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equivalent to 1.0, the requirement of any p.d.f. Then, since the amount 
of premium is es, the frequency function for the number of risks is Ye-(a+‘)r 
upon dividing by the amount of premium. By integrating this frequency 
function and fulfilling the requirement that the integral equals 1.0, we do 
“easily” obtain T(x, aSI, p), 

Mr. Hewitt’s fine narrative on “fitting the data” in Appendix 1 would 
have been enhanced, at least for the average reader, if he had seen fit to 
include some of his worksheets used in obtaining the tables in the paper. 

This paper is a valuable addition to our Proceedings despite the minor 
points just raised. We hope that Mr. Hewitt, and others, will continue to 
share their research with us. 

DISCUSSION BY ROBERT L. HURLEY 

While this paper, so suggestive of an austere scholarship, may seem 
directed to those of the avant-garde who delight in frolicking among the 
outer reaches of actuarial theory, Mr. Hewitt presents both a challenge 
and a promise to those members whose interests, like this reviewer’s, may 
gravitate more towards the application of actuarial principles to current 
underwriting and rating problems. 

This paper shows that the distribution by size of both the workmen’s 
compensation standard premium and the number of policies* may be fairly 

described by a Log Gamma equation. It also suggests that certain work- 
men’s compensation expenses may vary by size of risk according to a simi- 
lar pattern. There is the intimation (which particularly interests this re- 
viewer) that loss distributions may follow the same law, using the latter 
term in its least restrictive sense. 

A quick check on Mr. Hewitt’s findings by premium size (c.f. Table I) 
reveals a close fit of the actual to theoretical values, according to the 
Pearson Chi-Square or even the possibly more critical Kolmogorov-Smirnov 
test. While references were afforded the reader on the Gamma function, 
the author was understandably more interested in the potential significance 
of his findings to actuarial theory than in detailing the mathematics, some 
of which is available in the standard literature. This “Hoc age” (up and 
at it) approach which is not infrequently so characteristic of the scholar 
can be oftentimes bewildering and even exasperating to the less specialized 
reader. 

* As given in Exhibit I of the National Council on Compensation Tnsurance’s Report 
of the Special Committee to Study Expenses by Size of Risk. 
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It might, therefore, be not inappropriate for the reviewer to fill in with 
certain details which he has been able to find in the literature and to add 
some comment on the problem of graduation methods versus risk theory, 
drawing chiefly on the work of others with which, in some instances, he 
has had only the most casual relationship, and in others, no personal con- 
tact at all. 

As Mr. Hewitt noted, the Gamma Distribution is sometimes referred 
to as the Pearson Type III Curve. It may bc rccallcd that at the turn of the 
century Karl Pearson suggested that most of the familiar uni-modal fre- 
quency distributions could be generated by varying the numerical co- 
efficients of a differential equation whose numerator was a linear and 
whose denominator was a quadratic expression in X. 

The basic equation is of the general form cjer 
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y 1 Be-” ~~2, which is the general form of the Gamma equation given 
in Mr. Hewitt’s paper. 

The Gamma function is commonly rcprcscntod as a skew shaped curve 
where y has its peak value at the lower end of the .r scale and drops off 
towards zero as the x value approaches infinity. It will be sensed intuitively 
that the contour of such a curve might well fit the type of data, policies and 
premiums by size groups, with which Mr. Hewitt was working. 

Now lest it be thought that the Pearson system is solely a fabrication 
out of sheer fancy with no foundation in reality, it should be noted that 
the basic differential equation cited above can be developed out of those 
quite practical problems as figuring the chance of getting a full house in a 
poker game. And the familiar Normal Curve y = k,e -x,X2 results from 
assigning zero values to the 0 and L‘ codficients of the .r values in the de- 
nominator of Pearson’s differential equation. 

In many actuarial problems, reasonably satisfactory predicative statis- 
tics can be developed by recasting the original data so that tables of the 
probability integral (i.e. the normal curve) may bc used. On occasions it 
is found that while, for example. the number of losses y by dollar size 
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group x will not fit the normal curve, a reasonably good fit can be obtained 
by transforming to fog x or the logarithm of the dollar loss size. 

The substitution of the log x scale may tend to rcducc both the variance 
and the skewness of the distribution. It is demonstrated in mathematical 
texts that while log x approaches infinity as .Y increases, it does so more 
slowly than any polynomial in u.P + bP + . . . no matter how small a 
positive fraction n may become. Consequently, the substitution of log func- 
tions sometimes renders the data more tractible to mathematical analysis, 
and this seemingly was a consideration in Mr. Hewitt’s decision to use the 
log of the gamma function. 

Mr. Hewitt’s paper, it is believed, represents another significant ad- 
vance by the proponents of the mathematical theory of risk school in the 
search for a constantly more precise analytic expression for the actuarial 
principles underlying the casualty and property insurance business. 

It may be recalled that in his review of the paper on Table M in Volume 
LII of the Proceedings, Mr. Hewett stressed the need (in support of Mr. 
Simon’s conclusion) for determining the basic nature of underlying loss 
patterns rather than perpetuating the customary practice of collecting a 
series of observations and by some subtle ingenuity, but more commonly 
through the mere drudgery of actuarial sweat, devising an equation that 
would fit tolerably well. In this regard, it may be helpful to take just one 
business problem commonplace to many company actuaries, trace some 
intermediate solutions, and see it emerge as one of the basic situations 
demanding the attention of those who arc interested in the possible appli- 
cations of the mathematical theory of risk. 

Many years ago, now, a company about to file an individual risk rating 
plan for fire insurance was induced to research the possibility of incorporat- 
ing an optional deductible (i.e. up to $5000) feature as “natural” for 
large accounts with 25 or more locations. A number of the then actuarial 
students were set to scurrying about the statistics to see what $1000 to 
$5000 deductibles were worth by line size. 

The Loss Elimination Ratios (LERs) were computed for each deduc- 
tible line size and an attempt was made to fit the observations to a rec- 
tangular hyperbola with the axes rotated minus 45”, or a curve of the gen- 
eral form xy = k. The fit was so unsatisfactory at the upper reaches of the 
insurable values that it was decided to draw a curve that would best fit the 
observed points solely on an eye control. 

Somewhat later, when another company came out with a considerably 
less modest dcductiblc program, additional data were taken off to check 
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the comparative rate credits. Combining the latter data with the statistics 
from the earlier study, one of the investigators found that the observed 
LERs could be made to fit more closely a theoretical curve by changing 

k 
the equation from y -- x to y a +kbx 

Within the last few years many of the fire rating bureaus have filed deduct- 
able rating plans wherein the observed LERs by line size for various fire 
insurance deductibles from $500 to $75,000 will be found to fit reason- 
ably well (at least within the range of values for which readings were avail- 

k 
able) a graduation equation of the general form y = ~ (1ug.x~ 

And in Volume LII of the CAS Proceedings Mr. Simon’s very readable 
exposition of the mathematical research underlying the 1965 revision of 
Table M relates that after testing some 25 different equations, it was found 
that the insurance charges were best described by an equation of the form 
+ (rj = 1 / (I + r + bL r’ . . . b: r;) where r equals the adjusted ratio of ac- 
tual to expected losses. 

Now, these previous references, covering different samples, different 
times, different coverages, all tend to describe insurance loss distribution by 
size as a pattern which might be generalized into an equation of: 

Y f(x) = k 
Mr. Hewitt’s use of the log gamma might conceivably be viewed as a 

further generalization on this equation with the substitution of a second 
variable in x for the constant /r----so that the revised equation becomes 
c y fl (x) = f2 (x); with fL(.x) < fl (x) as .r -* % . With the following equiva- 

I’ (P !- I), 
lences to Mr. Hewitt y = T; c = -al’, , 

f, (x) = t?; fl (x) = a?’ in Mr. Hewitt’s first equation 

Tdx= 
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___~-~ ~ 
r(P+l) 

xp e-Or dx 

On occasions all of us are probably bothered by the mathematical cre- 
ations sometimes erected to explain situations that on the surface, at least, 
appear quite simple. As a case in point. WC might take the basic equation 
y f(l) = k, discussed above. 

When f(x) equals x this equation reduces to an expression which is 
equally applicable to Boyle’s Law of Gases, or to the area of a rectangle, or 
to any situation explaining the variation of two factors whose product 
tends to be constant. On the face of it, such a situation can be thought 



RISK DISTRIBUTIONS 121 

analogous to the distribution of expected losses or excess loss ratios by size 
since as the size increases, the expectancy decreases-but not in a straight 
line down to zero for some fixed x less than infinity. 

And yet, on testing, we sometimes discover that the easy explanation 
just does not fit the facts. Consequently, additional elements must be 
sought to account for the underlying phenomena at play. 

But on occasions this attempt to fit the mathematics to the observed 
facts, even with the additional data, does not work out too successfully. In 
such a situation the attack on the problem must be redirected, and our 
mathematical horizons widened. 

This, as I understand it, is the goal of the Mathematical Theory of 
Risk school, and Mr. Hewitt’s paper might be regarded as a particular ap- 
proach, of some promise, to the insurance industry’s possible needs area 
of the distribution of risk and maybe losses by size. 


