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GOOD AND BAD DRIVERS-A MARKOV MODEL OF ACCIDENT 
PRONENESS 

EMIL10 VENEZIAN 

Absrract 

Existing models of the distribution of accidents among a population of 
drivers do not account for both the differences among individuals and those 
among age groups. This paper proposes a simple model to simultaneously 
explain these variations. 

The model assumes that all drivers begin at some early age as “bad” 
drivers. Subsequently, drivers switch at random from the “bad” state, with 
high accident probabilities per mile driven, to a “good” state with low accident 
probabilities. The opposite transition, from “good” to “bad” states, also occurs 
at random. As the proportion of good drivers increases with age, the average 
frequency declines with age. The author develops in his paper the explicit 
mathematical equations of the model and a method of parameter estimation. 

The model leads to three conclusions: 

1. Classification efficiency, as measured by the SRI formula, can never 
achieve 100%. An upper bound of classification efficiency exists because the 
actual state of the driver at the inception of coverage is not known. 

2. Underwriting and other risk assessment methods that tend to separate 
drivers in the good state from those in the bad state will offset some of the 
weaknesses in classification, increasing the efficiency of the risk assessment 
process as a whole. 

3. Even with “perfect” risk assessment, that is, with complete separation 
of drivers in the good and bad states, efficiency will not reach 100% because 
subsequent switching during the policy period will create heterogeneity. 
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INTRODUCTION 

Many authors have developed models which attempt to describe the statis- 
tical distribution of accidents. The simplest, in a sense, is the Poisson model, 
which assumes the probability of any individual having an accident in any given 
time period to be the same for all individuals and all time periods. Data on 
accidents do not often fit the predictions from this model.’ 

One way to account for the difference between predictions and data is to 
appeal to differences between individuals in their probabilities of having acci- 
dents, also called their accident proneness. The convenient way to develop this 
type of model is to assume that accident proneness fits a gamma distribution,? 
under which assumption the observed numbers of accidents have a negative 
binomial distribution. This distribution accounts for data somewhat more suc- 
cessfully than does a Poisson model.’ Additional assumptions are needed, 
however, if one wishes to use the model to yield information about the rela- 
tionship of accidents to age, or about the autoregressive structure of accidents. 

A second way to explain the difference between data and the Poisson model 
is to suppose that accident proneness increases with every accident. The Polya 
model assumes that the likelihood of an individual having an accident in a time 
interval increases linearly with the number of accidents that the individual had 
prior to the beginning of the interval. Under this assumption, also. the observed 
numbers of accidents have a negative binomial distribution.’ 

Statistically, therefore, this model would describe the distribution of the 
numbers of accidents in a group just as successfully as would an assumed 
gamma distribution of accident proneness. Moreover. both models imply that 
the likelihood of having an accident increase\ linearly with the prior number of 
accidents; in the Polya model this is a behavioral assumption, whereas in the 

’ Hilary L. Seal. Sfoc&rsric. TIreor! c$tr Rizk B~sin~~.s.~. John Wiley Br Son\. Inc . New York, 1969. 
pp. 12-29. 

z Seal, iw. cu.: and Stanford Research Institute, “The Role of Risk Classifications in Property and 

Casualty Insurance: A Study of the Risk Asbesment Proces.” Menlo Park. California, 1976. 

’ Seal, /or. cit.; Stanford Research Institute, o,,‘. c II.: and Donald C. Weber. “An Analysis of the 

California Driver Record Study in Context of a Clasbtcal Accident Model.” Awiden/ Anulysrs and 
Prevenrion, Vol. 44. 1972. pp. 10%I 16. 

a William Feller, An Inrroducrion fo Probability Theory und If.5 App/iru/ion.t. John Wiley & Sons 

Inc.. New York, 1968. Vol. I, 3rd Edition. pp. I2 I, 142. 143; and Seal, lo<,. c,ir 
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gamma model it is a consequence of the information contained in the prior 
history.5 The Polya model inherently leads to the prediction that accident fre- 
quency will increase with age, a prediction which is wrong for automobile 
accidents.6 

A third way to account for the data is to assume that accident proneness 
varies over time; an extreme of this model, in which accident proneness was 
viewed as an all-or-none variable, has been studied.’ A somewhat different 
approach is to assume that accident proneness is either “high” or “low,” so 
that there are “good” and “bad” drivers; x this can be viewed as a polarization 
of either the heterogeneous proneness model or the episodic proneness model. 
Neither of these models has the ability to predict the variation of accident 
proneness with age; they both provide information on the autoregressive struc- 
ture of observed accidents. 

My interest in developing a model that could describe the statistical char- 
acteristics of accident distribution and simultaneously provide information on 
the age structure of accident rates first arose in early 1976, while 1 was reviewing 
an early draft of the Stanford Research Institute (SRI) report.’ The draft of that 
report stated that the datum “, . contradicts the simplistic view of a driver 
population made up of ‘good’ drivers and some ‘bad’ drivers,” but did not 
contain a test of this “simplistic view.” I performed a crude test of this model 
on eight age groups; I noted in a memorandum to SRI that the fit appeared to 
be adequate for each group, and added: 

It is also interesting that the accident likelihood for “good” drivers is much the 
same at the various ages, as it is for “bad” drivers. This suggests, among other 
things, a Markov model in which there are “good” and “bad” drivers but 
switching occurs from “good” to “bad” and vice versa. Again, the implications 
for merit rating could be important. 

’ Seal, lot. cit.; and Stanford Research Institute, op. cit. 

6 R. C. Peck, R. S. McBride, and R. S. Coppin. “The Distribution and Prediction of Driver 

Accident Frequencies,” Accidenr Analysis and Prevenrion. Vol. 2, 1971, pp. 243-299; and Stanford 
Research Institute. op. cit. 

’ Seal, Ior. cif. 

8 Seal. lot. cit. 

‘) Stanford Research Institute, op. cir. 
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That suggestion lay dormant until a recent discussion of merit rating and the 
efficiency of risk classifications at the Risk Theory Seminar held under the 
auspices of the American Risk and Insurance Association.‘0 Most discussants 
agreed that the view of classification efficiency taken in the SRI report was 
inadequate. The most heated arguments centered on whether Richard G. Wall’s 
study” went far enough in correcting the errors inherent in the SRI measure of 
efficiency. The discussion was largely hampered by failures to distinguish 
between the “expected value of accident proneness” taken over a set of indi- 
viduals at a given time and that taken over time for a given individual. The 
distinction is important because variance in the time-averaged proneness among 
individuals can be reduced, in principle at least, by both classification and 
underwriting selectivity, whereas variance in accident proneness resulting from 
future random events cannot be reduced by anything short of clairvoyance. My 
interest in the Markov model was revived when 1 realized that the model 1 had 
suggested could clarify some of these issues. I retained the assumption of two 
states, “good” and “bad,” not for historical reasons but rather because the 
available data do not permit much discrimination. The revived model now has 
been developed to the extent that it is useful. Full development of the quantitative 
aspects of merit rating is still needed. At the current level, however, the model 
is useful as a framework for considering issues of classification and under- 
writing. 

A MARKOV MODEL. 

Consider an individual who can be in one of two states, “good” or “bad.” 
Assume that drivers have an accident probability of 0, per mile driven when 
they are in the “good” state and that the analogous quantity for the “bad” 
state is OZ. Assume that the expected number of miles driven per unit time does 
not depend on the state (in fact, that complication could be accommodated 
readily). Also assume that in any time interval do, an individual has a probability 
ad? of changing from the “good” state to the “bad” state and a probability bdt 
of changing from the “bad” state to the “good” state. 

The probability, p(t), of being in the “good” state at time t is governed by 
the differential equation 

“’ The author is grateful to the institutions which suppon the Risk Theory Seminar and thereby 

create a forum for active exchange of views. 

” Richard G Wall. “A Study of Risk A\x\mcnt.” /‘CL5 I-XVI. 1979. 
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4?.&L- up(t) + w - p(t)) 
For an individual who is known to be in the “bad” state at some initial time 
to, the solution of this equation is 

PW = 
a f b (, _ e-‘“+b”‘-ro)) (2) 

Averaging Equation 2 over the time period from tl to tl + At yields the 
probability that the individual, known to be in the “bad” state at to, is in the 
“good” state during this interval: 

e-‘Y+b)(“-‘O) 1 
If all we know is that the individual was in the “bad” state at to, then during 
the time interval from t, to tl + At the expected value of the Qh moment of the 
accident proneness per mile driven is 

E(e’lt,, At) = 6”s(t,, At) + %[I - p(t,, At)] (4) 

This expression also is the expected value of Ok, given tl and At, taken over 
individuals with the same t3,, &, a, b, and to. 

The simplest assumption that can be made is that all parameters are the same 
for all individuals. This does not seem a realistic assumption u priori, but would 
be the most parsimonious one. A slightly more complex assumption is that to, 
the age at which people begin to switch from bad driving to good driving, 
relates to maturation so that to for females may be somewhat lower than to for 
males. Although this refinement still is very simplistic, it is of interest to develop 
the equations and test the ability of such a simple model to account for obser- 
vations. 

In most cases, data are available not by individual ages but only aggregated 
for all drivers within certain age spans, e.g., between ages tl and tl + s. 
Equation 3 can be modified to apply to the age span by averaging between the 
youngest and oldest ages included in the age span. If the age distribution within 
the span is uniform we obtain 

1 - em’“+h’A’ I - e-‘U+h’T e-(r,+h,(,,-,I,) 

(a + b)s 1 (5) 
and Equation 4 needs no modification. 
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The expected accident proneness between ages t, and t, + s per unit time 
rig is 

E(Wd) = +LwN 

[ 
b 

=m e,----- 
a+b 

+ 02 -& + f & (92 - B,)e- ‘“+b”“-““] (6) 

wheref = ’ (- :-;)” = ’ ((1 c;);;” 
a (7) 

For very large rI the expected accident proneness approaches an asymptotic 
value E($,) given by 

E(W = ;iy E(Wl)) = +I (0, -it- + e2 &) a+b 

Using this we can write Equation 6 in the form 

(8) 

In lEC44rl)) - E(WI = In 
[ 
tif-&j (02 - 01) 

1 

+ (a + b)ro - (a + b)t, (9) 

The variance of the accident proneness per unit time is 

vl+o!)l = rw(e*) - E*(e)1 

W - (1) 
(a + b)* ’ 

-,a+/,),,,-,{I, (10) 

This variance also has an asymptotic value, if(&): 

ab 
VW = ;i: v(#tl)) = tit02 - 0,)’ (a + b)2 (11) 

For large values of t,, the term e -2’“+h”‘i -“’ is much smaller than the other terms 
in Equation 10 so that we can rewrite this equation in the form 
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+ (a + b)ro - (a + b)r, (12) 

Equations 9 and 12 indicate that semilogarithmic plots of the differences between 
the quantities of interest and their asymptotic values would be useful in identi- 
fying whether the model is adequate. 

DISTRIBUTION OF THE NUMBER OF ACCIDENTS 

If the probability of an individual’s having an accident during a time interval 
is governed by the Poisson distribution, then the number of accidents experi- 
enced by that individual will be Poisson distributed with a parameter equal to 
the realization of the total proneness, even if the accident proneness parameter 
varies over time. Thus, for an individual whose average proneness over an 
interval At turns out to be $, the probability of x accidents is 

P(x($,&) = ,-+A’ y 

The klh moment about the origin of the number of accidents for that individual 
is then 

a x’(+Ar)’ 
E(Y)$,Al) = emmA’ 2 x! 

X=” 

From this recursion equation we obtain 

E(xOl+,At) = 1 
E(x’)+,Ar) = +At 
E(x*I+,At) = ($At)* + (@AI) 
E(x’l+,At) = (+A$ + 3(+A1)* + (+Ar) 
E(214,Ar) = ($A# + 6(+At)’ + 7(+At)* + (+At) 

(15) 



72 A MARKOV MODEL 

From these expressions we find the moments of the distribution of the 
numbers of accidents by the equation 

x E(2) = I -Q?l4, AtM4Atk44Ar) 
0 

(16) 

where g(+Ar) is the probability density function of @At taken over the same set 
of individuals as the number of accidents experienced in At. 

Thus, 

E(x) = AL?(+) 
E(x*) = (At)*E(~*) + AtE($) 
E(x’) = (At)‘&+‘) + 3(At)*E(42) + AlE($, (17) 
E(2) = (Ar)4E($4) + 6(At)‘E(@) + 7(At)%($) + At&b) I 

It follows from these equations that 

E(x) = AtE(+), and (18) 

V(x) - E(x) = E(x’) - E’(x) - E(x) = (At)%‘(+) (19) 

Equations 18 and 19 demonstrate that the model given in the preceding section 
specifies both the expected value of the number of accidents, E(x), and the 
“excess variance,” V(x) - E(x), as a function of age. 

Let M(x) denote the mean number of accidents observed among N individ- 
uals, and S(X) denote the calculated value of the excess variance; we hypothesize 
that these quantities follow the model described above. In order to test this 
hypothesis, we need estimates of the sampling variability of these quantities. 
For M(x), the calculation is standard; the variance of M(x) is simply V(x) + N. 
For S(X), the calculation is not as familiar since it must account not only for the 
variance of the sample estimates of the variance and the mean, but also for the 
covariance between these. The basic results can be obtained from most good 
books in statistics.‘? Neglecting terms of order N ’ we obtain 

v(s(x)) = p4(x) - p’z?(x) - &3(x) + I**(x) 
N 

where p,,(x) is the j’” central moment of X, for j 2 2 

” Harald Cramer. Marhemuticol Method.\ ~fSturi.sfr~ .A. Prlnccton Univcrslty Prcs. Prmccton. N.J.. 
1964. pp. 347-348. 
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After additional algebra to relate the moments of x to those of +At we obtain 

v(s(x)) = $,($At) - &&It) + %(+Ar) 

+ 2pd4At) + 4~,(4Ar)pd4At) + 2td(4At)l (21) 

where p,(4At) = E(+At) = At&+) = p,,(r). 

In the special case of a completely homogeneous population, one in which the 
realization of + is identical across all individuals, S(x) reduces to 

E,(S(x)) = 0 (22) 

V,(S(x)) = j$ &$At) = ; k;(x) (23) 

Since S(X) is asymptotically normally distributed, the value 

is, asymptotically, a unit variance normal deviate, and provides a test of sig- 
nificance for the excess variance against the null hypothesis of zero excess 
variance that corresponds to a Poisson process with no heterogeneity. 

COMPARISON OF THE MODEL WITH DATA 

In order to test the adequacy of the model we must compare the model 
predictions to data. A convenient set of data is that drawn from licensed drivers 
in California in 1961-1963.” The published data include the mean numbers of 
accidents by year of age for ages 17 through 30 and by five year age groups for 
ages 21 through 76. The data are available for males and females separately, 
and sufficient information is provided to allow the calculation of the excess 
variance for each sex in age groups spanning five years. The relevant data are 
shown in Tables I and II. It is of some interest that the excess variance greatly 
exceeds its standard deviation, as indicated by the large values of Z, found for 
most age groups in both sexes. This indicates that the excess variance does not 
arise from sampling variability. 

I’ Peck. McBride, and Coppin. lot,. cir. 
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TABLE I 

AVERAGE NUMBER OF ACCIDENTS BY AGE AND SEX FOR AGES 17-30 

Age 
Group 

17 
18 
19 
20 

21 1521 0.396 
22 1600 0.355 
23 1678 0.308 
24 1757 0.31 I 
25 1836 0.301 

26 1721 0.298 
27 1794 0.288 
28 1867 0.310 
29 1940 0.279 
30 2014 0.277 

Males 

Number* 

11** 
1114 
1399 
1683 

Average 
Accidents 

0.727*** 
0.532 
0.476 
0.419 

Females 

Average 
Number* Accidents 

4** 0.250 
763 0.213 
955 0.219 

1146 0.198 

1182 0.149 
1182 0.163 
1182 0.129 
1182 0.126 
1182 0.123 

1315 0.113 
1315 0.124 
1315 0.094 
1315 0.132 
1315 0.129 

* Estimated from totals for the three-year age spans (see text) by assuming numbers are 
linear with age and requiring that the mean average accidents for an age span be equal 
to the weighted mean of individual years; totals for age groups may differ from those in 
the original article because of rounding to the nearest integer. 
** Smallest integer consistent with data given in original article. 
*** Table 12 of Peck, McBride, and Coppin gives 0.737 for this value, which is 
inconsistent with the data for single and married males given separately in the same 
table. The value given here is consistent with the disaggregated data. 
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TABLE II 

AVERAGE NUMBER OF ACCIDENTS AND EXCESS VARIANCE, BY SEX, FOR AGE 
GROUPS 

Age Males Females 

Group 

18-20 

N - 

4196 

M(x) s(x)* - - 

0.468 0.062 

Z,(x) N - - M(x) s(x)** Z,(x) 

6.1 2863 0.209 0.017 3.1 

21-25 8392 0.332 0.054 10.5 5910 0.138 0.018 7.1 
26-30 9336 0.290 0.047 11.1 6574 0.118 0.013 6.3 
3 1-35 10200 0.256 0.058 16.2 7534 0.119 0.017 8.8 
3-o 10573 0.250 0.039 11.3 8612 0.122 0.012 6.5 
4145 10127 0.231 0.041 12.6 8113 0.122 0.012 6.3 

4650 904 1 0.234 0.03 I 8.9 6671 0.126 0.009 4.1 
51-55 7466 0.226 0.034 9.2 5253 0.108 0.013 6.2 
5660 5949 0.224 0.023 5.6 3807 0.124 0.006 2.1 
61-65 4608 0.226 0.038 8.1 2706 0.118 0.015 4.7 
66-70 3419 0.193 0.030 6.4 1822 0.112 0.01 I 3.0 

71-75 2027 0.179 0.010 1.8 952 0.136 0.007 1.1 
2 76 1372 0.200 0.038 5.0 452 0.142 0.025 2.6 

* Calculated from the distribution of male licenses by age and number of reported 
accidents given in Table IO of Peck, McBride, and Coppin. 
** Calculated from the distribution of female licenses by age and number of reported 
accidents given in Table I I of Peck, McBride, and Coppin. 
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The values of the model parameters could be established by statistical fitting 
techniques. In view of the complexity of the task. however. we used a much 
simpler procedure, as described in the Appendix to this paper. The resulting 
parameter values are shown in Table 111. For ease of comparison to the paper 
by Peck, McBride, and Coppin, I4 the parameters for males and females are 
shown in terms of the age recorded in that paper. which corresponds to two 
years more than the age t, used in our equations. Since the relevant variable is 
the difference rI - to, we can then use the age, as recorded in the article by 
Peck, McBride, and Coppin, with the value of t,, from Table Ill to compute the 
relevant quantities. 

TABLE III 

VALUES OF COMPUTED PARAMETERS 

Parameter Value Units 

a 0.03 Per Year 
b 0.17 Per Year 
8, 4.20 x IO ’ Per Mile 
02 18.76 x IO-” Per Mile 
to, male 18.37 Years 
tn, female 16.02 Years 

Figures la and lb show the average numbers of accidents during a three- 
year period (At = 3) involving drivers in the age range 17 through 30 years, 
displayed by year of age (s = I). The data for males are shown in Figure la; 
the data for females are shown in Figure lb. In each case the asymptotic value 
has been subtracted from the observation and the range of plus and minus one 
standard deviation is shown. The lines shown in these figures represent Equa- 
tions 6 and 16, with the relevant parameter values from Table III. The fit is 
generally adequate, though not outstanding. 

Figures 2a and 2b display the corresponding data over the entire age range 
(s = 3 for 18 through 20 years, s = 5 for other ages). The line for males is in 
general agreement with the observations at all age groups up to the 61-65 year 
age group; beyond that, there may be some departure. In the case of females, 
however, the line follows the data only up to the 31-35 year age group, with 
what appear to be progressively larger departures after that age. More sophis- 
ticated fitting of the parameters would not improve the tit of the line to the data, 
since the data do not appear to be log-linear as implied by Equation 9. 

I4 Peck, McBride. and Coppin, h. (it 
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Figures 3a and 3b show the data for the excess variance by age. The lines 
are calculated from Equations 8 and 17. The model agrees well with data for 
males but not particularly well with data for females. It is possible that the fit 
could be improved by relaxing the assumption that the mileage driven each year 
is independent of age. Using age-specific intensities of exposure would change 
the fitted values of all parameters, and might or might not lead to an improved 
fit. It would be feasible to examine this issue if questionnaire responses on 
mileage driven by a sample of the drivers studied were available. The exercise 
would be especially meaningful if the variance of mileage driven, as well as the 
mean, could be established for each age group and the equations were modified 
to allow for this variability. 

DISCUSSION 

The model presented here goes beyond the highly simplistic view of “good” 
and “bad” drivers by creating a model of transitions from one state to the 
other. The assumption that all drivers are “bad” at some suitably low age is 
then sufficient to account for differences in mean accident rates between age 
groups and heterogeneity within age groups. In this paper we have assumed that 
most parameters do not vary between individuals. More realistically, one might 
expect that mileage driven would be correlated not only with sex, as assumed 
here, but also with age, vehicle driven, and the characteristics of the territory 
in which most driving is done. Moreover, there is probably a quality weighting 
of the miles driven because of varying road and traffic characteristics. The 
values of the accident proneness parameters 0, and t% may also vary across 
individuals and across driving environments. The characteristic age at maturation 
to and the transition rates a and 6 also could be assumed to vary between 
individuals. A generalization of the model would include the specification of a 
joint distribution function for all these variables. 

Keeping in mind the fact that the model is simplistic, it explains surprisingly 
well, within a simple theoretical structure, heterogeneity within and between 
ages and sexes. Because of this success, it is interesting to examine some 
implications of the model. 

To begin with, the model is based on the assumption that an individual’s 
accidents are generated by a Poisson process with time dependent parameters, 
yet the distribution of the numbers of accidents taken across individuals is not 
Poisson. Similarly, the numbers of accidents for a given individual taken over 
time subintervals will not exhibit a Poisson distribution around the mean for the 
interval as a whole, but will show clustering for subintervals during which the 
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individual is in the “bad” driver state. An alternative statement of this last 
comment is that the distribution of times between accidents will not exhibit the 
exponential distribution that would be expected for a Poisson process of constant 
rate. 

The model also illustrates the importance of maintaining clarity as to what 
is meant by “expected value.” The expected value of the accident proneness 
per unit time for individuals of age tl is 

when the averaging process is over individuals about whom no other information 
is available. For individuals known to be in the “good” state at age I,, the 
expected proneness per unit time over the following T years is 

E(+lgood) = ti 0, --& + 02 a a+b 

1 _ e-r<l+h,7 
- --& (02 - 01) (a + b)T 

I 
Similarly 

E(r#bad) = ri? [O, --&- + 02 --& 

(26) 

W’) 

Thus the expected value, taken over time, for a given individual (who must be 
in either one or the other state at age t,) is not the same as the expected value 
taken over individuals, except in two special cases: 

(I) tl = r,,and T = 0, and 

(2) t, = T = x 

The variances will differ correspondingly. A group selected for identical ages 
and initial states will develop heterogeneity just because of the random changes 
of individuals within that group. 

The model developed in this paper has interesting implications relative to 
the continuing controversy regarding classifications, homogeneity, and under- 
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writing freedom.15 It has become almost commonplace to say that the role of 
classification is not to predict the number of accidents that an individual will 
have during a time interval, but rather to predict the likelihood of that individ- 
ual’s having an accident. I6 By that criterion, 100% homogeneity, in the sense 
of no excess variance,” requires the identity of realization of proneness, not 
just identity in the expected value of proneness. This is unachievable. 

The model has some important implications relative to merit rating. Indi- 
viduals whose ages are close to r,, will be in the “bad” driver state in almost 
every instance. Therefore, their prior accident records will contain additional 
information about their likely accident experience only to the extent that indi- 
viduals differ with respect to mileage driven or other parameters assumed 
constant in this paper. For mature individuals, the situation is quite different. 
The age of mature individuals is not a good predictor of initial state, since at 
advanced ages very nearly 15% are in the “bad” state and 85% are in the 
“good” state. Among individuals who have just had an accident, nearly 45% 
will be in the “bad” state and only 55% will be in the “good” state. There is 
substantial persistence in a state; nearly 85% of the individuals in the “bad” 
state and 97% of those in the “good” state at any instant will remain in the 
state for at least one full year. Thus, a mature individual’s prior accident record 
has substantial predictive value. 

The model suggests that merit rating relativities will incrrasr with age, and 
rapidly so at ages close to t+ Though we have no data for drivers at ages close 
to fOo. the data from North Carolina,‘” shown in Figure 4, suggest that this 
prediction is correct. Further, the model suggests that the mileage driven by 
young people with accidents should be quite different from the mileage driven 
by young people without accidents; the difference should decrease with age. 

I’ Robert A. Bailey and LeRoy I. Simon, “Two Studies in Automobile Insurance Ratemaking,” 

The Asfin Bulletin. Vol. I, 1961. pp. 192-217. 

lo Michael A. Walters, “Risk Classification Standards.” PCAS LXVIII. 1981 and Richard G. Wall, 

up. cit. 

I7 Stanford Research Institute. op. tit 

‘“J. Richard Stewart and B. J. Campbell. “The StatIstical Association Between Past and Future 
Accidents and Violations,” The University of North Carolina, Highway Safety Research Center, 
Chapel Hill, N.C.. 1972. 
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In the model, the age relative to f,, is the best objective &ss$cation predictor 
of an individual’s state as “good” or “bad” driver. Prior accident record helps, 
but a complete development of the conditional probabilities would be needed to 
evaluate quantitatively the contribution of this variable to reduced heterogeneity. 
“Subjective” or “underwriting” judgments also could be used to determine 
whether an individual is in the “good” or “bad” state. Such judgments, if less 
than 100% efficient in separating drivers in the “good” state from those in the 
“bad” state, would have more impact if applied to mature drivers than if 
applied to young drivers. This contrasts with the usual perception of industry 
practices. 

The applicability of models such as the one presented in this paper is often 
limited. In the case of automobile insurance, a major limitation is created by 
the fact that the coverage extends to an automobile and is not limited to a driver. 
Even if the model were an accurate representation of reality, its direct quanti- 
tative application to automobile insurance might not be warranted. The model 
does provide some interesting insights into the data that is needed to evaluate 
the model’s validity. More sophisticated fitting of parameters seems much less 
important than assessing the interpersonal variation in all variables modelled 
and the impact of other variables, such as actual mileage driven. 

APPENDIX 

METHOD OF PARAMETER ESTlMATlON 

In order to check the fit of the model presented in this paper, the model’s 
parameters must be determined. One parameter, mileage driven per year, is not 
readily accessible. This parameter is not of major importance, since it is merely 
a scaling factor; it is very convenient, however, since knowing the ratio of 
mileage driven by males to miles driven by females reduces by one the number 
of parameters to be estimated. I have used data based on a 1969-I 970 survey 
by the Federal Highway Administration,“’ which indicates that, per person. per 
year, females drive approximately 48% of the mileage driven by males. The 
fitting was therefore performed on the basis that males drive 12,000 miles and 
females drive 5,800 miles per year. 

The initial stage of the fitting relied on the fact that the mean numbers 01 
accidents, minus the asymptotic value at high ages of the number of accidents. 

Iv Motor Vehicle Manufacturers Aswciatmn of the Unltcd States. ln~ . “MVMA Motor Vehicle 
Facts & Figures 1978.” Detroit. Michigan. p 4Y The in(.lrmatwn i\ bawd on unpublished data 

from the National Personal Transportation Surle! c~rnduc~cd h! the Bureau of the Censu\ for the 

Federal Highway Administration. 1969%1Y70. 
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must be linear in a semilogarithmic plot. Since the asymptotic value is 

&At = tibt 9,--& + 02 --&) , 
( 

(Al) 

the value for females and males must be in the same ratio as the mileages. A 
few trials using the data for ages 17 through 30 gave &Al values of 0.23 for 
males and 0.11 for females. The slope of the semilogarithmic plots is -(a + b), 
and the fact that both sets of data could be accommodated by a + b = 0.20 
gave a preliminary indication that the model was promising and that the as- 
sumption of common parameters was tenable. This procedure also provided 
constraints on the parameters, giving two equations in four unknowns. 

In order to determine all four of these unknowns, plus the values of to for 
males and females, additional relationships were needed. 

The asymptotic value of the excess variance provided one such relation: 

ab 
Sa = S[x(~I)I = (ri2At)2(8z - 0,)’ (a + bl> 642) 

Solving this with Equation Al we obtain 

62 = j& [+aAr + &a] (A31 

Equation A3 allows solving for Cl2 if a value of b is assumed. Finally, we 
determined to using the mean number of accidents at a recorded age*O of 17 as 
estimated from the value at other ages: 

This procedure was tried at various values of b until a reasonable fit, based on 
the excess variance at young ages, was obtained. A few trials sufficed. The 
selected parameters are shown below. 

Parameter Value Units 

i 
81 
02 

to, male 
to, female 

0.03 Per Year 
0.17 Per Year 
4.20 x IO-’ Per Mile 

18.76 x IO-” Per Mile 
18.37 Years 
16.02 Years 

ZI’ Recorded age is at the midpoint of the study for people in the middle of the age bracket. It 
therefore corresponds to f, + 2. 


