## PROCEEDINGS

## OF THE

# Casualty Actuarial Society 

Organized 1914


1976
VOLUME LXIII
Number 119 - May 1976
Number 120 - November 1976
1977 YEAR BOOK

COPYRIGHT - 1977
casualty actuarial society
aLL RIGHTS RESERVED

Printed for the Society by
Recording and Statistical Division
Sperry Rand Corporation
Boston, Massachusetts

## CONTENTS OF VOLUME LXIII

Page
Papers Presented at the May 1976 Meeting
Accident Limitations for Retrospective Rating- Frank Harwayne ..... 1
Discussion by: Robert J. Finger (November 1976) ..... 32
Estimating Pure Premium by Layer-An Approach- Robert J. Finger ..... 34
Discussion by: Lee R. Steeneck (November 1976) ..... 53
Discussion of Papers Published in Volume LXII
A Current Look at Workers' Compensation Ratemaking Roy H. Kallop (November 1975)
Discussion by: Charles Gruber ..... 57
Jerome A. Scheibl ..... 62
Generalized Premium Formulae- James P. Ross (November 1975)
Discussion by: Alan E. Kaliski and Richard D. Pagnozzi ..... 69
Minutes of the May 1976 Meeting ..... 72
Presidential Address-November 18, 1976
"Challenges"-Ronald L. Bornhuetter ..... 82
Papers Presented at the November 1976 Meeting
Modeling Loss Reserve Developments- Robert J. Finger ..... 90
A Note on Basic Limits Trend Factors- Robert J. Finger ..... 106
A Refined Model For Premium Adjustment- David Miller and George E. Davis ..... 117

## CONTENTS OF VOLUME LXIII (cont.)

Page
Discussion of Papers Published in Volume LXII
A Mathematical Model For Loss Reserve Analysis Charles McClenahan
Discussion by: David Skurnick ..... 125
Minutes of the November 1976 Meeting ..... 128
Report of the Secretary ..... 137
Report of the Treasurer ..... 140
Financial Report ..... 142
1976 Examinations-Successful Candidates ..... 144
Obituaries
Barrett N. Coates ..... 152
Everett S. Fallow ..... 153
Joseph H. Finnegan ..... 153
Harold F. LaCroix ..... 154
Gilbert R. Livingston ..... 154
Louis H. Mueller ..... 155
Walter E. Otto ..... 155
Armand Sommer ..... 156
M. Elizabeth Uh1 ..... 157
Index to Vollme LXIII ..... 158
1977 Yearbook

## NOTICE

The Society is not responsible for statements or opinions expressed in the articles, criticisms, and discussions in these Proceedings.

# PROCEEDINGS 

May 24, 25, 26, 1976

## ACCIDENT LIMITATIONS FOR RETROSPECTIVE RATING <br> FRANK HARWAYNE

The need for changes in retrospective rating plan accident limitation charges has been apparent for some time.

This paper describes recently adopted recommendations of the National Council on Compensation Insurance for developing such charges. The charges for accident limitations are familiarly known as Excess Loss Premium Factors or ELPF's. They are percentages of standard earned premium which are paid by the policyholder in lieu of his being charged for losses above a selected limit per accident. These charges also vary by industry grouping (hazard groups) to reflect the differences in expected frequency density and size of claim.

About 25 years ago, a system was developed for calculating ELPF's ${ }^{1}$. To Dunbar Uhthoff's great credit, this system has withstood the test of time for most of the 25 years. However, the accelerating impetus of inflation has brought about many qualitative and quantitative changes in insurance. The basic forces at work are:
a. Monetary inflation (the decreasing purchasing power of the accident limitation).
b. Loss development (greater development on more severe injuries).
c. Removal of benefit limitations.
d. Relatively higher medical cost inflation versus indemnity benefit inflation, increasing the spread of the claim size distribution.

[^0]Both frequency of claims and average claim costs have been seriously affected. In particular, claim costs have risen significantly with the dramatic rise in average weekly wages, medical costs and benefits afforded by workers' compensation laws. As an illustration, countrywide average weekly wages during the first six months of 1950 were $\$ 52.51$ compared with $\$ 175.34$ for the same period in 1975*. Average claim costs for death cases are $\$ 97,024$ (Illinois) on 1975 benefit levels compared to $\$ 3,967$ (Illinois) which was used in the 1950 paper.

Since that time, many states which had previously limited the maximum dollar amount payable for such claims have enacted laws which provide lifetime benefits with significantly higher costs. Changes of such magnitude are bound to affect distributions of extreme values. Because charges for accident limitations represent costs which are intended to cover (on the average) amounts in excess of selected limitations, it follows that inflation will shift larger percentages of the total cost over to the higher end of the distribution.

The shift, wherein greater percentages of total cost have been transferred to the higher end of the scale, has been fcared and known for some time. Newer tables which reflect the shift were needed. Documentation of the changes in distribution of cost was accomplished by digging into the customary reports used by the National Council on Compensation Insurance for ratemaking. The information was not in readily usable form ${ }^{3}$ and revisions of developed individual reports were required for purposes of this study. The need for mature reports is apparent in light of the substantial development of average cost per claim at successive reports. For example, in the state of Connecticut, permanent total average cost per claim for policy year $1969-70^{4}$ was $\$ 87,348$ at first report, $\$ 95,047$ at second report and $\$ 121,432$ at third report.

The program for updating distributions by size of claim called for the use of fourth reports for each of the serious loss categorics of fatal, permanent total and major permanent partial injuries. Serious loss categories were used because these are the ones which are likely to result in individual claim costs in excess of the accident limit selected. Distributions as a ratio

[^1]of average cost were obtained for the medium or high benefit jurisdictions of Arkansas, Connecticut, District of Columbia, Maryland and Nebraska. By observing each jurisdiction in terms of that portion of cost which represented excess cost per case according to the intervals as a ratio to average, the problem of recognizing different benefit levels and different average costs per case in each of the jurisdictions was minimized. It then became possible to combine the excess cost per case for particular ratios to average. This combination was made based upon the total number of cases for the particular injury type in each of the jurisdictions considered (see Exhibits I-1 and II-1).

EXHIBIT I-1
FATAL-LIMITED
Ratio to Avg.
. 25
. 50
.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50

Total Number of Claims

85
36
59
$\mathbf{X X X}$
*Average excess ratios weighted by state's total number of claims
The combined results were plotted on semi-logarithmic graph paper and compared with the tables known as "Uhthoff's Tables" (see Exhibits I-3 and II-3). It immediately became apparent that the latter have become seriously out of date at the high end of the scale.

The graphic representation of data for permanent total cases showed a remarkable coincidence with the data for fatal limited cases. For this reason, it was decided to use the fatal limited tables for permanent total as well.

Unlimited fatal cases indicated much lower charges than did the table for limited fatal cases. Due to the paucity of unlimited fatal claims, and in the light of actual results, it was decided to apply the new table for limited fatal cases to the unlimited as well.

Since the values obtained by the averaging method described above were only calculated at each $25 \%$ of the average cost per claim, a method was needed to produce a complete table. The method of least squares was used in fitting various equations to the combined results (see Exhibits I-2 and II-2). Each fitted equation was required to produce a value of 1.000 for a zero ratio to average cost. For those selected equations which did not lend themselves to a true least squares analysis, both an approximate least squares method (utilizing logarithms) and a method of collocation were tried. Collocation involves the algebraic solution of the general equation such that the collocation equation thus obtained passes through selected values of the actual data ${ }^{5}$. This is an iterative technique; it was continued until the observed deviations were evenly spread over the entire distribution. The equations, which exhibited the minimum sum of squared differences, were then used to generate complete tables of excess ratios. Exhibits I-4 and II-4 contain the new values developed by the collocation method.

A committee of actuaries reviewed and approved the use of the newly developed tables. The tables will be utilized in conjunction with the current excess loss premium factor calculations ${ }^{\text {i }}$ until such time as fourth reports of losses by type of injury become available. (See Appendix A for an example of these calculations). At this point, the calculation shall be modified to incorporate the use of estimated actual development by type of injury in lieu of the 1.6 factor which Uhthoff's procedure uses ${ }^{\top}$. Detailed comparisons of results under Uhthoff's methods and the new method are described in Appendix $A$.

[^2]EXHIBIT I-2
FATAL-LIMITED

## EXCESS RATIOS

| $\begin{gathered} (x) \\ \text { Ratio } \\ \text { to Avg. } \end{gathered}$ | (y) | CURVES FIT BY LEAST SQUARES CRITERION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{y}^{*}=(.342)^{x}$ | $\begin{array}{r} y^{\prime}=.151 x^{2}-1 \\ \hline .779 x+1 \\ \hline \end{array}$ | $\begin{aligned} & \substack{127 \times 2 \\ y^{\prime}-417 x \\ y^{\prime}=\\ \hline \\ \hline} \end{aligned}$ | $y^{\prime}=\frac{1}{1+.185 x+}$ | $\begin{aligned} & =\frac{1}{1-x+} \\ & 3.883 x^{2}-.406 x^{3} \end{aligned}$ |
|  |  |  |  |  |  |  |
| . 00 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| . 25 | . 776 | . 765 | . 815 | . 707 | . 840 | 1.014 |
| . 50 | . 597 | . 585 | . 648 | . 508 | . 599 | . 704 |
| . 75 | . 440 | . 447 | . 501 | . 371 | . 410 | . 442 |
| 1.00 | . 308 | . 342 | . 372 | . 275 | . 286 | . 288 |
| 1.25 | . 196 | . 262 | . 262 | . 207 | . 207 | . 199 |
| 1.50 | . 147 | . 200 | . 171 | . 159 | . 154 | . 146 |
| 1.75 | . 116 | . 153 | . 099 | . 124 | . 119 | . 112 |
| 2.00 | . 090 | . 117 | . 046 | . 098 | . 094 | . 089 |
| 2.25 | . 073 | . 089 | . 012 | . 078 | . 076 | . 073 |
| 2.50 | . 063 | . 068 | -. 004 | . 064 | . 063 | . 061 |
| 2.75 | . 054 | . 052 | . 000 | . 053 | . 053 | . 052 |
| 3.00 | . 046 | . 040 | . 022 | . 045 | . 045 | . 045 |
| 3.25 | . 039 | . 031 | . 063 | . 038 | . 038 | . 040 |
| 3.50 | . 034 | . 023 | . 123 | . 033 | . 033 | . 036 |
| $\frac{\Sigma\left\|y-y^{\prime}\right\|}{n}$ | xx | . 020 | . 046 | . 021 | . 010 | . 026 |
| $\frac{\sum\left(y-y^{\prime}\right)^{2}}{n}$ | xx | . 00749 | . 002620 | . 001264 | . 000379 | . 004569 |

See Exhibit I-1 for derivation.


Ratio to Average
Current $-\infty-\infty$
Dtoserved


## EXHIBIT I-4 <br> FATAL CASES (LIMITED AMOUNT)*

$\left.\begin{array}{rrcccc}\begin{array}{c}\text { Ratio } \\ \text { To } \\ \text { Aver. }\end{array} & \begin{array}{c}\text { Excess } \\ \text { Per } \\ \text { Case }\end{array} & & \begin{array}{c}\text { Ratio } \\ \text { To }\end{array} & \begin{array}{c}\text { Excess } \\ \text { Per } \\ \text { Caver. }\end{array} & \end{array} \begin{array}{c}\text { Ratio } \\ \text { To } \\ \text { Aver. }\end{array} \begin{array}{c}\text { Excess } \\ \text { Per } \\ \text { Case }\end{array}\right]$

EXHIBIT 1-4 (CONT'D)

| Ratio | Excess |
| :---: | :---: |
| To | Per |
| Aver. | Case |
| 99 | .290 |

100 . 286
101.282
102.278

103 . 275
104 . 271
105 . 267
106 . 264
107 . 260
108 . 257
109 . 253
110 . 250
111.247

112 . 244
113 . 240
114 . 237
115 . 234
116 . 231
117 . 228
118 . 225

119 . 223
120 . 220
121.217
122.214

123 . 212
124 . 209
125 . 207
126 . 204
127 . 202
128 . 199
129.197
130.194
131.192
132.190

133 . 188

| Ratio | Excess |
| :---: | :---: |
| To | Per |
| Aver. | Case |
| 134 | .185 |


| Ratio <br> To <br> Aver. | Excess <br> Per <br> Case |
| :---: | :---: |
| 169 | .126 |
| 170 | .125 |
| 171 | .124 |
| 172 | .123 |
| 173 | .121 |
| 174 | .120 |
| 175 | .119 |
| 176 | .118 |

177 . 117
$178 \quad .116$
179.115

180 . 113
181.112
182.111

183 . 110
184 . 109
185 . 108
186 . 107
187.106

188 . 105
189.104
190.103
191.102
192.101

193 . 100
194 . 099
195 . 099
196 . 098
197 . 097
198 . 096
199.095
200.094
201.093
202.093

203 . 092

EXHIBIT I-4 (CONT'D)

| Ratio To Aver. | Excess Pcr Case | $\begin{aligned} & \text { Ratio } \\ & \text { To } \\ & \text { Aver. } \end{aligned}$ | Excess Per Case | Ratio To Aver. | Excess Per Case |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 204 | . 091 | 239 | . 068 | 274 | . 053 |
| 205 | . 090 | 240 | . 068 | 275 | . 053 |
| 206 | . 089 | 241 | . 067 | 276 | . 052 |
| 207 | . 089 | 242 | . 067 | 277 | . 052 |
| 208 | . 088 | 243 | . 066 | 278 | . 052 |
| 209 | . 087 | 244 | . 066 | 279 | . 051 |
| 210 | . 086 | 245 | . 065 | 280 | . 051 |
| 211 | . 086 | 246 | . 065 | 281 | . 051 |
| 212 | . 085 | 247 | . 064 | 282 | . 050 |
| 213 | . 084 | 248 | . 064 | 283 | . 050 |
| 214 | . 084 | 249 | . 063 | 284 | . 050 |
| 215 | . 083 | 250 | . 063 | 285 | . 049 |
| 216 | . 082 | 251 | . 062 | 286 | . 049 |
| 217 | . 081 | 252 | . 062 | 287 | . 049 |
| 218 | . 081 | 253 | . 062 | 288 | . 048 |
| 219 | . 080 | 254 | . 061 | 289 | . 048 |
| 220 | . 079 | 255 | . 061 | 290 | . 048 |
| 221 | . 079 | 256 | . 060 | 291 | . 047 |
| 222 | . 078 | 257 | . 060 | 292 | . 047 |
| 223 | . 078 | 258 | . 059 | 293 | . 047 |
| 224 | . 077 | 259 | . 059 | 294 | . 046 |
| 225 | . 076 | 260 | . 058 | 295 | . 046 |
| 226 | . 076 | 261 | . 058 | 296 | . 046 |
| 227 | . 075 | 262 | . 058 | 297 | . 046 |
| 228 | . 074 | 263 | . 057 | 298 | . 045 |
| 229 | . 074 | 264 | . 057 | 299 | . 045 |
| 230 | . 073 | 265 | . 056 | 300 | . 045 |
| 231 | . 073 | 266 | . 056 | 301 | . 044 |
| 232 | . 072 | 267 | . 056 | 302 | . 044 |
| 233 | . 072 | 268 | . 055 | 303 | . 044 |
| 234 | . 071 | 269 | . 055 | 304 | . 044 |
| 235 | . 070 | 270 | . 055 | 305 | . 043 |
| 236 | . 070 | 271 | . 054 | 306 | . 043 |
| 237 | . 069 | 272 | . 054 | 307 | . 043 |
| 238 | . 069 | 273 | . 053 | 308 | . 043 |

## EXHIBIT I-4 (CONT'D)

| Ratio <br> To <br> Aver. | Excess <br> Per <br> Case |  | Ratio <br> To <br> Aver. | Excess <br> Per <br> Case |  | Ratio <br> To <br> Aver. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Excess <br> Per <br> Case |  |  |  |  |
| 309 | .042 | 323 | .039 | 337 | .036 |  |
| 310 | .042 | 324 | .039 | 338 | .036 |  |
| 311 | .042 | 325 | .038 | 339 | .035 |  |
| 312 | .042 | 326 | .038 | 340 | .035 |  |
| 313 | .041 | 327 | .038 | 341 | .035 |  |
| 314 | .041 | 328 | .038 | 342 | .035 |  |
| 315 | .041 | 329 | .038 | 343 | .035 |  |
| 316 | .041 | 330 | .037 | 344 | .035 |  |
| 317 | .040 | 331 | .037 | 345 | .034 |  |
| 318 | .040 | 332 | .037 | 346 | .034 |  |
| 319 | .040 | 333 | .037 | 347 | .034 |  |
| 320 | .040 | 334 | .037 | 348 | .034 |  |
| 321 | .039 | 335 | .036 | 349 | .034 |  |
| 322 | .039 | 336 | .036 | $350 \&$ | .033 |  |

Over

A study of experience by hazard group is also under review. The indicated hazard group differentials to average are based upon a review of the experience indications of high, medium and low benefit states as well as the experience of the totals of the three groups of states. The experience is shown in Appendix B (Exhibits B-1 through B-4).

These procedures and tables reflect the situation known today. It is hoped that they may survive periodic review and serve the insurance industry's requirements as long as "Uhthoff's Tables" have.

| Accident Years | Range of Factors |  |
| :---: | :---: | :---: |
| $1968-1974$ ( 1 st Report to Ultimate) |  | $3.10-3.51$ |
| $1968-1973$ (2nd Report to Ultimate) |  | $1.68-2.13$ |
| $1968-1972$ (3rd Report to Ultimate) |  | $1.41-1.67$ |
| $1968-1971$ (4th Report to Ultimate) |  | $1.37-1.46$ |

Reported in March, 1976 issue of Best's Property/Casualty Review, pp. 14-18.

EXHIBIT II-1
MAJOR PERMANENT PARTIAL

| Ratio | Excess Ratios |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| to Avg. | Ark. | Conn. | D.C. | Md. | Neb. | Avg.* |
| .00 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| .25 | .750 | .751 | .751 | .751 | .751 | .751 |
| .50 | .509 | .528 | .518 | .526 | .504 | .519 |
| .75 | .343 | .281 | .361 | .383 | .339 | .344 |
| 1.00 | .248 | .194 | .253 | .285 | .242 | .249 |
| 1.25 | .178 | .140 | .174 | .216 | .181 | .182 |
| 1.50 | .129 | .105 | .118 | .165 | .141 | .136 |
| 1.75 | .096 | .082 | .081 | .127 | .113 | .103 |
| 2.00 | .073 | .065 | .059 | .098 | .094 | .080 |
| 2.25 | .058 | .055 | .050 | .077 | .082 | .065 |
| 2.50 | .046 | .045 | .042 | .063 | .075 | .053 |
| 2.75 | .040 | .037 | .036 | .052 | .067 | .045 |
| 3.00 | .030 | .033 | .031 | .044 | .058 | .038 |
| 3.25 | .021 | .029 | .028 | .038 | .052 | .033 |
| 3.50 | .024 | .022 | .029 | .051 | .027 |  |
| 3.75 | .020 | .021 | .021 | .025 | .050 | .024 |
| 4.00 | .015 | .018 | .018 | .021 | .049 | .021 |
| 4.25 | .015 | .016 | .018 | .048 | .019 |  |
| 4.50 | .013 | .015 | .013 | .016 | .047 | .017 |
| 4.75 | .012 | .012 | .010 | .013 | .046 | .015 |
| 5.00 | .010 | .011 | .008 | .012 | .045 | .013 |
| 5.25 | .009 | .010 | .006 | .011 | .044 | .012 |
| 5.50 | .008 | .009 | .005 | .010 | .043 | .011 |
| 5.75 | .007 | .003 | .010 | .042 | .010 |  |
| 6.00 | .006 | .001 | .009 | .041 | .009 |  |
| Total Number | 794 | 666 | 290 | 1,022 | 233 | xxx |
| of Claims |  |  |  |  |  |  |

[^3]
## EXHIBIT II-2

MAJOR PERMANENT PARTIAL
EXCESS RATIOS

## CURVES FIT BY LEAST SQUARES CRITERION

| $\begin{gathered} (x) \\ \text { Ratio } \\ \text { To Avg. } \end{gathered}$ | (y) |  | $\begin{array}{r} y^{\prime}=.072 x^{2}- \\ \hline .565 x+1 \\ \hline \end{array}$ | $\begin{aligned} & .113 x^{2}- \\ & y^{\prime}=e^{435 x} \\ & \hline \end{aligned}$ | $\mathrm{y}^{\prime}=\frac{1}{1+.555 \mathrm{x}+}$ | $\begin{aligned} & y^{\prime}=\frac{1}{1+.805 x+} \\ & 2.044 x^{2}+.167 x^{3} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{y}^{\prime}=(.267)^{x}$ |  |  |  |  |
| . 00 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| . 25 | . 751 | . 719 | . 863 | . 703 | . 766 | . 751 |
| . 50 | . 519 | . 517 | . 736 | . 502 | . 515 | . 517 |
| . 75 | 344 | . 371 | . 617 | . 363 | . 344 | . 354 |
| 1.00 | . 249 | . 267 | . 507 | . 267 | . 238 | . 249 |
| 1.25 | . 182 | . 192 | . 406 | . 198 | . 171 | . 181 |
| 1.50 | . 136 | . 138 | . 315 | 150 | . 128 | . 136 |
| 1.75 | . 103 | . 099 | . 232 | . 115 | . 099 | . 105 |
| 2.00 | . 080 | . 071 | . 158 | . 089 | . 079 | . 082 |
| 2.25 | . 065 | . 051 | . 093 | . 070 | . 064 | . 066 |
| 2.50 | . 053 | . 037 | . 038 | . 056 | . 053 | . 054 |
| 2.75 | . 045 | . 026 | -. 009 | . 045 | . 044 | . 045 |
| 3.00 | . 038 | . 019 | -. 047 | . 037 | . 038 | . 038 |
| 3.25 | . 033 | . 014 | -. 076 | . 031 | 032 | . 032 |
| 3.50 | . 027 | . 010 | -. 096 | . 026 | . 028 | . 028 |
| 3.75 | . 024 | . 007 | -. 106 | . 023 | . 025 | . 024 |
| 4.00 | . 021 | . 005 | -. 108 | . 020 | . 022 | . 021 |

[^4]
*See Exhibit II-1 for derivation


$\frac{1}{1 \cdot 61 x^{6} \cdot 0+4 x^{2}+.16 x^{3}}$

## EXHIBIT II-4

MAJOR PERMANENT PARTIAL CASES*
$\left.\begin{array}{cccccc}\begin{array}{c}\text { Ratio } \\ \text { To } \\ \text { Aver. }\end{array} & \begin{array}{c}\text { Excess } \\ \text { Per } \\ \text { Case }\end{array} & & \begin{array}{c}\text { Ratio } \\ \text { To } \\ \text { Aver. }\end{array} & \begin{array}{c}\text { Excess } \\ \text { Per } \\ \text { Case }\end{array} & \end{array} \begin{array}{c}\text { Ratio } \\ \text { To } \\ \text { Aver. }\end{array} \begin{array}{c}\text { Excess } \\ \text { Per } \\ \text { Case }\end{array}\right]$

[^5]EXHIBIT II-4 (CONT'D)

| Ratio To Aver. | Excess Per Case | Ratio To Aver. | Excess Per Case | Ratio To Aver. | Excess Per Case |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 99 | . 252 | 134 | . 163 | 169 | . 111 |
| 100 | . 249 | 135 | . 161 | 170 | . 110 |
| 101 | . 246 | 136 | . 159 | 171 | . 109 |
| 102 | . 242 | 137 | . 157 | 172 | . 108 |
| 103 | . 239 | 138 | . 155 | 173 | . 107 |
| 104 | . 236 | 139 | . 153 | 174 | .106 |
| 105 | . 233 | 140 | . 152 | 175 | . 105 |
| 106 | . 230 | 141 | . 150 | 176 | . 104 |
| 107 | . 227 | 142 | . 148 | 177 | . 103 |
| 108 | . 224 | 143 | . 147 | 178 | . 102 |
| 109 | . 221 | 144 | . 145 | 179 | . 101 |
| 110 | . 218 | 145 | . 143 | 180 | . 100 |
| 111 | . 216 | 146 | . 142 | 181 | . 099 |
| 112 | . 213 | 147 | . 140 | 182 | . 098 |
| 113 | . 210 | 148 | . 139 | 183 | . 097 |
| 114 | . 207 | 149 | . 137 | 184 | . 096 |
| 115 | . 205 | 150 | . 136 | 185 | . 095 |
| 116 | . 202 | 151 | . 134 | 186 | . 094 |
| 117 | . 200 | 152 | . 133 | 187 | . 093 |
| 118 | . 197 | 153 | . 131 | 188 | . 092 |
| 119 | . 195 | 154 | . 130 | 189 | . 091 |
| 120 | . 192 | 155 | . 129 | 190 | . 090 |
| 121 | . 190 | 156 | . 127 | 191 | . 090 |
| 122 | . 188 | 157 | . 126 | 192 | . 089 |
| 123 | . 185 | 158 | . 124 | 193 | . 088 |
| 124 | . 183 | 159 | . 123 | 194 | . 087 |
| 125 | . 181 | 160 | . 122 | 195 | . 086 |
| 126 | . 179 | 161 | . 121 | 196 | . 086 |
| 127 | . 177 | 162 | . 119 | 197 | . 085 |
| 128 | . 175 | 163 | . 118 | 198 | . 084 |
| 129 | . 172 | 164 | . 117 | 199 | . 083 |
| 130 | . 170 | 165 | . 116 | 200 | . 082 |
| 131 | . 168 | 166 | . 115 | 201 | . 082 |
| 132 | . 166 | 167 | . 113 | 202 | . 081 |
| 133 | . 164 | 168 | . 112 | 203 | . 080 |

EXHIBIT II-4 (CONT'D)

| Ratio <br> To | Excess <br> Per <br> Aver. |
| :---: | :---: |
| 204 | .080 |
| 205 | .079 |
| 206 | .078 |
| 207 | .077 |
| 208 | .077 |
| 209 | .076 |
| 210 | .075 |
| 211 | .075 |
| 212 | .074 |
| 213 | .074 |
| 214 | .073 |
| 215 | .072 |
| 216 | .072 |
| 217 | .071 |
| 218 | .070 |
| 219 | .070 |
| 220 | .069 |
| 221 | .069 |
| 222 | .068 |
| 223 | .068 |
| 224 | .067 |
| 225 | .066 |
| 226 | .066 |
| 227 | .065 |
| 228 | .065 |
| 229 | .064 |
| 230 | .064 |
| 231 | .063 |
| 232 | .063 |
| 233 | .062 |
| 234 | .062 |
| 235 | .061 |
| 236 | .061 |
| 237 | .060 |
| 238 | .060 |
|  |  |


| Ratio To Aver. | Excess Per Case | Ratio To Aver. | Excess Per Case |
| :---: | :---: | :---: | :---: |
| 239 | . 059 | 274 | . 045 |
| 240 | . 059 | 275 | . 045 |
| 241 | . 058 | 276 | . 045 |
| 242 | . 058 | 277 | . 045 |
| 243 | . 057 | 278 | . 044 |
| 244 | . 057 | 279 | . 044 |
| 245 | . 057 | 280 | . 044 |
| 246 | . 056 | 281 | . 043 |
| 247 | . 056 | 282 | . 043 |
| 248 | . 055 | 283 | . 043 |
| 249 | . 055 | 284 | . 042 |
| 250 | . 054 | 285 | . 042 |
| 251 | . 054 | 286 | . 042 |
| 252 | . 054 | 287 | . 042 |
| 253 | . 053 | 288 | . 041 |
| 254 | . 053 | 289 | . 041 |
| 255 | . 052 | 290 | . 041 |
| 256 | . 052 | 291 | . 040 |
| 257 | . 052 | 292 | . 040 |
| 258 | . 051 | 293 | . 040 |
| 259 | . 051 | 294 | . 040 |
| 260 | . 050 | 295 | . 039 |
| 261 | . 050 | 296 | . 039 |
| 262 | . 050 | 297 | . 039 |
| 263 | . 049 | 298 | . 039 |
| 264 | . 049 | 299 | . 038 |
| 265 | . 049 | 300 | . 038 |
| 266 | . 048 | 301 | . 038 |
| 267 | . 048 | 302 | . 037 |
| 268 | . 047 | 303 | . 037 |
| 269 | . 047 | 304 | . 037 |
| 270 | . 047 | 305 | . 037 |
| 271 | . 046 | 306 | . 037 |
| 272 | . 046 | 307 | . 036 |
| 273 | . 046 | 308 | . 036 |

## EXHIBIT II-4 (CONT'D)

| Ratio To Aver | Excess Per Case | Ratio To Aver | Excess Per Case | Ratio To Aver. | Excess Per Case |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 309 | . 036 | 344 | . 029 | 379 | . 024 |
| 310 | . 036 | 345 | . 029 | 380 | . 023 |
| 311 | . 035 | 346 | . 028 | 381 | . 023 |
| 312 | . 035 | 347 | . 028 | 382 | . 023 |
| 313 | . 035 | 348 | . 028 | 383 | . 023 |
| 314 | . 035 | 349 | . 028 | 384 | . 023 |
| 315 | . 034 | 350 | . 028 | 385 | . 023 |
| 316 | . 034 | 351 | . 028 | 386 | . 023 |
| 317 | . 034 | 352 | . 027 | 387 | . 023 |
| 318 | . 034 | 353 | . 027 | 388 | . 022 |
| 319 | . 034 | 354 | . 027 | 389 | . 022 |
| 320 | . 033 | 355 | . 027 | 390 | . 022 |
| 321 | . 033 | 356 | . 027 | 391 | . 022 |
| 322 | . 033 | 357 | . 027 | 392 | . 022 |
| 323 | . 033 | 358 | . 026 | 393 | . 022 |
| 324 | . 033 | 359 | . 026 | 394 | . 022 |
| 325 | . 032 | 360 | . 026 | 395 | . 022 |
| 326 | . 032 | 361 | . 026 | 396 | . 021 |
| 327 | . 032 | 362 | . 026 | 397 | . 021 |
| 328 | . 032 | 363 | . 026 | 398 | . 021 |
| 329 | . 032 | 364 | . 026 | 399 | . 021 |
| 330 | . 031 | 365 | . 025 | 400 | . 021 |
| 331 | . 031 | 366 | . 025 | 401 | . 021 |
| 332 | . 031 | 367 | . 025 | 402 | . 021 |
| 333 | . 031 | 368 | . 025 | 403 | . 021 |
| 334 | . 031 | 369 | . 025 | 404 | . 021 |
| 335 | . 030 | 370 | . 025 | 405 | . 020 |
| 336 | . 030 | 371 | . 025 | 406 | . 020 |
| 337 | . 030 | 372 | . 024 | 407 | . 020 |
| 338 | . 030 | 373 | . 024 | 408 | . 020 |
| 339 | . 030 | 374 | . 024 | 409 | . 020 |
| 340 | . 029 | 375 | . 024 | 410 | . 020 |
| 341 | . 029 | 376 | . 024 | 411 | . 020 |
| 342 | . 029 | 377 | . 024 | 412 | . 020 |
| 343 | . 029 | 378 | . 024 | 413 | . 020 |

## EXHIBIT II-4 (CONT'D)

| Ratio To Aver. | Excess Per Case | $\begin{aligned} & \text { Ratio } \\ & \text { To } \\ & \text { Aver. } \end{aligned}$ | Excess Per Case | Ratio To Aver. | Excess Per Case |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 414 | . 020 | 449 | . 016 | 484 | . 014 |
| 415 | . 019 | 450 | . 016 | 485 | . 014 |
| 416 | . 019 | 451 | . 016 | 486 | . 014 |
| 417 | . 019 | 452 | . 016 | 487 | . 014 |
| 418 | . 019 | 453 | . 016 | 488 | . 014 |
| 419 | . 019 | 454 | . 016 | 489 | . 014 |
| 420 | . 019 | 455 | . 016 | 490 | . 014 |
| 421 | . 019 | 456 | . 016 | 491 | . 014 |
| 422 | . 019 | 457 | . 016 | 492 | . 013 |
| 423 | . 019 | 458 | . 016 | 493 | . 013 |
| 424 | . 019 | 459 | . 016 | 494 | . 013 |
| 425 | . 018 | 460 | . 016 | 495 | . 013 |
| 426 | . 018 | 461 | . 016 | 496 | . 013 |
| 427 | . 018 | 462 | . 015 | 497 | . 013 |
| 428 | . 018 | 463 | . 015 | 498 | . 013 |
| 429 | . 018 | 464 | . 015 | 499 | . 013 |
| 430 | . 018 | 465 | . 015 | 500 | . 013 |
| 431 | . 018 | 466 | . 015 | 501 | . 013 |
| 432 | . 018 | 467 | . 015 | 502 | . 013 |
| 433 | . 018 | 468 | . 015 | 503 | . 013 |
| 434 | . 018 | 469 | . 015 | 504 | . 013 |
| 435 | . 018 | 470 | . 015 | 505 | . 013 |
| 436 | . 017 | 471 | . 015 | 506 | . 013 |
| 437 | . 017 | 472 | . 015 | 507 | . 013 |
| 438 | . 017 | 473 | . 015 | 508 | . 013 |
| 439 | . 017 | 474 | . 015 | 509 | . 012 |
| 440 | . 017 | 475 | . 015 | 510 | . 012 |
| 441 | . 017 | 476 | . 014 | 511 | . 012 |
| 442 | . 017 | 477 | . 014 | 512 | . 012 |
| 443 | . 017 | 478 | . 014 | 513 | . 012 |
| 444 | . 017 | 479 | . 014 | 514 | . 012 |
| 445 | . 017 | 480 | . 014 | 515 | . 012 |
| 446 | . 017 | 481 | . 014 | 516 | . 012 |
| 447 | . 017 | 482 | . 014 | 517 | . 012 |
| 448 | . 016 | 483 | . 014 | 518 | . 012 |

EXHIBIT II-4 (CONT'D)

| Ratio To Aver | Excess Per Case | Ratio To Aver. | Excess Per Case | Ratio To Aver. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 519 | . 012 | 547 | . 011 | 575 | . 010 |
| 520 | . 012 | 548 | . 011 | 576 | . 009 |
| 521 | . 012 | 549 | . 011 | 577 | . 009 |
| 522 | . 012 | 550 | . 011 | 578 | . 009 |
| 523 | . 012 | 551 | . 010 | 579 | . 009 |
| 524 | . 012 | 552 | . 010 | 580 | . 009 |
| 525 | . 012 | 553 | . 010 | 581 | . 009 |
| 526 | . 012 | 554 | . 010 | 582 | . 009 |
| 527 | . 012 | 555 | . 010 | 583 | . 009 |
| 528 | . 012 | 556 | . 010 | 584 | . 009 |
| 529 | . 011 | 557 | . 010 | 585 | . 009 |
| 530 | . 011 | 558 | . 010 | 586 | . 009 |
| 531 | . 011 | 559 | . 010 | 587 | . 009 |
| 532 | . 011 | 560 | . 010 | 588 | . 009 |
| 533 | . 011 | 561 | . 010 | 589 | . 009 |
| 534 | . 011 | 562 | . 010 | 590 | . 009 |
| 535 | . 011 | 563 | . 010 | 591 | . 009 |
| 536 | . 011 | 564 | . 010 | 592 | . 009 |
| 537 | . 011 | 565 | . 010 | 593 | . 009 |
| 538 | . 011 | 566 | . 010 | 594 | . 009 |
| 539 | . 011 | 567 | . 010 | 595 | . 009 |
| 540 | . 011 | 568 | . 010 | 596 | . 009 |
| 541 | . 011 | 569 | . 010 | 597 | . 009 |
| 542 | . 011 | 570 | . 010 | 598 | . 009 |
| 543 | . 011 | 571 | . 010 | 599 | . 009 |
| 544 | . 011 | 572 | . 010 | 600 \& | . 009 |
| 545 | . 011 | 573 | . 010 | Over |  |
| 546 | . 011 | 574 | . 010 |  |  |

## APPENDIX A

Three exhibits which follow set forth the calculation of Excess Loss Premium Factors. The first (Appendix A-1) describes the present procedure based on Uhthoff:s tables, the second (Appendix A-2) describes the present procedure based on revised tables and the third ( 1 ppendix $\wedge-3$ ) describes the present procedure (modified) based on revised tables. For convenience, they will be referred to as A-1, A-2 and A-3. respectively

All three exhibits rest upon two policy years of experience; one at a first report and one at a second report. The average claim cost is determined by adjusting the reported incurred losses to reflect law amendment factors and then dividing the result by the number of cases. This is perlormed by type of injury and is shown in Column 12 of A-1 and A-2. With respect to A-3, not only are the incurred losses adjusted to reflect law amendment factors, they are also modified to reflect loss development by type of injury. The resulting average claim cost is shown in Column 16 of A-3.

The average claim costs are shown on lines 13 (death). 16 (permanent total). and 19 (major) for Exhibits $\mathrm{A}-1$ and $\mathrm{A}-2$. The corresponding lines for Exhibit A-3 are lines 17,20 and 23. In all three exhibits, the bottom hall shows the selected accident limit ranging from $\$ 10,000$ to $\$ 250,000$ arranged by columns lettered from (A) through ( $L$ ). These amounts are expressed as ratios to the average cost for each serious type of elaim. These ratios are then used to enter the appropriate table, namely. Uhthoffs or Revised in order to determine the excess ratio contribution by each type of clam. These excess ratios are then weighted in proportion to the contribution to total cost made by each type of claim. The proportion, which is shown on line 22, is derived from the data in Column 11 for A-I and A-2. These proportions shown on line 26 of $\mathrm{A}-3$ are different from those of $\mathrm{A}-1$ and $\mathrm{A}-2$ because loss development has been included: they are derived from Column 15. The average excess ratio is multiplied by the permissible loss ratio increased by $10 \%$ to reflee the conversion of data complied on a per claim basis to a "per accident" basis. It is then increased by llat loadings ranging from .005 to .001 as the accident limit increases. Finally, the indicated Excess Loss Premium Factors are modified by a lactor of 1.6 to reflect loss development with respect to the procedures in A-1 and A-2. With respect to A-3. this factor is not necessary since development was included at the beginning; consequently the indicated Excess Loss Premium Factors are the proposed Excess Loss Premium Fatetors.

The present procedures based on the revised tables tend to produce lower charges for the lower accidents limits and higher charges for the higher accident limits than those based on ththoffs tables. This is also true for the present procedure (modified) based on the revised tables wherein loss development by type of injury is included in the calculation of the average clatim cost.

It is believed that the revised tables and the modified procedures will eflectively gencrate more appropriate charges since quite lrequently the proposed Excess l.oss Premium Factors at the lower limits may need to be arbitrarily reduced becalase thes exced the permissible loss ratio.

## PRESENT PROCEDURE - BASED ON UHTHOFF'S TABLES

Policy Period (70-71) 2nd Policy Period (71-72) Ist

| (1) <br> Type Of Injury | (2) <br> No. Of Cases | (3) <br> Indemnity | (4) A.F. | $(5)$ Medical | (6) A.F. | (7) Indemnity | (8) A.F. | (9) Medical | (10) <br> A.F. | (11) Total | (12) Average (11) $\div(2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Death | 86 | 2.451,463 | 1.150 | 87.228 | 1.000 | 2,280.619 | 1.100 | 57.109 | 1.000 | 5.472 .200 | 0063,630 |
| P.T. | 19 | 344,657 | 1.033 | 384.440 | 1.000 | 1,284,254 | 1.091 | 614.261 | 1.000 | 2.755 .853 | 3145,045 |
| Major | 1.271 | 6,950,644 | 1.145 | 2,585.223 | 1.000 | 8.763 .791 | 1.086 | 3,948.947 | 1.000 | 24.010 .134 | 418.891 |
| Minor | X $\boldsymbol{X}$ | 6,125,412 | 1.143 | 2,281,834 | 1.000 | 7.238,922 | 1.089 | 2,740,605 | 1.000 | 19.906,971 | 1 xx |
| T.T. | X ${ }^{\text {x }}$ | 5,617.151 | 1.156 | 3.495 .883 | 1.000 | 7.883 .248 | 1.097 | 5.247 .349 | 1.000 | 23,884,582 | 2 xx |
| Other Med. | x $x$ | $\mathrm{x} \times$ | xx | 2.651 .245 | 1.000 | XX | XX | 3,584,517 | 1.000 | 6,235,762 | 2 xx |
| TOTAL | xx | $\mathrm{x} x$ | xx | xx | $\mathrm{x} \times$ | X X | x $x$ | xx | $\mathrm{x} \times$ | 82,265,502 | 2 xx |
| A.F. $=$ Am | mendmen | Factor to (Am | urrent la | w level. 1,000 's) |  |  |  |  |  |  |  |
|  |  |  | 0 | $15 \quad 20$ | 25 | 30 | 40 | $50 \quad 75$ | 100 | $150 \quad 2$ | 200250 |
| 13. Average (Incl. M | Death C <br> d.) |  | A) $3,630$ | (B) (C) | (D) | (E) | (F) | (G) (H) | (I) | (J) | (K) (L) |
| 14. Ratio to (A), (B), | Average (C), etc. | (13) |  | . 24 . 31 | . 39 | . 47 | . 63 | .79 1.18 | 1.57 | 2.36 | $3.14 \quad 3.93$ |
| 15. Excess (from T | Ratio for bles) | Death | 41 | . 761.694 | . 630 | . 569 | . 453 | . 347 . 156 | . 069 | . 027 | . 021 . 021 |
| 16. Average (Incl. M | P.T. Cos <br> ed.) | ,045 |  |  |  |  |  |  |  |  |  |

APPENDIX A-1 (CONT'D)

|  | Ratio to Average $(\mathrm{A}),(\mathrm{B}),(\mathrm{C}), \text { etc. } \div(16)$ | . 07 | . 10 | . 14 | . 17 | . 21 | . 28 | . 34 | . 52 | . 69 | 1.03 | 1.38 | 1.72 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Excess Ratio for P.T. (from Tables) | . 930 | . 900 | . 860 | . 831 | . 791 | . 724 | . 668 | . 510 | . 378 | . 194 | . 103 | . 059 |
|  | Average Major Cost (Incl. Med.) | 18.891 |  |  |  |  |  |  |  |  |  |  |  |
|  | Ratio to Average <br> (A), (B), (C), etc. $\div(19)$ | . 53 | . 79 | 1.06 | 1.32 | 1.59 | 2.12 | 2.65 | 3.97 | 5.29 | 7.94 | 10.59 | 13.23 |
|  | Excess Ratio for Major (from Tables) | . 496 | . 324 | . 200 | . 127 | . 081 | . 031 | . 007 | . 001 | . 001 | . 001 | . 001 | . 001 |
|  | Ratios to a. Death <br> Total Cost <br>  b. P.T. <br> c. Major  | $\begin{aligned} & .067 \\ & .033 \\ & .292 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |
|  | Average Excess Ratio | . 232 | . 175 | . 133 | . 107 | . 088 | . 063 | . 047 | . 028 | . 017 | . 009 | . 005 | . 004 |
|  | Permissible Loss Ratio | . 610 |  |  |  |  |  |  |  |  |  |  |  |
| 25. | (24) $\times 1.10$ | . 671 |  |  |  |  |  |  |  |  |  |  |  |
|  | (23) $\times(25)$ | . 156 | . 117 | . 089 | . 072 | . 059 | . 042 | . 032 | . 019 | . 011 | . 006 | . 003 | . 003 |
| 27. | Flat Loadings | . 005 | . 004 | . 003 | . 002 | . 002 | . 002 | . 001 | . 001 | . 001 | . 001 | . 001 | . 001 |
|  | Indicated ELPF'S $(26)+(27)$ | . 161 | . 121 | . 092 | . 074 | . 061 | . 044 | . 033 | . 020 | . 012 | . 007 | . 004 | . 004 |
|  | Proposed ELPF'S $\text { (28) } \times 1.6$ | . 258 | . 194 | . 147 | . 118 | . 098 | . 070 | . 053 | . 032 | . 019 | . 011 | . 006 | . 006 |

[^6]
## APPENDIX A-2

## PRESENT PROCEDURE - BASED ON REVISED TABLES

|  | Policy Period (70-71) 2nd |  |  |  |  | Policy Period (71-72) Ist |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | ( 5 ) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
| Type of Injury | No. Of Cases | Indemnity | A.F. | Medical | A.F. | Indemnity | A.F. | Medical | A.F. | Total | Average $(11) \div(2)$ |
| Death | 86 | 2,451,463 | 1.150 | 87,228 | 1.000 | 2.280 .619 | 1.100 | 57,109 | 1.000 | 5,472.200 | 63.630 |
| P.T. | 19 | 344.657 | 1.033 | 384,440 | 1.000 | 1,284.254 | 1.091 | 614.261 | 1.000 | 2,755,853 | 145.045 |
| Major | 1.271 | 6.950 .644 | 1.145 | 2,585,223 | 1.000 | 8.763 .791 | 1.086 | 3,948,947 | 1.000 | 24.010.134 | 18,891 |
| Minor | x x | 6,125.412 | 1.143 | 2,281,834 | 1.000 | 7,238.922 | 1.089 | 2.740 .605 | 1.000 | 19,906,971 | X x |
| T.T. | XX | 5.617 .151 | 1.156 | 3,495,883 | 1.000 | 7.883 .248 | 1.097 | 5.247 .349 | 1.000 | 23,884,582 | xX |
| Other Med. | xX | $x X$ | xX | 2,651.245 | 1.000 | $\mathrm{x} \times$ | xx | 3.584 .517 | 1.000 | $6.235,762$ | x ${ }^{\text {x }}$ |
| TOTAL | $\mathrm{x} \times$ | x | $x \lambda$ | x | $\mathrm{x} \lambda$ | xx | xx | xx | x | 82.265 .502 | X ${ }^{\text {d }}$ |

A.F. $=$ Amendment Factor to current law level.

|  | (Amounts in 1.000's) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 75 | 100 | 150 | 200 | 250 |
| 13. Average Death Cost (Incl. Med.) | $\begin{aligned} & (A) \\ & 63.630 \end{aligned}$ | (B) | (C) | (D) | (E) | (F) | (G) | ( H$)$ | ( I ) | ( J ) | ( K ) | (L) |
| 14. Ratio to Average <br> (A), (B), (C), etc. $\div(13)$ | . 16 | . 24 | . 31 | . 39 | . 47 | . 63 | . 79 | 1.18 | 1.57 | 2.36 | 3.14 | 3.93 |
| 15. Excess Ratio for Death (from Tables) | . 918 | . 849 | . 782 | . 702 | . 626 | . 492 | .386 | . 225 | . 143 | . 070 | . 041 | . 033 |
| 16. Average P.T. Cost (Incl. Med.) | 145,045 |  |  |  |  |  |  |  |  |  |  |  |

## APPENDIX A-2 (CONT'D)

| 17. Ratio to Average (A), (B), (C), etc. $\div(16)$ | . 07 | . 10 | . 14 | .17 | . 21 | . 28 | . 34 | . 52 | . 69 | 1.03 | 1.38 | 1.72 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18. Excess Ratio For P.T. (from Tables) | . 976 | . 960 | . 934 | 911 | . 877 | . 811 | . 752 | . 581 | . 449 | . 275 | . 177 | . 123 |
| 19. Average Major Cost (Incl. Med.) | 18,891 |  |  |  |  |  |  |  |  |  |  |  |
| 20. Ratio to Average $\text { (A), (B), (C), etc. } \div(19)$ | . 53 | . 79 | 1.06 | 1.32 | 1.59 | 2.12 | 2.65 | 3.97 | 5.29 | 7.94 | 10.59 | 13.23 |
| 21. Excess Ratio for Major (from Tables) | . 494 | . 334 | . 230 | . 166 | .123 | . 074 | . 049 | . 021 | . 011 | . 009 | . 009 | . 009 |
| 22. Ratios to <br> a. Death Total Cost <br> b. P.T. <br> c. Major | $\begin{array}{r} .067 \\ .033 \\ .292 \end{array}$ |  |  |  |  |  |  |  |  |  |  |  |
| 23. Average Excess Ratio | . 238 | . 186 | . 150 | . 126 | . 107 | . 081 | . 065 | . 040 | . 028 | . 016 | . 011 | . 009 |
| 24. Permissible Loss Ratio | . 610 |  |  |  |  |  |  |  |  |  |  |  |
| 25. (24) $\times 1.10$ | . 671 |  |  |  |  |  |  |  |  |  |  |  |
| 26. (23) $\times(25)$ | . 160 | . 125 | . 101 | . 085 | . 072 | . 054 | . 044 | . 027 | . 019 | . 011 | . 007 | . 006 |
| 27. Flat Loadings | . 005 | . 004 | . 003 | . 002 | . 002 | . 002 | . 001 | . 001 | . 001 | . 001 | . 001 | . 001 |
| 28. Indicated ELPF'S $(26)+(27)$ | . 165 | . 129 | . 104 | . 087 | . 074 | . 056 | . 045 | . 028 | . 020 | . 012 | . 008 | . 007 |
| 29. Proposed ELPF'S $(28) \times 1.6$ | . 264 | . 206 | . 166 | . 139 | . 118 | . 090 | . 072 | . 045 | . 032 | . 019 | . 013 | . 011 |
| $* 23=[(15) \times(22 a)]+[($ | $\times(22 b)$ | [(21) | (22c |  |  |  |  |  |  |  |  |  |

## APPENDIX A-3

## PRESENT PROCEDURE (MODIFIED) - BASED ON REVISED TABLES

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type Of | No. Of |  | A F | Dey. | Medical | A.F. | Dev. | Indemnity | A.F | Dev. | Medical | A.F. | Dev. | Total | Average $(15) \div(2)$ |
| Injury |  | Indemnity | A.F. | Dev. | Medical | A.F. | Dev. | Indemmity | A.F. | Dev. | Medical | A.F. | Dev. | Total |  |
| Death | 110 | 2.451 .463 | 1.150 | 1.298 | 87,228 | 1.000 | 1.121 | 2,280,619 | 1.100 | 1.482 | 57.109 | 1.000 | 1.207 | 7,543.877 | 68.581 |
| P.T. | 28 | 344.657 | 1.033 | 2.329 | 384.440 | 1.000 | 1.121 | 1.284.254 | 1.091 | 2.394 | 614.261 | 1.000 | 1.207 | $5.355,850$ | 191.280 |
| Major | 2,082 | 6.950 .644 | 1.145 | 1.385 | 2.585,223 | 1.000 | 1.121 | 8.763 .791 | 1.086 | 1.916 | 3,948,947 | 1.000 | 1.207 | 36,922,405 | 17.734 |
| Minor | xx | 6,125.412 | 1.143 | . 971 | 2.281 .834 | 1.000 | 1.121 | 7,238.922 | 1.089 | 1.012 | 2.740.605 | 1.000 | 1.207 | 20.641 .937 | XX |
| T.T. | $\mathrm{x} \times$ | 5.617 .151 | 1.156 | 1.095 | 3.495,883 | 1.000 | 1.121 | 7.881 .248 | 1.097 | 1.336 | 5.247 .349 | 1.000 | 1.207 | 27.186.778 | XX |
| Other Med. | xx | xx | XX | $\mathrm{x} \times$ | 2.651 .245 | 1.000 | 1.121 | $\mathrm{x} \times$ | X $\times$ | $\mathrm{x} \times$ | 3.584 .517 | 1.000 | 1.207 | 7.298 .558 | XX |
| TOTAL | XX | xx | xx | xx | x x | $\mathrm{x} \times$ | xX | xX | xx | X $\times$ | XX | xX | xX | 104.949.405 | Xx |

$\dagger$ No. of cases include development factors by type of injury. A.F. = Amendment Factor to current law level.

|  | Amounts in 1.000 s |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 75 | 100 | 150 | 200 | 250 |
| 17. Average Death Cost (Incl. Med.) | $\begin{array}{r} \text { (A) } \\ 68.581 \end{array}$ | (B) | (C) | (D) | (E) | (F) | (G) | ( H ) | ( I) | (J) | (K) | (L) |
| 18. Ratio to Average $(A),(B),(C), \text { etc } \div(17)$ | . 15 | . 22 | . 29 | . 36 | 44 | . 58 | . 73 | 1.09 | 1.46 | 2.19 | 2.92 | 3.65 |
| 19. Excess Ratio for Death (from Tables) | .926 | . 868 | . 801 | . 732 | . 654 | . 531 | . 423 | . 253 | . 161 | . 080 | . 047 | . 033 |
| 20. Average P.T. Cost (Incl, Med.) | 191,280 |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { 21. Ratio to Average } \\ & \text { (A). (B). (C), etc. } \div(20) \end{aligned}$ | . 05 | . 08 | . 10 | . 13 | . 16 | . 21 | . 26 | , 39 | . 52 | . 78 | 1.05 | 1.31 |

## APPENDIX A-3 (CONT'D)

| 22. Excess Ratio For P.T. (from Tables) | . 985 | . 971 | . 960 | . 941 | . 918 | . 877 | . 830 | 702 | . 581 | . 392 | .267 | . 192 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23. Average Major Cost (Incl. Med.) | 17,734 |  |  |  |  |  |  |  |  |  |  |  |
| 24. Ratio to Average $(\mathrm{A}),(\mathrm{B}),(\mathrm{C}), \mathrm{etc} \cdot \div(23)$ | . 56 | . 85 | 1.13 | 1.41 | 1.69 | 2.26 | 2.82 | 4.23 | 5.64 | 8.46 | 11.28 | 14.10 |
| 25. Excess Ratio for Major (from Tables) | . 471 | . 306 | . 210 | . 150 | . 111 | . 066 | . 043 | . 019 | . 010 | . 009 | . 009 | . 009 |
| a. Death <br> 26. Ratios to Toral Cost <br> b. P.T. <br> c. Major | $\begin{aligned} & .072 \\ & .051 \\ & .352 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |
| 27. Average Excess Ratio* | . 283 | . 220 | . 181 | . 153 | . 133 | . 106 | . 088 | . 061 | . 045 | . 029 | . 020 | 010 |
| 28. Permissible L.oss Ratio | . 610 |  |  |  |  |  |  |  |  |  |  |  |
| 29. (28) $\times 1.10$ | . 671 |  |  |  |  |  |  |  |  |  |  |  |
| 30. (27) $\times(29)$ | .190 | . 148 | . 121 | . 103 | . 089 | . 071 | . 059 | . 041 | . 030 | . 019 | . 013 | . 010 |
| 31. Flat Loadings | . 005 | . 004 | . 003 | . 002 | . 002 | . 002 | 001 | . 001 | . 001 | . 001 | . 001 | . 001 |
| 32. Indicated ELPF's (30) - (31) | . 195 | . 152 | . 124 | . 105 | . 091 | . 073 | . 060 | . 042 | .031 | . 020 | . 014 | . 011 |
| *27 $=[(19) \times(26 \mathrm{a})]+[(22) \times(26 \mathrm{l}$ | $1+[(25$ | (26c) $]$ |  |  |  |  |  |  |  |  |  |  |

## APPENDIX B <br> EXHIBIT B-1

Derivation of Indicated Hazard Group Differentials (High Benefit States) $\dagger$

| Hazard Group | (1) | (2) | (3) | (4) | (5) | (6) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Claims Over 9.999 |  | Claims over 24,999 |  |
|  | All Cases | All Losses | Cases | Losses | Cases | Losses |
| I | 106,786 | 39,062,759 | 803 | 16,861,263 | 191 | 7,793,946 |
| II | 674,620 | 303,854,815 | 6.410 | 141,923,132 | 1,564 | 68,176,269 |
| III | 267,399 | 191,174,298 | 4,329 | 111,871,561 | 1,315 | 65,717,152 |
| IV | 39.542 | 33,592,782 | 721 | 21,036,472 | 274 | 14,445,293 |
| TOTAL | 1,088,347 | 567,684,654 | 12,263 | 291,692,428 | 3,344 | 156,132,66 |

Indicated Hazard Group Relativities: Losses Over 24,999

|  | (7) | (8) |
| :---: | :---: | :---: |
| Hazard | Average Excess Ratio | Indicated Relativities |
| Group | $[(6)-25,000 \times(5)] \div(2)$ | (7) $\div$ (7) Total |
| I | . 07728 | . 60 |
| II | . 09569 | . 75 |
| III | . 17179 | 1.34 |
| IV | . 22610 | 1.77 |
| TOTAL | . 12777 |  |

Indicated Hazard Group Relativities: Loss Over 9.999

|  | (9) | (10) |
| :---: | :---: | :---: |
| Hazard | Average Excess Ratio | Indicated Relativities |
| Group | $[(4)-10,000 \times(3)] \div$ (2) | (9) $\div$ - 9) Total |
| I | . 22608 | . 76 |
| II | . 25612 | . 86 |
| III | . 35874 | 1.20 |
| IV | . 41159 | 1.38 |
| TOTAL | . 29781 |  |

$\dagger$ Includes data from Alaska, Arizona, Connecticut, District of Columbia, Idaho, Illinois, Maine, Michigan, Minnesota, Oregon, and Rhode Island.

## APPENDIX B

EXHIBIT B-2

## Derivation of Indicated Hazard Group Differentials (Medium Benefit States) $\dagger$

| Hazard Group | (1) | (2) | (3) (4)ClaimsOver 9,999 |  | (5) (6)Claims over 24,999 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  | All Cases | All Losses | Cases | Losses | Cases | Losses |
| I | 94,238 | 22,064,844 | 362 | 6,133,760 | 46 | 1,595,904 |
| II | 657,109 | 187,377,649 | 3,367 | 64,327,682 | 563 | 23,329,029 |
| III | 257,383 | 123,407,829 | 2,629 | 58,061,238 | 606 | 26,863,892 |
| IV | 41,777 | 25,527,288 | 596 | 14,455,738 | 177 | 7,812,199 |
| TOTAL | 1,050,507 | 358,377,610 | 6,954 | 142,978,418 | 1,392 | 59,601,02 |

Indicated Hazard Group Relativities: Losses Over 24,999

| Hazard | (7) <br> Average Excess Ratio | (8) <br> Group |
| :---: | :---: | :---: |
| I | Indicated Relativities <br> $[(6)-25,000 \times(5)] \div(2)$ | $(7) \div(7)$ Total |
| II | .02021 | .29 |
| IV | .09939 | .71 |
|  | .13269 | 1.37 |
|  |  | 1.92 |

TOTAL

Indicated Hazard Group Relativities: Loss Over 9,999
(9)

Average Excess Ratio
$\frac{[(4)-10,000 \times(3)] \div(2)}{.11393}$ .16361 .25745 .33281 .20492

TOTAL
.06920

| Hazard <br> Group | Average Excess Ratio <br> $[(4)-10,000 \times(3)] \div(2)$ | Indicated Relativities <br> $(9) \div(9)$ Total |
| :---: | :---: | :---: |
| II | .11393 | .56 |
| III | .16361 | .80 |
| IV | .25745 | 1.26 |
|  | .33281 | 1.62 |

†Includes data from Arkansas, Colorado, Hawaii, Indiana, Iowa, Kentucky, Maryland, Missouri, Nebraska, New Hampshire, South Dakota, Tennessee, Vermont and Wisconsin.

## APPENDIX B

## EXHIBIT B-3

Derivation of Indicated Hazard Group Differentials (Low Benefit States) ;

| Hazard Group | (1) | (2) | (3) (4)  <br> Claims Over 9,999 |  | $\begin{aligned} & \text { (5) } \quad(6) \\ & \text { Claims over } 24,999 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  | All Cases | All Losses | Cases | Losses | Cases | Losses |
| I | 106,736 | 28,424,675 | 486 | 8.633 .223 | 58 | 2,396,027 |
| II | 693,890 | 193,922,765 | 3.853 | 71,691,448 | 519 | 21,896,794 |
| III | 334,485 | 158,990,080 | 3.750 | 74,442,781 | 654 | 27,209,740 |
| IV | 53,826 | 31,652,377 | 783 | 18,042,199 | 182 | 8,726,708 |
| TOTAL | 1,188,937 | 412,989,897 | 8,872 | 172,809,651 | 1,413 | 60,229,269 |

Indicated Hazard Group Relativities: Losses Over 24,999

| Hazard | (7) <br> Average Excess Ratio <br> Group | (8) <br> $[(6)-25,000 \times(5)] \div(2)$ |
| :---: | :---: | :---: |
| II | .03328 | Indicated Relativities <br> $(7) \div(7)$ Total |
| III | .04601 | .55 |
| IV | .06830 | .76 |
| TOTAL | .13196 | 1.13 |
| IV | .06030 | 2.19 |

Indicated Hazard Group Relativities: Loss Over 9.999

|  | (9) | (10) |
| :---: | :---: | :---: |
| Hazard | Average Excess Ratio | Indicated Relativities |
| Group | $[(4)-10,000 \times(3)]$ : (2) | (9) $\div$ (9) Total |
| I | . 13274 | . 65 |
| II | . 17100 | . 84 |
| III | . 23236 | 1.14 |
| IV | . 32264 | 1.58 |
| TOTAL | . 20361 |  |

[^7]
## APPENDIX B

## EXHIBIT B-4

## Derivation of Indicated Hazard Group Differentials (All States) $\dagger$

| Hazard Group | (1) | (2) |  |  | (5) | (6) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Claims Over 9,999 |  | Claims over 24,999 |  |
|  | All Cases | All Losses | Cases | Losses | Cases | Losses |
| I | 307,760 | 89,552,278 | 1.651 | 31,628,246 | 295 | 11,785,877 |
| II | 2,025,619 | 685,155,229 | 13,630 | 277,942,262 | 2,646 | 113,402,092 |
| III | 859,267 | 473,572,207 | 10,708 | 244,375,580 | 2,575 | 119,790,784 |
| IV | 135,145 | 90,772,447 | 2,100 | 53,534,409 | 633 | 30,984,200 |
| TOTAL | 3,327,791 | 1,339,052,161 | 28,089 | 607,480,497 | 6,149 | 275,962,953 |

Indicated Hazard Group Relativities: Losses Over 24,999

| Hazard | (7) <br> Average Excess Ratio | (8) <br> Group |
| :---: | :---: | :---: |
|  | Indicated Relativities <br> $[(6)-25,000 \times(5)] \div(2)$ | $(7) \div(7)$ Total |
| II | .04925 | .54 |
| III | .11702 | .76 |
| IV | .16700 | 1.28 |
| TOTAL | .09129 |  |

Indicated Hazard Group Relativities: Loss Over 9,999

|  | $(9)$ <br> Hazard <br> Group | Average Excess Ratio <br> $[(4)-10,000 \times(3)] \div(2)$ |
| :---: | :---: | :---: |

$\dagger$ Includes data from the states listed in exhibits I, II, and III.

## ACCIDENT LIMITATIONS FOR RETROSPECTIVE RATING

FRANK HARWAYNE<br>DISCUSSION BY ROBERT J. FINGER

This paper presents a method for calculating excess loss premium factors (ELPF's). Applying the ELPF to the standard premium determines the premium required to cover losses in excess of a given per accident limitation.

The ELPF is essentially calculated in two phases. First, claim size distributions are required for three types of claims: deaths, permanent total disabilities and major permanent partial disabilities. The claim size distribution gives the percentage of total losses for that injury type which are in excess of a certain accident limitation. Second, the percentage of losses by injury type in excess of the accident limitation are multiplied by the cost of that injury type as a percentage of total premium. Adding the costs for the three injury types yields the ELPF.

The claim size distributions are calculated in a threc-step procedure. First, an empirical excess of loss distribution is calculated by state and injury type. This distribution is the percentage of losses in excess of a given amount per claim. The empirical distribution is calculated as a function of ratios to the mean, or average claim size. Second, a composite countrywide distribution is calculated by weighting the state's experience by the number of claims represented. Finally, the empirical distribution is graduated by a function of the form:

$$
y=\left(1+a x+b x^{2}+c x^{3}\right)^{-1}
$$

where x is the ratio to the mean.

This discussion will explore the applicability of modelling the above claim size distributions by the log-normal probability distribution.

The paper gives empirical data for several states for limited death cases and for major permanent partial cases. The discussion will limit itself to major permanent partial claims, but suitable techniques are applicable to limited death cases.

Table I shows the empirical average excess loss distribution for major permanent partial claims. Also shown are log-normal distributions for coefficient of variations (CV) equal to $0.5,0.75$ and $1.0^{1}$. It can be seen that the empirical distribution is similar in shape to a log-normal distribution. In fact, it is not too different from a log-normal with a CV of 0.75. Reasons for the discrepancy can be various, but might prove worth exploring. Among the possibilities: (1) the empirical distribution is based in part on case reserves; these reserves may not be entirely accurate: (2) there may be inaccuracies in the data; (3) the data may be distorted by a few abnormal claims or by the weighting by state; (4) limitations in certain states may distort the data; (5) the data may not be log-normally distributed.

It would seem desirable for many reasons to have a generalized model of claim sizes. The log-normal distribution might be a suitable model. Such a model would facilitate making adjustments for particular states, for particular hazard groups or classes, for particular injury types, or for changing claim settlement practices and influences.

## TABLE I

## SELECTED EXCESS LOSS DISTRIBUTIONS

| Ratio To Mean | Log-Normal $C V=.5$ | Empirical <br> Average* | Log-Normal $\mathrm{CV}=.75$ | Log-Normal $\mathrm{CV}=1.0$ |
| :---: | :---: | :---: | :---: | :---: |
| . 25 | 75\% | 75\% | 75\% | 75\% |
| . 50 | 51 | 52 | 54 | 56 |
| . 75 | 32 | 34 | 38 | 41 |
| 1.0 | 19 | 25 | 26 | 32 |
| 1.5 | 6 | 14 | 13 | 17 |
| 2.0 | 2 | 8 | 7 | 13 |
| 3.0 |  | 4 | 2 | 6 |
| 4.0 |  | 2 | 1 |  |
| 5.0 |  | 1 |  | 2 |

*Major permanent partial claims; weighted average for five states.

[^8]
## ESTIMATING PURE PREMIUMS BY LAYER -AN APPROACH <br> ROBERT J. FINGER

This paper presents an approach to the estimation of loss costs by layer of insurance coverage. This method uses the log-normal probability distribution as a model for claim sizes. Although the approach has been successfully applied to several different lines of liability insurance, it may not be applicable to property insurance.

The motivation for using a probabilistic model for claim sizes arises largely from the "long-tail" nature of liability insurance. The long tail derives from both the delayed reporting of claims as well as from the lengthy settlement period involved. The long tail makes it difficult to accurately price some liability insurance lines. Since it takes many years to settle claims, the latest year for which a vast majority of claims are settled may well be quite old. Conditions may have changed significantly since that latest mature year. Indeed, average claim costs have increased significantly in most liability lines over the past several years.

In choosing experience data, the ratemaker is thus forced to make a tradeoff between using less mature experience and using more mature (and older) experience with a larger trend factor, to estimate current costs. A method often used to produce more consistent, stable, and mature experience data is to limit individual claims to a certain size, often called "basic limits." A difficulty with this approach is that the value of the basic limits is changing over time. For example, $\$ 25,000$ in 1963 claim costs was probably quite different than $\$ 25,000$ in 1973 claim costs. Almost assuredly, the percentage of total limits losses below $\$ 25,000$ per claim in 1963 was more than the respective percentage below $\$ 25,000$ in 1973.

When the ratemaker's attention is focused on higher layers of liability, the problems caused by delayed settlements are more significant. The persistent inflation of recent years has pushed both jury verdicts and claim settlements to higher levels. Not only do more claims find their way into higher layers over time, but there is a leverage effect on their amounts; that is, the increase in amount applies only to the highest layer. This paper presents an aid to estimating pure premiums for the higher layers of liability.

The method described in this paper will be applied to two specific problems:

Problem No. 1: A new company, formed to write medical malpractice insurance, wants to purchase excess of loss reinsurance to cover a layer of $\$ 900,000$ excess of $\$ 100,000$ per claim. How might the premium for this coverage be determined?

Problem No. 2: Experience data is available for medical malpractice claims for policy years 1963 to 1974. The loss data is limited to $\$ 25,000$ per claim and premiums are needed for $\$ 100,000$ limits. What increased limits factors should be applied to the data to calculate the $\$ 100,000$ pure premiums?

## THE APPROACH

The approach assumes that the distribution of incurred claim sizes follows a log-normal probability distribution. Knowing two parameters of this distribution, such as the mean and coefficient of variation (CV) ${ }^{1}$, one can calculate the percentage of incurred losses by layer. Rather than talking about the losses for a specific layer, it is simpler to talk in terms of the excess loss distribution. This distribution is the percentage of total limits losses which are above a certain amount, called the attachment point, per claim². Assuming, for example, that the mean of the total limits claim size distribution is $\$ 50,000$ and the CV is 3.0 , the excess pure premium for an attachment point of $\$ 100,000$ is about $40 \%$ of the total limits pure premium. For an attachment point of $\$ 250,000$ it is about $21 \%$, and for an attachment point of $\$ 1,000,000$ it is about $5 \%$. (See Table I.)

[^9]
## TABLE I

EXCESS LOSS DISTRIBUTION (AS A PERCENTAGE OF TOTAL LIMITS LOSSES)

| Attachment Point (Times The Mean) | LOG-NORMAL ASSUMPTION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cocfficient Of Variation |  |  |  |  |  |
|  | 1.0 | 1.5 | 2.0 | 3.0 | 4.0 | 5.0 |
| . 5 | $56 \%$ | 61\% | $65 \%$ | $70 \%$ | 73\% | 75\% |
| 1.0 | 32 | 41 | 47 | 55 | 60 | 63 |
| 1.5 | 20 | 30 | 37 | 46 | 52 | 56 |
| 2.0 | 13 | 22 | 30 | 40 | 46 | 50 |
| 2.5 | 9 | 18 | 25 | 35 | 41 | 46 |
| 3 | 6 | 14 | 21 | 31 | 37 | 42 |
| 4 | 3 | 9 | 16 | 25 | 32 | 36 |
| 5 | 2 | 7 | 12 | 21 | 27 | 32 |
| 10 | - | 2 | 5 | 11 | 16 | 21 |
| 15 | - | 1 | 3 | 7 | 12 | 15 |
| 20 | - | - | 2 | 5 | 9 | 12 |
| 25 | - | - | 1 | 4 | 7 | 10 |
| 50 | - | - | - | 1 | 3 | 5 |
| 100 | -- | - | - | - | 1 | 2 |

The log-normal distribution has appeared previously in the Proceedings and other actuarial literature ${ }^{3}$. It is assumed that the natural logarithms of the claim sizes are distributed according to the normal (or Gaussian) probability law. The appendix gives a precise mathematical definition of the log-normal distribution. Exhibit I illustrates the case where the mean is 60 and the CV is 3 . The main virtues of the log-normal distribution, from a modelling point of view, are that: (1) it can be a highly skewed distribution ${ }^{+}$ and (2) it can be justified on a intuitive basis.

[^10]LOG-NORMAL PROBABIUTY DISTRIBUTION
EXHHBIT

$$
M E A N=60 \quad C V-13.0
$$

1. PROBABILITY DENSITY FUNCTION

2. CIMULATIVE DISTRIBUTION FUNCTION


3, FIRST MOMENT DISTRIBUTION (AS PERCENTAGE OF MEAN)

4. EXCESS LOSS DISTRIBUTION (AS PERCENTAGE OF MEAN)


Intuitively, the log-normal distribution can be considered appropriate as an analog of the central limit theorem. The central limit theorem states that the average (or sum) of independent random variables will converge to the normal probability distribution. The normal distribution can thus be used as an approximation for the distribution of the sum of a number of independent random variables. If the individual random variables were logarithms, the sum of the logarithms would be approximately normally distributed. The sum of logarithms is analogous to the product of the antilogarithms.

If we have a number of independent variables, whose product is the observed claim size, we can expect the sum of the logs of these variables to be approximately normally distributed; the claim size would then be approximately log-normally distributed. We might thus expect that any line of business where several independent factors can be multiplied together to determine the claim size will have a log-normal claim size distribution.

Considering an automobile accident, we may theorize that a number of independent factors interact multiplicatively to determine the liability claim size, such as:

- the speed of the vehicles before impact
- the health of the injured party
- the protection (e.g., with seat belts, interior padding), of the victim
- the income of the victim
- the skill of the plaintiff's attorney, and
- the skill of the defendant's claims adjusters.

Regardless of the intuitive justification, the choice of claim size distribution must be sustained in practice. As will be pointed out later, the log-normal distribution seems to provide a good fit for medical malpractice insurance claims.

The $\log$-normal assumption applies to the individual claim sizes (i.e., the claim count). A related distribution is the (first) moment distribution. The moment distribution gives the total amount of losses on claims which are smaller than a given size. Exhibit I, Section 2, illustrates the cumulative distribution function of the claim count distribution. Exhibit I, Section 3, illustrates the cumulative moment distribution. as a percentage of the mean.

The excess loss distribution gives the total amount of losses above a given attachment point per claim. It differs from the complement of the first moment distribution in that the amount of the attachment point is subtracted from every claim greater than the attachment point. Exhibit 1, Section 4, illustrates the excess loss distribution, as a percentage of the mean.

The log-normal distribution has two parameters. In practical usage, the mean and CV can be used as the two parameters. The log-normal distribution has the desirable property that, for a given CV , the distribution can be completely described by a function of a factor times the mean. This means, for example, that the distribution for an attachment point of $\$ 100,000$ and a mean of $\$ 50,000$ is the same as for a $\$ 200,000$ attachment point and $\$ 100,000$ mean. In both cases the attachment point is 2.0 times the mean. Tables of the log-normal distribution can thus be prepared (see Table I) as a function of the CV and a factor times the mean. Exhibit II depicts the excess loss distribution graphically as a function of the CV and attachment point, which is defined as a ratio to the mean.

We now tackle the two problems posed earlier:
Problem No. 1: For simplicity we may assume that each primary policy is sold for $\$ 1,000,000$ limits. We have concluded from other analysis that $\$ 6,300$ is an appropriate pure premium for the coverage. This pure premium is made up of a gross frequency of $26.5 \% ; 50 \%$ of the claims are closed without a payment; and the total limits average closed-paid claim will be $\$ 50,000$. Based on other evidence, we assume that claim sizes are log-normally distributed with a CV of 3.0. Pure premium by layer can thus be calculated as in Table II. From this table we see that coverage from $\$ 100,000$ to $\$ 1,000,000$ would cost about $\$ 2,650-\$ 330=\$ 2,320$ in claims per exposure unit. (Pure premium for coverage up to $\$ 1,000,000$ is $\$ 6,630-$ $\$ 330=\$ 6,300$.)

TABI.f. II
EXCESS PURE PREMIUMS BY LAYER

| Attachment Point |  | Excess Losses |  |
| :---: | :---: | :---: | :---: |
| (1000's) | Times Mean | \% Of Total | Per Unit |
| 0 | 0. | 100 | 6,630 |
| 25 | 0.5 | 70 | 4,640 |
| 50 | 1.0 | 55 | 3.640 |
| 100 | 2.0 | 40 | 2,650 |
| 250 | 5.0 | 21 | 1,390 |
| 500 | 10.0 | 11 | 730 |
| 1,000 | 20.0 | 5 | 330 |
| 2,500 | 50.0 | 1 | 66 |

Problem No. 2: For simplicity we may assume that the total limits mean claim size in 1964 is $\$ 10,000$; that total limits claim sizes are increasing at $15 \%$ annually; and that claim sizes are log-normally distributed with a CV of 3.0 . We can then calculate the excess losses for each attachment point for each year. Increased limits factors can be calculated directly from the excess loss distribution. Table III illustrates this problem. It should be noted that the increased limits factors are increasing.

TABI.E III
INCREASED LIMITS FACTORS FOR $\$ 100,000$ OVER $\$ 25,000$

| Policy Year | Ratios To Total <br> Limits Mean ${ }^{1}$ |  | Percent Fxcess Losses ${ }^{\text {b }}$ |  | Indicated Increased Limits Factor ${ }^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | \$25,000 | \$100,000 | \$25,000 | \$100,000 |  |
| 1963 | 2.9 | 11.5 | $31 \%$ | 10\% | 1.32 |
| 1964 | 2.5 | 10.0 | 35 | 11 | 1.35 |
| 1965 | 2.2 | 8.7 | 37 | 13 | 1.39 |
| 1966 | 1.9 | 7.6 | 41 | 15 | 1.44 |
| 1967 | 1.6 | 6.6 | 44 | 17 | 1.49 |
| 1968 | 1.4 | 5.7 | 48 | 19 | 1.54 |
| 1969 | 1.2 | 5.0 | 50 | 21 | 1.59 |
| 1970 | 1.1 | 4.3 | 53 | 24 | 1.64 |
| 1971 | . 9 | 3.8 | 56 | 26 | 1.70 |
| 1972 | . 8 | 3.3 | 60 | 29 | 1.76 |
| 1973 | . 7 | 2.8 | 63 | 32 | 1.82 |
| 1974 | . 6 | 2.5 | 65 | 35 | 1.88 |

Notes: a. Adjusted for $15 \%$ annual inflation.
b. Based on log-normal distribution with CV 3.0 .
c. Other columns have been rounded. This is calculated as:

$$
\begin{aligned}
& \frac{100-E_{1010}}{100-E_{2501}} \text { where } E_{\mathrm{x}} \text { is the percentage of } \\
& \text { total limits losses above } x \text { per claim. }
\end{aligned}
$$

## PARAMETER ESTIMATION

To use the approach of this paper, one needs to make assumptions about the total limits mean and CV of the claim size distribution. The basic limits mean is often available from other actuarial analysis. For a given choice of basic limits mean and CV, there is total limits mean. The more difficult parameter to estimate is the CV.


A number of practical problems arise in estimating the CV ; these include:

- individual claim values are not always known
- claim values tend to cluster at target values, such as $\$ 2,500, \$ 5,000$ or $\$ 10,000$
- a large number of nuisance claims are often settled for small amounts, such as $\$ 250$, $\$ 500$ or $\$ 1,000^{\text { }}$
- many claims are closed without a payment.

Depending upon the specific situation, the entire claim size distribution may not be log-normally distributed. It is often possible to eliminate some claims from consideration, such as very small claims or claims closed without a payment. The remaining distribution may then closely approximate a log-normal distribution.

This author has found it most convenient to estimate the CV from the observed excess loss distribution. To accomplish this, claims are grouped by interval and the percentage of the total limits losses in excess of a given interval is calculated. There is a unique CV for a given combination of excess percentage and ratio of the attachnemt point to the mean of the total limits distribution. For example, if excess losses above an attachment point of 2.0 times the mean are $40 \%$, this implies a CV of 3.0 . The uniqueness property is illustrated by Exhibit II.

Following the procedure above, the CV is estimated for a number of attachment points. If the estimated CV is the same for each attachment point tested, the distribution can safely be assumed to be log-normally distributed with the observed mean and given CV. If the estimated CV's are randomly distributed about a given value, that value is an appropriate estimate of the CV . If the estimated CV 's form a progression (such as 6,5 , 4,3 ), the observed data is not log-normally distributed. In the latter case, the data can be truncated, and the remaining data fitted to a log-normal distribution.

[^11]This estimation procedure is highly empirical. This may not be a serious drawback since the observed distribution of claim sizes may not be log-normally distributed ${ }^{\text {'; }}$; one or two large claims, by presence or omission, may distort the observed data. The practical difference resulting from the use of 3.0 versus 2.9 , for example, will be small.

An example of the estimation procedure will now be given. The data is shown in Table IV. As might be expected, most claims are relatively small, but a significant amount of the loss dollars are on higher intervals. Estimating the CV from the claim count distribution can be misleading because a majority of the claims are small and the majority of the claim dollars are on a small number of large claims. In the given example, the largest $2.5 \%$ of the claims account for $50.9 \%$ of the claim dollars. Estimating the CV from the moment distribution can be misleading because of the targeting problem. For example, there may be twenty-five claims for exactly $\$ 100,000$. Should these claims be considered larger than $\$ 100,000$ or smaller than $\$ 100,000$; or are $50 \%$ larger and $50 \%$ smaller? Using the excess loss distribution largely avoids the targeting problem and it puts the emphasis on the layers where losses have occurred.

If there are a large number of claims closed without a payment, the distribution which includes them is not likely to be log-normally distributed. Table V illustrates this. The basic difference between estimating the CV with and without claims closed without a payment is the indicated mean of the distribution. The data is log-normally distributed if the estimated CV's for different attachment points are the same. If the estimated CV's for higher attachment points exhibit a downward trend, this indicates that the observed mean is too small. In other words, it shows that claims are concentrated too close to the mean. One can raise the observed mean by eliminating claims closed without a payment or by eliminating some of the smaller claims.

Table VI illustrates the estimation process when claims below a given amount (such as $\$ 10,000$ ) are excluded from the analysis. The basic difficulty involved in this procedure is in estimating the number and amount of claims which should have appeared below the truncation point. The trun-

[^12]TABLE IV

## SAMPLE DATA

| Interval | Attachment Point | Number Of Claims | Claim Count Distribution |  | Indemnity On Interval | Moment Distribution | Excess Losses ${ }^{\text {a }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { All } \\ \text { Claims } \end{gathered}$ | Paid Claims | (\$1000's) |  | (\$1000's) | Percent |
| 0 | 0 | 2,370 | $51.4 \%$ | 0\% | \$ 0 | 0\% | \$50,615 | 100.0\% |
| 1-10,000 | 10,000 | 1.496 | 83.8 | 66.7 | 4,500 | 8.9 | 38.645 | 76.4 |
| 10,001-25.000 | 25.000 | 365 | 91.7 | 83.0 | 6.437 | 21.6 | 30.128 | 59.5 |
| 25,001-100,000 | 100.000 | 267 | 97.5 | 94.9 | 13,933 | 49.1 | 14,245 | 28.1 |
| 100,001-300,000 | 300.000 | 99 | 99.7 | 99.3 | 16.488 | 81.7 | 4.457 | 8.8 |
| 300,001-1,000,000 | 1.000 .000 | 15 | 100.0 | 100.0 | 7,207 | 95.9 | 1,050 | 2.1 |
| Over 1,000,000 | - | 1 | 100.0 | 100.0 | 2,050 | 100.0 | - | - |
| Total |  | 4,613 | (4,613) | (2,243) | \$50,615 |  |  |  |

Source: AIA (See Table VII)
Notes: a. Excess losses above a given attachment point are the sum of all claims values larger than the attachment point less the number of claims above the attachment point times the value of the attachment point. For example, there are 16 claims larger than $\$ 300,000$ with an aggregate value of $\$ 9.257,000$. The excess losses above $\$ 300,000$ are thus $9,257,000-16(300,000)=4,457.000$ or $8.8 \%$ of the total limits losses.

## TABLE V

## ESTIMATING THE CV:

EXCLUSION OF CLAIMS CLOSED WITHOUT A PAYMENT

Case II.

Case I.
Includes all claims.
Mean $\$ 11,000$

Excludes claims closed without a payment.
Mean \$22,600

> Attachment
> Point

| Times <br> Mean |  | Excess <br> Percent | Estimated <br> CVa |
| :---: | :---: | :---: | :---: |
|  |  | $76 \%$ |  |
| 1.1 |  | 60 |  |
| 4.5 | 28 |  | 4.2 |
| 13 | 8.8 |  | 3.6 |
| 44 | 2.1 |  | 3.2 |

" Estimated from tables.
${ }^{1}$ More than 10.0.
cation point and the mean of the remaining claims are known. Unfortunately, the relationship between these two items does not specify a unique CV (sce Exhibit III). We must therefore pick a provisional CV, calculate the number and amount of claims below the truncation point and then see if the CV estimated from the excess load distribution is the same as our provisional value. Table VI shows that the CV is about 2.4. This result implies that about $38 \%$ of the claims should have been truncated or that there should have been about 1,205 claims. Instead the data shows 2,243 claims. We might conclude that there were over 1,000 nuisance claims which cost an average of about $\$ 2,300$ each.

TABLE VI

Assumption:
Ratio: Remaining Mean to Complete Meana
Estimated Complete Mean ( 1000 's)
Ratio: Truncation Point to Complete Mean
Percent of Total Amount Truncated ${ }^{\text {b }}$
Percent of Total Count Truncated ${ }^{\text {b }}$
Estimated Total Amount ( 1000 's )


Notes: a. See Exhibit III
b. From Tables

ESTIMATING THE CV: TRUNCATION

| Case Study: | Truncation Point | $\$$ | 10,000 |
| ---: | :--- | ---: | ---: |
|  | Remaining Amount | $\$ 46,100,000$ |  |
|  | Remaining Count | 747 |  |
|  | Remaining Mean | $\$$ | 61,700 |
| Ratio: | Truncation Point to |  |  |
|  | Remaining Mean |  | .162 |

$\qquad$

|  | 1.35 |  |  | 1.58 |  |  | 1.80 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 45.7 |  |  | 39.1 |  |  | 34.3 |  |
|  | . 22 |  |  | . 26 |  |  | . 29 |  |
|  | 3.5 |  |  | 4.8 |  |  | 5.8 |  |
|  | 28.6 |  |  | 39.6 |  |  | 47.7 |  |
|  | ,800 |  |  | ,500 |  |  | ,900 |  |
| Attachment <br> (Times/ <br> Meanl | Percent <br> Fxcess | $\begin{gathered} \text { Estimated } \\ C V \\ \hline \end{gathered}$ | Attachment (Times/ Mean) | Percent Excess | Estimated $\mathrm{CV}^{\prime}$ | Attachment (Times) Mean) | Percent <br> Excess | Estimated cV: |
| . 22 | 81 | 2.0 | . 26 | 80 | 2.5 | . 29 | 79 | 3.0 |
| . 55 | 63 | 2.0 | . 64 | 62 | 2.5 | . 73 | 62 | 3.0 |
| 2.2 | 30 | 2.2 | 2.6 | 29 | 2.5 | 2.9 | 29 | 2.8 |
| 6.6 | 9 | 2.0 | 7.7 | 9 | 2.3 | 8.7 | 9 | 2.5 |
| 22 | 2.1 | 2.2 | 26 | 2.1 | 2.4 | 29 | 2.0 | 2.5 |

ESTIMATING THE LOMPLSTE MEAN FROM A TRUNCATED UOG-RORMAL DISTRIBUTION


Table VII shows the estimation of the CV for two large groups of countrywide medical malpractice claims. The first group (the AIA study) has already been used in the previous analysis. Calculating the mean from all claims closed with a payment, indicates a CV of about 3.1 to 3.6 for attachment points in excess of $\$ 100,000$. As previously shown, eliminating nuisance claims indicates a CV of about 2.4 for all attachment points. The second group (NAIC) indicates a higher estimated CV. This is partially due to one more claim in excess of $\$ 1,000,000$. The higher CV may also be due to the broader group of companies which were included in the study.

## SENSITIVITY ANALYSIS

Nuisance claims and other problems tend to distort the estimation process. Nuisance claims may be removed by estimating parameters for a truncated distribution. Because it is somewhat more cumbersome to estimate the CV from a truncated distribution, this section briefly analyzes the magnitude of the errors involved in estimating the CV, while excluding only claims closed without a payment.

Case I: Assume that we fit a log-normal distribution with an actual $\mathrm{CV}=2.5$ (without nuisance claims) to a distribution with a CV $=3.5$. What is the actual error in the postulated excess distribution? Table VIII, Section I, demonstrates that this error is within $2 \%$ if the total limits costs. Smaller errors could be obtained by reducing the CV at higher attachments or estimating the CV from a truncated distribution.

Case II: Assume the actual distribution has a $\mathrm{CV}=2.5$. If about $38 \%$ of the claims are nuisance claims, what do we expect the estimated CV's to be for various attachment points? Table VIII, Section II shows that the estimated CV at about 3 times the mean would be 3.9; the estimates are expected to decline to 3.1 at an attachment of 65 times the mean. This is a typical pattern of estimated CV s, which may occur when there are a large number of nuisance claims.

## TABLE VII <br> ESTIMATING THE COEFFICIENT OF VARIATION

I. AIA CLOSED CLAIM STUDY (1974)*

| Interval | Number Of Claims | Indemnity On Interval | Excess Losses |  | Estimated C.V. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (\$1,000's) | (\$1,000's) |  |  |
| 1-10,000 | 1,496 | \$ 4,500 | \$38,645 | 76.4\% | 4.5 |
| 10,001-25,000 | 365 | 6,437 | 30,128 | 59.5 | 4.2 |
| 25,001-100,000 | 267 | 13,933 | 14,245 | 28.1 | 3.6 |
| 100,001-300,000 | 99 | 16,488 | 4,457 | 8.8 | 3.1 |
| 300,001-1,000,000 | 15 | 7,207 | 1,050 | 2.1 | 3.2 |
| Over 1,000,000 | 1 | 2,050 | - | - | - |
| Total | 2,243 | \$50,615 |  |  |  |
| Closed No Payment | 2,370 |  |  |  |  |

II. NAIC CLOSED CLAIM STUDY (DECEMBER, 1975)**

| $1-10,000$ | 1,124 | $\$ 3,082$ | $\$ 20,800$ | $71.7 \%$ | 4.0 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| $10,001-50,000$ | 372 | 7,851 | 11,029 | 38.0 | 3.9 |
| $50,001-100,000$ | 83 | 5,422 | 6,857 | 23.6 | 3.7 |
| $100,001-300,000$ | 51 | 7,607 | 2,950 | 10.2 | 4.0 |
| $300,001-1,000,000$ | 5 | 2,050 | 1,000 | 3.4 | 4.5 |
| Over 1,000,000 | 2 | 3,000 | - | - | - |
| Total | 1,637 | $\$ 29,012$ |  |  |  |
| Closed No Payment | 2,711 |  |  |  |  |
| *Report to the All-Industry Committee Special Malpractice Review: 1974 Closed |  |  |  |  |  |
| Claim Survey, Preliminary Analysis of Survey Results. December 1, 1975. Report 9. |  |  |  |  |  |
| \%Volume 1, Number 1, December, 1975. Summary 22. |  |  |  |  |  |

Case III: What if the observed distribution is actually a mixture of two or more distributions which have different means, but the same CV? There might, for example, be different means for different insurers, geographical areas, specialties, or accident years. Table VIII, Section III illustrates the case where half the claims have a mean of 10 and half have a mean of 30 ; both groups have observed estimated $\mathrm{CV}=3.5$. The estimated CV for the combined distribution is very close to 4.0 . We thus observe what we would have expected, that a mixture of means will increase the coefficient of variation. It should thus be expected that CV's for individual insurers and states should be somewhat below those previously shown in the previous countrywide studies. ${ }^{\text { }}$

[^13]TABIE VIII
SENSITIVITY ANALYSIS TO PARAMETER FSTIMATION
I. ERROR IN ASSUMING A LARGER COEFFICIENT OF VARIATION

Theoretical
Distribution
$\frac{\text { Asumption Of CC } 3.5}{(\text { Fitted At } 100) \quad(\text { Fitted At 250) }}$

Mean $=50$
$\mathrm{CV}=2.5 \quad$ Mean $35 \quad$ Mcan $=31$

| Attachment <br> Point | Excess 1.0 oss Distribution Percentages |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $35 \%$ | $35 \%$ | $33^{\prime} \%$ |
| 250 |  | 17 | 18 | 17 |
| 500 |  | 8 | 10 | 9 |
| 1,000 |  | 3 | 4 | 4 |
| 2,000 |  | 1 | 2 | 2 |

II. ERROR IN FITTING COEFFICIINT OF VARIATION

Theoretical Distribution
Truc Mean $=50$
$\mathrm{CV}=2.5 \quad$ Observed Mean $=31$
Fstimated

| Attachment <br> Point | Excess <br> Losses | Covefficient <br> Of Variation |
| :---: | :---: | :---: |
|  | $35 \%$ | 3.9 |
| 250 | 17 | 3.5 |
| 500 | 8 | 3.4 |
| 1.000 | 3 | 3.2 |
| 2,000 | 1 | 3.1 |

III. MIXTURE OF DIFFERENT MEANS

| Attachment Point | Component Distributions |  | Composite Distribution (Observed) | Fitted <br> Distribution |
| :---: | :---: | :---: | :---: | :---: |
|  | Mean : - 10 | Mean 30) |  | Mean 20 |
|  | CV 3.5 | $\mathrm{CV}-3.5$ |  | CV + 0 |
|  | Excess Loss Distribution Percentages |  |  |  |
| 5 | 72\% | $87 \%$ | $83 \%$ | $83 \%$ |
| 10 | 58 | 78 | 73 | 73 |
| 20 | 43 | 66 | 60 | 60 |
| 50 | 24 | 47 | 42 | 41 |
| 100 | 14 | 32 | 28 | 27 |
| 200 | 7 | 20 | 16 | 16 |
| 500 | 2 | 8 | 7 | 7 |
| 1.000 | 1 | 4 | 3 | 3 |
| 2,000 | - | 1 | 1 | 1 |

Case IV: An unanswered and, in many situations, a crucial question is whether or not the coefficient of variation is changing over time. If not, one can estimate the total limits mean at a future date from a trending procedure. This mean and the CV will then completely determine the claim size distribution at the future date.

## OTHER APPLICATIONS

Although the data in this paper comes from the medical malpractice line, claim sizes in many other lines appear to be log-normally distributed. Allocated expense payments also seem to be log-normally distributed. It is expected that the log-normal distribution may be appropriate whenever a large number of independent factors contribute multiplicatively to the claim size. Property lines may not provide a proper fit due to: (1) a tangible fixed upper limit on most property claims and (2) widely varying values at risk.

Examples in this paper have stressed excess losses. In many cases the log-normal distribution also yields suitable approximations for deductibles. A potential problem which may call for special handling, however, is nuisance claims.

## CONCLUSION

This paper has presented an approach to estimating pure premiums by layer of insurance. It should be helpful to primary carriers for: (1) evaluating the basic limits experience of long-tail lines and (2) evaluating the cost of excess of loss reinsurance. It should be useful to reinsurers, if they have the basic limits experience of their reinsureds; in this case the approach is beneficial because the primary market tends to be more stable and its claims develop more quickly.

The method assumes that claim sizes, except for some nuisance claims, follow the log-normal distribution. In order to apply the method, the actuary needs to know the mean and coefficient of variation of the total limits claim size distribution. The mean is often estimated in the ratemaking process, leaving the coefficient of variation as an unknown. Countrywide data has been presented to estimate the CV for medical malpractice insurance. One sample showed a CV of 2.4 , when nuisance claims have been excluded. If nuisance claims are included in the mean, the countrywide CV appears to full in the range from 3.0 to 4.0 . For individual carriers or states, the CV should be lower.

## APPENDIX

## I. THE LOG-NORMAL DISTRIBUTION

The log-normal distribution (with parameters $\mu$ and $\sigma^{2}$ ) is defined as follows:

$$
\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{2 \pi} \sigma \mathrm{x}} \mathrm{e}^{-\frac{1}{2}\left(\frac{\ln \mathrm{x}-\mu}{\sigma}\right)^{2}} \quad \mathrm{X}>0
$$

The mean is $\quad M=e^{\mu+\frac{1}{2} \sigma^{2}}$
The variance is $\quad e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$
The coefficient of variation is $\quad \beta=\left(e^{\sigma^{2}}-1\right)^{\frac{1}{2}}$
Let the cumulative distribution function be

$$
\mathrm{X} 1(\alpha \mid \beta)=\int_{0}^{\alpha \mathrm{M}} \mathrm{f}(\mathrm{u} \mid \beta) \mathrm{du}
$$

where $\alpha$ is a ratio to the mean.
The (first) moment distribution is also log-normally distributed with parameters $\mu+\sigma^{2}$ and $\sigma^{2}$. This distribution is defined as:

$$
X 2(\alpha \mid \beta)=\frac{1}{M} \int_{o}^{\alpha M} u f(u \mid \beta) d u
$$

## II. THE EXCESS LOSS DISTRIBUTION

Define $\mathrm{X} 3(\alpha)$ to be the percentage of total limits losses to be excess of $\propto$ times the mean of the claim size distribution.

$$
\mathrm{X} 3(\alpha \mid \beta)=(1-\mathrm{X} 2(\alpha \mid \beta))-\alpha(1-\mathrm{X} 1(\alpha \mid \beta))
$$

One property of the log-normal distribution is:

$$
X 2(\alpha \mid \beta)=X_{1}\left(\left.\frac{\alpha}{1+\beta^{2}} \right\rvert\, \beta\right)
$$

# ESTIMATING PURE PREMIUMS BY LAYER-AN APPROACH 

ROBERT J. FINGER

## DISCUSSION BY LEE R. STEENECK

Mr. Robert J. Finger in his paper Estimating Pure Premiums By Layer -An Approach suggests that the log-normal probability distribution function can be used as a model for the distribution of a single claim in many instances. Use of the log-normal is based on sound statistical theory and has already been applied to numerous actuarial problems. The "long-tail" evident in liability lines of insurance seems to lead us toward an asymmetrical distribution function like the log-normal.

As a model for claim sizes, in order to be practical, a distribution should have the following desirable characteristics: the estimate of the mean should be efficient and reasonably casy to use; a confidence interval about the mean should be calculable; all moments of the distribution function should exist. The log-normal distribution function has these desirable characteristics. Unfortunately, the log-normal has two annoying qualities, too. One, demonstrated by Mr. Finger, is that there may be fitting problems when there are many small values of the variable under consideration. Making adjustments oftentimes requires a great deal of work. Secondly, from a statistical point of view, the integral in the characteristic function cannot be solved and the convolution cannot be expressed explicitly. ${ }^{1}$

An approximation of the real world severity loss distribution is essential from a reinsurance point of view. On an excess of loss basis the reinsurer is directly involved with the tail of the liability loss distribution. Inflation places the excess of loss reinsurer in a leveraged position where reinsurance claim costs are multiplied significantly with even minor errors in severity or frequency estimation. The cost of error in evaluating these long-tails can produce spectacular underwriting loss as claims develop to ultimate. Reinsurance actuarics have previously realized that distribution functions for claim size would be helpful. Unfortunately, although tools like the lognormal, Pareto, Gamma, and Weibull (to mention a few) have been available for some time now, the estimation of the parameters has been difficult. Few losses exist in these upper layers upon which to make accurate estimates.

[^14]After detailing the calculation of pure premiums by layer using a lognormal distribution, Mr. Finger applies his approach, for example purposes, to data reported in a Special Malpractice Review.: Perhaps some of the problems encountered in fitting a log-normal distribution function to this claim data can be traced directly to the use of survey closed claim data. All the criticisms and caveats implied in using closed claim data will not be repeated here, but suffice it to say that claims included within the survey have accident years dating back into the early 1960's (and claim amounts were not trended). Smaller claims belong to the most recent accident years and are higher in volume relative to the older less frequent severe cases. The poor fit over the entire range of loss values can be attributed to the frequency with which losses close by incurral year. As previously mentioned, the need for an accurate barometer of claim frequency by size is essential. If only we could agree on one.

Several other points deserve comment. To emphasize Mr. Finger's definition of an excess loss distribution-it is defined as "the sum of all claims values larger than the attachment point less the number of claims above the attachment point times the value of the attachment point." Using this definition, Table I represents layers of loss between any two attachment points. This then paves the way for the determination of increased limits factors in Table III. The heading of Table III is a bit misleading. A $\$ 100,000$ policy increased limit factor is being determined (Basic Limits $=\$ 25,000$ ). Coverage is not being rated to $\$ 125,000$. Perhaps a better title to Table III might be: Indications of $\$ 100,000$ Policy Increased Limits Factor.

Table VI illustrates an estimation process for determining the CV when claims below a given amount are excluded from the analysis. The problem in dealing with the truncated distribution has also been dealt with in the Benckert article." If the censoring point, c , is such that the excess distribution is greater than $80 \%(1.0-\mathrm{L}(\mathrm{c}))$ estimates of the mean and

[^15]variance (hence the coefficient of variation is easily calculated) are approximately given by:
\[

$$
\begin{aligned}
\sigma^{2 *}= & \frac{Y_{2}}{\mathbf{r}}-\frac{\left(\mathrm{Y}_{1}\right)\left(\overline{\mathrm{Y}_{1}}\right)}{\mathbf{r}} \\
& +0.4 \sqrt{\frac{\mathrm{Y}_{2}}{\mathrm{r}}-\frac{\left(\mathrm{Y}_{1}\right)\left(\overline{Y_{1}}\right) \cdot}{\mathrm{r}}} \frac{\mathrm{~m}}{\mathrm{r}} \cdot\left(\overline{\mathrm{Y}_{1}}-\log \mathrm{c}\right) \\
\mathbf{u}^{*}= & \bar{Y}_{1}-\frac{(\mathrm{m})\left(\sigma^{*}\right)(0.4)}{\mathrm{n}}
\end{aligned}
$$
\]

Where $Y_{1}=\Sigma \log x_{i}+m \log c$ for $x_{i}>c$

$$
\begin{aligned}
Y_{2} & =\Sigma \log ^{2} x_{i}+m \log ^{2} c \text { for } x_{i}>c \\
\bar{Y}_{1} & =\frac{Y_{1}}{n}
\end{aligned}
$$

m is the number of claims $\leq \mathrm{c}$
$r$ is the number of claims $>c$
$\mathrm{m}+\mathrm{r}=\mathrm{n}$
One final comment regarding the "Other Applications" section of the paper. Although this reviewer has not rescarched the problem in depth some European actuaries (Benckert ${ }^{4}$ and Bcard ${ }^{\text { }}$ ) have suggested the use of the log-normal in connection with fire losses.

I hope this article will spark additional interest in the use of theoretical loss distributions to characterize claim activity. Certainly other functions exist which may provide even better indications for the tail. Insurance data needs to be collected, fitted, analyzed, and published in the testing process of various model distributions. With the sparsity of large claim data, continuous claim size distributions are needed in the rating of high layers of insurance coverage. We are indebted to Mr. Finger for his enlightening exposition on this most flexible rating tool.

[^16]
## A CURRENT LOOK AT <br> WORKERS' COMPENSATION RATEMAKING

ROY H. KALLOP

## DISCUSSION BY CHARLES GRUBER

Mr. Kallop mentions that in the ratemaking procedures utilized by independent bureaus, there are minor variations from the National Council procedures presented in his paper. In New York, there are three differences worth mentioning:

1. Due to the inflationary growth of payroll and therefore the growth of premium without any compensating increase in risk, a wage factor is used to decrease the New York experience-indicated rates. This wage factor measures the increase in the state average wage from the midpoint of the experience period to the midpoint of the policy year for which rates are being changed. There is an offset for the rise in indemnity losses due to increased wages.
2. The New York Compensation Insurance Rating Board uses five policy years of experience for reviewing classifications. For those classifications which develop $100 \%$ credibility in less than five years, only the number of years necessary to produce $100 \%$ credibility are used. Indicated pure premiums are brought to the level underlying present rates and not, as in the National Council procedure, to current level. In other words, pure premiums are brought to the rate and law benefit levels of the previous filing, not the current filing. The proposed pure premiums are the middle pure premiums of the indicated on level, the formula, and the underlying pure premiums.
3. Proposed classification pure premiums are limited to a $20 \%$ change from the underlying. The National Council does not limit pure premiums but limits its proposed rates to a maximum departure from present rates.

In New York, the history of workers' compensation rates has been rather fortunate. From 1950 to 1974, benefits increased by over $100 \%$. Yet, because of favorable experience, rates increased by only about $5 \%$. There has been a sudden, severe change in this favorable experience, however. Calendar year loss ratios have risen from $55 \%$ in 1970 to $71 \%$ in 1975. This steadily worsening experience makes it imperative that the ratemaking process in New York become more responsive.

The past ratemaking procedure of the New York Rating Board used a $50-50$ split between experience indications of one policy year two years before the effective date of the filing, and one calendar year six months before the effective date. The policy year experience was processed from individual unit card data. The experience indications were then modified by the wage factor.

Although this ratemaking procedure was adequate in the past, it is no longer adequate. It seems that past experience has become unrepresentative of current conditions. Even if the experience of the latest calendar year were used, it would still not be an adequate predictor of future experience, without including indicators of change. One problem area is the projected wage factor, which unfortunately measures only the future growth of premiums, without considering future loss conditions. Examples of changing loss conditions are the continuous changes in award liberality and utilization rates of doctors, due to changing economic and social conditions. To get some measure of changes in award liberality, the Rating Board has looked at data on closed compensation cases, provided by the New York State Workmen's Compensation Board. On a common benefit level, the average compensation per case increased from approximately $\$ 1,850$ in 1970 to $\$ 2,090$ in 1973, an increase of $13 \%$. It is evident from Exhibit I that most of this increase came from non-scheduled permanent partial cases, where liberality would have the most effect.

The New York Rating Board, in its effort to increase both premium and loss responsiveness, has adopted several ratemaking procedures which the National Council has implemented. The exposure base has been changed from payroll limited to $\$ 300$ per week to total payroll. In recent filings, the Board has used policy year aggregate totals obtained from financial data reports, i.e., premiums and losses from the latest two policy years evaluated six months before the effective date of the filing. Both premium and losses are developed to an ultimate reporting base. The Board has adopted a new method of adjusting calendar year premium and loss data to the current level. In the past, a geometric method was used; currently, the Board uses policy year contributions to calendar year experience, which more accurately adjusts old claims to the current level.

The Board included a loss ratio trend factor in its most recent filing. This trend factor takes into account New York's wage factor. Loss ratios of the most recent five calendar years are adjusted to current rate, benefit, and
wage levels. A least squares trend line is used to project the increase in loss ratios from the midpoint of the experience period to the midpoint of the policy year for which rates are being changed. This procedure is similar to the procedure used to calculate the wage factor. (See Exhibit II for an example of this calculation.)

A basic ratemaking problem lies in discovering accurate predictors of future loss experience, either in insurance data or in outside data. As situations change, existing predictors become inadequate, and additional predictors must be found. Ratemakers continue their efforts despite the sometimes disheartening thought that part of what we are trying to measure may not, in fact, be quantifiable.

## EXHIBIT I

## ALL DISABILITIES, NON-SCHEDULE PERMANENT PARTIAL,

## AND TEMPORARY DISABILITIES

COMPENSATED CASES CLOSED, NEW YORK STATE, 1970-1973

| Year of Closing | Data Provided by the New York State Workmen's Compensation Board |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All Disabilities |  |  | Non-Schedule Permanent Partial |  | Temporary |  |  |
|  |  | Cases | Compensation |  | Cases C | Compensation |  | 5 Com | ation |
| 1970 |  | 118.537 | \$188.992.138 |  | 3.025 \$ | \$ $65.243,169$ |  | 9 \$30. | 4.772 |
| 1971 |  | 123.124 | 206.526 .685 |  | 3.011 | 68.981 .730 |  |  | 7,131 |
| 1972 |  | 122.044 | 243.907 .658 |  | 3.687 | 94.570 .672 |  |  | 7.858 |
| 1973 |  | 117.337 | 245.524.899 |  | 3.549 | 100,441,054 |  |  | 4,687 |
| Year of | All Disabilities |  |  | Permanent Partial Non-Schedule |  |  | Temporary |  |  |
|  | Casts | $\begin{aligned} & \text { Compensation } \\ & \text { at } 1973 \\ & \text { Benefit Level } \end{aligned}$ | Compen. sation Per Case |  | Compensation at 1973 <br> Benefit Level | Compensation | Cases | Compensation at 1973 <br> Benefit Level | Compensation |
|  |  |  |  | Cases |  | Per Case |  |  | Per Case |
| 1970 | 118.537 | $\$ 219.191 .240$ | \$1,849 | 3.025 | 575.986 .347 | \$25.119 | 69.649 | \$35.342,042 | \$508.15 |
| 1971 | 123.124 | 217.853 .512 | 1,769 | 3.011 | 71.631 .181 | 23.790 | 72.763 | 34.610 .817 | 475.67 |
| 1972 | 122.044 | 251.539 .125 | 2.061 | 3.687 | $96,603,197$ | 26.201 | 71.601 | 36,999.470 | 516.75 |
| 1973 | 117,337 | 245,524,899 | 2,092 | 3,549 | 100.441 .054 | 28.301 | 70.373 | 36.114 .687 | 513.19 |

## EXHIBIT II

## WORKMEN'S COMPENSATION-NEW YORK

## Loss Ratio Trend Factor



## DISCUSSION BY JEROME A. SCHEIBL

The essence of a sound actuarial ratemaking procedure is a balanced intelligent appraisal of all pertinent information leading to a best estimate of future occurrences translated into unit costs. This suggests that a necessary and important element in the ratemaking process is the continuous evaluation of methods and data bases as they relate to the forces affecting losses and expenses. Without such an evaluation, ratemaking becomes a mechanical process of merely measuring past results without proper focus on the accuracy, stability, and responsivencss of rate levels.

Economic, social, technological, and political forces have left their marks on workers' compensation insurance since Ralph Marshall's day. Their dynamic influences continue to be observed along with revolutionary changes in our society's attitudes toward individual rights, the role of government, and the responsibilities of business. As might be expected, therefore, the continual evaluation of the ratemaking process of a line so sensitive to these forces suggests occasional revisions to keep pace with conditions expected to exist during the time rates are to apply.

Mr. Kallop's paper describes the 1975 National Council on Compensation Insurance ratemaking procedure, thereby updating the Marshall paper ${ }^{1}$ and filling a void in casualty actuarial literature on workers' compensation ratemaking technique. His presentation scrves a second but equally important purpose in that it demonstrates how and why the National Council procedures currently differ from those used years ago. He carefully points out that innovations adopted in the ratemaking process are not suggestive of defects in the older methods but are rather necessary adjustments to develop rates that are responsive to the changing nature of the workers' compensation line and the conditions by which it is affected. Mr. Kallop illustrates the need for flexibility in methodology in arriving at the best estimate of the financial aspects of future occurrences.

[^17]Approximately half of the countrywide workers' compensation premium volume is generated in states where the National Council provides rate calculations from data it has compiled either as a ratemaking organization or on an advisory basis. The other half of the volume is written in states where rates are developed either by an independent rating bureau or by a governmental body. ${ }^{2}$

Ratemaking methods may and do differ among those used by the National Council and by independent state bureaus. This discussion illustrates how one independent bureau has coped with the problem of assuring responsive ratemaking methods through somewhat different approaches than those used by the National Council. Its methods and those of the National Council have the common goal of achieving the best estimate of the financial effects of future occurrences. Therefore, variations in techniques and results should not detract from the actuarial soundness of the rates that are derived therefrom.

Annual premium volume in California is currently about $11 / 2$ billion dollars. This represents approximately $1 / 3$ of the business not under the jurisdiction of the National Council or approximately $17 \%$ of the countrywide volume for all carriers in non-monopolistic states. Data is gathered and rates are promulgated by the Workers' Compensation Insurance Rating Bureau of California. ${ }^{3}$

California rating practices differ somewhat from those in other states. Rates published in the manual are the minimum rates that must be used by all carriers on all business. Loss and expense constants are not provided for in manual rules which is consistent with the minimum pricing concept. Premium discounts are not permitted and all experience modifications are promulgated on an intra-state basis. Retrospective rating is permitted on a monoline basis only and only through the use of a prescribed tabular plan.

[^18]The California Bureau recognized several years ago that the workers* compensation situation in that state was such that rate level adequacy and stability could best be achieved by emphasizing responsiveness to conditions and experience in the ratemaking process. Aggregate policy year data was first used in a 1961 rate revision in lieu of unit report data. This data was used in conjunction with calendar year experience in a manner similar to the National Council procedure except that $60 \%$ weight was given to calendar year data rather than the $50 \%$ weight used by the National Council. Greater responsiveness was also achieved about the same time through the compilation of calendar quarter data permitting the use of the most recent four quarters in the determination of the rate level adjustment factor.

Development factors through 1970 were based on three-year average incurred policy year loss ratio developments as compared to the National Council practice of developing separate ratios for premium and losses using two-year averages. I osses were assumed to be developed to an ultimate basis at 84 months. In the 1972 revision it was noted that loss development followed a cyclical pattern using incurred data. The use of three-year averages made it difficult to project peaks and troughs of the pattern. It was apparent in 1972 that the incurred loss ratio development pattern was approaching a trough in the cycle. The ratemaking procedure was revised at that time to what was considered to be a more responsive method based on a three-year average paid-to-paid approach. The three-year average incurred-to-incurred approach was readopted in 1975 after it appeared that the trough in the development cycle had been passed.

Subsequent to the presentation of Mr. Kallop's paper, the National Council introduced loss ratio trend into its ratemaking procedure to recognize the imbalance of social and economic inflationary influences on premiums and losses. Although trend factors are derived from twelve-month rolling calendar year loss ratios measured at the end of each half year, such factors are used in conjunction with both the policy year and calendar year data in rate calculations. Observed trends are adjusted for credibility using a Spearman Rank Correlation D-statistic approach.

An on-level loss ratio trend was suspected in California experience as early as 1962. Trend factors were calculated on the basis of twelve-month rolling calendar periods measured at the end of each succeeding quarter. Trend factors were made a part of the formal calculations of the calendar year loss ratio from 1963 through 1968. A change was made in 1970 to
base trend calculations on the 16 latest quarterly loss ratios after adjustment for seasonality. In addition, a trend factor other than unity was used only when the data was determined to be significant using the two-sided Spearman Rank Correlation Coefficient and a $95 \%$ significance level.

In 1969 it was determined that further responsiveness in the ratemaking process might be achieved if calendar/accident year data were used. Calls for such data have been issued each year since that time and have provided the basis for a major revision in the rate level determination process in 1976.

The new method uses calendar/accident year loss ratios for a number of years adjusted to reflect development to ultimate values and to current premium and benefit levels. This data is trended using a double exponential smoothing method. ${ }^{+}$Since accident year data projected by this method is on an exponential basis giving greatest weight to the latest accident year and progressively diminishing weights to each prior year, trended data can be determined on a cumulative basis. The influence of older years on projected experience diminishes significantly with age. Because of the exponential nature of the curve determined by this method, the loss ratio used in the rate level calculation is derived directly from the extrapolated curve. This is in contrast to the usual linear method of applying the calculated trend to actual experience.

Accident year incurred loss development factors have followed a rather definite upward pattern in recent years. This suggests that the threc-year average devclopment used for projection purposes may not be sufficiently responsive for ratemaking purposes. Possible alternatives are the use of trended factors or the factor for the latest year. The later option was selected in a filing made early in 1976.

Mr. Kallop alluded to a new approach under study for developing rates for classes with credibility less than unity. This approach, utilizing countrywide relativities to complement state relativities, may be considered as yet another step toward more rate responsiveness in that it will result in rates more closely corresponding to the peculiarities of each manual class. The California Bureau classification rate calculations also use supplementary

[^19]data when two policy years do not qualify for $100 \%$ credibility. Rather than external data, however, the California Bureau achieves responsiveness by adding earlier years until full credibility is reached subject to a maximum of five years.

Both the National Council and California Bureau, each in its own way, have focused much attention and research on the need for responsiveness in ratemaking methods. The fact that techniques may differ is irrelevant as long as each bureau continues to develop what it believes to be its best estimates of future costs under future conditions-the goal of every ratemaker.

## APPENDIX

The double exponential smoothing technique may be demonstrated by an example using a filing made by the California Bureau early in $1976 .{ }^{\circ}$ The filing, as applied to new and renewal business, contemplated an effective date of April 1, 1976, with a subsequent revision scheduled for January 1, 1977. Therefore, the midpoint of the exposure period in this illustration is February 15, 1977.

Calendar/accident year loss ratios adjusted to the then current premium and benefit levels as developed to ultimate values are shown in Column (1) of the following table. ${ }^{6}$ These values are used to derive the point ( $\hat{a}$ ) and the slope ( $\hat{b}$ ) at the midpoint of accident year 1974. The loss ratio at the midpoint of the exposure period ( 2.625 years from the midpoint of accident year 1974) is derived by a linear extrapolation from point $\hat{a}_{1974}$ using slope $\hat{b}_{1974}$.

Points and slopes on the exponential curve are defined as:
and

$$
\begin{align*}
& \hat{a}_{t}=2 S_{t}-S_{t}^{\mid \underline{[2]}}  \tag{1}\\
& \hat{b}_{t}=\frac{\alpha}{1-\alpha}\left(S_{t}^{|2|}\right) \tag{2}
\end{align*}
$$

[^20]where:
\[

$$
\begin{aligned}
& \begin{array}{l}
\alpha= \\
\text { a selected weight to be given to } \\
\\
\quad \text { the latest } X \text { in deriving } S_{t} \text { and to } \\
\quad \text { the latest } S_{t} \text { in deriving } S_{t}^{[2]} . \\
\mathrm{S}_{\mathrm{t}}= \\
\\
\mathrm{S}_{\mathrm{t}}^{[2]}=\alpha+(1-\alpha) \mathrm{S}_{\mathrm{t}-1}+(1-\alpha) \mathrm{S}_{\mathrm{t}}^{[2]} \\
\mathrm{X}=
\end{array} \\
& \text { on level loss ratio }
\end{aligned}
$$
\]

The California Bureau Actuarial Committce used historical policy year data to test various values of $\alpha$ to determine a value that resulted in an optimum balance of rate level adequacy, stability, and responsiveness. After a number of tests, including variations of $\alpha$ by age of data, an $\alpha$ of .2 was selected.

The calculations of $\hat{a}_{t}$ and $\hat{b}_{t}$ are straightforward and can be easily traced in the following table. It should be noted that it is not necessary to determine these values for each year-only for the point where extrapolation begins.

Since it is necessary to have a value of $S_{t-1}$ to determine $S_{t}$, it is necessary to estimate an initial $S_{t-1}$ using assumed values for $\hat{a}_{t-1}$ and $\hat{\mathrm{b}}_{\mathrm{t}_{-1}}$. The technique used in this filing was to determine a least squares regression line based on accident year 1966-1970, assume the slope of this line to be $b_{1-1}$ and extrapolate to $t-I$ to derive the value of $\hat{a}_{t-1}$. Since these estimates are made in rather carly years they have a minimal effect on the projected loss ratio.

## ACCIDENT YEAR LOSS RATIO PROJECTION

by means of double exponential smoothing

$$
\alpha=.2
$$



Projected loss ratio as of:
$2 / 15 / 77=\hat{\mathrm{a}}_{1: 5_{4}}+2.625 \hat{\mathrm{~b}}_{197_{4}}=.7551+2.625(.0192)=.8055$
*Values obtained by deriving $\hat{a}_{19: 5}$ and $\hat{b}_{196 ;}$ from the least squares regression line based on observed loss ratios for accident years 1966-1970 and simultaneously solving the identities in columns (4) and (5) to derive the initial $S_{t}$ and $S_{t}^{[2]}$.

# GENERALIZED PREMIUM FORMULAE 

JAMES P. ROSS

DISCUSSION BY ALAN E. KALISKI

James Ross, in his paper "Generalized Premium Formulae," has mathematically set forth a methodology for determining rate level adjustment factors (i.e., factors to convert actual earned premiums to a present rate level basis) when the earned premiums being put on-level consist of contributions from policies written with different terms. An example of this situation, as posed by Mr. Ross, occurs when: (1) three-year policies are converted to annual policies upon renewal as of a certain date, and (2) the premiums being adjusted to present level consist of earnings from both three-year policies (written prior to date of annualization) and one-year policies (written after date of annualization). In solving this problem, the author has formularized and illustrated many fundamental, yet important relationships among earned exposures, written exposures, rate of exposure writing, and policy term.

With regard to technical ratemaking procedures, this paper is especially relevant at the present time. The Insurance Services Office has recently filed, and received approval of in several states, annualization endorsements for their Special Multi-Peril (SMP) policy form. By attaching these endorsements, SMP policies previously written and rated for three-year terms will now, for the most part, be subject to annual re-rating at first and second amiversaries of policy inception. From a ratemaking standpoint, when faced with the problem of determining rate level adjustment (on-level) factors, the theory developed in the paper under consideration has application to this situation. Some minor modifications are necessary in this case, however, because certain policies-three-year pre-paids and those which develop annual premiums of $\$ 500$ or less-are not annually re-rated for practical reasons. The following paragraphs discuss the nature of the modifications required in order to make Mr. Ross' paper directly applicable to the ISO annualization of SMP policies.

On page 53, an example is given in which the policy term is changed from three years to one year at time $\mathrm{X}_{\bullet}$, and the exposure prior to time $\mathrm{X}_{\mathrm{o}}$
had been written at a constant rate $K_{\text {,. }}$. The author then states that $f(x)$ is as follows:

In the case of ISO annualization, a modification to the above definition of $f(x)$ is necessary for the following reason: Not all SMP policies are subject to annual re-rating at policy inception anniversary. (Mure specifically, Deferred Premium Payment (DPP) plan policies where the annual premium is less than $\$ 500$ and three-year pre-paid policies are excluded from the effects of annualization.)

Suppose $5 \%$ of all SMP policies fall in either of the above two categories and are thus not subject to annualization. Then, under the author's assumptions, $\mathrm{f}(\mathrm{x})$ would be defined as follows:

Coincident with the annualization of SMP policies, the ISO is changing the term multiple from 2.7 to 3.0 for all policies and is maintaining its $5 \%$ installment surcharge only for DPP plan policies whose annual premium is less than $\$ 500$. Hence, when determining rate level adjustment factors, the following should be considered as normal rate changes effective as of the date of annualization:

## Rate Change

DPP Plans-premium at $\quad \frac{3.0}{2.7(1.05)}=1.058($ or $+5.8 \%) ~$
least $\$ 500$
DPP Plans—premium less $\frac{3.0(1.05)}{2.7(1.05)}=1.111($ or $+11.1 \%)$
3-Year Pre-Paid Policies $\frac{3.0}{2.7}=1.111$ (or $+11.1 \%$ )
(The above three rate level effects would be weighted by the respective premiums within each category to obtain the average rate level change effective with annualization.)

Having made the above described modification to the function $f(x)$, and by including the rate level effect of the change in term multiples and installment surcharges, the methodology set forth in Mr. Ross' paper can be applied directly to the ISO situation.

As a final note with respect to the specifics of the paper, there is one place where I believe the author interchanged words. In particular, at the bottom of page 54 , an example is given followed by the statement ". . . with an annual term a rate change at the beginning of the year will result in one-half of the premium earned at the old rate and one-half at the new rate." I believe the author meant to say that one-half of the exposures (not premium) are earned at the different rate levels, $r_{1}$ and $r_{2}$.

Although Mr. Ross' paper addresses itself to the solution of a particular problem-the determination of rate level adjustment factors-it is nevertheless recommended to anyone interested in the mathematical formulation of certain fundamental insurance relationships. Also, it can be shown that the rate level adjustment (on-level) factors calculated via the formulae set forth are equivalent to those determined from the traditional parallelogram approach. Hence, this paper can also serve to clear up the "mystique" of the parallelogram approach that might exist among those first introduced to it.

While of a technical nature, "Generalized Premium Formulae" by James Ross touches on a subject of which more needs to be written. In particular, a gap in the literature seems to exist with respect to Commercial Multi-Peril Package policy ratemaking and pricing. This topic would appear to warrant consideration in that CMP has recently become the predominant commercial line. Also, it would be interesting to learn of pricing and packaging approaches used by companies that market their own independent policy forms in addition to the ISO's SMP policy.

## MINUTES OF THE 1976 SPRING MEETING

MAY 22-26, 1976
THE BREAKERS, PALM BEACH, FLORIDA

Saturday, May 22, 1976
An informal reception for early arrivals was held in the President's suite from 6:30-7:30 p.m.

Sunday, May 23, 1976
The Board of Directors had their regular quarterly meeting from 1:004:00 p.m.

Registration took place from 4:00-6:00 p.m.
The President's reception for new Fellows and their spouses was held from 6:00-6:30 p.m.

A reception for members and guests was held from 6:30-7:30 p.m.

Monday, May 24, 1976
Registration was held from 8:30-9:00 a.m.

The Spring Meeting was formally convened at 9:00 a.m. After opening remarks by President Bornhuetter, an address was given by Philip Ashier, Insurance Commissioner and Treasurer of the State of Florida.

Steven Newman informed the group of the preliminary plans for the ASTIN meeting to be held in Washington, D.C., in the Spring of 1977.

President Bornhuetter then requested the new Associates to rise as he called their names. After a round of applause for the Associates, each new Fellow was asked to step forward and receive his or her diploma. Pictures of new Associates and Fellows were taken at the coffee break which followed the business session. List of new Associates and Fellows follows.

## NEW FELLOWS

Dean R. Anderson
Wayne H. Fisher Michael Fusco
Leon R. Gottlieb*
Anthony J. Grippa
Steven L. Groot
Paul E. Hough
Alan E. Kaliski

Howard H. Kayton
Anne E. Kelly
C. Robert Spitzer

Elton A. Stephenson
James P. Streff
Robert L. Tatge
Dorothy A. Zelenko

NEW ASSOCIATES
Albert J. Beer
Richard M. Beverage
Everett G. Bishop
Mark M. Cis
Kenneth R. Frohlich*

Patrick J. Grannan
Holmes M. Gwynn
Walter Haner
Gary P. Hobart
Beatrice T. Rogers

## *Not Present

S. G. Kellison, Executive Director of the American Academy of Actuaries, reported on Academy activities and the operation of their new office established in Washington, D.C.
Monday, May 24, 1976 (Cont'd.)
The first panel discussion was entitled "Government RegulationsFrom "Rags to Riches." Participants were:

| Moderator: | LeRoy J. Simon |
| :--- | :--- |
|  | Senior Vice President |
| Prudential Reinsurance Company |  |
| Members: | George K. Bernstein |
|  | Attorney at Law |
|  | Don P. McHugh |
|  | V.P. \& General Counsel |
|  | State Farm Mutual Auto Ins. Co. |
|  | Benjamin R. Schenck |
|  | Shearson Hayden Stone Inc. |
|  | Ms. Mavis A. Walters |
|  | Assistant Vice President |
|  | Insurance Services Office |

Following the panelist presentations, questions were asked by the audience.

At 12:00 Noon the meeting recessed for lunch.
The afternoon was devoted to Committee meetings. One Round-Table Discussion entitled "Not For Women Actuaries Only" was conducted by the Committee on Career Enhancement. The introduction was made by Charles C. Hewitt, Vice President and Actuary, Metropolitan Property and Liability Insurance Company. Participants were:

Ms. Carole J. Banfield
Associate Actuary and Manager
Insurance Services Office
Ms. Diana M. Childs
Assistant Actuary
Insurance Company of North America
Ms. Vicki S. Keene
Actuarial Assistant
Aetna Insurance Company
Ms. Mavis A. Walters
Assistant Vice President
Insurance Services Office

A reception was held for members and guests at the Beach Club from 6:30-7:30, followed by a LUAU.

Tuesday, May 25, 1976
The meeting was reconvened at 9:00 a.m.
New papers were presented. The titles and authors were:
"Estimating Pure Premiums by Layer-An Approach" by Robert J. Finger.
"Accident Limitations for Retrospective Rating" by Frank Harwayne.

James P. Ross' paper "Generalized Premium Formulae," presented at the 1975 Fall Mceting was revicwed by Alan E. Kaliski and Richard D. Pagnozzi.

A panel presentation, "The Discounting of Loss Reserves," was given. The participants were:

Moderator: David P. Flynn<br>Vice President and Actuary Crum and Forster Insurance Companies<br>Members: Rafal J. Balcarek<br>Vice President and Actuary<br>Reliance Insurance Company<br>Paul M. Otteson<br>Senior Vice President and Actuary<br>Federated Mutual Insurance Company and Federated Life Insurance Company<br>Ms. Ruth E. Salzmann<br>Vice President and Actuary<br>Sentry Insurance Group<br>Richard H. Snader<br>Actuary<br>United States Fidelity and Guaranty Company

After coffee a second panel on the subject "The AICPA Audit Guide" was presented. Participants were:

| Moderator: | Robert G. Espie <br> Vice President and Corporate Controller <br> Aetna Life and Casualty Company |
| :--- | :--- |
| Members: | John L. McDonough, Jr. <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> Partner, Price Waterhouse E. Singer Company <br> President <br> Illinois Medical Services, Inc. |

The meeting was recessed from Noon until 2:60 p.m. for lunch.

Tuesday, May 25, 1976 (Cont'd.)
From 2:00-5:30 p.m. six workshops were held. Each workshop was held twice during three hourly periods according to the following schedule:

2:00-3:00 Workshops A, B, C, D
3:15-4:15 Workshops A, B, E, F
4:30-5:30 Workshops C, D, E, F
The workshop titles and participants are listed below:
Workshop A-Discussion of R. H. Kallop's paper "Workmen's
Compensation Ratemaking" presented at the Fall, 1975 Meeting.
Moderator: Roy H. Kallop
Vice President and Actuary
National Council on Compensation Insurance
Members: Charles Gruber Assistant Actuary
New York Compensation Insurance Rating Board
Stephen S. Makgill
General Manager
Pennsylvania Compensation Rating Bureau
Jerome A. Scheibl
Vice President
Employers Insurance of Wausau
Workshop B-Continuation of the morning panel on "The AICPA Audit Guide" with audience participation. The moderator and members were the same as listed under the above panel.
Workshop C--"Certification By The Actuary" was presented by the following:
Moderator: Dale A. Nelson
Actuary
State Farm Mutual Automobile Ins. Co.
Members: Robert A. Brian
Financial Analyst
Conning and Company
Stephen G. Kellison
Executive Director
American Academy of Actuaries

Tuesday, May 25, 1976 (Cont'd.)
Workshop D-"Trends In Expense Provisions"
Moderator: Edward R. Smith
Vice President and Actuary
The Hartford Insurance Group
Members: Phillip N. Ben-Zvi
Actuary
Royal-Globe Insurance Companies
John B. Conners
Associate Actuary
Liberty Mutual Insurance Company
Frank Harwayne
Vice President and Director of Research
National Council on Compensation Ins.
Workshop E-"Model Building" for solving insurance problems was presented by the following:

Moderator: Charles A. Hachemeister
Actuary
Prudential Reinsurance Company
Members: R. Woody Beckman
Consulting Actuary
Booz-Allen Consulting Actuaries
Richard I. Fein
Woodward and Fondiller
Ernest J. Hansen
Director of Operations Research
Insurance Company of North America
Workshop F--The "Pricing of Long-Term Medical Losses" was the subject of this workshop. Participants were:

Moderator: Joseph W. Levin
Actuary
Employers Reinsurance Corporation

Members: Martin Adler
Vice President and Actuary
Government Employces Insurance Co.
Steven L. Groot
Assistant Actuary
Allstate Insurance Company
John Hyland
Assistant Vice President
General Reinsurance Corporation
A reception for members and guests was held from 6:30 to 7:30 p.m.

Wednesday, May 26, 1976
At 9:00 a.m. an address on econometrics was given by Dr. Allen Sinai of Data Resources Incorporated. A panel on econometrics followed:

Moderator: Robert Pollack<br>Senior Vice President<br>Colonial Penn Insurance Group<br>Members: John B. Gragnola<br>Assistant Vice President<br>Allstate Insurance Company

Allan M. Groves
Senior Research Associate Travelers Insurance Company

Roger C. Wade
Vice President
Volkswagen Insurance Company
President Bornhuetter adjourned the meeting at 12:00 Noon, expressing thanks to Phillip B. Kates, President, Independent Fire Insurance Company, who ably served as Chairman of Local Arrangements and to Patrick J. Grannan, John Herzfeld and Diane Young (Mr. Kates Secretary) who assisted with the registration. In attendance as indicated by registration records were 114 Fellows, 98 Associates, 22 Guests, 12 Subscribers, 6 Students and 105 husbands or wives of members as follows:

## FELLOWS

Adler, Martin Gibson, John A.
Alexander, Lee M.
Anderson, Dean R.
Anker, Robert A.
Balcarek, Rafal J.
Bartik, Robert F.
Beckman, Woody
Bennett, Norman J.
Ben-Zvi, Phillip N.
Bergen, Robert D.
Berquist, James R.
Berry, Charles H.
Bevan, John R.
Bickerstaff, David R.
Bill, Richard A.
Bland, William H .
Bornhuetter, Ronald L.
Brannigan, James F.
Brian, Robert A.
Brown, William W.
Carter, Edward J.
Conners, John B.
Curry, Alan C.
Dahme, Orval E.
Ehlert, Darrell W.
Eliason, Edward B.
Espie, Robert G.
Faber, James A.
Farnam, Walter E.
Ferguson, Ronald E.
Finger, Robert J.
Fisher, Wayne H.
Fitzgibbon, Walter J.
Flynn, David P.
Forker, David C.
Fowler, Thomas W.
Fresch, Glenn
Fusco, Michael

Goddard, Russell P.
Golz, James F.
Grippa, Anthony J.
Groot, Steven L.
Hachemeister, Charles A.
Hartman, David G.
Harwayne, Frank
Hazam, William J.
Hewitt, Charles C.
Honebein, Carlton W.
Hough, Paul E.
Hughey, M. Stanley
Inkrott, James G.
Johe, Richard L.
Jones, Alan G.
Kallop, Roy H.
Kates, Phillip B.
Kayton, Howard H.
Kelly, Anne E.
Khury, Constandy K.
Kilbourne, Frederick W.
Kollar, John J.
Kreuzer, James H.
Lamb, R. Michael
Leslie, William
Levin, Joseph W.
Liscord, Paul S.
Makgill, Steven S.
Masterson, Norton E.
Morison, George D.
Muetterties, John H.
Munro, Richard E.
Murray, Edward R.
Nelson, Dale A.
Newman, Steven H.
Otteson, Paul M.
Perkins, William J.

Petz, Earl F.
Pollack, Robert
Portermain, Neill W.
Riccardo, Joseph F.
Richards, Harry R.
Richardson, James F.
Riddlesworth, William A.
Roberts, Lewis H.
Rodermund, Matthew
Rogers, Daniel V.
Rosenberg, Norman
Ross, James P.
Ryan, Kevin M.
Salzmann, Ruth E.
Scheibl, Jerome A.
Scott, Brian E.
Sheppard, Alan R.
Simon, Leroy J.
Simoneau, Paul W.
Skurnick, David
Smith, Edward R.
Snader, Richard H.
Spitzer, C. Robert
Stephenson, Elton A.
Stewart, Charles W.
Streff, James P.
Strug, Emil J.
Switzer, Vernon J.
Taht, Veljo
Tverberg, Gail E.
Uhthoff, Dunbar R.
Walsh, Albert J.
Walters, Michael A.
Webb, Bernard L.
Williams, P. Adger
Woll, Richard G.
Yount, H. W.
Zelenko, Dorothy A.

## ASSOCIATES

| Alff, Gregory N. | Gallagher, Thomas L. | Neidermyer, James R. |
| :--- | :--- | :--- |
| Alfuth, Terry J. | Garand, Christopher P. | Nolan, John D. |
| Banfield, Carole | Gould, Donald E. | Ori, Kenneth R. |
| Barnes, Galen R. | Gruber, Charles | Penniman, Kent T. |
| Bassman, Bruce C. | Grannan, Patrick | Plunkett, Joseph A. |
| Beer, Albert J. | Gwynn, Holmes M. | Plunkett, Richard C. |
| Bell, Allan A. | Hafling, David N. | Potok, Charles M. |
| Bertles, George G. | Hammer, Sidney M. | Quirin, Albert J. |
| Beverage, Richard M. | Haner, Walter | Renze, David E. |
| Biondi, Richard S. | Head, Thomas F. | Rice, W. Vernon |
| Bishop, Everett G. | Herzfeld, John | Rodgers, Beatrice T. |
| Bovard, Roger W. | Hobart, Gary P. | Rosenberg, Sheldon |
| Bragg, John M. | Hoylman, Douglas J. | Sandler, Robert M. |
| Brewer, Fred L. | Inderbitzin, Paul H. | Schaeffer, Bernard G. |
| Cadorine, Arthur R. | Jensen, James P. | Schulman, Justin |
| Carollo, Linda D. | Jerabek, Gerald J. | Shoop, Edward C. |
| Childs, Diana M. | Johnston, Daniel J. | Shrum, Roy G. |
| Chorpita, Fred M. | Jorve, Barry M. | Singer, Paul E. |
| Chou, Philip S. | Kaliski, Alan E. | Smith, Frances A. |
| Cis, Mark M. | Karlinski, Frank J. | Song, Young B. |
| Collins, Douglas J. | Kaur, Alan F. | Stanard, James N. |
| Connor, Vincent P. | Keene, Vicki S. | Steeneck, Lee R. |
| Covitz, Burton | Kleinberg, James J. | Tatge. Robert L. |
| Daino, Robert A. | Kolojay, Timothy M. | Torgrimson, Darvin A. |
| Davis, Rex C. | Lehman, Merlin R. | Trees, John S. |
| Davis, Rodney D. | Lehman, Steven G. | Wage, Roger C. |
| Dolan, Michael C. | Lindquist, Robert J. | Walters, Mavis A. |
| Durkin, James H. | Lino, Richard | Whatley, Michael W. |
| Eddy, Jeanne H. | Luneburg, Sandra C. | Whatley, Patrick L. |
| Eldridge, Donald J. | Marino, James F. | Woodworth, James H. |
| Fallquist, Richard J. | Miller, David L. | Yoder, Reginald C. |
| Fein, Richard I. | Moore, Brian C. | Zubulake, Theodore J. |
| Finkel, Daniel | Morgan, Stephen T. |  |

## GUESTS

| Ashler, Philip | Hansen, Ernest J. | Roland, W. P. |
| :--- | :--- | :--- |
| Bernstein, George K. | Hyland, John | Saffeir, Harvey J. |
| Bowles, Thomas | Kcllison, Stephen G. | Sinai, Allen |
| Davies, Bennett | McCarthy, John F. | Spangler, Joel L. |
| Forbes, Leon D. | McDonough, John R. | Stenmark, John A. |
| Gragnola, John B. | McHugh, Don | Trafton, Mark |
| Groves, Allan M. | McMillen, Robert H. |  |
| Guarini, Leonard T. | Robinson, Michael D. |  |

## SUBSCRIBERS

| Anderson, E. V. | Hatfield, Bryan | Ross, Paul Dean |
| :--- | :--- | :--- |
| Armstrong, Steven H. | Hinkle, Timothy C. | Schiavo, Michael F. |
| Bell, Andrew M. | Hoyt, Fred A. | Subeck, Stanton |
| Dunn, Robert P. | Rinard, Alan V. | Yousri, A. |

## STUDFNTS

| Meeks, John M. | Pulis, Ralph S. | Skolnik, Richard S. |
| :--- | :--- | :--- |
| Miccolis, Jerry A. | Ragan, Evelyn M. | Tuttle, Jerome E. |

A special program for wives and guests of the members was organized by Cindy Bornhuetter. Highlight of this program was a presentation by Mrs. Bobbie Evans, a representative of "The Total Woman, Inc.," outlining the concepts set forth in Marabel Morgan's book The Total Woman. A discussion followed.

Respectively submitted,

Darrell W. Ehlert
Secretary

# PROCEEDINGS 

November 17, 18, 19, 1976

## CHALLENGES

## PRESIDENTIAL ADDRESS BY RONALD BORNHUETTER

It has been a tradition that the retiring president address the membership, and for many years this occurred twice a year. Fortunately, we now address you only once. In my visits with our sister actuarial organizations at their annual meetings two retiring presidents declined the privilege of making a presidential address -I was tempted; however, that was the easy way out. I was warned by several perceptive past presidents that the beginning of the term of office was none too early to start thinking about this point in time-they were so right.

I will break with tradition somewhat and, instead of focusing on one topic, I would like to put to you several specific challenges involving three general areas; the industry, the actuary, and lastly, the profession.

## THE INDUSTRY

We have all heard comments by industry spokesmen covering innumerable financial topics relating to the insurance industry. At this time I would like to put forward one specific challenge to a subject discussed at a workshop during this meeting-the future capacity of our industry.

First, I offer the following question: can the industry, on its own, generate enough capital to fill the needs for the immediate future-under both favorable and unfavorable stock market conditions? Given the current state of affairs, I find it difficult to answer this question in the affirmative.

I would like to list a few "current conditions" that must be taken into consideration.

1. To the best of my knowledge no stock insurance company has in the recent past gone to the equity market to raise substantial additional capital except in a distressed situation. Prospects are not particularly bright in this area; but, I will come back to this.
2. We are about to enter a cycle of investors wanting, and receiving, a greater share of earnings through dividends, thus eroding the amount of new capital that can be generated from within.
3. If one follows "current value accounting" to its ultimate, all securities will be valued at market price. The great cushion that amortized bond values provided in inflationary times will, someday, be gone. This certainly will not help.
4. Few companies have been net buyers of common stock in recent times. Historically this has been an important source of additional capital through appreciation. Several reasons might be cited such as, remembrances of the 1974 "capacity crunch", an economy that seems to be increasingly subject to severe shocks, and a strong need for taxable income to offset sizable tax loss carryforwards by 1979. These certainly are all valid reasons.
5. Relatively poor and, more importantly, quite erratic underwriting results.
6. Pressure being exerted on current surplus because of rapidly rising price levels. Such pressure will continue as long as we have inflationary forces, both economic and social.
7. A relative distrust or wariness of the property and casualty industry by the investment community. They have been stung badly at least once and are now quite suspicious.

There are probably many more important factors that can be enumerated; however, this gives you the idea.

Obviously, the first and basic requirement to change the situation and attract more capital is strong and relatively consistent earnings performances. One can talk for hours on this aspect alone.

What I would like to call your attention to is a slightly different but related area cited in the first and last conditions on my list: The absence of additional capital being raised through the equity market and the basic distrust by the investment community.

If earnings are to be effective in today's equity market, the investment community must understand and believe in the methodology behind the bottom line numbers and the vast majority do not. This is especially true on the loss reserve side. Admittedly our business is complicated, including two separate but related accounting systems, and those few analysts following our industry have a very very difficult time understanding it. What is worse, most others don't even make the attempt.

We, the industry and, specifically, the actuaries must embark on a program which will make our business more understandable, hence, more marketable to the investing public and the analysts who represent them. Individual companies have made improvements but there is such a long way to go. Unless we can develop statistics that will be understood, and relied upon, we will lose our major market source for future capital.

It is a basic understanding of our numbers that will ultimately lead to a three step result:

1. The credibility of carnings.
2. The achievement of respectable multiples.
3. Ultimately, the attraction of new capital.

We must be able to market ourselves successfully. I leave you with this challenge. The actuarial profession, especially in the area of loss reserves, can be of enormous help. It is essential that we become involved because, if the private sector does not produce adequate capital for future capacity needs, there is always the Man on the Potomac with the printing press who can step in, and will.

## THE ACTUARY

I would now like to spend a moment talking about your future, especially the younger members just embarking on their career path. Let me introduce my point with a personal story and two statistical illustrations (every actuarial speech has to have some numbers).

The Society of Actuaries has some fifty-seven hundred members as compared to the Casualty Actuarial Society with seven hundred and fifty. On the other hand, in 1975 United States life and annuity premiums totaled some thirty-nine billion with an additional nineteen billion for accident and health while property and casualty premiums totaled some fortyeight billion. If one reduces the life society membership by roughly thirty percent to reflect Canadian and pension consultants, this leaves some four thousand life actuaries to support fifty-cight billion of premium or, in other words, eighty actuaries for every billion of annual premium (that is, if one includes all the accident and health premiums). The comparable figure for the casualty side is sixteen actuaries per billion of premium volume. I ask you, is life and accident and health so much more complex to require a density of actuaries five times greater?

My second statistical illustration is quite short. According to President Michael O'Brien of the British Institute of Actuaries, ten percent of his one thousand members are employed directly by the securities industry, not the insurance industry, and ten percent more work in investment departments of insurance companies. There are some special reasons for this situation but it is still a startling figure. What percentage of ours compares to this twenty percent? Yet, the investment arena is certainly a logical one for actuarially traincd minds.

My third illustration is a brief personal story that occurred about three years ago. I was called into the Chairman's office one afternoon and he explained to me that the Company was being reorganized and they would like me to assume a position in the financial area. Obviously, this was a promotion and yet I was very upset by it all. Because all my life I have strived to achieve the title Actuary and here in ten seconds time the title was being eliminated. I questioned him further as to why the title has been eliminated from my job specification and also from anyone else, as our Company does not now have anyone designated as "The Actuary". He gave me this explanation which has lived on with me and I quote: "The title of 'Actuary' is too limiting on an individual." I know now what was meant three years ago but it took me quite some time to understand this very brief but telling lesson.

The point I'm trying to make is this-for many the actuarial route should be the jumping-off point for other related career paths. Flip through the yearbook of the Society of Actuaries if you really want proof that this
can be the case. Not everyone can or will be a chief actuary and, with membership approaching one thousand plus strong, you, as individuals, should be looking at all career paths, and we, as a Society, should provide a better exposure to topics that could assist you in choosing which career path to follow: management, economics, data processing, underwriting, accounting, or investment analysis. All are vital areas where people trained in actuarial science can make significant contributions and be successful.

I'm not advocating the take over of the property and casualty industry by actuaries, but I do challenge you to expand your horizons and challenge the Society to fulfill an obligation using its resources to develop and produce top insurance executives in all disciplines.

## THE PROFESSION

During the past twelve months, I have had the opportunity of visiting all the local clubs at least once and scveral twice; as well as representing you both here and abroad traveling a distance of nearly one hundred thousand miles. During this past year we have hoped to accomplish a few things as well as bring other subjects to the forefront. I would like to take my last few minutes suggesting some challenges on the most important aspect-The Profession.

First, and most important is the change in our growth rate during the past five years, coupled with a tremendous student explosion. As the old expression suggests "we ain't seen nothing yet". Last May we had seventeen hundred ninety-five students taking exams and there were sixteen hundred twenty-seven this November-both numbers are again increases over their respective 1975 figures. More to the point, there were one hundred and seventy individuals who sat for examinations this November who need only one or two examinations to become an Associate, the vast majority of these will be our new nembers in 1977, we are growing up very fast and we had better be ready.

Our average age is declining rapidly and we must be alert that the Society is always responsive to all segments both young and not so young. The consequence for failing to fulfill our obligations will be to lose one of these important segments.

Following through on this point, I wonder if we are not approaching the time when the emphasis of this Society should be shifted somewhat from the national to the regional or local level. To be specific, one of the semi-annual smorgasbord national meetings should be replaced with two or three regional meetings, run by the local clubs which would usually have one underlying theme. I list the following reasons as support for moving in this direction in the near future:

1. One of the important features of our Society is that we are an informal, close knit group-communication has always been easy. Yet, we all comment that the Society is losing this characteristic as we rapidly grow. Certainly regional meetings would preserve some of this for the immediate future.
2. The Society of Actuaries with some fifty-seven hundred members had an attendance of twelve hundred members at their last annual meeting, a twenty-one percent participation. Their regional meeting participation is much higher, almost double ours.
3. Our local club meetings are a huge success with a much higher degree of participation.
4. The workload of the Society could be shared more effectively between local and national staff.
5. Member expenses would be reduced which might encourage greater participation, including advanced students.
6. Done effectively, the Casualty Actuarial Society would increase its outward exposure dramatically.
7. More non-actuarial company executives might be interested in attending a nearby two-day session.
8. Our first one-day, one-topic seminar appeared to be a huge success.

Regionalization would be a dramatic change but one that ultimately must come. Why not sooner than later?

Those in the audience who have had the opportunity to participate in the ASTIN meetings and the International Congresses will understand better what I have to say next. We as a Society have been concentrating all our efforts in the continental United States and to this degree I believe we
have been selfish. There is an acute need, call it a search for knowledge, in the property and casualty business worldwide and we are the owners of the biggest bank. Those in foreign countries, practicing in the property and liability area are certainly looked on there as the poor cousins.

This search is one of the many reasons why ASTIN members are coming to Washington next May. These individuals want to see and learn how a large effective casualty actuarial organization functions.

I challenge each of you to make a commitment to go out of your way to make these visitors welcome. Let's start a dialogue, introduce them to your problems and participate in theirs. This is a unique opportunity to reach out, let's not lose it.

One of the goals of this year's officers was to bring the subject of amalgamation to the forefront so that each of you would have an opportunity to review thoroughly all aspects of it. It certainly is time that we all start thinking about it. Amalgamation will be an important and persistent subject in the coming months and years. There isn't much more that needs to be said at this moment, except that the subject deserves your continued careful attention.

Another separate but related subject, certification, was just discussed by three of your Board members. I would point out to you that, since this subject has also come to the forefront in a hurry, I believe we all will find that as this subject unfolds, it will tell us a great deal, very quickly, about whether amalgamation will work or not.

It is absolutely essential that we, the profession, should do the screening for licensing and be the dominant force in the problem area of defining competency. One only needs to look at the fall out from ERISA_enrolled actuaries-federal examinations replacing Society examinations-to know that we should make every effort to handle this ourselves.

Rightfully, your Board of Directors has agreed that the Academy should be the outward vehicle for handling the certification of individuals who will be involved in the certification of property and casualty reserves. The original agreement among the officers of the two organizations, which was accepted in principle by your Board of Directors, is that the qualification procedure should be one of "prior approval" that is, in order for an individual to qualify to be able to certify they must pass prescribed examinations (parts 5,6 , and 7 ) or be approved by a committee of peers. The result
is that the qualifications and the professional code of conduct would be put "up front". Some will argue for a "file-and-use" environment which must rely heavily on the after the fact enforcement of the professional code of conduct. In my personal opinion our Board's position is absolutely essential as the professional code of conduct, on an after the fact basis, is virtually unenforceable.

The law of supply and demand has created and, in the near future, will continue the imbalanced situation now existing among the three major actuarial specialities. Unless we are extremely careful, the standards of professionalism, as represented by our examination procedure, will be eroded as others try to respond to the demand situation.

As the events in the certification arena unfold, we will see if amalgamation can work or whether the certification program through the Academy will be nothing more than a vehicle for unqualified individuals to practice in the property and casualty actuarial field.

Many will criticize my position of having the Casualty Actuarial Society maintain an "exclusive franchise" as parochial or myopic; however, I would respond that we have a good definition for a "competent casualty actuary". To quote a recent comment made by Carroll Nelson to the Conference of Actuaries in Public Practice in introducing me at their annual meeting "Ron represents this newly emerging high demand field of casualty consulting we are all hearing about. You may wish to discuss it with him, but, I warn you his only reply will be 'take the exams!'."

The maintenance of our professional standards is undoubtedly our greatest challenge as the 1970's draw to a close.

My address was somewhat of a montage but I tried to bring forward what we, both individually and collectively, face as immediate challenges that will have a substantial effect on our future, that is:

> The Challenge of Marketing our Industry The Challenge of Developing Future Insurance Executives The Challenge of Responding to the Society's Growth The Challenge of Maintaining Participation The Challenge of Expanding our Horizons Beyond the United States And lastly, The Challenge of Professionalism

## MODELLING LOSS RESERVE DEVELOPMENTS

## ROBERT J. FINGER

The actuarial analysis of loss reserve developments begins by analyzing the patterns in historical claim data. Implicitly this analysis proceeds from a variety of assumptions, which may or may not be acknowledged or tested. By projecting loss reserves from historical data, the analyst is essentially using a mathematical model. This paper presents a general approach aimed at developing and exploring as many alternative models as possible. It is felt that there are indeed some patterns which will continue into the future; at times it may be extremely difficult to uncover these patterns or to even know that they exist. Looking backwards in time, however, it is always possible to describe what has occurred; the historical patterns may be erratic or largely meaningless, but they do exist. Likewise, at some distant future date it should be equally possible to describe the payout on the loss reserves which must now be estimated.

## TYPICAL ASSUMPTIONS

Actuarial literature gives many examples of assumptions which are made to create mathematical models of reserve developments. Tarbell ${ }^{1}$, for example, assumed that the incurred but not reported (IBNR) liability was proportional to the ratio of incurred losses in the last three months of the last two years. Fisher and Lange' assumed that the inflation rate (change in average cost per claim) remains constant for each different age of claim at settlement. Resony ${ }^{3}$ assumes that the ratio of paid allocated loss expenses to claims disposed of (change in outstanding reserve by reported year) is constant by age of settlement. A common method of calculating loss development factors for ratemaking purposes assumes that the change in incurred losses from development period to development period will remain constant. On closer scrutiny this single assumption is a composite of several others, such as:

- the reporting pattern of claims by development period will not change and
- the degrec of underreserving or overreserving will not change or
- violations of the above assumptions will exactly offset each other.

[^21]
## TERMINOLOGY AND DATA

This paper will refer to a liability as a fixed, though perhaps unknown, amount of money which is owed to others. The term reserve is used to mean an estimate of a liability.

Virtually all loss development data can be put into the characteristic matrix format. This matrix is shown below.

## Characteristic Matrix Format

|  | Characteristic Matrix Format |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Development Period |  |  |  |
| Exposure | 1 | 2 | 3 | 4 |
| Period |  | 1 | $\mathrm{O}_{12}$ |  |
| 1 |  | $\mathrm{O}_{11}$ | $\mathrm{O}_{12}$ | $\mathrm{O}_{13}$ |
| $\mathrm{O}_{14}$ |  |  |  |  |
| 2 |  | $\mathrm{O}_{21}$ | $\mathrm{O}_{22}$ | $\mathrm{O}_{23}$ |
| 3 |  | $\mathrm{O}_{24}$ |  |  |
| 4 |  | $\mathrm{O}_{31}$ | $\mathrm{O}_{32}$ | $\mathrm{O}_{33}$ |
| 5 | $\mathrm{O}_{41}$ | $\mathrm{O}_{42}$ |  |  |
| 5 |  | $\mathrm{O}_{51}$ |  |  |

The $\mathrm{O}_{\mathrm{ij}}$ are observations of some type of reserve data for exposure period i as of development period j . Development periods are successive evaluations of loss development data. Periods are often of twelve-months durations, but can be of one, three, or six-month durations. Exposure periods are groupings of claims. Claims may be grouped by accident years, policy years, report years, or other durations. Exposure periods may also represent groups of claims which were part of a liability (such as the case reserve or IBNR reserve) at a point in time. It is typical, but not necessary, that the durations of the development and exposure periods be the same. This happens, for example, when accident year data is evaluated every 12 months.

Various types of data can fill the characteristic matrix format. The basic variations are: (1) incurred or paid losses and (2) cumulative or incremental developments. The amounts reflected can be aggregate claim amounts, claim counts, or average claim amounts. The amounts can include or exclude allocated loss adjustment expense, subrogation and salvage, ceded and assumed reinsurance, and perhaps deductibles or reinsurance retentions. Claim counts can be defined to include or exclude claims closed without an indemnity payment. Amounts can include several lines of business or coverages.

Various reserving methods utilize the characteristic matrix format in different ways. Among the five most common ways are: (1) using the entire matrix, (2) using one or more diagonals of the matrix, (3) using the ratios of one matrix to another (such as the ratio of paid allocated expense to paid losses), (4) using different matrices for different lines of business (additive combinations), or (5) using a multiplicative combination of matrices (such as those for the number of claims and average claim amounts).

## TYPES OF DEVEIOPMENT PATTERNS

Assumptions made by a loss reserving method are related to patterns in the characteristic matrix format. The analyst can test the previous accuracy of the assumptions by evaluating the matrix. Further, the analyst can evaluate the potential applicability of other assumptions by reviewing the matrix. In particular, there are a variety of relationships or patterns which are used in different reserving methods.

In analyzing the characteristic matrix format, vertical groups of data represent evaluations of successive groups of claims at the same stage (duration) of development. Horizontal data groups represent successive evaluations of the same group of claims. Diagonal data groups represent developments which occurred during the same calendar period of time.

Many loss reserving methods assume a consistent relationship between two variables, as expressed by the ratio between them. The use of the claim count and the average claim amount is a common example. In this case the average claim amount is actually a ratio of the aggregate losses to the claim count. Ratios may be between two different claim-related variables, between a claim and a premium or exposure variable, or between claims and an external variable. In the first case, an example is the ratio of paid loss expenses to paid losses. In the second case. loss ratios or pure premiums may be evaluated. In the latter case, inflation indices can be used.

Another possible relationship is to model loss developments by a probability distribution. The reporting or payment of claims could, for example, be modeled as a cumulative distribution function in time. A problem that arises with this approach is that time is unbounded, whereas at some point all claims will certainly be reported and all payments will be made. A possible solution would be to fix a certain time period as the ultimate development.

Another possible solution is a different way of looking at reserve developments: claim turnover intervals. Instead of assuming that the development period affects the loss development, it is assumed that the percentage of claims which have been closed affects it. For example, it is assumed that the seventieth to eightieth percentile of closed claims have a constant pattern. (Data is graphically portrayed in this format in Figure 1.) This assumption is useful for lines of business where the claims which remain open a longer period of time close at significantly higher average amounts.

## THE BASIC MODEL

All of the previous data formats and relationships can be represented by a generalized loss reserve development model. This model is defined as follows:
(1) $\quad O_{i j}=C_{i j} F_{j} \mathbf{S}_{i} K_{i+j}+e_{i j}$

Where:

- $\mathrm{O}_{\mathrm{ij}} \quad$ - is the observed values of the process for exposure period i, observed at age j ( $\mathrm{O}_{\mathrm{ij}}$ can be cumulative paid losses, incremental paid losses, or incurred losses).
- $\mathrm{C}_{\mathrm{ij}} \quad-\quad$ is known items (such as claim counts or inflation indices).
- $F_{j} \quad$ - is an index of reserve development factors, typically representing the percentage of the ultimate losses paid through j periods. This is estimated from the data.
- $S_{i} \quad-\quad$ is an index reflecting the relative exposure at exposure period i. This is estimated from the data.
- $\mathrm{K}_{\mathrm{i}+\mathrm{j}}$ - is an index reflecting the relative effect of outside influences during a particular calendar period of time. This is estimated from the data.
- $\mathrm{c}_{\mathrm{ij}}$ - are the differences between the observations $\mathrm{O}_{\mathrm{ij}}$ and the estimated values of the process.

Since the $\mathrm{C}_{\mathrm{ij}}$ are known items, it is possible to divide the $\mathrm{O}_{\mathrm{ij}}$ by the $\mathrm{C}_{\mathrm{ij}}$. For example, $\mathrm{C}_{\mathrm{ij}}$ may be the number of closed claims and $\mathrm{O}_{\mathrm{ij}}$ the amount of paid losses. The parameter sets $F_{j}, S_{i}$ and $K_{i, j}$ will then effectively be estimating the average closed claim. Assuming that $\mathrm{O}_{\mathrm{ij}}$ has been divided by $\mathrm{C}_{\mathrm{ij}}$, the parameter sets are chosen to model the observations as follows:

| Exposure Period | Development Period |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |
| 1 | $\mathrm{F}_{1} \mathrm{~S}_{1} \mathrm{~K}_{1}$ | $\mathrm{F}_{2} \mathrm{~S}_{1} \mathrm{~K}_{2}$ | $\mathrm{F}_{3} \mathrm{~S}_{1} \mathrm{~K}_{\text {\% }}$ | $\mathrm{F}_{1} \mathrm{~S}_{1} \mathrm{~K}_{4}$ |
| 2 | $\mathrm{F}_{1} \mathrm{~S}_{2} \mathrm{~K}_{2}$ | $\mathrm{F}_{2} \mathrm{~S}_{2} \mathrm{~K}_{3}$ | $\mathrm{F}_{3} \mathrm{~S}_{2} \mathrm{~K}_{4}$ | $\mathrm{F}_{4} \mathrm{~S}_{2} \mathrm{~K}_{5}$ |
| 3 | $\mathrm{F}_{1} \mathrm{~S}_{3} \mathrm{~K}_{3}$ | $\mathrm{F}_{2} \mathrm{~S}_{3} \mathrm{~K}_{4}$ | $\mathrm{F}_{3} \mathrm{~S}_{3} \mathrm{~K}_{5}$ | - |
| 4 | $\mathrm{F}_{1} \mathrm{~S}_{4} \mathrm{~K}_{4}$ | $\mathrm{F}_{2} \mathrm{~S}_{4} \mathrm{~K}_{5}$ | - | - |
| 5 | $\mathrm{F}_{1} \mathrm{~S}_{5} \mathrm{~K}_{5}$ | - | - | - |

In a practical situation more than four development periods would be both available and desirable. The data which needs to be estimated to complete the reserve development is:

| Exposure Period | Development Period |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |
| 1 | - | - | - | - |
| 2 | - | - | - | - |
| 3 | - | - | - | $\mathrm{F}_{4} \mathrm{~S}_{3} \mathrm{~K}_{6}$ |
| 4 | - | - | $\mathrm{F}_{3} \mathrm{~S}_{4} \mathrm{~K}_{6}$ | $\mathrm{F}_{4} \mathrm{~S}_{4} \mathrm{~K}_{\mathbf{7}}$ |
| 5 | - | $\mathrm{F}_{3} \mathrm{~S}_{5} \mathrm{~K}_{6}$ | $\mathrm{F}_{3} \mathrm{~S}_{3} \mathrm{~K}_{7}$ | $\mathrm{F}_{4} \mathrm{~S}_{5} \mathrm{~K}_{8}$ |

Additionally, some $\mathrm{C}_{\mathrm{ij}}$ values might need to be estimated.
The $F_{j}, S_{i}$ and $K_{i . j}$ are parameter sets which are to be estimated subject to some criteria. They represent things unknown about the loss developments. The $\mathrm{C}_{\mathrm{ij}}$ represent everything that is known or assumed to affect the developments. The $\mathrm{C}_{\mathrm{ij}}$ can include measures of exposure, inflation, or claim counts. The $\mathrm{C}_{\mathrm{ij}}$ could also represent changes in deductible levels or reinsurance retentions.

The $F_{j}, S_{i}$ and $K_{i+j}$ sets are all stated in terms of indices. Under certain circumstances they can be eliminated or replaced by functions. $\mathrm{F}_{\mathrm{j}}$ has as many independent parameters as the number of development periods. $\mathbf{S}_{\mathbf{i}}$ will have as many estimable parameters as the number of exposure periods. $\mathrm{K}_{\mathrm{i}+1}$ will have as many estimable parameters as the larger of the number of

Figure ${ }^{1}$.

## Cumulative average closed clam


development periods or the number of exposure periods. In addition, to project the reserve developments several additional $\mathrm{K}_{\mathrm{i} \text {; }}$ terms must be projected.

There is an interesting interpretation of the various models which can be derived from the combination or climination of $F, S$, and $K$ parameter sets. Visualize the $\mathrm{O}_{\mathrm{ij}}$ as incremental payments and ignore $\mathrm{C}_{\mathrm{ij}}$. The condition for $F_{j}$ invariance then determines which parameters will be represented in the model. There are two choices of assumptions: (1) payments are in current or constant dollars, and (2) payments are related to the period of occurrence or the period of payment. Assume, for example, that $F_{j}$ represents a constant percentage of payments in terms of constant dollars, valued at the occurrence of the claim. Observations will reflect the impact of inflation (current dollars) and a valuation at date of payment. The model thus needs a $\mathrm{K}_{\mathrm{i}+\mathrm{j}}$ term (to convert to constant dollars) and a $\mathrm{S}_{\mathrm{i}}$ term (to value the claim at occurrence). The resulting model is thus $\mathrm{O}_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ij}} \mathrm{F}_{\mathrm{j}} \mathrm{S}_{\mathrm{i}} \mathrm{K}_{\mathrm{i}+\mathrm{j}}+\mathrm{e}_{\mathrm{i} j}$. Other variations are shown in the following table:

| Value Of Money | Claim Valuation At | Model, $\hat{\mathrm{O}}_{\mathrm{ij}}=$ |
| :---: | :---: | :---: |
| Current Dollars | Occurrence | $\mathrm{F}_{\mathrm{j}} \mathrm{S}_{\mathrm{i}}$ |
| Current Dollars | Payment | $\mathrm{F}_{j}$ |
| Constant Dollars | Occurrence | $\mathrm{F}_{\mathbf{j}} \mathbf{S}_{\mathbf{i}} \mathrm{K}_{\mathbf{i}+\mathrm{j}}$ |
| Constant Dollars | Payment | $\mathrm{F}_{\mathrm{j}} \mathrm{K}_{\mathrm{i}+\mathrm{j}}$ |

## SOLUTION CRITERIA

There are many possible solution criteria to equation (1). For this paper the chosen criterion is to minimize the sum of squares of the differences between the observations and the estimates. The squares may be weighted by values $a_{i j}$, which might be chosen to reflect the relative credibility of the various observations. Algebraically the criterion is to minimize Z where:

$$
\mathrm{Z}=\sum_{\mathrm{i}}^{\sum} \underset{\mathrm{j}}{\boldsymbol{\sum}} \mathrm{a}_{\mathrm{ij}} \mathrm{e}_{\mathrm{ij}}^{2}=\sum_{\mathrm{i}}^{\sum} \sum_{\mathrm{j}} \mathrm{a}_{\mathrm{ij}}\left(\mathrm{O}_{\mathrm{ij}}-\mathrm{C}_{\mathrm{ij}} \mathrm{~F}_{\mathrm{j}} \mathrm{~S}_{\mathrm{i}} \mathrm{~K}_{\mathrm{i}+\mathrm{j}}\right)^{2} .
$$

The indices of summation apply to all available items.
A possible alternative, for example, might be Bailey and Simon's ${ }^{4}$ minimum chi-square criterion. In the notation of this paper, that would be to minimize Z where:

$$
Z=w \sum_{i}^{\sum} \sum_{j} a_{i j} \frac{\left(O_{i j}-C_{i j} F_{j} S_{i} K_{i+j}\right)^{2}}{C_{i j} F_{j} S_{j} K_{i+j}}
$$

where $w$ is a constant. Bailey and Simon were concerned with rate equity, which can be reflected by the term in the denominator. In a sense, the minimum chi-square criterion attempts to minimize the error relative to the size of the observation. For loss reserving it is possible that the absolute error is more important than the relative error.

## BASIC SOLUTION PROCEDURE

In order to derive a solution to the least squares formulation, it is generally necessary to make some simplifying assumptions. For this paper the following assumptions are made:

- The parameter sets $F, S$ and $K$ are independent of each other
- Individual index values within the parameter sets are independent of each other.

The $\mathrm{O}_{\mathrm{ij}}$ and $\mathrm{C}_{\mathrm{ij}}$ values are constants. The assumption of independence between different parameter sets is reasonable, since they are constructed to represent the three types of reserve developments (horizontal, vertical, and diagonal). As a practical matter, the S and K sets tend to be redundant. The independence of individual index values (particularly $F$ and $K$ ) is in some doubt when the modelled data represents cumulative data.

[^22]In order to find the values of the parameters which will minimize the criterion function, set the partial derivative of the criterion function with respect to each parameter equal to zero. For the basic model and most variations the solution procedure will be iterative. To obtain a starting solution, one can assume that the $F_{j}$ are the only parameters in the model.

The solution is thus:

$$
\hat{\mathbf{F}}_{j}-\frac{\sum_{i} a_{i j} O_{i j} C_{i j}}{\sum_{i} a_{i j} C_{i j}^{2}}
$$

Next assume the model contains only $F_{j}$ and $S_{i}$. Since $F_{j}$ has been estimated above, it can be used to generate the initial estimates for $S_{i}$.

$$
\hat{S}_{i}=\frac{\sum_{j} a_{i j} O_{i j} C_{i j} F_{j}}{\sum_{j} a_{i j} C_{i j}{ }^{2} F_{j}^{2}}
$$

Finally, $\mathbf{K}_{i+j}$ can be solved:

$$
\hat{\mathrm{K}}_{\mathrm{i}, \mathrm{j}}=\frac{\sum_{\mathrm{i}}^{\boldsymbol{i}+\mathrm{j}=\mathrm{c}^{\mathrm{a}_{\mathrm{ij}} \mathrm{O}_{\mathrm{ij}} \mathrm{C}_{\mathrm{ij}} \mathrm{~F}_{\mathrm{j}} \mathrm{~S}_{\mathrm{i}}}}}{\mathrm{i}+\mathrm{j}=\mathrm{c}^{\mathrm{a}_{\mathrm{ij}} \mathrm{C}_{\mathrm{ij}}{ }^{2} \mathrm{~F}_{\mathrm{j}}{ }^{2} \mathrm{~S}_{\mathrm{i}}^{2}}}
$$

The revised values for $F_{j}$ and $S_{i}$ can then be found iteratively using analogous equations:

$$
\begin{aligned}
\hat{F}_{j} & =\frac{\sum_{i} a_{i j} O_{i j} C_{i j} S_{i} K_{i+j}}{\sum_{i} a_{i j} C_{i j}{ }^{2}{ }^{2}{ }^{2}{ }^{2} K_{i+j^{2}}} \\
\hat{S}_{1}= & \frac{\sum_{j} a_{i j} O_{i j} C_{i j} F_{j} K_{i+j}}{\sum_{j} a_{i j} C_{1 j}{ }^{2}{ }^{2}{ }_{j}{ }^{2} K_{i+j^{2}}{ }^{2}}
\end{aligned}
$$

The computations proceed iteratively until no improvement in the criterion function can be made.

## MODEL VARIATIONS

Some of the possible model variations include the choice of data. Observations can be (1) either paid or incurred losses, or (2) either incremental or cumulative developments. Further, $C_{i j}$ can contain any variables known to affect the loss developments, including claim counts, premium, exposure, or inflation indices. Finally, various simplifications can be made for one of the parameter groups or they can be omitted.

A common assumption might be that inflation is a constant function of exposure period or of the calendar period. In these cases,

$$
\begin{aligned}
& S_{1}=(1+w)^{i} \text { or } \\
& \mathbf{K}_{i+j}=(1+w)^{i+j}
\end{aligned}
$$

Fisher and Lange" assume that inflation will be constant for each age at settlement, or:

$$
\mathbf{K}_{1+j}=\left(1+\mathbf{k}_{\mathrm{j}}\right)^{\mathbf{i}}
$$

For claim turnover intervals, a substitution is made for $F_{j}$, which can be of the general form (recognizing $F_{j}$ can be bounded by 0 and 1 ):

$$
\mathrm{F}_{\mathrm{j}}=1-\alpha+\alpha \mathrm{X}_{\mathrm{ij}}^{\beta}
$$

where $\mathrm{X}_{\mathrm{ij}}$ is the percentage of claims which have been closed.

## SOLUTIONS TO MODEL VARIATIONS

The exponent introduced into the model variations makes it difficult to solve directly for the parameters. Newton's Method may be used. To find the minimum of the criterion function, one takes the derivative of the criterion with respect to each parameter and sets the resulting equation to zero. In other words:

$$
\mathrm{f}(\mathrm{k})=\frac{\partial \mathrm{Z}}{\partial \mathrm{k}}=0
$$

If $k_{1}$ is an initial estimate of $k$, a better estimate, $k_{2}$, can be found by Newton's Method as follows:

$$
k_{2} \cong k_{1}-\frac{f\left(k_{1}\right)}{f^{\prime}\left(k_{1}\right)}
$$

${ }^{5}$ Ibid.

The derivative can also be approximated as:

$$
f^{\prime}(k) \cong \frac{f(k+h)-f(k)}{h}
$$

Thus: $\quad k_{2} \cong k_{1}-\frac{h f\left(k_{1}\right)}{f\left(k_{1}+h\right)-f\left(k_{1}\right)}$
Initial parameter estimates can be obtained as described in an earlier section. The solution procedure will iterate while it successively estimates groups of parameters. When a parameter is estimated by Newton's Method, there will be a sub-iteration. Typical equations are given in the appendix.

## NUMERICAL EXAMPLE

To compare the results of a variety of models, data from the FisherLange paper are presented. Exhibit I shows the cumulative payments by reported year and development year; 84 months is considered the ultimate incurred loss. Also shown are the incremental average payments and the cumulative closed claim count. Complete data was not available in the original paper on the number of claims; it is therefore assumed that there are 1,000 claims per year.

Various models can be fitted to this data. For comparison, Exhibit II shows the estimated reserves for a variety of models. In each case the C matrix was taken as the number of closed claims. The K vectors were extrapolated based on a least-squares fit of the data points which could be estimated directly. Estimates are shown for both cumulative and incremental payments. The claim turnover approach can be shown graphically by Figure 1 , where the cumulative average closed claim cost is shown as a function of the percentage of claims which have been closed. Equations for solving some of these models are given in the Appendix.

The example depicted in Exhibit II portrays some general results in the use of these models. First, models using $\mathrm{K}_{\mathrm{i}}$; parameters are more difficult to use, since the parameters must be projected for future calendar year periods. In addition, closed claim counts must also be projected for future periods; with claim turnover intervals, however, closed claim count projections have no impact on the estimated reserve. Using cumulative data probably gives too much weight to carly developments; thus, incremental data can lead to significantly different results. Estimating too many parameters yields arbitrary parameter values; for eximple, the inflation factors
often add no explanatory value to that already provided by the $\mathrm{S}_{\mathrm{i}}$ or $\mathrm{K}_{\mathrm{i}+\mathrm{j}}$ parameters; in addition, diagonal inflation can lead to the same result as exposure-period inflation.

Exhibit III shows the estimated parameters and projected developments for the $\mathrm{F}_{\mathrm{j}} \mathrm{S}_{\mathrm{i}}$ model. Since the $\mathrm{C}_{\mathrm{ij}}$ matrix is the cumulative closed claim count, the $F_{j}$ vector is interpreted as the relative average claim value and the $S_{i}$ vector is the average incurred claim cost for reported year $i$.

## CONCLUSION

This paper presents a general approach to the modelling of loss reserve developments. All reserving methods are essentially mathematical models; all essentially assume that certain past events will be repeated in the future. This paper presents a methodology for understanding the assumptions made in any given model. In addition, it provides a means to generate a large number of alternative models. In particular, it stresses the use of all available information. This includes using the entire characteristic matrix format, instead of one observation or one diagonal; this also includes the use of endless types of collateral information, such as changes in deductible levels and external economic data. A general mathematical formulation is presented which allows the incorporation of all this data.

Most reserving methods are dependent upon certain fundamental assumptions, which may not be valid. How can one evaluate situations where: case reserving is inconsistent? the speed of claim settlements (payments) is changing? reinsurance retentions have changed? inflation is known to affect the data? Possible solutions to these questions will be briefly examined.

If case reserving is inconsistent, it may be best to evaluate only claim payments. If the rate of claim settlements are changing, the approach of claim turnover intervals is applicable. If reinsurance retentions have changed, adjustments can be incorporated into the C matrix. Inflation can be handled in a variety of ways. It can be assumed that inflation impacts either claim payments or claim occurrences. External economic functions or industrywide data can be used to model inflation. Finally, the inflation can be estimated from the claim data itself.

The value of the claim liability depends upon events which will occur in the future. A means of projecting the consequences of these events is to explore the various patterns which may continue with the future.

## EXHIBIT I

## INPUT DATA

## I. Cumulative Payments

## REPORTED

YEAR AGE

|  | 12 | 24 | 36 | 48 | 60 | 72 | 84 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 64 | 202184 | 465254 | 636658 | 726568 | 798577 | 829441 | 860385 |
| 65 | 197679 | 487722 | 660090 | 750090 | 807950 | 851498 | 891980 |
| 66 | 204848 | 489428 | 681620 | 795544 | 864044 | 899372 | 958682 |
| 67 | 224220 | 545194 | 760171 | 870281 | 930568 | 970908 | 1013188 |
| 68 | 247500 | 621480 | 823834 | 964447 | 1062748 | 1120069 | 1154607 |
| 69 | 286769 | 626641 | 852976 | 1026736 | 1153576 | 0 | 0 |
| 70 | 256695 | 658941 | 976191 | 1179090 | 0 | 0 | 0 |
| 71 | 275229 | 688579 | 1051977 | 0 | 0 | 0 | 0 |
| 72 | 291924 | 829946 | 0 | 0 | 0 | 0 | 0 |
| 73 | 350396 | 0 | 0 | 0 | 0 | 0 | 0 |

## II. Incremental Average Payment

## REPORTED

YEAR

|  | 12 | 24 | 36 | 48 | 60 | 72 | 84 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| 64 | 398 | 790 | 2348 | 2430 | 3429 | 2572 | 1934 |
| 65 | 393 | 871 | 2128 | 2500 | 2630 | 3629 | 3114 |
| 66 | 413 | 837 | 2288 | 2998 | 3425 | 2944 | 5931 |
| 67 | 444 | 961 | 2471 | 3146 | 3173 | 4034 | 4228 |
| 68 | 495 | 1084 | 2438 | 4261 | 4681 | 5211 | 4934 |
| 69 | 577 | 988 | 2865 | 4344 | 5285 | 0 | 0 |
| 70 | 545 | 1146 | 3375 | 4317 | 0 | 0 | 0 |
| 71 | 577 | 1181 | 3598 | 0 | 0 | 0 | 0 |
| 72 | 612 | 1466 | 0 | 0 | 0 | 0 | 0 |
| 73 | 698 | 0 | 0 | 0 | 0 | 0 | 0 |

## EXHIBIT I (CONT'D)

III. Cumulative Closed Claim Count

| REPORTED <br> YEAR |  |  | AGE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 12 | 24 | 36 | 48 | 60 | 72 | 84 |  |  |
| 64 | 508 | 841 | 914 | 951 | 972 | 984 | 1000 |  |  |
| 65 | 503 | 836 | 917 | 953 | 975 | 987 | 1000 |  |  |
| 66 | 496 | 836 | 920 | 958 | 978 | 990 | 1000 |  |  |
| 67 | 505 | 839 | 926 | 961 | 980 | 990 | 1000 |  |  |
| 68 | 500 | 845 | 928 | 961 | 982 | 993 | 1000 |  |  |
| 69 | 497 | 841 | 920 | 960 | 984 | 0 | 0 |  |  |
| 70 | 471 | 822 | 916 | 963 | 0 | 0 | 0 |  |  |
| 71 | 477 | 827 | 928 | 0 | 0 | 0 | 0 |  |  |
| 72 | 477 | 844 | 0 | 0 | 0 | 0 | 0 |  |  |
| 73 | 502 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |

## EXHIBIT II

## COMPARATIVE SOLUTIONS FOR DIFFERENT MODELS (WHERE $\mathrm{C}_{1 \mathrm{j}}$ IS CLOSED CLAIM COUNT)

| Model | Number of Parameters | Estimated Reserve (\$ Million) |  | Standard Error* (Cumulative) |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Cumulative | Incremental |  |
| $\mathrm{O}_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ji}}(\quad \cdot)$ |  | Payments | Payments |  |
|  | 17 | 2.83 | 2.83 | 17.5 |
| +w ${ }^{\text {i }}$ | 9 | 2.77 | 2.81 | 25.6 |
| +w $)^{i+j}$ | 9 | 2.77 | 2.81 | 25.6 |
| i+j | 17 | 2.83 | 2.83 | 17.8 |
| + $\left.\mathrm{w}_{\mathrm{j}}\right)^{\text {i }}$ | 20 | 2.67 | 3.48 | 37.7 |
| $\left.1-\alpha\left(1-X_{i j}\right)^{8}\right) S_{i}$ | 12 | 2.86 |  | 13.7 |

[^23]
# EXHIBIT III 

## MODEL OUTPUTS

## I. Cumulative Payments

## REPORTED

YEAR

|  | 12 | 24 | 36 | 48 | 60 | 72 | 84 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 64 | 187943 | 453242 | 628325 | 732777 | 797809 | 829871 | 870945 |
| 65 | 191205 | 462923 | 647703 | 754488 | 822253 | 855266 | 894868 |
| 66 | 198851 | 488230 | 685346 | 799908 | 869871 | 904762 | 943787 |
| 67 | 218747 | 529400 | 745309 | 866965 | 941772 | 977548 | 1019713 |
| 68 | 244424 | 601730 | 842941 | 978420 | 1065012 | 1106561 | 1150804 |
| 69 | 256735 | 632844 | 883065 | 1032830 | 1127701 | 1165782 | 1216066 |
| 70 | 271106 | 689227 | 979693 | 1154446 | 1251454 | 1298994 | 1355024 |
| 71 | 284461 | 718426 | 1028321 | 1192352 | 1296584 | 1345838 | 1403889 |
| 72 | 317981 | 819590 | 1139583 | 1332852 | 1449366 | 1504425 | 1569315 |
| 73 | 350247 | 853733 | 1192710 | 1394989 | 1516935 | 1574560 | 1642476 |

II. Incremental Average Payment

REPORTED
YEAR

|  | 12 | 24 | 36 | 48 | 60 | 72 | 84 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 64 | 370 | 797 | 2398 | 2823 | 3097 | 2672 | 2567 |
| 65 | 380 | 816 | 2281 | 2966 | 3080 | 2751 | 3046 |
| 66 | 401 | 851 | 2347 | 3015 | 3498 | 2908 | 3903 |
| 67 | 433 | 930 | 2482 | 3476 | 3937 | 3578 | 4216 |
| 68 | 489 | 1036 | 2906 | 4105 | 4123 | 3777 | 6320 |
| 69 | 517 | 1093 | 3167 | 3744 | 3953 | 6347 | 5028 |
| 70 | 576 | 1191 | 3090 | 3718 | 5706 | 4754 | 5603 |
| 71 | 596 | 1240 | 3068 | 5126 | 5712 | 4925 | 5805 |
| 72 | 667 | 1367 | 4210 | 4832 | 5826 | 5506 | 6489 |
| 73 | 698 | 1490 | 4237 | 5057 | 6097 | 5763 | 6792 |

III. Model Parameters

$$
\begin{gathered}
\frac{\mathrm{F}_{1}}{.425} \frac{\mathrm{~F}_{2}}{.618} \frac{\mathrm{~F}_{3}}{.789} \frac{\mathrm{~F}_{4}}{.885} \frac{\mathrm{~F}_{5}}{.942} \frac{\mathrm{~F}_{6}}{.968} \frac{\mathrm{~F}_{7}}{1.0} \\
\frac{\mathrm{~S}_{1}}{871} \frac{\mathrm{~S}_{2}}{895} \frac{\mathrm{~S}_{3}}{944} \frac{\mathrm{~S}_{4}}{1,020} \frac{\mathrm{~S}_{5}}{1,151} \frac{\mathrm{~S}_{6}}{1,216} \frac{\mathrm{~S}_{7}}{1,355} \frac{\mathrm{~S}_{8}}{1,404} \frac{\mathrm{~S}_{9}}{1,569} \frac{\mathrm{~S}_{10}}{1,642}
\end{gathered}
$$

## APPENDIX

The following gives examples of models which can be solved by Newton's Method.
I. Model: $\quad \hat{\mathrm{O}}_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ij}} \mathrm{F}_{\mathrm{j}}(1+\mathrm{w})^{\mathrm{i}}$

Criterion: Minimize $Z$ where $Z=\underset{i}{\Sigma} \underset{j}{\Sigma}{ }_{\mathrm{a}}^{\mathrm{ij}}\left(\mathrm{O}\left(\mathrm{O}_{\mathrm{ij}}-\hat{\mathrm{O}}_{\mathrm{ij}}\right)^{2}\right.$

$$
\frac{\partial Z}{\partial w}=2 \sum_{i} \sum_{j}^{\Sigma} a_{i j}\left(O_{i j}-C_{i j} F_{j}(1+w)^{i}\right) C_{1 j} F_{j}(i-1)(1+w)^{i-1}
$$

II. Model: $\quad \hat{\mathrm{O}}_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ij}} \mathrm{X}_{\mathrm{ij}}\left(1-\alpha\left(1-\mathrm{X}_{\mathrm{ij}}{ }^{\beta}\right)\right) \mathrm{S}_{\mathrm{i}}$
where $\mathrm{X}_{\mathrm{ij}}$ is the cumulative fraction of exposure period i claims closed as of development period $j$.
Criterion: $\quad$ Minimize $Z$ where $Z=\underset{i}{\Sigma} \underset{j}{\mathbf{\Sigma}} \mathrm{a}_{\mathrm{ij}}\left(\mathrm{O}_{\mathrm{ij}}-\mathrm{O}_{\mathrm{ij}}\right)^{\mathbf{2}}$

$$
\begin{gathered}
\frac{\partial \mathrm{Z}}{\partial \beta}=-2{\underset{\mathrm{i}}{ } \sum_{\mathrm{j}}^{\sum} \mathrm{a}_{\mathrm{ij}}\left[\mathrm{O}_{\mathrm{ij}}-\mathrm{C}_{\mathrm{ij}} \mathrm{~S}_{\mathrm{i}} \mathrm{X}_{\mathrm{ij}}\left(1-\alpha\left(1-\mathrm{X}_{\mathrm{ij}}^{\beta}\right)\right)\right]}_{\mathrm{C}_{\mathrm{ij}} \mathrm{~S}_{\mathrm{i}} \mathrm{X}_{\mathrm{ij}} \alpha \mathrm{X}_{\mathrm{ij}}{ }^{\beta} \ln \mathrm{X}_{\mathrm{ij}}}
\end{gathered}
$$

## A NOTE ON BASIC LIMITS TREND FACTORS

## ROBERT J. FINGER

It is widely accepted that excess layers of insurance suffer an inflationary impact greater than that attributable to the overall growth in claim costs. A necessary corollary of this thesis, and perhaps one not often acknowledged, is that the primary layer (basic limits) suffers a lesser impact than the overall rate. In other words, one may assume that aggregate claim costs are increasing at a certain annual rate. The trend in basic limits costs will be less than this overall rate. The trend in excess layer costs will be more than this rate. This paper will discuss the relationship between basic limit trends and the overall increase in claim costs. A method is presented for estimating the basic limit trend when the overall trend is known.

## TERMINOLOGY

The term "claim costs" can have different meanings. Claim costs can change in several ways, for many different reasons. Fundamental changes in costs are due to changes in claim frequency (the number of claims per exposure unit) and claim severity (the average claim size). Claim severity is impacted by these forces, as a minimum: changes in the overall price level in the economy, changes in claim settlement practices and changes in social forces.

This paper is not concerned with changes in claim frequency. If it is assumed that such changes do not affect the claim size distribution, the conclusions of this paper will apply to any level of claim frequency.

This paper does not differentiate between the various sources causing changes in claim severity. It is assumed that these different causes can be suitably combined and that changes in their relative impact over time does not change the claim size distribution. Trend is defined as the change in claim severity.

Liability insurance ratemaking methods usually define certain limits as the basic limits. For example, this could be $\$ 25,000$ per claim and $\$ 75,000$ for all claims occurring within the 12 -month policy period. In most cases, no insurance policy is sold for limits of less than this amount. In this paper it is assumed that there is a single basic limit per policy (e.g., the $\$ 25,000$
above). The total amount of insured losses will be referred to as unlimited. The average claim size of the unlimited losses will be referred to as the mean of the claim size distribution.

For a given overall trend in claim costs, the trend in basic limit costs will generally depend upon the relationship between the basic limit value and the mean. The shape of the claim size distribution is also of some importance. If the basic limit is much higher than the mean, relatively few claims are affected by the basic limit; consequently most of the overall trend is felt within the basic limit. If on the other hand, the basic limit is close to the mean, relatively many claims are necessarily above the basic limit. The trend on claims above the basic limit is obviously not reflected in the basic limit cost. The relative trend is defined as the ratio of the basic limit trend to the overall trend. The relative trend varies as the relationship between the basic limit and the mean changes. As the mean gets larger, the ratio of the basic limit to the mean becomes smaller. The average relative trend is the average of the instantaneous relative trends over a period of time.

## METHODOLOGY

The basic assumption made in this paper is as follows. When there is a trend in claim costs, the claim size distribution itself does not change, but the value of money does. In effect, this is equivalent to assuming that if overall costs increase $25 \%$, each individual claim increases $25 \%$. Finding the average relative trend is analogous to the following situation. Suppose a Mexican insurance company writes a policy limit of 100,000 pesos on risks located in the United States. When the peso is devalued, what is the increase in claim costs? The ratio of the change in claim costs to the revaluation of the dollar is analogous to the average relative trend, for a basic limit of 100,000 pesos.

Assume that the claim size distribution is known. For a given basic limit A, the unlimited losses, T, can be divided into basic limit losses, B, and excess limit losses, E :

$$
\begin{aligned}
& T(M)=B(A / M)+E(A / M) \\
& \text { where: } M \text { is the (unlimited) mean claim size } \\
& T(M) \text { is the total amount of losses } \\
& B(A / M) \text { is the total amount of losses limited to } \\
& A \text { per claim } \\
& E(A / M) \text { is the total amount of losses in excess of } \\
& \text { A per claim. }
\end{aligned}
$$

The basic limit losses are defined as:

$$
\mathrm{B}(\mathrm{~A} / \mathrm{M})=\mathrm{CMX} 2(\mathrm{~A} / \mathrm{M})+\mathrm{CA}[1-\mathrm{X} 1(\mathrm{~A} / \mathrm{M})]
$$ where: C is the number of claims

$\mathrm{X} 2(\mathrm{~A} / \mathrm{M})$ is the percentage of the total amount of losses (moment distribution) on claims which are less than A
$\mathrm{X} 1(\mathrm{~A} / \mathrm{M})$ is the percentage of the total number of claims which are less than $A$.

The average relative trend, ART, is a function of the (beginning) basic limit value and the unlimited trend. In other words, the unlimited losses will be increased by certain trend, i. At the same time the basic limit losses will be increased by a lesser amount. The average relative trend is the percentage increase in basic limit losses as a fraction of the percentage increase in total limit losses. Thus:

$$
\operatorname{ART}(A, i)=\frac{\frac{B(A /(1+i) M)-B(A / M)}{B(A / M)}}{\frac{T((1+i) M)-(T(M)}{T(M)}}
$$

To derive usable results, two assumptions are made. It is assumed that unlimited losses are proportional to the unlimited mean. Symbolically:

$$
\frac{\mathrm{T}\left(\mathrm{M}^{\prime}\right)}{\mathrm{T}(\mathrm{M})}=\frac{\mathrm{M}^{\prime}}{\mathrm{M}}
$$

It is also assumed that the percentage distributions X1 (claim count) and X 2 (moment) are a function of the ratio of the basic limit to the unlimited mean. This assumption holds, for example, for the log-normal and Pareto distributions.

By the second assumption:

$$
\mathrm{B}(\mathrm{~A} / \mathrm{M})=\mathrm{CM}(\mathrm{X} 2(\mathrm{R})+\mathrm{R}[1-\mathrm{X} 1(\mathrm{R})])=\mathrm{CMX}(\mathrm{R})
$$

where: $R=\frac{A}{M}$ and $X(R)$ is the percentage of the total amount
of losses which are below a basic limit value of $R$ times the unlimited mean, per claim

This leads to the redcfinition of ART as:

$$
\begin{aligned}
& \operatorname{ART}(R, i)=\frac{B\left(\frac{R}{1+i}\right)-B(R)}{\frac{B(R)}{(1+i)-1}} \\
& \operatorname{ART}(R, i)=\frac{1}{i} \frac{(1+i) X\left(\frac{R}{1+i}\right)-X(R)}{X(R)}
\end{aligned}
$$

In plain English, these equations state that there exists a distribution, $X(R)$, which represents the percentage of unlimited losses which are less than $R$ per claim, where $R$ is defined as a ratio to the unlimited mean. Assume there is a trend in overall claim costs of fraction i during a period; only basic limit losses which were previously less than $\frac{\mathrm{R}}{1+\mathrm{i}}$ will now be included within the new basic limit. The entire distribution, however, will be $(1+i)$ times larger. In other words, assume the initial basic limit is $\$ 25,000$ and inflation is $25 \%$. Under the new circumstances only the basic limit losses under the previous $\$ 20,000$ basic limit will be below the new basic limit. The entire loss distribution, however, is $25 \%$ larger. Algebraically:

$$
\mathrm{ART}=\frac{1}{.25} \frac{1.25 \mathrm{X}(20)-\mathrm{X}(25)}{\mathrm{X}(25)}
$$

where: $\mathrm{X}(\mathrm{x})$ is the percentage of the total amount of losses below x per claim.

For this paper, it is assumed that the claim size distribution follows the log-normal probability law ${ }^{1}$. Results for this law can be produced in terms of two parameters: the coefficient of variation (CV), and the ratio to the unlimited mean. The second parameter can be used to represent the basic limit. Results vary somewhat as a function of CV, but this parameter is not as crucial as the basic limit value. Exhibit I illustrates the relative trend for several choices of CV. A method for calculation of the average relative trend is described in the appendix.

[^24]（Baste Limits Tread to Total Lumite Trendi



！


GA111 Fiaic ！imite o Total
はがに Neay

## EXAMPLE NO. I-LIABILITY INSURANCE

Basic limits rates are being prepared for liability insurance. For this purpose two policy years are used which are 3.5 and 4.5 years removed from the average effective date for the new rates. The basic limit trend is measured at $10 \%$ per annum based on claims occurring an average of 10 years prior to those expected under the new rates. For claims entering the trend calculation, the basic limit is about 3.8 times the observed unlimited mean.

Looking at Exhibit I, and assuming a CV of 3, the relative trend is about .74 at 3.8 times the mean. This implies an unlimited trend of about $\frac{10 \%}{.74}=13.5 \%$. If the CV is 2 , the relative trend is .79 and the unlimited trend is $12.7 \%$. Assuming the CV is 3 , the basic limit is expected to be $3.8 \times 1.135^{(4.7}-101=1.89$ and 1.67 times the mean for the above policy years and 1.07 times the mean in the policy year for the new rates. The average relative trend from 1.89 to 1.07 is .56 and from 1.67 to 1.07 is .55 . Thus the average basic limit trend should be (.56) $13.5 \%=7.6 \%$ and (.55) $13.5 \%=7.4 \%$ for the two policy years. The basic limit trend factors should be $(1.076)^{4.5}=1.39$ rather than $(1.10)^{4.5}=1.54$ and $(1.074)^{3.5}=1.28$ instead of $(1.10)^{3.5}=1.40$.

Assuming the CV is 2 , the basic limit would be 1.97 and 1.75 times the mean for the given policy years and 1.15 in the new policy year. The average relative trends would be .59 and .58 . The basic limit trends would be $7.5 \%$ and $7.4 \%$. The basic limits trend factors would be 1.38 and 1.28 .

This example points out some general conclusions:

- The choice of CV has relatively little impact on the results.
- The use of a basic limit trend factor based solely on previous experience may overstate the projected basic limit losses; in the given example it was by about $10 \%$.

EXAMPLE NO. 2-WORKERS' COMPENSATION PAYROLL OFFSET
The same general approach can be taken to evaluate the effect of increasing wages on collectible premiums in workers' compensation insurance. A few states have a payroll limitation which acts much like a basic limit to curb the growth of subject payroll. The main practical difference between a payroll limitation and basic limits is that the subject distribution is much less skewed for workers' compensation payroll. Table I compares the Standard Wage Distribution Table with a log-normal distribution with CV of 0.4 . These tables are based on claimant data and may not represent the same distribution as that for exposed workers.

TABLE I
COMPARISON OF STANDARD WAGE DISTRIBUTION TABLE AND LOG-NORMAL DISTRIBUTION

| Ratio to Mean | Standard Wage Table ${ }^{2}$ |  | Log-Normal ( $\mathrm{CV}=0.4$ ) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | \% Workers | \% Wages | \% Workers | \% Wages |
| . 1 | . 1 | - | - | - |
| 2 | . 5 | . 1 | - | - |
| . 3 | 1.3 | . 3 | . 2 | - |
| . 4 | 2.9 | . 8 | 1.4 | . 5 |
| . 5 | 6.3 | 2.4 | 5.4 | 2.3 |
| . 6 | 12.7 | 8.9 | 12.9 | 6.4 |
| . 7 | 22.1 | 12.0 | 23.2 | 13.2 |
| . 8 | 33.2 | 20.4 | 35.0 | 22.0 |
| . 9 | 44.9 | 30.2 | 46.8 | 32.1 |
| 1.0 | 56.5 | 41.2 | 57.6 | 42.4 |
| 1.1 | 66.4 | 51.6 | 67.0 | 52.2 |
| 1.2 | 74.4 | 60.8 | 74.7 | 61.1 |
| 1.3 | 80.5 | 68.4 | 80.9 | 68.7 |
| 1.4 | 85.4 | 75.0 | 85.7 | 75.2 |
| 1.5 | 89.0 | 80.2 | 89.3 | 80.5 |
| 1.6 | 91.6 | 84.3 | 92.1 | 84.8 |
| 1.7 | 94.1 | 88.4 | 94.2 | 88.2 |
| 1.8 | 95.7 | 91.1 | 95.7 | 90.9 |
| 1.9 | 97.0 | 93.5 | 96.8 | 93.0 |
| 2.0 | 98.0 | 95.5 | 97.7 | 94.6 |

[^25]Assume the statewide average wage is $\$ 200$ and the payroll limitation is $\$ 300$. If total wages can be expected to grow by $7 \%$, subject premium will only grow by $5.6 \%$. That is, the payroll limitation changes from 1.5 to 1.4 times the mean and the relative trend is about .8 . Currently used ratemaking methods consider many other factors and may indirectly adjust for this shortfall in collectible premium.

## SUMMARY

This paper has explored the problem of estimating the basic limits trend once the overall trend has been determined. Although the log-normal, has been used for numerical examples, it can be expected that the general conclusions hold for most actual claim size distributions.

Generally speaking, the relative trend (that is, the basic limit trend relative to the unlimited trend) is less than 1.0 and decreasing as the ratio of the basic limit to the unlimited mean is decreasing.

Practical applications of the relative trend concept are not limited to basic limits ratemaking. An example is presented to show what the increase in subject wages will be for workers' compensation insurance, given a fixed dollar payroll limitation.

## APPENDIX

## FINDING THE AVERAGE RELATIVE TREND

The relative trend varies as the relationship between the basic limits value and the mean changes. To measure the average relative trend over a period of time, one must take into account the changes in that relationship.

The relative trend. $f(x)$, is defined at the particular instant when the ratio of the basic limit to the unlimited mean is $x$. This function can be defined as a limiting distribution of ART, or:

$$
f(x)=\lim _{i \rightarrow 0} \frac{1}{i} \frac{(1+i) X\left(\frac{x}{1+i}\right)-X(x)}{X(x)}
$$

The relationship between a fixed basic limit value, A , and the mean of the unlimited distribution is not changing as a linear function of time. For example, after one time period of inflation $i$, the new unlimited mean is $\frac{A}{1+i}$ where A was the original mean. After two time periods the mean is $\frac{\mathrm{A}}{(1+\mathrm{i})^{2}}$. For fractional time periods, $t$, we can use the function $\mathrm{e}^{-\delta t}=(1+\mathrm{i})^{-t}$ to represent the changing value of the mean. Thus $\frac{A}{(1+i)^{t}}=A e^{-\delta t}$.

The arguments of ART will be revised to represent the beginning and ending ratios of the basic limit to the unlimited mean. If $A$ is the beginning ratio and there is an annual trend of $i$ for $T$ years, the ending ratio will be $\mathrm{Ae}{ }^{-\partial^{\mathrm{r}}}$.

Assume: 1. The total limits annual trend is $i$; or

$$
1+\mathrm{i}=\mathrm{e}^{\star}
$$

2. The beginning value of the basic limit is A times the mean
3. $f(x)$ is the relative trend as a function of $x$, the ratio of the basic limit to the mean
4. The time period under study is $T$ yeurs.

The average relative trend, ART, can be written as

$$
\operatorname{ART}\left(A, A c \quad \delta^{T}\right)=\frac{1}{T} \int_{0}^{T} f(A c \quad i l) d t
$$

Substituting $\mathrm{y}=\mathrm{Ae}{ }^{\sim \delta t}$

$$
A R T=\frac{1}{\partial T} \int_{A e \quad i}^{A} \quad \frac{1}{y} f(y) d y
$$

Substituting $z=\ln y$

$$
A R T=\frac{1}{\delta T} \int_{\ln (A-\delta t)}^{\ln A(z) d z}
$$

Table II shows the tabulation of $\int_{0}^{\ln A} f(z) d z$ for various values of A and several choices of CV. From this table $\int \begin{aligned} & \ln A \\ & \ln (A-\delta T)\end{aligned}(z) d z$ can be obtained by one subtraction. The quantity $\delta \mathrm{T}$ is the difference between the natural logarithms of the initial and ending ratios of the basic limits to the mean. This quantity can also be obtained by one subtraction.

Example. Given: 1. i is $15 \%$ per annum.
2. A is 5.0 times the mean.
3. T is 5 years.
4. The CV is 3.0 .

Solution: $\mathrm{Ae}^{-\partial^{\mathrm{r}}}$ is about 2.5 times the mean.
From Table II we have:

$$
\operatorname{ART}(5.0,2.5)=\frac{1.811-1.309}{1.609-.916}=.72
$$

## TABLE II

CALCULATION VALUES FOR AVERAGE RELATIVE TREND RATIO A:
Basic Limits to
Total Limits Mean Ln A

| .1 | -2.303 |
| :--- | :--- |
| .2 | -1.609 |
| .3 | -1.204 |
| .4 | -.916 |
| .5 | -.693 |
| .6 | -.511 |
| .7 | -.357 |
| .8 | -.223 |
| .9 | -.105 |


| $\int \operatorname{Ln} \mathrm{A}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| 0 | $\mathrm{f}(\mathrm{z}) \mathrm{d} z$ where z is $\operatorname{Ln}[$ ratio A$]$ |  |  |
| 0 |  |  |  |
| $\mathrm{CV}=0.4$ | $\mathrm{CV}=2.0$ | $\mathrm{CV}-3.0$ | $\mathrm{CV}=4.0$ |
| 0 | .044 | .100 | .148 |
| 0 | .121 | .215 | .285 |
| 0 | .199 | .315 | .396 |

## A REFINED MODEL FOR PREMIUM ADJUSTMENT

## DAVID L. MILLER AND GEORGE E. DAVIS <br> INTRODUCTION

Loss ratio ratemaking is an important actuarial technique, especially for actuaries working with less sophisticated data than is available to a rating bureau; and despite the movement toward pure premium ratemaking, loss ratio ratemaking is still essential for several lines of business.

The premium adjustment factors used in the loss ratio method are familiar to most actuaries at least to the extent of Ralph Marshall's' or Roy Kallop's ${ }^{2}$ descriptions in their papers on Workers' Compensation ratemaking. These papers contain an adequate discussion of the mechanics for calculating premium adjustment factors, but the conceptual background is sketchily drawn and the method used in those papers assumes a constant level of exposures.

Jim Ross, in Generalized Premium Formulae ${ }^{3}$, presents mathematical expressions which fit the parallelogram approach in a variety of situations. He introduces to the Proceedings a description of the mathematical theory underlying the use of the parallelogram approach. Unlike the previously cited authors, he allows for changing levels of exposures but he does not address their impact on rate level indications or modify the geometrical model to accommodate their representation.

After reviewing the geometry of the traditional two-dimensional model. this paper will introduce a third dimension which will allow for the geometrical representation of levels of exposures; the mathematics fitting this model will be explored. Finally, an example will illustrate the practical application of this model while examing the impact of changing levels of exposure on rate level indications.

[^26]
## TRADITIONAL MODEL

In the usual technique a square is drawn to represent each calendar year's earned exposure (Figure 1). The horizontal or $x$-axis is always identified as time but the vertical or $y$-axis is not described. A little reflection will show that the second dimension represents the portion of the policy term expired, ranging from zero to one.
$y=$ Portion of Policy Term Expired


Figure 1

In terms of this model any point ( $x_{t}, o$ ) represents the writing of exposures at time $x_{t}$ because, with $y=0$, exposures are completely unearned. As we move forward in time the exposures written at time $x_{1}$ are uniformly earned until at time $x_{t}+k$ (where $k$ is the term of the policy) the exposures are fully earned. This pattern is shown in the geometrical configuration by a diagonal line connecting ( $x_{t}, o$ ) and ( $x_{t}+k, 1$ ). For example, the carning of exposures on annual policies written at time $1 / 2$ would be described by the line AB in Figure 1. All other exposures on annual policies, regardless of the time written, will follow a pattern of earning described by lines parallel to AB .

By assuming that exposures are written continuously over time, each square is viewed as being covered by a collection of diagonal lines. It is important to note, for use later in the paper, that any point ( $x_{t}, y_{t}$ ) can be traced to the end point $\left(x_{t}-k y_{t}, o\right)$ of the diagonal line on which it lies.

In the application of the parallelogram method, the particular diagonal lines drawn mark the boundaries of areas of earned exposures where dif-
ferent rate levels are in effect. The various areas, taken as a percent of the total, are used as weights applied against the various rate levels to produce an average rate level for that period's earned exposures. The ratio of the current rate level to this average rate level is used to modify the period's earned premium. (For an example see pages 76 and 104 of Roy Kallop's paper.)

The method has been presented with an example using only annual term policies. In general where policies of several terms are involved we find it easiest to handle the adjustments for each term of policy separately. Once the separate adjustments are made, simply adding the individual results gives the total adjusted earned premium.

## THREE-DIMENSIONAL MODEL

We have seen that the two dimensional model deals with time and the portion of policy term earned. The possibility of varying levels of exposures was addressed by Jim Ross who introduced a function, $f(x)$, representing the rate of exposure writing at time $x$. In the two dimensional model $f(x)$ cannot be shown. By introducing a third dimension we can account for changing levels of exposure. In the three dimensional model the x -axis and y -axis are defined as before; the z -axis will be defined as the level of exposures.

In order to make the model and the mathematics compatible we will let $\mathrm{z}=\mathrm{g}(\mathrm{x}, \mathrm{y})$ define the level of exposures. Thus each value of z is a function of time and the portion of the policy term earned. It should be clear that $\mathrm{g}(\mathrm{x}, \mathrm{o})$ is the rate of exposure writing at time x and thus $\mathrm{g}(\mathrm{x}, \mathrm{o})=\mathrm{f}(\mathrm{x})$. Using the relationship noted in the two-dimensional model that any point in the plane ( $\mathrm{x}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}$ ) can be traced to the point ( $\mathrm{x}_{\mathrm{t}}-\mathrm{ky}_{\mathrm{t}}, \mathrm{o}$ ) we establish that $g\left(x_{t}, y_{t}\right)=g\left(x_{t}-k y_{t}, o\right)$ with the condition that all policies are held to full term. (The assumption of no cancellations will generally be acceptable. If the rate of cancellations is significant in a particular situation the relationship of $g(x, y)$ to $f(x)$ can be appropriately modified. For example, if on the average $10 \%$ of written exposures are cancelled during the term of the policy, we can approximate this situation by letting $g(x, y)=$ ( $1-. l y$ ) $f(x-k y)$.)

Figure 2 shows, in three dimensions, the standard assumption of level exposures. The plane ABCD is comparable to line AB in figure 1 except that in three dimensions we are able to show the level of exposures. Because the value of z is the same throughout, the volumes will be proportional to the areas in the traditional model and the same weights will be obtained. Note that no dimensions are placed on the $z$-axis. In practice we can graduate the $z$-axis to absolute amounts of exposure or we can index the exposures to the level of exposures at any convenient time.


Figure 2

## MATHEMATICAI DEVELOPMFNT

We have defined $f(x)$ as the rate of exposure writing at time $x$ and $g(x, y)$ as $f(x-k y)$ where $k$ is the policy term in years. The range of $y$, the portion of policy carned, is such that $0 \leq y \leq 1$ and we require always $\mathrm{g}(\mathrm{x}, \mathrm{y}) \geq 0$.

Since $g(x, y)$ is a density function, its integral describes an amount of exposures. For example, the written exposures between time $x_{0}$ and time $x_{1}$ may be expressed as:

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} g(x, o) d x=\int_{x_{11}}^{x_{1}} f(x) d x \tag{1}
\end{equation*}
$$

By integrating over all values of $y$ at a fixed time $x_{t}$, we can evaluate the rate of exposures being earned per unit of time. Thus,

$$
\begin{equation*}
\int_{0}^{1} g\left(x_{t}, y\right) d y=\int_{0}^{1} f\left(x_{1} \cdots k y\right) d y \tag{2}
\end{equation*}
$$

This differs from the usual notion of "in-force" which is not consistently on an annual basis; e.g., a three year policy would be tallied as three annual exposurcs in a usual accounting of in-force although only one annual exposure is being earned at any time during the policy period. The traditional concept of in-force would be obtained within this three dimensional model by introducing a factor for the policy term as shown in formula (3).

$$
\begin{equation*}
\text { In-force }=k \int_{0}^{1} g\left(x_{t}, y\right) d y \tag{3}
\end{equation*}
$$

Since formula (2) gives the rate of exposures being earned at time $x_{t}$, its integral over time describes carned exposures. The expression for earned exposures between time $x_{11}$ and time $x_{1}$ is shown as formula (4).

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} \int_{0}^{1} g(x, y) d y d x=\int_{x_{0}}^{x_{1}} \int_{0}^{1} f(x-k y) d y d x \tag{4}
\end{equation*}
$$

Before proceeding with an example showing the practical application of these formulas we will set forth two additional relationships that can be seen within the three-dimensional framework.

First, noting that $y=1$ indicates points at which exposures are expiring, the integral of $z$ at $y=1$ over a time interval $x_{11}$ to $x_{1}$ will give the level of exposures expiring in that interval. The mathematical notation for this integral is as follows:

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} g(x, 1) d x=\int_{x_{0}}^{x_{1}} f(x-k) d x \tag{5}
\end{equation*}
$$

The final formula presented will develop the value for unearned exposures at time $x_{t}$. We can view the unearned exposures as the amount of exposures earned following time $x_{t}$ from all policies written prior to time $x_{t}$. Since the last policy contributing to this earned will expire at time $x_{t}+k$, we will be integrating between time $x_{t}$ and time $x_{t}+k$. This will be similar to formula (4) except the lower limit for $y$ will be the diagonal line connecting ( $x_{t}, 0$ ) and ( $x_{t}+k, 1$ ) instead of $y=0$. The equation for this line is $y=\left(x-x_{1}\right) / k$, hence the integral for unearned exposures becomes:

$$
\begin{align*}
& \int_{x_{t}}^{x_{t}+k} \int_{\frac{x-x_{t}}{1} g(x, y) d y d x=}^{\int_{x_{t}}^{x_{t}+k} \int_{\underline{x-x_{t}}}^{1} f(x-k y) d y d x}
\end{align*}
$$

## APPLICATIONS

In developing rate indications for an established line it is unlikely that a bureau will see a significant change in written exposures in one year, but for new lines or declining lines there would be significant changes. On an individual company basis new lines, new program deviations and new market penetrations will in some cases cause changes in exposure large enough to have an impact on rate level indications. In these cases the change in exposure can have an effect on rate level indications which can be measured using the three dimensional model.

As an example of increasing exposures consider the following table of data which might represent the pattern for a new line of business.

Time
1st Quarter Year
2nd Quarter Year
3rd Quarter Year
4th Quarter Year
5th Quarter Year
6th Quarter Year
7th Quarter Year
8th Quarter Year

Written Exposures
125
375
625
875
1125
1375
1625
1875

With $\mathrm{f}(\mathrm{x})$ defined as the annual rate of written exposures it is necessary to convert the actual quarterly exposures to an equivalent annual rate in developing the equation for $f(x)$.

| Time | Written Exposurcs |  |
| :---: | :---: | :---: |
|  | $\leq \mathrm{Annual}$ Rate |  |
| $.25 \leq .25$ | 125 | 500 |
| $.50 \leq \mathrm{x} \leq .50$ | 375 | 1500 |
| $.75 \leq \mathrm{x} \leq 1.00$ | 625 | 2500 |
| $1.00 \leq \mathrm{x} \leq 1.25$ | 875 | 3500 |
| $1.25 \leq \mathrm{x} \leq 1.50$ | 1125 | 4500 |
| $1.50 \leq \mathrm{x} \leq 1.75$ | 1375 | 5500 |
| $1.75 \leq \mathrm{x} \leq 2.00$ | 1625 | 6500 |
|  | 1875 | 7500 |



Figure 3
This data indicates a linear pattern since the growth between quarters is constant. By fitting each value to the midpoint of the time interval the equation $f(x)=4000 x$ is developed. Figure 3 describes this situation for policies with one-year term. From our prior development we have $g(x, y)=f(x-y)=4000$ ( $x-y$ ).

We have assumed a rate level increase of $20 \%$ at the end of the first year. In figure 3 the diagonal plane ABCD separates the exposures at different rate levels. In our example the earned exposures at the higher rate level in year two are represented by the volume above triangle ABE. To evaluate this volume we apply formula (4) except that the upper limit for $y$ will be the diagonal line $A B$ whose equation is $y=x-1$. The expression to evaluate this volume is then:

$$
\int_{1}^{2} \int_{0}^{x-1}
$$

$$
4000(x-y) d y d x=2667
$$

The proportion this volume is of the full year's earned exposure is obtained from dividing the above result by the total earned exposure volume for the year. This latter value is developed directly from formula (4) as:


$$
4000(x-y) \text { dydx }=4000
$$

The following table compares the results of this method with those of the traditional method.

|  | Increasing <br> Exposures |  | Level <br> Exposures |
| :--- | :---: | :---: | :---: |
|  | $33 \%$ |  | $50 \%$ |
| Exposures at Base Rate Level | $67 \%$ |  | $50 \%$ |
| Exposures at 1.200 Rate Level | 1.133 |  | 1.100 |
| Average Rate Level | 1.059 |  | 1.091 |

If the actual and expected loss ratios were $70 \%$ and $60 \%$ respectively the traditional method would yield a rate level indication of $+6.9 \%$ whereas recognizing increasing exposures yields $+10.2 \%^{4}$. The above example shows that when rates have increased during a time when exposures are steadily increasing the traditional approach underestimates the average rate level for earned exposure. As a result the necessary premium adjustment is overestimated and the adjusted loss ratio is too low, leading to an inadequate rate indication.

In the case of declining exposures during a period of rising rate levels the traditional method overestimates rate level indications. This situation has been encountered recently in developing rates for a diminishing book of monoline fire business.

In addition to growth situations, irregular exposure patterns may also occur in a stable line where policy writing is heavily weighted towards specific effective dates (e.g., January 1, July 1). Whenever a non-level pattern of exposures is evident, it would be appropriate to look further for the actual exposure pattern. Certainly monthly exposure data would be optimal, but it may be more practical to rely on premium figures. This may be in the form of internal data such as quarterly production reports, monthly bureau transmittals, etc. This data will allow one to judge the value of a refined calculation in the particular instance. If a calculation is warranted, techniques from numerical analysis can be used to fit the data to an integrable function.

$$
4 \frac{.70}{1.091} \div .60=1.069 ; \quad \frac{.70}{1.059} \div .60=1.102
$$

## A MATHEMATICAL MODEL FOR LOSS RESERVE ANALYSIS

CHARLES L. McCLENAHAN

DISCUSSION BY DAVID SKURNICK
Actuaries generally predict the ultimate cost of a partially paid accident year from the pattern of earlier accident years' payments. But this procedure ignores the development pattern of the current year itself. McClenahan's paper utilizes cach year's development pattern by means of certain assumptions concerning the rates of payment, growth, and inflation; the result is a well-defined mathematical model which can serve several useful functions.

The fundamental assumption is that for a given accident month there is a delay of d months before the loss payments begin. Under constant severity these payments then would decrease at a geometric rate. Severity depends upon payment month, and it changes at a uniform geometric rate. Frequency depends upon accident month, and it also changes at a uniform geometric rate. For a given accident month, the combined effects of the decreasing payment rate and the change in severity produce a geometric decline in which each month's payments are r times the prior month's payments.

The assumptions lead to the development of a variety of formulas relating to paid and unpaid losses by accident month and by accident year. The formulas can be used for both cash flow and reserve analyses. The model allows one to measure the effect of a change in frequency, severity, or payment rate. The author also uses the model to evaluate the amount by which loss reserves can be reduced if the payments are discounted. Although the formulas are complicated, the presentation is clear and easy to follow.

Properly estimating a model's parameters is as important as constructing the model. A sensitivity test of the model will show how much accuracy is required for each parameter. For a paid loss development on a casualty line, the indicated reserve is highly sensitive to the rate of payment, particularly at the later ages. For example, under stable conditions, a change of .01 in the 120 month to 132 month age to age factor will produce $1 \%$ more loss development for each of the ten most recent years. Thus, it will change the indicated loss reserve by $10 \%$ of a year's incurred loss. The age to age factors for the last portion of the development influence the most accident years. Unfortunately, these factors are based on the oldest data; thus they are the least reliable.

The geometric distribution is a special case of the negative binomial. Three methods of estimating the negative binomial's parameters are described by Johnson and Kotz. ${ }^{1}$ In the case of a geometric where each term is $r$ times the preceding term all three methods estimate $1 /(1-r)$ as the sample mean, which in this case is the average length of time to pay a dollar of loss. The reviewer applied this method to fit geometric distributions separately to each of three accident years using paid workers' compensation claims. For accident year 0 with actual paid loss amounts $A_{11}, \mathbf{A}_{1}, \ldots, A_{N}$ during years $0,1, \ldots, N$ respectively the geometric rate of decline was estimated from the formula

$$
\begin{equation*}
1 /(1-\hat{r})=\sum_{n=1}^{N} n A_{n} / \sum_{n=1}^{N} A_{u} \tag{1}
\end{equation*}
$$

Note that year 0 was omitted because the initial reporting delay prevents the geometric pattern from beginning until year 1 .

As shown on Exhibit 1, the fit is only fair. The fitted curve substantially underestimates actual paid loss at later years. By comparison, in the automobile bodily injury example in the paper the model overestimated paid loss at later years. Probably these results reflect the different characteristics of the two lines of business.

There is a bias in this estimation procedure. It underestimates $1 /(1-r)$ since it represents the mean of a truncated series of payments. Some adjustment should be made because the observations stop at year N , the latest year for which data is available, if substantial amounts of claims remain unpaid at that time.

Probably the best application of McClenahan's results lies in sensitivity analysis. His formulas directly show the effect of changing the discount rate, the growth rate, or the payment rate. Many readers of this paper will want to experiment to see whether his formulas provide more accurate reserve estimates than the usual methods. This thoroughly developed model is a significant addition to the actuarial literature.

[^27]
## Exhibit 1

## GEOMETRIC DISTRIBUTION OF WORKERS' COMPENSATION ACCIDENT YEAR PAID LOSSES*



Accident Year 1969

| 0 | 1969 | $13,378,723$ | $13,378,723$ | - | - |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 1 | 1970 | $14,277,955$ | $15,171,631$ | 893,676 | $6.3 \%$ |
| 2 | 1971 | $8,027,259$ | $7,927,389$ | $-99,870$ | -1.2 |
| 3 | 1972 | $4,029,497$ | $4,142,172$ | 112,675 | 2.8 |
| 4 | 1973 | $2,282,755$ | $2,164,343$ | $-118,412$ | -5.2 |
| 5 | 1974 | $1,421,190$ | $1,130,899$ | $-290,291$ | -20.4 |
| 6 | 1975 | $\frac{1,088,689}{44,506,068}$ | $\frac{590,911}{44,506,068}$ | $-497,778$ | -45.7 |

Accident Year 1970

| 0 | 1970 | $16,816,141$ | $16,816,141$ | - | - |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1971 | $17,593,975$ | $18,995,304$ | $1,401,329$ | $8.0 \%$ |
| 2 | 1972 | $9,238,517$ | $9,373,211$ | 134,694 | 1.5 |
| 3 | 1973 | $4,571,356$ | $4,625,201$ | 53,845 | 1.2 |
| 4 | 1974 | $2,914,044$ | $2,282,300$ | $-631,744$ | -21.7 |
| 5 | 1975 | $2,084,322$ | $1,126,198$ | $-958,124$ | -46.0 |

*For each accident year, ycar 0 was excluded from the distribution $\%$ Accident year values for $r$ and $K$

|  | $\frac{\mathrm{r}}{}$ | $\underline{\mathrm{K}}$ |
| :---: | :---: | :---: |
| 1968 | .544024371 | $20,192,555$ |
| 1969 | .522513997 | $29,035,836$ |
| 1970 | .493448876 | $38,494,978$ |

MINUTES OF THE 1976 FALL MEETING
NOVEMBER 17-19, 1976
SHERATON HARBOR HOTEL, SAN DIFGO. CALIFORNIA

Wednesday, November 17, 1976
The Board of Directors had their regular quarterly meeting from 1:00 p.m. to 5:00 p.m.

Registration was held from 4:00 p.m. until 6:00 p.m.
The President's reception for New Fellows and their spouses was held from 5:45-6:30 p.m.

A reception for members and guests was held from 6:30-8:00 p.m. Thursday, November 18, 1976

Registration was held from 8:00-8:30 a.m. President Bornhuetter opened the Annual Meeting at $8: 30$ with a short welcoming address.

Wesley J. Kinder, California Commissioner of Insurance, then presented his welcoming address. Mr. Kinder quoted from several previous addresses of former C.A.S. presidents and related these addresses to current problems in the Property and Casualty Insurance Business. President Bornhuetter then read the names of the 63 New Associates who rose as their names were called and received the applause of the assembly. A short biography of each New Fellow was then read as each came forward to receive his diploma. All New Associates and Fellows were asked to assemble for group pictures at the coffee break. The New Associates and New Fellows are:

NEW FELLOWS

| David A. Arata | Gustave A. Krause | Sanford R. Squires |
| :--- | :--- | :--- |
| Michael P. Blivess | Richard W. Palczynski | Lee R. Steeneck |
| George E. Davis | Robert G. Palm | John J. Winkleman, Jr. |
| Howard V. Dempster, Jr. Sheldon Rosenberg | Paul E. Wulterkens |  |
| Richard M. Jaeger |  |  |

## NEW ASSOCIATES

| Virgil H. Applequist | Larry D. Johnson | Joseph L. Petrelli |
| :--- | :--- | :--- |
| Betty H. Barrow | James A. Kenney | Richard N. Piazza |
| Irene K. Bass | Kerry K. King | John Pierce |
| Thomas R. Bayley | Frederick O. Kist | John A. Potter |
| Donald A. Bealer | Thomas J. Kozik | C. Ronald Riley |
| John O. Brahmer | John A. Lamb | William P. Roland |
| H. Earl Cassity | Francis J. Lattanzio | Spencer M. Roman |
| Joseph S. Cheng | Stephen P. Lattanzio | Martin Rosenberg |
| Laurence W. Cheng | Alan R. Ledbetter | Harold N. Schneider |
| Christopher | RoyP. Livingston | Barbara A. Seiffertt |
| Diamantoukos | Anne B. Matson | Larry D. Shatoff |
| Nancy R. Einck | John M. Meeks | Richard S. Skolnik |
| Doreen S. Faga | Jerry A. Miccolis | Richard A. Stroud |
| Janet L. Fagan | Stanley K. Miyao | Joseph O. Thorne |
| Russell S. Fisher | Roy K. Morell | John P. Tierney |
| Bernard J. Galiley | Richard F. Murphy | Robert H. Waldman |
| Timothy L. Graham | Frank Neuhauser | Forrest Wasserman |
| Gary Grant | David J. Oakden | Alfred O. Weller |
| Gary Granoff | Terrence M. O'Brien | James D. Wickwire, Jr. |
| Steven C. Herman | John A. Pagliaccio | Ronald F. Wiser |
| Cecily A. Hine | David M. Patterson | Richard T. Zatorski |
| Robert P. Irvan |  |  |

The election of Officers and Board Members followed. Those elected, and their offices were as follows:

| President-elect | - P. Adger Williams |
| :--- | :--- |
| Vice President | - Ruth E. Salzmann |
| Secretary | - Darrell W. Ehlert |
| Treasurer | - Walter J. Fitzgibbon, Jr. |
| Editor | - David C. Forker |
| General Chairman Education |  |
| and Examination Committee | - Charles C. Cook |
| Board Members | - Norman J. Bennett |
|  | - Charles A. Hachemeister |
|  | - Frederick W. Kilbourne |

The amendments to Article III of the Constitution and Article VI of the By-Laws were approved as submitted to the membership on October 8, 1976. The reading of the Minutes of the May 22-26, 1976 meeting was waived. The Secretary's and the Treasurer's Annual Reports were read. A moment of silence was observed for the C.A.S. members who had died since the last Annual Meeting. (See Obituaries)

The Woodward and Fondiller Prize for 1976 was awarded to Robert J. Finger for his paper "Estimating Pure Premium by Layer-An Approach" by Lewis H. Roberts of Woodward and Fondiller.

President Ronald L. Bornhuetter then delivered the report of Harold W. Schloss on the activities of Organization Coordination and Proposed Reorganization of the Actuarial Bodies in North America. Mr. Schloss was unavoidably absent and sent his deepest regrets.

Robert J. Finger then presented two of his papers which had been accepted by the Committee on Review of Papers:
"A Note on Basic Limits Trend Factors," and "Modelling Loss Reserve Developments".

After a short break, a panel discussion entitled "Commercial LinesA Liability?" was presented. Daniel J. McNamara, President of the Insurance Services Office, was the moderator. Participants were:

> John W. Carleton, Senior Vice President, Liberty Mutual Insurance Company,
> James J. Meenaghan, Vice President and Operations Executive, Fireman's Fund American Insurance Company,
> Jack Moseley, Executive Vice President, United States Fidelity and Guaranty Company, and
> LeRoy J. Simon, Senior Vice President, Prudential Reinsurance Company.

A formal luncheon was held at noon and the Honorable Alan Cranston, Senior Senator of the State of California was the speaker.

The regular session reconvened at $2: 00 \mathrm{p} . \mathrm{m}$. with a workshop program. Six workshops were held, each twice, and four at a time from 2:00 to 5:20 p.m. according to the following schedule:

2:00-3:00 Workshops A, B , C, D
3:10-4:10 Workshops A, B, E, F
4:20-5:20 Workshops C, D, E, F
The workshop subjects and participants are listed below:
Workshop A. Specific Applications of Econometrics

| Moderator | -Stephen S. Makgill, General Manager, Pennsyl- <br>  <br> vania Compensation Rating Bureau |
| :---: | :---: |
| Participants | -Allerton Cushman, Jr., Morgan Stanley \& Co., |
|  | Incorporated |

Workshop B. Cumulative Injury-An Industry Trauma

| Moderator | -James A. Hall, III, Vice President and Actuary, |
| :---: | :---: |
|  | California Casualty Group |
| Participants | - William B. Whiting, M.D., State Compensation |
|  | Insurance Fund of California |
|  | - Melvin S. Witt, Chairman of Workers' Compen- |
|  | sation Appeals Board of California |

Workshop C. Homeowners-A Loss Leader?

| Moderator | -Peter B. Zory, Actuary, The Travelers Insur- |
| :---: | :---: |
| ance Companics |  |
| Participants | -David A. Arata, Actuarial Analyst, Fireman's |
|  | Fund American Insurance Companies |
|  | -John D. Napierski, Assistant Vice President- |
|  | Actuary, State Farm Fire \& Casualty Company |

Workshop D. Early Warning Systems

| Moderator | - Ruth E. Salzmann, Vice-President \& Actuary, |
| :--- | :--- |
|  | Sentry Insurance Group |
| Participant | Charles L. McClenahan, Associate Actuary, |
|  | CNA Insurance |

## Workshop E. Capacity

Moderator - Norman J. Bennett, Vice-President \& Actuary,
Participants -James R. Berquist, Consulting Actuary, Milliman \& Robertson, Incorporated
-Robert C. Gowdy, Vice-President, Industrial Indemnity Company

## Workshop F. Catastrophes

Moderator -Richard J. Roth, Vice-President \& Actuary, CNA Insurance

Participant -Don G. Friedman, Director of Corporate Planning \& Research, The Travelers Insurance Companies

Members and Guests were invited on a sightseeing boat tour of San Diego Harbor at 6:00 p.m. followed by a Western Barbeque at the convention hotel. During the dinner, President Bornhuctter thanked the Arrangements Committee which was directed by Albert J. Walsh, Vice-President and General Manager, Interinsurance Exchange of the Automobile Club of Southern California. The Southern California Casualty Actuaries Club assisted Mr . Walsh in arranging the meeting and other activities.

The regular meeting resumed at 8:30 a.m. on November 19 with President-elect George D. Morison presiding.

A paper entitled "A Refined Model for Premium Adjustment" written by George Davis and David Miller was presented by Mr. Davis.

Several reviews of papers previously presented were given.
Frank Harwayne's paper-"Accident Limitations for Retrospective Rating" was reviewed by Frank Taylor and Francis Lattanzio, with the former presenting the review. Two other reviews of this paper were presented by David Bradley and Robert J. Finger.

Robert J. Finger's paper-"Estimating Pure Premiums by Layer -An Approach" received two reviews by Lee Steeneck and David Grady.

A panel discussion on "Certification of Annual Statements by the Casualty Actuary" followed.

Moderator -Dale A. Nelson, Actuary, State Farm Mutual Automobile Insurance Company.

Participants -Rafal J. Balcarek, Vice-President \& Actuary, Reliance Insurance Company
—David R. Bickerstaff, Consulting Actuary, Milliman \& Robertson, Incorporated

After a short coffee break, President Ronald L. Bornhuetter delivered his presidential address. President-elect Morison then presented Mr. Bornhuetter with a plaque commemorating his year as President and thanked Mr. Bornhuetter for his years of service to the Society. The membership responded with a hearty round of applause.

The second panel of the morning-"The Stanford Research Institute Study on Automobile Classification" was then presented.

| Moderator | - Frederick W. Kilbourne, President, Booz-Allen |
| :---: | :--- |
| Participants | Consulting Actuaries |
|  | Charles A. Hachemeister, Actuary, Prudential |
|  | Reinsurance Company |
|  | Frank Riley—Assistant Administrator of the |
|  | Federal Insurance Administration |
|  | - Carl L. Spetzler, M.D., Director, Stanford Re- |
|  | search Institute. |

A list of the attendees follows:
FELLOWS

Anderson, D. R.
Anker, R. A.
Arata, D. A.
Atwood, C. R.
Balcarek, R. J.
Barker, L. M.
Beckman, R. W.
Bennett, N. J.
Berquist, J. R.
Berry, C. H.
Bethel, N. A.
Bickerstaff, D. R.
Bill, R. A.
Blivess, M. P.
Bondy, M.
Bornhuetter, R. L.
Boyajian, J. H.
Brannigan, J. F.
Carleton, J. W.
Carter, E. J.
Cook, C. F.
Crowley, J. H.
Curry, A. C.
D'Arcy, S. P.
Davis, G. E.
Dempster, H. V., Jr.
Drennan, J. P.
Drobisch, M. R.
Dropkin, L. B.
Ehlert, D. W.
Faber, J. A.
Ferguson, R. E.
Finger, R. J.
Fisher, W. H.
Fitzgibbon, W. J., Jr.
Flynn, D. P.
Forker, D. C.

Fossa, E. F.
Foster, R. B.
Fowler, T. W.
Fusco, M.
Gibson, J. A., III
Gillam, W. S.
Gillespie, J. E.
Ginsburgh, H. J.
Golz, J. F.
Gottlieb, L. R.
Gowdy, R. C.
Grady, D. J.
Graves, J. S.
Grippa, A. J.
Hachemeister, C. A.
Hall, J. A., III
Hartman, D. G.
Harwayne, F.
Haseltine, D. S.
Hazam, W. J.
Heer, E. L.
Hewitt, C. C., Jr.
IIillhouse, J. A.
Inkrott, J. G.
Jaeger, R. M.
Kaliski, A. E.
Kates, P. B.
Kaufman, A. M.
Kayton, H. H.
Kelly, A. E.
Khury, C. K.
Kilbourne, F. W.
Klaassen, E. J.
Kline, D. F.
Kollar, J. J.
Krause, G. A.
Kreuzer, J. H.

Lamb, R. M.
Leslie, W., Jr.
Levin, J. W.
Liscord, P. S.
Lowe, R. F.
MacGinnitie, W. J.
Makgill, S. S.
Masterson, N. E.
McClenahan, C. L.
McClure, R. D.
McLean, G. E.
McNamara, D. J.
Mohl, F. J.
Moore, P. S.
Morison, G. D.
Munro, R.E.
Nelson, D. A.
Newman, S. H.
Oien, R. G.
Pagnozzi, R. D.
Palczynski, R. W.
Palm, R. G.
Perkins, W. J.
Phillips, H. J.
Price, E. E.
Quinlan, J. A.
Retterath, R. C.
Richards, H. R.
Riddlesworth, W. A.
Rinehart, C. R.
Roberts, L. H.
Rodermund, M.
Rosenberg, N .
Rosenberg, S.
Ross, J. P.
Roth, R. J.
Ryan, K. M.

Salzmann, R. E.
Scheibl, J. A.
Scheid, J. E.
Scott, B. E.
Sheppard, A. R.
Simon, L. J.
Squires, S. R.
Steeneck, L. R.

Andler, J. A.
Angell, C. M.
Applequist, V. H.
Barnes, G. R.
Barrette, R.
Bartlett, W. N.
Bass, I. K.
Bayley, T. R.
Bealer, D. A.
Biondi, R. S.
Bovard, R. W.
Bradley, D. R.
Brahmer, J. O.
Briere, R.S.
Brubaker, R.E.
Cassity, H. E.
Cheng, J. S.
Cheng, L. W.
Childs, D. M.
Chorpita, F. M.
Christiansen, S. L.
Cohen, H. S.
Connor, V. P.
Cooper, W. P.
Covney, M. D.
Crowe, P. J.

Stephenson, E. A.
Sturgis, R. W.
Switzer, V. J.
Tarbell, L. L., Jr.
Tatge, R. L.
Toothman, M. L.
Trudeau, D. E.
Walsh, A. J.

## ASSOCLATES

Curley, J. O.
DeGarmo, L. W.
Degerness, J. A.
Diamantoukos, C .
Donaldson, J. P.
Einck, N. R.
Eland, D. D.
Evans, D. M.
Faga, D. S.
Fagan, J. L.
Fallquist, R. J.
Fiebrink, M. E.
Fisher, R. S.
Flack, P. R.
Galiley, B. J.
Garand, C. P.
Gleeson, O. M.
Godbold, M. E.
Godbold, N. T.
Goddard, D. C.
Goldberg, S. F.
Graham, T. L.
Granoff, G.
Grant, G.
Greene, T. A.
Gruber, C.

White, H. G.
Williams, P. A.
Winkleman, J. J., Jr.
Woll, R. G.
Wood, J. O.
Wulterkens, P.E.
Zory, P. B.

Head, T. F.
Henkes, J. P.
Hermes, T. M.
Herzfeld, J.
Hine, C. A.
Hoylman, D. J.
Inderbitzin, P. H.
Isaac, D. H.
Jensen, J. P.
Johnson, L. D.
Johnston, D. J.
Judd, S.W.
Kenney, J. A.
King, K. K.
Kist, F. O.
Kitzrow, E. W.
Kozik, T. J.
Lamb, J. A.
Lattanzio, F. J.
Lattanzio, S. P.
Ledbetter, A. R.
Lindquist, R. J.
Lino, R. A.
Livingston, R. P.
Marks, R. N.
Matson, A. B.

McManus, M. F.
Mceks. J. M.
Miccolis, J. A.
Miccolis, R. S.
Miyao, S. K.
Mokros, B. F
Moller, K. G.. Jr.
Moore, B. C.
Moore, B. D.
Morell, R. K.
Murphy, R.F.
Napierski,I I)
Neis, A. R.
Neuhauser, F., Jr.
Newville. B. S.
Nishio, J. A.
Oakden, D. J.
OBrien. T. M.
Patrik. G. S.
Patterson, D. M.
Pearl, M. B.
Petit, C. I.
Pctlick, S. A.

Belton, E. F.
Benktander, G.
Carpenter, J. G.
Clause, R E
*Cotter, M.
Cushman. A.. Jr.
Davidson, D. A.
*Forbes, L. D.
Friedman, D. G.
*Invitational Program

ASSOCIATES (Cont d)
Piazza, R.N
Pierce, J.
Plunketi, R.C.
Pottor, J. A.
Pratt, J. J.
Ralnaswamy, R.
Reynolds. J. D.
Riley, C. R.
Roach, R.F.
Roland, W. P.
Ruman, S. M.
Rosenberg. M
Sindler, R. M.
Schneider, H. N.
Schultz, E. O.
Schultz, J. J., III
Schumi. J. R.
Seifferti. B. A.
Shatoff, L. D.
Sherman, R. E.
Shoop, E. C.
Singer, P. E.
Skolnik, R. S.
GUFSTS
Guaschi, F. E.
*Hatficld. B. D.
Heller, D. M.
*Hoyt F. A
*Johnson, J. E.
Kellison. S. G.
Lyon, A.C.
McCarthy, R.
McMillen, R. H.

Stergiou. E. J.
Stroud, R. A.
Swisher, J. W
Taylor, F. C.
Taylor. J. C.
Thorne, J. O.
Tierney, J. P.
Torgrimson, D. A.
Van Slykc, O. E.
Vogel, J. F.
Wadc. R. C.
Waldman. R. H.
Warthen. T. V., Jr.
Wasserman. F.
Weiner, J. S.
Weller. A. O.
Wilson. O. T.
Wiser, R. F.
Young, E. W.
Young. R. J., Jr.
Zatorski, R.T.
*O'Shea, H: J.
Reilly. F. V.
*Rinard, A. V.
*Smith, D. A.
Spangler, J. L.
*Stenmark, J. A.
Tepper. D.
Whiting. W. B.
Wilkinson, M. E.

The closing remarks were made by President-elect Morison, who again thanked the committee in charge of arrangements, all those participating in the meeting and the membership who attended. All were invited to reconvene in Washington, D.C. in May of 1977.

The meeting adjourned at $1: 10$ p.m., P.S.T.
Respectively submitted,

Darrell W. Ehlert,
Secretary

## REPORT OF THE SECRETARY

As our society increases in size, so also have the activities of the Officers, Board of Directors and committees increased in scope and intensity. It is expected that the pressures on our business, our profession and the community at large will continue to intensify in the years ahead, and create additional opportunities for our membership to participate in active service to our profession. For example, there are 178 positions on committees that were filled for the 1976-77 year.

The following list of highlights of the past year will give you some idea of the broadening areas of our concerns and responsibilities.

A special meeting of the Board of Directors was held in January to review the American Institute of Certified Public Accountants' "Discussion Paper" on the audit guide for property and casualty companies. The C.A.S. Committee on Financial Reporting has studied the issues and the Board spent the better part of a day debating these issues.

The Education and Examination Committee expanded their membership during the year and has taken great strides in defining the areas of knowledge expected of our students and in updating the Syllabus. More professional help is being used to increase the quality of the exams. Much effort has been put into developing procedures for handling accusations of cheating on exams.

The Committee on Review of Papers is revising the Guides for Submission of Papers and sees an increasing workload as our new (and older) members increase the volume of papers being submitted for the Proceedings.

Increased contacts and cooperation with other Actuarial "Learned Societies" have progressed on several fronts.

1. The Joint Committee on the Independence of the Actuary is attempting to codify disclosure procedures and other ethical standards.
2. The reorganization of the actuarial bodies in North America has been thoroughly explored and much discussed.
3. The definition of and the role of the "enrolled actuary" required in E.R.I.S.A. has received much attention.
4. Contemplated legislation requiring actuarial certification of property and casualty statements occupied many hours of committee work by our Board, individual members and the Special Committee on Certification.
5. The Actuarial Education and Research Foundation is operative and may soon embark on independent actuarial research projects.
6. Common rules and procedures for examinations are being discussed with the Society of Actuaries, as well as additional joint exams.

The Committee on Career Enhancement is taking positive steps to increase recruiting among minority groups and women.

The Ad Hoc Committee on Actuarial Communications made extensive recommendations for improving communications within the society and with the public. These recommendations were assigned to standing committees for implementation.

The five regional affiliates of the society continue to grow and to provide additional opportunities for continuing education of members.

The new Committee on Loss Reserves conducted an all day Symposium on loss reserve techniques in September which was attended by 227 members and guests. Other such Symposiums may be scheduled in the future because of the success of this first one. This is the first meeting to be recorded in full, and transcripts are being prepared for the attendees.

The Astin Organizing Committee is busily preparing for the Washington, D.C. meeting of this international actuarial organization next Spring.

A new recruiting booklet-"The Casualty Actuary" was produced and published by the Public Relations Committee.

The Textbook Committee is nearing completion of a property and casualty actuarial textbook. Publication may be possible in 1977 or 1978.

The Finance Committee has been active in an unsuccessful attempt to change our tax status. They have also recommended changes in the By-Laws to update the "Waiver of Dues" provisions. They did not recommend a dues increase.

The Committee on Professional Conduct was involved in a major project of preparing a report regarding an Opinion on Advertising in conjunction with the Joint Committee on Professional Conduct. A Supreme Court Decision striking down Bar Association restrictions on advertising by members aborted this effort.

The Program Committee has met almost monthly in order to provide quality programs and participants at our meetings.

The Board of Directors met five times since last November. Meetings were held in Chicago in January; Jacksonville, Florida in March; Palm Beach, Florida in May; Atlanta, Georgia in September, and here in San Diego. Attendance by Board Members exceeded $90 \%$ for these five meetings.

Our society continues to grow. The exams last November and May brought in 74 new Associates and 28 new Fellows, both records.

These records are expected to be broken each year for the next several years as the number of students applying for exams is still increasing, although at a decreasing rate. Students signed up to take 3,422 exams in 1976, versus 3,182 in 1975.

With the death of Everett Fallow this year, John S. Thompson becomes the last surviving charter member of the Casualty Actuarial Society. Perhaps Mr. Thompson would enjoy a personal expression of appreciation from individual members.

In closing, I wish to express my personal thanks to the Officers and Board Members and Committee Members who have helped me this past year and to Bob Foster who has allowed me to draw on his secretarial experience. As you all know, Edith Morabito, who supervises the C.A.S. Office in New York, is the sustaining force in the Office of Secretary. Without her help, I could not survive. My own secretary, Randy Pietroski, has also been of great help to me and the Society this past year.

Respectfully submitted,

Darrell W. Ehlert
Secretary

## REPORT OF THE TREASURER

The audited financial statement for the fiscal year ended September 30, 1976 showed cash and invested assets of $\$ 167,469.34$, an increase of $\$ 30,710.20$ for the year. Most of the increase was due to more prompt recording of examination fees, underspending the printing budget and showing a profit on the loss reserves symposium. Some of this gain is temporary since examination fees received for jointly administered exams will be paid over to the Society of Actuaries.

Your finance committee and Board of Directors have recognized that cash basis statements do not present the financial position of our Society very clearly. Therefore, the financial statement for September 30, 1976 shows both the continuation of the cash accounting basis and the conversion to an accrual basis. This conversion recognizes two major liabilities. One for printing the 1975 Proceedings and the other to reflect November, 1976 examination fees for jointly administered parts soon to be paid to the Society of Actuarics. The accrual statement shows membership equity of $\$ 133,022.44$. This equity includes two funds which have been established using amounts received from past presidents of our Society, Gustav F. Michelbacher and Paul Dorweiler. The Michelbacher fund of $\$ 26,137.97$ represents royalties received by the Society over the years from Mr. Michelbacher's books. The Dorweiler fund of $\$ 6,375.13$ is based on a legacy received by the Casualty Actuarial Society. No specific purposes have yet been established by the Board of Directors for these funds.

In February, 1976, a $\$ 100,000$ U.S. Treasury bill paying $5.3 \%$ interest which had been purchased three months earlicr matured and the proceeds were reinvested in a U.S. Treasury note maturing in May, 1981 and paying $7.5 \%$ interest. In May, $\$ 25,000$ was placed in a 1 year time savings account paying $61 / 2 \%$ interest.

The operating budget approved for the coming year contains some increases in postage and printing expenses. Increased mailings and the December 28,1975 increase in postal rates along with printing of study materials and copies of the syllabus have caused the increases. Interest income will be reduced somewhat since earnings on the newly established Michelbacher and Dorweiler Funds will accrue to these funds and will not be used to support current operations.

The level of membership dues will be unchanged. Fellowship dues are $\$ 70.00$. Associateship dues are $\$ 50.00$ for the first five years and $\$ 70.00$ thereafter. Residents outside the United States and Canada will pay $\$ 50.00$ dues.

The amendment to the by-laws approved today will permit the Board of Directors to waive partially or fully the ducs of any member who considers that payment of these dues constitutes a financial hardship. This will include, but not be limited to, members on maternity leave or raising families who, in the past, have been required to continue payment of dues in order to retain Society membership.

A petition to the IRS to change the Casualty Actuarial Society's tax exempt status from Section 501 (c) (6) to Section 501 (c) (3) was denied. If approved, the change would have allowed tax deductions to those making donations to the Casualty Actuarial Society. The legal fees of $\$ 2,130.02$ shown in the financial statement were incurred in connection with the IRS petition.

The limit on the Society's surety bond was increased carly in the year from $\$ 150,000$ to $\$ 175,000$. Our general liability policy was endorsed to provide coverage for all those involved in administering the examination program of the Society. This policy provides $\$ 300,000$ single limit coverage.

Respectfully submitted,

> W. J. Fitzgibbon, Jr. Treasurer

Presented to membership on November 18, 1976

## FINANCIAL REPORT

FOR FISCAL YEAR ENDED SEPTEMBER 30, 1976

## INCOME

| Dues | \$ 36,010.00 |
| :---: | :---: |
| Examination Fees | 71,209.00 |
| Meetings \& Registration Fees | 33,022.78 |
| Sale of Proceedings | 7,145.15 |
| Sale of Readings | 1,855.50 |
| Invitational Program | 3,600.00 |
| Michelbacher Royalties | 1,177.05 |
| Interest | 9,308.62 |
| Actuarial Review | 220.00 |
| Misc. | -24.59 |
| Total | \$163,523.51 |

DISBURSEMENTS
Printing \& Stationery ......... \$ 31,594.25
Secretary's Office 31,777.00
Examination Expenses 37,938.39
Mecting Expenses .............. 26,438.12
Library
330.10

Math. Assoc. of America $\quad 1,500.00$
Insurance ............... 629.00
Dorweiler Prize ... 200.00

Misc. 276.43

Total
$\$ 132,813.31$

Increase in cash and invested assets $\quad \$ 30,710.20$
Cash \& invested assets 9/30/75
136,759.14
Cash \& invested assets 9/30/76
$167,469.34$

## ACCRUAL BASIS ACCOUNTING STATEMENT AS OF 9/30/76

## ASSETS

| Bank Accounts | \$ 63,609.34 |
| :---: | :---: |
| U.S. Treasury Bond | 4,325.00 |
| U.S. Treasury Note | 99,535.00 |
| Accrued interest-Savings | 627.74 |
| Accrued interest-Investments | 2,788.36 |
| Total | \$170,885.44 |

LIABILITIES, SURPLUS \& OTHER FUNDS
LIABILITIES

| Printing PCAS 1975 | \$ 20,000.00 |
| :---: | :---: |
| Examination Expense | 16,163.00 |
| Actuarial Review | 1,700.00 |
| Sub-Total | \$ 37,863.00 |

MEMBERS EQUITY
Michelbacher Fund . . . . . . . . . . . . . . . . . . . . . . . . . \$ 26,137.97

Surplus ......................................... 100,509.34
Sub-Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\overline{\$ 133,022.44}$
Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \$170,885.44
W. J. Fitzgibbon, Jr.

Treasurer

This is to certify that the assets and accounts shown in the above financial statement have been audited and found to be correct.

Robert B. Foster
Chairman of Finance Committee

## 1976 EXAMINATIONS—SUCCESSFUL CANDIDATES

Examinations for Parts 4, 6, 8 and 10 of the Casualty Actuarial Society Syllabus were held May 6 and 7, 1976 and examinations for Parts 5, 7 and 9 were held November 10 and 12, 1976. Parts 1, 2 and 3, jointly sponsored by the Casualty Actuarial Society and the Society of Actuaries were given in May and November. Those who passed Parts 1, 2 and 3 were listed in the joint release of the two Societies dated July 23, 1976 and January 21, 1977.

The following candidates successfully completed the requirements for Fellowship and Associateship in the May 1976 Examinations.

NEW FELLOWS

Arata, David A.
Blivess, Michael P.
Davis, George E.
Dempster, Howard V., Jr. Rosenberg, Sheldon Jaeger, Richard M. NEW ASSOClates

Appelquist, Virgil H.
Barrow, Betty H.
Bass, Irene K.
Bayley, Thomas R.
Bealer, Donald A.
Brahmer, John O.
Cassity, H. Earl
Cheng, Joseph S.
Cheng, Laurence W.
Diamantoukos, Christopher Livingston, Roy P.
Einck, Nancy R.
Faga, Doreen S.
Fagan, Janet L.
Fisher, Russell S.
Galiley, Bernard J.
Graham, Timothy L.
Granoff, Gary
Grant, Gary
Herman, Steven C.
Hine, Cecily A.
Irvan, Robert P.

Johnson, Larry D.
Kenney, James A.
King, Kerry K.
Kist, Frederick O.
Kozik, Thomas J.
Lamb, John A.
Lattanzio, Francis J.
Lattanzio, Stephen P.
Ledbetter, Alan R.
Matson, Anne B.
Meeks, John M.
Miccolis, Jerry A.
Miyao, Stanley K.
Morell, Roy K.
Murphy, Richard F.
Neuhauser, Frank, Jr.
Oakden, David J.
O'Brien, Terrence M.
Pagliaccio, John A.
Patterson, David M. $\begin{array}{ll}\text { Krause, Gustave A. } & \text { Squires, Sanford R. } \\ \text { Palczynski, Richard W. } & \text { Steeneck, Lee R. } \\ \text { Palm, Robert G. } & \text { Winkleman, John J., } \\ \text { Rosenberg, Sheldon } & \text { Wulterkens, Paul E. }\end{array}$ $\begin{array}{ll}\text { Krause, Gustave A. } & \text { Squires, Sanford R. } \\ \text { Palczynski, Richard W. } & \text { Steeneck, Lee R. } \\ \text { Palm, Robert G. } & \text { Winkleman, John J., } \\ \text { Rosenberg, Sheldon } & \text { Wulterkens, Paul E. }\end{array}$ $\begin{array}{ll}\text { Krause, Gustave A. } & \text { Squires, Sanford R. } \\ \text { Palczynski, Richard W. } & \text { Steeneck, Lee R. } \\ \text { Palm, Robert G. } & \text { Winkleman, John J., Jr. } \\ \text { Rosenberg, Sheldon } & \text { Wulterkens, Paul E. }\end{array}$ $\begin{array}{ll}\text { Krause, Gustave A. } & \text { Squires, Sanford R. } \\ \text { Palczynski, Richard W. } & \text { Steeneck, Lee R. } \\ \text { Palm, Robert G. } & \text { Winkleman, John J., } \\ \text { Rosenberg, Sheldon } & \text { Wulterkens, Paul E. }\end{array}$

## MAY 1976 EXAMINATIONS

Following is a list of successful candidates in the examinations held in May 1976:

## FELLOWSHIP EXAMINATIONS

Part 8
Arata, David A. Frohlich, Kenneth R. Moore, Bruce D.

Childs, Diana M.
Daino, Robert A.
Dangelo, Charles H.
Dempster, Howard V., Jr.
Dolan, Michael C.
Dorval, Bernard
Duperreault, Brian
Eddy, Jeanne H.
Eldridge, Donald J.
Engel, Philip L.
Ernst, Richard C.
Evans, Dale M.
Fiebrink, Mark E.

Gersie, Michael H. Newlin, Patrick R.
Gleeson, Owen M. Patrik, Gary S.
Grannan, Patrick J. Potok, Charles M.
Rapp, Jerry W.
Jean, Ronald W. Reynolds, John D.
Jerabek, Gerald J. Rice, Walter V.
Judd, Steven W. Riff, Mayer
Krause, Gustave A. Rodgers, Beatrice T.
Lehmann, Steven G. Smith, Frances A.
Lindquist, Peter L. Squires, Sanford R.
McManus, Michael F. Taylor, Frank C.
Miccolis, Robert S. Teufel, Patricia A.
Moller, Karl G., Jr. Wood, Charles P., Jr.

Part 10
Angell, Charles M. Johnston, Daniel J. Steeneck, Lee R.
Arata, David A.
Ashenberg, Wayne R.
Barnes, Galen R.
Bassman, Bruce C.
Bellinghausen, Gary F.
Blivess, Michael P.
Brubaker, Randall E.
Carbaugh, Albert B.
Davis, George E.
Eland, Douglas D.
Hermes, Thomas M.
Keene, Vicki S. Taylor, Jane C.
Leimkuhler, Urban E. Van Slyke, Oakley E.
Marker, Joseph O. Venter, Gary G.
Palczynski, Richard W. Vogel, Jerome F.
Palm, Robert G. Warthen, Thomas V.
Quirin, Albert J. Winkleman, John J., Jr.
Roach, Robert F. Wright, Walter C., III
Rosenberg, Sheldon Wulterkens, Paul E.
Schultz, Ellen O. Yoder, Reginald C.
Shoop, Edward C. Young, R. James, Jr.
Squires, Sanford R. Zubulake, Theodore J.

ASSOCIATESHIP EXAMINATIONS

Part 4(a)

Graves, George G.
Johnson, Warren H., Jr.

McCarter, Michael G. Noceti, Stephen A. Nickerson, Gary V.

Part 4(b)
Almer, Monte Irvan, Robert P. Ragan, Evelyn T. M.
Andrus, William R.
Bartlett, John W.
Bayley, Thomas R.
Carpenter, James G.
Christhilf, David A.
Cloutier, Guy
Gaillard, Mary B.
Hanover, Richard F.
Heitt, Maurice
LaFrenaye, A. Claude
Leo, Carl J.
Livingston, Roy $\mathbf{P}$.
Lommele, Jan A.
Lowe, Stephen P.
McDaniel, Gail P.
Mellia, Joanne C.
Riley, C. Ronald Rowland, Vincent T.
Rush, Mary L.
Strickoff, Carol L.
Thibault, Alain P. Van Ark. William R.
Wach, Michacl M.
Miller, Robert A., III
Winter, John C., III
Racine, Andre R.
Wisecarver, Timothy L.
Hine, Cecily A.

Part 4

| Arzberger, Peter W. | Johnson, Marvin A. | Reichle, Kurt A. |
| :--- | :--- | :--- |
| Belvin, William H. | Johnston, Thomas S. | Roach, William L. |
| Buck, James E., Jr. | Kucera, Jeffrey L. | Robertson, John P. |
| Callahan, James J. | Lerwick, Stuart N. | Rosa, Domenico |
| Cheng, Laurence W. | Leung, Gibert K. | Schmidt, Lowell D. |
| Conger, Robert F. | Levine, Michael M. | Tremblay, Monique |
| Doepke, Mark A. | Mair, Sharon A. | Tuttle, Jerome E. |
| Duffy, Thomas J. | McConnell, Charles W., II Weissner, Edward W. |  |
| Ford, Edward W. | McGovern, William G. | White, Jonathan |
| Giambo, Robert A. | Myers, Nancy R. | Whitman, Mark |
| Granoff, Gary | Nash, Russell K. | Wilson, Randall J. |
| Harrison, Eugene E. | Orlowicz, Charles P. | Youngner, Ruth E. |
| Holdredge, Wayne D. |  |  |

Part 6
Appelquist, Virgil H. Hine, Cecily A. Petrelli, Joseph L

Balchunas, Anthony J.
Barrow, Betty H.
Bass, Irene K.
Bealer, Donald A.
Biller, James E.
Brahmer, John O.
Brown, Joseph W.
Buck, James E., Jr.
Cassity, H. Earl
Cheng, Joseph S.
Cheng, Laurence W.
Clark, David G.
Diamantoukos, Christopher Matson, Anne B.
Drummond-Hay, Eric T. Mceks, John M.
Egnasko, Gary J.
Einck, Nancy R.
Faga, Doreen S.
Fagan, Janet L.
Fisher, Russell S.
Galiley, Bernard J.
Giambo, Robert A.
Gnazzo, Polly R.
Graham, Timothy L.
Granoff, Gary
Grant, Gary
Herman, Steven C.
Irva, Robert $P$.
Johnson, Larry D.
Kenney, James A.
King, Kerry K.
Kist, Frederick O.
Klein, Richard C.
Kozik, Thomas J.
Lamb, John A.
Lattanzio, Francis J.
Lattanzio, Stephen P.
Ledbetter, Alan R.

Meyer, Robert E.
Miccolis, Jerry A.
Miyao, Stanley K.
Morell, Roy K.
Murphy, Richard F.
Neuhauser, Frank, Jr.
Oakden, David J.

He, Recily

LaFrenaye, A. Claude Rush, Mary L.

O'Brien, Terrence M. Westerholm, David C.
Pagliaccio, John A. Wickwire, James D., Jr.
Parker, Curtis M. Wiser, Ronald F.
Patterson, David M. Zatorski, Richard T.

Philbrick, Stephen W.
Piazza, Richard N.
Pierce, John
Potter, John A.
Roland, William P.
Roman, Spencer M.
Rosenberg, Martin
Ryan, John F.
Schncider, Harold N.
Seiffertt, Barbara A.
Shatoff, Larry D.
Shayer, Natalie
Skolnik, Richard S.
Stroud, Richard A.
Surrago, James
Thorne, Joseph O.
Tierney, John P.
Waldman, Robert H.
Wasserman, Forrest
Weller, Alfred O.

The following candidates successfully completed the requirements for Fellowship and Associateship in the November 1976 examinations.

## NEW FELLOWS

Angell, Charles M. Radach, Floyd R. Warthen, Thomas V., Jr.
Barnes, Galen R.
Fallquist, Richard J.
Garand, Christopher P.
Keene, Vicki S.

Schultz, Ellen O.
Schultz, John J., III
Stanard, James N.
Walters, Mavis A.

## NEW ASSOCIATES

Buck, James E., Jr. Johnson, Warren H., Jr. O'Neil, Mary L. Crifo, Daniel A.
Gerlach, Scott B.
Giambo, Robert A.
LaFrenaye, A. Claude Silberstein, Benny
Lommele, Jan A. Westerholm, David C.
Mcyer, Robert E.
NOVEMBER 1976 EXAMINATIONS
Following is a list of successful candidates in the examinations held in November 1976:

FELLOWSHIP EXAMINATIONS

## Part 7

Aldorisio, Robert P. Godbold, Mary Jo E. Neuhauser, Frank Jr.

Bass, Irene K.
Bayley, Thomas R.
Bealer, Donald A.
Bell, Linda C.
Beverage, Richard M.
Bishop, Everett G.
Bradley, David R.
Brooks, Dale L.
Brown, Joseph W.
Cheng, Joseph S.
Cheng, Laurence W.
Cis, Mark M.
Cohen, Arthur I.
Collins, Douglas J.
Connor, Vincent $P$.
Curley, James O.
Currie. Ross A.
Dahlquist, Ronald A.
Dangelo, Charles H.
Dorval, Bernard
Duperreault, Brian
Eland, Douglas D.
Fagan, Janet L.
Frohlich, Kenneth R.
Gaillard, Mary B.
Gnazzo, Polly R.

Goddard. Daniel C.
Grant, Gary
Henkes, Joseph P.
Henry. Dennis R.
Hobart, Gary P.
Irvan, Robert P.
Jerabek, Gerald J.
Johnson, Marvin A.
Karlinski, Frank J.
Kist, Frederick O.
Lattanzio, Stephen P.
Ledbetter, Alan R.
Lehman, Merlin R.
Lehmann, Steven G.
Linquist, Peter L.
Livingston, Roy $\mathbf{P}$.
Lowe, Stephen P.
McManus, Michael F.
Meeks, John M.
Metzner, Claus S.
Miccolis, Robert S.
Miyao, Stanley K.
Moller, Karl G., Jr.,
Morell, Roy K.
Murad, John A.
Neis, Allan R.

Newlin, Patrick R.
Nichols, Raymond S.
Oakden, David J.
Patrik, Gary S.
Philbrick, Stephen W.
Piazza, Richard N.
Quirin, Albert J.
Renze, David E.
Reynolds, John D.
Reynolds, John J., III
Rodgers, Beatrice T.
Roland, William P.
Roth, Richard J., Jr.
Schaeffer, Bernard G.
Schultz. Ellen O.
Shatoff, Larry D.
Shayer, Natalie
Stanard, James N.
Sweeny, Andrea M.
Teufel, Patricia A.
Tierney, John P.
Van Ark, William R.
Wiser. Ronald F .
Wood, Charles P., Jr.
Zatorski, Richard T.

Part 9(a)
Hanson, H. Donald Radach, Floyd R. Young, R. James, Jr.
Millman, Neil L.

## Part 9(b)

Stanard, James N.
Walters, Mavis A.

## Part 9

Angell, Charles M.
Barnes, Galen R.
Childs, Diana M.
Fallquist, Richard J.
Fiebrink, Mark E.
Garand, Christopher P.
Gersie, Michael H.

Gleeson, Owen M.
Grannan, Patrick J.
Gruber, Charles
Herzfeld, John
Keene, Vicki S.
ILino, Richard A.
Schultz, John J., III

Sherman, Richard E.
Taylor, Frank C.
Venter, Gary G.
Warthen, Thomas V., Jr.
Wasserman, Forrest
Yoder, Reginald C.
Zubulake, Theodore J.
associateship examinations

## Part 5

Abramson, Gary R.
Antolino, Michael R., Jr.
Baer, Debra L.
Belvin, William H.
Beversdorf, William R.
Booher, John P.
Buck, James E., Jr.
Burg, David R.
Cloutier, Guy
Cohen, Howard L.
Cola-Luca, Suzanne E.
Conger, Robert $F$.
Davis, Lawrence $S$.
DiBattista, Susan T.
Dodd, George T.
Doepke, Mark A.
Dornfeld, James L.
Duffy, Thomas J.
Edie, Grover M.
Foote, James M.
Ford, Edward W.
Furst, Patricia A.
Gerlach, Scott B.
Ghezzi, Thomas L.
Giambo, Robert A.
Harrison, Eugene E.

Hart, John A.
Hartz, Melvin L.
Heckman, Philip E.
Heersink, Agnes H,
Higgins, Barbara J.
Holdredge, Wayne D.
Javaruski, John J.
Johnston, Thomas S.
Knilans, Kyleen
Koski, Mikhael I.
Kucera, Jeffrey L.
LaFontaine, Gaetane
LaFrenaye, A. Claude
LaMonica, Michael A.
Lee, Yoong S.
Lerwick, Stuart N.
Lo, Richard W.
Lombardo, John S.
Lommele, Jan A.
Merves, Brian B.
Meyer, Robert E.
Miller, Allen H.
Miller, Robert A., III
Morgan, William S.
Nash, Russell K.
Neeson, Charles P.

Niswander, Ray E., Jr.
O'Neil, Mary L.
Orlowicz, Charles P.
Perry, Loren A.
Racine, Andre R.
Rosa, Domenico
Rowland, Vincent T., Jr.
Rowland, William J.
Silberstein, Benny
Skrodenis, Donald P.
Smith, Mary Jane
Swallow, James R.
Taranto, Joseph V.
Taylor, Thomas F.
Thibault, Alain P.
Thompson, Kevin B.
Truttmann, Everctt J.
Weissner, Edward W.
Westerholm, David C.
White, Frank T.
Wilson, Randall J.
Wilson, William F.
Wisecarver, Timothy L.
Yatskowitz, Joel D.
Yuan, Hui-Lin
Zicarelli, John D.


NEW FELLOWS ADMITTED MAY 1976: Thirteen of the fifteen new fellows admitted at the Breakers in Palm Beach are shown with President Ron Bornhuetter.


NEW ASSOCIATES ADMITTED MAY 1976: Eight of the ten new associates admitted at the Breakers in Palm Beach are shown with President Ron Bornhuetter.


NEW FELLOWS ADMITTED NOVEMBER 1976: The thirteen new fellows admitted at San Diego are shown with President Ron Bornhuetter.


NEW ASSOCIATES ADMITTED NOVEMBER 1976: Fifty-three of the sixty-three new associates admitted at San Diego are shown with President Ron Bornhuetter.

## OBITUARIES

BARRETT N. COATES
EVERETT S. FALLOW
JOSEPH H. FINNEGAN
harold F. lacroix
GILBERT R. LIVINGSTON
LOUIS H. MUELLER
WALTER E. OTTO
ARMAND SOMMER
M. ELIZABETH UHL

## BARRETT N. COATES

1893-1976
Barrett N. Coates, a fellow of the Casualty Actuarial Society since 1918 died on September 16, 1976 in Berkeley, California.

When Mr. Coates became a Fellow, he was employed by the Fraternal Brotherhood in Los Angeles. In 1921 he became Assistant Secretary and Actuary of the Western States Life Insurance Company of San Francisco. He went into consulting actuarial work in San Francisco in 1924, and in 1928 became a partner in the consulting actuarial firm of Coates and Herfurth, also in San Francisco. He stayed there until he retired in 1954. Until his death he lived in Berkeley, California.

As a member of the CAS, Mr. Coates served on the Committee on Book Reviews. He was a Fellow of the Society of Actuaries, class of 1921, and a Charter Member of the American Academy of Actuaries.

## EVERETT S. FALLOW

1885-1976
Everett S. Fallow, a charter member of the Casualty Actuarial Society died on February 19, 1976 at home in West Hartford, Connecticut.

Born in East Hartford, he lived in the Hartford area all his life. He worked as an actuary for the Travelers Company for 45 years before retiring in 1950. From 1921 until his retirement, he was the Actuary in the Accident Department of the Travelers.

Mr. Fallow served twice as a Member of the Council (now the Board of Directors), from 1922 to 1924 and from 1927 to 1930. He also served on the Examination Committee and the Committee on Book Reviews. In addition to being a charter member of the Casualty Actuarial Society, he was also a charter member of the American Academy of Actuaries.

## JOSEPH H. FINNEGAN

1904-1976
Joseph H. Finnegan, a Fellow of the Casualty Actuarial Society since 1956 died on July 25, 1976.

Born in 1904, Mr. Finnegan did undergraduate and graduate work at the New York University School of Commerce, receiving his Doctorate from them in 1944.

Mr. Finnegan joined the National Board of Fire underwriters in 1946. He stayed with the NBFU and its successor organizations until his retirement in 1971. Prior to his retirement he was a Manager in their Property Division.

## HAROLD F. La CROIX <br> 1924-1976

Harold F. La Croix, a Fellow of the Casualty Actuarial Society since 1949 died August 25, 1976 at his home in West Hartford, Connecticut.

Born in Quincy, Massachusetts, he was graduated Magna Cum Laude in 1943 from Harvard University with an A.B. in Mathematics. He served as a Lt . Commander in the U. S. Navy during World War II.

Mr. La Croix joined the Travelers in 1946 as an actuarial student. He was named Assistant Actuary in 1950, Associate Actuary in 1956 and Secretary in the Group Department in 1959. He was appointed Second Vice President in 1961, Vice President in 1965, and became Senior Vice President and Actuary in 1967 in charge of the Corporate Actuarial and Control Department. In July, 1968 he was appointed to head the Casualty-Property Department, and in 1971 was appointed Executive Vice President.

He resigned that post in 1973 for health reasons, but remained at the Travelers as a consultant until his death. He was a Charter Member of the American Academy of Actuaries and in 1949 presented a paper on Group Accident \& Health Insurance.

## GILBERT R. LIVINGSTON

1902-1976
Gilbert R. Livingston, a Fellow of the Casualty Actuarial Society since 1950 died February 4, 1976 at his home in Nutley, New Jersey.

A lifelong resident of Nutley, Mr. Livingston was a graduate of the Loomis School in Windsor, Connecticut and Union College in Schenectady, New York.

Mr. Livingston worked for the National Bureau of Casualty Underwriters, now the Insurance Services Office from 1925 to 1958. Following his retirement, he became an actuary for the Connecticut Insurance Department, retiring from this position in 1975. He maintained his residence in Nutley, commuting to Hartford two or three times a week during this period.

Mr. Livingston spent more than 50 years in the insurance business. During this time he was chairman of the Actuarial Committee of the National Bureau of Casualty Underwriters, a member of the National Association of Insurance Commissioners Workers’ Compensation Ratemaking Committee and was librarian of the Casualty Actuarial Society. He was also a charter member of the American Academy of Actuaries.

## LOUIS H. MUELLER

1896-1975
Louis H. Mueller, a Fellow of the Casualty Actuarial Society since 1920 died November 4, 1975.

Upon graduation from the University of California in 1917 he became a test pilot for the United States Army Air Force and aviation from that time on had been one of his main interests.

When he received his Fellowship, Mr. Mueller was Statistician of the California State Compensation Insurance Fund. In 1922 he became Actuary-Statistician of the Associated Industrial Insurance Corporation. He became Vice President and Treasurer in 1928. In 1929 Mr. Mueller accepted the position of President of Varney Air Lines, and in 1932 he became Resident Executive of United Air Lines.

In 1935 Mr . Mueller returned to the insurance industry as Director of the Associated Insurance Fund. He was made President in 1938, succeeding Claude W. Fellows a former Fellow of this Society. He remained at Associated, now part of the "Firemen's Fund" until his retirement in 1947. He continued to live in the San Francisco area until his death. He was charter member of the American Academy of Actuaries.

Mr. Mueller is survived by his widow, Mrs. Mueller, who lives in San Francisco.

## WALTER E. OTTO

1889-1976
Walter E. Otto, an Associate of the Casualty Actuarial Society since 1919 died April 6, 1976 at a Convalescent Home in Bloomfield, Michigan.

Mr. Otto, former president, board chairman and director emeritus of the Michigan Mutual Insurance Company was a prominent figure in the insurance industry for more than 60 years. He began his career in 1906 as an actuarial clerk at Michigan Mutual Life. The following year he was employed by the Michigan Insurance Department as an actuary and was later named Deputy Commissioner of Insurance.

In 1918 he joined Michigan Mutual Liability Insurance Company as treasurer. In 1922 he was elected to the board of directors. He was promoted to secretary-treasurer in 1924 and in 1936 was elected president. He served in that position until 1958 when he was elevated to chairman of the board. He retired from active participation in Michigan Mutual management in 1966, but continued as a member of the board until 1972.

In the insurance industry he was active in the Amcrican Mutual Insurance Alliance and was president of the National Association of Mutual Casualty companies and the National Association of Automobile Mutual Insurance companies. He was a member of the insurance committee of the United States Chamber of Commerce and was chairman of the Rehabilitation Institute.
ARMAND SOMMER

$$
1898 \quad 1976
$$

Armand Sommer, an Associate of the Casualty Actuarial Society, died on June 12, 1976 in Chicago, Illinois at the age of 78 .

Born in Salt Lake City, Utah on January 15, 1898, he was a graduate of the University of California. After ten years experience with other companies, Mr. Sommer joined Continental Casualty Company in 1932. He was named executive assistant vice president in 1952 and vice president in 1956. After his retirement in 1967, he served as an executive consultant to the Accident and Health Department. At the time of his death he was a director of Old Equity Life Insurance Company.

Mr. Sommer was the author of two books: "Manual of Accident \& Health Insurance" and "Your Future in Insurance". He was the founder and first president of the Chicago Health Insurance Association, which later became part of the International Association of Health Underwriters. He was the recipient of many health insurance honors, including the IAHU award as Health Insurance Man of the Year in 1966.

Mr. Sommer is survived by his wife, Leah; two daughters, Mrs. Jane S. Mason and Mrs. S. Holmes; and five grandchildren.

## M. ELIZABETH UHL

1976
M. Elizabeth Uhl, an associate of the Casualty Actuarial Society died June 4, 1976 in New York.

Ms. Uhl received her undergraduate degree from the University of California. She earned a masters degree from the University of Michigan in 1920. She joined the National Board of Casualty Underwriters in 1921 and remained with them until 1964 when she retired from her position in charge of rate filings.

After her retirement, Ms. Uhl continued to live in New York City until her death.

## INDEX TO VOLUME LXIII

Page
Accident Limitations for Retrospective Rating
Frank Harwayne ..... 1
Discussion by: Robert J. Finger (November 1976) ..... 32
Basic limits Trend Factors, A Note On
Robert J. Finger ..... 106
Bornhuetter, Ronald L.
Presidential Address, November 18, 1976, "Challenges" ..... 82
Davis, George E.
Paper: $\quad$ Refined Model For Premium Adjustment, A ..... 117
Estimating Pure Premium by Layer-An Approach-
Robert J. Finger ..... 34
Discussion by: Lee R. Steeneck (November 1976) ..... 53
Examinations 1976-Successful Candidates ..... 144
Financial Report ..... 142
Finger, Robert J.
Discussion: Accident Limitations for Retrospective Rating ..... 32
Paper: Basic Limits Trend Factors, A Note On ..... 106
Estimating Pure Premium by Layer-An Approach- ..... 34
Modeling Loss Reserve Developments ..... 90
Generalized Premium Formulae
James P. Ross (November 1975)
Discussion: Alan E. Kaliski and Richard D. Pagnozzi ..... 69
Gruber, Charles
Discussion: Workers' Compensation Ratemaking, A Current Look At ..... 57
Harwayne, Frank
Paper: Accident Limitations for Retrospective Rating ..... 1
Kaliski, Alan E.
Discussion: Generalized Premium Formulae ..... 69
Mathematical. Model For Loss Reserve Analysis, A
Charles McClenahan
Discussion: David Skurnick ..... 125
Miller, David
Refined Model For Premium Adjustment, A ..... 117

## INDEX TO VOLUME LXIII (Cont.)

Page
Minutes
Meeting, May 1976 ..... 72
Meeting, November 1976 ..... 128
Modeling Loss Reserve Developments
Robert J. Finger ..... 90
Obituaries
Barrett N. Coates ..... 152
Everett S. Fallow ..... 153
Joseph H. Finnegan ..... 153
Harold F. LaCroix ..... 154
Gilbert R. Livingston ..... 154
Louis H. Mueller ..... 155
Walter E. Otto ..... 155
Armand Sommer ..... 156
M. Elizabeth Uhl ..... 157
Pagnozzi, Richard D.
Discussion: Generalized Premium Formulae ..... 69
Presidential Address, November 18, 1976, "Challenges"
Ronald L. Bornhuetter ..... 82
Refined Model For Premium Adjustment, A
David Miller and George E. Davis ..... 117
Scheibl, Jerome A.
Discussion: Workers' Compensation Ratemaking, A Current Look At ..... 62
Secretary, Report Of The ..... 137
Skurnick, David
Discussion: Mathematical Model For Loss Reserve Analysis, A ..... 125
Steeneck, Lee R.
Discussion: Estimating Pure Premium by Layer-An Approach- ..... 53
Treasurer, Report Of The ..... 140
Workers' Compensation Ratemaking, A Current Look At
Roy H. Kallop
Discussion: Charles Gruber ..... 57
Jerome A. Scheibl ..... 62


[^0]:    ${ }^{1}$ D. Uhthoff, "Excess Loss Ratios via Loss Distributions," PCAS, Vol. XXXVII, (1950), p. 82ff.

[^1]:    2 NCCI "Call for Wage Data for Injured Employees."
    : Because normal ratemaking requires aggregate data for developments, such aggregates were captured without taking the time to guarantee that individual elaim reports were included in the data base at developed amounts.
    ${ }^{4}$ Policies issued between August 1, 1969 through July 31, 1970.

[^2]:    ${ }^{5}$ For a general description of collocation, see Stephen G. Kellison, Fundamentals of Numerical A nalysis. Richard D. Irwin, Inc., (1975), p. 20 ff.
    ${ }^{6}$ These are based upon an average of first and second reports, updated by law amendments.
    'The factor is low in comparison with excess reinsurers' development factors based on actual experience:

[^3]:    *Average excess ratios weighted by state's total number of claims

[^4]:    *See Exhibit II-1 for derivation

[^5]:    *Excess per case $=$

[^6]:    *23 $=[(15) \times(22 \mathrm{a})]+[(18) \times(22 \mathrm{~b})]+[(21) \times(22 \mathrm{c})]$

[^7]:    †Includes data from Alabama, Florida, Georgia, Kansas, Louisiana, Mississippi, Montana, New Mexico, North Carolina, Oklahoma, South Carolina, Utah, and Virginia.

[^8]:    ${ }^{1}$ The coefficient of variation is the ratio of the mean to the standard deviation.

[^9]:    ${ }^{1}$ The coefficient of variation is the ratio of the standard deviation to the mean.
    $\because$ Excess losses above a given attachment point are defined as the sum of all claim values larger than the attachment point, less the number of claims above the attachment point multiplied by the value of the attachment point.

[^10]:    ${ }^{3}$ For example, the log-normal distribution is mentioned in: Bickerstaff, D. R. "Automobile Collision Deductibles and Repair Cost Groups: The Lognormal Model" PCAS LIX (1972); Hewitt, C. C. "Credibility for Severity" PCAS LVII (1970); Mayerson, A. L. "A Bayesian View of Credibility" PCAS L.l (1964). It is also discussed in Harding. V. "Treatment of IBNR Claims," IBNR. Amsterdam: Netherlands Reinsurance Group (1972). A thorough discussion of the log-normal distribution can be found in Aitchison, J. and J. A. C. Brown, The Lognormal Distribution, Cambridge University Press (1957).
    ${ }^{4}$ The higher the CV, the more skewed the distribution. This can be seen in Table I.

[^11]:    ${ }^{5}$ Considering that the average allocated expense payment in medical malpractice is over $\$ 2.000$, there is an incentive to pay a token settlement even when there is no negligence.

[^12]:    ${ }^{6}$ The above estimation procedure clearly indicates when the log-normal distribution does not provide a good fit for the data. This occurs when successive estimated CV's form a progression.

[^13]:    7 This may also explain why the NAIC study, which was based on a broader group of insurers, shows a higher CV than the AIA study.

[^14]:    ${ }^{1}$ Lars-Gunnar Benckert. "The Log-Normal Model For The Distribution Of One Claim." Astin Bulletin, Vol. Il (January. 1962) Part I, Pages 2-23.

[^15]:    2 "Report To The All Industry Committee Special Malpractice Review: 1974 Closed Claim Survey Preliminary Analysis of Survey Results," Prepared by the Insurance Services Office (December, 1975).
    ${ }^{3}$ Lars-Gunnar Benckert, "The Log-Normal Model For The Distribution Of One Claim," Astin Bulletin, Vol. II (January, 1962) Part I, Pages 2-23.

[^16]:    ${ }^{4}$ Lars-Gunnar Benckert, "The Premium in Insurance Against Loss of Profit Due to Fire As A Function of the Period of Indemnity," Transactions of the XVth International Congress of Actuaries, Vol. II, (1957), Pages 297-305.
    " R. E. Beard, "Analytic Expressions of the Risks Involved in General Insurance," Transactions of the XVth International Congress of Actuaries, Vol. II, (1957), Pages 230-242.

[^17]:    ${ }^{1}$ Marshall, R. M., Workmen's Compensation Insurance Ratemaking. (Revised 1961), Casualty Actuarial Society.

[^18]:    2 These states are California, Delaware, Massachusetts, New Jersey, New York, Pennsylvania, and Texas.
    ${ }^{3}$ Formerly the California Inspection Rating Bureau and hereinafter referred to as the California Bureau.

[^19]:    ${ }^{4}$ This method is illustrated in the Appendix as it has not been commonly used for ratemaking purposes in the past. It is more fully described in Brown, Robert G., Smoothing, Forecasting \& Prediction of Discrete Time Series, 1963. Prentice-Hall.

[^20]:    ${ }^{5}$ Credit is given to David Skurnick, former California Bureatu Actuary, who adapted the double exponential smoothing technique to projecting loss ratios for ratemaking purposes.
    ${ }^{6}$ Accident year loss ratios prior to 1969 are estimated from policy year data. Because of the weighting process inherent in the smoothing technique, the effects of such early year estimates on the projected loss ratio are minimal.

[^21]:    ${ }^{1}$ Tarbell, T. F. "Incurred But Not Reported Claim Reserves," PCAS XX (1934).
    $\geq$ Fisher, W. H., and Lange, J. T., Loss Reserve Testing: A Report Year Approach," PCAS LX (1973).
    ${ }^{3}$ Resony, A. V. "Allocated Loss Expense Reserves," PCAS LIX (1972).

[^22]:    $\overline{4 \text { Bailey, R. A., and Simon, L. J., "Two Studies in Automobile Insurance Ratemaking," }}$ PCAS XLVII (1960).

[^23]:    *Standard error calculated as square root of (sum of squares of differences between observations and projections divided by the number of observations less the number of parameters estimated) (shown only for cumulative payments model).

[^24]:    ${ }^{1}$ For a discussion of this distribution, see Finger, R. J., "Estimating Pure Premiums By Layer-An Approach", PCAS LXII (1976).

[^25]:    ${ }^{2}$ Source: Fratello, Barney, "The 'Workmens Compensation Injury Table' and 'Standard Wage Distribution Table," " PCAS XLII (1955).

[^26]:    ${ }^{1}$ Marshall, R. M., Workmen's Compensation Insurance Ratemaking, (Revised, 1961), Casualty Actuarial Society
    $\because$ Kallop, R., A Current Look at Workers' Compensation Ratomaking. PCAS LXII (1975)
    ${ }^{3}$ Ross, J. P., Generalized Premium Formulae, PCAS LXII (1975)

[^27]:    ${ }_{1}$ Norman L. Johnson and Samuel Kotz, Discrete Distributions, Houghton, Mifflin Company 1969, distributed by John Wiley \& Sons, Inc., Salt Lake City, Utah, p. 131-137.

