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ON THE THEORY OF INCREASED LIMITS AND 
EXCESS OF LOSS PRICING 

ROBERT S. MICCOLIS 

Since the time of Jeffrey Lange’s paper on increased limits’ in 1969 
much has happened to the market for increased limits in the liability lines 
of insurance. Insureds, particularly commercial insureds, are now interested 
in purchasing liability coverage with limits in the millions of dollars. This 
reflects the concern of insureds about exposure to inflation which has greatly 
increased the magnitude of jury awards and settlements in recent years. The 
ability of the insurance industry to provide liability insurance for this market 
greatly depends on sensible pricing. 

Currently, in liability insurance there is little experience on losses in 
excess of $500,000 per occurrence. Indeed the probability that a loss will 
exceed $500,000 has been quite small. Furthermore, because of the great 
statistical variation of large losses, there will always be a limit to the 
credibility of data for making increased limits factors, especially for high 
limits. Consequently, there will always be a need for judgment in the pricing 
of high limits and excess of loss coverage. 

This paper presents the mathematical foundations of the pricing of 
increased limits and excess of loss coverage. The paper will attempt to tie 
together the various aspects of this area of insurance pricing in a logical, 
straightforward manner by means of a mathematical model. It is hoped that 
this model will be helpful in making pricing judgments or evaluating such 
judgments. 

Section one presents the mathematical model of expected value pricing 
by considering frequency and severity separately. An insurance cost function 
is introduced into the model that should aid greatly in understanding the 
mathematics of insurance pricing. Such functions are defined for increased 
limits and excess of loss coverage and are used to derive increased limits 
factors in concise mathematical terms. A simple formula is found that relates 

1 J. T. Lange, “The Interpretation of Liability increased Limits Statistics,” PCAS Vol. 
LVI (1969), p. 163. 
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a set of increased limits factors to the loss severity distribution underlying 
them. From this formula a very useful and convenient test is developed that 
can identify pricing inconsistencies. The implications of trend in the model 
are investigated and a commonly used method of adjusting increased limits 
factors for trend is shown to be undesirable. 

Section two considers risk and its relationship to pricing. The variance 
principle of risk loadings is used to determine a risk charge for increased 
limits and excess of loss pricing. An analysis of spreading the risk by 
layering of coverage and reinsurancc is also presented and demonstrates a 
reduction in risk by layering. 

Section three describes some ways to treat the many difficulties and 
practical problems in applying the theory of increased and excess of loss 
pricing, particularly in regard to obtaining severity distributions. 

Section four discusses four related areas of pricing-three in liability 
insurance and one in property insurance. The mathematics of the leveraged 
effect of inflation are presented and the consistency test is applied to in- 
creased limits factors for aggregate and split limits. Finally, the potential 
value of the consistency test in other lines of insurance is shown by an 
application to a similar pricing problem in coinsurance. 

The paper will treat only the pure loss element of ratemaking. There 
are many practical problems concerning expenses, particularly loss adjust- 
ment expenses, which cannot be resolved solely by this model. 

1. EXPECTED VALUE PRICING 

Traditional actuarial ratemaking is predicated on the estimation of 
expected, mean, or average values. As will be discussed later, these methods 
can be sufficient for most ratemaking problems. In this section, a general 
model of expected value pricing is presented and then applied to increased 
limits. In addition, a test of increased limits factors is developed. Excess of 
loss coverage is also considered along with an analysis of two different 
methods of trend adjustment. The next section deals with the determination 
of a risk loading appropriate for increased limits and excess of loss coverage. 
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The General Pricing Model 

Let us describe the general insurance ratemaking or pricing problem 
in mathematical terms with the following definitions: 

1. Let n be a random variable representing the number of accidents 
(occurrences) an insured will have over the course of one year 
(the usual policy period). This is the loss frequency variable. 

2. Let x be a random variable representing the dollar amount of 
damage which the insured incurs given an accident has occurred. 
This is the loss severity variable. 

3. Let g be a function of x representing the dollar amount of cover- 
age? provided by the insurer for a loss of size x.” This is the 
insurer’s cost function, If F(x) is the cumulative distribution 
function of x then we can express E[g(x)] in terms of F(x) as 
follows: 

EMx)l = $gW dWx), or 

= fg(x) l f(x) dx, where f(x) = z 

4. Let y be a random variable representing the total dollars of insured 
losses that an insured will have in one year. This is the pure pre- 
mium variable. 

While y is not easily expressed in terms of n and g(x), we can express 
the expected value of y, E[y], as 

JYYI = E&t(x)1 l Unl (1) 

Equation (1) is merely the mathematical expression for the division of the 

2The function g represents those coverage provisions which depend only on the size 
of loss and which treat each loss individually and identically. 

a As will be mentioned later, the size of a loss may depend on the amount of coverage. 
The present discussion assumes independence. 
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average pure premium into the average size of insured loss and the average 
frequency of loss. The derivation of this equation can be shown as follows: 

1. Assume that the distribution of the size of each loss does not de- 
pend on how many losses occur during the year under each policy. 
That is, frequency and severity are independent. 

2. Assume also that if more than one loss occurs in a year for a 
policy, then the size of each loss is independent of the size of any 
of the other losses. 

3. Hence, if n insured losses occur during the year under a given 
policy, then the expected value of the sum of those losses is equal 
to n times the expected value of one such loss, 

E[y ( n] = n l E[g(x)l 

4. The expected value of y, the total dollars of insured losses incurred 
during the year for a given policy, is given by taking the expected 
value of E[y / n] with respect to the random variable n. 

5. Therefore, E[y] = E, (E[y / nl) 

= E, (n l Els(x)l) 

= WI l E&(x)1 

Increased Limits Coverage 
In liability insurance, a policy generally covers such loss in full up to 

a specified maximum dollar amount that will he paid on any one loss. If k is 
such a policy limit then we can express the cost function, g(.x;kl, for this 
coverage as 

g(x;k) = 
x,O<x<k,k>O 

and 

E[g(x;k)] = j x dF(x) + k l 9 dF(x) 
0 

=; x dF(x) + k l [l - F(k)] 
0 

(2) 

(3) 

Tt is general practice to publish rates for some standard limit called the 
basic limit, b. Increased limits rates are expressed as a factor, I(k), for a 
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limit k to be applied to the basic limit pure premium rate. The mathematical 
expression for the increased limits factor is the ratio of expected total losses 
with k limit coverage to expected total losses with basic limit coverage. 
Thus, using equation ( 1) we have 

I(k) = Elg(x;k)l ’ JTnl 
Wg(x;b)l l WI 

= Elg(x;k)l 
EMx;b)l 

(4) 

We can see that the increased limits factor is dependent only on loss severity 
and the cost function, but not on loss frequency. Note that E[g(x;b)] is 
simply the average basic limits severity and will be hereafter referred to as 
ABLS. Consequently, if we know the appropriate loss severity distribution 
then we can use equations (3) and (4) to determine expected value in- 
creased limit factors for various limits. 

As will be seen later, the compilation of a loss severity distribution 
from experience data can be very difficult and in some cases may not be 
feasible. Consequently, considerable judgment is needed to develop in- 
creased limits factors. In many instances it may be easier to make judgments 
in terms of specific increased limits factors rather than working with loss 
severity distributions. Therefore, it would be helpful to analyze the loss 
severity distribution underlying a given set of increased limits factors. The 
derivation of the necessary mathematical expression is as follows: 

I(k) = Elg(x;k)l 
ABLS 

, where ABLS = E[g(x;b)] 

1 --. - 
ABLS (S 

x dF(x) + k[l - F(k)] 

dI(k) 1 -=-. k .‘dF(k) 
dk ABLS 

--+1-F(k)--*?) 

dI(k) -------=1’(k) = ’ --B;(sk) 
dk 

01 

I’(k) = G(k) -, where G(x) = 1 - F(x) 
ABLS 

(5) 

Solving for F(k), the underlying severity distribution, we get 
F(k) = 1 - ABLS l I’(k) (7) 
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ln words, this result shows that the probability that a loss will be 
greater than k is equal to the product of the average basic limits severity 
and the rate of change in the increased limits factors at X. Thus WC see that 
there is a loss severity distribution implicitly dcfincd by any set of expected 
value increased limit factors. Note that the specific distribution is. as we 
might have suspected, a function of the avelage basic limits severity. In 
theory. I(k) and therefore l’(k) exist for all k > 0. However. in practice 
J(k) is defined only for k > h as the term “incrcascd limits” implies. 
Consequently, any practical application of equation (7) to estimate F(k) 
from a set of increased limits factors v,~~ld bc limited to sizes of loss greater 
than the basic limit. 

Aside from deriving specific distributions we can also use this rclation- 
ship to determine general properties of expected value increased limit factors 
from those of distribution functions. 

1. As X- approaches X, F(k) will approach I. I’(k) will approach 
zero, and I(k) will approach some constant. Jf I(k) becomes 
constant for all k greater than some value M, then I’(k) = 0 and 
F(k) r 1 whenever k > M because there is no probability of a 
size of loss greater than that value of li. This would imply no 
additional charge for higher limits. 

3 I. Since F(k) is monotonic increasing. J’(k) will be monotonic de- 
creasing. If F(k) has a point of inflection, then so will I’(k) at 
the same value of k. The converse of both statements also holds. 

3. The probability density function. f (k ). can be expressed as follows: 

f(k) =g;’ = - ART-S. d”To 
dk” 

Consequently, 
- f(k) I”(k) = +t!$=-- 
ABLS 

(8) 

Note that I”( k ) can never he positive since f(k) and ABLS should 
always be positive. Consequently, to ;r\oid the implication of 
negative probabilities. I’(k) must be monotonically decreasing 
and I(k) must be strictly increasing’. Also. any modes in f(k) 
will correspond to inflection points in I’( k ). 

4 It is permissible for I(k) to reach some limit :md stay there for all larger values of k. 



INCREASED LIMITS AND EXCESS 01: LOSS PRICING 33 

The Consistency Test 
Using property (3) above, we can construct a “consistency” test for 

evaluating a given set of increased limits factors. The marginal premium 
per $1000 of coverage should decrease as the limit of coverage increases. 
If not, this implies negative probabilities. For example, consider the fol- 
lowing set of increased limits factors for per occurrence limits between 
$25,000 and $1 O,OOO,OOO. 

Per Occurrence Limit 
(in thousands of doIlars) 

Increased Limits 
Factor 

Marginal Rate” per 
$1000 of Coverage 

25 1 .ooo - 
50 1.250 .OlOO 

100 1.425 .0035 
200 1.625 .0020 
250 1.705 .0016 
300 1.775 .0014 
350 1.865 .0018* 
400 1.915 .OOlO 
500 1.975 .0006 
750 2.175 .0008 * 

1000 2.400 .0009 * 
1250 2.575 .0007* 
1500 2.700 .0005 
1750 2.825 .0005 
2000 2.950 .0005 
2500 3.100 .0003 
3000 3.300 .0004 * 
4000 3.600 .0003 
5000 3.800 .0002 
7500 4.300 .0002 

10000 4.800 .0002 

This set of increased limits factors is “inconsistent” at the indicated (*) 
limits of 350, 750, 1000, 1250, and 3000. These factors are very similar to 
factors actually in use until 1975. 

5 The Marginal Rate is the difference in increased limits factors between the given 
limit and the next lower limit, divided by the difference in the limits. 
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Aside from the mathematical interpretation of this consistency test, it 
has a very practical meaning. In general, it does not make sense to the 
insurance buyer to have to pay more for each additional $1000 of coverage 
since the probability of losses larger than some limit should be less than for 
a lower limit. Of course there can be anti-selection, that is where the exis- 
tence of higher limits influences the size of the suit, award or settlement. 
However, this should not restrict the general applicability of the consistency 
test. Other applications of the consistency test will be described later in the 
paper. 

Excess of Loss Coverage 
Tn general, an excess of loss contract or non-proportional reinsurance 

arrangement covers losses greater than a given amount, r, the retention and 
has a maximum liability of j. Any loss, X, exceeding r is insured for the 
amount x - r, up to the maximum j. We can express the excess of loss 
cost function, h(x;r,j), as follows: 

h(x;r,j) = 
r 

O,O<x_<r 
x-r,r<x<s,s=r+j 
j,x>s 

and therefore, 

(9) 

E[h(x;r,j)l = 
/ 

S (10) 
(x - r) dF(x) + j[l - F(s)1 

r 

= 
s 

S 
x dF(x) - rCF(s> - F(r)1 + j[l F(s)1 

r 

S 
= 

s 
x dF(x) + s[l - F(s)] - r[l - F(r)] 

r 
Consequently, 

E[h(x;r,j)lG = Wg(w)l - E[g(x;r)l (11) 

Note that the expected number of accidents, E[n]. has not changed just 
because losses less than the retention, r, arc not insured under an excess 

6 Equation (11) can also be derived by observing that h(x;r,j) = g(x;s) - v(x;r). 
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contract. Consequently, the expected value pure premium for the excess 
contract, is given by 

E[h (x;r,j 1 I l WI 

and can be expressed in terms of the basic limits pure premium, ABLS l 

E[n], as follows, 

E[h(w,j)l l Nnl _ Eth(x;r,j)l 
ABLS l E[n] - ABLS 

= E[g(x;s)l _ Ek(v)l 
ABLS ABLS 

=1(s) - J(r) 

(12) 

This proves mathematically that the expected value pure premium for an 
excess contract is equal to the difference in expected value pure premiums 
of two “first dollar” contracts. 

Trend 
Inflationary pressures, both economic and social, increase the size of 

losses over time. Inflationary trends can have substantial effects on pricing 
increased limits and excess of loss coverages. These effects are difficult 
to evaluate since the limits and retentions remain fixed while loss severity 
is shifting7. 

We can investigate the mathematical aspects of trend in terms of a 
transformation of the loss severity variable. Let’s assume that the economic 
and social values that produce a loss of size x are changing such that a loss 
of size x’ will be produced by the new values after a fixed period of time 
(one year). This can be described mathematically by equating the prob- 
ability of a loss size less than or equal to x at a given point in time, with the 
probability of a loss size less than or equal to x’ one year later. If F(x’) is 
the cumulative distribution function of x’, then 

F(x’) = F(x) (13) 

7 An alternative method of setting retentions is described by Ferguson, R. E., “Non- 
proportional Reinsurance and the Index Clause,” PCAS Vol. LVI, (19741, p. 141. 
The method attempts to reduce the excess carrier’s pricing problem caused by 
inflation. 
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Let n(x) represent the transformation that describes the relationship be- 
tween x’ and x. 

x’ = a(x) (14) 

Assuming that a(x) is monotonic, we find 

F(a(x) > = F(x) (15) 

Also, since x = a-*(x’) , we can write 

F(x’) = F(a-‘(x’)) (16) 

In the simple case each loss is increased by the same multiplicative 
factor, a, which is greater than one:” 

x’ = al(x) 

= ax 

Here we have a;- * (x’) = x’/a, th . f ew ore using equation C 16) we find 

F, lx’) = F( x’/a) 

Now we would like to know what the trcndcd incrcascd limits factor 
for policy limit k, I,(k), should be. Starting from equation (3) using x’ 
and F,(x’), 

ElgCx’;k)l = 
f 

x’dFl(x’) + k[l - F,(k)] 
0 

Letting u = x’, 

Ektx’;k) 

1 

f 

x’dF(x’/a) + k/l 
0 

/a, 

s 

k/a 
]=a* udF(u) -+ k[l 

0 

= a l E[g(x;k/a)] 

- F(k/a) - 

F(k/a)l 

(17) 

a This type of trend and its relationship to basic limits trend are studied hy Finger, R. J.. 
“A Note on Basic Limits Trend Factors”. PCAS Vol. LXIII. ( 1976), p. 106. 



INCREASED LIMITS AND EXCESS OF LOSS PRICING 37 

Consequently, applying the development of equation (4) to the trended 
severity we get, 

I,(k) = J%(x’;k)l 

A BL& 

= a l J%(x;W)l 
a * Ek(x;b/a)l 

_ I(W) 
I@/a) 

(18) 

For excess of loss coverage, 

II(S) --Z,(r) = I(O) - I(r/a) 
IOVa) 

Also note that diffcrcntiating equation (18) gives 

Z; (k) = -!- . ‘g 
a 

(19) 

(20) 

1 G(k’a) =- . (from equation (6)) 
a E[g(x;b/a)l 

There is another more commonly used approach to updating increased 
limits factors for trend. The procedure considers separately: 

1) the trend in average severity for basic limits, t,,, and 

2) the trend in average severity for increased limits, ti. 

If ABLS? is the average basic limits severity after one year of inflation, 
then 

ABLS, = tb l ABLS 

Every “layer or loss” in excess of basic limits is similarly inflated by fi 
where such a layer is defined by the excess portion of the increased limits 
factor, I(k) - 1. 

For purposes of comparison with the first trend method or other 
methods, we would like to know the transformation, a?(x), implied by this 
second trend procedure. 
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We can express this procedure as follows : 

Z,(k) - 1 = t,* (I(k) - 1) 

hence, 

Zdk) = 1 + ti l (I(k) - 1) 

fJl% 

1; (k) = t, l I’(k) 

= t, l s (from equation (6) ) 

and also from equation (6) we know 

Z; (k) = Gz(k) - , where G,(k) = 1 - F,(k) 
ABLS2 

thus solving for G2 (k) we find 

G,(k) = z l ti l G(k) 

= t,, ’ tt l G(k) 

Now using equation ( 15) we see that 

Fdadx) > = F(x) 

Therefore, 

1 - F,(a,(x)) = 1 - F(x) 

Gdadx) 1 = G(x) 

aJx) = G;l(G(x)) 

But from equation (24) we find 

G,’ (x) = G-1 

Hence, 

(21) 

(22) 

(23) 

(24) 

(25) 
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We see that az(x) is defined in terms of the original severity distribution. 
In order to see what kind of function az(x) is, we can make some assump- 
tions about the severity distribution. 

1. If the severity distribution is exponential, 

G(x) = exp( - fix) 

G-‘(x) 
- In1 =- 

B 

a?(x) = x + -L 
B 

l In($) l ti), where1 
P 

l h(tb ’ tt) is a constant. 

2. If the severity distribution is Weibull, 

G(x) = exp( - xB/A) 

G-l(x) = ( - A l lnx)llB 

a2(x) = (xB + A l ln(th l tt))l/B 

3. If the severity distribution is lognormal, a general solution is not 
available. However, az(x) can be computed using numerical ap- 
proximation techniques. 

4. If the only form of the severity distribution is given by a set of 
increased limits factors represented by I(x), then 

I’(x) = E 

G(x) = ABLS 9 I’(x) 

G-‘(x) = 1’-l(x/ABLS) 

Exhibit 1 gives numerical examples of all(x) for the exponential (fi = 
2.54 x lO-s), the Weibull (A = 42.1898, B = .42045) and the log- 
normal (,u = 8.9146, (T = 1.7826) loss severity distributions where 
tb = 1.08 and ti = 1.20. 



40 

25,000 35.207 1.408 35,207 1.408 35,207 1.408 
50,000 60,207 1.204 64,870 1.297 66,241 1.324 

100,000 110,207 1.102 121,796 1.217 126,686 1.266 
200,000 210,207 1.05 I 232,102 1.160 244,968 1.224 
250,000 260,207 1.040 286.392 I.145 303,432 1.213 
300,000 310.207 1.034 340,330 1.134 361,603 1.205 
350,000 360,207 1.029 393,997 I.125 419.549 1.198 
400,000 410.207 1.025 447,447 1.118 477,303 1.193 
500,000 510,207 1.020 553,840 1.107 592.368 1.184 
750,000 760,207 1.013 X17.784 1.090 878,140 1.170 

I ,ooo,ooo 1,010,207 1.010 1,079,85? 1.079 1,162,097 1.162 
1.500,000 1,510,207 1.006 1,600,654 1.067 1.726.564 I.151 
2,000,000 2,010,207 I.005 2,118,657 1.059 2288.093 1.144 
2,soo.ooo 2,510,207 1.004 2,634,833 I .05? 2.847,429 1.138 
3,000,000 3,010,207 1.003 3.149,6X9 1.049 3,405.168 1.135 
4,000,000 4.010,207 1.002 4.176.574 1.044 4.517525 1.129 
5,000,000 S.O10,207 1.002 5.200.716 1.040 .5,6?6,731, 1.125 
7,500,000 7.510.207 1.001 7.753.427 I.033 8.388.452 I.118 

10,000,000 10,010,207 1.001 LO,298,950 1.029 11.144.829 1.114 
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EXHIBIT I 

INFLATION BY SIZE OF LOSS UNDER a2(x) 

Sizeof Exponential Weibull Lognormal 
Loss (x) a,(x) a,(x) t x U,(X) _ n.,(x) +x a,(x) aa -+ x 

From the examples, it appears that W(X) will generally produce higher 
trends for small sizes of loss and lower trends for the large losses. Intu- 
itively, it seems that a?(x) might not be as good a representation of real 
loss trends as using the same trend for all sizes of loss. represented by 
al(x). In fact, it is more likely that the reverse of (x2(x) is true, i.e.. lower 
trend for small losses, higher trend for large. The reason for these results 
with cr.,(x) stems from the assumption made that (111 excess layers should 
receive the same trend factor. If indeed there is a difference between basic 
and excess trend, then should not different excess layers be trended differ- 
ently? This is the contradiction implied by a2(x). 

Consequently, it is preferable to use (x,(x) rather than a2(x) to adjust 
for trend. 
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2. THE CHARGE FOR RISK 

A major problem with expected value pricing is that it fails to appro- 
priately charge for the risk of being in the insurance business. Premium 
rates are usually determined from the expected pure premium, a provision 
for expenses, and a loading for profit and contingencies. For most lines of 
insurance, the profit and contingency loading presumably compensates for 
risk. However, the loading is usually low, and it therefore will only be ade- 
quate for relatively low risk lines or coverages. A more volatile line or 
coverage needs an additional safety loading or risk charge for the added risk 
in order for it to be on a par with the other lines or coverages. Conse- 
quently, while the general provision for profit and contingencies may be 
sufficient for most lines of insurance, it can be seriously deficient for a high 
risk line or coverage. 

For the purpose of this paper, the meaning of risk will be associated 
with the degree of uncertainty in the pure premium. It is assumed that one 
who is averse to risk will desire stability and certainty. Given the choice 
between insuring ten individuals with $1,000,000 limits each or one insured 
at $1 O,OOO,OOO, a risk-averse actuary should argue for the ten separate pol- 
icies in order to reduce the likely variation from the expected losses.” How- 
ever, there should be some risk charge that would make such an actuary 
indifferent between the two choices based on some rational and objective 
criteria. Even though attitudes and preferences towards risk can be highly 
subjective, some measure of risk is desired to establish a reasonable stan- 
dard for determining such a risk charge. In an article on risk and rate- 
making, Lange’” suggests a measure of risk based on the concept of vari- 
ance. The discussion that follows will attempt to apply this idea to increased 
limits and excess of loss pricing. 

B An additional or alternative criteria in such a situation is to consider the probability 
of ruin as a basis for actuarial decision making. Utility theory presents yet another 
decision rule. See Btihlmann, H.. Mrttlwnwticd MrtJds in Rixk Tlreo?~, Springer- 
Verlag (19701, p. 85-87. and Freifelder, L. R.. A Decisiorz Throreric Appronch to 
Itlsrrruf~ce Ratemaking, Irwin ( 1976), p. 36-56. 

In J. T. Lange, “Application of a Mathematical Concept of Risk to Property-Liability 
Insurance Ratemaking,” Jorcrnal of Risk and Insrrrar~cc, Vol. XXXVI, p. 383. 
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Sources of Risk 
There are two main sources of risk associated with insurance rate- 

making. First, variation between actual losses and expected losses can be 
the result of the stochastic or random nature of the frequency and severity 
of insurance losses. Freifelder” calls this the “process risk”. Second, such 
variation can also result from an inability to estimate expected losses accu- 
rately.‘? This is appropriately termed the “parameter risk” by Freifelder. A 
major cause of difficulty in estimating expected losses in some types of 
insurance is the occurrence of catastrophes such as hurricanes, tornadoes, 
earthquakes, etc. Inflationary trends also have a substantial impact in esti- 
mating expected losses. For a line of insurance, changes in the mix of busi- 
ness among various classes, coverages and types of insureds can affect 
expected losses. A small independent insurer is faced with sampling error in 
estimating expected losses. Incorrect ratemaking data is always a potential 
problem. Finally, claims practices, underwriting practices, social attitudes, 
and judicial or legislative climate can undergo drastic and rapid changes 
which can not always be anticipated to adjust expected losses adequately. 

While parameter risk can be substantial, the determination of a risk 
charge to compensate for this risk is very difficult and is beyond the scope 
of this paper. Tn an area such as a catastrophe cover for hurricanes, floods, 
etc. the parameter risk can be quite large and cannot be ignored. However 
in many applications the parameter risk should be minimal. This paper 
will only study the effects of the process risk and develop appropriate risk 
charges for such risk. 

Variance as a Measure of Risk 
The source of risk used in this paper for the determination of risk 

charges for various liability limits is the chance or random variation in the 
pure premium, i.e. the process risk. As will be shown, this source produces 
a substantial, measurable difference in risk charge by limit of liability. Tf we 
define the measure of this risk as the standard deviation of the pure pre- 
mium as Lange’” suggests, we can analyze the properties of risk and risk 
charges for increased limits and excess of loss coverages. However, the 
variance of the pure premium is felt to be a more appropriate measure be- 

ll Freifelder, op. cit., p. 70-71. 
I? This second source of risk can also be considered to include errors in estimating any 

of the moments or parameters which determine the form or shape of the frequency 
and severity distributions. 

13 Lange, op. cif., p. 386. 
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cause it satisfies the three basic ratemaking axioms advanced by Freifelder’l 
and has some weighty theoretical advantages discussed by Biihlmannr5. 
Also, as will be shown, it permits the development of risk adjusted in- 
creased limits factors from the severity distribution alone. 

The formula for premium determination (excluding expenses) with a 
safety or contingency loading proportional to risk’” is 

Premium = E[y] + h l Var[y) (26) 

Where E[y] is the pure premium and Var[y] is the variance of the pure 
premium variable. The factor h must be selected judgmentally. This can be 
done on the basis of the relative magnitude of Var[y] compared to E[y]. 

The pure premium variance can be expressed in terms of frequency 
and severity (assuming independence) as follows: l7 

Var[y] = E[n] l Var[g(x)] + Var[n] l Erg( (27) 

Since 

Var[g(x)J = E[g(x)2] - E[g(x)12 we can write 

Var[yl = E[n] l E[g(x)2] + (Var[n] - E[n] l Erg( (28) 

In most cases, the frequency variance, Var[n], will be greater than the ex- 
pected frequency, E[n]. Therefore at a minimum we should have 

Var[yl = JTnl l E[gtxJ21 (29) 

Note that if the frequency of loss distribution is Poisson, equation (29) is 
exactly right. In addition, the second moment of the severity of insured 
losses E[g(x)“], can be many times larger than the square of the first mo- 
ment, Erg(x)]?, particularly for excess of loss coverage, since the severity 
distribution has a long tail. Consequently, if we can assume that the ratio 
of E[g(x)?] to E[g(x)]’ will be substantially greater than the ratio of 
Var[n] - E[n] to E[n], then equation (29) should be adequate for deter- 
mining risk charges. Further work is needed to test this assumption, how- 

14 Freifelder, op. cit., p. 36-56. 
15 Biihlmann, op. cit., p. 89-92. 
laThis is known as the “variance principle of premium calculation” as discussed by 

Biihlmann, op. cit., p. 85-87. 
17 A. L. Mayerson, D. A. Jones, and N. L. Bowers, Jr., “On the Credibility of the 

Pure Premium,” PCAS Vol. LV, ( 1968), p, 175. 
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ever it will be used as a first approximation to illustrste the inclusion of 
risk charges in increased limits factors. 

The E(g(x)S1 formulas for the cost functions considered in this paper, 
g(x;k) and h( x;r.j) as defined in equations (3 ) and (9) respectively, are 
given below. 

k 
E[g(x;k>21 = 

s 

(30) 
x2 dF(x) + k’[l - F(k)] 

0 (31) 

S 

E[h(x:r,j)‘] = 
J 

(x - r)2 dF(x) + (s - r)?[l - F(s)], s = r + j 
r 

S 
ZZ 

s 

S 
x2 dF(x) - 2r l 

s 
x dF(x) + rr[l - F(r)] 

r r 

+ (s2 - 2rs) [l - F(s)] 

S 

s 

S 
= x2 dF(x) - 2r ! 

i J 
x dF(x) -+ $1 - F(s)] 

r r 

7 - r[l - F(r)1 ,- - r2[1 -F(r)] + s2[1 - F(s)] 
! 

S 
Z-Z 

J 
x2 dF(x) - 2r l E[h(x;r,j)] - r”[l - F(r)J 

r 

+ s2[1 - F(s)] 

=E[g(x;sjS] - E[g(x;r)“l - 2r l E [h(x;r,j)] 

The examples in Exhibit II will demonstrate premium determination 
including risk charge using equations (26). ( 1 ) and (29) for different 
retentions and policy limits. The assumptions used for Exhibit II are: 

1. The expected frequency is the same for each insured. Also, the 
frequency variance is equal to the expected frcqucncy. The E[n] 
will be set at 0.10. 

2. Insureds are also homogeneous with respect to severity and the 
severity distribution is given by a lognormal distribution’” with 

18 The formulas used for approximating the necessary value\ from the lognormal dis- 
tribution are given in the Appendix. 
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parameters p = 8.9146 and ci = 1.7826. This distribution has 
a relatively high coefficient of variation (d Var[x]/E]x]) and 
therefore is highly skewed. It should illustrate the potential mag- 
nitude of the risk charges. 

3 . . A risk charge of 5% of the expected value pure premium will bc 
assumed adequate for $25,000 policy limits (zero retention). This 
produces ah factor of 2.559 x 10-O. 

The increased limits factors from the same severity distribution as used 
in Exhibit II are shown in Exhibit III both on an expected value basis and 
risk adjusted. Note that since equation (29) was used to estimate the pure 
premium variance, the risk adjusted increased limits factors, I,.(k), do not 
depend on the frequency of loss. 

I ,(k) 
I 

= Premium for policy limit k 
Premium for basic limit b 

(32) 

= E[nl l E[g(x;k)l + h l Ebl l E&(x$)“1 
E[n] l ABLS + h l E[n] l E[g(x;b>z] 

ZI E[g(x;k)l + h l E[g(x;k)21 
ABLS + h l E[g(x;b)2] 

It is important to note that it is not appropriate to determine the risk 
adjustment for excess of loss coverage from the risk adjusted increased 
limits factors. This will be discussed further in the next section. 

Risk Reduction by Layering 
The large risk associated with high limits coverage can be significantly 

reduced by “vertical” layering. This type of layering can be effected by two 
methods. The first is by insuring through two or more carriersIs, one carrier 
providing “first-dollar” coverage and the others excess of loss coverage. 
The second is through the use of non-proportional reinsurance. In this 
discussion it will be assumed that the insurance coverage is being provided 
to a large homogeneous group of insureds. 

IQ At some point the number of carriers involved in providing coverage for one in- 
sured cannot be increased without expense considerations offsetting the risk reduc- 
tion. 



Retention 

0 25,000 1,113 
0 50,000 1,579 
0 100,000 2,083 
0 300,000 2,811 
0 500,000 3,074 
0 1 ,ooo,ooo 3,335 
0 1,300,000 3,406 
0 1,500,000 3,439 
0 2,000,000 3,495 
0 3,000,000 3,552 
0 4,000,000 3,581 

300,000 1 .ooo,ooo 595 
500,000 1 .ooo,ooo 365 

1 ,ooo,ooo 1 .ooo,ooo 160 
2,000,000 1 .ooo,ooo 57 
3,000,000 1 ,ooo,ooo 28 

PREMIUM DETERMINATION INCLUDING RISK CHARGE 

Policy 
Limits 

Expected Value 
Pure Premium 

Pure Premium 
Variance 

Risk Charge 
(A X Variance) 

2.175 x 10’ 56 
5.563 x 1Oi 142 

12.834 x 10’ 328 
38.790 x 10’ 993 
59.192 x IO’ 1,515 
95.916 x 10’ 2,454 

112.144 x 10’ 2,870 
121.405 x 10’ 3,107 
140.658 x IO’ 3,599 
168.506 x 10’ 4,312 
188.114 x 107 4,814 
37.646 x 10’ 963 
25.686 x IO7 657 
12.711 x IO7 32.5 
4.963 x 10’ 127 
2.561 x 10T 66 

Premium 5 
(before expenses) i 

1,169 L m 1,721 0 
T 

2,411 : I 
3,804 z 

4,589 $ 
5,789 x” 
6,276 2 
6,546 M 

7,094 
8 
!- 

7,864 
0 
w 

8,395 -c 
z 

1,558 i! 

1,022 
i: 

485 
184 
94 
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EXHIBIT III 

INCREASED LIMITS FACTORS INCLUDING RISK CHARGE 

Increased Limits Factors 

Policy Limit Expected Value Risk Adjusted 

25,000 (basic limit) 1 .ooo 1 .ooo 
50,000 1.419 1.472 

100,000 1.872 2.062 
300,000 2.526 3.254 
500,000 2.762 3.926 

1 ,ooo,ooo 2.996 4.952 
1,500,000 3.090 5.600 
2,000,000 3.140 6.068 
3,000,000 3.191 6.727 
4,000,000 3.217 7.181 

The risk reduction can be demonstrated mathematically by comparing 
the pure premium variance with and without layering. First consider one 
insurer providing high limits coverage. With policy limit equal to k, his cost 
function is given by g(x;k). The variance in the pure premium without 
layering, Var[y,], from equation (27) would be: 

Var[yo] = E[n] l Var[g(x;k)] + Var[n] l E[g(x;k)]? (33) 

Next suppose the same coverage is layered between two insurers (or 
an insurer and reinsurer) where the bottom layer has limit r. The cost 
functions for the two layers are as follows: 

First layer: g(x;r) 

Second layer: h(x;r,j), where j = k - r 

Since g(x;k) = g(x;r) + h(x;r,j) we see that the expected value pure 
premiums for the two layers sum to the non-layered pure premium. 

E[nl l E[g(x;k)l = JYnl l E&(w)1 + E[nl l E[hCx;r,j)l 
Again using equation (27), the pure premium variances for the two in- 
dividual carriers** are: 

**The carriers must be entirely separate entities operating from different capital bases. 
Layering coverage between subsidiaries or affiliates will not produce the desired risk 
reduction. 
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First Layer: 
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Var[yJ = E[n] l Var[g(x;r)] + Var[n] l E[g(x;r)]” 

Second Layer : 

(34) 

Var[yJ = E[n] l Var[h(x;r,j)] + Var[n] l E[h(x;r,j)12 (35) 

For the purpose of comparison, the pure premium variance without 
layering is needed in terms of the two layers. We can express both 
E[g(x;k)]” and Var[g(x;k)] in terms of g(x;r) and h(x;r,j) as follows: 

E[g(x;k)l? = (E[g(x;r)l + E[h(x;r,j)lI’ 

= Ek(x;r)Y + 2 l J%(w)1 l E[h(w,j)l 
+ Eth(w3)12 

and 

Var[g(x;k)] = Var[g(x;r)] + Var[h(x;r,j)] 
+ 2 l Covkb;r>,h(w,j)l 

where 

Cov[g(x;r),h(x;r,j)l = E[g(x;r) l h(x;r,j)l 
- E[g(w)l l E[h(w,j)l 

However, since 

O,O<xjr 
g(x;r) l h(x;r,j) = 

-I 

r(x - r), r < x < k, k = j + r 
r*j,k_<x 

= r l h(x;r,j) 

we find that 

Covlg(x;r),h(x;r,j)l = (r - ELg(x;r)l) l W(x;r,j)l > 0 

and therefore, equation (37) becomes 

Var[g(x;k)] = Var[g(x;r)] + Var[h(x;r,j)] 
+ 2 l W(x;r,j)l l (r - E[g(x;r)l) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

Substituting equations (36) and (41) into equation (33), we see that 
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the pure premium variance without layering exceeds the variance with 
layering by an amount, R( r,j), given by 

R(r,j) = Var[yd - Var[y,l - Varly21 (42) 

= 2 l E[n] l E[h(x;r,j)] l (r - E[g(x;r)l) 

+ 2 l Var[n] l E[g(x;r)] l E[h(x;r,j)l 

= 2 l E[h(x;r,j)] l (r l E[n] + E[g(x;r)] l (Var[nl - E[nl 

If we assume as before that E[n] N Var[n], then equation (42) simplifies to 

R(r,j) = 2 l r l E[n] l E[h(x;r,j)] (43) 

which is just twice the retention times the expected value pure premium of 
the second layer. This is the reduction in the variance, consequently to get 
the reduction in the risk charge we multiply by the h factor?‘. Since there 
is no reduction in expected value pure premium by layering, the dollar 
reduction in risk charge is equal to the dollar reduction in premium by 
layering. 

Exhibit IV shows that this reduction by layering can be substantial. 
The examples in Exhibit IV use the same assumptions as in Exhibit II. 

3. APPLICATIONS 

The principal applications of the pricing model described in this paper 
require knowledge of a specific loss severity distribution. The only exception 
to this is the consistency test. Of course, the deve!opment of a severity 
distribution from experience data is not without difficulties. Special data 
gathering techniques are required to produce individual losses ranked by 
size of loss. Loss development also poses certain problems in working with 
severity distributions. Some approaches to treating these difficulties are 
outlined below. 

One approach to compiling an empirical size of loss distribution is to 
use all reported claims from a few recent accident (or policy) years. It is 
very likely that this distribution of immature claim values will change 
considerably as these claims develop. Some claims with high estimates may 
be settled for a small amount or adjudicated as no liability. Others which 
seem unmeritorious initially may ultimately result in very large awards or 
settlements. Consequently, each open claim has a probability distribution 

21 It is assumed that the same h. factor is appropriate for both carriers. 



Total First Layer Limit 
Coverage (Second Layer Retention) 

RISK REDUCTION BY LAYERING 

Second Layer 
Expected Value 
Pure Premium 

Premium 
(before expenses) 
without layering 

6,216 
6,547 
7,094 
7,094 
7,864 
7,864 
8,395 
8,395 

1,300,000 300,000 595 
1,500,000 500.000 365 
2,000,000 1 .ooo,ooo 160 
2,000,000 500.000 421 
3,000,000 1 ,ooo.ooo 217 
3,ooo.ooo 2,ooo.ooo 57 
4.000,000 1.000,000 246 
4.000,000 2,000,000 86 

EXHIBIT IV 5 
F 
$ 

Premium 
Reduction 

with layering ti 
914 (14.6%) ; 
934 (14.3%) ; 
819 (11.5%) “, 

1,077 (15.2%) ; 
1,111 (14.1%) g 

583 ( 7.4%) { 
1,259 (15.0%) ‘i 

880 (10.5%) c, 
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of its ultimate value. HachemeisteP describes a technique for estimating 
such loss development distributions conditioned on the age of the claim and 
its estimated value. The method can also be used to estimate a distribution 
for unreported and reopened claims. The actual procedure for adjusting a 
severity distribution for loss development using the Hachemeister technique 
will be left to the interested reader. 

There are many other problems in dealing with empirical distributions. 
Data on individual losses usually come from different policies with different 
policy limits, causing a bias in the distribution. The credibility of the dis- 
tribution, especially at the high end, is another area for concern. The use 
of a theoretical distribution (lognormal, Weibull, etc.) can help consider- 
ably in dealing with these problems. One can fit a theoretical distribution 
to the empirical one and use the fitted distribution for pricing. In a recent 
paper, Finger?” fitted a lognormal distribution to medical malpractice data 
using an empirical procedure based on the particular properties of the log- 
normal parameters. 

In the absence of reliable empirical data it is not unreasonable to 
assume a theoretical severity distribution to use for pricing. The selection 
of a particular distribution can be made on the basis of the analytical 
properties of a distribution such as the mean, variance, coefficient of vari- 
ation, skewness, etc. Even if the selection of a distribution were based on a 
subjective evaluation of the resulting increased limits factors, this would be 
an improvement over selecting factors directly without regard to the loss 
severity implications. 

If a loss severity distribution is available from experience data or by 
assumption, then the formulas presented in this paper have the following 
applications. 

1) The computation of expected value increased limits factors. 

2) The adjustment of the severity distribution and the increased 
limits factors for trend, where trend is assumed to have the same 
multiplicative effect on each loss size. 

3) The computation of risk charges by limit of liability. 

22 C. A. Hachemeister, “Breaking Down the Loss Reserve Process,” presented at the 
CAS Loss Reserve Symposium (September, 1976). 

xi R. J. Finger, “Estimating Pure Premiums by Layer-An Approach”, PCAS LX111 
(1976). p. 34. 
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4) The calculation of the reduction in risk charge afforded by “lay- 
ering” coverage. 

5) The computation of the expected value pure premium and risk 
charge for excess of loss coverage. 

If increased limits factors are computed by means other than those 
described in this paper, it is possible that such factors will produce incon- 
sistencics in the pricing of increased limits and excess of loss coverage. The 
consistency test described in this paper can be used to evaluate a set of 
increased limits factors and point out the particular factors that are incon- 
sistent with the rest. 

4. RELATED TOPICS 

The following are other areas of insurance pricing where the theories 
developed in this paper, particularly the consistency test, can be applied. 

Leveraged Effect of Inflation 
The concept of the leveraged effect of inflation is discussed thoroughly 

by FergusorP. This concept can be expressed analytically in terms of what 
has been defined in this paper. What we are looking for is the change in the 
expected value pure premium for excess of loss coverage. Assuming an 
inflationary trend that has the same multiplicative effect on each size of 
loss, as defined by IX,(X) = ax, the leveraging effect is controlled by the 
retention. The following formulas can be useful in analyzing the effects of 
inflation for excess of loss coverage. 

1. Average increase in losses with fixed upper limit. 

E[g(x’;k) 1 = E[g(x;k/a) I 
E[g(x;k)l a l ECg(x;k)l 

= 1 (k/a) a*- 
I(k) 

2. Average increase in excess losses with fixed upper limit. 

E[h(x’;r,j)l _ E[g(x’;s)l - EIg(x’;r)J 
E[h(x;r,j)l - E[g(x;s)] - E[g(x;r)l ’ 

s=r+j 

IX a* Etg(x;s/a)l - E[g(x;r/a)l 
E[g(x;s)l - E[g(x;r)l 

= a. I(s/a) - I(r/a) 
I(s) - I(r) 

24 Ferguson, op. cit. 
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3. Average increase in excess losses with no upper limit. 

Wx’l - J%iW;r)l = a. E[xl - Ek(x;r/a)l 
Wxl - EMx;r)l E[xl - EMx;r)l 

The expected value increased limits factors that were computed in the 
previous examples from the lognormal distribution can be adjusted for in- 
flation using equation (18). Exhibit V shows the effects of inflation for 
various retentions given an overall inflation of 9% (a = 1.09). 

The examples in this exhibit indicate somewhat small leveraged effects. 
This is primarily the result of the specific severity distribution used. Some 
other distribution could exhibit significantly higher leveraged effects. How- 
ever, the author has not attempted to study this further. The conclusion 
from this is that while inflation may cause very serious pricing problems for 
excess of loss coverage, such problems may not always be as severe as they 
first appear. 

Aggregate Limits 

A maximum limitation on the total amount of insured losses for all 
accidents/occurrences is generally referred to as an aggregate limit. Such a 
limit usually applies for a one year policy period and can be used in con- 
junction with a per accident/occurrence limit. Aggregate limits are intended 
to restrict the exposure to multiple large losses or an excessive frequency of 
losses. The theoretical pricing structure of aggregate limits and aggregate 
excess coverage (excess of aggregate limits, also known as stop-loss re- 
insurance) will not be discussed in this paper. However, the theory does 
permit the application of a consistency test. The test described previously 
can be used by analyzing the marginal rate per $1,000 of accident/ 
occurrence limit keeping the aggregate limit constant and also the marginal 
rate per $1,000 of aggregate limit keeping the accident/occurrence limit 
constant. Thus, if increased limits factors are displayed in a table where the 
columns indicate an accident/occurrence limit and the rows indicate an 
aggregate limit, then each row and each column of increased limits factors 
should be tested separately in the same manner as a per accident table of 
factors. 



EXHIBIT V 

Retention 

25,000 
50,000 

100,000 
300,000 
500,000 

1 ,ooo,ooo 
2,000,000 

LEVERAGED EFFECT OF INFLATION 
2 
a 

(OVERALL INFLATION OF 9%) E m 

Increased Limits Factors 

before inflation after inflation 
adjustment adjustment 

1 .ooo 1.000 
1.419 1.432 
1.872 I .905 
2.526 2.604 
2.762 2.862 
2.996 3.121 
3.140 3.282 

Average 
Increase in 

Losses Limited 
to Retention 

3.8% 
4.8 
5.7 
7.1 
7.6 
8.1 
8.5 

Leveraged Effect: 
Average Increase in Losses 

in Excess of Retention 

Limited to $1 ,OOO,OOO Unlimited 

10.3% 11.3% 
11.2 12.2 
12.2 13.4 
14.2 15.5 
15.2 16.7 
16.7 18.3 
18.4 20.1 
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Per Person, Per Accident Limits 

Liability coverage can also be defined by dual or “split” limits. In gen- 
eral, such limits provide for a maximum amount of insured loss for each 
person injured in an accident in addition to a maximum amount for each 
accident. To extend the pricing model to this type of coverage would re- 
quire the introduction of another random variable. This random variable 
would represent the number of persons injured in an accident. It would 
also be necessary to change the loss severity variable to a per person basis 
rather than per accident. 

Obviously such changes would complicate the model considerably un- 
less further assumptions are made. It is not clear what advantages split 
limits have over the single per accident limit other than to further restrict 
coverage. The elimination of split limits coverage would aid greatly in the 
pricing of increased limits, both in the evaluation of experience data and in 
the mathematical model. 

The application of the consistency test to evaluate split limits increased 
limits factors is similar to aggregate limits. Given a table of factors with the 
columns indicated the per person limit and the rows indicating the per acci- 
dent limit, the test would be applied to each row and to each column 
separately. 

Property Insurance - Coinsurance Pricing 

All aspects of coinsurance including pricing are discussed very thor- 
oughly by Head”‘. However, in discussing the relationships between the 
rates for different coinsurance rcquircments Head requires that no premium 
reversalP exist between two coinsurance requirements and that coinsur- 
ance rates should decrease at a declining rate with added coverage. The 
consistency test can be adapted to coinsurance pricing and provide a fur- 
ther check on coinsurance rates. 

25 G. L. Head, ~nstrmnce to Value, Irwin ( 197 1). 
26 Ibid., p, I 16. 
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Consider the following set of factors which relate the rates for various 
coinsurance requirements to the 80% coinsurance rate. These factors have 
no premium reversals and produce rates that decrease at a decreasing rate 
for increasing coinsurance requirements. 

Coinsurance Requirement 

100% 
90 
80 
70 
60 
50 
40 

Coinsurance Factor 

.90 

.94 
1 .oo 
1.07 
1.15 
1.28 
1.50 

Next suppose a full value amount of $100,000 and an 80% coinsurance 
rate of $1 .OO per $100 of insurance. The amount of insurance and the pre- 
mium for the various coinsurance requirements would bc: 

Coinsurance Requirement 

Percent Amount of Insurance Premium” 
Marginal Premium”* 

per $1,000 of Coverage 

$s.40* 
4.60 
5.10 
5.90 
s.oo* 
4.00” 

100% $100,000 $900 
90 90,000 846 
80 80,000 800 
70 70,000 749 
60 60,000 690 
50 50,000 640 
40 40.000 600 - 

For this pricing to be consistent, the marginal premium per $1,000 of 
coverage (amount of insurance) should decrease as the coverage increases. 
This example shows inconsistencies for coinsurance requirements of 100% , 

27 Premium = Coinsurance Percentage X 
$lOO,OOO (amount of full value) 

$100 (exposure base) 
x Coinsurance Factor x $1 .OO (8OV coinsurance rate ) 

?*The Marginal Premium is the premium difference between the given amount of in- 
surance and the next lower amount of insurance, divideA by the difference in the 
amounts of insurance. 
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60%, and 50% as indicated by *. It is important to note that this result is 
caused solely by the coinsurance factors, i.e., the same inconsistencies will 
be indicated regardless of the full value amount or the 80% coinsurance 
rate. The coinsurance factors used in this example are similar to factors in 
actual use at the time this paper was written. 

5. CONCLUSION 

Through the use of a mathematical model, the pricing of increased 
limits and excess of loss coverage can be analyzed both in theory and in 
practical application. The model presented in this paper gives a mathe- 
matical statement of the pricing problem. The complete solution to this 
problem requires actual data, judgment and some further study. 

The key element to the model is the size of loss distribution. Unfortu- 
nately, there is not very extensive knowledge about such distributions, 
either empirical or theoretical, Techniques must be developed and refined 
for the collection and evaluation of size of loss data. Moreover, new theo- 
retical distributions must be found that can simulate the many possible 
types of severity distributions. The treatment of loss adjustment expense is 
also very important because these expenses are related to the existence and 
severity of a loss. This relationship must be defined and fit into the model 
in order to create increased limits factors for actual use. 

Other areas where research is needed are a more realistic approach to 
adjusting for the effects of inflation by size of loss, the detection and impli- 
cations of anti-selection, the classification of insureds into homogeneous 
groups with similar severity characteristics, the development of a risk charge 
for parameter risk, and a pricing model for split and aggregate limits. 
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APPENDIX 
The Lognormal Distribution 

For the purpose of this paper, an evaluation of the following integrals 
is required for various values of x. where f( t ) is the lognormal probability 
density function. 

[ t l f(t) dt 

i t2 l f(t) dt 

These three integrals can be evaluated by means of a transformation to values 
of the normal cumulative distribution function, Q(x). 

From the definition of the lognormal distribution?“, we know that 

f(x) =$ 0 fnxf’) ,0,(x) -i-&*exp(- %t2) dt 

Consequently, 

if(t) dt=@ ( lnxO-,) 

The derivation of the formulas for the remaining two integrals follows. 

dt*f(t) dt= r‘ 1 
h ~FLs 

exp{-t/2 ( Intcy’)‘)dt 

r-L& exp(oy + p) l exp(- My”) dy , 

1 y=- lnt-p 
Is 

dy = r dt 
at 

I t = exp(w + PL) 
20 J. Aitchinson and J. A. C. Brown, The Lo,rpormnl Distribution, Cambridge Univer- 

sity Press (1957). 
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1nx-w 
1 = Texp(1/20z + r) l {exp(- ‘A(Y - a)*) dy 

\/2x -cc 

1 
-c+ In 

=----=exp(YicrZ+P) l JexpT--/2z?)dz, 
an -cc 

=exp(Vic?+~)*iD -0-t ( Inx--p 

ci > 

[t’*f(t)dt=[X,& 
. 

nt*exp{-Vi( lnt-‘)‘]-dt 
G 

=-IA$K exp(2ay + 2~) l exp(- %y2) dy , 

Y= 
Int-- 

(I 

dy = L dt 
ot 

t = exp(oy + P) 

IFI-II 

- -!=exp(2n’ + 2~) l / exp(- l/2 (y -2~)“) dy - 
d2x -m 

In x - II 

1 
- yexp(2o” + 2$‘zj exp{-- */‘izx) dz, - 

\/2x m 

( ; ==Ydy 20 
Z 

Xl= exp(20” + 12~) . Q 
( 

-20 + In x - P 
f-5 ) 


