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Abstract

The insurance-charge function is defined as the ex-
cess ratio (the ratio of expected loss excess of an at-
tachment point to the expected total loss) and is ex-
pressed as a function of the entry ratio (the ratio of the
attachment to the total loss expectation). Actuaries use
insurance-charge algorithms to price retrospective rat-
ing maximums and excess of aggregate coverages. Many
of these algorithms are based on models that can be
viewed as particular applications of the Collective Risk
Model (CRM) developed by Heckman and Meyers [4].
If we examine the insurance-charge functions for risks
of different sizes produced by these models, we will find
invariably that the insurance charge for a large risk is
less than or equal to the charge for a small risk at ev-
ery entry ratio. The specific purpose of this paper is
to prove that this must be so. In other words, we will
show the assumptions of the CRM force charge func-
tions to decline by size of risk. We will take a fairly
general approach to the problem, develop some theory,
and prove several results along the way that apply be-
yond the CRM.
We will first prove that the charge for a sum of two

non-negative random variables is less than or equal to
the weighted average of their charges. We will extend
that result to show that under certain conditions, the
charge for a sum of identically distributed, but not nec-
essarily independent, samples declines with the sample
size. The extension is not entirely straightforward, as the
desired result cannot be directly derived using simple in-
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duction or straightforward analysis of the coefficient of
variation (CV).
To explore size and charge in some generality, we

will define the construct of a risk-size model. A risk-
size model may initially be viewed as a collection of
non-negative random variables whose sizes are defined
by their expectation values. Given an appropriate mea-
sure on the risks of a particular size, we will be able
to regard the cumulative distribution and the charge as
well-defined functions of risk size. In a complete and
continuous model, there are risks of every size and the
cumulative distribution is a continuous function of risk
size. We will first show that the charge declines with
size if any risk can be decomposed into the independent
sum of smaller risks in the model. Then we will employ
the usual Bayesian construction to introduce parame-
ter risk and extend the result to models that are not
decomposable. This is an important extension, because
actuaries have long known from study of Table M that a
large risk is not the independent sum of smaller ones. In
particular, our result implies that charges decrease with
size in the standard contagion model of the Negative
Binomial used in the CRM. Finally, we will introduce
severity, prove our result assuming a fixed severity dis-
tribution, and then extend it to cover the type of param-
eter uncertainty in risk severity modeled in the CRM.
Thus we will arrive at the conclusion that the assump-
tions of the CRM force charges to decline by size of
risk.
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FIGURE 1

Actuarial Intuition About Charges and Risk Size
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1. INTRODUCTION

Our broad objective is to study the dependence of insurance-
charge functions on risk size. We would like to arrive at some
sufficiently general conditions that will force charges to obey
the actuarial intuition that larger risks ought to have smaller in-
surance charges. More precisely, we would like to show that
the assumptions of the Collective Risk Model (CRM) [4] lead
to decreasing charges by size of risk. In keeping with standard
actuarial terminology, the insurance charge refers to the excess
ratio, not the absolute dollar amount, and the charge is viewed as
a function of the entry ratio. When we say the charge is smaller,
we mean that the excess ratio is less than or equal to its initial
value at every entry ratio (see Figure 1).

Before proving this holds under certain conditions, we should
note that no one has published any article disputing it. Neither
does the literature contain any example with actual data for which
it fails to hold. In practice, it is implicitly assumed to be true or
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turns out to be true under the assumptions made for a partic-
ular model. Under the procedure promulgated by the National
Council on Compensation Insurance (NCCI) [6], a column of
insurance charges is selected for a given risk based on its ex-
pected losses. The columns of charges have been constructed to
effectively guarantee that a large risk will always be assigned
smaller insurance charge values than a small one [3].

But why should this property hold? The basic intuition is
that the excess ratio is related to the propensity of a distribu-
tion to take on relatively extreme values. When a large risk can
be viewed as the independent sum of smaller risks, the Law of
Large Numbers will apply and the likelihood of relatively ex-
treme outcomes will decline.

Looking at the coefficient of variation (CV), the ratio of the
standard deviation to the mean, supports these intuitions. When
a large risk is the sum of independent, identically distributed
smaller risks, the CV declines as risk size increases. Since the
square of the CV is directly related to the integral of the insurance
charge [8], these arguments suggest the insurance charge should
also decline with risk size. However, this does not constitute a
strict proof. The counterexample in Exhibit 1 shows that the CV
does not uniquely determine the charge at every entry ratio. In
that example, the risk with the smaller CV has a larger charge
at some entry ratios (see Figure 2). In conclusion, because the
arrow goes the wrong way, we cannot use a CV argument to
arrive at a relatively trivial proof.

Instead we will use some numeric tricks and inequalities re-
lating limited expected values to rigorously show that insurance
charges do indeed decline as risk size increases when a large
risk can be decomposed into a sum of independent smaller ones.
This is a useful result, but alone it is insufficient for our larger
purpose. Actuaries have long known that a large risk in practice
has a distribution different than that resulting from the indepen-
dent summation of smaller risks [5]. So we will go further and
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FIGURE 2

Random Variable with Smaller CV Has Larger Charge

at some Entry Ratios

extend our result to models in which independent decompos-
ability is only conditionally true. To do this, we will follow the
usual Bayesian construction and view the true mean of a risk as
a random variable having a prior distribution. A family of priors
will then be used to define a family of unconditional distribu-
tions. This introduces parameter risk. Assuming an arbitrarily
decomposable conditional model and priors having charges that
decline with size, we will show the charges for the unconditional
model decline with the unconditional risk size. However, the un-
conditional risk-size model will not be decomposable, and, due
to the parameter uncertainty introduced via the priors, the CV
for an unconditional risk will not tend towards zero as risk size
becomes infinite.

We then turn to aggregate loss distributions that are generated
by sampling claim counts and sampling claim severities in the
manner described by the CRM. We will first show that an ag-
gregate loss model inherits decomposability from its underlying
claim count model, assuming severities are independently sam-
pled from a fixed severity distribution. This leads to the conclu-
sion that decomposable counts and independent fixed severities
produce a model in which charges decrease by size of risk. We
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will then extend this result to cover the type of parameter risk in
severity and frequency that is modeled in the CRM.

A reader versed in stochastic-process theory might observe
the concept of decomposability is quite similar to the idea of
“infinite divisibility” used in connection with Levy processes
([1], [7]). However, after some thought, we decided not to em-
ploy the terminology or results of stochastic theory. Though there
is an analogy between increasing the risk size in a size-of-risk
model and increasing the time in a stochastic process, we wish
to maintain relevant distinctions between the two operations. In
stochastic processes, the major concern is how a random vari-
able changes over time [9] and the cumulative effect of possible
jumps over a time interval. In short, it is the study of sample
paths. For example, N(t) might be the number of times a par-
ticular event has occurred as of time t and we might assume
N(t) is a right continuous function of t. The distribution of N(t)
would be a probabilistic summary of the number of events that
have occurred as of time t, averaged over the space of sample
paths (equipped with appropriate measure). In risk-size models,
we are concerned with how risks of different size relate to one
another; but there is no real analogue to the space of sample
paths. This is not to say that many of the results to be presented
here could not have been proven by applying stochastic-process
theory after appropriately accounting for the distinction between
time dependent paths and risk size. However, we will leave that
work as a task for others who are more knowledgeable about
stochastic-process theory. Also, we will not adopt the terminol-
ogy of stochastic process theory since this might confuse the
discussion of risk size. As well, in keeping with our actuarial
focus, we will tend to make whatever reasonable assumptions
we need, even though some of these could possibly be proved
from previous assumptions or from more minimalist hypotheses.
For instance, some of the assumptions that will be made about
differentiability of our models with respect to risk size might
be replaceable with more general and less restrictive statements
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or perhaps could be derived from the decomposability property.
Since none of the assumptions put us outside the CRM, we leave
the more abstract development along these lines as a topic of fu-
ture research.

To maintain focus in the main exposition, many basic defini-
tions and important foundational results have been relegated to
the Appendices. The reader may be well advised to review these
before proceeding much further.

In the end, most actuaries will find nothing surprising in what
we will prove. But we will have rigorously established that ac-
tuarial intuition about insurance charges does indeed hold true
for some fairly general classes of risk-size models, including the
CRM.

2. THE INSURANCE CHARGE FOR A SUM OF RANDOM
VARIABLES

We start by studying inequalities for insurance charges of
sums. Our first result is that the insurance charge for the sum of
two non-negative random variables is bounded by the weighted
average of their insurance charges.

2.1. Charge for Sum Bounded by Weighted Average of Charges

Suppose T1 and T2 are non-negative random variables with
means, ¹1 and ¹2, which are positive. Then, it follows that:

'T1+T2(r)·
¹1

¹1 +¹2
'T1(r)+

¹2
¹1 +¹2

'T2(r): (2.1)

Proof Applying definition A.1 from the Appendix, we write

'T1+T2(r) =
E[max(0,(T1 +T2)¡ r(¹1 +¹2))]

¹1 +¹2

=
E[max(0,(T1¡ r¹1)+ (T2¡ r¹2))]

¹1 +¹2
:
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Next, we use the subadditivity property of the “max” operator to
get max(0,A+B)·max(0,A)+max(0,B). We apply this to the
previous equation and do some simple algebra to find:

'T1+T2(r)·
¹1

¹1 +¹2

E[max(0,(T1¡ r¹1)]
¹1

+
¹2

¹1 +¹2

E[max(0,(T2¡ r¹2)]
¹2

=
¹1

¹1 +¹2
'T1(r)+

¹2
¹1 +¹2

'T2(r):

Note this result applies even if T1 and T2 are not independent, as it
follows from subadditivity of the max operator and the linearity
of the expectation operator. This result leads directly to the proof
that the summation of two identically distributed risks leads to a
smaller insurance charge.

2.2. Summation of Two Identically Distributed Variables
Reduces the Charge

Suppose T1 and T2 are identically distributed and let T denote
a random variable with their common distribution. Then

'T1+T2(r)· 'T(r): (2.2)

Proof From 2.1 it follows that

'T1+T2(r)· 1
2'T1(r)+

1
2'T2(r) = 'T(r): (2.3)

Note that if T1 and T2 were perfectly correlated, then A.6
would apply and summing would be equivalent to doubling and
this would not change the charge. In Exhibit 2, we show a dis-
crete example with two cases: one in which the two variables
are independent and the other in which they are correlated. Not
surprisingly, the sum of independent variables does have a lower
charge than the charge for the sum when the variables are corre-
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lated. Yet, even when correlation exists, the charge for the sum
is less than or equal to the charge for T.

To generalize Equation (2.2), suppose we take samples
(T1,T2, : : :) of a random variable, T. We define S(1,2, : : : ,n) = T1 +
T2 + ¢ ¢ ¢+Tn. We make the assumption that such sums are sample
selection independent by which we mean that the distribution of
S(1,2, : : : ,n) is the same as the distribution of S(i1, i2, : : : , in) where
(i1, i2, : : : , in) is any ordered n-tuple of distinct positive integers.
Note this does not require the Ti to be independent of one an-
other, but it does force the distribution of T1 +T2, for example, to
be the same as T1 +T3, T2 +T3, T21 +T225, or the sum of any pair
of distinct variables in our original sample. This would imply
that there is a common correlation between any two of our sam-
ples. Under the assumption of sample selection independence,
we will show the insurance charge for Sn declines as n increases.
While it might seem that there ought to be some simple induc-
tion proof based on Equation (2.1), the only quick extension is
that the charge for Snm is less than or equal to the charge for Sn.
To arrive at the general proof, we will use a numeric grouping
trick and properties of the “min” operator.

2.3. Insurance Charge for Sample Selection Independent Sums
Declines with Sample Size

'Sn+1(r)· 'Sn(r): (2.4)

Proof For k = 1,2, : : : ,n+1, define

S(» k=n+1) = T1 +T2 + ¢ ¢ ¢+Tk¡1 +Tk+1 + ¢ ¢ ¢+Tn+1:
In other words, S(» k=n+1) is the sum of the n out of the first
n+1 trials obtained by excluding the kth trial. For example,
S(» 2=3) = T1 +T3. With this notation, we may write the follow-
ing formula

n ¢ Sn+1 =
n+1X
k=1

S(» k=n+1):
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When n= 2, this formula says

2 ¢ S3 = 2(T1 +T2 +T3)
= (T2 +T3)+ (T1 +T3) + (T1 +T2)

= S(» 1=3)+ S(» 2=3)+ S(» 3=3):
The formula implies

n(n+1)E
·
Sn+1
n+1

;r
¸
= E[n ¢ Sn+1;n(n+1)r]

= E

24n+1X
k=1

S(» k=n+1);n(n+1)r
35 :

Next, we apply the inequality min(A+B,C+D)¸min(A,B) +
min(C,D) repeatedly to get

E

24n+1X
k=1

S(» k=n+1);n(n+1)r
35¸ n+1X

k=1

E[S(» k=n+1);nr]:

Since the Ti are identically distributed and sample selection in-
dependent, it follows that

E[S(» k=n+1);nr] = E[Sn;nr]
and thus that

E

24n+1X
k=1

S(» k=n+1);n(n+1)r
35¸ (n+1)E[Sn;nr]:

Connecting inequalities and factoring out n from the right hand
expectation, we obtain

n(n+1)E
·
Sn+1
n+1

;r
¸
¸ (n+1)nE

·
Sn
n
;r
¸
:

Assuming without loss of generality for the purpose at hand
that E[T] = 1, this inequality implies (1¡'Sn+1(r))¸ (1¡'Sn(r)).
The result then follows.
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While the proof is rather abstract and the algebra of our numeric
trick can be confusing, it is easy to see how it all works in any
simple example.

EXAMPLE 1:

'S3(r)· 'S2(r):

Proof Consider

6E
·
S3
3
;r
¸
= E[2 ¢ S3;6r] = E[(T1 +T2 +T3)+ (T1 +T2 +T3);6r]

= E[(T1 +T2) + (T1 +T3)+ (T2 +T3);6r]

¸ E[T1 +T2;2r]+E[T1 +T3;2r]+E[T2 +T3;2r]
= 3E[S2;2r]:

Thus we have

E
·
S3
3
;r
¸
¸ E

·
S2
2
;r
¸

and the desired conclusion follows.

It is important to understand that we have not proved that any
way of adding risks together reduces the charge. For example,
if we had a portfolio of independent risks with small charges,
and then added another risk with a large charge function, the
addition of that risk could well result in a new larger portfolio
with a larger charge. However, that would violate our assumption
that the risks were identically distributed. Also, if we had two
identically distributed risks, initially independent, and then added
a third risk, but while doing so combined their operations so that
all the risks were now strongly correlated, the charge might well
increase. This is not a counterexample to our result, because our
construction does not allow one to change correlations in the
middle of the example.
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3. RISK-SIZE MODELS

We need to introduce some precision in our discussion to at
least guarantee that there is a well-defined notion of the insur-
ance charge for a particular risk size. To start, we initially ignore
parameter risk so that we can unambiguously identify the size
of a risk with its expectation value. We then define a risk-size
model,M, as a collection of non-negative random variables each
having a finite non-negative mean. We index a random variable
within such a model by its mean. We then use the risks of a
particular size in the model to define the cumulative distribution,
limited expected value, and insurance charge at that size. We let
M¹ be the set of risks in M of size ¹ and we suppose there is a
measure §¹ on M¹. We then define the cumulative distribution
as a function of risk size via: FM(t j ¹) = E[FT(t) j T 2M¹] where
the expectation is taken with respect to §¹. Similarly, we define
limited expected values and insurance charges as functions of
risk size. We say M is well-defined if the measures give rise to
a well-defined cumulative distribution for every M¹ that is non-
empty. We say a well-defined model is complete if there is a
cumulative distribution for the model at every size. Unless oth-
erwise noted, we henceforth assume all models are well-defined
and complete. We define M to be size continuous at t > 0 if
FM(t j ¹) is a continuous function of ¹ and nth order size dif-
ferentiable at t > 0 if FM(t j ¹) has a nth order partial derivative
with respect to ¹, for ¹ > 0. Note that M could be size continu-
ous and differentiable even if all the random variables in M are
discrete.

In the simplest case, each M¹ consists of a single random
variable that we denote as T¹, and the measure, §¹, assigns a mass
point of 100% to this random variable. We say this is a unique
size model and we use FT¹(t), the cumulative distribution function
for the unique risk of size, ¹, to define FM(t j ¹), the cumulative
distribution function at t for the model at size ¹. Similarly we use
the limited expected value and charge function of T¹. to define
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the limited expected value and charge for the model M at size
¹. To simplify notation when working with a unique size model,
we may sometimes write FT¹(t) in place of FM(t j ¹).
Next we define the notions of closure under independent sum-

mation, and decomposability in a unique size model.

3.1. Definitions of Independence, Closure and Decomposability
in a Unique Size Model

Given a unique size model, M, and assuming ¹1 > 0, ¹2 > 0,
we say

M is closed under independent summation if T¹1 2M
and T¹2 2M implies their independent sum, T¹1 +T¹2 ,
is also in M. Note these could well be independent
samples of the same random variable. (3.1a)

M is arbitrarily decomposable if for any positive
¹, ¹1, and ¹2 with ¹= ¹1 +¹2, there exist T¹ 2M,
T¹1 2M, and T¹2 2M such that the independent
sum, T¹1 +T¹2 has the same distribution as T¹. (3.1b)

Unless there is need for greater specificity, we will usually
say “closed” instead of “closed under independent summation.”
In a closed complete model, we can add identically distributed
random samples of any given risk in the model and still stay in
the model.

Arbitrary decomposability is a strong condition. It says that
any way of splitting the mean of a risk into a sum leads to a de-
composition of that risk into the independent sum of smaller
risks in the model. To simplify terminology when no confu-
sion should ensue, we may hereafter refer to “arbitrarily de-
composable” models as simply “decomposable.” We will show
that charges decrease with size in a decomposable unique model.
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First, we observe:

3.2. Decomposability Equivalence to Closure in Unique Size
Model

M is decomposable,M is closed: (3.2)

Proof We prove one direction and leave the other as an ex-
ercise.

“)” Omitted.
“(” Since M is complete, there exist T¹ 2M, T¹1 2M, and

T¹2 2M . By assumption, M is closed under independent sum-
mation. So the independent sum, T¹1 +T¹2 , is in M. Taking
expectations one has E[T¹1 +T¹2] = ¹1 +¹2. In a unique size
model, we know T¹1+¹2 has the unique distribution in M with
E[T¹1+¹2] = ¹1 +¹2.

If we assume size differentiability in a decomposable model,
we can obtain some results constraining the behavior of the cu-
mulative distribution and the limited expected value function
when these are viewed as functions of risk size.

3.3. Inequalities for Risk Size Partials in Decomposable Models

If M is a continuously differentiable decomposable risk-size
model, then

@FT¹
@¹

· 0 (3.3a)

1¸ @E[T¹; t]
@¹

¸ 0 (3.3b)

@2E[T¹; t]

@¹2
· 0: (3.3c)
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Proof Applying the definition of decomposability, we derive

FT¹(t) = Pr(T¹ · t)¸ Pr(T¹+T¢¹ · t) = FT¹+T¢¹(t) = FT¹+¢¹(t):

F is thus a decreasing function of the risk size and Equation
(3.3a) follows.

To prove the partial exceeds zero in Equation (3.3b), we use
the decomposability property to derive

E[T¹+¢¹; t]¡E[T¹; t] = E[T¹+T¢¹; t]¡E[T¹; t]¸ 0:
To prove the partial is less than unity, we similarly derive

E[T¹+¢¹; t]¡E[T¹; t] = E[T¹+T¢¹; t]¡E[T¹; t]
· E[T¹; t]+E[T¢¹; t]¡E[T¹; t] = E[T¢¹; t]·¢¹:

It follows that
E[T¹+¢¹; t]¡E[T¹; t]

¢¹
· 1

and this leads immediately to our result.

As for Equation (3.3c), we claim that with our continuous
differentiability assumption, it suffices to show that E[T¹+¢¹; t]¡
E[T¹; t] is a decreasing function of ¹ for any ¢¹> 0. This is
sufficient because, if it is true, we can then use an argument
based on the Mean Value Theorem to show that the first partial
derivative with respect to risk size is decreasing. A decreasing
first partial derivative forces the second partial to be less than or
equal to zero.

To show E[T¹+¢¹; t]¡E[T¹; t] is decreasing, we first use the
additivity and independence assumptions to write the convolution
formula:

FT¹+¢¹(t) = FT¹+T¢¹(t) =
Z t

0
dFT¹(s) ¢FT¢¹(t¡ s):
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This implies

GT¹+¢¹(t)¡GT¹(t) =
Z t

0
dFT¹(s) ¢GT¢¹(t¡ s):

Using

E[T; t] =
Z t

0
dsGT(s)

we derive

E[T¹+¢¹; t]¡E[T¹; t] =
Z t

0
dx

Z x

0
dFT¹(y) ¢GT¢¹(x¡ y):

Switching orders of integration, we have

E[T¹+¢¹; t]¡E[T¹; t] =
Z t

0
dFT¹(y)

Z t

y
dxGT¢¹(x¡ y)

=
Z t

0
dFT¹(y)E[T¢¹; t¡ y]:

Next, we integrate by parts and evaluate terms to obtain

E[T¹+¢¹; t]¡E[T¹; t] = FT¹(0) ¢E[T¢¹; t]

+
Z t

0
dyFT¹(y) ¢GT¢¹(t¡ y):

Applying Equation (3.3a), we can conclude that this decreases
with ¹, thus proving our result.

Note that these results apply to discrete as well as continu-
ous distributions and that the proof does not require FT¹(0) to
equal zero. Exhibit 3 shows how Poisson, Negative Binomial,
and Gamma limited expected values vary as the mean changes.
See Figure 3 for a graph of Poisson limited expected values at
the limit 3.0 that vary as a function of risk size.

Now inequality 2.4 will be used to show that decomposable
models must have charges that decrease with risk size.
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FIGURE 3

Poisson Limited Expected Values E[T¹;3]

3.4. Charges Decrease with Risk Size in Decomposable Models

Suppose M is a decomposable model. Then:

¹1 < ¹2) 'T¹1
¸ 'T¹2 : (3.4)

Proof Since the charge function is a continuous function of
risk size, it suffices to prove the result when ¹1 and ¹2 are ratio-
nal. Assuming rationality, there exists such that ¹1 =m1 and
¹2 =m2 where m1 and m2 are integers with m1 <m2. Using
completeness and decomposability, it follows that there exists T
in M and that

T¹1 = (T )1 + (T )2 + ¢ ¢ ¢+(T )m1
T¹2 = (T )1 + (T )2 + ¢ ¢ ¢+(T )m1 + ¢ ¢ ¢+(T )m2

where the sums are of independent samples of T . Then, via
inequality 2.4, the charge for T¹1 exceeds the charge for T¹2 .

We now apply Equation (3.4) to prove that insurance charges
decrease with risk size for several families of distributions com-
monly used in insurance models.
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3.5. Charges Decrease with Size in Poisson, Negative Binomial,
and Gamma Models

The insurance charge decreases by size of risk in each of the
following models:

Poisson:
M= fN » Poisson(¹) j ¹ > 0g: (3.5a)

Negative Binomial with common q:

M= fN »Negative Binomial(®,q) j q is fixed and ® > 0g:
(3.5b)

Gamma with common scale parameter ¸:

M= fT »Gamma(®,¸) j ¸ is fixed and ® > 0g: (3.5c)

Proof With the given restrictions, it can be easily shown that
each of the families is a unique size model that has well-defined
charges. It is also readily seen that each is decomposable. The
results then follow from Equation (3.4).

Exhibit 4 shows columns of charges for risks of different sizes
for Poisson random variables, Negative Binomials with common
failure rate parameter, and Gammas with common scale param-
eter.

In a decomposable model, the charge decreases to the smallest
possible charge as risk size goes to infinity.

3.6. Charge for an Infinitely Large Risk Equals Smallest
Possible Charge in Decomposable Model

Suppose M is a differentiable decomposable model. Then

'T¹ ! '0 as ¹!1 where '0(r) = max(0,1¡ r):
(3.6)
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Proof It suffices to show 'Tn¹ ! '0 as n approaches 1 for
arbitrary fixed ¹. We use a CV argument. Consider Var(Tn¹) =
nVar(T¹) for a decomposable model. Thus,

CV2(Tn¹) = Var(Rn¹) =
Var(T¹)

n¹2
! 0 as n!1:

By Equation (A.11), this impliesZ 1

0
dr'Rn¹(r)!

1
2
:

Using
R1
0 dr'0(r) =

1
2 , the result follows.

It is not difficult to construct a risk-size model in which
charges decrease with size, even though it is not decomposable.

EXAMPLE 2: Charges Decrease by Size in a Non-Decomposable
Model
Define T¹ to be the distribution having probability mass p=
¹=(¹+1), at t= ¹+1 and mass 1¡p, at t= 0. It follows that
E[T¹] = ¹ and

'T¹(r) = 1¡
r

r¹
for 0· r < r¹ where r¹ =

¹+1
¹

:

Since r¹ declines as ¹ increases, the charge function declines
with risk size. Yet, the independent sum of two members of this
family always yields a distribution with three mass points and
thus a sum that is not even in the family.

4. PARAMETER UNCERTAINTY IN RISK-SIZE MODELS

To introduce parameter uncertainty, we now suppose a model
in which there may be many random variables sharing a com-
mon expected mean, but whose actual true means are uncertain.
Because we do not know in advance the true mean of a risk in
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such a model, we use the a priori expected mean to define risk
size. If we let represent the true mean of a risk, and ¹ the a priori
mean, then M¹ consists of all the risks with prior mean equal to
¹. While M¹ can therefore contain many risks each having a
true mean, , which is not equal to ¹, we do insist that §¹, the
measure, is defined so that ¹ is the average mean over all risks in
M¹. Following the usual Bayesian construction and the CRM, we
will restrict our attention to models in which we may represent
§¹ using a prior distribution, H( j ¹).
Before going further, it is instructive to see how such a con-

struction can be used to model the combined effects of popula-
tion parameter uncertainty and population heterogeneity.

EXAMPLE 3: Population Uncertainty and Heterogeneity
Consider a model in which the group of risks of size 100 actu-
ally consisted of risks whose true means were 90, 100, and 110.
Assume we have no way of determining the true mean of any
risk in advance of an experiment. Suppose there are two possi-
ble states of the world, “L” and “H,” each of which has an equal
random chance of occurring. If “L” applies, then we will sample
from a subgroup of low risks, half of which have a true mean
of 90 and half which have a true mean of 100. If “H” applies,
the sampling subgroup will consist of an even split of high risks
with true means of 100 and 110. We then take independent sam-
ples with replacement. In this analogy, the two possible states
of the world correspond to population parameter uncertainty and
the mix of risks in each state corresponds to heterogeneity of the
population. To carry the analogy further, suppose the expected
losses excess of 120 are 4, 10, and 18 for risks whose true means
are 90, 100, and 110 respectively. If we are in state “L,” our sam-
pling will produce an average excess loss of 7, while the average
excess loss will be 14 if we are in state “H.” The average over all
replications of this sampling process over all states will be 10.5.
With a prior distribution of 25%, 50%, and 25% for risks with
true means of 90, 100, and 110 respectively, we will duplicate
this result. Note the correct average charge for the population



WHY LARGER RISKS HAVE SMALLER INSURANCE CHARGES 109

exceeds that charge for a risk whose mean equals the average
mean of the population.

We will now study a specific class of risk-size models with
parameter uncertainty that are constructed by applying priors to
the risk sizes in a conditionally decomposable model. Under the
usual Bayesian construction, the (prior probability) weighted av-
erage of the conditional distributions generates the unconditional
distribution. If the family of priors itself forms a well-defined
risk-size model, the family of resulting unconditional distribu-
tions will also be a well-defined risk-size model. If the risk
model of priors is sufficiently well-behaved, we will be able
to derive conclusions about the insurance charges of the un-
conditional distributions. Suppose the priors have charges that
decrease, not necessarily strictly, with the unconditional risk
size. We will then show the resulting unconditional distribu-
tions must also have charges that decrease with unconditional
risk size.

To begin the mathematical development of this construction,
let T( ) be a non-negative random variable parametrized by
such that E[T( )] = . Suppose the family fT( ) j > 0g is dif-
ferentiable with respect to and that it has insurance charges that
decrease with risk size. Now we view the parameter as a ran-
dom variable £ and let H( ) =H( j ¹) denote its cumulative dis-
tribution. Assume H(0) = 0 and that £ has density h( ) =H 0( ),
which is continuously differentiable. Let E[£] be finite. Since
E[T( )] = , it follows that the unconditional risk size, E[T(£)],
is equal to the mean, E[£], of the parameter distribution. We
often will use ¹= E[£] to simplify notation. Finally, we let
'T(£) denote the unconditional insurance charge. Given these
definitions, the usual Bayesian construction leads to:

4.1. Unconditional Insurance Charge Formula

'T(£)(r) =
1
¹

Z
d h( ) 'T( )

r¹
¶
: (4.1)
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Proof Omitted.

The Bayesian construction implies there is some parameter
uncertainty about the true mean of any risk. Under one interpre-
tation, the final charge value is the (prior) probability-weighted
average of the dollar charge over all values of the true mean,
divided by the expected value of the true mean. Under another
interpretation, we are dealing with a population of risks whose
true overall mean we know, even though there is some parame-
ter uncertainty regarding the mean of any particular risk in the
population. The prior then represents the spread in the popula-
tion and the formula arrives at the correct average charge for
the population. It is also important to note that, as in our ex-
ample, the charge for an average risk is not the same as (and is
usually lower than) the weighted average charge for the popula-
tion of risks. These two interpretations correspond to two types
of parameter risk. The first expresses our uncertainty about the
overall mean of a population, while the second expresses our
uncertainty about the parameter dispersion or heterogeneity of a
population. While a hierarchical, “double-integral” model could
be used to separately delineate their effects, Example 3 shows
that with respect to insurance charges, Equation (4.1) can be
used to model both types of parameter risk together. For other
applications such as in credibility theory, it may be important
to maintain a distinction between these sources of parameter
risk.

Now let Q be a family of £ random variables and M(Q)
the associated set of unconditional random variables. One quick,
but important, result can be obtained assuming all the priors are
scaled versions of a single distribution. Thus all the priors have
the same insurance-charge function. Assume we have a condi-
tional model in which charges decline with size. Then we show
that applying the scaled priors to this model generates an un-
conditional model in which the insurance charge declines as a
function of the unconditional risk size.
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4.2. Unconditional Charge Declines with Risk Size in Scaled
Priors Model

If

@'T( )
@

· 0 and £2 = (1+ c)£1 for c > 0,

then
'T(£2)(r)· 'T(£1)(r): (4.2)

Proof We start by using Equation (4.1) to write

'T(£2)(r) =
1
¹2

Z 1

0
d h2( ) ¢ ¢'T( )

r¹2
¶

where

¹2 = E[£2] =
Z 1

0
d h2( ) ¢ :

Then consider

¹2 = (1+ c)¹1

H2( ) = Pr(£2 · ) = Pr((1+ c)£1 · )

= Pr £1 · 1+ c
¶
=H1 1+ c

¶

h2( ) = h1 1+ c

¶
1

1+ c
:

Substituting, rewrite the integral as

'T(£2)(r) =
1

¹1(1+ c)

Z 1

0
d h1 1+ c

¶
1

1+ c

¢ ¢'T( )
r¹1(1+ c)

¶
:
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Then change variables using ´ = ( =1+ c) to get

'T(£2)(r) =
1
¹1

Z 1

0
d´h1(´) ¢ ´ ¢'(T(´(1+c))

r¹1
´

¶
:

Because we assumed the conditional insurance charges were de-
creasing with risk size, it follows that

'T(´(1+c)) · 'T(´):
This leads to

'T(£2)(r)·
1
¹1

Z 1

0
d´h1(´) ¢ ´ ¢'T(´)

r¹1
´

¶
= 'T(£1)(r):

Why does this result make intuitive sense, despite the fact
that scaling up the prior doesn’t change its insurance charge?
The answer is that scaling up does raise the mean of the prior so
that larger conditional risks have more weight in the weighted
average signified by the integral. Since the large conditional risks
have smaller charges, the net effect of scaling up the prior is to
reduce the charge of the unconditional distribution. Note that
this result did not depend on decomposability of the conditional
model, merely that the conditional risk-size model had charges
that decrease with size.

For an example, consider the following:

EXAMPLE 4: Gamma Contagion on Conditional Poissons
Let T( ) be conditionally Poisson with parameter, . Suppose
= ¹ ¢ º where º is Gamma distributed with shape parameter ®,
and scale parameter ¸= ®, so that E[º] = 1. The variable, º, in-
troduces parameter uncertainty and Var(º) = (1=®) = c is called
the contagion [4] parameter for claim counts. It follows that
£¹, the random variable for , is Gamma distributed with shape
parameter ®, and scale parameter ¸= ®=¹, so that E[£¹] = ¹.
The unconditional distribution T(£¹), is Negative Binomial with
failure rate probability parameter q= (1+¸)¡1 = ¹=(¹+®). If
Q= f£¹ j ¹ > 0g andM(Q) is the resulting set of Negative Bino-
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mials. It follows as a consequence of Equation (4.2) that charges
decrease with risk size in M(Q).

Note M(Q) consists of Negative Binomials with a common
shape but different failure rate parameters. This is different from
our previous decomposable Negative Binomial risk-size model,
from Equation (3.5b), in which all the variables had a com-
mon failure rate parameter. Our result is that charges decline
with size in the standard Gamma-Poisson claim-count contagion
model. Note this model is not closed under independent summa-
tion. Further, observe that the square of the coefficient of varia-
tion, CV2 = Var(£¹)=¹

2 = 1=(®q) = c+(1=¹), decreases toward
the contagion, and not zero, as the risk size grows infinite. See
Exhibit 5 for tables of charges for Negative Binomials as defined
in Example 3.

Next we will consider two priors with the same mean. As-
sume these priors are acting on a continuously differentiable
decomposable conditional risk-size model. We will show that,
under certain conditions, if one prior has a smaller insurance
charge, then its resulting unconditional random variable also has
a smaller insurance charge. In order to prove this, we will first
use integration by parts to express the unconditional insurance
charge in terms of an integral of a product of the risk partials
of the limited expected values of the conditional model and the
prior.

4.3. Unconditional Charge Formula

'T(£)(r) = 1¡
1
¹

Z 1

0
d
@E[£; ]
@

¢ @E[T( );r¹]
@

: (4.3)

Proof We write

'T(£)(r) = 1¡
1
¹

Z 1

0
d h( ) ¢E[T( );r¹]:
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Then we perform integration by parts as follows to deriveZ 1

0
d h( )E[T( );r¹] =¡(1¡H( ))E[T( );r¹]

¯̄̄̄ =1
=0

+
Z 1

0
d (1¡H( ))@E[T( );r¹]

@

=
Z 1

0
d (1¡H( ))@E[(T( );r¹]

@
:

The result follows since

1¡H( ) = @E[£; ]
@

:

With this we can now show a smaller charge for the prior
leads to a smaller charge for the unconditional distribution at a
common risk size.

4.4. Smaller Charges for the Prior Lead to Smaller
Unconditional Charges–Size Fixed

If

¹= E[£1] = E[£2] and
@2E[T( );r¹]

@ 2 · 0

then
'£2 · '£1 implies 'T(£2) · 'T(£1): (4.4)

Proof We use Equation (4.5) to obtain

'T(£1)(r)¡'T(£2)(r)

=¡1
¹

Z 1

0
d

Ã
@E[£1; ]
@

¡ @E[£
2; ]

@

!
@E[T( );r¹]

@
:
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We integrate by parts to obtain

¹('T(£1)(r)¡'T(£2)(r))

=¡(E[£1; ]¡E[£2; ])
@E[T( );r¹]

@

¯̄̄̄ =1
=0

+
Z 1

0
d (E[£1; ]¡E[£2; ])

@2E[T( );r¹]
@ 2 :

Since E[£1] = E[£2] = ¹ and the first partial of the limited ex-
pected value is bounded by unity as per Equation (3.3b), it fol-
lows that the first term vanishes and we have

¹ ¢ ('T(£1)(r)¡'T(£1)(r))

=
Z 1

0
d (E[£1; ]¡E[£2; ])

@2E[T( );r¹]
@ 2 :

We use the expectation formula for the insurance charge, A1, to
arrive at the formula

E[£; ] = ¹ 1¡'T(£) ¹

¶¶
:

We then use this to substitute into the previous integral to yield

'T(£1)(r)¡'T(£2)(r)

=
Z 1

0
d '£2 ¹

¶
¡'£1 ¹

¶¶
@2E[T( );r¹]

@ 2 :

The result then follows immediately from the assumptions of the
proposition.

To gain a better understanding of the formulas, consider the
following example.

EXAMPLE 5: Poisson Conditionals and Exponential Priors
Let T( ) be Poisson. We leave it as an exercise for the reader to
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show
@F(n j )
@

=¡f(n j )
@E[T( );n]

@
= F(n¡ 1 j )

@2E[T( );n]
@ 2 =¡f(n¡ 1 j ):

Suppose the prior on is an exponential with mean ¹, so that
1¡H( ) = exp(¡ =¹). Applying Equation (4.3), we derive

'T(£)
n

¹

¶
=
Z 1

0
d e¡ =¹ ¢ e¡

n¡1

(n¡ 1)! =
¹

¹+1

¶n
:

To see this is correct, we apply the prior to the conditional density
and integrate to obtain the unconditional density

fT(£)(n) =
1

¹+1
¹

¹+1

¶n
:

We recognize this as a Geometric density. It is an exercise in
summation formulas to then verify the insurance charge associ-
ated with this density is in fact the same as the one just derived
using Equation (4.3).

We may now put the results from Equations (4.2) and (4.4)
together to show that decreasing charges by risk size for the
priors acting on a differentiable decomposable conditional family
lead to unconditional charges that decrease with risk size.

4.5. Charges Decrease by Size for Model Based on
Decomposable Conditionals with Priors that Decrease by Size

Suppose M= fT( ) j > 0g is a differentiable decomposable
risk-size model and let Q be a risk-size model with unique ran-
dom variables, f£¹g such that E[£¹] = ¹.
If '£2 · '£1 when ¹1 < ¹2, then

'T(£2) · 'T(£1): (4.6)
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Proof Let ¹2 = (1+ c)¹1 where c > 0 since ¹2 > ¹1. Via
Equation (4.2) we have

'T((1+c)£1) · 'T(£1):
Since '£2 · '£1 = '(1+c)£1 , we can use Equation (4.4) to show

'T(£2) · 'T((1+c)£1):
Note it is valid to apply Equation (4.4) since the second partial
is negative for differentiable decomposable models via Equa-
tion (3.3c). Connecting the two inequalities leads to the desired
result.

Next we extend these results to aggregate loss distributions.

5. INSURANCE CHARGES FOR LOSSES

We define an aggregate loss random variable as the compound
distribution generated by selecting a claim count from a claim
count distribution and then summing up that number of severi-
ties, where each claim severity is drawn from a severity distri-
bution. We associate a risk with a particular count distribution
and a particular severity distribution. When we talk about the
aggregate losses for a risk, we mean the aggregate losses gener-
ated by samples appropriately drawn from its count and severity
distributions according to our protocols. Suppose we have a col-
lection of risks whose claim count distributions form a risk-size
model. If we make appropriate assumptions about the severities
of our risks, the aggregate-loss random variables for these risks
will also constitute a risk-size model. We will show under cer-
tain conditions that, if the claim counts have charge functions
that decrease by size of risk, then so do the charge functions for
the aggregate losses.

Beginning the mathematical exposition, let N be the random
variable representing the number of claims for a particular risk
and let pN(n) = Pr(N = n). Use a non-negative random variable
X, with finite mean ¹X , to represent claim severity. Assume X
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has finite variance and write ¿2 = Var(X). Let Xi be the ith in
a sequence of trials of X. Define the aggregate loss random
variable for the risk via T(N ,X) = X1 +X2 + ¢ ¢ ¢+XN . Note in
this process of generating results, we are generating losses for a
particular risk. When no confusion should result, we will write
T instead of T(N,X). Using Equation (A.6), we know the ran-
dom variable, (T=¹X), has the same insurance charge as T. This
means we can assume ¹X = 1 for the purpose at hand with-
out loss of generality. When there are exactly n claims, define
T(n,X) = X1 +X2 + ¢ ¢ ¢+Xn. Assuming ¹X = 1, it follows that
E[T(n,X)] = n. To simplify notation, we may write 'n=X or even
'n in place of 'T(n,X).

The insurance charge for T(N,X) can be decomposed as a
weighted sum of the insurance charges for T(n,X), each evalu-
ated at an appropriately scaled entry ratio.

5.1. Count Decomposition of the Insurance Charge for
Aggregate Loss

'T(N,X)(r) =
1
¹N

X
n=1

pN(n) ¢ n ¢'T(n,X)
r¹N
n

¶
: (5.1)

Proof Left as an exercise for the reader.

While one could get some general results by working with
the claim count decomposition and using discrete distribution
analogues of integration by parts, the proofs are a bit messy. In-
stead, we will employ the simpler strategy of deriving properties
of compound distributions from their claim count models. Then
we can use the results of Chapters 3 and 4 to arrive at relatively
painless conclusions about charges for the aggregate loss models.
We start by proving that if the claim count model is decompos-
able, then so is the resulting compound distribution model. To
do this, we will first make the following severity assumptions:
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5.2. Fixed Independent Severity

A compound risk-size model has independent fixed severity
if:

i) all risks share a common severity distribution, X.

ii) fX1,X2, : : : ,XNg is an independent set.
iii) Xi is independent of N.

iv) Xi is independent of , where is the true mean
of N for a risk.

(5.2)

Given these severity assumptions and a decomposable claim
count model, we can show the aggregate loss model is also de-
composable.

5.3. Aggregate Loss Model Inherits Decomposability from
Claim Count Model Assuming Fixed Independent Severity

If MN is a decomposable claim count model and the
compound model, MT(N ,X) = fT(N ,X) jN 2MNg
has fixed independent severity, then MT(N,X) =
fT(N ,X) jN 2MNg is also decomposable. (5.3)

Proof Recall we have assumed without loss of generality that
E[X] = 1. Thus E[T(N ,X)] = E[N]E[X] = E[N]. Given > 0,
completeness of MN implies there exists a unique N( ) 2MN

such that E[N( )] = . It follows that E[T(N( ),X)] = . Thus,
MT(N,X) is complete. Now let T(N( 1),X) and T(N( 2),X) be
in MT(N,X). Then using our severity assumptions we can show
T(N( 1),X)+T(N( 2),X) = T(N( 1)+N( 2),X). Since MN is
closed under independent summation, it follows that N( 1) +
N( 2) =N( 1 + 2) and N( 1 + 2) 2MN . Therefore, T(N( 1) +
N( 2),X) 2MT(N,X), proving that MT(N,X). is closed under inde-
pendent summation. Now we apply Equation (3.2) to finish the
proof.
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Using this, it follows as a direct application of Equation (3.4)
that the aggregate loss model has charges that decrease with risk
size.

5.4. Decomposable Claim Counts Imply Aggregate Loss Model
Has Charges that Decrease with Risk Size Assuming Fixed
Independent Severity

If MN is a differentiable decomposable risk-size
model for claim counts and the compound model,
MT(N,X) = fT(N,X) j N 2MNg has fixed independent
severity, then MT(N,X) has charges that decrease
with risk size. (5.4)

Proof Via Equation (5.2), MT(N ,X) is decomposable and the
introduction of fixed independent severity does not affect differ-
entiability with respect to risk size. The result then follows from
Equation (3.4).

Note in this result that all risks share a common severity dis-
tribution and there is no parameter uncertainty regarding this
severity distribution. While adding severity to the model does
lead to larger charges for all risks, the result says that under
these assumptions charges for aggregate loss still decline by size
of risk.

We now apply Statement 5.4 to prove that insurance charges
decrease with risk size for several classes of distributions com-
monly used in insurance models.

5.5. Charges for Aggregate Loss Decrease with Risk Size When
Counts Are Poisson or Negative Binomial (Fixed Failure Rate)

Assuming claim sizes are independently and identically dis-
tributed and independent of the claim count, the insurance charge
decreases as the size of a risk is increased in each of the follow-
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ing models, MT(N,X), where MN is:

Poisson:
M= fN 2 Poisson(¹) j ¹¸ 0g (5.5a)

Negative Binomial with common q:

M= fN 2Negative Binomial(®,q) j q is fixed and ®¸ 0g:
(5.5b)

Proof Apply Statement 5.4.

We now introduce parameter uncertainty regarding the mean
severity for a risk. We follow the CRM [4] as shown in Appendix
B and assume severity may vary from risk to risk only due to
a scale factor. Let ¯ be a positive continuous random variable
with density, w(¯), such that E[1=¯] = 1 and Var(1=¯) = b. The
parameter b is called the mixing parameter.

We let X be a fixed severity distribution that does not change
by risk. The severity distribution for a particular risk Y is ob-
tained by first randomly selecting a ¯ and then using the for-
mula Y = X=¯. Under this construction, each risk has a particu-
lar ¯ that does not change from claim to claim. We will prove
that when the selection of ¯ is independent of , it follows that
the compound model on decomposable counts has charges that
decrease with size. To ensure clarity, we first define the notion
of independent severity with scale parameter uncertainty by risk.
This provides with us a terminology for describing the severity
model just presented.

5.6. Independent Severity with Scale Parameter Uncertainty

A compound risk-size model has independent severity with
scale parameter uncertainty if

i) each particular risk has a particular ¯ and associated
severity distribution, Y = X=¯, where X is fixed for
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all risks and b is a positive continuous random variable
with E[1=¯] = 1 and Var(1=¯) = b.

ii) fX1,X2, : : : ,XNg is an independent set.
iii) Xi is independent of N.

iv) The selection of ¯ for a risk is independent of ,
where is the true mean of N for a risk.

v) The selection of ¯ for a risk is independent of ¹,
where ¹ is the a priori mean of N for a risk. (5.6)

We now show

5.7. Decomposable Claim Counts Imply Aggregate Loss Model
Has Charges that Decrease with Risk Size Assuming Independent
Severity with Scale Parameter Uncertainty

If MN is a differentiable decomposable risk-size
model for claim counts and the compound model,
MT(N,Y) = fT(N ,Y) jN 2MN ,Y = X=¯g, has
independent severity with scale parameter uncertainty,
then MT(N,Y) has charges that decrease with risk size.

(5.7)

Proof By the usual Bayesian conditioning and using the in-
dependent severity assumptions, we can show the charge for the
model at risk size is given via:

'T(N( ),Y)(r) =
Z 1

0
d¯w(¯)(1=¯)'T(N( ),X)(r¯):

Using Statement 5.5, we know the integrands decrease by size
of risk, and the result follows using the independence of ¯
and .

Even though the aggregate model in Statement 5.7 is based on
decomposable counts, it will not be decomposable. Indeed, the
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aggregate model is not even a unique model as the introduction
of the scale parameter leads to an infinite number of risks with
the same a priori expected aggregate loss and thus the same size.
We also need to be careful in interpreting the order in which the
scaling parameter is averaged over the population. Suppose each
risk in a decomposable count model has an exponential severity
distribution and the prior on severity is a Gamma. It follows that
the unconditional severity over all risks is Pareto distributed. If
we then construct a model where each risk has this Pareto as
its severity, we will have a decomposable model that is different
and has different charges than the one in Statement 5.7.

Next we reprise the work done in Chapter 4 and extend our
result to aggregate loss models in which the counts are subject to
parameter uncertainty. We start with decomposable counts and
then introduce a family of prior distributions on the mean claim
counts, such that the priors constitute a risk-size model. If the
priors have charges that decrease, not necessarily strictly, with
risk size and if the compound model has independent severity
with scaling parameter uncertainty, then the aggregate model has
charges that decline with risk size. This is the key result of the
paper.

5.8. Unconditional Aggregate Loss Model Charges Decrease
with Risk Size Assuming Counts Based on Decomposable
Conditionals with Priors that Decrease by Size and Independent
Severity with Scaling Parameter Uncertainty

Assume MN is a differentiable decomposable
claim-count model parameterized by such that
E[N( )] = . Let Q= f£¹g be a complete set of
priors on having charges that decrease with risk
size. Let Y denote risk severity and suppose the
aggregate loss model, MT, has independent severity
with scale parameter uncertainty. Then MT has
charges that decrease with risk size. (5.8)
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Proof The charge in the model for risks of size ¹ is given
by

'MT(¹)(r) =
Z 1

0
d¯w(¯)(1=¯)

1
¹

Z 1

0
d h( j ¹)

¢ ¢'T(N( ),X)(r¯¹= ):
Using the same integration by parts argument made in proving
Statement 4.5, we can show the integral

1
¹

Z 1

0
d h( j ¹) ¢ ¢'T(N( ),X)(r¯¹= )

declines as a function of ¹ for any fixed ¯. The result then follows
directly using the independence of ¯ with ¹.

Note the assumption of independence between ¯ and allows
us to integrate over the priors for severity and the priors for
claim counts in any order. Thus we need our assumption that ¯
is independent of as well as ¹.

6. CONCLUSION

We started by proving some general inequalities for the insur-
ance charge of a sum of identically distributed random variables.
We used some numeric grouping techniques to show the key ba-
sic result that the charge for such a sum declines with the sample
size. We then introduced the construct of a risk-size model. We
showed that charges decline with size in a decomposable model.
We introduced parameter risk with a family of Bayesian priors.
We demonstrated that if the priors had decreasing charges by size
and they acted on a decomposable conditional model, the result-
ing unconditional model has charges that decline by size of risk.
We showed this to be true, even though the resulting uncondi-
tional models were not decomposable. Then we extended our
results to aggregate loss models by adding severity and making
some independence assumptions. We finally extended our result
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to aggregate loss models in which severity is subject to scale
parameter risk. Though our final model is based on conditionally
decomposable claim counts, the parameter risk on both counts
and severity produce a model that is not decomposable.

The CRM is based on conditional Poisson counts and has
severities that satisfy our independence assumptions. The param-
eter scale uncertainty in the CRM is the same as in our model.
Thus the CRM satisfies the assumptions of our key result in
Statement 5.8 and therefore it will generate charges that decline
by size of risk. This is what we set out to prove.

The latest NCCI Table M was produced with the Gamma-
Poisson claim-count model, where, to fit the data, the contagion
declines with risk size [3]. This does not imply that the latest
Table M is based on a decomposable model, but rather that the
straight CRM model with constant contagion by size may lead
to an overstatement of the charges for large risks.

In our unconditional model, we found charges were not forced
to asymptotically approach the lowest possible charge function,
'0(r) = max(0,1¡ r), as risk size tends to infinity. While we have
shown '0(r) is indeed the charge function for “an infinitely large
risk” in a decomposable model, in our unconditional count model
the charge for a very large risk approaches the charge for the
prior of that risk.

Though severity increases insurance charges, the introduction
of severity did not cause our size versus charge relation to fail.
Intuitively this is because risk size is driven by the expected claim
count. In short, severity does increase the insurance charge, but
it does not change the relation between charge and size in the
models we have developed here. While in the actual derivation of
the latest Table M, severity did vary a bit by size in order to rec-
oncile against the expected losses and fitted frequencies [3], the
variation was not sufficient to cause inversions of the declining
charge by size of risk relation. It is a topic of future research to
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understand how far severity assumptions may be relaxed before
such inversions would occur.

So we conclude, having proved there is a fairly large class of
risk-size models in which charges decline with size of risk. This
class includes widely used actuarial models such as the CRM and
Table M. Also, we have developed some theoretical constructs
that should also provide a solid foundation for future research.
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APPENDIX A

BASIC INSURANCE CHARGE THEORY

Let T be a non-negative random variable having finite positive
mean, ¹, cumulative distribution function F, and tail probability
function G = 1¡F. Define the normalized random variable R
associated with T via R = T=¹.

Perhaps the most compact mathematical definitions of the
charge and saving can be given by taking the expected values
of “min” and “max” operators.

A.1. Charge and Saving Functions Defined using Min and Max
Expectations

Charge:

'(r) =
E[max(0,T¡ r¹)]

¹
=
E[T¡min(T,r¹)]

¹
= 1¡ E[T;r¹]

¹

(A.1a)

Saving:

Ã(r) =
E[max(0,r¹¡T)]

¹
= r¡ E[T;r¹]

¹
: (A.1b)

The definitions can be simplified even further by using the nor-
malized random variable.

A.2. Charge and Saving Definitions using the Normalized
Random Variable

Charge:

'(r) = E[max(0,R¡ r)] = E[R¡min(R,r)] = 1¡E[R;r]
(A.2a)

Saving:

Ã(r) = E[max(0,r¡R)] = r¡E[R;r]: (A.2b)
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The charge and saving can also be expressed in terms of inte-
grals.

A.3. Insurance Charge and Saving Functions Defined using
Integrals

'(r) =
1
¹

Z 1

r¹
dFT(t)(t¡ r¹) =

Z 1

r
dFR(s)(s¡ r)

=
1
¹

Z 1

r¹
dtGT(t) =

Z 1

r
dsGR(s) (A.3a)

Ã(r) =
1
¹

Z r¹

0
dFT(t)(r¹¡ t) =

Z r

0
dFR(s)(r¡ s)

=
1
¹

Z r¹

0
dtFT(t) =

Z r

0
dsFR(s): (A.3b)

When the random variable is discrete, these are viewed as
Reimann integrals and are interpreted as sums.

Many basic properties can be proved directly from the defi-
nitions using simple properties of integrals, minimum operators,
and expectations.

A.4. Insurance Charge: Basic Properties

' is a continuous function of r. (A.4a)

' is a decreasing function of r, which is strictly
decreasing when '(r)> 0. (A.4b)

'(0) = 1 and, as r!1, '(r)! 0. (A.4c)

'0(r)· '(r)· 1, where '0(r) = max(0,1¡ r). (A.4d)

With the definitions in A.2, one can show the charge and saving
are related by a simple formula.
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A.5. Relation Between Charge and Saving

'(r)¡Ã(r) = 1¡ r: (A.5)

Proof Use Equations (A.2a) and (A.2b) to write '(r)¡
Ã(r) = 1¡E[R;r]¡ (r¡E[R;r]) = 1¡ r.

It is straightforward to see that multiplication of the under-
lying random variable by a scalar does not change its insurance
charge.

A.6. Scaling a Random Variable Does Not Change Its Charge

For c > 0,
'T(r) = 'cT(r): (A.6)

Proof Left as an exercise for the reader.

The charge can never decline too rapidly between any two points.

A.7. Insurance Charge Slope Between Two Points Greater Than
¡1
If s > r then

'(s)¡'(r)
s¡ r ¸¡1: (A.7)

Proof Using Equation (A.4), write

'(s)¡'(r) =¡
Z s

r
duGR(u) =

Z s

r
du(¡1+FR(u))

=¡(s¡ r)+
Z s

r
duFR(u):

Therefore,

'(s)¡'(r)
s¡ r ¸¡1+ 1

s¡ r
Z s

r
duFR(u)¸¡1:
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Further, the insurance charge must always be concave up. This
means the insurance charge curve never goes above a straight line
drawn between any two points on the curve.

A.8. Insurance Charge is Concave Up

'(wr+(1¡w)s)· w'(r) + (1¡w)'(s) for 0· w · 1:
(A.8)

Proof Using the general property of the “min” operator

min(A+B,C+D)¸min(A,C)+min(B,D)
we derive

min(R,wr+(1¡w)s)¸min(wR,wr)

+min((1¡w)R, (1¡w)s):
Factoring out w and (1¡w) respectively, yields

min(R,wr+(1¡w)s)¸ w ¢min(R,r)+ (1¡w)min(R,s):
Using Equation (A.2) repeatedly, we find

'(wr+(1¡w)s) = 1¡E[R;wr+(1¡w)s]

· w+(1¡w)¡wE[R,r]¡ (1¡w)E[R;s]

= w(1¡E[R;r]) + (1¡w)(1¡E[R;s])

= w'(r) + (1¡w)'(s):

Though the charge and saving functions are continuous, they
need not always be differentiable. However, when they are, the
following formulas hold.
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A.9. Insurance Charge and Saving First Derivatives

If ' or Ã is known to be differentiable at r, then

d'

dr
(r) =¡GR(r) and

d '
t

¹

¶¶
dt

=¡GT(t)
¹

(A.9a)

dÃ

dr
(r) = FR(r) and

d Ã
t

¹

¶¶
dt

=
FT(t)
¹
:

(A.9b)

Proof Apply Equation (A.4) and the Fundamental Theorem
of Calculus.

If R has a density function at a point r, one can take second
derivatives.

A.10. Insurance Charge and Saving Second Derivatives

If R has a well-defined density fR at a point r, then

d2'

dr2
(r) = fR(r) (A.10a)

d2Ã

dr2
(r) = fR(r): (A.10b)

Proof Take derivatives of the first derivatives shown in Equa-
tion (A.9a) and (A.9b).

The variance can be expressed in terms of an integral of the
insurance charge.
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A.11. Variance Formula using the Integral of the Insurance
Charge

If r2GR(r)! 0 as r!1, then

Var(T) = ¹2Var(R) = ¹2 2
Z 1

0
dr'(r)¡ 1

¶
: (A.11)

Proof It suffices to prove the result when T is a continuous
random variable. Integrate by parts twice and use the assump-
tions to deriveZ 1

0
dr'(r) =¡rGR(r)

¯̄̄̄r=1
r=0

+
Z 1

0
dr rGR(r)

= 0+
r2

2
GR(r)

¯̄̄̄
¯
r=1

r=0

+
Z 1

0
dr
r2

2
fR(r) =

1
2
E[R2]:

Therefore, one has 2
R1
0 dr'(r) = E[R

2].

Then, using the definition of the variance along with the fact
that E[R] = 1, one can write

Var(R) = E[R2]¡ (E[R])2 = 2
Z 1

0
dr'(r)¡ 1:

Note the coefficient of variation, CV, is given as the square root
of Var(R).

The result, Equation (A.11), is intuitive since to have a large
insurance charge a random variable must take on extreme values
with some significant probability. This means it has a relatively
large CV. The converse is not true. If CV(R1)¸ CV(R2), then
'1(r) must exceed '2(r) on average, but not necessarily at every
entry ratio. Exhibit 1 shows a discrete counterexample in which
one random variable has a larger charge at some entry ratios,
even though it has a smaller CV than another random variable.
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APPENDIX B

COLLECTIVE RISK MODEL SUMMARY

The quick summary uses notation that is equivalent to, but not
always identical with, the notation used by Heckman and Meyers
[4].

We start with the claim count model and define the number of
claims as a counting random variable, N. Let be the conditional
expected number of claims so that E[Nj ] = . We also writeN( )
to denote the conditional claim count distribution.

Let ¹ be the unconditional mean claim count. To introduce
parameter uncertainty, we let º be a non-negative random vari-
able with E[º] = 1 and Var(º) = c. The parameter c is called the
contagion. To model unconditional claim counts, we first select
a value of º at random and then randomly select a claim count N
from the distribution N( ) where = º¹. Heckman and Meyers
assume N is conditionally Poisson, so that it follows that

B.1. Unconditional Claim Count Mean and Variance

E[N] = E[E[N( ) j = º¹]] = E[º¹] = ¹E[º] = ¹: (B.1a)

Var(N) = E[Var(N( ) j = º¹)]+Var(E[N( ) j = º¹])

= E[¹º]+Var(¹º) = ¹E[º]+¹2Var(º) = ¹+¹2c:

(B.1b)

If º is Gamma distributed, the unconditional claim count distri-
bution is Negative Binomial.

We now add severity to the model. We let X(¸) be the condi-
tional claim severity random variable defined so that E[X(¸)] =
¸. Heckman and Meyers model severity parameter uncertainty by
assuming the shape of the severity distribution is known but there
is uncertainty about its scale. Let ¯ be a positive random variable
such that E[1=¯] = 1 and Var(1=¯) = b. We call b the mixing pa-
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rameter. Suppose ° is the unconditional expected severity and let
Var(X(°)) = ¿2 To model severity, we first take a sample from ¯
and then sample the scaled severity distribution Y = X(°)=¯.

To generate aggregate losses T, we first independently sample
the number of claims N , and the scaling parameter, ¯. Then we
independently draw N samples from the severity random variable
Y = X(°)=¯. The aggregate loss T is the sum of these N severity
samples.

Formulas for the unconditional mean and variance of the ag-
gregate loss are derived as follows

B.2. Unconditional Aggregate Loss Mean and Variance

E[T] = E[N]E[Y] = E[º¹]E[X(°)=¯] = ¹E[º]°E[1=¯] = ¹°:

(B.2a)

Var(T) = E[Var(Tjº ,¯)] +Var(E[T j º,¯])
= E[E[N j ¹º]Var(Y j ¯)+Var(N j ¹º)E[Y j ¯]2]
+Var(¹º°=¯)

= ¹E[º]¿2E[(1=¯)2]+¹E[º]°2E[(1=¯)2]

+ (¹°)2Var(º=¯)

= ¹¿2(1+ b)+¹°2(1+ b)+ (¹°)2Var(º=¯)

= ¹(¿2 + °2)(1+ b)+¹2°2(b+ c+ bc): (B.2b)

Heckman and Meyers assume that ¯ has a Gamma distribution.
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EXHIBIT 2

Sheet 3
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EXHIBIT 3

Sheet 1

Poisson Limited Expected Values and Partials

Limit = 3:000

Numerical Numerical Theoretical
1st Partial 2nd Partial 2nd Partial

Mean LEV of LEV of LEV of LEV

0.300 0.300 0.988
0.600 0.596 0.959 ¡0:099 ¡0:099
0.900 0.884 0.910 ¡0:163 ¡0:165
1.200 1.157 0.845 ¡0:215 ¡0:217
1.500 1.410 0.770 ¡0:250 ¡0:251
1.800 1.641 0.690 ¡0:267 ¡0:268
2.100 1.848 0.609 ¡0:269 ¡0:270
2.400 2.031 0.531 ¡0:261 ¡0:261
2.700 2.191 0.458 ¡0:245 ¡0:245
3.000 2.328 0.391 ¡0:224 ¡0:224
3.300 2.445 0.330 ¡0:201 ¡0:201
3.600 2.544 0.277 ¡0:177 ¡0:177
3.900 2.627 0.231 ¡0:154 ¡0:154
4.200 2.697 0.191 ¡0:132 ¡0:132
4.500 2.754 0.158 ¡0:113 ¡0:112
4.800 2.801 0.129 ¡0:095 ¡0:095
5.100 2.840 0.105 ¡0:079 ¡0:079
5.400 2.872 0.085 ¡0:066 ¡0:066
5.700 2.897 0.069 ¡0:055 ¡0:054
6.000 2.918
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EXHIBIT 3

Sheet 2

Negative Binomial Limited Expected Values and

Partials

Fixed q= 0:750

Limit = 3:000

Numerical Numerical
1st Partial 2nd Partial

Mean LEV of LEV of LEV

0.300 0.231 0.724
0.600 0.448 0.679 ¡0:150
0.900 0.651 0.635 ¡0:146
1.200 0.842 0.592 ¡0:142
1.500 1.020 0.551 ¡0:136
1.800 1.185 0.512 ¡0:131
2.100 1.339 0.475 ¡0:125
2.400 1.481 0.439 ¡0:118
2.700 1.613 0.406 ¡0:112
3.000 1.734 0.374 ¡0:105
3.300 1.847 0.344 ¡0:099
3.600 1.950 0.317 ¡0:093
3.900 2.045 0.291 ¡0:087
4.200 2.132 0.266 ¡0:081
4.500 2.212 0.244 ¡0:075
4.800 2.285 0.223 ¡0:070
5.100 2.352 0.204 ¡0:064
5.400 2.413 0.186 ¡0:060
5.700 2.469 0.169 ¡0:055
6.000 2.520
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EXHIBIT 3

Sheet 3

Gamma Limited Expected Values and Partials

Scale = 1:000

Limit = 3:000

Numerical Numerical
1st Partial 2nd Partial

Mean LEV of LEV of LEV

0.300 0.294 0.981
0.600 0.582 0.959 ¡0:074
0.900 0.860 0.927 ¡0:107
1.200 1.126 0.885 ¡0:141
1.500 1.376 0.833 ¡0:173
1.800 1.607 0.773 ¡0:200
2.100 1.819 0.707 ¡0:221
2.400 2.010 0.637 ¡0:234
2.700 2.180 0.565 ¡0:240
3.000 2.328 0.493 ¡0:237
3.300 2.455 0.425 ¡0:229
3.600 2.564 0.361 ¡0:214
3.900 2.654 0.302 ¡0:196
4.200 2.729 0.249 ¡0:176
4.500 2.790 0.203 ¡0:154
4.800 2.839 0.163 ¡0:133
5.100 2.877 0.129 ¡0:112
5.400 2.908 0.101 ¡0:093
5.700 2.931 0.079 ¡0:076
6.000 2.949 0.060
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EXHIBIT 4

Sheet 1

Poisson Insurance Charges

Mean
Entry
Ratio 0.500 1.000 1.500 2.000 2.500 3.000

0.000 1.000 1.000 1.000 1.000 1.000 1.000
0.100 0.961 0.937 0.922 0.914 0.908 0.905
0.200 0.921 0.874 0.845 0.827 0.816 0.810
0.300 0.882 0.810 0.767 0.741 0.725 0.715
0.400 0.843 0.747 0.689 0.654 0.633 0.630
0.500 0.803 0.684 0.612 0.568 0.562 0.550
0.600 0.764 0.621 0.534 0.508 0.490 0.470
0.700 0.725 0.558 0.467 0.449 0.419 0.397
0.800 0.685 0.494 0.423 0.389 0.348 0.339
0.900 0.646 0.431 0.379 0.330 0.302 0.282
1.000 0.607 0.368 0.335 0.271 0.257 0.224
1.100 0.567 0.341 0.290 0.238 0.211 0.189
1.200 0.528 0.315 0.246 0.206 0.165 0.153
1.300 0.488 0.289 0.202 0.174 0.141 0.118
1.400 0.449 0.262 0.175 0.141 0.117 0.094
1.500 0.410 0.236 0.155 0.109 0.093 0.076
1.600 0.370 0.209 0.136 0.095 0.068 0.057
1.700 0.331 0.183 0.117 0.080 0.057 0.042
1.800 0.292 0.156 0.098 0.066 0.047 0.034
1.900 0.252 0.130 0.079 0.052 0.036 0.025
2.000 0.213 0.104 0.060 0.038 0.025 0.017
2.100 0.204 0.096 0.053 0.032 0.021 0.014
2.200 0.195 0.088 0.047 0.027 0.016 0.010
2.300 0.186 0.080 0.040 0.022 0.012 0.007
2.400 0.177 0.072 0.034 0.017 0.008 0.005
2.500 0.168 0.063 0.027 0.011 0.007 0.004
2.600 0.159 0.055 0.020 0.010 0.005 0.003
2.700 0.150 0.047 0.015 0.008 0.004 0.002
2.800 0.141 0.039 0.014 0.006 0.002 0.001
2.900 0.132 0.031 0.012 0.005 0.002 0.001
3.000 0.123 0.023 0.010 0.003 0.001 0.000
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EXHIBIT 4

Sheet 2

Negative Binomial Insurance Charges

Fixed q= 0:750

Mean
Entry
Ratio 0.500 1.000 1.500 2.000 2.500 3.000

0.000 1.000 1.000 1.000 1.000 1.000 1.000
0.100 0.979 0.963 0.950 0.940 0.931 0.925
0.200 0.959 0.926 0.900 0.879 0.863 0.850
0.300 0.938 0.889 0.850 0.819 0.794 0.775
0.400 0.917 0.852 0.800 0.759 0.726 0.713
0.500 0.897 0.815 0.750 0.698 0.677 0.656
0.600 0.876 0.778 0.700 0.658 0.628 0.600
0.700 0.856 0.741 0.656 0.617 0.580 0.548
0.800 0.835 0.704 0.625 0.577 0.531 0.506
0.900 0.814 0.667 0.594 0.537 0.495 0.464
1.000 0.794 0.630 0.562 0.496 0.460 0.422
1.100 0.773 0.609 0.531 0.468 0.425 0.390
1.200 0.752 0.587 0.500 0.440 0.390 0.359
1.300 0.732 0.566 0.469 0.412 0.364 0.327
1.400 0.711 0.545 0.445 0.384 0.338 0.301
1.500 0.691 0.524 0.424 0.356 0.313 0.277
1.600 0.670 0.502 0.403 0.336 0.287 0.253
1.700 0.649 0.481 0.382 0.316 0.268 0.231
1.800 0.629 0.460 0.362 0.296 0.249 0.214
1.900 0.608 0.439 0.341 0.276 0.230 0.196
2.000 0.587 0.417 0.320 0.257 0.212 0.178
2.100 0.577 0.404 0.306 0.243 0.198 0.165
2.200 0.566 0.391 0.292 0.228 0.184 0.151
2.300 0.555 0.377 0.278 0.214 0.170 0.138
2.400 0.545 0.364 0.264 0.200 0.156 0.127
2.500 0.534 0.351 0.250 0.186 0.146 0.117
2.600 0.523 0.337 0.236 0.176 0.136 0.107
2.700 0.512 0.324 0.223 0.166 0.126 0.098
2.800 0.502 0.310 0.213 0.156 0.116 0.090
2.900 0.491 0.297 0.203 0.146 0.108 0.083
3.000 0.480 0.284 0.194 0.135 0.101 0.075
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EXHIBIT 4

Sheet 3

Gamma Insurance Charges

Scale = 1:000

Mean
Entry
Ratio 0.500 1.000 1.500 2.000 2.500 3.000

0.000 1.000 1.000 1.000 1.000 1.000 1.000
0.100 0.917 0.905 0.902 0.901 0.900 0.900
0.200 0.847 0.819 0.809 0.804 0.802 0.801
0.300 0.785 0.741 0.723 0.713 0.708 0.705
0.400 0.729 0.670 0.644 0.629 0.620 0.614
0.500 0.679 0.607 0.572 0.552 0.539 0.530
0.600 0.633 0.549 0.507 0.482 0.465 0.453
0.700 0.591 0.497 0.449 0.419 0.399 0.384
0.800 0.553 0.449 0.397 0.363 0.340 0.323
0.900 0.517 0.407 0.350 0.314 0.289 0.270
1.000 0.484 0.368 0.308 0.271 0.244 0.224
1.100 0.453 0.333 0.271 0.233 0.205 0.185
1.200 0.425 0.301 0.239 0.200 0.172 0.152
1.300 0.399 0.273 0.210 0.171 0.144 0.124
1.400 0.374 0.247 0.184 0.146 0.120 0.101
1.500 0.351 0.223 0.161 0.124 0.100 0.082
1.600 0.330 0.202 0.142 0.106 0.083 0.066
1.700 0.310 0.183 0.124 0.090 0.068 0.053
1.800 0.291 0.165 0.108 0.077 0.056 0.043
1.900 0.274 0.150 0.095 0.065 0.046 0.034
2.000 0.258 0.135 0.083 0.055 0.038 0.027
2.100 0.243 0.122 0.073 0.046 0.031 0.022
2.200 0.228 0.111 0.063 0.039 0.026 0.017
2.300 0.215 0.100 0.055 0.033 0.021 0.014
2.400 0.202 0.091 0.048 0.028 0.017 0.011
2.500 0.191 0.082 0.042 0.024 0.014 0.009
2.600 0.180 0.074 0.037 0.020 0.011 0.007
2.700 0.169 0.067 0.032 0.017 0.009 0.005
2.800 0.160 0.061 0.028 0.014 0.007 0.004
2.900 0.150 0.055 0.024 0.012 0.006 0.003
3.000 0.142 0.050 0.021 0.010 0.005 0.003
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EXHIBIT 5

Charges for Gamma-Poisson Contagion Model

q= ¹=(¹+®), ®= 2:00, Contagion = :50

Mean
Entry
Ratio 0.500 1.000 1.500 2.000 2.500 3.000

0.000 1.000 1.000 1.000 1.000 1.000 1.000
0.100 0.964 0.944 0.933 0.925 0.920 0.916
0.200 0.928 0.889 0.865 0.850 0.840 0.832
0.300 0.892 0.833 0.798 0.775 0.759 0.748
0.400 0.856 0.778 0.731 0.700 0.679 0.677
0.500 0.820 0.722 0.663 0.625 0.621 0.612
0.600 0.784 0.667 0.596 0.575 0.562 0.547
0.700 0.748 0.611 0.538 0.525 0.504 0.488
0.800 0.712 0.556 0.499 0.475 0.446 0.441
0.900 0.676 0.500 0.459 0.425 0.406 0.393
1.000 0.640 0.444 0.420 0.375 0.366 0.346
1.100 0.604 0.419 0.380 0.344 0.326 0.312
1.200 0.568 0.393 0.341 0.313 0.286 0.278
1.300 0.532 0.367 0.302 0.281 0.259 0.245
1.400 0.496 0.341 0.274 0.250 0.233 0.218
1.500 0.460 0.315 0.253 0.219 0.206 0.194
1.600 0.424 0.289 0.232 0.200 0.180 0.171
1.700 0.388 0.263 0.210 0.181 0.163 0.150
1.800 0.352 0.237 0.189 0.163 0.146 0.134
1.900 0.316 0.211 0.168 0.144 0.129 0.119
2.000 0.280 0.185 0.146 0.125 0.112 0.103
2.100 0.270 0.174 0.135 0.114 0.101 0.092
2.200 0.259 0.163 0.124 0.103 0.090 0.081
2.300 0.249 0.152 0.113 0.092 0.079 0.071
2.400 0.238 0.141 0.102 0.081 0.069 0.062
2.500 0.228 0.130 0.091 0.070 0.062 0.055
2.600 0.218 0.119 0.080 0.064 0.055 0.048
2.700 0.207 0.107 0.070 0.058 0.048 0.042
2.800 0.197 0.096 0.065 0.052 0.042 0.037
2.900 0.186 0.085 0.059 0.045 0.038 0.033
3.000 0.176 0.074 0.054 0.039 0.033 0.028


