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NOTES ON MATHEMATICAL STATISTICS I 
BY 

FRANKLIN E. SATTERTHWAITE 

The basis of actuarial science is statistical. For his raw material the 
actuary has tabulations of the behavior of certain statistics in the past. His 
task is to predict as accurately as possible the behavior of certain statistics 
in the future. If such future statistics have had identical counterparts in the 
past and if a large experience has been collected for these counterparts, the 
problem is relatively simple. The future will reproduce the past approxi- 
mately. Unfortunately such an ideal condition seldom exists. Social, eco- 
nomic, and physical conditions change so that adjustments such as law 
amendment factors are necessary. Also, policy provisions and coverages 
change so that the statistic under study may not have existed in the past 
at all. 

The problem is similar to that of the chemist who is asked to make nylon. 
First the chemist must gather together the available raw materials such as 
air, water, and coal. The raw materials of the actuary are the probabilities 
of accidents and the distributions of their costs. Next the chemist must com- 
bine his raw materials by use of complex processes which may involve inter- 
mediate products and catalysts. For the actuary the combination processes 
are mathematical and involve such operations as summation and integration. 
It is also sometimes efficient, or even necessary, to use intermediate functions 
such as moments and characteristic functions to obtain the result. 

This paper is a collection of notes on certain mathematical techniques 
which have been found useful in developing, comprehending, and applying 
statistical theor~z. The specific problems taken up and the formulas developed 
are the same as those covered in Mr. Bailey's paper on sampling theory in 
this issue of the Proceedings. Therefore, it was considered superfluous to 
include an example of the actual construction of a statistical distribution. 
Mr. Bailey's examples are excellent and apply as well to this paper. 

1. Expected Value and Moments: By the expected value of a statistic is 
meant the weighted arithmetic average value. The weights assigned to each 
possible value of the statistic are the probabilities that such value of the 
statistic will occur. Thus if a statistic y(x) is a function of another statistic, 
x, which has a distribution function, ](x), the probability that y(x) will take 
on a particular value y(x') is ](x') and the expected value of y(x) will be 

(1) E [y(x)] - -  X y(x)/(x), 

1 A paper on this subject was submitted in April 1941 as a thesis in lieu of parts V I I  
and V I I I  of the Fellowship examinations for this Society. Because of the identity of 
subject matter  with Mr. Bailey's paper in this volume of the Proceedings, only the 
technical parts of my paper are being printed at this time. 



NOTES ON MATHE:NIATICAL STATISTICS 123 

where the summation extends over all possible values of x. If x has a con- 
tinuous rather than discrete distribution, the formula becomes 

(2) E [y(x)] = ] y(x) ](x) dx, 

where the integration is taken over 
The operation symbol, E, will be 

If one will remember the following 
it very useful in developing many 
analysis. These properties are: 

all possible values of x. 
reserved to indicate the expected value. 
properties of this operator, he will find 
of the formulas necessary in statistical 

i The expected value operator, E, is a linear operator. That is 

(3) E (ax + b y) : a E(x) + b E(y) .  

ii The expected value of the product of two independent statistics is equal 
to the product of the expected values. That is 

(4) E(x y) : E(x) E(y). 

iii The expected value of a constant is the constant itself. That is 

(5) E(a) = a. 

iv The expected value of the expected value is the expected value. That is 

(6) E [E(x)] : E(x). 

The fact that the expected value is a linear operator follows directly from 
the same property of integrations (or summations). We know that 

(7) f f  (ax + by) f(x, y) dx dy --- a f f  x f(x, y) dx dy -1- b f f  y f(x, y) dx dy. 

The actuary is experienced in the manipulation of linear operators through 
the study of finite differences. He knows that in formal manipulations he 
may treat the operation symbol as an algebraic quantity except that the oper- 
ator and a variable may not be permuted. That is 

(8) E(x) =fixE. 

The fact that the expected value of the product of independent statistics is 
equal to the product of the expected values follows because if two statistics 
are independent, the probability of their joint occurrence is the product of 
their probabilities of individual occurrences. Then by the separatability of 
integrations (or summations) we have 

(9) f f  x y  h (x,y) d x d y - -  f f  x y y(x) g(y) dxdy, 
-- f x ] (x )  dx . f  yg(y)  dy. 

Note that this property of the expected value holds only if the statistics are 
independent. The other properties hold for dependent as well as independent 
and single statistics. 

The property that the expected value of a constant is equal to the constant 
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follows from the fact that the integration (or summation) of the distribution 
function of a statistic over all possible values of a statistic is unity. Since 
the expected value is a constant, not a statistical variable, it also follows that 
the expected value of the expected value is the expected value. 

Mr. Bailey developed his formulas for the moments of the distributions of 
actuarial statistics by arithmetic methods. It  is very convenient to define 
moments and to determine relations between moments by use of the expected 
value notations. Thus the defining equations for the three types of moments 
are 

(10) d ' ~ =  E ( x  - -  a) ~, 

1~'~ - -  E ( x )  ~, 

~,, = E ( x  - -  E ( x )  ) ~. 

In this paper the Greek letter g, (mu) will always be used to refer to 
moments. Unprimed it will refer to moments about the mean, with a single 
prime to moments about zero, and with a double prime to moments about 
some special origin, a. The reader should verify that the application of the 
properties of E gives 

(11) /z"o = t~'o = t~o = 1, tz~ = O. 

One should be acquainted with the following parameters and their symbols: 

(12) 

mean: m = ~rl, 
variance = (standard deviation) 2 --  (probable error/.6745) 2 : 

o .2 - -  ~2,  

skewness:-/31 = (,~3) 2 = (/~)2/,76, 
kurtosis : /32 = a4 - -  t ~ /a  4. 
For the normal distribution/31 = 0 and/32 - -  8. 

Facility in using the notations of expected value to obtain relationships 
between parameters is very useful. Note that formulas so developed are 
perfectly general in their application. They hold for statistics with any type 
of distribution function whatever. However, if the second property of E is 
used, the different statistics must be independent. We shall give a few 
examples. 

(1.3) cr~ z --  /~2, by (12), 

= E [ x - - E ( x ) ]  z, by (10), 

= E [ x 2 - - 2 x E ( x )  q- {E(x)}2], 

= E ( x  2) - -  2 e ( x )  e ( x )  + E rE(x)} 2, by (3), 

= E(x ) - -  2 r E ( x ) }  2 + 

- -  /~'~ - -  m z, b y  ( 1 0 ) .  
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If two statistics, x and y, are independent, 

(14) 

0.~+v 2-- E [ ( x + y ) - - E ( x + y ) ]  2, by (12) and (10), 

- -  E [ ( x - - E ( x ) J + ( y - - E ( y ) ) ]  2, by (3) and (4), 

- -  E [ x - - E ( x )  ]2+2 E [ x - - E ( x )  ] . E [ y - - E ( y )  ] + 
E [ y - - E ( y ) ]  2, by (3) and (6). 

- -  ~ 2 + 0.v2, since E [ x - - E ( x )  ] - -  O, 

The origins from which the statistics are measured are arbitrary. Therefore 
it wilt be assumed in the next two developments that they are measured from 
the mean so that E(x )  and E ( y )  equal zero. 

(15) 
• + v ~ 3  - -  E ( x  + y)S .--. E ( x  s + 3 x2y 21- 3 xy ~ + y*), by (10), 

- -  E ( x  s) + 3 E (x  2) E ( y )  + 3 E ( x )  E ( y  ~) + E(y~),  by (3) and (4), 

"-" E(x a) + E ( Y  3) -- ~3 + v/~a, by (10). 

• +vm = E ( x  + y)4 -- E(x4) 2 I_ 0 -{- 13 E(x 2) E ( y  ~) + 0 + E(y4) ,  

The extension of these formulas to the distribution of the sum of n inde- 
pendent statistics each having the same distribution gives the following 
parameters where the sub-x refers to the parameters of the distribution of x: 

(16) 

m "- -  n m x ~  

0 .2 - - "  n 0..z 2,  

& = ~3#n, 

3 2  - -  3 - - "  (~ f12  - -  3 ) /n.  

2. The PMsson Distribution: 

The distribution of the frequency of occurrence of independent events is of 
fundamental importance in the analysis of insurance statistics. This distri- 
bution is the Poisson distribution. 

In order to bring out the properties of the Polsson distribution as clearly 
as possible, a development based on the infinitesimal calculus will be used. 
In following the development, the reader should remember that the values of 
any terms which involve infinitesimals of higher order than the first in a 
variable are immaterial to the argument. They drop out on integration. The 

2 The best tabulation oI the Poiss0n distribution is : Molina, E. C. : Poisson's Exponen- 
tial Binomial Limit. (1942) Van Nostrand. 
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notation, o ( d x ) ,  indicates an infinitesimal of higher order than dx and is 
read "zero of dx'". 

Let p(,~) d,z be the probability that an event will occur in the infinitesimal 
unit of time, a to ~ -}- de. Then the probability that no events will occur in 
this unit of time is 

(17) 1 - -  p(,~) d,~ + o(d,~). 

Expressing this in the form of an exponential gives 

(18) e-~(~) d~ +o(~). 

I f  the probability of the occurrence of an event in any unit of time is inde- 
pendent of the occurrence of the event in any other unit of time, the proba- 
bilities, (18), for successive infinitesimal units of time may be multiplied 
together to obtain the probability that no event will occur in the finite 
interval of time, a to b. This is 

F ( 0 )  ----- e -~ (a) ~a+o(da) " e -  i~(a+~a) da +o(aa) . . . . .  e-~(b-aa) as +o(aa), 

: e -  fp(a) ,l,, +o(~) : e -  f1,(,~) a~ 
--- e - - P  (19) 

where 
b 

is the expected number of events. 
Because of the independence conditions, p(a)  da and e -P  may be multi- 

plied together to obtain the probability that one event will occur in the 
period, a to ~ ~ d~, and that no other event will occur in the period a to b : 

(21) p(a )  da e -~'. 

In this case a is a fixed point in time. If  a is now allowed to vary over the 
period, a to b, the integral of (21), 

(22) F (1) : f p(ct) da e -P ,  
- -  p e -P ,  

gives the probability that one and only one event will occur in the period, 
a to b. The probability that exactly two events will occur in the period, 
a to b, is 

1 
(23) F (2) - -  ~ I f  [p(a')  do,'] [p (d ' )  do['] e - e ,  

_ / _ _ _  pz  e-P  
- -  2!  

The 21 (--  1.2) enters because the occurrence of the first event at time a"  
and the second at time a' duplicates the occurrence of the first at time ,~' 
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and the second at d ' .  Similarly the probability of the occurrence of exactly 
n events is 

1 
(24) F(n) = -~.P~e -P, 0I = 1 ,  n! = 1 . 2 . . . n .  

This is the Poisson distribution. It  is the distribution of the number of events 
whenever the probability of the occurence of an event is independent of any 
other occurrence of the event. 

The moments of the Poisson distribution are easily determined. For 
example 

(25) /z'2-- E(x 2) --  ~ x 2 Pz 

__e_P~02_l_l~.p. .~ ~ x . - { -x (x - -1)  1 
~=2 X i  P ~  ' 

( p , - t  p , - ,  ) 
po P ~ ( x - - 1 ) l  + B e  ~ ( x - - 2 )  v ' 

- ~  e--P P - ~ T  -~- x - - l = 1 "  ~C--2=0 • 

= e - r  { p e  v + P 2 e  v ), 

= p + p z .  
t 

The straightforward application of formulas (12) and (10) and the properties 
of the expected value leads to the following parameters of the Poisson 
distribution: 

(26) m = P, 

0 -2 ~ P~ 

fll = 1/P, 

f12 - -  3 -" 1 / P .  

Notice that no restrictions were placed on p(a)  in this development. It 
can vary in any manner at all with respect to time. For any given expected 
number of events, P, the Poisson distribution is the same. Thus if we are 
studying annual accident frequency, it is immaterial to us if p - - . 0 1  the 
year around, or if p - -  .02, November to April, and p --  0, May to October. 
The assignment of a as a time variable is also arbitrary. If p (Iowa) - - .01 
and p (Massachusetts) --  .02, the experiences may still be combined and the 
combined experiences will follow a Poisson distribution. 

In life insurance, a person can not die twice. While he is living the proba- 
bility of death is, say, p = .01. If he dies, it immediately changes to p -" 0. 
Thus the probability of the occurrence of death depends on whether the 
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person has died previously. I f  exposures are taken to the end of the year of 
death (as is customary) ,  the independence conditions are not satisfied and 
the distribution of claim frequencies follows the binomial, not the Poisson 
distribution (if p is small, it is almost a Poisson distribution). If  the exposure 
is cut off at  the time of death, the independence conditions are satisfied and 
the distribution of the number of deaths is a Poisson distribution. This latter 
procedure has the added advantage that it is then perfectly proper to combine 
experiences with different probabilities. The combination of two experiences 
which follow different binomial distributions does not have a binomial 
distribution. 

3. C h a r a c t e r i s t i c  F u n c t i o n s  : 

The  characteristic function of the distribution has been found to be a very 
useful tool in the development of statistical theory. The characteristic 
function 3 is defined as 

(27) ff~ ( t)  - -  E (e"~), i - -  ~ - 1 .  

For example, the characteristic function of the Poisson distribution is 
p~ 

(t) = ~ e"~ e-P, 
~.r-0 

- -  e - P  ~.. ( P  et t )  x _ c - r . e P , U  , 

x l  

(28) . ~  e - P ( 1 - " )  . 

The characteristic function converts the distribution function, a function 
of the statistic, x, into a function of a new variable, t. The characteristic 
function is frequently used instead of the distribution function to develop 
statistical theory because of two properties:  

i. The  characteristic function of the sum of two independent statistics is 
equal to the product of the characteristic functions. Tha t  is 

(29) 4~+~ (t) = 4~ (t)  • ~b v (t) ,  

since 

(30) E ( e  ' t (~+v) )  : E ( e  u"  • e u~) : E ( e  "~)  E ( e ' t U ) ,  by (4). 

z If the reader has not studied functions of the complex variable and does not feel 
secure when manipulating "imaginary" numbers, it is suggested that he take a red pencil 
and cross out all the "i's" which appear in the formulas which follow. He will then have 
moment  generatbtg functions instead of characteristic functions. The reasons the mathe- 
matician has for preferring characteristic functions need not concern us here. 
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ii. The ktn moment about zero of the distribution of x is equal to 
(V ' - - I )  -~ times the ktn derivative of the characteristic function at t = 0. 

That is: 

(31) 

since 

d ~ 
, ~ ' k =  ( V - - 1 ) - ~  ~-ii ¢, (t) l,=o 

d t ,  4,~(t)[,=o = E  - - d ~ d  t" = E [ ( i x ) ~ e U ~ ] t = o ,  
...a$=O 

= i ~ E ( x  ~) - -  i ~ ~ /e .  

To illustrate the second property, let us find the first and second moments 
of the Poisson distribution. Differentiating (28) twice gives 

d 
(32) - ~  ¢ (t) = e - P  (,-,~) ( - P )  ( - 1 )  e" (i), 

d z 
dt z ~ (t) - -  e - v  (,-20 { [ ( _ p )  (--1) e 't. (i) ]2 + [ ( _ p )  (--1) e u (i) z] }. 

Setting t = 0 and cancelling out the i's give by (31), 

(33) p'x - -  e - e  (1-1) ( _ p )  (--1) e ° = P 

/2---- (1) { [ P ( 1 ) ] 2 +  P(1)} = p + p 2 .  

This value of the second moment agrees with the value found in formula (25) 
by the direct method. 

4. The  Generalized Poisson Dis tr ibut ion:  

In many insurance lines one is only indirectly interested in the number of 
events. The primary interest is centered around the total cost of the claims 
which arise from the events. This cost is usually a variable and is not the 
same for each event. The analysis of this type of situation is quite parallel 
to the development of the Poisson distribution given above so that the result 
may well be called a generalized Poisson distribution. To keep the develop- 
ment within bounds, it will be necessary to make use of the characteristic 
function (27) and its properties which were introduced in (29) and (31). 

In the development of the generalized Poisson distribution the same nota- 
tions and independence assumptions will be used as in the development of 
the Poisson distribution. Let ](x, ,~) be the distribution of the cost of a claim 
at time ~. Then the distribution of total cost over the period, a to a .q- da, is 
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(34) F(x,a)  = 1 - -  p(a) da, i f x  = 0, 

= p(a) ](x, a) da + o(da), if x > 0. 

The characteristic function of the distribution of the total claim cost over the 
period, a to a + da is by (27), 

(35) ~ (t, a ) : ( 1 - - p ( a )  da)q-feU~p(a) ](x,a) dadxq-o(da), 

since e ~'° : 1. 
Now let 

(36) ¢ (t, a) - -  f e "~ ](x, a) dx, 

so that (35) becomes 

(37) , l , ( t , , ~ )  = 1 - -  p ( ,~ )  d,~ [1 - -  4 ( t , , ~ ) ]  +o(d,~) ,  

. - -  e - t ( a )  aa ( 1 -  fJ(t, a ) )+o (d a ) .  

Assuming that events in different units of time are independent, the char- 
acteristic functions, (37), for the different units may be multiplied, together 
in the same way as in (19), to obtain the characteristic function of the distri- 
bution of the total claim cost over the period, a to b. This gives 

( 3 8 )  ~ ( t )  = e - f  ~('~)(1-~ (t. a)) d,~, 

._. e -p  (1- ¢l(t)) 
where 

(39) ep (t) = f [p(~)/P] oh(t, a) da, 

- -  I f  e "  [p(q)/P] ](x, a) da dx, 

= f e 't~ { f [p(a)/P] ](x, a) d , )  dx, 

- -  f e "~ f(x) dx, 

is (assuming that the reversal of tke order of integration was legitimate) the 
characteristic function of the mean distribution of claims, 

(39a) f(x) --  f [p(a)/P] ](x, a) dct. 

Thus we see that if we know the expected number of events, P, and the mean 
distribution of the cost of a claim, ](x), the distribution (since it is deter- 
mined by its characteristic function) of the total claim cost is determinate. 
We may combine in any way experiences with unlike distributions, f(x, ,~)'s, 
of the cost of a claim if we can determine ](x). 

The application of (31) and (12) to (38) gives the following formulas for 
the parameters of the generalized Poisson distribution in terms of the 
parameters of the mean distribution of the cost of a claim. This latter dis- 
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tribution is referred to by a sub-x and in practice the calculation of certain 
intermediate parameters indicated by a sub-o will be found convenient: 

(40) m : P mo,  where mo --  ,t~'l, 

a 2 : m ao 2, where a o  2 - ' ~  d~t2/mo,  

f l  = o f l / m ,  where off* --" [ . / a / m o ] 2 / a o  6, 

f 2  - -  3 = (o f2  - -  3 ) / m ,  where (of2  - -  3) = [ ~ / 4 / r n o ] / a o  4. 

For the mean, m ,  a single differentiation of (38) was necessary: 

d e -  P ( I - ¢ m )  = e -P  (I-¢( ' ) )  ( - P )  [ - 4 ' ( t ) ] .  (41) ~ ' ( t )  = 7 /  

Setting t --  0 and remembering that by (31) 

¢(t)lt=o--.l*'o = 1, 4'(t)lt=o = i ' 

gives the above formula. A second differentiation .of (41) gives 

(41a) ¢ " ( t )  - - e - V  (t-C(0) {(--P)2 [--q,'(t)]2 + ( - -P)  [--•"( t)]J ,  

which on the application of (31) gives 

i 2/~'2 : i 2 (Px/x ' l )  2 + i 2 P . I z ' ~ . .  

Cancelling the iVs and applying (12) gives the above formula for a s. Simi- 
larly the above formulas for fix and f2 can be obtained. 

The above development of the generalized Poisson shows its properties but 
is more or less useless for purposes of calculation. Therefore consider the 
repeated application of formula (29). This gives the characteristic function 
of the distribution of the sum of n independent statistics from the same 
population as ,b" where $ is the characteristic function of the distribution of 
a single claim. Now if n is considered a statistical variable which obeys the 
Poisson distribution, (24), the expected value of ~," with respect to (24) is 

1 
(42) q5 --  E(q,") = X ~q- (P 4)" e-P, 

..-_ ePgt. e - r ' ,  

- -  e-P(1- ¢), 

which is identical with the characteristic function of the generalized Poisson 
given in (38). Thus, to calculate the numerical values of a generalized 
Poisson distribution : 

i. Find the distribution of the sum of zero, one, two, three, . . . ,  claims. 
i/. Multiply each of these by the corresponding terms of (24). 

iii .  Add together these products. 
Also consider the characteristic function of thh distribution of the sum of 

two independent statistics, each of which obeys a generalized Poisson distri- 
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bution with the characteristic function (38). By the application of (29) 
this is 

(43) 4) = [e  - P ( 1 -  ~ ) ] 2  .--  e - 2 P ( 1 -  ¢ ) .  

This is identical with the characteristic function of the generalized Poisson 
distribution when 2 P claims are expected instead of P claims. Therefore in 
calculating the generalized Poisson distribution for 2 P expected claims, it 
may be considered as the distribution of the sum of two independent statistics 
obeying generalized Poisson distributions with P claims expected. 

The distributions of the total claim payments in practically all lines of 
insurance fall in the class of generalized Poisson distributions. They are such 
directly if each claim payment is independent of the rest. If certain payments 
are related to each other; they can be combined and the distribution of their 
sum taken as the element. Thus a group health and accident policy may pro- 
vide for weekly indemnity, hospital payments, and surgical payments. For a 
given sickness or accident these three payments are related. However if one 
first finds the distribution of the total of the three payments for each sickness 
or accident, this distribution can be used as the basis of a generalized Poisson 
distribution. 

5. The tIyper-geometric Distribution: 

The Poisson distribution is a one parameter distribution. If the expected 
number of events, P, is known, one can completely specify the distribution. 
However in many practical problems one does not know the expected number 
of events, but only knows an estimate of it. For example, in group life insur- 
ance the expected number of deaths under a policy can be calculated in 
accordance with some general mortality experience. However, this is only an 
estimate of the true expected number of deaths in the sense of theoretical 
statistics. It does not make allowance for the individual characteristics of 
the risk such as its geographical location, the type of personnel hired and 
working conditions. Allowance can bemade  for these by assuming that P is 
a statistical variable distributed about the estimate, N, as a mean. Unless we 
have a great deal of information available, we can not determine much about 
the distribution of P. From general reasoning we know it is non-negative 
and continuous. One of the simplest such distributions is the Type II I  
distribution, 

1 ( b ) b  pb_xe_~V/zcdp, (44) g(P)dP  - -  (b - -  1) I 

which has a variance (in units of the mean) of 

(45) a2/m 2 : 1/b. 
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The expected value of the Poisson distribution, (24), withrespect to (44) is 

{ 1  p , e _ p  } ( n + b - - 1 ) l  ( b )  b[  N ~ '+n 
(,t6) F ( n ) - - E  -~. -"  n! ( b - - l ) !  ~ b + N ]  

which is called the hyper-geometric distribution. It has the parameters: 

(47) m --- N, 

o 2 / m  2 --- 1 / N  -3 r- l / b ,  

N 2  N a  
/ ~ 3 : N + 3 - - - f f - + 2  b--- Y. 

Similar treatment of the characteristic function of the generalized Poisson 
distribution, (38), gives the characteristic function of the generalized hyper- 
geometric distribution, 

(48) ¢ (t)  - -  E ( e  P(1- ~))  

"-- [ 1 +  N(1--~b) ] - b b  

The application of (31) and (12) to this gives the parameters: 
(49) m -- N m~ 

6 2 --- m 0"0 2 --Jr- m 2 / b ,  0"o 2 --- d x ' 2 / ~ m  

N 2  • m N 3  

In practice the parameter, b, which appears in the above formulas can be 
estimated in the following way: 

1. Tabulate the actual value, yj, (viz., total claims under a policy) and 
the expected value, mj, (viz., pure premiums) of a number of statistics 
which follow the desired distribution. It is best that the mrs should 
not vary too much. 

2. Calculate 
R z - -  Y (yj - -  rot) z, S z = • ml ~, T "-  • mj. 

3. The expected value of R 2 is 
(50) E ( R ) 2 - - E [ X ( y j 2 - - 2 y j  mj+mj2)] ,  

---- X [E(yj 2) -- 2 E(y~) rn~ + mjZ], by (3), 
2 

- - ~  [mjo.oZ + - - ~  -- + m~ ~ - - 2 m ~  2 .q- mj2], see (49) and (13), 

= T ,,o 2 + S~/b.  

4. Set R z equal to its expected value and solve for b. 
When b is large compared with the expected number of claims under each 

policy, statistical methods for the determination of b breakdown because the 
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difference, R ~ -  T ~ro 2, is small compared with the variability of R 2. It is 
then necessary to fall back on personal judgment in the choice of b. For 
example, if it is estimated that the true measure of the risk for 95% of the 
policyholders is within 20% of the rate on which manual premiums are based, 
the standard deviation, ~, (in units of the mean) of the distributions of the 
true risks about the manual rate is approximately 10%. Then, applying 
formula (45), we see that b is approximately 100. 

6. Summary 

The practical problem of the actuary is to forecast the behavior of certain 
statistics in the future. These statistics can usually be expressed as functions 
of certain elementary statistics. Fortunately the volume of past experience 
available for these elementary statistics is usually quite large so that they 
may be studied in great detail. Using the distributions of these elementary 
statistics as a basis, it is then possible to do the combining and integrating 
necessary to find the distribution of the desired statistic by mathematical 
formula or by mean strength on the calculating machine. The result is 
obtained more quickly (and often more accurately) than would be possible 
by waiting for a sizable experience to accumulate for the particular statistic 
under study. 

The distribution of the frequency of events was found to take a very simple 
and general form, the Poisson distribution. The only information necessary 
to completely specify this distribution is the expected number of events. If 
the expected number of events is unknown but can be estimated, the hyper- 
geometric distribution is used in place of the Poisson. Both the Poisson and 
hyper-geometric distributions generalize to give the distribution of the total 
of claim payments. These generalized distributions were found to be func- 
tions of the average distribution of claims alone so that questions of seasonal 
or other variations in the distribution of claims can be ignored. 

In some circles there has been a tendency to disparage the actuary as being 
backward in adapting theoretical methods to his problems. However, those 
who study the problem more carefully discover that the inadequacy is as 
much with statistical theory than with the actuary. Mathematical statistics 
is an infant science which has only reached the stage of rapid development 
in the last ten or twenty years. It still has many very simple types of prob- 
lems to solve. It  is only beginning to develop methods which are general 
enough to handle the complex p.roblems to which the actuary must obtain an 
answer the best he can, inadequate theory being no excuse. 

It is hoped that the reader will have been encouraged to reflect on the 
theoretical basis of his work more often and that maybe he will take some 
part in expanding that theoretical basis. 


