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An Argument  Against the Empirical Method 
Some haystacks don't even have arty needle. 

. . . .  William Stafford 

Ours did. 
We found it. 

The purpose of this paper is to set forth in an orderly fashion, a sum- 
mary of certain aspects of the work done in compiling the 1965 version 
of Table M. It  will be assumed that the reader has a basic knowledge of 
Table M and its use in obtaining insurance charges for retrospective rating 
plans. 1 This report  will be presented in a fashion that will imply that we 
went straight as an arrow from the problem to the solution. The reason for 
doing this is to present a clear and easy to follow line of reasoning, l 'm  
sure it is realized that the work could not and did not proceed in exactly 
this manner. Many false leads were pursued, and oftentimes decisions 
would be made near the end of the work which affected things done near 
the beginning. The earlier work would then be redone. Part of the reason 
for creating this written record is that the future researcher will have an 
easier time following the development. Through footnotes and appendices, 
I hope to indicate some of the areas where we investigated ideas and re- 
jected them, where expediency prompted us to accept the results produced 
and where we could hope for improvement in the future. 

On September 13, 1962, the subject of a revision for Table M was 
placed on the agenda of the Actuarial Committee of the National Council 

1,Basic reference papers on the compilation of excess pure premium ratios (that is, 
Table M) .are Lewis H. Roberts, "Graduation of Excess Ratio Distributions by the 
Method of Moments," PCAS Vol. X L I V ,  pg. 45; Nels M. Valerius, "Risk Dis- 
tributions Underlying Insurance Charges in the Retrospective Rating Plan," PC, IS 
Vol. X X I X ,  pg. 96; and Thomas O. Carlson, "An Actuarial Analysis of Retro- 
spective Rating," PCAS Vol. X X V I I I ,  pg. 283. A technical definition of the excess 
pure premium ratio will be found in this paper as equation (C12) in Appendix C. 
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on Compensation Insurance. Aetna Casualty and Surety Company, Ameri- 
can Mutual Liability Insurance Company, Insurance Company of North 
America and Liberty Mutual Insurance Company were appointed to a 
Subcommittee to Review Table M. Also attending all meetings and par- 
ticipating in the discussions was a representative of The Travelers In- 
surance Company. 

Table M was last revised in 1954. Unfortunately, no paper was pre- 
sented to the Society at the time of this revision, and the only convenient 
reference is the files of the National Council on Compensation Insurance. 
At times, it is difficult to differentiate between the proposals made and the 
ideas that were actually put into effect. However, it was clear that this 
revision was made to reflect the increased variance in the risk distributions 
since the 1943 table of the National Council was published. Basically, the 
table itself was not changed, but the column headings were revised so that 
the variance of risks having the expected losses shown at the top of a 
given column was equal to the variance of the underlying risk distribution 
for that column in Table M. Basic raw data, therefore, was only used to 
the extent of determining the variance for a given expected loss size, and 
was not used to actually calculate excess pure premium ratios. 

It was decided that the 1965 revision of Table M would be based on 
actual workmen's compensation risk distributions. Individual risk infor- 
mation was gathered for policy year 1960-61 from all states where the 
National Council on Compensation Insurance is the filing agency plus the 
states of California, Hawaii, Massachusetts, Michigan, Montana, New 
York, North Carolina, Virginia and Wisconsin. The columns of charges'-' 
in the 1964 Table M were numbered from 1 through 37, and the expected 
loss ranges were converted to premium ranges by dividing by .596 (the 
permissible loss ratio most commonly used throughout the country).  The 
risks were then sorted by standard premium and assigned "Old Premium 
Group" numbers on this basis (risks having a premium less than $1,678 
were excluded). Referring to Exhibit A, we see that experience was 
found in each of the first 36 premium groups of the 1954 Table M. All 
risks with standard premiums between $1,678 and $1,987 were included 
in the first group, and the last group included risks with standard premit, ms 
between $608,221 and $2,307,046. A tota.I of 112,646 risks were proc- 
essed with an aggregate premium of $855,278,990. 

Four  interesting statistics are included on Exhibit A to help visualize 

:: [ will use "excess pure premium ratios" and "charges" interchangeably. The 
European term "stop-loss premium" could also have been used. 
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the data better: (1)  the loss ratio; (2) the charge at a ratio of 1.00, that is, 
at the mean; (3)  the percent of risks falling below the mean and (4) the 
median value of the ratio. The last three statistics are based on the ad- 
justed ratio of actual losses to expected losses, r, which will be described 
later. 

Exhibit A also shows the raw data average loss per risk which is the 
quotient of the total actual unlimited losses in the premium group divided 
by the number of risks. A study of loss trends over the years has indicated 
that the average cost per case in workmen's compensation is steadily in- 
creasing. This is expected because of more costly medical bills, plus the 
fact that legislation has tended to increase the value of all the benefits. 
Exhibit B shows a six year trend of workmen's compensation average loss 
costs. This indicates a 33.7% increase in cost over a five year period. 
There is to be a five year gap between the period used in collecting the 
basic statistical information (1960) and the time when the new Table M 
will first go into effect (1965).  Today's workmen's compensation risk, 
therefore, having a given number of expected losses, will be roughly 35% 
larger in terms of dollars of expected loss. It is proven in Appendix A that 
this means that average losses per risk should be modified 35% assuming 
the coefficient of variation of the claims distribution remains constant. 
Countering this argument is the slightly improved claim frequency experi- 
ence resulting from improved safety measures and technological changes. 
However, it was felt that this was more than offset by other factors. 

Another factor behind the modification was that the raw data was 
based on first reports under the unit statistical plan. It is well-known that 
the major developments from first to second reports occur in the ,area of 
large claims. '~ This is almost certain to increase both the variance and the 
skewness of the distribution. Hence, we felt that the raw data risk distribu- 
tions were undoubtedly more compact than the truth would show if it 
could be known. It was, unfortunately, not financially feasible to make a 
comparison of risk distributions between first and second reports under the 
unit statistical plan. Somewhat countering this argument again is the fact 
that unit reports split large interstate risks into smaller intrastate pieces. 
Because experience rating is on an interstate basis, the pieces are being 
adjusted in the direction of the mean of the entire risk. Therefore, we expect 
the basic data to have a little larger variance than if the smaller pieces had 
been subject to experience rating on their own. As a result of all these con- 

3 For example, a special study of Serious losses for policy year 1960-61 totaling 
$150,000,000, showed a development factor of 1.146 from first to second reports. 
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siderations, we arrived at E, the expected loss (current  level) shown on 
Exhibit A, by modifying the raw data average loss per risk by a factor of 
1.35. Three significant digits were retained here and were also used in the 
final column headings on Table M. 

The work now progressed toward calculating and tabulating a column 
of insurance charges for each of the 36 premium groups. Working on one 
group at a time, the standard premium (P)  for each risk was multiplied 
by .596, and the ratio of the actual losses (A)  to the standard premium 
times .596 was calculated, rounded to two decimal places and designated 
R. The  risks were then sorted on R, and each premium size group was 
tabulated as shown in Exhibit C. The  standard premium and unlimited 
losses were shown for reference purposes and for checking. Two addi- 
tional quantities, Sum I and Sum 2, were also calculated on the first pass 
of the cards. The  first is simply a downward accumulation of the number  
of risks, and the second is the calculated number  of "points" of excess over 
the ratio shown opposite R. This can be expressed as follows: 

S...i = S...,i~, + (Ri+, - R i )  St, i., 
where S, and S~ are Sum 1 and Sum 2 respectively, and i = 0, 1, 2 . . . . . .  o; 
that is, it is a sequential numbering of the R ' s  from the .00 end of the table 
up to the limiting value ,>.4 Sum 2 continues until it reaches R = .00. ( I f  a 
case did not occur with zero losses, such a card was put in the deck with a 
zero as the number  of risks.) S~..o then contained the total number  of 
points of excess over O, that is, the sum of the frequencies times the ratios. 
The  mean ratio is the quotient of S~,o divided by the total number  of 
risks. 

For  Table M purposes this mean ratio should be exactly 1 . 0 0  and, 
therefore, a correction factor was applied to R which would adjust the 
mean to unity. Making this adjustment is equivalent to saying that we 
would accept the actual loss ratio of the entire group as being the best esti- 
mate of the expected loss ratio of the group. It also fitted in properly with 
theoretical considerations of Table M which will be referred to later. The 
adjusted ratios were called r and were used hereafter. On the second pass 
of the cards, two calculations were made at the same time. The first was 
to calculate r and the second to calculate the Table  M charge, Co(r), by 
dividing Sum 2 by the entry opposite Sum 2 at r = .00." 

4 In actual practice the tabulation was made in a slightly different fashion which 
included Sum I as a part of Sum 2. However, in dealing with the material it was 
noted that the system outlined could have been used equally well and perhaps 
with a little advantage in calculating simplicity. 

5 See Appendix B for a proof lhat the scale translation is permissible and for dis- 
cussion of the interpolation problem when there are missing values. 
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A graphic plotting of some of this data across a common entry ratio 
indicated that there was a fair degree of regularity, but there were certain 
fluctuations. Exhibit D indicates how these occurred at an entry ratio of 
r = 1 .60.  It was decided that a preliminary smoothing would be accom- 
plished by graduating the entries across a common entry ratio using the 
Whittaker-Henderson formula5 Although the Whittaker-Henderson for- 
mula is based on the assumption of equally spaced data, it was applied to 
this material. In the lower premium group sizes this is not too disturbing 
since there are approximately even intervals between the values of E. 
However, as one goes from Old Premium Group 2l  to Old Premium 
Group 22, the jump in E is significantly different than it had been up to 
that point. There is a similar sharp change at Old Premium Group 32. It 
will be developed later in this report that the smoothed data under the 
Whittaker-Henderson smoothing was only used up through Old Premium 
Group 31. The small circles on Exhibit D indicate the effect of this smooth- 
ing on the data. Calculations were made for r = . 20 ( .20)5 .00 .  We thus 
had a compilation of insurance charges smoothed under the Whittaker- 
Henderson formula which were arrayed in a matrix of 36 premium groups 
by 25 entry ratios7 

The actual production of an entire Table M is a mammoth job even 
under the best conditions. We expected to compute insurance charges 
from entry ratios of .00 through 3.00 for publication. We also ex- 
pected to have in the neighborhood of 50 premium groups requiring the 
production of some 15,000 insurance charge values. An attempt to do this 
through any method such as graphing or interpolating between selected 
points seemed beyond the realms of possibility. We were particularly in- 
terested in producing a table as promptly as possible while exercising a 
minimum number of independent judgments. Constructing this Table M 
has certainly given all those who were involved in the work a great deal 
of appreciation and respect for those who constructed the original Table 
M values. It seemed likely that if we could use the experience data we had 

G Valerius,  pp. cit. pg. 107-110. With  the advan tage  of h indsight ,  we can now ques-  
tion whe the r  this p re l iminary  g radua t ion  across  p r e m i u m  groups  was a l together  
necessary.  Since we were successful  in being able to obta in  fo rmulas  to represent  
the c o l u m n s  of  charges ,  we probably  would have  been just as successful  in deal- 
ing with the  raw data as we were in deal ing with the Whi t t ake r -Hende r son  
smoo thed  data.  However ,  at the t ime,  it seemed that  this p rocedure  would give our  
o ther  fo rmulas  a m a x i m u m  oppor tun i ty  for  success; and at the same  t ime,  if they 
were unsuccessfu l ,  would provide the s tar l ing point  f rom which the table could be 
const ructed .  

7 Ear ly  exper ience us ing desk calculators  showed that  the re.stilts us ing 25 points  
were as sa t is factory as the resttlts using 51 points  on the curve  fitting technique  
under  lest. We did not  expe r imen t  to see if the 25 could have  been reduced fur ther .  
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accumulated and derive some formulas from it, we could then be in a 
position to reformulate the premium groups in some fashion that would 
be more to our liking. Finally, we could foresee the possibility of using 
high speed computing equipment to evaluate retrospective rating values if 
the Table M charges could be determined by the computer through the t,se 
of mathematical formulas. Because of these many advantages, a consider- 
able amount of effort was spent in the search for "down-the-column" 
graduation formulas. 

Perhaps as many as 2 5  different general equations were explored as 
possible mathematical formulas to describe the column of insurance 
charges, ~,(r). Some were rejected very promptly because they did not 
appear to offer a sufficient amount of flexibility or because determining the 
constants necessary appeared to be an insurmountable task. Nine equations 
seemed to meet most of the subjective requirements, and these were 
thoroughly tested mathematically in accordance with the development in 
Appendix C. From a mathematical standpoint and from preliminary desk 
calculator tests which were made, two formulas were processed for elec- 
tronic computer programming and thus considered eligible for the final 
selection. These two formulas were: 

4~(r) = exp [ - (r + a~r ~ + a y  + a~r ~ + asr 5 + a S  + a y ) ]  ........... ( 1 )  

e p ( r ) = l / ( l + r + b e r * + b y + b ~ r * + b f  + b ~ r O + b Y )  ............ (2) 

(Work was begun on Equation (C28) ,  Appendix C, but was stopped 
when we decided to accept another equation as final.) 

A computer program was written so that for a given premium group 
the computer would read in the 25 values of r and the corresponding 
smoothed data values for the insurance charge. When working with Equa- 
tion (1) ,  the computer would transform the smoothed charge, 4,,(r), as 
follows: 

Y ( r )  = --  [r + I n  ¢8 ( r ) ] / r  ~ 

We were thus able to rewrite Equation (1) as: 

Y ( r )  = as + a~r + a~r ~ + a~r s + a6r ~ + a~r ~ 

The computer then solved the problem of obtaining the six coefficients as 
through a, such that we would have a least squares best fit using r and 
Y ( r )  as the two variables. Using these fitted coefficients, the computer 
then produced the 25 fitted values. By comparing the fitted values with 
the original smoothed values, the percentage error was calculated. This 
is all set out in Exhibit E. It should be noted that in calculating the per- 
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centage errors, the computer was working with eight significant digits, 
although the fitted values which were printed out were only shown to four 
decimal places. Therefore, the reader will not be able to exactly repro- 
duce the percentage error figures shown in the exhibit. 

On the same pass of the data, the information was transformed for 
Equation (2) as follows: 

Z ( r ) = E  lck~(r) 1 - r i t e  ~ 

We were thus able to rewrite Equation (2) as: 

Z(r) = b,, + b::r + b~r'-' + bsr" + b6r ~ + bTr" 

Again, the coefficients were determined by a least squares best fit to the 
points r and Z(r), the fitted values for the 25 points were produced by 
the computer and error calculations were made. 

As we examine Exhibit E, there is little choice between the two 
formulas. Out to three decimal places, they produced the same result in 
nearly every case. However, the pattern shown on that exhibit was gen- 
erally repeated throughout the first 22 premium groups and indicated 
that Equation (2) had a slight edge over Equation (1) .  From Old Pre- 
mium Groups 23 through 28, Equation ( l )  was slightly better, and beyond 
Old Premium Group 28 neither one of the two equations produced satis- 
factory fits. It  was decided that only one general form of equation would 
be used, and Equation (2) was selected. 

In an attempt to extend the area over which the curves would satis- 
factorily fit, Equation (2) was revised to include an additional term and 
thus read. s 

~o(r) = I t ( 1  + r + b~r ~ + b~r s + b.,r ~ + b.~r" + b,~r e + bTr ~ + bd "8) 
. . . . . . . . . .  (3)  

An example of this output for Old Premium Groups 10 and 11 is shown 
on Exhibit F. 

The computer run was completed through Old Premium Group 34 

8 Originally, we were unsure whether either Equation (1) or Equation (2) would 
perform satisfactorily. The original computer programming which was based on 
orthogonal polynomials dealt with the input in a coded fashion such that the 25 
values were sequentially numbered from --12 through +12 .  The coefficients which 
the computer  actually determined were thus in this coded translation and were not 
directly usable. It was, therefore, necessary to do some additional programming to 
get the coefficients into a satisfactory form..We decided we would rewrite the entire 
job, and at the same time, omit any Equation (1) calculations and extend Equation 
(2) one more term. 
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and the results were examined for closeness of fit. In the first two premium 
groups it was observed that the curves were producing values which im- 
plied negative frequencies for the underlying distrubution in the neighbor- 
hood of r = 1.8. This also occurred in Old Premium Group 3 in the 
neighborhood of r ~ 3 . 8 .  Other than this, the fit of the formula value to 
the smoothed value was quite good up through Old Premium Group 28. 
In Old Premium Groups 29, 30 and 31, the formulas were not fitting too 
closely at r ~ 1 . 4 .  The errors were in the direction such that the formulas 
were coming closer to the raw data on both Old Premium Groups 29 and 
31, and we decided to retain the formula approach all the way through Old 
Premium Group 31. At Old Premium Group 32, it was felt that the re- 
sults were wholly unsatisfactory and, therefore, nothing beyond this point 
would utilize the formulas produced by the least squares best fit of the 
smoothed data. ~' 

A basic decision was made at this point about reformulating the en- 
tire format of Table M. It was decided that the premium groups would be 
reformulated on such a basis that the insurance charges at an entry ratio 
of r-= 1 . 0 0  would be spaced at intervals of .010 between premium groups. 
For reference purposes the new columns of Table M were referred to as 
Premium Group .64 through Premium Group .01 where the premium 
group number identified the first two digits of the charge at an entry ratio 
of 1.00.1° The coefficients for the equation of a given premium group were 
determined by interpolation using the coefficients determined by the raw 
data. Exhibit G illustrates the method of computation II for premium 
Group .43, and Exhibit H sets forth the coefficients which were so de- 
termined for Premium Groups .64 through .21. 

We next turned our attention to the problem of extending the tables 
beyond Premium Group .21. Referring to Exhibit A, we can see that the 
number of risks became quite small from Old Premium Group 32 on- 
ward, and we were not surprised to find random fluctuations playing a 
larger part. Appendix D gives the development of a technique to pro- 

9 The formtda approach was extended further on a different basis as will be dis- 
cussed later. 

10 The raw data furnished us with coefficients for Premium Groups .21 through .61. 
We further extrapolated the coefficients successfully to produce Premium Groups 
.62, .63 and .64. 

11A graphic method of interpolation was attempted at one point in our studies, but 
was rejected when we felt a need for more significant digits than could be so ob- 
tained. The coefficients fell along surprisingly smooth curves when plotted against 
a 1/~b(1.00) abscissa, and we were convinced that the interpolation technique of 
Exhibit G was quite satisfactory. 
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duce underlying risk distributions and, hence, charges using Pearson Type 
III  curves) 2 The statistical foundation for this method is also given. In 
brief, the method consists of graduating the moments of the raw data dis- 
tributions and then using these moments to produce Type l l I  curves from 
which the charges are calculated. 

In making some of the final checks, we found that the two approaches 
(reciprocal polynomials and Type ]I[  curves) met in such a fashion that 
the gap between the two could not be bridged in any rational fashion. 
We found that the cross-differences in the area of r < 1.00 were generally 
too large, and the results produced net insurance charges in retrospective 
rating which increased as the size of the risk increased. An occasional 
anomaly of this sort of .00l or .002 might be allowed, but these inversions 
were both large and frequent. Therefore, to eliminate this problem we used 
Premium Groups .21 and .11 as fixed end points and performed a linear 
interpolation between these two groups to produce the values for Premium 
Groups .20 through .12. '~ The material in Appendix D is included partly 
for possible future use and partly because our findings closely parallel 
those reported by Bohman and Esscher. TM 

The final set of premium groups remaining were those from Premium 
Group .11 through .01. Using the Type I I I  curve we found that the 
tabled values could only carry us as far as Premium Group .12. The limit 
of the Pearson tables is at p -=--- 50.0 at which value we produced a 4(1.00) 

= .1119. The curve was beginning to approach normality, and 1 felt we 
should swing over to a normal curve at Premium Group .11. This would 
be out in an area of about $800,000 of expected loss which is beyond the 
size of the largest risk we had in the raw data. Appendix E sets forth the 
rationale and the technique used in utilizing the normal curve. 

This, then, marked the end of the main effort on producing the col- 
umns of charges for the new Table M. Two peripheral areas remained. 

10 We also tried experimenting in the small expected loss sizes with (a) Pearson 
curves, (b) the lognormal curve and (c) tr~msformations which would normal- 
ize the data. These met with varying degrees of success, but none seemed satis- 
factory in the final analysis. 

1.a We also tried to retain the Type III area and smooth out the irregularity by modi- 
fying the polynomials from Premium Groups .28 to .21. Time was very short at 
this ,point, and three quickly conceived methods each failed to produce the desired 
improvement. We did not experiment further. 

~4 Bohman, H. and Esscher F., "Studies in Risk Theory with Nttmerical ~llustralions 
Concerning Distribution Functions and Stop Loss Premiums," Skandinavisk Ak- 
tuarietidskri[t,  1963. A two page sum m ary  by Mr. Bohman of this 92 page paper  
is found in The Astin Bulletin, Vol.  111, Part II, August,  1964, p. 185. 
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The first was the problem of extending every column out to a charge of 
zero. The use of these extended values is so rare that they were dealt with 
rather arbitrarily by using a straight line set of values of the form: 

4~(r) ---- c - mr ........... (4) 

For completeness, these formulas are listed in Exhibit I. 

The second peripheral area was the desire to have two more premium 
groups calculated because of their special nature. Tabular retrospective 
p[ans have normally started at an expected loss o[ $596 (i.e., premium = 
$1,000). It will later be shown that Premium Group .85 is the one 
appropriate to E = $596. To help guide our judgment in establishing this 
premium group, it was observed that if we wanted to place 20 risks at 
appropriate points along the r scale so they would closely reproduce Pre- 
mium Group .64, they would be located at .00, .01, .02, .03, .04, .05, .06, 
.08, .09, .12, .14, .17, .21, .34, .84, 1.00, 1.27 and at two points which 
are beyond the maximum usable r of our Equation (3).  To formulate 
Premium Group .85, this information was considered and it was decided 
to place eight risks at .00, five risks at .05, four risks at .10 and one 
risk at 5.00. The other two risks were to be at r,~ and r~o. These two 
points are used to fix the conditions that the mean equals 1.00 and 
~k(l.O0) = .850; that is, [8(.00) + 5(.05) + 4(.10) + 5.00 + r,~ + r~o]/20 
---- 1.00 and [(5.00 - 1.00) + (r~o - 1 .00)] /20 = .850. '5 Solving, r,8 = .35 
and rosa = 14.00. 

The column of charges could then be produced from these values and is 
described in Exhibit J. 

We also sought a more or less limiting set of values. A Premium Group 
.99 was constructed by assuming 99 of 100 risks had a zero entry ratio 
which meant the one was at r = I00.00.  This simple column of charges is 
also described in Exhibit J. An expected loss of $3 was attached to this 
premium group because one average Workmen's Compensation loss is 
about $300. 

Now that the premium groups have been reformulated from the 1954 
premium group numbers to the new system, it becomes necessary to es- 
tablish the expected loss ranges for the new groups. The problem breaks 
down into roughly three areas. In the first, we have formula ( E l )  from 

~5 This assumes that r~ will lie beyond 1.00 and r~s will not lie beyond 1.00 which is 
borne out as being true by the subsequent solution. 
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Appendix E which associates the midpoint  of the premium group with the 
expected loss size by the formula 

E = 63200/P~* 

where E denotes the midpoint value. Let 's define g as the premium group 
number and g' as the number which divides two premium groups, i.e., 
g ' = g  q - .005  divides g from (g- l - .01) ,  thus establishing the lower limit 
o[ the expected loss range for g which will be called E',j. Hence, we can 
write : 

E'g = 63200/,~ S 

i t  was observed that, from Appendix E, 
^ 
o" o = 2.5g 

and it was inferred that we could validly write: 
^ 
,~,j. = 2.5g" 

By substitution, 
E~ = 1 0 1 1 2 / ( g  -~- .005) ~ 

This formula applied to Premium Groups .0l through .10. The result for 
Premium Group .11 (765,000) was modified on a judgment basis (to 
725,000 )in order to make the transition run smoothly from this segment 
to the next. 

The second area for establishing expected loss ranges was that in 
which Equation (D5)  in Appendix D could be helpful. Although the Type 
1I[ curves were not used to obtain the insurance charges, they were still 
the best guide to locating the expected loss ranges. A graph was drawn 
on semi-logarithmic paper of 1/4,(1.00) vs. Eg as calculated from: 

E,,j = 53400(pg + 1) 

These points appear as small circles on Exhibit K and can be seen to fall 
almost perfectly along a straight line. The line was drawn on the graph and 
its equation, using the two point form, was found to be 

log E~ = 3.5510 + .2730/g '  

where "log" designates the common logarithm. I t  was used over the range 
from Premium Group .  12 through .24. 

The final area o[ consideration is shown on the graph as lying below 
l/q~(1.O0) = 4.0. The values of E and rb(l.O0), as shown in Exhibit A, 
were used to plot the small crosses on Exhibit K. ~" It appeared to the 

am Several other possible plottings were also considered, bt,t this seemed the most 
satisfactory. 



12 TABLE M 

eye that the data fell into two sections where straight lines would fit 
the points rather well. a~ A formula was preferred over simply drawing a 
line and reading out the values, because (a) we wanted values to three sig- 
nificant places, and (b)  the line could best be drawn statistically. There- 
fore, Old Premium Groups 27 through 8 were used to determine a best 
fitting least squares line as 

log E~ = 2.6651 + .4955/g '  

which was used over the range from Premium Group .25 through .46. 

Similarly, Old Premium Groups 7 through 1 were used to determine 
a best fitting least squares line as 

log E~ = 1.6363 + .9747/g '  

which was used over the range from Premium Group .47 through .64. is 
Carrying out this entire set of evaluations for expected loss ranges results 
in Exhibit L. 

Very little space can be devoted to commenting on the gigantic task 
performed by the people who programmed the IBM 7080 in the offices 
of the Insurance Company of North America. They accomplished a quan- 
tity and quality of work which could not have been done by desk calcu- 
lator methods "in a hundred years." The reader undoubtedly recognizes 
the scope of the work involved in solving the least squares fit of a sixth 
degree equation, and we solved 150 of these problems in the course of 
this project. The calculation of one charge using Equation (3) takes 
about five minutes with a desk calculator, and we calculated about 50,000 
of them during this study. Joan Featherer did the majority of the pro- 
gramming using F O R T R A N  and programmed the final print-out of the 
table in such a well designed and executed manner that reviewing the 
results was made quite easy. The final running and testing of the table 
was done in a single program which accomplished a number of important 
steps. Using the polynomial formula, the computer calculated the in- 
surance charge. I£ the entry ratio was less than 1.00, it also computed the 
saving from Equation (C23) .  If  the saving was negative, zero was sub- 
stituted for the calculated value and the charge was set equal to one minus 
the entry ratio. The values were rounded to three decimal places and were 

1: A single concave parabola might also have fitted closely but was not tried. Looking 
back. this would have been better since we did run into a little "roughness" where 
the lines crossed. A single curve would have avoided this. 

as It was also extrapolated and used to show that E = $596, g' = .856 and g = .851. 
Therefore, Premium Group .85 applies to E = $596. 
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written out on tape. At the same time, the first and second differences 
down the column of charges were calculated so that we could readily ex- 
amine the underlying risk distribution. One of the critical tests was to 
make certain that the charges produced did not imply the existence of 
negative frequencies. For  example, the reason that Premium Group .64 
can only use the polynomial equation out to r-= 1.74 is that beyond that 
point the polynomial would imply that there was a negative number of 
cases over certain ranges. 

Exhibit M is an extract of the computer output showing the charges 
and the savings (which are marked with an asterisk on the tabulation). 
Exhibit N is an extract of the tabulation of the first and second differences 
running down the column. For ease of examination these were multiplied 
by 1000 in order to get them to be whole numbers. Finally, Exhibit O 
shows the results of the third major calculation that was made on this 
single pass of the data. In order to test the requirement that the charges 
at a common entry ratio should decrease as the expected loss increases, 
we calculated the first differences (again multiplied by 1000) between 
adjacent columns. A quick examination of this run showed that there 
were no negative figures and, in fact, the pattern seemed to be relatively 
smooth from one set of differences to the next. Similar calculations were 
made in the areas in which the polynomial did not apply, but were made 
using the desk calculators. 

Exhibit P is the statement in F O R T R A N  language of the heart of the 
computer calculation of the insurance charge in the areas where the poly- 
nomial is applicable. It is assumed that computations in a retrospective 
rating plan evaluation have reached the point where it is necessary to 
evaluate 4,(r). The formula of Exhibit P is one of the numerous possible 
ways of writing the statement in IBM 7080 F O R T R A N  language so as 
to reproduce the Table M charge. Finally, Exhibit Q is a ready refer- 
ence for the premium group numbers and the entry ratios over which 
each of the formulas applies. The possibility of computing Plan D rat- 
ings of retrospective risks through the use of computers now seems wholly 
feasible. 

In conclusion, it might be of interest to note the effect of this revision 
of the Table. One way to do so is to compare 4~(1.00) under the 1954 
Table and the 1965 Table. Exhibit R shows this comparison. It can be 
seen that the change is largest in the small premium sizes and decreases 
as the size of the risk increases to the point where it is a reduction at the 
highest sizes. A similar comparison can be made at ~k(l.60) by reference 
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to Exhibit D. A second means o[ comparison is shown in Exhibit S where 
we can visualize the underlying distributions. Notice the close agreement 
between the raw data and the 1965 Table M and the change in shape from 
the distribution underlying the :1954 Table M. 

Work on the 1965 Table proceeded with a sense of urgency because 
the 1954 Table was known to be deficient. We made a number of quick 
decisions and resisted revising certain o[ them because of the time ele- 
ment involved. Despite all this, it took three years of elapsed time to get 
the revision into effect. The best time to start the next revision of Table M 
is n o w .  

It  was evident as we worked on this assignment, that an improved 
theory of risk variation would have been of great benefit. The approach 
used was highly empirical, and we were extremely fortunate to find as 
many haystacks containing needles as we did. To avoid the difficulties and 
the pitfalls of empiricism, we should try to borrow from the mathemati- 
cal theory of risk, from Monte Carlo techniques and from operations 
research, especially in the area of anti-selection. Let's begin pushing out 
some frontiers today, so we'll be ready to solve tomorrow's problems. 

A C K N O W L E D G  EM ENTS 

I have only written about the phase o~ Table M in which 1 was prin- 
cipally interested and involved. There are many other facets to retro- 
spective rating that were reviewed and revised at the same time. Others 
are much better equipped than I to comment on these areas. 

There are many who have worked tirelessly on this overall project. 
I personally know ot~ the substantial contributions by: Roy H. Kallop, 
John R. Bevan, Harry T. Byrne, Robert Pollack, Robert A. Bailey, 
George D. Morison, Harry R. Richards, Stephen S. Makgill, James P. 
Jensen, John P. Welch, Burton Covitz, Fred M. Chorpita, Daniel J. 
Flaherty, Joseph F. Martorana, Mrs. Joan M. Featherer and John Craig. 



WORKM~N'S COMPENSATION INDIVIDUAL RISK EXPERIENCE EXHIBIT A 
UNLIMITED LOSS DATA 

Old 
Premium 
Group 
Number 

I 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2O 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

Number 
of 

Premium Range Risks 

1678 - 1987 16,950 30,926,469 60.9~ 1,112 

E ~(1.00) Proportion 
Raw Date E~pected Charge at of  Risks Median 
Average Loss Actual/ Falling Value of 

Standard Loss Loss (Current Expected Below the Actual/ 
Premium Ratio per Risk Level) of 1.00 Mean Expected 

1,500 .6240 
1,324 1,790 .6005 
1,603 2,160 .5775 
1,933 2,610 .5592 
2,121 2,860 .5279 
2,621 3,540 .5154 
3,125 4,220 .4865 
3,823 5,160 .4758 
4,180 5,640 .4420 
4,591 6,200 .4320 
5,183 7,000 .4240 
5 , 7 2 7  7,730 .4019 
6,422 8,670 .4022 
6,898 9,310 .3781 
7,260 9,800 .3741 
7,987 I0,800 .3743 
7,964 10,800 .3461 
8,658 Ii,700 .3531 
9,491 12,800 .3314 

1988 - 2429 1 6 , 9 8 3  3 7 , 2 7 2 , 0 9 0  6 0 . 3  
2430 - 2871 1 2 , 0 8 9  3 1 , 8 9 3 , 8 9 0  60.8 
2872 - 3311 8 , 9 0 7  2 7 . 4 4 3 , 4 3 2  6 2 . 7  
3312 - 3974 9,808 35,556,533 58.5 
3975 - 4856 9,153 40,115,384 5 9 . 8  
4857 - 5739 6,372 33,614,135 59.2 
5740 l 6623 4,694 28,954,076 62.0 
6624 - 7506 3,674 25,897,532 59.3 
7507 - 8388 2 , 8 5 6  2 2 , 6 3 6 , 3 2 0  5 7 . 9  
8389 - 9271 2 , 3 7 6  2 0 , 9 4 0 , 0 1 9  5 8 . 8  
9272 - 10155 1,874 18,182,410 59.0 

10156 - 11038 1,664 17,619,552 60.6 
11039 - 11920 1,336 15,314,562 60.2 
11921 - 12804 1,245 15,376,031 58.8 
128D5 - 13687 1,040 13,771,549 60.3 
13688 - 14569 856 12,077,797 56.4 
14570 - 15454 798 11,980,889 57:7 
15455 - 16336 711 11,290,884 59.8 
16337 - 17219 658 11,042,869 60.8 10,207 13,800 .3594 
17220 - 19934 1,507 27,890,998 56.& 10,442 14,100 .3240 
19935 - 24736  1,842 40,981,259 57".2 12,735 17,200 .3113 
24737 - 29887 1,210 32,839,117 5 4 . 7  14,841 20,000 .2868 

899 29,240,852 56.7 18,458 24,900 .2788 
610 23,385,219 59.4 22,767 30,700 .2884 
492 21,821,261 61.3 27,182 36,700 .2755 
353 17,821,787 59.5 30,063 40,600 .2523 
334 1 9 , 0 9 6 , 5 8 3  55.3 3 1 , 6 1 9  4 2 , 7 0 0  .2482 
328 21,601,968 55.9 36,795 49,700 .2294 
319 25,640,792 59.4 47,716 64,400 .2340 
267 2 7 , 4 2 6 , 5 7 8  53.3 5 4 , 7 3 9  73,900 .1943 
178 24,179,267 60.7 82,440 Iii,000 .1842 
123 22,861,752 58.2 108,130 146,000 .1611 
75 20,381,237 5 7 . 4  155,931 211,000 .1655 
44 17,547,482 52.6 209,919 283,000 .1348 
21 20~656T415 52.6 517,503 699,000 .I198 

112,646 855,278,990 58.5 

29888  - 35429 
35430 - 41346  
41347  - 47340  
47341 - 53831 
53832 - 60821 
60822 - 72427 
72428 - 90603 
90604 - 117449 

117450 - 159395 
159396 - 226509 
226510 - 322986 
322987 - 608220 
608221 - 2307046 

79% .19 
78 .23 
77 .26 
76 .30 
74 .35 
73 .38 
72 .42 
71 .45 
70 .53 
70 .54 
69 .56 
65 .59 
67 .61 
65 .64 
66 .66 
66 .64 
63 .71 
64 .68 
63 .72 
67 .67 
64 .75 
65 .75 
63 .80 
60 .81 
64 .78 
64 .79 
62 .83 
59 .84 
60 .85 
60 .85 
59 .90 
62 .89  
57 . 9 6  

64 .91 
57 .92 
54 .99 

> 

V~ 
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EXNIBIT B 

COUNTRYWIDE WORKMEN'S COMPENSATION AVERAGE COST PER CASE 

ALL CASES~ INDEMNITY PLUS MEDICAL 

Policy Average Ratio to Cumulative 
Period Cost Previous Year Change 

1956-57 181.03 Base 1.000 

1957-58 197.77 1.092 1.092 

1958-59 206.46 1.044 1.140 

1959-60 223.00 1.080 1.231 

i960-61 230.14 1.032 1.270 

1961-62 242.40 1.053 1.337 
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TABULATION OF RAW DATA 

Old Premium Group 1 

R 

Standard Unllmlted Ratio No. of 
Premium Losses A/(.S96P) Risks Sum 1 Sum 2 

1950 206614 177 .78  l l 
1903 100439 88 .57  l 2 
1684 63829 63 .60  l 3 
1958 59617 51 .09  1 4 
1797 44947 41.97 1 5 
1820 43504 40.10 l 6 
1937 43849 38.00 l 7 
1868 41693 37.46 l 8 

: : : : : 

67236 42789 1 .07  37 3474 
43350 27296 1 .06  24 3498 
50055 31317 1.05 27 3525 
34125 21065 1.04 19 3544 
45683 27925 1.03 25 3569 
43608 26435 1.02 24 3593 
47706 28573 1.01 26 3619 
32649 19412 l .O0  18 3637 
54544 32111 .99 30 3667 
54854 31864 .98 30 3697 

! ! ! ! ! 
,1 : : : : 

265980 38016 .24 146 7769 
284133 38828 .23 155 7924 
326246 42676 ,22 179 8103 
328726 41082 .21 179 8282 
302686 36100 .20 166 8448 
331543 37399 .19 183 8631 
373757 40091 .18  205 8836 
386279 39082 .17 212 9048 
425014 40408 .16 233 9281 
388311 34605 .15 213 9494 

740516 30809 .07 405 12115 
845263 30105 .06 463 12578 
836277 24972 .05 460 13038 
887957 21086 .04 487 13525 

1061074 18927 .03 582 14107 
1054247 12388 .02 576 14683 
916101 5675 .Ol 500 15183 

3215866 340 .00 1767 16950 
30926469 18844603 16950 

EXHIBIT C 

r ~(r) 
Adlusted Ratio Chsrge 

• 00 173.58 .0000 
89 .2 [  86.48 ,0051 

139.15 62.10 .0080 
176.68  4 9 . 8 8  . 0 [02  
213 .16  4 0 . 9 8  .0123 
222.51 39.15 .0128 
235.11 37.10 .0135 
238.89 36.57 .0138 

[ 0 6 5 6 . 3 8  1 .04  .6138  
10691.12 1 .03  .6158  
10726 .10  1 .03  .6179 
[0761,35 1.02 .6199 
10796.79 1.01 .6219 
10832.48 1.00 .6240 
10868.4[ .99 .6260 
10904.60 .98 .628[ 
10940.97 .97 .6302 
10977.64 .96 .6323 

: : = 

14801 .98  .23 .8526 
14879.67  .22 .8571 
14958.91  .21 .8617 
15039.94 .21 .8663 
15122.'76 .20 .8711 
15207 ,24  .19 .8760 
15293.55 .18 .8809 
15381.91 .17 .8860 
15472.39  .16 .8912 
15565.20 .15 .8966 

164o;o7 o7 9i51 
16529.22  .06 .9521 
16655.00 .05 .9594 
16785.38 .04 .9669 
16920.63 .03 .9747 
17061,70  .02 .9828 
17208 .53  .01 .9913 
17360 .36  .00 1 ,0000  
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EXHIBIT E 

EXAMPLE OF TEST RUN FOR SELECTING EQUATION 

Old P=emkum Group I0 

Raw Smoothed 
r Data Da.tn 

.20 .827~I) .8249 

.40 .6873 .6901 

.60 .5836 .5877 

.80 .4976 .505[ 
1.00 .4320 .4377 
I•20 .3752 .3799 
1.40 .3302 ..3325 
1.60 .2898 .12924 
1.80 •2579 .2576 
2.00 .2297 •2293 
2.20 •2067 .2039 

2.40 .1848 .1823 
2.60 .1667 .1631 
2.80 .1504 .1470 
3.00 .1373 .1329 
3.20 .1247 .I197 
3.40 .1141 .1094 
3•60 .i041 .I034 
3.80 .0958 .O915 
4.00 .0882 .0837 

4.20 .0817 .0771 
4.40 .0764 .07|2 
4.60 .0707 •0660 
4.80 .0659 •0610 
5.00 .0612 •0566 

Fitted 
Value 

.8248 

.6908 

.5867 

.5042 

.4371 

.3812 

.3339 

.2934 

.2586 

.2285 
2028 

1808 
1621 
1463 
1328 
121I 
r iO9 
1016 

.0931 

.0850 

.0774 

.0704 

.0644 

.0600 

.0581. 

Equation (I) Fitted Equation ~2) 
% Error* Value 7. Error* 

-.2Z 
.8 

-.5 
=.3 
-.l 
.3 
.4 
.4 
.4 

=.3 
-.5 

-.8 
-.6 
-.5 
-.I 
1.2 
1.3 

-1.7 
1.7 
1.6 

.4 
-I.I 
-2.4 
-I .7 
2.7 

• 8247 -. 67. 
.6911 1.i 

.5873 -.2 
• 5045 -. 2 
.4368 - .2 
.3805 .i 
.3330 .I 
.2926 .I 
• 2582 .2 
.2288 -.2 
.2055 -.2 

1819 -.2 
1633 .I 
1471 .I 
1331 .2 
1208 .9 
I I00  .6 
I005  = 2 , 9  

.0919 .5 

.0843 .7 

.0774 .4 

.0713 ,1 

.0658 -.3 
• 0609 -. [ 
• 0567 . I 

* Percentage errors are calculated as the error in the insurance charge for 
values of r ~" 1.00, and as percentage errors in the saving for values of 
r ~ 1.00, where the saving equals the charge plus the entry ratio minus i.00. 
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EXHIBIT F 

FINAL CURVE FITTING RUN 

Example of Two premium Groups 

OLD PREMIUM GROUP I0 OLD PREMIUM GROH P It 
Raw Smoothed Fitted Equation {3) Raw Smoothed Fitted Equation (3) 
Dnt._~n Data Value ~ Error* Data Data Value ~ Error* 

.20 .8270 .8249 .8248 -.5~ .8207 .8224 .8223 -.6% 

.40  .6873  . 6 9 0 [  . 6 9 1 0  1 . 0  . 6 8 3 6  . 6836  . 6845  1 .1  

.60  . 5836  .5877  . 5 8 7 2  - . 3  .5810  . 5 7 7 9  " . 5772  - . 4  

.80 .4976  .5051 .5044  - . 2  . 4 9 4 t  .4921  . 4916  - . 2  
1 . 0 0  .4320  .4377  . 4 3 6 8  - . 2  . 4 2 4 0  . 4229  .4220  - . 2  
1.20 .3752 .3799 .3806 .2 .3655 .3637 .3643 .2 
1.40 .3302 .3325 .3331 .2 .3179 .3154 .3160 .2 
1 . 6 0  . 2898  .2924  .2927  . l  . 2763  .2747  . 2752  .2 
1 . 8 0  .2579  . 25 7 6  . 2 5 8 3  .3  . 2 4 1 9  .2401  . 2406  .2 
2 . 0 0  .2297  .2293  . 2 2 8 8  - . 2  .2134  . 2119  .2114  - . 3  
2.20 .2067 .2039 .2035 - .2  .1906 ~1870 .1865 - .3  
2.40 .1848 .1823 .1818 -.3 .1697 .1659 .1654 -.3 
2 . 6 0  . [ 6 6 7  . 1 6 3 i  .1631  - . 0  . 1 5 1 !  . 1476  . 1475  - . 1  
2,80 .1504 .1470 .1470 -.0 .1351 .1321 .1321 -.0 
3.00 .L373 . 1 3 2 9  .133l .I .1222 .1188 .I189 .I 
3.20 ,1247 .1197 .1208 ,9 .lll0 .1058 .1074 1.6 
3.40 .i141 .1094 .If01 .6 .1012 .0968 .0974 .7 
3.60 .1041 .I034 .1005 -2.8 .0923 .0918 .0887 -3.4 
3.80 .0958 .0915 .0920 .5 .0845 .0804 .0809 .6 
4 . 0 0  .0882  .0837  .0843  . 8  .0771  .0733  .0739  .8  
4 . 2 0  .0817  .0771  .0774  .4  . 0 7 0 5  . 0674  .0677  .5 
4 . 4 0  .0764  .0712  .0712  .1 .0647  .0621  .0622  .1 
4 . 6 0  .0707  . 06 6 0  . 0 6 5 7  - . 4  . 0 5 9 7  . 0575  .0573  - . 4  
4.80 .0659 .0610 .0609 -.2 .0556 .0532 .0530 -.3 
5.00 .0612 .0566 .0567 .2 .0517 .0493 .0494 .2 

COEFFICIENTS 

b 2 .3388717 .44044010 

b 3 -.16700810 -.22436769 

,b 4 .15762138 .20788815 

b 5 -,042426274 ".058737i27 

b 6 .0011206270 .0032567560 

b 7 . 0 0 1 1 6 4 6 5 6 3  .0011371418 

b 8 -.00012901262 -.00014028810. 

* PercentBge errors are calculated as the error in Lhe Insurance charge for values of 
r~__l.O0, and as percentage errors in the saving for values of r ~ 1.00, ~lere the savln 8 
equals the chargeplus tile entry ratio mlnus l.O0. 
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EXHIBIT G 

INTERPOLATION TO DETERMINE COEFFICIENTS 

FOR NEW PREMIUM CROUPS 

The ¢oeffielents for Premium Group .43 were found by interpolation 

between the values (shown on Exhibit F) for Old Premium Groups i0 and II. 

Harmonic interpolation was used as follows: 

Old Premium Old Premium New Premium 
Group I0 Group ii Group .43 

~(I.00) .4368310 .4220344 .430 
I/4(I.00)* 2.2892150 2.3694751 2.3255814 

Interpolating Proportion .5468932 .4531068 
b 2 .33887170 .44044010 .3848930 
b 3 -.16700810 -.22436769 -.1929981 
b 4 .15762138 .20788815 .1803976 
b 5 -.042426274 -.058737127 -.0498168 
b 6 .0011206270 .0032547560 .0020876 
b 7 .0011646563 .0011371418 .0011522 
b 8 -.00012901262 -.00014028810 -.0001341 

* Determined as 2.0 (i.e., I + r) plus the sum of the coefficients b 2 through 
b 8 for the old premium group columns. 



EXHIBIT H (Page i) ~,~ 
bJ 

Premium 
Group 

.64 

.63 

.62 

.61 

.60 

.59 

.58 

.57 

.56 

.55 

.54 

.53 
,52 
.51 
.50 

.49 

.48 

.47 

.46 

.45 

.44 

.43 

.42 

.4t 

.40 

.39 

.38 

.37 

.38 

.35 

MATRIX OF COEFFICIENTS 

Maximum 

b_22 b._~3 b4 b...~ 5 b._.66 b 7 b.~ 8 Usa b I e r 

-2.4031906 4.9946221 -5.0352823 2.6534276 -0.7476412 0.1066010 -0.0060366 1.74 
-2.2041460 4.5552874 -4.6030607 2.4345125 -0.6081637 0.0984249 -0.0055528 1.74 
-2.0171974 4.1473717 -4.1993122 2.2285352 -0.63192[5 0.0905791 -0.0051517 1.74 
-1.8310552 3.7423805 -3.7973659 2.0229685 -0.5756088 0.0827421 -0.0047170 1.74 
-1.6570528 3.3682250 -3.4231837 1.8300687 -0.5223754 0.0752858 -0.0043009 1.74 

-1.4832753 2.9961886 -3.0500584 1.6371411 -0.4689893 0.0677905 -0.0038819 3.78 
-1.3210878 2.6538260 -2.7035217 1.4562566 -0.4185056 O.0606505 -0.0034801 3.78 
-1.1594855 2.3148689 -2.3592562 1.2758234 -0.3679712 0.0534825 -0.0030759 3.78 
-1.0269758 2.0494542 -2.0828563 1.1267103 -0.3251918 0.0472951 -0.0027214 3.78 
-0.8896476 1.7743882 -1.7964056 0.9721749 -0.2808567 0.0408827 -0.0023540 3.78 

-0.7549972 1.5141474 -1.5311006 0.8317601 -O.2411180 0.0351902 -0.0020300 3.78 
-0.6159643 1.2463364 -1.2586406 0.6878316 -O.2004408 0.0293691 -0.0016989 5.00 
-0.&911550 1.O191766 -1.O283315 0.5666651 -0.1663803 0.0245276 -O.0014256 5.00 
-0.3651269 0.7926783 -0.7988756 0.4460618 -0.1325207 0.0197223 -0.0011549 5.00 
-0.2502708 0.5970000 -0.5988208 0.3401507 -0.1025966 0.0154505 -0.0009130 5.00 

-O.1339706 0.4013138 -0.3983194 0.2338214 -0.0725095 0.0111496 -0.0006690 5.00 
-0.0330425 0.2511240 -0.2463034 0.1543364 -0.0502972 0.0080085 -0.0004926 5.00 
0.0688215 0.1034968 -0.0973794 0.0767784 -0.0286993 0.0049637 -0.0003220 5.00 
0.1540083 0.0062860 -0.0037170 0.0308102 -0.0165737 0.0033337 -0.0002345 5.00 
0.2380330 -0.0828200 0.0811232 -0.0097579 -0.0061649 0.0019723 -0.0001634 5.00 

0.3140541 -0.1462885 0.1387~43 -0.0343862 -0.0006725 0.0013635 -0.0001375 5.00 
0.3848930 -0.1929981 0.1803976 -0.0498168 0,0020876 0.0011522 -0.0001341 5.00 
0.4520075 -0.2252639 0.2077841 -0.0572532 0.0025717 0.0012534 -0.0001473 5.00 
0.5105354 -0.2297982 0.2072574 -0.0497446 -0.0008845 0.0018417 -0.0001828 5.00 
0.5578036 -0.1952433 0.1636623 -0.0183729 -0.0108692 0.0032798 -0.0002603 5.00 

0.6000823 -0.1393633 0.0963798 0.0270763 -0.0250111 0.0053088 -0.0003703 5.00 
0.6373082 -0.0619243 0.0065091 0.0850057 -O.O~26207 0.0078055 -0.0005046 5.00 
0.6699527 0.0362174 -0.1052290 0.1558492 -0.0643880 0.0109835 -0.0006831 5.00 
0.6988077 0,1534788 -0.2401878 0.2446196 -0.0935920 0.0156192 -0.0009676 5.00 
0.7225221 0,2925464 -0.3982271 0.3492669 -0.1290635 0.0214321 -0.0013340 5.00 



EXHIBIT H (Page  2) 

MATRIX OF COEFFICIENTS 

Premium 
Group b.~ 2 b~ 3 b__44 b~ 5 b~6 b._~7 b8 

.34 0.7505061 0.4063878 -0.5060154 0.4200164 -0.1536101 0.0254783 -0.0015867 
• 33 0.7820579 0.5135850 -0.5980510 0.4804099 -0.1748942 0.0290010 -0.0018055 
.32 0.8143930 0.6003855 -0.6482440 0.5203436 -0. 1920786 0.0322248 -0.0020243 
.31 0.8512591 0.6585917 -0.6488186 0.5364166 -0.2044858 0.0350829 -0.0022395 
.30 0.8943599 0.6784657 -0.5853285 0.5210722 -0.2100882 0.0372850 -0.0024331 

.29 0.9448819 0.6556264 -0.4557299 0.4792926 -0.2129519 0.0398448 -0.0026880 

.28 1.0031130 0.5638149 -0.1995380 0.3610718 -0.1933591 0.0390678 -0.0027418 

.27 1.0682040 0.4044798 0.1691869 0.1904578 -0.1632730 0.0374271 -0.0027790 

.26 1.1457775 0.1507550 0.6772723 -0.0367783 -0. 1230709 0.0349965 -0.0027982 

.25 1.2431208 -0.2287912 1.3574460 -0.3263899 -0.0751633 0.0326514 -0.0028739 

.24 1.3523489 -0.6733113 2.0671535 -0.5402002 -0.0764166 0.0408023 -0.0037099 

.23 1.4805248 -1.2073324 2.8012469 -0.6334556 -0.1521826 0.0647098 -0.0056850 

.22 1.6498167 -1.9405544 3.6845402 -0.6430773 -0.3019227 0..1055812 -0.0089291 

.21 1.8352317 -2.7436078 4.6519573 -0.6536154 -0.4659240 0.1503452 -0.0124822 

Maximum 
Usable r 

5 . 0 0  
5 . 0 0  
5 .0 0  
5 . 0 0  
5 . 0 0  

5 . 0 0  
5 . 0 0  
5 . 0 0  
5 . 0 0  
5 .0 0  

5.00 
5.00 
5.00 
5.00 



EXHZBrr Z 

FORMULAS FOR CHARGES BEYOND THE 

RANGE WHERE EQUATION (3) APPLIES 

G e n e r a l  F o r m u l a :  ~ ( r )  = c - m r  

Applicable t o  Values 

of r in the range c [] PG. 

1.75 - 3.78 .7190 .44 

3 . 7 9  - 10 .59  .5297 .43 
1 .75  - 3 . 7 8  .7040 .42 
3.79 - 10.29 .5147 .41 

1.75 - 3.78 .6900 .40 

3.79 - i0.01 .5007 .39 

1.75  - 3 . 7 8  .6750 . 3 8  
3 . 7 9  - 9 .71  .4857 .37 
1 .75  - 3 . 7 8  .6600 .36 
3 . 7 9  - 9 .41 .4707 .35 
3 . 7 9  - 9 .12  .4562 .34 
3 . 7 9  - 8 .77  .4387 .33 
3 . 7 9  - 8 .46  .4232 .32 
3 . 7 9  - 8 .19  .4097 .31 
3 . 7 9  - 7 .95  .3977 .30 
3 . 7 9  - 7 .68  .3842 .29 
5 .01  - 7 .45  .3727 .28 
5 .01  - 7 .25  .3627 .27 
5 .01  - 7 .09  .3547 .26 
5.01 - 6.91 .3457 .25 

5.01 - 6.76 .3382 .24 

5.01 - 6.62 .3312 .23 

5.01 - 6.50 .3252 .22 

5.01 - 6.38 .3192 .21 

5.01 - 6.26 .3132 

Applicable to Values 

of r in the range 

5.01 - 6.15 

5.01 - 6.05 

5.01 - 5.96 

5.01 - 5.88 

5.01 - 5.79 

5.01 - 5 . 7 0  
5 . 0 1  - 5 . 6 5  
5.01 - 5.59 

5.01 - 5.54 

5.01 - 5.50 

5.01 - 5.47 

5.01 - 5.44 

5.01 - 5.41 

5 . 0 1  - 5 . 3 8  
5 . 0 1  - 5 . 3 5  
5 . 0 1  - 5 . 3 3  
5 . 0 1  - 5 . 3 0  
5 . 0 1  - 5 . 2 7  
5 . 0 1  - 5 . 2 5  
5 . 0 1  - 5 . 2 1  
5.01 - 5.19 

5 . 0 1  - 5 . 1 5  
5.01 - 5.13 

5.01 - 5.11 

C 

.3077 

.3027 

.2982 

.2942 

.2897 

.2862 

.2827 

.2797 

.2772 

.2752 

.2737 

.2722 

.2707 

.2692 

.2677 

.2667 

. 2 6 5 2  

. 2 6 3 7  
. 2 6 2 7  
. 2 6 0 7  
. 2 5 9 7  
.2577 
.2567 
.2557 

[ ]  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  

. 0 5  
, 0 5  
. 0 5  
. 0 5  



EXHIBIT J 

TABLE OF CHARGES AND SAVINGS - TABLE M 

Two Special Premium Groups 

r 
w 

.01 

.02 

.03 

.04 

.05 

.06 

.07 

.08 

.09 

For .I0 ~ r ~ .35 

For .36 ~r ~ 5.00 

Premium Group .85 
Expected Losses $596 

Insurance Charges 

• 994 

.988 

.982 

•976 

.970 

.967 

.963 
• 960 

.956 

~(r) = .9675 - .15r 

(r) = .9500 - .10r 

Premium Group .99 

Expected Losses $3 

Insurance Char~es 

For r-- ~- I00.00, 
~(r) = 1.000 - .01r 
(Retain all decimal 

places) 

For 5.01 ~- r-- ~ 14.00 ~(r) = .7000 - .05r ~ 
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TABLE M 27 

EXHIBIT L 

EXPECTED LOSS RANGES 

Premium 
Group 

.64 

.63 

.62 

.61 

.60 

.59 

.58 

.57 

.56 

.55 

.54 

.53 

.52 

.51 

.50 

.49 

.48 

.47 

.46 

.45 

.44 

.43 

.42 

.41 

.40 

.39 

.38 

.37 

.36 

.35 

.34 

.33 

Range 

$1,400 - $1,479 
1,480 - 1,569 
1,570 - 1,659 
1,660 - 1,769 

1,770 - 1,879 
1,880 - 2,009 
2,010 - 2,149 
2,150 - 2,299 

2,300 - 2,469 
2,470 - 2,659 
2,660 - 2,869 

2,870 - 3,109 

3,110 - 3,379 
3,380 - 3,689 
3,690 - 4,029 
4,030 - 4,429 

4,430 - 4,879 
4,880 - 5,379 
5,380 - 5,679 
5,680 - 6,009 

6,010 - 6,369 
6,370 - 6,779 
6,780 - 73229 
7,230 - 7,739 

7,740 - 8,309 
8,310 - 8,959 
8,960 - 9,689 
9,690 - 10,499 

10,500 - 11,499 
11,500 - 12,599 
12,600 - 13,899 
13,900 - 15,499 

Premium 
Group 

.32 

.31 

.30 

.29 

.28 

.27 

.26 

.25 

.24 

.23 

.22 

.21 

.20 

.19 

.18 

.17 

.16 

.15 

.14 

.13 

.12 

.Ii 

.I0 

.09 

.08 

.07 

.06 

.05 

.04 

.03 

.02 

.01 

Range 

$15,500 - $17,299 
17,300 - 19,499 
19,500 - 22,099 
22,100 - 25,299 

25,300 - 29,299 
29,300 - 34,299 
34,300 - 40,599 
40,600 - 46,299 

46,300 - 51,599 
51,600 - 58,099 
58,100 - 66,199 
66,200 - 76,299 

76,300 - 89,299 
89,300 - 105,999 

106,000 - 128,999 
129,000 - 160,999 

161,000 - 204,999 

205,000 - 270,999 
271,000 - 373,999 
374,000 - 542,999 

543,000 - 724,999 
725,000 - 916,999 
917,000 - 1,119,999 

1,120,000 - 1,399,999 

1,400,000 - 1,799,999 
1,800,000 - 2,389,999 
2,390,000 - 3,339,999 
3,340,000 - 4,989,999 

4~990,000 - 8,249,999 
8,250,000 - 16,199,999 

16,200,000 - 44,899,999 
44,900,000 & Over 



E X H I B I T  M 

E N T R Y  
RATIO 

0 . 0 1  

RETROSPECT|VE PLAN 0 - TABLE OF GHARGE$ AND SAVINGS - TABLE H 
PREMIUM GROUP 

64 63 62 6 L  60  59 58 57 56 55 56 
0 . 9 9 0  0 . 9 9 0  0 . 9 9 0  0 . 9 9 0  0 . 9 9 0  0 . 9 9 0  0 . 9 9 0  0 . 9 9 0  0 . 9 9 0  0 . 9 9 0  - 0 . 9 9 0  
0 . 0 0 0 o  0 . 0 0 0 "  O.O00S 0 . 0 0 0 8  0 . 0 0 0 ,  0 . 0 0 0 ,  0 . 0 0 0 ,  0 . 0 0 0 .  0 . 0 0 0 ,  0 . 0 0 0 .  0 . 0 0 0 ,  

0 , 0 2  0 . 9 8 L  0 . 9 0 1  0 . 9 8 1  0 . 9 8 1  0 . 9 8 L  0 . 9 8 1  0 . 9 8 L  0 . 9 8 L  0 . 9 8 1  0 . 9 8 1  0 . 9 8 L  
0 . 0 0 1 "  O.OOL* 0 o 0 0 1 "  0 o 0 0 1 "  0 . 0 0 1 ,  O.OOl*  0 . 0 0 1 ,  0 . 0 0 1 ,  0 . 0 0 1 "  0 . 0 0 1 "  O.OOL* 

0 . 0 3  0 . 9 ? 3  0 . 9 ? 3  0 . 9 7 2  0 . 9 7 2  0 . 9 7 2  0 . 9 1 2  0 . 9 7 2  0 . 9 7 2  0 . 9 7 2  0 . 9 7 2  0 . 9 7 1  
0 . 0 0 3 *  O.OOJ* O.OOZ* 0 . 0 0 2 ,  0 . 0 0 2 *  0 . 0 0 2 .  0 . 0 0 2 ,  0 . 0 0 2 *  0 . 0 0 2 *  0 . 0 0 2 .  0 . 0 0 1 ,  

O.04p 0 . 9 6 ~  0 . 9 6 ~  0 . 9 6 ~  0 . 9 6 ~  0 . 9 6 6  0 . 9 6 6  0 , 9 6 3  0 . 9 6 3  0 . 9 6 3  0 °963  0 . 9 6 3  
0 . 0 0 5 *  0 . 0 0 5 ~  0 . 0 0 6 *  0 . 0 0 6 *  0 . 0 0 ~ 4  0 . 0 0 6 *  0 . 0 0 3 *  0 . 0 0 3 *  0 . 0 0 3 *  0 . 0 0 3 *  0 . 0 0 3 *  

O.Ob 0 . 9 5 1  0 . 9 5 7  0 . 9 5 1  0 . 9 5 0  0 . 9 5 6  0 . 9 5 5  0 . 9 5 5  0 . 9 5 5  0 . 9 5 6  0 . 9 5 6  0 . 9 5 6  
O.O0?e 0 . 0 0 7 .  0 . 0 0 7 *  0 .000~  0 . 0 0 6 *  0 . 0 0 5 *  0 . 0 0 5 *  0 . 0 0 5 *  0 . 0 0 6 *  0 . 0 0 6 *  0 . 0 0 6 *  

0 . 0 o  0 . 9 5 0  0 , 9 5 0  0 . 9 ~ 9  0 . 9 ~ 9  0 . 9 6 8  0 .9~8"  0 . 9 6 7  0 . 9 6 7  0 . 9 ~ 6  0 . 9 6 6  0 . 9 6 6  
O.OLO* O.OLO* 0 . 0 0 9 *  0 . 0 0 9 *  0 . 0 0 8 0  0 . 0 0 8 "  O . O O l t  O.O0?e 0 . 0 0 6 *  0 . 0 0 6 *  0 . 0 0 6 *  > 

O.OT U .9~*  0 . 9 6 3  0 . 9 6 2  0 . 9 ~ 1  0 .96&  0 . 9 6 0  0 . 9 6 0  0 . ~ 3 9  0 . 9 3 8  0 . 9 3 8  0 . 9 3 7  
0 . 0 1 6 "  O.OL3*  O . O l Z *  O.O~Le O.OLL* O.OLO* O.OLO* 0 . 0 0 9 *  0 . 0 0 8 *  0 . 0 0 8 *  0 . 0 0 7 "  

0 . 0 8  0 , 9 ~ ?  0 . 9 3 h  0 . 9 3 5  0 . 9 3 5  0 . 9 3 ~  0 , 9 3 3  0 . 9 3 2  0 . 9 3 1  0 . 9 3 1  0 . 9 3 0  0 . 9 2 9  
O.OL?* O.OLo~ 0 . 0 1 5 *  0 . 0 1 5 "  0 . 0 1 ~ *  O.OL3~ 0 . 0 1 2 "  0 . 0 1 1 "  O . O L l *  0 . 0 1 0 ,  0 . 0 0 9 "  

0 . 0 9  0 , 9 3 1  0 . 9 3 0  0 . 9 2 9  0 . 9 2 8  0 , 9 2 7  0 . 9 2 6  0 . 9 2 5  0 . 9 2 6  0 . 9 2 3  0 . 9 2 3  0 , 9 2 2  
0 . 0 2 1 ,  0 . 0 2 0 .  O.OAge O.OLS~ O.OL?~ O.OL6* 0 . 0 1 5 ,  0 . 0 1 ~ *  0 . 0 1 3 ,  0 . 0 1 3 .  0 . 0 1 2 ,  

O.LO 0 . 9 2 6  0 . 9 2 6  0 . 9 2 3  0 , 9 2 2  0 . 9 2 0  0 . 9 1 9  0 . 9 1 8  0 . g L ?  0 . 9 L 6  0 . 9 1 5  0 . 9 1 6  
0 . 0 2 6 *  0 . 0 2 6 *  0 . 0 2 3 8  0 . 0 2 2 *  0 . 0 2 0 ,  O.OLg* O.OLB* 0 . 0 1 7 .  0 . 0 L 6 ,  0 . 0 1 5 .  0 . 0 1 ¢ *  

0 . 1 L  0 . 9 2 0  0 .  gAB 0 . 9 ~ 7  0~915 0 . 9 ~ 6  0 , 9 1 3  0 . g L L  0 . 9 L 0  0 . 9 0 9  0 . 9 0 8  0 . 9 0 7  
0 . 0 3 0 "  0 . 0 2 8 "  0 . 0 2 ? *  0 . 0 2 5 *  0 . 0 2 6 *  0 . 0 2 3 *  OoOZL~ 0 . 0 2 0 *  0 . 0 1 9 "  0 . 0 1 8 "  O.OL7* 

0 . 1 2  0 . 9 / 5  0 . 9 1 3  0 . 9 1 ~  0 . 9 1 0  0 . 9 0 8  0 . 9 0 6  0 . 9 0 5  0 . 9 0 3  0 . 9 0 2  0 . 9 0 1  0 . 9 0 0  
0 . 0 3 5 *  0 . 0 3 3 *  0 . 0 3 1 ,  0 . 0 3 0 *  0 . 0 2 8 *  0 . 0 2 6 ~  0 . 0 2 5 8  O.OZJ* 0 . 0 2 2 *  O.OZL* 0 . 0 2 0 *  

0 . 1 3  0 . g L o  0 .90B  0 . 9 0 6  0 . 9 0 6  0 . 9 0 2  0 . 9 0 0  0 . 8 9 9  0 . 8 9 7  0 . 8 9 6  0 . 8 9 6  0 . 8 9 3  
0 . 0 6 0 *  0 . 0 3 8 *  0 . 0 3 6 *  0 . 0 3 6 *  0 . 0 3 2 e  0 . 0 3 0 ~  0 . 0 2 9 e  0 . 0 2 7 *  0 . 0 2 6 *  0 . 0 2 6 *  0 . 0 2 3 *  

0 , ~  0 . 9 0 5  0 . 9 0 3  0 . 9 0 1  0 . 8 9 8  0 . 8 9 6  0 . 8 9 6  0 . 8 9 3  0 . 8 9 1  0 . 8 8 9  0 . 8 8 ?  0 . 8 8 6  
0 . 0 6 5 *  0 . 0 6 3 *  O.O~L* 0 . 0 3 8 *  0 . 0 3 6 o  0 . 0 3 6 ~  0 . 0 3 ~ e  0 . 0 3 1 ~  0 ; 0 2 9 *  O.OZ?* 0 . 0 2 6 ~  

0 . 1 5  0 .90L  0 . 8 9 8  0 . 8 9 6  0 . 8 9 3  0 . 8 9 1  0 . 8 8 9  0 . 8 8 7  0 . 8 8 6  0 . 8 8 3  0 . 8 8 1  0 . 8 7 9  
O .05L*  0 . 0 6 8 "  0 . 0 ~ 6 "  0 . 0 4 3 *  O . 0 4 L *  0 . 0 ~ 9 ~  0 . 0 3 7 *  0 . 0 3 6 ~  0 . 0 3 3 *  0 . 0 3 1 "  0 . 0 2 9 *  

0 . £ 6  0 . 8 9 6  0 . 8 9 3  0 . 8 9 1  0 . 8 8 8  0 . 0 ~ 5  0 . 8 8 3  0 . 8 8 L  0 . 8 7 8  0 . 8 7 7  0 . 8 7 5  0 . 8 ? 3  



E X H I B I T . N  

TABLE H - CUHULAT|VE DISTRIBUTION AN0 UNOERLYING FREQUENCY DISTRIBUTION 
E~rAY bk  b3 b2 bL 60 5g 58 
g A I I U  UL OZ 01 U2 UI  02 UI  02 OL 02 U[  D2 DI OZ 

U.OL 9 ,  g .  9 .  9 .  9o g .  9o 
O.O~ ~ ,  1 .  8 .  1 .  go O.  9 .  O. 9 .  O. 9 .  O. g .  O.  
0 . 0 3  8 .  O, 8 .  O° 8°  1 ,  8 .  1°  8°  t ,  ~o 1 .  g°  Oo 
0o0~  8 ,  O° B .  Oo 7 .  1 ,  8 ,  O.  8 .  O° 9 °  - 1 .  8 .  1o 
0 . 0 5  7 ,  1 .  7 ,  1 .  8 .  - 1 o  1 .  1 .  8 .  0°  7° Zo 8 .  O,  
0.OO eo 1 .  7 .  O .  7 .  L .  8 .  - t .  1 .  1 .  8 .  - k .  7 .  L .  
0 . 0 1  7 .  - 1 .  7 .  O. l .  O,  6 ,  ~ .  7 .  O. 7 .  1 .  8 ,  - 1 .  
0 . 0 ~  6°  L ,  b ,  t .  ~ .  t .  7 .  - 1 .  7 .  O, 7 .  O.  T .  1 -  
0 . 0 9  5 .  1 .  b°  O .  6 .  O.  6 .  1o 7 .  O. l .  O. 7 .  O. 
0 . 1 0  6 .  - 1 .  b .  O .  O, O.  1 ,  - 1 .  6 .  ~ .  b .  1 .  T .  O. 
O . t l  ~° 1,  5 .  1 .  b .  O.  5 ,  2 .  6 .  O,  7 .  - 1 .  6 .  1 ,  
0 . t ~  5 .  O. 5 .  O.  5 .  1 .  e .  - 1 .  6 .  0 .  o .  t .  6 .  O.  
0 . t 3  ~*  O, 5 .  O.  ~* O* 6 .  O= 6 ,  O. 6 °  O. b .  Oo 
0 . 1 ~  * .  1 .  5 .  O, 5 ,  O° 5 .  1 .  ~o 1 .  5 .  1 .  ~ .  O .  
O . t 5  5 .  - 1 .  ~ .  O. 5 .  O.  b .  O. b .  - 1 .  6 .  - t .  6 .  O. 
O.Le  ~ .  1 .  ~ .  1 .  ~ .  O.  5 .  O. ~ .  1 ,  5 .  1 .  b ,  O.  
O.L1  ~ .  O. ~ .  - I .  5 ,  O, 5 .  O. 5 .  O, o .  - t .  6 ,  O.  
O , t e  ~°  O, ~ ,  I o  ~ .  L° 5 .  Oo ~° O. 5o 1 .  5 .  I .  
O .L9  ~ .  O.  4 .  O .  ~ .  - 1 .  ~ .  1° ~ .  O. 5 .  O. 5 .  O. 
0 . 2 0  ~ .  O, ~ .  Oo ~ .  1o 5 .  - t .  ~ .  O. ~ .  O. 5 .  Oo 
O . Z I  ~o O. ~ .  O.  ~ .  O.  ~o 1 .  6o 1.  5 .  O. e .  - I .  
0 , ~  3°  L ,  ~ .  O. 6 ,  O° 5 ,  - L o  ~ .  - 1 .  5 .  O. ~ .  L .  
O.Z3 ~ .  - I .  ~ .  O.  ~ .  O. ~ ,  1 .  4 .  1 .  5 .  O. 5 .  O.  
O.Z~ 3 .  1 ,  ~ .  O.  * .  O.  ~ .  O. 5 .  - 1 .  ~ .  1o 6 .  1 .  
O.Z~ ~ .  - t .  ~ .  .1. ~ .  O,  ~ .  O, ~ .  ~ .  5 .  - t .  §° - 1 .  
0 , ~ o  ~o 1 .  ~o - 1 ,  ~ .  O. ~°  - 1 .  ~ .  O. ~ .  L.  5 .  O. 
0 . ~ 1  ~o - 1 .  ~ .  O.  ~ ,  O.  ~ .  L .  5 .  - 1 ,  ~ .  - 1 .  5 .  O. 
O.Ze 3 .  1.  3 .  1 .  ~ .  O. ~°  O. ~ .  L .  ~ .  1 .  ~ .  1 .  
O.Zg  3 .  O. ~ .  - 1 .  ~ .  O.  ~ .  O, ~ .  O. ~ .  - 1 .  ~ .  - l .  
O.~O 3 .  O. 3 .  1°  3 .  1 .  ~ ,  1 .  ~ .  O. ~ .  1 .  6 .  1o 
O . ~ i  ~ .  - 1 .  ~ .  - l o  ~ .  - 1 .  ~ .  - l .  ~ .  O. 6 .  O. 5 .  - i .  

57 
01  OZ 
g ,  
9 .  O, 
go Oo 
8 ,  1 .  
• 8 ,  O.  
8 ,  0 , .  
B.  O. 
7 ,  L ,  
7 ,  O . .  
7o O. 
7 .  O. 
be 1 .  
6 .  Oo 
7 .  - 1 o  
o .  L ,  
5 .  1 .  
6 .  - 1 .  
bo Oo 

~)o - 1 .  

5o 0 ,  
6 .  - 1 o  
~ .  1.  
5 .  O. 
4 .  L° 
~o - t o  
.5o O. 
5 .  Oo 

5 .  - 1 ,  



ENIRY 
KAIIO 

0 . 0 L  
0 , 0 2  
0 . 0 3  
0o0~  
0 . 0 ~  
0 . 0 b  
0 . 0 7  
0 . 0 8  
O.Oq 
O , | G  
0 , 1 1  
0 . 1 2  
0 . 1 3  
0 , 1 4  
0 , 1 5  
O , L 6  
0 . 1 7  
O . L 8  
0.19 
0 . 2 0  
O . Z I  
0 . 2 ~  
0 . ~  
0 . 2 ~  
0 , 2 5  
0 . 2 0  
O.Z7  
0 . 2 ~  
0 . 2 9  
0 . 3 0  
0 . 3 i  

TABLE.M 

b6 63 02 b l  DO 
0 .  0 .  O.  0 .  O. 
O. O. O. O. O. 
O. 1 ,  O. O. O. 
O. I .  0. O. O. 
O. O. I .  O. I ,  
O. I .  O. I .  0 .  
1, .1, I ,  O. 1 ,  
1 ,  1 ,  O, 1,  I ,  
1 ,  i ,  1 ,  1 ,  1 .  
2 .  I ,  1 ,  ~ .  1,  
~ .  1 ,  2 .  I .  1 ,  
2 .  2 ,  1 ,  2 .  2 .  
2 ,  ~ ,  2 .  2 ,  2 ,  
~ ,  2 ,  3 .  2 ,  2 ,  
~ ,  ~ ,  ~ ,  2 ,  2 ,  
3 .  2 .  3 .  3 .  2 .  
J° 3 .  ~ ,  ~ ,  2 ,  
4 .  3 .  3 .  3 .  3." 
6 .  3 .  ~ .  3 ,  3 ,  
~ ,  4 .  3 .  4 .  3 .  
~ .  4 .  4 .  ~ .  3 .  

5 .  ~ ,  5 .  6 .  4 .  
5 .  4 .  b .  ~ .  ~0 
~° ~ .  5 .  5 .  4 .  
5.  5 .  5 .  ~ .  ~ .  
b ,  5 .  b .  6 ,  5 .  
o .  5 .  O. ~ .  ~ .  
6. O. 6 .  ~ .  5 .  
7 .  O. 6 .  5 .  b .  
7 .  b .  O.  b .  60 

CROSS COLUMN FIKST DIFFERENCES 
PREMIUR GROUP 

59 58 5? 56 55 54 
O. O. O° O. O, O. 
O. O. O. O. O. 0 .  
0 .  O.  O. O, L .  0 .  
I .  O. O. 0. O. I .  
O. O. I .  O. O. O. 
I .  O.  i .  O, 0 .  I .  
O. 1 ,  I .  O. 1 ,  O. 
I .  I .  0 .  | .  I ,  O. 
I .  I .  I .  O. I .  I .  
1 .  1 ,  1 ,  1 .  1 ,  1 ,  
Z .  I .  I .  I .  I .  I .  
I ,  2 ,  I ,  1 .  1 ,  2 ,  
L-  2 .  1,  ~ .  1,  2 ,  
L -  ~ .  2 .  2 .  1 ,  2 .  
2 ,  3 .  1,  2 ,  2 ,  2 ,  
2 ,  J ,  i ,  2 ,  2 ,  2 ,  
3 .  2 .  ~ .  2 .  2 ,  2 ,  
3 ,  Z ,  2 ,  3 .  2 ,  2 ,  
3 ,  3 .  2 ,  J .  2 ,  3 .  
3 .  3 .  3 ,  3 .  ~ .  3 ,  
3 .  ~o 3 .  Z .  3 .  3 .  
4 .  3 ,  3 .  3 .  3 .  3 ,  

4 ,  4 .  3 ,  3 .  ~ .  3 .  

4o 5 .  3 .  4 .  ~ .  3 .  

S .  4 .  6 .  ~ .  ~ .  50 
5 -  ~ .  ~ -  4 .  5 .  6 .  
5 .  5 .  4 .  4 .  5 .  ~ .  
5 .  5 .  5 .  4 .  5 .  b .  

E X H I B I T  0 

53 52 51 50 
O. Oo O.  O. 
O. O. 1 .  O. 
Oo Oo Oo O. 
O. O, O.  O. 
1.  O. O.  O. 
O. 1.  0 .  O. 
1,  O, 1 .  O. 
1, O. 1 .  1 ,  
1 ,  I ,  O, 1 ,  
1 ,  O, 1 ,  1 ,  
1 ,  i ,  1 ,  1 .  
1.  L.  L .  L.  
1, 1 ,  2 ,  1 .  
1,  Z.  1 ,  2 ,  
I ,  2 ,  1 ,  2 ,  
Z ,  2 ,  2 .  I .  
2 ,  2 ,  2 ,  2 ,  
3 ,  2 ,  2 ,  2 ,  
2 .  2 ,  3 ,  2 ,  
3 ,  2 ,  2 .  ~ ,  
3 .  3 .  2 .  ~ .  
3 ,  3 ,  3 ,  2 ,  
3 ,  3 ,  3 ,  3 ,  
3 .  3 .  3 .  3 .  
3.  3 .  ~ .  3 .  

~ .  ~o ~0  3.  

;> 

r~ 
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EXHIBIT Q 

ARE~ OF FORMULA AI'PLICATION 

Equation (3) = 11(I+ r + b2r2 + b3r3 + b4r4 + bsr5 + b6 r6 + b7r7 + b8r8 ) 

Equation (4) - c - mr 

Premium Group Numberz .64-.60 .59-.5& .53-.21 .20-.12 . I I - . 01  
Expected Loss Range(~); 11400-1,879 lr880-2,B69 2,870-76j299 76r300-72&t999 725a000 and Over 

(3) A linear No formula 
Interpolation but the 
between charges and 
the charges savings are 

(4) at  Premlum syrunotricst 
i Croups .21 about 

and .11 r - 1.00. 
using the 

(4) premium 
group 
number 
as the 
argument. 

C r i t i c s l  Entry Rat ios  

.o0 

1.74 
1.75 

3.78 
3.79 

5.00 
5.01 

c o  

(3) (3) 

(4) 

I (4) 
t 

~ i n d l c a t e a  tha t  the formula works properly out to some l i m i t i n g  value and beyond th i s  the 
charge i s  z e r o ,  

Equation (3) constants are found in Exhibit H, 

Equation (4) constants are found in Exhibit I. 
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APPENDIX A 

The formula for the variance of the expected losses can be written'.°: 

% / =  E°-(1 q- V ) ' ) /m  I ... . . . . . . . . .  (A1)  

where V~ is the coefficient of variation of the underlying claim distribu- 
tion and mr is the mean claim frequency. In terms of the coefficient of 
variation of the expected losses we'd write: 

~7 = ( i  q- V~) /rn  r . . . . . . . . . . .  (A2)  

Now, if between year 0 and year 5, we can assume the coefficient of varia- 
tion of the claims remains constant then 

~ , j  _ mr5 .. . . . . . . . .  (A3)  
taro 

~.0. ----_ mr5 V.,.:o . . . . . . . . . .  (A4)  
nl[o 

By general reasoning, we can equate V~.~ ~ to V~.J only if mt~ equals into; 
but if the average cost per claim increases by a factor of 1.35,  we can 
equate ml~ to m/0 only if E~ : 1.35  Eo. This straightforward logic com- 
pletes the argument. 

It  is interesting to note that if the average cost per claim is brought 
about by an increase primarily in the higher cost claims (more long term 
medical, longer life expectancy for injured workers, etc.), a factor larger 
than 1.35 would be merited due to the increased coefficient of variation 
of the claims. 

APPENDIX B 

It is almost obvious that if we change the index from R to r in the 
manner described, the insurance charge, 4~(r), is the same as the previ- 
ously calculated ep(R). By definition we have for some specific R:  

4gR)  = (Sum 2 at R ) / ( S u m  2 at 0) 

= oR,  - R /¢5 
i=to i=ta 

where R~ is the value of the ratio starting with the highest value ( R J  
going down to the case which has a value equal to R ( R , ) ,  and in the 

J.~ Bailey, R. A. and Simon, L. J., "Two Studies in AutomobiJe Insurance Ratemak- 
ing PCAS XLVII ,  p. 18, equation (14) with slight changes in notation to fit our 
present definitions. 
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denominator continuing to the smallest value (Rx).  It is apparent from 
the above equation that if each of the values of R is multiplied by some 
constant, the value of ~ remains unchanged except that it will now be 
shown as 4,(kR), that is, 4,(r). 

Care must be exercised in interpolating when the value of r that is being 
sought is not found in the adjusted ratio column. In Premium Group 28 
we were faced with the problem of obtaining the insurance charge for an 
entry ratio of .20 when the tab run showed the following information: 

Number 
R r cp o] Risks Sum I Sum 2 

.20 .21 .7876 3 324 245.06 

.18 .19 .8084 1 325 251.54 

TO obtain r, we had to multiply R by 1.07347 and Sum 2 at entry of 0 was 
311.14.  We now observe that if we were seeking a value for r = .20 this 
would be equivalent to iooking for a value of R : .18631 (that is, 
.20 /1 .07347) .  Between R : .20 and R = .18631 there would not be any 
risks and the value of Sum 1 would still be 324. The number of points of 
excess over .18631 would increase by 324 X ( .01369) since there would 
be 324 risks which would each contribute this amount in addition to what 
had already been accumulated as excess points beyond the value of 
R = . 2 0 .  Hence, Sum 2 at R = .18631 would be 249.50.  Thus, 4, : 
249 .50 /311 .14  = .8019. Another way to obtain this result a little more 
quickly is to do a straight linear interpolation on 4, using R as the scale. 
In this case we would have: 

( . 00631 / .02000)  X ( .8084 -- .7876) = .0066 

Therefore, the value of 4' would be . 8 0 8 4 -  .0066 = .8018. Except for 
the fact that the values of 4, are initially rounded off to four decimal places, 
these two methods produce the same result. 

APPENDIX C 

Mathematical Testing of Table M Functions 

A set of working definitions was established first. Let r be defined as 
the ratio of actual losses (a random variable) to expected losses for a 
given risk. We will deal with samples of risks which have the same ex- 
pected losses (or nearly so).  In general 0 < r < ,,,, where o, is the maxi- 
mum value that can be assumed and theoretically approaches infinity. 
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Define l ( r )  as the density function as pictured in Sketch 1. Notice that 
f (O) is not  necessarily zero since in practice, many risks have no losses. 

However,  we are certain t h a t  [(od = 0 ............ ( C I )  

and that [(r)  > 0 for 0 _< r _< ,o . . . . . . . . . . . . .  (C2)  

f; Further, since the area under the curve must equal ] ,  / ( r ) d r  = 1. 

............ (C3)  

As discussed in the main text, distributions underlying Table  M must have 

f; a mean of 1, hence, r ] ( r )dr  = 1 . . . . . . . . . . . . .  (C4)  

The distribution function, as shown in Sketch 2, will be given by 

L 
r 

F(r )  = r / ( r ) d r  

It  follows that F(O) = 0 

and that F(r )  >_ 0 for 0 < r < .... 

Statement (C3)  may also be restated as F(o,) = 1. 

1 

f(r) ~ F(r) 

. . . . . . . . . . . .  (c5) 

............ (C6)  

............ (C7)  

. . . . . . . . . . . .  (c8) 

0 r 0 r 

Sketch I Sketch 2 

Define a special ftmction, Sketch 3, which we will find very useful: 

G ( r )  = F( r )  - 1 . . . . . . . . . . . .  (C9)  

Hence, G(O)  = - - 1  . . . . . . . . . . .  (C10)  

and G(o,) = 0 . . . . . . . . . . .  (C 1 ! ) 

Let the Table M function be called 4(r ) .  See Sketch 4. The basic defini- 
tion of the Table M function (variously called "the charge," "the column 
of charges" and "the excess pure premium rat io")  is: 

f; /f ¢p(ro) = (r  - -  ro ) f ( r )dr  r l ( r ) d r  . . . . . . . . . . .  (C12)  
o 
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cCr) 

°1 

S k e t c h  3 

~ ( r )  

S k e t c h  4 

which will ordinarily be denoted q,(r) for simplicity of notation. Note that 
by (C4) ,  the denominator  in (C12)  equals unity. ''° 

It can be shown through straightforward proofs ~-1 starting with (C12)  that 
t" ° 

~ b ( r o ) = l - - r o +  [ - /  , ( r ) d r d r  . . . . . . . . . .  (C13)  
*l d 

0 

fo" = 1 - ro + F ( r ) d r  . . . . . . . .  (C14)  

f[o = 1 + G ( r ) d r  . . . . . . . . . . .  (C15)  

4,(0) = 1 ........... (C16)  

4(,o) = 0 ........... (C17)  

¢k'(ro) = G ( r o )  . . . . . . . . . . . .  (C18)  

eO"(ro) = / ( r o )  . . . . . . . . . . . .  (C19)  

Further, it can be shown that the area under  the f ( r )  curve can be given by 

[ G ( r ) ]  ~' . . . . . . . . . . . .  (C20)  

and the mean of the / ( r )  curve can be given by [ r G ( r )  - ¢(r)]°o ' 

........... (C21)  

Another  basic feature of Table  M is the so-called "Saving" defined by:  

~(ro) = I ro fo'°f(r)dr - frr/(r)drl / f'~r/(r)dr . . . . . . . . . . . .  (C22)  

Note that by (C4), the denominator  in (C22)  equals unity. 

_-0 The inclusion of the denominator in both (C12) and (C22) was suggested by Mr. 
Hewitt in his review. To assist the reader, we have agreed to incorporate this dis- 
tinct improvement in the Appendix. 

.-1 For a similar development see Carlson, Thomas O., "Observations on Casualty 
Insurance Rate-Making Theory in the United States," P C A S ;  Vol .  LI;  p. 294. 
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It can be shown, f rom (C22) ,  that 

tp(ro) = 4~(ro) q- ro --  1 . . . . . . . . . . .  (C23)  

Since ¢(ro) can never be negative, we have 

4~(ro) >- 1 - ro .. . . . . . . . . .  (C24)  

A slightly more difficult proof is the formula for the second moment  of the 
underlying distribution when only the function ~(r )  is known. The  equa- 
tion 

fo °' ~, '  = r"I(r)dr 

can be shown to be 

fo °' t~,' = o,"-4~'(o,) -- 2,o~(o,) + 2 4~(r)dr 

by the use of Roberts '  ingenious reduction formula."-"- For  later use we 

lim '"4'('") finite observe that to keep t~.,' finite we must have ,,, ~ 
............ (C25)  

These equations and relationships were used in testing various math-  
ematical equations for acceptability as expressions for 4(r) .  For  example, 
a general polynomial was considered of the form 

4a(r) = (bo + b l r  -F b y  q - .  . . + b,,r") c . .......... (C26)  

From (C16)  we prove bo = 1. From (C25)  it is apparent  that the high- 
est ordered term of (C25) ,  i.e., ,,c,,+, must remain finite as ,,, approaches 
infinity which will only be true if cn  + 1 < 0. Since n is positive, c must 
be negative. By ( C I 0 )  we also show b,  -~ - 1 / c .  We decided to try an 
equation with c = - 1  and this resulted in Equat ion (3)  in the main text. 
A similar type of analysis led to Equat ion (1) .  

As another example, consider 

4~(r) = k-r  '~ 

where k and n are constants to be determined from the data. As long as 
k and n are positive real numbers,  (C16)  and (C17)  are satisfied. It  is 
also noted that o k ( l ) =  k -I and since 4~(I) must lie between 0 and 1, k 
must be greater than 1. By (C18)  we have 

G ( r )  ~- da(r) [ -  n(1 n k )r" - ' ]  

lira G ( r )  = 0 which is Now I n  k must be positive (since k >  1) ,  and r---~ oz 

2-_Roberts, Lewis H., "Graduat ion of Excess Ratio Distributions between Method of 
Moments," PCAS; Vol. XLIV; p. 52. 
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in agreement with (CI  1). However, G(O) = 0 and not - 1  as it should by 
( C I 0 ) .  Hence, this equation is inappropriate for expressing ok(r). 

This general approach was used on each equation considered to test 
to see if it was at all usable and to determine the value Of certain con- 
stants which were required by the a priori conditions of Table M. I am 
critical of the results found by the use of orthogonal polynomials for 
Premium Groups .64 through .21 because each value of b, is negative. 
It can be seen that in order to meet condition (C17) ,  we must have 
ba > 0 unless we do not allow o, to go to infinity. This forced us to aban- 
don Equation (3)  above r = 5.00. The press of time did not permit fur- 
ther experimentation. 

Many possible curves were discarded because the constants were dif- 
ficult to determine, and the entire project necessitated a family of about 50 
different curves. Two special cases of (C26)  were considered carefully 
because of their simplicity. 

~k(r)= 1 +  ............ (C27) 

One method of establishing d for a given premium group was to get an 
equation for the variance of (C27) and solve it for d to find d = (l*e + 1 ) /  
( ~ -  1). Then by calculating the variance of the raw data, we could 
determine d for testing purposes. Although a few premium groups were 
tested this way, we turned to another method. This procedure was to ob- 
tain ok(l) from the raw data and solve (C27) for d. A very good fit was 
obtained for Old Premium Group 11, but as we tried groups toward the 
extremes, the system broke down. In fact, 

l i m ( - ~ )  - a l  
d ~ ~ I + = = .368 

e 

By (C25)  we can show that d > I is necessary, so that (C27)  could not 
be used except when, 

.368 < ~(1) < .500 

Because this was such a limited range, we modified the formula to get more 
flexibility: 

~(r) = 1 -t- --~- + b~r ............ (C28) 

Due to (C2)  at r = O, it can be shown that the maximum value for b~ is 
( d + 1 ) / 2 d  ~ and by (C25)  the minimum value for b, is 1 /2 .  Work was 
progressing on the programming of this equation when we discovered that 
Equation (3)  was producing satisfactory results. 
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A P P E N D I X  D 

After  p re l iminary  investigations,  the first four  moments  were calcu-  

lated for Old  P remium Groups  28 through 36 having as our  object ive the 
use of Pearson  curves to gradua te  the under lying r isk distributions. These  
moments  were ca lcula ted  using desk calculators  so the p rocedure  was 
shortened as follows: 

1. P remium Groups  28, 29, 30 and 31 used 100 values selected f rom 
the raw data  at the percent i le  points  .995 through .005. 

2. P remium Group  32 used one-hal f  of the avai lable  178 eases. '-'~ 

3. P remium Groups  33, 34, 35 and 36 used all of the values avail-  
able ( two very except ional  r isks were exc luded)  which gave us 
123, 74, 43 and 21 cases respectively.  

The  results are as follows: 

Old  
Premium Expected 

Group Losses (E) E -~ Mean Ve & fl, 

28 42 ,700  23.42 × 10 -~ 1.0050 .451167 3.613 7.914 
29 49 ,700  20.12 X 10 -~ .9957 .375437 2.515 6.809 
30 64 ,400 15.53 X 10 -~ .9907 .430462 5.259 11.771 
31 73 ,900 13.53 × 10 -~ 1.0000 .271702 2.101 7 .020 
32 l l I , 0 0 0  9.01 X 10 -~ .9751 .277317 6.428 13.857 
33 146,000 6.85 X 10 -~ 1.0004 .173485 .920 4.719 
34 211 ,000  4.74 X 10 -" .9607 .145665 1.496 5.140 
35 283 ,000  3.53 x 10 -c 1.0212 .107014 .696 3.002 
36 699,000 1.43 X 10 -G 1.0000 .090419 .008 2.123 

Rober t s  TM formulas  were used for smoothing  the moments ,  except  that  
equal  weights were appl ied to each group.  This  was done because  the total  
actual  losses in each group was cons iderable  and we were willing to as- 
sume that  the t rue expected losses for the group was equal  to the mean 

expected losses in the sample.  Thus,  we wrote  bs = ~ E - I f l l / ~ ( E - ' )  :. 
Based on the da ta  above  this resulted in b3 = .2069 X 10~; hence /~, = 
.2069 X IO~E -'. Similarly,  we evaluated  b~ = ~E-'([3e - 3) /Y~(E- ' f l  = 
.3247 X 10~'; hence ~., = .3247 X IO"E-' + 3. The  test cr i ter ion for Pear -  

son curves i s k - 2 / 3 ~ - 3 / 3 , -  6. In this case we h a v e k = . 2 8 7  X IO~E -'. 

ea Every other case was taken in such a way that the smallest value case was re- 
tained in the sample and the largest value case was excluded. Subsequent investi- 

• gation indicated that the largest case was quite exceptional and, therefore, the deci- 
sion was a sound one. 

~-'~ Roberts, Lewis H., "Graduation of Excess Ratio Dislributions by the Method of 
Moments," PCAS; Vol. XLIV;  p. 51-52. 
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Over  the range of E -j shown above, k goes from . 6 7  to .04 .  It was con- 
cluded that, although a Pearson Type  VI  curve was indicated, k was close 
enough to zero to use the Type  I l I  curve. 

Rather  than using Roberts '  equation for b~ as indicated above (and 
assuming thus that b~ would be forced to conform to the Type l I I  curve) 
it was decided that the basic equations for be and b~ would be solved sub- 
ject to the additional restriction that the resultant solution would produce a 
Type  I l I  curve. 

Let J ( E - ' )  = "~(fl~ - bsE- ' ) ' -  

g ( E - ' )  = ~(f l"-  - -  b ~ E - '  - -  3)"- 

h ( E - ' )  = 2ft..  - -  313, - -  6 = 2 b s E  -~ - 3 b ~ E  -1 

The conditions are that [ ( E  -1) is to be a minimum, g ( E - ' )  is to be a mini- 
mum,  but this is subject to the restriction that h ( E  -~) = 0. Introducing ,x, 
the undetermined Lagrangian multiplier, these conditions will be met if: 

~I x ~h ~b---7 + - g g = 0  

3g x ~h 
~b~ + Tb-~[ = 0 

and 2b~ - 3b= = 0 

Taking the partial derivatives and solving for b=, we get 

b= = 4 Z f l ~ E - '  + 6~([?,~ - 3 ) E  -1 

1 3 Z ( E - ' ) "  

The raw data gives us 

b ,  = . 2 1 3 5  × 10~;  hence fl, = . 2 1 3 5  × I O ~ E  - '  . . . . . . . . . . . .  (D-1)  

Again, following Roberts '  approach for the variance, we solve 

N a  + b , ~ Z E  - '  = ~ V  2 

a E E - '  + b e ~ ( E - ' f f  = E E - ' V  ~ 

Solving, we get a = . 0 7 2 6 0 9  and b., -= . 0 1 7 0 2 1  × l O q  

Since the new curves will have their means at 1 . 0 0 ,  ~'-" = fro and we have 

8 -~ = . 0 7 2 6 0 9  + . 0 1 7 0 2 1  × IO~'E - '  . ........... (D-2)  

A characteristic of the Incomplete  G a m m a  Function (the Type l l I  curve)  

4 
is that p = - -  - 1 ............ (D-3)  
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Combining (D1) ,  (D2)  and (D3) ,  we can write 

3e = . 0 7 2 6 0 9  -k . 3 1 8 8 9 / ( p  + 1) ............ (D-4)  

and E = 5 3 4 0 0 ( p  + 1) ............ (D-5)  

We were now in a position to calculate the Table M charges using the 
Pearson Type l l I  curve as the underlying distribution of risks. For a trial 
value of p as used in the Tables of the Incomplete Gamma Function -~'~ de- 
termine 3 ~" from Equation (D4)  and thence determine ur from: 

ur = N / P  + 1 + (r + .005 - 1)/~r 

Enter the Tables of the Incomplete G a m m a  Function with u~ and p and 
read out l(ttr.p). Calculate 1 -  l(ur, p). Get the accumulation upward 
times .01 and this will be if(r). By trial and error, an appropriate value 
of p was determined so that e~(1.00) was obtained at the desired value. 
The values are as follows: 

Premium Group: .19 .18 .17 .16 .15 .14 .13 .12 
p :  .8245 1.1687 1.6453 2.3 3.2 4.9 8.0 16.2 

The first three groups represent averages of pairs of values found by two 
trial values of p as follows: 

Premium Group .19 is a 2 6 8  : 87 weighting of p=-  .8 a n d p =  .9 
Premium Group .18 i s a  77 : i69 weighting of p = 1 . 1  a n d p = l . 2  
Premium Group .17 is a 47 : 39 weighting of p =  1.6 and p----1.7 

A sample of the worksheet used for Premium Group .13 is as follows: 

r 11, If u,,8.0) 1 - I q~(r) 

1.58 4.78 .947 .053 .01079 
1.59 4.8I  .950 .050 .01026 
1.60 4.84 .952 .048 .00976 
1.61 4.87 .954 .046 .00928 

An interesting corollary to the work in this area of the Table is the 
relationship between Table M and the x e distribution. From the values 

=,~ Pearson, Karl, Tables o/ the Incomplete Gamnta Ftlnction, Cambridge University 
Press, 1957. 
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of p above, determine y, the degrees of freedom used in tabling the x -° 
function by 

y = 2 (p  + I )  

Also from the above, the value of ?r is available for a given premium group. 

Then rl-.  - y )  + 1.00 

where rl_. is the value of r at the . percentile and x ~ / , .  is the tabled 

value for x "° with y degrees of freedom and at a probability value of ..  
For example, on Premium Group .13, 

~' = 2 ( 8 . 0  + 1) = 18  

= [ . 0 7 2 6 0 9  + . 3 1 8 8 9 / ( 8 . 0  + 1)] '/0 

= . 3 2 8 7 0  

r~_ a = . 0 5 4 7 8  (×~1,~,~ --  18) + 1 .00  

If we inquire as to the value of r for which 5% of the risks exceed it, we 
find x ~ ,~, .0~ = 2 8 . 8 6 9 3  and thus r.,~ = 1 . 5 9 5 .  Notice how this agrees with 
the above example. Naturally, the converse question can be a s k e d - f o r  
a given value of r, what is the probability that it will be attained or ex- 
ceeded? In our example, a value of r = 1 . 2 0  will be exceeded by about 
25% of the risks because 

1.20  - 1 . 0 0  
x ' l , ~ , , - -  . 0 5 4 7 8  + 1 8  = 2 1 . 6 5 0 1  

and a reference to the x "° table shows this value has a probability of ap- 
proximately .250 .  

APPENDIX E 

As the risk size increases, we expect the shape of the risk distribution 
to approach the normal curve and we expect the variance to approach 
zero ultimately. It was decided to use Old Premium Group 36, which had 
E = 6 9 9 , 0 0 0  and V e = . 0 9 0 4 1 9 ,  as a starting point. Assuming (and this 
can only be true as an approximation) that the only variance remaining 
at these l~ge risk sizes is the variance in the claim distribution, and the 
number of cases (N) is fixed, the ratio of the two standard deviations of 
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the expected losses will be the same as the ratio of the two standard errors 
o[ the mean, that is 

3" ~: S / v ' N ~ :  
^ 
,r ,~ooo S / N / N , 9 9 , ,  o 

where S is the standard deviation of the claim distribution. (Because N 
is so large, I have used N rather than N-1 in the above formula.)  

This may be simplified and rearranged as follows: 

?r E = gr,99ooo ~/N,99oo0 (Average  claim cos t ) /Nr ,  (Average  claim cost) 

= \ / ( . 0 9 0 4 1 9 )  ( 6 9 9 0 0 0 ) / E  = ~ / 6 3 2 0 3 / E  

Thus, as the size of the risk increases, the standard deviation decreases 
and approaches zero as a limit. Solving for E we have 

E = 63200/gr  e ............ ( E l )  

which was used to set the expected loss ranges for the premium groups 
using the normal curve. 

For  a trial value of ,~, determine z~ by 

zr = (r -F .005 - 1)/~r 

Enter a table of the normal curve and read out the probability integral 
value representing the area under the curve to the right of z ,  Get the 
accumulation (to 3 decimal places) upward times .0t which equals q~(r). 

Values of ~--" which produced the desired values at ~(1 .00)  were: 

Premium Group: .11 .10 .09 .08 .07 .06 .05 .04 .03 .02 .01 
St: .275 .250.225 .200.175 .150.125 .100.075 .050.025 

A sample of the worksheet used for Premium Group .11 is as follows: 

r z__ 2 __Qr rb(r) 

1.32 1.1818 .119 .01660 
1.33 1.2182 .112 .01541 
1.34 1.2545 .105 .01429 
1.35 1.2909 .098 .01324 


