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An Argument Against the Empirical Method
Some haystacks don’t even have any necdle.

... . William Stafford

Ours did.
We found it.

The purpose of this paper is to set forth in an orderly fashion, a sum-
mary of certain aspects of the work done in compiling the 1965 version
of Table M. It will be assumed that the reader has a basic knowledge of
Table M and its use in obtaining insurance charges for retrospective rating
plans.! This report will be presented in a fashion that will imply that we
went straight as an arrow from the problem to the solution. The reason for
doing this is to present a clear and easy to follow line of reasoning. I'm
sure it is realized that the work could not and did not proceed in exactly
this manner. Many false leads were pursued, and oftentimes decisions
would be made near the end of the work which affected things done near
the beginning. The carlier work would then be redone. Part of the reason
for creating this written record is that the future researcher will have an
casier time following the development. Through footnotes and appendices,
I hope to indicate some of the areas where we investigated ideas and re-
jected them, where expediency prompted us to accept the results produced
and where we could hope for improvement in the future.

On September 13, 1962, the subject of a revision for Table M was
placed on the agenda of the Actuarial Committee of the National Council

*‘Basic reference papers on the compilation of excess pure premium ratios (that is,
Table M) are Lewis H. Roberts, “Graduation of Excess Ratio Distributions by the
Method of Moments,” PCAS Vol. XLIV, pg. 45; Nels M. Valerius, “Risk Dis-
tributions Underlying Tnsurance Charges in the Retrospective Rating Plan,” PCAS
Vol. XXIX, pg. 96; and Thomas O. Carlson, “An Actuarial Analysis of Retro-
spective Rating,” PCAS Vol. XXV1II, pg. 283. A technical definition of the excess
pure premium ratio will be found in this paper as equation (C12) in Appendix C.
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2 TABLE M

on Compensation Insurance, Aetna Casualty and Surety Company, Ameri-
can Mutual Liability 1nsurance Company, Insurance Company of North
America and Liberty Mutual Tnsurance Company were appointed to a
Subcommittee to Review Table M. Also attending all meetings and par-
ticipating in the discussions was a representative of The Travelers In-
surance Company.

Table M was last revised in 1954. Unfortunately, no paper was pre-
sented to the Society at the time of this revision, and the only convenient
reference is the files of the National Council on Compensation Insurance.
At times, it is difficult to differentiate between the proposals made and the
ideas that were actually put into effect. However, it was clear that this
revision was made to reflect the increased variance in the risk distributions
since the 1943 table of the National Council was published. Basically, the
table itself was not changed, but the column headings were revised so that
the variance of risks having the expected losses shown at the top of a
given column was equal to the variance of the underlying risk distribution
for that column in Table M. Basic raw data, therefore, was only used to
the extent of determining the variance for a given expected loss size, and
was not used to actually calculate excess pure premium ratios.

It was decided that the 1965 revision of Table M would be based on
actual workmen’s compensation risk distributions. Individual risk infor-
mation was gathered for policy year 1960-61 from all states where the
National Council on Compensation Insurance is the filing agency plus the
states of California, Hawaii, Massachusetts, Michigan, Montana, New
York, North Carolina, Virginia and Wisconsin. The columns of charges®
in the 1964 Table M were numbered from 1 through 37, and the expected
loss ranges were converted to premium ranges by dividing by .596 (the
permissible loss ratio most commonly used throughout the country). The
risks were then sorted by standard premium and assigned “Old Premium
Group” numbers on this basis (risks having a premium less than $1,678
were excluded). Referring to Exhibit A, we sce that experience was
found in each of the first 36 premium groups of the 1954 Table M. All
risks with standard premiums between $1,678 and $1,987 were included
in the first group, and the last group included risks with standard premiums
between $608,221 and $2,307,046. A total of 112,646 risks werc proc-
essed with an aggregate premium of $855,278,990.

Four interesting statistics are included on Exhibit A to help visualize

[ will use “excess pure premium ratios” and “charges” interchangeably. The
European term “stop-loss premium” could also have been used.
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the data better: (1) the loss ratio; (2) the charge at a ratio of 1.00, that is,
at the mean; (3) the percent of risks falling below the mean and (4) the
median value of the ratio. The last three statistics are based on thc ad-
justed ratio of actual losses to expected losses, r, which will be described
later.

Exhibit A also shows the raw data average loss per risk which is the
quotient of the total actual unlimited losses in the premium group divided
by the number of risks. A study of loss trends over the years has indicated
that the average cost per case in workmen’s compensation is steadily in-
creasing. This is expected because of more costly medical bills, plus the
fact that legislation has tended to increase the value of all the benefits.
Exhibit B shows a six year trend of workmen’s compensation average loss
costs. This indicates a 33.7% increase in cost over a five year period.
There is to be a five year gap between the period used in collecting the
basic statistical information (1960) and the time when the new Table M
will first go into effect (1965). Today’s workmen’s compensation risk,
therefore, having a given number of expected losses, will be roughly 35%
larger in terms of dollars of expected loss. It is proven in Appendix A that
this means that average losses per risk should be modified 35% assuming
the coefticient of variation of the claims distribution remains constant.
Countering this argument is the slightly improved claim frequency experi-
ence resulting from improved safety measures and technological changes.
However, it was felt that this was more than offset by other factors.

Another factor behind the modification was that the raw data was
based on first reports under the unit statistical plan. It is well-known that
the major developments {rom first to second reports occur in the area of
large claims.® This is almost certain to increase both the variance and the
skewness of the distribution. Hence, we felt that the raw data risk distribu-
tions were undoubtedly more compact than the truth would show if it
could be known. It was, unfortunately, not financially feasible to make a
comparison of risk distributions between first and second reports under the
unit statistical plan. Somewhat countering this argument again is the fact
that unit reports split large interstatc risks into smaller intrastate pieces.
Because experience rating is on an interstate basis, the pieces are being
adjusted in the direction of the mean of the entire risk. Therefore, we expect
the basic data to have a little larger variance than if the smaller pieces had
been subject to experience rating on their own. As a result of all these con-

3 For example, a special study of Serious losses for policy year 1960-61 totaling
$150,000,000, showed a development factor of 1.146 from first to second reports.
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siderations, we arrived at E, the expected loss (current level) shown on
Exhibit A, by modifying the raw data average loss per risk by a factor of
1.35. Three significant digits were retained here and were also used in the
final column headings on Table M.

The work now progressed toward calculating and tabulating a column
of insurance charges for each of the 36 premium groups. Working on one
group at a time, the standard premium (P) for each risk was multiplied
by .596, and the ratio of the actual losses (A) to the standard premium
times .596 was calculated, rounded to two decimal places and designated
R. The risks were then sorted on R, and each premium size group was
tabulated as shown in Exhibit C. The standard premium and unlimited
losses were shown for reference purposes and for checking. Two addi-
tional quantities, Sum 1 and Sum 2, were also calculated on the first pass
of the cards. The first is simply a downward accumutation of the number
of risks, and the second is the calculated number of “points™ of excess over
the ratio shown opposite R. This can be expressed as follows:

Se.i = SL’,i+) + (Riw - Ri) Sz,i+1

where §, and S, are Sum 1 and Sum 2 respectively, and i =0, 7, 2, ..., w;

that is, it is a sequential numbering of the R’s from the .00 end of the table

up to the limiting value ».* Sum 2 continues until it reaches R = .00. (If a

case did not occur with zero losses, such a card was put in the deck with a

zero as the number of risks.) S., then contained the total number of

points of excess over 0, that is, the sum of the frequencies times the ratios.

The mean ratio is the quotient of S., divided by the total number of

risks.

For Table M purposes this mean ratio should be exactly 7.00 and,
therefore, a correction factor was applied to R which would adjust the
mean to unity. Making this adjustment is equivalent to saying that we
would accept the actual loss ratio of the entire group as being the best esti-
mate of the expected loss ratio of the group. It also fitted in properly with
theoretical considerations of Table M which will be referred to later. The
adjusted ratios were called r and were used hereafter. On the second pass
of the cards, two calculations were made at the same time. The first was
to calculate r and the second to calculate the Table M charge, ¢(r), by
dividing Sum 2 by the entry opposite Sum 2 at r = .00.%

“n actual practice the tabulation was made in a slightly different fashion which
included Sum 1 as a part of Sum 2. However, in dealing with the material it was
noted that the system outlined could have been used equally well and perhaps
with a little advantage in calculating stmplicity.

5See Appendix B for a proof that the scale translation is permissible and for dis-
cussion of the interpolation problem when there are missing values.
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A graphic plotting of some of this data across a common entry ratio
indicated that there was a fair degree of regularity, but there were certain
fluctuations. Exhibit D indicates how these occurred at an entry ratio of
r=1.60. 1t was decided that a preliminary smoothing would be accom-
plished by graduating the entries across a common entry ratio using the
Whittaker-Henderson formula. Although the Whittaker-Henderson for-
mula is based on the assumption of equally spaced data, it was applied to
this material. In the lower premium group sizes this is not too disturbing
since there are approximately even intervals between the values of E.
However, as one goes from Old Premium Group 21 to Old Premium
Group 22, the jump in E is significantly different than it had been up to
that point. There is a similar sharp change at Old Premium Group 32. It
will be developed later in this report that the smoothed data under the
Whittaker-Henderson smoothing was only used up through Old Premium
Group 31. The small circles on Exhibit D indicate the effect of this smooth-
ing on the data. Calculations were made for »r = .20(.20)5.00. We thus
had a compilation of insurance charges smoothed under the Whittaker-
Henderson formula which were arrayed in a matrix of 36 premium groups
by 25 entry ratios.”

The actual production of an entire Table M is a mammoth job even
under the best conditions. We expected to compute insurance charges
from entry ratios of .00 through 3.00 for publication. We also ex-
pected to have in the neighborhood of 50 premium groups requiring the
production of some 15,000 insurance charge values. An attempt to do this
through any method such as graphing or interpolating between selected
points seemed beyond the realms of possibility. We were particularly in-
terested in producing a table as promptly as possible while exercising a
minimum number of independent judgments. Constructing this Table M
has certainly given all those who were involved in the work a great deal
of appreciation and respect for those who constructed the original Table
M values. It seemed likely that if we could use the experience data we had

6 Valerius, op. cit. pg. 107-110. With the advantage of hindsight, we can now ques-
tion whether this preliminary graduation across premium groups was altogether
necessary. Since we were successful in being able to obtain formulas to represent
the columns of charges, we probably would have been just as successful in deal-
ing with the raw data as we were in dealing with the Whittaker-Henderson
smoothed data. However, at the time, it seemed that this procedure would give our
other formulas a maximum opportunity for success; and at the same time, if they
were unsuccessful, would provide the starting point from which the table could be
constructed.

Early experience using desk calculators showed that the rcsults using 25 points
were as satisfactory as the results using 51 points on the curve fitting technique
under test. We did not experiment to see if the 25 could have been reduced further.



6 TABRLE M

accumulated and derive some formulas from it, we could then be in a
position to reformulate the premium groups in some fashion that would
be more to our liking. Finally, we could foresee the possibility of using
high speed computing equipment to evaluate retrospective rating values if
the Table M charges could be determined by the computer through the use
of mathematical formulas. Because of these many advantages, a consider-
able amount of effort was spent in the search for “down-the-column”
graduation formulas.

Perhaps as many as 25 different general equations were explored as
possible mathematical formulas to describe the column of insurance
charges, ¢(r). Some were rejected very promptly because they did not
appear to offer a sufficient amount of flexibility or because determining the
constants necessary appeared to be an insurmountable task. Nine equations
seemed to meet most of the subjective requirements, and these were
thoroughly tested mathematically in accordance with the development in
Appendix C. From a mathematical standpoint and from preliminary desk
calculator tests which were made, two formulas were processed for elec-
tronic computer programming and thus considered eligible for the final
selection. These two formulas were:

¢(r)=exp [ — (r+a,* + a,y® +a,rt + a;r® +ar’ + a.r’)]
$(r)=1/(1+r+ ber*+byr* +b,r* +b;r® + br*+br) (2)

(Work was begun on Equation (C28), Appendix C, but was stopped
when we decided to accept another equation as final.)

A computer program was written so that for a given premium group
the computer would read in the 25 values of r and the corresponding
smoothed data values for the insurance charge. When working with Equa-
tion (1), the computer would transform the smoothed charge, ¢.(r), as
follows:

Y(r)=—[r+ 1n ¢ys(r)1/r®
We were thus able to rewrite Equation (1) as:
Y(r) = a; + aor + a,r? + a,r® 4 agrt + a.r®

The computer then solved the problem of obtaining the six coefficients a,
through a, such that we would have a least squares best fit using r and
Y(r) as the two variables. Using these fitted coefficients, the computer
then produced the 25 fitted values. By comparing the fitted values with
the original smoothed values, the percentage error was calculated. This
is all set out in Exhibit E. It should be noted that in calculating the per-



TABLE M 7
centage errors, the computer was working with eight significant digits,
although the fitted values which were printed out were only shown to four

decimal places. Therefore, the reader will not be able to exactly repro-
duce the percentage error figures shown in the exhibit.

On the same pass of the data, the information was transformed for
Equation (2) as follows:

1
Z(r) = -1 - :
") [@(r) ’]/ ’

We were thus able to rewrite Equation (2) as:
Z(r) = bg + b;,‘r + b_;rg + b5r’ + bg'd + b7r5
Again, the coefficients were determined by a least squares best fit to the

points r and Z(r), the fitted values for the 25 points were produced by
the computer and error calculations were made.

As we examine Exhibit E, there is little choice between the two
formulas. Out to three decimal places, they produced the same result in
nearly every case. However, the pattern shown on that exhibit was gen-
erally repeated throughout the first 22 premium groups and indicated
that Equation (2) had a slight edge over Equation (1). From Old Pre-
mium Groups 23 through 28, Equation (1) was slightly better, and beyond
Old Premium Group 28 neither one of the two equations produced satis-
factory fits. It was decided that only one general form of equation would
be used, and Equation (2) was selected.

In an attempt to extend the area over which the curves would satis-

factorily fit, Equation (2) was revised to include an additional term and
thus read.®

d(r) =1/(1+r+ bor*+ byr® + byrt + bsr® + b - br” + byr?)

An example of this output for Old Premium Groups 10 and 11 is shown
on Exhibit F.

The computer run was completed through Old Premium Group 34

8 Originally, we were unsure whether either Equation (1) or Equation (2) would
perform satisfactorily. The original computer programming which was based on
orthogonal polynomials dealt with the input in a coded fashion such that the 25
values were sequentially numbered from —12 through -+12. The coefficients which
the computer actually determined were thus in this coded translation and were not
directly usable. It was, therefore, necessary to do some additional programming to
get the coefficients into a satisfactory form. We decided we would rewrite the entire
job, and at the same time, omit any Equation (1) calculations and extend JFEquation
(2) one more term.
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and the results were examined for closeness of fit. In the first two premium
groups it was observed that the curves were producing values which im-
plied negative frequencies for the underlying distrubution in the neighbor-
hood of r =1.8. This also occurred in Old Premium Group 3 in the
neighborhood of r = 3.8. Other than this, the fit of the formula value to
the smoothed value was quite good up through Old Premium Group 28.
In Old Premium Groups 29, 30 and 31, the formulas were not fitting too
closely at r = I.4. The errors were in the direction such that the formulas
were coming closer to the raw data on both Old Premium Groups 29 and
31, and we decided to retain the formula approach all the way through Old
Premium Group 31. At Old Premium Group 32, it was felt that the re-
sults were wholly unsatisfactory and, therefore, nothing beyond this point
would utilize the formulas produced by the least squares best fit of the
smoothed data.”

A basic decision was made at this point about reformulating the en-
tire format of Table M. It was decided that the premium groups would be
reformulated on such a basis that the insurance charges at an entry ratio
of r = 1.00 would be spaced at intervals of .010 between premium groups.
For reference purposes the new columns of Table M were referred to as
Premium Group .64 through Premium Group .01 where the premium
group number identified the first two digits of the charge at an entry ratio
of 1.00.” The coefficients for the equation of a given premium group were
determined by interpolation using the coefficients determined by the raw
data. Exhibit G illustrates the method of computation'* for premium
Group .43, and Exhibit H sets forth the coefficients which were so de-
termined for Premium Groups .64 through .21.

We next turned our attention to the problem of extending the tables
beyond Premium Group .21. Referring to Exhibit A, we can see that the
number of risks became quite small from Old Premium Group 32 on-
ward, and we were not surprised to find random fluctuations playing a
larger part. Appendix D gives thec development of a technique to pro-

9 The formula approach was extended further on a different basis as will be dis-
cussed later.

10 The raw data furnished us with coefficients for Premium Groups .21 through .61.
We further extrapolated the coefficients successfully to produce Premium Groups
.62, .63 and .64.

11 A graphic method of interpolation was attempted at one point in our studies, but
was rejected when we felt a need for more significant digits than could be so ob-
tained. The coeflicients fell along surprisingly smooth curves when plotted against
a 1/¢(1.00) abscissa, and we were convinced that the interpolation technique of
Exhibit G was quite satisfactory.
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duce underlying risk distributions and, hence, charges using Pearson Type
III curves.’® The statistical foundation for this method is also given. In
brief, the method consists of graduating the moments of the raw data dis-
tributions and then using these moments to produce Type 11 curves from
which the charges are calculated.

In making some of the final checks, we found that the two approaches
(reciprocal polynomials and Type III curves) met in such a fashion that
the gap between the two could not be bridged in any rational fashion.
We found that the cross-differences in the area of r < 1.00 were generally
too large, and the results produced net insurance charges in retrospective
rating which increased as the size of the risk increased. An occasional
anomaly of this sort of .001 or .002 might be allowed, but these inversions
were both large and frequent. Therefore, to eliminate this problem we used
Premium Groups .21 and .11 as fixed end points and performed a linear
interpolation between these two groups to produce the values for Premium

Groups .20 through .12."* The material in Appendix D is included partly
for possible future use and partly because our findings closely paraliel

those reported by Bohman and Esscher.™

The final sct of premium groups remaining were those from Premium
Group .11 through .01. Using the Type IIl curve we found that the
tabled values could only carry us as far as Premium Group .12. The limit
of the Pearson tables is at p = 50.0 at which value we produced a ¢(/.00)
=.1119. The curve was beginning to approach normality, and 1 felt we
should swing over to a normal curve at Premium Group .11. This would
be out in an area of about $800,000 of expected loss which is beyond the
size of the largest risk we had in the raw data. Appendix E sets forth the
rationale and the technique used in utilizing the normal curve.

This, then, marked the end of the main effort on producing the col-
umns of charges for the new Table M. Two peripheral areas remained.

12 We also tried experimenting in the small expected loss sizes with (a) Pearson
curves, (b) the lognormal curve and (c¢) transformations which would normal-
ize the data. These met with varying degrees of success, but none seemed satis-
factory in the final analysis.

13 We also tried to retain the Type 111 area and smooth out the irregularity by modi-
fying the polynomials from Premium Groups .28 to .21. Time was very short at
this point, and three quickly conceived methods each failed to produce the desired
improvement. We did not experiment further,

14 Bohman, H. and Esscher F., “Studies in Risk Theory with Numerical Illustrations
Concerning Distribution Functions and Stop Loss Premiums,” Skandinavisk Ak-
tuarietidskrift, 1963. A two page summary by Mr. Bohman of this 92 page paper
is found in The Astin Bulletin, Vol. 111, Part 11, August, 1964, p. 185.
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The first was the problem of extending every column out to a charge of
zero. The use of these extended values is so rare that they were dealt with
rather arbitrarily by using a straight line set of values of the form:

¢(r)=c—mr 4)
For completeness, these formulas are listed in Exhibit 1.

The second peripheral areca was the desire to have two more premium
groups calculated because of their special nature. Tabular retrospective
plans have normally started at an expected loss of $596 (i.e., premium =
$1,000). It will later be shown that Premium Group .85 is the one
appropriate to £ = $596. To help guide our judgment in establishing this
premium group, it was observed that if we wanted to place 20 risks at
appropriate points along the r scale so they would closely reproduce Pre-
mium Group .64, they would be located at .00, .01, .02, .03, .04, .05, .06,
.08, .09, .12, .14, .17, 21, 34, .84, 1.00, 1.27 and at two points which
are beyond the maximum usable r of our Equation (3). To formulate
Premium Group .85, this information was considered and it was decided
to place eight risks at .00, five risks at .05, four risks at .JO and one
risk at 5.00. The other two risks were to be at r,, and r,,. These two
points are used to fix the conditions that the mean equals 1.00 and
¢(1.00) = .850; that is, [8(.00)+ 5(.05) + 4(.10) + 5.00 +r,; + r:,]/20
=1.00 and [(5.00 — 1.00) + (rep — 1.00)1/20 = .850.7% Solving, r,, = .35
and r., = 14.00.

The column of charges could then be produced from these values and is
described in Exhibit J.

We also sought a more or less limiting set of values. A Premium Group
.99 was constructed by assuming 99 of 100 risks had a zero entry ratio
which meant the one was at r = 100.00. This simple column of charges is
also described in Exhibit J. An expected loss of $3 was attached to this
premium group because one average Workmen’s Compensation loss is
about $300.

Now that the premium groups have been reformulated from the 1954
premium group numbers to the new system, it becomes necessary to es-
tablish the expected loss ranges for the new groups. The problem breaks
down into roughly three areas. In the first, we have formula (E1) from

15 This assumes that rx will lie beyond 1.00 and rs will not lie beyond 1.00 which is
borne out as being true by the subsequent solution.
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Appendix E which associates the midpoint of the premium group with the
expected loss size by the formula

E = 63200/4*

where E denotes the midpoint value. Let’s define g as the premium group
number and g’ as the number which divides two premium groups, i.e.,
g = g+ .005 divides g from (g .0/), thus establishing the lower limit
of the expected loss range for g which will be called E’,. Hence, we can
write:

E, = 63200/5,*

1t was observed that, from Appendix E,

3,, =2.5g
and it was inferred that we could validly write:
:;-y, = 25g

By substitution,

L,=10112/(g - .005);
This formula applied to Premium Groups .0l through .10. The result for
Premium Group .11 (765,000) was modified on a judgment basis (to

725,000 )in order to make the transition run smoothly from this segment
to the next.

The second area for establishing expected loss ranges was that in
which Equation (D5) in Appendix D could be helpful. Although the Type
I curves were not used to obtain the insurance charges, they were still
the best guide to locating the expected loss ranges. A graph was drawn
on semi-logarithmic paper of 7/¢(1.00) vs. E, as calculated from:

E, = 53400(p, + 1)
These points appear as small circles on Exhibit K and can be seen to fall

almost perfectly along a straight line. The line was drawn on the graph and
its equation, using the two point form, was found to be

log E;, = 3.5510+ .2730/¢'

where “log” designates the common logarithm. It was used over the range
from Premium Group .12 through .24.

The final area of consideration is shown on the graph as lying below
1/¢(1.00) = 4.0. The values of E and ¢(1.00), as shown in Exhibit A,
were used to plot the small crosses on Exhibit K.* It appeared to the

16 Several other possible plottings were also considered, but this seemed the most
satisfactory.
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eye that the data fell into two sections where straight lines would fit
the points rather well.!” A formula was preferred over simply drawing a
line and reading out the values, because (a) we wanted values to three sig-
nificant places, and (b) the line could best be drawn statistically. There-
fore, Old Premium Groups 27 through 8 were used to determine a best
fitting least squares line as

log E; = 2.6651 + .4955/¢
which was used over the range from Premium Group .25 through .46.

Similarly, Old Premium Groups 7 through 1 were used to determine
a best fitting least squares line as

log E; = 1.6363 + .9747/¢

which was used over the range from Premium Group 47 through .64.'*
Carrying out this entire set of evaluations for expected loss ranges results
in Exhibit L.

Very little space can be devoted to commenting on the gigantic task
performed by the people who programmed the IBM 7080 in the offices
of the Insurance Company of North America. They accomplished a quan-
tity and quality of work which could not have been done by desk calcu-
lator methods “in a hundred years.” The reader undoubtedly recognizes
the scope of the work involved in solving the least squares fit of a sixth
degree equation, and we solved 150 of these problems in the course of
this project. The caiculation of one charge using Equation (3) takes
about five minutes with a desk calculator, and we calculated about 50,000
of them during this study. Joan Featherer did the majority of the pro-
gramming using FORTRAN and programmed the final print-out of the
table in such a well designed and executed manner that reviewing the
results was made quite easy. The final running and testing of the table
was done in a single program which accomplished a number of important
steps. Using the polynomial formula, the computer calculated the in-
surance charge. If the entry ratio was less than 1.00, it also computed the
saving from Equation (C23). If the saving was negative, zero was sub-
stituted for the calculated value and the charge was set equal to one minus
the entry ratio. The values were rounded to three decimal places and were

17 A single concave parabola might also have fitted closely but was not tried. Looking
back. this would have been better since we did run into a little “roughness” where
the lines crossed. A single curve would have avoided this.

18 It was also extrapolated and used to show that E= $596, g’ = .856 and g = .851/.
Therefore, Premium Group .85 applies to £ = £596.
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written out on tape. At the same time, the first and second differences
down the column of charges were calculated so that we could readily ex-
amine the underlying risk distribution. One of the critical tests was to
make certain that the charges produced did not imply the existence of
negative frequencies. For example, the reason that Premium Group .64
can only use the polynomial equation out to r = 1.74 is that beyond that
point the polynomial would imply that there was a negative number of
cases OVer certain ranges.

Exhibit M is an extract of the computer output showing the charges
and the savings (which are marked with an asterisk on the tabulation).
Exhibit N is an extract of the tabulation of the first and second differences
running down the column. For ease of examination these were multiplied
by 1000 in order to get them to be whole numbers. Finally, Exhibit O
shows the results of the third major calculation that was made on this
single pass of the data. In order to test the requirement that the charges
at a common entry ratio should decrease as the expected loss increases,
we calculated the first differences (again multiplied by 1000) between
adjacent columns. A quick examination of this run showed that there
were no negative figures and, in fact, the pattern seemed to be relatively
smooth from one set of differences to the next. Similar calculations were
made in the areas in which the polynomial did not apply, but were made
using the desk calculators. i

Exhibit P is the statement in FORTRAN language of the heart of the
computer calculation of the insurance charge in the areas where the poly-
nomial is applicable. It is assumed that computations in a retrospective
rating plan evaluation have reached the point where it is necessary to
evaluate ¢(r). The formula of Exhibit P is one of the numerous possible
ways of writing the statement in IBM 7080 FORTRAN language so as
to reproduce the Table M charge. Finally, Exhibit Q is a ready refer-
ence for the premium group numbers and the entry ratios over which
each of the formulas applies. The possibility of computing Plan D rat-
ings of retrospective risks through the use of computers now seems wholly
feasible.

In conclusion, it might be of interest to note the effect of this revision
of the Table. One way to do so is to compare ¢(/.00) under the 1954
Table and the 1965 Table. Exhibit R shows this comparison. It can be
seen that the change is Jargest in the small premium sizes and decreases
as the size of the risk increases to the point where it is a reduction at the
highest sizes. A similar comparison can be made at ¢(1.60) by reference
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to Exhibit D. A second means of comparison is shown in Exhibit S where
we can visualize the underlying distributions. Notice the close agreement
between the raw data and the 1965 Table M and the change in shape from
the distribution underlying the 1954 Table M.

Work on the 1965 Table proceeded with a sense of urgency because
the 1954 Table was known to be deficient. We made a number of quick
decisions and resisted revising certain of them because of the time ele-
ment involved. Despite all this, it took three years of elapsed time to get
the revision into effect. The best time to start the next revision of Table M
is now.

It was evident as we worked on this assignment, that an improved
theory of risk variation would have been of great benefit. The approach
used was highly empirical, and we were extremely fortunate to find as
many haystacks containing needles as we did. To avoid the difficulties and
the pitfalls of empiricism, we should try to borrow from the mathemati-
cal theory of risk, from Monte Carlo techniques and from operations
research, especially in the area of anti-selection. Let’s begin pushing out
some frontiers today, so we'll be ready to solve tomorrow’s problems.
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WORKMEN 'S COMPENSATION INDIVIDUAL RISK EXPERIENCE EXHIBIT A
UNLIMITED LOSS DATA

E $(1.00) Proportion
old Raw Data Ekpected Charge at of Risks Median
Premium Number Average Loss Actual/ Falling Vatue of
Group of Standard Loss Loss (Current  Expected Below the Actual/
Number Premium Range Risks Premium Ratio per Risk Level)  of 1.00 Mean Expected
1 1678 - 1987 16,950 30,926,469  60.97 1,112 1,500 .6240 9% .19
2 1588 - 2429 16,983 37,272,090 60.3 1,324 1,790 .6005 78 .23
3 2430 - 2871 12,089 31,893,890 60.8 1,603 2,160 .5775 77 .26
4 2872 - 331t 8,907 27,443,432 62.7 1,933 2,610 .5592 76 .30
5 3312 - 3974 9,808 35,556,533 58.5 2,121 2,860 .5279 74 .35
6 3975 - 4856 9,153 40,115,384  59.8 2,621 3,540 L5154 73 .38
7 4857 - 5739 6,372 33,614,135 59.2 3,125 4,220 4865 72 .42
8 574G - 6623 4,694 28,954,076 62.0 3,823 5,160 .4758 71 45
9 6624 - 7506 3,674 25,897,532 59.3 4,180 5,640 L4420 70 .53
10 7507 - 8388 2,856 22,636,320 57.9 4,591 6,200 .4320 70 .54
11 8389 - 9271 2,376 20,940,019 58.8 5,183 7,000 4240 69 .56
12 9272 - 10155 1,874 18,182,410 59.0 5,727 7,730 .4019 65 .59
13 10156 - 11038 1,664 17,619,552 60.6 6,422 8,670 .4022 67 .61
14 11039 - 11920 1,336 15,314,562 60.2 6,898 9,310 .3781 65 .64
15 11921 - 12804 1,245 15,376,031 58.8 7,260 9,800 L3741 66 .66
16 12805 - 13687 1,040 13,771,549 60.3 7,987 10,800 -3743 66 .64
17 13688 - 14569 856 12,077,797 56.4 7,964 10,800 L3461 63 .71
18 14570 - 15454 798 11,980,889 57:7 8,658 11,700 L3531 64 .68
19 15455 - 16336 m 11,290,884 59.8 9,491 12,800 L3314 63 .72
20 16337 - 17219 658 11,042,869 60.8 10,207 13,800 .359 67 .67
21 17220 - 19934 1,507 27,890,998 56.4 10,442 14,100 L3240 64 .75
22 19935 - 24736 1,842 40,981,259  57.2 12,735 17,200 .3113 65 .75
23 24737 - 29887 1,210 32,839,117 54.7 14,841 20,000 .2868 63 .80
24 29888 - 35429 899 29,240,852  56.7 18,458 24,900 .2788 60 .81
25 35430 - 41346 610 23,385,219 59.4 22,767 30,700 .2884 64 .78
26 41347 - 47340 492 21,821,261 61.3 27,182 36,700 .2755 64 .79
27 47341 - 53831 353 17,821,787 59.5 30,063 40,600 .2523 62 .83
28 53832 - 60821 334 19,096,583  55.3 31,619 42,700 .2482 59 .84
29 60822 - 72427 328 21,601,968 55.9 36,795 49,700 2294 60 .85
30 72428 - 90603 319 25,640,792 59.4 47,716 64,400 .2340 60 .85
3t 90604 - 117449 267 27,426,578 53.3 54,739 73,900 .1943 59 .90
32 117450 - 159395 178 24,179,267 60.7 82,440 111,000 .1842 62 .89
33 159396 - 226509 123 22,861,752 58.2 108,130 146,000 (1611 57 .96
34 226510 - 322986 75 20,381,237 57.4 155,931 211,000 .1655 64 .91
3s 322987 - 608220 44 17,547,482 52.6 209,919 283,000 L1348 57 .92
36 608221 - 2307046 21 20,656,415 52.6 517,503 699,000 .1198 54 .99

112,646 855,278,990 58.5

W A14vL
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TABLE M

EXHIBIT B

COUNTRYWIDE WORKMEN'S COMPENSATION AVERAGE COST PER CASE

Policy
Period

1956-57
1957-58
1958-59
1959-60
1960-61

1961-62

ALL CASES, INDEMNITY PLUS MEDICAL

Average Ratio to
Cost Previous Year
181.03 Base
197.77 1.092
206.46 1.044
223.00 1.080
230.14 1.032
242.40 1.053

1.000
1.092
1.140
1.231
1.270

1.337

Cumulative

Change



TABLE M

EXHIBIT C
TABULATION OF RAW DATA
0ld Premifum Group 1
R

Standard Unlimited Ratio No. of 3 é(r)
Premium Losses A/(.596P) Risks Sum 1 _Sum 2 Adjusted Ratio Charge
1950 206614 177.78 1 1 .00 173.58 .0000
1903 100439 88.57 1 2 89.21 86.48 ,0051
1684 63829 63.60 1 3 139.15 62.10 .0080
1958 59617 51.09 L 4 176.68 49.88 .0102
1797 44947 41.97 1 5 213.16 40.98 .0123
1820 43504 40.10 1 6 222.51 39.15 .0128
1937 43849 38.00 1 7 235.11 37.10 .0135
1868 41693 37.46 1 8 238.89 36.57 .0138
67236 42789 1.07 37 3474 10656.38 1.04 .6138
43350 27296 1.06 24 3498 10691.12 1.03 .6158
50055 31317 1.05 27 3525 10726.10 1.03 .6179
34125 21065 1.04 19 3544 10761.35 1.02 .6199
45683 27925 1.03 25 3569 10796.79 1.01 .6219
43608 26435 1.02 24 3593 10832.48 1.00 .6240
47706 28573 1.01 26 3619 10868.41 .99 .6260
32649 19412 1.00 18 3637 10904.60 .98 .6281
54544 32111 .99 30 3667 10940.97 .97 .6302
54854 31864 .98 30 3697 10977.64 .96 .6323
265980 38016 .24 146 7769 14801.98 .23 .8526
284133 38828 .23 155 7924 14879.67 .22 .8571
326246 42676 .22 179 8103  14958.91 .21 .8617
328726 41082 .21 179 8282 15039.94 .21 .8663
302686 36100 .20 166 8448 15122.76 .20 .8711
331543 37399 .19 183 8631 15207.24 .19 .8760
373757 40091 .18 205 8836 15293.55 .18 . 8809
386279 39082 .17 212 9048 15381.91 .17 . 8860
425014 40408 .16 233 9281 15472.39 .16 .8912
388311 34605 .15 213 9494 15565,20 .15 .8966
740516 30809 .07 405 12115 16408.07 .07 L9451
845263 30105 .06 463 12578 16529.22 .06 .9521
836277 24972 .05 460 13038 16655.00 .05 .9594
887957 21086 .04 487 13525 16785.38 .04 . 9669
1061074 18927 .03 582 14107 16920.63 .03 .9747
1054247 12388 .02 576 14683 17061.70 .02 .9828
916101 5675 .01 500 15183 17208.53 .01 .9913
3215866 340 .00 1767 16950 17360.36 .00 1.0000

30926469 18844603 16950
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EXHIBIT E
EXAMPLE OF TEST RUN FOR SELECTING EQUATION
0ld Premxum Group 10
Raw Smoothed Fitted Equation (1) Fitted Equation (2)

r Data Data Value % Error# Value % Errox*
.20 .82 .8249 .8248 -.2% . 8247 -.6%
.40 .6873 .6901 .6908 .8 6911 1.1
.60 .5836 .5877 .5867 -.5 .5873 -.2
.80 L4976 L5051 .5042 -.3 .5045 -.2
.00 L4320 L4377 L4371 ~.1 4368 -.2
.20 .3752 L3799 .3812 .3 .3805 .1
.40 .3302 .3325 .3339 .4 .3330 .1
.60 .2898 L2924 .2934 4 .2926 .1
.80 .2579 L2576 .2586 4 .2582 .2
.00 .2297 .2293 .2285 -.3 .2288 -.2
.20 .2067 .2039 .2028 -.5 .2035 -.2
.40 .1848 .1823 .1808 -.8 .1819 -.2
.60 .1667 L1631 L1621 -.6 .1633 .1
.80 .1504 L1470 L1463 -.5 L1471 .1
.00 L1373 L1329 .1328 -.1 .1331 .2
.20 L1247 L1197 L1211 1.2 .1208 .9
.40 L1141 .1094 L1109 1.3 .1100 .6
.60 .1041 L1034 L1016 -1.7 .1005 -2.9
.80 .0958 .0915 .0931 1.7 .0919 .5
.00 .0882 .0837 .0850 1.6 .0843 7
.20 .0817 L0771 0774 N L0774 4
.40 .0764 .0712 .0704 -1.1 .0713 W1
.60 .0707 .0660 L0644 -2.4 .0658 -.3
.80 .0659 .0610 .0600 -1.7 .0609 -k
.00 .0612 .0566 .0581. 2.7 .0567 .1

Percentage errors are calculated as the error in the insurance charge for
values of r > 1.00, and as percentage errors in the saving for values of
r « 1.00, where the saving equals the charge plus the entry ratio minus 1.00.
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EXHIBIT F
FINAL CURVE FITTING RUN
Example of Two Premium Groups
0L D PREMIUM GROUP 10 OLD PREMIUM GROUP 11
Raw Smoothed Fitted Equation (3 Raw Smoothed Fitted Equation (3)
T Data Data Yalue % Error* Data Data Value % Error*
.20 .8270 . 8249 .8248 -.5% . 8207 L8224 .8223 -.6%
.40 .6873 .6901 .6910 1.0 .6836 .6836 .6845 1.1
.60 .5836 .5817 .5872 -3 .5810 .5779 - .5772 -4
.80 L4976 . 5051 . 5044 -.2 24941 4921 4916 -.2
1.00 .4320 L4377 .4368 -2 24240 L4229 4220 -.2
1.20 .3752 .3799 -3806 .2 -3655 .3637 .3643 .2
1.40 .3302 .3325 23331 .2 -317¢ .3154 .3160 .2
1.60 .2898 .2924 .2927 .1 .2763 2747 L2752 .2
1.80 L2579 .2576 .2583 .3 .2419 .2401 L2406 .2
2.00 L2297 .2293 .2288 -.2 .2134 L2119 L2114 -.3
2.20 .2067 .2039 .2035 -.2 1906 .1870 .1865 -.3
2,40 .1848 .1823 .1818 -.3 .1697 L1659 .1654 -.3
2.60 .1667 .1631 1631 -.0 L1511 L1476 L1475 -.1
2.80 .1504 L1470 .1470 -.0 -1351 .1321 L1321 -.0
3.00 L1373 L1329 L1331 .1 -1222 .1188 .1189 1
3.20 L1247 L1197 .1208 .9 .1110 .1058 .1074 1.6
3.40 L1141 . 1094 .1101 .6 .1012 .0968 .0974 .7
3.60 L1041 -1034 .1005 -2.8 -0923 .0918 .0887 -3.4
3.80 .0958 .0915 .0920 .5 .0845 .0804 .0809 .6
4.00 .0882 .0837 .0843 .8 L0771 .0733 .0739 .8
4.20 .0817 L0771 0774 RA .0705 L0674 .0677 .5
4.40 L0764 .0712 L0712 .1 .0647 0621 .0622 .1
4.60 .0707 .0660 .0657 -4 .0597 .0575 .0573 -4
4.80 .0659 .0610 .0609 -2 .Q556 .0532 .0530 ~-.3
5.00 .0612 .0566 0567 .2 .0517 0493 L0494 .2
COEFFICIENTS
by .3388717 44044010
bg -.16700810 ~.22436769
R .15762138 .20788815
bg -.042626274 -.058737127
bg .0011206270 .0032547560
by .0011646563 .0011371418
bg -.00012901262 -.00014028810,

% Percentage errors are calculated as the error in the insurance charge for values of
T 2 1.00, and as percentage errors in the saving for values of r < 1.00, where the saving
equals the charge .plus the entry ratio minus 1.00.
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EXHIBIT G

INTERPOLATION TO DETERMINE COEFFICIENTS

FOR NEW PREMIUM GROUPS

The coefficients for Premium Group .43 were found by interpolation
between the values (shown on Exhibit F) for 0ld Premium Groups 10 and 11,

Harmonic interpolation was used as follows:

0ld Premium Old Premium New Premium

Group 10 Group 11 Group .43
$(1.00) .4368310 4220344 430

1/6(1.00)* 2.2892150 2.3694751 2.3255814
Interpolating Proportion .5468932 .4531068

by .33887170 44044010 .3848930
b3 -.16700810 -.22436769 -.1929981
by .15762138 .20788815 .1803976
bg -.042426274 -.058737127 -.0498168
bg .0011206270 .0032547560 .0020876
b7 .0011646563 .0011371418 .0011522

bg -.00012901262 -.00014028810 -.0001341

* Determined as 2.0 (i.e., 1 + r) plus the sum of the coefficients by through
b8 for the old premium group columns.



'EXHIBIT H (Page 1)

MATRIX OF COEFFICIENTS

Premium Maximum
Group bz b3 by, bS b6 EZ b_s Usable r
.64 -2.4031906 4.9946221 -5.0352823 2.6534276 «0.7476412  0.1066010 -0.0060366 1.74
.63 -2.2041460 4.3552874 ~4.6030607 2.4345125 -0.6351637 0.0985249 -0.0055528 1.74
.62 -2.0171974 4.1473717 -4.1993122 2.2285352 «0.6319215 0.0905791 -0.0051517 1.74
.61 -1.8310552 3.7423805 -3.7973659 2.0229685 -0.5756088  0.0827421 -0.0047170 1.74
.60 -1.6570528 3.3682250 -3.4231837 1.8300687 -0.5223754 0.0752858 -0.0043009 1.74
.59 -1.4832753 2.5961886 -3.0500584 1.6371411 -0.4689893  0.0677905 -0.003881¢ 3.78
.58 -1.3210878 2.6538260 -2.7035217 1.4562566 -0.4185056 0.0606505 -0.0034801 3.78
.57 -1.1594855 2.3148689  -2.3592562 1.2758234 -0.3679712  0.0534825 -0.0030759 3.78
.56 -1.0269758 2.0494542 -2.0828563 1.1267103 -0.3251918 0.0472951 -0.0027214 3.78
.55 -0.8896476 1.7743882 -1.7964056 0.972174%9 -0.2808567 0.0408827 -0.0023540 3.78
.54 -0.7549972 1,5141474  -1.5311006 0.8317601 -0.2411180  C€.0351902 -0.0020300 3.78
.33 -0.6159643 1.2463364 -1.2586406 0.6873316  -0.2004408  0.0293691 -0.0016989 5.00
.52 -0.4911550 1.0191766 -1.0283315 0.5666651 -0.1663803  0.0245276 -0.0014256 5.00
.51 -0.3651269 0.7926783 -0.7988756 0.4460618  -0.1325207 0.0197223 -0.0011549 5.00
.50 -0.2502708 0.5970000 -0.5988208 0.3401507 -0.1025966  0.0154505 -0.0009130 5.00
.49 -0.1339706 0.4013138  -0.3983194 0.2338214  -0.0725095 C.0111496 -0.0006690 5.00
.48 -0.0330425 0.2511240  -0.2463034 0.1543364  -0.0502972 0.0080085 -0.0004926 5.00
47 0.0688215 0.1034968 -0.0973794 0.0767784 -0.0286993 0.0049637 -0.0003220 5.00
.46 0.1540083 0.0062860 -0.0037170 0.0308102 -0.0165737 0.0033337 -0.0002345 5.00
W45 0.2380330 -0.0828200 0.0811232 -0.0097579 -0.0061649 0.0019723 -0.0001634 5.00
.44 0.3140541  -0.1462885 0.1387%43 -0.0343862 -0.0006725 C€.0013635 -0.0001375 5.00
.43 0.3848930 -0.1929981 0.1803976 -0.0498168 0.0020876 0.0011522 -0.0001341 5.00
.42 0.4520075  -0.2252639 0.2077841 -0.0572532 0.0025717 ©.0012534 -0.0001473 5.00
41 0.5105354  -0.2297982 0.2072574 -0.0497446  -0.0008845 0.0018417 -0.0001828 5.00
.40 0.5578036  -0.1952433 0.1636623 -0.0183729 -0.0108692  0.0032798 -0.0002603 5.00
.39 0.6000823  -0.1393633 0.0963798 0.0270763 -0.0250111  0.0053088 -0.0003703 5.00
.38 0.6373082 -0.0619243 0.0065091 0.0850057 -0.0426207 0.0078055 -0.0005046 5.00
.37 0.6699527 0.0362174  -0.1052290 0.1558492 -0.0643880 0.0109835 -0.0006831 5.00
.36 0.6988077 0.1534788 -0.2401878 0.2446196 -0.0935920 0.0156192 -0.0009676 5.00
.35 0.7225221 0.2925464  -0.3982271 0.3492669 -0.1290635 0.0214321 -0.0013340 5.00

W ATHV.EL



EXHIBIT H (Page 2)

MATRIX OF COEFFICIENTS

Premium Maximum
Group ba b3 by, b5 b6 b7 b8 Usable r
.34 0.7505061 0.4063878  -0.5060154 0.4200164 -0.1536101  0.0254783 -0.0015867 5.00
.33 0.7820579 0.5135850 -0.5980510 0.4804099 -0.1748942  0.0290010 -0.0018055 5.00
.32 0.8143930 0.6003855  -0.6482440 0.5203436 -0.1920786 0.0322248 -0.0020243 5.00
.31 0.8512591 0.6585917 -0.6488186 0.5364166 -0.2044858 0.0350829 -0.0022395 5.00
.30 0.8943599 0.6784657 -0.5853285 0.5210722 -0.2100882 0.0372850 -0.0024331 5.00
.29 0.9448819 0.6556264  -0.4557299 0.4792926 -0.2129519 0.0398448  -0.0026880 5.00
.28 1.0031130 0.5638149 -0.1995380 0.3610718 -0.1933591  0.0390678 -0.0027418 5.00
27 1.0682040 0.4044798 0.1691869 0.1904578 -0.1632730 0.0374271 -0.0027790 5.00
.26 1.1457775 0.1507550 0.6772723 -0.0367783 -0.1230709  0.0349965 -0.0027982 5.00
.25 1.2431208 -0.2287912 1.3574460 -0.3263899 -0.0751633  0.0326514 -0.0028739 5.00
.24 1.3523489 -0.6733113 2.0671535 -0.5402002 -0.0764166 0.0408023 -0.0037099 5.00
.23 1.4805248  -1.2073324 2.8012469  ~0.6334556 -0.1521826 0.0647098 -0.0056850 5.00
.22 1.6498167° ~1.9405544 3.6845402 =0.6430773 -0.3019227 0.1055812 -0.0089291 5.00
.21 1.8352317 -2.7436078 4.6519573  -0.6536154 -0.4659240  0.1503452 -0.0124822 5.00

W a71avl
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EXHIBIT I

FORMULAS FOR CHARGES BEYOND THE

RANGE WHERE EQUATION (3) APPLIES

General Formula: ¢(r) = c¢ - or

Applicable to Values Applicable to Values
of r in the range c m PG. of r in the range c

1.75 - 3.78 L7190 .10 NAA 5.01 - 6.15 .3077
3.79 - 10.59 .5297 .05 .43 5.01 - 6.05 .3027
1.75 - 3.78 L7040 .10 .42 5.01 - 5.96 .2982
3.79 - 10.29 .5147 .05 4l 5.01 - 5.88 .2942
1.75 - 3.78 .6900 .10 .40 5.01 - 5.79 2897
3.79 - 10.01 .5007 .05 .39 5.0L - 5.70 .2862
1.75 - 3.78 .6750 .10 .38 5.01 - 5.65 . .2827
3.79 - 9.71 .4857 .05 .37 5.01 - 5.59 .2797
1.75 - 3.78 .6600 .10 .36 5.01 - 5.54 2772
3.79 - 9.41 4707 .05 .35 5.01 - 5.50 .2752
3.79 - 9.12 4562 .05 .34 5.01 - 5.47 .2737
3.79 - 8.77 .4387 .05 .33 5.01 - 5.44 2722
3.79 - 8.46 .4232 .05 .32 5.01 - 5.41 .2707
3.79 - 8.19 .4097 .05 .31 5.01 - 5.38 .2692
3.79 - 7.95 <3977 .05 .30 5.01 - 5.35 .2677
3.79 - 7.68 .3842 .05 .29 5.01 - 5.33 .2667
5.01 - 7.45 .3727 .05 .28 5.01 - 5.30 .2652
5.01 - 7.25 .3627 .05 .27 5.01 - 5.27 .2637
5.01 - 7.09 .3547 .05 .26 5.01 - 5.25 2627
5.01 - 6.91 .3457 .05 .25 5.01 - 5.21 .2607
5.01 - 6.76 .3382 .05 .24 5.01 - 5.19 .2597
5.01L - 6.62 .3312 .05 .23 5.01 - 5.15 .2577
5.01 - 6.50 .3252 .05 .22 5.01 - 5.13 .2567
5.01 - 6.38 .3192 .05 .21 5.01 - 5.11 .2557

5.01 - 6.26 .3132 .05

174

W 314Vl



For .10 £ r £ .35
For .36 =r £ 5.00

For 5.01 £ r = 14.00

EXHIBIT J

TABLE OF CHARGES AND SAVINGS - TABLE M

Two Special Premium Groups

Premium Group .85
Expected Losses $596
Insurance Charges

Premium Group .99
Expected Losses $3
Insurance Charges

.994
.988
.982
.976
.970
.967
.963
. 960
. 956

é(r)

¢(x)
#(r)

.9675 -

.9500 -

.7000 -

For r < 100.00,

¢(r) = 1.000 - .0lr
(Retain all decimal
places)

W 974VL
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Premium
Group

.64
.63
.62
.61

EXPECTED LOSS RANGES

Range
$1,400 $1,479
1,480 1,569
1,570 1,659
1,660 1,769
1,770 1,879
1,880 2,009
2,010 2,149
2,150 2,299
2,300 2,469
2,470 2,659
2,660 2,869
2,870 3,109
3,110 3,379
3,380 3,689
3,690 4,029
4,030 4,429
4,430 4,879
4,880 5,379
5,380 5,679
5,680 6,009
6,010 6,369
6,370 6,779
6,780 7,229
7,230 7,739
7,740 8,309
8,310 8,959
8,960 9,689
9,690 10,499
10,500 11,499
11,500 12,599
12,600 13,899
13,900 15,499

TABLE M

Premium

Group

.32
.31
.30
.29

.28
.27
.26

.25,

W24
.23
.22
.21

27

EXHIBIT L
Range
$15,500 - $17,299
17,300 - 19,499
19,500 - 22,099
22,100 - 25,299
25,300 - 29,299
29,300 - 34,299
34,300 - 40,599
40,600 - 46,299
46,300 - 51,599
51,600 - 58,099
58,100 - 66,199
66,200 - 76,299
76,300 - 89,299
89,300 - 105,999
106,600 - 128,999
129,000 - 160,999
161,000 - 204,999
205,000 - 270,999
271,000 - 373,999
374,000 - 542,999
543,000 - 724,999
725,000 - 916,999
917,000 - 1,119,999
1,120,000 - 1,399,999
1,400,000 - 1,799,999
1,800,000 - 2,389,999
2,390,000 - 3,339,999
3,340,000 - 4,989,999
4,990,000 - 8,249,999
8,250,000 - 16,199,999
16,200,000 - 44,899,999
44,900,000 & Over



ENTRY
RATIO
V.01
0.02
0.03
0.04
0.0%
0.00
0.017
0.08
0.09
0.10
g.11
0.12
0.13
Jeld
0.15

0.16

64
0.990
0.000
0.981
0.001#
0.973
0.003¢
0.965
0.005%
0.957
0.007%
0.950
0.010%
Ve 944
0.014*
00937
0.017%
0.931
0.021%
0.926
0.020%
0.920
0.030%
0.915
0.035%
0.910
0.040%
0.905
0.045¢
0.901
0.051%
0.896

RETROSPECTIVE PLAN D - TABLE QF CHARGES AND SAVINGS - TABLE M

63
0.990
0.000#
0.981
0.001%
0.973
0.003#
0.96>
0.005¢
0,951
0.007*
0.950
0.010*
Qe 943
g.Ql3s
0.936
0.0lo®
0,930
0.020%
0.924
Ue024%
Ce91i8
0.028%
Q.91
0.0332
0. 908
0.038+
0.903
0o 043
0.898
0.0482
0.893

62
0.990
0.000%
0.981
0.001%
0.972
0.002¢
0.964
0.004%
0.951
0.007¢
0.949
0.009¢
0,962
0.012¢
0.935
0.015%
0.929
0.019¢
0.923
0.023¢
0,947
0.027%
0.911
0.031%
0,906
0.036%
0.901
0.041%
0.896
Q.d46s
0.891

‘b1
0.990
0.000%
Q.98
Q.00L12
0.972
0.002%
0.964
0.004%
0.950
QGe000%
Qe 949
QG.009%®
Q.941
Q.0lLe
0.935
0.015%
0.928
0.018%
Ve922
D.022%
0.915
Q.025%
0.910
Q.030%
0.90%
Q0.034¢
Q.898
0.038*
0.893
0.043%
Q0.888

PREMIUN GROUP

60 59 58
0.990  0.990 0.990
0.000# 0.000% 0.000¢
0.981 0.981 0.961
0.001* 0.00i%¢ 0.001s
04972 0.972 0.972
0.002% 0.002% 0.002%
0.964 0.964 0.963
0.004% 0,004% 0.003%
0,956  0.955  0.955
0.006¢ 0.005¢ 0.005¢
0.948 Q.948" 0.947
0.008¢ 0,008% 0.007%
0494k 0,940 0.940
0.011% 0.010¢ 0.010%
0.934 0.933 0.932
0.014* 0.0l3% 0,012+
06927 0.926 04945
0.017% 0.0l6® 0,015¢
0.920 0.919 0.918
0.020% 0.019% 0.018%
0.914 0.913 0.911
0.024% 0.023® 0,021
0.908 0.906 0.90%
0.028¢ 0.026% 0.025¢
0,902 0.900 0.899
0.032¢ 0.,030¢ 0.029¢
0.896 0.896 0,893
0.036¢ 0.034% 0,033
0.891 0,889 0,887
‘0.041% 0.039¢ 0.037s
0.685 0.883 0.881

57
0.590
0.000%
0.981
0.001¢
0.972
0.002¢
0.963
0.003e
0.955
0.005%
0,947
0,007+
04939
0,009+

0.931

0.011%
0.924
0.014#
0.917
0.017¢
0.910
0.020%
0.903
0.023%
0.897
0.027¢
0.891
0.031#
0.884
G.034¢
0.878

56
0.990
0.00Q»
0.981
0.001%
0.972
0.002¢
0.963
0.003%
0.95%
0.,004%
0.946
0.006%
0.938
0.008%
0.931
O.0Ll*
Q.923
0.013»
0,916
Q.0l06%
0.909
V.0l9*
0.902
0.022%
0,896
0.026%
0.889
0.029%
0.883
0.033s
0.877

EXHIBIT M

55 54
0.990 0.990
0.000% 0.000%
0.981 0.981
0.001l*% 0.00l+
0.972 0.971
0.002% 0.001+*
0.963 0.963
0.003¢ (0.003»
0.95% 0.954
0.004% 0.004s
0. 9406 0.946
0.006% 0,006«
0.938 0937
0.008% 0.007+
0.930 0.929
0.010% 0.009*
0.923 0.922
0.013*% 0.012%
0.915 0.914
0.0L5¢ (Q.014*
0. 908 Q.907
0.018¢ 0.017+
0.901 0.900
0.021¢ 0.020%
0.894 0.893
0.024% 0.023%
0.887 0.886
0.027% 0.0206%
0.881 0.879
0.03l% 0.029%
0.875 0.873

[
o0

W 31avy



ENTRY
RATIU
Ga0l
G.0¢
C.U3
0.04
Ue05
U.00
0.07
Q.08
Q.09
Q.10
Gell
Ueld
Q.13
Oel%
Qel5
Q.10
Q.17
Qeld
g.19
0.2Q
0.41
[Py
0.23
Jelé
0.45
Q.20
Q.27
028
0.29
Q.30
Ue3l

EXHIBITN

TABLE M ~ CUMULATIVE DISTRIBUTION AND UNOERLYING FREQUENCY DISTRIBUTION

ol
9o
be

64
D2

le
O.
Q.
l.
l.
-1.
le
le
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0l
e
8o
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8.
Te
7.
7.
be
6.
6o
3.
Se
Se
S5e
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4
4
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4e
3.
4.
6-
3.
4e
3.
4.
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Se
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Ge.
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Oe
Oe
1.
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-1l
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Qa.21
Ve
023
0.24
U235
0.26
0'27
O.28
0.29
0.30
0.3‘

63

62

TABLE .M - CROSS COLUMN FIRST DIFFERENCES

6l
O.
Q.
0.
Q.
Qe
l.
Qe
le
l.
Ze
le
2.
2'
e
2.
3.
K
3.
3.
4.
LS
4.
4.
4
5.
3.
4
3.
5.
S5e
6o

00
Qe
O
Q.
Q.

59
.
0.
O
le
Qe

PREMIUN
58 57
O. 0.
o. 0'
0. Q.
O. o.
Q. le
Q. le
1. ‘.
l. 0.
l. l.
l' 1'
l. l.
2. l‘
2, 1.
2. 2.
3. 1.
3. i.
2. 3.
2e 2e
3. e
3. 3.
‘. 3.
3. 3.
3. &,
*. 3.
S5e 3.
5' 3.
*. ‘.
‘. ‘.
5. ~.
5. “.
Se S5e

GROUP
56 55
Q. 0.
Q. O.
Qe L.
C. Oe
0. 0.
Geo Oe
Q. 1.
l. l.
Q. le
1. l.
i. l.
1. l.
2. l.
de le
2e 2.
ra 2e
2- 2.
3. 2.
3. 2.
3. Z.
e 3.
3- 3.
3. 3.
3. “.
‘. 3.
~. 4.
‘. ~.
4. be
4. 5.
‘. S'
4. 5-
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FORTRAN CODING FORM EXHIBIT P

Punching Insiructions Page af
Program DETERMINATION OF TABLE M CHARGE Graphic Cord Form & i aentiticotion
| IV S —
Progromme’ JOAN FEATHERER D' 1965 | Punch 7 w |

——_C 1O% COMMENT

‘SIA[EM[NI
NUMBER

@ Cont.

FORTRAN STATEMENT

\ slel? 10 15 20 15 2 3 © s 0 ss ) 68 70 72
C {OIASSUME THE 44x7 MATRI X OF COEFFICUHENTS 1S5 LOADED AS E(,1,. M) WHERE I
c 1j1S_THE PREMIUM GROWP AND M IDENTIFIIES COEFFILCIENT;)S B(2) THRU B(8).
o 210/ASSUME AN, OBTA,INFD VALUE, OF R FALLS WITHIN THE ACCEPTABLE RANGE |
C IlFOR JAPPLI,CATI ON QF EQUAT,ION (,3) FOR THE OBTAINED ,VALUE OF I,. {(NOTE
C 2{—-IF) THE PAIR (R,1}, 1S NOT IN THME ACCEPTYABLE RANGE EILTHER USE A
C 3IDIFFERENT, EQUATION ,THRU ADDIT;IONAL, PROGRAMMING OR, DETERMINE THE
(of AICHARGE, MANUALLY.) . L 1 Y L I L L L
C 3olcomPuUTE THE CHARGE (CH) AND THE CHARGE ,ROUNDED TO, .THREE DECIMAL, ,
c 1|PLACES, (CHRNDJ) AS FOLLOWS IN ;10 N S i I 2 )
toloicH=1,. 7 ()t R+RERx (E(T 1)+ Ra(EGT 2)V+R2(EGI.3)+Re(E(I . .4)+Ru(E(T 5)+Rx*
ILE(L, 6V +REECT 173 ) )33 ) 3) 1 1 1 1 1. 1 ' L
CHRND=*(AINT((CHY, K 0005) x1,0Q00.. 0,51, E-3) L L . 1 L 1
1F{R+CHRND-1.),20,21,,21 , . f . , ; . .
20 [CHRND=1, =R i i 1 . 1 L 1 L L 1
C 2/ WRITE QUT,PUT STATEMENT T)0 FIT, INOI/VIDUAL REQUI REMENTS 1 1
! P 1 L I L 1 1 I 1 1 L |
I [ 1 J EDENIIUS DN VU DUV R L 1 1 1
1 L L 1 L 1 o L ) 1 ) 1 ]
1 ' ! ) 1 L 1 1 } 1 L L L
. —_ 1 ! L L 1 L L 1 L I L
1 1 L 1 1 1 1 1 I . L. L L

* A standard card form, IBM clecto 888157, it available for punching sowrce statements from this form.

A dTIYV.L

I



32

Equation (3) = 1/(1+ r + byrZ + by + byrd + bseS + bgr

Equation (4) = ¢ ~ mr

Premium Group Number:

.64~.60

TABLE M

.59-.54

AREAS OF YORHMULA APPLICATION

.53-.21

EXHIBIT Q

6

.20-.12

Expected Loss Range({$); 1,400-1,879 1,880-2, 869 2 870-76,299 76,300-724,999

+ b7r7 + baxs)

.ll-.01
725,000 and Over

Critical Entry Ratios

.00

-
[

W
PR R I

w @

[PXV)
oo
-5

[63)

l

(S}

)

)

T4—

[&))

(4)

A linear
interpolation
between

the charges
at Premium
Croups .21
end .11
uvaing the
premium
group
number

as the
argument.

No formula
but the
charges and
savings are
gymmetrical
about

r = 1.00.

¢Oindicates that the formula works properly out to some limit{ng valuc and beyond this the

charge 1is zero.

Equation (3) constants are found in Exhibic H.

Equation (4) constants are found fn Exhibit I.
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FREQUENCY

TABLE M
EXHIBIT §
IMPLIED RISK DISTRIBUTIONS
UNDERLYING THE TABLES
€= 92,400
1965 TABLE
CIRCLES INDICATE
THE RAW DATA ON
WHICH THE 1965
TABLE WAS BASED
1984 TABLE
Ve
1954 )
TABLE~ TABLE
T e e 20 OVER 2.0



TABLE M 35
APPENDIX A
The formula for the variance of the expected losses can be written:
ot = EX(1+Ve)/m, ... (A1)
where V, is the coefficient of variation of the underlying claim distribu-

tion and m, is the mean claim frequency. In terms of the coefficient of
variation of the expected losses we’d write:

Vi=(l+V)/m, o (A2)

Now, if between year 0 and year 5, we can assume the coefficient of varia-
tion of the claims remains constant then

VQ

v = s
VE,,”—'"ro o (A3
Vp=Tley e (AG)

By general reasoning, we can equate V,*to V,? only if m;; equals my,;
but if the average cost per claim increases by a factor of /.35, we can
equate my; to my, only if E; = 1.35 E,. This straightforward logic com-

pletes the argument.

It is interesting to note that if the average cost per claim is brought
about by an increase primarily in the higher cost claims (more long term
medical, longer life expectancy for injured workers, etc.), a factor larger
than /.35 would be merited due to the increased coefficient of variation
of the claims.

APPENDIX B

It is almost obvious that if we change the index from R to r in the
manner described, the insurance charge, ¢(r), is the same as the previ-
ously calculated ¢(R). By definition we have for some specific R:

¢(R)= (Sum 2 at R)/(Sum 2 at 0)
" N
=3 (R = R/ R
where R; is the value of the ratio starting with the highest value (R.)
going down to the case which has a value equal to R (R,), and in the

19 Bailey, R. A. and Simon, L. J., “Two Studies in Automobile Tnsurance Ratemak-
ing PCAS XLV, p. 18, equation (14) with slight changes in notation to fit our
present definitions.
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denominator continuing to the smallest value (Ry). It is apparent from
the above equation that if each of the values of R is multiplied by some
constant, the value of ¢ remains unchanged except that it will now be
shown as ¢(kR), that is, &(r).

Care must be exercised in interpolating when the value of r that is being
sought is not found in the adjusted ratio column. In Premium Group 28
we were faced with the problem of obtaining the insurance charge for an
entry ratio of .20 when the tab run showed the following information:

Number
R r ¢ of Risks Sum | Sum 2
.20 21 .7876 3 324 245.06
.18 .19 .8084 1 325 251.54

To obtain r, we had to multiply R by /.07347 and Sum 2 at entry of 0 was
311.14. We now observe that if we were seeking a value for r = .20 this
would be equivalent to looking for a value of R=./863] (that is,
.20/1.07347). Between R = .20 and R = ./8631 there would not be any
risks and the value of Sum 1 would still be 324. The number of points of
excess over .]863] would increase by 324 X (.01369) since there would
be 324 risks which would each contribute this amount in addition to what
had already been accumulated as excess points beyond the value of
R = .20. Hence, Sum 2 at R =.18631 would be 249.50. Thus, ¢ =
249.50/311.14 = .8019. Another way to obtain this result a little more
quickly is to do a straight linear interpolation on ¢ using R as the scale.
In this case we would have:

(.00631/.02000) X (.8084 — .7876) = .0066

Therefore, the value of ¢ would be .8084 — .0066 = .8018. Except for
the fact that the values of ¢ are initially rounded off to four decimal places,
these two methods produce the same result.

APPENDIX C

Mathematical Testing of Table M Functions

A set of working definitions was established first. Let r be defined as
the ratio of actual losses (a random variable) to expected losses for a
given risk. We will deal with samples of risks which have the same ex-
pected losses (or nearly so). In general 0 € r < o, where o is the maxi-
mum value that can be assumed and theoretically approaches infinity.
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Define f(r) as the density function as pictured in Sketch 1. Notice that
f(0) is not necessarily zero since in practice, many risks have no losses.

However, we are certain that f(w}j=0 .. (C1)
andthatf(r) 2 O0forO0<r<ew. (C2)

w
Further, since the area under the curve must equal 7, / f(r)dr =1.
0

........... (C3)
As discussed in the main text, distributions underlying Table M must have
a mean of I, hence, /w ri(r)dr=1. (C4)
The distribution fun;tion, as shown in Sketch 2, will be given by
F(r)= ]f rf(r)dr L (C5)
It follows that F(0) =0 R (C6)
and that F(r) 2 0for0<r<w. .. (C7)
Statement (C3) may also be restated as F(ow)=1. ... (C8)
L e o e e
£(r) F(r)
o T 0 3
Sketch 1 Sketch 2
Define a special function, Sketch 3, which we will find very useful:
G(r)=F(r)— 1. e (C9)
Hence, G(0)=-1 (C10)
and G(w)=0. (Cl1)

Let the Table M function be called ¢(r). See Sketch 4. The basic defini-
tion of the Table M function (variously called “the charge,” “the column
of charges” and “the excess pure premium ratio”) is:

d(r,) = /rw(r — ro)f(r)dr / /wrf(r)dr ........... (C12)
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o T
1
G(r) #(r)
-1 o r
Sketch 3 Sketch &4

which will ordinarily be denoted ¢(r) for simplicity of notation. Note that
by (C4), the denominator in (C12) equals unity.**

It can be shown through straightforward proofs®! starting with (C12) that

olro) =1 —r,+ /—/_ ftrydrdr .. ... (C13)

=1—r,+ /r"F(r)dr .......... (C14)

=1+ f ‘Grdr (C15)

o0)=1 . (C16)

Ho)=0 (C17)

¢'(ro) =G(r,) (C18)

(rd) =flre) L (C19)

Further, it can be shown that the area under the f(r) curve can be given by
Gerye (C20)

and the mean of the f(r) curve can be given by [rG(r) — ¢(r)]‘;’

Another basic feature of Table M is the so-called ““Saving” defined by:

W(ro) = [ro/rof(r)dr —/ nrf(r)dr:] /f rf(ridr . ... (C22)

Note that by (C4), the denominator in (C22) equals unity.

20 The inclusion of the denominator in both (C12) and (C22) was suggested by Mr.
Hewitt in his review. To assist the reader, we have agreed to incorporate this dis-
tinct improvement in the Appendix.

21t For a similar development see Carlson, Thomas O., “Observations on Casualty
Insurance Rate-Making Theory in the United States,” PCAS; Vol. LI; p. 294.
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It can be shown, from (C22), that

g(ro) = p(ro) +ro—1 (C23)
Since y(r;) can never be negative, we have
dro)=1—r, (C24)

A slightly more difficult proof is the formula for the second moment of the
underlying distribution when only the function ¢(r) is known. The equa-

tion
w
p' = / rf(r)dr
o

can be shown to be
Ms’ = 0,5¢’(0)) — 2w¢(m) + 2/ ¢(r)(/l‘

by the use of Roberts’ ingenious reduction formula.** For later use we

lim

observe that to keep p.’ finite we must have | _, o, wg(w) finite

These equations and relationships were used in testing various math-
ematical equations for acceptability as expressions for ¢(r). For example,
a general polynomial was considered of the form

o(r) = (bo+bir + byr -+ b))y (C26)

From (C16) we prove b, =J. From (C25) it is apparent that the high-
est ordered term of (C25), i.e., »®**' must remain finite as » approaches
infinity which will only be true if cn + 1 < 0. Since n is positive, ¢ must
be negative. By (Cl10) we also show b, = —1/c. We decided to try an
equation with ¢ = —17 and this resulted in Equation (3) in the main text.
A similar type of analysis led to Equation (1).

As another example, consider
Br) =k~

where k and n are constants to be determined from the data. As long as
k and n are positive real numbers, (C16) and (C17) are satisfied. It is
also noted that ¢(/) = k' and since ¢(7) must lie between 0 and 1, k
must be greater than 7. By (C18) we have

G(r) = ¢(r) [=n(In k)r*~']

Now In k must be positive (since k> 1), and rl_l)moo G(r) = 0 which is

22 Roberts, Lewis H., “Graduation of Excess Ratio Distributions between Method of
Monments,” PCAS; Vol. XLI1V, p. 52.
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in agreement with (C11). However, G(0) = 0 and not —1 as it should by
(C10). Hence, this equation is inappropriate for expressing ¢(r).

This general approach was used on each equation considered to test
to see if it was at all usable and to determine the value of certain con-
stants which were required by the a priori conditions of Table M. I am
critical of the results found by the use of orthogonal polynomials for
Premium Groups .64 through .21 because each value of b, is negative.
It can be seen that in order to meet condition (C17), we must have
bs > 0 unless we do not allow o to go to infinity. This forced us to aban-
don Equation (3) above r = 5.00. The press of time did not permit fur-
ther experimentation.

Many possible curves were discarded because the constants were dif-
ficult to determine, and the entire project necessitated a family of about 50
different curves. Two special cases of (C26) were considered carefully
because of their simplicity.

-
&(r) = <1 + 7’) ............ (C27)

One method of establishing d for a given premium group was to get an
equation for the variance of (C27) and solve it for d to find d = (pu, + 1)/
(pe — 1). Then by calculating the variance of the raw data, we could
determine 4 for testing purposes. Although a few premium groups were
tested this way, we turned to another method. This procedure was to ob-
tain ¢(I) from the raw data and solve (C27) for d. A very good fit was
obtained for Old Premium Group 11, but as we tried groups toward the
extremes, the system broke down. In fact,
lim (1+~’)_d= L= 368
d— ® d e
By (C25) we can show that d > I is necessary, so that (C27) could not
be used except when,
368 < ¢(1) <.500

Because this was such a limited range, we modified the formula to get more
flexibility:

—d
¢(r) =(1 + 7’ + bgr2> ............ (C28)

Due to (C2) at r =20, it can be shown that the maximum value for b, is
(d+1)/2d* and by (C25) the minimum value for b, is 1/2. Work was
progressing on the programming of this equation when we discovered that
Equation (3) was producing satisfactory results.
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APPENDIX D

After preliminary investigations, the first four moments were calcu-
lated for Old Premium Groups 28 through 36 having as our objective the
use of Pearson curves to graduate the underlying risk distributions. These
moments were calculated using desk calculators so the procedure was
shortened as follows:

1. Premium Groups 28, 29, 30 and 31 used 100 values selected from
the raw data at the percentile points .995 through .005.
2. Premium Group 32 used one-half of the available 178 cases.**

3. Premium Groups 33, 34, 35 and 36 used all of the values avail-
able (two very exceptional risks were excluded) which gave us
123, 74, 43 and 21 cases respectively.

The results are as follows:

Old
Premium Expected

Group Losses (E) E-! Mean Ve B Ps
28 42,700 23.42 X 10-° 1.0050 .451167 3.613 7914
29 49,700 20.12 X 10°¢ 9957 .375437 2.515 6.809
30 64,400 15.53 X 10° .9907 430462 5.259 11.771
31 73,900 13.53 X 10-¢ 1.0000 271702 2.101 7.020
32 111,000 9.01 X 10-° 9751 277317 6.428 13.857
33 146,000 6.85 X 10¢ 1.0004 .173485 920 4719
34 211,000 474 X 10-¢ 9607 .145665 1.496 5.140
35 283,000 3.53 x10¢ 1.0212 .107014 .696 3.002
36 699,000 1.43 <X 10¢ 1.0000 .090419 .008 2.123

Roberts™** formulas were used for smoothing the moments, except that
equal weights were applied to each group. This was done because the total
actual losses in each group was considerable and we were willing to as-
sume that the true expected losses for the group was equal to the mean
expected losses in the sample. Thus, we wrote b, = SE™gB,/S(E™')>.
Based on the data above this resulted in by, = .2069 X 10°; hence §, =
2069 X 10°E™". Similarly, we evaluated b, = SE'(B, — 3)/S(E™')* =
3247 X 10°; hence B, = .3247 X 10°E™' + 3. The test criterion for Pear-
son curves is k = 23, — 38, — 6. In this case we have k = .287 X 10°E™""
23 Every other case was taken in such a way that the smallest value case was re-

tained in the sample and the largest value case was excluded. Subsequent investi-

_ gation indicated that the largest case was quite exceptional and, therefore, the deci-
sion was a sound one.

24 Roberts, Lewis H., “Graduation of Excess Ratio Distributions by the Method of
Moments,” PCAS; Vol. XLIV; p. 51-52.
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Over the range of £~ shown above, k goes from .67 to .04. It was con-
cluded that, although a Pearson Type VI curve was indicated, k& was close
enough to zero to use the Type I1I curve.

Rather than using Roberts’ equation for b, as indicated above (and
assuming thus that b, would be forced to conform to the Type III curve)
it was decided that the basic equations for b, and b, would be solved sub-
ject to the additional restriction that the resultant solution would produce a
Type I1I curve.

Let J(E-') = X(B: — bE™)
g(E~") = 3(B. — b,E-' — 3)*
W(E-1)=2Bs ~ 38, — 6 = 2b,E- — 3b E
The conditions are that f(E~) is to be a minimum, g(E-') is to be a mini-

mum, but this is subject to the restriction that A(E~') = 0. Introducing A,
the undetermined Lagrangian multiplier, these conditions will be met if:

i sh
b, TA%6, =0
3g Sh
b, + /\m— 0
and 2b, — 3b;, =0

Taking the partial derivatives and solving for b,, we get

b. = 43B.E7+ 635(B8. — 3)E-
' I33(E-)

The raw data gives us .
by = .2135 X 10°; hence 8, = .2135 X 10°E~" ... (D-1)

Again, following Roberts’ approach for the variance, we solve

Na+ b,SE- = SV*
aSE-' + b,S(E-1) = SE-'V*

Solving, we get a = .072609 and b, = .017021 X 10°.

Since the new curves will have their means at /.00, V? = 4%? and we have

¢t =.072609 + .017021 X 10°E~* ... (D-2)
A characteristic of the Incomplete Gamma Function (the Type I curve)
s that p=" -1 (D-3)

7
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Combining (D1), (D2) and (D3), we can write

5= .072609 + .31889/(p +1) ... (D-4)
and E = 53400(p + 1)

We were now in a position to calculate the Table M charges using the
Pearson Type 111 curve as the underlying distribution of risks. For a trial
value of p as used in the Tables of the Incomplete Gamma Function** de-
termine &* from Equation (D4) and thence determine u, from:

u, =~/p 1+ (r+.005—1)/5

Enter the Tables of the Incomplete Gamma Function with u, and p and
read out I(u,p). Caleulate I — I(u,p). Get the accumulation upward
times .0/ and this will be ¢(r). By trial and error, an appropriate value
of p was determined so that ¢(7.00) was obtained at the desired value.
The values are as follows:

Premium Group: .19 18 A7 .16 .15 .14 13 .12
p: .8245 1.1687 1.6453 23 32 49 80 162

The first three groups represent averages of pairs of values found by two
trial values of p as follows:

Precmium Group .19 is a 268 : 87 weighting of p= .8 and p= .9
Premium Group .18 isa 77 : 169 weighting of p = 1.1 and p =1.2
Premium Group .17 isa 47 : 39 weighting of p =1.6 and p =1.7

A sample of the worksheet used for Premium Group .13 is as follows:

r “e I{u:8.0) 1—=1 o(r)

1.58 478 947 053 01079
1.59 481 950 050 01026
1.60 4.84 952 048 00976

1.61 4.87 .954 046 .00928

An interesting corollary to the work in this area of the Table is the
relationship between Table M and the x* distribution. From the values

25 Pearson, Karl, Tables of the Incomplete Gamma Function, Cambridge University
Press, 1957,



44 TABLE M

of p above, determine y, the degrees of freedom used in tabling the X
function by

y=2(p+1)

Also from the above, the value of & is available for a given premium group.

g
V2y

where r., is the value of r at the o percentile and x3, is the tabled

Then Fiog = (X3, o =)+ 1.00

value for x° with y degrees of freedom and at a probability value of .
For example, on Premium Group .13,

y=2(80+1)=18
&= 1072609 + .31889/(8.0 + 1)}/
= .32870
Fice = 05478 (X2 15,0 — 18) +1.00

If we inquire as to the value of r for which 5% of the risks exceed it, we
find y2,, ,, = 28.8693 and thus r,; = /.595. Notice how this agrees with
the above example. Naturally, the converse question can be asked — for
a given value of r, what is the probability that it will be attained or ex-
ceeded? In our example, a value of r = 1.20 will be exceeded by about
25% of the risks because

. 120—100 _
X100 e + 18 = 21.6501

and a reference to the X° table shows this value has a probability of ap-
proximately .250.

APPENDIX E

As the risk size increases, we expect the shape of the risk distribution
to approach the normal curve and we expect the variance to approach
zero ultimately. It was decided to use Old Premium Group 36, which had
E = 699,000 and V¢ =.090419, as a starting point. Assuming (and this
can only be true as an approximation) that the only variance remaining
at these large risk sizes is the variance in the claim distribution, and the
number of cases (N) is fixed, the ratio of the two standard deviations of
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the expected losses will be the same as the ratio of the two standard errors
of the mean, that is

5 S/\/Ng

~ —
¥ 695000 S/\/Ns.ooooo

where S is the standard deviation of the claim distribution. (Because N
is so large, I have used N rather than N-I in the above formula.)

This may be simplified and rearranged as follows:

05 = G 699000 \/ Nosoooo (Average claim cost)/ N (Average claim cost)
=~\/(.090419) (699000)/E =~/63203/FE

Thus, as the size of the risk increases, the standard deviation decreases
and approaches zero as a limit. Solving for E we have

E=63200/6* .l (El)
which was used to set the expected loss ranges for the premium groups
using the normal curve.

For a trial value of 7, determine z, by
2, =(r+.005 — 1)/5

Enter a table of the normal curve and read out the probability integral
value representing the area under the curve to the right of z,. Get the
accumulation (to 3 decimal places) upward times .0l which equals ¢(r).
Values of ¢* which produced the desired values at ¢(1.00) were:

Premium Group: .11 .10 .09 .08 .07 .06 .05 .04 .03 .02 .01
o: .275.250.225.200.175 .150 .125 .100 .075 .050 .025

A sample of the worksheet used for Premium Group .11 is as follows:

r z 2 ki)
1.32 1.1818 119 01660
1.33 12182 112 01541
1.34 1.2545 .105 .01429

1.35 1.2909 .098 01324



