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to permit its discovery. Also, much of the world's work is done with tables 
prepared from simple functions like that of the normal curve. Thus, it's dif- 
ficult to say that practical applications prefer formulas and accept tables only 
when formulas can't  be found. What then is the fascination of the search 
for simple formulas to fit empirical data? 

One motive might be to find or test an explanation of why the empirical 
data are as they are. The distinction between "to explain" and "to describe" 
may have become blurred at some levels of epistemology, but for immediate 
purposes [ want to use the word "explanation" to cover something that helps 
me visualize a model within which 1 can see what produces the result. 

Does the Type II1 Pearson curve purport to be the frequency distribution 
that can be expected when some definable factors are working on the indi- 
vidual items? In other words, is there a model that underlies it? 1 do not 
know whether there is or is not such a model. Has an analysis of the sources 
of hazard differences among exposure items suggested that they should be 
subject to analogous factors? In other words, does the Type Ii l  model, if it 
exists, look promising? With affirmative answers to both questions, a good 
fit would tend to support the inferences drawn from the analysis. Absent 
affirmative answers to either or both questions, the tit would seem to be co- 
incidental. Moreover, searches for such fits, prior to dealing with such ques- 
tions, would seem to be searches for such coincidences. 

Such searches may be well worthwhile and yield many useful results, in- 
cluding those turned up through serendipity. However, some questions sug- 
gest themselves to which answers would be interesting: Do the conventional 
tests of Goodness of Fit apply to an undirected or trial and error search for 
a formula to fit some empirical data? Does testing a single hypothesis against 
some data call for different testing mathematics than starting with the data 
and then drawing at random from an infinite (or very large) available supply 
of formulas until one is found that seems suitable? Was the chi-square test 
built on the latter model? There is the intuitive notion that the random search 
should be shorter if the data are too thin to carry much information about 
the higher moments. Probably the notion is unfounded. 

I hope these comments have some bearing on Mr. Carlson's concern with 
the rationale and the utility of models. Certainly his paper will stimulate 
others on claim cotlnt distributions. 

DISCUSSION BY KENNETH L. MclNTOSH 

In this paper, deceptively simple in concept though perhaps not simple in 
mathematical detail, Mr. Carlson has accomplished three things, one of which 
possibly exceeds the limits of his own original objectives. First, the paper  con- 
stitutes an excellent historical summary of various approaches to the nega- 
tive binomial distribution in general, including presentation of one such ap- 
proach in some detail. Secondly, the use of the factorial moment generating func- 
tion is demonstrated. This extremely powerful mathematical tool is ignored by 
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many authors, 1 yet, as this paper  shows, with remarkably little effort the func- 
tion yields results obtainable by other means only at the cost of considerable 
difficulty. 

Thirdly and finally, in pursuing the rationale of the negative binomial, Mr. 
Carlson has gone far beyond that distribution to open for actuarial explora- 
tion the entire area of the general compound  Poisson, of which the negative 
binomial is but a specific example. He then notes casually that the area is 
"fertile." It  might be noted casually that The Bomb is "noisy." 

This paper complements rather than supplements the negative binomial 
derivations presented earlier by Mr. Dropkin ~ and (independently) by Dr. 
Bichsel. 3 As it is only when Mr. Carlson's  derivation is brought together with 
these earlier presentations that we approach critical mass, it seems necessary 
to bring Mr. Dropkin 's  derivation again under discussion despite the scrutiny 
to which it already has been subjected. This will serve to include Dr. Bichsel 
also, since his derivation parallels Mr. Dropkin ' s  so closely that, for all present 
purposes, the latter may be considered representative of both. 

To compare  and contrast the two developments,  Mr. Carlson's and Mr. 
Dropkin 's ,  it first must be noted that the general compound  Poisson distribu- 
tion assumes either of two equivalent forms represented respectively by the 
left and right members  of the identity: 

[Qr(r"A)=e-x~~ A,5~-=k,/J [ e-x ~-~?--~-~L~=Qe(r, 'x) 1 (1)  ~ 

(ll = II) 
t 

In present specific context:  

] =  the number  of claims arising from a single accident; 
briefly: "claims-per-accident."  

kj = the number  of accidents each producing exactly j claims; 
briefly: "/-claim accidents." 

1 E.g., Cram6r, in his Mathematical Met/rods o/ Statistics (Princeton, 1946) recognizes 
this function only by means of a single problem buried in fine print on p. 257. But 
see Feller, W. (An Introduction to Probability Theory and Its Applications. Vol. ] 
(2nd Ed.) Wiley (1957) Chs. XI & XII), who concentrates on it to the exclusion of 
the more-commonly--encountered characteristic function and moment generating func- 
tion. To be honest, before beginning this review I knew almost nothing of the function 
beyond the fact of its existence. 

'-' Dropkin, Lester B., Some Considerations on Automobile Rating Systems Utilizing 
Individual Driving Records. PCAS XLVI (1959), p. 165. 

a Bichsel, Dr. F., Une M6thode pour Calculer une Ristourne Addquate pour Anndes 
sans Sinistres. Tire ASTIN Bulletin. I (1960), p. 107. 

4 Mr. Carlson's notation is not compatible with that of Mr. Dropkin, and neither system 
is entirely adequate for what follows here. Hence, it has been expedient to introduce 
notation as shown. However, notational equivalents will be obvious in cross-reference 
to original equations of either anthor except possibly in certain specific cases explained 
a s  they occur. 
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the total number of accidents; briefly: the "total-of-acci- 
dents." 

the total number of claims; briefly: the "total-of-claims." 

the parameter of a Poisson distribution of k~. 

the probability that exactly j claims arise from any single 
accident. 

the distribution of claims-per-accident. (This is n o t  the 
cumulative distribution function, but is the distribution 

itself, i . e .  the sequence of the several probabilities Ai S-). 

the k-fold convolution of ~-~-~ with itself. 

It will be convenient to have: 

Aj 
g~ = h (2.a) 

e-XAk ] 

p(k,. ~) = T I 

P ( k ;  X) e -x ~ x~ 1 (2.b) 
k -~7j  

The validity of Identity (1) which shows the so-called "multiple Poisson" 
to be the equivalent of a "compound Poisson," is demonstrated in Appendix 
C. 

In present context, Q , ( r ; A )  and Q~(r; , k )  are alternative expressions of the 
cumulative distribution function of the total-of-claims distribution. But for 
change of notation, the left member of Identity ( l )  is exactly Mr. Carlson's 
Eq. (4).2 On the assumption that the relationship: 

Xj _ A ~  
f l j -a  (fl = constant) ( 3 ) '  

holds among the parameters Zj, the development presented by Mr. Carlson 
leads to a negative binomial total-of-claims distribution: (:r) 

b ( r , ' n ~ ,  =~) = lr, ~ ( - - p r )  r (4) 7 

5 Let: Ql(r ;  x) = P(r)," x = a~ + a e + . . . ; llhjhl = at  i . ae e . . . .  . llkjW. = x~! x~! . . .  
Mr. Carlson's Eq. (4) then follows. 

6 Let: j = k;  Xj = a,;  f~ = b. Eq. (3) then becomes Mr. Carlson's Eq. (2). 
a 

r Let: rr = (1 - b); pr = b; nr = - i f - ;  r = r. Mr. Carlson's Eq. (8a) then follows. 
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On the o ther  hand,  Mr.  Dropk in  has concerned himself  ent irely with acci- 
dent  frequency,  and has not  become involved with the claim dis t r ibut ions with 
which Mr.  Car lson deals.  On the assumpt ion that  inhomogenei ty  of the auto- 
mobile  dr iver  popula t ion  may be reflected by variat ion of the Poisson p a r a m -  
eter, Mr.  Dropk in ' s  basic equat ion is (with notat ional  changes)  : 

f ~ e_.~A~ f(k) = ~.t " q~xdX (5) 

where 4,x is the probabi l i ty  densi ty function of the dis t r ibut ion of X among 
individuals  of the popula t ion .  Assuming  the p.d.f. ~,~ to be specifically the 
Pearson Type  111, Eq. (5 )  leads to the negative binomial  to ta l -of-accidents  
dis t r ibut ion : 

b(k; nk, ~) = (-~:~ ) =~,(-pk) ~ (6 )  ~ 

as Mr. Dropk in  demonst ra tes .  

Though exhibi t ing identical mathemat ica l  proper t ies ,  it can be shown that 
Mr.  Car lson ' s  negative b inomial  claim distr ibut ion,  b(r,'n,~rr), and Mr.  Drop-  
kin 's  negative binomial  accident distr ibut ion,  b(k;n~,~,), are actuar ia l ly  in- 
compat ib le .  They  cannot  ever both be appl icable  s imul taneously  to da ta  aris-  
ing from the same popula t ion .  

The  negative b inomial  is a form of the compound  Poisson", therefore,  Iden-  
tity ( 1 )  holds for that  d is t r ibut ion. ' "  Assuming  the relat ions:  

l A = l o g -  
7rr 

A j  __ p r  y 

x ~j 
Identi ty (1 )  becomes:  

I B'(r'n'rrr)= ~ (-;")rr:'. r ( -p . ) " ;~  

F 
L = 

(7) II 

a 1 
s Let: 7r~ = 1 -I- a ; p~ = 1 -I- c--'------t- ; nk = r." k = x. Mr. Dropkin's form then follows. 

.~ This is demonstrated by Mr. Carlson's derivation of the total-of-claims distribution 
b(r,'nr, r,). In general, see, for example, Feller, op. cit. ( I )  p. 271, Example (c). 

"C1. Feller, op. cit. (1) Ch. XII, Sects. I & 2. Specifically see Eqs. (1.2), (2.1) and 
(2.4). 

~ Identity (7) is by no means obvious, but see Feller, op. cir. (1), Ch. Xli, Sect. 2. 
The distribution t p//Xj /is the logarithmic distribution here assumed applicable 
to the claims-per-accident. Letting: Xj = ak." or = a~ = b." ] = k; Mr. Carlson's power 
series Eq. (2) follows immediately. 
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The Poisson components in the right members of Identity (1) and or Iden- 
tity (7) represent the total-or-accident distributions underlying respectively 
both the general claim distribution Q,(r;x)-= Q~(r,'x) and the specific claim 
distribution B,(r;n,.,,~r) - B:,(r,'n,,,~r). It can be shown that the substitution of 
Mr. Dropkin's negative binomial accident distribution, or in general of any 
other distribution whatever for the Poisson accident frequency distribution, 
destroys Identities ( I )  and (7)1L And since the validity of Identity (1) is a 
necessary (and sufficient) condition that the total-of-claims distribution be a 
compound Poisson, it follows that specifically Mr. Carlson's and Mr. Drop- 
kin's respective negative binomials are mutually incompatible, as stated above. 
More generally, no compound Poisson (or "multiple Poisson") total-oJ-claims 
distribution is compatible with any but a simple Poisson total-of-accidents 
distribution. 

In other words, if the total-of-claims distribution follows any form whatever 
of the compound Poisson (saving the trivial case of always exactly one claim 
per accident), the population is homogeneous with respect to the accident- 
expectancy which Mr. Dropkin's entire development assumes to be variable 
within the population. This is true regardless of any assumptions whatever 
concerning inter-parameter relationships among the several ,~.~ of the left 
member of Identity (1). 

If the logic of Mr. Dropkin's assumption of an inhomogeneous driver pop- 
ulation is self-evident, the logic of assuming Mr. Carlson's population of 
potential victims of railway accidents to be homogeneous as regards accident- 
expectancy can be demonstrated. The idiosyncracies of individual passengers 
can have no influence upon accident frequency. Moreover, variation among 
railroad operating personnel will have been reduced to a minimum by selec- 
tion, training, and experience, and whatever variation remains will be masked 
into virtual insignificance by safety rules and safety equipment (e.g. automatic 
block signals). Homogeneity with respect to accident-expectancy (demanded 
by Mr. Carlson's fatality distribution) logically follows. 

No purely actuarial analysis of actual loss data ever can rationalize either 
Mr. Dropkin's Pearson Type IH or Mr. Carlson's equally arbitrary inter- 
parameter power series, though either or both of these assumptions can be 
validated (or, alternatively, invalidated) by actuarial analysis in a given case. 
Mr. Carlson's power series can be rationalized only if it can be shown that 
the distribution not of total-of-claims but of claims-per-accident logically 
should be the logarithmic distribution.':' Obviously, this leads away from 

a~ See Appendix A. 
*ac]. Feller, op. cir. (1), p. 271, Eq. (2.4) and see Note II,  above. Mr. Carlson notes 

as "interesting" that a compound Poisson with three "unrelated" parameters fits certain 
railway fatality data better than does the negative binomial. These parameters cannot 
be "t, nrelated," since Xj is directly proportional to the probability of exactly ] deaths 
in a single accident, hence a relationship among the parameters must follow from 
the fatalities-per-accident distribution. 1 have not had opportunity to refer to the 
origimd studies of Liiders which Mr. Carlson cites. It may be that Liiders' data was 
too thin to reveal the claims-per-accident distribution, thus giving the appearance of 
"unrelated" parameters. 
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purely actuarial considerations into safety engineering analysis of railway acci- 
dents and the circumstances attendant upon them. It is possible that the 
Pearson Type lII  assumption someday may be rationalized by the psychol- 
ogist, whose attempts to correlate driving record with the psychological pat- 
tern of the individual already have been partially successful. The most that 
any purely actuarial analysis can accomplish, however, is to validate this as- 
sumption empirically, as Mr. Dropkin and Dr. Bichsel have done. 

Mr. Carlson notes that his "observations on rationale by no means exhaust 
the subject." If the negative binomial specifically did not offer a broad enough 
field of inquiry, the field of the general compound Poisson in actuarial appli- 
cation appears inexhaustible. And it is into exactly that unbounded area that 
Mr. Carlson has led. 

APPENDIX A 

From the right member of Identity (1 ) :  

p g i "l k* Q, (r; h) = (k; h)( 
k J 

where: 

Ai 
gs = h 

(I.R) 

(2.a) 

e-Xhk.. ~ } 
p(k,'h) -- k! 

A" k (2.b) 
P(k,'h) = e-X ~ 

Let h vary in accordance with a distribution function ffJ(x) with corresponding 
probability density function fix. 1 Let: 

](k) = p(k;x). ~,.~d,~ (5) 

Transform the distribution Qdr;x) into a distribution Q.(r;x) by substitution 
of F(k) for Pfk, h) in Eq. (I.R): 

O~(r,')O = F(k)( gs }~* (9) 

If Q~(r;~.) is any compound Poisson whatever, we must have by Identity 
(1) a distribution Q/r;tO such that: 

Q,(r; h) =- Q/r; la) = Qdr; tO (1.A) 

1 Obviously, if 4,(X) is discrete, qSa is the frequency function rather than the p.d.f., and 
the integral of Eqs. (5) and (8) becomes a summation. 
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where: 

Q,(r,'t~ ) = e -~ '~  FitLi =- e-I' Q~(r;t~) (1.B) 
, nkd ~ k! L ~ ,J 

(H ---- II) (U = Z#J) (k = Zkj) 
1 

and, since stochastic independence between ./and k is assumed: 

- ( - S - j -  

From the right member of [dentity (1.B),  the total-of-accidents distribution 
underlying the distribution Q~(r,'~) is: 

_ e-tXbtk ] 
p(k,'~) - 

p(k;tO = e_t, ~ _ ~  - (2.d) 

whence by Identity ( l . A )  and Eq. (9 ) :  

F(k) -= P(k;~) (10) 

Let: 

then: 

p(Z; 0 = the generating function of P(k;O 

[(z) = . . . . . . . .  F(k) 
= " . . . . . .  

(~ = ~ or g = ~) 

p(z,'~) = e-t,,~z (11.a) 

[(z) = ~ [p(z;X)] = 4, [e -x'x:] (11.b) ~ 

where the brackets of the right member of Eq. (11 .b) indicate the compound 
function obtained by substitution of p(z;X) = e -x÷x: for z in ~(z). It then fol- 
lows from Identity (10) that: 

~[e -x~x-'] -= e-,*l ~: (12)  

whence, immediately: 
/(z) = ~ [e -'~+'~:] = (e-X+x:) c = e -c~÷''~" (13) 

(c=9 
(14) 

whence: 
(cx ff F(k) = e -ca 

k! k 

See Appendix B, following, and cf Feller, op. cit. p. 269, Theorem. 
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whence 6x must be: 

f 1 , ' /orb--  t~ c 
_4'x = ~ = 

O, ' Jorx*  ~ 
c 

(15.a) 

and it further follows from Eq. (2.c) that: 
chj = g~ fora l l j .  (15.b) 

The rabbit is now nicely out of the hat. It follows from Eqs. (14) ,  (15.a) ,  
and (15.b) that although the level of hazard exhibited by a given population 
in toto may vary with time, any form of compound Poisson total-of-claims 
distribution (e.g. Mr. Carlson's negative binomial) implies homogeneity of 
the population as regards accident-expectancy and, therefore, is incompatible 
with any total-of-accidents distribution derived on assumption of inhomo- 
geneity (e.g. Mr. Dropkin's negative binomial), save in the trivial case where 
each accident produces exactly one claim? 

APPENDIX B 

There is an alternative derivation of the negative binomial accident fre- 
quency. In the particular instance, the following offers no advantage whatever 
over Mr. Dropkin's original derivation, however not only has it some theore- 
tical interest, but the method in general may save calculation where all 
necessary generating functions are known in advance and need not themselves 
be calculated individually in the course of deriving a given distribution. 

The Pearson Type I l l  assumption is retained. Then: 

n t l - i  
a ~X e e_,,x 

•x -- r(nk) 
and by Eq. (5) :  

tO t l - I  

f0 ~ e-XA ~ a *A ~e ~x dh (16) 1 (k) = k! r(nO 

(Eq. (16) is, but for notation, identical to Eq. (5) of Mr. Dropkin's Appen- 
dix A.) 

Now the factorial moment generating function of the Pearson Type III is: 
u 

h(z) = zXa ~xk e-~x X";' e-~-~°~*)'~d,~ (17) P(,tO d a -  r ~ )  

a It should be emphasized that homogeneity as regards accident-expectancy does not 
necessarily imply homogeneity of the population with regard to expected severity, i.e. 
individual claims-per-accident expectancy. 
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Repeated integration by parts" gives: 

fo ~ n-J l.'(nk) ,X. e-~a-l°az)Xd)~ = ,, 
( a - l o g  z) ~ 

whence: 

h(z) = a-Fogz 

Substitute p(z;x)  or z in Eq. (18) : 

E " ° 
f (z)  = h [p(z,'A)] = a - l o g  ( e - - - : )  a + X - Xz 

Let: 
A=pk 
a = w k =  l - p ~ =  J - A  

Substitute in Eq. (19):  

73 

(18) 

]"k (19) 

(20) 

I I ?1/~ "rrk 
/ ( z ) =  1 - - p k Z  ( 2 1 )  

But the right member of Eq. (21) is the generating function of the negative 
binomial: .~ 

(:) b(k;nk,  r J  = h. rk ( - ok) ~ (6) 

Hence it follows immediately that: 

APPENDIX C 

Let: 
a ~ + a : + . . . = X  

a t  a~ • • = IIAj t~j 

x~. t x J . . .  = I I k /  

P(r) = Q1(r,'A) 

Or see any  s t andard  table of  definite integrals ,  e.g. K o r n  & Korn ,  Mathematical Hand- 
book for Scientists and Engineers. McGraw-Hi l l  (1961) ,  p. 820, Integral  # 3 8 0 .  

5 See, e.g., Feller ,  up. cit. p. 271, Eq.  (2.3) 
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Mr. Carlson's Eq. (4) then becomes the left number of Identity (1):  
IIXj ~ (rl = HI 

Q,(r,'A) = e -x ~ I I k J  J ( I . L )  
f 

Mr. Carlson has developed the generating function associated with his Eq. 
(4) to be (in his notation): 

o 

-%-a- . %~+, i+  (23) f ( z )  = e -~ . . . . .  

(See his Eq. (5) 

Let: 
](z) = ql (z;X) = the generating function of Q~ (r,'A) 

aj = Aj 

Then Eq. (23) becomes: 
J 

ql (z; A) = e -x+.~j~ (24) 

Turning to the right member of Identity (1) : 

Q e ( r , . A , = e _ X ~ _ ~ }  k* (1.R) 

the generating function of the Poisson component is: 
p(z;X) = e -x÷x'- 

and the generating function o[~'--~L--~is (by definition of that function): 

X X 

By a fundamental theorem';, if qe(z;x) is the generating function of Q , ( r , ' a )  

then: 
q~(z, A) = p [g(z);A] = e - x  ÷ ~gt" 

whence: 

qe(z,'x) = e -x÷x ( -~-r'xj~t ) 
t 

e -x. 7~h..3 

But by Eqs. (24) and (25):  
q~(z; X) ~ qe(z; x) 

Therefore: 

Q,(r; x) -~ Q,(r; A) 

(25) 

Q.E.D.  

Feller, op. cit., p. 269, Theorem. Also see Knopp, Konrad, Elements oJ the Theory 
o] Functions. Dover #S154 (1952), p. 88. 


