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A STOCHASTIC APPROACH TO 
AUTOMOBILE COMPENSATION 

DONALD C. WEBER 

1. INTRODUCTION 

In recent years various automobile compensation plans have been pro- 
posed in response to adverse criticism of the existing automobile liability 
system. This paper is an effort to present a probability model which con- 
ceivably could provide the mathematical framework for some future no- 
fault insurance system. Before proceeding, it is only fair to warn that utiliza- 
tion of the proposed model far ratemaking purposes would have a far- 
reaching effect upon members of the Casualty Actuarial Society. It would 
mean counting accident involvements rather than claims. It would mean 
calculating involvement costs rather than claim costs. And finally, it would 
mean insuring an individual driver rather than an automobile. 

2. THE MODEL 

Suppose the discrete random variable N(t) represents the number of 
accident involvements experienced by a motorist during a time interval of 
length t > 0 and p(n,t) denotes the probability that N(t) = n. Let the cost 
of an accident involvement be represented by the non-negative continuous 
random variable X having distribution function G(x). We shall assume that 
X is independent of time and of the costs of prior involvements. Denote by 
G,(x) the probability that the cost of n accident involvements is less than 
or equal to x. Then if X(t) is the total cost of involvements over a time span 
of t units, the relationship between these random variables is given by the 
analytic expression : 

(1) F&t) = t pfn,MLfx) ) xSO,t>O, 
c=o 

where: 
F(x,t) = Pr{ x(t) 5 x} , 
p(n,t) = P,{N(t) = n}, 
G,(x)=P,{X,+X,+...+X~~X} , n>l, 
G,(x) = 1 , G,(x) = ‘3~) 
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With the aid of characteristics functions, it is not difficult to show that the 
mean and variance of the random variable X(t) are: 

(2) El-WI = EDWI E(X) 3 
Var [X(t)] = E2 (X) Var [N(t)] + E[N(t)] Var (X) , 

respectively. 

The reader will recognize relation ( 1) as an adaptation of the basic 
model employed in collective risk theory as developed by Cram@ and 
others, and discussed by Dropkin in his presentation at the Mathematical 

Theory of Risk meeting in 1966. The problem now is to obtain realistic and 
adequate functions for p(n,t) and G(x). 

3. THE NEGATIVE BINOMIAL MODEL 

In 1920, Greenwood and Yule3 proposed an accident frequency model 
which assumes that during a time interval of length t the number of accidents, 
n, experienced by an individual is a Poisson process with mean and variance 
At, i.e. : 

(3) 
e-kt(At)n 

P(W) = & , n=O,I,2 ,..., 
x > 0, t > 0, 

and that x is a value of a random variable having a gamma distribution: 

u(x) = (r/m) 
W) 

~r-le-(r/m)h , X > 0, m > 0, r > 0, 

where : 

s 

m 
r(r) = y’-le-gdy. 

0 
The resulting unconditional distribution for n accidents in time t is the 
negative binomial : 

with mean mt and variance mt(1 + mt/r). 

1 Cramer, H., Collective Risk Theory, Nordiska bokhandeln, Stockholm, 1955. 
2 Dropkin, L. B., “Loss Distributions of a Single Claim,” PCAS Mathematical Theory 

of Risk, 1966. 
3 Greenwood, M., and Yule, G.. U., “An inquiry into the Nature of Frequency Dis- 

tributions Representative of Multiple Happenings with Particular Reference to the 
Occurrence of Multiple Attacks of Disease or of Repeated Accidents,” Journal of 
the Royal Statistical Society, 83 pp. 255-279, (1920). 
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Using different notation, Dropkin introduced this model to the Casu- 
alty Actuarial Society and successfully applied it to data obtained in the 
1958 California Driver Record Study. With reference to the motor vehicle 
accident scene, we may interpret the parameter h to be the theoretical acci- 
dent rate per unit time associated with an individual driver. We then assume 
that this parameter varies from individual to individual within a population 
of drivers according to the probability density U(X) which has mean m and 
variance m2/r. It follows that q(n,t) is the distribution of accidents within 
a population, i.e., 100 q(n,t) gives the percentage of individuals in the 
population involved in n = 0,1,2 * * *, accidents during a time period of t 
units. 

The California Department of Motor Vehicles kindly provided this writer 
with data used in their 1964 California Driver Record Study.5 For this study 
a random sample constituting about 2% of the licensed drivers in the state 
was obtained. Of these, data are available on approximately 148,000 
motorists over the full observation period of three years, namely 1961-63. 
These data include information on certain attributes of the individuals in 
the sample as well as their driving record in terms of traffic offenses and 
reportable accident involvements. In Table 1 we see the fit, using the 
method of moments, of the negative binomial model (5) to the empirical 
accident distributions generated by these 148,000 individuals during the 
specified time intervals. Notice that due to the time lag between the occur- 
rence of an accident and the processing of the resulting accident report, the 
1963 period is estimated to represent a lOI/-month interval rather than a 
full year. 

The closeness of fit duplicates the results obtained by Dropkin using the 
earlier California data. However, it is important to observe that the param- 
eters m and Y, as shown by their estimates together with the standard devia- 
tion of these estimates, do not seem to remain constant over time. This would 
suggest that a shifting takes place in the underlying distribution (4), u(h), 
which implies that the parameter h of relation (3) is a function of time. 

In Table 2 we find the negative binomial fitted to the California data by 
sex. As with the combined data, the negative binomial distribution provides 

4 Dropkin, L. B., “Some Considerations on Automobile Rating Systems Utilizing 
Individual Driving Records,” PCAS XLVI, p. 165. 

5 California Department of Motor Vehicles, State of, “The 1964 California Driver 
Record Study Parts l-9,” Sacramento, California 1964 and 1967. 
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Table 1 

Comparison of Actual and Theoretical (Negative Binomial) Accident Distributions 
1964 California Driver Record Study 

No. of 
Accidents 

1961 - 1963 

ii = 0.0711 + 0.0004 0 - 
; = 1.1400 + 0.0378 1 

t = 2.875 2 
x'= 1.61, 3 d‘.i. 3 

4 

5+ 

Total 

1961 - 1962 

; = 0.0709 + 0.0005 - 
; = 1.0773 0.0473 + 

t=2 

k'= 4.90, 3d.f. 

1961 T---- 
III = 0.0696 + o.0007 

; = 1.0691 + 0.0894 

t=1 

x'= 1.47, 1d.f. 

1962 

m = 0.0722 + 0.0007 - 
i = 0.8469 + 0.0585 

t=1 

>.'.= 1.00, 1d.f. 

; = 0.0715 + 0.0008 

i = 0.8712 + 0.0731 

t = 0.875 - 

7('= 0.07, 1d.f. 

0 

1 

2 

3 
4 

5+ 

Total 

0 

1 

2 

3+ 

Total 

1 

2 

3+ 

Total 

0 

1 

2 

3+ 

Total 

Actual. Theoretical. 
Distribution Distribution 

122,593 122,638 

21,350 21,257 

3,425 3,457 

530 550 

a9 86 

19 la 

148,006 148,006 

129,524 129,541 
16,267 16,236 

1,966 1,963 
211 234 

31 28 

7 4 

148,006 148,006 

138,343 138,353 

9,072 9,042 

547 571 
44 40 

148,006 148,006 

138,087 138,094 

9,211 9,191 

650 668 

58 53 

148,006 148,006 

139,326 139,330 
8,140 8,133 

505 509 

35 34 

148,006 148,006 
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Table 2 

Comparison of Actual and Theoretical Accident Distributions by Sex 
1964 California Driver Record Study 

1961 ^ 
m = 0.0885 ^ 
r = 1.3420 

t=1 

xi= 3.19, 1d.f. 

1962 ^ 
m = 0.0925 

; = 1.0599 

t=1 

2': 1.37, 1d.f. 

1963 ^ 
m = 0.0901 

; = 1.0648 

t = 0.875 

'jc', 0.07, 1d.f. 

1961 ^ 
m = 0.0430 

r = 1.2423 

t=1 

k"= 0.62, 1a.f. 

1962 ^ 
m = 0.0436 

; = 0.9244 

t=1 

?('= 1.16, 1a.f. 

1963 
; = 0.0451 

r = 0.9311 

t = 0.875 

X"= 0.30, 1a.f. 

No. of Actual 
Accidents Distribution 

Male5 

Theoretical 
Distribution 

0 79,595 79,606 

1 6,638 6,606 

2 451 479 

3+ 42 35 
86,726 86,726 

0 79,358 79,365 
1 6,775 6,752 
2 538 559 

3+ 55 50 

86,726 86,726 

0 80,369 
1 5,910 
2 415 

3+ 32 
86,726 

FWIKLes 

80,372 

5,902 
420 

32 

86,726 

0 58,748 58,747 

1 2,434 2,439 

2 96 91 

3+ 2 3 
61,280 61.280 

0 58,729 58,726 

1 2,436 2,443 

2 112 106 

3+ 3 5 
61,280 61,280 

0 58,957 58,956 

1 2,230 2,232 

2 90 88 

3+ 3 4 

61,280 61,280 

31 
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a remarkably close fit in every case. Again, the fluctuation in parameter 
values from one time period to another is apparent. Also, we notice that 
the distributions of male and female accident involvements are different. 

Using the negative binomial model, Arbous and Kerrich,6 Bates and 
Neyman? and Edwards and Gurland8 derived various bivariate accident 
distribution models which differ in certain underlying assumptions. These 
bivariate models can be used to obtain theoretical distributions of future 
accidents based upon the number of past accidents. The bivariate negative 
binomial of Kerrich, which assumes a constant parameter h (past and 
future), appeared in the Proceedings in a paper by Dropkin and was applied 
to Canadian data by Hewitt. lo Actuaries have long recognized, however, 
that factors other than accident history are related to future automobile 
accident experience, e.g., age, sex, geographic location, mileage driven, 
conviction history. In fact, only in recent years has accident experience 
been incorporated in the ratemaking procedures. 

4. ACCIDENT RATE POTENTIAL 

For the moment, let us accept the idea that an individual driver’s acci- 
dent frequency over a short period of time is a Poisson process ( 1) . Let us 
assume that each motorist is characterized by his own particular x which is 
a function of accident likelihood variables such as physical, mental and 
emotional states, attitudes, motor abilities, habits, alertness, environmental 
driving conditions and amount of driving exposure. In view of the previous 
section, the parameter h is a function of time through changing conditions 
and, therefore, any estimate of this parameter requires frequent updating. 
However, let us treat A as a constant over relatively short periods of time in 
the absence of major changes in the above variables. Thus we may view x 
as the result of averaging the individual’s accident likelihood variables over 

s Arbous, A. G. and Kerrich, .I. E., “Accident Statistics and the Concept of Accident- 
Proneness,” Biometrics, 7 pp. 340-432 (1951). 

r Bates, G. E. and Neyman, J., “Contributions to the Theory of Accident Proneness,” 
University of California Publications in Statistics I, pp. 215-276, (1952). 

s Edwards, C. B., and Gurland, J., “A Class of Distributions Applicable to Acci- 
dents,” Journal of the American Statistical Association, 56 pp. 503-517, (1961). 

9 Dropkin, L. B., “Automobile Merit Rating and Inverse Probabilities,” PCAS XLVII, 
p. 37. 

10 Hewitt, Jr., C. C., “The Negative Binomial Applied to the Canadian Merit Rating 
Plan for Individual Automobile Risks,” PCAS XLVII, p. 55. 
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the observation period. This “constant” will hereafter be called the accident 
rate potential associated with the individual driver. 

Clearly, most of the accident likelihood variables are not directly 
measurable. We are therefore confronted with the task of trying to estimate 
an individual’s accident rate potential on the basis of available information, 
information which at best reflects to an unknown degree the actual accident 
likelihood of the driver. The information used to estimate x will be called 
criteria, or criterion variables. 

5. THE MODEL FOR ACCIDENT RATE POTENTIAL 

On the basis of the analyses appearing in the 1964 California Driver 
Record Study, this writer chose as criterion variables: sex, marital status, 
residence, age, conviction history and accident history. Proceeding on the 
evidence that the distribution of accidents within a population of drivers is 
negative binomial, if these criteria are truly effective predictors of X, they 
should be able to subdivide the California sample into homogeneous groups 
with respect to accident rate potential, i.e., into “Poisson groups.” In an 
effort to establish the effectiveness of the criterion variables, the 148,000 
individuals in the sample were partitioned into 2,880 groups on the basis 

TABLE 3 

Criterion Variables used to Partition California Sample 
Sex Marital Status Residence (Counties) 

Male Married Area 1: Los Angeles, San Francisco 
Female Single Area 2: Alameda, ContraCosta, Marin, Orange, 

Sacramento, San Mateo, Santa Clara 
Area 3 : Fresno, San Joaquin, 

Stanislaus, Yolo 
Area 4: All Other Counties 

No. No. of Accidents, 
Age in 1963 o~~yG$ions, 1961-62 

I Less than 21 0 0 
21-25 1 1 
26-30 2 2 
31-40 3 3 
41-60 4 More than 3 

Over 60 More than 4 
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of the six chosen criteria. The levels within each variable are presented in 
Table 3. A computer program printed out the 1963 accident distributions 
for the 193 groups that contained 100 or more individuals and fitted a 
Poisson distribution to each such group. In 167 or 86.5 % of the cases 
the hypothesis of a Poisson distribution was acceptable at the .05 level of 
significance. One may conclude from these results that the six criterion 
variables did a credible job of classifying the individuals according to nega- 
tive binomial theory. 

On the basis of the above experiment, let us assume that the accident 
rate potential characterizing an individual is a function of a number of 
criterion variables, i.e. : 

where x represents a vector of criterion variables and p is a vector of param- 
eters. &r next task is to determine the functional&m of f. To do this 
we turn our attention to the 1964 California Driver Record Study in order 
to examine the relationship between accident frequency and the selected 
criterion variables, taken one at a time. 

In the partitioning experiment the primary basis used for determining 
the levels of the area variable was accident rate by drivers residing in a 
county. During the experience period of the California study, the accident 
rate per driver is given in Table 4. It reveals that accident rates do indeed 

TABLE 4 
Accident Rates per driver by Area and County 

1964 California Driver Record Study 

Area I (61,594 cases) Area 2 (37,690 cases) 

Los Angeles 0.241 Alameda 0.225 
San Francisco .245 Contra Costa .202 

Area 1 Ave. 0.241 Marin .201 
Orange .218 

Area 3 (7,647 cases) 
Sacramento .217 
San Mateo .210 

Fresno 0.184 
San Joaquin .187 
Stanislaus .172 

Santa Clara .199 
Area 2 Avg. 0.2 13 

Yolo .191 

Area 3 Avg. 0.183 

Area 4 (40,474 cases) 

All Other 0.147 
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vary from area to area within the state and, in general, the more populous 
the area, the higher the accident rate. 

To take advantage of the positive correlation between accident rates 
and population density, it was decided to use the county traffic density 
index as a criterion variable. This index is defined as the ratio of total 
registered vehicles in a given county to the total linear miles of roadway in 
that county. It must be recognized that the use of a countywide index some- 
what understates the relationship between accidents and density since the 
population density within many of the California counties is anything but 
uniform. In order to fully utilize the predictive power inherent in a traffic 
density factor with respect to accident frequency an index by geographical 
area rather than by county lines is needed. 

A plot of accident rate versus traffic density index reveals that the mathe- 
matical relationship between these two variables is concave downward. The 
correlation coefficient corresponding to a simple regression analysis of acci- 
dent rate on the logarithm of traffic density index was 0.85. Accordingly, 
we will assume that the relationship between mean accident frequency, 
denoted by y, and the natural logarithm of traffic density index, denoted by 
x1, to be: 

y = a, + b, xl 
where a, and b, are constants to be estimated. 

In Part 5 of the 1964 California Driver Record Study charts are given 
which visually depict the relationships between accident rates and the per- 
sonal characteristics (i) sex, (ii) marital status, and (iii) age. These charts 
again reveal that males and females constitute distinct driving populations, 
i.e., the relationships are of different character in the two populations. As 
a consequence, it is necessary to search out a function f in (6) for each of 
the two sexes. 

These charts show that the driving record of married females is better 
than that of single females at all ages, although the difference is not constant. 
With the exception of two age groups (under 26 and 56-60), the same 
statement can be made about male drivers. In order to give recognition to 
the apparent significant relationship between accident rate, y, and marital 
status, x2, we will assume the step function relation: 

y = a, + b, x3 
where x3 = 0 for a married individual and xI = I for a single person and 
a2 and 6, are constants. Since this assumes a constant difference in mean 
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accident frequencies between marrieds and unmarrieds, the above formula 
is acknowledged to be an approximation to the actual situation at best. 

Using a transformation on age, it is possible to reasonably express the 
relationship between accident rates, y, and a function of age, x3, in the 
linear form : 

y = a, + bS x8 

where as and b, are parameters to be estimated. Applied to the California 
data, this writer used xs = 5/ (age - 13) for males and x3 = 125/ (age - 13)3 
for females. The estimates for the parameters obtained from weighted 
regression analyses are given in Tables 5 and 6 together with the fit to the 
corresponding empirical rates. 

TABLE 5 
Weighted Regression of Accident Rates on Transformed Ages (Males) 

1964 California Driver Record Study (1961-63) 
y = 0.1823 + 0.3183~3 

wherex3=5/ (age-13) 

Age Empirical 
Class Accident Rate 

Under 21 0.468 
21-25 .332 
26-30 .290 
31-40 .253 
41- 60 .229 
Over 60 .204 

Theoretical Rate 
Y 

0.459 
.341 
.288 
.253 
.226 
.210 

In continuing our search for the functional form of f in (6) we next 
investigate the possibilities of predicting accident involvement using driver 
record data. Part 4 of the 1964 California Driver Record Study discusses 
the relationship between accident and conviction frequencies based upon a 
three-year experience period involving the 148,000 drivers in the sample. 
At this point a conviction is defined as a traffic conviction which counts 
toward an individual’s negligent operator point total. This includes all 
violations involving the safe operation of a motor vehicle as defined in Sec- 
tion 12810 of the California Vehicle Code. In this study, the number of 
convictions understates the actual number of vehicle code violations in that 
multiple citations relating to a single incident were counted as one. Also, 
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TABLE 6 
Weighted Regression of Accident Rates on Transformed Ages (Females) 

1964 California Driver Record Study (1961-63) 
y = 0.1191 + 0.1365~3 

wherexg= 125/(age-13)3 
Age Empirical Theoretical Rate 
Class Accident Rate Y 

Under 21 0.209 0.209 
21 -25 .138 .136 
26 - 30 .118 .124 
31-40 .121 .121 
41-60 .120 .120 
Over 60 .121 .119 

to avoid a “built-in” correlation between accidents and countable convic- 
tions, the number of convictions does not include those resulting from an 
accident investigation. Harwayne’s accountlr in the Proceedings on the 
earlier California study revealed the near linear relationship between acci- 
dent rates and countable convictions. Accordingly, a weighted regression 
analysis on conviction counts was performed for each sex. The actual and 
predicted means are given in Table 7 where y is the mean accident frequency 
and x4 is the number of conviction counts. 

TABLE 7 
Weighted Regression of Accident Rates on Number of Countable Convictions 

1964 California Driver Record Study (1961-63) 
Males: y = 0.1733 + 0.0953~4 

Females: y = 0.0999 + 0.0823~4 

Number of 
Convictions (xc) 

0 
1 
2 
3 
4 

More than 4 

Males Females 

Actual Theoretical(y) Actual Theoretical {y) 

0.17 0.17 0.10 0.10 
.28 .27 .18 .18 
.37 .36 .27 .26 
.45 .46 .37 .35 
.58 .55 .44 .43 
.68 .75 .49 .59 

11 Harwayne, F., “Merit Rating in Private Passenger Automobile Liability Insurance 
and the California Driver Record Study,” PCAS XLVI, p. 189. 
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It is necessary to point out explicitly that Table 7 shows a concurrent 
relationship between accidents and convictions, i.e., the counts for both 
variables arise from the same experience period. What is of greater interest 
to us is the predictive nature of past convictions as it concerns future acci- 
dents. In this regard Table 8 displays the combined experience of all 
drivers in the California sample as taken from the tabulation which parti- 
tioned the sample into homogeneous groups. There we find that the rela- 
tionship between 1963 empirical accident rates and 1961-62 conviction 
counts is dominantly linear by checking the differences in accident rates as 
we go from one conviction level to the next. 

TABLE 8 
Observed 1963 Accident Rates by 1961-62 Conviction Counts 

1964 California Driver Record Study 
No. of Convictions Empirical Accident Rates 

196142 1963 

0 0.0466 
1 .0834 
2 .1106 
3 .1411 

More than 3 .1707 

Although the relationship in this instance is not as strongly linear as in the 
concurrent case, let us tacitly assume that the relation: 

y = ah + b,, x4 

also holds when y is defined as future mean accident frequency and xlt repre- 
sents number of convictions as it pertains to the prior time interval. 

If we accept the tenet that the negative binomial model is at least an 
approximation to actual automobile experience, we would expect future 
accident rates to be linearly related to the incidence of past accident involve- 
ments on a theoretical basis. See, for example, Dropkin12 and Hewitt13. To 

confirm this, iterative weighted regression analyses for: 

y = as + b, x5 

12 Dropkin, L. B., op. cit. 
13 Hewitt, Jr., C. C., op. cit. 
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were performed using a computer. Here y represents 1963 accident rates 
and x5 is the number of 1961-62 involvements. Further discussion of the 
iterative procedure used appears in the next section. The results of these 
analyses are given in Table 9 : 

TABLE 9 

Weighted Regression of 1963 Accidents on 1961-62 Accident Counts 
1964 California Driver Record Study 

Males: y = 0.07234 + 0.03818~~ 
Females: y = 0.03686 + 0.03090~~ 

Males Females 
No. of 

Accidents Actual Actual 
1961-62 (X6) Rates Theoretical(y) Rates Theoretical(y) 

0 0.0721 0.0723 0.0368 0.0369 
1 .1112 .1105 .0677 .0678 
2+ .1454 .1529 .1008 .1004 

A final candidate for a criterion variable is non countable convictions. 
A non countable conviction is defined as a traffic conviction which does 
not involve the safe operation of a motor vehicle, e.g., a conviction in con- 
nection with certain non moving offenses. The relationship between acci- 
dents and non countable convictions was not given separate analysis in the 
1964 California Driver Record Study nor did this writer look into the 
matter. However, in Part 8 of the California study a significant relationship 
was observed, at least as it concerns concurrent data. Having no reason to 
believe that the mathematical form of the relationship between accidents 
and non countable convictions should be different than that between acci- 
dents and countable convictions, let us assume the equation: 

y = a6 + b6xg 

where y is the future accident rate and xg is the prior non countable con- 
viction count. 

On the basis of the linear relationships between accident rates and the 
investigated criterion variables, let us hypothesize that, in general, the func- 
tion of f of (6) is given by: 

(7) h=f(x;e)=Po+P1X2+...+Pkxk 

where the xi are the criterion variables which functionally determine the 
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value of A and the pi are the necessary parameters. Now (7) together with 
(3) permits us to finalize the form of p(n,t) in (1) in terms of the charac- 
teristics of the driver, namely: 

(8) p(W) = 
e-libLxt ( tiiopm i 

n=0,1,2 ,..., 
n! 

where; x0 = 1. 

Before taking up the problem of estimating h using the California data, 
a few comments of the limitations of the data are in order. We have dis- 
cussed six possible candidates for criterion variables. That does not mean, 
of course, that these six are the only predictors that have a significant mathe- 
matical relationship with accident involvements. For example, miles of 
driving may be a most significant factor but the California records do not 
give this information and hence we are unable to directly include this vari- 
able in our analysis. If at some future date, exposure mileage information 
by driver were available, it is likely that the relationship between it and 
accident rate would be found to have a highly significant linear component. 
Should that be the case, the variable “driving mileage” would take its place 
as one of the k predictors in relation (7). 

At this point it is also appropriate to remind ourselves of other limita- 
tions in this study. Recall that our accident count includes only reported 
accidents, but unreported accidents according to other studies are more 
numerous than those reported to authorities. Therefore we cannot claim 
that the relationships derived in this study are applicable when the number 
of accidents is taken to mean aZE accidents. Also, our estimate of x in the 
sections to follow will be based on reported accidents only and so, in terms 
of all involvements, it will be an understatement. Similarly, our conviction 
count includes only the incidence of detected violations. Surely, this count 
is a gross understatement of the number of actual violations and we cannot 
assume the degree of understatement to be uniform. 

6. ESTIMATION OF ACCIDENT RATE POTENTIAL: THEORY 

For the sake of simplification but without loss of generality, let t = I in 
function (8) in the development that follows. Then the probability that 
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the jth individual in the sample will be involved in nj accidents during the 
next unit of time is given by: 

(9) PC%) = 
.&*=j (4ioP&ji 

, nj = 0, 1,2, . . . , 
rq.1 

j. PC% > 0. 

To obtain the maximum likelihood estimates for the parameters we observe 
that with respect to a sample of size S, the likelihood function is: 

Taking the natural logarithm, we obtain: 

Differentiating with respect to &, i = 0, 1,2, . . . ,k, we get: 

a In L --=-jglx45+~ njx4j * 
Wt ‘=I 4~o&Xij 

( > 

On settingthe k + I partials equal to zero, the system of maximum likelihood 
normal equations otained is: 

(10) 

In a related but slightly different context, Jorgenson14 showed that a 
solution to the set of equations (10) can be obtained by using an iterative 
weighted least squares procedure. If Nj is the random variable having dis- 
tribution (9)) then the parameter x associated with the jth individual is: 

Aj = E (Nj) =6&O &Xij = Var (Nj) 

14 Jorgenson, D. W., “Multiple Regression Analysis of a Poisson Process,” Journal of 
the American Statistical Association 56, pp. 23524.5, ( 196 1). 
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In matrix notation: 

,&=e(IJ)=Xp and Cov(N)=V - 
where the underline of h and N denote column vectors of dimension S, &is 
a vector of k + I parameters, X is an s x (k + I) matrix having the values 
of the criterion variables as elements and V is an s X s diagonal matrix with 

elements Vj = $ piX(j. It is well known (e.g., see GoldbergeP that the 
i=O 

minimum variance linear unbiased estimator of p is: 

l= (XtV-lX,-J&N 
with: - 

cov @) = (X’V-lX)-l 
The notation X’ denotes the transpose of the matrix X and V-’ denotes the 
inverse of V. According to general linear model theory, if 3 is the vector 
of criterion values corresponding to the jtn individual, an unbiased estimator 
for E (Ni) is $ with the variance of this estimator being XJX’Vw”X)ml~j. 

Unfortunately, since p is unknown, the matrix V is unknown. Our 
problem then is to obtain G estimate of V which in turn gives us an estimate 
of p. Following Jorgenson, we let P, denote the estimate of V obtained on 
the%P iteration and we let the corresponding estimate of ,B be: 

b, = (X’?;iX)-iX’~;ln. 

Let P0 be the s X s identity matrix and define: 

p’na+l = diag [x1’ b, , XI) b, , . . . , xfs b,] -- -- - - 
where xi is defined as before. The iterations are continued until conver- 
gence is realized, i.e., &+l = &. Denote this equality vector by 6. Then:, 

(11) b = (x+lx)-lxf+n 
where p is the equality matrix qjm+l = Q,. As our final estimate of hj we 
may use : 

(12) &=z[b - 
and as an estimate of the variance of ij we may use: 

(13) &Ii (ij) =z/ (X’P-‘X)-‘zj . 

15 Goldberger, A. S., Econometric Theory (John Wiley and Sons, Inc., New York, 
1964). 
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Because of having to use P instead of V, the estimate (12) is not unbiased 
and its variance is unknown but Jorgensonl” points out that it is best asymp- 
totically normal (BA?. He also notes that the iterative procedure con- 
verges provided that V, and (X’pm-1X)--2 are positive definite for all m. 

Work by Wald17 provides a theoretical basis for testing: 

H,:LP=y - - 
where L is a known 1 X (k -t 1) matrix of rank 14 k + I and y is a 
specified vector of constants. The appropriate test statistic: - 

(Lb - ,)IIL(X’V-lX)-‘L’]-l(Lb -I) - - 
is asymptotically distributed as chi-square with I degree of freedom. This, 
of course, can be used to test such hypotheses as : 

I&,:&=0 and Ho:h=x’,8=h, -- 
In this study, the vector &m+l was calculated using a standard least 

squares linear regression program after applying a weight of: 

to the data. Here bicm, is the ith element in the vector &. The usual regres- 
sion program then obtains _b,+r by solving the system of k + I equations: 

k 

’ b. k nj&j-~j i=O z(m+f)-1ctj = 0 , i=O,l,. . . ,k. 

j=l 
c 

c=o bi(,,xa3 

It is readily seen that this system reduces to (10) when bicm+l, = bifmj for 
alli = O,I,2.. . ,k. 

7. ESTIMATION OF ACCIDENT RATE POTENTIAL : EXAMPLES 

In this section we illustrate the use of the multiple Poisson regression 
technique applied to the California data. Recall that in Section 5 we selected 

16 Jorgenson, D. W., op. cit. 
17 Wald, A., “Tests of Statistical Hypotheses Concerning Several Parameters When 

the Number of Observations Is Large,” Transactions of American Mathematical 
Society, 54 pp. 426-482, (1943). 
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six criterion variables to use as accident rate potential predictors. To 
review, for any given individual in the California sample, these are: 

Xl)” 1 

x1 = the natural logarithm of the traffic density index of the county in 
which the driver resides. 

x2 = 
i 
0 , if married, 
1 , if single. 

X3 = I 
S/(age- 13), if male, 
125/(age- 13)3, if female. 

x4 = the number of countable convictions incurred during years 1961-62. 

x5 = the number of accident involvements incurred during years 1961- 
62. 

x6 = the number of noncountable convictions incurred during years 
1961-62. 

Initially, usual least squares analyses were run in order to determine 
which of the six criterion variables are significant in the presence of the 
others. The results of these analyses are given in Table 10. Comparing with 
a critical t value of 1.96 at the .05 significant level, we notice that marital 
status is a nonsignificant variable in the regression equation for males and 
two variables, age and noncountable conviction history, are not significant 
for females. We find that conviction history contributes more to accident 
prediction than any other variable in both regressions. For males, the 
degree of contribution to regression by the remaining four significant vari- 
ables is about equal. The second most significant predictor for females is 
marital status, while traffic density and accident history provide comparable 
information in the presence of the other variables. 

Table 11 displays the final estimation functions for x and the estimates 
of the covariance matrix of the p estimators. In Table 12, the values of i 
and its estimated standard deviation are given for selected values of the 
criterion variables. Remember that the estimating equations and the esti- 
mates of x found in the tables reflect a time unit of approximately 10% 
months rather than 1 year. 

8. DISTRIBUTION OF ACCIDENT INVOLVEMENT COSTS 

Because of the rarity of the event of an accident in time and the extreme 
variability in accident costs, a theoretical distribution of accident costs appli- 
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Table 10 

Unweighted Regression of 1963 Accidents on Six Criterion Variables 
1964 California Driver Record Study 

Males 

Analysis of Variance 
Source of Degrees of 
Variation Freedom 

Regression 6 

Residual. 86,463 

Total 86,469 

L b. 
1 

0 -0.00211 

1 0.01023 

2 -0.00081 

3 0.05746 

4 o. 01980 

5 0.02251 

6 0.01768 

Analysis of Variance 
Source of Degrees of 
Variation Freedom 

Regression 6 

Residual 61,118 

Total 61,124 

I. bi 
- 

0 -0.00857 

1 0.00794 

2 0.02099 

3 -0.00012 

4 0.01832 

5 0.02097 

6 o .00356 

sum Of 
Squares 

108.4692 

7,263.9349 

7,372.4041 

Mean F 
m- Value 

18.07820 215.19 

0.08401 

'b. 
I 

t = bi/sb 
i 

0.00117 

0.00265 

0.00672 

0.00097 

0.00224 

0.00187 

Females 

8.73 

-0.30 

8.55 

20.37 
10.06 

9.47 

sum Of 
Squares 

21.7867 

2,4g5.6405 

2,517.4272 

'b. 
I 

Mean F 
Square Value 

3.63112 88.93 

0.04083 

t = bi/sb 
i 

0.00098 8.06 

0.00207 10.16 
0 * 00074 -0.17 

0.00141 12.96 

0.00273 7.68 

0.00516 0.69 

45 
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Table 11 

Estimation Function for Accident Rate Potential and Covariance Matrix 
1964 California Driver Record Study 

Males 

X = 0.00274 + 0.00909x1 + 0.0532~3 + 0.0223~4 

+ 0.0216~~ + 0.0169x6 

0.1981 -0.0384 -0.0754 0.0041 0.0021 -0.0024 

-0.0384 0.0085 -0.0004 -0.0012 -0.0013 0.0007 

10 -4 -0.0754 -0.0004 0.4058 -0.0137 -0.0057 -0.0162 

I 
0.0041 -0.0012 -0.0137 0.0142 -0.0052 -0.0050 

0.0021 -0.0013 -0.0057 -0.0052 0.0654 -0.0030 

-0.0024 0.0007 -0.0162 -0.0050 -0.0030 0.0623 

Females 

A = -0.00176 + 0.00646x, + 0.0209~~ + 0.0196~~ + 0.0205~ 
5 

[ 0.0991 -0.0211 0.0010 0.0016 0.0013] 

-0.0211 0.0048 -0.0015 -0.0011 -0.0011~ 

(x,j-lx)-l 0.0010 -0.00441 = 1o-4 -0.0015 0.0538 -0.0045 

I- 0.0016 0.0013 -0.0011 -0.0011 -0.0045 -0.0044 -0.0089 0.0355 -0.0089 0.11861 

cable to a particular individual cannot be arrived at through the observation 
of that person’s involvement costs over a period of time. Therefore, to gain 
information about costs applicable to a type of driver it is necessary to look 
at samples taken from a population of drivers. One such sample is the 
subject of the study entitled Cost of Motor Vehicle Accidents to Illinois 
Motorists, 1958,18 and a subsequent analysis,l” completed in cooperation 
with the U.S. Bureau of Public Roads. The passenger car portion is based 
upon a sample of 2,878 reported and 505 unreported accident involvements. 
A stratified sampling design was used with the sample size in each stratum 
determined on the basis of an accuracy level specifying an objective 7% 
relative error. In terms of a stratum mean X and its standard deviation s,, 
this implies : 

Q/X = 0.07 

1s Illinois Department of Public Works and Buildings, State of, “Cost of Motor Vehicle 
Accidents to Illinois Motorists, 1958,” Chicago, 1962. 

1s Billingsley, C. M. and Jorgenson, D. P., “Analyses of Direct Costs and Frequencies 
of Illinois Motor-Vehicle Accidents, 19.58,” Public Roads 32, pp. 201-213 (1963). 
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Table 12 

Accident Rate Potential Estimates and their Standard Deviations 
1964 California Driver Record Study 

Marital ct. Conv. Accident No. Ct. Conv. 
Status &c History History History x 

Married 

Single 

Married 

Single 

Married 

Single 

60 

60 

60 

40 

40 

40 

20 

20 

20 

- 

- 

- 

- 

- 

- 2 

1 

1 

1 

0 0.0293 0.0023 

1 .0831 .0027 

1 .1147 .0034 

0 .oim .0032 

0 .0697 .0027 

0 .0581 .OOll 

0 .1056 .0045 

0 .O763 .0035 

1 .2132 so059 

.0131 .0017 

a0545 .0043 

.0636 .0036 

.0640 .0027 

.0306 .0009 

.1112 .0047 

J V%(h) 
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Since the accident data in the 1964 California Driver Record Study, cited 
earlier, refers to reported involvements, consistency dictates that we confine 
our attention to the 2,878 reported cases in the Illinois study. These were 
comprised of 332 fatal injury, 1,730 nonfatal injury and 816 property dam- 
age only cases. After appropriate expansion factors were applied, a “popu- 
lation” of 317,051 reported involvement costs was obtained. The distribu- 
tion of these costs is given graphically in Figure 1. 

In the Illinois study, direct costs are defined as “the money value of 
damages and losses to persons and property resulting directly from acci- 
dents, and which might be saved for the motor vehicle owner by the elimina- 
tion of accidents.“20 Elements of direct costs include damaged property, 
injuries to persons, value of time lost, loss of use of vehicle, legal and court 
costs, and damages awarded in excess of costs. Funeral expenses in con- 
nection with a motor vehicle accident were not considered a direct cost since 
such costs are inevitable; an accident merely fixes the time when they are 
incurred. In evaluating direct costs in multiple car accidents, only those 
costs associated with the sample car and its occupants were obtained. How- 
ever, damage to objects other than another motor vehicle, including pedes- 
trians, was obtained. 

The Illinois cost study spotlights the two most outstanding character- 
istics of accident cost distributions: 

(i) The overall distribution is J-shaped, i.e., low cost accidents are 
most frequent and high cost accidents least frequent. 

(ii) Accident costs depend on where the accident takes place (e.g., 
urban or rural, divided or undivided highway, intersection or free- 
way, etc.) and circumstances surrounding the accident (e.g., 
object struck, number of occupants, speed, etc.). 

In an attempt to infer a theoretical distribution of accident costs based 
on the Illinois data, we must bear in mind that the empirical distribution 
displayed in Figure 1 is a “dangerous” one and should be taken at some- 
what less than “face value.” The constructed population of involvements 
is subject to bias through use of incorrect expansion factors in addition to 
possible large sampling error inherent in such a markedly skewed distribu- 
tion as manifested by the descriptive statistics: a mean of 471 dollars, a 
variance of 3,760,963, and a median of 168. Nevertheless, it behooves us 

20 Billingsley, C. M. and Jorgenson, D. P., ibid. 
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Figure 1 

49 

Empirical and Theoretical Cost Distributions of a Single Accident Involvement 
1958 Illinois Accident Cost Study 
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to accept the broad characteristics of this constructed distribution as indica- 
tive of the true distribution of accident involvement costs in Illinois during 
the year 1958. 

Efforts were made to fit the Illinois data with well-known distributions 
of non-negative random variables such as the gamma and the lognormal 
without success. Among the candidates was a mixture of two exponentials: . 

Using the method of moments described by Ride? and used by Dropkin2’ 
we concluded that this distribution also seemed to be unsatisfactory. How- 
ever, if we equate the sample median with the theoretical median in lieu 
of equating the unstable third moments, the fit appears to be quite reason- 
able. The derivation of this modified method of moments procedure is 
found in Weber.2” Unfortunately, because of the use of a stratified sampling 
design, no goodness-of-fit test exists which would reveal whether or not the 
fit is statistically acceptable. The theoretical adaptation to the empirical 
distribution is shown graphically in Figure 1 and numerically in Table 13. 

TABLE 13 

Comparison of Empirical and Theoretical Cost Distributions 
195 8 Illinois Accident Cost Study. 

W(x) = 1 - 0.9688e-x/2s1~g - 0.03119e-~~78s5~2 

Y 
Empirical Theoretical 

Cumulative Cumulative 

50 0.1783 0.1864 
100 .3238 .3384 
250 .6395 .6395 
500 .8328 .8583 

1000 .9229 .9595 
2500 .9702 -9772 
5000 .9874 .9835 

11 Rider, P. R., “The Method of Moments Applied to a Mixture of Two Exponential 
Distrrbutions,” Annals of Mathematical Statistics 32, pp. 143-148 (1961). 

2s Dropkin, L. B., “Loss Distributions of a Single Claim,” PCAS Mathematical Theory 
of Risk, 1966. 

23 Weber, D. C., “A Stochastic Model for Automobile Accident Experience,” Unpub- 
lished Ph.D. Dissertation. North Carolina State University, Raleigh, North Caro- 
lina, 1970. 
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Presumably, if reliable estimation procedures were available, we could 
improve the fit by increasing the number of exponentials in the mixture, i.e., 
let: 

for some finite integer k. More generally, we can assume the p’s within the 
population have a continuous distribution in which case w(x) can be viewed 
as a mixture of an infinite number of exponential distributions in the same 
manner that the negative binomial (5) is a mixture of Poisson distributions. 

As a consequence, let us assume that the distribution of the cost of an 
accident involvement for an individual driver is exponential, i.e., the prob- 
ability density function of the random variable X is assumed to be: 

(14) g(x)=fe-x/w , x 2-2 0, p > 0. 

with mean p and variance $. The corresponding distribution function is: 

(15) G(x) = I - e-/F > x 2 0, p > 0. 

It is well-known that the sum of n independently and identically dis- 
tributed exponential variables is a gamma variable. (See Feller.24) Hence, 
in terms of our model, the probability density function of X1 + X3 -t * * * + 
X, is: 

(16) 

so that: 

(17) 

h(X) = 
p-1 

e-Z/a 

PC-U! 
x z= 0, p > 0, 

' y1=1,2,..., 

G,(x)=s’>n(s)ds , x&O , n=l,2 ,..., 
0 

~I-e-~/p 137 
[ 

x/p + (x/P)o + ___ 
21 *.* 

+ (x/t-P1 
(n - l)! 3 

and : 

G,(x) = { I” : when x < OJ 
when x 10. 

24 Feller, W., An Zntroduction to Probability Theory and Its Applications Vol. II. 
(John Wiley and Sons, Inc., New York, 1966). 
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9. AN ESTIMATION PROPOSAL 

In this section we will consider the problem of estimating the parameter 
p associated with a motorist as a function of his measurable characteristics. 
Our first inclination on this matter is to construct a model for p as we did 
for x in Section 5. Upon reflection, however, it is not possible to do SO, at 
least with data currently available. Because of the unusually high variabil- 
ity in cost data, sample means have little reliability unless based upon a very 
large sample. In the face of this variability, the Illinois and similar cost 
studies are unable to give us concrete information about involvement costs 
by age and sex of driver, for example. This writer has, therefore, turned to 
the ratemaking procedures of the casualty insurance industry for a tentative 
answer to this problem. 

As stated in the previous section, if one examines the findings of auto- 
mobile accident cost studies, it soon becomes apparent that the primary 
determinant of cost is locution conditioned by circumstances surrounding 
the accident. As a case in point, the Illinois study shows that the average 
involvement cost of an urban accident (one within an incorporate place) 
to be $396 as compared to an average of $931 for one taking place in a 
rural area. Therefore, to measure the potential cost of an involvement, as 
it concerns an individual, it is important for us to know where he incurs most 
of his accidents. Studies indicate, and current ratemaking procedures assume, 
that generally this is in the immediate vicinity of his residence. Hence, basic 
to a solution of our estimation problem is the establishment of involvement 
cost levels by area or territory. The area definitions need to reflect types of 
highways, population densities, speed limits, geographical and weather con- 
ditions, road safety conditions, etc., within a given area. In order to make 
use of the concept of resident area cost level, we initially assume that all 
drivers within a given area are characterized by the same p, say, pCj. 
Under this assumption an unbiased estimate for P,, is given by the statistic 
T with variance p,,2/n, where X is the mean cost per accident involvement 
experienced by all drivers residing in the given area and n is the number of 
involvements upon which Xis based. 

Once an estimate for ,.Q, is obtained we should be able to assign a p to 
each individual driver in that area by applying an appropriate involvement 
cost index, say, I based upon the characteristics of the motorist. Then the 
estimate for an individual’s ,L is given by: 

(18) p= XI 
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Members of the Casualty Actuarial Society will recognize the index factor Z 
as a class differential. As in present automobile ratemaking procedures, the 
value of Z applicable to a particular type of driver can be developed statis- 
tically on the basic of cost experience. 

To illustrate the procedure, a New York Department of Motor Vehicles 
tabulationz5 classifies 477,101 accident involvements by severity class, age, 
sex, hour of day and day of week. The percentage distributions of severity 
class by age and sex found in this bulletin are given in Table 14. Using these 
distributions it is possible to arrive at an accident cost index by age and sex 

Table 14, 

Distributions of Fatal Injury, Non-Fatal Injury and Property Damage 
Only Accident Involvements by Sex and Age Group 

New York Motor Vehicle Bulletin No. 6 (64) 

Age Group FI 

Under 21 0.81% 

21 - 24 0.70 

25 - 29 0.64 

30 - 39 0.56 

40 - 49 0.48 

50 - 59 0.53 

Over 59 0.65 

All Ages 0.60% 

Age Group 

Under 21 

21 - 24 

25 - 29 

30 - 39 

40 - 49 

50 - 59 

Over 59 

All Ages 

FI 

0.28% 

0.30 

0.30 

0.27 

0.28 

0.33 

o 64 L 
0.31% 

Males 

NFI PDO 

52.60% 46.59% 
56.06 43.24 

57.22 42.14 

57.43 42.01 

55.89 43.63 

54.33 45.14 

so.gs 48.37 

55.37% 44.03% 

Females 

NFI 

53.59% 

55.56 

58.34 

57.32 
54.48 

52.40 

47.49 
54.84% 

PDO 

46.13% 

44.14 

41.36 

42.41 

45.24 

47.27 

51.87 

44.85% 

25 New York Department of Motor Vehicles, State of, “Fatal, Non-Fatal, and Property 
Damage Accidents by Age and Sex, Hour of Day, and Day of Week,” Statistical 
Bulletin No. 6 (64), Albany, 1964. 
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if we make assumptions about the relative cost of fatal, nonfatal, and prop- 
erty damage only involvements. Guided by the Illinois cost data, we might 
use as approximate ratios 30: 6: 1. Applying these weights to the distribu- 
tions in Table 14 and then converting the results to index form, we find that 
the patterns displayed in Table 15 emerge. 

TABLE 15 

Constructed Involvement Cost Indices, I 

Ane Groups 

Under 21 .985 
21-24 1.021 
25 - 29 1.032 
30 - 39 1.028 
40 - 49 1.003 
50 - 59 .986 
Over 59 ,953 

All Ages 1.005 

Males Females 

.959 

.985 
1.021 
1.005 
.970 
.947 
.907 

.977 

Before taking a second look at our overall model, a few comments are 
in order. By keeping the proper statistics on cost experience, through the 
pooling of data (as is done today), the casualty insurance industry could 
come up with acceptable estimates for pLn and Z and, in time, test assumption 
(14). Consideration should be given to including factors other than per- 
sonal characteristics in constructing the index I, e.g. age and make of the 
insured’s automobile. As with parameter h, the parameter p is not constant 
in time. The cost of having accidents is heavily influenced by prevailing 
medical, material and wage cost levels. Therefore, it will be necessary to 
frequently update the estimates of the area p’s, and perhaps employ a trend 
factor when future costs are involved. 

10. THE MODEL REVISITED 

We established that the distribution function of X(t), the total cost of 
accident involvements incurred during a time interval of length t, is given by: 

(1) W-M = g p(U) G,(x) ) X‘U, t > 0. 
n = 0 
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In our deveIopment, we have assumed that: 

(3) 

and : 

e-At(At) 
P(W) = n! , n=0,1,2 >..-, 

A>0,1>0 

(17) G%(x) = 1 - e-x/p X/P 1 + - +(x/p)“+*. + fxlP.)*l 
I! 2! * (n-l) I 

, x&O, 
n = 1,2,. . . , 

G,(x) = 7 
i 

’ ,“;z;?&; 
, 

From (2), together with (3) and (14), we obtain the mean and variance 
of X(t) as : 

(19) E(X(t)) = Apt and Var (X(t)) = 2&G+. 

The probability density function of X(t) is given by: 

t 

&Ip(n,t) g,(x) , x > 0, t > 0, 
(20) f(G) = 

P(O, t) , x=0, t > 0, 

where p(n,t) has the form (3) and: 

(16) &L(x) = 
p-1 

e-r/U x>o,p>o 
pyn - I)! ’ n=1,2,.... 

Figure 2 presents a sketch of f(x,t) when t is small. 
Figure2 

The Probability Density Function of X(t) for Small t 

% 
b,Xj 

---- m 
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The graph illustrates that the random variable X(t) is neither discrete nor 
continuous but rather is mixed. In the case where t is small much of its 
mass is concentrated at the point x = 0 with the remainder spread over the 
interval 0 < x < Q) according to the continuous function: 

The sketch is exaggerated in that the plot of this continuous function actually 
is nearer the x-axis than it appears in Figure 2. Again we view the extreme 
skewness and dispersion that plagues accident researchers. These are the 
attributes that make it unrealistic to predict the accident experience of an 
individual driver in anything other than probabilistic terms. 

Under the assumption that p(n,t) is a probability function for a Poisson 
process, the model (1) represents the distribution function of a compound 
Poisson process. Because of the general applicability of this particular 
stochastic process, it is discussed in many recent textbooks dealing with 
the subject of probability and stochastic processes.26 An important property 
of the compound Poisson process distribution is its infinite divisibility. It 
follows that the sum of independent and identically distributed compound 
Poisson process variables is also a compound Poisson process variable. For 
us, this implies that the distribution of accumulated costs during one unit of 
time for k individuals having a common distribution function is the same as 
that for one of those individuals over a period of k units of time. 

Let us consider the sum : 

(20) s,(t) = x,(t) + x,(t) + . . . + x,(t) 

for a fixed t. If each Xi(t) has d.f. F(x,t) and if the Xi(t) are independent 
random variables, then the d.f. of S,(t) is F(x,kt). It follows that: 

(21) c[s,(t)] = k,+t and Var [sdt)] = 2kWt. 

This gives us the capability of studying homogeneous groups of drivers as 
well as individuals. We note that the average cost per driver represented by 
the random variable SL(t)/k has mean and variance: ’ 

(22) E[&(t)/k] = Apt and Var [s*(t)/k] = 2&A/k. 
It can be shown that, for a fixed t, the random variable: 

(23) 

26 Feller, W., op. cit. 
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converges in distribution to that of a normal random variable with mean 0 
and variance 1 as k ---+ ~4. This, of course, is the central limit theorem in 
the context of our model. 

11. ACCIDENT COST POTENTIAL 

With respect to an individual driver, the occurrence of an accident 
involvement is, in general, an infrequent event. This, together with the 
variability associated with X(t), means that the empirical average annual 
involvement costs experienced by a motorist, even if computed over a life- 
time, do not adequately reflect the individual’s driving skill, exposure in 
terms of mileage, and environmental driving conditions. Thus, we would 
expect average annual accident costs generated by two drivers of equal skill 
and identical exposure to be quite different. 

0. Lundberg2? considered the random variable : 

z(t) = x(t)/t 
He found that: 

This result may be interpreted that if we were able to observe a driver under 
the same conditions for many, many years, the distribution of his accident 
costs per unit of time converges in distribution to a constant, hp. This 
“constant,” which can be associated with each individual driver may be 
considered his accident cost potential and represents a theoretical cost per 
unit time. The use of quotation marks in the previous sentence emphasizes 
the point previously made, namely, that A,U is not a true constant in that it is 
a function of the individual and his driving environment and, therefore, is 
subject to change in time. Although the accident cost potential associated 
with an individual is indicative of his expected accident costs, it does not 
uniquely characterize him in the sense that the product hp does not specify 
the individual’s F(x,t) uniquely. This is obvious from (21). 

12. SOME EXAMPLES 

In this section we will look at some probability distributions generated 
by our model for individual drivers and groups of homogeneous drivers. 
In Table 16 we find theoretical accident cost distributions related to indi- 

27 Lundberg, O., On Random Processes and Their Application to Sickness and Health 
Statistics (Almquist and Wiksells, Uppsala, 1940). 
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viduals over a time span of one year. The tabulated values correspond to 
P(X(1) 6 x} e.g. the probability that an individual characterized by X = 
.08 and p = 500 will have total accident costs less than or equal to $500 
during one year’s time is 0.9706. This table demonstrates why it is so 
difficult to distinguish between “good” and “bad” drivers on the basis of 
experience over a short interval of time. For example, we expect some of 
the h = .04 individuals to suffer accident loss during a year’s time (about 
4 percent); yet during that time about 85 percent of the individuals having 
an accident rate potential four times that of the first group will be cost-free. 

Table 16 
Evaluation of F(x,l) for Specified Values of the Parameters 

Total Costs 

0 

50 

100 

250 

500 
1,000 

2,500 

5,000 

E(X(l)) 

lGzzz5i 

Total Costs 

x 

0 

50 
100 

250 

500 
1,000 

2,500 

5,000 

E(X(l)) 

q7cJim 

u = 500 

L x= 04 - A .08 = 

0.9608 0.9231 

.9645 .9302 

.967a .9366 

.976o .9524 

.9a53 .9706 

.9945 .98aa 

.9997 .9993 

.9999+ .9999+ 

20 40 

141 200 

x = .12 

h = .12 A = .16 - - 
0. a869 0.8521 

.a971 .a652 

.9o63 .a771 

.9294 .go68 

.9559 .9413 

.92a2 .976-r 

.9990 .99% 

.9999+ .9999+ 

60 80 

245 283 

Jl = 400 p = 600 p = 700 p = 800 

0.8869 0.8869 0.0869 0.8869 

. a995 .a955 .8943 . a934 

.glo6 .9033 .9011 .a995 

.9372 .9236 .9192 .9157 

.9652 .94a4 .9423 .93-P 

.9&a .9765 .gw6 .9652 

.9997 .99-i% .9961 .9941 

.9999+ .9999+ .9999 .9997 

48 72 84 96 

196 294 342 392 
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Table 17 

Distribution Functions of SIOo (1) for Specified Values of the Parameters 

Total costs 

%00(l) 

0 

2,000 

4,000 

5,000 

6,000 
8,000 

10,000 

12,500 

E(S) 

Jvaro 
E(S/lOO) 

$GZZGj 

Total costs 

SlOO(1) 

0 

2,000 

4,000 
5,000 

6,000 

8,000 

10,000 

12,500 

E(S) 

ps% 
E(S/lOO) 

+iiGTiEj 

A = .04 x = .08 x = .12 

0.0183 0.0003 

.5717 

.wS 

.&a 

.9863 

.9984 

.9998 

.9999+ 
2,000 

1,414 

20 

14.1 

.1535 

.55O3 

0. oooo+ 

.0264 

.2162 

.374a 

.5409 

.a033 

.9352 

.9aao 

6,000 
2,449 

60 
24.5 

A = .16 

o.oooo+ 

.0034 

.0604 

.I'229 .1390 

.a444 

.9610 

.9923 

.9992 
4,000 

2,000 

40 

20.0 

.2539 

.5354 

.7739 

.9323 
8,000 

2,828 

a0 

28.3 

h = .12 

!J = 400 IJ = 600 LJ = 700 p = 800 

o.oooo+ 0. oooo+ 0. oooo+ o.oooo+ 

.053a .0147 .0090 .0060 

.3748 .1295 .0al5 .0538 

.5aO3 .2407 .1581 .1070 

.7503 .374a .25a9 .1813 

.9352 .6425 .4944 .3748 

.gaao .a337 .707O .5903 

.9990 .9500 .8790 .7844 

4,800 7,200 8,400 9,600 

1,960 2,939 3,429 3,919 

48 72 a4 96 

19.6 29.4 34.3 39.2 

Jl = 500 
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Table 18 

Distribution Functions of Slooo (1) for Specified Values of the Parameters 

Evaluated at 

h = .04, !J = 400 

E(S) = 16,000 

Jvar6) = 3,578 

E(S/lOOO) = 16 

~vds/looo) = 3.58 

x = .08, u = 500 

E(S) = 40,000 

\ivaro = 6,325 

E(S/lOO) = 40 

‘i var(s/looo) = 6.32 

h = .12, Jo = 600 

E(S) = 72,000 
------_ 

\i 'Jar(S) = 9,295 

E(S/lOOO) = 72 

yT~S7TE5'T = 9.30 

E(S) - 3 dvar(s) 

i 

E(S) - 2 jVar(S) 

E(S) - Jvar(sj 

E(S) 
\ - / E(S) + \IVar(S) 

j E(S) + 2 jvar(s) 

\ E(S) + 3 Jvar(s) 

SlOOO(l) 

5,267 

8,845 

12,422 

16,000 

19,578 

23,155 

26,733 

SlOOO(~) 

21,026 

27,351 

33,675 

40,000 

46,325 

52,649 

58,974 

slooo(l) 

44,114 

53,410 

62,705 

72,000 

81,295 

90,590 

99,885 

F(x,lOOO) 

0.0001 

.0129 

.1578 

.5223 

.8420 

.&go 

.9962 

F(x,lOOO) 

0.0003 

.0159 

.1582 

.515a 

.a417 

.9712 

.9970 

F(x,lOOO) 

0.0004 

.0172 

.15a4 

.5129 

.8416 

.9723 

.9973 
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One of our impressions about Table 16 might be that differences between 
successive distributions are trivial. Suppose we find the one year probability 
distributions associated with groups of 100 motorists where each individual 
within a group has the same h and p. In Table 17 we evaluate S&l) for 
various combinations of h and ,I+ remembering that the evaluation is the 
same as that for X(100), the total accident costs acquired by an individual 
over a period of 100 years (assuming unchanging parameters). No longer 
do the differences between distributions appear inconsequential, but rather 
distinct differences in performance between groups of like individuals are 
apparent. The casualty insurance industry has recognized this, of course, 
through use of classification plans. 

In Table 17 we observe that the standard deviation of mean accident 
costs, Q Var(S/lOO), is quite large relative to average costs, E(S/lOO). 
To show how our predictions about average costs become more reliable as 
k is increased, in Table 18 we find distribution functions of SIOoO(l), i.e., 
for k = 1000 and t = I. We also see how the distributions are approaching 
“normality” as indicated by the asymtotic distribution of the standardized 
&(t)/k random variable displayed as (23). 

13. RELEVANCY 

At a time when proposals for no-fault automobile accident insurance 
plans have been introduced in the legislatures of New York and other states, 
perhaps it is time for the Casualty Actuarial Society to consider new tech- 
niques in the event of a universal change in state insurance laws. This writer 
has described a model which he believes is applicable in a no-fault insurance 
system. 

DISCUSSION BY LESTER B. DROPKIN 

Don Weber’s paper, “A Stochastic Approach to Automobile Compen- 
sation,” provides us with a most interesting approach to a subject of 
considerable current concern. If there were those who thought that the prob- 
lem of pricing a “no-fault” automobile insurance system was still some- 
what academic when the paper was presented last May, more recent events 
will have quickly brought the realization that the problem is now squarely 
in the forefront. 

Whatever the case may have been at one time, today the unmodified 
term “no-fault” does not uniquely describe a single system. Rather, the 


