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FOREWORD

Actuarial science originated in England in 1792 in the early days of life insurance. Because 
of the technical nature of the business, the first actuaries were mathematicians. Eventually, their 
numerical growth resulted in the formation of the Institute of Actuaries in England in 1848. 
Eight years later, in Scotland, the Faculty of Actuaries was formed. In the United States, the 
Actuarial Society of America was formed in 1889 and the American Institute of Actuaries in 
1909. These two American organizations merged in 1949 to become the Society of Actuaries.

In the early years of the 20th century in the United States, problems requiring actuarial treat-
ment were emerging in sickness, disability, and casualty insurance, particularly in workers com-
pensation, which was introduced in 1911. The differences between the new problems and those 
of traditional life insurance led to the organization of the Casualty Actuarial and Statistical 
Society of America in 1914. Dr. I. M. Rubinow, who was responsible for the Society’s for-
mation, became its first president. At the time of its formation, the Casualty Actuarial and 
Statistical Society of America had 97 charter members of the grade of Fellow.  The Society 
adopted its present name, the Casualty Actuarial Society, on May 14, 1921.

The purposes of the Society are to advance the body of knowledge of actuarial science 
applied to property, casualty, and similar risk exposures, to establish and maintain standards 
of qualification for membership, to promote and maintain high standards of conduct and 
competence for the members, and to increase the awareness of actuarial science. The Society’s 
activities in support of this purpose include communication with those affected by insurance, 
presentation and discussion of papers, attendance at seminars and workshops, collection of a 
library, research, and other means.

Since the problems of workers compensation were the most urgent at the time of the 
Society’s formation, many of the Society’s original members played a leading part in develop-
ing the scientific basis for that line of insurance. From the beginning, however, the Society has 
grown constantly, not only in membership, but also in range of interest and in scientific and 
related contributions to all lines of insurance other than life, including automobile, liability other 
than automobile, fire, homeowners, commercial multiple peril, and others. These contributions 
are found principally in original papers prepared by members of the Society and published 
annually in the Proceedings of the Casualty Actuarial Society. The presidential addresses, also 
published in the Proceedings, have called attention to the most pressing actuarial problems, 
some of them still unsolved, that the industry has faced over the years.

The membership of the Society includes actuaries employed by insurance companies, 
industry advisory organizations, national brokers, accounting firms, educational institutions, 
state insurance departments, and the federal government. It also includes independent con-
sultants.  The Society has three classes of members: Fellows, Associates, and Affiliates. Both 
Fellows and Associates require successful completion of examinations, held in the spring and 
fall of each year in various cities of the United States, Canada, Bermuda, and selected overseas 
sites. In addition, Associateship requires completion of the CAS Course on Professionalism.

Affiliates are qualified actuaries who practice in the general insurance field and wish to be 
active in the CAS but do not meet the qualifications to become a Fellow or an Associate.

The publications of the Society and their respective prices are listed in the Society’s 
Yearbook.  The Syllabus of Examinations outlines the course of study recommended for 
the examinations. Both the Yearbook, at a charge of $40 (U.S. funds), and the Syllabus of 
Examinations, without charge, may be obtained from the Casualty Actuarial Society, 1100 
North Glebe Road, Suite 600, Arlington, Virginia 22201.
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AN EXAMINATION OF THE INFLUENCE OF LEADING
ACTUARIAL JOURNALS

L. LEE COLQUITT

Abstract

The relative significance of research published in eight
actuarial journals is evaluated by examining the fre-
quency of citations in 16 risk, insurance, and actuarial
journals during the years 1996 through 2000. First, the
frequency with which each sample journal cites itself and
the other journals is provided so as to communicate the
degree to which each journal’s published research has
had an influence on the other sample journals. Then
the 16 journals are divided into 1) the actuarial jour-
nal group and 2) the risk and insurance journal group.
The actuarial journals are then ranked based on their
total number of citations including and excluding self-
citations. Also, a ranking of journals within the actuarial
journal group is provided based on the journals’ influ-
ence on a per article published basis. Finally, the most
frequently cited articles from the actuarial journals are
observed and reported.
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1. INTRODUCTION

The importance of evaluating journal quality is noted in the
finance literature (see Alexander and Mabry [1], Zivney and
Reichenstein [12], McNulty and Boekeloo [10], Borokhovich,
Bricker, and Simkins [4], Chung, Cox, and Mitchell [5], and
Arnold, Butler, Crack, and Altintig [2]). In the risk, insurance,
and actuarial literature, a number of studies have been conducted
to provide information on the relative quality of the journals and
articles in this field, including Outreville and Malouin [11], Mc-
Namara and Kolbe [9], Baur, Zivney, and Wells [3], Hollman
and Zeitz [8], and two studies by Colquitt [6], [7].

The purpose of the first and second Colquitt studies was to
determine the impact that various risk, insurance, and actuarial
journals and articles have had on research in that field by exam-
ining citations found in the leading risk, insurance, actuarial, and
finance journals over the periods 1991—1995 and 1996—2000, re-
spectively.1 According to Colquitt [6], [7], reasons for assessing

1While citation studies are more common in other disciplines and thought to be the most
comprehensive method in which to evaluate journal quality [see Alexander and Mabry
[1], Zivney and Reichenstein [12], Borokhovich, Bricker, and Simkins [4], Chung, Cox,
and Mitchell [5], and Arnold, Butler, Crack, and Altintig [2]], presumably the reason
why citation analysis had not been used to evaluate journal quality in the insurance and
actuarial literature up until Colquitt [6], [7] is that very few of the risk, insurance, and
actuarial journals are tracked by the Social Sciences Citation Index (SSCI). Currently,
only the Geneva Papers on Risk and Insurance Issues and Practice, Geneva Papers on Risk
and Insurance Theory, Insurance: Mathematics and Economics, the Journal of Risk and
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journal quality include its significance to 1) those conducting re-
search; 2) faculty and administrators who are charged with eval-
uating the work of those conducting this research; 3) the editors
and sponsoring organizations of the journals being evaluated,
and; 4) the institutions that are making purchasing decisions.

The primary purpose for this update of the Colquitt studies
is to provide the members of the Casualty Actuarial Society and
others interested in actuarial research more specific information
about the influence of the leading actuarial journals as well as
information about how the Casualty Actuarial Society’s two pub-
lications, the Casualty Actuarial Society Forum (CASF) and the
Proceedings of the Casualty Actuarial Society (PCAS), contribute
to the overall landscape of actuarial research. For those subscrib-
ing or contributing research to the Casualty Actuarial Society’s
publications, the study will provide information on the connec-
tion that these journals have with other risk, insurance, and ac-
tuarial journals and offer ideas as to other journals in which to
subscribe or submit research. For those involved with the publi-
cation and dissemination of the two publications, the study will
provide an idea as to the sphere of influence these journals have
within the actuarial research community and perhaps shed light
on how widely read and known these publications are among
those conducting actuarial research.

2. RESEARCH METHODOLOGY AND DATA

The study is based on citations found in the 16 sample risk, in-
surance, and actuarial journals only to articles published in these
same 16 journals (see the following chart for a list of the sample
journals). As a result, this study only assesses the significance of
the research published in these 16 risk, insurance, and actuarial
journals. The difference in the journals analyzed in the Colquitt
(2003) study and this one is the exclusion in this study of Bene-
fits Quarterly and the Journal of Financial Services Professionals

Insurance, and the Journal of Risk and Uncertainty are included in the journals tracked
by the SSCI. Collection of the data needed to conduct a citation analysis without the use
of the SSCI is tedious and time consuming.
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as well as the finance journals and the inclusion of the Casualty
Actuarial Society Forum and the Proceedings of the Casualty Ac-
tuarial Society.2 The data include the total number of citations in
the 16 sample journals during the years 1996 through 2000.

For the purposes of evaluating the 16 risk, insurance, and
actuarial journals, the journals are separated into two groups; the
actuarial journal group and the risk and insurance journal group.

Sample Journals
ASTIN Bulletin (AB)
British Actuarial Journal (BAJ)
Casualty Actuarial Society Forum (CASF)
Insurance: Mathematics and Economics (IME)
Journal of Actuarial Practice (JAP)
North American Actuarial Journal (NAAJ)
Proceedings of the Casualty Actuarial Society (PCAS)
Scandinavian Actuarial Journal (SAJ)

Risk and Insurance Journals
CPCU Journal (CPCU)
Geneva Papers on Risk and Insurance Issues and Practice (GPIP)
Geneva Papers on Risk and Insurance Theory (GPT)
Journal of Insurance Issues (JII)
Journal of Insurance Regulation (JIR)
Journal of Risk and Insurance (JRI)
Journal of Risk and Uncertainty (JRU)
Risk Management and Insurance Review (RMIR)

While the Colquitt studies focused primarily on the risk and in-
surance journal group (with a particular focus on the JRI), this
paper focuses primarily on the findings of the actuarial journal
group (with a particular focus on the CASF and the PCAS).

2In the Colquitt study [7], Benefits Quarterly and the Journal of Financial Services Pro-
fessionals produced no citations to any of the sample actuarial journals. In addition, of
the approximately 70,000 citations found in the finance journals evaluated, only 24 were
to the sample actuarial journals (17 of which were to the British Actuarial Journal).
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Given that the Social Sciences Citation Index (SSCI) does not
include all of the risk, insurance, and actuarial journals relevant
to this study, the citation data are gathered by reviewing the bib-
liographies of each of the sample journals for references to the
risk, insurance, and actuarial journals included in the study. Un-
less a paper was stated as being “forthcoming” in one of the sam-
ple journals, citations to working papers that were published in
one of these journals subsequent to the citation are not recorded.
Data gathered include the author, journal edition, and page num-
bers of the cited article as well as the journal edition and page
number of the citing article. Only citations from feature arti-
cles, short articles, discussions, and notes and communications
regarding research are included in the data. Opinion pieces and
regular columns like those found in the CPCU Journal are not
reviewed for citations.

The citation data collected are used to evaluate the citation
patterns of the sample journals and the relative impact that each
journal is having on risk, insurance, and actuarial research in total
and on a per article published basis. In addition, the data are used
to provide information on which of the articles published in the
sample actuarial journals have been the most influential in recent
years.

3. DISCUSSION OF RESULTS

Table 1 provides the distribution of citations by the year in
which the cited article was published for each journal group, and
for the two journal groups combined. The unavoidable lag that
exists between the time period evaluated and data collection that
was described in the Colquitt studies is again supported by the
results found in Table 1. There is a difference in the distribu-
tion of citations found in the actuarial journal group and those
found in the risk and insurance journal group. While over 50% of
the citations recorded from the risk and insurance journal group
were to articles published between the years 1992 and 1997, only
41.53% of the citations from the actuarial journal group were to
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TABLE 1

Distribution of Citations by Year of Cited Article

Risk and Insurance
Actuarial Journals Journals Total

Cumulative Cumulative Cumulative
Year Percentage Percentage Percentage Percentage Percentage Percentage

2000 0.83 0.83 0.75 0.75 0.80 0.80
1999 2.68 3.51 2.94 3.68 2.78 3.57
1998 5.78 9.28 3.73 7.41 5.02 8.59
1997 7.40 16.68 8.42 15.83 7.78 16.37
1996 7.63 24.32 7.50 23.32 7.58 23.95
1995 5.85 30.17 10.00 33.32 7.39 31.34
1994 8.82 38.99 8.37 41.69 8.65 39.99
1993 5.67 44.66 7.10 48.79 6.20 46.19
1992 6.16 50.83 8.94 57.74 7.19 53.39
1991 5.11 55.93 6.14 63.88 5.49 58.87
1990 4.85 60.78 5.30 69.18 5.02 63.89
1989 3.51 64.29 3.55 72.73 3.52 67.41
1988 3.95 68.23 3.68 76.41 3.85 71.26
1987 2.97 71.20 3.90 80.32 3.31 74.57
1986 2.35 73.54 2.24 82.55 2.31 76.88

pre-1986 26.46 100.00 17.45 100.00 23.12 100.00

articles from the same period.3 A large portion of this differ-
ence comes from the two groups’ citations to articles published
in the years before 1986. This suggests that many of the articles
cited by the actuarial journal group (presumably actuarial arti-
cles) have a more lasting influence than do the articles cited by
the risk and insurance journal group (presumably the risk and
insurance articles).

3Three to four years appears to be the time lag between when an article is published and
when it is read, incorporated into future research, and referenced in a published article.
This would explain the apparent significance of the articles published between 1992 and
1997 when reviewing articles published from 1996 to 2000.
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3.1. Journal Results

Table 2 provides the citation patterns for all of the sample
journals. Table 3 provides the same citation pattern information
on a normalized basis (per one thousand citations). Essentially,
these tables allow one to view the frequency with which each
sample journal cites the other risk, insurance, and actuarial jour-
nals. In addition, the total source articles and the number of ref-
erences to sources other than the sample journals are provided.

The first column on the far left of Table 2 contains the journals
that were reviewed for citations. By reading across each row, you
can see the journals that were cited by the journal listed in the
first column. For example, the first journal listed at the top of
the first column is the AB. There were 92 articles during the
years 1996—2000 from the AB that were reviewed for citations.
These 92 articles cited the AB 177 times, the BAJ 21 times, the
CASF three times, and so on. The AB cited sources other than
the sample risk, insurance, and actuarial journals 942 times for
a total of 1,327 citations. The two shaded numbers across each
row denote the two most frequently cited journals by the journal
reviewed. As can been seen in Table 2, the AB (177) and the IME
(105) were the two journals most frequently cited by the AB.

As was observed in the Colquitt studies, the journal most fre-
quently cited by the majority of the citing journals is the citing
journal itself. This can be seen by observing that most of the
cells starting from the top left corner of the grid and proceed-
ing down to the right bottom corner are shaded (indicating that
the journal cited was either the first or second most frequently
cited journal). The exception to this was the CASF, the GPT,
the JAP, the JII, the NAAJ, and RMIR.4 Among those, the GPT,
the JII, and RMIR all cited the JRI with the most frequency.
The most frequently cited journal by the CASF was the PCAS,
the most frequently cited journal by the JAP was the BAJ, and

4Given that the NAAJ and RMIR both began publication in 1997, it is not surprising that
these two journals cite themselves with relative infrequency.
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the most frequently cited journal by the NAAJ was IME. In ad-
dition, the actuarial journals and the risk and insurance journals
tend to cite the journals within their same group with the most
frequency, with the only meaningful overlap being the frequency
with which the JRI is cited by the CASF, IME, the NAAJ, and
the PCAS. Tables 2 and 3 also show the influence of IME. IME
was either the first or second most frequently cited journal of six
of the eight actuarial journals. The only two actuarial journals
where the IME was not the first or second most frequently cited
journal were the CASF and the PCAS.

Table 2 also provides each journal’s self-citation rate and each
journal’s self-citation index is found in Table 3.5 The higher
the self-citation index, the higher a journal’s frequency of self-
citations relative to the frequency with which it is cited by the
other sample journals. The lower the self-citation index, the
more influential the journal is presumed to be. While a high
self-citation index could suggest that a journal is guilty of self-
promotion, it also could be that a journal with a high self-citation
index publishes research on topics that are of a specialized nature
and, as a result, is most frequently referenced by other articles
within that same journal (see Colquitt [6]). Among the actuarial
journals, the NAAJ (0.40) has the lowest self-citation index, with
IME (0.67), the AB (0.84), and the SAJ (0.92) following close be-
hind. The remaining four actuarial journals and their self-citation
indices are the PCAS (1.39), the CASF (1.51), the BAJ (1.52) and
the JAP (5.15).

Table 4 provides a ranking of the sample actuarial journals
based on total citations, including and excluding self-citations.
When looking at total citations, IME is the most frequently cited
actuarial journal with 854, followed by the AB (658), the PCAS
(626), the SAJ (453), and the BAJ (410). The remaining three

5The calculation of both the self-citation rate and the self-citation index follows that of
Borokhovich, Bricker, and Simkins [4] and Colquitt [6], [7]. The self-citation rate is the
number of self-citations from a journal divided by the total number of citations found
in that journal. The self-citation index is the self-citation rate £100/normalized average
citation rate excluding self-citations (per thousand citations).
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TABLE 4

Actuarial Journals Ranked by Total Number of

Citations by the Sample Journals During the Years

1996 Through 2000

Total Self- Non-Self-
Rank Actuarial Journals Citations Citations Citations Adj Rank1

1 Insurance: Mathematics and
Economics

854 441 413 2

2 ASTIN Bulletin 658 177 481 1
3 Proceedings of the Casualty

Actuarial Society
626 2622 364 3

4 Scandinavian Actuarial Journal 453 96 357 4
5 British Actuarial Journal 410 229 181 5
6 Casualty Actuarial Society Forum 194 1023 92 7
7 North American Actuarial Journal 148 47 101 6
8 Journal of Actuarial Practice 26 15 11 8

1Ranking based upon total number of non-self-citations.
2If the CASF citations (272) are included as self-citations to the PCAS, then the number of PCAS
non-self-citations falls to 92 and its adjusted rank is just below that of the NAAJ.
3If the PCAS citations (59) are included as self-citations to the CASF, then the number of CASF
non-self-citations falls to 33 and its adjusted rank is just above that of the JAP.

actuarial journals were the CASF (194), the NAAJ (148), and the
JAP (26). One reason for the low citation totals for the NAAJ
and the JAP is likely the relative newness of these journals. In
addition, the pedagogical nature of some of the articles in the
JAP and the relatively low number of JAP subscribers are also
likely reasons for its low number of citations.6

When excluding self-citations, the only changes in the order
is a switch in the first and second positions between IME (413)
and the AB (481) and the switch in the sixth and seventh posi-
tions between the CASF (92) and the NAAJ (101). Interestingly,
when the CASF citations to the PCAS are considered to be self-
citations to the PCAS, then the number of non-self-citations to
the PCAS falls to 92 and its adjusted rank falls to just below that

6Baur, Zivney, and Wells [3] report that (at the time of their study) only 2% (5 out of
265) of all AACSB schools and only 3% (1 out of 30) of schools with a major in actuarial
sciences subscribed to the JAP.
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of the NAAJ (seventh position). Also, when the PCAS citations
to the CASF are considered to be self-citations to the CASF, then
the number of non-self-citations to the CASF falls to 33 and its
adjusted rank falls to just above the JAP (again, seventh posi-
tion). This is likely due to the fact that these two journals have
an actuarial focus that is of primary interest to the members of
the Casualty Actuarial Society.

While the total number of citations for the sample journals
provides a measure of the total impact that each journal has on
risk, insurance, and actuarial research, the total number of cita-
tions is greatly affected by the number of citable articles pub-
lished by the sample journals. Table 5 provides the insurance
impact factor (IIF) for the sample actuarial journals. The IIF
follows Colquitt and captures the relative research impact of a
journal on a per article basis.7

When evaluating the research impact of a journal on a per
article basis, the AB is ranked first among actuarial journals with
an IIF of 2.0175. This essentially means that the AB articles pub-
lished during the period between 1991 and 2000 were cited an
average of 2.0175 times per article by the sample risk, insurance,
and actuarial journals analyzed. Following the AB is the PCAS
(1.9825), IME (1.6336), the SAJ (1.5656), the BAJ (1.3892), the
NAAJ (1.1746), the CASF (0.6078), and the JAP (0.2766). When
looking at the adjusted insurance impact factor8 (AIIF) for the
actuarial journal group, there is a considerable difference in the
rankings. The AB (1.4561) has the highest AIIF, followed by
the SAJ (1.1475), the PCAS (1.1404), the NAAJ (0.8016), IME
(0.7466), the BAJ (0.4162), the CASF (0.2778), and the JAP
(0.1170). As was the case when evaluating the IIF, when the
CASF citations are subtracted when calculating the PCAS’s AIIF,
the AIIF falls to 0.2719 and the PCAS’s ranking falls to seventh.

7The IIF equals citations to a journal’s articles published in a certain period divided by
the number of citable articles during the same period. The period used for all of the
journals except the JAP and the NAAJ is 1991 through 2000. The JAP was established in
1993 and the period used for the JAP is 1993 through 2000. The NAAJ was established
in 1997 and the period used for this journal is 1997 through 2000.
8The AIIF is the IIF calculated excluding self-citations.
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TABLE 5

Relative Impact of Actuarial Journals

(Insurance Impact Factor–Period from 1991—2000)

All Citations No Self-Citations
Insurance Adj Insurance

Actuarial Journals Impact Factor1 Rank Impact Factor2 Adj Rank

ASTIN Bulletin 2.0175 1 1.4561 1
Proceedings of the Casualty
Actuarial Society

1.9825 2 1.14043 3

Insurance: Mathematics and
Economics

1.6336 3 0.7466 5

Scandinavian Actuarial Journal 1.5656 4 1.1475 2
British Actuarial Journal 1.3892 5 0.4162 6
North American Actuarial Journal 1.1746 6 0.8016 4
Casualty Actuarial Society Forum 0.6078 7 0.27784 7
Journal of Actuarial Practice 0.2766 8 0.1170 8

1Insurance Impact Factor (IIF) = citations to a journal = s articles published in a certain period divided
by the number of citable articles published during the same period. The period used for all of the
journals except the JAP and the NAAJ is 1991 through 2000. The JAP was established in 1993 and
the period used for this journal is between 1993 through 2000. The NAAJ was established in 1997
and the period used for this journal is between 1997 through 2000.
2Adj Insurance Impact Factor (AIIF) = the IIF calculated using only the non-self-citations.
3If the CASF citations are subtracted when creating the PCAS’ AIIF, the PCAS’ AIIF falls to 0.2719
(ranked 7th).
4If the PCAS citations are subtracted when creating the CASF’s AIIF, the CASF’s AIIF falls to 0.1046
(ranked 8th).

Also, when the PCAS citations are subtracted when calculating
the CASF’s AIIF, the AIIF falls to 0.1046 and the CASF’s rank-
ing falls to eighth.

3.2. Article Results

In addition to knowing the relative impact of the actuarial
journals, it also is helpful to know which of the articles published
in the past have been the most influential in recent years. Reasons
provided by Colquitt include the importance of this knowledge
to 1) researchers who can use this information to determine the
subjects, methodology, style, and the like that have been a part
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of the most influential research; 2) editors who use this informa-
tion to form opinions on the value of future research submitted
for publication; and 3) those responsible for developing read-
ing lists for graduate-level seminar courses in actuarial science.
In addition, it is important for actuarial societies that administer
professional examinations to have knowledge of the most influ-
ential actuarial articles so that syllabus committees can consider
the incorporation of these articles in the examination process.

When highlighting the most frequently cited articles published
in the sample actuarial journals, it is important to remind the
readers of a significant point. There are, perhaps, influential ac-
tuarial articles that have been published in journals not included
in the sample journals in this study. As a result, it should be
recognized that the articles listed here are the most influential
among those published in the sample journals and not necessar-
ily in the entire universe of actuarial literature.

Similar to loss reserve development, it takes time for pub-
lished articles to be fully recognized by other researchers and
incorporated into future research. As a result, it is appropriate to
make comparisons between articles that were published during
the same year. The most frequently cited CASF articles published
in each year, 1990 through 1999 are found in Table 6.9 Among
the most frequently cited CASF articles, authors appearing on
more than one article (not including committee participation)
include Butsic (1990 and 1999), D’Arcy (1997 and 1998), Feld-
blum (two articles in 1996), Gorvett (1997 and 1998), Hettinger
(1997 and 1998), and Hodes (two articles in 1996). Also, articles
that were the most frequently cited for the years 1992, 1993, and
1995 were authored by committees. Finally, only three of the 13
articles listed in Table 6 are by single authors and six of the 13
were either written by a committee or by four or more authors.

9No articles published in the CASF during the year 2000 or prior to 1990 were cited by
the sample journals more than once.



AN EXAMINATION OF THE INFLUENCE OF LEADING ACTUARIAL JOURNALS 17

The most frequently cited PCAS articles or discussions pub-
lished in each year, 1985 through 1999 are found in Table 7.10

Interestingly, D’Arcy (1989 and 1997) and Feldblum (1990 and
1996) are the only authors credited with two of the most fre-
quently cited PCAS articles for a particular year. Another inter-
esting finding for the top PCAS articles is that of the 18 articles
listed in Table 7, all but three are single-authored papers. In ad-
dition, the three that were co-authored only have two co-authors.
This is distinctly different from what was found in the list of top
CASF articles.

Table 8 lists the CASF and PCAS articles that are the most
frequently cited by the sample journals regardless of the year in
which they were published. Of the 16 articles on the list, 13 of
them were published in the PCAS and three in the CASF. With re-
gard to the age of the articles, there is a fair distribution scattered
over the last 40 years. Seven of the top CASF and PCAS articles
were published in the 1990s, four were published in the 1980s,
three were published in the 1970s, and two were published in
the 1960s, with the oldest article being the Longley-Cook article
that was published in the PCAS in 1962. This is in stark con-
trast to the distribution of the most frequently cited JRI articles
found in Colquitt [7]. Of the 15 top JRI articles, ten of them were
published between 1992 and 1996. In addition, only three of the
top JRI articles were published in the 1980s and the oldest arti-
cle was from 1986. The difference in the distribution of the most
frequently cited PCAS and CASF articles and the most frequently
cited JRI articles is evidence of the more lasting influence that
actuarial articles have on future research as compared to risk and
insurance articles.

Table 9 provides a listing of the most frequently cited arti-
cles published in each of the sample actuarial journals. All but
two of the most frequently cited articles for each of the journals
listed were published during the 1990s. The only exceptions are

10No articles published in the PCAS during the year 2000 were cited by the sample
journals more than once.
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Panjer’s 1981 AB article and Heckman and Meyers’ 1983 PCAS
article. As was the case with the most frequently cited PCAS
articles (Table 7), most (six of eight) of the articles are single-
authored and the two articles not single-authored only have two
co-authors. Finally, while not shown in Table 9, the author of
the most frequently cited JRI article (“Solvency Measurement
for Property-Liability Risk-Based Capital Applications;” 22 ci-
tations) is Butsic, who also coauthored the most frequently cited
CASF article in 1990 and authored the most frequently cited
CASF article in 1999.

The most frequently cited articles in any of the actuarial jour-
nals are found in Table 10. All actuarial journals except the
CASF, the JAP, and the NAAJ are represented on this list. The
AB and IME lead the list with five articles each. Close behind the
AB and IME is the PCAS with four of the top actuarial articles
and the BAJ (including the Journal of the Institute of Actuaries
article from 1992) and SAJ have two and one on the list, re-
spectively. All but one of the articles on the list are from the
1980s and 1990s. Interestingly, the only article on the list that
was not published in these two decades is Bühlman’s AB arti-
cle, “Experience Rating and Credibility,” published more than 35
years ago in 1967. It places fourth on the list with 19 citations.
Wilkie’s 1995 BAJ article, “More on a Stochastic Asset Model
for Actuarial Use” leads all actuarial articles with 33 citations.
The authors with multiple articles on the list of the most fre-
quently cited actuarial articles are Panjer (with two) and Wang
and Goovaerts (both with three). Finally, there are two themes
that are common among several of the 17 most influential arti-
cles published in the sample actuarial journals in recent years:
pricing and financial distress are the subjects of over a third of
the articles.

4. CONCLUSION

The bibliographies of articles from 16 risk, insurance, and
actuarial journals during the years 1996 through 2000 were
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reviewed and recorded. After observing the citation patterns of
the sample journals, the journals were put into two separate
groups; 1) the actuarial journal group and 2) the risk and in-
surance journal group. Then the actuarial journals were ranked
based on the total number of citations and their research impact
on a per article basis.

The most frequently cited journal for ten of the 16 sample
journals was the citing journal itself. For the actuarial journals,
IME was the first or second most frequently cited journal for
six of the eight journals evaluated, with the CASF and the PCAS
being the only actuarial journals not having IME among their top
two. The PCAS was the most frequently cited journal and the
CASF was the second most frequently cited journal by both the
CASF and the PCAS. For the sample risk and insurance journals,
the JRI was the first or second most frequently cited journal by
all journals.

The top actuarial journal based on the total number of citations
from the sample journals including self-citations is IME with the
AB and the PCAS having the second and third most citations, re-
spectively. These journals remain the top three when excluding
self-citations, but the positions of the IME and AB are reversed.
Using the per article impact measure to rank the actuarial jour-
nals, the AB is the highest ranked journal with the PCAS and the
SAJ ranking second when including and excluding self-citations,
respectively.

The most frequently cited articles are also reported. The list
of the most frequently cited CASF and PCAS articles includes 13
PCAS articles and three CASF articles. Heckman and Meyers’
1983 PCAS article “The Calculation of Aggregate Loss Distri-
butions from Claim Severity and Claim Count Distributions” is
the most frequently cited. The list of the most frequently cited
articles published in all of the sample actuarial journals includes
five articles from both the AB and IME, four from the PCAS, two
from the BAJ (including a JIA article from 1992), and one from
the SAJ.
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RISKINESS LEVERAGE MODELS

RODNEY KREPS

Abstract

A general formulation of risk load for total cash flows
is presented. It allows completely additive co-measures1

at any level of detail for any dependency structure
between random variables constituting the total. It is
founded on the intuition that some total outcomes are
more risky per dollar than others, and the measure of
that is a “riskiness leverage ratio.” This riskiness lever-
age function is an essentially arbitrary choice, enabling
an infinite variety of management attitudes toward risk
to be expressed.
The complete additivity makes these models useful.

What makes them interesting is that attention can be
turned toward asking “What is a plausible risk measure
for the whole, while being prepared to use the indicated
allocation technique for the pieces?” The usual mea-
sures are special cases of this form, as shown in some
examples.
While the author does not particularly advocate allo-

cating capital to do pricing, this class of models does
allow pricing at the individual policy clause level, if so
desired.
Further, the desirability of reinsurance or other

hedges can be quantitatively evaluated from the cedant’s
point of view by comparing the increase in the mean cost
of underwriting with the decrease in capital cost from
reduction of capital required.

1Gary Venter coined this term, in parallel with variance and covariance.
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1. INTRODUCTION

The generic problem is that there are a number of random lia-
bilities and assets for a company and a single pool of shared capi-
tal to support them. Their mean is usually meant to be supported
by the reserves and their variability supported by the surplus,
with the total assets of the company being the sum. Frequently,
it is desired that the supporting capital be allocated in consider-
able detail–for example, to underwriter within line of business
within state. This is not an end in itself, but is usually meant to
help to understand profitability (or lack of it) in a business unit
by associating a target rate of return with the allocated surplus
and comparing to the actual profit return distribution. Sometimes
the allocation is meant to be used for creating a pricing risk load
as the allocated surplus times a target rate of return. Really, it is
the cost of capital that is being allocated.2

One would like to have a methodology that would allow al-
location of an essentially arbitrary form for the total capital re-
quired, and would also like to have an interpretation of the form
in terms of statistical decision theory. The total capital including
surplus will usually be represented as the sum of a risk load and
a mean outcome. These can be calculated for a given distribu-
tion of total results. No attempt to connect risk load to a theory
of pricing will be made here, although given the shape of the
distribution in the context of a given theory such a connection
could be made. It is simply assumed that some appropriate mean
return is needed to attract and retain capital for the total risk.

2Gary Venter, private communication.
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There are several desirable qualities for an allocatable risk
load formulation: (1) it should be able to be allocated to any
desired level of definition; (2) the risk load allocated for any
sum of random variables should be the sum of the risk load
amounts allocated individually; (3) the same additive formula
is used to calculate the risk load for any subgroup or group of
groups.

This means that senior management can allocate capital to
regions, and then regional management can allocate their capital
to lines of business, and the allocations will add back up to the
original. Further, it also means that the lines of business will add
to the allocations for total lines of business as seen at the senior
management level.

Ultimately, the choice of the riskiness leverage function will
reflect management attitudes toward risk. The intention of this
paper is to provide an interpretable framework for infinitely
many choices, all of which can be appropriately allocated. It will
be argued that the risk load must be considered in the context of
the capital to support the risk.

Once management has experimented with various riskiness
leverage functions and found a formulation with which they are
comfortable, then it can be used to evaluate potential manage-
ment decisions quantitatively. For example, buying reinsurance
or choosing between reinsurance programs can be framed by
including the variables representing the reinsurance cash flows.
The general effects from a well-designed program will be to in-
crease the mean cost–because the reinsurer needs to make a
profit, on average–and to decrease the risk load and its asso-
ciated cost–because the reinsurance is a good hedge against
severe outcomes. If there is a net reduction in total cost, then
there is an advantage to the alternative. It is worth noting that no
financial information except the price is needed from the rein-
surer. In particular, whatever return the reinsurer may think he
will get from the contract is irrelevant to the cedant’s decision
to buy or not.
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Section 2 introduces the framework and some practical notes;
Section 3 is the development of the form and some of its proper-
ties; Section 4 is various examples, including some of the usual
suspects for risk measures; Section 5 talks about what general
properties might be desirable; and Section 6 is a numerical ex-
ample with an accompanying spreadsheet.

2. THE FRAMEWORK

Assume n random financial variables Xk, k = 1 to n; and let
X =

Pn
k=1Xk be their sum, the net result to the company. These

variables may be from assets and/or liabilities but we will think
of them for the initial exposition as liabilities. The convention
used here is the actuarial view that liabilities are positive and
assets are negative. This is an odd point of view for financial
reports, and so in the accompanying exemplar spreadsheet, to
be discussed at length in Section 6, the formulas are rephrased
with the variables being net income streams and positive income
being positive numbers.

Denote by ¹ the mean of X, C the total capital to support X,
and R the risk load for X. Their relationship is

C = ¹+R (2.1)

In more familiar terms, for balance sheet variables the capital
would be the total assets, the mean the booked net liabilities, and
the risk load the surplus.

Correspondingly, let ¹k be the mean of Xk, Ck be the capital
allocated to Xk and Rk be the risk load for Xk. These satisfy the
equation analogous to Equation (2.1):

Ck = ¹k +Rk: (2.2)

Using the abbreviation

dF ´ f(x1,x2, : : : ,xn)dx1dx2 : : :dxn, (2.3)
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where f(x1,x2, : : : ,xn) is the joint probability density function of
all the variables, the individual means are defined by

¹k ´
Z
xkdF, (2.4)

and the overall mean is

¹´
Z " nX

k=1

xk

#
dF =

nX
k=1

¹k: (2.5)

Riskiness leverage models have the form

Rk ´
Z
dF(xk ¡¹k)L(x) with x´

nX
k=1

xk: (2.6)

Then
R =

Z
dF(x¡¹)L(x) =

Z
f(x)(x¡¹)L(x)dx: (2.7)

The essential key to this formulation is that the riskiness lever-
age L depends only on the sum of the individual variables. In the
second form of Equation (2.7), f(x) is the density function for
X, the sum of random variables.

It follows directly from their definitions that R =
Pn
k=1Rk and

C =
Pn
k=1Ck, no matter what the joint dependence of the vari-

ables may be.

In analogy with the relation of covariance to variance, the
Rk will be referred to as co-measures of risk for the measure
R. On occasion, the Ck will also be referred to as co-measures
when the context is clear. Since additivity is automatic with these
co-measures, what remains is to find appropriate forms for the
riskiness leverage L(x).

The form can be thought of as the risk load being a
probability-weighted average of risk loads over outcomes of the
total net loss:

R =
Z
dxf(x)r(x) where r(x) = (x¡¹)L(x): (2.8)
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Again, the riskiness leverage reflects that not all dollars are
equally risky, especially dollars that trigger analyst or regulatory
tests.

Equation (2.8) is a standard decision-theoretic formulation for
R. It could have been written down immediately, except that the
special form for the risk load for outcomes is needed so that the
co-measures have good properties. Another version of Equation
(2.8) is to represent the risk load as an integral over risk load
density:

R =
Z
rld(x)dx where rld(x) = f(x)(x¡¹)L(x):

(2.9)

This has the advantage of showing which outcomes most con-
tribute to the risk load. Another formulation, of note to theorists,
is to say that the riskiness leverage modifies the joint density
function and that the allocations are statistical expectations on a
risk-adjusted density function. However, the support of L needs
to be the same as the support of f to make this really work.

R =
Z
dxf¤(x)(x¡¹) with f¤(x) = f(x)L(x):

(2.10)

A closely related useful form for thinking about the risk loads is
that they are conditional expectations of a variable less its mean
on the risk-adjusted measure, and that the conditions refer to the
overall total variable. A typical condition might be that the total
loss is greater than some specified value.

If we just want to think about co-measures without the explicit
breakout into mean and risk load, we can use the generalization

Rk ´
Z
dF(xk ¡ a¹k)L(x) with x´

nX
k=1

xk, (2.11)
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where any constant value can be used for a. A prime candidate is
a= 0, and in the exemplar spreadsheet in Section 6 this is done
because the variables considered there are net income variables.

It is also clear from Equation (2.6) that some variables may
have negative risk loads, if they happen to be below their mean
when the riskiness leverage on the total is large. This is a de-
sirable feature, not a bug, as software developers say. Hedges in
general and reinsurance variables in particular should exhibit this
behavior, since when losses are large they have negative values
(ceded loss) greater than their mean costs.

Practical Notes

Actual calculation of Equations (2.6) and (2.7) cannot be done
analytically, except in relatively simple cases. However, in a true
Monte Carlo simulation environment they are trivially evaluated.
All one has to do is to accumulate the values of Xk, L(X), and
XkL(X) at each simulation. At the end, divide by the number of
simulations and you have the building blocks3 for a numerical
evaluation of the integrals. As usual, the more simulations that
are done the more accurate the evaluation will be. For companies
that are already modeling with some DFA model it is easy to try
out various forms for the riskiness leverage.

This numerical procedure is followed in the spreadsheet of
Section 6, which has assets and two correlated lines of business.
All the formulas are lognormal so that the exact calculations for
moments could be done. However, the spreadsheet is set up to
do simulation in parallel with the treatment on a much more
complex model. It is also easy to expand the scope. If one starts
at a very high level and does allocations, these allocations will
not change if one later expands one variable (e.g., countrywide
results) into many (results by state) so long as the total does not
change.

3The mean for Xk is just the average over simulations, and it might be advantageous to
calculate this first. The risk load is just the average over simulations of XkL(X) minus
the mean of Xk times the average over simulations of L(X).
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Fundamentally, a risk measure should arise from economic
requirements and management attitudes toward risk as part of
the management business model. In this paper’s class of models
the risk attitude information is in the riskiness leverage function.

Gedanken4 experiments indicate that to get the riskiness lever-
age it is probably desirable to start with plausible relativities be-
tween outcomes. After that is done, set the overall scale by some
criterion such as probability of ruin (Value At Risk), mean pol-
icyholder deficit, Tail Value At Risk (TVAR)5 or anything else
that references the total capital and suits management’s predilec-
tions. It is best if the overall level can be framed in the same terms
as the relativities. In the Section 6 spreadsheet, TVAR is used.

In general, it might be good to start with simple representa-
tions, say with two parameters, and then see what consequences
emerge during the course of testing. More remarks will be made
later on specific forms. It will also be shown that the usual forms
of risk measure can be easily framed and the differences between
them interpreted in terms of different riskiness leverages.

A warning: there is no sign of time dependence in this for-
mulation so far. Presumably the variables refer to the present or
future value of future stochastic cash flows, but there is consid-
erable work to be done to flesh this out.6

3. FORM DEVELOPMENT

Here we will start from a covariance formulation and proceed
to the framework above by a detailed mathematical derivation.

4That is, thought experiments, as contrasted with the real thing. The term is from the
early days of relativity.
5TVAR is the average value of a variable, given that it is past some defined point in the
tail. For example, one could ask for the average loss size given that the loss is excess of
$10M.
6The work of Leigh Halliwell “The Valuation of Stochastic Cash Flows” may provide a
way of looking at this problem.
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Various proposed schemes7 have utilized the fact that an al-
location formula of the form

Ck = ®¹k +¯Cov(Xk,X) (3.1)

will always be additive no matter what the dependency between
the Xk may be. That is,

C ´ ®¹+¯Var(X)
= ®E(X)+¯Cov(X,X)

= ®
nX
k=1

¹k +¯
nX
k=1

Cov(Xk,X)

=
nX
k=1

Ck: (3.2)

A similar result will hold for the sum of any subset of the
variables, thus ensuring the desired properties of the allocation.
The sum of covariances of the individual variables with the total
is the covariance of the total with itself. This paper generalizes
this notion.

This form can be pushed further by imposing the reasonable
requirement8 that if a variable has no variation, then the capital
to support it is simply its mean value with no additional capital
requirement. This requires ®= 1. Then, with capital being the
sum of the mean and the risk load,

Rk = ¯Cov(Xk,X) (3.3)

and
R = ¯Var(X) (3.4)

and so finally

Rk = R
Cov(Xk,X)
Var(X)

: (3.5)

7For a sampling, try [6], [2], and [4]. There are no doubt others.
8In [6], since the company can default, a constant value carries a negative risk load. We
are assuming an ongoing company.
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This form is familiar from CAPM.

However, it is clear that there are many independent linearly
additive statistics. Back up a little to the definitions of mean and
covariance, expressed as integrals over the joint density function:

¹k ´ E(Xk) =
Z
xkf(x1, : : : ,xn)dx1 : : :dxn

´
Z
xkdF: (3.6)

The additivity of the mean then comes from

¹´ E(X) =
Z nX
k=1

xk =
nX
k=1

Z
xk =

nX
k=1

¹k: (3.7)

The covariance of one variable with the total is defined as

Cov(Xk,X)´
Z
dF(xk ¡¹k)(x¡¹), (3.8)

where x´Pn
k=1 xk. The additivity of the covariance is from

Cov(X,X) =
Z
dF(x¡¹)2

=
Z
dF

"
nX
k=1

(xk ¡¹k)
#
(x¡¹)

=
nX
k=1

Z
dF(xk ¡¹k)(x¡¹)

=
nX
k=1

Cov(Xk,X): (3.9)

We want to generalize this result, and to do so we need more
independent statistics that are linear functionals in Xk. Define the
moment expectations

Em(Xk)´
Z
dF[(xk ¡¹k)(x¡¹)m]: (3.10)
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Then, following the same argument as in Equation (3.9), for
any m

Em(X) =
nX
k=1

Em(Xk): (3.11)

Notice that the moment expectation for m= 1 is just the covari-
ance of Xk with the total.

The individual risk load may now be formulated as

Rk =
1X
m=1

¯mEm(Xk), (3.12)

and there are now an infinite number of arbitrary constants to
play with. Since there are so many independent constants, es-
sentially any form can be approximated arbitrarily well.

For any choice of the constants ¯m, the total risk load is the
sum of the individual risk loads:

R =
1X
m=1

¯mEm(X) =
1X
m=1

¯m

nX
k=1

Em(Xk) =
nX
k=1

Rk: (3.13)

This risk load can be put into a more transparent form by writing
it as

Rk =
1X
m=1

¯mEm(Xk) =
Z
dF(xk ¡¹k)

1X
m=1

¯m(x¡¹)m:

(3.14)

Since the term with m= 0 integrates to 0 (that being the defi-
nition of the mean), what is present is a Taylor series expansion
of a function of the total losses about ¹. Thus, Equation (3.14)
may be written as

Rk =
Z
dF(xk ¡¹k)L(x): (3.15)

This is the framework described earlier.
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Properties

Clearly, the allocation properties are all satisfied for any
choice of L(x). The risk load has no risk for constant variable

R(c) = 0:

It also will scale with a currency change

R(¸X) = ¸R(X),

provided L(x) is homogeneous of order zero:

L(¸x) = L(x):

The reason this is required is that there is already a currency
dimension in the term multiplying L. This can be made to hap-
pen, for example, by making L a function of ratios of currencies
such as x=¹ or x=¾, where ¾ is the standard deviation of X.

However, a more interesting possibility is to make L also be
a function of x=S, where again S is the total surplus of the com-
pany. Since asset variability is in principle included in the ran-
dom variables, S should be a guaranteed-to-be-available, easily
liquefiable capital. This could come, for example, by having it in
risk-free instruments or by buying a put option on investments
with a strike price equal to what a risk-free investment would
bring, or any other means with a sure result.

It is intuitively clear that S must come into the picture. Con-
sider the case where loss is normally distributed with mean 100
and standard deviation 5. Is this risky for ruin, from a business
point of view? If the surplus is 105, it is–but if it is 200 it is not.
The natural interpretation is that the riskiness leverage should be
a function of the ratio of the difference of the outcome from the
mean to the surplus. Since the riskiness leverage could be used
(with a pre-determined leverage) to give the surplus, there is a
certain recursive quality present.
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This formulation of risk load may or may not produce a co-
herent risk measure.9 The major reason is that subadditivity10

[R(X +Y)· R(X) +R(Y)] depends on the form of L(x). It might
be remarked that superadditivity [R(X +Y)> R(X)+R(Y)] is
well known in drug response interactions, where two drugs taken
separately are harmless but taken together are dangerous. While
axiomatic treatments may prefer one form or another, it would
seem plausible that the risk measure should emerge from the funda-
mental economics of the business and the mathematical properties
should emerge from the risk measure, rather than vice versa.

A riskiness leverage formulation clearly allows the entire dis-
tribution to influence the risk load, and does not prescribe any
particular functional form for the risk measure. In addition, many
familiar measures of risk can be obtained from simple forms for
the riskiness leverage ratio.

4. EXAMPLES
Risk-Neutral

Take the riskiness leverage to be a constant; the risk load is
zero.

The positive risk load balances the negative risk load. This
would be appropriate for risk of ruin if the range of x where
f(x) is significant is small compared to the available capital, or
if the capital is infinite. It would be appropriate for risk of not
meeting plan if you don’t care whether you meet it or not.

Variance

Take
L(x) =

¯

S
(x¡¹): (4.1)

This riskiness leverage says that the whole distribution is rele-
vant; that there is risk associated with good outcomes as much as

9In the sense of [1] the actual risk measure is mean +R.
10A requirement for coherence. See [5] or [1].
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bad; and that the outcome risk load increases quadratically out
to infinity.

This gives the usual

R =
¯

S

Z 1

0
dxf(x)(x¡¹)2 (4.2)

and

Rk =
¯

S

Z
dF(xk ¡¹k)

0@ nX
j=1

xj ¡¹
1A : (4.3)

Note that Equation (4.1) is suggestively framed so that ¯ is
a dimensionless constant available for overall scaling. The total
capital then satisfies

C = ¹+ S, (4.4)

and the solution for S = R is proportional to the standard devia-
tion of the total:

S =
q
¯Var(X): (4.5)

It is perfectly possible, of course, to use some other formula-
tion of the constant, say ¯=¹, which would then give a different
measure. Such a measure would imply that the riskiness leverage
does not depend on the amount of surplus available unless it was
hidden in the scaling factor ¯.

TVAR (Tail Value At Risk)

Take the riskiness leverage

L(x) =
(x¡ xq)
1¡ q : (4.6)

The value q is a management-chosen percentage; for example,
q= 99%. The quantile xq is the value of x where the cumulative
distribution of X, the total, is equal to q. That is, F(xq) = q. (x) is
the step function: zero for negative argument and 1 for positive.
See Appendix A for mathematical asides on this function.
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This riskiness leverage ratio is zero up to a point, and then
constant. Here the constant is chosen so as to exactly recreate
TVAR, but clearly any constant will give a similar result. In fact,
a riskiness leverage ratio that is constant up to a point and then
jumps to another constant will give a similar result.

C = ¹+
Z
dxf(x)(x¡¹) (x¡ xq)

1¡ q
= ¹+

Z 1

xq

dxf(x)
x¡¹
1¡ q

= ¹¡ ¹

1¡ q (1¡ q)+
1

1¡ q
Z 1

xq

dxf(x)x

=
1

1¡ q
Z 1

xq

dxf(x)x: (4.7)

This is the definition of TVAR, well known to be coherent.11

We see shortly that the allocated capital is just the average
value of the variable of interest in the situations where the total
is greater than xq. This is one example of the conditional expec-
tation referred to earlier.

Ck = ¹k +
Z
dF(xk ¡¹k)

(x¡ xq)
1¡ q

= ¹k ¡
¹k
1¡ q

Z
dF (x¡ xq)+

R
dFxk (x¡ xq)

1¡ q

=

R
dFxk (x¡ xq)

1¡ q : (4.8)

This measure says that only the part of the distribution at the
high end is relevant.

11[5], Op. cit.
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VAR (Value At Risk)

Take the riskiness leverage

L(x) =
±(x¡ xq)
f(xq)

: (4.9)

In Equation (4.9) ±(x) is the Dirac delta function.12 Its salient
features are that it is zero everywhere except at (well, arbitrar-
ily close to) zero and integrates to one.13 See Appendix A for
remarks about this very useful function. Here the riskiness lever-
age ratio is all concentrated at one point. The constant factor has
been chosen to reproduce VAR exactly, but clearly could have
been anything.

C = ¹+
Z
dxf(x)(x¡¹)±(x¡ xq)

f(xq)

= ¹+ xq¡¹
= xq: (4.10)

This gives value at risk, known not to be coherent.14 This mea-
sure says that only the value xq is relevant; the shape of the loss
distribution does not matter except to determine that value.

The capital co-measure is the mean of the variable over the
hyperplane where the total is constant at xq:

Ck = ¹i+
Z
dF(xk ¡¹k)

±(x¡ xq)
f(xq)

=
1

f(xq)

Z
dFxk±

0@ nX
j=1

xj ¡ xq
1A : (4.11)

In a simulation environment one would have to take a small
region rather than a plane. This could most easily be done as the

12Introduced in 1926.
13This implies that

R
dxf(x)±(x¡ a) = f(a). See Appendix 1.

14[5], Op. cit.
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difference of two closely neighboring TVAR regions. This was
done using the formulation of the exemplar spreadsheet and a
1% width of the region.

SVAR (Semi-Variance)

Take the riskiness leverage

L(x) =
¯

S
(x¡¹) (x¡¹): (4.12)

The risk load is the semi-variance–the “downside” of the vari-
ance:

R =
¯

S

Z 1

¹
dxf(x)(x¡¹)2, (4.13)

and

Rk =
¯

S

Z
dF(xk ¡¹k)(x¡¹) (x¡¹): (4.14)

This measure says that risk loads are only non-zero for results
worse (greater) than the mean. This accords with the usual ac-
countant’s view that risk is only relevant for bad results, not for
good ones. Further, this says the load should be quadratic to
infinity.

Mean Downside Deviation

Take the riskiness leverage

L(x) = ¯
(x¡¹)
1¡F(¹) : (4.15)

F(x) is the cumulative distribution function for X, the total. This
risk load is a multiple of the mean downside deviation, which
is also TVAR with xq = ¹. This riskiness leverage ratio is zero
below the mean, and constant above it. Then

R(X) =
¯

1¡F(¹)
Z 1

¹
dxf(x)(x¡¹), (4.16)
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and
Rk =

¯

1¡F(¹)
Z
dF(xk ¡¹k) (x¡¹): (4.17)

In some sense this may be the most natural naive measure, as
it simply assigns capital for bad outcomes in proportion to how
bad they are. Both this measure and the preceding one could be
used for risks such as not achieving plan, even though ruin is
not in question.

In fact, there is a heuristic argument suggesting that ¯ ¼ 2. It
runs as follows: suppose the underlying distribution is uniform
in the interval ¹¡¢· x· ¹+¢. Then in the cases where the
half-width ¢ is small compared to ¹, the natural risk load is ¢.
For example, if the liability is $95M to $105M, then the natural
risk load is $5M. So from Equation (4.17)

¢= R(X) =
¯

0:5

Z ¹+¢

¹

dx

2¢
(x¡¹) = ¯¢

2
: (4.18)

However, for a distribution that is not uniform or tightly gath-
ered around the mean, if one decided to use this measure, the
multiplier would probably be chosen by some other test such as
the probability of seriously weakening surplus.

Proportional Excess15

Take the riskiness leverage

L(x) =
h(x) [x¡ (¹+¢)]

x¡¹ , (4.19)

where to maintain the integrability of Rk either h(¹) = 0 or¢> 0.
Then

R =
Z
f(x)h(x) [x¡ (¹+¢)]dx, (4.20)

and
Rk =

Z
dF
xk ¡¹k
x¡¹ h(x) [x¡ (¹+¢)]: (4.21)

15Another contribution from Gary Venter.
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The last form has the simple interpretation that the individual
allocation for any given outcome is pro-rata on its contribution
to the excess over the mean.

5. GENERIC MANAGEMENT RISK LOAD

Most of the world lives in a situation of finite capital. Frame
the question as “given the characteristics of the business, what is
an appropriate measure of risk to the business, which generates a
needed surplus S?” In the spreadsheet example this is done with
a simplistic riskiness leverage function.

Clearly, the question at the heart of the matter is what an ap-
propriate measure of riskiness might be. There are many sources
of risk among which are the risk of not making plan, the risk
of serious deviation from plan, the risk of not meeting investor
analysts’ expectations, the risk of a downgrade from the rating
agencies, the risk of triggering regulatory notice, the risk of go-
ing into receivership, the risk of not getting a bonus, etc.

Given the above, it seems plausible that company manage-
ment’s list for the properties of the riskiness leverage ratio should
be that it:

1. be a downside measure (the accountant’s point of view);

2. be more or less constant for excess that is small com-
pared to capital (risk of not making plan, but also not a
disaster);

3. become much larger for excess significantly impacting
capital; and

4. go to zero (or at least not increase) for excess signifi-
cantly exceeding capital–once you are buried, it doesn’t
matter how much dirt is on top.

With respect to (3), the risk function probably has steps in it,
especially as regulatory triggers are hit. For (4), a regulator might
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want to give more attention to the extreme areas. In fact, a regu-
lator’s list of properties for the riskiness leverage might include
that it

1. be zero until capital is seriously impacted, and

2. not decrease, because of the risk to the state guaranty
fund.

TVAR could be used as such a risk measure if the quantile is
chosen to correspond to an appropriate fraction ® of surplus.
This would be

LRegulator(x) =
(x¡®S)
1¡F(®S) : (5.1)

However, everyone recognizes that at some level of probabil-
ity management will have to bet the whole company. There is
always business risk.

Management may more typically formulate its risk appetite
in forms such as “For next year, we want not more than a 0.1%
chance of losing all our capital, and not more than a 10% chance
of losing 20% of capital.” This is basically two separate VAR
requirements, and can be satisfied by using the larger of the two
required capital amounts. Or, as in the spreadsheet, management
may choose to say something like, “We want our surplus to be
112 times the average bad result in the worst 2% of cases.”

A (much too) simple example approximately satisfying (1) to
(3) on management’s list consists of linear downside riskiness
leverage:

L(x) =

8<:
0 for x < ¹

¯

·
1+®

(x¡¹)
S

¸
for x > ¹

: (5.2)

The value of ® is essentially the relative riskiness at the mean and
at excess over mean equal to surplus. The value of ¯ is again an
overall scale factor. In the spreadsheet the allocations are nearly
independent of the value of ®, and TVAR is used for the exam-
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ple. The suggested use is to get the riskiness leverage function,
and then to evaluate the effects of reinsurance (approximated
by an increase in the mean and a decrease in the coefficient of
variation) by seeing how the capital requirement changes for the
same leverage function.

6. EXEMPLAR SPREADSHEET

The Excel workbook “Mini DFA.xls” has two lines of busi-
ness with a correlation between the lines and investment income.
The example is meant to be oversimplified but plausible, and
takes the underwriting result for each line as a fixed premium
less random draw on loss and expense. There is investment in-
come on the surplus but no explicit consideration of it within the
reserves. On the other hand, the lines of business are priced to
a net positive underwriting result, so we could say that we are
looking at future values including all investment income.

Cells with a blue background are input cells, and the reader is
invited to change them and see how the results change. All the
formulas are lognormal so that the exact calculations could be
done. However, there is a “Simulate” button on the spreadsheet
that will give statistics and cumulative distribution functions for
whatever set of cells is selected. Simulation is used to get the
overall results and the allocation ratios for different risk mea-
sures.

The sheets in the workbook are of two types: the data sheets
(e.g., “basics”) and the simulations done on them (“Sim basics”).
The different sheets are generally different business alternatives.
We start with “basics,” which gives the basic setup of the busi-
ness, and continue on: “TVARS” calculates various TVAR mea-
sures, “change volume” changes the volumes of the lines, and
“reinsurance” and “reinsurance (2)” explore the effects of rein-
surance. We will walk through them in detail, with commentary.

In all of them, the layout is the same. The two lines of business
and the investment on surplus are laid out in columns, with blue
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background for user input. The financial variables are the two
net underwriting results and the investment result, all of which
vary randomly. F9 will recalculate to a new set of results. Below
the income variables are the starting and ending surplus, and cal-
culated mean and current (random) return. Interesting simulation
results such as allocation percentages are displayed to the right
of the surplus calculation.

Starting with “basics,” Line A has a mean surplus of
10,000,000 and a standard deviation of 1,000,000 and Line B
has a mean surplus of 8,000,000 and a standard deviation of
2,000,000. There is a correlation of about 25% between the lines
(if the functions were normal rather than lognormal, it would be
exactly 25%). Each line is written with a premium equal to the
mean loss plus 5%. We interpret this calculation as our estimate
at time zero of the value at time 1 of the underwriting cash flows,
including all investment returns on reserves and premiums.

The investment income on the surplus is taken directly. The
investment is at a mean rate of 4% with a standard deviation
of 10%. The total of the results, on which we will define our
leverage functions, is then added to the beginning surplus of
9,000,000 to get the ending surplus. As a consequence of the
input values, the mean return on surplus is 14%. We would all
be happy to have such a company, provided it is not too risky.

The simulation (“Sim basics”) shows the actual correlation of
the lines and the coefficient of variation on the return, as well as
the distribution of total ending surplus and return. From the “Sim
basics” sheet we can see that the probability of ruin is less than
one in a thousand, and the coefficient of variation on the return
is better than on the investment, which is good. We can also see
from comparing the simulated means and standard deviations of
the income variables to their known underlying values that the
simulation is running correctly.

Management has decided that it wants to consider not just
ruin, but on-going risk measures. In particular, it wants to get
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the TVAR values at various percentiles. It wants to formulate its
risk appetite as “For the x percent of possibilities of net income
that are less than $(income corresponding to x%), we want the
surplus to be a prudent multiple of the average value so that we
can go on in business.” What we do not know yet is what is x%,
and what is the “prudent multiple.” Gary Venter has suggested
that the prudent multiple could be such that the renewal book
can still be serviced after an average bad hit.

The sheet “TVARs” has the calculations needed for TVAR
simulation in cells G36:N42. Column G contains the percent-
age values from 10% to 0.1%, and Column H the values of the
total net income corresponding to those percentages. These val-
ues come from the sheet “Sim basics.” Column I answers the
question if whether the income is less than the value in Column
H. Columns J through M are either “FALSE” if Column I is
FALSE, or contain respectively the total income, the Line A in-
come, the Line B income, and the investment income. Column
N is a variable that is 1 if Column I is TRUE, and zero if it
is FALSE. Upon selecting these cells and simulating, the mean
value of Column N (for each row) will be the percentage of the
time that the condition was satisfied. This should be close to the
percentage in Column G. During simulation, non-numeric val-
ues in the selected cells are ignored. The mean values of cells in
Columns J through M are the conditional means of the income
variables for different threshold values, as desired.

The result of simulation is:

Income Mean Value of TVAR and Allocation Percentages
% is Below Total Line A Line B Investment

0.1 (8,892,260) (10,197,682) 12.30% 85.99% 1.71%
0.2 (7,967,851) (9,326,936) 12.49% 85.73% 1.78%
0.4 (7,024,056) (8,380,265) 12.89% 85.09% 2.02%
1 (5,749,362) (7,129,796) 13.38% 84.67% 1.95%
2 (4,732,795) (6,159,564) 13.60% 84.30% 2.10%
5 (3,309,641) (4,811,947) 13.60% 84.20% 2.20%
10 (2,143,327) (3,734,177) 13.26% 84.94% 1.80%
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The allocation percentages are just the ratios of the means for
the pieces to the mean for the total; they automatically will add to
100%. What is noticeable here is that the allocation percentages
change very little with the TVAR level, and that Line B needs
some six times the surplus of Line A. That it needs more is not
surprising; that it needs so much more perhaps is. What these
allocations say is that when the total result is in the worst 10%
of cases, about 5/6 of it is from Line B.

Management decides to adopt the rule “We want our surplus
to be 112 times the average negative income in the cases where it
is below the 2% level.” That row is in italic, and this rule means
that the 9,000,000 surplus is sufficient.

Using those allocation percentages, the mean returns on allo-
cated surplus are Total: 14%; Line A: 40.9%; Line B: 5.3%; In-
vestment: 190.6%. The total is a weighted average of the pieces.
One needs to be careful in interpreting these return numbers,
because they are dependent on both the relative volume of the
lines and on the allocation method. But in any case, because Line
B needs so much of the surplus, its return is depressed and the
other returns are enhanced.

The next sheet, “change volume,” looks at the case where
we can change the underwriting volumes of Lines A and B.
Clearly we want to reduce Line B and increase Column A, so
the example has Column A increased by 60% and Column B
decreased by 75%. This keeps the same mean net income. The
standard deviations have been taken as proportional to volume,
thinking of each line as a sum of independent policies.

Running the simulations, the allocations for Line A, Line B,
and Investments now are respectively 32.8%, 60.9%, and 6.4%.
Their implied returns change to 27.1%, 1.8%, and 62.8%. Line
B is still bad, but because there is less of it, there is not such
a large contribution at the 2% level. The 2% level, which was
(4,732,795), is now better at about (3,250,000).
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We also see that according to the management rule, we can
release surplus of about 2,500,000. Alternatively, we can keep
the same surplus and have a more conservative rule, with the
prudent ratio being 2 instead of 112 .

However, it may not be possible to change line volume, for
various reasons. For example, these may be two parts of an in-
divisible policy, like property and liability from homeowners.
Regulatory requirements may make it difficult to exit Line B. In
addition, it takes time to switch the portfolio and requires a ma-
jor underwriting effort. Management may decide to look at the
possibility of buying reinsurance to improve the picture, since
that is a decision that can be implemented quickly and easily
changed next year.

The sheet “reinsurance” has an excess reinsurance contract
on Line B, with a limit of 5,000,000 and an attachment of
10,000,000. It is priced with a load of 25% of its standard de-
viation. Once again, note that in the spreadsheet the results are
calculated because we used easy forms, but that we could have
complex forms and just simulate. The reinsurance results flow
into the total net income.

Running the simulations, the allocations for Lines A and
B, Investments, and now Reinsurance are respectively 36.3%,
73.9%, 14.2%, and ¡24:4%. The negative value for the rein-
surance allocation reflects that the hedge is working, effectively
supplying capital in these events. However, because of the pos-
itive net average cost of reinsurance, the return on the total is
reduced to 12.1%. The implied returns on the pieces are 15.3%,
6.0%, 28.3%, and 7.9%. Line B is still bad, but because of the
reinsurance there is not such a large contribution at the 2% level.
Again, the 2% level has gone from (4,732,795) to (3,300,000).
If we were to combine the reinsurance into Line B the combined
allocation would be 49.5% and the return would be 5.1%.

There is also some 3,000,000 in surplus that the management
rule would allow to be released. In the sheet “reinsurance (2)”
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the starting surplus has been reduced to 7,250,000 in order to
bring the mean return on the total back up to 14%. Running the
simulations, the 2% level on income is actually (3,237,000) but
we ran the TVAR at (3,300,000). The essential point is that the
results look reasonable, and the rule would allow release of still
more surplus.

What is omitted in the calculation is the value of the 1,750,000
already released from the original 9,000,000 surplus. What this
is worth depends on how the released surplus is going to be
used. At the very least, this should be worth the risk-free income
from it. Classical financial theory would suggest that it should
be evaluated at the firm’s cost of borrowing.

Measures other than TVAR were also run on the same basic
situation, but are not shown in the spreadsheet. They were of
two types. One was VAR measures, using a 1% interval around
the VAR values. This measure says, given that the total loss is
at a particular level, how much of it is from the different con-
tributions. The other class of measures is the power measures,
as in Equation (3.10). Each measure is a power of (¹¡ x) for
¹ > x, and zero otherwise. In other words, these are downside
measures.16 The powers 0 and 1 are respectively the mean down-
side deviation and the semivariance. The others could be called
“semiskewness,” “semikurtosis,” and so on–but why bother?

The results for VAR are quite similar to TVAR, except at the
10% level. This is because of the particular conditions we have
for variability and correlation, and will not be true in general.

16Note that in contrast to the earlier discussion on losses where the downside is outcomes
greater than the mean, here on return to surplus the downside is outcomes less than the
mean.
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Mean Value and Allocation Percentages

% Total Line A Line B Investment

0.1 (8,892,557) 13.51% 84.01% 2.48%
0.2 (7,969,738) 13.41% 84.74% 1.85%
0.4 (7,021,936) 15.32% 83.22% 1.46%
1 (5,746,279) 13.94% 84.18% 1.88%
2 (4,731,425) 14.20% 83.43% 2.38%
5 (3,308,824) 13.38% 83.64% 2.98%
10 (2,143,340) 11.16% 88.07% 0.76%

The downside power measure simulation results are:

Mean Values ˆ(1=(N +1)) and Allocations from Simulation

Power Total Line A Line B Investment

0 2,183,834 22.44% 65.52% 12.04%
1 2,839,130 20.63% 69.79% 9.58%
2 3,424,465 19.42% 72.30% 8.28%
3 3,985,058 18.35% 74.30% 7.35%
4 4,510,337 17.43% 75.97% 6.60%
5 5,018,663 16.55% 77.45% 6.00%
6 5,514,616 15.69% 78.79% 5.51%

As the power increases and the measure is increasingly sensi-
tive to the extreme values, the allocations move toward the TVAR
allocations. This is probably not surprising.
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APPENDIX A

SOME MATHEMATICAL ASIDES

(x) is the step function: zero for negative argument and 1 for
positive. It is also referred to as the index function.

±(x) is the Dirac delta function. It can be heuristically thought
of as the density function of a normal distribution with mean zero
and standard deviation arbitrarily small compared to anything
else in the problem. This makes it essentially zero everywhere
except at zero but it still integrates to 1.

The index function can also be thought of as the cumulative
distribution function of the same normal distribution, and it is
in this sense that the delta function can be thought of as the
derivative of the index function. All the usual calculus rules about
derivatives apply without modification.

Always, we are implicitly taking the limit as the standard de-
viation of this distribution goes to zero. This whole usage can
be justified in the theory of linear functionals, but the author has
no idea where.

These notions lead to some fundamental properties of the delta
function. For any continuous function f(x)

f(a) =
Z
f(x)±(x¡ a)dx, (A.1)

and for c > bZ c

b
f(x)±(x¡ a)dx= (c¡ a) (a¡ b)f(a): (A.2)

If h(a) = 0 then Z
f(x)±(h(x))dx=

f(a)
jh0(a)j : (A.3)
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The density function f(x) for the total sum of variables can
most easily be written as

f(x) =
Z
dF±

Ã
x¡

nX
k=1

xk

!

´
Z
dx1 : : :dxnf(x1, : : : ,xn)±

Ã
x¡

nX
k=1

xk

!
: (A.4)

For calculation this is often a convenient form, as in the
derivation of Equation (2.7):Z

dF

Ã
nX
k=1

xi¡¹
!
g

Ã
nX
k=1

xk

!

=
Z
dx

Z
dF±

Ã
x¡

nX
k=1

xk

!
(x¡¹)g(x)

=
Z
f(x)(x¡¹)g(x)dx: (A.5)

Similarly, the marginal density for any variable can be written

fk(y) =
Z
dF±(y¡ xk): (A.6)

The cumulative distribution function for the total is

F(x) =
Z
dF

Ã
x¡

nX
k=1

xk

!

´
Z
dx1 : : :dxnf(x1, : : : ,xn)

Ã
x¡

nX
k=1

xk

!
, (A.7)

and
f(x) =

d

dx
F(x) (A.8)

emerges from simple differentiation rules.
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Abstract

Rodney Kreps has written a paper that is a major
contribution to the CAS literature on the central topics
of risk load and capital allocation for profitability mea-
surement, which is a core component of an enterprise
risk management system. He has given us a rich class
of mathematical models that satisfy two very desirable
properties for a risk-load or surplus-allocation method:
They can allocate risk down to any desired level of defi-
nition and they satisfy the additivity property. Tail Value
at Risk and Excess Tail Value at Risk reasonably sat-
isfy the properties that management would likely want
of such a model, while still satisfying the properties of a
riskiness leverage model and the properties of coherent
measures of risk.
Donald Mango’s ground-breaking work in develop-

ing the concepts of insurance capital as a shared asset
and Economic Value Added [2] are discussed. A Risk
Return on Capital model is suggested as an integration
of the approaches presented by Kreps and Mango. This
method measures returns on capital after reflecting the
mean rental cost of rating agency capital. Reinsurance
alternatives are compared using both the Return on Risk
Adjusted Capital approach presented by Kreps and this
integrated approach.
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1. INTRODUCTION

Rodney Kreps begins his paper by describing the generic
problem as a situation where a company holds a single pool of
shared capital to support a number of random liabilities and as-
sets. The reserves are ordinarily meant to support their mean
value, while the surplus is meant to support their variability
around their means. Kreps, and by reference Gary Venter [5],
first allay actuarial concerns about allocation of capital (dis-
cussed in [3]) by pointing out that return on equity (ROE) meth-
ods of computing pricing risk loads are really allocating the re-
turn on capital. If a line of business is returning 10% on allocated
capital, one should ask whether this is a sufficient return to com-
pensate the providers of that capital. Kreps then enumerates two
desirable qualities for allocable risk load (the product of allocated
surplus and a target rate of return):

1. It should be allocable down to any desired level.

2. It should be additive, in that risk load or capital allocated
to components of the portfolio sum to the total risk load
or capital need for the portfolio. This would be true for
subsets of the portfolio as well.

Kreps does not insist that a risk load or capital allocation
method satisfy all the requirements for a coherent risk measure
[1], as he believes the risk measure should emerge from the fun-
damental economics of the business rather than the desired math-
ematical properties. Thus, Value at Risk (VAR) and Tail Value
at Risk (TVAR) are both examples of riskiness leverage models,
while VAR is not a coherent risk measure [1] and TVAR is well
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known to be a coherent risk measure according to Kreps. The fact
that TVAR satisfies the subadditivity requirement of a coherent
risk measure (the risk of a combination of exposures should not
exceed the sum of the risks of the components) may increase the
confidence of many actuaries that TVAR is measuring insurance
risk appropriately.

Kreps develops the framework for a rich class of models for
determining risk loads and allocating capital that possess the
above desirable qualities. He then selects a particular example,
TVAR, and demonstrates through a spreadsheet model how man-
agement can use such a model (once comfortable with the param-
eterization) to quantitatively evaluate alternative decisions, such
as selecting among alternative reinsurance programs to enhance
the risk-reward characteristics of a portfolio.

2. SUMMARY WITH COMMENTS

2.1. The Framework

This section summarizes the framework for the riskiness
leverage models. Let Xk, k = 1, : : : ,n, represent losses associated
with n risks or portfolio segments, whose sum represents the
total loss to the company:

X =
X
Xk where k = 1, :::,n:

If ¹ represents the mean of X, A is the total premium collected
for this portfolio of risks, and R is the total risk load collected,
then A= ¹+R. Alternatively, A may be interpreted as the total
assets and R would represent the capital or surplus supporting
this portfolio. (I am using A instead of C which was used in the
paper, so as to avoid confusion of assets with capital. I use the
terms capital, surplus, and equity interchangeably.)

Correspondingly, let ¹k represent the mean of Xk, let Ak
represent the assets (or premium collected), and let Rk repre-
sent the surplus allocated to Xk (or risk load collected). Then
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Ak = ¹k +Rk and ¹=
P
¹k (where k = 1, : : : ,n) because expec-

tations are additive. Riskiness leverage models have the form
Rk = E[(Xk ¡¹k)L(X)], where the riskiness leverage L(X) is a
function that depends only on the sum X of the individual vari-
ables and the expectation is taken with respect to that sum. Sim-
ilarly, R = E[(X ¡¹)L(X)] = E[r(X)]. Allocated capital and risk
loads are probability-weighted averages of risk loads over out-
comes of the total net loss. Riskiness leverage models can reflect
the fact that not all loss outcomes are equally risky.

From their definitions, R =
P
Rk and A=

P
Ak where k =

1, : : : ,n, no matter what the joint dependence of the variables
may be. Analogous to the relation of covariance to variance, the
Rk will be referred to as co-measures of risk for the measure
R. Since additivity follows automatically for these co-measures,
Kreps searched for appropriate forms for the riskiness leverage
L(X).

Kreps points out that the capital allocations for risk loads
may be efficiently computed through Monte-Carlo simulation.
One simply simulates the quantity for which we want the expec-
tation for a large number of years, and then averages the results
from these scenarios. Kreps generalizes the covariance concepts
to suggest the mathematical form of riskiness leverage models.

2.2. Properties

The desirable allocation properties for risk load or surplus al-
location listed in the Introduction (allocable down to any desired
level and additivity) are clearly satisfied for any choice of L(X).

Risk load or surplus allocated will scale with a currency
change if L(X) is independent of a currency change: R(¸X) =
¸R(X) if L(¸X) = L(X). This will be true if L is a function of
ratios of currencies such as x=¹, x=¾ (where ¾ is the standard
deviation of X), or x=S (where S is the total surplus of the com-
pany). It is intuitively appealing to select the riskiness leverage
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to be a function of the ratio of the difference of the outcome
from the mean to the surplus.

However, the general formulation of risk load or surplus al-
location may not yield a coherent risk load or surplus allocation
[1]. The major reason is the subadditivity requirement that the
risk load for the portfolio not exceed the sum of the risk loads
for the components.

2.3. Examples of Riskiness Leverage Models

Risk-Neutral: If the riskiness leverage L(X) is a constant,
then the risk load is zero. This would be appropriate for risk of
ruin where potential losses are small relative to capital, or for risk
of not meeting plan if you are indifferent to the consequences of
not meeting plan.

Variance: If L(x) = (¯=S)(x¡¹), then it can be shown that
required surplus or risk load is a multiple of the standard devia-
tion of the aggregate loss distribution. This model suggests that
there is risk associated with favorable outcomes as much as there
is with unfavorable outcomes, and that the risk load or surplus
need increases quadratically with deviations of the loss from its
mean.

Tail Value at Risk: Let L(x) = [ (x¡ xq)]=(1¡ q), where the
quantile xq is the value of x where the cumulative distribution
of X is q and (x) is the step function (1 when the argument
is positive, 0 otherwise). Kreps shows that the assets needed to
support the portfolio would be the average portfolio loss X when
it exceeds xq (the definition of TVAR).

He reminds us that this is a coherent risk measure [1] and
states that only the part of the distribution at the high end is
relevant for this measure. Kreps calculates the assets needed to
support a line of business k as the average loss in line k in those
years where the portfolio loss X exceeds xq. This quantity is
referred to by Kreps as a co-measure, and is defined by Venter
[5] as co-Tail VaR (co-TVAR). (I further refer to the Venter paper
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below because it is very helpful in clarifying concepts in the
Kreps paper.)

Venter also discusses Excess Tail Value at Risk (XTVAR)
defined to be the average value of X ¡¹ when X > xq. The same
properties that Kreps proved for TVAR and co-TVAR can be
shown to hold for XTVAR and co-XTVAR.

Venter notes that if capital is set by XTVAR, it would cover
average losses in excess of expected losses for those years where
the portfolio losses X exceed the qth quantile xq. It is assumed
that expected losses have been fully reflected in pricing and in
loss reserves. The capital allocated by co-XTVAR to a line would
be the line’s average losses above its mean losses in those same
adverse years. Venter notes that there should be some probability
level q for which XTVAR or a multiple of it makes sense as a
capital standard. He points out that co-XTVAR may not allocate
capital to a line that didn’t contribute significantly to adverse
outcomes. That is, the deviations from the mean for a line of
business may average to approximately zero when total losses
exceeded the qth quantile. Venter believes this makes sense if
capital is being held for adverse outcomes only.

Value at Risk (VAR): Kreps defines a riskiness leverage
model that produces the quantile xq as the assets needed to sup-
port a portfolio of risks. This measure says that the shape of the
loss distribution does not matter except to determine the one rel-
evant value xq. The VAR measure is known not to be coherent
[1].

Semi-Variance: Kreps defines a riskiness leverage model that
yields needed surplus or risk load as a multiple of the semi-
deviation of the aggregate loss distribution. This is the standard
deviation with all favorable deviations from the mean ignored
(treated as zero). This measure implies that only outcomes worse
(greater) than the mean should contribute to required risk load
or surplus. This measure is consistent with the usual accounting
view that risk is only relevant for adverse outcomes and further
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implies that the risk load or surplus required increases quadrati-
cally with adverse deviations of the loss from its mean.

Mean Downside Deviation: Kreps defines another riskiness
leverage model that produces a multiple of mean downside devi-
ation as the risk load. This is really XTVAR with xq = ¹. Kreps
notes that this measure could be used for risks such as not meet-
ing a plan, even though ruin is not in question.

Proportional Excess: Finally, Kreps defines a riskiness lever-
age model that produces a capital allocation for a line that is pro
rata on its average contribution to the excess over the mean.

The wide range of risk loads that can be produced by these
riskiness leverage models suggests that this is a very flexible,
rich class of models from which one should be able to select
a measure that not only reflects one’s risk preferences but also
satisfies the very desirable additivity property.

2.4. Generic Management of Risk Load

Kreps points out that there are many sources of risk, such as
the risk of not making plan, the risk of serious deviation from
plan, the risk of not meeting investor analysts’ expectations, the
risk of a rating agency downgrade, the risk of regulatory notice,
the risk of going into receivership, the risk of not getting a bonus,
etc. Given these risks, he states that it seems plausible that com-
pany management’s list of desirable properties of the riskiness
leverage ratio should be as follows:

1. It should be a down-side measure (the accountant’s point
of view).

2. It should be more or less constant for excess that is small
compared to capital (risk of not making plan, but also not
a disaster).

3. It should become much larger for excess significantly
impacting capital.
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4. It should go to zero (or at least not increase) for excess
significantly exceeding capital (once you are buried, it
doesn’t matter how deep).

Concerning (4), he notes that a regulator might want more
attention paid to the extreme areas and might list desirable prop-
erties for the riskiness leverage ratio as follows:

1. It should be zero unless capital is seriously affected.

2. It should not decrease with loss significantly exceeding
capital, because of the risk to the state guaranty fund.

Kreps points out that TVAR could be such a risk measure if
the quantile is chosen to correspond to an appropriate fraction
of surplus. However, he notes that at some level of probability,
management will have to bet the whole company.

I also believe that rating agencies would not look favorably
on the fourth item in management’s hypothetical list of desir-
able properties of a riskiness leverage ratio. While I believe that
management would have to take into account the regulatory and
rating agency views, I believe they might well not prefer the
Variance or Semi-Variance models, which increase quadratically
to infinity. It would seem that TVAR and XTVAR reasonably sat-
isfy the properties that management would likely want of such
a model, while still satisfying the properties of a riskiness lever-
age model (additivity, allocable down to any desired level) and
the requirements for a coherent measure of risk (including the
subadditivity property for portfolio risk).

He states that management might typically formulate its risk
appetite as satisfaction of two VAR requirements (limit chance
of losing all capital to 0.1%, while limit chance of losing 20%
of capital to 10%). In this case, one would take the larger of the
two required capital amounts.

For his simulation examples, the author selects the criteria that
“we want our surplus to be a prudent multiple of the average
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bad result in the worst 2% of cases.” He notes that Gary Venter
has suggested that the prudent multiple could be such that the
renewal book could still be serviced after a bad year. Thus, Kreps
selects TVAR with a prudent multiple of 150%.

2.5. Simulation Application

As he includes investments as a separate line in his model,
TVAR is calculated for net income rather than portfolio losses.
He has two insurance lines, one low risk and the other high risk.
He shows that surplus can be released by writing less of the risky
line, but this may not be possible if one is writing indivisible
policies or if one is constrained by regulations. He demonstrates
that an excess-of-loss reinsurance treaty can reduce required cap-
ital significantly and improve the portfolio’s return on allocated
surplus. Note that expected profit has decreased due to the cost
of reinsurance, but capital needed to support the portfolio has
decreased by a larger percentage.

In his simulation example, Kreps notes that the percentage
allocation of surplus to line based on the co-TVAR measures is
consistent for a wide range of quantiles xq. That is, when the tail
probability varies between 0.1% and 10%, the capital allocation
percentage for a given line doesn’t change very much. Kreps also
tested his simulation model on VAR and power measures, such as
mean downside deviation and semi-variance. He discovered that
as the power increases, the measure is more sensitive to extreme
values and the allocation to line of business moves toward the
TVAR allocations.

3. INSURANCE CAPITAL AS A SHARED ASSET

In a paper submitted to the ASTIN Bulletin [2], Donald Mango
treats insurance capital as a shared asset, with the insurance con-
tracts having simultaneous rights to access potentially all of that
shared capital. Shared assets can be scarce and essential public
entities (e.g., reservoirs, fisheries, national forests) or desirable
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private entities (e.g., hotels, golf courses, beach houses). The ac-
cess to and use of the assets is controlled and regulated by their
owners; this control and regulation is essential to preserving the
asset for future use. The aggregation risk is a common charac-
teristic of shared asset usage, since shared assets typically have
more members who could potentially use the asset than the asset
can safely bear.

He differentiates between consumptive and non-consumptive
use of an asset. A consumptive use involves the transfer of a
portion or share of the asset from the communal asset to an in-
dividual, such as in the reservoir water usage and fishery exam-
ples. Non-consumptive use involves temporary, limited transfer
of control that is intended to be non-depletive in that it is left
intact for subsequent users. Examples of non-consumptive use
include boating on a reservoir, playing on a golf course or rent-
ing a car or hotel room.

While shared assets are typically used in only one of the two
manners, some shared assets can be used in either a consumptive
or non-consumptive manner, depending on the situation. Mango
gives the example of renting a hotel room. While the intended
use is benign occupancy (non-consumptive), there is the risk that
a guest may fall asleep with a lit cigarette and burn down a wing
of the hotel (clearly consumptive).

Mango notes that rating agencies use different approaches in
establishing ratings, but the key variable is the capital-adequacy
ratio (CAR) that is the ratio of actual capital to required capital.
Typically, the rating agency formulas generate required capital
from three sources: premiums, reserves, and assets. Current year
underwriting activity will generate required premium capital. As
that premium ages, reserves will be established that will gen-
erate the required reserve capital. As the reserves are run off,
the amount of required reserve capital will diminish and eventu-
ally reach zero when all claims are settled. As there are usually
minimum CAR levels associated with each rating level, Mango
points out that a given amount of actual capital corresponds to



RISKINESS LEVERAGE MODELS 71

a maximum amount of rating agency required capital. For given
reserve levels, this implies a limit to premium capital and thus
to how much business can be written. Mango summarizes by
stating that an insurer’s actual capital creates underwriting ca-
pacity, while underwriting activity (either past or present) uses
up underwriting capacity.

Mango notes that the generation of required capital, whether
by premiums or reserves, temporarily reduces the amount of
capacity available for other underwriting. Being temporary, it
is similar to capacity occupancy, a non-consumptive use of the
shared asset. Capacity consumption occurs when reserves must
be increased beyond planned levels. Mango points out that this
involves a transfer of funds from the capital account to the re-
serve account, and eventually out of the firm. Mango recaps by
stating that the two distinct impacts of underwriting an insurance
portfolio are as follows:

1. Certain occupation of underwriting capacity for a period
of time.

2. Possible consumption of capital.

He notes that this “bi-polar” capital usage is structurally sim-
ilar to a bank issuing a letter of credit (LOC). The dual impacts
of a bank issuing a LOC are as follows:

1. Certain occupation of capacity to issue LOCs, for the
term of the LOC.

2. Possible loan to the LOC holder.

Mango notes that banks receive income for the issuance of
LOCs in two ways:

1. An access fee (i.e., option fee) for the right to draw upon
the credit line.

2. Loan payback with interest.
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Mango notes that every insurance contract receives a parental
guarantee: should it be unable to pay for its own claims, the
contract can draw upon the available funds of the company. He
states that the cost of this guarantee has two pieces:

1. A Capacity-Occupation Cost, similar to the LOC access
fee.

2. A Capital-Call Cost, similar to the payback costs of ac-
cessing an LOC, but adjusted for the facts that the call
is not for a loan but for a permanet transfer and that the
call destroys future underwriting capacity.

Mango states that there is an opportunity cost to capacity oc-
cupation, and thinks of it as a minimum risk-adjusted hurdle
rate. He computes it as the product of an opportunity cost rate
and the amount of required rating agency capital generated over
the active life of the contract. Mango also develops a formula
for computing capital-call costs, which are his true risk loads,
and defines the expected capital-usage cost to be the sum of the
capacity-occupation cost and the expected capital-call cost. He
defines his key decision metric Economic Value Added (EVA)
to be the NPV Return minus the expected capital usage cost:

EVA =NPV Return¡Capacity-Occupation Cost
¡Capital-Call Cost.

Mango’s shared-asset view eliminates the need for allocating
capital in evaluating whether the expected profit for a contract
is sufficient to compensate for the risks assumed. He also shows
how this approach can be used to evaluate portfolio mixes. His
approach permits stakeholders great flexibility in expressing risk
reward preferences. As Mango, Kreps, and David Ruhm jointly
contributed to the development of the RMK (Rhum, Mango, and
Kreps) algorithm, which is a conditional risk allocation method
[4], it is no surprise that the Capital-Call Costs satisfy the key
properties of a riskiness-leverage model (additivity, allocable
down to any desired level).
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4. INTEGRATION OF APPROACHES

This reviewer sees a limitation in the return on risk-adjusted
capital (RORAC) approach as applied by Kreps that can easily
be corrected by borrowing a concept from EVA. RORAC based
upon riskiness leverage models does not reflect rating agency
capital requirements, particularly the requirement to hold capital
to support reserves until all claims are settled. This is especially
important for long-tailed casualty lines. In the RORAC calcula-
tion as applied by Kreps, Expected Total Underwriting Return
is computed by adding the mean NPV of interest on reserves
from the simulation, interest on allocated capital, and expected
underwriting return (profit and overhead). RORAC is computed
as the ratio of Expected Total Underwriting Return to allocated
risk capital and represents the expected return for both benign
and potentially consumptive usage of capital.

As an alternative, I have developed a modified RORAC ap-
proach, which I call a risk-return on capital (RROC) model.
A mean rating agency capital is computed by averaging rating
agency required capital from the simulation (capital needed to
support premium writings is added to the NPV of the capital
needed to support reserves on each iteration of the simulation).
The mean rental cost for rating agency capital is calculated by
multiplying the mean rating agency capital by the selected rental
cost percentage, which serves the same function as Mango’s op-
portunity cost rate. Expected underwriting return is computed
by adding the mean NPV of interest on reserves and interest
on mean rating agency capital to expected underwriting return
(profit and overhead). The expected underwriting return after
rental cost of capital is computed by subtracting the mean rental
cost of rating agency capital.

In my comparisons of RORAC and RROC, risk capital is a
selected multiple of XTVAR. Capital is allocated to line of busi-
ness based upon Co-XTVAR. RROC is computed as the ratio of
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expected underwriting return after rental cost of capital to allo-
cated risk capital. It is assumed that expense items like overhead
and taxes, as well as returns from any capital excess of the rating
agency required capital or from riskier investments that would
require additional rating agency capital, would be handled within
corporate planning.

RROC represents the expected return for exposing capital to
risk of loss, as the cost of benign rental of capital has already
been reflected. It is analogous to the Capital-Call Cost in the
EVA approach, here expressed as a return on capital rather than
applied as a cost. In the discussion of Tail Value at Risk, it was
observed that Venter has noted that co-XTVAR may not allocate
capital to a line of business that didn’t contribute significantly to
adverse outcomes. In such a situation, the RORAC calculation
based upon riskiness leverage models may show the line to be
highly profitable, whereas RROC may show that the line is un-
profitable because it did not cover the mean rental cost of rating
agency capital.

In the EVA approach, risk preferences are reflected in the
function selected and parameterized in computing the Capital-
Call Cost. In the RROC approach, risk preferences are specified
in the selection of the riskiness leverage model used to measure
risk. This riskiness leverage model in practice would be param-
eterized to equal the total capital of the company, which would
be maintained to at least cover rating agency capital required to
maintain the desired rating. Both approaches utilize the RMK
algorithm for allocating risk (measured as a Capital Call Cost in
EVA and as risk capital in RROC) to line of business.

5. SIMULATION EXAMPLE

The RORAC and RROC approaches were tested and the re-
sults are summarized in the attached exhibits. Exhibit 1.1 sum-
marizes the examples tested, including underlying assumptions,
while Exhibit 1.2 summarizes the technical differences between
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the two approaches. In the base case, Example 1, the lines 1 and
2 are 50% correlated while being uncorrelated to line 3, and no
reinsurance is purchased. Equal amounts of premium are written
in the three lines, and pricing is assumed to be accurate with the
plan loss ratio equaling the true Expected Loss Ratio (ELR) of
80% for each line. Aggregate losses are assumed to be modeled
accurately by lognormal distributions with coefficients of vari-
ation of 80%, 20% and 40% for lines of business (LOB) 1—3,
respectively. In Example 2, a stop-loss reinsurance treaty is pur-
chased for line 1 covering a 30% excess of 90% loss ratio layer
for a 10% rate. In Example 3, a 50% quota share is purchased
for line 1 with commissions just covering variable costs.

Payout Patterns were generated based on an exponential set-
tlement lag distribution with mean lag to settlement of one year,
five years and ten years for LOB 1—3, respectively. Thus, the
payout patterns for LOB 1—3 can be characterized as fast, av-
erage, and slow, respectively. Interest is credited on supporting
surplus using risk-free rates for bonds of duration equal to the
average payment lag in each line of business. In this example,
interest rates of 3%, 4% and 5% for LOB 1—3, respectively, were
assumed. These are the same rates that are used to calculate NPV
reserves, interest on supporting surplus, and the NPV Reserves-
Capital component of Required Rating Agency Capital. For sim-
plicity, interest rates and payment patterns are assumed to be
deterministic.

For both RORAC and RROC models, capital needed to sup-
port the portfolio risk is calculated as 150% of XTVAR. That
is, the company wants 50% more capital than needed to support
1-in-50-year or worse deviations from plan. Capital needed to
support the portfolio risk is allocated to the lines of business
based upon Co-XTVAR.

Exhibit 2 summarizes the test results. Recall that in the base
case no reinsurance is purchased. In Example 2, a stop-loss
reinsurance treaty is purchased for line 1 that modestly im-
proves both RORAC and RROC measures. (RORAC increases
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from 17.50% to 17.88%, while RROC increases from 9.95% to
10.05%.) However, in Example 3, a 50% quota share for line 1
improves the portfolio RORAC measure by 47% (from 17.50%
to 25.74%), RROC improves by 54% (from 9.95% to 15.36%),
and risk capital needed to support the portfolio decreases by over
40% (from $5.71 million to $3.39 million).

Line 1 and the reinsurance line 4 were combined in calculat-
ing returns by line of business. It is interesting that the expected
returns for lines 1 and 2 did not change very much with the pur-
chase of reinsurance, while the highly profitable returns for line
3 declined because it is now contributing to more of the 1-in-50
year adverse deviations. The portfolio returns with reinsurance
improved because a smaller share of capital is now allocated to
the marginally profitable line 1 and greater shares of capital are
allocated to the highly profitable lines 2 and 3 (this can be seen
by reviewing the change in the distributions of allocated capital
displayed for the reinsurance examples at the bottom of Exhibit
2). It is also interesting that returns for line 2 improve a little
because of its correlation with line 1 and because it has not been
allocated any of the cost of reinsurance.

For the portfolio, Exhibit 2 also displays the Cost of Capital
Released for the two reinsurance examples, which is the ratio
of the cost of the reinsurance (decrease in expected profitabil-
ity due to reinsurer’s profit margin) to the decrease in capital
needed to support the portfolio. The Cost of Capital Released
was modestly lower than the company’s net returns for the stop-
loss example (12.6% versus 17.9% for RORAC, and 8.6% versus
10.1% for RROC), but dramatically lower for the quota-share ex-
ample (5.6% versus 25.7% for RORAC, and 2.1% versus 15.4%
for RROC). Thus, the company’s cost to release over 40% of its
capital for other purposes was a small fraction of its net returns
for both metrics in the quota-share example.

However, the net capital allocated to the portfolio based on the
150% of XTVAR standard is less than the mean rating agency re-
quired capital computed for the RROC metric. It was determined
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that a 200% of XTVAR capital standard is consistent with the
rating agency required capital, providing sufficient capital, be-
yond the amounts required to support premium written and loss
reserves, to also cover rating agency capital required to cover
investments.

The model output is displayed as Exhibit 3 for the quota-
share example with a 200% of XTVAR capital standard. Net
RORAC declines from 25.74% to 20.22%, while net RROC de-
clines from 15.36% to 11.52%. However, note that RROC has
been computed after applying a 10% Rental Cost Percentage to
the Mean Rating Agency Capital from the simulation. Net capital
required to support the 200% of XTVAR standard is now more
than 40% lower than a larger gross requirement, while the Cost
of Capital Released has declined for both metrics.

6. CONCLUSIONS

Rodney Kreps has written an important paper on the central
topics of risk load and capital allocation. He has given us a class
of mathematical models that satisfy two highly desirable prop-
erties for a risk load procedure, additivity and allocable down
to any desired level. Tail Value at Risk and Excess Tail Value
at Risk reasonably satisfy the properties that management would
likely want of such a model, while still being coherent measures
of risk.

Donald Mango’s very innovative work in developing the con-
cepts of insurance capital as a shared asset and Economic Value
Added contribute significantly to understanding the way capi-
tal supports an insurance enterprise. A Risk Return on Capital
model is suggested as a way to integrate desirable properties
of the approaches presented by Kreps and Mango. This method
measures returns on capital after reflecting the mean rental cost
of rating agency capital. Thus, returns for exposing capital to risk
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are measured after reflecting the cost of carrying capital to sup-
port both premium written and loss reserves, which is especially
important for long-tailed casualty lines.

While actuarial literature frequently refers to risk prefer-
ences of the capital provider, little mention is made of the risk-
measurement preferences of the actuary. Good arguments can
be made for both approaches to measuring exposure to risk of
loss from insured events: The choice is either to allocate costs
or to allocate capital. The Return on Risk Adjusted Capital ap-
proach based upon riskiness leverage models can be modified to
reflect the opportunity cost of holding capital to support written
premium and loss reserves, while still providing a metric that is
understandable to financially oriented non-actuaries.
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SUPPLEMENTARY MATERIAL

1. Seminar notes from the 2005 Seminar on Reinsurance on
“Risk Load, Profitability Measures, and Enterprise Risk
Management” may be downloaded from the CAS Web
Site.

2. Abbreviations and Notation

CAR, Capital Adequacy Ratio

Co-TVAR, Co-Tail Value at Risk

Co-XTVAR, Co-Excess Tail Value at Risk

ELR, Expected Loss Ratio

EVA, Economic Value Added

LOB, Line of Business

LOC, Letter of Credit

RMK algorithm, a conditional risk allocation method

ROE, Return on Equity

RORAC, Return on Risk-Adjusted Capital

RROC, Risk Return on Capital After Rental Cost of
Capital

TVAR, Tail Value at Risk

VAR, Value at Risk

XTVAR, Excess Tail Value at Risk
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EXHIBIT 1.1

Summary of Model Assumptions

1. Payout Patterns were generated based upon an exponential settlement lag distribution
with mean lags to settlement of one year, five years, and ten years for LOB 1-3,
respectively. Thus, the payout patterns for LOB 1-3 can be characterized as Fast,
Average, and Slow, respectively. Payments are assumed to be made in the middle of
each year.

2. Interest is credited on supporting surplus using risk free rates for bonds of duration
equal to the average payment lag in each line of business. In this example, interest
rates of 3%, 4% and 5% for LOB 1-3, respectively, were assumed. These are the
same rates that are used to calculate Net Present Value (NPV) reserves, interest on
supporting surplus, and the NPV Reserves Capital component of Required Rating
Agency Capital.

3. For simplicity, interest rates and payment patterns are assumed to be deterministic.
4. Profitability measures are computed before taxes, overhead, and returns on capital
excess of the rating agency required capital.

Example Key Assumptions Purpose of Example

1 Write equal amounts of premium in three lines
of business.

Base example with no
reinsurance.

Pricing is accurate, as the Plan Loss Ratios
equal the true ELR’s. The ELR’s are equal to
80% for all three lines. No reinsurance is
purchased. Aggregate losses are assumed to be
modeled accurately by lognormal distributions
with coefficients of variation of 80%, 20% and
40% for LOB 1-3, respectively. The correlation
between LOB 1 and LOB 2 losses is 50%.

2 Same assumptions as in Example 1, except a
30% xs 90% Loss Ratio Stop Loss reinsurance
program is purchased for LOB 1 at a 10% rate.

Test impact of stop loss
reinsurance program for
LOB 1.

3 Same assumptions as in Example 1, except a
50% Quota Share is purchased for LOB 1 with
commission just covering variable costs.

Test impact of quota share
reinsurance program for
LOB 1.
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EXHIBIT 1.2

Model Summaries

1. For both models, capital needed to support the portfolio risk is calculated as 150%
of Excess Tail Value at Risk (XTVAR). That is, the Company wants 50% more
capital than needed to support 1 in 50 year or worse deviations from plan. Capital
needed to support the portfolio risk is allocated to line of business based upon
Co-Excess Tail Values at Risk (Co-XTVAR).

2. Returns on Risk Adjusted Capital Model (RORAC):
Expected Total Underwriting Return is computed by adding the mean NPV of
interest on reserves from the simulation, interest on allocated capital, and expected
underwriting return (profit and overhead). RORAC is computed as the ratio of
Expected Total Underwriting Return to allocated risk capital, and represents the
expected return for both benign and potentially consumptive usage of capital.

3. Risk Returns on Capital Model (RROC):

a. Risk Returns on Capital (RROC) may be thought of as a composite of the EVA
and RORAC approaches to measuring profitability. The Mean Rental Cost of
Rating Agency Capital (an EVA Concept) is subtracted as a cost before applying
RORAC concepts to compute the return on allocated capital for exposing capital
to potential loss.

b. Required Rating Agency Capital is computed based upon rating agency
premium and reserves capital charge factors assumed appropriate for the
Company’s desired rating. Somewhat smaller factors were selected for the
reinsurance line (LOB 4) under the assumption that the Company would not
receive full credit for ceded premium and reserves because a charge for potential
uncollectibility would be applied.

Capital needed to support reserves for a calendar year is the product of the
reserves factors and the previous year-end reserves.

Capital needed to support reserves must be calculated for all future calendar
years until reserves run off.

Required capital to support reserves is the NPV of these capital amounts.

c. The Mean Rental Cost of Rating Agency Capital is calculated by multiplying the
Mean Rating Agency Capital from the simulation by the selected Rental Cost
Percentage, an opportunity cost of capacity.

d. Expected Underwriting Return is computed by adding the mean NPV of interest
on reserves and interest on mean rating agency capital to expected underwriting
return (profit and overhead). The Expected Underwriting Return After Rental
Cost of Capital is computed by subtracting the Mean Rental Cost of Rating
Agency Capital. As for RORAC, risk capital is 150% of XTVAR. Capital is
allocated to line of business based upon Co-XTVAR. RROC is computed as the
ratio of the Expected Underwriting Return After Rental Cost of Capital to
allocated risk capital. RROC represents the expected return for exposing capital
to risk of loss, as the cost of benign rental of capital has already been reflected.
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WHY LARGER RISKS HAVE SMALLER INSURANCE
CHARGES

IRA ROBBIN

Abstract

The insurance-charge function is defined as the ex-
cess ratio (the ratio of expected loss excess of an at-
tachment point to the expected total loss) and is ex-
pressed as a function of the entry ratio (the ratio of the
attachment to the total loss expectation). Actuaries use
insurance-charge algorithms to price retrospective rat-
ing maximums and excess of aggregate coverages. Many
of these algorithms are based on models that can be
viewed as particular applications of the Collective Risk
Model (CRM) developed by Heckman and Meyers [4].
If we examine the insurance-charge functions for risks
of different sizes produced by these models, we will find
invariably that the insurance charge for a large risk is
less than or equal to the charge for a small risk at ev-
ery entry ratio. The specific purpose of this paper is
to prove that this must be so. In other words, we will
show the assumptions of the CRM force charge func-
tions to decline by size of risk. We will take a fairly
general approach to the problem, develop some theory,
and prove several results along the way that apply be-
yond the CRM.
We will first prove that the charge for a sum of two

non-negative random variables is less than or equal to
the weighted average of their charges. We will extend
that result to show that under certain conditions, the
charge for a sum of identically distributed, but not nec-
essarily independent, samples declines with the sample
size. The extension is not entirely straightforward, as the
desired result cannot be directly derived using simple in-

89
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duction or straightforward analysis of the coefficient of
variation (CV).
To explore size and charge in some generality, we

will define the construct of a risk-size model. A risk-
size model may initially be viewed as a collection of
non-negative random variables whose sizes are defined
by their expectation values. Given an appropriate mea-
sure on the risks of a particular size, we will be able
to regard the cumulative distribution and the charge as
well-defined functions of risk size. In a complete and
continuous model, there are risks of every size and the
cumulative distribution is a continuous function of risk
size. We will first show that the charge declines with
size if any risk can be decomposed into the independent
sum of smaller risks in the model. Then we will employ
the usual Bayesian construction to introduce parame-
ter risk and extend the result to models that are not
decomposable. This is an important extension, because
actuaries have long known from study of Table M that a
large risk is not the independent sum of smaller ones. In
particular, our result implies that charges decrease with
size in the standard contagion model of the Negative
Binomial used in the CRM. Finally, we will introduce
severity, prove our result assuming a fixed severity dis-
tribution, and then extend it to cover the type of param-
eter uncertainty in risk severity modeled in the CRM.
Thus we will arrive at the conclusion that the assump-
tions of the CRM force charges to decline by size of
risk.
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FIGURE 1

Actuarial Intuition About Charges and Risk Size

is a business analyst who merits honorable mention as a closet
actuary whose examples, thought experiments, and practical ob-
servations helped motivate this work.

1. INTRODUCTION

Our broad objective is to study the dependence of insurance-
charge functions on risk size. We would like to arrive at some
sufficiently general conditions that will force charges to obey
the actuarial intuition that larger risks ought to have smaller in-
surance charges. More precisely, we would like to show that
the assumptions of the Collective Risk Model (CRM) [4] lead
to decreasing charges by size of risk. In keeping with standard
actuarial terminology, the insurance charge refers to the excess
ratio, not the absolute dollar amount, and the charge is viewed as
a function of the entry ratio. When we say the charge is smaller,
we mean that the excess ratio is less than or equal to its initial
value at every entry ratio (see Figure 1).

Before proving this holds under certain conditions, we should
note that no one has published any article disputing it. Neither
does the literature contain any example with actual data for which
it fails to hold. In practice, it is implicitly assumed to be true or
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turns out to be true under the assumptions made for a partic-
ular model. Under the procedure promulgated by the National
Council on Compensation Insurance (NCCI) [6], a column of
insurance charges is selected for a given risk based on its ex-
pected losses. The columns of charges have been constructed to
effectively guarantee that a large risk will always be assigned
smaller insurance charge values than a small one [3].

But why should this property hold? The basic intuition is
that the excess ratio is related to the propensity of a distribu-
tion to take on relatively extreme values. When a large risk can
be viewed as the independent sum of smaller risks, the Law of
Large Numbers will apply and the likelihood of relatively ex-
treme outcomes will decline.

Looking at the coefficient of variation (CV), the ratio of the
standard deviation to the mean, supports these intuitions. When
a large risk is the sum of independent, identically distributed
smaller risks, the CV declines as risk size increases. Since the
square of the CV is directly related to the integral of the insurance
charge [8], these arguments suggest the insurance charge should
also decline with risk size. However, this does not constitute a
strict proof. The counterexample in Exhibit 1 shows that the CV
does not uniquely determine the charge at every entry ratio. In
that example, the risk with the smaller CV has a larger charge
at some entry ratios (see Figure 2). In conclusion, because the
arrow goes the wrong way, we cannot use a CV argument to
arrive at a relatively trivial proof.

Instead we will use some numeric tricks and inequalities re-
lating limited expected values to rigorously show that insurance
charges do indeed decline as risk size increases when a large
risk can be decomposed into a sum of independent smaller ones.
This is a useful result, but alone it is insufficient for our larger
purpose. Actuaries have long known that a large risk in practice
has a distribution different than that resulting from the indepen-
dent summation of smaller risks [5]. So we will go further and
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FIGURE 2

Random Variable with Smaller CV Has Larger Charge

at some Entry Ratios

extend our result to models in which independent decompos-
ability is only conditionally true. To do this, we will follow the
usual Bayesian construction and view the true mean of a risk as
a random variable having a prior distribution. A family of priors
will then be used to define a family of unconditional distribu-
tions. This introduces parameter risk. Assuming an arbitrarily
decomposable conditional model and priors having charges that
decline with size, we will show the charges for the unconditional
model decline with the unconditional risk size. However, the un-
conditional risk-size model will not be decomposable, and, due
to the parameter uncertainty introduced via the priors, the CV
for an unconditional risk will not tend towards zero as risk size
becomes infinite.

We then turn to aggregate loss distributions that are generated
by sampling claim counts and sampling claim severities in the
manner described by the CRM. We will first show that an ag-
gregate loss model inherits decomposability from its underlying
claim count model, assuming severities are independently sam-
pled from a fixed severity distribution. This leads to the conclu-
sion that decomposable counts and independent fixed severities
produce a model in which charges decrease by size of risk. We
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will then extend this result to cover the type of parameter risk in
severity and frequency that is modeled in the CRM.

A reader versed in stochastic-process theory might observe
the concept of decomposability is quite similar to the idea of
“infinite divisibility” used in connection with Levy processes
([1], [7]). However, after some thought, we decided not to em-
ploy the terminology or results of stochastic theory. Though there
is an analogy between increasing the risk size in a size-of-risk
model and increasing the time in a stochastic process, we wish
to maintain relevant distinctions between the two operations. In
stochastic processes, the major concern is how a random vari-
able changes over time [9] and the cumulative effect of possible
jumps over a time interval. In short, it is the study of sample
paths. For example, N(t) might be the number of times a par-
ticular event has occurred as of time t and we might assume
N(t) is a right continuous function of t. The distribution of N(t)
would be a probabilistic summary of the number of events that
have occurred as of time t, averaged over the space of sample
paths (equipped with appropriate measure). In risk-size models,
we are concerned with how risks of different size relate to one
another; but there is no real analogue to the space of sample
paths. This is not to say that many of the results to be presented
here could not have been proven by applying stochastic-process
theory after appropriately accounting for the distinction between
time dependent paths and risk size. However, we will leave that
work as a task for others who are more knowledgeable about
stochastic-process theory. Also, we will not adopt the terminol-
ogy of stochastic process theory since this might confuse the
discussion of risk size. As well, in keeping with our actuarial
focus, we will tend to make whatever reasonable assumptions
we need, even though some of these could possibly be proved
from previous assumptions or from more minimalist hypotheses.
For instance, some of the assumptions that will be made about
differentiability of our models with respect to risk size might
be replaceable with more general and less restrictive statements
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or perhaps could be derived from the decomposability property.
Since none of the assumptions put us outside the CRM, we leave
the more abstract development along these lines as a topic of fu-
ture research.

To maintain focus in the main exposition, many basic defini-
tions and important foundational results have been relegated to
the Appendices. The reader may be well advised to review these
before proceeding much further.

In the end, most actuaries will find nothing surprising in what
we will prove. But we will have rigorously established that ac-
tuarial intuition about insurance charges does indeed hold true
for some fairly general classes of risk-size models, including the
CRM.

2. THE INSURANCE CHARGE FOR A SUM OF RANDOM
VARIABLES

We start by studying inequalities for insurance charges of
sums. Our first result is that the insurance charge for the sum of
two non-negative random variables is bounded by the weighted
average of their insurance charges.

2.1. Charge for Sum Bounded by Weighted Average of Charges

Suppose T1 and T2 are non-negative random variables with
means, ¹1 and ¹2, which are positive. Then, it follows that:

'T1+T2(r)·
¹1

¹1 +¹2
'T1(r)+

¹2
¹1 +¹2

'T2(r): (2.1)

Proof Applying definition A.1 from the Appendix, we write

'T1+T2(r) =
E[max(0,(T1 +T2)¡ r(¹1 +¹2))]

¹1 +¹2

=
E[max(0,(T1¡ r¹1)+ (T2¡ r¹2))]

¹1 +¹2
:
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Next, we use the subadditivity property of the “max” operator to
get max(0,A+B)·max(0,A)+max(0,B). We apply this to the
previous equation and do some simple algebra to find:

'T1+T2(r)·
¹1

¹1 +¹2

E[max(0,(T1¡ r¹1)]
¹1

+
¹2

¹1 +¹2

E[max(0,(T2¡ r¹2)]
¹2

=
¹1

¹1 +¹2
'T1(r)+

¹2
¹1 +¹2

'T2(r):

Note this result applies even if T1 and T2 are not independent, as it
follows from subadditivity of the max operator and the linearity
of the expectation operator. This result leads directly to the proof
that the summation of two identically distributed risks leads to a
smaller insurance charge.

2.2. Summation of Two Identically Distributed Variables
Reduces the Charge

Suppose T1 and T2 are identically distributed and let T denote
a random variable with their common distribution. Then

'T1+T2(r)· 'T(r): (2.2)

Proof From 2.1 it follows that

'T1+T2(r)· 1
2'T1(r)+

1
2'T2(r) = 'T(r): (2.3)

Note that if T1 and T2 were perfectly correlated, then A.6
would apply and summing would be equivalent to doubling and
this would not change the charge. In Exhibit 2, we show a dis-
crete example with two cases: one in which the two variables
are independent and the other in which they are correlated. Not
surprisingly, the sum of independent variables does have a lower
charge than the charge for the sum when the variables are corre-
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lated. Yet, even when correlation exists, the charge for the sum
is less than or equal to the charge for T.

To generalize Equation (2.2), suppose we take samples
(T1,T2, : : :) of a random variable, T. We define S(1,2, : : : ,n) = T1 +
T2 + ¢ ¢ ¢+Tn. We make the assumption that such sums are sample
selection independent by which we mean that the distribution of
S(1,2, : : : ,n) is the same as the distribution of S(i1, i2, : : : , in) where
(i1, i2, : : : , in) is any ordered n-tuple of distinct positive integers.
Note this does not require the Ti to be independent of one an-
other, but it does force the distribution of T1 +T2, for example, to
be the same as T1 +T3, T2 +T3, T21 +T225, or the sum of any pair
of distinct variables in our original sample. This would imply
that there is a common correlation between any two of our sam-
ples. Under the assumption of sample selection independence,
we will show the insurance charge for Sn declines as n increases.
While it might seem that there ought to be some simple induc-
tion proof based on Equation (2.1), the only quick extension is
that the charge for Snm is less than or equal to the charge for Sn.
To arrive at the general proof, we will use a numeric grouping
trick and properties of the “min” operator.

2.3. Insurance Charge for Sample Selection Independent Sums
Declines with Sample Size

'Sn+1(r)· 'Sn(r): (2.4)

Proof For k = 1,2, : : : ,n+1, define

S(» k=n+1) = T1 +T2 + ¢ ¢ ¢+Tk¡1 +Tk+1 + ¢ ¢ ¢+Tn+1:
In other words, S(» k=n+1) is the sum of the n out of the first
n+1 trials obtained by excluding the kth trial. For example,
S(» 2=3) = T1 +T3. With this notation, we may write the follow-
ing formula

n ¢ Sn+1 =
n+1X
k=1

S(» k=n+1):
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When n= 2, this formula says

2 ¢ S3 = 2(T1 +T2 +T3)
= (T2 +T3)+ (T1 +T3) + (T1 +T2)

= S(» 1=3)+ S(» 2=3)+ S(» 3=3):
The formula implies

n(n+1)E
·
Sn+1
n+1

;r
¸
= E[n ¢ Sn+1;n(n+1)r]

= E

24n+1X
k=1

S(» k=n+1);n(n+1)r
35 :

Next, we apply the inequality min(A+B,C+D)¸min(A,B) +
min(C,D) repeatedly to get

E

24n+1X
k=1

S(» k=n+1);n(n+1)r
35¸ n+1X

k=1

E[S(» k=n+1);nr]:

Since the Ti are identically distributed and sample selection in-
dependent, it follows that

E[S(» k=n+1);nr] = E[Sn;nr]
and thus that

E

24n+1X
k=1

S(» k=n+1);n(n+1)r
35¸ (n+1)E[Sn;nr]:

Connecting inequalities and factoring out n from the right hand
expectation, we obtain

n(n+1)E
·
Sn+1
n+1

;r
¸
¸ (n+1)nE

·
Sn
n
;r
¸
:

Assuming without loss of generality for the purpose at hand
that E[T] = 1, this inequality implies (1¡'Sn+1(r))¸ (1¡'Sn(r)).
The result then follows.
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While the proof is rather abstract and the algebra of our numeric
trick can be confusing, it is easy to see how it all works in any
simple example.

EXAMPLE 1:

'S3(r)· 'S2(r):

Proof Consider

6E
·
S3
3
;r
¸
= E[2 ¢ S3;6r] = E[(T1 +T2 +T3)+ (T1 +T2 +T3);6r]

= E[(T1 +T2) + (T1 +T3)+ (T2 +T3);6r]

¸ E[T1 +T2;2r]+E[T1 +T3;2r]+E[T2 +T3;2r]
= 3E[S2;2r]:

Thus we have

E
·
S3
3
;r
¸
¸ E

·
S2
2
;r
¸

and the desired conclusion follows.

It is important to understand that we have not proved that any
way of adding risks together reduces the charge. For example,
if we had a portfolio of independent risks with small charges,
and then added another risk with a large charge function, the
addition of that risk could well result in a new larger portfolio
with a larger charge. However, that would violate our assumption
that the risks were identically distributed. Also, if we had two
identically distributed risks, initially independent, and then added
a third risk, but while doing so combined their operations so that
all the risks were now strongly correlated, the charge might well
increase. This is not a counterexample to our result, because our
construction does not allow one to change correlations in the
middle of the example.
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3. RISK-SIZE MODELS

We need to introduce some precision in our discussion to at
least guarantee that there is a well-defined notion of the insur-
ance charge for a particular risk size. To start, we initially ignore
parameter risk so that we can unambiguously identify the size
of a risk with its expectation value. We then define a risk-size
model,M, as a collection of non-negative random variables each
having a finite non-negative mean. We index a random variable
within such a model by its mean. We then use the risks of a
particular size in the model to define the cumulative distribution,
limited expected value, and insurance charge at that size. We let
M¹ be the set of risks in M of size ¹ and we suppose there is a
measure §¹ on M¹. We then define the cumulative distribution
as a function of risk size via: FM(t j ¹) = E[FT(t) j T 2M¹] where
the expectation is taken with respect to §¹. Similarly, we define
limited expected values and insurance charges as functions of
risk size. We say M is well-defined if the measures give rise to
a well-defined cumulative distribution for every M¹ that is non-
empty. We say a well-defined model is complete if there is a
cumulative distribution for the model at every size. Unless oth-
erwise noted, we henceforth assume all models are well-defined
and complete. We define M to be size continuous at t > 0 if
FM(t j ¹) is a continuous function of ¹ and nth order size dif-
ferentiable at t > 0 if FM(t j ¹) has a nth order partial derivative
with respect to ¹, for ¹ > 0. Note that M could be size continu-
ous and differentiable even if all the random variables in M are
discrete.

In the simplest case, each M¹ consists of a single random
variable that we denote as T¹, and the measure, §¹, assigns a mass
point of 100% to this random variable. We say this is a unique
size model and we use FT¹(t), the cumulative distribution function
for the unique risk of size, ¹, to define FM(t j ¹), the cumulative
distribution function at t for the model at size ¹. Similarly we use
the limited expected value and charge function of T¹. to define
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the limited expected value and charge for the model M at size
¹. To simplify notation when working with a unique size model,
we may sometimes write FT¹(t) in place of FM(t j ¹).
Next we define the notions of closure under independent sum-

mation, and decomposability in a unique size model.

3.1. Definitions of Independence, Closure and Decomposability
in a Unique Size Model

Given a unique size model, M, and assuming ¹1 > 0, ¹2 > 0,
we say

M is closed under independent summation if T¹1 2M
and T¹2 2M implies their independent sum, T¹1 +T¹2 ,
is also in M. Note these could well be independent
samples of the same random variable. (3.1a)

M is arbitrarily decomposable if for any positive
¹, ¹1, and ¹2 with ¹= ¹1 +¹2, there exist T¹ 2M,
T¹1 2M, and T¹2 2M such that the independent
sum, T¹1 +T¹2 has the same distribution as T¹. (3.1b)

Unless there is need for greater specificity, we will usually
say “closed” instead of “closed under independent summation.”
In a closed complete model, we can add identically distributed
random samples of any given risk in the model and still stay in
the model.

Arbitrary decomposability is a strong condition. It says that
any way of splitting the mean of a risk into a sum leads to a de-
composition of that risk into the independent sum of smaller
risks in the model. To simplify terminology when no confu-
sion should ensue, we may hereafter refer to “arbitrarily de-
composable” models as simply “decomposable.” We will show
that charges decrease with size in a decomposable unique model.
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First, we observe:

3.2. Decomposability Equivalence to Closure in Unique Size
Model

M is decomposable,M is closed: (3.2)

Proof We prove one direction and leave the other as an ex-
ercise.

“)” Omitted.
“(” Since M is complete, there exist T¹ 2M, T¹1 2M, and

T¹2 2M . By assumption, M is closed under independent sum-
mation. So the independent sum, T¹1 +T¹2 , is in M. Taking
expectations one has E[T¹1 +T¹2] = ¹1 +¹2. In a unique size
model, we know T¹1+¹2 has the unique distribution in M with
E[T¹1+¹2] = ¹1 +¹2.

If we assume size differentiability in a decomposable model,
we can obtain some results constraining the behavior of the cu-
mulative distribution and the limited expected value function
when these are viewed as functions of risk size.

3.3. Inequalities for Risk Size Partials in Decomposable Models

If M is a continuously differentiable decomposable risk-size
model, then

@FT¹
@¹

· 0 (3.3a)

1¸ @E[T¹; t]
@¹

¸ 0 (3.3b)

@2E[T¹; t]

@¹2
· 0: (3.3c)
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Proof Applying the definition of decomposability, we derive

FT¹(t) = Pr(T¹ · t)¸ Pr(T¹+T¢¹ · t) = FT¹+T¢¹(t) = FT¹+¢¹(t):

F is thus a decreasing function of the risk size and Equation
(3.3a) follows.

To prove the partial exceeds zero in Equation (3.3b), we use
the decomposability property to derive

E[T¹+¢¹; t]¡E[T¹; t] = E[T¹+T¢¹; t]¡E[T¹; t]¸ 0:
To prove the partial is less than unity, we similarly derive

E[T¹+¢¹; t]¡E[T¹; t] = E[T¹+T¢¹; t]¡E[T¹; t]
· E[T¹; t]+E[T¢¹; t]¡E[T¹; t] = E[T¢¹; t]·¢¹:

It follows that
E[T¹+¢¹; t]¡E[T¹; t]

¢¹
· 1

and this leads immediately to our result.

As for Equation (3.3c), we claim that with our continuous
differentiability assumption, it suffices to show that E[T¹+¢¹; t]¡
E[T¹; t] is a decreasing function of ¹ for any ¢¹> 0. This is
sufficient because, if it is true, we can then use an argument
based on the Mean Value Theorem to show that the first partial
derivative with respect to risk size is decreasing. A decreasing
first partial derivative forces the second partial to be less than or
equal to zero.

To show E[T¹+¢¹; t]¡E[T¹; t] is decreasing, we first use the
additivity and independence assumptions to write the convolution
formula:

FT¹+¢¹(t) = FT¹+T¢¹(t) =
Z t

0
dFT¹(s) ¢FT¢¹(t¡ s):
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This implies

GT¹+¢¹(t)¡GT¹(t) =
Z t

0
dFT¹(s) ¢GT¢¹(t¡ s):

Using

E[T; t] =
Z t

0
dsGT(s)

we derive

E[T¹+¢¹; t]¡E[T¹; t] =
Z t

0
dx

Z x

0
dFT¹(y) ¢GT¢¹(x¡ y):

Switching orders of integration, we have

E[T¹+¢¹; t]¡E[T¹; t] =
Z t

0
dFT¹(y)

Z t

y
dxGT¢¹(x¡ y)

=
Z t

0
dFT¹(y)E[T¢¹; t¡ y]:

Next, we integrate by parts and evaluate terms to obtain

E[T¹+¢¹; t]¡E[T¹; t] = FT¹(0) ¢E[T¢¹; t]

+
Z t

0
dyFT¹(y) ¢GT¢¹(t¡ y):

Applying Equation (3.3a), we can conclude that this decreases
with ¹, thus proving our result.

Note that these results apply to discrete as well as continu-
ous distributions and that the proof does not require FT¹(0) to
equal zero. Exhibit 3 shows how Poisson, Negative Binomial,
and Gamma limited expected values vary as the mean changes.
See Figure 3 for a graph of Poisson limited expected values at
the limit 3.0 that vary as a function of risk size.

Now inequality 2.4 will be used to show that decomposable
models must have charges that decrease with risk size.
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FIGURE 3

Poisson Limited Expected Values E[T¹;3]

3.4. Charges Decrease with Risk Size in Decomposable Models

Suppose M is a decomposable model. Then:

¹1 < ¹2) 'T¹1
¸ 'T¹2 : (3.4)

Proof Since the charge function is a continuous function of
risk size, it suffices to prove the result when ¹1 and ¹2 are ratio-
nal. Assuming rationality, there exists such that ¹1 =m1 and
¹2 =m2 where m1 and m2 are integers with m1 <m2. Using
completeness and decomposability, it follows that there exists T
in M and that

T¹1 = (T )1 + (T )2 + ¢ ¢ ¢+(T )m1
T¹2 = (T )1 + (T )2 + ¢ ¢ ¢+(T )m1 + ¢ ¢ ¢+(T )m2

where the sums are of independent samples of T . Then, via
inequality 2.4, the charge for T¹1 exceeds the charge for T¹2 .

We now apply Equation (3.4) to prove that insurance charges
decrease with risk size for several families of distributions com-
monly used in insurance models.
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3.5. Charges Decrease with Size in Poisson, Negative Binomial,
and Gamma Models

The insurance charge decreases by size of risk in each of the
following models:

Poisson:
M= fN » Poisson(¹) j ¹ > 0g: (3.5a)

Negative Binomial with common q:

M= fN »Negative Binomial(®,q) j q is fixed and ® > 0g:
(3.5b)

Gamma with common scale parameter ¸:

M= fT »Gamma(®,¸) j ¸ is fixed and ® > 0g: (3.5c)

Proof With the given restrictions, it can be easily shown that
each of the families is a unique size model that has well-defined
charges. It is also readily seen that each is decomposable. The
results then follow from Equation (3.4).

Exhibit 4 shows columns of charges for risks of different sizes
for Poisson random variables, Negative Binomials with common
failure rate parameter, and Gammas with common scale param-
eter.

In a decomposable model, the charge decreases to the smallest
possible charge as risk size goes to infinity.

3.6. Charge for an Infinitely Large Risk Equals Smallest
Possible Charge in Decomposable Model

Suppose M is a differentiable decomposable model. Then

'T¹ ! '0 as ¹!1 where '0(r) = max(0,1¡ r):
(3.6)
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Proof It suffices to show 'Tn¹ ! '0 as n approaches 1 for
arbitrary fixed ¹. We use a CV argument. Consider Var(Tn¹) =
nVar(T¹) for a decomposable model. Thus,

CV2(Tn¹) = Var(Rn¹) =
Var(T¹)

n¹2
! 0 as n!1:

By Equation (A.11), this impliesZ 1

0
dr'Rn¹(r)!

1
2
:

Using
R1
0 dr'0(r) =

1
2 , the result follows.

It is not difficult to construct a risk-size model in which
charges decrease with size, even though it is not decomposable.

EXAMPLE 2: Charges Decrease by Size in a Non-Decomposable
Model
Define T¹ to be the distribution having probability mass p=
¹=(¹+1), at t= ¹+1 and mass 1¡p, at t= 0. It follows that
E[T¹] = ¹ and

'T¹(r) = 1¡
r

r¹
for 0· r < r¹ where r¹ =

¹+1
¹

:

Since r¹ declines as ¹ increases, the charge function declines
with risk size. Yet, the independent sum of two members of this
family always yields a distribution with three mass points and
thus a sum that is not even in the family.

4. PARAMETER UNCERTAINTY IN RISK-SIZE MODELS

To introduce parameter uncertainty, we now suppose a model
in which there may be many random variables sharing a com-
mon expected mean, but whose actual true means are uncertain.
Because we do not know in advance the true mean of a risk in
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such a model, we use the a priori expected mean to define risk
size. If we let represent the true mean of a risk, and ¹ the a priori
mean, then M¹ consists of all the risks with prior mean equal to
¹. While M¹ can therefore contain many risks each having a
true mean, , which is not equal to ¹, we do insist that §¹, the
measure, is defined so that ¹ is the average mean over all risks in
M¹. Following the usual Bayesian construction and the CRM, we
will restrict our attention to models in which we may represent
§¹ using a prior distribution, H( j ¹).
Before going further, it is instructive to see how such a con-

struction can be used to model the combined effects of popula-
tion parameter uncertainty and population heterogeneity.

EXAMPLE 3: Population Uncertainty and Heterogeneity
Consider a model in which the group of risks of size 100 actu-
ally consisted of risks whose true means were 90, 100, and 110.
Assume we have no way of determining the true mean of any
risk in advance of an experiment. Suppose there are two possi-
ble states of the world, “L” and “H,” each of which has an equal
random chance of occurring. If “L” applies, then we will sample
from a subgroup of low risks, half of which have a true mean
of 90 and half which have a true mean of 100. If “H” applies,
the sampling subgroup will consist of an even split of high risks
with true means of 100 and 110. We then take independent sam-
ples with replacement. In this analogy, the two possible states
of the world correspond to population parameter uncertainty and
the mix of risks in each state corresponds to heterogeneity of the
population. To carry the analogy further, suppose the expected
losses excess of 120 are 4, 10, and 18 for risks whose true means
are 90, 100, and 110 respectively. If we are in state “L,” our sam-
pling will produce an average excess loss of 7, while the average
excess loss will be 14 if we are in state “H.” The average over all
replications of this sampling process over all states will be 10.5.
With a prior distribution of 25%, 50%, and 25% for risks with
true means of 90, 100, and 110 respectively, we will duplicate
this result. Note the correct average charge for the population
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exceeds that charge for a risk whose mean equals the average
mean of the population.

We will now study a specific class of risk-size models with
parameter uncertainty that are constructed by applying priors to
the risk sizes in a conditionally decomposable model. Under the
usual Bayesian construction, the (prior probability) weighted av-
erage of the conditional distributions generates the unconditional
distribution. If the family of priors itself forms a well-defined
risk-size model, the family of resulting unconditional distribu-
tions will also be a well-defined risk-size model. If the risk
model of priors is sufficiently well-behaved, we will be able
to derive conclusions about the insurance charges of the un-
conditional distributions. Suppose the priors have charges that
decrease, not necessarily strictly, with the unconditional risk
size. We will then show the resulting unconditional distribu-
tions must also have charges that decrease with unconditional
risk size.

To begin the mathematical development of this construction,
let T( ) be a non-negative random variable parametrized by
such that E[T( )] = . Suppose the family fT( ) j > 0g is dif-
ferentiable with respect to and that it has insurance charges that
decrease with risk size. Now we view the parameter as a ran-
dom variable £ and let H( ) =H( j ¹) denote its cumulative dis-
tribution. Assume H(0) = 0 and that £ has density h( ) =H 0( ),
which is continuously differentiable. Let E[£] be finite. Since
E[T( )] = , it follows that the unconditional risk size, E[T(£)],
is equal to the mean, E[£], of the parameter distribution. We
often will use ¹= E[£] to simplify notation. Finally, we let
'T(£) denote the unconditional insurance charge. Given these
definitions, the usual Bayesian construction leads to:

4.1. Unconditional Insurance Charge Formula

'T(£)(r) =
1
¹

Z
d h( ) 'T( )

r¹
¶
: (4.1)
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Proof Omitted.

The Bayesian construction implies there is some parameter
uncertainty about the true mean of any risk. Under one interpre-
tation, the final charge value is the (prior) probability-weighted
average of the dollar charge over all values of the true mean,
divided by the expected value of the true mean. Under another
interpretation, we are dealing with a population of risks whose
true overall mean we know, even though there is some parame-
ter uncertainty regarding the mean of any particular risk in the
population. The prior then represents the spread in the popula-
tion and the formula arrives at the correct average charge for
the population. It is also important to note that, as in our ex-
ample, the charge for an average risk is not the same as (and is
usually lower than) the weighted average charge for the popula-
tion of risks. These two interpretations correspond to two types
of parameter risk. The first expresses our uncertainty about the
overall mean of a population, while the second expresses our
uncertainty about the parameter dispersion or heterogeneity of a
population. While a hierarchical, “double-integral” model could
be used to separately delineate their effects, Example 3 shows
that with respect to insurance charges, Equation (4.1) can be
used to model both types of parameter risk together. For other
applications such as in credibility theory, it may be important
to maintain a distinction between these sources of parameter
risk.

Now let Q be a family of £ random variables and M(Q)
the associated set of unconditional random variables. One quick,
but important, result can be obtained assuming all the priors are
scaled versions of a single distribution. Thus all the priors have
the same insurance-charge function. Assume we have a condi-
tional model in which charges decline with size. Then we show
that applying the scaled priors to this model generates an un-
conditional model in which the insurance charge declines as a
function of the unconditional risk size.



WHY LARGER RISKS HAVE SMALLER INSURANCE CHARGES 111

4.2. Unconditional Charge Declines with Risk Size in Scaled
Priors Model

If

@'T( )
@

· 0 and £2 = (1+ c)£1 for c > 0,

then
'T(£2)(r)· 'T(£1)(r): (4.2)

Proof We start by using Equation (4.1) to write

'T(£2)(r) =
1
¹2

Z 1

0
d h2( ) ¢ ¢'T( )

r¹2
¶

where

¹2 = E[£2] =
Z 1

0
d h2( ) ¢ :

Then consider

¹2 = (1+ c)¹1

H2( ) = Pr(£2 · ) = Pr((1+ c)£1 · )

= Pr £1 · 1+ c
¶
=H1 1+ c

¶

h2( ) = h1 1+ c

¶
1

1+ c
:

Substituting, rewrite the integral as

'T(£2)(r) =
1

¹1(1+ c)

Z 1

0
d h1 1+ c

¶
1

1+ c

¢ ¢'T( )
r¹1(1+ c)

¶
:
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Then change variables using ´ = ( =1+ c) to get

'T(£2)(r) =
1
¹1

Z 1

0
d´h1(´) ¢ ´ ¢'(T(´(1+c))

r¹1
´

¶
:

Because we assumed the conditional insurance charges were de-
creasing with risk size, it follows that

'T(´(1+c)) · 'T(´):
This leads to

'T(£2)(r)·
1
¹1

Z 1

0
d´h1(´) ¢ ´ ¢'T(´)

r¹1
´

¶
= 'T(£1)(r):

Why does this result make intuitive sense, despite the fact
that scaling up the prior doesn’t change its insurance charge?
The answer is that scaling up does raise the mean of the prior so
that larger conditional risks have more weight in the weighted
average signified by the integral. Since the large conditional risks
have smaller charges, the net effect of scaling up the prior is to
reduce the charge of the unconditional distribution. Note that
this result did not depend on decomposability of the conditional
model, merely that the conditional risk-size model had charges
that decrease with size.

For an example, consider the following:

EXAMPLE 4: Gamma Contagion on Conditional Poissons
Let T( ) be conditionally Poisson with parameter, . Suppose
= ¹ ¢ º where º is Gamma distributed with shape parameter ®,
and scale parameter ¸= ®, so that E[º] = 1. The variable, º, in-
troduces parameter uncertainty and Var(º) = (1=®) = c is called
the contagion [4] parameter for claim counts. It follows that
£¹, the random variable for , is Gamma distributed with shape
parameter ®, and scale parameter ¸= ®=¹, so that E[£¹] = ¹.
The unconditional distribution T(£¹), is Negative Binomial with
failure rate probability parameter q= (1+¸)¡1 = ¹=(¹+®). If
Q= f£¹ j ¹ > 0g andM(Q) is the resulting set of Negative Bino-
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mials. It follows as a consequence of Equation (4.2) that charges
decrease with risk size in M(Q).

Note M(Q) consists of Negative Binomials with a common
shape but different failure rate parameters. This is different from
our previous decomposable Negative Binomial risk-size model,
from Equation (3.5b), in which all the variables had a com-
mon failure rate parameter. Our result is that charges decline
with size in the standard Gamma-Poisson claim-count contagion
model. Note this model is not closed under independent summa-
tion. Further, observe that the square of the coefficient of varia-
tion, CV2 = Var(£¹)=¹

2 = 1=(®q) = c+(1=¹), decreases toward
the contagion, and not zero, as the risk size grows infinite. See
Exhibit 5 for tables of charges for Negative Binomials as defined
in Example 3.

Next we will consider two priors with the same mean. As-
sume these priors are acting on a continuously differentiable
decomposable conditional risk-size model. We will show that,
under certain conditions, if one prior has a smaller insurance
charge, then its resulting unconditional random variable also has
a smaller insurance charge. In order to prove this, we will first
use integration by parts to express the unconditional insurance
charge in terms of an integral of a product of the risk partials
of the limited expected values of the conditional model and the
prior.

4.3. Unconditional Charge Formula

'T(£)(r) = 1¡
1
¹

Z 1

0
d
@E[£; ]
@

¢ @E[T( );r¹]
@

: (4.3)

Proof We write

'T(£)(r) = 1¡
1
¹

Z 1

0
d h( ) ¢E[T( );r¹]:
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Then we perform integration by parts as follows to deriveZ 1

0
d h( )E[T( );r¹] =¡(1¡H( ))E[T( );r¹]

¯̄̄̄ =1
=0

+
Z 1

0
d (1¡H( ))@E[T( );r¹]

@

=
Z 1

0
d (1¡H( ))@E[(T( );r¹]

@
:

The result follows since

1¡H( ) = @E[£; ]
@

:

With this we can now show a smaller charge for the prior
leads to a smaller charge for the unconditional distribution at a
common risk size.

4.4. Smaller Charges for the Prior Lead to Smaller
Unconditional Charges–Size Fixed

If

¹= E[£1] = E[£2] and
@2E[T( );r¹]

@ 2 · 0

then
'£2 · '£1 implies 'T(£2) · 'T(£1): (4.4)

Proof We use Equation (4.5) to obtain

'T(£1)(r)¡'T(£2)(r)

=¡1
¹

Z 1

0
d

Ã
@E[£1; ]
@

¡ @E[£
2; ]

@

!
@E[T( );r¹]

@
:
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We integrate by parts to obtain

¹('T(£1)(r)¡'T(£2)(r))

=¡(E[£1; ]¡E[£2; ])
@E[T( );r¹]

@

¯̄̄̄ =1
=0

+
Z 1

0
d (E[£1; ]¡E[£2; ])

@2E[T( );r¹]
@ 2 :

Since E[£1] = E[£2] = ¹ and the first partial of the limited ex-
pected value is bounded by unity as per Equation (3.3b), it fol-
lows that the first term vanishes and we have

¹ ¢ ('T(£1)(r)¡'T(£1)(r))

=
Z 1

0
d (E[£1; ]¡E[£2; ])

@2E[T( );r¹]
@ 2 :

We use the expectation formula for the insurance charge, A1, to
arrive at the formula

E[£; ] = ¹ 1¡'T(£) ¹

¶¶
:

We then use this to substitute into the previous integral to yield

'T(£1)(r)¡'T(£2)(r)

=
Z 1

0
d '£2 ¹

¶
¡'£1 ¹

¶¶
@2E[T( );r¹]

@ 2 :

The result then follows immediately from the assumptions of the
proposition.

To gain a better understanding of the formulas, consider the
following example.

EXAMPLE 5: Poisson Conditionals and Exponential Priors
Let T( ) be Poisson. We leave it as an exercise for the reader to
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show
@F(n j )
@

=¡f(n j )
@E[T( );n]

@
= F(n¡ 1 j )

@2E[T( );n]
@ 2 =¡f(n¡ 1 j ):

Suppose the prior on is an exponential with mean ¹, so that
1¡H( ) = exp(¡ =¹). Applying Equation (4.3), we derive

'T(£)
n

¹

¶
=
Z 1

0
d e¡ =¹ ¢ e¡

n¡1

(n¡ 1)! =
¹

¹+1

¶n
:

To see this is correct, we apply the prior to the conditional density
and integrate to obtain the unconditional density

fT(£)(n) =
1

¹+1
¹

¹+1

¶n
:

We recognize this as a Geometric density. It is an exercise in
summation formulas to then verify the insurance charge associ-
ated with this density is in fact the same as the one just derived
using Equation (4.3).

We may now put the results from Equations (4.2) and (4.4)
together to show that decreasing charges by risk size for the
priors acting on a differentiable decomposable conditional family
lead to unconditional charges that decrease with risk size.

4.5. Charges Decrease by Size for Model Based on
Decomposable Conditionals with Priors that Decrease by Size

Suppose M= fT( ) j > 0g is a differentiable decomposable
risk-size model and let Q be a risk-size model with unique ran-
dom variables, f£¹g such that E[£¹] = ¹.
If '£2 · '£1 when ¹1 < ¹2, then

'T(£2) · 'T(£1): (4.6)
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Proof Let ¹2 = (1+ c)¹1 where c > 0 since ¹2 > ¹1. Via
Equation (4.2) we have

'T((1+c)£1) · 'T(£1):
Since '£2 · '£1 = '(1+c)£1 , we can use Equation (4.4) to show

'T(£2) · 'T((1+c)£1):
Note it is valid to apply Equation (4.4) since the second partial
is negative for differentiable decomposable models via Equa-
tion (3.3c). Connecting the two inequalities leads to the desired
result.

Next we extend these results to aggregate loss distributions.

5. INSURANCE CHARGES FOR LOSSES

We define an aggregate loss random variable as the compound
distribution generated by selecting a claim count from a claim
count distribution and then summing up that number of severi-
ties, where each claim severity is drawn from a severity distri-
bution. We associate a risk with a particular count distribution
and a particular severity distribution. When we talk about the
aggregate losses for a risk, we mean the aggregate losses gener-
ated by samples appropriately drawn from its count and severity
distributions according to our protocols. Suppose we have a col-
lection of risks whose claim count distributions form a risk-size
model. If we make appropriate assumptions about the severities
of our risks, the aggregate-loss random variables for these risks
will also constitute a risk-size model. We will show under cer-
tain conditions that, if the claim counts have charge functions
that decrease by size of risk, then so do the charge functions for
the aggregate losses.

Beginning the mathematical exposition, let N be the random
variable representing the number of claims for a particular risk
and let pN(n) = Pr(N = n). Use a non-negative random variable
X, with finite mean ¹X , to represent claim severity. Assume X
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has finite variance and write ¿2 = Var(X). Let Xi be the ith in
a sequence of trials of X. Define the aggregate loss random
variable for the risk via T(N ,X) = X1 +X2 + ¢ ¢ ¢+XN . Note in
this process of generating results, we are generating losses for a
particular risk. When no confusion should result, we will write
T instead of T(N,X). Using Equation (A.6), we know the ran-
dom variable, (T=¹X), has the same insurance charge as T. This
means we can assume ¹X = 1 for the purpose at hand with-
out loss of generality. When there are exactly n claims, define
T(n,X) = X1 +X2 + ¢ ¢ ¢+Xn. Assuming ¹X = 1, it follows that
E[T(n,X)] = n. To simplify notation, we may write 'n=X or even
'n in place of 'T(n,X).

The insurance charge for T(N,X) can be decomposed as a
weighted sum of the insurance charges for T(n,X), each evalu-
ated at an appropriately scaled entry ratio.

5.1. Count Decomposition of the Insurance Charge for
Aggregate Loss

'T(N,X)(r) =
1
¹N

X
n=1

pN(n) ¢ n ¢'T(n,X)
r¹N
n

¶
: (5.1)

Proof Left as an exercise for the reader.

While one could get some general results by working with
the claim count decomposition and using discrete distribution
analogues of integration by parts, the proofs are a bit messy. In-
stead, we will employ the simpler strategy of deriving properties
of compound distributions from their claim count models. Then
we can use the results of Chapters 3 and 4 to arrive at relatively
painless conclusions about charges for the aggregate loss models.
We start by proving that if the claim count model is decompos-
able, then so is the resulting compound distribution model. To
do this, we will first make the following severity assumptions:
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5.2. Fixed Independent Severity

A compound risk-size model has independent fixed severity
if:

i) all risks share a common severity distribution, X.

ii) fX1,X2, : : : ,XNg is an independent set.
iii) Xi is independent of N.

iv) Xi is independent of , where is the true mean
of N for a risk.

(5.2)

Given these severity assumptions and a decomposable claim
count model, we can show the aggregate loss model is also de-
composable.

5.3. Aggregate Loss Model Inherits Decomposability from
Claim Count Model Assuming Fixed Independent Severity

If MN is a decomposable claim count model and the
compound model, MT(N ,X) = fT(N ,X) jN 2MNg
has fixed independent severity, then MT(N,X) =
fT(N ,X) jN 2MNg is also decomposable. (5.3)

Proof Recall we have assumed without loss of generality that
E[X] = 1. Thus E[T(N ,X)] = E[N]E[X] = E[N]. Given > 0,
completeness of MN implies there exists a unique N( ) 2MN

such that E[N( )] = . It follows that E[T(N( ),X)] = . Thus,
MT(N,X) is complete. Now let T(N( 1),X) and T(N( 2),X) be
in MT(N,X). Then using our severity assumptions we can show
T(N( 1),X)+T(N( 2),X) = T(N( 1)+N( 2),X). Since MN is
closed under independent summation, it follows that N( 1) +
N( 2) =N( 1 + 2) and N( 1 + 2) 2MN . Therefore, T(N( 1) +
N( 2),X) 2MT(N,X), proving that MT(N,X). is closed under inde-
pendent summation. Now we apply Equation (3.2) to finish the
proof.
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Using this, it follows as a direct application of Equation (3.4)
that the aggregate loss model has charges that decrease with risk
size.

5.4. Decomposable Claim Counts Imply Aggregate Loss Model
Has Charges that Decrease with Risk Size Assuming Fixed
Independent Severity

If MN is a differentiable decomposable risk-size
model for claim counts and the compound model,
MT(N,X) = fT(N,X) j N 2MNg has fixed independent
severity, then MT(N,X) has charges that decrease
with risk size. (5.4)

Proof Via Equation (5.2), MT(N ,X) is decomposable and the
introduction of fixed independent severity does not affect differ-
entiability with respect to risk size. The result then follows from
Equation (3.4).

Note in this result that all risks share a common severity dis-
tribution and there is no parameter uncertainty regarding this
severity distribution. While adding severity to the model does
lead to larger charges for all risks, the result says that under
these assumptions charges for aggregate loss still decline by size
of risk.

We now apply Statement 5.4 to prove that insurance charges
decrease with risk size for several classes of distributions com-
monly used in insurance models.

5.5. Charges for Aggregate Loss Decrease with Risk Size When
Counts Are Poisson or Negative Binomial (Fixed Failure Rate)

Assuming claim sizes are independently and identically dis-
tributed and independent of the claim count, the insurance charge
decreases as the size of a risk is increased in each of the follow-
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ing models, MT(N,X), where MN is:

Poisson:
M= fN 2 Poisson(¹) j ¹¸ 0g (5.5a)

Negative Binomial with common q:

M= fN 2Negative Binomial(®,q) j q is fixed and ®¸ 0g:
(5.5b)

Proof Apply Statement 5.4.

We now introduce parameter uncertainty regarding the mean
severity for a risk. We follow the CRM [4] as shown in Appendix
B and assume severity may vary from risk to risk only due to
a scale factor. Let ¯ be a positive continuous random variable
with density, w(¯), such that E[1=¯] = 1 and Var(1=¯) = b. The
parameter b is called the mixing parameter.

We let X be a fixed severity distribution that does not change
by risk. The severity distribution for a particular risk Y is ob-
tained by first randomly selecting a ¯ and then using the for-
mula Y = X=¯. Under this construction, each risk has a particu-
lar ¯ that does not change from claim to claim. We will prove
that when the selection of ¯ is independent of , it follows that
the compound model on decomposable counts has charges that
decrease with size. To ensure clarity, we first define the notion
of independent severity with scale parameter uncertainty by risk.
This provides with us a terminology for describing the severity
model just presented.

5.6. Independent Severity with Scale Parameter Uncertainty

A compound risk-size model has independent severity with
scale parameter uncertainty if

i) each particular risk has a particular ¯ and associated
severity distribution, Y = X=¯, where X is fixed for
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all risks and b is a positive continuous random variable
with E[1=¯] = 1 and Var(1=¯) = b.

ii) fX1,X2, : : : ,XNg is an independent set.
iii) Xi is independent of N.

iv) The selection of ¯ for a risk is independent of ,
where is the true mean of N for a risk.

v) The selection of ¯ for a risk is independent of ¹,
where ¹ is the a priori mean of N for a risk. (5.6)

We now show

5.7. Decomposable Claim Counts Imply Aggregate Loss Model
Has Charges that Decrease with Risk Size Assuming Independent
Severity with Scale Parameter Uncertainty

If MN is a differentiable decomposable risk-size
model for claim counts and the compound model,
MT(N,Y) = fT(N ,Y) jN 2MN ,Y = X=¯g, has
independent severity with scale parameter uncertainty,
then MT(N,Y) has charges that decrease with risk size.

(5.7)

Proof By the usual Bayesian conditioning and using the in-
dependent severity assumptions, we can show the charge for the
model at risk size is given via:

'T(N( ),Y)(r) =
Z 1

0
d¯w(¯)(1=¯)'T(N( ),X)(r¯):

Using Statement 5.5, we know the integrands decrease by size
of risk, and the result follows using the independence of ¯
and .

Even though the aggregate model in Statement 5.7 is based on
decomposable counts, it will not be decomposable. Indeed, the
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aggregate model is not even a unique model as the introduction
of the scale parameter leads to an infinite number of risks with
the same a priori expected aggregate loss and thus the same size.
We also need to be careful in interpreting the order in which the
scaling parameter is averaged over the population. Suppose each
risk in a decomposable count model has an exponential severity
distribution and the prior on severity is a Gamma. It follows that
the unconditional severity over all risks is Pareto distributed. If
we then construct a model where each risk has this Pareto as
its severity, we will have a decomposable model that is different
and has different charges than the one in Statement 5.7.

Next we reprise the work done in Chapter 4 and extend our
result to aggregate loss models in which the counts are subject to
parameter uncertainty. We start with decomposable counts and
then introduce a family of prior distributions on the mean claim
counts, such that the priors constitute a risk-size model. If the
priors have charges that decrease, not necessarily strictly, with
risk size and if the compound model has independent severity
with scaling parameter uncertainty, then the aggregate model has
charges that decline with risk size. This is the key result of the
paper.

5.8. Unconditional Aggregate Loss Model Charges Decrease
with Risk Size Assuming Counts Based on Decomposable
Conditionals with Priors that Decrease by Size and Independent
Severity with Scaling Parameter Uncertainty

Assume MN is a differentiable decomposable
claim-count model parameterized by such that
E[N( )] = . Let Q= f£¹g be a complete set of
priors on having charges that decrease with risk
size. Let Y denote risk severity and suppose the
aggregate loss model, MT, has independent severity
with scale parameter uncertainty. Then MT has
charges that decrease with risk size. (5.8)
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Proof The charge in the model for risks of size ¹ is given
by

'MT(¹)(r) =
Z 1

0
d¯w(¯)(1=¯)

1
¹

Z 1

0
d h( j ¹)

¢ ¢'T(N( ),X)(r¯¹= ):
Using the same integration by parts argument made in proving
Statement 4.5, we can show the integral

1
¹

Z 1

0
d h( j ¹) ¢ ¢'T(N( ),X)(r¯¹= )

declines as a function of ¹ for any fixed ¯. The result then follows
directly using the independence of ¯ with ¹.

Note the assumption of independence between ¯ and allows
us to integrate over the priors for severity and the priors for
claim counts in any order. Thus we need our assumption that ¯
is independent of as well as ¹.

6. CONCLUSION

We started by proving some general inequalities for the insur-
ance charge of a sum of identically distributed random variables.
We used some numeric grouping techniques to show the key ba-
sic result that the charge for such a sum declines with the sample
size. We then introduced the construct of a risk-size model. We
showed that charges decline with size in a decomposable model.
We introduced parameter risk with a family of Bayesian priors.
We demonstrated that if the priors had decreasing charges by size
and they acted on a decomposable conditional model, the result-
ing unconditional model has charges that decline by size of risk.
We showed this to be true, even though the resulting uncondi-
tional models were not decomposable. Then we extended our
results to aggregate loss models by adding severity and making
some independence assumptions. We finally extended our result
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to aggregate loss models in which severity is subject to scale
parameter risk. Though our final model is based on conditionally
decomposable claim counts, the parameter risk on both counts
and severity produce a model that is not decomposable.

The CRM is based on conditional Poisson counts and has
severities that satisfy our independence assumptions. The param-
eter scale uncertainty in the CRM is the same as in our model.
Thus the CRM satisfies the assumptions of our key result in
Statement 5.8 and therefore it will generate charges that decline
by size of risk. This is what we set out to prove.

The latest NCCI Table M was produced with the Gamma-
Poisson claim-count model, where, to fit the data, the contagion
declines with risk size [3]. This does not imply that the latest
Table M is based on a decomposable model, but rather that the
straight CRM model with constant contagion by size may lead
to an overstatement of the charges for large risks.

In our unconditional model, we found charges were not forced
to asymptotically approach the lowest possible charge function,
'0(r) = max(0,1¡ r), as risk size tends to infinity. While we have
shown '0(r) is indeed the charge function for “an infinitely large
risk” in a decomposable model, in our unconditional count model
the charge for a very large risk approaches the charge for the
prior of that risk.

Though severity increases insurance charges, the introduction
of severity did not cause our size versus charge relation to fail.
Intuitively this is because risk size is driven by the expected claim
count. In short, severity does increase the insurance charge, but
it does not change the relation between charge and size in the
models we have developed here. While in the actual derivation of
the latest Table M, severity did vary a bit by size in order to rec-
oncile against the expected losses and fitted frequencies [3], the
variation was not sufficient to cause inversions of the declining
charge by size of risk relation. It is a topic of future research to
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understand how far severity assumptions may be relaxed before
such inversions would occur.

So we conclude, having proved there is a fairly large class of
risk-size models in which charges decline with size of risk. This
class includes widely used actuarial models such as the CRM and
Table M. Also, we have developed some theoretical constructs
that should also provide a solid foundation for future research.
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APPENDIX A

BASIC INSURANCE CHARGE THEORY

Let T be a non-negative random variable having finite positive
mean, ¹, cumulative distribution function F, and tail probability
function G = 1¡F. Define the normalized random variable R
associated with T via R = T=¹.

Perhaps the most compact mathematical definitions of the
charge and saving can be given by taking the expected values
of “min” and “max” operators.

A.1. Charge and Saving Functions Defined using Min and Max
Expectations

Charge:

'(r) =
E[max(0,T¡ r¹)]

¹
=
E[T¡min(T,r¹)]

¹
= 1¡ E[T;r¹]

¹

(A.1a)

Saving:

Ã(r) =
E[max(0,r¹¡T)]

¹
= r¡ E[T;r¹]

¹
: (A.1b)

The definitions can be simplified even further by using the nor-
malized random variable.

A.2. Charge and Saving Definitions using the Normalized
Random Variable

Charge:

'(r) = E[max(0,R¡ r)] = E[R¡min(R,r)] = 1¡E[R;r]
(A.2a)

Saving:

Ã(r) = E[max(0,r¡R)] = r¡E[R;r]: (A.2b)
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The charge and saving can also be expressed in terms of inte-
grals.

A.3. Insurance Charge and Saving Functions Defined using
Integrals

'(r) =
1
¹

Z 1

r¹
dFT(t)(t¡ r¹) =

Z 1

r
dFR(s)(s¡ r)

=
1
¹

Z 1

r¹
dtGT(t) =

Z 1

r
dsGR(s) (A.3a)

Ã(r) =
1
¹

Z r¹

0
dFT(t)(r¹¡ t) =

Z r

0
dFR(s)(r¡ s)

=
1
¹

Z r¹

0
dtFT(t) =

Z r

0
dsFR(s): (A.3b)

When the random variable is discrete, these are viewed as
Reimann integrals and are interpreted as sums.

Many basic properties can be proved directly from the defi-
nitions using simple properties of integrals, minimum operators,
and expectations.

A.4. Insurance Charge: Basic Properties

' is a continuous function of r. (A.4a)

' is a decreasing function of r, which is strictly
decreasing when '(r)> 0. (A.4b)

'(0) = 1 and, as r!1, '(r)! 0. (A.4c)

'0(r)· '(r)· 1, where '0(r) = max(0,1¡ r). (A.4d)

With the definitions in A.2, one can show the charge and saving
are related by a simple formula.
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A.5. Relation Between Charge and Saving

'(r)¡Ã(r) = 1¡ r: (A.5)

Proof Use Equations (A.2a) and (A.2b) to write '(r)¡
Ã(r) = 1¡E[R;r]¡ (r¡E[R;r]) = 1¡ r.

It is straightforward to see that multiplication of the under-
lying random variable by a scalar does not change its insurance
charge.

A.6. Scaling a Random Variable Does Not Change Its Charge

For c > 0,
'T(r) = 'cT(r): (A.6)

Proof Left as an exercise for the reader.

The charge can never decline too rapidly between any two points.

A.7. Insurance Charge Slope Between Two Points Greater Than
¡1
If s > r then

'(s)¡'(r)
s¡ r ¸¡1: (A.7)

Proof Using Equation (A.4), write

'(s)¡'(r) =¡
Z s

r
duGR(u) =

Z s

r
du(¡1+FR(u))

=¡(s¡ r)+
Z s

r
duFR(u):

Therefore,

'(s)¡'(r)
s¡ r ¸¡1+ 1

s¡ r
Z s

r
duFR(u)¸¡1:
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Further, the insurance charge must always be concave up. This
means the insurance charge curve never goes above a straight line
drawn between any two points on the curve.

A.8. Insurance Charge is Concave Up

'(wr+(1¡w)s)· w'(r) + (1¡w)'(s) for 0· w · 1:
(A.8)

Proof Using the general property of the “min” operator

min(A+B,C+D)¸min(A,C)+min(B,D)
we derive

min(R,wr+(1¡w)s)¸min(wR,wr)

+min((1¡w)R, (1¡w)s):
Factoring out w and (1¡w) respectively, yields

min(R,wr+(1¡w)s)¸ w ¢min(R,r)+ (1¡w)min(R,s):
Using Equation (A.2) repeatedly, we find

'(wr+(1¡w)s) = 1¡E[R;wr+(1¡w)s]

· w+(1¡w)¡wE[R,r]¡ (1¡w)E[R;s]

= w(1¡E[R;r]) + (1¡w)(1¡E[R;s])

= w'(r) + (1¡w)'(s):

Though the charge and saving functions are continuous, they
need not always be differentiable. However, when they are, the
following formulas hold.
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A.9. Insurance Charge and Saving First Derivatives

If ' or Ã is known to be differentiable at r, then

d'

dr
(r) =¡GR(r) and

d '
t

¹

¶¶
dt

=¡GT(t)
¹

(A.9a)

dÃ

dr
(r) = FR(r) and

d Ã
t

¹

¶¶
dt

=
FT(t)
¹
:

(A.9b)

Proof Apply Equation (A.4) and the Fundamental Theorem
of Calculus.

If R has a density function at a point r, one can take second
derivatives.

A.10. Insurance Charge and Saving Second Derivatives

If R has a well-defined density fR at a point r, then

d2'

dr2
(r) = fR(r) (A.10a)

d2Ã

dr2
(r) = fR(r): (A.10b)

Proof Take derivatives of the first derivatives shown in Equa-
tion (A.9a) and (A.9b).

The variance can be expressed in terms of an integral of the
insurance charge.
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A.11. Variance Formula using the Integral of the Insurance
Charge

If r2GR(r)! 0 as r!1, then

Var(T) = ¹2Var(R) = ¹2 2
Z 1

0
dr'(r)¡ 1

¶
: (A.11)

Proof It suffices to prove the result when T is a continuous
random variable. Integrate by parts twice and use the assump-
tions to deriveZ 1

0
dr'(r) =¡rGR(r)

¯̄̄̄r=1
r=0

+
Z 1

0
dr rGR(r)

= 0+
r2

2
GR(r)

¯̄̄̄
¯
r=1

r=0

+
Z 1

0
dr
r2

2
fR(r) =

1
2
E[R2]:

Therefore, one has 2
R1
0 dr'(r) = E[R

2].

Then, using the definition of the variance along with the fact
that E[R] = 1, one can write

Var(R) = E[R2]¡ (E[R])2 = 2
Z 1

0
dr'(r)¡ 1:

Note the coefficient of variation, CV, is given as the square root
of Var(R).

The result, Equation (A.11), is intuitive since to have a large
insurance charge a random variable must take on extreme values
with some significant probability. This means it has a relatively
large CV. The converse is not true. If CV(R1)¸ CV(R2), then
'1(r) must exceed '2(r) on average, but not necessarily at every
entry ratio. Exhibit 1 shows a discrete counterexample in which
one random variable has a larger charge at some entry ratios,
even though it has a smaller CV than another random variable.
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APPENDIX B

COLLECTIVE RISK MODEL SUMMARY

The quick summary uses notation that is equivalent to, but not
always identical with, the notation used by Heckman and Meyers
[4].

We start with the claim count model and define the number of
claims as a counting random variable, N. Let be the conditional
expected number of claims so that E[Nj ] = . We also writeN( )
to denote the conditional claim count distribution.

Let ¹ be the unconditional mean claim count. To introduce
parameter uncertainty, we let º be a non-negative random vari-
able with E[º] = 1 and Var(º) = c. The parameter c is called the
contagion. To model unconditional claim counts, we first select
a value of º at random and then randomly select a claim count N
from the distribution N( ) where = º¹. Heckman and Meyers
assume N is conditionally Poisson, so that it follows that

B.1. Unconditional Claim Count Mean and Variance

E[N] = E[E[N( ) j = º¹]] = E[º¹] = ¹E[º] = ¹: (B.1a)

Var(N) = E[Var(N( ) j = º¹)]+Var(E[N( ) j = º¹])

= E[¹º]+Var(¹º) = ¹E[º]+¹2Var(º) = ¹+¹2c:

(B.1b)

If º is Gamma distributed, the unconditional claim count distri-
bution is Negative Binomial.

We now add severity to the model. We let X(¸) be the condi-
tional claim severity random variable defined so that E[X(¸)] =
¸. Heckman and Meyers model severity parameter uncertainty by
assuming the shape of the severity distribution is known but there
is uncertainty about its scale. Let ¯ be a positive random variable
such that E[1=¯] = 1 and Var(1=¯) = b. We call b the mixing pa-
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rameter. Suppose ° is the unconditional expected severity and let
Var(X(°)) = ¿2 To model severity, we first take a sample from ¯
and then sample the scaled severity distribution Y = X(°)=¯.

To generate aggregate losses T, we first independently sample
the number of claims N , and the scaling parameter, ¯. Then we
independently draw N samples from the severity random variable
Y = X(°)=¯. The aggregate loss T is the sum of these N severity
samples.

Formulas for the unconditional mean and variance of the ag-
gregate loss are derived as follows

B.2. Unconditional Aggregate Loss Mean and Variance

E[T] = E[N]E[Y] = E[º¹]E[X(°)=¯] = ¹E[º]°E[1=¯] = ¹°:

(B.2a)

Var(T) = E[Var(Tjº ,¯)] +Var(E[T j º,¯])
= E[E[N j ¹º]Var(Y j ¯)+Var(N j ¹º)E[Y j ¯]2]
+Var(¹º°=¯)

= ¹E[º]¿2E[(1=¯)2]+¹E[º]°2E[(1=¯)2]

+ (¹°)2Var(º=¯)

= ¹¿2(1+ b)+¹°2(1+ b)+ (¹°)2Var(º=¯)

= ¹(¿2 + °2)(1+ b)+¹2°2(b+ c+ bc): (B.2b)

Heckman and Meyers assume that ¯ has a Gamma distribution.
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EXHIBIT 2

Sheet 3
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EXHIBIT 3

Sheet 1

Poisson Limited Expected Values and Partials

Limit = 3:000

Numerical Numerical Theoretical
1st Partial 2nd Partial 2nd Partial

Mean LEV of LEV of LEV of LEV

0.300 0.300 0.988
0.600 0.596 0.959 ¡0:099 ¡0:099
0.900 0.884 0.910 ¡0:163 ¡0:165
1.200 1.157 0.845 ¡0:215 ¡0:217
1.500 1.410 0.770 ¡0:250 ¡0:251
1.800 1.641 0.690 ¡0:267 ¡0:268
2.100 1.848 0.609 ¡0:269 ¡0:270
2.400 2.031 0.531 ¡0:261 ¡0:261
2.700 2.191 0.458 ¡0:245 ¡0:245
3.000 2.328 0.391 ¡0:224 ¡0:224
3.300 2.445 0.330 ¡0:201 ¡0:201
3.600 2.544 0.277 ¡0:177 ¡0:177
3.900 2.627 0.231 ¡0:154 ¡0:154
4.200 2.697 0.191 ¡0:132 ¡0:132
4.500 2.754 0.158 ¡0:113 ¡0:112
4.800 2.801 0.129 ¡0:095 ¡0:095
5.100 2.840 0.105 ¡0:079 ¡0:079
5.400 2.872 0.085 ¡0:066 ¡0:066
5.700 2.897 0.069 ¡0:055 ¡0:054
6.000 2.918
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EXHIBIT 3

Sheet 2

Negative Binomial Limited Expected Values and

Partials

Fixed q= 0:750

Limit = 3:000

Numerical Numerical
1st Partial 2nd Partial

Mean LEV of LEV of LEV

0.300 0.231 0.724
0.600 0.448 0.679 ¡0:150
0.900 0.651 0.635 ¡0:146
1.200 0.842 0.592 ¡0:142
1.500 1.020 0.551 ¡0:136
1.800 1.185 0.512 ¡0:131
2.100 1.339 0.475 ¡0:125
2.400 1.481 0.439 ¡0:118
2.700 1.613 0.406 ¡0:112
3.000 1.734 0.374 ¡0:105
3.300 1.847 0.344 ¡0:099
3.600 1.950 0.317 ¡0:093
3.900 2.045 0.291 ¡0:087
4.200 2.132 0.266 ¡0:081
4.500 2.212 0.244 ¡0:075
4.800 2.285 0.223 ¡0:070
5.100 2.352 0.204 ¡0:064
5.400 2.413 0.186 ¡0:060
5.700 2.469 0.169 ¡0:055
6.000 2.520
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EXHIBIT 3

Sheet 3

Gamma Limited Expected Values and Partials

Scale = 1:000

Limit = 3:000

Numerical Numerical
1st Partial 2nd Partial

Mean LEV of LEV of LEV

0.300 0.294 0.981
0.600 0.582 0.959 ¡0:074
0.900 0.860 0.927 ¡0:107
1.200 1.126 0.885 ¡0:141
1.500 1.376 0.833 ¡0:173
1.800 1.607 0.773 ¡0:200
2.100 1.819 0.707 ¡0:221
2.400 2.010 0.637 ¡0:234
2.700 2.180 0.565 ¡0:240
3.000 2.328 0.493 ¡0:237
3.300 2.455 0.425 ¡0:229
3.600 2.564 0.361 ¡0:214
3.900 2.654 0.302 ¡0:196
4.200 2.729 0.249 ¡0:176
4.500 2.790 0.203 ¡0:154
4.800 2.839 0.163 ¡0:133
5.100 2.877 0.129 ¡0:112
5.400 2.908 0.101 ¡0:093
5.700 2.931 0.079 ¡0:076
6.000 2.949 0.060
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EXHIBIT 4

Sheet 1

Poisson Insurance Charges

Mean
Entry
Ratio 0.500 1.000 1.500 2.000 2.500 3.000

0.000 1.000 1.000 1.000 1.000 1.000 1.000
0.100 0.961 0.937 0.922 0.914 0.908 0.905
0.200 0.921 0.874 0.845 0.827 0.816 0.810
0.300 0.882 0.810 0.767 0.741 0.725 0.715
0.400 0.843 0.747 0.689 0.654 0.633 0.630
0.500 0.803 0.684 0.612 0.568 0.562 0.550
0.600 0.764 0.621 0.534 0.508 0.490 0.470
0.700 0.725 0.558 0.467 0.449 0.419 0.397
0.800 0.685 0.494 0.423 0.389 0.348 0.339
0.900 0.646 0.431 0.379 0.330 0.302 0.282
1.000 0.607 0.368 0.335 0.271 0.257 0.224
1.100 0.567 0.341 0.290 0.238 0.211 0.189
1.200 0.528 0.315 0.246 0.206 0.165 0.153
1.300 0.488 0.289 0.202 0.174 0.141 0.118
1.400 0.449 0.262 0.175 0.141 0.117 0.094
1.500 0.410 0.236 0.155 0.109 0.093 0.076
1.600 0.370 0.209 0.136 0.095 0.068 0.057
1.700 0.331 0.183 0.117 0.080 0.057 0.042
1.800 0.292 0.156 0.098 0.066 0.047 0.034
1.900 0.252 0.130 0.079 0.052 0.036 0.025
2.000 0.213 0.104 0.060 0.038 0.025 0.017
2.100 0.204 0.096 0.053 0.032 0.021 0.014
2.200 0.195 0.088 0.047 0.027 0.016 0.010
2.300 0.186 0.080 0.040 0.022 0.012 0.007
2.400 0.177 0.072 0.034 0.017 0.008 0.005
2.500 0.168 0.063 0.027 0.011 0.007 0.004
2.600 0.159 0.055 0.020 0.010 0.005 0.003
2.700 0.150 0.047 0.015 0.008 0.004 0.002
2.800 0.141 0.039 0.014 0.006 0.002 0.001
2.900 0.132 0.031 0.012 0.005 0.002 0.001
3.000 0.123 0.023 0.010 0.003 0.001 0.000
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EXHIBIT 4

Sheet 2

Negative Binomial Insurance Charges

Fixed q= 0:750

Mean
Entry
Ratio 0.500 1.000 1.500 2.000 2.500 3.000

0.000 1.000 1.000 1.000 1.000 1.000 1.000
0.100 0.979 0.963 0.950 0.940 0.931 0.925
0.200 0.959 0.926 0.900 0.879 0.863 0.850
0.300 0.938 0.889 0.850 0.819 0.794 0.775
0.400 0.917 0.852 0.800 0.759 0.726 0.713
0.500 0.897 0.815 0.750 0.698 0.677 0.656
0.600 0.876 0.778 0.700 0.658 0.628 0.600
0.700 0.856 0.741 0.656 0.617 0.580 0.548
0.800 0.835 0.704 0.625 0.577 0.531 0.506
0.900 0.814 0.667 0.594 0.537 0.495 0.464
1.000 0.794 0.630 0.562 0.496 0.460 0.422
1.100 0.773 0.609 0.531 0.468 0.425 0.390
1.200 0.752 0.587 0.500 0.440 0.390 0.359
1.300 0.732 0.566 0.469 0.412 0.364 0.327
1.400 0.711 0.545 0.445 0.384 0.338 0.301
1.500 0.691 0.524 0.424 0.356 0.313 0.277
1.600 0.670 0.502 0.403 0.336 0.287 0.253
1.700 0.649 0.481 0.382 0.316 0.268 0.231
1.800 0.629 0.460 0.362 0.296 0.249 0.214
1.900 0.608 0.439 0.341 0.276 0.230 0.196
2.000 0.587 0.417 0.320 0.257 0.212 0.178
2.100 0.577 0.404 0.306 0.243 0.198 0.165
2.200 0.566 0.391 0.292 0.228 0.184 0.151
2.300 0.555 0.377 0.278 0.214 0.170 0.138
2.400 0.545 0.364 0.264 0.200 0.156 0.127
2.500 0.534 0.351 0.250 0.186 0.146 0.117
2.600 0.523 0.337 0.236 0.176 0.136 0.107
2.700 0.512 0.324 0.223 0.166 0.126 0.098
2.800 0.502 0.310 0.213 0.156 0.116 0.090
2.900 0.491 0.297 0.203 0.146 0.108 0.083
3.000 0.480 0.284 0.194 0.135 0.101 0.075
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EXHIBIT 4

Sheet 3

Gamma Insurance Charges

Scale = 1:000

Mean
Entry
Ratio 0.500 1.000 1.500 2.000 2.500 3.000

0.000 1.000 1.000 1.000 1.000 1.000 1.000
0.100 0.917 0.905 0.902 0.901 0.900 0.900
0.200 0.847 0.819 0.809 0.804 0.802 0.801
0.300 0.785 0.741 0.723 0.713 0.708 0.705
0.400 0.729 0.670 0.644 0.629 0.620 0.614
0.500 0.679 0.607 0.572 0.552 0.539 0.530
0.600 0.633 0.549 0.507 0.482 0.465 0.453
0.700 0.591 0.497 0.449 0.419 0.399 0.384
0.800 0.553 0.449 0.397 0.363 0.340 0.323
0.900 0.517 0.407 0.350 0.314 0.289 0.270
1.000 0.484 0.368 0.308 0.271 0.244 0.224
1.100 0.453 0.333 0.271 0.233 0.205 0.185
1.200 0.425 0.301 0.239 0.200 0.172 0.152
1.300 0.399 0.273 0.210 0.171 0.144 0.124
1.400 0.374 0.247 0.184 0.146 0.120 0.101
1.500 0.351 0.223 0.161 0.124 0.100 0.082
1.600 0.330 0.202 0.142 0.106 0.083 0.066
1.700 0.310 0.183 0.124 0.090 0.068 0.053
1.800 0.291 0.165 0.108 0.077 0.056 0.043
1.900 0.274 0.150 0.095 0.065 0.046 0.034
2.000 0.258 0.135 0.083 0.055 0.038 0.027
2.100 0.243 0.122 0.073 0.046 0.031 0.022
2.200 0.228 0.111 0.063 0.039 0.026 0.017
2.300 0.215 0.100 0.055 0.033 0.021 0.014
2.400 0.202 0.091 0.048 0.028 0.017 0.011
2.500 0.191 0.082 0.042 0.024 0.014 0.009
2.600 0.180 0.074 0.037 0.020 0.011 0.007
2.700 0.169 0.067 0.032 0.017 0.009 0.005
2.800 0.160 0.061 0.028 0.014 0.007 0.004
2.900 0.150 0.055 0.024 0.012 0.006 0.003
3.000 0.142 0.050 0.021 0.010 0.005 0.003
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EXHIBIT 5

Charges for Gamma-Poisson Contagion Model

q= ¹=(¹+®), ®= 2:00, Contagion = :50

Mean
Entry
Ratio 0.500 1.000 1.500 2.000 2.500 3.000

0.000 1.000 1.000 1.000 1.000 1.000 1.000
0.100 0.964 0.944 0.933 0.925 0.920 0.916
0.200 0.928 0.889 0.865 0.850 0.840 0.832
0.300 0.892 0.833 0.798 0.775 0.759 0.748
0.400 0.856 0.778 0.731 0.700 0.679 0.677
0.500 0.820 0.722 0.663 0.625 0.621 0.612
0.600 0.784 0.667 0.596 0.575 0.562 0.547
0.700 0.748 0.611 0.538 0.525 0.504 0.488
0.800 0.712 0.556 0.499 0.475 0.446 0.441
0.900 0.676 0.500 0.459 0.425 0.406 0.393
1.000 0.640 0.444 0.420 0.375 0.366 0.346
1.100 0.604 0.419 0.380 0.344 0.326 0.312
1.200 0.568 0.393 0.341 0.313 0.286 0.278
1.300 0.532 0.367 0.302 0.281 0.259 0.245
1.400 0.496 0.341 0.274 0.250 0.233 0.218
1.500 0.460 0.315 0.253 0.219 0.206 0.194
1.600 0.424 0.289 0.232 0.200 0.180 0.171
1.700 0.388 0.263 0.210 0.181 0.163 0.150
1.800 0.352 0.237 0.189 0.163 0.146 0.134
1.900 0.316 0.211 0.168 0.144 0.129 0.119
2.000 0.280 0.185 0.146 0.125 0.112 0.103
2.100 0.270 0.174 0.135 0.114 0.101 0.092
2.200 0.259 0.163 0.124 0.103 0.090 0.081
2.300 0.249 0.152 0.113 0.092 0.079 0.071
2.400 0.238 0.141 0.102 0.081 0.069 0.062
2.500 0.228 0.130 0.091 0.070 0.062 0.055
2.600 0.218 0.119 0.080 0.064 0.055 0.048
2.700 0.207 0.107 0.070 0.058 0.048 0.042
2.800 0.197 0.096 0.065 0.052 0.042 0.037
2.900 0.186 0.085 0.059 0.045 0.038 0.033
3.000 0.176 0.074 0.054 0.039 0.033 0.028



ADDRESS TO NEW MEMBERS–MAY 16, 2005

THE MEANING OF LIFE, THE UNIVERSE, AND ALL
THAT

ALLAN M. KAUFMAN

I am supposed to congratulate you, tell you what a great pro-
fession you have joined, and tell you about the responsibilities
you will have as new members of the CAS. I will do that in due
course.

In preparing for that I thought back to the words of wisdom I
had heard in previous new member addresses. I remember David
Hartman describing the careers of the seven members of his Fel-
lowship class. I remember Roy Simon explaining the significance
of the invention of mass marketed deodorants. But what else did
Roy say? And what about all of the other talks? What about the
talks I was forced (oops, privileged) to hear when I was a new
Fellow and Associate. I drew a blank. That concerned me. Was
this a major senior moment?

Before I get further into trouble, let me quickly say something
to past presidents like Stan Khury and Irene Bass who spoke in
the past five years. I’m sure I would have remembered your
talks, but I was based in London and hadn’t been to those CAS
meetings. But before that?

Fortunately, the Proceedings includes new member addresses.
I joined the select group of people, past presidents giving new
member addresses, I imagine, who have read through the com-
plete collection of those addresses. The collection is smaller than
I feared. The Proceedings have no such speeches prior to 1985–
but was that a gap in the Proceedings? No, back in 1996 Mike
Toothman observed in his new member speech that the new
member address was only about a dozen years old at that time.
One mystery solved–there were no addresses at my Associ-

150
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ateship and Fellowship graduations, which go back to the early
1970s.

Still, that search highlights the fact that there is a high thresh-
old if I expect either you or me to remember this speech. For
you, this is a unique day, so you’ll remember the day if not the
speech. For me, I choose to talk about something familiar so I
can remember what I said, if not when I said it.

My career has been about training actuaries–from student to
Associate and Fellow and beyond. I’ll use this time to share with
you ten rules that help me and which I have used to advise my
younger colleagues. You’ll need to decide if they apply to you.

Rule #1: 80 Percent of Life is Showing Up

Something close to this is attributed to Woody Allen. The key
point is deciding to show up. I’m an introvert, and I feel much
more comfortable thinking about it than doing it. I draw comfort
from this rule. If I agree to show up, and I’m sure I can, that
gives me eighty points. So “let’s do it,” I say to myself.

Having decided to show up, I inevitably prepare so that I can
score additional points. I have discovered that others do the same.
A corollary to this is that “If a project is stalled, call a meeting.”
Usually, if forced to “show up,” everyone will prepare.

Other corollaries are:

² No one has ever passed an exam without showing up. (New
Associates take note.)

² In the consulting world I live in, getting out to see your clients
is central. You communicate just by taking the effort to show
up.

² For the highly analytical among you, make sure that you “show
up” and talk to the rest of the world, even if you think the
analysis was not yet done.
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Rule #2: Remember, You are an Important Person Now

I discovered at some point in my career that I had become an
important person. This was a surprise to me. People cared about
what I thought, said, and did. They found my advice helpful.
They considered my approval, or lack of approval, important.

Then I discovered that other people also failed to recognize
when they had become important. Every few years, particularly
when you are young, you seem to need to be reminded.

This is a very good time to remember that YOU ARE AN
IMPORTANT PERSON. You are successful. You are members
of the Casualty Actuarial Society–Fellows or Associates.

The responsibilities of being an important person include:

² Speak up.
² Be a good role model.
² Treat your colleagues with respect.
² Be confident in yourself. You are a qualified actuary–What
is your professional opinion?

You are a part of a profession that has become increasingly
important. Rating agencies are holding the actuarial profession
responsible for the reserve shortfalls in the United States. Regu-
lators are holding the actuarial profession responsible for major
insurance company failures in the United Kingdom. We may not
think that this is completely correct, but it is not all bad. There
is no doubt that they think our profession is far more important
now than it was when I sat in your seat. As an important profes-
sion, we must be able to say what we can do, what we cannot
do, and how we will go about doing what we can.

Rule #3: No Good Deed Goes Unpunished

This is one of my favorite rules.
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You should volunteer. Don’t be surprised when good work
is rewarded by more assignments. Good work is how we build
“capital” with our colleagues, clients, and bosses.

I have found that every one of my good deeds in volunteer-
ing has been punished threefold by requests for more volunteer
effort.

Please, go forth and be punished.

Rule #4: Take Notes

There are two reasons for this:

1) If you are under 50, it shows that you care what the person
is saying. You are an important person. Taking notes shows your
concern for the people you are dealing with.

2) If you are over 50, it is because you have to or you will
not remember anything.

Rule #5: Every Silver Lining has a Dark Cloud

This complements the better-known principle that every dark
cloud has a silver lining. Actuaries are usually good at the dark
clouds. But if you also remember that every dark cloud has a
silver lining it will help you keep a balanced view.

You are an important person now and you need to keep your
head when people around you are too exuberant or depressed to
remember.

Rule #6: Treat Your Children With Love and Respect; Never
Compare Them

You might think this has something to do with raising a family.
Actually, it’s not bad advice for that also. No, this is about your
subordinates, clients, and bosses.

Like children, they will behave badly–demanding, whining,
and disobeying. But, like children, it is probably because they
have concerns that are not visible to you. They might be hungry,
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tired, or dirty. With enough love and respect and patience you
can, together, solve their problems.

Second, never compare your employees or clients, at least not
while they are listening. Everyone is unique. Everyone should be
your best or favorite of that type. If you want them to understand
what you are telling them, it needs to be presented to them as
individuals, not related to how they differ from their colleagues
or competitors.

Rule #7: Let Them Speak–They’ll Think You’re Brilliant

It sounds backwards, but it is true.

The best way to engage an audience, of one or many, is to let
them speak. The best way to run a conference is to be sure that
the audience is encouraged, and has plenty of time, to speak.

I learned this rule from CAS program planners and then I tried
it in meetings that I have run. The best parts of this meeting for
you will probably be when you have a chance to speak up. If
there are enough chances for you to participate, you will think
the program was brilliant.

There are dangers in overusing this principle. First, the intro-
verts among you might abuse it as an excuse to simply be silent.
Second, you are an important person now and sometimes you
simply need to just tell others what to do and have them get on
with it.

Rule #8: Know Yourself–Even if Learning is Painful

You are the only tool you have for life.

You are all good at acquiring technical knowledge–that’s
how you got here. But do you know yourself? You might think
of yourself as having strengths and weaknesses. Actually, we
simply are who we are. Your traits might be strengths or weak-
nesses depending on how and when you use those traits. You
need to know when your normal ways of doing things are a
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strength or a weakness. You need to know when to act out of
character.

That knowledge comes only from seeing yourself through
other people’s eyes. Even your friends will have trouble telling
you enough about yourself. Even if they do tell you, you prob-
ably won’t hear what they are telling you.

One of the best rules in determining whether you have heard
useful information is whether it hurts. If it doesn’t hurt at all
it’s probably not useful. Remember that during your next per-
formance review.

Rule #9: Build a Cathedral

Perhaps you’ve heard the story of the two masons in the Mid-
dle Ages. When asked what they were doing, the first mason said
he was laying bricks and he couldn’t wait to finish for the day to
have a pint with his friends. The second mason said that he was
building a cathedral and could barely wait to begin work every
day.

When applying for my first consulting job, my potential future
boss said, “You know we do a lot of reserving here. Won’t you
find that boring” I was naïve, but fortunately more correct than
I imagined. I told him if the work was important to the clients,
then I would find it interesting.

Actuaries are doing work that is very important to their em-
ployer’s or client’s business. If you think your work is boring
you might not understand how it is being used.

On the other hand, sometimes the work is boring and it’s time
to move on.

Rule #10: There is a Game Called Life

Yes, really. It’s a board game that is at least 45-years-old. At
the beginning you set your goals. You allocate 60 points between
fame, fortune, and love–think of that as relationships. You go
around the board and see whether you can achieve your goals.



156 ADDRESS TO NEW MEMBERS

By deciding on an actuarial career you have positioned your-
self well on the fortune points.

If you volunteer for the CAS and in your companies, you
are well positioned to achieve some fame. If want to achieve
more fame points, you’ll need to enter politics and maybe the
American Academy can help.

You will also be able to build many longstanding friendships
within the CAS. But don’t forget Rule #1 and make sure you
also show up where your core relationships are–at home.

So in conclusion, you have been around the game board a few
times and now you have completed a major milestone. Congrat-
ulations on that.

I’m glad to have had this chance to share my thoughts about
what has helped me go around the board.

Thank you.
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MINUTES OF THE 2005 CAS SPRING MEETING

May 15–18, 2005

POINTE SOUTH MOUNTAIN RESORT 

PHOENIX, ARIZONA

Sunday, May 15, 2005

The CAS board of directors met from 8:00 a.m. to 5:00 p.m.

Registration was held from 4:00 p.m. to 6:30 p.m.

An officers’ reception for new Associates and accompanying 
persons was held from 5:30 p.m. to 6:30 p.m.

A welcome reception for all attendees was held from 6:30 p.m. 
to 7:30 p.m.

Monday, May 16, 2005

Registration continued from 7:00 a.m. to 5:00 p.m.

CAS President Stephen D’Arcy opened the business session at 
8:00 a.m., welcoming all to the CAS Spring Meeting and announc-
ing that the morning’s events would be Webcast over the CAS Web 
Site. President D’Arcy introduced the current members of the CAS 
Executive Council (EC) and the CAS Board of Directors.

Mr. D’Arcy introduced special guests and the past presidents of 
the CAS attending the meeting including Robert A. Anker (1996), 
Irene K. Bass (1993), Ronald L. Bornhuetter (1975), David G. 
Hartman (1987), Allan M. Kaufman (1994), C. K. “Stan” Khury 
(1984), Steven G. Lehmann (1998), Mary Frances Miller (2004), 
and Gail M. Ross (2002).

Mr. D’Arcy asked that all Fellows and Associates who have 
been CAS members for 25 years or more and all CAS volunteers 
stand to be recognized. Mr. D’Arcy also recognized those indi-
viduals who have worked on the American Academy of Actuaries’ 
committees or committees of other actuarial organizations. 
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Mr. D’Arcy commented that “seasoned” members have much 
to offer the profession, and that the CAS could do more to get 
them (or keep them) involved in the organization as they move 
toward and into retirement. He then told the audience about the 
possible formation of a special interest section to serve the needs 
of retired members, and asked that anyone interested in volunteer-
ing or learning more about the Retirees Special Interest Section to 
contact either Melanie Pennington, chairperson of the Regional 
Affiliates Committee, or Todd Rogers at the CAS office.

Vice President–Professional Education Beth Fitzgerald then 
gave an overview of the meeting. Ms. Fitzgerald first recognized 
meeting supporters D. W. Simpson and Company Select Actuarial 
Services as well as meeting exhibitors Milliman, Towers Perrin, 
and the Actuarial Foundation. She encouraged attendees to visit 
their displays in the registration area.

Ms. Fitzgerald noted that there will be two Proceedings papers 
presented at this meeting, as well as two discussion papers on the 
topic “Primer on Enterprise Risk Management.”

In concluding her presentation, Ms. Fitzgerald complimented 
and thanked chairperson Patrick Woods and the Program Plan-
ning Committee, along with CAS Meeting Planner Kathy Spicer 
and other members of the CAS office staff for coordinating the 
meeting.

Following these announcements, the new CAS Fellows and 
Associates in attendance were honored in a special ceremony. 
The CAS admitted 43 new Fellows and 22 new Associates in 
May 2005. Thomas G. Myers, Vice President–Admissions, an-
nounced the new Associates and Paul Braithwaite, President-Elect, 
announced the new Fellows. The names of the members of the 
Spring 2005 class follow.
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NEW FELLOWS

John Leslie Baldan
Christopher M. Bilski
Kirk David Bitu
Amber L. Butek
James Chang
Hung Francis Cheung
Matthew Peter Collins
Keith William Curley
David A. DeNicola
Nicholas John 

De Palma
Ryan Michael Diehl
Melanie S. Dihora
Brian Michael Donlan
Ellen Donahue 

Fitzsimmons
William J. Fogarty

Sébastien Fortin
Marie LeStourgeon
Charles R. Grilliot
James Donald Heidt
Eric David Huls
Scott Robert Hurt
Young Yong Kim
Brandon Earl Kubitz
Hoi Keung Law
Amanda Marie 

Levinson
Gavin Xavier 

Lienemann
John Thomas Maher
Laura Suzanne Martin
James Paul McCoy
Shawn Allan McKenzie

James Lewis Norris
Bruce George 

Pendergast
Matthew James Perkins
Michele S. Raeihle
Robert Allan Rowe
Quan Shen
Summer Lynn Sipes
James M. Smieszkal
Liana St-Laurent
Keith Jeremy Sunvold
Erica W. Szeto
Malgorzata Timberg
Nicholas Jaime 

Williamson

NEW ASSOCIATES

Richard J. Bell III
Darryl Robert 

Benjamin
Stacey Jo Bitler
Karen Beth Buchbinder
Simon Castonguay
Denise L. Cheung
Melissa Diane Elliott

Solomon Carlos 
Feinberg

John S. Flattum
Jonathan W. Fox
Edward Lionberger
Brent Layne McGill
Thomas Edward Meyer
Alan E. Morris

Catherine Ann Morse
Lisa M. Nield
Frank W. Shermoen
Shannon Whalen
Stephen C. Williams
Stephen K. Woodard
Navid Zarinejad
Robert John Zehr

Mr. D’Arcy then introduced Allan Kaufman, a past president 
of the Society, who gave the address to new members. Following 
the address, Mr. D’Arcy announced Alex Jin as the recipient of the 
Harold W. Schloss Memorial Scholarship Fund, which is awarded 
to benefit a deserving and academically outstanding student in 
the University of Iowa’s actuarial program, offered through the 
Department of Statistics and Actuarial Science. The student re-
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cipient is selected by the Trustees of the CAS Trust, based on the 
recommendation of the department chair at the University. Mr. Jin 
received $500 in scholarship funds.

Mr. D’Arcy then introduced Robert Anker and Mary D. Miller, 
who spoke about the work of the Actuarial Foundation and the 
American Academy of Actuaries’ Casualty Practice Council, re-
spectively.

After making a few announcements, Mr. D’Arcy concluded the 
business session.

Following a refreshment break, the first General Session was 
held from 10:00 a.m. to 11:30 a.m.

Actuarial Accountability—In a Changing World
 Moderator/ Mary Frances Miller

 Panelist: Past President, Casualty Actuarial Society
 Panelists: Lauren Bloom

  General Counsel 
  American Academy of Actuaries

  Karen Terry
  Member
  Actuarial Standards Board

Following a short break, keynote speaker Ron Pressman ad-
dressed the meeting attendees during a luncheon held from 11:45 
a.m. to 1:15 p.m. Mr. Pressman is president and CEO of GE Insur-
ance and chairman, president, and CEO of GE Insurance Solutions, 
one of the world’s largest reinsurance and insurance organizations. 

After the luncheon, the afternoon was devoted to presentations 
of concurrent sessions. The panel presentations from 1:30 p.m. to 
3:00 p.m. covered the following topics:

1. Actuaries Embrace Operational Risk
 Moderator/ Donald F. Mango

 Panelist: Director of Research and Development 
  GE Insurance Solutions



 MINUTES OF THE 2005 SPRING MEETING  161

 Panelist: Dr. Ali Samad-Khan
  President
  OpRisk Advisory

  Mark Verheyen
  Vice President
  Carvill America

2.  Aviation Pricing and Modeling
 Moderator: Michael A. Falcone

  Chief Actuary
  Global Aerospace

 Panelists: Matthew Maddocks
  Underwriter
  ACE Tempest Re, London

  Kurt Maureder
  Actuary
  GE Insurance Solutions

3. Discussion Draft on Reserving Principles
 Moderator/ Bertram A. Horowitz

 Panelist: Chairperson
  Task Force on Reserving Principles
  President
  Bertram Horowitz, Inc.

 Panelists: Aaron M. Halpert
  Principal
  KPMG LLP

  Jon Michelson
  Owner
  Expert Actuarial Services LLC

  Thomas A. Ryan
  Consulting Actuary
  Milliman Inc.

  Deborah M. Rosenberg
  Deputy Chief Casualty Actuary
  New York State Insurance Department
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4. Estimating the Effect of Tort Reform on Medical 
Malpractice Costs

 Moderator/ Robert J. Walling III
 Panelist: Principal and Consulting Actuary
  Pinnacle Actuarial Resources Inc.

 Panelists: Kevin M. Bingham
  Senior Manager
  Deloitte Consulting LLP

  Richard B. Lord
  Principal and Consulting Actuary 
  Milliman Inc.

5. From the Actuary’s “Best Estimate Range” to 
“Management’s Best Estimate:” Which “X” Marks the Spot?

 Moderator/ Robert F. Wolf
 Panelist: Principal
  Mercer Oliver Wyman

 Panelists: Roger M. Hayne
  Consulting Actuary
  Milliman USA

  C. K. “Stan” Khury
  Principal
  Bass & Khury

6. Privacy of Information
 Moderator: Patrick B. Woods

  Assistant Vice President and Actuary
  ISO

 Panelists: Jon Neiditz
  Of Counsel
  Lord, Bissell & Brook LLP

  John B. Storey
  CISSP, Director and Chief Information 
  Security Official
  ISO
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7. Reinsurance: Recycled or Reinvented?
 Moderator: Nolan Asch

  Principal
  ISO

 Panelists: Craig Johnson
  President
  Signet Star Reinsurance Company

  Michael G. Wacek
  President
  Odyssey America Reinsurance Corporation

After a refreshment break, the following concurrent sessions 
were presented from 3:30 p.m. to 5:00 p.m.:

1. Are D&O Rates Really Softening?
 Moderator: Elissa M. Sirovatka

  Consultant and Principal
  Towers Perrin

 Panelists: David K. Bradford
  Executive Vice President
  Advisen Ltd.

  Kraig Paul Peterson
  AVP and Actuary
  Chubb Group of Insurance  Companies

2. Auto Injury Claims: The What, Why, and How of It All
 Moderator/ Richard A. Derrig

 Panelist: President
  OPAL Consulting LLC

 Panelist: Adam Carmichael
  Senior Research Associate
  Insurance Research Council

3. Beyond Indications
 Moderator: Jonathan White

  Assistant Vice President and Actuary 
  The Hartford
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 Panelists: Peter Orlay
  Director
  Optimal Decisions Group

  Geoffrey Werner
  Senior Consultant
  EMB America LLC

4. Enterprise Risk Management—The Present and the Future 
CAS

 Moderator: Donald F. Mango
  Director, Research & Development 
  GE Insurance Solutions

 Panelists:  James E. Rech
  Vice President
  GPW and Associates Inc.

  John Kollar
  Vice President
  ISO

5. Future of TRIA 2004
 Moderator: Benoit Carrier

  Second Vice President
  GE Insurance Solutions

 Panelists: Lloyd Dixon 
  Senior Economist
  RAND Corporation

  Glenn Pomeroy 
  Associate General Counsel-Government 
  Relations
  GE Insurance Solutions

6. Predictive Modeling—Panacea or Placebo?
 Moderator:  Glenn G. Meyers

  Chief Actuary
  ISO Innovative Analytics
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 Panelists: Daniel Finnegan
  President
  ISO Innovative Analytics

  Cheng-Sheng Peter Wu
  Director
  Deloitte & Touche LLP

7. Presenting Dynamic Financial Analysis Results to 
Decision Makers

 Moderator: Mark R. Shapland
  Actuary
  Milliman USA

 Panelists: Raju Bohra
  Vice President–Client Modeling
  American Re-Insurance Company

  Michael R. Larsen
  Working Party Chair, Property Consultant 
  The Hartford

  Aleksey Popelyukhin
  Vice President, Information Systems 
  2 Wings Risk Services

An officers’ reception for New Fellows and accompanying per-
sons was held from 5:30 p.m. to 6:30 p.m.

A general reception for all attendees followed from 6:30 p.m. to 
7:30 p.m.

Tuesday, May 17, 2005

Registration continued from 7:00 a.m. to 8:00 a.m.

The following General Sessions were held from 8:00 a.m. to 
9:30 a.m.

The Industry’s Ability to Attract Capital Given Historically 
Low ROE
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 Moderator: Gail M. Ross
  Manager and Senior Consultant 
  Milliman USA

 Panelists: Jeffrey Cohen
  Principal
  MMC Capital Inc.

  Rajat Duggal
  Managing Director
  Friedman, Fleischer & Lowe LLC

  Joan Lamm-Tennant
  Senior Vice President
  General Reinsurance Corporation 

The Actuarial Role in Mergers and Acquisitions (PR)
 Moderator/ Alan Hines

 Panelist: Principal Consultant
  PricewaterhouseCoopers LLP

 Panelists: John Butler
  Senior Vice President
  Houlihan, Lokey, Howard & Zukin

  Hugh T. McCormick
  Executive Vice President, Corporate 
  Development
  Scottish Re Group Limited

  James Toole
  Managing Director, Life and Health 
  MBA Actuaries

After a break, the following concurrent sessions were held from 
10:00 a.m. to 11:30 a.m.

1. Interaction with Underwriters
 Moderator: Christopher M. Norman

  Actuary
  United Services Automobile Association
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 Panelists: Brian Evans
  Chief Underwriter, Individual Risk E & S 
  GE Insurance Solutions

  John Herder
  Senior Actuary
  GE Insurance Solutions

2. Managing the Insurance Cycle
 Moderator: Benoit Carrier

  Second Vice President
  GE Insurance Solutions

 Panelists: Joseph A. Boor
  Reserving Actuary
  Florida Department of Financial Services

  Harry Shuford
  Chief Economist
  NCCI 

3. Update on a Global Risk-Based Capital Standard 
 Moderator: Robert F. Wolf

  Principal
  Mercer Oliver Wyman

 Panelists: Glenn G. Meyers
  Chief Actuary
  ISO Innovative Analytics

  Nino Savelli
  Associate Professor
  Catholic University of the Sacred Heart

4. Why Do Specialty/Niche Companies Outperform Their 
Peers?

 Moderator: David C. Snow
  Managing Actuary
  GE Insurance Solutions

 Panelist: Gary R. Josephson
  Consulting Actuary
  Milliman, Inc.
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  Michael F. McManus
  Senior Vice President and Chief Actuary 
  Chubb Group of Insurance Companies

  Kenneth Quintilian
  Vice President and Chief Actuary 
  Medical Liability Mutual Insurance Company 

After a break for lunch, a golf tournament commenced at 1:00 
p.m. Certain sessions were repeated and the following concurrent 
sessions presented from 12:30 p.m. to 2:00 p.m.:

1. Insurance Accounting for Actuaries
 Moderator: Michael C. Dubin

  Director
  PricewaterhouseCoopers LLP

 Panelists: Roger M. Hayne
  Consulting Actuary
  Milliman USA

  Kevin L. Wick
  Principal Consultant
  PricewaterhouseCoopers LLP 

2. What is the Next Asbestos?
 Moderator: James Larkin

  Chief Actuary, Broker Market
  American Re-Insurance Company

 Panelists:  Bonnie L. Boccitto
  Senior Vice President
  American Re-Insurance Company

  John P. Yonkunas
  Principal
  Towers Perrin

The following discussion papers were presented from 12:30 
p.m. to 2:00 p.m.:

1. “Risk Measurement in Insurance: A Guide to Risk 
Measurement, Capital Allocation, and Related Decision Support 
Issues”
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 Author:  Paul Kaye
  Benfield Group

2. “Modeling the Solvency Impact of TRIA on the Workers 
Compensation Insurance Industry”

 Authors: Harry Shuford 
  Chief Economist
  National Council on Compensation Insurance

  Jonathan Evans
  Actuary
  National Council on Compensation Insurance

The day concluded with a western barbeque and entertainment 
for all attendees at Rustler’s Rooste Barn from 6:30 p.m. to 9:30 
p.m.

Wednesday, May 18, 2005

From 8:00 a.m. to 9:30 a.m. the following concurrent sessions 
were held:

1. 2004 U.S. Hurricanes and 2005 Reinsurance Market
 Moderator/ Thomas E. Hettinger

 Panelist: Managing Director
  EMB America LLC

 Panelist:  Randall E. Brubaker
  Senior Vice President
  Aon Corporation

2. Investment Principles—Session with the CAS Investment 
Committee

 Moderator/ François Morin
 Panelist: Principal
  Towers Perrin

 Panelists: Curtis Gary Dean
  Distinguished Professor of Actuarial Science 
  Ball State University
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  Todd Rogers
  Director of Finance and Operations
  Casualty Actuarial Society

3. The State of Construction Defects
 Moderator/ Ronald T. Kozlowski

 Panelist: Principal
  Towers Perrin

 Panelist: Paul Swank
  Senior Claims Consultant
  Towers Perrin

4. Terrorism Modeling
 Moderator: Rhonda K. Aikens

  Second Vice President
  GE Insurance Solutions

 Panelists: François Dagneau
  Senior Vice President
  AON Re Canada Inc.

  Timothy Tetlow
  Senior Vice President Global Reinsurance 
  Axis Specialty Limited, Bermuda

From 8:00 a.m. to 9:30 a.m., the following Proceedings papers 
were presented:

1. “An Examination of the Influence of Leading Actuarial 
Journals”

 Author:  L. Lee Colquitt 
2. “Riskiness Leverage Models” 
 Author:  Rodney E. Kreps

After a break, the final General Session was held from 10:00 
a.m. to 11:30 a.m.

The Future of Finite Insurance
 Moderator: Marc F. Oberholtzer

  Director
  PricewaterhouseCoopers LLP
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Jeffrey R. Adcock
Barbara J. Addie
Mark A. Addiego
Rhonda K. Aikens
Terry J. Alfuth
Ethan D. Allen
Timothy Paul Aman
Paul D. Anderson
Robert A. Anker
Deborah Herman 

Ardern
Nolan E. Asch
Martha E. Ashman

Peter Attanasio
Richard J. Babel
John L. Baldan
Phillip W. Banet
D. Lee Barclay
Irene K. Bass
Edward J. Baum
Nicolas Beaupre
Andrew Steven Becker
Jody J. Bembenek
Abbe Sohne Bensimon
Regina M. Berens
Raji Bhagavatula

Kirk D. Bitu
Ralph S. Blanchard
Carol Blomstrom
Bonnie L. Boccitto
Neil M. Bodoff
Raju Bohra
Ann M. Bok
Joseph A. Boor
Ronald L. Bornhuetter
Peter T. Bothwell
Amy S. Bouska
Jerelyn S. Boysia
Nancy A. Braithwaite

 Panelists: Keith Buckley
  Fitch Ratings

  Christopher E. Hall
  Vice President, Senior Accounting Analyst 
  Moody’s Investors Service

  Kenneth Kruger
  Senior Vice President
  Willis Re., Inc.

  Daniel Malloy
  Executive Vice President
  Benfield

At the conclusion of this session, Mr. D’Arcy announced future 
meetings and seminars and adjourned the meeting.

Attendees of the 2005 CAS Spring Meeting

The 2005 CAS Spring Meeting was attended by 415 Fel-
lows, 118 Associates, two Affiliate members, and 60 guests. The 
names of the Fellows, Associates, and Affiliates in attendance fol-
low:

FELLOWS
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Paul Braithwaite
Kelly A. Bramwell
Michael D. Brannon
Rebecca Bredehoeft
Mark D. Brissman
Linda K. Brobeck
Dale L. Brooks
Randall E. Brubaker
Stephanie Anne Bruno
Ron Brusky
George Burger
Hayden Heschel Burrus
Michelle L. Busch
James E. Calton
Douglas A. Carlone
Christopher S. Carlson
Allison Faith Carp
William Brent Carr
Benoit Carrier
Bethany L. Cass
R. Scott Cederburg
Dennis K. Chan
Hung Francis Cheung
Thomas Joseph 

Chisholm
Kin Lun (Victor) Choi
Stephan L. Christiansen
Mark M. Cis
Susan M. Cleaver
J. Paul Cochran
William Brian Cody
Jeffrey R. Cole
Matthew P. Collins
Larry Kevin Conlee
Hugo Corbeil
Brian C. Cornelison

Francis X. Corr
Michael J. Covert
Brian K. Cox
Richard R. Crabb
Alan M. Crowe
M. Elizabeth 

Cunningham
Keith W. Curley
Diana M. Currie
Ross A. Currie
François Dagneau
Stephen P. D’Arcy
Lawrence S. Davis
John Dawson
John D. Deacon
Curtis Gary Dean
Kris D. DeFrain
Jeffrey F. Deigl
Camley A. Delach
David A. DeNicola
Nicholas J. DePalma
Robert V. Deutsch
John T. Devereux
Chris Diamantoukos
Melanie Sue Dihora
Mark A. Doepke
Andrew J. Doll
Robert B. Downer
Michael C. Dubin
Judith E. Dukatz
Tammi B. Dulberger
Dennis Herman 

Dunham
Gregory L. Dunn
Kenneth Easlon
Jeffrey Eddinger

Grover M. Edie
Dale R. Edlefson
David M. Elkins
Julia L. Evanello
Jonathan Palmer Evans
Philip A. Evensen
Michael A. Falcone
Vicki A. Fendley
Mark E. Fiebrink
Beth E. Fitzgerald
Ellen D. Fitzsimmons
Chauncey Edwin 

Fleetwood
Daniel J. Flick
William J. Fogarty
David A. Foley
Sean Paul Forbes
Feifei Ford
Hugo Fortin
Sebastien Fortin
Louise A. Francis
Dana R. Frantz
Michelle L. Freitag
Bruce F. Friedberg
Michael Fusco
Jean-Pierre Gagnon
James E. Gant
Louis Gariepy
Roberta J. Garland
John F. Gibson
Isabelle Gingras
Gregory S. Girard
John T. Gleba
Joel D. Glockler
Andrew Samuel Golfin
Matthew R. Gorrell
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Ann E. Green
John E. Green
Steven A. Green
Ann V. Griffith
Charles R. Grilliot
Stacie R. W. Grindstaff
Linda M. Groh
Jacqueline Lewis 

Gronski
Nasser Hadidi
James A. Hall
Robert C. Hallstrom
Alexander Hammett
George M. Hansen
David G. Hartman
Eric Christian Hassel
Roger M. Hayne
Scott E. Henck
John Herder
Jay T. Hieb
Alan M. Hines
Todd H. Hoivik
Mark J. Homan
Allen J. Hope
David J. Horn
Bertram A. Horowitz
Mary T. Hosford
Marie-Josée Huard
Scott R. Hurt
Paul R. Hussian
Jamison Joel Ihrke
Philip M. Imm
Aguedo M. Ingco
Craig D. Isaacs
Paul Ivanovskis
Christopher D. Jacks

Charles B. Jin
Eric J. Johnson
Erik A. Johnson
Warren H. Johnson
Thomas S. Johnston
Steven M. Jokerst
Jeffrey R. Jordan
Julie A. Jordan
Gary R. Josephson
Erin Hye-Sook Kang
Kyewook Gary Kang
Robert B. Katzman
Allan M. Kaufman
Robert J. Kelley
Brian Danforth Kemp
David R. Kennerud
C. K. “Stan” Khury
Young Y. Kim
Ziv Kimmel
Joseph E. Kirsits
Craig W. Kliethermes
Joan M. Klucarich
Timothy F. Koester
John J. Kollar
Ronald T. Kozlowski
Israel Krakowski
Rodney E. Kreps
John R. Kryczka
Brandon E. Kubitz
Andrew E. Kudera
Howard A. Kunst
Steven M. Lacke
Paul E. Lacko
Blair W. Laddusaw
Salvatore T. LaDuca
D. Scott Lamb

Dean K. Lamb
Robin M. LaPrete
James W. Larkin
Michael R. Larsen
Aaron M. Larson
Dawn M. Lawson
Thomas V. Le
Borwen Lee
P. Claude Lefébvre
Scott J. Lefkowitz
Steven G. Lehmann
Yuxiang Reng Lin Lei
Bradley H. Lemons
Paul B. LeStourgeon
Kenneth A. Levine
Amanda M. Levinson
Sally Margaret Levy
Peter M. Licht
Gavin X. Lienemann
Jia (Judy) Liu
Jan A. Lommele
Richard Borge Lord
Robert G. Lowery
Robb W. Luck
John T. Maher
Donald F. Mango
Jason Aaron Martin
Jason N. Masch
Stuart B. Mathewson
Robert W. Matthews
Jeffrey H. Mayer
Michael G. McCarter
James P. McCoy
Heather L. McIntosh
Shawn Allan McKenzie
Michael F. McManus
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John D. McMichael
Timothy Messier
Glenn G. Meyers
Ryan A. Michel
Jon W. Michelson
Mary Frances Miller
Ronald R. Miller
William J. Miller
Paul W. Mills
Claudine H. Modlin
F. James Mohl
Christopher J. Monsour
David Patrick Moore
Matthew Kevin Moran
François Morin
Robert Joseph Moser
Timothy C. Mosler
Roosevelt C. Mosley Jr.
James C. Murphy
Jarow G. Myers
Karen E. Myers
Thomas G. Myers
Chris E. Nelson
Kenneth J. Nemlick
Aaron West Newhoff
Lynn Nielsen
John Nissenbaum
Darci Z. Noonan
Christopher M. Norman
James L. Norris
Corine Nutting
James L. Nutting
David J. Oakden
Steven Brian Oakley
Richard Alan Olsen
Mary L. O’Neil

Todd F. Orrett
Joanne M. Ottone
Michael Guerin Owen
Richard D. Pagnozzi
Ajay Pahwa
Robert G. Palm
Joseph M. Palmer
Cosimo Pantaleo
Curtis M. Parker
Julie Parsons
M. Charles Parsons
John R. Pedrick
Bruce G. Pendergast
Matthew J. Perkins
Kraig Paul Peterson
Mark W. Phillips
Daniel C. Pickens
Kim E. Piersol
Arthur C. Placek
Igor Pogrebinsky
Anthony E. Ptasznik
Alan K. Putney
Kenneth Quintilian
Bethany R. Quisenberry
Donald K. Rainey
Kiran Rasaretnam
Peter S. Rauner
John J. Reynolds
Stephen Daniel 

Riihimaki
Delia E. Roberts
Ezra Jonathan Robison
Michelle L. 

Rockafellow
Robert C. Roddy
John R. Rohe

A. Scott Romito
Deborah M. Rosenberg
Richard A. Rosengarten
Gail M. Ross
Nancy Ross
Robert Allan Rowe
James B. Rowland
James V. Russell
Thomas A. Ryan
Laura Beth Sachs
Stuart G. Sadwin
Jason Thomas Sash
Timothy L. Schilling
Susan C. Schoenberger
Parr T. Schoolman
Arthur J. Schwartz
Kim A. Scott
Steven George Searle
Terry Michael Seckel
Vladimir Shander
Mark R. Shapland
Quan Shen
Michelle L. Sheppard
Jeffrey Shirazi
Bret Charles Shroyer
Rial R. Simons
Summer Lynn Sipes
Elissa M. Sirovatka
Laurie A. Slader
James M. Smieszkal
Jay Matthew South
Michael D. Sowka
Sharon L. Sowka
Joanne S. Spalla
Alan M. Speert
Wendy Rebecca Speert
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ASSOCIATES

Anthony L. Alfieri
Nathan J. Babcock
Mary Pat Bayer
Alexandra Robin 

Beckenstein
Ina M. Becraft
David James Belany
Kevin Michael 

Bingham
Stacey Jo Bitler
John R. Bower
John O. Brahmer

Karen B. Buchbinder
Anthony Robert 

Bustillo
Sandra L. Cagley
Simon Castonguay
Daniel George 

Charbonneau
Petra Lynn 

Charbonneau
Howard S. Cohen
Thomas P. Conway
Burton Covitz

Hall D. Crowder
William Der
Gordon F. Diss
Kevin George Donovan
Julie A. Ekdom
Melissa Diane Elliott
James C. Epstein
Denise M. Farnan
Thomas R. Fauerbach
Matthew B. Feldman
William P. Fisanick
John S. Flattum

Christopher M.
Steinbach

Julia Causbie Stenberg
Michael J. Steward
Liana St-Laurent
Christopher J. Styrsky
Lisa M. Sukow
Brian Tohru Suzuki
Roman Svirsky
Christopher C. 

Swetonic
Erica W. Szeto
Karen F. Terry
Patricia A. Teufel
Shantelle Adrienne 

Thomas
Beth S. Thompson
Robert W. Thompson
Ellen Marie Tierney
Malgorzata Timberg
Michael J. S. Toledano
Charles F. Toney

Michel Trudeau
Everett J. Truttmann
Lien K. Tu-Chalmers
Theresa Ann 

Turnacioglu
Brian K. Turner
Laura M. Turner
James F. Tygh
William R. Van Ark
Oakley E. Van Slyke
Mark Alan Verheyen
Jennifer Anne Vezza
Steven M. Visner
Michael G. Wacek
Gregory M. Wacker
Robert J. Walling
Wade Thomas Warriner
Geoffrey Todd Werner
Jeffrey D. White
Jonathan White
Kevin L. Wick
William Robert Wilkins

Laura M. Williams
Nicholas J. Williamson
Ernest I. Wilson
Martha A. Winslow
Michael L. Wiseman
Robert F. Wolf
Simon Kai-Yip Wong
Patrick B. Woods
Jimmy L. Wright
Cheng-Sheng Peter Wu
Run Yan
Vincent F. Yezzi
John P. Yonkunas
Edward J. Yorty
Jeffery Michael Zacek
Michael R. Zarember
Xiangfei Zeng
Gene Q. Zhang
John D. Zicarelli
Ralph T. Zimmer
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AFFILIATES

Simon J. Day Tobias Hoffmann

Jonathan W. Fox
Kai Y. Fung
James M. Gallagher
Chad J. Gambone
Stephanie Ann Gould
Jennifer Graunas
Stephanie A. Groharing
David John Gronski
William A. Guffey
Kyle M. Hales
Aaron M. Halpert
Robin A. Haworth
Philip E. Heckman
Chad Henemyer
Thomas E. Hettinger
Robert C. Hill
Glenn S. Hochler
Bo Huang
Paul J. Johnson
William Russell 

Johnson
Dana F. Joseph
Pamela A. Kaplan
John B. Kelly
John Hun Kim
Martin T. King
Kelly Martin Kingston
Susan L. Klein
Thomas F. Krause
Bobb J. Lackey
Douglas H. Lacoss

Charles R. Lenz
James J. Leonard
Wei Li
Sharon Xiaoyin Li
Edward P. Lionberger
David J. Macesic
Richard J. Manship
Gabriel O. Maravankin
Rosemary Marks-

Samuelson
Scott A. Martin
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Abstract

This paper summarizes the research project on Mod-
eling of Economic Series Coordinated with Interest Rate
Scenarios initiated by the joint request for proposals by
the Casualty Actuarial Society and the Society of Actu-
aries. The project involved the construction of a finan-
cial scenario model that simulates a variety of economic
variables over a 50-year period. The variables projected
by this model include interest rates, inflation, equity re-
turns, dividend yields, real estate returns, and unemploy-
ment rates. This paper contains a description of the key
issues involved in modeling these series, a review of the
primary literature in this area, an explanation of param-
eter selection issues, and an illustration of the model’s
output. The paper is intended to serve as a practical
guide to understanding the financial scenario model in
order to facilitate the use of this model for such actuarial
applications as dynamic financial analysis, development
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of solvency margins, cash flow testing, operational plan-
ning, and other financial analyses of insurer operations.
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1. INTRODUCTION

The insurance industry is increasingly relying on financial
models. Financial models are an integral part of any dynamic fi-
nancial analysis (DFA) approach and are frequently used for sol-
vency regulation, capital allocation, and pricing insurance poli-
cies. Financial models can also be used to determine the eco-
nomic value of loss reserves. As financial models become a
widely used tool, actuaries have a greater need to understand
current models and to develop improvements.

A considerable amount of research suggests that sophisticated
tools are needed to accurately evaluate the financial condition of
insurers. Santomero and Babbel [37] review the financial risk
management practices of both the life and property-liability in-
surers and find that significant improvements are necessary. They
state that even the most advanced insurers are not effectively
managing their financial risks. Research also shows that the po-
tential consequences of the lack of risk measurement cannot be
ignored. A study by the Casualty Actuarial Society Financial
Analysis Committee [9] discusses the potential impact of inter-
est rate risk for property-liability insurers. Hodes and Feldblum
[26] examine the effects of interest rate risk on the assets and lia-
bilities of a property-liability insurer and conclude that “casualty
actuaries must understand interest rate risk thoroughly if they
wish to participate in the industry discussions and to influence
the coming professional and regulatory guidelines.” Staking and
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Babbel [41] find that significant work is needed to better under-
stand the interest rate sensitivity of an insurer’s surplus. D’Arcy
and Gorvett [14] and Ahlgrim, D’Arcy, and Gorvett [2] apply
more advanced measures to determine the interest rate sensitiv-
ity of loss reserves and illustrate how these measures depend on
the interest rate model chosen. All of these articles focus on the
need for a better understanding of the financial risks facing an
insurance company.

Many actuaries are now familiar with the traditional tech-
niques that form the basis of asset-liability management (ALM),
including the measures of duration, convexity, and the term struc-
ture of interest rates (Hull [27], Chapter 5). Duration and con-
vexity help insurers understand their interest rate sensitivity and
assist portfolio managers in reducing surplus volatility. However,
the calculations for duration and convexity rely heavily on un-
derlying assumptions about the level and potential movements
of interest rates, and these issues have not been thoroughly eval-
uated by the actuarial community.

In order to enhance actuaries’ understanding of financial mod-
els, the Casualty Actuarial Society (CAS) and the Society of
Actuaries (SOA) jointly issued a request for proposals on the
research topic “Modeling of Economic Series Coordinated with
Interest Rate Scenarios.” There were several specific objectives
of the request:

² Review the previous literature in the area of economic scenario
modeling;

² Determine appropriate data sources and methodologies to en-
hance economic modeling efforts relevant to the actuarial pro-
fession; and

² Produce a working model of economic series, coordinated with
interest rates, that could be made public and used by actuaries
via the CAS and SOA Web Sites to project future economic
scenarios.
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The economic series to be included in the model were interest
rates, equity returns, inflation rates, unemployment rates, and real
estate returns. An important consideration in this project is the
recognition of the interdependencies between the various eco-
nomic and financial series–for example, between interest rates
and inflation and between equity returns and interest rate move-
ments.

This paper provides a summary of the development of a
scenario generation model, which is now available for pub-
lic use. This work represents an initial step in the process of
helping actuaries develop a better understanding of financial
risk. The complete project, available on the CAS Web Site
(http://casact.org/research/econ/), includes a literature review, the
model, sample results, and a user’s guide.

This paper is organized as follows. Section 2 reviews some of
the key issues from the financial modeling literature, including
term structure and equity return development. Previous actuarial
models are also discussed. Section 3 describes the underlying
variables of the model, illustrates how each process is simulated,
discusses how the default parameters of the process were se-
lected, and provides sources of data that are used to select the
appropriate parameters. Section 4 briefly explains how to use the
financial scenario model and discusses how to incorporate the
model into other actuarial applications. Section 5 illustrates the
use of the model, summarizes the output produced in one simu-
lation, and includes a number of tabular and graphical displays
of the output. Section 6 provides a conclusion that encourages
actuaries to advance the work in this area.

2. ISSUES AND LITERATURE REVIEW

There are many issues involved in building an integrated fi-
nancial scenario model for actuarial use. This section reviews
the literature in the modeling of the term structure and equity re-
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turns. In addition, the financial models in the actuarial literature
are reviewed.

Term Structure Modeling

Insurance companies have large investments in fixed income
securities, and their liabilities often have significant interest rate
sensitivities. Therefore, any financial model of insurance opera-
tions must include an interest rate model at its core. This section
describes some of the relevant research issues involved in term
structure modeling. (For an overview of fixed income markets,
see Tuckman [42].)

The role of the financial scenario generator is not to explain
past movements in interest rates, nor is the model attempting to
perfectly predict interest rates in any future period in order to
exploit potential trading profits.1 Rather, the model purports to
depict plausible interest rate scenarios that may be observed at
some point in the future. Ideally, the model should allow for a
wide variety of interest rate environments to which an insurer
might be exposed.

The literature in the area of interest rate modeling is volumi-
nous. One strand of the literature looks to explore the possibility
of predictive power in the term structure. Fama [17] uses forward
rates in an attempt to forecast future spot rates. He finds evi-
dence that very short-term (one-month) forward rates can fore-
cast spot rates one month ahead. Fama and Bliss [19] examine
expected returns on U.S. Treasury securities with maturities of
up to five years. They find that the one-year interest rate has a
mean-reverting tendency, which results in one-year forward rates
having some long-term forecasting power.

1It might be noted that trying to develop a model that mimics past rate movements may
be a futile exercise since, despite the volume of research in the area, no tractable model
has yet been shown to be satisfactory in accurately explaining history.
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Historical Interest Rate Movements

Other research reviews historical interest rate movements in
an attempt to determine general characteristics of plausible in-
terest rate scenarios. Ahlgrim, D’Arcy, and Gorvett [3] review
historical interest rate movements from 1953 to 1999, summariz-
ing the key elements of these movements. Chapman and Pearson
[12] provide a similar review of history in an attempt to assess
what is known about interest rate movements (or at least what
is commonly accepted) and what is unknown (or unknowable).
Litterman and Scheinkman [32] use principal component anal-
ysis to isolate the most important factors driving movements of
the entire term structure. Some of the findings of these studies
include

² Short-term interest rates are more volatile than long-term rates.
Ahlgrim, D’Arcy, and Gorvett [3] use statistics (such as stan-
dard deviation) to show that long-term rates tend to be some-
what tethered, while short-term rates tend to be much more
dispersed. (A graphical presentation of historical interest rate
movements is available at http://www.business.uiuc.edu/»s-
darcy/present/casdfa3/GraphShow.exe.)

² Interest rates appear to revert to some “average” level. For ex-
ample, when interest rates are high, there is a tendency for
rates to subsequently fall. Similarly, when rates are low, they
later tend to increase. While economically plausible, Chapman
and Pearson [12] point out that due to a relatively short his-
tory of data, there is only weak support for mean reversion. If
anything, evidence suggests that mean reversion is strong only
in extreme interest rate environments (see also Chapman and
Pearson [11]).

² While interest rate movements are complex, 99% of the total
variation in the term structure can be explained by three basic
shifts. Litterman and Scheinkman [32] show that over 90% of
the movement in the term structure can be explained by simple
parallel shifts (called the level component). Adding a shift in
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the slope of the term structure improves explanatory power to
over 95%. Finally, including U-shaped shifts (called curvature)
explains over 99% of the variation observed in historical term
structure movements. Chapman and Pearson [12] confirm that
these three factors are persistent over different time periods.

² Volatility of interest rates is related to the level of the short-
term interest rate. Chapman and Pearson [12] further point out
that the appropriate measure for volatility depends on whether
the period from 1979 to 1982–when the Federal Reserve
shifted policy from focusing on interest rates to controlling in-
flation, resulting in a rapid increase in interest rates–is treated
as an aberration or included in the sample period.

Equilibrium and Arbitrage Free Models

Several popular models have been proposed to incorporate
some of the characteristics of historical interest rate movements.
Often these continuous time models are based on only one
stochastic factor, movements (changes) in the short-term interest
rate (the instantaneous rate). A generic form of a one-factor term
structure model is

drt = ·( ¡ rt)dt+¾rt°dBt: (2.1)

Formula (2.1) incorporates mean reversion. To see this, consider
the case where the current level of the short-term rate (rt) is
above the mean reversion level . The change in the interest rate
is then expected to be negative–interest rates are expected to
fall. The speed of the reversion is determined by the parame-
ter ·. The last term in (2.1) incorporates the unknown, volatile
component of interest rate changes over the next instant. The
last term, dBt, is the change in a Brownian motion–it has mean
zero and variance equal to dt. This uncertainty is scaled by the
volatility parameter ¾. If ° > 0, then interest rate volatility is re-
lated to the level of the interest rate. When ° = 0, this model
is equivalent to the formulation of Vasicek [43]; when ° = 0:5,
the model is the process proposed by Cox, Ingersoll, Ross [13]
(hereafter CIR). Chan et al. [10] estimate this class of interest
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rate models and determine that based on monthly data from 1964
through 1989 the value of ° is approximately 1.5.

Models of the type shown in Formula (2.1) are called “equi-
librium models” since investors price bonds by responding to
the known expectations of future interest rates. Using the as-
sumed process for short-term rates, one can determine the yield
on longer-term bonds by looking at the expected path of interest
rates until the bond’s maturity. To determine the full-term struc-
ture, one can price bonds of any maturity based on the expected
evolution in short-term rates over the life of the bond:2

P(t,T) = E

"
exp

Ã
¡
Z T

t
rudu

!#
(2.2)

where P(t,T) is the time t price of a bond that pays $1 in (T¡ t)
years. One of the primary advantages of equilibrium models is
that bond prices and many other interest rate contingent claims
have closed-form analytic solutions. Vasicek and CIR evaluate
Formula (2.2) to find bond prices:

P(t,T) = A(t,T)e¡rtB(t,T), (2.3)

where A(t,T) and B(t,T) are functions of the known process pa-
rameters ·, , and ¾. Therefore, given a realized value for rt,
rates of all maturities can be obtained.

One immediate problem with equilibrium models of the term
structure is that the resulting term structure is inconsistent with
observed market prices, even if the parameters of the model are
chosen carefully; while internally consistent, equilibrium models
are at odds with the way the market is actually pricing bonds.
Where equilibrium models generate the term structure as an out-
put, “arbitrage-free models” take the term structure as an input.
All future interest rate paths are projected from the existing yield
curve.

2It should be noted that the expectations in Formula (2.2) are evaluated under the risk
neutral measure. See chapter 9 of Tuckman [42] for an introduction to risk neutral val-
uation of bonds.
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Ho and Lee [25] discuss a discrete time model of the no-
arbitrage approach and include a time-dependent drift so that
observed market prices of all bonds can be replicated. The
continuous-time equivalent of the Ho-Lee model is

drt = (t)dt+¾dBt: (2.4)

The time-dependent drift ( (t)) of the Ho and Lee model is
selected so that expected future interest rates agree with market
expectations as reflected in the existing term structure. This drift
is closely related to implied forward rates. Hull and White [28]
use Ho and Lee’s [25] time-dependent drift to extend the equi-
librium models of Vasicek and CIR. The one-factor Hull-White
model is

drt = ·( (t)¡ rt)dt+¾dBt: (2.5)

Heath, Jarrow, and Morton [23] (hereafter HJM) generalize
the arbitrage-free approach by allowing movements across the
entire term structure rather than a single process for the short
rate. HJM posit a family of forward rate processes, f(t,T). In
this family

df(t,T) = ¹(t,T,f(t,T))dt+¾(t,T,f(t,T))dBt, (2.6)

where
f(t,T) =¡@ lnP(t,T)

@T
: (2.7)

Choosing between an arbitrage-free term structure model and
an equilibrium model often depends on the specific application.
Despite their initial appeal, arbitrage-free approaches often have
disadvantages.3 Some of these include the following:

² Arbitrage-free models are most useful for pricing purposes,
especially interest rate derivatives. Since derivatives are priced
against the underlying assets, a model that explicitly captures
the market prices of those underlying assets is superior to mod-
els that more or less ignore market values. Hull [27] comments

3In addition to the references in this section, Tuckman [42] provides an excellent
overview of the advantages and disadvantages of equilibrium models vs. arbitrage-free
models.
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that equilibrium models are judged to be inferior since traders
will have little confidence in the price of an option if the model
cannot accurately price the underlying asset. Research sup-
ports this argument. Jegadeesh [31] looks at the pricing of
interest rate caps and determines that arbitrage-free models
price interest rate caps more accurately than equilibrium mod-
els. Unfortunately, the pricing accuracy of arbitrage-free term
structure models is based on short pricing horizons; there have
been no formal comparative tests of the pricing accuracy using
long-term assets.

² Fitton and McNatt [21] comment that arbitrage-free models are
most useful for short-term pricing applications when similar
market data are readily available. Arbitrage-free models are
intractable over long periods of time. With many arbitrage-
free models, the forward rate plays a central role in the ex-
pected path of interest rates. Forward rates are related to the
slope of the term structure and may exhibit strange behavior
that significantly impacts projections of interest rate paths in
arbitrage-free term structure models. For steeply sloped yield
curves, the forward rate may become very large. For parts of
the term structure that are downward sloping, the forward rate
may even become negative. Especially for long-term projec-
tions, simulation paths may become extreme since the effects
of small fluctuations in the term structure are magnified in
long-term forward rates. For long-term analysis, equilibrium
models are more appropriate.

² Arbitrage-free models also suffer from inconsistency across
time (see Wilmott [46] and Tuckman [42]). As mentioned
above, many arbitrage-free term structure models assume that
the risk-free rate is closely related to the forward rate curve.
The forward curve is often quite dissimilar at different points
in time. For example, at time 0, the model uses the existing
term structure to determine forward rates for years into the
future. If the model were correct, we should be able to restart
the simulation at some subsequent time t using the forward
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rates for longer maturities that were implied from the earlier
projection. Clearly the actual path of interest rates will differ
from the implied forward rate curve, as well as the volatilities
of these rates. This requires the model to be refit to avail-
able market data each time it is used, which means that future
projections make different assumptions about future spot rates
and volatilities. Equilibrium models provide more consistent
statements about projected interest rates over time.

² Determining the input into an arbitrage-free model is not
straightforward. One usually considers the term structure im-
plied by risk-free securities such as U.S. Treasuries. There
are several difficulties in looking at U.S. Treasury data. First,
market data gathered from zero coupon securities data, such
as STRIPs (separate trading of registered interest and principal
securities), are noisy, especially at long maturities. An alterna-
tive source for long-term interest rate data is to look at yields
on long-term U.S. Treasury bonds. However, the liquidity of
these long-term coupon bonds is suspect, and since on-the-run
(the most current issue of a particular bond) Treasury securi-
ties typically have higher liquidity (and higher prices), yields
of the longest maturity bonds are forced down. The forward
rate curve initially reflects interest rate information for short-
term rates, but for longer maturities, liquidity issues dominate.
The result is a strangely shaped forward rate curve that can
have significant undulations stemming from illiquidity. In ad-
dition, the future of 30-year bonds is uncertain given the Trea-
sury’s curtailment of 30-year bond issues. Fewer points on the
term structure make arbitrage-free models very sensitive to the
market data and particularly vulnerable to market inefficien-
cies. Equilibrium models do not suffer from these “dirty” data
issues.

² Depending on the specific arbitrage-free model, one may have
to resort to numerical techniques such as simulation or interest
rate trees to value contingent claims. Equilibrium models often
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have closed-form solutions for common interest rate dependent
securities.

Single- vs. Multifactor Models

The models presented above are all one-factor term structure
models since there is only a single variable generating stochastic
movements in interest rates. One problem with one-factor mod-
els is that the single source of uncertainty drives all term struc-
ture movements. As a result, yields of all maturities are perfectly
correlated to the one stochastic factor and the range of potential
yield curves is limited. The effects of multi-dimensional moves
in the term structure can have serious consequences on a port-
folio’s value. Reitano [35] demonstrates that even small non-
parallel shifts in the yield curve can cause extreme changes in
asset values.

Introducing additional sources of uncertainty (such as allow-
ing the long end of the curve to fluctuate or introducing stochas-
tic volatility or both) provide for a fuller range of yield curve
movements and shapes. The downside is that introducing multi-
ple dimensions of yield curve movements quickly increases the
complexity and tractability of the model. Choosing the number
of stochastic factors for a term structure model represents an
important balance between accuracy and simplicity.

To illustrate an example of a multifactor term structure model,
Hull and White [29] extend the one-factor Hull-White model [28]
to include a stochastic mean reversion level:

drt = ( (t)+ ut¡ art)dt+¾1dB1t
dut =¡butdt+¾2dB2t:

(2.8)

Similar to the one-factor Hull-White model, the instantaneous
short-term rate (rt) reverts to some time-dependent reversion level
( (t)+ ut). The introduction of a stochastic process for ut in the
second equation in Formula (2.8) shows that the mean rever-
sion level is also variable. The effect of introducing this second
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stochastic factor is to allow movements at opposite ends of the
yield curve. Any correlation between short and long rates is ac-
counted for in the correlation of the Brownian motion compo-
nents of Formula (2.8).

Summary of Term Structure Issues

The final choice of term structure model is a decision that
frequently elicits passionate debate. Decisions are needed to se-
lect among the various kinds of assumptions including matching
the existing term structure (equilibrium vs. arbitrage-free model),
the number of parameters employed, and so on. In making these
decisions, it is vital to bear in mind the application of the model.
The choice of a term structure model is likely to be different
for short-term applications that require precision and compara-
bility to traded securities than for long-term strategic planning
exercises.

For this research, it is not intended that our model will be
used for trading purposes. Rather, it is meant to give insurers
a range of potential interest rate scenarios that are possible in
the future. In selecting a term structure model for the financial
scenario generator, we attempted to balance three important (and
often opposing) goals: (1) mimicking the key historical charac-
teristics of term structure movements, (2) generating the entire
term structure for any future projection date, and (3) recognizing
the desire for parsimony.

The first concern led us to a multifactor model that allows
for some flexibility in yield curve shapes. While single-factor
models are often easier to describe and use, their restricted yield
dynamics are too important for insurers to ignore. The second
issue highlights the importance of interest rates of all time hori-
zons, not of any specific key rates on the curve. Based on the
realizations of the limited number of stochastic factors, we pre-
ferred term structure models that have closed-form solutions for
bond prices so that the entire term structure can be quickly and
easily retrieved. When closed-form solutions for bond yields are
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available, this allows users of the term structure model to track
all interest rates on the yield curve during a simulation, not a
limited few. For example, users of a term structure model who
are interested in mortgage prepayment rates will be interested in
the refinancing rate, which may be closely related to bond yields
of specific maturities (such as 10 years). Other users may be
concerned about crediting rates that are a function of historical
5-year interest rates. Without some explicit closed-form solution,
the modeler has no foundation to imply yields of different ma-
turities from a limited set of stochastic factors. The two-factor
equilibrium model selected for the financial scenario model is
described in the third section of this paper.

Equity Returns

Similar to interest rates, there have been many studies that
have looked at the behavior of equity returns. Shiller [39] and
Siegel [38] analyze long-term patterns in stock returns and pro-
vide helpful analyses of long-term trends. Sornette [40] exam-
ines the behavior of stock markets, investigating why complex
systems such as stock markets crash.

Often equity returns are assumed to follow a normal distri-
bution. For example, in the development of their famous option
pricing formula, Black and Scholes [7] assume that (continu-
ously compounded) returns for stocks are normally distributed.
However, historical observation of equity returns reveals that the
distribution has “fatter tails” than predicted by the assumption of
normality (Campbell, Lo, and MacKinlay [8]).

A number of alternative assumptions have been proposed
for stock movements. Alexander [4] summarizes a variety of
substitutes, including generalized autoregressive conditional het-
eroskedasticity (GARCH) processes and principal component
analysis. Hardy [22] uses a regime-switching model for stock re-
turns and concludes that the performance of the regime-switching
model is favorable relative to competing models. To understand
the rationale for Hardy’s model, consider the severe decline of
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the stock market in October 1987. This single observation may
appear to be too “extreme” and very unlikely given a single-
variance assumption. Instead, suppose that equity returns at any
point in time are generated from two distinct distributions, a
“high volatility” regime or a “low volatility” regime. The chance
of switching from one regime to the other over the next time
step is dictated by transition probabilities. During times of eco-
nomic instability, the returns on equities may be more uncertain,
representing a transition to the high volatility regime. Thus, the
observation from October 1987 may simply be a draw from the
high volatility regime.

We use Hardy’s approach for equity returns but apply the
regime-switching process to excess returns over and above the
nominal risk-free rate. At any point in time, the excess return of
stocks is a draw from a normal distribution that is conditional
on the current regime.4 For each period, there is a matrix of
probabilities that dictate the movement between regimes. While
there is no limit to the number of regimes that can be embedded
in the model, Hardy finds only marginal improvement in fit when
extending the equity return model to more than two regimes.

Given two regimes (i.e., i and j), Hardy uses these transi-
tion probabilities to determine the unconditional probability ¼i
of being in state i at any point in time:

¼i =
pj,i

pi,j +pj,i
, ¼j = 1¡¼i: (2.9)

Actuarial Models

Redington [34] pioneered the work in modeling insurers. This
early work introduced the concept of immunization against in-
terest rate risk and introduced the “funnel of doubt” terminology
to convey uncertainty in outcomes. Modern approaches to mod-
eling (including this research) focus first on assumptions of the

4Ahlgrim and D’Arcy [1] extend this regime-switching approach to international equities.
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external economic and financial environment before incorporat-
ing the impact of these variables on the operations of the insurer.

Wilkie’s [44] model proposes inflation as the independent
variable, using a first-order autoregressive model to simulate in-
flation. Wilkie links the realization of inflation with other vari-
ables using a cascade approach. Wilkie’s original model [44]
includes (1) dividends, (2) dividend yields, and (3) interest rates.

Wilkie [45] updates his earlier work by expanding on the
structural form of the processes used to represent key variables
in his “stochastic investment model.” The paper includes several
appendices that fully develop the time-series tools used through-
out the presentation, including cointegration, simultaneity, vector
autoregression (VAR), autoregressive conditional heteroskedas-
ticity (ARCH), and forecasting. Wilkie [45] also estimates pa-
rameters for each equation of the model by looking at data from
1923 through 1994 and performs tests on competing models for
fit. As in the 1986 model, Wilkie’s updated model simulates in-
flation as an autoregressive process that drives all of the other
economic variables, including dividend yields, long-term inter-
est rates, short-term interest rates, real estate returns, wages, and
foreign exchange rates. One shortfall of the Wilkie model is the
inconsistent relationships generated among inflation and short-
term vs. long-term interest rates. In addition, the equity returns
are based on an autoregressive process that leads to a distribution
of returns that is much more compact than history indicates.

Hibbert, Mowbray, and Turnbull [24] describe a model us-
ing modern financial technology that generates values for the
term structure of interest rates (both real and nominal interest
rates), inflation, equity returns, and dividend payouts. They use
a two-factor model for both interest rates and inflation, a regime-
switching model for equities, and a one-factor autoregressive
dividend yield model. The paper discusses issues related to pa-
rameter selection and also illustrates a simulation under alternate
parameters, comparing results with the Wilkie model.
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Dynamic financial analysis (DFA) has become the label under
which these financial models are combined with an insurer’s
operations when performing a variety of applications including
pricing, reserve adequacy, and cash flow testing. D’Arcy et al.
[15, 16] walk through the development of a public-access DFA
model and illustrate the use of the model in a case study.

3. DESCRIPTIONS OF THE FINANCIAL SCENARIO GENERATOR
AND DATA

In this section, detailed descriptions are provided for each
of the economic time series included in our model. Embedded
in these descriptions are references to the sources of historical
time-series data used to select the parameters of the model.

Inflation

Inflation (denoted by q) is assumed to follow an Ornstein-
Uhlenbeck process5 of the form (in continuous time):

dqt = ·q(¹q¡ qt)dt+¾qdBq: (3.1)

The simulation model samples the discrete form equivalent of
this process as

¢qt = qt+1¡ qt = ·q(¹q¡ qt)¢t+ "q¾q
p
¢t

qt+1 = qt+·q(¹q¡ qt)¢t+ "q¾q
p
¢t

= ·q¢t ¢¹q+(1¡·q¢t) ¢ qt+ "q¾q
p
¢t:

(3.2)

From this last equation, we can see that the expected level of
future inflation is a weighted average of the most recent value
of inflation (qt) and a mean reversion level of inflation, ¹q. The
speed of reversion is determined by the parameter ·q. In the
continuous model, mean reversion can be seen by considering
the first term on the right-hand side of Formula (3.1) (which is
called the drift of the process). If the current level of inflation qt is

5The Vasicek process discussed in Section 2 is also an Ornstein-Uhlenbeck process.
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above the mean reversion level, the first term is negative. There-
fore, Formula (3.1) predicts that the expected change in inflation
will be negative; that is, inflation is expected to fall. The second
term on the right-hand side of Formula (3.1) represents the un-
certainty in the process. The change in Brownian motion (dBt)
can be likened to a draw from a standardized normal random
variable (represented by "q in the discrete form of the model).
The uncertainty is scaled by the parameter ¾q, which affects the
magnitude of the volatility associated with the inflation process.

We can rearrange the last equation above to show that the
Orstein-Uhlenbeck process is a continuous time version of a first-
order autoregressive process:

qt+1¡¹q = ¹q·q¢t¡¹q+(1¡·q¢t) ¢ qt+ "q¾q
p
¢t

= (1¡·q¢t) ¢ qt¡ (1¡·q¢t) ¢¹q+ "q¾q
p
¢t

= (1¡·q¢t) ¢ (qt¡¹q)+ "q¾q
p
¢t: (3.3)

Using the last equation in (3.2), we can estimate the param-
eters of the inflation model using the following time-series re-
gression:

qt+1 = ®+¯qt+ "
0
qt: (3.4)

Note that we have not run the regression using the change
in inflation as the dependent variable since this would not al-
low us to simultaneously derive the mean reversion speed (·q)
and the mean reversion level (¹q). To derive the parameters of
the inflation process, we transform the regression coefficients in
(3.4):

¯ = 1¡·q¢t, ·q =
1¡¯
¢t

(3.5)

®= ·q¹q¢t =
1¡¯
¢t

¹q¢t, ¹q =
®

1¡¯ : (3.6)

We gathered inflation data from the Consumer Price In-
dex (CPI) data collected by the Bureau of Labor statistics
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(http://www.bls.gov) and ran several regressions of this type to
estimate ·q and ¹q. One specific concern of this data was that in-
dividual monthly CPI levels might contain self-correcting errors
that would bias the regression coefficients. For example, if the
CPI of September 2004 was overstated and then corrected in the
following month, then inflation in September would temporarily
appear “high” while the subsequent inference of monthly infla-
tion would appear “low.” If the time series of CPI contained
any errors of this type, the resulting mean reversion strength and
volatility parameters may be overstated. Given the noisy fluctu-
ations in monthly data, we selected the parameters for the infla-
tion process by looking at annual regressions. By calculating the
change in CPI over the course of a year, the inflation rate would
appear less volatile.

The often-cited time series of CPI uses a base period (i.e.,
resets the index value at 100) between the years 1982 and 1984.
Given the fact that the CPI level is reported only to the first deci-
mal place, using the current base does not lend itself to capturing
minor changes in inflation in the first half of the 20th century; a
small change in CPI may lead to large swings in inflation when
the level of the index is low. The only other publicly available
series reported on the old base level (1967 = 100) is the one that
is not seasonally adjusted, U.S. city averages, all items.6

The annual rate of inflation was measured as

qt = ln
CPIt
CPIt¡1

, (3.7)

where CPIt is the reported index value for year t and CPIt¡1 is
the prior year’s reported index value of the same month. We ran
two annual regressions: (1) all available data and (2) the years
after World War II.

6Often in economic data, seasonal adjustments are required to remove persistent cyclical
factors that may affect raw (unadjusted) values. Examples of seasonal factors that may
have an impact on CPI include effects from climatic changes, holidays, and production
cycles.
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Time Period ·q ¹q ¾q

1913—2001 0.37 3.3% 4.0%
1946—2001 0.47 4.8% 3.0%

We selected the default mean reversion speed (·q) to be 0.4
and the mean reversion level (¹q) to be 4.8% to capture the post-
war economic period. Although it might appear that the speed
of mean reversion over the second half of the 20th century has
increased, it should be noted that the standard error of the es-
timate of ·q is higher (which undoubtedly is due to fewer data
points in the shorter period).

Instead of being concerned with the annualized, instantaneous
level of inflation, bond investors are more concerned with the ex-
pected level of inflation over the life of their investment. Given
the existing level of inflation (qt) and the parameters of the as-
sumed process in Formula (3.1), we can derive expectations of
future inflation over various horizons. Our process for inflation
follows the same Ornstein-Uhlenbeck process as in Vasicek [43],
so we can develop a “term structure” of inflation analogous to
Formula (2.3). This term structure posits an expected inflation
rate over various horizons. A term structure of inflation is needed
to generate nominal interest rates, since investors are concerned
about not only the time value of money, but also the erosion of
purchasing power expected over the life of their investment.

Real Interest Rates

To derive real interest rates, we selected a simple case of the
two-factor Hull-White model (Formula (2.8)). In this model, the
short-term rate (denoted by r) reverts to a long-term rate (denoted
by l) that is itself stochastic. The long rate reverts to an average
mean reversion level ¹r

drt = ·r(lt¡ rt)dt+¾rdBr,
dlt = ·l(¹r¡ lt)dt+¾ldBl:

(3.8)
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In order to estimate the parameters of the model, we look at
the discrete analog of the model:

¢rt = ·r(lt¡ rt)¢t+¾r"rt
p
¢t,

¢lt = ·l(¹r¡ lt)¢t+¾l"lt
p
¢t:

(3.9)

rt+1¡ rt = ·r(lt¡ rt)¢t+¾r"rt
p
¢t

= (·rlt¡·rrt)¢t+¾r"rt
p
¢t,

lt+1¡ lt = ·l(¹r¡ lt)¢t+¾l"lt
p
¢t

= (·l¹r¡·llt)¢t+¾l"lt
p
¢t:

(3.10)

rt+1 = rt+(·rlt¡·rrt)¢t+¾r"rt
p
¢t

= ·r¢t ¢ lt+(1¡·r¢t) ¢ rt+¾r"rt
p
¢t,

lt+1 = lt+(·l¹r¡·llt)¢t+¾l"lt
p
¢t

= ·l¢t ¢¹r+(1¡·l¢t) ¢ lt+¾l"lt
p
¢t:

(3.11)

From these equations, we can see that the short rate is again
a weighted average of the current levels of rt and the mean re-
version factor lt. The mean reversion factor is itself a weighted
average of its long-term mean (¹r) and its current value (lt).

Hibbert, Mowbray, and Turnbull [24] (hereafter HMT) also
use this process for real interest rates. They derive closed-
form solutions for bond prices (and therefore yields), which
are slightly more complicated than the one-factor Ornstein-
Uhlenbeck process for inflation:

Pr(t,T) = Ar(t,T)e¡rtB1(t,T)¡ltB2(t,T) (3.12)

where rt and lt are the values for the short and long real interest
rates and Ar, B1, and B2 are functions of underlying parameters
in the two-factor Hull-White specification for real interest rates.

Estimating the parameters in Formula (3.11) is a difficult pro-
cedure since real interest rates are not directly observable in the
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market. We compute ex post real interest rates based on the dif-
ference between nominal rates observed in the market less the
monthly (annualized) inflation rate. We use the three-month Con-
stant Maturity Treasury (CMT) as a proxy for the instantaneous
short rate and the 10-year CMT yield as a proxy for the long
rate. (We also looked at longer Treasury yields as a proxy for the
long rate. Results were not sensitive to the choice of maturity.)
Nominal interest rates are from the Federal Reserve’s historical
database. (See http://www.federalreserve.gov/releases/.)

There are several issues related to the Federal Reserve’s in-
terest rate data. First, at the long end of the yield curve, there
are significant gaps in many of the time series. For example,
the 20-year CMT was discontinued in 1987; yields on 20-year
securities after 1987 would have to be interpolated from other
yields. Also, the future of 30-year rate data is uncertain, given
the decision of the Treasury to stop issuing 30-year bonds (in
fact, the Fed stops reporting 30-year CMT data in early 2002).
At the short end of the yield curve, there are several choices
for a proxy of the short rate. Ideally, one would want an inter-
est rate that most closely resembles a default-free instantaneous
rate. While the one-month CMT is reported back only to 2001,
the three-month rate is available beginning in 1982. While we
could have reverted to a private, proprietary source of data to
create a longer time series, we restricted ourselves to only pub-
licly available data sources that would be available to any user
of the model.

Based on Formula (3.11), we use the following regressions
on monthly data from 1982 to 2001:

rt+1 = ®1lt+®2rt+ "
0
rt,

lt+1 = ¯1 +¯2lt+ "
0
lt:

(3.13)

Traditional ordinary least squares (OLS) regressions are not
possible given the dependence of the short-rate process on the
long rate. To estimate these simultaneous equations, we use two-
stage least squares estimation. In order to estimate the short-rate
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equation in stage 2, we first obtain fitted estimates for the long
rate l̂t, based on the parameter estimates from stage 1:

Stage 1: lt+1 = ¯1 +¯2lt+ "
0
lt,

Stage 2: rt+1 = ®1 l̂t+®2rt+ "
0
rt:

(3.14)

The resulting parameters were generated from the regression re-
sults.

Real Interest Rate Process Estimated from 1982

to 2001

·r ¹r ¾r ·l ¾l

6.1 2.8% 10.0% 5.1 10.0%

These parameters indicate a very high level of volatility that is
tempered by strong levels of mean reversion. See the discussion
of the nominal interest rates below for the parameters that are
used in the simulation illustration in section five.

Nominal Interest Rates

Fisher [20] provides a thorough presentation of the interaction
of real interest rates and inflation and their effects on nominal
interest rates. He argues that nominal interest rates compensate
investors not only for the time value of money but also for the
erosion of purchasing power that results from inflation. In the
model presented here, the underlying movements in inflation and
real interest rates generate the process for nominal interest rates.
If bonds are priced using expectations of inflation and real in-
terest rates until the bond’s maturity, then nominal interest rates
are implied by combining the term structure of inflation and the
term structure of real interest rates. Therefore,

Pi(t,T) = Pr(t,T) ¢Pq(t,T), (3.15)

where i refers to nominal interest rates and the superscripts on
the bond prices correspond to the underlying stochastic variables.
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Unfortunately, the parameters for the real interest rate pro-
cess shown above generate a distribution that severely restricts
the range of potential future nominal interest rates. For example,
using the regression results from Formulas (3.13) and (3.14), the
1st percentile of the distribution for the 20-year nominal rate is
5.9% and the 99th percentile is 8.2%. There are several candi-
dates for problems with real interest rates that may lead to this
seemingly unrealistic distribution of future nominal rates: (1)
the use of ex post real interest rate measures is unsuitable, (2)
because of potential errors in monthly reporting of CPI men-
tioned above, monthly measurements of real interest rates pro-
duce self-correcting errors that exaggerate mean reversion speed,
or (3) the time period used to measure real interest rates is too
short.

As a result, the parameters for real interest rates were altered
to allow nominal interest rates to better reflect historical volatil-
ity. Specifically, mean reversion speed was dramatically reduced.
Given that mean reversion speed and volatility work together to
affect the range of interest rate projections, volatility was also
reduced. The following parameters are used as the “base case”
in the model. These parameters are in line with what was used
in Hull [27].

·r ¹r ¾r ·l ¾l

1.0 2.8% 1.00% 0.1 1.65%

An important consideration in the model is the correlation
between interest rates and inflation. Risa [36] reviews the lit-
erature on the relationship between inflation and interest rates.
Pennacchi [33] finds evidence that the instantaneous real inter-
est rates and expected inflation are significantly negatively cor-
related. Ang and Bekaert [5] develop a regime-switching model
for inflation and real interest rates. They find that inflation is
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negatively correlated with the short-term real interest rate. Fama
[18] examines how one-year spot interest rates can be used to
forecast its components: the one-year inflation rate and the real
return on one-year bonds. It is found that the expected values of
those two components move opposite to one another. As a re-
sult, the financial scenario model includes a negative correlation
between real interest rates and inflation.

Equity Returns

Equity returns are equal to the risk-free nominal interest rate
(q+ r) and a risk premium or excess equity return attributable to
capital appreciation (x):

st = qt+ rt+ xt: (3.16)

In her model, Hardy [22] assumes that stock prices are lognor-
mally distributed under each regime. But while Hardy looks at
total equity returns, including dividends and the underlying com-
pensation from the risk-free rate, we use the excess equity re-
turns from capital appreciation x. To estimate the parameters of
the regime-switching equity return model, we follow the proce-
dure outlined in Hardy [22], maximizing the likelihood function
implied from the regime-switching process.

We estimate the process for the returns of small stocks and
large stocks separately. Numerous web sites are available to
capture the time series of capital appreciation of these indices
(see, for example, http://finance.yahoo.com). The large stocks
are based on the Standard and Poor’s (S&P) 500 (or a sample
chosen to behave similarly for the years prior to the construc-
tion of the S&P 500). The data are available online at a Web
Site generated by Robert Shiller, author of Irrational Exuberance
(http://www.econ.yale.edu/»shiller/data/ie data.htm). The small
stock values are based on Ibbotson’s Stocks, Bonds and Bills [30].
As expected, the risk and return of small stocks appear higher
than large stocks under both regimes. The following parameter
estimates were developed:
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Excess Monthly Returns

Large Stocks (1871—2002) Small Stocks (1926—1999)

Low
Volatility

High
Volatility

Low
Volatility

High
Volatility

Regime Regime Regime Regime

Mean 0.8% ¡1.1% 1.0% 0.3%
Standard Deviation 3.9% 11.3% 5.2% 16.6%

Probability of Switching 1.1% 5.9% 2.4% 10.0%

Note that while the expected return in the high volatility
regime is lower, it is more likely that if the high volatility regime
is ever reached, the equity market will revert back to the low
volatility regime since the probability of switching is higher. The
regime switches are correlated, so if large stocks are in the low
volatility regime, then small stocks are more likely to be in the
low volatility regime as well.

Equity Dividend Yields

Similar to the process used by HMT and Wilkie [44], we as-
sume that the log of the dividend yield follows an autoregressive
process:

d(lnyt) = ·y(¹y ¡ lnyt)dt+¾ydByt: (3.17)

One source of difficulty associated with estimating the div-
idend yield process involves obtaining data. There is no long
time series of dividend yields that is publicly available for eq-
uity indices. To obtain this information, we used a proprietary
source of financial data (Telerate). However, one may be able
to estimate the dividend yield of indices that contained a lim-
ited number of stocks (such as the Dow Jones industrial aver-
age). It should be noted that the process for dividend yields is
clearly time-dependent. Average dividend yields have fallen dra-
matically over the last 50 years given the recognition of double
taxation effects. Recent tax changes that levy lower taxes on div-
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idends may (or may not) reverse the long-term trends of lower
dividends.

Estimation of this process is analogous to the inflation process
described above. The mean reversion speed of the series is not
significantly different from zero. Given the long-term changes in
historical dividend patterns, the log of dividends appears to be a
random walk around its starting value.

Real Estate (Property)

Given that the real estate portfolios of insurers are domi-
nated by commercial properties, we use the National Council
of Real Estate Investment Fiduciaries (NCREIF) pricing index
to capture the quarterly returns on commercial properties (see
http://www.ncreif.com). The NCREIF data are generated from
market appraisals of various property types, including apartment,
industrial, office, and retail. While the use of appraisal data
may only approximate sharp fluctuations in market valuation,
publicly obtainable transaction-based real estate data were not
available.

Using quarterly return data from NCREIF from 1978 to
2001 (http://www.ncreif.com/indices/), we estimated the follow-
ing Ornstein-Uhlenbeck model for real estate:

d(re)t = ·re(¹re¡ (re)t)dt+¾redBre: (3.18)

We estimated two separate models including the levels of infla-
tion. While we expected inflation to provide additional explana-
tory power for real estate returns, the results were not significant.
The following parameters were used to project quarterly real es-
tate returns:

·re ¹re ¾re

1.20 2.3% 1.3%
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Unemployment

There are many plausible ways to link unemployment rates
to other economic variables. One approach to estimating unem-
ployment is based on the well-known Phillips curve. The Phillips
curve illustrates a common inverse relationship between unem-
ployment and inflation. The approach taken by Phillips seems
plausible: As the economy picks up, inflation increases to help
temper the demand-driven economy. At the same time, unem-
ployment falls as firms hire to meet the increasing demand. When
the economy slows down, unemployment rises, and inflationary
pressures subside.

We also include a first-order autoregressive process in the
unemployment process, in addition to the relationship suggested
by the Phillips curve:

dut = ·u(¹u¡ ut)dt+®udqt+¾udBut: (3.19)

It is expected that when inflation increases (dqt > 0), unem-
ployment decreases (i.e., ®u < 0). One may argue that there is
a lag between inflation and unemployment. To keep the model
simple, we did not pursue any distributed lag approach.

The discrete form of the unemployment model is shown as

ut+1 = ut+·u¹u¡·u¢t ¢ ut+®u(qt+1¡ qt)+¾u"ut
p
¢t

= ·u¹u+(1¡·u¢t) ¢ ut+®u(qt+1¡ qt) +¾u"ut
p
¢t:

(3.20)
This suggests the following regression:

ut+1 = ¯1 +¯2ut+¯3(qt+1¡ qt)+¾u"0ut: (3.21)

We use inflation data as described above and retrieve
monthly unemployment data from the Bureau of Labor Statis-
tics (http://www.bls.gov). Using data from 1948 to 2001 and
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transforming the regression coefficients as in Formulas (3.5) and
(3.6), we get

dut = 0:13 ¢ (6:1%¡ ut)dt¡ 0:72dqt+0:76% ¢ dBut:
(3.22)

Comments on Selecting Parameters of the Model

Some have argued that the performance of any model should
be measured by comparing projected results against history. It
is not our intent to perfectly match the distribution of histori-
cal values for interest rates, equity returns, and so on. To do so
would naively predict a future based on random draws from the
past. If perfect fit is desired, history already provides the set of
economic scenarios that may be used for actuarial applications
and the development of an integrated financial scenario model is
completely unnecessary. Instead, the model presented here pro-
vides an alternative: an integrated approach to creating alternative
scenarios that are tractable and realistic. While history is used to
gain important insights into the characteristics of relevant vari-
ables, it would be impossible to build tractable models that yield
a perfect fit to historical distributions. In general, we believe
our theoretical framework provides a parsimonious approach to
closed-form solutions of particular variables of interest.

4. USING THE FINANCIAL SCENARIO MODEL

The financial scenario model is an Excel spreadsheet that
benefits from the use of a simulation software package called
@RISK, available through Palisade Corporation (http://www.
palisade.com). @RISK leverages the simplicity of spreadsheets
and integrates powerful analysis tools that are used to help ran-
domly select future scenarios and examine risk in a stochastic
financial environment. The software package allows users to de-
fine uncertain variables as a distribution, take numerous draws
from these inputs, and then capture each iteration’s impact on a
user-defined output variable of interest, such as profits, sales, or
an insurer’s surplus.
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Excluding Negative Nominal Interest Rates

There has been significant debate over the proper way to deal
with negative nominal interest rates in interest rate models. Some
modelers have set boundary conditions that prevent nominal in-
terest rates from becoming negative. Other modelers have not
been concerned over negative interest rates, either because the
mathematical characteristics of the model are more important
than the practical applications or because the incidence of nega-
tive nominal interest rates is too infrequent to require significant
attention.

While it depends on the specific application, the occurrence
of negative nominal interest rates can be problematic. Econom-
ically, certain variables have natural limits. For example, while
theory may not reject negative interest rates, reality suggests that
it is unlikely that investors would ever accept negative nominal
interest rates when lending money. Therefore, the model provides
users with two options:

² Placing lower bounds on the levels of inflation and real interest
rates. The model simulates these processes as if there were no
lower bound, but then it chooses the maximum of the lower
bound and the simulated value.

² Eliminating the potential for negative nominal interest rates. In
this case, the model uses the standard inflation simulation, but
effectively places a lower bound on the real interest rate such
that the resulting nominal interest rate is non-negative.

User-Defined Scenarios

The financial scenario model provides for stochastic simula-
tion of future economic variables, based upon user-specified pa-
rameters for the assumed processes. However, there are instances
where it may be desirable to allow the user to input specific sce-
narios for the future values of certain processes. For example,
regulations may require sensitivity testing based on specific eq-
uity return patterns over the next decade. The financial scenario
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model allows users to specify scenarios for three economic vari-
ables in the model; nominal interest rates, inflation, and equity
returns. For example, with respect to nominal interest rates, each
of the “New York 7”7 regulatory interest rate tests are prepro-
grammed into the model and may be selected by the user; the
user may also specify a scenario of her or his own creation for
any of the three economic processes.

Employing the Financial Scenario Model

It is expected that the financial scenario model will be imple-
mented in a variety of different analyses. The model can be used
as the underlying engine for creating many financial scenarios
and can be tailored for a user’s specific purposes. For example,
Ahlgrim and D’Arcy [1] use the model as the underlying asset
return generator to assess the risk inherent in pension obligation
bonds issued by the state of Illinois. In this case, the model was
extended to include international equities and to compute yields
on coupon bonds from the nominal interest rates.

5. ILLUSTRATIVE SIMULATION RESULTS

Regardless of the mathematical sophistication of the variables
incorporated in a model, the accuracy of the procedures used to
determine the parameters, and the timeliness of the values on
which the calibration is based, the most important test of the va-
lidity of any model is the reasonability of the results. This section
will examine the results of a representative run of the financial
scenario model and compare the output with historical values. It
should be reiterated that the goal of choosing the parameters for
the model was not to replicate history. Correspondingly, we do
not include measures of fit when comparing the sample results

7The “New York 7” are seven different interest rate scenarios originally specified by NY
Regulation 126 for use in asset adequacy testing and actuarial opinions for life insurers.
Each scenario is based on deviations from the current term structure.
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to history. This section uses history to review results of an illus-
trative simulation to subjectively assess the model’s plausibility.

A simulation is performed generating 5,000 iterations (sample
paths) using the base parameters described in Section 3, disal-
lowing negative nominal interest rates.8 The results are presented
in several different ways (these results are discussed in the fol-
lowing section).

² Table 1 provides key statistics for key variables in the simula-
tion. Mean values of the output are shown for the first and last
(50th) projection years. The 1st and 99th percentiles of the dis-
tribution of results are indicated for an intermediate projection
year (year 10).

² Tables 2 and 3 show the correlation matrices, comparing the
simulation correlations (Table 2) and historical correlations
(Table 3).

² Some of the Figures (1—6, 8—10, 14—15, 18, 20, and 22) show
“funnel of doubt” plots, indicating the level of uncertainty sur-
rounding each output variable over time.9 The x-axis indicates
the time period and the y-axis indicates the value(s) assumed
by the variable of interest. The “funnel of doubt” graphs show
the mean value for the 5,000 iterations (solid line), the 25th
and 75th percentile values (dark shaded section), and the 1st
and 99th percentile values (lighter shaded section). Expanding
funnels indicate that the values become more uncertain over
the projection period. Narrowing funnels indicate that the vari-
ables become more predictable when making long-term fore-
casts.

² Figures 7, 11—13, 16—17, 19, 21, and 23 are histograms, illus-
trating the full probability distribution of the values for a par-

8The output of this illustration has been saved in a file and is posted at http://casact.org/
research/econ. The American Academy of Actuaries uses a similar prepackaged scenario
approach in looking at C-3 risk of life insurers.
9These “funnel of doubt” graphs are referred to as “summary graphs” in @RISK.
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TABLE 1

Key Variables from Financial Scenario Model Run

Date 7/17/2004
Iterations 5,000
Parameters Base

Nominal Interest Rates Not Allowed to Be Negative

Mean Range at Year 10 (25)
First Year (16) Last (30) 1% 99%

Output Interest Rates
Real Interest Rates
1-month (B) 0.009 0.030 ¡0:053 0.100
1-year (D) 0.009 0.029 ¡0:051 0.097
10-year (G) 0.011 0.026 ¡0:033 0.076

Inflation Rate
1-month (J) 0.023 0.048 ¡0:053 0.145
1-year (L) 0.027 0.048 ¡0:037 0.129
10-year (O) 0.039 0.045 0.020 0.069

Nominal Interest Rates
1-month (R) 0.032 0.078 0.000 0.194
1-year (T) 0.036 0.077 0.000 0.183
10-year (W) 0.051 0.071 0.006 0.127

Other Output
Large Stocks (B) 0.087 0.116 ¡0:159 0.296
Small Stocks (C) 0.134 0.136 ¡0:159 0.397
Dividend Yield (D) 0.015 0.023 0.006 0.039
Unemployment (E) 0.060 0.061 0.035 0.087
Real Estate (F) 0.081 0.094 0.030 0.161

The letters in the first column indicate the columns, and the numbers in the headings indicate the
rows, of the cells where the values are located in the @RISK output files.

ticular variable at one point in time (a single projection year).
For comparative purposes, the distribution of historical values,
where appropriate, is also plotted in these histograms.

Real Interest Rates

We start by looking at the one-month real interest rate in Ta-
ble 1. The mean value for the first projection month is 0%. By
the end of the 50-year projection period, this value has moved
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to 3.0%. This result is entirely in line with the specifications of
the model. The one-month value would be closely aligned with
the initial short-term real interest rate (rinit1). To estimate this
rate, we backed out an estimate of inflation from the observed
risk-free, short-term interest rate. During the summer of 2004,
the resulting value of the real interest rate was near 0%. Un-
der the projections, the initial value would begin to revert to the
long-term mean after one month. The mean of the final value in
the results, after 50 years, is around the mean reversion level for
the long rate (rm2), which is 2.8%.

To provide an idea about the range of values for the one-
month real interest rate, columns 3 and 4 of Table 1 display the
1st and 99th percentiles of the distribution in the tenth projection
year. In 1 percent of the iterations, the one-month real interest
rate, on an annualized basis, is less than ¡5:3%. On first obser-
vation, this result seems nonsensical. Why would an investor be
willing to lose money, in real terms, by investing at a negative
real interest rate? Instead, an investor would just hold cash rather
than lose 5.3% a year, after adjusting for inflation. However, this
may not be as unrealistic as it seems. First, this result is the annu-
alized rate as opposed to the one-month real rate of only ¡0:4%.
Second, this return may represent the best return available. If in-
flation is high, then holding cash would generate an even larger
loss. In times of high inflation, the best real return an investor
can receive may be negative. Finally, real interest rates are not
observable. The true real interest rate is the return required, over
and above expected inflation, for the specific interval. However,
the precise expected inflation rate is unobservable in the financial
markets.

In practice, two approaches have been used for estimating the
expected inflation rate. First, one can use economists’ forecasts
of inflation. Economists, though, do not represent investors. By
training and occupation, the economists included in the surveys
are not at all representative of the general financial market par-
ticipants. Investors may consider some economists’ forecasts in
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making their own determination of what to expect regarding fu-
ture economic conditions, but many other factors, including their
own experience, the counsel of other participants, and recent his-
torical experience, are used to determine their inflation expecta-
tions. There is no survey of representative market participants to
determine what they truly anticipate for the inflation rate.

The second approach has been to examine actual inflation
rates that have occurred, and then subtract those from prior in-
terest rates (ex post analysis). This approach is also flawed for
several reasons. First, there is no reason to believe that the mar-
ket is prescient regarding inflation expectations. Especially in the
case of an unexpected shock to the system, such as oil price in-
creases during the 1970s, the market does not know what will
happen in the future. It cannot even be assumed that errors in
forecasting will cancel out over time, since the market could be
biased to underestimate or overestimate future inflation. Second,
actual inflation cannot be accurately measured. The Consumer
Price Index and other values commonly used to determine in-
flation are widely recognized as being imperfect. These indices
track the prices of specific goods and services that are not com-
pletely representative of the entire economy. These indices can-
not recognize the substitution effect in which consumers con-
tinually engage, such as buying more chicken than usual when
beef prices rise, or driving less when gasoline prices soar. Due to
these problems, it is not possible to claim that real interest rates
cannot be negative, so a small negative value over a short time
interval does not necessarily represent a problem.

On the opposite side of the distribution, the 99th percentile
value for one-month real interest rates after 10 years is 10%. The
same limitations described above also apply to this value.

Going further out on the term structure, the mean value of
the one-year real interest rate after the first projection year is
0.9%. This reflects reversion from the initial value of 0% to
the long-term mean of 2.8%. The mean of the last value, after
50 years, which is in line with these parameters, is 2.9%. The
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1st—99th percentile range after 10 years is ¡5:1% to +9:7%,
reflecting a similar distribution for the full year as was observed
for the monthly values. For the 10-year real interest rates, the
mean after the first projection month is 1.1%, and in the last
projection month, the mean is 2.6%, reflecting the strength of
the mean reversion over this long a period of time. The 1st—99th
percentile range after 10 years is ¡3:3% to +7:6%, reflecting the
more compact distribution for long-term (10-year) real interest
rates, compared to shorter time horizons.

Figures 1 through 3 depict the funnel of doubt graphs of
one-month, one-year and 10-year real interest rates. All reflect
the same shape, although the scaling differs. The “kink” in the
early portion of the graph occurs because the first 12 points rep-
resent monthly intervals, which have small changes in values, and
the latter steps are larger intervals, which lead to correspondingly
larger changes. The level of uncertainty increases over the entire
50-year time frame, but the shifts toward the end of the simula-
tion period are less pronounced. This shape occurs because of the
structure and parameterization of the model. The uncertainty in-
herent in the real interest rate process generates the initial spread
of the distribution, but the impact of mean reversion offsets this
tendency, keeping the “funnel of doubt” from expanding further.

Inflation

The next variable of interest is the inflation rate. As shown in
Table 1, the mean value of the (annualized) one-month inflation
rate is 2.3% after the first projection year and 4.8% after 50
years. Note that the initial inflation rate (qinit1) is set at 1.0%
and 4.8% is the long-term mean (qm2). The 1st—99th percentile
range after 10 years is ¡5:3% to +14:5%, which is wider than the
distribution for real interest rates since the mean reversion speed
for inflation is lower (0.4 compared to 1.0). Negative inflation
(or deflation) is not objectionable since small negative monthly
values have occurred in recent years. Also, monthly inflation
values in excess of 14.5% did occur during the 1970s.
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FIGURE 1

Distribution of 1-Month Real Interest Rate Projection

Period: 1 Month to 50 Years

FIGURE 2

Distribution of 1-Year Real Interest Rate Projection

Period: 1 Month to 50 Years
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FIGURE 3

Distribution of 10-Year Real Interest Rate Projection

Period: 1 Month to 50 Years

The mean one-year inflation rate begins at 1.6% and moves
to 4.8% by the end of 50 years, both in line with the model pa-
rameters. The 1st—99th percentile range of the one-year inflation
rate after 10 years is ¡3:7% to +12:9%. Although the United
States has not experienced deflation over an entire year since
1954, it seems quite appropriate to assign positive probability to
this event.

From the description in Section 3, recall that the 10-year in-
flation rate is derived from the expected path of inflation over
the next ten years. Given the assumption of mean reversion of
inflation, it is expected that there is less uncertainty inherent in
predicting longer-term inflation rates. The simulation confirms
this–the mean 10-year inflation rate begins at 3.6% and moves
to 4.5% by the end of 50 years, closer to the long-term mean
parameter of 4.8%. Also, the 1st—99th percentile range of the
10-year inflation rate after 10 years is 2.0% to 6.9%, demon-
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strating that, over longer time horizons, the (geometric) average
rate of inflation is less variable.

The funnel of doubt graphs of one-month, one-year, and 10-
year inflation rates are shown in Figures 4 through 6. The un-
certainty of the 10-year inflation rate is much smaller than it is
for one-month and one-year rates, reflecting the strength of the
mean reversion term for this single-factor model. Although infla-
tion varies widely over shorter time horizons, in this model the
long-term inflation rate is much less variable. This pattern can be
altered by increasing the volatility of the inflation process (¾q)
or reducing the mean reversion speed (·q).

The histograms for the one-year projected inflation rates and
of actual one-year inflation rates from 1913 through 2003 (from
January to January) are shown on Figure 7. It is readily appar-
ent that the modeled inflation rates generate a nice bell-shaped
curve, whereas the actual inflation rates are much less smooth.
One reason for this difference is that the model results are based
on 5,000 iterations, while the actual data contain only 90 data
points. More importantly, though, the projected values are de-
rived from a concise mathematical expression that will produce
a smooth distribution of results, but the actual inflation rates
depend on the interactions of an almost unlimited number of
variables. The key question is whether the model adequately ex-
presses the probability distribution of potential inflation rates.
The actual inflation rates are more leptokurtic (fatter in the tails
than a normal distribution) than the modeled values, but they re-
flect the central portion of the graph fairly well. All of the large
negative inflation rates occurred prior to 1950. Many of the pos-
itive outliers are from years prior to 1980, when monetary policy
was less focused on controlling inflation.

Nominal Interest Rates

Nominal interest rates reflect the combination of the real inter-
est rate and inflation. The mean values for one-month nominal
interest rates were 1.1% for the first month and 7.8% for the
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FIGURE 4

Distribution of 1-Month Inflation Rate Projection

Period: 1 Month to 50 Years

FIGURE 5

Distribution of 1-Year Inflation Rate Projection

Period: 1 Month to 50 Years
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FIGURE 6

Distribution of 10-Year Inflation Rate Projection

Period: 1 Month to 50 Years

FIGURE 7

Actual Inflation Rates (1913—2003) vs. Model Values
(5,000 Iterations)
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50th year. The initial nominal interest rate indicated in the model
(1.1%) is in line with the user-defined starting level (June 2004)
of 1.1%. The 1st—99th percentile range for the one-month nom-
inal interest rate after 10 years is 0.0% to 19.4%.

The mean one-year nominal interest begins at 1.9% and moves
to 7.7% by the end of 50 years. The initial value is again in line
with the current level of interest rates. The 1st—99th percentile
range of the one-year nominal interest rate after 10 years is 0.0%
to 18.3%.

The mean 10-year nominal interest begins at 4.6% and moves
to 7.1% by the end of 50 years. The initial value is in line with
the current level of interest rates for long-term bonds, given the
June 2004 10-year U.S. Treasury yield of 4.4%. The 1st—99th
percentile range of the one-year nominal interest rate after 10
years is 0.6% to 12.7%.

The funnel of doubt graphs of one-month, one-year, and 10-
year nominal interest rates, Figures 8 through 10, are similar
to the real interest rate and inflation graphs, but have a barrier
at zero since the restriction that nominal interest rates not be
negative is applied in this case. This restriction affects the 1st
percentile line on Figures 8 and 9, but not the 25th percentile
line. The effect of the restriction is not apparent for the 10-year
nominal interest rates. The level of uncertainty increases over
the 50-year time period used in the forecast. Since the nominal
interest rate is determined by adding the real interest rate to the
inflation rate, the increasing uncertainty reflected by real inter-
est rates and the inflation rate generates the same behavior for
nominal interest rates.

The histograms for the three-month, one-year, and 10-year
model nominal interest rates and the actual three-month, one-
year, and 10-year nominal interest rates are displayed in Figures
11 through 13. (The one-month values are not consistently avail-
able for historical data over a long enough time period to be re-
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FIGURE 8

Distribution of 1-Month Nominal Interest Rate

Projection Period: 1 Month to 50 Years

FIGURE 9

Distribution of 1-Year Nominal Interest Rate

Projection Period: 1 Month to 50 Years
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FIGURE 10

Distribution of 10-Year Nominal Interest Rate

Projection Period: 1 Month to 50 Years

FIGURE 11

Actual 3-Month Nominal Interest Rates (January

1934—May 2004) vs. Model Values (5,000 Iterations)
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FIGURE 12

Actual 1-Year Nominal Interest Rates (April

1953—May 2004) vs. Model Values (5,000 Iterations)

FIGURE 13

Actual 10-Year Nominal Interest Rates (April

1954—May 2004) vs. Model Values (5,000 Iterations)
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levant. Therefore, three-month interest rates are used for in Fig-
ure 11.) Figures 11 through 13 show the distribution of nominal
interest rates one year into the projection period.

Significant differences exist between the modeled and histor-
ical distributions for interest rates. In Figure 11, the modeled
three-month nominal interest rates are 0.0% in almost 20% of
the cases, whereas actual three-month interest rates have never
been below 0.5 percent (the column reflecting the 1% bin repre-
sents values between 0.5 and 1.5 percent). However, combining
the model values for 0 and 1 percent indicates a total in line with
actual values. In addition, the model distributions are smoother
than the actual values, which is natural since the model results
are based on 5,000 iterations, whereas the actual results, even
though derived from 845 (monthly) or 614 (one- and 10-year)
observations, are not at nearly as smooth, indicating that the sys-
tem that generates interest rates is not as straightforward as the
model.

At first glance, modeled interest rates are generally lower than
the historical rates. It is important to note that the modeled inter-
est rates are influenced by the starting values for the initial real
interest rate (rinit1), the initial mean reversion level for the real
interest rate (rinit2), and the initial inflation level (qinit1), which
are lower than historical averages.

The comparison between the 10-year modeled rates and the
10-year historical rates, Figure 13, indicates a few differences.
The modeled interest rates are more compact than actual 10-year
interest rates have been. If the user feels that the variance of the
model values should be closer to the historical distribution, then
the strength of the mean reversion factor in the interest rate model
can be reduced, but this would increase the incidence of negative
interest rates unless the user selects to avoid negative nominal
interest rates. The other significant difference is the skewness.
The historical rates exhibit positive skewness, but the modeled
rates have a slight negative skewness. Finally, the model rates
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are lower than historical values, again due to starting with the
current low levels of interest rates.

Stock Returns and Dividends

The values for large and small stock returns indicate, as ex-
pected, higher average returns and greater variability for small
stocks than for large stocks. As shown in Table 1, the mean of
the initial values (after one year) of large stocks is 8.7% and
of small stocks is 13.4%. The mean of the large stock values
increases to 11.6% at the end of 50 years and for small stocks
increases to 13.6%. The 1st—99th percentile range after 10 years
is ¡15:9% to 29.6% for large stocks and ¡15:9% to 39.7% for
small stocks.

The funnel of doubt graphs (Figures 14 and 15) indicate an
inverted funnel, compared to the displays of interest rates and
inflation. This means that uncertainty reduces over time and is
due to the way the values are calculated. The projected values
shown are geometric average returns for large and small stocks
over the projection period. For example, the one-year values are
returns over a one-year period, the 10-year values are average
annual returns over a 10-year period, and so on. Thus, Figures
14 and 15 show that the average annual returns expected over
a 50-year period are much more predictable than those for a
one-year period.

Histograms of the one-year returns for the large (Figure 16)
and small (Figure 17) stock returns as generated by the model
are displayed, along with actual one-year returns for 500 large
stocks for 1871 through 2004 and small stock returns over the
period 1926 through 2003. The graphs for large stocks (Figure
16) are relatively similar, although, as would be expected, the
results of the 5,000 iterations of the model produce a smoother
distribution. The histograms for small stocks (Figure 17) show
that historical values have been more variable, with a notable
outlier at 190% return, which represents a single observation.
The model values also have single observations around that level,
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FIGURE 14

Distribution of Compound Average Large Stock

Returns Projection Period: 1 Year to 50 Years

FIGURE 15

Distribution of Compound Average Small Stock

Returns Projection Period: 1 Year to 50 Years
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FIGURE 16

Actual Large Stock Returns (1871—2004) vs. Model
Values (5,000 Iterations)

FIGURE 17

Actual Small Stock Returns (1926—2003) vs. Model
Values (5,000 Iterations)
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but no one bin produces as large a proportion of the outcomes as
the one occurrence out of 78 years of the historical experience
to be as obvious on the graph.

The mean dividend yield for equities is 1.5% for the first
year and 2.3% for the 50th-year values. The 1st—99th percentile
range after 10 years is 0.6% to 3.9%. The funnel of doubt graph
of the dividend yield (Figure 18) increases over time as inter-
est rates and inflation do. Figure 19 displays the histogram of
the modeled dividend yields and the actual dividend yields over
the period 1871 through 2003, based on data available from
Robert Shiller [39]. Historically, dividend yields have varied
more widely than the model predicts and have been centered at
a higher level. This may be a result, in part, of a structural shift
in the dividend payment history in the United States. Bernstein
[6] notes that prior to the late 1950s, stock dividends tended
to be higher than interest rates on corporate bonds. This was
based on the understanding that stocks were riskier than bonds
and therefore should pay a higher return. Since 1959 though,
dividend yields have tended to be lower than interest rates, rang-
ing from 1.1% to 5.4%, which is in line with the simulation
results.

Unemployment and Real Estate Returns

The mean value of the unemployment rate, as shown in Ta-
ble 1, begins at 6.0% and increases to 6.1% (which is the long-
run mean value) for the end of 50 years. The 1st—99th percentile
range after 10 years is 3.5% to 8.7%. Figure 20 shows that the
funnel of doubt graph neither increases over time (as interest
rates and inflation do) nor decreases (as stock returns do). The
histogram of modeled unemployment rates along with the dis-
tribution of historical values over the period from 1948 through
2003 are shown in Figure 21. By selecting only a single unem-
ployment rate from each year (January), the frequency of the his-
torical values corresponds with that of the model values, which
are the unemployment rates indicated after the first year of the
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FIGURE 18

Distribution of Dividend Yield Projection Period:

1 Year to 50 Years

FIGURE 19

Actual Dividend Yields on S&P 500 (1871—2003) vs.
Model Values (5,000 Iterations)
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FIGURE 20

Distribution of Unemployment Rate Projection Period:

1 Year to 50 Years

FIGURE 21

Actual Unemployment Rate (1948—2003) vs. Model
Values (5,000 Iterations)
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FIGURE 22

Distribution of Compound Average Real Estate

Returns Projection Period: 1 Year to 50 Years

model run. Although the actual unemployment rates have varied
a bit more than the model results do, the distributions are quite
similar.

Real estate returns are the final variable included in the fi-
nancial scenario model. From Table 1, the mean value of real
estate returns is 8.1% in the first year and 9.4% after 50 years.
The 1st—99th percentile range after 10 years is 3.0% to 16.1%.
The funnel of doubt graph (Figure 22) is similar to the re-
turns on stocks, for the same reasons. The histograms of mod-
eled results and the historical returns based on the National In-
dex from the National Council of Real Estate Investment Fidu-
ciaries for 1978 through 2003 are shown on Figure 23. The
model values show a smooth distribution centered about the his-
torical returns. Unfortunately, only 26 years of annual returns
are available, so it is difficult to draw any conclusions on the
fit.
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FIGURE 23

Actual Real Estate Returns (1978—2004) vs. Model
Values (5,000 Iterations)

Correlations

Table 2 displays the correlation matrix for all the output
variables at the end of the first projection year (row 16 of
the spreadsheet). Table 3 displays the corresponding matrix
from history over the period from April 1953 through Decem-
ber 2001. Stock data are based on Ibbotson [30] and interest
rates and inflation are from St. Louis Federal Reserve Data
(http://research.stlouisfed.org/fred2/).

Several comments can be made when comparing the two cor-
relation matrices. First, the historical correlation between large
and small stocks is 0.744. The correlation between the model
values of large and small stocks is 0.699, which looks quite rea-
sonable. The correlation between inflation and Treasury bills (T-
bills) has been 0.593 historically. This correlation is also clearly
reflected in the model values, with a correlation of 0.906 be-
tween the one-month inflation rate and the one-month nomi-
nal interest rate, 0.892 between the one-year inflation rate and
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TABLE 3

Historical Correlations (April 1953—December 2001)

Large Small 3-Month 1-Year 10-Year Inflation
Stocks Stocks T-Bills Treasuries Treasuries Rate

Large Stocks 1.000
Small Stocks 0.744 1.000
3-Month T-Bills ¡0:078 ¡0:065 1.000
1-Year Treasuries ¡0:074 ¡0:066 0.991 1.000
10-Year Treasuries ¡0:030 ¡0:025 0.912 0.942 1.000
Inflation Rate ¡0:138 ¡0:100 0.593 0.576 0.478 1.000

the one-year nominal interest rate, and 0.617 between the 10-year
inflation rate and the 10-year nominal interest rate. Since nominal
interest is the sum of the real interest rate and the inflation rate,
and the real interest rate is constrained to be no less than the
negative of the inflation rate, this correlation is built into the
model.

Historically, T-bill rates and stock returns have been nega-
tively correlated (¡0:078 for large stocks and ¡0:065 for small
stocks). In the model, there was a slight positive correlation be-
tween the one-year nominal interest rate and stock returns (0.099
for large stocks and 0.087 for small stocks). Also, the historical
correlation between inflation and stock returns has been nega-
tive (¡0:138 for large stocks and ¡0:100 for small stocks). The
correlations in the model values between the one-year inflation
rate and large stocks and small stocks were 0.089 and 0.076,
respectively.

Alternate Parameters

The base parameters provide one feasible set of values to use
in modeling future economic conditions. These should be viewed
as a starting point in these applications. However, users should
develop an understanding of the impact of the different param-
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eters and then adjust these parameters as necessary to generate
distributions that they feel may be more suitable for a particular
application. For example, from the results shown above, a user
may feel that the default parameters for equity returns, while
consistent with historical experience through 2003, produce very
high equity risk premiums that may not be expected to continue
in the future. When testing long-term insurer solvency, an actuary
might change the regime-switching parameters to look at the
effects of lower stock returns over the next 50 years.

6. CONCLUSION

Historically, actuaries tended to use deterministic calculations
to value financial products. As technology improved, actuaries
began to incorporate different assumptions about insurance and
economic variables that would lead to several distinct scenar-
ios to better measure financial risk. The explosion of computing
power now gives actuaries and other financial analysts tremen-
dous tools for more refined risk analyses. Modern approaches to
financial modeling begin by specifying the underlying economic
and financial environments based on sophisticated mathemati-
cal equations, and then incorporate product-specific features that
are commonly related to those external conditions. This approach
yields a much richer understanding of the risks associated with
financial products.

The financial scenario model and its underlying mathematical
structure presented in this paper provide an integrated framework
for sampling from a wide range of future financial scenarios. The
model produces output values for interest rates, inflation, stock
and real estate returns, dividends, and unemployment. The model
can be incorporated into a variety of insurance applications, in-
cluding dynamic financial analysis, cash flow testing, solvency
testing, and operational planning. It is hoped that this work will
facilitate the use of recent advances in economic and financial
modeling in the actuarial profession.
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WHEN CAN ACCIDENT YEARS BE REGARDED AS
DEVELOPMENT YEARS?

GLEN BARNETT, BEN ZEHNWIRTH AND EUGENE DUBOSSARSKY

Abstract

The chain ladder (volume-weighted average develop-
ment factor) is perhaps the most widely used of the link
ratio (age-to-age development factor) techniques, being
popular among actuaries in many countries. The chain
ladder technique has a number of interesting properties.
We present one such property, which indicates that the
chain ladder doesn’t distinguish between accident years
and development years. While we have not seen a proof
of this property in English language journals, it appears
in Dannenburg, Kaas and Usman [2]. The result is also
discussed in Kaas et al. [3]. We give a simple proof that
the chain ladder possesses this property and discuss its
implications for the chain ladder technique. It becomes
clear that the chain ladder does not capture the structure
of real triangles.

1. INTRODUCTION

Link ratio (loss development factor) methods are widely used
for reserving. The chain ladder technique is one such method ap-
plied to cumulative paid loss (or sometimes case incurred loss).
The development factor is an average of the individual link ra-
tios, weighted by the previous cumulative loss (volume-weighted
average). The chain ladder is normally applied to cumulated
paid loss arrays, incurred loss arrays, or sometimes to cumu-
lated claim numbers, such as claims incurred, claims notified or
claims closed. This “formal” chain ladder is described by Mack
in [5], but we give a detailed description of it below. We present
the chain ladder for a paid loss array with annual data; the expo-
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FIGURE 1

Incremental Paid Loss Array

sition is essentially the same for other kinds of data. We assume
that the reader is familiar with the usual triangular development
layout.

Consider the incremental array P = [pij], i = 1, : : : ,s; j =
0, : : : ,s¡ 1; i+ j · s (the array of incremental payments–the ac-
tual amounts paid in each development year in respect of each
accident year–contains the fundamental observed quantities).

The chain ladder is usually presented in something like the
following fashion. Let us take an array of paid losses (incre-
mental amounts paid), pij , and cumulate along the accident
years, cij = pi0 +pi1 + ¢ ¢ ¢+pij , so that cij =

Pj
k=0pik are the cor-

responding cumulative paid loss amounts. Then compute ratios
rj =

P
i cij=

P
i ci,j¡1, where the sum is over all available terms

that are present in both the jth and (j¡ 1)th columns. Forecasts
are produced by projecting elements on the last diagonal ci,s¡i
to the next development by multiplying by the development ra-
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FIGURE 2

Two Incremental Arrays to which an “Across” (the
standard chain ladder) and a “Down” Version of the

Chain Ladder are Applied

tio rs¡i+1, and recursively projecting those forecasts in turn by
multiplying by the next ratio.

Now imagine a version of the chain ladder working in the
other direction (“down” rather than “across”)–where you cu-
mulate downward, take ratios running down (accident-year-to-
accident-year ratios), project down into the future, and difference
back to incrementals, as in Figure 2. It turns out that the incre-
mental forecasts for both the usual chain ladder (the version that
runs across) and this new “down” version of the chain ladder are
the same.

2. THE INCREMENTAL CHAIN LADDER

To see that the “across” and the “down” versions of the chain
ladder are the same, we will first write the chain ladder purely
in terms of incrementals (which we call the incremental chain
ladder).

Consider that we are attempting to forecast a cumulative paid
loss amount, cij , in the next calendar year. Let Aij =

P
k ckj , that

is, Aij is the sum of all the cumulatives in the column above
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FIGURE 3

Depiction of the Incrementals Involved in the

Calculation of the Ratio

cij . Then the jth ratio is rj = Aij=Ai,j¡1. Note that Aij is also
the sum of all the incremental loss amounts above the (i,j) cell
(pkj , k = 1,2, : : : , i¡ 1) plus all the incremental loss amounts to
the left of those. That is, Aij and Ai,j¡1 are the sums of all the
incremental loss amounts in the regions shown in Figure 3. If the
values of the incrementals are represented by heights of square
prisms in each (i,j) cell, values represented by A, B and C in
Figure 4, may be thought of as the “total volume” in the marked
regions.

Note further that (since the forecasts of the cumulative paid
loss are in the same ratio) the formula rj = Aij=Ai,j¡1 as a ratio
of sums of incrementals as defined above applies to observations
in later (further into the future) calendar years as well, as long as
any unobserved incremental loss amounts in the sum are replaced
with their predicted values.
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FIGURE 4

Calculation of Cumulative and Incremental

Forecasts in Terms of Incrementals (labels represent

the sums of the incrementals in their region)

In the usual form of the chain ladder, you compute fore-
casts ĉij = rj £ ci,j¡1 (where ci,j¡1 is again replaced by its fore-
cast when it is unavailable). That is, compute the forecasts
ĉij = Aij=Ai,j¡1£ ci,j¡1. Predicted incremental paid loss amounts
may be formed by taking first differences of predicted cumula-
tive paid amounts. Computation of incremental paid loss fore-
casts is essential for incorporating future inflation and discount-
ing, (where relevant) and for computation of annual claim cash
flows.

Now let bij = Aij ¡Ai,j¡1, which is the sum of the incremen-
tals above pij . For simplicity, in Figure 4 this is just called B.
Similarly, let C = ci,j¡1, and let A= Ai,j¡1.
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Then the forecast may be written

ĉij = [Aij=Ai,j¡1]ci,j¡1
= [(Ai,j¡1 + bij)=Ai,j¡1]ci,j¡1
= [(A+B)=A]C

= [1+B=A]C:

Similarly, the incremental forecast is

p̂ij = ĉij ¡ ci,j¡1
= [1+B=A]C¡ ci,j¡1
= [1+B=A]C¡C
= B:C=A:

That is, the forecast of the incremental observation is the prod-
uct of (the sum of the incrementals above it) and (the sum of the
incrementals to its left) divided by (the sum of all the incremen-
tals that are both above and to the left). Note that this is sym-
metric in B and C (and also A)–interchanging i and j merely
changes the role of B and C. Thus we see that the chain ladder
may be neatly defined directly in terms of the incremental paid
loss amounts. See the appendix for a more formal proof of the
above symmetry.

It may help to give an example. Imagine we have an incre-
mental paid loss array as follows, and we wish to predict the
incremental paid loss cell labeled P:
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Note what the cumulative forecast, C, consists of in terms of the
incrementals:

C = 57£ 42=38 = (12+26+19)£ (18+24)=(12+26):
Hence, we have

P = 57£ 42=38¡ 42
= (12+26+19)£ (18+24)=(12+26)¡ (18+24)
= (12+26+19)£ (18+24)=(12+26)¡ (18+24)
£ (12+26)=(12+26)

= (12+26+19¡ 12¡ 26)£ (18+24)=(12+26)
= 19£ (18+24)=(12+26) = B:C=A:

Every incremental forecast turns out to work the same way (re-
call that you must replace unobserved values in A, B and C by
their forecasts in this formulation). Consequently, when we in-
terchange (i.e., transpose) accident and development years in the
original array and apply the chain ladder, note that the same value
is obtained:

Considered in terms of cumulative paid loss, it is not imme-
diately clear that the chain ladder incremental prediction, P, will
not change as a result of the transposition. However, if you con-
sider it in the incremental paid loss form, while B and C have
interchanged, their product is obviously the same. Further, A is
unchanged, so the forecast is unchanged. In each case, we have
P = 19£ (18+24)=(12+26).
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This applies generally when interchanging accident and de-
velopment years in the incremental paid loss array and applying
the chain ladder. When considered in terms of the incremental
paid loss formula, the transposition merely interchanges the val-
ues of B and C, and leaves A unchanged, so the incremental paid
loss forecasts are unchanged.

One advantage of this incremental paid loss version of the
chain ladder is that it is often more convenient to implement in
a spreadsheet. This is because it can be implemented in terms
of formulas that can be successfully cut and pasted without the
effort involved in computing the ratios first. The usual ratios
(and cumulative paid loss forecasts if needed) are then easily
computed from the completed array.

3. A BRIEF DISCUSSION OF SOME RELATED WORK

Kremer [4] recognizes the connection between a ratio model
(which he calls a multiplicative model) and two-way analysis of
variance with missing values, computed on the logarithms. He
uses this to derive an approach to forecasting outstanding claims.
Kremer points out the connection to the chain ladder method in
detail.

Mack [5] derives standard error calculations (including pro-
cess and parameter error) for a mean-variance model whose fore-
casts reproduce the standard chain ladder technique in a recur-
sive fashion. Mack makes use of the Gauss-Markov theorem to
avoid specific distributional assumptions for the losses. He com-
pares results for a particular case study with results from similar
models for which computation of exact or approximate standard
errors are available.

In his later paper, Mack [6] argues that while several different
stochastic ratio models had previously been referred to as the
stochastic chain ladder, the model he discusses in [5] reproduces
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the classical chain ladder forecasts and that models that don’t do
so should not be referred to as chain ladder models.

Murphy [7] explicitly writes several loss development fac-
tor methods as stochastic models and derives forecast variances,
working in a least-squares framework. He argues that it is often
necessary to extend ratio models to include intercepts.

Barnett and Zehnwirth [1] develop a statistical framework ex-
tending Murphy’s approach to include some adjustment for com-
mon accident and calendar period trends as a general diagnostic
tool for testing the suitability of ratio models to data. Multiple
examples point toward some common deficiencies of ratio mod-
els, including the need for an intercept and the lack of predictive
power of ratios after incorporating obvious predictors.

Renshaw and Verrall [8] derive another model that reproduces
the chain ladder. Their formulation makes the number of param-
eters describing the mean process in the chain ladder explicit.
The model is initially presented as a Poisson model, which ex-
tends to a quasi-likelihood framework as a model with variance
proportional to the mean.

Even though we started with a form of the chain ladder that
looked something like the stochastic form presented by Mack
[5, 6] and Murphy [7], by the end of Section 2 there are strong
similarities to the stochastic form presented by Renshaw and Ver-
rall [8]. Despite arguments in the literature, the two approaches
differ mainly in the data on which they appear to condition when
describing the past, and in the number of variance parameters
they employ. They are identical in the way they describe the mean
predictions for the future, which is why they both reproduce the
chain ladder forecasts. Given a quasi-likelihood approach, differ-
ences in forecast standard errors appear to be largely due to two
factors–the number of variance parameters, and the number of
degrees of freedom to fit the data (i.e., parameters) for which the
parameter uncertainty is ignored.
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Note that Kremer [4] describes the relationship between the
ratios of the chain ladder and the column parameters in the two-
way loglinear model. This is akin to the relationship between the
parameters in the Mack formulation and those of Renshaw and
Verrall.

4. INTERCHANGEABILITY OF ACCIDENT AND DEVELOPMENT
YEARS

We immediately see from the previously mentioned symmetry
that the incremental predictions from the chain ladder of the in-
cremental array with accident years and development years inter-
changed (with the array transposed) are simply the correspond-
ing predictions from the original array, with accident years and
development years interchanged (transposed). That is, the chain
ladder has the property that its incremental forecasts are the same
whether the chain ladder is applied to an incremental array run-
ning across (as is usual) or down–where you cumulate down,
take accident-year to accident-year ratios, project down into the
future, and difference back to incrementals!

Note that this property must hold for the forecasts of all mod-
els that reproduce the chain ladder forecasts. Such a property
might most accurately be called the “transpose-forecast commu-
tativity property of the chain ladder.” However, in the interest of
brevity we simply call it transpose-invariance.

This property implies that any fact that applies to the accident
years applies to development years, and vice versa, and that any
asymmetry of directions in our description of the chain ladder is
an artifact of our description, and is not an inherent part of the
chain ladder itself. That is, the chain ladder doesn’t differenti-
ate between accident and development periods. It treats them in
identical fashion, even though the actual structure in the two di-
rections is completely different. This result obviously applies to
forecasts for all the stochastic chain-ladder-reproducing models
as well.
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Consider the issue of accident years being treated like de-
velopment years. Imagine you have homogeneous accident
years (a not uncommon occurrence, especially after you ad-
just for changes in exposure and inflation, assuming no su-
perimposed inflation). You wouldn’t predict the level of the
next accident year using ratios–it would be far more sen-
sible and informative to take some kind of average. But as
we have seen, the chain ladder does use ratios in both direc-
tions.

If this way of looking at the chain ladder seems a little non-
sensical, it is because we are inferring additional meaning in the
usual form of the chain ladder that it doesn’t really possess. The
two descriptions (the across version and the down version) are
in reality the same description of the data.

Note also that we can now see that there are in fact param-
eters in both directions in the chain ladder. This is not a con-
sequence of any particular formulation of the chain ladder–
every chain-ladder-reproducing model has degrees of freedom
to fit the data (i.e., parameters) that run both across and
down. Some formulations make the existence of both kinds
of parameters explicit (as in Renshaw and Verrall [8]); some
other formulations do not (such as Mack [6])–the row pa-
rameters become hidden by the fact that the model is con-
ditioned on the first column. The chain ladder itself still un-
avoidably has degrees of freedom to fit changes in accident
level, so the parameters remain, even where not explicitly rep-
resented in the formulation. All formulations of the chain lad-
der have 2s¡ 1 parameters for the mean, though the num-
ber of variance parameters and distributional assumptions may
vary.

We note that so many parameters make the forecasts quite
sensitive to relatively small changes in a few values, making the
chain ladder unsuitable for forecasting. Yet even with so many
parameters the chain ladder is still unable to model changing
superimposed inflation.



250 WHEN CAN ACCIDENT YEARS BE REGARDED AS DEVELOPMENT YEARS?

A further important consequence of this property is that pa-
rameters in the two directions can take the roles of both a level
and a ratio.

We know within ourselves that the two directions are funda-
mentally different, both in general appearance of their trends and
in spirit. The development year direction tends to have a smooth
run-off shape, where the incremental losses tend to increase ini-
tially to a peak somewhere in the first few developments and
then smoothly decrease in the tail, while the accident years tend
to have quite a different pattern. Yet the model itself makes no
such distinction–it does not contain important information we
already know about claims payments (i.e., the structure in loss
data).

Indeed, the chain ladder model, being a two-way cross clas-
sification model (as has been recognized by numerous authors),
not only fails to distinguish between accident years and devel-
opment years, it ignores the relationships between years within
either category.

Consider the two plots of logs of paid data against develop-
ment year in Figure 5. Can you tell which one is the real data?

Most practitioners will instantly (and correctly) guess that the
lower plot is the real one. We know that paid data often has a
strong pattern to its runoff–that nearby development periods
tend to be more alike than ones further away, and further, we
usually observe smooth trends relating them.

Clearly the accident and development labels mean something,
and you can’t arbitrarily relabel them without affecting the infor-
mation in the data. The observations in development year 3 do
not just tend to be closer to each other than to observations from
other columns, they also tend to be more like the observations in
development years 2 and 4 than they are like observations from
columns further away. In a two-way cross-classification model,
we can arbitrarily rearrange the group labels within both factors,
and even interchange the factors without changing the fit. If the
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FIGURE 5

Plot of Exposure-Adjusted Log Paid Incremental Data

Against Development Year (one of the plots has had

its development period labels randomly allocated)

labels do carry information over and above being arbitrary iden-
tifiers of a category into which the observation falls (as they do
in claims runoff), the chain ladder model is inappropriate.

With the lower plot of Figure 5, one could omit all of the
data for any development period between 1 and 8 (i.e., replace
the observations with missing values) and still be able to get a
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good estimate of the values in that development period. Nearby
periods carry a great deal of information about each development
period’s level. If we consider only the first plot, and we omit a
development period, what do we know about it? The information
was there, but we threw it away when we threw away the ordering
in the development year. There is also information in the accident
year direction–nearby accident years often tend to be more alike
than ones further away. The chain ladder ignores that information
in both directions. This loss of information causes the predictive
distributions of chain ladder forecasts to be very wide, much
wider than they should be if the model used what we know
about losses.

The top plot of Figure 5 actually looks a bit more like a plot
against accident years (though nearby accident years in practice
are often closer together than those further away, and so they tend
to be smoother than the top plot, even though they don’t normally
exhibit the smooth curves of the development direction).

That is not to say that a plot against development years look-
ing something like the top one could never arise, but it is quite
rare–and if it does arise, an ANOVA-style model is not very
helpful in forming good forecasts, particularly in the tail and for
future developments. It has parameters where it has little data,
and that makes for poor forecast prediction errors. An under-
parameterized model is often substantially better for forecasting
in that circumstance. If we were in the rare circumstance that
the means for each development didn’t have any strong trend to
them, we’d want to quantify the extent to which the means tend
to shift around their overall average, and use as much informa-
tion as possible in identifying what little trend there might be.
When there is less information in the data, it is even more crucial
not to waste it.

Many of the problems discussed with respect to the chain
ladder apply to other link ratio methods. The exact transpose-
invariance property no longer applies (since different weights
are involved), but basic link ratio methods are still two-way



WHEN CAN ACCIDENT YEARS BE REGARDED AS DEVELOPMENT YEARS? 253

cross classification models (with different assumptions about
variance), so they generally share the problem of overparame-
terization in the development and accident year directions, and
ignore the relationships between adjacent year levels. Further, al-
though the correspondence isn’t exact, there is generally a strong
similarity between forecasts (on the incremental scale) and the
transposed-forecasted-transposed forecasts. This is hardly sur-
prising, since other ratios may be written as weighted versions
of the chain ladder; the transposing merely results in a differently
weighted version of a method that is transpose-invariant.
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APPENDIX

Derivation of the Incremental Chain Ladder

In the following, when an unavailable term appears on the
right hand side of an equation, it is replaced by its predicted
value. The usual form of the chain ladder predictions is given
by:

ĉij =
ˆ̄
jci,j¡1

=

24s¡jX
h=1

chj

35,24s¡jX
h=1

ch,j¡1

35 :ci,j¡1
=

0@1+ cs¡j,j
,24s¡jX

h=1

ch,j¡1

351A :ci,j¡1
=

0@1+
24s¡jX
h=1

phj

35,24s¡jX
h=1

j¡1X
k=0

phk

351A : j¡1X
k=0

pik:

Hence

p̂ij =

0@1+
24s¡jX
h=1

phj

35,24s¡jX
h=1

j¡1X
k=0

phk

351A : j¡1X
k=0

pik ¡
j¡1X
k=0

pik

=

0@24s¡jX
h=1

phj

35,24s¡jX
h=1

j¡1X
k=0

phk

351A : j¡1X
k=0

pik

= (B=A):C, (see Figure 4)

= B:C=A

where A=
Ps¡j
h=1

Pj¡1
k=0phk, B =

Ps¡j
h=1phj and C =

Pj¡1
k=0pik. Note

the symmetry in the subscripts.

The Transpose Invariance Property

The symmetry immediately establishes the transpose invari-
ance property. Equivalently, refer to Figure 4, and note that the
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numerator of the equation for p̂ij is the product of the total of the
values above it and the total of the values to its left. Consequently,
if the array were transposed (rows and columns interchanged),
the numerator for p̂ji would be unchanged (and of course the
denominator is also unchanged) from that for p̂ij .
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Abstract

This paper explores the concepts underlying the val-
uation of an insurance company in the context of how
other (noninsurance) companies are valued. Among ac-
tuaries, the value of an insurance company is often cal-
culated as (i) adjusted net worth, plus (ii) the present
value of future earnings, less (iii) the cost of capital.
Among other financial professionals (e.g., chief financial
officers, investment bankers, economists), value is often
calculated as the present value of future cash flows. This
paper will discuss both methods and explain under what
circumstances the two methodologies derive equivalent
value and under what circumstances the results of the
two methods diverge. This paper also addresses recent
developments in the insurance industry that could affect
valuation, including the NAIC’s codification of statu-
tory accounting principles, fair value accounting, and
the Gramm-Leach-Bliley Act of 1999.
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1. INTRODUCTION

Valuation of a property/casualty insurance company is an im-
portant feature of actuarial work. Much of the work arises from
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merger, acquisition, and divestiture activity, although the need
for valuation arises from other sources. An insurance company
valuation might be prepared for lending institutions or rating
agencies. It might be performed as part of a taxable liquidation
of an insurance company, reflecting the value of existing insur-
ance policies in force. A valuation might also be prepared for
the corporate management of insurance companies in order to
provide the clearest picture of value and changes in value of the
company over a given time period.

The assumptions underlying the valuation, and therefore the
computed value, may differ for different uses.1 As such, the pur-
pose of the valuation and the source of the assumptions should
be clearly identified.

Before discussing valuation methodologies, we introduce
some basic principles.

1. The value of any business has two determining factors:

(a) The future earnings stream generated by a company’s
assets and liabilities, and

(b) The risk of the stream of earnings. This risk is re-
flected in the cost to the entity of acquiring capital,
measured by the investors’ required rate of return
(i.e., the “hurdle rate”).

2. For a given level of future risk, the greater the expected
profits,2 the greater the value of the business.

3. For a given level of future profitability, the greater the
volatility (and therefore the higher the hurdle rate), the
lower the value of the business.

1For example, in an acquisition, the purchaser may be able to lower expenses, grow a
business faster because of the purchaser’s current business, reduce the effective tax rate,
or reduce the cost of capital for the acquired or target entity. These assumptions would
serve to increase the value of the target entity. These same assumptions may not be valid
for valuing the target entity as a stand-alone business unit.
2Expected profits refer to the present value of the expected earnings stream.
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4. A company has value in excess of its invested capital
only when future returns are in excess of the hurdle
rate.

5. When a company is expected to produce an earnings
stream that yields a return on invested capital that is less
than the hurdle rate, the economic value of the required
capital is less than its face value. In this case, the logical
action would be to liquidate assets.

2. VALUATION METHODOLOGIES

There are two methodologies prevalent in valuation literature
that form the basis of our discussion of insurance company val-
uation:

1. Discounted cash flow (DCF)

2. Economic value added (EVA)

A DCF model discounts free cash flows to the equity holders
at the hurdle rate. The starting capital of the entity is not a direct
element in the valuation formula.3

An EVA model begins with the starting capital of the entity
and defines value as the following:

Value = Initial capital invested
+ the present value (PV) of expected “excess returns”
to equity investors:

Sturgis [20] refers to two methods in his paper on valuation:

1. The discounted value of maximum stockholder divi-
dends.

3If the starting capital of the entity is higher (or lower) than capital required, it will
generate a positive (or negative) cash flow to the investor at “time zero.”
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2. Current net worth4 plus the discounted value of future
earnings less cost of capital.

The first method corresponds to DCF methodology. The second
method is also discussed by Miccolis [17] and in other actuarial
literature as

ANW+PVFE¡COC,
where

ANW= adjusted net worth (statutory capital and surplus
with a series of modifications);

PVFE = present value (PV) of future earnings attributable
to in-force business and new business; and

COC= cost of capital.

= PV of [(hurdle rate £ required starting capital
for each period) — (investment earnings on capital
excluded from future earnings)].5

This second method is a form of the EVA model, in which
PVFE¡COC equals the present value of expected excess re-
turns.

2.1. Discounted Cash Flow

A company’s value may be determined by discounting free
cash flows to the equity owners of the company6 at the cost
of equity, or the hurdle rate. Free cash flow is often defined
as the after-tax operating earnings of the company, decreased
by earnings that will be retained in the company, or increased

4Throughout this paper, we use the terms capital, equity, net worth, and surplus
interchangeably.
5If future earnings include investment income on capital, the cost of capital calculation
will be modified to be equal to the present value of (hurdle rate £ starting capital each
period).
6Free cash flows are released in the form of dividends or other capital releases to the
equity owners.
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by capital releases to maintain an appropriate level of capital to
support the ongoing business of the company.

After-tax operating earnings usually constitute changes in
capital during a period other than capital infusions or distri-
butions. For property/casualty insurance companies, however,
there are gains and losses in surplus due to “below the line”
adjustments7 that do not flow through statutory earnings. Capi-
tal changes associated with the change in unrealized capital gains
or losses, the change in nonadmitted assets, the change in statu-
tory reinsurance penalties, the change in foreign exchange ad-
justment, and the change in deferred income tax must be con-
sidered along with after-tax operating earnings when evaluating
free cash flows. For the valuation formulas discussed through-
out this paper, after-tax operating earnings include these direct
charges and credits to statutory surplus.

A company creates value for its shareholders only when it
earns a rate of return on invested capital (ROIC) that exceeds
its cost of capital or hurdle rate. ROIC and the proportion of
after-tax operating earnings that the company invests for growth
drive free cash flow, which in turn drives value. For some in-
dustries, regulatory or statutory restrictions create an additional
consideration that limits dividendable free cash flow.

The DCF value of the business is often projected as two sepa-
rate components: (i) the value of an explicit forecast period, and
(ii) the value of all years subsequent to the explicit forecast period
(the “terminal value”). Projections for the forecast period, which
is usually five to 10 years,8 typically include detailed annual
earnings projections that reflect revenue projections, loss and

7“Below the line” refers to the Underwriting and Investment Exhibit in the statutory
Annual Statement prescribed by the NAIC. Direct charges and credits to surplus are
shown below the line for Net Income, which is the starting point for regular taxable
income.
8Five to 10 years is typical because beyond that period it is usually too speculative to
project detailed financials. A long-term earnings growth rate and a corresponding capital
growth rate are selected to derive value beyond the forecast period.
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expense projections, investment income projections, tax liabili-
ties, after-tax operating earnings, assets, liabilities, initial capital,
and the marginal capital that needs to be invested in the company
to grow the company at the expected annual growth rate.9

The DCF value of the forecast period cash flow is

FC0 +
nX
x=1

OEx¡ (Cx¡1£ gx)
(1+ h)x

,

where

n= the number of years in the forecast period
(usually five to 10 years);

OEx = after-tax operating earnings in year x
(including gains and losses in capital that
do not flow through earnings);

gx = expected growth rate of capital in year x;

Cx¡1 = capital at the end of year x¡ 1
(this equals capital at the beginning of year x);

Cx¡1£ gx = incremental capital required to fund future growth;
h= hurdle rate; and

FC0 = free capital at time zero; which represents
capital that may be either released from the
company at the valuation date if the company is
overcapitalized or infused into the company at the
valuation date if the company is undercapitalized

= SC0¡C0, the difference between SC0, the starting
capital of the entity, and C0, the capital needed at
the end of year zero/beginning of year 1.

The value of the second component of DCF value is often
referred to as the terminal value. The terminal value can be devel-

9Appendix A addresses these earnings forecasts in detail and provides an example.
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oped using a simplified formula based on (i) projected after-tax
net operating profits in the first year after the forecast period, (ii)
the perpetual growth rate, and (iii) the hurdle rate.

Terminal value =
1X

x=n+1

OEx¡ (Cx¡1£ g)
(1+ h)x

=
OEn+1¡ (Cn£ g)
(h¡ g)(1+ h)n ,

where

n= the number of periods in the forecast
period;

Cn = the capital at the end of the last period
of the forecast period;

g = the expected perpetual growth rate of
capital and of after-tax operating earnings;

h= the hurdle rate;

OEn+1 = after-tax operating earnings in the period
after the forecast period; and

OEn+1¡ (Cn£ g) = free earnings, equal to after-tax earnings
less amounts needed to be retained in the
company to grow the capital at rate g.

This terminal value calculation gives credit for earnings into
the future in perpetuity. Sometimes a higher hurdle rate is used
for the terminal value than for the forecast period to reflect the
increased uncertainty associated with operating earnings many
years in the future. A discussion of considerations related to the
selection of the hurdle rate is provided in Section 4.

The terminal value can be thought of as the present value of
the free earnings (in the period after the forecast period) multi-
plied by a price to earnings (P/E) ratio. The P/E ratio is deter-
mined by the hurdle rate, h, and the growth rate, g, and is equal
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to 1=(h¡ g).10 If the hurdle rate is 15% and the growth rate is
5%, then the P/E ratio = 1=(:15¡ :05) = 10.
In practice, the P/E ratio underlying the terminal value calcu-

lation can be selected by reviewing sale prices of recent insur-
ance company transactions relative to earnings. Relating that P/E
factor to an implicit growth rate and hurdle rate may make the
price-to-earnings ratio more intuitive.

2.2. Economic Value Added

The value of a company can be written as the sum of the
equity invested and the expected excess returns to investors from
these and future investments.

Value = Initial capital invested

+PV of expected “excess returns” to equity investors.

The expected “excess returns” in each period are defined as

(rate of return on capital invested¡ hurdle rate)£ capital invested
= after-tax operating earnings¡ (hurdle rate£ capital invested):

The general expression of EVA is

Value = SC0 +
1X
x=1

[OEx¡ (h£Cx¡1)]£ (1+ h)¡x,

where

SC0 = Starting capital, which is equal to the sum of free capital
and required capital at time 0 (FC0 and C0, respectively,
as defined in the DCF discussion); and

OEx, Cx, and h have the same definitions as in the DCF discus-
sion.

10The expected growth rate will typically be between 0% and the selected hurdle rate.
If, however, the growth rate g were less than 0%, the resulting P/E ratio would decrease
(as h¡ g increases).
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This formula represents the required capital at the valuation
date (time = 0) plus the present value of future economic prof-
its. Economic profits for time period x are defined as after-tax
operating earnings (OEx) reduced by the cost of capital, which
is the product of the hurdle rate and the required capital at the
beginning of each period (h£Cx).
To calculate EVA, we need three basic inputs:

1. The level of capital needed for each period to support the
investment, both initial capital invested and additional
capital to support growth.

2. The actual rate of return earned on the invested capital
for each period, that is, ROIC.

3. The selected hurdle rate.

These are the same inputs required for the DCF model.

To determine initial capital invested, we start with the book
value of a company. The book value of an insurance company is
an amount that reflects the accounting decisions made over time
on how to depreciate assets, whether reserves are discounted, and
conservatism in estimating unrecoverable reinsurance, among
other factors. As such, the book value of the company may be
modified in the valuation formula to adjust for some of the ac-
counting influence on assets and liabilities.

In valuing an insurance company, the initial capital invested is
represented by the statutory capital and surplus11 at the valuation
date, modified with a series of adjustments discussed later in
this paper. The surplus after modifications is often referred to as
adjusted net worth (ANW). The capital needed to support growth
is funded by retained earnings for the DCF model and reflected
through the cost of capital calculation for the EVA model.

11The reasons for using statutory accounting values instead of generally accepted ac-
counting principles (GAAP) or other accounting values are discussed in Section 4.
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To evaluate the ROIC an estimate of after-tax income earned
by the firm in each period is needed. Again, the accounting mea-
sure of operating income has to be considered. For an insurance
company valuation, this component represents the projection of
future statutory earnings of the insurance entity, modified in con-
sideration of initial valuation adjustments made to statutory cap-
ital, and inclusive of all direct charges and credits to statutory
surplus. These earnings will include the runoff of the existing
balance sheet assets and liabilities along with the earnings contri-
butions from new and renewal business written. This component
may also include investment income on the capital base.12

The earnings will reflect a specific growth rate (which could
be positive, flat, or negative) that must also be reflected in growth
in capital needed to support the business. The ROIC represents
the after-tax operating earnings in each period (including any
“below the line” changes to capital during the period) as a ratio
to the starting capital for the period.

The third and final component needed to estimate the EVA is
the hurdle rate. Considerations in the determination of the hurdle
rate are discussed in Section 4.

For the EVA model, “excess returns” are represented by the
excess of (i) the operating earnings in each period over (ii) the
product of the starting capital for each period and the hurdle
rate.13 Recall that a company has value in excess of its invested
capital only when ROIC exceeds the hurdle rate for the company.
Therefore, a company has positive “excess returns” in a period
only when the after-tax operating earnings for that period exceed
the product of the hurdle rate and the required capital at the
beginning of the period.

12If investment income on the capital base is excluded from earnings, the cost of capital
calculation will be modified accordingly. This is discussed further in Section 3.
13If operating earnings exclude investment income on capital, then the investment income
on capital will be subtracted from term (ii).



THE APPLICATION OF FUNDAMENTAL VALUATION PRINCIPLES 267

In the valuation formula ANW+PVFE¡COC, the term
PVFE¡COC represents these “excess returns.”
Excess returns have positive value only when the future earn-

ings exceed the cost of capital. In this case, the cost of capital
represents the present value of the product of the hurdle rate and
the starting capital for each period for which earnings are pro-
jected. If investment earnings on the capital are excluded from
future earnings, then the cost of capital calculation will be the
present value of the product of the hurdle rate and the starting
capital less the investment earnings on the capital.

While the two calculations of excess returns should be math-
ematically equivalent, there are numerous practical advantages
to including earnings on the capital in future earnings. First, the
earnings projections will be more in line with historical earnings
so one can review the reasonableness of the projections relative
to past experience. Second, allocation of assets between capital
and liabilities is unnecessary. Third, one does not need to al-
locate taxes, tax loss carryforwards, and other factors between
investment earnings on capital and all other earnings.

In Appendix A, this paper will demonstrate that the two
methodologies, DCF and EVA, produce equivalent values when
specific conditions hold [7]. These conditions are the follow-
ing:

1. The starting capital and the after-tax operating income
that is used to estimate free cash flows to the firm for a
DCF valuation should be equal to the starting capital and
the after-tax operating income used to compute EVA.
(For insurance company valuations, after-tax operating
income should include “below the line” gains and losses
in capital that do not flow through earnings.)

2. The capital invested that is used to compute excess re-
turns in future periods should be the capital invested at
the beginning of the period:
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Excess returnt = after-tax operating incomet

¡ (hurdle rate£ capital investedt¡1):
3. Consistent assumptions about the value of the company
after the explicit forecast period are required. That means
that for both models, capital required, earnings growth
rate, and the hurdle rate must be consistent in computing
the terminal value.

4. The hurdle rate for the explicit forecast period must be
the same as the hurdle rate after the explicit forecast
period.14

2.3. Relative or Market Multiple Valuation

While the value of a company may be derived from the DCF
or EVA valuation methodologies, other more simplistic methods
are often used to corroborate or supplement more sophisticated
models. In relative valuation, one estimates the value of a com-
pany by looking at how similar companies are priced. Relative
valuation methods are typically based on market-based multiples
of balance sheet or income statement values such as earnings,
revenues, or book value.

Comparable Companies
The first step in the market multiple approach is to identify

a peer group for the subject company. To select insurers for the
peer group, it is common to rely on data for publicly traded in-
surers that meet certain criteria based on premium volume, mix
of business, asset size, statutory or GAAP equity, and regula-
tory environment. These criteria are intended to assure that the
peer group is reasonably comparable to the subject company.
In selecting the criteria, however, it is important to balance pre-

14While it is not uncommon for a higher hurdle rate to apply to earnings at a later date
to account for the uncertainty, it is also common to apply one hurdle rate for all periods
reflecting the expected cost of acquiring capital to perform an acquisition of such an
entity, that is, the required rate of return to investors.
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cision and sample size. While the analysis could be restricted
to only those insurers that were virtually identical to the subject
company, the sample size would likely be too small to yield
meaningful results.

Valuation Bases
The market multiple valuation method estimates the “market

price” of the subject company by reference to the multiples of its
peer group. For example, if the average ratio of price to earnings
per share is 15.0 for the peer group, and the subject company’s
most recent annual earnings are $10 million, then the estimated
market value of the subject company is $150 million. Typically,
several alternative ratios will be used in performing a market
multiple valuation. In most instances, the ratios employed in-
clude an operating multiple (such as the price-to-earnings ratio),
a revenue multiple (such as price-to-premium or price-to-total
revenues), and a balance sheet multiple (such as the price-to-
book value ratio).

A relative valuation is more likely to reflect the current mood
of the market because it is a measure of relative value, not in-
trinsic value [7]. While these methods serve a valuable purpose
in the formulation of an opinion on the price the market may be
willing to pay, they provide little guidance on the returns that
will be achievable and the extent to which capital outlaid now
can be repaid.

3. VALUATION RESULTS: EVA VERSUS DCF

3.1. Introduction

The following examples illustrate the DCF and EVA valuation
methodologies and derive relevant conclusions related to the use
of the two methods. This section focuses on the mechanics and
properties of the DCF and EVA valuation calculations. Appendix
A will provide a property/casualty insurance company example.

We will demonstrate two equivalent forms of the EVA model.
The first form, EVA(a), will follow the basic EVA formula struc-
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ture in which

Excess returns = after-tax operating income

¡ (hurdle rate£ capital invested):
The second form, EVA(b), will use the following definition:

Excess returns = after-tax earnings on insurance operations
excluding investment income on capital

¡ [(hurdle rate¡ average investment rate
for capital)£ capital invested]:

Excess returns for EVA(a) and EVA(b) are equivalent in the-
ory. However, while EVA(b) is discussed in actuarial literature
on company valuation [20], there are a number of advantages to
using the EVA(a) model in practice. The advantages, previously
disclosed, are these:

1. The earnings projections will be more in line with his-
torical earnings so one can review the reasonableness of
the projections relative to past experience.

2. It is not necessary to allocate assets between capital and
liabilities.

3. It is not necessary to allocate taxes, tax carryforwards,
and other factors between investment earnings on capital
and all other earnings.

3.2. Basic Model Assumptions

We will use the following assumptions to demonstrate the
basic calculations for the DCF and EVA models applied to a
property/casualty insurer.

² The capital at time 0, just prior to projected year 1, is $100.
For a property/casualty insurance company, this amount is the
surplus.

² Expected growth rate values of g = 0% and g = 3% were used.
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² Investment income return on capital is 4% per annum.

² The hurdle rate is 15% per annum.

² Capital is determined based on a premium-to-capital ratio of
2 : 1.

² Total earnings are identified separately as investment income
on capital and earnings from insurance operations.15

² The investment income on the capital component equals the
product of the investment income rate and the capital at the
beginning of the year.

² The insurance operation earnings component is a percentage
of premiums earned for the year. Premium-related earnings
encompass underwriting profits and investment earnings asso-
ciated with all noncapital assets.

For projection scenarios in which the hurdle rate is exactly
achieved, earnings are 5.5% of the earned premium.16 For pro-
jection scenarios in which the hurdle rate is not achieved, earn-
ings are 5% of the premium. When earnings exceed the hurdle
rate requirement, this percentage is 6%.

We compiled projection scenarios using two time horizons.
First, we estimated the company’s value using a 10-year fore-
cast period. We also estimated the continuing value using the
present value of earnings beyond 10 years using the same model
assumptions.

This time horizon is important in valuing an actual company.
The 10-year forecast period value will be based on detailed fi-
nancial projections by line of business as shown in Appendix A.
The terminal value will be based on the simplified assumptions

15A number of judgments regarding asset allocation and tax allocation must be made to
do this in practice.
16That is, 5.5%=15% hurdle rate less 4% investment income on capital, yielding 11%,
which is divided by the premium-to-surplus ratio of 2.
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with respect to (i) expected growth in earnings by future period
and (ii) expected changes in capital required by future period.

3.3. Total Earnings Equal Hurdle Rate and the Company Is Not
Growing

Table 1 displays the company value results for the three mod-
els in which the annual total earnings relative to capital equal
the hurdle rate, and neither the company’s capital nor its busi-
ness is growing.17 Exhibits 1A, 1B, and 1C show the calculations
leading to these results.

The In Perpetuity results are 100.00, equal to the starting cap-
ital of the company.

For the DCF model, the value calculation simplifies to

OE1¡ 0
h¡ 0 = (100£ 15%)¥ 15%= 100:

For the EVA(a) model, Exhibit 1A shows that for each fore-
casted year the total earnings are exactly offset by the cost of
capital. This result, of course, follows because both earnings and
cost of capital are 15% of each year’s starting capital of 100. The
same progression is demonstrated by the EVA(b) model except
earnings are only 100£ 11% (earnings on insurance operations
only) offset by cost of capital of 100£ (15%¡ 4%).
As noted in Section 2.2, a company has value in excess of

its capital invested or hurdle rate only when future returns are
in excess of the hurdle rate requirement. In the DCF model, the
present value of the perpetual cash flow is equal to the starting
capital because annual earnings of 15% of capital, discounted
at 15% annually, yield the starting capital. In the EVA models,
excess returns are always 0 and, therefore, the only contribution
to value is the capital.

Looking at the modeled time periods (10-year forecast pe-
riod and terminal value) reveals a fundamental difference in the

17Excess earnings are 0, so value for the EVA methods is equal to the starting capital.
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TABLE 1

Valuation Results When

Total Earnings Equal Hurdle Rate and There Is

No Growth

10-Year Forecast In Perpetuity
Model Period Terminal Value (Total)

DCF 75.28 24.72 100.00
EVA(a) 100.00 0.00 100.00
EVA(b) 100.00 0.00 100.00

DCF and EVA models. The DCF model must be computed in
perpetuity (forecast period plus terminal value) to capture the
capital value in the company. The EVA models, however, recog-
nize the value of the capital “immediately” as it incorporates the
capital amount directly in the value computation. Therefore, the
EVA model will produce higher estimates of value than DCF when
earnings are not valued in perpetuity.

3.4. Total Earnings Equal Hurdle Rate and the Company Is
Growing

Table 2 displays the company value results for the three mod-
els in which the annual total earnings relative to capital equals the
hurdle rate and the company’s capital and earnings are growing
by 3% per annum. Exhibits 2A, 2B, and 2C show the calculations
leading to these results.

The results in Table 2 are nearly identical to the value results
shown in Table 1 in which no business growth was modeled.
Basically, the two EVA models behave exactly the same–the
earnings each year are exactly offset by the cost of capital. In-
corporating growth into the model only changes the earnings and
cost of capital amounts for each year, not the difference between
the two values. However, this basic demonstration still empha-
sizes the relationship of earnings to hurdle rate as the determinant
of value, positive or negative, in conjunction with starting capital.
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TABLE 2

Valuation Results When

Total Earnings Equal Hurdle Rate and

Earnings (and Capital) Are Growing @ 3% Per Annum

10-Year Forecast Terminal In Perpetuity
Model Period Value (Total)

DCF 66.78 33.22 100.00
EVA(a) 100.00 0.00 100.00
EVA(b) 100.00 0.00 100.00

The components of the results for the DCF model do change
between the no-growth and growth scenarios. The value amount
for the 10-year forecast decreases and is exactly offset by an
increase in the terminal value. The “total” in perpetuity amount,
however, is not affected by growth because annual earnings are
still equivalent to the hurdle rate. Growth, however, shifts more
of the company’s value to later projected years at the expense
of earlier projected years. This “value shift” occurs because the
DCF model accounts for capital growth via a reinvestment of a
portion of annual earnings, thereby reducing free cash flows.

3.5. Funding Capital Growth: Comparing the DCF and EVA
Models

The DCF and EVA models have different treatments of the
costs associated with growing the capital base of the company.
We can think of the DCF model as a reinvestment for growth
process and the EVA model as a capital borrowing process.

Exhibit 2A, Column (8), shows the annual capital reinvest-
ment amount necessary for the DCF model to account for the
3% growth in capital. The capital reinvestment amount is taken
from current year earnings to fund the following year starting
capital–Column (2) equals Column (8) shifted one year. The
DCF model fully funds capital growth, thereby reducing “free
cash flows” for valuation.
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In the EVA models, the cost for growing the capital is a part
of the cost of capital calculation. For the EVA(a) model, Exhibit
2B, Columns (10a) and (10b), show the components of the cost
of capital related to the initial capital and additional capital for
growth, respectively. The reduction in growth-related earnings
equals the product of the hurdle rate and the cumulative addi-
tional capital amount beyond the initial capital. This increment
can be thought of as the interest payment on “borrowed” capital
used to fund business growth.

Although the negative cash flows necessary to support capital
growth are different for the DCF and EVA models, the present
values of the cash flows are identical when considered in perpe-
tuity. The DCF model reinvestment to grow the capital is a larger
offset to earnings in early forecasted years than the EVA model
required return on additional capital amounts. By the ninth fore-
casted year, however, the EVAmodel capital growth cost (Exhibit
2B, Column 10b) overtakes the reinvestment amount in the DCF
model (Exhibit 2A, Column 8).

3.6. Total Earnings Are Not Equal to the Hurdle Rate and the
Company is Not Growing

Table 3 displays the company value results for the three mod-
els in the scenario in which the annual total earnings relative to
capital do not equal the hurdle rate and the company is not grow-
ing. Exhibits 3A, 3B, 3C, 4A, 4B, and 4C show the calculations
leading to these results.

Table 3 reaffirms the in perpetuity equivalence of the DCF
and EVA models. Like the previous examples, the 10-year and
terminal values are different between the DCF and EVA valua-
tions but the in perpetuity valuations are equal. The equivalency
of the DCF and EVA models in perpetuity will be shown on an
algebraic basis in Appendix B.

When the earnings are not equal to the hurdle rate there is
a marginal value (positive or negative) in addition to the initial
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TABLE 3

Valuation Results When

Total Earnings Are Not Equal to Hurdle Rate

and There Is No Growth

10-Year Forecast Terminal In Perpetuity
Model Period Value (Total)

Earnings Less Than Hurdle Rate

DCF 70.26 23.07 93.33
EVA(a) 94.98 (1.65) 93.33
EVA(b) 94.98 (1.65) 93.33

Earnings Greater Than Hurdle Rate

DCF 80.30 26.37 106.67
EVA(a) 105.02 1.65 106.67
EVA(b) 105.02 1.65 106.67

capital. As expected, when the hurdle rate requirement exceeds
earnings, the value of the company drops below the value of the
starting capital ($100 in this example). Likewise, when earnings
exceed the hurdle rate, there is additional value created. In Ex-
hibits 3A, 3B, and 3C, total annual created earnings are 16% and
the cost of capital is dictated by the hurdle rate, 15%, leaving an
excess return on capital of 1% for each year in the future. The
present value of the 1% marginal profit in return on capital of
100 is 6.67 in perpetuity. Referring to Exhibits 4A, 4B, and 4C,
a 1% marginal loss in return on capital of 100 leads to a value
decrease of 6.67.

3.7. Total Earnings Not Equal to Hurdle Rate and the Company
Is Growing

Table 4 displays the company value results for the three mod-
els in the scenarios in which the annual total earnings relative to
capital do not equal the hurdle rate and the company’s capital and
earnings are growing by 3% per annum. Exhibits 5A, 5B, 5C,
6A, 6B, and 6C show the calculations leading to these results.
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TABLE 4

Valuation Results When

Total Earnings Are Not Equal to Hurdle Rate and

Earnings and Capital Are Growing @ 3% Per Annum

10-Year Forecast Terminal In Perpetuity
Model Period Value (Total)

Earnings Less Than Hurdle Rate

DCF 61.22 30.45 91.67
EVA(a) 94.43 (2.76) 91.67
EVA(b) 94.43 (2.76) 91.67

Earnings Greater Than Hurdle Rate

DCF 72.35 35.99 108.33
EVA(a) 105.57 2.76 108.33
EVA(b) 105.57 2.76 108.33

The impact of growth on the company’s value is to increase
the portion of value contributed in the future. If the company’s
earnings are not achieving the hurdle rate, growing the busi-
ness further lowers value. When earnings exceed the hurdle rate,
growth produces increased value.

The DCF model results show that capital growth, necessary
to support business and earnings growth, reduces free cash flow
in the short term in return for an increase in future earnings.
Looking at the Earnings Greater Than Hurdle Rate scenario, the
10-year forecast period value with no growth is 80.30, dropping
to 72.35 with 3% annual growth. However, the comparable termi-
nal values increase from 26.37 to 35.99, yielding an in perpetuity
gain in total value of 1.66 with growth (108.33 with 3% growth
versus 106.67 with 0% growth). In the early projection years,
the reinvestment earnings to grow the capital (thereby reducing
free cash flows) exceed the marginal increase in earnings on the
additional capital. This reverses itself in later projection years,
resulting in higher terminal values.
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3.8. Comparison of DCF and EVA Models

The parameterization of the DCF and EVA models presented
in the paper cause the models to produce equal value if con-
sidered in perpetuity. The parameters selected to populate the
models should be equivalent as they are independent of which
model is used. For example, the appropriate hurdle rate does not
depend on the model selected. Appendix B discusses the for-
mula assumptions necessary to ensure the equivalence property.
The equivalence of these valuation methodologies is expected
because each model is measuring the same value contributors,
just using different formula structures.

In the DCF model, the starting capital is used only to deter-
mine free cash flow at time 0. The principle of a DCF valuation
is that an investment, a company for our discussion, is worth the
value of its future earnings. If the capital leads to future earnings
(by investment and supporting profitable business), then value
will emerge. If future earnings are less than the hurdle rate, then
the capital invested in this entity is less than its face value.18

The EVA model (both forms, EVA(a) and EVA(b)) includes
the full starting capital for its determination of value, but at a
cost represented by the cost of capital calculation. Column 10a
in the EVA model calculations (Exhibits 1B, 2B, 3B, 4B, 5B,
and 6B) shows the cost of the initial capital. The present value
of this negative cash flow in perpetuity exactly offsets the value
contributed by immediate recognition of the capital in the EVA
formula. If the capital does not provide earnings equal to or
greater than the hurdle rate in the form of excess profits, then
the capital does not substantiate its value and is worth less than
100 cents on the dollar.

18The value of capital is worth 100 cents on the dollar if you can release the capital at
time zero. Otherwise, the capital is worth the present value of the distributable earnings
generated by the capital. If distributable earnings represent a return lower than the hurdle
rate, then capital is worth less than 100 cents on the dollar.
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TABLE 5

Valuation Results When

Earnings on Operations = 0:0%
Total Earnings = 4:0% (Investment Only)

and There Is No Growth

10-Year Forecast Terminal In Perpetuity
Model Period Value (Total)

DCF 20.08 6.59 26.67
EVA(a) 44.79 (18.13) 26.67
EVA(b) 44.79 (18.13) 26.67

That the EVA model counts the initial capital amount as value
and the DCF model does not leads to significant differences in
value contributors between the forecast period value and the
terminal value. Tables 1, 2, 3, and 4 all show that the results
for the 10-year forecast period for the EVA model are close
(and sometimes equal) to the in perpetuity time frame results.
In the EVA model, therefore, excluding earnings beyond a cer-
tain time period does not have a material effect on value. In
contrast, a significant portion of the value indicated by the DCF
model is captured as terminal value. In these examples in which
the total earnings of the company are set close or equal to the
hurdle rate, the EVA model approaches the in perpetuity value
faster.

Table 5 shows model value results in which earnings related
to operations are 0.0%.

For a scenario in which the company’s earnings potential is
low, the DCF model produces a value closer to the in perpetuity
value in the 10-year period than the EVA model. The DCF model
is not “fooled” by the value of the stated initial capital in the short
term. The DCF model considers only the earnings potential of
the capital, not the capital itself. The result is further exaggerated
when growth is incorporated as shown in Table 6.
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TABLE 6

Valuation Results When

Earnings on Operations = 0:0%
and Total Earnings = 4:0% (Investment Only) and

Earnings and Capital Are Growing @ 3% Per Annum

10-Year Forecast Terminal In Perpetuity
Model Period Value (Total)

DCF 5.57 2.77 8.33
EVA(a) 38.78 (30.45) 8.33
EVA(b) 38.78 (30.45) 8.33

3.9. Comparison of EVA(a) and EVA(b)

We present two versions of the EVA model: EVA(a) and
EVA(b). The EVA(a) version defines excess earnings as the dif-
ference in after-tax operating income and the cost of invested
capital. After-tax operating income is recognized for the com-
pany as a whole; the amount is not segregated into investment
versus operational earnings. Likewise, the cost of capital relies
on the product of the “full” hurdle rate and the amount of capital.

The EVA(b) model formula defines earnings and cost of cap-
ital differently. The EVA(b) model formula does not include in-
vestment earnings related to the capital as earnings. In the con-
text of a property/casualty insurer, earnings are only underwrit-
ing earnings from premium written and investment income on
assets supporting the liabilities ensuing from writing insurance
policies. Under EVA(b), earnings are lower, but so is the cost of
capital. The cost of capital is the hurdle rate less the investment
income rate the company will earn on its capital–in a sense, the
shortfall in investment earnings relative to the hurdle rate.

From the basic valuation examples presented in this section,
the two forms of the EVA produce identical results. EVA(a) fol-
lows from financial valuation fundamentals [15]. EVA(b) is of-
ten regarded as the “actuarial valuation method.” Sturgis [20]
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describes the economic value of a property/casualty insurance
company as composed of three parts: (i) current net worth, plus
(ii) the discounted value of future earnings, less (iii) the cost of
capital, where future earnings and cost of capital are defined per
our EVA(b) model.

Miccolis [17] describes a computation similar to the one by
Sturgis to determine an insurer’s economic value: (i) adjusted
surplus, plus (ii) discounted value of future earnings, less (iii)
cost of capital. Miccolis, however, is unclear regarding the com-
putation for the cost of capital.

We consider the EVA(a) model to be the preferred structure
for applying the economic value added model. EVA(a) is more
straightforward to apply and avoids potential complications. It
relies on financial estimates of earnings that are comparable to
actual financial projections for a property/casualty insurer. To
use the EVA(b) model, one must attempt to isolate the source
of earnings between amounts earned from premium written and
investment income on the capital. This approach further neces-
sitates an allocation of invested assets between those support-
ing the liabilities and assets underlying the capital and surplus.
In addition, splitting earnings into its “component” parts raises
potential tax application questions that complicate the valuation
process.

4. PARAMETERIZING THE VALUATION MODEL

4.1. Accounting

Insurance companies in the United States use multiple forms
of accounting. Statutory Accounting Principles (SAP) are used
for reporting to state regulatory authorities and Generally Ac-
cepted Accounting Principles (GAAP) are used for reporting to
the Securities and Exchange Commission and the public. Tax
accounting underlies the computation of taxable income. SAP
focuses on the current solvency of an insurance company and its
ability to meet its obligations. Due to this focus on protection
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of policyholders, assets and liabilities are generally valued con-
servatively on the statutory balance sheet, although the result is
dependent on specific company or financial conditions.

Historically, noteworthy differences between GAAP and SAP
for property/casualty insurance companies are related to

1. Deferred acquisition costs (DAC),

2. Deferred tax assets (DTA) and liabilities (DTL),

3. Premium deficiency reserve (PDR), and

4. Valuation of bonds.

1. Deferred acquisition costs

The asset associated with DAC recognizes that the unearned
premium reserve (UEPR) may be overstated because it funds
expenses (e.g., agents’ commissions) that are typically paid
at the beginning of the policy period and have already been
incurred on the income statement. As the unearned premium
reserve is earned, this overstatement disappears.19 Statutory
accounting does not permit recognition of the value of this
asset until it materializes in future statutory earnings. In isola-
tion, this difference in the treatment of the DAC asset would
cause GAAP equity always to be greater than or equal to SAP
equity.

2. Deferred tax assets and liabilities

Deferred tax assets and liabilities are created primarily from
taxes resulting from discounted loss reserves and unrealized
gains and losses. For a growing company, the tax calcula-
tion results in an “overpayment” of taxes initially related to
discounted incurred losses, offset by a lower payment in sub-
sequent years when claims are paid. This difference is solely a

19For a going concern, we acknowledge that it is replaced by equity in the unearned
premium reserves for the following year’s business.
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timing issue, as the total amount of taxes that will be paid for
profits associated with a block of business or block of assets
does not change. The prepayment of taxes (or tax credit for
unrealized losses) is corrected as the business runs off or the
assets are sold.

With the introduction of DTA and DTL for statutory account-
ing, these assets and liabilities are now recognized on the bal-
ance sheet before the business runs off or the assets are sold.
For many companies, this change increases their statutory cap-
ital.

3. Premium deficiency reserves

The PDR is required when the unearned premium reserve is
expected to be insufficient to fund the future loss and expense
payments originating from those policies. This reserve will
reduce statutory capital.

4. Valuation of bonds

In general, SAP requires bonds to be held at amortized cost
(although bonds that are not “in good standing” are carried
at market value). GAAP, on the other hand, uses amortized
cost for only “held-to-maturity” bonds, which the company
has both the intent and ability to hold to maturity. For those
bonds in the company’s active trading portfolio, GAAP re-
quires market value treatment on the balance sheet.

With the codification of statutory accounting principles, which
became effective January 1, 2001, deferred tax assets, deferred
tax liabilities, and premium deficiency reserves were recognized
on the statutory balance sheet. The most significant difference
that remains relates to deferred acquisition costs.

As stated in Actuarial Standard of Practice (ASOP) No. 19
[1], for insurance companies, statutory (or regulatory) earnings
form the basis for determining distributable earnings, since the
availability of dividends to equity owners is constrained by the
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amount of accumulated earnings and minimum capital and sur-
plus requirements. Both of these amounts must be determined
on a statutory accounting basis. Distributable earnings consist
of statutory earnings, adjusted as appropriate in recognition of
minimum capital and surplus levels necessary to support existing
business. Therefore, statutory accounting determines the earn-
ings available to the equity owners.

While future earnings calculated according to GAAP or an-
other basis will often be of interest to the user of an actuarial ap-
praisal, the free cash flow calculations contemplated within the
definition of actuarial appraisal in ASOP No. 19 should be de-
veloped in consideration of statutory earnings, rather than some
other basis.

GAAP earnings and GAAP net worth, however, are often the
basis of the relative valuation methods involving market multi-
ples.

As the major difference between GAAP and SAP accounting
is DAC, which may be recognized as an asset on the GAAP
balance sheet immediately instead of through future earnings,
GAAP net worth is typically higher than SAP net worth. SAP
net worth may be greater, however, when the amortized value of
bonds in the SAP asset portfolio is higher than the market value
of bonds in the GAAP asset portfolio.

4.2. Estimating Free Cash Flows or Value Added

Estimating free cash flows for a DCF valuation or changes
in value of the company in each period for an EVA valuation
requires the use of after-tax operating earnings from accounting
statements. However, accounting earnings may not represent true
earnings because of limitations in accounting rules and the firms’
own actions.

For a property/casualty insurance company, changes in the eq-
uity of the firm derive not only from (i) after-tax operating earn-
ings (net income in the statutory income statement) and (ii) cap-
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ital infusions or distributions, but also from (iii) “below the line”
adjustments to capital. These adjustments represent items that do
not flow through the statutory income statement for changes in
unrealized capital gains or losses, changes in nonadmitted as-
sets, changes in provisions for reinsurance, change in foreign
exchange adjustment, or changes in deferred income taxes. To
the extent that these adjustments increase (decrease) the equity
of the firm, they also increase (decrease) free cash flows for the
DCF valuation methodology and increase (decrease) excess re-
turns for the EVA valuation methodology.

For a property/casualty insurer, estimating after-tax operat-
ing earnings (including “below the line” statutory adjustments to
capital) typically requires rigorous analysis. For the purpose of
analysis, the sources of future earnings can be subdivided into
two broad categories: the runoff of the existing balance sheet and
future written business.

4.3. Runoff of the Existing Balance Sheet

The runoff of the existing balance sheet produces earnings as-
sociated with (i) underwriting profit embedded in the UEPR20;
(ii) investment income on the assets supporting (a) the loss re-
serves (inclusive of all loss, allocated loss adjustment expense,
and unallocated loss adjustment expense reserves) and (b) UEPR
liabilities until all the associated claims are paid; and (iii) invest-
ment income on the capital base supporting the runoff of the
business.21

The earnings associated with new (or renewal) business de-
rives from (i) the underwriting profit generated by the business;
(ii) the investment income on the assets generated by the pre-

20Profit embedded in the UEPR represents underwriting profit and profit associated with
the prepaid expenses (corresponding to the deferred acquisition cost asset established for
GAAP accounting).
21For an EVA valuation, if one projects earnings with a capital base of zero (an EVA(b)
scenario), this component will be zero.



286 THE APPLICATION OF FUNDAMENTAL VALUATION PRINCIPLES

mium, supporting loss reserves and UEPRs until all of the claims
are paid, and (iii) investment income on the capital base support-
ing the writing of the new business.

Developing financial projections (income statements, balance
sheets, and cash flows) related to running off the existing bal-
ance sheet liabilities, assuming no new or renewal business is
written, will provide the basic elements for valuing the com-
pany in runoff. The key factors involved are (i) the payout of
the loss reserves, (ii) the ultimate losses and expenses associated
with the unearned premium reserve, (iii) the payout of the losses
and expenses associated with the unearned premium reserve, (iv)
the capital needed each year to support the company in runoff,
and (v) the investment yield earned on assets until all claims are
paid and all capital is released. In practice, when running off
a company that writes personal lines business, renewals may be
mandated for several years by the regulatory authorities. In those
instances, running off the company might also reflect the writing
of some renewal business.

When it is important to understand the value associated
with the runoff of the business separate from value associated
with the writing of new (or renewal) business, we recommend
the following approach. Value the company in runoff reflect-
ing the level of capital required to run off the company. Then,
value the company reflecting earnings and capital needs asso-
ciated with maintaining the company as a going concern. That
is, earnings projections and capital needs are developed for the
combination of running off the existing balance sheet and writing
new business. The value of solely writing new business should
be computed as the difference between the two valuations.

The suggested approach is beneficial on both a practical and
a theoretical basis. On a theoretical basis, the valuation of the
runoff company relative to the going concern improves the de-
termination of capital required for new business. On a practical
basis, both valuations will use the same starting balance sheet.
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4.4. Future Written Business

For property/casualty insurance companies, in contrast with
life insurance companies, the distinction between new and re-
newal business is often not meaningful for developing financial
projections for future written business. For direct writers of per-
sonal lines business, however, for whom the initial cost of acquir-
ing new business and the associated expected loss ratio differs
substantially from the expenses and loss ratios associated with
renewal business, the distinction between new and renewal busi-
ness may be very important for developing financial projections.

Financial projections are usually developed by line of business
or business segment corresponding to the detail in which the
company being valued provides its premium forecasts. The key
elements to be estimated by year and line of business are

² Gross written premium;
² Net written premium;
² Accident year gross and ceded loss and loss expense ratios;
² Gross commissions and ceding commissions;
² Other overhead expenses (premium taxes, general and admin-
istrative expenses, other acquisition costs);

² Collection schedules for premium;
² Payment schedules for commissions and other overhead ex-
penses;

² Payment pattern for gross and ceded accident year loss and
loss adjustment expense; and

² Collection pattern for ceded reinsurance recoveries.
For the book of business in total, the key elements to be estimated
are

² Investment yield on investible assets,
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² Capital needed to support the entire book of business, and
² Federal income taxes applicable to earnings.

The primary contributors to investment earnings are the tim-
ing differences between the collection of the premium and the
payment of claims and loss adjustment expense. For most lines
of business, there is little delay in premium payment by the pol-
icyholder. When premiums are paid in installments, however,
or when audit premiums represent a significant portion of the
ultimate collected premium, it is important to evaluate the lag
because of the resulting impact on the investment income cal-
culation. Reinsurance recoveries may need to be projected on a
contract-by-contract basis if the indemnification terms vary sig-
nificantly.

In determining the future earnings from new and renewal
business, projected loss and expense ratios are the most impor-
tant components to be modeled. As Miccolis [17] and Ryan and
Larner [19] note in their papers on valuation, issues to be consid-
ered in the projection of future loss and expense ratios include

² Changes in price levels;
² Trends in loss severity, claim frequency, and exposure base;

² Historical industry results;
² Underwriting cycles;
² Target rates of return;
² Expected future growth rates;
² Degree of competition in market;
² Regulatory environment;
² Exposure to catastrophes; and
² Changes in ceded reinsurance (coverage, terms, pricing).
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4.5. Present Value of Future Earnings

Once the future earnings stream (including gains and losses
in capital that do not flow through earnings) from running off
the existing balance sheet and future written business has been
estimated, it is discounted to present value at the selected hurdle
rate. For an EVA valuation, the future earnings stream is used di-
rectly without consideration of capital infusions or distributions.
For a DCF valuation, the future earnings stream (i) less earnings
retained for capital growth or (ii) plus additional capital released
represents free cash flows.

4.6. Adjusted Net Worth

In valuing a company, it is common practice to adjust the
equity of the firm at time zero to consider value (positive or
negative) associated with reserve deficiencies or redundancies,
market value of assets, nonadmitted assets, and statutory provi-
sions for reinsurance, among other factors.

The adjustments to statutory equity in the computation of
ANW for an EVA valuation (and free cash flow at time 0, FC0,
for a DCF valuation) represent an effort to adjust the starting
statutory balance sheet to its true market value. These adjust-
ments described by Miccolis [17] and Ryan and Larner [19] and
summarized below represent an attempt to recognize the market
value of some items on the statutory balance sheet. For example,
common adjustments include reflecting assets at market value
and eliminating goodwill. In contrast, there are usually no com-
parable adjustments for liabilities. For loss reserves and unearned
premium reserves, market value would reflect future investment
income plus a provision for risk. Instead of market value ad-
justments, any value associated with the liabilities (other than
adjusting reserves to their actuarially indicated amount) is rec-
ognized through the present value of future earnings.

Since statutory accounting determines free cash flows to in-
vestors, one could support the position that adjustments to the
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equity of the firm at time zero should be limited to tax-affected
reserve adjustments (to bring carried reserves to the actuarial
indicated level) and other changes that “true up” the statutory
balance sheet. Adjustments to statutory capital to compute ANW
that are not permitted under statutory accounting will not change
statutory capital and therefore will not affect free cash flows.
Many financial experts, however, insist that assets be adjusted
to their market value at the date of valuation. Further, goodwill
carried on the balance sheet is almost always eliminated for val-
uation, even though it is now a statutory asset. Experts continue
to disagree on how these adjustments should be handled for val-
uation.

Either way, if the net worth or the equity of the firm is adjusted
to recognize nonadmitted assets, or reflect the market value of all
assets, then the firm’s future earnings or changes in capital must
be adjusted to prevent double counting this value. For example,
if all assets are marked to market for the valuation, then future
earnings of the firm must not reflect any realized gains or losses
associated with assets unless the market values change. Further, if
nonadmitted assets are added back to the starting net worth of the
firm, then any capital increases associated with the recognition
of nonadmitted assets must be eliminated from future financial
projections.

Any adjustments to the starting capital to determine ANW
will cause the EVA and DCF valuation results to diverge unless
the same adjustments are made for both valuation methodolo-
gies. Otherwise, for DCF, these values will be recognized on a
discounted basis through future earnings or “below the line” ad-
justments to equity. For EVA, they will be recognized at time
zero, thereby reflecting no present value discount in the compu-
tation of value.

The common adjustments to the starting capital (SC0) for val-
uation are listed below. Only items 1 and 6 are consistent with
statutory accounting principles and therefore will have the same
effect on EVA and DCF valuations. The other adjustments to
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ANW, unless also assumed to impact SC0 for DCF, thereby af-
fecting FC0, will cause the EVA and DCF valuation results to
diverge. The direction (positive or negative) of the difference
between the EVA and DCF valuation result will be dependent
on the direction (positive or negative) of the tax-affected adjust-
ments for items 2, 3, 4, and 5.

1. Loss reserve adequacy
For a property/casualty insurance company, policyholder

claim obligations are usually the largest liability on the statu-
tory balance sheet. As a result, it is critical to assess the reason-
ableness of the carried loss and loss adjustment expense (LAE)
reserves as of the valuation date to meet unpaid claim obliga-
tions.

Adjustments for the loss reserve position should be made di-
rectly against statutory equity as of the valuation date for both
DCF and EVA valuations. Adjustments to the carried loss re-
serves will impact ANW for an EVA valuation and FC0 for a
DCF valuation.

2. Market value of assets
Traditionally, the majority of the investment portfolios for

property/casualty insurance companies have been placed in
bonds, especially U.S. Treasury or other federal agency instru-
ments. SAP requires bonds “in good standing” to be valued at
amortized cost. For the purpose of a valuation, however, bonds
should be valued at market value in order to reflect what an
independent buyer would actually pay to purchase the securities.

Common and preferred stocks, which represent the next
largest portion of most property/casualty insurance companies’
portfolios, are recorded at values provided by the National As-
sociation of Insurance Commissioners’ (NAIC) Securities Val-
uation Office. These values are typically equal to market value
and thus are less likely to require an additional adjustment. Other
investable assets should also be adjusted to market value, but are
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a much smaller component of the total portfolio and thus the
adjustments are likely to have a smaller impact on the adjusted
net worth.

3. Inclusion of nonadmitted assets
Some states do not admit certain assets on the statutory bal-

ance sheet because they either do not conform to the laws and
regulations of the state or are not readily convertible to liquid
assets. Exclusion from the balance sheet results in a charge to
statutory equity. For the purpose of a valuation, however, one
should include any portion of nonadmitted assets that has finan-
cial value and may be convertible to cash.

Examples of nonadmitted assets include

² Agents’ balances overdue by 90 days or longer;
² Bills receivable that have not been taken for premium;
² Furniture, equipment (other than electronic data processing
(EDP) equipment and software), and supplies; and

² Leasehold improvements.
In some cases, there may be overlap with the adjustment of

assets to market value. For example, when the market value of
real estate is below its net book value, the excess of book over
market value is recorded as a nonadmitted asset while the ad-
mitted asset, which underlies the amount of statutory surplus, is
equal to the market value. Care should be taken to ensure that
there is no double counting.

4. Accounting goodwill
SAP for purchases defines goodwill as the difference between

the cost of acquiring a subsidiary, controlled, or affiliated entity
and the purchaser’s share of the book value of the acquired entity.
Positive goodwill exists when the cost of the acquired entity is
greater than the purchaser’s share of the book value. According
to codified SAP, however, positive goodwill from all sources is
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limited in the aggregate to 10% of the parent’s capital and surplus
(adjusted to exclude any net positive goodwill, EDP equipment,
and software).

Assets for goodwill are generally assumed to have zero value
until such value emerges through future earnings.

5. Provision for reinsurance
SAP produces a “provision for reinsurance” that is calculated

in Schedule F of the NAIC Annual Statement and is carried for-
ward to the statutory balance sheet as a liability. This provision
is intended to be a measure of conservatism to reflect unsecured
reinsurance placed with unauthorized companies and collectibil-
ity issues with all reinsurers.

In a valuation, a more detailed review of collectibility issues is
worthwhile in order to estimate any additions (or further reduc-
tions) to equity to reflect a more rigorous estimate of reinsurance
recoverables.

6. Tax issues regarding all of the above
Any adjustments to the statutory balance sheet may also have

a corresponding impact on the company’s federal income tax li-
ability. The federal tax liability, or deferrable tax asset, is based
on statutory net income and a series of adjustments. Any ad-
justments made to statutory equity for valuation should be tax-
affected.

In mergers or acquisitions, taxes are particularly difficult to
address because one must consider the tax position of both par-
ties.

4.7. Hurdle Rate

The hurdle rate used in a valuation should reflect the cost to
the firm of acquiring the capital necessary to make the acquisi-
tion or perform the transaction in question. Typically, this value
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will be provided by management based on its appraisal of the ac-
quisition’s relative risk and required return. When not provided
by management, the hurdle rate can be estimated using a variety
of security valuation methods.22 In either case, when establishing
the hurdle rate, it is important for the analyst to consider several
issues, including the following:

1. Risks attributable to business activities of the acquisition
The risk attributable to the business activities of the acqui-

sition determines the cost of the capital required to make the
acquisition. This risk measure should not be confused with the
risk associated with the acquiring entity, which may be different.
The risk of a firm, in total, reflects an interaction of the risks
of its underlying business activities. The cost of capital of any
particular activity may differ from that of the firm as a whole.

2. Consideration of multiple hurdle rates
If the target acquisition is engaged in several activities (e.g.,

different lines of business) of varying risk, it may be appropriate
to consider projecting several streams of free cash flow and dis-
counting them at different rates. An alternative to this approach
may be to allocate capital to business activity in such a way as to
equalize risk across lines. If this approach is used, then a single
discount rate for all cash flows may be appropriate.

One reason to consider the latter approach is that one can
generally observe the hurdle rate only for the firm as a whole,
and not for its component parts. Thus, the hurdle rates reflect
the average risk of the firm’s activities and are not necessarily
appropriate for any single business. If there were large samples of
publicly traded firms specializing in particular lines of business,
then it would be possible in theory to observe the hurdle rate for
those specific activities. In practice, however, there are a limited

22The most prominent models in widespread use are the capital asset pricing model
(CAPM) and the dividend valuation model (sometimes known as the DCF or Gordon
growth model). Both models are described in numerous sources, including Damadaran
[7].
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number of publicly traded insurers and they tend to be multiline
firms involved in a wide variety of businesses (many of which
have substantially different risk profiles). These considerations
support using a single hurdle rate reflecting average risk activities
and then adjusting the amount of required capital so that the risk
of the acquisition is equivalent to the average risk of the firm.

3. Method of financing the acquisition
If the acquisition is to be financed with a mix of debt and

preferred and common equity, then the appropriate hurdle rate
should reflect the weighted average after-tax costs to the firm
of acquiring capital through these vehicles. The capital structure
underlying the acquisition, and not necessarily the existing cap-
ital structure of the acquiring entity, is the relevant issue. For
example, if a firm is currently financed with a mix of debt and
equity, but intends to pursue an acquisition financed solely by
equity, then the relevant hurdle rate is the equity cost of capital.

4. Consistency with other assumptions
The discount rate depends on relative risk, which in turn de-

pends on several factors that may be related to other aspects of
the valuation. For example, in addition to the intrinsic risk of
its specific business activities, the cost of capital for a firm will
depend, among other things, on the firm’s leverage and mix of
assets. Both of these factors, however, will have an impact on the
projected free cash flow that forms the foundation of the valu-
ation. There must be consistency between the assumptions used
to develop the cash flows and those used to develop the discount
rate.23

4.8. Capital Needs

The capital required to support an insurance company is a key
assumption in the valuation process.

23The discount rate is often viewed as the sum of a risk-free rate and a market risk
premium as in the CAPM. The value of the market risk premium is a topic of debate
among financial economists.
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For the DCF methodology, capital requirements dictate the
amount of capital to be retained in the company to support on-
going operations, thereby determining distributable earnings and
associated value. For the EVA methodology, capital requirements
dictate the capital that underlies the cost of capital calculation.
The higher the capital requirement, the higher the cost of the
capital element of the valuation formula.

Property/casualty insurance companies are subject to statutory
capital requirements. Statutory capital requirements are deter-
minable through the property/casualty insurance industry’s risk-
based capital (RBC) requirements. The results can be viewed as
minimum capital requirements. Often, larger capital investments
are required to satisfy the financial rating agencies such as A. M.
Best, Standard and Poor’s, and Moody’s in order to maintain de-
sirable financial ratings. All of these factors are considerations
in determining capital requirements for valuation.

Premium-to-surplus ratios, loss reserves-to-surplus ratios, and
multiples of RBC have been used in valuation to determine cap-
ital needs. These are typically based on comparable ratios for
“peer companies,” which are companies with premium volume
and lines of business comparable to the subject company. In these
instances, it is essential that the selected capital match or exceed
RBC requirements.

In actuarial and finance literature, there are many articles and
papers related to capital requirements and capital allocation for
insurers. Theories about capital requirements range from sim-
plistic rules of thumb (e.g., maintenance of a premium-to-surplus
ratio of 2.0) to intricate risk models. In practice, it is common
for insurance companies to maintain a level of capital that is
sufficient for a desired financial rating.

4.9. Cost of Capital

We defined the cost of capital (COC) as the product of the
present value of each period’s starting capital and the hurdle rate.
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The COC is used to measure excess returns in each period for the
EVA valuation methodology. Excess returns are computed as the
difference between operating earnings in each period (inclusive
of gains and losses in capital that do not flow through earnings)
and the COC. This concept is more thoroughly discussed in Sec-
tions 2 and 3.

Economists and other financial professionals equate the term
cost of capital with the hurdle rate. Care should be taken in
using and understanding the meaning of the term in a particular
context.

5. RECENT CHANGES AND OTHER CONSIDERATIONS

A variety of changes have occurred over the past 15 years that
may affect the valuation of a property/casualty insurer. While
many of these changes may not affect valuation methodology,
they are relatively new developments that require consideration
in the determination of value.

5.1. Accounting24

Codification of Statutory Accounting Principles
The starting point for valuation based on EVA and DCF

methodologies is the statutory balance sheet. One significant
change with respect to the determination of statutory surplus is
the 2001 codification of statutory accounting principles (SAP).

With the introduction of codified SAP, there are at least two
key changes that affect statutory surplus for many companies:
(i) the treatment of deferred taxes, and (ii) the requirement to
establish a premium deficiency reserve. Both of these changes
mitigate the differences between statutory and GAAP account-
ing.

24One might question why accounting changes should affect value. As statutory earnings
and statutory capital influence free cash flows (when either capital can be released from a
company or additional capital contributions are required), accounting changes that affect
statutory income or statutory surplus influence value.
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Codified SAP now requires the accrual of a deferred tax asset
(DTA) or liability (DTL). Consider a company that purchases one
share of stock on January 1, 2001, for $100. If the company holds
the stock and it appreciates to $1,000 as of December 31, 2001,
the company will be required to accrue a DTL for the unrealized
capital gain. (The DTL is calculated as t£ (1,000¡ 100), where t
is the corporate tax rate.) Conversely, the determination of federal
taxes using discounted loss reserves results in the accrual of a
DTA. As a result, a company’s statutory surplus is affected by
necessary adjustments for DTAs and DTLs.

A premium deficiency reserve (PDR) is required to supple-
ment the unearned premium reserve (UEPR) when the UEPR is
inadequate to fund for future liabilities related to the unearned
exposure.

Each of these changes resulting from codification affects the
starting statutory surplus in a valuation and, as a result, the en-
tity’s future earnings. Prior to codification, a shortfall in the
UEPR or the value of a DTL or DTA would have been rec-
ognized in future earnings as losses are incurred or assets are
sold. Codified SAP reflects the associated value immediately on
the balance sheet. In computing value prior to codification, the
value associated with the PDR, DTA, or DTL would have been
recognized on a discounted basis through the present value of
future earnings component of the DCF or EVA valuation meth-
ods. After codification, value associated with the PDR, DTA, or
DTL is as recorded in the statutory balance sheet.

Fair Value Accounting
Financial assets and liabilities are accounted for in numerous

ways under current U.S. accounting rules. For property/casualty
insurance companies there is GAAP accounting, statutory ac-
counting, and tax accounting. Each of the various measuring
approaches has its advantages and disadvantages. In general,
GAAP accounting for property/casualty insurance companies is
accounting for a “going concern.” It reflects adjustments that
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make insurance financials comparable to other industries. Statu-
tory accounting is a more conservative form of accounting to
meet regulatory requirements targeted at protecting policyhold-
ers. Tax accounting is the basis of the tax calculation.

Historically, many financial assets were accounted for at cost
or amortized cost. These values are readily available and verifi-
able. Many financial liabilities were at ultimate settlement value,
which is a value that in many cases is contractually set and thus
readily available and auditable.

The adoption of Financial Accounting Standard (FAS) 115
[12], which requires market value accounting for assets held in a
“trading portfolio,” led to the discussion of fair value accounting
for financial assets and liabilities. With the adoption of FAS 115,
several parties raised concerns about requiring assets to be held
at market value when the liabilities were not reported at market
values. Since then, the Financial Accounting Standards Board
has stated a vision of having all financial assets and liabilities
reported at fair value, which is considered an economic value.

The fair value of an asset or liability could be defined as the
estimated market value or as the actual market value when a
sufficiently active market exists. If no sufficiently similar assets
or liabilities exist by which to estimate a market value, the es-
timated market value is based on present value of future cash
flows adjusted for risks.

Fair value accounting is most commonly an issue for finan-
cial assets or liabilities. Financial assets are generally either cash
or contractual rights to receive cash or other financial assets. Fi-
nancial liabilities are generally obligations to provide financial
assets.

Fair value accounting may have an important influence in
valuing property/casualty insurance companies. If a fair value
accounting approach is adopted for statutory accounting, recog-
nition of many flows will be accelerated relative to statutory ac-
counting. As such, the introduction of fair value accounting will
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change the value estimates derived from the methods described
in this paper, with value estimates increasing if accelerated rev-
enues are higher than accelerated expenses and value estimates
decreasing when the reverse is true.25

For example, any embedded value associated with investment
income on the loss and LAE reserves or profit in the unearned
premium reserve would be reflected in fair value accounting at
the time the loss or unearned premium reserve is reported. How-
ever, fair value accounting, at least initially, may not consider
cash flows and associated profits from policy renewals or new
business. Therefore, the fair value accounting net worth of an
insurance company, initially, may approximate its runoff value.

5.2. Regulatory Changes

Risk-Based Capital Requirements
In 1993, the NAIC adopted RBC standards for property/casu-

alty insurers. These standards are used by regulators to help to
identify insurers that require regulatory attention and, as a result,
the standards may be viewed as minimum capital requirements.
As such, these requirements affect valuation because they can
form a key determinant in the amount of capital a company must
hold. Further changes in RBC could affect insurance company
valuations if there are changes in required capital levels.

Gramm-Leach-Bliley Act
The Financial Services Modernization Act of 1999 (Gramm-

Leach-Bliley Act or GLBA) enabled closer alignment of insur-
ance companies and other financial institutions such as banks
and securities firms. A primary feature of GLBA is that a bank
holding company or foreign bank that meets certain eligibility
criteria may become a financial holding company (FHC). FHCs

25The impact on value is relevant whether these accelerated revenues and expenses are
recognized in the income statement or solely as a direct adjustment to surplus. As both
after-tax operating income and amount of capital affect free cash flows, either change
could influence value.
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are authorized to engage in a range of financial activities such as
insurance agency and underwriting activities, merchant banking
activities, and securities underwriting and dealing.

To date, GLBA has not had a significant impact on the prop-
erty/casualty insurance industry because there are very few affil-
iations of insurance companies with other financial institutions.
The 1998 merger of Citicorp and Travelers Group to form Citi-
group was the first merger between an insurer and a bank since
such mergers were prohibited in 1933. (In August 2002, how-
ever, Citicorp spun off the property/casualty operations of Trav-
elers to end the affiliation of the banking institution and life
insurance operation with the property/casualty insurance oper-
ation.) There has been no subsequent merger activity between
property/casualty insurers and other financial institutions since
the Citicorp merger.

Nonetheless, if a property/casualty insurer were affiliated with
an FHC, the affiliation might affect certain assumptions related
to the valuation of the insurer. The Federal Reserve Board, which
regulates FHCs, is prohibited from directly imposing capital re-
quirements on insurance affiliates, but it does establish capital
requirements for FHCs. These FHC capital requirements may
have an implicit influence on the capital level of an insurance
subsidiary.

5.3. Stochastic Analysis of Insurance Company Financial
Results
A unique feature of property/casualty insurance is the stochas-

tic nature of claim emergence and settlement. In general, it is dif-
ficult to predict the timing of cash flows related to policyholder
claims. While almost every line of business has the potential
to generate unexpected claim experience, catastrophic insured
events are particularly difficult to estimate because of the low
frequency and high severity of these events. These events may
have a severe and adverse impact on the operating earnings of
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an insurer and thus should be considered during the financial
projection process. There are two broad approaches to model-
ing future financial projections: scenario testing and stochastic
modeling.

Scenario testing is a deterministic approach in which results
are projected from a specific set of conditions and assumptions.
With this static approach, the user defines a scenario that re-
flects assumptions about various components of the company.
The user is able to define the specific interrelationships of com-
ponents and evaluate the impact of changes in different factors
on the financial projections. This approach produces results that
are easy to explain and easy to modify by incorporating one or
more alternative assumptions.

Stochastic modeling has become increasingly popular in re-
cent years for the property/casualty industry via dynamic finan-
cial analysis (DFA). Underlying stochastic models are proba-
bility distributions for each of the stochastic variables reflected
in the model. Based on the probability distributions and a ran-
dom number generator, the stochastic model produces a range
of outcomes from which probabilities may be determined for
the results. Its flexibility and ability to test the impact of a wide
range of variables simultaneously make it an appealing approach.
With respect to the implementation of stochastic modeling, how-
ever, the probability distributions for the stochastic variables and
the correlations between components are critical to a meaningful
model.

Over the past 10 to 15 years considerable emphasis has been
placed on the DFA of financial results for insurance companies
to evaluate capital needs, capital allocation, ceded reinsurance
structures, and the risk associated with specific business initia-
tives. Since valuation formulas include the present value of fu-
ture earnings, stochastic modeling of insurance financial results
would seem like a natural adjunct to valuation.
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In practice, valuing an insurance company is often undertaken
in a limited timeframe. Valuation is usually based on expected
value results for earnings with sensitivity tests related to changes
in premium growth rates, changes in loss ratios, changes in hur-
dle rates, and changes in annual investment yields.

The contribution from stochastic modeling for valuation is
that it would provide better definition of risk (the distribution of
possible outcomes around the expected value) and could be used
to derive better estimates of the cost of capital.

5.4. Exposure to Natural Catastrophes

As noted by Gorvett et al. [5], exposure to natural catastro-
phes has had a very significant impact on the performance of the
property/casualty insurance industry worldwide. As a result, the
major catastrophic events during the past 15 years have accel-
erated the evolution of the modeling of natural catastrophes and
also led to a recent proposal to create a prefunded catastrophe
reserve on the statutory balance sheet.

Though the range of sophistication of catastrophe models
varies widely, there are three essential elements of most mod-
els regardless of whether the model is deterministic or stochastic.
First, there must be an estimate of the intensity of the underlying
peril. This estimate is often simulated based on historical infor-
mation about catastrophes related to the particular peril. Second,
for the underlying peril, the model requires an estimate of the
total damage caused by the peril. For a given peril, the damage
estimate primarily depends on the geographical location of the
risk and the value and construction type of the structure affected
by the peril. The final key element is an estimate of the loss to
the insurer, based directly on the location of policies written and
limits provided.

For the purpose of insurer valuation, the primary benefit of
catastrophe modeling is related to scenario testing. While it is
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beneficial to understand the expected average severity of natu-
ral catastrophes, catastrophe models are unable to help identify
the future timing of these events. As a result, the future earn-
ings stream of an insurer with significant insurance exposure to
natural catastrophes is much more difficult to predict.

Due to the immediate and extremely adverse impact catas-
trophes may have on the balance sheets of property/casualty in-
surers and reinsurers, there has been a recent NAIC proposal
to establish a tax-deferred prefunded catastrophe reserve. The
intent of this proposal is to establish a simple mechanism by
which insurers and reinsurers can prudently manage risk created
by exposure to natural catastrophes. This mechanism is intended
to reduce the uncertainty related to the future earnings stream of
insurers with significant exposure to natural catastrophes. The fo-
cus of the current proposal is on exposure of property insurance
coverages to natural mega-catastrophes (e.g., Hurricane Andrew
in 1992) that are expected to occur in the future.

As currently proposed, this “reserve” can be more appropri-
ately viewed as segregated surplus. For the purpose of solvency
regulation, the pre-funded nature of this reserve is also expected
to come with restrictions on how it may be taken down over
time.

This reserve and its funding mechanism will lead to addi-
tional considerations related to the determination of starting cap-
ital and future earnings for the purpose of a valuation. If the
catastrophe reserve is immediately funded out of existing capi-
tal and as a liability, the entity’s starting capital for the purpose
of valuation will be reduced. If, however, the reserve is consid-
ered to be segregated surplus, the value of the company will not
change. An alternative pre-funding approach is to contribute a
percentage of premiums to the catastrophe reserve fund. This
would have no impact on starting capital, but would affect fu-
ture earnings. The direction of the change, however, is uncer-
tain.
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6. CONCLUSION

The valuation of property/casualty insurance companies is an
important feature of actuarial work. Much of the actuarial liter-
ature on valuation focuses on the method referred to through-
out this paper as economic value added. Other financial service
professionals, however, often rely on a discounted cash flow ap-
proach to valuation. One of the principal intentions of this paper
is to demonstrate that, with a common set of assumptions, the
EVA and DCF modeling approaches will produce equivalent val-
ues. For both methods, the key factors underlying value are (i)
the projection of future income, (ii) the required capital, and (iii)
the hurdle rate. Developing future income estimates, appropri-
ate growth assumptions (and the resultant capital needs), and
the appropriate hurdle rate for the entity requires sophisticated
analysis. Furthermore, there are aspects of valuation, such as the
determination of adjustments to the starting capital of the entity,
for which experts have varying points of view. Recent changes
such as the development of fair value accounting principles will
provide further ideas on the valuation of assets and liabilities of
a property/casualty insurance company. We hope that this paper
will help actuaries and other financial professionals to explain
the valuation process for property/casualty insurance.



306 THE APPLICATION OF FUNDAMENTAL VALUATION PRINCIPLES

REFERENCES

[1] Actuarial Standards Board, Actuarial Standard of Practice
No. 19, “Appraisals of Casualty, Health, and Life Insurance
Businesses,” American Academy of Actuaries, June 2005.

[2] Babbel, David F., and Craig Merrill, “Economic Valuation
Models for Insurers,” The Wharton Financial Institutions
Center Working Paper Series, 1997, pp. 1—21.

[3] Brealey, Richard A., and Stewart C. Myers, Principles of
Corporate Finance, New York, NY: McGraw-Hill, Inc.,
1991.

[4] Casualty Actuarial Society, “Statement of Principles Re-
garding Property and Casualty Valuations,” 1989.

[5] Casualty Actuarial Society, “Special Issues,” Chapter 10
in Foundations of Casualty Actuarial Science, 4th Edition,
Arlington, VA: Casualty Actuarial Society, 2001, pp. 723—
807.

[6] CAS Task Force on Fair Value Liabilities, “White Paper
on Fair Valuing Property/Casualty Insurance Liabilities,”
2000.

[7] Damodaran, Aswath, Investment Valuation, New York, NY:
John Wiley & Sons, Inc., 2002.

[8] D’Arcy, Stephen P., et al., “Building a Public Access PC-
Based DFA Model,” Casualty Actuarial Society Forum,
Summer 1997, pp. 1—40.

[9] Ehrbar, Al, EVA–The Real Key to Creating Wealth, New
York, NY: John Wiley & Sons, Inc., 1998.

[10] Feldblum, Sholom, “Forecasting the Future: Stochastic
Simulation and Scenario Testing,” Casualty Actuarial So-
ciety Discussion Paper Program, 1995, pp. 152—177.

[11] Feldblum, Sholom, “NAIC Property/Casualty Insur-
ance Company Risk-Based Capital Requirements,” PCAS
LXXXIII, 1996, pp. 297—389.



THE APPLICATION OF FUNDAMENTAL VALUATION PRINCIPLES 307

[12] Financial Accounting Standards Board, “Statement of Ac-
counting Standards No. 115, Accounting for Certain In-
vestments in Debt and Equity Securities,” May 1993.

[13] Goldfarb, Richard, presentation at CAS meeting, 1997.

[14] Hall, James A., et al., “The Valuation of an Insurance Com-
pany for an Acquisition Involving a Section 338 Tax Elec-
tion,” PCAS LXXII, 1985, pp. 227—238.

[15] Hodes, Douglas, et al., “The Financial Modeling of Prop-
erty-Casualty Insurance Companies,” Casualty Actuarial
Society Forum, Spring 1996, pp. 3—88.

[16] McKinsey & Company, Inc., Valuation–Measuring and
Managing the Value of Companies, New York, NY: John
Wiley & Sons, Inc., 2000.

[17] Miccolis, Robert S., “An Investigation of Methods, As-
sumptions, and Risk Modeling for the Valuation of Prop-
erty/Casualty Insurance Companies,” Casualty Actuarial
Society Discussion Paper Program, 1987, pp. 281—321.

[18] National Association of Insurance Commissioners, Ac-
counting Practices and Procedures Manual, Kansas City:
National Association of Insurance Commissioners, 2002.

[19] Ryan, J. P., and K. P. W. Larner, “The Valuation of General
Insurance Companies,” Journal of the Institute of Actuaries,
1990, pp. 597—669.

[20] Sturgis, Robert W., “Actuarial Valuation of Property/Casu-
alty Insurance Companies,” PCAS LXVIII, 1981, pp. 146—
159.

[21] Taylor, Greg C., “Valuation of a Non-Life Insurance Com-
pany for Purchase,” SCOR Notes, 1991, pp. 7—69.

[22] Whitehead, Guy H., “Appraisal Values for Property and
Casualty Insurance Companies for Merger or Acquisi-
tion,” Casualty Actuarial Society Discussion Paper Pro-
gram, 1989, pp. 279—340.



308 THE APPLICATION OF FUNDAMENTAL VALUATION PRINCIPLES

[23] Yunque, Mark, and Len Goldberg, “Taxation Issues in Valu-
ation of Property Casualty Operations,” Casualty Actuarial
Society Discussion Paper Program, 1989, pp. 217—258.



THE APPLICATION OF FUNDAMENTAL VALUATION PRINCIPLES 309

APPENDIX A

SAMPLE COMPANY VALUATION

This section presents a detailed example of valuing a prop-
erty/casualty insurance company. The modeled valuation will fo-
cus on

² Modeling aspects of a property/casualty insurer given current
financial statements, investment assumptions, underwriting as-
sumptions for current and future business, and loss and ex-
pense payment assumptions;

² Determination of future earnings from projected financial
statements based on selected surplus and business volume con-
straints;

² Application of DCF and EVA valuation approaches using
an existing balance sheet and projected financial statement
amounts (balance sheet, income statement, and cash flow ex-
hibits);

² Testing the sensitivity of indicated value to changes in key as-
sumptions (risk-based capital-to-surplus requirement, loss ra-
tios, investment yield, hurdle rate, and growth rate).

Our objective is to provide a thorough and functional discus-
sion of the valuation of a property/casualty insurance company
and a basic discussion of the development of earnings projec-
tions. The actuary or other professional preparing the valuation
will, of course, undertake extensive analysis to develop premium,
loss, and expense assumptions, investment yields, and other fac-
tors to project earnings. We present many assumptions “as given”
without further explanation.

A.1. Valuation Estimates Based on Financial Model Results

The valuation results for the sample company, Primary Stock
Insurance Company (PSIC), rely on two basic assumption sets:
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1. Financial modeling assumptions underlying financial
statement projections; and

2. Valuation assumptions underlying the application of the
DCF and EVA methodologies yielding value estimates
of PSIC based on the financial statement projections.

Exhibit 7 shows the value estimates for PSIC for each method
and the principal components for applying the valuation formu-
lae. The fundamental financial amounts entering the valuation
calculations are current and future year-end surplus estimates
and future total income estimates. Basic financial modeling as-
sumptions will be discussed later in this section; the primary
focus is the application of the valuation methodologies with the
modeled surplus and income amounts given specific valuation
assumptions.

The valuation assumptions are the following:

1. A valuation date of December 31, 2001.

2. PSIC’s risk-based capital (RBC) indication at each year-
end dictates the statutory surplus at the respective year-
end. The example uses a surplus-to-RBC relationship of
2-to-1 where the RBC indication is the Company Action
Level (100% of the RBC calculation) [11].

3. A hurdle rate of 15% per annum for all future years.

4. After the explicit forecast period ending December 31,
2011, we assume the surplus and total company income
will increase at 2% per annum indefinitely.

For each valuation methodology, future valuation amounts are
modeled in two distinct time periods: the explicit forecast period
(10 years for the example, 2002 through 2011), and all subse-
quent years (2012 and later). For our sample company valuation,
the explicit forecast period income and surplus estimates (via the
RBC calculation) rely on financial modeling procedures. Valu-
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ation indications for all subsequent years were estimated using
the respective method’s value formulas starting one year after the
explicit forecast period. For the DCF method, this calculation de-
velops to the terminal value. For the EVA method this calculation
develops the “continuing value added” after the explicit forecast
period.

Both models yield value of approximately $88 million as of
December 31, 2001. The comparison of the value components
for the two methodologies parallels observations made in Section
3 about the scenario in which a company achieves more than the
hurdle rate and is growing.

² The EVA method recognizes value amounts in the forecast
process faster than the DCF method. As of the end of the
explicit forecast period, through 2011, the EVA method value
estimate is $73.9 million ($42.1 million surplus plus $31.8
million as the present value of future value added in years
2001 through 2011). The DCF method value estimate is $54.7
million representing the present value of free cash flow for
years 2002 through 2011.

² The present value of the reinvestment cost (retained earnings)
of $21.9 million (for all years) for DCF equals the present
value of the cost of growth capital for EVA. The DCF rein-
vestment cost over the 10-year explicit forecast period ($18.97
million) is greater than the EVA cost of growth capital during
the same period ($10.14 million). The difference is offset in
modeled amounts for 2012 and subsequent years, $2.96 mil-
lion for DCF and $11.79 million for EVA.26

The following diagram shows the steps in the development of
value presented in Exhibit 7.

The recorded statutory surplus for PSIC as of December
31, 2001 is $45.00 million. However, this amount exceeds the

26DCF (18:97+2:96) = EVA (10:14+11:79) = 21:93.
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selected capitalization standard result of 2:0£ $21:07 million
(the RBC indication at December 31, 2001) or $42.13 million.
The “excess” surplus is recognized as free cash flow/value added
for both DCF and EVA at December 31, 2001 (time 0), and our
valuation models begin with a statutory surplus of $42.13 mil-
lion. For the EVA model, the surplus of $42.13 million is rec-
ognized immediately as value. It is also the basis of the cost of
capital calculation in the first period. For the DCF model, the
surplus of $42.13 million contributes to value only through the
investment income it earns in subsequent periods.

No other adjustments were made to the starting surplus for
valuation. Carried reserves were assumed to be at the actuarially
indicated amount. There was no difference between market value
and book value of investments and no other adjustments were
deemed warranted.

After establishing PSIC’s adjusted net worth, the valuation
process requires the total statutory income and RBC amounts
for the first future projection year, 2002, from the financial
model constructed for PSIC. Exhibit 8, Changes in Statutory Sur-
plus, shows the estimated future income for PSIC during 2002
to be $10.44 million. The PSIC valuation model includes in-
come from two categories: statutory net income and changes
in unrealized capital gains. Exhibit 9 shows the computation
of statutory net income. Unrealized capital gains stem from in-
creases in market value for preferred and common stock invest-
ments.

The projected RBC for year-end 2002 is $23.25 million, lead-
ing to a December 31, 2002, required surplus of $46.50 million.
Exhibit 12 shows PSIC’s RBC calculation. During 2002, the re-
quired surplus increases by $4.37 million, from $42.13 million
to $46.51 million.

The DCF methodology determines value from free cash flow
estimates; for 2002 free cash equals $10.44 million of income
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less earnings retained to fund a surplus growth of $4.37 mil-
lion. Exhibit 8 shows the $6.07 million free cash flow ($10:44¡
$4:37 = $6:07) as a stockholder dividend. The contribution to
value of the 2002 free cash flow is the PV of $6.07 million
using the 15% hurdle rate.

The EVA methodology values returns in excess of the cost of
capital. For 2002, excess returns equal $10.44 million of income
less the cost of capital of $6.32 million, or $4.12 million. The cost
of capital equals the surplus as of the end of the prior year, $42.13
million, multiplied by the hurdle rate of 15%. The contribution
to value of the 2002 excess returns is the PV of $4.12 million
using the 15% selected hurdle rate, or $3.59 million.

As shown on Exhibit 7, the application of the DCF and EVA
methodologies given the total income, RBC, surplus projections,
and valuation assumptions is repeated for each year in the 10-
year explicit forecast period. The PV of free cash flow for the
DCF method during the 10-year period is $54.69 million. The PV
of excess returns for the EVA method through the 10-year period
is $31.81. The PV of excess returns plus the starting surplus of
$42.13 million yields the EVA indicated value through year 10
of $73.94 million.

The All Years value of PSIC under both valuation methods in-
cludes the PV contribution of value amounts beyond the explicit
forecast period. The amounts shown in the “Total ’12 to1” col-
umn in Exhibit 7 rely on perpetuity formula calculations rather
than annual detailed financial projections for 2012 and subse-
quent years. Appendix B and Section 2 show these formulas for
both methods and the algebraic derivation. The key assumptions
for these calculations are the following:

² The expected annual growth rate of surplus and total income
after 2011 is 2%. Thus, the implicitly projected surplus for
2012 is $77.86 million £1:02 = $79:42 million and the income
for 2012 is $18.71 million £1:02 = $19:08 million.
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² The hurdle rate is 15% for calculating the cost of capital for
the EVA method and for determining the PV of 2012 and
subsequent value amounts.

Both methods produce a valuation result of $88.03 million.

DCF

(1) Present value of free cash flow during the explicit forecast
period

$54.69

(2) Terminal value (present value of free cash flow subsequent to
the explicit forecast period)

$33.33

Total $88.03

EVA

(1) Adjusted net worth (starting surplus) $42.13
(2) Present value of value added amounts during the explicit

forecast period
$31.81

(3) Present value of continuing value added subsequent to the
explicit forecast period

$14.08

Total $88.03

A.2. Overview of the Financial Model

The property/casualty insurer financial model for the PSIC
valuation performs all of the necessary computations to produce
prospective statutory and GAAP financial statements. The major
functions of the model are (i) runoff of loss and LAE reserves,
(ii) payout of loss and loss adjustment expenses stemming from
the earning of the unearned premium reserve, (iii) estimation of
the level of future written premium and associated earned pre-
mium and application of the loss and expense ratio assumptions,
(iv) calculation of investment income, and (v) calculation of fed-
eral income tax due.

There are two items of note before discussing the details of
PSIC financial model projections. First, the model does not re-
flect all the changes resulting from the NAIC’s codification of
statutory accounting principles. An example is the recognition
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of a statutory asset or liability for deferred taxes. Even with-
out these items, the financial model results provide significant
insight into the considerations and calculations for valuing a
property/casualty insurance company. Second, the GAAP bal-
ance sheet and income statements are provided for the interested
reader. The GAAP results are not discussed in the text because
the valuation estimate relies exclusively on amounts computed
using statutory accounting.

Exhibit 11 is the detailed statutory balance sheet for PSIC.
The “Actual 2001” column shows amounts from PSIC’s Decem-
ber 31, 2001, statutory Annual Statement. Balance sheet items
are either the sum of amounts from individual lines of business
or for PSIC in total. Investment and cash amounts, items (1a)
through (1g) and the Total Investments and Cash subtotal, are
not segregated by line; neither are capital and surplus.

The remaining assets (receivables) and liabilities (payables
and loss, LAE, and unearned premium reserves) are the sums of
individual line of business amounts. In this example, PSIC wrote
and continues to write three lines of business: workers compen-
sation, auto liability, and general liability, all on a primary basis.
Exhibits 18, 19, and 20 show the December 31, 2001, balance
sheet amounts and business assumptions for the workers com-
pensation, auto liability, and general liability books of business,
respectively.

The largest single balance sheet item from the line of business
data is the net loss and ALAE reserve. Sheet 6 for Exhibits 18,
19, and 20 show the loss and LAE reserves as of December 31,
2001, for accident years 2001 and prior for each line of business.
Sheet 5 for each line of business shows the payment patterns for
the respective 2001 balance sheet reserve amounts.

Sheet 4 for Exhibits 18, 19, and 20 shows the other balance
sheet items associated with each line of business as of December
31, 2001.
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Exhibit 9 is PSIC’s Statutory Income Statement. Exhibit 8,
Change in Statutory Surplus, uses net income from Exhibit 9.
The annual change in statutory surplus equals net income plus
change in unrealized capital gains. Net income has three basic
components: underwriting income plus investment income less
federal income taxes. (The PSIC model does not include any
“other income” amounts.) PSIC’s underwriting income equals
the sum of income amounts for individual line of business un-
derwriting. Investment income and federal income taxes are com-
puted for PSIC in total. Investment income includes investment
income on the capital along with the assets generated by line of
business.

Sheet 1 for Exhibits 18, 19, and 20 provides the underwriting
income by line of business. Sheet 2 provides the calculation notes
for the components of the line of business underwriting income.
The principal assumptions are as follows:

Net Earned Premium

² Direct written premium (DWP) annual growth is 4%.

² 50% of DWP is earned in the year written, 50% in the follow-
ing year.

² Workers compensation and general liability have excess rein-
surance (10% of the DWP is ceded).

Net Incurred Loss and LAE

² As shown in Sheet 4 of Exhibits 18, 19, and 20, the selected
loss and LAE ratios for each line of business are as follows:

Direct Loss ALAE to Loss ULAE to Loss Ceded Loss
Ratio Ratio Ratio Ratio

Workers Comp 70.0% 8.0% 8.5% 100.0%
Auto Liability 64.0% 8.5% 7.5% N/A
General Liability 68.0% 15.0% 8.5% 100.0%



318 THE APPLICATION OF FUNDAMENTAL VALUATION PRINCIPLES

² These gross loss, gross LAE, and ceded ratios are applied to
the December 31, 2001, unearned premium reserve and earned
premium generated by the forecasted written premium.

Total Underwriting Year Expenses

² As shown in Sheet 4 of Exhibits 18, 19, and 20, the under-
writing expense ratios for each line of business are as fol-
lows (DEP = direct earned premium, CWP= ceded written
premium):

Agents’ Premium Other Underwriting Reinsurance
Commission Tax Expenses Commissions

(% DWP) (% DWP) (% DEP) (% DWP) (% CWP)

Workers Comp 10.0% 3.0% 3.0% 2.25% 0.0%
Auto Liability 15.0% 2.0% 2.25% 3.25% N/A
General Liability 12.5% 2.0% 4.0% 1.0% 0.0%

Investment income is shown in row (5) of the Statutory In-
come Statement (Exhibit 9). The sources of investment income
are realized capital gains, interest income, and dividends. The
annual yield rates (pretax) for each asset type are shown below:

Realized Capital Gains

Preferred Stocks 2.5%
Common Stocks 4.0%
Real Estate 4.0%

Interest Income

Taxable Bonds 6.0%
Non-taxable Bonds 4.0%
Cash 3.0%
Real Estate 4.0%
Other 2.0%
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Dividends

Preferred Stocks 5.0%
Common Stocks 2.0%

Invested Asset and Cash Distribution

Taxable Bonds 42.0%
Non-taxable Bonds 24.0%
Preferred Stocks 1.0%
Common Stocks 25.0%
Cash 5.0%
Real Estate 1.0%
Other 2.0%

Total 100.0%

Invested assets held at the beginning of a forecasted year will
earn a full year of investment income based on the assumed
yield percentages. Investment income is also earned on new cash
generated by PSIC’s insurance operations. The financial model
assumes that cash from operations is collected and invested at the
midpoint of each forecasted year. The collected cash is invested
according to the distribution of invested assets and cash shown
above. Thus, the distribution is constant for all forecasted years.

Cash flows from operations are shown in Exhibit 13. Premium
collections, loss and LAE payments, and underwriting expense
payments are modeled for each line of business. Sheet 3 of Ex-
hibits 18, 19, and 20 shows the cash flow from underwriting for
each line of business, respectively. In addition to the premium,
loss, LAE, and underwriting expense assumptions, the line of
business underwriting cash flow relies on the following assump-
tions:

² Loss and LAE payment patterns for each line of business
shown in Sheet 5 of Exhibits 18, 19, and 20, respectively. The
payment patterns apply to reserves carried as of December
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31, 2001, and loss and LAE incurred in 2002 and subsequent
accident years.

² Lag of one month in collection of direct premium.
² Lag of three months in paying ceded premium.
² Lag of one month in collection of ceded loss recovery.
Federal income tax is the final component for computing net

statutory income. The PSIC model followed the 2001 instruc-
tions for computing federal income tax for U.S. property/casualty
insurance companies.

Total income for valuation equals net statutory income plus
unrealized capital gains as shown in Exhibit 8. Unrealized capital
gains are computed as total annual capital gains in equity invest-
ments less realized capital gains. The capital gain percentages
are the following:

Preferred Stocks 11.0%
Common Stocks 9.5%

A.3. Sensitivity Testing

Table 7 shows the sensitivity of DCF and EVA value esti-
mates to changes in underlying assumptions. Exhibit 21 shows
additional detail related to each of these alternative scenarios.

For ease of reference, the assumptions underlying the base
case follow:

² Starting capital as of December 31, 2001 = $42:13 million.
² Surplus/RBC ratio = 2:0.
² Workers compensation loss ratio = 70%.
² Auto liability loss ratio = 64%.
² General liability loss ratio = 68%.
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² Average investment yield = 4:26% (weighted average of yields
by asset type).

² Premium growth = 3%.

² Hurdle rate = 15% for explicit forecast period and subsequent
years.

TABLE 7

Sensitivity Testing of Alternative Assumptions

DCF Model EVA Model

2001— 2012 2001— 2012
2011 to 1 Total 2011 to 1 Total

Base Case 54.7 33.3 88.0 73.9 14.1 88.0

Change in Assumption
Surplus/RBC ratio = 2:5 43.1 34.7 77.7 67.3 10.4 77.7

Base loss ratios+2% points 46.0 30.4 76.4 66.0 10.4 76.4
Base loss ratios ¡2% points 63.3 36.2 99.5 81.8 17.7 99.5

Investment yield +100 basis pts 67.6 39.8 107.5 86.9 20.6 107.5
Investment yield ¡100 basis pts 41.6 26.8 68.4 60.9 7.5 68.4

Premium growth = 0% 58.1 26.3 84.4 72.5 11.9 84.4
Premium growth = 6% 52.4 37.3 89.8 74.6 15.1 89.8

Hurdle rate +3% points 48.3 20.9 69.3 63.2 6.1 69.3
Hurdle rate ¡3% points 62.5 56.4 118.9 87.5 31.4 118.9

Table 8 shows the changes in value implied by the alternative
assumptions. Section 3 discusses the similarities and differences
of the models’ structure and results using varying assumptions.

These tables show that company value is very sensitive to
changes in the assumptions underlying the valuation. Every sen-
sitivity test alters value by at least 10%, except for the premium
growth assumptions. Large changes in premium growth assump-
tions had a small impact on value because the underwriting prof-
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TABLE 8

Changes From Base Case in Valuation Estimates

DCF Model EVA Model

2001— 2012 2001— 2012
2011 to 1 Total 2011 to 1 Total

Surplus/RBC ratio = 2:5 (11.6) 1.3 (10.3) (6.7) (3.7) (10.3)

Base loss ratios +2% points (8.7) (2.9) (11.7) (8.0) (3.7) (11.7)
Base loss ratios ¡2% points 8.6 2.9 11.5 7.9 3.6 11.5

Investment yield +100 basis pts 12.9 6.5 19.4 12.9 6.5 19.4
Investment yield ¡100 basis pts (13.1) (6.6) (19.6) (13.1) (6.6) (19.6)

Premium growth = 0% 3.4 (7.0) (3.6) (1.4) (2.2) (3.6)
Premium growth = 6% (2.3) 4.0 1.7 0.7 1.1 1.7

Hurdle rate +3% points (6.4) (12.4) (18.8) (10.7) (8.0) (18.8)
Hurdle rate ¡3% points 7.8 23.1 30.9 13.6 17.3 30.9

its of the insurance company are modest. This is apparent in
Exhibit 9, which shows the underwriting income contribution to
pretax operating income for 2002 through 2011.

The hurdle rate for the entire valuation period is also a key
assumption. Decreasing the hurdle rate from 15% to 12% for all
projection periods increases value by 35%.

An increase in the required surplus (raising the surplus-to-
RBC ratio from 2.0 to 2.5) lowers value. This result is logical in
that the higher the capital required, the lower the free cash flows
for DCF and the higher the cost of capital for EVA.

Value is also very sensitive to changes in the investment yield
for the asset portfolio. This result is logical for this company
since over 95% of the pretax operating income is related to in-
vestment income (as shown in Exhibit 9).

Valuation results will always be sensitive to small changes in
loss ratios as shown in Tables 7 and 8. A reduction in loss ratio
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of 2% for each line of business results in an increase in value of
13%.

Since the value of any company is a function of the assump-
tions used, as noted in Section 1, a valuation report should clearly
identify the source of every assumption. The report should spec-
ify whether the assumption was provided by the subject com-
pany, derived from historical experience, provided by a potential
investor, or developed from other sources. The source of an as-
sumption may be an indication of whether the assumption is
conservative, optimistic, or unbiased.
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APPENDIX B

DEMONSTRATION OF ALGEBRAIC EQUIVALENCE OF EVA AND
DCF

The general expression for value based on the discounted cash
flow (DCF) approach is

Value = FC0 +
1X
x=1

[OEx¡¢Cx]£ (1+ h)¡x, (DCF-1)

where

FC0 = Free cash available at time 0 to be released to
shareholders;

OEx =After-tax operating earnings generated in time
period x;

¢Cx =Change in required capital over time period
x= Cx¡Cx¡1, where Cx = required capital at
the end of time period x (this is equivalent to
the required capital at the beginning of time
period x+1); and

h=Hurdle rate (required return on capital).

Equation DCF-1 represents the sum of the free cash available
at time 0 and the present value of future free cash flows, where
future free cash flows (OEx¡¢Cx) are defined as after-tax oper-
ating earnings less the amount of required capital reinvestment.
For ease of illustration, we have made the simplifying assump-
tion that all cash flows occur at the end of the period.

Distributing and separating Equation DCF-1 into two separate
sums, we produce

Value = FC0 +
1X
x=1

OEx£ (1+ h)¡x¡
1X
x=1

¢Cx£ (1+ h)¡x:

(DCF-2)
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If we assume that both operating earnings and capital grow at
constant rate g, then

OEx =OEx¡1£ (1+ g) = OE1£ (1+ g)x¡1

and
Cx = Cx¡1£ (1+ g) = C0£ (1+ g)x

so

¢Cx = Cx¡Cx¡1 = Cx¡1£ g = C0£ (1+ g)x¡1£ g:
Substituting into Equation DCF-2, the DCF value becomes

Value = FC0 +
1X
x=1

OE1£ (1+ g)x¡1£ (1+ h)¡x

¡
1X
x=1

C0£ g£ (1+ g)x¡1£ (1+ h)¡x: (DCF-3)

By factoring out the constants, this equation is rewritten as

Value = FC0 +
OE1
(1+ h)

1X
x=1

·
(1+ g)
(1+ h)

¸x¡1

¡ C0£ g
(1+ h)

1X
x=1

·
(1+ g)
(1+ h)

¸x¡1
: (DCF-4)

Note that g, the growth rate, will always be less than h, the
hurdle rate. As a result, the sum of the infinite geometric series
can be solved easily as A¥ (1¡R), where A is the first term in
the series and R is the multiplicative factor used to generate the
next term in the series. The sum converges to

1

1¡ (1+ g)
(1+ h)

=
1+ h
h¡ g :

When we substitute this into Equation DCF-4, the (1+ h)
terms cancel, so the formula for value based on a DCF approach
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becomes

Value = FC0 +
OE1
(h¡ g) ¡

C0£ g
(h¡ g) : (DCF-5)

This is appropriately viewed as the sum of all free cash flows,
or initial capital plus the present value of future earnings, minus
the present value of future required capital reinvestments.

The general expression of EVA is

Value = SC0 +
1X
x=1

[OEx¡ (h£Cx¡1)]£ (1+ h)¡x,

(EVA-1)
where

SC0 = Starting capital, which is equal to the sum of
free capital and required capital at time 0
(FC0 and C0, respectively, as defined in the
DCF discussion); and

OEx, Cx, and h have the same definitions as in the DCF
discussion.

Formula EVA-1 represents the required capital at the valuation
date (time = 0) plus the present value of future economic prof-
its. Economic profits for time period x are defined as after-tax
operating earnings (OEx) reduced by the cost of capital, which
is the product of the hurdle rate and the required capital at the
beginning of each period (h£Cx).
Distributing and separating Equation EVA-1 into two separate

sums, we produce

Value = SC0 +
1X
x=1

OEx£ (1+ h)¡x¡
1X
x=1

(h£Cx¡1)£ (1+ h)¡x:

(EVA-2)
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Based on a constant growth rate g for both after-tax operating
earnings and capital and the identities defined above in the DCF
discussion, the formula for EVA value is restated as

Value = SC0 +
1X
x=1

OE1£ (1+ g)x¡1£ (1+ h)¡x

¡
1X
x=1

h£C0£ (1+ g)x¡1£ (1+ h)¡x: (EVA-3)

By factoring out the constants, this may be rewritten as

Value = SC0 +
OE1
(1+ h)

1X
x=1

·
(1+ g)
(1+ h)

¸x¡1

¡ (h£C0)
(1+ h)

1X
x=1

·
(1+ g)
(1+ h)

¸x¡1
: (EVA-4)

Again, we use identities defined in the DCF discussion to
simplify Equation EVA-4 to the following:

Value = SC0 +
OE1
(h¡ g) ¡

h£C0
(h¡ g) : (EVA-5)

Formula EVA-5 can also be expressed as

Value = SC0 +
OE1
(h¡ g) ¡

(h¡ g+ g)£C0
(h¡ g) , (EVA-6)

or

Value = SC0 +
OE1
(h¡ g) ¡

(h¡ g)£C0
(h¡ g) ¡ g£C0

(h¡ g) , (EVA-7)

or

Value = SC0 +
OE1
(h¡ g) ¡C0¡

g£C0
(h¡ g) , (EVA-8)

or

Value = FC0 +C0 +
OE1
(h¡ g) ¡C0¡

g£C0
(h¡ g) , (EVA-9)
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or
Value = FC0 +

OE1
(h¡ g) ¡

g£C0
(h¡ g) : (EVA-10)

This is the same result as for the DCF model, as shown in Equa-
tion DCF-5.
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EXHIBIT 18

Sheet 5

Financial Modeling Assumptions

Workers Compensation

Loss Payment and Discounting

Interest Rate for
Payment Patterns for Loss and LAE Discounted Tax Reserves

Accident Accident
Year + Gross Ceded IRS Year Rate

0 21.00% 8.00% 25.00% 1982 7.20%
1 30.00% 18.00% 33.00% 1983 7.20%
2 14.00% 9.00% 16.00% 1984 7.20%
3 10.00% 9.75% 12.00% 1985 7.20%
4 4.00% 4.25% 4.00% 1986 7.20%
5 3.00% 3.25% 2.00% 1987 7.20%
6 2.00% 2.25% 1.50% 1988 7.77%
7 2.00% 2.50% 0.75% 1989 8.16%
8 1.75% 2.50% 0.75% 1990 8.37%
9 1.50% 2.50% 0.75% 1991 7.00%
10 1.50% 2.75% 0.75% 1992 7.00%
11 1.25% 2.50% 0.75% 1993 7.00%
12 1.00% 2.25% 0.75% 1994 7.00%
13 1.00% 2.50% 0.50% 1995 7.00%
14 0.75% 2.00% 0.50% 1996 7.00%
15 0.75% 2.25% 1.00% 1997 7.00%
16 0.50% 1.75% 1998 7.00%
17 0.50% 2.00% 1999 7.00%
18 0.50% 2.25% 2000 7.00%
19 0.25% 1.25% 2001 7.00%
20 0.25% 1.50% 2002 7.00%
21 0.25% 1.50% 2003 7.00%
22 0.25% 1.50% 2004 7.00%
23 0.25% 1.50% 2005 7.00%
24 0.25% 1.50% 2006 7.00%
25 0.25% 1.50% 2007 7.00%
26 0.25% 1.50% 2008 7.00%
27 0.25% 1.50% 2009 7.00%
28 0.25% 1.50% 2010 7.00%
29 0.25% 1.50% 2011 7.00%
30 0.25% 1.50%

Total 100.00% 100.00% 100.00%
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EXHIBIT 19

Sheet 5

Financial Modeling Assumptions

Auto Liability

Loss Payment and Discounting

Interest Rate for
Payment Patterns for Loss and LAE Discounted Tax Reserves

Accident Accident
Year + Gross Ceded IRS Year Rate

0 26.00% 22.00% 30.00% 1982 7.20%
1 26.00% 23.00% 29.00% 1983 7.20%
2 18.00% 16.00% 19.00% 1984 7.20%
3 13.00% 18.00% 10.00% 1985 7.20%
4 8.00% 10.00% 6.00% 1986 7.20%
5 4.00% 4.00% 3.00% 1987 7.20%
6 2.00% 3.00% 1.00% 1988 7.77%
7 1.00% 2.00% 1.00% 1989 8.16%
8 1.00% 1.00% 0.50% 1990 8.37%
9 1.00% 1.00% 0.50% 1991 7.00%
10 0.00% 0.00% 0.00% 1992 7.00%
11 0.00% 0.00% 0.00% 1993 7.00%
12 0.00% 0.00% 0.00% 1994 7.00%
13 0.00% 0.00% 0.00% 1995 7.00%
14 0.00% 0.00% 0.00% 1996 7.00%
15 0.00% 0.00% 0.00% 1997 7.00%
16 0.00% 0.00% 1998 7.00%
17 0.00% 0.00% 1999 7.00%
18 0.00% 0.00% 2000 7.00%
19 0.00% 0.00% 2001 7.00%
20 0.00% 0.00% 2002 7.00%
21 0.00% 0.00% 2003 7.00%
22 0.00% 0.00% 2004 7.00%
23 0.00% 0.00% 2005 7.00%
24 0.00% 0.00% 2006 7.00%
25 0.00% 0.00% 2007 7.00%
26 0.00% 0.00% 2008 7.00%
27 0.00% 0.00% 2009 7.00%
28 0.00% 0.00% 2010 7.00%
29 0.00% 0.00% 2011 7.00%
30 0.00% 0.00%

Total 100.00% 100.00% 100.00%
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EXHIBIT 20

Sheet 5

Financial Modeling Assumptions

General Liability

Loss Payment and Discounting

Payment Patterns for Loss and LAE Interest Rate for
Discounted Tax Reserves

Accident Accident
Year + Gross Ceded IRS Year Rate

0 15.00% 10.00% 17.00% 1982 7.20%
1 19.00% 14.00% 21.00% 1983 7.20%
2 17.00% 12.00% 19.00% 1984 7.20%
3 12.00% 10.00% 11.00% 1985 7.20%
4 10.00% 9.00% 9.00% 1986 7.20%
5 6.00% 6.25% 5.70% 1987 7.20%
6 5.00% 6.25% 4.00% 1988 7.77%
7 4.00% 5.25% 3.50% 1989 8.16%
8 3.00% 4.50% 2.50% 1990 8.37%
9 2.00% 3.50% 2.00% 1991 7.00%
10 1.75% 3.50% 1.75% 1992 7.00%
11 1.50% 3.50% 1.50% 1993 7.00%
12 1.25% 3.50% 1.00% 1994 7.00%
13 1.00% 3.00% 0.50% 1995 7.00%
14 0.75% 2.50% 0.50% 1996 7.00%
15 0.50% 2.00% 0.00% 1997 7.00%
16 0.25% 1.25% 1998 7.00%
17 0.00% 0.00% 1999 7.00%
18 0.00% 0.00% 2000 7.00%
19 0.00% 0.00% 2001 7.00%
20 0.00% 0.00% 2002 7.00%
21 0.00% 0.00% 2003 7.00%
22 0.00% 0.00% 2004 7.00%
23 0.00% 0.00% 2005 7.00%
24 0.00% 0.00% 2006 7.00%
25 0.00% 0.00% 2007 7.00%
26 0.00% 0.00% 2008 7.00%
27 0.00% 0.00% 2009 7.00%
28 0.00% 0.00% 2010 7.00%
29 0.00% 0.00% 2011 7.00%
30 0.00% 0.00%

Total 100.00% 100.00% 99.95%
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A NEW METHOD OF ESTIMATING LOSS RESERVES

COLIN M. RAMSAY

Abstract

This paper introduces a new method for estimating
loss reserves. The method is fundamentally different from
other loss reserving methods because it explicitly as-
sumes that the evolution of the incremental incurred loss
for an accident year is the result of a random split of
the ultimate loss for that accident year into separate
pieces that are observed in each development year over
the claim settlement period. The nature of the random
split and the pattern of the evolution of incremental in-
curred loss must be specified by the reserving actuary,
thus giving the method tremendous flexibility. A key fea-
ture of this method is that it provides loss development
factors without any knowledge of the distribution of the
ultimate loss and without the actual cumulative incurred
loss. Thus this method is suitable for calculating reserves
for new lines of business where there is little or no loss
settlement data.

1. INTRODUCTION

The loss reserving problem can be briefly described as fol-
lows. Let Si denote the unknown ultimate incurred loss

1 for ac-
cident year i (excluding expected income from salvage and sub-
rogation) and Cij denote the best estimate of cumulative incurred
loss amounts for accident year i and development year2 j. The
data used to estimate loss reserves are usually presented in the

1The loss reserving problem can also be described in terms of cumulative paid losses or
incurred but not reported (IBNR) losses.
2The development year refers to the number of calendar years as measured from the
accident year so that j = 0 refers to the accident year.

462
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TABLE 1

Loss Development Triangle

Development Year (j)
Accident
Year (i) 0 1 2 ¢ ¢ ¢ k¡ 1 k

1 C10 C11 C12 ¢ ¢ ¢ C1,k¡1 C1k
2 C20 C21 C22 ¢ ¢ ¢ C2,k¡1
...

...
...

...

k¡ 1 Ck¡1,0 Ck¡1,1
k Ck,0

form of a loss development triangle as shown in Table 1. A basic
assumption in loss reserving is that the data in the rows of Table 1
are mutually independent, i.e., Cij and Crm are independent if
i 6= r. In other words, losses from different accident years evolve
independently. Another assumption is that all losses are settled
within a certain number of calendar years, N years, say, from
their date of occurrence, regardless of the year of occurrence.
This means that Cij = CiN for j ¸N and i = 1,2, : : :. Sometimes,
however, the data in the loss development triangle consist of
incremental incurred losses, cij , where

cij =

(
Cij ¡Ci,j¡1 j = 1,2, : : :

Ci0 j = 0:

The decision to use either incremental or cumulative values de-
pends on the loss reserving method used.

Given Cij , the ultimate incurred loss for accident year i, Si, is
estimated as:

Si = Cij £LDFj (1)

where LDFj is the incurred loss development factor for develop-
ment year j to ultimate. When the total paid loss for occurrence
year i at the end of development year j (TPLij) is known, the
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loss reserve at that point in time (LRij) is then given by

LRij = Cij £LDFj ¡TPLij : (2)

There are numerous methods for estimating loss reserves.
These include the chain ladder method and its many mod-
ifications, separation methods, probabilistic methods such as
Bühlmann et al. [5], Bayesian methods (see De Alba [7] and
references therein), and many ad hoc methods such as the
Bornhuetter-Ferguson method [3]. For a detailed discussion of
the practical issues involved in developing loss reserves, see
Berquist and Sherman [1], Salzmann [16], Wiser [19], or Booth
et al. [2, Chapter 16]. For an overview of many older actuarial
loss reserving methods, see Van Eeghen [18]. A more modern
treatment of loss reserves is given in Taylor [17] and England
and Verrall [8].

The important common characteristic of established loss re-
serving methods is their reliance on the existence of a sufficiently
long loss run-off triangle. This makes many of them unsuitable
for estimating loss reserves for new lines of business, especially
in the early years where the loss development process is imma-
ture.3

For new lines of business, practical approach to loss reserving
may be as follows:

1. The actuary tries to get an understanding of the business
by talking to the underwriters and claims-handlers; then

2. The actuary makes his/her best a priori guess of the re-
serve based on this knowledge.

The actuary’s guess may be based on a simple loss ratio re-
serving method together with a rough conservative guess as to
the development pattern (possibly based on the experience from
some other similar business).

3One method that is suited for the early years is the Bornhuetter-Ferguson method.
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The objective of this paper is to provide reserving actuaries
with a method or process to assist them with their “best guess”
in the early years of development and with loss reserving in
general. The method introduced fundamentally is different from
other loss reserving methods because it explicitly assumes the
evolution of the incremental incurred loss for an accident year is
the result of a random split of the ultimate loss for that accident
year into separate pieces of losses that are observed in each de-
velopment year over the claim settlement period. The nature of
the random split and the pattern of the evolution of incremental
incurred loss must be specified by the reserving actuary, thus giv-
ing the method tremendous flexibility. As this method provides
loss development factors without any knowledge of the distri-
bution of the ultimate loss or of the actual cumulative incurred
loss, it is suitable for calculating loss reserves for new lines of
business, where there is little or no loss development data. This
method is suitable for paid and incurred loss, and can also be
used in conjunction with the Bornhuetter-Ferguson method by
providing the necessary loss development factors.

2. THE BASIC MODEL

As is common in many models of the property/casualty loss
reserving process, we assume:4

1. The maximum number of years it takes for incurred
losses to be completely paid and settled is fixed and
known to be N, i.e., a claim occurring in accident year i
is settled by the end of accident year i+N;

2. The incremental loss development processes from differ-
ent accident years are mutually independent, i.e., cij and
ckl are independent if i 6= k; and

3. The incremental incurred loss in each accident year
forms a non-negative decreasing sequence, i.e.,

4This model can also be described in terms of paid losses.
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cij > ci,j+1 for j = 0,1, : : : ,N ¡ 1. (The case where the in-
cremental incurred losses form an arbitrary sequence is
considered later in Section 5.2.)

Clearly, from the definitions of N , Si, and the cij’s,

Si = ci0 + ci1 + ¢ ¢ ¢+ ciN: (3)

where N = 1,2, : : : : is known. Equation (3) shows that Si can
be viewed as being split at random into N +1 pieces of loss
ci0,ci1, : : : ,ciN with the jth piece of loss being revealed (i.e., made
known) at the end of the jth development year. On the other
hand, Assumption 3 implies that the sequence ci0,ci1, : : : ,ciN is
an ordered sequence. It is unlikely that a purely random split will
lead to an ordered sequence. Thus the precise nature of the split
must be specified.

Suppose the total unknown incurred Si is split at random
under a uniform distribution into N +1 pieces of loss labeled
Xi1,Xi2, : : : ,Xi,N+1 such that

Si = Xi1 +Xi2 + ¢ ¢ ¢+Xi,N+1: (4)

We further assume that these pieces of loss are ordered and re-
labeled so that

Xi(1) · Xi(2) · ¢¢ ¢ · Xi(N+1):
By Assumption 3 the incremental incurred loss is a realization
of the ordered pieces of loss, i.e.,

cij = Xi(N+1¡j) and Cij =
jX
k=0

Xi(N+1¡k) (5)

for j = 0,1, : : : ,N.

At this point, it is important to clarify what is meant by the
statement “Si is split at random under a uniform distribution.”
Suppose we have N independent and identically distributed ran-
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dom variables, U1,U2, : : : ,UN , which are uniformly distributed on
(0,1). The U(j)’s are ordered and relabeled as

0<U(1) ·U(2) · ¢¢ ¢ ·U(N) < 1 (6)

and the end points are then defined as U(0) = 0 and U(N+1) = 1.
Next we define the spacings5 between the consecutive ordered
Uj’s as

Yj =U(j)¡U(j¡1) (7)

for j = 1,2, : : : ,N +1. Then a random split of Si into N +1 pieces
of loss Xi1,Xi2, : : : ,Xi,N+1 means

Xij = Si£Yj for j = 1,2, : : : ,N +1: (8)

Ordering the Yj’s as Y(1) · Y(2) · ¢¢ ¢ · Y(N+1) and an application
of Assumption 3 immediately yields

cij = SiY(N+1¡j) and (9)

Cij = Si

jX
k=0

Y(N+1¡k) (10)

for j = 0,1, : : : ,N . However, as the the cumulative incurred tends
to be more stable than the incremental incurred, Equation (9) is
not used to estimate Si. Instead, we use

Si =
CijPj

k=0Y(N+1¡k)
: (11)

3. ESTIMATING ULTIMATE LOSS

Recall that the Y(j)’s are not known until Si is known, hence
they must be estimated. The obvious estimator of Y(j) is its mean,

5For comprehensive treatment of the distribution of the spacings between successive
ordered random variables, see Pyke [14].
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which leads to the first estimate of the total incurred for accident
year i given the incurred losses through development year j:

Ŝ(1)i =
CijPj

r=0E[Y(N+1¡r)]
(12)

i.e., the loss development factor from j to ultimate is

LDF(1)j,N =
1Pj

r=0E[Y(N+1¡r)]
(13)

for j = 0,1, : : : ,N. Alternatively, we may use

Ŝ(2)i = CijE

"
1Pj

r=0Y(N+1¡r)

#
(14)

which yields the alternative loss development factor from j to
ultimate

LDF(2)j,N = E

"
1Pj

r=0Y(N+1¡r)

#
: (15)

From Jensen’s inequality, LDF(2)j,N ¸ LDF(1)j,N for every j. Before
calculating the values of LDF(1)j,N and LDF

(2)
j,N for various values

of j and N , the distribution of the Y(j)’s will be provided.

From the theory of the random division of an interval of unit
length (for example, David [6, chapter 5.4] or Feller [9, chap-
ter 1]), the variables Y1,Y2, : : : ,YN+1 form an exchangeable
sequence of dependent random variables with joint pdf:

f(y1,y2, : : : ,yN+1)

=

8><>: (N +1)! if yj ¸ 0 and
N+1X
k=1

yk = 1:

0 otherwise:
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The marginal distribution of Y(j) is given by Maurer and Margolin
[12, equation (4.4)] as

Pr[Y(j) > y] =
N+1X

m=N+2¡j
(¡1)m¡(N+2¡j)

Ã
m¡ 1

N +1¡ j

!

£
Ã
N +1

m

!
(1¡my)NI

½
y <

1
m

¾
where IfAg is an indicator of the occurrence of the event A. In
addition, the moments of Y(j) satisfy the recursion

(n¡ j)¹(k)j:n+ j¹(k)j+1:n = n¹(k)j:n¡1 (16)

where ¹(k)j:n = E[Y
k
(j)] for sample size n.

Due to the difficulties in deriving the inverse moments needed
in LDF(2)j,N , however, Monte Carlo simulations

6 are used to deter-
mine both sets of loss development factors. Table A1 in the Ap-
pendix shows the loss development factors LDF(1)j,N and LDF

(2)
j,N ,

respectively.

4. NUMERICAL EXAMPLES

Example 1: A Simple Data Set

Suppose a new product was introduced on January 1, 2000
and the loss development data as of December 31, 2002 are given
in Table 2.

The total paid loss to date is thus 1,719+2,573+1,761 =
6,053. To estimate the total ultimate loss, we must first specify
N. If we assume N = 3, then the total estimated ultimate loss for

6The uniform (0,1) random number generator run in Press et al. [13, chapter B7, page
1142] is used to perform all simulations.
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TABLE 2

Hypothetical Cumulative Incurred and Paid Losses

(in 000s)

Development Year (j)

Incurred Loss (Cij) Paid LossEarned
Accident Premiums
Year (i) (in 000s) 0 1 2 0 1 2

2000 4,500 1,447 1,976 2,454 401 1,166 1,761
2001 8,500 3,578 3,911 906 2,573
2002 16,000 4,754 1,719

2000—2002, as of December 31, 2002, is:

Ŝ(1) = 4,754£ 1:9195+3,911£ 1:2627+2,454£ 1:0662
= 16,680:18

Ŝ(2) = 4,754£ 2:0379+3,911£ 1:2826+2,454£ 1:0691
= 17,328:00

using the N = 3 rows of Table A1. The corresponding reserve
estimates are 10,627:18 = 16,680:18¡ 6,053 and 11,275:00 =
17,328:00¡ 6,053, respectively.
If, on the other hand, we assume N = 5, then the estimated

ultimate loss for 2000—2002, as of December 31, 2002, is:

Ŝ(1) = 4,754£ 2:4564+3,911£ 1:5412+2,454£ 1:2384
= 20,744:39

Ŝ(2) = 4,754£ 2:6221+3,911£ 1:5800+2,454£ 1:2505
= 21,713:57

using the N = 5 row of Table A1. These ultimates lead to reserve
estimates of 14,691:39 = 20,744:39¡ 6,053, and 15,660:57 =
21,713:57¡ 6,053, respectively.
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TABLE 3

Hypothetical Premium and Loss Development Data

(in 000s)

Development Year (j)
Accident Earned
Year Premium 0 1 2 3 4 5

1997 5,000 2,500 3,650 4,200 4,325 4,335 4,330
1998 5,500 2,150 3,225 3,775 3,965 3,960
1999 6,000 3,250 4,500 5,050 5,150
2000 7,000 3,700 5,200 5,775
2001 7,500 3,300 4,800
2002 8,000 4,250

Source: Based on the data in Bornhuetter and Ferguson [3, page 193, Exhibit A] with “Year of Origin”
changed from 1966—1971 to 1997—2002.

TABLE 4

Annual Loss Development Factors for Table 3

Development Year (j)
Accident Earned
Year Premium 0 1 2 3 4

1997 5,000 1.460 1.151 1.030 1.002 0.999
1998 5,500 1.500 1.171 1.050 0.999
1999 6,000 1.385 1.122 1.102
2000 7,000 1.405 1.111
2001 7,500 1.455
2002 8,000

Example 2: A Modified Bornhuetter-Ferguson Method

This method can be used to provide the ultimate loss develop-
ment factors needed in applications of the Bornhuetter-Ferguson
(B-F) method. For example, using the data in Table 3, the IBNR
reserves are estimated using the traditional B-F method and a
modified B-F method based on the LDF(1)j,N given in Table A1.
In deriving their estimates, Bornhuetter and Ferguson [3] as-
sume losses in the three most recent calendar years are settled
in 3 years. Table 4 shows the annual loss development factors.
Table 5 provides a summary of the results.
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TABLE 5

Hypothetical IBNR Reserve Computation as of

December 31, 2002

LDFs IBNR Factor Indicated IBNR

(2) (3) (4) (5) (6) (7)(1)
Accident Expected
Year Losses LDF(BF)

j
LDF(1)

j,3 1¡ 1=LDF
(BF)
j

1¡ 1=LDF(1)
j,3 B-F Mod. B-F

1999 5,700 1.000 1.0000 0.000 0.0000 0 0
2000 6,650 1.032 1.0662 0.031 0.0621 206 413
2001 7,125 1.166 1.2627 0.142 0.2080 1,012 1,482
2002 7,600 1.650 1.9195 0.394 0.4790 2,994 3,640

4,212 5,535

Notes: Expected Losses are 95% of the earned premium. The information in Columns (2), (4) and
(6) are provided by Bornhuetter and Ferguson [3, page 194, Exhibit B]. The information in Columns
(3) and (5) are derived from Table A1 with N = 3. Column (7) = Column (1) £ Column (5).

5. GENERALIZATIONS AND PRACTICAL CONSIDERATIONS

The loss reserving method introduced above is flexible and
can be generalized in at least two ways. For example, one can
consider a non-uniform random split and/or consider an arbitrary
ordered sequence of random spacings to reflect the evolution of
the incremental incurred loss.

5.1. A Non-Uniform Random Split

One can observe in Appendix Tables A1 and A2 that, under
the uniform random split, Ci,0 is a relatively small percentage of
Si then there is a fairly rapid development of incurred loss. For
example, in Table A1, 1=LDF(1)j,N and 1=LDF

(2)
j,N are small for j =

0,1 or 2, while Table A2 shows that the loss development factors
for years 1 and 2 are high suggesting the rapid development of
incurred losses.

If the actuary has loss development factors that are not sim-
ilar to the quantities in Tables A1 and A2, another distribution
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defined on (0,1) must be used to form the basis of the split. Un-
fortunately, there is no obvious alternative distribution, especially
one that is intuitively appealing. It is up to the reserving actu-
ary to specify a continuous distribution with support on (0,1).
Some alternative distributions with support on (0,1) include the
beta, the truncated gamma, and the truncated Pareto distributions.
One strategy that can be used is to have on hand tables similar
to Tables A1 and A2 for each potential alternative random split
distribution. The actuary can then use the table (i.e., distribution)
that best matches the observed loss development factors.

Suppose the actuary chooses a specific cumulative distribu-
tion function FU(u) with continuous support on (0,1). As the
length of the claims settlement period is N +1 years, we sam-
ple N independent and identically distributed random variables,
U1, : : : ,Uj , : : : ,UN from FU(u).

7 The sampled Uj’s are then ordered
and relabeled as before. The resulting spacings, Yj =U(j)¡U(j¡1),
with U(0) = 0 and U(N+1) = 1, are then used to define the ran-
dom split. As before, simulations are then used to determine the
expectations needed to determine the loss development factors.
As an example, Tables A3 and A4 provide the loss develop-
ment factors to ultimate and the annual loss development fac-
tors in the case of the truncated exponential pdf of Uj defined
by

fU(u) =
¸e¡¸u

1¡ e¡¸u , (17)

for 0· u· 1 and ¸ > 0.

5.2. An Arbitrary Ordered Sequence

Recall equation (9) in which we defined the sequence of in-
cremental incurred loss as ci0 ¸ ci1 ¸ ¢¢ ¢ ¸ ciN . If the actuary be-

7For more on techniques for generating random variables from continuous distributions
see Bratley, Fox, and Shrage [4, chapters 5 and 6]; Kalos and Whitlock [11, chapter 3];
Fishman [10, chapter 3]; and Ross [15, chapters 3 to 5].
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lieves, however, that the pattern of incremental incurred loss is
different, then tables of loss development factors to ultimate and
annual loss development factors that are consistent with the spec-
ified pattern must be derived.

To be precise, for j = 0,1, : : : ,N let j denote the order of
the set of order statistics Y(1),Y(2), : : : ,Y(N+1) that is used to de-
fine cij . Note that 0, 1, : : : , N is a permutation of the elements
of the set f1,2, : : : ,N +1g. (For example, equation (9) implies
j =N +1¡ j. As another example, the actuary may specifi-
cally believe that 0 =N ¡ 1, 1 =N , 2 =N +1, j =N +1¡ j
for j = 3, : : : ,N, which implies ci0 · ci1 · ci2 ¸ ci3 ¸ ¢¢ ¢ ¸ ciN .) It
follows that cij and Cij are defined as

cij = SiY( j), and (18)

Si =
CijPj
k=0Y( k)

: (19)

for j = 0,1, : : : ,N.

In general, the loss development factors can be obtained via
a simulation of sample size M as follows:

STEP 1. For given settlement period of N +1 years, set
TEMP(1)j,N = 0 and TEMP

(2)
j,N = 0 for j = 0,1,2, : : : ,N.

STEP 2. Create an (N +1) = 2 dimensional permutation vector
= ( 0, 1, : : : , N) containing the actuary’s specified pattern of
incremental incurred losses.

STEP 3. Generate N random variables U1, : : : ,Uj , : : : ,UN from the
actuary’s specified random splitting distribution, FU(u).

STEP 4. Order the sampled Uj’s as U(1) ·U(2) : : :·U(N).

STEP 5. For j = 1,2, : : : ,N +1, define Yj =U(j)¡U(j¡1), with
U(0) = 0 and U(N+1) = 1.
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STEP 6. Order the N +1 Yj’s as Y(1) · Y(2) : : :· Y(N+1).

STEP 7. For j = 0,1,2, : : : ,N , set

TEMP(1)j,N = TEMP
(1)
j,N +

jX
r=0

E[Y( r)]

TEMP(2)j,N = TEMP
(2)
j,N +

1Pj
r=0Y( r)

:

STEP 8. Repeat Steps 3 to 7 a total of M times.

STEP 9. For j = 0,1,2, : : : ,N, the loss development factors are
estimated as:

dLDF(1)j,N = M

TEMP(1)j,N
(20)

dLDF(2)j,N = TEMP(2)j,NM
: (21)

5.3. Other Practical Considerations

In practice, other potential problems may occur such as dif-
ferent accident years having different claim settlement periods.
For example, N depends on i, or the existence of negative in-
cremental incurred loss amounts. Tables 6 and 7 display two
hypothetical data sets with several problems. In Table 6, one can
assume that losses are settled in three years, i.e., N = 3. How-
ever, the losses do not exhibit the pattern assumed by Tables A1
and A2. In fact, even though the losses are settled in 3 years, the
total incurred loss changes only slightly after development year
1, and for year 2001 the cumulative incurred loss is decreasing.
Our method is not ideally suited to the data in Table 6 because
of the negative incremental losses. Further research is needed in
this area.
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TABLE 6

Second Hypothetical Cumulative Incurred Loss Data

(in $000s)

Development Year (j)
Accident
Year (i) 0 1 2 3 4 5 6

1997 2,237 2,369 2,376 2,376 2,376 2,376
1998 2,899 2,942 2,936 2,934 2,934
1999 2,225 2,330 2,322 2,325
2000 2,145 2,205 2,207
2001 1,513 1,499
2002 1,168

TABLE 7

Third Hypothetical Cumulative Incurred Loss Data

(in $000s)

Development Year (j)
Accident
Year (i) 0 1 2 3 4 5 6

1996 1,076 927 927 951 960 1,087 1,087
1997 957 1,193 1,312 1,295 1,220 1,392
1998 1,421 1,788 2,086 2,236 2,252
1999 1,473 1,910 2,235 2,192
2000 1,447 1,976 2,454
2001 3,578 3,911
2002 4,754

Table 7 presents similar challenges as some incremental in-
curred loss amounts are zero and some are negative. The se-
quence of incurred losses generated in 1996 and 1997 appear to
have a pattern distinct from those in subsequent years. In addi-
tion, it may be incorrect to assume the accident years all have the
same settlement period, i.e., N depends on i. In such cases where
there are non-positive incremental incurred losses and/or differ-
ent claim settlement periods, the ultimate incurred loss for acci-
dent
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TABLE 8

Loss Development Factors (Ci,j+1=Ci,j) from Table 7

Development Year (j=j+1)
Accident
Year 0/1 1/2 2/3 3/4 4/5 5/6

1996 0.8615 1.0000 1.0259 1.0095 1.1323 1.0000
1997 1.2466 1.0997 0.9870 0.9421 1.1410
1998 1.2583 1.1667 1.0719 1.0072
1999 1.2967 1.1702 0.9808
2000 1.3656 1.2419
2001 1.0931
2002

year i, Si, can still be estimated as

Si =
CijPj

k=0Y(Ni+1¡k)
: (22)

Note, the length of the claim settlement period can be approx-
imated by observing cumulative loss development factors. If the
assumptions of this model (as stated in Section 2) hold, then the
jth annual cumulative loss development factor for accident year
i, Ci,j+1=Ci,j , should satisfy

Ci,j+1
Ci,j

¼ LDF(k)j,N
LDF(k)j+1,N

(23)

for k = 1,2 and j = 0,1, : : :N ¡ 1. Table A2 shows the values
LDF(k)j,N=LDF

(k)
j+1,N for k = 1,2, j = 0,1, : : : ,9 and N = 1,2, : : : ,9.

The annual cumulative loss development factors should then be
compared with those in Table A2. Table 8 shows the actual cu-
mulative loss development factors generated by Table 7. Com-
paring the first two columns of Table 8 with those expected in
Table A2 show that patterns of actual cumulative loss develop-
ment factors for years 1997 to 2001 are too low, making the data
in Table 7 inconsistent with the assumption of a uniform random
split. Notice that the results of Tables A3 and A4 for ¸= 5 seem



478 A NEW METHOD OF ESTIMATING LOSS RESERVES

to better fit the data from the later years in Tables 7 and 8 than
the uniform random split.

6. SUMMARY AND CLOSING COMMENTS

For new lines of business, the practical approach to loss re-
serving requires the actuary to make his/her best guess of the re-
serve level based on prior knowledge. The actuary’s guess may
be based on a simple loss ratio reserving method together with a
rough conservative guess as to the development pattern (possibly
based on the experience from some other similar business). This
paper provides reserving actuaries with a tool to assist them with
their “best guess” of the reserves, especially in the early years of
development. The method essentially uses an a priori pattern in
the table of expected loss development factors to determine the
loss reserves. The pattern of expected loss development factors
is independent of the distribution of the cumulative incurred loss
in the accident year and can be varied depending on the actu-
ary’s estimate of the length of the claim settlement period, and
the random split used.

When there is a sufficiently large amount of data in the loss
development triangle, the actuary can use the method of this
paper to generate tables of expected loss development factors
to see which ones match the observed loss development factors.
The best matched tables can be used to estimate the loss reserves.

In closing, there are several important attributes of this
method:

1. It can be used for new and old business.

2. It can be used in conjunction with other methods such
as the Bornhuetter-Ferguson method.

3. It makes no assumptions about the underlying distribu-
tion of the ultimate losses.
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4. The ultimate losses are estimated using only the most
recent cumulative loss data.

5. The method can be used if the length of the settlement
period varies by year of origin.

6. The factors LDF(1)j,N , LDF
(2)
j,N and their ratios LDF(1)j,N=

LDF(1)j+1,N and LDF
(2)
j,N=LDF

(2)
j+1,N do not depend on the

actual loss development pattern.

7. Tables of factors and ratios can be created and saved for
each combination of development year j and settlement
period N , and for various types of random splits such as
the uniform and beta distributions. The appropriate table
can be chosen to:

a. Match the observed pattern of loss development fac-
tors or to

b. Match the actuary’s or underwriter’s best guess of
what the pattern of loss development factors should
be.
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APPENDIX

TABLE A1

Loss Development Factor from j to Ultimate For
Various Development Years and Settlement Periods (N)

Development Year j

N 0 1 2 3 4 5 6 7 8 9

Results for LDF(1)j,N :

0 1.0000
1 1.3345 1.0000
2 1.6353 1.1253 1.0000
3 1.9195 1.2627 1.0662 1.0000
4 2.1903 1.4015 1.1495 1.0416 1.0000
5 2.4564 1.5412 1.2384 1.0980 1.0288 1.0000
6 2.6959 1.6715 1.3259 1.1590 1.0689 1.0208 1.0000
7 2.9402 1.8007 1.4137 1.2232 1.1152 1.0516 1.0159 1.0000
8 3.1853 1.9333 1.5038 1.2894 1.1650 1.0881 1.0403 1.0126 1.0000
9 3.4169 2.0584 1.5905 1.3542 1.2153 1.1270 1.0691 1.0321 1.0101 1.0000

Results for LDF(2)j,N :

0 1.0000
1 1.3871 1.0000
2 1.7247 1.1347 1.0000
3 2.0379 1.2826 1.0691 1.0000
4 2.3333 1.4312 1.1569 1.0428 1.0000
5 2.6221 1.5800 1.2505 1.1015 1.0294 1.0000
6 2.8804 1.7182 1.3422 1.1649 1.0707 1.0211 1.0000
7 3.1417 1.8547 1.4343 1.2316 1.1185 1.0526 1.0161 1.0000
8 3.4033 1.9938 1.5281 1.3003 1.1698 1.0901 1.0409 1.0127 1.0000
9 3.6511 2.1259 1.6188 1.3676 1.2219 1.1301 1.0704 1.0325 1.0102 1.0000

Notes: Development year 0 refers to the year in which the claim was incurred. N is the number of
calendar years it takes to settle all claims occurring in the same calendar year. Thus N = 0 implies
claims are settled in the calendar year of their occurrence.
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TABLE A2

The Ratio Loss Development Factors For Various

Development Years and Settlement Periods

Development Year j=j+1

N 0/1 1/2 2/3 3/4 4/5 5/6 6/7 7/8 8/9 9/10

Results for LDF(1)j,N=LDF
(1)
j+1,N :

1 1.3345
2 1.4531 1.1253
3 1.5201 1.1843 1.0662
4 1.5628 1.2192 1.1036 1.0416
5 1.5938 1.2445 1.1279 1.0673 1.0288
6 1.6129 1.2606 1.1440 1.0843 1.0472 1.0208
7 1.6328 1.2737 1.1558 1.0968 1.0605 1.0351 1.0159
8 1.6476 1.2856 1.1663 1.1068 1.0707 1.0460 1.0273 1.0126
9 1.6600 1.2941 1.1745 1.1143 1.0784 1.0541 1.0359 1.0218 1.0101

Results for LDF(2)
j,N=LDF

(2)
j+1,N :

1 1.3871
2 1.5200 1.1347
3 1.5889 1.1997 1.0691
4 1.6303 1.2371 1.1094 1.0428
5 1.6595 1.2635 1.1353 1.0700 1.0294
6 1.6764 1.2801 1.1522 1.0880 1.0486 1.0211
7 1.6939 1.2931 1.1646 1.1011 1.0626 1.0359 1.0161
8 1.7070 1.3047 1.1753 1.1115 1.0732 1.0472 1.0278 1.0127
9 1.7175 1.3133 1.1836 1.1193 1.0813 1.0557 1.0367 1.0221 1.0102

Notes: Development year 0 refers to the year in which the claim was incurred. N is the number of
calendar years it takes to settle all claims occurring in the same calendar year. Thus N = 0 implies
claims are settled in the calendar year of their occurrence.
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TABLE A3

LDF
(1)

j,N for the Truncated Exponential Distribution

with Parameter ¸

Development Year j

N 0 1 2 3 4 5 6 7 8 9

¸= 1:
0 1.0000
1 1.3261 1.0000
2 1.6130 1.1209 1.0000
3 1.8811 1.2514 1.0634 1.0000
4 2.1304 1.3823 1.1424 1.0396 1.0000
5 2.3776 1.5139 1.2264 1.0931 1.0273 1.0000
6 2.6049 1.6376 1.3101 1.1513 1.0655 1.0197 1.0000
7 2.8284 1.7576 1.3920 1.2117 1.1093 1.0487 1.0150 1.0000
8 3.0482 1.8786 1.4756 1.2737 1.1562 1.0834 1.0381 1.0119 1.0000
9 3.2585 1.9959 1.5570 1.3349 1.2036 1.1200 1.0654 1.0303 1.0095 1.0000

¸= 5:
0 1.0000
1 1.2041 1.0000
2 1.3468 1.0672 1.0000
3 1.4597 1.1323 1.0331 1.0000
4 1.5554 1.1912 1.0716 1.0200 1.0000
5 1.6469 1.2461 1.1103 1.0456 1.0133 1.0000
6 1.7291 1.2954 1.1467 1.0725 1.0315 1.0094 1.0000
7 1.7950 1.3388 1.1802 1.0989 1.0515 1.0231 1.0070 1.0000
8 1.8582 1.3814 1.2124 1.1244 1.0717 1.0385 1.0176 1.0054 1.0000
9 1.9291 1.4239 1.2447 1.1508 1.0932 1.0555 1.0304 1.0141 1.0044 1.0000

¸= 10:
0 1.0000
1 1.1094 1.0000
2 1.1747 1.0346 1.0000
3 1.2211 1.0656 1.0169 1.0000
4 1.2589 1.0923 1.0357 1.0100 1.0000
5 1.2895 1.1155 1.0536 1.0226 1.0066 1.0000
6 1.3190 1.1360 1.0702 1.0355 1.0157 1.0047 1.0000
7 1.3454 1.1551 1.0861 1.0486 1.0258 1.0117 1.0036 1.0000
8 1.3649 1.1711 1.0997 1.0603 1.0355 1.0193 1.0089 1.0028 1.0000
9 1.3904 1.1879 1.1136 1.0722 1.0456 1.0275 1.0152 1.0071 1.0022 1.0000
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TABLE A4

LDF
(2)

j,N for the Truncated Exponential Distribution

with Parameter ¸

Development Year j

N 0 1 2 3 4 5 6 7 8 9

¸= 1:
0 1.0000
1 1.3791 1.0000
2 1.7023 1.1300 1.0000
3 2.0004 1.2710 1.0662 1.0000
4 2.2764 1.4115 1.1494 1.0408 1.0000
5 2.5492 1.5530 1.2382 1.0964 1.0279 1.0000
6 2.7976 1.6850 1.3263 1.1571 1.0673 1.0200 1.0000
7 3.0423 1.8129 1.4124 1.2199 1.1124 1.0498 1.0152 1.0000
8 3.2778 1.9405 1.5000 1.2843 1.1609 1.0853 1.0387 1.0120 1.0000
9 3.5078 2.0654 1.5854 1.3480 1.2099 1.1229 1.0666 1.0307 1.0096 1.0000

¸= 5:
0 1.0000
1 1.2424 1.0000
2 1.4106 1.0717 1.0000
3 1.5424 1.1419 1.0343 1.0000
4 1.6542 1.2056 1.0744 1.0205 1.0000
5 1.7630 1.2651 1.1150 1.0468 1.0135 1.0000
6 1.8570 1.3179 1.1531 1.0745 1.0320 1.0095 1.0000
7 1.9343 1.3650 1.1882 1.1018 1.0525 1.0234 1.0071 1.0000
8 2.0093 1.4113 1.2220 1.1282 1.0732 1.0390 1.0177 1.0054 1.0000
9 2.0895 1.4569 1.2559 1.1555 1.0953 1.0564 1.0307 1.0142 1.0044 1.0000

¸= 10:
0 1.0000
1 1.1246 1.0000
2 1.1978 1.0360 1.0000
3 1.2486 1.0682 1.0172 1.0000
4 1.2896 1.0959 1.0364 1.0101 1.0000
5 1.3235 1.1199 1.0547 1.0229 1.0067 1.0000
6 1.3546 1.1409 1.0716 1.0360 1.0158 1.0048 1.0000
7 1.3847 1.1608 1.0879 1.0493 1.0260 1.0118 1.0036 1.0000
8 1.4054 1.1773 1.1018 1.0612 1.0359 1.0194 1.0090 1.0028 1.0000
9 1.4342 1.1947 1.1160 1.0733 1.0460 1.0277 1.0153 1.0071 1.0022 1.0000



A MODERN ARCHITECTURE FOR RESIDENTIAL
PROPERTY INSURANCE RATEMAKING

JOHN W. ROLLINS

Abstract

This paper argues that obsolete rating architecture
is a cause of decades of documented poor financial per-
formance of residential property insurance products. Im-
proving rating efficiency and equity through moderniza-
tion of rating and statistical plans is critical to the con-
tinued viability of the products. In particular:

² The overall rate level should reflect an appropriate
provision for the cost of capital held for catastrophic
events, and the cost of capital should be allocated
appropriately in development of rating factors.

² The indivisible premium concept should be replaced
with peril-based rating, and rating factors developed
or adjusted to apply to peril-specific partial base
rates.

² Catastrophe simulation and geographic coding tech-
nology, incorporating non-historical experimental
data sets, should be applied to the development of base
rates, territory boundaries and factors, and classifi-
cation plans.

² Rating for the numerous miscellaneous exposures and
coverage options, as well as maintenance of statistical
plans, should be aligned with the peril rating concept.

The author develops an architecture and techniques
for ratemaking that satisfy the above precepts for the
homeowners product in a hurricane-prone state. The
transition from indivisible to divisible base premium
facilitated by this architecture is illustrated in case
study fashion, with practical implementation challenges
and solutions discussed. Many ideas are transferable to

486
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ratemaking for other residential and commercial prop-
erty products.
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1. MOTIVATIONS: THEORETICAL

The insurance industry has earned a chronically inadequate
rate of return on its chief residential property line, the home-
owners product, since the 1980s. Catastrophic (“cat”) events, the
toxic mold phenomenon, the growing popularity of vicious dogs,
outbreaks of sinkholes, and other root causes of loss have repeat-
edly surprised insurers in recent years. To date, responses have
been almost exclusively reactive: underwriting restrictions, cov-
erage limitations and sharp corrections in overall price level.

The classical “indivisible premium” rating plan in common
use for residential property products is a significant obstacle lim-
iting the industry to reactive responses of questionable economic
efficiency and actuarial equity. Actuaries can show strategic lead-
ership by engineering a proactive response–the development of
a modern architecture for ratemaking that improves overall rate
level efficiency as well as risk classification equity. The classical
plan is demonstrably obsolete, particularly in catastrophe-prone
areas, and greatly hinders the ability of insurers to identify, seg-
regate and monitor the component drivers of loss costs. Harmo-
nious advances in technology and actuarial science now allow us
to overcome the obstacles to modern rating architecture.

Specifically, these structural changes to rating plans are over-
due:

² Actuarially sound prices should reflect an explicit provision
for cost of capital, in addition to actual non-cat loss costs,
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expected cat loss costs from simulation tools (“cat models”),
and underwriting expenses.

² Indivisible base premium should be replaced with several par-
tial base premiums by peril; for example, hurricane, other
wind, fire, liability/medical, and all other perils (AOP).

² Partial base premiums should be modified by distinct class and
territory (geographic location) rating plans for several reasons.
Property attributes affecting equitable risk classification vary
significantly by peril, and the cost of capital is not generated
(and should not be allocated) uniformly among perils.

² Rating for base premium adjustments and miscellaneous en-
dorsements should be recalibrated to take advantage of the
unbundling of base premiums.

Why does the classical rating plan doom insurers to poor long-
run underwriting results? Recalling fundamental principles of
actuarial science [4], improper insurance prices can result from
two distinct ratemaking failures:

1. Failure to recover all costs associated with risk transfer
in the final premium;

2. Failure to differentiate rates for identifiable classes of
risks with demonstrable differences in expected cost of
risk.

Indivisible base premium in residential property insurance fa-
cilitates both failures. Two components represent the bulk of the
premium for the product–expected loss costs and cost of capi-
tal. In turn, these components are generated by an aggregation of
individual perils insured against–the largest contributors often
fire, liability, and windstorm. In recent years, it has become ap-
parent that the loss costs and costs of capital for distinct perils are
distributed in an extremely lopsided fashion or “maldistributed”1

1The use of this term is with a respectful nod to Bailey and Simon’s seminal 1959 paper
on class ratemaking.
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with respect to many classification attributes, particularly terri-
tory. As an architectural matter, indivisible base premium pre-
cludes the proper allocation of costs to class and territory, dis-
allowing development of distinct and non-interacting class plans
and for each peril based on construction features, not to men-
tion distinct territory boundaries and rating factors. A corollary
is that the recognition of the full cost of capital in overall rate
level is discouraged due to an inability to spread it fairly among
risks.

Now consider the consequences of failure to fairly allocate
costs to class and territory by peril. Even if overall premium
level generates adequate revenue to fund the losses of the di-
verse book of business, rating factors must apply to multiple and
perhaps unrelated perils, generating unavoidable and perhaps se-
vere premium subsidies. As some insurers improve rating plans
to target the risks who are overpaying for certain perils, adverse
selection by the affected risks will leave the insurers who fail to
modernize with underpriced segments of the market, which gen-
erate poor underwriting results until overall rate level is raised.
Raising the overall rate level without improving the distribution
of premiums by rating factor amplifies the adverse selection, per-
petuates the cycle and leads to a “death spiral” for the insurer.
Cummins [7] contains a formal development of the economics
of adverse selection.

The indivisible premium is a remnant of historical technology
and marketing architecture. When agents were expected to quote
policies in the field with a pencil and rating manual, simplicity
of rating logic was paramount. The days of hand-rating are long
gone in standardized personal lines products, but the rating plan
based on that limitation persists. Technology is an enabler of
modern rating architecture in the form of rating engines accessi-
ble from the field, as well as in geographic information systems
and simulation modeling applications. Regardless of theoretical
appeal, implementation of peril-specific rating would have been
difficult even twenty years ago.
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In addition, residential property insurance was historically
marketed as “complete” coverage for the hazards inherent in the
lifestyle of the typical homeowner. Today’s consumers are in-
creasingly demographically diverse and willing to choose prod-
ucts to fit their needs. Policy forms have evolved in response to
these trends, and it is imperative that the pricing of personal lines
products also evolve with the spectrum of exposures insured.

Many actuarial concepts discussed in this paper are venera-
ble. Its contribution is to synthesize them in new ways in re-
sponse to a specific challenge–the transition from a classical
to a modern component rating architecture. Once this transition
is accomplished, maintenance of some aspects of the rating plan
using classical actuarial methods (such as the “loss ratio” method
of determining rating factors) may still be optimal. The goal is
to get the actuary across a sort of river Styx of property insur-
ance ratemaking while ensuring that each part of the transition
withstands review of, and is consistent with, canonical princi-
ples. Indeed, it is critical to undertake such a modernization in
order to remain true to many of the Actuarial Standards of Prac-
tice, particularly those of more recent vintage.2 When standing
on the other side, one hopefully can look back and recognize
some of the architecture as embodying potentially long-lasting
innovations in actuarial techniques.

2. MOTIVATIONS: PUBLIC POLICY AND PRODUCT CHANGES

Notwithstanding theoretical motivations, necessity is the
mother of invention. This paper may also be read as a case study
of the actuarial response to a pricing challenge manifested in
public policy. The State of Florida passed into law a statewide
Unified Florida Building Code (FBC) that supersedes all local

2A thoughtful review of ASOPs 12, 23, 29, 30, and particularly 38 and 39 is helpful
before and after reading this paper. Such a review should go a long way to convince the
practicing actuary that the motivations are consistent with upholding these Standards of
Practice.
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codes for buildings permitted after March 1, 2002. One goal
of the FBC is to improve the resistance of new construction to
windstorm losses by specifying robust features and construc-
tion techniques to be used, in accordance with the recommenda-
tions of scientists and engineers. The code is heavily geography-
dependent, differentiating among many elements based on the
wind speed “zone” in which the site is located. In particular,
properties located in the “120-mph” (in a 100-year event) and
above wind zones must be built with significant levels of re-
sistance to wind. Zones are (generally) concentric boundaries
defined by the standards of ASCE 7-98 (see Figure 1).3

The insurance industry strongly supported the FBC, and its
enabling legislation contained a quid pro quo–that insurers
would develop class plans to provide rate differentials for de-
vices that demonstrably mitigate windstorm losses, whether such
devices were included on new construction or extant on, or
retrofitted onto, existing structures. The Florida Office of In-
surance Regulation (OIR) commissioned a public domain study
from Applied Research Associates, Inc. (ARA) that developed a
mitigation class plan containing benchmark class factors for var-
ious combinations of construction features and techniques [2],
and an analogous study was conducted by Applied Insurance
Research, Inc. (AIR) in support of a mitigation class plan filed
by Insurance Services Office, Inc. (ISO). The deadline for indi-
vidual companies to make rate filings to implement a mitigation
class plan was February 28, 2003.

This mandate is the death knell for indivisible premium rating
plans in Florida. This paper shows that the maldistribution of
loss and capital costs by territory and peril makes such a lack
of rating resolution intolerable in the presence of a windstorm

3The exception to this statement is along parts of the Florida Panhandle, where the
political influence of home-builder associations caused a “one mile from the coast” rule to
delineate areas where 120-mph standards for building materials are to apply. Examining
Figure 1, the areas excepted comprise most of several west Florida counties.
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FIGURE 1

mitigation class plan. The hurricane share of all-perils loss costs
varies between 20% and 75% by county, and the fire share varies
between 5% and 35%. No compact set of actuarially sound class
factors would be workable against such a variable premium base.
In parallel, it is also a great improvement to target the existing
Public Protection Class (PPC) factors to the proper fire premium
base.

The classical design has been tolerated by the insurance indus-
try and its advisory organizations for too long, probably because
the magnitude of the errors is manageable in areas of the United
States where the distribution of loss costs is more geographically
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consistent and the contribution of catastrophic events to the ag-
gregate loss costs is moderate. In Florida, the mitigation class
plan is a catalyst for the development of base rates and rating
factors by peril, as well as the redefinition of territories using
GIS mapping software and the extension of catastrophe mod-
eling technology into windstorm class and territory ratemaking.
However, the concepts are applicable to homeowners pricing in
other geographic areas, and more generally to other property in-
surance pricing exercises.

Public policy also influences emerging non-catastrophic
causes of loss. Statutory coverage mandates and resistance to
coverage restrictions in states with “prior approval” policy form
regulation have contributed to the skyrocketing portion of policy
loss costs associated with sinkhole claims in Florida and toxic
mold claims in Texas and elsewhere. Florida statutes require
sinkhole coverage and severely restrict claim settlement options,
resulting in frequent total or near-total losses after moderate set-
tling and cracking occurs in the residential structure. While mold
is only a cause of loss as a result of another covered peril, the
loss adjustment expenses and risk of large judgments have been
well documented.

This paper is not about specific emerging perils; the point is
that having the ability to segregate base premiums allows a “quar-
antine” of the loss costs associated with these perils at an earlier
statistical stage. Pricing must keep up with the ever-expanding
coverage in the property insurance product.

3. MOTIVATIONS: TECHNOLOGY AND CATASTROPHE
MODELING

It is now settled actuarial science that actual losses from
cat events over short experience periods should be replaced in
ratemaking data by long-run expected cat losses derived from a
simulation tool and the insurer’s expected exposures. See Clark
[6] for an excellent fundamental justification for building cat
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models to replace historical cat losses. In addition, several au-
thors have tackled aspects of the problem of incorporating sim-
ulated cat losses into the overall rate level and rating factor cal-
culations, notably Walters and Morin [18] and Burger et al. [3].4

A few features of cat models5 are particularly relevant and are
exploited in populating the new rating architecture:

1. They are peril-specific–one model may be used for hur-
ricanes, another for severe thunderstorms (including tor-
nado and hailstorm), and yet another for earthquake anal-
ysis. It is thus natural to segregate covered perils for
ratemaking in such a way that the cat model can be used
to build the rates for each peril separately and adequately.

2. Cat models are fundamentally exposure rating tools–
loss costs can be generated from any set of relevant data,
whether actual or experimental. Scenarios can be con-
trived and tested to develop rating factors, reducing the
need for complex normalizations of experience data.

3. Some vendors offer models that output the complete em-
pirical distribution of event losses. From this, annual
losses are easily aggregated. Therefore, in addition to ex-
pected losses, we can generate moments, percentiles, and
more sophisticated risk metrics for any modeled property
(whether real or experimental) or aggregation thereof.
These metrics are critical in deriving proxies for cost of
capital and allocating risky expected losses to class and
territory.

4The reader unfamiliar with cat models should thoroughly peruse these references, as
neither their descriptions of the design and operation of cat models nor their justifications
for the use of modeled losses in ratemaking are repeated here. However, the treatment
of base rate and rating factor development here is generally consistent with previous
literature and often builds upon concepts formalized by these authors.
5All simulated cat losses used in this paper were derived from the CLASIC/2™ catas-
trophe models for Atlantic Hurricane and U.S. Severe Thunderstorm (“other wind”),
products of AIR Worldwide Corp.
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4. Every property is “geo-coded” with exact longitude and
latitude, allowing us to place “pins” on maps and ana-
lyze statistics from any geographic aggregation we wish.
Optimal territory boundaries with respect to gradients
in loss and capital costs can be quickly identified with
GIS software and scenario testing. This contrasts with
the limitations of ZIP code experienced by some earlier
authors.

The following case study leverages each of these key attributes
of the simulation tools. The advancement of modeling science
and related technology is the enabler of much of the work to
follow.

4. OVERALL RATE LEVEL CHANGES

Following is a complete study of ratemaking for residential
property lines, not simply a description of modern enhancements.
Accordingly, first comes a discussion of the development of over-
all rate level changes. Components that will be targeted by our
detailed rating architecture are highlighted.

A comprehensive description of classical overall rate level
indications for homeowners insurance in a pre-catastrophe mod-
eling environment is contained in Homan [10], and a concise,
thorough review of basic techniques in McClenahan [14]. The
following data is used to develop the indicated change in rate
levels:

² Five accident years of direct paid and case-incurred losses and
“defense and cost containment” (D&CC) expenses, organized
by calendar year (development age), with cat losses identified;

² Five calendar years of direct written and earned premiums, and
the historical rate tables necessary to bring them to present rate
levels using the extension-of-exposures technique;

² Five calendar years of direct earned exposures (house-years
and total values insured or “TVI”);
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² Three calendar years of underwriting expenses, including “ad-
justing & other” expenses (A&OE) associated with claim ad-
ministration, allocated to category and line of business by the
accounting function;

² Modeled expected cat losses by line of business, produced by
a simulation tool from exposures in-force as of a given date;

² The latest calendar year’s ceded catastrophe reinsurance pre-
miums;

² Various Annual Statement data required to generate a regulated
profit provision.

Exhibit 1 shows the development of the indicated overall rate
level change. The formula6 is:

¢=
x+f+fR
1¡ v ¡ 1 (1)

where:

x= the weighted average experience ratio;

f = the fixed (not varying directly with premium) underwrit-
ing expense ratio to direct premium;7

fR = the fixed non-loss reinsurance costs (premium in excess
of modeled expected losses), expressed as a ratio to direct pre-
mium;

v = the variable expense rate per dollar of direct premium,
which includes the profit provision calculated in accordance with
regulations8 and treated as a percent of premium.

6The general convention here is to let capital letters represent quantities in dollars (or
dollars per policy) and lowercase letters represent factors or ratios to premium. Greek
letters represent relativities or constants. Carets (ˆ) represent modeled amounts.
7Some actuaries include a trend adjustment in the expected future fixed expense ratio to
reflect inflation of underwriting expense elements.
8Florida statutes prescribe a profit load calculation very similar to the Calendar Year
Investment Income Offset Method described by Robbin [9], with the assumed “fair” profit
at 5% of premium. An economically “fair” profit provision would compensate the insurer
for a variety of business risks, well documented in actuarial literature. The statutory load
considers only time value of money on reserves held; we load the catastrophe cost of
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The derivation of each component of the overall rate level
change will be discussed in turn, illustrated for the hypothetical
A-Florida Insurance Company.9

Average Experience Ratio

The weighted average experience ratio is the inner product of
the vector of experience ratios for each calendar/accident year
and a vector of selected weights. In Exhibit 1, we reflect typical
judgments about the relationship of credibility to age of experi-
ence period in our weight selections.

The annual experience ratios themselves are developed as:

xi =
L£ l£ tL£ (1+ u) + Ĉ£ (1+ uC)£ tC

P£ ±£ tP
(2)

where:

L= losses plus D&CC, excluding cat losses for modeled per-
ils;

l = loss development factor to ultimate;

tL = selected loss cost (pure premium) trend factor;

u= loading for A&OE as a proportion to losses;

Ĉ =modeled expected annual cat losses;

uC = the expected ratio of loss adjustment expenses (LAE,
which includes D&CC and A&OE) to losses for catastrophic
claims;

tC = exposure de-trend factor for modeled cat losses;

capital elsewhere in the fair premium. Other valid risks potentially compensated by the
profit load are not treated in this paper.
9As the reader follows through several A-Florida exhibits, note that numbers generally
“tie” within and across exhibits as much as possible, for tutorial purposes. However,
the numbers used are not necessarily representative of actual data or benchmarks for
individual companies nor the industry as a whole.
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P = direct collected earned premiums including any expense
fees;

± =on-level factor to restate premiums as if earned at present
rate levels;

tP = selected premium (per earned house-year) trend factor.

Losses might be paid or case-incurred, as long as the devel-
opment factor is estimated on the same basis. The estimation of
development factors is not reviewed.

The loss cost trend factor and premium trend factor reflect
expected changes in economic conditions making the expected
losses and premiums per exposure unit in the prospective period
different than that observed in the experience period. To estimate
these factors, compiled are calendar quarter earned house-years,
earned TVI, earned premiums, and paid losses plus D&CC for
twenty or more consecutive quarters as shown in Exhibit 2. Time
indices for each quarter are aligned as the regressor variable. The
earned rate (premium per house-year) is the basis for premium
trend and the loss cost (paid losses per house-year) is the basis
for loss trend. The trend in earned house-years itself will be used
in the de-trending of cat losses later.

An exponential regression line is fitted to each response vari-
able. The exponential coefficient in each equation is the least-
squares best fit annual change. Two-, three-, four-, and five-year
domains are fitted and examined, and a representative annual
change selected for each series. The trend period is the power to
which the annual change is raised to derive the final trend fac-
tor for each experience period, and is determined as the number
of years between the midpoint of the experience period and the
midpoint of the anticipated effective period of the proposed rates.
Exponentiating the annual change for the trend period provides
the final trend factor, which is carried to Exhibit 1.

The volume of exposures underlying every item in formula
(2) (for an individual experience year) should be the same. This
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is why loss cost (per policy) trends and earned rate trends are
used to adjust the losses and premiums in each experience ra-
tio. Accordingly, the de-trend factor for modeled cat losses is
necessary to state the expected cat losses on the same volume
of exposures as is underlying the approximate midpoint of each
experience period. By nature, cat models produce losses given
in-force exposures as of a predetermined (but presumably recent)
date. Due to run-time, data storage, and labor costs, it is imprac-
tical to repeatedly simulate losses using in-force exposures from
several historical years. As an alternative, the selected annual
change in earned house-years from Exhibit 2 is raised to a neg-
ative power representing the trend period between the in-force
date used in the cat model and the midpoint of each experience
period to derive a de-trend factor. The factor is applied to the
single modeled expected loss estimate to get the cat losses that
are loaded into each period shown on Exhibit 1.10

Note that the match between the attributes of excluded ac-
tual cat losses and modeled expected cat losses should be as
close as possible for actuarially efficient ratemaking. Claims de-
partments are often responsible for coding individual claims as
“catastrophic,” and there is generally no mandate for consistency
with the basis used for simulated cat losses. For example, if mod-
eled hurricane losses reflect only landfalling hurricanes, but the
claims unit designates weak, bypassing tropical storms as the
basis for many “cat” claims received during a season, the ex-
cluded losses are broader than the simulated losses that replace
them, making overall rate level indications inadequate. Actuaries
should be vigilant and proactive in setting parameters for cat loss
coding with respect to:

1. Event definitions (example: hurricane versus tropical
storm)

10The de-trended cat losses are not then trended forward to the midpoint of the effec-
tive period because the modeled loss per exposure unit for cat perils is not inherently
inflationary. Annual updates to models reflect the latest meteorological and scientific
knowledge but not cost trends per dollar of value insured.
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2. Time periods (example: 72 hours during which losses
are eligible for “cat” treatment)

3. Geographic areas affected (example: areas subject to
government warnings)

4. Lines of business (example: exclusion of liability losses
from “cat” eligibility)

It is wise to consider the associated definitions in company rein-
surance treaties as an example when developing parameters for
cat loss reporting.

The expected ratio of LAE to losses for catastrophes will de-
pend heavily on how the insurer’s claims department handles
these events. Use of mobile claims centers and contracting of
outside adjusters may affect the assumed ratio. Historical data
on specific past events can be used as a guide in some cases;
sometimes the ratio is very low (because the losses in the de-
nominator are high, not because adjusting catastrophic claims is
cheap) when the insurer’s own claims personnel are the bulk of
the adjusting corps. Hence, a provision for catastrophic LAE is
omitted from the example for simplicity.

The collected premium can be placed on-level by either the
parallelogram method or the extension-of-exposures method dis-
cussed in Homan [10], though the latter is of great help when
it comes to estimation of rating factors. If the parallelogram
method is used, the factor for each experience period will be
derived explicitly from knowledge of overall rate changes and
effective dates thereof, as detailed in McClenahan [14]; if the
extension method is used, the raw premium data must be linked
to all necessary categorical variables (class, territory, etc.) used
in ratemaking and complete sets of historical rate tables or “rate-
books” must be available to compute the premium for each policy
as if it were written on the current ratebook. Then the factor in
formula (2) is implicitly the ratio of on-level to collected direct
earned premium. Neither method will be discussed in detail here.



ARCHITECTURE FOR RESIDENTIAL PROPERTY INSURANCE RATEMAKING 501

Underwriting and Adjusting Expense Ratios

Once the experience ratios are determined with formula (2),
one must consider underwriting and adjusting expenses, reinsur-
ance costs, and profit. Exhibit 3 shows an analysis of expense
provisions. Recent calendar year underwriting expense ratios for
each component:

² Commissions and brokerage;
² Other acquisition expenses;
² General (overhead) expenses;
² Premium taxes (which must be shown separately in some
states);

² Other taxes, licenses and fees;

are used to estimate future expected expense ratios. It is tempting
to select the multi-year average, but trends in expense ratios often
reflect structural changes in finance or operations and must be
given some credence in the selection of future ratios.

An assumption must also be made about the proportion of
each component that varies directly with the premium charged.
Commissions and most taxes and fees are assessed as percent-
ages of net premium and thus treated as 100% variable. General
expenses are almost exclusively allocated amounts of fixed over-
head amounts and a 100% fixed assumption is usually appropri-
ate. Other acquisition expenses include some fixed administrative
costs, but also the cost of field inspections and policy-specific
costs that may vary with premium size. This study assumes 50%
of expenses in this category are fixed. Underwriting expense ra-
tios are usually expressed to direct written premium, as they are
almost fully incurred prior to policy inception.

Fixed underwriting expenses reported by line actually reflect
accounting department allocations of companywide expenses to
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line of business. Actuaries are strongly encouraged to review the
allocation procedures and judge whether the allocation basis ac-
curately captures the true expenses associated with the line, espe-
cially in the presence of historical cat events. Often a premium-
based allocation (the preference of many accountants) will be
sufficient. For catastrophe reinsurance costs, this method will
not be accurate, as discussed below.

A caution is in order about bulk assessments from residen-
tial property residual markets and guaranty funds, usually found
in the “other taxes, licenses and fees” category. In some states,
these assessments can be recouped over a given time period from
policyholders via a premium surcharge. If the company chooses
to surcharge, assessments should be removed from the expenses
used for ratemaking to avoid redundant recovery of the cost.
If recoupment is not allowed, a different problem arises–in
the absence of a cat event in the historical three-year period,
a tax provision that includes no residual market deficits will
be inadequate in the long term. The annual expected value of
assessments is material to the expense ratio despite a “lucky”
zero over a short term. The same arguments that urge consider-
ation of expected direct catastrophe losses in ratemaking should
convince the actuary that the company’s share of long-term ex-
pected residual market deficits should be considered in expenses
in ratemaking. Failure to do so will harm profitability in the
same fashion as would ignorance of the long-term impact of cat
losses.

Adjusting and other expenses are usually related to the sum
of paid losses and D&CC, rather than premiums. Since these
amounts are generally line-specific rather than allocated compa-
nywide amounts, the calendar year ratios fluctuate more than
those for underwriting expenses and the long-term average
should influence the selection unless emerging causes of loss
(such as mold, which involves extensive pre-settlement scien-
tific testing) are driving a structural change in claim adjustment
expenses.
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Cost of Capital

The cost of capital held to protect the insurer against infre-
quent catastrophic events that produce losses far in excess of the
long-term average for the peril must be considered in ratemak-
ing. The held capital may be internally generated, borrowed from
investors, or “rented” from reinsurers. Most insurers capitalize
their cat risk using a combination of sources, with the largest
often being reinsurance. Reinsurance may be available from pri-
vate sources, which include a market-determined cost of capital
in their premium, and/or public sources, which generally do not.
Musulin and Rollins [15] contains a description and comparison
of private and public property cat reinsurance options in Florida
and a breakdown of the reinsurance premium as follows:

PR = Ĉ¡R(Ĉ)+ +T (3)

where:

Ĉ = expected direct cat losses (i.e. modeled gross annual
losses);

R(Ĉ) = expected net retained cat losses (determined by rein-
surance program design);

= charge for cost of capital (a.k.a. reinsurance risk load);

T = transaction costs (such as brokerage and reinsurer admin-
istrative expenses).

A spectrum of approaches exists for efficiently reflecting the
cost of catastrophic events in ratemaking, such as:

1. Treatment of the entire reinsurance premium (appropri-
ately allocated to line) as a fixed expense in ratemaking
and consideration of only non-cat and retained cat losses
in the loss portion of the experience ratio. This method
would be most appropriate for a heavily reinsured com-
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pany to which differentiation of other rating factors
according to modeled losses was not important. It
has the advantage of not requiring detailed cat model
output.

2. Loading of simulated expected direct cat losses in place
of actual cat losses in the numerator of the experience
ratio, and adjustment of those losses for a cost of capi-
tal charge calculated directly from assumptions, with no
tie to the empirical market-determined cost of capital.
This method might be required for an entity that has no
benchmarks, such as an insurer that funds catastrophes
solely from internal capital, a residual market, or a rating
advisory organization.

3. A blended method, where the loss portion of simulated
catastrophe costs is reflected directly in the experience
ratio, and the cost of capital portion is treated as a fixed
expense reflecting the market charge indicated by the
non-loss portion of reinsurance costs. This is the method
used here, so that fR = ( +T)=P.

Homan [11] uses the first approach in his treatment of rein-
surance costs in property ratemaking, and Rollins [17] has con-
trasted the relative strengths and weaknesses of the three ap-
proaches.

Already included in formula (2) are the total direct expected
cat losses by removing actual cat losses and adding modeled
gross annual losses to each year’s experience ratio. A provision
for non-loss reinsurance costs in formula (1), in order to provide
for all costs associated with risk transfer, should consist of the
reinsurance premium, less expected ceded cat losses, as a ratio
to direct premium, or

fR =
PR ¡ (Ĉ¡R(Ĉ))

P
: (4)
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Since and T in formula (3) are not observed directly, this is
the practical formula for the total non-loss portion of reinsurance
costs.11

The fixed reinsurance cost provision from typical data is de-
rived in Exhibit 4. Direct earned premiums for the line, the por-
tion subject to the cat reinsurance program, modeled gross an-
nual losses, and actual cat reinsurance premiums ceded to various
sources are compiled. The reinsured portion of modeled losses is
derived by subtracting the retention (often based on subject pre-
mium) and the losses not covered due to coinsurance features of
the treaty (typically 5% of losses above the retention). The actual
ceded premium is normally significantly larger than this amount,
and the difference represents cost of capital and transaction costs.
For the overall rate level indication, the fixed reinsurance costs
are expressed as a ratio to direct earned premium. In addition, it
is useful later to think of these costs as a load to the gross ceded
losses or “capacity charge” per dollar of expected loss. The fixed
cost provision is carried to Exhibit 1.

Note that the ceded premiums are specific to the line of busi-
ness under review. In practice, ceded cat reinsurance premiums
are rarely specified by line, only in aggregate. The actuary must
assist accountants in allocating the ceded premiums to line of
business. Exhibit 5 provides an example. Direct earned premi-
ums by line are compiled, with the property portion extracted
for (currently) “indivisible” premium lines of business. This be-
comes the subject premium for most cat reinsurance programs.
The portion due to property perils must be estimated from loss
cost data. The actual all-lines ceded premium is allocated to line
based on the modeled gross annual losses, separable by line from

11The astute reader will note that the “blended” formula is actually incomplete. There is
no cost of capital levied on the internal capital held for retained catastrophic losses. In a
heavily reinsured company, we can ignore this part of the capital charge for simplicity
of presentation. Obviously, the formula cost of capital for an insurer which retained
all losses and built a risk load into rates directly would not be zero. This presentation
assumes that the bulk of cat losses are ceded and that the associated cost of capital is
revealed by the market.
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catastrophe simulation output, rather than a direct premium mea-
sure. The direct premium, subject premium, and allocated ceded
premium for the line under review are carried to Exhibit 4.12

5. STRUCTURE OF FAIR PREMIUM

Derivation of Fair Premium Components

Given the components of overall rate level, our next task is
to design a rate structure that collects a fair premium through a
combination of charges. When partial base rates vary by peril,
yet some fixed expenses (the reinsurance provision) are not allo-
cated equally to peril, the classic ratemaking formulas need some
careful modification.

The overall rate level change is developed using the loss ratio
ratemaking method. In contrast, the new base rates and rating
factors are developed from loss costs. This is necessary because
each base rate and relativity is new and peril-specific, and can-
not be expressed as a change to a previous factor, yet conver-
sion to premium rates and rating factors is necessary for pricing.
Note that “loss ratio” ratemaking (which produces the indicated
changes to existing base rates needed to reconcile the indicated
overall rate level change with the expected rate level impact of
the rate and rating factor changes) is not incompatible with di-
visible premiums once the modern plan is in place and divisible
premium statistics are used to do periodic rate reviews. It is, how-
ever, incompatible with the transition from indivisible to divisible
premium.

In the proposed rating plan, premiums are levied in three parts:

² Base rates by peril, which cover raw loss costs (and fixed
reinsurance costs where necessary), “loaded” for variable un-
derwriting expenses and profit;

12In Florida, the public reinsurer develops participating primary insurers’ ceded pre-
miums directly from exposure rather than in aggregate. Therefore, there is no need to
allocate the public cat reinsurance premium.
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² Rating factors by peril, which adjust each base rate for risk
class and territory differences in expected costs;

² A single policy expense fee (to cover all fixed underwriting
expenses other than reinsurance).

Recall the classic formula for policy-level fair premium, ex-
panded to separate non-loss reinsurance costs from other ex-
penses not varying with direct premium:

P = X +F +FR + vP (5)

where P represents fair premium dollars, X is the expected loss
cost, F represents the fixed underwriting expense dollars asso-
ciated with the policy, and FR represents the associated fixed
reinsurance cost dollars. Given the choice to structure our rating
plan so that the fair premium is collected via a combination of
base rate (B) and expense fee (E):

P = B+E (6)

solving for P in formula (5) and setting it equal to (6) yields:

X +FR
1¡ v +

F

1¡ v = B+E

This formula suggests a natural decomposition, designating base
rates to cover losses and fixed reinsurance costs, and expense fee
to cover only fixed underwriting expenses, so that:

B =
X +FR
1¡ v (7)

E =
F

1¡ v : (8)

In developing base rates for non-modeled perils, X is deter-
mined directly from experience data. For modeled perils, it is
determined from the model output. Later, a choice will be made
and justified to recover all fixed reinsurance costs in the base rate
for the hurricane peril. FR is determined from the reinsurance
data described above. Finally, recovery of all fixed underwriting
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expenses is in the policy expense fee, using:

E = f £ P̄ (9)

where P̄ is the average premium per policy from experience data.

The decomposition of fair premium may affect rating factors
as well, depending upon actuarial assumptions. Class rating fac-
tors by peril are derived from class loss cost relativities, which
in turn are determined from experience data or model output.
Assume a loss cost relativity is ®, so that the class loss cost is:

X 0 = ®X:

If fixed reinsurance costs are included in the base rate and not
increased or reduced in proportion to the expected loss cost for
the class, then the indicated class rate is:

B0 =
X 0+FR
1¡ v

per formula (7). Substituting for X 0, the ratio of the class to base
rate (a.k.a. the correct class factor) is:

½=
B0

B
=
®X +FR
X +FR

(10)

as the variable expense ratio cancels out of the quotient.

Note that in cases where:

1. One chooses not to recover a portion of fixed reinsurance
costs in the base rate for the peril, or;

2. One assumes that fixed reinsurance costs allocated to the
class vary in proportion to class loss costs;

the formula reduces to ® and the loss cost relativity is the cor-
rect premium relativity. Though non-loss reinsurance costs were
assumed “fixed” for the overall rate level calculation, the as-
sumption about whether they should be treated as fixed by class
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or territory is crucial for derivation of the proper rating factors.
The choice to recover all non-loss reinsurance costs in the hurri-
cane base rate means that the classical formula for rating factors
will apply for non-hurricane perils. For the hurricane peril, an
example is shown of class (mitigation) factors calculated using
the non-proportional assumption for these costs, and territory
factors calculated using a modified proportional assumption for
these costs. Also note that the formula can be expressed using an
expected loss ratio and fixed reinsurance cost ratio to unmodified
premiums (for the peril in question), since the premium dollars
cancel out in formula (10).

Basic rating logic for the proposed structure is outlined in
Exhibit 17. The rates and factors shown are for purposes of
example only and do not have any particular significance. The
derivation of base rates and various rating factors follows in later
sections for each peril:

² Fire
² Hurricane
² Other Wind (non-hurricane windstorm, including tornado and
hail)

² Liability/Medical
² All other perils (AOP)

Total “key” premium and total base premium are the sum of
the key and base premiums, respectively, for each of the five
components. Key premium (retaining the terminology used in
the classical plan) represents the actuarially sound rate for first-
dollar coverage on a risk of a base amount of insurance. Base
premium is key premium adjusted for:

² The total value insured relative to the base amount, and
² The chosen deductible.
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The choice of base amounts and deductibles is discussed later.
Each component is rated for territory and most for class,13 and
non-liability components are rated for value insured and de-
ductible as well. The general total base premium formula re-
flecting N different perils is:

P =

Ã
NX
i=1

Bi£ ½i£ ¿i£ ki£ di
!
+E (11)

where

B = base rate;

½= class factor;

¿ = territory factor;

k = key factor (for non-liability perils);

d = deductible factor (for non-liability perils);

E = expense fee.

Once total base premium is determined, the application of var-
ious charges and credits (primarily for coverage modifications)
results in “adjusted base premium” that is comparable to that
in the classical rating plan. However, the existence of compo-
nent partial base premiums allows credits and charges to apply
to only the components of base premium judged actuarially rel-
evant, with appropriate modifications to the percentage charges
and credits. Adjustments to base premium will be discussed fur-
ther below.

Implications of Fair Premium Structure

Let us review some actuarial advantages and note some prac-
tical benefits of peril-specific base premiums, all of which con-
tribute to a more sustainably competitive pricing of individual
risks in a 21st-century property insurance environment.

13This is a general term, encompassing the construction/protection factor (Fire), increased
limits factor (Liability), and mitigation factor (Hurricane).
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1. Fixed (non-loss) reinsurance costs can be allocated ap-
propriately by peril to specific base rates and rating
factors.

2. The share of actuarially sound base premiums by peril
may be highly geography-dependent. Class and terri-
tory rating factors should be calibrated to the expected
experience differentials for individual perils and applied
by peril.

3. Territory boundaries should reflect loss cost gradients,
which are heterogeneous by peril–distance to coast
drives those for hurricane, other geographic features
drive those for non-hurricane windstorm, and politi-
cal boundaries may drive those for other perils. Peril-
specific development of territory boundaries allows
more accurate rating factors by peril.

4. The existing construction types used in rating are pri-
marily designed for differentiating fire danger, and the
relative wind damageability inherent in these classes
overlaps with an explicit windstorm mitigation class
plan. Base premium separation allows targeting of clas-
sification features to the perils they affect.

5. It is shown later that amount of insurance (“key fac-
tor”) curves and the loss distributions for deductible
factors differ greatly by peril. Peril-specific rating al-
lows proper differentiation of base premiums by value
insured and deductible amount.

6. Percentage deductibles are (at this time) specific to the
hurricane peril in Florida, due largely to statutory man-
dates to offer flat deductibles. The current rating plan
must adjust for flat dollar/percent deductible combina-
tions through a complex set of tables a problem re-
moved in the unbundled rating plan.
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7. The hurricane portion of premium must be reported
separately by territory per regulatory instruction in
Florida.14 Currently, this is typically done via a com-
plex set of extraction factors by territory a complexity
removed in the unbundled rating plan.

8. Actuarially sound hurricane rates must be determined
with the help of catastrophe simulation models, facili-
tated by separation of this peril in the rating plan.

9. Proposed mitigation credits in all industrial/engineering
studies done to date are calculated as a percentage of
windstorm premium. A crucial assumption about the
wind portion of base rates would be necessary to con-
vert them for usage with the current rating plan.

10. Experience data on “other wind” (tornado, hail, straight-
line wind) events is sparse and of low credibility for
ratemaking, but a catastrophe simulation model can as-
sist in determining the peril-specific rates.

11. Liability peril-specific rates allow the application of
benchmark increased limits factors (which assume
liability-only premium) rather than the dollar charges
used in some current rating plans.

12. Liability premium should be separated for any loss re-
serving, as well as ratemaking and most management
reporting exercises a task facilitated by the unbundled
rating plan.

13. Many endorsements and some base premium adjust-
ments change peril-specific exposures, and the charges
or credits for these should be calibrated to the appro-
priate portion of the base rates.

In summary, key and base premiums will be determined by
peril and added together to determine the total key and base

14Rule 4-170.014(12) of the Florida Administrative Code.
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premium. Each partial base premium will be calculated with a
peril-specific partial base rate, territory factor, class factor, key
(amount of insurance) factor, and deductible factor. This modern-
ization of the rating plan streamlines many aspects of property
insurance ratemaking.

6. DEFINITIONS FOR RATEMAKING

Territory Boundary Definitions

Appropriate territory definitions are a critical companion to
peril-specific rating. Given a Cartesian surface or geographic
map where loss costs are expressed as a function of latitude and
longitude, risk classification principles [1] imply that territory
definitions should correspond to loss cost gradients (contours on
the map). Previous authors have explored the use of loss cost gra-
dients and GIS software to define territories, but their approaches
have generally been based on data organized at the ZIP code level
[5, 13].15 Unfortunately, the public purpose of ZIP codes is such
that they do not represent a sufficiently granular starting point
for the analysis of hurricane loss potential.16 The basic problem
in property insurance is that loss cost gradients may vary widely
by peril, and in fact the direction of the gradient for one peril
may frequently be opposite that for another. In plain English, the
contour maps by peril may not “match up” very well.

In Florida, there is significant conflict among meteorological
indications, as well as conflict between meteorological and po-
litical boundaries. Modeled hurricane loss cost gradients largely
reflect proximity to the coastline, meaning the optimal set of ter-
ritories would make a contour map of the state look somewhat
like an onion, with concentric closed polygons. In addition, the

15To be fair, Kozlowski and Mathewson advocated the use of square-mile loss densities
given that the data is available.
16ZIP codes are based on urban demographics and tend to be convex polygons rather
than thin “strips” parallel to coastlines, which is the general pattern of hurricane loss cost
gradients.
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FIGURE 2

loss costs in the southern latitudes are much higher given the
same distance to coast. Figure 2 maps modeled expected annual
hurricane loss costs by land survey “section” defined by the Pub-
lic Land Survey System–a unit of one square mile. The data set
is weighted equally in each section, as explained below.

In contrast, modeled loss costs for other wind do not follow
the geographical pattern of those for hurricane. In fact, they tend
to be negatively correlated with the hurricane indications in sim-
ilar groups of sections. Figure 3 maps the modeled other wind
loss costs by section on the same data set.
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FIGURE 3

Loss cost gradients for AOP and liability rating largely re-
flect demographics, though meteorological and geological phe-
nomena significantly impact sinkhole and lightning losses. On
the liability side, urban areas tend to be more litigious, and on
the property side, urban areas may be more prone to theft and
vandalism losses. Traditional (and ISO) territory boundaries for
the classical rating plan were derived primarily from municipal-
ity and county lines. These lines may serve as sales territories as
well. In short, for actuarial and practical reasons, political lines
may still have a place in a modern territory rating system.
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For the fire peril, two sets of geographic factors may apply–
a construction/PPC factor and a territory rating factor. A solid
argument can be made for the elimination of territory factors
in fire once construction/PPC factors are redefined to apply to
the fire-only partial base rate. On the other hand, regional or
demographic differences in loss costs may persist even after ad-
justing for the level of fire protection by area. This case study
found enough variation in fire hazards among territories to jus-
tify continued use of a territory rating factor in addition to the
construction/PPC factor.

All peril-specific actuarial considerations must be weighed in
promulgating revised territory definitions. In addition, practical
considerations favor having a single set of boundaries, and those
boundaries being determined by landmarks (such as major roads
and bodies of water) that are recognizable to salespeople and
consumers. In summary, territory boundaries are based on the
intersection of all of the following geographic data sets:

1. Actuarially defined contours reflecting loss cost gradi-
ents by peril and convenient landmarks that are located
close to the modeled contours;

2. Classical (existing) company territory definitions, which
segregate barrier islands and some coastal areas;

3. ISO territory definitions (which generally follow county
lines, with some municipalities and a few barrier islands
separated);

4. Existing county lines.

Consideration of existing company territory boundaries is ex-
tremely important for the processes of transitioning individual
policy/location records to the new lines. A one-to-many rela-
tionship between each existing territory and the new territories
allows a simple “lookup” rather than a geo-coding exercise in
policy management systems. Likewise, consideration of existing
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FIGURE 4

advisory organization lines is valuable for implementing statisti-
cal reporting under the modern rating architecture.

Overlaying all of the listed data sets geographically produced
187 new distinct territories.17 Figure 4 maps this set of proposed
territory definitions.

Analysis of loss cost gradients for non-hurricane perils in-
dicated that no significant actuarial advantage (reflecting steep

17To facilitate coding and statistical conversion, existing three-digit codes are redefined
as the county code (01-67) plus a third digit of 1 for the territory closest to the coast,
followed by 2, 3,: : : further inland, or 0 for a county which contains only one territory.
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gradients in loss costs) was to be gained by rating at a level
more resolved than county. Therefore, the remainder of the pa-
per shows rating factors that vary at the county level for non-
hurricane perils and the territory level for the hurricane peril.

Definition of Base Structure

Any base rate for property insurance reflects an assumption
about the “base” structure insured. For non-modeled perils, this is
important because all rating factors are keyed to the base house.
For modeled perils, the definition helps incorporate public clas-
sification studies and build territory factors.

First, base values insured by policy form for the calculation
of key factors are:

Form Base Value Coverage

HO-2 $100,000 A (building)
HO-3 $100,000 A
HO-4 $10,000 C (contents)
HO-6 $10,000 C
HO-9 $100,000 A
MH-2 $20,000 A
MH-3 $20,000 A

These values are generally consistent with those used by advisory
organizations such as ISO.

Other base attributes, most following industry norms, are as
follows:

² Base deductible is a flat $500 for all perils other than hurricane.
² Base deductible for hurricane is 2% of the coverage A amount,
in keeping with the Florida practice of percent rather than flat
dollar deductibles for hurricane. This also aligns the proposed
rating plan with the public domain studies promulgating class
factors for mitigation attributes.
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² Base liability limit is $100,000 and medical payments limit is
$1,000.

² Base fire protection class (PPC) is 9 (on the ISO scale of 1 to
10).18

² Base construction type (for fire premium) is frame.
² There is no base territory–the territory factors for hurricane,
other wind, liability, and AOP are expressed and balanced rel-
ative to the statewide average of 1.00.

In the rating factor analyses for fire, AOP, and liability dis-
cussed below, actual experience data is used to develop indicated
factors and various adjustments are made when it is necessary to
bring experience to a “base class” level for a particular attribute.

In contrast, the rating factors for modeled perils are deter-
mined from an experimental data set consisting of hypothetical
“base” structures placed around the state. An input data set was
built containing one base structure in the geographic land cen-
troid of every square mile section of the state–55,930 modeled
locations in all. This is similar to, but much more extensive than,
the approach taken by ARA in their public domain study. Base
house attributes are as follows:

² HO-3 policy form insured for all perils;

² $100,000 coverage A, coverages B/C/D at 10%/50%/20% of
A (respectively);

² A $500 other wind and a 2% hurricane deductible;

² Frame construction type;
² Gable roof attached with clips and covered by standard shin-
gles;

18Most companies and ISO use 3 as the base; our departure reflects the predominantly
rural demographic profile of our policyholders.
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² A garage with unreinforced door and no other opening pro-
tection (i.e. storm shutters).

In other words, the base house is of base rating values and
“unmitigated” with respect to hurricane damage, roughly as de-
fined in the ARA study.19

It is advantageous to use experimental data sets for rating fac-
tor development for modeled perils for several reasons. Actual
exposure data generally reflects vastly different property profiles
by region. These maldistributions extend to nearly every rating
variable–average total value insured, average windstorm miti-
gation and fire protection level, average deductible amount, and
others. Hurricane or other wind modeled relative loss costs gen-
erated from these lopsided exposure profiles would be so biased
as to be nearly useless.

A related problem is that of “missing” exposure. In the ex-
treme case, the lack of exposure in a new, more refined coastal
territory could result in an indication of a zero rating factor as
a zero loss cost for the region is produced by the model. Al-
ternatively, much of the existing exposure in coastal territories
could be written on an “ex-wind” basis, whereby the hurricane
peril is excluded from the policy. If the exclusions are noted in
the data supplied to the model, the same problem will result. In
short, when the territory boundaries are redefined, it is essential
to consider the full spectrum of possible exposures in geograph-
ical rating factors. This is possible only with a contrived data
set.

7. BASE RATES AND EXPENSE FEES

Recalling formulae (7) and (8), base rates and expense fees
are built from loss costs, fixed (non-loss) reinsurance costs, and

19In a parallel study for mobile-homeowners, an analogous experimental data set was
built for a mobile home with MH-3 policy form, $20,000 coverage A and associated
standard relationships for coverages B/C/D, and a “mobile home” construction type with
no mitigation devices.
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fixed underwriting expenses, all expressed in dollars per policy,
then loaded for variable expenses and profit. In turn, these com-
ponents are determined from cat models (for hurricane and other
wind perils), historical loss and exposure data and distributions
(for non-modeled perils), and the breakdowns of underwriting
and reinsurance expenses used in the overall rate level change
calculations.

Exhibit 6 shows how base rates are constructed for modeled
perils. First, the fixed reinsurance costs for the homeowners line
of business are allocated to policy form on the basis of the prod-
uct of the latest year’s actual distribution of exposure (earned
house-years) by policy and the known base coverage amount, or
“earned TVI at base value insured.” The indicated loading in the
base rate is just the ratio of allocated fixed reinsurance costs to
earned house-years (policies).

To obtain the loss portion of the base rate, the cat model is
run against the experimental data sets and the simulated expected
gross annual losses are recorded for every location. Location
results are aggregated statewide to obtain the overall average
loss for the base structure in a season.20 The final base rate for
hurricane, by policy form, is the loaded sum of the loss cost and
fixed reinsurance cost. Recall we have chosen to allocate all non-
loss reinsurance costs to the hurricane peril, so the other wind
base rate by form is just the loaded loss cost.

The analogous base rates for non-modeled perils are based on
historical data and developed on Exhibit 7. When using the loss

20Model results are less credible for HO-4 (renters) and HO-6 (condominium unit-
owners) policy forms. The choice was made to reduce modeled loss costs for the site-built
homeowners forms, based on the ratio of the sum of base coverage A/B/C/D amounts for
the forms, to derive a reasonable hurricane loss cost for HO-4 and HO-6 forms. Specif-
ically, the HO-4 policy provides a $10,000 base for contents coverage, no coverage for
structures, and “loss of use” coverage of 20% of the contents coverage, while the HO-3
provides a $100,000 base amount for dwelling coverage, 10% of the dwelling amount
for other structures, 50% of the dwelling amount for contents, and 20% of the dwelling
amount for loss of use. The ratio of total modeled coverage between these two forms is
therefore (10+2)=(100+10+50+20), or about 6.7%. This assumes the same average
damageability ratios over all coverages.
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cost ratemaking method along with historical property exposure
data, several distributional adjustments may be necessary. For the
fire peril, the average underlying key factor (a function of TVI)
and average underlying construction/PPC factor are likely highly
divergent by policy form. The exposure base, the denominator
of the loss cost, is multiplied by the average underlying factor in
the proposed rate structure (for each maldistributed rating factor)
to restate it at a “base class” level for determining the base rate.
Similar adjustments apply for average underlying limits in the
base rate for liability and average underlying TVI in the AOP
base rate. The adjusted loss cost must still be loaded for variable
expenses and profit, of course.

The need for distributional adjustments to the loss cost based
on proposed rating factors means that these rating factors must be
determined before the final base rates are. This is necessary for
an efficient and equitable rate structure when rates are developed
from the ground up. Later, it is shown that we achieve adequate
revenue under the modern rating plan by “solving for” the base
rate that matches indicated overall rate level to estimated rate
impact.

Expense fees by policy form are developed on Exhibit 8. The
ratio of the latest year’s earned premiums (including such fees)
to earned house-years represents an average premium per policy.
The fixed expense ratio is applied to this value, and loaded to
obtain the indicated fee. In practice, round numbers are often
selected for expense fees and they are often set equal for similar
policy forms.

8. TERRITORY AND CLASS RATING FACTORS

In the basic rating logic, territory factors apply to every peril.
In addition, class factors apply to fire (construction/protection)
and hurricane (mitigation), and increased limits factors adjust
the liability premium. Base premiums for each non-liability peril
reflect coverage adjustments for amount of insurance and amount
of (or percentage) deductible.
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Territory Factors–Modeled Perils

Exhibit 9 presents one method of determining hurricane ter-
ritory rating factors that incorporate an allocation of fixed rein-
surance costs. Most actuarial techniques for the development of
rating factors use only the mean loss cost to modify the base
rate. This method uses the modeled mean loss costs by territory
to modify the loss portion of the base rate, and the standard de-
viation of these loss costs to modify the fixed reinsurance cost
portion of the base rate.

Recalling formula (7), FR denotes the fixed (non-loss) reinsur-
ance expense dollars per policy. The bulk of non-loss reinsurance
costs reflect some measure of risk as perceived by the reinsurer.
Many risk metrics (as functions of the possible loss outcomes on
a portfolio of policies) exist, and it is beyond the scope of this pa-
per to capture the essence of the (considerable) actuarial debate
over the best metric for reinsurance premium development. The
assumption used here is simple and squares with observations of
the global reinsurance market:

FR = K £ SL (12)
where

SL = the standard deviation of the modeled annual losses–
readily available by location or in geographical aggregate from
the cat model;

K = an empirical scale factor that relates the volatility in mod-
eled losses to the actual non-loss ceded reinsurance premium.

In other words, assume that reinsurers charge for cost of capi-
tal in proportion to the standard deviation of annual losses. While
reinsurance pricing models tend to be proprietary, there is long-
standing support in both actuarial literature [8] and market prac-
tice to brand this assumption reasonable.

We choose the scale Ki identically for each territory so that the
exposure-weighted FR by territory, based on SL, balances to the
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aggregate FR derived on Exhibit 4 (expressed per unit of losses).
The success of the technique does not require this choice–the
scale factor could be set lower in some territories and higher
in others to reflect second-order assumptions about the capacity
charges levied by reinsurers in different areas.

The modeled number of exposures (essentially a land-area
weight given the construction of the experimental data sets),
modeled (mean) loss cost, and modeled standard deviation of
losses are collected for locations falling in each proposed ter-
ritory. Note that the overall modeled loss cost is the exposure-
weighted average by territory, but the aggregate standard de-
viation is not additive–it must be collected directly from the
model output. By design, the allocated fixed reinsurance costs,
reflecting the scale factor, do average (exposure-weighted) to
the aggregate fixed costs derived in the overall rate level indica-
tion.

The sum of the modeled loss cost and fixed reinsurance cost
for each territory is the basis for the cost relativity to the statewide
average. This relativity is the theoretical territory factor. In prac-
tice, allowance is made for a tempering of the indicated rating
factor toward unity due to competitive or regulatory pressure.
This is not “credibility weighting” because the modeled loss costs
are fully credible in a convergent hurricane model.21 The tem-
pering is a non-actuarial exercise. If it is present, the resulting
factors must be rebalanced to unity.

The techniques may be applied in an identical fashion to
experimental data sets for both homeowners and mobile home
forms. This study found that the statewide range of territory fac-
tors was slightly wider for mobile homes.

21The Florida Commission on Hurricane Loss Projection Methodology, an agency
charged with certifying the validity of catastrophe models used in rate filings in the
state, uses a standard by which modeled mean loss costs must “converge” within a cer-
tain tolerance at the ZIP code level. The simulation size required for convergence can be
very large (50,000 years in the case of at least one model).
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Though loss and fixed reinsurance costs must both be con-
sidered in all rating factors for the hurricane peril, formula (10)
does not apply directly when this technique is used because:

² The rates are balanced to the statewide average of unity, so
there is no base territory relative to which credits and debits
are expressed;

² The fixed reinsurance costs are allocated directly in the calcu-
lation of the territory factors using the standard deviation of
modeled losses.

An adjustment to loss cost relativities may be necessary when
mitigation class factors are developed later.

The territory factors for the other wind peril are developed
using identical experimental data sets, with the exception of low-
ering the base deductible to $500. The same basic technique is
applied to the model output, with the deletion of the allocation
of fixed reinsurance costs–the modeled mean loss cost relativi-
ties are the sole basis for the (possibly tempered and rebalanced)
territory factors. The advent of simulation models for other wind
offers the opportunity to exorcise the last vestiges of the classical
ISO “excess wind procedure” and its brethren from ratemaking
for infrequent catastrophic events.22

Territory Factors–Non-Modeled Perils

Standard one-way actuarial techniques are applied to the prob-
lem of setting territory rating factors for AOP, liability, and fire
(if desired) from historical experience. Exhibit 10 shows an anal-
ysis of AOP territory factors for completeness.

In a loss ratio ratemaking approach, the actuarially correct
inner product used to balance the average statewide factor to

22See Burger et al. [3] for an excellent contrasting description of the use of cat models
for hurricane and an excess wind procedure for other wind.
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unity would be that of:

² Adjusted relative loss ratios (losses divided by premiums
stated at present level and adjusted to “base” or statewide av-
erage territory level) by territory, and

² A weighting vector of earned premiums (on present base ter-
ritory level) by territory.

In the loss cost approach used in our study, the appropriate
weight becomes whatever exposure base is used to calculate rel-
ative loss costs. Earned total value insured is the base (one unit
of earned TVI is equal to one house insured for $1,000 for one
year), so it is used both to calculate relative loss costs and to
balance the statewide average territory factors to unity.

Classical (limited-fluctuation) credibility is applied to the rel-
ative loss costs, again using earned TVI as the base, to obtain
final indicated factors. Many other credibility techniques could
be applied, but a survey of them is beyond the scope of this pa-
per. The full credibility standard Vf is chosen by judgment, and
the credibility for a single territory is

Zi =

s
Vi
Vf
: (13)

Again, it is possible that selected territory factors may differ
from indications for non-actuarial reasons. The selected territory
factors are rebalanced to a statewide average of unity using the
weighting discussed above.

Depending on claim volume, territory factors for the liability
peril may be set using regional aggregations of territories. Alter-
natively, regional loss cost relativities might serve as the com-
plement of credibility for territory-level relativities. In fact, these
regions do not have to be geographically contiguous if liability
trends tend to follow city and suburban demographics. In any
case, the same techniques are applicable except that loss data
should also be converted to basic limits to avoid demographic
bias.
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Class Factors–Hurricane (Mitigation)

Property insurance has always been rated by type of construc-
tion, but construction rating attributes were historically designed
to rate the predominant peril of fire. The blunt distinction be-
tween frame and masonry wall construction was often deemed
sufficient. As hurricane has replaced fire as the cause of loss
underlying the plurality of the base premium in some states,
construction class plans should evolve accordingly. The modern
rating architecture should include class plans based on distinct
construction attributes for both fire and hurricane perils.

In hurricane, a “mitigation” class plan focuses on fea-
tures, techniques and devices specifically designed (and often
retrofitted to the home after initial construction) to reduce such
losses. As discussed earlier, Florida statutes now enumerate sev-
eral devices that must be considered in the development of the
class plan. The public domain ARA study is also required read-
ing for those seeking to understand the rationale for the choice
of devices that serve as elements of the class plan. The study
found that the following devices significantly reduce hurricane
losses and should be treated as “primary rating factors”:

² Roof shape (gable, hip, flat, and others)
² Roof covering (shingles compliant with FBC, shingles not com-
pliant with FBC, tile, metal, and others)

² Secondary water resistance of roof (present in the form of taped
or sprayed sealant, or not)

² Roof-to-wall connection (toe nails, clips, hurricane wraps of
single or double layers)

² Roof deck attachment method (four categories based on nail
size and spacing)

² Opening protection (engineered storm shutters, non-engineered
attachments such as anchored plywood, or none at all)
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The study noted several additional attributes that reduce hur-
ricane losses enough to be treated as “secondary rating factors”:

² Opening protection coverage (windows only or all openings
including doors and garage doors)

² Gable end bracing (present or not)
² Wall construction (the traditional fire class variable, frame or
masonry)

² Wall-to-foundation restraints (present or not)
An actuarially interesting result of the study is that the re-

ductions in expected loss cost for various combinations of de-
vices turn out to be highly interactive, meaning that the class
factors cannot be set for individual devices and multiplied or
added across all devices present to determine the appropriate
comprehensive class factor. Instead, a multi-dimensional table of
modeled primary rating factors for each combination is needed,
such as the one shown in Exhibit 11.23

The indicated reductions in loss costs for the various com-
binations also depend upon the terrain category (flat, swampy,
hilly) associated with the property location. ARA divided the
state into two basic terrain categories that they denoted “B” and
“C.” A reasonable choice is to map the terrain category defi-
nitions shown in the study to the proposed territory structure,
designating each entire territory as one category to facilitate the
determination of class factors from the tables without additional
geo-coding.

Given the raw loss cost relativities, the final class factors must
still embody a key actuarial assumption. When the mean loss cost
is reduced (relative to the unmitigated base structure) for a house
by application of mitigation devices, should its allocated portion

23Exhibit 11 shows the actual factors promulgated in the ARA study, relative to a base
structure which is largely unmitigated and carries a 2% hurricane deductible.
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of fixed reinsurance costs be reduced as well? If so, should it
be reduced in proportion to the mean or should the reduction be
tempered? Recall that formula (12) assumes that fixed reinsur-
ance costs are proportional to the standard deviation of modeled
losses. Even if one believes this assumption is valid at the indi-
vidual risk level, it is entirely possible that a reduction in mean
losses could decrease SL less than proportionally, or even increase
it. Alternatively, other seemingly intuitive assumptions–for ex-
ample, that the coefficient of variation of modeled losses would
remain constant when a mitigation regime were applied–would
lead to a fully proportional reduction in fixed reinsurance costs
(and therefore class factors that are identical to the raw loss cost
relativities).

Under the assumption that non-loss reinsurance costs are truly
“fixed” even in the presence of mitigation, the class factors may
be derived from the loss cost relativities using formula (10),
where ® is the relative loss cost, X is the permissible loss ratio
from Exhibit 1, and FR is the fixed reinsurance cost ratio from
the same exhibit. For example, a loss cost reduction of 20% for
a device, along with a permissible loss ratio of 65% and a fixed
reinsurance cost ratio of 10% would lead to a class factor of

½=
(1¡ 20%)£ 65%+10%

65%+10%
= :827:

In addition to the key issue of reductions in fixed reinsur-
ance costs, the public domain studies have been silent on several
important issues for ratemaking:

² Should this mitigation class plan apply to losses from other
wind (non-hurricane storms containing tornadoes, hail, and se-
vere straight-line wind)? If not this plan, what about a modified
alternative? Other wind causes of loss were not considered.

² Should this mitigation class plan apply equally to owners,
renters, and condominium policy forms? It stands to reason
that the factors should be modified when contents coverage is
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the predominant exposure under the policy. Yet little guidance
was provided in the studies.

² How should mitigation class plans be modified for commercial
construction exposures?

² How should mitigation experience data from actual catas-
trophic events, as they are occasionally experienced, be as-
similated into the class factors? It would be hubristic indeed
to assume that mitigation devices and combinations thereof
will perform exactly as modeled when we observe the effects
of a real hurricane. To the extent they do not, what is the ac-
tuarially appropriate credibility for the vital data from actual
events in future class factors?

In summary, actuaries and their scientific partners have a long
way to go in developing comprehensive mitigation class plans
for the relevant perils. To the extent we do not ask all the right
questions, unpalatable answers may be forced upon the insurance
industry.24

Class Factors–Fire (Construction/PPC)

In the classical rating plan, class factors are targeted at the
fire peril and two attributes of residential structures: the resis-
tance of the structure to fire damage, and the level of fire pro-
tection afforded by the community in which the structure is lo-
cated. These two attributes are highly interactive–masonry con-
struction, which is more fire resistive, is more common in sub-
urban environments where fire hydrants are prevalent and fire
stations plentiful. Therefore, rating factors are developed using
“two-way” actuarial analysis, as detailed by many contributors
to actuarial literature.

This study breaks no new technical ground here–fire peril ex-
perience data is used along with a two-way “minimum bias” pro-
cedure to develop sound construction/PPC factors for the modern

24Regulators in Florida have already encouraged blanket application of the class factors
for residential structures to HO-4 and HO-6 policies and other wind base rates.
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rating plan. No exhibits on this topic are included, but follow-
ing are some empirical results associated with a peril-specific
analysis:

² The “spread” of construction/protection class factors is much
wider when only the fire peril experience is considered in the
analysis, as losses for other perils are not part of the experi-
ence base. Non-fire losses, which do not vary significantly by
fire rating attributes, serve as ballast dampening the construc-
tion/protection class factors toward unity in the classical plan.
This result confirms one of the stated advantages of the mod-
ern rating plan–greater rating resolution for non-catastrophic
perils.

² Significant differentials in loss experience are found for in-
dividual (ISO) protection classes 4, 5, and 6, prompting de-
velopment of separate factors for these classes. Most insurers
combine classes 1—5 or 1—6 and use the same rating factor in
classical rating plans.

² Fire experience for hybrid construction types such as brick
veneer (over frame) and “hardi-plank” siding varies signifi-
cantly from that for either full frame or full masonry construc-
tion. Expansion of the classical “frame vs. masonry” construc-
tion class distinction to include an intermediate rating class for
these hybrid types is advised.

9. KEY, DEDUCTIBLE, AND LIMIT FACTORS

As Exhibit 17 shows, the modification of base rates for ter-
ritory and class leads to partial key premiums by peril. The key
premiums are further modified for attributes reflecting the vol-
ume of coverage provided, via key factors, deductible factors,
and increased limit factors (for liability), to obtain partial base
premiums. It turns out that the incongruities in the loss distribu-
tions for fire, AOP, and modeled perils are significant enough to
warrant separate development of key and deductible factors for
each peril. In addition, the presence of percentage deductibles
for hurricane requires a separate set of deductible factors.
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Key Factors–Non-Modeled Perils

The reflection of value insured is probably the single most
important rating factor in pricing property insurance. Given its
critical importance, it is one of the most under-represented top-
ics in the actuarial literature. Background research for this study
was frustrated by little existing guidance on techniques for devel-
oping key factors from experience data for even an indivisible
premium, and absolutely none on key factor relationships for
distinct perils when rated separately. Most papers on homeown-
ers pricing do not treat the subject at all. Homan [10] provides
a clever frequency/severity approach for an all-perils develop-
ment, but his reliance on industrywide loss cost distributions for
the complement of credibility is not helpful when no analogous
complement is available by peril.25 In summary, one is caught
between the “rock” of low credibility of experience data by peril
within small ranges of insured value, and the “hard place” of
no suitable complement of credibility in the form of larger-scale
studies.

In response, an approach is developed for AOP and fire perils
based on accumulations of experience data at successive levels
of value insured. It reflects the value of experience data while fa-
cilitating smoothing of the indicated loss costs to produce tables
that square with actuarial theory.

Exhibit 12 shows the development for the fire peril. Five cal-
endar years of experience is segregated by $5,000 ranges of (cov-
erage A only) TVI. First, the average classical all-perils key fac-
tor for the midpoint of the range is shown for reference, along
with the earned house-years and paid fire losses (with D&CC).
Second, the exposure and losses for all TVI ranges up to and
including the current range is accumulated, and the cumulative
loss cost calculated.

25Homan also includes a treatment of fixed expenses, which is not necessary when an
explicit expense fee is charged–as it is in the fair premium structure developed here.
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Why accumulate? Theoretically, the key factor represents the
loss cost at a given (incremental) TVI range relative to the loss
cost at the base value, but the loss cost series for individual TVI
ranges is simply too volatile to use directly. Instead, use the more
stable cumulative loss cost series to mark selected cumulative
loss costs at “target” points (generally every $25,000 of TVI),
and calculate the implied incremental loss cost in the target range
by decomposing the cumulative value as follows.

The known cumulative losses can be represented as the sum
of a series of incremental loss costs times incremental exposure
in each TVI range up to the current one:

Lk =
¯̧
kW̄k = ¸1W1 + ¢ ¢ ¢+¸kWk

where:

¸i = the incremental loss cost in each range (i = 1,2, : : : ,k);

Wi = the exposure weight in each range;

and bars above indicate cumulative totals for ranges “up through”
an amount. Then solve for the incremental loss cost for the cur-
rent range (denoted by k) from the cumulative totals and the
exposure in the current range:

¸k =
¯̧
kW̄k ¡ ¯̧ (k¡1)W̄(k¡1)

Wk
: (14)

Once the implied key factors are found for each of the target
ranges, interpolate linearly between every two target points to
find the key factor for the $5,000 ranges in between.

When selecting cumulative loss costs at target points, one
must be careful to keep the implied marginal key factor (differ-
ence between key factors for successive $5,000 ranges) between
the theoretical lower and upper bounds of:

² Zero (meaning no additional losses are expected despite the
increase in policy limit), and
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² .05 (meaning all losses are total and will “burn through” the
additional policy limit of 5% of the basic limit in a linear
fashion).26

This is a non-trivial exercise requiring some trial and error.
Exhibit 12 shows a reasonable curve given the credibility of some
actual data and the theoretical limitations. Also, the factor for
“each additional $5,000” beyond $250,000 primarily reflects the
marginal factor in the last target interval.

The effects of fire protection, construction, and average TVI
overlap severely in the rating plan. Higher-valued homes tend to
be of masonry construction and located in well-protected sub-
urban areas. Accordingly, the fire peril exposure amounts may
be adjusted to ameliorate this distortion to the raw incremental
and cumulative loss costs. Specifically, divide out the proposed
construction/PPC rating factor from each exposure record in the
statistical data to get a loss cost stated “on base class.”

Key Factors–Modeled Perils

In catastrophe simulation models, the result for each simu-
lated event at each location is typically the “mean damage ratio,”
a value representing the damage as a proportion of the value of
the structure(s) insured. The value of the structure is given as a
parameter by the user of the model and the mean damage ratio
is applied to it to generate the modeled losses. Put another way,
in the models there is an assumption of independence between
the mean damage ratio for the structure and its insured value,
all other attribute held constant. Most insurers make blanket (as
opposed to policy-level) assumptions about insurance-to-value
when populating an exposure data set for simulation, which pro-
portionally affect the modeled cat loss costs for pricing purposes.

Assuming the values insured reported to the model are reflec-
tive of sufficient insurance to value, this attribute of cat models

26Recall that the base structure is defined as one of $100,000 TVI.
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implies that the key factor table is linear with respect to TVI
for the modeled perils. The hurricane base premium for a given
$200,000 house is twice that for an identical $100,000 house.
A further discussion of the appropriateness of this assumption
appears in the ISO [12] filing to partition wind base premiums, as
part of their statutory compliance filing of the Florida mitigation
class plan. The note the ISO key premiums are nearly linear for
the wind peril.

To some, the assumption may appear to be an unacceptable
oversimplification and a weakness of using simulated catastro-
phe losses in pricing. For a heavily reinsured company, the ar-
gument over whether the key factor table should be driven by
the linearity of modeled loss costs is largely academic. Mar-
ket reinsurance costs are increasingly driven by the distribution
of modeled losses, and the retailer of insurance must reflect its
“wholesale” cost for each risk, as charged by the reinsurer, to
avoid economically irrational underwriting.

A linear scale of key factors for both hurricane and other wind
perils is thus reasonable. The key factors vary by policy form
only because the base value insured differs by form. In Florida,
one practical effect of the separation of key factors by peril is
higher hurricane rates for high-valued homes. These homes were
significantly subsidized by application of sub-linear key factors
to indivisible premium, of which a plurality (if not a majority)
is typically hurricane premium.

Deductible Factors–Non-Modeled Perils

Unlike key factors based on the aggregate loss cost distri-
bution, deductible factors depend solely upon the loss severity
distribution. An excellent review of general deductible pricing
theory appears in Hogg and Klugman [9], and familiarity with
the “loss elimination ratio” (LER) as the kernel of the deductible
rating factor is assumed. This study provides strong evidence that
the LER profile varies greatly by peril. In addition, one might
expect that the LERs should vary significantly across many other
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rating factors, such as value insured, territory, and class. In order
to maintain manageable rating logic, flat dollar deductible fac-
tors are allowed to vary by peril and TVI range, and by territory
only for modeled perils.

The deductible factors for non-modeled perils are developed
directly from five years of individual claim data. Flat dollar de-
ductibles ($500, $1,000, and $2,500) are the only options for
non-modeled perils, in contrast with the percent (of coverage A
TVI) deductibles offered for the hurricane peril and discussed
below.27 Each existing claim is stated on a “ground-up” basis by
adding back the deductible amount associated with the claim.28

The net of deductible claim amount is determined for each claim
under each flat deductible option. The sum of all claims valued
at each deductible option is compared to the ground-up losses to
determine the empirical LER for each deductible amount. Then
the deductible rating factor for each non-base deductible is cal-
culated as

di =
1¡LERd
1¡LERBase

(15)

or the ratio of the losses retained (not eliminated) at the target
deductible to those retained at the base deductible (of $500 in
this study).

These factors depend heavily on the underlying exposure
(TVI) distribution of the empirical data, since the amounts of
total losses vary by claim but the flat amount does not.29 Ac-

27There is no theoretical reason percent deductibles by peril cannot be priced from ex-
perience data. In fact, one could argue that percent deductibles are actuarially superior
for all perils because they “inflate” with the value insured and therefore with the corre-
sponding loss severity distribution, a big help in preserving the loss elimination ratios
underlying the rating factors. The resulting factors become obsolete over time much more
slowly. Though state statutes tend to restrict deductible options depending upon TVI, at
least one Florida insurer has recently introduced an all-perils percent deductible.
28This does not solve the “missing claims” problem of losses not exceeding the actual
deductible which “would have been filed” if the deductible were smaller. This distortion
is ignored here.
29The data was divided into TVI ranges which produced a credible and approximately
equal amount of earned house-years in each range.
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tuarial theory states that the LER for the same deductible op-
tion and the same underlying (unlimited) loss distribution will
be smaller as the average TVI (policy limit) increases. Further,
the relationship between the LERs for two (small amount) de-
ductible options should be dampened as both options represent
an ever-smaller portion of increasing TVI. This implies a two-
way consistency test for deductible factors:

1. The selected factor for a given TVI range should (obvi-
ously) decrease as the deductible increases, and

2. The selected factors for a given deductible should con-
verge toward unity as the TVI range increases.30

When this process is compared for multiple perils, one expects
the loss distribution for perils which tend to result in more total
losses (such as fire) to imply smaller LERs at all deductibles, and
therefore deductible factors closer to unity, than those implied by
a peril producing more partial losses (such as AOP). Therefore,
across multiple perils a third consistency test applies:

3. The selected factor for a given TVI range and deductible
option should be closer to unity for the more “severe”
peril (the one with the more right-skewed distribution of
loss amounts).

Exhibit 13 shows representative LERs and selected deductible
factors that reflect all three tests.

Deductible Factors–Modeled Perils

Percent deductibles applicable only to the hurricane peril are
the rule in Florida. They were originally introduced as an in-
novative way to reduce loss exposure without nonrenewals in
the market turbulence following Hurricane Andrew in 1992. In
lieu of experience data, this study uses the cat model to deter-

30Whether they start above or below unity is determined by the base deductible.
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mine hurricane deductible factors by scenario testing over sev-
eral model runs on the same experimental data sets, with only
the deductible option changed in each scenario. Specifically, re-
placing the base 2% deductible with each of the other deductible
options (in our study, 0.5%, 1% and 5%), the model is repeatedly
run to determine the simulated loss elimination ratio.

Catastrophe simulation science indicates that the shape, as
well as the scale, of hurricane loss distributions varies widely
by territory. In fact, areas with high average hurricane loss costs
also tend to have a greater frequency of severe storms that pro-
duce more near-total property losses. Ideal hurricane deductible
factors should therefore vary by territory. In consideration of
maintaining manageable rating logic, the study examines the
scale (expected annual loss costs by territory) of the hurricane
loss distribution by territory from the experimental base data
set and divides the territory set into Low (less than $400 per
year), Medium ($400—$599), High ($600—$1,099), and Extreme
($1,100 and over) hurricane intensity zones. The boundaries are
determined by judgment, and intended to include a reasonable
number of modeled locations in each zone–though most mod-
eled points are in the Low zone, the higher-intensity zones must
be segregated to produce reasonably accurate factors. The mod-
eled losses are aggregated under each scenario in each zone,
the relativities to the modeled losses at the base deductible are
computed, and deductible factors selected. Exhibit 14 shows the
results.

When using the model to price flat dollar deductibles as a
modification to the base rate for a percent deductible, the prob-
lem of exogenous values insured pops up again, in a different
disguise. Any flat amount represents a constant percentage of
a single experimental base value insured, no matter what the
choice. For example, the modeled losses, and therefore the loss
elimination ratio, for a $500 deductible scenario will be identical
to those for a 0.5% deductible scenario when the base value is
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$100,000.31 The actual deductible factor charged in rating, even
for the hurricane peril, should depend upon the empirical TVI
distribution of the insurer’s book, and indeed the TVI of each
property. By design, this is not considered in the experimental
data set.

Rather than resolving “the” proper way to differentiate flat
dollar hurricane deductible factors by TVI range, the study settles
on an adjustment to a base scenario (that for the 0.5% deductible,
which is equivalent a flat $500 deductible for the majority of
units in the experimental data set). The implied relative loss cost
for AOP perils by value range, shown on Exhibit 13, is the ratio of
the complement of the loss elimination ratios in each range; the
calculation is analogous to formula (15), but relates TVI ranges
rather than deductible amounts. Select a relativity, then apply it
to the modeled 0.5% deductible factors by zone to produce $500
flat deductible factors that vary by both TVI range and zone. For
example:

Low zone, under $75,000:

1:17¼ (1¡ 25:0%)
(1¡ 20:4%) £ 1:23

Medium zone, $225,000 and over:

1:26¼ (1¡ 14:7%)
(1¡ 20:4%) £ 1:18

and so on. The end result is a reasonable consideration of both
value insured and territory loss distributions in the pricing of hur-
ricane flat dollar deductibles. The calculation could be repeated
for other flat deductible options.

The deductible factors for other wind, where only flat dollar
deductibles are offered, are calculated using exactly the same
procedure and modeled scenario testing, except that factors are

31This is true assuming that the model contains a “static” event set which is applied to
every location. Some models build a “secondary uncertainty” randomization component
into the analysis, which means the modeled losses for the same scenario on the same
event set will still differ somewhat every time the model is run.
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not differentiated by zone. This simplifies the process by remov-
ing one dimension from the matrix of rating factors. Catastrophe
simulation science indicates that other wind aggregate loss costs
are driven by expected event frequency and that the shape of the
severity distribution of individual severe thunderstorm events is
not as critically different by territory. Further, other wind is a
much smaller portion of overall base premium in Florida, lead-
ing to the decision to waive this adjustment.

Limit Factors–Liability/Medical

This paper breaks no ground with respect to the actuarial tech-
niques for calculating limit factors for the liability peril (cover-
age E), but there are still advantages to divisible base premium.
Limit factors are often based on benchmarks obtained from the
voluminous databases and advanced loss distribution analysis
provided by advisory organizations such as ISO. With distinct li-
ability base premium, there is an opportunity to move away from
the cumbersome additive charges commonly used in residential
property insurance and develop multiplicative limit factors for li-
ability base rates with appropriate reference to industrywide data.
The modern rating logic includes a liability base rate modified
by a multiplicative factor.

Medical payments coverage (coverage F) is such a small part
of the overall base premium that one may simply add the base
rate to that for liability (after modification by the limit factor) and
allow for the existing additive medical limit factors. Application
of multiplicative factors to medical might even result in premium
changes of less than one dollar, which is not practically desirable
in most policy administration systems.

10. ADJUSTMENTS TO BASE PREMIUM

Many adjustments (charges and credits) are made to the base
premium to determine a final homeowners policy premium, even
without the presence of specific endorsements. The modern rat-
ing architecture allows several improvements to these adjust-
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ments:

² Some adjustments may be recalculated as a modification to
an appropriate subset of the total base premium rather than
a blanket modification of premium for possibly impertinent
perils;

² Some adjustments for excluded perils may be accomplished by
partial or total elimination of a portion of the base premium,
simplifying the rating logic.

Exhibit 15 shows how charges and credits are recalibrated to
a smaller premium base when changes must be revenue-neutral
in aggregate. One may tabulate the statewide distribution of base
premium by peril and policy form, then simply divide the current
credit or charge by the proportion of the proposed premium base
represented by the components to which the credit or charge is
targeted, to make the modifier appropriate for the smaller base.
Of course, the actuary may determine that larger or smaller rev-
enue effects are indicated and use experience data to adjust the
charges and credits in line with indications, provided the ex-
pected revenue gain or loss is acknowledged as an off-balance
in the determination of overall rate level impact.

Some examples of actuarially sensible changes to adjustments
to base premium are:

² Wind and hail exclusion may be accomplished by simply elim-
inating the base premium for hurricane and other wind in the
total base premium calculation. Tabular factors formerly used
for this purpose may be eliminated, streamlining rating logic.

² Superior construction and storm shutter credits may be elimi-
nated, as they are superseded by the comprehensive windstorm
mitigation class plan.

² The seasonal occupancy charge may be adjusted to apply to the
(AOP+ fire+ liability) base premium, if it is believed that the
wind resistance of the structure does not depend on occupancy.
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² The protective devices credit for smoke and burglar alarm com-
binations may be adjusted to apply to (AOP+ fire) base pre-
mium.

² The age of home credit may be adjusted to apply to the (AOP+
fire) base premium, or eliminated with the advent of fire and
hurricane class plans.

² The town/row house charge may be adjusted to apply to the
(AOP+ fire) base premium.

² The replacement cost provisions charge for “guaranteed re-
placement cost” endorsements may be adjusted to apply to
the non-liability base premium.

11. IMPLEMENTATION ISSUES

The move to a modern rating architecture for residential prop-
erty insurance affects many non-actuarial functional areas within
an insurer, including:

² Operations (programming, policy management, statistical re-
porting)

² External affairs (filings, regulatory relations)
² Marketing (sales force, customer service training, competitive
analysis)

Several specific items and issues with actuarial overtones and
cross-functional impacts are discussed below.

Measurement of Overall Rate Level Impact

Most rate reviews proceed in three major steps:

1. Examine the indicated overall rate level change;

2. Determine base rates and rating factors (and rating logic
as necessary);
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3. Assess the overall rate level impact of the selected
rate structure and reconcile it with the indicated over-
all change.

Step 3 is extremely important to both internal and external
stakeholders in the insurance economy as well as to the actuary
charged with maintaining profitability. It may be accomplished at
several levels of granularity. When only a few base rates and rat-
ing factors are changing and there are no significant changes to
the rating logic, aggregate estimates of the overall impact may be
sufficient. The extreme case would be a single change to a base
rate that applies to all policyholders, in which case the actuary
could state with certainty the overall impact without analyzing
the effect at the policy level. When the rating logic and terri-
tory definitions are completely redesigned and each base rate,
class and territory rate table is developed from first principles,
the other extreme applies. The overall rate level impact must be
measured by re-rating every existing policy on the proposed rate
structure.

The actuary must be prepared to build tools that compare
“before and after” premiums for each existing policyholder and
that can be run iteratively in a timely fashion. Again, technology
is the enabler allowing the extraction of high-quality data and
execution of rating logic quickly to measure rate impacts in this
fashion. As the impacts are compared against the indications, the
most efficient technique for iterative adjustment is a flat factor
applied to the base rates by policy form.32 This study does not
vary the flat factor by peril, which has the effect of preserving
the overall distribution of base premium.

Competitive and Residual Market Analysis

Even a policy-level measurement of static overall rate level
impact is still insufficient to indicate the likely second-order or

32As a regulatory matter, some states require rate indications developed by policy form–
in this milieu, the flat factor applied to the indicated base rates to achieve the overall
indication should also vary by form.
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dynamic effect on overall premium and policy volume (as prices
incent consumer actions) and distributions by policy form, ter-
ritory and class. Yet this is actually the effect of greater mag-
nitude to the profitability and growth of the insurer in the long
run. When all the insurers competing in a market have similar
rate structures and the market is relatively stable, the effect of
an overall rate level change that does not displace many existing
customers differently than the overall average may perhaps be
measured with ignorance of dynamic competitive effects. When
an insurer makes a market-leading change to a modern rating
architecture, the likely competitive effects must be examined in
advance and monitored closely as the architecture is rolled out.
Returning to Cummins [7] will remind the reader of how criti-
cally certain market attributes can affect the possibility of adverse
selection against the insurer.

On the flip side, a modern rating plan is one of the few ways
to gain a sustainable competitive advantage in the market without
a significant investment in operational scale and surplus capac-
ity. Further, marketing and underwriting restrictions should be
comprehensively reviewed and aligned with the rating plan once
it is implemented. Historical restrictions that reflected rate ade-
quacy considerations in particular territories and classes may be
rethought as the marketing plan is revisited. In summary, a more
refined rating plan should facilitate some additional growth given
constant surplus.

The regulators (and possibly private sources) in many states
collect proposed premiums for standard rating examples (a.k.a.
“risk profiles”), which are most often publicly available. These
rate comparisons may also include the residual market rate from
the insurer of last resort if there is one. The actuary can com-
pile such comparisons as a leading indicator of changes in com-
petitive position, at least for “typical” risks. Regulators may be
interested in the proposed position of the insurer against pub-
lic (residual market) as well as private competitors, depending
on the level of political pressure against raising residual market
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rates to maintain minimal competition with the private market.33

Exhibit 16 shows an example of a rate comparison that might be
useful. The actuary should encourage all stakeholders to keep in
mind several distortions inherent in rate comparisons:

² Comparing an individual insurer’s proposed rates to the com-
petition’s current rates may produce a false sense of com-
petitive position when rate levels are rapidly rising or falling
industry-wide, due to the natural time lag between successive
filings. Emerging causes of loss, capacity problems affecting
reinsurance prices, and other phenomena may not yet be re-
flected in the current (more accurately, the last filed) rates of
competitors or the residual market.

² Comparisons are often based on the “average” rate for a par-
ticular county or wider geographic region. The average may
be weighted by an exposure distribution that does reflect that
of the insurer, or it may not be weighted at all–a simple
arithmetic average using one rating example for each terri-
tory within the area. The insurer implementing more refined
territory definitions than its competitors produces an average
for coastal areas that is most likely skewed upward in this case,
because of its removal of inland subsidies to coastal business
in a more refined hurricane territory structure. The example for
a small coastal territory, perhaps even one in which the insurer
has no current business, gets equal weight with the inland ex-
ample from a much wider land area and more populated area
letting the high coastal rate drive the average.

Rate Dislocations and Transition Planning

As critical as it is to understand the proposed rating plan’s
competitive impact on the ability to write new business in each

33In Florida, some residual market rates are set based on the highest premium reported
by the top twenty private insurers (as ranked by premium market share) for a given
rating example in each county, which focuses regulatory attention more directly on the
differential between an insurer’s proposed rates and those for the residual market in the
same geographic area.
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FIGURE 5

territory, it is just as important to manage customer retention
when many existing insureds likely face significant rate changes.
First, the actuary can inform the marketing and sales force by
geographic area in a comprehensive fashion. Figure 5 shows an
example of a “pin map” that delineates the proposed territory
boundaries and contains a color-coded pin for each existing in-
sured location. The shades indicate the spectrum of rate changes
that will be experienced by each location.

Second, serious consideration should be given to a transition
plan that caps annual swings in premium to a maximum and
minimum percent value, phasing in the premium change for those
subject to severe rate dislocations. There is a legitimate debate as
to whether such plans are inherently unfairly discriminatory, as
new business and renewals would be charged different rates for
an identical risk. A complete discussion of the economics and
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public policy associated with such plans is beyond the scope of
this paper, though it is noted that “swing limits,” capping changes
in rating factors in spite of credibility-weighted indications, are
used throughout many accepted rating plans in most lines of
insurance. In any case, the practical business advantages of a
phasing-in of premium changes for existing insureds cannot be
overlooked.

It sounds simple to implement such a plan, but the devil is in
the details of how the premium subject to transition is calculated
and carried forward from year to year. Basic logic for a plan that
caps annual premium increases might be as follows:

1. Calculate P0, the premium on current rates at the cur-
rent TVI. P includes premium for miscellaneous cov-
erages and endorsements, but does not include expense
fees. Premium for endorsements added during the cur-
rent term is restated as full-term premium on current
rates.

2. Calculate P1, the premium on proposed rates at the current
TVI, for the standard policy coverages and only endorse-
ments that are effective before the renewal date (in other
words, on an “apples to apples” basis whereby premium
for new additional coverages is not compared against
current premium totals). P1 also excludes expense fees.

3. The premium change factor is the ratio of the premium
on proposed rates to premium on current rates less unity:

H =
P1
P0
¡ 1: (16)

4. If the premium change factor exceeds M , the selected
maximum premium increase, let transition factor

T0 =
M

H
: (17)

5. Multiply each peril partial base premium by T0 in de-
velopment of final policy premium. Store T0 with policy
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statistics. At the next renewal, update the transition fac-
tor by multiplying by the maximum premium increase,
limiting it to unity:

T1 =Min(T0£M,1:00): (18)

6. Repeat the adjustment of base premium and storage of
Ti for as many periods as necessary until it is 1.00.

It is straightforward to modify this algorithm to accommodate a
transition plan that limits both premium increases and decreases
for individual policyholders.

Steps 1 and 2 reflect the fact that there are many exposures
such as endorsements and “inflation guard” (which provides au-
tomatic annual increases in TVI to keep pace with replacement
cost inflation) of which the treatment should be carefully speci-
fied in designing any transition logic. Just as important is a cost-
benefit analysis of the revenue loss expected from the transition
plan, at least in the first year. Figure 5 should be reproduced to
show the rate impacts net of the transition plan. A granular anal-
ysis of premiums on proposed rates, by policy, with and without
the transition plan should be conducted to aggregate the revenue
impact companywide and by territory. This is the only reliable
way to assess the plan’s impact.

Miscellaneous Rates, Endorsements, and Operational Impacts

Most miscellaneous coverages are rated using key premium
as the base. Recall that this is the fair premium for the class
and territory, but reflecting a given base coverage amount and
deductible. Simply changing “key premium” to “total key pre-
mium” (the sum of the key premiums by peril) will allow mi-
gration of much of the rating logic for endorsements in a sound
manner. However, rates per $1,000 of coverage and flat dollar
charges should be thoroughly reviewed to assess their adequacy
as the overall rate level and its distribution by peril shift under
the modern rating plan.
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The basic rating logic may be of primary concern to the ac-
tuary, but the policy services, programming, statistical reporting,
and manual writing personnel will spend most of their time deal-
ing with its effect on the adjustments to base premium and the
miscellaneous rules for and endorsements available in the res-
idential property program. The actuary should be prepared to
invest significant time and effort in assisting these vital stake-
holders in modifying the other processes downstream that are
affected by the changes in basic rating logic.

12. CONCLUSION

Whether due to necessity or strategy, insurers can improve the
stability and adequacy of overall rate level as well as the actuarial
equity of individual policy rates by investing in a modern rating
architecture for residential property insurance. Elements of the
modern rating plan may include:

² Proper use of simulated losses for catastrophic perils in overall
rate level, territory and class rating;

² A fair premium structure that is aligned with the need for ap-
propriate consideration of expected losses, fixed and variable
underwriting expenses, and costs of capital by peril;

² Base premiums divisible by peril and subject to distinct clas-
sification and territory rating plans;

² Refinement of corresponding territory definitions;
² Introduction of new class plans targeted to individual perils
formerly not class rated;

² Coverage modification (amount of insurance, deductible and
limit) factors that reflect differing loss distributions by peril
and appropriate assumptions about the loss cost distribution
for catastrophic events;
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² Rating logic for adjustments to base premium and miscella-
neous endorsement premiums that is targeted to the perils af-
fected by such modifications of the policy and consistent with
the logic for base premium determination.

In addition, many practical considerations apply as the mod-
ern rating architecture progresses from actuarial theory to op-
erational reality within the organization and competitive reality
in the outside market. The actuary should take an active role in
addressing each issue.
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EXHIBIT 4

A-Florida Insurance Company

Homeowners Rates Effective 1/1/2004

Fixed Reinsurance Cost Provision

Item Source Description Amount

[1] Exhibit 5 Direct Earned Premium 46,105,811
[2] Exhibit 5 Private Cat Subject Premium 40,573,114
[3] Exhibit 5 Modeled Hurricane Gross Annual Losses 10,353,920
[4] Exhibit 5 Private Cat Reinsurance Premium 9,385,801
[5] Exhibit 5 Public Cat Reinsurance Premium 3,820,128
[6] accounting Private Cat Retention % SMP 10%
[7] accounting Private Cat Layer Coverage Level 95%
[8] ([3]¡ [6]£ [2])£ [7] Reinsured Portion of Loss Cost 5,981,778
[9] [4]+ [5]¡ [8] Implied Reinsurance Expenses 7,224,150
[10] [9]=[1] Provision for Fixed Reinsurance Costs 15.7%
[11] [9]=[3] Risk Load as % of Gross Loss Cost 69.8%



ARCHITECTURE FOR RESIDENTIAL PROPERTY INSURANCE RATEMAKING 559



560 ARCHITECTURE FOR RESIDENTIAL PROPERTY INSURANCE RATEMAKING

EXHIBIT 6

A-Florida Insurance Company

Homeowners Rates Effective 1/1/2004

Base Rates for Modeled Perils

[A] Var. U/W Expense Ratio: 21.7%

Allocation of Reinsurance Costs to Policy Form–Hurricane

[1] [2] [3] [4] [5]
Policy Base Value CY 2002 2002 Base 2002 Alloc. Indicated
Form Insured House-Yrs. Earned TVI Re. Expense Reins. Load

HO2/3/9 100,000 72,765 7,276,499 7,191,638 98.83
HO4/6 10,000 3,290 32,896 32,512 9.88

Total 76,055 7,309,394 7,224,150

Modeled Base Rates for Hurricane and Other Wind

[6] [7] [8] [9] [10]
Hurricane Reinsurance Indicated Other Wind Indicated

Form Loss Cost Fixed Load Base Rate Loss Cost Base Rate

HO2/3/9 135.24 98.83 298.95 33.64 42.96
HO4/6¤ 9.02 9.88 24.14 2.24 2.86

[A] from Exhibit 1, includes profit load
[1], [2] from company data
[3] = [1]£ [2]
[4] total = [9] from Exhibit 4, then allocated on [3]
[5] = [4]=[2]
[6], [9] from cat model for HO 2,3,9; scaled by ratio of base coverage amounts for HO 4,6
[7] = [5]
[8] = ([6]+ [7])=(1¡ [A])
[10] = [9]=(1¡ [A])
¤Ratio of base coverage amounts reflects Cov. A+B+C+D
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EXHIBIT 8

A-Florida Insurance Company

Homeowners Rates Effective 1/1/2004

Proposed Expense Fees

[A] Variable Expense Ratio: 21.7%
[B] Fixed Expense Ratio: 6.0%

[1] [2] [3]
CY 2002 CY 2002 Indicated

Form EP incl. Fees House-Years Expense Fee

HO2,3 38,277,064 60,174 48.74
HO9 6,867,503 12,591 41.79
HO4 506,870 1,895 20.50
HO6 454,375 1,395 24.96

[A], [B] from Exhibit 1, includes profit load
[1], [2] from company data
[3] = [1]=[2]£ [B]=(1¡ [A])
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EXHIBIT 15

A-Florida Insurance Company

Homeowners Rates Effective 1/1/2004

Adjusted Base Premium Charges and Credits

Earned Base Rate Distribution by Peril
Form House-Yrs. AOP Fire Liability Medical Hurricane Wind Total

HO2 3,477 136 119 28 2 299 43 627
HO3 315,958 151 152 31 2 299 43 678
HO4 12,060 14 18 3 2 24 3 64
HO6 7,811 11 18 2 2 24 3 60
HO9 64,341 120 143 29 2 299 43 636

HO Avg. 403,648 139 144 29 2 285 41 641

Protective Devices (AOP+Fire base)
Premium Base: 44.2%

Code Current Implied Selected

1 ¡5:0% ¡11:3% ¡11:0%
2 ¡5:0% ¡11:3% ¡11:0%
3 ¡5:0% ¡11:3% ¡11:0%
4 ¡5:0% ¡11:3% ¡11:0%
5 ¡5:0% ¡11:3% ¡11:0%
6 ¡2:0% ¡4:5% ¡4:0%
7 ¡2:0% ¡4:5% ¡4:0%
8 ¡10:0% ¡22:6% ¡22:0%
9 ¡10:0% ¡22:6% ¡22:0%
10 ¡4:0% ¡9:1% ¡9:0%
11 ¡7:0% ¡15:8% ¡15:0%
12 ¡7:0% ¡15:8% ¡15:0%
13 ¡7:0% ¡15:8% ¡15:0%
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EXHIBIT 16

A-Florida Insurance Company

Homeowners Rates Effective 1/1/2004

Competitive Analysis

Preferred HO-3, $75,000 Frame Risk

A-Florida Top 20 Difference
A-Florida Proposed Competitor Residual A-Florida from

County Current Rate Rate Current Avg. Market Rate Change Competition

Alachua 429 492 466 737 14.7% 5.7%
Baker 459 435 517 750 ¡5:2% ¡15:9%
Bay 530 791 724 1,097 49.2% 9.3%

Washington 483 515 552 753 6.6% ¡6:7%

Preferred HO-3, $150,000 Masonry Risk

A-Florida Top 20 Difference
A-Florida Proposed Competitor Residual A-Florida from

County Current Rate Rate Current Avg. Market Rate Change Competition

Alachua 527 716 673 1,031 35.9% 6.5%
Baker 617 617 750 1,048 0.0% ¡17:7%
Bay 718 1,182 1,054 1,535 64.7% 12.2%

Washington 653 741 798 1,053 13.5% ¡7:2%
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EXHIBIT 17

A-Florida Insurance Company

Homeowners Rates Effective 1/1/2004

Rating Logic for Calculation of Adjusted Base

Premium

Calculation of Total Base Premium

Op. Value Premium Description

163 163 Fire Base Rate (by Form)
£ 1.00 0 Fire Territory Factor
£ 1.00 0 Fire Construction/Protection Class Factor (by Form)
= 163 Fire Key Premium
£ 1.006 1 Fire Key (amount of insurance) Factor (by Form)
£ 1.00 0 Fire Deductible Factor (by AOI)
= 164 Fire Base Premium

282 282 Hurricane Base Rate (by Form)
£ 0.57 (121) Hurricane Territory Factor
£ 0.73 (76) Hurricane Mitigation Factor
= 85 Hurricane Key Premium
£ 1.025 2 Hurricane Key Factor (by Form)
£ 1.00 0 Hurricane Deductible Factor (by Zone, & AOI if flat

$500)
= 87 Hurricane Base Premium

46 46 Other Wind Base Rate (by Form)
£ 1.09 4 Other Wind Territory Factor
= 50 Other Wind Key Premium
£ 1.025 1 Other Wind Key Factor (by Form)
£ 1.00 0 Other Wind Deductible Factor (by AOI)
= 51 Other Wind Base Premium

31 31 Liability Base Rate (by Form)
£ 1.00 0 Liability Increased Limits Factor
£ 0.92 (2) Liability Territory (group) Factor
+ 2 2 Medical Payments Base Rate
+ 0 0 Medical Limit Charge/Credit
= 31 Liability/Medical Base Premium

151 151 All Other Perils Base Rate (by Form)
£ 1.01 2 AOP Territory Factor
= 153 AOP Key Premium
£ 1.022 3 AOP Key Factor (by Form)
£ 1.00 0 AOP Deductible Factor (by AOI)
= 156 AOP Base Premium

488 Total Base Premium
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EXHIBIT 17

Continued

Calculation of Adjusted Base Premium

Op. Value $ Impact Description

¡ (0.05) (24) Claim Free Credit (to Total)
¡ (0.11) (35) Protective Device Credit (to AOP+Fire)
+ 0 0 Seasonal Occupancy modifier (to AOP+Fire+Liab)
¡ 0 0 Wind Exclusion Credit (to Hurr+Other Wind)
+ 0 0 Screen Enclosure Charge (flat charge)
¡ (0.04) (13) Age of Home Credit (to AOP+Fire)–HO
+ 0 0 Multi-Unit or Town/Rowhouse mod (to AOP+Fire)–HO
+ 0.16 73 Replacement Cost Provisions mod (to non-Liab)–HO
¡ 0 0 Law/Ordinance Exclusion Credit (to non-Liab)–HO
¡ 0 0 In-Construction Credit (to Total)–HO
¡ (0.06) (8) BCEGS Credit (to Hurr+Other Wind)–HO
+=¡ 0 0 Loss Settlement Options mod (to non-Liab)–MH
¡ 0 0 ANSI/ASCE Credit (to non-Liab)–MH

= 481 Adjusted Base Premium
+ 55 Expense Fee
= 536 Total Policy Premium
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Abstract

The workers compensation tail largely consists of
the medical component of permanent disability claims
(MPD). Yet the nature of MPD payments is not widely
understood and is counter to that presumed in common
actuarial methods.
This paper presents an analysis of medical payments

based on 160,000 permanently disabled claimants over
77 accident years. It introduces a method for utilizing
incremental payment data prior to the standard trian-
gle to extend development factors beyond the end of the
triangle (for any casualty line).
A model is presented that explicitly reflects the op-

posing effects of medical cost escalation and the force
of mortality. It demonstrates that

² paid loss development factors (PLDFs) tend to in-
crease over many successive, “mature” years of de-
velopment,

² PLDFs and tails will trend upward over time due
to expected future improvement in mortality–that is,
people will be living longer, and

² average medical costs for elderly claimants are sub-
stantially higher than for younger claimants.

The paper also demonstrates that case reserves based
on inflating payments until the expected year of death
are significantly less than the expected value of such
reserves. A method is introduced for realistically simu-
lating the high expected value and variability of MPD
reserves. It is based on a Markov chain model of annual
payments on individual claims.

579
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1. SUMMARY AND INTRODUCTION

Historically, the ability of workers compensation insurers to
reasonably estimate tail factors has been hampered by a dearth of
available development experience at maturities beyond 10 to 20
years. Substantive advances in workers compensation tail estima-
tion depend on the availability of a substantial database extending
to 50 or more years of development.

This paper presents the results of a thorough analysis of the
extensive paid loss development database of the SAIF Corpora-
tion, Oregon’s state fund. This database extends out to 77 years
of development separately for medical and indemnity, and sep-
arately by injury type (i.e., permanent total, permanent partial,
fatal, temporary total, temporary partial, and medical only).

This paper predominantly focuses on the behavior of medi-
cal payments for permanently disabled claimants (MPD) on an
unlimited basis. Some of the key findings from this analysis of
MPD payments include the following:

1. MPD tail factors calculated empirically are significantly
greater than those derived from extrapolation tech-
niques. This occurs because MPD paid loss develop-
ment factors (PLDFs) do not decrease monotonically
for many later development years (DYs).

2. There is an effective, systematic way (the Mueller In-
cremental Tail method) to utilize incremental payment
data prior to the standard triangle to extend PLDFs be-
yond the end of the triangle for any casualty line.

3. Medical cost escalation rates have generally been much
higher than annual changes in the medical component
of the Consumer Price Index (CPI). Medical cost es-
calation rates include increases in utilization rates of
different services and the effects of shifts in the mix of
services toward more expensive care alternatives.
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4. Medical cost escalation rates and the force of mortality
are the key drivers of MPD tail factors. Unfortunately,
the paid loss development method is not designed to
treat these two influences separately. A method (incre-
mental paid to prior open claim) is presented that pro-
vides for the separate, explicit treatment of the effects
of these two drivers.

5. In the early stages of the MPD tail, medical cost es-
calation overpowers the force of mortality, leading to
increases in incremental paid losses and PLDFs.

6. Assuming recent mortality rates, the incremental paid
to prior open claim method fits the empirical data very
well out to DY 40, but then tends to understate losses
for the next 15 DYs. This understatement is due to the
added costs of caring for the elderly, who make up a
rapidly increasing percentage of surviving claimants.

7. The common actuarial assumption that the incremen-
tal medical severities for each claimant (at current cost
level) during each future DY will remain constant is
not valid. Such current level severities tend to increase
noticeably as each surviving claimant becomes elderly.

8. Declining mortality rates have a substantial effect on
medical tail factors. Mortality improvement will also
cause individual PLDFs to trend upward slowly for any
given DY.

9. The common method of estimating the tail by apply-
ing the ratio of incurred to paid for the most mature
accident years will underestimate reserves, unless case
reserves adequately reflect the implications of points 3,
7, and 8. This is rarely the case.

10. The most significant factor affecting the indications in
this paper is the applicable retention. Tail factors and
PLDFs at more mature years of development should
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be expected to be significantly less at relatively low
retentions.

11. The expected value of an MPD case reserve is much
greater than cumulative inflated payments through the
expected year of death. This is similar to the situation
that occurs when reinsurance contracts are commuted,
where using the life expectancy of the claimant pro-
duces an estimate well below the weighted average of
outcomes based on a mortality table [2].

12. The variability of total MPD reserves can be gauged
realistically by a Markov chain simulation model that
separately estimates payments for each future DY by
claimant.

13. The potential for common actuarial methods to un-
derstate the MPD reserve, and consequently the en-
tire workers compensation reserve, is significant. This
is also true regarding common methods for estimating
the degree of variability in the workers compensation
reserve.

14. The MPD loss reserve is a high percentage of the total
workers compensation loss reserve for maturities of 10
years or more. And that percentage increases noticeably
at higher maturities.

It is important to note that the applicability of the above find-
ings depends not only on the retention level, but also the presence
(or absence) of permanent disability (PD) claimants with ongo-
ing medical costs and on the specific provisions of state workers
compensation laws.

Statutory indemnity benefits differ by state. For example,
some states allow for escalation of PD benefits while others do
not. Medical benefit structures are much more uniform across
states. This paper focuses on MPD payments, which generally
do not vary significantly between states.
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Organization of Paper

This paper is divided into 10 sections:

1. Summary and Introduction

2. Using Prior Incremental Paid Data to Extend the PLDF
Triangle

3. Incorporating the Static Mortality Model into the Incre-
mental Paid to Prior Open Claim Method

4. Mortality Improvement

5. The Trended Mortality Model

6. A Comparison of Indicated Tail Factors

7. Sensitivity Considerations

8. Estimating the Expected Value of MPD Reserves

9. Estimating the Variability of the MPD Reserve with a
Markov Chain Simulation

10. Concluding Remarks

The paper also includes five appendices:

A. The Mueller Incremental Tail Method

B. Historical PLDFs for All Other Workers Compensation

C. Incorporating the Static Mortality Model into the Incre-
mental Paid to Prior Open Claim Method

D. Incorporating the Trended Mortality Model into the In-
cremental Paid to Prior Open Claim Method

E. Quantifying the Elder Care Cost Bulge
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Introduction

The workers compensation tail behaves quite differently from
that of any other casualty line. For other lines, it is virtually
axiomatic that PLDFs will decrease monotonically to 1.0 for
later DYs. In sharp contrast, PLDFs for MPD payments quite
often increase for later DYs.

The payout pattern for MPD losses is a composite of two
radically different types of payments: short-term and lifetime.
What separates these two types is how long work-related med-
ical payments continue. Short-term payments cease well before
the claimant dies, either because the need for periodic medical
treatments ceases or because the claimant returns to work. Life-
time payments, on the other hand, persist until the claimant dies.
Figure 1.1 contrasts these payout patterns. These two categories
are conceptual, to help in understanding the behavior of workers
compensation payments over time, rather than practical, since
MPD payments cannot be precisely separated into these two cat-
egories until all claimants die. As such, precise categorization
requires hindsight on an ultimate basis.

From Figure 1.1, we see that short-term payments overshadow
lifetime payments during the first 10 or so DYs, and lifetime
payments dominate soon after that. PLDFs for successive DYs
during DYs 3 through 15 tend to drop, largely because of the
cessation of short-term payments for a significant percentage of
claimants during each DY. For later DYs, the predominant influ-
ence affecting whether PLDFs increase or decrease is the relative
magnitude of the force of medical cost escalation versus that of
claimant mortality, since death is virtually the sole reason for the
closure of claims.

An MPD payment history is the result of the sum of the above
two payout patterns. As is evident, this will be a bimodal pattern,
peaking during DY 2 and around DY 40. If total medical or total
workers compensation paid experience is all that is available, the
second peak will be much less evident, to the point where the
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FIGURE 1.1

Payout Patterns–Lifetime versus Short-Term MPD
Payments for a Single Accident Year

tendency of later PLDFs to refuse to decline could easily be seen
as an anomaly, when in reality it is to be expected.

The payout pattern for lifetime payments does not end at DY
50. A severely injured worker in his or her late teens or early 20s
could require work-related medical payments for up to 90 years
after the accident. As a result, the total area under the lifetime
payout pattern (i.e., ultimate payments) can easily be three to
four times that under the short-term payout pattern.

Often the reserving actuary will have paid losses only for the
first 15 (or fewer) DYs. Consequently, the only paid loss expe-
rience available consists primarily of short-term payments, and
yet the bulk of the loss reserve will be due to lifetime payments.
Since the two types of payments are radically different, the risk
of underestimating the loss reserve is significant. Frequently the
actuary will rely to some degree on the ratio of incurred loss to
paid loss for the most mature accident years (AYs) as a guide
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in selecting a tail factor. Since this typically indicates a larger
tail (when there are open permanent disability claims), the actu-
ary may feel that reliance on this latter method will produce a
safely conservative reserve estimate. However, such an estimate
is only as unbiased as the MPD case reserves are. As will be
shown later, MPD case reserves are particularly susceptible to
underestimation.

Table 1.1 illustrates the hazards of attempting to extrapolate
medical paid loss development factors beyond DY 15 using a
common method (exponential decay), as applied to historical
PLDFs for DYs 10—15 (highlighted by a box) in Oregon, Wash-
ington and California.

In Table 1.1, as well as throughout this paper, a PLDF for a
given DY is denoted by the maturity at the end of that year. For
example, the factors in the row headed by “2” are for develop-
ment from 1 to 2 years of age, since this is the second year of
development.

In the lower portion of Table 1.1 these extrapolated factors are
directly compared with known historical factors. In each state,
the extrapolated factors increasingly fall below the historical ones
for later DYs. These persistent shortfalls are compounded when
tail factors are calculated, such as those shown in the bottom row
of the table.

Table 1.1 provides these comparisons for SAIF, the Wash-
ington Department of Labor and Industries (WA LNI) and
the California Workers Compensation Insurance Rating Bureau
(WCIRB), respectively. The SAIF factors are for MPD only,
while for the other two states, the factors are for total medi-
cal. So, everything else being equal, SAIF’s PLDFs will tend to
be greater for later DYs.

The problem of persistent shortfalls in the extrapolated factors
can be reduced, but not eliminated, by applying inverse power
[5] fits to the PLDFs for DYs 10—15. Such fits also assume
that PLDFs will decrease monotonically for increasing DYs. The
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reality is that the historical PLDFs in all three Western states
often increase for later DYs. The shortfalls produced by inverse
power fits are smaller because the ratios of the projected factors
(less 1.0) rise asymptotically to 1.0, while the decay ratios for
the exponential curve fits remain constant at a value well below
1.0.

In addressing the problem of extrapolating paid development
when the most mature PLDFs are increasing, some insurers or
self-insureds may have data for longer periods of time than the
latest 20 years. However, because of system changes or acquisi-
tions, cumulative loss development data for old accident years are
frequently lacking. In these cases incremental calendar year data
for old accident years may be available because payments are still
being made on the old open claims. Section 2 and Appendix A
present the Mueller Incremental Tail method for making full use
of the incremental data to calculate empirical tail factors. We
have used this method to derive empirically based PLDFs out
to 65 years of development based on SAIF’s actual MPD loss
experience.

The PLDF model is not designed to reasonably predict the
behavior of lifetime payments during later DYs. An alternative
approach using the incremental paid to prior open claim method
is well suited to this purpose. It separately treats changes in incre-
mental severities (due to annual rates of medical cost escalation)
and the slow decline in the number of open claims (due to mor-
tality). A version of it using a recent mortality is presented in
Section 3. It will be referred to as the static mortality model.

When the rate of medical cost escalation clearly exceeds the
percentage of remaining claimants who die during a given DY,
then incremental MPD payments will increase from one DY to
the next. Such increases should be quite common during DYs 15
through 40.

In Figure 1.2, the PLDFs indicated by the static mortality
model are compared with SAIF’s empirical PLDFs. The static
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FIGURE 1.2

Static Mortality Model and Actual SAIF PLDFs

Less 1.0

mortality model PLDFs are shown in the last column of Ta-
ble 3.2. The empirical PLDFs for the first 29 DYs are the av-
erages of the latest 15 historical factors. For DYs 30—58, the
PLDFs appear in Tables A.1, A.2 and A.3, where the Mueller
Incremental Tail method is applied.

As Figure 1.2 shows, SAIF’s actual development experience
for DYs 40 through 54 is consistently worse than the model pre-
dicts. The bulge in adverse paid development evident for DYs
40 through 54 is attributable to the rapidly increasing percent-
age of surviving claimants who are elderly. Not uncommonly,
elderly PD claimants simply require more extensive and expen-
sive medical care than younger claimants. And as PD claimants
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TABLE 1.2

Two Indicators of an Increasing Proportion of the

Elderly Among Surviving Claimants

Portion 80 Years of Portion Who Will Die
DY Age or Older Within Five Years

0 0.0% 4.4%
10 0.9% 9.4%
20 10.9% 18.3%
30 36.5% 30.1%
40 51.2% 39.0%
50 64.7% 47.2%
60 100.0% 60.3%

The percentages in Table 1.2 are based on 2000 mortality tables published by the Social Security
Administration (SSA), assuming 75% of the claimants are male, and a census of SAIF’s permanent
total disability claimants by age-at-injury.

age, so do their spouses. Often spouses reach an age where they
can no longer provide as much care as previously, and insurers
then pay for the increased cost of hiring outside assistants. Ta-
ble 1.2 indicates the percentage of surviving claimants who will
be 80 or older at the beginning of various years of development.
It also shows the percentage of surviving claimants expected to
die within the succeeding five years. It has also been observed
that incremental severities tend to undergo an increase during the
last years before a claimant’s death that exceeds normal rates of
medical cost escalation.

Table 1.2 indicates that for DYs 40 and higher, over half of
the surviving claimants will be 80 or more years old. Clearly, this
fact could have been anticipated on an a priori basis. After all,
if the average claimant were age 40 when injured, it should be
expected that 40 years after the injury year the average surviv-
ing claimant would be about 80 years old. However, the above
table underscores a reality that casualty actuaries may not have
heretofore given much consideration. The behavior of loss de-
velopment for later DYs may well be more adverse than what
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FIGURE 1.3

Washington State Fund

Medical Tail

Solid points= actual data; shaded= fitted data.

would be expected on the basis of earlier DYs, because of the
increasing infirmities of surviving claimants and their spouses.

The adverse pattern evident in Figure 1.2 is also quite pro-
nounced in the medical PLDFs for the Washington State Fund,
as shown in Figure 1.3. This graph was provided by William
Vasek, FCAS.

Table 1.3 provides a direct comparison of the tail factors (to
ultimate) at 15 years produced by various extrapolation tech-
niques with that based on SAIF’s historical experience.

Clearly, the extrapolated MPD loss reserves at 15 years of
maturity are only a small fraction of the MPD reserve indicated
by SAIF’s development history.
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TABLE 1.3

A Comparison of SAIF’s Empirical Tail Factor with

Extrapolated Tail Factors at 15 Years

(Based on a Fit to Historical PLDFS for DYs 10—15)

Indicated Tail Extrapolated Reserve as a
Factor at Portion of the Reserve

Extrapolation Method 15 Years Indicated by SAIF’s History

Linear Decay 1.046 3.5%
Exponential Decay 1.175 13.4%
Inverse Power Curve 1.234 17.9%

SAIF’s Historical Factors 2.309 100.0%

As high as SAIF’s paid tail factor at 15 years is (2.309), it
is understated because it implicitly assumes that past mortality
rates will continue indefinitely into the future. As noted in Sec-
tion 4, mortality rates have been declining steadily for at least the
past four decades, and the Social Security Administration (SSA)
reasonably expects such declines to continue throughout the next
century.

A second reserving model that explicitly accounts for the
compounding effects of downward trends in future mortality rates
and persistently high rates of future medical cost escalation will
be referred to as the trended mortality model. It will be described
in Section 5.

The indications of the trended mortality model for MPD are
significant and troubling:

² Paid tail factors at the end of any selected year of develop-
ment should be expected to increase slowly but steadily over
successive accident years.

² Incremental PLDFs for any selected year of development
will also trend upward slowly but inexorably for successive
AYs.
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² The above effects on MPD will cause corresponding upward
trends in paid tails and incremental PLDFs for all workers
compensation losses in the aggregate.

Unless the effects of downward trends in mortality rates are
incorporated into a workers compensation reserve analysis, the
resulting reserve estimates will be low when numerous AYs are
involved and the retention is very high.

We believe that the most appropriate approach to estimating
gross workers compensation loss reserves is to separately evalu-
ate MPD loss reserves by one or more of the methods presented
in this paper. Lacking separate MPD loss experience, the static
mortality and trended mortality models and the Mueller Incre-
mental Tail method can be applied satisfactorily to total medical
loss experience for DYs 20 and higher, since virtually all medical
payments are MPD payments at such maturities.

There is an additional reason to utilize the methods presented
in this paper instead of the standard PLDF method. In general,
legislated benefit changes tend to have a much greater impact
on the magnitude and duration of short-term payments than on
lifetime payments. When a PLDF method is used, it assumes that
the relative magnitude of short-term and lifetime payments for
each AY is relatively constant. Benefit changes can significantly
change this mix, causing distortions in projections of remain-
ing lifetime payments based on PLDFs. In contrast, projections
of future lifetime payments based on the incremental paid to
prior open claim method should be comparatively independent
of shifts in the relative magnitude of short-term payments.

2. USING PRIOR INCREMENTAL PAID DATA TO EXTEND THE
PLDF TRIANGLE

Figure 2.1 provides a graphic summary of the available por-
tions of the incremental MPD payments experience of the SAIF
Corporation. A complete triangle of MPD payments exists for
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FIGURE 2.1

Configuration of SAIF’s MPD Paid Loss Data

AYs 1966 through 2002. This region is the triangle labeled “C”
to designate that cumulative paid losses are available for all of
these AYs. In addition, since calendar year 1985, incremental
MPD payments have been captured for AYs 1926 through 1965
for DYs 29 and higher. This region is the diagonally shaped
area labeled “I” to designate that only incremental payments are
available.

2.1. The Mueller Incremental Tail Method

Given the availability of the incremental paid data for DYs
well beyond the standard triangle of cumulative paid losses, and
the value of such information in more accurately estimating the
tail, a method was devised to utilize this data. It was designed
by Conrad Mueller, ACAS, and is based on decay ratios of in-
cremental payments. We will use SAIF experience as an exam-
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ple. This section describes the Mueller Incremental Tail (MIT)
method and provides the formulas and key results. The actual
calculations are included in Appendix A.

The MIT method was used to calculate empirical 37 to ulti-
mate tail factors using the incremental data on old accident years.
The empirical data ended at 65 years of development, which for
purposes of this section will be considered to be ultimate. We
describe the method in three stages:

1. Incremental age-to-age decay ratios.

2. Anchored decay factors.

3. Tail factors.

Notation:

Let Sn =Cumulative payments through n years of develop-
ment

pn =Incremental payments made in year n; and

Sn =
P
pi (i = 1 to n).

Let PLDFn =Age n¡ 1 to n paid loss development factor.
PLDFn = Sn=Sn¡1 = (Sn¡1 +pn)=Sn¡1 = 1+pn=Sn¡1.

Let fn = pn=Sn¡1, then

PLDFn = 1+fn.

1. Incremental age-to-age decay ratios. The first step is to
calculate incremental age-to-age decay ratios: pn+1=pn,
pn+2=pn+1, pn+3=pn+2, and so on. With the SAIF data,
we are able to calculate ratios of incremental paid loss at
age (n+1) to incremental paid at age (n), for n ranging
from 29 to 65, using 20-year weighted averages. Because
of the sparseness of claims of this age, the empirical de-
cay ratios needed to be smoothed before they could be
used. The smoothing was done using five-year centered
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TABLE 2.1

Indicated Decay Factors Relative to Anchor Year 37

Incremental Payments

Year of Development Decay Factor

55 .962
50 1.880
45 1.724
40 1.211

Anchor Year 37 1.000

moving averages. These calculations are shown in Ap-
pendix A, Tables A.1 through A.4.

2. Anchored decay factors. After calculating incremental
age-to-age decay ratios, we then anchor them to a base
year. We illustrate this using development year n as our
anchor year. These anchored decay factors are calculated
as the cumulative product from the last column on Ta-
ble A.4.

We call the anchored age-to-age factor dn, where
dn = pn=pn = 1, dn+1 = pn+1=pn, dn+2 = pn+2=pn : : : , all
relative to pn.

In general,

pn+r=pn = pn+1=pn¤pn+2=pn+1¤¢ ¢ ¢pn+r=pn+r¡1:
The anchored decay factors are cumulative products of
the age-to-age decay ratios and represent payments made
in year n+ r relative to payments made in the anchor
year n.

Table 2.1 shows the anchored decay factors for pay-
ments made in accident years of age 40, 45, 50, and 55
relative to payments made in an accident year of age 37
(our anchor year).
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TABLE 2.2

Cumulative Decay Factors Relative to Incremental

Payments During Different Anchor Years

Anchor Year Cumulative Decay Factor

37 30.071
36 30.115
35 29.508
34 28.280
33 26.961

For example, payments made in DY 50 are, on average, almost
double (88.0% greater) the payments made in DY 37.

By summing the anchored decay factors from 38 to ultimate,
we get the payments made in ages 38 to 65 relative to payments
made in year 37. We will refer to each of these as anchored
cumulative decay factors Dn, where

Dn+1 = pn+1=pn+pn+2=pn+ ¢ ¢ ¢=
X
di:

The sums of the decay factors are similar to tail factors, but
instead of being relative to cumulative payments they are relative
to the incremental payments made in the anchor year.

The process can be repeated using a different anchor year. In
addition to anchor year 37, the calculations were also performed
using anchor years 36, 35, 34, and 33. In each case, the payments
from 38 to ultimate were compared to the payments made in
the selected anchor year. Table 2.2 shows the cumulative decay
factors for each of these anchor years.

The cumulative decay factors can be interpreted as follows:
Payments made from ages 38 to ultimate are 30.071 times the
payments made in age 37. Similarly, payments made in ages 38
to ultimate are 30.115 times the payments made in age 36, and
so on.
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3. Tail factors. To convert these cumulative decay factors
into tail factors, we make use of the selected cumulative
loss development factors from the customary cumulative
paid loss development triangle.

The tail factor from n to ultimate

= S8=Sn

= (Sn+
X
pi)=Sn

= 1+
X
pi=Sn

= 1+pn+1=Sn+pn+2=Sn+ ¢ ¢ ¢
= 1+pn=Sn(pn+1=pn+pn+2=pn+ ¢ ¢ ¢ ):

But pn=Sn = (pn=Sn¡1)=(Sn=Sn¡1) = fn=(1+fn), so the
tail factor is 1+ [fn=(1+fn)]£Dn+1.
The general formula for the tail factor at age n is

Tail factorn = fnDn+1=[1+fn],

where fn is the PLDF, less one, for the nth year of de-
velopment, and Dn+1 is the cumulative decay factor for
payments made during years n+1 to ultimate relative to
payments made in anchor year n.

In a similar way, an age-to-age loss development factor (less 1.0)
extending beyond the cumulative triangle is

fn+1 = fndn+1=[1+fn],

where dn+1 is the decay factor for payments made in year n+1
relative to payments made in anchor year n.

This method is sensitive to fn, the 37:36 PLDF less 1. For
this reason the analysis can be repeated using the 36, 35, 34, or
33 anchor years. Table 2.3 shows the 37 to ultimate tail factor
calculated using each of these anchor years.
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TABLE 2.3

37 to Ultimate MPD Tail Factors Based on Different

Anchor Years

Anchor Year 37 to Ultimate MPD Tail Factor

37 1.964
36 1.808
35 1.496
34 1.439
33 1.369

Selected 1.581¤

¤Average excluding the high and low.

The empirically calculated 37 to ultimate MPD tail factors
range from a low of 1.369 to a high of 1.964. The value is
sensitive to relatively small changes either in incremental age-
to-age factors in the tail or in the cumulative age-to-age factors
at the end of the cumulative triangle.

Another approach for reducing the high level of volatility of
the tail factors shown in Table 2.3 is presented in Table A.6 of
Appendix A. Each of the average PLDFs for ages 30 through 36
is adjusted to what it would be for age 37 using the appropriate
products of incremental decay factors from AYs 1965 and prior.
A weighted average of all of these adjusted PLDFs (1.022) is
then used to replace the actual PLDF for DY 37 (1.033). The final
selected tail factor from age 37 to ultimate is then 1.0 plus the
product of the cumulative decay factor of 30.071 and .022/1.022
(1.647).

2.2. SAIF’s Indicated Paid Tail Factors

When the indications from SAIF’s incremental paid estima-
tion of the tail from 37 years to ultimate are combined with those
of a standard paid loss development approach up to 37 years of
maturity, the MPD tails shown in the left column of Table 2.4
at different maturities were derived. Some readers may be inter-
ested in the Total Workers Compensation tail factor (medical and
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TABLE 2.4

SAIF’s Indicated Paid Tail Factors

Maturity Other Workers Total Workers
(Years) MPD Compensation Compensation

10 2.469 1.263 1.671
15 2.328 1.234 1.613
25 2.054 1.129 1.457
35 1.680 1.052 1.294

indemnity combined). These are shown in Table 2.4 assuming an
ultimate mix of MPD and Other Workers Compensation of 50%
for each. We selected 50% for ease of presentation because in
practice the mix would vary by state and over time.

In addition to MPD tail factors, Table 2.4 also displays indi-
cated paid tail factors for all other types of workers compensation
losses as well as for workers compensation in total. Most of the
Other Workers Compensation tail factors reflect paid develop-
ment for indemnity losses of permanently disabled claimants. A
small portion is also due to paid development on fatal cases. The
above table puts the impact of MPD paid tails in perspective
relative to the indicated paid tail for all WC losses (i.e., for all
injury types and for medical and indemnity combined).

Appendix B provides a comparison of SAIF’s historical
PLDFs for MPD, all other workers compensation and total work-
ers compensation by DY. MPD is the primary reason why PLDFs
for total workers compensation decline much more slowly than
generally expected.

To gain an appreciation for the relative contribution to the to-
tal loss reserves for a given AY of MPD versus all other workers
compensation at each of the above years of maturities, Table 2.5
provides a comparison of what the reserve would be, assum-
ing that total ultimate losses for that AY were $100 million and
assuming that 50% of ultimate losses are MPD.
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TABLE 2.5

Indicated Loss Reserve at Different Maturities

(dollars in millions)

Other Workers MPD Reserve as a Percentage
Maturity MPD Compensation of Total Workers
(Years) Reserve Reserve Compensation Reserve

10 $29.8 $10.4 74
15 28.5 9.5 75
25 25.7 5.7 82
35 20.2 2.5 89

TABLE 2.6

WCIRB’s Indicated California Paid Tail Factors

Maturity Medical Indemnity Total Workers Compensation
(Years) Tail Tail Loss Tail

10 1.276 1.064 1.168
15 1.217 1.041 1.129
25 1.143 1.025 1.086

Source: WCIRB Bulletin No. 2003-24, pp. 8—9 [7].

The MPD reserve makes up an increasing percentage of the
total WC loss reserve at later maturities.

It should be borne in mind that Tables 2.4 and 2.5 provide
MPD and other workers compensation indications specific to
SAIF’s loss experience in the state of Oregon, and not that of
workers compensation insurers in general.

Table 2.6 provides a comparison of indicated tails at differ-
ent maturities for California workers compensation experience,
as projected by the Workers Compensation Insurance Rating
Bureau (WCIRB).

Although the California tails are consistently smaller than
SAIF’s, it is again true that the medical tails are decidedly greater
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TABLE 2.7

WCIRB Indicated Loss Reserve by Loss Type at

Different Maturities

(dollars in millions)

Medical Indemnity Medical Reserve
Maturity Loss Loss as a Percentage
(Years) Reserve Reserve of Total Reserve

10 $11.7 $2.7 81%
15 9.6 1.8 84%
25 6.8 1.1 86%

than the indemnity tails. Table 2.7 provides a comparison of the
size of the medical and indemnity loss reserves at different ma-
turities, again assuming an AY with $100 million of ultimate
losses.

In California, medical loss reserves make up an increasing
percentage of the total workers compensation loss reserve at later
maturities.

3. INCORPORATING THE STATIC MORTALITY MODEL INTO THE
INCREMENTAL PAID TO PRIOR OPEN CLAIM METHOD

This section presents the incremental paid to prior open claim
method of reserve estimation. The basics of this method bear
much resemblance to the structural methods developed by Fisher
and Lange [3] and Adler and Kline [1]. In essence, incremental
payments for every development year are estimated by taking
the product of the number of open claims at the end of the prior
development year and an estimated claim severity.

While this method is of limited value for less mature DYs, its
merit relative to other reserving methods is substantial in estimat-
ing reserves for future MPD payments for more mature DYs. For
such mature DYs, future incremental payments are essentially a
function of how many claims are still open and the average size
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of incremental payments per open claim. In contrast, future incre-
mental MPD payments have almost no causal link to payments
for rapidly settled claims during early DYs.

Table 3.1 provides a specific example of how this method is
applied. The specific steps to be taken in applying the incremen-
tal paid to prior open claim method are as follows:

1. Incremental paid losses (A) and open counts (B) are
compiled by AY and DY.

2. Historical averages of incremental paid to prior open
claim (C) are computed as to (A) divided by claim (B).

3. Each historical average is trended to the expected sever-
ity level for the first calendar year (CY) (2003) after the
evaluation date (12/31/2002), and a representative aver-
age is selected for each DY [last row of (D)]. A trend
factor of 9% per year was assumed in this example.

4. Ratios of open counts at successive year-ends are com-
puted (E).

5. The selected ratios from (E) by DY are used to project
the number of open claims for each future DY of each
AY, thereby completing (B).

6. Future values of incremental paid to prior open claim (C)
are projected on the basis of the representative averages
in the last row of (D).

7. Projections of incremental paid losses for future DYs
for each AY (A) are determined as the product of the
projected open counts from the lower right portion of
(B) and the projected values of incremental paid to prior
open claim from (C).

The descriptions in the lower right portion of sections (A),
(B) and (C) of Table 3.1 also detail how the estimates in each
portion are derived.
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TABLE 3.1

Sample Application of the Incremental Paid to Prior

Open Claim Method

(A) Incremental Paid Losses ($000s)

AY 12 24 36 48 60 72

1997 2,822.8 15,936.1 9,182.3 4,281.6 2,063.8 1,411.4
1998 2,638.0 14,249.9 9,096.4 2,935.8 3,214.7
1999 3,331.3 15,805.8 9,734.9 4,308.9
2000 3,170.4 18,602.1 12,462.0
2001 3,143.1 20,305.9 Product of Projected (B)
2002 4,263.1 and Projected (C)

(B) Open Counts

AY 12 24 36 48 60 72

1997 362 1,112 793 490 375 324
1998 338 888 628 431 352
1999 343 840 664 492
2000 268 867 731
2001 276 897 Use Ratios from (D) to
2002 333 Project Future Open Counts

(C) Incremental Paid to Prior Open Claim

AY 24 36 48 60 72

1997 44,022 8,257 5,399 4,212 3,764
1998 42,159 10,244 4,675 7,459
1999 46,081 11,589 6,489
2000 69,411 14,374
2001 73,572 Selected Average at CY 2003
2002 Level (E) Adjusted for 9% Inflation

(D) Incremental Paid to Prior Open Claim Trended to CY 2003 at 9%/Yr.

AY 24 36 48 60 72

1997 67,734 11,656 6,992 5,004 4,102
1998 59,511 13,266 5,554 8,130
1999 59,676 13,769 7,073
2000 82,467 15,667
2001 80,194

Avg. Latest 3 74,112 14,234 6,540 6,567 4,102

(E) Ratio of Open Counts at Successive Year-Ends

AY 24 36 48 60 72

1997 3.072 0.713 0.618 0.765 0.864
1998 2.627 0.707 0.686 0.817
1999 2.449 0.790 0.741
2000 3.235 0.843
2001 3.250

Avg. Latest 3 2.978 0.780 0.682 0.791 0.864
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Table 3.2 presents a sample application of this method in es-
timating incremental payments for accident year 2002, assuming
5,000 ultimate PD claims and a series of additional assumptions
derived from SAIF’s historical loss experience (as described in
Appendix B).

The following observations can be made about the phenomena
exhibited in Table 3.2:

² Incremental payments consistently increase for every DY from
the 11th through the 40th, a counterintuitive pattern.

² The PLDFs consistently increase for every DY from the 11th
through the 31st.

² This method produces projected PLDFs out to 85 years of
development. Such development is possible because a worker
could be injured at age 16 and live to be over 100.

² Incremental payments do not decrease below the local mini-
mum of $1.7 million during the 11th year of development until
the 65th year of development.

To understand why incremental payments, as well as PLDFs,
tend to increase during many “mature” years of development, it
is helpful to examine how the two key components of the incre-
mental paid to prior open claim method change over successive
development years.

This section illustrates how a static mortality model has
been incorporated into the incremental paid to prior open claim
method. It describes the main framework of the method, while
Appendix C covers the derivation of various assumptions that
involve a complex analysis.

As is evident from Column (4) in Table 3.3, it was assumed
that incremental payments per prior open claim would increase
by 9% per year for every DY beyond the seventh, except for
the 11th DY. This was based on an analysis of SAIF’s historical
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TABLE 3.2

Estimation of Incremental MPD Payments for AY 2002

by Static Mortality Model

Paid to
Prior Incremental Cumulative

Development # Prior Open Paid Loss Paid Loss Paid Factor
Year Open ($000s) ($000,000s) ($000,000s) PLDF to Ultimate

1 460¤ 13.5 6.2 6.2 44.579
2 460 78.4 36.1 42.3 6.8187 6.538
3 1,531 16.6 25.4 67.7 1.6014 4.082
4 1,366 8.4 11.5 79.2 1.1692 3.492
5 949 7.9 7.5 86.7 1.0948 3.189
6 677 6.8 4.6 91.2 1.0530 3.029
7 554 6.9 3.8 95.1 1.0420 2.907
8 396 7.5 3.0 98.1 1.0314 2.818
9 323 8.2 2.7 100.7 1.0271 2.744
10 249 9.0 2.2 103.0 1.0222 2.684
11 209 8.0 1.7 104.6 1.0163 2.641
12 197 8.8 1.7 106.4 1.0165 2.598
13 187 9.5 1.8 108.1 1.0167 2.556
14 178 10.4 1.8 110.0 1.0171 2.513
15 170 11.3 1.9 111.9 1.0175 2.469
16 163 12.4 2.0 113.9 1.0180 2.426
17 156 13.5 2.1 116.0 1.0185 2.382
18 150 14.7 2.2 118.2 1.0190 2.337
19 144 16.0 2.3 120.6 1.0195 2.293
20 139 17.5 2.4 123.0 1.0201 2.248
21 133 19.0 2.5 125.5 1.0205 2.202
22 128 20.7 2.7 128.2 1.0212 2.157
23 124 22.6 2.8 130.9 1.0218 2.111
24 119 24.6 2.9 133.9 1.0223 2.065
25 114 26.9 3.1 136.9 1.0228 2.018
26 109 29.3 3.2 140.1 1.0232 1.973
27 104 31.9 3.3 143.4 1.0236 1.927
28 98 34.8 3.4 146.8 1.0239 1.882
29 93 37.9 3.5 150.4 1.0241 1.838
30 88 41.3 3.6 154.0 1.0242 1.795
31 83 45.0 3.7 157.7 1.0242 1.752
32 78 49.1 3.8 161.5 1.0242 1.711
33 73 53.5 3.9 165.4 1.0240 1.671
34 68 58.3 3.9 169.4 1.0238 1.632
35 63 63.6 4.0 173.4 1.0236 1.594
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40 42 97.8 4.1 193.7 1.0215 1.427
45 26 150.5 3.9 213.6 1.0185 1.294
50 15 231.6 3.5 231.8 1.0152 1.192
55 8.1 356.3 2.9 247.6 1.0118 1.116
60 4.0 548.2 2.2 260.0 1.0085 1.063
65 1.7 843.5 1.4 268.6 1.0053 1.029
70 0.56 1,297.8 0.73 273.5 1.0027 1.010
75 0.13 1,996.8 0.26 275.7 1.0009 1.003
80 0.019 3,072.3 0.06 276.3 1.0002 1.0004
85 0.002 4,727.2 0.01 276.4 1.0000 1.0000

For the first DY only, the number of claims open at the end of the year is shown.
After DY 35, the italicized amounts are shown only for each fifth DY.
The PLDFs in this table closely fit SAIF’s 10-year historical average factors.

TABLE 3.3

Estimation of Incremental Payments by Static

Mortality Model

(1) (2) (3) (4)
# Open % Decline Increm. Pd. to

Development at End of in Prior Prior Open % Severity
Year (DY) Prior DY Open Counts ($000s) Change

1 0.0 13.478
2 460.0 78.425 481.9
3 1,531.0 16.607 ¡78:8
4 1,366.0 10.8 8.388 ¡49:5
5 949.0 30.5 7.903 ¡5:8
6 677.0 28.7 6.781 ¡14:2
7 554.0 18.2 6.924 2.1
8 396.0 28.5 7.547 9.0
9 323.0 18.4 8.226 9.0
10 249.0 22.9 8.967 9.0
11 209.0 16.1 8.036 ¡10:4
12 196.9 5.8 8.759 9.0
13 186.5 5.3 9.548 9.0
14 177.5 4.8 10.407 9.0
15 169.7 4.4 11.343 9.0
20 138.5 3.8 17.453 9.0
25 113.8 4.2 26.854 9.0
30 88.0 5.6 41.318 9.0
35 62.8 7.1 63.574 9.0
40 41.6 8.4 97.816 9.0
45 25.8 9.6 150.502 9.0
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incremental severities for these DYs (see Section C.3 of Ap-
pendix C). The fact that SAIF’s historical PLDFs for DYs 40—
54 are noticeably higher than those predicted by this model (see
Figure 1.1) is evidence that there are additional costs associated
with caring for elderly claimants, who comprise the majority of
claimants during these DYs.

The basis for our selection of 9% as the long-term rate of med-
ical cost escalation is presented in Section C.3 of Appendix C.
This assumed annual rate of change in the total cost per claim
should be expected to be noticeably greater than the change in
the medical component of the CPI. Key reasons for this are

1. Larger increases in unit costs. The types of services
provided to permanently disabled claimants will likely
inflate at a greater rate than that of overall medical ser-
vices. Examples of these include prosthetic devices, new
drugs, surgeries and so on.

2. Increasing utilization. The rate at which claimants uti-
lize given services has tended to increase over time.

3. Shifting mix of services. There has been a trend toward
the greater utilization of more expensive alternatives of
care.

Because of these three factors, SAIF’s historical rate of med-
ical cost escalation for PD claims has consistently exceeded the
change in the medical CPI by a discernable margin. As shown
in Table C.4.1, the average rate of MPD cost escalation from
1966 to 2003 was 9.2%, while the average annual change in the
medical CPI was 6.8%. Therefore, the average annual change in
utilization and mix for 1966—2003 was 2.4%. For 1998—2003,
the average utilization and mix change was much larger (i.e.,
7.4%, per Table C.4.3).

In Table 3.2 incremental payments continue to increase until
age 40 because the impact of claims inflation is greater than the
force of mortality in closing existing claims.
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The percentage declines in prior open counts reflect the com-
posite effects of three factors affecting the number of open
claims: (1) increases due to newly reported claims; (2) decreases
due to the death of a few claimants; and (3) net changes due to
other reasons (including increases due to reopened claims). After
20 years of development newly reported claims become negligi-
ble, as do net claim closures. Thus, after 20 years of develop-
ment, virtually all claim closures are attributable to the death of
claimants. Consequently, changes in the number of open claims
at the end of each development year beyond 20 years can be
predicted entirely on the basis of mortality rates. And changes
in the number of open claims can be estimated beyond 15 years
via mortality rates and inclusion of the small number of newly
reported claims and net closures for other reasons. This is sub-
ject to fine-tuning due to the possibility that the mortality rates of
disabled claimants might be higher than those of the general pop-
ulace, although recent improvements in medical technology have
reduced the influence of medical impairment on mortality rates.

Table 3.4 presents an accounting of how each of the above fac-
tors affects the number of open MPD claims during the develop-
ment of a typical accident year. Derivation of these assumptions
is disclosed in Appendix C.

SAIF’s historical database includes the total number of closed
claims. The number of claimant deaths was estimated based on
SSA mortality tables and any additional claim closures are pre-
sumed to be for other reasons. The breakdown was derived by
estimating the number of claim closures due to death from the
SSA mortality tables for 2000.

The SSA tables were not modified by a disabled lives scale
factor because key values predicted by the model either (1)
closely fit SAIF’s actual experience; or (2) underestimated ac-
tual development (e.g., DYs 40—54). Furthermore, prior actuarial
inquiries into this question have been mixed regarding whether
such a factor is justified. This is discussed in two papers in the
Winter 1991 edition of the CAS Forum (“Injured Worker Mortal-
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TABLE 3.4

Factors Affecting the Number of Open MPD Claims for

a Single Accident Year

(1) (2) (3) (4) (5)
# Open Estimated # Open
at End of Claims at End of
Prior DY Newly Estimated # Closed for Current DY

Development [(5) of Prior Reported of Claimant Other [(1) + (2)¡
Year (DY) DY End] Claims Deaths Reasons (3)¡ (4)]

1 926 3.5 462.5 460.0
2 460.0 2,790 15.0 1,704.0 1531.0
3 1,531.0 866 17.3 1,013.7 1366.0
4 1,366.0 215 14.1 617.9 949.0
5 949.0 91 10.3 352.7 677.0
6 677.0 47 7.9 162.1 554.0
7 554.0 19 6.9 170.1 396.0
8 396.0 11 5.3 78.7 323.0
9 323.0 8 4.7 77.3 249.0
10 249.0 5 3.9 41.1 209.0
11 209.0 4 3.5 12.5 196.9
12 196.9 3 3.6 9.8 186.5
13 186.5 3 3.6 8.4 177.5
14 177.5 3 3.7 7.1 169.7
15 169.7 3 3.8 5.9 162.9
16 162.9 2 3.9 4.9 156.1
17 156.1 2 4.0 3.9 150.2
18 150.2 1 4.2 3.0 144.0
19 144.0 1 4.3 2.2 138.5
20 138.5 0 4.4 1.4 132.8
21 132.8 0 4.5 0.0 128.2
22 128.2 0 4.7 0.0 123.6
23 123.6 0 4.8 0.0 118.7
24 118.7 0 4.9 0.0 113.8
25 113.8 0 5.1 0.0 108.8

ity” by William R. Gillam [6] and “Review of Report of Commit-
tee on Mortality for Disabled Lives” by Gary G. Venter, Barbara
Schill, and Jack Barnett [7]). It is quite possible that permanently
disabled workers receive better medical care, on average, than
nondisabled people, helping to close a gap in mortality rates that
would otherwise exist.
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TABLE 3.5

Indicated Paid Factors to Ultimate

End of Year of With 9% Without Ratio of 9% Inflation Reserve
Development Inflation Inflation to Zero Inflation Reserve

10 2.684 1.152 11.1
15 2.469 1.110 13.4
25 2.019 1.054 18.9
35 1.594 1.022 27.0
50 1.192 1.003 64.0

The paid factors to ultimate in the last column of Table 3.2
above are exceptionally sensitive to future rates of claim infla-
tion. Table 3.5 provides a comparison of the indicated tail fac-
tors with and without inflation at various representative ages of
development.

An example will put the implications of Table 3.5 into practi-
cal terms. Suppose a claims adjuster reviews all PD claims open
at the end of 25 years of development. For each PD claim, he es-
timates the medical portion by multiplying current medical pay-
ments by an annuity factor that is the life expectancy of the
claimant at his or her current age. The ratio of 18.9 in the right
column of Table 3.5 is saying is that future medical payments
will be 18.9 times the case reserve derived by this method. One
might think that the error would decrease the more mature the
accident year became, but in actuality the percentage of error dra-
matically increases at high maturities. In addition, the mortality
table used by the claims adjuster may be out of date.

Just as we have modeled the expected PLDF patterns for MPD
losses, analogous incurred loss development factor (ILDF) pat-
terns can be estimated if we define total case reserves as the
product of the latest year’s incremental payments times the aver-
age annuity factor for all living PD claimants. This is presented
in Table 3.6.
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TABLE 3.6

Expected ILDFs if Case Reserves are Based on Zero

Inflation Annuity Factors

Upward Zero Increm. Zero Zero
Sum of Inflation Pd. to Inflation Inflation

# Prior # Prior Annuity Prior Case Cum. Case Incurred
DY Open Open Factor Open Reserve Paid Incurred ILDF Tail

5 949 6,912.6 6.28 7.9 47.1 86.7 133.8 0.9756 2.066
6 677 5,963.6 7.81 6.8 35.8 91.2 127.1 0.9500 2.175
7 554 5,286.6 8.54 6.9 32.8 95.1 127.9 1.0059 2.162
8 396 4,732.6 10.95 7.5 32.7 98.1 130.8 1.0231 2.113
9 323 4,336.6 12.43 8.2 33.0 100.7 133.7 1.0225 2.066
10 249 4,013.6 15.12 9.0 33.8 103.0 136.7 1.0222 2.022
11 209 3,764.6 17.01 8.0 28.6 104.6 133.2 0.9744 2.075
12 196.9 3,555.6 17.05 8.8 29.4 106.4 135.8 1.0193 2.035
13 186.5 3,358.7 17.01 9.5 30.3 108.1 138.4 1.0195 1.996
14 177.5 3,172.1 16.87 10.4 31.2 110.0 141.2 1.0197 1.958
15 169.7 2,994.6 16.65 11.3 32.0 111.9 144.0 1.0199 1.920
16 162.9 2,824.9 16.34 12.4 32.9 113.9 146.8 1.0200 1.882
17 156.1 2,662.0 16.05 13.5 33.8 116.0 149.8 1.0202 1.845
18 150.2 2,505.9 15.69 14.7 34.6 118.2 152.9 1.0203 1.808
19 144.0 2,355.8 15.36 16.0 35.4 120.6 156.0 1.0204 1.772
20 138.5 2,211.8 14.96 17.5 36.2 123.0 159.2 1.0204 1.737
21 132.8 2,073.2 14.62 19.0 36.9 125.5 162.4 1.0205 1.702
22 128.2 1,940.5 14.13 20.7 37.6 128.2 165.7 1.0205 1.668
23 123.6 1,812.2 13.67 22.6 38.2 130.9 169.1 1.0204 1.634
24 118.7 1,688.7 13.22 24.6 38.7 133.9 172.6 1.0203 1.602
25 113.8 1,569.9 12.80 26.9 39.1 136.9 176.0 1.0202 1.570
26 108.8 1,456.1 12.39 29.3 39.4 140.1 179.6 1.0200 1.539
27 103.6 1,347.4 12.00 31.9 39.7 143.4 183.1 1.0198 1.509
28 98.4 1,243.8 11.64 34.8 39.8 146.8 186.7 1.0195 1.481
29 93.2 1,145.4 11.29 37.9 39.9 150.4 190.3 1.0192 1.453
30 88.0 1,052.2 10.96 41.3 39.8 154.0 193.8 1.0189 1.426
31 82.8 964.2 10.65 45.0 39.7 157.7 197.4 1.0185 1.400
32 77.6 881.5 10.36 49.1 39.5 161.5 201.0 1.0181 1.375
33 72.5 803.9 10.08 53.5 39.1 165.4 204.6 1.0177 1.351
34 67.6 731.3 9.82 58.3 38.7 169.4 208.1 1.0172 1.328
35 62.8 663.7 9.57 63.6 38.2 173.4 211.6 1.0167 1.306
36 58.2 600.9 9.33 69.3 37.6 177.4 215.0 1.0163 1.286
37 53.7 542.8 9.11 75.5 36.9 181.4 218.4 1.0157 1.266
38 49.5 489.0 8.89 82.3 36.2 185.5 221.7 1.0152 1.247
39 45.4 439.6 8.68 89.7 35.4 189.6 225.0 1.0147 1.229
40 41.6 394.2 8.48 97.8 34.5 193.7 228.1 1.0142 1.211
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41 38.0 352.6 8.28 106.6 33.5 197.7 231.3 1.0136 1.195
42 34.6 314.6 8.08 116.2 32.5 201.7 234.3 1.0131 1.180
43 31.5 279.9 7.89 126.7 31.5 205.7 237.2 1.0125 1.165
44 28.5 248.5 7.71 138.1 30.4 209.7 240.0 1.0119 1.151
45 25.8 219.9 7.52 150.5 29.2 213.6 242.8 1.0114 1.138
46 23.3 194.1 7.33 164.0 28.0 217.4 245.4 1.0108 1.126
47 21.0 170.8 7.15 178.8 26.8 221.1 247.9 1.0103 1.115
48 18.8 149.9 6.97 194.9 25.5 224.8 250.3 1.0097 1.104
49 16.8 131.0 6.78 212.4 24.3 228.4 252.6 1.0092 1.094
50 15.0 114.2 6.60 231.6 23.0 231.8 254.8 1.0086 1.085

A review of this table reveals the following:

² Although there are ILDFs less than 1.0 for the fifth, sixth,
and 11th development years, subsequent factors become no-
ticeably greater than 1.0, even up through the 50th year of
development, and beyond.

² Incurred loss development factors are expected to increase dur-
ing each development year from the 12th through the 21st
years.

² The rate of decrease in ILDFs after the 21st development year
is surprisingly small, resulting in very large incurred tails for
nearly all ages.

This example raises major concerns about the practice of esti-
mating the paid tail by taking the ratio of incurred (perhaps with
some modest upward adjustment) to paid at the most mature de-
velopment year. If case reserves do not include any provision
for future medical inflation, then reported incurred at each given
DY should be multiplied by the corresponding incurred tail fac-
tor shown in the last column of Table 3.6 before the ratio of
incurred to paid is applied to paid losses for the most mature
years. At DY 10, the incurred tail factor is 2.022. Even at DY
30, an incurred factor of 1.426 is needed. Obviously, to the ex-
tent that case reserves include a realistic provision for escalation
of future medical costs, the above indicated incurred tail factors
would be reduced.
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TABLE 4.1

Life Expectancies at Different Ages for Males Based

on Social Security Administration Mortality Tables

Current
Age 1960 1980 2000 2020 2040 2060 2080

20 49.7 51.7 54.7 56.8 58.7 60.3 61.8
40 31.3 33.5 36.2 38.1 39.8 41.4 42.7
60 15.9 17.3 19.3 20.8 22.2 23.4 24.6
80 6.0 6.8 7.2 7.8 8.6 9.4 10.1

Note: Projections are in italics.

TABLE 4.2

Percentage Increase in Male Life Expectancies Based

on Social Security Administration Mortality Tables

Current 1980 2000 2020 2040 2060 2080
Age 1960 1980 2000 2020 2040 2060

20 4.2 5.8 3.7 3.3 2.8 2.5
40 7.0 8.2 5.2 4.5 3.8 3.3
60 9.1 11.7 7.6 6.6 5.6 4.9
80 11.9 6.5 8.7 10.0 8.6 7.6

4. MORTALITY IMPROVEMENT

Life expectancies have been increasing steadily and notice-
ably for at least the past several decades and are expected to
continue to increase throughout the next century, if not beyond.

Consider these trends in life expectancies that have occurred
over past decades, and those projected by the SSA. Table 4.1
presents male life expectancies, since a high percentage of per-
manently disabled claimants are male. Table 4.2 displays the
percentage increases in life expectancy corresponding to the es-
timates in Table 4.1.

Typically, PD claimants receive a percentage of replacement
wages until their retirement age, and coverage for their medical
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expenses related to their work injuries is paid until they die. Since
medical expenses are expected to continue rising at high rates of
inflation, coverage of such expenses significantly compounds the
effects of expected increases in life expectancies.

Consequently, the difference between MPD reserves calcu-
lated using constant recent mortality rates and those calculated
with trended mortality rates is substantial. The latter calculations
are unusually complex. They can best be measured and under-
stood with the aid of a heuristic model.

While the effects of declining mortality rates on gross MPD
reserves are almost undetectable over the short run, their magni-
tude over future decades is quite substantial. However, the extent
of these effects is negligible on net MPD when retentions are
relatively low. The effect is also fairly small for indemnity loss
reserves for permanently disabled claimants.

5. THE TRENDED MORTALITY MODEL

This method is similar to the static mortality model adaptation
of the incremental paid to prior open claim method described in
Section 3 and Appendix C. The key difference is that the change
in the number of open claims for every future development year
of every AY is determined by applying mortality tables fore-
casted by the SSA for the appropriate future development year.
The rest of the method is essentially unchanged. A sample of
these differences is provided in Table 5.1 for every fifth DY of
AY 2002.

As is evident in Table 5.1, small improvements in the annual
survival rate of remaining claimants result in major differences
in the number of claims still open at higher development years.
Given that the greatest differences occur during development
years in the distant future, when the effects of medical inflation
have had an opportunity to compound over decades, the total
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TABLE 5.1

Comparison of Mortality Rates and Claims Open at

Different Development Years for Accident Year 2002

Mortality Table Group Claims Open at % Greater
Assumed Survival Rate Prior Year-End Open

DY Static Trended Static Trended Static Trended Claims

30 2000 2031 0.941 0.946 88.0 91.5 4.0
35 2000 2036 0.926 0.933 62.8 67.4 7.3
40 2000 2041 0.914 0.922 41.6 46.5 11.7
45 2000 2046 0.902 0.912 25.8 30.3 17.3
50 2000 2051 0.890 0.902 15.0 18.7 24.2
55 2000 2056 0.875 0.889 8.1 10.8 33.3
60 2000 2061 0.853 0.872 3.99 5.82 46.1
65 2000 2066 0.821 0.846 1.68 2.78 65.4
70 2000 2071 0.772 0.811 0.560 1.11 98.9
75 2000 2076 0.709 0.767 0.131 0.351 167.9
80 2000 2081 0.637 0.719 0.019 0.082 329.8
85 2000 2086 0.545 0.716 0.002 0.018 1086.8

reserve indicated by the trended mortality method is decidedly
greater than that indicated by the static mortality method.

To fully present the projections of the trended mortality model
would require the display of arrays consisting of 37 rows and
about 90 columns, with the rows representing accident years and
the columns years of development. Since this would be unwieldy,
summary arrays will be presented in which data for every fifth
accident year are shown at the end of every fifth development
year. An example is given in Table 5.2.

Table 5.2 shows the calendar year mortality table that should
be used in determining the probability of continuation of a claim
for each AY-DY combination. If a current table (e.g., 2000) is
used, differences between the static and trended mortality rates
will increase the further the year of the appropriate mortality
table is from CY 2000.

What effects will the above trends in mortality have on MPD
loss reserves? It is not hard to foresee the general effects. Per-
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TABLE 5.2

Sample Layout of Summarized Results

Calendar Year of Payments–for Every Fifth Accident
Year at Every Fifth Development Year

Development Year

AY 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

1970 1974 1979 1984 1989 1994 1999 2004 2009 2014 2019 2024 2029 2034 2039 2044 2049
1975 1979 1984 1989 1994 1999 2004 2009 2014 2019 2024 2029 2034 2039 2044 2049 2054
1980 1984 1989 1994 1999 2004 2009 2014 2019 2024 2029 2034 2039 2044 2049 2054 2059
1985 1989 1994 1999 2004 2009 2014 2019 2024 2029 2034 2039 2044 2049 2054 2059 2064
1990 1994 1999 2004 2009 2014 2019 2024 2029 2034 2039 2044 2049 2054 2059 2064 2069
1995 1999 2004 2009 2014 2019 2024 2029 2034 2039 2044 2049 2054 2059 2064 2069 2074
2000 2004 2009 2014 2019 2024 2029 2034 2039 2044 2049 2054 2059 2064 2069 2074 2079

manent disability claimants for more recent accident years are
expected to live longer than their counterparts from old accident
years. This is a direct consequence of declining mortality rates.
As a result, a higher percentage of PD claimants will still be
alive at any given age of development. Therefore, the percentage
of claims closed will decline at any given age, and thus simple
paid loss development projections will need to be adjusted up-
ward to reflect these declines in claims disposal ratios. Hence,
tail factors that reflect the effects of declining mortality rates
must increase over successive accident years for every possible
development age.

While the general effects of anticipated future mortality trends
are easy to grasp, the best way to quantify these effects is to con-
struct a heuristic model designed to isolate the effects of mortality
trends on PLDFs and paid tails. The trended mortality model we
have constructed is such that

² The only thing that changes over time is mortality rates, as
historically compiled and as officially forecasted by the SSA.

² Medical inflation is a constant 9% per year, both historically
and prospectively. Support for this assumption is provided in
Section C.4 of Appendix C.
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² The number of ultimate reported claims for every accident
year, from 1966 through 2002, is held at a constant level of
5,000 per year.

² Claim reporting and closure patterns for SAIF’s PD claimants
over the past 10 calendar years served as the basis for these
key assumptions in order to make the model as realistic as
possible.

By designing a model where claimant mortality rates are the
only thing that changes from accident year to accident year, the
effects of mortality trends can be clearly seen. Details of the
model are presented in Appendices C and D.

Projections of the number of open claims were derived from
the heuristic model for each accident year from 1966 through
2002 at the end of every development year from the first to
the 80th. As noted above, each accident year was assumed to
have 5,000 ultimate reported claims. Claim closure patterns, for
reasons other than death of the claimant, were held constant for
all accident years. The only thing that varied from accident year
to accident year in the model was the number of claims closed
due to death. In this way the effects of mortality trends on the
number of open claims at the end of each development year for
each accident year can be isolated.

What is evident from the summarized results presented in Ta-
ble 5.3 is that the expected number of open claims at any given
year of development will slowly increase as one moves from the
oldest accident years to the most recent.

For example, at the end of 35 years of development, the num-
ber of open claims is expected to increase from 50 for accident
year 1970 to 62 for accident year 2000. This is an increase of
24% in the number of open claims. And at the end of 60 years of
development, the number of open claims is expected to increase
from 3.5 to 5.0, an increase of 42.9%. The percentage rate of
increase in the number of open claims for each given column
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TABLE 5.3

Number of Open Claims for Representative Accident

Years at Five-Year Intervals of Development

End of Development Year

AY 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

1970 653 196 149 119 95 71 50 33 21 12 6.9 3.5 1.5 0.5 0.1 0.02
1975 655 197 150 120 97 73 52 34 22 13 7.2 3.7 1.6 0.6 0.1 0.03
1980 659 200 153 123 100 76 54 36 23 14 7.7 3.9 1.7 0.6 0.2 0.03
1985 662 202 156 126 103 79 56 38 24 14 8.1 4.2 1.9 0.7 0.2 0.04
1990 665 204 158 128 105 81 58 39 25 15 8.5 4.4 2.0 0.7 0.2 0.04
1995 668 206 160 130 108 83 60 41 26 16 9.0 4.7 2.1 0.8 0.2 0.05
2000 670 207 161 132 110 86 62 42 27 17 9.5 5.0 2.3 0.9 0.3 0.06

TABLE 5.4

Percentage Increases in the Number of Open Claims at

the End of Representative Development Years–from
Accident Year 1970 to Accident Year 2000

End of Development Year

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

2.6 5.6 8.3 11.6 15.6 19.8 23.9 27.4 30.3 33.5 37.5 43.7 54.3 73.2 106.8 164.5

increases as one moves from the earlier development years on
the left to the later development years on the right. This is due to
the compounding effect of expected declines in future mortality
rates. Table 5.4 displays the total percentage increase for each
development year column.

Since the number of open claims at any given development
year will be increasing steadily over successive accident years,
the total proportion of ultimate losses paid through that devel-
opment year will decline slightly over time. Because of this we
would naturally expect that the appropriate tail factors at any
given development year will also increase steadily over time.
The projected results are displayed in Table 5.5.
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TABLE 5.5

Indicated Tail Factors

End of Development Year

AY 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

1970 3.037 2.570 2.375 2.177 1.973 1.773 1.592 1.438 1.311 1.210 1.132 1.075 1.037 1.015 1.004 1.001
1975 3.108 2.628 2.428 2.223 2.012 1.805 1.617 1.456 1.325 1.220 1.139 1.080 1.040 1.016 1.005 1.001
1980 3.197 2.701 2.492 2.279 2.058 1.842 1.645 1.477 1.340 1.231 1.146 1.085 1.043 1.018 1.006 1.001
1985 3.286 2.774 2.558 2.336 2.106 1.879 1.674 1.499 1.356 1.242 1.154 1.090 1.046 1.020 1.007 1.002
1990 3.376 2.848 2.624 2.393 2.154 1.918 1.704 1.521 1.372 1.253 1.162 1.095 1.049 1.021 1.007 1.002
1995 3.466 2.921 2.690 2.451 2.203 1.957 1.733 1.543 1.388 1.265 1.170 1.101 1.053 1.023 1.008 1.002
2000 3.549 2.990 2.752 2.505 2.248 1.993 1.761 1.563 1.402 1.275 1.177 1.105 1.054 1.023 1.008 1.002

TABLE 5.6

Indicated Percentage Understatement in AY 2000 Loss

Reserves (if Based on AY 1970 Tail Factors)

End of Development Year

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

25 27 27 28 28 28 28 29 29 31 34 39 47 59 85 102

Table 5.6 displays the percentage understatement in AY 2000
loss reserves at different development ages, if such reserves were
based on AY 1970 tail factors. It clearly indicates that the use
of constant tail factors will result in material inadequacies in the
indicated loss reserves.

The trended mortality model also indicates that incremental
PLDFs at any given maturity will trend upward over time. In
Table 5.7, five-year paid loss development factors, each of which
are the cumulative products of five successive one-year paid loss
development factors, inch upward over time within any given
development column.

Table 5.7 rebuts the conjecture that the paid loss development
factors for earlier (as well as middle) development years will
hold constant over successive accident years. However, it is also
evident that the rate of increase in these paid development factors
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TABLE 5.7

Trends in Five-Year Paid Loss Development Factors

Development Years

AY 10/5 15/10 20/15 25/20 30/25 35/30 40/35 45/40 50/45 55/50 60/55 65/60 70/65 75/70 80/75 85/80

1970 1.182 1.082 1.091 1.103 1.113 1.114 1.107 1.097 1.084 1.069 1.053 1.037 1.022 1.010 1.004 1.001
1975 1.183 1.083 1.092 1.105 1.115 1.116 1.110 1.099 1.086 1.071 1.055 1.039 1.023 1.011 1.004 1.001
1980 1.184 1.084 1.094 1.107 1.118 1.119 1.114 1.103 1.089 1.073 1.057 1.040 1.024 1.012 1.004 1.001
1985 1.185 1.084 1.095 1.109 1.120 1.123 1.117 1.106 1.092 1.076 1.059 1.042 1.026 1.013 1.005 1.002
1990 1.186 1.085 1.096 1.111 1.123 1.126 1.120 1.109 1.094 1.078 1.061 1.044 1.027 1.014 1.005 1.002
1995 1.186 1.086 1.097 1.113 1.126 1.129 1.123 1.112 1.097 1.081 1.063 1.046 1.029 1.015 1.006 1.002
2000 1.187 1.087 1.098 1.114 1.128 1.132 1.126 1.115 1.100 1.083 1.065 1.048 1.030 1.015 1.006 1.002

TABLE 5.8

PLDFs Factors Indicated by the Trended Mortality

Model During Early Years of Development

Years of Development

AY 2 3 4 5 6 7 8 9 10 11 12

1990 6.81875 1.59471 1.16775 1.09383 1.05240 1.04154 1.03101 1.02670 1.02182 1.01604 1.01618
1991 6.81875 1.59488 1.16781 1.09387 1.05243 1.04157 1.03104 1.02673 1.02185 1.01607 1.01621
1992 6.81875 1.59505 1.16786 1.09392 1.05246 1.04160 1.03107 1.02676 1.02187 1.01609 1.01623
1993 6.81875 1.59522 1.16792 1.09396 1.05250 1.04163 1.03110 1.02679 1.02190 1.01611 1.01625
1994 6.81875 1.59539 1.16797 1.09400 1.05253 1.04166 1.03113 1.02681 1.02192 1.01613 1.01628
1995 6.81875 1.59557 1.16803 1.09405 1.05256 1.04169 1.03115 1.02684 1.02195 1.01615 1.01630
1996 6.81875 1.59571 1.16807 1.09408 1.05259 1.04172 1.03118 1.02686 1.02197 1.01617 1.01632
1997 6.81875 1.59586 1.16812 1.09412 1.05261 1.04174 1.03120 1.02688 1.02199 1.01618 1.01634
1998 6.81875 1.59601 1.16816 1.09415 1.05263 1.04176 1.03122 1.02691 1.02201 1.01620 1.01636
1999 6.81875 1.59616 1.16821 1.09419 1.05266 1.04179 1.03124 1.02693 1.02203 1.01622 1.01638
2000 6.81875 1.59631 1.16825 1.09422 1.05268 1.04181 1.03126 1.02695 1.02205 1.01623 1.01639
2001 6.81875 1.59647 1.16830 1.09426 1.05271 1.04184 1.03129 1.02697 1.02208 1.01625 1.01642
2002 6.81875 1.59662 1.16835 1.09430 1.05273 1.04186 1.03131 1.02699 1.02210 1.01627 1.01644

is small. It is small enough that it would not be detectable to an
experienced actuary reviewing historical PLDFs. This becomes
even more evident if we look at different sections of the typical
triangle of paid loss development factors that are generated by
the trended mortality model.

In Table 5.8 the individual PLDFs generated by the model
are displayed for AYs 1990—2002 for the earliest development
years.
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TABLE 5.9

PLDFs Indicated by the Trended Mortality Model

During Later Years of Development

Year of Development

AY 27 28 29 30 31 32 33 34 35 36 37

1966 1.02103 1.02124 1.02139 1.02147 1.02149 1.02146 1.02136 1.02121 1.02101 1.02077 1.02049
1967 1.02112 1.02134 1.02149 1.02157 1.02160 1.02156 1.02147 1.02132 1.02113 1.02088 1.02060
1968 1.02121 1.02143 1.02159 1.02168 1.02170 1.02167 1.02158 1.02143 1.02124 1.02100 1.02072
1969 1.02130 1.02153 1.02168 1.02178 1.02181 1.02178 1.02169 1.02154 1.02135 1.02111 1.02083
1970 1.02140 1.02163 1.02179 1.02189 1.02192 1.02189 1.02180 1.02166 1.02147 1.02123 1.02095
1971 1.02148 1.02171 1.02187 1.02198 1.02201 1.02199 1.02190 1.02176 1.02157 1.02133 1.02106
1972 1.02155 1.02179 1.02196 1.02207 1.02211 1.02209 1.02200 1.02187 1.02168 1.02144 1.02116
1973 1.02163 1.02187 1.02205 1.02216 1.02220 1.02218 1.02211 1.02197 1.02178 1.02155 1.02127
1974 1.02170 1.02195 1.02213 1.02225 1.02230 1.02228 1.02221 1.02208 1.02189 1.02165 1.02138
1975 1.02178 1.02203 1.02222 1.02234 1.02239 1.02238 1.02231 1.02218 1.02200 1.02176 1.02148
1976 1.02188 1.02214 1.02233 1.02245 1.02250 1.02250 1.02243 1.02230 1.02211 1.02188 1.02160
1977 1.02199 1.02225 1.02244 1.02256 1.02262 1.02261 1.02254 1.02241 1.02223 1.02200 1.02172

The constant PLDFs in the column for DY 2 merely reflect a
simplifying assumption in the model.

In Table 5.9 individual PLDFs generated by the model are
displayed for accident years 1966—1977 for the most mature his-
torical development years. Projected PLDFs for the short-term
future are also shown below the diagonal.

Table 5.10 provides an example of the kinds of errors in es-
timating future incremental payments that can occur when it is
assumed that PLDFs for each year of development hold constant.
First, a PLDF of 1.02138 is selected as the average of the latest
four historical factors during the 34th year of development (the
boxed items in Table 5.9). By comparing this selection with the
true underlying trended PLDF, the percentage error in incremen-
tal payments for that development year is shown for every fifth
AY. These errors assume, however, that other similar errors did
not occur during preceding development years.

Though all of the errors above are small, these errors com-
pound significantly in the calculation of tail factors, which are
the product of numerous individual PLDFs.
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TABLE 5.10

Errors in PLDFs During 34th Year of Development Due

to Selecting a Constant Historical Average PLDF

Accident Selected True Underlying % Error in
Year PLDF PLDF Incremental Payments

1970 1.02138 1.02166 ¡1:3
1975 1.02138 1.02218 ¡3:6
1980 1.02138 1.02276 ¡6:1
1985 1.02138 1.02336 ¡8:5
1990 1.02138 1.02395 ¡10:7
1995 1.02138 1.02452 ¡12:8
2000 1.02138 1.02507 ¡14:7

TABLE 6.1

A Comparison of Indicated MPD Tail Factors

Maturity Based on SAIF’s Based on Static Based on Trended
(Years) Experience Mortality Model Mortality Model

10 2.469 2.684 3.025
15 2.328 2.469 2.783
25 2.054 2.019 2.271
35 1.680 1.594 1.776

Even though it is true that past declines in mortality rates
are implicitly embedded in historical PLDFs, the above example
clearly illustrates that it would be incorrect to assume that the se-
lection of historical factors as estimates of future PLDFs would
implicitly incorporate the effects of future declines in mortality
rates. What would be more appropriate would be to select rep-
resentative PLDFs for each development year based on recent
historical factors and then to trend these upward in a manner
parallel to the PLDFs indicated by a realistic model.

6. A COMPARISON OF INDICATED TAIL FACTORS

Table 6.1 provides a comparison of the MPD tails indicated
by SAIF’s own loss experience with those indicated by the static
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TABLE 6.2

Indicated Loss Reserve at Different Maturities

(dollars in millions)

Other Workers MPD Reserve as a Percentage
Maturity MPD Compensation of Total Workers
(Years) Reserve Reserve Compensation Reserve

10 $41.3 $10.4 80
15 39.6 9.5 81
25 34.6 5.7 86
35 27.0 2.5 92

and trended mortality methods. This table repeats the MPD tails
indicated by SAIF’s experience in Table 2.4.

As noted earlier, the indications of the static mortality model
reasonably fit those from SAIF’s historical loss experience, ex-
cept that the model somewhat understates development for DYs
40—54.

The relative contribution of MPD versus all other workers
compensation to the total loss reserves for a given AY is much
greater if the trended mortality model is assumed. Those per-
centages at various maturities are shown in the last column of
Table 6.2.

The above table is analogous to Table 2.5, which shows results
based on SAIF’s historical loss experience. In deriving these
estimates, total AY ultimate losses of $100 million were assumed,
together with a 50—50 split between MPD and other workers
compensation. However, the $50 million figure for ultimate MPD
was changed to the product of cumulative paid MPD at 10 years
of development and the 10 to ultimate tail factor from the trended
mortality model. That increased ultimate MPD to $61.75 million.

Table 6.3 provides a side-by-side comparison of the percent-
ages of the total workers compensation loss reserve attributable
to MPD, as estimated using historical PLDFs and PLDFs indi-
cated by the trended mortality model.
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TABLE 6.3

Comparison of MPD Loss Reserve as a Percentage of

the Total Workers Compensation Loss Reserve

(Based on Different PLDF Assumptions; Dollars in

Millions)

Indicated by Indicated by Percentage Increase in
Maturity Historical Trended Mortality MPD Reserve Due to Using
(Years) PLDFs PLDFs Trended Mortality Rates

10 $29.6 $41.3 +39:7
15 28.3 39.6 +39:6
25 25.5 34.6 +35:8
35 20.0 27.0 +34:9

Clearly, the trended mortality model indicates MPD loss re-
serves that are significantly larger than straight historical expe-
rience would indicate.

7. SENSITIVITY CONSIDERATIONS

The most significant factor affecting the indications in this
paper is the applicable retention. This paper presents indications
on an unlimited basis. Tail factors and PLDFs at more mature
years of development should be expected to be significantly less
at relatively low retentions. This is evident on an a priori basis.

Consider a hypothetical PD claimant injured on December 15,
2003, at age 35.9 years, with a life expectancy of 40 years. His
medical costs are $5,000 during 2004, and future medical infla-
tion is 9% per year. Indemnity losses are a flat $25,000 per year,
beginning in 2004. Table 7.1 indicates the total cumulative loss
payments at the end of each of the first 41 years of development.

For this hypothetical PD claimant, net paid losses would top
out by the end of the ninth year of development with a reten-
tion of $250,000; after 16 years with a $500,000 retention; after
26 years with a $1 million retention; and after 37 years with a
$2 million retention.
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TABLE 7.1

Cumulative Loss Payments for Hypothetical PD

Claimant

(A) (B) (C) (D) (E) (F)
Incremental Cumulative Cumulative Cumulative

Age of Medical Medical Indemnity Loss
Claimant DY Payments Payments Payments Payments

35 1 0.0 0.0 0.0 0.0
36 2 5.0 5.0 25.0 30.0
37 3 5.5 10.5 50.0 60.5
38 4 5.9 16.4 75.0 91.4
39 5 6.5 22.9 100.0 122.9
40 6 7.1 29.9 125.0 154.9
41 7 7.7 37.6 150.0 187.6
42 8 8.4 46.0 175.0 221.0
43 9 9.1 55.1 200.0 255.1
44 10 10.0 65.1 225.0 290.1 (a)
45 11 10.9 76.0 250.0 326.0
46 12 11.8 87.8 275.0 362.8
47 13 12.9 100.7 300.0 400.7
48 14 14.1 114.8 325.0 439.8
49 15 15.3 130.1 350.0 480.1
50 16 16.7 146.8 375.0 521.8 (b)
51 17 18.2 165.0 400.0 565.0
52 18 19.9 184.9 425.0 609.9
53 19 21.6 206.5 450.0 656.5
54 20 23.6 230.1 475.0 705.1
55 21 25.7 255.8 500.0 755.8
56 22 28.0 283.8 525.0 808.8
57 23 30.5 314.4 550.0 864.4
58 24 33.3 347.7 575.0 922.7
59 25 36.3 383.9 600.0 983.9
60 26 39.6 423.5 625.0 1,048.5 (c)
61 27 43.1 466.6 650.0 1,116.6
62 28 47.0 513.6 675.0 1,188.6
63 29 51.2 564.8 700.0 1,264.8
64 30 55.8 620.7 725.0 1,345.7
65 31 60.9 681.5 750.0 1,431.5
66 32 66.3 747.9 775.0 1,522.9
67 33 72.3 820.2 800.0 1,620.2
68 34 78.8 899.0 825.0 1,724.0
69 35 85.9 984.9 850.0 1,834.9
70 36 93.6 1,078.6 875.0 1,953.6
71 37 102.1 1,180.6 900.0 2,080.6 (d)

Note: (a) Development stops if return is $250K. (b) Development stops if return is $500K. (c) De-
velopment stops if return is $1M. (d) Development stops if return is $2M.
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While this dampening effect of retentions can obviously serve
to greatly mitigate the magnitude of the applicable tail factors for
different insurers and self-insureds, this effect can rapidly dissi-
pate when retentions rise significantly from year to year. It is
quite common for insurers as well as self-insureds to signifi-
cantly increase retentions when faced with costs for excess cov-
erage that have risen substantially as the market has hardened.
The effect of recognizing the upward impact greater retentions
will have on assumed tails can be sizable.

Other factors that can have a material impact on MPD tail
factors are the following:

² The assumed future rate of medical cost escalation.
² The observed tendency of medical losses to step up noticeably
as an increasing proportion of claimants become elderly.

² The possibility that actual mortality rates of PD claimants
might be higher (or lower) than those for the general
populace.

² Variations in the gender mix and age-at-injury mix of PD
claimants.

An entire paper could be devoted to quantifying the effects
that changes in any or all of the above factors would have on in-
dicated tail factors. Of the above factors, the first two are the most
significant. While some believe that the long-term future rate of
medical cost escalation will be less than the historical rate of 9%,
others believe a constant 9% assumption is reasonable. Arguably,
the differential between medical inflation and general inflation
may lessen over future decades. However, workers compensa-
tion medical costs are a very small portion of total health costs,
so a workers compensation medical escalation rate of 9% could
continue for a very long period of time without having much
effect on the overall medical CPI or GNP. Furthermore, long-
term general inflation may move upward as a result of shortages
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in critical commodities (such as petroleum) and their ubiquitous
derivative products (e.g., plastics and synthetics).

We note that SAIF’s actual age-at-injury distribution is
weighted heavily toward the middle-age groups. If a much
younger distribution were assumed, this would dramatically in-
crease the survival probabilities during each year of development,
and the resulting tails would be considerably greater than those
presented in this paper. The age-at-injury distribution can vary
significantly depending on statutory provisions for qualification
for a permanent disability award and the nature of the risks in-
sured or self-insured.

In the static mortality model, we started with the assumption
of a beginning gender mix of 75% male and 25% female. Be-
cause of the higher mortality rates of males at all ages, by the
50th year of development, the percentage of surviving claimants
that are male is expected to drop to 64.5%. By the 72nd year of
development, a 50—50 gender split is expected.

The magnitude of the elder care cost bulge is quite significant.
It fully accounts for the large degree to which SAIF’s actual
MPD PLDFs exceed those indicated by the static mortality model
during later DYs (see Figure 1.2).

Figure 7.1 provides documentation of the extent of increases
in SAIF’s incremental paid medical costs per open claim at a
constant 2003 cost level for DYs 16—56. If the common actuarial
assumption that incremental medical severities are independent
of the age of the claimant were true, then the graph line in Fig-
ure 7.1 would be essentially flat, since all severities have been
placed on a constant 2003 cost level.

The above average costs at 2003 cost level were for AY
1945 and subsequent accident years during CYs 1991—2003.
Table E.1, Appendix E provides a summary of the detailed
data supporting Figure 7.1.

The implications of Figure 7.1 are serious with respect to the
reasonableness of the practice of estimating MPD reserves by
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FIGURE 7.1

Incremental Paid Severity (at 2003 Cost Level)

inflating current annual medical costs for each claim at normal
rates of medical cost escalation until the expected year of death.
In doing so, the actuary would be assuming, on average for all
claims open during DYs 10—20, that an annual severity at a 2003
cost level of approximately $6,000 per year would be appropriate
for all future years, regardless of how old the claimant becomes.
Figure 7.1 indicates that as each claimant advances into his or
her 70s or 80s, a significantly higher assumed severity at a 2003
cost level would be more appropriate.

8. ESTIMATING THE EXPECTED VALUE OF MPD RESERVES

In Tables 8.1A and 8.1B cumulative loss payments for a hy-
pothetical PD claimant are displayed. This might be a profile of
paid losses for a male claimant injured on December 15, the re-
serve evaluation date. At age 35.9, the claimant is expected to
live another 40 years. Two different methods of estimating the
medical case reserve for this claimant at the end of the first year
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of development are common. They are the following:

1. Zero Inflation Case Reserve Based on Projected Pay-
ments Through Expected Year of Death. Estimated an-
nual medical expenses of $5,000 per year (during the
first full year of development) are multiplied by the
life expectancy of 40 years to obtain a case reserve of
$200,000.

2. Inflation Case Reserve (9%) Based on Projected Payments
Through Expected Year of Death. Escalating medical ex-
penses are cumulated up through age 75, yielding a total
incurred amount of $1,689,000.

Two additional methods may also be applied. Each of these
produces much higher, and more accurate, estimates of the ex-
pected value of the case reserve:

3. Expected Total Payout over Scenarios of All Possible Years
of Death. This method, described below, yields an ex-
pected reserve of $2,879,000.

4. Expected Value of Trials from a Markov Chain Simulation.
This method, described in Section 9, yields an expected
reserve of $2,854,000.

In applying the third method, cumulative payments are calcu-
lated through each possible future year of death. Each of these
estimates represents the scenario of the claimant’s death during a
specific nth year of development. The probability of occurrence
of the nth scenario is the product of the probability the claimant
will live through all prior years of development and then die dur-
ing the nth year of development. The expected value of the case
reserve is then the weighted average of all of these estimates of
final cumulative payments, weighted by their associated proba-
bility of occurrence. In this example, the expected value of total
incurred is $2,879,000, which is 70.5% higher than the second
estimate. This kind of estimate is often not calculated by self-
insureds or insurers who have only a few PD claimants. Yet it is
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in keeping with the standard definition of the expected value of
total incurred.

The total case reserve based on this third approach is dra-
matically higher than that derived from the second approach
because the cumulative paid amounts associated with death at
ages beyond the claimant’s expected year of death are given
more weight, due to the compounding effects of medical cost
escalation.

In Tables 8.1A and 8.1B the medical case reserve for the
hypothetical PD claimant is calculated for the second and third
methods. For the second method, Projected Payments Through
Expected Year of Death, the cumulative payments from Column
(F) at the end of the expected year of death (at age 75) yields
the estimate of $1,689,000.

For the third method, each row is treated as a different sce-
nario, with its probability of occurrence shown in Column (C).
These probabilities are the weights applied to the estimates of
cumulative medical payments in Column (F) to obtain the com-
ponents of the expected total payout in Column (G) that are
cumulated in Column (H). Hence, the expected value of the
case reserve is the bottom number in Column (H) in Table 8.1B
($2,879,000).

The distribution of deaths by age of death (Column (C))
would be the same as the distribution of the different scenar-
ios for the indemnity case reserve, since incremental indemnity
payments are not generally subject to inflation. Figure 8.1 illus-
trates the shift in the distribution of the different scenarios for
the medical case reserve [Column (I) decumulated, or Column
(G) divided by Total in Column (H)], due to the effects of com-
pounding medical cost escalation in giving more dollar weight
to scenarios where the claimant lives beyond his expected year
of death.
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FIGURE 8.1

Deaths and Expected Payouts by Age

The impact of medical cost escalation causes the age corre-
sponding to the median of the distribution of medical payments
(87) to exceed the age corresponding to the median of the dis-
tribution of the indemnity payments (77) by 10 years. This can
be seen by comparing the age corresponding to a cumulative
probability of 50% in Column (D) to the age when Column (I)
reaches 50% . To further appreciate the significance of this shift,
consider the following observations drawn from Table 8.1B:

² While 83% of such claimants die before they reach the age of
87, medical payments to claimants who live beyond 86 years
of age account for over half of total expected future medical
payments.
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² While 90% of such claimants die before they reach the age
of 90, medical payments to claimants who live beyond 89
years of age account for over 30% of total expected medical
losses.

The ratio of the estimated case reserve based on the second
method to that from the first method varies dramatically with the
age of the claimant at the reserve date. It is also dependent on
gender. This is also true, though to a lesser degree, for the ratio
of the third method case reserve to the second method reserve.
These ratios are displayed in Table 8.2.

There are a number of reasons to believe that the reserve
estimates produced by the static mortality model presented in
Section 3 are analogous to estimates produced by the second
method. If that is true, then it would be necessary to multiply
reserve estimates based on the static mortality model by some
weighted average of the ratios in Column (E) of Table 8.2 to
arrive at an estimated reserve at the expected level. Whether that
ratio is 1.25 or 1.40 or 1.55, it represents a substantial add-on
to a reserve estimate that is likely higher than what would be
obtained using more traditional methods.

Why are reserve estimates based on the static mortality model
similar to those produced by the second method? A fundamental
assumption of the model is that all claimants die according to a
schedule dictated by current mortality tables. When an expected
value of the reserve is calculated, it is based on a weighted av-
erage of a full range of scenarios, including those where many
claimants die earlier than planned and others die later. Total fu-
ture payments for those claimants that die later will be given
more dollar weight. Hence, the expected value of the reserve
will be correspondingly greater than that projected by the static
mortality model.

All of the methods presented in this section are based on the
common assumption that the current level incremental severities
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TABLE 8.2

Comparison of Different Types of MPD Reserve

Estimates

Assuming SSA 2000 Male & Female Mortality Tables and 9% Medical Cost Escalation

(A) (B) (C) (D) (E)

Reserve ($000s) at Eval. Date

Ratio of Ratio of
First Second Third Second Third
Method Method Method Method Method
(Zero (9% (Total Reserve Reserve

Age at Inflation Inflation Expected to First to Second
Reserve Case Case Future Method Method
Date Reserve) Reserve) Payout) Reserve Reserve

Male Claimants

20 $273.7 $7,333.9 $11,318.1 26.795 1.543
30 227.3 2,989.5 4,816.3 13.155 1.611
40 181.2 1,321.0 2,042.3 7.290 1.546
50 137.3 590.0 864.0 4.298 1.464
60 96.7 265.3 362.9 2.744 1.368
70 62.9 123.5 153.2 1.965 1.240
80 36.0 57.1 63.4 1.587 1.110

Female Claimants

20 $301.0 $10,796.0 $16,724.2 35.867 1.549
30 252.4 4,641.7 7,069.1 18.390 1.523
40 204.7 2,005.7 2,983.6 9.800 1.488
50 158.4 873.8 1,254.5 5.516 1.436
60 115.1 384.3 524.0 3.341 1.363
70 77.0 165.0 217.3 2.144 1.317
80 45.2 76.3 87.2 1.690 1.142

do not increase with the age of the claimant. This was done to
simplify the presentation of methods that are already complex. If
the tendency of incremental medical severities to increase with
age were incorporated into these methods, the differences be-
tween the reserves projected by these methods would expand
noticeably.
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9. ESTIMATING THE VARIABILITY OF THE MPD RESERVE WITH A
MARKOV CHAIN SIMULATION

The size of loss distribution for the medical component of a
single PD claim is far more skewed to the right than can be mod-
eled by distributions commonly used by casualty actuaries. This
distribution can be described by the ultimate costs in Column (F)
of Tables 8.1A and 8.1B, with the associated confidence levels
taken from Column (D). In attempting to find a distribution that
produced a reasonable fit, it was necessary to first transform the
ultimate cost amounts by taking the natural log of the natural log
of the natural log and then taking the nth root before a common
distribution could be found. Taking the fifth root of the triple
natural log appears to produce a distribution of ultimate costs
that conforms well with an extreme value distribution. The fact
that such intense transformations were needed suggests that a to-
tally different approach than fitting commonly used distributions
should be used.

As is indicated from Table 8.2, the ratio of the expected value
of the individual case reserve to the projected payments through
expected year of death estimate varies dramatically according to
the gender and current age of each claimant. This suggests that
the variability of the total MPD reserve can best be modeled
by simulating the variability of the future payout for each claim
separately. Table 9.1 provides a sample framework for this type
of simulation. The sample insurer has 10 open PD claims.

An individual row in Table 9.1 is devoted to each open claim.
Census data on the gender and current age of each living PD
claimants appears in two columns on the left side of the table.
Consider claim number 1 in the top row. Actual medical pay-
ments in 2003 were $3,000. A random number between 0 and 1
is generated. If that number is between 0 and q75, the claimant
dies during 2004. Recall that qx denotes the probability of death
at age x, given survival to that age. If the random number is
greater than q75, the claimant lives throughout 2004.
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In effect, in Table 9.1, projected annual medical costs for each
future year are estimated via a Markov chain simulation model.
The state space consists of two outcomes from each trial: (1)
the claimant does not die during a given future DY, or (2) the
claimant dies during that DY. The transition probabilities in this
model are simply the (1¡ qx) and qx values from a mortality ta-
ble. The outcome of any trial depends at most upon the outcome
of the immediately preceding trial and not upon any other pre-
vious outcome. Death is an “absorbing” state, since one cannot
transition out of it.

An assumed rate of medical cost escalation of 9% per year is
applied to the prior year’s payments if the claimant lives through-
out the year. Otherwise, if the claimant dies during the year, pro-
jected medical payments for the year are still shown, after which
medical losses drop to zero for every future year of develop-
ment. While projected medical payments may arguably be only
for half a year, assuming the average claimant dies in the middle
of the final year of development, in reality medical costs are of-
ten higher during the year of death. Thus assuming a full year’s
worth of medical payments is a reasonable assumption.

For each trial, total projected future payments from the cell
at the bottom right are recorded and confidence levels for the
reserve can be derived from a ranking of all of the simulated total
reserve estimates. If this is done for a single claim, the resulting
probability distribution closely conforms to that described in the
first paragraph of this section.

Simulating the variability of the MPD reserve for unreported
claims is naturally more complicated. First, the total number
of IBNR claims should be represented by a Poisson (or simi-
lar) distribution. Then census data of the age at injury of recent
claimants can be used to randomly generate these ages for un-
reported claimants. Then additional rows can be added to Ta-
ble 9.1 to further simulate future payments for each unreported
claimant. The degree of variability of the MPD reserve for un-
reported claimants is exceptionally high, because some of those
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claimants may have been quite young when injured, and be-
cause the total expected future payment for workers injured at
a young age is dramatically higher than for those injured at an
older age. An appreciation for this can be gained by reviewing
either Columns (B) or (C) of Table 8.2. For example, the total
expected future payout for a female who is 20 at the accident
date is $16.7 million, while it is only $3.0 million if she is 40.

The Markov chain method presented in this section is based
on the common assumption that the current level incremental
severities of each claimant remain constant regardless of the age
of the claimant during each future year. Clearly, if the tendency
of incremental medical severities to increase with age were in-
corporated into this method, future medical payments for each
trial of the simulation would be higher.

10. CONCLUDING REMARKS

In this paper we have seen that common actuarial methods
will tend to underestimate the true MPD loss reserve. This is
also the case for typical methods of estimating MPD reserves
at higher confidence levels based on commonly used size-of-
loss distributions. The need to develop and apply new meth-
ods that directly reflect the characteristics of MPD payments is
substantial.
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APPENDIX A

THE MUELLER INCREMENTAL TAIL METHOD

The Mueller Incremental Tail method calculates tail factors
based on cumulative paid loss development triangles augmented
by incremental calendar year payments from older accident
years.

The method was described in Section 2 of the paper as con-
sisting of three stages:

1. Incremental age-to-age decay ratios.

2. Anchored decay factors.

3. Tail factors.

This Appendix provides more specifics regarding these stages.

1. Incremental age-to-age decay ratios. The first step is to
calculate incremental age-to-age decay ratios. With the
SAIF data, we can calculate incremental paid at age n+1
to incremental paid at age n ratios for n ranging from 29
to 65 years, using 20-year weighted averages.

Tables A.1 through A.3 display incremental MPD
payments for DYs 29 through 40, 40 through 50, and
50 through 60, respectively.

Because the underlying data for any individual ac-
cident year are volatile, the age-to-age factors were
smoothed using centered moving averages. The empir-
ical age-to-age decay factors and smoothed factors are
shown in Table A.4.

The empirical factors are calculated directly from the
raw data. The centered average is a simple five-year av-
erage based on the empirical factor averaged with the
two factors above and the two below. When it was not
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possible to calculate a five-year average, shorter term
centered averages were used.

The weighted average is similar but uses correspond-
ing paid losses as weights. The geometric mean provides
another level of smoothing. It is also a five-year centered
average, but it is the fifth root of the product of the five
weighted average factors.

2. Anchored decay factors. After selecting the geometric
mean incremental age-to-age factors, they are then an-
chored to a base year. Table A.5 shows the anchored
decay factors using five different anchor years. The an-
chored decay factors represent incremental payments
made in year n+ r relative to payments made in the an-
chor year. These anchored decay factors are calculated as
the cumulative product starting with the anchor year and
moving up the last column on Table A.4. For example,
as shown in Table A.5, payments made in development
year 50 are 88.0% greater than the payments made in
year 37. The main reason that payments rise over time is
because the force of medical cost escalation exceeds the
force of mortality until most of the claimants are fairly
advanced in age, when the force of mortality becomes
stronger than the force of medical cost escalation.

By summing the decay factors from 38 to 65, we get the
payments made in age 38 to 65 relative to the payments made
in the selected anchor year. The sums of the decay factors are
similar to tail factors, but instead of being relative to cumulative
payments they are relative to the incremental payments made in
a given anchor year.

The cumulative decay factors can be interpreted as follows:
Payments made in ages 38 to 65 are 30.071 times the payments
made in age 37. Similarly, payments made in ages 38 to 65 are
26.961 times the payments made in age 33.
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TABLE A.4

Calculation of Age-to-Age Decay Factors

Centered Weighted Geometric
Age to Age Empirical Average Average Mean

58+ 1.151 1.151 1.151 1.151
57/56 0.744 1.186 1.108 1.067
56/55 1.661 1.046 0.952 1.002
55/54 0.502 1.001 0.918 0.919
54/53 1.171 1.011 0.907 0.851
53/52 0.928 0.801 0.745 0.850
52/51 0.792 0.843 0.756 0.868
51/50 0.610 0.924 0.946 0.888
50/49 0.712 1.008 1.019 0.946
49/48 1.579 1.028 1.016 1.023
48/47 1.345 1.070 1.022 1.047
47/46 0.892 1.149 1.117 1.031
46/45 0.824 1.081 1.063 1.044
45/44 1.107 0.971 0.946 1.058
44/43 1.237 1.096 1.080 1.054
43/42 0.793 1.125 1.093 1.056
42/41 1.516 1.125 1.094 1.101
41/40 0.970 1.093 1.074 1.098
40/39 1.108 1.182 1.169 1.088
39/38 1.079 1.066 1.064 1.063
38/37 1.235 1.047 1.040 1.048
37/36 0.939 0.992 0.977 1.001
36/35 0.877 1.014 0.999 0.980
35/34 0.832 0.940 0.932 0.958
34/33 1.186 0.962 0.954 0.953
33/32 0.864 0.945 0.931 0.937
32/31 1.049 0.965 0.952 0.937
31/30 0.795 0.925 0.916 0.933
30/29 0.930 0.930 0.930 0.930
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TABLE A.5

Anchored Decay Factors

Year of Anchor Year
Development 37 36 35 34 33

> 57 1.184 1.186 1.162 1.113 1.062
57 1.028 1.030 1.009 0.967 0.922
56 0.964 0.966 0.946 0.907 0.864
55 0.962 0.964 0.944 0.905 0.863
54 1.047 1.049 1.028 0.985 0.939
53 1.231 1.233 1.208 1.158 1.104
52 1.448 1.450 1.421 1.362 1.298
51 1.669 1.671 1.637 1.569 1.496
50 1.880 1.882 1.844 1.768 1.685
49 1.987 1.990 1.950 1.869 1.782
48 1.943 1.946 1.907 1.827 1.742
47 1.856 1.859 1.821 1.746 1.664
46 1.800 1.803 1.766 1.693 1.614
45 1.724 1.727 1.692 1.622 1.546
44 1.630 1.633 1.600 1.533 1.462
43 1.547 1.550 1.518 1.455 1.387
42 1.466 1.468 1.438 1.378 1.314
41 1.331 1.332 1.306 1.251 1.193
40 1.211 1.213 1.189 1.139 1.086
39 1.114 1.116 1.093 1.048 0.999
38 1.048 1.049 1.028 0.985 0.939
37 1.000 1.001 0.981 0.940 0.897
36 1.000 0.980 0.939 0.895
35 1.000 0.958 0.914
34 1.000 0.953
33 1.000

Totals (38 to
ultimate)

30.071 30.115 29.508 28.280 26.961

Relative to
Anchor Year 37 36 35 34 33
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Because this approach produces volatile indicated tail factors,
Table A.6 presents an approach for stabilizing those indications
(see Table 2.6). Each of the average PLDFs for ages 30 through
36 are adjusted to what they would be for age 37 using the
appropriate products of incremental decay factors from AY 1965
and prior years. A weighted average of all of these adjusted
PLDFs is then used to replace the actual PLDF for DY 37. In
this way, the PLDF for DY 37 is changed from being entirely
determined by only one historical PLDF for one AY, to being an
indication based on all 36 PLDFs for DYs 30 through 37. This
results in a reduction of the PLDF for anchor year 37 from 1.033
to 1.022. The final selected tail factor from age 37 to 65 is then
1 plus the product of 0.022/1.022, the cumulative decay factor
of 30.071 and 1/1.022 (= 1:634).

Once the best estimate of the PLDF for the anchor year (DY
37) is selected, then all of the subsequent PLDFs can be easily
generated using the iterative formula:

fn+1 = fndn+1=[1+fn],

where fn is the paid loss development factor, less one, for the
nth year of development, and dn+1 is the decay ratio between
incremental paid during year (n+1) and year (n). See Section 2
for a derivation of this formula.

3. Tail factors. Tail factors can be calculated either by cu-
mulating the age-to-age PLDFs calculated above or di-
rectly from the cumulative decay factors Dn+1 linked to
an age-to-age factor fn from the cumulative triangle us-
ing the formula

Tail factorn = fnDn+1=[1+fn],

where Dn+1 is the cumulative decay factor calculated
from the incremental data, and fn is derived from the
normal cumulative triangle. See Section 2.
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APPENDIX B

HISTORICAL PLDFS FOR ALL OTHER WORKERS
COMPENSATION

This section presents SAIF’s historical PLDFs for MPD losses
as well as workers compensation losses other than MPD. The av-
erages of the latest five PLDFs are shown for each development
year in Table B.1. These factors are counterparts to the MPD
PLDFs shown in Table 1.1.

The 37 to ultimate tail factor indicated for other workers com-
pensation is 1.039. In Oregon, escalation of indemnity benefits
is paid out of a second injury fund. The Other Workers Com-
pensation development factors do not include the escalation of
indemnity benefits. The Other than MPD tail factor of 1.039 can
be compared to the MPD tail factor of 1.581. These tail factors
can be derived from Table B.1 by cumulating backwards.

It is medical losses that contribute significantly to the tail
factor and it is the medical cost escalation component of the
medical tail factor that contributes significantly to the medical
tail factor. Without medical cost escalation, the medical factor
drops from 1.581 to 1.030 when put on a current cost basis.

The above PLDFs serve as the basis for the tail factors pre-
sented in Table 2.4.
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APPENDIX C

INCORPORATING THE STATIC MORTALITY MODEL INTO THE
INCREMENTAL PAID TO PRIOR OPEN CLAIM METHOD

SECTION C.1. OVERVIEW

Given the complexity of this method, Table C.1 provides a
road map to the key steps involved in the application of the
method and the location of tables and narrative describing those
steps. The method was originally introduced in Section 3 by
presenting Step 7 since this step is easily understood.

Table C.1 lists the key steps of this method in the order in
which they were applied, which is not necessarily the order in
which they are presented in this appendix.

This Appendix consists of five sections: (1) Overview;
(2) Derivation of Number of Open Claims at the End of Each
Development Year; (3) Selection of Representative Values of
Incremental Paid to Prior Open Claim; (4) Basis of 9% Assump-
tion for Future Rate of Medical Cost Escalation; and (5) Deriva-
tion of Assumed Claim Reporting and Closure Patterns.

SECTION C.2. DERIVATION OF NUMBER OF OPEN CLAIMS AT THE
END OF EACH DEVELOPMENT YEAR

The first part of this Appendix describes the derivation of the
estimated number of PD claimant deaths shown in Column (3)
of Table 3.4. Such estimates also directly become the number
by which the total number of open claims declines for each de-
velopment year after the 20th year. After that year, it is assumed
that no new claims will be reported and that the number of claim
closures for reasons other than death will be cancelled out by the
number of reopened claims for each development year.

The survival probabilities for each development year were de-
rived from a claimant mortality model and these were compared
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TABLE C.1

Guide to Location of Description and Display of Key

Steps of Method

Section 3 of
Step Appendix C Main Text

(1) Select representative historical claim
reporting pattern

Section C.5

(2) Select representative historical claim
closing pattern

Section C.5

(3) Derive historical open count pattern by
subtracting (2) from (1)

Section C.5

(4) Derive projections of number of claims
closed due to death

Section C.2 Table 3.4

(5) Derive assumptions regarding percentage
of claims closed for other reasons

Section C.5 Table 3.4

(6) Synchronize open count estimates of
historical experience and mortality model

Section C.5 Table 3.4

(7) Select appropriate medical inflation
assumption

Section C.4

(8) Trend historical incremental paid to prior
open claim averages to current level

Section C.3

(9) Select representative paid severities Section C.3
(10) Trend paid severities to year of payment Section C.3 Table 3.2
(11) Estimate incremental payments as the

product of trended paid severities and
projections of the number of prior open
claims

Table 3.2

with the actual probabilities of a claim remaining open through-
out each given development year. For each development year
under 10, the probability of a claim remaining open during a
given development year was substantially less than the survival
probability, since most (or many) claims will close for reasons
other than death of the claimant. However, these two sets of prob-
abilities converge for increasing development years until they are
virtually identical for development years 20 and higher.

Mortality rates were used to derive a claims closure pattern
(due to death) by development year in the following way. A two-
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TABLE C.2.1

Number of Living Male Claimants for Accident Year

2002 at Successive Year-Ends Assuming a 2000

Mortality Table

Age-at- Beginning of Development Year
Injury 1 2 3 4 5 10 20

40 12.99 12.96 12.92 12.88 12.83 12.56 11.50
41 14.71 14.66 14.62 14.57 14.51 14.19 12.89
42 16.09 16.04 15.99 15.93 15.87 15.48 13.94
43 16.03 15.97 15.91 15.85 15.78 15.38 13.71
44 17.48 17.41 17.34 17.27 17.19 16.72 14.74
45 18.86 18.79 18.71 18.62 18.53 17.98 15.66
46 20.12 20.03 19.94 19.84 19.74 19.10 16.41
47 21.43 21.34 21.23 21.12 21.01 20.27 17.14
48 22.69 22.58 22.46 22.34 22.20 21.36 17.75
49 23.02 22.90 22.77 22.63 22.49 21.56 17.59

40—49 183.41 182.68 181.89 181.06 180.16 174.61 154.38

dimensional array was created, with the age-at-injury down the
leftmost column and the development years as column headings.

Table C.2.1 presents a small portion of the array, including
only ages-at-injury from 40 through 49 shown at the beginning
of the first five development years and at the beginning of the
10th and 20th development years.

Appendix D provides a more detailed description of the array
structure. The arrays described in these two appendices differ
only in the applicable mortality tables. For the static method,
the 2000 mortality table is assumed for all future years. In the
trended method (Appendix D), projections of future mortality
tables are used.

Table C.2.1 is a segment of the male lives array. We assumed
that the initial PD claimant population consisted of 750 males
and 250 females. A corresponding array was used for the female
claimants.
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The first column to the right of the age-at-injury values is
a portion of the distribution of 750 male PD claimants by age,
based on individual permanent total disability (PTD) claimant
data from SAIF for accident years 1975 through 1990. We as-
sumed that the age-at-injury distribution for PD claims would
be the same as for PTD claims. The actual census data were
smoothed among different age-at-injury categories to derive the
numbers in Column (1).

Consider the row for the age-at-injury of 40. Suppose that
12.99 of the 1,000 total claimants were injured at age 40. The
probability of living from age 40 to age 41 from the male 2000
SSA mortality table is used to calculate the expected number
of male claimants still alive one year after the accident, and so
forth for each subsequent age and year of development out to
development year 90. In this way each age-at-injury row is filled
out in the array. For each development year column, the expected
total number of surviving claimants is simply the sum of the
expected number of surviving claimants for each age-at-injury
ranging from 40 through 49.

The same calculations were performed for all possible ages-
at-injury and all development years from 1 through 90. The re-
sulting estimates of the number of surviving male claimants is
summarized in Table C.2.2 for different age-at-injury groupings
at different selected years of development. The totals derived
in Table C.2.1 are displayed in the 40—49 age-at-injury row in
Table C.2.2.

In Table C.2.2, the expected number of surviving claimants at
the beginning of development year 5 is 722.1 and at development
year 10 is 674.4. Hence the probability of survival during the fifth
through ninth development years for all male claimants is 93.4%.
It is evident from a review of the bottom row of Table C.2.2
that the survival probabilities steadily decline as the claimant
population ages.
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TABLE C.2.2

Number of Surviving Male Claimants at the Beginning

of Various Development Years for Accident Year 2002

Age-at- Number of Surviving Male Claimants at the Beginning of Development Year
Injury 1 5 10 15 20 25 30 40 50 60 70 80

16—29 30.7 30.5 30.2 29.9 29.4 28.8 27.9 24.6 18.0 8.7 1.5 0.0
30—39 78.9 78.2 77.0 75.4 73.0 69.5 64.3 47.3 22.8 4.0 0.1 0.0
40—49 183.4 180.2 174.6 166.5 154.4 137.0 114.3 56.2 10.2 0.3 0.0 0.0
50—59 321.3 309.0 286.9 255.0 213.4 162.7 106.1 19.7 0.6 0.0 0.0 0.0
60+ 135.7 124.2 105.6 83.2 58.0 33.0 13.8 0.6 0.0 0.0 0.0 0.0

TOTAL 750.0 722.1 674.4 609.9 528.1 431.0 326.4 148.3 51.7 13.0 1.6 0.0

Survival
Probability¤ 96.3 93.4 90.4 86.6 81.6 75.7 45.4 34.8 25.1 12.3 2.6

¤In %.

TABLE C.2.3

Indicated Male Claimant Survival Probabilities

Age-at- Beginning of Development Year
Injury 5 10 15 20 25 30 40 50 60 70 80

16—29 99.4% 99.2% 98.9% 98.5% 97.8% 96.9% 88.1% 73.4% 48.0% 17.0% 2.8%
30—39 99.1% 98.5% 97.8% 96.9% 95.2% 92.5% 73.5% 48.2% 17.5% 3.0% 0.2%
40—49 98.2% 96.9% 95.4% 92.7% 88.7% 83.5% 49.1% 18.2% 3.1% 0.2% 0.0%
50—59 96.2% 92.8% 88.9% 83.7% 76.3% 65.2% 18.6% 3.1% 0.2% 0.0%
60+ 91.6% 85.0% 78.8% 69.7% 56.9% 41.8% 4.1% 0.2% 0.0%

Table C.2.3 displays the survival probabilities for each
age-at-injury grouping during each grouping of development
years.

Given that survival probabilities vary significantly for differ-
ent age-at-injury groups, it is clear that the group survival proba-
bilities will be highly sensitive to the distribution of claimants by
age-at-injury. The greater the proportion of younger claimants,
the bigger the MPD tail.
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SECTION C.3. SELECTION OF REPRESENTATIVE VALUES OF
INCREMENTAL PAID TO PRIOR OPEN CLAIM

Historical incremental paid to prior open claim averages were
trended to the calendar year 2003 cost level using an assumed an-
nual medical inflation rate of 9% per year. The resultant trended
averages are displayed in Tables C.3.1 and C.3.2.

SECTION C.4. BASIS OF 9% ASSUMPTION FOR FUTURE RATE OF
MEDICAL COST ESCALATION

Forecasts of future rates of medical cost escalation are based
on an analysis of actual medical severity since 1966. Future med-
ical severity is expected to grow on average at the same rate
observed over this 38-year period. Internal studies have shown
that the best predictor of long-term medical cost escalation is
the long-term historical average itself. Short-term medical cost
escalation rates are more accurately predicted using shorter-term
historical averages.

In this paper we use an expected 9% future medical cost es-
calation rate. Intuitively, this rate might seem high, especially
when compared to the medical component of the CPI (Bu-
reau of Labor Statistics). Table C.4.1 provides a historical com-
parison of these two measures of change in average medical
costs.

SAIF’s average rate of medical cost escalation for 1983—1993
was depressed by the effects of significant reform legislation en-
acted in 1990 and the introduction of managed care into workers
compensation. Absent these reforms, SAIF’s average difference
for 1983—1993 would have been similar in magnitude to the other
multiyear periods.

It should be expected that a workers compensation insurer’s
average rate of medical cost escalation would exceed the aver-
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TABLE C.4.1

Comparison of SAIF’s Historical Rate of Medical Cost

Escalation with Average Changes in the Medical

Component of the Consumer Price Index

Average Rate of Average Rate of
Medical Cost Change in
Escalation Medical

Accident for Time Component Average
Years Loss Claims of the CPI Difference

1966—1973 10.5% 5.7% 4.8%
1973—1983 12.2% 10.0% 2.2%
1983—1993 7.2% 7.2% 0.0%
1993—2003 7.3% 4.0% 3.3%

1966—2003 9.2% 6.8% 2.4%

age rate of change in the medical component of the CPI. The
latter measures changes in household expenditures for health
insurance premiums, as well as for out-of-pocket medical ex-
penses, whereas the workers compensation medical costs include
all medical expenses.

SAIF’s rate of medical cost escalation measures the rate of
change in all occupational medical costs. The medical cost of
workers compensation claims is more difficult for an insurer
to control because there are no patient co-pays or deductibles.
Workers compensation insurers find it difficult to deny med-
ical benefits when the attending physician deems the service
necessary.

As Table C.4.1 shows, the average difference between the
rate of change in occupational medical costs and that for con-
sumer medical expenses measured by the medical component of
the CPI has been 2.4% per year. That differential for SAIF in-
creased during the most recent years to 7.4%, as documented in
Table C.4.2.
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TABLE C.4.2

Comparison of SAIF’s Recent Rates of Medical Cost

Escalation with Average Changes in the Medical

Component of the Consumer Price Index

Average Rate of Average Rate of Average
Medical Cost Change in Change
Escalation Medical in Mix

Accident for Time Component and
Year Loss Claims of the CPI Utilization

1998 9.2% 3.2% 6.0%
1999 5.3% 3.5% 1.8%
2000 18.6% 4.1% 14.5%
2001 13.6% 4.6% 9.0%
2002 12.7% 4.7% 8.0%
2003 9.1% 4.0% 5.0%

1998—2003 11.4% 4.0% 7.4%

Escalation rates for workers compensation medical costs are
driven by unit cost inflation, changes in the utilization of ser-
vices, changes in the relative mix of services across service cate-
gories, as well as the substitution of more expensive services for
less expensive services within a service category.

The medical cost escalation rate is the change in the cost per
claim. The following formulae show one way to decompose the
cost per claim into utilization, unit cost, and mix.

Payments are first combined into service categories. Exam-
ples of service categories are office visits, pharmacy, physical
medicine, surgery, radiology, and so on. For a particular service
category, the cost per claim can be decomposed into utilization,
unit cost and mix.

Cost per claim =Utilization£Unit cost£Mix,
where

Utilization =
Number of services in the service category
Number of claims receiving services

in that category

:
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Utilization measures the number of services per claim for
those claims receiving services in that category.

Unit cost =
Paid losses in the service category

Number of services in the service category
:

Unit cost measures the average paid loss per service in that
service category.

Mix =
Number of claims receiving services in that category
Total number of claims receiving any kind of service

:

Mix measures the proportion of claims receiving that service.

If you multiply these three components together you get

Cost per claim =
Paid losses for the service category

Total number of claims receiving any kind
of service in that category

:

The total cost per claim is then the sum of the cost per claim
over all service categories. The 9% medical cost escalation re-
ferred to in this paper is the combined effect of utilization, unit
cost, and mix on the average cost per claim over time.

SECTION C.5. DERIVATION OF ASSUMED CLAIM REPORTING AND
CLOSURE PATTERNS

Tables C.5.1 and C.5.2 disclose the specific assumptions
(from SAIF experience) that form the basis for the PLDF static
and trended mortality model estimates.

The following assumptions are held constant for all accident
years in the model:

² There are 5,000 ultimately reported PD claims.
² A claim-reporting pattern is based on recent historical
experience.
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² Percentages of cumulative reported claims still open at the end
of each DY are based on recent historical experience.

² Estimates of PD claims closed by death are based on SSA
mortality tables.

² Estimates of PD claims closed for reasons other than death are
calculated as total claim closures less expected deaths.

From the above, the percentage of claims available for clo-
sure that closed for reasons other than death was derived from
AY 2002 for the static mortality model. These percentages were
also assumed for the trended mortality model. Consequently, the
only thing different between the two models is the expected num-
ber of claimant deaths during each DY.
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APPENDIX D

INCORPORATING THE TRENDED MORTALITY MODEL INTO THE
INCREMENTAL PAID TO PRIOR OPEN CLAIM METHOD

Table C.1 displays each of the steps taken in incorporating
the static mortality model into the incremental paid to prior open
claim method. The trended mortality method is the same as the
static mortality method, except for Step (4), where projections
of the number of claims closed due to death are derived. In the
trended method, mortality tables forecasted by the SSA for the
appropriate future development year are used instead of some
fixed historical mortality table. The differences between these ta-
bles grows exponentially for development years that are decades
into the future. A sample of these differences is disclosed in
Table 5.1 of Section 5. These differences are compounded by
medical costs that have risen dramatically due to expected high
future rates of medical inflation.

The focus of this Appendix is to disclose the specific manner
by which a series of 90 different mortality tables were derived
and applied to the expected number of surviving claimants by
age-at-injury for every future development year. The final re-
sult is a slowly evolving and elongating series of claims closure
patterns for each accident year out to 90 years of development.

Standard mortality tables for each decade since 1970 and
projected tables for each decade through 2080 were obtained
from the actuarial publications section of the SSA Web Site
www.ssa.gov/OACT/NOTES/pdf studies/.

The separate male and female tables were combined into one
using an assumed 75%/25% male/female mix, the proportion
indicated from SAIF’s PD claimant census data. The resulting
weighted mortality rates were then compiled into an array of
expected mortality rates for each age at each future calendar
year.
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TABLE D.1

Sample q(x) Values

Calendar Year

Age 1970 1980 1990 2000 2020 2040 2060

20 .00175 .00156 .00130 .00110 .00091 .00078 .00066
35 .00239 .00187 .00217 .00172 .00154 .00130 .00110
50 .00861 .00685 .00556 .00496 .00397 .00330 .00278
65 .02961 .02524 .02206 .01938 .01615 .01371 .01182
80 .09386 .08308 .07604 .07028 .05929 .04976 .04261

Six models of the number of PD claimants who would still
be alive at the end of each future development year were de-
rived separately for accident years 1975, 1980, 1985, 1990,
1995, and 2000. Each of these models consists of a separate
two-dimensional array, such as presented in Tables C.2.1 of Ap-
pendix C.

The first step in deriving these arrays was to compile mortality
rates from the SSA tables. Table D.1 displays a sampling of these
q(x), or probability of death, values.

Each of the one-year q(x) values was converted into survival
rates, denoted l(x), by taking the complement, yielding the ratios
in Table D.2.

The entire array of resulting one-year l(x)s was then shifted so
that the rows of the original array became the diagonals of a new
array, that is, each successive column was shifted up one row.
After the shift, the l(x)s were arranged as shown in Table D.3.

Each row thus has a structure similar to an accident year re-
porting format, as displayed in Table D.4.

This shift facilitated multiplication of the survival ratios times
the preceding number of surviving claimants for each age-at-
injury row, working successively from left to right within each
age-at-injury row.
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TABLE D.2

Sample One-Year l(x) Values

Calendar Year

Age 1970 1980 1990 2000 2020 2040 2060

20 .99825 .99844 .99870 .99890 .99909 .99922 .99934
35 .99761 .99813 .99783 .99828 .99846 .99870 .99890
50 .99139 .99315 .99444 .99504 .99603 .9967 .99722
65 .97039 .97476 .97794 .98062 .98385 .98629 .98818
80 .90614 .91692 .92396 .92972 .94071 .95024 .95739

TABLE D.3

Shifted l(x) Array: Age

Year of Development

Age at Injury 1 2 3 4 5 6 7

20 21 22 23 24 25 26 27
21 22 23 24 25 26 27 28
22 23 24 25 26 27 28 29
23 24 25 26 27 28 29 30
24 25 26 27 28 29 30 31

Table D.5 provides a side-by-side comparison of parallel cal-
culations of the expected number of surviving claimants at the
end of each calendar year for the static and trended mortality
methods. The example presented is for claimants who were 50
years old when they were injured (during AY 2002).

In Table D.5 we started with the same number of surviving
claimants at the beginning of CY 2031 (100.00). Nevertheless,
at the beginning of CY 2035, we would be expecting 73.42 such
claimants to still be alive using a 2000 mortality table while
79.30 claimants would be alive using a series of mortality tables
corresponding to CYs 2031 through 2034. In this example, we
would be expecting 8% more claimants to still be alive at the
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TABLE D.4

Calendar Year of Payments and Applicable Mortality

Table for Each Accident Year and Development Year

Year of Development

AY 1 2 3 4 5 6 7 8 9

1996 1996 1997 1998 1999 2000 2001 2002 2003 2004
1997 1997 1998 1999 2000 2001 2002 2003 2004 2005
1998 1998 1999 2000 2001 2002 2003 2004 2005 2006
1999 1999 2000 2001 2002 2003 2004 2005 2006 2007
2000 2000 2001 2002 2003 2004 2005 2006 2007 2008
2001 2001 2002 2003 2004 2005 2006 2007 2008 2009
2002 2002 2003 2004 2005 2006 2007 2008 2009 2010

TABLE D.5

Comparison of the Estimation of the Number of Living

Claimants with Age-at-Injury of 50 for Accident Year

2002 at Successive Year-Ends Under the Static and

Trended Mortality Methods

Static Mortality Method

Calendar Year

2031 2032 2033 2034 2035

Number of Surviving Claimants 100.00 93.63 87.05 80.30 73.42
CY of Mortality Table 2000 2000 2000 2000 2000
Survival Probability .93633 .92972 .92242 .91439 .90562

Trended Mortality Method

Calendar Year

2031 2032 2033 2034 2035

Number of Surviving Claimants 100.00 95.12 90.05 84.79 79.30
CY of Mortality Table 2031 2032 2033 2034 2035
Survival Probability .95121 .94671 .94152 .93526 .92769
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beginning of CY 2035 assuming the trended mortality method
(versus the static method). Although there is little difference in
the survival probabilities shown in Table D.5, these differences
become fairly significant during future decades. This can be seen
by comparing these rates to those shown in the Group Survival
Rate columns of Table 5.1.
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APPENDIX E

QUANTIFYING THE ELDER CARE COST BULGE

Table E.1 discloses summarized data behind Figure 7.1. The
incremental paid amounts in the second column of Table E.1
have been adjusted to a 2003 cost level assuming a constant
9% per year rate of medical cost escalation. The incremental
amounts included in these totals were for accident years from
1945 on, during calendar years 1991 through 2003. These have
been totaled for groupings of five successive development years.

The claim counts in the third column of Table E.1 are on a
different basis than in the rest of this paper in order to focus
only on severity changes for claims where ongoing medical pay-
ments are being made. Consequently, these counts only include
claims where some medical payment was made during the given
calendar year.

The magnitude of the increases in on-level incremental sever-
ities for later DYs shown in Figure 1.2 is greater than if the
number of prior open counts was used. This is because the per-
centage of MPD claims for which payment activity occurs tends
to decline somewhat for later DYs. This decline indicates that

TABLE E.1

Incremental Paid Severities at 2003 Level

Development Years Incremental Paid Claims with Payment Incremental Paid
(DYs) ($000s) Activity Severity

16—20 537,626 99,417 5,408
21—25 406,047 73,876 5,496
26—30 318,881 50,646 6,296
31—35 243,062 29,068 8,362
36—40 129,420 14,486 8,934
41—45 60,487 7,429 8,142
46—50 38,960 3,674 10,604
51—55 22,674 1,919 11,816
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mortality rates are higher for those MPD claimants with ongoing
covered medical costs. However, the disabled life factors indi-
cated by SAIF’s total open counts for later DYs are in the range
of 70% to 80%, leaving some room for the actual mortality rates
of claimants with ongoing covered medical costs to be close to
those of the general populace.



INCORPORATION OF FIXED EXPENSES

GEOFF WERNER

Abstract

When setting rates, actuaries must include all of
the costs of doing business, including underwriting ex-
penses. Actuaries generally divide the underwriting ex-
penses into two groups: fixed and variable. This paper
addresses the incorporation of fixed expenses in the cal-
culation of the actuarial indication. More specifically,
the paper describes how the generally accepted method
for including fixed expenses overstates or understates the
actuarial indication. The materiality of the distortion de-
pends on the magnitude of past rate changes, premium
trend, and variations in average premiums for multistate
companies. Finally, the paper suggests an alternative
procedure that addresses the distortions.
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1. INTRODUCTION

The role of a pricing actuary is to set rates that provide for the
expected future amount of all costs associated with the transfer
of risk [2]. Historically, actuarial literature has focused either on
the larger costs of doing business (e.g., losses) or the more com-
plex topics (e.g., profit provisions). Thus, there is relatively little
literature dealing with the treatment of underwriting expenses.

Actuaries generally divide underwriting expenses into two
groups: fixed and variable. Fixed expenses are those expenses

679
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that are assumed to be the same for each exposure, regardless
of the size of the premium (i.e., the expense is a constant dol-
lar amount for each risk). Typically, overhead costs associated
with the home office are considered a fixed expense.1 Variable
expenses are those expenses that vary directly with premium;
in other words, the expense is a constant percentage of the pre-
mium. Premium taxes and commissions are two good examples
of variable expenses.

This paper discusses the often-overlooked portion of the pre-
mium, the fixed expenses. Specifically, the paper addresses:

² The generally accepted method for calculating a fixed expense
provision and including it within the overall statewide rate
level indication;

² Potential distortions that may make the current methodology
misstate the actuarial indication; and

² An alternative procedure for calculating and incorporating a
fixed expense provision.

2. CURRENT METHOD

Calculation of Projected Fixed and Variable Expense Provision

A review of filings from several insurers of property/casualty
personal lines confirms that most actuaries use a method similar
to the one outlined by Schofield [4] to calculate a fixed expense
provision and expense fee. Basically, the procedure assumes that
historical expense ratios (i.e., historical expenses divided by his-
torical premiums) are the best estimate of projected expenses.

The first step of Schofield’s procedure is to determine the
percentage of premium attributable to expenses for each of

1It is likely that some of these expenses bear some relationship to risk and may vary at
least slightly with premium. Activity-based cost studies may be able to verify the true
relationship, and appropriate adjustments can be made.



INCORPORATION OF FIXED EXPENSES 681

the expense categories. To accomplish this, actuaries generally
relate historical expenses to either written or earned premium
for that same historical experience period. The choice of pre-
mium depends on whether the actuary believes the expenses are
generally incurred at the onset of the policy or throughout the
policy. Written premium is used in the former case and earned
premium is used in the latter case. Once the appropriate ratios
are determined for each type of expense, the ratios are then split
into a fixed expense ratio and a variable expense ratio based on
all available expense data, regulations, and judgment.

Exhibit 1 demonstrates this using homeowners data adjusted
so that the three-year historical expense ratios (expenses divided
by premiums) are approximately equal to the three-year industry
historical expense ratios.

Exhibit 1-A displays three years of historical expense ratios.
The underlying data can be obtained from the Insurance Expense
Exhibit (IEE) and Statutory Page 14, although they may not have
the finest level of detail desired. For example, the homeowners
data include data on renters and mobile homes. Ideally, the ac-
tuary can access and use the source expense data to get the data
corresponding to the product being priced. Of course, the actu-
ary should always balance the additional cost of obtaining such
data against the additional accuracy gained.

In this case, the company assumes that all expenses, except
general expenses, are incurred at the onset of the policy and
divides them by the written premium. General expenses are as-
sumed to be incurred throughout the policy period and thus are
divided by the earned premium.

Typically, the data used (countrywide or state) also vary by
type of expense. Other acquisition and general expenses are usu-
ally assumed to be uniform across all locations and hence can be
handled using countrywide figures that can be found in the IEE.
Handling of commission and brokerage expenses varies from
carrier to carrier, with some carriers using state-specific data and
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others using countrywide figures. The treatment should be based
on the variation of the company’s commission plans by location.
Taxes, licenses, and fees vary by state, therefore they are typi-
cally based on state data from the applicable Statutory Page 14.
Ideally, the company can break the category into taxes, which
are a variable expense, and licenses and fees, which are typi-
cally treated as fixed expenses.2

The following chart summarizes these expense characteristics:

Type of Expense Data Used Divided By

General Expense Countrywide Earned Premium
Other Acquisition Countrywide Written Premium

Commission and Brokerage Countrywide/State Written Premium
Taxes State Written Premium

Licenses and Fees State Written Premium

Once the historical ratios are calculated, the actuary chooses a
selected provision for each expense type. Generally, the selection
is based on either the latest year or a multiyear average; however,
there are several things that may affect the selection:

² If the actuary is aware of a future change in the expenses,
the new figure should be used. For example, if the commis-
sion structure is changing, the actuary should use the expected
commission percentage, not the historical percentage.

² If there was a one-time shift in expense levels during the ex-
perience period, the expected future expense level should be
used. For example, if productivity gains led to a significant
reduction in necessary staffing levels during the historical ex-
perience period, then the selected ratios should be based on
the ratios after the reduction rather than the all-year average.

2Licenses and fees tend to be a smaller portion of the overall taxes, licenses, and fees
category. Thus, if a company is unable to separate them, the inclusion of these with
variable expenses will not have a material effect.
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² If there were nonrecurring expense items during the historical
period, the actuary should examine the materiality and nature
of the expense to determine how to best incorporate the ex-
pense in the rates–if at all. If the aggregate dollars spent are
consistent with dollars spent on similar non-recurring projects
in other years, the expense ratios should be similar and no
adjustment is warranted. If, however, the expense item repre-
sents an extraordinary expense, then the actuary must decide
to what extent it should be included. Assume, for example,
the extraordinary expense is from a major systems project to
improve the policy issuance process. That project clearly ben-
efits future policyholders and should be included in the rates.
Assuming the new system will be used for a significant length
of time, it may be appropriate to dampen the impact of the
item and spread the expense over a period of several years. If
the actuary consistently selects the three-year average, the ex-
pense will automatically be spread over three years, assuming
rates are revised annually.3 On the other hand, the actuary may
determine that it is inappropriate to charge future policyhold-
ers for a given nonrecurring expense. If so, the actuary should
exclude the expense from the ratemaking data altogether. In
that case, the expense is basically funded by existing surplus.

² Finally, a few states place restrictions on which expenses can
be included for the purpose of determining rates. For example,
Texas does not allow insurers to include charitable contribu-
tions or lobbying expenses. These expenses must be excluded
from the calculation of the historical expense ratios when per-
forming the analysis for that state. If such expenses are re-
curring, overall future income will be reduced by that state’s
proportion of the expenses.

3This assumes all of the expense is booked in that year. Statutory accounting guidelines
allow some expenses to be amortized over several years. If the extraordinary expense is
amortized over three years, then the use of a three-year average will actually spread the
expense over five years. The three-year average expense ratio will increase for the first
three years and decrease for the last two years.
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In the example in Exhibit 1-A, the data are fairly stable
and there are no extraordinary expenses; therefore, a three-year
straight average is selected.

Once the expense ratios are selected, they are divided into
fixed and variable ratios. Ideally, the company has detailed ex-
pense data and can do this directly or has activity-based cost
studies that help split the expenses appropriately. In the absence
of any such data, the actuary should consult with other insurance
professionals within the company to arrive at the best possible
assumptions given the company’s allocation of expenses. In this
example, the company assumes that 75% of the general expenses
and other acquisition costs and 100% of the licenses and fees are
fixed. All other expenses are assumed to be variable. Some sensi-
tivity testing was performed on these selections. For the example
included, the difference in the indications between assuming that
the aforementioned percentage of the general expenses, other ac-
quisition costs, and licenses and fees were fixed and assuming
that 100% of those expenses were fixed is not material. The ex-
act impact will vary and depend on the magnitude of the expense
ratios.

The fixed expense ratio represents the fixed expenses for the
historical time period divided by the premium written or earned
during that same time period. Often, companies trend this ratio
to account for expected growth in fixed expenses. Some com-
panies use internal expense data to select an appropriate trend.
Given the volatility of internal data, many companies use gov-
ernment indices (e.g., Consumer Price Index, Employment Cost
Index, etc.) and knowledge of anticipated changes in internal
company practices to estimate an appropriate trend. Exhibit 1-B
displays one such methodology. Basically, the indicated trend is
a weighting of the Employment Cost Index and the Consumer
Price Index. The weights are based on the percentage that salaries
represent of the total expenditures for the two largest fixed ex-
pense categories, other acquisition and general expenses. These
weights can be determined directly from data contained in the
IEE. The selected fixed expense ratio will be trended from the
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average date expenses were incurred in the historical expense
period to the average date expenses will be incurred in the period
the rates are assumed to be in effect (see Appendix A).4 After
making this adjustment, the ratio is often called the projected (or
trended) fixed expense provision.

Variable expenses and profit are a constant percentage of the
premium. This selected percentage will apply to the premiums
from policies written during the time the rates will be in effect.
Thus, there is no need to trend this ratio, called the variable
expense provision.

Calculation of Statewide Indicated Rate Change

Exhibit 1-C shows the most commonly found method of in-
corporating the fixed expense provision within the calculation of
the indicated statewide rate level change. The general formula
for the statewide (SW) indicated rate change based on the loss
ratio method is as follows:

SW Indicated Rate Change

=
Projected Loss Ratio+Projected Fixed Expense Provision

1:00¡Variable Expense Provision¡Profit & Contingency Provision

¡ 1:00:

The projected fixed expense provision and the variable ex-
pense provision are calculated as discussed in the prior section.
Much literature is dedicated to the determination of loss ratios

4When multiyear historical ratios are used, there is often no trending to bring each year’s
ratio to the same expense and premium levels before making a selection. If the expenses
and average premiums are changing at the same rate, then the two would offset each other
and the ratios would remain constant. However, if the expense trend exceeds the change
in average premium (or the change in average premium exceeds the expense trend),
this would tend to result in increasing (decreasing) ratios over the historical period. The
materiality of this distortion depends on the magnitude of the difference between the
trends.
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and profit and contingency provisions; thus, they will not be
discussed further here.

3. POTENTIAL DISTORTIONS

There are a few items that can cause the preceding methodol-
ogy to create inaccurate and inequitable indicated rate changes.

First, rate changes5 can impact the historical expense ratios
and lead to an excessive or inadequate overall rate indication. The
historical fixed expense ratios are based on written and earned
premiums during the historical time period. To the extent that
there are rate increases (or decreases) that impact only a por-
tion of the premium in the historical time period or were imple-
mented after the historical period entirely, the current procedure
will tend to overstate (or understate) the expected fixed expenses.
The materiality of the distortion depends on the magnitude of rate
changes not fully reflected in the historical countrywide premi-
ums. Also, utilizing three-year historical expense ratios increases
the historical experience period, thereby increasing the chances
of rate changes not being fully reflected in the historical pre-
miums. One potential solution for the distortion caused by rate
changes is to restate the historical written or earned premiums at
current rates i.e., premiums level.

Second, a significant premium trend between the historical
experience period and the projected period can lead to an exces-
sive or inadequate overall rate indication.6 Again, the historical

5The term “rate changes” (or premium level changes) is intended to refer to changes
resulting from an increase or decrease in the premiums. The term is not intended to
be used interchangeably with “rate level changes,” which can be caused by premium
changes, coverage changes, or both. If a rate level change is caused solely by a change
in coverage, it may or may not impact the appropriateness of the historical expense ratios.
If the actuary adjusts the losses to account for coverage level changes, there will not be
a distortion. If, however, the actuary adjusts premiums to account for such changes, the
distortion will still exist.
6This assumes that the premium trend is due to changes that do not proportionately
increase (or decrease) the fixed expenses. While this is the most common scenario, there
may be situations that deviate from this assumption. For example, assume a company is
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expenses are divided by the written and earned premium during
the historical time period. To the extent that there have been dis-
tributional shifts that have increased the average premium (e.g.,
higher amounts of insurance) or decreased the average premium
(e.g., higher deductibles), this methodology will tend to over-
state or understate the estimated fixed expenses, respectively. The
magnitude of overstatement or understatement depends on the
magnitude of the premium trend. Utilizing three-year historical
expense ratios increases the impact of a premium trend by in-
creasing the amount of time between the historical and projected
periods. A potential solution for this is to trend the historical
premiums to prospective levels.

Third, this methodology can create inequitable rates for re-
gional or nationwide carriers because it uses countrywide ex-
pense ratios7 and applies them to state projected premiums to
determine the expected fixed expenses. In other words, fixed
expenses are allocated to each state based on premium. The av-
erage premium level in states can vary because of overall loss
cost differences (e.g., coastal states tend to have higher over-
all homeowners loss costs) as well as distributional differences
(e.g., some states have significantly higher average amounts of
insurance than other states). If there exists significant variation
in average rates across the states, a disproportionate share of pro-
jected fixed expenses will be allocated to the higher-than-average
premium states. Thus, the estimated fixed expenses will be over-
stated in higher-than-average premium states and understated in
lower-than-average premium states. If a company tracks fixed
expenses by state and calculates fixed expense ratios for each
state, then this distortion will not exist.

pursuing an insurance-to-value (ITV) effort with an external inspection company. Pre-
sumably, the additional expenses incurred will lead to better ITV and higher average
premiums. Thus, both average premiums and average expenses would be increasing. In
a case like this, the actuary should determine the impact, decide if this is a one-time shift,
and adjust the selections accordingly.
7State-specific data are usually used for taxes, licenses, and fees. However, these ex-
penses are relatively small compared with the expenses that are generally evaluated on a
countrywide level.
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4. PROPOSED METHODOLOGY

By assumption, fixed expenses are assumed to be constant for
each exposure and are not assumed to vary with the premium.
The proposed methodology uses the concepts outlined by Childs
and Currie [1]. In essence, historical fixed expenses are divided
by historical exposures rather than by premium. Exhibit 2 dis-
plays this procedure.

Calculation of Projected Fixed and Variable Expense Provisions

Exhibit 2-A, Sheet 1 shows the development of the fixed and
variable expenses for the general expense category. The total ex-
penses for the category can be taken directly from the IEE. The
total expenses are split into variable and fixed expenses. Ideally,
the expenses are maintained at a level of detail that allows an
accurate allocation between the variable and fixed expense cat-
egories. Typically, the total expenses are split using percentages
based on internal company data and actuarial judgment. This
example uses the same percentages assumed in the current pro-
cedure (75% of general expenses and other acquisition costs and
100% of licenses and fees are fixed, and all other expenses are
variable).8

The total fixed expenses are then divided by the exposures9

for the same time period. As general expenses are assumed to
be incurred throughout the policy, the expense dollars are di-
vided by earned exposures, rather than written, to determine
an average expense per exposure for the historical period. The
average expense figures are trended using the same approach
discussed earlier in the paper (see Exhibit 1-B). All of the

8If premiums and expenses are changing at different rates, then the ratio of fixed expenses
to total expenses will change over time, but that does not result in a material distortion.
See Appendix B for more discussion on this issue.
9House-years were used as the exposure unit for the example in the paper. Using amount-
of-insurance years as an exposure base will lead to distortions similar to those caused
by the current procedure if there are significant differences in amounts of insurance over
time and among various locations.
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average expense amounts are trended from the average date they
were incurred in the historical period to the average date ex-
penses will be incurred in the period the rates will be in effect.10

Once the projected expenses per exposures are determined, the
actuary then must select an appropriate figure.

As with the current procedure, the selection will generally
be based on either the latest year or a multiyear average. Con-
sistent values for the projected average expense per exposure
imply that expenses are increasing or decreasing proportionately
to exposures. This makes intuitive sense for many expense cate-
gories (e.g., full-time employee costs), but may not be accurate
for all fixed expenses because of economies of scale. If the com-
pany is growing and the projected average expense per exposure
is declining steadily each year, the selected expense trend may
be too high or expenses may not be increasing as quickly as
exposures because of economies of scale. If the decline is sig-
nificant and the actuary believes it is because of economies of
scale, then the selection should be adjusted to include the im-
pact of economies of scale corresponding to expected growth in
the book.11 As mentioned earlier, nonrecurring expense items,
one-time changes in expense levels, or anticipated changes in
expenses should be considered in making the selection. In the
example shown the figures are stable and the three-year average
is selected to facilitate comparisons with the results of the current
procedure.

Exhibit 2-A, Sheets 1—4 show the calculations for each of the
major expense categories. The following chart summarizes the

10In the example, the same trend period is used for all expense categories to maintain
consistency with the current procedure. See Appendix A for more discussion on this
issue.
11If the selected expense trend is based on historical internal expense data (e.g., historical
changes in average expense per exposure) rather than external indices, then the trend
would implicitly include the impact of economies of scale in the past. Assuming the
impact of economies of scale will be the same as in the past, the projected average
expense per exposure should be consistent and no further adjustment would be necessary.
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characteristics of the data used:

Divided By
Expense Data Used Fixed Variable

General Expense Countrywide Earned Exposures Earned Premium
Other Acquisition Countrywide Written Exposures Written Premium
Commissions and

Brokerage
Countrywide/State – Written Premium

Taxes State – Written Premium
Licenses and Fees State Written Exposures –

Exhibit 2-B summarizes the results of the analysis of the fixed
and variable portions of each major expense group.

Calculation of Statewide Indicated Rate Change

The most straightforward way to calculate the indicated rate
change is displayed on Exhibit 2-C. The statewide required pro-
jected average premium is calculated as follows:

SW Projected Average Required Premium

=

SW Projected Average Loss & LAE Per Exposure
+Projected Average Fixed Expense Per Exposure

1:00¡Variable Expense Provision¡Profit & Contingency Provision

This figure is compared to the statewide projected average pre-
mium at present rates to determine the statewide indicated rate
change:

SW Indicated Rate Change

=
SW Projected Average Required Premium

SW Projected Average Premium at Present Rates
¡ 1:00:

Alternatively, the projected average fixed expense per expo-
sure can be converted to a projected fixed expense provision by
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dividing the projected average fixed expense per exposure by the
statewide projected average premium at present rates. This figure
can then be used within the same formula to indicate loss ratio
provided earlier:

SW Indicated Rate Change

=
Projected Loss Ratio+Projected Fixed Expense Provision

1:00¡Variable Expense Provision¡Profit & Contingency Provision

¡ 1:00:

Calculation of Expense Fees

Some insurers may have expense fees or minimum premi-
ums. If that is the case, this procedure directly lends itself to the
determination of such values.

Exhibit 2-D displays the necessary calculations for an ex-
pense fee. The projected average fixed expense per exposure
has already been calculated. To calculate an expense fee, that
figure needs to be increased to cover the variable items (vari-
able expenses and profit) associated with the fixed portion of
the premium. This is accomplished simply by dividing the fixed
expense per exposure by the variable permissible loss ratio (i.e.,
1.00 minus variable expense provision minus profit provision).

To determine a minimum premium, the expense fee should be
combined with a minimum provision for losses.

5. CURRENT METHODOLOGY VERSUS PROPOSED
METHODOLOGY

This section algebraically shows the difference in the pro-
jected fixed expense dollars calculated under the two different
methodologies. The formula for calculating the total dollars of
projected statewide fixed expenses using the current method-
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ology is as follows:12

Proj SW Fixed ExpensesCurr

=
Historical CW Fixed Expenses
Historical CW Premium

¤Expense Trend Factor

¤Proj SW Premium:

The formula for calculating the projected statewide fixed ex-
penses collected using the proposed methodology is as follows:

Proj SW Fixed ExpensesProp

=
Historical CW Fixed Expenses
Historical CW Exposures

¤Expense Trend Factor

¤Proj SW Exposures:

Dividing the first formula by the second highlights the relative
difference between the fixed expenses produced by the two pro-
cedures:

Proj SW Fixed ExpensesCurr
Proj SW Fixed ExpensesProp

=
Historical CW Exposures
Historical CW Premium

¤ Proj SW Premium
Proj SW Exposures

:

Equivalently,

Proj SW Fixed ExpensesCurr
Proj SW Fixed ExpensesProp

=
Proj SW Avg Premium

Historical CW Avg Premium
:

Multiplying by unity (i.e., Proj CW Avg Premium/Proj CW
Avg Premium),

Proj SW Fixed ExpensesCurr
Proj SW Fixed ExpensesProp

=
Proj SW Avg Premium

Historical CW Avg Premium
¤ Proj CW Avg Premium
Proj CW Avg Premium

:

12The following section only deals with the categories of expenses that use the coun-
trywide (CW) expenses. Taxes, licenses, and fees are not addressed. Those expenses
represent a relatively small portion of the total expense dollars.
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Rearranging the terms,

Proj SW Fixed ExpensesCurr
Proj SW Fixed ExpensesProp

=
Proj CW Avg Premium

Historical CW Avg Premium
¤ Proj SW Avg Premium
Proj CW Avg Premium

:

Since

Proj CW Avg Premium

=Historical CW Avg Premium ¤Premium Trend Factor

¤On-Level Factor,
we have

Proj SW Fixed ExpensesCurr
Proj SW Fixed ExpensesProp

= Premium Trend Factor ¤On-Level Factor ¤ Proj SW Avg Premium
Proj CW Avg Premium

:

The difference between the fixed expenses produced by the
two methodologies is driven by premium trend, on-level factors,
and the relationship of the statewide average premium to the
countrywide average premium. These are the three distortions in
the current methodology mentioned earlier. Thus, the proposed
methodology is not affected by these three distortions.

Exhibit 3 shows the impact on the overall indication by loca-
tion for the two methodologies (Exhibit 3-A lists the information
in table form and Exhibit 3-B displays the data graphically). This
information is included to show two items: the total amount the
current procedure overstates (understates) the overall indication
relative to the proposed procedure and the variation of the over-
statement (understatement) by location. The former tells us about
the impact on the accuracy of the overall countrywide indication,
while the latter is more indicative the potential for inequity be-
tween states.

An examination of the “countrywide” line on Exhibit 3-A
shows the current procedure overstates the premium needed to
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cover projected fixed expenses by +1:8 percentage points relative
to the proposed procedure. During the historical period used,
homeowners insurance rates were being increased and the overall
premium trend was slightly positive. For these two reasons, the
proposed procedure results in a fixed expense provision that is
less than that produced by the current procedure.

A survey of the impact by location shows significant varia-
tion (from a high of +10:6 percentage points to a low of ¡8:3
percentage points). The location-specific differences are driven
by the differences in average projected premiums at present rates
(PPR). The average projected PPR can vary significantly from
location to location due to the overall cost of doing business in
the states as well as to differing distributions of insureds with
high and low risk in the states. The relationship of each state’s
average projected PPR to the countrywide average projected PPR
is included. In general, the higher the average projected PPR, the
more the current procedure overstates the indication relative to
the proposed procedure.

As mentioned earlier, the expense ratios in the example ap-
proximate the homeowners industry three-year expense ratios.
The impacts will be larger (or smaller) for an individual com-
pany that has greater (or lesser) fixed expenses than the industry
average. Additionally, the results depend on the rate changes,
premium trends, and statewide rate relativities underlying the
data.

6. OTHER CONSIDERATIONS AND FUTURE ENHANCEMENTS

While the procedure does correct for the three distortions
mentioned, there are still some concerns that are not addressed.

First, the proposed procedure, like the current procedure, re-
quires the actuary to separate the expenses into fixed and variable
categories. Today, this is generally done judgmentally. Perhaps
future activity-based cost studies will more accurately segregate
expenses. As mentioned earlier, sensitivity testing revealed that
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the overall indication is not materially impacted by moderate
swings in the categorization of expenses.

Second, the proposed procedure essentially allocates country-
wide fixed expenses to each state based on the by-state exposure
distribution (as it assumes fixed expenses do not vary by ex-
posure). In reality, average fixed expense levels may vary by
location (e.g., advertising costs may be higher in some locations
than others). If a regional or national carrier feels the variation
is material, the company should collect data at a finer level and
make the appropriate adjustments. Once again, the cost of the
data collection should be balanced against the additional accu-
racy gained.

Third, some expenses considered fixed probably vary slightly
with premium. For example, policies for coastal homes may be
more costly to service than other homes. Further studies may un-
cover a more accurate quantification of this relationship. How-
ever, assuming the expenses are “nearly” fixed, the resulting in-
equity is not material.

Fourth, some expenses considered fixed vary by other char-
acteristics. For example, fixed expenses may vary between new
and renewal business. This only affects the overall statewide in-
dication if the distribution of risks for a given characteristic is
changing dramatically or varies significantly by state. Even if
there is no impact on the overall indication, any material fixed
expense cost difference not reflected in the rates will have an
impact on the equity of the two groups. To make rates equitable
for the example of new versus renewal business, material differ-
ences in new and renewal provisions should be reflected with
consideration given to varying persistency levels as described by
Feldblum [3].

Finally, the existence of economies of scale in a chang-
ing book will lead to increasing or decreasing figures for pro-
jected average expense per exposure. Further studies may re-
veal techniques for better approximating the relationship between
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changes in exposures and expenses and capturing the impact of
economies of scale. Until then, internal expense trend data and
actuarial judgment should suffice for incorporating the impact of
economies of scale.

7. CONCLUSION

The prevailing methodology for incorporating fixed expenses
in the statewide indication has some methodological flaws. These
flaws can lead to overstated or understated actuarial indications.
While this paper describes a simple alternative that corrects the
three weaknesses discussed, there are still improvements that can
be made.
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APPENDIX A

TRENDING PERIODS

Expenses should be trended from the average date they were
incurred in the historical period to the average date they will
be incurred in the projected period. Actuaries generally make
the simplifying assumption that expenses are either incurred at
the inception of the policy or are incurred evenly throughout the
policy period. When using calendar year historical expense data,
the trend periods should be different for the two different types
of expenses.

First, expenses that are incurred at the inception of the policy
should be trended from the average written date in the historical
period to the average written date in the projection period. The
following figure shows the resulting trend period assuming an-
nual policies, a steady book of business, and that the projected
rates will be in effect for one year:

Second, expenses that are incurred evenly throughout the pol-
icy period should be trended from the average earned date in
the historical period to the average earned date in the projection
period. The following figure shows the resulting trend period as-
suming annual policies, a steady book of business, and that the
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projected rates will be in effect for one year:

As can be seen by the figures, under our assumptions, ex-
penses incurred throughout the policy are trended 6 months
longer than expenses incurred at inception. Indications do not
generally include different trend periods for the different ex-
penses. Presumably, a common trend period is used for sim-
plicity, as this distinction does not have a material impact. The
exhibits in the paper use a common trend period.
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APPENDIX B

DOES THE PERCENTAGE THAT FIXED EXPENSES REPRESENT OF
TOTAL EXPENSES VARY OVER TIME?

In both the current and proposed procedures, the actuary must
separate the expenses into fixed and variable expenses. Since
detailed expense data may not be available, the actuary may have
to use a judgmentally selected percentage to split the expenses
into these two categories.

Generally, that same percentage is applied to the expenses for
each of the years in the historical period. If the change in the
average premium does not equal the fixed expense trend, then
fixed and variable expenses will grow at different rates. Thus, the
percentages that fixed expenses and variable expenses represent
of total expenses will change over time.

A sensitivity analysis was performed to determine the impact
on the indications of a change in the distribution of fixed and
variable expenses. For the sensitivity analysis, the same example
as given in the text of the paper was used with the assump-
tion the percentage was accurately determined in year 1. Even
with the very unlikely assumption that average premiums sub-
sequently changed at a rate in excess of +10 percentage points
differently than expenses, the indicated rate change increased
by only about +0:2 percentage points. In reality, premiums and
expenses would likely be changing at a more equivalent rate.
Thus, it is reasonable to assume that fixed expenses will remain
a constant percentage of total expenses throughout a three-year
period.
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EXHIBIT 1-B

Company

Countrywide Homeowners

Calculation of Annual Expense Trend

(1) Employment Cost Index–Finance, Insurance, and Real Estate,
excluding Sales Occupations–

4.8%

(annual change over latest 2 years)
U.S. Department of Labor

(2) % of Other Acquisition and General Expenses used for Salaries and
Employee Relations and Welfare–

50.0%

Insurance Expense Exhibit, Year 3

(3) Consumer Price Index, All Items– 1.9%
(annual change over latest 2 years)

(4) Annual Expense Trend– 3.4%
f(1) ¤ (2)g+ f(3) ¤ [100%¡ (2)]g
Selected Annual Expense Trend 3.4%

EXHIBIT 1-C

Company

State XX Homeowners

Calculation of Indicated Rate Change:

Current Method

(1) Projected Loss and LAE Ratio 64.7%
(2) Projected Fixed Expense Provision 12.4%
(3) Variable Expense Provision 19.3%
(4) Profit and Contingencies Provision 5.0%
(5) Variable Permissible Loss Ratio [100%¡ (3)¡ (4)] 75.7%
(6) Indicated Rate Change f[(1)+ (2)]=(5)¡ 100%g 1.8%
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EXHIBIT 2-B

Company

State XX Homeowners

Projected Fixed and Variable Expense Provisions:

Proposed Method

Fixed Variable

(1) General Expenses $36.01 1.5%
(2) Other Acquisition Expenses $55.28 2.2%
(3) Taxes, Licenses and Fees $1.99 2.1%
(4) Commission and Brokerage Expenses $– 13.5%

(5) Total $93.28 19.3%

EXHIBIT 2-C

Company

State XX Homeowners

Calculation of Indicated Rate Change:

Proposed Method

(1) Statewide Projected Average Premium at Present Rates* $850.59
(2) Statewide Projected Loss and LAE Ratio 64.7%
(3) Statewide Projected Average Loss and LAE [(1)£ (2)] $550.33
(4) Projected Average Fixed Expense Per Exposure $93.28
(5) Variable Expense Provision 19.3%
(6) Profit and Contingencies Provision 5.0%
(7) Variable Permissible Loss Ratio [100%¡ (5)¡ (6)] 75.7%
(8) Statewide Projected Average Required Premium [(3)+ (4)]=(7) $850.21
(9) Indicated Rate Change (8)=(1)¡ 100% 0.0%

*Countrywide data were used in the example.
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EXHIBIT 2-D

Company

State XX Homeowners

Calculation of Proposed Expense Fee:

Proposed Method

(1) Total Projected Average Fixed Expense Per Exposure $93.28
(2) Variable Expense Provision 19.3%
(3) Profit and Contingencies Provision 5.0%
(4) Proposed Expense Fee [(1)]=[100%¡ (2)¡ (3)] $123.22
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EXHIBIT 3-A

Comparison of Results

(1) (2) (3) (4)
Average
Projected
Premium at Indication* Current
Present Indication
Rates Current Proposed Proposed

Location Relativity Methodology Methodology (2)—(3)

1 2.53 1.7% ¡8:9% 10.6%
2 1.44 1.3% ¡4:9% 6.2%
3 1.44 1.7% ¡4:5% 6.2%
4 1.31 1.8% ¡3:4% 5.2%
5 1.31 1.3% ¡3:8% 5.1%
6 1.27 1.7% ¡3:2% 4.9%
7 1.23 1.7% ¡2:8% 4.5%
8 1.22 1.2% ¡3:2% 4.4%
9 1.13 1.8% ¡1:7% 3.5%
10 1.12 1.3% ¡2:0% 3.3%

11 1.11 1.5% ¡1:7% 3.2%
12 1.06 1.7% ¡0:9% 2.6%
13 1.05 1.6% ¡0:9% 2.5%
14 1.03 1.7% ¡0:7% 2.4%
15 1.01 1.7% ¡0:3% 2.0%
16 0.95 0.5% ¡0:5% 1.0%
17 0.91 1.2% 0.8% 0.4%
18 0.91 1.2% 0.8% 0.4%
19 0.87 0.7% 1.1% ¡0:4%
20 0.86 1.7% 2.2% ¡0:5%
21 0.85 1.7% 2.4% ¡0:7%
22 0.85 1.7% 2.4% ¡0:7%
23 0.85 1.3% 2.1% ¡0:8%
24 0.82 2.1% 3.3% ¡1:2%
25 0.82 1.7% 2.9% ¡1:2%
26 0.81 1.5% 2.9% ¡1:4%
27 0.80 0.5% 2.4% ¡1:9%
28 0.80 1.1% 2.9% ¡1:8%
29 0.80 1.7% 3.6% ¡1:9%
30 0.75 1.5% 4.4% ¡2:9%
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EXHIBIT 3-A

Comparison of Results

(1) (2) (3) (4)
Average
Projected
Premium at Indication* Current
Present Indication
Rates Current Proposed Proposed

Location Relativity Methodology Methodology (2)—(3)

31 0.75 1.7% 4.8% ¡3:1%
32 0.75 1.5% 4.5% ¡3:0%
33 0.75 1.6% 4.6% ¡3:0%
34 0.74 1.7% 4.8% ¡3:1%
35 0.73 1.7% 5.2% ¡3:5%
36 0.71 1.3% 5.3% ¡4:0%
37 0.71 1.8% 5.9% ¡4:1%
38 0.70 1.6% 5.8% ¡4:2%
39 0.70 0.8% 5.3% ¡4:5%
40 0.69 1.7% 6.2% ¡4:5%
41 0.68 1.6% 6.5% ¡4:9%
42 0.67 1.2% 6.2% ¡5:0%
43 0.67 1.7% 6.9% ¡5:2%
44 0.65 1.7% 7.5% ¡5:8%
45 0.63 1.7% 8.2% ¡6:5%
46 0.63 1.8% 8.2% ¡6:4%
47 0.61 1.6% 9.0% ¡7:4%
48 0.60 1.2% 9.0% ¡7:8%
49 0.59 2.0% 10.0% ¡8:0%
50 0.59 1.7% 9.9% ¡8:2%
51 0.58 1.6% 9.9% ¡8:3%

Countrywide 1.00 1.8% 0.0% 1.8%

*Loss ratio set at 64.7% to make countrywide indication equal 0% for proposed methodology.
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EXHIBIT 3-B

Comparison of Current and Proposed Methods
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MICHAEL G. WACEK

DISCUSSION BY STEPHEN J. MILDENHALL

RESPONSE BY THE AUTHOR

In his 2000 discussion [1] of my 1997 paper [2], Stephen
Mildenhall chided me for overstating the similarity between op-
tions and insurance. He accepted the main point of the paper;
namely, that the close resemblance between call option and ex-
cess of loss concepts can lead to insights about insurance and
reinsurance risk management and product development. How-
ever, at a detailed level he dismissed my assertion that “the pric-
ing mathematics is basically the same” for options and insur-
ance, politely describing it as “inappropriate.” He was correct
in doing so. Unfortunately, in emphasizing the difference in the
details of the pricing of call options and excess insurance, he
missed the opportunity to show how these differences can be ex-
plained within a single pricing framework, though different from
the one I originally presented. The purpose of this response is
first to acknowledge my error at the formula level, but then to
move beyond it to illustrate how Black-Scholes and excess in-
surance pricing are consistent, even if the pricing formula details
are different.

Mea Culpa

I recognize that I overreached in claiming that my Formula
(1.3) is a general formula for European call option pricing,
which, I said, reduces to the Black-Scholes Formula (1.1) un-
der the right conditions. It does reduce to Formula (1.1) when

717
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the underlying asset’s price distribution at expiry is lognormal
and the expected annualized continuous rate of return on the
asset, ¹, equals r, the annualized continuous risk-free rate. But
that hardly represents the general case. Most of the time Formula
(1.1) produces a different value from that produced by Formula
(1.3).

To illustrate this point, consider a call option on a stock cur-
rently priced at P0 = $100 that gives the holder the right to buy
the stock at a price of S = $100 at option expiry in 20 days
(t= 20=365). Assume the stock’s expected annualized return and
volatility are ¹= 13% and ¾ = 25%, respectively. If the stock
price movements follow geometric Brownian motion through
time, the stock price distribution at option expiry is lognormal
with a mean of P0e

¹t = (100)(e(:13)(20=365)) = $100:7149 and a co-
efficient of variation (c.v.) of 5.857%. The expected expiry value
of the option, given correctly by Formula (1.2), is $2.7174. If
all the Black-Scholes conditions are present, and the annualized
risk-free rate r = 5%, then the correct price of the option is given
by Formula (1.1) as $2.4705. In contrast, the Formula (1.3) pure
premium is $2.7100.1 Clearly, my contention that Formula (1.3)
is a “general formula for European call option pricing” is not
only “inappropriate,” it is wrong.

Bear in mind that while (1.3) is not a general formula for pric-
ing a European call option, it is correct in some circumstances.
For example, suppose the same lognormal distribution we just
used to describe the stock price distribution at option expiry de-
scribes a distribution of aggregate insurance claims. Since the
Black-Scholes conditions are not present, Formula (1.1) cannot
be used to price a call option (more commonly called an “ag-
gregate excess” or “stop-loss” cover in insurance circles) on the

1Generally, a risk charge needs to be added to convert the (1.3) value to a premium. The
Black-Scholes value does not require an additional risk charge.
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aggregate claims. Instead, actuarial ratemaking theory tells us to
use Formula (1.3).

Same Paradigm, Different Details

That the same liability at expiry can give rise to different pre-
miums, each of which is appropriate in its own context, is a
paradox. It is clear that the premium is not a function solely of
the liability. Mildenhall attributes the pricing difference to the
different risk management paradigms operative in the financial
and insurance markets: financial risks are hedged, whereas in-
surance risks are diversified. Yet it is possible to bring these two
apparently distinct pricing paradigms together within a single
framework. While it is possible to do so by reference to martin-
gale measures and incomplete markets theory (see, for example,
Moller [3], [4]), my aim is to make this subject as accessible
as possible to practicing actuaries who may not be familiar with
those concepts. Accordingly, I present the common framework
as the more tangible and familiar one of asset-liability matching.
Within that framework the price for the transfer of a liability is a
function of both the liability and its optimal matching assets.

Before we search for the optimal asset strategy, let us explore
the nature of the option liability. If the stock price at expiry is
represented by a lognormally distributed2 random variable, x, the
expected value at expiry of the payoff obligation of a European
call option is given by

E(callt) =
Z 1

S
(x¡ S)f(x)dx

= E(x) ¢N(d(¹)1 )¡ S ¢N(d(¹)2 )
= P0e

¹t ¢N(d(¹)1 )¡ S ¢N(d(¹)2 ), (1)

2If the stock price moves through time in accordance with geometric Brownian motion,
the distribution of prices at expiry is lognormal. Note, however, that while Brownian
motion is sufficient for lognormality, it is not necessary.
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where N(z) is the cumulative distribution function (c.d.f.) of the
standard normal distribution, and

d(¹)1 =
ln(P0=S)+ (¹+0:5¾

2)t
¾
p
t

and

d(¹)2 =
ln(P0=S)+ (¹¡ 0:5¾2)t

¾
p
t

= d(¹)1 ¡¾pt:

The first term in Formula (1) is the expected market value
of the assets to be sold by the call option grantor to the option
holder at expiry. The second term is the expected value of the
sale proceeds from that transaction.

The variance of the call payoff obligation at expiry is given
by

Var(callt) =
Z 1

S
(x¡ S)2f(x)dx¡E(callt)2

= E(x2) ¢N(d(¹)0 )¡ 2S ¢E(x) ¢N(d(¹)1 )
+ S2 ¢N(d(¹)2 )¡E(callt)2, (2)

where N(z) is the c.d.f. of the standard normal distribution, and
d(¹)1 and d(¹)2 are defined as in Formula (1) and d(¹)0 = d(¹)1 +¾

p
t.

Returning to the example of the 20-day call option with
P0 = S = $100, ¹= 13%, r = 5% and ¾ = 25%, the expected pay-
off liability at expiry associated with that option is $2.7174. That
amount is the difference between the expected market value of
the stock the grantor of the option will sell to the option holder
($56.4009), given by the first term of Formula (1), and the ex-
pected value of his sale proceeds ($53.6835), which is given by
the second term of Formula (1). The variance, given by Formula
(2), is $14.4456, implying a standard deviation of $3.8007.

We will illustrate the pricing of this expected payoff liabil-
ity of $2.7174 in various available asset scenarios. The premium
that the market can be expected to ask for assuming this liabil-
ity depends on the optimal strategy available for investment of
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the premium to fund the liability. We will assume that enough
investors or traders will find and execute the optimal strategy to
force the asking price3 in the market to be no greater than the
level indicated by this strategy. (This is the standard “no arbi-
trage” requirement.)

This market premium is equal to the minimum expected
present value cost of acquiring sufficient assets to fund the ex-
pected value liability at expiry and a risk charge related to the
undiversifiable variability of the net result. If the variance of the
net result can be forced to zero, as it can be when Black-Scholes
conditions are present, then the risk charge is zero and the pre-
mium is simply equal to the minimum cost of acquiring the assets
to fund the liability.

Case A–Underlying Asset is Tradable

The traditional actuarial approach to valuing the liability, em-
bodied in Formula (1.3), is to assume the matching assets are
invested in risk-free Treasuries.4 However, where the liability
arises from an option on a traded stock, it is easy to improve
on this approach. Since the expected value of the stock to be
transferred to the option holder at expiry is P0e

¹t ¢N(d(¹)1 ), the
option seller can match this expected liability by buying N(d(¹)1 )
shares of stock at inception and holding them to expiry. He can
fund most of the cost of the purchase, P0 ¢N(d(¹)1 ), by borrow-
ing against his expected sale proceeds at expiry of S ¢N(d(¹)2 ).
Assuming he can borrow at the risk-free rate, he can raise
Se¡rt ¢N(d(¹)2 ) in this way. That leaves him short of the P0 ¢N(d(¹)1 )
he needs to buy the shares by P0 ¢N(d(¹)1 )¡ Se¡rt ¢N(d(¹)2 ), which
is the amount he should ask for the option, before consideration
of a risk charge. This indicates a formula for the premium before

3We will focus on the seller’s asking price. The question of whether there are buyers at
this asking price is beyond the scope of this discussion.
4Throughout this paper Treasuries are treated as risk-free assets and their yield as the
risk free rate. If other assets meet that definition, they may be substituted for Treasuries.
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risk charge (¸) of

call0¡¸= P0 ¢N(d(¹)1 )¡ Se¡rt ¢N(d(¹)2 ): (3)

In the case of the 20-day option we have been following, he
would buy 0.560005 shares at a total cost of $56.0005, borrow
$53.5366, and charge an option premium before risk charge of
$2.4639. This is a much lower pure premium than the $2.7100
given by the traditional actuarial Formula (1.3). Moreover, de-
spite the investment of assets in the stock, an ostensibly riskier
strategy, the option seller faces less risk (as measured by the stan-
dard deviation of the net result) than he would if he invested in
risk-free Treasuries. The standard deviation of the option seller’s
net result is $1.7527, which is much lower than the $3.8007 that
arises from the Treasuries investment strategy.5 (For the details
of the standard deviation calculation, see Appendix A.) Clearly,
this strategy of investing the assets in the stock underlying the
option is superior to investing them in Treasuries, since it pro-
duces a lower pure premium and a lower standard deviation,
which together imply a lower risk-adjusted price.

However, as Black and Scholes proved, this strategy, while
better than Treasuries, does not represent the optimal one. As-
sume the option is on the stock of a publicly traded company
whose shares trade in accordance with the Black-Scholes as-
sumptions; i.e., the price follows geometric Brownian motion
through time, the shares are continuously tradable at zero trans-
action costs, etc. Black and Scholes showed that, under these
conditions, the optimal investment strategy is one of dynamic
asset-liability matching conducted in continuous time.

To execute this strategy, at inception the option seller buys n0
shares of the underlying stock,6 financed by a loan of L0 and call
premium proceeds of P0 ¢ n0¡L0. Then, an instant later, he ad-

5Since the true values of ¹ and ¾ are unknown, there is parameter as well as process risk
that needs to be taken into account in setting the risk charge for both asset strategies.
6Where n0 is the first derivative of the call option price with respect to the stock price.
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justs the number of shares he holds (to n1) to reflect any change
in the stock price and the infinitesimal passage of time. He ad-
justs the loan accordingly (to L1). If n0 and L0 have been chosen
correctly and the time interval is short enough, the gain or loss in
his net position (i.e., the value of the net stock position less the
value of the option) is effectively zero. The mean and variance of
his net result is also zero. He repeats this adjustment procedure
continuously until the option expires. In this way he ends up
with exactly the right amount of stock at expiry to generate the
funds to meet the option liability and repay the outstanding loan.
Provided the sequences of ni and Li have been chosen correctly,
the cumulative net result and its variance are both zero. Since the
variance is zero, there is no justification for a risk charge. Black
and Scholes proved that n0 =N(d1) and L0 = Se

¡rt ¢N(d2) and
thus that

call0 = P0 ¢N(d1)¡ Se¡rt ¢N(d2), (1.1)

where N(z) is the c.d.f. of the standard normal distribution and

d1 =
ln(P0=S)+ (r+0:5¾

2)t
¾
p
t

and

d2 =
ln(P0=S)+ (r¡ 0:5¾2)t

¾
p
t

= d1¡¾
p
t:

Since (1.1) does not depend on ¹, the option seller engaging
in the hedging strategy underlying the formula not only faces no
process risk but also no ¹-related parameter risk. (There is still
parameter risk associated with ¾.) In our example, Formula (1.1)
indicates a call premium of $2.4705.

In the highly liquid, efficient market in which execution of
this dynamic hedging strategy is possible, arbitrageurs will force
the market’s “ask” price of the option to $2.4705. If the option
seller seeks a higher price, he will find no buyers, since another
trader can and will undercut him without assuming any additional
risk, simply by executing the hedging strategy. Note, however,
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that the option seller cannot afford to sell the option for $2.4705
without assuming risk, unless he engages in the Black-Scholes
hedging strategy that underpins this price.

Clearly, in order to engage in the kind of hedging activity
described above, it is necessary that the stock be continuously
tradable at zero transaction costs. The less liquid the market for
the stock and the greater the trading costs, the less accurate
Formula (1.1) will be in predicting the market asking price of
the call. This is because the option seller will have to assume
either residual volatility exposure requiring a risk charge (see
Esipov and Guo [5]) or expenses not contemplated by Formula
(1.1).

For example, if the mix of assets held by the option seller to
hedge the 20-day option is adjusted on a daily basis, then the
expected present value funding cost (excluding trading costs) is
$2.4708. The standard deviation is $0.4405. Daily rebalancing
is not sufficient to force the funding cost to the Black-Scholes
predicted value of $2.4705 and the standard deviation to zero.
In the real world, where transaction costs are not zero, the trade-
off between further reducing residual volatility and the cost of
doing so will be valued by the market, often resulting in some
deviation from the price predicted by Black-Scholes.

Case B–Underlying Asset is not Tradable

Suppose the call option is on the stock of a private company
that will go public in 20 days time. Assume there is no “when
issued” or forward market for this stock prior to the IPO. The
stock is valued today at P0 = $100. The other parameters are the
same as in Case A: S = $100, ¹= 13%, r = 5% and ¾ = 25%.
How should an option seller price this option? The key question
is how to invest the call premium to fund the expected payoff
obligation at option expiry. Since the option seller cannot invest
in the underlying stock, it seems a good strategy would be to
invest in Treasuries, which has the virtue of not increasing the
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variance of the net result.7 If he does so, he needs to collect
an option premium of $2.7100 to fund the expected obligation
of $2.7174, plus a risk charge to compensate for the variability
of the net result. The standard deviation of the net result, given
¹= 13%, is $3.8007. Note that the option seller does not know
the true value of ¹, 13% being merely an estimate. This means
that there is parameter risk in addition to the process risk of
$3.8007.

Note that this scenario is identical to that faced by the excess
insurer writing a stop-loss cover attaching at $100 on an insur-
ance portfolio in which aggregate claims notified and payable in
20 days time are lognormally distributed with mean $100.7149
and coefficient of variation 5.857%. Conventional ratemaking
theory prescribes investment in Treasuries, which indicates a pre-
mium of $2.7100 to fund the expected claims of $2.7174, plus
a risk charge.

As plausible as this Treasury oriented investment strategy is,
it is not necessarily the optimal one. If there are no assets avail-
able for investment that are correlated with the liability, then
the conventional Treasury strategy is optimal. Otherwise, other
strategies produce lower prices, lower risk, or both.

Case C–Underlying Asset is Not Tradable, but Tradable Proxy
Exists8

Taking the stock option example first, suppose there is a
publicly traded competitor of our soon to be public company
that shares the same characteristics of P0 = $100, ¹= 13% and
¾ = 25%. In addition, assume the two stocks’ price movements
in continuous time are believed to be correlated with ½= 60%.
Under these circumstances it is possible to use the competitor’s
stock to partially hedge the call option on the non-public com-
pany’s stock at a lower cost than that implied by investing in

7Investing in risky assets uncorrelated with the stock would increase variability.
8My thanks to Stephen Mildenhall for suggesting this scenario.
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Treasuries. The option seller employs exactly the same proce-
dure that he would use if he were hedging the target company’s
stock directly, except that he invests in the competitor’s stock.

For example, at the moment he sells the call option, he buys
$53.0321 of the competitor’s stock (0.530321 shares at $100
a share), financing the purchase with a loan of $50.5616 and
proceeds from the sale of the call. By pursuing the same dynamic
hedging procedure that he would use if he were able to buy and
sell the target company’s stock directly, the option seller will
accumulate the assets that match the option payoff liability at an
expected present value cost of $2.4705. The difference from the
scenario in which he can invest in the stock directly is that in that
case the $2.4705 is exact, whereas here it is an expected value.

This scenario involves risk. For example, if the hedge is ad-
justed on a daily basis, we found from a Monte Carlo simula-
tion consisting of 10,000 trials that the standard deviation of the
net result was $3.6870. While this implies much more risk than
that associated with hedging the option directly with the under-
lying stock (where we found the standard deviation associated
with daily rebalancing to be $0.4405), it is less than the $3.8007
standard deviation of the net result arising from investing the
call proceeds in Treasuries. Clearly, since the call option can be
funded at an expected cost of $2:4705< $2:7100 with an asso-
ciated standard deviation of $3:6870< $3:8007 by investing in
a correlated asset rather than in Treasuries, investment in Trea-
suries in this scenario must be dismissed as a suboptimal asset
strategy.

The same must be said of the analogous excess insurance
example. Suppose the natural logarithms of the aggregate insur-
ance claims covered by the stop-loss contract are known to be
correlated (½= 60%) with the natural logarithms of the values
of the consumer price index (CPI-U). In this situation, the in-
surer can reduce the variance of its net result by investing in
the index-linked Treasury notes known as TIPS (Treasury Infla-
tion Protected Securities) rather than in conventional Treasuries.
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TIPS pay a fixed rate of interest on a principal amount that is
adjusted twice a year based on the change in the CPI-U index.

To illustrate this, assume the expected annualized return on
the TIPS is 5%, comprising a fixed interest rate of 2% and ex-
pected inflation adjustment of 3%, the same expected total re-
turn as the fixed r = 5% that is available from standard Trea-
suries. While we usually think of an excess of loss claim as
being the amount by which a claim exceeds the retention, we
can also think of it as a total limits claim net of reimbursement
for the retention. This characterization is useful here. The ex-
pected total limits claim is $56.4009. To fund this payment, the
insurer invests $56:4009 ¢ e¡(:05)(20=365) = $56:2466 in TIPS. To
finance the purchase of the TIPS, the insurer borrows the present
value of the retention reimbursement, $53:6835 ¢ e¡(:05)(20=365) =
$53:5366. The remainder, $2.7100, the insurer collects from
the insured. This is the same amount the insurer would col-
lect as a premium before risk charge if the insurer had sim-
ply invested in ordinary Treasuries. The benefit of investing in
TIPS, which are correlated with the aggregate claim costs, is
that the insurer can reduce the variability of the net underwriting
result.

The standard deviation associated with this strategy was mea-
sured in a Monte Carlo simulation of 10,000 trials. Given a
CPI-U index value at inception of 100, the value of the index
20 days later was assumed to be lognormally distributed with
mean 100.1645 and c.v. 2.341%, which is consistent with the
assumption that the inflation rate is 3% per annum, continuously
compounded. The simulation indicated a standard deviation of
$3.2946, which is about 13% less than the standard deviation
associated with the otherwise comparable investment in uncor-
related Treasuries.

We saw in the stock option example that hedging with the
competitor’s stock resulted in a much lower funding cost with
less risk than investing in risk-free Treasuries, even with imper-
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fect correlation. This raises the intriguing question of whether an
insurer could similarly lower both its risk and its required pricing
by identifying and investing in higher return securities that are
partially correlated with its liabilities. This is food for thought.

Analysis

In all of these scenarios the expected value of the payoff obli-
gation at expiry is the same: $2.7174. The only differences are
the type and tradability of assets available for investment. The
characteristics of the asset side of the asset-liability equation de-
termine the optimal asking price! Thus, pricing is a function of
both the liability and the nature of the assets needed to fund it.
In insurance applications, where there are usually no suitable as-
sets other than Treasuries available, the liability alone appears
to drive the price. This is only because historically, actuaries
have assumed that investing in Treasuries is the only reasonable
choice. However, as we have seen, when other assets are avail-
able, investing in Treasuries is not always the only reasonable
choice and, in the case of tradable assets, it is not the optimal
one.

If the pricing of a given option liability is driven by the opti-
mal asset strategy, then it is critical that the seller of the option
actually invests consistently with the pricing assumptions. For
example, if an option trader believes that ¹= 13%, and sells the
call option described in Case A for the Black-Scholes price of
$2.4705, then it would be a mistake for him to simply invest
the option proceeds in Treasuries. If he does that, he faces an
expected loss of $2:7174¡ $2:4705ert = $0:2402. Beyond that,
he is also assuming a sizeable amount of risk, since the standard
deviation of his net result is $3.8007 (plus parameter risk) in-
stead of the zero promised by Black-Scholes. The lesson here is
that while the Black-Scholes price is based on assumptions that
remove all risk of loss and variability of outcomes, the option
seller is not automatically protected. He must actively manage
his risk.
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Summary

My main aim in this response to Mildenhall’s review of my
paper has been to acknowledge that my Formula (1.3) does not
have the generality I originally claimed for it, but then to press
on with my contention that, even if the pricing formulas are not
identical, call options and excess insurance are still governed by
the same pricing paradigm; in particular, one that rests on optimal
asset-liability matching.

There is another point I hope I have made clear. The dynamic
asset-liability matching regimen that underlies the Black-Scholes
Formula (1.1) imposes a different burden on the seller of a call
option than the more passive asset-liability matching seen in Case
B and in insurance applications. As we saw in our discussion of
Case A, it is foolhardy to sell a hedgable call for the Black-
Scholes price and then fail to dynamically hedge it. There are
other situations where hedging is not possible, because the as-
set is either not traded or extremely illiquid. In such cases, it
is also a mistake to sell the call option for the Black-Scholes
price, since it cannot be dynamically hedged. In the case of liq-
uid tradable assets, arbitrageurs will drive the option price to the
Black-Scholes level. In illiquid or non-traded markets, there will
be no such arbitrage activity and in these markets, the pricing
formulas used in Case B are applicable.

In closing, I would like to thank Stephen Mildenhall for his
excellent discussion, which not only corrected shortcomings in
my paper but also added greatly to the understanding (including
my own) of option concepts among actuaries.
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APPENDIX A

MEAN AND VARIANCE OF A SIMPLE BUY-AND-HOLD OPTION
HEDGE

Let h= bx¡ y define a random variable for the value at expiry of
a hedged portfolio comprising b shares and one short call (i.e.,
sold short). Here x is a lognormal random variable representing
the stock price distribution at option expiry, and y is the random
variable representing the value at expiry of the call option on the
stock. The option strike price is denoted S.

Mean of Hedged Portfolio at Expiry

E(h) = E(bx¡ y)
= bE(x)¡E(y)
= bE(x)¡ (E(x) ¢N(d(¹)1 )¡ S ¢N(d(¹)2 ))
= E(x) ¢ (b¡N(d(¹)1 ))+ S ¢N(d(¹)2 ): (A.1)

For the special case of b =N(d(¹)1 ),

E(h) = S ¢N(d(¹)2 ): (A.1a)

Second Moment of Hedged Portfolio at Expiry

E(h2) = E((bx¡ y)2)
= E(b2x2¡ 2bxy+ y2)
= b2E(x2)¡ 2bE(xy)+E(y2)
= b2E(x2)¡ 2b(E(x2) ¢N(d(¹)0 )¡ SE(x) ¢N(d(¹)1 ))
+ (E(x2) ¢N(d(¹)0 )¡ 2 ¢ SE(x) ¢N(d(¹)1 ) + S2 ¢N(d(¹)2 )):

= (b2 +N(d(¹)0 ) ¢ (1¡ 2b)) ¢E(x2)
¡ 2S ¢N(d(¹)1 ) ¢ (1¡ b) ¢E(x)+ S2 ¢N(d(¹)2 ): (A.2)
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Variance of Hedged Portfolio at Expiry

¾2h = E(h
2)¡E(h)2

= (b2 +N(d(¹)0 ) ¢ (1¡ 2b)) ¢E(x2)
¡ 2S ¢N(d(¹)1 ) ¢ (1¡ b) ¢E(x)
+ S2 ¢N(d(¹)2 )¡ (E(x) ¢ (b¡N(d(¹)1 ))
+ S ¢N(d(¹)2 ))2

= (b2 +N(d(¹)0 ) ¢ (1¡ 2b)) ¢E(x2)
¡ 2S ¢N(d(¹)1 ) ¢ (1¡ b) ¢E(x)
+ S2 ¢N(d(¹)2 )¡E(x)2 ¢ (b¡N(d(¹)1 ))2

¡ 2SE(x) ¢ (b¡N(d(¹)1 )) ¢N(d(¹)2 )
¡ S2 ¢N(d(¹)2 )2

= E(x2) ¢ (b2 +N(d(¹)0 ) ¢ (1¡ 2b)¡E(x)2 ¢ (b¡N(d(¹)1 ))2

¡E(x) ¢ 2S ¢ (N(d(¹)1 ) ¢ (1¡ b)+ (b¡N(d(¹)1 )) ¢N(d(¹)2 ))
+ S2 ¢N(d(¹)2 ) ¢ (1¡N(d(¹)2 )): (A.3)

For the special case of b =N(d(¹)1 ),

¾2h = E(x
2) ¢ ((N(d(¹)1 )2 +N(d(¹)0 ) ¢ (1¡ 2N(d(¹)1 )))

¡E(x) ¢ 2S ¢ (N(d(¹)1 ) ¢ (1¡N(d(¹)1 ))
+ S2 ¢N(d(¹)2 ) ¢ (1¡N(d(¹)2 )): (A.3a)

In the example used in the paper,

E(x2) = 10178:28293, N(d(¹)0 ) = 0:58297

E(x) = 100:71487, N(d(¹)1 ) = 0:56001
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S = 100, N(d(¹)2 ) = 0:53683

¾2h = 10,178:28293 ¢ 0:24364¡ 100:71487 ¢ 49:27987
+10,000 ¢ 0:24864

= 2,479:86796¡ 4,963:2156+2,486:432
= 3:80433

¾h = 1:75623:



DISCUSSION OF A PAPER PUBLISHED IN
VOLUME XCI

THE “MODIFIED BORNHUETTER-FERGUSON”
APPROACH TO IBNR ALLOCATION

TRENT VAUGHN AND PHOEBE TINNEY

DISCUSSION BY GLENN WALKER

Abstract

Trent Vaughn and Phoebe Tinney have presented a
valuable methodology for allocating IBNR to allocation
units that do not always warrant separate IBNR analy-
ses. Vaughn and Tinney properly warn that:

Actuaries should be aware, however, of the
possible pitfalls of allocating IBNR down to
an extremely fine level of detail. For instance,
such allocations may incorrectly imply a de-
gree of precision that does not exist. The ac-
tuary must be aware of this risk and commu-
nicate any concerns to the end user.

But as we are quite painfully aware, there are times
when the actuary has no choice. For instance, someone
must allocate ceded IBNR to individual reinsurers in or-
der to complete Schedule F–preferably someone who
appreciates the implications of a misallocation. Though
Vaughn and Tinney have suggested that their method-
ology may apply, the analysis process should not end
there.
This discussion highlights an area that is typically a

pro forma accounting function, virtually ignored by ac-
tuaries, yet it has profound actuarial implications that
deserve significant attention not yet addressed in actu-
arial literature.

734
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TABLE 1

REINSURANCE RECOVERABLE

Reinsurance Recoverable On:

Paid Losses $1,000
Paid LAE 200
Known Case Loss Reserves 1,100
Known Case LAE Reserves 200
IBNR Loss Reserves 500
IBNR LAE Reserves 0
Unearned Premiums 2,000
Contingent Commissions 0
Total $5,000

Ceded Balances Payable 0
Other Amounts Due Reinsurer 0
Net Amount Recoverable $5,000

Funds Held by Company Under Reinsurance Treaty $5,000

1. THE PROBLEM OF ALLOCATING CEDED IBNR TO INDIVIDUAL
INSURERS

The actuary makes one last review of his assumptions before
signing his name to the loss reserve opinion. He reviews Sched-
ule F to satisfy himself that he has no reason to question the
collectibility of the client’s reinsurance recoverable. A particu-
lar unauthorized reinsurer catches his attention. The line for that
reinsurer is shown on Table 1.

Just before he signs his name, he asks himself, “What happens
if the ceded IBNR was incorrectly allocated to the unauthorized
reinsurer?”

He has reviewed his analysis thoroughly, and is satisfied that
the aggregate direct IBNR loss reserve of $2,000 is reasonable.
He is even satisfied that the aggregate ceded IBNR of $1,500
is reasonable. The actuary used Vaughn and Tinney’s Modi-
fied Bornhuetter-Ferguson approach, and has allocated $500 of
the $1,500 ceded IBNR to this particular reinsurer. For Vaughn
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and Tinney have advised: “The approach can be used to allocate
ceded IBNR to individual reinsurers for Schedule F purposes.”

The client acted on the actuary’s preliminary advice and with-
held $5,000 to assure collectibility.

What happens if the $1,500 of ceded IBNR emerges in such a
manner that the unauthorized reinsurer is liable–not for $500–
but for $1,000 of the IBNR recoverable?

Assuming that the client is unable to secure the additional
$500 in time for statement filing, that the actuary has no means
of confirming the unauthorized reinsurer’s financial strength, and
that $500 of upward reserve development is judged material, the
ceded IBNR becomes of more questionable collectibility than
Schedule F has made it appear.

Vaughn and Tinney concede: “The Annual Statement may
require IBNR estimates at a finer level of detail than the reserve
segment definitions.”

And as already noted, they wisely caution us:

Actuaries should be aware, however, of the possible
pitfalls of allocating IBNR down to an extremely fine
level of detail. For instance, such allocations may in-
correctly imply a degree of precision that does not ex-
ist. The actuary must be aware of this risk and com-
municate any concerns to the end user.

Schedule F indeed requires an allocation of ceded IBNR to
individual reinsurers whether or not the actuary believes the re-
sulting allocation is meaningful. In some cases, the allocation to
reinsurer may not be a problem. For instance, the company may
list only a single reinsurer, and no allocation of ceded IBNR to
reinsurers is needed. The company may have separate reinsurers
that align nicely with the actuary’s level of detail for analysis,
such as line of business or accident year. Heavy use of quota
share treaties can also facilitate the allocation of ceded IBNR.
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Finally, in rare cases, there may be sufficiently credible loss ex-
perience by reinsurer that such separate analyses become feasi-
ble.

But for most companies with a comprehensive reinsurance
program, the entries onto Schedule F result from some man-
ner of allocation process. The fact that the company involved
the actuary in that allocation process is likely a step up from
most companies. Actuarial discussion on the process of allocat-
ing ceded IBNR to reinsurer seems terribly sparse, leading me
to believe that in most cases, actuaries are not involved in the
process at all. Even worse is the likely case that those who do
allocate ceded IBNR to reinsurers are not necessarily trained to
appreciate the relationship between the result of the allocation
and collectibility from any individual reinsurer.

2. REQUIRED SECURITY TO GUARANTEE COLLECTIBILITY

In cases where the company is reinsured by a collection of au-
thorized reinsurers whose financial security raises no concerns,
allocation may not be a concern. But even when unauthorized
reinsurers are involved, ceded IBNR continues to be allocated
without the influence of the actuary. This could have adverse
implications for the actuary who will eventually opine on the
collectibility of the ceded IBNR, however it was allocated. Mul-
tiple unauthorized reinsurers can seriously add to the risks of
improper allocation.

Vaughn and Tinney deserve credit for noting that the allo-
cation method deserves more careful attention than it normally
gets. However, it seems that Vaughn and Tinney’s Modified BF
allocation method merely replaces one mechanical methodology
with another. In cases where security is required to guarantee
collectibility, whether arising from lack of jurisdiction or from
financial concerns, the amount of IBNR to be allocated to that
particular reinsurer should receive more careful attention than a
passing remark in a Proceedings paper on IBNR allocation.
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The amount of security a company holds should not be a
function of any particular ceded IBNR allocation methodology,
but rather should be carefully considered as a function of the
probable maximum amount ceded to a reinsurer. Consider the
following much simplified example.

A company insures two large buildings (A and B) for $1,000
each. Separate unauthorized reinsurers fully reinsure each of the
two policies that protect the buildings. During the reserve re-
view, the company and the actuary become aware that one of
the buildings was destroyed just prior to year end, though there
is no information on which building. The actuary adds a $1,000
IBNR reserve, and a $1,000 ceded IBNR reserve, with no effect
on the net reserves. These entries are made on Schedule P and
on all Annual Statement pages that depend on Schedule P.

On Schedule F, the $1,000 ceded IBNR reserve must be as-
signed to specific reinsurers. If building A was the one destroyed,
then reinsurer A should be assigned the $1,000 ceded IBNR, and
to the extent that security is required, it should be demanded.
The same scenario applies to building B if that was the one de-
stroyed. In practice, the $1,000 ceded IBNR reserve will almost
certainly be allocated between the two reinsurers, either fifty-
fifty, or through some other methodology that guarantees that
one of the reinsurers will be inadequately secured. A probable
maximum ceded methodology would require the company to se-
cure a full $1,000 from both reinsurers.

A ceded IBNR allocation will balance to the correct total, but
will expose the company to inadequate security for one reinsurer.
A probable maximum ceded allocation will generate adequate
security from each reinsurer, but will result in an excessive ceded
IBNR total for Schedule F, and an inadequate, perhaps even a
negative, net IBNR. The only way to assure adequate security
would be for each reinsurer to place the full $1,000 in trust.

Perhaps this discussion concerns the rationale of Schedule F
security, whether funds withheld, letters of credit, ceded balances
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payable or any other form of collateral, more than it does what
method is used to allocate ceded IBNR to reinsurer. For in the
case of a single reinsurer, 100% of the ceded IBNR is allocated
to that single reinsurer. If that single reinsurer were unautho-
rized, then collateral would be demanded and received. But even
at 100% allocation, the security can prove inadequate. Reinsur-
ance collectibility, though fully secured, is not assured, and the
methodology of ceded IBNR allocation is not at fault. At this
level, it seems more prudent to base the collateral on a probable
maximum ceded methodology.

Realistic applications of the probable maximum ceded method
are generally not as extreme as the simplistic example set forth
for illustration. But where security is required for at least one
reinsurer, the aggregate probable maximum ceded IBNR can eas-
ily become significantly and materially higher than the aggregate
ceded IBNR. It may be a challenge for a company to obtain the
security beyond that implied by a ceded IBNR allocation. But
the difference between the aggregate probable maximum ceded
IBNR and the aggregate ceded IBNR is simply the amount of
adverse reserve development to which the company is exposed,
arising from possible ceded IBNR misallocation.

There are several difficulties associated with a probable max-
imum ceded methodology. Among these difficulties are the bur-
den on the actuary to calculate it, the burden on the company to
obtain higher security, and the burden on the reinsurer to commit
additional funds to this new standard. Of course the burden of
adverse reserve development arising from a ceded IBNR misal-
location to a troubled reinsurer can be significant as well.

I do not anticipate that Schedule F will be transformed to a
probable maximum ceded basis of security. Just as primary insur-
ers cannot possibly reserve for probable maximum loss risk by
risk, few reinsurers, even the financially healthiest, can possibly
post collateral at probable maximum loss by risk. If a reinsurer
could secure its liabilities on a probable maximum basis by risk,
its financial condition would appear better. There is hope that
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primary companies can look beyond the Schedule F criteria in
demanding security, and there is hope that opining actuaries can
be more conscious of the implications of misallocating ceded
IBNR to a reinsurer.



ADDRESS TO NEW MEMBERS–NOVEMBER 14, 2005

HORIZONS

RONALD L. BORNHUETTER

Before I begin my formal remarks, I would like to share a
brief anecdote that occurred during my presidency. Some of you
have heard it before, but many have not.

For the Annual Meeting in November 1976, which was to
be held in San Diego, California, it was decided to have a paid
luncheon speaker for the first time. I asked Carl Honebein to see
what he could develop in the way of possibilities. After some
time, there were several speakers to choose from with a variety
of fees.

Our choices included Senator Ted Kennedy (who charged
$10,000 plus expenses for himself and two bodyguards), Gov-
ernor Jerry Brown, and a retired part-time journalist and radio
commentator (who wanted $5,000 although he lived twenty min-
utes from San Diego). We finally decided on the then senior
United States Senator from California, Alan Cranston, who only
charged a fee of $2,000 and no expense money.

Our choice was a good one as Senator Cranston had just re-
turned from Plains, Georgia, where he met with the newly elected
president Jimmy Carter. His comments were very interesting as
he gave his insight on our next president. Cranston was quite a
good choice for our first venture into paid speakers.

(As a footnote, the retired part-time journalist and radio com-
mentator who lived close by, whom I turned down, was future
president Ronald Reagan.)

Before I begin my formal remarks about your horizons, let
me congratulate each of you on your hard work that culminated
with achieving Fellowship in our Society. It is a culmination of
a considerable amount of hard work and effort and you should
be very proud. Also, my compliments and congratulations to all
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of the spouses who gave much needed support throughout this
journey. You were integral parts of your partners’ successes.

Let’s spend a few minutes on the subject of looking forward.
Where do you go next? What is your horizon–both inward out-
ward?

You are a member of a wonderful, dynamic society that has
helped prepare you for where you are today. I am sure you know
that by now. Part of your inward horizon will always be the
CAS–it deserves your support and participation. You will con-
tinue to learn from your involvement. As the years unfold, you
will realize you have a debt to repay. Our Society needs your
help and it is up to you and others to continue its success.

On the inward side, I would be remiss if I did not add that you
should be aware of involvement in our sister organizations. For
example, the American Academy of Actuaries and the Canadian
Institute of Actuaries accomplish many good things on our be-
half. I am talking about practice councils, principles developed
by the Actuarial Standards Board, and congressional hearings,
to mention a few. Now add Sarbanes-Oxley and other external
public involvement and you can see that the AAA and CIA are
important keys to your future actuarial life.

Another semi-internal horizon that might be of interest to you
at one point in your career is ASTIN and the International Ac-
tuarial Association (IAA). You will find actuaries from outside
North America to be quite interesting and they sometimes do
have a different perspective on actuarial matters. Your officers
and board of directors are pursuing the globalization of the ca-
sualty actuarial profession in many ways and this is certainly a
growth area for our profession.

Perhaps it would take too many words to tell you our Society
and sister organizations do need everyone’s help. Without it they
will not survive. It is up to you.
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Now to an area I would refer to as your outward horizon.
Again, a short anecdote: Many years ago I had a brief discussion
with the chief executive officer of General Re, Harold Hudson.
We talked about why no officer had the title of “actuary” in the
corporation. His response was that the title was “too limiting.” I
did not necessarily agree, but I understood the point. It’s certainly
food for thought.

I know most of you look forward to pursuing your career as
an actuary. It is a great profession. J.D. Powers & Associates
always ranked it very high or number one on several occasions
when compared to other professions. Now let me offer a few
outward horizons that may arise along the way.

Again, a brief anecdote: At one point in time, Ace, General
Re, American Re, NAC-Re, Everest Re, Employers Re, Under-
writers Re, and Renaissance Re all had one thing in common–
all their chief executive officers were actuaries. Outside of the
Swiss and Germans, this was most of the United States rein-
surance market. All were members of our Society except one,
and he was a member of the Danish Actuarial Society. Many
of them got there by different routes such as actuarial, finance,
underwriting, and accounting, just to name a few.

Think about it. Your actuarial background prepares you well
to take on other assignments that may come your way in your
horizon.

For example, today I see a large group of casualty actuaries
in the room–I would wager that less than 25 in the audience
spend one quarter of their time working on the asset side of
the balance sheet, yet investment analysis and management is
natural for an actuarial mind. Did you know that, at one time,
and perhaps still today, a substantial percentage of the British
Institute of Actuaries were employed in the investment industry
rather than the insurance arena? Certainly, this is an appropriate
area when you are thinking about risk theory.
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Also, I know one of the last things you want to hear is that
there are other designations that can be helpful to your careers
such as CFA, MBA, and CPA, to name a few. Some day you
might want to pursue one of these areas. Several of you have
already added MBA to your achievements and it will be very
helpful.

Please don’t get me wrong, the actuarial profession is a proud
and meaningful one. It will do you well. Pursue it to the fullest.
It has been ranked nationally as one of the best professions, if
not the best. What it will be to you is the catalyst to provide you
with opportunities that will appear on your horizon. Give them
consideration. You never know where it will lead.

I would be remiss if I did not briefly mention today’s world
of Sarbanes-Oxley and the political environment we live in. Acts
you may perform today according to a “normal course of busi-
ness environment” may be received differently in years to come
by others under a different set of rules or interpretations. Even
an outside auditor’s sign off may not be good enough. In any
event, you may be involved in one or more transactions in the
future. So be careful and be confident that you are participating
in a proper transaction. Even if you say this area is not really
applicable to what you currently do, it is in your best interest
to follow current events and educate yourselves in order to be
prepared if and when an applicable instance occurs.

Lastly, do me a favor. Enjoy the day. You earned it. And,
when you return home, take an underwriter or two out to lunch.
They most certainly will learn something.

Thank you for your patience and attention and enjoy your
horizon, whatever it may be.
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ON BECOMING AN ACTUARY OF THE FOURTH KIND

STEPHEN P. D’ARCY

A presidential address is an opportunity for outgoing presi-
dents to thank the many people who have helped them over the
course of the year, to wax philosophical about things actuarial,
and to enlighten the membership about relevant issues facing our
profession. As a teacher, though, I cannot pass up the opportu-
nity of a few minutes in front of an audience to try to provide a
useful learning experience for the class, I mean the membership.
Thus, today’s lecture is, “On Becoming an Actuary of the Fourth
Kind.”

Hans Bühlmann first offered this classification of actuaries
in an ASTIN Bulletin editorial (1987) entitled, “Actuaries of the
Third Kind?” Actuaries of the first kind, who emerged in the
17th century, focused on life insurance issues and tended to use
deterministic methods. In the early 20th century, actuaries of
the second kind developed–casualty actuaries who used prob-
abilistic approaches in dealing with workers compensation, au-
tomobile insurance, property insurance and similar risks. The
actuaries of the third kind, who were the object of Bühlmann’s
editorial, were the investment actuaries applying stochastic pro-
cesses, contingent claims and derivatives to assets and liabilities.
This specialty developed in the 1980s as financial risk became
more important and tools to manage financial risk were created.
For advice on learning the tools and techniques of this type of
actuary, your assignment is to read, “On Becoming an Actuary
of the Third Kind,” which I presented at the 75th anniversary of
the CAS and is published in the 1989 Proceedings of the Casualty
Actuarial Society.

At a recent ASTIN meeting in Zurich, Professor Paul Em-
brechts of the Swiss Federal Institute of Technology (ETH) re-
ferred to those actuaries working in enterprise risk management
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(ERM) as actuaries of the fourth kind. Change has certainly sped
up in the actuarial profession, as it took 250 years for the actu-
aries of the second kind to emerge, 70 more years for actuaries
of the third kind to develop, but less than three decades for the
newest type of actuary to arise. I would like to provide some
guidance on becoming an actuary of the fourth kind.

Risk is present whenever the outcome is uncertain, whether fa-
vorable or unfavorable. Risk exists whenever there is uncertainty.
ERM is the systematic evaluation of all the significant risks fac-
ing an organization and how they affect the organization in ag-
gregate. A variety of classifications of risk have been proposed,
but I find that categorizing risks as hazard, financial, operational,
or strategic to be most useful. Hazard risks are the risks actuaries
have most commonly considered. These are the pure risks, the
loss/no loss situations that may injure people, damage property,
or create a liability. Traditional actuarial mathematics work best
on hazard risks, as they are generally independent and discontin-
uous. Actuaries and other risk professionals have generally done
a remarkably good job assessing and evaluating hazard risks.
Organizations rarely become insolvent due to failure to manage
hazard risks, and insurers can generally withstand major losses
of this type, even when they exceed all prior incidences of such
losses by a significant amount. If only this were true for sim-
ilar occurrences of the other types of risk. Daily we learn of
companies going into bankruptcy because of mismanaging other
risks.

Financial risks are those that affect assets, including interest
rates, inflation, equity values, and foreign exchange rates. These
risks are correlated, continuous, and require an understanding of
stochastic calculus to be measured appropriately. Unlike hazard
risks, financial risks provide the possibility of a gain, not just
a loss. The techniques for managing financial risks–financial
derivatives such as forwards, futures, options, and swaps–are
relatively new, developed only over the last several decades. Mis-
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use of these techniques and the resulting financial debacles they
caused have actually led to the need for ERM.

Operating risks represent the failure of people, processes, or
systems. One recent example of operating risk is the announce-
ment (The Wall Street Journal, November 9, 2005) by Freddie
Mac, the large mortgage finance company, that it discovered a
computer error that, since 2001, has been overvaluing accrued
interest on variable rate home equity loans. The effect of this
error is estimated to be at least $220 million. The next day Gen-
eral Motors announced that it had incorrectly booked credits
from suppliers in 2001 (WSJ, November 10, 2005). The over-
stated earnings are estimated to be as high as $400 million, or
50 percent of its reported profit during that year. To clarify the
distinction between hazard and operational risk, if an employee
steals from an employer, that is a hazard risk and can be covered
by typical insurance policies. However, if that employee inflates
earnings in order to “qualify” for a bonus, that is not consid-
ered hazard risk and is not covered by insurance. This would be
operational risk.

Strategic risk reflects the business decisions of an organiza-
tion or the impact of competition or regulation. An organization
that adapts (or fails to adapt) to new markets, whose activities
lead to new forms of regulation that either help or hinder fu-
ture operation, or whose business plan proves either successful
or unsuccessful–all are examples of strategic risk. Examples of
strategic risk for insurance are the benefits produced for those
first to use credit scoring as a rating variable, and the market
share losses of those companies that were slow to adopt this
approach.

ERM originally focused on loss prevention, controlling neg-
ative surprises, and reducing downside risk. That was the initial
reaction of both regulators and boards to the failures at Bar-
ings Bank, Enron, WorldCom, Arthur Andersen, and other cor-
porations. ERM evolved into accepting risk, but measuring the
risk associated with the expected returns from different business



748 PRESIDENTIAL ADDRESS

strategies. When organizations began to use ERM approaches
for capital allocation and tied compensation to the resulting risk
adjusted returns, it became serious for many managers. Cases are
now told of dueling modelers, each with their own capital alloca-
tion process favoring their sponsoring area, who vie to have their
model adopted by the organization. ERM is now evolving into
risk optimization and the efficient deployment of capital. When
an organization accepts risks where it has a comparative advan-
tage, and transfers or avoids risks where it does not, the system
is adding value by efficient risk treatment. ERM deals with the
entire range of potential outcomes, not just downside risk.

So, how to become an ERM actuary? Step one in ERM, as
in traditional risk management, is risk identification–to identify
all significant risks an organization faces. Although actuaries are
good at quantifying risks, other specialties, such as traditional
risk managers, have greater expertise in the identification of risk,
particularly hazard risks. Traditional risk managers, just as most
actuaries, also tended to ignore financial risks. A first step in
becoming an actuary of the fourth kind is to master the skills of
the risk managers in the identification of risk and then to expand
this identification process to financial, operational, and strategic
risks, as well as hazard risks. The risks an organization faces,
though, are myriad. The advice of one ERM pioneer, James Lam,
is instructive. His admonition is, “Don’t boil the ocean.” Instead
focus on the most significant risks an organization faces. Deal
with those first, then in future iterations expand the focus to the
next level of risk elements.

Step two in ERM, as in traditional risk management, is to
quantify the risks. Actuaries are well skilled in this area, at least
for hazard risks, but ERM also requires the quantification of the
correlations among different risks. ERM is concerned with risk
in aggregate and to the extent that one risk offsets other risks,
then the organization benefits. To the extent that different risks
combine to increase the negative impact, the organization is at
risk. Measuring the correlations is also more complicated than



PRESIDENTIAL ADDRESS 749

just looking at the correlation coefficient, or how two variables
tend to move in relation to each other. Two risks can be gener-
ally uncorrelated, but, if an extreme event were to occur, then
they could be highly correlated. Techniques for evaluating these
forms of correlations, filters, tail dependency, copulas, and other
numerical techniques must be incorporated.

Much needs to be done to be able to quantify operational and
strategic risk to the standards common in hazard and financial
risk, but progress is being made. The Basel Accord proposes
several methods for determining capital charges for operational
risk. These methods were devised to be applicable to banks, but
regulatory consolidation is expanding the application to insurers
and other financial institutions. Other techniques include mea-
suring change in the market value of publicly traded companies
when operational risks are revealed, such as accounting prob-
lems, product recalls, or the legal troubles of closely identified
executives. Much more needs to be done in this area. Actuaries
have the skill set that can improve the quantification process, but
other specialties are moving into this area as well, such as the for-
mer financial engineers (yes, the same ones responsible for Long
Term Capital Management, Enron, and others), accountants, and
risk managers. If we want this done correctly, we need to step
up to the plate now or other groups will claim this area. Our
unique advantages–the combination of math skills, practice in
explaining complex mathematics to nonmathematical managers,
and a professional code of conduct–make actuaries the ideal
professionals to assume a leadership role in ERM. The opportu-
nity for staking a claim will not exist for long, however. If you
are interested in becoming an actuary of the fourth kind, start
now.

Step three of the risk management process involves evaluating
the different methods for handling risk. Risks can be assumed,
transferred, or reduced. A variety of methods exist for transfer-
ring or reducing risk. Risk can be transferred by subcontracting,
by insurance, or by securitization. Risk can be reduced by loss
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control, contract, or reinsurance. These techniques range from
engineering to legal to financial to actuarial, requiring the actu-
ary of the fourth kind to be conversant in each area.

Step four is to select the best method for handling the risk,
which in most cases will involve a combination of different tech-
niques. ERM aims to establish a consistent approach to dealing
with risk. This means that the organization wants to make con-
sistent choices about all of the risks it faces, how much risk it
will accept, and what return it would require for accepting a
particular level of risk.

Step five is to monitor the risk management approach se-
lected. ERM is an ongoing process that must be monitored, ad-
justed, and revised as new information and new techniques be-
come available. Thus, as soon as one round of an ERM process
is completed, the next round begins. It is an iterative process
that entails identifying additional significant risks, quantifying
those risks, and improving the quantification of previously iden-
tified risks based on additional information and improved math-
ematical techniques. It also entails reevaluating the different ap-
proaches to handle risk, implementing an improved strategy, and
then, once more, monitoring the results. It sounds like rate filings
or loss reserve analysis–do it and then do it again. This is full
employment for actuaries, perhaps?

Actuaries need to become the ERM specialists of the insur-
ance industry. For one reason, no one else understands the math-
ematics underlying this industry as well as actuaries do, so no
one else can do as good a job. For another reason, if actuaries fail
to grow into insurers’ ERM positions, someone else will. After
they master that position, they will feel qualified, and perhaps
even be qualified, to assume the roles actuaries now fill in the
hazard risk area. Move up or move out. That is only fair. Aca-
demics have long lived with the publish or perish dictum. Now
the actuarial profession has its equivalent challenge: master ERM
or face extinction. It doesn’t have quite the right flow, but the
consequences are just as dire.
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The quantification of risks in an ERM process involves com-
bining the actuarial tools and techniques with those of financial
economists. Become an actuary of the third kind on your way
to becoming an actuary of the fourth kind. This path is already
well laid out. Start with “On Becoming an Actuary of the Third
Kind,” add readings from Cairns (2004), Hull (2003), Jorion
(2001), and Das (1997). Then expand into ERM by reading Lam
(2003), Samad-Kahn (2005), and Standard and Poor’s (2005).

Not all actuaries need to become actuaries of the fourth kind,
although I hope that many of you will. There will likely be plenty
of work for actuaries of the first, second, and third kinds. But
the actuary of the fourth kind represents a new frontier, one that
we are well suited for by training and temperament, and one that
I think we can fulfill better than any other group.

For an example of ERM in action applied to the insurance
industry, let’s look to Hurricane Katrina, which hit the coast of
Louisiana the end of August 2005. This hurricane caused an esti-
mated $125 billion in economic losses, of which the insurance in-
dustry is expected to pay approximately $35 billion. This would
make Katrina twice as costly as the previous largest natural disas-
ter, Hurricane Andrew in 1992. Simultaneously, oil prices surged
to record levels as a significant portion of the oil producing ca-
pacity of the United States was damaged by this storm. It is clear,
in retrospect, that a perfect natural hedge existed for insurers ex-
posed to property losses on the Louisiana coastline–derivatives
on oil prices. An insurer would purchase oil futures if it were
willing to incur losses as energy prices declined, or options if
it only wanted protection against oil price increases. Any storm
wreaking havoc on the coastline had to affect the oil wells situ-
ated in the Gulf and therefore the price of oil, at least temporarily.
Rather than reducing exposure to property damage in Louisiana,
as at least one major insurer has already announced it would
do, insurers could hedge their property exposure with financial
derivatives. Now, if we could only ring the coast of Florida with
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a valuable natural resource, the industry might be able to cope
with hurricane losses there as well.

There is another hedge for property insurers that is related
to the spike in oil prices caused by Hurricane Katrina. High gas
prices led to a reduction in driving, which reduced the number of
automobile accidents, and lowered collision and liability losses
for insurers. On the other hand, drivers encumbered with gas
guzzling SUVs could be tempted to generate additional compre-
hensive claims as these vehicles are “stolen” or “burned.” Moral
hazard also affects ERM. Start thinking in this manner and you
are on your way to becoming an actuary of the fourth kind. Wel-
come aboard!

Despite my proclivity to turn this into a teaching opportunity,
I do not want to miss the chance to thank those many people who
helped me during my term in office. To you, the members of the
CAS who elected me, thank you for putting your confidence in
me. I hope I have met your expectations. To all the volunteers,
the committee and task force chairs, and especially the vice pres-
idents and board members who worked so closely with me over
the year, thanks for helping me achieve what we did accomplish.
Progress would not have been possible without you. Thank you
to the wonderful CAS staff members, here and back at the office,
and to Cynthia Ziegler for motivating and leading them, for you
truly do the essential work of our organization. To the leaders
of the other actuarial organizations, some of whom are with us
today, others unable to be here, thank you for your openness
and cooperation as we worked together to enhance the actuarial
profession throughout the world.

Thanks to my family for supporting me during my term. My
daughter, Meriden, who is not here, accompanied me to a North
American Actuarial Council meeting in Hawaii and helped out
at the Spring Meeting in Phoenix. My son, Grant, who was here
until this morning, helped me explore Norway and Zurich during
ASTIN and AFIR meetings. Most of all, I want to thank my
best friend, my wife, Cleo, whose leadership experience helped
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me keep my equilibrium during this sometimes hectic year and
whose love of teaching has inspired mine.

Now it is with mixed emotions–some sadness and some
relief–that I pass on the presidential responsibilities to Paul
Braithwaite. It has been a wonderful year, thanks to all of you.
Good luck, Paul!
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MINUTES OF THE 2005 CAS ANNUAL MEETING

November 13–16, 2005

RENAISSANCE HARBORPLACE HOTEL 

BALTIMORE, MARYLAND

Sunday, November 13, 2005

The board of directors held their regular quarterly meeting from 
8:00 a.m. to 4:30 p.m.

Registration was held from 4:00 p.m. to 7:30 p.m. 

From 5:30 p.m. to 6:30 p.m. there was a presentation to new 
Associates and their guests. CAS President Steve D’Arcy made a 
short presentation to new Associates with a brief overview of the 
CAS organization.

A welcome reception for all members and guests was held from 
6:30 p.m. to 7:30 p.m.

Monday, November 14, 2005

Registration continued from 7:00 a.m. to 5:00 p.m. and a conti-
nental breakfast was served from 7:00 a.m. to 9:00 a.m.

Mr. D’Arcy opened the business session, which was held from 
8:00 a.m. to 10:00 a.m., and announced that the meeting was be-
ing broadcast on the CAS Web Site. He then introduced the mem-
bers of the executive council and the CAS Board of Directors. He 
thanked exiting EC members Tom Myers and Don Mango, who 
would be retiring from the positions of Vice President–Admissions 
and the Vice President–Research & Development, respectively, 
and outgoing board members Gary R. Josephson, David J. Oak-
den, Patricia A. Teufel, Oakley E. Van Slyke, and Mary Frances 
Miller for their contributions. 

Mr. D’Arcy then announced the results of the CAS elections. 
The next president will be Paul Braithwaite and the president-
elect will be Thomas G. Myers. New board members will be 
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Irene K. Bass, Glenn Meyers, Donald F. Mango, and Roosevelt C. 
Mosley Jr.

Following these announcements, Mr. D’Arcy introduced the 
presidents from other actuarial organizations who were in atten-
dance including Ana Maria Ramirez Lozano, Asociación Mexi-
cana de Actuarios (AMA); Charles McLeod, Canadian Institute 
of Actuaries (CIA); Fred Kilbourne, Conference of Consulting 
Actuaries (CCA); Jean Kwon, Asia-Pacific Risk and Insurance As-
sociation (APRIA); and Shigeru Taguchi, Institute of Actuaries of 
Japan (IAJ). Mr. D’Arcy also recognized all CAS volunteers. 

Vice President –Professional Education Beth Fitzgerald informed 
the audience that the meeting will offer over 30 different concurrent 
sessions, as well as four general sessions. She also announced the 
2005 CAS Annual Meeting Exhibitors, which included the Ameri-
can Academy of Actuaries; EQECAT, Inc.; Insureware Pty. Ltd.; 
ISO; Milliman; and Northstar International Insurance Recruiters, 
Inc. She also noted the financial contributions of Pryor Associates 
and Towers Perrin, who are 2005 CAS Annual Meeting Supporters.

Ms. Fitzgerald and Mr. Myers announced the new Associates, 
and Mr. D’Arcy announced that Matthew W. Kunish of Crum & 
Forster recently became a Fellow via Mutual Recognition. Paul 
Braithwaite announced the names of the new Fellows.

NEW FELLOWS

Fernando A. Alvarado
Brian C. Alvers
Maura Curran Baker
Rose D. Barrett
Derek Dennis Berget
Brian Jeffrey Biggs
Corey J. Bilot
Rebekah Susan Biondo
Tapio Nikolai Boles
James L. Bresnahan
John R. Broadrick

Michele Lee Brooks 
Elaine K. Brunner
Matthew Daniel 

Buchalter
Anthony Robert 

Bustillo
Hsiu-Mei Chang
Alan M. Chow 
Jason Travis Clarke
Kevin A. Cormier
Justin B. Cruz 

David F. Dahl
Chantal Delisle
Laura S. Doherty
Tomer Eilam
Bruce Joseph Fatz
Dale Albert Fethke
William John Gerhardt
John S. Giles
Kristen Marie Gill
David Barry Gordon
Jeffrey Robert Grimmer
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Megan Taylor Harder
Robin Andrew Haworth
Brandon L. Heutmaker
Joseph Suhr Highbarger
Bo Huang
Richard Clay Jenkins
Philip J. Jennings
Shiwen Jiang
Yi Jing
Dana F. Joseph
Omar A. Kitchlew
Scott Michael Klabacha
Andrew Mark Koren
Bradley Scott Kove
Matthew W. Kunish
Terry Thomas Kuruvilla
François Lacroix
Kahshin Leow
Xin Li
Erik Frank Livingston
Jonathan LaVerne 

Matthews

Brent Layne McGill
Christopher Charles 

McKenna 
Sylwia S. McMichael
Meagan Sue Mirkovich
Rodney Scott Morris
Leonidas V. Nguyen
Miodrag Novakovic
Timothy J. O’Connor
Kathleen C. Odomirok
Jeremy Parker Pecora
Gregory T. Preble
Damon Joshua Raben
Dale M. Riemer 
Brad E. Rigotty
Bryant Edward Russell
Frances Ginette Sarrel
Jeffery Wayne Scholl 
Genine Darrough 

Schwartz
Justin Nicholas Smith
Mark Stephen Struck

Zongli Sun
Dovid Tkatch
Jennifer Marie 

Tornquist
Joel Andrew Vaag
Daniel Jacob 

VanderPloeg
Kevin K. Vesel
Mo Wang
Kevin Earl Weathers
Grace Hueywen Yang
Yuanhe Yao
Sung G. Yim
Ronald Joseph 

Zaleski Jr.
Lijuan Zhang
Hongbo Zhou
Steven Bradley Zielke

NEW ASSOCIATES

Avraham Adler
Vera Afanassieva
Amit Agarwal
Sajjad Ahmad
Kelleen D. Arquette
Yanfei Zhu Atwell
Gregory S. Babushkin
Kristi Spencer 

Badgerow
Gregory Keith Bangs
Tiffany Jean Baron
Angelo Edward 

Bastianpillai

Mark Alex Belasco
Jeffrey Donald 

Bellmont
Matthew Craig Berasi
Sonal Bhargava
Jonathan Bilbul
Brad Stephen 

Billerman
Jon Bloom
Peter George Blouin
Nicolas Boivin
Randall Todd Buda
Morgan Haire Bugbee

Jessica Y. Cao
Jeffrey McKinley 

Casaday
Paul Andrew Ceaser
Matthew Scott 

Chamberlain
Bernard Lee Chan
Michael Tsz-Kin Chan
Joung-Ju Chung
Raul Cisneros
Glenn Anthony Colby
Kirk Allen Conrad
Lawrence Glenn Cranor
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Tighe Christian 
Crovetti

Walter Casimir 
Dabrowski

Jonathan Everett 
DeVilbiss

Brent Pollock 
Donaldson

Michael Dana Ersevim
Choya Aisha Everett
Marc Olivier Faulkner
Jason Alan Flick
Mark Allen Florenz
Kyle Patrick Freeman 
Derek Freihaut
Timothy M. Garcia
Nina Vladimirovna Gau
Stuart G. Gelbwasser
Maxime Gélinas
Simon Girard
Gregory Paul Goddu
Rebecca Joan Gordon
Wesley John Griffiths
Isabelle Guérin
Gary S. Haase
William Joseph 

Hackman
Brian P. Hall
James Warren Harmon
Megann Elizabeth Hess
Nathan Jaymes Hubbell
Yu Shan Hwang
Alison Susanne 

Jennings
Ziyi Jiao

Jeremiah David 
Johnson

Ross Evan Johnson
Amy A. Juknelis
Jennifer Ge Kang
Brian Martin Karl
Jean-Philippé Keable
Sarah M. Kemp
David J. Klemish
Rachel Marie Klingler
Christine Kelly Kogut
Thomas Ryan Kolde
Leland Kraemer
Michael Alexander 

Lardis
Catherine Marie Larson
Annie Latouche
Kak Lau
Jeremy Matthew 

Lehmann
Sean Maxmillian 

Leonard
Jean-François Lessard
Mingyue Miriam Li
Andrew H. Liao
Cunbo Liu
Jin Liu
Nannan Liu
Todd L. Livergood
Andrew Loach
Laura Joann Lothschutz
Neelam Patel Mankoff
Minchong Mao
Angela Garrett McGhee
Albert-Michael Micozzi

Daniel Evan Mikesh
Aaron G. Mills
Richard James Mills
Lori A. Moore
Allison Lynn Morabito
Mundia Mubyana
Daniel G. Myers
Marc Lawrence 

Nerenberg
Benjamin Reiter 

Newton
Tho D. Ngo
Stephanie Jo Odell
Christopher J. Olsen
Alejandro Antonio 

Ortega
Keith William Palmer
Joy-Ann Cecile Payne
Joseph Gregory 

Pietraszewski
Jean-Philippe Plante
Lynellen McDonnell 

Ramirez
Arthur Roosevelt 

Randolph II
Zia Rehman
Zoë F. S. Rico
Arnie W. Rippener
Randall David Ross
John C. Ruth
Anita A. Sathe
Lawrence Michael 

Schober
Erika Helen Schurr
Ronald S. Scott
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Sheri Lee Scott
Clista Elizabeth Sheker
Robert K. Smith
Patrick Shiu-Fai So
Joanna M. Solarz
Richard Cambran 

Soulsby
Michael Patrick 

Speedling
Paul Quinn 

Stahlschmidt
Mindy Marie Steichen
Yuchen Su
Feixue Tang

Luc Tanguay
Aaron Asher Temples
Robert Bradley Tiger
Phoebe Alexis Tinney
Levente Thomas Tolnai
Rachel Katrina Tritz
Benjamin Joel Turner
Jonathan Kowalczyk 

Turnes
Allan Stone Voltz III
Todd Patrick Walker
Xuelian Wan
Jingtao Wang
Amanda Jane White

Andrew Thomas Wiest
Martin Ernest Wietfeldt
Ronald Harris Wilkins
Shauna Suzanne 

Williams
Benjamin Todd 

Witkowski
Dorothy A. Woodrum 
Yi-chuang Sylvia Yang
Min Yao
Yanjun Yao
Hui Yu Zhang
Wei Zhao
Michael V. Ziniti

Mr. D’Arcy then introduced Ronald L. Bornhuetter, a past pres-
ident of the Society (1975), who presented the address to new 
members.

A short award program followed the address. Mr. D’Arcy pre-
sented the Matthew S. Rodermund Service Award to Anne E. 
Kelly. Ms. Kelly, the chief casualty actuary for the New York State 
Insurance Department, served as the chairperson of the Committee 
on Volunteer Resources. Mr. D’Arcy also presented the “Above & 
Beyond” achievement award to Kristine Kuzora, David L. Men-
ning, Michael G. Wacek, and Jerome F. Vogel. During the past 
two years Mr. Menning has been highly effective in leading the 
CAS’s joint efforts with the SOA and CIA to implement computer-
based testing (CBT) for Exam 1. Ms. Kuzora volunteered on the 
Research Paper Classifier Project Committee where she classified 
over 600 abstracts with the new CAS Research Taxonomy in just 
25 days. The CAS also honored Mr. Vogel for his work on the Re-
search Paper Classifier Project Committee. At the time the award 
was given, he had classified over 500 abstracts, or 13 percent of 
the 4,200 abstracts needing classification. Mr. Wacek was selected 
for his work in chairing the CAS Working Party on Risk Transfer 
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Testing where he produced a thorough, high-quality research paper 
in just one month’s time. 

Mr. D’Arcy announced that the Charles A. Hachemeister Award 
recipient was Jon Holtan for his paper entitled “Pragmatic Insur-
ance Option Pricing.” Roger Hayne presented the Dorweiler Prize 
to Rodney E. Kreps Ph.D. for his paper “Riskiness Leverage Mod-
els.”

After the awards presentation Mr. D’Arcy requested a moment 
of silence for members who had died in the past year: Robert 
G. Espie, Sidney M. Hammer, Richard L. Johe, J. Gary LaRose, 
Edward Merrill Smith, and Leo M. Stankus.

Mr. D’Arcy said the Trustees for the CAS Trust (CAST) were 
pleased to recognize D.W. Simpson & Company, which has do-
nated $10,000 to the Trust. Their cumulative donations to the CAS 
Trust have now reached the milestone of $100,000. 

Brian Johnson, committee representative from the Joint CAS/
SOA Committee on Minority Recruiting, discussed their work and 
presented the college scholarship to recipient Chris Martin. Other 
recipients of the scholarship included Denita Hill, Kayun Ng, 
Diandra Daniel, Tyre Wise, Desmond Cooper, Jacob Mallol, and 
Nahathai Srivali. Mr. D’Arcy also announced that two high school 
teachers were in attendance accompanying their students: Joshua 
Bessicks of Baltimore Polytechnical High School and Victoria Ste-
phenson of Western High School.

Mary Weiss of Temple University gave the ARIA presentation. 
Ms. Weiss currently is the Vice President of ARIA and also the 
editor of Risk Management and Insurance Review, a journal that 
ARIA publishes specifically to encourage a research interface be-
tween academe and industry. 

In conclusion, Mr. D’Arcy gave his presidential address and 
officially passed on the CAS presidential gavel to new CAS Presi-
dent Paul Braithwaite. Mr. Braithwaite gave a brief overview of 
the future year before closing the business session. 
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After a refreshment break, the first General Session was held 
from 10:30 a.m. to 12:00 p.m.:

Our Credibility at Risk? Loss Reserves—Facts and Perceptions 
 Moderator: Allan M. Kaufman

  Actuary and Consultant
  AMK Consulting

 Panelists: Steve Dreyer
  Practice Leader
  North America Insurance Ratings, 
  Standard & Poor’s

  Mary D. Miller
  Actuary
  Ohio Department of Insurance

  Patrica A. Teufel
  Principal
  KPMG LLP 

Following the general session, Roger Lowenstein was the fea-
tured speaker during a luncheon from 12:00 p.m. to 1:30 p.m. 
Lowenstein has authored several books including Buffett: The 
Making of an American Capitalist (1995), When Genius Failed: 
The Rise and Fall of Long-Term Capital Management (2000), and 
Origins of the Crash (2004). He has also written for many other 
publications, including Smart Money, The Wall Street Journal, and 
The New York Times.

After the luncheon, the afternoon was devoted to concurrent 
sessions. The panel presentations covered the following topics:

1. What’s Happening in the Reinsurance Market?
 Moderator: Richard A. Lino

  Consulting Actuary
  Pinnacle Actuarial Resources Inc.

 Panelists: Yves Provencher
  Senior Vice President
  Willis Re Inc.
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  Joy Y. Takahashi
  Senior Vice President-Corporate
  American Re-Insurance Company 

2. Sarbanes 404—Risks and Controls for Actuarial Processes
 Moderator: Alan M. Hines

  Director
  PricewaterhouseCoopers LLP

 Panelists: John Brabazon
  Vice President and Assistant Corporate   
  Controller
  Allmerica Financial

  Heidi M. Hoeller
  Senior Manager
  PricewaterhouseCoopers LLP 

3. Enterprise Risk Management—The Present and the Future 
CAS

 Moderator/ James E. Rech
 Panelist: Actuary
  GPW & Associates

 Panelists: Christopher David Bohn
  Assistant Director and Actuary
  Aon Risk Consultants Inc.

  Gary G. Venter
  Managing Director
  Guy Carpenter & Company Inc. 

4. Discussion of the Claim Liability Estimation Proposed 
Standard

 Moderator: Raji Bhagavatula
  Principal
  Milliman USA
  Chair Subcommittee on Reserving of the
  Casualty Committee of the Actuarial 
  Standards Board
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 Panelists: Ralph S. Blanchard III
  Second Vice President and Actuary
  Travelers Property Casualty Insurance 
  Company

  Christopher S. Carlson
  Consultant
  Pinnacle Actuarial Resources Inc.

  Jason L. Russ
  Consulting Actuary
  Milliman Inc. 

5. Presidents’ Forum 
 Moderator: Stephen P. D’Arcy

  President
  Casualty Actuarial Society

 Panelists: Charles C. McLeod
  President
  Canadian Institute of Actuaries

  Ana Maria Ramirez
  President
  Asociación Mexicana de Actuarios 

6. Accounting Implications of Actuarial Decisions 
 Panelist: Alison T. Spivey

  Associate Chief Accountant and Office of the 
  Chief Accountant
  U.S. Securities and Exchange Commission

7. Actuaries Embrace Operational Risk 
 Moderator: Mark Alan Verheyen

  Vice President
  Carvill America

 Panelists: Ali Samad-Khan
  President
  OpRisk Advisory LLC
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  Samir Shah
  Principal
  Towers Perrin 

The following Proceedings papers were presented: 
1. “The Application of Fundamental Valuation Principles to 

Property/Casualty Insurance Companies” 
 Authors: Wayne E. Blackburn

  Milliman Inc.
  Derek A. Jones

  Milliman Inc.
  Joy A. Schwartzman

  Milliman Inc.
  Dov A. Siegman

  Milliman Inc.
2. “When Can Accident Years Be Regarded As Development 

Years?”
 Authors: Glen Barnett

  Insureware Pty. Ltd.
  Ben Zehnwirth

  Insureware Pty. Ltd.
  Eugene Dubossarsky

  Ernst & Young ABC Pty. Ltd. 

After a refreshment break from 3:00 p.m. to 3:30 p.m., concur-
rent sessions continued. Certain concurrent sessions presented ear-
lier were repeated. Additional concurrent sessions presented from 
3:30 p.m. to 5:00 p.m. were: 

1. Enhancing the Reputation of the Actuary Task Force and 
the Potential Changes to ASOP 36

 Moderator: Christopher S. Carlson
  Pinnacle Actuarial Resources, Chairperson
  Casualty Committee of the Actuarial 
  Standards Board
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 Panelist: Patricia Teufel
  KPMG LLP, Chairperson
  CAS Enhancing the Reputation of the Actuary
  Task Force

2. Actuarial Opinions and Risk of Material Adverse 
Deviation 

 Moderator: Robert F. Wolf
  Principal
  Mercer Oliver Wyman

 Panelists: Charles F. Cook
  Consulting Actuary
  MBA Inc.

  James Votta
  Partner
  Ernst & Young LLP 

3. International Actuarial Practice Guidelines: The Impact on 
the U.S. Actuary 

 Moderator: Amy Bouska
  Consulting Actuary
  Towers Perrin

 Panelist: Robert Miccolis
  Director
  Deloitte Consulting LLP
  Drafting Member
  International Actuarial Association 
  Subcommittee on Actuarial Standards and 
  CAS Representative 

4. CAS Myth Busters, Demystifying Volunteering 
 Moderator/ Robert J. Walling

 Panelists: Principal and Consulting Actuary
  Pinnacle Actuarial Resources Inc.

  Jeremy Brigham
  Consultant
  Towers Perrin
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5. CAS Examination Process 
 Moderator: Daniel G. Roth

  Vice President and Actuary
  CNA Insurance Companies

 Panelists: Steven D. Armstrong
  Senior Actuary
  Allstate Insurance Company

  Manalur S. Sandilya
  Corporate Actuary
  Max RE Europe Ltd.

  Thomas Struppeck
  Director
  CIFG 

6. General Trends in Tort Litigation 
 Moderators/ Claire M. Louis

 Panelists: Director
  PricewaterhouseCoopers LLP

  Stephen P. Lowe
  Managing Director
  Towers Perrin 

A reception for new Fellows and guests was held from 5:30 
p.m. to 6:30 p.m. The general reception for all members and their 
guests was held from 6:30 p.m. to 7:30 p.m.

Mr. D’Arcy and his wife Cleo hosted an evening gathering in 
their hospitality suite from 9:00 p.m. to 11:00 p.m. 

Tuesday, November 15, 2005 

Registration and a continental breakfast took place from 7:00 
a.m. to 8:00 a.m.

Two General Sessions were held simultaneously from 8:00 a.m. 
to 9:30 a.m.:
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Rating Agencies 
 Moderator: Thomas Conway

  Partner
  Ernst & Young LLP

 Panelists: Keith M. Buckley
  Group Managing Director-Insurance/Financial 
  Guarantors
  Fitch Ratings

  Matthew Mosher
  Group Vice President–P/C
  A.M. Best Company 

Risk Transfer
 Moderator: Peter M. Licht

  Managing Director
  PricewaterhouseCoopers LLP

 Panelists: Donald Doran
  Partner
  PricewaterhouseCoopers LLP

  John M. Purple
  Chief Actuary
  State of Connecticut Insurance Department

  Michael G. Wacek
  President
  Odyssey America Reinsurance Company
  Chairman of the CAS Working Party on Risk 
  Transfer Testing 

After a refreshment break, concurrent sessions were held from 
10:00 a.m. to 11:30 a.m. In addition to concurrent sessions that 
were presented the previous day, the following sessions were pre-
sented.

1. Current Loss Reserving Developments
 Moderator/ John J. Kollar

 Panelist: Vice President
  ISO
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 Panelists: Charles C. Emma
  Principal
  Pinnacle Actuarial Resources Inc.

  Thomas A. Ryan
  Consulting Actuary
  Milliman USA 

2. What’s the Future of Asbestos Legislation? 
 Moderator: Sandra C. Santomenno

  Senior Actuary
  GE Insurance Solutions

 Panelists: Jennifer L. Biggs
  Consulting Actuary
  Towers Perrin

  Philip Goldberg
  Shook Hardy & Bacon

  Mary Z. Seidel
  Vice President and Director of Federal Affairs
  Reinsurance Association of America 

3. Actuarial Techniques in Banking Operational Risk
 Moderator/ Ali Samad-Khan

 Panelist: President
  OpRisk Advisory LLC

4. Predictive Modeling—What Is Out There?
 Moderator/ Serhat Guven

 Panelist: Consultant
  EMB America LLC

 Panelist: Louise A. Francis
  Consulting Principal
  Francis Analytics & Actuarial Data 
  Mining Inc.

5. General Business Skills I: Strategic Thinking Presentation 
 Moderator/ Eli Harari

 Panelist: The Thinking Coach 
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6. Town Hall Meeting: Statements of Actuarial Opinions—
Today and in the Year 2014 

 Moderator: Robert F. Wolf
  Principal
  Mercer Oliver Wyman

 Panelists: Chester John Szczepanski
  Vice President and Chief Actuary
  Donegal Insurance Group

  Patrica A. Teufel
  Principal
  KPMG LLP

  Mary D. Miller
  Actuary
  Ohio Department of Insurance

7. Enterprise Risk Management—The Present and the Future 
CAS

 Moderator/ James E. Rech
 Panelist: Actuary
  GPW & Associates

 Panelists: Christopher David Bohn
  Assistant Director and Actuary
  Aon Risk Consultants, Inc.

  Gary G. Venter 
  Managing Director
  Guy Carpenter & Company, Inc.

An ARIA Prize Paper and a Proceedings paper were also pre-
sented during this time:

1. “Bonus-Malus Scales in Segmented Tariffs With Stochastic 
Migration Between Segments” (ARIA Prize Paper) 

 Authors: Natacha Brouhns
  Montserrat Guillén
  Michel Denuit
  Jean Pinquet
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 Moderator/ Jean Pinquet
 Panelist: Professor
  University of Paris 

2. “Modeling Financial Scenarios: A Framework for the 
Actuarial Profession”

 Authors: Kevin C. Ahlgrim
  Illinois State University

  Stephen P. D’Arcy
  University of Illinois

  Richard W. Gorvett
  University of Illinois

Attendees enjoyed a boxed lunch from 11:30 a.m. to 12:30 p.m. 
before concurrent sessions continued from 12:30 p.m. to 2:00 p.m.

1. What’s the Value in Value-Added Reserving? 
 Moderator/ Martha Winslow

 Panelist: Senior Consultant
  Towers Perrin

 Panelists: Sean Duffy
  Second Vice President, Specialty Claims
  St. Paul Travelers

  Thomas Ghezzi
  Principal
  Towers Perrin

  Kevin Rehnberg
  Senior Vice President
  OneBeacon Insurance Companies

2. Progress Reports: The Dynamic Risk Modeling Handbook 
Working Party and the Public-Access DFA Model Working Party 

 Moderator:  Mark R. Shapland
  Actuary
  Milliman Inc.
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 Panelists: James E. Rech
  Vice President
  GPW and Associates Inc.

  Patrick J. Crowe
  Vice President and Actuary, Market Research
  Kentucky Farm Bureau

3. COTOR Challenge: Round 3 
 Moderator: Steven M. Visner

  Principal
  Deloitte Consulting LLP

 Panelists: Winners of COTOR Challenge: Round 3
4. General Business Skills II: Strategic Thinking Presentation 
 Moderator/ Eli Harari

 Panelist: The Thinking Coach
5. Predictive Modeling—Pitfalls and Potentials
 Moderator/ Jeffrey L. Kucera

 Panelist: Senior Consultant
  EMB America LLC

 Panelists: Michael R. Larsen
  Property Consultant
  The Hartford

  John R. Pedrick
  Assistant Director
  Ohio Department of Insurance 

The following Proceedings papers were presented:
1. “Incorporation of Fixed Expenses”
 Author: Geoffrey Todd Werner

  EMB America LLC
2.  “A Modern Architecture for Residential Property 

Insurance Ratemaking”
 Author: John W. Rollins

  Watson Wyatt Insurance & Financial 
  Services Inc.
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All meeting participants and their guests enjoyed dinner and 
entertainment at the Maryland Science Center from 6:30 p.m. to 
9:30 p.m. 

Wednesday, November 16, 2005

A continental breakfast was held from 7:00 a.m. to 9:00 a.m.

In addition to concurrent sessions that had been given previ-
ously and which were repeated, the following concurrent sessions 
were presented from 8:00 a.m. to 9:30 a.m.

1. The Road to 2014: The Centennial Goal/Long Range 
Planning Committee Report 

 Moderator: Aaron M. Halpert
  Principal
  KPMG LLP

 Panelist: Larry A. Haefner
  Vice President and Actuary
  St. Paul Travelers Inc.

2. Progress Reports: The Tail Factor Working Party and the 
Bornhuetter-Ferguson-Initial Expected Losses Working Party 

 Moderator: Thomas A. Ryan
  Consulting Actuary
  Milliman Inc.
  Chairperson of the Committee on Reserves

 Panelists: F. Douglas Ryan
  Consulting Actuary
  MBA Actuaries Inc.

  Mark R. Shapland
  Actuary
  Milliman Inc.

  Members of the Tail Factor Working Party and 
  the Bornhuetter-Ferguson-Initial Expected 
  Losses 
  Working Party 
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3. Advancements in Hurricane Risk Management 
 Moderator: Michael A. Walters

  Consulting Actuary
  Towers Perrin

 Panelists: Richard R. Anderson
  Chief Actuary
  Risk Management Solutions Inc.

  Sean R. Devlin
  Chief Pricing Actuary–P&C Reinsurance
  GE Insurance Solutions

  Alice H. Gannon
  Senior Vice President
  United Services Automobile Association 

4. Progress Report: Elicitation and Elucidation of Risk 
Preferences Working Party 

 Moderator/ David L. Ruhm
 Panelists: Portfolio Risk Manager
  Hartford Investment Management

  Parr T. Schoolman
  Manager
  Ernst & Young LLP 

The following Proceedings papers were presented:
1. Discussion of “The ‘Modified Bornhuetter-Ferguson’ 

Approach To IBNR Allocation”
 Author: Glenn M. Walker

  G. M. Walker Actuarial Services
2. Author Response to a Discussion of “Application of the 

Option Market Paradigm to the Solution of Insurance Problems”
 Author: Michael G. Wacek

  Odyssey America Reinsurance Corporation
3. Discussion of “Distribution-Based Pricing Formulas are 

not Arbitrage-Free” 
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 Panelist: Gary G. Venter
  Guy Carpenter & Company, Inc.

A final General Session was held from 10:00 a.m. to 11:30 a.m. 
after a 30-minute refreshment break. 

Developments in Regulatory Capital Models Around the World 
 Moderator: Elise C. Liebers

  Insurance Specialist
  Federal Reserve Bank of New York

 Panelists: Lou Felice
  Assistant Chief Examiner
  New York Insurance Department

  Mary Frances Monroe
  Manager, Supervisory & Risk Policy-Division 
  of Banking Supervision and Regulation
  Federal Reserve Board

  Gary Wells
  Principal
  Milliman Inc.

Mr. Braithwaite officially adjourned the 2005 CAS Annual 
meeting at 11:45 a.m. after closing remarks and an announcement 
of future CAS meetings. 

Attendees of the 2005 CAS Annual Meeting

The 2005 CAS Annual Meeting was attended by 318 Fellows, 
186 Associates, and 53 guests. The names of the Fellows and As-
sociates in attendance follow:

FELLOWS

Martin Adler
Richard R. Anderson
Steven D. Armstrong
Lawrence J. Artes
Carl Xavier 

Ashenbrenner

Richard V. Atkinson
Craig Victor Avitabile
Maura Curran Baker
W. Brian Barnes
Rose D. Barrett
Patrick Beaudoin

Robert S. Bennett
Regina M. Berens
Derek Dennis Berget
Wayne F. Berner
Ellen A. Berning
Raji Bhagavatula
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Brian J. Biggs
Jennifer L. Biggs
Corey J. Bilot
Rebekah Susan Biondo
Wayne E. Blackburn
Jonathan Everett Blake
Ralph S. Blanchard
Tapio N. Boles
Theresa W. Bourdon
Amy S. Bouska
Alicia E. Bowen
Paul Braithwaite
Yaakov B. Brauner
James L. Bresnahan
Jeremy James Brigham
Karen E. Brinster
John R. Broadrick
Sara T. Broadrick
Michele L. Brooks
Elaine K. Brunner
Matthew D. Buchalter
Mark E. Burgess
Kevin D. Burns
Anthony Robert 

Bustillo
John F. Butcher
Amber L. Butek
Christopher S. Carlson
Hsiu-Mei Chang
Hong Chen
Yvonne W. Y. Cheng
Alan M. Chow
Jason T. Clarke
Eric John Clymer
Michael A. Coca
Eugene C. Connell

Cameron A. Cook
Charles F. Cook
Christopher William 

Cooney
Kevin A. Cormier
Patrick J. Crowe
Justin B. Cruz
Jonathan Scott Curlee
Loren Rainard 

Danielson
Stephen P. D’Arcy
Jeffrey F. Deigl
Chantal Delisle
Peter R. DeMallie
Sean R. Devlin
Laura S. Doherty
Michael Edward Doyle
Grover M. Edie
Tomer Eilam
Thomas J. Ellefson
Charles C. Emma
Paul E. Ericksen
Bruce Fatz
Vicki A. Fendley
Dale A. Fethke
Beth E. Fitzgerald
Louise A. Francis
Michael Fusco
Alice H. Gannon
James J. Gebhard
William John Gerhardt
Thomas L. Ghezzi
John F. Gibson
Patrick John Gilhool
Kristen Marie Gill
Isabelle Girard

Bradley J. Gleason
Spencer M. Gluck
James F. Golz
Annette J. Goodreau
Christopher David 

Goodwin
David B. Gordon
Eric L. Greenhill
Jeffrey Robert Grimmer
Victoria Grossack
Serhat Guven
Edward Kofi Gyampo
Nasser Hadidi
Larry A. Haefner
Marc S. Hall
Robert C. Hallstrom
Brian D. Haney
Jonathan M. Harbus 
Megan Taylor Harder
Allison Michelle Harris
David G. Hartman
Robin A. Haworth
Gordon K. Hay
Brandon L. Heutmaker
Laura Esboldt Heyne
Mark D. Heyne
Joseph S. Highbarger
Anthony D. Hill
Alan M. Hines
Amy L. Hoffman
Ruth A. Howald
Thomas A. Huberty
Christopher Wayne 

Hurst
Richard M. Jaeger
John F. Janssen
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Richard Clay Jenkins
Shiwen Jiang
Yi Jing
Eric J. Johnson
Mark Robert Johnson
Thomas S. Johnston
Derek A. Jones
Gary R. Josephson
Stephen H. Kantor
Allan M. Kaufman
Clive L. Keatinge
Susan M. Keaveny
Frederick W. Kilbourne
Omar A. Kitchlew
Scott M. Klabacha
Brandelyn Klenner
Fredrick L. Klinker
Jeff A. Kluck
Raymond J. Kluesner
Leon W. Koch
John J. Kollar
Henry Joseph 

Konstanty
Andrew M. Koren
Gustave A. Krause
Rodney E. Kreps
Kenneth R. Krissinger
Jeffrey L. Kucera
Andrew E. Kudera
Kay E. Kufera
Kristine Kuzora
Dennis L. Lange
Gregory D. Larcher
Michael R. Larsen
Francis A. Laterza
Jason A. Lauterbach

Todd Lehmann
Kahshin Leow
Xin Li
Peter M. Licht
Elise C. Liebers
Matthew Allen 

Lillegard
Dengxing Lin
Shu C. Lin
Richard A. Lino
Erik Frank Livingston
Richard W. Lo
Edward P. Lotkowski
Stephen P. Lowe
Rimma Maasbach
Brett A. MacKinnon
Eric A. Madia
Donald F. Mango
Donald E. Manis
Laura S. Martin
Jonathan L. Matthews
Michael G. McCarter
Jeffrey F. McCarty
Kevin Paul 

McClanahan
Brent L. McGill
Christopher C. 

McKenna
David L. Menning
Stephen V. Merkey
Robert E. Meyer
Stephen J. Meyer
Glenn G. Meyers
Robert S. Miccolis
Mary D. Miller
Meagan S. Mirkovich

John H. Mize
Rodney S. Morris
Matthew C. Mosher
Roosevelt C. Mosley
Evelyn Toni Mulder
Raymond D. Muller
Thomas G. Myers
Leonidas V. Nguyen
William A. Niemczyk
James R. Nikstad
Tom E. Norwood
Miodrag Novakovic
David J. Oakden
Timothy James 

O’Connor
Teresa K. Paffenback
Donald W. Palmer
Jacqueline Edith Pasley
Michael Thomas 

Patterson
Harry Todd Pearce
Kathleen M. Pechan
Jeremy Parker Pecora
John R. Pedrick
Brian G. Pelly
Jeffrey J. Pfluger 
Marian R. Piet
Jordan J. Pitz
Kristine E. Plickys
Jayne L. Plunkett
Gregory T. Preble
Virginia R. Prevosto
John M. Purple
Mark S. Quigley
Kenneth Quintilian
Michele S. Raeihle
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Rajagopalan K. Raman
Scott E. Reddig
Elizabeth M. Riczko
Dale M. Riemer 
Brad E. Rigotty
Laura D. Rinker
Robert S. Roesch
Rebecca L. Roever
John W. Rollins
Sheldon Rosenberg
Christine R. Ross
Gail M. Ross
Daniel G. Roth
Jean Aviva Roy
Jean-Denis Roy
David L. Ruhm
Jason L. Russ
Bryant Edward Russell 
Frederick Douglas 

Ryan
Thomas A. Ryan
Manalur S. Sandilya
Frances G. Sarrel
Jeffery Scholl
Parr T. Schoolman
Genine Schwartz
Joy A. Schwartzman
Jin Shao
Mark R. Shapland
Junning Shi
Jeremy D. Shoemaker
Lisa A. Slotznick
Justin Nicholas Smith

Richard H. Snader
Joanne S. Spalla
David Spiegler
Daniel L. Splitt
Michael William Starke
Karine St-Onge
Mark Stephen Struck
Thomas Struppeck
Zongli Sun
Keith Jeremy Sunvold
Scott J. Swanay
Chester Szczepanski
Varsha A. Tantri
Karen F. Terry
Patricia A. Teufel
Kevin B. Thompson
Chris S. Throckmorton
Jennifer L. Throm
Dovid C. Tkatch
Jennifer M. Tornquist
Joel A. Vaag
Eric Vaith
William R. Van Ark
Daniel Jacob 

VanderPloeg
Oakley E. Van Slyke
Gary G. Venter
Mark Alan Verheyen
Kevin K. Vesel
Marie-Eve J. Vesel
Jennifer S. Vincent
Steven M. Visner
William J. VonSeggern

James C. Votta
Mary Elizabeth Waak
Michael G. Wacek
Christopher P. Walker
Glenn M. Walker
Joseph W. Wallen
Robert J. Walling
Michael A. Walters
Mo Wang
Bryan C. Ware
Kevin E. Weathers
Peter A. Weisenberger
Joseph C. Wenc
Geoffrey Todd Werner
William B. Westrate
Mark Whitman
Kevin L. Wick
Kendall P. Williams
Martha A. Winslow
Dean M. Winters
Robert F. Wolf
Patrick B. Woods
Micah G. 

Woolstenhulme
Yuanhe Yao
Gerald T. Yeung
Sung G. Yim
Richard P. Yocius
Ronald J. Zaleski Jr.
Ronald J. Zaleski Sr.
Doug A. Zearfoss
Lijuan Zhang
Hongbo Zhou



778 MINUTES OF THE 2005 ANNUAL MEETING  

ASSOCIATES

Avraham Adler
Vera E. Afanassieva
Jodie Marie Agan
Amit Alea Agarwal
Sajjad Ahmad
Gwendolyn L. 

Anderson
Nancy L. Arico
Kelleen D. Arquette
Yanfei Z. Atwell
Nathan J. Babcock
Gregory S. Babushkin
Kristi Spencer 

Badgerow
Tiffany Jean Baron
Angelo Edward 

Bastianpillai
Jeffrey Donald 

Bellmont
Matthew C. Berasi
Jonathan Bilbul
Brad Stephen 

Billerman
Jon Paul Bloom
Peter George Blouin
Sharon D. Blumer
Christopher David 

Bohn
Nicolas Boivin
Randall T. Buda
Morgan Haire Bugbee
Kenrick A. Campbell
Jessica Yiqing Cao
Jeffrey M. Casaday
Patrick J. Causgrove

Paul A. Ceaser
Matthew S. 

Chamberlain
Bernard L. Chan
David A. Christhilf
Raul Cisneros
Donald L. Closter
Glenn A. Colby
Kirk Allen Conrad
Thomas P. Conway
Chad J. Covelli
Daniel A. Crifo
Tighe Christian 

Crovetti
Walter C. Dabrowski
Raymond V. Debs
Krikor Derderian
Jonathan E. Devilbiss
Brent P. Donaldson
Alice H. Edmondson
Michael D. Ersevim
Juan Espadas
Brian A. Evans
Stephen Charles Fiete
Jason A. Flick
Mark A. Florenz
Kyle P. Freeman
Derek W. Freihaut
Stuart G. Gelbwasser
Maxime Gelinas
Simon Girard
Gregory P. Goddu
Rebecca J. Gordon
Dawson T. Grubbs
Gerald S. Haase

William Joseph 
Hackman

Brian P. Hall
Aaron M. Halpert
James W. Harmon
Philip E. Heckman
Kathryn E. Herzog
Megann Elizabeth Hess
Nathan Jaymes Hubbell
Jeffrey R. Ill
John J. Javaruski
Min Jiang
Ziyi Jiao
Brian E. Johnson
Jeremiah D. Johnson
Ross Evan Johnson 
Amy Ann Juknelis
David L. Kaufman
Jean-Philippé Keable
Sarah M. Kemp
Martin T. King
Diane L. Kinner
David J. Klemish
Rachel M. Klingler
Christine K. Kogut
Thomas R. Kolde
Leland S. Kraemer
Annie Latouche
Kak Lau
Khanh M. Le
Sean M. Leonard
Jean-François Lessard
Mingyue Li
Sharon Xiaoyin Li
Andy Hankuang Liao
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Cunbo Liu
Jin Liu
Nannan Liu
Todd L. Livergood
Andrew F. Loach
Laura J. Lothschutz
Neelam P. Mankoff
Minchong Mao
Albert-Michael Micozzi
Daniel E. Mikesh
Aaron G. Mills
Richard James Mills
Lori A. Moore
Allison L. Morabito
Mundia Mubyana
Daniel G. Myers
Marc L. Nerenberg
Anthony J. Nerone
Stephanie Jo Odell
Christopher John Olsen
Alejandro Antonio 

Ortega
Wade H. Oshiro
Keith William Palmer
Joy-Ann C. Payne
Willard W. Peacock
Robert B. Penwick
Robert C. Phifer
Joseph G. Pietraszewski
Susan R. Pino
Jean-Philippe Plante
Ruth Youngner 

Poutanen

Yves Provencher
Arthur R. Randolph
James E. Rech
Cynthia L. Rice
Zoe F. Rico
Christopher R. Ritter
Benjamin G. 

Rosenblum
Randall D. Ross
John C. Ruth
Sandra C. Santomenno
Anita A. Sathe
Lawrence M. Schober
Erika Helen Schurr
Ronald S. Scott
Sheri Lee Scott
Ben Silberstein
Charles Sizer
Jeffery J. Smith
Katherine R.S. Smith
Robert K. Smith
Patrick Shiu-Fai So
Joanna Solarz
Jessica Elsinger 

Somerfeld
Richard Cambran 

Soulsby
Michael P. Speedling
Paul Quinn 

Stahlschmidt
Mindy M. Steichen
Yuchen Su
Beth M. Sweeney

Joy Y. Takahashi
Luc Tanguay
Aaron A. Temples
Robert Bradley Tiger
Phoebe A. Tinney
Thomas A. Trocchia
Jonathan Turnes
Susan B. VanHorn
John E. Wade
David G. Walker
Todd Patrick Walker
Xuelian Wan
Felicia Wang
Jingtao Wang
Scott Werfel
Amanda J. White
Andrew T. Wiest
Martin E. Wietfeldt
Ronald Harris Wilkins
Shauna S. Williams
Benjamin T. Witkowski
Dorothy A. Woodrum
Donald S. Wroe
Xinxin Xu
Yi-Chuang Yang
Min Yao
Yanjun Yao
Joshua A. Youdovin
Wei Zhao
Michael V. Ziniti



REPORT OF THE VICE PRESIDENT—ADMINISTRATION

This report provides a one-year summary of Casualty Actu-
arial Society activities since the 2004 CAS Annual Meeting. I
will first comment on these activities as they relate to the orga-
nization’s purposes as stated in the CAS constitution, which are
to:

1. Advance the body of knowledge of actuarial science applied
to property, casualty, and similar risk exposures;

2. Establish and maintain standards of qualifications for mem-
bership;

3. Promote and maintain high standards of conduct and compe-
tence for the members; and

4. Increase the awareness of actuarial science.

I will then provide a summary of other activities that may not
relate to a specific purpose, but are critical to the ongoing vitality
of the CAS. Finally, I will summarize the current status of our
finances and key membership statistics.

CAS ACTIVITIES

1. Advance the body of knowledge of actuarial science
applied to property, casualty, and similar risk exposures.

A significant step in achieving this goal came in 2005 when
the CAS announced plans to launch a new peer-reviewed journal.
The journal will publish practical research that can be applied by
the practicing actuary. Curtis Gary Dean was appointed editor in
chief and Richard Fein, Dale Edlefson, and Gary Venter were
named associate editors in charge of peer review, copy editing,
and development, respectively. Following is the journal’s adopted
mission statement:

780
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The Journal (which is not yet named) is a peer-
reviewed journal published by the Casualty Actuar-
ial Society to disseminate work of interest to casualty
actuaries worldwide. The Journal’s focus is original
practical and theoretical research in casualty actuarial
science. Significant survey or similar articles are also
considered for publication. Membership in the Casu-
alty Actuarial Society is not a prerequisite for submit-
ting papers to the Journal and submission by non-CAS
members is encouraged.

Publication of the Forum and the Proceedings of the Casualty
Actuarial Society provides significant means for the advancement
of the body of actuarial science. The 2005 winter, spring, and
fall volumes of the Forum focus on ratemaking, reinsurance, and
research working party papers, respectively. The Proceedings in-
clude papers exploring many different subjects–from modeling
financial scenarios to estimating the workers compensation tail.

The CAS also approved $9,500 in funding from the CAS Re-
search Fund for a Society of Actuaries Committee on Knowledge
Extension Research (CKER) grant proposal. Vytaras Brazauskas
of the University of Wisconsin in Milwaukee proposed the study,
“Robust and Efficient Methods for Credibility.” The study will
develop reliable credibility estimators that are designed to per-
form well under realistic model assumptions. The CAS Com-
mittee on Theory of Risk (COTOR) reviewed the project and
concluded that the research represents groundbreaking work of
great interest to CAS members. COTOR will also oversee the
project.

With an eye on promoting actuarial science concepts to a
wider business audience, the Enterprise Risk Management Task
Force was charged with implementing an ERM process for the
CAS as an example of ERM best practices. Once the ERM study
is completed, it could be made the basis of an article in the asso-
ciation management press. This study would include quantifying
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certain types of risks facing the CAS, as well as identifying op-
portunities.

2. Establish and maintain standards of qualifications for
membership.

CAS Admissions Committees and Task Forces pursued a
number of developments. The Task Force on Study Materials
recommended that the CAS issue an RFP to develop more ef-
fective study materials for basic education. In response to the
recommendation, the Syllabus Committee issued an RFP for an
integrated study note on catastrophe ratemaking in July 2005 and
contracted with a vendor in November 2005. The committee li-
aison will continue to work with the author to finalize the paper
in 2007. This pilot project will help to determine whether the
RFP process is appropriate for creating integrated study notes.

The CAS also made strides in mutual recognition, executing
agreements with the United Kingdom’s Institute of Actuaries and
the Faculty of Actuaries. The mutual recognition agreements give
Fellows of the CAS the opportunity to become Fellows of either
the Institute of Actuaries or the Faculty of Actuaries. Addition-
ally, members of the U.K. associations also have the opportu-
nity to join the CAS. Following those agreements, the Society
of Actuaries in Ireland (SAI) determined that CAS Fellows were
eligible for Fellowship in the SAI, subject to having at least three
years of recent and appropriate practical experience, with at least
one of those years working within the Republic of Ireland.

In considering a move to a single class of membership, the
board instructed the executive council to establish the Task Force
on FCAS Education. The task force was charged with propos-
ing a set of learning objectives by which the FCAS designation
can be obtained. These learning objectives should result in the
ability to attain the FCAS designation with less material than the
current exam, (i.e., with fewer than the current 9 exams), while
meeting the requirements of the IAA and being consistent with
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the CAS Centennial Goal. The task force concluded that it re-
quired additional education policy guidance in order to complete
this charge and requested that the board of directors articulate a
specific policy with respect to the capabilities of its future mem-
bers. The task force listed ten specific areas to be addressed. A
separate task force, the FCAS Education Board Task Force, was
created in order to provide the desired guidance and address the
concerns.

In November 2005 the board decided to move ahead with the
issues of giving the ACAS the right to vote and moving to one
class of membership, despite the fact that the education issue
had not yet been resolved. The board instructed the CAS Exec-
utive Director and the VP—Administration to delineate a process
whereby the awarding of ACAS could be phased out within five
years, and the vote could be given to ACAS immediately (subject
to the constraints previously prescribed by board resolutions).
The proposition for the ACAS vote is scheduled to be placed
on the membership election ballot in summer 2006. Proposed
language for the ballot would be considered by the board at its
March 2006 meeting.

3. Promote and maintain high standards of conduct and
competence of members.

Throughout the years, the CAS quality programs of continu-
ing education opportunities and the Code of Professional Con-
duct have successfully fulfilled this purpose. The CAS provides
education opportunities through the publication of actuarial ma-
terials and the sponsorship of meetings and seminars. This year’s
meetings and seminars included the following:

Meetings:
Location CAS Members

Spring Phoenix 527
Annual Baltimore 512
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Seminars:
CAS

Topic Location Members

Ratemaking New Orleans 284
Symposium on Enterprise Risk Management Chicago 72
Reinsurance Bermuda 422
Casualty Loss Reserves Boston 429
Special Interest Seminar on Predictive Modeling Chicago 171
Course on Professionalism, December 2004 2 locations 111
Course on Professionalism, June 2005 2 locations 120

Limited attendance seminars included two sessions on “Rein-
surance” and one session each on “Practical Applications of Loss
Distributions” and “Asset Liability Management Principles of
Finance.” the CAS responded to the growing number of candi-
dates in Asia when Hong Kong hosted a CAS Course on Profes-
sionalism (COP)–the first COP held outside the United States
and Canada.

The executive council also approved creating audio record-
ings of a select number of sessions from the 2005 CAS Annual
Meeting, which were made available through the CAS Web Site.
Four online courses were also conducted on the Web site.

4. Increase the awareness of actuarial science.

In 2005 the CAS, along with SOA, AAA, CIA, and CCA
launched a public relations campaign to promote establishing the
chief risk officer position in U.S. and Canadian businesses. An
Image Advisory Group representing the entire profession guided
the campaign. The image campaign’s goals are to create a more
dynamic and relevant image in the minds of the employers, build
a vibrant new image within the profession itself, and create a
sustainable program that builds on each success.
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The initial focus of the program includes CEOs and CFOs
in insurance, reinsurance, and consulting firms, and actuaries,
recruiters, and decision makers in the “broader financial ser-
vices” sector (e.g., investment banks and mutual fund compan-
ies).

Immediate plans for the campaign include introducing an ad-
vertising program to build grassroots understanding and involve-
ment within the profession, developing a resource kit enabling
actuaries to communicate their value more effectively, and imple-
menting a public relations program targeting key decision makers
on enterprise risk management.

Another effort to promote the actuarial profession involves
reaching out to young people with interests in math and science.
The CAS, in conjunction with the Minority Recruitment Com-
mittee, awarded four Baltimore high school students with $500
college scholarships at the 2005 CAS Annual Meeting. The stu-
dents, who were honored for their achievements in mathematics,
were Nahathai Srivali, Desmond Cooper, Tyre Wise, and Denita
Hill.

OTHER CAS ACTIVITIES

Several other CAS activities contributed to the ongoing vi-
tality to the organization during 2005. The Publications Imple-
mentation Task Force (PITF) was created to implement the rec-
ommendations of the Publications Task Force. Chief among the
PITF’s tasks is to launch the new CAS journal and to integrate it
with existing CAS publications. The PITF recommended that the
Proceedings continue to be published with CAS specifics such
as meeting minutes, financial reports, and obituaries, and that all
peer-reviewed papers be published in the new journal. The con-
tents of the Yearbook, minus the membership directory, will also
be included combined with the Proceedings to create a new CAS
publication. A yearly hard copy of the membership directory will
be available to members who request it, though it is expected
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that many members will opt to use the more up-to-date online
directory.

The Society achieves quite a lot through the volunteer efforts
of members. To acknowledge the vital participants in CAS ac-
tivities, CAS established the Above and Beyond Achievement
Award as a way to recognize one-time accomplishments occur-
ring over the past two years by volunteers. The CAS awarded the
2005 ABAA to David Menning, Kristine Kuzora, Jerome Vogel,
and Michael Wacek.

David Menning has been highly effective in leading the CAS’s
joint efforts with the SOA and CIA to implement computer-
based testing (CBT) for Exam 1. Kristine Kuzora volunteered
on the Research Paper Classifier Project where she classified
over 600 abstracts with the new CAS Research Taxonomy–
in just 25 days. The CAS honored Jerome Vogel for work-
ing on the Research Paper Classifier Project Committee. At
the time the award was given, he had classified over 500 ab-
stracts, or 13 percent of the 4,200 abstracts needing classifica-
tion. Michael Wacek was selected for his work in chairing the
CAS Working Party on Risk Transfer Testing where he produced
a thorough, high-quality research paper in just one month’s
time.

In December the CAS office moved to a new location in Ar-
lington, Virginia. The larger office space allows for more staff
growth and is in closer proximity to the Washington, D.C. Metro-
rail system.

MEMBERSHIP STATISTICS

Membership growth continued with 180 new Associates and
132 new Fellows. The total number of members as of November
2005 was 4,150, up four percent from the previous year. The
CAS reached the 4,000 member milestone with the addition of
22 new members on February 16, 2005.
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GOVERNANCE

With the aim of expanding governance to include an emerging
field of actuarial science, the board approved a new executive
council position of vice president—risk integration. The function
of the new position is to coordinate all CAS activities relating to
risk integration, with specific attention to integrating hazard risk
with financial, strategic, and operational risk. John J. Kollar was
appointed the first Vice President—Risk Integration in fall 2005.

Thomas G. Myers was elected president-elect for 2005—2006.
CAS Fellows also elected Irene K. Bass, Glenn Meyers, Donald
F. Mango, and Roosevelt C. Mosley Jr. to the CAS Board of
Directors. Paul Braithwaite assumed the presidency.

The CAS Board of Directors elected the following vice
presidents for the coming year: Deborah M. Rosenberg, Vice
President—Administration; James K. Christie, Vice President—
Admissions; Amy S. Bouska, Vice President—International;
Joanne Spalla, Vice President—Marketing and Communications;
Beth E. Fitzgerald, Vice President—Professional Education; Roger
M. Hayne, Vice President—Research and Development; and John
J. Kollar, Vice President—Risk Integration. The CAS Executive
Council met either by telephone or in person at least once a
month during the year (except September) to discuss day-to-day
and long-range operations.

FINANCIAL STATUS

The CPA firm Langan Associates PC examined the CAS
books for fiscal year 2005 and the CAS Audit Committee re-
ported the firm’s findings to the CAS Board of Directors in
March 2006. The fiscal year ended with an audited net gain of
$413,509 compared to a budgeted net loss of $114,363.

The CAS Surplus now stands at $3,725,552. This represents
an increase in surplus of $413,509 over the amount reported last
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year. In addition to the net gain from operations of $151,823,
there was interest and dividend revenue of $155,411, an unre-
alized gain of $109,210, and a realized loss of $2,936. There
was also a total net increase of $145,461 in various research,
prize, and scholarship accounts (including the CAS Trust) arising
from the difference between incoming funds and interest earned
less expenditures, and a favorable adjustment to the CAS pen-
sion liability. These amounts are not reflected in the net revenue
from operations. Total Members’ Equity (CAS Surplus plus non-
surplus accounts) now stands at $4,155,268, an overall increase
of $558,970 over last year.

For 2005—2006, the CAS Board of Directors has approved a
budget of approximately $5.9 million. Members’ dues for next
year will be $365, an increase of $10, and fees for the Subscriber
Program will increase $10 to $435. A $45 discount is available
to members and subscribers who elect to receive the Forum and
Discussion Paper Program in electronic format from the CAS
Web Site.

Respectfully submitted,
Deborah M. Rosenberg
Vice President—Administration



FINANCIAL REPORT
FISCAL YEAR ENDED 9/30/2005

OPERATING RESULTS BY FUNCTION
FUNCTION REVENUE EXPENSE   DIFFERENCE
Membership Services $01,360,269   $01,946,324   $0.(586,056)
Seminars 1,526,321   1,258,511  267,810
Meetings 789,795 801,071 (11,276)
Exams 3,993,726 (a) 3,499,641 (a) 494,085
Publications 22,136 34,877   (12,741)
TOTALS FROM OPERATIONS $ 7,692,246   $ 7,540,423   $   ,0151,823 (c)
Interest and Dividend Revenue 155,411 (c)
Realized Gain/(Loss) on Marketable Securities    (2,936) (c)
Unrealized Gain/(Loss) on Marketable Securities    109,210 (c)
TOTAL NET INCOME (LOSS)    $00,0413,509 (c)

NOTE:    (a) Includes $2,119,313 of Volunteer Services for income and expense (SFAS 116).

BALANCE SHEET
ASSETS 9/30/2004   9/30/2005   DIFFERENCE
Cash and Cash Equivalents  $01,293,453   $00,755,704  $00(537,749)
T-Bills/Notes, Marketable Securities   3,634,448   4,783,051   1,148,603
Accrued Interest 24,211 23,937 (274)
Prepaid Expenses/Deposits 88,261 131,631 43,370
Prepaid Insurance 30,338 35,192 4,854
Accounts Receivable   51,482 52,000 518
Intangible Pension Asset   7,860 5,742 (2,118)
Textbook Inventory   12,369 9,523 (2,846)
Computers, Furniture 467,516 448,450 (19,066)
Less: Accumulated Depreciation   (377,124)    (376,273)   851
TOTAL ASSETS $ 5,232,814  $ 5,868,958   $000636,143

LIABILITIES 9/30/2004 9/30/2005  DIFFERENCE
Exam Fees Deferred $00,714,605  $00,792,000  $0000 77,395
Annual Meeting Fees Deferred 70,070 81,155 11,085
Seminar Fees Deferred 181,060 33,000 (148,060)
Accounts Payable and Accrued Expenses   478,481   624,782 146,301
Accrued Pension 192,301 182,754 (9,547)
TOTAL LIABILITIES $,,1,636,516   $01,713,691   $0000 77,174

MEMBERS' EQUITY
Unrestricted 9/30/2004 9/30/2005   DIFFERENCE
CAS Surplus $03,312,044  $ 3,725,552  $0000413,509
Pension minimum liability (net of
  unamortized service cost of 
  $5,742–2005 and $7,860–2004) (80,318) (38,065) 42,253
Michelbacher Fund 129,160 134,322 5,162
CAS Trust-Operating Fund   107,825 135,466 27,641
Centennial Fund 23,944 49,742 25,798
ASTIN Fund 0 10,400 10,400
Research Fund 62,482 99,576 37,094
  Subtotal Unrestricted $03,555,137  $ 4,116,994   $0,0 561,857

Temporarily Restricted   9/30/2004 9/30/2005   DIFFERENCE
Scholarship Fund $00,005,728  $00,005,457   $00, ,00(271)
Rodermund Fund 7,391 6,686 (705)
CAS Trust-Ronald Ferguson Fund     28,042 26,131 (1,911)
  Subtotal Temporarily Restricted 41,161 38,274 (2,887)
TOTAL MEMBERS’ EQUITY $ 3,596,297   $ 4,155,268   $00,,558,970

Deborah Rosenberg, Vice President–Administration
This is to certify that the assets and accounts shown in the above
financial statement have been audited and found to be correct.

CAS Audit Committee: Bob Deutsch, Chairperson; 
Regina M. Berens, Michael P. Blivess, and Natalie Vishnevsky

REPORT OF THE VICE PRESIDENT–ADMINISTRATION 789



790

2005 EXAMINATIONS—SUCCESSFUL CANDIDATES

Examinations for Exams 3, 5, 7-Canada, 7-United States, and 
8 of the Casualty Actuarial Society were held May 3–6, 2005. 
Transitional Validation by Education Experience (VEE) Examina-
tions for Economics, Corporate Finance, and Applied Statistical 
Methods were held August 10, 2005. Examinations for Exams 3, 
6, and 9 of the Casualty Actuarial Society were held November 
1–3, 2005.

Examinations for Exams 1, 2, and 4 are jointly sponsored by 
the Canadian Institute of Actuaries, Casualty Actuarial Society, 
and the Society of Actuaries and were held in May and November 
2005. Candidates successful on these examinations were listed in 
joint releases of the Societies.

The following candidates were admitted as Fellows and Associ-
ates at the 2005 CAS Spring Meeting in May. By passing Fall 2004 
CAS examinations, these candidates successfully fulfilled the So-
ciety requirements for Fellowship or Associateship designation.

NEW FELLOWS

John Leslie Baldan
Christopher M. Bilski
Kirk David Bitu
Amber L. Butek
James Chang
Hung Francis Cheung
Matthew Peter Collins
Keith William Curley
David A. De Nicola
Nicholas John 

De Palma
Ryan Michael Diehl
Melanie S. Dihora
Brian Michael Donlan
Ellen Donahue 

Fitzsimmons
William J. Fogarty

Sébastien Fortin
Charles R. Grilliot
James Donald Heidt
Eric David Huls
Scott Robert Hurt
Marie LeStourgeon
Young Yong Kim
Brandon Earl Kubitz
Hoi Keung Law
Amanda Marie 

Levinson
Gavin Xavier 

Lienemann
John Thomas Maher
Laura Suzanne Martin
James Paul McCoy
Shawn Allan McKenzie

James Lewis Norris
Bruce George 

Pendergast
Matthew James Perkins
Michele S. Raeihle
Robert Allan Rowe
Quan Shen
Summer Lynn Sipes
James M. Smieszkal
Liana St-Laurent
Keith Jeremy Sunvold
Erica W. Szeto
Malgorzata Timberg
Nicholas Jaime 

Williamson
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NEW ASSOCIATES

Richard J. Bell III
Darryl Robert 

Benjamin
Stacey Jo Bitler
Karen Beth Buchbinder
Simon Castonguay
Denise L. Cheung
Melissa Diane Elliott

Solomon Carlos 
Feinberg

John S. Flattum
Jonathan W. Fox
Edward Lionberger
Brent Layne McGill
Thomas Edward Meyer
Alan E. Morris

Catherine Ann Morse
Lisa M. Nield
Frank W. Shermoen
Shannon Whalen
Stephen C. Williams
Stephen K. Woodard
Navid Zarinejad
Robert John Zehr

The following candidates successfully completed the following 
Spring 2005 CAS examinations.

The following candidates were admitted as Fellows and As-
sociates at the 2005 CAS Annual Meeting in November. By pass-
ing Spring 2005 CAS examinations, these candidates successfully 
fulfilled the Society requirements for Fellowship or Associateship 
designation.

Fernando Alberto 
Alvarado

Brian C. Alvers
Maura Curran Baker
Rose D. Barrett
Derek Dennis Berget
Brian J. Biggs
Corey J. Bilot
Rebekah Susan Biondo
Tapio N. Boles
James L. Bresnahan
John R. Broadrick
Michele L. Brooks
Elaine K. Brunner
Matthew D. Buchalter
Anthony Robert 

Bustillo

Hsiu-Mei Chang
Alan M. Chow
Jason T. Clarke
Kevin A. Cormier
Justin B. Cruz
David F. Dahl
Chantal Delisle
Laura S. Doherty
Tomer Eilam
Bruce Fatz
Dale A. Fethke
William John Gerhardt
John S. Giles
Kristen Marie Gill
David B. Gordon
Jeffrey Robert Grimmer
Megan Taylor Harder

Robin A. Haworth
Brandon L. Heutmaker
Joseph S. Highbarger
Bo Huang
Richard Clay Jenkins
Philip J. Jennings
Shiwen Jiang
Yi Jing
Dana F. Joseph
Omar A. Kitchlew
Scott M. Klabacha
Andrew M. Koren
Bradley S. Kove
Terry T. Kuruvilla
Francois Lacroix
Kahshin Leow
Xin Li

NEW FELLOWS
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Erik Frank Livingston
Jonathan L. Matthews
Brent L. McGill
Christopher Charles 

McKenna
Sylwia S. McMichael
Meagan S. Mirkovich
Rodney S. Morris
Leonidas V. Nguyen
Miodrag Novakovic
Timothy James 

O’Connor
Kathleen C. Odomirok
Jeremy Parker Pecora

Gregory T. Preble
Damon Joshua Raben
Dale M. Riemer
Brad E. Rigotty
Bryant Edward Russell
Frances G. Sarrel
Jeffery Wayne Scholl
Genine Darrough 

Schwartz
Justin Nicholas Smith
Mark Stephen Struck
Zongli Sun
Dovid C. Tkatch
Jennifer M. Tornquist

Joel A. Vaag
Daniel Jacob 

VanderPloeg
Kevin K. Vesel
Mo Wang
Kevin E. Weathers
Huey Wen Yang
Yuanhe Yao
Sung G. Yim
Ronald Joseph 

Zaleski Jr.
Lijuan Zhang
Hongbo Zhou
Steven Bradley Zielke

Avraham Adler
Vera E. Afanassieva
Amit Agarwal
Sajjad Ahmad
Kelleen D. Arquette
Yanfei Z. Atwell
Gregory S. Babushkin
Kristi Spencer 

Badgerow
Gregory K. Bangs
Tiffany Jean Baron
Angelo Edward 

Bastianpillai
Mark Belasco
Jeffrey Donald 

Bellmont
Matthew C. Berasi
Sonal Bhargava
Jonathan Bilbul
Brad Stephen Billerman

Jon Paul Bloom
Peter George Blouin
Nicolas Boivin
Randall T. Buda
Morgan Haire Bugbee
Jessica Yiqing Cao
Jeffrey M. Casaday
Paul A. Ceaser
Matthew S. 

Chamberlain
Bernard L. Chan
Tsz Kin Chan
Joung-Ju Chung
Raul Cisneros
Glenn A. Colby
Kirk Allen Conrad
Lawrence G. Cranor
Tighe Christian 

Crovetti
Walter C. Dabrowski

Jonathan E. DeVilbiss
Brent Pollock 

Donaldson
Michael D. Ersevim
Choya A. Everett
Marc-Olivier Faulkner
Jason A. Flick
Mark A. Florenz
Kyle P. Freeman
Derek W. Freihaut
Timothy M. Garcia
Nina Vladimirovna Gau
Stuart G. Gelbwasser
Maxime Gelinas
Simon Girard
Gregory P. Goddu
Rebecca J. Gordon
Wesley John Griffiths
Isabelle Guerin
Gerald S. Haase

NEW ASSOCIATES
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William Joseph 
Hackman

Brian P. Hall
James W. Harmon
Megann Elizabeth Hess
Nathan Jaymes Hubbell
Yu Shan Hwang
Alison Susanne 

Jennings
Ziyi Jiao
Jeremiah D. Johnson
Ross Evan Johnson
Amy Ann Juknelis
Jennifer Ge Kang
Brian M. Karl
Jean-Philippe Keable
Sarah M. Kemp
David J. Klemish
Rachel M. Klingler
Christine K. Kogut
Thomas R. Kolde
Leland S. Kraemer
Michael A. Lardis
Catherine M. Larson
Annie Latouche
Kak Lau
Jeremy M. Lehmann
Sean M. Leonard
Jean-Francois Lessard
Mingyue Li
Andy Hankuang Liao
Cunbo Liu
Jin Liu
Nannan Liu
Todd L. Livergood
Andrew F. Loach

Laura J. Lothschutz
Neelam P. Mankoff
Minchong Mao
Angela Garrett McGhee
Albert-Michael Micozzi
Daniel E. Mikesh
Aaron G. Mills
Richard James Mills
Lori A. Moore
Allison L. Morabito
Mundia Mubyana
Daniel G. Myers
Marc L. Nerenberg
Benjamin R. Newton
Tho D. Ngo
Stephanie Jo Odell
Christopher John Olsen
Alejandro Antonio 

Ortega Jr.
Keith William Palmer
Joy-Ann C. Payne
Joseph G. Pietraszewski
Jean-Philippe Plante
Lynellen M. Ramirez
Arthur R. Randolph
Zia Rehman
Zoe F. Rico
Arnie W. Rippener
Randall D. Ross
John C. Ruth
Anita A. Sathe
Lawrence M. Schober
Erika Helen Schurr
Ronald S. Scott
Sheri Lee Scott
Clista E. Sheker

Robert K. Smith
Patrick Shiu-Fai So
Joanna Solarz
Richard Cambran 

Soulsby
Michael P. Speedling
Paul Quinn Stahlschmidt
Mindy M. Steichen
Yuchen Su
Feixue Tang
Luc Tanguay
Aaron A. Temples
Robert Bradley Tiger
Phoebe A. Tinney
Levente Tolnai
Rachel Katrina Tritz
Benjamin Joel Turner
Jonathan Kowalczyk 

Turnes
Allan S. Voltz
Todd Patrick Walker
Xuelian Wan
Jingtao Wang
Amanda J. White
Andrew T. Wiest
Martin E. Wietfeldt
Ronald Harris Wilkins
Shauna S. Williams
Benjamin T. Witkowski
Dorothy A. Woodrum
Yi-Chuang Yang
Min Yao
Yanjun Yao
Hui Yu Zhang
Wei Zhao
Michael V. Ziniti



794 2005 EXAMINATIONS—SUCCESSFUL CANDIDATES  

Exam 3
Roselyn M. Abbiw-

Jackson
Victoria L. Adamczyk
Bilal Ahmed Alam
Christopher Robert 

Allard
John E. Amundsen
Amel Arhab
Elizabeth Asher
Shobhit Awasthi
Nathan H. Beaven
Aaron J. Beharelle
Jean-Michel Belanger
Kevin D. Bell
Zhihui Bian
Genevieve Boivin
Stephanie Elizabeth 

Booth
Jason Braun
Anthony Dane Bredel
Natalie L. Brown
Courtney L. Burch
Duoduo Cai
Li Cao
Ryan V. Capponi
Jeffrey H. Carter
Elizabeth Cashman
Bryan D. Chapman
Nicole K. Chizek
Wasim Chowdhury
Steven C. Coakley
Ryan Crabtree

Lawrence G. Cranor
Caitlin M. Cunningham
Andrew John Dalgaard
Mark K. Damron
Scott C. Davidson
Joseph T. Degeneffe
Jennifer Lynn Dempster
Amanda Emily Diegel
Blake W. Eastman
Shannon Erdmann
John Daniel Fanning
Kevin L. Feltz
Gregory Andrew 

Finestine
James L. Flinn
Sheri C. Foster
Michael S. Foulke
Jonathan Frost
Yan L. Fung
Michael Steven 

Goldman
Marcela Granados
Dmitriy Guller
Sarah N. Gundersen
Imani Lakisha 

Hamilton
Derek J. Haney
Jason N. Harger
Stephen M. Harter
Keith E. Henseler
Brady L. Hermans
Mark R. Hoffmann

Krista M. Hoglund
Rebecca H. Holnagel
Elena C. Iordan
Megan S. Johnson
Suruchi Joshi
Amara Echika Kamanu
Amanda R. Kemling
Jeffrey Bryan Kerner
John M. Koch
Erik David Kolstad
Jennifer S. Kowall
Dusan Kozic
Mark J. Larson
Alexander Jonathan 

Laurie
Patricia Mary Leonard
Stephen L. Lienhard
Chih-Fan Liu
David A. Logan
Thomas R. Longwell
Yi Luo
Roman Fedorovich 

Makordey
Sean M. McAllister
Cory McNattin
Jessica Lynn Minick
Steve Brian Monge
Stuart W. Montgomery
Justin M. Morgan
Kagabo E. 

Ngiruwonsanga
William Frank Nichols

The following candidates successfully completed the following 
Spring 2005 CAS examinations.
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Abigail A. Ouimet
Youngok Park
Satya Pravin Patel
Michael W. Payne
Daniel G. Penrod
Jennifer M. 

Poeppelman
Jeffrey Scott Prince
Jenni Elizabeth Prior
Scott J. Rasmussen
Dawn Richie
Crystal Rae Roforth
Josselyn M. Roush
William F. Rulla
Robert Michael Saliba
Todd Saunders
Lawrence M. Schober

Jonathan M. Schreck
April M. Scull
Matthew D. Sharp
Raymond Bond Shum
Erin A. Snyder
Peng Mok Tey
Rajiv P. Thomas
Michael B. Thompson
Rajesh C. Thurairatnam
Cristina Torres
Edward F. Tyrrell
Shane P. Vadbunker
Nicholas G. Van 

Ausdall
Julie Caroline Wagner
Jipei Wang
Kaicheng Wang

Soyonng O. Weidner
Steven M. Wilson
Todd F. Witte
Lin Xiong
Xiaoyou Xu
Feng Yane
Ping Yang
Xuan Yang
Kimberly Yeomans
Gabriel Ronald Young
Anne E. Youngers
Mei Yu
Wen Bo Yu
Yuan-Hung Yu
Nan Zhang
Wei Zhang
Baiyang Zhi

Exam 5
Denene C. Adamack
Eve Ingrid Adamson
Mawunyo K. Adanu
Vera E. Afanassieva
Marcus R. Aikin
Michael L. Alfred
Jasmin Alibalic
Scott Morgan Allen
Xin Allen
Christopher T. 

Andersen
Alanna Catherine 

Anderson
Ross H. Anderson
David Michael Andrist
Angelina M. Anliker
George N. Argesanu

William M. Arthur II
Genevieve Aubin
Robert Joseph Azari
Robert Michael Baron
Aaron Thomas Basler
Danny Baxter
Amelie Beauregard-

Beausoleil
Alex G. Bedoway
Anthony O. Beirne
Brian Douglas Bender
Guillaume Benoit
David R. Benseler
Keith R. Berman
Nadege Bernard-

Ahrendts
Sarah Bhanji

Charles H. Birckhead
Jennifer L. Blackmore
Francois Blais
James M. Boland III
Josiane Bolduc
Elizabeth Bomboy
Melissa L. Borell
Kimberly A. Borgelt
Zachary L. Bowden
Ishmealin Boye
Yisheng Bu
Michael Edward 

Budzisz
Ali Ahmed Bukhari
Seth L. Burstein
Joanna B. Byzdra
Laura N. Cali
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Cemal Alp Can
Sarah B. Cardin
Thomas R. Carroll
Laura M. Carstensen
Lauren Jill Cavanaugh
Luyuan Chai
Keith J. Champagne
Sai Fan Chan
Annie Chang
Chanjuan Chen
Michael Keryu Chen
Wenzhi Chen
Houston Hau-Shing 

Cheng
Leong Yeong Chew
Nitin Chhabra
Chung Man Ching
Shawn T. Chrisman
Gareth John 

Christopher
David Garvin Clark
Jason A. Clay
Brenda Clemens
Elizabeth Cohen
Daniel G. Collins
Karen M. Commons
Dalia Concepcion
Kevin Conway
Peter M. Corrigan
Caleb Ashley Cox
Remi Crevier
Matthew Miller Crotts
Jason J. Culp
Richard Joseph Cundari
Alexandre 

Cung-Rousseau

Katy J. Cuthbertson
David B. Dalton
Jacqueline P. Danetz
Melisa L. Darnieder
Dawne Laurenne 

Davenport
Stephen P. Decoteau
Paige M. Demeter
Caroline Desy
Anthony S. Diaz
Matthew S. Dobrin
Yiping Dou
Jennifer L. Edwards
Isaac R. Espinoza
Eveline Falardeau
Caryl Marie Fank
Christopher G. Fanslau
Jacob C. Fetzer
Michael J. Fiorito
Timothy J. Fleming
Jill A. Frackenpohl
Carol Ann Garney
Marne E. Gifford
Priyangsha S. Godha
Kasi Joelle Golden
Victoria A. Gomez
Rui Gong
Linda Grand
Neil A. Greiner
Joshua S. Grunin
Mary Ann Grzyb
Liang Guo
Yunjian Guo
Amit K. Gupta
Jeannette Marie Haines
David S. Hamilton

John C. Hanna Jr.
Tyree Harris
Ryan D. Hartman
Joseph Patrick Hasday
Arie Haziza
James R. Healey
Kelly J. Hernandez
Wade R. Hess
Scott P. Higginbotham
Ray Yau Kui Ho
Chris E. Holcomb
Scott D. Hornyak
Alison Therese Hover
Chia-Han Hsieh
Yongtao Hu
Min Huang
YinYin Huang
Zhigang Huang
Kathleen Therese Hurta
Patrick Timothy Hyland
Lisa Isenberg
Somil Jain
Michael Alan Janicke
John R. Jasinski
Kamil K. Jasinski
Xiang Ji
Chen Jiang
Yong Jiang
Lisa K. Juday
Scott A. Kaminski
Hyeji Kang
Yongwoon Kang
David M. Kaye
Erin E. Kelly
Andrew P. Kempen
Gareth L. Kennedy
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Tatyana Kerbel
Samir Khare
Brett King
Kayne M. Kirby
Jennifer Ann Kitchen
Jim Klann
John Karl Knapstein
Jonathan M. Knotwell
Richard A. Knudson Jr.
Ebo Koranteng
John Arthur Krause
Vladimir A. 

Kremerman
Christopher SungKu 

Kwon
Lan See Lam
Anom Duy Lane
Francois Langevin
David F. Lee
Vincent Lepage
Kelly Carmody Lewis
Chunsu Li
Hongmei Li
Kexin Li
Zhe Li
Manjuan Liang
Yuan-Chen Liao
Nanci B. Light
Hua Lin
Jung-Tai Lin
Reng Lin
Weichen Liu
Xiaoqing Iris Liu
Millie S. Lo
Siew-Won Loh
John David Lower

Jie Lu
Amanda Lubking
Eric Lussier
Dorothy Lentz 

Magnuson
Jonathan T. Marshall
Ana J. Mata
Paul H. Mayfield
Devyn K. McClure
Kenneth James Meluch
Joshua D. Metzger
Travis J. Miller
Rui Min
Laura M. Morrison
Joey Douglas Moulton
Brian J. Mullen
Sureena Binte Mustafa
Claude Nadeau
Marie-Eve Nadeau
Jessica Michal 

Newman
Nora Kathleen 

Newman
Brett M. Nunes
Erin M. Olson
Billy J. Onion
Christopher Nicholas 

Otterman
Suyash G. Paliwal
Kristin Marie Palm
Robert V. Phipps
Mathieu Picard
James J. Pilarski
Steven G. Protz
Sudarini J. Pushparajah
Vincent Quirion

Justin Radick
Rachel Radoff
Moiz Rawala
Melissa A. Remus
Jiandong Ren
Raul J. Retian
Bruce A. Ritter
Michel Rivet
Juan Carlos Rodriguez
Douglas A. Roemelt
Harold M. Rogers
Bradley M. Rolling
Jason M. Rosin
Richard R. Ross
Jason Q. Rubel
Jordan Rubin
Brent Sallay
Mitra Sanandajifar
Eric L. Savage
Daniel Victor Scala
Chad R. Schlippert
Linda Sew
Liqiong Shan
Xiaoyu Sheng
Daniel Silverstein
Syntheia W. H. Sin
Joel M. Smerchek
James M. Smith
Jiyang Song
Karl K. Song
Brooke S. Spencer
Yana Spesivtseva
Stephen R. Sten
Darin Stojanovic
Qiang Su
Zhongmei Su
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Taher I. Suratwala
Ann M. Sydnor
Mariane Aiko 

Takahashi
Josy-Anne Tanguay
Anne M. Taylor
Anne M. Thomas
Elissa Y. Thompson
Heather D. Thompson
Robby E. Thoms
Helen L. Trainor
Han H. Tran
Tang-Hung Trang
Gavin Mark Traverso
Max Trinh
Karine Trudel
Tammy Truong
Choi Nai Charlies Tu
William S. Turner
Mitchell Lee 

Underwood
Marie-Pierre Valiquette

Daniel M. Van der Zee
Chris John Van Kooten
Chris Stephen Veregge
Victor Cabal Victoriano
Michael Villano
Benjamin James Walker
Kathryn A. Walker
Christopher L. 

Wampole
Anping Wang
Chong Wang
Guixiang Wang
Mulong Wang
Tom C. Wang
Yang Wang
Yao Wang
Yongqiang Wang
Gabriel Matthew Ware
Lei Wei
Minwei Wei
Kristen A. Weisensee
Yu-Chi Wen

Mark Russell 
Westmoreland

Cari Bergen 
Winebrenner

Brant Wipperman
Chung Yin Wong
Xiaohui Wu
Jianlu Xu
Tong Xu
Yu chen Xu
Zhuo Yang
Fan Ye
Hau Leung Ying
Raisa Zarkhin
Virginia M. Zeigler
Guowen Zhang
Jin Zhang
Yu Zhang
Qin Zhao
Run Zheng
Kan Zhong
Huina Zhu

Exam 7-Canada
Jonathan Bilbul
Nicolas Boivin
Tsz Kin Chan
Joung-Ju Chung
Marc-Andre Desrosiers
Marc-Olivier Faulkner
Maxime Gelinas
Simon Girard
Isabelle Guerin

Queenie W. C. Huang
Jennifer Ge Kang
Jean-Philippe Keable
Omar A. Kitchlew
Michael A. Lardis
Annie Latouche
Jean-Francois Lessard
Andrew F. Loach
Shams Munir

Miodrag Novakovic
Jean-Philippe Plante
Etienne Plante-Dube
Erika Helen Schurr
Jacqueline W. Y. 

Shoong
Luc Tanguay
Levente Tolnai
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Exam 7-U.S.
Yazeed F. Abu-Sa’a
Avraham Adler
Amit Agarwal
Sajjad Ahmad
Rocklyn Tee Altshuler
Julie A. Anderson
Kelleen D. Arquette
Yanfei Z. Atwell
Gregory S. Babushkin
Kristi Spencer 

Badgerow
Gregory K. Bangs
Melissa Ann Baro
Tiffany Jean Baron
Angelo Edward 

Bastianpillai
Jeffrey Donald 

Bellmont
Matthew C. Berasi
Sonal Bhargava
Brad Stephen Billerman
Jon Paul Bloom
Peter G. Blouin
Randall T. Buda
Morgan Haire Bugbee
Jessica Yiqing Cao
Jeffrey M. Casaday
Matthew J. Cavanaugh
Paul A. Ceaser
Matthew S. 

Chamberlain
Bernard L. Chan
Raul Cisneros
Elizabeth Jill Clark

Christopher J. 
Cleveland

Glenn A. Colby
Kirk Allen Conrad
Tighe Christian 

Crovetti
Walter C. Dabrowski
Jonathan E. DeVilbiss
Brent P. Donaldson
Nicole Elliott
Gretchen L. Epperson
William H. Erdman
Michael D. Ersevim
Choya A. Everett
Jason A. Flick
Mark A. Florenz
Kyle P. Freeman
Derek W. Freihaut
Timothy M. Garcia
Nina Vladimirovna Gau
Stuart G. Gelbwasser
Lilian Y. Giraldo
Gregory P. Goddu
Rebecca J. Gordon
Wesley John Griffiths
Todd N. Gunnell
RenBin Guo
Gary S. Haase
William Joseph 

Hackman
Brian P. Hall
James W. Harmon
Jason B. Heissler
Donald F. Hendriks

Megann Elizabeth Hess
Kimberly Ann Holmes
Sheri L. Holzman
Nathan Jaymes Hubbell
Yu Shan Hwang
Alison Susanne 

Jennings
Philip J. Jennings
Ziyi Jiao
Jeremiah D. Johnson
Ross Evan Johnson
Amy Ann Juknelis
Brian M. Karl
Sarah M. Kemp
Eric J. Kendig
David J. Klemish
Rachel M. Klingler
Christine K. Kogut
Thomas R. Kolde
Leland S. Kraemer
Nadya Kuzkina
Catherine M. Larson
David Lawrence Larson
Kak Lau
Jennifer Marie Lehman
Sean M. Leonard
Hoi Fai Leung
Mingyue Li
Xun-Yuan Liang
Andy Hankuang Liao
Joshua Yuri Ligosky
Katherine Yukyue Lin
Cunbo Liu
Jin Liu
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Nannan Liu
Todd L. Livergood
Laura J. Lothschutz
Neelam P. Mankoff
Minchong Mao
Rebecca R. McCarrier
Angela Garrett McGhee
Albert-Michael Micozzi
Daniel E. Mikesh
Aaron G. Mills
Richard James Mills
Kazuko Minagawa
Lori A. Moore
Allison L. Morabito
Mundia Mubyana
Eric L. Murray
Daniel G. Myers
John William Myers
Angela Kay Myler
Marc L. Nerenberg
Benjamin R. Newton
Tho D. Ngo
Stephanie Jo Odell
Christopher John Olsen
Alejandro Antonio 

Ortega Jr.
Keith William Palmer
Joy-Ann C. Payne
Samuel Robert Peters
Joseph G. Pietraszewski
Christopher James 

Platania
Lovely G. Puthenveetil

Arthur R. Randolph II
Nicholas J. Reed
Zia Rehman
Zoe F. Rico
Brad E. Rigotty
Arnie W. Rippener
Dolph James Robb
Randall D. Ross
Jeffrey N. Roth
John C. Ruth
Brian Craig Ryder
Anita A. Sathe
Richard T. Schneider
Ronald S. Scott
Sheri Lee Scott
Clista E. Sheker
Barry Dov Aaron 

Siegman
Robert K. Smith
Patrick Shiu-Fai So
Joanna Solarz
Richard C. Soulsby
Michael P. Speedling
Bryan V. Spero
Paul Quinn 

Stahlschmidt
Mindy M. Steichen
Jayme Peter Stubitz
Yuchen Su
Feixue Tang
Aaron A. Temples
Lori R. Thompson
Robert Bradley Tiger

Phoebe A. Tinney
Jennifer M. Tornquist
Rachel Katrina Tritz
Jonathan Kowalczyk 

Turnes
Humberto M. Valdes
Allan S. Voltz III
Todd Patrick Walker
Xuelian Wan
HongTao Wang
Jingtao Wang
Mo Wang
Amanda J. White
Andrew T. Wiest
Martin E. Wietfeldt
Ronald Harris Wilkins
Shauna S. Williams
Benjamin T. Witkowski
Dorothy A. Woodrum
Zhikun Wu
Zhijian Xiong
Yi-Chuang Yang
Min Yao
Yanjun Yao
Ronald Joseph 

Zaleski Jr.
Anton Zalesky
Hui Yu Zhang
Lang Zhang
Wei Zhao
Hongbo Zhou
Xi Zhu
Michael V. Ziniti
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Exam 8
Xin Allen
Fernando Alberto 

Alvarado
Brian C. Alvers
Maura Curran Baker
Rose D. Barrett
Derek Dennis Berget
Carolyn J. Bergh
Brian J. Biggs
Corey J. Bilot
Rebekah Susan Biondo
Michael J. Blasko
Tapio N. Boles
John R. Bower
James L. Bresnahan
John R. Broadrick
Michele L. Brooks
Elaine K. Brunner
Matthew D. Buchalter
Douglas James Busta
Anthony R. Bustillo
Hsiu-Mei Chang
Denise L. Cheung
Ting Him Choi
Alan M. Chow
Eric R. Clark
Jason T. Clarke
Kevin M. Cleary
Jay W. Cooke
Kevin A. Cormier
Justin B. Cruz
David F. Dahl
Willie L. Davis Jr.
Chantal Delisle

Mathieu Desjardins
Laura S. Doherty
Tomer Eilam
Donna Lee Emmerling
Bruce Fatz
Dale A. Fethke
Jonathan W. Fox
Louise Frankland
Luyang Fu Ph.D.
William John Gerhardt
John S. Giles
Kristen Marie Gill
David B. Gordon
Jeffrey Robert Grimmer
David John Gronski
Mark Anthony Hadley
Bobby Earl Hancock Jr.
Megan Taylor Harder
Robin A. Haworth
Brandon L. Heutmaker
Joseph S. Highbarger
Melissa S. Holt
Bo Huang
William T. Jarman
Richard Clay Jenkins
Shiwen Jiang
Yi Jing
Dana F. Joseph
Julie M. Joyce
Kenneth Robert 

Kahn Jr.
Scott M. Klabacha
Andrew M. Koren
Bradley S. Kove

Terry T. Kuruvilla
Francois Lacroix
John B. Landkamer
Hugues Laquerre
Damon T. Lay
Henry T. Lee
Hidy Hiu Yin Lee
Kahshin Leow
Sharon Xiaoyin Li
Xin Li
Manjuan Liang
Edward P. Lionberger
Weichen Liu
Erik Frank Livingston
Jonathan L. Matthews
Robert B. McCleish IV
Brent L. McGill
Christopher Charles 

McKenna
Sylwia S. McMichael
Meagan S. Mirkovich
Rodney S. Morris
Christopher A. Najim
John A. Nauss
Leonidas V. Nguyen
Timothy James 

O’Connor
Kathleen C. Odomirok
Robert Andrew Painter
Jeremy Parker Pecora
Gregory T. Preble
Damon Joshua Raben
Danielle

Richards-Harrison
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Dale M. Riemer
Bryant Edward Russell
Frances G. Sarrel
Jeffery Wayne Scholl
Genine Darrough 

Schwartz
Peter Abraham Scourtis
Gurpal Singh
Justin Nicholas Smith
Mark Stephen Struck
Mark Sturm
Maheswara Sudagar
Zongli Sun

Jonas F. Thisner
Dovid C. Tkatch
Jean-Francois Tremblay
Joel A. Vaag
Mary Vacirca
Daniel Jacob 

VanderPloeg
Kevin K. Vesel
Mo Wang
Mulong Wang
Kevin E. Weathers
Xinxin Xu
Huey Wen Yang

Yuanhe Yao
Andrew F. Yashar
Ka Chun Yeung
Sung G. Yim
Jiwei Yu
Ronald Joseph 

Zaleski Jr.
Navid Zarinejad
Ruth Zea
Lijuan Zhang
Zhenyong Zhang
Steven Bradley Zielke

The following candidates successfully completed the following 
CAS Validation by Experience Examinations in Summer 2005.

Roselyn M. Abbiw-
Jackson

Jason Edward Abril
Eve Ingrid Adamson
Jonas Frimpong Adjei
Naseer Ahmad
Gonzalo J. Alvarez
Ai Ling Ang
Huey Fung Ang
Yana Averbukh
Shobhit Awasthi
Madhuri Bajaj
Alexander Bakhchinian
Cheryl A. Beachler
Jean-Michel Belanger
Simon Belanger
Yvan Berthou
Qijun Bi

VEE-Applied Statistical Methods
Graham Miller Bryce
Monica Gabriela 

Burnel
Robert Wayne Campos
Szu-Wen Chang
Ya-Fang Chang
Young Eun Chang
Aritra Chatterjee
Ka Chun Gavin Chau
An-Ta Chen
Mangsheng Cheng
Kai-Jiun Chiou
Dane Cho
Kevin Matthew Chong
Alyce M. Chow
Herman Chow
Wenbo Cui
Jesse Andrew Dare

Zhaohui Dou
Michael Kieth Edison
Okechukwu Ekuma
Kevin L. Feltz
Jason Fernandez
Selwyn Emmanuel 

Folkes
Senli Gao
William M. Garber
Rafael Gonzalez 

Fuentes Aguilar
Xiangrong Gu
Yuhong Gu
Mei Han
Kazuya Hata
Bo Hu
Botao Hu
Ruoyan Hua
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I. P. Huang
Weinan Huyan
Wesley C. Imel
Jed Nathaniel Isaman
Tivon Elan Jacobson
John M. Jansen
Ya Jia
Jianchuan Jiang
Shan Jiang
Yan Jiang
Dan Kim
Hsin Yu Ko
Sing Yeen Koh
Mum Kitt Kong
Yu-Ching Ku
Dewesh Kumar
Yuen Y. Law
Carol Hsing-Chin Lee
Hsiang Tsung Lee
Hyo-Yeol Lee
Kin Hoe Lee
Mo-Chang Lee
Chang Cheng Li
Qiang Li
Xinyan Li
Pei-Feng Liao
Shih-Jan Liao
Chen Wen Liew
Lay Choo Lim
Marshall Lin
Hua Liu
Ming-Chang Liu
Xin Liu
Yang Liu
Ziyao Lu

Saikat Maitra
Hilton L. Mak
Vijay Manghnani
Martin Mannhart
Weibiao Mao
Xin Ling Mao
Jerrel H. Mast
Matthew Douglas 

Minear
Labonee Mohanta
David S. Moralis
Yoshiaki Murase
Chih Chuan Peng
Xiao Qin
Mingming Qiu
Mallick Nacim Rachedi
Aleksandr Rafalovich
Alanna M. Rand
Corrinne Shobha Rattan
Illya Rayvych
Josselyn M. Roush
Steven W. Sadoway
Emily Jean Schwan
Shahnaz Bin 

Sharifuddin
Yifang Shen
Renee S. Shiller
Jeffrey S. Simone
Lisa A. Smith
Youjung Son
Steven C. Sousa
George H. Stewart Jr.
Ephraim Sudwerts
Mohammad Saqlain 

Sumrani

Meng Sun
Dan Omer Tenet
Yi-Su Teng
Pei Khoon Teoh
Chia-jung Tien
Mu-Jung Ting
Robert E. Tucker
Annie Valin
Joann M. Voltaggio
Jipei Wang
Zhenyu Wang
Jakub M. Wartak
Carlos A. Wong
Raymond H. Wong
Bin Wu
Chih Yen Wu
Fan Xiong
Chao Xu
Gang Xu
Han Xu
Jianlu Xu
Jiayu Yan
Yan Neng Yang
Hai Yan Yi
Binbin Yin
Anne E. Youngers
Hing Yu
Li Bin Zeng
Jing Zhang
Lei Zhang
Li Zhang
Xiaofeng Zhang
Yan Zhang
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Bruno Alain
Poly Deka Barman
Evelyn M. Barnezet
Michael Christopher 

Beck
Matthew R. Berezan
Nicholas P. Beyer
Qijun Bi
Ira H. Blassberger
Jing Cai
Chi Yung Chan
Hui-Ling Chang
Linda Ting-An Chen
Kristof Chirvai
Hao-Liang H. Chung
Joseph W. Cluever
Remil Colozo
Christopher Cruz 

Cortez
Kendall L. Daniels
Brian E. Davis
Julia Deiva
Biljana Z. Djakovic
Michael Scott Dresnack
Faical El Kahyal
Andrew E. Ervin
Joyce A. Ewing
Lei Fan
Anusar Farooqui
Jeffrey John Fausey
Jerry C. Fisher
Kathleen Marie Friel
Fang Bao Fu
Xiao Fu

VEE-Corporate Finance
Todd Nicholas Garrett
Marie-Eve Genest
Xiangrong Gu
Yuhong Gu
Nicolas Guiho
Rongrong Guo
Vaughn Terence Hazell
Daniel K. Henry
Henry H. Y. Huang
Tivon Elan Jacobson
Ziling Jiang
Louis D. Johnson
Lisa A. Jones
Sandip A. Kapadia
Anjali Katoch
Thabo Kekana
Swee Chin Khor
Moo Jin Kim
Fanchao Kong
Abraham David 

Kornitzer
Nathan T. Kukla
Eric I. Kuritzky
Amelia Ge Shean Lee
Bo S. Lee
Kwangsun Lee
Qiang Li
Ying Li
Zhifang Li
Pei-Ying Lin
Ruey Shyan Lin
Yi-Jiun Lin
Chuo-Hao Liu
Kristoffer Ljubic

Giuseppe Lombardo
Hilary D. Ludema
Yueting Luo
Qian Ma
Xin Ling Mao
Ryan Andrew 

McAllister
Kristin Monopolis
Michelle A. Nadermann
Karlene Tracey Noreiga
Joseph P. Owczarzak
Michelle Chorong Park
Jalil Mehamud Patel
Marissa S. Pearce
Enrico Persicone
Danick Poitras
Promodh Pullaikodi
Jianwen Qin
Mark S. Rasmussen
Chad D. Reich
Zhao Ren
Seung-Hwa Roh
Priya Rohatgi
Christopher T. Rosado
Sambhaji Rajaram 

Shedale
Minkang Shi
Sengupta Shimul
Erich K. Stahl
Ahmed Tanane
Mozhi Tang
Melissa Teoh
Pei Khoon Teoh
Jacob M. Trachtman
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Peter Douglas Waldron
Bin Wang
Shyue Ping Wang
Xiaomin Wang
Dale Dee Ward
Tyner H. Wilson
Carlos A. Wong
Chi Kei Wong

Tsz Nga Wong
Pei-Hsi Wu
Wei Wu
Xi Wu
Yu Xia
Xuan Yang
Chi Yung Yeung
Buyi Zhang

Jialin Zhang
Jing Zhang
Li Zhang
Sen Zhang
Yan Zheng
Bei Zhu
Jinhu Zhu

VEE-Economics
Muzna Amin
Dodzi Attimu
Mathai K. Augustine
Qijun Bi
Jing Cai
Chi Yung Chan
Pak Kei Chan
Chih Hui Chen
Chun Kit Cheung
Che-Yang Chien
Sung-Pil Cho
Hyesook Chon
Ryan Alvarez Chua
Joseph W. Cluever
Ariel T. Cohen
Biljana Z. Djakovic
Robert William 

Donley Jr.
Michael J. Essig
Joyce A. Ewing
Po Yuen Fan
Anusar Farooqui
Jeffrey John Fausey
Wenan Fei
Fang Bao Fu
Shou Wan Gan

Todd Nicholas Garrett
Mark Ernest Gillam
Joseph F. Griffin
Xiangrong Gu
Yuhong Gu
Nicolas Guiho
Rongrong Guo
Puja Gupta
Vaughn Terence Hazell
Kaihsiang Hung
Li-Chuan Hung
Weinan Huyan
Tivon Elan Jacobson
Jiong Ji
Son Joo-Hyung
Emilie Juneau
Martin Juras
Kija Kari
Anjali Katoch
Barton Lawrence 

Knapp
Christopher Edward 

Krzeminski
Yuk Lun Ku
Kung Chao Kuo
Eric I. Kuritzky

Sara Y. LaFlamme
Dong Kyoung Lee
Kwangsun Lee
Kyung-Eun Lee
Yung-Tsung Lee
Miao Li Miss
Qiang Li
Chen-Hsiung Lin
Chia-Ju Lin
Pei-Ying Lin
Zhongli Lin
Pei Ru Liu
Raymond Lo
Giuseppe Lombardo
Chien-Hung Lu
Yueting Luo
Qian Ma
Tsung-Yi Mao
Xin Ling Mao
Preeti Mehta
Roberto Melaragno
Qingyu Meng
Evguenia Miftakhova
Karlene Tracey Noreiga
Deng Pan
Michelle Chorong Park
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Vincent Plamondon
Aleksandr Rafalovich
Zhao Ren
Zhiying She
Minkang Shi
Kyoung Hee Sim
Andrew T. Smith
Mohammad Saqlain 

Sumrani
Sohail Abbas Sumrani
Stella Tai
James K. Tang
Mozhi Tang
Zhi Hui Tang

Pei Khoon Teoh
Mary Lou Tocco
Yu-Ju Tseng
Angelica Maria Vallejo
Catherine Viel
Bin Wang
Kun-Feng Wang
Xiaomin Wang
Dale Dee Ward
James Benjamin 

Wardlow
Carlos A. Wong
Chi Kei Wong
Wei Wu

Xi Wu
Yu Xia
Ting Xu
Xuan Yang
Koh Han Yeap
Chi Yung Yeung
Hua Zhai
Buyi Zhang
Jialin Zhang
Jing Zhang
Li Zhang
Yan Zheng
Bei Zhu

Exam 3

The following candidates successfully completed the following 
Fall 2005 CAS examinations.

Jennifer Lynn Abel
Rocklyn Tee Altshuler
Desmond D. Andrews
Scott Nelson 

Applequist
Daryl S. Atkinson
Daniel P. Barker
Emily C. Barker
Danny Baxter
Yvan Berthou
Jesse David Bollinger
Samantha E. Bonde
John P. Booher
Abderrahmane

Boumehdi
Kelli Ann Broin
Elizabeth Buhro

Jinghua Cao
Frank H. Chang
Young Ho Cho
Emily Daters Cilek
Lindsey Nicole Clark
Joshua J. Crumley
Auntara De
Rachel Caryn Dein
Kenneth Wayne Doss
Donald W. Doty
Daniel Joseph Eisel
Vladimir V. Eremine
Gregory Matthew 

Fanoe
Anusar Farooqui
Denise D. Fast
Jon R. Fredrickson

Shenzhao S. Fu
Scott A. Gibson
Kristen Marie Gilpin
Kristen M. Goodrich
Marco J. Gorgonio
Legare W. Gresham
Erin Ashley Groark
Kathleen J. Gunnery
Nicole A. Hackett
Jennifer L. Hagemo
Michael Bentley 

Howell
Lihu Huang
Kevin Hughes
Kapil Jain
Neha Jain
Nitesh Jain
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Yin Jiang
Nancy A. Kelley
Kevin Dennis Kelly
Thomas Patrick 

King Jr.
Anton M. Klemme
Dionne L. Knight
Alex Gerald Kranz
Rachel Lynne Krefft
David Joseph 

LaRocque
Yvonne Y. Lai
Clifton J. Lancaster
Susan J. Lear
Ping Hsin Lee
Kerjern Lim
Lay Choo Lim
Alex Lin
Chin Ho Lin
Wladyslaw Derek 

Lorek
Brian Michael Lubeck
Kevin Arnold Lynde
Guodong Ma
Evan P. Mackey
Saikat Maitra

Steven Russell Marlow
Richard A. McCleary
Mary K. McKinnon
Eliade M. Micu
Christopher G. Moore
Timothy D. Morant
Douglas Franklin 

Moses
Chelsea C. Myers
Todd M. Nagy
Easter Namkung
Dorothy Elizabeth 

Nixon
Chanyuth 

Norachaipeerapat
Kathleen S. Ores Walsh
Nathan V. Owens
Elisa Pagan
Michelle Anne 

Pederson
Jennifer Kew Petit
Douglas E. Pirtle
Anwesha Prabhu
Matthew R. Purdy
David Adam Ring
Shaun A. Roach

Peter K. Robson
Ashley Carver Roya
Michael R. Sadowski
Mark A. Schiebel
Jennifer L. Scull
Satadru Sengupta
Andra Catalina Serban
Hsien-Ying Shen
Jean N. Spaltenstein
Mark R. Spinozzi
Eileen P. Toth
Timothy J. Vincze
Ryan N. Voge
Hui Wang
Jin Wang
Jinchuan Wang
Thomas S. Wang
Amber M. Wilson
Chad P. Wilson
Jade Woodford
XiJia Xu
Iva Yuan
Arthur J. Zaremba
Cyril Max Zormelo

Exam 6
Yazeed F. Abu-Sa’a
Eve Ingrid Adamson
Justin L. Albert
Xin Allen
David Michael Andrist
William M. Arthur II
Genevieve Aubin
Melissa Ann Baro

Aaron Thomas Basler
Anthony O. Beirne
Christine Beland
Guillaume Benoit
Chandler P. Benson
Yan Bergeron
Keith R. Berman
Davina Bhandari

Sarah Bhanji
Jennifer L. Blackmore
Stephanie Boivin
Elizabeth Bomboy
Kimberly A. Borgelt
James T. Botelho
Stephen A. Bowen
Ishmealin Boye
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Edward G. Bradford
Justin J. Brenden
Sara Lynn Buchheim
Ali Ahmed Bukhari
John Lee Butel
Laura N. Cali
Sandra J. Callanan
Julianne A. Callaway
Samuel C. Cargnel
Laura M. Carstensen
Lauren Jill Cavanaugh
Matthew J. Cavanaugh
Sai Fan Chan
Mei-Hsuan Chao
Mingjen Chen
Houston Hau-Shing 

Cheng
Nitin Chhabra
Max Chiao
Shawn T. Chrisman
Gareth John 

Christopher
Melissa Chung
Meng-Fang Chung
Jeffrey J. Clair
David Garvin Clark
Jennifer Elizabeth 

Clark
Matthew D. Clark
Jason A. Clay
Brenda Clemens
Peter M. Corrigan
Ryan J. Crawford
Jason J. Culp
Alexandre 

Cung-Rousseau

Randi M. Dahl
Dawne Laurenne 

Davenport
Keri P. Davenport
Andrew G. Davies
Craig C. Davis
Paige M. Demeter
Hussain Dhalla
Scott A. Donoho
Kirt Michael Dooley
Yiping Dou
Mathew David 

Eberhardt
Malika

El Kacemi-Grande
Isaac R. Espinoza
Muhammad Ali Fahad
Horng-Jiun K. Fann
Jeffrey N. Farr
Jacob C. Fetzer
Danielle J. Fiorello
Tricia D. Floyd
Jill A. Frackenpohl
Vincent M. Franz
Yan L. Fung
Joseph A. Gage
Heidi Marie Garand
Carol Ann Garney
Steve G. Gentle
Daniel J. Gieske
Evan W. Glisson
Kasi Joelle Golden
Rui Gong
Linda Grand
Joshua S. Grunin
Neng Gu

Todd N. Gunnell
Tao Guo
Jeannette Marie Haines
John C. Hanna Jr.
Tyree Harris
Ryan D. Hartman
Eric M. Herman
Roberto A. Hernandez
Wade R. Hess
Scott P. Higginbotham
Sheri L. Holzman
Hugh D. Hopper
Scott D. Hornyak
Yongtao Hu
Ying Huang
Zhigang Huang
Caleb Enders 

Huntington
Jed Nathaniel Isaman
Shira Lisa 

Jacobson-Rogers
Pierre-Alexandre 

Jalbert
John R. Jasinski
Xiang Ji
Bei Li Jiang
Yong Jiang
Mark C. Jones
Karine Julien
Yongwoon Kang
David M. Kaye
Erin E. Kelly
Jacob J. Kelly
Andrew P. Kempen
Eric J. Kendig
Tatyana Kerbel
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Jim Klann
Jonathan M. Knotwell
Richard A. Knudson Jr.
Brian Yoonsyok Ko
Ebo Koranteng
Lucas James Koury
Nikolai S. Kovtunenko
Nadya Kuzkina
Lan See Lam
Alexander Jonathan 

Laurie
Vanessa Leblanc
Sara Leclerc
David F. Lee
Jennifer Marie Lehman
Jean-Francois Lessard
Ronald S. Lettofsky
Adrienne Jeanette 

Lewis
Kelly Carmody Lewis
Chunsu Li
Hongmei Li
Kexin Li
Yuan Li
Zhe Li
Manjuan Liang
Nanci B. Light
Chia-Ching Lin
Hua Lin
Katherine Yukyue Lin
Liming Lin
Paul T. Lintner
Millie S. Lo
Siew-Won Loh
John David Lower
Jie Lu

Amanda Lubking
Keyang Luo
Eric Lussier
Thomas J. Macintyre
Dorothy Lentz 

Magnuson
Derek Michael 

Martisus
Kelli R. McGinty
Kenneth James Meluch
Daniel John Messner
Jennifer L. Meyer
Rui Min
Kazuko Minagawa
Erick E. Mortenson
Randall K. Motchan
Brian J. Mullen
Eric L. Murray
Randy J. Murray
Treva A. Myers
Claude Nadeau
Marie-Eve Nadeau
Nora Kathleen 

Newman
Rosalie Nolet
Pablo F. Nunez
Ginette Pacansky
John Francis Pagano
Suyash G. Paliwal
Kristin Marie Palm
Michael W. Payne
Samuel Robert Peters
Sergey V. Pflyuk
Mathieu Picard
Etienne Plante-Dube
Daniel James Plasterer

Ricky R. Poulin
Donald S. Priest
Junhua Qin
Vincent Quirion
Rachel Radoff
William Steve 

Randolph
Scott J. Rasmussen
Andrew D. Reid
Michel Rivet
Jacob Roe
Bradley M. Rolling
Jason M. Rosin
Adam J. Rosowicz
William Paige Rudolph
Idir Saidani
Frederic Saillant
Mitra Sanandajifar
Eric L. Savage
Chad R. Schlippert
Jeffrey M. Schroeder
Daniel Owen Schwanke
Shayan Sen
Linda Sew
Vikas P. Shah
Xiaoyu Sheng
David J. Sheridan
Yevgeniy V. Shevchuk
Jacqueline W. Y. 

Shoong
Raymond Bond Shum
Sergey S. Sidorov
Syntheia W.H. Sin
Joel M. Smerchek
James M. Smith
Jared G. Smollik
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Karl K. Song
Darryl R. Sorenson
Aleta J. Stack
Stephen R. Sten
Ian P. Sterling
Darin Stojanovic
Christopher James Stoll
Qiang Su
Zhongmei Su
Taher I. Suratwala
Martin Surovy
Jessica R. Sweets
Ann M. Sydnor
Wei-Chyin Tan
Josy-Anne Tanguay
Anne M. Taylor
Anne M. Thomas
Colin A. Thompson
Kathy M. Thompson
Lori R. Thompson
Kris Todoroski
Peter Tomopoulos
Helen L. Trainor
Tang-Hung Trang
Jaya Trivedi
Alice H. Tsai

Humberto M. Valdes
Tony Alan Van Berkel
Daniel M. Van der Zee
Chris John Van Kooten
Marina Vaninsky
Melinda K. Vasecka
Thomas W. Vasey
Kanika Vats
Daniel Viau
Anping Wang
Guixiang Wang
HongTao Wang
Min Wang
Ning Wang
Stream S. Wang
Tom C. Wang
Yang Wang
Gabriel Matthew Ware
David J. Watson
Kristen A. Weisensee
Timothy R. Wengerd
Melvyn R. Windham Jr.
Cari Bergen 

Winebrenner
Michael J. Wittmann
Andrea Wong

Chung Yin Wong
Aaron A. Wright
Terrence D. Wright
Xiaohui Wu
Xueming Grace Wu
Zhikun Wu
Hui Xia
Zhijian Xiong
Dehong Xu
Tong Xu
Marcus M. Yamashiro
Meng Yan
Hao Yang
Yulai Yang
Jenny Man Yan Yiu
Vanessa Ann Yost
Guanrong You
Yuan-Hung Yu
Anton Zalesky
Jin Zhang
Junya Zhang
Kun Zhang
Yan Zhang
Zhenyong Zhang
Kan Zhong
Yuanli Zhu

Exam 9
Amit Agarwal
Xin Allen
Brian D. Archdeacon
George N. Argesanu
Kelleen D. Arquette
Yanfei Z. Atwell
Gregory S. Babushkin
Kristi Spencer Badgerow

Tiffany Jean Baron
Michael Alan Bean
Jeffrey Donald 

Bellmont
Carolyn J. Bergh
Brad Stephen Billerman
Francois Blais
Michael J. Blasko

Jon Paul Bloom
Peter G. Blouin
James M. Boland III
Thomas Leininger 

Boyer II
Yisheng Bu
Morgan Haire Bugbee
Christine Cadieux
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Chuan Cao
Jessica Yiqing Cao
Jennifer L. Carrick
Jeffrey M. Casaday
Thomas L. Cawley
Annie Chang
Zhijian Chen
Agnes H. Cheung
Chun Kit Cheung
Denise L. Cheung
Leong Yeong Chew
Joung-Ju Chung
Philip Arthur 

Clancey Jr.
Eric R. Clark
Christopher J. 

Cleveland
Kirk Allen Conrad
Peter J. Cooper
Thomas Marie Cordier
Keith Richard 

Cummings
David J. Curtis
Melisa L. Darnieder
Lucia De Carvalho
Amy L. DeHart
Jonathan E. DeVilbiss
Kenneth M. Decker
Stephen P. Decoteau
Christopher A. 

Donahue
Brent P. Donaldson
Joseph P. Drennan
Christopher G. Fanslau
Marc-Olivier Faulkner
Louise Frankland

Luyang Fu Ph.D.
Chong Gao
Nina Vladimirovna Gau
Maxime Gelinas
Gregory P. Goddu
Victoria A. Gomez
Jennifer Graunas
Neil A. Greiner
Joshua Rolf Harold 

Griffin
Liang Guo
RenBin Guo
Amit K. Gupta
Gary S. Haase
William Joseph 

Hackman
Faisal O. Hamid
Bobby Earl Hancock Jr.
Joseph Patrick Hasday
Joseph Hebert
James Anthony Heer
Christopher M. Holt
Chun Hua Hoo
Alison Therese Hover
YinYin Huang
Nathan Jaymes Hubbell
Mohammad A. T. 

Hussain
Joseph M. Izzo
William T. Jarman
Ziyi Jiao
Jeremiah D. Johnson
Luke G. C. Johnston
Burt D. Jones
Julie M. Joyce
Scott A. Kaminski

Hyeji Kang
Inga Kasatkina
Kayne M. Kirby
David J. Klemish
Rachel M. Klingler
Perry A. Klingman
Christine K. Kogut
Thomas R. Kolde
Leland S. Kraemer
Douglas H. Lacoss
Francois Langevin
Hugues Laquerre
Catherine M. Larson
Nathalie M. Lavigne
Henry T. Lee
Catherine Lemay
Kenneth L. Leonard
Hoi Fai Leung
Hayden Anthony Lewis
Mingyue Li
Sharon Xiaoyin Li
Joshua Yuri Ligosky
Edward P. Lionberger
Weichen Liu
Millie S. Lo
Lynn C. Malloney
Minchong Mao
Raul Gabriel Martin
Laurence R. McClure II
Isaac Merchant Jr.
Daniel E. Mikesh
Travis J. Miller
Aaron G. Mills
Allison L. Morabito
Mundia Mubyana
Christopher A. Najim
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Tho D. Ngo
Norman Niami
Stephanie Jo Odell
Helen S. Oliveto
Christopher John Olsen
Keith William Palmer
Ying Pan
Jean-Pierre Paquet
Christopher A. Pett
Andrea L. Phillips
Christopher James 

Platania
Michael J. Quigley
Justin Radick
Arthur R. Randolph II
Eric W. L. Ratti
Nicholas J. Reed
Stephane Renaud
Ira L. Robbin Ph.D.
Beth A. Robison
Dave H. Rodriguez
Juan Carlos Rodriguez
Keith A. Rogers
Benjamin G. Rosenblum
Richard R. Ross

Brian Craig Ryder
Suzanne A. M. Scott
Peter Abraham Scourtis
Clista E. Sheker
Yipei Shen
Seth Shenghit
Yiping Shi
Annemarie Sinclair
Lleweilun Smith
Jiyang Song
Paul Quinn 

Stahlschmidt
Erik J. Steuernagel
Natalie St-Jean
Jayme Peter Stubitz
Yuchen Su
Feixue Tang
Jonas F. Thisner
Levente Tolnai
Rachel Katrina Tritz
Jonathan Kowalczyk 

Turnes
Kevin John Van 

Prooyen
Allan S. Voltz III

Xuelian Wan
Jingtao Wang
Chang-Hsien Wei
Lei Wei
Minwei Wei
Timothy G. Wheeler
Martin E. Wietfeldt
Ronald Harris Wilkins
Jianlu Xu
Xinxin Xu
Yanjun Yao
Shuk Han Lisa Yeung
Jiwei Yu
Navid Zarinejad
Robert J. Zehr
Juemin Zhang
Lang Zhang
Zhenyong Zhang
Wei Zhao
Yue Zhao
Weina Zhou
Xi Zhu
Michael V. Ziniti
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OBITUARIES

ROBERT GRANT ESPIE
CLYDE H. GRAVES
SIDNEY M. HAMMER
RICHARD L. JOHE
J. GARY LAROSE

HERBERT J. PHILLIPS
PAUL J. SCHEEL SR.

EDWARD MERRILL SMITH
LEO M. STANKUS
JOHN A. W. TRIST

ROBERT GRANT ESPIE
1913—2005

Robert Espie passed away on October 16, 2005. He was born
on December 15, 1913 in Toronto, Canada to Robert J. and Carrie
Espie. At the age of 16, he enrolled in the Toronto School of
Commerce and Finance and was a member of Phi Sigma Kappa.
After graduating in 1934, he was stationed in London while he
served in the U.S. Army Air Corps.

He became a CAS Fellow in 1958 and worked as an actuary
at Aetna Life for over 35 years. He served on the Committee
on Annual Statement from 1964—1969 and published papers in
the Proceedings including “Some Observations Concerning Fire
and Casualty Insurance Company Financial Statements” (1966)
and “Insurance Investment Regulations” (1969). He retired as the
vice president corporate comptroller in 1980. He enjoyed playing
bridge and traveling. He is survived by his wife of 67 years,
Jeanne Struthers Espie, two daughters, and four grandchildren.
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CLYDE H. GRAVES
1908—2005

Clyde Graves died December 3, 2005 at the age of 97. He
was born October 14, 1908 in Jackson, Mississippi. In 1928 he
received his doctorate in mathematics from the University of
Chicago. He then taught at Pennsylvania State College and, in
World War II, worked as a statistician in the Office of Price
Administration.

He became a CAS Associate in 1951 and a CAS Fellow in
1953. He worked as an actuary at the American Mutual Insurance
Alliance in Chicago, Illinois for over 25 years, retiring as a vice
president in 1973. He served as the chairman of the Committee
on Informal Publications from 1954—1956 and as a member of
the Publications Committee from 1954—1958, the Committee on
Professional Status from 1960—1963, and the Advisory Commit-
tee to Department of Transportation from 1969—1970. He wrote
the Proceedings papers “The Uniform Statistical Plan for Fire
and Allied Lines” (1953), “Implications of Sampling Theory for
Package Policy Ratemaking” (1967), and “Insurance Investment
Regulations” (1969).

In retirement, Graves joined the International Executive Ser-
vice Corp and taught actuarial science in the Philippines and
Nigeria. He later taught at the University of Hartford in the
1990s.)

Graves is survived by five children, 14 grandchildren, and
five great-grandchildren. Graves was preceded in death by his
10 older brothers and sisters, his wife, Jane McMaster, wife,
Marie Reimer, and oldest son, John Kirk Graves.
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SIDNEY M. HAMMER
1931—2005

Sidney Hammer passed away on February 17, 2005. He was
born on February 8, 1931 in Brooklyn, New York. Hammer
graduated from City College on June 18, 1952 with a degree
in mathematics. He pursued additional studies at Hunter College
and the University of Michigan at Ann Arbor. He served in the
U.S. Army in the early 1950s when he was stationed in France
and northern Italy.

He began his career at the Mutual Insurance Rating Bureau
(MIRB) and, later, at the National Bureau of Casualty Underwrit-
ers (NBCU). Both are predecessor organizations of the Insurance
Services Office. While at MIRB, he came to know his wife via
telephone conversations as she was the supervisor of the clerical
staff at NBCU. Once he joined NBCU, they began dating. They
married on January 6, 1963.

In 1963, he earned his Associate designation and began work-
ing as the assistant manager for the actuarial department of the
Home Insurance Company in New York City. During his tenure
at the Home Insurance Company, he left his mark on every kind
of actuarial project, including ratemaking for commercial lines,
creating and managing the first reserve test protocols for the
company, and reporting on regulatory issues. He retired in June
1995 as the lead actuary in the statistical department.

Home Insurance coworker Karl Moller (FCAS 1990) said of
Hammer, “All the actuaries who worked with Sid will remember
his passion for detail and his elephant-like memory. Those who
knew him well will remember also his deep humanity.” Hammer
is survived by his wife, Doris, three children (John, Anne, and
Jean), and five grandchildren.
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RICHARD L. JOHE
1927—2005

Former CAS President Richard L. Johe died Sunday, Aug.
14, 2005. He was born on May 2, 1927, in Hornell, N.Y., to Ilah
Lee and Lorenzo Frank Johe.

In 1945 he was appointed to the U.S. Naval Academy. He
graduated from Alfred University with a B.S. in mathematics in
1949 and also attended Duke, Syracuse, and Dartmouth Univer-
sities. He became a CAS Associate in 1951 and a CAS Fellow in
1954. He served as senior vice president for USF&G Insurance
for over 25 years and then worked for Michigan Mutual for 14
years. He was a council member from 1959—1962, and served
on several committees including the Education and Examination
Committee–Education (1964—1967), the Committee on Review
of Papers (1965—1966), the Program Committee (1969—1970),
and the Nominating Committee (1971—1975). In addition to his
Presidential Address, “A Look Ahead,” which was published in
the Proceedings in 1971, he also published “Underwriting Profit
from Investments” (1967).

In 1971 he was ordained to the Permanent Diaconate of the
Roman Catholic Church. He also enjoyed golf, military nov-
els, and history. He is survived by his wife, Angelina Margaret
Maranto Johe; daughter and son-in-law Kathleen A. and David
A. Bartholow; son Gary L. Johe; brother Donald F. Lee; grand-
children Jennifer, Shannon, Mylinda, Chris, and Tommy; and
great-granddaughter Taylor.
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J. GARY LaROSE
1947—2005

Gary LaRose passed away on April 11, 2005. Born on April
15, 1947, he attended Andrews University in Berrien Springs,
Michigan, graduating in 1969 with a B.A. in mathematics. He
went on to study at Notre Dame and earned a masters in math-
ematics in 1974. He became an Associate in 1979 and a Fellow
in 1981. Early in his career he worked in medical malpractice
insurance with the Medical Protective Company. Subsequent ca-
reer moves were to Employers Re and Ernst & Young.

In his involvement with CAS, he volunteered on several com-
mittees including the Education and Examination Committee–
Examination (1981—1983), the Examination Committee, (1984—
1985), The Syllabus Committee (1984—1989), and the Education
Policy Committee (1989, 1990, and 1993). He also served as a
representative for the Actuarial Education and Research Foun-
dation from 1983 to 1990. LaRose also volunteered as an in-
structor in a graduate-level actuarial science program sponsored
by the Society of Actuaries at universities in Moscow and War-
saw. Upon returning to the United States, he worked as a sole
practitioner consulting actuary and as director of curriculum for
the American Institute of CPCUs, and finally for the Nevada
Insurance Department. In 1982 he published “A Note on Loss
Distributions” in the Proceedings.

Jim Hall (FCAS, 1973) remembers LaRose using aspects of
the Bailey-Simon paper to develop a system of credibility values
for loss-free workers compensation risks. This system was used
successfully for a number of years by a specialty underwriter.
Hall was so amazed by the results that he asked author LeRoy
Simon to peer review the work and Simon found no corrections
were required.
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HERBERT J. PHILLIPS
1923—2005

Born April 10, 1923, to Herbert and Agnes Phillips, Herbert
Phillips joined the U.S. Marine Corps in 1941 and served with
Third Marine Division in the South Pacific. When he returned
home, he attended Boston College and graduated in 1949 with a
B.S. in mathematics. He taught mathematics in the Boston high
school system until he decided to pursue a career as a property
and casualty actuary.

He became a CAS Associate in 1956 and a CAS Fellow in
1959. He later became vice president and senior actuary for Com-
mercial Union in Boston, Massachusetts. In 1976, he moved to
Toronto to work for the Insurers Advisory Organization. He
retired in 1982. While a member of CAS, he served as the
CAS Treasurer in 1982 and as the vice president-administration
from 1983—1984. He also volunteered in the Committee on Sites
(1980—1982), the Finance Committee (1982—1985), and the Pro-
gram Planning Committee (1987—1989).

He passed away on October 6, 2005. He is survived by
his wife, Anne Carr Phillips; daughter, Caren Houston (Kerri);
grandchildren, Caitlin and Connor; and sister, Doris Phillips. He
is predeceased by his parents and by his sisters Anne Grant and
Agnes Phillips.
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PAUL J. SCHEEL SR.
1933—2005

Born on November 15, 1933, Paul Scheel graduated from
Loyola University in 1959. Scheel became a CAS Fellow in 1970
and worked for the United States Fidelity and Guaranty Com-
pany in Baltimore, Maryland for many years. He volunteered on
the Publicity Committee (1967—68), the Public Relations Com-
mittee (1969—71), Vice Chairperson, 1971. Scheel had a keen
interest in advancing the actuarial profession and mathematics
appreciation. In 1971 he served on the CAS Special Task Force
to Study Recruitment of New Candidates to the Profession and
as a Representative to Mathematical Association of America. In
1970, he published the review “Trend and Loss Development
Factors” in the Proceedings.

Scheel passed away on November 17, 2005. He is survived by
his wife Beverly; his two children, Paul J. Jr. and Mary Schmidt;
four grandchildren; and his brother and sister.
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EDWARD MERRILL SMITH
1925—2005

Born August 27, 1925, in Marblehead, Massachusetts, Ed-
ward Smith received a B.S. degree from the University of Mas-
sachusetts and a master’s degree in forestry from Yale Univer-
sity. He served in the U.S. Navy in World War II. He earned his
CAS Associate designation in 1956 and became a CAS Fellow
in 1958.

He worked as an actuary in the property-casualty department
of the Travelers Insurance Company in Hartford, Connecticut.
Smith wrote two Proceedings papers: “Economic Factors in Li-
ability and Property Insurance Claim Costs, 1935—1967” (1968)
and a review of “Actuarial Note on Workmens Compensation
Loss Reserves” (1972).

An avid outdoorsman, he enjoyed activities such as hunting,
fishing, canoeing, and hiking. Smith died on September 11, 2005
at the age of 80. He is survived by his wife, Attrude Lewis Smith,
their two children, and six grandchildren.
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LEO M. STANKUS
Circa 1925—2004

Leo Stankus passed away on September 30, 2004 at the age
of 79. He became a CAS Associate in 1958 and a Fellow in
1962. Stankus worked for several years for the Allstate Insurance
Company in Skokie, Illinois. He served on the CAS Committee
on Automobile Insurance Research and published the Seminar
Report “Guaranteed Renewable Automobile Insurance” in the
Proceedings in 1960.

Stankus is survived by his sons, Randall and Robert Stankus;
Robert’s wife Kimberly; and his grandchildren, Thomas Joseph
“TJ,” Michael, Nicholas, Christopher, and Karli. His funeral was
held in Glenview, Illinois where he had lived.
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JOHN A. W. TRIST
1921—2005

John Trist died on November 8, 2005. He was born on January
10, 1921. He attended the University of Manitoba, in Winnipeg,
Manitoba, Canada and graduated with a degree in actuarial sci-
ence in 1949. Trist became an Associate in 1950 and a Fellow
in 1953. He worked at the Insurance Company of North Amer-
ica in Philadelphia, Pennsylvania for a number of years before
becoming an associate actuary at CIGNA Property and Casu-
alty Group, also in Philadelphia, in 1984. In 1985 he became
the director and worked at CIGNA until his retirement in 1992.
In 1973 he wrote “How Adequate are Loss and Loss Expense
Liabilities,” which was published in the Proceedings. After retire-
ment, Trist remained active, traveling to Canada often, working
out at the CIGNA gym, and golfing regularly.
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