUPON(S) MATURITYtYRS) DURCITION 
-------- -_--______-__ -_-______ _____________ _ _ _ _ _ _ _ _ 

9.00 1.000 40 5 4.5907 
8.00 1.000 40 10 8.1194 
8.00 1.000 40 15 10.6238 
s.00 1.000 40 20 12.2635 
8.00 1.000 40 25 13.2452 

OK 

RUN 
INPUT YIELD (EG. EX FIS *OS)? .OS 
INPUT REDEMPTION VALUElEG. lOOO)? 1000 
INPUT COUPON (EG. SO)? SO 
INPUT 0 OF YEARS TO MATURITY? 25 

YIELD(%) REDEMPTION(S) COUPON(S) MhTURITYtYRS) DURC)TION 
- _ _ _ _ _ _ _ -----:------- --------- _-__------___ _ _ _ _ _ _ _ _ 

8.00 1,000 so 5 4.3121 
9.00 l*OOO SO 10 7.2469 
8.00 1,000 so 15 9.2442 
9.00 1,000 so 20 10.6036 
8.00 1,000 SO 25 11.5288 

OK 
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INSURANCE REGULATION IN CANADA AND THE ROLE OF THE 
CASUALTY ACTUARY 

ROBERT M. HAMMOND 

It is an honour to be invited to speak at the annual,meeting of the Casualty 
Actuarial Society. I am particularly pleased for two reasons. First, being an 
actuary myself, I have a great interest in all branches of the actuarial profession. 
I have been active in the Canadian Institute of Actuaries and recently have been 
elected to the Board of Governors of the Society of Actuaries. Attendance at 
this meeting gives me the opportunity to meet members of the Casualty Actuarial 
Society and to hear first hand the major current issues they are facing. I think 
this is important because I firmly believe that an exchange of views and ideas 
between the various actuarial organizations in North America is in the best 
interests of us all. 

The second reason for being particularly pleased about being here is that 
my responsibilities as federal Superintendent of Insurance during the past year 
or so have clearly demonstrated to me just how important actuarial advice can 
be to the well-being of the property and casualty insurance industry. I became 
Superintendent just at the point in time that the Canadian property and casualty 
industry recorded its largest underwriting losses ever. My experiences since 
have convinced me that, as a regulator, I should do what I can to encourage a 
greater involvement of the casualty actuarial profession in the industry in Can- 
ada. Consequently, I welcome the opportunity to put some of my ideas in this 
regard before you. 

Most of you are from the United States. To a large degree, the supervisory 
system in Canada corresponds to the system in the United States. However, 
there are some significant differences. For this reason, I thought that it would 
be worthwhile to take a few minutes to summarize for you the main features of 
the existing Canadian supervisory system. This will put in better perspective 
my main subject today, namely, the changes to the Canadian supervisory system 
that the Department is thinking of. recommending, including the change that 
hopefully will work to expand the role of casualty actuaries in the Canadian 
industry. 

In Canada, the supervision of insurance companies is shared by the prov- 
incial and federal governments. The federal insurance legislation regulates cer- 
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tain activities of all federally-incorporated companies and all non-resident com- 
panies. 

The objective of the federal legislation is to try to ensure to the extent 
possible that federally-supervised companies remain able to meet their obliga- 
tions to their policyholders. The provisions of the federal insurance legislation 
aimed at achieving this objective fall into four main groups: control of entry 
into business, gathering of information, requirements relating to investments 
and valuation of assets and liabilities, and what we generally describe as the 
“discipline provisions.” 

As respects control of entry, all non-resident companies transacting insurance 
in Canada first must obtain a certificate of registry from the Minister of State 
for Finance, the elected member of the federal Cabinet to whom I report. For 
the incorporation of a Canadian company, ministerial consent and prescribed 
minimum levels of capital and surplus are required. 

Gathering of information is achieved by requiring companies to file annual 
statements in a prescribed form and such other information as may be requested. 
The annual statements of Canadian companies must be accompanied by a report 
from an independent auditor. The statutes require the Superintendent to examine 
a company’s affairs at its head office at least once every three years. 

As regards assets and liabilities, non-resident companies are required to 
maintain assets in Canada under the control of the Minister sufficient to cover 
their Canadian liabilities. The statutes impose both quantitative and qualitative 
requirements on the investments of Canadian companies and on the assets 
deposited by non-resident companies, and stipulate that assets must be valued 
in a prescribed manner. 

For life insurance business, a company must appoint a valuation actuary 
who is a Fellow of the Canadian Institute of Actuaries, and he or she must 
certify as to the adequacy of the actuarial reserves and the appropriateness of 
the assumptions. The valuation actuary is free to choose the valuation assump- 
tions subject to their acceptability to the Superintendent. On the presumption 
that the actuarial reserves would contain adequate margins, no explicit minimum 
surplus requirements have been prescribed for life insurance business up until 
this time. 

For property and casualty business, liabilities for the purposes of the state- 
ment filed with the Department must include unearned premiums and a provision 
for claims, including a provision for claims incurred but not reported. However, 
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as to the adequacy of the reserves is required 

and surplus requirement, property and casualty 
companies must maintain assets equal to liabilities plus 15% of claims reserves 
and unearned premiums, with some reduction in the margin of unearned pre- 
miums being permitted if a company’s experience is favorable. 

The statutes impose penalties for failure to comply with the legislation. For 
example, failure to submit annual statements can result in withdrawal of the 
certificate of registry. When a company’s assets appear to be less than the 
minimum required under the provisions of the legislation, a number of remedies 
are available to the Minister, including, where necessary, taking control of the 
assets of the company and applying to a court for an order to rehabilitate the 
company or wind it up. However, before taking any action, the Minister .must 
give the company the opportunity to be heard. 

The majority of the Canadian insurance business is done by federally- 
supervised companies. However, it also is possible for companies to be incor- 
porated provincially and all provinces have legislation applicable to provincial 
companies that corresponds to the federal insurance legislation. In addition, the 
provinces have exclusive jurisdiction over matters such as licensing of agents 
and brokers, the terms and conditions of contracts and their interpretation, and 
filing and approval of premium rates. Provincial legislation on these subjects 
applies with equal force to both provincial and federal companies. I mentioned 
that the provincial governments have exclusive jurisdiction over premium rates. 
However, in the context of what I am going to say later, it is important to know 
that, in general, the provinces have not acted to regulate premium rates in a 
very significant way. 

The sharing of jurisdiction between the federal and provincial governments 
probably sounds confusing and may appear to be burdensome for the companies. 
However, the cooperation and mutual respect existing between the federal and 
the provincial superintendents are such that there is little, if any, duplication of 
effort. 

The Canadian property and casualty industry has a good record of financial 
soundness by world standards and we who are in the regulatory business like 
to think that the supervisory system has played some part in the establishment 
of this record. Prior to 1981, there had been only one very small federally- 
incorporated property and casualty insurance company failure in fifty years and 
that failure was caused by someone disappearing with the securities. However, 
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in 1981, the industry experienced its worst underwriting results in history and 
two relatively small federally-incorporated companies failed. A third small 
federal company failed in 1982 and since then, two provincially-incorporated 
companies have encountered difficulty. 

Probably because the Canadian industry has had a good record of soundness, 
we do not have any government-run compensation schemes in place that guar- 
antee claim payments in the event of company failure. The first federal company 
to fail had $40 million of claims outstanding. However, because of financial 
assistance provided by a consortium of interested brokers, insurance companies, 
and other interested parties, all claimants will be paid in full. The second 
company to fail had some $23 million of claims outstanding and the ultimate 
payment to policyholders is expected to be in the range of 70 to 75 cents on 
the dollar. The third federal company to fail had some $14 million owing to 
claimants. The amount of the ultimate payment to these claimants will depend 
very much on the determination by the Courts of the validity of one of the 
company’s major reinsurance treaties. The reinsurer has denied any liability 
under the contract on various grounds. 

I mentioned that there is no guaranty scheme in Canada to protect policy- 
holders. I should clarify this statement by saying that, in a sense, a very limited 
form of compensation scheme does exist. Under the federal insurance law, if 
the Superintendent is appointed as liquidator of an insurance company, all the 
administrative costs, as opposed to the claim costs, involved in liquidating the 
company are assessed against the industry. As a consequence, the remaining 
assets of a troubled company are preserved for the benefit of the policyholders. 
The industry cannot be assessed for policy claims; policy claims must be paid 
from the company’s remaining assets. In the case of the three failed companies, 
the industry will have been assessed a total of $10 million for administrative 
costs incurred in the liquidations to the end of this year. So, you can see that, 
just as is the case in other sectors of the business community, the administrative 
costs involved in carrying out a liquidation of an insurance company are ex- 
tremely expensive. 

As you can imagine, the failure of the three federal companies caused strong 
public reaction, particularly from those whose claims were not being paid in 
full. Understandably, the common perception was that the Department should 
have acted to prevent the failures. 

As a result, the Department was directed to review its administrative prac- 
tices and the pertinent legislation with a view to recommending changes that 
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would improve protection to policyholders. After analyzing in detail what went 
wrong with the three failed companies, we put forward a series of proposals 
for amendments to the legislation for discussion with the industry and other 
interested parties. When putting our proposals together, we tried not to lose 
sight of the fact that the Canadian industry has an excellent record of financial 
soundness and that the vast majority of companies operate in a sound and 
responsible manner. What we are trying to catch with our proposals are the 
companies that operate at the so-called fringe. One of the toughest problems a 
regulator must face is to try to devise rules that will catch the companies 
operating at the fringe but at the same time will not impose undue restrictions 
on sound and responsible companies. This balance is not always easy to achieve. 

The proposals put forward by the Department for legislative reform focussed 
on four main areas. 

1. initial and Continuing Capital and Surplus Requirements 

The companies that failed were all relatively new and small and appear to 
have been undercapitalized. At the present time, the legislation requires a 
minimum of $1.5 million of capital and surplus for incorporation of a property 
and casualty company. The proposal put forward was to increase the minimum 
requirement from $1.5 million to $5 million. A strengthening of the existing 
continuing capital and surplus requirements (the 15% margin requirement) also 
was proposed in the form of the addition of some new tests. One of the most 
important features of these proposed new tests is that reinsurance would not be 
permitted to reduce the capital and surplus margin requirement below 50% of 
the amount that would be required if there had been no reinsurance. This 
approach was taken in recognition of the fact that the direct writing insurer is 
ultimately responsible for the entire loss if the reinsurance fails and should take 
this into account in its financial planning. 

2. The Adequacy of Security Provided by Reinsurance Arrangements and, 
Directly Related to this Question, the Incentive for Direct Writing Companies 
to Write Good Quality Business 

Problems in collecting on reinsurance ceded to unregistered companies were 
a significant factor in the failure of one of the companies. The Department 
recognizes that some access to unregistered reinsurance companies continues to 
be necessary. However, the proposal put forward was that recourse to unregis- 
tered reinsurance should be more restrictive than it is now. Under the proposal, 
small newly incorporated companies would be prohibited from reinsuring with 
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unregistered companies. Other companies would generally be prohibited from 
ceding more than 50% of their reinsurance to unregistered companies. 

As an incentive for a direct writing company to write good quality business, 
it was proposed that a company be required to retain a minimum percentage of 
its total gross premium written. We are currently thinking of an ultimate figure 
of 35% with more latitude being given in the early years immediately after a 
company’s formation. 

3. Quality and Collectability of Assets 

In the context of improving the quality and collectability of assets, we 
suggested a shortening of the standard,ninety day period during which premiums 
due from agents, but unpaid, can be recognized as an asset for solvency 
purposes. Our current thinking’ is that a sixty-five day period would be more 
appropriate. Also suggested was a limit for solvency purposes on the proportion 
of a company’s assets that can take the form of amounts due from associated 
companies. 

4. The Adequacy of Claims and Other Reserves 

Given that claims reserves that ultimately proved inadequate were a factor 
in the failure of at least one of the companies, it was proposed that a property 
and casualty company be required to provide an annual certificate signed by an 
appropriately qualified actuary. The final wording of the proposed certificate 
has not yet been developed. However, it is expected that the person signing the 
certificate will be required to state that in his or her opinion, the provision for 
outstanding claims represents a fair and reasonable estimate of the amounts that, 
together with amounts to be recovered from reinsurers, will be required to settle 
the claims. The objective of such a requirement is to force more attention to be 
paid to the adequacy of claims reserves and to encourage more direct involve- 
ment in the industry of actuaries qualified in the casualty field. 

You will have noted that I made reference to amounts to be recovered from 
reinsurers in the proposed wording of the certificate. Reinsurance is so important 
to the financial soundness of most property and casualty insurance companies 
that we think we must insist that the actuary expand his certificate beyond the 
net reserves retained by the company. We think that the actuary must review 
the adequacy and the appropriateness of the reinsurance arrangements and be 
prepared to express a view on the recoverability of amounts that will be due 
from reinsurers. 
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As I mentioned earlier, in general, there is no regulation of premium rates 
in Canada. All three of the companies that failed appear to have been charging 
inadequate premium rates. As a means of trying to deal with this situation, we 
also have proposed that an actuarial report be required with respect to the 
adequacy of the liability for unearned premiums to cover the liability for claims 
expected to be incurred in the unexpired portion of the policy. In other words, 
if in the opinion of the actuary the current premium structure appears inadequate, 
this view will have to be expressed in the annual report to the regulating 
authorities. 

We acknowledge that these proposals regarding required reports from cas- 
ualty actuaries need to be refined. Certainly, before anything is put into legis- 
lation, we plan to discuss our proposals in detail with the profession. I think 
the important point is that we see our proposals as being a step towards requiring 
more actuarial involvement in the property and casualty industry in Canada. 
Reliance on the professionalism of the actuary has been one of the cornerstones 
in the development of the existing supervisory system in Canada for life insur- 
ance companies and I believe that we should be moving in the same direction 
for the property and casualty industry. 

One of the practical problems we must face in moving in this direction is 
the lack of actuaries in Canada qualified to practice in the casualty field. For 
this reason, the proposals as originally published suggested that in certain 
specified circumstances, and with the approval of the Superintendent, an opinion 
from someone other than an actuary might be accepted. I view this option as 
being only part of a transition stage until such time as there are a sufficient 
number of qualified actuaries practicing in Canada to meet the need. 

In simplified form, those were the major proposals put forward by the 
Department. The objective of the proposals is to improve protection for policy- 
holders. However, in recognition of the fact that no practical system of govem- 
ment supervision can provide a 100% guarantee against loss, the Department 
has also put forward, for discussion purposes, a form of consumer protection 
plan to protect policyholders within certain specified limits in the event of 
company failure. No decision has yet been made as to whether such a plan 
should be implemented. 

As I mentioned earlier, our original proposals were circulated some time 
ago to interested parties for comment and suggestion. Since many of the pro- 
posals are quite technical in nature, it was decided this was the appropriate and 
prudent course of action to take. A number of very good submissions have been 
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received. Although we continue to believe that the basic thrust of the proposals 
was sound, a careful review of the submissions indicates that some changes in 
our proposals are needed. As a consequence, we are revising our proposals and 
hope to have a revised set to put before the industry in the not-too-distant future. 
At the present, it is difficult to predict when Parliament might have time to deal 
with changes in the insurance legislation. Nevertheless, we think we should 
continue trying to obtain some sort of consensus on the proposals so that we 
will be ready with our recommendations should Parliament find time to deal 
with the matter. 

I mentioned that we have also been directed to revise our administrative 
practices in light of recent experiences. We already have made some changes 
in this regard. To the extent possible, a much greater proportion of the Depart- 
ment’s supervisory resources is being allocated to what we perceive to be the 
weaker companies. More attention than ever is being devoted to the examination 
of the adequacy of claims reserves. Certainly, reinsurance arrangements are 
being studied more closely and the Department is taking steps to improve its 
expertise in the reinsurance field. Most important of all, we are trying to put 
into practice what we are preaching about the need for more involvement of the 
casualty actuarial profession in the Canadian property and casualty insurance 
industry. In fact, we are currently trying to recruit a casualty actuary for the 
Department’s staff. 

Thank you for giving me the opportunity to tell you a bit about some of the 
changes we are thinking of making in regard to the Canadian property and 
casualty insurance industry. As I have indicated, we think the casualty actuarial 
profession has an important role to play in these changes and we are looking 
forward to working with the profession to implement these changes in a manner 
that is in the best interests of the public, the industry, and the profession. 
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MINUTES OF THE 1983 FALL MEETING 

November 6-9, 1983 

TORONTO HILTON HARBOUR CASTLE, TORONTO, ONTARIO 

Sunday, November 6, 1983 

The Board of Directors held their regular quarterly meeting from 1:00 p.m. 
to,4:00 p.m. 

Registration took place from 4:00 p.m. to 6:30 p.m. 

The President’s reception for new Fellows and their spouses was held from 
5:30 p.m. to 6:30 p.m. 

A general reception for all members and guests was held from 6:30 p.m. to 
7:30 p.m. 

Monday, November 7, 1983 

Registration was continued from 7:45 a.m. to 8:30 a.m. 

The meeting opened with general remarks from the C.A.S. President, Fred- 
erick W. Kilboume. The President introduced the Honorable Robert G. Elgie, 
M.D., Minister of Consumer and Commercial Relations for the Province of 
Ontario. This was followed by the reading of a letter of welcome from Art 
Eggleton, Mayor of the City of Toronto. 

The President then recognized the 28 new Fellows and 7 new Associates 
and diplomas were awarded. The names of these individuals follow. 

Gregory N. Alff 
Stephen A. Belden 
Regina M. Berens 
James E. Biller 
Ralph S. Blanchard, III 
Fran9ois Boulanger 
Paul Braithwaite 
Jeanne H. Camp 
Claudette Cantin 
Gregory J. Ciezadlo 

FELLOWS 

Robert B. Downer 
James M. Foote 
Joseph A. Gilles 
Roger M. Hayne 
Gaetane LaFontaine 
Michael A. LaMonica 
Winsome Leong 
Kevin F. Lonergan 
Kevin C. McAllister 

Robert T. Muleski 
Donna S. Munt 
James R. Nikstad 
Glenn J. Pruiksma 
Harold N. Schneider 
Frances A. Smith 
Harry W. Soul 
Daniel L. Splitt 
John D. Zicarelli 
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ASSOCIATES 

Victoria L. Bailey 
David L. Barclay 
Michael A. DeConti 

Timothy T. Hein Gary P. McDonald 
Jeffrey H. Mayer Mark A. Ruegg 

The presentation of diplomas was then followed by a summary of new 
papers and a review of previous papers. 

Mr. Stephen G. Kellison, Executive Director of the American Academy of 
Actuaries, reported on the activities of the Academy. 

The President announced the election results for Officers and Directors. 

Ojticers 

C. K. Khury 
Herbert J. Phillips 
Robert A. Anker 
Wayne H. Fisher 
Michael A. Walters 

Directors 

President-Elect 
Vice President-Administration 
Vice President-Development 
Vice President-Membership 
Vice President-Programs 

Robert A. Bailey 
E. Frederick Fossa 
Robert B. Foster 
George D. Morison 
Ronald E. Ferguson Appointed Two ,Years 
Hugh G. White Appointed One Year 

From 9:30 a.m. to lo:30 a.m., a keynote address was given by William G. 
Ouchi, Professor of Management, Graduate School of Management, University 
of California at Los Angeles. The subject was “The Revitalization of American 
Industry.” 

From 11:00 a.m. to 11:55 a.m., a panel, “The Classification Controversy,” 
was conducted by Michael A. Walters, Moderator. The panelists were: 

Mavis A. Walters 
Vice President 
Insurance Services Office 
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Sanford R. Squires 
Vice President and Actuary 
Commercial Union Insurance 

Hugh G. White 
Assistant Vice President and Actuary 
Travelers, Canada 

A formal luncheon was served from 12:00 noon to 1:25 p.m. and Mr. Robert 
M. Hammond, Superintendent of Insurance for the Canadian Federal Depart- 
ment of Insurance, was the guest speaker. His subject was “Insurance Regulation 
in Canada and the Role of the Casualty Actuary.” 

From 1:30 p.m. to 2:40 p.m., a panel discussion on “Futurism, Economics 
and Demography-Are They Relevant to the Actuary?” was moderated by 
Frederick W. Kilboume. The panelists were: 

Roy R. Anderson 
Vice President 
Allstate Life 

Robin B. Leckie 
Senior Vice President 
Manufacturers Life Insurance 

Diane J. Macunovich 
President 
Plan Technics Consultants 

From 3:00 p.m. to 4:55 p.m., eight concurrent workshops were held. They 
were: 

A. Continuation of Panel: 
The Classification Controversy 

B. Continuation of Panel: 
Futurism, Economics and Demography- 
Are They Relevant to the Actuary? 

C. Structured Settlements 

Lee R . S teeneck-Moderator 
Second Vice President 
General Reinsurance Corp. 
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Vincent J. Mangano 
President 
Vincent J. Mangano Associates 

Charles R. Meyer 
Tax Partner 
Coopers & Lybrand 

D. No-Fault Auto Insurance Revisited 

C. K. Khury-Moderator 
Vice President and Actuary 
Prudential Property and Casualty Insurance 

Gary Granoff 
President 
Granoff Resources 

Anne E. Kelly 
Assistant Chief Casualty Actuary 
New York State Insurance Department 

E. Considerations in the Establishment of Domestic and Off-Shore Captives 

Alfred 0. Weller-Moderator 
Vice President 
B.R.I. Coverage Corp. 

Frank Dunn 
Manager 
Citibank 

L. Brian Shaull 
Partner 
Coopers & Lybrand 

P. Bruce Wright 
Partner 
Trubin, Sillcocks, Edelman, Knapp 

F. New Paper: Duration 

Ronald E. Ferguson 
President 
General Reinsurance Corp. 
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G. New Paper: Reinsuring the Captive/Specialty Company 

Lee R. Steeneck 
Second Vice President 
General Reinsurance Corp. 

H. Discussion of the Paper: 
The Calculation of Aggregate Loss Distributions from Claim Severity 
and Claim Count Distributions 
Authors: Philip E. Heckman 

Glenn G. Meyers 

Gary Venter 
Actuary 
N.C.C.I. 

A general reception was held from 6:30 p.m. to 7:30 p.m. 

Tuesday, November 8, 1983 

The concurrent workshops were continued from 8:30 a.m. to 9:25 a.m. 

At 9:30 a.m., the business session was reconvened to include: 

Committee Reports 
Secretary’s Report 
Treasurer’s Report 

The President noted the decease of four members: 

Harmon T. Barber 
Joseph J. MaGrath 
Arthur N. Matthews 

I 
Harry F. Richardson 

The Woodward-Fondiller Prize was jointly awarded to Philip Heckman and 
Glenn Meyers. 

The Dorweiler Prize was awarded to Stephen P. D’Arcy. 

From lo:30 a.m. to 11:OO a.m., President Frederick W. Kilboume delivered 
his Presidential Address. 

At 1l:OO a.m., a panel entitled “Actuarial Advocacy-An Oxymoron?’ was 
moderated by Stephen G. Kellison. The panelists were: 
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Irene K. Bass 
Vice President 
Crum and Forster 

James A. Hall, III 
Partner 
Coopers & Lybrand 

Frank Harwayne 
Vice President and Director 
N.C.C.I. 

The remainder of the programme, Tuesday afternoon and Wednesday mom- 
ing until noon, was jointly sponsored with the Canadian Institute of Actuaries, 
consisting of four separate panels on loss and premium reserving. 

From 1:30 p.m. to 2:45 p.m., a panel, “Considerations in the Reserving 
Process,” was given. The panelists were: 

Martin Adler 
Vice President and Actuary 
GEICO 

David C. Westerholm 
Manager and Senior Actuarial Analyst 
CNA Insurance Companies 

From 3:15 p.m. to 4:30 p.m., a panel, “Analysis of U.S. and Canadian 
Reserving Practices,” was presented. The participants were: 

Herbert J. Phillips-Moderator 
Senior Vice President and Chief Actuary 
Insurers’ Advisory Organization of Canada 

David Atkins 
Partner 
Coopers & Lybrand 

David J. Oakden 
Actuary 

. Aetna Casualty Company of Canada 

Alain Thibault 
Consulting Actuary 
Blondeau and Company 
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A general reception was held from 6:00 p.m. to 7:00 p.m. 

Wednesday, November 9, 1983 

From 9:00 a.m. to lo:15 a.m., a panel “Survey of Reserving 
Techniques I,” was presented by: 

John J. Schultz, III 
Vice President and Actuary 
California Casualty Group 

Richard E. Sherman 
Senior Consultant 
Coopers & Lybrand 

From lo:30 a.m. to 11:45 a.m., a panel, “Survey of Reserving 
Techniques II,” was also presented by: 

John J. Schultz, III 
Richard E. Sherman 

At 12:OO noon the meeting adjourned following closing remarks by 
Frederick W. Kilboume and Carlton W. Honebein of the Society and Christo- 
pher D. Chapman, President of the Canadian Institute of Actuaries. 

In attendance, as indicated by registration records, were 203 Fellows, 71 
Associates, 19 guests, 8 subscribers, and 18 students. The list follows. 

FELLOWS 

Addie, B. J. 
Adler, M. 
Alexander, L. M. 
Alff, G. N. 
Anker, R. A. 
Bailey, R. A. 
Bashline, D. T. 
Bass, I. K. 
Beer, A. J. 
Ben-Zvi, P. N. 
Berens, R. M. 
Biller, J. E. 
Biondi, R. S. 

Bishop, E. G. 
Blanchard, R. S., III 
Bomhuetter, R. L. 
Boulanger, F. 
Braithwaite, P. 
Brannigan, J. F. 
Brouillette, Y. J. 
Burger, G. 
Camp, J. H. 
Cantin, C. 
Carbaugh, A. B. 
Carponter, J. D. 
Carter, E. J. 

Cheng, J. S. 
Cheng, L. W. 
Christie, J. K. 
Ciezadlo, G. J. 
Cis, M. M. 
Clinton, R. K. 
Conger, R. F. 
Conners, J. B. 
Cook, C. F. 
Covney, M. D. 
Crowe, P. J. 
Cundy, R. M. 
Curry, A. C. 
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Daino, R. A. 
Dean, C. G. 
Donaldson, J. P. 
Dorval, B. T. 
Downer, R. B. 
Drennan, J. P. 
Dropkin, L. B. 
Drummond-Hay, E. ‘I 
Dussault, C. 
Easton, R. D. 
Egnasko, G. J. 
Eliason, E. B. 
Evans, G. A. 
Fallquist, R. J: 
Ferguson, R. E. 
Finger, R. J. 
Fisher, W. H. 
Flaherty, D. J. 
Flynn, D. P. 
Foote, J. M. 
Ford, E. W. 
Forker, D. C. 
Fossa, E. F. 
Foster, R. B. 
Fresch, G. W. 
Friedberg, B . F. 
Frohlich, K. R. 
Fusco, M. 
Gilles, J. A. 
Goldberg, S. F. 
Gottlieb, L. R. 
Grannan, P. J. 
Graves, J. S. 
Hafling, D. N. 
Hall, J. A., III 
Hallstrom, R. C. 
Hartman, D. G. 
Harwayne, F. 
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FELLOWS 

Hayne, R. M. 
Hazam, W. J. 
Hennessy, M. E. 
Hewitt, C. C., Jr. 
Hine, C. A. 
Holmberg, R. D. 
Honebein, C. W. 
Hoylman, D. J. 
Hughey, M. S. 
Jaeger, R. M. 
John, R. T. 
Karlinski, F. J., III 
Kaufman, A. 
Kelly, A. E. 
Khury, C. K. 
Kilboume, F. W. 
Klaassen, E. J. 
Kleinman, J. M. 
LaFontaine, G. 
LaMonica, M. A. 
Lange, D. L. 
LaRose, J. G. 
Lehmann, S. G. 
Leimkuhler, U. E., Jr. 
Leong, W. 
Levin, J. W. 
Linden, 0. M. 
Lino, R. A. 
Liscord, P. S. 
Lonergan, K. F. 
Lotkowski, E. P. 
Lowe, S. F. 
MacGinnitie, W. J. 
Mahler, H. C. 
Makgill, S. S. 
Marker, J. 0. 
Masterson, N. E. 
Mathewson, S. B. 

McAllister, K. C. 
McCarter, M. G. 
McClure, R. D. 
McConnell, C. W., II 
McGuinness, J. S. 
McLean, G. E. 
McManus, M. F. 
McMurray, M. A. 
Miller, M. J. 
Miller, R. R. 
Mohl, F. J. 
Moody, R. A. 
Morison, G. D. 
Muetterties, J. H. 
Muleski, R. T. 
Munro, R. E. 
Munt, D. S. 
Murad, J. A. 
Murray, E. R. 
Myers, N. R. 
Neidermyer, J. R. 
Newman, S. H. 
Newville, B. S. 
Nikstad, J. R. 
Niswander, R. E. 
Oakden, D. J. 
O’Brien, T. M. 
O’Neil, M. L. 
Pagnozzi, R. D. 
Patrik, G. S. 
Phillips, H. J. 
Pollack, R. 
Pratt, J. J. 
Prevosto, V. R. 
Pruiksma, G. J. 
Racine, A. R. 
Radach, F. R. 
Retterath, R. C. 



Richardson, J. F. 
Robertson, J. P. 
Rodermund, M . 
Roland, W. P. 
Salzmann, R. E. 
Scheibl, J. A. 
Schneider; H. N. 
Schultz, J. J., III 
Sheppard, A. R. 
Sherman, R. E. 
Shoop, E. C. 
Shrum, R. G. 
Smith, F. A. 
Smith, L. M. 
Soul, H. W. 
Splitt, D. L. 
Squires, S. R. 

Bailey, V. M. 
Banfield, C. J. 
Barclay, D. L. 
Bennett, R. S. 
Bensimon, A. S. 
Bertrand, F. 
Boone, J. P. 

‘,Briere, R. S. 
‘Brown, R; L. 
Bursley, K.’ H. 
Chorpita, F. M. 
Clark, D. G. ., ” 
Cohen, A: I. 
Connor, .V. P. 
Costner, J: E. 
DeConti, M. A. 
Degarmo, L. W. 
Deutsch,, R: ,V. 

NOVEMBER MINUTES 

FELLOWS 

Stanard, J. N. 
Steeneck, L. R. 
Steer, G. D. 
Strug, E. J. 
Sturgis, R. W. 
Taht, V. 
Taranto, J. V. 
Taylor, J. C. 
Thibault, A. 
Tiller, M. W. 
Toothman, M. L. 
Tverberg, G. E. 
Van Ark, W. R. 
Venter, G. G. 
Verhage, P. A. 
Walker, R. D. 
Walters, M. A. 

ASSOCIATES 

Driedger, K. H. 
Edie, G. M. 
Egnasko, V. M. 
Einck, N. R. 
Gaillard, M. B. 
Gannon, A. H. 
Gillam, W. R. 
Gould, D. E. 
Granoff, G. 
Halpem, N. S. 
Harrison, E. E. 
Hein, T. T. 
Hutter, H. E. 
Inderbitzin, P. H. 
Jensen, J. P. 
Kolk, S. L. 
Koupf, G. I. 
Lamb, J. A. 
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Walters, M. A. 
Weiland, W. T. 
Weissner, E. W. 
Weller, A. 0. 
Westerholm, D. C. 
White, H. G. 
Whitman, M. 
Wilcken, C. L. 
Wilson, J. C. 
Wilson, R. L. 
Wiser, R. F. 
Woll, R. G. 
Woods, P. B. 
Young, R. J. 
Zicarelli, J. D. 
Zubulake, T. J. 

Limpet-t, J. J. 
Mayer, J. H. 
McConnell, D. M. 
McDonald, G. P. 
Meyer, R. E. 
Miner, N. B. 
Mokros, B. F. 
Moody, A. W. 
Murphy, F. X., Jr. 
Murphy, W. F. 
Murray, J. B. M. 
Nolan, J. D. 
Normandin, A. G. 
dgden, D. F. 
Potts, C. M. 
Ratnaswamy, R. 
Robbins, K. B. 
Ross. L. A. 
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Ruegg, M. A. 
Sandler, R. M. 
Sansevero, M., Jr. 
Schulman, J. 
Singer, P. E. 
Silverman, M. J. 

Allard, 3. 
Anderson, R. R. 
Atkins, D. 
Belton, E. F. 
Benson, D. W. 
Bradley, J. S. 
Cartmell, A. 
Chapman, C. D. 
Dufresne, J. 
Dunn, F. 
Earles, R. R. 
Elgie, R. G. 
Elliott, P. L. 
Englander, J. 
Fontaine, A. 

NOVEMBER MINUTES 

ASSOCIATES 

Skolnik, R. S. 
Skrodenis, D. P. 
Suchoff, S. B. 
Thompson, P. R. 
Townsend, C. J. 
Wainscott, R.. H. 

GUESTS-STUDENTSSUBSCRIBERS 

Fromentin, P. 
Fung, C. 
Graves, G. G. 
Hager, G. 
Hammond, R. M. 
Haughey, T. D. 
Homer, B. 
Johnson, A. P. 
Kartechner, J. W. 
Kellison, S. G. 
Lautzenheiser, B. J. 
Laws, M. H. 
Leckie, R. B. 
Ludwig, P. A. 
Macunovich, D. J. 

Walker, G. M. 
Weimer, W. F. 
White, D. C. 
Whiting, D. R. 
Wilson, W. F. 

McSally, M. J. 
Meyer, C. R. 
Nielsen, L. 
Novik, J. 
Ouchi, W. G. 
Paquette, S. 
Roeser, K. G. 
Ross, D. P. 
Schmidt, L. D. 
Shaull, L. B. 
Simcock, C. E. 
Smith, D. A. 
Spangler, J. L. 
Wilson, G. S. 
Wright, P. B. 

Respectfully submitted, 
BRIAN E. SCOTT 
Secretary 
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REPORT OF THE SECRETARY 

The purpose of this report is to provide the membership with a summary of 
significant activities of the CAS during the past year. 

Our Society is an active one and many of our members contribute to our 
Society’s activities. Time won’t allow me to mention all of the contributions 
but I will try to cover the highlights. 

1983 was a year of change for us. In May the membership approved a new 
organizational structure and a transition program to implement the new structure. 
The transition is already under way as the Board appointed four vice presidents 
at the September meeting. They are 

Vice President-Administration Herbert J. Phillips 
Vice President-Program Michael A. Walters 
Vice President-Membership Wayne H. Fisher 
Vice President-Development Robert A. Anker 

These appointments, combined with the appointment of two short term 
directors, and the election of four new directors will establish our new organi- 
zation. 1983 business will be conducted under this structure. 

The Education Policy Committee proposed and the Board of Directors 
approved a new policy on waiver of examination requirements for membership. 
It reaffirmed the practice of granting membership only to those who have 
demonstrated competence through the examination process. It also delineated 
the process for receiving credits for examinations sponsored by other actuarial 
societies. 

The CAS, in conjunction with the American Academy of Actuaries, con- 
ducted the third loss reserve seminar. The seminar was well attended by members 
as well as non-members. 

Our Committee on Career Enhancement developed a program for bringing 
career opportunities in actuarial science to the attention of handicapped individ- 
uals. Published material on our profession will be made available to various 
organizations that are involved with handicapped persons for dissemination to 
their members. They also initiated a two-phase program to assist in the recruiting 
to our profession from among minorities. 
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A budget for 1984 was approved which included an increase in dues and 
examination fees. Dues were increased to $100 for Fellows and Associates of 
more than 5 years and to $75 for Associates of less than 5 years. Exam fees 
were increased by $10. 

Our two membership meetings were well attended. The November, 1982 
meeting was in San Francisco and featured Dr. Thomas Sowell as the keynote 
speaker. Our spring, 1983 meeting was at the Doral Country Club in Miami 
and featured a number of computer software and hardware dealers who dem- 
onstrated and lectured on the use of their wares for actuaries. 

Our membership ranks continued to grow with the admittance of 46 Fellows 
and 66 Associates. 

This is my final report as Secretary. I would be remiss if I did not acknowl- 
edge the great contribution made to our Society by Edee Morabito. Secretaries 
have come before me and the Vice President-Administration will handle these 
duties under the new organization but none of us could operate without Edee’s 
help. We are fortunate to have her managing our New York Office. 

Respectfully submitted, 

BRIAN E. SCOTT 
Secretary 
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REPORT OF THE TREASURER 

This is my first and final Treasurer’s Report to the membership since, under 
the reorganization, the Vice President-Administration includes the duties of 
both the Secretary and the Treasurer. 

The 1983 fiscal year was one of significant activity, starting with the reor- 
ganization itself. The Editorial Committee was quite active and the Proceedings 
are now current. Membership has passed the 1,000 mark and by the close of 
the 1984 fiscal year, could be close to 1,100, depending on the examination 
results this year. 

The Finance Committee audited the assets and accounts maintained by the 
Treasurer and found them to be correct. The year ended with a small increase 
in Surplus, far less than was budgeted, but, nevertheless, an increase. Members’ 
Equity now stands at $206,547.33, up $9,304.34 from last year. This Equity is 
subdivided into $49,367.64 for the Michelbacher Fund, $8,547.66 for the 
Dorweiler Fund, $1,616.64 for the CAS Trust and $147,015.39 for Surplus. 

The 1984 fiscal year budget has been reviewed by both the Finance Com- 
mittee and the Board of Directors and approved with certain modifications. It 
became apparent that in order to meet the needs of the Society and cover the 
anticipated disbursements in fiscal 1984, dues and certain other fees needed to 
be increased. While the Society has been able to maintain level dues and fees 
for the past several years, it is impossible to continue at that level of income 
with today’s costs. 

Accordingly, for the 1984 fiscal year, dues for Fellows and Associates over 
five years will be increased to $100 from the present $80; Associates for the 
first five years will be increased to $75 from the present $60. Examination fees 
will be increased to $50 per part for Parts 4 through 10, up from the present 
$40. Finally, the fees for Study Notes and Study Kits have also been increased. 
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The major reasons for these increases are a combination of lower interest 
rates resulting in a lower rate of return on investments, increased postage costs, 
and increased printing costs. 

As stated earlier, the Society has been successful in keeping dues and other 
fees constant for several years; it is just impossible to continue this schedule in 
1984. 

Respectfully submitted, 

HERBERT J. PHILLIPS 
Treasurer 
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TREASURER’S REPORT 
FISCAL YEAR ENDED g/30/83 (ACCRUAL BASIS) 

INCOME DISBURSEMENTS 

Dues $ 68.550.10 Printing $ 80.579.52 
Exam Fees _...__..__.__._._.,...., 71.773.00 Office Exoenses ._____._....._.___ 96.807.04 
Meetings ............................ 
Proceedings ...................... 
Readings.. .......................... 
Invitational Program ........... 
Interest.. ............................. 
Acfuarial Review ............... 
Other.. ................................ 

Total.. .......................... 

Income ._........_.__.._.__........... $315657.67 
Disbursements 312226.19 
Change in CAS Surplus.... 5 +3.629.48 

119:533.90 
13.240.00 
11 B42.56 

6.300.00 
25,191.26 

230.00 
603.17 

$315.657.67 

Other Exam Expenses .._.___ 
Meeting Expenses _.__._........ 
Library ..____._.._......._.............. 
Insurance .._.............. 
Math Assoc. of America 
ExpensevPresident 
Expenses-Pres:Elect ._...._ 
Outside Services ,,..._. ._......._ 
Miscellaneous ,....,,_,__.,..,._.__ 

4b39.98 
115949.25 

659.28 
2.797.17 
2.000.00 
5.000.00 
2500.00 

0 
1.245.95 

$312.228.19 

ACCOUNTING STATEMENT (ACCRUAL BASIS) 

ASSETS g/30/82 g/30/83 CHANGE 

Checking Account 5 588.76 5 8.553.45 5+ 7,966.69 
Money Market Fund 80,582.40 31.88398 -48,698.42 
Sank Certificates of Deposit 97,855.51 100,115.68 + 2.260.07 
U.S. Treasury Notes 99,971.90 99,971.90 0 
Accrued Income 5,324.OO 14.658.01 + 9334.01 

Total 6284,32057 5255.182.92 5-29,137.65 

LIABILITIES 

office Sewices.. ..................................... 
Printing Expenses.. ................................ 
Examination Expenses .......................... 
Meeting Expenses 8 Prepaid Fees ....... 
Prepaid Exam Fees ............................... 
Other.. .................................................... 

Total.. .............................................. 

MEMBERS’ EQUITY 

Michelbacher Fund ................................ 
Doiweiler Fund.. ..................................... 
CAS Trust .............................................. 
CAS Surplus .......................................... 

Total.. .............................................. 

5 14,500.00 5 27.000.00 $+12.500.00 
41,379.13 0 -41,379.13 

0 
8.038.63 

22.319.82 
840.00 

5 87,077.58 

5 43,878.40 5 49.36754 5+ 5.689.24 
8,836.52 8.547.86 - 288.86 
1.342.16 1.61664 + 274.48 

143.385.91 147.015.39 + 3.629.48 

5197,242.99 5206547.33 5+ 9304.34 

0 0 
4.50000 - 3.538.63 

17.136.00 - 5.183.82 
- 840.00 0 

$ 48638.00 $-38441.38 

Herbert J. Phillips 
Treasurer 

This is to certify that the assets and accounts shown in the above financial statement have 
been audited and found to be correct. 

Finance Committee 
Glenn W. Fresch. Chairman 
James H. Kreuzer 
William J. Rowland 
Michael A. Walters 
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1983 EXAMINATIONS-SUCCESSFUL CANDIDATES 

Examinations for Parts 4, 6, 8 and 10 of the Casualty Actuarial Society 
were held on May 4, 5 and 6, 1983. Examinations for Parts 5, 7 and 9 were 
held on November 9 and 10, 1983. 

Examinations for Parts 1, 2 and 3 are jointly sponsored by the Casualty 
Actuarial Society and the Society of Actuaries. These examinations were given 
in May and November of 1983. Candidates who passed these examinations 
were listed in the joint releases of the two societies. 

The Casualty Actuarial Society and the Society of Actuaries jointly awarded 
prizes to the undergraduates ranking the highest on the General Mathematics 
examination. For the May, 1983, examination, the $200 prize was awarded to 
Bruce W. Brandt. The additional $100 prize winners were Christine B. Bumley, 
John H. Kerper, Pedro G. Nebres, and Eduardo M. Reyes. For the November, 
1983, examination, the $200 prize was awarded to Howard M. Pollack. The 
additional $100 prize winners were Alden V. De la Rosa, Mark E. Glickman, 
Valerie M. Harris, and Eric K. Lossin. 

The following candidates were admitted as Fellows and Associates at the 
November, 1983, meeting as a result of their successful completion of the 
Society requirements in the May, 1983, examinations. 

Alff, Gregory N. Downer, Robert B. 
Belden, Stephen A. Foote, James M. 
Berens, Regina M. Gilles, Joseph A. 
Biller, James E. Hayne, Roger M. 
Blanchard, Ralph S., III Lafontaine, Gaetane 
Boulanger, Francois LaMonica, Michael A. 
Braithwaite, Paul Leong, Winsome 
Camp, Jeanne H. Lonergan, Kevin F. 
Cantin, Claudette McAllister, Kevin C. 
Ciezadlo, Gregory J. Muleski, Robert T. 

FELLOWS 

Munt, Donna S. 
Nikstad, James R. 
Pruiksma, Glenn J. 
Schneider, Harold N. 
Smith, Frances A. 
Soul, Harry W. 
Splitt, Daniel L. 
Zicarelli, John D. 
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ASSOCIATES 

Bailey, Victoria M. Hein, Timothy T. Ruegg, Mark A. 
Barclay, David L. Mayer, Jeffrey H. 
DeConti, Michael A. McDonald, Gary P. 

The following is the list of successful candidates in examinations held in 
May, 1983. - 

Part 4 

Allen, Roger G. 
Bauer, Bruno P. 
Behrendt, David 
Boucek, Charles H. 
Bray, Rosemary P. 
Carlson, Karyl T. 
Cartmell, Andrew R. 
Chisholm, Thomas J. 
Conley, Kevin J. 
Curry, Michael K. 
Danielson, Guy R. 
Dearr, Ryan L. 
DeLiberato, Robert V. 
Desjardins, Charles 
Dezube, Janet B. 
DiDonato, Anthony M. 
Fitzgerald, Beth E. 
Flannery, Nancy G. 
Flemming, Kirk G. 
Gaylor, Paul F. 
Girard, Gregory S . 

Glotzer, Leonard R. 
Graves, Gregory T. 
Greene, Alex R. 
Guenthner, Denis G. 
Hall, Alison A. 
Harbage, Robin A. 
Kneuer, Paul J. 
Kreps, Rodney E. 
Kufera, Joseph A. 
Kulik, John M. 
Lacek, Mary Lou 
Langhorst, R. David 
Lombardi, Paul M. 
Maharajh, Bindranath 
McCarthy, Michael J. 
McCoy, Mary E. 
Membrino, Conrad 0. 
Penso, Michael A. 
Peterson, Scott A. 
Pitbladdo, Richard B. 

Raffa, Guy P. 
Roupas, Theodore G. 
Rosenberg, David J. 
Rosenstein, Kevin D. 
Scheuing, Jeffrey R. 
Sealand, Pamela J. 
Shadman-Valavi, Ahmad 
Shepherd, Linda A. 
Sterling, Mary E. 
Terrill, Kathleen W. 
Tremblay, Martin-Eric 
Turner, George W., Jr. 
Veilleux , Andre 
Votta, James 
Waldman, Jeffrey M. 
Williams, Robin M. 
Yit, Bill S. C. 
Yow, James W. 
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Part 6 

Aldin, Neil C. 
Arvanitis, Robert J. 
Bailey, Victoria M. 
Barclay, David L. 
Batdorff, Rober N. 
Battles, John E. N. 
Bellafiore, Leonard A. 
Boor, Joseph A. 
Boyd, Wallis A. 
Bradford, David K. 
Bradley, J. Scott 
Brodie, Pamela E. 
Bryan, Susan E. 
Buchanan, John W. 
Bury, John M. 
Captain, John E. 
Carpenter, William M. 
Cascio, Michael J. 
Cellars, Ralph M. 
Chansky, Joel S. 
Chodnicki, Karen A. 
Christhilf, David .A. 
Cieslak, Walter P. 
Clark, Daniel B. 
Cohen, Elliot J. 
Cutler, Janice Z. 
Davis, Dan J. 
DeConti, Michael A. 
Deede, Martin W. 
DeFalco, Thomas J. 
Desilets, Claude 
Dickinson, Donna R. 
Donelson, Norman E. 
Dyck, N. Paul 
Ear-waker, Bruce G. 
Easlon, Kenneth 
Englander; Jeffrey A. 
Fat-well, Randall A. 

1983 EXAMINATIONS 

Forbus, Barbara L. 
Fung, Charles C. K. 
Gardner, Robert W. 
Gebhard, James J. 
Gevlin, James M. 
Gidos, Peter M. 
Gorvett, Richard W. 
Greco, Ronald E. 
Griffin, Dale C. 
Guernsey, Anne L. 
Guiahi , Barrokh 
Gunn, Christy H. 
Gutman. Ewa 
Hein, Timothy T. 
Herbers, Joseph A. 
Hollister, Jeanne M. 
Homan, Mark J. 
Housholder, Timothy J. 
Hughes, Brian A. 
Huyck, Brenda J. 
Johnson, Andrew P. 
Kasner, Kenneth R. 
Klenow, Jerome F. 
Kline, Charles D., Jr. 
Lacroix , Marthe 
Lewis, Martin A. 
Lipton, Barry 
Littmann, Mark W. 
Maguire, Brian P. 
Maier, Linda L. 
Mayer, Jeffrey H. 
McDonald, Gary P. 
McQuilkin, Mary T. 
Miller, Brett E. 
Miller, John V. 
Mohrman, David F. 
Montgomery, Warren D. 
Mucci, Robert V. 

Mueller, Robert A. 
Musante, Donald R. 
Newman, Henry E. 
Noback, Jodee B. 
Olson, Carol L. 
Paddock, Timothy A. 
Peterson, Steven J. 
Phillips, George N. 
Placek, Arthur C. 
Reppert, Daniel A. 
Robinson, Richard D. 
Roesch, Robert S. 
Roth, Randy J. 
Ruegg, Mark A. 
Sandman, Donald D. 
Santomenno, Sandra C. 
Schilling, Timothy L. 
Siczewicz, Peter J. 
Silver, Melvin S. 
Slusarski, John 
Somberger, G. Clinton 
Steingiser, Russell 
Tistan, Ernest S. 
Treitel, Nancy R. 
Wallace, Thomas A. 
Wilk, Roger A. 
Zaleski, Ronald J. 
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Part 8 

Alpert, Bradley K. 
Bakel, Leo R. 
Balchunas, Anthony J. 
Basson, Steven D. 
Baum, Edward J. 
Berry, Janice L. 
Bertrand, Francois 
Biegaj, William P. 
Biscoglia, Terry J. 
Boone, James P. 
Bothwell, Peter T. 
Braithwaite, Paul 
Bujaucius, Gary S. 
Camp, Jeanne H. 
Canetta, John A. 
Carlson, Jeffrey R. 
Cathcart, Sanders B. 
Chiang, Jeanne D. 
Cripe, Frederick F. 
Curren, Kathleen F. 
Domfeld, James L. 
Egnasko, Valere M. 
Ellefson, Thomas J. 

Faltas, Bill 
Fomey, John R., Jr. 
Hale, Jonathan B. 
Hanson, Jeffrey L. 
Harrison, Eugene E. 
Hayne, Roger M. 
Henzler, Paul J. 
Hoppe, Kenneth J. 
Howald, Ruth A. 
Hurley, Paul M. 
Hutter, Heidi E. 
Kaplan, Robert S. 
Keen, Eric R. 
Kolk, Stephen L. 
Konopa, Milan E. 
Loper, Dennis J. 
Loucks, William D., Jr. 
Mailloux, Patrick 
M&Sally, Michael J. 
Mendelssohn, Gail A. 
Merlino, Matthew P. 
Mill, Ralph A. 
Miner, Neil B. 

Murdza, Peter J., Jr. 
Nester, Karen L. 
Nichols, Raymond S. 
Nikstad; James R. 
Palmer, Donald W. 
Pelletier, Bernard A. 
Potts, Cynthia M. 
Ran-ran, Rajagopalan K. 
Rapoport, Andrew J. 
Rosenberg, Deborah M . 
Silverman, Janet K. 
Smith, Michael B. 
Somers, Edward C. 
Spalla, Joanne S. 
Symnoski, Diane M. 
Tresco, Frank J. 
Vaughan, Richard L. 
Vitale, Lawrence A. 
Wacek, Michael G. 
Weber, Dominic A. 
Whiting, David R. 
Wickman, Alan E. 
Withers, David A. 
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Part 10 

Alff, Gregory N. 
Belden, Stephen A. 
Berens, Regina M. 
Biegaj, William P. 
Biller, James E. 
Blanchard, Ralph S., III 
Boccitto, Bonnie L. 
Boulanger, Francois 
Bouska, Amy S. 
Bowen, David S. 
Cantin, Claudette 
Chanzit, Lisa G. 
Chuck, Allan 
Ciezadlo, Gregory J. 
Coffin, John D. 
Dembiec, Linda A. 
Dodd, George T. 
Downer, Robert B. 
Eagelfeld, Howard M. 

198 3 EXAMINATIONS 

Ehrlich, Warren S. 
Foote, James M. 
Friedman, Howard H. 
Gilles, Joseph A. 
Hall, Allen A. 
Hapke, Alan J. 
Holdredge, Wayne D. 
Johnson, Larry D. 
Kane, Adrienne B. 
Knilans, Kyleen 
Kooken, Michael W. 
Lafontaine, Gaetane 
LaMonica, Michael A. 
Leong, Winsome 
Lonergan, Kevin F. 
Marks, Steven D. 
McAllister, Kevin C. 
Miller, Robert A., III 
Muleski, Robert T. 

Munt, Donna S. 
O’Connell, Paul G. 
Paquette, Sylvie L. 
Pierson, Frank D. 
Pruiksma, Glenn J. 
Ross, Lois A. 
Schmidt, Neil J. 
Schneider, Harold N. 
Schwartzman, Joy A. 
Siewert, Jerome J. 
Smith, Frances A. 
Smith, Judith P. 
Soul, Harry W. 
Splitt, Daniel L. 
Tom, Darlene P. 
Weimer, William F. 
White, David L. 
Wiseman, Michael L. 
Zicarelli, John D. 
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The following candidates will be admitted as Fellows and Associates at the 
May, 1984 meeting as a result of their successful completion of the Society 
requirements in the November, 1983 examinations. 

Boccitto, Bonnie L. 
Bouska, Amy S. 
Chanzit, Lisa G. 
Coffin, John D. 
Dodd, George T. 
Duffy, Thomas J. 

Anderson, Bruce C. 
Bakel, Leo R. 
Balchunas, Anthony J. 
Balling, Glenn R. 
Basson, Steven D. 
Bear, Robert A. 
Becraft, Ina M. 
Belden, Scott C. 
Berry, Janice L. 
Biegaj, William P. 
Boccitto, Bonnie L. 
Bouska, Amy S. 
Boyd, Wallis A. 
Bryan, Susan E. 
Campbell, Kenrick A. 
Captain, John E. 
Carlson, Jeffrey R. 
Chansky, Joel S. 
Chiang, Jeanne D. 
Deede, Martin W. 

FELLOWS 

Kane, Adrienne B. 
Knilans, Kyleen 
Kooken, Michael W. 
Kozik, Thomas J. 
Marks, Steven D. 
O’Connell, Paul G. 

ASSOCIATES 

Desilets, Calude 
Dupuis, Camille 
Dyck, N. Paul 
Elliott, Paula L. 
Fomey, John R., Jr. 
Grace, Gregory S. 
Greco, Ronald E. 
Haskell, Gayle E. 
Hurley, Paul M. 
Huyck, Brenda J. 
Johnson, Andrew P. 
Keller, Wayne S. 
Kelley, Robert J. 
Levenglick, Arthur B. 
Licht, Peter M. 
Loper, Dennis J. 
Lyons, Daniel K. 
Matthews, Robert W. 
McQuilkin, Mary T. 
McSally, Michael J. 

Pinto, Emanuel 
Schmidt, Neil J. 
Schwartzman, Joy A. 
Tom, Darlene P. 
Weimer, William F. 
Wiseman, Michael L. 

Mendelssohn, Gail A. 
Mozeika, John K. 
Nester, Karen L. 
Onufer, Layne M. 
Palmer, Donald W. 
Paquette, Sylvie L. 
Peterson, Steven J. 
Port, Rhonda D. 
Raman, Rajagopalan K. 
Rathjen, Ralph L. 
Roth, Randy J. 
Schultheiss, Peter J. 
Silver, Melvin S. 
Smith, Byron W. 
Smith, Judith P. 
Trinh, Minh 
Walker, Leigh M. 
Walsh, Michael C. 
Webster, Patricia J. 
Woomer, Roy T., III 
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The following is a list of successful candidates in examinations held in 
November, 1983. 

Part 5 

Aldin, Neil C. 
Allaire, Christiane 
Anderson, Bruce C. 
Apfel, Kenneth 
Bellafiore, Leonard A. 
Bender, Robert K. 
Billings, Holly L. 
Blakinger, Jean M. 
Boor, Joseph A. 
Brissman, Mark D. 
Busche, George R. 
Campbell, Kenrick A. 
Carlson, Karyl T. 
Cellars, Ralph M. 
Chen, Chyen 
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NEW FELLOWS ADMIlTED MAY, 1983: The eighteen new Fellows admitted at the Dora1 are shown. z 
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NEW ASSOCIATES ADMIlTED MAY, 1983: Fifty of the fifty-nine new Associates admitted at the Dora1 
are shown. 



NEW FELLOWS ADMI’ITED NOVEMBER, 1983: Twenty-seven of the twenty-eight new Fellows admitted at 
Toronto are shown with President Kilbourne. 
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NEW ASSOCIATES ADMI’ITED NOVEMBER, 1983: Four of the seven new Associates admitted at Toronto 
are shown with President Kilboume. 
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HARMON T. BARBER 
EDWIN W. KITZROW 

ARTHUR N. MATTHEWS 
HARRY F. RICHARDSON 

HARMON T. BARBER 
1897-1983 

Harmon T. Barber, a Fellow and past President of the Casualty Actuarial 
Society died February 19, 1983. 

Mr. Barber was a native of Hartford, Connecticut. He was a graduate of 
Hartford Public High School and received a B.S. degree from Trinity College 
in 1919. He was a former president of the Trinity Board of Trustees. In 1955, 
he was the recipient of the highest honor that can be bestowed upon a Trinity 
graduate-the Eigenbrodt Cup. 

Mr. Barber was associated with the Travelers Insurance Conpanies for over 
43 years, retiring in 1962 as second vice president and actuary. During his 
distinguished career at the Travelers, he achieved his Fellowship in 1924. 

’ Ham Barber’s contributions to the Casualty Acturial Society and his work 
for the Society were extensive. He served on many of the standing committees 
of the CAS, and had two terms as an elected member of the Council, 1930 to 
1933, and 1946 to 1947. From 1938 to 1940 he was one of the two Vice 
Presidents of the Society and in 1947 his second term on the Council was 
interrupted when he was again elected Vice President, serving from 1947 to 
1949. The Society saluted his efforts in 1949 by electing him President and he 
served what was then the customary two-year term, from 1949 to 1951. 

He was the first President of the CAS to deliver a presidential address at 
both the Spring meetings and the November meetings. During his term Ham 
Barber delivered four such addresses, all notable and worth reading or rereading: 
May 1950, “A Mid-Century Look at Casualty Insurance”; November 1950, 
“The Enigma of the Permissible Loss Ratio”; May 1951, “The Casualty Actu- 
arial Profession”; November 195 1, “The Gateway to Membership.” 
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In addition, Mr. Barber was the author of four papers and at least one 
discussion of a paper authored by someone else. His papers were: “A Suggested 
Method for Developing Automobile Rates” (1928); “Compensation Expenses 
per Policy” (1934); “Can We Improve the Compensation Rating Method?’ 
(1936); and “Mechanized Unit Reporting” (1946). Fourteen years later, in 1960, 
he contributed a discussion on L. H. Longley-Cook’s paper, “The Census 
Method.” 

Mr. Barber also served with distinction on a number of special committees 
of the CAS: the Committee on Mortality for Disabled Lives, formed in 1939; 
the Committee on Unemployment Insurance (which later became the Committee 
on Social Insurance), formed in 1941; and the Committee on Compensation and 
Liability Loss and Loss Expense Reserves, formed in 1947. 

He served as a second lieutenant with the field artillery during World War 
I, and was a member of the American Legion from 1933 to 1945 he was a 
chairman of the Windsor Board of Education. He was also a member of the 
First Church of Christ in Wetherstield. 

He is survived by his wife, Louisa; a son, a daughter, a step-son, and a 
step-daughter; six grandchildren; and two great grandchildren. 

ERWIN W. KITZROW 
1900-1983 

Erwin W. Kitzrow, an Associate of the Casualty Actuarial Society since 
1935, died on October 26, 1983, after a long illness. 

Mr. Kitzrow was a native of Milwaukee and attended the University of 
Wisconsin-Extension Division in Milwaukee. He served in the U.S. Coast 
Guard and U.S. Navy during World War I. 

During the 1920’s he was chief rater for the Workmen’s Compensation 
Bureau in Milwaukee and later served as secretary of the state Insurance Com- 
mission. 

In 1931, he joined Hardware Mutual Casualty Company as actuary and 
secretary, and eventually became vice president of underwriting. In 1950, he 
moved to Glendale, California, where he became president of Mid-Century 
Insurance Company. 
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Following his retirement in 1965, he lived in Altadena, and subsequently 
Escondido, California, where he did yacht and boat inspections along the coast 
of Southern California. 

He is survived by his wife, Ruth; three sons, a step-daughter; and eleven 
grandchildren. 

ARTHUR N. MATTHEWS 
1898-1983 

Arthur N. Matthews, a Fellow of the Casualty Actuarial Society since 1926, 
died October 16, 1983. 

Mr. Matthews’ entire insurance career was spent with the Travelers Insurance 
Companies. In 1943 he was made assistant actuary, in 1950 associate actuary, 
in 1956 actuary, and, in 1962 second vice president and actuary. 

Born in Windsor, he graduated as valedictorian of the first class at Loomis 
School. He graduated as salutatorian in the Class of 1921 at Trinity, when he 
received his B.S. degree. He served on the College’s endowment committee 
and had been a class agent since 1960. 

Throughout his career, Mr. Matthews performed extensive service on behalf 
of the Society. He was a chairman of the Examination Committee, the Com- 
mittee on Papers, and the Committee on Mortality for Disabled Lives. He was 
elected to the Council for three year terms in 1934 and 1942, the latter of which 
was extended to 1946, a one year term in 1947, and another three year term in 
1952. He was elected vice president of the Society in 1955 and served two 
years. 

In Windsor, he served five years on the Town Council, on the Zoning Board 
of Appeals and the Historical Society. He was a member of the First Church 
Congregational in Windsor, where he held numerous offices over the years. A 
fellow and past vice president of the Casualty Actuarial Association, he also 
served many years with SCORE (Service Corps of Retired Executives), the 
volunteer organization of the Small Business Administration. 

He is survived by a son, Edgar W., of New Britain; a daughter, Nancy M. 
Swain, of Avon; five grandchildren and a great-granddaughter. 
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HARRY F. RICHARDSON 
1887-1983 

Harry F. Richardson, an associate of the Casualty Actuarial Society since 
1932, died on June 5, 1983, after a sudden illness. 

A native of the Commonwealth of Massachusetts, Mr. Richardson earned 
an S.B. degree in. electrical engineering from the Massachusetts Institute of 
Technology in 1908. 

Prior to entering the insurance industry, he worked as an electrical engineer. 
In 1920, he joined the National Council on Workmen’s Compensation Insurance, 
in 1920 as secretary/treasurer with responsibility for underwriting and engi- 
neering. He was the third employee hired by the firm, which was the predecessor 
organization to the National Council on Compensation Insurance. At the end of 
a 35 year career, he retired in 1955 as the National Council general manager, 
the chief executive officer’s title at that time. 

Widely respected by consumer groups, regulatory and other government 
officials, and insurance carriers, Mr. Richardson was acknowledged as an out- 
standing authority on workers’ compensation. He, in effect, grew up with the 
business at a time when the fledgling system was beginning to cope with rapid 
growth and a complex and challenging regulatory environment. 

He is survived by his wife, Naomi; a daughter; and several grandchildren 
and great grandchildren. 
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