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LOSS RATIO DISTRIBUTIONS 
A MODEL 

C. C. HEWI'IT, JR. 

]. INTRODUCTION AND SUMMARY 

1.1 Historical 

Traditionally in casualty insurance loss ratio distributions have been 
obtained empirically and often at great expense and with great labor [for 
the most recent such effort see (13) ] .  Associated with collecting masses 
of raw data have been serious problems of fitting such data [see (8) ,  (12) 
and 14)] .  The end-product of all of these efforts has been non-analytical; 
and of value only for use in linear retrospective rating and as a rough 
guide to loss ratio distributions by size. 

1.2 An Analytical Model 

In this author's review (1 I)  of (13) he indicated the successful fit- 
ting of a mathematical model- - the  gamma distribution--to actual loss ratio 
distributions. Also, there was indicated a relationship among the signifi- 
cant parameters for loss ratio distributions at various premium sizes. 

1.3 Purpose and Results of this Paper 

In this paper are set forth some important mathematical properties of 
the gamma distribution (Chapter 2) including the very important character- 
istic of reproductivity and divisibility. In most instances the development 
of formulas and lemmas is left to the reference texts, or the reader. The 
gamma distribution is applied directly to loss ratio distributions as a 
model (Chapter 3) and a single parameter form is asserted. 

In Chapter 4 the method of fitting actual data is explained and the 
goodness of the fit is discussed. A relationship among parameters at various 
premium sizes is also asserted. As a corollary it becomes evident that for 
actual data, loss ratio distributions for larger premium sizes are not equivalent 
to loss ratio distributions that might have been obtained by taking random 
samples from smaller premium sizes. An attempt is made to account for 
this phenomenon. 

Finally (Chapter 5) the utility of the new model is discussed for: 

(1)  Linear retrospective rating. 

(2)  Non-linear retrospective rating. 

(3)  Competitive "retro" dividend plans. 
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1.4  P r o s p e c t u s  

Although significant results are obtained within this paper, the implica- 
tions go far beyond the answers. For example, the gamma distribution as a 
loss ratio model for larger risk premium sizes must be the synthesis of: 

( 1 ) Distributions of a single loss, 

(2)  Distributions of occurrence of one or 
more losses, and 

(3) Inherent risk heterogeneity. 

It would be interesting to see this analyzed further; such analysis would 
undoubtedly explain why the goodness-of-fit tests fail for smaller premium 
sizes. Hopefully, then, this paper will not be an end but merely a beginning. 

2.1 

2. T H E  G A M M A  D I S T R I B U T I O N  

T h e  G a m m a  F u n c t i o n  

2 .11  T h e  ( C o m p l e t e )  G a m m a  F u n c t i o n  

(a)  Definition: 

r ( r )  x r-1 e -'" d x  ; [r>0] ............ (2.111 ) 

(b) The (complete) gamma function has the recursive prop- 
erty: 
r ( r +  l ) = r r ( r )  ............ (2.1 !2 )  

(c) If r is integral, 
r ( r + l )  = r~ ............ (2.1 !3 )  

(d)  The (complete) gamma function has a m i n i m u m  when r 
is approximately 1.4616; the minimum is approximately 
0.8856. 

As r approaches zero, or increases without limit, the (com- 
plete) gamma function increases without limit. 

(e) r(r) ~ X / 2 ~ r  e "  r r'1 

for large r ............ (2.114) 

(f)  For  intermediate, non-integral values of r, use may be 
made of the recursive property (2.112) and published 
tables [ (1 ) ,  p. 316]. 

(g) P(V2)  = ~/~  ............ (2.115) 
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(h) F(r) = Lim n! n r-~ 
" ~  r(r + 1)(r + 2) . . . .  (r + n -- 1) ...... 

.(2.116) 

[(3) ,  p. 697] 

] 1[ r r (i) r(r) - reW (I  + --~-) e- T ............ (2.117) 
• +1 k=l  

where 7 is the Euler-Mascheroni constant. 

(j) 

.y= Lim ~ 1 ) _ : f ~  , ~  ~ -- logan = e -'~ log~xdx, 
\ k=t 

3' ~ 0.5772157 [(3),  p. 697] 

The k'" derivative of r(r) is: 

f r'~'(r) = x'-' (logs) ~ e-" dx ............ (2 .118 ) 
O - -  

2.12 The Incomplete Gamma Function 

(a) Definition: 
f,,~/GF 

.!o xP e-*dx l (u,  p)  = 
r(p + 1) 

, ' ( p +  l = r , . ' . p  > -  l )  

............ (2.121) 

where u - Xo 
\ / p  + 1 ........... (2.121a) 

(b) In the gamma distribution a scale parameter, a, is intro- 
duced; in this case: 

a x  o 
u -- - - , "  (a > o) ........... (2.121b) 

\ / p  + 1 

(c) Use may be made of published tables, (4). Also see [(5) 
p. 223] for adaptations from other published tables. 

(d) For p near -1, values of the incomplete gamma function 
may be approximated to a desired degree of accuracy by 

g(P"; f 1 ¢(P + 1) ¢'(p + 1) 
l(u, p) - r (p  + 2) ~ l ! (p  + 2) + 2!(p + 3) 

~'(p + 1) 

3!(p + 4) + " ! 
where ~ = u~/p  + 1 ............ (2.122) 

iteration of the following series [ (4, p. xv] : 
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The G a m m a  Distribution 

2.21 Basic Properties 

(a )  Definition: 

I'~.dx) = i ~  x"-I e-"L" a > ............ (2.211 ) 
r >  

(b )  The  g a m m a  disti 'ibution is a special case of the more  gen- 
eral Pearson Type  1II distribution: 

[(x) = A ( x  -- tL)r-'e'a(¢-~); [ X > /z] 

when ~ = o . . . . . . . . . . . . .  (2 .212)  

(c )  a is the trivial scale pa ramete r  
[ (2 )  II ,  p. 46]  ; r is the important  parameter .  

(d )  The  mode  of r~,r(X) occurs at: 
r - I  

; ( r > )  a ............ (2 .213)  

(e )  The  characterist ic funct ion is 

............ (2 .214)  

(f) The  exponential  distribution: 
ae-az 

is a special case of r,,.r(x) 
when r = 1 

............ (2 .215)  

(g)  The  g a m m a  distribution is the cont inuous analogue of the 
negative binomial  [ ( 2 )  II ,  p. 10]. 

(h)  Est imators  [ ( 6 ) ,  p. 39.] :  
I f  r is given, the m a x i m u m  likelihood es t imator  for a is: 

d = r ; y = sample  mean ............ (2 .216)  
X 

For  large n_, the p. d. f. of d approaches  normali ty  with 

a e 

mean  a and variance - - .  Also the p. d. f. of ~ log d ap- 
- -  n r  

1 '  
proaches  normali ty  with mean x / r  log a and variance - - .  

n 



74 

2.22 

2.23 

LOSS RATIO D I S T R I B U T I O N S  

Reproduct iv i ty  & Divisibility (Theoretical) 

(a )  Convolutions:  

If  xl and xe are independent  with p. d. f. ra.,, and r .... 
respectively, then 

X = xl  + xz 

is gamma-distr ibuted with p. d. f. I'~.,,÷r, 

[ ( 2 )  II. p. 46, (6 ) ,  p. 121, and (5) ,  p. 225] 

Similarly ~x~ under the same conditions would have p. d. f. 

I'a,~r,. This is often expressed: 

n 

r . . . .  * r  . . . .  * . . . * F  . . . .  = P a , ~ r ,  . ........... (2 .221)  

Consequently the sum of the values of a random sample 
of size n from a gamma-distr ibuted population, 

z = ~x~ has a p. d. f. r~,,~. 
I 

(b)  Divisibility: 

The "inverse" of this reproductive property of the gamma 
distribution is infinite divisibility, i.e. r,,~ is the distribution 
of the sum of n independent random variables with a 

c o m m o n  p. d. f. r~,_~ 

[ ( 2 )  II,  p. 173] 

Exponent ial  Polynomials - -  M o m e n t s  of x and e ~ 

(a)  Functions of x of the form: 
> - -  r) 

are themselves gamma-distributions, r',+b,,.÷,. 

(b )  For  r , , r  
( a ) ~ r ( r + n )  

E(x'e-b~) = ~ (a + b) '~r(r) ............ (2 .231)  

(c)  Thus the k th moment  of x about the origin is: 

E(xk ) =  ( r +  k - - 1 ) ( r  + k -  2) . . . .  (r) 
a ' . ........... (2 .231a)  

r 
E(x)  - 

a ............ (2 .231b)  
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E(x~ ) _ (r + 1)r 
a e ............ (2 .231c)  

etc. 
J r 

and Dffx) = E(x ~) - E(x) = a~ ............ (2 .231d)  

Similarly, the U h moment  of e" is: (a)" E(e")~= ~ - k  ; ( a > k )  ............ (2 .231e)  

and E(e~)= ~ ; ( a > l )  ............ (2.23 l f )  

etc. 

This latter situation is helpful if the logarithm of a variable, 
y, is gamma-distributed, i.e., 

if, x = logcy has p. d. f. ra,r(x) 
Since y = e ~, the moments  of y are given in (2 .231e) .  

[See ( 1 0 ) ]  

. 

3.1 

3.2 

GAMMA-DISTRIBUTION AS A MODEL FOR LOSS RATIO DISTRIBUTIONS 

Definition of terms." 
L =  

c - -  

P =  

r I 

actual (risk) losses ($)  
expected loss ratio 
(risk) premium ($ )  

L 
actual (risk) loss r a t i o -  

P 
actual loss ratio r I 

R ~  
expected loss ratio c 

The distribution form of R: 

If  R is gamma-distributed, its p. d. f. would take the form [see 
( 2 . 2 1 1 ) ] :  

J(R) = ~(r) Rr'l e-"u ; ( a > ° ) 
r > o ............ (3 .21)  

with E(R) = r ,  but  if total actual losses balance with total expected 

losses, 
E(R) = 1 by definition, 

and a = r ; therefore 
r 

I*(R) = F@r) Rr'l e-'R 

with r as its own scale parameter.  

............ ( 3 . 21" )  
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3.3 
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The distribution form of  r': 

From (3.21), (3 .21")  and r ' =  cR 
it follows that: (a), 

g(r') -- r 'r'1 e- -~- 
r (r )  

and 

with 

(+Y 
g*(r') -- r 'r-1 e- T 

r(r) 
r 

- -  as the scale parameter. 

............ (3.31) 

............ (3 .31")  

3.4 The  distribution form of  L: 

From (3.31),  (3 .31")  &L = r'P 
it follows that: 

and 

with 

a )  r 
h(L) -  e- L 

r(r) 

( r )  
~ L r - l  e .  -77  L 

r(r) 
r 

---ff as the scale parameter. 

............ (3.41) 

............ (3.41")  

3.5 The distribution [orms o / r a n d o m  samples:  

If random samples of size nP are taken (or go to make up a sample 
of size P) from the risk-population, it follows from the reproductivity 
and infinite divisibility property of the gamma distribution (see Sec- 
tion 2.22) that L , ,  the losses in such random samples, are distributed 

h(L,,) = r@_ . . . . . . . . . . . . . . . .  (3.51 ) 

and 

Since 

h*(L,,)  = F.._L_, ,,,. 
eP 

where (n > o) 
Z,, 

r ' ,  = ~ff ,  it follows that 

g(r'n) = r n...2_.,, 

............ (3 .51")  

. . . . . . . . . . .  ( 3 . 5 2 )  
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and 

Also 

and 

, F 
g ( r , )  = F__nr, n r  . ........... (3.52*) 

£ 

IP~i 
R n  = --~-, therefore 

I (R , , )  = r . . . . .  . ........... (3.53) 

I * ( R , )  = r . . . . . .  ............ (3.53*) 

3 . 6  F i t t i n g  l o s s - r a t i o  d a t a  to  t h e  G a m m a - d i s t r i b u t i o n :  

(a)  As r increases r,,,r approaches the form of the normal distribution. 

(b) Furthermore the function: 
r 'g (r ' )  

is itself of the gamma distribution form [see 2.23 (a) ] 
F __a_, ,.+i 

(c) Also for f i x e d  P (premium size) r 'g (r ' )  is proportional to: 
L h ( L )  

(d)  This combination of (1)  increased "normality", (2)  primary in- 
terest in the distribution of amount ($'s) of loss (as opposed to 
number of risks), and (3) the convenience of "generated" gamma- 
distributions of amounts of loss from gamma-distributions by 
number of risks suggests the following method for determining 
the important parameter, r: 
(1)  Use~:' ( =  sample mean loss ratio) as an estimator for r'. 
(2)  Use 7" ( =  sample me,~n loss ratio-weighted by amount of 

loss in each loss ratio interval--rather than by number of 
risks) as an estimator for: 

r "  = E ( r '  g ( r ' ) )  = E ( r 2 _ ,  ,+1) 
c 

(3)  Then from (2.231b) 
? 

F' = r '  = - - c  
a 

? " = r " - -  ~ + 1  
- -  C 

a 

~" ~ + 1  
=7" = ~. , and 
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" ~ " -  ~' . ........... (3.61) 
and ~ can be used as an estimator for r. 

(e) This uniquely determines the d i s t r i b u t i o n - - ] * ( R ) - - f o r  a particu- 
lar premium size. The other distributions in the (*)  family, 
(3 .31")  and (3 .4 l* ) ,  are known if E is known. Furthermore 
the non-starred distributions, (3.21),  ( 3 3 1 )  and (3.41) can 
then be determined by using (2.216) to determine a. 

(f)  From (2.23 la)  it follows that for g(r ' ):  

E ( x  ~''l) _ (r  + k . . . .  (r)c k÷1 a s 

E ( x  k) a k÷1 (r + k - 1 )  . . . .  ( r ) ,  ~ 

r + k  
a 

which, for k = 1, gives another way of obtaining 77". 

(g) In general the approach for estimating r which is described in this 
section is particularly appropriate for highly-skewed loss ratio 
distributions, since it emphasizes higher-moment-weighted dis- 
tributions that are more nearly normal. 

However, great care must be exercised in fitting higher-moment 
means to small samples because of the increased effect of infre- 
quent and often erratic large losses and larger loss ratios upon 
the estimators. 

4 .1  

4. F I T T I N G  T H E  G A M M A - D I S T R I B U T I O N  T O  A C T U A L  L O S S - R A T I O  

D I S T R I B U T I O N S  

T h e  D a t a  

(a) Fortunately, data of unsual homogeneity for its large amount 
was obtained by using workmen's compensation insurance ex- 
perience for the single state of California--now our largest state, 
not only in population, but also in workmen's compensation 
premium volume. The data is contained in a special unpublished 
report of the California Inspection Rating Bureau dated January 
31, 1963 entitled "California Experience Rating Statistics-- 
Series I I - - B y  Interval of Subject Premium Loss Ratio." 

(b) The raw data is tabulated in a series of fourteen exhibits by sub- 
ject premium size: 
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(c) 

Number  
Exhibit Subject Premium of Risks 

A Less than $500 2,946 
B $ 5 0 0 - $  749 3,126 
C 750 - 999 2,889 
D 1,000 - 1,499 3,718 
E 1,500-  2,499 3,576 
F 2 ,500-  4,999 2,891 
G 5 ,000-  7,499 939 
H 7 ,500-  9,999 465 
I 10,000 - 14,999 454 
J 15,000 - 24,999 316 
K 25,000 - 49,999 256 
L 50,000 - 99,999 91 
M More than $99,999 55 

N Total 21,722 

and is for policies effective in the first nine months of 1958. 
An extract of the significant portions of the data contained in 
Exhibit K is shown in Table 1 in the Appendix as an example .  

Determining the estimator for r: 
Using (3.61) and the data in Table 1 for illustration of the 
method: 

~' = .578 (in Table 1, 

7" = .931 (in Table 1, 

= 0 . 5 7 8  
0 .931  - 0 . 5 7 8  

(5)) 
(3) 

,~ (5)  × ( 6 ) )  

E (5) 
= 1 .639  [rounded to 1.6 for 

use as an entry in (4 ) ]  

For other premium sizes: 
Subject 

Premium 
Interval (rounded) 

$5,000 - $7,499 0.45 
7 ,500-  9,999 0.65 

10,000-  14,999 0.85 
15,000 - 24,999 1.3 
25,000 - 49,999 1.6 
50,000 - 99,999 2.9 
More than $99,999 6.2 
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(d) Goodness of Fit: 

In some instances the raw data was adjusted for "contamination," 
but such changes were minor. Despite the broadness of some of 
the premium intervals Chi-square tests were met for all of the 
premium sizes in (c) .  An example is given in Table 2 in the 
Appendix. 

Premium sizes below $5,000 can n o t  be made to satisfy Chi- 
square tests even with minor smoothing. 

(e) Relationship between r and Premium Size: 

The results set forth in (c) suggest that there should be a rela- 
tionship between premium size and the key gamma-distribution 
parameter, r. Although the goodness of fit for premiums below 
$5,000 leaves something to be desired, estimators for r were cal- 
culated and a logarithmic curve of the form: 

logr = ,~ + fllogP ............ (4.11 ) 

was fitted by least squares. The results are tabulated below: 

Average Subject ~ r 
Premium Size (ininterval)  Raw Using (4 .11)* 

$ 296 .038 .044 
628 .081 .079 
869 .096 .102 

1,223 .132 .132 
1,924 .187 .188 
3,481 .326 .298 
6,050 .472 .457 
8,652 .627 .601 

12,265 .868 .787 
18,944 1.336 1.104 
33,455 1.639 1.710 
68,758 2.898 2.985 

220,786 6.145 7.362 

*(For logar i thmsto  base 10, a = - 3.264 andfl  = 0.773) 

The use of average premiums as representative of an entire pre- 
mium interval is crude particularly in the $100,000-and-over 
interval. Nevertheless a relationship indicating some predictability 
does exist. A hasty application of the above methods to the new 
Table M raw data [see (13)]  supports both the use of the 
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gamma-distribution as a model for loss ratio distributions and 
the use of a logarithmic curve to determine/'. 

Reproductivity and Divisibility (Actual) : 
In Section 3.5 it was shown that, if r is the key parameter for 
premium size P, then a larger (n > 1) or smaller (o < n < 1) 
random sample from the same risk-population would have the 
key parameter nr. If the actual loss ratio distributions discussed 
above followed a random sampling pattern then from (4.11) 

(A) logr = a +/31ogP 

(B) lognr = a + f l lognP 

but subtracting (A) from (B) 

nr nP 
(C) l o g 7  = fllog p 

(D) B = 1 

However, B was found to be 0.773 for the California data (and 
logarithm-base 10). Thus, it can be inferred that larger-risk loss 
ratio distributions can not be obtained by a randomized pyramiding 
of smaller-risk loss ratio distributions and vice versa. Putting it 
bluntly--for loss ratio distribution p u r p o s e s - - t w o  $50 ,000  risks 
don' t  m a k e  a $100 ,000  risk. Nor is a $100,000 risk for one year 
the same as a $50,000 risk for two years. 

This result challenges formerly-used methods of arriving at loss 
ratio distributions for large risks [see (9)]. Also challenged is 
the present method of equating insurance charges for three-year 
retrospective rating plans with insurance charges for a one-year 
plan on a risk three times as large. Similarly, there would ap- 
pear to be some inaccuracy in calculating the insurance charges 
(contained in the basic premium) in Retrospective Rating Plan D 
for premium sizes 50% of, and 200% of, the estimated standard 
premium by equating such charges to those of risks one-half, and 
twice, the estimated size of the risk in question. 

Since the insurance charge for larger premium sizes is a small 
portion of the total premium and, since the margin of error in 
previous and current methods of computing insurance charges 
would also seem to be small, it is doubtful if any great harm has 
been, or is being, done by the methods here impugned. 
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(g) 
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Size Characteristics of Actual Loss Ratio Distributions: 

Let  r ,  be the value of r for a sample of size nP as determined by 
(4.11),  i.e., from actual loss ratio distributions. Then 

(A)  logr = = + fllogP 

(B)  logr, = 0o + BlognP 

(C)  r ,  = nar 

On the other hand, if p, is the value of r for a random sample of 
size nP." 

(D)  p. = nr 

From (C)  and (D)  it follows that: 

(E)  p. = nCl-~)r. 

Foro- -~f l  < 1, 

where n > 1, p, > r . . . . . . . . . . . . .  (4.12a) 

w h e r e o < n < l ,  p , < r  . . . . . . . . . . . . .  (4.12b) 

But the variance of ]*(R) [see (2.23 l d) and (3.21 *) ] is: 
1 
r 

Thus a loss ratio distribution of larger risk size obtained by pyra- 
miding a loss ratio distribution of smaller risk size on a random 

basis has a smaller variance J.- than the actual loss ratio distri- 
Pn 

1 
bution - - .  

rn 

There are a number of possible explanations for this conclusion. 
One such explanation, which would seem logical, would run as 
follows: 

(1)  (2)  (3)  (4) 
Premium 

Exposure Frequency Severity (Units) 
Risk (Units) (Units) (Units) (1) × (2) × (3)  

A 1 1 1 1 

B 1 1 2 2 



LOSS RATIO DISTRIBUTIONS 83 

When the premium for Risk A is made equal to that of Risk B 
by doubling the exposure units of Risk A, it seems clear that the 
variance of loss ratios for double-units of Risk A would be less 
than the variance of loss ratios for single-units of Risk B. This 
is so because the severity for Risk A is only one-half the severity 
of Risk B. 

It is clear, a [ortiori, that, all other things being equal, risks with 
larger severities would be in the larger premium size intervals. 

5.1 

5. UTILIZING THE MODEL 

Linear Retrospective Rating [see (12) pp. 52-56] 

Let So = insurance charge for loss ratios exceeding Ro 

Then 

but 

and 

therefore, 

So = 1 -- f o  R° 

f R  ~ (R - Ro)J*(R)dR 
$6 = ° 

o ~ RI*(R)dR 

o ~ RI*(R)dR = E(R) = l ,  

fo ~ ]*(R)dR = 1 

Ra 

RI*(R)dR -- Ro[1 -- £ J*(R)dR] 

but 

and 

where 

Ra 

o *(R)dR = l(uo,p) 

Ro 

f J*(R)dR = l(ul,p + 1) 

Ro 

f R~J*(R)dR = l(ui,p + i) 

r = p + l  
rRo 

U t  - 
N/r + i 

............ (5.11) 

............ (5.11a) 

see 
section 
2 . 1 2 a & b  
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Thus 
So : 1 - -  l ( u , , p  + 1)  - R S [ 1  - -  l (uo ,p ) ]  ............ (5.116) 

Similarly if So' = insurance saving from loss ratios less than R o  

.fRo~,o (Ro  - R ) ] * ( R ) d R  

So' = . ........... (5.12) 

o ~ R J * ( R ) d R  

R o  f R° / * ( R ) d R  - -  f r o  R J * ( R ) d R  ............ (5.12a) S o ' =  
do  d o  

and So" = R o l ( u o , p )  - l ( u , , p  + 1)  ............ (5.12b) 

also So' = So + Ro  - 1 ............ (5.13) 

The advantages of being able to compute insurance charges (or sav- 
ings) by a relatively simple formula which requires only one parameter, 
when the parameter is a simple logarithmic function of premium size, 
are many and obvious. It should be sufficient to point out that param- 
eterization of loss ratio distributions would eliminate huge tables of 
ratios and charges, would lend itself to computerization and would 
permit different and more appropriate insurance charges among vari- 
ous lines of insurance, geographical territories, classifications of risk, 
and even between one year and the next. 

.5.2 N o n - L i n e a r  R e t r o s p e c t i v e  R a t i n g  

Inflexibility with respect to arriving at insurance charges is not the 
only rigidity imposed by linear forms of retrospective rating. Linear 
retrospective rating implies a minimum premium and a maximum 
premium with the intermediate values expressed as a linear function 
of risk losses, i.e., 

P = c l R  + Co, but 

? -  p -fir - R F  
c t - - and co - 

R - R  ~ - . B  

where P = minimunl premium 

P = maximum premium 
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With R and R corresponding to the respective P's 

These requirements limit the insured and insurer in their choice of 
values for linear plans. 

Wily not 
p = ciR,ie-~,R + C z R n ~ . e - b ~ n  . + . . . .  9 

AS long as n, > -- r and b, > - r 

[see Section 2.23 ( a ) ] ,  insurance charges are calculable with the 
knowledge of r. 

Of course there arc common  sense restrictions on 

P = F(R) 
such as F ' ( R ) ~ o  ; ( o < R - ~  R - -dR)  

[see (7)  ]. 

Competitive "Retro" Dividend Plans 

Finally, it now becomes possible to design a retrospective dividend 
scale to be most competitive for the most desirable risks. This is not 
the same as saying most competitive for risks with a zero loss-ratio, 
since for larger premium sizes there are very few risks with near-zero 
loss ratios. Rather,  if a competi tor 's  dividend formula produces a net 
premium:  

P = c , R  +co ; (P_~--P~---P) 

then choose a 

P' = F(R) such that 
7~ 

-- I [ c l R  + Co - F(R)]I*RdR + ( P -  F)l(u_,p) ¢ 
- + ( P  - -  P ' ) [ 1  - -  I ( t ~ , p ) ]  

is a maximum. Of course, the correct  insurance charges must be made. 
(The  expression for ~ is a deliberate over-simplification since R, R',  

P,, and R '  will almost certainly not be equal. However,  the principle is 
the same) .  
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C A L I F O R N I A  W O R K M E N ' S  C O M P E N S A T I O N  
E X P E R I E N C E  RATING STATISTICS  

S e r i e s  II - By  I n t e r v a l  of S u b j e c t  P r e m i u m  L o s s  R a t i o  

E x h i b i t  K - S u b j e c t  P r e m i u m  2 5 ,0 0 0  - 4 9 , 9 9 9  

P o l i c i e s  E f f e c t i v e  1 / 1 / 5 8 -  9 / 3 0 / 5 8  

(I} (2) (3) 

Subject 
P r e m i u m  

Los  s R a t i o  # of S u b j e c t  
I n t e r v a l  R i s k s  P r e m i u m  

1 
1 
1 
1 
2. 
3. 

.000 

001 - 199 
200 - 299 

300 - 399 
400 - 499 

500 - 599 
600 - 699 
700 - 799 

800 - 899 

900 - 999 
000 - 1 249 

250 - 1 499 
500 - 1 749 

750 - 1.999 
000 - 2.999 

000 - 3.999 

Total 

2 

44 

33 
26 

29 
24 
17 
22 

18 
I0 
16 

8 
2 

1 

2 
Z 

256 

67, Z53 

1,430,618 

1,069,378 
884,548 

909,445 
811,911 

577,790 
808,761 
623,852 
353,66Z 
529,073 
280,824 

65,603 
27,352 

70,361 

54,063 

8,564,494 

(4) 
Avg. 

Subj .  
P r e m .  
S ize  
(3) ÷ (2) 

33,627 
32,514 

32,405 
34,021 

31,360 

33,830 

33,988 
36,762 

34,658 
35,366 

33,067 
35,103 

32,802 
27,352 

35,181 
27,032 

33,455 

(5) 

Incurred 

Losses 

0 
187072 

26Z 067 
313 728 
406 078 

443 257 

373 189 
601 346 

530 364 
338 464 
586 367 

392 025 
106 069 
48 252 

183 178 

178 850 

4,950,306 

(6) 
Los s 
Ratio 
( Subj. 
Prem.} 

(5) +(3) 

000 
131 
Z45 
355 
447 
546 
646 
744 
850 
957 

1 108 
I 396 
1 617 
1 764 
2. 603 
3. 308 

• 578 OO 
"-4 
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APPENDIX 

TABLE 2 

CALIFORNIA WOR_KMEN'S COMPENSATION 

EXPERIENCE RATING STATISTICS 

Series II - By Interval of Subject Premium Loss Ratio 

Exhlbit K - Subject Premlum 25,000 - 49,999 

Policies Effective I/I/58 - 9/30/58 

(i) 
Subject 

Premium 

Loss Ratio 

Interval 

N u m b e r  of R i s k s  (4) 
(Z) (3) .~2 

13,9 2 
Actual Theoretlcal (3) 

• 0 0 0  - . 199 46 50 0.3Z 

• 200 - .299 33 32 .03 

• 300 - .399 26 29 .31 

• 400 - .499 29 26 .35 

• 500 - .599 24 22 .18 

• 600 - . 799 39 34 .74 

• B00 - .999 28 23 1.09 

1. G00 & up 31 40 2.03 

• :~tal Z56 256 5.05 

For 7 degrees of freedom: 

ira-= 0.95 2.17 

pp.= 0.05 14.07 


