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FOREWORD

Actuarial science originated in England in 1792 in the early days of life insurance. Because
of the technical nature of the business, the first actuaries were mathematicians. Eventually, their
numerical growth resulted in the formation of the Institute of Actuaries in England in 1848.
Eight years later, in Scotland, the Faculty of Actuaries was formed. In the United States, the
Actuarial Society of America was formed in 1889 and the American Institute of Actuaries in
1909. These two American organizations merged in 1949 to become the Society of Actuaries.

In the early years of the 20th century in the United States, problems requiring actuarial treat-
ment were emerging in sickness, disability, and casualty insurance—particularly in workers
compensation, which was introduced in 1911. The differences between the new problems and
those of traditional life insurance led to the organization of the Casualty Actuarial and Statistical
Society of America in 1914. Dr. I. M. Rubinow, who was responsible for the Society’s forma-
tion, became its first president. At the time of its formation, the Casualty Actuarial and
Statistical Society of America had 97 charter members of the grade of Fellow. The Society
adopted its present name, the Casualty Actuarial Society, on May 14, 1921.

The purposes of the Society are to advance the body of knowledge of actuarial science
applied to property, casualty, and similar risk exposures, to establish and maintain standards of
qualification for membership, to promote and maintain high standards of conduct and compe-
tence for the members, and to increase the awareness of actuarial science. The Society’s activ-
ities in support of this purpose include communication with those affected by insurance, pre-
sentation and discussion of papers, attendance at seminars and workshops, collection of a
library, research, and other means.

Since the problems of workers compensation were the most urgent at the time of the
Society’s formation, many of the Society’s original members played a leading part in develop-
ing the scientific basis for that line of insurance. From the beginning, however, the Society has
grown constantly, not only in membership, but also in range of interest and in scientific and
related contributions to all lines of insurance other than life, including automobile, liability
other than automobile, fire, homeowners, commercial multiple peril, and others. These contri-
butions are found principally in original papers prepared by members of the Society and pub-
lished annually in the Proceedings of the Casualty Actuarial Society. The presidential address-
es, also published in the Proceedings, have called attention to the most pressing actuarial prob-
lems, some of them still unsolved, that have faced the industry over the years.

The membership of the Society includes actuaries employed by insurance companies,
industry advisory organizations, national brokers, accounting firms, educational institutions,
state insurance departments, and the federal government. It also includes independent consul-
tants. The Society has three classes of members—Fellows, Associates, and Affiliates. Both
Fellowship and Associateship require successful completion of examinations, held in the spring
and fall of each year in various cities of the United States, Canada, Bermuda, and selected over-
seas sites. In addition, Associateship requires completion of the CAS Course on Profes-
sionalism. Affiliates are qualified actuaries who practice in the general insurance field and wish
to be active in the CAS but do not meet the qualifications to become a Fellow or Associate.

The publications of the Society and their respective prices are listed in the Society’s
Yearbook. The Syllabus of Examinations outlines the course of study recommended for the
examinations. Both the Yearbook, at a charge of $40 (U.S. funds), and the Syllabus of
Examinations, without charge, may be obtained from the Casualty Actuarial Society, 1100
North Glebe Road, Suite 600, Arlington, Virginia 22201.
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A FLEXIBLE FRAMEWORK FOR STOCHASTIC CLAIMS
RESERVING

PETER D. ENGLAND AND RICHARD J. VERRALL
Abstract

In this paper, a flexible framework for stochastic
claims reserving is considered which includes several
models proposed to date as special cases. The method-
ology is embedded within the generalized additive class
of models (Hastie and Tibshirani [7]). The methodology
is particularly useful since it allows smoothing of chain
ladder development factors and estimation of tail factors
automatically and easily as part of the model-fitting pro-
cess, traditionally performed as an additional stage in
the claims reserving process. The framework also pro-
vides estimates of reserve variability, which could prove
useful in formulating and calibrating dynamic financial
analysis (DFA) models.

1. INTRODUCTION

The setting and monitoring of claims reserves is a vital task
required of the general insurance actuary. To aid in the setting

1



2 A FLEXIBLE FRAMEWORK FOR STOCHASTIC CLAIMS RESERVING

of reserves, the actuary can make use of a variety of techniques,
the most familiar of which is the chain ladder model or varia-
tion thereof (e.g., inflation-adjusted chain ladder, n-year average
volume-weighted chain ladder, etc.). The principal aim of a re-
serving exercise is to provide an estimate of the amount of money
a company should set aside now to meet claims arising in the fu-
ture on the policies already written. The actuary cannot predict
with certainty and knows that there is a distribution of possible
outcomes, but uses the techniques at his or her disposal to ar-
rive at the best estimate of the reserve (even if the best estimate
is not that which is carried in the accounts). Knowledge of the
precision of that estimate is also desirable. Traditional reserving
techniques can help provide a best estimate (a measure of lo-
cation in the distribution of possible outcomes), but cannot help
with measures of precision. Of course, the actuary knows that the
reserve estimate associated with a well-behaved class of business
will be more precise than that of a poorly-behaved class, and that
the reserve estimate associated with a short-tailed class is likely
to be more precise than that of a long-tailed class, but measuring
that precision is difficult.

Stochastic claims reserving models aim to provide measures
of location (best estimates) and measures of precision (measures
of variability) by treating the reserving process as a data anal-
ysis exercise and building a reserving model within a statisti-
cal framework. Once within a statistical framework, diagnostic
checks of the fitted models are possible, such as goodness-of-fit
tests and analysis of residuals (which highlight systematic and
isolated departures from the fitted model). Various stochastic re-
serving models have been proposed over the last two decades,
and work progresses as new techniques in the field of statistical
modeling become available.

Considerable attention has been given to the relationship be-
tween various stochastic models and the chain ladder technique.
Stochastic models have been constructed with the aim of pro-
ducing exactly the same reserve estimates as the traditional de-
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terministic chain ladder model. This might seem like a futile
exercise, but has the advantages that measures of precision are
readily available, and the assumptions underlying the chain lad-
der model are clarified. More importantly, it provides a bridge
between traditional methods and stochastic methods, which is
useful for the practitioner who is familiar with traditional meth-
ods and needs a starting point for exploring stochastic methods.

Other stochastic reserving models which have been proposed
attempt to overcome shortcomings of the chain ladder model by
incorporating smoothing, or a parametric form which reduces
the number of underlying parameters used to fit the model. The
aim of this paper is to present a flexible framework for stochastic
claims reserving which allows the practitioner to choose whether
to use the basic chain ladder model, or to apply some smoothing,
or in the limit to use a parametric curve for the runoff. Several
of the models proposed to date fit within this framework, and
further extensions are possible which have not yet been tried.

For technical reasons, we consider the modeling of paid losses
only. Furthermore, information regarding claim numbers is not
taken into account; we consider the modeling of claim amounts
only. In this respect we take the basic chain ladder model with
paid losses as our starting point. Typically data provided for a
simple reserving exercise is in the form of a triangle of paid
losses (see Section 6) in which the rows i denote accident years
and the columns j delay or development years. Although we
consider annual development here only, the methods can be ex-
tended easily to semiannual, quarterly or monthly development.
The triangle is augmented each period by the addition of a new
diagonal. The aim in reserving is to predict likely claim amounts
in the missing southeast corner of the claims rectangle, the total
reserve (ignoring the tail for the moment) being the sum of these
amounts. For monitoring purposes, we might also be interested
in the reserve for each accident year.

A review of some existing stochastic reserving models ap-
pears in Section 2. This is not exhaustive but provides the neces-
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sary background from which the flexible framework in Section
3 can be derived. In Section 4, variability of reserve estimates
is considered, and formal goodness-of-fit is considered briefly
in Section 5. A worked example is then provided, considering
the systematic structure of the model in Section 6 and the error
structure in Section 7, before concluding in Section 8.

2. A BRIEF REVIEW OF EXISTING STOCHASTIC CLAIMS
RESERVING MODELS

Let Cj; denote the (incremental) claims amount arising from
accident year i paid in development year j. Early work in this
field focused on the logarithm of the incremental claims amounts
Y;; =In(C;;) and the lognormal class of models Y; =m;; +¢;;
with

g;j~IN(@0,0*) and Y, ~IN(m;j,0%), (2.1)

where the expression “~ IN(y,02)” is interpreted as “distributed
as independent normal with mean g and variance o-.”

The use of the logarithmic transform immediately imposes a
limitation on this class of models in that claim amounts must
be positive. The normal responses Y;; are assumed to decom-
pose (additively) into a deterministic nonrandom component with
mean m;; = n;; and homoscedastic normally distributed random
error components about a zero mean. Two model structures are
of specific interest:

CasE 1
nij =c¢+a;+ B3 (2.2)

CASE 2
nj=c+a;+ G+~ (G>0). (2.3)
A third case, which is a mixture of Cases 1 and 2, uses Equa-

tion 2.2 for j < g and Equation 2.3 for j > ¢g for some integer ¢
specified by the modeler.
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Equations 2.1 and 2.2 define the model introduced by Kremer
[8] and used by Renshaw [13], Verrall [21], Zehnwirth [27] and
Christofides [2], amongst others. Accident year and development
year are treated as factors, with a parameter « for each accident
year i and a parameter 3 for each development year j. This repre-
sentation is analogous to the chain ladder model, which implies
the same development pattern for all accident years, where that
pattern is defined by the parameters ;. Use of this model pro-
duces predicted values close, but not identical, to those from the
simple chain ladder technique.

Equations 2.1 and 2.3 broadly define the model used by Zehn-
wirth [28]. A special case is created by setting 3; = 8 for all i
and ~; = v for all i, where the decay pattern is the same for all
accident years and represented by only two parameters. Unlike
Case 1, this imposes a strict parametric form on the shape of the
runoff. Although this sacrifices goodness-of-fit, it has the advan-
tage that payments can be predicted by extrapolation beyond the
range of j observed. This representation is known as the Hoerl
curve.

Parameters in the predictor structure 7);; are estimated by max-
imum likelihood, which in the case of normally distributed data
is equivalent to minimizing the residual sum of squares. Obtain-
ing this “least squares” solution is straightforward, and is a major
reason for the importance of log-linear models in the history of
stochastic claims reserving. Although it was possible to use other
error distributions (using generalized linear models) at the time
these models were propounded, their use was not common and
suitable statistical software was in its infancy. De Jong and Zehn-
wirth [4] adopted the Kalman filter to pass information between
accident years and provide smoothed estimates of the parameters
B; and +; in Equation 2.3. This idea was adopted by Verrall [21]
who used the Kalman filter to smooth over the parameters «; and
f; in Equation 2.2.

The unknown variance o2 is estimated by the residual sum of

squares divided by the degrees of freedom (the number of obser-
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vations minus the number of parameters estimated). Zehnwirth
[29] also considers allowing a different variance estimator for
each development period.

Given the parameter estimates, predicted values on a log scale
can be obtained by introducing those estimates back into the
appropriate equation. Exponentiating then provides an estimate
of the median on the untransformed scale, and an estimate of the
mean is given by incorporating a variance component to give
predicted values on the untransformed scale. Specific details can
be found in Verrall [22].

Significant advances were made in stochastic claims reserv-
ing with the publication of a paper by Wright [26], which was
interesting in two main respects:

e The systematic and random components of the underlying
model for the data are based on a risk theoretic model of the
claims generating process;

e The error distribution implied by the model is no longer (log)
normal.

Wright considered the incremental paid claims C;; to be the
sum of N;; (independent) claims of amount X;;. Standard results
from risk theory give:

E[C,;] = E[N,]ELX; 1, 24)
and
Var[C;;] = E[N]Var[X;;] + {E[X;;]}*Var[N;].  (2.5)

The formulation is completed by specifying a model for each of
E[N;] and E[X; il a relationship between the mean and variance
of the claim numbers N, i and a relationship between the mean
and variance of the claim severities X;;.

Wright considered the claim numbers N;; to be Poisson ran-
dom variables where

E[N;] = eja;r;je ", (2.6)
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and
Var[N,;] = E[N; ] 2.7)

where x, A and b are unknown constants to be estimated, e; is a
measure of exposure, and a is a known adjustment term needed
on technical grounds. The values a are specified in Appendix 1 of
Wright [26] for each value of j. (Note: Wright also recommended
a technical adjustment to development time j, which has been
ignored here for simplicity.)

Claim amounts X;; were considered to be Gamma type ran-
dom variables where

E[X;;] = "kj*, (2.8)

and
Var[X;;] = v{E[X;;]}?, (2.9)

where k and \ are unknown constants. The optional term e’ is
included to allow for possible claims inflation, where ¢ =i + j
represents calendar time and ¢ is the estimated constant force
of claims inflation. Wright chose not to assume that the claim
amounts are actually Gamma distributed, only that the variance
exists and is proportional to the mean squared with constant of
proportionality v. This is a subtle technicality which makes no
practical difference when claim amounts are all positive.

Equations 2.6 and 2.8 are designed to model the mean claim
numbers and mean individual claim severities as functions of
delay j.

This formulation is interesting because it uses the same model
specification in the claims reserving context as in pricing; that
is, claim numbers are modeled as Poisson random variables and
claim severities are modeled as Gamma random variables.

Combining Equations 2.4 to 2.9 gives
E[C;;] = m; = ejajr;jYe Pk, (2.10)
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and ;
Var[C;;] = (1 + v)kje”E[C;]. (2.11)

1

Wright showed that with a suitable reparameterization, Equa-
tions 2.10 and 2.11 represent a generalized linear model (GLM).
Standard statistical methods can be used to estimate the param-
eters involved.

This model formulation can be viewed as a way of allowing
the incremental paid claims C;; to be modeled directly, without
the necessity of modeling claim numbers and claim severities
separately and then combining. The only information needed to
fit the model is the standard triangle of incremental paid claims.

Wright went on to use the Kalman filter to pass informa-
tion between accident years to produce smoothed parameter es-
timates, thus avoiding problems associated with the excessive
parameterization.

The formulation of the problem as a GLM and the fitting
method adopted by Wright are not easy to follow, so the simpler
derivation by Renshaw [14] is presented here. Writing:

u;; = In(e;a;),
¢ = In(k),
o; = In(k;) with x; =1,
Bi=A+A, and
% = —b;,

gives
E[C] - e(u[j+c+0‘i+ﬂ£1ﬂ(j)+’)/[j+5t)
ij .

We can then write
nij = Uij + ¢ +a; + GIn(j) + ;) + 61, (2.12)

giving
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where

Ignoring the known offset (u;;) and the optional term for
claims inflation (6¢), Equation 2.12 represents the familiar Hoerl
curve which appeared in Equation 2.3.

Using Equations 2.7 and 2.9 in 2.5 gives:
Var[C;;] = EIN;] v{E[X;;1}* + {E[X;;1}*EIN; 1;
then using Equation 2.4 gives
Var[C;;] = (1 + v)ELX};]E[C;].

Writing
¢i; = (1 + VE[X;;]

gives
Var[cij] = ¢ijE[Cij] = ¢ijm,'j~ (2.15)

Equations 2.13, 2.14 and 2.15 define a GLM (see Section 3)
in which the response C;; is modeled with a logarithmic link
function, the variance is proportional to the mean, and the linear
predictor is given by Equation 2.12. The ¢;; are unknown scale
parameters to be estimated by the model.

With GLMs, the unknown scale parameter is usually constant
for all observations (i.e., ¢;; = ¢ for all ,j) and is estimated by

the deviance (or alternatively the Pearson ? statistic) divided
by the degrees of freedom. However, in this formulation, it is
possible to estimate the scale parameters as part of an extend-
ed fitting procedure, known as joint modeling (see Renshaw

[14]).

It should be noted that in Renshaw’s formulation, the as-
sumption that claim numbers are Poisson distributed was relaxed
slightly, the only requirement being that the variance of the num-
ber of claims exists and is proportional to the mean.
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Therefore
Var[Nij] = cpE[Nij]. (2.16)

This is in the spirit of the relaxed assumptions made by Wright
[26] about the distribution of claim severities. Claim numbers
are said to be distributed as “overdispersed” Poisson random
variables. Using Equation 2.16 instead of 2.7 gives:

¢ij = (¢ + V)E[X;;]
without changing the specification as a GLM.

Comparing Equation 2.12 with 2.3, it can be seen that Wright
is effectively using the same linear predictor as Zehnwirth [28],
with the inclusion of an optional term to model possible claims
inflation. The u;; terms are known and represent small technical
adjustments. They are declared as offsets when fitting the model
using standard statistical software packages. The important dif-
ferences between the model used by Zehnwirth and the model
proposed by Wright are that:

e Zehnwirth uses the logarithm of the incremental claims as the
response, and links the predictor (2.3) to the expected value
of the response through the identity link function, therefore
requiring the introduction of a variance component when fo-
cusing on the mean on the untransformed scale. Wright treats
the incremental claims themselves as the responses, and links
(essentially) the same predictor to the expected value of the re-
sponse through the logarithmic link function, thereby avoiding
the necessity of the inclusion of a variance component when
focusing on the predicted mean.

e In the model proposed by Zehnwirth, the variance is constant
for all observations (or constant for each development period),
whereas in the model proposed by Wright, the variance is pro-
portional to the mean. A critique of these assumptions can be
found in Appendix 4 of Wright [26].

e The log transformation used by Zehnwirth excludes the mass
point at zero (although it is possible to make minor adjustments
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to zero payments in the data), which Wright’s model includes
naturally. In fact Wright’s model can also be used for data sets
that include some negative payments.

It should be noted that in the software package ICRFS, Zehn-
wirth [29] includes a range of predictor structures, not just the
one alluded to above, which could provide an improved fit to
the data. However, all are based on log-incremental claims in his
“Probabilistic Trend Family.”

Equations 2.12 to 2.15 define the model proposed by Wright,
and suggest possible alternatives. For example, Renshaw and
Verrall [16, 17] replace the linear predictor used by Wright
(Equation 2.12) by the linear predictor suggested by Kremer [8],
and use a constant scale parameter by setting ¢;; = ¢ for all i, j.
Therefore,

E[C;jl=m; and  Var[C;] = ¢m,;, (2.17)

where

Equations 2.17 and 2.18 define a GLM in which incremental
claims are modeled as overdispersed Poisson random variables.
This model is particularly interesting since the predicted values
given by the model are exactly the same as those given by the
simple chain ladder model, thus providing a stochastic version
of the chain ladder model.

Renshaw and Verrall were not the first to notice the link be-
tween the chain ladder model and the Poisson distribution, but
were the first to implement the model using standard methodol-
ogy in statistical modeling and to provide a link with the anal-
ysis of contingency tables. Wright [26] also describes a similar
model, including a term to model claims inflation, but did not
consider the model in detail. Mack [9] also points out that the
chain ladder estimates can be obtained by maximizing a Poisson
likelihood by appealing to the so-called “method of marginal
totals.”
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Mack [9] suggested using the same linear predictor as Kremer
[8] (and therefore the same as Renshaw and Verrall [17]) but pro-
posed using a Gamma distribution for claim amounts. However,
Mack developed his own fitting procedure for obtaining max-
imum likelihood parameter estimates. As Renshaw and Verrall
[17] note, the same model can be fitted using the GLM described
by Equations 2.17 and 2.18, but replacing Var[C;;] = ¢m;; by
Var[C};] = gble] Standard statistical software packages can then
be used to obtain maximum likelihood parameter estimates.

In Verrall [24], the stochastic chain ladder model of Renshaw
and Verrall [16] was extended to incorporate smoothing of pa-
rameter estimates over accident years (the o;s in Equation 2.18),
while leaving the model describing the runoff pattern (the 3;s)
alone. Nonparametric smoothers were used and fitted using gen-
eralized additive models (GAMs). GAMs differ from GLMs in
the way in which the relationship between the response variable
and the covariates is modeled. In GLMs the relationship is para-
metric; in GAMs the response is assumed to vary smoothly with
the covariates through the introduction of a smoothing proce-
dure. In this paper, the idea is extended to allow smoothing over
development years, which is of considerable practical benefit and
provides a flexible framework for stochastic claims reserving.

3. A FLEXIBLE FRAMEWORK FOR STOCHASTIC CLAIMS
RESERVING

A GLM is defined by focusing on a set of independent re-
sponse variables {Y, : u = 1,2,...,n}. The objective is to model
the expected value of the response as a function of one or more
covariates. We assume that the Y, are distributed according to
a member of the one-parameter exponential family of distribu-
tions, which includes the normal, Poisson and Gamma distribu-
tions, amongst others. Denoting the expected value of Y, by m,,,
the first two moments take the general form

E[Y,]=m, and VarlY,] = w

u
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TABLE 3.1

SCALE PARAMETERS AND VARIANCE FUNCTIONS FOR SOME
STANDARD DISTRIBUTIONS

Scale Variance
Parameter function
Distribution 103 V(im,)
Normal a2 1
Poisson 1 m,
Gamma >0 mi
Inverse Gaussian >0 m3

where ¢ denotes a scale parameter, w,, are prior weights (often set
to 1 for all observations), and V() is the so-called variance func-
tion (a function of the mean). The choice of distribution dictates
the values of ¢ and V(). The values of the scale parameter and
variance function for various standard distributions are shown in
Table 3.1. The definition of a GLM is completed by specifying
the deterministic structure, which is achieved through a linear
predictor 7, where

P
M= %00, (3.1)
y=1

with known covariates x, associated with each observation u, and
unknown parameters [3,. The expected value of the response is
linked to the linear predictor through a link function g() such
that

glmy,) = 1,.

It is helpful to think of GAMs as extensions of GLMs. A
GAM is defined by replacing Equation 3.1 by

P
M= Y 8,(x,),
v=1
where s(x) represents a nonparametric smoother on x. It is pos-

sible to choose from several different types of smoothers, such
as locally weighted regression smoothers (loess), cubic smooth-
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ing splines and kernel smoothers. Other features of GAMs, such
as the choice of error distribution, link function, goodness-of-fit
measures and residual definitions are common to GLMs with the
main difference between GAMs and GLMs being the specifica-
tion of the predictor 7.

A complete exposition of the statistical background of gen-
eralized linear models and generalized additive models can be
found in McCullagh and Nelder [12] and Hastie and Tibshirani
[7] respectively.

It should be noted in passing that we are not restricted to using
a smoother for all covariates; the predictor may comprise a mix-
ture of parametric and nonparametric components. The predictor
then becomes

p—r P
M quvﬁv + Z Sv(xu)'
v=1

v=p—r+1

In claims reserving, the cubic smoothing spline has been
found to be particularly useful. When data are normally dis-
tributed, the (univariate) cubic smoothing spline s(x) is found by
minimizing the penalized residual sum of squares

>, = s(x,))* + 0 / (5" (1)L (3.2)
u=1

The second part of Equation 3.2 defines a smoothness penalty
based on curvature of the spline function s(x). The level of
smoothing is controlled by the single parameter (> 0). When 6
tends to zero, there is no smoothness penalty and the model pro-
vides a perfect fit: the fitted values are the data points themselves.
When 6 is large (tends to infinity), the fit is perfectly smooth and
the fitted values fall along a straight line, effectively forcing the
relationship to be linear in x. The parameter 6 is set between these
extremes to produce the desired level of smoothness, and controls
the trade-off between goodness-of-fit and smoothness. Although
the cubic smoothing spline has received considerable attention
recently in statistical modeling, it is usually attributed with
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appearing first in the actuarial literature in a paper on graduating
mortality rates by Whittaker [25]. In fact Whittaker graduation
is used widely for graduating mortality rates in the US.

Within the context of non-normal error distributions from the
exponential family, a weighted version of Equation 3.2 is fitted
by inserting an extra iterative algorithm within the optimization
procedure. Details of this can be found in Hastie and Tibshirani
[7], and Green and Silverman [6].

To construct a flexible framework for stochastic claims re-
serving, within which several of the models described in Section
2 can be regarded as special cases, we focus on the incremental
paid claims C;; and define

E[Cij] =my;, (3.3)
and

In(m;;) =n;; = u;; + 6t +c+ sei(i) + Saj(j) + sej(ln(j)).
3.5)

Equations 3.3, 3.4 and 3.5 specify a generalized additive
model with power variance function and constant scale parame-
ter. The power p dictates the choice of error distribution, with
normal, Poisson, Gamma and Inverse Gaussian specified by
p=0,1, 2, and 3, respectively. The predictor is linked to the ex-
pected value of the response through the logarithmic link func-
tion. The offsets u;; and inflation term 6t are optional (where
t=1i+j), and may be suggested by a particular context. The
function s(i) represents a smooth of accident year i, obtained us-
ing a smoothing spline with smoothing parameter 6;. Similarly,
the functions s(j) and s(In(j)) represent smoothing splines spec-
ifying the shape of the runoff pattern, with smoothing parameter
¢; chosen (for simplicity) to be the same for both functions. In
practice, it may not be necessary to include smooths in both j
and In(j). It should be noted that both accident year i and de-
velopment year j are considered as continuous covariates. It can
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TABLE 3.2

GENERALIZED ADDITIVE MODEL REPRESENTATION OF SOME
PUBLISHED STOCHASTIC RESERVING MODELS

Row Column

Variance ~ smoothing  smoothing

power parameter ~ parameter
p 0, 9]-
Wright (1990)* 1 0 9
Mack (1991) 2 0 0
Renshaw and Verrall (1994, 1998) 1 0 0
Renshaw (1994) 1,2 0 0
Verrall (1996) 1 >0 0

*We consider here only the special case in which the same runoff pattern is used for all accident
years, the Kalman filter is not used, and the scale parameter is constant.

be seen that use of Equation 3.5 implicitly assumes the same
runoff pattern for all accident years, although the model can be
extended using carefully chosen interaction terms. It is trivial
to extend Equation 3.5 further, for example, to allow for a step
change in a particular calendar year introduced by a change in
legislation.

The extremes of the smoothing parameters are interesting and
provide the link between Equation 3.5 and Equations 2.12 and
2.18 (ignoring the optional terms u;; and 6t). When 0; is zero,
there is no smoothing and the model is forced to pass through
each value of i, which treats accident year i as though it is a factor
(asin 2.12 and 2.18). The same is true of 0]-; when 0j is zero, the
model is forced to pass through each value of j, and development
time is treated as though it is a factor (as in 2.18). When 6; tends
to infinity, the part of the model relating to development time is
linear in j and In(j), giving the Hoerl curve (as in 2.12 and 2.3).
It is also necessary to choose the power function p to complete
the model specification.

Table 3.2 shows how several previous stochastic reserving
models can be seen as special cases of the model specified by
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Equations 3.3, 3.4 and 3.5. The optional terms u;; and 67 are
ignored without loss of generality.

The early log-linear models do not fit so neatly into the same
framework because those models used log-incremental claims as
the response, and required incorporation of a variance component
in the mean of the predicted values. However, the framework
could easily be extended to allow for this.

Notice that we consider only models in which the scale pa-
rameter in Equation 3.4 is assumed constant. This is for ease
of exposition, although the model can be generalized further by
relaxing this assumption and estimating the unknown scale pa-
rameters by joint modeling.

Having chosen the model specification, the model can be fit-
ted using maximum quasi likelihood to obtain parameter es-
timates (and their approximate standard errors). At this point
we make use of standard statistical software packages which
have the facility to fit generalized additive models. Currently the
choice is limited, although greater choice is likely in the future
as the popularity of generalized additive models increases. The
authors used S-PLUS [19] for the example (see also Chambers
and Hastie [1]).

Having fitted the model, we obtained reserve estimates by
summing the appropriate predicted values in the southeast region
of the claims rectangle. All that remains is the estimation of
variability in the reserve estimates, considered in the next section.

4. PRECISION OF RESERVE ESTIMATES

One of the principal advantages of stochastic reserving mod-
els is the availability of estimates of precision. Commonly used
in prediction problems (as we have here) is the standard error
of prediction, also known as the prediction error, or root mean
square error of prediction. For claim payments in development
year j for accident year i (yet to be observed), the mean square
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error of prediction is given by
E[(C;; — C;j)*] = Var[Cyj] + Var[C,;]. 4.1

Note that the mean square error of prediction can be considered
as the sum of two components: variability in the data (process
variance) and variability due to estimation (estimation variance).
The precise form of the two components of variance is dictated
by the specification of the model fitted. For a detailed justifica-
tion of Equation 4.1, see Renshaw [15].

For the general model defined above, the process variance is
given by Equation 3.4. For the estimation variance, we note that

A

A h
Cij =nmy;; = e'.

Then, using a Taylor series expansion,

2
Var[# 1,

Var[C, ] ‘am’j
ar[C..] ~ |—L
ij ) y

giving
E[(C;; — C;)*1 ~ ol + fing; Var(7);;]. (4.2)

The final component of Equation 4.2, the variance of the (linear)
predictor, is usually available directly from statistical software
packages, enabling the mean square error to be calculated with-
out difficulty. The standard error of prediction is the square root
of the mean square error of prediction.

The standard error of prediction for origin year reserve es-
timates and the total reserve estimates can also be calculated.
Denoting the missing southeast region of the claims rectangle
by A, then the reserve estimate in origin year i is given by sum-
ming the predicted values in row i of A; that is,

éi+ = Z 6;']'-

Jea,
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The mean square error of prediction of the origin year reserve is
given by

A2 ~ ~2 A
E[(Ciy —Ci)? 1= ) omf;+ > i Varliy;]
JEA, JEA,
+2 Z m;; 1m;; Cov. (4.3)
122 €A
>
The total reserve estimate is given by
Ciy = Z Cijs
i,JEA
and the mean square error of prediction of the total reserve is
given by

E[(Cyy —Co )= Y o+ S i Varliy, |

i,jEA i,jeEA

+2 Z miljlmizjzcov[niljl’nizjz]'
i1j1 €A
irjh €A
i1#i2j2

4.4)

Although Equations 4.3 and 4.4 look fairly complex, they
are relatively easy to calculate by summing the appropriate ele-
ments. The only components not readily available from statistical
software packages are the covariance terms. Provided the design
matrix and variance-covariance matrix of the parameter estimates
can be extracted from the statistical software package used, a full
matrix of the covariance terms can be calculated without diffi-
culty for any specification of the predictor n. Indeed, the vari-
ances of the (linear) predictors are simply the diagonal of such
a matrix.

It is also possible to obtain estimates of payments to be made
in future settlement years by summing over diagonals in A, and
also to obtain the associated standard error of prediction. Further
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details of this and a detailed derivation of Equations 4.3 and 4.4
can be found in Renshaw [15].

5. ASSESSING THE GOODNESS-OF-FIT

For a given error distribution (chosen by the power p), spe-
cific models are chosen by the smoothing parameters 6; and 6,
and different models are fitted by varying the smoothing pa-
rameters until a satisfactory fit is achieved. Assessing whether
a model is satisfactory in practice is part art and part science.
Usually, informal checks will suffice in practice, although model
comparison can proceed formally in the usual way by compar-
ing the difference in deviances of the fitted models (for fixed
p) to the appropriate percentage point on the x> or F distribu-
tions. However, because the smoothers are nonparametric, it is
not obvious how many degrees of freedom should be used in the
model comparison. According to the theory of cubic smoothing
splines, it is possible to assess the equivalent degrees of free-
dom used in fitting the spline. This has an inverse relationship to
the smoothing parameter: as the smoothing parameter increases,
the equivalent degrees of freedom decrease. After fitting a cu-
bic smoothing spline, statistical software packages provide the
equivalent degrees of freedom as part of the model output. One
problem is that the smoothing parameter is a continuous mea-
sure, which can result in noninteger degrees of freedom. For this
reason, software packages tend to allow the amount of smooth-
ness to be defined alternatively by the equivalent degrees of free-
dom, which is provided by the user. The smoothness parameter
to be used is then calculated from the given degrees of free-
dom.

The choice of error distribution is not easy to justify but may
be suggested on theoretical grounds. Formally, given identical
specifications of the predictor, the optimum value of p (which
specifies the choice of error distribution) is that which produces
the highest likelihood.
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Residual plots are also used to assess the adequacy of any fit-
ted model. Two types of residual used commonly are the Pearson
and deviance residuals. The scaled Pearson residuals are defined
by

ij = T L Ap
o,

and the scaled deviance residuals are defined by

. ~ [y
~ 1 = sign(Cy; — my;) e

where d;; 1s the contribution to the deviance made by observation
Cij-

For a reasonable model, a histogram of scaled residuals is
expected to be approximately normal (i.e., bell shaped) with 95%
of the residuals between the values plus two and minus two.
Residuals can also be plotted against the predictor, against origin
year and against development year. The plots are expected to be
pattern free, where an obvious pattern in the residuals would
indicate a systematic departure from the fitted model. Isolated
departures from the model would be indicated by residuals whose
values are far from zero. Other residual plots are also possible.
It is usual to assess residual plots visually, any serious model
deficiencies being immediately obvious.

A further visual check which is useful when comparing mod-
els is to plot that part of the predictor that explains the runoff
pattern against development time. From Equation 3.5, this trans-
lates into plotting ¢ + 54 (j) + sy (In(j)) against j for various val-
ues of ;. The constant ¢ is needed to ensure the plots start at
equivalent levels. A plot such as this might result in the choice of
a model which is not optimal in the statistical sense, but which
may have convenient properties (for example, the way it behaves
when extrapolating into the tail).
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TABLE 6.1

INCREMENTAL PAID LOSSES FORMED BY AGGREGATING
ACROSS DIFFERENT CLASSES

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10

45630 23350 2924 1798 2007 1204 1298 563 777 621

i=1

i=2 53025 26466 2829 1748 732 1424 399 537 340
i=3 67318 42333 —1854 3178 3045 3281 2909 2613

i=4 93489 37473 7431 6648 4207 5762 1890

i=5 80517 33061 6863 4328 4003 2350

i=6 68690 33931 5645 6178 3479

i=7 63091 32198 8938 6879

i=8 64430 32491 8414

i=9 68548 35366

i=10 76013

6. EXAMPLE: PART 1—A COMPARISON OF PREDICTOR
STRUCTURES

Incremental paid losses from an aggregation of classes of
business are shown in Table 6.1 and are used to illustrate the
methodology. The incremental claims fall fairly rapidly, but are
not completely runoff by the end of the tenth development year,
implying the necessity for a tail factor greater than 1 when us-
ing the traditional chain ladder model. Notice the negative in-
cremental claim at position (3,3), which is not a problem when
implementing the models.

Initially, to illustrate the methodology, we fit three models,
using an overdispersed Poisson model (p = 1 in Equation 3.4)
with a logarithmic link function. For all three models

E[Cl.]] = mij, Var[Cij] = ¢mij, and ln(mu) = 77U.

The models differ only in the choice of the predictor. The pre-
dictor structures are:

e Model 1: The stochastic model of Renshaw and Verrall [17],
which gives the same reserve estimates as the chain ladder
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model:
771']' =C+O£l'+ﬂj.
This model can be specified as a generalized additive model
with §; =0 and #; = 0 (no smoothing), giving

nij = ¢+ 50(0) + 5o(j) + so(n ().

Model 2: The Hoerl curve, ignoring inflation:
nij =uj+c+a;+ [In(j) +j.

This is in the spirit of the model proposed by Wright [26].
Here we adopt the technical adjustments to development time
recommended by Wright, and the associated offset (ignoring
exposure information). However, we are using the same runoff
pattern for each accident year (since 8 and v do not depend
on i), we ignore the Kalman filter, and we are using a constant
scale parameter.

Again, this model can be specified as a generalized additive
model with ; = 0 and 6; = oo, giving

nij = u] +c+ So(i) + Soo(.]) + Soc(ln(.]))

Model 3: A generalized additive model with a parameter for
each accident year, but with the pattern over development year
represented by a smooth in log development time. We have
chosen not to include additionally a smooth in development
time, which in this case is unnecessary. Therefore 6, = 0 and
6; is chosen to provide a suitable level of smoothing, giving

Nij = U; +c+ So(i) + s()j(ln(j))’
or equivalently

771] = l/lj +cCc+ O[l' + s‘gj(ln(j)).
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FIGURE 6.1

CoLuMN EFrFECTS VS. DELAY YEAR

= = = Model 1: Chain Ladder
= =Model 2: Hoerl Curve
Model 3: GAM (dof=5)

Column Effect

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Delay Year

This can be seen as a smooth model in between the chain
ladder and Hoerl curve models. For this example, the smooth-
ing parameter was dictated by setting the equivalent degrees
of freedom (dof) used in the fit (in this case dof = 5).

First, consider the part of each predictor that describes the
shape of the decay of the incremental claims (the sum of the
components not dependent on i). We shall call this the “column
effects.” Figure 6.1 shows the column effects for all three mod-
els, and there we can see the jagged shape of the decay in the
incremental claims assumed by the chain ladder model and the
smooth shape of the model using the Hoerl curve. The Hoerl
curve passes through the chain ladder model, fitting closely in
the early stages of development (where we have the most data)
but fails to fall rapidly enough in the later stages of development.
This is the result of the strict parametric form imposed by the
Hoerl curve. (A practitioner would probably reject the model at
this point, but we will continue to highlight the characteristics
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FIGURE 6.2

CoLUMN EFFECTS (EXTRAPOLATED) VS. DELAY YEAR
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of the Hoerl curve and to enable a comparison with the gen-
eralized additive model methodology.) Model 3 is in between
the extremes of Models 1 and 2, and exhibits a satisfactory mix
of smoothness and adherence to the data. If the smoothing pa-
rameter of Model 3 is reduced, it will tend towards Model 1.
Conversely, if the smoothing parameter of Model 3 is increased,
it will tend towards Model 2.

In Figure 6.2, Models 2 and 3 have been extrapolated a further
six years. With this example, an inherent danger of extrapolating
using rigid parametric curves like the Hoerl curve is highlighted
since the curve bends upwards beyond the range of data ob-
served. One advantage of Model 3 is that it continues in a more
desirable direction when extrapolating.

Although natural in stochastic claims reserving, it is unusual
to focus on the shape of the decay of incremental claims using
traditional actuarial methods, in which it is common to focus on
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the relative increase in cumulative claims through development
factors, the traditional “parameters” in a standard chain ladder
exercise. After fitting a stochastic claims reserving model, it is
straightforward to obtain equivalent development factors by ap-
plying the standard chain ladder model to the fitted values of
the stochastic model. If the model is fully parametric, it may be
possible to obtain a relationship between the model parameters
and the chain ladder development factors (e.g., Verrall [23]).

Equivalent development factors are shown in Table 6.2 for
Models 1 to 3, together with the actual development factors ob-
tained by applying the standard chain ladder model to the data
in Table 6.1. It can be seen that the development factors implied
by the stochastic chain ladder model (Model 1) are identical to
those obtained using standard chain ladder methodology (there-
fore reserve estimates obtained using the two models will also be
identical). A comparison of the development factors implied by
the Hoerl curve (Model 2) and the chain ladder models reveals
where these two models differ. In particular, the Hoerl curve
does not fully capture the fall in the development factors in the
later stages of development. The development factors implied by
Model 3 can be seen as a smoothed version of the chain ladder
development factors.

Also shown in Table 6.2 are the equivalent development fac-
tors obtained when extrapolating beyond development year 10.
It can be seen clearly that the development factors implied by the
Hoerl curve increase in value, whereas the development factors
implied by Model 3 continue to decrease.

The reserve estimates implied by Models 1, 2 and 3 are shown
in Table 6.3, together with their prediction errors (as a percentage
of the reserves). For ease of comparison with the chain ladder
model, we have not extrapolated into the tail. The reserve esti-
mates given by the Hoerl curve are higher for the older years
than those given by the chain ladder model, reflecting the higher
development factors at the later stages of development. The



A FLEXIBLE FRAMEWORK FOR STOCHASTIC CLAIMS RESERVING 27

TABLE 6.2

EQUIVALENT DEVELOPMENT FACTORS: OVERDISPERSED
PoissoN MODEL

Standard Model 1
Delay Chain Stochastic Model 2 Model 3
Year Ladder Chain Ladder Hoerl Curve GAM (dof = 5)
2 1.4906 1.4906 1.4496 1.4891
3 1.0516 1.0516 1.0796 1.0537
4 1.0419 1.0419 1.0372 1.0395
5 1.0268 1.0268 1.0238 1.0292
6 1.0254 1.0254 1.0180 1.0224
7 1.0149 1.0149 1.0150 1.0163
8 1.0130 1.0130 1.0135 1.0120
9 1.0067 1.0067 1.0127 1.0091
10 1.0078 1.0078 1.0124 1.0071
11 1.0125 1.0057
12 1.0129 1.0047
13 1.0135 1.0039
14 1.0144 1.0033
15 1.0156 1.0029
16 1.0171 1.0025

reserve estimates given by Model 3 are close to those provided
by the chain ladder model for all years individually and in total,
with any differences arising due to the amount of smoothing.

The reduced number of parameters in the Hoerl curve com-
pared to the stochastic chain ladder model should drive down
the prediction error, but this is offset by the increased variabil-
ity imposed by the poor fit, resulting in prediction errors for the
Hoerl curve which are close to those provided by the stochastic
chain ladder model. The equivalent degrees of freedom used up
in fitting Model 3 is lower than the degrees of freedom used
up in fitting the stochastic chain ladder model, which will drive
down the prediction errors. Furthermore, the fit is good relative
to the chain ladder model, which has the desirable effect of lower
prediction errors for Model 3 compared to the stochastic chain
ladder model.
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TABLE 6.3

RESERVE ESTIMATES AND PREDICTION ERRORS:
OVERDISPERSED POISSON MODEL

Reserve Estimates Prediction Error
Model 1 Model 1
Stochastic Model 2 Model 3 Stochastic Model 2 Model 3
Accident Chain Hoerl GAM Chain Hoerl GAM

Year Ladder Curve (dof =5) Ladder Curve (dof = 5)
1 0 0 0 — — —
2 683 1,085 622 159% 95% 110%
3 1,792 3,101 1,998 100% 61% 62%
4 4,363 6,129 4,470 63% 46% 43%
5 5,657 7,173 5,940 50% 43% 38%
6 8,209 8,689 8,106 40% 39% 33%
7 10,914 11,031 11,106 34% 34% 29%
8 15,199 14,765 15,112 28% 30% 25%
9 21,135 24,002 21,293 24% 23% 22%
10 60,335 59,625 60,377 17% 17% 16%
Total 128,286 135,600 129,024 15% 15% 12%

Models 1 and 2 can be fitted in any statistical software pack-
age that fits generalized linear models. Model 3 can only be
fitted in statistical software packages that fit generalized additive
models.

The comparison of Model 3 with Models 1 and 2 begins to
show how our modeling framework can be considered generic,
since the chain ladder model and Hoerl curve model can be fitted
as special cases, using extremes of the smoothing parameters.
A model that has the desirable characteristic of being able to
smooth development factors can be fitted by choosing smoothing
parameters between these extremes.

7. EXAMPLE: PART 2—A COMPARISON OF ERROR STRUCTURES
Continuing the example, the same three model predictors are
used, but with a Gamma error structure (p = 2) giving:

E[C;jl =m;,  Var[C;jl=¢mj, and  In(m;) =1,
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TABLE 7.1

EQUIVALENT DEVELOPMENT FACTORS: GAMMA MODEL

Model 4
Delay Standard Stochastic Chain Model 5 Model 6
Year Chain Ladder Ladder Hoerl Curve  GAM (dof = 5)
2 1.4906 1.4969 1.4515 1.4771
3 1.0516 1.0470 1.0799 1.0512
4 1.0419 1.0381 1.0372 1.0357
5 1.0268 1.0259 1.0237 1.0280
6 1.0254 1.0251 1.0178 1.0221
7 1.0149 1.0154 1.0148 1.0165
8 1.0130 1.0131 1.0131 1.0125
9 1.0067 1.0084 1.0123 1.0098
10 1.0078 1.0086 1.0119 1.0079
11 1.0119 1.0066
12 1.0122 1.0055
13 1.0127 1.0048
14 1.0135 1.0041
15 1.0145 1.0036
16 1.0157 1.0032

and the following three models:

e Model 4:
N =c+a;+ B
e Model 5:
nij = uj+c+a;+ BIn(j) +7j;
e Model 6:

771] = l/lj +cCc+ O[l' + s‘gf(ln(j)).

Equivalent development factors are shown in Table 7.1, and
reserve estimates and prediction errors are shown in Table 7.2
(ignoring tail factors).

Comparison of the equivalent development factors from the
Gamma model with those from the overdispersed Poisson model
is uninformative on the whole. It is perhaps surprising at first
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TABLE 7.2

RESERVE ESTIMATES AND PREDICTION ERRORS: GAMMA
MODEL

Reserve Estimates Prediction Error
Model 4 Model 4
Stochastic Model 5 Model 6 Stochastic Model 5 Model 6
Accident Chain Hoerl GAM Chain Hoerl GAM

Year Ladder Curve (dof =5) Ladder Curve (dof = 5)
1 0 0 0 — — —
2 488 675 450 62% 46% 43%
3 2,086 3,296 2,205 43% 36% 33%
4 5,240 6,818 5,300 36% 32% 29%
5 6,169 7,061 6,313 32% 30% 28%
6 9,750 9,305 9,427 31% 29% 28%
7 15,080 13,029 15,097 31% 29% 29%
8 18,498 15,069 17,671 32% 30% 31%
9 20,470 24,400 20,896 36% 35% 35%
10 60,043 59,576 58,519 52% 48% 48%
Total 137,824 139,229 135,878 25% 23% 24%

sight that the final development factor for the Gamma “chain
ladder” model (1.0086) is greater than the equivalent factor from
the overdispersed Poisson model (1.0078), but at the same time
the reserve estimate is lower (488 vs. 683). This is because the
cumulative fitted values for the final observed diagonal of the
two models are not the same, resulting in the observed effect. In
fact, the cumulative fitted values for the final observed diagonal
are identical to the cumulative paid to date for the overdispersed
Poisson chain ladder model only.

The main difference between the overdispersed Poisson and
Gamma models in this example is in the prediction errors as a
percentage of the total reserve estimates, which for the Gamma
model are around twice those of the Poisson model. Inspection
of the prediction errors of the row reserves gives a hint as to
why this is so. For the Gamma model, the prediction errors for
the earlier years are lower than those for the Poisson model.
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FIGURE 7.1

FITTED VALUES (POISSON MODEL) VS. OBSERVED VALUES
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However, the pattern is reversed in the later years, particularly for
year 10. The later years contribute by far the largest proportion
of the total reserves, which is reflected in the high prediction
error of the total.

The fit of the Gamma model is in fact poor in this example,
particularly in the early stages of development, where the large
incremental observed values are given less weight in the model
fitting than in the Poisson model. This is not apparent from an
inspection of residual plots (not shown), which look satisfactory
for both error structures, but becomes apparent when plotting fit-
ted values against observed values (Figures 7.1 and 7.2), which
show clearly the superiority of the Poisson model in this exam-
ple. This is not always the case, however, and care must be taken
in making inferences from these results. For a further example
in which prediction errors of claims reserves are compared us-
ing different error structures and different methodologies, see
England and Verrall [5].
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FIGURE 7.2

FITTED VALUES (GAMMA MODEL) VS. OBSERVED VALUES
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8. DISCUSSION AND CONCLUSIONS

Given a triangle of data, a simple reserving exercise might
proceed by fitting a chain ladder model (usually a 3, 4, or 5 year
volume-weighted average chain ladder) and looking at the resul-
tant development factors. It would then be common to smooth
the factors manually and consider the necessity of a tail factor
for projecting beyond the range of data observed. Judgment is
used to smooth the factors with the aim of smoothing out ran-
dom variations, particularly in the later stages of development,
while leaving the systematic trend intact. A tail factor might be
chosen by calculating the ratio of cumulative incurred claims to
cumulative paid claims for the oldest accident year, or by fit-
ting a curve to the later development factors and extrapolating
(see, for example, Craighead [3] and Sherman [18]). Advantages
of this procedure are that it is extremely flexible, and it forces
the actuary to look at the data. Disadvantages are that it is time
consuming, statistically inefficient, and it is not always easy to
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be consistent over the level of smoothing (or confident in the
results).

The main strength of the method presented in this paper is
that both the smoothing and extrapolating can be performed at
the same time in the same model. The actuary simply has to
choose one parameter for smoothing across the whole range
of development time, choose an error distribution, and choose
how far to extrapolate (an additional parameter is necessary if
smoothing over accident years). Further advantages are that it
is also possible to obtain measures of precision of the reserve
estimates, and investigate where the data deviate from the fitted
model by viewing residual plots. The fact that standard models
can be fitted by choosing smoothing parameters at the extremes
is a useful additional feature, if only for clarity of understanding,
since at one extreme the model can be considered overparame-
terized, and at the other that the structure is too rigid. However,
we do not consider the method to be a panacea. A thorough
reserving exercise will involve an in depth investigation of the
data, an understanding of the class of business under review, and
a comparison of the results of several reserving methods relying
on complementary sets of data. We believe the method proposed
here is simply an extremely useful additional tool for the reserv-
ing specialist.

Incremental data are used for the method put forward in this
paper: this is both an advantage and a disadvantage. It is advan-
tageous since the method can be used when the data history is
incomplete. If incremental data were recorded by accident year
only after a certain date, accident years prior to that date will have
incomplete runoff information, and a section of the claims trian-
gle in the northwest corner will be missing (this is a reasonably
common occurrence). This presents difficulties using standard
deterministic techniques that rely on cumulative data, but is not
a problem for stochastic techniques which treat the unobserved
data as “missing” and estimate the data as part of the fitting
procedure. The disadvantage is that negative incremental values
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sometimes occur in data based on paid losses, and frequently
occur in data based on incurred losses where case estimates are
often set on a conservative basis and overestimated. The method
proposed is robust to a small number of negative incremental
claims (as in the example), but will always produce positive fitted
values (due to the use of the logarithmic link function) and hence
will always produce development factors greater than one. For
this reason, the techniques are often not suitable for use with
incurred data which often include a series of negative incremental
losses in the later stages of development requiring development
factors less than one.

In the framework proposed in this paper, a constant scale pa-
rameter has been used. This is for ease of exposition; the assump-
tion can be relaxed to allow the scale parameter to be modeled as
part of an extended procedure. The difference between the pre-
diction errors of the overdispersed Poisson and Gamma models
in Section 7 is partly due to the use of a constant scale parame-
ter, and further research is needed to evaluate how much of the
difference can be ameliorated by joint modeling.

The main use of stochastic reserving methods is in the pro-
vision of estimates of reserve variability, not in the reserve es-
timates themselves. Until recently, measures of variability have
been of little interest to most general insurance actuaries, but
interest is likely to increase as the need to parameterize and cali-
brate dynamic financial analysis (DFA) models becomes routine.
Part of a DFA exercise is quantifying reserving risk, and to do
this, it is necessary to have a model that simulates the likely pay-
ments of outstanding liabilities. Stochastic reserving techniques
provide a model structure and a way of calibrating the model to
real data, from which payments can be simulated (taking care to
allow for process and estimation error).

As outlined in Section 2, there is a wide variety of methods
available for stochastic claims reserving. If the use of these meth-
ods increases, it is important that the similarities and differences
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of the models are understood, and their properties examined. By
presenting some of the models within the same framework, and
extending to allow flexibility between the extremes of two well-
known models, it is hoped that this paper has contributed to the
process.
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THE n-MOMENT INSURANCE CAPM
THOMAS J. KOZIK AND AARON M. LARSON
Abstract

Until recently, the importance of skewness in the rate
of return distribution has been largely unrecognized in
financial journals. The re-emergence of skewness in fi-
nancial literature is particularly relevant to catastrophe
insurance products where some of the most extremely
skewed distributions occur. This paper presents an ar-
gument for including a provision in the equilibrium pre-
mium to cover the cost of skewness. It also generalizes
the insurance CAPM to n moments. This extension
permits explicitly determining the impact that skew-
ness and other higher moments have on the needed
premium.

1. ASYMMETRY AND ITS IMPLICATIONS

In much of modern finance theory, it is presumed that the
standard deviation of the rate of return is the appropriate mea-
sure of risk to the investor. The Capital Asset Pricing Model
(CAPM), for example, assumes this to be true. It is then a math-
ematical consequence of this and a few other assumptions that
only the systematic component (beta) of this risk is rewarded
in financial markets. This seems quite reasonable for returns
that are symmetrically distributed. It does not seem so reason-
able, however, for returns that are asymmetrically distributed.
Consider that, although investors dislike unexpected large
losses, they like unexpected large gains. It seems reasonable then
that investors place different values on two different securities
that promise the same expected return and the same standard
deviation of return but differ in that the return on one is sym-
metrically distributed while the return on the other is positively

39



40 THE n-MOMENT INSURANCE CAPM

skewed.! In fact, there are reasons to believe, and evidence which
corroborates, that the latter security is preferred to the former.

For example, Arditti (1967, p. 21) argues that it is reasonable
to expect risk aversion to decrease with wealth. He gives an ex-
ample of a bet with two equally likely outcomes: either a loss of
$10,000 or a gain of $20,000. Since both outcomes are equally
likely the expected value is $5,000. He then asks if a wealthy man
or a poor man would more likely pay a higher price for this bet.
Arditti concludes that it is reasonable to expect a wealthy man
to pay more for this bet since in his words “a loss of $10,000 to
him would be trivial while a similar loss to the poor man would
render him assetless.” Arditti goes on to show that whenever risk
aversion decreases with wealth, it necessarily follows that posi-
tive skewness is preferred. That is, investors are willing to pay
a premium, or give up expected return, in exchange for positive
skewness.

One does not have to go any farther than to consider all of
the various state-run lotteries as corroborating examples. Lottery
players face an almost certain loss of a trivial amount in exchange
for a trivial probability of a very large gain. The expected return
on lottery tickets is, of course, negative since government extracts
a significant portion of the revenues. Lottery players, thus, pay
a premium in exchange for positive skewness.

Others have reached the same conclusions for opportunities
similar to the lottery. In a discussion trying to explain Internet
stock price increases, Alan Greenspan (1999, p. Cl1) described
this “lottery premium” in the Wall Street Journal:

What lottery managers have known for centuries is
that you could get somebody to pay for a one-in-a-

!For purposes of this paper, we are using William Sharpe’s (1985) definition of security,
i.e., a security is “a legal representation of the right to receive prospective future benefits
under stated conditions.”
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million shot more than the [pure economic] value of
that chance.

Consider, for a moment, the lottery as a relevant analogy to
understand the skewness associated with catastrophes. Catastro-
phe insurance can be thought of from the policyholder’s perspec-
tive as a conditional lottery. This provides a concrete example of
the cost of skewness. With this lottery, if the catastrophe occurs
then there is a huge payoff. Of course, there is also a large loss
that offsets the payoff. But the loss is there regardless of insur-
ance. Thus, if the loss is going to happen, it is preferable to have
insurance.

Imagine a security that trades in financial markets and
promises a large payoff in the event of a catastrophe somewhere
else in the world. The details don’t really matter for this exam-
ple, as long as the payoff is triggered by a rare, random event.
Since the cash flows are similar to those of a lottery, we can
expect that the purchasers, as is true with a lottery, would pay a
skewness premium. One implication of the Capital Asset Pricing
Model is that all investors hold the same portfolio of risky as-
sets, the market portfolio, even if it might include lottery tickets.
Since investors are holding the market portfolio, the skewness
premium would reflect only systematic components of skewness,
i.e., that portion of skewness that cannot be diversified away. But
the cash flows on this security are also similar to those of catas-
trophe insurance. Hence, the free market price of this security,
which includes the cost of skewness, must also equal the equi-
librium price for a perfectly corresponding catastrophe insurance
contract, i.e., a contract with the same expected cash flows, the
same systematic risk of receiving those cash flows, the same
systematic skewness, etc.

One might argue that this analogy is inappropriate, since
there is a fundamental difference between the demand for lot-
tery tickets and catastrophe insurance. The cost of skewness,
however, is unaffected. Consider that a person might be will-
ing to buy a lottery ticket for a dollar, but unwilling to buy
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1,000,000 of them. Clearly a person’s willingness to buy tickets
depends on his overall wealth as well as his preference for skew-
ness and other factors. Certainly he would be more willing to buy
one lottery ticket rather than say 200 (the price of the catastrophe
insurance). With a single lottery ticket there is only one dollar at
risk. With 200 tickets, there are 200 dollars at risk. What moti-
vates people to buy the catastrophe insurance, though, is that the
lottery is contingent on an otherwise bad event. It is offsetting
the risk of that bad event that motivates them to buy catastrophe
insurance. Accordingly, we can expect that people are more will-
ing to buy 200 dollars worth of catastrophe insurance than 200
dollars worth of lottery tickets. But the cash flows in the catas-
trophe insurance are identical to the cash flows in the lottery, so
the cost of skewness must be the same for both. Preference for
skewness varies from individual to individual in a complex and
unknown way. It is certainly multi-variate, with wealth being one
of the variables. But in the aggregate, the market determines the
price for skewness in such a way that the markets clear. Demand
is also a variable that depends upon price, and so supply and
demand are in balance at the equilibrium price.

Hence, the equilibrium returns implied by the CAPM may be
inadequate for securities with heavily skewed returns. Accord-
ingly, to adequately charge for an insurance policy covering hur-
ricane and other catastrophic risks, a provision covering the cost
of skewness must be added to the otherwise needed premium to
compensate investors for the extremely skewed loss distributions
of catastrophes.

Others have also recognized this shortcoming of the CAPM.
For example, Yehuda Kahane (1979) notes the need for ana-
lyzing higher moments of profit distributions for certain utility
assumptions in his paper deriving the insurance CAPM. He states
on page 237:

All distributions were assumed to be characterized
by the first two moments. This makes the model ac-
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ceptable only for certain utility assumptions. ... Thus,
measures of asymmetry, like the skewness and semi-
variance, may be needed in a loading formula (espe-
cially for risks with catastrophic nature—which are
represented by extremely skewed distributions).

Alan Kraus and Robert Litzenberger (1976) go even further by
stating on page 1086 that:

The evidence suggests that prior empirical findings
that are interpreted as inconsistent with the traditional
theory can be attributed to misspecification of the capi-
tal asset pricing model by omission of systematic (non-
diversifiable) skewness.

Campbell Harvey and Akhtar Siddique (2000) define systematic
skewness, or coskewness on page 1265:

[Coskewness is] the component of an asset’s skewness
related to the market portfolio’s skewness.

In order to capture the contribution of the cost of skewness to
the equilibrium return, it is necessary to generalize the CAPM.
Section 2 presents the three-moment CAPM derived by Ru-
binstein (1973) and Kraus and Litzenberger (1976). Section 3
derives the three-moment insurance CAPM. Section 4 derives
the n-moment insurance CAPM. This derivation depends on the
n-moment CAPM that is derived in the Appendix. Section 5
presents conclusions and implications.

2. THE THREE-MOMENT CAPM

2.1. The Model

Kraus—Litzenberger (1976) follow Rubinstein’s lead (1973) in
their development of a three-moment capital asset pricing model
that incorporates the coskewness of an asset. (See the Appendix
for a formal derivation of the model.) Their model of equilibrium
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returns, assuming the rate of return on the market portfolio is
nonsymmetrically distributed, is given below:

E(R)—R; =b53; + byy; (2.1
where
Rf =1+ ry = one plus the risk-free rate of return,
R; =1 +r; = one plus the rate of return on ith asset,

Ry, = 1 + 1y, = one plus the rate of return on market portfolio,
OrRy _ E(R; — ER)I[Ry — E(Ry)])

Ky E(Ry —EROP)
_ TRRyRy _ EUR; ~ ER)IRy — ERy)I)
T E(Ry —ERP)

7x,, = (E[(Ry —ER))’ D',
b, = market risk premium, and

b, = market skewness premium.
Simplifying (2.1) leads to:
E(r;) —ry = D15 + byy;. (2.2)

One final simplification leads to the intercept form of the equa-
tion:
E(ri) = rf + bl/Bi + bz’yi. (2.3)

Kraus and Litzenberger’s derivation assumes that all investors
have the same probability beliefs, and further, that each investor’s
risk tolerance is a linear function of wealth, (q; + bW,), with the
same cautiousness, b, for all investors. These assumptions are
required to ensure that each investor’s optimal risk asset portfo-
lio is the same, that is, the market portfolio. These assumptions
are very strong and arguably unreasonable. However, if one’s
purpose is to estimate equilibrium returns, then it is not essen-
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tial that all investors have the same optimal risk asset portfolio.
In the case of disagreement, b; and b, may still be interpreted
as the market price of risk and the market price of skewness,
respectively, as will be shown in a later section of this paper.

Kraus and Litzenberger empirically tested the three-moment
model using monthly, deflated excess rates of return. That
is, their measure of the rate of return for the ith security is
(R; —Ry)/Ry, where the returns are measured over a monthly
holding period. They state on page 1098:

Empirical evidence is presented that is consistent with
a three moment valuation model. Investors are found
to have an aversion to variance and a preference for
positive skewness.

Specifically, they found the values of b, (the market risk pre-
mium) and b, (the market skewness premium) to be 1.119 and
—0.212, respectively. Moreover, both were significant. As Arditti
shows, whenever risk aversion decreases with wealth, it follows
that positive skewness is preferred. This further implies that b,
and Tg,, are of opposite sign. For example, if the market is pos-
itively skewed, or TR, is positive, then investors will give up
return, which implies a negative b,, in exchange for this positive
skewness. Kraus and Litzenberger’s results confirm this expecta-
tion. Since 3 and  for the market portfolio are both equal to one,
a negative value for b, and a positive value for TR, necessarily
increases the market risk premium, and thus, the significance of
risk.

The following hypothetical example demonstrates the impact
of coskewness on the traditional CAPM estimate. In the tradi-
tional two-moment CAPM, the excess of the expected return on
the market portfolio over the risk-free rate is the market risk pre-
mium, but in the three-moment model this excess amount is the
sum of the market risk premium and the market skewness pre-
mium. By definition, the beta and gamma of the market portfolio
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are one. Hence, from Equation (2.2) for the market portfolio we
have:

E(rm)—rf = bl +b2.

As mentioned earlier, Kraus and Litzenberger estimated b,
and b, to be 1.119% per month and —0.212% per month, re-
spectively. Using the sum of these values of the risk premium
and the skewness premium, respectively, to estimate the excess
of the expected return on the market portfolio over the risk-free
rate, we get:

E(r,) —r; =1.119% —0.212% = 0.91% per month.

The excess of the expected return on the market portfolio
over the risk-free rate must be the same for both the traditional
two-moment CAPM and the three-moment CAPM. In the two-
moment model, however, this quantity is simply the market risk
premium:

E(r,,) —r; = by = 0.91% per month.

Hence, the failure to include skewness in the two-moment
CAPM results in understating the market risk premium by 19%
(ie., 1.0—.91/1.119).

There are two implications of this theoretical example for a
negatively skewed market such as the market for catastrophe
insurance. First, the market risk premium is understated in the
traditional two-moment CAPM. Second, additional return is re-
quired to compensate insurers and their investors for the nega-
tive skewness of catastrophe insurance products. Therefore, the
three-moment CAPM is of particular significance to the insur-
ance industry.

In an exercise on pages 1276-1278, Harvey and Siddique
(2000) estimate the risk premium for coskewness. They rank
stocks based on their past coskewness and create three value-
weighted portfolios using 60 months of returns: 30 percent with
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the most negative skewness, 40 percent with medium values of
skewness, and 30 percent with the highest skewness. Harvey and
Siddique conclude on page 1263 that “Systematic skewness is
economically significant and commands a risk premium, on av-
erage, of 3.60 percent per year.” They estimate a skewness pre-
mium for coskewness of 3.60 percent by taking the difference in
annual excess returns between the portfolio with the most nega-
tive coskewness and the portfolio with the highest coskewness.

Moreover, Harvey and Siddique (2000) conclude (pp. 1287—
1288) that systematic skewness is not only statistically significant
but also economically significant. They reached this conclusion
by analyzing pricing errors with the model containing coskew-
ness as a variable relative to the traditional CAPM and by mea-
suring the expected return implied by a change in coskewness.

Friend and Westerfield (1980) also found evidence that in-
vestors prefer skewness; however, they did not find that evidence
to be compelling. They state on page 913:

Our analysis provides some but not conclusive evi-
dence...suggesting that investors may be willing to
pay a premium for positive skewness in their portfo-
lios.

Kian-Guan Lim (1989), though, found strong evidence that
confirms Kraus and Litzenberger’s earlier conclusions. Lim di-
vided the fifty-year period from January 1933 through December
1982 into ten consecutive five-year periods. The model was then
tested using data from each of the sub-periods as well as for the
entire period. Lim concluded that investors prefer coskewness
when market returns are positively skewed, and dislike coskew-
ness when market returns are negatively skewed. Moreover, in
all of the subperiods in which the model was not rejected at
the one percent level of significance, the skewness premium and
the skewness of the market return were of opposite sign. Further,
Lim found the evidence to be particularly strong when data from
the entire period was used.



48 THE n-MOMENT INSURANCE CAPM

2.2. Properties of Covariance and Coskewness

As is the case with the traditional two-moment CAPM, beta
in the three-moment CAPM is the measure of systematic risk.
As a measure of risk, beta is linear in the sense that the beta of
a linear combination of securities is the linear combination of
the betas of the securities themselves. Specifically, the beta of

a portfolio is equal to the weighted average of the betas of the
securities in the portfolio.

Let
Z = a portfolio of n securities,
S; = the dollars invested in the ith security,
r; = the rate of return on the ith security,
r, = the rate of return on the portfolio,
ry = the return on the market portfolio, and
NED P
i
then

25
6 = URZRM — COV(rZ’rM) _ COV(( S )’rM)
= =

UI%M Var(ry,) Var(ry,)

_ (28:Cov(ry,ry))
~ SVar(ry)

_ 2S5
= =

For Z equal to the market portfolio, the covariance of the rate
of return on the market portfolio with itself is equal to the vari-
ance of the rate of return on the market portfolio. Therefore,
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the weighted sum of covariances of the rates of return on all of
the securities in the market portfolio is equal to the variance of
the rate of return on the market portfolio.

Similarly, the gamma of a portfolio is the weighted average
of the gammas of the individual securities.

_ TrZerM _ E((VZ *E(”z))(”M *E(VM))Z)
T TS T T E((ry — B

m

£ ([(£2) -5(= ) o)
B E((ry — E(ry))?)

S.
() Bl B P)
E([ry —E(ry)P)

i}
=y ik

The coskewness of the return on the market portfolio with
itself is equal to the skewness of the return on the market portfo-
lio. Hence, the weighted sum of the coskewnesses of the returns
on all of the securities in the market portfolio is equal to the
skewness of the return on the market portfolio.

2.3. Disagreement

As noted earlier, under the assumptions of complete agree-
ment on the part of investors about expected returns and identical
risk tolerance functions, the optimal combination of risky assets
is the same for each investor. It necessarily follows that the op-
timal portfolio is the market portfolio. These are very strong as-
sumptions. But they are not intrinsic to the three-moment CAPM.
Rather, they also apply to the traditional two-moment CAPM.
Sharpe relaxes these assumptions in Appendix D of his book.
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He concludes on page 291:

[T]he equilibrium relationships derived for a world of
complete agreement can be said to apply to a world
in which there is disagreement, if certain values are
considered to be averages.

In this section, we will relax these assumptions and investigate
the implications.

In the case of disagreement, each investor has his own optimal
risk asset portfolio, which depends entirely on his expectations.
Different investors do not necessarily have the same optimal risk
asset portfolios. For simplicity, assume that there are only two
investors. The arguments presented here can be extended to any
finite number of investors.

Suppose that M; and M, are the optimal risk asset portfolios
of the two investors. Let M be the market portfolio.

Then
M =M, +M,.
Let

r;; = the rate of return for security i that is
expected by the jth investor,

S;; = the dollars invested in security i by the

jth investor,
Sy = ZSil’
i
Sy = ZSiZ’
i

b 2iSafin g
Ml Sl ’

o= >iSnln
M, — —_— .
2 S2

i
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Then, the average expected returns are given by:

_ (S +Sprn)

;= ,
and
(17, +Saru)
P — —————— =
M S, +5,)
Thus,
— (Silril +Si2ri2) )
Cov(ry,ry) = COV( S ¥5.) Ty
. S
=(—1 : i2 4
= <Si1 " SiZ) Cov(ryy,ry) + <Si1 " SiZ) Cov(rip,ry)-

Hence, recalling that

g = Cov(r;, 1)
17 Var(ry,)

Si Sin
B; = ( : )ﬂi + ( : )ﬁi .
S +8/) A8 +8,)

Note that 3;; and (3;, are computed with respect to the total mar-
ket portfolio, rather than with respect to each investor’s optimal
portfolio. Thus, in a world of agreement everybody has the same
estimate of §, and in a world of disagreement, 3 turns out to be
a weighted average over all investors.

implies that:

The same relationship holds true for coskewness and gamma.
Let the coskewness be denoted by:

Tap = Cosk(a,b,b) = E([a —E(a)][b — E(b)]?).

Assume again that there are only two investors who disagree.
Then for any security:

(Sirrin + Siprn) )
Cosk(r:,rys,r) = Cosk (#,r ).
(it Sy +Sp) MM
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It can be shown using the results from Section 2.2 and the
linearity of the expected value operator that for any three ran-
dom variables, x, y, and z, and any two constants, a and b,
that:

Cosk(ax + by,z,z) = aCosk(x,z,z) + bCosk(y, z,2).

Hence,

Cosk(r;,ry,1ryy) = <%) Cosk(r;1, 1y, 1)
l l

Sin >
— k(r; .
+ (S“ +5, Cosk(ryp,1y.73y)

And since,
_ Cosk(ry,rys,ryy)
NE s
TRM

it follows that:

Y= (L) SO S
TS+, TSy +Sp)

where v;; and 7,, are computed with respect to the total mar-
ket rather than with respect to each investor’s optimal portfolio.
Hence, in a world of agreement everybody has the same estimate
of v, and in a world of disagreement, ~y turns out to be a weighted
average over all investors.

3. THE THREE-MOMENT INSURANCE CAPM

Following D’ Arcy and Doherty’s (1988) derivation of the in-
surance CAPM, the rate of return to the insurer, r,, is composed
of a linear combination of both an underwriting rate of return,
r,, and an investment rate of return, r;.

.= r,P(1—1t,) N ri(S+kP)(1—1t)
e S S ’

3.1)
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where

r, = rate of return on equity,

P = premiums in a given year,

S = shareholders’ equity,

r, = underwriting return per dollar of premium,
t, = tax rate on underwriting income,

k = funds generating coefficient,”

r; = investment return per dollar invested, and

f; = tax rate on investment income.

At equilibrium based on Equation (2.3) and assuming that
shareholders’ equity, S, is valued at its expected market value,
rather than at its statutory accounting or GAAP accounting value:

E(r,) =rp + b5, + by, 3.2)
Further,

E(r;) =rs + b1 5; + byy;. 3.3)
Moreover, the equity beta (gamma) can be expressed as a linear

combination of an underwriting beta (gamma) and an investment
beta (gamma) as follows:

_PBA 1) S+kPIB(—1)

3, < 5 , and (3.4)
o= Bl | G4 kPYY 1) 55)

Setting Equation (3.1) equal to Equation (3.2) results, at equilib-
rium, in:

E(ru)Pél — ) + EG)@S +§P)(1 — %) =7yt b8, + by,.

2This is sometimes estimated by the ratio of the invested portion of reserves to premiums.
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Substituting with the above three expressions for E(r;), 3, and v,
from Equations (3.3), (3.4) and (3.5) gives:

E(r)P(1 -1, N (S +kP)(ry + b5 + byy)(1 —1;)

S S
— 4 P —1)b58, +byv,)
=7, S
N (S +kP)(1 —1)(b,5; + byy;)
S .

Simplifying and solving for the after-tax equilibrium underwrit-
ing return yields:

tirfS
P

E(r,)(1 -1, = —krf(l —1)+ +(—t)b3,+ (1 —1t,)byy,.

(3.6)

Thus the equilibrium after-tax underwriting return consists of
four components: the first effectively represents interest paid to
policyholders for the use of their funds; the second is to recapture
the tax penalty of being an insurer;> the third component is a
provision to compensate for risk; and the fourth component is a
provision to compensate for skewness.

4. THE n-MOMENT INSURANCE CAPM

There is strong evidence as reported in this paper that includ-
ing the third moment significantly improves the CAPM and the
insurance CAPM. Any benefits of including moments beyond the
third are unclear now and await further research. Nevertheless,
generalizing the model to n moments is simple and straightfor-
ward and is presented here.

3The tax penalty is the double taxation of investment income—once at the corporate
level and once at the personal level—on underlying equity. Mutual funds, in contrast,
are not subject to corporate income taxes. Accordingly, investors will not invest in an
insurance company unless the underwriting operation is expected to at least recover the
tax penalty.
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At equilibrium based on Equation (A.6) and assuming that
shareholder’s equity, S, is valued at its expected market value,
rather than at its statutory accounting or GAAP accounting value:

E(r) =rp +Y by - 4.1
n=2
Further,
E(r) =rp + Y b1y, (4.2)
n=2

Moreover, for n =2,...,00,

Py, (1—1,) (S+kP)w,(1—1)
vy, = — + - . (4.3)

Setting Equation (3.1) equal to Equation (4.1) results, at equilib-
rium, in:

E(r,)P(1—1t,) E@)S +kP)(1—1,) >
X S + S L :rf+n§2b(nil)yne.

Substituting with the above expressions for E(r;) and v, , for
n=2,...,00 from Equations (4.2) and (4.3) gives: '

E(r)P(1—1,) S+kP)rp+3 20D 1yv, )1 —1)
S " S
Pv, (1—-1,) (S+ kP)Vni(l —t)

00
:rf+Zb(”71) MS + S
n=2

Simplifying and solving for the after-tax equilibrium underwrit-
ing return yields:

E(r,)(1 —1t,) = krf(l—t)+ +Zb(,, D (1=1,).

n=2
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5. CONCLUSIONS

Until recently the importance of skewness in the rate of return
distribution has largely been unrecognized in financial journals.
But it is in the actuarial realm that some of the most extremely
skewed return distributions occur, particularly those for catas-
trophe insurance products. Because some of those distributions
are so overwhelmingly skewed, it is essential to assess system-
atic skewness when determining equilibrium returns and needed
premiums.

This paper presents an argument for including a provision in
the equilibrium premium to cover the cost of skewness. It also
generalizes the insurance CAPM to include the cost of skewness.
This permits an explicit determination of the impact that skew-
ness has on the equilibrium premium, at least theoretically. Prac-
tical application awaits further empirical studies that measure the
amount of systematic skewness in the insurance industry as well
as further investigation into the magnitude of the market skew-
ness premium and the market risk premium in the context of a
three-moment model.
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APPENDIX

DERIVATION OF THE n-MOMENT CAPM

This appendix presents Rubinstein’s derivation of the n-
moment CAPM and extends it to derive the market risk premium
and the market skewness premium.

Let W, be the initial wealth of the ith individual. Assume that
every dollar of that wealth is invested in one of j securities. Let
S;; be the amount that the ith individual has invested in the jth

security. Then
=>_Sij»
J

and the wealth at the end of the year is:
ZSU J

where R; = (1 +r;) = one plus the rate of return on the jth se-
curity.

Let U; be the continuously differentiable utility of wealth func-
tion for the ith individual. Assume that every individual maxi-
mizes E;(U;(W,)) subject to the constraint W; = - S;;

Taking the expected value of the Taylor series expansion of
U;(W;) around E;(W)) gives:

T - U‘(n):uin
E,(U;(W)) = ,,Z::’)—l”! ,
where U, ™ is the nth derivative of U; evaluated at E; (W) and

Wi, =E; (W E, (W))” is the nth central moment of W Forming
the Lagranglan the individual’s problem is to maximize Z, where

i “’"+L (W ZSU>

J
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Dropping the subscript i for simplicity and differentiating gives:

0z o (U™ U™\ (ou,
55 =S as () oo (57) ()} 1o
and
j
Let _
W = EW) = ZSE(R):> W—E(R)
So _
(n) (n+1) (n+1)
0 (UM _ueh (oW _uthp L
GS]- n! n! 8Sj
Thus,

o7 U(’“']),u U™ 8,&
= B(R; —t =) -L=0.
as, =™ )<Z )t \as 0

But the term Y-, U®*Vy, /n! is the Taylor series expansion of
U around W. And,

(un ( (Z RjZSjE(RJ)) ")
—nE{(W Wy~ 1( )(Z RJ—ZSjE(Rj))}

= nE{(W —W)""'(R; —E(R)))}
Hence,

oo rr(n) o ) 7 wyn—1
52U B 97
n=2 :

(A.1)



60 THE n-MOMENT INSURANCE CAPM
Since pp =1 and p; =0=90/9S;(119) = 9/9S (1) = 0.

The expression in (A.1) is true for all j. Subtracting the ex-
pression for the kth security from the expression for the jth se-
curity gives:

ER; — RUY

.\ i U™WE[(R; — R, — (E(R)) — E(R))(W — W) 1] _

0.
= (n—1D)!

Hence,

E(R)) =

< UME[(R; — R, — (E(R;) — E(R)))(W — W)n—1]
E(R) - — 6 '

n=2

Let 0, = U™ /UD(n — 1)!. Then,
E(R)) =

E(R) + > 0,E[(R; — R, — (E(R;) — E(R))(W — W)" '],
n=2
(A.2)

Assume that a risk-free security exists. Let R be one plus the
rate of return on the risk-free security.

Equation (A.2) applies to all securities, so substituting R, for
R, gives:

E(R) =R, + > 0,E[(R; —ER)W - W)Y '].  (A3)
n=2
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Let S ¢ denote the amount that the individual has invested in the
risk-free security,

P =W —S§; denote the amount that the individual
has invested in his portfolio of risky securities, and

R, = one plus the rate of return on the portfolio of
risky securities.

Then, W = PRP + SfRf, and

E(W) = PE(R,) + S/R;.
Thus,

ER))=R;+> 0,P" 'E[(R; —E(R)))(R,—E(R,))"'I.
n=2
Under the assumptions of complete agreement among individ-
uals and identical risk tolerance functions, it follows that every
individual has the same optimal portfolio of risky assets. More-
over, that portfolio is the market portfolio. Hence,

E(R)) =R+ 60,P" 'El(R; — ER))(Ry — ERy))" 1,
" (A4)

where R;, = one plus the rate of return on the market portfolio.
Let

- _ EIR; —ER))Ry — E(R,)" D]
K E[(Ry — E(Ry))"]

and

for n=2,...,00,

biu_1) = 0,P" VER, —E(R)))".
Then, the n-moment CAPM is:

E(R]) = Rf + Zb(n—l)ynj’ (A.S)
n=2
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Equivalently,
E(rj) = rf + Zb(nfl)ynj' (A6)
n=2
For the three-moment CAPM, the traditional notation is given
by:
BJ. = V2j’ and
V=3
Then the three-moment CAPM is:

Additional insight into the coefficients b; and b, can be gained
as follows.

Let Ry denote one plus the rate of return on the individual’s
entire portfolio, and let og and 7z ~denote the standard devia-

tion and the skewness, respectively, of the rate of return on the
individual’s entire portfolio.

Then, in conjunction with the results from Section 2.2,

S.6:0
oR, = Z%RM and
J

ST
_ J1J Ry
TRW = Z —W .
J
Let By, and vy denote the beta and the gamma of the individual’s
entire portfolio. It follows that
OR TR
By =—- —and  qy=—"
g RM TRM
Moreover,

UW = WURW and TW = WTRW.
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Consider that
W = WE(Ry) = WR; + Wb, By + Whyyy
= W(R,)+ 1w | D2Tw
O'RM TRM
Since the market portfolio is unchanging, OR,, and T, are

constants. It follows that

oW
oW

Thus, the coefficients are the additional required returns per unit
of risk and skewness, respectively, times the units of risk and

skewness, respectively.



USING CLAIM DEPARTMENT WORK MEASUREMENT
SYSTEMS TO DETERMINE CLAIM ADJUSTMENT
EXPENSE RESERVES

JOANNE S. SPALLA
Abstract

This paper discusses a methodology for establishing
reserves for the portion of loss adjustment expense as-
sociated with the cost of claim adjusters. The actuar-
ial literature contains very little material on how to
estimate unallocated loss adjustment expense (ULAE)
reserves. The literature briefly mentions “transaction-
based” methods that require claim department time
studies. However, many feel that the improvement in
estimating ULAE reserves does not justify the high
cost of performing such a study. Fortunately, most
claim departments of major insurance carriers and third
party administrators now utilize sophisticated automated
work measurement tools that may capture the type of
data that can be used to perform an automated time
study.

The first section describes a process that can be
used to perform the work-study, including a discus-
sion of the technical and practical issues in conduct-
ing such a study. The second section shows how the
results of the study can be utilized to determine claim
adjuster expense reserves. Other potential applications
of the claim standards will be discussed, including pric-
ing unbundled claim service, allocating claim depart-
ment expense to line of business for statutory and man-
agement reporting purposes, and monitoring claim de-
partment expenses. Changes in the NAIC definition of
loss adjustment expense are also discussed in the pa-

per.
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1. INTRODUCTION

This paper will illustrate a methodology for establishing the
estimated liability for the portion of loss adjustment expense as-
sociated with the cost of claim adjusters. Common techniques
that are used to determine these liabilities will be discussed at
the beginning of this paper. The paper will then describe an alter-
native method of estimating these costs, using a claim department
work-study. The study utilized an automated work measurement
system to determine a standard cost of handling different types
of claims. The paper will then describe how these claim stan-
dard costs can be used to determine outstanding liabilities for
claim adjuster expense. Other applications of the study will be
described in the final section.

A. Definition of Loss Adjustment Expense

Before discussing how to determine a reserve for claim ad-
juster expenses, it is first necessary to review changes in the defi-
nition of loss adjustment expenses. Claim adjuster expenses have
been included in the traditional definition of unallocated loss ad-
justment expense (ULAE). In the past, there had been some in-
consistency in the distinction between allocated and unallocated
loss adjustment expenses. Part of the confusion resulted from the
common assumption that the term “allocated” refers to expenses
that could be identified with a specific claim file. Companies
utilizing different business procedures to settle claims may thus
have had different definitions for unallocated and allocated loss
adjustment expense. This issue was further complicated because
different definitions were used for statistical reporting.

To increase the consistency of reporting between insurers, the
Casualty Actuarial (Technical) Task Force (CATF) recommended
to the National Association of Insurance Commissioners (NAIC)
Accounting Practices and Procedures (EX4) Task Force that a
revised loss adjustment expense (LAE) definition be adopted [1].
The Accounting Practices and Procedures Task Force adopted the
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change effective January 1, 1998. The task force’s objective was
consistent reporting of expenses related to defense, litigation,
and medical cost containment regardless of whether a company
uses its own employees or hires outside firms. To eliminate any
confusion arising from the association of the term ‘“allocated”
with the ability to assign expenses to a specific claim, the NAIC
approved a Blanks Proposal to change the titles effective with
the 1999 Annual Statement.

Under the revised rules, the ability of an insurer to as-
sign expenses to a specific claim no longer determines how it
is classified. Defense, litigation, and medical cost containment
expenses—both internal and external—are now assigned to
“Defense & Cost Containment” (DCC); the remaining expenses
associated with adjusting and recording claims are assigned to
“Adjusting & Other.”

Specifically, DCC now includes:
(i) surveillance expenses;
(i1) fixed amounts for medical cost containment expenses;
(iii) litigation management expenses;

(iv) loss adjustment expenses for participation in voluntary
and involuntary market pools, if reported by accident
year;

(v) fees or salaries for appraisers, private investigators, hear-
ing representatives, reinspectors, and fraud investigators,
if working in defense of a claim, and fees or salaries
for rehabilitation nurses, if such cost is not included in
losses;

(vi) attorney fees incurred owing to a duty to defend, even
when other coverage does not exist; and

(vii) the cost of engaging experts.
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Adjusting & Other is now defined as those loss adjustment ex-
penses other than the DCC expenses as defined above. Adjusting
& Other expenses include the following items:

(i) fees of adjusters and settling agents;

(i1) loss adjustment expenses for participation in voluntary
and involuntary market pools, if reported by calendar
year;

(iii) attorney fees incurred in the determination of coverage,
including litigation between the insurer and the policy-
holder; and

(iv) fees or salaries for appraisers, private investigators, hear-
ing representatives, reinspectors, and fraud investigators,
if working in the capacity of an adjuster.

The claim department expense study discussed in this paper
will focus on the first item in the above definition of Adjust-
ing & Other expenses. These costs, which compose the largest
portion of Adjusting & Other, will be referred to as “claim ad-
juster expenses” throughout the paper. Provisions for the other
items included in the definition of Adjusting & Other must be
calculated independently and added to the adjuster reserves de-
termined by the methodology discussed in this paper.

B. Summary of Common Reserving Methods

The actuarial literature contains very few techniques for de-
termining the outstanding liabilities for what has traditionally
been called unallocated loss adjustment expense, or ULAE. The
existing techniques fall into three categories:

e paid-to-paid methods

e methods based on claim reporting and closing patterns (the
Johnson Method [2])

e transaction-based methods.
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The paid-to-paid method—as well as its shortcomings—has
been described in detail in the actuarial literature. Under this
method, the historical ratio of calendar year ULAE payments to
calendar year paid losses is calculated. The ULAE reserve is then
determined by applying 100% of this ratio to the incurred but
not reported (IBNR) reserve and 50% of this ratio to the case
reserve. This methodology is based on the assumption that 50%
of the ULAE is paid when a claim is opened and the remaining
50% of the ULAE is paid as losses are paid. It also assumes that
the IBNR reserve only provides for pure IBNR claims.

Several authors (Kittel [3, p. 311] and Johnson [2]) have
pointed out the shortcomings of the assumptions underlying this
method. In particular, the use of a calendar year ratio will either
understate or overstate the ULAE reserve in a changing claims
environment. For example, if a line of business is growing, this
method will understate the reserve. Similarly, if there is a change
in the claim reporting and settlement pattern, this method will fail
to produce the correct reserve. In addition, this method assumes
that ULAE will inflate at the same rate as losses. Finally, this
method assumes that the underlying loss reserves are adequate.
It should be noted that the distortions in this method would be
magnified for long-tailed lines of business.

The Johnson Method overcomes many of the problems as-
sociated with the traditional paid-to-paid methodology. The first
step in this method is to calculate historical average ULAE ex-
pense per weighted open claim. The number of claims open at
future year-end points is then projected based on claim reporting
and settlement patterns. Finally, the ULAE reserve is calculated
by multiplying the number of open claims by the trended average
expense.

By relating calendar year ULAE to claim counts, Johnson rec-
ognizes that ULAE payments are not necessarily tied to loss pay-
ments. The ULAE reserve calculated by the Johnson Method is
also independent of the adequacy of the underlying loss reserves.
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In addition, the method is responsive to changes in exposures
and inflation.

While the Johnson Method overcomes many of the shortcom-
ings of the classical paid-to-paid methods, it has a major limi-
tation: the technique is dependent on the allocation of ULAE to
line of business. As Johnson [2, pp. 113—-114] noted:

One of the problems with unallocated loss adjustment
expenses is that it is difficult to test one’s assump-
tions about them because the expenses by definition
are generally hard to allocate and therefore hard to
track. The only real way that comes to mind to test as-
sumptions would be to conduct a claim expense study,
such as a time and motion study, which establishes ar-
tificial expense allocation procedures for a temporary
time period.

The allocation of calendar year ULAE to line may not be an
issue for a company writing only a single line of business or for a
company that has fully dedicated claim staff for each line. How-
ever, it can be a significant issue for insurance companies that
utilize multi-line claim offices. Any distortions from a misallo-
cation of calendar ULAE will, in turn, distort the average ULAE
used to estimate the reserve. In her paper, Johnson [2] uses a
growing book of medical malpractice business in a single state
as an example. She notes that the dramatic annual 17.4% trend in
the calendar year average ULAE was surprising. Johnson does
not describe the company that generated the data in the example
or the methodology used to allocate calendar year ULAE to line
of business and state. It is, therefore, not possible to determine
if the increase in calendar year ULAE was due to the calendar
year allocation methodology. However, this example illustrates
the reliance of Johnson’s technique on the calendar year ULAE
allocation methodology.

Johnson, among other authors, has acknowledged that the
only way to accurately determine the true cost of handling vari-
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ous types of claims is to conduct a claim department work-study.
However, all of these authors recognize that such a study would
have been very time-consuming. It would have involved literally
standing over a claim adjuster’s desk armed with a stopwatch
or requiring claims adjusters to track every minute of their time.
Improving the measurement of ULAE liabilities would probably
not suffice to justify the high cost of performing such a study.
Fortunately, today’s modern technology offers a more efficient
and accurate way of conducting such a study.

2. OVERVIEW OF CLAIM DEPARTMENT EXPENSE STUDY

A. Big Brother Is Watching

Most modern claim departments utilize automated claim sys-
tems. Claim representatives use these systems to perform the
various functions involved in the claim process, such as open-
ing claims and making payments, as well as adding notes and
composing correspondence. In fact, much of an inside claim rep-
resentative’s day is spent at the computer. Many of these systems
capture the individual transaction detail, along with the duration
of time spent on each type of activity. This data will often iden-
tify the claim staff position performing the task, as well as the
claim generating the activity. Multiplying the duration of activity
for each transaction times the average hourly cost of the claim
position performing the task yields the cost of performing the
transaction. Dividing the sum of all the transaction costs by the
number of claims yields the average cost of handling a claim.

This paper describes an actual claim study utilizing an auto-
mated work measurement system and its application to determin-
ing the reserve for unallocated loss adjustment expense. While
the use of an automated work measurement system greatly sim-
plified the effort of performing a claim study, the project involved
an investment of significant resources. The cost of such an invest-
ment goes beyond the benefit that would be derived by merely
improving the accuracy of the estimation of ULAE liabilities. In
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fact, the main justification for this study was an improvement in
the allocation of claim costs to product and profit center, which,
in turn, would enhance the accuracy of product pricing.

B. Claim Data Utilized in the Study

The data that is available in the claim system varies by com-
pany. Hence, the design of the claim department study will be
governed by the data captured in the system. The data elements
used for the claim study in this paper are discussed below.

Claim Data identifies the individual claim that generated the ac-
tivity:

e Claim Symbol—identifies the coverage that generated the
claim.

e Claim Office—identifies the branch office that is handling the
claim.

o Age of Claim—the automated work measurement system uti-
lized in our claim study classified claims into four age classi-
fications:

(i) Intake—this category represents the work that is per-
formed in the first 30 days of the claim.

(i) Outstanding 31-90 Days (OS1)—this category represents
the work that is done in the next 60 days in the life of the
claim.

(i) Outstanding > 90 Days (OS2)—this category represents
the work that is done on claims that are over 90 days old.
For workers compensation, this category excludes claims
that are older than 60 months, which were handled sepa-
rately.

(iv) Outstanding > 60 Months (OS3)—this category, which
was utilized only for workers compensation, represents
the work that is done on claims that are more than five
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years old. For the sake of simplicity, the calculation for
this category is not illustrated in this paper.

The choice of these claim categories was governed by the
claim system that we used to perform the study. Other classifi-
cations could be used. For example, we considered adding a cat-
egory for claim settlement to reflect the work to close a claim.
However, we decided not to do so when we learned that the
claim file might not be officially closed in the month in which
the claim actually settled. Claims may be kept open until all the
final bills have been paid and any recoveries (such as salvage,
subrogation and second injury funds) have been collected. For
this reason, the work in the final month the claim is open may
not accurately reflect the work associated with settling a claim.

When undertaking a claim work-study, it is important to un-
derstand how the claim system counts claims. Some claim sys-
tems count all the claimants from an occurrence as a single
claim, while other systems create individual claim files for each
claimant and coverage. For example, an automobile accident may
generate one or more bodily injury claims, a property damage
liability claim and a physical damage claim. Another considera-
tion is how reopened claims are handled—some systems utilize
the original claim number, while others create a new claim.

Policy Data identifies the business unit that wrote the policy
that generated the claim. Depending on the business needs of the
organization, the following level of detail may be included in the
claim study:

e Regional Office
e Risk State

e Market Segment

In a multi-line insurance company, the claim study may dis-
tinguish between personal and commercial business. A com-
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pany writing commercial lines may wish to further distinguish
between small commercial, middle market, and large national
account policies if it is felt that the costs of handling these
claims are different. For the same reason, the company may
wish to separately identify assigned risk claims. In our study,
we found that large national account claims required less han-
dling time than standard business. It was believed that this
was because large accounts normally have a large volume of
claims. These accounts typically have a risk management depart-
ment with defined claim reporting procedures that assists in the
claim process by gathering the necessary information and pro-
viding it to the claim adjuster. Smaller accounts have very few
claims, and therefore are less experienced in handling claims.
Assigned risk claims were found to have the highest claim ad-
juster costs.

Work Measurement Data is the basis for the cost of handling
the claim. We utilized the following information from our claim
system:

e Type of Transaction—this data element identifies the type of
activity on the claim file. Examples of transactions include
creating a claim, making a payment, and adding notes to the
file.

e Claim Position—this data element is the job classification of
the claim representative that performed the activity on the
claim. Examples of job classifications include claim represen-
tative (inside and outside), clerical and supervisor.

e Duration of Transaction—this item measures the length of time
expended performing a task.

Claim Expense Data is required to determine the cost of han-
dling each transaction. To estimate these costs, it was necessary
to collect salary data by claim position, as well as other expenses
such as benefits, rent, automobile, travel, etc.
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3. STEPS IN PERFORMING A CLAIM DEPARTMENT STUDY

The steps involved in performing a claim department study
are summarized below:

1. Determine average hourly cost for each claim position
2. Collect duration of claim transactions by claim position

3. Determine raw costs by multiplying durations by average
costs for each claim position

4. Load standards for unrecorded time
5. Divide costs by claim volumes to determine average cost

6. Load standards for other field office claim overhead not
captured in the work-study

7. Load standards for home office claim adjustment ex-
pense overhead

Each of the above steps will be discussed in more depth
in subsequent sections using workers compensation lost-time
claims as an example. Because workers compensation claims
with lost work time have very different characteristics than
medical-only claims, we chose to calculate separate standards
for each category. It should be noted that the data in the exhibits
have been disguised to preserve confidentiality.

Step 1: Determine Average Hourly Cost for Each Claim Position

The claim-handling costs underlying the work-study are de-
termined by multiplying the time every claim position spent han-
dling a claim times the average hourly cost for that claim posi-
tion. The first step in the study is to determine the average hourly
cost for each position in the claim study. Exhibit 1 shows the
calculation of the average hourly cost. For our study, we used
annualized countrywide average salary levels for each position,
loaded for benefits and other expenses. The hourly cost is based
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on 50 weeks per year at 36% hours per week for each staff posi-
tion. The use of countrywide salary levels reduces the bias from
using a sampling of claim offices. Benefits are loaded as a flat
30% of salary. Other expense categories, such as rent and furni-
ture and equipment, are allocated to position. Certain categories,
such as automobile expense, should be allocated only to the job
categories that generate those expenses. Depending on the na-
ture of the expense categories, the allocations may be based on
salaries, headcount or any other reasonable basis for allocation.

When we performed our study, we found that the system
captured a sufficient proportion of time at the individual claim
level for only five positions (inside claim representative, outside
claim representative, clerical, supervisor and claim processor).
We chose to include only those positions in the work-study, ac-
counting for 64.3% of the total claim field costs. The costs for the
remaining positions will be reflected in a Field Office Overhead
Factor, discussed later.

Step 2: Collect Duration of Claim Transactions by Claim
Position

Exhibits 2, 3, and 5 are each divided into three sections rep-
resenting the three age categories in the study: Intake, OS1 and
OS2. Exhibit 2 displays the number of hours recorded in the
claim system for each of the job positions that handled workers
compensation lost-time claims during the study. The number of
claims handled in each category is shown at the bottom of each
section. For example, in Office #1, inside claim representatives
spent a total of 387.5 hours handling the intake of 585 lost-time
claims. Other positions, including outside claim representatives,
clerical, claim processors, and supervisors, also worked on these
claims. The system recorded a total of 825.8 hours of staff time
handling lost-time claim intake in this office. During the same
time period, there were 996 open claims that were between 31
and 90 days old in Office #1. The system recorded a total of
554.6 hours handling these claims. Finally, 1,879.3 hours were
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captured for the 4,600 claims that were between 90 days and 60
months old.

It should be noted that several positions—such as supervisor,
claim representative, and clerical staff—perform activities on a
single claim. At the same time, there are many claims that do not
have any activity on them in the month. The standard that we
are calculating represents the average monthly cost of handling
an open claim.

Step 3: Determine Raw Recorded Costs by Multiplying
Durations by Average Salaries

In Exhibit 3, the average hourly cost of the position handling
the claim is multiplied by the duration of the task to determine the
total cost. For example, the average hourly cost of an inside claim
representative is $29.95. This hourly cost is multiplied times the
387.5 hours spent handling intake claims to get a cost of $11,607
for Office #1. The costs are calculated similarly for the other job
categories.

Step 4: Load Costs for Unrecorded Time

The average costs determined above must be adjusted to re-
flect the fact that 100% of work time is not recorded in the claim
system for the positions in the study. Exhibit 4 shows the time
that was captured in the claim system for each position in Office
#1 during the four-month study period. It should be noted that
this exhibit reflects the total time recorded for each position dur-
ing the study period and includes work on all types of claims.
For this reason, the number of recorded hours exceeds the hours
shown in the sample for workers compensation lost-time claims.
The number of available hours is equal to the staff count times
the number of work hours during the study period. The num-
ber of hours recorded at the claim level reflects the time that
is spent working on a specific claim. Examples of time that is
not recorded at the claim file level include absence and vacation
time, training, and customer service. Note that the percent of
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time recorded at the claim level varies significantly by the type
of position. The system captures the largest proportion of time
for claim processors. On the other hand, only 28.9% of cleri-
cal time can be recorded to specific claims. The proportion of
time recorded is summarized for each position and office at the
bottom of Exhibit 4.

To adjust for the time that cannot be allocated to specific
claims, the costs determined in Exhibit 3 are grossed up by di-
viding the cost by the percent of time recorded for each position
in each office (see Exhibit 5). For example, the $11,607 of costs
for inside claim representatives in Office #1 is divided by the
66.6% time recorded to obtain a grossed-up cost of $17,428. In
using a factor to gross up the costs, we are allocating unrecorded
time for each claim in the same proportion as the recorded time.

Step 5: Determine Average Costs by Claim Category

The calculation of the average monthly costs for workers com-
pensation lost-time claims for each of the claim categories is dis-
played at the bottom of each section in Exhibit 5. For each of
the age categories, the average cost was calculated by dividing
the grossed-up costs for all offices by the number of claims that
were handled in the age category during the study period. Di-
viding the total intake costs of $273,505 by the claim intake of
2,645 yields a preliminary standard of $103.40 for handling a
lost-time claim intake. Since the claim intake includes all claims
that were reported during the four-month study period, the result-
ing standard represents the average monthly cost that is incurred
on a lost-time claim in the first month that it is reported to the
company.

In determining the number of outstanding claims in the aver-
ages for the OS1 and OS2 categories, every claim in the office
is counted once for each month that it is open during the study
period, regardless of whether there was any activity on the claim.
For example, if a claim were open for the first three months of
the study and then closed, it would produce a count of three. As
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a result, the calculated standards represent the average monthly
cost of handling outstanding claims.

At this point, it may be appropriate to apply judgment in se-
lecting the final standards. Unusual results for any office and cat-
egory should be reviewed. For example, the costs for Office #3
consistently fall below the costs in the other offices. The statistics
for this office should be validated to make sure that all the data
were collected properly. Given the data are correct, the reasons
for the lower cost should be explored. One possible explanation
for the lower cost may be that the workers compensation laws in
the jurisdictions served by the office make it easier to adjudicate
claims. If it is felt that the data for this office is anomalous, it
may be appropriate to exclude it from the final selection of the
standards.

Step 6. Load Standards for Other Field Office Claim Overhead

As mentioned above, not all the staff in a field claim office
actually handles claims in the system. For example, the claim
office staff may include an office manager, system administrator,
and quality assurance and training resources, as well as clerical
and mailroom staff. These field costs must also be factored into
the claim standards. In our study, these costs were added using
a percentage factor. Since the positions included in the work-
study accounted for 64.3% of total claim expenses, the standards
were multiplied by 1.555 (1/.643) in Exhibit 6. In making this
adjustment, we are again allocating field office overhead to claim
in the same proportion as the staff handling time captured in the
system at the claim level.

Step 7: Load Standards for Home Office Claim Adjuster Expense
Overhead

In addition to the field overhead discussed above, claim ad-
juster expense also includes home office claim department costs,
as well as general overhead. Examples of the types of expenses
included in overhead are shown in Exhibit 7. The general over-
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head factor was calculated by dividing the annual overhead cost
of $66,976 by the total claim field expenses of $174,933 from
Exhibit 1. General Overhead was reflected by multiplying the
standards in Exhibit 6 by a factor of 1.383.

4. USING THE CLAIM STANDARDS TO CALCULATE THE CLAIM
ADJUSTER EXPENSE RESERVE

The standards developed in the claim work-study can be used
as the basis for the calculation of the claim adjuster expense
reserve. Kay Rahardjo described a technique for doing so in
her paper, “A Methodology for Pricing and Reserving for Claim
Expenses in Workers Compensation™ [4].

The major steps in Rahardjo’s paper are:

(i) project ultimate claim counts using triangles of open and
reported claims,

(i1) determine the number of claims open at various develop-
ment ages, and

(iii) calculate the reserve by multiplying the number of open
claims by the cost per outstanding claim.

The remaining exhibits in the paper illustrate the application
of this methodology using a simplified example to calculate the
required ULAE reserve as of 12/31/97. Modifications to Ra-
hardjo’s methodology will also be discussed.

In the reserve evaluation described below, we have elected
to calculate the reserves for reported claims and IBNR claims
separately. When claim service is sold on an unbundled basis,
the revenue for claim service is typically collected when the
claim is reported, and the claim administrator has no obligation
to handle the claims that have not yet been reported. In such
situations, including only reported claims in the claim adjuster
expense reserve is appropriate. However, when the revenue for
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claim service is included in the insurance premium and the in-
surance carrier has the obligation to handle all claims that are
reported, the claim adjuster expense reserve must include a pro-
vision for pure IBNR claims. Calculating the reserve separately
for reported and IBNR claims provides the flexibility to address
both situations.

A. Projection of Ultimate Claim Counts

Exhibit 8 shows a report year triangle of reported claim
counts that forms the basis of the projection of ultimate claim
counts. At the bottom of the exhibit, development factors are
calculated using standard methodologies to project the claim
counts to ultimate. For the sake of simplicity, it is assumed that
there is no development in the report year claim counts after 12
months.

B. Projection of Outstanding Claim Counts

A report year triangle of outstanding claim counts is displayed
in the top portion of Exhibit 9. It is important to emphasize that
the definition of claim counts used in the reserving triangles
must be consistent with the definition used to generate the aver-
age costs in the claim study. Exhibit 9 illustrates the method de-
scribed in Rahardjo’s paper to project outstanding claim counts.
The number of outstanding claims at future development inter-
vals is projected by calculating the ratio of outstanding claims
to ultimate claims at historical points. These ratios are selected
for each development age and are used to calculate the num-
ber of outstanding claims at future year-end development points.
More sophisticated assumptions about the claim closing patterns
during the development period could be used. For example, link
ratios could be used to project the number of outstanding claims
at each development age. Alternatively, the number of claims
closed at each age could be estimated by using ratios of closed
claims to the number of claims open at the beginning of the
interval.
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C. Projection of Claim Adjuster Expenses

Exhibit 10 illustrates how the total claim adjuster expenses are
calculated by multiplying the number of claims at each develop-
ment interval times the cost of handling a claim. The average
number of outstanding claims shown at the top of the exhibit is
calculated by averaging the number of claims outstanding at the
beginning and end of the development interval in Exhibit 9. Use
of the average number of outstanding claims reflects the fact that
some of the claims that are open at the beginning of the interval
will be closed.

The monthly standard claim costs developed in the claim
study are the starting point for the estimates of future claim ad-
juster expenses. For the sake of simplicity, the reserve evaluation
utilizes triangles with annual development points. Consequently,
the monthly standard costs from the claim study must be con-
verted into annual costs so that they are on a comparable basis.
Since our standard varies with the age of the outstanding claim,
the monthly standard costs must be weighted to reflect the mix
by age of outstanding claims. Exhibit 11 shows how this con-
version can be made.

Recall that in our claim study, the intake standard reflects the
work that takes place in the month in which the claim is reported.
A claim that remains open incurs the 31-90 day (OS1) cost for
the next two months and then incurs the OS2 cost for months 4
through 60. Report year claims that are open between 12 and 24
months incur 3/12 months of the OS1 cost and 141/12 months
of the OS2 cost, or $613.04. After 24 months, open claims incur
12 months of OS2 costs ($597.60) for each year that they are
open up to 60 months.

Between 60 and 72 months, it is again necessary to adjust
the standard to reflect the mix by age. The bottom section of
Exhibit 11 shows that between 61 and 72 months open claims
incur 66/12 months of the OS2 cost and 78/12 months of the
OS3 cost, or $384.40 per year. After 72 months, all open claims
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incur the OS3 cost of $17 per month, or $204.00 per year. The
average costs calculated in the claim study are at 1997 cost levels.
To reflect future costs, the 1997 standards are trended using an
inflation assumption of 3% per year in the middle section of
Exhibit 10.

D. Determination of Claim Adjuster Expense Reserve for
Reported Claims

Once the future claim costs are estimated, calculating the
claim adjuster expense reserve is simply a matter of summing
the claim adjuster expenses for future development ages. If we
make the simplifying assumption that a claim incurs the intake
cost on the day it is reported, it is not necessary to include this
cost in the reserve for reported claims. This calculation is illus-
trated in the bottom section of Exhibit 10 for a 12/31/97 reserve
evaluation date.

For a long-tailed line such as workers compensation, it is nec-
essary to include a provision for expenses incurred beyond ten
years. Rahardjo [4] describes a methodology for determining a
tail for workers compensation tabular claims that uses mortality
assumptions. The tail reserve must include appropriate inflation
assumptions.

E. Determination of Reserve for IBNR Claims

The top section of Exhibit 12 shows projected IBNR claims by
accident year and development period. Any standard method for
calculating the number of pure IBNR claims could be utilized.
To select the expected ultimate cost per IBNR claim, we examine
historical average ultimate claim adjuster expense per claim. The
historical average costs are calculated in Exhibit 13 by dividing
the total ultimate adjuster costs by the ultimate number of claims
from Exhibit 8.

Ultimate costs are calculated by report year in Exhibit 14
through Exhibit 16. The ultimate adjuster costs must include the
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intake cost of handling a claim in the first month that it is re-
ported to the company, as well as the cost of handling the claim
for each month that it is outstanding. The average cost per out-
standing claim for development ages beyond the first 12 months
can be calculated in the same manner as in Exhibit 10. Since
we are calculating ultimate costs, the costs for all development
ages must be included. The 1997 average costs from the claim
study have been adjusted in Exhibit 15 to reflect both historical
and future cost levels. Future costs are calculated by applying an
inflation factor of 3% per year to the 1997 standards. Historical
costs are similarly calculated by detrending the 1997 standards
at a rate of 3% per year. If actual historical average claim costs
are available for prior years, they can be substituted for the de-
trended costs.

The calculation of costs for the first 12 months in the life
of a claim, which is illustrated in Exhibit 17 and Exhibit 18, is
more complicated. The calculation must include the intake cost
for every claim that is reported to the company. It must also re-
flect the claims that are settled before the end of the year. In the
claim study, all costs for the first month that the claim is open
are reflected in the average intake cost, which was developed
in Exhibit 6. The costs for the second and subsequent develop-
ment months of a report year are calculated by multiplying the
appropriate standard times the percentage of claims that remain
open. The monthly costs are then accumulated for each report
month. The final cost for the first year, $444.17, is calculated
by averaging the total costs for each report month. Again, this
must be adjusted to historical cost levels. The costs for the first
12 months are then combined with the costs for subsequent de-
velopment periods in Exhibit 16 to get the total ultimate claim
adjuster costs.

The ultimate report year cost per claim is calculated in Exhibit
13 by dividing the total ultimate cost by the ultimate number of
claims. Since IBNR claims for the 12/31/97 reserve will emerge
in 1998 and subsequent report years, the historical average costs
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in Exhibit 13 are then brought to 1998 cost levels using an in-
flation assumption of 3%. An expected average cost per claim is
then selected.

The number of IBNR claims can then be multiplied by an
expected ultimate cost per claim to derive the claim adjuster
expense reserve for IBNR claims shown in Exhibit 12. The
expected ultimate cost per IBNR claim selected in Exhibit 13
should be trended to reflect cost levels in the year that the IBNR
claim emerges. By using the historical report year ultimate cost
per claim, we assume that the cost of handling an IBNR claim
is the same as the cost of handling a claim that has already been
reported.

Finally, in Exhibit 19, the total claim adjuster expense reserve
is the sum of the reserves for reported and IBNR claims. It should
be noted that the total Adjusting and Other (A&O) reserve must
include a provision for the other components of A&O that are
not reflected in the claim expense study.

5. PRACTICAL CONSIDERATIONS IN CONDUCTING THE CLAIM
STUDY

A. Scope of the Study

When setting up the study, one important consideration is its
scope. One of the first decisions that must be made is whether
to include the entire population of claim offices in the study. Be-
cause the volume of data that is collected at the transaction level
is so extensive, it may not be possible to include all the claim
offices. Instead, it may be more practical to include a sample of
claim offices. If the decision is made to only sample claim of-
fices, it is important to select offices that provide a representative
sample of the company’s geographical mix. The use of country-
wide salary levels when calculating average costs can mitigate
geographic differences in cost of living. However, variations in
state claim adjudication requirements for certain lines, such as
workers compensation, can significantly impact claim costs. It is
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also important to make sure that the mix of claims by age in the
sample offices reflects the mix for the total claim population.

Our study included five sample offices that handled workers
compensation claims, accounting for approximately 20% of our
claim volume. It should be noted that an automated work mea-
surement study allows a much larger sample size than would be
practical under a traditional time and motion study.

B. Duration of Study

Another consideration is the time period for the study. Our
claim study spanned four months. When conducting a work-
study, it is important to select a representative time period. It
makes sense to avoid unusual times, such as holidays. In addi-
tion, it is important to avoid periods when the office is handling
a heavy volume of catastrophe claims. Even with these caveats,
it may be necessary to adjust the data for months that have fewer
workdays.

C. Credibility

There may not be sufficient volume in every claim category
to select valid standards. In our study, we selected different stan-
dards by market segment. However, certain claim categories such
as auto uninsured motorist did not have a sufficient volume of
claim data. For these categories, we selected data for all market
segments combined.

D. Adjusting the Data for Anomalies in Claim Transaction
Durations

We found several data issues that required adjustment. A sig-
nificant issue was unusually long durations for individual trans-
actions compared to the norm. We learned that these anomalies
typically occurred when the claim representative was interrupted
in the middle of a transaction. In order to address this issue, we
elected to cap any value for a transaction that exceeded the mean
by more than three standard deviations.
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E. Participation of Claim Department Personnel

Active participation by the claim department is essential to a
successful claim work-study. Before undertaking the study, it is
important to thoroughly understand the claim system and how
adjusters utilize it. In enlisting the cooperation of the claim of-
fice staff, it is useful to explain the purpose of the study and
to provide appropriate assurances that the goal of the study is
not to reduce staff. Cooperation from the claim office staff—
particularly the manager and systems administrator—during the
data collection phase is crucial. To ensure all the data are col-
lected, it is important to make sure that the system is fully op-
erational and that all the data files are retained. The study team
should be notified of any outages during work hours; data for
days with outages may need to be excluded from the study, and
appropriate adjustments must be made. Adjustments may also
be necessary if there is a significant departure from the typical
workload, such as an all-day training session.

After preliminary results are tabulated, it is useful to review
them with a cross section of claim staff. While the staff may not
be able to validate the actual average dollar cost of each type of
claim, they may provide valuable insights into the cost differ-
entials among different types of claims or the cost of handling
similar claims for different market segments.

F. Other Participants in the Study

A cross-functional team was critical to the success of the claim
study. Since the project was originally designed as a cost allo-
cation study, controllers played a central role in the design and
execution of the study. The study team included several staff
members from both claims financial and cost accounting areas,
as well as two actuaries from the claims actuarial area. A rep-
resentative from the claims work measurement unit also served
on the team. It was also helpful to have a systems analyst and
programmer dedicated to the project. In addition, actuaries and
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controllers from the market segments and the corporate actuarial
unit peer-reviewed the results of the study.

G. Final Validation of the Claim Standards

As a final validation of the claim standards, the study team
tried to replicate actual claim adjustment expense spending lev-
els using the standards. The standards (loaded for claim office
overhead) were multiplied times the number of claims processed
within each category in a given quarter and the results were
summed. The fact that the total was within 2% of the actual claim
adjuster expense spent during that time period helped demon-
strate that the standards were reasonable.

H. Adjusting the Standards for Inflation and Trend in Claim
Department Costs

Since conducting this type of claim study requires a signifi-
cant resource investment, it is not practical to update it frequently.
For this reason, it is necessary to adjust the standards for in-
flation in claim department costs. The simplest solution is to
multiply the standards times an inflation factor. An alternative
method is to update the salary and other expense data used in
calculating the average hourly cost in Exhibit 1. However, nei-
ther of these methods recognizes productivity changes resulting
from the claim department handling a higher or lower volume of
claims with the same amount of staff.

A more refined approach can be used to adjust the standards.
Each quarter, the actual spending in each claim office can be
compared to the indicated claim adjuster expense that results
from applying the standards to the claim volume. This is similar
to the exercise described in the previous section that was used to
validate the standards. The ratio of actual expenses to indicated
expenses could be used to adjust the claim standards for inflation
and productivity changes. This ratio can also be calculated at a
claim office level and applied to the countrywide claim standards
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to customize the standards by claim office. Of course, it is im-
portant to note that this approach assumes that all types of claims
in the office will inflate at the same rate. It also implies that the
relativity among the standards for different types of claims will
remain constant over time and across claim offices.

1. Adjusting the Standards for Changes in Claim Department
Work Flow

While the above adjustment makes it unnecessary to update
the standards every year to reflect inflation, it is necessary to
modify the standards when there is a material change in claim
department workflow. Examples of changes that may impact the
standards are the creation of a centralized 800 number for claim
reporting, changes in the process for reviewing and paying med-
ical bills, and other managed care initiatives. In addition, out-
sourcing certain claim functions (such as case management, ap-
praisals or fraud management) may require adjustments to the
standards.

J. Workers Compensation Claims Greater Than 60 Months Old

The treatment of claims in the tail is an important considera-
tion, particularly in a long-tailed line such as workers compen-
sation. In workers compensation, claims that are open beyond a
certain age require much less attention. Typically, when workers
compensation claims reach this age, the investigation of the claim
has been concluded. Weekly indemnity payments, and occasional
medical payments, are processed with little intervention from a
claim representative. For this reason, the claim adjuster expenses
associated with these claim files are considerably lower. Accord-
ingly, we established a separate OS3 cost for workers compen-
sation “maintenance claim files” open longer than five years and
excluded claims open more than five years from the OS2 age
category. For the sake of simplicity, the calculation of the OS3
cost for workers compensation claims older than five years is not
illustrated in this paper.



CLAIM DEPARTMENT WORK MEASUREMENT SYSTEMS 89

6. OTHER APPLICATIONS FOR CLAIM STUDY

In addition to calculating the claim adjuster expense reserve,
the standards have several other practical applications: allocating
claim adjuster expense to line of business for statutory and man-
agement reporting, pricing unbundled claim service, and moni-
toring claim department expenses.

A. Allocation of Claim Adjuster Expense

In many companies, internal claim adjuster expense is not
typically assigned to a specific claim. For this reason, it is of-
ten impossible to identify these expenses by claim type and line
of business. This becomes a particularly difficult issue when a
single claim unit handles several different types of claims or the
same type of claims for different market segments. The stan-
dards that are determined in this study could form the basis of
an expense allocation system. As mentioned above, the original
purpose of our claim study was to develop a new claim expense
allocation system.

In our allocation methodology, the system tabulates the num-
ber of claims reported to the office and the number of claims in
each age category. The monthly claim counts are then multiplied
by the appropriate standard for the claim type and age category.
The results are then summed by claim office to determine the
indicated claim expense for each office. The indicated claim ex-
pense is compared to the actual claim expense in the office and
the standards are adjusted to balance to the actual spending. De-
pending on individual company data reporting needs, the results
can be summarized at various levels of detail. For internal man-
agement reporting, the data may be summarized by market seg-
ment and subline, branch office, and state. For Annual Statement
reporting, the data may be tabulated by statutory line and state.
In addition, the data may be further summarized by accident
year.
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B. Allocation of Adjusting and Other Expense Payments in
Schedule P

The above method provides a methodology to allocate Adjust-
ing and Other Expense to accident year in Schedule P. Prior to the
1997 Blank, the instructions to the Annual Statement prescribed
a methodology—commonly referred to as the “45/5 Rule”—to
allocate ULAE payments and reserves to accident year. The rule
allocates calendar year ULAE payments as follows: (1) 45% to
the most recent accident year, (2) 5% to the next most recent
year, and (3) the balance in proportion to the amount of loss
payments for each accident year during the most recent calen-
dar year. This allocation method is based on the assumption that
half of the ULAE is incurred when the loss is reported and the
other half is incurred as loss payments are made. In addition,
the method assumes that 90% of claims are reported in the same
year as the accident year and the remaining 10% are reported in
the following year. Of course, these assumptions do not apply
to most lines of business typically written by today’s insurers.
The old Annual Statement rule was repealed effective with the
1997 Blank. The revised rule states that insurers should now ap-
portion Adjusting and Other Expense payments and reserves by
year based on claim counts using any appropriate method. The
claim department standards described in this paper can be mul-
tiplied by accident year claim counts for each annual statement
line to form the basis of the allocation of Adjusting and Other
Expense payments in Schedule P.

C. Pricing Claim Service

Another important application of the claim standards is the
pricing of claim service. The ultimate claim costs estimated
above can form the basis of a handle-to-conclusion charge for
insurance companies and third party administrators. In addition,
assigned risk servicing carriers for workers compensation and
automobile insurance can use these claim standards to reflect
the cost of handling claims in the servicing carrier allowance in
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their bids. As an in-depth discussion of pricing is beyond the
scope of this paper, the reader should refer to Rahardjo’s paper
[4, pp. 164—167] for more details.

D. Claim Department Expense Planning, Monitoring and
Control

In addition to the applications discussed above, the claim
study provides a set of tools to plan and monitor claim depart-
ment costs. Future claim adjuster expenses can be forecasted
using a projection of future adjuster costs similar to the triangles
displayed in Exhibit 10 for reported claims and Exhibit 12 for
incurred but not reported claims. Such a forecast can form the
foundation of claim department budgets.

The work-study also produces useful monitoring statistics. As
Exhibit 5 shows, the cost of handling each type of claim varies
substantially by office. These average costs can be used to bench-
mark claim office productivity. Since the length of time that a
claim remains open directly influences the cost of handling the
claim, it is also important to monitor claim closing patterns. The
triangle of ratios shown in Exhibit 9 provides a useful tool to
monitor the proportion of claims remaining open.

7. SUMMARY

While the claim work-study described in this paper is sim-
pler to conduct than the traditional time and motion study, it
still involves a considerable amount of work. However, a claim
work-study approach offers many advantages. The work-study
more closely reflects the actual work involved in creating and
handling different types of claims. The method is responsive to
changes in claim volumes and is independent of loss payment
patterns and the adequacy of loss reserves. The standards can
be adjusted to explicitly reflect trends in claim department costs
due to inflation and productivity changes. Finally, the work prod-
ucts resulting from the study provide useful operational tools for
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monitoring claim department expenses. The amount of work in-
volved in conducting such a study is a worthwhile tradeoff for
improvement in the accuracy of reserving, pricing, and monitor-
ing claim adjustment expense.
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EXHIBIT 1

ToraL COUNTRYWIDE FIELD CLAIM EXPENSES

$(000)

Y] 2 3 4 Q) (©6) @)
Total Field

Salary & Field Cost per
Position Staff Benefits Auto  Travel Other Expenses Hour”
Trainee 24 940 — — 329 1,268  29.16
Systems Administrator 57 2,538 — — 776 3,314 32.08
Manager 80 8,174 — 333 1,088 9,596 66.18
*Inside Claim Representative 513 20,827 — — 7,021 27,848 29.95
*Outside Claim Representative 265 12,855 1,930 1,109 3,621 19,515 40.63
*Clerical 904 24,640 — — 12,374 37,014 22.59
Clerical Supervisor 31 1,184 — — 424 1,608 28.62
Health Service Representative 67 3,453 209 122 425 4,209  34.66
Claim Processing Supervisor 57 2,748 — — 780 3,528 34.15
*Claim Processor 195 6,539 — — 2,672 9,211  26.06
Compensation Processor 41 1,302 — — 557 1,859 25.01
Auto Service Rep./Supervisor 112 5,616 686 154 649 7,105 35.00
Claim Assistant 99 2,725 — — 1,355 4,080 22.74
General Adjuster 26 1,747 105 127 136 2,115 44.88
Hearing Representative 14 887 102 59 192 1,240 48.85
File Supervisor 156 9,583 — — 2,129 11,712 4142
Assistant Manager 125 9,116 — — 1,716 10,832 47.81
*Supervisor 261 15,305 — — 3,575 18,880 3991
Total Field 3,027 130,178 3,033 1,904 39,818 174,933
Sum of Expenses Included
in Study 2,138 80,166 1,930 1,109 29,263 112,467
% of Total Field Expenses
Included in Study 70.6%  61.6% 64.3%

Field Overhead Factor (1/.643) = 1.555

*positions included in study
#based on 50 weeks at 36.25 hours per week
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EXHIBIT 2

SUMMARY OF CLAIM TRANSACTION DURATIONS

95

Age Category: Intake

Ave. Number of Hours
Hourly
Cost  Position Name Office #1 Office #2 Office #3 Office #4 Office #5
$29.95 Inside Claim Representative 387.5 148.7 252.9 783.5 347.4
$40.63 Outside Claim Representative 74.2 243.7 68.6 38.9 49.6
$22.59 Clerical 129.9 120.9 52.7 398.1 91.0
$39.91 Supervisor 112.1 91.6 75.8 274.4 686.5
$26.06 Claim Processor 122.0 7.0 233.8 171.3 154.4
Total Hours 825.8 612.0 683.8 1,666.1 1,329.0
Number of Claims 585 304 654 650 452

Age Category: Outstanding 31-90 Days

Ave. Number of Hours
Hourly
Cost  Position Name Office #1 Office #2 Office #3 Office #4 Office #5
$29.95 Inside Claim Representative 241.2 69.6 175.9 735.1 241.9
$40.63 Outside Claim Representative 32.9 146.4 30.3 17.6 42.7
$22.59 Clerical 86.1 132.1 65.7 366.3 263.2
$39.91 Supervisor 134.9 79.6 1224 363.8 227.7
$26.06 Claim Processor 59.5 4.4 142.6 158.1 106.7
Total Hours 554.6 432.1 536.9 1,640.8 882.2
Number of Claims 996 518 948 1,176 667

Age Category: Outstanding > 90 Days

Ave. Number of Hours
Hourly
Cost  Position Name Office #1 Office #2 Office #3 Office #4 Office #5
$29.95 Inside Claim Representative 736.0 157.6 7125  1,928.7 971.9
$40.63 Outside Claim Representative 68.7 378.3 93.6 182.3 93.7
$22.59 Clerical 294.4 336.3 2519 1,381.8 234.2
$39.91 Supervisor 662.4 483.4 914.0 978.8 187.4
$26.06 Claim Processor 117.8 10.5 4534 374.2 181.5
Total Hours 1,879.3  1,366.1 24253 4,8458 1,668.7
Number of Claims 4,600 3,284 6,747 8,996 5,489
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EXHIBIT 3

DEVELOPMENT OF RAwW RECORDED COSTS

Age Category:

Intake

Total Recorded Costs

Avg.
Hourly Office  Office  Office Office  Office
Cost  Position Name #1 #2 #3 #4 #5 Total
$29.95 Inside Claim Representative 11,607 4,454 7,575 23,465 10,405 57,506
$40.63 Outside Claim Representative 3,016 9,900 2,788 1,579 2,016 19,299
$22.59 Clerical 2,934 2731 1,190 8,993 2,055 17,903
$39.91 Supervisor 4,472 3,656 3,025 10,950 27,400 49,503
$26.06 Claim Processor 3,180 184 6,092 4464 4,024 17944
Total 25,209 20,925 20,670 49,451 45,900 162,156
Number of Claims 585 304 654 650 452 2,645
Age Category: Outstanding 31-90 Days
Total Recorded Costs
Avg.
Hourly Office  Office  Office Office  Office
Cost  Position Name #1 #2 #3 #4 #5 Total
$29.95 Inside Claim Representative 7,223 2,085 5,270 22,016 7,245 43,838
$40.63 Outside Claim Representative 1,338 5,949 1,233 714 1,734 10,968
$22.59 Clerical 1,944 2,983 1,485 8,274 5947 20,633
$39.91 Supervisor 5,385 3,175 4,883 14,518 9,086 37,048
$26.06 Claim Processor 1,550 115 3,716 4,119 2,781 12,281
Total 17,440 14,308 16,586 49,641 26,793 124,768
Number of Claims 996 518 948 1,176 667 4,305
Age Category: Outstanding > 90 Days
Total Recorded Costs
Avg.
Hourly Office  Office  Office  Office  Office
Cost  Position Name #1 #2 #3 #4 #5 Total
$29.95 Inside Claim Representative 22,043 4,721 21,339 57,766 29,109 134,978
$40.63 Outside Claim Representative 2,791 15,371 3,801 7,408 3,806 33,177
$22.59 Clerical 6,650 7,597 5,690 31,215 5291 56,442
$39.91 Supervisor 26,436 19,293 36,477 39,063 7,477 128,747
$26.06 Claim Processor 3,069 274 11,816 9,753 4,730 29,641
Total 60,990 47,255 79,123 145,203 50,413 382,985
Number of Claims 4,600 3,284 6,747 8,996 5489 29,116
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EXHIBIT 4
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SUMMARY OF HOURS IN CLAIM STUDY—ALL CLAIM TYPES

Office #1

Not Recorded at Claim Level

Available Recorded

Monthly at Claim Customer

Non-

Absence/

Total

Position Name Hours Level Service Functional Vacation Recorded
Inside Claim Representative 5,817 3,875 199 350 698 5,122
Outside Claim Representative 3,424 2,204 113 250 223 2,790
Clerical 11,709 3,389 405 470 735 4,999
Supervisor 4,425 3,129 154 541 491 4315
Claim Processor 2,380 1,790 80 96 145 2,110
Total 27,755 14,387 951 1,707 2,292 19,336

Recorded Not Recorded at Claim Level

at Claim Customer Non-  Absence/  Total
Position Name Level Service Functional Vacation Recorded
Inside Claim Representative 66.6% 3.4% 6.0% 12.0% 88.0%
Outside Claim Representative 64.4% 3.3% 7.3% 6.5% 81.5%
Clerical 28.9% 3.5% 4.0% 6.3% 42.7%
Supervisor 70.7% 3.5% 12.2% 11.1% 97.5%
Claim Processor 75.2% 3.4% 4.0% 6.1% 88.7%
Total 51.8% 3.4% 6.1% 8.3% 69.6%

Percent of Total Time Recorded at Claim Level

Office Office Office Office Office
Position Name #1 #2 #3 #4 #5
Inside Claim Representative 66.6% 64.6% 67.2% 68.2% 65.5%
Outside Claim Representative 64.4% 63.2% 65.6% 66.1% 63.9%
Clerical 28.9% 24.4% 18.6% 31.7% 31.2%
Supervisor 70.7% 69.1% 71.2% 71.9% 68.7%
Claim Processor 75.2% 74.3% 75.9% 76.1% 74.1%
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EXHIBIT 5

SUMMARY OF GROSSED-UP COSTS

Age Category: Intake

Total Costs Grossed Up for Unrecorded Time

Office Office Office Office Office

Position Name #1 #2 #3 #4 #5 Total

Inside Claim Representative 17,428 6,895 11,273 34,407 15,885 85,887
Outside Claim Representative 4,683 15,665 4,250 2,388 3,156 30,142
Clerical 10,153 11,194 6,396 28,368 6,588 62,699
Supervisor 6,325 5,291 4,249 15,230 39,883 70,978
Claim Processor 4,229 247 8,027 5,866 5,430 23,799
Total 42,818 39,292 34,194 86,259 70,942 273,505
Number of Claims 585 304 654 650 452 2,645
Average Cost per Claim $73.19  $129.25 $52.28 $132.71 $156.95 $103.40

Age Category:

Outstanding 31-90 Days

Total Costs Grossed Up for Unrecorded Time

Office Office Office Office Office

Position Name #1 #2 #3 #4 #5 Total

Inside Claim Representative 10,845 3,228 7,842 32,281 11,061 65,256
Outside Claim Representative 2,078 9,413 1,879 1,079 2,714 17,164
Clerical 6,727 12,226 7983 26,102 19,060 72,097
Supervisor 7,616 4,595 6,858 20,192 13,226 52,489
Claim Processor 2,062 155 4,895 5412 3,753 16,278
Total 29,328 29,617 29,457 85,067 49,814 223,284
Number of Claims 996 518 948 1,176 667 4,305
Average Cost per Claim $29.45  $57.18  $31.07 $72.34  $74.68 $51.87

Age Category:

Outstanding > 90 Days

Total Costs Grossed Up for Unrecorded Time

Office Office Office Office Office

Position Name #1 #2 #3 #4 #5 Total

Inside Claim Representative 33,098 7,308 31,754 84,701 44,441 201,302
Outside Claim Representative 4,334 24,321 5,795 11,207 5,956 51,613
Clerical 23,012 31,134 30,592 98,469 16,957 200,163
Supervisor 37,392 27,920 51,232 54329 10,884 181,758
Claim Processor 4,081 369 15,567 12,815 6,383 39,215
Total 101,917 91,052 134,941 261,520 84,622 674,052
Number of Claims 4,600 3,284 6,747 8,996 5,489 29,116
Average Cost per Claim $22.16  $27.73 $20.00  $29.07 $15.42 $23.15
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EXHIBIT 6
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WORKERS COMPENSATION LOST-TIME CLAIMS DEVELOPMENT

OF FINAL STANDARD COSTS

Claim Study Costs Excl. Field Office Overhead
(from Exhibit 5)

Field Office Overhead
(from Exhibit 1)

Standards Including Field Overhead

Home Office Overhead
(from Exhibit 7)

Fully Loaded Standard Costs

Cost per
Outstanding Claim

Intake 31-90 Days > 90 Days
$103.40 $51.87 $23.15
1.555 1.555 1.555
$160.84 $80.67 $36.01
1.383 1.383 1.383
$222.42 $111.56 $49.80
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CALCULATION OF GENERAL OVERHEAD FACTOR

EXHIBIT 7

$(000) % of

Total Field
General Overhead Categories Expense Claim
Actuarial 1,835 1.0%
Claim Headquarters 8,922 5.1%
Commercial Lines Field 11,572 6.6%
Commercial Lines Home Office 512 0.3%
Controllers 6,789 3.9%
Corporate Finance 640 0.4%
Corporate Relations 175 0.1%
Executive 5,015 2.9%
General 20,557 11.8%
Government Affairs 0 0.0%
Human Resources 3,151 1.8%
Information Management 1,168 0.7%
Legal 3,319 1.9%
Operations 3,319 1.9%
Total Overhead 66,976 38.3%

Total Field Expenses (from Exhibit 1, Column (6) Total) 174,933
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EXHIBIT 13
DETERMINATION OF ULTIMATE CLAIM ADJUSTER EXPENSE
PER CLAIM
(D 2) 3) 4
Cost Trended
Ultimate Total per Cost per

Report Year Claims Cost Claim Claim
1988 15,189 10,923,237 719 966
1989 17,426 12,893,052 740 965
1990 16,918 14,047,986 830 1,052
1991 16,923 14,652,296 866 1,065
1992 18,602 16,974,995 913 1,090
1993 17,001 15,015,915 883 1,024
1994 19,333 17,492,749 905 1,018
1995 17,693 16,192,833 915 1,000
1996 15,386 14,653,500 952 1,010
1997 15,025 14,903,259 992 1,022
All Year Average 1,021

Latest 3 Years 1,011

Latest 5 Years 1,015

Latest 5 Years Excl. High/Low 1,017

Selected 1,015

(1) from Exhibit 8
(2) from Exhibit 16
3) =@/

(4) Costs in Column (3) are trended to 1998 levels using inflation factor of 3%



110 CLAIM DEPARTMENT WORK MEASUREMENT SYSTEMS

EXHIBIT 14

DETERMINATION OF CLAIM ADJUSTER EXPENSE COSTS FOR
REPORTED CLAIMS

Workers Comp.—Lost-Time

Average Number of Outstanding Claims

Report  12-24  24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120
Year Mos Mos Mos Mos Mos Mos Mos Mos Mos

1988 5,167 2,553 1,590 1,153 867 650 457 327 258
1989 5914 2,958 1,895 1,306 937 673 484 347 282
1990 6,322 3,410 2,252 1,609 1,145 820 634 436 280
1991 6,585 3,608 2,387 1,577 1,011 677 506 379 281
1992 7,624 4,358 2,709 1,617 1,042 752 582 417 308
1993 6,824 3,327 1,918 1,187 894 722 532 381 282
1994 7,516 3,706 2,180 1,438 1,105 821 605 433 320
1995 6,508 3,224 1,964 1,385 1,011 752 553 396 293
1996 5,691 2,956 1,766 1,204 879 654 481 345 255
1997 5,859 2,844 1,724 1,176 859 638 470 337 249
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EXHIBIT 15

ANNUAL CLAIM ADJUSTER EXPENSE PER OUTSTANDING CLAIM

Workers Comp.—Lost-Time

Future Inflation Assumption 1.03 Historical Inflation Assumption 1.03

Report  12-24  24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120
Year Mos Mos Mos Mos Mos Mos Mos Mos Mos

1988  483.94 48590 50048 51550 34153 186.69 19229 198.06
1989 49846 50048 51550 53096 351.78 19229 198.06 210.12
1990 51341 51550 53096 546.89 36233 198.06 21012 21642
1991 528.81 53096 546.89 56330 373.20 21012 21642 22292
1992 544.68 546.89 56330 580.19 21012 21642 22292  229.60
1993 561.02 56330 580.19 39503 21642 22292 22960 23649
1994  577.85 580.19 61553 407.81 22292 229.60 23649 243.59
1995  595.18 61553 63399 42004 22960 23649 24359 250.89
1996 61553 633.99 653.01 432.65 23649 24359 250.89 258.42
1997 63143 63399 65301 67260 44562 24359 25089 25842 266.17
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EXHIBIT 17
DETERMINATION OF ADJUSTER COSTS BETWEEN 12 AND
24 MONTHS
Workers Comp.—Lost-Time
Y] 2 3)
0-12 Month Total
Ultimate Cost per 0-12 Month
Report Year Claims Reported Claim Cost
1988 15,189 340.42 5,170,639
1989 17,426 350.63 6,110,078
1990 16,918 361.15 6,109,936
1991 16,923 371.98 6,295,018
1992 18,602 383.14 7,127,170
1993 17,001 394.64 6,709,275
1994 19,333 406.48 7,858,478
1995 17,693 418.67 7,407,528
1996 15,386 431.23 6,634,905
1997 15,025 444.17 6,673,654

(1) from Exhibit 8
(2) 1997 average cost from Exhibit 18; 1996 and prior costs are calculated by detrending 1997 cost
using an inflation factor of 3%

(3)=1)x(2)
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EXHIBIT 19

DETERMINATION OF TOTAL CLAIM ADJUSTER RESERVE
INcLUDING IBNR

(D 2) 3)
Reserve Reserve for
for IBNR Reported Total
Claims Claims Reserve
1,910,962 19,276,694 21,187,656

(1) from Exhibit 12
(2) from Exhibit 10
G =M+



ADDRESS TO NEW MEMBERS—MAY 7, 2001

AN UNCENSORED VIEW OF RECENT HISTORY

JEROME A. SCHEIBL

A few moments ago, we witnessed a ceremony that has been
repeated over 150 times in one form or another since the Casu-
alty Actuarial Society was formed. It is a fairly long ceremony at
times when there are a large number of new Fellows and Asso-
ciates (such as in some recent meetings), and it has the potential
of being dull and repetitious. Yet it is anything but that and it
continues to be a highlight of our program—meeting after meet-
ing.

Why is this?

The answer should be obvious for you new Associates who
were just introduced and for you new Fellows who were just
awarded your diplomas. You have worked long and hard to-
wards reaching this goal and you have finally achieved it. With
it come the rewards of recognition, an increased potential for fi-
nancial gain and, hopefully, a satisfying career. You have reason
to celebrate and I am happy to join with those who have already
congratulated you on your achievements.

As for you spouses, companions, family members, and close
friends who have witnessed these candidates prepare for these
examinations and have shared in the sacrifices they have made,
your satisfaction comes more in the form of pride and relief.
Your role in these achievements is often overlooked despite its
importance.

We have just applauded the new members. Now it is your
turn. I would like all spouses, companions, family members, and
close friends of the new Fellows and Associates to stand at this
time and be recognized.

Thank you.

116
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We “older” members also experience warm feelings as names
of new members are called. Continued growth of our Society
assures us that we have chosen a vibrant profession that attracts
new minds and energies. We are thrilled to be associated with the
enthusiasm of youth and we are impressed with the high level of
scholarship and sacrifice demonstrated by our new colleagues.

We also feel some nostalgia as we recall when we were first
introduced to other members and received our diplomas.

I hope that the custom of individually recognizing each new
Associate and Fellow at meetings where they attain such levels
of membership continues as long as there is a Casualty Actuarial
Society—no matter how long the list may be or how much time
it may consume.

If you will permit me to digress at this point, I cannot help
but recall my own introduction as an Associate just 40 years
ago this November. The meeting was at the Palmer House in
Chicago. There were 22 new Associates (a large class for those
days) and seven new Fellows. One hundred twenty-four mem-
bers constituting one-third of the total membership attended the
meeting.

A personal highlight of that meeting was meeting authors of
papers that I had read in preparation for my exams. Suddenly
these names took on personalities and as I met these people
face-to-face, I inwardly apologized for having less than com-
plimentary thoughts about them as I struggled with my studies.

Examinations were given just once a year in May, so if you
didn’t pass you had to wait a full year to try again. Fees were $6
for Associate exams and $10 for Fellowship exams. I understand
that they are now more like $450 for each part.

In those days, passing examinations and a cursory acquain-
tance with the “Guides to Professional Conduct” was all that was
needed to be fully accepted as a casualty actuary. If there was
any indication of an additional obligation, it came in the form
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of a gentle urging in most presidential welcoming speeches to
write papers and serve on committees.

After we had the letters after our names, we usually achieved a
more lofty status with our employers, with our fellow employees,
and with others who had become members of our Society.

Was this enough to claim status as a professional? History
now tells us that it was not.

The American Heritage Dictionary definition of “professional”
closest to that which might describe an actuary is, “One who has
an assured competence in a particular field or occupation.”

This definition begs the meaning of the term “competence.”
Of course, it means an advanced level of education and training.
But is that enough? Today’s society says, “no.” Our contempo-
rary world calls for a definition of “competence” that includes
“public trust.” Such trust may be imposed by laws such as li-
censing or franchise, or may simply be by general acceptance in
some other form of structured adherence to standards.

The key point is that in today’s society, a field of specialty is
a profession only if the general public considers it to be so.

A few leaders in the various actuarial societies in the United
States' engaged in a great debate over 40 years ago as to what
might be done to strengthen the professional posture and pub-
lic image of actuaries. While debates centered on the number
of actuarial organizations there should be and how each should
function, no serious efforts were made to reach any agreement.

The real impetus for some action came in the form of a federal
requirement for the licensing of actuaries who would be certify-

IThe organizations that founded the American Academy of Actuaries were the Casualty
Actuarial Society, the Conference of Actuaries in Public Practice (now known as the
Conference of Consulting Actuaries), the Fraternal Actuarial Society (now defunct), and
the Society of Actuaries.
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ing the compliance of pension plans with government regulations
under the Employee Retirement Income Security Act (ERISA).
The concern of a government takeover of our profession was no
longer a threat—it was a reality—at least in the pension area of
practice. Under ERISA, the government prepared and adminis-
tered the examinations, awarded a designation (Enrolled Actu-
ary), prescribed practice standards, and provided for discipline
of errant practitioners.

Discussions among the actuarial organizations began again
in earnest—picking up where they had left off. This time there
was a greater sense of urgency and when the smoke cleared, the
American Academy of Actuaries was formed to address public
policy issues by speaking for the entire actuarial profession in
public forums with a single voice as a defense against further
governmental intrusion. That continues to be the mission of the
Academy today—going strong 36 years after its founding.

A synergistic effect of the founding of the Academy was the
creation of a forum whereby the founding organizations could
better communicate with each other on matters of mutual con-
cern. This lead to discussions on the need for uniformity in Prac-
tice Standards, Professional Codes of Conduct, and a device to
police the compliance of members with such codes.

I’m sure that you have been briefed on these matters in your
professionalism courses that are required of all new members.
So I won’t dwell on the mission and operations of the Actuarial
Standards Board (ASB) and the Actuarial Board for Conduct and
Discipline (ABCD) or on the content of the uniform Codes of
Professional Conduct. However, I would like to briefly comment
on my own experiences with these three initiatives.

I chaired the joint committee that was charged with finalizing
the 1990 version of the Professional Codes of Conduct. (You
will note that I refer to them in a plural sense, despite the fact
that they may be almost identical, in that none of the cooperat-
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ing actuarial organizations®> had relinquished or delegated any
of their responsibilities for the conduct of its members.) That
committee inherited the work of two previous committees that
had suggested an outline for common codes.

After completing our initial draft, we took to presenting our
proposal to every actuarial gathering that would grant us the time.
We were concerned not only with selling actuaries on the draft
but for feedback on how the draft might be improved.

I recall one visit that I made to an actuarial club. The president
told me that there would be a brief business meeting before I
made my presentation. As it turned out, the business meeting
was to ask for a vote to raise the dues so that they could get
better speakers in the future. I don’t think they were kidding
but at least they could have given me the chance to speak first.
Fortunately, the business portion of today’s meeting has already
taken place.

As you probably know, the 1990 Codes were recently updated,
completing the initial plan for a review after a ten-year period.

The establishment of an Actuarial Standards Board and Actu-
arial Board for Counseling and Discipline presented a challenge
to the drafters of these concepts as these boards needed to be
multidisciplined boards but yet not part of any one organization,
including the American Academy of Actuaries. This was accom-
plished by creating them as completely independent bodies with
members appointed by presidents of the cooperating actuarial
organizations. Administratively, they look to the Academy for
support but are in no way considered as part of that organiza-
tion.

The Actuarial Standards Board got a fast start on its assign-
ment to codify Standards of Practice once it was appointed. I

2The American Academy of Actuaries, the American Society of Pension Actuaries, the
Casualty Actuarial Society, the Conference of Actuaries in Public Practice (now known
as the Conference of Consulting Actuaries), and the Society of Actuaries.
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served as chairman of the Editorial Advisory Committee of that
Board. Unfortunately, the decision to have such a committee
came after a number of Practice Standards had been promul-
gated. This effectively made the Editorial Committee somewhat
moot.

Its major project was the development of a Glossary of Actu-
arial Terms. After about two years of work and several meetings,
such a glossary was published but only on an advisory basis. Part
of the problem was that by this time, the committee had discov-
ered that different definitions for similar terms had already found
their way into the Practice Standards and it was impractical to
revise them. I believe the Glossary no longer exists or if it does,
it exists only in the archives.

Perhaps it is time to resurrect this project—this time with
the idea of giving it the status of being a “stand-alone” Practice
Standard so all actuaries and regulators can better understand
each other.

I was also privileged to be one of the original members of the
Actuarial Board for Counseling and Discipline. The concept of
a joint effort for enforcing Practice and Qualification Standards
of separate independent actuarial organizations presented a real
challenge to those who drafted the concept of the ABCD. Per-
haps the most glaring mistake they made was in choosing the
name for that body. I hate acronyms. Some people got caught
up in the “cute” ABCD acronym and flew with it. Since then, it
has been a difficult sell to convince people that the ABCD does
not have any authority to discipline members of actuarial orga-
nizations despite the use of the word “discipline” in its name.
Each organization retains this exclusive right—as it should. The
ABCD investigates possible violations of the Codes of Conduct
much as a grand jury would. However, the individual actuarial
organizations have delegated the additional authority of privately
counseling actuaries when circumstances seem to warrant such
counseling and to provide guidance for compliance with such
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codes when requested to do so by individuals. No authority for
public action of any kind has been delegated to the ABCD.

I sat on the ABCD for its first seven years (the ABCD will be
10 years old this year) and considered over 200 cases in that time,
including requests for guidance. Very few cases went beyond the
private counseling or guidance stage.

I am aware that from time to time, there are some that feel
that the ABCD should be more open. I see no reason for this.
As a matter of fact, I see open hearings as an unnecessary intru-
sion into the privacy of an investigated actuary which, in itself,
could be interpreted by some as a public suggestion of wrong-
doing. They serve no purpose except to embarrass the actuary
and possibly discredit the delicately balanced enforcement pro-
cess. If indeed there is some justification for satisfying public
curiosity in a particular case (and I can think of none), the log-
ical time and place would seem to be when a case reaches the
disciplinary forum of the membership organization (in our case,
the CAS Discipline Committee). To do otherwise would be an
imposition on the responsibility each organization has over its
own members—something that is well beyond the scope of au-
thority that has been assigned to the ABCD.

As you can tell from this brief visit to the more recent history
of the actuarial profession, progress did not come smoothly and
not without considerable effort. However, I think you will agree
that a lot of hard work and talent—mostly volunteer—has gone
into meeting the challenges of the last several years, thus making
the profession a better world for you to inherit. It is your world
now. And it is up to you to care for it and, where necessary,
improve on it.

The admonitions to participate in committees and panel dis-
cussions and to write papers that were given in welcoming
speeches for these many years hold true today. In addition, there
are other matters that need monitoring and perhaps modification
to keep abreast with the times. Currently, they include adapting
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the profession to a global environment, preserving the identity of
the Casualty Actuarial Society as the authority on matters falling
in the statistical realms of the mathematical discipline and risk
management and expanding on a variety of high-level compre-
hensive continuing education opportunities, to name a few.

The opportunities are there. Grab them.

When I made my presidential address twenty years ago, |
closed with a quotation from Francis Bacon that seems to be just
as appropriate today as it was then. Bacon wrote, “I hold every
man to be a debtor to his profession.” Except for the politically
inappropriate gender reference, that quote should remain in your
minds and serve as your guide as you journey though the mar-
velous world of a casualty actuary. New Fellows, it is time to
pay your debt. New Associates, keep plugging away; your turn
will come soon.



MINUTES OF THE 2001 SPRING MEETING
May 6-9, 2001

FONTAINEBLEAU HILTON RESORT
MIAMI BEACH, FLORIDA
Saturday, May 5, 2001

The Board of Directors held their regular quarterly meeting
from 12:00 p.m. to 6:00 p.m.

Sunday, May 6, 2001

The Board of Directors continued their regular quarterly meet-
ing from 9:00 a.m. to 5:00 p.m.

Registration was held from 4:00 p.m. to 6:00 p.m.

New Associates and their guests were honored with a special
presentation from 5:30 p.m. to 6:30 p.m. Members of the 2001
Executive Council discussed their roles in the Society with the
new members. In addition, Steven G. Lehmann, who is a past
president of the CAS, gave a short talk on the American Academy
of Actuaries’ (AAA) Casualty Practice Council.

A reception for all meeting attendees followed the new Associ-
ates reception and was held from 6:30 p.m. to 7:30 p.m.

Monday, May 7, 2001

Registration continued from 7:00 a.m. to 8:00 a.m.

The 2001 Business Session, which was held from 8:00 a.m. to
9:15 a.m., started off the first full day of activities for the 2001
Spring Meeting. CAS President Patrick J. Grannan introduced the
CAS Executive Council, the Board of Directors, and CAS past
presidents who were in attendance, including Robert A. Anker
(1996), Phillip N. Ben-Zvi (1985), Ronald L. Bornhuetter (1975),
Charles A. Bryan (1990), Michael Fusco (1989), Alice H. Gannon
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(1999), David G. Hartman (1987), Steven G. Lehmann (1998),
Jerome A. Scheibl (1980), and Michael L. Toothman (1991).

Mr. Grannan also recognized special guests in the audience:
Morris W. Chambers, President, International Actuarial Associa-
tion (IAA) and Christopher Daykin, Past President of the TAA and

Institute of Actuaries.

Mary Frances Miller announced the 33 new Associates, and
Robert F. Conger announced the 30 new Fellows. The names of
these individuals follow.

David Matthew Biewer
David R. Border
Conni Jean Brown
Stephanie T. Carlson
Jeffrey Alan
Courchene
Laura Ann Esboldt
Joseph Gerard Evleth
Emily C. Gilde
Bryan Hartigan
Kurt D. Hines

Afrouz Assadian

Sara T. Broadrick

Stephanie Anne
Bruno

Hugo Corbeil

David Francis Dahl

Feifei Ford

Edward Kofi Gyampo

James Anthony Heer

NEW FELLOWS

Randall Allen Jacobson
Michael G. Kerner
Kimberly J. Kurban
James P. Lynch

Daniel Patrick Maguire
Atul Malhotra

Julie Martineau

Eric Millaire-Morin
Scott Allan Miller
Michael A. Pauletti
John M. Pergrossi

NEW ASSOCIATES

Suzanne Barry Holohan

Christopher Wayne
Hurst

Jamison Joel Ihrke

Shantelle Adrienne
Johnson

Tricia Lynne Johnson

William Russell
Johnson

Jordan J. Pitz

Sean Evans Porreca
Joseph John Sacala
Gary Frederick Scherer
Annmarie Schuster
Alastair Charles Shore
Mark Alan Verheyen
Shaun S. Wang

Mark Lee Woods

Joseph E. Kirsits

Matthew Allen
Lillegard

Timothy James
McCarthy

Sharon D. Mott

Michael A. Onofrietti

Matthew R. Ostiguy

Chad Michael Ott
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Michael Robert Ellen Marie Tierney Stephanie C. Young

Petrarca Jennifer Anne Vezza Michael R. Zarember
Jayne L. Plunkett Cameron Jason Vogt Xiangfei Zeng
Gregory T. Preble Scott Michael Woomer

Jennifer L. Richard Jimmy L. Wright

Mr. Grannan then introduced Jerome A. Scheibl, a past presi-
dent of the Society, who presented the Address to New Members.

David R. Chernick, CAS vice president-programs and commu-
nications, spoke to the meeting participants about the highlights of
this meeting and what was planned in the program.

Richard I. Fein, chairperson of the Committee On Review of
Papers, announced that three Proceedings papers would be pre-
sented at this meeting. All three papers were accepted for publica-
tion in the 2001 Proceedings of the Casualty Actuarial Society.

Abbe S. Bensimon, vice president—continuing education, gave
a brief description of this year’s Call Paper Program on Financial
and Accounting Systems and Issues Associated with the Global-
ization of Insurance. She announced that all of the call papers
would be presented at this meeting. (The papers are published in
the 2001 CAS Discussion Paper Program and can be found on the
CAS Web Site.)

Mr. Grannan then began the presentation of awards. He ex-
plained that the CAS Harold W. Schloss Memorial Scholarship
Fund benefits deserving and academically outstanding students in
the actuarial program of the Department of Statistics and Actuarial
Science at the University of lowa. The student recipient is selected
by the Trustees of the CAS Trust, based on the recommendation of
the department chair at the University of lowa. Mr. Grannan an-
nounced that Ms. Hongyan Hao is the recipient of the 2001 CAS
Harold W. Schloss Memorial Scholarship Fund. Hao will be pre-
sented with a $500 scholarship.



MINUTES OF THE 2001 SPRING MEETING 127

Mr. Grannan then presented the CAS Online Services Award.
This award was established as the result of the 2001 Call for Contri-
butions to the CAS Web Site. The purposes of the call are to pro-
mote the use of Internet-based technology in the actuarial
profession, to encourage the CAS membership to be actively in-
volved in the CAS Web Site, and to establish the CAS Web Site as a
primary forum for the sharing of actuarial related news, ideas, and
products among CAS members. Mr. Grannan announced Stephen J.
Mildenhall as the winner of the CAS Online Services Award for
“The Mildenhall Aggregate Loss Tools Site,” which is an interac-
tive site that provides an introduction to using fast Fourier trans-
form (FFT) methods to compute aggregate loss distributions.

Mr. Grannan then concluded the business session of the Spring
Meeting.

Mr. Grannan next introduced the featured speaker, Mike
Jensen, an Emmy-Award-winning chief financial correspondent
for NBC News.

The first General Session was held from 10:45 a.m. to 12:15
p.m.

“Issues in Enterprise Risk Management”

Moderator: Janet R. Nelson
Chief Risk Officer and Senior
Vice President
St. Paul Companies

Panelists: Christine Jones
Business Development Manager
Internet Security Systems

Brian M. Kawamoto
Director
Swiss Re New Markets

Gary Taylor
Manager—Weather Risk Management
ENRON
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After a luncheon, the afternoon was devoted to presentations of
concurrent sessions, Proceedings papers, and call papers. The call
paper presented from 1:30 p.m. to 3:00 p.m. was:

1. “Foreign Exchange Rate Risk: Institutional Issues and
Stochastic Modeling”

Author: Richard W. Gorvett
University of Illinois

The concurrent sessions presented from 1:30 p.m. to 3:00 p.m.
were:

1. Personal Auto Classification Issues

Moderator: Roosevelt C. Mosley
Consulting Actuary
MHL/Paratus
Panelists: Howard M. Eagelfeld
Actuary
Florida Department of Insurance
Alice H. Gannon
Vice President
United Services Automobile Association
Gregory L. Hayward
Actuary
State Farm Mutual Automobile
Insurance Company
2. Statistical Distribution of Losses—Evolution Over Time
Moderator: Philip E. Heckman
Vice President and Actuary
Aon Risk Consultants
Panelist: Greg Taylor, Ph.D.
Director
Taylor Fry Consulting Actuaries
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3. Project Finance and Credit Enhancement

Moderator/
Panelist:

Panelists:

Paul Kazmierczak
Managing Director
Gerling Global Financial Products

Christine Hazen

Vice President

American Re-Insurance Company
Paul R. Hussian

Director

Gerling Global Financial Products

4. Homeowners Classification Issues

Moderator:

Panelists:

Steven G. Lehmann
Principal and Consulting Actuary
MHL/Paratus

John Bargagallo

Agent Product Development Manager
Progressive

Jeftrey L. Kucera

Consulting Actuary

MHL/Paratus

Chester J. Szczepanski

Chief Actuary

Pennsylvania Insurance Department

5. Workers Compensation Insurers in Transition

Moderator:

Panelists:

Robert F. Conger
Consulting Actuary
Tillinghast-Towers Perrin
Douglas D. Dirks
President and CEO
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Employers Insurance Company of Nevada

Roger J. Fries
President and CEO
Kentucky Employers Mutual Insurance
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Wayne Johnson

Bureau Chief, Bureau of Property and
Casualty Insurer Solvency

Florida Department of Insurance

Fred R. Lowe
Chief Executive Officer
AmCOMP Incorporated

The Proceedings paper presented during this time was:

1. “Measuring the Interest Rate Sensitivity of Loss
Reserves”

Authors: Richard W. Gorvett
University of Illinois

Stephen P. D’ Arcy
University of Illinois

After a refreshment break, presentations of concurrent sessions
continued from 3:30 p.m. to 5:00 p.m. Certain concurrent sessions
that had been presented earlier were repeated. Additional concur-
rent sessions presented were:

1. The Many Pitfalls of Capital Allocation
Moderator: John G. Aquino
Executive Vice President
Aon Re Services
Panelists: Russell E. Bingham
Vice President and Director,
Corporate Research
The Hartford
Donald F. Mango
Vice President
American Re-Insurance Company
2. Space and Aviation Insurance
Moderator/ R. Justyn Harding

Panelist: Berkshire Hathaway/CGNU/Resolute
Management
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Panelist: Orin M. Linden
Partner
Ernst & Young LLP

3. The Education Process

Moderator: Robert F. Conger
President-Elect

CAS

Panelists: Stephen P. D’ Arcy
Member
CAS Board of Directors
Mary Frances Miller
Vice President—Admissions
CAS

4. The Changing Nature of Workers Compensation

Moderator: Matthew T. Hayden
Vice President
Liberty Mutual Group

Panelists: Susan C. Fisch
Senior Vice President
E.W. Blanch Co., Inc.
Richard A. Hofmann
President
SIGMA Consulting Group, Inc.
Oakley E. Van Slyke
President
Capital Management Technology

A reception for new Fellows and their guests was held from
5:30 p.m. to 6:30 p.m., and the general reception for all members
and their guests was held from 6:30 p.m. to 7:30 p.m.
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Tuesday, May 8, 2001

Registration continued from 7:00 a.m. to 8:00 a.m.

The General Sessions presented from 8:00 a.m. to 9:30 a.m.
were:

“What Will 2001 Bring? A Worldwide Look at Catastrophes”

Moderator: Douglas J. Collins
Consulting Actuary and Principal
Tillinghast-Towers Perrin

Panelists: Jean-Paul Conoscente
Manager
Benfield Greig Paris
James B. Elsner, Ph.D.
Associate Professor
Florida State University
Rade T. Musulin

Vice President and Actuary
Florida Farm Bureau Insurance

Companies
“Expert Systems, Technology and Fraud”
Moderator: J. Parker Boone
President

Chesapeake Consulting Group

Panelists: Thomas Boehning
Vice President
ADP Integrated Medical Solutions

Daniel J. Johnston

President

Automobile Insurers Bureau of
Massachusetts

James P. Streff
President
Streff Insurance Services
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A limited attendance workshop, “Executive Presentation
Skills,” was held from 8:00 a.m. to 12:00 p.m.

Certain concurrent sessions that had been presented earlier dur-
ing the meeting were repeated this morning from 10:00 a.m. to
11:30 a.m. Additional concurrent sessions presented at this time
were:

1. Building a More Diverse Actuarial Staff

Moderator: Alice H. Gannon
Vice President
United Services Automobile Association

Panelists: Edwin Felice
Director, Actuarial Resources
Allstate Insurance Company

Harold L. Gray Sr.
Director of Professional Development
Howard University

Edward M. Kuss

Chairperson, Joint CAS/SOA
Committee on Minority Recruiting
Assistant Vice President

Ohio Casualty Group

2. Securitization Update
Moderator: Frederick O. Kist

Senior Vice President and Chief Actuary
Kemper Insurance Companies
Panelists: Nicholas P. Giuntini
Director
Swiss Re New Markets
William M. Wilt
Vice President—Senior Analyst
Moody’s Investors Service
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Update on Lloyd’s

Moderator:

Panelists:

Todd J. Hess

Managing Director
Alleghany Underwriting Ltd.
Douglas J. Morton

Chief Analyst

Lloyd’s of London

Julian G. Ross

Group Actuary

Alleghany Underwriting Ltd.

The Martin Frankel Case: Can It Happen Again?

Moderator:

Panelists:

Ralph S. Blanchard

Second Vice President and Actuary
Travelers Property & Casualty
Corporation

James R. Black

Senior Evaluator

U.S. General Accounting Office
Michael J. Moriarty

Director, Capital Markets Bureau
New York State Insurance Department
Brady Kelley

Director of Financial Services
NAIC

Proceedings papers presented during this time were:
“The n-Moment Insurance CAPM”

1.

2.

Authors:

Thomas J. Kozik

Aaron M. Larson
Allied Insurance

“Using Claim Department Work Measurement Systems to
Determine Claim Adjustment Expense Reserves”

Author:

Joanne S. Spalla
The Hartford
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Various CAS committees met from 12:00 p.m. to 5:00 p.m. A
limited attendance workshop, “Executive Presentation Skills,”
was held from 1:00 p.m. to 5:00 p.m. Certain concurrent sessions
presented earlier were repeated from 1:00 p.m. to 2:30 p.m. The
call papers presented during this time were:

1. “The Makings of Imminent Insurance Markets in Asia”

Author: Julia F. Chu
Milliman & Robertson, Inc.

2. “Conversion of European Reporting Systems to U.S.
Generally Accepted Accounting Principles—A Claims
Reserve Perspective”

Authors: Chandu C. Patel
KPMG LLP

Leslie R. Marlo
KPMG LLP

All members and guests enjoyed a Caribbean festival from 7:00
p.m. to 9:30 p.m.

Wednesday, May 9, 2001

Certain call papers and concurrent sessions that had been pre-
sented earlier during the meeting were repeated this morning from
8:00 a.m. to 9:30 a.m. Additional concurrent sessions presented
were:

1. Nursing Home Professional Liability Issues

Moderator: Jennifer K. Price
Principal
MMC Enterprise Risk
Panelists: Susan J. Amster

Corporate Director of Risk Management
Avante Group

Keith P. Becker
Vice President
Marsh USA
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Theresa W. Bourdon
Managing Director
Aon Risk Consultants, Inc.

2. Offshore Perspectives

Moderator/
Panelist:

Panelists:

David Y. Na

Manager

Deloitte & Touche, LLP

Michael McKnight

Consulting Actuary

Milliman & Robertson, Inc.

Lisa Marie Walsh

Senior Vice President

London Life and General Reinsurance
Company

After a refreshment break, the final General Session was held
from 10:00 a.m. to 11:30 a.m.:

“The Global Village: Casualty Actuaries Meeting the
Challenges of International Markets”

Moderator:

Panelists:

Christopher Daykin
Government Actuary
Government Actuary’s Department, U.K.

Robert A. Anker
Quay Quest

Luis Huerta

Director General
Seguros Genesis, S.A.

Jay B. Morrow
Vice President and Actuary
American International Underwriters

Patrick J. Grannan officially adjourned the 2001 CAS Spring
Meeting at 11:45 a.m. after closing remarks and an announcement
of future CAS meetings.
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Attendees of the 2001 CAS Spring Meeting

The 2001 CAS Spring Meeting was attended by 272 Fellows,
133 Associates, and 51 Guests. The names of the Fellows and
Associates in attendance follow:

Jean-Luc E. Allard
Ethan D. Allen

Scott C. Anderson
Susan Gozzo Andrews
Robert A. Anker

John G. Aquino
Steven D. Armstrong
Martin S. Arnold
Lawrence J. Artes
David Steen Atkinson
Nicolas Beaupre
Douglas L. Beck
Stephen A. Belden
Abbe Sohne Bensimon
Phillip N. Ben-Zvi
Regina M. Berens
Everett G. Bishop
Lisa A. Bjorkman
Ralph S. Blanchard
Robert G. Blanco
Barry E. Blodgett
Carol Blomstrom
LeRoy A. Boison

Paul Boisvert

James Parker Boone
Joseph A. Boor

David R. Border
Sherri Lynn Border
Ronald L. Bornhuetter

FELLOWS

Theresa W. Bourdon
Amy S. Bouska
Erik R. Bouvin
Wallis A. Boyd
Jerelyn S. Boysia
George P. Bradley
Mark D. Brissman
Conni Jean Brown
Kirsten R. Brumley
Charles A. Bryan
Peter Vincent Burchett
Julie Burdick
Mark J. Cain
Christopher S. Carlson
Stephanie T. Carlson
Kenneth E. Carlton
Michael J. Caulfield
Joseph Gerald Cerreta
David R. Chernick
Douglas J. Collins
Robert F. Conger
Francis X. Corr
Jeffrey Alan Courchene
Catherine Cresswell
Mary Elizabeth
Frances Cunningham
Stephen P. D’ Arcy
Ronald A. Dahlquist
Kenneth S. Dailey

Guy Rollin Danielson
Lawrence S. Davis
Curtis Gary Dean
Jeffrey F. Deigl
Marie-Julie Demers
Patrick K. Devlin
Sean R. Devlin
Behram M. Dinshaw
Michael C. Dolan
James L. Dornfeld
Michael C. Dubin
Tammi B. Dulberger
Howard M. Eagelfeld
Thomas J. Ellefson
Charles C. Emma
Laura Ann Esboldt
Philip A. Evensen
Joseph Gerard Evleth
John S. Ewert
Janet L. Fagan
Kendra M.
Felisky-Watson
Wayne H. Fisher
Beth E. Fitzgerald
Richard L. Fox
Bruce F. Friedberg
Michael Fusco
Scott F. Galiardo
Alice H. Gannon
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David B. Gelinne
William R. Gillam
Nicholas P. Giuntini
Todd B. Glassman
Sanjay Godhwani
Charles T. Goldie
Richard W. Gorvett
Leon R. Gottlieb
Patrick J. Grannan
Linda M. Groh
Marshall J. Grossack
David N. Hafling
Greg M. Haft
Leigh Joseph Halliwell
Robert C. Hallstrom
Alexander Archibold
Hammett
George M. Hansen
Steven Thomas Harr
David C. Harrison
Bryan Hartigan
David G. Hartman
Matthew T. Hayden
Gregory L. Hayward
Qing He
Todd J. Hess
Amy Louise Hicks
Kurt D. Hines
Robert J. Hopper
Mary T. Hosford
George A. Hroziencik
Jeffrey R. Hughes
Paul R. Hussian
Aguedo M. Ingco
Randall Allen Jacobson
Richard M. Jaeger

Christian Jobidon
Daniel Johnson
Eric J. Johnson
Thomas S. Johnston
Jeffrey R. Jordan
Gary R. Josephson
Jeremy M. Jump
Janet S. Katz

Mark J. Kaufman
Steven A. Kelner
Michael G. Kerner
Frederick O. Kist
Joel M. Kleinman
Brandelyn C. Klenner
John J. Kollar

Gary I. Koupf
Thomas J. Kozik
John R. Kryczka
Jeffrey L. Kucera
David R. Kunze
Kimberly J. Kurban
Edward M. Kuss
Blair W. Laddusaw
Salvatore T. LaDuca
Robin M. LaPrete
James W. Larkin
Michael D. Larson
Guy Lecours
Robert H. Lee
Steven G. Lehmann
Charles Letourneau
Orin M. Linden
Richard W. Lo
Michelle Luneau
Aileen Conlon Lyle
James P. Lynch

Daniel Patrick Maguire
Barbara S. Mahoney
Gary P. Maile
Atul Malhotra
Donald F. Mango
Leslie R. Marlo
Julie Martineau
Kelly J. Mathson
Robert W. Matthews
Michael G. McCarter
Richard Timmins
McDonald
Liam Michael
McFarlane
Allison Michelle
McManus
Dennis T. McNeese
Eric Millaire-Morin
David L. Miller
Mary Frances Miller
Michael J. Miller
Scott Allan Miller
Paul David Miotke
Jay B. Morrow
Roosevelt C. Mosley
Robert V. Mucci
Seth Wayne Myers
David Y. Na
Jennifer A. Na
Janet R. Nelson
Kenneth J. Nemlick
Hiep T. Nguyen
Mindy Y. Nguyen
Paul G. O’Connell
Mihaela Luminita S.
O’Leary
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Christopher Edward
Olson

Joseph M. Palmer

M. Charles Parsons

Chandrakant C. Patel

Michael A. Pauletti

Anthony A. Peraine

John M. Pergrossi

Luba O. Pesis

George N. Phillips

Richard Matthew
Pilotte

Jordan J. Pitz

Igor Pogrebinsky

Sean Evans Porreca

Jennifer K. Price

Mark R. Proska

David S. Pugel

Alan K. Putney

Kathleen Mary Quinn

Donald K. Rainey

Hany Rifai

Brad M. Ritter

Rebecca L. Roever

Deborah M. Rosenberg

Richard A. Rosengarten

Kevin D. Rosenstein

Gail M. Ross

Bradley H. Rowe

James B. Rowland

David L. Ruhm
Joseph J. Sacala
Romel G. Salam
Jerome A. Scheibl
Gary Frederick Scherer
Neal J. Schmidt
Annmarie Schuster
Kim A. Scott
Terry Michael Seckel
Ernest C. Segal
Harvey A. Sherman
Jerome J. Siewert
Christopher M.
Smerald
Richard A. Smith
Joanne S. Spalla
David Spiegler
Thomas N. Stanford
Grant D. Steer
Lawrence J. Steinert
Carol A. Stevenson
Michael J. Steward
Ilene G. Stone
James P. Streff
James Surrago
Susan T. Szkoda
Kathleen W. Terrill
Richard D. Thomas
Kevin B. Thompson
Michael Toledano
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Michael L. Toothman
Linda Kay Torkelson
Theresa Ann
Turnacioglu
James F. Tygh
Oakley E. VanSlyke
Ricardo Verges
Mark Alan Verheyen
William J. VonSeggern
Claude A. Wagner
Robert H. Wainscott
Patrick M. Walton
Shaun S. Wang
Bryan C. Ware
Thomas V. Warthen
Geoftrey Todd Werner
William B. Westrate
Mark Whitman
William M. Wilt
Chad C. Wischmeyer
Susan E. Witcraft
Richard G. Woll
Tad E. Womack
Mark Lee Woods
Yuhong Yang
Roger Allan Yard
Gerald Thomas Yeung
Heather E. Yow
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Nancy S. Allen

Paul D. Anderson
Afrouz Assadian
Craig Victor Avitabile
David James Belany
Sara T. Broadrick
Lisa A. Brown
Stephanie Anne Bruno
Kenrick A. Campbell
Paul A. Chabarek
Philip S. Chou

Julia Feng-Ming Chu
Jeffrey A. Clements
Vincent P. Connor
Sean O. Cooper
Hugo Corbeil

David Ernest Corsi
Richard J. Currie
David Francis Dahl
Frank H. Douglas
Stephen C. Dugan
Dominick A. Elia
Anders Ericson

John D. Ferraro
William P. Fisanick
Natalie Shayer Fisher
Sean Paul Forbes
Feifei Ford

Sarah J. Fore
Timothy J. Friers
Dustin Wayne Gary
Lynn A. Gehant
Nathan Terry Godbold
Steven B. Goldberg

ASSOCIATES

Terry L. Goldberg
John W. Gradwell
Edward Kofi Gyampo
Nasser Hadidi
Aaron Halpert
Thomas L. Hayes
Pamela Barlow Heard
Philip E. Heckman
James Anthony Heer
Joseph A. Herbers
Richard A. Hofmann
Jane W. Hughes
Christopher Wayne
Hurst
Jamison Joel Ihrke
Philip M. Imm
Shantelle Adrienne
Johnson
Tricia Lynne Johnson
William Russell
Johnson
Daniel J. Johnston
William Rosco Jones
Anthony N. Katz
John Hun Kim
Martin T. King
Diane L. Kinner
Joseph E. Kirsits
Richard Kollmar
Bobb J. Lackey
Marc LaPalme
Aaron Michael Larson
[sabelle Lemay
Sharon Xiaoyin Li

Matthew Allen
Lillegard
Jing Liu
Erik Frank Livingston
William F. Loyd
Robb W. Luck
Christopher J. Luker
David J. Macesic
Kevin M. Madigan
Betsy F. Maniloff
Albert Maroun
Timothy J. McCarthy
Michael B. McKnight
Gregory A. Moore
Michael James Moss
Sharon D. Mott
Thomas M. Mount
Rade T. Musulin
Prakash Narayan
Rodrick Raymond
Osborn
Matthew R. Ostiguy
Chad Michael Ott
Wendy Wei-Chi Peng
Jill E. Peppers
Michael Robert
Petrarca
Robert C. Phifer
Jayne L. Plunkett
Thomas LeRoy Poklen
Ruth Youngner
Poutanen
Gregory T. Preble
Richard B. Puchalski
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Jennifer L. Richard
David C. Riek
Brad E. Rigotty
Stephen Daniel
Riihimaki
Karen Lynn Rivara
Joseph Francis Rosta
Maureen S. Ruth
John P. Ryan
Shama S. Sabade
James C. Sandor
Michael Sansevero

Jennifer Arlene Scher
Arlyn G. Shapiro
Donald P. Skrodenis
David C. Snow
Klayton N. Southwood
Dennis G. Sparks
Gary A. Sudbeck
Brian K. Sullivan
Diane R. Thurston
Ellen Marie Tierney
Brian K. Turner
Jennifer Anne Vezza
Phillip C. Vigliaturo
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Gregory S. Wanner
Stephen D. Warfel
Denise R. Webb

Petra Lynn Wegerich
Robert G. Weinberg
Bonnie S. Wittman
Robert F. Wolf

Scott Michael Woomer
Jimmy L. Wright
Stephanie C. Young
Michael R. Zarember
Xiangfei Zeng

Steven Bradley Zielke



Volume LXXXVIII, Part 2 No. 169

PROCEEDINGS
November 11, 12, 13, 14, 2001

SMOOTHED NPML ESTIMATION OF THE RISK
DISTRIBUTION UNDERLYING BONUS-MALUS
SYSTEMS

MICHEL DENUIT AND PHILIPPE LAMBERT
Abstract

Mixed Poisson distributions are widely used for mod-
eling claim counts when the portfolio is thought to be
heterogeneous. The risk (or mixing) distribution then
represents a measure of this heterogeneity. The aim of
this paper is to use a variant of the Patilea and Rolin
[15] smoothed version of the Simar [20] Non-Parametric
Maximum Likelihood Estimator of the risk distribution
in the mixed Poisson model. Empirical results based on
two data sets from automobile third-party liability in-
surance demonstrate the relevance of this approach. The
design of merit-rating schemes is discussed in the second
part of the paper.
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1. INTRODUCTION AND MOTIVATION

In most developed countries, third-party liability automobile
insurance represents a considerable share of the yearly non-life
premium collection (for instance, in Belgium, 26% during the
year 1998). Therefore, many attempts have been made in the ac-
tuarial literature to find a probabilistic model for the distribution
of the number of automobile accidents; for a review of the exist-
ing literature, we refer the interested reader, e.g., to Lemaire [12]
or to Denuit [7]. Most of these models are parametric (i.e., an
analytical expression is assumed for the probabilities that a poli-
cyholder reports k claims during an insurance period, depending
on one or several parameters to be estimated on the basis of the
observations).

In order to see if there exists a universal model for claims dis-
tributions in automobile portfolios, Gossiaux and Lemaire [10]
examined six observed data sets. Those came from five coun-
tries and were studied before by other researchers. Gossiaux and
Lemaire [10] fitted the Poisson distribution, the Generalized Ge-
ometric distribution, the Negative Binomial distribution and a
two-point mixed Poisson distribution to each of the data sets by
the Maximum Likelihood method and the method of moments.
They concluded that no single probability law seems to emerge
as providing a good fit to all of them. Moreover, there was at least
one example where each model got rejected by a chi-square test
(at the level 10%). Seal [18] supplemented the paper by Gossiaux
and Lemaire [10] with an analysis of some automobile accident
data from California. This author concluded that his analyses
supported the mixed Poisson hypothesis for the distribution of
the number of claims.

In this paper, we will work in the mixed Poisson model, but no
assumption will be made about the risk (or mixing) distribution.
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Following Walhin and Paris [23], we first recall the basic fea-
tures about the Non-Parametric Maximum Likelihood Estimator
(NPMLE, in short) of the risk distribution. As pointed out by
these authors, the NPMLE suffers from some serious drawbacks
in the design of Bonus-Malus systems. The problems are mainly
due to its purely discrete nature. Therefore, we will propose a
smoothed version of the NPMLE. In the second part of this paper,
we focus on “Bonus-Malus Systems” (BMS, in short). A BMS
is a particular form of experience rating. It penalizes insureds re-
sponsible for one or more accidents by premium surcharges, or
maluses, and rewards claim-free policyholders by awarding them
discounts, or bonuses. An excellent account of these systems can
be found in Lemaire [12].

Let us consider a portfolio consisting of n policies, numbered
1 to n. Denote as K;; the number of claims incurred by the ith
policyholder during the jth year that the policy is in force. We
adopt the assumptions usually made in credibility theory (e.g.,
claim frequencies vary from policy to policy, claim numbers
for different policyholders are independent, and claim numbers
for one policyholder in different periods are conditionally in-
dependent). Formally, it is assumed that, for fixed i, the K; I
are conditionally independent and identically distributed given a
random risk parameter O, that represents unknown risk char-
acteristics of the policy. After ¢ years, the available data are
(K;1.K}5,...,K;;) and the insurance company wants to use these
data to adjust the premium for year ¢ + 1; the premium for year
t+ 1 is thus a function ¥ (K;;,K},...,K;,) of the past claims. Ac-
tuaries have traditionally applied minimization of the expected
quadratic loss in order to determine W ; that is, ¥ minimizes
E[VY (K;1,K}5,....K;;) — G),-]z, which is interpreted as the expected
difference between the “true” premium O; and the credibility
premium V¥ (K;{,K),...,K;). Henceforth, we assume that the se-
quences {0;,K;,K;»,K;3,...} are independent and identically dis-
tributed; for ease of explanation, we drop the policyholder’s in-
dex i.
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Considering the last paragraph, the very basic elements of a
BMS are as follows:

1. an appropriate premium calculation principle;

2. a conditional distribution for the number of claims, that
is, for the [K; | © =0]s;

3. a distribution for the risk parameter © to describe how
the conditional distributions vary across the portfolio.

Let us give some details on these aspects. Considering the
premium calculation principle, we use the expected value princi-
ple. This principle requires the insured to pay the pure premium
plus a safety loading proportional to the pure premium. The pure
premium will be the individual claim frequency per year multi-
plied by the average cost of a claim and can be scaled so that it
will be equal to the claim frequency. The problem of the insurer
is to predict, at the renewal of the policy, the claim frequency
of the insured for this new year, given the observations of the
reported accidents in the preceding periods.

Let us now turn to the conditional distribution of the annual
claim numbers. In automobile third-party liability insurance port-
folios, the Poisson distribution provides a good description of the
number of claims incurred by an individual policyholder during
a given reference period (one year, say). The assumptions under-
lying the Poisson counting model indeed provide a good approx-
imation to the accident generating mechanism; see, e.g., Lemaire
[12]. Therefore, in the remainder of the paper, we consider that
the number of claims incurred by a given policyholder during a
reference period conforms to a Poisson distribution.

Now, individual driving abilities vary from individual to indi-
vidual. Consequently, the portfolio is heterogeneous and policy-
holders will have different Poisson parameters. This is indicated
by the rejection of the homogeneous Poisson model when it is
applied to fit data sets from automobile insurance portfolios; for
empirical evidence supporting this assertion, see Gossiaux and
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Lemaire [10]. In order to reflect the different underlying risk
profiles, each policyholder is characterized by the value of his
mean claim frequency 6, and 6 is considered to be a realization
of a non-observable random variable ©, whose support is con-
tained in the half-positive real line R* = [0, +00). In other words,
the conditional probability that a driver with annual mean claim
frequency 6 is involved in k accidents during the ith year is

ek
PIKj =k |© =0]1=pk|0) = exp(~0) 7,

keN={0,1,2,...}. (1.1

The annual number of accidents caused by a randomly selected
policyholder of the portfolio during the jth year is then dis-
tributed according to a mixed Poisson law, that is,

PIK, = k] = pk | ©) = /9 _ p(k| OE©).
keN, (1.2)

where Fg denotes the cumulative distribution function (cdf, in
short) of ©, assumed to fulfill F(0) = 0. The mixing distribu-
tion described by Fg represents the heterogeneity of the portfolio
of interest; Fyg is often called the structure function. It is worth
mentioning that the mixed Poisson model (1.2) is an accident-
proneness model: it assumes that a policyholder’s mean claim
frequency does not change over time but allows some insured
persons to have higher mean claim frequencies than others.

Sometimes, (1.2) is taken to be a finite mixture model, that
is, the mixing distribution is discrete and puts positive masses
Ty, m,...,T, on only a finite number ¢ of positive real atoms
0<0; <6, <---<b,. Then,

q
pk|©)=>"p(k|6)m,, k € N. (1.3)
=1

The fact that © has a distribution with g support points means that
the portfolio of interest consists of only g categories of policy-
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holders. The special case g = 2 gives the classical “good risk/bad
risk” model considered in Gossiaux and Lemaire [10]. Note that
the actual reality of the insurance business is a finite mixture
model (by taking g to be the number of policyholders in the
portfolio). In risk theory, the finite mixture model (1.3) was first
proposed by Grenander [8]; see also Grenander [9].

Let us now consider the choice of Fg. Traditionally, actu-
aries have assumed that the distribution of # values among all
drivers is well approximated by a two-parameter Gamma dis-
tribution. This choice is particularly desirable because the class
of the Gamma distributions is the natural conjugate family for
the Poisson and facilitates a Bayesian approach towards updating
mean frequency estimates. The resulting probability distribution
for the number of claims is Negative Binomial. Other classical
choices for Fy include the Inverse-Gaussian (which results in
the Poisson-Inverse-Gaussian law for the number of claims; see,
e.g., Willmot [24] and Tremblay [21]) and Hoffman’s distribu-
tions (see Kestemont and Paris [11] and Walhin and Paris [23]).
However, there is no particular reason to believe that Fg belongs
to some specified parametric family of distributions. Therefore,
we would like to resort to a nonparametric estimator for Fg.
This will thus lead to BMS relying on fewer assumptions than
the usual ones.

More precisely, after having recalled some key features of the
model (1.2) in Section 2, we apply the Simar [20] NPMLE of
Fg in Section 3. The Maximum Likelihood approach results in
a finite mixture model (1.3) with relatively few support points
(see (3.1)). As pointed out by Walhin and Paris [23], this model
is undesirable for constructing BMS. Therefore, we propose in
Section 4 to use a variant of the Patilea and Rolin [15] Empiri-
cal Nonparametric Bayesian estimator for Fg: this estimator is a
finite mixture of Gamma distributions and can be intuitively con-
sidered as a smoothed version of the NPMLE, with the Gamma
distribution playing the role of a kernel. In Section 5, we examine
the BMS obtained with this model.
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The present paper expands on several previous works. Al-
brecht [1] gave a first account of statistical methods connected
with model (1.2), mainly in a maximum likelihood approach.
More recently, Walhin and Paris [23] compared BMS obtained
with Hofmann’s parametric family and Simar’s NPMLE for Fg.
These authors showed that, although the NPMLE is powerful to
evaluate functionals of claim counts, it is not suitable for build-
ing BMS, because it is purely discrete. Our approach consists in
smoothing Simar’s estimator with a Gamma kernel and is thus
comparable with Carriere’s [4] study that smoothed the Tucker-
Lindsay moment estimator with a Log-Normal kernel.

Let us now detail some of the notations used throughout
this paper. We denote as K, (resp. Kg) a random variable with
probability distribution {p(k | 0), k € N} in (1.1) (resp. {p(k | ©),
k € N} in (1.2)). We denote by y, k = 1,2,..., the moments EKéf)
of Kg. Those of © are the s, k = 1,2,..., that is, v, = E©F. By
convention, yy = vy = 1. Henceforth, we assume that we have ob-
served an insurance collective consisting of n independent poli-
cies. The data that we have at our disposal are as follows: we
know that n; policies caused k claims during the reference period,
k=0,1,..., k0. kmax 1S the maximal number of claims observed
for a policy. The empirical claim frequencies are

P(k) = % k=01,
plk) =0, k> ko + 1.

These unconstrained estimations reproduce exactly what is ob-
served in the data. Thus, the moments i, are estimated with the
help of their sample analogs /i, given by

kmax

A 1 KA .
fi==>_J'PG)  keN.
j=1

For the numerical illustrations, we used the two data sets pre-
sented in Appendix A. Portfolio 1 relates to Belgium and has
been observed in 1958; it can be found in Gossiaux and Lemaire
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[10]. Portfolio 2 has been kindly provided to us by a large in-
surance company operating in the Benelux; it has been observed
in 1995.

2. BASIC PROPERTIES OF THE MIXED POISSON MODEL

2.1. Estimation of Mixing Functionals

According to Carriere [3], given a function ¢ : R* — R, the
quantity E¢(©) is estimable if there exists a function ¢ : N — R
such that

E¢(©) = Ei(Ko). 2.1

Of course, such a function v theoretically always exists. It suf-
fices to take ¥/(Kg) = E[¢(O) | Kg] so that (2.1) holds, provided
¢ is integrable. The actual meaning of (2.1) is that we desire an
explicit expression for . If ¢ possesses some desirable property,
1 can be obtained explicitly. This is, for instance, the case when
¢ is an absolutely monotone function, i.e., that all the deriva-
tives ¢, ¢, 03, ... of ¢ exist and are non-negative. Carriere
[3] proved that the function v involved in (2.1) is then given by

14
TOEDY <£> o), lLeN.

k=0 k

In practice, in order to estimate a quantity E¢(©), we use

km‘dx
E¢(©) = > v(k)p(k).
k=0

Carriere [3] proved the asymptotic normality for such estimators.

Let us now examine two simple examples.

ExampLE 2.1 Take ¢(0) = exp(t0); then

J4
NOESY (i) =1 +0.

k=0
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As a consequence, the moment generating function of © is es-
timable. The knowledge of {p(k|©), k € N} is thus equivalent
to the knowledge of Fg.

ExAMPLE 2.2 For ¢(6) = 6X, we get
WO =ll—1)...—k+1)  for L=kk+1,....

The moments v, of © are thus estimable. More precisely, the v;s
are estimated by

kmax

z?k=Zj(j—1)...(j—k+1)f9(j), k=12, Ky
=k

=0, k> kpa + 1.

The estimator 7y, is unbiased and almost surely consistent for v;.

The fact that the first moments of © can be estimated from
realizations of Kg will be used at several occasions in the re-
mainder of this paper.

2.2. Testing the Mixed Poisson Hypothesis

The present work focuses on the model (1.2). Considering the
possibility of misspecification, there is a need for a statistical test
to decide whether the model (1.2) is reasonable to fit the data.
To this end, let us present the non-parametric test proposed by
Carriere [3]. The reasoning behind this test is as follows. For any
positive integer k, let y;; be the kth descending factorial moment
of Kg, i.e.,

pgg = ElKo(Kg — 1)...(Kg —k + 1],

and let fi;; be the sample analogs, i.e.,

kmax
Iy =D JG =D .G=k+DpG), k=12, ko
j=k

and fu;y = 0 for k >k, + 1. If Kg has a mixed Poisson distri-
bution then ppy =y, = EOF by virtue of Example 2.2. Conse-
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TABLE 2.1
EMPIRICAL FACTORIAL MOMENTS RELATING TO PORTFOLIOS 1
AND 2
Factorial Moments Portfolio 1 Portfolio 2
i 0.2144 0.0936
i) 0.1205 0.0177
i) 0.1605 0.0066
gy 0.3272 0.0036

quently, fi;; estimates ;. From Jensen inequality, we find that

Kk = (EO) = (M[l])k

must hold for k = 2,3,..., whenever K is mixed Poisson. There-
fore, if P < (M[u)k for some k, then the underlying distribution
cannot be of mixed Poisson type. Based on this fact, Carriere
[3] suggested the test statistic /n{(fyy. figxy) — (s i) > that
weakly converges to a bivariate Normal distribution as n — +o0.
The factorial moments used in the test statistic for Portfolios 1
and 2 in Appendix A are given in Table 2.1.

Carriere [3] constructed a Bonferroni multiple comparison
test. In its simplest form, this statistical procedure is as follows.
In order to decide whether the number of claims caused by a
policyholder of the portfolio can conform to a mixed Poisson
distribution (i.e., to test the null hypothesis H,, that the underly-
ing distribution is of the form (1.2)), it suffices to compute the
value 7, of the test statistic

\/—(M“ N[Z
\/4(1 M[]])(M[l] - 2#[2 Byt M[3 )+ M[4] + 2#[2] M[z]

T =

and to reject Hy if T, > z,,, where z,, is such that

Z().
\/% exp(—2/2)dt = 1 — «
T Jt=—00
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Note that this test relies on the asymptotic properties of 7 so that
n has to be large enough.

On each of the two data sets presented in Appendix A, the
model (1.2) was never rejected on the basis of Carriere’s test. In
both cases, fity < firz so that T,¢ < 0 and the null assumption is
not rejected.

2.3. Poisson vs. Poisson Mixture

Let us now recall some basic facts about the model (1.2).
First of all, it makes sense to study the mixed Poisson model
through Fg. As noticed in Example 2.1, there is indeed a one-
to-one correspondence between the mixing distribution and the
resulting mixed distribution, that is, if K(_)I and K(_)z are identically
distributed, then ©; and ©, also are.

To each of the two data sets presented in Appendix A, we
fitted a homogeneous Poisson distribution to the observations.
These fits, given in column A, were clearly rejected (p-values
smaller than 1073). This indicates that the two portfolios are
heterogeneous.

Another technique to check for the heterogeneity of the port-
folio is described next. Therefore, let us recall that the model
(1.2) enjoys the following nice property. Let p(k | ©) be as given
in (1.2) and {p(k | v|), k € N} be the discrete probability density
function of the Poisson distribution with mean v; = EO, i.e.,

k
plk|v) =exp(-v)k,  keN.

For any © such that Var[O] > 0, the number of sign changes
of the sequence {p(k | ©)— p(k|v;), k € N} equals 2 (the first
sign being a plus). This result has been established by Shaked
[19]. For the data sets presented in Appendix A, we plot in
Figure 1 the sequence {p(k)— p(k|D;), k=0,1,...,kpn.}- We
expect to observe two sign changes if the data come from a
Poisson mixture (1.2). The actual values are {0.0216;—0.0338;
0.0067; 0.0031; 0.0014; 0.0004; 0.0004; 0.0001} for Portfolio 1
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FIGURE 1

SEQUENCE {p(k) — p(k | 1), k =0,1,...,ky.x} FOR THE DATA
SETS PRESENTED IN APPENDIX A

Portfolio 1: Belgium 1958

B(k) - p(k[S:)
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0.002 0.004

0.000

-0.004

-0.006

Portfolio 2: Luxembourg 1995
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and {0.0037; —0.0066; 0.0024; 0.0005; 0.0001; 9 x 107°} for
Portfolio 2. We notice that the difference between the observed
data and its Poisson fit exhibits two sign changes, as it is bound
to do when the underlying distribution is a mixture of Poisson
distributions. This indicates that the Poisson parameter varies
from individual to individual.

3. NON-PARAMETRIC ESTIMATION OF THE RISK DISTRIBUTION

3.1. NPMLE

In a seminal paper, Simar [20] gave a detailed description of
the NPMLE of Fg, as well as an algorithm for its computation.
The NPMLE is a discrete distribution, so that the resulting model
is of the form (1.3). Simar [20] obtained an upper bound for the
size of the support of the NPMLE. This upper bound uses the
quantity ~ defined to be the number of observed distinct values,
ie.,

k = #{k € N such that p(k) > 0}.

In most cases, k = ky,y + 1. To be specific, Simar [20] showed
that the NPMLE Fy of Fy exists and is unique. The number of
support points of the NPMLE is less than or equal to

é=min{[kmaxT+l},n}, (3.1)

where [x] denotes the integer part of the real x; for the data sets
in Appendix A, g =4 for Portfolio 1 and ¢ =3 for Portfolio
2. The solution Fy puts probability masses frl,frl,...,frg] at the
atoms 6,,6,,...,0;. In order to get a first approximation of Fy, we
resort to the moment estimator for Fg proposed by Tucker [22]
and suitably made precise by Lindsay [13], [14]. The moments
of © were estimated as described in Example 2.2. MLE’s were
obtained with the help of the numerical optimization procedure
nlm in the software R (S-plus clone; see Ross and Gentleman
[16]). The algorithms implemented in nlm are given in Dennis
and Schnabel [6] and Schnabel, Koontz and Weiss [17].
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The NPMLE fits to each of the data sets can be found in
Appendix A, together with the corresponding observed values
of the Xz—statistics. When g > 3, we fitted a model with 2 and 3
components. The results can be summarized as follows:

1. For Portfolio 1, the NPMLE of Fg has at most 4 support
points. It appeared that a 3-point NPMLE gave a satisfac-
tory fit (displayed in Column B), reflected in a p-value
of 51%. The 3-point Fg is thus preferred by virtue of
the statistical principle of parsimony. The NPMLE cre-
ates 3 categories of policyholders: the best ones (with a
claim frequency of about 0) representing 41.8% of the
portfolio, the standard ones (with a claim frequency of
33.6%) representing 57.3% of the portfolio, and the bad
ones (with a claim frequency of 254.4%) representing
0.1% of the portfolio. The fit provided by a 2-point Fg
(displayed in Column C) is rejected since the p-value is
equal to 0.5%.

2. For Portfolio 2, we have ¢ =3 and we fitted the data
with a 3-point (Column B) and a 2-point (Column C)
NPMLE. Since the quality of the two fits is similar (p-
values of 26% and 29%, respectively), we prefer the
2-point F. We thus have a good risk/bad risk model,
with 93.3% of good drivers whose claim frequency is
6.8% and 6.7% of bad drivers with a claim frequency of
44.6%.

3.2. Smoothed NPMLE

The purely discrete nature of the NPMLE of the risk distri-
bution sometimes causes problems in ratemaking (as shown in
Section 4). For this reason, a smoothed version of it is desirable;
it is the aim of this section to propose such an estimator.

In order to estimate Fg, Patilea and Rolin [15] suggested
resorting to a finite mixture of natural conjugate priors of the
Poisson distribution; they call this estimator an Empirical Non-
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Parametric Bayesian estimator (ENBE, in short). These authors
proved that the ENBE is an asymptotic Maximum Likelihood
estimator. In other words, it is an estimator that almost maxi-
mizes the likelihood in the sense that the difference between the
maximal value of the likelihood (as a function of Fg) and the
value of the likelihood corresponding to the ENBE tends to zero
as the sample size grows to +oco. This ensures the consistency
of the ENBE. We propose here a slightly modified version of
the Patilea-Rolin estimator. In order to smooth the NPMLE of
Fg, we let the family of natural conjugate priors play the role
of a kernel. This technique is somewhat similar to the approach
followed by Carriere [4], who proposed to smooth the Tucker-
Lindsay moment estimator with a Log-Normal kernel.

The natural way to smooth the NPMLE ﬁe consists in using
q R
Z Akr (0 ’ nﬁkﬁk,nﬁk), 0 e R+,
k=1

where I'(.|a,3) denotes the cumulative distribution function
corresponding to a two-parameter Gamma law with mean «a/(
and variance a/3?, g is Simar’s upper bound (3.1) for the support
size of the NPMLE, and 7;s and 6, s are the corresponding masses
and atoms. It is easily seen that the kth component of the mixture
is centered at 6,. This corresponds to the intuitive idea that the
NPMLE indicates the number and the locations of policyholder
classes in the portfolio. Then the distribution of the risk param-
eter in these classes is represented by a two-parameter Gamma
distribution, resulting in a mixture Aof Gammas. However, the
variance of each component equals 6, /n7,, which is virtually 0
since the number 7 of policies is usually very large. As a conse-
quence, the smoothed estimator is more or less indistinguishable
from the NPMLE. In order to avoid this phenomenon, we resort
on an estimator of the form
q - .
F(O) =Y 1[I n'1b.n'7),  0€RT, (3.2)
k=1
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where ¢ is taken as small as possible and, in any case, smaller
than Simar’s upper bound (3.1) for the support size of the
NPMLE, where the 7;s, 6;s and A\ are maximum likelihood es-
timators. The only difference with Patilea and Rolin’s work is
thus the introduction of the parameter A in order to avoid the
variance of each component of the mixture defining Fy to be
virtually zero.

With (3.2), (1.2) reduces to a mixture of Negative Binomial
distributions, i.e.,

- - ~ ey
q A\~ D Az 7’
- ~ [(n'T0.+k—1 nem;
ki) =3, (M) (L
j=1 / k 1+n/\j
k
X ; , k €N. (3.3)
1 +n’r;

J

Let us now apply this method to the data sets of Appendix A.
In both cases, we took ¢ = 2 in order to avoid overparameteriza-
tion. In Figures 2 and 3, one can find the densities correspond—
ing to the different components involved in the mixture Fg, as
well as the resulting risk distribution (the continuous line repre-
sents dFy and the dotted line the classical two-parameter Gamma
mixing with parameters estimated via maximum likelihood). The
model proposed is a slight generalization of the good risk/bad
risk model: the portfolio is split into two populations, each one
having its own two-parameter Gamma structure function.

_ Let us now examine the fits obtained with the 2-component
F(_):

1. For Portfolio 1, A = 0.22. The fit is given in Column E;
it is very accurate and is regarded as satisfactory on the
basis of the y2-criterion (p-value of 36%). It is worth
mentioning that the Negative Binomial fit displayed in
Column D is clearly rejected. Considering Figure 2, we
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FIGURE 2

COMPONENTS OF (3.2) AND RESULTING Fy; FOR PORTFOLIO 1
IN APPENDIX A
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see that ff“@ puts more mass on large values than the clas-
sical two-parameter Gamma.

2. For Portfolio 2, we get A = 0.28. Again, the fit is satisfac-
tory, and better than the Negative Binomial one. Figure
3 illustrates the difference between the Gamma mixing
and Fg.

4. RESULTING BMS

Let us now examine the merit-rating schemes obtained in
the mixed Poisson model (1.2) using a quadratic loss function
and the structure function Fg defined in (3.2). The net pre-
mium for a new insured is given by P, = E[K|] = E[O]. After
t years of coverage, the amount of premium for the (¢ + 1)th
period is B, (K|,K;,...,K,). It is determined so as to mini-
mize the expected squared difference between the true premium
© and the premium B, charged to the policyholder, i.e., to
minimize E[P,(K;,K,,...,K,) —©]?. The solution of this op-
timization problem is the posterior mean P (K{,K,,...,K,) =
E[O | K|,K,,...,K,]. Given K| =k, K, =k,,...,K, = k,, denote
k=>"_1k;. We then get

B (ki ky,.. . k;)

:/ edP[(aSe’Kl:kl’ K2:k2"--’K[:k[]
fer*
t
/ 9{1‘[19[1{[. —k|© :9]}dF(_)(0)
fer* i=1

L

1=

PIK;, =k; |© = n]}dF@(n)
1

/ exp(—10)6"* dFe (0)
_ JOERT

| exp(—mutaron
neERrR*

= Pt+1(k)-
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FIGURE 3

COMPONENTS OF (3.2) AND RESULTING F{; FOR PORTFOLIO 2
IN APPENDIX A
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P (k) appears as the ratio of two Mellin transforms, as expected
from Albrecht [2]. It is interesting to note that the premium
P, depends only on the total number k£ of accidents caused
in the past ¢ years of insurance, and not on the history of these
claims. This is a characteristic of the theoretical Bonus-Malus
scales (with an infinite number of levels). In practice, since the
Bonus-Malus scale is upper bounded, policyholders always take
an advantage of concentrating all the claims during a single pe-
riod.

Assume that the first premium paid is 100 and that a given
policyholder reported k claims at fault during ¢ years of coverage.
The Bonus-Malus coefficient is then computed with the help of

the formula
Pz+ 1 (k) %
—p P

1
In words, B(k,t) is the relative level of premium for the (¢ + 1)th
year of coverage for an insured person who caused k accidents
during the first ¢ years.

Bk, 1) = 100 x

In Appendix B, we considered Portfolio 2 (two support points
for Fy and two components for Fy). We first built a BMS with
the NPMLE Fg. The ((k,t)s so obtained are given in Table B.1.
A “block™ structure is clearly apparent, each block with almost
constant 3(k,t) corresponding to one support point of Fg. In Fig-
ure 4, the evolution of the premium for a driver who caused 10
claims during [0,7] is depicted as a function of r € N. A step
behavior is clearly apparent. The policyholder is first put in
the category 6, = 0.446. Then, the BMS needs several claim-
free years to decide that this individual belongs to the category
0, = 0.068. Broadly speaking, there is only one discount, the pre-
mium being constant before and after. At first, 3(10,1) equals
477.8946% (whereas it equals 477.8947% if we know that the
driver is a bad risk), and after that, the premium decreases to
£(10,70) = 72.8767% (it equals 72.8629% for good risks). Such
a behavior, which is a byproduct of the purely discrete nature
of the NPMLE, is undesirable. In order to avoid this, we need a
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FIGURE 4

EvoLuTION OF (3(10,f) AS A FUNCTION OF = 1,2,...,70 WITH
Fg FOR PORTFOLIO 2
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smooth risk distribution, as (3.2). The §(k,7)s derived from the
estimator Fg of the structure function Fg are given in Table B.2,
while Figure 5 is the counterpart of Figure 4. See Appendix B
for the details of the computations. The BMS is now “smooth,”
with continuous variations of the (3(10,¢)s; this can be regarded
as commercially desirable.

To end with, let us mention that the 3(k,#)s of Table B.2 can be
transformed in a standard table following the method proposed
by Coene and Doray [5].

5. CONCLUSIONS

In this paper, we demonstrated that an adequately smoothed
version of the NPMLE is a good candidate for estimating the
risk distribution in a mixed Poisson model for the claim count.
This estimator is nonparametric; no assumption is thus made on
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FIGURE 5

EvoLuTION OF (3(10,f) AS A FUNCTION OF = 1,2,...,70 WITH
Fg FOR PORTFOLIO 2
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the mixing distribution. Moreover, as a mixture of Gamma distri-
butions, it is mathematically tractable to elaborate BMS. In that
respect, it performs better than the NPMLE, which is purely dis-
crete and results in “discontinuous” experience rating plans. Of
course, the smoothed NPMLE does not provide accurate fits in
all the cases. For instance, both NPMLE and smoothed NPMLE
yielded poor fits for the data set relating to Belgium 1975-1976
provided in Gossiaux and Lemaire [10].

In a forthcoming paper, the same problem will be considered
when a priori risk classification is enforced. Specifically, we will
examine how to design merit rating plans in accordance with a
priori ratemaking structure of the insurance company.
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APPENDIX A
DATA SETS

The reader will find herein two data sets from Benelux coun-
tries, together with all the fits considered in the present paper.
To measure the goodness-of-fit, standard Xz—statistics are used,
with the following calculation procedure:

5 sy p(k | ©)
X = 2 1 —_
obs = E : ngin D ( k)

TABLE A.1

FiTs TO PORTFOLIO 1

Fitting Technique
k ny A B C D E
0 7,840 7,636 7,840 7,832 7,847 7,839
1 1,317 1,637 1,317 1,337 1,288 1,322
2 239 175 239 213 257 231
3 42 13 42 57 54 48
4 14 1 13 17 12 13
5 4 0 6 4 3 5
6 4 0 2 1 1 2
7 1 0 1 0 0 1
>8 0 0 0 0 0 0
ngs 302.48 2.33 16.85 17.00 4.36
d.f. 6 3 5 6 4
p-value <1073 0.51 0.005 0.009 0.36

Column A: expected frequency with homogeneous P01sson
Column B: expected frequency with 3-point NPMLE F

«9 =0.336, «9 ~ 0.000, 6’ =2.545

fr, =0.573, 1, = 0.418, and%g =0.001

Column C: expected frequency with 2-point NPMLE F

«9 =0.147, «92 =1.231, 7, =0.938, and 7, = 0.062

Column D: expected frequency with Negative Binomial
Column E: expected frequency with 2-component F
A=0.22, 9 =0.193, 62 =0.355, 7, = 0.869, and 7, = 0.131
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TABLE A.2

FiTs TO PORTFOLIO 2

Fitting Technique

k n A B C D E
0 102435 | 102,026 102435 102435 102442 102,435
1 8804 | 9544 8805 8811 8774 8806
2 714 446 712 703 746 710
3 65 14 68 76 63 70
4 12 0 10 8 5 9

5 1 0 2 1 0 1
>6 0 0 0 0 0 0
oo 365.67 1.25 3.78 8.18 1.94
df. 5 1 3 4 2
p-value <1073 0.26 0.29 0.09 0.38

Column A: expected frequency with homogeneous Poisson
AColumn B: fixpected freguency with 3-point NPMLE I:"(_)

6, =0.132, 6, = 0.829, 6, ~0.000

7, =0.651, 7, = 0.009, and 7, = 0.340

AColumn C: fixpected frequency with 2-point NPMLE ﬁ@

6, =0.068, 6, = 0.446, 7, = 0.933, and 7, = 0.067

Column D: expected frequency with Negative Binomial
Column E: expected frequency with 2-component I:"(_)

A =028, 0, =0.083, 6, = 0.145, 7, = 0.835, and 7, = 0.165
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APPENDIX B

THEORETICAL BMS

Table B.1 contains the Bonus-Malus coefficients 3(k,7) com-
puted with the NPMLE Fy of Fy. Its counterpart B.2 is based on
the smoothed NPMLE Fg. These quantities are computed on the

basis of Portfolio 2, 2-point Fg and 2-component I:"(_). In Table
B.1,

d -

Z exp(—16,)0; ' 7
Blk,1) = x = :
xp(—téj)éffrj Z@ T

100

II MQ)

Let us briefly detail the computational aspects of Table B.2.
When the risk distribution is a Gamma mixture, i.€.,

q
Fo() =Y o, (0| aj,T), 0 € RY, (B.1)
j=1

we get

dF(0 | Ky =k, Ky =ky,....K; = k)

q
Z -exp(—10)6*dT (9 | a;,7;)

q
Z / exp(—tmn*dTl (n | a;,7)

q
ZA(j,k)dF(G la; +k,7; +1),



170 SMOOTHED NPML ESTIMATION OF THE RISK DISTRIBUTION

where

i=1 IR
This yields
aj+k
Tj +1

q
Poylky kg, k) =D A, k)
j=1

The coefficients A(j,k)s are easy to compute. Indeed, they can
be cast into )
€(j,k)

A(j,k) Qi

Zaie(i,k)
i=1

where

_ k
E(],k) = /T]€R+ exp(kwdr(n | aj’Tj)

_ exp(—mn*
_/ne]R+ —k' dr(77|aj,7—]/t)

a. k
_ a]+k—1 Tj J t
k Tj+t Tj+t '

The e(j,k)s satisfy the Panjer recurrence relations

A _7_]+[ k

Gok—1), k=12,...,

starting from

. _ . . . = T] aj
e(J,O)—/UERﬁXp( mdl (n | a;,7;/1) = <7j+t> '



SMOOTHED NPML ESTIMATION OF THE RISK DISTRIBUTION

TABLE B.1

B(k,t) WITH F@ FOR PORTFOLIO 2 (PART 1)

171

k

t 0 1 2 3 4 5 6 7 8 9 10
0 100

1 92 172 348 451 473 477 478 478 478 478 478
2 86 146 313 439 472 477 478 478 478 478 478
3 82 126 275 424 469 476 478 478 478 478 478
4 79 111 237 404 465 476 478 478 478 478 478
5 77 100 202 378 459 475 477 478 478 478 478
6 76 92 171 347 450 473 477 478 478 478 478
7 75 86 146 312 439 471 477 478 478 478 478
8 74 82 126 274 424 469 476 478 478 478 478
9 74 79 111 236 403 464 476 478 478 478 478
10 74 77 100 201 377 459 475 477 478 478 478
11 73 76 92 170 346 450 473 477 478 478 478
12 73 75 86 145 311 439 471 477 478 478 478
13 73 74 82 125 273 423 468 476 478 478 478
14 73 74 79 110 235 403 464 476 478 478 478
15 73 74 77 99 200 377 458 475 477 478 478
16 73 73 76 91 170 345 450 473 477 478 478
17 73 73 75 86 145 310 438 471 477 478 478
18 73 73 74 82 125 272 423 468 476 478 478
19 73 73 74 79 110 234 402 464 476 478 478
20 73 73 74 77 99 199 376 458 475 477 478
21 73 73 73 76 91 169 345 450 473 477 478
22 73 73 73 75 86 144 309 438 471 477 478
23 73 73 73 74 82 124 271 422 468 476 478
24 73 73 73 74 79 110 233 402 464 476 478
25 73 73 73 74 77 99 199 375 458 475 477
26 73 73 73 73 76 91 168 344 449 473 477
27 73 73 73 73 75 85 143 308 438 471 477
28 73 73 73 73 74 82 124 270 422 468 476
29 73 73 73 73 74 79 109 232 401 464 476
30 73 73 73 73 4 71 99 198 375 458 475
31 73 73 73 73 73 76 91 168 343 449 473
32 73 73 73 73 73 75 85 143 307 437 471
33 73 73 73 73 73 74 82 124 269 421 468
34 73 73 73 73 73 74 79 109 232 400 464
35 73 73 73 73 73 73 77 98 197 374 458
36 73 73 73 73 73 73 76 91 167 342 449
37 73 73 73 73 73 73 75 85 142 306 437
38 73 73 73 73 73 73 74 81 123 268 421
39 73 73 73 73 73 73 74 79 109 231 400
40 73 73 73 73 73 73 73 77 98 196 373
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TABLE B.1

B(k,t) WITH F@ FOR PORTFOLIO 2 (PART 2)

k
t 0 1 2 3 4 5 6 7 8 9 10
41 73 73 73 73 73 73 73 76 91 166 341
42 73 73 73 73 73 73 73 75 85 142 305
43 73 73 73 73 73 73 73 74 81 123 267
44 73 73 73 73 73 73 73 74 79 109 230
45 73 73 73 73 73 73 73 73 77 98 195
46 73 73 73 73 73 73 73 73 76 90 166
47 73 73 73 73 73 73 73 73 75 85 141
48 73 73 73 73 73 73 73 73 74 81 122
49 73 73 73 73 73 73 73 73 74 79 108
50 73 73 73 73 73 73 73 73 73 71 98
51 73 73 73 73 73 73 73 73 73 76 90
52 73 73 73 73 73 73 73 73 73 75 85
53 73 73 73 73 73 73 73 73 73 74 81
54 73 73 73 73 73 73 73 73 73 74 79
55 73 73 73 73 73 73 73 73 73 73 77
56 73 73 73 73 73 73 73 73 73 73 76
57 73 73 73 73 73 73 73 73 73 73 75
58 73 73 73 73 73 73 73 73 73 73 74
59 73 73 73 73 73 73 73 73 73 73 74
60 73 73 73 73 73 73 73 73 73 73 73
61 73 73 73 73 73 73 73 73 73 73 73
62 73 73 73 73 73 73 73 73 73 73 73
63 73 73 73 73 73 73 73 73 73 73 73
64 73 73 73 73 73 73 73 73 73 73 73
65 73 73 73 73 73 73 73 73 73 73 73
66 73 73 73 73 73 73 73 73 73 73 73
67 73 73 73 73 73 73 73 73 73 73 73
68 73 73 73 73 73 73 73 73 73 73 73
69 73 73 73 73 73 73 73 73 73 73 73
70 73 73 73 73 73 73 73 73 73 73 73
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TABLE B.2

B(k,t) WITH Fiy FOR PORTFOLIO 2 (PART 1)

173

k

t 0 1 2 3 4 5 6 7 8 9 10
0 100

1 93 168 300 531 819 1084 1313 1524 1727 1928 2128
2 87 151 250 419 651 888 1096 1283 1458 1629 1799
3 82 139 219 346 531 740 932 1102 1259 1410 1558
4 78 130 197 298 445 625 802 961 1105 1241 1373
5 75 123 182 264 383 535 696 846 981 1106 1226
6 72 117 170 239 337 465 610 750 878 995 1106
7 69 112 160 220 302 411 539 669 791 902 1006
8 66 107 152 205 276 368 480 600 716 822 921
9 64 103 145 193 255 334 433 542 651 753 847
10 62 99 139 183 238 307 393 492 594 691 782
11 59 96 133 175 224 285 361 450 544 637 725
12 58 93 129 168 213 267 335 414 501 589 673
13 56 90 124 161 203 252 312 384 463 546 627
14 54 87 120 155 194 239 294 358 431 508 585
15 52 8 116 150 187 228 278 336 402 474 547
16 51 82 113 145 180 219 264 317 377 444 513
17 50 80 110 141 174 210 252 300 356 418 483
18 48 78 107 137 168 203 242 286 337 394 455
19 47 76 104 133 163 196 232 274 321 373 431
20 46 74 101 129 158 190 224 262 306 355 409
21 45 7299 126 154 184 216 253 293 339 389
22 43 71 96 123 150 179 210 244 282 324 371
23 42 69 94 120 146 174 203 236 271 311 355
24 41 67 92 117 143 169 198 228 262 299 340
25 40 66 90 114 139 165 192 221 253 288 327
26 40 64 88 112 136 161 187 215 246 279 315
27 39 63 86 109 133 157 183 210 238 270 304
28 38 62 84 107 130 154 178 204 232 262 294
29 37 60 83 105 127 150 174 199 226 254 285
30 36 59 81 103 125 147 170 194 220 247 277
31 35 58 79 101 122 144 167 190 215 241 269
32 35 57 78 99 120 141 163 186 210 235 262
33 34 56 76 97 118 138 160 182 205 229 255
34 33 55 75 95 115 136 157 178 201 224 249
35 33 54 74 93 113 133 154 175 196 219 243
36 32 53 72 92 111 131 151 171 192 214 238
37 31 52 71 90 109 128 148 168 189 210 232
38 31 51 70 89 107 126 145 165 185 206 228
39 30 50 69 87 105 124 143 162 182 202 223
40 30 49 68 86 104 122 140 159 178 198 219
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TABLE B.2

B(k,t) WITH Fiy FOR PORTFOLIO 2 (PART 2)

k
t 0 1 2 3 4 5 6 7 8 9 10
41 29 49 67 84 102 120 138 156 175 194 214
42 29 48 65 83 100 118 136 154 172 191 210
43 28 47 64 82 99 116 134 151 169 188 207
44 28 46 63 80 97 114 131 149 166 184 203
45 27 46 62 79 9 112 129 146 164 181 200
46 27 45 62 78 94 111 127 144 161 178 196
47 26 44 61 77 93 109 125 142 159 176 193
48 26 44 60 76 92 108 124 140 156 173 190
49 26 43 59 75 90 106 122 138 154 170 187
50 25 42 58 74 89 104 120 136 152 168 184
51 25 42 57 73 88 103 118 134 149 165 181
52 24 41 56 72 87 102 117 132 147 163 179
53 24 41 56 71 8 100 115 130 145 160 176
54 24 40 55 70 84 99 114 128 143 158 173
55 23 40 54 69 83 98 112 127 141 156 171
56 23 39 54 68 82 9 111 125 139 154 169
57 23 38 53 67 81 95 109 123 138 152 166
58 22 38 52 66 80 94 108 122 136 150 164
59 22 37 52 65 79 93 106 120 134 148 162
60 22 37 51 64 78 91 105 119 132 146 160
61 21 37 50 64 77 90 104 117 131 144 158
62 21 36 50 63 76 89 102 116 129 142 156
63 21 36 49 62 75 88 101 114 127 141 154
64 21 35 48 61 74 87 100 113 126 139 152
65 20 35 48 61 73 86 99 112 124 137 150
66 20 34 47 60 73 85 98 110 123 136 149
67 20 34 47 59 72 84 97 109 122 134 147
68 20 34 46 59 71 83 9 108 120 133 145
69 19 33 46 58 70 82 94 107 119 131 144
70 19 33 45 57 69 81 93 105 118 130 142
71 19 32 45 57 69 81 92 104 116 128 140




UNDERWRITING CYCLES AND BUSINESS STRATEGIES
SHOLOM FELDBLUM
Abstract

Underwriting cycles, with their wide and puzzling
swings in premiums and profitability, challenge the pric-
ing actuary to adapt rates to market realities. Under-
standing the forces behind insurance price fluctuations
is a prerequisite to analyzing market prices.

Underwriting cycles have been ascribed to actuarial
ratemaking procedures, to underwriting philosophy, and
to interest rate volatility. These interpretations underes-
timate the dynamics of the insurance marketplace, and
they ignore the competitive pressures that drive insur-
ance pricing.

Underwriting cycles, like profit fluctuations in other
industries, reflect the interdependence of rival firms.
Strong policyholder loyalty and demand inelasticity
hold the allure of large returns for incumbent firms,
but the apparent ease of entry into insurance, the lack
of market concentration, and the difficulty of mon-
itoring competitors’ prices preclude excessive prof-
its. The interaction of these forces keeps the mar-
ket in disequilibrium, with continuing price oscilla-
tions.

With the decline of rating bureaus and the growing
competitiveness of the insurance marketplace, the pro-
ficient actuary may no longer set rates based solely
on indicated costs. Insurers seek actuaries who under-
stand the competitive forces that drive market prices and
who can set future rates that are most advantageous
for the firm. They seek actuaries who can price their
products through the vicissitudes of the underwriting cy-
cle.

175
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1. THE EDUCATION OF AN ACTUARY

When I began work as a pricing actuary, I was struck by the
simplicity of our ratemaking procedures. Actuarial techniques
are cost-based: premiums are based on anticipated losses and ex-
penses. Marketplace pricing, however, considers supply/demand
interactions, consumer desires, and competitive pressures. When
I asked about this, I was told that actuaries determine the
“proper” rates—those which best serve insurance companies and
the public.

As the months passed, I learned that insurers do not actually
set prices based on actuarial indications. Schedule rating modi-
fications of as much as 50% are used in the Commercial Lines,
and discretionary rate deviations from actuarial indications are
used in the Personal Lines. So I wondered: what is the use of
our ratemaking procedures?

When I asked about this, I was told that the poor, misguided
folk in Underwriting and Marketing always wanted lower rates.
Management was forced to cut prices below adequate levels to
keep everyone happy. Rate deviations and modifications were
the random effects of strong officers in the field.

Years later, I understood that these deviations are not entirely
random. Underwriting cycles billow through our industry, raising
and lowering the premium rates charged by insurers. The price
fluctuations are not discretionary: insurers that have ignored the
phases of the cycle have lost both money and market share. Most
important, these are industry wide cycles, unrelated to the inter-
nal politics of individual firms. Actuaries indicate rates, but the
market sets prices.
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Causes of the Cycle

Some actuaries believe that rates should be based only on
anticipated costs. Stable actuarial rates ensure adequate returns
for insurers, and they mitigate the price variations that anger
consumers. Carriers may be tempted by the marketing benefits
of rate cutting, but actuaries should not encourage such follies.

However, cost-based pricing is rarely optimal. Careful consid-
eration of the marketplace and of competitors’ actions is essential
for ensuring profitable operations. This aforementioned view is
dangerous to the actuarial profession as well, for if actuaries ig-
nore market realities, their companies will relegate them to tech-
nical busy-work. If actuaries wish to influence actual prices, they
must address real business concerns.

The view described and deprecated above is ensconced in two
prevalent convictions. First, underwriting cycles are seen as ex-
ternal to insurer strategies. For example, the severe downturn
in Commercial Lines operating income during the early 1980s is
sometimes attributed to high and fluctuating interest rates that en-
couraged “cash flow” underwriting. How can we price for these
variations if we can not control them or even predict them?"

Second, underwriting cycles seem unrelated to profit cycles
in other industries. Some say that insurance profits are counter-
cyclical to general business conditions: rates are high during de-
pressions and decline during prosperous periods. Others add that
underwriting cycles vary with supply restraints, not demand pres-
sures. Pricing techniques used in other industries are therefore
inapplicable to insurance ratemaking.

To understand the relationship of insurance insolvencies to
underwriting cycles, we must uncover the causes of the cycle.
Four interpretations of the cycle are described in the next section,

ICompare Taylor [105, pg. 1]: “Individual operators in the insurance market view [the
underwriting cycle] as a variable exogenous to the formation of their own plans, one
whose timing and magnitude is beyond their control. This engenders a passive attitude
to underwriting cycles on the part of insurers.”
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emphasizing (i) actuarial ratemaking, (ii) underwriting philoso-
phy, (iii) interest rate movements, and (iv) competitive strategy.
The first three imply irrational business behavior by actuaries,
underwriters, or investment officers. In addition, the actuarial
and underwriting interpretations do not explain the synchronized
pricing of independent insurers, and the interest rate interpreta-
tion cannot account for the recurrence of cycles in more stable
interest rate environments. The fourth interpretation views un-
derwriting cycles as rational business behavior among competing
firms striving to optimize long-term profits. Competition may be
rough, and it may be inexact, but it tells us a rational story if we
pause to listen.

2. INTERPRETATIONS OF THE CYCLE

Actuarial Ratemaking: Uncertainty and Counter-Cyclicality

Some actuaries ascribe profit cycles to the uncertainty and
counter-cyclicality of loss costs:

e Property/Casualty insurance costs depend upon random loss
occurrences and uncertain macroeconomic and social trends.
Random losses may be unusual weather disturbances, such
as windstorms, and earthquakes. Social trends may be unex-
pected legal changes, such as retroactive liability for pollution
exposures.

e The counter-cyclicality of insurance loss costs stems from the
time lag between the compilation of historical experience and
the implementation of new rates. Generally, two or more years
of experience are used for ratemaking, losses are developed
three months beyond the end of the experience period, systems
processing of the historical data requires another month or two,
rate analysis and filing take six months, and the rates remain
in effect for one year. Rating bureaus require an additional
half year for editing and verification of insurance data and
for notification to member companies of intended rate filings.
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Thus, the time between the average loss date in the experience
period and the midpoint of the effective period of the new rates
often exceeds three or four years (Cummins and Nye [35, pp.
232-236]).

The uncertainty and counter-cyclicality of insurance loss costs
contribute to underwriting cycles. During recessions, inflation
is moderate, automobile travel is low, jury awards are less lib-
eral, factories operate below capacity, industrial injuries are in-
frequent, and so forth.>? The experience from this period, and
the time lag between data compilation and rate implementation,
ensures moderate rate revisions for several years.

The economy soon recovers, and loss costs rise rapidly. Insur-
ers, wary of increasing their rates and losing business volume,
ascribe the mounting costs to random loss occurrences. Even
when the rate inadequacy is recognized, and rate revisions are
requested, the time lag between data compilation and rate imple-
mentation means that the needed premiums are not earned until
years later.

Historical experience continues to indicate a rate inadequacy
when the economy once again slides into a recession. Insurers

2There are opposing influences as well. During recessions, thefts increase, leading to
higher automobile comprehensive claims. Employees recently laid off are more likely to
file Workers Compensation claims for minor injuries, since there is no loss of regular
income while on disability. Workers Compensation claim severity also increases, since
it is more difficult to find replacement jobs for injured employees (Mowbray and Black
[78, pg. 425]; Greene and Roeber [51, pp. 254-255]). For a discerning discussion of
the relationship between economic conditions and insurance loss costs in a depressed
economy, see Tarbell [104]. For relationships by line of business, see ISO [57, pg. 2],
for Personal Auto, Homeowners, and Workers Compensation, and Victor and Fleischman
[113] and Victor [112] for Workers Compensation.

Unfortunately, little is known about the correlations between insurance loss costs and
macro-economic conditions. Kahane [60], Hill [55], and Fairley [45] find that insurance
losses have a slight negative correlation with stock returns. Since stock returns reflect
economic conditions, this suggests that loss costs may be related to the economy as well.
Others find no significant correlation between underwriting returns and stock prices
(Cummins and Harrington [30]; D’ Arcy and Garven [39]; Kozik [63]).

In general, the relationships noted in the text are based on conjecture and intuition.
This explanation of underwriting cycles fails for other reasons, and the absence of facts
among adherents of this theory is simply an additional flaw.
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continue filing for rate increases, even though rates have returned
to adequate levels. And so the cycle goes on.?

Awareness and Action

There are some factual problems with this interpretation. Un-
derwriting cycles are generally not counter-cyclical to macroe-
conomic conditions. Further, loss cost trends are not always dif-
ferent in prosperous times and recessionary times. But there are
more fundamental reasons why this explanation fails.

First, this interpretation presumes that pricing actuaries are
unable to learn from past mistakes and are incapable of fore-
casting loss cost trends despite years of experience. This is not
true: actuaries are proficient at estimating insurance costs and
are not easily fooled by macroeconomic conditions or long-term
social trends. Both actuaries and insurers are frequently aware
of the true loss cost trends even as rates move in the opposite
direction. For example, insurers knew that General Liability loss
costs were rising rapidly in the early 1980s, but they continued
cutting rates well below marginal cost.

Indications and Prices

Second, underwriting cycles are not due to actuarial rate in-
dications. They are due to insurer reluctance to adopt actuari-
ally recommended rate increases, to rate deviations below bureau
rates, to schedule rating credits for commercial risks, and to sim-
ilar “discretionary” rate reductions.* Underwriting cycles are as

3The Virginia Bureau of Insurance [114] interprets underwriting cycles in this fashion.
“The insurance cycle is usually out-of-phase with the rest of the economy. When prices
for general goods and services are rising, insurance rates are often stable and insurance
industry profits are decreasing. By the time that the rate of increase in the price for other
goods and services diminishes, data is becoming available showing that insurance rates
have not kept up with underlying costs. Insurance rates then increase rapidly and profits
improve. This lag between price increases in the insurance industry and the rest of the
economy is in large part due to the time required for claims to be reported and settled
and for claims data to be collected and evaluated.”

4Cummins, Harrington, and Klein [32, pp. 59-60; Figure 5, pg. 59] note that “deviations
below ISO advisory rates increased substantially from 1981 through the end of 1983, as
the market softened” (see also Cummins, Harrington, and Klein [31, pg. 18]).



UNDERWRITING CYCLES AND BUSINESS STRATEGIES 181

manifest in the disparity between actuarially indicated rates and
marketplace prices as in the reported net income of insurers.’

The disparity between insurer knowledge and insurer pricing
actions was particularly stark in the late 1980s, when 25% of
the Workers Compensation was being written by the involuntary
pools. Insurers were pricing the policies below cost, but they
would not write the business that they were pricing.

If disinterested analysts, uninvolved in the economic fortunes
of particular insurers, were to generate “actuarially indicated
rates” to which the entire industry adhered, there might be no
underwriting cycles. Ratemaking procedures have little or no
influence on actual profit cycles. However, insurance premium
rates are different from actuarial indications. Real-world prices
are not the result of mathematical exercises, whether simple or
sophisticated. And it is in the prices charged on the street that
we may discern the workings of the cycle.

Underwriting Philosophy

A second interpretation of insurance underwriting cycles re-
lies on the “mass psychology” of underwriters. During profitable
years, insurers grow optimistic and compete strenuously for new
business. Since capacity is limited only by financial and psycho-
logical constraints, not by physical plant and equipment, supply

5Venezian [111] presents a more sophisticated connection of underwriting cycles with
ratemaking techniques: “Insurers and rating bureaus often use regression of past costs,
or of loss ratios, on time as a way of estimating future rate requirements. A model of
this process suggests that the rates set by such methods would create a quasi-cyclical
pattern of underwriting profit margins..... Empirical data on major lines of property and
liability insurance are consistent with the hypothesis that ratemaking methods contribute
to the fluctuations of underwriting profit margins.”

Venezian suggests only that ratemaking methods contribute to the cycles, not that they
cause them. But all these “ratemaking” interpretations search for the cycle in actuarial
indications where it does not exist; they ignore competitive pricing strategies, where the
cycle is powerful.

Similarly, Pentikainen et al. [88] use a statistical model of underwriting cycles to
examine the influences of market prices on insurance solvency. Cummins and Outreville
[34] propose a model along the same lines, though with different causal variables: (a)
data collection lags, (b) regulatory lags, (c) policy renewal lags, and (d) calendar year
financial reporting.
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expands. Demand is inelastic, so premium growth means attract-
ing business from other insurers. Severe competition in a mature
market requires insurers to lower prices to gain market share
(Stewart [101]; Bloom [16]; Berger [11]).

Profits soon decline, due to low rates and the poor quality of
some risks. Underwriters become pessimistic, curtail their accep-
tance of marginal applicants, and file for rate increases. Profits
remain low until insurers re-underwrite their business and the
new rates take effect. Eventually, the rate increases and the more
careful underwriting lead to increased profits, and the cycle starts
anew.

This interpretation of the cycle is popular, and variations
abound. Boor [17, 18] suggests numerous factors that might
strengthen or weaken cycles, such as premium-to-surplus rules,
reserve management, and the ease or difficulty of entry into and
exit from the insurance market.

Information and Coordination

Should not the supply proffered and the quantity demanded
converge on an equilibrium point, and the underwriting cycles
cease? This is a central thesis of Western economics, and rapid
convergence is evident in most industries with free markets.
Stewart [101, pg. 293] explains the absence of such conver-
gence:

The cyclical process does not end for two reasons:
lack of information and lack of coordination. Indi-
vidual insurers do not and cannot know the precise
amount of insurance to supply to reach equilibrium.
They have different operating costs and, therefore, dif-
ferent break-even points or minimum acceptable mar-
gins of profit. Their perceptions and expectations of fu-
ture profits or losses develop in different ways. In self-
interest, they do not coordinate their actions. Collu-
sion, furthermore, is illegal. Even when prior approval
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and rating bureaus had more influence on prices, in-
surers varied supply according to their own situations.

This explanation is unusual, since the lack of strategic co-
ordination and the imperfect information should lead to stable
equilibria. If firms cannot coordinate prices and quantities, then
the price mechanism effectively equates supply and demand. The
competitive characteristics of the insurance industry that Stew-
art notes argue for a more stable equilibrium, since underwriters
can quickly adjust supply to end any disparity with the quantity
demanded.®

Uniform Psychology

The fundamental problem with this explanation is not the
“lack of cooperation” or the “lack of coordination” theses. Rather
it is the assumption of a uniform psychology among underwrit-
ers. An individual may be more or less optimistic in different
years. But how is it that ten thousand underwriters across the
United States are optimistic and pessimistic in unison?

6Stewart also cites a “cobweb” interpretation for the continuation of underwriting cy-
cles: “Cycles that result from supply’s responding to profit expectations are described in
textbook economic theory by what is called a ‘cobweb.’ ... In agriculture, as in property-
liability insurance, demand is steady and supply is variable, with the result that prices
tend to move with changes in supply” [101, pg. 293].

On the contrary: standard “cobweb” explanations rely on the period to period lag in
revising supply. In agriculture, supply cannot be adjusted rapidly, since it depends on the
amount seeded in previous months, not just on the marketplace price. See, for instance,
Ezekiel [44, pp. 426, 436—-437]: “For a commodity where the production process occupies
a definite interval of time, the period considered may be taken as so short that the total
supply available cannot be changed within the period (as, for example, the supply of
cotton or potatoes once the year’s crop is harvested),” and “The cobweb theory can apply
exactly only to commodities which fulfill three conditions: ... (2) where the time needed
for production requires at least one full period before production can be changed....” A
six-year cycle presumes a three-year production lag. This is not the case for insurance:
supply depends only on price and can be quickly adjusted.

Similarly, Cummins, Harrington, and Klein [32, pg. 63], in describing Stewart’s thesis,
write: “A key element in this explanation is that competition in soft markets ultimately
leads to inadequate rates. Prior academic research includes little or no formal analysis of
why competition could cause prices in soft markets to fall below levels needed to cover
cost expected when policies are sold and to ensure insurer financial soundness.”
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Daykin, Pentikainen, and Pesonen [40] illuminate the mystery
of cycles. Fluctuating profits are not uncommon; even random
fluctuations may look like cycles. The mystery is that while the
profit patterns in each insurer seem inexplicable, these profit pat-
terns are correlated among most of the insurers in the market.

The enigma of underwriting cycles is not that any individual
underwriter accepts risks in one year that he or she would reject
in another. Rather, it is that profits for insurers move in tandem.’
In contradistinction to Stewart’s explanation, this phenomenon
indicates a higher level of competitive strategy than we would
otherwise suspect. Insurers, no less than other firms, are sensitive
to the prices charged by their competitors, and they adjust their
own rates accordingly.

Stewart’s thesis shows the outlines of the cycle: the stable de-
mand, the competition among insurers, the fluctuating prices, and
the relatively uniform practices among underwriters at any given
time. But the connections among these phenomena remain un-
examined. To flesh out these relationships, we must ask: “What
additional characteristics of the insurance marketplace relate to
profit cycles?” and “How do these characteristics account for the
fluctuations in underwriting income?”’

Cash Flow Underwriting

A third interpretation of underwriting cycles relies on interest
rate volatility. Insurers pay losses well after they collect premi-
ums, particularly in the liability and Workers Compensation lines
of business. Premiums are invested in financial markets (stocks,
bonds, mortgages) and earn investment income until losses are
paid.

Insurance income may be divided into underwriting and in-
vestment portions. Underwriting income is the difference be-

"Daykin, Pentikainen, and Pesonen [40] note with regard to a set of large Finnish insurers:
“The cycle is effectively the same for each of the...insurers, so that we can speak about
a market cycle” (emphasis in original).
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tween (a) premium revenues and (b) loss plus expense payments.
Investment income is the return on invested assets.

Interest Rates

Interest rates rose rapidly in the late 1970s, reflecting the in-
flationary trends in the U.S. economy. Investment income be-
came a larger portion of insurance earnings, and underwriting
income decreased. Insurers wrote policies at expected underwrit-
ing losses, since they relied on investment returns for an overall
profit.

Many insurers, accustomed to underwriting profits, viewed
the reliance on investment returns as a lack of ‘“underwriting
discipline.” They castigated this new philosophy as ‘“cash flow
underwriting”’: writing policies at a loss simply to generate pre-
mium dollars for investment.

Cash flow underwriting is appropriate as long as interest rates
remain high.® But by the mid-1980s, new money interest rates
had fallen. The lack of underwriting discipline continued; insur-
ers kept writing policies at underwriting losses. Investment in-
come was no longer sufficient to compensate for these losses, so
insurance operating returns declined. This was the underwriting
cycle nadir of the mid-1980s.”

This argument was popular several years ago. It has lost favor
recently, since the underwriting cycle has lost no force despite

8Compare D’Arcy and Doherty [38, pg. 86]: “While pejoratively termed ‘cash flow un-
derwriting,” this willingness to accept underwriting losses is not a symptom of temporary
market insanity but is a rational economic reaction to the availability of higher interest
rates.”

9See, for instance, McGee [71, pp- 22, 25]: “Changes in interest rates are the primary
force behind the recurrent swings in the industry’s profitability.” To explain the intensity
of the 1980s cycle in the Commercial Liability lines of insurance, McGee writes: “The
combined ratio for long-duration lines of insurance should move more than the ratio for
short-duration lines over the interest rate cycle, and the mix of insurance by lines will
affect the timing and volatility of the property/casualty cycle.” He acknowledges that
“workers’ compensation lines are long-tailed, but their combined ratio does not behave
as the increased interest-sensitivity principle would suggest,” although he ascribes this
anomaly to policyholder dividends and stringent rate regulation.
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the present stability of interest rates. Nevertheless, it is still useful
to examine the problems with this interpretation.

Underwriting and Investment Income

First, the distinction between underwriting and investment in-
come is specious. Cash flows must be discounted to a common
date to appropriately match revenues and expenses. True insur-
ance income is the difference between (a) premium revenues and
(b) discounted loss plus expense payments.'? True investment in-
come is the sum of (a) the return on invested surplus funds, (b)
the difference between actual and expected returns on policy-
holder supplied funds, and perhaps (c) the difference between
expected returns and the return assumed in the discount rate.!!

10 Although discounted cash flows may be used to measure income, the appropriate dis-
count rate for insurance losses is unclear. Lowe [67] suggests a “negotiated rate” that
is set by the senior management of the insurance company. Woll [116] recommends an
after-tax “risk-free” rate, such as the Treasury Bill rate. Butsic [21] derives a “risk ad-
justed” discount rate based upon historical insurance experience. Fairley [45], Hill [55],
and Myers and Cohn [80] use risk adjusted discount rates, based on extensions of the
Capital Asset Pricing Model to insurance losses. The 1986 Federal Income Tax amend-
ments use the federal midterm rate to discount losses; see Gleeson and Lenrow [50] or
Almagro and Ghezzi [4]. Others have suggested embedded yields, as the Insurance Ex-
pense Exhibit uses, or new money market rates, as AICPA [1] recommends and which
most life insurers use. The lack of agreement on the appropriate discount rate hampers
consistency among insurance companies in analyzing income.

IlCompare Woll [116] and Lowe [67]. Different means of categorizing income are pos-
sible; we do not mean to prescribe a particular method. A numerical example should
help clarify the intention. Suppose the insurer has $10 billion of funds from insurance
transactions and $4 billion of surplus. Suppose also that the expected investment income
on funds from insurance transactions was 8% per annum, the actual investment income
was 9% per annum, and the investment income on capital and surplus funds was 10%
per annum; all investment income includes unrealized capital gains and losses.

Of the investment income, $800 million (or 8% of $10 billion) would be included with
insurance income, as this is part of the expected return from the insurance operations.
The remaining 1% return on the funds from insurance transactions plus the 10% return
on capital and surplus funds would be included with investment income.

Alternatively, if the loss reserve discount rate used for internal company management
reporting is 7% per annum, only $700 million (or 7% of $10 billion) would be included
with insurance income, and the remainder would be categorized with investment income.
This procedure might be used if the risk-free interest rate were 7% per annum but the
expected investment yield of the company were 8% per annum.

Numerous variants of this procedure have been suggested by actuaries. They differ
in the details—such as in the discount rates and the bases—but they all value cash
flows as of the same time. The use of unadjusted nominal values to determine insurance
profitability simply confuses performance measures and distorts patterns of profitability.
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When insurance income is properly measured, it is not nec-
essarily reduced by a rise in interest rates. Higher interest rates
that are accompanied by accelerating inflation increase the nom-
inal settlement values of insurance losses even as they raise the
appropriate discount rate for loss reserves. A rise in inflation
increases both investment returns and expected loss payments.

In other words, when inflation is modest, both the discount
rate and expected losses are low. When inflation accelerates, both
the discount rate and expected losses increase. The net effect is
ambiguous. 2

Asset-liability matching theory also implies a different out-
come than that suggested by “cash flow underwriting” inter-
pretations of the underwriting cycle. The average duration of
Property/Casualty insurers’ assets is longer than that of their li-
abilities. A drop in interest rates, as occurred in the mid-1980s,
causes an increase in profits, not a decrease in profits. In fact,
those insurers that bought long-term bonds at high yields in the
late 1970s and early 1980s enjoyed above average investment
returns in subsequent years.

2For the relationship of liability losses to market interest rates, see Butsic [22]. McGee
[71, pg. 23] is aware of the inflation sensitivity of liability losses: “Inflation also has
an impact on the relationship between the competitive price of insurance and interest
rates. If costs of settling claims are expected to rise through time, a higher premium or
investment return will be necessary to cover future costs. To the extent that rising interest
rates reflect anticipated inflation, they should not affect insurance premiums.”

McGee hypothesizes that “uncertainty about the inflation outlook” in a competitive in-
dustry depresses market prices to those of the most optimistic insurer. Widely fluctuating
interest rates lead to greater uncertainty and therefore a decline in insurer profitability.
This explanation ignores McGee’s own statement that as long as inflation and interest
are correlated, different inflationary expectations should not affect insurance premiums.

Cummins, Harrington, and Klein [32, pg. 68], note that interest rate fluctuation is not by
itself a sufficient explanation of underwriting cycles: ... prices in competitive insurance
markets would reflect the interest earnings on funds held between the premium payment
and loss payment dates. Thus, prices should fall when interest rates rise and rise when
interest rates fall. This is not a problem unless insurers overreact to interest rate changes
or unless serious pricing errors are common.” (These remarks assume a positive equity
duration for insurers. If liability loss payments are entirely inflation sensitive, the inverse
relationship between interest rates and insurance prices does not hold.)

I3For the effect of interest rate changes on the returns of mismatched portfolios, see Bier-
wag, Kaufman, and Toevs [14] or Redington [94]. For an analysis of asset and liability
durations of Property/Casualty insurance portfolios, see Feldblum [46] and Panning [87].
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Financial Expertise

Finally, and most fundamentally, a “cash flow underwriting”
interpretation of underwriting cycles reveals a deep academic
condescension towards insurance company investment managers
and underwriters. It presumes either that investment managers
were surprised by the fall in interest rates in the mid-1980s or
that underwriters are unable to adjust rates for changes in invest-
ment income. But the investment community was not shocked by
the fall in interest rates in the 1980s. On the contrary: financial
analysts were surprised that interest rates stayed high even after
inflation subsided. Similarly, good underwriters aim at long-term
operating profits. They are not easily deceived by steady changes
in investment returns.

Interpretations of the underwriting cycle abound. The ma-
jority presume that someone is erring: ratemaking methods are
naive, underwriters are simplistic, regulation is rigid, or invest-
ment managers are deceived. Such explanations search for a
cause where it is not to be found. Insurers are no less rational
than other firms are. They exist in a highly competitive market,
where the foolish firm does not long survive.

3. COMPETITION AND PROFITS

To understand the relationship of underwriting cycles to in-
surer solvency, we must briefly step aside from insurance and
delve into economics and business theory. We ask: “What is the
relationship between competition and profits?”

We consider first the economist’s perspective, examining
competitive, monopolistic, and oligopolistic market structures.
We then analyze the insurance industry from a concrete business
viewpoint, examining policy differentiation, policyholder loyalty,
and the ease of entry into the insurance marketplace. We ask:
“Given the structural characteristics of the insurance industry,
what price-cost margin should we expect?”
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Textbook Models: Competition and Monopoly

Undergraduate economics textbooks present two market mod-
els: pure competition and single firm monopolies. These models
are meant only to illustrate the forces that determine prices, not
to depict actual practice.

In pure competition, prices are determined by industry-wide
supply and demand. No individual firm can unilaterally affect
market prices. If a firm restricts supply, its competitors take up
the slack. If a firm raises prices, consumers purchase the product
elsewhere.

In a monopolistic industry, a single firm dominates the market.
Entry of competing firms is sufficiently restricted that the mo-
nopolist can adjust the quantities supplied and the prices charged
to maximize its profits.

Competition

What market price results from each model? Suppose that
the price in a competitive industry exceeds the marginal cost of
producing the product. Any firm could cut prices slightly, garner
a greater market share, and increase its profits.

Similarly, if the market price were below marginal cost, firms
would leave the industry and employ their capital elsewhere.
Equilibrium is achieved when price equals marginal cost.

Equilibrium means that there is no tendency for prices to
either rise or fall.'"* Economists maintain that prices generally

14Industrial economists, when considering firm behavior, speak of Nash equilibria (Nash
[84]). A Nash equilibrium obtains when no firm has an incentive to modify its produc-
tion or price strategy. If firms seek to maximize their income, this implies that no firm
can obtain greater profits by raising or lowering its price or by increasing or decreasing
the quantity that it supplies. Waterson, using a game-theoretic approach to industrial eco-
nomics, defines a Nash non-cooperative equilibrium as the “point such that each player’s
strategy maximizes his expected payoff if the strategies of the others are held fixed” [115,
pg. 41]. Friedman [48, pg. 49] uses a similar definition: “A [Nash] noncooperative equi-
librium consists of n particular strategies, one for each firm, so chosen that no single firm
could possibly have obtained higher profits if it, alone, had selected a different strategy.”
Fudenberg and Tirole [49] summarize the formal theory of Nash equilibria.
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move toward equilibria in free markets. Underwriting cycles,
however, seem a stark example of disequilibrium: prices con-
tinually fluctuate.

Monopoly

Under suitable conditions, the monopolist seeking to optimize
its income will not price its product at marginal cost.”> When
price equals marginal cost, there are no economic profits for the
firm. But if the monopolist restricts output, consumers “bid up”
the price to obtain the scarce good. Price exceeds marginal cost,
and the firm receives additional profits.

In a purely competitive marketplace, price equals marginal
revenue which equals marginal cost. In a monopolistic market,
marginal revenue generally exceeds marginal cost. Prices are
higher in a monopolistic market than they would be in a com-
petitive market.

Actual Market Structures

These market structures rarely exist in their ideal forms. Even
when there are thousands of firms selling similar products, com-
petition is seldom perfect. For instance, grocery stores exist all

When market conditions cause firms to have different strategies—some seek stable

current income and others seek to increase sales—Nash equilibria often dissolve. This
phenomenon underlies the model of underwriting cycles developed below.
I5These conditions are that either the marginal cost rises as quantity supplied increases or
the demand curve slopes downward. Marginal cost is the cost of producing an additional
unit of the good. In insurance, this is the expenses and anticipated losses of writing
an additional policy, not the average expenses and losses incurred on the current book
of business. The demand curve is the relationship between consumer demand and the
product’s price. In insurance, this is the number and size of policies and endorsements
desired by consumers at each premium rate.

Both conditions are satisfied in the insurance market. (1) The demand curve in many
lines of business is nearly vertical, because of statutes, regulations, and business policies
that mandate coverage (Sherdan [99]). (2) The marginal cost curve rises sharply, despite
the preponderance of variable costs in insurance. As D’Arcy and Doherty [38, pg. 9]
note: “...an insurer writing a large quantity of policies will eventually have to relax
underwriting standards to increase the quantity further, and the newer policies could have
a higher expected loss ratio.” That is, at low quantities, insurers can “skim the cream,”
selecting the best risks. At higher quantities, insurers offer coverage even to mediocre
and poor risks. Thus, marginal costs rise as the number of policies issued increases.
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over, selling the same foods: is this not pure competition? But
most individuals use the nearest corner grocery for small pur-
chases and do not bother to price shop. In other words, the gro-
cery store may have a near monopoly within a small neighbor-
hood.!6

Monopolies are equally hard to maintain. IBM dominated the
market for mainframe business computers in the 1960s, and it
enjoyed large price-cost margins during those years. But com-
petitors soon entered wherever profits beckoned—computer pe-
ripherals, software programs—and they quickly gained signifi-
cant market shares.!”

Nevertheless, these two models are important, for they set the
bounds of the price range. If capital can be transferred to other
uses, firms will not price below marginal cost.!® And if suffi-
cient supply is available, firms will not price above the monopoly
price.

16Scherer [97, pg. 325] comments: “Even when firms produce physically identical com-
modities, complete homogeneity is not likely to be attained because of differences in
location.... When producers are located at different points on the map, their products
are said to be spatially differentiated.”

170n the history of IBM’s market dominance in the mainframe computer industry and
the entry of competitors in peripheral equipment and software products, see Brock [20].
Government sponsored monopolies, such as municipal utilities, cable TV franchises, and
telephone service until the 1980s, are different. These industries have strictly regulated
rates; they do not price by supply and demand considerations.

The diversity of insurance rate regulation affords a range of insurance markets. In

some states, such as Massachusetts and Texas, insurance rates are set by the regulator
or by official rating bureaus. In other states, such as Illinois and pre-1989 California,
the free market determines insurance prices. Insurance rate regulation is a factor (albeit
a minor one) in underwriting cycle severity.
18 Transferring capital can be difficult, and firms may price below marginal cost in a
declining industry. The Personal Insurance lines present an excellent illustration of this.
Over the past 40 years, direct writers have steadily garnered most of the Personal Lines
market, and they have consistently attracted the better risks among the insured pop-
ulation. Independent agency companies have a declining market with worsening risk
quality. Many of these companies are slowly moving to other lines of business (such
as Commercial, Specialty, Reinsurance, and Substandard Auto), experimenting with less
expensive distribution systems (such as direct mail), or trying to start joint ventures with
other financial institutions (such as life insurers, health insurers, and securities brokers).
Meanwhile, average Personal Lines returns for independent agency companies are below
marginal cost.
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This price range is wide, since the monopoly price may be
well above marginal cost. So if the market is neither purely com-
petitive nor monopolistic, what prices will actually be charged?

Economic Models

Economics is rigorous. Theorists provide the needed assump-
tions, then “prove” the desired conclusions. But these assump-
tions are invariably idealistic. The equations are mathematically
perfect but of limited practical value.

We cannot proceed without a theoretical framework. We will
deal with price-cost margins, Nash equilibria, entry conditions,
and price elasticity of demand. However, we are interested not
in formulating theorems but in understanding a business phe-
nomenon: the underwriting cycle. So we must step gingerly over
the coming terrain.

We can view this distinction from another perspective. Eco-
nomic models abstract reality. They isolate some elements, and
the results are determined from the assumptions. The business
world is represented by succinct mathematical expressions.

Underwriting cycles, however, are complex phenomena: no
two companies react identically to their course. We will not try to
determine the exact duration or severity of the cycles. Rather, we
seek to understand the driving forces behind insurance pricing.

We begin with an abstract model of pricing in a competi-
tive market with a limited number of firms.'® Our emphasis will

Tn truth, there are thousands of American insurers, and dozens of new ones enter the
industry each year. This is a central characteristic of the insurance model that we develop
further on. For clarity of exposition, however, we begin with a model of a limited number
of firms.

Supplier interdependence is enhanced by high market concentration. Some economists
use four firm concentration ratios of 50% or greater, or a Herfindahl-Hirshman index of
about 1,000 or greater, as indicators of possible interdependence. (See, for example,
the June 1984 Justice Department merger guidelines for antitrust action.) The Personal
Auto insurance industry shows a four firm concentration ratio of 40% and a Herfindahl-
Hirshman index of 610 on a national basis, and corresponding average figures of 53%
and 1,000 on a statewide basis. These figures depend on the definition of the market:
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be on Nash equilibria and conjectural variation. We then revise
the model, discarding the idealism and adding reality, to explain
profit cycles in the Property/Casualty insurance industry.

Conjectural Variation

Suppose two rival firms, producing identical products, each
have 50% of the market. Consumers are conscientious price
shoppers with excellent information, so if either firm underprices
the other it quickly captures the entire market. If the firms com-
pete by setting prices, then a static microeconomic analysis im-
plies that both firms will set prices at marginal cost.?’ If one firm
prices above marginal cost, the other firm can charge slightly
less, gain the other 50% of the market, and increase its total
profits.

state versus national and individual line versus all insurance products. Inter-industry
comparisons of market concentration must use similar criteria of market definition; if so,
insurance shows low relative concentration. On automobile insurance, see Klein [61, pg.
12, Table 1, pp. 18-19, Table 4]; on Workers Compensation insurance, see Countryman
[29, pg. 17, Table 1], Klein [62], and Appel and Gerofsky [6; 7].

20Firms may compete either by setting prices or by choosing the quantities they supply.
Price and quantity are interrelated, since the industry demand curve sets a one-to-one
relationship between them. If firms compete by choosing the quantities they supply,
“Cournot competition” implies that the resulting price will exceed marginal cost. The
price-cost margin varies inversely with the number of firms: one firm (pure monopoly)
produces the greatest profits, and an infinite number of firms (pure competition) elimi-
nates economic profits. See Tirole [107, pp. 218-221], or Scherer [97, pp. 152—-155].

Manufacturing firms with long production cycles may compete by choosing the quan-
tities that they supply. A Cournot analysis is appropriate for them. Insurers have almost
no supply restrictions; rather, they compete on premium rates. A “Bertrand” analysis,
which results in price equaling marginal cost, is the appropriate model (see below in this
note). See Tirole [107, pp. 209-212] or Varian [109, pp. 461-464].

The appropriate model for insurers depends on their supply constraints. Unlimited
capacity implies that firms compete by setting prices. Severe capacity constraints imply
that firms compete by choosing quantities. For an analysis of the limits on insurance
capacity, see Stone [102]. Stone’s analysis applies to large Commercial risks, where
random losses may adversely affect an insurer’s income or even solvency. In practice,
there are no capacity constraints in the Personal Lines or for small Commercial risks.
Moreover, for some large risks, the availability of reinsurance mitigates the capacity
constraints.

For a general discussion of insurance supply, see Stewart [101]. Stewart correctly notes
that insurance supply is determined by psychological and financial considerations, not by
plant, equipment, labor, or other physical restrictions. The ability of insurers to quickly
revise quantities and prices is an essential aspect of the underwriting cycle; see the text
below.
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This analysis is static: it considers only a single time period.
Dynamic models presume that firms respond to their rivals’ com-
petitive actions. Moreover, each firm anticipates how its rivals
will respond before implementing its own strategy. Economists
term this conjectural variation: “Each firm believes that its choice
of price will affect the price selected by its rivals.”?!

Suppose again that two firms producing identical products
and competing on price each have 50% of the market. In the
static analysis, if the market price exceeds marginal cost, then
either firm may slightly reduce its price and garner the entire
market. In reality, the businessman wonders: “If I cut my price
to increase market share, how will my rival respond?”

Clearly, the rival will match the price cut—at least if a small
reduction in price enables it to retain its market share. If both
firms presume that the other will match a price cut, neither will
initiate the price reduction.??

We formulate this mathematically as follows. Let P be the
current market price and P¢ be the competitive, or marginal cost,
price. Let v be the annual discount rate for future earnings (the
discount rate is treated more fully below). Suppose that each
firm knows that if it reduces its price below P™, its rival will
immediately charge P¢. Finally, assume that a price cut below
the current market price promptly attracts the entire consumer
population.??

The current market price, P™, provides total industry earnings
of E™, a positive amount. The marginal cost price, P¢, provides

2ITirole [107, pg. 244]. For a mathematical development, see Varian [110, pp. 102-103],
or Waterson [115, pp. 18-19]. Porter [93] presents a non-mathematical discussion of the
strategic consideration of expected rival responses.

22That is, conjectural variation influences optimal business strategy. If an insurer believed
that its peer companies use cost-based pricing and that they do not consider competitive
pressures, it would have no disincentive to reduce rates in order to gain market share.
In practice, insurers’ prices are strongly affected by those of their rivals. This is most
evident in the Personal Automobile market, where the major direct writers carefully
examine their rivals’ rates, by territory and classification, to set their own prices.
BThese are the ideal assumptions so endearing to economists. We will return to reality
in a few paragraphs.
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zero economic profits; that is, E¢ = 0. If both firms maintain
the current market price, P™, their earnings will be 1/2(E™ +
VE™ 4+ v2E™ + ...) for each. If either firm slightly shades prices,
its earnings will be E™ in the current period.”* Since its rival
quickly cuts prices to marginal cost, its earnings are 0 in all
future periods.

If the firms are to be dissuaded from cutting prices, then E™
must be less than 1/2(E™ + vE™ + v?E™ + ---). That is,

l<(+v+v*+--)=2, or v>31

This makes sense. If v is high enough (more than one half in
this instance), firms are unwilling to sacrifice future earnings for
immediate profits. Conversely, if v is low, firms disregard future
earnings and emphasize short-term results.?

Discount Rates

The discount rate measures the relative value of a dollar of
future earnings compared with a dollar of present earnings. The
interest rate is a part—but only a part—of this. Also important
is the uncertainty about future market conditions. Perhaps con-
sumer demand will slacken, other suppliers will enter the indus-
try, restrictive regulations will impede price adjustments—and
future profits will dissipate. Perhaps demand will grow and en-
try barriers will harden, increasing future profits. Perhaps rival
firms will differentiate their products and segment the market.?®

Future earnings in an inflationary economy are worth less in
real dollars. In a competitive market, they are also uncertain:

24This is a theoretical model. It assumes that an infinitesimal price reduction attracts the
entire market. In insurance, (1) a substantial rate reduction is required to gain market
share, and (2) shifts in the insured population occur at renewal time, not continuously.
The model of underwriting cycles developed below incorporates these elements.

25For more complete discussions, see Tirole [107, pp. 245-251], or Shapiro [98].
26Describing the discount rate, ¢, Shapiro [98, pg. 362, note 58] writes: “Formally, §
may be thought of as the product of two terms: § = ue'T, where p is the hazard rate
for the competition continuing (i.e., the probability that the game continues after a given
period, given that it has not previously ended), and e~ is the pure interest component
of the discount factor, with period length 7 and interest rate i.”
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anticipated profits may never materialize. Business strategy,
which determines the quantities supplied and the prices charged,
affects the realization of future profits.

The size of the discount rate (v) needed to discourage price
cutting varies with the number of competing firms. If there are
two firms of equal size, v must be greater than %, as the equation
above implies. If there are ten rival firms of equal size, v must
be greater than 9/10 to discourage price cutting.?’ The insurance
market has hundreds of rival firms in the major lines of business,
so this simple model implies that the discount rate must be near
unity to discourage price cutting. But if insurers generally price at
marginal cost, why are there severe profit cycles? To answer this
problem, we present a more sophisticated model. First, however,
let us take another detour: How does a firm choose an “optimal”
price?

Limit Pricing and Entry Barriers

The optimal price depends upon the strength of entry barriers.
If entry barriers are low and profits are high, new firms enter
the market. Entrants cannot gain market share if they charge
the current price, so they have little to lose by price cutting.?®
Incumbent firms rarely let the market price remain high enough
to attract new entrants.

The cut-off price between attracting and discouraging new en-
trants is termed the “limit price.” But why should the limit price
be any different from the competitive marginal cost price? If all
firms have the same production costs, then any price exceeding
marginal cost attracts new entrants.’

2That is, E™ must be less than (E™ +vE™ +v2E™ +--.)/10. Thus, 1 <(1 +v +v? +
---)/10, or v >9/10.

28In underwriting parlance, we speak of new entrants “buying” market share. A new
firm may suffer operating losses for several years before it develops a profitable book
of business. This is particularly true in insurance, since new entrants attract the marginal
and unprofitable risks.

29¢Limit pricing” is a standard economic term, unrelated to the actuarial procedure of
“increased limits pricing.”
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But firms do not all have the same production costs. In par-
ticular, new firms face a fixed (sunk) cost of entry, so the limit
price exceeds the marginal cost price.>"

In theory, there are few barriers to entry in insurance. The
insurer need build no factories to manufacture its product; it
may contract for the needed actuarial, underwriting, and loss ad-
justment skills; and statutory capitalization requirements are not
excessively onerous (although they are higher than they were
before the advent of risk-based capital requirements). The firm
may simply “hang out a shingle” and begin writing policies.

In practice, this is not correct. In the Personal Lines market,
the direct writers are profitable whereas the independent agency
companies are losing money. Yet few independent agency com-
panies have successfully switched to direct writing or exclusive
agency distribution systems. The constraints on the distribution
system are powerful, raising large entry barriers to the profitable
insurance markets.?!

The traditional barriers to entry, such as minimum efficient
production scales, or the advertising budget needed to place
products on retail shelves, are not important in insurance. The
insurance “distribution” barrier to entry does not involve getting
consumers to purchase policies. Rather, it involves getting the
better risks to purchase policies.

We return to this topic later on, in our model of underwriting
cycles. Note, however, how deceptive these barriers to entry are.

300n limit pricing, see Milgrom and Roberts [76] and Porter [93, pg. 14] (who uses
the term “entry deterring price”). Insurers face few fixed costs, particularly in lines of
business dominated by the independent agency distribution system. Entry into the Com-
mercial Lines insurance marketplace is deceptively easy—new firms believe they can
enter quickly. Thus, there is a short span between the marginal cost price and the limit
price.

31Several life insurers have recently entered the Property/Casualty Personal Lines mar-
ket. Although they came with strong underwriting, actuarial, and distribution systems,
enormous capital, and extensive experience in Life and Health insurance, most of these
firms have had trouble transforming the newly acquired Personal Lines risks into prof-
itable books of business. The hidden barriers to entry are strong deterrents to prospective
insurers.
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It is easy to enter the insurance market, since there are no ma-
jor capital or regulatory barriers. It is far more difficult to enter
successfully.

These are the bounds postulated by industrial economics. In
the long run, prices will not remain below marginal cost or above
the limit price.3? The actual prices charged depend on the number
of firms, the extent of “conjectural variation,” the discount rate
assumed by each firm, and other factors affecting the price-cost
margin.

The theoretical economist would ascribe the insurance indus-
try’s low profitability to the competitive characteristics of its
market.>> But we need a more specific analysis to understand
underwriting cycles, so we ask: “How do the nature of the insur-
ance product and the operations of the insurance carrier affect
anticipated profits?”

4. INSURANCE INDUSTRY CHARACTERISTICS

An industry’s structure and the characteristics of its products
influence both expected profits and strategic possibilities. Three
considerations particularly germane to insurance are

1. Product differentiation and substitute products,
2. Cost structures and barriers to entry, and

3. Consumer loyalty and price shopping.

We begin with these insurance attributes, in preparation for the
analysis of underwriting cycles.

321n the short run, this is not true. In declining industries, prices often sink below marginal
cost. In expanding industries, incumbent firms may price above the limit price, allowing
new entrants even as they reap large profits. Numerous other short term exceptions are
discussed in the economics literature.

33Plotkin [89, 90, 91, 92] has documented the relative profitability of insurers vs. other
firms. See also Braithwaite [19], Banfield [9], and Bailey [10].



UNDERWRITING CYCLES AND BUSINESS STRATEGIES 199

Product Differentiation

When firms supply products with varying attributes, such as
automobiles, computer hardware, and fashion clothing, each of
them may enjoy some market power and associated economic
profits. When the products of competing firms do not vary much,
as is true in agriculture, all firms may be constrained by the prices
of the most efficient producer. In short, product differentiation
increases expected profits.

Most insurance policies are indistinguishable to the average
consumer. In certain lines of business, such as Workers Com-
pensation and no-fault Auto Insurance, benefits are mandated by
statute. Even where no laws impede differentiation, product di-
versity is hard to maintain. Improved policy forms can be copied
by rivals, so advantageous innovations are transient.

The existence of close substitutes for an industry’s products
has a similar effect: substitutability constrains profitability. For
instance, aluminum often can be substituted for steel. Aluminum
prices constrain steel profitability, regardless of competition in
the steel industry.

In many lines of business, there are few substitutes for insur-
ance. The Personal Lines consumer has no choice but to pur-
chase an auto insurance or Homeowners policy. Similarly, most
small business owners must buy Workers Compensation insur-
ance, since self insurance techniques are feasible mostly for large
and sophisticated companies. The rising claims consciousness of
the public, and the increasing predilection of Americans to turn
to the courts, strengthens the demand for Commercial Liability
products. Small businesses have no alternative other than to buy
insurance protection.

In sum, the lack of product differentiation means that indi-
vidual insurers have difficulty increasing prices and profits. But
the lack of close substitutes for an essential product means that
the industry as a whole can raise or lower premium rates without
losing consumer demand. Formally, aggregate consumer demand
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for insurance products is inelastic with respect to price, but inter-
firm elasticity is high.

Cost Structures and Barriers to Entry

We distinguished above between traditional and “hidden” bar-
riers to entry. Traditional barriers depend on cost structures: min-
imum efficient plant size, up-front capital requirements, the time
needed to enter, and production process learning curves. Poten-
tial entrants observe these costs, which influence their willing-
ness to join the industry.

Insurance has few traditional barriers to entry. Almost all
costs, including losses, loss adjustment expenses, commissions,
salaries, and premium taxes, are variable, not fixed.3* No plants
need to be built, no expensive equipment is required, and statu-
tory capitalization requirements are manageable.’> Most costs
are paid either on the policy effective date (e.g., commissions)
or after the policy is in force (e.g., losses).>® The cash inflows
from “producing” an insurance policy precede the cash outflows,

34The distinction between variable and fixed costs differs from the actuarial distinction
between costs that vary directly with premium and those that do not. Salaries of non-
managerial personnel are variable costs, though they do not vary directly with premium.
The other expenditures listed in the text are both variable costs and vary directly with
premium.

35Meyerson [74, pg. 151], writing before the advent of risk-based capital requirements,
notes that “the initial capital and surplus requirements of most states are much too low un-
der present conditions.” Danzon [36] examines the relationship of state licensing statutes
to entry barriers, in terms of delay of operations and cost of entry. She finds average
delays of six to ten months, and an average personnel cost per state for entry expenses
of $100,000. She notes that these costs are too small to serve as entry barriers. See also
Klein [62, pp. 91-92], who shows high entry and exit to the Workers Compensation
market.

The implementation of risk-based capital requirements in 1994 for Property/Casualty
insurance companies should somewhat raise these entry barriers. For some small insurers,
though, the risk-based capital requirements are not that much higher than the previous
minimum capital requirements. The effect of the new capital standards is more evident
for medium and large insurers. In fact, an early attempt to add a “small company charge”
to the risk-based capital formula died on the conference table in 1993.
36Qther acquisition expenses and certain administrative and underwriting costs are ex-
pended before premiums are received. The National Council on Compensation Insurance,
using a 1977 study of Massachusetts Workers Compensation expenses, estimates that only
14% of “other expenses” (i.e., general expenses, other acquisition costs, and miscella-
neous taxes, licenses, and fees; thus, about 2% of insurance costs) are paid before the
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thereby facilitating the entry of new firms. Underwriting intrica-
cies are not readily discernable, and many entrants believe that
there is no significant learning curve. (In fact, casualty under-
writing is a fine art, but new entrants sometimes seem loath to
admit this.) Finally, a firm can contract for underwriting, actuar-
ial, accounting, and loss adjustment skills, so little time is needed
before writing policies.

As we noted earlier, the “hidden” barriers to entry in insur-
ance are powerful. It is easy to enter the insurance marketplace;
it is far more difficult to enter successfully. New entrants attract
marginal risks, and actual insurance losses are high in early pol-
icy periods. It takes many years to obtain a profitable book of
business (Conning & Co. [27]).

So new firms continuously enter the insurance market. Were
earnings steady, the high rate of entry would depress expected
profits. But fluctuating earnings, and the “hidden” entry barriers
discussed above, impair the chances of successful operations.
Many new entrants, with low quality books of business, do not
last through the trough of the first underwriting cycle.

Consumer Loyalty

Price changes affect purchasing decisions. If the price for a
particular brand of toothpaste rises 10%, some buyers of that
toothpaste may switch to other brands.

Some goods have large “switching costs.” Consumers of large
electrical equipment may not change suppliers unless prices rise
substantially, since such a switch would involve costs of installa-
tion, inspection, testing, retraining, and adapting other machin-
ery. In other words, consumer loyalty to a particular brand or

policy’s inception; see WCRIBM [117]. Mahler [68, Appendix 11, pp. 269-270] esti-
mates that only 20% of “company expenses” (that is, general expenses, other acquisition
expenses, and one half of unallocated claim expenses; thus, about 3% of insurance costs)
are paid prior to the policy’s inception.
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supplier depends upon the costs of changing products.’” High
switching costs impede competition and raise expected profits.

Toothpaste, unlike large electrical equipment, has no “switch-
ing costs.” Consumers have no constraints, either ante hoc or
post hoc, on the brands they choose. When switching costs are
absent, competition more easily dissipates economic profits.

Insurance seems similar. At renewal time, a consumer can
purchase coverage from a competing carrier with no additional
costs or gaps in coverage. This implies low expected profits in
insurance.

In truth, insurance is not at all like toothpaste, particularly in
the Personal Lines. Insureds rarely compare competitors’ prices
when their policies come up for renewal, whether or not they
made such comparisons when they first obtained the coverage.’®
Only if an insurer dramatically raises its rates will policyholders
begin searching for other agents or carriers.

Over the long term, insurance is no different from other goods.
Higher than average prices cause a slow but steady loss of mar-
ket share, which is extremely difficult to win back. But in the
short term, a reputable insurer can maintain a higher than average
price-cost margin without a significant loss of business.

Were insurance earnings steady, long-term expected profits
would be low. The lack of product differentiation and the appar-
ent ease of entry would force insurers to price close to marginal
cost. But the lack of close substitutes, consumer loyalty, and the
difficulty of successful entry facilitate short-term price fluctua-

3TPorter [93, pg. 10] defines switching costs as “one-time costs facing the buyer of
switching from one supplier’s product to another’s”; he adds: “Switching costs may
include employee retraining costs, cost of new ancillary equipment, cost and time in
testing or qualifying a new source, need for technical help as a result of reliance on seller
engineering aid, product redesign, or even psychic costs of severing a relationship.”
38Fox [47] reports that most of the auto policyholders who made cost comparisons did so
at least two years prior to the survey date; see particularly his Tables 2 and 3 on page 23.
Joskow [58] describes the relationship of policyholder information to insurance industry
market structure.
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tions. These characteristics of the insurance industry underlie the
model of underwriting cycles in the following sections.

5. DYNAMICS OF THE UNDERWRITING CYCLE

Profit Cycles

Profit fluctuations may take two forms. In the first form, the
market is in equilibrium during certain periods. External influ-
ences change costs, supply, or demand, and they thereby shift ex-
pected profits. Disequilibrium results until the price mechanism
forces profits back to the original level. If external influences
again affect the market, the fluctuations start anew.

Such profit fluctuations are rarely cyclical. For instance,
weather conditions affect farm produce and profits: an unex-
pected frost may damage citrus fruit production, or a severe
drought may lower crop supply. The affected farmers suffer from
lost production, while other farmers benefit from higher prices.
Prices and profits fluctuate, but the pattern is not cyclical.

Underwriting cycles take a different form: no phase is in
equilibrium. Insurer strategies during profitable years drive rates
down; changed strategies during poor years push rates up.

At two points in the cycle, in the upswing and the downturn,
prices pass through the same point. But the underlying forces are
different. One reflects a downward driving price strategy founded
on high rates; the other reflects an upward driving price strategy
founded on inadequate rates. This difference may be missed by
an outsider looking at a snapshot of industry income. But the
disparity is keenly felt by the businessman struggling for profits.

The Profitable Years

If there is no equilibrium point, there is no good place to
begin analyzing the cycle. Yet we must start somewhere. So we
begin, perhaps arbitrarily, at the top, as in 1977-78 or 1986-87
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or 1992-94 (for Workers Compensation): income is high and
insurers are satisfied.

Entry and Exit

Satisfaction breeds desire. Outside firms are enchanted by the
ease of insurance operations: simply write the policy, collect the
premium, and pay less in claims while you invest the assets.
There are few explicit barriers to entry, so new firms join the
industry.

Figure 1 shows insurance company entries and exits in the
1980s. Note the prevalence of entry into an industry earning
below average profits and with low growth potential. Many of
these entrants quickly failed. Insurance company exits climbed
during the unprofitable 1984-85 and 1989 periods, and dipped
in the profitable 1980-82 and 1987 periods.>®

New insurers cannot sell their policies at the going market
rate. Entrants must discount prices in any industry. This is all the
more true in insurance, where it is hard to attract new customers.
But new insurers believe that they have little to lose by charging
lower rates. They have no existing business, so they do not lose
money on older policyholders by cutting rates. Any price above
marginal cost is profit.40

Price Shaving and Market Shares

New entrants charging low rates are an unwelcome thorn in
the industry’s side. Equally unwelcome is the change in strategy
among existing insurers.

The model presented in Section 3, “Competition and Prof-
its,” assumes an equal division of the market among insurers.

39See Stern [100]. Nelson [85], analyzing data for 1957 through 1967, notes that the
number of exits is correlated with the combined ratio with a lag of one year.

4OMeidan [73, pg. 395], who calls this a “market challenger strategy,” notes that it “is
characterized by the aggressiveness of the marketing tactics. Typically insurers that follow
this strategy are ambitiously trying to grow as fast as they can.”
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Suppose, instead, that there are ten firms: one has 50% of the
market, eight have 6% of the market, and one has 2% of the
market. Also assume that the appropriate discount rate is 10%
per annum. Let us restore the ideal assumptions for a moment:
if any firm cuts prices, it immediately attracts all consumers.
Moreover, if any firm cuts prices, its competitors reduce their
prices to marginal cost.

The large firm presently earns 50% of the industry’s economic
profits. If current pricing continues, it will earn this amount in
perpetuity. Using the notation of Section 3, where E™ is annual
economic profits at the market price and v is the discount rate, the
present value of this profit stream is (50%)(E™)(1 +v +v? +---).
This equals 5.5 x E™ at a discount rate of 10%. If the insurer cuts
prices slightly, it earns a bit below E™ in the current year, but
no economic profits in all future years. The large firm has an
incentive to continue its present pricing strategy.

Now consider the firm with only 2% of the market. It now
earns 2% of the industry’s economic profits. If conditions do not
change, it will earn this amount in perpetuity. The present value
of its profit stream is (2%)(E™)(1 + v +v? +---), or 0.22 x E™ at
a 10% discount rate. If it cuts prices slightly, it earns much more
than this in the current year. The small but aggressive firm has
a strong incentive to cut prices.*!

Realistically, of course, the small insurer will not instantly
capture the entire market with a small price reduction. Most pol-
icyholders are loyal to their current insurers, and they often ig-

4IHarrington and Danzon [54] suggest that the aggressive marketing strategy of small
firms may result from an inability to avoid the “winner’s curse.” In competitive bidding
among suppliers, a firm which provides unbiased bids will generally win only when its
offered price is too low. When its offered price is too high, another supplier will generally
win. Harrington and Danzon differentiate between established and inexperienced firms:
“...established firms in stable markets have learned to make formal or informal adjust-
ments to their loss forecasts in order to avoid the curse. The availability of information
from agents and brokers also may facilitate this process.... Inexperienced firms may use
nonoptimal forecasts, placing too much emphasis on their own information or drawing
incorrect inferences from the actions of other firms.”
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nore competitors’ rates at renewal time. The small firm’s rate
decrease would slowly increase its market share: say, 10% a year.
Although substantial, the gain is not overwhelming.

The large insurer expects different outcomes. A carrier with
50% of the market may have already saturated its target customer
populations. Even if it desires to grow rapidly, there are few new
insureds for it to attract. The large firm’s rate reduction may
increase its market share only 1% a year.

Rival Responses

Competitive responses to rate cuts by a small firm or a large
firm also differ, particularly in insurance. Premium rates vary by
classification, territory, type of coverage, and similar dimensions.
Rate comparisons can be an exhausting task, especially when
the classification schemes of the insurers differ. Thus, carriers
do not monitor premium rates of small companies. In Personal
Auto insurance, insurers analyze the rates charged by State Farm,
Allstate, and a handful of other large carriers. The premiums
charged by smaller insurers are revealed only in industry-wide
accounting statistics. Actual rates, although publicly available in
rate filings, are rarely examined.

Moreover, rivals do not react swiftly to rate cuts by small
insurers. If a firm with 1% of the market has a 10% growth in
business, and the new business is drawn evenly from its rivals,
then the other firms suffer only a 0.1% decrease in volume. If an
insurer with 50% of the market has the same growth, its rivals
lose 10% of their business.

Thus, when rates are high, small insurers are tempted to
cut prices aggressively.*’> Their actions may not be noticed, re-

42 Anderson and Formisano [5], in a study of six insurance failures between 1975 and
1985, found rapid premium growth, expansion to other states, and inadequate pricing to
be three of the most significant causes of the insolvencies. For instance, in the years pre-
ceding the insolvencies, Reliable Insurance Company and All-Star Insurance Company
had premium growth of over 50% per annum. Wisconsin Surety Company expanded
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sponses of rivals will be delayed, they may increase market share
rapidly, and their revenues will climb. Large insurers, however,
have less incentive to reduce rates. Their market shares increase
more slowly, their actions are quickly noticed, competitors re-
spond swiftly, and the premium lost on existing business may
exceed the premium gained on new insureds.

The incentive for an incumbent insurer to reduce rates de-
pends on the expected profits in its renewal book of business.
Renewal business is generally more profitable than new busi-
ness, and insurers strive to maintain policyholder loyalty. An
incumbent insurer may reduce its own rates to avoid the loss of
profitable renewal business to a competitor.

The profitable phase of the underwriting cycle is in disequi-
librium. Some firms enjoy current earnings, others aggressively
seek to grow, and entrants clamor to join the industry.

Competitive Strategies

Profits influence business strategies. As the profitable phase
of the underwriting cycle continues, more firms ignore short term
income and seek growth. For simplicity, let us differentiate strate-
gies between (a) aggressive growth and (b) price maintenance.
Assume that at time ¢, w% of firms emphasize aggressive growth
and (100 —w)% of firms emphasize price maintenance.

The change in w depends upon the sign and magnitude of
economic profits, labeled p here. The greater the economic prof-
its and the longer the economic profits are expected to persist,
the more firms will seek aggressive growth.*?

from 2 states to 13 states in 6 years, and Eastern Indemnity Corp. expanded from 1 state
to 34 states in 5 years. The aggressive marketing strategies of these insurers eventually led
to their failures. As Anderson and Formisano comment (page 460): “rapid growth...can
realistically only be accomplished by pricing below cost and taking an unreasonable
proportion of poor risks.” Similarly, Best’s [12, pg. 39] notes that “approximately 81%
of all insolvencies occurred in companies experiencing unusual growth trends, which we
defined as growth outside industry norms of 5% to 25%.”

43 Actuaries are tempted to express such relationships as partial derivative equations. We
might say that the partial derivatives of w with respect to both ¢ and p are positive.
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This price maintenance strategy is not sustainable. If your ri-
vals are cutting prices and gaining market share, you must either
respond or disappear. But the optimal response depends on the
number of firms reducing rates. If the percentage of firms ag-
gressively seeking market share is small, then it is reasonable to
hold prices above marginal cost. The high level of policyholder
loyalty to the insurer means that insurance market share growth
is a slow process. For instance, suppose that 10% of firms are
aggressively cutting rates, or w = 10%. (For simplicity, assume
that firms are of equal size, so 10% of firms means 10% of the
market.) If such discounts provide a 10% annual growth in mar-
ket share, then these firms will have 11% of the market after a
year’s time, and their rivals will remain with 89% of the market.
The maintenance of high prices has led to a 1% reduction in
market share—a small loss compared to current profits.

If 50% of firms are aggressively reducing prices, the outcome
changes. The same 10% market share growth for these firms
reduces their rivals’ portion from 50% to 45%. Short term profits
do not offset a 10% loss of business.

The Nadir of the Cycle

How might one respond? Following rates downward is no
remedy. The insurance industry has thousands of firms, a com-
petitive structure, and invitingly easy entry conditions. Expected
profits would be extremely low if prices were left purely to mar-
ket pressures.

Indeed, premium rates do not drop slowly when the cy-
cle heads downward. Rather, prices cascade downward, to
well below marginal cost. Industry Annual Statement operating

In truth, we lack information about expected profitability (and about expected duration
of profitability), and we lack good information about business strategies. Mathematical
expressions give an aura of empirical precision that is not warranted.

Perhaps one day we will have empirical data on the causes of underwriting cycles. We
do not have such data, and we do not pretend to have such data. This data provides an
intuitive understanding of underwriting cycles, based on types of market structures and
competitive strategies found in other industries.
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income was negative in 1975 and again in 1984-85. Moreover,
the reported operating ratios conceal the true severity of under-
writing cycles, for several reasons:

First, accounting data does not include a “reasonable profit”
margin, although the economist’s marginal cost does. For in-
stance, a 2% accounting return on equity is a severe economic
loss.

Second, most insurers desire steady earnings, particularly if
their financial statements are scrutinized by government regu-
lators or by stockholders. Insurers tend to under-reserve during
poor years, thereby increasing net income. Conversely, when
profits improve, insurers strengthen reserves of prior years,
dampening their reported earnings.

It is difficult to quantify these effects, since the “reason-
able insurance profit margin” is much disputed and reserve
strengthening and weakening is difficult to quantify. Never-
theless, rates were surely below marginal cost during 1974
and 1983 (in addition to 1975 and 1984-85).

Third, the severity of the cycle differs by line. General Liabil-
ity rates, for example, were below marginal cost in 1982 and
perhaps in 1981 also. In other words, an accurate analysis of
income adjusted for reserve changes by line of business with
a reasonable profit provision shows severe price inadequacies
for several years in a row.

To recapitulate: during profitable years, there are incentives

for small firms to aggressively seek market share and for new
firms to enter the insurance industry. The lack of product dif-
ferentiation, the positive cash flow from insurance operations,
and the ease of entry would normally reduce or eliminate profits
from the industry.

Yet total consumer demand for insurance is inelastic with re-

spect to price. The difficulty of price comparisons and consumer
loyalty to insurers provide a large potential profit margin.
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The deciding factor is business strategy. If firms aggressively
seek market share by cutting rates, profits decline for all insurers.
Formal agreements to maintain high prices are not sustainable in
an industry as competitive as insurance. Rather, small firms and
new entrants may be dissuaded from pursuing overly aggressive
strategies by the competitive reactions of incumbent insurers.

Thus, the downward rate spiral is not a reflection of simple
competitive pricing. Rather, it is a competitive response to ag-
gressive strategies. By temporarily cutting rates below marginal
cost, incumbent insurers hope to persuade more aggressive but
short-sighted firms to modify their objectives from market share
to profitability.

Changing Strategies

Indeed, as operating profitability decreases, overly aggressive
insurers begin to rethink their strategy. First, low prices no longer
attract additional consumers, since even the major firms have cut
rates. Second, if profits remain negative, all firms suffer.

The changes in insurer strategies are revealed in the insurance
trade press and trade conferences. As the cycle deepens, laments
on the evils of price cutting become frequent, and exhortations to
refrain from the unprofitable pursuit of premium abound. These
public proclamations are disavowals of aggressive intentions. In-
surers say: “We renounce the use of rate reductions to gain mar-
ket share, for we see the folly of our ways.”

We can model the change in strategy as follows. As the trough
of the underwriting cycle continues, more firms renounce market
share gains and seek profitable business. The larger the expected
losses, and the longer the duration of the expected losses, the
more the firms emphasize increased profitability.

Industry Discipline

When the cycle turns up, insurers who previously engaged in
competitive “warfare” seem to raise rates in unison. Politicians,
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consumer activists, and the legal community suspect antitrust vi-
olations. But there is no collusion, no intercompany agreements,
and only a general knowledge of competitors’ intentions.**

Rather, the change in behavior reflects the change in strategy.
The public exhortations during the trough of the cycle are not ac-
companied by rate increases. Each insurer knows that if it raises
prices unilaterally, it will lose business, not return to profitabil-
ity. In fact, most insurers always knew that severe rate cutting is
destructive to the industry. The public statements are intended to
persuade other firms to cease overly aggressive behavior. They
are not explanations of any firm’s current actions.*

Consider again the formal model. If economic profits are suf-
ficiently negative long enough, most firms will have shifted their
emphasis from market share growth to maintaining profitable
rates. Yet a high price maintenance strategy is profitable only if
all or most firms in the industry follow this path. Indeed, after
two or three years of pricing below marginal cost, most firms
are committed to writing profitable business. But how does one
move from a low price situation to a high price situation?

Market Leaders

In a highly competitive and fragmented industry like insur-
ance, firms cannot easily monitor the actions, much less the strat-
egies, of their rivals. They need a barometer of industry feelings.

44See, for instance, the class action antitrust complaint in Van de Kamp [108] and an
industry response by the Insurance Information Institute [56].

45Compare Porter [93, pg. 81]: “It is not uncommon for competitors to comment on
industry conditions.... Such commentary is laden with signals.... As such, this discus-
sion can be a conscious or unconscious attempt to get other firms to operate under the
same assumptions and thereby minimize the chance of mistaken motives and warfare.
Such commentary can also contain implicit pleas for price discipline: ‘Price competi-
tion is still very harsh. The industry is doing a lousy job of passing along increased
costs to the consumer.” ‘The problem in this industry is that some firms do not recog-
nize that these current prices will be detrimental to our ability to grow and produce a
quality product in the long run.” Or discussions of the industry may contain...implicit
promises to cooperate if others act ‘properly.”” [The quotations are from the president
of the Sherwin-Williams Coating Group and from an executive of a leading commodities
producer.]
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Rate filings make dull newsprint. “The XYZ Insurance Com-
pany has requested a 5.1% rate increase in Arizona for Bodily
Injury coverage, 4.3% for Property Damage,....” Who would
ever read such details?

The National Underwriter periodically records State Farm’s
rate filings (often only State Farm’s filings) in various jurisdic-
tions. State Farm is the market leader and low cost carrier in
Personal Lines coverages. It serves as the barometer of industry
movement through the underwriting cycle.*® By examining and
following State Farm’s actions, other firms maintain a close grasp
on industry price movements, even if they lack the resources to
monitor competitive rates on their own.

When other carriers see State Farm raising rates, they know
that firm strategies have shifted sufficiently to allow maintenance
of high prices. Insurers follow (or sometimes even anticipate) the
market leader in the various jurisdictions, leading to the good
years of the cycle.

In the Commercial Lines, there is no clear market leader. The
major Commercial Lines insurers, such as Travelers, Hartford,
CNA, AIG, and Liberty Mutual, have relatively small country-
wide market shares. Other carriers do not follow AIG’s Gen-
eral Liability rates the way they examine State Farm’s Personal
Auto rates. Consequently, the industry trade press rarely men-
tions Commercial Lines rate actions.*’

46Moreover, State Farm has a sophisticated monitoring system to analyze the rate actions
of its peer companies. Not only do State Farm’s rates affect a large percentage of the
insured population, but they also reflect of the strategies of other carriers.

47TPersonal Lines risks are manually rated, so State Farm’s rate manual is an accurate
reflection of marketplace prices. Large Commercial Lines risks may be loss rated, com-
posite rated, schedule rated, or retrospectively rated. The rate manual is but a crude guide
to actual prices. In fact, many General Liability classifications are “A-rated,” so there are
no manual rates to examine.

In the Personal Lines, price changes are effected by rate filings. In the Commercial
Lines, prices may also be changed by varying schedule rating credits and debits, by
modifying the premium payment pattern, by changing policyholder dividend plans, and
by similar “non-manual” methods. Thus, rate comparisons are more difficult in the Com-
mercial Lines of business.
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Rating Bureaus

Rather, Commercial Lines insurance strategies are revealed
by deviations from bureau rates or bureau loss costs. The Na-
tional Council on Compensation Insurance (NCCI), and state
bureaus in certain jurisdictions (e.g., California, Massachusetts,
Minnesota, New York, Pennsylvania), provide loss costs for all
Workers Compensation classifications. Similarly, the Insurance
Services Office (ISO) provides loss cost data for the other Com-
mercial Lines. Most insurers use NCCI or ISO rates as a bench-
mark, and file rate deviations or independent rates with state
insurance departments.

After several years of unprofitable operations, insurers know
that the industry is ready to increase rates. ISO (or another rat-
ing bureau) provides the catalyst. When private insurers follow
ISO loss costs, without seeking major deviations, firms know
that the industry is committed to profitable rates. The individual
carriers may then curtail schedule rating credits and other price
modifications, confident that their rivals are doing the same.

Profits encourage aggressive rate cutting. After one or two
good years, insurer strategies begin emphasizing market share
growth, and new firms are attracted to the industry. The cycle
begins anew, in perpetual disequilibrium.

6. PUBLIC POLICY

As each cycle rolls through the industry, insurers ponder:
“What determines the severity and frequency of underwriting
cycles? What lines of business are most subject to them? When
will the cycle turn? How do state regulation and statutes influ-
ence cycles?” It is time to answer these questions.

Policyholder Loyalty and Price Elasticity

The beckoning of profits leads the cycle. Why drive rates
down if you cannot recoup the losses later? Firms would prefer
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to price at marginal cost rather than lose money over the long
term.

Periods of high prices are sustainable only if consumers do
not reduce their purchases of the good and do not switch to rival
suppliers. In other words, the price elasticity of demand must be
low enough that consumer demand will not drop substantially
when suppliers raise prices.

Removing statutory requirements for Personal Automobile
and Workers Compensation insurance, and curtailing judicial
awards in commercial liability cases, might increase the price
elasticity of demand for insurance. But the statutory insurance
requirements help the victims of motor vehicle and workplace
accidents. The benefits they provide outweigh the disadvantages
of premium rate fluctuations.

The unpredictability of jury awards in commercial liability
cases provides little social benefit, and the harm to society ex-
tends beyond insurance availability and rate fluctuation concerns.
Unfortunately, the limited success of tort reform efforts in the
1980s and early 1990s highlights the intractability of this prob-
lem. To restate this: the trial bar is a powerful interest group
that opposes tort reform. The results of the pervasive attorney
involvement in insurance claims are bloated insurance costs and
the redistribution of wealth from citizens to a particular pro-
fession (AIRAC [2; 3]). More volatile underwriting cycles are
simply an additional side-effect.

Policyholder loyalty results from the difficulty of price com-
parisons. Personal Lines policyholders may be unaware of price
slashing by competing insurers, since they rarely price shop at
renewal. An insurer can maintain high prices for a short period
without a major loss of market share when its competitors begin
cutting rates.

Price increases, however, encourage insureds to seek better
rates elsewhere. Unilateral price increases cause a loss of market
share, as consumers switch to rival carriers. Industry-wide price
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increases are easier to sustain, since consumers cannot do better
elsewhere in the marketplace. Thus, the descent to the trough of
the cycle is precipitated by a small group of insurers, but the
return to profitability is a uniform movement.

Greater consumer price information would reduce loyalty to
the current insurer and mitigate the severity of underwriting cy-
cles.*® Firms would not be able to sustain high prices in the
face of competitive price cutting without rapidly losing market
share. Prices closer to cost would prevail over the duration of the
underwriting cycle.

Life insurance regulation demonstrates the difficulty of pro-
viding price comparisons. The NAIC Life Insurance Solicitation
Model Regulation requires that insurers illustrate surrender cost
and net payment cost indices for 10 and 20 year durations, but
few consumers examine these numbers (Black and Skipper [15]).
Such comparisons are difficult, and few individuals expend the
effort to understand them.

The same is true for Property/Casualty insurance. Consumers
do not forgo price comparisons because the information is not
available. Rather, the information is not available because the
price comparisons are so distasteful.

Underwriting Cycles by Line

The history of underwriting cycles in America illustrates these
relationships (see Figures 2 and 3). During the 1960s and 1970s,
underwriting cycles were most pronounced for Personal Auto-
mobile and Workers Compensation insurance.*® In the 1980s,

“8Numerous studies have recommended that states make insurance price information
accessible to consumers; see Virginia Bureau of Insurance [114], recommendation #5,
or NAIC [81, pp. 440-441].

49See Stewart [101, Exhibits 5-3, 5-4, and 5-8 on pp- 290, 291, and 295]. Note how
the cycles in automobile insurance mirrored those for the industry as a whole, whereas
General Liability showed no clear pattern until the late 1970s. Similarly, Best’s [12, pg.
33] notes that “while the majority of insolvencies during the 1970s occurred in personal
lines companies, commercial lines companies accounted for the majority in the 1980s.”
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General Liability and other Commercial Liability lines showed
the greatest fluctuations in profitability: negative in 1981-1984
and highly positive in 1986—1988.

This difference is influenced by demand elasticities and bar-
riers to entry. Personal Automobile and Workers Compensation
insurance are statutorily mandated by Financial Responsibility or
compulsory insurance laws. Price elasticity of demand is low.”°

The opposite was true for General Liability until the 1970s.
Believing that they had little exposure to liability hazards, many
small businesses declined to purchase the coverage. Large cor-
porations often used other risk management techniques, such as
self-funding and captives.

In the 1950s and 1960s, many Personal Lines insurers used
bureau rates, either as actual rates or as a baseline for pricing.
By the 1980s, the low cost direct writers, such as State Farm
and Allstate, had garnered most of the Personal Lines market.
The efficient distribution systems of these insurers formed strong
barriers to entry or expansion by other firms.

The opposite course has characterized the Commercial Liabil-
ity lines of business. The major direct writers do not dominate
these markets. Moreover, the lengthening tails in these lines and
the rising interest rates in the 1970s increased the disparity be-
tween bureau rates and marginal cost.

500n the low price elasticity of demand, see Sherdan [99, pg. 58]; Bloom [16]; and
Strain [103, pg. 448]. Strain summarizes the influences on elasticity as “The greater
the tendency for the public to buy an insurance coverage without the need for sales
stimulation (as to comply with financial responsibility laws, or workmen’s compensation
acts, or mortgage protection requirements), the more inelastic the demand for insurance.”
Financial Responsibility laws require a driver involved in a motor vehicle accident either
to show evidence of insurance or to post a court bond (Morill [77]; Mehr and Cammack
[72, pp. 308-329]; Bickelhaupt [13, pp. 646—678]). Employers must provide Workers
Compensation insurance, with minor exceptions that are relating to farm employment,
household work, or businesses with few workers. Employers that are financially strong
enough to self-insure may provide the statutory benefits on their own. For history and
detail, see Myers [79, pp. 884-900], Kulp and Hall [64, pp. 191-250], and Chamber of
Commerce [25]. Many states allow group self-insurance (NAIC [82]). This increases the
price elasticity of demand, since consumers have another risk management technique.
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The high costs of Workers Compensation insurance in the
late 1980s, exacerbated by large residual market loads in many
jurisdictions, led many employers to alternative risk manage-
ment techniques, such as group self-insurance and large dollar
deductible policies. Price elasticity of demand increased, and a
uniform increase in price would drive the better risks from the
insurance market. So Workers Compensation remained unprof-
itable through the 1980s, until the state legislative reforms and
the managed care revolution of the 1990s lowered loss costs
without necessitating large rate increases.

Regulation and Social Developments

Changes in state regulation may influence underwriting cy-
cles. During the 1960s and early 1970s, many states moved from
prior approval regulation to open competition laws.>! Competi-
tive rating laws allow more freedom for private insurers to vary
premium rates in attempts to gain market share or increase prof-
its.

The 1980s and 1990s show ambiguous trends. California
adopted prior approval regulation in November 1988, with the
passage of Proposition 103, and consumer groups in other states
are pushing similar legislation. Meanwhile, the low cost direct
writers are driving agency companies out of the Personal Lines
market. Tighter governmental regulation and increasing market
concentration may dampen the severity of Personal Automobile
underwriting cycles.>>

Social developments in the 1980s and 1990s have had the
opposite effect on the Commercial Liability lines. The expansion
of tort law doctrines, and the increasing unpredictability of jury
awards, have made coverage essential even for small firms. State

S1See NAIC [83, pg. 310]: “It is the sense of the Subcommittee...that...reliance be
placed upon fair and open competition to produce and maintain reasonable and compet-
itive prices for insurance coverages....” See also DOJ [41]).

52Compare Eley [43, pg. 187]: “If the likelihood of extraordinary profits during hard mar-
kets is removed, the willingness of insurers to give away insurance during soft markets
will evaporate.”
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regulation is less restrictive, since commercial insureds can fend
for themselves and do not need the governmental protection that
ordinary citizens require. The major rating bureaus, such as ISO
and NCCI, have changed from advisory rates to loss costs in
most jurisdictions, and may soon be further transformed into
quasi-consulting organizations. Commercial lines rate and form
deregulation is possible in the early years of the 21st century.

Consequently, General Liability promises potential profits for
the discerning insurer.”3 In the late 1970s, insurers complained
vociferously about rising and unjustified liability awards. The
criticism was correct: the American legal system encourages law-
suits and the redistribution of wealth from the public to the trial
bar. But a secondary effect of these complaints was to impress
upon businesses the need for liability coverage.

Numerous suppliers—major carriers, small firms, and new
entrants—joined the fray, and insurers began positioning them-
selves (that is, cutting prices to build market share) for the antici-
pated profits. The aggressive competition threatened to eliminate
the foreseen returns.

So General Liability entered the trough of a severe under-
writing cycle, with firms slashing rates well below cost. The
consequences were striking: when rates rose in 1985, there was
an almost complete absence of aggressive price cutting.>*

53This promise may prove illusory. Insurers who provided CGL coverage in the 1960s
and 1970s are now facing enormous asbestos, pollution, and products liability litigation
(Hamilton and Routman [52]; Manta and Welge [69]). Nevertheless, the potential is
alluring.

54The power of underwriting cycles is often misunderstood. Much of the American legal
community and the business public concluded that the dramatic and uniform rise in
Commercial Liability insurance rates must be the result of collusion. Yet no evidence of
such behavior could be found. In fact, collusion is nearly impossible in the fragmented
insurance market.

Even the Attorneys General’s antitrust complaint was confined to allegations of boy-
cott in policy form development, statistical support, and coverage exclusions. Pricing in
concert is never mentioned (Van de Kamp [108]). The California Attorney General’s
office explains that pricing in concert is protected by the McCarran-Ferguson Act and so
was not contested. An alternative explanation is that the Commercial Liability insurance
rate increases were characterized not by pricing in concert but by the competition driving
the underwriting cycle.
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And the cycle continues. The aggressive competition that pre-
cipitated the rise in rates in the mid-1980s led to price cutting a
few years later. The waning influence of rating bureaus and ad-
ministered pricing systems in the fragmented insurance market
will lead to even more severe swings in premiums.

7. CONCLUSION

Underwriting cycles are a means of maintaining long-term
profits, not a random occurrence that removes them. Insurance
underwriting cycles are the display of competitive pricing in a
free marketplace. To optimize the results of their companies,
pricing actuaries must learn to adapt their rate setting techniques
to the phases of the underwriting cycle.
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Abstract

The paper defines plausible ways to measure sam-
pling error within efficient frontiers, particularly when
they are derived using dynamic financial analysis (DFA).
The properties of an efficient surface are measured both
using historical segments of data and using bootstrap
samples. The surface was found to be diverse, and the
composition of asset portfolios for points on the efficient
surface was highly variable.

The paper traces performance of on-frontier and off-
frontier investment portfolios for different historical pe-
riods. There was no clear cut superiority to the on-
frontier set of portfolios, although lower risk-return on-
frontier portfolios were generally found to perform bet-
ter relative to comparable, off-frontier portfolios than
those at higher risk levels. It is questionable whether
practical deployment of optimization methods can occur
in the presence of both high sampling error and the rela-
tively inconsistent historical performance of on-frontier
portfolios.

The implications of this paper for DFA usage of ef-
ficient frontiers is that sampling error may degrade the
ability to effectively distinguish optimal and non-optimal
points in risk-return space. The analyst should be cau-
tious regarding the likelihood that points on an efficient
frontier are operationally superior choices within that
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space. There are many possible frontiers that optimally
fit different empirical samples. Sampling error among
them could cause the frontiers to traverse different re-
gions within risk-return space, perhaps at points that
are disparate in a decision sense. What is an efficient
point on one frontier may be inefficient when calculated
from a different sample. The paper finds the use of an
efficient surface to be helpful in diagnosing the effects
of such sampling error.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the very constructive com-
ments of reviewers of the paper.

1. INTRODUCTION

Companies choose among investments often with the purpose
of optimizing some goal and always limited by constraints. As-
sets are divided among competing investment alternatives with
the hope that risk will be minimized for a desired level of re-
turn, either investment return or overall return. When the alloca-
tion fulfills the goals within the boundaries of constraints, it is
thought to be efficient. The allocation is deemed to be a mem-
ber of the efficient set at a point on an efficient frontier. It is
efficient because it dominates off-frontier, interior points in the
risk-return space.

This paper investigates this popular investment allocation
strategy in two ways. First, it seeks to determine what the sensi-
tivity of the frontier is to possible sampling error in risk-return
space. Second, both on-frontier and off-frontier portfolio alloca-
tions for actual series of returns are tracked for their respective
performance. We begin with an apologue; it gives the reader
both a rationale and definition of what we mean by an efficient
surface.
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1.1. A Sampling Error Apologue

I walk into a casino with shaky knees and a rather small stake.
Betting doesn’t come easily for me, and I expect to lose the stake.
Ralph told me I would lose it. But I have a bevy of information
gleaned from experiments Ralph did with a computerized sim-
ulation of a craps table. One of the items I call “knowledge” is
the efficient surface he made for me. Ralph said it would help
me understand the risk-return properties of the craps table and
guide me in allocating my stake among the various bets that I
can make.

“There are many bets you can make at the table,” Ralph ex-
plained, “‘Come,” ‘Big-8’ and lots of others. I think of the gam-
ing as a multivariate process. Of course, it has probabilities that
are objective and can be measured. Do you want me to figure
out the combinatorics of the craps game and derive analytic so-
lutions for optimal bet placement? My consulting fee might be
a bit high because the math will take awhile, but I could do it.”

I mentally recalculated my meager stake and replied, “Is there
a less expensive way?”

Ralph shrugged and said, “Sure. I can use a computer simu-
lation I have and take a sample of game outcomes. I’ll use the
sample to empirically develop a covariance matrix for some of
the bets. Then, I’ll figure out which combinations of bets have
minimum variance for a particular payoff. You can choose which
risk-return profile of bets is best for you. You’ll be able to al-
locate your stake more efficiently. By the way, this is called an
efficient frontier—it gives a profile of bets that are expected to
produce a given return with minimum variance. I’ll do a sample
of 25 games each with a combination of various bets. This will
keep the cost down.”

“Well, okay,” I replied, “but will this single efficient frontier
really work?”

“What do you mean, ‘single frontier’?” he asked.
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“What if the sample your computer simulation comes up with
is unusual?” Ralph scratched his head, and I continued, “You
measure this thing you call a sample covariance matrix. But what
if you took a different sample? You’d get a different sample
covariance matrix, right?”

64Yes.?’
“And it might be different?”

“Yes. Even materially different.”

“So, your efficient frontier (EF) is subject to sampling error:
it was empirically derived from the sample of only 25 games.” |
then asked, “What if you had a second sample of 25 games and
did another mathematical optimization. So we now have 2 dif-
ferent EFs; both do the same thing, but the answers are different.
Which one do I use when I walk into the casino?”

Ralph exclaimed, “I’ll take a sample, and then another, and
another. Each will have a different EF. Then, I’ll plot each point
of the samples’ EFs in risk-return space. I’ll count the number
of times the various EFs traverse a particular cell in that space.
Maybe 10 EFs traverse the cell at the coordinates (10,15). Maybe
only 3 EFs traverse the cell at (1,3). Don’t you see? Just by
counting the number of times the sample EFs traverse a region
in risk-return space and normalizing the count to probabilities, I
can measure an efficient surface.”

I asked, “Why is the surface important?”

Ralph was now animated. He leaped to his feet. “Because,
if the various sample EFs all traversed the same cells, the EFs
would all be the same—there would no sampling error. What if
the surface is spread out? Suppose some sectors of it are rel-
atively flat? Then the efficiency of the EFs varies. Would you
prefer to pick a point on the surface (with a particular combi-
nation of bets) that appears most often among different EFs?
Probably you would. You want the surface to be tightly peaked.
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In three dimensions, that’s a ridge or very pointy hill; in two
dimensions, it is a probability distribution with little variance.”

He then went home to begin the chore of sampling and con-
structing an efficient surface for me. I began to think, “A single
efficient frontier is measured from data. We often think of the
data being a sample from a replicable experiment. If a sample
of dice games is observed, the n-tuple bet outcomes for the cor-
related bets are the empirical data source for an optimization. It
is easy to see how different samples can be drawn when talking
about dice games. But the world of security returns is different
from a craps table. What is a sample there? What is the meaning
of sampling error, and how might it affect the way I measure ef-
ficient frontiers? Would an EF for securities really be efficient?”

These are important questions—ones addressed in this paper.
It is difficult to think of how we’d repeat an experiment involving
security returns. Is a series of experiments one that uses different
historical periods of returns? Is it a bootstrap of a broad segment
of history? These are the two approaches that are equivalent to
sampling and measuring sampling error. The result of our mea-
surements is an efficient surface.

1.2.  Roadmap for the Paper

Section 2 of the paper lays the groundwork for measuring
sampling error that affects efficient frontier measurement. We
examine two approaches that seem particularly useful for dy-
namic financial analysis. We also review the literature relating to
EF efficiency. Section 3 introduces the notion of an efficient sur-
face—this is a construct for understanding and measuring sam-
pling error in EFs. In this section we describe the methodology
and data set used in our study.

The main body of results is presented in Sections 4, 5 and 6.
We measure forecast performance of efficient frontiers in Section
4. We are particularly concerned about the performance of off-
frontier portfolios. Are they really inefficient? Do on-frontier
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portfolios dominate performance, as we might anticipate given
that they are billed as “efficient”? The evidence we present in
Section 4 shows instability in EFs derived both with historical
segments and bootstrap samples. This leads us to conclude later
that caution should be exercised when using efficient frontiers in
DFA analysis.

On the road to this conclusion, we closely examine the effi-
cient surface in Section 5. It portrays sampling error from two
different perspectives—historical and bootstrap sampling. The
efficient surface is a useful construct for visualizing sampling
error in EFs. We observe that such error is particularly large in
the high risk-return regions of the surface. This observation is
reinforced in Section 6 by observing the diversity of portfolio
composition as we compare different historical segments.

The final section is devoted to conclusions and cautions on
the use of EFs in DFA work. We conclude that EFs may not
warrant the term efficient. Their best use may be as advisory
measurements concerning the properties of risk-return space.

2. SCENARIO GENERATION IN DFA

Dynamic financial analysis involves scenario generation.
There are many types of scenarios that are simulated so that
the model builder can measure a hypothetical state-of-the-world
with accounting metrics. Asset generators typically create returns
for invested assets. They model exogenous economic conditions.
Each modeler sees the forces of the financial markets unfolding
according to a set of rules. The rule set is almost as diverse as
the number of modelers.

Some DFA model builders prefer stochastic differential equa-
tions with various degrees of functional interrelatedness. The
transition of returns over time, as well as the correlations among
different asset components, always are represented in multiple
simultaneous equations. Other DFA modelers use multivariate
Normal models, which conjecture a covariance matrix of invest-
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ment returns. These models do not have time-dependent transi-
tion modeling information. Such an efficient frontier, by defini-
tion, has no time transition properties. A sample taken from any
sub-period within the time series would contain sampling error,
but otherwise, the investment allocation would be unaffected.

Both approaches begin with a single instance of reality. They
both purport to model it. One approach, stochastic equations,
uses largely subjective methods to parameterize the process.!
Another approach to modeling clings to assumptions that seem
to be or are taken to be realistic.> Both produce scenarios that
are deemed sufficiently similar to reality to represent it for the
purpose at hand.

The efficient frontier calculation can be a constrained opti-
mization either based on a sample from a historic series of returns
or a derived series with smoothing or other ad hoc adjustment.
Alternatively, an EF may be created from simulated DFA re-
sults. Both the efficient frontier and DFA asset-based modeling
are using the same set of beliefs regarding the manner by which
statistically acceptable parameters are used.? They both start with
a single historic time series of returns for various component as-
sets.

2.1. Two Viewpoints on the Use of Efficient Frontiers

The practitioner has a straightforward objective: define invest-
ment allocation strategy going forward. Today’s portfolio alloca-
tion leads to tomorrow’s result. The portfolio is then rebalanced
relative to expectations. The new one leads to new results. The

I'The calibration may depend on examination of stylistic facts, but there seldom is formal-
ized, statistical hypothesis testing to judge whether the facts can be accepted as such or
whether the representation of these facts in the model is really a scientific determination.
2Some models use multivariate Normal simulation for rendering investment returns for
consecutive periods. There usually is an assumption that the covariance matrix used for
multivariate Normal simulation is stationary from period to period in these models.
3DFA and optimization do have a critical junction. Some DFA modelers believe they
understand time dependencies within period-to-period rates of return. EF attempts to
optimize expected return. If there is a time dependence conjectured, it should be factored
into the expected returns used to build the EF for any period.
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cycle repeats. Where does the chicken end and the egg begin?
In practice, the practitioner has only one instance of yesterday’s
reality and tomorrow’s expectations from which to construct a
portfolio and a model.

There are at least two approaches to using a DFA model to
define an investment allocation. In one, a DFA analyst might set
up an initial allocation of assets using an efficient frontier ob-
tained from quadratic optimization on a prior historical period.
A DFA model would be run repeatedly—a different state-of-
the-world would ensue each time, and a different reading ob-
tained for the metric. These simulations produce endpoints in
the modeled risk-return space. In this approach, one beginning
asset allocation leads to many different observations about end-
points. The reason they are different is that, although each starts
with the same state, the model simulates various outcomes. Each
hypothetical one probably leads to a different endpoint for the
planning horizon.

But, another viewpoint exists.* We refer to it as the hybrid
approach. Suppose that history serves a valid purpose in cali-
brating a model but should not be used to define a beginning
allocation. In this viewpoint, the investment mix is suggested by
the optimizer. DFA serves only to measure what could happen
with some hypothetical starting allocation.

The optimizer deals the cards in this deck, and DFA traces
where the cards lead.”® The optimizer, not the modeler, submits

“#Correnti, et al. review an approach similar to the hybrid model described here.

5The optimizer posits a trial solution; it consists of a certain portfolio allocation. This
trial allocation does not depend on any prior allocation of assets. Rebalancing that ensues
during the optimization period (and under the control of the DFA model) also is unknown
to the optimizer. The objective value that is returned by the model is driven by the initial
trial solution and model outputs that build on the trial solution.

SInvestment rates are forecasted by the DFA model, which might use multivariate Normal
simulation. There may be an overlap between what the optimizer uses and what the
DFA model uses. For example, the covariance matrix used for the multivariate Normal
simulation is estimated from historical data and generally is assumed to be stationary
during the forecast period. It is used both by the optimizer and by the DFA model.
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an initial allocation for review. In this hybrid approach, there is
no initial portfolio based on optimization using prior history. In
the hybrid model, the optimizer finds a portfolio, which leads to
an ex post optimal result. The metric used in this optimization
is part of the DFA model—it is calculated by the accounting
methodology of the model as it generates future states of the
world. It may be difficult to reconcile the use of efficient fron-
tiers for investments within hybrid-DFA modeling that, on the
one hand, believes there is a historically dependent component
that can be used for calibration, but rejects the use of data to
define a starting portfolio. Yet, on the other hand, simulations of
that model are derived to construct an efficient frontier. It may
appear as though history has been rejected as information for the
purposes of decision making, yet indirectly it is used to repre-
sent the future. The starting portfolio in the hybrid approach is
based at least indirectly on modeling and should represent an an-
alyst’s expectations. These expectations are in theory built into
the model for return scenario generation, and that model was
calibrated to history in some fashion.

In DFA work, a performance metric is chosen. This metric is
measured within a risk-return space. The metric must be measur-
able according to the chosen accounting framework. Risk might
be variance, semi-variance or some chance-constrained function
of the metric. In the real world, the corporate manager is re-
warded for favorable performance of the metric and often penal-
ized by unwanted risk in the metric. The volume of investment
in various stochastic components affects a metric’s performance.
The operational question is how should an allocation be made to
investments so that performance of the metric is optimized.

In the forecast period, the modeler generates a scenario of un-
folding rates of return using, say, a multivariate, time-dependent
asset model. An example would be any of the multi-factor mean
reversion models in use today. The simulated progression of re-
turns for a scenario generated by one of these models is affected
by an underlying mechanism that forces unusual deviations in
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the path back towards an expected trajectory of returns. The DFA
model typically ties in some way the business operations to the
simulated economic environment.” This economic scenario typi-
cally generates other economic rates, such as the rate of inflation.
A scenario that is generated by the economic model is taken to be
exogenous; it is mingled with expectations about corporate per-
formance. The company’s operations are tied to the exogenous
influences of the economic scenario.

In the end, this modeling process is repeated many times for
the optimizer in the hybrid model. The optimizer requires an
answer to the question: Given an initial investment allocation,
what is the end-horizon performance of the metric? The opti-
mizer forces the model to measure the result of a simulation ex-
periment given only an initial investment allocation. The model
takes the allocation and produces an experimental point in risk-
return space. All that is required of the model is its ability to
measure the trajectory of the metric within the company’s busi-
ness plan and a beginning allocation of assets. In this regard, the
hybrid model is using a sort of dynamic programming approach
to optimization. The possible outcomes are considered, and the
most desirable traced back to the inputs (initial allocation). The
hope is that the optimized feasible set is robust relative to pos-
sible stochastic outcomes in the model trajectory. The efficient
frontier traces the allocations necessary to achieve various points
in this risk-return space. All of this raises the thorny question of
subsequent performance dominance of the on-frontier portfolios
in the hybrid model. Do EF points truly dominate the perfor-
mance of off-frontier frontier points—portfolios that are thought
to be inefficient and have higher risk for the same return level?

The reason that this is a hybrid approach is that DFA mod-
eling is not deployed on an optimal asset allocation derived di-
rectly from the prior time series. Rather, DFA is combined with

7 A typical behavioral pattern for business growth is modeling it as a function of inflation,
which was generated by the economic scenario. Another is to tie severity in claims to
underlying inflation as unfolded in the economic model simulation.
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optimization to answer the single question: How should the port-
folio be immediately rebalanced to achieve an optimal point in
risk-return space over the future DFA planning horizon?

Two portfolios can be devised through optimization proce-
dures—one is based on historical results prior to the start of the
simulated future time periods. Another one involves allocations
that are selected and tried by the optimizer—the DFA model is
integral to this second approach. The latter hybrid optimization
uses DFA-measured metrics in the optimizer goal function. If
applied over the course of the simulated future time periods, and
according to the plan of the DFA model, the hybrid approach
would seem to yield optimal results at the end of the simulated
time horizon. There is no reason to suppose that these two ap-
proaches produce the same initial portfolios. Which one is the
real optimum?

During the planning horizon, the hybrid model may ignore
imperfections that, in real life, might have (and probably would
have) been dealt with by ongoing decision making. The EF could
have been recalculated with realized data and the portfolio rebal-
anced. The published state-of-the art in DFA modeling is unclear
in this regard; but it may be that no intra-period portfolio opti-
mization is done by DFA models between the time the analysis
starts with an allocation posited by the optimizer and when it
ends, say, five years later with a DFA-derived metric. It is in-
conceivable that an organization would mechanically cling to an
initial, EF-optimal result for an operational period of this length
without retesting the waters.3

8There is no reason other than a few computational programming complexities why intra-
period optimizations cannot be done within DFA models. The question is whether they
are, or they are not, being done. For example, the DFA model can simulate a wide variety
of rebalancing strategies including the real-life one that involves a rebalancing trigger for
simulated portfolios whose allocation has deviated from a recent EF by some amount.
Mulvey, et al. [1998, p. 160] describe an n-period simulation wherein such rebalancing
is triggered. In addition, Mulvey, et al. describe the use of optimization constraints in a
clever way to achieve an integration of strategic, long-term optimization with short-term
tactical objectives. However, a DFA model that allows intra-period optimization must also
capture the transaction and tax costs associated with the intra-period rebalancing and re-



IS THE EFFICIENT FRONTIER EFFICIENT? 247

2.2. Limitations of this Study for Use of the Efficient Frontier in
DFA

We do not do a complete DFA analysis—there is neither a
liability component nor a conventional DFA metric such as eco-
nomic value of a business enterprise. Rather, the data are limited
entirely to marketable, financial assets. Nevertheless, we believe
our findings are of value to DFA work. If the efficient frontier
produced solely within a traditional investment framework has
unstable properties, these instabilities will apply to its use in DFA
work were it to be calculated and used in a similar way.

2.3. Other Investigations of the Efficacy of EF Analysis

Michaud has extensively investigated the use of EFs with par-
ticular regard to general efficacy for forecasting. For example,
he has shown [1998, pp. 115-126] that inclusion of pension li-
abilities can substantially alter the statistical characteristics of
mean-variance (MV) optimization for investment portfolios.

Michaud’s book [1998] examines efficient frontiers both with
respect to their inherent uncertainty and what might be done to
improve their worthiness. He suggests that the effects of sam-
pling error may be improved using a methodology described as
a resampled efficient frontier. The motivation for some kind of
improvement over classical EFs is that “...optimized portfolios
are ‘error maximized’ and often have little, if any, reliable in-
vestment value. Indeed, an equally weighted portfolio may often
be substantially closer to true MV optimality than an optimized
portfolio.” [Michaud, 1998, p. 3].

The determination of a resampled efficient frontier is com-
plex; Michaud has patented it. Although his book exposes the
core of the method that he believes improves on forecast er-
ror, there is no empirical evidence provided in the book that a
resampled efficient frontier has this desirable effect. Interested

optimization. See Rowland and Conde [1996] regarding the influence of tax policy on
optimal portfolios and the desirability of longer term planning horizons.
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readers are directed to his book. The concept of an efficient sur-
face espoused in our paper is built on different constructs. We
will readdress the important work of Michaud at a later point in
the paper. We now turn to the definition and measurement of an
efficient surface.

3. THE EFFICIENT SURFACE

An efficient frontier consists of points within risk-return space
that have minimum risk for a return. If there were a time-
stationary, multivariate probability distribution for prior history,
then history is a sample from it. History, therefore, would have
sampling error.”

The concept of a conditional marginal probability distribution
either for return or risk emerges, and it, too, would have sampling
error. We discuss the properties of this marginal distribution, an
equi-return slice of the efficient surface, in Section 5.1.

Were the instance of reality to be a sample, what is the sam-
pling error?

Figure 1 shows efficient frontiers for random 5-year blocks of
history. The EFs were derived from monthly returns beginning
in January 1988. Each curve in Figure 1 requires optimizations
for a 5-year history of returns. The block of monthly returns was
picked at random from the entire time series. The points along
each EF are obtained from separate passes through the data with
the optimizer. On each pass, one of the constraints differs. That
constraint is the requirement that the average portfolio return be
a specified value in the return domain. The optimizer’s objec-
tive function is the minimization of variance associated with that
portfolio expected return.

91f there were conjecture, the multivariate distribution would be subjective, and the effi-
cient frontier would be the subjective frontier. A subjectively derived EF has no sampling
error, but it may lose operational appeal when represented in this manner, because sub-
jectivity requires difficult reconciliation within a corporate, decision-making framework.
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FIGURE 1

COMPARISON OF EFFICIENT FRONTIERS FOR DIFFERENT TIME
PERIODS
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Each EF in Figure 1 consists of nine points; each point in-
volves a separate quadratic optimization. For example, one of the
optimization constraints is the portfolio expected return, which is
set to an equality condition. There were nine different expected
returns used in the study; one was a monthly return of 0.004.
An examination of the figure at this value shows a point for
each of the four EFs. An empirically derived covariance matrix
was determined for each of the four time series illustrated in
Figure 1 as well as for hundreds of others that are not shown.
The juxtaposition of the EFs displays a tangle of overlapping,
crisscrossing curves.!? This illustration can be viewed as sam-
pling with replacement from a historical sample; it is appropriate,
then, to view the figure as illustrative of a probability surface.
It is a surface showing the extent of sampling error provided
there has been a stationary, multivariate distribution of compo-
nents’ returns.!! Figure 1 indicates that it may be hazardous to

10Some segments of EFs such as those shown in Figure 1 can be indeterminate. This is
because the quadratic optimizer could not identify a feasible set of investment alternatives
for all of the average returns chosen in the analysis. There is a small probability of overlap
of data because the 5-year blocks of returns used for each EF could have overlapping
sub-periods of time.

"The population distribution is unknown, but it is estimated from the historical record
by calculation of an empirical covariance matrix for each historical block.
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accept any particular segment of history as the “best estimator.”
This figure shows only several of the EF curves that build up
an efficient surface. Examples of efficient surfaces appear later
in Figures 8 and 10. The distribution of risk in a cross-sectional
slice of this efficient surface also is reviewed in Section 5.

The positions and slopes of the EFs in Figure 1 are wildly
different, and were other historical EFs to be included, the com-
plexity would be greater. This lack of historical stability casts
doubt on the operational validity of a particular efficient port-
folio actually producing optimal performance. The figure also
hints that off-frontier portfolios may perform as well as or better
than on-frontier portfolios. We examine this question of forecast
reliability in detail in Section 4.

In addition to the positional changes in EFs over time, there is
dramatic change in portfolio composition along the curve of each
EF in Figure 1. Examples of the change in portfolio composition
for EFs appear in Figures 2a and 2b. Each chart is categorical—a
tic mark on the x-axis is associated with one of nine optimization
points. Each chart shows a stacked area rendering of the propor-
tion of an asset component within the efficient set. If the reader
views either Figure 2a or 2b from left to right, the unfolding
change, and possible collapse, of a particular component is illus-
trated. This type of chart is a useful way to show a component’s
contribution to the efficient set moving along the EF from low
risk-return to high risk-return portfolios.

There is faint hope that the two different EF portfolio compo-
sitions shown in Figures 2a and 2b will operationally produce the
same result when put in practice—were this to be a reasonable
representation of the effects of sampling error, the operational
use of efficient frontiers would be questionable; sampling error
swamps operational usefulness and forecast responsiveness.

However, another illustration, Figure 3, indicates that if his-
tory is a sample from a multivariate distribution, there should
be optimism that the efficient frontier evolves slowly, at least
measured in monthly metrics. This figure shows EFs calculated
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FIGURE 2

PORTFOLIO COMPOSITION FOR DIFFERENT EFFICIENT
FRONTIERS. (a) COMPOSITION A, (b) COMPOSITION B.
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FIGURE 3

EFFICIENT FRONTIERS FOR CONSECUTIVE TIME PERIODS
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from consecutive, overlapping historical blocks of time. In this
case, the time interval between between consecutive EFs is one
month. The stability deteriorates fastest at higher risk-return lev-
els. The result was found to hold for a wide variety of consecu-
tive historical blocks starting at various points since 1977. This
stability may provide an operational basis for investing in an
on-frontier portfolio and seeing its performance prevail over off-
frontier portfolios, at least for relatively short planning horizons.

There are other ways to use the historical record. The paper
shortly will turn to the use of the bootstrap as a method of mea-
suring sampling error. First, the data and manipulation methods
are described in more detail.

3.1. Data Manipulation

This study uses the time series described in Appendix A: Re-
view of Data Sources. Except where gaps were present in the
historical record, the portfolio returns are actual.!>13

12The data represent returns for a selected group of investment components. There was
no attempt to filter or smooth the time series in any way. However, a few gaps in the
historical record were interpolated.
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The data were used in two ways: (1) bootstrap samples were
made from the original time series in an attempt to approximate
sampling error phenomena, and (2) various historical series of
the data were used for performance analysis. The study exam-
ines period segmentation and the performance of efficient and
inefficient portfolios for different forecast durations.

3.1.1. Historical Performance Analysis

In this section of the paper, data for an efficient frontier are
extracted for a historical period and used to evaluate the efficient
frontier. The on-frontier portfolios are minimum variance portfo-
lios found using quadratic programming.'* Off-frontier portfo-
lios also were calculated.'® The study is concerned with whether
the performance of off-frontier portfolios really were inefficient
compared to the performance of on-frontier portfolios.

3.2. Bootstrap Sampling

A bootstrap sample of a data set is one with the same number
of elements, but random replacement of every element by draw-
ing with replacement from the original set of data. When this
process of empirical resampling is repeated many times, the boot-
strap samples can be used to estimate parameters for functions
of the data. The plug-in principle [Efron and Tibshirani, 1993,
p. 35] allows evaluation of complex functional mappings from

130ne technique for deploying efficient frontiers within DFA analysis involves removal
of actual values from the data series used in optimization. These points in the actual
time series may be deemed abnormalities. The efficient frontier calculation does not use
all available data or uses them selectively. See Kirschner [2000] for a discussion of the
hazards of historical period segmentation.

14 All optimization was done using Frontline Systems, Inc. Premium Solver Plus V3.5 and
Microsoft Excel.

131t is possible to restate a portfolio optimization problem to produce off-frontier portfo-
lios. These are asset allocations for points in risk-return space that are within the concave
region defined by the set of efficient points. They are portfolios with variance greater
than the minimum variance points for the same expected returns. They were found by
goal equality calculation using the same constraints as were used for minimum variance
optimization. However, the equality risk condition was set to a higher level than found
on the efficient frontier. Non-linear optimization was used for this purpose, whereas
quadratic optimization was used for minimum variance optimization.
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examination of the same functional mapping on the bootstrap
samples. The function 6 = #(F') of the probability distribution F’
is estimated by the same function of the empirical distribution F,
0 = t(F), where the empirical distribution is built up from boot-
strap samples. This technique often is deployed for the derivation
of errors of the estimate.

The plug-in features of a bootstrap enable inference from sam-
ple properties of the distribution of bootstrap samples. The plug-
in properties extend to all complex functions of the bootstrap,
including standard deviations, means, medians, confidence inter-
vals and any other measurable function. The EF is one of these
functions.

The bootstrap is used in this paper to illustrate the impact of
sampling error on the EF.!® EF is a complex function of the his-
torical returns from which it was calculated. If the sample is from
a larger, unknown domain, the bootstrap principles apply. In the
case of correlated investment returns, a segment of history might
be thought of as a sample, but it may not be operationally mean-
ingful because of sampling error. Yet, the use of the historical
data in DFA applications treats it as though it were meaningful,
representative, and not a sample.

The behavior of the EFs for our bootstrap samples is a non-
parametric technique used to evaluate the effect of sampling er-
ror, were history to be properly thought of as a sample. Because
actuarial science is built largely on the precept that past history,
even of seemingly unique phenomena, really is a sample, we too
proceed along this slippery slope.

3.2.1. Bootstrapping n-Tuples

The n-tuple observation of correlated observations at time ¢
can be sampled with replacement. This technique was used by

16The bootstrap has been used in connection with mean-variance optimization by
Michaud and others in an attempt to improve performance of EF portfolios. See Michaud
[1998].
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Laster [1998]. The experiment is similar to drawing packages of
colored gum drops from a production lot. Each package contains
a mixture of different colors that are laid out by machinery in
some correlated manner. Suppose the lot that has been sampled
off the production line contains n packages. A bootstrap sample
of the lot also contains n observations. It is obtained by draws,
with replacement, from the original sample lot. The n-tuple of
investment returns at time ¢ is analogous to a package within the
lot of gum drop samples. The historical sequence of correlated
returns is analogous to the mix of different colors of gum drops
in a package. The analogy halts because we know the lot of
gum drop packages is a sample. We never will know whether
the sequence of historical, n-tuple investment returns is a sample
in a meaningful sense.

The data consist of a matrix of monthly returns; each row is
an n-tuple of the returns during a common interval of time for the
component assets (columns of the matrix); the value of n was ten
and measures the use of the ten investment categories described
in Appendix A: Review of Data Sources. The bootstrap method
involves sampling rows of the original data matrix. An n-tuple
describing the actual returns for asset components at an interval
of time is drawn and recorded as an “observation” in the boot-
strap sample. Because this n-tuple can appear in another draw,
the process involves sampling with replacement. This random-
ized choice of an n-tuple is repeated for each observation in the
original sample. When the original sample has been replaced by
a replacement sampling of the sample, the result is referred to as
a bootstrap sample. This process of drawing a bootstrap sample
can be repeated many times, usually in excess of 2,000.

Each bootstrap sample has both a measurable covariance ma-
trix and an efficient frontier that can be derived using that covari-
ance matrix. It is unlikely that any two bootstrap samples will
necessarily have the same covariance matrix. Each sample can
be subjected to mathematical optimization to produce an efficient
frontier. The study asks whether this frontier is stable across the
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samples. Instability is measured in two ways. First, the boot-
strapped efficient frontier may fluctuate from sample to sample.
This means that the distribution of risk for a return point on
the EF is not a degenerate distribution that collapses to a single
point. Rather, there is a range of different portfolio risks among
the bootstrap samples at a given return. There is a probability
distribution associated with risk, given a return among the boot-
strap samples. In other words, the study attempts to measure the
distribution, and the study views that distribution as a measure
of sampling error in risk-return space as it affects the calculation
of an efficient frontier.

Second, the portfolio allocations may diverge qualitatively
among bootstraps. Were portfolio allocations to be about the
same in an arbitrarily small region of risk-return space among
different bootstrap samples, the practical effects of sampling er-
ror would be small.

3.2.2. Extension of the Bootstrap Sample as a DFA Scenario

The bootstrap samples can be used in the way a DFA model
might have used the original historical data, including their di-
rect use within the calculation of the DFA results as a random
instance of investment results. They are the source of DFA sce-
narios. This paper suggests how that direct use of the bootstrap
might unfold in a DFA liability-side simulation, but it does not
deploy it in that manner.!”-!® The authors have a less ambitious
objective of examining just the performance of the efficient fron-
tier built from bootstrapping investment information.

17. Although the n-tuple used in this paper is a cross-sectional observation of returns, it
can be expanded to a cross-section of the entire business environment at time ¢. This
includes all economic aggregates, not just rates of return. Any flow or stock business
aggregate that can be measured for interval 7 is a candidate for the n-tuple. This would
include inflation, gross domestic product, or any worldly observation of the business
climate prevailing at that time. A bootstrap sample can be used as a component of a
larger simulation requiring simulation of these worldly events.

I8DFA model builders spend time modeling empirical estimates of process and parameter
risk [Kirschner and Scheel, 1998]. Bootstrapping from the data removes much of this
estimation work and leaves the data to speak for themselves.
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3.3. Sampling Error within Risk-Return Space

There is no clear-cut method for estimating sampling error
that may exist in risk-return space. We do not know the underly-
ing distribution generating a historical sample. We do not know
whether a population distribution, were it to exist, is stationary
over any time segment. We might, however, view history as an
experimental sample, particularly if we want to use it to forecast
corporate strategic decisions using DFA.

Sampling error can be envisioned and approximated in differ-
ent ways for this hypothetical unfolding of reality. One way is
to break the actual time series into arbitrary time segments and
ask whether a random selection among the subsets of time leads
to different, operationally disparate results—these would be EFs
based on the sub-segment of time that have portfolio allocations
disparate enough to be viewed as operationally dissimilar. If they
are dissimilar enough to warrant different treatment, a sampling
distribution of interest is the one measured by the effects of these
time-period slices.

Another approach is to envision prior history as an instanti-
ation, period-to-period, from an unknown multivariate distribu-
tion. The sampling error in this process is driven by a multivariate
distribution. Depending on our model, we may or may not place
dependencies from prior realizations on this period’s realization.
That is, for DFA investment return generation and intra-period
portfolio rebalancing, the multivariate model may be stationary
or non-stationary with respect to time.

3.3.1. Michaud’s Efficient Frontier

Michaud [1998] approaches the measurement of sampling er-
ror effects on EF in a different way. Although his approach dif-
fers, his overall conclusions are important and consistent with
many of our findings. He notes [1998, p. 33], “The operative
question is not whether MV optimizations are unstable or un-
intuitive, but rather, how serious is the problem. Unfortunately
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for many investment applications, it is very serious indeed.” Our
paper will draw a similar conclusion.

He does not refer to an efficient surface but calculates a “re-
sampled” portfolio that seems to capture some similar properties.
Michaud uses multivariate Normal simulations from the same co-
variance matrix used to calculate EFs. This covariance matrix is
from a sample of data—the data observed during some historical
period. Just what definition of sampling error has been accom-
modated in the Michaud resampled portfolio is unclear.

One of the Michaud simulations is not equivalent to a boot-
strap sample used in this study. Michaud’s approach does not at-
tempt to adjust for a primary source of sampling error—sampling
error in the covariance matrix. In our study, each bootstrap sam-
ple has an independently measured covariance matrix. Using
the DFA jargon of Kirschner and Scheel [1998, pp. 404—408],
Michaud’s approach may not account for parameter risk in the
underlying returns generation mechanism. The ranking mecha-
nism used by Michaud to combine EFs derived from various
multivariate Normal simulations may distort risk-return space be-
cause each EF is segmented in some non-linear fashion to iden-
tify equally ranked points in risk-return space [Michaud, 1998,
p- 46, footnote 11]. The portfolio profiles for identically ranked
EF points are averaged, yet it is not clear that equi-ranked points
fall within the same definition of risk-return space.

3.4. Importance to DFA Scenario Generation

This paper cannot and does not attempt to rationalize the pro-
cess underlying investment yields over time.'® Rather, the model
builder should be careful to design the DFA model to be in accor-
dance with perceptions about how a sampling methodology may
apply. The use of the model will invariably mimic that viewpoint.

19What if there were no common observable stationary probability measure for security
prices? Kane [1999, p. 174] argues we must use utility measurements.
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If, for example, one views history in the fashion imagined
by a bootstrap of n-tuples, and if that view does observe opera-
tional differences, then one can create scenarios from bootstrap
samples. No more theory is required. Hypothetical investment
returns are just a bootstrap sample of actual history.

Similarly, if EFs for historical periods produce superior per-
formance in forecasting (compared to portfolios constructed
from off-frontier portfolios derived from the same data), then
the use of an empirically determined covariance model and mul-
tivariate Normal simulation makes a great deal of sense.

3.5. Importance to DFA Optimization

Optimization often is used within DFA and cash flow testing
models to guide portfolio rebalancing. The DFA model usually
grinds through the process of business scenario and liability sce-
nario simulations before the optimizer is deployed. But, account-
ing within the model often is done while the optimizer seeks a
feasible solution.

The sequence of model events runs like this:

1. Independently model many instances of exogenous states
of the business world (e.g., asset returns, inflation, mea-
sures of economic activity, monetary conversion rates).
Number these instances, By, B,, Bs,...,B,. Note that each
of these instances is a vector containing period-specific
values for each operating fiscal period in the analysis.

2. Model many instances of the company’s performance.
Number these instances C;,C,,...,C,. C; often is depen-
dent on B; because it may use an economic aggregate
such as inflation or economic productivity to influence
C,’s business growth or loss and expense inflation. Each
C is a vector spanning the same fiscal periods as B.

3. Observe that in some DFA models neither B nor C is
necessarily scaled to the actual volume of business. They
are unit rates of change for underlying volumes that are
yet to be applied.
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4. Let the optimizer search mechanism posit a vector of
weights that distribute the volume of assets at f,, the
inception point for a forecast period.

5. Apply the accounting mechanisms used by the DFA
model to beginning assets and account for the unit activ-
ities expressed in B and C.%° Do this accounting for each
vector pair {B,C;},{B»,C,},...,{B,C,} over the range
of its time span.?!

6. Calculate the metric used for the goal and any constraints
as of the end of the fiscal period, if it is a metric such as
economic value or surplus. If it is a flow-based metric
such as portfolio duration or discounted GAAP income,
derive the metric for the holding period results. This cal-
culation is done for each business/company scenario pair.
There are n results; collectively they constitute a simu-
lated sample.??

7. Return the required metrics for the sample to the opti-
mizer. If the optimizer is deployed for EF calculation, the
goal will be a sample statistic for risk, such as variance,
semi-variance, or chance-constrained percentile or range.
The sample average for the distribution developed in step
(6) for the metric will be used within the constraint set.

8. The optimizer will repeat steps (4)—(7) until it has ob-
tained a feasible set.

The optimizer uses a sample. The optimizer results have sam-
pling error. Steps (1) and (2) are experiments. Let there be 10

20 At this stage, the derivation of taxes would occur. As noted by Rowland and Conde
[1996], the determination of federal income taxes is convoluted by the combined ef-
fect of discount rates, changes in loss reserves, varying underwriting results, and tax
carryforwards and carrybacks.

21Some models may achieve computational efficiencies when economic scenarios are
paired with E(C) instead of with direct pairing to C;,C,,...,C,. When this is done,
however, the variance of the metric being optimized will be reduced, and the minimum
variance portfolio is likely to be different.

221f enough pairs are used, the chance that the model will converge improves.
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repetitions of this experiment. Application of steps (1)—(8) will
result in 10 efficient frontiers, each derived from a different ex-
perimental sample. It is likely that they will have different char-
acteristics.

In a DFA experiment there are many draws from the urn; each
simulation is another draw. The modeler gets distributional infor-
mation about the contents of the urn by the experimental group-
ing of all the simulations. When enough simulations within each
experiment are run, convergence of the distribution of results
can be achieved. Since it is unlikely for the output distribution
to be known, or necessarily capable of being parameterized, no
a priori estimate is available. Instead, an empirical measure of
convergence must be used.

The allocation of company assets among competing invest-
ment alternatives using a single efficient frontier calculation
(based on a single experimental result) may seem to be simi-
lar to betting on the allocation among balls of different colors
within the urn based on a single sample from the urn containing
them. One may, or may not, be lucky. But you improve your
luck by increasing the number of simulations.

One still may become victimized by a faulty decision while
ignoring sampling error. This may arise in calibrating a model
to history. The historical record is a single draw from a true
underlying probability distribution. We may be lucky that the
number of periods in the historical realization contains sufficient
information about the underlying process for unfettered decision
making. But we could be victims of sampling error, which we
are unable to control or even limit.

4. HISTORICAL PERFORMANCE COMPARISON

Figure 4 illustrates the performance of several portfolios over
increasingly longer forecast periods. It shows results for portfo-
lios, which, a priori, have different levels of risk for the same
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FIGURE 4

COMPARISON OF PERFORMANCE FOR ON-FRONTIER AND
OFF-FRONTIER PORTFOLIOS
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return.”?> The multipliers shown in the legend of Figure 4 are
multiples of the minimum variance risk. The line for Multiplier
1 traces the performance of the on-frontier EF portfolio. Other
lines in the figure with multipliers >1 show performance of port-
folios with the same expected return but higher variance.

Figure 4 traces performance using a variation of the Sharpe
performance measure.>* It is known as the information ratio.
The Sharpe performance ratio, which measures excess return to
risk, is adjusted in the denominator of the information ratio. The
denominator of the Sharpe performance indicator is changed to
excess risk. The information ratio is given by:

E(r, —rs)
SD(r, —ry) ’

23Risk in this study is measured as the standard deviation of return.

241 aster [1998] created various portfolios by combining two asset components, domestic
(represented by S&P 500) and foreign (represented by Morgan Stanley EAFE). His
bootstrap samples of these two components were used to calculate portfolio variance,
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where

r, = monthly return on the portfolio,

ry = monthly return on the risk free
component of the portfolio,>

E = expectation operator, and
SD = standard deviation operator.

Although the information ratio was computed with monthly data,
it is expressed as an annual measure in the paper.

4.1. EF Performance Is Better for Low Risk-Return Portfolios

The off-frontier portfolios, so-called inefficient portfolios,
achieve performance that rivals or betters that of the EF port-
folio.?6 There is no concept of “significance” that can be at-
tached to the observed differences. However, it is clear that the
performance differences are great and that inefficient portfolios
outperform the efficient one in the Figure 4. When performance
is measured by geometric return, the underperformance of the
EF portfolio can be more than 100 basis points, as shown in
Figure 5. The underperformance shown in Figure 5 is measured
over a seven-year holding period, and there was no portfolio re-
balancing during this time. Data for other time periods and the
use of intervening portfolio rebalancing might materially affect
this evidence of underperformance.

The performance varies considerably with the level of return
and historical period. For example, Figure 6 illustrates perfor-
mance for an earlier period and a lower expected return level.
Here, the EF portfolio does, indeed, outperform the off-frontier

assuming various mixes. He did not separate historical and forecast periods. Instead, he
measured quantiles from the bootstrap samples after constructing portfolios. He con-
cluded that diversification into foreign equities substantially changed and improved the
risk-return profiles.

25The 90-day Treasury bill index is used as the proxy for the risk free return.

26Short holding periods have performance measures calculated with few observations.
The ordinal rankings among the different multipliers are volatile and should be ignored.
The first six monthly periods are generally ignored in this paper.
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FIGURE 5

COMPARISON OF GEOMETRIC RETURN FOR ON-FRONTIER AND
OFF-FRONTIER PORTFOLIOS
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portfolios for about ten years. Thereafter, it reverses, and perfor-
mance falls below off-frontier portfolios. The Figure illustrates
that the contemplated holding period for use of an EF should
probably not be as long. The performance variance illustrated in
Figure 6 is volatile; the differences in performance in on- and
off-frontier portfolios vary considerably with the choice of his-
torical starting point and length of the holding period.

4.2. Overall Behavior of On-Frontier Portfolios for Information
Ratio

The historical record was examined from several perspectives
to see whether an EF portfolio continues to outperform off-
frontier portfolios. Equi-return portfolios were examined. These
are portfolios whose returns are the same, but they have higher
risk. The forecast period immediately following the end of the
historical segment was examined to determine how long the on-
frontier portfolio maintained superior performance. This forecast
horizon extended to the end of the data, December 1999. His-
torical segments consist of a 5-year block of 60 observations.
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FIGURE 6

EF PORTFOLIO PERFORMANCE AT LOW RISK-RETURN LEVELS
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Several adjustments were made for this analysis. The first six-
month period was ignored because the ratio is highly volatile and
computed from few observations. The extreme low return levels
also were removed from the analysis because higher ones shown
in the table dominated them.?’

Table 1 shows the relative behavior of the information ratio
at the return level indicated at the top of the column. Each row
block includes the time for subsequent row blocks. For example,
the forecast beginning January 1980 covers the period ending
December 1999. The interval of measurement is a month. All of
the other blocks begin at a later point, but all forecast periods
end in December 1999.28

27The extreme low risk-return observations occur below where the EF curve has a positive
first derivative. A portfolio with a higher return for the same risk can be found above
this change in the curve.

28 Each block of rows uses a different set of on- and off-frontier portfolios—the respective
EF’s are derived from optimizations on different periods. For example, the January 1980
forecast is based on the performance of EFs derived from a historical segment covering
the 5-year period, January 1975-December 1979). However, the January 1995 forecast
uses EFs derived from a different period, one covering the 5-year period, January 1989—
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TABLE 1
INFORMATION RATIO BEHAVIOR

Forecast Period Return Levels
Information Ratio (forecast begins 1/1980) 0.0066 0.0080 0.0085 0.0090 0.0095 0.0100
Periods until on-frontier point underperforms 6 6 6 6 6 6
(max = 238)
Number of periods on-frontier point 10 142 148 153 154 151
outperforms all others
Average on-frontier rank (5 is highest) 3.05 4.37 434 433 4.30 4.27
Information Ratio (forecast begins 1/1985) 0.0066 0.0080 0.0085 0.0090 0.0095 0.0100
Periods until on-frontier point underperforms 111 110 109 7 119 69
(max = 178)
Number of periods on-frontier point 105 104 103 8 113 124
outperforms all others
Average on-frontier rank (5 is highest) 346 340 338 192 372 3.90
Information Ratio (forecast begins 1/1990) 0.0066 0.0080 0.0085 0.0090 0.0095 0.0100
Periods until on-frontier point underperforms 40 6 9 9 9 9
(max = 118)
Number periods on-frontier point outperforms 34 8 66 83 103 111
all others
Average on-frontier rank (5 is highest) 4.18 4.05 4.57 4.72 4.89 4.96
Information Ratio (forecast begins 1/1993) 0.0066 0.0080 0.0085 0.0090 0.0095 0.0100
Periods until on-frontier point underperforms 19 6 6 6 6 10
(max = 82)
Number of periods on-frontier point 15 3 5 6 2 4
outperforms all others
Average on-frontier rank (5 is highest) 2.10 1.83 1.82 1.81 1.60 1.56
Information Ratio (forecast begins 1/1995) 0.0066 0.0080 0.0085 0.0090
Periods until on-frontier point underperforms 53 56 57 Never
(max = 58)
Number of periods on-frontier point 47 50 51 53
outperforms all others
Average on-frontier rank (5 is highest) 4.83 494 496 5.00

December 1994. The information in the blocks is not cumulative; the number of periods
the on-frontier excels or outperforms off-frontier portfolios is a separate measurement for
each row block. The row blocks show performance for portfolios constructed at different
points in time.
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Missing cells in Table 1 indicate that a feasible set was not
found at that return level for one or more of the on- or off-frontier
portfolios. There were five portfolios with risk up to two times
the risk of the on-frontier point.

“Periods until on-frontier point underperforms” means the
first period that an off-frontier portfolio beats the on-frontier
efficient portfolio. “Number of periods on-frontier point outper-
forms all others” means the last period where the efficient port-
folio wins. Performance tends to hold up better for lower return
levels. This effect is reinforced by the larger values shown for
the number of periods the on-frontier portfolio does outrank the
off-frontier portfolios. In general, the on-frontier portfolio ranks
well compared to the others. The average rank is generally high,
above 3 out of 5. But the performance is not consistent. The on-
frontier portfolio did well during the long forecast period start-
ing January 1980 and during the shorter forecast period starting
January 1995. However, the low average of the on-frontier for
the January 1993 period shows that the performance is greatly
influenced by the historical period and perhaps influenced by
sampling error.

There also is great inconsistency in the number of periods be-
fore an off-frontier portfolio has a higher information ratio. The
scan begins in period 6 of the forecast horizon, so the reversal
shown in the table will either be never or a number between 6
and n. In most cases, the reversal is early, but not permanent.
There are many situations where the on-frontier portfolio wa-
vers between highest rank and something less. This latter fact
is found in the rows, “Number of periods on-frontier point out-
performs.” In most cases this number is larger than the num-
ber of periods before reversion, indicating that the on-frontier
waffles in and out of superior performance. This could be an-
other indication of sampling error. The choice of an on-frontier
point may not, and probably does not, imply superior perform-
ance.
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4.3. Behavior for Other Performance Measures

The information ratio is believed to be a valid measure of
performance because it adjusts for variation in the return series
during the period of measurement. Were it applied to two consul-
tants’ portfolio allocation recommendations, the consultant with
lower excess returns could be ranked higher than the other con-
sultant, because of proportionately lower risk in excess return.
This may be small consolation to the holder of the lower wealth
portfolio recommended by the higher ranked consultant. This is
why it is important to assess other characteristics beyond the ap-
petite for risk before making an allocation decision. The manager
with the higher information ratio has the better cost of risk per
unit of return; yet, it is not of much use if a minimum return
level or ending wealth is required.

There is considerable historic instability in the standard de-
viation of returns. This can be seen in Figure 7, which shows
the historic progression of changes in the standard deviation of
monthly returns of the portfolio components used in this study.
The lines show the change in standard deviation for rolling 5-year
blocks of data.?® Any performance measure that is a function of
this risk proxy, such as the information index, will be inherently
sensitive to such volatility and, perhaps, exhibit similar historic
instability. This volatility in risk helps to explain why historical
EFs may lack forecast power.

One measure of performance that is not risk-adjusted is ge-
ometric return during a holding period. Results are arrayed in
Table 2. The layout of this table is similar to Table 1.

The forecast propensity of the on-frontier allocation is
markedly changed. Wealth growth appears to be unrelated to
the on- or off-frontier portfolio choice, and often is worse
for the on-frontier allocation. The number of holding peri-

2There was significant volatility in the securities markets in 10/87 (“Black Monday”)
and 8/98 (Long Term Capital crisis). These periods are highlighted in the figure.
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TABLE 2

GEOMETRIC RETURN BEHAVIOR

Forecast Period

Return Levels

Geometric Return (forecast begins 1/1980) 0.0066 0.0080 0.0085 0.0090 0.0095 0.0100
Periods until on-frontier point underperforms 6 6 6 6 6 6
(max = 239)

Number of periods on-frontier point 0 107 106 102 102 105
outperforms

Average on-frontier rank (5 is highest) 241 335 3.39 3.38 3.38 3.40
Geometric Return (forecast begins 1/1985) 0.0066 0.0080 0.0085 0.0090 0.0095 0.0100
Periods until on-frontier point underperforms 6 6 6 6 6 6
(max = 179)

Number of periods on-frontier point 0 0 0 0 0 1
outperforms

Average on-frontier rank (5 is highest) 1.00 1.00 1.00 1.00 1.03 1.04
Geometric Return (forecast begins 1/1990) 0.0066 0.0080 0.0085 0.0090 0.0095 0.0100
Periods until on-frontier point underperforms 21 6 74 89 111 119
(max = 119)

Number of periods on-frontier point 15 7 68 85 105 113
outperforms

Average on-frontier rank (5 is highest) 4.11 406 4.60 4.5 4.92 4.99
Geometric Return (forecast begins 1/1993) 0.0066 0.0080 0.0085 0.0090 0.0095 0.0100
Periods until on-frontier point underperforms 15 15 16 16 16 16
(max = 83)

Number of periods on-frontier point 11 16 18 18 14 10
outperforms

Average on-frontier rank (5 is highest) 1.99 2.19 222 222 1.92 1.73
Geometric Return (forecast begins 1/1995) 0.0066 0.0080 0.0085 0.0090

Periods until on-frontier point underperforms 6 6 6 6

(max = 59)

Number of periods on-frontier point 0 2 9 30

outperforms

Average on-frontier rank (5 is highest) 2.44 2.80 2.96 3.35

ods the efficient frontier portfolio dominates off-frontier port-
folios is generally a lower proportion of the possible num-
ber of holding periods in Table 2 than in Table 1. Michaud
[1998, pp. 27-29] claims there is a portfolio within the
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EF, the “critical point,” below which single period mean-variance
efficient portfolios are also n-period geometric mean efficient
and above which single period MV efficient portfolios are not
n-period geometric mean efficient.

4.4. Performance Failure within CAPM

Work with beta has led to various criticisms [Malkiel, 1996,
p. 2711.3% For example, some low risk stocks earn higher returns
than theory would predict. Other attacks on beta tend to mirror
what we see with EF:

1. The capital asset pricing model (CAPM) predicts risk-
free rates that do not measure up in practice.’!

2. Beta is unstable, and its value changes over time.>?

3. Estimated betas are unreliable.33

4. Betas differ according to the market proxy they are mea-
sured against.34

5. Average monthly return for low and high betas differs
from predictions over a wide historical span.3>

30Beta is a measure of systematic risk either for an individual security or for a portfolio.
High beta portfolios, measured ex ante, in theory should have higher returns ex post than
low beta portfolios.

31When ten groups of securities, ranging from high to low betas, were examined for
the time period 1931-65, the theoretical risk free rate predicted by CAPM and actual
risk free rates significantly diverged. Low risk stocks earned more and high risk stocks
earned less than theory predicted [Malkiel, 1996, pp. 256-7].

2During short periods of time, risk and return may be negatively related. During 1957—
65, securities with higher risk produced lower returns than low beta securities [Malkiel,
1996, pp. 258-60].

33The relationship between beta and return is essentially flat. Beta is not a good measure
of the relationship between risk and return [Malkiel, 1996, pp. 267-8].

34Predictions based on CAPM about expected returns both for individual stocks and for
portfolios differ depending on the chosen market proxy. In effect, the CAPM approach
is not operational because the true market proxy is unknown [Malkiel, 1996, pp. 266-7].
35The ratio of price to book value and market capitalization did a better job of predicting
the structure of nonfinancial corporate share returns than beta during a 40-year period
[Fama and French, 1992].
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Malkiel [1996, p. 270] concludes from his survey that, “One’s
conclusions about the capital-asset pricing model and the useful-
ness of beta as a measure of risk depend very much on how you
measure beta.” This appears to be true of EFs too. The definition
of efficiency is what is important here—perhaps more important
because correct measurement requires precise definition.

The choice of an optimization mechanism couched in terms of
risk-return trade-off may not lead to wealth maximization. Under
these pretenses one might wish to deploy a different optimization
mechanism, such as the one mentioned by Mulvey, et al. [1999,
p- 153] in which the optimization seeks to maximize utility. The
choice of a particular utility function may be framed in terms of
absolute risk aversion—negative exponential utility works in this
regard.’® And if the behavior of security prices does not have an
observable stationary probability measure [Kane, 1999], utility
approaches seem to be mandatory.

The subject of what is optimal is controversial and not apt
to go away. The use of optimization within hybrid models and
generation of metrics by DFA models has many subtle manifes-
tations. One is the choice of planning horizon. Michaud [1998,
p. 29] argues that investors with long-term investment objectives
can avoid possible negative long-term consequences of mean-
variance efficiency by limiting consideration to EF portfolios at
or below some critical point. There is a parallel in our paper, in
what we refer to as sampling error and its effect on the shape
of the efficient surface. This surface appears to have properties
at the lower risk-return areas of both lower dispersion, greater
similarity in portfolio composition, and better on-frontier per-
formance among different samples (either bootstrap or historic
segment).

36The recommendation of a utility-decision approach has great breadth in the insurance
literature—beyond the use of utility as goal function in optimization, other venues find it
appropriate where stochastic dominance is sought. For example, exponential utility use
was suggested in rate making by Freifelder [1976]. The choice of parameters for utility
functions is perhaps as much an art as the parameterization of claims generations in DFA
models.
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5. CHARACTERISTICS OF THE EF SURFACE

The bootstrap-generated EF surface rises within the risk-
return space. Views of this surface from two different angles
are shown in Figure 8.

The surface is constructed from monthly returns. Looking
down on the surface of the views, one obtains a projection
on risk-return space. The surface is seen to curve as the effi-
cient frontier curves. In the low risk-return sector, the surface
is more peaked. The surface flattens and broadens in the risk-
return space. Imagine yourself walking along the ridge starting
in the southwest and proceeding northward and then northeast.
You would first be descending a steep incline, and then a vista
of a vast plane would unfold along your right. This can be in-
terpreted within the context of changes in the marginal distri-
butions representing slices through the surface either along the
risk or along the return dimensions. We refer to the latter as an
equi-return slice, and its properties are examined in more detail
at a latter point in the paper. In either case, the visualization is
one of moving from less dispersed marginal distributions to ones
with greater variance as either dimension is increased.

There is an artifact of the intervalization that results in a sud-
den rise in the surface at the highest risk level. This occurs be-
cause higher risk observations were lumped into this final inter-
val. Were higher levels of risk intervalized over a broader range,
this ridge would flatten.

The surface shown in either of the views in Figure 8 is
built from many efficient frontiers, each produced from opti-
mizations done on a bootstrap sample. We already have seen
in Figure 1 a subset of EFs that tangle together—they can be
organized to produce a surface. The surface develops the same
way an empirical probability distribution is built from a sam-
ple. Repeated sampling produces points that are intervalized and
counted.
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FIGURE 8

VIEWS OF EF SURFACE CREATED FROM BOOTSTRAP SAMPLES
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FIGURE 9
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A frequency count can be made of observations for EFs falling
within an arbitrarily small, two-dimensional region of risk-return
space. An example of this mapping for 5,000 bootstrap-simulated
EFs appears in Figure 8. Collectively, this mapping involves
the two-dimensional intervalization of approximately 45,000
quadratic optimizations constituting the EFs for the underlying
bootstrapped samples.3”

5.1. Equi-Return Slice of the Efficient Surface

A slice through the efficient surface along the return plane
produces a histogram of the minimum risk points for a given
return in the EFs used for the EF Surface. As return increases,
this marginal probability distribution becomes more disperse. An
example appears in Figure 9.

37Equi-return minimum variance points for the 5,000 bootstrapped EFs were intervalized
based on an overall evaluation of the range of risk among all points on all EFs. If an
efficient set could not be identified for a return level, the observation was ignored. The
marginal probabilities (risk-return) were normalized to the number of viable observations
for that risk level. The number of viable optimizations exceeded 4,500 at each return level.
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TABLE 3
STATISTICS FOR EQUI-RETURN SLICES OF THE EFFICIENT
SURFACE
Statistic Efficient Surface from Bootstrapped Efficient Frontiers
Return Level 0053 0066 .0080 .0085 .0090 .0095 .0100
Mean (times 1.0E4) 0125 0533 376 88 179 336 507
Standard Deviation 627 377 382 586 818 109.7 131.6

(times 1.0E4)
Skewness (times 1.0E8) .000123 378  57.8 136. 275. 516.  779.

TABLE 4

STATISTICS FOR EQUI-RETURN SLICES OF THE SURFACE
SHOWN IN FIGURE 10

Statistic Efficient Surface from Historical Samples
Return Level .0053 .0066 .0080 .0085 .0090 .0095 .0100
Mean (times 1.0E4) 663 553  21.0 255 288 332 465
Standard Deviation 080 451 861 940 995 1.06 1.23

(times 1.0E2)
Skewness (times 1.0E6) .00676  .769 292 354 400 4.62 6.46

The dispersion increases with return for both surfaces con-
structed from bootstrap samples and from randomly selected
blocks of history. The distributions are positively skewed, in-
creasingly so as return increases. The inset bars in Figure 9 iden-
tify the intervals containing the mean and median points of the
distribution. Additional statistics both for bootstrapped and his-
torical segment evaluations of sampling error appear in Tables 3
and 4.

The statistics are visually apparent in the EF surface shown in
Figure 8. The surface is partially bowl-like—sloping downward
in a concave fashion. Its rim encompasses a plane within the
risk-return domain that is broad in the risk dimension. As one
moves from low to high return, the marginal distribution of EF
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FIGURE 10

EFFICIENT SURFACE FROM HISTORICAL SAMPLES
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points measuring optimized risk (an equi-return slice through the
surface as illustrated in Figure 9) becomes more dispersed. In a
visual context as one moves from low to high risk along the EF
surface and takes equi-return slices through it, one would find
higher variance in the distribution of optimized EF risk points—
variance shown in histogram plots such as Figure 9 is greater.

An efficient surface also can be created from EFs calculated
for historical time periods. An example appears in Figure 10. The
data are for 5-year overlapping blocks calculated on a monthly
basis starting in 1970. The same general features are found in
this representation of sample error. However, the surface is less
flat than the one developed from bootstrap samples. The reduced
dispersion in the surface of Figure 10 arises in part from the use
of overlapping 5-year blocks used to construct the underlying
EFs from which the surface is built. A statistical table similar
to Table 3 was constructed for this surface. It appears in Ta-
ble 4.
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FIGURE 11

AVALANCHE CHART FOR HISTORICAL SEGMENTS
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6. STABILITY OF PORTFOLIO COMPOSITION ALONG AN
EFFICIENT FRONTIER

Portfolio allocation among component securities changes,
usually dramatically, along the efficient frontier. A component
may enter the feasible set at some point, increase in weight, de-
crease, and then drop out at other points along the EF. This effect
was shown in Figure 2.

The change in composition for an equi-return level was exam-
ined among different EFs, constructed both from historical seg-
ment EFs and bootstrap EFs. We refer to this type of comparison
as an avalanche chart because, when shown in an animation, the
change in composition is similar to an avalanche. An example
appears in Figure 11.

The vertical bars are stacked columns. Each segment within
a column represents a different component of the portfolio. A
br, therefore, compares the percentage value each component
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in the feasible set contributes across all components in the set.
All bars are shown for a constant, equi-return level of an EF;
but each bar is for a different historical segment. In Figure 11,
each bar represents the portfolio composition for the equi-return
level point on the EF, which was calculated for a 5-year block
of monthly observations. The bars are for ten randomly chosen
historical segments.3® Were the blocks within the bars to consist
of the same components and were they to be about the same
size, the portfolio allocations would be the same regardless of
the time frame. Examination of Figure 11 shows that the com-
position of the bars and individual component allocations varies
considerably.

The portfolio composition is much more stable at lower risk-
return levels. This result is in accordance with other similar find-
ings based on the EF surface. It, too, shows less disperse re-
sults for lower return levels. This approach to measuring sam-
pling error implies that performance of efficient frontiers may
not be optimal relative to off-frontier portfolios. If the mix and
composition of portfolios fluctuates considerably both with re-
spect to historical and bootstrap sampling methods, the perfor-
mance expectations of an ex ante allocation are not apt to hold
ex post.

7. CONCLUSION

The behaviors shown in both Tables 1 and 2 illustrate a
marked tendency towards randomness. The efficient surface built
from bootstrap samples is highly variable within the risk-return
domain. There appears to be some temporal dominance of on-
frontier portfolios for lower risk-return levels, but the historical
record is mixed. The bootstrapping of the single sample of asset
returns provided by the historical data illustrates that sampling

38There is a small chance that two or more bars in an avalanche chart could be identical.
However, there is a much larger probability that two or more bars have overlapping time
periods in the calculation of their respective EFs.
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error could materially affect the position and shape of the effi-
cient frontier.

7.1. Should Efficient Frontiers Be Used in DFA Models?

There is no strong support in this paper for the practical de-
ployment of efficient frontiers in DFA. The risk in DFA mod-
els stems from model, process, and parameter risk. It affects all
aspects of DFA models of the insurance enterprise. The exis-
tence of model and process risk [Kirschner and Scheel, 1998]
thwarts the usual convergence to the true underlying distribu-
tions gained by running large numbers of simulations. When all
of these new risk elements are heaped on top of the sampling
error derived from asset model calibration or empirically mea-
sured covariance matrices, one wonders whether EFs are really
useful in DFA analysis.

The work of Michaud [1998] bears on the issue of improving
the performance of EF portfolios. He defines a measure of sta-
tistical equivalence for mean-variance efficiency. Any portfolio
within the efficient surface sufficiently close to the optimal port-
folio is considered equivalent to it. The extension of his idea to
the efficient frontier surface is to identify a region on it whose
ex ante chance-constrained probability both can be measured and
has desirable statistical properties in a forecasting sense. This is
analogous to acknowledging the existence of sampling error and
specifying an unknown population parameter only to within an
interval of statistical confidence. Unfortunately, the definition of
sufficiently close is constructive but difficult to implement in a
rigorous manner, particularly within the context of the hybrid
DFA model.

Future study will have to answer the question of whether on-
frontier asset allocations that are measured from hybrid DFA
models suffer a similar unreliability. But the problems with on-
frontier asset portfolios raised in this paper are apt to be exacer-
bated by inclusion of known sampling error in the liability side
of DFA models.
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7.2. How Can EFs Be Efficiently Deployed?

Users of this construct should be aware that the term “ef-
ficient” in efficient frontiers has a good chance of being opera-
tionally false. The efficiency of portfolio composition is unlikely
to be manifest in better performance of the on-frontier portfolio
compared to other, off-frontier portfolios. The risk-return sur-
face is not adequately measured by a single EF, and sampling
error may lead to unwarranted conclusions about the efficacy of
portfolios measured in such singular optimizations.

The user of EFs should probably view them as containing pro-
visional, useful information about risk-return relationships. But,
any single EF has limited value in understanding the risk-return
surface. The conceptual basis of an efficient surface is an orga-
nized resampling of the data so that the decision process benefits
from better understanding of uncertainty that might arise just be-
cause the EF is operationally derived from a sample. The misun-
derstanding of this uncertainty may lead to erroneous decisions,
and the practitioner must be alert to potential inefficiencies of a
single EF measurement. The authors recommend the elicitation
of an efficient surface because the surface is apt to show a lack
of statistical confidence in any single frontier on that surface.
Under these circumstances, the practitioner must think in terms
of confidence ranges. The sampling error shown in the efficient
surface emphasizes how careful one must be when drawing infer-
ences derived from optimization. An optimized frontier is based
on an empirical covariance matrix, one that has sampling error.
That error may be very important. It is easy to believe that strate-
gic or tactical decisions motivated by so-called optimized DFA
measurement will effectively move the organization to a better
position in risk-return space. Unfortunately, there appears to be
a broad region of “inefficiency” that may serve as well. An EF
may be better than a crystal ball; but there is a good chance that
it should not be taken too seriously.
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APPENDIX A

REVIEW OF DATA SOURCES

This paper uses monthly time series of asset class total returns.
A selection of broad asset classes typical of P&C insurance com-
pany asset portfolios was chosen for examination. The time series
all begin January 1, 1970. However, certain asset classes (e.g.,
mortgage backed securities) do not have a history that extends
back this far. For these classes, the time series were backfilled
to the January 1, 1970 start date by an investment consultant.
The backfill process was based on a consideration of the market
conditions of the time (e.g., interest rates, fixed income spreads,
inflation expectations) and how the particular sector would have
performed given those market conditions. The Start Date in Table
5 refers to the date historical data begin.

TABLE 5
ASSET COMPONENTS

Class Code Source Start Date
International Equities EAFEU MSCI EAFE Index 1/1970
International Fixed Income INTLHDG  JP Morgan Non-US Traded Index 1/1970
Large Cap Domestic Equities ~ S&P5 S&P 500 Index 1/1970
Cash USTB 90 Day US Treasury Bill 1/1970
Mid Cap Domestic Equities RMID S&P Mid Cap 400 Index 1/1982
High Yield HIYLD CSFB High Yield Bond Index 1/1986
Convertible Securities CONV CSFB Convertible Index 1/1982
Corporate Bonds LBCORP Lehman Brothers Corporate Bond 1/1973

Index
Government Bonds LBGOVT  Lehman Brothers Government 1/1973
Bond Index

Mortgage Backed Securities LBMBS Lehman Brothers Mortgage Backed 1/1986
Securities Index
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APPENDIX B

ANNUALIZED RETURNS

The time series used in this study are monthly returns. With
the exception of work relating to performance, all returns are
expressed as monthly returns.

For performance measurement purposes, returns have been
annualized using the following formulas.

Annualized Expected Return

_ 12
R,=(+r,) "1,
where
R = annualized return, and

p

r, = monthly return.

Annualized Variance of Return

_ 2112 2
‘/,7—[Vp+(1+ﬂp)] _(1+Mp)’
where
Vp = annualized variance of return,
v, = monthly variance of return,

expected monthly return, and

=
S
I

M,, = expected annualized return.
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Annualized Geometric Return
The growth rate, g, for a holding period of n years is given
by: )
V 1/n
l+g= (—”> ,
Y
where
V., = portfolio value at the end of the holding period n, and
Vp = portfolio value at the beginning of holding period.



ADDRESS TO NEW MEMBERS—NOVEMBER 12, 2001

DAVID P. FLYNN

On behalf of the Casualty Actuarial Society, let me extend a
warm welcome and congratulations to you, our new Associates
and new Fellows.

The members are aware of the dedication that was required
by each of you to have passed the exams and achieved the goal
you’ve reached today for which you deserve our congratulations
and best wishes. We are also aware of the support, comfort, and
encouragement extended by your friends and family who have
accompanied you on your journey. These friends and family have
given up many hours to support you in gaining this achievement.
We extend our congratulations to them as well on a job well done.

While your accomplishment is an ending of sorts, it is also the
formal beginning of many wonderful opportunities for you in the
years ahead. [ have to admit that I’'m more than a bit jealous, for I
believe that the challenges and opportunities ahead of you today
are far better and more interesting than ever before. Today we
face a world in change brought on not only by the mass murders
that occurred in September, but also by the recognition that past
economic and regulatory models are in need of some adjustment.
Has Alan Greenspan’s magic wand lost all of its power? Ten rate
adjustments in a single year so far has got to be some sort of a
record. Because our industry is intrinsically bound to the wider
economy, these will be interesting and challenging times, which
is a great time to be an actuary!

Several months ago when Pat Grannan asked me to deliver this
address, he added that he was looking forward to my comments
and wondered what I was going to say.

In truth, I wondered what I was going to say as well!

What possibly could I say? What possibly could I say that
would give you the appropriate insight into the guidance, sup-
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port, experience, friendship, and sometimes even wisdom of the
members of the Casualty Actuarial Society available to you that
will be a part of your working lives for many years to come?
What words would fairly communicate the new challenges that
are before you in the global economy, words that would also
warn you of the possible pitfalls that may lie ahead of you?

I soon decided that there must be some aids available in the
great works of literature, religion, and philosophy that would
guide me in communicating these thoughts. I was disappointed in
my search until I recalled the existence of a more recent work by
one of America’s great philosophers, Dr. Theodore Geisel, better
known throughout world as Dr. Seuss! He released a clever little
ditty in the early *90s directed to recent graduates of all ages and
stations.

To those of you who have not yet discovered this American
author and philosopher, you are in for quite a treat. Francis Bacon
surely could not have identified new career options now available
to you any better than:

“You have brains in your head.
You have feet in your shoes.
You can steer yourself

Any direction you choose.”

And today you do have many new directions to choose from.
The CAS educational process has provided you with an unparal-
leled education in the art and science of the property and casualty
risk transfer and risk management processes. No other institution
even comes close in the range, depth, and practicality of its syl-
labus. Your talent and training is now increasingly being sought
and used not only in the insurance business but in many other
businesses as well. The recent revision in the banking laws added
another industry in the CAS quiver. How these opportunities will
emerge in the future in large part depends upon you, for you are
the builders of the Casualty Actuarial Society of the future.
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While this education will serve you well in the coming years,
keep in mind that it is just basic training. Your growth and success
as actuaries will depend in large measure on you! On your will-
ingness to continue this learning process and to keep your mind
open to the new and creative concepts available in the various
seminars and programs sponsored by the CAS.

Also, keep in mind that the CAS is depending on each of you
to make your contribution to these future education efforts. You
owe it to those that will come after you.

In this same vein, those of you who are members of the CAS’s
CASNET e-mail system are aware of the recent discussions con-
cerning some fundamental issues regarding the CAS’s future di-
rection, structure, and educational processes. With a few notable
exceptions, I’ve generally been impressed with the thoughtful-
ness and quality of the discussions. My point is that CASNET
has created a soapbox for you to express your opinions about
CAS matters. Use it! It’s a great tool.

Our learned Dr. Seuss further relates that even though your
futures will likely be full of success, at times you’ll fail or, in
his words:

“When you’re in a Slump,
You’re not in for much fun.
Un-slumping yourself

Is not easily done.”

There are multiple reasons for being caught in a “slump.” I'm
reminded of the succinct wisdom of the members of the corporate
planning community, “No amount of planning beats dumb luck!”
For in spite of your best plans, there will be times when things are
just not going your way. Think how Alan Greenspan must feel!
However, not one of those “slumps” should ever be a failure to
comply with the Code of Professional Conduct. The Precepts of
the Code are there not only as a warning but more importantly as
a safe harbor for you, especially for those of you in the consulting
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community. Know the Precepts and Standards of Practice that
affect you—they’re your best protection!

Now that you have your head full of brains and your shoes
full of feet, you’re on your way!

Have fun! You’re going to have a great career!
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PATRICK J. GRANNAN

I’d like to ask you to sit back for the next few minutes to
think about the fundamental purpose of the CAS and about what
we need to do to make sure it continues to meet our profession’s
needs. I'll do the talking for now, but your words and actions
are what will determine the future course of the CAS and our
profession.

In thinking about the CAS, I find it helpful to go back to the
fact that it is an organization of professionals. Many professions
outside the actuarial field have organizations that are more like
separate businesses that actually shape the professions they serve
to some extent. That’s not the case for our profession. The CAS
has a very talented and supportive staff, but the CAS is totally
controlled by members and is headed by a Board of Directors
elected by the membership. When we talk about what the CAS
should do, we are talking about what we as a profession should
do, not about what a separate business entity with its own objec-
tives wants to do.

So, what do we as a profession want this organization to do?
The mission we have asked it to carry out consists mainly of set-
ting basic education standards, providing continuing education,
facilitating research, and communicating about the profession,
although some of the communication part is delegated to other
organizations like the Academy. My view is that the CAS has
been an exceptionally useful, valuable organization for our pro-
fession. I may be preaching to the choir here, but I'd like to point
out a few signs of its value.

e First, compared to other professions, a very high percentage of
CAS members are active in its committees, write papers, and
give presentations at its meetings. Many take part in similar ac-
tivities in CAS Regional Affiliates, the Academy, the Canadian
Institute, and other professional groups. I believe the reason
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our members do this is that it’s of value to them, both directly
in their jobs and indirectly by helping their profession.

e A second sign of value is that the number of CAS members
has been growing steadily. It doubled in the last ten years and
nearly doubled in the prior ten years. This growth shows there
is strong demand for the knowledge and skills of CAS mem-
bers, and also that there’s a good supply of people interested
in joining our profession.

e Third, employers put significant value on the Associateship
and Fellowship designations. If there were no CAS, there
would be much less education and knowledge sharing among
casualty actuaries, and people in our profession would be less
valuable to their employers. I believe we as individuals have
had the opportunity to do more interesting work and earn
higher incomes as a result of the CAS.

I could go on, but you get the picture. I feel very good about
what this organization has done for its members. I also believe
that you, as CAS members, deserve to feel good about our pro-
fession’s contribution to society. Although the insurance mar-
kets sometimes suffer from price swings, availability issues, and
insolvencies, I believe each of those problems would be much
greater if it weren’t for the knowledge and skills brought to the
insurance markets by casualty actuaries.

Has the CAS done everything right? Of course not. But, its
occasional missteps haven’t come from any lack of good inten-
tions or efforts. I believe it will continue to meet our needs as
long as its members continue to volunteer their time and energy
the way they have in the past.

Two years ago when I became President-Elect, I got a fair
amount of advice. All of it was helpful. But looking back, one
of the better pieces of advice came from Dave Hartman. It was
always to keep in mind that the volunteers are what made the
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CAS what it is today, and that our profession’s future depends
on continued active involvement by our members.

The CAS has a lot of good work in progress in each of its
functional areas, and we can count on it continuing. It’s not au-
tomatic, but for the most part it’s a progression that I’m confi-
dent will occur fairly naturally. What I’d like to talk about here
are four changes in our environment that I think the CAS, and
therefore we as members, need to focus on to make sure our
profession adapts well to them. The changes I want to talk about
are not revelations, and I believe the CAS is generally head-
ing in the right direction on each of them. However, I want
to suggest to each of you that you think about at least one
of them and consider volunteering your help. Each of these
changes requires significant attention and creative thinking in
order for our profession to meet its members’ needs well in the
future.

The first change 1 want to mention is the increased competi-
tion for people who have the aptitudes and interests that lead to
good actuarial work. There are more choices out there for these
people today than when most of us joined the profession. We
need to make sure the opportunities in our profession are well
known and that our qualification process is no more of a barrier
than necessary in assuring the requisite knowledge and skills.
This means, among other things, that we must reduce the time
it takes good actuaries to get through our examination process.
The elimination of exam partitioning last year should move us in
the right direction, but I believe we need to go further in order
to be as competitive as we want to be with other careers. I'm
optimistic that the exam system changes we are embarking on
now with the help of some professional educators will result in
reductions in travel time without reducing our standards. While
I feel we’ve started in the right direction, a lot more attention
and creative thinking will be needed to get to where we need to
be.
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The second change I want to talk about is in the skills needed
from actuaries by their employers and clients. As with many
other things, these changes are occurring faster today than in the
past. They are creating new opportunities in many areas, and at
the same time may also be causing decreased demand for some
traditional actuarial work, narrowly defined. A few examples I
would cite of the skills needed and forces at work are enterprise
risk management, asset/liability management, securitization of
risk, deregulation, and the reduction of barriers between finan-
cial services companies. The exam syllabus changes last year
were designed in part to reflect these changing skill needs. The
syllabus will need to evolve continually and in a way that mini-
mizes any disruption to the lives of our candidates. At the same
time, we need to facilitate the research and provide the continu-
ing education opportunities needed by our members in order to
meet their employers’ current and future needs.

Third, globalization of the business world is in progress and is
almost certain to continue. We need to improve the international
portability of both our skills and our credentials. The impor-
tance of working with our colleagues in other countries is also
growing. Actuaries in different countries need to speak the same
language in an actuarial sense so we work well together for our
mutual employers. To accomplish this, we as a profession need
to work hard at bringing actuaries in different countries closer
together through as much sharing as possible in the basic edu-
cation system, continuing education programs, and research. As
Allan Kaufman once said in a different context, not only do we
need to do everything, but we need to do it internationally. Again,
this is an area where we are headed in the right direction, but
continual attention and creative thinking will be needed to get to
where we want to be.

The fourth change is in the information expectations of our
members and our exam candidates. As technological changes
have made it easier to share information, people have come to
expect more information from everywhere, including from the
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CAS. I have never thought of the CAS as operating in secrecy,
but some of our members and many of our exam candidates do
think that. We need to go out of our way to make information
about CAS activities readily available, and make every effort to
obtain the input of our colleagues on important issues. This is
not just more practical today. It is essential in order for many of
our members to continue to feel they are part of the CAS and to
want to contribute to it. In my view, we should also provide the
same information to exam candidates and think of them as part
of our profession. We’ve made some changes that move us in the
right direction. For example, the Board agendas and minutes are
now posted on the Web site in the “Member Services” section,
which used to be called the “Members Only” section. Those and
most other items in the “Member Services” section will soon be
available to exam candidates and others.

I’d like to say a few words about our election this year. A lot
of the discussion around the election, especially by exam can-
didates, had to do with what they perceived as secrecy by the
CAS. Good arguments can be made both for and against chang-
ing the election system to produce a competitive election each
year. Regardless of the conclusion on that question, the fact that
there was a competitive election this year was very helpful in my
opinion. Sholom Feldblum demonstrated that a strong candidate
not only can get on the ballot, but has a significant chance of
winning. It was a close election. I want to thank both Sholom
Feldblum and Gail Ross publicly for all the effort they expended
in the process.

In summary, there are four areas where I believe our environ-
ment is changing and our profession needs careful attention by
volunteers to keep us on the right track, and creative thinking by
those volunteers to get us where we need to be. The four areas
are attracting talented people to our profession, meeting chang-
ing skill needs in the marketplace, improving the international
portability of our skills, and sharing information more fluidly in
both directions with our members and exam candidates.
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THANK YOUS

The past year has been a very busy time for the CAS. I'd like
to thank the hundreds of CAS members who volunteered their
time in the past year for the good of our profession. I’ll start by
asking the Board of Directors from the past year to stand. This is
a group of incredibly talented and dedicated professionals. They
did a lot of extra work this year, including participation in what
was probably a record number of Board conference calls.

Next I'd like to ask the Executive Council to stand. Bob
Conger, Abbe Bensimon, LeRoy Boison, Dave Chernick, Gary
Josephson, Mary Frances Miller, and Shelly Rosenberg—you
have each done a great job for our profession and it’s been a
real pleasure working with each of you. Thank you.

For everyone else in the room, I’d like to ask you to stand and
remain standing if, in the past year, you served on a committee or
task force of the CAS, or the Academy or the Canadian Institute,
the ASB, or one of our Regional Affiliates, or wrote a paper,
or gave a presentation, or contributed in any other way to our
profession. You can see that our profession has a high level of
participation by its members.

Will the CAS staff please stand. Most of them are probably
already standing or else out of the room, keeping things running
smoothly as usual. They carry out the day-to-day details for the
CAS in jobs that usually aren’t noticed unless something goes
wrong. Since they rarely let that happen, now is our chance to
notice them and thank them for the excellent job they do for our
members.

I’d also like to thank my wife, Linda, and daughters Megan
and Kelsey, for their support and for putting up with me—there
was even more to put up with in the past year. Unfortunately,
they were not able to be here today—school is important and
they get to hear my views often enough.
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I also want to thank my colleagues at Milliman for their sup-
port, both financially and professionally. It would have been very
difficult to do this job without their support.

Finally, I’d like to thank all of you for allowing me to serve the
CAS as president for the past year. It has been a real pleasure
working with each of you I came in contact with. I am very
confident of the CAS’s future based on what I have seen in you.
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November 11-14, 2001

MARRIOTT MARQUIS
ATLANTA, GEORGIA

Sunday, November 11, 2001

The Board of Directors held their regular quarterly meeting
from 9:00 a.m. to 5:00 p.m.

Registration was held from 4:00 p.m. to 6:00 p.m.

From 5:30 p.m. to 6:30 p.m., there was a special presentation to
new Associates and their guests. All 2001 CAS Executive Council
members briefly discussed their roles in the Society with the new
members. In addition, Steven G. Lehmann, who is a past president
of the CAS, gave a short talk on the American Academy of
Actuaries’ (AAA) Casualty Practice Council.

A welcome reception for all members and guests was held from
6:30 p.m. to 7:30 p.m.

Monday, November 12, 2001

Registration continued from 7:00 a.m. to 8:00 a.m.

CAS President Patrick J. Grannan opened the business session
at 8:00 a.m. and introduced members of the Executive Council
and the CAS Board of Directors. Mr. Grannan also recognized
past presidents of the CAS who were in attendance at the meeting,
including: Robert A. Anker (1996), Phillip N. Ben-Zvi (1985),
Ronald L. Bornhuetter (1975), Charles A. Bryan (1990), David P.
Flynn (1992), Michael Fusco (1989), Alice H. Gannon (2000),
David G. Hartman (1987), Charles C. Hewitt Jr. (1972),
M. Stanley Hughey (1974), Frederick W. Kilbourne (1982),
Steven G. Lehmann (1998), W. James MacGinnitie (1979), Jerome
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A. Scheibl (1980), Michael L. Toothman (1991), and Mavis A.
Walters (1997).

Mr. Grannan also recognized special guests in the audience:
Robert A. Anker, president-elect of the American Academy of
Actuaries; W. James MacGinnitie, president of the Society of
Actuaries; Jean-Louis Mass¢, president of the Canadian Institute
of Actuaries; and John P. Ryan, council member of the Institute of
Actuaries.

Mr. Grannan then announced the results of the CAS elections.
The next president will be Robert F. Conger, and the president-
elect will be Gail M. Ross. Members of the CAS Executive Coun-
cil for 2001 —2002 will be: Sheldon Rosenberg, vice president —
administration; Mary Frances Miller, vice president—admissions;
Roger A. Schultz, vice president—continuing education; LeRoy A.
Boison, vice president—international; Christopher S. Carlson, vice
president—programs and communication; and Gary R. Josephson,
vice president—research and development. New members of the
CAS Board of Directors are Phillip N. Ben-Zvi, Curtis Gary
Dean, David G. Hartman, and Janet R. Nelson.

Gary R. Josephson announced the 92 new Associates, and
Robert F. Conger announced the 116 new Fellows. The names of
these individuals follow.

NEW FELLOWS
Jason R. Abrams Jeremy James Brigham Louise
Stephen A. Alexander ~ Russell J. Buckley Chung-Chum-Lam
Katherine H. Antonello  Kevin D. Burns Jeffrey J. Clinch
Anju Arora Hayden Heschel Maryellen J. Coggins
Peter Attanasio Burrus John T. Devereux
Craig Victor Avitabile ~ Sharon C. Carroll Kevin Francis Downs
Jeremy Todd Benson Jill C. Cecchini Louis-Christian Dupuis
Eric D. Besman Richard M. Chiarini Wayne W. Edwards
Kristen Maria Bessette ~ Michael Joseph Richard James

Neil M. Bodoff Christian Engelhuber
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Jonathan Palmer Evans
Weishu Fan

Sara Frankowiak
Dustin Wayne Gary
Amy L. Gebauer
Bradley G. Gipson
Theresa Giunta

Karl Goring

Lisa N. Guglietti
Elizabeth Susan Guven
Nasser Hadidi

Brian D. Haney
Kevin B. Held

Mark D. Heyne
Glenn R. Hiltpold
Richard Michael Holtz
Susan Elizabeth Innes
Craig D. Isaacs
Patrice Jean

Weidong Wayne Jiang
Susan K. Johnston
Bryon Robert Jones
Sean M. Kennedy
David R. Kennerud
Susan E. Kent
Susanlisa Kessler
Richard F. Kohan
Richard Scott Krivo
Scott C. Kurban
Steven M. Lacke
Julie-Linda Laforce
Isabelle La Palme

Aaron Michael Larson
Dennis H. Lawton
Thomas V. Le
James P. Leise
Christian Lemay
John N. Levy
Matthew Allen
Lillegard
Kathleen T. Logue
Cara M. Low
Robb W. Luck
Joshua Nathan Mandell
Jason Aaron Martin
Heather L. MclIntosh
Christian Menard
Richard Ernest Meuret
Michael J. Miller
Sean Robert Nimm
Sylvain Nolet
Corine Nutting
Steven Brian Oakley
Randall William Oja
Christy Beth Olson
Rodrick Raymond
Osborn
Apryle L. Oswald
Cosimo Pantaleo
John R. Pedrick
Kiristin Sarah
Piltzecker
Dylan P. Place
Mario Richard
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John R. Rohe
Christine R. Ross
Asif M. Sardar
Parr T. Schoolman
Steven George Searle
Joseph Allen Smalley
Klayton N. Southwood
Theodore S. Spitalnick
Curt A. Stewart
Beth S. Thompson
Laura Little Thorne
Christopher S.
Throckmorton
Jennifer L. Throm
Michael C. Torre
Gary S. Traicoff
Brian K. Turner
Eric Vaith
Jennifer S. Vincent
Cameron Jason Vogt
Robert J. Walling I11
Kelly M. Weber
V. Clare Whitlam
Dean M. Winters
Robert F. Wolf
Kah-Leng Wong
Windrie Wong
Mary K. Woodson
Jeanne Lee Ying
Edward J. Zonenberg
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Vagif Amstislavskiy
Pamela G. Anderson
Joel E. Atkins
Esther Becker
Marie-Eve J. Belanger
Kofi Boaitey
Erich A. Brandt
Maureen B. Brennan
Don J. Burbacher
James E. Calton
William Brent Carr
Ronald S. Cederburg
Hao Chai
Jennifer A. Charlonne
Alan M. Chow
Paul L. Cohen
Christopher L.
Cooksey
Leanne M. Cornell
Thomas Cosenza
Michael J. Covert
Hall D. Crowder
A. David Cummings
Erik L. Donahue
Brian M. Donlan
Kiera Elizabeth Doster
Scott H. Drab
Gregory L. Dunn
Ruchira Dutta
Kyle A. Falconbury
Robin V. Fitzgerald
Patrick P. Gallagher

NEW ASSOCIATES

Genevieve Garon
Keith R. Gentile
Christopher J. Grasso
Donald B. Grimm
Jason L. Grove
Stuart J. Hayes
Scott E. Henck
Long-Fong Hsu
Katherine Jacques
Gregory O. Jaynes
Brian B. Johnson
Erik A. Johnson
Dana F. Joseph
Hye-Sook Kang
Barbara L. Kanigowski
Lawrence S. Katz
Stacey M. Kidd
Laurie A. Knoke
Anand S. Kulkarni
Stephane Lalancette
Amanda M. Levinson
Daniel A. Lowen
Sally Ann MacFadden
Teresa Madariaga
Zubimendi
Jeffrey B. McDonald
Stephane McGee
Charles W. Mitchell
Matthew E. Morin
Joseph J. Muccio
Scott L. Negus
Norman Niami
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Stoyko N. Nikolov
Alejandra S. Nolibos
Dianne M. Phelps
Daniel P. Post
Bill D. Premdas
John T. Raeihle
Ryan P. Royce
Giuseppe Russo
Larry J. Seymour
Brett M. Shereck
Junning Shi
Jeremy D. Shoemaker
James S. Shoenfelt
Steven A. Smith II
Anthony A. Solak
Karine St-Onge
Wei Hua Su
Christie L. Sullivan
Edward Sypher
Mary A. Theilen
Peggy J. Urness
Justin M. Van Opdorp
Gaetan R. Veilleux
Geraldine Marie L.
Verano
Amy R. Waldhauer
Robert S. Weishaar
Jean P. West
William B. Wilder
Jennifer X. Wu
Run Yan
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Mr. Grannan then introduced David P. Flynn, a past president
of the Society, who presented the Address to New Members.

Following the address, David R. Chernick briefly highlighted
the meeting’s programs and thanked the CAS Program Planning
Committee. Mr. Chernick then introduced Abbe S. Bensimon who
announced that one Proceedings paper would be presented at this
meeting.

Ms. Bensimon began the awards program by announcing that
the 2001 Dorweiler Prize was given to two papers: “The n-
Moment Insurance CAPM” by Thomas J. Kozik and Aaron M.
Larson and “Measuring the Interest Rate Sensitivity of Loss
Reserves” by Stephen P. D’Arcy and Richard W. Gorvett. Ms.
Bensimon then introduced LeRoy A. Boison, vice president —in-
ternational, who presented the 2001 Charles A. Hachemeister
Award to Morton N. Lane for his paper, “Pricing Risk Transfer
Transactions.” Mr. Kozik and Mr. Larson’s paper is published in
this edition of the Proceedings. Mr. D’ Arcy and Mr. Gorvett’s pa-
per is published in the 2000 Proceedings, and Mr. Lane’s paper is
published in the ASTIN Bulletin.

Mr. Grannan presented the 2001 CAS Matthew S. Rodermund
Service Award to James R. Berquist, who was chosen for his out-
standing contributions to the actuarial profession.

Mr. Grannan then requested a moment of silence in honor of
those CAS members who passed away since November 2000.
They are: James J. Callahan, Nathaniel Gaines, E. LeRoy Heer,
James P. Jensen, Norton “Doc” Masterson, Tracey Lynn Matthew,
Philip D. Miller, Harry R. Richards, Lewis H. Roberts, and Henry
C. Schneiker.

In a final item of business, Mr. Grannan acknowledged a dona-
tion of $10,000 from D.W. Simpson & Company to the CAS Trust
(CAST). The donation was made October 13, 2001.

Mr. Grannan then concluded the business session of the Annual
Meeting and introduced the featured speaker, Dr. James Mapes.
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Dr. Mapes is a management consultant and author. He is an ardent
student of human behavior and communication. Dr. Mapes is ded-
icated to educating and encouraging his audiences to be open-
minded about new options.

After a refreshment break, the first General Session was held
from 10:45 a.m. to 12:15 p.m.

“A View From the Top”

Moderator: Robert V. Deutsch
Executive Vice President and CFO
CNA Insurance Companies

Panelists: Mary R. Hennessy
President and CEO
Overseas Partners Ltd.

Robert Lippincott 111
CEO
AXA Corporate Solutions

Alistair Shore
Senior Vice President
Fireman’s Fund Insurance Companies

Following the general session, CAS President Patrick J.
Grannan gave his Presidential Address at the luncheon. At the lun-
cheon’s end, Mr. Grannan officially passed on the CAS presiden-
tial gavel to the new CAS president, Robert F. Conger.

After the luncheon, the afternoon was devoted to presentations
of concurrent sessions. The panel presentations from 1:30 p.m. to
3:00 p.m. covered the following topics:

1. Introduction to the CAS Examination Committee
Moderator: Thomas G. Myers
Vice President and Actuary

Prudential Property & Casualty
Insurance Company
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Panelists: J. Thomas Downey
Manager, Admissions
Casualty Actuarial Society

Floyd M. Yager
Senior Actuary
Allstate Insurance Company

Richard P. Yocius
Senior Actuary
Allstate Insurance Company

2. D & O Insurance

Moderator: John J. Lewandowski
Senior Vice President and Actuary
CNA Insurance Companies

Panelists: David F. Allen
Second Vice President
GeneralCologne Re

Mark W. Larsen
Consultant
Tillinghast-Towers Perrin

Carol A. Zacharias
Managing Director/Counsel
CNA Insurance Companies

3. The Rating Agency’s View

Moderator: Eric Simpson
Senior Vice President and Chief
Financial Officer
Domestic Insurance Company

Panelists: Karen L. Davies
Vice President—Senior Analyst
Moody’s Investors Service

Matthew C. Mosher
Group Vice President—P/C
A.M. Best Company
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4. Loss Portfolio Transfers

Moderator:

Panelists:

Spencer M. Gluck

Senior Managing Director, Chief Actuary
Gerling Global Financial Products
Thomas Passante

Director

Swiss Re New Markets

Bryan C. Ware

Chief Actuary—Brokered Group
American Re-Insurance Company

5. Workers Compensation

Moderator:

Panelists:

David M. Bellusci

Senior Vice President and Chief Actuary
Workers Compensation Insurance Rating
Bureau of California

Jeffrey S. Estabrook

Vice President

Guy Carpenter & Company, Inc.
Robert E. Meyer

Senior Vice President

Zenith National Insurance Company
Stacy L. Mina

Associate Actuary

Liberty Mutual Group

6. Personal Lines Pricing—A New Environment

Moderator:

Panelists:

Frank J. Karlinski

Vice President

American International Underwriters
Claudine H. Modlin

Senior Consultant

Watson Wyatt Company

Anthony L. Alfieri

Consultant

PricewaterhouseCoopers LLP
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7. Hachemeister Prize Paper: “Pricing Risk Transfer
Transactions”

Author: Morton N. Lane
Lane Financial LLC

After a refreshment break from 3:00 p.m. to 3:30 p.m., presen-
tations of concurrent sessions continued. A concurrent session pre-
sented earlier was repeated. Additional concurrent sessions
presented from 3:30 p.m. to 5:00 p.m. were:

1. Actuarial Standard of Practice 36—An Update

Moderator: Patricia A. Teufel
Principal
KPMG LLP

Panelists: Mary D. Miller
Actuary
Ohio Department of Insurance

David S. Powell
Consulting Actuary
Tillinghast-Tower Perrin

James C. Votta
Principal
Deloitte & Touche LLP

2. Mold: The Next Looming Exposure Crisis for the
Insurance Industry?

Moderator: Jeffrey C. Kucera
Consulting Actuary
Miller, Herbers, Lehmann,
& Associates, Inc.

Panelists: David M. Golden
Director, Commercial Lines
National Association of Independent
Insurers

Mark Malia

Claims Manager
State Farm Fire & Casualty Company
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Philip O. Presley
Chief Actuary
Texas Department of Insurance

Umbrella Liability

Moderator:

Panelists:

Patrick J. Burns

Senior Vice President—Actuarial and
Financial Operations

American Home Assurance Company

Craig J. Beardsley
Second Vice President
GeneralCologne Re

Paul J. Sanchez
Senior Vice President
CNA Insurance Companies

Recruiting— Supply and Demand

Moderator/
Panelist:

Panelists:

Amy S. Bouska
Consulting Actuary
Tillinghast-Towers Perrin

LeNan R. Bradley
Human Resources Director
Fireman’s Fund Insurance Company

Patty Jacobsen
Managing Partner
D.W. Simpson & Company

ARIA Prize Paper: “Great (and not so Great)
Expectations: An Endogenous Economic Explication
of Insurance Cycles and Liability Crisis”

Authors:

Patrick L. Brockett
University of Texas at Austin

Hung-Gay Fung
Gene C. Lai

Richard MacMinn
University of Nottingham
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Robert C. Witt
University of Texas at Austin

An Officers’ Reception for new Fellows and accompanying
persons was held from 5:30 p.m. to 6:30 p.m.

A general reception for all attendees followed from 6:30 p.m. to
7:30 p.m.

Tuesday, November 13, 2001

Registration continued from 7:00 a.m. to 8:00 a.m.

The following General Sessions were held from 8:00 a.m. to
9:30 am.:

“From The Back Room to The Boardroom”

Moderator: Nolan E. Asch
Principal, Reinsurance
Insurance Services Office, Inc.

Panelists: Frederick O. Kist
Senior Vice President and Chief Actuary
Kemper Insurance Companies

Michael A. LaMonica

Product Vice President

Allstate Insurance Company

David Spiegler

Senior Vice President and Chief Actuary
American Re-Insurance Company

“Safer Vehicles: What Should We Know as an Insurance
Industry?”

Moderator: Gary Grant
Vice President and Actuary
State Farm Mutual Automobile Insurance
Company
Panelists: Frederick F. Cripe
Vice President
Allstate Insurance Company
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Brian O’Neill
President
Insurance Institute for Highway Safety

William Shapiro

Manager, Regulatory & Product
Compliance

Volvo Cars of North America, LLC

Following a break from 9:30 a.m. to 10:00 a.m., certain concur-
rent sessions that had been presented earlier during the meeting
were repeated from 10:00 a.m. to 11:30 a.m. Additional concur-
rent sessions presented were:

1. Terrorism: Where Do We Go From Here?

Moderator:

Panelists:

John J. Kollar
Vice President
Insurance Services Office, Inc.

Matthew C. Mosher
Group Vice President
A.M. Best Company

Eric C. Nordman

Director of Research

National Association of Insurance
Commissioners

David S. Powell
Consulting Actuary
Tillinghast-Towers Perrin

2. Understanding Insurance Fraud: Theory and Practice

Moderator:

Panelists:

Richard A. Derrig

Senior Vice President
Automobile Insurers Bureau of
Massachusetts

Martin E. Ellingsworth

Director, Operations Research
Fireman’s Fund Insurance Companies
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Sharon Tennyson
Professor
Cornell University

Asbestos Claims Liabilities

Moderator:

Panelists:

Jennifer L. Biggs

Consulting Actuary

Tillinghast-Towers Perrin

Stephen J. Carroll

Senior Economist

RAND Institute for Civil Justice
Andrew H. Pinkowski, Esq.

Hartford Financial Services Group, Inc.
and

The Coalition for Asbestos Justice

American Academy of Actuaries Council on
Professionalism: “Professionalism and the Reserving

Actuary”
Speakers:

Cara M. Blank

Consulting Actuary

Miller, Herbers, Lehmann, &
Associates, Inc.

David G. Hartman
Senior Vice President and Chief Actuary
Chubb Group of Insurance Companies

Henry K. Knowlton
Vice President, Professionalism
American Academy of Actuaries

Charles L. McClenahan

Principal

MMC Enterprise Risk Consulting, Inc.
Robert W. Sturgis

Chairperson

Actuarial Board for Counseling and
Discipline
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5. Data Mining

Moderator/ Louise A. Francis

Panelist: Consulting Principal
Francis Analytics & Actuarial Data
Mining, Inc.

Panelist: Steven J. Finkelstein
Senior Manager
Ernst & Young LLP

The American Academy of Actuaries held its annual meeting in
conjunction with the Casualty Actuarial Society’s Annual Meet-
ing. The AAA luncheon was held from 12:00 p.m. to 2:00 p.m.
Ralph Levy, Esq., a litigator with more than 25 years of experi-
ence representing actuarial, accounting, and law firms, was the
keynote speaker. Following the luncheon, the AAA “Washington
Insider Debate: The Tort Reform Battle — Eleanor Clift vs. Fred
Barnes” was held from 2:15 p.m. to 3:30 p.m.

Entertainment and a buffet dinner were held from 7:00 p.m. to
9:30 p.m.

Wednesday, November 14, 2001

A concurrent session was repeated from 8:00 a.m. to 9:30 a.m.
Additional concurrent sessions presented at this time were:

1. Capital Management

Moderator: Frangois Morin
Consulting Actuary
Tillinghast-Towers Perrin

Panelist: Thomas A. Weidman

Senior Vice President and Chief Actuary
XL America, Inc.

2. NAIC Current Issues

Moderator: Frederick O. Kist
Senior Vice President and Chief Actuary
Kemper Insurance Companies
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Panelists: Vincent Laurenzano

Insurance Consultant
Stroock, Stroock, and Lavan
Joseph B. Sieverling
Vice President and Director of Financial
Services
Reinsurance Association of America
Robert Wake
Managing Examiner
Maine Bureau of Insurance

3. Opportunities for Volunteering

Moderator: Roger A. Schultz
Assistant Vice President
Allstate Insurance Company
Panelists: Regina M. Berens
Vice President and Chief Actuary
Scruggs Consulting
Dale Porfilio
Pricing Director
Kemper Insurance Companies
Daniel G. Roth
Vice President and Chief Actuary
CNA Insurance Companies

The Proceedings paper presented during this time was:
1. “Is the Efficient Frontier Efficient?”

Authors: William C. Scheel
DFA Technologies LLC
William J. Blatcher
AEGIS Insurance Services
Gerald S. Kirschner
Classic Solutions Risk Management, Inc.

John J. Denman
AEGIS Insurance Services



MINUTES OF THE 2001 ANNUAL MEETING 313

After a break from 9:30 a.m. to 10:00 a.m., the final General
Session was held from 10:00 a.m. to 11:30 a.m.

“CAS—Approaching 100”

Moderator:

Panelists:

Phillip N. Ben-Zvi

Principal
PricewaterhouseCoopers LLP
Michael J. Miller

Principal and Consulting Actuary
Miller, Herbers, Lehmann, &
Associates, Inc.

David G. Hartman
Senior Vice President and Chief Actuary
Chubb Group of Insurance Companies

Jeffrey D. White

Regional Actuary

St. Paul Fire and Marine Insurance
Company

Patrick J. Grannan officially adjourned the 2001 CAS Annual
Meeting at 11:45 a.m. after closing remarks and an announcement
of future CAS meetings.

Attendees of the 2001 CAS Annual Meeting

The 2001 CAS Annual Meeting was attended by 303 Fellows,
137 Associates, and 57 Guests. The names of the Fellows and
Associates in attendance follow:

Jason R. Abrams
Stephen A. Alexander
Terry J. Alfuth

Robert A. Anker
Katherine H. Antonello
Anju Arora

FELLOWS
Nolan E. Asch William P. Ayres
Richard V. Atkinson Andrea C. Bautista
Roger A. Atkinson David M. Bellusci
Peter Attanasio Abbe Sohne Bensimon

Craig Victor Avitabile  Jeremy Todd Benson
Karen F. Ayres Phillip N. Ben-Zvi
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Regina M. Berens

Frangois Bertrand

Eric D. Besman

Lisa M. Besman

Kristen Maria Bessette

Neil A. Bethel

David R. Bickerstaff

Jennifer L. Biggs

Terry J. Biscoglia

Jonathan Everett Blake

Ralph S. Blanchard

Cara M. Blank

Daniel D. Blau

Neil M. Bodoff

LeRoy A. Boison

Ronald L. Bornhuetter

Charles H. Boucek

Amy S. Bouska

Wallis A. Boyd

Paul Braithwaite

Mark L. Brannon

Yaakov B. Brauner

Jeremy James Brigham

Dale L. Brooks

Charles A. Bryan

James E. Buck

Russell J. Buckley

Kevin D. Burns

Hayden Heschel Burrus

Christopher S. Carlson

Bethany L. Cass

Jill C. Cecchini

David R. Chernick

Richard M. Chiarini

Michael Joseph
Christian

Louise
Chung-Chum-Lam
Gary T. Ciardiello
Jeftrey J. Clinch
Maryellen J. Coggins
Robert F. Conger
Mark Crawshaw
Frederick F. Cripe
Stephen P. D’ Arcy
Karen L. Davies
Timothy Andrew Davis
Curtis Gary Dean
Kris D. DeFrain
Robert V. Deutsch
John T. Devereux
Kevin Francis Downs
Louis-Christian Dupuis
Richard D. Easton
Grover M. Edie
Gary J. Egnasko
Valere M. Egnasko
Richard James
Engelhuber
Paul E. Ericksen
Janet L. Fagan
Weishu Fan
Dennis D. Fasking
Denise A. Feder
Vicki Agerton Fendley
Ginda Kaplan Fisher
William G. Fitzpatrick
Louise A. Francis
Barry A. Franklin
Sara Frankowiak
Noelle Christine Fries
John E. Gaines
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Alice H. Gannon
Dustin Wayne Gary
Amy L. Gebauer
John F. Gibson
Bonnie S. Gill
Judy A. Gillam
William R. Gillam
Bradley G. Gipson
John T. Gleba
Ronald E. Glenn
Spencer M. Gluck
James F. Golz
Patrick J. Grannan
Gary Grant
Alex R. Greene
Carleton R. Grose
Victoria Grossack
Lisa N. Guglietti
Elizabeth Susan Guven
Nasser Hadidi
James A. Hall
Brian D. Haney
David G. Hartman
Jeffery Tim Hay
David H. Hays
Christopher Ross Heim
Kevin B. Held
Mary R. Hennessy
Teresa J. Herderick
Charles C. Hewitt
Mark D. Heyne
Glenn R. Hiltpold
Christopher Todd
Hochhausler
Todd Harrison Hoivik
Richard Michael Holtz
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Marie-Josée Huard
David Dennis Hudson
M. Stanley Hughey
Susan Elizabeth Innes
Daniel B. Isaac

Craig D. Isaacs
Patrice Jean

Marvin A. Johnson
Susan K. Johnston
Bryon Robert Jones
Gary R. Josephson
Stephen H. Kantor
Frank J. Karlinski
Clive L. Keatinge
James M. Kelly

Sean M. Kennedy
David R. Kennerud
Susan E. Kent
Susanlisa Kessler
Frederick W. Kilbourne
Chang Seob Joe Kim
Frederick O. Kist
Michael F. Klein
Leon W. Koch
Richard F. Kohan
John J. Kollar
Thomas J. Kozik
Gustave A. Krause
Richard Scott Krivo
Claudia Anita Krucher
Jane Jasper Krumrie
Jeffrey L. Kucera
Andrew E. Kudera
Kimberly J. Kurban
Scott C. Kurban
Bertrand J. LaChance

Steven M. Lacke
Julie-Linda Laforce
Dean K. Lamb
Michael A. LaMonica
Dennis L. Lange
Isabelle La Palme
Aaron Michael Larson
Pierre Guy Laurin
Dennis H. Lawton
Thomas V. Le
Marc-Andre Lefebvre
Steven G. Lehmann
James P. Leise
Christian Lemay
Jennifer McCullough
Levine
John J. Lewandowski
Matthew Allen
Lillegard
Kathleen T. Logue
Cara M. Low
Robb W. Luck
William R. Maag
W. James MacGinnitie
Blaine C. Marles
Heather L. Mclntosh
Kelly S. McKeethan
William T. Mech
Christian Menard
Timothy Messier
Claus S. Metzner
Robert E. Meyer
Glenn G. Meyers
Robert S. Miccolis
David L. Miller
Mary D. Miller

Mary Frances Miller
Michael J. Miller
Michael J. Miller
Stacy L. Mina
Neil B. Miner
Claudine H. Modlin
Brian A. Montigney
Anne Hoban Moore
Kenneth B. Morgan
Frangois Morin
Robert Joseph Moser
Matthew C. Mosher
Roosevelt C. Mosley
Janet R. Nelson
James R. Nikstad
Sean Robert Nimm
Ray E. Niswander
Corine Nutting
James L. Nutting
Steven Brian Oakley
Randall William Oja
Christy Beth Olson
Rodrick Raymond
Osborn
David Anthony
Ostrowski
Apryle L. Oswald
David J. Otto
Teresa K. Paffenback
Rudy A. Palenik
Donald D. Palmer
Jennifer J. Palo
Cosimo Pantaleo
Thomas Passante
Kathleen M. Pechan
John R. Pedrick
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Kristin Sarah
Piltzecker
Dale S. Porfilio
Deborah W. Price
Karen L. Queen
Kara Lee Raiguel
Mario Richard
John R. Rohe
William P. Roland
Steven Carl Rominske
A. Scott Romito
Deborah M. Rosenberg
Christine R. Ross
Gail M. Ross
Daniel G. Roth
Jerome A. Scheibl
Parr T. Schoolman
Peter J. Schultheiss
Roger A. Schultz
Allan I. Schwartz
Steven George Searle
Ollie L. Sherman
Alastair C. Shore
Lisa A. Slotznick
Joseph Allen Smalley
Klayton N. Southwood
Keith R. Spalding

Vagif Amstislavskiy
Pamela G. Anderson
Joel E. Atkins
David B. Bassi
Brian P. Beckman
Kofi Boaitey

Joanne S. Spalla
Angela Kaye Sparks
David Spiegler
Daniel L. Splitt
John A. Stenmark
Curt A. Stewart
Douglas N. Strommen
Robert W. Sturgis
Scott J. Swanay
Susan T. Szkoda
Karen F. Terry
Patricia A. Teufel
Beth S. Thompson
Christopher S.
Throckmo